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Preface

These notes deal with the theory of Sobolev spaces on Riemannian manifolds.
Though Riemannian manifolds are natural extensions of Euclidean space, the naive
idea that what is valid for Euclidean space must be valid for manifolds is false. Sev-
eral surprising phenomena appear when studying Sobolev spaces on manifolds.
Questions that are elementary for Euclidean space become challenging and give
rise to sophisticated mathematics, where the geometry of the manifold plays a cen-
tral role. The reader will find many examples of this in the text.

These notes have their origin in a series of lectures given at the Courant Insti-
tute of Mathematical Sciences in 1998. For the sake of clarity, I decided to deal
only with manifolds without boundary. An appendix concerning manifolds with
boundary can be found at the end of these notes. To illustrate some of the results or
concepts developed here, I have included some discussions of a special family of
PDEs where these results and concepts are used. These PDEs are generalizations
of the scalar curvature equation. As is well known, geometric problems often lead
to limiting cases of known problems in analysis.

The study of Sobolev spaces on Riemannian manifolds is a field currently un-
dergoing great development. Nevertheless, several important questions still puzzle
mathematicians today. While the theory of Sobolev spaces for noncompact man-
ifolds has its origin in the 1970s with the work of Aubin, Cantor, Hoffman, and
Spruck, many of the results presented in these lecture notes have been obtained in
the 1980s and 1990s. This is also the case for the applications already mentioned
to scalar curvature and generalized scalar curvature equations. A substantial part
of these notes is devoted to the concept of best constants. This concept appeared
very early on to be crucial for solving limiting cases of some partial differential
equations. A striking example of this was the major role that best constants played
in the Yamabe problem.

These lecture notes are intended to be as self-contained as possible. In partic-
ular, it is not assumed that the reader is familiar with differentiable manifolds and
Riemannian geometry. The present notes should be accessible to a large audience,
including graduate students and specialists of other fields.

The present notes are organized into nine chapters. Chapter 1 is a quick in-
troduction to differential and Riemannian geometry. Chapter 2 deals with the
general theory of Sobolev spaces for compact manifolds, while Chapter 3 deals
with the general theory of Sobolev spaces for complete, noncompact manifolds.
Best constants problems for compact manifolds are discussed in Chapters 4 and
5, while Chapter 6 deals with some special type of Sobolev inequalities under

Xi
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constraints. Best constants problems for complete noncompact manifolds are dis-
cussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities.
The influence of symmetries on Sobolev embeddings is discussed in Chapter 9.
An appendix at the end of these notes briefly discusses the case of manifolds with
boundaries.

It is my pleasure to thank my friend Jalal Shatah for encouraging me to write
these notes. It is also my pleasure to express my deep thanks to my friends and col-
leagues Tobias Colding, Zindine Djadli, Olivier Druet, Antoinette Jourdain, Michel
Ledoux, Frédéric Robert, and Michel Vaugon for stimulating discussions and valu-
able comments about the manuscript. Finally, I wish to thank Reeva Goldsmith,
Paul Monsour, and Joe Shearer for the wonderful job they did in the preparation of
the manuscript.

Emmanuel Hebey
Paris, September 1998



CHAPTER 1

Elements of Riemannian Geometry

The purpose of this chapter is to recall some basic facts concening Riemannian
geometry. Needless to say, for dimension reasons, we are obliged to be succinct and
partial. For those who have only a slight acquaintance with Riemannian geometry,
we recommend the following books: Chavel [45], Do-Carmo [70], Gallot-Hulin-
Lafontaine [88], Hebey [109], Jost [127], Kobayashi-Nomizu [136], Sakai [171],
and Spivak [181]. Of course, many other excellent books on the subject do exist.
We mention that Einstein’s summation convention is adopted: an index occurring
twice in a product is to be summed. This also holds for the rest of the book.

1.1. Smooth Manifolds

Paraphrasing a sentence of Elie Cartan, a manifold is really made of small
pieces of Euclidean space. More precisely, let M be a Hausdorff topological space.
We say that M is a topological manifold of dimension n if each point of M pos-
sesses an open neighborhood that is homeomorphic to some open subset of the
Euclidean space R". A chart of M is then a couple (2, ¢) where 2 is an open
subset of M, and ¢ is a homeomorphism of €2 onto some open subset of R". For
y € £, the coordinates of ¢(y) in R” are said to be the coordinates of y in (2, ¢).
An atlas of M is a collection of charts (2;,¢;), i € I, such that M = |J,, Q.
Given (£2;, ¢;)ies an atlas, the transition functions are

giog ! 1 pi(RiNQ) > (R NKQ;)

with the obvious convention that we consider ¢; o ¢; "if and only if ; N Q; #0.
The atlas is then said to be of class C¥ if the transition functions are of class C¥,
and it is said to be C*-complete if it is not contained in a (strictly) larger atlas of
class C*. As one can easily check, every atlas of class C is contained in a unique
C*-complete atlas.

For our purpose, we will always assume in what follows that k = +o00 and
that M is connected. One then gets the following definition of a smooth manifold:
A smooth manifold M of dimension n is a connected topological manifold M of
dimension n together with a C*-complete atlas.

Classical examples of smooth manifolds are the Euclidean space R” itself, the
torus 7", the unit sphere S” of R"*', and the real projective space P (R).

Given M and N two smooth manifolds, and f : M — N some map from M
to N, we say that f is differentiable (or of class C¥) if for any charts (2, ¢) and
(2, ¢) of M and N such that f(R) C €, the map

Gofop™ () — ¢()
1



2 1. ELEMENTS OF RIEMANNIAN GEOMETRY

is differentiable (or of class CX). In particular, this allows us to define the notion
of diffeomorphism and the notion of diffeomorphic manifolds. Independently, one
can define the rank R(f), of f at some point x of M as the rank of $ o f o ¢!
at ¢(x), where (2, ¢) and (2, §) are as above, with the additional property that
x € Q. This is an intrinsic definition in the sense that it does not depend on the
choice of the charts. The map f is then said to be an immersion if, for any x € M,
R(f)x = m, where m is the dimension of M, and a submersion if for any x € M,
R(f)x = n, where n is the dimension of N. It is said to be an embedding if it is an
immersion that realizes a homeomorphism onto its image.

We refer to the above definition of a manifold as the abstract definition of
a smooth manifold. Looking carefully to what it says, and to the questions it
raises, things appear to be less clear than they may seem at first glance. Given M
a connected topological manifold, one can ask if there always exists a structure of
smooth manifold on M, and if this structure is unique. Here, uniqueness has to be
understood in the following sense: given M a connected topological manifold, and
A a C*-complete atlas of M, the smooth structure of M is said to be unique if, for
any other C*°-complete atlas A of M , the smooth manifolds (M, A) and (M, X)
are diffeomorphic. With this definition of uniqueness, the only reasonable defini-
tion for that notion, one gets surprising answers to the questions we asked above.
From the works of Moise, developed in the 1950s, one has that up to dimension 3,
any topological manifold possesses one, and only one, smooth structure. But start-
ing from dimension 4, one gets that there exist topological manifolds which do not
possess smooth structures (this was shown by Freedman in the 1980s), and that
there exist topological manifolds which possess many smooth structures. Coming
back to the works of Milnor in the 1950s, and to the works of Kervaire and Milnor,
one has that S7 possesses 28 smooth structures, while S'' possesses 992 smooth
structures! Perhaps more surprising are the consequences of the works of Donald-
son and Taubes: While R" possesses a unique smooth structure for n # 4, there
exist infinitely many smooth structures on R*!

Up to now, we have adopted the abstract definition of a manifold. As a surface
gives the idea of a two-dimensional manifold, a more concrete approach would
have been to define manifolds as submanifolds of Euclidean space. Given M and
N two manifolds, one will say that N is a submanifold of M if there exists a smooth
embedding f : N — M. According to a well-known result of Whitney, the two
approaches (concrete and abstract) are equivalent, at least when dealing with para-
compact manifolds, since for any paracompact manifold M of dimension n, there
exists a smooth embedding f : M — R?"*+!, In other words, any paracompact (ab-
stract) manifold of dimension » can be seen as a submanifold of some Euclidean
space.

Let us now say some words about the tangent space of a manifold. Given M a
smooth manifold and x € M, let ¥, be the vector space of functions f : M — R
which are differentiable at x. For f € ¥,, we say that f is flat at x if for some
chart (2, ¢) of M atx, D(f o¢™') . = 0. Let W, be the vector space of such
functions. A linear form X on ¥, is then said to be a tangent vector of M at x if
N, C KerX. We let T, (M) be the vector space of such tangent vectors. Given
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(82, ) some chart at x, of associated coordinates x', we define (%)‘ € T.(M) by:

for any f € ¥,,
a -
(a—x’) v ' (f) = D‘(f o‘p l)ﬂo(-‘)
As a simple remark, one gets that the (%)xs form a basis of T.(M). Now, one
defines the tangent bundle of M as the disjoint union of the T,(M)’s, x € M. If
M is n-dimensional, one can show that T (M) possesses a natural structure of a

2n-dimensional smooth manifold. Given (2, ¢) a chart of M,

(U T (M), ¢)

YER
is a chart of T (M), where for X € T,(M), x € ,

D(X) = (¢'(x), ..., 0" x), X(@"), ..., X(¢M)

(the coordinates of x in (£2, ¢) and the components of X in (2, ¢), that is, the co-
ordinates of X in the basis of T, (M) associated to (2, ¢) by the process described
above). By definition, a vector field on M is amap X : M — T (M) such that for
any x € M, X(x) € T,(M). Since M and T (M) are smooth manifolds, the notion
of a vector field of class C* makes sense.

Given M, N two smooth manifolds, x a point of M, and f : M — N dif-
ferentiable at x, the tangent linear map of f at x (or the differential map of f at
x), denoted by f.(x), is the linear map from T.(M) to Ty,)(N) defined by: For
X € T,(M) and g : N — R differentiable at f(x),

(i) - (X)) - (@) =X(go f)
By extension, if f is differentiable on M, one gets the tangent linear map of f,
denoted by f.. That is the map f, : T(M) — T(N) defined by: For X € T, (M),
f.(X) = f.(x).(X). As one can easily check, f, is C*~!if f is CX. For f : M| —
My, g: My > Ms,and x € M, (g o f).(x) = g.(f(x)) o fu(x).

Similar to the construction of the tangent bundle, one can define the cotangent
bundle of a smooth manifold M. For x € M, let T,(M)"* be the dual space of
T.(M). If (2, ¢) is a chart of M at x of associated coordinates x', one gets a basis
of T, (M)* by considering the dx’’s defined by dx! - (%)‘ = §!. As for the tangent
bundle, the cotangent bundle of M, denoted by T*(M), is the disjoint union of the
T.(M)*’s, x € M. Here again, if M is n-dimensional, T*(M) possesses a natural
structure of 2n-dimensional smooth manifold. Given (€2, ¢) a chart of M,

(U T.(M)*, d>)

xEQ

is a chart of T (M), where for n € T,(M)*, x € ,

d 3
®(n) = (‘P'(x), e @ (%), n(a—xl)  eens "(K) )

(the coordinates of x in (2, ¢) and the components of 7 in (£2, ¢), that is, the co-
ordinates of 7 in the basis of T, (M)* associated to (2, ¢) by the process described
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above). By definition, a 1-form on M is amap n : M — T*(M) such that for any
x € M, n(x) € T,(M)*. Here again, since M and T*(M) are smooth manifolds,
the notion of a 1-form of class C* makes sense. For f a function of class C* on M,
let df be defined by: Forx € M and X € T, (M), df(x) - X = X(f). Then df is
a 1-form of class C*~'.

Given M a smooth n-manifold, and 1 < ¢ < n an integer, let A\? T,(M)*
be the space of skew-symmetric g-linear forms on 7, (M). If (2, ¢) is a chart
of M at x, of associated coordinates x, {dx A --- A dx{ }i,<~~~<iq is a basis of
A? T,(M)*. With similar constructions to the ones made above, one gets that
/\?(M), the disjoint union of the A? T, (M)*’s, possesses a natural structure of a
smooth manifold. Its dimension is n + C/, where C; = n!/(q!(n — q)!). Some
map n : M — /\?(M) is then said to be an exterior form of degree g, or just an
exterior g-form, if for any x € M, n(x) € A? T.(M)*. Here again, the notion of
an exterior g-form of class C* makes sense. Given (2, ¢) some chart of M, and 5
a g-form of class C* whose expression in (R, ) is

n= Z Miy.ig X7 Ao A dx's
i) <<y
the exterior derivative of 7, denoted by dp, is the exterior (¢ + 1)-form of class
C*~! whose expression in (R, ¢) is

dn= Y dny. i, Adx" Ao A dx'
i) <o <ig
One then gets that for any exterior g-form n, d(dn) = 0. Conversely, by the
Poincaré lemma, if 7 is an exterior g-form such that dn = O, that is, a closed
exterior g-form, around any point in M, there exists an exterior (¢ — 1)-form 7
such that d = 7. One says that a closed exterior form is locally exact.

As another generalization, given M a smooth n-manifold, x some point of M,
and p, g two integers, one can define T,," (T (M)) as the space of (p, g)-tensors on
T, (M), that is, the space of (p + g)-linear forms

n:TL(M)x - X T,(M) x T,(M)* x --- x T,(M) — R

- —

p q

An element of T (Tx M )) is said to be p-times covariant and g-times contravari-
ant. If (22, @) is a chart of M at x, of associated coordinates x', the family

. i a
fato-outo() o-o() )
8le x aqu X Vi, dp i dg

is a basis of T,/ (T, (M)). Here again, one gets that the disjoint union T, (M) of the
T, (T.(M))’s possesses a natural structure of a smooth manifold. Its dimension is
n(1+n?*7"'). Amap T : M — T, (M) is then said to be a (p, ¢)-tensor field on
M if forany x € M, T(x) € T/ (T, (M)). Itis said to be of class C* if it is of class
C* from the manifold M to the manifold 7, (M). Given (R, ¢) and (2, ¢) two
charts of M of associated coordinates x' and y‘, and T a (p, g)-tensor field, let us
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denote by T/ and T’ 4 jts components in (2, ¢) and (2, ¥). Then, for any

l|l

i.,...,i,,,j,,...,jq,andanyxGQ

Ix« dIx%r ay-/l ay.lq
an T ,"'(x) Pl e )( ) ( ) (——) ( )
" e ayll x ayip x aXp| x axﬂq x

As a remark, given M and N two manifolds, f : M — N a map of class C**',
and T a (p, 0)-tensor field of class C* on N, one can define the pullback f*T of T
by f, that is, the (p, 0)-tensor field of class C* on M defined by: For x € M and
Xi,....X, e T,(M),

(D@ (X, Xp) =T (fX) - (/o) - Xis oo, fulx) - X))

As one can easily check, for f : M| - M,and g : M> - M3, (go f)* = f*og".
Let us now define the notion of a linear connection. Denote by I' (M) the space
of differentiable vector fields on M. A linear connection D on M is a map

D:T(M)xTI'(M) - T(M)

such that
1. vxe M,VX € T,(M),VY e '(M), D(X,Y) € T,(M),
2.VxeM,D : T, (M) x '(M) - T.(M) is bilinear,
3.Vx € M, VX € T.(M), Vf : M — R differentiable, VY € I'(M),
DX, fY)=X(f)Y(x) + f(x)D(X,Y), and
4. VX,Y € I'(M), and Vk integer, if X is of class C* and Y is of class
C**! then D(X, Y) is of class C¥, where D(X, Y) is the vector field x —
D(X(x),Y).
Given D a linear connection, the usual notation for D(X, Y) is Dyx(Y). One says
that Dx(Y) is the covariant derivative of ¥ with respect to X. Let (£2, ) be a chart
of M of associated coordinates x/. Set

Vi=D, a

(h’

As one can easily check, there exist n* smooth functions l"f‘j : € — R such that
for any i, j, and any x € €2,

ad - KB
o(2)orin()

Such functions, the Christoffel symbols of D in (£2, ¢), characterize the connection
in the sense that for X € T,(M), x € Q,and Y € '(M),

; e d i 9
Dx(Y) = X'(V;¥)(x) = X' ((——) + l‘,i,,(x)Y“(X)) (-—)
8x,~ x 3.¥j x

where the X'’s and Y'’s denote the components of X and Y in the chart (Q, ¢),
and for f : M — R differentiable at x,

(), =20 =#

As one can easily check, since (1.1) is not satisfied by the l"" ’s, the I‘" ’s are not the
components of a (2, 1)-tensor field. An important remark is that lmear connections
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have natural extensions to differentiable tensor fields. Given T a differentiable
(p, g@)-tensor field, x a point of M, X € T.(M), and (, ¢) a chart of M at x,
Dx(T) is the (p, q)-tensor on T, (M) defined by Dx(T) = X'(V;T)(x), where

Ji-dq

j j aT; N}
(ViT) @) e =( iy ) Zl"f,"(x)T(x),j: A

ox;
+erk(x)T(x);lll 'Jk 10541 Jg

The covariant derivative commutes with the contraction in the sense that
Dx(CT) = €2 Dx(T)
where Ck T stands for the contraction of T of order (k;, k,). More, for X € T, (M),
and T and T two differentiable tensor fields, one has that
Dx(T ® T) = (Dx(T)) ® T(x) + T (x) ® (Dx(T))

Given T a (p, q)-tensor field of class C¥*!, we let VT be the (p + 1, g)-tensor
field of class C* whose components in a chart are given by

JrJ Jred
(VT)“' R q+| (V' )l':...i:. ]
By extension, one can then define V2T, V3T, and so on. For f : M — R a smooth
function, one has that V f = df and, in any chart (22, ¢) of M,

| ¥f of
(V2r)eos = (3xi3xj) i )( k)x

where ,
°f 2
= D;
(ax,-ax,-) oy
In the Riemannian context, V2 f is called the Hessian of f and is sometimes de-
noted by Hess(f).

Finally, let us define the torsion and the curvature of a linear connection D.
The torsion T of D can be seen as the smooth (2, 1)-tensor field on M whose
components in any chart are given by the relation T} = I'f; — T'};. One says that
the connection is torsion-free if T = 0. The curvature R of D can be seen as the
smooth (3, 1)-tensor field on M whose components in any chart are given by the
relation

ari,  arj;
Ruk aX'l - an -— + FI r[?, - l"/lml“f,
As one can easily check, R/, k= —R!,.. ;- Moreover, when the connection is torsion-
free, one has that
Rlljl( + Rku + lel =0

(Vi R)mjk + (VkR)mu + (V R)mkl
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Such relations are referred to as the first Bianchi’s identity, and the second Bianchi’s
identity.

1.2. Riemannian Manifolds

Let M be a smooth manifold. A Riemannian metric g on M is a smooth (2, 0)-
tensor field on M such that for any x € M, g(x) is a scalar product on T,(M).
A smooth Riemannian manifold is a pair (M, g) where M is a smooth manifold
and g a Riemannian metric on M. According to Whitney, for any paracompact
smooth n-manifold there exists a smooth embedding f : M — R?'*!. One then
gets that any smooth paracompact manifold possesses a Riemannian metric. Just
think to g = f™*e, e the Euclidean metric. Two Riemannian manifolds (M), g;) and
(M-, g,) are said to be isometric if there exists a diffeomorphism f : M, — M,
such that f*g, =

Given (M, g) a smooth Riemannian manifold, and y : [a, b] &> M a curve of
class C', the length of y is

b y
L(y)= gly@) - i dt

where (‘7’,’,5), € T,)(M) is such that (7,’,‘)1 -f= (f o y) (1) forany f : M - R
differentiable at y (t). If y is piecewise C', the length of y may be defined as the
sum of the lengths of its C' pieces. For x and y in M, let C,, be the space of
piecewise C' curves y : [a, b] — M such that y (a) = x and ¥ (b) = y. Then

dy(x,y) = yggn L(y)

defines a distance on M whose topology coincides with the original one of M. In
particular, by Stone’s theorem, a smooth Riemannian manifold is paracompact. By
definition, d, is the distance associated to g.

Let (M, g) be a smooth Riemannian manifold. There exists a unique torsion-
free connection on M having the property that Vg = 0. Such a connection is the
Levi-Civita connection of g. In any chart (2, ¢) of M, of associated coordinates
x', and for any x € L, its Christoffel symbols are given by the relations

) n ) mi a3 ij 3
03 (() () - (2) )
t x ) t m7/ v

where the g'/’s are such that g;,,g™ = &/ Let R be the curvature of the Levi-Civita
connection as introduced above. One defines:
1. the Riemann curvature Rmy ¢, of g as the smooth (4, 0)-tensor field on M
whose components in a chart are R;jxi = gia Ry
2. the Ricci curvature Rc(y g of g as the smooth (2, 0)-tensor ficld on M
whose components in a chart are R;; = Ry g*, and
3. the scalar curvature Scal y g of g as the smooth real-valued function on M

whose expression in a chart is Scaly o) = R;;g".
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As one can check, in any chart,
Rijii = —Rjitt = — Riju = Ry;j
and the two Bianchi identities are

Rijut + Rijx + Riwij =0,
(Vi Rm(M~8))jk1m + (Vi Rme«g))jku + (V) Rm(M-g))jkmi =0.

In particular, the Ricci curvature Rcy ) of g is symmetric, so that in any chart
Rij = Rj;. Forx € M, let Gi(M) be the 2-Grassmannian of T, (M). The sectional
curvature K. of g is the real-valued function defined on | J, ., G2 (M) by: For
P € G2(M),

Rmy g (x)(X, Y, X, )
g)(X, X)g(x) (Y, Y) — g(x)(X, ¥)?

where (X , Y) is a basis of P. As one can easily check, such a definition does
not depend on the choice of the basis. Moreover, one can prove that the sectional
curvature determines the Riemann curvature.

Given (M, g) a smooth Riemannian manifold, and D its Levi-Civita connec-
tion, a smooth curve y : [a, b] — M is said to be a geodesic if for all ¢,

dy
=0
D%F),(dt)

This means again that in any chart, and for all &,
() O +ThrO) ) O) © =0

For any x € M, and any X € T,(M), there exists a unique geodesic y : [0, €] —
M such that y(0) = x and (%lf)o = X. Let y, x be this geodesic. For A > 0
real, y,..x(t) = y..x(At). Hence, for || X| sufficiently small, where || - || stands
for the norm in T, (M) associated to g(x), one has that y, x is defined on [0, 1].
The exponential map at x is the map from a neighborhood of 0 in 7, (M), with
values in M, defined by exp, (X) = y,.x(1). If M is n-dimensional and up to the
assimilation of T, (M) to R" via the choice of an orthonormal basis, one gets a chart
(R, exp;') of M at x. This chart is normal at x in the sense that the components
g8ij of g in this chart are such that g;;(x) = §;;, with the additional property that
the Christoffel symbols l"fj of the Levi-Civita connection in this chart are such that
I‘fj (x) = 0. The coordinates associated to this chart are referred to as geodesic
normal coordinates.

Let (M, g) be a smooth Riemannian manifold. The Hopf-Rinow theorem states

that the following assertions are equivalent:

1. the metric space (M, d;) is complete,

2. any closed-bounded subset of M is compact,

3. there exists x € M for which exp, is defined on the whole of T, (M), and
4. for any x € M, exp, is defined on the whole of T,(M).

K(M.g)(P) =
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Moreover, one gets that any of the above assertions implies that any two points in
M can be joined by a minimizing geodesic. Here, a curve y from x to y is said to

be minimizing if L(y) = d,(x. y).

Given (M, g) a smooth Riemannian n-manifold, one can define a natural posi-
tive Radon measure on M. In particular, the theory of the Lebesgue integral can be
applied. For (i, ¢;),, some atlas of M, we shall say that a family (2, ¢;, o; )je ;
is a partition of unity subordinate to (i, ¢;),,, if the following holds:

1. (a;); is a smooth partition of unity subordinate to the covering (£2;);,

2. (), ¢;); is an atlas of M, and

3. forany j, suppa; C ;.

As one can easily check, for any atlas (SZ;, :p;)’.e / of M, there exists a partition of
unity (2}, ¢j, @;),, subordinate to (2, ¢;),,. One can then define the Riemann-
ian measure as follows: Given f : M — R continuous with compact support, and
given (i, ¢;),., an atlas of M,

[ravo=F [ (/Blr)ow " ix
M jeJ ©; (S25)
where (2}, ¢;, aj)j ., Is a partition of unity subordinate to (2, ¢;),.,. |g| stands
for the determinant of the matrix whose elements are the components of g in
(. ¢;), and dx stands for the Lebesgue volume element of R”. One can prove
that such a construction does not depend on the choice of the atlas (;, ¢;),, and
the partition of unity (%;, ¢;. ;), -

The Laplacian acting on functions of a smooth Riemannian manifold (M, g)
is the operator A, whose expression in a local chart of associated coordinates x' is

o u du
Au=—g" -k =
st & (3x,~3xj Y axk)

For u and v of class C* on M, on then has the following integration by parts formula

[(Agu)vdv(g) =/ (Vu,Vv)dv(g):/ u(Agv)dv(g)
M M M

where (-, -) is the scalar product associated with g for 1-forms.

Coming back to geodesics, one can define the injectivity radius of (M, g) at
some point x, denoted by inj,, ,,(x), as the largest positive real number r for which
any geodesic starting from x and of length less than r is minimizing. One can then
define the (global) injectivity radius by

NJpg.0) = }2{4 injp ¢)(x)

One has that injy, ,, > 0 for a compact manifold, but it may be zero for a complete
noncompact manifold. More generally, one can define the cut locus Cut(x) of
x as a subset of M and prove that Cut(x) has measure zero, that inj(M.g,(x) =
dy(x, Cut(x)), and that exp, is a diffeomorphism from some star-shaped domain
of T,(M) at 0 onto M\ Cut(x). In particular, one gets that the distance function r
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to a given point is differentiable almost everywhere, with the additional property
that |Vr| = | almost everywhere.

1.3. Curvature and Topology

As is well-known, curvature assumptions may give topological and diffeomor-
phic information on the manifold. A striking example of the relationship that ex-
ists between curvature and topology is given by the Gauss-Bonnet theorem, whose
present form is actually due to the works of Allendoerfer [2], Allendoerfer-Weil
[3], Chem [49], and Fenchel [81]. One has here that the Euler-Poincaré character-
istic x (M) of a compact manifold can be expressed as the integral of a universal
polynomial in the curvature. For instance, when the dimension of M is 2,

1
X = o [ Sealun.) duce)

and when the dimension of M is 4, as shown by Avez [15],

1 1
X(M)=Er—2/,:,( |Weyl ) I” +3 Scal(Mg) |Em.g) )dv(g)

where | - | stands for the norm associated to g for tensors, and where Weyl y, ., and
E(um.g) are, respectively, the Weyl tensor of g and the traceless Ricci tensor of g. In
a local chart, the components of Weyl,,, ., are

1
Wukl = Rukl - m(legjl + leglk - Rllgjk - Rjkgll)

Scal( M.g)
(n—1)(n-2)
where n stands for the dimension of the manifold. As another striking example of
the relationship that exists between curvature and topology, one can refer to Myer’s
theorem (see, for instance, [88]). This theorem states that a smooth, complete
Riemannian n-manifold (M, g) whose Ricci curvature satisfies

Rewg = (n— kg

as bilinear forms, and for some & > O real, must be compact, with the additional
property that its diameter diam,y ) is less than or equal to ;. Moreover, by Hamil-
ton’s work [99], any 3-dimensional, compact, simply connected Riemannian man-
ifold of positive Ricci curvature must be diffeomorphic to the unit sphere S* of
R*. Conversely, by recent results of Lohkamp [153], negative sign assumptions
on the Ricci curvature have no effect on the topology, since any compact man-
ifold possesses a Riemannian metric of negative Ricci curvature. This does not
hold anymore when dealing with sectional curvature. By the Cartan-Hadamard
theorem (see, for instance, [88]), one has that any complete, simply connected,
n-dimensional Riemannian manifold of nonpositive sectional curvature is diffeo-
morphic to R".

As other examples of the relationship that exists between curvature and topol-
ogy, let us mention the well-known sphere theorem of Berger [26], Klingenberg

(gikgjl - gilgjk)
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[133, 134], Rauch [168], and Tsukamoto [187]. Given (M, g) some smooth, com-
pact, simply connected Riemannian n-manifold (M, g), and 8, A two positive real
numbers, if the sectional curvature of g is such that § < Ky, < A,andif £ > 1,
then M is homeomorphic to the unit sphere " of R"*'. Moreover, as shown, for
instance, by Im-Hoff and Ruh [125], one gets the existence of diffeomorphisms

provided that 2 > «, for some a, € (3, 1) sufficiently close to I.

1.4. From Local to Global Analysis

We prove here a packing lemma that will be used many times in the sequel.
Such a lemma was first proved by Calabi (unpublished) under the assumptions that
the sectional curvature of the manifold is bounded and that the injectivity radius of
the manifold is positive (see Aubin [8] and Cantor [37]). By Croke’s result (59] it
was then possible to replace the assumption on the sectional curvature by a lower
bound on the Ricci curvature. Finally, by an ingenious usc of Gromov’s theorem,
Theorem 1.1 below, one obtains the result under the more general form of Lemma
1.1. When we discuss Sobolev inequalities on complete manifolds, this lemma will
be an important tool in the process of passing from local to global inequalities.

As a starting point, we mention the following result, generally referred to as
Gromov’s volume comparison theorem. Under the present form, it is actually due
to Bishop and Gromov. We refer the reader to the excellent refcrences Chavel [45]
and Gallot-Hulin-Lafontaine (88)] for details on the proof of this theorem.

THEOREM 1.1 Let (M, g) be a smooth, complete Riemannian n-manifold whose
Ricci curvature satisfies Rcp gy = (n — 1)kg as bilinear forms, for some k real.
Then, forany0 <r < Randany x € M,

Vi(R)
Vi(r)

Vol (B.(R)) < Vol (B,(r))

where Vol, (B,‘.(t)) denotes the volume of the geodesic ball of center x and radius
t, and where V(1) denotes the volume of a ball of radius t in the complete simply
connected Riemannian n-manifold of constant curvature k. In particular, for any
r > 0and any x € M, Volg(B.(r)) < Vi(r).

As a remark, let b, be the volume of the Euclidean ball of radius one. It is
well-known (see, for instance, [88]), that for any 7 > 0,

1
V_1(t) = nb, [ (sinhs)"~'ds
0

where, according to the notation of Theorem 1.1, V_,(¢) denotes the volume of a
ball of radius ¢ in the simply connected hyperbolic space of dimension n. It is then
easy to prove that for any k > 0 and any ¢ > O,

but" < Vi(t) < bt"e=OVE

One just has to note here that for s > 0, s < sinhs < se', and that if g’ = a?g
are Riemannian metrics on a n-manifold M, where « is some positive real number,
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then for any x € M and any ¢ > O,
Vol (B (1)) = a" Vol (Bx(t/e))
As a consequence, by Theorem 1.1 and what we just said, we get that if (M, g) is

a complete Riemannian n-manifold whose Ricci curvature satisfies Rc(y ) > kg
for some k real, then forany x € M and any 0 <r < R,

Vol (B«(R)) < eﬂ"—'""RG) Vol, (Bx(r))

Such an explicit inequality will be used occasionally in the sequel.

Given (M, g) a Riemannian manifold, we say that a family (£2;) of open sub-
sets of M is a uniformly locally finite covering of M if the following holds: (£2;)
is a covering of M, and there exists an integer N such that each point x € M has a
neighborhood which intersects at most N of the §2,’s. One then has the following

result:

LEMMA 1.1 Let (M, g) be a smooth, complete Riemannian n-manifold with Ricci
curvature bounded from below by some k real, and let p > 0 be given. There exists
a sequence (x;) of points of M such that for any r > p:

(i) the family (B.r; (r)) is a uniformly locally finite covering of M, and there is

an upper bound for N in terms of n, p, r, and k

(ii) forany i # j, B« (§) N B;(§) =2
where, for x € M and r > 0, B,(r) stands for the geodesic ball of center x and
radius r.

PROOF: By Theorem 1.1 and the remark following this theorem, for any x €
Mandany O <r <R,

(1.2) Vol (B, (r)) = e~ V=D (%) Vol, (B« (R))
Independently, we claim there exists a sequence (x;) of points of M such that
(1.3) M =B ()

o p Py _
(1.4) vi . B, (5)nB,(5) =9
Let

X, = {(x;),, X; € M, s.t. ] is countable and Vi # j, dg(x;, x;) > p’

where d, is the Riemannian distance associated to g. As one can easily check, X,
is partially ordered by inclusion and every chain in X, has an upper bound. Hence,
by Zom’s lemma, X, contains a maximal element (x;), and (x;) satisfies (1.3) and
(1.4). This proves the above claim. From now on, let (x;) be such that (1.3) and
(1.4) are satisfied. For r > 0 and x € M we define

L(x) = |i st.x € B, (r)}
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By (1.2) we get that for r > p
| O P
Vol (B (r)) > T /=T ol (B, (2r))

R RPN = 112 P
el {n=T Z Vol { B, >

i€l (x)

U B‘i(g) C B, (2r)

i€l (x)

B, (g) n B,,,.(g) =0 ifi#j

since

But, again by (1.2),
Voly (B, (p/2)) = e2/7=THr (‘%)" Vol, (B, (2r))
and since for any i € I,(x), B((r) C B,,(2r), we get that
Volo(B.(r) = (&) e~V Card I (x) Vol (B. (1))

where Card stands for the cardinality. As a consequence, for any r > p there exists
C = C(n, p, r, k) such that for any x € M, CardI,(x) < C. Now, let B,,(r) be
given, r > p, and suppose that N balls B,;(r) have a nonempty intersection with
B, (r), j # i. Then, obviously, Card I;,(x;) > N + 1. Hence,

N<Cn,p,2rk)—1

and this proves the lemma. a

1.5. Special Coordinates

Given (M, g) a smooth Riemannian manifold, some chart (2, ¢) of M of as-
sociated coordinates x* is said to be harmonic if for any i, Agx’ = 0, where A,
is the Laplacian of g. As one can easily check from the expression of A,, this
means again that for any k, g/ T}, = 0, where the T'};’s stand for the Christoffel
symbols of the Levi-Civita connection in the chart. A simple assertion to prove is
that for any x in M, there exists a harmonic chart (2, ¢) at x. This comes from the
classical fact that there always exists a smooth solution of A u = 0 with u(x) and
d;u(x) prescribed. The solutions y/ of

Ay’ =0
y(x)=0
3yl (x) =8/

are then the desired harmonic coordinates. Furthermore, since composing with
linear transformations do not affect the fact that coordinates are harmonic, one
easily sees that we can choose the harmonic coordinate system such that g;; (x) =
djj forany i, j.
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A key idea when dealing with harmonic coordinates, as first noticed by Lanc-
zos [139], is that they simplify the formula for the Ricci tensor. In harmonic coor-
dinates, one has that
1 of 32g,'j

Rij = =28 3x0x,
where the dots indicate lower-order terms involving at most one derivative of the
metric. Very nice results based on such a formula can be found in DeTurck-Kazdan
[63].
For our purpose, let us now define the concept of harmonic radius.

DEFINITION 1.1 Let (M, g) be a smooth Riemannian n-manifold and let x € M.
Given Q > 1,k € N, and @ € (0, 1), we define the C*® harmonic radius at x as
the largest number ry = ry(Q, k, a)(x) such that on the geodesic ball B,(ry) of
center x and radius ry, there is a harmonic coordinate chart such that the metric
tensor is C¥* controlled in these coordinates. Namely, if g;;, i, j = 1,...,n, are
the components of g in these coordinates, then

1. 07'8; < gij < Q8;; as bilinear forms
2. Z rlﬁl SUP|3ﬂgu(}’)| + Z rA+a |3,38ij ) - aﬁfij(y)l <0-1
1<iBl<k > 1Bl=k .\'#3 dg (y. 2)

where d, is the distance associated to g. We now define the (global) harmonic
radius ry (Q, k, a)(M) of (M, g) by

rH(Qa k, a)(M) = \!2{4 rH(Q9 k’ a)(x)

where r4(Q, k, a)(x) is as above.
As one can easily check, the function
x> ry(0,k, a)(x)
is 1-Lipschitz on M, since by definition, for any x, y € M,
ru(Q,k, a)(y) =2 ru(Q. k, a)(x) — dg(x,y)

One then gets that the harmonic radius is positive for any fixed, smooth, compact
Riemannian manifold. The purpose of Theorem 1.2 below is to show that one
obtains lower bounds on the harmonic radius in terms of bounds on the Ricci cur-
vature and the injectivity radius. Roughly speaking, when changing from geodesic
normal coordinates to harmonic coordinates, one controls the components of the
metric in terms of the Ricci curvature instead of the whole Riemann curvature. As it
is stated below, Theorem 1.2 can be found in the survey article of Hebey-Herzlich
[111]. For original references, we refer to Anderson [5], Anderson-Cheeger [6],
and also to Jost-Karcher [128]. Concerning its proof, let us just say that the general
idea is to construct a sequence of Riemannian n-manifolds with harmonic radius
less than or equal to 1 to prove that such a sequence converges to the Euclidean
space R”, and to get the contradiction by noting that this would imply that the
harmonic radius of R” is less than or equal to 1. (Obviously, R” has an infinite har-
monic radius). Key steps in such a proof are the above formula for the Ricci tensor
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in harmonic coordinates, and properties of the harmonic radius when passing to the
limit in a converging sequence of metrics.

THEOREM 1.2 Leta € (0,1), Q@ > 1,8 > 0. Let (M, g) be a smooth Riemannian
n-manifold, and Q2 an open subset of M. Set

Q) = [x €Mstdy(x,Q) < 8}

where d, is the distance associated to g. Suppose that for some A real and some
i > 0 real, we have that for all x € Q(6),

Rem g (x) > Ag(x) and  injgy, ,,(x) > i

Then there exists a positive constant C = C(n, Q, «, 8, i, 1), depending only on n,
Q. a, 8, i, and A, such that for any x € Q, ru(Q,0,a)(x) > C. In addition, if
instead of the bound Rc(y g,(x) > Ag(x) we assume that for some k integer, and
some positive constants C(j),

IV/ Reu o) (x)| < C(j) forall j=0,...,kandall x € Q(5)

then, there exists a positive constant C = C(n, Q, k,, 8, i, C(j)o<j<«), depend-
ingonlyonn, Q, k, a, 8, i, and the C(j)’s, 0 < j < k, such that for any x € L,
ry(Q.k+1,a)(x) > C.

Let (M, g) be a smooth, complete Riemannian n-manifold, @ € (0, 1) real,
and Q > 1 real. Suppose that for A real and some i > O real,

Remg) = Ag and inj(M.K, >

on M. As an immediate consequence of Theorem 1.2, one gets that there exists
a positive constant C = C(n, Q, «, i, 1), depending only on n, Q, «, i, and A,
such that the (global) harmonic radius of (M, g) satisfies ry(Q, 0, ¢)(M) > C.
Similarly, if instead of the bound Rc(y ) > Ag we assume that for some k integer
and some positive constants C(j),

[V/Remgy | < C(j) forall j=0,...,k

then there exists a positive constant C = C(n, Q. k, a, i, C(j)o<;<«), depending
onlyonn, Q, k, «, i, and the C(j)’s, 0 < j < k, such that the (global) harmonic
radius of (M, g) satisfies ry(Q,k + 1, ¢)(M) > C.

Coming back to geodesic normal coordinates, analogous estimates to those of
Theorem 1.2 are available. Such estimates are rougher. On the one hand, they
involve the Riemann curvature instead of the Ricci curvature. On the other hand,
one recovers the type of phenomena that was illustrated by DeTurck-Kazdan [63]:
Changing from harmonic coordinates to geodesic normal coordinates involves loss
of derivatives. Nevertheless, such results are sometimes useful, because of special
properties that geodesic normal coordinates have with respect to harmonic coor-
dinates. For the sake of clarity, when dealing with geodesic normal coordinates,
we will restrict ourselves to the following result, as it appeared in Hebey-Vaugon
(117].
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THEOREM 1.3 Let (M, g) be a smooth Riemannian n-manifold. Suppose that for
some point x € M there exist positive constants A, and A, such that

IRmpy )| <Ay and |[VRmpy,) | < Ay

on the geodesic ball B, (inj y.,)(x)) of center x and radius inj y ,)(x). Then there
exist positive constants K = K(n, Ay, A;) and § = 8(n, A\, A;), depending only
onn, Ay, and A,, such that the components g;; of g in geodesic normal coordinates
at x satisfy: Foranyi, j,k=1,...,n and any y € By(min(é, inj(M’g,(x))),

(i) 33; < 8ij(exp,(¥)) < 48;; (as bilinear forms) and

(ii) 1gij(exp,()) — 8ij| < K|y|* and 13,8ij(exp,(M)] < K|yl
where for t > 0, By(t) denotes the Euclidean ball of R" with center 0 and radius
t, and |y| is the Euclidean distance from O to y. In addition, one has that

I{T})S(n,Al,Az)=+oo and }E’I})K(n,Al,Az):O

where A = (A}, A3).

PROOF: Let B be the Euclidean ball of R" of radius injy ,)(x) and centered
at 0. We still denote by g the metric when transported on B by exp,. Let S be a
segment in B joining O to some point P on dB. Then, S is a geodesic for g. Let
(p,6,...,0,_1) be a polar coordinate system defined in a neighborhood of S, and
let @ € $"~', the unit sphere of R”, be such that @ = AO—I5 for some A > 0.
We choose (6, ..., 6,-;) such that it is a normal coordinate system at Q for the
standard metric of $"~'. By the Gauss lemma (see, for instance, [88]),

g =dp’ + p’hij(p, 0)d6'do’

We let g;; = p2h;;. It is then easy to see that for any i, j,

1 1
(1.5) Ripjp = -iapa,,gi,- + Zg“ﬁ 3,80i0o88)

where obvious notation is used in this relation. Independently (see, for instance,
[12]), there exist positive constants &;(n, A)) and Cy(n, A)), satisfying

limp,08:1(n, Ay) = +00
limy,0Ci(n, A}) =0

and such that for any p < §,(n, A}), and any i, j,

(1.6) |8phij] < Ci(n, Ay)p

Since, when passing to the limit along S, h;;(0) = §;;, we get that for any p <
81(n, Ay), and any i, j,

(1.7) |hij — 8ij| < Ci(n, A))p?

on S. There exists then a positive constant

8(n, A)) = min(s. (n, A, (2Ci (n, A,))_%)
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satisfying

82(n, Ay) <8(n, Ay)
lima,082(n, A)) = 400

and such that for any p < 8,(n, A)),

w

1 n n
53‘7 < (1 - 'z‘Cl(n, Al)P2)3ij <h; =< (1 + ECl(n, Al)pz)sij < Eaij

as bilinear forms, and on §. Independently, it is easy to see that there exists a
positive constant A such that for any i, j, k, |0,0:8i;| < Ap? on S. Hence, for any
i, j,k, |0gijl < (A/4)p* on S. In the following, we show that A can be chosen
such that it depends only on n, A |, and A,. First, by the derivation of (1.5), we get
that for any i, j, k,

1 1
(1.8) O Ripjp = _Eapapakgij + Zaﬁ (gaﬂapgaiapgﬂj)

Independently, since [Rmy )| < A) and [VRm 5 | < Az, we get that there
exist positive constants 83(n, A, Az) < 82(n, Ay), Ca(n, Ay), and C3(n, A,), such
that

limy_083(n, Ay, Az) = +00

limp, 0 C2(n, A)) =0

limA,—»O C3(na Al) =0
and such that for any p < 83(n, A,. A>), and any i, j, k,

|8k Ripjo| < Can, A1) + C3(n, A))Ap*

on S, where A = (A, A;). On the other hand, it is possible to prove that there
exist positive constants 84(n, A}, As) < 83(n, Ay, A;) and C4(n, A,) such that

limy_084(n, Ay, Az) = +00
limp, 0 Ca(n, A)) =0

and such that for any p < 84(n, A, Ay), and any i, j, k,
|9« (87 8,84i8584))| < 5A0° + Ca(n, A AP*

on S. Now, combining these estimates with (1.8), we get that there exist positive
constants Cs(n, A) and C¢(n, A;), such that

lim/\|—>0 CS(n’ Al) =0
lim/\l_,o Cﬁ(", A]) =0

and such that for any p < 84(n, Ay, Az),and any i, j, k,
5
|8:8,8481;| < 5407 + Cs(n, A)p? + Co(n. A1) Ap?
on S. Hence,

5 1 1
|8,0k8:i | < gAP3 + §C5(n, Anp’ + gcs(n, ADAP® onS
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and there exist positive constants 8s(n, Ay, Ay) < 84(n, Ay, A3), and C:(n, A)),
such that
{nmA_,o 8s(n, Ay, Az) = +00
limp, 0 C7(n, Ay) =0
and such that for any p < 8s(n, A, Az), and any i, j, k,
|9, 3e8:] < gAp3 + C1(n, AP’

on §. Therefore, by induction, we get that for any p < 85(n, A}, A;),and any i, J,
k,

|3,0kgi; | < 7C1(n, A1)P
on S. As a consequence, for any p < 8s(n, A, A,),and any i, j, k,

7
(1.9) |8k | < 1C, A))p?

on S. Rewriting the inequalities (1.6), (1.7), and (1.9) in the Euclidean coordinate
system of R" ends the proof of the result. O



CHAPTER 2

Sobolev Spaces: The Compact Setting

We start in this chapter with the theory of Sobolev spaces on Riemannian man-
ifolds. Section 2.1 recalls some elementary facts about Sobolev spaces for open
subsets of the Euclidean space. Section 2.2 introduces Sobolev spaces on Rie-
mannian manifolds. Here, in these sections, the compactness of the manifold is not
assumed to hold. In Section 2.3, we start dealing with Sobolev embeddings and
Sobolev inequalities. General results are proved there. Here again, the compact-
ness of the manifold is not assumed to hold. In Section 2.4, we present the proof
of Gagliardo [85] and Nirenberg [162] on what concerns the validity of Sobolev
embeddings for Euclidean space. Sections 2.5 and 2.6 deal with the validity of
such embeddings and such inequalities for compact manifolds, while Section 2.7
deals with the compactness of these embeddings, still for compact manifolds. We
discuss in Section 2.8 the so-called Poincaré and Sobolev-Poincaré inequalities. A
finiteness theorem is proved in Section 2.9.

2.1. Background Material

Let © be an open subset of R”, o a multi-index of length ||, and u € L} ()
a locally integrable, real-valued function on 2. A function v, € L,'OC(Q) is said to
be the '™ weak (or distributional) derivative of u; we write v, = Dqu, if, for any

¢ € D(Q),
/u(Dwz)dx:f Vo dx
Q Q

where D(L2) denotes the space of smooth functions with compact support in €2,
and dx is the Lebesgue’s volume element. If such a v, exists, it is unique up to sets
of measure zero. When all the first weak derivatives of u exist, namely, when D,u
exists for any & such that |«| = 1, u is said to be weakly differentiable on Q. It
is said to be k times weakly differentiable if all its weak derivatives Dyu exist for
lee| < k.

Let us now recall what we mean when speaking of an absolutely continuous
function. Given u : R — R, and a < b real, we shall say that u is absolutely
continuous on [a, b] if for all ¢ > 0, there exists § > 0 such that for any finite
sequence

as<x<y|<x2<y»<--Z<X, <Ym<b,

one has that
n m
Di-x) =8 = Y G —ukx)l<e
19
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As one can easily check, u is absolutely continuous on [a, b] if and only if there
exists v integrable on [a, b] such that for anya < x < b,

X
u(x) ~ua) = / v(t)dt
a
In particular, u is differentiable almost everywhere and ¥’ = v. By extension,
given Q some open subset of R”, and u : 2 — R a real-valued function, we shall
say that u is absolutely continuous on all (resp. almost all) line segments in Q

parallel to the coordinate axes, if for all (resp. almost all) x = (x),...,x,) in &,
alli=1,...,n,and all a < x; < b such that
{(x1s.-o o xich, X, Xigts oo Xn), x €[a,b]} C Q

the function

X —> u(x., ey Xi=1y Xy Xig1, ...,x,,)
is absolutely continuous on [a, b]. According to what has been said above, if u is
absolutely continuous on almost all line segments in 2 parallel to the coordinate
axes, then u possesses partial derivatives of first order almost everywhere. We
recall here the well-known following result. For its proof, one can look at the
celebrated book of Schwartz [178].

THEOREM 2.1 Let Q2 be an open subset of R" and u € L) (). Then u is weakly
differentiable on 2 if and only if (up to modifications on a set of measure zero):
(i) u is absolutely continuous on almost all line segments in Q parallel to the
coordinate axes, and
(ii) the first partial derivatives of u (which exist almost everywhere) belong to
L,’M(Q).
Let us now recall some material on what concerns the theory of Sobolev spaces
in the Euclidean context. The origin of such a theory goes back to the work of

Sobolev [180] developed in the 1940s. Let 2 be some open subset of R”, k an
integer, p > 1real, and u : 2 — R a smooth, real-valued function. We let

1/p
o= 3 ([ 100utea)

O<fa(<k
and we define then the Sobolev spaces
Hf (Q) = the completion of {u € C*(Q) / llullx., < +o0} for ||-llx.,
W/ () = {u € LP(R) / Vl|a| < k, Dyu exists and belongs to L ()}
where D, u denotes the o™ weak partial derivative of u as defined above. For many
years, there has been considerable confusion in the mathematical literature about

the relationship between these spaces. The following result of Meyers-Serrin [156]
dispelled such confusion. For its proof, we refer the reader to Adams [1].

THEOREM 2.2 For any Q, any k, and any p > 1, H! () = W/ (Q).
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In order to end this section, we recall basic properties of Sobolev spaces with
respect to Lipschitz functions. This is the purpose of the following result. For its
proof we refer once more the reader to Adams [1]. See also Ziemer [203].

THEOREM 2.3 (i) If Q is a bounded, open subset of R", and ifu : Q — R is
Lipschitz, thenu € Hf () forall p > 1.
(ii) Let Q be an open subset of R", h : R — R a Lipschitz function, and
u € H(Q) for some p > 1. Ifhou € LP(RQ), then hou € H (Q) and

D;(h o u)(x) = h'(u(x)) D;u(x)
foralli =1,...,n, and almost all x € Q.

2.2. Sobolev Spaces on Riemannian Manifolds

Let (M, g) be a smooth Riemannian manifold. For k integer, and u : M — R
smooth, we denote by V*u the k' covariant derivative of u, and |V*u| the norm of
V*u defined in a local chart by

Ivku| = giljl oo gi‘j‘ (Vku)h.‘.i‘ (Vku)j|...jk
Recall that (Vu); = 9;u, while
(Vzu),j = 8,~ju - Fflaku

Given k an integer, and p > | real, set
C/ (M) = {u €eC®M)/Vj=0,...,k, f V/ul” dv(g) < +ool
M

When M is compact, one clearly has that G/ (M) = C*(M) for any k and any
p > 1. Foru € G/ (M), set also

k ) ip
il = Y- ([ 197 avce))
j=0 M

We define the Sobolev space H/ (M) as follows:

DEFINITION 2.1 Given (M, g) a smooth Riemannian manifold, & an integer, and
p = 1 real, the Sobolev space Hk" (M) is the completion of 0,{’ (M) with respect to
el

Note here that one can look at these spaces as subspaces of L”(M). Let ||-||,
be the norm of L?(M) defined by

I/p
bty = ( [ i avie))
M
As one can easily check:

1. any Cauchy sequence in (C7 (M), || - | ,,,‘n) is a Cauchy sequence in the
Lebesgue space (L”(M), {|-1l,) and

2. any Cauchy sequence in (C/ (M), || ) that converges to O in the Lebesgue
space (L”(M), |I-1|,,), also converges to 0 in (C{ (M), ||-||,,[).
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As a consequence, one can look at Hk” (M) as the subspace of L?(M) made of
functions 4 € LP(M) which are limits in (L”(M), ||-|l,) of a Cauchy sequence
(um) in (Cf (M), ||-||,,kn), and define |lul|; as above, where IV/ul,0 < j <k,is
now the limit in (L" M), ) ,,) of the Cauchy sequence (|V/u,,|).

Coming back to Definition 2.1, one can, of course, replace ||-|| HY by any other
equivalent norm. In particular, the following holds.

PROPOSITION 2.1 For any k integer, H}(M) is a Hilbert space when equipped
with the equivalent norm

k
lww=J§:f|vmvdww
j=0 M

The scalar product (-, -) associated to ||- || is defined by

k
(u, v) = Zf (Viu, Viv)du(g)
j=0"M

where, in such an expression, (-, -) is the scalar product on covariant tensor fields
associated to g.

In the same order of ideas, let M be a compact manifold endowed with two
Riemannian metrics g and g. As one can easily check, there exists C > 1 such that

1
—p<g<(C
Cg_g_ 4

on M, where such inequalities have to be understood in the sense of bilinear forms.
This leads to the following:

PROPOSITION 2.2 If M is compact, Hk” (M) does not depend on the metric.

Such a proposition is of course not anymore true if the manifold is not assumed
to be compact. Let, for instance, g and g be two Riemannian metrics on R”, (R", g)
being of finite volume, (R", g) being of infinite volume. As an example, one can
take 4

8= T+’

(the standard metric of S" after stereographic projection), and g = e, where e is the
Euclidean metric of R". Then the constant function ¥ = 1 belongs to the Sobolev
spaces associated to g, while it does not belong to the Sobolev spaces associated to
g. This proves the claim. Independently, noting that (L” M), -1l ,,) is reflexive if
p > 1, one gets the following:

PROPOSITION 2.3 If p > 1, H{ (M) is reflexive.

Still when dealing with general results, let us now prove the following one.
Given (M, g) a Riemannian manifold, u : M — R is said to be Lipschitz on M if
there exists A > O such that for any x, y € M,

|u(y) — u(x)| < Adg(x, y)
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where d,, is the distance associated to g.

PROPOSITION 2.4 Let (M, g) be a smooth Riemannian manifold, andu : M — R
a Lipschitz function on M with compact support. Then u € H] (M) for any p > 1.
In particular, if M is compact, any Lipschitz function on M belongs to the Sobolev
spaces H' (M), p > 1.

PROOF: Let u : M — R be a Lipschitz function on M such that u = 0
outside a compact subset K of M. Let also (24, @i )i=1....n be a family of charts
such that K C | J;._, € and such that forany k = 1, ..., N,

1
9(20) = Bo(1) and =8 < gj; < C8;

as bilinear forms, where C > 1 is given, By(1) denotes the Euclidean ball of R" of
center 0 and radius 1, and where the g;; s stand for the components of g in (£, ¢«).
Consider (7y)k=1....n+1 a smooth partition of unity subordinate to the covering

Qi k=1...~ U(M\K)
Fork € {1,..., N}, itis clear that the function

up = (meu) o gp !
is Lipschitz on By(1) for the Euclidean metric. According to Theorem 2.3 one then
gets that u; € H(Bo(1)) for any p > 1. Clearly, this implies that n.u € Hf (M).

Since
N
w=3mu
k=1

this ends the proof of the proposition. O

On what concerns Proposition 2.4, note that given (M, g) a smooth Riemann-
ian manifold, a differentiable function u : M — R for which |Vu| is bounded, is
Lipschitz on M. In order to fix ideas, suppose that (M, g) is complete. Let x and
y be two points on M, and let y : [0, 1]JE — M be the minimizing geodesic from
x to y. One has that there exists ¢ € (0, 1) such that

|u(y) — ux)| = |u(y (1)) — u(y ()|
=|(oy)®|

Hence, if d; denotes the distance associated to g,

[u(y) —u@)| = |[(uoy) ®)|

du(y ) - (%)'
< |Vu(y )| x (%),,

< ( s:plvu!)dg(x, y)

This proves the claim. Independently, one has the following result:
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PROPOSITION 2.5 Let (M, g) be a smooth complete Riemannian manifold, h :
R — R a Lipschitz function, and u € H (M), p > 1. Ifhou € LP(M), then
hou € Hl (M) and

[(Vh ow)(x)| = [ (u())| - |(Vu) ()]

for almost all x in M. In particular, for any u € I-I,” (M), |u| € H,” (M), and
|VIul| = |Vu| almost everywhere.

PROOF: Let x € M be given. Let also v = h o u. With similar arguments to
those used in the proof of Proposition 2.4, one can easily get that v € H(B.(r))
for all r > 0. Moreover, coming back to Theorem 2.3, one sees that

|Vo)| = |K' (u)| - |Vu)]
for almost all y in M. In particular, and by assumption, v and |Vv| both belong to

LP(M). One must still check that v € H(M). Let f : R — R be the function
defined by

fy=1 ift <0, fM)y=1-t if0<t<l, f@)=0 ifr>1

For j an integer, and if d, denotes the distance associated to g, we let f; be the
function defined by

i) = f(de(x, y) = j)
Clearly, f; is Lipschitz with compact support the closure of B(j + 1). Moreover,
since the cut-locus of x is negligible, one has that f; is differentiable almost every-
where, with the additional property that |V f;] < 1. We claim here that v; = fjv
belongs to H{”(M). Indeed, given r > j + 1, let (v,) be a sequence in C*(B,(r))
that converges to v in Hf (B,(r)). Clearly, fjv, is Lipschitz with compact support
in M, so that by Proposition 2.4, fjv, € H,” (M). Moreover, since f; and |V f;|
are bounded, and since

Vo = (Vf)v + £;(V0)
almost everywhere, one easily gets that ( fi v,,,) converges, in HF (M) and as m
goes to +00, to v;. Hence, v; € HJ (M) and this proves the claim. Here, one
easily checks that for any j,

1/p 1/p
([-vrae) <([ wroo)
M M\B.(j)

1/p
(/M V(v - v)|pd”(8)>
1/p I/p
< ( f lel”dv(g)) + ( / |v|"dv(g>)
M\B.(j) M\B.(j)

As an easy consequence of such inequalities, one gets that v € H (M), and that
(vj) converges to v in H," (M) as j goes to +oo. This proves the proposition. [

and
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In order to end this section, we now prove the following, whose first appear-
ance seems to be in Aubin [8]. Similar density questions for higher-order Sobolev
spaces will be treated in Chapter 3, Section 3.1.

THEOREM 2.4 Given (M, g) a smooth, complete Riemannian manifold, the set
D (M) of smooth functions with compact support in M is dense in H) (M) for any
p> L
PROOEF: Let f : R — R be defined by
f)y=1 ift <0, fy=1—-t if0<t <1, f@)=0 ift>1
and let u € CI' (M) where p > 1 is some given real number. Let x be some point
of M and set
uj(y) = u(y) f(dg(x, y) — j)

where d, is the distance associated to g, j is an integer, and y € M. By Proposition
2.4,u; € H(M) for any j, and since u; = 0 outside a compact subset of M, one
easily gets that for any j, u; is the limit in H” (M) of some sequence of functions in
D (M). One just has to note here that if (u,,) € C(M) converges to u; in H' (M),

and if @ € D(M), then (au,,) converges to au; in H,” (M). Then, one can choose
o € D(M) such that o« = 1 where u; # 0. Independently, one clearly has that for

any j,
I/p 1/p
( / |u,~—un"dv(g)) 5( f |u|"dv<g))
M M\B.(j)

I/p
( /M IV(uj—u)l"dv(m)
1/p 1/p
s( f |Vu|"dv(g>) +( / |u|"dv<g>)
M\B,(j) M\B,\(j)

Hence, (u;) converges to u in H (M) as j goes to +00. According to what has
been said above, one then gets that u is the limit in H,” (M) of some sequence in
D (M). This ends the proof of the theorem. O

and

2.3. Sobolev Embeddings: General Results

As a starting point, let us fix a convention that will be used in the sequel. Given
(E.|l-llg) and (F, |- |lr) two normed vector spaces with the property that E is a
subspace of F, we write that E C F and say that the inclusion is continuous if
there exists C > 0 such that for any x € E,

llxllr < Clixllg
Now, let (M, g) be a smooth Riemannian n-manifold. By Sobolev embeddings, at
least in their first part, we refer to the following:

Sobolev embeddings: given p, q two real numbers with 1 < g < p, and given k, m
two integers with0 <m < k,if 1/p = 1/q — (k —m)/n, then H‘f’(M) C HL(M).
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As mentioned above, the notation H/ (M) C H,;(M) includes the continuity of
the embedding, namely, the existence of a positive constant C such that for any
u € HI(M), l|ul ur < Cllull HY Such embeddings were first proved by Sobolev
[180] for the Euclidean space (R", ¢). The validity of such embeddings, which may
or may not hold in the general case of a Riemannian manifold, is often referred to
as the Sobolev embedding theorem. We will see later on in this chapter that the
Sobolev embedding theorem does hold for compact manifolds, while we will see
in the next chapter that the situation is more intricate on what concerns complete
noncompact manifolds. Note here that for k = 1, and hence m = 0, the Sobolev
embeddings reduce to the assertion that for any ¢ € [1, n), H,q (M) Cc LP(M)
with p = ngq/(n — q). Note also that the exponents in the Sobolev embeddings
are optimal. Think, for instance, of the Euclidean space (R", e); let k = 1, and
let ¢ € D(R"), ¢ # 0, be smooth with compact support in R”. For A > 1, set
@1 (x) = @(Ax). Then, as one can easily check,

“‘Pkup = A-_"/p"«’“p
leallg < A'77 llgll o
By passing to the limit A — +00, one sees that the existence of C > 0 such that
for any u € D(R"),
llullp < Clluli 4o

leads to the inequality 1/p > 1/q — 1/n. This proves the claim. For convenience,
all the manifolds in what follows will be assumed to be at least complete. We start
here by proving the following result:

LEMMA 2.1 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that H/ (M) C L"@®=Y(M). Then for any real numbers | < q < p and any
integers 0 < m < k such that 1/p = 1/q — (k — m)/n, H{ (M) C H7(M).

PROOF: We prove that if H!(M) c L"/®~Y(M), then for any ¢ € [1,n),
H{ (M) C L?(M) where 1/p = 1/q — 1/n. We refer to Aubin [12], Proposition
2.11, for the proof that the other embeddings are also valid. Let C > 0 be such that
for any u € H/(M),

(n—1)/n
( / |u|"/<"-"dv(g)) <c [ (19l +l)duie)
M M

Letalso g € (1,n), p = nq/(n — q), and u € D(M). Set ¢ = |u|P"~V/". By
Holder’s inequalities we get that

(n—=1)/n
(/ lulpdv(g))
M
(n=1)/n
= ( f |¢|""""’dv(g))
M

<c fM (Ve + lpDdv(e)
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= LD [ 1 19ulduie) + € [ i duie)

_ /9’ Hq
< M( f | dv(g)) ( / IVu[? dv(g))
M
N 7 i1q
+C( f P dv(g)) ( f |u|"dv(g))
M M

where 1/qg + 1/q' = 1 and p’ = p(n — 1)/n — 1. But p’'q’ = p since 1/p =
1/q — 1/n. As a consequence, for any u € D (M),

1/p
( f |u|"dv(g))
I/q 1/q
_C—”(”—(( f |Vu|"dv<g>) +( [M Iul"dv(g)) )

By Theorem 2.4, this ends the proof of the lemma. ]

Note here that with the same arguments as those developed in the proof of
Lemma 2.1, one gets a hierarchy for Sobolev embeddings. More precisely, one
can prove that if for some ¢ € [1,n), HY (M) C L"/®~9(M), then HY (M) C
Lnd'1=4)(M) for any q' € [g,n). Indeed, let C > O be such that for any u €
H} (M),

1/p l/q 1/q
( f |u|"dv(g)) sc(( / IVuI"dv(g)) +( f |u|"dv<g)) )
M M M

where 1/p = 1/q — 1/n. Given q¢' € (g,n), and u € D(M), let also ¢ =
|u|P’"=9)/4 where p’ is such that 1/p’ = 1/q’ — 1/n. Then, as in the proof of
Lemma 2.1, one gets with Holder’s inequalities that

) 1/p
( / ul? dv(g))
M
1/p
= (f lpl” dv(g))
M
1/q l/q
< c(( f |Vrp|"dv(g)) + ( f |¢|"dv(g)) )
M M
I/q , l/q
=C(s+ 1)(/ [l |Vul? dv(g)) +C(f lul”"""”"dv(g))
M M
o @'-q1/949’ , 1/q'
<C(s+ 1)( / )59 /4 “f’dv(g)) ( f {Vul? dv(g))
M M
. @'-q)/99’ , 19
+C( f luf#59 1 "ﬂdv(g)) ( f e dv(g))
M M
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where s = Pl":T—L) — 1. But

Hence, for any u € D (M),

, 1p
([ wravw)
- 1/q , 14’
<ZDC(( [ wur i)+ ([ i) )

By Theorem 2.4, this proves the above claim.
Let us now discuss an important consequence of the validity of Sobolev em-

beddings. As a starting point, suppose that
H{(M) c L""~"(M)
Let C > 0 be such that for any u € H/ (M),

(n—1)/n
( f |u|""""’dv<g)) <C [ (IVu| + lu))dv(g)
M M

From such an inequality (see, for instance, chapter 6 of Chavel [45]), one gets that
for any x € M, and almost all r > 0,

Vol, (B(r)" """ < c‘% Vol, (B.(r)) + C Vol (B«(r))

where B, (r) is the ball of center x and radius r in M, and Vol, (Bx (r)) stands for its
volume with respect to g. From now on, let R > 0 be given. Either Vol,(B,(R)) >
(1/2C)", or Vol, (B,(R)) < (1/2C)". In the last case, one gets that for almost all
r € (0, R},
1
2C
Integrating this last inequality one then gets that for any x € M and any R > 0,

Vol (B, (R)) = min ((zlc) (ESE))

In other words, the fact that H(M) c L""~D(M) implies that there is a lower
bound for the volume of balls with respect to their center. The following important
lemma, due to Carron [39], extends this result to the other embeddings H, (M) C

LP(M),q€(l,n),1/p=1/q—1/n.

LEMMA 2.2 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that H} (M) C LP(M) for some q € [1,n), where 1/p = 1/q — 1/n. Then for
any r > 0 there exists a positive constant v = v(M, q, r) such that for any x € M,
Vol (B, (r)) > v.

-y _ d

5¢ Vols(Bx() ™" = — Vol (Bx(r)
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PROOF: Let g € [1,n), and suppose that H{ (M) C L?(M) where 1/p =
1/q — 1/n. One then gets the existence of A > 0 such that for any u € H," (M),

1/p Iq 1/q
(/ [se|” dv(g)) <A ((/ |Vul? dv(g)) + (f uel? dv(g)) )
M M M

Letr > 0, let x be some point of M, and let v € H} (M) be such that v = 0 on
M\ B, (r). By Holder’s inequality,

/9 Un I/p
(f lvl? dv(g)) < Volg(B.(r)) (fM [v]? dv(g))
M

: (S Vol dv(g))'/q

— A=A 174
Vol, (B-!'(’)) (fM |v]9 dv(g))
Fix x € M and let R > O be given. Then, either Vol,(B((R)) > (1/2A)" or
Vol, (Bx(R)) < (1/2A)", in which case we get that for any r € (0, R],
I
Volg (B, (r)) " 2 Vol (B.(r))""

Suppose that Vol,(B.(R)) < (1/2A)". We then have that for any r € (0, R] and
any v € H{ (M) such that v = 0 on M\B,(r),

Hence,

fM V|7 dv(g)

-q/n
——— Vol (B, (r)) S T

(2A)4

From now on, let
v(y) =r —dg(x,y) ifdy(x,y)<r
v(y) =0 ifd,(x,y)>r

where d, is the distance associated to g. Clearly,v is Lipschitz and v = 0 on
M\B,(r). Hence (see Proposition 2.4), v belongs to H ," (M). As a consequence,

Volg(Bx(r)) 27 Voly(B«(r)
= Toorn 4@ = 19 Voly(B:(r/2))

1 —q/n
AN Vol (B (r))

and we get that for any r < R,
r nq/(n+q) Jntq)
Vol, (B, (r)) > (ﬁ) Vol (B, (r/2))"""™*

By induction we then get that for any m € N\{0},

R ga(m) 1 gB(m) (
@.1) Vol,(B.(R)) > (2 A) (5) Vol (B, (R/2™))"™

where
m

a(m) = Z(n+ ) Bim) =) i (n—:—q) and y(m)=($)

i=1
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But (see, for instance, [88)),
Vol (B« (r)) = bar"(1 + o(r))
where b, is the volume of the Euclidean ball of radius one. Hence,
. iy \ Y (m) _
Jim Vol (B, (R/2"))"™ =1
In addition, we have that
oC ! [o o] i
Z( n ) _n and Z'( n ) =n(n+q)
o \n+dq q o \ntaq 9’
As a consequence, letting m — oo in (2.1) we get that

1\,
Vol (B.(R)) > (—2("+2q) - A) R

Finally, for any x € M and any R > 0,
Vo, (B:(R)) > min(1/24, R/2"*20/4 4)"
and this ends the proof of the lemma. O

Note here that one gets from the above proof the exact dependence of v.
Namely, v depends on n, g, r, and the constant C of the embedding of H] (M)
in LP(M). Independently, we used in the above proof the fact that Vol, (B, (r)) =
b,r"(1 + o(r)) where b, is the volume of the Euclidean ball of radius one. More
precisely (see, for instance, Gallot-Hulin-Lafontaine [88]), one has that

Vol (B.(r) = byr" (1 Scali.¢)(x)r? + 0(r?))

1
T 6(n+2)
where Scal(y ) stands for the scalar curvature of (M, g).

2.4. The Case of the Euclidean Space

The purpose of this section is to recall how one can prove the well-known fact
that Sobolev embeddings in their first part are valid for the Euclidean space (R”, e).
The original proof, given by Sobolev [180], was based on quite a difficult lemma.
We present here the proof of Gagliardo [85] and Nirenberg [162]. We start with
the following lemma:

I/n
dx)

PROOF: We present the proof for n = 3. The proof for n # 3 is similar. Let
P be a point of R3, (x, y, z) the coordinates in R3, (xo, yo, zo) the coordinates of
P, and D, (respectively, D, D;) the straight line through P parallel to the x-axis

LEMMA 2.3 Foranyu € D(R"),

y (n=1)/n 1 n
n (n-l)d < -
(fwrte-nas) ™ <3 ]:,[(/R

where dx is the Lebesgue’s volume element of R".

ou

3x,‘
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(respectively, y-, z-axis). With such notation, the Lebesgue volume element dx of
the lemma is dx dy dz. Let u € D(R"). We then have that

X0 +00
u(P) = f (3:4) x. 30, 20)dx = — f (3c)(x. yo. 20)dx

As a consequence, |u(P)| < 1 f o, 1(8:4)(x, yo, z0)ldx. With similar arguments
for d,u and d,u we get that

, 1\ 32 172
lu(P)*? < (5) (f 1(3:u)(x, yo. Zo)ldx)
D 172 172
( [ |(3yu)(xo,y,zo)|d)’) ( / |(3zu)(xo,yo,z)|dz)

Now, integrating xo over R yields, by Holder’s inequality,

1\ 32 12
f lu(x, yo, 20)1*? dx < (—) (f |(3<2) (x, yo, Zo)ldx)
D 2 o 172
x ( / 1(3,u)(x, y, z0)ldx dy)

W™ |/2
x ( / 1(3,u)(x, yo, z)ldx dZ)
D

where D, (resp. D,,) is the plane through P parallel to the x- and y-axes (resp.
x- and z-axes). Integrating yo over R then yields, by Holder’s inequality,

1\ 172
/ lu(x, y, zo)*?dx dy < (5) (/ [(3:u)(x, y, Zo)ldxdy)
Df\ DY\
1/2
x ( f 1(3,u)(x, y, z0)ldx dy)
Dyy
’ 172
X (/‘ [(3:u)(x, y, 2)|dx dy dz)
R.

Finally, integrating zo over R, leads to the inequality of the lemma. O

With such a result we are now in position to prove that the Sobolev embeddings
are valid for (R", e).

THEOREM 2.5 Let q € [1, n) and let p be such that 1/p = 1/q — 1/n. Then for
any u € HY (R"),

1/p _ 1/q
(/ Iul”dx) <pP—D l)(f IVuI"dx)
n 2" Rn

In particular, for any real numbers | < q < p and any integers 0 < m < k
satisfying 1/p = 1/q — (k — m)/n, H!(R") C H{(R").
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PROOF: As a direct consequence of Lemma 2.3, H!(R") C L"/™-")(R")
with the additional property that for any u € H'(R"),

(n—=1)/n 1
( / |u|"/‘"-”dx) < 5 [ |Vu|dx

By Lemma 2.1 this proves that for any real numbers 1 < ¢ < p and any integers
0 < m < k satisfying 1/p = 1/q — (k — m)/n, H{(R") C H:#(R"). Moreover, a
similar computation to the one made in the proof of Lemma 2.1 shows that for any
1 <q <nandanyu € H/(R"),

1/p 1/q
pn—1) (f )
Pd L qd
([" Ju| x) < o |Vu|?dx

where 1/p = 1/q — 1/n. This proves the theorem. O

As a remark, note here that the value f"'z'—;” given by Theorem 2.5 of the con-
stant X in the inequality

1/p 1/q
( lul”dx) < K( [Vul|? dx)
R'l R"

is not optimal. We refer to Chapter 4, Theorem 4.4, for the best value of K in such
an inequality.

2.5. Sobolev Embeddings I

We prove in this section that Sobolev embeddings in their first part do hold for
compact manifolds. This is the subject of the following theorem:

THEOREM 2.6 Let (M, g) be a smooth, compact Riemannian n-manifold. The
Sobolev embeddings in their first part do hold on (M, g) in the sense that for any
real numbers 1 < q < p and any integers 0 <m < k, if1/p =1/q — (k —m)/n,
then H! (M) C Hj(M). In particular, for any q € (1, n) real, H} (M) C L”(M)
where 1/p=1/q —1/n.

PROOF: By Lemma 2.1 we have only to prove that the embedding H,' (M) C
L"®=Y(M) is valid. Since M is compact, M can be covered by a finite number of
charts

(gm’ ¢m)m=l, N
such that for any m the components g;7 of g in (S2u, ¢m) satisfy
1
2% = 8ij <28
as bilinear forms. Let (n,,) be a smooth partition of unity subordinate to the cover-
ing (2,»). For any u € C*°(M) and any m, one has that

f nmul" =" du(g) <2"’°/ |Ghmi) 0 07" )| d

f |V (nmu)ldv(g) > 2-"+D/2 f |V ((mnu) 0 ;") (x)|dx
M R”
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Independently, by Theorem 2.5,
|
( (1) © @y (x) "/~ dx) <3 f |V () 0 @, ) (x)|dx
R" R'I

for any m. As a consequence, for any u € C>(M),

(n=1)/n N (n—1)/n
(/ lul"/"""’dv(g)) < Z ([ mmu'n/(n—l)dv(g))
M M

m=)

N
<2 Y [ IVl

m=|

(n=1)/n

<o / Vuldv(g)
M

N
+2! (meZIVn,,,I) /M uldv(g)

m=)

Hence, for any u € C*°(M),

(n=1)/n
( [ Iul""""’dv(g)) SA( f Vuldu(g) + f |u|dv(g>)
M M M

N
A=2"" (1 +max ) IVnml)

m=1

where

This ends the proof of the theorem. O

As an immediate corollary to Theorem 2.6, one has the following: Just note
here that since M is assumed to be compact, (M, g) has finite volume. Hence, for
1 <q<q,LY(M)CLIM).

COROLLARY 2.1 Let (M, g) be a smooth, compact Riemannian n-manifold, and
let g and pq real be such that q € {1,n) and 1/py = 1/q — 1/n. Then H] (M) C
LP(M) for any p € [1, po).

2.6. Sobolev Embeddings IT

The Sobolev embeddings in their first part have been discussed in the preceding
sections. The purpose of this section is to discuss Sobolev embeddings in their
second part. For dimension reasons and the sake of clarity, we will be brief on the
subject. Let ¢ > 1 be real and let m < k be two integers. If 1/q — (k —m)/n > 0,
one has by Theorem 2.5 that H//(R") C Hf(R") where 1/p = 1/q — (k — m)/n.
Suppose now that 1/g — (k — m)/n < 0. Sobolev [180] proved that in such
a situation, Hf (R") c CE(R"), where C(R") denotes the space of functions
u : R” — R of class C™ for which the norm

m

lullen =D sup | Dau(x)|

Jr)=0 YER"
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is finite. Refinements were then obtained by Morrey [159] with embeddings in
Holder spaces. A very good reference on the subject is Adams [1]. Embeddings
such as HY C C™ are referred to as Sobolev embeddings in their second part.
Given (M, g) a smooth, compact Riemannian manifold, we define the norm ||-}|cm
on C™(M) by

lullcm = f;%a")" |(Vu)(x)|

One then has the following:

THEOREM 2.7 Let (M, g) be a smooth, compact Riemannian n-manifold, q > 1
real, and m < k two integers. If 1/q < (k — m)/n, then H{ (M) C C™(M).

PROOF: First we prove that for ¢ > n, H{ (M) C C°(M). Since M is com-
pact, M can be covered by a finite number of charts

(Qs: ‘ps)s=l.....N
such that for any s the components g;; of g in (25, ¢;) satisfy

1
53.'1 < g <28
as bilinear forms. Let (7;) be a smooth partition of unity subordinate to the cover-
ing (R;). Given u € C*(M),
lInsulico = ll(nsu) 0 @ llco

for all s. Independently, starting from the inequalities satisfied by the g;;’s, one
easily gets that there exists C > 0 such that for any s and any u € C*°(M),

I(nsu) 0 97 g < Clinsull g

where the H{-norm in the left-hand side of this inequality is with respect to the
Euclidean space. Since H," R" C C‘,’, (R"™), this leads to the existence of some
A > 0 such that for any s and any u € C®°(M),

Insullco < Allnsull
Clearly, there exists B > 0 such that for any u € C*°(M),

N
D lingullgg < Bllullys

s=1

For instance, one can take

N
5= (mggn + mgr V)
Hence,

N N
lullco <Y linguallco < AY lnsullyg < ABllull o

s=1 s=1
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This proves the above claim, i.e., that for (M, g) compact and ¢ > n, H/ (M) C
C%(M). Let us now prove that for q, k, and m as in the theorem, H[’ M) c cC™(M).
Given u € C*°(M), one has by Kato’s inequality that for any integer s,

|VIViul| < [V**u|
Lets € {0, ..., m}. According to the first part of the Sobolev embedding theorem,
Theorem 2.6, one has that H,f’_S(M) C H[" (M) where

1 1 k—s-1

pPs 4 n
In particular, p; > n, so that, according to what has been said above, H* (M) C
C°(M). Hence, for any s € {0, ...,m}, and any u € C*°(M),

IV*ulico < CUIV* ull g < CoSIIV*ull s < Cals)lull o

by Kato’s inequality, and where C,(s) and C,(s) do not depend on u. As an imme-
diate consequence of such inequalities, one gets that H! (M) C C™(M) for k, g,
and m as above. This ends the proof of the theorem. O

As already mentioned, improvements of the above result involving Holder
spaces can be obtained. Such improvements will be discussed now. For the sake of
clarity, we restrict ourselves to the case k = 1 and m = 0. Given (M, g) a smooth,
compact Riemannian manifold, and A € (0, 1), let C*(M) be the set of continuous
functions # : M — R for which the norm

|u(y) = u(x)|
lulles = max [u)| + max, =20

is finite, where d, denotes the distance associated to g. One then has the following:
THEOREM 2.8 Let (M, g) be a smooth, compact Riemannian n-manifold, q > 1
real, and ) € (0, 1) real. If 1/q < (1 — A)/n, then H} (M) C C*(M).

PROOEF: Let cg (R") be the space of smooth functions u : R” — R for which
the norm

_ |u(y) — ux)|
luler = maxlu] + ma, = 5

is finite. By classical results of Morrey, see Adams [1], one has that for ¢ > 1 real
such that 1/g < (1 — A)/n, H,q RHYcCC g (R"). Consider now a smooth, compact
Riemannian n-manifold (M, g), and ¢ > 1 as abovc. Since M is compact, one can
once more assume that M is covered by a finite number of charts

(Q.w ‘ps)s=l.....N

such that for any s the components g;; of g in (2, ¢;) satisfy
1
Esij <g; <2

as bilinear forms. Without loss of generality, one can also assume that the ;’s are
convex with respect to g. Let (#;) be a smooth partition of unity subordinate to the
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covering (£2;). Starting from the inequalities satisfied by the g;;’s, one clearly gets
that there exist C; > 0 and C> > 0 such that for any s and any u € C®(M),

Insullcx < Cill(nsu) 097 lics
N(nsu) 0 ¢ llgg < Callmsull o

where the norms in the right-hand side of the first inequality, and in the left-
hand side of the second inequality, are with respect to the Euclidean space. Since
H{(R") C C}(R"), one gets from the above inequalities that there exists C3 > 0
such that for any s and any u € C*(M),

Insullcs < Csllnsull yo

Independently, one clearly has that there exists B > 0 such that for any u €
(M),

N
Y lnsullge < Bllull s
s=1

For instance, one can take

= v )
B Z(rga&cmﬂpegl 7|

s=1

Hence, for any u € C*°(M),

N
lulles < Y Instillcs < BCsllull o

s=1

This ends the proof of the theorem. O

In order to end this section, let us now say some words about the exceptional
case of Sobolev embeddings. For that purpose, let (M, g) be a smooth, compact
Riemannian n-manifold. We restrict our attention to the Sobolev space H['(M).
Here, Sobolev embeddings in their second part give no information about the pos-
sible embeddings of H;'(M). On the contrary, noting that for any ¢ € [1,n),
H(M) C H," (M), one gets from the Sobolev embeddings in their first part that
H'(M) C L”(M) for any p > 1. One can then hope that H'(M) is continuously
embedded in L*°(M). The answer to such a question is negative, as shown by the
following example: Consider the function u : R> — R defined by

u(x) = log|log |x|| if0 < |x| < %
u(x)=0 otherwise

As one can easily check, u € HZ(R?), but u ¢ L*®(R?). This proves the claim.

On the other hand, given (M, g) a smooth, compact Riemannian n-manifold, one

can prove (see Aubin [12] for more details) that if u € H['(M), then &* € LY(M).
Moreover, there exists C and u such that

./ ¢ dv(g) < Ce# Iu (17 +ur)dvie)
M
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for any u € H|'(M). Such results were first proved by Trudinger [185] when
dealing with bounded domains of the Euclidean space.

2.7. Compact Embeddings

We discuss in this section compactness properties of Sobolev embeddings.
Given (E, || ||l£) and (F, |- ||r) two normed vector spaces, E being a subspace
of F, recall that the embedding of E in F is said to be compact if bounded sub-
sets of (E, ||-||g) are relatively compact in (F, | -||r). This means, again, that
bounded sequences in (E, || ||¢) possess convergent subsequences in (F, || ||¢).
Clearly, if the embedding of E in F is compact, it is also continuous. We prove
here the following result. On what concerns its second part, we restrict once more
our attention to the case k = 1 and m = 0.

THEOREM 2.9 Let (M, g) be a smooth, compact Riemannian n-manifold.

(1) For any integers j > 0 and m > 1, any real number q > 1, and any real
number p such that 1 < p < nq/(n — mq), the embedding of H;’_,_m(M) in
Hj” (M) is compact. In particular, for any q € [1, n) real and any p > |
suchthat 1/p > 1/q—1/n, the embedding of H{ (M) in L? (M) is compact.

(ii) For q > n, the embedding of H{ (M) in C*(M) is compact for any A €
(0, 1) such that (1 — A)q > n. In particular, the embedding of H (M) in
C%(M) is compact.

Such a theorem is often referred to as the Rellich-Kondrakov theorem, in mem-
ory of the works developed by Rellich [169] and Kondrakov [137]. In order to
prove Theorem 2.9, we need first the following lemma. Such a lemma can be
seen as the analogue of the Ascoli theorem. Given A and B two subsets of R”",
dist(A, B) denotes the distance from A to B.

LEMMA 2.4 Let Q be an open subset of R", p > 1 real, and # a bounded subset
of LP(2). Then ¥ is relatively compact in L"(2) if and only if for any ¢ > 0,
there exists a compact subset K C 2, and there exists 0 < § < dist(K, 32) such
that

/ lu(x)|”dx <& and / |u(x +y) —u(x)|"dx < ¢
K K

for any u € 3 and any y such that |y| < é.

We refer the reader to Adams [1], Theorem 2.21, for the proof of this result.
Given Q an open subset of R”, and g > 1 real, we denote by Hy () the closure

of D(R) in H{ (). Then we prove the following:

LEMMA 2.5 Let Q be a bounded, open subset of R", q € [1,n) real, and p > 1
real such that 1/p > 1/q — 1/n. Then the embedding of H{ (Q) in LP(Q) is
compact.

PROOF: Letg € [1,n)and p > 1 such that 1/p > 1/q — 1/n be given. Let
also po be defined by pp = ng/(n — q). By Theorem 2.5, one has that H{ ,(2) C
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LPo(S2). Moreover, there exists A > 0 such that for any u € H{ | (Q),

1/po 1/q
Q Q

Noting that Q has finite volume, one clearly gets that Hg_ () € LP(R2). There
is still to prove that this embedding is compact. Let #¢ be a bounded subset of
Hg ,(2). There exists C > 0 such that for any u € 7,

/IVuI"dx+/ ulfdx < C
Q Q

For j integer, set
K= [x € Q s.t. dist(x, 9Q) > %]

Given u € #, and according to Holder’s inequality,
1

1/po 7o
/ luldx < (/ |u)|P0 dx) (/ dx)
\K; Q\K; Q\K;

1—-L
5AC'/"([ dx) "
Q\K;

Let £ > 0 be given. One then gets that for j big enough, and any u € ¢,

/ juldx < €
Q\K;

From now on, let y be such that |[y|] < 1/j. If x € K, then x + y € K,;. For
u € D(R) one can then write that

1
[ |ux + y) — u(x)|dx 5[ dx/ Iiu(x + ty)|dt
K; Kj 0 dt

<yl IVuldx
K2;

<yl / Vuldx
Q

Since D(Q) is dense in Hy (), one gets that for any u € Hj |(S2), and any y such
that |y] < 1/j,
[ |uCx + y) — u(x)|dx < IyI/ |Vuldx
K; Q
By Holder’s inequality

LIVuldxs (LIVulqu)l/q(de) !

One then gets that there exists B > 0 such that for any u € #,

/ |Vuldx < B
Q
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Hence, for any u € 3¢, and any y such that |y| < min (%, })
/ |u(x + y) —u(x)|dx < ¢
K;

By Lemma 2.4 this implies that J¢ is relatively compact in L'(2). One gets that
J¢ is relatively compact in LP(S2) as follows: If (u,,) is a sequence in J¢, then, by
Holder’s inequality,

k 1-k
j Ium| —umzlpdx = (/ Iu"'l _u'"zldx) ([ Iu"'l - u’".’.lpodx)
Q Q Q

3
< (2Ac'/4)“"""°( fﬂ |tm, — umz]dx)

where k = 2.=£. From such an inequality, and from the fact that J is relatively

compact in L' (), one easily gets that J is also relatively compact in L?(2). This
ends the proof of the lemma. a

Now that such results have been stated, we prove Theorem 2.9. For the sake of
clarity, concerning point (i), we restrict ourselves to the case j =0andm = 1. In
other words, we prove that for any smooth, compact Riemannian n-manifold, any
g €[1,n), and any p > 1 such that p < nq/(n — q), the embedding of H/ (M) in
LP(M) is compact. We refer the reader to Aubin [12] for the proof that the other
embeddings are also compact.

PROOF OF THEOREM 2.9: (i) Since M is compact, M can be covered by a
finite number of charts
(s, ¢s)s=1...N
such that for any s the components g,‘j of g in (82, ¢;) satisfy

1
55ij < g, <2

as bilinear forms. Let (1) be a smooth partition of unity subordinate to the cover-
ing (). Given (u,,) a bounded sequence in H," (M), and for any s, we let

ufn = (nsum) o ¢s_l

Clearly, (i) is a bounded sequence in Hy ,(¢;(S2;)) for any s. By Lemma 2.5 one
then gets that a subsequence (u;,) of (;,) is a Cauchy sequence in L? ((pS(QS)).
Let (u,,) be a subsequence of (u,,) chosen such that for any s, (u;,) is a Cauchy
sequence in L”(¢;(£2;)). Coming back to the inequalities satisfied by the 8i;'s, one
easily gets that for any s, (n,u,,) is a Cauchy sequence in L?(M). But for any m,
and m,

N
"umz — U, "p =< Z: ||'7sum3 — NsUm, “p

s=1)
where |||, stands for the L”-norm. Hence, (u,,) is a Cauchy sequence in L?(M).
This proves the result.
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(i) Let A € (0, 1) be such that (1 — A)g > n, and let @ € (0, 1) be such that
A < a and (1 — a)g > n. By Theorem 2.8, one has that H,"(M) C C*(M). Given
J¢ a bounded subset in H,” (M), one then gets that there exists C > 0 such that for
any u € #, |lullce < C. By Ascoli’s theorem, J# is relatively compact in C°(M).
From now on, let (u,,) be a sequence in #. Up to the extraction of a subsequence,
(um) converges to some u in CO(M). Clearly, u € C*(M) and ||u||c= < C. Setting
Uy = Um — U, one then gets that ||v,|lc- < 2C, and that for all x and y in M,
x#Yy,

A

)alvm(y) — o (0)]'*

Ivm()') - vm(x)l _ (Ivm()') - vm(x)l
dg(x, A dg(x’ y)®

< QC)E |Un(®) = vmx)|'*
< Q2C)% (2)umllco)'

Since (v,,) converges to 0 in C°(M), one gets from such inequalities that (v,,)
converges to 0 in C*(M). This proves the theorem. a

2.8. Poincaré and Sobolev-Poincaré Inequalities

We establish in this section the so-called Poincaré and Sobolev-Poincaré in-
equalities. First we prove that the Poincaré inequality does hold for compact Rie-
mannian manifolds. This is the subject of the following resulit.

THEOREM 2.10 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q € [1, n) be real. There exists a positive constant C such that for any u € H{ (M),

1/q 1/q
(f |u —ﬁlqdv(g)) < C(f |Vul? dv(s))
M M

where U = m Sy udv(g).

PROOF: Suppose first that ¢ > 1. To prove Theorem 2.10 we just have to
prove that

inf/ IVul?dv(g) >0
ne¥ Jpy

where
H= {u € H/ (M) s.t. /M |u|? dv(g) = 1 and fM udv(g) = OI
Let (ux) € ¥ be such that
fim [ 1Vuledui) = g, [ 19ut auce)

By combining the fact that H (M) is reflexive for ¢ > 1 with the Rellich-Kon-
drakov theorem, there exists a subsequence (u,) of (u;) which converges weakly
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in H/ (M) and strongly in L¢(M). Let v be its limit. The strong convergence in
L4(M) implies that v € #¢, while we get with the weak convergence that

/IVvl"dv(g)s lim/ [Vui|? dv(g)
M k> Jy

As a consequence, inf,cz f u |Vul? dv(g) is attained by v, and since v cannot be
constant,

inff |Vul?dv(g) >0
HeH Jpy

This proves the Poincaré inequalities for ¢ > 1. When ¢ = 1 we can use the
well-known fact that on a compact manifold there always exists a Green function
for the Laplacian. More precisely (see, for instance, [12]), if (M, g) is a compact
Riemannian n-manifold there exists G : M x M — R such that:

(i) forany u € C*(M) and any x € M,

Vol . ,[u udv(g) + /,; G(x, y)Agu(y)dv(y)

(ii) G(x,y) = G(y,x) and G(x, y) is C* on M x M\ A where A is the diag-
onal

u(x) =

A={x,y)eMx Mstx =y}
(iii) there exists a constant K > 0 such that for any (x, y) € M x M\A,

K K
IG(x, )< — and |V,G(x,y)| < —
r r

where r = d,(x, y) is the Riemannian distance from x to y.

From now on, let u € C*(M) be such that f w udv(g) = 0. We then have that
for any x,

u(x) = f G(x, y)Agu(y)dv(y)
M

Hence,
)| < /M IV, G (x, DIIVu()Id, (7)

and

f (), (x) < / [ IV, G (x, )11V () ldvg (x)dvg (y)
M MJIM

<c f IVu()ldug (y)
M

where C > 0 is such that for any y € M, f w IVyG(x, y)|dvg(x) < C. Recall here
that G satisfies |[V,G(x, y)| < K Jr"='. As a consequence, for any u € C®(M)
such that f,, udv(g) =0,

f luldv(g) < C f Vuldv(g)
M M

and the Poincaré inequality for ¢ = 1 is proved. This ends the proof of the theorem.
O
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Inequalities such as the ones in question in Theorem 2.10 are referred to as
Poincaré inequalities. Now that such inequalities have been proved, one easily gets
the so-called Sobolev-Poincaré inequalities. This is the subject of the following:

THEOREM 2.11 Let (M, g) be a smooth, compact Riemannian n-manifold, q €
[1, n) real, and p real such that 1/p = 1/q — 1/n. There exists a positive constant
C such that for any u € H} (M),

1/p /9
([ - ave) " <c( [ 1vurarve)
M M

where U = VBI(lT.g) [y udv(g).

PROOF: By Theorem 2.6 there exists a positive constant B such that for any
u € HI(M),

I/p 1/q
( / |u—u|"dv(g>) sB(( f IVuI"dv(g))
M M
1/q
+( / lu—iil"dv(g)) )
M

Independently, by Theorem 2.10, there exists C > 0 such that for any u € H/ (M),

1/q l/q
( [ |u—u|"dv<g>) sC( [ |Vu|"dv<g))
M M

Hence, for any u € H] (M),

I/p /9
(f lu — u|? dv(g)) <B(1+ C)(/ {Vu)? dv(g))
M M

and this proves the theorem. O

Of course, Sobolev embeddings, compactness properties of these embeddings,
and such Poincaré and Sobolev-Poincaré inequalities are very useful when studying
PDEs. As an application, we mention the following result of Druet (oral communi-
cation), Proposition 2.6, dealing with generalized Laplace equations. Given (M, g)
a smooth, compact Riemannian n-manifold, and g € (1, n), we denote by A, , the
g-Laplacian of g defined by

Aggu = —divy (IVul?2Vu)

With such a definition, A, ; = A, the usual Laplacian of g. Given f some smooth
function on M, we study the existence of solutions u € H," (M) to the equations

A= f

Such equations will be referred to as generalized Laplace equations. By regularity
results (see, for instance, Druet (73]), one has that any solution u € qu (M) of
such an equation is C'® for some @ € (0, 1). Furthermore, such a regularity is
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in general optimal, as shown by the following situation. For (R", e) the Euclidean
space,
i x|+

is a solution of A, .u = —n in R". In the particular case g = 2, one gets the full
regularity for the solutions of A, .u = f, that is, the C* regularity. The result of
Druet (private communication) we present here is the following:
PROPOSITION 2.6 For any smooth, compact Riemannian n-dimensional manifold
(M, g), any q € (1, n) real, and any f € C*(M), the generalized Laplace equa-
tion A, qu = f possesses a solution u € H{ (M) if and only if {,, f dv(g) = 0.
Moreover, the solution is unique up to the addition of a constant, and it is of class
C"* for some a € (0, 1).

PROOF: Itis clear that the condition [,, f dv(g) = Ois a necessary condition.
Conversely, let

Jt’=lueH,"(M) st f fudv(g) = 1 and f udv(g)=0|
M M

Set
A= inf/ |Vul?dv(g)
ueH M

Clearly, # # @ since, up to a constant scale factor, f € . Let (4;) € H bea
minimizing sequence for A. By Poincaré’s inequalities,

fluil"dv(g)sCf [Vu;|? dv(g)
M M

for some C > 0 independent of i. As a consequence (u;) is bounded in H," (M).
By classical arguments, based on the Rellich-Kondrakov theorem and similar to
those used in the proof of Theorem 2.10, one then gets that there exists u € J
such that

[ 1vutt v =

M

In particular, A > 0. Moreover, one gets that there exist &, 8 € R such that for any
¢ € H{(M),

/ IVul"2(Vu, Vo)du(g) = o / pdv(g) + B f fodv(g)
M M M

where (-, -) is the scalar product associated to g. By taking ¢ = 1, we get that
a = 0. Taking ¢ = u, we get that 8 = A. Since u # 0, since A > 0, and up to
rescaling, u is the solution we were looking for. Moreover, one gets the uniqueness
by noting that if A, ;u = Ay zv, then

f ((IVu|*~2Vu — |Vv|?"2Vv)(Vu — Vv))dv(g) = 0
M

and by noting that for any X, Y
((IX1972X = |Y|7%Y),(X — )} = 0
with equality if and only if X = Y. This ends the proof of the proposition. O
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2.9. A Finiteness Theorem

We prove a kind of Cheeger’s finiteness theorem for the class of compact man-
ifolds with bounded sectional curvature, volume bounded from above, and that
satisfy a given Sobolev inequality. Given n > 2 an integer, g € [1, n) real, and A,
V, and A positive real numbers, let M = M(n, q, A, V, A) be the class of smooth,
compact Riemannian n-manifolds (M, g) such that K4 ,) < A and Vol(y 4, < V,
where K(u.g) stands for the sectional curvature of (M, g), and such that for any
u € C*2(M),

1/p 1/q l/q
( f |u|"dv<g)) sA(( / |Vu|4dv<g>) +( f |u|"dv<g)) )
M M M

We prove here the following:

THEOREM 2.12 Foranyn, q, A, V, and A as above, there are only finitely many
diffeomorphism types of manifolds in M. In other words, there exists a finite num-
ber m of smooth, compact manifolds M,, ..., M,, such that if (M, g) € M, then
M is diffeomorphic to one of the M;’s.

PROOF: Let a € (0, 1) real. In order to prove Theorem 2.12, we just need
to prove that M is precompact in the C'**-topology. By Lemma 2.2, there exists
v : R** — R** such that for any (M, g) € M, any r > 0, and any x € M,

Vol, (B, (r)) = v(r)

Hence, for any (M, g) € M, and any £ > 0, the maximal number of disjoint balls
of radius ¢ that M can contain is bounded above by

1%
”=[r<5]“

where [%s)] stands for the greatest integer not exceeding %s) In particular, this
shows that there exists d > 0 such that for any (M, g) € M, diamy ¢ < d, where
diamy 4 stands for the diameter of (M, g). Hence, there exist v’ > O andd > 0
such that M C M where
M= [(M, g) compact n-manifolds s.t. |[Kg| < A,
Vol g = V', diamy.) < d}

Furthermore, one has by Cheeger-Gromov-Taylor [46] that under the bound | K, | <
A, the bounds Vol(y . > v’ and diamyg < d are equivalent to the bounds
injy 4 = i and Voly g < v where inj, ,, stands for the injectivity radius of

(M, g). One then gets from énderson’s results [5] that A is precompact in the
C'“-topology. Since M C M, M is also precompact in the C'%-topology. As
already mentioned, this ends the proof of the theorem. a

As a consequence of this result, one easily gets that for any n, g € [1, n),
A > 0,and A > 0, there are only finitely many diffeomorphism types of smooth,
compact Riemannian n-manifolds (M, g) such that

IK(M-e)'VOI(ZI{;.g) <A
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and such that for any u € C*°(M),

I/p
(f lul”dv(g))
. 1/q 1/q
5,4(( fM IVuI"dv(g)) +Volfn;(;')( f lul"dv(g)) )
M

Conceming such an assertion, just note that the condition
2/n
|Kam.o| Vol y < A,

and that the above Sobolev inequality are scale invariant.






CHAPTER 3

Sobolev Spaces: The Noncompact Setting

We mainly discuss in this chapter the validity of Sobolev embeddings and
Sobolev inequalities for complete manifolds. As one will see, surprising phenom-
ena appear when dealing with such a question. Density problems are first discussed
in Section 3.1. Sobolev embeddings and Sobolev inequalities are then studied in
Sections 3.2 and 3.3, while disturbed inequalities are presented in Section 3.4. For
Euclidean-type Sobolev inequalities, we refer the reader to Chapter 8.

Given (M, g) a smooth Riemannian manifold, & an integer, and p > 1 real,
recall that we defined the Sobolev space H[ (M) as the completion of e,f (M) with
respect to the norm

k ‘ I/p
g = Y- ( [ 19 avce))
j=o \UM

Here,
e,f(M) = lu e COM)/Vj=0,..., k, [ |Vfu|”dv(g) < +ool
M

that is, the set of smooth functions on M for which |lu}| HY is finite. Given (M, g)
a smooth, complete Riemannian n-manifold, recall also that:
1. if H'(M) c L"“~"(M), then H!(M) C Hz (M) for any real numbers
1 <q < pandanyintegers) <m < ksuchthat1/p =1/q — (k —m)/n,
and
2. if for some g € [1, n) real, H/ (M) C LP(M) where 1/p = 1/q—1/n, then
for any r > 0 there exists v > 0 such that for any x € M, Vol (B,(r)) > v
where Vol, (B, (r)) stands for the volume of B, (r) with respect to g.
These two statements are, respectively, the ones of Lemma 2.1 and Lemma 2.2.
Given (M, g) a smooth, complete Riemannian manifold, k an integer, and p >
1 real, we define

H{ (M) = closure of D(M) in H! (M)
where D (M) is the space of smooth functions with compact support in M. As al-
ready mentioned, we start in this chapter with density problems for Sobolev spaces.

3.1. Density Problems

Let (M, g) be a smooth, complete Riemannian manifold. For H(;’_ «(M) defined

as above, we discuss in this section the case of equality H(‘," (M) = H,:’ (M). In
other words, we try to find for which complete manifolds (M, g) one has that

47
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D(M) is dense in Hkq (M). The completion for such a study is necessary, in the
sense that one can construct many noncomplete manifolds for which H(;" . #* HY.
Think, for instance, of §2 a bounded, open subset of R” endowed with the Euclidean
metric e. One easily checks that in such a situation, H& 1(R) # HY(RQ). Consider
for this purpose the scalar product (-, -) of Proposition 2.1 (with g = e and k = 1),
and let u € C*(Q2) N H,z(Q) be such that A,u +u = 0, u # 0, where A, is
the Laplacian of e (with the minus sign convention). For instance, one can take
u = sinh x, x, the first coordinate in R”. Then for any v € D(2),

(u,v) = /9 (Aeu +u)vdx =0
so that u & HZ (). This proves the above claim. On the contrary, one has the
following result:
PROPOSITION 3.1 For any k an integer and any q > 1 real, Huq_ (R") = H,:’ (R™).
PROOF: Let f : R — R be a smooth decreasing function such that
f@)=1ift <0 and f(@)=0ifr>1

As one can easily check, it is sufficient to prove that any u € C*(R") N H](R")
can be approximated in H (R") by functions of D(R"). For m an integer and u
some smooth function in H; (R"), set

Unm(x) = u(x) f(r —m)

where r denotes the distance from O to x. Clearly,u,, € D(R") for any m. On the
one hand, one has by Leibnitz’s formula that for any s integer and any m,

s
19 (am = )] < €1 32 |90 9574 (£ = )
j=0

where C, > 0 is independent of m, and f,,(x) = f(r — m). In particular, noting
that |V°r| is bounded for s > 1 and r > 1, one gets that for any s integer, and any
m>1,

5
|V‘(u,,, - u)| <G Z IVqu
j=0

where C; > 0 is independent of m. On the other hand, one clearly has that for any
s integer, and with respect to the pointwise convergence,

lim Viu,, = V'u

m—+0C
Since for any s < k, |V'u| € LP(R"), the proposition easily follows from the
Lebesgue dominated convergence theorem. 0O

When dealing with arbitrary, complete Riemannian manifolds (M, g), one can
hope that the equality Hy (M) = H,! (M) still holds. As surprising as it may seem,
such a question is open for k > 2. For k = 1, this is the content of Theorem 2.4 of
Chapter 2; things work for the best and one has the following result of Aubin [8].
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THEOREM 3.1 Given (M, g) a smooth, complete Riemannian manifold, H(;f (M)
= H{(M) for any q > 1 real.

The situation for k > 2 seems to be more complicated, and assumptions on
the manifolds are now needed (at least at the present state of the field). Aubin [8]
proved that for any ¢ > 1 and k > 2, D(M) is dense in H{ (M) provided that
(M, g) has a positive injectivity radius and that the Riemann curvature of (M, g) is
bounded up to the order k—2. Hebey [108] proved that the above result still holds if
the assumptions on the Riemann curvature are replaced by similar assumptions on
the Ricci curvature. Moreover, thanks to the Bochner-Lichnerowicz-Weitzenbock
formula, something special happens in the case k = p = 2, where only a lower
bound on the Ricci curvature is needed instead of a global bound. This is what we
are going to discuss now. Let us start with the general case.

PROPOSITION 3.2 Let (M, g) be a smooth, complete Riemannian manifold with
positive injectivity radius, and let k > 2 be an integer. We assume that for j =
0,...,k — 2, |[V/Rem.g | is bounded. Then for any q > 1 real, Hj (M) =
H{ (M),

PROOF: Suppose that the injectivity radius injy, ,, of (M, g) is positive, and
that there exists C > 0 such that forany j =0, ...,k — 2, |V/ Remg | < C. By
Theorem 1.2 one has that for any real numbers Q > 1 and « € (0, 1), the C¥~'-*-
harmonic radius ry = ry(Q, k — 1, @) is positive. Fix, for instance, Q = 4 and
a = 1/2. (As one will see, a plays no role in the following of the proof). For any
x € M one then has that there exists some harmonic chart ¢ : B,(ry) — R” such
that the points 1 and 2 of Definition 1.1 are satisfied with Q = 4 and @ = 1/2.
(Without loss of generality, we can also assume that ¢(x) = 0). In particular, we
get that forany r < ry

By(r/2) C ¢(B:(r)) C Bo(2r)

where for ¢t > 0 real By(t) denotes the Euclidean ball of center O and radius ¢. Let
B € D(R") be such that

0<B<1, AB=I onBo(%'), =0 onR"\Bo(%H)
As a consequence of the above inclusions, we get that 8 o ¢ € D (M) satisfies

0<pBop=l, Boyp=1 oan(;—’é),

Bop=0 on M\B,(%")

From now on, let (x;) be a sequence of points of M such that
_ " 74Y is uni :
M= L'J Bx’(]6) , (B,,( > ))1 is uniformly locally finite

The existence of such a sequence is given by Lemma 1.1. Let ¢, : B,,(ry) - R”
be as above and set B; = B o ¢;. Since the components of the metric tensor are
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C*~!_controlled in the charts (B,,(r#), ;). one easily gets that there exists C > 0
such that for any i and anym =0, ..., k, |V™B;| < C. Let us now set

Bi
g Ej ﬁj
As a consequence of what we have said above, (7;) is a smooth partition of unity
subordinate to the covering (B, (%)), and since this covering is uniformly locally
finite, one easily obtains that there exists some constant C > 1 such that for any
m=0,...,k Y|Vl < C. Now fixu € C/ (M) where p > 1 is some given
real number. The proposition will obviously be proved if we show that for any
€ > 0 there exists uy € D(M) such that |ju — uoll,,,[ < €. Fix ¢ > 0 and let
2 C M be some bounded subset of M such that
k

Ip -
ey ( /M . IV'"uI”dv(g)) <&/€

m=0

where C is as above and

m+l _ (k+ 1)!

LT (m + 1)Kk~ m)!
Since the covering (B,;(*4)) is uniformly locally finite, one easily obtains that
there exists some integer N such that forany i > N + 1, B,,,.(%l) N =@. Set
up = (1 — n)u where 1 —n =3~ ;. Then up € D(M) and

k
lu — woll gy < D IV" (),

m=0

where ||- ||, stands for the norm of L?(M). But

m
V" (u)l < D CLIVInlIV™ ]
j=0

and since suppn C M\Q and }_; |[V/n;| < Cforany j =0,...,k, we get that
~ m . . l/p
IVl < CZC:,( f IV’uI”dv(g))
s M\Q

As a consequence, noting that forany 0 <m <k, Z}‘m CJ'." = C,""_,_*,', we get that

k m ) ) 1/p
b —wollgp < €33 c:,( [ |v1u|"dv(g))
= M\

m=0 j=0

. k k I/p
=) (Z Cf”') ( [ . IV'"ul”dv(g))

_ 1/p
=C c;.":,'( fM \QIV'"ul”dv(g))
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Since
I/p .
Zc;":,'( [ V" u |”dv(g)) <¢/C
m=0 M\Q

we have shown that for any ¢ > 0 and any u € G (M) there exists ug € D(M)
such that fju — ug| H < & As already menuoned this ends the proof of the

proposition. a
As a straightforward corollary to Proposition 3.2 one gets the following:

COROLLARY 3.1 For any Riemannian covering (M, §) of a compact Riemannian
manifold (M, g), for any k integer, and any q > 1 real, H(;’_ (M) = H!(M).

As already mentioned, thanks to the so-called Bochner-Lichnerowicz-Weitzen-
bock formula, something special happens in the case k = p = 2. Here, one can
replace the global bound on the Ricci curvature by a lower bound on the Ricci

curvature.

PROPOSITION 3.3 For any smooth, complete Riemannian manifold (M, g) with
positive injectivity radius and Ricci curvature bounded from below, H& (M) =

H}(M).
PROOF: Let K2(M) be the completion of
C2(M) = {u € C(M) /u, |Vul, Agu € LX(M))

with respect to

172 1/2 12
||“"K$=( f uzdv(g)) +( f IVuIZdv(g)) +( / |Agu|2dv(g))
- M M M

Let also K3 ,(M) be the closure of D(M) in K3(M). We assume that the Ricci
curvature of (M, g) is bounded from below by some A, and that the injectivity
radius of (M, g) is positive. By Theorem 1.2 one then gets that for any Q > 1 real,
and any @ € (0, 1) real, the C%*-harmonic radius ry; = ry(Q, 0, @) is positive.
Noting that in a harmonic coordinate chart,

Agu = —giji);ju
for any u € C*°(M), similar arguments to those used in the proof of Proposition

3.2 prove that
K3, (M) = K3 (M)

Independently, one clearly has that for any u € C®(M), |Aul* < n|VZu)?
Hence,
H} (M) c K3(M)

with the property that this embedding is continuous. Recall now that by the Boch-
ner-Lichnerowicz-Weitzenbock formula, for any smooth function 4 on M,

1
(Ag(du), du) = EAg(Idulz) + |V(du)|* + Rea gy (Vu, Vu)
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(see, for instance, [109]). Integrating this formula, one then gets that for any u €
D(M),

f V2uldv(g) = / (A2 dv(g) — / Req. o (Vit, Vi)du(g)
M M M
< f 1Agul? dv(g) + A] f Vul dv(g)
M M

Hence,
bl < (14 V/IRT) el 2
for any u € D (M), and according to what we have just said, we get that
H; (M) = K3 ,(M)
As a consequence,
H},(M) C HZ(M) C KZ(M) = K},(M) = H},(M)
and this ends the proof of the proposition. a

3.2. Sobolev Embeddings I

We discuss in this section the validity of Sobolev embeddings in their first
part for complete manifolds. As one will see, surprising phenomena appear there.
While such embeddings do hold for the Euclidean space (see Theorem 2.5 of Chap-
ter 2), there exist complete manifolds for which they do not hold. For the sake of
clarity, recall that by Sobolev embeddings in their first part we refer to the follow-
ing: Given p, q two real numbers with 1 < g < p, and given k, m two integers
with0 <m < k,if 1/p = 1/q — (k — m)/n, then H} (M) C H;,(M) where n is
the dimension of M. As already mentioned, such embeddings are necessarily valid
if the first one is valid, that is, if H/(M) c L"~Y(M). For clarity, and when
discussing counterexamples, we restrict ourselves in this section to the case k = 1,
that is, to the scale of embeddings H{ C L”. We start with the following result:

PROPOSITION 3.4 For any integer n > 2, there exist smooth, complete Riemann-
ian n-manifolds (M, g) for which for any q € [1,n), H} (M) ¢ LP(M) where
1/p=1/9—1/n.

PROOF: Consider the warped product
M=RxS§"!, 8(x,0) =& + u(x)he

where & is the Euclidean metric of R, & is the standard metric of the unit sphere
S"1 of R", and u : R — (0, 1] is smooth and such that u(x) = 1 when x < 0,
u(x) = e~ when x > 1. Clearly, if y = (x, 6;) and z = (x,, 6;) are two points
of M, then d;(y, z) > |x2 — x,|. This implies that (M, g) is complete. In addition,
ify=(x,0)isapointof M =R x $"~', then By,(1) C (x — 1, x +1) x "', As
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a consequence, whenx > 2,
Vol, (B(x.e)(l)) < Vol, ((x - 1I,x+1Dx Sn-l)

x+1
S w"_lf e—(n—l)l dt
-1

< C(n)e—(n—ln
where w,_; denotes the volume of ($"~', h) and

_ Wi n—1 _ _l-n
Cmy = = (™ =€)

Therefore, for any 6 € §"~!,
1im Vol (Bee.o)(1) =0

and by Lemma 2.2 we get that H/(M) ¢ LP(M) for any | < q < n real and
1/p = 1/q — 1/n. This ends the proof of the proposition. a

As a remark, note that the Ricci curvature of the manifold (M, g) constructed
in the proof of Proposition 3.4 is bounded from bclow. Indeed, since

RC(sn-l.h) = (n - 2)h

one easily sees that Rcy ) will be bounded from below if there exists A real such
that for any 6 € §""! and any x > 1, Reg)(x,0) > Agg). Let 8oy =
e** &, + hy, R,fj be the components of Rc4 g in some chart (R x 2, Id x ¢), and
R;; be the components of Rc(y ) in the same chart. We have R,fj =0ifi =1or
j =1, while R}, = (n — 2)h;; if i > 2 and j > 2. Independently, if g’ = e/ g are
conformal metrics on a n-dimensional manifold, then

, n—2 n-—2
Rjj = Rij — ——(V*[)ij + ——= (V)i (Vf);
1 n—2
- 5(—Agf + TIVflz)gzj
Hence, since g’ = ¢**g if x > 1, we get that for x > 1,
Ry=—-(m—-1) and Ry;=0 whenj>2
Rij = ((n—2)e** — 1)g;; wheni >2and j >2
As a consequence, Rcy ) > —(n — 1)g for x > 1, and the Ricci curvature of

(M, g) is bounded from below. Independently, note that with the same ideas as the
ones developed in the proof of Proposition 3.4, one gets the following:

PROPOSITION 3.5 For any integer n > 2, any smooth, complete noncompact Rie-
mannian n-manifold (M, g) of finite volume, and any q € [1,n), one has that
H/(M) ¢ LP(M) where 1/p = 1/q — 1/n.

PROOF: Here again, the proof of such a result is based on Lemma 2.2. Let
(M, g) be a smooth, complete Riemannian n-manifold. Suppose that for some
q € [1, n), one has that I-I,"(M) C LP(M) where 1/p = 1/q — 1/n. Then by
Lemma 2.2, there exists v > 0 such that for any x € M, Vol,(B,(1)) > v where
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Vol (B (1)) stands for the volume of B.(1) with respect to g. Let (x;), given by
Zom’s lemma, be a sequence of points in M such that

M=UBX,.(2) and B, (1)NB,(1)=0 ifi#j

Since (M, g) is complete, the B, (2)’s are relatively compact, while clearly

Vol = Y Vol (B, (1))

where Voly ) stands for the volume of (M, g). Suppose now that (M, g) has
finite volume. According to what has been said above, (x;) must then be finite and
hence, M must be compact. This proves the proposition. O

Let us now discuss results where Sobolev embeddings do hold. As one will
see, the situation is well understood when dealing with manifolds having the prop-
erty that their Ricci curvature is bounded from below. In the 1970s, Aubin [7] and
Cantor [37] proved that Sobolev embeddings were valid for complete manifolds
with bounded sectional curvature and positive injectivity radius. About ten years
later, Varopoulos [192] proved that Sobolev embeddings do hold if the Ricci cur-
vature of the manifold is bounded from below and if one has a lower bound for the
volume of small balls which is uniform with respect to their center. By Croke’s
result [59] a lower bound on the injectivity radius implies a lower bound on the
volume of small balls which is uniform with respect to their center. One then has
the following generalization of the result of Aubin and Cantor. The assumption
that there is a bound on the sectional curvature is here replaced by the weaker
assumption that there is a lower bound for the Ricci curvature.

PROPOSITION 3.6 The Sobolev embeddings in their first part are valid for any
smooth, complete Riemannian manifold with Ricci curvature bounded from be-
low and positive injectivity radius. In particular, given (M, g) a smooth, com-
plete Riemannian n-manifold with Ricci curvature bounded from below and pos-
itive injectivity radius, and for any q € [l,n) real, H," (M) c LP(M) where
1/p=1/q—1/n.

Let us now state and prove the more general result of Varopoulos [192] men-
tioned above. The original proof of this result was based on rather intricate semi-
group techniques. The proof we present here is somehow more natural. It has its
origins in Coulhon and Saloff-Coste [S8]. For the exact statement of Varopoulos
result, where no lower bounds on the volume of small balls are assumed and where
disturbed Sobolev inequalities are obtained, we refer to Section 3.4.

THEOREM 3.2 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below. Assume that

xlg{; Vol, (B(1)) > 0
where Vol,(B,(1)) stands for the volume of B(1) with respect to g. Then the

Sobolev embeddings in their first part are valid for (M, g). In particular, for any
q € [1,n) real, H/ (M) C LP(M) where 1/p =1/q — 1/n.
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As a remark on the statement of Theorem 3.2, note that the assumption
inf Vol (B«(1)) >0
implies that for any r > O, there exists v, > 0 such that for any x € M,
Vol, (B,(r)) = v,. Such a claim is a straightforward consequence of Gromov’s

result, Theorem 1.1. Now, the proof of Theorem 3.2 proceeds in several steps. As
a starting point, we prove the following:

LEMMA 3.1 Let (M, g) be a smooth, complete Riemannian n-manifold such that
its Ricci curvature satisfies Ry g) > kg for some k € R. Let also R > 0 be some
positive real number. There exists a positive constant C = C(n, k, R), depending
only on n, k, and R, such that for any r € (0, R), and any u € D(M),

/ lu —u,ldv(g) < Crf |Vuldv(g)
M M
where u,(x) = ;;l('s—()) fBr(r) udv(g), x € M.

g \ B r

PROOF: Let (M, g) be a smooth, complete Riemannian n-manifold such that
Rcm.g) = kg for some k € R, and let R > 0. By the work of Buser [35], there
exists a positive constant C = C(n, k, R), depending only on n, k, and R, such
that for any x € M, any r € (0, 2R), and any u € C*®(B,(r)),

(3.1 f lu —u, (x)|dv(g) < C"f |Vuldv(g)
By (r)

By (r)

Let r € (0, R) be given and let (x;);c; be a sequence of points of M such that
simultaneously

r r e s

M= LiJB,,,(r) and B),.(E) N BV(E) =0 ifi#j
With the same arguments as used in the proof of Lemma 1.1, one gets that
Card li el/xe B,,.(Zr)] <N = Nk, R) = (16)" 3@ DR

where Card stands for the cardinality. Let u € D(M). We have

__rd = _—rd
fMlu ulv(g)<'Z/; lu — &, |dv(g)

x,-(")

>N =T ldve)

+> f %, (x;) — W2 (x:)|dv(g)

By (r)

+3 fB 7, — T (51 dv(g)
i o (r)
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By (3.1), we get that

> fB 4=, (x)ldv(g) < Cr > fB |Vuldv(g)
i G i

xi(’)
sNCr/ {Vuldv(g)
M

while

> /3 [, (x;) ~ T, (x:)dv(g) = Y Vol (By, (")), (x;) — i, (x)]
Y (r) i

i

=53 NEL ¥eSTe
i Bri(")

< _-r i d

<% / gl T I®)

<2NCr / (Vuldv(g)
M

Independently, we have

) f I, — %2, () ldv(g)
i B‘i (r)

1 _
< Z [ o I—Volg B Jrenin lu(y) — uzr(x.-)ldvg(y)}dvg(x)

1 —
=< Z-/.;EB.‘.(r) {VO!g(B,,.(r)) veB. 20 ju(y) — qu(Xi)'dUg(y) Idvg(x)

_ 1
< z,: /3 o |u(y) — T, (x:)|dvg () .0y VOLGBL) dvg (x)
But, by (3.1),

f lu(y) — w2, (xi)ldvg (y) < 2Crf [Vuldv(g)
Bx,. (2r) B,'. (2r)

while by Gromov’s result,
1 < K
Vol, (B,(r)) ~ Volg (Bx(2r))

where K = K(n, k, R) = 2"¢>Y@~"KIR gince x € B,,(r) implies that B, (r) is a
subset of B, (2r), we get that

1
—Fd
w[B(i(l') Vol, (Bx(,-)) ve(x) =K

Hence,

X[ i - wlve < 2Ke [ Vuldvie)
i By () M
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and for any u € D(M),
f |u —u,|dv(g) <3(1+ K)NCr[ |Vuldv(g)
M M

This ends the proof of the lemma. a
We now prove the following lemma:

LEMMA 3.2 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies Rc(y gy = kg for some k € R, and suppose that
there exists v > 0 such that Volg(B.(1)) > v for any x € M. There exist two
positive constants C = C(n, k,v) and n = n(n, k, v), depending only on n, k,
and v, such that for any open subset Q of M with smooth boundary and compact
closure, if Vol, () < n, then Vol (Q)"~1/" < C Areag (3Q).

PROOF: By Theorem 1.1 and the remark following this theorem, we have that
forany x € Mandany0 <r < R,

1
vole (B:() = (F‘"m" Vol (B..~(R)))r"
Fix R = 1. Then we get that for any x € M and any r € (0, 1),
Vol (B.(r)) = (e—m—-nmv)r,,

Set
n= %e—mv and C, = e~V@DH,
Let Q be some open subset of M with smooth boundary, compact closure, and such

that Vol (2) < n. For sufficiently small ¢ > 0, consider the function

i ifx e Q
us(x) = {1 - 1do(x,8Q) ifx € M\Qandd,(x.9Q) <¢
0 ifx € M\Q and dy(x, 92) > &

Then u, is Lipschitz for every ¢ and one easily sees that

lim | u,dv(g) = Vol,()
=0 M

while
Vi lg if x € M\Q and d,(x, 0Q) < &
| =

0 otherwise
which implies that

lim | |Vu.|dv(g) = Areag(3S2)
e=>0 Jy

Furthermore, for every € > 0,
Vol () = Vol ({x € M/u.(x) > 1})
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and for any £ > O and any r > 0,
Vol ({x € M/uc(x) > 1}) < Vol, ([x €M /|u.(x) —u.,(x)| > .21.})

+ Vol, ([x €M /U, (x) = %])

1

—_— ucdv(g)
Voly (B, () Jo,y <%
Now note that forr > 0and ¢ < 1,

where

Ue,r(x) =

o < VoL@
Her(x) < Volg(B )

Fixr = (M)‘/" Since Vol,(Q) < n =

16, we get that r € (0, 1) and that
2 Vol (R2) < 1

Vol, (B.(r) ~ 4
(according to what we have said above). Hence

1
[x € M/T,,(x) 2 5] "
and forevery 0 < ¢ < 1,

Vol, (R2) < Vol, ({x eEM/|u.(x) —u.,(x)] > ;})
But

Vol, ([x €EM/|us(x) —ue,(x)| = = }) < 2/ |ue — U, ldv(g)

and by Lemma 3.1 there exists a positive constant C, = C»(n, k) such that

/ lug — s, |dv(g) < Car f Vieldv(g)
M M

Hence,

I/n
Vol (€) szcz(w) f |Vieldv(g)
1 C—’

< C3 Vol ()" Area, (3S2)
where C3 depends only on n, k, and v. Clearly, this ends the proof of the lemma

a
Lemma 3.2 has the following consequence: The ideas used in the proof of
Lemma 3.3 are by now standard. One will find them in the celebrated works of

Federer [79] and Federer-Fleming [80]. For an exposition in book form of such
ideas, we refer the reader to Chavel [45].
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LEMMA 3.3 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies Rcy.y) > kg for some k € R and suppose that
there exists v > 0 such that Vol (B((1)) > v for any x € M. There exist two
positive constants § = 8(n, k, v) and A = A(n, k, v), depending only on n, k, and

v, such that
(n—=O/n
( f |u|""""’dv<g)) <A f |Vuldv(g)
M M

for any x € M and any u € D(B,(8)).

PROOF: Let n = n(n, k, v) be as in Lemma 3.2. By Theorem 1.1 there exists
8 = 8(n, k, v) such that for any x € M, Volg(B.(8)) < n. Letx € M and let
u € D(B,(8)). Fort > 0, let

Q)y={xeM/lux)| >t} and V(t) = Vol (2(r))

Clearly, V(t) < n for any ¢+ > 0. Then the co-area formula and Lemma 3.2 imply
that

o0
f Vuldu(g) = ~ [ V()= dy
M CJo

where C is the constant given by Lemma 3.2. Independently,

20
f |u|n/(n—l)dv(g) = n I'/(" ”V(I)dt
M n—1Jp

Noting that

oc n [oe) 1--1/n
f V(t)l_l/" dt > (__/ tl/(n—l)v(t)dt)
0 n—1J

we end the proof of the lemma. O
With Lemma 3.3 we are now in position to prove Theorem 3.2,

PROOF OF THEOREM 3.2: Let (M, g) be a smooth, complete Riemannian n-
manifold such that Rcy ) > kg for some k € R and such that there exists v > 0
with the property that Vol, (B,(1)) > v for any x € M. We want to prove that the
Sobolev embeddings are valid on M. By Lemma 2.1 we just have to prove that
H!(M) c L"®=D(M). Let § = 8(n, k,v) be as in Lemma 3.3 and let (x;) be a
sequence of points of M such that

. M=, B,,($)

2. B,(3)N B, (%) =0ifi # j,and

3. there exists N = N(n, k, v) depending only on n, k, and v, such that each

point of M has a neighborhood that intersects at most N of the B,,(8)’s.

The existence of such a sequence is given by Lemma 1.1. Let also

p :10,00) = {0, 1]
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be defined by
1 ifo<r<$
p)=13-%1 ify<r<¥
0 ifr >3
and let

a;(x) = p(dg(x;, x))
where d, denotes the distance associated to g and x € M. Clearly, «; is Lip-
schitz with compact support. Hence, by Proposition 2.4, «; belongs to H,'(M).
Furthermore, since suppa; C B‘,,,,(%ﬁ), we get without any difficulty that ¢; €
Hy (By,(8)). Let

Q;

ni =
Zm Uy
Then, since |Vea;| < 4/8 a.e,, we get by (3) that for any i, n; € HO",(B,,,.(S)),
(n;) is a partition of unity subordinate to the covering (B,,;(8)), Vn; exists almost
everywhere, and there exists a positive constant H = H (n, k, v) such that |Vpn;| <
H ae. Letu € D(M). We have

(n—=1)/n (n—=1)/n
(f Iul"""”"dv(g)) <) (/ lmul"""‘”dv(g))
M ~ \Jm

<4 [ 1vaiave)

where A is the constant of Lemma 3.3. Hence,

(n=1)/n
([ wrreravie))
M

<4Y [ nivutdoie)+ 43 [ wivaldve)

<A / |Vuldv(g) + ANH f uldv(g)
M M

< Ad +NH)(/ IVuldv(g)+/ luIdv(g))
M M

and there exists A > 0 such that for any u € D(M),

(n=1)/n
( f |u|"/‘"-"dv(g>) sA( / Vuldv(g) + f |u|dv(g>)
M M M

By Theorem 3.1 we then get that H] (M) c L"/"=D(M). As already mentioned,
this ends the proof of the theorem. a

Given (M, g) a smooth, complete Riemannian n-manifold, we refer to the scale
of Sobolev embeddings when considering the embeddings Hy (M) C L?(M), q €
[1,n), 1/p = 1/q — 1/n. As already mentioned in Section 2.3 of Chapter 2,
the validity of one of these embeddings implies the validity of the ones after: if
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H*(M) c L™(M) for some qo € [1,n) and 1/po = 1/qo — 1/n, then H{ (M) C
L?(M) for any q € [qo,n) and 1/p = 1/q — 1/n. A natural question is to know if
such a scale is coherent, that is, if the validity of one of these embeddings implies
the validity of all the other ones. In other words, if the validity of one of the
embeddings H," (M) Cc LP(M), q € |1, n), implies the validity of the embedding
H!(M) c L"@="(M). Combining Theorem 3.2 and Lemma 2.2, one gets that
the scale of Sobolev embeddings is coherent for complete manifolds with Ricci
curvature bounded from below. More precisely, one has the following consequence
of Theorem 3.2 and Lemma 2.2:

THEOREM 3.3 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below.
(i) Suppose that for some qo € [1,n), H"(M) C LP°(M) where 1/py
1/go — 1/n. Then for any q € [1,n), Hl (M) C LP(M) where 1/p
1/q — 1/n. In particular, one has that H! (M) C L""~"(M).
(ii) Given q € [1,n), one has that H{ (M) C L”?(M), where 1/p = 1/q — 1/n
if and only if there exists a lower bound for the volume of small balls which
is uniform with respect to their center.

Point (ii) in such a theorem means that for any » > O there exists v, > 0
such that for any x € M, Vol (B.(r)) > v,. By Gromov’s result, Theorem 1.1,
since the manifolds considered have their Ricci curvature bounded from below, it is
sufficient to have such a lower bound for one rp > 0. Independently, let (M, g) be a
smooth, complete Riemannian n-manifold satisfying the assumptions of Theorem
3.2. Namely, its Ricci curvature satisfies that Rc(y 4, > kg for some k € R, and
there exists v > 0 such that for any x € M, Vol,(B.(1)) > v. By Theorem 3.2, for
any g € [1, n), there exists A > 0 such that for any u € H/ (M),

1/p 1/q l/q
( / |u|"dv(g>) sA(( / qu|"dv(g>) +( f |u|"dv(g>) )
M M M

Note here that the proof of Theorem 3.2 gives the exact dependence of A: it de-
pends only on n, g, k, and v. Finally, we have seen in Chapter 2 that for compact
n-manifolds, H{ C L forany g € [1,n) and any p > 1 such that p < nq/(n—q),
that is, for any p such that 1/p > 1/q — 1/n. One can ask here if such a result still
holds for complete manifolds. As a first remark, one can note that for complete,
noncompact manifolds, one must have that p > g. Indeed, given (R”, ¢) the Eu-
clidean space, let u, € C*°(R") be some smooth function such that u,(x) = 1/|x|*
if [x] > 1. As one can easily check, for p € [1,q), u,;, € H}(R") while
unp € LP(R"). This proves the above claim. On the contrary, one can prove that
the embeddings H/ C L” do hold for complete n-manifolds as soon as p > q.
This is the subject of the following result:

PROPOSITION 3.7 Let (M, g) be a smooth, complete n-dimensional Riemannian
manifold such that its Ricci curvature is bounded from below and such that there
exists v > 0 with the property that for any x € M, Volg(B,(1)) > v. For any
g € [1,n) real and any p € [q,nq/(n — q)), H{ (M) C LP(M).
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PROOF: Setq* = nq/(n—q), and let p € [q, ¢*]. As a simple application of
Holder’s inequality, one gets that for any u € D(M),

1/p a/q . U-a)/q*
( f |u|"dv<g>) 5( f |u|"dv(g)) ( f hul? dv(g))
M M M

where @ € [0, 1] is given by

_VYr-1gq
/g -1/q"

By Theorem 3.2, there exists A = A(n, g, k, v) such that for any u € D(M),

. 1/q* I/q l/q
( f e dv(g)) sA( / |Vur'dv(g>) +A( [ |u|"dv(g>)
M M M

Since for any x and y nonnegative, and any « € [0, 1], x*y'~® < x + y, one gets
that for any p € [q, ¢*], and any u € D(M),

1/p
( f |u|"dv(g))
" /9 . 1/g°
< ( f Iul"dv(g)) +( f ul? dv(g))
M 1/q9 M 1/q
< A( / |Vul? dv(g)) +(A+ 1)( f Jul? dv(g))
M M

Clearly, this proves the proposition. a

To end this section, let us now make some remarks. As a first remark, note that
the assumption we made till now on the Ricci curvature is satisfactory but certainly
not necessary. Indeed, there exist complete manifolds for which the whole scale
of Sobolev embeddings H) C L” is valid, but for which the Ricci curvature is not
bounded from below. Just consider the space R” with a conformal metric g = e“e
to the Euclidean metric e, the conformal factor 4 being bounded and chosen such
that the Ricci curvature of g is not bounded from below. With such a choice, one
gets examples of the kind mentioned above. As a second remark, recall that we
have seen in Chapter 2 that for compact manifolds, the embeddings H, C L with
P < ng/(n — q) are compact. One can ask here if such a property still holds for
complete manifolds. The answer is negative. Just think to R" with its Euclidean
metric ¢, and let u € D(R") besuchthat0 <u < 1,u = lin By(1),andu =0
in R"\By(2). For m an integer, set u,(x) = u(x — x,,) where x,, € R” is such
that |x,,| = m. Clearly, (u,,) is bounded in H," (R™) by |lu|| HY» while for any m,
lumll, = llull, > 0. Since (u,.) converges to O for the pointwise convergence,
one gets as a consequence of what has been said that (x,,) does not converge in
LP(M). This proves the above claim. On the contrary, we will see in Chapter 9
that symmetries may help to reverse the situation.
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3.3. Sobolev Embeddings IT

We briefly discuss in this section the validity of Sobolev embeddings in their
second part for complete manifolds. Recall that by Sobolev embeddings in their
second part, we refer to embeddings such as H[’ C C™. In the 1970s, Aubin [7]
and Cantor [37] proved that such embeddings were valid for complete manifolds
with bounded sectional curvature and positive injectivity radius. We prove here
that the result still holds under the weaker assumption that the Ricci curvature is
bounded from below and that the injectivity radius is positive. Extensions will be
discussed at the end of the section. Given (M, g) a smooth, complete manifold and
m an integer, we denote by Cg (M) the space of functions u : M — R of class C™
for which the norm

Nullen =) sup |(V/u) ()|
j=0 xeM

is finite. In the same order of ideas, given A € (0, 1), we denote by C’},(M ) the
space of continuous functions u : M — R for which the norm

Ju(y) — u(x)|
llullcr = sup [u(x)| + sup ————
¢ xeltlo)l | I .t;ény dg(xa )

is finite, where d, denotes the distance associated to g. The first result we prove is
the following:

THEOREM 3.4 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below and positive injectivity radius. For q > 1
real and m < k two integers, if 1/q < (k — m)/n, then H!(M) C C§(M).

PROOF: First we prove that for ¢ > n, H/(M) C C%(M). By Theorem
1.2, one has that for any Q > 1 and a € (0, 1), the C®-harmonic radius ry =
ru(Q, 0, @) is positive. Fix, for instance, @ = 2 and « = 1/2. Forany x ¢ M
one then has that there exists some harmonic chart ¢, : B.(ry) — R”" such that
the components g;; of g in this chart satisfy

1
53.',' < 8ij <25

as bilinear forms. Let (x;) be a sequence of points of M such that

1. M =|J; By,(%) and
2. there exists N such that each point of M has a neighborhood which inter-
sects at most N of the B,,(ry)’s.

The existence of such a sequence is given by Lemma 1.1. Let also
p :[0,00) — [0, 1]
be defined by
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and let

a;(x) = p(dg(x;, x))
where d,; denotes the distance associated to g and x € M. Clearly, o; is Lipschitz
and bounded, with compact support in B, (r;). Set

]
oz,!q”

ni = W
where [¢] is the greatest integer not exceeding g. As one can easily check, n; and
n,.' /4 are also Lipschitz with compact support in B, (ry). In particular, one gets
by Proposition 2.4 that n,-" = H(‘,f 1(By,(ry)). Moreover, one has that (»;) is a
partition of unity subordinate to the covering (B, (ry)), that Vn,.'/ 7 exists almost
everywhere, and that there exists a positive constant H such that for all i, |Vr7,.I " <
H a.e. Given u € D (M), one clearly has that

1 1 -
Il ulico = 11(n*u) 0 o7 llco

for all i. Independently, starting from the inequalities satisfied by the g;;’s, one
easily gets that there exists C > 0 such that for any i and any u € D(M),

1 - 1
I(n;""u) 0 97 s < Clin; " ull g

where the norm in the left-hand side of this inequality is with respect to the Eu-
clidean metric. Since H," R" C COB(]R"), this leads to the existence of some
A > 0 such that for any / and any u € D(M),

| i
i ulico < Alln} ull g

Given u € D (M) one can write that

|
Domlul®| <D Mmlullico =D n;uligy
i C i i

t
< A7)l ulfy
i

lullgo =
c

Let 4 = u(q) be such that for x > 0and y > 0, (x + y)? < u(x? + y7). Then,
foru € D(M),

el < A"MZ( [ 1vai i avey+ [ i dv(g))

Here, one has that

> f V(0P )1 dv(g)
i M

<uY [ on ot dve +w Y [ nivat avee
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< MNH"[ lul? dv(g)+uf [Vul|? dv(g)
M M

Su(NH"+l)( f IVl dv(g) + [ Iul"dv(g))
M M

Hence, there exists B > 0 such that for any u € D(M),

q q
u < Bllu
huliZa < Bllullly,

Clearly, by Theorem 3.1, this proves that H/ (M) C C$(M). Let us now prove that
for g, k, and m as in the theorem, H! (M) C C}(M). Given u € C/(M), one has
by Kato’s inequality that for any integer s,

|VIVeu)| < |Vt u|
Lets € {0, ..., m}. By Proposition 3.6 one has that H (M) C H]* (M) where
1 1 k—s5s-1

ps 9 n
In particular, p; > n. Hence, according to what has been said above, H* (M) C
C%M). Givens € {0, ...,m} and u € G/ (M) one then gets that

IViulleo < COIViullyr < Co()IVullye < Ca(s)llull g

by Kato’s inequality, and where C) (s) and C,(s) do not depend on u. As an imme-
diate consequence of such inequalities, one gets that H (M) C C}j (M) for g, k,
and m as above. This ends the proof of the theorem. O

Let us now prove the following result:

THEOREM 3.5 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below and positive injectivity radius. For q > 1
real and A € (0, 1) real, if 1/q < (1 — A)/n, then H} (M) C C}(M).

PROOF: Here again, given Q > 1 and o € (0, 1), one has by Theorem 1.2 that
the C%“-harmonic radius r = ry(Q, 0, @) is positive. Fix, for instance, 0 = 2
and @ = 1/2. For any x € M one then has that there exists some harmonic chart
¢x : By(ry) — R" such that the components g;; of g in this chart satisfy

1
3.2) 53,',‘ < g8ij < 2;

as bilinear forms. Let also r € (0, ry) sufficiently small, for instance, r < ry/3,
such that for any x € M, the minimizing geodesic joining two points in B, (r) lies
in B,(ry). We use in what follows that for €, a regular, bounded, open subset of
R", and g, A as in the theorem, H," Q) C C}, (£2). For such an assertion, we refer
the reader to Adams [1]. Given g and X as in the theorem, let x and y be two points
of M such that x # y.
Suppose first that d, (x, y) > r. Then for any u € D(M),
lu(y) —u(x)| _ 2

< —|lujjco
4G =P lullc
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By Theorem 3.4, this leads to the existence of C; > 0 such that for any u € D(M),
lu(y) — u(x)|

dg (x,y »
Suppose now that dg(x, y) < r. By (3.2) one easily gets that

|0 () — @ ()| < V2d,(x, y)

< Cillullys

Hence,
u(y) —u@)l _ 4 10097 @x (1) — (0 97 ) (@ (1)
dg(x, y)* lox (¥) — @x () A
Similarly, one easily gets from (3.2) that there exists C; > 0 such that for any
ue DM),

<2

/ [V(uoopr")| dx < sz [Vul? dv(g)
Q By (r)

/ |uop;!|"dx < Czj |ul? dv(g)
Q By(r)

where Q = ¢,(B,(r)), and dx stands for the Euclidean volume element. Since
H," Q) c C},(Q), such inequalities lead to the existence of C3 > 0 such that for
any u € D(M),
|u(y) — u(x)|
dg(x, y)*
Take C4 = max(C;, C3). Then, for any x and y in M, with the property that x # y,
and for any u € D(M),

< Csllull 4o

[u(y) — u(x)|
d8 (X » Y )A
Such an inequality, combined with Theorem 3.4, leads to the existence of Cs > 0
such that for any u € D (M),

< Callull g

lullc: < Csllull 4o

By Theorem 3.1, one then gets that H (M) C C}(M). This ends the proof of the
theorem. 0

Theorem 3.5 has been generalized by Coulhon [56] in the spirit of what has
been said in the preceding section. More precisely, it is proved in {56] that for
(M, g) a smooth, complete Riemannian n-manifold, for ¢ > 1 real and A € (0, 1)
real, if 1/g < (1 — A)/n, then the embedding of H{(M) in C}(M) does hold
as soon as the Ricci curvature of (M, g) is bounded from below and that for any
ro > 0, there exists C(rg) > 1, such that for any x € M and any r € (0, rp),

C(ro)~'r" < Vol, (B«(r)) < C(ro)r"
Under the assumption that
xig{IVolg (B«(1)) >0
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this last property is an easy consequence of Gromov’s theorem, Theorem 1.1. One
then gets the following generalization of Theorem 3.5. We refer the interested
reader to Coulhon [56] for its proof.

THEOREM 3.6 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below. Assume that

inf Vol (B«(1)) >0

where Volg (B, (1)) stands for the volume of B, (1) with respect to g. For q > 1
real and ) € (0, 1) real, if 1/q < (1 — A)/n, then H{ (M) C Cx(M).

As a remark, note that with the same arguments as the ones used in the second
part of the proof of Theorem 3.4, one gets from Theorem 3.6 that for (M, g) as
in the statement of Theorem 3.6, for ¢ > 1 real and for m < k two integers, if
1/q < (k —m)/n, then H!(M) C Cli(M).

3.4. Disturbed Sobolev Inequalities

As already mentioned, Theorem 3.2 is less general than the result obtained
by Varopoulos in [192]. The exact setting of this result is that for any complete
Riemannian n-manifold (M, g) satisfying Rc(y.g) > kg for some k € R, there
exists a positive constant A = A(n, k), depending only on n and k, such that for
any u € D(M),

(n=1)/n
( f |u|"/"""vdv<g)) <A f (IVu] + u))vdv(g)
M M

where
1

Vol, (B.(1))

for x € M. Itis easy to see that one recovers Theorem 3.2 from such a result.
Indeed, the assumptions of Theorem 3.2 imply that v is bounded above while by
Theorem 1.1 v is bounded from below. This leads to the statement of Theorem 3.2.
The proof presented by Varopoulos of such a result was based on rather intricate
semi-group techniques. A more natural proof, together with generalizations of this
result, were obtained in Hebey [108]. We present them here. As a starting point,
one can use the following result of Maheux and Saloff-Coste [154). In a certain
sense, this result generalizes the one of Buser [35] to Sobolev inequalities.

v(x) =

THEOREM 3.7 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature satisfies Ry g) > kg for some k € R, and let p, q
be two real numbers such that 1| < g < n and p € [q,nq/(n — q)]. There exists
a positive constant A = A(n, p, q. k), depending only on n, p, q, and k, such that
Jorany x € M, anyr € (0, 1], and any u € C*(B,(r)),

/p
(/ lu — E(x)l”dv(g))
By (r)

Vel 1/q
< Ar Vol, (B,(r)""” "’( / |Vu|? dv(g))
B

o(r)
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=N
where U, (x) = w5y S50 #dv(8).

PROOF: We only sketch the proof and refer to Maheux and Saloff-Coste [154]
for more details. Fix R € (0, 1] real. By Gromov’s theorem, Theorem 1.1, there
exists some positive constant Co = Cy(n, k) such that for any x € M and any
r € (0, R),

V(x,2r) < CoV(x,r)
where V (x, r) stands for the volume of B,(r) with respect to g. Independently,
by the work of Buser [35], for any ¢ > 1 real, there exists some positive constant
C) = C (n, k, q) such that for any x € M, any r € (0, R), and any u € C*(M),

j [ —u,(x)|?dv(g) < C,r"f |Vul? dv(g)
By (r) By (r)

From such inequalities (this is the main point in the argument), one gets that for
any g > 1 real, there exists a positive constant C, = C;(n, k, g) such that the
following holds: For any x € M satisfying the property that

Vy € B,(R), Yt € (O, R], V(y,t) = K(x, R)t"

one has that for any u € C*®(B,(r)),

sup {A Vol, (BX(R) N {|u| > )\}) = }
r>0

T
< cz[K(x, R)~%/" f (IVul? + R“’lul")dv(g)]
B:(R)

x [ f |u|dv<g>]
By (r)

As in Maz’ja [155] (see also Bakry, Coulhon, Ledoux, and Saloff-Coste [18]),
this leads to the fact that for any g € [1, n) real, there exists a positive constant
C; = Cs(n, k, g) such that the following holds: For any x € M satisfying the

property that
Vy € B,(R), YVt € (O,R], V(y,t) > K(x, R)t"
one has that for any u € C*°(B,(R)),

1/p I/q
( [ lu — Tr(x)|? dv(g)) < C3K(x, R)"/”( f |Vul? dv(g))
B((R) Bx(R)

where p = nq/(n — gq). By Gromov’s theorem, Theorem 1.1, one can take
K(x,R)y=C(n,k)R™"V(x, R)
This ends the proof of the theorem. O

Coming back to Theorem 3.7, forg = 1 and p = n/(n — 1), one gets, in
particular, that for any r € (0, 1] there exists a positive constant A = A(n, k),
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depending only on n and k, such that for any x € M and any u € C*®(B,(r)),

t/p
(/ Iul"dv(g))
Bt(f)
< AVol, (Bx(r))_'/"( fB (Vuldv(g) + fB luldv(g))
x(r) «(r)

Starting from such inequalities, we then get the following extension of Varopou-
los’s result. In particular, as already mentioned, this provides us with a simple and
more natural proof of this result.

)

THEOREM 3.8 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature satisfies Rcy.g) = kg for some k € R, and let p,
q be two real numbers such that 1 < q < nand 1/p = 1/q — 1/n. Then for
any (o, B) € R x R satisfying B/q — a/p = 1/n, there exists a positive con-
stant A = A(n, q, k, a, B), depending only on n, q, k, a, and B, such that for any
u € D(M),

1/p
( f Iul"v"dv(g))
M 1/ 1/q
_<.A(( / |Vu|"v"dv(g)) +( f |u|"v"dv<g)) )
M M

1
(X)) = ———
Vol, (B, (1))
for x € M. In particular, there exists a positive constant A = A(n, k), depending
only on n and k, such that the Varopoulos inequality

(n—1)/n
([ Iu!"/("'”vdv(g)) < A/ (IVu| + ju)vdv(g)
M M

holds for any u € D(M).
First we prove the following result, that is, the case ¢ = 1 in Theorem 3.8:

where

LEMMA 3.4 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies Rcy gy > kg for some k € R. Then for any
(o, B) € R x R satisfying B — ﬂ-,fla > 1/n, there exists a positive constant A =

A(n, k, o, B), depending only on n, k, a, and B, such that for any u € D(M),
(n—1)/n
( / !ul”/"’"’v"dv(g)) <A f (IVu| + lul)vf dv(g)
M M

- ]
where v(x) = V(B * eEM.

PROOF: Let (x;) be a sequence of points of M such that

1. M= Bxi(%).

2. B, (3) N By, (§) =0ifi # j,and

3. there exists N = N(n, k), depending only on n and &, such that each point
of M has a neighborhood which intersects at most N of the B,,(1)’s.
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The existence of such a sequence is given by Lemma 1.1. Let also

p:[0,00) > [0,1]

be defined by
1 if0<r<3
p)={3-4 ifi<t<3
i 3
0 ifr > 2
and let

a;(x) = p(d,(x;, x))

where d,; denotes the distance associated to g and x € M. Clearly, o; is Lipschitz
with compact support. Hence, by Proposition 2.4, a; € H/(M). Furthermore,
since suppa; C By, (3), we get without any difficulty that ; € H] (B, (1)). Let

a;
ni =
Zm Uin

Then, since |Va;| < 4 ae., we get by (3) that for any i, n; € Hy (B (1)), (n;)
is a partition of unity subordinate to the covering (B,,(1)), V#; exists almost ev-
erywhere, and there exists a positive constant H = H(N) such that |Vy;| < H
a.c. Independently, by Theorem 1.1, we get that there exists a positive constant
C = C(n, k) such that for any x € M,

Vol, (B,(1)) = C Vol, (B«(2))
As a consequence, for any x € M and any y € B,(1),
Vo, (Bx(1)) = C Vol, (B,(1))

(since y € B,(1) implies that B, (1) C B,(2)). Similarly, for any x € M and any
y € B,(1), we clearly have (by symmetry) that

Volg (By(1)) > C Vol, (B.(1))

Furthermore, once more by Theorem 1.1, there exists a positive constant V =
V (n, k) such that for any x € M,

Vol, (B(1)) < V
Let «, 8 € R be such that

n—1 1
a> -

ﬂ_
n

Multiplying (I;) by Vol (B, (1))~"~Y/"_and according to what we have just said,
we get that there exists a positive constant A = A(n, k) such that for any x € M
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and any u € C*®(B,(1)),

(n—=1)/n
(/ Iuln/(n—l)va dv(g))
B.(1)

< A Vol, (B, (1))~ Pt b f (Vul + lul)dv(g)
B (1)

< AVol, (B (1))P """+ vol, (B, (1)) P (VUL + udv(e)
(1)
<4 [ vl +uiv? duig)
By (1)

where
A = Avﬂ-(("'l)a-l-l)/nc-lm

depends only on n, k, a, and B. As a consequence, for any i/ and any u €
C>(By (1),

(n—1)/n
(/ |ue|/ =Dy dv(g)) < A’/ (IVu| + |u))v? dv(g)
B, (1) B,(1)

Letu € D(M). We then have

(n=l)/n
(/ luln/(n-—l)vudv(g))
M
< Imiu "'~ Dv® dv(g))
Zi: (/;.;(U

<& Y [ 4V + niuiy? duie)

<A Y[ 1Vnillulv? dv(@)+A" Y | mi|Vulv? dv(g)+A’ [ |ulvf dv(g)
i /M i M M

(n—=1)/n

<A'NH [ lulv? dv(g) + A’ [ |Vulv? du(g) + A’ / [u|v? dv(g)
M M M
<A f (IVul + lul)v? dv(g)
M

where A = A’(1 + NH) depends only on n, k, @, and 8. Clearly, this ends the
proof of the lemma. |

Let us now prove Theorem 3.8.

PROOF OF THEOREM 3.8: We proceed as in the proof of Lemma 2.1, but
starting from Lemma 3.4. Let , B be as in Lemma 3.4, and let (p, q) be two real
numbers such that 1 < g <nand 1/p = 1/g — 1/n. By Lemma 3.4 there exists
A = A(n, k,a, 8) > 0 such that for any u € D(M),

(n=1)/n
([ wrevwave) ™ <a [ (1va+ 1) v
M M
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Letu € D(M) and set ¢ = |u|?"~V/"_ Applying Holder’s inequality, we get that

(n=1)/n
( / lul"v“dv(g))
M
(n—1)/n
= ( [ lpf"/ =1 “dv(g))
M

(IV<pl + lphv? du(g)

A 1
< L(n___)/ 'ull’ IVuvadv(g)+A/ |u|”(" ”/”vpdv(g)
M

1/q' l/q
L Apn— 1)( /M [Py dv(g)) ( / |Vuley9B-eld ’dv(g))
M

n

' vy , 1/q
+A(/ Iul”"v“dv(g)) (/ Iul"v"“"'“"”dv(g))
M M

where 1/g + 1/¢' = 1 and p’ = p(n — 1)/n — 1. But p'q’ = psince 1/p =
1/q — 1/n. As a consequence, for any u € D (M),

I/p
( / |u|"v°'dv(8))
/g 7
< A0 =D (( [ |Vu|"v"dv(g)) +( f |u|"v'dv(g)) )

where y = g(8 — a/q’). Noting that y /g —a/p = B — “~La, we end the proof of
the theorem. O

To end this section, we now say some words about a result proved by Schoen
and Yau [177]. Here again, the norms are disturbed by some function of the ge-
ometry of the manifold. Recall that given (M, g) and (M, g) two Riemannian
manifolds, an immersion ¢ : M — M is said to be conformal if ¢*g is a confor-
mal metric to £, that is, of the form ¢*g = ¢/ g for some f € C®°(M). In what
follows, (S”, h) stands for the standard unit sphere of R"*+'.

PROPOSITION 3.8 Let (M, g) be a smooth Riemannian n-manifold, n > 3, not
necessarily complete. Assume that there exists a conformal immersion ¢ from
(M, g) to (S", h). Then for any u € D(M),

(n=2)/n
([ wie»ave)
M

/ |Vu|* dv(g) +

< ;("_—2)-2/—”( / Scaly gy u” dv(g))

where w, is the volume of (S", h) and Scaly ) is the scalar curvature of (M, g).

PROOF: We proceed as in Schoen and Yau [177]. Define
o(M) = inf / u(Lyu)dv(g)

ueDM). [y Ju |2/ =2 dy(g)=1} S m
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where
n-—2
4(n - 1)
is the conformal Laplacian of g. As onc can easily check, for any v € C*(M),
v > 0, and any u € C*(M),
Lg(uv) — v("+2)/("_2)Lg'(u)

where g’ = v¥/"~2g By Obata [163],

Lou = Agu + Scalp g u

nn — 2)w"

(") = 2
The inequality of the proposition is then equivalent to Q (M) > Q(S"). Let (2;);eN
be an exhaustion of M by compact domains with smooth boundary. We then have
QM) = lim Q()

Thus, in order to show that Q(M) > Q(S"), it is enough to show that Q(2) >
Q(S") for any domain  C M with Q compact and 8Q smooth. Now the proof is
by contradiction. Hence, we suppose that for some €2 as above, Q(2) < Q(S").
By standard variational techniques, one then gets that there exists a smooth func-

tion u > 0 in Q satisfying [, u?"/""2 dv(g) = 1 as well as
Lou=Q(Qu"*2 inQ.  u=0 onadQ
If we extend u by defining u = 0 in M\ 2, we then have

Lgu < Q(Q)u(n+2)/(n-2) in M, / uZn/(n—Z) dv(g) =1
M

where the inequality is understood in the distributional sense. Let ¢ be the confor-
mal immersion of the prg_position, ¢: (M, i) — (8", h). We define a function
on §" by i = 0in $"\¢(R2), and for y € (L),

U(y) = max _ a(x)”
xep~ (VNG

=214y ()

where ¢*h = ag. Since g is an immersion, the set ¢~ '(y)NQis finite, and for each
x € ¢~!'(y) N Q there is a neighborhood U, of x such that ¢ is a diffeomorphism
of U, onto ¢(U,), a neighborhood of y. Let ;' denote the inverse of this local
diffeomorphism. By the conformal invariance property of the conformal Laplacian,
if
i (y) = B u(p;' ), y € 9(U)

where (¢ ')*g = Bih, then Lyii, < Q(R)ay+ ' in o(U,). Hence, we see
that i is a nonnegative Lipschitz function on S”" satisfying

Lhﬁ < Q(Q)ﬁ"’"’z)/(""‘?)

on §”. Again by conformal invariance, we have

/ ain/(n—l) dv(h) ___[ u.'ln/(n—Z)dv(g)
eUy)

U,
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and hence we see that [, #*/"=? dv(h) < 1. By integrating the differential in-
equality satisfied by #, one then gets that

/ d(Lpi)dv(h) < Q(R) / "' =2 dy(h)
sn SII

Since [, #?"/"=2 dy(h) < 1, this inequality implies that Q(S") < Q(f), a con-
tradiction. This ends the proof of the proposition. ]

Concerning the assumptions of Proposition 3.8, one has (see, for instance,
Kulkarni in [138]) that for any simply connected, conformally flat Riemannian
n-manifold (M, g), there exists a conformal immersion from (M, g) to the stan-
dard sphere (S”, h). Recall here that a Riemannian n-manifold (M, g) is said to
be conformally flat if for any x € M, there exist f € C®(M) and Q an open
neighborhood of x such that e/ g is flat on Q. Spaces of constant curvature are
conformally flat. More generally, when n > 4, (M, g) is conformally flat if and
only if its Weyl curvature is zero. Combining the above fact with Proposition 3.8,
one gets the following result:

COROLLARY 3.2 Let (M, g) be a smooth, complete, conformally flat n-manifold,
n > 3. For any simply connected domain Q of M, and any u € D(M),

(n=2)/n
(/ |u|2n/(n—2)dv(g))
M

—_— Vul?dv(g) + / Scal(u. ) u* dv( ))
=202 (/ [Vul“dvu(g 4( _— (M.g) g
where wy, is the volume of (S", h) and Scal(y g is the scalar curvature of (M, g).

<

As a final remark, consider (M, g) a smooth, compact Riemannian n-manifold.
Suppose g is Einstein. By Obata [163] one has that if (M, g) is not conformally
diffeomorphic to the standard sphere (S”, h), then, up to a constant scale factor,
g is the unique metric of constant scalar curvature in its conformal class. As a
consequence of the resolution of the Yamabe problem by Aubin [9] and Schoen
[175]), one easily gets that for any compact Einstein n-manifold (M, g), any g’ in
the conformal class of g, and any u € C*°(M),

n—2 \ (n=2)/n
ﬁ Scal(M.g) VOl(ﬁg) (f Iulzn/(n—Z) dv(g'))

< [ 1vuPaver + o= s [ Seslongyu dvte)

When Scal (s 4) > 0, this provides us W|th dlsturbed Sobolev inequalities. Such in-
equalities can be useful. We refer the reader to Hebey-Vaugon [118] for an example
of an application.



CHAPTER 4

Best Constants in the Compact Setting I

Let (M, g) be a smooth, compact Riemannian n-manifold. By the Sobolev
embedding theorem one has that for any ¢g € [1, n) real, H," (M) C LP(M) where
1/p = 1/q — 1/n. We write here that for any ¢ € [1, n), there exist two real
numbers A and B, that may depend, of course, on the metric, such that for any
u € H (M),

(IJ; .gen)

t/p I/q l/q
( f |u|ﬂdv(g)) sA( [ |Vu|"dv(g)) +B( f |u|"dv(g>)
M M M

In such a notation, gen stands for generic, and (I"]_gen) will be referred to as the
generic Sobolev inequality of order q. Let us now start with some definitions. First
we define

A, (M) = {A € Rs.t. 3B € R for which (I} .,) is valid}
and in a parallel manner, we define

B,(M) = {B € Rs.t. 3A € R for which (I .,) is valid}
Clearly, if A € A,(M), and if A" > A, then A" € A,(M). In the same way, if
B € B,(M), and if B’ > B, then B’ € 8,(M). As a consequence, 4,(M) and
B,(M) are intervals of right extremity +o00. The relevant real numbers for A, (M)
and B, (M) are then

@, (M) = inf A, (M)
B, (M) = inf B,(M)

By definition, a,(M) and B,(M) are the best constants associated to the generic
inequality (I} .,) of order g.

Two parallel research programs are associated to this notion of best constants.
In the first one, priority is given to the best (first) constant o, (M). In the second
one, priority is given to the best (second) constant 8,(M). For the sake of clarity,
we start with the first two questions of these programs. Two more questions will
be asked in Chapter 5.

Before stating the two questions we note that to say that 4, (M) is a closed set,

in other words, to say that a,(M) € 4,(M), means that there exists B € R such
75
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that for any u € H/ (M),
(15 opt)

1/p 1/q /4
( f nuv’dv(g)) s«xq(M)( f qul"dv(g)) +B( f lul"dv(g))
M M M

In a parallel manner, to say that B,(M) is a closed set, in other words, to say that
B,(M) € B,(M), means that there exists A € R such that for any u € H{ M),

(J(”.op()

1/p 1/q9 l/q
( f |u|"dv<g)) sA( [ |Vu|"dv<g)) +ﬁq(M)( [ |u|"dv(g>)
M M M

In what follows, we use the letter I when dealing with inequalities where priority is
given to the best (first) constant , (M), and the letter J when dealing with inequal-
ities where priority is given to the best (second) constant 8, (M). We refer to these
two inequalities as the optimal Sobolev inequalities of order q.

{ Program A, Part | Program B, Part |
Question 144: Is it possible to | Question 18: Is it possible to
compute explicitly ., (M)? compute explicitly 8,(M)?
Question 24: Is A, (M) a Question 28: Is B,(M) a
closed set? In other words, closed set? In other words,
is (I} ) valid? is (J) o) valid?

Now we start with the discussion of these two programs. As one will see, questions
18 and 28 are very simple. This will not be the case for questions 1+4 and 2.4,
which are much more difficult.

4.1. Program 8, Part I

As said above, the mathematics involved in questions 18 and 2B are very
simple. The result that answers these questions is the following: Given (M, g) a
smooth, compact Riemannian manifold, Vol ¢) denotes the volume of (M, g).

THEOREM 4.1 For any smooth, compact Riemannian n-manifold (M, g), and for
any q € [1,n) real, B,(M) = Vol&;{;'). Moreover, B,(M) is a closed set, so that
Jor any smooth, compact Riemannian n-manifold (M, g), and any q € [1, n) real,
there exists A € R such that for any u € H{ (M),

I/p
( f |u|"dv(g)) <
M

1/q9 l/q
A( / qul"dv(g)) +Vo1(;}{;)( f lul"dv(g))
M M

where 1/p = 1/q — 1/n. In other words, B, (M) = Vol(',‘}{;') and the optimal

inequality (J} o, is valid.

(37.0p0)
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PROOF: Let (M, g) and g € [1,n) be given. On the one hand, by taking
u = 1in (I} .,), one gets that B > Vol /s In particular, B,(M) > Vol A;{;').
On the other hand, one has by the Sobolev-Poincaré inequality (see Section 2.8 of

Chapter 2) that there exists some positive real number A = A(M, g. q) such that
for any u € H{ (M),

i/p l/q
(f |u—i|"dv(g)) <a( [ |Vu|"dv(g>)
M M

where l/p=1/g — 1/nandu = Vol(‘,‘}‘g) fiy udv(g). As a consequence, for any
u € H (M),

I/p I/q
( f |u|"dv(g)) _<_A( f |Vu|"dv(g>) +Vol§;jf;’,"! f udv(g)l
M M M

But, by Holder’s inequality,

l/q
/udv(g) 5Vol(];,f;§q)(f Iul"dv(g))
M M

Since 1/p = 1/q — 1/n, these two inequalities imply that for any u € H/ (M),

1/p
( / |u|"dv(g)) <
M
l/q 1/q
A( / IVul"dv(g)) +v°1;;(;,( / iul"dv(g))
M M

Combining this inequality with the fact that 8,(M) > Vol(',&{;), one sees that

By (M) = Vol(',",{ ;’, and that B,(M) is a closed set. This ends the proof of the

theorem. ]

Concerning such a result, one knows on which geometric quantities the remain-
ing constant A depends. As shown by Ilias [123), A depends only on n, g, a lower
bound for the Ricci curvature, a lower bound for the volume, and an upper bound
for the diameter. More precisely, given (M, g) a smooth, compact Riemannian
n-manifold, suppose that its Ricci curvature, volume, and diameter satisfy

Reppg) > kg, Voliyyg > v, diamy ) < d

where k, v > 0 and d > O are real numbers. Then for any g € [1, n), there exists
a positive constant A = A(n, q, k, v, d), depending only on n, g, k, v. and d, such
that for any u € H{ (M),

1/p
(f lul"dv(g)) <
M
1/q 1/q
A( / IVul"dv(g)) +v°1(‘ﬁ;{;,( f lul"dv(g))
M M

where 1/p = 1/q — 1/n. In other words, if two compact Riemannian manifolds of
same dimension satisfy the same lower bounds on the Ricci curvature and volume,
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and the same upper bound on the diameter, then they satisfy the same optimal
inequality (J} ,,)-

Independently, we considered inequality (I(',‘gen) as a starting inequality. One
can consider instead inequality (If gen) below. Clearly, there exist A, B € R such
that for any u € H/ (M),

q/p
(13 gen) ( f [u]? dv(g)) <A / [Vul?dv(g) + B / [ul? dv(g)
M M M

where 1/p = 1/g — 1/n. Roughly speaking, (I gen) = (If,‘gen)" , in the sense that we
elevate each term in (It',‘ge,.) to the power ¢g. As one can easily check, by Theorem
4.1, the best constant B in such an inequality is ,(M)? = Vo’ o)+ Instead of
considering inequality (J (',_opt), one can now consider the stronger inequality (Jz.op,)
= (J} op)?- That is, there exists A € R such that for any u € H{ (M),

q/p
00 ( fM |u|"dv(g>) <4 fM Vul? dv(g) + B, (M) fM il dv(g)

In the spirit of what we did above, one can ask if such an inequality is valid. The
case ¢ = 2 received an affirmative answer by Bakry [17]. Its proof extends to the
case 2* < q <2,withg # 2if n =2, where

*=2n/(n+2)

is the conjugate exponent of 2* = 2n/(n — 2). The remaining case where 1 < g <
3* has been treated by Druet, so that, as stated below, Theorem 4.2 is due to Bakry
[17] and Druet (oral communication). As one will see, the arguments involved in
the proof of such a result are still simple, though more delicate than the ones we
used to solve questions 18 and 28.

THEOREM 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold. For any
q€(l,2)ifn=2 and any q € [1,2] if n > 3, there exists A € R such that for
any u € H (M),

q/p
(33 0p) ( / ul? dv(g)) <A f |Vu|? dv(g) + Vol s, fM [ul? dv(g)
M M

where 1/p = 1/q — 1/n. In particular, the optimal inequality (Jz_op') is valid for
any q on any 2-dimensional compact Riemannian manifold, and for any q < 2 on
any compact Riemannian n-dimensional manifold if n > 3.

PROOF: Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2.
Following Bakry [17] and as a starting point, we prove that for any p > 2, and any
u € LP(M),

2/p
( / |u|"dv<g)) <
M

2 2/p
Volgygy "7 ( fM udv(g)) +(p- 1)( fM |u— ﬁlpdv(g))



4.1. PROGRAM 3B, PART 1 79

where

]
u= udv(g)
Vol g) Jm 8

As one can easily check, it is enough to prove such an inequality for any u €
C%(M). For homogeneity reasons, and since the inequality is obviously satisfied if
f v 4dv(g) = 0, we can then restrict ourselves to functions u € CO%(M) for which
f w 4 dv(g) = Vol ). For such functions, one can write that

u=1+tv wheret > Oisreal and v € CO(M)

is such that f, vdv(g) = 0 and f,, v>dv(g) = 1. The above inequality then
becomes

2/p ) , 2/p
(/ 1 +tvl"dv(g)) < Vol(,{j’g) +t°(p — 1)([ Ivl"dv(g))
M M

2p
o) = (/ I +tvl"dv(g))
M

Then ¢(0) = Volf,{,’f 2 and ¢’(0) = 0. As a consequence, one just has to prove that

Let

2/p
o) < 2p - 1)( fM |v|"dv<g))

to get the inequality. Here, a simple computation shows that

2/p)-2
@"(1) -2p(— - )(f (14 tv|P~ vdv(g)) (f 1 +tvl”dv(g))

2/p)-1
+2(p—1)(/ |l+tv|"dv(g)) /|1+zv|f’-2 v2dv(g)
M M

But p > 2, so that the first member in the right-hand side of this equality is non-
positive, while by Holder’s incquality

- 1-2/p 2/p
j|1+w|” vzdv(g)s(f |l+tv|"dv(g)) (/ |v|”dv(g))
M M M

Hence,
2/p
o'(t) <2(p — l)(/M [v)? dv(g))

and we get the inequality we were looking for. From now on, let ¢ be such that
2* < g <2,withg #2if n =2, and let p be givenby 1/p = 1/g — 1/n. Since
g > 2%, p > 2. Let A > 0 be such that for any u € H} (M),

q/p
([ le-arae)” <a [ wurave)
M M

The existence of A comes from the Sobolev-Poincaré incquality we discussed in
Section 2.8 of Chapter 2. Letu € H/(M). Since ¢ < 2, /2 < 1, and for a
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and b two nonnegative real numbers, (a + b)?/% < a?/2 4 b%/2. According to the
inequality of the beginning of the proof, we can then write that

q/p
( f |u|"dv(g))
M

q q/p
/ udv(g)‘ +(p— l)"/z(/ |u — E[pdv(g))
M M

q
f udv(g)| +(p — )24 / IVul? dv(g)
M M

< Volfyy 0707 f lul? du(g) + (p — 1A f IVul? du(g)
M M

—q(p—1)/p
< Vol( M.g)

-q(p=1)/p
< Vo], M.g)

and since
_ap-D _
p

q
-1 1
1 n

this proves that (J] ) is valid for ¢ € [3,2], with ¢ # 2 if n = 2. Suppose now

that g € [1, 3*1 and let us follow the argument of Druet. Since g < 3+, for p such
that 1/p = 1/q — 1/n, one has that p < 2. Following Druet (oral communication),
we start with the proof that for any u € L?(M),

q/p
( f Iul”dv(g)) SVOW.?)_(' fM udv(g)
M

q/p
+(1 + p(p — l)(”"))q/p(L |u - Elp dv(g))

Here, as one can easily check, we can assume that u € C%(M) and that f w udv(g)
# 0. Let us write that

q9

u=u(l+v)

where v is such that f w Vdv(g) = 0. With obvious notation,

[ |1+ v|?dv(g) =/ |1 +v|”dv(g)+[ |1+ v)”dv(g)
M {v=0}

{—1<v<0}

+/ 114 v|? dv(g)

{v<—1)
Since p < 2, the following holds:
forx > Oreal, (1 +x)? <14 px+x?,

forO0<x<1, 1-x)»<1-px+x”,
forx > lreal, (x —1)? < x?
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Hence,

/ 114+ v|?dv(g)
M

5/ dv(g)+f Ivl”dv(g)+p/ vdv(g)+f dv(g)
{v20) (v20} (v=0) {-1<v<0}

+f lvl”dv(g)+pf vdv(g)+/ [v|P dv(g)
{—1<v<0} {~1<v<0} {v<—1}

so that

/ 11+ v|P dv(g)
M

2-1}

= Vol (w2 -1+ [ Pdve+p [ vue)
M {v

= Vol ({v > —1}) +/ [v]? dv(g) + p/ vdv(g) — pf vdvu(g)
M M {

v<=-1}

= Vol ({v > —1}) + fM [v|? dv(g) + p[ lvldv(g)

fv<—1}

Then, by Holder’s inequality,

/ 1+ v|Pdv(g) < Vol,({v > —1}) +f [v|? dv(g)
M M

1/p
+ pVol,({v < —1})‘P"’/P(/ Ivlpdv(g))
M
Set
Xo = Volg({v = —1})
and for X € [0, V) real, let
FX) =X+ vlif + plivll,(V — x)p-hie
where V stands for Vol(s.g) and || - ||, for the L?-norm. Then,
FX)=1-=(p—Dlvli,(Vv-Xx)""»
so that
}L“‘vf (X) = —o00
Suppose first that f'(0) < 0, in other words, that
L <(p=Dlvll,V""

Since f’ is nonincreasing, one gets that f(Xo) < f(0). Hence,
f 1+ v17 dv(e) < IolZ + pHoll, V2~ < (14 p(p — 1P )lwlZ
M

Suppose now that f'(0) > 0, in other words, that
1> (p—Dlvll,v=""*
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Let
Xe=V—-(p-D"lIvl}
Then X, is such that f'(X.) = 0 and one has that
f(Xo) = f(Xo)

As one can easily check, this leads to
[ 1+ vr dvie) < v iz + oo - 07 1ol
Summarizing,
[ 1017 dute) < Voluwy +(1+ pp = 177") [ ol? duie)
M M

and since g/p < 1, one can write that

q/p
(/ 1+ vl"dv(g)) <
) /p
q/p q
V°‘71(4’fg>+(1 + p(p - l)”") (L Ivl”dv(g))

Multiplying such an inequality by |#|? one then gets the inequality we were looking
for: Yu € LP(M),

a/p
( / |u|”dv(g)) < Vol(3/"= f udu(g)
M M

+(1+pp - 1)”‘”)"“’(/ |u — i|pdv(g))
M
Independently, by Sobolev-Poincaré, there exists A > 0 such that for any u €

HI (M),
q/p
( / |u—u|"dv(g>) <4 f IVul? du(g)
M M

while, by Holder’s inequality,
q
| fM udv(g)l < Vol?,}_'g) fM [ul? dv(g)
Hence, for any u € H{ (M),
q/p
([ wrave) ™ <voigz" [ uieauee
M ' M

/
+ (1 +p(p - 1)"")" "A/M IVul? dv(g)

q9

q/p

and since
q q

I_1===2
14 n

one gets that (Jz,op,) is also valid if g € [1, 3*]. This ends the proof of the theorem.

a
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Let us now deal with the validity of (J¢ 2.0pt) fOr ¢ > 2. A very simple argument,
somehow inspired by the argument of Bakry, shows that (JZ_opl) is never valid in
such a case. As far as we know, and as surprising as it may seem, this result is
stated there for the first time.

PROPOSITION 4. l For any smooth, compact Riemannian n-manifold, n > 3, and
anyq € (2,n), 4.0pt) is not valid.

PROOF: Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
and let g € (2, n) be given. Let also u € C*(M) be some nonconstant function.
Fort > 2real, and ¢ > 0, we define

o(e) = fM |1+ eul' dv(g)

Clearly, one has that

,(€) = Vol(p.4) +t(/ udv(g))s+ '02— D([ uzdv(g))es2 +o(e?)
M M

Hence,
/M |1 + eu|’ dv(g) = Vol +q(/[; udv(g))s
+ g(t]_—l)(/ uzdv(g))e2 +o(e?)
2 M
and

q/p
(f |1 +eu|"dv(g)) =Vol§’ﬂ/,’fg, +qul(".,, g,( udv(g))e
. g
-1 4_
+ &——)-Vol(’jw';)( 2du(g) &

2
2
+qr(qr2 Py, 1&8)(/1“ udv(g)) & + o(¢?)

Suppose now that (Jq opt) i8 valid. Noting that for g > 2,

f [V + ew)|* du(g) = o(e?)
M
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one would get that for any ¢ > 0,

4_1
Volf,{,’_’ o +a Vol . ( / u dv(g))e

+ ‘I(Lz‘ﬁv ol g,( u dv(g))sz

99 -p
+ —2—V l("M 2 (Ludv(g))

1-4 -4
< Vol(M_"g, +qul(,‘;‘g) (/I;udv(g))e

+ ‘1_(‘12‘_12 Voli o) ( /M u? dv(g))az +0(e?)

But
q q

P n
so that, as one can easily check, such an inequality implies that

l 2
(-1 f W dv(g) < (p —q) ( f udv(g)) -1 f u? dv(g)
M Volim.g) \ Jm M

This means again that

2
VO](M‘g)'[ uzdv(g) < (/ udv(g))
M M

which is impossible as soon as u is nonconstant. This ends the proof of the propo-
sition. O

Before studying questions 1-4 and 2.4, let us now say some words about the
role of «, (M) when studying partial differential equations on Riemannian mani-
folds. This is the subject of the next section. This section can be omitted from a
first reading.

4.2. The Role of o, (M)

Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3. The confor-
mal class [g] of g is

(8 = {2 = u¥"Vg, u e C=(M), u >0}

If § = u*/"-2g is a conformal metric to g, one has that
4n—-1)

(Ey) 5~ Agu + Scalg u = Scalg u /=2

where Scal, and Scal; are the scalar curvatures of g and g. In 1960, Yamabe [199]
attempted to prove that given a compact Riemannian n-manifold (M, g), n > 3,
there always exists a metric conformal to g of constant scalar curvature. Coming
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back to the transformation law (E,), this means that for any compact Riemannian
n-manifold (M, g), n > 3, there exists A real, and u € C*(M), u > 0, solution of
4n-1)
n-—2
Yamabe's claim was that such A and u always exist. Unfortunately, his proof con-
tained an error, discovered in 1968 by Trudinger {186]. Trudinger was able to
repair the proof, but only with a rather restrictive assumption on the manifold. Fi-
nally, the problem was solved in two steps, by Aubin [9] in 1976 and Schoen [175]
in 1984. In particular, Schoen discovered the unexpected relevance of the positive
mass theorem of general relativity. This marked a milestone in the development of
the theory of nonlinear partial differential equations. While semilinear equations
of Yamabe type arise in many contexts and have long been studied by analysts, this
was the first time that such an equation was completely solved. A rather complete
discussion of the Yamabe problem in book form can be found in Hebey [109].
Now let (M, g) be a smooth, compact Riemannian n-manifold, n > 2. Let
also ¢ € (1, n), and a, f two smooth functions on M. Following Druet {73], we
discuss here the existence of positive solutions u € H," (M) to the equation

Agu + Scaly u = Ay"*2/n=2)

(E2) Agou+ax)u™ = fxyur™!
where p = n'—f"; and
Aq.qu = —divg (1Vul"2Vu)

is the g-Laplacian associated to g. (Note that A, , = A,). Such equations will be
referred to as “generalized scalar curvature type equations.” By regularity results
(see, for instance, Druet [73]), any solution u of (E;) is C' for some « € (0, 1).
By Trudinger [186] it is C*® if ¢ = 2. As a remark, one can note that the C'®-
regularity is, in general, optimal. Think of (R", ¢), the Euclidean space, and note
that

U= q___l| x|'+q—1r

is a solution of A, .u = —n in R".

We present here the following result of Druet [73], the formal generalization
to all g of Aubin’s result [9] proved in the case g = 2. It clearly illustrates the role
a,(M) plays when studying such type of equations. Let L, , be defined by

Logu = Dgou+a(x)ul'?u

We say that L, is coercive if there exists A > O such that for any u € H} (M),
I(w) = A/ u|? dv(g)
M
where I (u) = [,,(Lg qu)u dv(g), so that

1) = j (IVul? + a()lul?)du(g)
M
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As one can easily check, L, , is certainly coercive if a > 0 on M. We also let

A= [u c H,"(M)/fM flul? du(g) = 1]

where p = L. One then has the following result of Druet [73]:

n-q°
THEOREM 4.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q € (1, n) some real number, and let a, f be smooth, real-valued functions on M.
We assume that L, ; is coercive and that f is positive somewhere on M. If

g
(maxs00)" inf 160 < s

then equation (E,) possesses a positive solution u € C'*(M), a € (0, 1).

The proof of Theorem 4.3 proceeds in several steps. In the first step, one gets
solutions for “subcritical” equations. For s € (g, p) real, let

A= {u € H."(M)/f flul* dv(g) = ll
M

and
us = inf I(u)

HeEA¢

Then the following holds:

LEMMA 4.1 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q € (1.n) some real number, and let a, f be smooth, real-valued functions on
M. We assume that L, ; is coercive and that f is positive somewhere on M. Set
p =nq/(n — q). For any s € (q, p) real, the equation

Aygu+au!™ = p, fou
possesses a positive solution us € A, N C"*(M), a € (0, 1).
PROOF: Let (1;) be a minimizing sequence in A for ;. Namely, u; € A;
for any i, and
lim () = u
=>4

Without loss of generality, up to replacing u; by Ju;|, one can assume that the u;’s
are nonnegative. Since L, , is coercive, (1;) is a bounded sequence in H{(M). Up
to the extraction of a subsequence, since H," (M) is reflexive, and by the Rellich-
Kondrakov theorem, this leads to the existence of some u; € H ," (M) such that

ui = u; in H/(M), u; > u; inL'(M), u; > u, ae.

One then gets that u; > 0 a.e., and that u, € A;. Moreover, the weak convergence
in H} (M) implies that
I'(us) < liminfI(u;)
i—>+00
Hence, I (u;) = u;. By Euler’s equation, the fact that ; is a minimizer for / on
A, leads to the fact that u; is a solution of

Ay gus +aul™ = u, fous™!
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The result then easily follows from maximum principles and regularity results. [J

From now on, the general idea is to get the solution u of Theorem 4.3 as the
limit of (a subsequence of) (u;), s — p. As a first remark, one can prove here that

limsup u, < inf I(u)
s—p neEA
For such an assertion, let ¢ > 0 be given, and let v € A, v nonnegative and such
that
Iw)<infI(u)+¢
neA

:g:(/ ﬂ0fde)-v
M

makes sense and belongs to A;. Hence, I(v,) > u,. Noting that I (v,) — I(v) as
s — p, one gets that

For s close to p,

limsupu, < I(v) < inf I(u) + ¢
s—>p u€eA

The fact that such an inequality holds for any ¢ > 0 proves the above claim.

In what follows, up to the extraction of a subsequence, we assume that there
exists lim,_, , u;. We let

p = lim p
s=p
One then has the following:
LEMMA 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q € (l,n) some real number, and let a. f be smooth, real-valued functions on
M. We assume that L, , is coercive and that f is positive somewhere on M. Set
p = nq/(n — q). Fors € (q, p) real, let (us) be as in Lemma 4.1 with the
additional property that (i) has a limit p as s — p. Suppose that a subsequence
of (u,) converges in some L*(M), k > 1, to a function u # 0. Then u € C'**(M),
o € (0, 1), u is positive, and
Aygu +a@u!™ = puf(x)uf"!

In particular, 1 > 0 and, up to rescaling, u is a solution of (E;).

PROOF: Clearly, (u;) is bounded in H;'(M). Up to the extraction of a subse-
quence, and as s — p, we can assume that

u,—~u in H'(M), us — u inLY(M), U, > u ae.

In particular, u is nonnegative. Moreover, since |Vu,| is bounded in LY(M), we
can assume that for s — p,

|Vug|972Vu, = &
in LP/P=D(M). Similarly, we can assume that
s—1

W™l =~ uPlin LP/PD (M)
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since (u:~') is bounded in LP/¢~V(M) c LP/?=V(M). By passing to the limit as
s tends to p in the equation satisfied by the u;’s, one then gets that

—div(Z) + a(x)u?"" = pf (x)uf!

One can prove here that £ = |Vu|?~2Vu, as in Demengel-Hebey [61] (see also
Druet {73)). Hence, u is a solution of

Ageu +a@u?™' = puf (x)u?!

By maximum principles and regularity results, one then gets that u is positive and
that u € C"*(M) for some « € (0, 1). Moreover, multiplying the above equation
by u and integrating over M shows that u > 0. This proves the lemma. a

As a general remark on this result, one can note that
= inf [
p = inf I(u)

and that u of Lemma 4.2 belongs to A, so that u realizes the infimum of 7 on A.
Indeed, multiplying the equation of Lemma 4.2 by u and integrating the result over
M, one gets that

ﬂL f(x)uP dv(g) = [u (IVul? + a(x)u?)dv(g)

sliminff (IVus1? + a(x)u?)dv(g)
M

S—)p

= liminf p,

s—=p

Hence, f,, f(x)u? dv(g) < 1. Let
u

= T
(Ju FIur dv(g))?
Then v € A and, according to what has been said above,

v

-4
-3

w<I@w= n([M fx)uf dv(g))

As a consequence, fM f(x)uP dv(g) > 1, so that fM f(x)uPdv(g) =1 and uis
the infimum of 7 on A. This proves the above claim. Now the proof of Theorem
4.3 proceeds as follows:

PROOF OF THEOREM 4.3: Let (u;) be as in Lemma 4.1. Up to the extraction
of a subsequence, one can assume that
lim ps = p

s—p
exists. Moreover, by the Rellich-Kondrakov theorem, and still up to the extraction

of a subsequence, one can also assume that (u,) converges to some u in L(M) as
s tends to p. By Lemma 4.2, Theorem 4.3 reduces to the proof that # # 0. By
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definition of a, (M), one has that for any £ > 0, there exists B, > 0 such that for
any u € H) (M),

q/p
( [ |u|"dv(g>) < (ag (M) +¢) f Vul? dv(g) + B f ul* du(g)
M M M

By assumption, there exists £ > 0 such that

(g (M) +£) l}glt\' I(u) < !

e )’

Fix such an €. Then, for any s,

4q/p
( / uy dv(g)) < (g (M)? +&)p; + Be / ul dv(g)
M M

for some B, independent of s. Moreover, one has that

1 1 ) s
max ) ';;a;;f(x)fuf (o, dv(e) < fM u} dv(g)

< (/ u? dv(g)) ! Vol:;,z)
M

q/p 1 1
( / u? dv(g)) > 1 i
M Vol(y <) (fxféaﬁ’} f(x))

and one gets that

1 1 .
44 7 = (“4(M)q+8)#s+35/ u? dv(g)
M

Vol ) (?ea&‘ f (x)) )

Hence,

Since
limsup i, < inf I (u)
sop ueA

one gets by passing to the limit as s tends to p that

: 7 < (2g(M)? +¢) inf I(u) + B. f u? dv(g)
ue M

r
(a0
According to the choice of ¢, one then gets that |, w4 dv(g) > 0. In particular,
u # 0. As already mentioned, this proves Theorem 4.3. O

As a straightforward application of Theorem 4.3, Druet [73] obtains the follow-
ing result. Here, for A as above, one just has to remark that the constant function

-l/p
up = ( /M f (X)dv(g))
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belongs to A. Writing that

inf I'(u) < I(ugp)

neA
one then gets the following corollary:

COROLLARY 4.1 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
2, q € (1, n) be some real number, and let a, f be smooth, real-valued functions
on M. We assume that L, , is coercive and that f is such that [,, f(x)dv(g) > 0.

I
max f (x) b
(m) fM a(x)dv(g) <

then equation (E,) possesses a positive solution u € C'*(M), a € (0, 1).

aq(M)q

As another example of the kind of results that can be derived from Theorem
4.3, we mention the following result of Druet [73]. Consider the u,s defined by

I—(n/q)
U, = (s + r"/“’"’)) o)

where r is the distance to some point xo where f attains its maximum, and where
@ is a smooth cutoff function. By studying the expansion of

1(u,)
(foy FOOUE du(g))*?

for ¢ « 1, one gets the following corollary: In such a result, one has to use the
explicit value of o, (M) given by Theorems 4.4 and 4.5. We refer to Druet {73] for
more details on the proof of this result. However, note that similar computations to
the ones involved in such a proof will be developed in Sections 4.3 and 4.4 below.

J(ue) =

COROLLARY 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold, q €
(1, n) real such that q* < n, and let a, f be smooth, real-valued functions on M.
We assume that a is such that L, ; is coercive, that f is positive somewhere, and
that there exists xo € M such that f(xo) = max.cy f(x) and for which we are in
one of the following cases:

1. g <2,n>3q -2 anda(x) <O0.
2. g =2and 28-D_q(xg) < ZReLb0 4 28calsxg)

(n=2)(n—4) [f(xp) n—4
—3g. A
3. 9>2and (#)—%ﬁ—) < Scalg (xo).

Then equation (E,) possesses a positive solution u € C'**(M), a € (0, 1).

Such a corollary has two very interesting consequences. One will be discussed
later on in Section 4.3. The other one concerns the Nirenberg problem. Let (S", h)
be the standard n-dimensional unit sphere of R"*!, n > 3. The Nirenberg problem
consists in characterizing the scalar curvatures of conformal metrics to 4. Given
f € C*(S") and coming back to (E,), this means that one will have to find condi-
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tions on f for (E,) with 4 in place of g and f in place of Scal; to have a solution.
In other words, since Scal, = n(n — 1), and up to some harmless constant, one
will have to find conditions on f that ensure the existence of u € C*(S"), u > 0,
solution of

n(n —2)

—2
2 U= fu(n+2)/(n 2)

(E3) Apu +

When looking to such a problem, as discovered by Kazdan and Warner [130] (see,
also, Section 6.3 of Chapter 6), obstructions do exist. More precisely, if u is a
solution of the above equation, then necessarily

(Vf, Vs)uZIl/(n—m dv(h) =0
S”

for all first spherical harmonics & on S”, where (-, -) is the scalar product associated
to h. In particular, for any ¢ > 0 and any first spherical harmonic &, functions of
the form f = 1 + €&, though as closed as we want to the constant function 1 for
which (E;3) has a solution, are not the scalar curvature of some conformal metric
to h. In particular, for any ¢ > 0, there exist smooth functions f on S$” such that
[lf = 1l¢2 < € and such that (E3) does not possess positive solutions. Conversely,
such an equation can be seen as the limiting case for ¢ — 2, ¢ > 2, of the
generalized scalar curvature equations

nn=2) o

2 1 —_ fup—l

(Ea) Aggu+

where p = ”i_‘%. By Corollary 4.2, one easily gets that there exists some gy > 0
such that for any ¢ € (2, /n), and any f € C>(S8"), if |f — lllc2 < &, then
(E4) possesses a positive solution. As unexpected as it may seem, Corollary 4.2
shows that the well-known Kazdan-Warner obstructions are specific properties of
the limiting equation (E3).

Many references that illustrate the role of o, (M) when studying PDEs do exist.
Among others, let us mention Aubin [9], Brezis-Nirenberg [34], and Schoen [175],
but also Djadli [68], Escobar-Schoen [78], Jourdain [129], and works of the author.

A survey reference on the subject could be Hebey [103].

4.3. Program oA, Part 1

Contrary to Program B, Part I, Program ~A, Part I seems to involve serious
difficulties. As surprising as it may seem, one has to face serious problems even
when dealing with the first question of this program. Many authors have worked
on this question. We mention Aubin [10), Federer-Fleming [80], Fleming-Rishel
[83], Rosen [170], and Talenti [183]. The first definitive and important result on the
subject was obtained independently by Aubin [10] and Talenti [183). It is stated as
follows:
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THEOREM 44 Letl <gq <nandl/p=1/q~1/n.
1. For any u € D(R"),

1/p 1/q
@4.1) ( |ul? dx) < K(n, q)( |Vu|? dx)

Rll R"

where
I/n

K(n,1)=1( " ) :

oAt 1-1/q 1/

_lfn@@—-D\" rn+1) "

Ky = n ( n—q ) (F(n/q)l‘(n +1- n/q)w,._n)

when q > 1, and w,_, is the volume of the standard unit sphere of R".
2. K(n, q) is the best constant in (4.1) and if ¢ > 1, the equality in (4.1) is
attained by the functions

1 n/q—1
MA(X) = (————A T |x|q/(q—l))

where ). is any positive real number.

PROOF: We only sketch the proof of the result. For more details, we refer to
[10], [12], or [183). Let us consider the case ¢ > 1. The second part of point 2
is easy to check. So we are left with the proof of (4.1), together with the fact that
K (n, q) is the best constant. By standard Morse theory (see, for instance, Aubin
[12] for the following claim), i¢ suffices to prove (4.1) for continuous nonnegative
functions u# with compact support K, K being itself smooth, u being smooth in
K and such that it has only nondegenerate critical points in X. For such a u, let
u* : R" — R, radially symmetric, nonnegative, and decreasing with respect to |x|,
be defined by:

Vol, ({x € R" /u*(x) > t}) = Vol.({x € R"* / u(x) > t})

where e stands for the Euclidean metric. One can check that ¥* has compact sup-
port and is Lipschitz. Moreover, one easily gets from the co-area formula that for

anym > 1,
|Vul"dx > f |Vu*|"dx and Wdx = | (w)"dx
R" R" Rn R

As a consequence, it suffices to prove (4.1) for decreasing absolutely continuous
radially symmetric functions which equal zero at infinity. Denote by g such func-
tions. The problenr then reduces to compute the maximum of

I(g) = f lg()IPr"dr when J(g) = f g/ ()Ier" dr
0 0

is a given positive constant. Set

1 n/q—~1
y= (A + rq/(q—l))
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By Bliss [30] one has that the corresponding value / (y) is an absolute maximum.
One then gets that the best value of K in the Sobolev inequality

I/p t/q
( Jul? dx) < K( |Vul? dx)
Rn Rn

IN'PJ(y)~"e

is

K= I/n

n—1

Simple computations give that K = K (n, q). This proves the theorem. 0
Regarding Theorem 4.4, note that when g = 2,

4
K (n, 2) = ——2/”
n(n — 2)w,
where w, denotes the volume of the standard unit sphere of R"*'!. Such a result is
an easy consequence of the properties satisfied by the I' function, thatis, I'(1) = 1,
Ir'(/2) = /m,and I'(x + 1) = xT"(x), and of the fact that
_ (@r)'"(n—1)! _ 2z
W = _(Zn—_l)'— » W) = !
Note also that when ¢ = 1, (4.1) is the usual isoperimetric inequality [80], [83],
and [79]. A very nice proof of such an inequality is presented in Gromov [96] (see,
also, Chavel [45]). The extremum functions are here the characteristic functions of
the balls of R”. When g = 1, (4.1) is sharp, for an easy computation shows that

(n—=1)/n -1
(/ |uk|"/"'")dx) (/ IVukldx) = K(n, 1)(1 +0(1/k))
n Rn

where the u;’s are defined by: u;(x) = 1 when 0 < |x| < 1, ux(x) = 1 +k(1—|x|)
when 1 < |x] < 1+ 1/k, and u;(x) = O when |x| > 1 + 1/k. Note here that
K (n, 1) is the limiting value of K(n,g) asq — 1.

REMARK 4.1. Okikiolu [164], Glaser-Martin-Grosse-Thirring [92], and Lieb
[148) generalized Theorem 4.4 when ¢ = 2. One has that for any real number
0<b < 1andanyu € DR,

I/p 172
4.2) ( f le'b”lul”dx) 51(,,_,,( / |Vu|2dx)
RN n

Moreover, the equality in (4.2) is attained by the function

u(x) = (1 + |x|2'/')_'

where p =2n/(2b+n—2),r =2/(p—2),t = (n —2)/2,

— = (p=2)/2p —(p+2)/2p aq1/2
Knp=w, t Mp ,

and
1-2/
M, = (@r + )T E)/IT¢)?) 1P + 1)
We refer the reader to [148] for more details on this result.



94 4. BEST CONSTANTS IN THE COMPACT SETTING 1

Starting from Theorem 4.4, one gets the answer to question 1. The first result
one has to prove here is the following:

PROPOSITION 4.2 Let (M, g) be a Riemannian n-manifold (not necessarily com-
pact), and let g € [1, n) be some real number. Suppose that there exist A, B € R
such that for any u € D(M),

I/p 1/q /g9
( / |u|"dv(g)) sA( f |Vu|"dv<g)) +B( f |ur'dv(g))
M M M

where 1/p =1/q — 1/n. Then A > K(n, q), where K(n, q) is as in Theorem 4 .4.

PROOF: In order to prove the proposition, one can use truncated Bliss func-
tions [30] brought to zero at the edge of a ball. Such an argument is carried out
explicitly in [117] for ¢ = 2. We present here the following proof by contradic-
tion. Suppose that there exist a Riemannian n-manifold (M, g) and real numbers
q €[1,n), A < K(n, q), and B, such that for any u € D(M),

1/p l/q I/q
@3) ( / |u|"dv(g)) sA( f |Vu|"dv(g)) +B( f |u|"dv(g))
M M M

where 1/p = 1/q — 1/n. Let x € M. It is easy to see that for any &€ > O there
exists a chart (2, ¢) of M at x, and there exists § > 0 such that ¢(2) = By () the
Euclidean ball of center 0 and radius § in R”, and such that the components g;; of
g in this chart satisfy
(1 —¢€)8;; < gij < (1+¢€)d;;

as bilinear forms. Choosing ¢ small enough we then get by (4.3) that there exist
8 >0, A’ < K(n,q), and B’ € R such that for any § € (0,8) and any u €
D(Bo(3)),

I/p /q 1/q
( lu|? dx) < A'( |Vul? dx) + B'(/ [u]? dx)
R” R" n

But by Holder,

/g9 Vn \/p
(/ |u)? dx) < Vol, (Bo(8)) (/ |u|”dx)
Bo(8) Bo(8)

where e denotes the Euclidean metric. Hence, choosing § small enough, we get
that there exist § > 0 and A” < K(n, q) such that for any u € D(By(8)),

I/p I/q
( Iul"dx) < A"( |Vul? dx)
Rn R"

Let u € D(R"). Set u;(x) = u(rx), A > 0. For A large enough, u, € D(By(4)).

Hence,
I/p 1/q
( [url? dx) < A”( [Vu, | dx)
Rn RII

I/p t/p
( |up|? dx) = )V"/”( |ul” dx)
R" Rl’

But
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/9 1/q
( (Vu, |4 dx) = A"”/"( |Vul? dx)
RII Rll

Since 1/p = 1/q — 1/n, we get that for any u € D(R"),

1/p 1/q9
( Jul? dx) < A"( |Vul dx)
Rll R"

Since A” < K (n, q), such an inequality is in contradiction with Theorem 4.4. This
ends the proof of the proposition. O

while

Let us now give the answer to question 1.4 as first obtained by Aubin in [10].

THEOREM 4.5 Let (M, g) be a smooth, compact Riemannian n-manifold. For any
€ > 0and any q € [1, n) real, there exists B € R such that for any u € H{ (M),

q/p
(f |u|? dv(g)) <(K(n,q)? +s)/ |Vul? dv(g) + Bf [ul? dv(g)
M M M

where |/p = 1/q — 1/n and K (n, q) is as in Theorem 4.4. In particular, for
any smooth, compact Riemannian n-manifold (M, g), and any q € [1, n) real,
a,(M) = K(n,q).

PROOF: Let ¢ > 0 be given, and let g € [1, n) be given. For any x in M, and
any n > 0, there exists some chart (€2, ¢) at x such that the components g;; of g in
this chart satisfy

1
r'__n"sij < 8 = (1 +n)j;
as bilinear forms. Coming back to the inequality of Theorem 4.4, and by choosing
n > 0 small enough, one can then assume that for any smooth function u with
compact support in £2,

q/p
(44) ( f |u|"dv<g)) s(K(n,q>"+f) / IVul dv(g)
M 2 M

M can be covered by a finite number of charts (2;, ¢);—;..._n~ because it is com-
pact. Denote by («;)i=1. ..~ a smooth partition of unity subordinate to the covering
(i)i=1. ..~ Set
a!qu
ni = Nl—quT
z»::l Om

where [q] is the greatest integer not exceeding . Clearly, #,’Y € C'(M) and 7;

has compact support in 2; for any i. For u € C>(M), we write that

N N N
|
Yonat| <D il =Y ln ull?
i=I i=1

el = N1 llpyq =
rlq =1
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where |||, stands for the norm of L?(M). Coming back to (4.4), one then has that
for any u € C*(M),

q/p
([ wrave))
M
Y q
(K(n 9" + )Z /M (ni" 19l + wl1v9,"1)" dv(g)

i=1
(K (n,q) + = )

(K(n 97+ )(nVuu" +uNHIVul§™ full, + vN H ul})

N
3 (19ut s+ w9ul= 1V e

i=

g\

+ v[ul?|Vn,1?)dv(g)

by Holder’s inequality, where 4 and v are such that

QA+ <14 ut+v?
for any ¢ > 0, for instance, u = g max(1, 2972) and v = max(1, 29-2), and where
H is such that for any i, IVn,.'/"l < H. From now on, let gy > 0 be such that

(K(n 9+ )(1+eo) <K(@n,q) +¢

For any positive real numbers x, y, and A,
gx"'y < Mg = Dx? + 1170y
By taking x = ||Vully, y = llull,, and

u(g@—DNH

one then gets that for any u € C*(M),
UNH|Vulli™ ully < ol Vulll + Cllull
where

C =

uNH( q¢o )""
q ulg@—-1)NH
Hence, for any u € C*(M),

q/p
( f Iul"dv(g))
M

< (K(n,q)" + E)(l +eo)/ |Vul? dv(g) + B/ |u|? dv(g)
2 M M

< (K@, q) +¢) /M IVu)? dv(g) + B/;l Jul? dv(g)
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where
B= (K(n, ) + g)(c +vNHY)
In particular, the inequality of Theorem 4.5 is valid. Now, noting that
(x + y)9 < x4 y'a

for x and y nonnegative, one gets that for any £ > 0, there exists B > 0 such that
for any u € H/ (M),

I/p
( [ IuI”dv(g))
M

1/q
s(K(n,q)"+s)""( fM IVuI"dv(g)) +B' fM lul? dv(g)

I/q
S(K<n,q>+s"")( fM |Vu|"dv(g)) + B'/4 fM |u|? dv(g)

Clearly, such an inequality combined with Proposition 4.2 shows that a, (M) =
K (n, q). This ends the proof of the theorem. O

Concerning Theorem 4.5, we will see in Section 7.1 of Chapter 7, when dealing
with complete manifolds, that B depends only on n, ¢, ¢, a lower bound for the
Ricci curvature of (M, g), and a lower bound for the injectivity radius of (M, g).
Anyway, now that the answer to question 1.4 has been given, let us deal with
question 2,4. We start with the following result of Hebey-Vaugon [119], which
fully answers the question when g = 2:

THEOREM 4.6 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
There exists B € R such that for any u € H{(M),

2/p
(G op) ([ Iul”dv(g)) < K(n,2)2/ IVuIZdv(g)+Bf u?dv(g)
M M M
where 1/p = 1/2 — 1/n. In particular, for any smooth, compact Riemannian

n-manifold (M, g), n > 3, inequality (l;_ opt ) is valid and A,(M) is a closed set.

PROOF: We give only a very general idea of how the proof works and will
come back to the complete proof when discussing the case of complete manifolds
in Section 7.3 of Chapter 7. Let « > 0 be some positive real number, and for
u € H{(M), let
Ly |Vul>dv(g) +a f,, u? dv(g)

(Ji lulr dv (@)™

Clearly, the result is equivalent to the existence of some «p > 0 such that

Io(u) =

inf IL,() > —————
ueHA(M)\(0) (M) 2 K(n,2)?
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The proof here proceeds by contradiction: We assume that for any o > 0,

inf I,(u) < ———
weHAMMO} K(n,2)?
By standard variational techniques, as used in the proof of Theorem 4.3 of Section
4.2, such an inequality leads to the following: For any @ > 0, there exists u, €
C®(M), uq > 0, and there exists A, € (0, K(n,2)72), such that

Aguy + auy = Aqub™!

on M, and f w 4L dv(g) = 1. The idea then is to prove that for & large enough, the
u,’s do not exist. This looks very much to what is given for free in the Euclidean
context by the Euclidean Pohozaev identity (see the remark below). In order to
prove that the u,’s do not exist for o large enough, we let « — +o00. Here,
the u,’s develop one concentration point. By a careful study of what happens at
this point, involving a rather sophisticated blowup argument, and surprisingly by
coming back to the Euclidean Pohozaev identity, one gets the contradiction. A
major point in the final argument is to estimate the difference that exists between
the Euclidean metric and the Riemannian metric after rescaling. Details on such an
approach will be given in Section 7.3 of Chapter 7 when proving the more general
Theorem 7.2. 0

REMARK 4.2. Suppose that M is some smooth, bounded, star-shaped domain
€ of R" with respect to 0, that g is the Euclidean metric, and that ¥, = 0 on 3%2.
The Euclidean Pohozaev identity states that for any smooth function u such that
u =0o0nag,

/ (x, v)(3yu)’ do = -2/ (Vu, x)Audx — (n — 2)[ ul udx
R Q Q

where v is the unit outer normal to 32, (-, -) is the Euclidean scalar product, dx
stands for the Euclidean volume element, and A, stands for the Euclidean Lapla-

cian. For u, a positive solution of

-1
Acug + Uy = Aol

in  with respect to the Euclidean metric, such that u, = 0 on 3<2, one then gets
that

f (x, V)(3,ua) do = —Za/ ul dx
193 Q

The fact that Q2 is star-shaped with respect to O implies that the left-hand side
member of this equality is nonnegative. Clearly, this proves that the u,’s do not
exist as soon as « > 0. In the more general context of an arbitrary, compact
manifold, coming back to the sketch of the proof of Theorem 4.6 we discussed
ahove, one gets the existence of some ap > O such that the u,’s do not exist as
soon as & > ay.

Concerning Theorem 4.6, we will see in Section 7.2, when dealing with com-
plete manifolds, that B depends only on n, a lower bound for the injectivity radius
of (M, g), and an upper bound for the norm of the Riemann curvature Rm, of
(M, g) and for the norm of the first covariant derivative V Rm, of Rm,. Anyway,
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now that we have answered question 24 for ¢ = 2, one can ask what happens for
g # 2. The first result we mention is the following one of Aubin [10]:

THEOREM 4.7 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q € [1, n) real. Suppose either that n = 2 or that (M, g) has constant sectional
curvature. Then inequality (I;~opl ) is valid and A, (M) is a closed set.

PROOF: Let us just sketch the proof. As shown by Aubin [10] when n = 2,
or by Schmidt and Dinghas [66] when g has constant sectional curvature, for K an
upper bound of the sectional curvature of g in a ball (in spirit small) of M, and for
2 a smooth, bounded domain in such a ball, the area of dS2 is greater than or equal
to the area in a space of constant curvature K of the boundary of a ball having the
same volume as €. From such a result, by standard arguments of Morse theory, and
with a symmetrization process via the co-area formula, somehow similar to the one
we described in the proof of Theorcm 4.4, one gets that any point in M possesses
some open neighborhood €2 where (l('l‘op‘) is valid for all u € D(Q). (We refer
to Aubin [10] for details on such an assertion. The point is that (I"I.opl) is actually
valid on the standard sphere.) A localization process, similar to the one used in the
proof of Theorem 4.5, then shows that (I ,,) must be valid for any u € H/'(M).

This proves the theorem. a

As in Section 4.1, one can start now with inequality (IZ‘gen) instead of in-
equality (I"I.ge,,). Given (M, g) a smooth, compact Riemannian n-manifold, and
q € [1, n) real, one can then consider the (possibly valid) following inequality:
There exists B € R such that for any u € H/ (M),

q/r
(I opt) (/ Iul”dv(g)> < K(n,q)"/ IVuI"dv(g)+Bf [u]? dv(g)
M M M

where 1/p = 1/q — 1/n. Clearly, the validity of (If ;) implies that of (I¢l/.opl)
since ¢ > 1 and, roughly speaking, (If ;) = (l('l op)? in the sense that we elevate
each term in (I(l/.opl) to the power g. One can now ask if such an inequality is valid.
According to Theorem 4.6, (Ig‘op‘) is valid on any smooth, compact Riemannian
manifold. Independently, and when dealing with the standard unit sphere (S", h)

of R"*!, one has the following result of Aubin [10]:

PROPOSITION 4.3 Let (S", h) be the standard unit sphere of R"*'. Inequality
(Iz,op,) is valid on (S$", h) forany q € [1,n) ifn =2and any q € [1,2]) ifn = 3,

PROOF: Here again, let us just sketch the proof. Let P be some point in
$”, and let r the distance to P. Once more by arguments from standard Morse
theory, and by a symmetrization process, it suffices to prove that (Iz‘op,) is valid
for functions of the form g(x) = g(r), g a nonnegative, absolutely continuous,
decreasing function on [0, 7r]. In geodesic normal coordinates at P,

rn—-l Ihl = Sinli—l r
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By Theorem 4.4, as one can easily be convinced, one has that for g as above,

b : (n—1)/q;P q/p
for- [ [e(57) ] <
0
b4 Sinr (n=1)/9919
w,.-nK(n,q)"f V[g(—;") ]
0

rldr
As shown by Aubin [10], one can then prove that there exists some constant C;

such that
n sinr (n—1)/q
o [ o2
0 r

f Vgl do(h) + C, / ul? dv(h)
sn s

q
r"ldr <

and that there exists some constant C, such that

n . (n-1)/qP q/p
[w,,_|/ g(fﬂ) r""dr] >
0 r
q/p
( f g”dv(h)) ~C: [ g avihy
sn s

Clearly, this proves the proposition. O

Let us now deal with (Iz'om) for g > 2. The first result on the subject is the
following very nice, though simple, result of Druet [74].

THEOREM 4.8 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q € [1,n) real. Assume that q > 2, that q* < n, and that the scalar curvature of
(M, g) is positive somewhere. Then inequality (Iz.op‘) is false on (M, g).

PROOF: Let xo € M be such that Scal(y 4)(x0) > 0, where Scal(y ;) stands

for the scalar curvature of g. For ¢ > 0, we set

U = (e + rv'h)l_stp(r)

where r denotes the distance to xg, ¢ is smooth such that 0 < ¢ < 1, ¢ =1
on (—%,%),and ¢ = 0if r > 5, and § > 0, § small, is real. In order to prove
Theorem 4.8, one just has to prove that for any @ > 0, and for & small enough,

J(u:) < K(n, q)™9, where

Jur | Vuel? dv(g) + a [, ul dv(g)
(w2 dv(g)?

J(ue) =
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Here, rather standard computations lead to

—" 2—"
[u"dv(g) (aw,,_f (1 4 s71)9"g ”"ds)e o +o(e’«—)
M
/ufdv(g)=(w,._|/ (l+s'7‘1'f) s”"ds)e‘f';
M 0

Sad —n
- ((J')n-l Scal(M.g)(XO)‘/o‘ (1 -|-s.7'1'1) s ds)

6n
ni2g~l —ne2g~-1)
xXe 4 +o(£ q )

et —-n » n
f |Vue|q dv(g) <C+ K(n, q)-q (wn—) / (] + S‘T‘h) S"-l dS) "El_‘7
M 0

_ n—gq 9 SC&I(M.R)(X()) fw JT -n
() e 1ot

3¢-2-n ﬁ:ﬂ
xst-"J"'“ds)e 7 +o(£ a )

where w,_; stands for the volume of the standard unit sphere (§"~', h) of R". As
a remark, note that the above integrals do exist as soon as ¢ > 2 and g2 < n. Now,
as a consequence of such inequalities, one gets that

K(n,g) ) <1+ei" x (A|+Aze T+ Ase’e -t

+o(e ™) +o(27+71))

where A > 0, A, > 0 real are independent of ¢, and
Scal y,g)(xo0) (g Jo(1 4 53Ty s+t ds
6n P [°(1 +s7T) "5\ ds
fooo(l + s;ﬁ)_,,s;,—‘{-[+n+l ds)
fra+ saTy=nggtrn=l g

Az =

Since ¢ > 2 and ¢ < n,

-1 qz-n

1-24028— <0
q q

Hence, one will find € > 0 small enough such that
1

J [

“) < Xm0y

if A3 < 0. But, as one can easily check,

Fn—2-24+2r+2-3

q

A= "3 Iz(n - 5)F(E . 1)q Scal(y. ) (x0)
9 q
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As a consequence, A3 < 0 as soon as Scal(y z)(xo) > 0. Clearly, this ends the
proof of the theorem. O

As a consequence of this result of Druet [74] and of Theorem 4.7, one gets
that inequality (I},'op,) is valid on the standard unit sphere (S", h), while inequality
(I3 op0) is not valid on (8", h) if ¢ > 2 and ¢*> < n. This leads to the following
corollary:

COROLLARY 4.3 For q > 2, there exist smooth, compact Riemannian manifolds
for which (I, ) is true while (I o,,) is false.

Coming back to Theorem 4.8, one can ask if its assumptions are sharp or not.
Concerning the assumption that ¢ > 2, we already know by Theorem 4.6 and
Proposition 4.3 that it is sharp. A very surprising fact (think, for instance, of Propo-
sition 4.1) is that the assumption on the scalar curvature is also sharp, as proved by
the following result of Druet [74]:

PROPOSITION 4.4 Let (T", g) be a smooth, flat, compact n-dimensional torus.
For any q € (1, n) real, inequality (I ;) is true on (T", g).

PROOF: The proof of such a result is more subtle than that of Theorem 4.8. It
proceeds by contradiction. We closely follow the lines of Druet {74]. By Theorem
4.7, we may assume thatg > 1. Let g € (1, n) real be given. Fora > 0, set

Ao = inf (/ IVu|?dv(g) +af Jul|? dv(g))
ueA bad Tn

where
A= {u e HI(T")/ | |ul”dv(g) = 1}
'I'"
Assume that (I} ;) is false on (T, g). Then for any « > 0,

1
Ay < ——
“ " K(n,q)
By standard variational techniques, as developed in the proof of Theorem 4.3, one
gets from such an inequality that for any @ > 0, there exists some function u, € A,
uy, > 0, solution of

(4.5) Ay g +aul™ = rul~!

where A, , is the g-Laplacian of g. By maximum principles u, > 0, while by
regularity results #, € C'**(T") for some A € (0, 1). In particular, u, € C'(T").
Let us now say that x € T" is a point of concentration of (u,) if for all § > 0,

a~—>00

lim sup/ uldv(g) >0
B, (3)

First, we claim that, up to a subsequence, (#,) has a unique point of concentration.
The existence of such a point is evident since T” is compact. Conversely, let x €
T”" be a point of concentration of (#,). Let us prove that x is unique. For that
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purpose, let § > 0, § small, and let n € D(B,(8)) suchthat 0 <np < landn =1
on B,(8/2). Multiplying (4.5) by n?uk, k > 1 real, and integrating over T" lead to

/ n7uk A, guy dv(g) + f 17Ukt du(g) = Aq f nuktP=1 du(g)
Tn Tn Tn

Standard computations, using Theorem 4.5, then lead to the following situation:
for any £ > 0, there exist positive constants B, and C, such that for any @ > 0,
£=9

—1\9 -
[1— (k"'q 1) L+e Ae (K(n,q)"+e)(/ ugdv(g)) ]
q k B.(8)
k+g—1 %
X (/ (nua_‘q’_)pdv(g))

46) < [ [C(K (. 9)" + €)Vnl? + Ben?lu*~" du(e)
T"

_ q
+ (“‘;’—l) (A +¢)(K(n, q)? +¢)
9._'

x( / IV(n")l"uﬁ"dv(g));( f IVual"dv(g)) i
T" T"

Since x is assumed to be a point of concentration of (#,), one has that for § > 0

5t
lim sup (/ ub dv(g)) =a>0
a—oc B.(8)

where a < 1. Assume that a < 1 for some § > 0. Then we may take ¢ > 0 small
enough, and k > 1 sufficiently close to 1, such that

k — q
1—( +d 1) Lt o (K(n.q) +€)a>0

q k
Since the right-hand side of (4.6) is bounded for k > 1 close to 1, this leads to the
existence of some M > 0 such that for all @ > 1

([T (nuf"u)pdv(g))% <M

By Holder’s inequalities,

A(s)ugdv(g)=/;(a)ug‘q‘k+luz+k—ldv(g)
5 (3 x(3
2=

+k=1 % _tn 2
([ Y o) ([ o o)
£-4

_t=bp
fpritw=u( [ w7 anw)
X ? n

Hence,
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and since for & > 1 sufficiently close to I,

k-1
0< p- (__E <p,
P—q
one gets that
@a.7 lim sup f ubdv(g) =0
a—~oo JB:($)

Indeed, multiplying (4.5) by u,, integrating over T", and letting o go to 400 leads
to
lim uldv(g) =0

a—+ox0 T
By compactness, one then gets that
limsup[ u, dv(g) =0
a—00 n

forany 0 < s < p. But (4.7) is absurd. As a consequence, a = 1 and

lim supj ubdv(g) =1
By (8)

a—>00
for all § > 0. As one can easily check, up to the extraction of a subsequence, this
shows that the concentration point x of (4,) is unique. The above claim is proved.
Now, thanks to inequality (4.6), we easily get that there exist ¢ > O and M > 0
such that for any @ € T"\{x}), and any a > 1,

fuﬁ('“’dv(g) < M
Q

By Moser’s iterative scheme, as developed, for instance, in Serrin [179] (see, also,
Trudinger [184] and Veron [197]), one then gets that

ug = 0 in Cp(T"\{x}))

as @ — +o0o. All we have said till now holds on arbitrary, compact Riemannian
manifolds. Starting from now, we use the specificity of (T", g). Since (T", g) is
flat, there exists some small ball B, centered at x, such that (B, g) is isometric
to the Euclidean ball of same radius. By Theorem 4.4, one then gets that for any
u € H{ (B),

4
([urav)’ < koo [ v ave
B B
The goal now is to prove that such an inequality, combined with the facts that

-1 -1
Aol +oul™ =rul™,

that u, € A, and that A, < K(n, g)79, leads to a contradiction. Clearly, this will
end the proof of the proposition. In what follows, let # be a smooth function on T"
such that = 1 on B’ C B, n = 0on T"\B, B’ another ball centered at x. Then

4

( L (nua)"dvcg))’ < K(n, q)" fB IV (nua) | du(g)
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so that, setting ' =1 — 7,

4 4
( / u{;dv<g))" < ( f (nuu)"dv(g))'
B’ B

< K(n, g f IV((1 = )ue)|* dule)
Tn

In what follows, C will always denote some constant independent of . We
have that

[V((1 = nYua)|* < Vel + 1V(n'u)l)?
< |Vugl? + C|Vug|* ' IV(n'ua)| + CIV(n'ug)|?
< (14 Cn)IVugl? + Cuy|Vue|* V| + CIV(n'ug) |4

But

IV(n'u)l? < C()|Vuys|? + Cul|Vn'|?
so that

/T IV((1 = n')ua)|? do(g)
< / Vuql? du(g) + C / |Vita|* du(g)
Tn Tn\BI
+C Ue| Vg’ dv(g) + C f u? dv(g)
T"\B’ T"\B'

Hence,

4

(/ u? dv(g)) < K(n,q)"/ |Vuqa|? dv(g) + Cf [Vuy|? dv(g)
B’ ™ T"\B’
+C uldv(g)+C Uy | Vg9~ du(g)
T™\B' T\B'

Multiplying (4.5) by u, and integrating over T" leads to
/ |Vug|? dv(g) +af ul dv(g) = Ay
TI' Tll

As a consequence, we get that

4
(/ ug’dv(g))P <A.,K(n,q) —-aK(n,q)"f ul dv(g)
B M

+Cf  IVuddug +C f ul dv(g)
M\B' M\B’

+C f | Vitg |~ dv(g)
M\B’



106 4. BEST CONSTANTS IN THE COMPACT SETTING I
Since 1., K (n, q)? < 1, this leads to
(@K (n, q)* — C) f ug dv(g)
TN

4

<l1- ([,ug dv(g))p +C s Vg du(g)

+C Ue|Vua |9 du(g)
T”\B’

< f W dv@)+C [ |Vual? du(g)
Tn\B’ T™\B'

+C Ug|Vug 7! dv(g)
Tn\B'
that is to say,
- fr'-\s' ul dv(g) fT,.\B, |Vue|?dv(g)

aK(n,g)?~C

T Jrauddv(g) Jn ué dv(g)
Jrm g #al Va9~ du(g)
Jra ud dv(g)

By Holder’s inequalities, one then gets that
fT"\B' ug dv(g) Cfrn\Bl lvualq dv(g)

aK({n,g) —-C <
s . q) T ul dv(g) [ wldo@)
' P (fw,, [ Vitg|? dv(g)) v
Jrn ué dv(g)
Here,

g U2 dv(g)
jT_\Bqa—_ 5 sup ug-q
an Ug dv(g) T"\B’
which tends to 0 as « — 400, since
ug = 0 in Cp(T"\{x})

asa — +o0.
Let us now get estimates on the expression

Jrma Vual? du(g)
Jrn ud dv(g)

Let B” C B’ a ball centered at x, and let n” > 0 be a smooth function on T"
such that n” = 0 on B” and n” = 1 on T"\ B’. Multiplying (4.5) by (n")%u, and
integrating over T", we obtain

. ") Vugl? dv(g) + q fr (") ug | Vual92(V", Vug)dv(g) <

K(n,q)~ /T ")u? dv(g)
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Hence,

") Vus|?dv(g) < C / 17" Vg " ug dv(g) + C | (n")ul dv(g)
TII

TII Tll

g1

sc( i uZdv(g));( m"vwdv(g)) "
n Vi

+C | (n")uldv(g)
TII

and as a consequence
]
Jro Y|\ Vual? dv(g) _ . ( Jra (1) 1Vt dv(g)) &
Jra ud dv(g) - Jra ud dv(g)

g U2 dV(8)
+C——f’ \ofa T8
an “adv(g)

Here again, one has that
p
Jrog wk dv(g) < sup uP~
7 = Sup u,
f’ru ua dv(g) T"\B"
which tends to 0 as « — +090, since
ug = 0 in CO(T"\{x}))
as a — +00. Hence,
fT"\B’ Ivualq dv(g) < frn (’7”)({|Vua|(l dv(g) <

Sroubdv(@) T [r.uddv(g) -
Coming back to (4.8), and letting « — 00, one gets the desired contradiction.
As already mentioned, this ends the proof of the proposition. a

Looking carefully at the proof of Proposition 4.4, one sees that the arguments
involved in such a proof are very general. Such arguments provide us with a local-
ization process for the (Iz.opt) optimal inequality. This is expressed in the following
result:

THEOREM 4.9 (Druet’s localization) Let (M, g) be a smooth compact n-dimen-
sional Riemannian manifold. Suppose that for some q € (1, n) the (IZ.Opl) inequal-
ity is locally valid in the sense that any x in M possesses an open neighborhood 2
with the property that for any u € D(S2),

q/p
(15 .0p) (/Mlul"dv(g)) < K(n,q)”Lqulqdv(g)+Bx[A4 [ul? dv(g)

for some B, € R independent of u. Then inequality (Iz_op,) is globally valid on
(M, g): There exists B € R such that

q/p
(15 op) </;4Iul"dv(g)) sK(n,q)"fMIVul"dv(gHB/MIuI"dv(g)

for any u € H{ (M).
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PROOF: If g = 1, the proof goes in a very simple way via a partition-of-unity
argument. One just has to glue together the local inequalities to get the global one.
Suppose now that g > 1. The proof then goes as in the proof of Proposition 4.4.
Assuming that (Ig.om) is not globally valid, one gets some sequence (¥y)q>o Of

positive C'-* functions on M, A € (0, 1), such that for any o,
Ay gl +aul™' = 2ul™!

for some real number A, € (0, K(n, g)~7), and such that for any «,

[ ubdv(g) =1
M

As in the proof of Proposition 4.4, one then gets that, up to a subsequence, (u,)
has a unique point of concentration x € M, with the property that

ug = 0 in CP (M\(x))

as @ — +00. Suppose now that there is some open neighborhood 2 of x, and that
there exists B, € R such that for any ¥ € D(2),

q/p
(f Iulpdv(g)) < K(n,q)"/ [Vul|? dv(g)+B,/ |ul? dv(g)
M M M

Without loss of generality, we can assume that Q = B is a ball centered at x.
Following what has been done in the proof of Proposition 4.4, the goal now is to
prove that such an inequality, combined with the fact that

q-1 — p—1
Ag oo +aul™" = Aoul

that f ymUubdv(g) =1, and that A, < K(n,q)7%, lead to a contradiction. Clearly,
this will end the proof of the theorem. In what follows, let  be a smooth function
on M such that n = 1 on B’ C B, n = 0 on M\ B, B’ another ball centered at x.

Then

9
( /; (nua)”dv(g))p < K(n.q)* [B IV (ua)l? du(g) + B /B (nua)? dv(g)

so that, settingn' =1 —p,

9

(/ ugdv(g))P
BI
3
< ( /B (nua)? dv(g))

<K(n,q)* /M |V((1 = n')ua)|? dv(g) + B, /M (nua)? dv(g)

< K(n,q)° / IV((1 = )ua) " due) + B, / u du(g)
M M



4.3. PROGRAM A, PART 1 109

As in the proof of Proposition 4.4,
[ 19 = ma)lavie) < [ Wuattaoie+€ [ 9wl dote)
M M M\B’
+C [ Vil du(e)
M\ B’

+C ul dv(g)
M\B'

for some constant C independent of «, while
/ |Vugl? dv(g) +af ul dv(g) = Ay
M M

As a consequence, we get that
9
( f ul dv(g)) " < MK, ) — aK(n, g)" / u? dv(g)
B M
+ C/ [Vug|? dv(g) + C/ ul dv(g)
M\B' M\B’'

+ C/ Ua| Vg |~ du(g) + B.\‘/ ul dv(g)
M\B’ M

for some other constant C independent of a. Since A, K (n, g)? < 1, and noting
that

4
1- (/ ub dv(g))p 5[ ub dv(g)
’ M\B/
this leads to
4.9)

aK(n,q)? — (B: +C)
Sing W2 dv®)  [i 5 Vel dv(®)  [iy 5 el Vit~ dv(g)
= [yuddv(g) Ji ua dv(g) Sy uédv(g)
< fM\B’ ub dv(g) fM\Bf IVug|?dv(g)
= [y uddv(g) fyy ud dv(g)
ve ( g Vttal? dv(g) ) E
Jyy ud dv(g)
With the same arguments used in the proof of Proposition 4.4, and since

ug > 0 in CO (M\{x})

as @ — +00, one has that
m fM\B/“gdv(g) _
a—+00 fM ud dv(g) -
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and that
fM\B,IVuaI"dv(g) P

Sy uédv(g)

for some constant C’ independent of «. By taking the limit as « — +o00 in (4.9),
one then gets the desired contradiction. This ends the proof of the theorem. a

Theorem 4.9 leads to several important results. One gets, for instance, the
following proposition of Druet [74]:

PROPOSITION 4.5 Let (H”, ho) be a smooth, compact, n-dimensional hyperbolic
space. For any q € 1, n) real, inequality (I, ;) is true on (H", hy).

PROOF: Let (H", ho) be the simply connected hyperbolic space of n-dimen-
sions. Any point in H" possesses some neighborhood that is isometric to an open
subset of H". By a result of Aubin [10], for any u € D(H"), and any q € [1, n),

q/p
( f lul"dv(ﬁo)) < K(n,q)? f IVul? dv(ho)
Hll Hll

Hence, any point in H" possesses some open neighborhood € such that for any
q € [1,n), and any u € D(Q),

q/p
( / |u|"dv<ho)) < K(n,g)" f Val® dv(ho)
n H”

By Druet’s localization, Theorem 4.9, this proves the result. a

As another striking example of application of Druet’s localization, the follow-
ing result holds (Druet, oral communication):

THEOREM 4.10 For any smooth, compact Riemannian 2-manifold, and any q €
[1,2), (I} o) is valid.

PROOF: Let (M, g) be a smooth, compact Riemannian manifold of dimension
2. Without loss of generality, up to rescaling, we can assume that the sectional
curvature of (M, g) is less than or equal to 1. As shown by Aubin [10], for any
x in M, there exists some §, > 0 such that for any smooth, bounded domain
Q C B,(8;), the area of 3% is greater than or equal to the area in the standard
sphere (S2, h) of the boundary of a ball having the same volume than . Let
g € [1,2) be given. From such a result and with a symmetrization process via
the co-area formula similar to the one we described in the proof of Theorem 4.4,
one gets that any point x in M possesses some open neighborhood €2, with the
following property: For any smooth, nonnegative continuous function ¥ on M,
with compact support K C €2,, K being itself smooth, u being smooth in K and
such that it has only nondegenerate critical points in K, and for any P € S2, there
exists some Lipschitz function u* : §2 — R, depending only on the distance 7 to
P, and decreasing with respect to r such that [|Vu*[l, < [Vull,, lu*ll, = llull,,
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and |u*]l, = llull,. By Proposition 4.3, one has that there exists B € R such that
for any f € H)(S?),

q/p
( [ lfl”dv(h)) <K@ g / IV £1¢ do(h) + B / \f1¢ dv(h)
52 52 s2

Hence,

qlp
( f |u'|"dv(h)) <K, q)" f [Vu|? du(h) + B f lu* [ dv(h)
sz 52 32

and for u as above,

q/p
([ Iulpdv(g)) < K(n,q)"f |Vu|? dv(g)+B/ |u|? dv(g)
M M M

By standard arguments from Morse theory, one then easily gets that such an in-
equality is actually valid for any u € D(L,). In other words, and for any q €
[1,2), (Iziom) is locally true. By Theorem 4.9, this proves the result. O

Coming back to Propositions 4.4 and 4.5, these propositions suggest that the
optimal inequality (Iz_om) should be valid when dealing with manifolds of nonpos-
itive curvature. As recently noticed by Aubin, Druet, and the author [13], this is
basically the case. This is the subject of the following theorem, another very nice
application of Druet’s localization. More precisely, one gets that the validity of the
Cartan-Hadamard conjecture in dimension n (as discussed in Chapter 8) implies
the validity of (Iz‘op,) on compact Riemannian n-dimensional manifolds of non-
positive sectional curvature. Apart from the 2-dimensional case which has already
been discussed in Theorem 4.10, and since the Cartan-Hadamard conjecture is true
in dimensions 3 and 4, (lg'op‘) is valid in such dimensions.

THEOREM 4.11 Let (M, g) be a smooth, compact Riemannian n-manifold of non-
positive sectional curvature, and let q € [1, n). Suppose n = 3 or 4. Then inequal-
ity (I o) is valid on (M, g).

PROOF: Let (M, £) be the universal Riemannian covering of (M, g). Since
the sectional curvature of g is nonpositive, the sectional curvature of g is also
nonpositive. In particular, (M, §) is a Cartan-Hadamard manifold. As shown in
Section 8.2 of Chapter 8, the validity of the Cartan-Hadamard conjecture implies
that for any u € D(M), and any g € [1, n),

q/p
([ |u|? dv(§)) < K(n,q) f IVul? dv(g)
M M

Hence, under the assumption that the Cartan-Hadamard conjecture is true, any
point in M possesses some open neighborhood €2 such that for any ¢ € [1, n) and
any u € D(R2),

q/p
( [ |u|"dv(g>) < K(n, g f IVul® du(g)
M M
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By Druet’s localization, Theorem 4.9, one then gets that (I‘q’.op‘) is globally valid.
Since the Cartan-Hadamard conjecture is true in dimensions 3 and 4 (see Section
8.2 of Chapter 8), this proves the theorem. O

Let us now come back to Proposition 4.4. In this result, the torus may be seen
as a limit case of the manifolds in question in Theorem 4.8. Looking more precisely
to the developments involved in the proof of Theorem 4.8, as shown by Druet [74],
the torus also appears to be a limit case of compact Ricci flat manifolds which are
not flat. As shown by Berger {25], 4n-dimensional Riemannian manifolds whose
holonomy group is contained in Sp(n) are Ricci flat. Such manifolds are also called
hyperkihlerian manifolds. Explicit examples of compact hyperkihlerian manifolds
that are not flat have been given by Beauville [20] in all dimensions. We refer the
reader to the excellent reference by Besse 28] for more details on the subject. The
following result is once more due to Druet [74}:

THEOREM 4.12 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q € [1,n) real. Assume that (M, g) is Ricci flat, but not flat. If ¢ > 4 and q°> < n,
then inequality (I; ) is false on (M, g).

PROOF: The proof is similar to that of Theorem 4.8. Let Weyl,,, ., be the
Weyl curvature of g, and let xo € M be such that |[Weyl y ,(x0)| > 0. For & > 0,
we set

Ue = (8 + r‘Tg")'_scp(r)

where r denotes the distance to xg, ¢ is smooth such that 0 < ¢ < 1,9 = 1o0n
(-4,%),and o = 0if r > 5,and 3 > 0, § small, is real. In order to prove the
result, one just has to prove that for any & > 0, and for £ small enough, J(u.) <
K (n,q)™9, where

Jug 1Vuel? dv(g) +a [, ud dv(g)
([ uf dv(g))%

Similar computations to those involved in the proof of Theorem 4.8 then lead to
the following:

J(ue) =

n 2on n pud | 3 =!
K, q) ) <14ei™" (B. 4 By 4 By i 4 o(e"a*“’r)

)
where B, > 0, B, > 0, are independent of ¢, and
_ [Weyl. (o) ? (n — g J5" (1+57T) 5" ds
T 20n(+2) \ n (14 53) "en s
LoQ +57T) g ds)
Lo+ s@T) sl g
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Since ¢ > 4 and g* < n, one has that

2

1-2449— " T7"
q q q

Hence, one will find ¢ > 0 small enough such that

J(u, _—

(ue) < K. q)7
if By < 0. As one can easily check, B; < 0 if |Weylu‘,_g)(x0)|2 > 0. This ends the
proof of the theorem. O

As a direct consequence of such a result, and of Theorem 4.8, one gets the
following corollary:

COROLLARY 44 Let (M, g) be a smooth, compact, n-dimensional Riemannian
manifold of nonnegative Ricci curvature. Assume that for some q real with q > 4
and q* < n, inequality (lz.opl) is true on (M, g). Then g is flat, and M is covered
by a torus.

Corollary 4.4 can be seen as the compact version of the result of Ledoux [140]
that we will discuss in Chapter 8: For (M, g) a smooth, complete Riemannian n-
manifold of nonnegative Ricci curvature, and g € [1, n) real, if for any u € D(M),

q/r
(/ Iul”dv(g)\ < K(n.q)"/ |Vul? dv(g),
M / M

then (M, g) must be isometric to the Euclidean space (R", ¢). As a remark, note
that it would be nice in Corollary 4.4 to improve the assumptions ¢ > 4 and g < n.
However, by Proposition 4.3, it is necessary to assume that ¢ > 2. Finally, note
that by Theorem 4.4 and Theorem 4.9, if (M, g) is compact and flat, then (lz_op.) is
true on (M, g) for any g € [1, n) real. The argument goes here as in the proof of
Proposition 4.5, noting that any compact flat manifold is covered by the Euclidean
space.

By summarizing what has been said in this section, one gets a complete answer
to question 1. According to the works of Aubin and Talenti, the value of a, (M)
is known, explicit, and depends only on n and g. Then, concerning question 24
and its extension to the (I gcn) inequality, one has that the validity of (IZ_OP,) implies

the validity of (l(l,.opn)’ and that the following results hold:

1. (I op) is valid for all g on any smooth, compact Riemannian manifold of
constant sectional curvature (Aubin).

2. (B3 is valid on any smooth, compact Riemannian n-manifold, n > 3
(Hebey-Vaugon).

3. Given (M, g) a smooth, compact Riemannian n-manifold, (IZ.OP,) is not
valid as soon as ¢ > 2, g> < n, and the scalar curvature of g is positive
somewhere (Druet).

4. Given (M, g) a smooth, compact Riemannian n-manifold of nonnegative
Ricci curvature, (I? ) is not valid as soon as ¢ > 4, g < n, and g is not

q.0pt
flat (Druet).



114 4. BEST CONSTANTS IN THE COMPACT SETTING 1

5 M .op) is valid for all g on any 2-dimensional smooth, compact Riemannian
mamfold (Druet).

6. (Iq opt) is valid for all g on compact flat spaces, compact hyperbolic spaces,
and smooth, compact n-manifolds of nonpositive sectional curvature as long
as the Cartan-Hadamard n-dimensional conjecture is true, so, in particular,
if n = 3 or 4 (Druet, Aubin-Druet-Hebey).

Contrary to what we said about the optimal inequality (J] ;) of program B (see
Proposition 4.1), the (I?, opt) Optimal inequality may be valid for ¢ > 2. On the
one hand, as when dealing with Program B, there is really a difference between
the optimal inequalities (I} ) and (I ;). As an example, (I} ) is valid on the
standard unit sphere, while (If,'.opl) is not for ¢ > 2. On the other hand, the geometry
interferes with the validity of (I7 ).

4.4. On the Scale of Optimal Inequalities

According to the preceding section, there exist smooth, compact manifolds for
which the optimal inequality (I",.opt) is valid while the stronger optimal inequality
(Iz'opl) is not valid. Given (M, g) a smooth, compact Riemannian n-manifold,
g € [1,n) real, and @ € [1, q] real, let us now consider the possible validity of the
following inequality: There exists B € R such that for any u € H," M),

é/p 6/q
( f |u|"dv(g)) sK(n,q)"( f |Vu|"dv<g))
M M
0/q
+B(/ |u|"dv(g))
M

where p = nq/(n — q). A conjecture of Aubin [10] on the subject is that (I )
is valid on any smooth, compact Riemannian manifold with & = q/(q — 1) when
q > 2. Note here that the validity of @ .opt) implies that of (Igzopl) as soon as
8, > 6,. The first result we have on the subject is the following result of [10].

@ o)

PROPOSITION 4.6 For q > 2, the optimal inequality (I ) is valid with § =
q/(q — 1) on the standard unit sphere (S", h) of R"*+'.

PROOF: Basically, the proof of such a result proceeds as in the proof of Propo-
sition 4.3. Forg > 2,1et@ = q/(q — 1). Let also P be some point in S", and let
r denote the distance to P. Here again, by arguments from standard Morse theory,
and by a symmetrization process, it suffices to prove that (I opl) is valid for func-
tions of the form g(x) = g(r), g a nonnegative, absolutely contmuous, decreasing
function on [0, 7). By Theorem 4.4, one has that

[ / sinry n-1/q|P “ig "/”
oo [ e(52) s

sinrz\ (n-1/q
w,—1K(n, q) [g ——) ]
0 r

"=l dr
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As shown by Aubin [10], one can now prove that there exists some constant C,

such that
g sinry@-0/q7' |9 1/(q=1)
- v —_— n—-1 d )
(wn |L [g( ’ ) ] r r

1/(g=D 1/(g=1)
( IVgl? dv(h)) + C,( [u)? dv(h))
sn s"

and that there exists some constant C> such that

T ssinr\@m-n/q|P q/(g=p
[w,,-./ g(__) n=1 dr
0

IA

>

r
r

q/(g-)p 1/(g-1)
( / g”dv(h)) —Cz( f g"du(h))

Clearly, as one can easily be convinced, the optimal inequality (Iz.opt) follows from
such inequalities. This proves the proposition. 0

For more details on the proof of Proposition 4.6, we refer the reader to [10].

Independently, as another result on the subject, one has the following theorem of
Druet [74]:
THEOREM 4.13 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
g € [1,n) real. Assume that q > 2. that g*> < n, and that the scalar curvature
of (M, g) is positive somewhere. Then inequality (Iz.opl) is false on (M, g) for any
6> 2.

PROOF: Here again, the proof is similar to that of Theorem 4.8. Using the

same notation used there, we now have that

" —1 n 5g-l _a
K(n’ q)g-’o(“s) < 1 +£‘7_](C| + C2£0£7l"+l-3 + C3g'y7;—'+l q

+os5H 1) 4 o250 4175))
Here, C, > 0, C; > O real are independent of ¢,
(Jur 190l dv(®)' +a(f,, lul dv(g)*
(Jio a1 dv(e))?

Jo(u) =

and

C. — 5calung)(x0) (q S (14 s77) "sm ds
3= -

6nq P[0 (L+5s77) "s"=t ds
o+ s‘T‘L')_"s'l"z"‘L"+l ds
- i Q +s‘l_"l‘)-"s'T!""""l ds)
Hence, C3 < 0 if Scal(y.g)(xo) > 0. As one can easily check, for & > 2, such

an expansion leads to the existence of ¢ > 0 small such that Jy(u,) < K(n, g)7°.
This proves the theorem. O
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When priority is given to the second constant, one can also deal with the scale
of optimal inequalities. For (M, g) a smooth, compact Riemannian n-manifold,
q € [1,n) real, and 6 € [1, q] real, let us now consider the following inequality:
There exists A € R such that for any u € qu M),

é/p
([ Iul”dv(g)) <
M

6/q 0 0/q
A( / IVulqdv(g)) +Vo1(‘,,,{;')( / M dv(g))
M M

where p = nq/(n — q). As for the (Iz.opl) inequality, if (Jgﬁopl) is valid, then (szopl)
is also valid for 6, < 6,. Regarding the scale (Jg_opl) of optimal inequalities, using
the same kind of arguments as used in Section 4.1, one gets the following result,
which was observed by Druet:

(35 op)

THEOREM 4.14 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q € [1,n) real. If g < 2, then for any 6 € [1, q], (Jz'opl) is valid. Conversely, if
q > 2,38 o) is valid if and only if 6 < 2.

PROOF: By Theorem 4.2, (Jz_opl) is valid if ¢ < 2. Hence, for any 8 € [1, ¢q],
(Jz_opl) is also valid. Suppose now that g > 2. By Bakry’s inequality, discussed in
the beginning of the proof of Theorem 4.2, one has that for any u € L?(M),

9

2/p 2
(f Iul”dv(g)) < Vol(_,;fg,_')/” (/ udv(g))
M M

2/p
+(p- 1)(/M |u —Elpdv(g))

u= ! fudv( )
VOI(M_g) M J

Independently, by the Sobolev-Poincaré inequality we discussed in Section 2.8 of
Chapter 2, there exists A > 0 such that for any u € H] (M),

2/p 2/q
( [ |u—m"dv(g>) sA( / |Vu|"dv(g>)
M M

Hence, for any u € H{ (M),

2/p 2
( f |u|”dv(g)) sVol;jfg;"’"( f udv(g))
M M

2/q
+(p— I)A( f qul"dv(g))
M

where

and since by Holder’s inequality,

2 2/q
(/ udv(g)) < Volff‘;'.;)”/q (/ lul? dv(g))
M M
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one gets that there exists A > 0 such that for any u € HY(M),

2/p . 2/q
( / lul”dv(g)) sA( f IVuI"dv(g))
M M

~2/n 2/q
+ Vol ) ( /M (ul*d v(g))

In other words, (Jj'om) is valid. Hence, (Jgiop,) is valid for 6 < 2. Summarizing, we

are left Yvith the proof that forg > 2 and § > 2, (Jz'op‘) is false. The argument here
goes as in the proof of Proposition 4.1. Let u C*(M) be some nonzero function
such that f, udv(g) = 0. Then, fore > 0,

6/p
([ ]l+sul”dv(g)) =
M

6(p—~1 €y
VOIZ{IP,S) + (pz ) VOI(I;W.g) (/ “2 dv(g))sz + 0(82)
M

0/q
(f ll+eul"dv(g)) =
M

6(g—-1) g_4
Vol‘(gﬁg) +__q2 Volfy, . (/,;1 u? dv(g))s2 + o(g?)

while, since ¢ > 2,

9/q
( f !V(l+eu)l"dv(g)) = o(£?)
M

Assume now that (Jg.op‘) is valid. One would get that for any ¢ > 0,

o(p—1) . &
vmf,{;fg,+—-—(” )Vol(';"‘;)( fM uzdv(g))ezs

2
-2 6(@-—-1)  2-1-¢
v°1;'M‘g,+—q—5—-— Voly, ., ( fM uzdv(g))sz +o(¢?)

But

6 _6 6

p q n
so that, as one can easily check, such an inequality is impossible. This ends the
proof of the theorem. O

Note added in proof: After the manuscript was completed, O. Druet (“The best
constants problem in Sobolev inequalities,” preprint of the University of Cergy-
Pontoise, October 1998, and to appear in Mathematische Annalen) got the complete
answer to the conjecture of Aubin {10] we mentioned at the beginning of Section
4.4. He even proved more since for ¢ > 2,0 = q/(q — 1) can be replaced by
@ = 2. With the notation of Section 4.4, the result of Druet is the following:
Given any smooth, compact Riemannian n-dimensional manifold (M, g), n > 2,
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and q € (1, n) real, the optimal inequality (Izm) is valid on (M, g) with@ = q if
q <2,and 0 =2 if g > 2. Together with Theorem 4.13, one sees that the relevant
exponent in the (] ) scale of optimal inequalities is really 6 = 2 for ¢ > 2, and
not @ = q/(q — 1) as suggested by the original conjecture. The idea that § = 2
would be the relevant exponent appeared to Druet when he got Theorem 4.13, but
also Theorem 4.14, stating that the (Jg'op,) optimal inequality is valid with @ = ¢ if
qg <2orwithd =2if g > 2, and is not valid with @ > 2 if g > 2. One has to
note here that the above-mentioned result of Druet implies that:
1. For any smooth, compact n-dimensional Riemannian manifold, » > 2, and
any g € (1, n), the optimal inequality (I(','opl) is valid on (M, g), and
2. for any smooth, compact n-dimensional Riemannian manifold, n > 2, and
any g € (1, 2], the optimal inequality (Iz‘opl) is valid on (M, g).
As we recently learned, a similar result was also announced by Aubin and Li (to
appear in Comptes Rendus de I’Académie des Sciences de Paris, 1999).



CHAPTER 5

Best Constants in the Compact Setting I1

We are concerned in this chapter with the continuation of Programs 4 and
&8 of Chapter 4. Two more questions will be asked. For the sake of clarity, and
according to what has been said in Sections 4.1 and 4.3, we restrict ourselves to

the case g = 2.
In what follows, let (M, g) be a smooth, compact Riemannian n-manifold,
with n > 3. According to Theorem 4.6, there exists some B € R such that for any

u € H:(M),

2/p
B ([ wrave)  scm [ 1vuravie)+ B [ uavee
M M M

where p = 2n/(n — 2), and a2(M) = K(n,2) has its precise value given by
Theorem 4.4 (see, also, 4.5). Namely,
4

M= |—>
a(M) n(n — 2)w"

where w, is the volume of the standard unit sphere of R"*'. One can now define
Bo(g) as the smallest possible B in (I3 ). Namely, one can define

By(g) = inf {B € R s.t. (I3 ) is valid}
Clearly, (I%,op‘) holds with By(g) in place of B. One then has that for any u €
HY (M),

2/p
@ opp) ( fM |u|"dv(g>) < K(n,2) [M Va2 dv(g) + Bo(g) fM W dv(g)

Here, OPT refers to the fact that (IZ ;) is totally optimal, in the sense that the
two constants K (n, 2)? and By(g) cannot be lowered. As a remark, one can note
that by taking u = 1 in (I3 ,p7), one gets that necessarily, By(g) > Vol ;{;), where
Vol(y.¢) denotes the volume of (M, g).

Similarly, when giving the priority to the second constant, one has by Theorem
4.2 that there exists A € R such that for any u € H3(M),

2/p
o ( [ Iul”dv(g)) <4 [ 1vuftdvie)+ p00° [ u?avie)

119



120 5. BEST CONSTANTS IN THE COMPACT SETTING II

where p = 2n/(n — 2), and Br(M) = Vol('A;{;'). One can now define Ag(g) as the
smallest possible A in (J%_opl). Namely, one can define

Ao(g) = inf {A € Rs.t. (03 ) is valid}
Clearly, (J%,opt) holds with A¢(g) in place of A. One then has that for any u €
HY(M),

2/p
3.orr) ( f lul”dv(g)) < Ao(g) fM |Vul> dv(g) + Volgyy/s, fM u?dv(g)
M

As above, OPT refers to the fact that (J2 opy) is “totally optimal” in the sense that
the two constants Ag(g) and Vol(-,f;{;, cannot be lowered. Note that by Proposition

4-2, AO(g) > K(n’ 2)2
In what follows, we say that some nonzero function u € H,Z(M) is an ex-

tremum function for (I3 ,py) if

2/p
( f |u|*’dv<g)) = K(n,2)* f Vul? dv(g) + Bolg) / W dv(g)
M M M

Similarly, we say that some function u € H2(M), u nonconstant, is an extremum
function for (J2 opy) if

2/p
( fM lul”dv(g)) = Ao(®) fM IVul> dv(g) + Volyy'r, /M u?dv(g)

One can then ask two more questions in each program. They are stated as follows:

Program 4, Part I Program B, Part II |
Question 3,4: Can one compute | Question 38: Can one compute
or have estimates on By(g)? or have estimates on Ao(g)?

Question 4.4: Under which Question 48: Under which
conditions does one have that conditions does one have that
(I opr) POSsesses extremum (Jg.or{r) possesses extremum
functions? functions?

Once more, when looking to these questions, one can see that more complete an-
swers have been obtained concerning Program 8B, Part I1, than conceming Program
oA, Part II. First, we start with the case of the standard unit sphere. For such a man-
ifold, Ao(g) = a2(M)? and Bo(g) = B2(M)?, so that (I3 opy) = (J3 opy)- Moreover,
all the extremum functions here are explicitly known.

5.1. The Case of the Standard Unit Sphere

Let (S", h), n > 3, be the standard unit sphere of R"*!. For such a specific
manifold, as one will see in Theorem 5.1 below, special phenomena occur when
dealing with Program «A, Part II, and Program 3B, Part II. Except for its more recent
very last part, Theorem 5.1 is due to Aubin {9].
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THEOREM 5.1 Let (S", h) be the standard unit sphere of R"*', n > 3. For any
u € HX(S"),

2/p
@ ( / lul”dv(h)) < K(n, 2)* / [Vul> dv(h) + ;" / u*dv(h)
N Su sn

where w, is the volume of (S",h) and p = 2n/(n — 2). In particular, Ao(h) =
K(n,2)? Bo(h) = w; 2", and (2 opr) = (3 opp) = (). Moreover, given xy € S"
and B > 1 real,

Ue.p(x) = (B —cosr)'~?
where r denotes the distance from xg to x is an extremum function for (I). Con-
versely, if u is a nonconstant extremum function for (I), then up to a constant scale

factor, u is one of the uy, g’s.

PROOF: Let us start with the fact that (I) is true. As an easy consequence of
Proposition 4.2,

i (9 + 2oy
uEle(S")' (fs'l |u|2n/(n—2) dv(h))(”‘z)/” - K(nv 2)2

where H,2 (8")* stands for the set of nonzero functions of H,z(S"). Suppose here
that

Son (IVu? + 2220%)dv(h) 1
<
ueH(s")" (fs" |u |27/ (n=2) dv(h))("_z)/" K(n,2)?

One clearly gets from such an inequality that for f € C*(S"), f close to 1 in the
C%-norm,

i S (IVu)® + "("T'Z)uz)dv(h) 1
1 <
weH3SM* ( fon fluln/@= du(h))"~2/"  (max f)"=2/"K (n,2)*

As shown in Section 4.2 of Chapter 4, this leads to the existence of u € C*(S"),
u > 0, a solution of

n(n —-2)
4

In other words, one gets that there exists ¢ > 0 such that for any f € C*°(§"), if

f is such that || f — 1]lco < &, then f is the scalar curvature of some conformal

metric to h. The point, then (see, for instance, Section 6.3 of Chapter 6 or the

discussion at the end of Section 4.2), is that such a result is in contradiction with

the obstructions of Kazdan and Warner [130]. As a conclusion, one has that

g Jor (IVu]?® + 2%2u)dv(h) 1
in =
ueH S ( [, lu|2/ =2 do(n))" P K(n,2)?

and inequality ([) is true.
Let us now prove that the u,, g’s are extremum functions for (I). In geodesic
normal coordinates,

u= fu(n+2)/(n—2)

Anpu +

1
Anf = —mar(rn—l\/marf)
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and one has here that
r"'/h| =sin""'r
Simple computations then lead to the fact that
4 2 (n+2)/(n=2)
mAh“-fo-ﬂ tuxp = (ﬁ - l)“xo.ﬁ
Moreover,
Ty

2!1/(n-2)
/; Yo.B dv(h) = wy-, / —(ﬂ —cosT)” dt

and one then easily gets that
n/2 2n/(n 2)
8*-1) /; wp dv(h) =

Recall now that 4

Kn,2?= ———
.2 n(n — 2)wi"

Hence,
K(n, 2)2/ [Vuy, pl> dv(h) + ;2" / u;, gdv(h)
sn s
: f 4 Aply,p + dv(h)
w'2'/n s \n(n — 2) hlUxy, B T Uxg, B JUxg.p GV

ﬁz -1 2n/(n-2)
= S [ s dvit)

= ( /S T dv(h))

and this proves that the u,, g’s are extremum functions for (I). In order to end the
proof of the theorem, let us now consider some nonconstant extremum function
u of (I). Then v = |u| is also a nonconstant extremum function for (I). Up to
multiplication by a positive constant scale factor, we can assume that

/ p2n/(n=2) dv(h) = w,
S§n

Since v realizes the infimum of
Jor (1Vu? + 22242)dv(h)

(fs,, Iulz,,/(n_Z) dv(h))(n_Z)/n

Ju) =

it is a solution of
4n-1)
-2
By regularity results and the maximum principle, one then gets that v is smooth and
positive. On the one hand, this shows that |u| > 0, so that u is either everywhere
positive or everywhere negative. On the other hand, the fact that v is a positive,
smooth solution of the above equation implies that g = v¥~?h has constant
scalar curvature n(n — 1). By Obata [163], one then gets that g and h are isometric.

Awv + n(n — v = n(n — 1y**+2/-2)
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The proof of the last part of the theorem then reduces to the fact that for u, > 0
given by ¢*h = u}/""2h, where ¢ € Conf(S") is a conformal diffeomorphism
of (8", h), there exist A > 0, B > 1, and xo € S" such that u, = Au,, g. Since
the group of isometries of (S”, h) acts transitively on S", it suffices to restrict our
attention to conformal diffeomorphisms ¢ such that ¢(P) = P for some fixed P in
S". Indeed, given ¢ € Conf(S"), choose A € O(n + 1) an isometry of (S", k) such
that A(p(P)) = P, and note that (A o ¢)*h = ¢*h. From now on, let Confp(S")
be the group of conformal diffeomorphisms ¢ of (S", h) such that ¢(P) = P.
Let Prp be the stereographic projection of pole P, and let ¢ € Confp(S"). Then
¥ = Prpogo Pr;' is a conformal diffeomorphism of the Euclidean space (R”, e).
As is well-known,
Yy=AoBoC

where A € O(n), B is a translation, and C is a dilatation. As usually done, we
assimilate R” with P+, that is, the hyperplane of R"*+! that is orthogonal to the line
passing through P and — P. Here, one has that

_| * -
(Pre)h® = T e
Take B under the form B(x) = x + a and take C under the form C(x) = Ax,

A # 0. Then,

v (PraY ) = — 2,
P (1 + [Ax +a|?)?

As one can easily check, this leads to

2 2
14 |Prp(x)| ) h(x)

*h = A?
¢*h@x) (l+|)\Prp(x)+a|2

Set

atr) = L 1PrP@F

1+ |APrp(x) +al?
The goal then is to compute . Without loss of generality, we can assume that if
a = 0, then A # *1. Since

Prp(x) =P + ;(x — P)

1—-(P,x)
and since P and Prp(x) are orthogonal for any x € S”, onc has that
2
2 _ PP =
1+ |Prp(x)|” = |Prp(x) — P| = (P.x)

In the same order of ideas, and since a € P, one has that

14 |APrp(x) +al> =1— A2+ |A(Prp(x) — P) +a|?
=1+ al®? =A%+ A%|Prp(x) — P> + 2A(Prp(x), a)

2X 222
=1 2 A= {a, =
+ |a| +l—(P,x)<a x)+l-(P,x)
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Hence,

a(x) = 2
R —(Q, x)
where R = 1 + [a|? + A% and

Q= (1+lal®>—A?)P —2xa

Set xg = |Iﬁ Q. As one can easily check (see below), Q # 0 since either a # 0 or
a = 0 and then A # %1. Clearly,xy € S” and
2 -1
a(x) = —(B — (xo0, x)
iy ~ (w0 x))

where 8 = R/|Q|. Noting that
1012 = a3(al® + (1 + lal® - A?)*

one easily gets that 8 > 1. Moreover, for r the distance between x; and x on S”,
one has that cosr = (xg, x). Hence,

412 (n—2)/4 .
Up(x) = (IQ_P) (B —cosr)'~2

and this proves the theorem. O

Before ending this section, we mention that the above inequality (I) has been
extended by Beckner [21] to powers 2 < k < p, where p = 2n/(n —2). This is the
subject of the result below. We refer to [21] for its proof, but also to Bakry-Ledoux
[19] and Fontenas [84], where the result is proved in the more general context of
an abstract Markov generator.

THEOREM 5.2 Let (S", h) be the standard unit sphere of R**', n > 3. For any
k € [2, pl, and any u € H*(S"),
Uk k-2 1
( Jua* dv(h)) < —= | IVuldv(h) + — f u? dv(h)
s “r Jsn

nw, * 7’5" Wn
where w, is the volume of ($", h) and p = 2n/(n — 2).

5.2. Program 8, Part II

Three main results are available on the subject. Let us start with question
38. We prove first the following general result. As in the case of the remaining
constant in (Jé_op(), Ap(g) has an upper bound depending only on the dimension n
of the manifold, and on a lower bound for the Ricci curvature, a lower bound for
the volume, and an upper bound for the diameter.

THEOREM 5.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature, volume, and diameter satisfy

RC(M'g) > kg y VOl(M,g) >v, diam(M,g) <d

Jor some k, v > 0, and d > O real. There exists A = A(n, k, v, d), depending only
onn, k, v, and d, such that Ay(g) < A. In other words, for any smooth, compact
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Riemannian n-manifold (M, g), n > 3, such that Rcm ) = kg, Volm gy = v, and
diamy ¢y < d, one has that for any u € H}(M),

2/p
([wrave) " <a [ urave +voigy [ utdvie)
M M M

where p =2n/(n —2).
PROOF: Let A, be the first nonzero eigenvalue of the Laplacian A, associated
to g. As shown by Yau [200], there exists some positive constant A = A(n, k, v, d),

depending only on n, k, v, and d, such that A, > A. In particular, this implies that
for any u € HX(M),

/ lu —ilzdv(g) < l/ |Vu|2dv(g)
M Am

where

— 1 [
u= udv(g)
Volim.g) Jm d

Independently, one clearly has by Gromov’s theorem, Theorem 1.1, that there ex-
ists some positive constant a = a(n, k, v, d), depending only on n, k, v, and d,
such that for any x € M, Volg(B,(1)) > a. According to what has been said
in Chapter 3, Section 3.2, one then gets that there exists some positive constant
A = A(n, k, v, d), depending only on n, k, v, and d, such that for any u € H3(M),

2/p
( f |u|"dv<g)) <A [ Vul dv(g) + A / W dv(g)
M M M

where p = 2n/(n — 2). As a consequence, combining these two inequalities, there
exists a positive constant A = A(n, k, v, d), depending only on n, k, v , and d,
such that for any u € H M),

2/p
( f - mzdv(g)) <A [ IVl dv(g)
M M

Independently, as shown in the proof of Theorem 4.2, for any u € L?(M),

2p 2
([ wravw) " <vorzse ([ uave)

2/p
+(p- l)( /M e — P dv(g))
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Hence, for any u € H}(M),

2/p
( f lul”dv(g))
M

2 2/p
< Vol V7 ( /M udv(g)) +(p- 1)( /M lu — u)° dv(g))

2
< Vol;jfg;'”"( fM udv(g)) +(p~DA fM [Vul? dv(g)

< Vol "7 fM wdv(g) +(p— DA /M (Vul® dv(g)

and this proves the theorem. O

In the case of positive Ricci curvature, one can give an explicit expression for
the upper bound A of Theorem 5.3. This is the subject of the following result, due
to Ilias {123). We refer also the reader to Bakry-Ledoux [19] and Fontenas [84].

THEOREM 5.4 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature satisfies that Rcy.g) > (n — 1)kg for some k > 0.
Then

4
An(g) < 5
n(n — 2k Volw"_g)

so that for any u € H{(M),
P i 1 Vul*d
d < <
([MM v(g)) ~ n(n — 2)k Vol2II [M' uldvie)

(M.g)

+ Vol /M lul? dv(g)

where p =2n/(n — 2).

PROOF: Without loss of generality, we can assume that k = 1. In other words,
we can assume that Rcy g > (n — 1)g. Let M(M) be the space of smooth
functions having only nondegenerate critical points. By standard arguments of
Morse theory, it suffices to prove the inequality of the theorem for u € M(M), u
nonnegative. Let 8 = Vol g) /@w,. As shown by Gromov [95] (see also Berard,
Besson, and Gallot [22]), for 2 a smooth domain in M, and B a geodesic ball in
the standard sphere (S", h), if Vol,(2) = B Vol (B), then

Area, (02) > B Area; (3 B)
By rather standard arguments of symmetrization, one can then associate to each u
in M(M), u nonnegative, some radially symmetric function u* on S” such that for
any m > 1 real,

f ul"dv(g) = B / lu*["dv(h)
M s

[ |Vul"dv(g) > ﬂ/ |Vu*|"dv(h)
M sn
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Just define u* by
Vol,({x € M [u(x) > t}) = B Vol,({x € $" /u*(x) > t})
By Theorem 5.1, one then has that

2/p
( f |u|"dv<g>)
M
2/p
=(ﬂ f Iu'l”dv(h))
s'l

< K(n,2)’p¥" f (Vu*)? dv(h) + B Pw; " [ [u*? dv(h)
n Sn

< K(n, 2B+ / IVul? dv(g) + B+~ w2/ / u*dv(g)
M

K(n 2)2 2/n
27/
Vol(y' )
4
= Vul?dv +Vol_2/"fu2dv
TN [ IVul du(g) + Volod, [ u?avce)

This proves the theorem. a

/l-"IVulzdv(g)+V0|:,;{Z)Lu2dv(g)

Let us now deal with question 48. We prove here the following result, due to
Bakry and Ledoux [19].

THEOREM 5.5 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
We assume that for all u € H,Z(M ),

2/p
|u|"dv(g)) < — [ 1vuk dvie)
(/M n(n—2) vmf,{, o s
+ Vol fM |ul? dv(g)
and that there exists some real-valued Lipschitz function f on M such that
max |Vf(x)| <1 and max |f(y)— f(x)|=mn
xeM x.yeM

Then
4

Ao(g) =
n(n-2) Volf,{,"' 2

and there exist nonconstant extremum functions for (Jg‘on). More precisely, if we
translate f such that [,, sin(f)dv(g) =0, for every A € (—1,+1),

2/p
Pd = Vfild
([ rae) = ——t [ watae)

(M.g)
+ VoI 2" [ 12l dv(e)
M

where f, = (1 + Asin(f))' "% and p = 2n/(n — 2).
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PROOF: Let f be areal-valued Lipschitz function on M such that
max [Vf(x)| =1 and  max |f(y) = f(x)| =n
As one can easily check, there exists 6 € R such that
/M sin(f +6)dv(g) =0

In what follows, let f stand for f + 6. Following Bakry and Ledoux [19], for
A€ (-1,1), weset

FQ) = / (1 4+ Asin(f))*™" dv(g)
M

while for k > 0, we let D; be the differential operator on (-1, 1) defined by

1. d
Di=-A—+1
Ea Tt

Weset alsoa = (n — 2)/n = 2/p, and let
G =D, F
The proof then proceeds in several steps.
STEP 1: For A € (—1, 1),
(Da-2G)* +a(1 =A)V¥"D, ,G < 1 +a)V"Y"G

where V = Vol ;).
In order to prove this claim, let

fi =1+ rsin(f))' "2

Then, since
max|Vf(x)| <1,
xeM

one gets that

fM VAP dv(g) < ('2—' - l)-)»2 /M (1 + sin(f)) ™ (1 — cos?(f))dv(g)

Applying the Sobolev inequality

2/p 4
p D L Vul? V-Z/n/ 2
([urave) < S [ ulave)+ v [ wlavee)
with u = f,, this leads to

(/ (1 + Asin(f))™" dv(g))
M
<yn f (14 Asin(f))* " dv(g)
M

+arty-n fM 1 +sin(f)) ™" — cos*(f))dv(g)
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where, as above, V stands for Voly ). Now, note that

FQ) = f (1 + Asin(f) " A(W)dv(g)
M
FO)=(n-2) [ (1 + Asin(f)) " BML)dv(g)
M

F'M)=m-1)(n- 2)/ (1 + Asin(f))™"C(A)dv(g)
M

where
A(A) = 1+ 2Asin(f) + A% sin?(f)
B(A) = —sin(f) — Asin?(f)
C(\) = sin%(f)

Clearly,

A(\) +2AB(\) =1-A%C
where C = C()). Hence, coming back to the above inequality,

( f a +Asin(f))”'dv(g)) +a(l —AHv2m f (1 4+ Asin(f)) " dv(g)
M M

2
<(+a)V¥"FQ) + nl—“2v-2/" F'(})
=(1+a)V"GQ)
Noting that

: -n — 2 ' 1 2 1
[M(l + Asin(f)) " dv(g) = F(A) + ") 2AF A+ G —Dn=2) —Z)A F ()
= D,,GR)

this proves Step 1.
Let us now consider the differential equation
(Dn2H)* + (1l =X V"D, L, H = (1+a)V"/"H
where A € (=1, 1) and V = Vol(y ;). For ¢ € R, set
v 2 aV 2
H.(\) = —U.(A\)T% + ——(1 =AU ()™=
c(}) T+a «(2) +1+a( Y:(A)

where

ch+ 2224 (1 —-22)
As one can easily check, the H,’s are solutions of the above differential equation.
The second step in the proof of Theorem 5.5 is as follows:

STEP 2: Assume that G(A¢) < H.(Ag) for some A9 € [0,1). Then G(A) <
H,() for every A € [Ag, 1).

In order to prove this clain, let v = v(¢, A) be the unique nonnegative solution
of

VW Ha(l = )V Yy =0 +a)V "
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One has that v is increasing in ¢. In addition,
D,_2(G - H.) <v(G,A) —v(H, L)

Hence, D,_2(G — H;) < 0 on the set {G < H.}. Suppose that for some A, €
(*o0, 1), G(A\) > H.(1y). Set

A, =inf{A > Ao/ G() = H.(A\)}

Then A, € (Ao, 1) and G < H. on [Ag, A.]. Hence, D,_2(G — H.) < 0 on this
interval. Integrating between A and A,, one gets that

273G — H.)(Ao) = A" %(G — H.)(A,)

Since G(Ag) < H.(XAo), this contradicts the fact that G(A.) = H,.(A.). This proves
Step 2.

As a third and last step, one has the following:
STEP 3: Assume that

f (1 +sin(f))'" dv(g) < +00
M

Then ||(1 + sin(f)) ™' lloo < 400
In order to prove this claim, we apply the Sobolev inequality

Pd m 4 Vul*d
<
( fM |ul v(g)) S vl L [Vu|”dv(g)

(M.g)

+ Vol g/ fM [u|? dv(g)

to the family of functions
u = (1 +sin(f)) "

withs > n — 2. Set
Fs) = [M (1 + sin(f))™ dv(g)

Since
max |[Vf(x)| <1,
xeM

one gets from the above inequality that
EBs)'P < V¥ E(s) + CV™H"sF (s + 1)

where 8 = 1/a and C = 2/n(n — 2). Noting that 8s > s+ 1 whens > n — 2,
it already follows by iteration that F (s) < +oo forevery s > n — 1. We aim to
prove that
sup F(s)'* < 400
szn—-1
from which the conclusion follows. Here, it may be assumed that F(s) > 1 for
some s large enough. Otherwise, there is nothing to prove. But then, by Jensen’s
inequality,
F(Bs)'? < (14 CsHVHE(s +1)
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By a simple iteration procedure, this yields Step 3.

Let us now prove Theorem 5.5. We claim here that G = Hj. As a starting
point, since

f sin(f)dv(g) =0,
M

one has that G’'(0) = 0. By Step 2 one then easily gets that for every ¢ > 0,
G < H.on [0, 1). By continuity, this leads to G < Hp on [0, 1). Suppose now
that there is some Ao > O such that G(Ag) < Hy(Ag). Then there exists ¢ < 0 such
that G(Xo) < H.(Ao). Again by Step 2, this implies that G(A) < H.()) for every
A € [Ag, 1). Letting A — 1, one then gets that G(1) < +00. But

G() =/ a+ sin(f))""(l + sin(f))dv(g)
M

n—1
so that
[ asingn=ane < 26
M n—2

Hence, by Step 3, we get that

(1 + sin(f)) "' loo < +00
Since

Jnax, fO)-f)l=x

there is some xo € M with the property that [ f(xo), f(x0) + #] C Im f. Clearly,
this contradicts the above inequality. Hence, G = Hp on [0, 1). Replacing f by
—f, one then gets that G = Hp on (—1, 1). As a consequence,

(Da=2G)* + (1 =AH)VY"D,_,G = (1 +a)V~H"G

on (—1, 1). Coming back to what we said in the proof of Step 1, this means again

that
2/p 4 s
|fulP do )) - [ warave
([u Sl dvie n(n —2) Vol ) Ju fil"dvi
+ Vol [ 1R avce)
for every A € (—1, 1). Clearly, this proves the theorem. O

Concerning Theorem 5.5, it has been established by Bakry and Ledoux [19]
for an abstract Markov generator L. As stated above, namely, in the Riemannian
context with L = A, take care that combined with Theorem 5.4, it basically gives
Theorem 5.1. Under the assumption that Rc ) > (n — 1)g, which ensures by
Theorem 5.4 the validity of the Sobolev inequality in question in Theorem 5.5, the
existence of f as in Theorem 5.5 implies that (M, g) is isometric to the standard
unit sphere (S", #). Indeed, the existence of f as in Theorem 5.5 implies that
diamy ;) > 7. On the other hand, one has by Myer’s theorem that diamy ) < .
Hence, diamy ¢ = 7, and by the Toponogov-Cheng maximal diameter theorem
(see [45]), one gets that (M, g) is isometric to (S", h).
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5.3. Program A, Part I1

Let us start with question 34. First, as already mentioned in Chapter 4, one
has the following result of Hebey and Vaugon [117]. Such a result will be proved
in Chapter 7, Section 7.2, when dealing with complete manifolds.

THEOREM 5.6 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
3. Suppose that its Riemann curvature Rmum.g) and its injectivity radius injy 5,
satisfy
IRm g | < Ay, IVRIMy gy | < Az, injpy g =

for some Ay > 0, Ay > 0, and i > 0 real. There exists B = B(n, A, A3, i),
depending only on n, A, A3, and i, such that Bo(g) < B. In other words, for any
smooth, compact Riemannian n-manifold (M, g), n > 3, such that IRmy )| <
Ay, [VRMm.g) | < Ay, and injy 4 > i, one has that for any u € H}(M),

2/p
( f lul”dv(g)) < K(n,2)? / |Vul*dv(g) + B f u’dv(g)
M M M

where p = 2n/(n — 2).

As will be discussed in Chapter 7, the role played by Rmyy ;) could certainly
be replaced by an analogous one but with Rc(u ) in place of Rmy ). The best
result here, as one will see in Chapter 7, would be that B depends only on n, a
bound for [Rcum.g) |, and a lower bound for inj,, .. The reason for such a fact
comes from the following result:

PROPOSITION 5.1 Let (M, g) be a smooth Riemannian n-manifold (not necessar-
ily compact) of dimension n > 4. Suppose that there exists B € R such that for

any u € D(M),
(n~2)/n
([ renane) ™" <
M

K(n,2)? ( [ |Vul?dv(g) + B f u? dv(g))
M M
where K (n, 2) is as in Theorem 4.4. Then, for any x € M,

n—2
>
“4(n-1)
where Scal(u ;) is the scalar curvature of (M, g). In particular,

n—2
Bo(g) = oD

é.1)

Scal(M_g)(x)

K@, 2)2(mna}x Scal(M_g))

when M is compact.

PROOF: We proceed as in Aubin [9]. Let x € M and let r > 0 be such that
r < injgy, . (x) where inj, ., (x) is the injectivity radius at x. Then in geodesic
normal coordinates

1
f Jdet(g;j)ds =1 — 1 Scal(y. ) (X)r? + O(r*)
S(r) 6n

Wp—)
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where S(r) = {y € M /dy(x, y) = r}. For ¢ > 0, we define

u€=(s+r)' "/2—(e+82)' ™ ifr <
u. =0 otherwise

where § € (0, inj M. (X)) is given and r = d,(x, -). Easy computations lead to
W [ 1VuPavie)
M

-2)w,_
_ (n ), 'I:/z el—n/Z(] - 6&12LSca](M ox) e+ 0(8))

2 n(n — 4)
ifn>4
- 2)2w,_ 1
= (n 2) ©n=t g1=ny2 (1:/2 + on Scal (. ¢)(x)€ log & + o(¢ log e))

ifn=4
@ f Wdv(g)
M

) / ul"=2dy(g)
M
— 2w, -
> (n 2':‘01 II:/Z 8_"/2(1 _

ifn=4

62 Scal(y g)(x)e + o(e)) ifn >4

—~ 2)wn-
> ("—ZMI,;'/2 e™"%(1+ o(cloge)) ifn =4
n
where I = 0 (1 + t)~P14 dt. Independently, one easily checks that
wy 1 _(n=2)
— 2 - ln/2
2n=lg, " n
Hence,
(= Dony | (= Doy )"
2 " K(n,2)? 2n "

and as a consequence of the developments made above, we get that
Jos |Vue*dv(g) + B f,, uldv(g)
(f, Iue 22/ dv(g))("‘z’/"

1 € 4(n—1)
=< K@, 2)? (l + nen _4)( p— B — SCal(M‘g)(X)) +o(e))

ifn >4

1 1
(l + - (Scal(M_g)(x) —6B) eloge + o(e log e)) ifn=4

= K(4,2)?
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Since (5.1) implies that
Ju Ve’ dv(g) + B [, uzdv(g) 1
(fM |u£|2n/(n—2) dv(g))(n—Z)/n ~ K, 2)2 ’

we must have 4 n
——=B = Scalr.)(x)

n—
This ends the proof of the proposition. O
Going further on and when looking for analogues of Theorem 5.4, namely,
when looking for explicit upper bounds of By(g) for a large class of manifolds,
one has to face a kind of no man’s land. No such results are available. Until now,
the best we were able to do was to get explicit expressions of upper bounds for
some specific manifolds. The following result is due to Hebey and Vaugon [113]:

PROPOSITION 5.2 Let (P"(R), g) be the standard real projective space of dimen-

sionn, n > 3. Then )
n+
By(g) < ———~
O - e

where wy, is the volume of the standard unit sphere (S", h).

PROOF: First we claim that there exist n + 1 open subsets 2; of P"(R) and
n + 1 functions n; : Q; — R such that

1. (i)i=1...n+1 is an open covering of P"(R),

2. for all i, (S2;, g) is conformally diffeomorphic to some connected, open

subset of R"” endowed with the Euclidean metric,

3. for all i, n; and ,/7; belong to HZ (Q;) N CO(RQ)),

4. foralli,0 < n; < 1 and |V /7] € C°()), and

5 Y pi=1land Y7 \VmilE =n.
In order to prove the claim, let us denote by Py, ..., P, the n + 1 points of $"
whose coordinates in R"*+! are

(1,0,...,0,00,(0,1,...,0,0),...,(,0,...,1,0),(0,0,...,0,1)

Let also G be the subgroup of O(n + 1) whose elements are /d and —1d, the
antipodal map. We denote by #;,i = 1, ..., n + 1, the functions on S” defined by
7ii (x) = cos? (d(P;. x))
where d is the distance on S". Letalso §;,i = 1,...,n + 1, the half-spheres

centered at P; defined by

Q= lx €S"/d(P,x) < %}

If IT : " — P"(R) is the canonical projection, then, as one can easily check, the
following holds:

6. for any i, the restriction of IT to £; is an isometry from €; onto I($;),

7. for any i, 7; is G-invariant so that it defines some n; : P"(R) — R,

8. if Q; = I(Q;), then (R;)i—1, ....+1 is an open covering of P"(R),
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9. for any i, (£2;, g) is conformally diffeomorphic to some connected, open
subset of R” endowed with the Euclidean metric,
10. for any i, n; = 0 on P"(R)\2;,
1L Y =1and Y4 n=1,and
12. forany i, |V /71> o I = |V/7;|* on &;.

Noting that
IV#i?(x) = 1 — cos® (d(Pi, x)) = 1 — #j;

one gets the second part of point (5). This proves the above claim.
Starting now from the existence of (£2;, 9;)i=1....n+1, We prove the proposition.
Given u € C*®°(P"(R)), one has that

n+l
2 2 2
Nt jnzy = N6 llnsa-2> = 1| D, 0ite* lnjin-2>

i=1
u+l a+1

2 2
< Y it -2 = Y Iv/miul3, -2
=1

i=l]

where || - ||, stands for the norm of L?(P"(R)). Independently, by point (6) above,
and Theorem 5.1, one has that

(n=2)/n
( f I«/Eulz”"""z’dv(g)) <
P"(R)
1
ko' [ v/l ave + — [ maddue)
P"(R) wy P"(R)

Using now point (5) above, one gets that for any u € C*(P"(R)),

(n—2)/n
( f |ua |2/ =2 dv(g))
P"(R)

n+1

(n—-2)/n
< Z( /P ) |/Tiu"/ 2 dv(g))
Il( )

i=|
n+l n+1

K ’22 / v ; Zd '—'-Z/n / ; 2d
<K@ ).; P"(R)I (vmiuw) 2 dv(g) + ; o, v(g)

u+l
=K@ 2? Y [ (ulVuP + VTR + U9 Vo) du(e)
P"(R)

i=]

+ w;z/" [ u*dv(g)
P"(R)
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—km2 [ |Vuldv(g) + nK(n,2)? f W du(g)
P"(R) P (R)

+w;2/"/ u? dv(g)
Pr(R)

(n+2)

2
u-dv(g)
=207 Jpngy 08

= K(n.2)2/ [Vul> dv(g) +
P"(R)

This ends the proof of the proposition. O

Concerning Proposition 5.2, recall that By(g) has to be greater than or equal to
the volume of (IP"(R), g) to the power —2/n. Hence, for the real projective space

P"(R), &),
2 \" n+2
(—) < Bo(g) < ———~
wn (n - 2)0)"
Since
" n+2 _
nrtoo (n — 2)22m
the above estimation is asymptotically sharp. On the other hand, we have no idea

what the exact value of By(g) for (P"(R), g) is. More generally, one has the fol-
lowing extension of Proposition 5.2. Such a result is also due to Hebey and Vaugon

[113].

1

PROPOSITION 5.3 Let G C O(n+ 1) be a cyclic group of order k acting freely on
the unit sphere S" of R"*', n > 3. Set M = §"/G and let g be the metric on M
obtained as the quotient metric of the standard metric h of S". Then

4 k2 (n+1 n(n —2)
BO(g)Sn(n—2)w,2,/"[(l+z)( 2 )-l+ 4 ]

where w, denotes the volume of the standard unit sphere (S", h).

PROOF: Here again, one can prove the existence of n + 1 open subsets £2; of
M, and n + 1 functions n; : ; — R such that
1. (82i)i=1....n+1 is an open covering of M,
2. forall i, (R2;, g) is conformally diffeomorphic to some connected open sub-
set of R" endowed with the Euclidean metric,
3. forall i, ; and ,/7; belong to HZ,(R;) N C%(R;), and
4. foralli,0 < 7; < 1and |V, /5] € CO())

n+1

with the additional properties that } /", n; = 1 and

n+|

k2 1
§:|ani|2=(1+— ("* )_1
i=l1 4 2
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For such a claim, we refer the reader to [113]. Then the proof proceeds as in the
proof of Proposition 5.2. Given u € C* (M), one has that

n+l

2 2
Nl /inm2y < D /Tt j 02y
i=I
while for any i,

(n=2)/n
( f /w2 dv(g)) <
M

1
K(n,2)2f |V(/mw)|* du(g) + —;,;f niu® dv(g)
M w," Im

By the properties of (7;), one then gets with similar computations to those used in
the proof of Proposition 5.2 that for any ¥ € C*°(M),

(n~2)/n
([ |u|2n/(n—2)dv(g))
M

< K(n,2)? fM IVul du(g)

K\ (n+1 n(n —-2)
K ,22[(1+—)< )—1+ ]f 2d
+K(n,2) 7 > 2 Mu v(g)

This ends the proof of the proposition. a

Regarding Proposition 5.3, recall that if n is even, the only nontrivial subgroup
of O(n + 1) that acts freely is the antipodal group {Id, —Id}. For n even, Propo-
sition 5.3 is just Proposition 5.2. On the other hand, for n odd, one has that for
any integer k > 1, there exists some cyclic subgroup of O(n + 1) of order k that
acts freely on S”. Moreover, according to Zassenhaus [201] (see, also, Kobayashi
and Nomizu [136]), any subgroup of O(n + 1) acting freely on S” and of order ab
where a and b are prime integers (not necessarily distinct) must be cyclic.

Let us now come back to specific results. By Hebey-Vaugon [113], one also
has the following:

PROPOSITION 5.4 Let S'(T), T > 0, be the circle of radius T centered at 0 in R?.
We consider S'(T) x S"~' endowed with its standard product metric gr. Then

14 (n—2)°T?
n(n — 2)T?wi’"
where w, denotes the volume of the standard unit sphere (S", h).

PROOF: Let P be some point on S'(T). Let also Q = —P. Then S'(T)\{P}
and S'(T)\{Q} are isometric to (0, 27 T) so that

(S"M\PY) x s"" and (S"(D\(Q)) x 5"
are isometric to (0,27 T) x S"~!. Note now that (0,27 T) x $"~! is conformally
diffeomorphic to the annulus
Gz{xeR"/l <|x|<e2"rl

Bo(gr) <
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the inverse diffeomorphism ¢ from R"\{0} to R x $"~! being given by ¢(x) =
(log|x|, ). Set 2 = (S'(T\{P}) x §"' and @, = (SYTI\(Q)) x §"".
Define also 1, and n, by

m(Te”, x) = cos® (%) , n2(Te”, x) = sin’ (g)

where 6 at Q equals 0. Then
1. (82i)i=1.2 is an open covering of S'(T) x $"~!,
2. foralli = 1,2, (8, gr) is conformally diffeomorphic to some connected
open subset of R” endowed with the Euclidean metric,
3. foralli =1, 2, n; and ,/7; belong to H&,(Qi) N C%Q)),
4. foralli =1,2,0 < < 1and|V,/7;| € C°), and
5. Y mi=1and YU, |V /mi* = 1/4T2
As in the proof of Proposition 5.2, one then has that for ¥ smooth on $'(T) x §"~!

2
2 2
Null2 -2y < z v/nitt 1122
i=|
while foranyi =1, 2,

(n=2)/n
=, 12n/(n=2) dv
(fslmxsn ' lv/niul (gr))

< K(n,2)2/ IV(Jn:u)Izdv(gr)
SIT)yxsn-!
(n—2)?

+ K(n, 2)2j niu® dv(gr)
sHT)yx§n-!

Note here that the scalar curvature of g7 equals (n — 1)(n — 2). By (5) above and
similar computations to those made in the proof of Proposition 5.2, one then gets

that for any u smooth on S'(T) x §"~!,

/ lul*"/@=2 du(gr) o
S'(T)xS""

< K(n,2) f IVul® du(gr)
SHT)x S
(n —2)?

+ K@, 2)? f u?dv(gr)
siTyxsn-!

1

—K(n,2)? 2d

+ 172 n,2) v/.;'(T)xS" U v(gr)

This ends the proof of the proposition. O
Finally, we prove the following result of Hebey-Vaugon [113]:

PROPOSITION 5.5 Let (HY, hy) be a compact, q-dimensional hyperbolic space,
let (SP, h) be the standard unit sphere of RP*', and let M = HY x SP be endowed
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with its product metric g, ,. There exists some constant C(H), independent of p,
such that for any p,
ngp—2
Bo(g.5) < K(ny, J){L
0 8q.p q9.p an,, - 1)
wheren, , = p +q, Scaliy 4, ) = p(p — 1) — q(q — 1) is the scalar curvature of
(M, g,.5), and K(n, p, 2) is as in Theorem 4.4.

Scalm 4, ,) +C(H ")]

PROOF: Let (U;);=....m be a covering of H? by simply connected open sub-
sets, and let («;);=)....» be a smooth partition of unity subordinate to this covering.
On U; x SP we define

2
o (x)
ni(x,y) = ?'—

j=1 a'z(x )
As in the proof of Proposition 5.2, given u € C*°(HY x S$”), one has that
m
Nel3, -2y < D /it j 2

i=1

Setn = n, ,. By corollary 3.2, one has that for any i

(n=2)/n
( f |V/mul "2 d v(gq.p))
H4xSr

< K(n,2)? [ v/ dv(e, )
HYxSr

(n-2)
4in—-1)

Similar computations to those made in the proof of Proposition 5.2 then lead to the
following: For any u € C*°(H? x S°?),

(n—~2)/n
(/;q . |u|2n/(n-2) dv(gq.p))
X

Ip(p — 1) — q(q — 1)K (n, 2)? f nite dv(g, )

H4xSr

+

<K®,2? f IVu du(g, ) + C(H)K (n, 2)2 [ W dv(g, )
HaxSr HYxSr
(n-2) o _ 2 2
+ e 0= D=9 - K@D [ v,
where

C(H) = max Z. IvVeil
the function ¢; : H? — R being defined by ¢; (x) = o?(x)/ PRy a}(x). Clearly,
this ends the proof of the proposition. O

Let us now deal with question 4s4. By Theorem 5.1, Bo(h) = w, >/" for the
standard unit sphere (S", k), and one knows explicitly all the extremum functions
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of (Ig‘on). Since the scalar curvature Scal(s» 5, is equal to n(n — 1), one can also
write that

Bo(h) = ( )K(n 2)2(maxSca](snh))

We will be concerned in what follows with the conformal class of A. As one can
see, though simple, such a context leads to interesting and surprising phenom-
ena. Let [[A]] be the set of conformal metrics to k having the same volume as h.
Namely,

[[h]] = {g € [h]/ Vol(sn gy = wnl

where [h] denotes the conformal class of h, and, as usual, @, = Vols~ . The
question of the explicit value of By(g) and of the existence of extremum functions
for ag,o,,r) is not affected by rescaling. In other words, answering such questions
forg e [[h ]] is equivalent to answering such questions for g € [h]. The point here
is that for A > O real, Bo(Ag) = A~'Bo(g), and that if u is an extremum function
for (I2 opy) With respect to g, then A="~?/4y is an extremum function for (I o)
with respect to Ag. Hence, without loss of generality, we can restrict ourselves to
[(h]]. The first result we prove here, due to Hebey [110], completely answers the
question for n > 4.

THEOREM 5.7 Let (8", h) be the standard unit sphere of R**!, n > 4, and let
g € [(h]]. Then

n-—

4n-1)

and one has that there exist nonzero extremum functions for (Ig.on) if and only
if the scalar curvature Scal(s» ;) of g is constant. In such a case, g and h are
isometric, and if ¢ is an isometry from (S", h) onto (S", g), then u is an extremum
Junction for a%.opr) with respect to g if and only if u o ¢ is an extremum function

Jor (B opr) with respect to h.

Bo(g) = 2 2)2( max Scal(sr ) )

PROOF: Let g € [[h]] and I, be the functional defined on H2(S")\{0} by
Jsn |Vul?dv(g) + pro )fs,. Scal(sn o) u? dv(g)
(fs,, Iu|2"/("_2) d ( ))(n—Z)/n

where Scal(s» ¢ stands for the scalar curvature of g. As is well-known (see, for
instance, [109)), inf, I, (u) is a conformal invariant. Hence, by Theorem 5.1,

lg(u) =

. . 1
(5.2) inf 7, (u) = inf () = Xoor

Independently, and by Proposition 5.1,

—2
2 1=y K 2 ((max Seali))

(5.3) Bo(g) =
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In order to prove the first part of the theorem, we proceed by contradiction.

Suppose that
(5.4) Bo(g) > (n )K(n ,2) (n}ax Scal(sn,g))

Coming back to the definition of By(g), one has that for B < By(g) there exists u
in H2(S™)\{0} such that

2 B f 2
. |Vul“dv(g) + K. 27 uldv(g) <

(n=2)/n
K(n, 2)2(/ |u|2"/("'2) dv(g))

Hence, (5.4) implies that

1
K(n,2)?
This is in contradiction with (5 2) As a consequence, and coming back to (5.3),

infI,(u) <

Bo(g) = ( )K(n ,2) (maxScal(sn g))

This proves the first part of the theorem. Let us now prove its second part. Suppose
that (I3 opr) With respect to g possesses some extremum function uo. By definition,

Jso 1Vu0P du(8) + 225 (max Scalsr.) ) fyn uddv(®)
(Sfon luolP/=2 du(g)) """ " K2

and ug realizes the minimum of the functional
S 1VuP2 dv(g) + 7% (max Scalsn ) fyn 42 dv(e)

(S P27/ =2 du(g)) " 27"
Without loss of generality, one can assume that uo > 0 a.e, and that

/ ug"/ =2 gy(g) = 1
Sll

By classical variational techniques, one then gets that u is a weak solution of

J) =

- 1 2/ (=2)
4( —-1) K(n,2)2°

where A, is the Laplacian of g. By maximum principles and regularity results, uo
is everywhere positive and smooth. Hence,

[ Scal(sn gy u2 dv(g) < (manlecal(sn,g)) / ul dv(g)
s" s SII

as soon as Scal(s» ;) is nonconstant. In such a case, one gets that

Agug + (max Scalgn g) )uo

1 ) 1
X 2?2 = “‘}flg(“) < I (uo) < J(uo) = K22
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which is absurd. As a consequence, (I3 py) With respect to g does not possess ex-
tremum functions if Scal s ;) is nonconstant. Conversely, if Scalg ) is constant,
then, by a well-known result of Obata [163], g and h are isometric. In such a sit-
uation, it is clear that (I2 ,py) with respect to g possesses extremum functions, and
that if ¢ is an isometry from (S”, h) onto (S”, g), then u is an extremum function
for (I2 opr) with respect to g if and only if u o is an extremum function for (I2 opr)
with respect to h. This proves the theorem. O

Now that Theorem 5.7 is proved, it is natural to ask what happens when n = 3.
Here, it seems that there does not exist a complete answer in the spirit of the answer
given above for n > 4. More precisely, when dealing with the case n = 3, one has
the following result of Hebey [110). Note that =%~ = § forn = 3.

THEOREM 5.8 Let (S, h) be the standard unit sphere of R*. For any g € [[h]],
Bo(g) < ~K(3,2)? Scal
0(g) < 3 3.,2) (n}zgx ca (S‘.g))
but there now exists some g € [[h]] such that
B Lk 3,2)? Scal
0(g) < 3 3,2 (n}egx c (sz,g))

Independently, in the case of equality, there exist nonzero extremum functions for
(12 opr) if and only if the scalar curvature Scals: 4, of g is constant. In such a case,
g and h are isometric, and if ¢ is an isometry from (S, h) onto (S>, g), then u is an
extremum function for (I%_OPT) with respect to g if and only if u o ¢ is an extremum
Junction for (I3 opr) with respect to h.

The proof of Theorem 5.8 proceeds in several steps. Its main ingredient is the
following result of Brezis and Nirenberg [34): For any bounded domain £ of R?,
and any u € D(R),

1/3
([ |u|6dx) <K@, 2)2/ |Vu|2dx—k(9)[ u’dx
R3 R3 R"

3 Vol, () ) -3

where

4n

and Vol, (2) stands for the Euclidean volume of Q2. In what follows, let B be the
unit ball of R? centered at 0. The first result we prove is the following: It is an easy
consequence of the above result of Brezis and Nirenberg.

2
MQ) = 14-1((3, 2)2(

LEMMA 5.1 There exists 8, € C*®(R?) such that for any u € D(R>)

1/3
( f |u|°dx) <K@3,2)? f IVul?dx + f Ou? dx
R3 R3 R:‘

with the property that 6,(0) = —A(B) and 6,(x) = 0 as soon as |x| > 2.
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PROOF: Let n € C®(R3), 0 < n < 1, be such that n(x) = 1if x| < 1/2,
and n(x) = 0if |[x| > 3/4. Set

n = n’ "= (1=n)
T a—p? 2T+ (=)

For any u € D(R?),

1/3
( [R ‘ Iul°dx) = |lul?e = llu?lls = I(V/mu)® + (Vm2u) >

< Nl + I/mu)? M < /mulls + llv/Tulle
On the one hand, one has by the result of Brezis and Nirenberg that

Iv/mulize < KG,2)? fR IV/mwdx - M(8) fR  mu’dx
On the other hand, one has by Theorem 4.4 that

Iuls < KG.2? [ 19(/mF ds

As a consequence,
1/3
( [ |u|°dx)
R}
<K@3,2° /R VG/mwltdx + K (3,2)° fR VG/mw)l* dx
—A(B)/ muzdx
R'&
=K(@3,2)’ [ m|Vu)?dx + K(3,2)* / IV /m Pu’ dx
R3 R}
+ f u(V'ni Vou)dx + K (3, 2) / : n2|Vu|?* dx
R} R’
+K3,2)? / IV./m2u?dx + f u(V'nV,u)dx
R} R}
—A(JB)/ r;|u2dx
R}

= K(3,2)? [ IVul? dx
R3

+ [ (KG9l +1VVl) - M@niJu dx
R’
since n; + 2 = 1. Setting
6 = K3, 2*(IVymI’ +Vyml?) — MB)m
this proves the lemma. O

As an easy consequence of Lemma 5.1, one gets the following result:
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LEMMA 5.2 Let xo € S°. There exists 0, € C*®(S>) such that for any u € C*(S°),
/3
( / |u|6dv(h)) <K@3,2)? / (Vul? dv(h)
s3 s‘l
+ By(h) ] udv(h) + / 6,u’ dv(h)
s3 33

with the property that 6,(xp) < 0.

PROOF: Let P : $3\{—xo} — R3 be the stereographic projection of pole —xo.
Then

—1\* _
(PR = e ©

where e stands for the Euclidean metric of R3. Set g = (P~')*h and let ¢ be the

function defined by
4 1/4
xX)={—————r
o0 ((1+|x|2)2)

One has that g = ¢*e. By conformal invariance of the conformal Laplacian
u— Agu+ %Scal(ss_g) u
(see, for instance, [109]), one gets that for any u € D(R3),
1
[ [Vui?dv(g) + = / Scal g3 4) utdv(g)
R 8 Jps
1
= / u(Agu + < Scal(s3 ) u)dv(g)
R'! 8
= /l;‘ up > (A, (ug))p®dx
= [ 1vpritas
R3

where A, is the Laplacian of g and A, is the Euclidean Laplacian. Independently,

it is clear that
J it avie) = [ gt ax
R3 R}

By Lemma 5.1 one then gets that for any u € D(R3),

(L)
= (fm lutpl6dx)

<K@3,2)? f |V (ug)|>dx + f 0, (up)*dx
R3 R?



5.3. PROGRAM A, PART 11 145

K(3,2)*
=K@3,2)? fR . IVui?dv(g) + (s ) fR 3Scal(ss‘g)u2dv(g)

+ /R o™ du(®)
= K(3,2)? /l;} |Vul? dv(g) + Bo(h) /m u? dv(g)
+ /’;3 (619~*)u? dv(g)
Note here that since g and h are isometric, Scal g3 ,) = 6. Set
6= (6p*)oP
Then 6 is defined on S3\{—xo}, and as an easy remark, one has that
8(x0) = —A(B)p(0)™* <0

Independently, and since g are h isometric, one gets from the above developments
that for any u € D(5>*\{—xo})),

1/3
( f |u|°dv<h)) < KG,2? / IVul? dv(h)
53 33
+ By(h) / u?dv(h) + / Ou? dv(h)
S:‘ s.‘l

But 6,(x) = O for x| > 1. Hence, 6 = 0 near —xo. We extend 6 by 0 at —x,.
Let r > O real be such that 6 = 0 on B_, (r), where B_, (r) stands for the ball
of center —xo and radius r in 3. Let also n € C*®(5?%), 0 < 5 < 1, be such that
n(x) = 1if dy(—x, x) < r/2, and n(x) = 0 if dy(—xo, x) > 3r/4, where d, is the
distance on $3 associated to 4. As in the proof of Lemma 5.1, we set

S S ek Vi
2+ (1 —n)? T +d-n?

m
Given u € C*®(S?), one can write that
IVl < KG.2" [ IVG/moF duih + Bo) [ mu? v
Independently, and according to what has been said above,

IVl < K27 [ 190/ dveh

+ By(h) ] nau® dv(h) + f On2u’ dv(h)
s:l s.‘l
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Similar computations to the ones involved in the proof of Lemma 5.1 then lead to
the following: For any u € C®(S3),

1/3
( f |u|6dv(h)) < K(@3,2)? / [Vu|?> dv(h)
s3 s?

+ Bo(h) [ w?dv(h) + f 6,u’* dv(h)
S3 s3

where 6, = K(3, 2)2(|V~/EI2 + IVJn—zlz) + 6n,. As one can easily be convinced,
this proves the lemma. O

In order to prove Theorem 5.8, we also need the following result:

LEMMA 5.3 Let A € C®(S3) be some smooth function on S>. Given xy € S* and
8 > 0 real, there exists u € C*(S>), u positive, and there exists ). > 0 real such

that
Anu+ Au = —Au®  on S*\B,,(8)

[ udv(h) = w3

where Ay, is the Laplacian of h, and B, (8) is the ball in S* of center xo and radius
8.

PROOF: Let A € C*®(S?) be such that

-~ ) -
A=A on s-’\on(i) and / Adv(h) <0
s3

For q € (2, 6) real, let H, be the functional defined on H3(5*)\(0} by
S5 IVul? dv(h) + [ Au? dv(h)

H,(u) =
o ([ ule du(n))™

and let
H, = {u € HX(S% / f |u|? dv(h) = 1'
$3

Let also
Ay = inf H,(u)

ue,
Then clearly A, < 0 since H,(1) < 0. Independently, as one can easily check, A,
is finite, and (A,), is bounded. By standard variational techniques, and since the
embedding of H in L is compact (Theorem 2.9), one easily gets that there exists
u, € C*(8%), u; > 0, such that

Apug + Aug = Agul~
[ouddv(h) =1

Note now that the u,’s are bounded in H(S*). Hence, up to the extraction of a
subsequence, there exists u € H2(S?) such that as ¢ — 6,

1. ug — uin H3(S%),

2. u; > uin L%(S?),

3. ug —> uae.,and
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4. ul™' ~ uSin LY/5(SP).
Similarly, and without loss of generality, one can assume that
limA, = A
q—6
where A < 0O is real. As an easy consequence of such properties, one then gets that

u is a weak solution of

Ayu + Au = \i°
By maximum principles, either u = 0 or u > 0, while by standard regularity
results, u € C*°(S?). In order to prove the lemma, as one can easily be convinced,
we are left with the proof that u # 0. For that purpose, let us write that

2/q
1= (/ uZ dv(h))
s\

1/3
< ( / ul dv(h)) / A
s.\

< w1719k (3,2)° [ Vuy |2 dv(h) + Bo(h)ew} 17~/ f u? dv(h)
s? s3
< MOk 3,220, — 030K (3, 2) /s 3 Aul dv(h)
+ Both} 0 [ udvihy
S

< MVOK(3,2)%0, + C, f u? dv(h)
S'{

where C, > 0 is given by
C, = wg(l/q—l/6)K(3‘ 2)2 n}gx IA"I + Bo(h)w§(l/q_'/6)

From what has been said above, and by passing to the limit as ¢ — 6, one gets
from the above inequality that

1<AK@3B,2)*+C f u*dv(h)
33

where C = lim,_,¢ C, is given by
C = K(3,2)" max |A| + Bo(h)
s.
As a consequence, since A < 0, [ u’dv(h) # 0 and u # 0. As already men-
tioned, this proves the lemma. a

With such lemmas, Lemmas 5.1 to 5.3, we are in position to prove Theorem
5.8.

PROOF OF THEOREM 5.8: Let g € [[4]]. With the same arguments as those
used in the proof of Theorem 5.7, one gets that

1
Bo(e) = 5K G, 2)2(“'3’( Scal(sz‘g))
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From now on, let ¢ € C*®(S3), ¢ > 0, such that g = ¢*h, and let B be real. Given
u € C*(S3), we write that

[ wutave + 8 [ 2 dvig) =
Sl s?

1
/ (A u+ ; Scal 3. 2 u)dv(g) +/ (B ~3 Scal 53, g))u dv(g)
S'l

where A, is the Laplacian of g. By conformal invariance of the conformal Lapla-
cian
1
u— Agu + § Scal(s.'l_g) u
(see, for instance, [109]), one has that
f |Vul?dv(g) +a/ u*dv(g)
s3 $3
3
= [ vapravi +3 [ woraven
s3 4 s3

1
+ [ 1 (a — g Scalist ) )(p4(u(p)2 dv(h)
S.
while, as one can easily check,
[ wedvte) = [ wt* aviwy
s3 s3

From such relations, one gets that
fs* |Vu>dv(g) + B Jss u? dv(g)

o (S lul dv(g))"”?
f31 IVul? dv(h)+3 [ u? dv(h)+ [(B — § Scal(ssg,)fp u2dv(h)
o (fss luledvw)'”
and by Lemma 5.2,
fs3 |Vu)?dv(g) + B [ u? dv(g) > 1
i (fs It dv(g)'" K@3,2y
as long as

1 %
(B _ § Scal(s3.g) )‘p“ z -K(—3,i?
Set

6,
5.5) B = max (W + = Scal g3, g))
As a consequence of what has been said up to now, one will get that

1
Bo(g) < 5K G, 2)2(11}&;3( Scalss ) )
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if g is such that
1
(5.6) B < g n}a}x Scal(s'!.g)

where B is as in (5.5). In order to prove the existence of such a g, let xo € S* and
let § > O be real such that 6, < 0 on B,,(28), where B,,(25) is the ball in §3 of
center x, and radius 25. Set

)
K(3,2)?

and let ¢ € C®(§3), ¢ > 0, the function given by Lemma 5.3, solution of
A + Ap = —A¢p°  in §°\B,,(5)
f33 9t dv(h) = w3

where A real is positive. Setting g = ¢*h, one gets that

0:(x) +1 1 Scal(sx o) = 6y(x) (SAMP + 6¢)(x)

3
A=-
4+

K(3,2)%¢%x) K(3,2)%0%x) 8¢S
_ (Mo + 49) ()
@3(x)
so that
6 1
(5.7) % + - Sca.l(31 g)(x) =—-A<= 3 max Scal(s‘! 2)

for all x € S*\B,,(8). Independently, let & > 0 be such that §, < —¢ and ¢*(x) <
1/¢ in B,y (8). Then, for all x € B,,(5),

02(x) 1 2
—K(3 220%(x) + - Sca](sx o) <= Scal(ss oX) — X3, 2)23
(5.8) ]
< g maxScalss,g)

From (5.7) and (5.8), one gets that (5.6) is satisfied by g. Hence, there exists
g € [[h]] such that

1
Bo(g) < §K(3, 2)? ( max Scal(s3 4) )
Let us now prove the last part of Theorem 5.8. Let g € [[4]] be such that
1
Bo(®) = K 3,27 ( max Sealss,) )

One gets, as in the proof of Theorem 5.7, that (I%_on) possesses extremum func-
tions if and only if Scalss ;) is constant. Here again, by Obata [163], g and h are
isometric when Scalss ;) is constant. In such a situation, it is clear that (I opr)
with respect to g possesses extremum functions, and that if ¢ is an isometry from
(53, h) onto (3, g), then u is an extremum function for (I3 opr) with respect to g if



150 5. BEST CONSTANTS IN THE COMPACT SETTING II

and only if u o ¢ is an extremum function for (I2 op;) with respect to h. This ends
the proof of the theorem. O

Finally, note that one can prove that for any g € [[h]], h the standard metric of
s?,
Bo(e) > LK (3 2)?((minSealiss ) )
0 g = 8 ) S‘ (S .g)

with equality if and only if Scal s ;) is constant, hence if and only if g and h are
isometric (by Obata [163]). To see this, one can use the conformal invariance of
the conformal Laplacian

1
u — Agu + -8-Scal(5"-g)

If g = v*h, one gets, as in the proof of Theorem 5.8, that for any u € C*(S%),
Js3 1Vul? dv(g) + 552 Bo(8) f5: u? dv(g)
(Je luldu(g))'”
_ [ IV@v)Pduh) + 3 [ (uv)? dv(h)
- ([ luvlt dv))'”
S5+ (gap@o(8) — § Scalis g Jv*(uv)* du(h)
(fss luvl® dv(h))'/3

Hence, taking u = 1 in this equality, one gets that

1 1 1 1 1 .
< .
XG.27 = KG.2) + w;/s /y (K(3, 27 Bo(g) 3 Scal(sz‘g,)v dv(h)

As a consequence,

1 1
n}z}x (K(3, 2)? Bo(g) — 3 Scal(ss_g,) >0

with the property that in the case of equality to 0, Scal(s: ;) has to be constant. This
proves the above claim.

5.4. The Role of By(g)

We have already seen in Chapter 4, Section 4.2, the role played by a,(M).
Namely, a,(M) is connected with the existence of solutions to scalar curvature
type equations

Agu +au = fu+D/=D

where a and f are smooth functions on M. We will see here, as initiated by Hebey-
Vaugon [113), that By(g) is connected with the existence of multiple solutions for
such equations. For the sake of clarity, we deal here with the multiplicity attached
to the Yamabe problem. Similar results have been obtained in [113] when dealing
with the Nirenberg problem.
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Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, let [g] be the
conformal class of g. Namely,

l={g= ut®Dg y e C*(M),u > 0}

According to Aubin [9] and Schoen [175], [g] possesses at least one metric of
constant scalar curvature. Up to some harmless constant, this means that for any
smooth, compact Riemannian n-manifold, n > 3, there exists A € R, and there
exists u € C*°(M), u > 0, such that

Au(n+2)/(n-2)

(E) Agu + SC&!(M.g) u=

n-2
4n-1)
where Scal(y g) is the scalar curvature of (M, g). The problem here is to find con-
ditions on the manifold for [g] to possess several metrics having the same constant
scalar curvature. This reduces again to finding conditions on the manifold for (E)
to possess several solutions. On such a problem, the main results available are neg-
ative ones. Namely, [g] possesses, up to constant scale factors, a unique metric of
constant scalar curvature in each of the following cases:

1. [g] possesses some metric § with the property that f nScaliy g dv(@) <0
(Aubin [9]), or

2. [g] possesses an Einstein metric, and (M, g) is not conformally diffeomor-
phic to the standard sphere (S”, #) of the same dimension (Obata [163]).

Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, its Yamabe func-
tional J is defined on H2(M)\{0} by

Jur IVul* dv(g) + 7555 [,y Scal gy u? dv(g)

(fM |u|2,,/(,,_2) dv(g))(n-Z)/n

According to the resolution of the Yamabe problem by Aubin [9] and Schoen [175],
one has that

J(u) =

. 1
< _
I = Ko 2e

this inequality being strict if (M, g) is not conformally diffeomorphic to the stan-
dard n-dimensional sphere. We also define Cy(g) as the smallest constant C such
that for any u € H}(M),

(n=2)/n

/ |Vu|2 dv(g) + / Scal(p.g) u? dv(g) + C/ u? dv(g)
M 4(" -DJu M
where K (n, 2) is as in Theorem 4.4. Clearly,

K(n,2)*Co(g) < Bo(g) —

4( — l)K(n ,2) (mmScal(Mg))

with equality if Scal(y,) is constant. The first result we prove is the following one
of Hebey-Vaugon [113]:
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THEOREM 59 Let I1 : (M,g) — (M, g,) be a Riemannian covering with b
sheets, b > 1, where (M, g) and (M,, g,) are smooth, compact Riemannian n-
manifolds, n > 3. Suppose that (M, g) is not conformally diffeomorphic to the
standard n-dimensional sphere and that

n l n
Colg) Vol(ysyy < oz (77 = 1)

Then | g] possesses two distinct metrics having the same constant scalar curvature.
PROOF: Let J be the functional defined on H7(M)\{0} by
fM lvulzdv(g) + 4(':,—2]) M Scal(M‘g) u2 dv(g)
(fM |u|2n/(n—2) dv(g))("—z)/"
and let J; be the functional defined on H, 2(M,)\{O} by
fM. [Vul? dv(g) + 3255 4(n-l) fM. Scal(, q,) u? dv(g))
(fM, |“|2"/(" —2) dv(g.))(" 2)/n

From the resolution of the Yamabe problem by Aubin [9] and Schoen [175], one
gets that there exists u € C*°(M), u > 0, and u; € C*(M,), u; > 0, such that

J(u) = irgf](v) , Ji(uy) = itJfJg(v)

J() =

Ji(u) =

Without loss of generality, since J and J; are homogeneous, one can assume that
u and u, are both of norm 1 in L?(M) and L?(M,), where p = 2n/(n — 2). Then
u and u, are solutions of

n-2 -
Agu + m Scaly.g)u = Au” I

—1

Ag,ul + Scal(M,.g,)u, =A|uf

n-2
4n—-1)
where A = J(u) and Ay = J(u)). Set 4 = u, o I1. Then #& is a solution of

., n=2 - ~pe
Agu + m Scalp )4 = AP !

on M. On the one hand, still from the resolution of the Yamabe problem by Aubin
[9] and Schoen [175], one has that

1
J(u) < K27
On the other hand, by the definition of Cy(g;),
1
~ 2/n > 2/n _ 2
J(@) = b*"J(uy) = b° (K(n,2)2 Co(g.)[MI u,dv(gu))

Since u, is of norm 1 in L? (M),

_/,‘” Ui dv(g)) < Vol(MI o = p2/n V°1(21{4".3)
|



5.4. THE ROLE OF By(g) 153

Hence, one will have that J(u) < J (&) if

1 1
2/n _ =2/n vy 2/n
b (K(n,2)2 Colgn)b °"”~8’)2 K@, 27

This is the inequality of the theorem. Under such an inequality, one then gets that,
up to a constant scale factor, u*/"~?g and #*"~2g are distinct but have the same
constant scalar curvature. Clearly, this proves the theorem. a

As aremark, note that the value of the constant scalar curvature has no interest
when dealing with such a problem. The point here is that if A > 0, then

1
Scal(M.Ag, = X Scal(M_g,

so that any value can be prescribed. More generally, with the same arguments than
those used in the proof of Theorem 5.9, one easily gets the following result, also
due to Hebey-Vaugon [113].

THEOREM 5.10 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
andlet T1; : (M, g) - (M;, g;) be m Riemannian coverings with b; sheets, 1 <
by < -+ < by,. Set by = 1 and assume that foranyi =1,...,m,

1
2/n 2/n 2/
Co(8) Voljps o) < K@ 2)? (bi - bi-';)

with the additional property that (M, g) is not conformally diffeomorphic to the
standard n-dimensional sphere. Then [g] possesses m + 1 distinct metrics having
the same constant scalar curvature.

A simple computation shows that for J the Yamabe functional on (M, g), and

u a smooth positive function on M,
4n—-1)
n—-2

where § = u*/"~2g_ For u such that it realizes the minimum of J, one then gets
that § = u*/"-2g has constant scalar curvature A, and that
(n—2)A ol2/"
4n—1) ™MD
Coming back to the proof of Theorem 5.9, and by extension of Theorem 5.10, we
set Mo = M and Iy = Id. As one can easily check, the m + 1 metrics of Theorem
5.10 are of the form g; = (u; o I1;)¥"2g, i = 0,..., m, where the u;’s realize
the minimum of the Yamabe functional J; on M;, and if J, = J is the Yamabe
functional on M,

J(u) = Vol(',,(,'fg)z)/ " [u Scal(p. ) dv(g)

J(u) =

J(w) < J(v) < --- < J(vm)

where v; = u; o I1;. Noting that J(v;) = b,~2/ "J:(u;), and according to what has
been said above, one then gets that

VOl(M,go) < VOl(M_g|) < - < VOI(M,gm)
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In other words, the metrics of Theorems 5.9 and 5.10 are distinguished by their
volumes. In particular, one can get more distinct metrics having the same constant
scalar curvature in the presence of symmetries.

When dealing with multiplicity for the Yamabe problem, only very few explicit
examples are known. First, one has the case of the standard unit sphere (S", h)
where the structure of the set of conformal metrics to h having the same constant
scalar curvature is explicitly known. Namely, g € [h] is such that Scal(s» gy =
Scal(s» 1y if and only if there exists a conformal diffeomorphism ¢ of (5", k) such
that g = ¢*h. In particular, g and 4 have the same volume. Then, one has the
case of the product manifold S'(T) x S"~!, as first studied by Schoen [176). In
Schoen’s study of S'(T) x $"~!, the main point is that the scalar curvature equation
on S'(T) x S"~! reduces to some equation on R. Here again, one has a rather
explicit description, depending on the parameter T, of the set of conformal metrics
having the same constant scalar curvature. As done in Hebey-Vaugon [113], one
recovers the multiplicity part of Schoen’s result by using Theorem 5.10. This is the
subject of the following:

COROLLARY 5.1 Let S'(T) x S"~!, n > 3, be endowed with its standard product
metric gr. For any integer k, there exists T (k) > O such that for any T > T (k),
[g7] possesses k distinct metrics having the same constant scalar curvature. More-
over, these metrics have distinct volumes.

PROOF: Let G;,i = 1,...,k, be k finite groups of rotations on S’ of order
b; = i. One then gets k Riemannian coverings

T
I; : (S'(T) x 8", gr) = (S'(T) x S"",g;)

By Proposition 5.4, as one can easily check,
2

i
Co(gr) < YU

Hence, applying Theorem 5.10, one will get the result if foralli =2, ...k,
i? 2/n 1 2
(i3 _ (i — 1H?/
ﬁ‘z'(ZﬂTwn—l) = K, 2)2 (l n i-1 ")
Clearly, such inequalities are satisfied for T large enough. This proves the lemma.

O

Other specific examples can be deduced from the approach presented here.
Think, for instance, of (H9, ho) some compact, hyperbolic Riemannian g-manifold,
q = 2, having the property that it is a nontrivial Riemannian covering of some other
compact, hyperbolic Riemannian ¢-manifold. Let g, , = ho + h be the product
metric on HY x SP, where (S?, h) stands for the standard p-dimensional sphere.
By Theorem 5.9 and Proposition 5.5, as one can easily check, [g,.,] possesses two
distinct metrics having the same constant scalar curvature provided that p is large
enough. Moreover, one will get a third metric by noting that for p large enough,
J(1) > inf, J(u), where J stands for the Yamabe functional on H? x SP. For p
large enough, [g,, ,] then possesses three distinct metrics having the same constant
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scalar curvature. For more details on the role that By(g) can play when dealing
with the existence of several solutions to scalar curvature equations, including the
case of the Nirenberg problem, we refer the reader to Hebey-Vaugon [113].

5.5. One More Question
By Theorem 5.1, the totally optimal inequality

2/p
( f |u|Pdv(g>) < (M) f Va2 dv(g) + B (M2 / u? dv(g)
M M M

is valid on the standard unit sphere (S", h), n > 3. This leads to the following
question: For which compact Riemannian n-manifold (M, g), n > 3, do we havc
that for any u € H3(M),

2/p
( / u|? dv(g)) <K@»n,2)? f IVu| dv(g) + Vol s, [ u? dv(g)
M M M

where p = 2n/(n —2). A rather natural guess here (which may or may not be true)
would be that if (M, g) is such that (I) is valid, then, up to a constant scale factor,
(M, g) and (S", h) are isometric. On such a question, whose first appearance can
be found in Hebey [108], only very partial answers have been obtained. Let us start
with the following one of Hebey-Vaugon [113]. Regarding terminology, we say
that U is a conical neighborhood of some subset A of H,Z(M ) if it is a neighborhood
of A in H3(M) which satisfies that for any u € U and any A > 0, Au € U.

PROPOSITION 5.6 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 3, and of constant scalar curvature. Let | be the first nonzero
eigenvalue of the Laplacian A, associated to g, let v = Vol (y g be the volume of
(M, g), and let w, be the volume of the standard unit sphere (S", h).

() If (1) is valid, or more generally, if there exists some neighborhood U of
A = {1} in HX(M) such that (1) is valid for any u € U, then X, > na?/".

(i) Conversely, if A, > n(%)z/ " there exists a conical neighborhood U of
A = {—1, 1} in H(M) such that (1) is valid for any u € U.

PROOF: Let H be the functional defined on H2(M)\{0} by
1 Ilullﬁ,./(,._z)
Hu) = (——— - J(u))—
K (n,2)? fluell3
where || - ||, stands for the L?-norm of (M, g) and J is the Yamabe functional
Jur |Vul?dv(g) + 2255 [,y Scalm g u? dv(g)
(f,, lul2nln= z’dv(g))("_z)/"

For Cy(g) as in the preceding section, Co(g) = sup, H (1), so that

J(u) =

Bo(g) = K(n,2)2(Scal g ) + K(n, 2)2(sup HW)

4( l)
when Scal () is constant.



156 5. BEST CONSTANTS IN THE COMPACT SETTING 1I

First, we prove point (ii) of the proposition. For u € H?(M), as one can easily
check,

H '(l) u=
fM Scal(m.g) dv(g)
2(n - l)v v

Hence, 1 is a critical point of H if and only if Scal(x.g) is constant. In such a case,
one has that

’ 1 2
H'(1) - ) = fM Vul? dv(g)
2/n 2
+ﬁ(.‘i’ﬁ) (/ 2 dv(g) - Jut V@) )
v\ v M v

W= {1 +u, u € H}(M), / udv(g) = ol
M
When restricted to W, H is such that

2/n
H"(l)-(u,u)=1(n(ﬂ) / W2 dv(g) — / |Vu|2dv<g))
1) v M M
2/n
<5 (w (“’) —1) [ 1vuavie)
v v M

Assuming that A, > n(%l)z/", one then gets that —H”(1) is coercive. Hence,
the constant function 1 realizes a local maximum of H on W, and since H is
homogeneous, this leads to point (ii).

Let us now prove point (i). Suppose that 1 is a local maximum of H. Then
H"(1) - (u,u) <O forall u € H2(M). In particular, for any u € H>(M) such that

udV(g)—LSCd(M_g) udv(g))

Set

Juudv(g) =0,
w 2/n
o(2)" [ i < [ murave)
v M M
Hence,
2
=o(3)
v
and this ends the proof of the proposition. 0O

As a consequence of Proposition 5.6, (I) is satisfied by an infinite number of
nonhomothetic functions on the projective space (P"(R), g). Conversely, one has
the following result. In its statement, n = 3 can be replaced by n odd, and the idea
extends to products §'(f) x $"', 1 « 1.

PROPOSITION 5.7 There exist standard quotients of the standard 3-sphere where
(1) is not valid.
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PROOF: Consider S*> C R* = C?, and for k integer, let G, = {0/} be the
finite group generated by o}, where
oz 7) =¥ (2, 2)

It is clear that G, acts freely on S3. Set P, = S3/G;, and let g; be its stan-
dard metric induced from the standard metric & of S3. Let also u be the function
u(z, 2") = |z|*. Since u is Gi-invariant for any k, it defines some function u; on
P,.. Suppose now that for any k, (I) holds on (P, g;). One would have that for any
ks

173
( |uk|6dv(gk)) <K@, 2)2[ [Vui|* dv(gs)
Py Py

+Vol(,fk/;“f u,fdv(gk)
L

and hence that for any k,

1/3
(/33 u6dv(h)) <KMn,?2) k2/3/ |Vu|2dv(h)
+ ; ~/3/ w2 dv(h)
53

Letting k goes to +00, this would mean that

1/3
(/ u"dv(h)) _<_w3_2/3[ u?dv(h)
s3 s3

Since u is nonconstant, such an inequality is false. This proves the proposition. O

Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, denote by
Yam(M, g) its Yamabe energy. By definition,

Yam(M, g) = W,[ Scalp.q) dv(g)

(M.g)

where Scal(y ;) is the scalar curvature of (M, g). As an easy consequence of
Proposition 5.1, one has the following result:

PROPOSITION 5.8 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 4. If (1) is valid, then Yam(M, g) < Yam(S", h).

PROOF: If (I) is valid, one gets by Proposition 5.1 that for any x € M,

- -2
Vol, /3/;) 4( D —— K (n,2)*Scaly, &)
Integrating such an inequality over M leads to
4a(n —
Yam(M, g) < — D

~ (n—2)K(n,?2)?
that is, Yam(M, g) < Yam(S", k). This proves the proposition. a
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Combining Proposition 5.8 and the well-known fact that for any g in the con-
formal class of h one has that Yam(S$”, g) > Yam(S$”, h) with equality if and only
if g has constant sectional curvature (see, for instance, [142]), we then get that the
guess mentioned at the beginning of this Section is true in the conformal class of
the standard metric h of S", n > 4.

PROPOSITION 5.9 Let g be a Riemannian metric on S", n > 4, conformal to the
standard metric h. If () is valid for (5", g), then, up to a constant scale factor, g
and h are isometric.

Independently, combining Propositions 5.6 and 5.8, we get the following:

PROPOSITION 5.10 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 4, and let A\ be the first nonzero eigenvalue of the Laplacian A,
associated to g. Assume that the scalar curvature of (M, g) is constant. If (I) is

valid, then
1
Scal
1 cdwe

where Scal(y ) is the scalar curvature of (M, g).

Ay >

With regards to such a proposition, note that, as proved by Aubin [9], the
inequality

Ay 2

n—1 Scal(M‘g)

is also satisfied by Yamabe metrics. By definition, a Yamabe metric is a metric
which realizes the infimum of the Yamabe energy in its conformal class. On the one
hand, Yamabe metrics have constant scalar curvature. On the other hand, thanks
to the resolution of the Yamabe problem by Aubin and Schoen, every conformal
class possesses at least one Yamabe metric. Coming back to Proposition 5.8, one
can also prove that any Yamabe metric g on a compact n-manifold M is such that

Yam(M, g) < Yam(S", h)

With respect to Propositions 5.8 and 5.10, metrics for which (I) is valid look very
much like Yamabe metrics. The following result is an easy consequence of Theo-
rem 5.5 of Bakry and Ledoux.

PROPOSITION 5.11 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 3. If (1) is valid, then

diamy g) Volgy's) < diam(sn 4y Vol g/
where diam stands for the diameter, Vol for the volume, and (S", h) is the standard
unit sphere of R"*!, for which diams« ») =  and Vol(sn 4, = w,.

PROOF: The proof is by contradiction. Suppose that (I) is valid and that
diamqpy.g) Volgy s > ;"

Clearly, (I) and diamyy, ) Vol(',‘:{ ;) are scale invariant. Up to rescaling, one can then

. -1 -1
assume that diamy ) = m. As a consequence, VolW{;') > wy;'/" and we get that
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for any u € H*(M),

(n—2)/n
([ weerag) " <
M

4 [ -2/n 2
|Vui® dv(g) + Vol /u dv(g)
n(n —2) Voliyy ,, Im 8

By Theorem 5.5, letting f = r, the distance function to some suitable point in M,
leads to the existence of some nonconstant ug € H ,2(M ) such that

(n=2)/n
( f luo |2/~ dv(g)) =
M

4 -2
Vuol* dv(g) + Vol "'/ ul dv
n(n-2)Volf,{,"_g)/,:,l of"dv(g e [ U0 &

Independently, and since (I) is valid, one also has that

(n=2)/n
(/ luOIZn/(n—Z)dv(g)) <
M

4 / ~2/n
—————— | [Vuo|*dv(g) + Vol ] uydv(g)
n(n —2)wy" Iu Vol vl o) [, K04V
The fact that f,, |Vuol|? dv(g) # O then implies that Vol 7'+, < w, /", which is the
contradiction we were looking for. This ends the proof of the proposition. g

Finally, as a straightforward application of what has been said in Section 2.9,
one gets the following:

PROPOSITION 5.12 For any A > 0 there are only finitely many diffeomorphism
types of compact Riemannian n-manifolds (M, g) for which | K g) IVol(z,{,'" o <A
and (1) is valid simultaneously, where Ky g) denotes the sectional curvature of
(M, g).






CHAPTER 6

Optimal Inequalities with Constraints

We discuss in this short chapter conditions under which one can lower the value
K (n, q) of the best possible A in the generic Sobolev inequality (I},,gen) of Chapter
4. More precisely, we show that orthogonality conditions allow one to lower the
value K (n, g) of the best possible A in (I",’gen). The discussion includes the general
case of a compact manifold in the first section, and the special case of the sphere
in the second section. In the third section we discuss simple applications of these

results to the Nirenberg problem.

6.1. The Case of an Arbitrary Compact Manifold

The results of this section have their origin in the work of Aubin [11]. Ex-

tensions to complete manifolds can be found in Hebey [108]. We start with the
following result (Aubin [11]):
THEOREM 6.1 Let (M, g) be a smooth, compact Riemannian n-manifold, let q €
[1, n) be real, and let p be suchthat 1/p = 1/q — 1/n. Letalso f;,i =1,..., N,
be N changing sign functions of class C' satisfying that Z,N: | 1 filf = 1. For any
€ > 0 there exists B € R such that

q/p
(f Iulpdv(g)) < (K(z':’/f)q +e)/ IVul? dv(g) + B/ [u|? dv(g)
M M M

for any u € H{ (M) satisfying
[ sasietup vy =0
M

foralli=1,...,N.

PROOF: We proceed as in Aubin [11]. For f : M — R set f, = max(f, 0)
and f_ = max(—f,0) sothat f = f, — f_. If u € H} (M) satisfies the orthogo-
nality conditions of Theorem 6.1, then, for any i,

/ (fia) P dvg) = / (fi-)PlulP dv(g)
M M

Independently, f;,u, as well as f;_u, belong to H/(M). By Theorem 4.5 we then
get that for any & > 0 there exists B’ € R such that for any i and any u € H/ (M),

qa/p
( f | fizul? dv(g)) <(K(n, q) +¢) f IV(fizw)|? dv(g)
M M

+B f | franl? dug)
M

161
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Suppose now that u satisfies the orthogonality conditions of Theorem 6.1 and that
[ Gt ave) 2 [ 9w dute)
M M

Then,

q/p
( / If.-ul”dv(g))
M

q/p
- 2""’( fM Ifi-ul"dv(g))

<27 (K0 +2) [ (VUi dote) + 2778 [ 1fi-ulr avie)
<2977\ (K (n, )7 + e)( fM VCiowl dute) + fM V(s dv(g))
+29/P B’ fM | fiul? dv(g)
<27 (K (n, g +¢) fM V)l du(g) + 297 B’ /M |l du(e)
since 1/p = 1/q — 1/n and

IV(fi-)l? + |V (fisw)|* = [V(fiu)l?

almost everywhere. Noting that the result would have been the same under the
assumption

[M V(i) du(g) > /M V(i) dv(g)

we get that for any ¢ > O there exists B” € R such that for any i and any u €
H{ (M) satisfying the orthogonality conditions of Theorem 6.1,

q/p
( f Ifiul”dv(g)) < (K(”"’)q +s) f IV(fu)l? dv(g)
M 24/n M

+B" f | fiul? du(g)
M

6.1)

One can then proceed as in the proof of Theorem 4.5, with | f;|? in place of #;.
Let ¢ > 0 be given, and let u € H/ (M) satisfying the orthogonality conditions of
Theorem 6.1. Then

N N
<D WAl g =D I fiull?
i=1 i=1

llully = e llp/q =

N
> 1filul
i=l

where ||-||s stands for the norm of L*(M). Coming back to (6.1) with % in place of
&, one then gets that for any u € H; (M) satisfying the orthogonality conditions of

r/q
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Theorem 6.1,

q/p
( [ lul? dv(g))
M

K(na Q)q € N
= (—m + 5) ; fM (I£:11Vul + IV £1)? dv(g)

N
+8' Y [ 1l dote)
i=1

K(n,q)? ¢ ~ a1 £.19 q-1 (q-1
5(W+§)L§(|wl Ll + wl Vel 1V £11£19 Dl

+ v|ul?|V £;|7)dv(g) + B” / {ul? dv(g)
M

K(@n,q)? ¢ _
5( 'zq—/:l +§)("V“"3+#NHIIWIIZ "ully + vNH u))?)

+ B”/ |ul? dv(g)
M

by Hoélder’s inequality, where w and v are such that
A+ <1+put+vt?

for any ¢ > 0 (for instance, i = ¢ max(1,2972) and v = max(l, 29~2)) and where
H is such that for any i, |V f;] < H. From now on, let &5 > 0 be such that

K(n,g)? e K(n,q)?
(7/“”—4'5)(1 + &) < 2"7+€

For any positive real numbers x, y, and A,
gx"'y < Mg — Dx? + A1y

By taking x = [[Vullg, y = |lull;, and

A=—T2%0
ug—-1)NH

one then gets that for any u € H{ (M),
#NHIIV“"Z_' lully < eollVulli + Cliull]

where

C_uNH( g0 )""
q \u(@-—-1)NH
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Hence, for any u € H{ (M) satisfying the orthogonality conditions of Theorem 6.1,

q/p
( f |u|"dv(g))
M

< (K(n_,q)q + f)(1 +so)/ |Vul? dv(g) + Ef Jul? dv(g)
M M

29/n 2
K(n,q)? ~
< ( @ a)y e) f IVul? dv(g) + B/ lul? dv(g)
2q/n M M
where
> K(n' q)q 2 q ”
B= (—qu—n-+§)(c+wvy )+B
Clearly, this ends the proof of the theorem. O

In the case ¢ = 2, one gets more than Theorem 6.1. More precisely, one has
the following:

THEOREM 6.2 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
let p=2n/(n—-2),andlet f;,i = 1,...,N, be N changing sign functions of
class C' satisfying that "%, f2 = 1. There exists B € R such that

2/p 2
([ Iul”dv(g)) < 5%,—3)—/ IVulzdv(g)+B/ u® dv(g)
M 2 M M

for any u € H}(M) satisfying
L filfilP~" u)” dv(g) =0

foralli=1,...,N.

PROOF: We proceed as in the proof of Theorem 6.1, but using Theorem 4.6 in-
stead of Theorem 4.5. For f : M — R, set f; = max(f, 0) and f_ = max(—f, 0)
sothat f = f, — f_. If u € H}(M) satisfies the orthogonality conditions of The-
orem 6.2, then for any i,

f (i) Plul? dv(g) = ] (fi)Plul? dv(g)
M M

Independently, f;,u as well as f;_u belong to H}(M). By Theorem 4.6 we then
get that there exists B’ € R such that for any i and any u € H2(M),

2/p
( /M | fizul? dv(g)) <K@»,2) L IV (fiew))* dv(g)
+ B’ fM (fizw)’ dv(g)
Suppose now that u satisfies the orthogonality conditions of Theorem 6.2 and that

[ V(s do(g) > fM IV(fiew)l? dv(g)
M
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Then,

2/p
( f IﬁuI”dv(g))
M

2/p
- 22/"( f Iﬂ-u!”dv(g))
M

<2PK(n,2)? f IV(fi-w)I* dv(g) + 2*/P B’ f (fi-w)*dv(g)
M M
< 22/”"K(n,2)2( [ ViR dvig) + [ |V<f.~+u)|’dv<g>)
M M
+2%Pp f (fiw)* dv(g)
M

<27k (n, 2)? f lV(ﬁu)|2dv(g)+22’”B'/ (fu*dv®)
M M

since 1/p=1/2~1/n and
IV(fi-)? + IV (fis))* = IV (fiw)|?

almost everywhere. Noting that the result would have been the same under the
assumption

[ IV(fiow)Rdu(g) = f V(S dv(g)
M M

we get that there exists B” € R such that for any i and any u € H2(M) satisfying
the orthogonality conditions of Theorem 6.2,

2/p
©2) ( fM lﬂuI”dv(g)) <

K(n, 2 2 "
_(2’;72"/ IV(fiu)]> dv(g) + B [ (fiu)2dv(g)
M M

One can then proceed as in the proof of Theorem 4.5 or Theorem 6.1, though the
argument here is slightly simpler. Given u € HZ(M) satisfying the orthogonality
conditions of Theorem 6.2, we write that

N
Z fa?

i=]

2 2
Nll? = Nl =

N N
<D NPl =Y N fiul
i=1 i=1

p/2 i




166 6. OPTIMAL INEQUALITIES WITH CONSTRAINTS

where ||-||; stands for the norm of L*(M). Coming back to (6.2), one then gets that
for any u € H2(M) satisfying the orthogonality conditions of Theorem 6.2,

2/p
([ lul”dv(g)>

2
= K(;,,.Z) Zf (fAIVuP + @ |V fiF + uV'uV, £;)dv(g)

By [ Gt ave

K(n,2)?
< K(n,2y [ |Vul*dv(g) + (B” + NH?) / u*dv(g)
22n Jy M

where H is such that for any i, |V f;| < H. Clearly, this ends the proof of the
theorem. ]

6.2. The Case of the Sphere

We present here a result of Aubin [11]. As one will see in the next section,
such a result has nice applications when dealing with the Nirenberg problem. In
what follows, (S”, h) denotes the standard unit sphere of R"*'.

THEOREM 6.3 Let (§;)i—1....n+1 be the first spherical harmonics obtained by re-
stricting the coordinates x; of R"*! to S", and let (S", h) be the standard unit
sphere of R"*'. Let & > 0, let q € [1,n) be real, and let p be such that 1/p =
1/q — 1/n. There exists B € R such that

q/p q
( |u|”dv(h)) < (KL"’)- +s) |Vul? du(h) + B j ul? dv(h)
sn 2(]/" sn sn

forany u € H}(S") satisfying Vi = 1,...,n +1, [, &u|? dv(h) =0

PROOF: Let n € (0, %) real to be chosen later on. Let also A be the vector
space of first spherical harmonics. Following Aubin [11], we claim first that there
exists a family (&;)i=i...x € A such that

k
1+1n< Z|g,-|‘"" <142
i=l

with the additional property that |&;| < 277 for any i. Indeed, let P be in " and
let rp denote the distance to P. The function £p = cos(rp) belongs to A and, as
one can easily check,

/ |€p|9/? dv(h) = const
sll

in the sense that the integral does not depend on P. From such a property of the
family (&£p) pesn, One easily gets the existence of (§;)i=...x. From now on, let A;
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of class C' be such that h;£; > 0 everywhere and such that

|lhi1? — 11977 | < (ﬂ)p
k

k
1<) |hil? <143n

i=]

while by the mean-value theorem,

Then,

B p
12— g1l < 21977 2)”)" hol9 — |£.19/P E(ﬂ)
[1hi] I‘s'.llsq(l‘;':l +(k [1h:17 = 1&] |Sq p

Let B, real be such that for any u € H}(S"),
q/p
( |u|”dv(h)) <K@,g)( +'7)f |Vu|"dv(h)+B,,f |u|? dv(h)
sn sn sn

For u nonnegative in H'(S"), one can write that

q/p q/p
( f u”dv(h)) =( f (u")p/qdv(h))
n Sll
k r/q q/p
s( / (Zlhil"uq) dv(h))
" Ni=l

a/p
([ Ghitey™ aoen))

q/p
( |h,~|"u"dv(h))

sn

IA

k
i=1
>
i=1
Given f : " = R, let f, = max(f,0) and f_ = max(— f, 0). For u nonnegative
in H/(S") such that for all § € A

f £u? dv(h) =0

one has that
EiyuPdv(h) = | &_uP dv(h)
Sn Sn
Hence, for u as above,

q/p
( lhii”u”dv(h))
Sll
q/p
= (/ (hz+)”u”dv(h)+[ (h;-)”u”dv(h))
sn sn

q/p
< ( & uP dv(h) +£{,’f u”dv(h)+f (h,-_)”u”dv(h))
s’l

" n
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"

q/p
< 2‘"?( / ((hio)? +e(,’)u"du(h))
Sll

qa/p
< 2"/”(/ (hi- + so)pupdv(h))

<29PK(n,q)"(1 +n) [ |V((hi- + £0)u)|* dv(h)
sn

q/p
= ( E_uP dv(h) + egf u? dv(h) +/ (hi-)Pu? dv(h))
Sl! sll

+ B, (hi— + €0)u? dv(h)
S”

where go = (£)!/7]. Similarly,

q/p
( |h,~|"u"dv(h)) <29PK@n,q)"(1 + n)/ |V ((his + eoyu)|’ dv(h)
s sn
+ BI)/ (hi+ + 30)quq dv(h)
s"

Set

and let 4 and v independent of i and u such that

/; IV((hid: + eo)u)l" dv(h)

< f (hix + £0)°|Vul® du(h)
Sn

(9-1)/q 1/9
+/.LH( |Vul? dv(h)) ([ u? dv(h))
SII n

+vH"/ u? dv(h)

Let also M, > 0 be such that for x and y nonnegative,

n q
M vi
qu‘x + ﬂy

xly <
Then,
f |V (hiz + g0)u)|* dv(h) < / (hix + £0)?|Vul|? dv(h)
st s"

+ % (Vul? dv(h) + M, / u? dv(h)
sll sll
+ vH"f u? dv(h)
Noting that for  small, h;3 + &0 < 1, one gets that

(h,’i + So)q < h?i + Q(hi:!: + eO)q_leo < h?d: + qéo
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As a consequence, for u nonnegative in Hy (S") such that for all ¢ € A
EuPdv(h) =0
sn

one gets that

k
<y [2%"K(n, 9)'( +n) f |V ((hi + eo)u)|* du(h)
sll
B,
45 f (hi- + €0)Tu? dv(h)
2 Jon
+25 'K (n, q)7(1 + n)/ |V ((his + g0)u)|? dv(h)
sn
+ E—'L/ (hiy + &0)?u? dv(h)]
2 Jen
k
<257'K@m, )" (1 +1) > [/ (hi— + £0)*|Vul? dv(h)
i=l st

+ f (his + 0| Vul? do(h)
SII

+22 | \vuir dvny + C, f u"dv(h)]
k S’l Sﬂ

k
<2:7'K(n,q)'(1 + n)[ f ( > Ihfl")IVuI" dv(h)
S Nz
+2qkeof IVulqdv(h)+2nf IVuj? dv(h)]
sn sn

+ kC,',/ u? dv(h)
S"

where C, and C;, do not depend on u. Hence, for u nonnegative in H," (S") such
that forall £ € A

/ EuPdv(h) =0
Sll
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one gets that

q/p
( / u? dv(h))

<277 'K, 9)7() + n)[1 +377+2qk£o+2n]/ |Vul? dv(h)
sn
+C~‘,,f u? dv(h)
sn
“ p I/p
<2 K(n,q)q(l+n)[l +3r7+2q(-‘;) n+2n:|f |Vul? dv(h)
Sll

+C, | u?du(h)
sn

where C’,, does not depend on u. Given ¢ > 0, one can now choose 7 small enough
such that

I/p K q
2%_'K(n,q)"(l + n)[l + 37 +2q(-§) n+2n] < —(2’:'/—:1) +¢€

Clearly, this proves the theorem. 0O

6.3. Applications to the Nirenberg Problem

Let (8", h) be the standard unit sphere of R"*'. For the sake of clarity, we
assume in what follows that n > 3. The conformal class of &, denoted by [A], is

[h] = {g =u¥"Dh, ue C®(S"), u > 0}
As already mentioned in Chapter 4, if g = u*~?h is a conformal metric to A,

then
(n+2)/(n=2)
Scal, u

Apu + n-2 Scal, u = n-2
T -1 M T T

where Scal, and Scal, denote the scalar curvatures of 4 and g. Set

8([h]) = {f € C*(S") s.. f is the scalar curvature of
some metric conformal to h }

The Nirenberg problem, also called the Kazdan and Warner problem, consists of
describing the set §([#]) of scalar curvature functions of conformal metrics to h. In
other words, one will have to find conditions on some smooth function f on S" for
f to belong to $([k]). Up to some harmless constant, and since Scal, = n(n — 1),
this is equivalent to finding conditions on f for the existence of u € C®(S"),
u > 0, solution of the equation

n(n —2) u= furtd/e-2

(E) A;,u +

Multiplying (E) by  and integrating over S", one sees that maxs» f > 0 is a neces-
sary condition for f to belong to 8([k]). Contrary to similar problems on compact
manifolds distinct from the sphere, such a condition is not the only necessary one,
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as discovered by Kazdan and Warner [130]. As one can easily check, given (M, g)
some Riemannian manifold, and u, v smooth functions on M,
2(Vu, Vv)Agu = (2V2v + (Agv)g) - (Vu, Vu)

where (-, -} is the scalar product associated to g, and where = means that the equal-
ity holds up to divergence terms. Suppose now that we are on the sphere, and let &
be some first spherical harmonic on S§". Namely, £ is an eigenfunction associated
to the first nonzero eigenvalue A, = n of A,. One has that

2V2E + (Ané)h = (n — 2)Eh
As a consequence of what has been said, one gets that for any smooth function u
on §”, and any first spherical harmonic £ on §”,
2(Vu, VE)Apu = (n — 2)€|Vul?
But
E|Vu)® = —%!,-‘(A;.u)2 +Eulpu = —%nuzé + Eulyu

so that for any smooth function u on S”, and any first spherical harmonic £ on S”,
1
2(Vu, VE)Apu = —(n — 2)(§nu2§ - guA,,u)

Suppose now that u is a solution of equation (E) for some f € C*°(S"). Noting
that

2fu(n+2)/(n—2)(vu’ VS) = _” ; 2u2n/(n-2)(vf, VE) + (” _ 2)fu2n/(n—2)s

and that n
u(Vu, VE) = -2-u2§‘

one gets that

W=V f,VE) = 0
In other words, if f € C*(S") and u € C*(8"), u > 0, satisfy (E), then for any
first spherical harmonic £ on S”,

f (Vf, VEW "D dy(h) =0
Sll

Such a condition is known as the Kazdan-Warner condition. In particular, one
sees that for any ¢ > 0 and any first spherical harmonic &, functions of the form
f = 1+ ¢&, though as close as we want to the constant function 1 for which
(E) has a solution, are not the scalar curvature of some metric conformal to A.
Moreover, by conformal invariance of the problem, one gets that for any conformal
diffeomorphism ¢ of (S”", h), and any first spherical harmonic § on §”, f = 14+&0¢
does not belong to $([A#]). Conversely, as a nice and simple application of Theorem
6.3, one can prove the following result (Hebey [104]):

THEOREM 6.4 Let f € C®(S") be such that maxg: f > 0. There exists a first
spherical harmonic § on S" and a conformal diffeomorphism ¢ of (S", h) such
that f — (& o @) is the scalar curvature of some conformal metric to h.



172 6. OPTIMAL INEQUALITIES WITH CONSTRAINTS

The history of this result goes back to the work of Aubin [11]. It was proved
there that for f € C*°(S"), f everywhere positive and such that

1/(n=2) s
mﬁx f <4 min f
there exists a first spherical harmonic £ on S” with the property that f — £ is the

scalar curvature of some conformal metric to 4. In what follows, let A be the space
of first spherical harmonics, and for f € C*°(S") and q € (1, p], let

Ajq =
{u € H,Z(S"), u=>0, f fuldv(h) =1, / Euldv(h) =0, VE € A}
sn sn

where p = 2n/(n — 2). Let also
Arg = inf I(u)

UEAf,

where [ is the functional defined on H,z(S") by

Tw) = [ |VuPdvh) + nin —2)
sn 4 Sn

In order to prove Theorem 6.4, we first prove the following:

u?dv(h)

LEMMA 6.1 Let f be a smooth function on S" and q € (1, p) real. Assume either
that |, sn S dv(h) > O or that f is positive at two antipodal points of S". Then Az,
as defined above is attained. In particular, there exists u, € Ay, u, smooth and
positive such that I(u;) = Ay, and such that the Euler-Lagrange equation

nn-2)

Apug + Uy = Af-q(f - Ef.q)“z_l

is satisfied for some &, € A.

PROOF: As a first remark, note that Ay, is not empty. Indeed, the condition
that f is positive at two antipodal points of S” implies that there are globally sym-
metrical functions in Ay, i.c., functions such that u(x) = u(—x) forall x € §",
while the condition |, sn S dv(h) > 0 implies that there is at least one positive con-
stant in As,. Let us now consider (4;) € As, a minimizing sequence for Ay ,.
Since the embedding of H,z(S") C L9(S") is compact (Theorem 2.9), we may
suppose, up to the extraction of a subsequence, that there exists u, € H2(S") such
that

L u; = ug in HX(S"),

2. u; = ug in L*(S™),

3. uj = u, in L9(S"), and

4. ui > u,ae.
The strong convergence in L7(S") together with the convergence almost every-
where implies that u, € Ay,, while the weak convergence in H2(S") together
with the strong convergence in L2(S") implies that I(ug) < Apq. As a conse-
quence, u, realizes As,. Maximum principles and regularity results then end the
proof of the lemma. O
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Together with such a result, one gets easily that

(6.3) limsupAs, <As,
9-p

Indeed, let u € Ay, u > 0 and bounded, be such that 7(u) < As, + &, ¢ > 0. Set
v, = uP/9. Then, as one can easily check, v, € Ay,. Hence, A, < I(v,). But

lim I(vy) = I(u)
9—p

As a consequence,

limsupAs, <As,+¢
g-p

for all ¢ > 0. This proves (6.3). Independently, and as an easy consequence of
Theorem 6.3, one has the following:

LEMMA 6.2 For any ¢ > O, there exists B, € R, and q. € (1, p) real, such that

n/(n+q) 2 nq/2(n+q)
( f el dv(h)) < (@_z_) +e)( f (Vuf? dv(h))
n 22/n 5"
nq/2(n+q)
+Be(/ uzdv(h))

for any q € (q., pl and any u € H,z(S”) such that fs,, Elul?dv(h) = O for all
£ eA.

6.4)

PROOF Fors € [1, n), let x(s) = ;*. Then x is strictly increasing and goes
from 2= to +o00. For ¢ < p close to p, let s, < 2 be such that x(s;) = q, that is,
Sq = ;- Given go < p close to p, and £ > 0, one gets from Theorem 6.3 that
there exists Bo > 0 such that for any u € HZ(S") satisfying f. £jul® dv(h) =
forall £ € A,

nl

(6.5)

1/90 K(n, s,) 1/sqg 1/sg
(/;" lu]% dv(h)) < (# + ) (/ |Vujeo dv(h))
I/sq0
+ Bo(/ u*4o dv(h))

Let g € (qo, p), and for u € H?(S") satisfying fsn Elul?dv(h) =O0forall& € A,
set ¢ = |u|?/%. Then fsn Elpl®dv(h) = O for all £ € A. Moreover, one has by
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Holder’s inequalities and (6.5) that

1/90
( |ul? dv(h))
Sil

1/90
=( |(0|q°dv(h))
sn
K(n,sg)%0 & Vsao s Vs
s( aln T3 fs |Vel*e dvu(h)

/549
+Bo( f o dv(h))
SIY

K(n,s;)'n g\ g (& =Dse0 100015 e
-(Wm—*E I L, wt & orvure v

(L-1)s Msa
+Bo( f | "°|u|‘vodv(h))
sﬂ

S, 1/s (Sg—540)/5¢S
< K(n, Sqo) 90 + E qoi 'ul(;l%-l)s,,os,,/(s,,-sqo) 97700
- 28a0/" 2

qo \ Js»

1/sq
x( |Vl dv(h))
Sn

(sg—549) /54549 1/sq
a_ -
+Bo( / luf 5 P2aota/ ’”°’) ( f Iul"’dv(h))

n s”

Hence, noting that

9 _
Mi =q and 9 Sqo - .l. —_ l
(5q = Sg0) Sq590 9 49

one gets that for any u € H?(S") satisfying that [, £|u|?dv(h) =0 forall § € A,
and for any g € (qo, p),

Vg K Sq 1/54¢ 1/s4
( |u|q dv(h)) < (M")_o + f) i( |Vu|"' dv(h))
s 25"0/" 2 qo sn

1/s4
+ Bo(/ lul® dv(h))

Independently, and by Holder’s inequalities,
o
|Vul* dv(h) < ( f qulzdv(h)) wy
Sll

92 o son
|u|* dv(h) < (/ u? dv(h)) WS 59/
sn sn

SII
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Hence, for any g € (qo, p), and any u € H7(S") such that f, &|u|* dv(h) = O for
all§ € A,

1/q
( Jul? dv(h))
s"

@=sy2sy [ K, 50)0 &' 172
< oy “'(—E",’:’,—+§ 8 |Vul? dv(h)

172
+ Byl 5 ( / u? dv(h))

We now choose gp < p sufficiently close to p such that for any g € (qo, p),

1/s, 2 /s
@~sg)/2so [ K(n,55)°0 &) "% K@n,2) 3e\ "
“r "(—‘—zsqo/n *3) =@ T

2- 2s,
Bowy. %1 < 2B,

One then gets that for any u € H}(S") such that f, &|u|? dv(h) =0 forall § € A
and for any q € (4o, p],

/g 2 1/sq 112
( lue| dv(h)) < (_K(sz/z)_ + ?) ( [Vu)? dv(h))
(6.6) s s

1/2
+ 280( f u? dv(h))

Choose now n > 0 real such that

K@n,2)?* 3¢ K(n,?2)?
(_2'2/”—""2')(1"'7]) < W—"'é‘

Clearly, there exists C,, > 0 such that for any g € [qo, p], and any x, y nonnegative,
(x+ )% < A +nx +Cyy™

Combined with (6.6), one gets that for any ¢ € (go, p), and any u € H?(S") such
that [, £|ul? dv(h) =0 forall§ € A,

sq/q 2 sq/2
( u)? dv(h)) < (K (2';;”2) + e) ( |Vul? dv(h))
sn sn

5q/2
+(2Bo)sqc,,( /S o dv(h))

Noting that for g € (g, pl,
(2Bo)*C, < (1 + 2Bo)°C,
one gets (6.4) with, as a possible value for B,
B, = (1+2By)’C,
Setting g, = qo, this ends the proof of the lemma. a

Now, we prove the following result:
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LEMMA 6.3 Let f be a smooth function on S". Assume either that sn fdv(h) >
0 or that f is positive at two antipodal points of S". If
22/n
il:f I(uw) <
UEASp K(n,2)2(rl}§xf

)(n—Z)/n

then there exists §; € A such that f — & € 8([h])).

PROOF: Let u, be given by Lemma 6.1. As one can easily check, (u,) is
bounded in H2(S"). Without loss of generality, up to the extraction of a subse-
quence, one can then choose the u,’s such that

1. uy, — uin H2(S"),

2. ug — uin L3(S"),

3. ud™' = uP~"in LP/P=D(M), and

4. u; -> uae.
as ¢ — p and for some u € H2(S"), u > 0. Moreover, one can choose the u,’s

such that

limAs, = A
g=p 19

does exist. Let ¢ > O be given. By Lemma 6.2, one easily gets the existence of
B, > 0, independent of ¢, such that for g close to p,

n/(n+q)
1= ([ fuZdv(h))
sll
n/(n+q) n/(n+q)
q
< (max f) (fs ul dv(h))

n/tn+q) ( K (n, 2)? ng/2(n+q)
= ()™ (S o)

nq/2(n+q)
+ Bs( / u dv(h))
§n

Moreover, one has by (6.3) that

) n/(n+9) ( K (n, 2)? nq/2(n+q)
s (e ) (S oo

1-2 /K (n,2)?
< (max 1) (22_/ +€)’w
Let us now choose & > 0 such that

1-2 (K(n,?2)?
(n}axf) (22/n +s))tf,,,<l

The existence of such an ¢ is given by the assumption of the lemma. Coming back
to (6.7), one gets that there exists C > 0 such that for g close to p,

/ uf, dv(h) > C

6.7)
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Hence, u is not identically zero. In particular, A > 0, since A = 0 would imply that
(ug) converges to 0 in H?(S") as ¢ — p. Let us now write that §, = u,&, for
Mg = Oreal and &, € A such that ||§;[|co = 1. Since A is of finite dimension, we
may assume that (§,) converges Cotosome £ € A asq — p. Thus, ||§]|co = 1.
Multiplying the equation of Lemma 6.1 by &,u, and integrating over S” leads to

-2
/;" Equg(Apug)dv(h) + n(n4 )/S" é‘q“cz, dv(h) =

Mg /s FEuldv(h) — pghsg /s } EZul

Noting that
/S E,uy(Apug)dv(h) = f §q|vu,,|2dv(h)+§ / Equ’ dv(h)
n Sn sn

one gets that

Mghsg /;n quuf, = Asq fs" f&qugdv(h) — fsn §q|qu|2 dv(h)
n? y
-7 . §qugdv(h)
Clearly, the right-hand side member of this equality is bounded, while by Holder’s
inequalities

q/2
uqkf_q '/s‘n quu; > /,quf,q (w;(q—Z)/q [S,, |§q |4/4u§ dv(h))

Hence, there exists M > 0, independent of ¢, such that

q/2
(6.8) T (w;“"”"' fs &gl ug dv(h)) <M
As a consequence,
6.9) limsup u, < +00
q->p

Indeed, suppose by contradiction that it is not the case. By passing to the limit as
g — p in (6.8), one would get that

(6.10) | 12"=2/"y? du(h) = 0

sn
But {x € §" /&(x) = 0} has measure zero, and #u # 0. Hence, (6.10) is impos-
sible, so that (6.9) holds. As a consequence of (6.9), and up to the cxtraction of a
subsequence, one can now assume that (u,) converges to some u as ¢ — p. By
(1) to (4) above, and by passing to the limit as ¢ — p in the equation satisfied by
the u,’s, one then gets that u is a solution of

nn-2)
4

Apu+ u=A(f—pu&u’"!
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Just note here that for any ¢ € C*(§"),

lim —&)uf |¢d h)=0

qlp‘/;n(eq g)q v()

so that S uq—l —_ Su” Uin Lp/(p—l)(M). By maximum prinCipleS and regularlty
q7q

results, u > 0 and ¥ € C*°(S"). This ends the proof of the lemma. O

With such a lemma, one easily gets the above-mentioned result of Aubin [11]:
For f smooth and positive on S", if

max f < 42 min
M f M S

then there exists £ € A such that f — & € §([h]). Just note here that the constant
function uo = (f§, f dv(h))~"/? belongs to Ay, and that

1
K, 2)2(ngn f

(o) = )(n_z)/n

Let us now prove Theorem 6.4.

PROOF OF THEOREM 6.4: Let x € §". By choosing ¢,(y) = €'y in the
stereographical model, one sees that there exists a one-parameter subgroup {¢,} of
conformal diffeomorphisms of (8", k) such that for all y # =+x,

lim ¢,(y)=x and lim ¢/(y)=—x
11— 400 t——-00

Moreover, given w € C%(S"), set w, = w o ¢,. Then, w, - w(x) as t — +00
uniformly on compact subset of $"\{—x} and in L*(S") for all s € [1, +00). Let
f be as in the theorem. We choose x such that f (x) = maxgs» f. For {¢,} as above,
and f, = fog,
1
lim — | fidv(h) = n}exf

=400 w" sn
In particular, one has that for ¢ large enough, [, f; dv(h) > 0 and

(7))

6.11) m(n}axf) < /s £, dv(h)

Fix such a ¢ so that (6.11) is true. Note in addition that maxg» f = maxs~ f, and
that the constant function ug = ([, f; dv(h))~'/? belongs to Ay, ,. Then,

n(n —2)w,
Af,.p = (n=2)/n
4( fon fr dv(h))
and one gets by (6.11) that the assumptions of Lemma 6.3 are satisfied for f,. As
a consequence, there exists £ € A such that f, — & € 4([h]). By conformal

invariance, this means again that f — (§ o <p,") € 4([h]). The theorem is proved.
O

Coming back to Lemma 6.3, and with a somehow subtler argument, one can
prove the following (Hebey [104]):
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THEOREM 6.5 Let f be a smooth function on S*. Suppose that there exists x € S3
such that f(x) = f(—x) = maxg f > 0. Then there exists a first spherical
harmonic & on S such that f —£ is the scalar curvature of some metric conformal

to h.

PROOF: Let f and x be as in the theorem. For r the distance to x, and 8 > 1

real, we set

wj = (B—cosr)™"2 and wj = (B+cosr)”'?

-1/6
ug = ([s‘ fvgdv(h)) Vg

For B > 1 sufficiently close 1, ug € As¢. Moreover, rather simple computations
lead to the following expansion:

I(up) = %(Zws)w(msgx f)—l/3
1 -
<1+ 260" 1) [ ) o
_ 1 2 _ +)5. — h
)" [, £ wp)us avw

s3
1

= (- ) [ £ (wp) g o)
(max f) s?
s3
+(8—1)"2(B - 1)]
where £(8 — 1) tends to 0 as 8 — 1. Thus, one will find 8 > 1 close to 1 such that
3 1/3
(6.12) 1wp) < 5(203)"( max f)

if

Let vg = wy + wy and

Jim [(ﬂ2— 1) / (w}) wy dv(h)
-1~ s3

- (8- l)f fw3)’wg dv(h)
(max f) s?
s3
- (8 - 1)/ fwgYwy dv(h)] <0
max f) s3
s?
As one can check, such a limit equals —167 /3 since

. - 167
Sm, (82 —1) L fwpYwg dv(h) = = f®
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and
. _ 167
Jim (8 =1) [ 55w dvth) = 1)

for any f € C*®(S%). As a consequence, there exists 8 > 1 close to 1 such that
(6.12) is true. In particular, the inequality of Lemma 6.3 holds. This ends the proof

of the theorem. O

Regarding Theorem 6.5, note that by Escobar-Schoen [78] (see also Hcbey
{101, 103) for an extension to groups acting without fixed points), if f is such
that f(x) = f(—x) for all x € §3, then f € 4([h]). In other words, under the
assumption that f is (globally) invariant for the action of the antipodal map, one
can take £ = 0 in Theorem 6.5. Independently, and for a much more sophisticated
application to the Nirenberg problem of Sobolev inequalities with constraints like
those in Theorem 6.3, we refer the reader to Chang-Yang [44] and Chang-Gursky-
Yang [43).

REMARK 6.1. The results stated above are of course not the only ones avail-
able on the Nirenberg problem. Such results have been chosen in order to illustrate
some simple possible applications of Sobolev inequalities with constraints as de-
veloped in the two first sections of this chapter. For more details on the Nirenberg
problem, we refer the reader to the books or survey type articles [42, 103, 109, 176]
and the references they contain.



CHAPTER 7

Best Constants in the Noncompact Setting

In this chapter, we deal with complete manifolds, not necessarily compact,
and ask again some of the questions of Program 4 we considered in Chapters
4 and 5. For an analogue to the questions involved in Program B, we refer the
reader to Chapter 8. Given (M, g) a smooth, complete Riemannian n-manifold,
and g € [1, n) real, we say that the generic Sobolev inequality (I ;.gcn) of order q is
valid if there exist A and B real such that for any u € H/ (M),

(Itll.gcn)

1/p 1/q9 1/q9
( f |u|"dv(g)) SA( [ |Vu|"dv(g)) +B( / |u|"dv(g))
M M M

where 1/p = 1/q — 1/n. As already mentioned in Chapter 3, there are no reasons
when dealing with complete manifolds for the generic Sobolev inequalities to be
valid. Indeed, as seen in Chapter 3, there exist complete manifolds for which all
the (I} .,)’s are false. Anyway, since the manifolds we will consider all have
their Ricci curvature bounded from below, one has by Theorem 3.3 that for such
manifolds

1. the scale (I"]‘gen), 1 < g < n, of generic Sobolev inequalities is coherent

and,

2. one, and hence all, of the (I‘_gen)’s is valid if and only if the volume of
any ball of radius 1 is bounded from below by some positive real number
independent of its center.

Clearly, the validity of (Izll.gcn) is equivalent to the validity of (I} ;cn), where we say
that (I en) is valid if there exist A and B real such that for any u € H/ (M),

q/p
(I3 gen) ( f [u]? dv(g)) <A f IVul?dv(g) + B / lul? dv(g)
M M M

where 1/p = 1/q — 1/n. As in Chapter 4, given g € [1, n) real, we define
A,(M) = {A € Rs.t. 3B € R for which (I, _.,) is valid}

q.gen
Here again, one clearly has that 4, (M) is an interval of right extremity +oo. Then,
we define
o, (M) = inf A, (M)

which is, by definition, the best first constant associated to (l},_gm). We deal here
with the following questions:
Question 1. Is it possible to compute explicitly o, (M)?

181
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Question 2. For A € A4,(M) close to a,(M), can one compute or have esti-
mates on the remaining constant B of (I ..,)?

Question 3. Is A, (M) a closed set? Namely, one has that a,(M) € 4,(M)?

Question 4. When A, (M) is a closed set, and for A = a,(M), can one com-
pute or have estimates on the remaining constant B of (I;. gen)?
Note that to say that A, (M) is a closed set means that there exists B € R such that

for any u € H} (M),
(I‘I].op[)

1/p I/q 1/9
( f |u|"dv<g)) saq(m( [ |Vu|"dv<g>) +B( f |u|"dv(g))
M M M

Such an inequality will be referred to as the optimal Sobolev inequality of order
q. Getting estimates for the remaining constant B of (I(',_gen) when A = o, (M), as
asked in question 4, means that one gets estimates for the remaining constant B of

(L op)-

7.1. Questions 1 and 2

Proposition 4.2 of Chapter 4 still holds in this context. For the sake of clarity,
we recall it here.

PROPOSITION 7.1 Let (M, g) be a Riemannian n-manifold (not necessarily com-
plete), and let q € [1, n) be some real number. Suppose that there exist A, B € R
such that for any u € D(M),

1/p 1/q l/q
( / |u|"dv<g>) sA( f |Vu|"dv<g)) +B( ] |u|"dv(g))
M M M

where 1/p = 1/q — 1/n. Then A > K(n, q), where K (n, q) is as in Theorem 4 4.

As a consequence of such a result, one gets that necessarily, a, (M) > K(n, q).
Conversely, Aubin [10] was able to prove that a,(M) < K(n, q), and hence that
a,(M) = K(n, q) when the manifold considered has bounded sectional curvature
and positive injectivity radius. In Hebey [107], we were able to prove that we still
have that o, (M) = K (n, q) if the bound on the sectional curvature is replaced by a
lower bound on the Ricci curvature. This is, of course, a much weaker assumption.
In particular, the result becomes very sharp if one compares it with what has been
said in Chapter 3 (see Theorem 3.3 and Proposition 3.6). Given (M, g) a smooth,
complete Riemannian n-manifold, and ¢ € [1, n) real, let us say that the quasi-
optimal Sobolev inequality of order q is valid if for any ¢ > 0, there exists B, € R
such that for any u € H{ (M),

1/p l/q
(fMluI"dv(g)) s(K(n,q)+e)(fMIVul"dv(g))

1/q9
+Bs( f f? dv(g))
M

(13 c-op)
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where 1/p = 1/q—1/n. Roughly speaking, Hebey’s result mentioned above states
that for complete manifolds with Ricci curvature bounded from below, the validity
of the generic Sobolev inequalities is equivalent to the validity of the quasi-optimal
Sobolev inequalities. This holds also for (Iz,ge.,) and (Iﬁ’,‘t_op‘), where we say that
the quasi-optimal Sobolev inequality (I . _,p,) is valid if for any £ > O there exists
B; € R such that for any u € H/ (M),

(lz.s-opt)
a/p
([ lul? dv(g)) <(Kn.q)" + e)f |Vul? dv(g) + B‘/ [u|? dv(g)
M M M

‘We can thus write that for any q € [1, n),

(lz‘gen) @ (I‘q’,e—opl)

As one will see, the result also gives an answer to question 2, by showing that for
A = K(n, q) + ¢, the remaining constant B of (I;’gen) depends only on n, ¢, g, a
lower bound for the Ricci curvature, and a lower bound for the injectivity radius.
More precisely, Hebey’s result [107] can be stated as follows:

THEOREM 7.1 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature Rcy g) is such that Rcy ) > kg for some k € R, and
that its injectivity radius inj y 4 is such that inj y o > i for some i > 0. For any
€ > 0, and any q € [1, n), there exists B = B(e, n, q, k, i), depending only on ¢,
n, q, k, and i, such that for any u € H} (M),

(@] e —op)
q/p
(f lul"dv(g)) < (K(n,q)"+e)/ [Vul? dv(g)+8/ [ul? dv(g)
M M M

In particular, for any ¢ > 0, and any q € [1, n), there exists B = B(e,n, q,k, i),
depending only on &, n, q, k, and i, such that for any u € H{ (M),

I/p 1/q9
( fM Iui”dv(g)) s(K(n,q)+e)( fM IVuI"dv(g))

l/q
+B([ |ul? dv(g))
M

Here,1/p =1/q — 1/n, and K (n, q) is as in Theorem 4.4.

(Itl] £ —opt)

As a straightforward consequence of this result, one has that o, (M) = K (n, q)
for complete manifolds with Ricci curvature bounded from below and positive in-
jectivity radius.

COROLLARY 7.1 For any smooth, complete Riemannian n-manifold (M, g) with
Ricci curvature bounded from below and positive injectivity radius, and for any
q €[1,n) real, ay(M) = K(n, q), where K (n, q) is as in Theorem 4.4.

In order to prove Theorem 7.1, we first establish the following lemma:
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LeEMMA 7.1 Let (M. g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature Rcy ) is such that Rey gy > kg for some k € R, and that
its injectivity radius injy ., is such that injy, ., > i for some i > 0. Forany ¢ > 0
there exists a positive constant § = 8(¢, n, k, i), depending only on ¢, n, k, and i,
such that for any x € M, any q € [1, n), and any u € D(B,(9)),

q/p
(/ Iul”dv(g)) <K@, g0 +s)f |Vul? dv(g)
M M
where 1/p = 1/q — 1/n, and K (n, q) is as in Theorem 4.4,

PROOF: According to Theorem 1.2, there exists § = (e, n,k,i) > O for
any ¢ > 0 with the following property: For any x € M there exists a harmonic
coordinate chart ¢ : B,(8§) — R" such that the components g;; of g in this chart
satisfy

(1+&)7'8; < g <1 +e)d;
as bilinear forms. One then has that for any x € M, any 1 < g < n, and any
u € D(B,(9)),
/ |Vul? dv(g) = (1 +s)‘<"+4’/2f IV(uog@™")(x)?dx
M

and

Rll
where 1/p = 1/q — 1/n. Independently, by Theorem 4.4,

/ P dv(g) < (1+&)"? | |mop™ ") (x)) dx
M

q/p
(/ [(u o™ )x)|? dx) <K@ g | Vo )Yx)dx
R» Rn

As a consequence, we get that for any £ > 0 there exists § = (e, n, k, i) > O such
that for any x € M,any 1 < q < n, and any ¥ € D(B,(3)),

q/p
([ wr dv(g)) < K@@' +e) [ [Vuttdu(e)
M M
where 1/p = 1/q — 1/n. This ends the proof of the lemma. O
With such a result, we are now in position to prove Theorem 7.1.

PROOF OF THEOREM 7.1: Let 1 < g < n be given and let p = nq/(n —
q). By Lemma 7.1 there exists § = 8(¢&,n,q,k,i) > 0 such that for any u €
D(B.(5)),

qa/p €
(j Iul”dv(g)) < (K(n,q)" + -)/ |Vul? dv(g)
M 2 M

Without loss of generality, we can assume that § < i for any £ > 0. Independently,
by Lemma 1.1 we get that for any ¢ > 0 there exists a sequence (x;) of points of
M such that

1. M =, By,(6/2) and
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2. there exists N = N(g, n, q, k, i) such that each point of M has a neighbor-
hood which intersects at most N of the B, (3)’s

where § = 8(¢, n, q, k, i) is as above. Let
lql+l

Z alql+!

where [g] is the greatest integer not exceeding ¢, and the function «; € D(B,;(8))
is chosen such that

O<aj<1,e=1inB,0¢/2) and |Va;| <4/

As one can easily check, (7;) is a smooth partition of unity subordinate to the cov-
ering (By,(8)), n;’? € C'(M) for any j, and there exists H = H(e, n, q,k,i) > 0
such that for any Js |Vn;/"| < H.Fix ¢ > 0 and let u € D(M). On the one hand,

Z n;u? < Z lnju?llpsq = Z Il I/qu":

j J

where ||-|Is stands for the norm of L°(M). On the other hand, for any j,
In}/?ullg < (K(n 97 + ) 19 (")l

As a consequence we get that

q/p
( [ lul"dv(g))
M

< (K(n, 97 + g) Zj fM (n1Vul + 1u)1Vn"1)? du(g)

(K(" '3 )/ Z (17aln; + 19wt~ 190} 1o~

nj=

Nully = Nullp/q =

ply

+vlul?| V5719 )dv(g)
(K(n 9 + )(uwu" + uNH|Vully™ lull, + vV H ul)

by Holder’s inequality and where u and v are such that for any ¢ > 0,
A+ <14 ut+v?
For instance, one can choose u = g max(1, 2972) and v = max(1, 29-2). Now, let
& > 0 be such that
(K(n )7 + )(l +6) <K(@n,q) +e¢

Since for any positive real numbers x, y, and A,
gx? 'y < Mg — Dx? 4119y
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if we take x = [[Vully, y = |lull,, and A = geo/u(g — 1)N H, we get that
uNH||Vulli~" lull, < &llVulld + Cllull}

o= () Gazswm)
"\ q¢ /\u@-DNH

Hence, for any u € D(M),

q/p
( / |ul” dv(g))
M

< (K(n,q)" + E)(l +€o)[ |Vul? dv(g) -i-Bf [u|? dv(g)
2 M M

< (K(n q)* +e)f [Vul? dv(g)+Bf |u|? dv(g)
M M

where

where
B= (K(n, 9 + g)(c +vNHY)

This ends the proof of the theorem. a

7.2. Questions 3 and 4

When dealing with Question 3, Aubin [10] was able to prove that A,(M) is
a closed set for complete manifolds with constant sectional curvature and positive
injectivity radius. On the one hand, this result has been extended by Hebey-Vaugon
[113] to complete, conformally flat manifolds with bounded sectional curvature
and positive injectivity radius. A more sophisticated statement, where one only
needs the conformal flatness at infinity, was then found in [117]. This is the subject
of Theorem 7.4 below. On the other hand, the above-mentioned result of Aubin has
been extended to complete manifolds with Riemann curvature bounded up to the
order 1 and positive injectivity radius. This is the subject of the following theorem
of Hebey-Vaugon [117], from which one easily gets Theorem 4.6 of Chapter 4. For
the sake of clarity, the proof of this theorem is postponed to the following section.

THEOREM 7.2 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
Suppose that its Riemann curvature Rmy g) is such that

IRmye) ) < Ay and |[VRm, | < A

for some nonnegative constants A, and A,, and that its injectivity radius is such
that inj Mg = for somei > 0. There exists B = B(n, Ay, A3, i), depending only
onn, Ay, Ay, and i, such that for any u € H}(M),

2/p
@ op) ( [ |u|”dv<g)) <K@®,2)? / [Vul’ dv(g) + B f u® dv(g)
M M M



7.2. QUESTIONS 3 AND 4 187

In particular, there exists B = B(n, A\, A, i), depending only on n, A, A,, and
i, such that for any u € H}(M),

(1 op0)

I/p 1/2 1/2
( f |u|"dv<g)) sK(n,2)( / quIZdv(g)) +B( f ,,zd.,(g))
M M M

Herel/p =1/2 — 1/n, and K (n, 2) is as in Theorem 4.4.
As a straightforward consequence of such a result, one gets the following:

COROLLARY 7.2 For any smooth, complete Riemannian manifold with Riemann
curvature bounded up to the order 1, and with positive injectivity radius, (M)
is a closed set.

As another straightforward consequence of Theorem 7.2, note that the follow-
ing holds:

COROLLARY 7.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
3. For any Riemannian covering (M, g) of (M, g), there exists B € R such that
for any u € HX(M),

2/p
( / u]? dv(g)) < K(®n,2)? / IVul®dv(g) + B / u*dv(g)
M M M

where 1/p =1/2—1/nand K(n, 2) is as infheorem 4.4. In particular, A (M) is
a closed set for any Riemannian covering (M, g) of a compact Riemannian mani-
Sold.

Let us now come back to the statements of Theorems 7.1 and 7.2. When com-
paring Theorem 7.2 and Theorem 7.1, one can ask if the conclusion of Theorem
7.2 still holds under the assumptions that the Ricci curvature of the manifold is
bounded from below, and that the injectivity radius of the manifold is positive. In
other words, one can ask if it is possible to take ¢ = 0 in Theorem 7.1. A surprising
fact here is that the answer to such a question is negative. This is the subject of the
following result:

THEOREM 7.3 For any integer n > 4, there exist smooth, complete Riemannian n-
manifolds with Ricci curvature bounded from below and positive injectivity radius
Jfor which (Ig'op‘) is not valid.

PROOF: Let (M, g) be a smooth, complete Riemannian n-manifold, n > 4,
with Ricci curvature bounded from below and positive injectivity radius. Suppose
that (I ) is valid. By Proposition 5.1 one gets that for any x € M,
4n—-1) B

n—-2 K(n,?2)?
where B is the second constant of (Ig'op(), and Scal(y ) is the scalar curvature of
g. Noting that the existence of a lower bound for the Ricci curvature and of an

upper bound for the scalar curvature leads to the existence of a global bound for
the Ricci curvature, one gets from (7.1) that the Ricci curvature of g is bounded. In

(7.1) Scal(M'g)(x) <



188 7. BEST CONSTANTS IN THE NONCOMPACT SETTING

other words, for n > 4, and for (M, g) a smooth, complete Riemannian n-manifold
with Ricci curvature bounded from below and positive injectivity radius, if (Ig‘om)
is valid, then its Ricci curvature is bounded. Independently, one can show that in
any dimension there exist complete manifolds with Ricci curvature bounded from
below and positive injectivity radius having the property that their Ricci curvature
is not bounded. (References on the construction of such manifolds will be found
in Anderson-Cheeger [6]). According to what has been said above, (I%_om) must be
false for such manifolds. Clearly, this ends the proof of the theorem. O

Roughly speaking, coming back to what has been said in the preceding section,
one has that

B gen) & G _op) 2 B0

A natural guess here would be that the conclusion of Theorem 7.2 holds under
the assumptions that the Ricci curvature of the manifold is bounded and that the
injectivity radius of the manifold is positive. As a first step, it would certainly be
simpler to prove that the conclusion of Theorem 7.2 is valid under the assumptions
that the Ricci curvature of the manifold is bounded up to the order 1 and that the
injectivity radius of the manifold is positive. The following result is due to Hebey-
Vaugon [117].

THEOREM 7.4 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature is bounded, that its injectivity radius is positive,
and that g is conformally flat outside some compact subset of M. There exists
B € R such that for any u € HX(M),

2/p
1 o) ( f |ul? dv(g)) < K@®,2)? f Vul*dv(g) + B f u? dv(g)
M M M

In particular, there exists B € R such that for any u € H}(M),

(Ii.opt)

i/p 172 1/2
( f lul"dv(g)) sK(n,2)( f |Vu|2dv(g>) +B( f uzdv(g))
M M M

Here 1/p =1/2 — 1/n, and K (n, 2) is as in Theorem 4.4.

PROOF: Let p > 0 be such that p < inj,, ,,, the injectivity radius of (M, g).
Given x € M, B,(p) is simply connected. For x € M such that g is conformally
flat on B, (p), one gets by Proposition 3.8 that for any u € D(B,(p)),

2/p
(fMlul”dv(g)) sK(n,Z)z(f (Vu)? dv(g)
7.2)

4(n — l)/ Scalwg)u dv(g))

where Scal(y ;) stands for the scalar curvature of g. Independently, and as an easy
consequence of what will be said in the next section, for any p € (0, injy,. o)» and
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any x € M, there exists B € R such that for any u € D(B,(p)),

2/p
(7.3) ( f lul”dv(g)) < K(n,?2)? f IVul>dv(g) + B f u?dv(g)
M M M

Fix p < injy 4, o > 0. By Lemma 1.1 one gets the existence of a sequence (x;)
of points of M such that

1. M =J; By;(%) and
2. there exists N integer such that each point of M has a neighborhood which

intersects at most N of the B, (p)’s.

Let

2
%;

==
D D
where a; € D(By;(p)) is chosen such that
0oyl a=1inBy(5) and Vel <4/

As one can easily check, (n;) is a smooth partition of unity subordinate to the
covering (By,;(p)), \/T; € C'(M) for any j, and there exists H > 0 such that for
any j, |V /| < H. From now on, let K be a compact subset of M such that g is
conformally flat outside of K. Let jj be such that

Bx,-(P)nK =§

for j > jo. By (7.3) one has that for any j < jo there exists B; € R such that for
any u € D(M),

2/p
(Lis/ﬂ_julpdv(g)) < K(n,Z)ZLIV(JEu)Izdv(g)
+ij nju’ dv(g)
M

Independently, and by (7.2), one has that for any j > jj, and any u € D(M),

2/p
( fM |Jn‘,-u|f’dv(g)) <K@®,2)? fM V(T dv(g) + S /M nju’ dv(g)

where

S= (n )K(n 2) (suplScal(Mg) I)

Clearly S < +o00 since the Ricci curvature of g is bounded. Given u € D(M), one

has that
T
j p/2

where || -||s stands for the norm of L*(M). Set
B =max(B,..., B, S)

2 2
el = 1w llpr2 =

<D el =Y M/mjull?
J J
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Then, for any u € D(M),

2/p
( / [ue]? dv(g))
M

2
< K(n,Z)ZJE/MIV(n}/Zu)I dv(g)+B;fM nju’ dv(g)
= K(n,2)2( Z /M n,|Vu|2dv(g)+Z /M u(V'uV,n;)dv(g)

+Zf lV '/”I dv(g))+Bzf nju” dv(g)

< K(n,2)? f [Vul>dv(g) + (B + K (n,2)*NH?) f u*dv(g)
M M

This ends the proof of the theorem. O

As a straightforward consequence of Theorem 7.4, coming back to Question
3, one has the following:

COROLLARY 7.4 For any smooth, complete Riemannian manifold (M, g) with
bounded Ricci curvature and positive injectivity radius that has the property that it
is conformally flat outside some compact subset of M, A,(M) is a closed set.

Now that such results have been stated, one can ask what happens for g # 2.
As in Chapter 4, we say that the optimal Sobolev inequality (IZ.OP,) is valid if there

exists B € R such that for any u € H} (M),

q/p
(T2 o) ( f |u|"dv<g>) < K(n, )" fM Vul? dv(g) + B [M lul? dv(g)

where 1/p = 1/q — 1/n, and K (n, q) is as in Theorem 4.4. Here again, one has
the following result of Druet [74). The proof of such a result is the same than that
of Theorem 4.8.

THEOREM 7.5 Let (M, g) be a smooth, complete Riemannian n-manifold, and let
q € [1,n) real. Assume that q > 2, that q*> < n, and that the scalar curvature of
(M, g) is positive somewhere. Then inequality (I q.0pt) iS false on (M, g).

Conversely, one has the following result of Aubin [10]:

THEOREM 7.6 Let (M, g) be a smooth, complete Riemannian n-manifold with
positive injectivity radius. Let also q € [1, n) real. Suppose either that n = 2
and that (M, g) has bounded sectional curvature, or that n > 3 and that (M, g)
has constant sectional curvature. Then inequality (1! .. opl) is valid and A,(M) is a
closed set.

The proof of such a result proceeds as in the proof of Theorem 4.7. We refer
the reader to [10] for more details.
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7.3. Proof of Theorem 7.2

The proof of Theorem 7.2 proceeds in several steps. As one can see, it mixes
PDE and geometric arguments. Let g be a smooth, Riemannian metric on R".
Suppose that for some A} > 0and Az > 0, [Rmgn g, | < Ay and |[VRmgn 4 | <
A, on By(4), the Euclidean ball of center 0 and radius 4. We say that g satisfies
(x) if the following holds:

(i) the canonical coordinate system of R” when restricted to By(2),
the Euclidean ball of center 0 and radius 2,
(*) is a normal geodesic coordinate system at O for g
(ii) for any x € By(1), the Euclidean ball of center 0 and
radius 1, 2 < min (8, inj,(x))

where 4 is as in Theorem 1.3 of Chapter 1, and inj,(x) stands for the injectivity
radius of (R", g) at x. Let us denote by 8 = By(1) the Euclidean ball of center
0 and radius 1. If (ii) holds, then for any x € B, B is contained in the geodesic
ball for g of center x and radius min(4, inj, (x)). The first result we prove is the
following:

LEMMA 7.2 Let n > 3 be given. Suppose that for any positive constants A, and
A,, and any smooth, Riemannian metric g on R" such that

(@) |IRmgng)| < Ay and [VRmpn gy | < Az in Bo(4),
the Euclidean ball of center 0 and radius 4
(b) g satisfies (x)
there exists some B = B(n, A\, A;) real, depending only on n, A\, and A,, with
the property that for any u € D(B),

2/p
( f lul”dv(g)) <K@®n,2)? [ |Vu)*dv(g) + B / u*dv(g)
B3 B8 B8

where 1/p = 1/2— 1/n. Then for any positive constants A, A, and i, and for any
smooth, complete Riemannian n-manifold (M, g) sansﬁ:mg that Rmp ) | < Ay,
IVRmpy 4 | < A, and injy, o = b there exists some B = B(n Ay, Ay, i) real,
depending only on n, Ay, Ay, and i, such that for any u € H 2(M ),

2/p
( / |u|"dv(g)) < K(n, 2 f Vul dv(g) + B f W2 dv(g)
M M M

where 1/p =1/2 - 1/n.

PROOF OF LEMMA 7.2: Let (M, g) be a smooth, complete Riemannian n-
manifold such that [Rmy z) | < Ay, [VRmy ) | < Az, and inj(M‘g) > i for some
positive constants A, A,, and i. Let § be given by Theorem 1.3 of Chapter 1. For
A > O real, as one can easily check,

[Rmp.ag) | = A~ [Rmgpg g |
|V RMy 1) | = A7V Rmpg) |

iNjoy1g) = VA i



192 7. BEST CONSTANTS IN THE NONCOMPACT SETTING
Since

lim é(n, A, Ay) = +00
(A).A2)—(0,0) (Il ! 2) +

there exists A = A(n, Ay, Az, i), A > 1 depending only on n, A}, A,, and i, such
that

min (3, injgyp ) > 5

Set g = Ag. Clearly, the Ricci curvature of g is bounded from below by some
real number depending only on n, A, Aj, and i. By Lemma 1.1 of Chapter 1,
one then gets that there exists a sequence (x,,) of points of M, and some integer
N = N(n, A, A, i), depending only on n, A, A,, and i, such that

1. the family (B, (3)) is a covering of M and
2. every point in M has a neighborhood that intersects at most N of the B, (1)’s

where B,m(%) and B, (1) referto g. Leta,, € D(B,, (1)) besuchthat0 < a,, < 1,
@m = lin B, (3), and |Va,,| < 4 (for the norm with respect to g). Set

ol
Nm = 7
i %

One then gets that (7,,) is a partition of unity subordinate to the covering (B, (1))
such that for any m, n,',,/ ? is smooth and IVn,',,/ 2| < H (for the norm with respect to
&), where H = H(n, A, A3, i) is some positive real number depending only on n,
Ay, Ay, and i. By considering the pullback of g by the exponential map of g at x,,,
and by gluing this metric with the Euclidean metric in Bo(5)\Bo(4), we get some
metric defined on R". Clearly, this metric satisfies the assumptions of the lemma.

Hence, for any m, and any u € C*(M),

2/p
( f l(n,',,”u)l”dv(é)) < K(n,2)? / V(1 /2) dv(@)
M M

+B ] (n/2u)? dv (@)
M

where B = B(n, A, A, i) depends only on n, A|, Ay, and i. As in the proof of
Theorem 7.1, one has that for any u € C*°(M),

2/p 2/p
( [wra®)” <3 ( [ e ao)
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As a consequence, for any u € C®(M),

2/p
(/ Iul"dv(é))
M

<k’ [ vaiwrav@+8 Y [ ol dv@
n M m M
= K(n,2)2Zf Nm|Vul® dv(@) + K(n,Z)ZZ/ u(V'uV,nm)dv(g)

+ 2 [ ot av + 8 Y [ alurave)
m M m M

Since 3, 1 = 1, this leads to

2/p
([ lul”dv(g)) < K(n.2)2/ (Vulzdv(g) +B’f uzdv(g)
M M M

where B’ = NH?K (n, 2)? + B. Clearly, B’ depends only on n, A, A, and i,
since this is the case for N, H, and B. Coming back to g, one then gets that for
any u € C*°(M),

2/p
( f |u|"dv(g)) < K(n,2)? f IVul dv(g) + B” f W dv(g)
M M M

where B” = AB’. Here again, B” depends only on n, A, A, and i. This ends the
proof of the lemma. O

By Lemma 7.2, the proof of Theorem 7.2 reduces to proving that for any n > 3,
A, > 0, and A, > O, there exists some constant B = B(n, A}, A;), depending
only on n, A, and A,, such that for any smooth, Riemannian metric g on R”"
satisfying the points (a) and (b) of Lemma 7.2, and for any ¥ € D(B),

2/p
( Iul”dv(g)) < K(n,?2)? [ IVul>dv(g) + B / u*dv(g)
R" R" R"

where 1/p = 1/2 — 1/n. This is what we are going to do now.
For g some smooth metric on R", let H& 1(&B) be the completion of D(B) with
respect to the standard norm

||u||=\/ f Vul dv(g) + f u? dv(g)
3 8

Since B is relatively compact, HZ (8B) does not depend on g. For & > 0 real, and
u € HZ (B), u # 0, we define

Ja|\Vul*dv(g) + o fgu? dv(g)

(/5 lulP dv())?

Lemma 7.2 can be stated as follows: Forany n > 3, A > 0, and A, > 0, there
exists @ = a(n, A), A,), depending only on n, Aj, and A,, such that for any
smooth, Riemannian metric g on R” satisfying the points (a) and (b) of Lemma

Ig.a(u) =
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7.2, and for any u € H} (B), u # 0, I, (u) > K(n,2)"2. To see this, just set
B =aK(n,?2)>.
From now on, we proceed by contradiction. Hence we suppose that there exist

n >3, A, > 0,and A; > 0 such that the following holds: For any @ > 0, there
exists a smooth, Riemannian metric g, on R” such that

(i) [Rmg, | < A and [VRmg, | < A; in By(4)
(3ex) (ii) g, satisfies (x)

(i) inf, lp, o (4) < 357
where Rmy,, stands for the Riemann curvature of g, and the infimum inf, I, o ()

is taken over the u € Hoz_,(.'B), u # 0. For convenience, we set I, = I,, o. The
first result we prove is the following:

LEMMA 7.3 Let a > 0and g, be as in (x«). There exists ¢, € C2(B) N HZ (B),
¢o > 0in B, and there exists A, € (0, K (n,?2)~2), such that

(7.4) Ap@u + 00y = Aep?™! in B
.5) [ ez aven =1

where A,, is the Laplacian of g,.
PROOF: For g € (1, p], let

H, = {u € H} (B)/ /3 [u)? dv(ge) = 1}

Let also u, be defined by
Hg = inf Eq(u)

ued,

where
Eu(w) = [ Vul dv(ga) + f W dv(g)
3 B

For ¢ < p, the embedding of H&,(.B) in L9(8) is compact. Fix such a ¢, and
let (¢;) € ¥, be a minimizing sequence for u,. Without loss of generality, up to
replacing ¢; by |¢; |, we can assume that the ¢;’s are nonnegative. Since @ > 0, (¢;)
is a bounded sequence in Hoz_ 1(8B). Up to the extraction of a subsequence, since

H& 1(B) is reflexive, and since the embedding of H& ;(B) in L(B) is compact,
this leads to the existence of ¢, € Hg ,(8B) such that
¢i =~ ¢, inHJ (B), ¢ —> ¢, nLY(B), ¢ > ¢, ae.

One then gets that ¢, > 0 a.e., and that ¢, € #,. Moreover, the weak convergence
in H} (8) implies that
Ea (‘pq) =< l:an +!glof Ea (‘P:)

Hence, E,(¢,;) = 1y, and g, is a solution of

Ay, 0q + @, = /"q‘/’g”l
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in 8. By maximum principles and regularity results, ¢, is positive in B and ¢, €
CX(B).
Let us now get the solution ¢, we are looking for as the limit of the ¢,’s,
q — p. Asafirst remark, let ¢ > 0 be given, and let ¥ € #,, ¥ nonnegative, be
such that
E,(¥) < inf E,(u) +¢
u€iH,

For g as above, ¥, = ||¢||;' ¥ belongs to #,. Hence, E,(¥,) > p,. Noting that
E,(y4) = E,(¥) as g — p, one gets that
limsup u, < E,(¥) < inf E,(u) +¢
q—p ue iy
Since this inequality holds for any ¢ > 0,
h[ln _f;lp Mg < ulen.itt:,, Eqy(u)
From now on, and up to the extraction of a subsequence, we assume that

m=lim y,
q—p

exists. As one can easily check, (¢,) is a bounded sequence in H&,(Q). Since
H} (B) is reflexive, and since for s < p the embedding of HZ (8) in L*(B) is
compact, we get the existence of some ¢, € HZ (B) such that, up to a subse-
quence,

¥q — Po in H&l(£) , @g—> ¢@q in LY (B), @ = ¢a ae.

In particular, ¢, is nonnegative and, since (¢7 ') is bounded in LP/4~"(8) C
LP/(P=D(B), we can assume that

(p‘l—l N ‘pg-l in LP/(p—I)(£)
By passing to the limit as ¢ tends to p in the equation satisfied by ¢,, one then gets
that
By, Yo + gy = popl™!

By maximum principles and regularity results, ¢, € C(8) and either ¢, = 0 or

¢ > 0in B.
Let us now prove that ¢, # 0. As for compact manifolds without boundary,

the best first constant for the embedding of H& (B) in LP(B) is K(n, 2). Hence,
for any & > 0, there exists some B, € R such that for any 1 € Hoz_ 1(B),

2/p
( / |u|"dv(ga)) < (K(,2) +¢) f Vul dv(ga) + B. f W dv(ga)
K] B 3B

The proof of such a claim goes in a very standard way (see, for instance, Aubin
[12] for details). By our contradiction assumption,

A Ealn) < oo
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Let € > 0 be such that
(K(®,2)> +¢€) inf E,(u) <1
ue,

and take u = ¢, in the above inequality. Then

2/p
( L 74 dv(g.:)) < (K. 2 + &), + B: fs 07 dv(ga)

Moreover, one has that

q/p .
/ ‘pqqdv(ga) =< (/ ‘pquv(ga)) VO]ga(ﬁ)]-"
B B

where Vol (8B) stands for the volume of B with respect to g,. Since ¢, € ¥,,

2 2 2/p
Volg, (B)r™ 7 < (f 74 dv(ga))
3
and one has that
2_2 2 2
Vol (B)7 "7 < (K(n,2)* +€)pq + Be | ¢;dv(gs)
3
By passing to the limit as ¢ — p in this inequality, and since
u = ulel}g,, E,(u)
we get that
1< (K(n,2)*+¢) inf E,(x)+ B; / @2 dv(g.)
uEle B
By the above choice of &, this implies that
[ ¢z dv(gs) > 0
F:

Hence, ¢, # 0, so that, as already mentioned, ¢, is positive in 8. In particular,
multiplying by ¢, the equation satisfied by ¢, and integrating over 8 shows that

u>0.
In order to end the proof of the lemma, let us now prove that

-, £

and that ¢, € #,, so that ¢, realizes the infimum of E, on J¢,. Multiplying by ¢,
the equation satisfied by ¢,, and integrating the result over 8B, one gets that

n fs ¢f dv(g.) = /s (IVeal? + a@l)dv(ga)
. 2 2 T
5]1;11;&/; 1Vl + a@])dv(ga) —]l;lll;lfuq

Hence,
/ ‘P.f dv(gs) <1
B
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Let ¢ = ||gall;'¢o- Then ¢ € 3, and

-2
n=E(y)= u(fstpf,’ dv(g.x))l '
As a consequence,
/ s dv(gs) > 1
so that ¢, € ¥, and u is the inﬁrﬁum of E, over J,. Setting
Ao = uie'}f,, Eq(u)
this ends the proof of the lemma. O

Since the proof of Theorem 7.2 is by contradiction, we assume the existence of
g« and ¢, as in Lemma 7.3. We start with the study of some of the basic properties
satisfied by the ¢,’s. In what follows, we consider a sequence of real numbers «
which tends to 400, and we successively pass to subsequences. As a first result,
we prove the following:
LEMMA 7.4 Up to a subsequence,

@) limy 100 9e =0a.e,
(ii) limy—s 400 fg 92 dV(ga) = 0, and
seen qe _ 1
(lll) ]lme,_>+°° Ay = Koz
where Ay and ¢, are as in Lemma 7.3.

PROOF: As a starting point, note that

1
2 2 2 —
“L% dv(gy) < L Vol dv(ge) +0L¢u dv(ge) = Aq < X 2)?
Hence,
i, [ e2dve =0
Moreover, since g, satisfies (x+), one gets from Theorem 1.3 that for any x € B
1
Ze < 8a(x) < 4e

where e stands for the Euclidean metric of R”, and the inequality has to be under-
stood in the sense of bilinear forms. As a consequence,

1 .
[ diavies > 5 [ g2ax ana tim [ gax=o0

After passing to a subsequence, one then gets that

lim ¢, =0a.e.
a—+00

Suppose now that there exists some subsequence (A,) of (A,) such that

1
lim Ay =A < ——
u-!Too < K(n,2)?
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Let ¢ > 0 be such that

1
(l+8A < —K(n, 27

In the spirit of Theorem 7.1 (see Hebey [107] for more details), there exists a
positive constant B,, independent of «, depending only on ¢, n, and A, such that
for any u € HZ | (B),

2/p
(f ul? dv(ga)) =d +8)K(n,2)2([ [Vul® dv(ge) + Bs/ uzdv(ga))
8 8 8

From such an inequality, one gets that

Ae = f Veul du(ga) +a f o2 dv(ga)
B B

- _ 2
2 TroRe @ Be)fs%dv(ga)

since
f ‘P.f dv(ga) =1
F:]

As a consequence,

1 2

(m -+ S)Aa) +(+e)(a— Be)L‘P., dv(g,) <0
Noting that such an inequality is obviously false for @ > 1, one gets that

) 1
™ = K, 27
This ends the proof of the lemma. O
A slight improvement of point (ii) of Lemma 7.4 is the following:
LEMMA 7.5 lim « f $2dv(g,) =0
astoo fg

PROOF: Let ¢ > 0. In the spirit of Theorem 7.1 (see Hebey [107] for more
details), there exists B, > 0, depending only on ¢, n, and A, such that for any
u € H} (B),

2/p
( f |u|"dv<g.,>) < (K(n.2)? +¢) [ IVul dv(ge) + B, f W dv(ga)
B B B
By (7.4) and (7.5),

/ IV<paI2dv(ga)+af ¢§dv(ga)=ka(f <p.,’,’dv(ga))
B B B

/ Voul? dv(gs) +a f 2 dv(ga) <
B B

2/p

Hence,

ro(K(n,2)* +¢) f Vol dv(ga) + AeBe / @2 dv(gy)
B F:
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Noting that

1
« < ——> and Voul? dv(ga) < Aq
“Xoop /sl ¢al”dv(ga) <

one gets that

€ B, 2
/%dv(ga)- K. 2)° K(n’z)zfﬂ‘padv(ga)

By Lemma 7.4, point (ii), this leads to

) €
lnmsupa/ (pa dv(g.) < K@ 2)4

a—>+0c
Since £ > 0 is arbitrary, one gets the lemma. O

As a definition, let us say that x € B is a concentration point for (¢,) if the
following holds: For any § > 0,

lim sup f ol dv(gy) >0
a—>+00 JV(8)

where V,(8) = B,(8) N B, B,(3) the Euclidean ball of center x and radius §.

LEMMA 7.6 If x is a concentration point for (¢y), then, for any § > 0,

limsup[ el dv(g,) =1
Vi(4)

a— 400
where @, is as in Lemma 1.3, and V,(8) is as above.

PROOF: Letx € Bandletn € D(R") besuchthat 0 <np<landnp=1in
B,(8/2), where B,(8/2) stands for the Euclidean ball of center x and radius 6/2,
8 > O small. Let also k > 1 real. As one can easily check, multiplying (7.4) by
n’¢¥ and integrating by parts lead to

2(k
(k+1)2/ l ( (k+l)/2)| dv(ga) (k+ l)zf ( gan)wk.’-l dv(ga)
- 2 +l k+1
06 =g [ 19nie dvie +a [ et ducen

= o [ ot e
Since g, satisfies (»), one gets by Theorem 1.3 that there exists C > 0, indepen-

dent of «, such that |Vn| < C and |Ag,n| < C forall . Fore > 0, let B, > 0,
independent of e, be such that for any u € HZ(B),

2/p
( / |e|? dv(ga)) < (K(®n,2)*+¢) / |Vu|® dv(g,) + Be / u? dv(g,)
B B 3
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As above, we refer to Hebey [107] for details on the proof of the existence of such
a B,. By Holder’s inequalities,

f n°ekt? ™ du(g,)
B

= fs (X" )22 dv(ga)

2/p (p=2)/p
< ( / (npl+hrzyp dv(ga)) ( / oF dv(ga))
B

Combining (7.6), the fact that |[Vn| and |A,, n| are uniformly bounded, and the
above Sobolev inequality, we get the following: Ve > 0, 3C, > 0, independent of
o, such that Ve, V6 « 1, Vk € [1, p — 1],

f IV (o) du(ga)
2 (p=2)/p
<c+ & & 2)2+e)( f ¢£dv<ga))
Ve(8)

X/ (V(np&*tD72) 2 du(g,)
F:

Since by Lemma 7.4,

, 1
Jm Ay = K(n,2)?

we get that: Ve > 0, 3C, > 0, independent of «, such that Vo > 1, V§ < 1,
Vke[l,p—1],

f IV(ne*+V/2) 2 dv(ga)

2 (p=2)/p
1.7) <+ &0 +e)( f <p.£dv<ga))
4k Vi (8)

x [ VgV P dviea)
Let us now suppose that for some §, > 0,
lim sup ol dv(g,) <1
a—+00 Jvy(5)

By (7.7), and up to the extraction of a subsequence, we get that for k > 1 suffi-
ciently close to 1, and for§ < 1,

[ 1vaed v dnen < € / Vg du(ga) + Cs
where C> € (0, 1) and C; > 0 are independent of «. Hence,

f V(oY) dv(ga) < C
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where C,; > 0 is independent of a. For § < 1, set

A =lim supf ol dv(gy)
a—>+00 JV(8/2)
By definition, if x is a concentration point for (¢,), then A > 0. Independently, by
Holder’s inequalities,

f el dv(ge) < ( /
Ve (8/2) Ve (8/2)

("+2)/"(k+|)
"(k+|) (n— )) !
¢a / v (ga))

(nk=2)/n(k+1)
X (/ ¢g(k+l)/(nk—2) dv(ga))
Vie(8/2)

(nk -2)/nk+1)
k+1 -2
< Cs( f gplk+D/nk ’dv(ga))
Ve(8/2)
since

[ V(o) do(ga) < Cy
3

and where Cs > 0 is independent of «. Hence, if we set

& _nk+1)

] p—t
nk—2
we get that k; € (1, p) and that, up to a subsequence,

[3 ¢k dv(g) > Co

where C¢ > 0 is independent of o. We claim now that this is in contradiction with
Lemma 7.4. Indeed, for k > 1 sufficiently close to 1, k; > 2, and by Hélder’s
inequality,

k18/2 ki (1-68)/p
f ok du(g,) < ( / ¢§dv(ga)) ( / 4 dv(ga))
3B F:] F:]
where

kl -1
P
0=1_1
2 p
Since
/.“8%,: dv(ga) =1
and since by Lemma 7.4

lim [ ¢2dv(g.) =0
a—+00 3

this proves the claim. As a consequence, if x is a concentration point for (¢, ), then
for any § > O,

lim sup

a—+00

95 dv(g.) =1
This ends the proof of the lemma.

Ve (®)
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Lemma 7.6 leads to the following:

LEMMA 7.7 Up to a subsequence, (¢,) has one and only one concentration point.
Moreover, ||9yllL=8) = +00 as a — +00.

PROOF: Since
f ¢¢f dv(ga) =1
8

it is clear that (¢,) has at least one concentration point. Let x be such a point. By
Lemma 7.6, for any g € N* there exists « such that

1
l——s/ 9r dv(ga) < 1
q Ve(l/q)

The subsequence (¢y) = (¢4 ,) We just defined then satisfies that for any § > 0,

lim eldv(g,) =1

a—>+00 Vi (8)

As one can easily check, this implies that (¢,) has one and only one concentration
point. Independently, and since by Theorem 1.3,

1
rS&sk
where e is the Euclidean metric, one has that

f ofdv(g,) <
Ve(8)

Since for any § > 0,

2"(1),,..]

8'! ||¢a' "200(8)

lim / el dv(g,) =1
®)

u—>+00 V.
one clearly gets by passing to the limit, and by taking § smaller and smaller, that
lim |lggllLos) = +00
a—+oo
This ends the proof of the lemma. [

Going on with the study of the behavior of the ¢,’s with respect to the notion
of concentration point, one gets the following:

LEMMA 7.8 Let x be the concentration point of (¢.) given by Lemma 1.7. As
o = 400, g, — 0in C| (B\{x})).

PROOF: Lety € B, y # x. Since y is not a concentration point for (¢,),
there exists some 0 < § <« 1 such that

lim sup ¢l dv(g,) =0

a—s+o00 Jv,(5)

Independently (see (7.6) and (7.7)), for a > 1

(1.8) [ V(o) P du(gs) < C, / V(o) du(gs) + Ca
B B
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where
(k + ])2 (p=2)/p
Cr=—p—0 +e)(/ ¢5dv(ga))
v, ()
and where
G <22 [ maniet dvien + = [ (vaitet dvien)

Let e be the Euclidean metric. Since g, satisfies (a%),
1
—e< g, <4de
for all . Hence, there exists a constant C > 0, independent of «, such that |[V7| <

C and |A,, 7| < C for all . As a consequence, we get that for all k € [1, p — 1],

(@) limy, 100 [ V(9 +"/) > du(ge) = 0 and
(i) TiMgs 400 fy, 572 PE** /2 dv(ga) = 0.
According to (ii), we can now use (7.8) with

p
k=—-1
2
Therefore,
lim 0P dv(gy) =0

a4 Jvys
for some 0 < §’ « 1. More generally, and by induction, we get that for any y # x,
and any ¢, there exists 0 < § < 1 such that

lim ‘PZ dv(g.,) =0

a—>+00 Vy(8)
Hence, see Gilbarg-Trudinger [91], Theorem 8.25, since
Ag¥u < Aawl™

and since g, satisfies (x+), we obtain that for any relatively compact subset @ of
B\{x},
lim ¢, =0 inL®(w)

a—+00
The result then easily follows from Lemma 7.9 below and Gilbarg-Trudinger [91],
theorem 8.32 and corollary 8.36. O

Let x be the concentration point of (¢,). By w € B\{x} we mean that w is a
relatively compact subset of B\{x}. One then has the following:

LEMMA 7.9 Let x be the concentration point of (¢,). For any q and any w €
B\{x}, a||@sllL=o8) — 0 as « — +o0o. In particular, for any o € B\{x},
|| gallLo(8) = 0asa — +oo.
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PROOF: Lety € B,y # x, and let § > 0 be such that x ¢ V,(8). By (7.6),

a?t! / nost! dv(ge) < Cra? / ot dv(ga) + Cre? / OS+P dv(ga)
8 V,(9) Vi(®)

where C, and C; can be chosen independent of a. Moreover, according to what

we proved above, for any w € 8\{x} and any m,

lim | ¢7dv(g.)=0

a—+oo f

Hence, by induction on g, we get that for any y # x, any m, and any g, there exists
0 < § < 1, such that

lim a"/ ¢y dv(ge) =0
V(8

a—+00
Finally (see Gilbarg-Trudinger [91], theorem 8.25), since
Agy¥a < ha9?™!
and since g, satisfies (++), we obtain that for any g and any w € B\{x},
aEr-Poo ol "¢a "L°°(w) =0

This ends the proof of the lemma. O

A (n-2)/4
uy = ( =22 P
* (n(n—Z)) -

where A, and ¢, are as in Lemma 7.3. Here again, (u,) concentrates at x, and, as
one can easily check,

(7.9 Ag U + Uy = n(n — 2)ul™!

From now on, we set

in 8. Moreover, one has that

. p %
(7.10) agxgm zua dv(gs) = )
—_ 2 n
(7.11) i [Vue|* dv(gy) = n(n =~ Day
a—+0o0 8 2"

Let x,, be some point of B such that
Uy (Xa) = |luallLo@)
and let u, € (0, +00) be such that
el Loo( 8y = g =27
According to Lemma 7.7 and Lemma 7.8,

lim x,=x and lim wu, =0
a—+0o0 a—>+o0

As a first remark, one has the following:

LEMMA 7.10 There exists C > 0, independent of ., such that for any a, ap2 < C.
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PROOF: Since Ag, u,(x,) > 0,
au;(n—Z)/Z < n(n _ 2)“;(”+2)/2
so that au2 < n(n — 2). This proves the lemma. O

An important step in the proof of Theorem 7.2 is now given by the following
lemma:

LEMMA 7.11 Up to a subsequence,

hm M = 400

a—+00 Ha

where d stands for the Euclidean distance, and x, and p, are as above.

PROOF: Since x, — x as ¢ — +00, the result is immediate if x ¢ 9.8.

Without loss of generality, we can then assume that x = (0,...,0,1) € 8.
Since g, satisfies (x«), one gets by Theorem 1.3 that there exists a constant K,
independent of «, such that for any @ and any i, j,k=1,...,n,

1 .
(7.12) 2% < 8 <48; inBo2)
(7.13) 851 < K, 18831 < K in Bo(2)

where By(2) stands for the Euclidean ball of center 0 and radius 2, where (7.12)
has to be understood in the sense of bilinear forms, and where the g;’s stand for
the components of g, in the canonical chart of R”. Hence, by Ascoli, there exists
a C%'/2 Riemannian metric g in Bo(3/2) such that, after passing to a subsequence,
Jim g, =g inC*'2(By(3/2),
for any «, g, satisfies (7.12) and (7.13),
1 .
Z«Sij <8&j =< 43,'_,' in Bo(3/2).
From now on, let o, € O(n) be such that o,(x,) = xf € [0, x], where [0, x]
stands for the segment [0, x] = {rx,0 < ¢ < 1}. We still denote by g, the metric
(6;")*g,, and by u, the function u, o o !. Since x, = x as @ — +00, we get
that o, — Id as @ — +00. Hence, we still have

(7.14) for any «, g, satisfies (7.12) and (7.13)
(7.15) Jim g, =g in C%'2(By(3/2))
In addition, according to (7.9), (7.10), and (7.11), the following holds:
(7.16) for any o, u, € c:(8)n H&,(.‘B) andu, >0 inB
(7.17) for any a, Ay uq +auy =n(n —2)ul~'in B
(1.18) Jm [ uldvie) = ‘2”_

nn — 2)w,

. 2 —
(7.19) Jim £IVuaI dv(g.) = >
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(7.20) for any a, ua (xX) = u7""272 = |luy|lLo(8)
Since d(xy, 38) = d(xX, x), we have to prove that
R
lim 4G, %) = +00

atoo g
Let v, be defined in B, = B_,/,,(1/1) by
va(Y) = 18P Puy(pay + x)
Wehave 0 < v, <1 andUe‘Ba = E where
= {(x., axp)eR /x, < 0]

In addition, 0 € B, for all a, and if we assume that (i) is decreasing, we get that
B, C B, as soon as a < a’. Let us also define the metric &, by

he(y) = ga(ioy + X)

for y € B,. By (7.14), we get that for any o

1
(7.21) 2% Sh <48 inB,

1 j -_—
in the sense of bilinear forms, and we get that

there exists a constant X independent of «,
(7.22) such that for any ¢ and any i, j,k=1,...,n,
|hi;l < K and |3ch| < Kpo in By

Combining (7.15) with (7.22) leads to the fact that for any w € E,
lim h, =g(x) inC'(w)
a—>+0o0
Moreover, since
AgUe + Uty = n(n — 2)14",,"l
in B, we get that for any «,

(7.23) Ap, Ve + (@u2)ve = n(n — 2)v?~"!
in B,. Note here that (7.23) may also be written in the following form:
(7.24) —D;i(h /1ha|Djve) + (@ul)ve = n(n — 2)v2~"

where |h,| stands for the determinant of the matrix (h;), and where (hY) =
(h$)~". Let us now set

R
X=X
Ya P
For any a, y, € 8, and v,(y,) = 1. As a starting point, we claim that
R
liminf %22 o ¢

a—>+00 Ha
The proof here is by contradiction. Suppose that, after passing to a subsequence,

R
timinf 2% %) _ o

a—> 400 I.La



7.3. PROOF OF THEOREM 7.2 207

Then y, — 0 as @ — +00. Moreover, by a slight modification of corollary 8.36
of Gilbarg-Trudinger [91] that can be found in Hebey-Vaugon [119], by (7.21),
(7.22), and (7.23), and since 0 < v, < 1, we get that the v,’s are C' bounded in a
neighborhood of 0. Hence, by the mean value theorem,

1 = [va(ya) — v (0)] < Cd(0, y)
which is impossible. This proves the above claim. Let us now prove that

R

a—+00 Mo
Here again the proof is by contradiction. We assume that, after passing to a subse-
quence, .
lim 2% X)
=+ Uy
where A > 0 is real. Up to the extraction of another subsequence, we may also
assume that

=A

Jim yy = yo

for some yo € E. By Gilbarg-Trudinger [91], theorem 8.32, by (7.21), (7.22), and
(7.24), and since 0 < v, < I, the v,’s are equicontinuous in any compact subset
of E. Hence, by Ascoli, there exists v € C°(E) such that for any w € E, some
subsequence of (v,) converges to v in L*(w). In particular, 0 < v < 1, v ¥ 0,
and v(y) = 1. Now, note that for any w € E, and any a >> 1,

a[:Buf, dv(gy) = auf,/:a vf, dv(hy) > auﬁf vf, dv(hy)
a w
Hence, since h, satisfies (7.21), since v # 0, and since

\ A (n=2)/2 )
[ = () [ s

we get from Lemma 7.5 that

lim au’2=0
a—>+00 Ko

As a consequence, by (7.24), and since
Jim h, =g(x) in Cp.(E)

we get that
(7.25) Agyv = n(n — 2)vP™!

in E. Now, note that there exists ¢ € GI(n) such that 0 (E) = E and o*g(x) = e,
where e is the Euclidean metric of R”. For convenience, we still denote by v the
function v o o. Then, we get from (7.25) that

(7.26) A.v = n(n — 2)v”~!

in E. Let
l (n—=2)/2
wl) = (1 T |x|2)
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where |x| = d(0, x). We set

h = w*=2¢
=2
V=
D, = Ye
v,,,—w

Since Scal, = 4n(n — 1), where Scal,, is the scalar curvature of 4, we get from
(7.26) that

7.27) Apd +n(n —2)d = n(n —2)vP!
in E. Moreover, by (7.18), (7.21), and (7.23),

|Vz7,,,|2dv(h)+n(n—-2)/ 2 dv(h) =/ (Vg |? dx
By By By

<c f Vvel? do(ha)
By

<G [ w2 du(hy)
Ba

=G f ubdv(g.) < Cs
B8

where C;, C,, and C3 are positive constants independent of «. As a consequence,
the sequence (¥,) is bounded in H} (E), the Sobolev space HZ,(E) being con-
sidered with respect to . On the other hand, for any w € E, there exists a subse-
quence (¥y) of (¥,) such that
lim ¥, =7 inL®(w)
a—+0o

Hence, since any bounded sequence in a Hilbert space possesses a subsequence
which converges weakly, we get that § € HZ (E). In what follows, let S" be the
unit sphere of R"*!, and, with a slight modification of the notation we have adopted
until now, let ¢ be the canonical metric of S” induced from the Euclidean metric
e of R"+'. By stereographic projection, E becomes a half-sphere S* of S". By
(7.27) we then get a positive solution v; € HZ ,(S) of

n(n — 2)v _n(n -2)
4 'T 7 4
in S*. Let P be the pole of S* and let ® be the stereographic projection of pole
— P. As one can easily check, v, = v o &~/ satisfies
vy € Hg|(£) and >0 in 8
Ayvy = @vf“' in B

p-1
Y

Acvl +

By Pohozaev [167] (see also Kazdan-Warner [131]), such a v, does not exist. As a
consequence,
R
lim 2C®) _
a—+00 Mo

This ends the proof of the lemma. a

+00
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From now on, let exp, be the exponential map of g, at x,. We set ¥, = exp,_
and
we = V7' (B)
8« = | O 2
Ug = Ug 0 Yy

Since g, satisfies (x*), g, is defined in an open neighborhood of By(2) where By(2)
stands for the Euclidean ball of center 0 and radius 2. Moreover, one has that for
any o, wy C Bo(2). By Theorem 1.3 of Chapter 1, there exists a constant K,
independent of «, such that for any o and any i, j, k=1, ...,n,

1
(7.28) Z 8,’1‘ < g~z < 48,‘1' in By(2)
(7.29) 1<K and (885 <K inBo®

where B(2) stands for the Euclidean ball of center 0 and radius 2, where (7.28)
has to be understood in the sense of bilinear forms, and where the §;”j ’s stand for
the components of g, in the canonical chart of R". Along the same line of thinking,

one easily gets that for any o

(7.30) w, is star shaped at 0
(7.31) foranyi, jk=1,...,n, §5(0) = &;, HE3(0) =0
(7.32) iy € C2(@x) N HE (we) and iy >0 inw,
(7.33) Aglig + aily =n(n —2)i?™  inw,
(7.34) 12 (0) = lliql| Loowy) = pz "~/
and that
i 5P du(s) = 2

(7.35) aHToo A ul dv(gy) = n

. ~ 12 =\ _ n(n — 2)w,
(7.36) algglw [Vidg|* dv(ga) = —

Wer
Since g, satisfies (7.29), one gets by Ascoli that there exists a C%'/?> Riemannian
metric g in By(2) such that, up to the extraction of a subsequence,

(1.37) lim g, =g inC%"*(By(2))

a—+00

In what follows, we assume that g, satisfies (7.37). By (7.31), one then gets that
8ij(0) = §;;. Let us now set

U (y) = /"g'_z)/zﬁa(uay)
he(y) = ga(#ay)

for y € 2, where Q, = ”Lawa is given by

1
Q. = [—x, X ewa}
Mo
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As one can easily check,

(7.38) 0<0,<1 and ,(0)=1

(7.39) Dby Vo + (@) =n(n —2)82~' inQ,

Independently, since g, and g, satisfy (7.12) and (7.28), one gets by Lemma 7.11

that
lim d(0,9R,) = +00
a—+00

where d stands for the Euclidean distance. Hence, | 2, = R". More precisely,
for any w € R", there exists ag such that for any ¢ > ap,  C £2,. On the other
hand, by (7.29), one gets that for any « and any i, j,k=1,...,n,

(7.40) W}l < K and |3k} < Kpo in Qg

As above, let e be the Euclidean metric of R". Since g(0) = e, one gets by com-
bining (7.37) and (7.40) that for any w € R",

(7.41) lim hy, =e inC'(w)

a—>+o0

We start here by the study of some of the basic properties that the v,’s satisfy.
On such a subject, first note that by (7.28), (7.38), (7.39), (7.41), and Gilbarg-
Trudinger [91], theorem 8.32, the v,’s are equicontinuous on any compact subset
of R". Hence, by Ascoli, there exists & € C°(R") such that for any v € R”, a
subsequence of (7,) converges to ¥ in L™ (w). As a consequence, 0 < ¢ < 1, and
v(0) = 1. In particular, v # 0.

LEMMA 7.12 Up to a subsequence, ap? — 0 as a — +0o.

PROOF: For any w € R",
af uidv(g.,) =a/ ﬁi dv(gy) =au§] f)ﬁ dv(hy) > ap.i/ 602, dv(hy)
B W Qo 7]
On the other hand,
M (n-2)/4
o = (n(n = 2)) b

Since ¥ # 0, one easily gets by Lemma 7.5 that, up to the extraction of a subse-
quence,

lim apl =0
a—>+00
On such an assertion, recall that h, satisfies (7.41). This ends the proof of the
lemma. 0O

By (7.39), (7.41), and Lemma 7.12, we get that ¥ € C*™(R") and that
A0 =n(n —2)vP!

in R", where A, stands for the Euclidean Laplacian. Hence, according to Caffa-
relli-Gidas-Spruck [36] (see also Obata [163]), one has that

1 (n-2)/2
v =
® (1 T |y|2)
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where |y| stands for the Euclidean distance from O to y. Let us now prove the
following:

LEMMA 7.13 For iy as above,
2
lim f Vi |2 dx )“’"

a—+00
where dx stands for the Euclidean volume element, and the norm in the integral is
with respect to the Euclidean metric.
PROOF: By Lemma 7.8,
lim u, =0 inC(B\{0})

o—>+00

Hence, forany § > 0,8 < 1,
lim / |Viig|*dx = lim |Vite | dx

a—>+00 Wa a—+00 80(8)

where By(8) stands for the Euclidean ball of center 0 and radius §. Since g(0) = e,
the Euclidean metric, we get by (7.37) that for any £ > O, there exist § > 0 and
oo > 1, such that for any o > ap,

I8 — ellcosesy < €

Hence, for any £ > 0, there exists § > 0, § < 1, such that

A=g) [ VP dv() < / Vit |2 dx
Bo(8) Bo(3)
and
[ ViiaPdx <1 +6) [ [Vial2dv(a)
By(8) Bo(8)
Independently, by (7.36),
2/n
2 n(n — 2)wy
Jim [ (Vi oGy = T2

while by Lemma 7.8 and, for instance, (7.28), one gets that for any § > 0 small,

lim |Vity|> dv(gy) = lim [Vitg)* dv(a)
A=+ Jog By(8)
This ends the proof of the lemma. a

Lemma 7.13 leads to the following:

LEMMA 7.14 For U, as above, with the convention that v, = 0 outside ,, and
asa = 400, Uy — vin LP(R").

PROOF: We prove that

lim IV(Dy — 9)|°dx =0

a—>+00 fpon
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Clearly, the lemma follows from such a result. As one can easily check,
f IV(§y — D)|>dx = / |Viu)2dx + | |VD|2dx — 2/ (Vig, Vi)dx
R® Qo R" Qu

where (-, -) stands for the Euclidean scalar product of R". But

f (Vdy, Vi)dx =f T A ddx =n(n — 2)[ U 0P~ dx

Qu Qq Qu

and, since 0 < ¥, < I, we get that

lim / i')ai')"“dx::/ P dx
a— +00 Qa n

Independently, by Lemma 7.13,

lim [ |V5.ldx=_lim / Vi, Pdx = =D
a—+0o Qu on
Finally,
-2
Voltdx =ntn—2) [ 5Pdx =10
R I’ il
Therefore,
2 -2 - w,
lim / [V(Je — 7)|*dx n(n )“’n + n(n — 2)w, _2n(n 2w, -0
a—+0o0 on o
This ends the proof of the lemma. 0O

From now on, let
ha - 54/("_2)}'«
h = 4 (=D

where e stands for the Euclidean metric of R”. Let also W, = 9,/v. By (7.39), one

has that
4n—-1) . 4n-1)

auliv, =4n(n — )P

n—-2 n-—2
and if S}, stands for the scalar curvature of h,, we can write that
4(n -1 4(n —1
(n )Ahaﬁa + Sk, Ve + (n )aug - s,,,)aa =dn(n — 1)o7~
n—-2 n—2
On the other hand, we have
4(n—1 - - 4n-1) - e Yoo
; — )Ahava + Sho Vo = (_E,__zA;:,wa + Sﬁ,wa)v” :
and & D
n— ~ ~ ~p—
2 Ap, 0+ Sp, U = §; VP I
Hence, we get that
. Ap, ¥ apl\ - - p—]
(7.42) Aj e + (W“ + w_‘;)w., =n(n —2)wl

in &,. Let us now prove the following:
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LEMMA 7.15 Fora > 1,

5 2
Ap, v
-5 +t5520
pp-1 vp-2

in 2.
PROOF: Set ¢, (y) = U,y. As one can easily check,
$a : (Qa) eha) = (v £a)
is an isometry. Hence,
B = p (B3, (0 9. ")) 0 b

Independently, since the canonical coordinate system of R” is a normal geodesic
coordinate system at 0 for g,, we get that for any radial function u = u(r),

Az u=Amu— u'd, log v|gel
where r = |x| is the Euclidean distance from O to x, A, stands for the Euclidean
Laplacian, and |g,| is as in Aubin [12], theorem 1.53. Noting that

exp,. : (war 8a) = (B, 8)

is an isometry, one gets by Aubin [12), theorem 1.53, that there exists a constant
A > 0, independent of a, such that

|3, log v/18a]| < Ar

As a consequence,
An, U = A0 — Aplr|i'|

and since
~ o -p-] ~! — 2 _”/2
A =n(n —2)i and ¥'(y) =—(n-2)lyl(1+Iyf)
we get that

Ay b au’ )
feZ 202 > n(n—2) +apl(1 +1yPR)° — (0 - DARZIYP(1+ Iy P)

pp-1 b4
=n(n—2)+ap(l+|yP) + (@ — (n = 2)A)ul]y*(1 + |y*)

Hence,

Ahaﬁ aﬂg
5o1 T 52 20
if @ > (n — 2)A. This ends the proof of the lemma. a
From (7.37) and Lemma 7.15, we get that
(7.43) A, Wy < n(n —2)wl™!
in Q,. We set
e = ;py
®a = ‘P(Qa)
W, =w,0¢

H, = ‘P'Ea
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Clearly, ©®, = R"\6, where 6, is an open neighborhood of 0 such that for any
8 > 0and any @ > 1, 6, C Bo(8), where By(8) stands for the Euclidean ball of
center 0 and radius 8. In addition, since

¢ (R ha) > (O, He)
is an isometry, we get by (7.43) that
(7.44) Ay, Wy <n(n— 2)Wo’,"I
in ©,. Finally, forany y € ©,,and anyi, j=1,...,n,

Iy? )2 . Gikly 12 = 291 90) Gjmly 2 = 2 Ym)
HE(y) = ( o (0 J J
7 () T+ P ngm(” 0(») Iy e

where the H; stands for the components of H, in the canonical chart of R", and

where the g¢; stand for the components of g, in the canonical chart of R". Hence,

by (7.28) and (7.29) we get that

3r > 1 such that for any @ and any y € ©, N B, A7'§; <

H,‘I” (¥) < Ad;; as bilinear forms

3K > Osuch thatforanya > Oandanyi, j=1,...,n, |H]|

Kin®,NSB

(7.47) for any § > 0, 3K’ > O such that for any @ > O and any i, j, k =
: 1,...,n, |&H| < K'in ©, N (B\Bo(d))

where Bg(8) stands for the Euclidean ball of center 0 and radius §.

k.

(7.45)

IA

(7.46)

LEMMA 7.16 For W, as above, with the convention that W, = 0 outside ©,, and
asa > +oo, Wy — 1in LP(B).

PROOF: We have
f W — 117 dx < clf W, — 1|Pdv<H.,>=C.f e — 117 dv(ie)
B8 B8 @(B)

-c f 150 — D17 dv(ha)
w(B)

< c2/ Do — P dx
Qe

since, by (7.28) and (7.45), h, and H, are uniformly equivalent to the Euclidean
metric. Hence, according to Lemma 7.14, we get that
lim / |W, —1|Pdx =0

8

a—+0C
This ends the proof of the lemma. a
Now we prove the following main estimate. Note that as a consequence of
such an estimate, and since v(y) — 0 as |y] = 400, one gets that ¥, — ¥ in
L>(R").
LEMMA 7.17 There exists a positive constant C, independent of a, such that for
U, and U as above, and for a > 1, U, < C on Q.
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PROOF: As one can easily check, the inequality of the lemma is equivalent
to the existence of a constant C > 0 such that for any @ >> 1 and any y € ,,
Wy (y) < C. Since for any ® € R",

lim w, =1
a— 400

in L*°(©®), we just have to prove that there exist a constant C > 0 and R > 0 such
that for any & >> 1 and any y € ,, We(y) < C as soon as |y| = R. Obviously,
this is equivalent to the existence of a constant C > 0 and to the existence of §o > 0
such that for any « > 1 and any y € ©,, W,(y) < C as soon as |y| < . From
nowon, let n € C*°(R") besuchthat 0 < n < 1,n = 1lin By(6/2), n = 0
in R"\By(8), 0 < & < 1. As one can easily check, multiplying (7.44) by n>W%,
k > 1, and integrating by parts lead to

(7.48)

T L VAW v,

)
(k + 1)2

<n(n-2) f 2 Wk+r=! dy(H,)
Oq

(A, mWiH dv(H,) —

Py / |VyPW! dv(H,)

On the other hand, Holder’s inequalities for the right-hand side of (7.48) give
/ Wy tP~! du(H,) <
O

2/p
( f (nWwik+hrz)P dv(Ha)) ( wp dv(H.,,))
O Bo(3)

where By(8) stands for the Euclidean ball of center 0 and radius 4. Finally, since
for any u € D(R"),

2/p
( Iul”dx) < K(n,2)? / |Vul)? dx
R" R"

we get by (7.45) that there exists a constant C, > 0, independent of a, such that

(p=2)/p

2/p
( (nW.,f“”/z)"dv(Ha)) <G / VW *D72) 2 du(Hy)
(52% Oq
As a consequence, we get that

f IVWEI2)R dy(H,) <
Oy

(p—=2)/p
G+ c;( wp dv(H.,,)) |V(pW¥+D72)2 dy(H,)
Oq

Bo ()
where C3 > 0 is independent of «, and

k—1 k+1
Co<—— [ nlAu Wi dv(Hy) + —— | IVn*Wi du(H,)

4k Jo, 2k Jo,
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By Lemma 7.16, for any k we can choose § > 0, § < 1, such that

(p=2)/p
Cs( w2 dv(Ha)) <C
Bo(8)

where C; < 1. Hence, if we proceed as in the proof of Lemma 7.8, we get that
forany g € N,38 > 0,8 < 1, such that forany a > 1,

(7.49) Wi dx < Cs

By(é)
On such an assertion, recall that H, satisfies (7.45) and (7.47). Let us now write
(7.44) in the following form:

Di(HV/|Ha| DjWe)) = =n(n = 2)/[Wo W)™

where (H}/) stands for the inverse matrix of (H{}), and | H,| stands for the determi-
nant of ( H,.‘;). By (7.45), (7.46), (7.49), and Gilbarg-Trudinger [91], theorem 8.25,
we get the existence of a constant Co, > 0, and the existence of 6 > 0, §y < 1,
such that for any y € ©,, W,(y) < G if |yl < 8. As already mentioned, this
ends the proof of the lemma. O

With such an estimate we are now able to get the contradiction we were looking
for and hence prove Theorem 7.2. The argument starts here with the Pohozaev
identity [167]. For the sake of completeness, let us say some words about this
identity. Given  a smooth, bounded domain of R”, let v be the unit outer normal
to d2. As one can easily check, for any smooth functions ¥ and v,

—2(A.u){Vu, Vv) = div(2(Vu, Vv)Vu — |Vu[*Vv)
— |Vu|*(A.v) — 2(Vu, Hess(v).Vu)

where A, stands for the Euclidean Laplacian, and the scalar product (-, -) is with
respect to the Euclidean metric. Let v(x) = %lxlz, and assume that ¥ = 0 on 9%2.
Integration by parts then leads to

(x, v)(dyu)*do = -2 f (Vu, x)(Acu)dx — (n —2) / u(Aou)dx

3 Q Q

Such a relation is referred to as the Pohozaev identity. Starting from this identity,
the proof of Theorem 7.2 goes in the following way:

PROOF OF THEOREM 7.2 (FINAL ARGUMENT): In what follows, the C;’s
are positive constants independent of . We let e be the Euclidean metric, and
vy be the unit outer normal to 9€2, for e. Since g, satisfies (x«), by Theorem 1.3
of Chapter 1 we get that there exists a constant K, independent of «, such that for
anya and any i, j,k=1,...,n,

1 - .
(7.50) Zs,-, < gg < 481] 1N Wy
a.51) 851 <K and (3851 <K inw.
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where (7.50) has to be understood in the sense of bilinear forms. By the Pohozaev
identity,
kn ~ ~ n-—2 - -
()’ akvu)Aevu dx + —— v.,,(Aevu)dx =
Qu 2 Jg,

1 -
. (}’, va)(avo, vu)2 do
2 0Qq

But (y, v,) > 0 since €, is star shaped at 0. Hence,
-2
(7.52) f (YO Ug) Aelip dx + n——f Vo (Aply)dx <0
L 2 Jo,

Independently, since g, satisfies (7.50), for any X € R",
hiX:X; > MX)

where A = 1/4 and (h¥) stands for the inverse matrix of (hj?;-). Let us now write
that

AA Do = Ap,Ua + () — 18Y)8;; 0 — hIT (hq)}; 04 B
where the F(hc,)f.‘j ’s stand for the Christoffel symbols of h,. Multiplying (7.52) by
A, we get that
(7.53)

~ - n—-2f _ -
f (ykakvd)Aha Vo dx + e vuAha Vo d.x
Qo 2 Qo

+ [ 0 b - 38705 dx = [ 8T BT ) dx
Qu Qo

-2 . . -2 3
+2 f Uo(hy — X8")0;; U dx — "T Ve (hI T (h)}}) O Uy dx
o Qﬁ
<0
Since v, satisfies (7.39),
ko = - n-2 [ _ .
(y" 0rVg) Ap, Uy dx + —— Vg A, Vo dx
Qqy 2 Qu
= | O*dda)(n(n— 227" — (@ul)i,)dx
Q
-2
+ 2 f o (n(n —2)927" — (aul)e)dx
Q@

In addition, since v, = 0 on 3,, integration by parts gives

[ oasonar=-"22 [ sas
Qo 2 Qq

(ykakﬁu)ﬁu dx = —%l/ {)3 dx

Qq Qo
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Hence,

- n-—2 - ~ ~
/ (y"aki").,)A;,av, dx + —— Vg Ap, Vg dx = au:‘; / voz, dx
Qo 2 Qq Qo

and (7.53) can be written in the following form

(7.54)
auﬁ/ 5§dx+/ (Y 8 Do) (MY — A8Y) 3y, dx
Qo Qa

. .. , . n-2 o i i _
- / (O} kD) (A T (he)]})Oma dx + — U (2 — 187)9,;0, dx
Qo Qo

.

;‘ f Do (hT (ha)T) 3 U dx
<0

n

Let us now concentrate on the different terms of (7.54). As a starting point, we
get by integration by parts that

(* 0Dy (W — 18Y)8; dx
Qo

= [ (3, va) @By, Ta)*((hY — A8Y){ v )do — / (3h7)y*3; D 3y Do dx
Q0 Qq

- f (B — 7848, D3 Dudx — | (B — A87)x* 34 D0 8Dy dx
Qe Qe

where the v{*’s stand for the coordinates of v. Similarly,
f (h' — 187 )x* 3y D 8 Dy dx
= f (Vs Va) By, ) (B — 187 )7 VT )do — [ (7 0hiJ )34, Ty dx
Q0 Qu
—n | (hY — 187)808jDpdx — | (Y — A87)y* ;Do 0ji Ty dx
Qo Qo

Hence,
./ (hY — 187)y* 814 Do 3V dx
Qu
-1 [ (9, Va) By, 5a)2((h — 280 )0 vE)dr
2 Jaq,

- % (¥ 0kh'7 )8, 0,8 Ve dx — % (WY — 18')0;040; Ve dx
Qu Qo
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and we get that
L (ykakﬁa)(hg - ABU)&,-, 170, dx
1

= \2 ij iy,
=3/ (ys va) By, Ba)*((hY] — X8 )V} v )do
(7.55) “
- fg (B3h7 ) y* 3 Do OV dx
+ P22 [ it —asiya5,0,5, dx + - [ (achi)a. 5.8,
7 /. (hy — A8")0;0,0; X+§ (¥*Okhy/)0i V40 Uy dx
o Qe
Similarly,
L Do (hY — 187)3;;U, dx = — /Q (hY — 18Y)9;,9; D, dx
- / (3ihY )0y 30y dx
Qe
and
o 1 .
fgﬂ(aihg)vaajva dx = —EL (8,~jhf,{)v§ dx
Therefore,
/ Vo (hY — 18730 dx = — [ (hY — 187)8; 0,8, dx
(7.56) . l“"
+= | (B;hY)i2dx
2 Jq,
Finally,
o . 1 i
(7.57) [ Vo (hIT(ha)!)Omba dx = —= f (Bm YT (ha)™)) D2 dx
o ) 2 Q0 )

Hence, by (7.54), (7.55), (7.56), and (7.57), we get that
1 . .
ol f Oy dx + > f (95 Va) By, Ta)2((hY — X802V )do
Q 2 Jaq,

1 - _ - o
+3 O*hd)8; 068, dx — / (3ihY)y* 8; 158y D dx
Qu Qu

n-—2
4

- -2 . i
+ / (3;;hY) 52 dx + i”e / (3 (RY I(ha)]})) s dx
2 4 Ja,

- f (R T (ha)}) 34 e O B dx
<0
Forany y € 09,
(y,va) 20 and (hY — A87)v7v¥ >0
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As a consequence,
/ (Y2 Va) By, o) ((hY = A87)v{vF)do = 0
and we get that "
au? /Q 0ldx + % (y*0xh)8; D 8 Ty dx

Qa
.. . . -2 s
— (aihg)y"a,-vaakva dx + n ) / (Bijhj,{)vﬁ dx
Qo

(7.58) Qu
-2 . .
+2 f (3m (YT (o)1) B2 dx — f (*RIT (ho)7) 8t U By Ve dx
4 Q% ) Qu )
<0
By (7.50) and (7.51),

|8k )| = e | (387 ) (ay)| < Cradly]
Hence, by (7.39), (7.50), and (7.51), integration by parts leads to

/ yk (3khg)3;5a3,-6., dx
Qe

< Gl /Q [YPIVial” dx

<ol [ PIVL P duth)

= —Cys? /Qa (VAYIPV )Ty dvthe)

~cu [ P, B o) = o [9 (VIyPV5)Ta duihe)
=2 fg D Ba, 8, dvihe) = Con fg (Bu e duth,)
<C? fﬂ IYI2(An, e du(he) + Copi /Q 2 dv(h)

= C3u? /Qa Y0 (n(n — 2)82~" — auli,)dv(hy) + Csu? /a, 32 dv(hy)

< Csu? fg 92 dx + Cou? fn ly|*5f dx
Therefore,

(7.59)

< Csp.ﬁf v2dx + Cﬁp.f,/ ly[>5F dx
Qu Qo
and with the same arguments we get that

(7.60) I / (3hY)y*3; Do Dy dx| < Copt? / U2 dx + Cau? f ly|*0F dx
Q Qo Qu

f Y4 (Bh )85, 8; 5 dx

Q0
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Independently, by (7.50) and (7.51), for any X € R”,
[*RIT (o)) Xk Xm| < CopllyPIX P

Hence,

< Ciou f% yPIVa 2 dx

[ O*HIT o ausatte dx
Qq

and, here again,
(7.61)

f P (ha) ) BeTa B x| < Cr12 [ dx+ o [ yPiL dx
QG - 9‘1
Now, we are left with two terms in the study of (7.58). First, by (7.51),

/ (3;h) 02 dx| = / (3;hY)(8;52)dx
Qq Qo

< Cwﬂi/ (IylZlB;ﬁal)f)udx
S i
< CM#E,\/ f |Y12| Vi, |2 dx \/ / 02 dx
Q Q0
Therefore, since

/ 1YV, [* dx < CIS/ 2 dx+C|6[ lyI*0? dx
Qq Qu Qq

we get that

(7.62) < Cpul / U2 dx + Cigu2 f lyl?52 dx
Q Qu

/ (3;hY) 02 dx

Qa

Similarly, since

/ In (YT (ha)])0; dx

Qo

we get with the same arguments as those used to establish (7.62) that

(7.63) l / On(hIT (ha)}) 0% dx| < Cro} f 92 dx + Cyop / ly|*02 dx
Qa Qu u

Now, combining (7.58) with the estimates (7.59) to (7.63), we get that

= ] f (BT (ha)]}) (O} )dx
Qu

(7.64) « / 92dx < Cy / 92dx + Cy / ly|*3F dx
Qq o Qq
Since
lim v,=1v
a—>+00

uniformly in any compact subset of R”, for o > 1,

(7.65) f 02dx > / #2dx >0
o B
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Moreover, by the fundamental estimate of Lemma 7.17, and since n > 3,

(7.66) / |x|25£ dx < Cyp |x|*3P dx < Cas

Qa R
Combining (7.64), (7.65), and (7.66), we then get that « < C»s, the contradiction
we were looking for. This ends the proof of the theorem. a

7.4. Explicit Inequalities

Let (R", e) be the n-Euclidean space, (S”, h) be the standard unit sphere of
R*+!, (H", ho) be the n-dimensional, simply connected hyperbolic space, and
(P"(R), p) be the n-dimensional projective space with its canonical metric induced
from h. We consider here the following inequality: For (M, g) as in Theorem 7.2,
and for any u € HX(M),

2/p
(I o) ( f |ul? dv(g)) <K@®n,2)> f |Vul>dv(g) + B f u? dv(g)
M M M

where 1/p = 1/2 — 1/n, and K (n, 2) is as in Theorem 4.4.

The purpose of this section is to prove the following result, where, in the spirit
of Question 4, explicit optimal inequalities are obtained for some specific mani-
folds. As already mentioned, case (i) below is due to Aubin [10] and Talenti [183].

THEOREM 7.7 The optimal inequality (I3 ) is valid with
(i) B =0for (R", e)
(i) B = — 7 for (H", ho)
(ili) B = ——Wfor (" xH" h+hp),m=>2,n=>2

( + ) lﬂ+"
(iv) B= (T;"'z'—)“’%for P™"(R) x H", p+ho),m >2,n>2
(v) B = Wfor(S”xR h+e)n=>2

(vi) B = —%for P"R)xR,p+e),n>2

(Vll) B = —Wfor (H” X R.ho+e), n= 2
where w, denotes the volume of (S", h). Furthermore, at least when the dimension
of the manifold is greater than or equal to 4, these values are the best possible for
(R", e), (H", hg), (§S™ x H",h + hp), (5" x R,h + e), and (H" x R, hy + €).

PROOF: Regarding points (i), (ii), (iii), (v), and (vii), the result is an easy con-
sequence of Proposition 5.1 of Chapter 5 and Proposition 3.8 of Chapter 3, since
the manifolds in question in these points are conformally flat, simply connected,
and of constant scalar curvature. Hence, we are left with the proof of points (iv)
and (vi). We present the proof of (iv). The proof of (vi) proceeds with the same
arguments.

According to what has been said in the proof of Proposition 5.2, there exist
m + 1 simply connected open subsets 2; of P"(R), and m + 1 functions »; : Q; —
R such that

1. (R:)i=1....n+1 is an open covering of P™(R),



74. EXPLICIT INEQUALITIES 223

2. for all i, ; and ,/7; belong to HZ () N C%(Q)),

3. foralli,0 < n; < 1and |V /7] € C%Q;), and

4. Y g =1land 20 (V. /w2 = m.
Let 7; : P"(R) x H" — R be defined by 5;(x, y) = n;(x). As in the proof of
Theorem 7.4, one has that for u € D(P"(R) x H"),

m+1

2 /7112
Neliznjv-2) = Z v iullznjn-2
i=1

where N = m + n, and |- ||; stands for the norm of L°(M). Independently, since
§2; x H" is simply connected, since p + hy is conformally flat, and since the scalar
curvature of p + hg equals m(m — 1) — n(n — 1), one gets from Proposition 3.8 of
Chapter 3 that for any i and any u € D(P"(R) x H"),

VA2 < KN, 2V /Fi i3 + Bom, m)IV/7ul?

where
mm-—1)—nn-1)

m+n)(m+n— l)w,":,/,,(_',',""")

Similar computations to those made in the proof of Theorem 7.4 then lead to the
following: For any u € D(M),

lell2 < K(N, 2)2I1Vull} + Bllull3

B(m,n) =

where

m+1
B=K(N, 2)2( sup Y lv\/ilz) + B(m, n)
P’"(R)X HI! i=|
By point (4) above,
m+1
Y vVl =m
i=l|
Hence,
(m —-n)Y(m+n—2)+4m m-—n+2
B= Wmtn) 2/(m+n)
(m+n)(m+n —2)w,, (m+n - 2)w,,,

This ends the proof of the theorem. O






CHAPTER 8

Euclidean-Type Sobolev Inequalities

Let (M, g) be a smooth, complete Riemannian n-manifold of infinite volume,
and let g € (1, n) real. We say that the Euclidean-type Sobolev inequality of order
q is valid if there exists C; > 0 real such that for any u € D(M),

q/p
(If,'fg'é., (Llul”dv(g)) < Cq/M |Vul? dv(g)

where 1/p = 1/q — 1/n. As shown by Theorem 2.5, such an inequality is satisfied
by the Euclidean space. In the first section of this chapter, we try to find some nice
conditions on (M, g) for such inequalities to be valid. Note here that the study of
(I¢*<: ) can be seen as the analogue of Program 8B we studied in Chapters 4 and 5,

a.gen 7T .
since for infinite-volume manifolds,

-1y
Vol iyl gy =0

Regarding such an assertion, given (M, g) some smooth, complete Riemannian
n-manifold of finite volume, recall that by Proposition 3.5 there do not exist real
numbers A and B such that for any u € D(M),

1/p i/q I/q
(/ Iul”dv(g)) < A(f |Vul? dv(g)) + B([ Jul? dv(g))
M M M

unless M is compact. In particular, one cannot expect to get inequalities such as

I/p i/q
( f Iu(”dv(g)) sA( f IVuI"dv(g))
M M

/9
+V0](—h],{;)( fM Iul"dv(g))

In other words, one cannot expect to extend Program B to complete manifolds of fi-
nite volume, and a natural extension of Program B to complete manifolds is the one
mentioned above, dealing with infinite-volume complete manifolds and Euclidean-
type Sobolev inequalities. As a starting point (this is an arbitrary choice), one fixes
here the value of 8,(M) to be zero. The study of the validity of (If,f‘gf;n) then refers
to Question 28, while getting estimates on C, refers to Question 38. Still when
dealing with complete, noncompact manifolds of finite volume, as one can easily
check, the Euclidean-type Sobolev inequalities must be false. One can use here the
preceding argument, or note that there is a serious problem when taking ¥ = 1 in

225
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(I ). One may ask instead if the Sobolev-Poincaré inequalities

q.gen
q/p
( f lu—m"dv(g)) <A / Vul? du(g)
M M

are valid for complete manifolds of finite volume. This could be motivated by the
idea that the Euclidean-type Sobolev inequalities are the infinite-volume versions
of the Sobolev-Poincaré inequalities. As one can easily check, the answer to such
a question is negative, unless once more the manifold is compact. The point here
is that the validity of such a Sobolev-Poincaré inequality implies the validity of the
generic Sobolev inequality of same order, so we are back to Proposition 3.5. Inde-
pendently, and in the second section of this chapter, we will discuss the question of
the best value of C, in (I*<l. ). By Theorem 4.4, one has that the best value of C,

q.gen
is K(n, q)? for the Euclidean space.

8.1. Euclidean-Type Generic Sobolev Inequalities

Let (M, g) be a smooth, complete Riemannian n-manifold of infinite vol-
ume. We discuss in this section conditions on the manifold for the Euclidean-type
generic Sobolev inequality (lf,‘fgtn) to be valid. Clearly, since the validity of (l;‘fg'e-n)
implies that of (I} ,.,), there exist complete manifolds for which all the (I'c,)’s

arc false. As a first result, one has the following analogue of Lemma 2.1.
LEMMA 8.1 Let (M, g) be a smooth, complete Riemannian n-manifold of infinite

volume. Suppose that for some q € [1, n), (I;‘fg'e'n) is valid. Then, for all s € [q, n),

(¢t is valid. In particular, if (I%¢,) is valid, then for all s € [1,n), (ISs,) is

valid.
PROOF: Let g € [1, n) and let C > 0 be such that for any u € D(M),

1/p l/q
( / |u|"dv<g>) sc( f |Vu|"dv(g))
M M

where 1/p = 1/q — 1/n. Given s € (q,n), and u € D(M), let also ¢ =
|u|'"~9)/"9 where t is such that 1/t = 1/s — 1/n. Then, as in the proof of Lemma
2.1, one gets with Holder’s inequalities that

i/p
(/ Iul'dv(g))
M
1/p
= (f Itpl"dv(g))
M
l/q
< c( / |V<p|"dv(g>)
M

1/q
=Ca+ l)(f [ul*|Vul? dv(g))
M

(s—q)/qs I/s
scw+1)( / |u|"“’/""”dv(g)) ( f |Vu|’dv(g))
M M
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where @ = i"'T;L’ — 1. But

1 -
s q=1 and qas
p qs t s—q

Hence, for any u € D (M),

\/i c 1/
( fM |u|'dv(g)) 5(—‘I)-—( [ Vu |‘dv<g>)

This proves the lemma. O

Following Carron [39], we start here with the discussion of the existence of
C,. Namely, we discuss the validity of (I;{’g“;;,): There exists C, such that for any
ueDM),

2/p
s ( /M lul”dv(g)) <G /M IVul? dv(g)

where 1/p = 1/2 — 1/n. Let Q be some subset of M. By Q € M we mean that Q
is a regular, bounded, open subset of M. Then, AP (£2) denotes the first eigenvalue
of the Laplacian A, for the Dirichlet problem on £2, while Vol,(£2) denotes the
volume of  with respect to g. Recall here that
Vul*d
W@ = i J2!V4dV@
ueH @00} [y u?dv(g)

We say in what follows that the Faber-Krahn inequality is valid if there exists A >
0 such that for any Q € M,
(FK) A2(R) = A Vol ()"
The following proposition is due to Carron [39]:
PROPOSITION 8.1 Let (M, g) be a smooth, complete Riemannian manifold of di-
mension n, n > 3, and of infinite volume. The following two propositions are
equivalent:

(i) The Euclidean-type generic Sobolev inequality (Ig'_';;;,) is valid.

(ii) The Faber-Krahn inequality (FK) is valid.
Furthermore, taking C, to be the best constant in (I‘z’“;ln) and A to be the best
constant in (FK), one has that C; '<A<C (n)C2 where C(n) > 1 is explicit
and depends only on n.

PROOF: The proof follows the lines of [39]. Suppose first that there exists
C, > 0 such that for any u € D(M),

2/p ,
( f |u|"dv(g)) <G / IVul? dv(g)
M M

By Holder’s inequality one easily gets that if  is some regular, bounded, open
subset of M and if u # O satisfies

Au=2AP(Qu inQ

u=0 on 3Q

—— —
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then
Jo IVul?du(g)

2 i
(Jo lul? dv(g)™”
Hence, for any regular, bounded, open subset €2 of M,

(8.1) AP(Q) = €5 Vol ()"

This proves that (i) implies (ii). Suppose now that there exists A > 0 such that for
any Q € M, AP(Q) > A Vol,(R)~%/". Let Q € M be given. For s > n we set

—_ D 2/s
A () = u“é{zk' (U) Vol (U)

< AP(@) Vol ()"

and we set
Sy 1Vul?dv(g)

uel:!l;(sz) ( f 2s/(s=2) (s=2)/s
W [u|2/672 du(g))

Since 2s/(s — 2) < p when s > n, one easily gets by standard variational tech-
niques that for any s > n, there exists u; € C*() N H& 1(82) such that

A oUs = #S(Q)u(s"")/(S—Z) in Q
u; >0inQ, fou w5 gyg) = 1

One can then prove (see [39]) that for any 0 < ¢ < ||u;||cc»
Vol ({x € 2 s.t. ug(x) > [luslloo — 1)) =

(B2 (o )’
2(-""'4)/4 ,va (Q) "us "(°S°+2)/(5_2)

Hence, if we set L = [lu;[|o , we get that

1= / u*/2 du(g)
Q

2)j Vol ({x € @ st us(x) > ,})t(s+2)/(s—2)dt

us(RQ) =

(s -
- (s ) / Vol ({x € stugx)>L-—1t})(L- )(H.z)/(s_z)dt
2s A(S) o
Z6-2 (2"*4’/41%(Q)L"+2)/(s-2>) /0 AL —1) dr
But |
- - ') ()
/" 4= F(x+y)

where I'(x) = f0°° t*~'e~" dt is the Euler function, and
L !
/ ts/Z(L _ t)(s+2)/(s—-2) dt = Ls(:+2)/2(s—2)[ 9:/2(1 _ 9)(:+2)/(s—2) do
0 0

As a consequence, we get that for any s > n,
As(R) < C(s)us(2)
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where

C(s)_2<s+4),4( 25T (1 +5/2)T(25/(s — 2)) )‘2’3
) )

(s —2)T((s2 +4s —4)/2(s — 2)
Now, by assumption,
As(R) = A Vol (R)%/5-2m

Hence, if u € D(N),

2/p (s=2)/s
( f |u|"dv(g>) — lim ( [ |u|25/“-2’dv(g>)
M s—nt M

lim (C(s)A;(R)7') f |Vul® dv(g)
s—nt M

IA

IA

_l_ : 2/n-2/s 2
n (sl_nga+ C(s) Vol () ) | 1VuP dv(e)

<& / IVuP du(g)
A Ju

and we get that for any Q € M and any u € D(R2),

2p L Cn
32) ([ wraw)” <52 [ wurave
M
This ends the proof of the first part of the proposition. The second part easily
follows from (8.1) and (8.2). a

Before stating the next result, let us say some words about the existence of
positive Green functions on complete, noncompact Riemannian manifolds. Let
(M, g) be a complete, noncompact Riemannian manifold and let x be some point
of M. One can then prove that, uniformly with respect to x, either there exist
positive Green functions of pole x, and in particular there exists a positive minimal
Green’s function of pole x, or there does not exist any positive Green function of
pole x. More precisely, let @ € M be such that x € Q and let G be the solution of

AG =6, inQ
G=0 on aQ

Set G2(y) = G(y) when y € Q, G%(y) = 0 otherwise. Obviously, G® < G¥ if
Qc.

One then has the following:

THEOREM 8.1 Set G(y) = sup(q s.1. xeq) G%(y), y € M. Then,

(i) either G,(y) = 400, Vy € M, or

(i) G.(y) < +00,Vy € M\{x}.
This alternative does not depend on x and in case (ii), G, is the positive minimal
Green function of pole x.
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In case (i) the manifold is said to be parabolic; in case (ii) the manifold is said
to be nonparabolic. By Cheng-Yau [48], one has that if for some x € M,

Ve x
lim inf—olg—(g-—(i)l <+

r—+4+00 r

o0

then (M, g) is parabolic. This explains, for instance, why R? is parabolic while R>
is not. More generally, it is proved in Grigor’yan [94] and Varopoulos [189] that if

for some x € M,
f +oo rdr = oo
1 Volg (Bx(r))
then again, (M, g) is parabolic. Conversely, Varopoulos proved in [189] that if the
Ricci curvature of (M, g) is nonnonnegative and if

-
1 Volg (Bx(r))

then (M, g) is nonparabolic. Independently (see Grigor’yan [94]), one has that if
[
1 h(r)?

h(r) = inf Areag (392)
IQEM S.t. Vol ()<r)

then (M, g) is nonparabolic. For more details on these questions we refer the
reader to Cheng-Yau [48], Grigor’yan [94], Varopoulos [189], and the references
contained in these papers.

where

Let us now prove the following result. Extracted from Carron [39], it gives a
very nice answer to the question we asked at the beginning of this section.

THEOREM 8.2 Let (M, g) be a smooth, complete Riemannian n-manifold of infi-
nite volume, n > 3. The following two propositions are equivalent:
Ieucl.

(i) The Euclidean-type generic Sobolev inequality ( 3.gen) i valid.
(ii) (M, g) is nonparabolic and there exists K > O such that for any x € M
and anyt > 0,
Vol,({y € M s.t. G((y) > t}) < Kt™/"=D

where G, is the positive minimal Green function of pole x.

PROOF: The proof follows the lines of [39]. Suppose first that there exists
C, > 0 such that for any u € D(M),

2/p
( f |u|"dv<g)) <G / Vul? dv(g)
M M

Let x € M, let 2 be some regular, bounded, open subset of M such that x € Q,
and set
®,(y) = min (GZ(y), 1)
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where G is as in Theorem 8.1 and where t > 0 is given. Applying the above
inequality to &, we get that

(n~2)/n
/ IV¢1|2dv(g) > CZ—I(/ d)’2n/(n-2) dv(g))
M M

> Cz" Vol, ({y € Mst. Gf(y) > t})(n—Z)/ntz
while if ©® = {y € M s.t. G¥(y) <t}and 9 = {y € M s.t. G¥(y) =1},

f Vo, 2 du(g) = f IVG2P du(g)
M ®

= / G (AsGE)dv(g) —t [ (3:G)ds =t
e ]
since A,GS = 0in Q\{x}. As a consequence, for any x € M, any ¢ > 0, and any
bounded, open subset 2 of M such that x € ,
Vol ({y € M s.t. G2(y) > 1}) < 5/~ Py~n/n-D

By Theorem 8.1 one then gets that (M, g) is nonparabolic and that for any x € M
and any ¢ > 0,
Vol ({y € M st. Gi(y) > t}) < €3/~ Pg=n/tn=2)
where G, is the positive minimal Green function of pole x. This proves that (i)
implies (ii).
Suppose now that (M, g) is nonparabolic and that there exists X > 0 such that
forany x € M and any ¢ > O,

Vol, ({y EMst G (y) > t}) < Kt~/=D
Let Q be some regular, bounded, open subset of M and let u # 0 be such that

Agu=AP(Qu inQ
u=0 on 92

For any x € Q,

u(x) = A7(Q) fa Giudv(g) < Af’(sz)( fQ Gy dv(g))( sup (y) )

VEQ
where G is as in Theorem 8.1. We now choose x € § such that

u(x) = supu(y)
YEQ
Since G% < G,, we get that

+00
1<AP(Q) f G.dv(g) = AP(Q) f Vol, ({y € s.t. G:(y) > t})dt
Q 0

while, by assumption,
Vol ({y € Rs.t. G (¥) > t}) < min (Voly(Q), Kt™"/"~2)
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As a consequence,
+00

+00
/ Vol,({y € 2s.t. G,(y) > t}dt < T Vol,(Q) + Kf £~ =D gy
0 T

where T is such that KT ~"/"=2 = Vol, (). Hence,

+00 n

/0 Vol, ({y € @s.t. G((y) > t})dr < EK‘"‘Z’/" Vol ()%
and we get that for any Q2 € M,
2
AP = K2 Volg (@) 7"

By Proposition 8.1, this ends the proof of the theorem. O

Now that we have answered our question for ¢ = 2, and hence for g > 2, let
us discuss the case ¢ = 1, namely, the validity of (If“;n) There exists C) such that

for any u € D(M),

1/p
() ( /]; Iul”dv(g)) <G fM |Vul|dv(g)

where 1/p = 1 — 1/n. We start here by a result of Hoffman and Spruck [121].
As a consequence of their work (see also Michael and Simon [157]), one has the
following:

eucl

THEOREM 8.3 The Euclidean-type generic Sobolev inequality (I7",,) is valid on
any smooth, complete, simply connected Riemannian manifold of nonpositive sec-
tional curvature.

PROOF: In[121], Hiffman and Sprick studied the case of submanifolds M of
a Riemannian manifold M. For M — M an isometric immersion of Riemannian
manifolds of dimension n and m, respectively, let

K = sectional curvature in M
H mean curvature vector field of the immersion
= injectivity radius of M restricted to M

We assume that K < a2, where « is a positive real number or a pure imaginary
one. Let g be the Riemannian metric on M. As a main point, that we assume here,
Hoffman and Spruck [121] got that for any C' function u vanishing on dM

(n=1)/n
( f lul""”"’dv(g)) <C(n,0) / (IVul + |H| x |u])dv(g)
M M
provided that
«?(1 — 6)~%/"(w;" Volg(suppw))™’" < 1
and 2pp < R, where

o= 'sin™' a(1 — 6)~"/"(w; ' Vol, (supp u)) for a real
(l - 0)"/"( ! Vol (supp u)) Vi for o imaginary
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In such aresult, 6 € (0, 1) is a free parameter, C(n, 8) > 0 depends only on n and
6, and Vol, (supp u) stands for the volume with respect to g of the support of u.
Starting from the above inequality, and noting that for M = M as in the theorem,
R = +00, one easily gets that the (I, ) inequality is valid. a

REMARK 8.1. Let (M, g) be a smooth, complete, simply connected Riemann-
ian n-manifold with sectional curvature less than or equal to X < 0. Define the
Cheeger constant I..(M) of M by

. . Area,(Q2)
Io(M) = inf —2—
(M) =S @
where Q2 ranges over smooth bounded domains of M. As a simple application of
the divergence theorem, Yau [200] got that I (M) > (n — 1)/—K. By standard
arguments, as used in Federer [79] and Federer-Fleming [80] (see, for instance,
Chavel [45]), one then gets that for any u € D (M),

1
/Mluldv(g) < mL |[Vuldv(g)

As a remark, by taking ¢ = |u|? in such an inequality, this in turn implies that for
any g > 1 and any u € D (M),

‘ N "f Vuld
[ wrave < (——o=)" [ 19 avee

In particular, for such manifolds,

1/q
hull = ( f |Vur'dv(g>)
M

is a norm on H} (M) which is equivalent to the standard one.

Since the validity of (I ) implies that of (Igf';;;,), one has that the validity of

l.gen

1! ) implies that (M, g) is nonparabolic and that there exists K > 0 such that

l.gen
forany x € M and any ¢ > 0,

VOlg({y EMst.Gy(y) >1t)) < Ki—"/(=2)

where G, is the positive minimal Green function of pole x. As a remark, this result
was already contained in Grigor’yan [94]. One can now ask if such a necessary
condition is also sufficient. The answer is positive if the Ricci curvature is nonneg-
ative, but negative in general. Such results are due to Carron [40], Coulhon-Ledoux
[57], and Varopoulos [191]. More precisely, one has the following:

THEOREM 8.4 (i) Let (M, g) be a smooth, complete Riemannian n-manifold
of infinite volume, n > 3. If (M, g) has a nonnegative Ricci curvature, then
(Iﬁf’;i;,) is valid if and only if (M, g) is nonparabolic and there exists K > 0

such that for any x € M and anyt > 0,
Vol ({y € M 5.t. G (y) > t}) < Kt~/

where G, is the positive minimal Green function of pole x. In particular,

the validity of (I§%,) is equivalent to the validity of (I5'st,).
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(ii) For any n = 3, there exist smooth, complete Riemannian n-manifolds of
infinite volume for which (l§"°:n) is valid but (li“g'n) is not. Furthermore,
one can choose these mamfolds such that the sectional curvature is bounded

and the injectivity radius is positive.

PROOF: We restrict ourselves to the proof of point (i). For point (ii), we refer
to Coulhon-Ledoux [57). By Lemma 8.1 and Theorem 8.2, if (Ielucln) is valid, then
(M, g) is nonparabolic and there exists K > 0 such that for any x € M and any
t>0,

Vol, (l}’ € Ms.t. G, (y) > ;}) < Kt~n/(-D

where G, is the positive minimal Green function of pole x. Conversely, let us
assume that (M, g) is nonparabolic and that there exists K > 0 such that for any
x € M and any ¢ > 0,

Vol, (l}’ € Ms.t. Gy(y) > t}) < Kt™/@=2

where G, is the positive minimal Green function of pole x. Under such assump-
tions, and according to Theorem 8.2, (Igugg,) is valid. What we have to prove is that

(I?“‘Ln) is also valid. Following Carron [40), this will be a consequence of the work

of Buser [35]. Let 2 be some domain in M, and let r > 0 real. We define

2
By the work of Buser [35), and since (M, g) has nonnegative Ricci curvature,

Vol, (2) > Vol (R2) — ¢ (n)r Area, (3R2)

Q= {xeMst Vol, (B, (r)NQ) > IVol (B« (r))l

Set
Vol,(2)

= 2, (n) Area, (39)

Then,
~ 1
Vol, (2) > 2 Vol ()

and Q # @ if Q # 0. Let xo € § be such that
(8.3) %vmg (Bxo(r)) < Volg (B (r) N Q) < Voly(R)

Since (I*¢! ) is valid, and according to Proposition 8.2, the Faber-Krahn inequality

2,gen

(FK) is also valid. We claim here that this implies that

A nf2
8.49) Vol, (B,,o(r)) > (2n+2) r
where A is given by (FK) . Indeed, one has by (FK) that
A Vol (B.(r)) ™" < AP(B.(r))
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Let u(y) = r—d,(xo, y), d, the distance associated to g, and take « in the Rayleigh
quotient which defines Af’ (B, (r)). One gets that

4 Vo, (B,,(r))
r2Vol, (B, (r/2))

AT a2
Volg (B4 (1) = (AT') Vol (19,‘,(%))—2

By induction as in the proof of Lemma 2.2, this proves the above claim. Going on
with the proof of Theorem 8.4, one then gets by (8.3) and (8.4) that

c2(n)A"?r" < 2 Vol (Q)
According to the choice of r, this leads to the existence of ¢3(n) > 0 such that
1
VA

By classical arguments based on the co-area formula, as developed in the proof of
Lemma 3.3 of Chapter 3, one easily gets from such an inequality that (I‘}f‘;;-n) is
valid.

A-|D(‘Bx (r)) =<

Hence,

Vol ()" V" < ¢3(n)—= Area, (3)

Finally (see, for instance, [40] for more details), we mention that if (M, g) is a
nonparabolic, complete Riemannian n-manifold whose Ricci curvature is bounded
from below, and if there exists K > 0 such that for any x € M and any ¢ > 0 the
positive minimal Green’s function G, of pole x satisfies

Vol, ({y € M s.t. G (y) > t}) < Ke=/=D

then the Euclidean-type generic Sobolev inequality ([‘;‘_’;;'n) is valid. However, such
a result is not sharp. Indeed, (I?.';Lh) is valid for the Euclidean space R"” while the
condition above is obviously not satisfied by the positive minimal Green function

G, of R". Recall here that
Gx (}’ ) =

1
(n — 2w,y — x|"2

where w, denotes the volume of the standard unit sphere (5", k) of R"+!,

8.2. Euclidean-Type Optimal Sobolev Inequalities

We discuss in this section the value of the best constant C, in ([f,“’gn). By
Theorem 4.4, one has that C, = K (n, q)¢ for the Euclidean n-dimensional space.
Using the same arguments as the ones used in the proof of Proposition 4.2 of Chap-
ter 4, one can easily get that for any smooth, complete Riemannian n-manifold of
infinite volume, if (If,f'g:n) is valid, then C; > K (n, ¢)?. The point we would like to
discuss here is the so-called Cartan-Hadamard conjecture. By definition, a Cartan-
Hadamard manifold is a smooth, complete, simply connected Riemannian mani-
fold of nonpositive sectional curvature. For such manifolds, as already seen in theo-
rem 8.3 of Hoffman and Spruck, (I}, ) is valid. The Cartan-Hadamard conjecture,
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a longstanding conjecture in the mathematical literature, states that for Cartan-
Hadamard manifolds, (Ii'fgz'n) holds with the best possible value C; = K(n, 1).
In other words, the Cartan-Hadamard conjecture states that for Cartan-Hadamard
n-dimensional manifolds, the Euclidean-type optimal Sobolev inequality (l‘,f‘gl',’t) is

valid. Concerning the terminology, we say that (lff’gl',") is valid if for any u € D(M),

1/p
(L) ( fM Iul”dv(g)) <K@l fM |Vuldv(g)

where 1/p = 1-~1/n,and K (n, 1) is as in Theorem 4.4. As a remark, this is equiv-
alent to saying that for any smooth, bounded domain 2 on a Cartan-Hadamard
n-dimensional manifold (M, g),

Vol (Q)'~+

Area, (9Q2) > Kol

The proof of such an assertion is quite standard, and goes back to Federer and
Fleming [80]. In order to see this, let us prove that

S |Vuldv(g) —inf Area, (0Q)
“ ([ luln/@=0 du(g)) ™" 2 Vol (@)1=

As a starting point, consider £ a smooth bounded domain in (M, g). For suffi-
ciently small £ > 0, let u, be the function

(8.5)

1 ifx € Q
ue(x) = 11— 1d,(x,0Q) ifx € M\Q,d,(x,9Q) <¢
0 ifx € M\Q,d;(x,3Q) > ¢

where d, stands for the distance associated to g. Clearly, u, is Lipschitz for all
& > 0. As one easily sees,

lim | u2/®=Y dv(g) = Vol,(RQ)

-0
Furthermore,

3

1 ifx e M\Q, dg(x,0Q) < ¢
[Vue| = .
0 otherwise

Hence,
1
lim [M Vucldv(g) = lim — Vol ({x ¢ Q/d,y(x,09) < £}) = Area, (3Q)
and one gets that
Jy |Vuldv(e) < inf T2 09)
“ ([ luln/a=Y du(g)) ™" T2 Vol (@)~
Let us now prove the opposite inequality, that is
. Sy \Vuldv(g) . Area, (39)
(S =D du(g)) " TR Volg(@)!

(8.6)
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Given u € D(M), let
Q@) ={x/|ux)| >t}

and V(1) = Vol,(Q(?)), for t € R,, the regular values of u. The proof of (8.6) is
based on the co-area formula (see Chavel [45]):

[ sivuaner = [ ( [ | fdd)dt

where I, = |u|~' (7). Indeed, one gets by the co-area formula that

| rwutanie) = (igf 220D ) [y a
M 2 Vol (Q)'#/ Jo

lul
/ Iuln/(’l-l)dv(g) =/ (/ n tl/(’l—l)dt)dv(g)
M M o n-—1

=" /w( dv(g))t'/("'”dt
n—1Jo Q)

n o0
- / tl/(n—l)v(t)dt
0

n-1

and

In order to prove (8.6), it suffices then to prove that

o oo 1-1
8.7 / V(z)'-%dtz( " / t"("’“')V(t)dt)
0 n—1Jy

To establish (8.7), set

s s l--,,l
F(s)=/ V)'-rdr, G(s)=(Lf t""‘”"V(t)dt)
0 n-1Jo

One has that F(0) = G(0), and since V(s) is a decreasing function of s,

_ 1-1 s ~1/n
G'(s)=”n l( n ) ( / t""‘"’V(t)dt) sy (s)
0

n-1

n —1/n s -1/n .
< ( ) (f tll(n_”dt) Sl/("_l)V(s)]_'_'
“\n-1 0

= V()7 = F(s)

Clearly, (8.7) easily follows. Hence, (8.6) is true, and then (8.5) is also true. This

proves the claim.
Given (M, g) some Cartan-Hadamard n-dimensional manifold, and ¢ € [1, n),

let us denote by (ISsy,) the following optimal inequality: For any u € D(M),

1/p 1/q
) ( [ nuv’dv(g)) sK(n,q)( [M |V“|"dv(g))

where 1/p = 1/g — 1/n and K (n, q) is as in Theorem 4.4. Coming back to ideas
developed in Aubin [10], one gets the following result:
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PROPOSITION 8.2 Let (M, g) be a n-dimensional Cartan-Hadamard manifold.
Suppose that (I‘;"“g:;l) is valid on (M, g). Then for any q € [1, n), (I;‘fg:,") is valid on
M, g).

PROOF: Let (M, g) be an n-dimensional Cartan-Hadamard manifold. By as-

sumption, according to what has been said above, one has that for any smooth
bounded domain Q2 in M,

Area,(3Q) |

Vol (@)'~s — K(n, 1)

Let e be the Euclidean metric in R”. Since for any ball B in R”,
Area,(3B) 1
Vol,(B)!-+ K(n,1)

one gets that for any smooth bounded domain €2 in M, and any ball B in R",
Area, (392) - Area,(dB)
1

Vol (R)'~# ~ Vol (B)' ™4

By classical Morse theory (see, for instance, Aubin [12] for the following claim),
it suffices to prove (qu‘fg:,") for continuous nonnegative functions u with compact
support K, K being itself smooth, u being smooth in K and such that it has only
nondegenerate critical points in K. For such a u, let ¥* : R" — R, radially
symmetric, nonnegative, and decreasing with respect to |x|, be defined by:

(8.9) Vo, ({x € R" /u*(x) = t}) = Vol,({x € M [ u(x) > t})
One can check that »* has compact support and is Lipschitz. Set
V(@) =Vol,({x € M /u(x) > t})
and let £, = u~'(¢). All that follows is based on the co-area formula (see Chavel

[45]): - p
f,,f “”‘8’=/o (fz, W"")‘”

Viey=—| |Vu|"'do
]
Independently, by Holder’s inequality, and for m > 1 real,

(m=1)/m I/m
/ do < ( |Vu|™! do) ( |Vu|™! da)
, X, o

According to (8.8),

(8.8)

One has here that

Area,(Z,) > Area (X))
where £} = (u*)~!(r). Since |Vu*| is constant on T, one gets with (8.9) that

|Vu|""' do > Area,(E;)"|Vu*|""" Area,(Z;)' ™
x,

= [Vu*|"" do
z
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Integrating with respect to ¢ then gives by the co-area formula that

f Vul" dv(g) > f Vit dx
M Rn

Similarly, for m > 1 real, one gets with the co-area formula that
oo
/ u"dv(g) = — / t"V'(t)dt
M 0
so that, as above, one gets with (8.9) that
[ u"dv(g)= | W")"dx
M R"

By Theorem 4.4, one can then write that for ¢ € [1, n) real, and 4 and u* as above,

1/p 1/p 1/q
(/ Iul”dv(g)) = (f Iu*I"dx) < K(n,q)(/ IVu*|? dx)
M R" Rn

1/q
< koo [ 1vurave)
M
As already mentioned, this proves the proposition. O

As one can see, the Cartan-Hadamard conjecture has been proved to be true
for 2-, 3-, and 4-dimensional Cartan-Hadamard manifolds. Such results are given
here without any proof, apart for the 4-dimensional case due to Croke [60] that we
discuss. The 2-dimensional case is due to Weil [198]. One then has the following:

THEOREM 8.5 The Euclidean-type optimal Sobolev inequality (Iff'gz,',) is valid on
any 2-dimensional Cartan-Hadamard manifold.

The 3-dimensional case of the Cartan-Hadamard conjecture is due to Kleiner
[132]. One then has the following:

THEOREM 8.6 The Euclidean-type optimal Sobolev inequality (I°|f'§:;t) is valid on
any 3-dimensional Cartan-Hadamard manifold.

The 4-dimensional case of the Cartan-Hadamard conjecture is due to Croke
[60]. Here, Croke gets some explicit Euclidean-type generic Sobolev inequality
(Iﬁf';:n) lfor all n > 3, with the property that one recovers (175‘;{;,) for n = 4. For
n >3, let

w"-z n/2 n-2
C(n) = =2 ( [ cos™/ =2 (1) sin"'z(t)dt)
0

n—1
n—1

where w, denotes the volume of the standard unit sphere (S”, ) of R"*!. As one
can easily check, C(4)!/4 = K(4,1). Croke’s result [60] can then be stated as
follows:

THEOREM 8.7 Let (M, g) be a n-dimensional Cartan-Hadamard manifold, n > 3.
Forany u € D(M),

I/p
( f |u|"dv(g)) <t / IVuldu(g)
M M
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where 1/p = 1 — 1/n, and C(n) is as above. In particular, the Euclidean-type
optimal Sobolev inequality (17{’;;() is valid on any 4-dimensional Cartan-Hadamard

manifold.

PROOF: According to what has been said above, it suffices to prove that for
any smooth, bounded domain  in M,

Areay(992) 1
Vol ()= — C(n)s

We follow the lines of Croke [60]. Let  be a smooth, bounded domain in M.
Every geodesic ray in 2 minimizes length up to the point it hits the boundary. Let
IT: UQ — Q represent the unit sphere bundle with the canonical (local product)
measure. For v € UQ, let y, be the geodesic with y,(0) = v and let £’ (v) represent
the geodesic flow, that is, §'(v) = y,(t). Forv € UQ, we let

I(v) = max {t / y,(t) € 2}

For x € 3%, we define N, as the inwardly pointing unit normal vector to <2 at x.
In addition, let IT : U392 — 92 be the bundle of inwardly pointing vectors, that
is,

U*toQ = {u e UQ/TI(u) € 3R, (4, Nnw) > 0}

The main tool in the proof of the Theorem is a formula due to Santalo {174]. In
such a context, one has that for all integrable functions f,

I(u)
fwdu = [ ( / f(&'w) cos(u)dt)du
ve v+ae \Jo

where cos(u) represents (u, Npj(,), and the measure on U*9S is the local product
measure du where the measure of the fiber is that of the unit upper hemisphere.
From this formula, one gets that

Vol () =

Wn_)

[ I(u) cos(u)du
U+an
Moreover, one can prove that

1(a)"! )
—~——————du < Ar 19

/ma cos(ant(ay) 1 = Areas(9%2)
and that

/ cos ™2 (ant(u)) cos+? (u)du < A(n) Area, (3Q)
[7A%:19]

where

o

5
A(n) = w,-2 / cos™ =2 (1) sin"~2(¢r)dt
0
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and ant(u) = —y, (I(u)). We refer to Croke [60] for such assertions. By Holder’s
inequality, one has that

Vol, (R2) = w—l-T oo I(u) cos(u)du
= I / Il(u) cosTlr (ant(u)) cos(u)du
Wn-1 Ju+an cosa-T (ant(u))

IA

(o)™
wn—1 \ Ju+aq cos(ant(u))
n=2

1 n-1 n=T
X ( f cos-Z(ant(u)) cosn-2 (u)du)
U+oQ

Hence,
Vol () < w,.l-l Area, (3Q2) 771 A(n) " Area, (92)%F
and one gets that
Areag (952) S 1
Vol Q)= C(n)+
As already mentioned, this proves the theorem. O

Now that these results have been stated, one can ask what happens to the
Euclidean-type optimal Sobolev inequality (Ifc;), and more generally to ((apen’X
for the opposite sign of the curvature, namely, for manifolds of nonnegative cur-
vature. By Theorem 7.5, one already knows that for ¢ > 2 such that ¢> < n,
(1?.'3:,}) must be false if the scalar curvature of the manifold is positive somewhere.
Similarly, one has by Proposition 5.1 that if n > 4 and (I;{’g:;t) is valid, then the
scalar curvature of the manifold must be nonpositive. The following rigidity result
of Ledoux [140] answers the question we just asked:

THEOREM 8.8 Let (M, g) be a smooth, complete n-dimensional Riemannian man-
ifold with nonnegative Ricci curvature. Suppose that for some q € [1, n), (I;‘fg";t) is
valid. Then (M, g) is isometric to the Euclidean space (R", e) of the same dimen-
sion.

PROOF: Following Ledoux [140], suppose that (I;‘fg";l) is valid for some g €
[1,n). We assume here that g > 1, and refer to what is said below for the case
q = 1. Let xo be some given point in M and let r be the distance to xo. For A > 0
real, and 6 > 1 real, we set

F\9/@-D\ 1§
= (5) )

Fy(A) =

Set also

1
n—1 fu (A + (§yara-n)"! dvig)
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Clearly, F, is well defined and of class C !. Indeed, as one can easily check, an
integration by parts leads to
1

1 +00
Fo(A) = — v’ d
s() = —— /0 r ot (5)4/”_]))”_, r

+00 si/@-n

q
-1/, VO Gy &

where V(s) stands for the volume of B, (s) with respect to g. From Gromov’s
comparison theorem (see Theorem 1.1), one has that V(s) < Vy(s) for any s,
where Vo(s) = lw,_is" is the volume of the Euclidean ball Bo(s) in R". This
proves the above claim. Take now u = u, ¢ in (If,f‘g},-,). Since 8 > 1 we get that

1 i1/p
([M (» + ya/a-v)" d”(g)) =<

n—gq (g)q/(q-l) )l/q
K(n, =d
(" "’(q—l)( wor oy @

o

Then, as one can easily check,
a(~ FyW)"? = AFy)(\) < (n — DF(0)

for every A > 0. Set now

Set

1 1
— dx
n— l Rn ()' + lxlq/(q—l))"

H) =

By Theorem 4.4,
a(= H'MW)? —AH'Q) = (n — YHQ)
and one can write that H(A) = AN E , Where
1 1
A=
n=1 fk T+ ey
that is, A = H(1). The claim here is that if Fy(A¢) < H(Ao) for some Ay > 0, then

Fo(A) < H()) for all A € (0, Ap). In order to see this, suppose that there exists
some A; € (0, Ao) such that Fy(A;) > H(A). Let

Ao =sup {A < Ao/ Fo(A) = HQM)}

For A > 0, ,(X) = aX9/? 4+ AX is strictly increasing in X > O so that the
differential inequality satisfied by Fj reads as

—F;(\) <7 ((n = DF, (V)
while the differential equality satisfied by H reads as
—H'M) =97 ((n = DHQ))
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As a consequence,
(Fo — H) W) = ¢ ((n = DHM) — o' ((n = DFe (1)) 2 0

for A such that Fy(A) < H()A). In particular, (Fy — H)' > 0 on [A,, Ao], and one
gets that
0= (Fe - H)(A.) < (Fg - I-I)()to) <0

which is a contradiction. This proves the above claim.
Let us now come back to the expression of Fy. As one can easily check,

q +00 s1/q=D
Fo(0) = q_l— V(Os )m
0,,7_:.’,_,‘ / sl/@-h
q - (oq/(q D)+ sq/(q—l))

For V(s) and Vy(s) as above, V(s) ~ Vy(s) as s — 0. One then gets that for any
€ > 0, there exists § > 0 such that for all A > O,

+00 PACAR)]
| ve
o (oq/(q b+ sq/(q—l))

l/(q b}
2(1—8)/0 VO(S)(gq/(q-lu+s‘l/“f l’)

1—¢ 8/0\4=N1q v |/(‘7"'|)
(00/(0-!)A)“',/ O(S)(l + q/(q-n))

Recall now that H(A) = AA"F, where

1 1
= n—1 dx
n—1Jg (l + ,xlq/(q—-l))
_q +00 Vots PAC )]
Tg-1J (1 + 59/~ l))"
Hence,
Fe(A) "
> 1
l HO) = 6" >

From the above claim, it follows that Fy()) > H()A) for all A > 0, so that

+00 PAC

for all A > 0. Letting & — 1, this leads to
st/@-v

+00
fo (Ves) - Vo(s))m >0
for all A > 0. By Gromov’s comparison theorem, Theorem 1.1, V(s) < Vy(s) for
all s. As a consequence, V(s) = Vy(s) for all s, and by the case of equality in
Bishop’s comparison theorem (see the Bishop-Gromov’s comparison theorem in
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Chavel [45]), one gets that (M, g) is isometric to the Euclidean space (R”", ¢) of
same dimension. This proves the theorem. 0

Regarding Theorem 8.8, note that the particular case ¢ = 1 in such a result
was well known. In this case, as already mentioned, the Euclidean-type optimal
Sobolev inequality is equivalent to the isoperimetric inequality

Areag (99) > —— Vol (@)'~}

“ K@, 1)
If we let V(s) be the volume of B,,(s) with respect to g, we have that
dv (s
di ) _ Arca, (3By,(s))
Hence, setting Q = B, (s) in the isoperimetric inequality, we get that

_ dv(s)
(n=1)/n
Ko’ ® = s

for all s. Integrating yields

> - "
V(S) - nnK(n’ l)ns
=1/n

and since K(n, 1) = },b,, , one gets that for every xo and for every s,
Vol, (B,o(s)) > Vol, (Bo(s))

where By(s) is the ball of center 0 and radius s in the Euclidean space (R", e).
Under the assumption that (M, g) has nonnegative Ricci curvature, one gets from
Gromov’s comparison theorem, Theorem 1.1, that for every xo and every s,

Vol, (Bx,(s)) < Vo, (Ba(s))
Hence, for every xj and every s,
Vol, (B, (s)) = Vol (Bo(s))
and one gets from the case of equality in Bishop’s comparison theorem (see the

Bishop-Gromov’s comparison theorem in Chavel [45]) that (M, g) is isometric to
the Euclidean space (R”, e).

8.3. Nash’s Inequality

Many inequalities may be derived from the Euclidean-type generic Sobolev
inequalities (quf'g'e'n). As a very small part of a much more general situation, we
restrict our attention here to the case ¢ = 2, and discuss the equivalence that exists
between the Euclidean-type generic Sobolev inequality (l;f'::n) of Section 8.1, and
the Nash inequality (N) of Nash [161] (as stated below). We refer the reader to the
exhaustive [18] by Bakry, Coulhon, Ledoux, and Saloff-Coste for discussions on
Gagliardo-Nirenberg type inequalities

llaell, < CIVall el

and more information on the subject.
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Let (M, g) be a smooth, complete Riemannian n-manifold of infinite volume,
n > 3. We say that the Nash inequality (N) is valid if there exists a constant C > 0
such that for any u € D (M),

1+2 4
) ( / uzd.,(g)) sc( f |Vu12dv<g>)( [ |u|dv<g))
M M M

Such an inequality first appeared in the celebrated Nash [161] when discussing
the Holder regularity of solutions of divergence from uniformly elliptic equations.
Following what is done in the above-mentioned [18] by Bakry, Coulhon, Ledoux,
and Saloff-Coste, we prove here the following:

THEOREM 8.9 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
The Euclidean-type generic Sobolev inequality (Ig{';;-n) and the Nash inequality (N)
are equivalent in the sense that if one of them is valid, the other one is also valid.

PROOF: The implication (IZf';:,;,) = (N) easily follows from Holder’s inequal-
ity, since for any u € D(M),

f u~dv(g)s( f Iul"dv(g)) ( f luldv(g))
M M M

where p = 2n/(n —2). The converse implication, (N) = (Ig'_';ih ), is a little bit more
subtle. Given u € D(M), and k € Z, we let u, be defined by

u(x) =0 if [u(x)| < 2*
ue(x) = lu@x)| — 2% if 2% < |u(x)| < 24+
up(x) =2 if (u(x)| > 24+

and we let
Bi={xeM/2" < |ux)| <2"*'}

Applying Nash’s inequality to u,, one gets that

1+2 . 4
( f uZdv(g)) sC( f |Vuk|2dv(g))( f ukdv(g))
M B M

(2% Volg ({lul 2 2+'))) ™" <
c( fB [Vu)? dv(g)) (2* Vol ({Iul = 2¢}))*"
Seta = n/(n + 2), and for every k € Z,

a =27 Vol ({lu| =2*}), b =/ IVul® dv(g)
By

Hence,

where p is as above. With this notation, the preceding inequality raised to the
power «, and multiplied by 272, yields

201 —
Ay < 2”C°‘b,‘z‘a,:“ o
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By Holder’s inequality,
o l-a
Sa=Yanszc(Ta) ()
keZ keZ keZ keZ
a 2(l-a)
cre () (52)
keZ keZ
so that
aq1/2e~1)
D a < [Z”C"(Zbk) ]
keZ keZ
Clearly,
> s [ vutaue)
keZ M
while
f ulP dv(g) < (2 - 1)) _a
M keZ

Hence, for any u € D(M),

2/p
( f Iul”dv(g)) < (27 - 1)P22r-DC / IVul? dv(g)
M M

so that (N) = (I;"’;'n). The theorem is proved. O

Concerning the optimal version of Nash’s inequality, the sharp constant in (N)
has been computed by Carlen and Loss [38] for the Euclidean space. The argument
they used is very elegant. Here is their result.

THEOREM 8.10 For any u € D(R"),

1+2
( f ,,zd,,(g)) scn( f IVulzdv(g))( / |u|dv(g>)
n Rn R"

n+ 2)(n+2)/n
" 22\ N(B)| B
is sharp. In such an expression, |B| denotes the volume of the unit ball B in
R", and AV (B) denotes the first nonzero Neumann eigenvalue of the Laplacian on
radial functions on B.

PROOF: Let us first prove that the inequality of the theorem does hold. As in
the proof of Theorem 4.4, it suffices to establish this inequality for nonnegative,
radially symmetric, decreasing functions. Following Carlen and Loss [38], let u be
such a function. For r > 0 arbitrary, let

v(x) = u(x) ff|x|_<_r and wx) = 0 ?fIxISr
0 if | x| >r ulx) ifjx|>r

4
n

where
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Clearly,
llll3 = llvll3 + lwli3
and since u is radially decreasing,

< <
w(x) <u(r) < 181" ,,Ilvllu
In particular,
2
lwliz < 131 ,,||vll|||w||n
Let
V=181 ,,||v|||

be the average of v. One gets from the variational characterization of AV that

||v||§=/ (v—v)zdx+/ ?dx
By(r) By(r)
1

<— |Vv|?dx +
l{'I('Bo(")) ./so(r) |°'B| "
2

2
lvlly

r

—AN(B) Jan
2

,
< —_—_—
=@ |:B| z

where By(r) stands for the Euclidean ball of center 0 and radius r. According to
what we said above, and noting that

llell} = Noll (vl + IRi)

IVol?dx + —— i 3, —— i}

loll?

IVul? +

this leads to
2
r
8.10 ul2 < ——|IVull? + ul)?
(8.10) Il "2'1{“(:8)" ' 131 ,,II Iy
The right-hand side in this inequality is minimized at
AN 1/(n+2) 2/(n+2)
1) = () ()
2|38| 1Vl

As one can easily check, taking r = ry;, in (8.10) gives the inequality of the the-
orem. To see that this inequality is sharp, let u, be some eigenfunction associated
to A} (B). Set
wGoy = | H00ED — o) if x| <1
0 if x| > 1
Clearly, u saturates (8.10) with » = 1. For such a function, rpj, = 1. One then
easily gets from (8.11) that u also saturates the Nash inequality we just got. This
ends the proof of the theorem. O
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In addition to Theorem 8.10, Carlen and Loss [38] also determined the cases
of equality in the optimal Nash inequality. As in the above proof, let uo be some
eigenfunction associated to A} (8), and set

uo(lxl) —uo(l) if x| <1

ulx) = if x| > 1

Then # is an extremum function for the optimal Nash inequality if and only if after
a possible translation, scaling, and normalization, # = u. As one can easily check,
a particularly striking feature of this result is that all of the extremals have compact
support. Another reference on the subject is Beckner (“Geometric proof of Nash’s
inequality,” IMRN, 2, 1998, 67-71).

Concerning complete, noncompact Riemannian manifolds, note here that by
the arguments used in the proof of Proposition 8.2, the optimal version of Nash’s
inequality does hold on n-dimensional Cartan-Hadamard manifolds as soon as the
Cartan-Hadamard conjecture in dimension n is true. In particular, by Theorems 8.5,
8.6, and 8.7, the optimal version of Nash’s inequality does hold on 2-dimensional,
3-dimensional, and 4-dimensional Cartan-Hadamard manifolds. On the contrary
(see the recent Druet-Hebey-Vaugon [75]), the optimal version of Nash’s inequality
is false as soon as the scalar curvature is positive somewhere. In a way similar to
Theorem 8.8 (see once more Druet-Hebey-Vaugon [75]), one can also prove that
if the Ricci curvature of the manifold is nonnegative and the optimal version of
Nash’s inequality does hold, then the manifold must be flat.



CHAPTER 9

The Influence of Symmetries

The idea in this chapter is to show that Sobolev embeddings can be improved
in the presence of symmetries. This includes embeddings in higher L spaces
and compactness properties of these embeddings. Such phenomena have been ob-
served in specific context by several authors. We especially point out the work of
Lions [150] dealing with the Euclidean space, where the first systematic study of
the subject was carried out. The goal here is to study the question in the more
general context of arbitrary Riemannian manifolds. For the sake of clarity, we de-
cided to separate the compact setting from the noncompact one. As one can see,
when dealing with compact manifolds, one just has to consider the minimum orbit
dimension of the group considered. On the other hand, when dealing with noncom-
pact manifolds, one has also to consider the geometry of the action of the group at
infinity.

9.1. Geometric Preliminaries

For the sake of clarity, we introduce here the notation and the background
material we will use in the sequel. Though many of the results of the next sections
do hold for arbitrary Riemannian manifolds, we assume in what follows, as done
in the rest of the book, that the manifolds considered are at least complete. We
refer to Hebey-Vaugon [120] for analogous results when dealing with noncomplete
Riemannian manifolds.

Given (M, g) a smooth, complete Riemannian n-manifold, we denote its group
of isometries by Isomg(M). It is well-known that Isomg(M) is a Lie group with
respect to the compact open topology, and that Isom, (M) acts differentiably on
M (see, for instance, [135]). Since (this is actually due to E. Cartan) any closed
subgroup of a compact Lie group is a Lie group, we get that any compact subgroup
of Isomg (M) is a sub-Lie group of Isomg(M). Moreover, one has that Isom,(M)
is compact if M is compact. For G some subgroup of Isom, (M), let CZ’(M) be
the set of functions u € C*°(M) for whichuoo = u forall 0 € G, and let D (M)
be the set of functions 4 € D (M) for which u o 0 = u for all 0 € G. Similarly,
for p > 1, let

Hl ;(M)={ue H (M) /Yo € G, uoo = u}
One has that Dg (M) C H,’f ¢(M), and if G is compact, one gets from the exis-
tence of the Haar measure that D¢ (M) is dense in H,’f ¢(M). From now on, let

(M, g) and (N, k) be smooth Riemannian manifolds, and let I1 : M — N be a
submersion. We recall that IT is said to be a Riemannian submersion if for any x

249
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in M,

ML.(x) : (Hy, g(x)) — (T, (N), h(»))
is an isometry, where y = I(x) and H, denotes the orthogonal complement of
T.(TT"'(y)) in T,(M). Assume now that dimM > dimN, that 1 : M — N
is a Riemannian submersion, and that for any y € N, IT~!(y) is compact. Let
v : N = R be the function defined by

v(y) % volume of IT~!(y) for the metric induced by g

Then (see, for instance, [27]), for any ¢ : N — R such that ¢v € L!(N), one has
that

©.1) f (¢ 0 Mdv(g) = f (v)dv(h)
M N

Independently, by O’Neill’s formula (see, for instance, [28] or [88]), if IT : M —
N is a Riemannian submersion, for any orthonormal vector fields X and Y on N
with horizontal lifts X and Y,

T S
KX, Y) = K (X, V) + ZI[X' 4k

where Ky g) and Ky ) stand for the sectional curvatures of (M, g) and (N, h),
and where the superscript v means that we are concened with the vertical com-
ponent of [X, ¥]. As an immediate consequence of this formula, one gets that the
sectional curvature of (N, h) is bounded from below if that of (M, g) is bounded
from below. This in turn implies that the Ricci curvature of (N, h) is bounded from
below if the sectional curvature of (M, g) is bounded from below.

We now recall some facts about the action of compact subgroups of Isom, (M).
For G a compact subgroup of Isom, (M), and x a point of M, we denote by

0 ={o(x), 0 € G}
the orbit of x under the action of G, and we denote by
Sc={0eG/ox)=x}

the isotropy group of x. It is by now classical (see, [32] and [64]), that for any x
in M, Of is a smooth, compact submanifold of M, the quotient manifold G/Sg
exists, and the canonical map ®, : G/S; — O¢ is a diffeomorphism. (The
isotropy group of any other point in O; is actually conjugate to S&). An orbit OF
is said to be principal if for any y € M, S, possesses a subgroup that is conjugate
to S¢. Principal orbits are then of maximal dimension (but there may exist orbits
of maximal dimension that are not principal). We refer to [32] for more details on
the subject. Anyway, we will use the following basic facts in the sequel:

L. &= U 1. 05 is principay OG is @ dense, open subset of M,
and if IT : M — M/G denotes the canonical surjection,

2. the quotient space M /G is Hausdorff and IT is a proper map, and
3. TI(R) = 2/ G possesses the structure of a smooth, connected manifold for
which IT, when restricted to £2, becomes a submersion.



9.2. COMPACT MANIFOLDS 251

Here again, these points can be found in [32]. Furthermore, one clearly has that the
metric g on M induces a quotient metric 4 on 2/G for which I1, when restricted
to 2, becomes a Riemannian submersion from (£2, g) to (2/G, h). The distance
d, associated to h then extends to M/G by

dy(T(x), T1(y)) = d, (0%, OF)

for any x, y € M, where d, denotes the distance associated to g. We refer to [88]
for the constructions involved in these statements.

9.2, Compact Manifolds

For the sake of clarity, we start discussing improvement of Sobolev embed-
dings in the presence of symmetries by considering the case of compact manifolds.
The more general case of complete manifolds will be treated in the sequel. Let
(M, g) be a smooth, compact Riemannian manifold, and let G be a subgroup of
Isomg(M). As already mentioned, up to replacing G by its closure in Isom, (M),
one can assume that G is compact. The first result we prove is the following:

LEMMA 9.1 Let (M, g) be a smooth Riemannian n-manifold (not necessarily com-
pact or complete), and let G be a compact subgroup of Isom,(M). Let x € M and
set k = dim OfF. Assume k > 1. There exists a coordinate chart (2, ¢) of M at x
such that:
(i) (R) = U x V, where U is some open subset of R* and V is some open
subset of R*~* and
(ii) Yy € £, U x My(p(y)) C (0% N Q) where I, : R* x R"* — R** s
the second projection.

PROOF: Let & : G — M be defined by ®(0) = o(x). It is by now classical
that ¢ has constant rank (see, for instance, [64]). Since S§ = &' (x), we get that
dim S§ = dim G — Rank ¢

On the other hand (see Section 9.1 and [64]),
dim (G/S¢) = dim O}, = dim G — dim S%
Hence, Rank & = k. As a consequence, there exists a k-dimensional submanifold
H of G such that Id € H and ®jy is an embedding. Let N be an (n — k)-—
dimensional submanifold of M such that
T, Y(HY® T N=TM,

andlet ¥ : H x N - M be defined by ¥(o, y) = o (y). Clearly, ¥ is smooth and
DV, ) is an isomorphism. Let (U’, ¢,) be a chart of H at Id and (V’, ¢2) be a
chart of N at x, U’ and V'’ being such that Wi,y is a diffeomorphism. To get the
lemma one just has to set Q = W(U' x V') and ¢ = (¢ o \Il,“', @20 \II{'), where
v = wsh). 0

With such a lemma we are now in position to prove our first result (Hebey-

Vaugon [108, 120]). As one can see, for functions that possess enough symme-
tries, Sobolev embeddings are valid in higher L? spaces. Similar results have been
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obtained in specific contexts by Cotsiolis-Iliopoulos [5§7], Lions [151], and Ding
[65].
THEOREM 9.1 Let (M, g) be a smooth, compact Riemannian n-manifold, and
q > 1 real. Let G be a compact subgroup of Isomg(M). Assume that for any
x € M, Card Of = +00 where Card stands for the cardinality, and set k =
min,epy dim Of. Then, k > 1 and
(i) ifn — k < gq, for any real number p > 1, H{ ;(M) C L?(M) and the
embedding is continuous and compact and
Gi) if n — k > q, for any real number 1 < p < (n — k)q/(n — k — q),
H} ;(M) C LP(M), the embedding is continuous, and compact provided
that p < (n —k)q/(n — k — q).
In particular, there exists po > nq/(n — q) such that for any 1 < p < py,
H K (M) C LP(M), the embedding being continuous and compact.

PROOF: By Lemma 9.1, and since M is compact, it is covered by a finite
number of charts (2, ¢m)m=1....n With the properties that for any m:
) om(Rm) = U, x V,,, where U, is some open subset of Rk, V,, is some
open subset of R"~*, and k,, integer is such that k,, > k,
(ii) U, V., are bounded, and V,, has smooth boundary,
(lll) Vy € Qm’ Um X ﬂz(‘Pm()')) C ‘pm(oz; N Qm) and
(iv) 3, > O with @, 18, < i < & i< ap8;; as bilinear forms.
In (iii), [T, : R¥ x R"~%» — R"~*= denotes the second projection, and in (iv), the
g,.';.' ’s denote the components of g in (. ¢m). Let u € CZ(M). Sinceuoo =u
for any o € G, we get that for any m, any x, x' € U, and any y € V,,,

uog'(x,y)=uog;'(x',y)

As a consequence, for any m there exists &, € C®(R"™*n) such that for any
x € U, and any y € V,,, one has that

uo g, (x,y) = iim(y)
(Without loss of generality, one can assume that go,,, is actually defined on some

open set Qm containing Q,, such that g, R, = U, x V, withV,, C V .) We
then get that for any m and any real number p > l

u|? dv =[ ul? /detgl) o ,;'(x, )dx d
[ll @=[ . (wroegg)ov; = ndray

< A,,,/ |uo<p,;'(x,y)|”dxdy
Upm x Vi

iy / liim()1P dy

where A,, and /i,,, are positive constants that do not depend on u. Similarly, one
has that for any m and any p > 1,

f lul? dv(g) = Bn f lim ()P dy
m Vl"
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and
/ VulP dv(g) = B [ 1Viim)I? dy

”m VI”

where B,, > 0 and B,, > 0 do not depend on u. Combining these inequalities and
the Sobolev embedding theorem for bounded domains of Euclidean spaces, we get
that for any m and any real number ¢ > 1,

(v) if n — k, < g, then for any real number p > 1 there exists C,, > 0 such
that for any u € CZ (M),

I/p /9 /9
( / Iul”dv(g)) sc,n(( IVuI"dv(g)) +( f |u|"dv(g)) )
n 9"' m

(vi) if n — k,, > q, then for any real number 1 < p < % there exists
Cn > 0 such that for any u € CZ (M),

1/p 1/q 1/q9
( [ |u|"dv(g)) scm(( f IVuI"dv(g)) +( fg |u|"dv(g)) )

But:
I —km -k
(vii) n — kn, < n —k so that for g < n — k,,, f,L_E”—_’g > H,

wiii) ([, [ulPdv(®)"”” < Ti_, (fo, lul? dv(@))"”,
@0 T2, (o, 1967 dv (@) " + ( fy, lul? dv(e)'"")
< N(( Sy IVul? dv(@) " + (fy, lul* dv(e)) ")

As a consequence, for any real number g > 1:

(x) if n — k < q, then for any real number p > 1, HKG(M) C LP(M) and

(xi) if n — k > q, then for any real number 1 < p < (n —k)q/(n — k — q),

H{;(M) C LP(M).

This proves the validity and the continuity of the embeddings in question in the
theorem. By standard arguments, as developed in the proof of Theorem 2.9, one

then easily gets that these embeddings are compact for any p > 1 in case (x), and
any p < (n—k)q/(n—k — q) in case (xi). This ends the proof of the theorem. O

9.3. Optimal Inequalities for Compact Manifolds

When G has finite orbits, as one may easily check, there is no hope to get
embeddings in higher L” spaces. In such a situation, one has to deal with optimal
inequalities. Given (M, g) a smooth, compact Riemannian n-manifold, and g €
[1,n), let A, B € R be such that for any u € H/ (M),

(g gen)

1/p l/q 1/q
( f |u|"dv(g)) sA( [ IVul"dv(g)) +B( f |u|"dv(g))
M M M
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where 1/p = 1/q—1/n. Given G a compact subgroup of Isom, (M) that possesses
finite orbits, let us say that (I‘ gcn) is G-valid if it holds for all u € H c(M).
Mimicking what was done in Chapter 4, we define the best constants

a,.6(M) = inf {A € Rs.t. 3B € R for which (I} ;) is G — valid}
B,.c(M) = inf {B € Rs.t. 3A € R for which (I} ;) is G — valid}

Following what was done in Section 4.1 of Chapter 4, one clearly gets that 8, ¢ (M)
= Vol—'/ ;) and that there exists A € R such that (I} ..,) with B = Vol 7 /o is G-
valid. As one may easily check, the arguments used in the proofs of Theorems 4.1,
4.2, and Proposition 4.1, are G-invariant arguments. The challenging question in
such a context is to know what is the exact value of the best constant ¢, (M), and
if there exists B € R such that (I! .gen) With A = a, (M) is G-valid. The first
result we prove here is the following (Hebey-Vaugon [108]):

LEMMA 9.2 Let (M, g) be a smooth, compact Riemannian n-manifold, G a com-
pact subgroup of Isom, (M), G the connected component of the identity in G, and
D, q two real numbers suchthat 1| < q < nand p = nq/(n — q). Let O bea
compact subset of M such that O is stable under the action of Gy (i.e., 0 O = O,
for any o € Gy), and such that for any x € O, Card Og,(x) = 400 where Card
stands for the cardinality. Then there exists § > 0 such that for any € > O there
exists B € R with the following property: For any u € CZ (M),

q/p
([ Iui”dv(g)) 55[ IVqudv(g)-i-B/ [u|? du(g)

as soon as suppu C O = {y € M s.t. dy(y, O) < 8}, where d, is the distance
associated to g.

PROOF: Because O is compact, it is covered by a finite number of charts
(R, ¢m) satisfying assumptions (i) to (iv) of the proof of Theorem 9.1, with k > 1
given by

o
k= min dim Og,
We choose § > 0 such that 05 C UR2,,. Let1 < g <nand p =nqg/(n — q). Set
H,(M) = {u € H{ ;(M) s.t. suppu C O;}

With similar arguments to those developed in the proof of Theorem 9.1, one can get
that the embedding of H,(M) in L?(M) is compact. Independently, by a classical
result of Lions [149], if B,, B,, B; are three Banach spaces, u : B, - B, is
a compact linear operator, and v : B, — Bj; is a continuous one to one linear
operator, then, for any ¢ > O there exists B > 0 such that for any x € 8B,

lu)lls, < ellxlls, + Bllv ou(x)| s,
Applying this result with 8y = H,(M), 8, = L?(M), and B3 = L7(M), one gets
the lemma. O

With such a lemma, we are in position to prove the following result of Hebey-
Vaugon [108]. It gives the answer to the first part of the question we asked.
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THEOREM 9.2 Let (M, g) be a smooth, compact Riemannian n-manifold and let
G be a compact subgroup of Isom,(M). Let k = inf,cy Card OF, where Card
stands for the cardinality. For any q € [1, n) real, and any ¢ > 0, there exists
B € R such that for any u € Hy ;(M),

q/p
([ wrave)” < (Bm+e) [ 1vurave +8 [ wrave)
M M M

where 1/p = 1/q — 1/n, K(n, q) is as in Theorem 4.4, and, as a convention,
K(n,q)?/k9" = 0 if k = +00. Moreover, K(n, q)?/k9/" is the best constant in
such an inequality, so that a, (M) = K (n, q)/ k'/".

PROOF: If k = +o00, Theorem 9.2 is an easy consequence of Theorem 9.1
and the result of Lions mentioned above. One can then suppose that k < +o00. Let
1 < g < n be given, and G, be the connected component of the identity in G. Let
xeM.

If Card 0% < +00, let Of = {xy, ..., x»} with the convention that x; = x.
We then choose § = 8(x) € (0, injy ) small enough such that for any i # j,
B,,(8) N By;(8) = @, and we define U, = U], B, (8).

Suppose now that Card O = +o0c. One has that O, is a smooth, compact
submanifold of M of dimension greater than or equal to 1. Let OF = O,U- - -UOp,
with the convention that x € O, the O;’s being the connected components of Of.
The O;’s are compact since O is compact. Furthermore, O, is clearly stable
under the action of Gy, and for any y € O), one has that Card O'CV;O = 400. We
now choose § = §(x) small enough such that

(i) § is less than the one given by Lemma 9.2 (with O = 0)),
(i) forany i # j, B} N B} = @ where B} = {y € M s.t. d;(y, 0;) < 8}, and
(iii) forany i, ¢; : 5?‘ — R defined by ¢; (y) = dg(y, 0;)? is smooth.
Here again, we define U, = U}"=| Bf. One then has that for any x € M, U, is

stable under the action of G. Now since M is compact, let x;,...,xy € M be
such that

N o
M=|Ju,
i=1

For any ¢ > 0, let f, € C*®(R) be such that f.(r) > 0ift < g and f.(t) = 0 if
t>0.Foranyi=1,..., N weset

@ij (x) = fi;(dg(x, x;5)?)  if Uy, = UT By, (81), 8 = 8(xi)

o () = f5,(dg(x, 0)) i Uy, = UM BY, 5 = 5(x;)
The a;;’s,i =1,...,N, j=1,...,m;, are smooth. We set

(q1+1

[q]+1
Zu_v aﬂq"

where [q] is the greatest integer not exceeding ¢, i = 1,...,N, j=1,...,m,.
Clearly, n;; is a smooth partition of unity of M such that:

nij =
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(iv) for any i, j, n'/" € C'(M),
(v) there exists H € R such that for any i, j, |V (7] '/9)| < H, and
(vi) foranyi =1,...,Nandany j # j' =1,...,m;, nin; =0.

Furthermore, as one easily can easily check, foranyi = 1,..., N and any j, j' =
1, ..., m;, there exists o € G such that n;;- = 1;; o 0. According to what we have

just said, one then has that for any u € CZ (M),
r/q q/p
dv(g))

q/p
(Lraa)” = (L
M M
pr/q q/p
dv(g))

N
N q/p
=2 _m! (/ Iniy 7ul dv(g))

i lul?

ij|ul?

E(/

Leti € {1,..., N} be given and suppose that Card Of < +00. By Theorem 4.5,
for any &; > 0, there exists B; € R such that for any u € CZ (M),

q/p
(/ In""ul”dv(g)) <

(K, q)"+e)f IV(n”"u)I"dv(gHB:Lnulul"dv(g)

Independently, suppose that Card O = +00. Since 7;; is Gop-invariant (as one
easily checks), we get by Lemma 9.2 that for any &; > 0 there exists B; € R such

that for any u € CF (M),

( [ In,-'."’ul"dv(g)) f |V (n{4)|’ dv(g) + B; [ 7 |ul? dv(g)
M M

I ={i st Card OF < 400} and I, = {is.t. Card OF = +00)}
Similar computations to the ones involved in the proof of Theorem 4.5 lead to the
following: For any u € CZ(M),

ety < Y mf’? (K(n, q)7 + &)

iel)

x (f IVul?nit dv(g) + wHIVul|™ lull, + vH"IIMIIZ)

+ Xmt"e( [ 19uitnn dvie) + wH 1wy, + vE* )

i€l

d/P q
+N(, max Bm!'")ull
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where 4 > 0 and v > 0 depend only on g, and where |- ||, stands for the norm of
L?(M). Independently, foranyi =1,..., N,

m;

1
Vul'ni d = — Vuln;;d
fMl ul’n;) dv(g) m ,Z:.fM' ulnij dv(g)

while forany i € I,
m; > k = min Card Og (x)
xeM

Since 1 ~ g/p = q/n, choosing ¢; = ¢ wheni € I) and ¢; < K(n, q)?(m;/k)?/"
when i € I, gives that for any ¢ > 0, there exists B € R such that for any
ueCPM),

K(@n,g) +e¢ N _
lull? < #(nwu‘; +uH(Zm,~ Vel ull,

i=1

N
+ vH"( Zm,-) uuuz) + Blull

i=I
Noting that for any € > 0, there exists C, > 0 such that for any positive real num-
bers x and y, x9~'y < ex? + C,y’, one easily obtains the inequality of Theorem
9.2 from this last inequality. This ends the proof of the first part of the theorem.
Concemning the second part, namely, that K (n, q)7/k?/" is the best constant, one
can use test functions centered at some minimal orbit. Suppose that k < +00, and
let {x, ..., xx} some minimal orbit of G. For x € M and ¢ > 0, define

uex = (e+r74) o)

where r denotes the distance to x, ¢ is smooth such that0 < ¢ < 1,¢ = 1 on
—%, g), and g =0ifr > §,and § > 0, § small, is real. With similar computations
to the ones involved in the proof of Theorem 4.8, one gets that for any B real

lim fM [Vue ! dv(g) + BfM uZ., dv(g) _ 1
. (S ubxdv()"’” K(n, q)7

Fore > 0, set

k
Ue = E Ue x;
i=1

For § > 0 small enough, u, is G-invariant. Moreover,

/ Vuel? do(g) = k f Vite.n, | do(e)
M M

/ ugdv(g)=k/ u? ., dv(g)

M M

/ ul dv(g) = k/ u?, dv(g)
M M
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Hence, for any B real,

i Vel dv(@) + B [, ui dv(g) _ k'~
¢-0 ([, uf dv(g))q/p K(n, q)?

Clearly, this proves the second part of the theorem. O

1
14

Regarding Theorem 9.2, one can take £ = 0 in the case ¢ = 2. This is the
subject of the following result of Hebey-Vaugon [108]:

THEOREM 9.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
and let G be a compact subgroup of Isomg(M) that possesses at least one finite
orbit. Let k = min,cp Card Og(x) where Card stands for the cardinality. There
exists B € R such that for any u € H} ;(M),

2/p 2
([ wrae) s X2 [ 1vutave +8 [ wave)
M M M

where 1/p = 1/2 — 1/n and K (n,?2) is as in Theorem 4.4. In particular, there
exists B € R such that (I ) with A = a3 (M) is G-valid.

PROOF: We proceed as in the proof of Theorem 9.2, using Theorem 4.6 in-
stead of Theorem 4.5. We then have that for any i € I}, there exists B; € R such
that for any u € CZ (M),

2/p
( /M Im'{zul”dv(g)) < K(n,2)’ fM |V (n{2u) > dv(g)

+Bi[ niu?dv(g)
M

As a consequence, for any u € CZ (M),

2/p
( f |ul? dv(g))
M

sme"'”"‘K(n,z)z( [ wuitnadui) + [ v due)
M M

iel

+ / uV'uV,ni dv(g))
M

+Zm§"‘2’/"s.-( [ 1vutni v + [ wvaifr ave)
M M

ieh

+/ uViuV,n; dv(g))
M

. gn—Z)/n 2
+N(i=r2?§N Bim! ) fM u?dv(g)
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Independently, foranyi =1,..., N,
1
Vultn dv(g) = — / Vultn; dv(g)
./;l 1 8 " ; . j 8
and
1 &«
uV'uV,n; dv(g) = — / uV'uV,n;; dv(g)
/M it dv(g) = - ,Z=x: ; j dv(g
while for any i € I,

m; > k = minCard O}
xeM

2/n
& < K(n,2) ('”')

we then get that for any u € CZ (M),

2r g 2)?
(/;4 |u|”dv(g)) < g;,,,) Z/ \Vul?ni; dv(g)

K n,?2 2
22/") Z[ uV'uV,n;; dv(g)

2 N
(S

i=l

Choosing

+N(  max Bm\"" 2)’")/ u?dv(g)

K(n,?2
- Koo Z / (Vuny; due)

K@n,2
S (o e

i=l

+N( max Bm?") / W du(g)

i=1,.
since 3_, ; n;; = 1. Let
K(n,2)? (<
= 2 (n~2)/n
B = i (z- )H +N( maxNB,m, )

.....

i=

Then for any u € CZ (M),

2/p 2
([ wraw)” < L2 [ murae + [ wane)
M M M

This ends the proof of the theorem. O
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Let (M, g) be a smooth, compact Riemannian n-manifold, let g € [1, n) real,
and let G be a compact subgroup of Isom, (M). Suppose that G does not possess
finite orbits and let k be the minimum dimension of OF, x € M. Suppose that
n —k > q. By Theorem 9.1, H{ ;(M) C LP(M) for p = (n — k)q/(n — k — q).
In other words, there exist A and B real such that for any u € CZ’ (M),

1/p 1/q /q
( f 1u|f’dv<g)) SA( f |Vu|"dv(g)) +B( f |u|"dv(g))
M M M

where p is as above. Mimicking what has been done in the proof of Theorem 4.1,
the best constant B in such an inequality, denoted by 8, ¢ (M), is

Ba.o(M) = Vol 1™

Moreover, there exists A € R such that the above inequality with B = B, g(M) is
G-valid. Following what we did in Theorems 9.2 and 9.3, the challenging question
there is to know what is the value of the best constant A in the above inequality.
An answer to this question has recently been announced by Iliopoulos [124] in the
following particular case: (M, g) = (S", h), the standard unit sphere of R"*!, and
G = O(m,)) x O(my), with m; and m, two integers such that m; +m; =n + 1,
m, > m, > 2. In such a context, k = m, — 1 so that n — k = m,. Forq < m, one
then gets that there exist A and B real such that for any u € C2°(S"),

1/p 1/q I/q
9.2 (/ |ul”dv(h)) 5A(/ |Vu|"dv(h)> +B(/ lul"dv(h))

where p = m\q/(m, — gq). The result announced by Iliopoulos [124] is that the
best constant A in (9.2), denoted by a = oy (S8"), is such that

o> mZ-.K(mn,q) o
a<max( Wyt lK(m..q) “’m. ,K(mz,q,,)w';:_;'_‘)

where 1/q, = 1/q +1/m, —1/m,, w stands for the volume of ($°, k), and K (-, -)
is as in Theorem 4.4. In particular, one gets from this result that

2,.6(8") = w, " K(m, q)

when m| = m; = m. We refer the reader to Iliopoulos [124] for more details on
this result.

9.4. Compactness for Radially Symmetric Functions

In this section, we start dealing with complete, not necessarily compact, man-
ifolds. As an example of the compactness results one can get in the presence of
symmetries, we present a result first obtained by Berestycki-Lions [24], Coleman-
Glazer-Martin [53], and Strauss [182). Their proof was based on the special struc-
ture that radially symmetric functions on R" have. The proof we present here is
slightly different. For ¢ > 1 real, set

H{ (R") = {u € H{(R") s.t. u is radially symmetric}
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By u is radially symmetric, we mean that u is invariant under the action of O (n).
Recall that by Proposition 3.7, for any ¢ € [1,n) and any p € [g,nq/(n — q)],
H}(R") C LP(R"). In particular, for ¢ and p as above, H{ (R") C LP(R"). The
result of Berestycki-Lions [24], Coleman-Glazer-Martin [53], and Strauss [182]
can then be stated as follows:

THEOREM 9.4 For any q € [1, n) real, and any p € (q, r"_";) real, the embedding
of H! .(R") in LP(R") is compact.

The proof of Theorem 9.4 is based on the following compactness lemma, an
easy consequence of Lemma 2.4 of Chapter 2. We refer the reader to Adams [1]
for its proof.

LEMMA 9.3 Let Q2 be an open subset of R", p > 1 real, and 3¢ C LP(2). Suppose
there exists a sequence (S2;) of subdomains of Q having the following properties:
(i) For each j, Qj C Qj.“,
(ii) for each j, H is precompact in LP(2;), and
(iii) for every € > 0, there exists j such that fg\gj |ul? dx < ¢ for every u € J¢.

Then J€ is precompact in LP(S2).
With such a result, we are now in position to prove Theorem 9.4.

PROOF OF THEOREM 9.4: Let]l < g <nandq < p < nq/(n — q) be
given. By the mean value theorem for integrals one easily gets that there exists a
positive constant C such that for any f € C*([0, 1]),

1 1
[ rorasc( [ oror+irons)
It is then easy to see that for any integer k and any f € C*™([k, k + 1]),

k+1 k+1 rlq
[ roras c( [ s+ If(t)l")dt)
Let k be an integer and set
Ci={xeR"'stk<|x|<k+1}

If D, (R") stands for Do (R"), D, (R") is dense in Hﬂ ,(R"™). Noting that p/q >
1, one then has that for any ¥ € D, (R") and any real number R > 1,

f fu(x)|? dx
R™\B§(R)

k2[R Y

k+1
Swn ) k4 l)""/k lu(r)|” dt

k=[R]

r/q

k+1 p/q
< Cwnmy Y k+ 1) ( f (' @1 + |u(t)|q)dt)
k

k=(R]
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= Cwp— Z k+ l)(n—l)(l-P/q)
k=[R]

n—1 k+1 plq
x ((%) k! f (' + Iu(t)I")dt)
k

< 2(n-|)p/ch'|':f/‘l Z(k"' 1)(n—l)<l-p/q)
k>(R]

r/q
X ( f (IVu()1? + Iu(x)lq)dx)
Cy

2n=DplaCey) P19 plq
= — Vux)|? + |u(x)|?)d
([R]+l)("_')(p/q_l)(v/l;"\55(k) (| 6] [u(x)] ) X)

where [R] is the greatest integer not exceeding R, and w,_; stands for the volume
of the standard unit sphere (S"~', h) of R". As a consequence, we get that there
exists a positive constant A such that for any R > 1 and any 4 € D,(R"),

1/p
( / |u<x>|"dx) < AQR] + )= DUA=1P
R"\B§(R) :

By density such an inequality is then valid for any u € H{ (R"). Independently,
since 1/g — 1/p > 0, one has that

lim ([R]+ 1)~—DU/a-Up — ¢
R—+20
By Lemma 9.3, this ends the proof of the theorem. 0

As an important remark, note that the compactness of H,"_ ,R") C LP(R") is
not true anymore for p = q or p = nq/(n—q). Suppose first that p = nq/(n—q).
Let u € D(R"), u # 0, be radially symmetric. For A > 1 real, set

u(x) = Ag"u()tx)

As one can easily check, u, is also radially symmetric, and

@ii) VA, [lusll, = llull,, and

(iii) limy_, +oc Uy =0ace.
where |- ||, stands for the L?-norm in R". By (i), (#,) is bounded in H,‘f R,
while by (ii) and (iii), there does not exist a subsequence of (u,) that converges in
LP(R") as A — +00. Suppose now that p = q. For u as above, and for A € (0, 1]
real, set

uy(x) = Adu(rx)

Here again, u, is radially symmetric, and

V) VA, lluallgs < llull g,
v) VYA, lluall, = llullp, and
(Vl) lim)‘_,0+ u, =0ae.
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By (iv), () is bounded in H,‘f ,(R"), while by (v) and (vi), there does not exist a
subsequence of (u;) that converges in L?(R") as A — 0*. As mentioned above,
this proves that the compactness of the embedding of H,‘f ,(R") in LP(R") is not
true anymore for p =q or p =nq/(n — q).

9.5. A Main Lemma for Complete Manifolds

Let (M, g) be a smooth, complete Riemannian n-manifold. For ¢ > 1 real,
and n, k two integers, we define p* = p*(n, k, q) by

{p':% ifn—k>gq

pr=+400 ifn—-k=<gqg

When k > 1 and g < n, one then has that p* > nq/(n — q). The purpose of this
section is to prove the following result of Hebey-Vaugon [120]:

LEMMA 9.4 (Main Lemma) Let (M, g) be a smooth, complete Riemannian n-ma-
nifold, and G be a compact subgroup of Isomg(M). Let q > 1 be given,

k = min dim O ,
xeM

and p* = p*(n,k, q) be as above. For p > 1 real, consider the two following
conditions:
A,. There exists C > 0 and there exists a compact subset K of M such that for
any u € Dg(M),

( / |u|f’dv<g>); <c (( f |Vu|"dv(g))" +( [ Iul"dv(g));)
M\K M M

B,. For any € > 0 there exists a compact subset K. of M such that for any
u € Dg(M),

([ Iul”dv(g)); <e¢ ((/ IVuI"dv(g))a + (f ul? dv(g))a)
M\K, M M

If1 < p < p*and A, holds, then Hﬁ (M) C LP(M) and the embedding is
continuous. If 1 < p < p* and B, holds, then the embedding is compact.

In order to prove the main lemma, we need first the following result:

LEMMA 9.5 Let (M, g) be a smooth, complete Riemannian n-manifold, K be a
compact subset of M, and G be a compact subgroup of Isomg(M). Let q > 1 be
given,
k = min dim O,
xekK

and p* = p*(n, k, q) be as above. Noting that functions on M can be seen as
functions on K, forany 1 < p < p*, Hﬁ c(M) C LP(K), and the embedding is
continuous. Furthermore, the embedding becomes compact if p < p*.
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PROOF: If k = 0, the result is a straightforward consequence of the standard
Sobolev embedding theorem. We assume in the sequel that k > 1. By Lemma 9.1
one has that K is covered by a finite number of charts (22,,, ¥n)m=1....» such that
for any m:

(i) ¢m(R2m) = Un X Vi, where U, is some open subset of R", V,, is some
open subset of R”~*_ and k,, € N satisfies k,, > k;
(ii) U,, and V,, are bounded, and V,, has a smooth boundary;
(iii) Vy € Qp, Uy x Ma(pm(y)) C <p,,,(0£. N ,,) where I, : R x R” = jg
the second projection, and
(iv) o, > O with &,'8;; < g,l < and;; as bilinear forms, where the g"‘ ’s are

the components of gin (R, Ym)-
From now on, let u € Dg(M). According to (iii), and since u is G-invariant, one
has that for any m, any x, x' € U,,,and any y € V,,,
uog,'(x,y)=uog,'(x,y)
As a consequence, for any m there exists i, € C®(R"*») such that for any
x€Upandany y € V,,
uo@,' (x,y) = iim()
(Without loss of generallty, one can assume that Om is actually defined on some

open set Q, containing Q,, such that Pm (Q,,,) =U,xV,withV,, CV, m). We
then get that for any m and any real number p > 1,

ul? dv( =[ ul? /det ,f'.')o (x, y)dxd
/mll o= | (wr/se])or; w ydxdy

< Am/ luog,'(x, y)I” dxdy
Uin XVim

=i, / lim()1? dy
V'"

where A,, and A~,,, are positive constants that do not depend on «. Similarly, one
has that for any m and any p > 1,

fg ul? dv(g) > Bn fv liin )P dy

and

/ Vul? dv(g) > B f Viim()I? dy
Qm Vm

where B,, > 0 and B,, > 0 do not depend on u. Combining these inequalities and
the Sobolev embedding theorem for bounded domains of Euclidean spaces, we get
that for any m and any real number g > 1,
(v) if n — k,, < g, then for any real number p > 1 there exists C,, > 0 such
that for any u € D (M),

( f |u|"dv<g));scm (( f IVuI"dv(g))a+( fa |u|qdv(g));)
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(vi) if n — k,, > gq, then for any real number 1 < p < %, there exists
C,n > O such that for any u € Dg (M),

( |u|Pdv<g));scm (( f |Vu|"dv<g))'7+( fa |u|"dv<g))3)
Qm m m

But:
(vii) n — k,, < n — k so that p*(n, k, q) = p*(n,k, q),
wii) ([ ul? dv(g))'’” < Tov_, (fo, ul? dv(g))"’”, and
@) T, ((fo, 1Vul? dv(@)""" + ([, ul? dv(g))'"?)
< N((fyy IVul? dv(@)""? + (f,, lul dv(g))'"")
As a consequence, for any ¢ > 1 and any real number 1 < p < p*, H} ;(M) C
L?(K), and the embedding is continuous. By standard arguments, as developed in

the proof of Theorem 2.9, one then easily gets that these embeddings are compact
provided that p < p*. This ends the proof of the lemma. a

We are now in position to prove the main lemma.

PROOF OF LEMMA 9.4: Suppose that A, holds for 1 < p < p*, preal. Then
there exists a positive constant C, and a compact subset K of M such that for any

u € H{ ;(M),

: 1
f ul? dv(g) < C, (( f |Vu|'*dv<g)) +( f lul"dv(g)) )
M\K M M

while by Lemma 9.5, there exists some positive constant C, such that for any u €
H} (M),

i 4
/ P dv(g) < C; (( / IVul"dv(g)) +( f |u|"dv<g)) )
K M M

Hence, for any u € H{ ;(M),
1

(/M |u|Pdv(g))p < (C1 +C2)% ||u||H;z

so that Hﬁ (M) C LP(M), and the embedding is continuous. Suppose now that
B, holds for some 1 < p < p*. Let (K;) be a sequence of compact subsets of M
such that K; C K11, |U; Ki = M, and such that for any u € H (M),

( [ Iul”dv(g)); <! (( / |Vu|“dv<g));+( f |u|‘fdv<g))'7)
M\K; t M M

Let (u;) be some sequence of functions in Hf (M) such that for any k, [Ju|| HY S
Co. By induction, and with Lemma 9.5, one easily gets that for any i there exists a
subsequence (u;) of (u;) such that

1. ifi < j, (u]) is a subsequence of (u}), and

2. (u}) converges in LP(K;).
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Let u' be the limit of (4}) in LP(K;). For any i, denote by u; one of the u}’s such
that

. 2
( [u; — u’l"dv(g)) <-
Ki

]

Then, (u;) is a subsequence of (u,). We now assert that (4;) converges in LP(M).
(Obviously, this will end the proof of Lemma 9.4). In order to prove the claim,
we first remark that for j > i, ¥/ = u' in K;. We then note that the u'’s, when
extended by 0 in M\ K;, form a Cauchy sequence in L?(M). This comes from the
fact that for j > i,

(/ u’ —u"I"dv(g));
M
= ( [ lufl"dv<g))7'
Ki\Ki
1

. 7 P 1 Co
<(f w-wrae) +([ wrae) s;+2
K; M\K; J t

Let u be the limit of the u'’s (extended by 0 in M\K;) in LP(M). According to

what we have just said,
1
(f lui -ul”dv(g))p <&
M l

for any i. One then gets the claim by noting that for any i,

1
(/ Ju; —ul”dv(g))p
M
1 1
< ( f s — u"lpdv<g))" + ( [ ' — ul”dv(g))p
M M

1 1
< & + (/ Ju; — uil”dv(g)) ’ + (f Iu;I”dv(g)) ’ =< 2C0.+ :
U Ki M\K; t

This ends the proof of the lemma. O

9.6. The Codimension 1 Case

Let (M, g) be a smooth, complete Riemannian n-manifold, and G be a com-
pact subgroup of Isom,(M). In what follows, the action of G is said to be of
codimension 1 if

max dimO; =n —1
xeM

One can then prove (see [32]) that the quotient M /G is homeomorphic to an inter-
val of R. For x € M, let v(Of) be the volume of O; for the metric induced by g.
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As in Section 9.5, let also p* = p*(n, k, q) be defined

p'={'("'l_:i(kf)3 ifn—k>gq

400 ifn—k<gq
The purpose of this section is to prove the following result of Hebey-Vaugon [120]:

THEOREM 9.5 Let (M, g) be a smooth, complete Riemannian n-manifold, let G
be a compact subgroup of Isom, (M) whose action is of codimension 1, and set

k = min dim O
xeM

Consider the two following assumptions:
H,. There exist C > 0 and a compact subset K of M such that for any x €
M\K, v(0§) = C.
H,. For any € > 0 there exists a compact subset K. of M such that for any
x € M\K,, v(0%) > 1.
For q > 1, let p* = p*(n,k, q) be as above. If H, holds, then for any q > 1
and any real number p € [q, p*), H] ;(M) C LP(M) and the embedding is
continuous. If Hy holds, then for any q > 1 and any p € (q, p*), the embedding
of H{ (M) in LP(M) is compact.

PROOF: If M is compact, the result is already contained in Theorem 9.1 (or in
the standard Sobolev embedding theorem for compact manifolds if G has a fixed
point). We assume in what follows that M is not compact. LetI1 : M - M/G
be the canonical projection from M to M/G. As already mentioned, M/G is
homeomorphic to some interval I of R. Since I1 is a proper map (see Section 9.1),
M /G is noncompact and 7/ is homeomorphic either to R itself, or to [0, +00). In
what follows, we assume that I is homeomorphic to [0, +00). (The difficulties
involved in the case where I is homeomorphic to R are all contained in the case
where I is homeomorphic to [0, +00)). Let us identify / with [0, +00). By [32],
one has that for any ¢ € (0, +00), [1™!(¢) is a principal orbit (of dimension n — 1),
and that O = I17!(0) has dimension k < n — 1. Furthermore (see Section 9.1) one
has that

IM: M\O - (0, +00)
is a Riemannian submersion with respect to g and the quotient metric 4 (induced
from g) on (0, +00). In what follows, v denotes the function on (0, 4+00) defined
by v(IT(x)) = v(0O¢), and we set h = v?h. Suppose now that H; holds. In order
to prove the first part of the theorem, by the main lemma of Section 9.5, one has to
prove that for p > ¢, there exist C > 0 and a compact subset K of M such that for
any u € Dg (M),

( f - |u|"dv(g)); <é (( f IVuI"dv(g)); + ( f |ua"dv(g))‘7)
M\K M M

Lct K be the compact subset of M given by H,. Then, [T(K) is contained in some
interval~[0, R), K =TI7([0, R)) is a compact subset of M such that K C K, and
M(M\K) = (R, +00). If u € Dg(M) we denote by i the function on [0, +00)
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defined by o I1 = u. Let 1 < g < p be given. By (9.1) we get that for any
u € Dg(M),
+00 .
[ wrave = [ iaw avihy
M\R R
On the other hand, since we are in dimension 1, and since again by (9.1),

+00
f dv(h) = Vol, (M),
[}

one easily gets that ((0, +00), I;) and ((0, Vol,(M)), e) are isometric, where e
denotes the Euclidean metric of R and Vol, (M) denotes the volume of (M, g).
Hence, by the standard Sobolev inequality for intervals of R (see Lemma 9.6 for a
slight improvement of such an inequality), we get that there exists C > 0 such that

for any u € Dg(M),

+00 \ +00 ~
([ Tarai) s c ([ avag +iar)ai)

(Since there might be some possible confusion in what follows, the subscript h in
|Vit|; means that we take the norm of Vi with respect to the metric #). Since
by H; one has that v is bounded from below on [R, +00), we get that for any

uce DG(M)9
4 400
<C ( j (v |vall + Iﬁl")dv(ﬁ))
R

( / _|u|"dv<g))"
M\K
+00
<C ( f (vall + Iiil")dv(fz))
R

But IT : (M\O, g) — ((0, +00), h) is a Riemannian submersion. Hence, for any
x € M\O and any u € Dg(M), |Vid],(TT(x)) = |Vu|g(x). As a consequence, and
again by (9.1), we get that for any u € Dg(M),

+00 -
[ 1vuravey = [ vl aud
M\K R
Clearly, one also has that for any ¥ € D (M),
+00 B
[ ul? du(g) = [ 1l dv(i)
M\K R

so that we get the existence of some C > 0 and some compact subset K of M such
that for any u € D¢ (M),

1 1 1
([ wrae) < (( [ wurave) +( [ wravo)’)
M\K M M
As already mentioned, this proves the first part of Theorem 9.5. (]

In order to prove the second part of Theorem 9.5, we need the following
lemma:
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LEMMA 9.6 Let R be endowed with its standard metric e, and let I be some non-
compact interval of R.
(i) If I is bounded and of length é, then for any p,q = 1,

(flulpdv(e)); 58"”%‘%([|u’|"dv(e))a foranyu € D(I)
1 !

(ii) If I is not bounded, then for any 1 < q < p, and any ¢ > 0, there exists
C: > 0 (depending only on &, p, and q) such that,

g
(jlul”dv(e))p < Ce/!u'l"dv(e)+e/|ulqdv(e) Jorany u € D(I)
1 ! 1

PROOF: Suppose that I is bounded. Without loss of generality, one can as-
sume that / = (0,8] or I = (0,8). Letu € D). Then, for any x € (0, §),

f u (t)dt‘ (/ |u (t)|"dt) (/t dt) !
0
< 3'-#( [ || dv(e))a
1

As a consequence, we get that for any u € D(I),

1 1
( / Iul”dv(e))p < s'+%-%( / |u’|"dv(e))q
1 )

that proves (i). Suppose now that I is not bounded, and let 1 < g < p and
& > 0 be given. Without loss of generality, we can assume that / = [0, 4+00) or
I = (0, +00). For § > 0 real, consider the covering

R=Jms, (m+2)8)
mel
and let (n,,) be a smooth partition of unity subordinate to this covering such that
for any m, n "9 € C°(R) and I(n'/") | < Co/é for some Cy > 0 that does not
depend on m and 8. For any u € D(I) one then has that

[u(x)| =

q

([ o) = ([ (o)’ )

mel

2
< Z (f |n'/"u|”dv(e))

meZ

while by (i), one easily gets that

( f In,',,"'ul”dv(e))F < @20t ( f |(n/oyu’ +(n"")u|"dv<e>)
1 In

where I, = I N (md, m + 2)8). From now on, let u > 0, depending only on
g, be such that for x,y > 0, (x + y)? < u(x? 4+ y7). One then has that for any
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(fln,',,"’ul"dv(e))F <
1

@8)"*ips (/, (1’| + l(n,',.’")’l"lul")d”(e))q

and since any ¢ in / meets at most two of the I,,’s, we get that for any u € D(I),
4

H q
(furave) <@srsuf [wraver+ 32 [ avee|
! 1 1

One then obtains the result by choosing § such that (2"+%cg u,)8%_l = ¢. This
ends the proof of the lemma. O

ue D),

We now return to the proof of Theorem 9.5.

PROOF OF THEOREM 9.5 (CONTINUED): Suppose that H, holds, and let ¢
> 0and | < g < p be given. Assume first that Vol,(M) = +00. By Lemma 9.6,
there exists C, > 0 such that for any unbounded interval I of R and any # € D([),

q
( f qalpdv(e))" <C. / @'} dv(e) + / (d]¢ dv(e)
1 1 1

Let K, (given by H») be some compact subset of M such that for any x € M\ K,

C.
v(0%) = \/;

With the notation of the first part of the proof of Theorem 9.5, I1(K,) is con-
tained in some interval [0, R.], K. = T1~!([0, R.]) is a compact subset of M
such that K, C K., and [I(M\K,) = (R,, +00). Noting that ((0, 4+00), &) and
((0, Vol,(M)), e) are isometric, and that by (9.1),

Vol;; ((Re, +00)) = Volg(M\K,) = +00

one then gets, with the same kind of arguments as those used in the first part of the
proof of Theorem 9.5, that for any u € Dg (M),

4

P +00 - +00 -

( f |u|"dv(g>) <C f |Vii|f du(h) + ¢ f ||’ dv(h)

M\K. Re Re
+0Cc

+00
=C. f IVa|lv 2 dv(h) + & f |i]7 dv(h)
Re

R,

& +00 . +00 .
<Gt f Viil? du(i) + ¢ f il dv (i)
R

Re

=e( / IVul du(e) + f .|u|“dv(g))
M\K¢ M\K,

As a consequence, condition B, of the main lemma is satisfied, and we get that the
embedding of H{ ;(M) in L (M) is compact provided that p < p*. Assume now
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that Vol, (M) < +o00. Let K, (given by H,) be some compact subset of M such

that for any x € M\ K,
A
v(0g) > ‘/ "

where A = (Vol,(M))'*+1/P=1/4_Let R, and K, be as above. Here,
Vol; ((R., +00)) = Vol,(M\K,) < Vol,(M) < +00
so that by part (i) of Lemnma 9.6, we get that for any u € Dg(M),
% +00 . +0o0 -
(/ ) |u|”dv(g)) < A/ IViZI;’; dv(h) = A[ |Va|lv=2 dv(h)
M Re R

\K. e

e +oc .
< A(—) / \Vil! dv(h)
2] I,

=£[ _ |Vul?dv(g)
M\K,

Hence, condition B, of the main lemma is satisfied, and the embedding of H ; (M)
in LP(M) is again compact provided that p < p*. This ends the proof of the
theorem. a

As a concrete and easy example of applying Theorem 9.5, note that one recov-
ers Theorem 9.4 dealing with functions on R” that are radially symmetric.

9.7. The General Case

Let (M, g) be a smooth, complete Riemannian n-manifold, and G be a com-
pact subgroup of Isom, (M). We treat here the case where the action of G is not
necessarily of codimension 1. Following Hebey-Vaugon [120], for x € M and
r > 0 we set

T,(0g) = {y € M /dg(y, 05) < r}
where d; is the distance associated to g. If O, is principal, we define the principal
radius R (O() by

Ry (0%) =sup {r > 0/Vy € T,(0f), O is principal,
and Vr' < r, T(O¢) is compact}

and the principal tube 7,,,(O() by
X
T (0f) = T,(Of) where « =min (], Rpr(zou))

The action of G on M is then said to be uniform at infinity if there exist « > 1 and
a compact subset K of M such that the following holds: For any x € M\K such
that O, is principal, and for any y, y' € T, (Of),

v(0%) < av(0))

where, as in Theorem 9.5, v(0}) and v(0} ) denote the volume of O and O, for
the metric induced by g. Independently, we will say that the action of G on M is of
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bounded geometry type if the Ricci curvature of (§2/G, h) is bounded from below,

where
Q= U o
{x s.t O is principal}

and h is the quotient metric (induced from g) on 2/G (see Section 9.1). By
O’Neill’s formula (Section 9.1), the action of G on M is of bounded geometry
type if the sectional curvature of (M, g) is bounded from below.

We prove here the following result of Hebey-Vaugon [120]. As in Section 9.5,
we define p* = p*(n, k, g) by

" _[% ifn—k>gq

ifn—k<gq
Since several groups are involved in the statement of Theorem 9.6, G;-principal
means principal for G; (and for x € M, T(Og,) is the principal tube with respect
to G;). In what follows, Vol,(T;x(Og,)) stands for the volume of T,(Og,) with
respect to g.

THEOREM 9.6 Let (M, g) be a smooth, complete Riemannian n-manifold, G be
a compact subgroup of Isomg(M), and G,, ..., G; be s compact subgroups of G
such that the actions of the G;’s on M are of bounded geometry type and uniform
atinfinity, i = 1,...,s. Let kyin = min,epy dim O, ki = max,epy dim Og, be the
dimension of the principal orbits of G;, and k = min{kpin, ki, ..., k;}. Consider
the two following assumptions:
H,. There exist C > 0 and a compact subset K of M such that for any point
x in M\K there is some i for which Og, is G;-principal and for which
Vol (Tix(0g,)) = C.
H,. For any ¢ > O there exists a compact subset K. of M such that for any
point x in M\K there is some i for which Og. is G;-principal and for
which Voly (T, (0%.)) > 1.
For q > 1 let p* = p*(n,k,q) be as above. If H, holds, then for any q > 1
and any real number p € [q, p*l. H{ ;(M) C LP(M), and the embedding is
continuous. If Hy holds, then for any q > 1 and any p € (q, p*), the embedding
of H} ;(M) in LP(M) is compact.

In order to prove Theorem 9.6, we first need the following result:

LEMMA 9.7 Let (M, g) be a smooth Riemannian n-manifold, not necessarily com-
plete, such that Rc, > Ag for some )\ € R. For x € M set

8, =sup {8 >0/B,(d)is compact}

and let ¢, = min(l, %). For any subset 'V of M, there exists an integer N =
N(n, A), depending only on n and A, and there exists I C 'V, such that V C
Uses Bx(x), and such that forany y € 'V,

Card{x €I/y € Bi(e:)} <N
where Card stands for the cardinality.
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PROOF: First, we claim that for any x, x’ € M,
1
9.3 e, —en] < —
9.3) |lex — x| < 0
In order to prove the claim, one can assume that §, < +oo for any x. (If not, M

is complete by Hopf-Rinow’s theorem, &, = 1 for any x, and the claim is trivial).
One can then note that the claim will be proved if we show that for any x, x’ € M,

|8x - 8x’| < d,g(x, x)
Assume for that purpose that §, > 8,. Then, either dg(x, x’) > &, and the in-

equality above is trivial, or d;(x, x’) < 8, — n for some n > 0, and one gets
that

dg(x,x")

Bx’(ax - dg(xv xl)) - Bx(‘sx - ’7)
so that 8,» > 8, — d;(x, x’) by definition of é, and §, . In any case, this proves the
claim. Now, consider
X={IcV/Vx#£x eI, dg(x,x") > (e + &1)}

Then X is partially ordered by inclusion, and obviously every chain in X has an
upper bound. Hence, by Zorn’s lemma, X contains a maximal element /. We now
prove that (B,(e,)), x € I, is the covering we are looking for. First, we claim that

v c|JBi(er)

xel

In order to prove the claim, let us consider y some point in V. If for any x € I,
dg(x,y) = %’(e, + ¢,), then I U {y} € X, so that by the maximality of I,y € I.
If not, there exists some x € I such that d;(x, y) < %(e, + &;). But by (9.3),
&y < 15.dg(x, y) + &, so that

10 1 10
dg(x,y) < ﬁe, + idg(x, y) + ﬁex

dg(x,y) < &:,andy € B,(s,). This proves the claim. Now, let y € 'V and suppose
that y belongs to N balls B,,(¢;,) of the covering. Set ¢; = ¢,, and assume that the
&;’s are ordered so that ¢; > &, > .. - > gy. Clearly, one has that

N
| B (i) C By(2e1)

i=]

and since for i # j, dg(xi, x;) > 33(: + ;) one gets that for i # j,

10 10
Bx,. (ﬁei) N ij (ﬁej) =0

Independently, note that by (9.3),
& —&y = ldg(xl,xh/) < 'l_'(dg(xl’ Y) +dg(y, xn)) < L(el +&n)
10 10 10
so that ey > ]9—181. Note also that for any i, the balls B,,(3¢,) are relatively com-
pact, with the additional property that B,(2¢;) C B,;(3¢;). According to all these



274 9. THE INFLUENCE OF SYMMETRIES

remarks and by Gromov’s result, Theorem 1.1 of Chapter 1, one gets that there
exists C(n, A) > 0, depending only on n and A, such that

N N
Vol (B.(2¢) = 3 Vol (B (31€:)) = 3 Vol (B (Fe1))

i=l i=l

N
> C(n, 1)) _ Vol (B, (3¢)))

i=]

> NC(n, ) Vol, (By(2¢1))

(We use here a different version of Theorem 1.1, namely, that the completeness
of the manifold can be dropped in such a result provided that B, (R) is relatively
compact. In such a situation, as one can easily check, the proof of Theorem 1.1 is
unchanged). Hence, N < z;, and this ends the proof of the lemma. a

We are now in position to prove Theorem 9.6.

PROOF OF THEOREM 9.6: Foranyi =1,...,s, let
Q,' = U 0'(‘;1

{x s.t. Oéi is G;-principal)

and denote by h; the quotient metric (induced from g) on Q,;/G;. Set n; =
dim(R;/G;), and if I1; : Q; — ,;/G; is the canonical submersion, let v; be
the function on Q;/G; defined by v;(IT;(x)) = v(0g,). Suppose now that H,
holds. Then there exist C > 0, @ > 1, and a compact subset K of M, such that
for any x € M\K, Og, is G;-principal for some i € {1, ..., s}, with the additional
properties that:

() Vy.,y' € Ty(0F), v(0}) < av(0},), and

(i) Vol (Tx(0g,)) = C.
Let U; C M\K be such that for any x € U;, Og, is G;-principal and (i) and (ii)
hold. By assumption one has that

9.4 M\K = O U;

i=I1
Independently, and since for any z, z’ € ;,
dy, (Ti(2), Ti(2) = d (05, OF)
one has that for any x € Q; and any n > 0,
©.5) T,(0¢,) = I (Bn,o(n))

Noting that IT; is a proper map, and that I1; is surjective, one then gets that for
x € Q;, y =Il;(x), and 8, as in Lemma 9.7,

9.6 RP"(O:L‘) =&

From now on, let V; = I1;(U;), and (B,(¢y)), y € I;, be the covering of V; C
Qi/G; givenby Lemma 9.7. Letalso1 < g < pandi € {1,...,s} be given. For
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the sake of clarity, we assume in what follows that k; > 1. (If k; = 0, G; is finite
and I; : Q; - Q,/G; is a finite covering. We then proceed as below, noting that
(9-1) is still valid with the convention that v(Og,) = Card Og .)- Foru € Dg(M),
let ii; be the function on M/G; defined by #; o I1; = u. By (9.1) one has that

/ |ul"dv(g)=/ [#;1Pvdv(h;)
U; Vi

while

[Iull"vdv(h)<Z/ |ii:(Pv dv(h;)

‘e[ B\(e\)

Hence,

[ wravg) < Y [ jairuduch

vel; Y By(Ey)
< Z( sup v)/ |i;1? dv(h;)
vel; B, (¢,) By (ey)

By Maheux and Saloff-Coste’s result, Theorem 3.7 of Chapter 3 (see also [154]),
and since the action of G; on M is of bounded geometry type, one then obtains that
for p < p*(n, k;, q), there exists C; > 0 such that

f ul? dv(g) <
U;

4

C;Z( sup v)(Vol,,,. B).(s.‘.))l"g(‘/“ )(|Vz'2,~|" + |z'ii|")dv(h,-))q

vel; By(e,)

(Theorem 3.7, and what is done in [154], hold for noncomplete manifolds, provided
that the ball considered is relatively compact). One can then write that

/ |u|"dv<g)<CZ( Poren? )(Vol,., By(ey))' ™4

ver, M(infg, ¢, )v)"
/4

q9
% ( f (1Vit; 7 + |a.-|")vdv(hi))
B.(¢,)

Now note that by Gromov’s result, as used in the proof of Lemma 9.7, there exists
Bi > 0 (depending only on (n — k;) and a lower bound for Rc;,) such that

VOl;,,. (B,v(sy)) 2 ﬁi VOlh,- (B,\'(’(y))
where x, = min(l, i,‘l). Since 1 < 2, one then gets by (i), (9.1), (9.5), and (9.6)
. 2 q

that there exists C; > 0 such that for any y € [;,

Su| v _ ~ -
(%)(Volm B,(e,)' "% < €; Vol, (T(05))'
infp,(,)v)?
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where x € U; is §uch that IT;(x) = y. By (ii), Lemma 9.7, and (9.1), one then has

that there exists C; > 0 and an integer N; such that
2

> ( f (IVa | + w.-l")vdv(h.-)) !
By(g,)

YEl;

ﬁéi(z

Yel;

f lu)” dv(g) < C;
U;

4

f (1Va;|? + i lq)v dv(hi)) '
By(ey)

2

. 7
<N/ Ci(/ (Vi )T + milq)vdv(hi))

i i

L
= Nfé,.(f (IVui® + Iul")dv(g))q
Qi

(Since IT; : (R, 8) = (Ri/G;, h;) is a Riemannian submersion, for any x € £;
and any u € Dg(M), |Vu;|(T1;(x)) = |Vu|(x)). As a consequence, we have
proved that for any i € {l,...,s},anyq > 1, and any p such that ¢ < p <
p*(n, k;, q), there exists a positive constant w; such that for any u € D¢ (M),

2
L lul? dv(g) < u; [Q (vl + lul")dv(g))

By (9.4), and since
p*(n,k,q) < min(p*(n, kmin, q), P*(n, ki, q))

for any i, this implies that for any ¢ > 1 and any p such that ¢ < p < p*(n,k, q),
there exists u > 0 such that for any u € D (M),

1 1 1
(/ Iul”dv(g)) <u ((/ {Vul? dv(g))q + (f Iul"dv(g))q)
M\K M M

By the main lemma of Section 9.5, this proves the first part of Theorem 9.6.

Let us now prove the second part of Theorem 9.6. We assume here that H,
holds. Let ¢ > 0 be given. Then, there exists @ > 1 and a compact subset K, of M
such that for any x € M\K,, Og, is G;-principal for some i € {1, ..., s}, with the
additional properties that

(iii) Vy, y' € Tu(OE,), v(0},) < av(0 ) and

(iv) Volg(T(0%)) = +.
Let U; C M\ K, be such that for any x € U;, 0{;,, is G;-principal and (iii) and (iv)
hold. Here again, (9.4) is valid. By (iv) and the computations developed above, one
then easily obtains that for any ¢ > 1 and any p such thatg < p < p*(n,k, q),

there exists 4 > 0, independent of ¢, such that for any u € D¢ (M),
1

(f !ul”dv(g))ﬁ < ues" ((j {Vul? dv(g))q + (f ful|? dv(g));)
M\K, M M

Since € > 0 is arbitrary, such an inequality implies that condition B, of the main
lemma is satisfied. This ends the proof of the theorem. O
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As a first remark on Theorem 9.6, note that when G is reduced to the identity,
all the orbits are principal and the principal tubes T,,(O() are just the balls B,(1).
Condition H; of Theorem 9.6 is then optimal by Theorem 3.3. Here, and by con-
vention, v(0f) = Card O¢ if G is a finite group, while IT :  — /G is a finite
covering, so that the action of G on M is of bounded geometry type if and only
if the Ricci curvature of (M, g) is bounded from below. As another remark, note
that an interesting property of Theorem 9.6 is that it allows the study of product
manifolds. This can be seen as a kind of atomic decomposition. We illustrate this
fact in the following proposition. For the sake of simplicity, the assumptions are
not as general as they could be.

PROPOSITION 9.1 Let (M;, g;),i = 1,...,m, be m complete Riemannian mani-
folds of dimensions n;, and for any i € {1, ..., m)}, let G; be a compact subgroup
of Isomy, (M;). Suppose that forany i € {1, ..., m}:
(i) the Ricci curvature of (M;, g;) is bounded from below,
(ii) there exists c; > O such that for any x € M;, Vol,,(B,(1)) > c;,
(iii) the action of G; on M; is of bounded geometry type,
(iv) there exists a; > 1 such that for any principal orbit Og , x € M;, and any
Y. ¥ € Tu(03), v(0}) < a;v(0;,), and
(V) there exist r; > 0 and a compact subset K; of M; such that for any principal
orbit Og., x € Mi\K;, Rye(Og,) = ri.
Consider the two following assumptions:

H,. Foranyi € {1, ..., m}, there exist C; > 0 and a compact subset K; of M;
such that for any x € M;\K;, Og, is principal and Volg, (Ty(O¢,)) = Ci.
H,. Foranyi € {1,...,m} and any & > O, there exists a compact subset K: of

M; such that for any x € M]\K|, O%_ is principal and Vol (Toe (0% )) > 1.
Lee M =M x---xM,, g=g +::-+ gn and G be the compact subgroup of
Isom, (M) defined by G = G; x --- x G,,. Foranyi € {1,...,m}, let also kfnin
be the minimum orbit dimension of G;, and k., be the maximum orbit dimension
of G;. Set

k = min { Zk:nin’ krlnax’ AR kmax}
i=]

and for q > 1, let p* = p*(n, k, q) be as above, where n = Y | n;. If H, holds,
then for any q > 1 and any real number p € [q, p*], H,"_G(M) C L?P(M), and the
embedding is continuous. If H; holds, then for any q > 1 and any p € (q, p*), the
embedding of H ,"_G(M ) in LP(M) is compact.
PROOF: Let G;,i = 1,..., m, be the compact subgroups of G defined by
Gi =G, x {Idy} x -+ x {Idy}
Gi={ldi} x -+ x {Idi1} x Gi x {Idiz} x -+ x {Idn},
2<i<m-1

Gm={Id)} x -+ x {Idy_1} x Gy
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where Id; denotes the identity of M;. One easily checks that by (i) and (iii), the
action of the G;’s on M is of bounded geometry type, and that by (iv), the action
of the G,«’s on M is uniform (at infinity). The result then comes from the fact
that by (ii) and (v), H; (respectively, H,) of Theorem 9.6 holds for M and the
é,-’s, if H, (respectively, H) of Proposition 9.1 holds. This ends the proof of the
proposition. O

As a concrete and easy example of application of Proposition 9.1, hence of
Theorem 9.6, one recovers a result of Lions [150] dealing with functions on R”
that are cylindrically symmetric. More precisely, one has the following:

COROLLARY 9.1 Letm > 2andn,, ...,n, be integers such that n; > 2 for all i.
Let also G be the subgroup of Isoms(R") defined by
G=0n)x---x0ny)

where n = Y ;" n;, 8 is the Euclidean metric, and R" = R™ x --. x R"™. For
q=>1,set p* =nq/(n—gq)ifq <n,and p* = +o0oifq > n. Then forany q > 1
and any p € (q, p*), the embedding of Hﬁ cR") in LP(R") is compact.



CHAPTER 10

Manifolds with Boundary

For dimension reasons, we decided in these notes to deal only with closed man-
ifolds, that is, with manifolds without boundaries. For completeness, we briefly
comment here on some results in the case of manifolds with boundaries. We refer
the reader to the references appearing below for more details on the subject.

Let (M, g) be a smooth, compact n-dimensional Riemannian manifold with
boundary. For g € [1, n), and u € C*(M), we let

/g 1/q
bt = ([ 1vutravie)) o+ ([ wieae)

H{ (M) = completion of C*(M) with respect to |- Nus
Hg (M) = completion of D (M) with respect to |- || He

and we set

As one can easily check, a simple adaptation of what we said in Chapter 2 leads
to the fact that the Sobolev and Rellich-Kondrakov theorems do hold for these
spaces. For more detail on such an assertion, we refer the reader to Aubin [12). In
particular, one has the following:

THEOREM 10.1 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary. For q € [1,n) real, set p = nq/(n — q). Then, for any
q €[1,n), andanyk € [1, p), H} (M) C L¥(M) and Hj (M) C L*(M), with the
additional property that these embeddings are compact ifk € [1, p).

Regarding the notion of best constants for such spaces, here again a simple
adaptation of what we said in Chapter 4 shows that the best first constant for the
embedding of H& , in LP(M) is K(n, q), where K(n, q) is as in Theorem 4.4.
With more subtle arguments, as shown by Cherrier [51], one gets that the best first
constant for the embedding of H/ (M) in L?(M) is 2'/"K (n, q).

THEOREM 10.2 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary. For q € [1, n) real, set p = nq/(n — q). Forany q € [1, n),
and any € > O, there exist By, B € R such that for any u € Hj (M),

q/p
( f |u|"dv(g>) < (K(m.q)' +¢) / Vul? dv(g) + B, / Wl dv(g)
M M M

279
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with the additional property that K (n, q) is the best constant in such an inequality,
and such that for any u € H! (M),

q/p
( / |u|"dv<g>) < (25K (n, q)" +) ] Vul? dv(g) + B; f ul? dv(g)
M M M

with the additional property that 29/"K (n, q)? is the best constant in such an in-
equality.

Following what was done in Chapter 4, one can now ask if the above inequali-
ties do hold with £ = 0. By the work of Druet [74], the answer to such a question
is no for the embedding of Hy (M) in LP(M) if ¢ > 2, g% < n, and the scalar
curvature of g is positive somewhere. Conversely, the following was proved in
Hebey-Vaugon [119]:

THEOREM 10.3 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let p = 2n/(n — 2). There exists B € R such
that

2/p
(f Iul”dv(g)) < K(n,2)2/ IVulzdv(g)+ B/ u?dv(g)
M M M

for any u € HE (M).

Still when dealing with best-constants problems, one can ask for sharp trace
inequalities. Set
2

1/(n=1)
(n -2/

n

As shown by Beckner [21] and Escobar [76],
. |Vul2dx
= l = inf fk+ 37
K (fakz lule do )™

where g = 2(n — 1)/(n — 2), and the infimum is taken over functions u such that
Vu € LZ(]R',;) and u € LY(3R%)\{0}. Moreover, this infimum is achieved (Lions
[151]). The extremum functions there were found independently in [21] and [76].
The following theorem is due to Li and Zhu [145]:

Iz(n) =

THEOREM 10.4 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let ¢ = 2(n — 1)/(n — 2). There exists B € R
such that for any u € H}X(M),

2/q .
(/ |ue]? dv(g)) < K(n)/ IVulzdv(g)+B/ u® dv(g)
oM M oM

with the additional property that K (n) is the best constant in such an inequality.

Somewhat more closely related to the inequalities we discussed in these notes,
Li and Zhu [146] also got the following:



10. MANIFOLDS WITH BOUNDARY 281

THEOREM 10.5 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let p = 2n/(n — 2). There exists By, B, € R
such that for any u € H}(M),

2/p
( f |u|"dv(g)) <27 K(n,2) [ |Vu|?dv(g) + B f u? dv(g)
M M M

+ 82/ u?do
oM

with the additional property that 2" K (n, 2)?* is the best constant in such an in-
equality. Moreover, one can take B, = 0 in the above inequality if and only if

2/p ”
( / lul”dv(g)) <2:K(n,2)? f IVul* dv(g)
M M

for any u € H} ,(M)\{0}.

As an easy consequence of this result of Li and Zhu, one gets that for Q a
smooth, bounded domain in R”, there exists B € R such that for any u € H,z(SZ),

2/p )
(f lul”dx) <2iK(n, 2)2f |Vu|2dx+B/ u’do
Q Q :19]

Extensions of such an inequality are studied in Zhu [202]. Again when dealing with
open subsets of Euclidean space, sharp Sobolev inequalities with remainder terms
are studied in Brezis and Lieb [33]), while sharp Sobolev inequalities for functions
vanishing on some part of the boundary are studied in Lions, Pacella, and Tricarico
[152]).

When dealing with best-constants problems, one may also discuss the value
of the best second constant. The arguments when studying such a question are
similar to the ones presented in Section 4.1 of Chapter 4. The value of the best
second constant depends here on whether we are concerned with the embedding
Hg (M) C L?(M) or the embedding H/ (M) C LP(M), p = nq/(n — q). Given
(M, g) a smooth, compact, n-dimensional Riemannian manifold with boundary,
and g € [1, n) real, one gets with similar arguments to the ones used in Section 2.8
that there exists A € R such that for any u € Hj ,(M),

q/p
( f |u|”dv<g>) <A f Vul? dv(g)
M M

The best second constant for the embedding of H& (M) in L?(M) is then non-
positive. It may be zero or negative. Just consider smooth, bounded, open subsets
of either the Euclidean space, or the hyperbolic space, and look at what we said
in Section 7.4. On the contrary, as one can easily check by considering some
nonzero constant function, the value of the best second constant for the embedding
of H{(M) in LP(M) has to be greater than or equal to Vol('hyé','), where Vol )
stands for the volume of (M, g).

For results on the influence of symmetries on manifolds with boundary in the

spirit of the work in Chapter 9, we refer the reader to Hebey-Vaugon [120].
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