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Preface

These notes deal with the theory of Sobolev spaces on Riemannian manifolds.
Though Riemannian manifolds are natural extensions of Euclidean space, the naive
idea that what is valid for Euclidean space must be valid for manifolds is false. Sev-
eral surprising phenomena appear when studying Sobolev spaces on manifolds.
Questions that are elementary for Euclidean space become challenging and give
rise to sophisticated mathematics, where the geometry of the manifold plays a cen-
tral role. The reader will find many examples of this in the text.

These notes have their origin in a series of lectures given at the Courant Insti-
tute of Mathematical Sciences in 1998. For the sake of clarity, I decided to deal
only with manifolds without boundary. An appendix concerning manifolds with
boundary can be found at the end of these notes. To illustrate some of the results or
concepts developed here, I have included some discussions of a special family of
PDEs where these results and concepts are used. These PDEs are generalizations
of the scalar curvature equation. As is well known, geometric problems often lead
to limiting cases of known problems in analysis.

The study of Sobolev spaces on Riemannian manifolds is a field currently un-
dergoing great development. Nevertheless, several important questions still puzzle
mathematicians today. While the theory of Sobolev spaces for noncompact man-
ifolds has its origin in the 1970s with the work of Aubin, Cantor, Hoffman, and
Spruck, many of the results presented in these lecture notes have been obtained in
the 1980s and 1990s. This is also the case for the applications already mentioned
to scalar curvature and generalized scalar curvature equations. A substantial part
of these notes is devoted to the concept of best constants. This concept appeared
very early on to be crucial for solving limiting cases of some partial differential
equations. A striking example of this was the major role that best constants played
in the Yamabe problem.

These lecture notes are intended to be as self-contained as possible. In partic-
ular, it is not assumed that the reader is familiar with differentiable manifolds and
Riemannian geometry. The present notes should be accessible to a large audience,
including graduate students and specialists of other fields.

The present notes are organized into nine chapters. Chapter 1 is a quick in-
troduction to differential and Riemannian geometry. Chapter 2 deals with the
general theory of Sobolev spaces for compact manifolds, while Chapter 3 deals
with the general theory of Sobolev spaces for complete, noncompact manifolds.
Best constants problems for compact manifolds are discussed in Chapters 4 and
5, while Chapter 6 deals with some special type of Sobolev inequalities under

Xi
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constraints. Best constants problems for complete noncompact manifolds are dis-
cussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities.
The influence of symmetries on Sobolev embeddings is discussed in Chapter 9.
An appendix at the end of these notes briefly discusses the case of manifolds with
boundaries.

It is my pleasure to thank my friend Jalal Shatah for encouraging me to write
these notes. It is also my pleasure to express my deep thanks to my friends and col-
leagues Tobias Colding, Zindine Djadli, Olivier Druet, Antoinette Jourdain, Michel
Ledoux, Fr6d6ric Robert, and Michel Vaugon for stimulating discussions and valu-
able comments about the manuscript. Finally, I wish to thank Reeva Goldsmith,
Paul Monsour, and Joe Shearer for the wonderful job they did in the preparation of
the manuscript.

Emmanuel Hebey
Paris, September 1998



CHAPTER I

Elements of Riemannian Geometry

The purpose of this chapter is to recall some basic facts concerning Riemannian
geometry. Needless to say, for dimension reasons, we are obliged to be succinct and
partial. For those who have only a slight acquaintance with Riemannian geometry,
we recommend the following books: Chavel [45], Do-Carmo [70], Gallot-Hulin-
Lafontaine [88], Hebey [109], Jost [127], Kobayashi-Nomizu [136], Sakai [171],
and Spivak [181]. Of course, many other excellent books on the subject do exist.
We mention that Einstein's summation convention is adopted: an index occurring
twice in a product is to be summed. This also holds for the rest of the book.

1.1. Smooth Manifolds

Paraphrasing a sentence of Elie Cartan, a manifold is really made of small
pieces of Euclidean space. More precisely, let M be a Hausdorff topological space.
We say that M is a topological manifold of dimension n if each point of M pos-
sesses an open neighborhood that is homeomorphic to some open subset of the
Euclidean space R". A chart of M is then a couple (f2, rp) where S2 is an open
subset of M, and 9P is a homeomorphism of S2 onto some open subset of R". For
y E S2, the coordinates of (p(y) in 1[8" are said to be the coordinates of y in (9, V).
An atlas of M is a collection of charts (S2i, (pi), i E I, such that M = U;,, SZi.
Given 02i, tp;)IEJ an atlas, the transition functions are

Vj o 9 I : (pi (S2i n S2j) lpj (9i n S2j )

with the obvious convention that we consider (pj o rpp ' if and only if S2, fl S2j # 0.
The atlas is then said to be of class Ck if the transition functions are of class Ck,
and it is said to be Ck-complete if it is not contained in a (strictly) larger atlas of
class Ck. As one can easily check, every atlas of class Ck is contained in a unique
Ck-complete atlas.

For our purpose, we will always assume in what follows that k = +oo and
that M is connected. One then gets the following definition of a smooth manifold:
A smooth manifold M of dimension n is a connected topological manifold M of
dimension n together with a CO0-complete atlas.

Classical examples of smooth manifolds are the Euclidean space 111" itself, the
torus T", the unit sphere S" of 111"+', and the real projective space 11°n(1R).

Given M and N two smooth manifolds, and f : M -> N some map from M
to N, we say that f is differentiable (or of class Ck) if for any charts (0, V) and
(S2, gyp) of M and N such that f (S2) C 0, the map

00f o cp-I : 00) -+ 0{ 2)
I



2 1. ELEMENTS OF RIEMANNIAN GEOMETRY

is differentiable (or of class Ck). In particular, this allows us to define the notion
of diffeomorphism and the notion of diffeomorphic manifolds. Independently, one
can define the rank R(f) ., of f at some point x of M as the rank of kP o f o (p-1
at rp(x), where (12, (p) and (S2, gyp) are as above, with the additional property that
x E £ . This is an intrinsic definition in the sense that it does not depend on the
choice of the charts. The map f is then said to be an immersion if, for any x E M,
R(f )x = m, where m is the dimension of M, and a submersion if for any x E M,
R(f )x = n, where n is the dimension of N. It is said to be an embedding if it is an
immersion that realizes a homeomorphism onto its image.

We refer to the above definition of a manifold as the abstract definition of
a smooth manifold. Looking carefully to what it says, and to the questions it
raises, things appear to be less clear than they may seem at first glance. Given M
a connected topological manifold, one can ask if there always exists a structure of
smooth manifold on M, and if this structure is unique. Here, uniqueness has to be
understood in the following sense: given M a connected topological manifold, and
A a C°°-complete atlas of M, the smooth structure of M is said to be unique if, for
any other C°0-complete atlas A of M, the smooth manifolds (M, A) and (M, A)
are diffeomorphic. With this definition of uniqueness, the only reasonable defini-
tion for that notion, one gets surprising answers to the questions we asked above.
From the works of Molse, developed in the 1950s, one has that up to dimension 3,
any topological manifold possesses one, and only one, smooth structure. But start-
ing from dimension 4, one gets that there exist topological manifolds which do not
possess smooth structures (this was shown by Freedman in the 1980s), and that
there exist topological manifolds which possess many smooth structures. Coming
back to the works of Milnor in the 1950s, and to the works of Kervaire and Milnor,
one has that S7 possesses 28 smooth structures, while S11 possesses 992 smooth
structures! Perhaps more surprising are the consequences of the works of Donald-
son and Taubes: While R" possesses a unique smooth structure for n # 4, there
exist infinitely many smooth structures on R4!

Up to now, we have adopted the abstract definition of a manifold. As a surface
gives the idea of a two-dimensional manifold, a more concrete approach would
have been to define manifolds as submanifolds of Euclidean space. Given M and
N two manifolds, one will say that N is a submanifold of M if there exists a smooth
embedding f : N --)- M. According to a well-known result of Whitney, the two
approaches (concrete and abstract) are equivalent, at least when dealing with para-
compact manifolds, since for any paracompact manifold M of dimension n, there
exists a smooth embedding f : M 112h1+ 1. In other words, any paracompact (ab-
stract) manifold of dimension n can be seen as a submanifold of some Euclidean
space.

Let us now say some words about the tangent space of a manifold. Given M a
smooth manifold and x E M, let 3rr be the vector space of functions f : M --* R
which are differentiable at x. For f E P, we say that f is flat at x if for some
chart (S2, (p) of M at x, D(f o (p-%w(x) = 0. Let ,N, be the vector space of such
functions. A linear form X on F, is then said to be a tangent vector of M at x if
d'r C Ker X. We let TX (M) be the vector space of such tangent vectors. Given
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(0, So) some chart at x, of associated coordinates x', we define (s';;) E Tx(M) by:
for any f E fix,

(f) = D,(f(--' ON)

As a simple remark, one gets that the (s -)x's form a basis of T(M). Now, one
defines the tangent bundle of M as the disjoint union of the T, (M)'s, X E M. If
M is n-dimensional, one can show that T(M) possesses a natural structure of a
2n-dimensional smooth manifold. Given (0, cp) a chart of M,

U TX (M),
1E0

is a chart of T (M), where for X E T, (M), X E S2,

c t (X) = ( ( P I (X), ... , c ? (x), X W), ... , X (cp" ))

(the coordinates of x in (S2, cp) and the components of X in (0, (p), that is, the co-
ordinates of X in the basis of T, (M) associated to (9, cp) by the process described
above). By definition, a vector field on M is a map X : M -+ T (M) such that for
any x E M, X (X) E Tx (M). Since M and T (M) are smooth manifolds, the notion
of a vector field of class Ck makes sense.

Given M, N two smooth manifolds, x a point of M, and f : M -+ N dif-
ferentiable at x, the tangent linear map of f at x (or the differential map of f at
x), denoted by f*(x), is the linear map from T,(M) to Tf(,)(N) defined by: For
X E Tx (M) and g : N -+ R differentiable at f (x),

(f.(x)-(X)) (g)=X(gof)
By extension, if f is differentiable on M, one gets the tangent linear map of f,
denoted by f.. That is the map f.: T(M) T(N) defined by: For X E T,.(M),
f. (X) = f.(x).(X). As one can easily check, f. is C'-' if f is C'. For f : M,
M,, g : M2 -+ M3, and X E M,, (g o f).(x) = g. (f (x)) o f. (X).

Similar to the construction of the tangent bundle, one can define the cotangent
bundle of a smooth manifold M. For X E M, let T, (M)* be the dual space of
T, (M). If (S2, cp) is a chart of M at x of associated coordinates x', one gets a basis
of T,(M)* by considering the dx;.'s defined by dxc (-a- ), = As for the tangent
bundle, the cotangent bundle of M, denoted by T*(M), is the disjoint union of the
T,(M)*'s, X E M. Here again, if M is n-dimensional, T*(M) possesses a natural
structure of 2n -dimensional smooth manifold. Given (Q, (p) a chart of M,

U TI(M)*, 0
XEr2

is a chart of T (M), where for n E T, (M) *, X E S2,

).)(n) (sv'(x), ... , "(x), n(
aa ), ... , n(

a

axx

(the coordinates of x in (12, cp) and the components of n in (S2, cp), that is, the co-
ordinates of n in the basis of TT(M)* associated to (S2, cp) by the process described
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above). By definition, a 1-form on M is a map n : M -+ T*(M) such that for any
x E M, n(x) E Tx(M)*. Here again, since M and T*(M) are smooth manifolds,
the notion of a 1-form of class C' makes sense. For f a function of class Ck on M,
let d f be defined by: For X E M and X E T, (M), d f (x) X = X (f ). Then df is
a 1-form of class Ck''.

Given M a smooth n-manifold, and 1 < q < n an integer, let A" Tx(M)*
be the space of skew-symmetric q-linear forms on T, (M). If (12, q) is a chart
of M at x, of associated coordinates x', (dx'i A A dxx is a basis of

Aq TT(M)*. With similar constructions to the ones made above, one gets that
Aq(M), the disjoint union of the Aq Tx(M)*'s, possesses a natural structure of a
smooth manifold. Its dimension is n + C = n!/(q!(n - q)!). Some
map n : M --+ Aq (M) is then said to be an exterior form of degree q, or just an
exterior q-form, if for any x E M, n(x) E / \q Tx(M)*. Here again, the notion of
an exterior q-form of class C' makes sense. Given (S2, (p) some chart of M, and n
a q-form of class Ck whose expression in (12, (p) is

n= E r1;,...,gdx"
j, <...<jg

the exterior derivative of n, denoted by dn, is the exterior (q + 1)-form of class
Ck-I whose expression in (9, (p) is

do= dnj,...igAdx" A...Adx'q
j, <...<jg

One then gets that for any exterior q-form n, d(dn) = 0. Conversely, by the
Poincare lemma, if n is an exterior q-form such that do = 0, that is, a closed
exterior q-form, around any point in M, there exists an exterior (q - 1)-foam n
such that d4 = n. One says that a closed exterior form is locally exact.

As another generalization, given M a smooth n-manifold, x some point of M,
and p, q two integers, one can define Tpq (Tx(M)) as the space of (p, q)-tensors on
Tx(M), that is, the space of (p + q)-linear forms

, :T(M) X...xTx(M)xTx(M)*x...xTx(M)*-+R
P q

An element of TP (T,M) is said to be p-times covariant and q-times contravari-
ant. If (S2, gyp) is a chart of M at x, of associated coordinates x', the family

I
dxi'®...®dxx"®( a)0...0( a )ax 'j,x axlg x I1.....fp.;,.....;g

is a basis of T" (T, (M)). Here again, one gets that the disjoint union Tn (M) of the
Tpq (Tx(M))'s possesses a natural structure of a smooth manifold. Its dimension is
n(1 + nn+q-1). A map T : M Tp (M) is then said to be a (p, q)-tensor field on
M if for any x E M, T (x) E Tp (Tx (M)). It is said to be of class Ck if it is of class
Ck from the manifold M to the manifold Tp (M). Given (12, V) and (S2, *) two
charts of M of associated coordinates x' and y', and T a (p, q)-tensor field, let us
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denote by T ' and (S2, Then, for any
je,andanyX E S2,

(1.1) till
1 (8x) (aYl) (ayjy

ayi,

a remark, given M and N two manifolds, f : M N a map of class C4+1,
and T a (p, 0)-tensor field of class Ck on N, one can define the pullback f *T of T
by f, that is, the (p, 0)-tensor field of class Ck on M defined by: For X E M and
X1..... Xp E Tr(M),

(f*T)(x) (A'1 , ... , Xn) = T(f(x)) (f.(x) X1, ..., f*(x) Xr)
As one can easily check, for f : M1 M2 and g : M2 -> M3, (g o f )* = f* o g*.

Let us now define the notion of a linear connection. Denote by r(M) the space
of differentiable vector fields on M. A linear connection D on M is a map

D : T(M) x F(M) --> T(M)

such that
1. Vx E M, VX E Tx(M), VY E r'(M), D(X, Y) E TT(M),
2. Vx E M, D : T,(m) x r(M) -* T, (M) is bilinear,
3. Vx E M, VX E TC(M), V f : M -> IR differentiable, VY E r(M),

D(X, f Y) = X(f)Y(x) + f (x)D(X, Y), and
4. VX, Y E F(M), and Vk integer, if X is of class Ck and Y is of class

Ck+', then D(X, Y) is of class Ck, where D(X, Y) is the vector field x --
D(X(x), Y).

Given D a linear connection, the usual notation for D(X, Y) is Dx(Y). One says
that Dx (Y) is the covariant derivative of Y with respect to X. Let (92, gyp) be a chart
of M of associated coordinates x'. Set

Vi = D(,,Y.)

As one can easily check, there exist n3 smooth functions f' : 0 -+ R such that
for any i, j, and any x E S2,

a A a
0, (x) = rij (x)

aXj aXk

Such functions, the Christoffel symbols of D in (S2, gyp), characterize the connection
in the sense that for X E TT(M), x E S2, and Y E f'(M),

((-!_) (Dx(Y) = X'(DiY)(x) = X' + 1'(x)Ya(x)l/ \axi , a.Yl' x

where the Xi's and Y"s denote the components of X and Y in the chart (9, gyp),
and for f : M -* llk differentiable at x,

(IL) = Di(f otp-')l)
x

As one can easily check, since (1.1) is not satisfied by the r 's, the r's are not the
components of a (2, 1)-tensor field. An important remark is that linear connections
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have natural extensions to differentiable tensor fields. Given T a differentiable
(p, q) -tensor field, x a point of M, X E T, (M), and (0, (p) a chart of M at x,
Dx(T) is the (p, q) -tensor on Tx(M) defined by Dx(T) = X'(viT)(x), where

v T x jr° x T x jI...je

(_lp
n

( )( )11...ip ax ) - 1: iiA ) ( )if...iA-1ai&+i..ip
x k=1

9+
r,*(x)T(x)j

I...'.-IajL+I...jy

I... p
k=1

The covariant derivative commutes with the contraction in the sense that

Dx (Ck; T) = Dx (T)

where Ck2 T stands for the contraction of T of order (k1, k2). More, for X E T, (M),

and T and T two differentiable tensor fields, one has that

Dx (T 0 t) = (Dx (T)) 0 T (x) + T (x) ® (Dx(T))

Given T a (p, q)-tensor field of class Ck+1, we let VT be the (p + 1, q)-tensor
field of class Ck whose components in a chart are given by

(VT)" -Iq
= (viI T)i I... pf I

By extension, one can then define V 2 T, V3 T, and so on. For f : M - R a smooth
function, one has that V f = d f and, in any chart (0, (p) of M,

= a2 a2 k f(v f)(x), - r..(x)T
axi axj rj axk x

where
(a2j

ax j)x Dv(f
orp-1)wt.r>

In the Riemannian context, V2 f is called the Hessian of f and is sometimes de-
noted by Hess(f).

Finally, let us define the torsion and the curvature of a linear connection D.
The torsion T of D can be seen as the smooth (2, 1)-tensor field on M whose
components in any chart are given by the relation Ti; = r - r . One says that
the connection is torsion-free if T - 0. The curvature R of D can be seen as the
smooth (3, 1)-tensor field on M whose components in any chart are given by the
relation

ari W.
M ki 1, 1 a i ra
Rijk = axj - aXk

+ rjarki - rka ji

As one can easily check, R k = - R;k j . Moreover, when the connection is torsion-
free, one has that

Rkij + R,jki = 0

(vi R);,,jk + (Vk R)i,,,ij + (Vj R),,ki = 0
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Such relations are referred to as the first Bianchi's identity, and the second Bianchi's
identity.

1.2. Riemannian Manifolds

Let M be a smooth manifold. A Riemannian metric g on M is a smooth (2, 0)-
tensor field on M such that for any x E M, g(x) is a scalar product on T1(M).
A smooth Riemannian manifold is a pair (M, g) where M is a smooth manifold
and g a Riemannian metric on M. According to Whitney, for any paracompact
smooth n-manifold there exists a smooth embedding f : M R2,'+1. One then

gets that any smooth paracompact manifold possesses a Riemannian metric. Just
think to g = f *e, e the Euclidean metric. Two Riemannian manifolds (M1, g1) and
(M2, $2) are said to be isometric if there exists a diffeomorphism f : M, -> M2
such that f *g2 = g 1.

Given (M, g) a smooth Riemannian manifold, and y : [a, b] --> M a curve of
class C', the length of y is

L(y) g(y(t)) (( ( }dtf \\dt dt ,
where d ), E Ty(,)(M) is such that (l ), - f = (f o y)'(t) for any f : M -> R
differentiable at y(t). If y is piecewise Cthe length of y may be defined as the
sum of the lengths of its C' pieces. For x and y in M, let C. be the space of
piecewise C 1 curves y : [a, b] --* M such that y (a) = x and y (b) = y. Then

d, (x, y) = inf L(y)
yEC

defines a distance on M whose topology coincides with the original one of M. In
particular, by Stone's theorem, a smooth Riemannian manifold is paracompact. By
definition, dg is the distance associated to g.

Let (M, g) be a smooth Riemannian manifold. There exists a unique torsion-
free connection on M having the property that Vg = 0. Such a connection is the
Levi-Civita connection of g. In any chart (92, (p) of M, of associated coordinates
x', and for any x E S2, its Christoffel symbols are given by the relations

a(!i))g(xytkk gmj $) l
r(x) = + -

where the g`j's are such that gi,,,gmj = 3j. Let R be the curvature of the Levi-Civita
connection as introduced above. One defines:

1. the Riemann curvature Rm(M. ) of g as the smooth (4, 0)-tensor field on M
whose components in a chart are Rijk/ = gia R71,

2. the Ricci curvature Rc(M.5) of g as the smooth (2, 0)-tensor field on M
whose components in a chart are Rii = Rajpjg",6, and

3. the scalar curvature Scal(M.9) of g as the smooth real-valued function on M
whose expression in a chart is Scal(M,R) = Rijg'j
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As one can check, in any chart,

Rijkl = -Rjlki = -Rijlk = Rklij

and the two Bianchi identities are

Rijkl + Riljk + Riklj= 0,

(Vi Rm(M.g))jk1m + (Vnr Rm(M.g))jkil + (V1 Rm(M.g))jkmi = 0

In particular, the Ricci curvature Rc(M.X) of g is symmetric, so that in any chart
Ri j = Rj i. For X E M, let G2 (M) be the 2-Grassmannian of Tx (M). The sectional
curvature K(M.g) of g is the real-valued function defined on UAEM Ga (M) by: For
P E Gx(M),

K(M.x)(P) = Rm(M.g)(x)(X, Y, X, Y)

g(x)(X, X)g(x)(Y,
y) - g(x)(X, y)2

where (X, Y) is a basis of P. As one can easily check, such a definition does
not depend on the choice of the basis. Moreover, one can prove that the sectional
curvature determines the Riemann curvature.

Given (M, g) a smooth Riemannian manifold, and D its Levi-Civita connec-
tion, a smooth curve y : [a, b] M is said to be a geodesic if for all t,

D(")'
dt(L)=0

This means again that in any chart, and for all k,

F (y(t))(y1)'(t)(y')'(t) = o

For any x E M, and any X E T, (M), there exists a unique geodesic y : [0, s1 -+
M such that y(0) = x and (d )o = X. Let y,,x be this geodesic. For ,l > 0
real, y .AX(t) = y.,.x(At). Hence, for IIXII sufficiently small, where II II stands
for the norm in T,(M) associated to g(x), one has that y.,.x is defined on [0, 11.
The exponential map at x is the map from a neighborhood of 0 in T, (M), with
values in M, defined by exp, (X) = yi x(l). If M is n-dimensional and up to the
assimilation of T, (M) to R" via the choice of an orthonormal basis, one gets a chart
(9, expX 1) of M at x. This chart is normal at x in the sense that the components
gi j of g in this chart are such that gi j (x) = Si j, with the additional property that
the Christoffel symbols ]` of the Levi-Civita connection in this chart are such that
r- (x) = 0. The coordinates associated to this chart are referred to as geodesic
normal coordinates.

Let (M, g) be a smooth Riemannian manifold. The Hopf-Rinow theorem states
that the following assertions are equivalent:

1. the metric space (M, dg) is complete,
2. any closed-bounded subset of M is compact,
3. there exists x E M for which exp., is defined on the whole of T, (M), and
4. for any x E M, expx is defined on the whole of T, (M).
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Moreover, one gets that any of the above assertions implies that any two points in
M can be joined by a minimizing geodesic. Here, a curve y from x to y is said to
be minimizing if L(y) = dg(x, y).

Given (M, g) a smooth Riemannian n-manifold, one can define a natural posi-
tive Radon measure on M. In particular, the theory of the Lebesgue integral can be
applied. For (52;, (pi),,=-, some atlas of M, we shall say that a family (S2j, (pj, aj)jE J

is a partition of unity subordinate to (52;, if the following holds:

1. (aj )j is a smooth partition of unity subordinate to the covering (S2; );,
2. (2, , (pj)j is an atlas of M, and
3. for any j, supp aj c S2j.

As one can easily check, for any atlas (52;, p,)rE, of M, there exists a partition of
unity (S2j, (pj, aj)jE subordinate to (52;, (p;),cl. One can then define the Riemann-
ian measure as follows: Given f : M -+ R continuous with compact support, and
given (52;, (pi),, an atlas of M,

fm
fdv(g)=>, f {aj Iglf)op 'dx

jEJ

where (Stj, (pj, aj)jEJ is a partition of unity subordinate to (52;, (p;)fE,, ISI stands
for the determinant of the matrix whose elements are the components of g in
(9j, (pj), and dx stands for the Lebesgue volume element of R". One can prove
that such a construction does not depend on the choice of the atlas (Q,, and
the partition of unity (Stj, (pj, aj)j,.

The Laplacian acting on functions of a smooth Riemannian manifold (M, g)
is the operator A. whose expression in a local chart of associated coordinates x' is

au 1
O ( 8-u - rk'j \u= -g g

ax; aXj ti ax*

For u and v of class C2 on M. on thenen has the following integration by parts formula

f(itgu)vdv(g) Ov)dv(g) = IM u(L gv)dv(g)

where is the scalar product associated with g for 1-forms.
Coming back to geodesics, one can define the injectivity radius of (M, g) at

some point x, denoted by inj(M,g) (x), as the largest positive real number r for which
any geodesic starting from x and of length less than r is minimizing. One can then
define the (global) injectivity radius by

lnj(M.g) YnM mj(M.g)(x)

One has that inj(M,g) > 0 for a compact manifold, but it may be zero for a complete
noncompact manifold. More generally, one can define the cut locus Cut(x) of
x as a subset of M and prove that Cut(x) has measure zero, that inj(M,g)(x) =
dg (x, Cut(x)), and that exp., is a diffeomorphism from some star-shaped domain
of T,.(M) at 0 onto M\ Cut(x). In particular, one gets that the distance function r
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to a given point is differentiable almost everywhere, with the additional property
that t V r I = I almost everywhere.

1.3. Curvature and Topology

As is well-known, curvature assumptions may give topological and diffeomor-
phic information on the manifold. A striking example of the relationship that ex-
ists between curvature and topology is given by the Gauss-Bonnet theorem, whose
present form is actually due to the works of Allendoerfer [2], Allendoerfer-Weil
[3], Chern [49], and Fenchel [81]. One has here that the Euler-Poincare character-
istic X (M) of a compact manifold can be expressed as the integral of a universal
polynomial in the curvature. For instance, when the dimension of M is 2,

X (M) = 4n J Scal(M.R) dv(g)
M

and when the dimension of M is 4, as shown by Avez [15],

l
X (M) =

16rr2
(1WeY1Mt) I2 + 12

Scal(M.g) -IE(M.g)12 )dv(8)
M

where I I stands for the norm associated to g for tensors, and where Wey1(M g) and
E(M,g) are, respectively, the Weyl tensor of g and the traceless Ricci tensor of g. In
a local chart, the components of Weyl(M,g) are

Wijkl = Rijkl - 2(Rikgjl + Rjlg,k - Rilgjk - Rjkgil)

Scal(M g)

+(n - 1)(n - 2) (8ik8jl - gil8jk)

where n stands for the dimension of the manifold. As another striking example of
the relationship that exists between curvature and topology, one can refer to Myer's
theorem (see, for instance, [88]). This theorem states that a smooth, complete
Riemannian n-manifold (M, g) whose Ricci curvature satisfies

Rc(M.g) > (n - 1)k2g

as bilinear forms, and for some k > 0 real, must be compact, with the additional
property that its diameter diam(M,g) is less than or equal to k . Moreover, by Hamil-
ton's work [99], any 3-dimensional, compact, simply connected Riemannian man-
ifold of positive Ricci curvature must be diffeomorphic to the unit sphere S3 of
]R4. Conversely, by recent results of Lohkamp [153], negative sign assumptions
on the Ricci curvature have no effect on the topology, since any compact man-
ifold possesses a Riemannian metric of negative Ricci curvature. This does not
hold anymore when dealing with sectional curvature. By the Cartan-Hadamard
theorem (see, for instance, [88]), one has that any complete, simply connected,
n-dimensional Riemannian manifold of nonpositive sectional curvature is diffeo-
morphic to IR".

As other examples of the relationship that exists between curvature and topol-
ogy, let us mention the well-known sphere theorem of Berger [26], Klingenberg
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[133,134], Rauch [168], and Tsukamoto [187]. Given (M, g) some smooth, com-
pact, simply connected Riemannian n-manifold (M, g), and S, A two positive real
numbers, if the sectional curvature of g is such that S < K(M.g) < A, and if > -a t

then M is homeomorphic to the unit sphere S" of 111"+I. Moreover, as shown, for
instance, by Im-Hoff and Ruh [125], one gets the existence of diffeomorphisms
provided that > a" for some a E (1, 1) sufficiently close to 1.

1.4. From Local to Global Analysis

We prove here a packing lemma that will be used many times in the sequel.
Such a lemma was first proved by Calabi (unpublished) under the assumptions that
the sectional curvature of the manifold is bounded and that the injectivity radius of
the manifold is positive (see Aubin [8] and Cantor [37]). By Croke's result [59] it
was then possible to replace the assumption on the sectional curvature by a lower
bound on the Ricci curvature. Finally, by an ingenious use of Gromov's theorem,
Theorem 1.1 below, one obtains the result under the more general form of Lemma
I.1. When we discuss Sobolev inequalities on complete manifolds, this lemma will
be an important too] in the process of passing from local to global inequalities.

As a starting point, we mention the following result, generally referred to as
Gromov's volume comparison theorem. Under the present form, it is actually due
to Bishop and Gromov. We refer the reader to the excellent references Chavel [45]
and Gallot-Hulin-Lafontaine (88] for details on the proof of this theorem.

THEOREM 1.1 Let (M, g) be a smooth, complete Riemannian n-manifold whose
Ricci curvature satisfies Rc(M.g) > (n - 1)kg as bilinear forms, for some k real.
Then, for any 0 < r < R and any x E M,

Volk(B,.(R))
V4(R)

Voix(B.,(r))
- Vk(r)

where Vols(B.,.(t)) denotes the volume of the geodesic ball of center x and radius
t, and where Vk(t) denotes the volume of a ball of radius t in the complete simply
connected Riemannian n-manifold of constant curvature k. In particular, for any
r > Oandanyx E M, Volg(B,(r)) < Vk(r).

As a remark, let b" be the volume of the Euclidean ball of radius one. It is
well-known (see, for instance, [88]), that for any t > 0,

r'
V_1(t) = nb

J
(sinhs)" ds

0

where, according to the notation of Theorem 1.1, V-1(1) denotes the volume of a
ball of radius t in the simply connected hyperbolic space of dimension n. It is then
easy to prove that for any k ? 0 and any t > 0,

V_k(t) < b"t"e('-1)' '

One just has to note here that for s > 0, s < sinh s < se', and that if g' = a2g
are Riemannian metrics on a n-manifold M, where a is some positive real number,
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then for any x E M and any t > 0,

Vol.,(B,(t)) = a" Vol,(Bx(t/a))

As a consequence, by Theorem 1.1 and what we just said, we get that if (M, g) is
a complete Riemannian n-manifold whose Ricci curvature satisfies Rc1M,g1 > kg
for some k real, then for any x E M and any 0 < r < R,

Volg(B. (R)) < e c"-l)I

IR

(R)"
Vol,(B., (r))

r

Such an explicit inequality will be used occasionally in the sequel.
Given (M, g) a Riemannian manifold, we say that a family (S2k) of open sub-

sets of M is a uniformly locally finite covering of M if the following holds: (f2k)
is a covering of M, and there exists an integer N such that each point x E M has a
neighborhood which intersects at most N of the 12k's. One then has the following
result:

LEMMA 1.1 Let (M, g) be a smooth, complete Riemannian n-manifold with Ricci
curvature bounded from below by some k real, and let p > 0 be given. There exists
a sequence (x1) of points of M such that for any r > p:

(i) the family (B.r, (r)) is a uniformly locally finite covering of M, and there is
an upper bound for N in terms of n, p, r, and k

(ii) for any i # j, Bxr (e) n Bxi (2) = 0
where, for x E M and r > 0, B.r(r) stands for the geodesic ball of center x and
radius r.

PROOF: By Theorem 1.1 and the remark following this theorem, for any x E
Mandany0<r < R,

(1.2) Volg(Bx(r)) > e''1 ) R (r )" Volg(Bx(R))

Independently, we claim there exists a sequence (x,) of points of M such that

(1.3) M = U Bx; (p)

(1.4) l r 1Vi -` j, B; (2 I n B, \ 2 I = 0

Let

X p = { (xi) 1, xi E M, s.t. I is countable and Vi # j, dg (xi, xi) > p }

where dg is the Riemannian distance associated to g. As one can easily check, Xp
is partially ordered by inclusion and every chain in X. has an upper bound. Hence,
by Zorn's lemma, X. contains a maximal element (xi), and (x1) satisfies (1.3) and
(1.4). This proves the above claim. From now on, let (xi) be such that (1.3) and
(1.4) are satisfied. For r > 0 and x E M we define

I, (X) = {i s.t. X E Bx,(r)}
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By (1.2) we get that for r > p

Vo1R(Bx(r)) > 2ne-2 -) Ir Vol8(Bx(2r))

> 1 e-2 (n-I)Iklr r VO1g
\Bx; t )2n L

iEl, (x)

since

But, again by (1.2),

U B`' `2) C Bx(2r)
iE I.(r)

B,j
nB.,20 ifi t- j

Vol8(Bx1(p12)) > e-2 Ir`4rI'r Vol,(Bx;(2r))

and since for any i E Ir(x), Bx (r) C Bx; (2r), we get that

Vol8(Br(r)) > ( )ne_4 (n-I)IklrCardlr(x) Vo1R(Bx(r))

where Card stands for the cardinality. As a consequence, for any r > p there exists
C = C(n, p, r, k) such that for any x E M, Card Ir(x) < C. Now, let B,, (r) be
given, r > p, and suppose that N balls B,, (r) have a nonempty intersection with
B,r (r), j # i. Then, obviously, Card 12r (xi) > N + 1. Hence,

N<C(n,p,2r,k)-1
and this proves the lemma. 0

1.5. Special Coordinates

Given (M, g) a smooth Riemannian manifold, some chart (9, cp) of M of as-
sociated coordinates xi is said to be harmonic if for any i, A9Xi = 0, where A.
is the Laplacian of g. As one can easily check from the expression of 0g, this
means again that for any k, gi- q. = 0, where the r i s stand for the Christoffel
symbols of the Levi-Civita connection in the chart. A simple assertion to prove is
that for any x in M, there exists a harmonic chart (S2, (P) at x. This comes from the
classical fact that there always exists a smooth solution of Agu = 0 with u(x) and
8iu(x) prescribed. The solutions yJ of

i8yi = 0
y' (x) = 0

ai y' (x) = 8i

are then the desired harmonic coordinates. Furthermore, since composing with
linear transformations do not affect the fact that coordinates are harmonic, one
easily sees that we can choose the harmonic coordinate system such that gig (x)
Si.l for any i, j.
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A key idea when dealing with harmonic coordinates, as first noticed by Lanc-
zos [139], is that they simplify the formula for the Ricci tensor. In harmonic coor-
dinates, one has that

Rij = -1 9a'6 a29ij +
2 axa8x#

where the dots indicate lower-order terms involving at most one derivative of the
metric. Very nice results based on such a formula can be found in DeTurck-Kazdan
[63].

For our purpose, let us now define the concept of harmonic radius.

DEFINITION 1.1 Let (M, g) be a smooth Riemannian n-manifold and let x E M.
Given Q > 1, k E N, and a E (0, 1), we define the Ck a harmonic radius at x as
the largest number rH = rH(Q, k, a)(x) such that on the geodesic ball B,r(rH) of
center x and radius rH, there is a harmonic coordinate chart such that the metric
tensor is controlled in these coordinates. Namely, if i, j = 1, ... , n, are
the components of g in these coordinates, then

1. Q-1SiJ < gig < QSij as bilinear forms

1#1 k+a I algi; (z) - afigi; (y) I < Q - 12. rH sup Ia,6gi WI + E rH sup
d (y z)01

I51#15k 1131=k
#Z 8 ,

where dg is the distance associated to g. We now define the (global) harmonic
radius rH(Q, k, a)(M) of (M, g) by

rH(Q, k, a) (M) = inf rH(Q, k, a) (x)
xCH

where rH(Q, k, a)(x) is as above.

As one can easily check, the function

x -+ rH(Q, k, a)(x)

is l-Lipschitz on M, since by definition, for any x, y E M,

rH(Q, k, a)(y) >- rH(Q, k, a)(x) - dg (x, y)

One then gets that the harmonic radius is positive for any fixed, smooth, compact
Riemannian manifold. The purpose of Theorem 1.2 below is to show that one
obtains lower bounds on the harmonic radius in terms of bounds on the Ricci cur-
vature and the injectivity radius. Roughly speaking, when changing from geodesic
normal coordinates to harmonic coordinates, one controls the components of the
metric in terms of the Ricci curvature instead of the whole Riemann curvature. As it
is stated below, Theorem 1.2 can be found in the survey article of Hebey-Herzlich
[111]. For original references, we refer to Anderson [5], Anderson-Cheeger [6],
and also to lost-Karcher [128]. Concerning its proof, let us just say that the general
idea is to construct a sequence of Riemannian n-manifolds with harmonic radius
less than or equal to 1 to prove that such a sequence converges to the Euclidean
space R", and to get the contradiction by noting that this would imply that the
harmonic radius of R" is less than or equal to 1. (Obviously, R" has an infinite har-
monic radius). Key steps in such a proof are the above formula for the Ricci tensor
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in harmonic coordinates, and properties of the harmonic radius when passing to the
limit in a converging sequence of metrics.

THEOREM 1.2 Let a E (0, 1), Q > 1, S > 0. Let (M, g) be a smooth Riemannian
n-manifold, and 0 an open subset of M. Set

92(S)= {x E Ms.t.dg(x,Q) <S}

where dR is the distance associated to g. Suppose that for some A real and some
i > 0 real, we have that for all x E 12 (S),

Rc(M,g)(x) > ,Xg(x) and inj(M,R)(x) > i

Then there exists a positive constant C = C(n, Q, a, S, i, A), depending only on n,
Q, a, S, i, and A, such that for any x E 12, rH(Q, 0, a)(x) > C. In addition, if
instead of the bound Rc(M,R)(x) > kg(x) we assume that for some k integer, and
some positive constants C(j ),

Io'Rc(M.g)(x)I <C(j) forall j =0,...,kandallx E S2(S)

then, there exists a positive constant C = C(n, Q, k, a, S, i, C(j)o<j<k), depend-
ing only on n, Q, k, a, S, i, and the C(j)'s, 0 < j < k, such that for any x E f2,
rH(Q, k + 1, a)(x) > C.

Let (M, g) be a smooth, complete Riemannian n-manifold, a E (0, 1) real,
and Q > I real. Suppose that for A real and some i > 0 real,

Rc(M.g) > Ag and inj(M.g) > i

on M. As an immediate consequence of Theorem 1.2, one gets that there exists
a positive constant C = C(n, Q, a, i, A), depending only on n, Q, a, i, and A,
such that the (global) harmonic radius of (M, g) satisfies rH(Q, 0, a)(M) > C.
Similarly, if instead of the bound Rc(M.g) > Ag we assume that for some k integer
and some positive constants C(j),

IV'Rc(M.g)1 <C(j) for all j=0,...,k
then there exists a positive constant C = C(n, Q, k, a, i, C(j)o<.;<k), depending
only on n, Q, k, a, i, and the C(j)'s, 0 j < k, such that the (global) harmonic
radius of (M, g) satisfies rH(Q, k + 1, a)(M) > C.

Coming back to geodesic normal coordinates, analogous estimates to those of
Theorem 1.2 are available. Such estimates are rougher. On the one hand, they
involve the Riemann curvature instead of the Ricci curvature. On the other hand,
one recovers the type of phenomena that was illustrated by DeTurck-Kazdan [63]:
Changing from harmonic coordinates to geodesic normal coordinates involves loss
of derivatives. Nevertheless, such results are sometimes useful, because of special
properties that geodesic normal coordinates have with respect to harmonic coor-
dinates. For the sake of clarity, when dealing with geodesic normal coordinates,
we will restrict ourselves to the following result, as it appeared in Hebey-Vaugon
[1171.
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THEOREM 1.3 Let (M, g) be a smooth Riemannian n-manifold. Suppose that for
some point x E M there exist positive constants A, and A2 such that

IRm(M.g) I< A 1 and I V Rm(M.g) I< A2

on the geodesic ball Bx(inj(M,8)(x)) of center x and radius inJ(M8) (x). Then there
exist positive constants K = K(n, A1, A2) and S = S(n, A1, A2), depending only
on n, A 1, and A2, such that the components gi j of g in geodesic normal coordinates
at x satisfy: For any i, j, k = 1, ... , n and any y E Bo(min(S, inj(M g)(x))),

(i) a iii < gii (expx (y)) 4Si j (as bilinear forms) and

(ii) Igij (expx (y)) - Sij1 < KIYI2 and Iakgij(expX(y))I < KIYI

where fort > 0, Bo(t) denotes the Euclidean ball of R" with center 0 and radius
t, and IyI is the Euclidean distance from 0 to y. In addition, one has that

lim S(n, A,, A2) = +oo and lim K(n, A,, A2) = 0
A-.o A-.o

where A = (A,, A2).

PROOF: Let B be the Euclidean ball of IR" of radius inj(M.R)(x) and centered
at 0. We still denote by g the metric when transported on B by exp, . Let S be a
segment in B joining 0 to some point P on B. Then, S is a geodesic for g. Let
(p, 01, ..., 0"_1) be a polar coordinate system defined in a neighborhood of S, and
let Q E S", the unit sphere of R", be such that O1 = A TP for some A > 0.
We choose (01, ... , 0,1) such that it is a normal coordinate system at Q for the
standard metric of S"-1. By the Gauss lemma (see, for instance, [88)),

g = dp2 + p2hij (p, 0)d0'dOj

We let gij = p2hi j. It is then easy to see that for any i, j,

(1.5) Ripjp = -I apapgii + Iga0apgaiapgfi
2 4

where obvious notation is used in this relation. Independently (see, for instance,
[12]), there exist positive constants S1 (n, A1) and C1 (n, A1), satisfying

f limA, o S 1(n, A,) _ +00

limA,-.oC1(n, A1) = 0

and such that for any p < 81(n, A 1), and any i, j,

(1.6) I aphij1 < C, (n, A1)p

Since, when passing to the limit along S, h, j (0) = S; j, we get that for any p <
S1(n, A,), and any i, j,

(1.7) Ihij - Sij1 < C1(n, A1)p2

on S. There exists then a positive constant

32(n, A1) = min(S1(n, A1), (2C1(n, Al))-7 )
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satisfying

s2(n, A1) < 61(n, A1)
IimA,._,oS2(n, A1) _ +00

and such that for any p < S2 (n, A 1),

2Sij < (1 -
2

C1(n, A1)p2)8iJ < hij (1 + 2
3

C1(n, A,)p2)Sij < 28ij

as bilinear forms, and on S. Independently, it is easy to see that there exists a
positive constant A such that for any i, j, k, I8p8kgi j I < Ap3 on S. Hence, for any
i, j, k, I8kgij1 < (A14)p4 on S. In the following, we show that A can be chosen
such that it depends only on n, A 1, and A2. First, by the derivation of (1.5), we get
that for any i, j, k,

(1.8) akRipjp = -I apapakgij +
I

4ak(gaflapgaiapgfj)

Independently, since IRm(M.g) I < A, and IV Rm(M.g) 1 < A2, we get that there
exist positive constants 63(n, A 1, A,) < 82(n, A 1), C2(n, A1), and C3(n, A 1), such
that

limA,o83(n, AI, A2) = +oo
limA,o C2(n, A1) = 0
limA,-,o C3(n, A1) = 0

and such that for any p < 83(n, A1, A,), and any i, j, k,

akRipjpl < C2(n, A1)p2 + C3(n, A1)Ap4

on S, where A = (A,, A2). On the other hand, it is possible to prove that there
exist positive constants 84(n, AI, A2) < 83(n, AI, A2) and C4(n, AI) such that

J lim,..+ 84(n, A1, A2) = +00
limA,.0C4(n, A,) = 0

and such that for any p < S4 (n, A 1, A 2), and any i, j, k,

I ak(ga16apgai8pgpj)I < 5Ap2 + C4(n, AI)Ap4

on S. Now, combining these estimates with (1.8), we get that there exist positive
constants C5 (n, A I) and C6(n, A I ), such that

liMA, .o CS(n, A 1) = 0
limA,.o C6(n, Al) = 0

and such that for any p < 34 (n, A,, A2), and any i, j, k,

5
apapakgijI < 5Ap2 + C5(n, A1)p2 + C6(n, A)Ap4

on S. Hence,

a,3kgijI 5Ap3+ ICS(n, AI)p3+ SC6(n, AI)ApS on S
6 3
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and there exist positive constants 85(n, A1, A2) < 84(n, A1, A2), and C7(n, A1),
such that

J limx-035{n, A1, A2) = +oo
limA,-o C7(n, AI) = 0

and such that for any p < S., (n, A 1, A 2), and any i, j, k,

lapakgijl < 6Ap3+C7(n,A1)p3

on S. Therefore, by induction, we get that for any p < 35(n, A1, A2}, and any i, j,
k,

l dpdkgij l < 7C7(n, AI)p3
on S. As a consequence, for any p < 85(n, A,, A2), and any i, j, k,

(1.9) lakhij l < 7C7(n, AI)p2

on S. Rewriting the inequalities (1.6), (1.7), and (1.9) in the Euclidean coordinate
system of R" ends the proof of the result.



CHAPTER 2

Sobolev Spaces: The Compact Setting

We start in this chapter with the theory of Sobolev spaces on Riemannian man-
ifolds. Section 2.1 recalls some elementary facts about Sobolev spaces for open
subsets of the Euclidean space. Section 2.2 introduces Sobolev spaces on Rie-
mannian manifolds. Here, in these sections, the compactness of the manifold is not
assumed to hold. In Section 2.3, we start dealing with Sobolev embeddings and
Sobolev inequalities. General results are proved there. Here again, the compact-
ness of the manifold is not assumed to hold. In Section 2.4, we present the proof
of Gagliardo [85] and Nirenberg [162] on what concerns the validity of Sobolev
embeddings for Euclidean space. Sections 2.5 and 2.6 deal with the validity of
such embeddings and such inequalities for compact manifolds, while Section 2.7
deals with the compactness of these embeddings, still for compact manifolds. We
discuss in Section 2.8 the so-called Poincard and Sobolev-Poincare inequalities. A
finiteness theorem is proved in Section 2.9.

2.1. Background Material

Let 9 be an open subset of R", a a multi-index of length IaI, and U E Ljl"C(S2)
a locally integrable, real-valued function on n. A function va E LL(7) is said to
be the a`h weak (or distributional) derivative of u; we write va = Dau, if, for any

ju(Dorco)dx = jvacodx

where D(12) denotes the space of smooth functions with compact support in S2,
and dx is the Lebesgue's volume element. If such a va exists, it is unique up to sets
of measure zero. When all the first weak derivatives of u exist, namely, when Dau
exists for any a such that IaI = 1, u is said to be weakly differentiable on Q. It
is said to be k times weakly differentiable if all its weak derivatives Dau exist for
Ial < k.

Let us now recall what we mean when speaking of an absolutely continuous
function. Given u : R - R, and a < b real, we shall say that u is absolutely
continuous on [a, b if for all e > 0, there exists S > 0 such that for any finite
sequence

a <xi <Y1 <X2 <Y, <... <xn, <Y», fib,
one has that

E(Yj - Xj) E IU(y1) - U(xj)I 5 e
j=1 j=1

19
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As one can easily check, u is absolutely continuous on [a, b] if and only if there
exists v integrable on [a, b] such that for anyra < x < b,

u(x) - u(a) = J Y v(t)dt
0

In particular, u is differentiable almost everywhere and u' = v. By extension,
given 0 some open subset of R", and u : 0 -+ 1{8 a real-valued function, we shall
say that u is absolutely continuous on all (resp. almost all) line segments in 12
parallel to the coordinate axes, if for all (resp. almost all) x = (x i , ..., x,,) in 9,
alli = 1,...,n,andalla <xi <bsuchthat

{(xi,...,Xi_1,x,Xi+i,.--,x"), x E [a,b]} C 9

the function

x -+ xi-1, x,xi+1, .. .,x")

is absolutely continuous on [a, b]. According to what has been said above, if u is
absolutely continuous on almost all line segments in 0 parallel to the coordinate
axes, then u possesses partial derivatives of first order almost everywhere. We
recall here the well-known following result. For its proof, one can look at the
celebrated book of Schwartz [178].

THEOREM 2.1 Let f2 be an open subset of R" and u E LL(S2). Then u is weakly
differentiable on 9 if and only if (up to modifications on a set of measure zero):

(i) u is absolutely continuous on almost all line segments in Q parallel to the
coordinate axes, and

(ii) the first partial derivatives of u (which exist almost everywhere) belong to
L1 2).

Let us now recall some material on what concerns the theory of Sobolev spaces
in the Euclidean context. The origin of such a theory goes back to the work of
Sobolev [180] developed in the 1940s. Let n be some open subset of R", k an
integer, p > 1 real, and u : 9 -+ R a smooth, real-valued function. We let

IIUIIk,p = E (f IDaulpdx
0<1al5k

and we define then the Sobolev spaces

)
I/p

Hk (S2) =the completion of {u E C°O(S2) / IIuIIk,p < +00) for II-Ilk,p

Wk (S2) = {u E LP(Q) /dial < k, Dau exists and belongs to Lp(S2)}

where Dau denotes the a`h weak partial derivative of u as defined above. For many
years, there has been considerable confusion in the mathematical literature about
the relationship between these spaces. The following result of Meyers-Senin [156]
dispelled such confusion. For its proof, we refer the reader to Adams [1].

THEOREM 2.2 For any n, any k, and any p > 1, Hk 42) = Wk 42).
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In order to end this section, we recall basic properties of Sobolev spaces with
respect to Lipschitz functions. This is the purpose of the following result. For its
proof we refer once more the reader to Adams [1]. See also Ziemer [203].

THEOREM 2.3 (i) If S2 is a bounded, open subset of R", and if u : 92 R is
Lipschitz, then u E Hip (9) for all p > 1.

(ii) Let 0 be an open subset of R", h : R -+ R a Lipschitz function, and
u E HIP(S2) for some p> 1. If h o u E LP(S2), then h o u E Hp(92) and

Di (h o u) (x) = h'(u(x))Diu(x)

for all i = 1, ... , n, and almost all x E Q.

2.2. Sobolev Spaces on Riemannian Manifolds

Let (M, g) be a smooth Riemannian manifold. For k integer, and u : M -+ R
smooth, we denote by Vu the kth covariant derivative of u, and IVkuI the norm of
Vk u defined in a local chart by

V'u = iili ... i414 VkU V"U
I I - g g ( )ji...lk

Recall that (Vu)i = aiu, while

(V2u)ij = 3,;u - r aku
Given k an integer, and p > I real, set

r
ek (M) = j u E C°O(M) /dj = 0, ... , k, J (VJul° dv(g) < +oo }

l M 111

When M is compact, one clearly has that ek'(M) = CO0(M) for any k and any
p > 1. For U E Ck (M), set also

k UP

IIUIIHP = E (f, IV'ulPdv(g)We
define the Sobolev space Hp(M) as follows:

DEFINITION 2.1 Given (M, g) a smooth Riemannian manifold, k an integer, and
p > 1 real, the Sobolev space H,p (M) is the completion of ek'(M) with respect to

Note here that one can look at these spaces as subspaces of LP(M). Let II fly

be the norm of LP(M) defined by
UP

Ilullp = (f IuI'dv(g))
M

As one can easily check:

1. any Cauchy sequence in (Ck (M), II is a Cauchy sequence in the
Lebesgue space (LP(M), II IIP) and

2. any Cauchy sequence in (C" (M), HP) that converges to 0 in the Lebesgue

space (LP(M), also converges to0in (e'(M), IIIIHP) -
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As a consequence, one can look at Hk (M) as the subspace of LP(M) made of
functions u E LP(M) which are limits in (LP(M), II IIP) of a Cauchy sequence
(um) in (Ck (M), II II Hk ), and define Il u ll Hk as above, where I V u 1, 0 < j < k, is

now the limit in (LP (M), II IIP) of the Cauchy sequence (IO'um 1).
Coming back to Definition 2.1, one can, of course, replace II II Hk by any other

equivalent norm. In particular, the following holds.

PROPOSITION 2.1 For any k integer, Hk (M) is a Hilbert space when equipped
with the equivalent norm

k

(lull = E f IViul2dv(g)l M

The scalar product associated to II II is defined by
k

(u, v) _ E f (V u, V v)dv(g)
J=O M

where, in such an expression, is the scalar product on covariant tensor fields
associated to g.

In the same order of ideas, let M be a compact manifold endowed with two
Riemannian metrics g and g. As one can easily check, there exists C > 1 such that

Cg <Cg
on M, where such inequalities have to be understood in the sense of bilinear forms.
This leads to the following:

PROPOSITION 2.2 If M is compact, Hk"(M) does not depend on the metric.

Such a proposition is of course not anymore true if the manifold is not assumed
to be compact. Let, for instance, g and g be two Riemannian metrics on R", (l8", g)
being of finite volume, (R", g) being of infinite volume. As an example, one can
take

4
g

_
(1 + Ix12)2e

(the standard metric of S" after stereographic projection), and g = e, where a is the
Euclidean metric of lie. Then the constant function u = 1 belongs to the Sobolev
spaces associated to g, while it does not belong to the Sobolev spaces associated to
g". This proves the claim. Independently, noting that (LP(M), II IIP) is reflexive if
p > 1, one gets the following:

PROPOSITION 2.3 If p > 1, Hk (M) is reflexive.

Still when dealing with general results, let us now prove the following one.
Given (M, g) a Riemannian manifold, u : M -+ R is said to be Lipschitz on M if
there exists A > 0 such that for any x, y E M,

Iu(y) - u(x)I < Ad,(x, y)
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where dg is the distance associated to g.

PROPOSITION 2.4 Let (M, g) be a smooth Riemannian manifold, and u : M -+ R
a Lipschitz function on M with compact support. Then U E HIP(M)for any p > 1.
In particular, if M is compact, any Lipschitz function on M belongs to the Sobolev
spaces H[(M), p > 1.

PROOF: Let u : M IR be a Lipschitz function on M such that u = 0
outside a compact subset K of M. Let also (S2k, SPk)k=1..... N be a family of charts
such that K C UN

1 S2k and such that f o r any k = 1 , ... , N,

'Ok(2k) = B0(1) and CS1i < gk < CS,,

as bilinear forms, where C > 1 is given, B0(1) denotes the Euclidean ball of R" of
center 0 and radius 1, and where the g,.'s stand for the components of g in (04, cok)
Consider (rik)k=1.....N+1 a smooth partition of unity subordinate to the covering

(Qk)k=I..... N U (M\K)

Fork E { 1, ... , N), it is clear that the function
_1

Uk = O Vk

is Lipschitz on Bo(1) for the Euclidean metric. According to Theorem 2.3 one then
gets that Uk E HP(Bo(1)) for any p > 1. Clearly, this implies that IThU E HP (M).
Since

N

U = rfkU
k=1

this ends the proof of the proposition. O

On what concerns Proposition 2.4, note that given (M, g) a smooth Riemann-
ian manifold, a differentiable function u : M -+ R for which I Vu I is bounded, is
Lipschitz on M. In order to fix ideas, suppose that (M, g) is complete. Let x and
y be two points on M, and let y : [0, 1)E -+ M be the minimizing geodesic from
x to y. One has that there exists t E (0, 1) such that

1u(Y) - u(x)I = lu(y(1)) - u(y(0))I
=I(uoy)'(t)I

Hence, if dR denotes the distance associated to g,

1u(Y) - u(x)1= R u o y)'(t)l

= Idu(y(t)) ('),I
dt

< lvu(Y(t))I
x (dt

(suup IVu1)dg(x, y)

This proves the claim. Independently, one has the following result:
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PROPOSITION 2.5 Let (M, g) be a smooth complete Riemannian manifold, h :
JR -+ R a Lipschitz function, and u E HP(M), p > 1. If h o u E LP(M), then
houEHP(M)and

I(V(h o u))(x)I = Ih'(u(x))I . I (Vu)(x)I

for almost all x in M. In particular, for any u E Hi (M), l u l E HP (M), and
D lu I I= I Vu l almost everywhere.

PROOF: Let x E M be given. Let also v = h o u. With similar arguments to
those used in the proof of Proposition 2.4, one can easily get that v E Hi (Br(r))
for all r > 0. Moreover, coming back to Theorem 2.3, one sees that

IVv(y)I = Ih'(u(y))I Ivu(y)I

for almost all y in M. In particular, and by assumption, v and IV v I both belong to
LP(M). One must still check that v E HP(M). Let f : JR JR be the function
defined by

f(t)=1 ift<0, f(t)=I-t if0<t<I, f(t)=0 ift>I
For j an integer, and if dg denotes the distance associated to g, we let fj be the
function defined by

fj(y) = f(dd(x, y) - j)
Clearly, f is Lipschitz with compact support the closure of Br(j + 1). Moreover,
since the cut-locus of x is negligible, one has that fj is differentiable almost every-
where, with the additional property that I V fj I < 1. We claim here that v j = f j v
belongs to H,"(M). Indeed, given r > j + 1, let (vn) be a sequence in C00(Bx(r))
that converges to v in HP(BX(r)). Clearly, fjvis Lipschitz with compact support
in M, so that by Proposition 2.4, fjun, E Hi (M). Moreover, since fj and I V fj I
are bounded, and since

Vvj = (Vfj)v+fj(Vv)
almost everywhere, one easily gets that (f v,) converges, in HP(M) and as m
goes to +oo, to vj. Hence, Vj E HP(M) and this proves the claim. Here, one
easily checks that for any j,

U/P I/P

(IM Ij - vl dv()) htD IvIPdu(g))

and

f
I

V(vj -
u)+Pdv(g))UP

I/ P

lov)Pdv(g))+ I J IvlPdv(g)
M\B,(j) /

As an easy consequence of such inequalities, one gets that v E HP(M), and that
(vi) converges to v in HP(M) as j goes to +oo. This proves the proposition. 0
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In order to end this section, we now prove the following, whose first appear-
ance seems to be in Aubin [8]. Similar density questions for higher-order Sobolev
spaces will be treated in Chapter 3, Section 3.1.

THEOREM 2.4 Given (M, g) a smooth, complete Riemannian manifold, the set
£ (M) of smooth functions with compact support in M is dense in Hi' (M) for any

p> 1.

PROOF: Let f : R -> R be defined by

f(t)=1 ift<0, f(t)=1-t if0<t<1, f(t)=0 ift>1
and let u E C'((M) where p 2 1 is some given real number. Let x be some point
of M and set

uj(y) = u(y)f (dd(x, y) - j)
where dg is the distance associated tog, j is an integer, and y E M. By Proposition
2.4, uj E Hi (M) for any j, and since u j = 0 outside a compact subset of M, one
easily gets that for any j, uj is the limit in HI'(M) of some sequence of functions in
.a (M). One just has to note here that if (u,,,) E Cei (M) converges to uj in Hi (M),
and if a E £(M), then (au,,,) converges to auj in Hi (M). Then, one can choose
a E £ (M) such that a = 1 where u; 54 0. Independently, one clearly has that for
any

and

(IM

I/p i/p

J
Ij -uIpdv(g)) < (J,

)

IuIP dv(g))

j.

(JM JV(u - u)I"dv(g)
) i/p

U/p )/p

Q\B,(j)
IVulpdv(g)) + Q\B,(j) IuIP dv(g))

Hence, (uj) converges to u in Hi (M) as j goes to +oo. According to what has
been said above, one then gets that u is the limit in Hr (M) of some sequence in
)(M). This ends the proof of the theorem. 0

2.3. Sobolev Embeddings: General Results

As a starting point, let us fix a convention that will be used in the sequel. Given
(E, II 11 E) and (F, II 11 p-) two normed vector spaces with the property that E is a
subspace of F, we write that E C F and say that the inclusion is continuous if
there exists C > 0 such that for any x E E,

IIxIIF < CIIxIIE

Now, let (M, g) be a smooth Riemannian n-manifold. By Sobolev embeddings, at
least in their first part, we refer to the following:

Sobolev embeddings: given p, q two real numbers with 1 < q < p, and given k, m
two integers with 0 < m < k, if I/p = 1 /q - (k - m)/n, then HH (M) C Hp(M).
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As mentioned above, the notation Hk (M) C H,np(M) includes the continuity of
the embedding, namely, the existence of a positive constant C such that for any
u E Hk (M), II u II Hm C II u II Hk . Such embeddings were first proved by Sobolev
[180] for the Euclidean space (IR", e). The validity of such embeddings, which may
or may not hold in the general case of a Riemannian manifold, is often referred to
as the Sobolev embedding theorem. We will see later on in this chapter that the
Sobolev embedding theorem does hold for compact manifolds, while we will see
in the next chapter that the situation is more intricate on what concerns complete
noncompact manifolds. Note here that for k = 1, and hence m = 0, the Sobolev
embeddings reduce to the assertion that for any q E [1, n), Hi (M) C LP(M)
with p = nq/(n - q). Note also that the exponents in the Sobolev embeddings
are optimal. Think, for instance, of the Euclidean space (R", e); let k = 1, and
let (p E D(IR"), (p 0- 0, be smooth with compact support in R". For I > 1, set
(px(x) = (p(Ax). Then, as one can easily check,

IIwAIIp =
)L-n/pll(Pllp

Ilwa II H; < A' v IIw II H;

By passing to the limit A -+ +oo, one sees that the existence of C > 0 such that
for any u E £ (IR" ),

llullp Cllull1

leads to the inequality 1 /p > 1 /q - 1 In. This proves the claim. For convenience,
all the manifolds in what follows will be assumed to be at least complete. We start
here by proving the following result:

LEMMA 2.1 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that Hi (M) C L"/(n-')(M). Then for any real numbers I < q < p and any
integers 0:5 m < k such that 1/p = 1/q - (k - m)/n, Hk (M) C Hp(M).

PRooF: We prove that if HI'(M) C L"/("-')(M), then for any q E [1, n),
Hq (M) C LP(M) where 1/p = 1/q - 1/n. We refer to Aubin [12], Proposition
2.11, for the proof that the other embeddings are also valid. Let C > 0 be such that
for any u E Hi (M),

(IM
Iuln/(n-I) dv(g) C fM (Ioul + lul)dv(g)

Let also q E (1, n), p = nq/(n - q), and u E O(M). Set (p = Iulp("-')/". By
Holder's inequalities we get that

(n- I )/n

ulpdv(g))(fM l
(n-I)/n

WI"1(n-1) dv(g)
I= (fM

C f (Iowl + Iggi)dv(g)
M
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Cp(n-1)
fm IuI' IVuldv(S)+C r

n fu
Cp(n - 1) I/9' lI/q

Vulgdv(g)/< (JM IuIP'Q'dv(g)
( fM In

r l+C(J luln'q'dv(g)
I /q

)Iulgdv(g)

IN

) \fuM
(

where 1/q + l/q' = 1 and p' = p(n - 1)/n - 1. But p'q' = p since 1/p =
1/q - 1/n. As a consequence, for any u E £(M),

(I,
) I/P

lulp du(g)

Cp(n-1) 11q

Q
I/q

<
n (Q Ioulgdv(g)+ lulgdv(g))

By Theorem 2.4, this ends the proof of the lemma. 0

Note here that with the same arguments as those developed in the proof of
Lemma 2.1, one gets a hierarchy for Sobolev embeddings. More precisely, one
can prove that if for some q E [1, n), H9(M) C Lnq/(n-q)(M), then HI (M) C
Lng /(n-q')(M) for any q' E [q, n). Indeed, let C > 0 be such that for any u E
Hq (M),

(fM l

uV ' dv(g))
I /P < C

((ff l Vulq dv(g))
IN

q + ( fu lull dv(g)) I /q)

where 1/p = 1/q - 1/n. Given q' E (q, n), and u E D(M), let also
IuI° (n-q)/nq where p' is such that 1/p' = 1/q' - 1/n. Then, as in the proof of
Lemma 2.1, one gets with Holder's inequalities that

I/p

ulp dv(g))
fm I

UP

_ (fm Icvlpdv(g))

(
C\((f IV(Plgdv(g))I/q+ ( f

M Mc

(= C(s + 1) \f l ul sgiV ul q dv(g)

IN
) + C( f lulP'(n-q)ln dv(g)

M M

) (/q

(q'-q)/qq' I/q'<C(s+l)(f
M

lulq.vq'/(q'-q) dv(g))
(fM

1vulq'dv(g))

(q'-q)/qq' I/N'

+C(f lulgsq'l(q'-q) dv(g) l
1 (fM lulq dv(g))

M
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where s = p'ln-ql - 1. Butnq

and = p
p qq' p' q'- q

Hence, for any u E D(M),

(IM ui" dv(g))

I q'- q 1 qsq' ,

I/p'

< p (nngq)C
\\JM IVulq dv(g)

1/q'
((( )

+ \1M l ul q dv(g)

1/q'

) )
By Theorem 2.4, this proves the above claim.

Let us now discuss an important consequence of the validity of Sobolev em-
beddings. As a starting point, suppose that

Hl'(M) C L"/("-1)(M)

Let C > 0 be such that for any u E Hil (M),

(n-1)/n(f Iuln/("-1) dv(g) < Cf (IVuI + lul)dv(g)
M M

From such an inequality (see, for instance, chapter 6 of Chavel [45]), one gets that
for any x E M, and almost all r > 0,

Vol,
(B,,(r))(n-1)/n < Cdr Volg (B., (r)) + C Volg (B., (r))

where B. (r) is the ball of center x and radius r in M, and Volg (B, W) stands for its
volume with respect tog. From now on, let R > 0 be given. Either Volg (B, (R)) >-
(I /2C)", or Volg (B,r (R)) < (1 /2C)" . In the last case, one gets that for almost all
r e (0, R],

2C
Volg(B., (r)) 1-1/n < dr

Volg(BX(r))

Integrating this last inequality one then gets that for any x E M and any R > 0,

Volg(B(R)) mI ( )", ()")
In other words, the fact that H, (M) C L"/("-1)(M) implies that there is a lower
bound for the volume of balls with respect to their center. The following important
lemma, due to Carron [39], extends this result to the other embeddings HI(M) C
Lp(M), q E [1, n), 1/p = l/q - 1/n.

LEMMA 2.2 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that Hi (M) C LP(M) for some q E [1, n), where 1/p = 1/q - 1/n. Then for
any r > 0 there exists a positive constant v = v(M, q, r) such that for any x E M,
Volg(B., (r)) > v.
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PROOF: Let q E [1, n), and suppose that Hq (M) C LP(M) where 1/p =
1/q - 1/n. One then gets the existence of A > 01 such that for any u E HI (M),

(L IulPdv(g)) /n < A ((IM IVulydv(g)) + (IM
l

ulydv(g))I /y l

Let r > 0, let x be some point of M, and let v E H'(M) be such that v = 0 on
M\B,r(r). By Holder's inequality,

(IM I v I' dv(g))
I/y

< Vol, (B, (r))
11n

(ff l v I P dv(g))

I/P

Hence,

1 - < AA
VOl8(B.,(r))I/n

( fm JVvly dv(g))
I/y

(fM
Ivlydv(g))I/y

Fix X E M and let R > 0 be given. Then, either Vol8(B.r(R)) > (1/2A)" or
Voig(B,r(R)) < (1/2A)", in which case we get that for any r E (0, R],

1 1-A>
Vo1R(B.,(r)) I/" 2Volg(Bx(r))

I/n

Suppose that Vol8(B. (R)) < (I/2A)". We then have that for any r E (0, R] and
any v E Hi (M) such that v = 0 on M\B_1(r),

1 VolR(B.,
fM Iovl9dv(g)

(2A)y fM IvI9 dv(g)

From now on, let

v(y) = r - d8(x, y) if dx(x, y) _< r

v(y) = 0 if de(x, y) > r

where dg is the distance associated to g. Clearly,v is Lipschitz and v = 0 on
M\B,1(r). Hence (see Proposition 2.4), v belongs to Hq (M). As a consequence,

1 Vol. (B,,.(r))^y/n

(2A)y

and we get that for any r < R,

Vo1B(Bx(r)) 29 Vol,(B.t(r))

fB,(r/2) vy dv(g) ry Volg(Bx(r/2))

ny/(n+yl

Volg (B., (r)) > (4A) Vol8(B.,
(r/2))n/(n+y)

By induction we then get that for any m E N\{0},
R ya(n+)

(2.1) Vol8(B., (R)) > (2A)
(iI)

where

Volq (B. (R/2'"))y(ni)

in

M

i m

n + (n+ and
Y(m)=( n

a(m) _ (
n n

n + )
i=) q i_I q q
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But (see, for instance, [88]),

Volg(B,, (r)) = b"r"(1 + o(r))

where b" is the volume of the Euclidean ball of radius one. Hence,

lim Volg(Bx(R/2'))Y("') = 1
M- 00

In addition, we have that
00 n n

n+q q
and

n(n+q)
q2

As a consequence, letting m -+ oo in (2.1) we get that

=

Volg(Bx(R)) ? `2(n+2q)/9A)"R"

Finally, for any x E M and any R > 0,

Volg(Bx(R)) > min(1/2A, R/2(n+2q)/gA)"

and this ends the proof of the lemma. 0
Note here that one gets from the above proof the exact dependence of v.

Namely, v depends on n, q, r, and the constant C of the embedding of H, (M)
in LU(M). Independently, we used in the above proof the fact that Vol,(B.r(r)) _
bnr"(1 + o(r)) where b" is the volume of the Euclidean ball of radius one. More
precisely (see, for instance, Gallot-Hulin-Lafontaine [88]), one has that

Volg(B., (r)) =bnr"(1 - 6(n+2) Scal(M.g)x)r2+o(r2))

where Scal(M,g) stands for the scalar curvature of (M, g).

2.4. The Case of the Euclidean Space

The purpose of this section is to recall how one can prove the well-known fact
that Sobolev embeddings in their first part are valid for the Euclidean space (1R", e).
The original proof, given by Sobolev [180], was based on quite a difficult lemma.
We present here the proof of Gagliardo [85] and Nirenberg [162]. We start with
the following lemma:

LEMMA 2.3 For any u E £(1R"),

1/n
)(n-1)l"

1 n (f
I au I )Jjn 2 ;-1

Rn aXj

where dx is the Lebesgue's volume element of R".

PROOF: We present the proof for n = 3. The proof for n 0 3 is similar. Let
P be a point of 1R3, (x, y, z) the coordinates in R3, (xo, yo, zo) the coordinates of
P, and Dx (respectively, DY, Dz) the straight line through P parallel to the x-axis
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(respectively, y-, z-axis). With such notation, the Lebesgue volume element dx of
the lemma is dx dy dz. Let u E D(1R"). We then have that

xo +00

U(P) = f (8xu)(x, yo, zo)dx = -
/. (Oxu)(x,

yo, zo)dx
00 x"

As a consequence, Iu(P)I <_ ; fDr I(a,u)(x, yo, zo)Idx. With similar arguments
for and 8,u we get that

G)
3/2(f 1 /2

Iu(P)13/2 (2) (f
I (d,u)(x, Yo,zo)Idx)

n
1/z 1/2

x (f Y, zo)IdY) (f 1(aZu)(xo, yo, z)Idz}
D, D;

Now, integrating x0 over lR yields, by Holder's inequality,

j

3/2 1/2

r
Iu(x, Yo, zo)13/2 dx

(2) (jDr I

(axu)(x, Yo, zo)Idx)
1/2

x (f I y, zo)Idx dy)
D

I/2

x (f I (azu) (x, yo, z)I dx dz)
Dr:

where DxY (resp. D,z) is the plane through P parallel to the x- and y-axes (resp.
x- and z-axes). Integrating yo over IR then yields, by Holder's inequality,

x,y,zo)1312dxdy (I(d u)(x, y,zo)Idxdy)lu(
fD

I/2
x f I(a,.u)(x, y, zo)Idx dy)

x,.

l 1/2
x (fR3 I(a;.u)(x,y,z)Idxdydz!

Finally, integrating zo over II8, leads to the inequality of the lemma.

With such a result we are now in position to prove that the Sobolev embeddings
are valid for (]R", e).

THEOREM 2.5 Let q E [1, n) and let p be such that 1/p = 1/q - 1/n. Then for
any u r= Hq(IR"),

(fJuIPdx)
I/P )

Ivu I dx
I/4

< 2n I f n )

In particular, for any real numbers 1 < q < p and any integers 0 < m < k
satisfying 1/p = 1/q - (k - m)/n, Hk (1R") C H, (R").
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PROOF: As a direct consequence of Lemma 2.3, H'(Rn) C L"/("-')(1R")
with the additional property that for any u E H1'(R"),

(n- Oln

J Iul" "-')dx <) - J Iouldx
, 2 R"

By Lemma 2.1 this proves that for any real numbers 1 < q < p and any integers
0 < m < k satisfying 1/p = 1/q - (k - m)/n, Ht (I8") C Moreover, a
similar computation to the one made in the proof of Lemma 2.1 shows that for any
1 <q <nandanyu E Hq(R"),

1/q1/n p(n - 1) (fIvudx)
(JR IuIPdx)" "

where 1/p = 1/q - 1/n. This proves the theorem.

As a remark, note here that the value ( ' given by Theorem 2.5 of the con-
stant K in the inequality

IuIP dx) K ( rIvuldx) /q
(JRfl

Ila

is not optimal. We refer to Chapter 4, Theorem 4.4, for the best value of K in such
an inequality.

2.5. Sobolev Embeddings I

We prove in this section that Sobolev embeddings in their first part do hold for
compact manifolds. This is the subject of the following theorem:

THEOREM 2.6 Let (M, g) be a smooth, compact Riemannian n-manifold. The
Sobolev embeddings in their first part do hold on (M, g) in the sense that for any
real numbers 1 < q < p and any integers 0 < m < k, if 1/p = 11q - (k - m)/n,
then Hk (M) C H, (M). In particular, for any q E [1, n) real, H1 (M) C LP(M)
where 1/p = 1/q - 1/n.

PROOF: By Lemma 2.1 we have only to prove that the embedding Hl' (M) C
L"/("-')(M) is valid. Since M is compact, M can be covered by a finite number of
charts

(nm, 4m)m=1, ..,N

such that for any m the components g; of g in (Stn , (p.) satisfy

2
311 < g, < 23ii

as bilinear forms. Let (rim) be a smooth partition of unity subordinate to the cover-
ing (SZm). For any u E C°°(M) and any m, one has that

I mul'd v(g) 2n/I (rlmu) a gy' (x) n"1dxf"
and

f IV(timu)Idv(g) 2: 2-(n+1)/2 J IV((nm[t) o (pm')(x)Idxf "
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Independently, by Theorem 2.5,

(JR
I (n.u) o(pl(x)1""1) dx - f V((,u)o"/2 "

for any m. As a consequence, for any u E C°°(M),
N

`fm l ul
n/ln I) dv(g)) E ( MInn,UI"/(n-{) dv(g))

ni=1

N
f< 2"-I E J IV(nmu)Idv(g)

,n=1 M

ouldv(g)2n-1 fm l

+2"-' (maximnfFVl IUldv(g)
m- I

Hence, for any u E C' (M),

`f lul"l("-')dv(g)
< A`f IVuldv(g) + f luldv(g))

M M M

where

m=1

This ends the proof of the theorem.

As an immediate corollary to Theorem 2.6, one has the following: Just note
here that since M is assumed to be compact, (M, g) has finite volume. Hence, for
1 < q <q', Lq'(M) C Lq(M).

COROLLARY 2.1 Let (M, g) be a smooth, compact Riemannian n-manifold, and
let q and po real be such that q E [1, n) and l/po = 1/q - I/n. Then H (M) C
LP(M) for any p E [1, po].

2.6. Sobolev Embeddings It

The Sobolev embeddings in their first part have been discussed in the preceding
sections. The purpose of this section is to discuss Sobolev embeddings in their
second part. For dimension reasons and the sake of clarity, we will be brief on the
subject. Let q > 1 be real and let m < k be two integers. If I/q - (k - m)/n > 0,
one has by Theorem 2.5 that Hk (R") C H,r(R") where 1/p = l 1q - (k - m)/n.
Suppose now that 1/q - (k - m)/n < 0. Sobolev [1801 proved that in such
a situation, H, (lR) C C (Rn), where CB (R") denotes the space of functions
u : R" -+ R of class Cm for which the norm

U

N

A= 2"- 1+ max E l vim 1
M

sup IDau(x)I
IaI=O.rER»
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is finite. Refinements were then obtained by Morrey [159] with embeddings in
Holder spaces. A very good reference on the subject is Adams [1]. Embeddings
such as Hk C C"' are referred to as Sobolev embeddings in their second part.
Given (M, g) a smooth, compact Riemannian manifold, we define the norm II Il cm

on C'(M) by
M

IIuIIC" = Emax I(Viu)(x)I
xEMj=0

One then has the following:

THEOREM 2.7 Let (M, g) be a smooth, compact Riemannian n-manifold, q > I
real, and m < k two integers. If 1 /q < (k - m)/n, then Hk (M) C Cm(M).

PROOF: First we prove that for q > n, Hr (M) C C°(M). Since M is com-
pact, M can be covered by a finite number of charts

(Qs, YS)S=I.....N

such that for any s the components g. of g in (S2S, q) satisfy

2SV < 4. < iI
as bilinear forms. Let (?I,) be a smooth partition of unity subordinate to the cover-
ing (Q,). Given U E C°O(M),

IIflsullco = II (rlsu) o VS -1 Ilco

for all s. Independently, starting from the inequalities satisfied by the g f.'s, one
easily gets that there exists C > 0 such that for any s and any u E C00 (M),

II(n.su) V., 1IIH; < CIlnsullH;

where the H9-norm in the left-hand side of this inequality is with respect to the
Euclidean space. Since H9(Rn) C CB(Rn), this leads to the existence of some
A > 0 such that for any s and any u E C°°(M),

Ilnsullco < AlNsuIIH

Clearly, there exists B > 0 such that for any u E CO0(M),
N

E IlnsUIIH; < BIIuIIH;

For instance, one can take

Hence,

S=1

N

B(max1s+maxIVii I}
xEM xEM

S=1

N N

Ilullco E, Ilnsullco < A E II nsuIIH4 S ABII uII H
s=1 s=1
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This proves the above claim, i.e., that for (M, g) compact and q > n, Hi (M) C
C°(M). Let us now prove that for q, k, and m as in the theorem, HH (M) C C"'(M).
Given U E C°°(M), one has by Kato's inequality that for any integers,

IVIVSuII < Ios+1ul

Let s E 10, ... , in }. According to the first part of the Sobolev embedding theorem,
Theorem 2.6, one has that Hks (M) C Hip ' (M) where

1 1 k-s-1
PS q n

In particular, p-, > n, so that, according to what has been said above, HP' (M) C
C°(M). Hence, for any s E {0, ... , m), and any u E C°°(M),

IIVsuIIc°
-< C1(s)IIV uII,,'' < C2(S)IIV uIIH ,

_< C2(s)IIUIIH"

by Kato's inequality, and where CI (s) and C2(s) do not depend on u. As an imme-
diate consequence of such inequalities, one gets that Hk (M) C Cm(M) for k, q,
and m as above. This ends the proof of the theorem.

As already mentioned, improvements of the above result involving Holder
spaces can be obtained. Such improvements will be discussed now. For the sake of
clarity, we restrict ourselves to the case k = 1 and m = 0. Given (M. g) a smooth,
compact Riemannian manifold, and A E (0, 1), let C'` (M) be the set of continuous
functions u : M -* lfl: for which the norm

Hullo = mM Iu(x)I M
Iu(y) - u(x)I

d.(x,Y)"
is finite, where dR denotes the distance associated to g. One then has the following:

THEOREM 2.8 Let (M, g) be a smooth, compact Riemannian n-manifold, q > 1
real, and k E (0, 1) real. If 1/q < (1 - A)/n, then H" (M) C C'' (M).

PROOF: Let CB (W') be the space of smooth functions u : R" R for which
the norm

Ilullca = max Iu(x)I + max
1U(Y) - u(x)I

,ER" a
Iy - X1,

is finite. By classical results of Morrey, see Adams [1], one has that for q > 1 real
such that 1/q < (1 - ),)/n, HI (R") C C1 (R"). Consider now a smooth, compact
Riemannian n-manifold (M, g), and q > 1 as above. Since M is compact, one can
once more assume that M is covered by a finite number of charts

(Us, (Ps),=1.....N

such that for any s the components g . of g in (52,, cp,) satisfy

as bilinear forms. Without loss of generality, one can also assume that the Q,,'s are
convex with respect to g. Let (if,.) be a smooth partition of unity subordinate to the
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covering (Q,). Starting from the inequalities satisfied by the g 's, one clearly gets
that there exist CI > 0 and C2 > 0 such that for any s and any u E CO0(M),

Ilnsullc C111(nsu) ov.,'11o,

11(nsu) 0Vs'llH; CZIInsuIIHI

where the norms in the right-hand side of the first inequality, and in the left-
hand side of the second inequality, are with respect to the Euclidean space. Since
Hi (R") C C4 (R"), one gets from the above inequalities that there exists C3 > 0
such that for any s and any u E C' M,

Ilnsullc- < C311111UIIH

Independently, one clearly has that there exists B > 0 such that for any u E
CO0(M),

N

For instance, one can take

Hence, for any u E C°°(M),

1: Il17sul1H4 <B11U11H;
S=1

N

xEM
s=I

N

IIulICA S E Ilnsultc;. < BC3IIUIIH
S=1

This ends the proof of the theorem.

In order to end this section, let us now say some words about the exceptional
case of Sobolev embeddings. For that purpose, let (M, g) be a smooth, compact
Riemannian n-manifold. We restrict our attention to the Sobolev space H" (M).
Here, Sobolev embeddings in their second part give no information about the pos-
sible embeddings of Hi (M). On the contrary, noting that for any q E [I, n),
Hi (M) C H9 (M), one gets from the Sobolev embeddings in their first part that
H-(M) C L"(M) for any p ? 1. One can then hope that Hr (M) is continuously
embedded in L°0(M). The answer to such a question is negative, as shown by the
following example: Consider the function u : R2 R defined by

J u(x) = log I log IxII if 0 < Ixl <
U(X) = 0 otherwise

As one can easily check, u E HI 2(R2), but u ¢ Lf°(R2). This proves the claim.
On the other hand, given (M, g) a smooth, compact Riemannian n-manifold, one
can prove (see Aubin [12] for more details) that if u E Hr (M), then e" E L I (M).
Moreover, there exists C and µ such that

L. e" dv(g) < CeIIM(Iv"1"+lu1")dv(g)
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for any u E H'(M). Such results were first proved by Trudinger [185] when
dealing with bounded domains of the Euclidean space.

2.7. Compact Embeddings

We discuss in this section compactness properties of Sobolev embeddings.
Given (E, II 11 E) and (F, 11 11 F) two normed vector spaces, E being a subspace
of F, recall that the embedding of E in F is said to be compact if hounded sub-
sets of (E, II 11 E) are relatively compact in (F, II IIF) This means, again, that
bounded sequences in (E, II 11 E) possess convergent subsequences in (F, II IIF).
Clearly, if the embedding of E in F is compact, it is also continuous. We prove
here the following result. On what concerns its second part, we restrict once more
our attention to the case k = 1 and m = 0.

THEOREM 2.9 Let (M, g) be a smooth, compact Riemannian n-manifold.

(i) For any integers j > 0 and m > 1, any real number q ? 1, and any real
number p such that 1 < p < nq/(n - mq), the embedding of H +.(M) in
Hp (M) is compact. In particular, for any q E [1, n) real and any p ? 1
such that l l p > 1 /q -1 / n, the embedding of Hi (M) in L P (M) is compact.

(ii) For q > n, the embedding of Hq (M) in CA(M) is compact for any A E
(0, 1) such that (1 - A)q > n. In particular, the embedding of Hi (M) in
C°(M) is compact.

Such a theorem is often referred to as the Rellich-Kondrakov theorem, in mem-
ory of the works developed by Rellich [169] and Kondrakov [137]. In order to
prove Theorem 2.9, we need first the following lemma. Such a lemma can be
seen as the analogue of the Ascoli theorem. Given A and B two subsets of R",
dist(A, B) denotes the distance from A to B.

LEMMA 2.4 Let n be an open subset of 118", p > 1 real, and 3e a bounded subset
of LP(S2). Then 3e is relatively compact in LP(S2) if and only if for any s > 0,
there exists a compact subset K C 9, and there exists 0 < S < dist(K, 8f2) such
that

I lu(x)lPdx <e and f lu(x+y)-u(x)lPdx <e

for any u E J and any y such that ly I < S.

We refer the reader to Adams [1], Theorem 2.21, for the proof of this result.
Given 9 an open subset of R", and q > 1 real, we denote by Ho (S2) the closure
of D(12) in H"(92). Then we prove the following:

LEMMA 2.5 Let Q be a bounded, open subset of R", q E [1, n) real, and p > 1
real such that 1/p > 1/q - 1/n. Then the embedding of Ho. 1(S2) in LP(S2) is
compact.

PROOF: Let q E [1, n) and p > I such that 1/p > 1/q - I In be given. Let
also p0 be defined by p0 = nq/(n - q). By Theorem 2.5, one has that Ho (S2) C
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LPO(S2). Moreover, there exists A > 0 such that for any u E H0 1(9),

' /Po
(jIuIPcdx) < A(f IVulgdx)1/9

Noting that 9 has finite volume, one clearly gets that H,() C LP(Q). There
is still to prove that this embedding is compact. Let JC be a bounded subset of
Hp 1(12). There exists C > 0 such that for any u E 3e,

f IVul9dx+ f lulgdx <C
fa

For j integer, set

K! = {x E S2 s.t. dist(x, a Q) > ? }

Given U E 3f, and according to Holder's inequality,

p
_-L

fn\Kj I uIdx < (fn\K;
IuIP°dx)I/PO(I \Ki dx)

\I-n0
<AC1/e(f dx1

Q\K, /
Let E > 0 be given. One then gets that for j big enough, and any u E .R,

I Iuldx < s
S2\K

From now on, let y be such that I y I < 1/j. If X E Kj, then x + y E K2j. For
u E D (Q) one can then write that f

IK
l u(x + y) - u(x)+dx dx f(u(x + fy)ldr

j

i

0

ldx< IYI fK2j Iou

_< IyI f Iouldxs
Since £(S2) is dense in Ho 1(Q), one gets that for any u E Ho 1(a), and any y such
that I y I < 1/j,

Iouldxf Ju(x + y) - u(x)ldx < IyI fa
j

By Holder's inequality

< (fIvuIdx)(f
)

dxflVuldx
1

q

One then gets that there exists B > 0 such that for any u E 3C,

fa Iouldx < B
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Hence, for any u E and zany y such that I y I < min (B , ),

J Iu(x + y) - u(x)Idx < s
K1

By Lemma 2.4 this implies that 3f is relatively compact in L 1(9). One gets that
3f is relatively compact in LP(S2) as follows: If (um) is a sequence in 3e, then, by
Holder's inequality,

rf )I. 1-k

f lu,ni -um2l"dx < ( Iu'l
(f zl um

-unnlnndX/

< (2AC1/4)(1--+I)P0(

I um, - um, I dxI
where k = P"0-P1 . From such an inequality, and from the fact that 3e is relatively
compact in L 1(a), one easily gets that 3e is also relatively compact in LP(S2). This
ends the proof of the lemma.

Now that such results have been stated, we prove Theorem 2.9. For the sake of
clarity, concerning point (i), we restrict ourselves to the case j = 0 and m = 1. In
other words, we prove that for any smooth, compact Riemannian n-manifold, any
q E [1, n), and any p > 1 such that p < nq/(n - q), the embedding of H' (M) in
LP(M) is compact. We refer the reader to Aubin [121 for the proof that the other
embeddings are also compact.

PROOF OF THEOREM 2.9: (i) Since M is compact, M can be covered by a
finite number of charts

Ms, Ws)s=I..... IV

such that for any s the components g; of g in (S25i cps) satisfy

25;1 <gj <2S;i

as bilinear forms. Let (ns) be a smooth partition of unity subordinate to the cover-
ing (S25). Given (um) a bounded sequence in Hq(M), and for any s, we let

u n = (fsum) O (ps 1

Clearly, (um) is a bounded sequence in Ho I (rps(Sts)) for any s. By Lemma 2.5 one
then gets that a subsequence (un,) of (u,,) is a Cauchy sequence in LP(rps(S2S)).
Let (um) be a subsequence of (um) chosen such that for any s, (u,,) is a Cauchy
sequence in LP(cps(Sls)). Coming back to the inequalities satisfied by the one
easily gets that for any s, (gcum) is a Cauchy sequence in LP(M). But for any m1
and m2,

N

Ilum, - um,llp < EIlnsum, -1sum,llp
s=1

where II lip stands for the LP-norm. Hence, (um) is a Cauchy sequence in LP(M).
This proves the result.
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(ii) Let A E (0, 1) be such that (1 - A)q > n, and let a E (0, 1) be such that
A < a and (1 - a)q > n. By Theorem 2.8, one has that Hi (M) C C'(M). Given
3e a bounded subset in H° (M), one then gets that there exists C > 0 such that for
any u E R, IIuIIca s C. By Ascoli's theorem, 3t' is relatively compact in C°(M).
From now on, let (um) be a sequence in X. Up to the extraction of a subsequence,
(um) converges to some u in C°(M). Clearly, U E C01 (M) and IIuIIca < C. Setting
v= u,,, - u, one then gets that II vm II cQ < 2C, and that for all x and y in M,
x # y,

IV,,, (Y) - Vr(x)I - (IVm(Y) - V. WI a I_z

dg (x, y)
= 1

dg (x,
Y)Q Y IV. (Y) - um(x)I a

\
< (2C)a vm(Y) - v.,

(x)II-a

(2C)2a(2IIUmIIco)I

Since (v,,,) converges to 0 in C°(M), one gets from such inequalities that (vm)
converges to 0 in CA(M). This proves the theorem. O

2.8. Poincare and Sobolev-Poincare Inequalities

We establish in this section the so-called Poincare and Sobolev-Poincare in-
equalities. First we prove that the Poincare inequality does hold for compact Rie-
mannian manifolds. This is the subject of the following result.

THEOREM 2.10 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q E [ 1, n) be real. There exists a positive constant C such that for any u E H9 (M),

(( l
l 1q (f IN

\M lu -uIgdv(g))
<C\JM IVuI'dv(g))

where u = 1 fm u dv(g).
VOI, M.KI

PROOF: Suppose first that q > 1. To prove Theorem 2.10 we just have to
prove that

He f
IVulq dv(g) > 0

where

3f= IuEHi q (M)s.t.J IuIgdv(g)=1andJM udv(g)=0}
M 111

Let (Uk) E 3e be such that

klim IVukIgdv(g) = of fu IVulgdv(g)
M

By combining the fact that HQ (M) is reflexive for q > I with the Rellich-Kon-
drakov theorem, there exists a subsequence (Uk) of (Uk) which converges weakly
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in Hi (M) and strongly in Lq (M). Let v be its limit. The strong convergence in
L y (M) implies that v E 3e, while we get with the weak convergence that

f lVvlgdv(g) < lim J IVukI4dv(g)
M k--"O M

As a consequence, fM IVuly dv(g) is attained by v, and since v cannot be
constant,

1EnefMIVuI`1dv(g)>0

This proves the Poincare inequalities for q > 1. When q = 1 we can use the
well-known fact that on a compact manifold there always exists a Green function
for the Laplacian. More precisely (see, for instance, [121), if (M, g) is a compact
Riemannian n-manifold there exists G : M x M - R such that:

(i) for any u E C°°(M) and any x E M,

u(x) = 1

J
udv(g)+ f G(x,Y)Agu(Y)dvg(Y)

Vol(M.g) M M

(ii) G(x, y) = G(y, x) and G(x, y) is C°O on M x M\A where A is the diag-
onal

A={(x,y)EMxMs.t.x=y}
(iii) there exists a constant K > 0 such that for any (x, y) E M X M\A,

K K
IG(x, Y)I r--2 and IV ., G(x, Y)I r,-1

where r = dg (x, y) is the Riemannian distance from x to y.
From now on, let u E C°O(M) be such that fm u dv(g) = 0. We then have that

for any x,

Hence,

and

u(x) = J G(x, y)Agu(y)dvg(y)
M

V.G(x, Y)IlVu(Y)Idvg(Y)Iu(x)I <
IM

I

IM Iu(x)I dvg(x) IM IM
IV,G(x,Y)IIVu(Y)Idvg(x)dvg(Y)

< C J
jVu(y)Idvg(Y)

M

where C > 0 is such that for any y E M, fm IVG(x, y) Idvg (x) < C. Recall here
that G satisfies IVG(x, y)I < K/r"-1. As a consequence, for any u E C°°(M)
such that fm u dv(g) = 0,J

M

Iuldv(g) < Cf
M

IVuldv(g)

and the Poincart inequality for q = 1 is proved. This ends the proof of the theorem.
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Inequalities such as the ones in question in Theorem 2.10 are referred to as
Poincard inequalities. Now that such inequalities have been proved, one easily gets
the so-called Sobolev-Poincard inequalities. This is the subject of the following:

THEOREM 2.11 Let (M, g) be a smooth, compact Riemannian n-manifold, q E
[1, n) real, and p real such that 1 / p = l 1q -1/n. There exists a positive constant
C such that for any u E Hq (M),

/ I/P
( r

I/q
( fM lu -idPdv(g)) < C(fm JVulgdv(g))

where u=
Vol( M x)

fu u d v (g).

PROOF: By Theorem 2.6 there exists a positive constant B such that for any
u E Hq(M),

((
I/P (( I/q

\fm
Iu-uVPdv(g)) <B((f IVuI dv(g))

M

+
( f Iu -i dv(g))I/q)

Independently, by Theorem 2.10, there exists C > 0 such that for any u E H' (M),

fm

I/q

JM

I/q

lu-ulgdv(g)) <C
( \IvuI'dv(g))

Hence, for any u E I- 11'(M),

I/P I/q

(IM
Iu-ii"dv(g)) <B(1+C)f IVulgdv(g))

and this proves the theorem. 0

Of course, Sobolev embeddings, compactness properties of these embeddings,
and such Poincard and Sobolev-Poincard inequalities are very useful when studying
PDEs. As an application, we mention the following result of Druet (oral communi-
cation), Proposition 2.6, dealing with generalized Laplace equations. Given (M, g)
a smooth, compact Riemannian n-manifold, and q E (1, n), we denote by Aq,g the
q-Laplacian of g defined by

Oq,gu = -divg (IVulq-20u)

With such a definition, s2,g = OR, the usual Laplacian of g. Given f some smooth
function on M, we study the existence of solutions u E Hq(M) to the equations

Aq.gu = f
Such equations will be referred to as generalized Laplace equations. By regularity
results (see, for instance, Druet (731), one has that any solution u E H°(M) of
such an equation is C l,2 for some a E (0, 1). Furthermore, such a regularity is



2.8. POINCARE AND SOBOLEV-POINCARE INEQUALITIES 43

in general optimal, as shown by the following situation. For (lR", e) the Euclidean
space,

U = q - 1 IxI'+,-_r

q
is a solution of Aq.eu = -n in lR". In the particular case q = 2, one gets the full
regularity for the solutions of Aq,gu = f, that is, the C°° regularity. The result of
Druet (private communication) we present here is the following:

PROPOSITION 2.6 For any smooth, compact Riemannian n-dimensional manifold
(M, g), any q E (1, n) real, and any f E CO°(M), the generalized Laplace equa-
tion Aq,RU = f possesses a solution u E Hq (M) if and only if fm f dv(g) = 0.
Moreover, the solution is unique up to the addition of a constant, and it is of class
C ' "for some a E (0, 1).

PROOF: It is clear that the condition fm f dv(g) = 0 is a necessary condition.
Conversely, let

r r
3e = {u E Hi (M) s.t. J fudv(g) = land J udv(g) = 0}

M M

Set

,k = inf
J

IVulq dv(g)
"C3P M

Clearly, 3e # 0 since, up to a constant scale factor, f E X. Let (u;) E 3e be a
minimizing sequence for X. By Poincar6's inequalities,

f lu+ 11 dv(g) < C f IDu; Iq dv(g)
M M

for some C > 0 independent of i. As a consequence (u,) is bounded in HI (M).
By classical arguments, based on the Rellich-Kondrakov theorem and similar to
those used in the proof of Theorem 2.10, one then gets that there exists u E 3e
such that

L IVulq dv(g) =,k

In particular,A > 0. Moreover, one gets that there exist a, f E R such that for any
cp E HQ(M),

p
f IVuI9-2(Du,Vcp)dv(g) = a fu cpdv(g)+# f fopdv(g)

M M M

where is the scalar product associated to g. By taking cp = 1, we get that
a = 0. Taking cp = u, we get that l4 = k. Since u 0 0, since A > 0, and up to
rescaling, u is the solution we were looking for. Moreover, one gets the uniqueness
by noting that if Oq.gU = 49 v, then

f ((Ivulq-Zou - Iovlq-2Vv)(Vu - Vv))dv(g) = 0

and by noting that for any X, Y

((I X l q-2X - I Yl
q-2y), (X - Y)) > 0

with equality if and only if X = Y. This ends the proof of the proposition. 0
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2.9. A Finiteness Theorem

We prove a kind of Cheeger's finiteness theorem for the class of compact man-
ifolds with bounded sectional curvature, volume bounded from above, and that
satisfy a given Sobolev inequality. Given n > 2 an integer, q E [1, n) real, and A,
V, and A positive real numbers, let KKK = .M(n, q, A, V, A) be the class of smooth,
compact Riemannian n-manifolds (M, g) such that K(M,g) < A and Vol(M_g) S V,
where K(M.8) stands for the sectional curvature of (M, g), and such that for any
u E C0°(M),

'lp

(IM
JulIdv(g)) < A((f, Ioul°dv(g)) + ( fm

lul9dv(g))iiq)

We prove here the following:

THEOREM 2.12 For any n, q, A, V, and A as above, there are only finitely many
diffeomorphism types of manifolds in M. In other words, there exists a finite num-
ber m of smooth, compact manifolds M1, ... , M. such that if (M, g) E ,M, then
M is diffeomorphic to one of the M, 's.

PROOF: Let a E (0, 1) real. In order to prove Theorem 2.12, we just need
to prove that .M is precompact in the C'-"-topology. By Lemma 2.2, there exists
v : R+* R+* such that for any (M, g) E At, any r > 0, and any x E M,

Volg (BX(r)) > v(r)

Hence, for any (M, g) E .M, and any e > 0, the maximal number of disjoint balls
of radius a that M can contain is bounded above by

N =
VVV) + I

where [ i)) ] stands for the greatest integer not exceeding -j ) . In particular, this
shows that there exists d > 0 such that for any (M, g) E A, diam(M,g) < d, where
diam(M,g) stands for the diameter of (M, g). Hence, there exist v' > 0 and d > 0
such that A( C it where

,Ai = { (M, g) compact n-manifolds s.t. I K81 < A,

VOl(M.g) > V, diam(M.g) < d)

Furthermore, one has by Cheeger-Gromov-Taylor [46] that under the bound I Kg I S
A, the bounds Vol(M,g) > v' and diam(M,g) < d are equivalent to the bounds
1nj(M g) > i and V01(M,g) < v where inj(M.g) stands for the injectivity radius of
(M, g). One then gets from Anderson's results [51 that M is precompact in the
0-1-topology. Since A C .M, At is also precompact in the 0-1-topology. As
already mentioned, this ends the proof of the theorem. 0

As a consequence of this result, one easily gets that for any n, q E [I, n),
A > 0, and A > 0, there are only finitely many diffeomorphism types of smooth,
compact Riemannian n-manifolds (M, g) such that

A
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and such that for any u E CO°(M),

((
I/v

Iulydv(g))

(( f
JM

( f I/4
A\\ Iv dv(g)) "' + Vol(m.g)

`JM
luI dv(g)) )

Concerning such an assertion, just note that the condition

K(M,a)fVo1(M8) < A,

and that the above Sobolev inequality are scale invariant.





CHAPTER 3

Sobolev Spaces: The Noncompact Setting

We mainly discuss in this chapter the validity of Sobolev embeddings and
Sobolev inequalities for complete manifolds. As one will see, surprising phenom-
ena appear when dealing with such a question. Density problems are first discussed
in Section 3.1. Sobolev embeddings and Sobolev inequalities are then studied in
Sections 3.2 and 3.3, while disturbed inequalities are presented in Section 3.4. For
Euclidean-type Sobolev inequalities, we refer the reader to Chapter 8.

Given (M, g) a smooth Riemannian manifold, k an integer, and p > I real,
recall that we defined the Sobolev space HA (M) as the completion of ek (M) with
respect to the norm

k

Q
UP

I IUIIHA = j IV'ul°dv(g))

Here,

ek (M) = { u E C°O (M) /V j = 0, ..., k, fm I V j u 1 ° d v(g) < +oo I
l 1JJ

that is, the set of smooth functions on M for which IIuIIHP is finite. Given (M, g)
a smooth, complete Riemannian n-manifold, recall also that:

1. if H11 (M) C L" I("- 1) (M), then HA (M) C (M) for any real numbers
1 < q < p and any integers 0 < m < k such that I/p = 1/q - (k - m)/n,
and

2. if forsomeq E [l,n)real, H'? (M) C LP(M)where 1/p = 1/q-1/n, then
for any r > 0 there exists v > 0 such that for any x E M, Volg(Bx(r)) > v
where Voig(Bx(r)) stands for the volume of Bx(r) with respect to g.

These two statements are, respectively, the ones of Lemma 2.1 and Lemma 2.2.
Given (M, g) a smooth, complete Riemannian manifold, k an integer, and p

1 real, we define

Ho k(M) = closure of D(M) in Hk(M)

where £(M) is the space of smooth functions with compact support in M. As al-
ready mentioned, we start in this chapter with density problems for Sobolev spaces.

3.1. Density Problems

Let (M, g) be a smooth, complete Riemannian manifold. For Ho k (M) defined
as above, we discuss in this section the case of equality Hg (M) = Hk (M). In
other words, we try to find for which complete manifolds (M, g) one has that

47
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£(M) is dense in Hk (M). The completion for such a study is necessary, in the
sense that one can construct many noncomplete manifolds for which Ha k # H,'.
Think, for instance, of S2 a bounded, open subset of R" endowed with the Euclidean
metric e. One easily checks that in such a situation, Ho 1(S2) # HI (S2). Consider
for this purpose the scalar product of Proposition 2.1 (with g = e and k = 1),
and let U E CO°(S2) n Hi (S2) be such that Aeu + u = 0, u 0 0, where Ae is
the Laplacian of e (with the minus sign convention). For instance, one can take
u = sinhxi, x, the first coordinate in W'. Then for any v E D(Q),

(U, V) = j (Aeu + u) v dx = 0

so that u ¢ H01(S2). This proves the above claim. On the contrary, one has the
following result:

PROPOSITION 3.1 For any k an integer and any q > 1 real, Ho k(R") = H9(IR").

PROOF: Let f : IR IR be a smooth decreasing function such that

f(t)=1 if t< 0 and f(t)=O if t> 1
As one can easily check, it is sufficient to prove that any u E C°°(R") n HQ(IR")
can be approximated in Hk (1R") by functions of 2(R"). For m an integer and u
some smooth function in Hk (R"), set

um(x) = u(x) f (r - m)

where r denotes the distance from 0 to x. Clearly,um E D(R") for any in. On the
one hand, one has by Leibnitz's formula that for any s integer and any m,

S

Ivs(U", -U) 1 < C, E IVjUI.lvs-j(J,, -I) I
j=0

where C, > 0 is independent of m, and fm (x) = f (r - m). In particular, noting
that IVSrI is bounded for s > 1 and r > 1, one gets that for any s integer, and any
m > 1,

S

IvS(UM - u)I < C2 E Ivjul
j=0

where C2 > 0 is independent of in. On the other hand, one clearly has that for any
s integer, and with respect to the pointwise convergence,

lim VSUm = V'SU
m-++00

Since for any s < k, IOsuI E LP(R"), the proposition easily follows from the
Lebesgue dominated convergence theorem. 0

When dealing with arbitrary, complete Riemannian manifolds (M, g), one can
hope that the equality Ho k(M) = Hk (M) still holds. As surprising as it may seem,
such a question is open for k > 2. For k = 1, this is the content of Theorem 2.4 of
Chapter 2; things work for the best and one has the following result of Aubin [8].
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THEOREM 3.1 Given (M, g) a smooth, complete Riemannian manifold, Ho i (M)
= Hi (M) for any q > I real.

The situation for k > 2 seems to be more complicated, and assumptions on
the manifolds are now needed (at least at the present state of the field). Aubin [8]
proved that for any q > I and k > 2, O(M) is dense in Hk (M) provided that
(M, g) has a positive injectivity radius and that the Riemann curvature of (M, g) is
bounded up to the order k-2. Hebey [108] proved that the above result still holds if
the assumptions on the Riemann curvature are replaced by similar assumptions on
the Ricci curvature. Moreover, thanks to the Bochner-Lichnerowicz-Weitzenbock
formula, something special happens in the case k = p = 2, where only a lower
bound on the Ricci curvature is needed instead of a global bound. This is what we
are going to discuss now. Let us start with the general case.

PROPOSITION 3.2 Let (M, g) be a smooth, complete Riemannian manifold with
positive injectivity radius, and let k > 2 be an integer. We assume that for j =
0, ... , k - 2, dpi Rc(M,g) I is bounded. Then for any q > I real, Ho k(M) =
H,! (M) -

PROOF: Suppose that the injectivity radius inj(M x) of (M, g) is positive, and
that there exists C > 0 such that for any j = 0, . . . , k - 2, dpi Rc(m.g) 1 < C. By
Theorem 1.2 one has that for any real numbers Q > I and a E (0, 1), the Ck-i.«-

harmonic radius rH = rH(Q, k - 1, a) is positive. Fix, for instance, Q = 4 and
a = 1/2. (As one will see, a plays no role in the following of the proof). For any
x E M one then has that there exists some harmonic chart cp : BX(rH) - R" such
that the points 1 and 2 of Definition 1.1 are satisfied with Q = 4 and of = 1/2.
(Without loss of generality, we can also assume that cp(x) = 0). In particular, we
get that for any r < rH

Bo(r/2) C cp(BX(r)) C Bo(2r)

where for t > 0 real Ba(t) denotes the Euclidean ball of center 0 and radius t. Let
0 E D(RI) be such that

0 < i 6 < 1 , fi = 1 on Bo(g), i6=0 onRn\BoI 4 1

As a consequence of the above inclusions, we get that P o cp E £(M) satisfies

05 0ocp<1, i0ocp=1 onBx(16)'

rHPocp=O onM\Bx (2)

From now on, let (xi) be asequenc(B1e of

(L))
points of M such that

M = U Ba.; (), is uniformly locally finite

The existence of such a sequence is given by Lemma 1.1. Let (pi : 8;(rn) R"
be as above and set 8i = i6 o (pi. Since the components of the metric tensor are
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Ck-l-controlled in the charts (Bx;(rH), tpi), one easily gets that there exists C > 0
such that for any i and any m = 0, ... , k, I V- F'i I < C. Let us now set

Ai
rli =

Ej A

As a consequence of what we have said above, (ni) is a smooth partition of unity
subordinate to the covering (B,, (ML)), and since this covering is uniformly locally
finite, one easily obtains that there exists some constant C > 1 such that for any
m = 0, ... , k, Ei I Vm ni I < C. Now fix u E Ck (M) where p > 1 is some given
real number. The proposition will obviously be proved if we show that for any
e > 0 there exists uo E £(M) such that flu - uoIIHP < s. Fix s > 0 and let
0 c M be some bounded subset of M such that

k 1/P

I vmulPdv(g)< e/CCk+I Q\Q

where e is as above and

Ck+ll - (m +
1)!(k1)!

m)!

Since the covering (Bx1(ML)) is uniformly locally finite, one easily obtains that
there exists some integer N such that for any i > N + 1, Bx1(M) ft Q = 0. Set
uo=(1-tl)uwhere 1-E"1ni. Then u0 D(M) and

k

Ilu -uOIIR< EIlom(nu)IIP
M=0

where II IIP stands for the norm of LP(M). But
M

Iom(nu)I -<
j=0

and since supp n c M\12 and F_i I V 1 ni I < C for any j = 0, ..., k, we get that
m 1/P

Ilom(nu)IIP < eECm(fm\n IV'uIPdv(g))
j=0

As a consequence, noting that for any 0 m < k, E ..-m Ci = Ck+ll, we get that

I /P

IIu - UOIIHk -`C1:EC-i f lVjulPdv(g))
M=O j=0 M\S2

1 /P

=C C'

_)(f
IomulPdv(g))

\SZM=j=m
k 1/P

IvmulPdv(g))
m=0 M\2
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Since

k

{

i!v
Ckin+

t l \f <E/CE
m=0

we have shown that for any E > 0 and any u E Ck'(M) there exists uo E O(M)
such that 1j u - u011 Hf < E. As already mentioned, this ends the proof of the
proposition.

As a straightforward corollary to Proposition 3.2 one gets the following:

COROLLARY 3.1 For any Riemannian covering (M, g) of a compact Riemannian
manifold (M, g), for any k integer, and any q > I real, Ho k (M) = Hk (M).

As already mentioned, thanks to the so-called Bochner-Lichnerowicz-Weitzen-
bock formula, something special happens in the case k = p = 2. Here, one can
replace the global bound on the Ricci curvature by a lower bound on the Ricci
curvature.

PROPOSITION 3.3 For any smooth, complete Riemannian manifold (M, g) with
positive injectivity radius and Ricci curvature bounded from below, H02.2 (M) _
H, (M).

PROOF: Let K2 (M) be the completion of

&(M) = {u E CO0(M)/u, JVul, t5u E L2(M)}

with respect to

(fM2g)
1/2

(IM

1/2 1/2

IIUIIK_ + IVu12dv(g)) + (fM IguI2dv(g))

Let also K5 ,2(M) be the closure of £(M) in K2 (M). We assume that the Ricci
curvature of (M, g) is bounded from below by some A, and that the injectivity
radius of (M, g) is positive. By Theorem 1.2 one then gets that for any Q > I real,
and any a E (0, 1) real, the radius rH = rH(Q, 0, a) is positive.
Noting that in a harmonic coordinate chart,

A8 u = -g'l ati u

for any u E C°O(M), similar arguments to those used in the proof of Proposition
3.2 prove that

Ko.2(M) = K2 (M)
Independently, one clearly has that for any u E C°°(M), IOguI2 < nfV2uJ2.
Hence,

HZ (M) C KZ (M)

with the property that this embedding is continuous. Recall now that by the Boch-
ner-Lichnerowicz-Weitzenbock formula, for any smooth function u on M,

(A. (du), du) = 2o&(Idu12) + IV(du)I2 +Rc(M.a)(Vu, Vu)
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(see, for instance, [109]). Integrating this formula, one then gets that for any u E
D(M),

IM
1V2u12dv(g) = fM IARU12dv(g) - fm Rc(M,g)(Vu, Vu)dv(g)

IM 1gUI2dv(g) + IAIJ IVu12dv(g)
M

Hence,

IIUIIH, ( 1 + 1J10IIuIIx2

for any u E £(M), and according to what we have just said, we get that

Ho 2 2(M) = Ko 2(M)

As a consequence,

Ho 2(M) C HZ (M) C KZ (M) = Ko 2(M) = Ho 2(M)

and this ends the proof of the proposition.

3.2. Sobolev Embeddings I

We discuss in this section the validity of Sobolev embeddings in their first
part for complete manifolds. As one will see, surprising phenomena appear there.
While such embeddings do hold for the Euclidean space (see Theorem 2.5 of Chap-
ter 2), there exist complete manifolds for which they do not hold. For the sake of
clarity, recall that by Sobolev embeddings in their first part we refer to the follow-
ing: Given p, q two real numbers with 1 < q < p, and given k, m two integers
with 0 < m < k, if 1/p = 1/q - (k - m)/n, then Hk (M) C H°(M) where n is
the dimension of M. As already mentioned, such embeddings are necessarily valid
if the first one is valid, that is, if Hi (M) C Ln/("-')(M). For clarity, and when
discussing counterexamples, we restrict ourselves in this section to the case k = 1,
that is, to the scale of embeddings Hi c V. We start with the following result:

PROPOSITION 3.4 For any integer n > 2, there exist smooth, complete Riemann-
ian n-manifolds (M, g) for which for any q E [1, n), H" (M) 5t LP(M) where
1/p = 1/q - I/n.

PROOF: Consider the warped product

M=18x S"`', g(x,9)_ +u(x)hg

where 4 is the Euclidean metric of I8, h is the standard metric of the unit sphere
S"-' of R", and u : IR -+ (0, 1] is smooth and such that u(x) = 1 when x < 0,
u(x) = e-2x when x > 1. Clearly, if y = (x1, 01) and z = (x2, 02) are two points
of M, then dg(y, z) >- 1x2 - x11. This implies that (M, g) is complete. In addition,
if y=(x,0)is apoint of M=]IRS"-', then By(l)C(x-1,x+1)xS"-'.As
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a consequence, when x > 2,

Volg B)(1)) < Volg ((x - 1, x + 1) x S"-))
r+1

a (n-1), dt
J r-)

< C(n)e-(n-1)r

where co"-1 denotes the volume of (S"-1, h) and

C(n) =
cot, -i (e"-) _ el-")

(n - 1)
Therefore, for any 9 E S"-),

lim Volg (B(_r.o)(l)) = 0
X- 00

and by Lemma 2.2 we get that Hq(M) 0 LP(M) for any 1 < q < n real and
I l p = 1 /q - I In. This ends the proof of the proposition.

As a remark, note that the Ricci curvature of the manifold (M, g) constructed
in the proof of Proposition 3.4 is bounded from below. Indeed, since

Rc(sn-I.h) = (n - 2)h

one easily sees that Rc(M,g) will be bounded from below if there exists A real such
that for any 9 E S' and any x > 1, Rc(M.g)(x, 9) > Ag(r.g). Let g' _(r.0)

h9, R;j be the components of Rc(M.g') in some chart (R x n, Id x (p), and
R,1 be the components of Rc(M.g) in the same chart. We have R;j = 0 if i = I or
j = 1, while R;j = (n - 2)h, if i > 2 and j > 2. Independently, if g' = of g are
conformal metrics on a n-dimensional manifold, then

Rii = Rij -
n

2
2(02f);j

+
n

4
2

(Vf)i(Vf)i
1 n - 2- 2 -Agf +

2 Iof 12 gi1

Hence, since g' = e2ig if x > 1, we get that for x > 1,
R11=-(n-1) and Rid=0 when] >2
Rid = ((n - 2)e2' - 1)gij when i > 2 and j > 2

As a consequence, Rc(M,g) > -(n - 1)g for x > 1, and the Ricci curvature of
(M, g) is bounded from below. Independently, note that with the same ideas as the
ones developed in the proof of Proposition 3.4, one gets the following:

PROPOSITION 3.5 For any integer n > 2, any smooth, complete noncompact Rie-
mannian n-manifold (M, g) of finite volume, and any q E [1, n), one has that
Hi (M) 0 L"(M) where I/p = 1/q - 1/n.

PROOF: Here again, the proof of such a result is based on Lemma 2.2. Let
(M, g) be a smooth, complete Riemannian n-manifold. Suppose that for some
q E [1, n), one has that H?(M) C LP(M) where 1/p = l/q - 1/n. Then by
Lemma 2.2, there exists v > 0 such that for any x E M, Volg(Bx(1)) > v where
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Vol, (Bx (1)) stands for the volume of B. (1) with respect to g. Let (xi ), given by
Zorn's lemma, be a sequence of points in M such that

M=UB.=;(2) and B,r,(1)nB_r,(1)=0 ifi A j

Since (M, g) is complete, the Bx; (2)'s are relatively compact, while clearly

Vol(M.g) > E Vol, (BX1(1))

where Vol(M,5) stands for the volume of (M, g). Suppose now that (M, g) has
finite volume. According to what has been said above, (xi) must then be finite and
hence, M must be compact. This proves the proposition.

Let us now discuss results where Sobolev embeddings do hold. As one will
see, the situation is well understood when dealing with manifolds having the prop-
erty that their Ricci curvature is bounded from below. In the 1970s, Aubin [7] and
Cantor [37] proved that Sobolev embeddings were valid for complete manifolds
with bounded sectional curvature and positive injectivity radius. About ten years
later, Varopoulos [192] proved that Sobolev embeddings do hold if the Ricci cur-
vature of the manifold is bounded from below and if one has a lower bound for the
volume of small balls which is uniform with respect to their center. By Croke's
result [59] a lower bound on the injectivity radius implies a lower bound on the
volume of small balls which is uniform with respect to their center. One then has
the following generalization of the result of Aubin and Cantor. The assumption
that there is a bound on the sectional curvature is here replaced by the weaker
assumption that there is a lower bound for the Ricci curvature.

PROPOSITION 3.6 The Sobolev embeddings in their first part are valid for any
smooth, complete Riemannian manifold with Ricci curvature bounded from be-
low and positive injectivity radius. In particular, given (M, g) a smooth, com-
plete Riemannian n-manifold with Ricci curvature bounded from below and pos-
itive injectivity radius, and for any q E [1, n) real, Hi (M) C L"(M) where
1/p = l/q - 1/n.

Let us now state and prove the more general result of Varopoulos [192] men-
tioned above. The original proof of this result was based on rather intricate semi-
group techniques. The proof we present here is somehow more natural. It has its
origins in Coulhon and Saloff-Coste [58]. For the exact statement of Varopoulos
result, where no lower bounds on the volume of small balls are assumed and where
disturbed Sobolev inequalities are obtained, we refer to Section 3.4.

THEOREM 3.2 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below. Assume that

inf Vol, (B,,(1)) > 0
XEM

where Volg (BX (1)) stands for the volume of B,r (1) with respect to g. Then the
Sobolev embeddings in their first part are valid for (M, g). In particular, for any
q E [1, n) real, HQ(M) C L"(M) where 1/p = 1/q - 1/n.
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As a remark on the statement of Theorem 3.2, note that the assumption

inf Volg (Br(1)) > 0
.r E M
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implies that for any r > 0, there exists yr > 0 such that for any x E M,
Volg(Bx(r)) > Vr. Such a claim is a straightforward consequence of Gromov's
result, Theorem 1.1. Now, the proof of Theorem 3.2 proceeds in several steps. As
a starting point, we prove the following:

LEMMA 3.1 Let (M, g) be a smooth, complete Riemannian n-manifold such that
its Ricci curvature satisfies Rc(M,g) ? kg for some k E R. Let also R > 0 be some
positive real number. There exists a positive constant C = C(n, k, R), depending
only on n, k, and R, such that for any r E (0, R), and any u E £(M),

IVuldv(g)f
M

lu - urldv(g) < Cr fm

where ur(x) = ) f u dv( ) x E MBr(r) g , .
Vol, (B, (r))

PROOF: Let (M, g) be a smooth, complete Riemannian n-manifold such that
Rc(M.g) > kg for some k E R, and let R > 0. By the work of Buser [35], there
exists a positive constant C = C(n, k, R), depending only on n, k, and R, such
that for any x E M, any r E (0, 2R), and any u ECO(B(r)),

IVuldv(g)(3.1) fB,(r) Iu-ur(x)Idv(g) <CrJ
B,(r)

Let r E (0, R) be given and let (xi)iEI be a sequence of points of M such that
simultaneously

M=UB,r;(r) and B; \r/ r)Bri\2! _0 ifi 36 j

With the same arguments as used in the proof of Lemma 1.1, one gets that

Card Ii E I /x E B, (2r)} < N = N(n, k, R) = (16)nes (n-))I IR

where Card stands for the cardinality. Let U E £(M). We have

J lm - uridv(g) _ f lu - urldv(g)
M Bxj (r)

E Blu - ur(xi)Idv(g)
'j (r)

i)-u2r(xi)Idv(g)+
JL,(r)

Iur(x

r(xi)Idv(g)+ f8c,(r) ur - u2
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By (3.1), we get

i

that

f lu -ur(xi)ldv(g) < Cr
i J IVuldv(g)

Or) ,i(r)

< NCr f lVuldv(g)
M

while

r(xi) - u2r(xi)Idv(g) _ E Vol, (B.r,(r))IUr(xi) - i 2r(Xi)I
Bit

IU

(r)

lU - U2r(xi)ldv(g)

fB(r)

lU -u2r(xi)Idv(g)
I8,,(2r)

< 2NCr J IVuldv(g)
M

Independently, we have

B
Iur - U2r(xi)Idv(g)

it (r)

1 _
<

fe&,(r)
IU(Y) - U2r(xi)Idvg(Y)jdvg(x)Volg(Bx(r)) f
VEB,(r)

1-
`-. Lir Vo l Bx r f IU(Y) - U2r(xi)Idvg(Y)Idvg(x)

i ) g( ()) yEBTi(2r)

JB,;(2r) I u(Y) - U2r(xi)ldvg(Y) k'(r) VOIg(B.r(r)) dvg(x)

But, by (3.1),

IVuldv(g)
fx. (2r)

Iu(Y) -u2r(xi)Idvg(Y) :5 2Cr f
t (2r)

while by Gromov's result,

1 K

Voig (Bx(r)) - Vol, (Bx(2r))

where K = K(n, k, R) = 2"e2 (,-))I jR. Since x E Bxt(r) implies that Bx;(r) is a
subset of Bx(2r), we get that

dvg(x) < K
f8j(r) Volg (Bx(r))

Hence,

fB,(r)
IUr - u2r(xi)dv(g) < 2KCNr JM Vudv(g)
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and for any u E 1(M),

IM
lu - i , Idv(g) 3(1 + K)NCr J I Vuldv(g)

M

This ends the proof of the lemma.

We now prove the following lemma:

LEMMA 3.2 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies RC(M.g) > kg for some k E R, and suppose that
there exists v > 0 such that Volg (B.Y (1)) > v for any x E M. There exist two
positive constants C = C(n, k, v) and >) = rt(n, k, v), depending only on n, k,
and v, such that for any open subset S2 of M with smooth boundary and compact
closure, if Volg(Q) < rt, then Vol8(0)(i-1)/" < CAreag(a12).

PROOF: By Theorem 1.1 and the remark following this theorem, we have that
for any x E M and any 0 < r< /R,

l
Volg (B.r(r)) > f I e- Ui-1)I IR Vol8 (B (R)) lr"

\\\R ///

Fix R = 1. Then we get that for any .x E M and any r E (0, 1),

Vol, (B. jr)) >

Set

_ 1ge- v and CI = e- )I Iv

Let S2 be some open subset of M with smooth boundary, compact closure, and such
that Vol,, (S2) < rl. For sufficiently small s > 0, consider the function

I ifXE12
ue(x) = 1 - Fdg(x, an) if x E M\92 and d.. (x, 8S2) < e

0 ifxEM\nanddg(x,312)>s

Then u£ is Lipschitz for every s and one easily sees that

lim u£ dv(g) = Vol,(S2)
E-.O M

while
1 if x E M\S2 and d8(x, 8S2) < s

IVuEI = E

0 otherwise

which implies that

Ju
Furthermore, for every s > 0,

lim IVuEIdv(g) = Areag(3S2)f
Volg(7) = Volg ({x E M/uE(X) > 1})
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and for any e > 0 and any r > 0,

Volg ({x E M/u£(x) I!: 11) < Vol, ({x E M / IuE(x) - u£.r(x)I
2t

1 1

+Volg QXEM/ie,r(X)> 2J)

where

uEdv(S)u E.r(X) = Volg(Bjr)) fBx(r)

Now note that for r > 0 and s << 1,

_ 2 Volg (S2)
ue.r(X) <

Volg(B.r(r))

Fix r = Since Volg(S2) < n = 16, we get that r E (0, 1) and that

2 Volg (S2) < 1

Volg (Bx(r)) 4

(according to what we have said above). Hence,

l{X EM/u£.r(x)?2}=0

and for every 0 < e << 1,

Volg() < V o l ({x E M/ IUE(X) -

But

211)

Volg (IX E M / IUE(X) - ue.r(X)I 2 }} _< 2f Iu£ - u£.rldv(S)
M

and by Lemma 3.1 there exists a positive constant C2 = C2(n, k) such that

1.
Hence,

l u£ - u£.r l d v(g) :5 C2r f I V u£ I d v(g)
M

C8Volg(S2)1(l" fVolg{S2) :5 2C2 L, J li m IVuEldv(8)
M

< C3 Vol8(12)'/" Area, (8S2)

where C3 depends only on n, k, and v. Clearly, this ends the proof of the lemma.

Lemma 3.2 has the following consequence: The ideas used in the proof of
Lemma 3.3 are by now standard. One will find them in the celebrated works of
Federer [79] and Federer-Fleeting [80]. For an exposition in book form of such
ideas, we refer the reader to Chavel [45].
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LEMMA 3.3 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies Rc(M..) > kg for some k E R and suppose that
there exists v > 0 such that Vol, (Bx (1)) > v for any x E M. There exist two
positive constants 3 = 8(n, k, v) and A = A(n, k, v), depending only on n, k, and
u, such that

(1,
[)In

Judv(g) < AJ I Vuldv(g)
M

for any x E M and any u E £ (Bx (6)).

PROOF: Let rt = ?I (n, k, v) be as in Lemma 3.2. By Theorem 1.1 there exists
8 = S(n, k, v) such that for any x E M, Volg(Bx(S)) < q. Let X E M and let
u E .(B., (S)). For t > 0, let

92(t) = (x E M/Iu(x)I > t) and V(t) = Volx(S2(t))

Clearly, V(t) < n for any t > 0. Then the co-area formula and Lemma 3.2 imply
that

Vuldv(g) ? 1 jJM C
where C is the constant given by Lemma 3.2. Independently,

1.
Noting that

fo

lu In"(n-') dv(g) = tn-1 (

00

')V(t)dt

we end the proof of the lemma. 0

With Lemma 3.3 we are now in position to prove Theorem 3.2.

PROOF OF THEOREM 3.2: Let (M, g) be a smooth, complete Riemannian n-
manifold such that Rc(M.g) > kg for some k E IR and such that there exists v > 0
with the property that Vol, (Br (1)) > v for any x E M. We want to prove that the
Sobolev embeddings are valid on M. By Lemma 2.1 we just have to prove that
H11 (M) c

Ln1(n-')(M). Let S = S(n, k, v) be as in Lemma 3.3 and let (x,) be a
sequence of points of M such that

1. M=UjBx;(2)
2.

B,,(1)nBxj (4)=Oifi # j,and
3. there exists N = N(n, k, v) depending only on n, k, and v, such that each

point of M has a neighborhood that intersects at most N of the B.', (S)'s.

The existence of such a sequence is given by Lemma 1.1. Let also

P: [0,oo)-4[0,1)
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be defined by
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1 if 0<t<;
p(t)= 3-at ifI <t< 4

31

0 if t > 4S

and let
a; (x) = p(dg(xi,x))

where dg denotes the distance associated to g and x E M. Clearly, a; is Lip-
schitz with compact support. Hence, by Proposition 2.4, a1 belongs to HIM.
Furthermore, since supp a, C Bx; (4a ), we get without any difficulty that a1 E
Ho. I (Bx; (S)). Let

a;

am

Then, since I Vas I < 4/8 a.e., we get by (3) that for any i, ni E Hp I (B,,; (S)),
(n,) is a partition of unity subordinate to the covering (Bx; (8)), V ni exists almost
everywhere, and there exists a positive constant H = H(n, k, v) such that Ion; I <
H a.e. Let U E £(M). We have

(
(n-I)/n

(f,
l(n-I)/n

\f ulIdg))
J

M ///

< AE f IV(mu)ldv(g)
f

M

where A is the constant of Lemma 3.3. Hence,

(IM
luln/(n-I) dv(g)

:5 AE fm nilvuldv(g)+AE f IuIIVmldv(g)
f i

M

< A J IVuldv(g) + ANH f I uldv(g)
M

< A(1 + NH)
\ f IVuldv(g) + f Iuldv(g))

M M

and there exists A > 0 such that for any u e '(M),

(IM

(n- 1)1n
ln/-d(g))

A(f IVuldv(g)+ IM
luldv())

M

By Theorem 3.1 we then get that HII (M) C Lnl (n- I) (M). As already mentioned,
this ends the proof of the theorem.

Given (M, g) a smooth, complete Riemannian n-manifold, we refer to the scale
of Sobolev embeddings when considering the embeddings W(M) C LP(M), q E
[ 1, n), 1 /p = 1 /q - 1 In. As already mentioned in Section 2.3 of Chapter 2,
the validity of one of these embeddings implies the validity of the ones after: if



3.2. SOBOLEV EMBEDDINGS 1 61

H; "(M) C LP"(M) for some qo E [1, n) and 1/po = 1/qo - 1/n, then H'(M) C
LP(M) for any q E [qo, n) and 1/p = l/q - 1/n. A natural question is to know if
such a scale is coherent, that is, if the validity of one of these embeddings implies
the validity of all the other ones. In other words, if the validity of one of the
embeddings Hr(M) C LP(M), q E [1, n), implies the validity of the embedding
Hi (M) C Combining Theorem 3.2 and Lemma 2.2, one gets that
the scale of Sobolev embeddings is coherent for complete manifolds with Ricci
curvature bounded from below. More precisely, one has the following consequence
of Theorem 3.2 and Lemma 2.2:

THEOREM 3.3 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below.

(i) Suppose that for some qo E [1, n), H'° (M) C LP"(M) where 1/po =
1/qo - 1/n. Then for any q E [1, n), Hi (M) C LP(M) where I/p =
1/q - 1/n. In particular, one has that H, (M) C L" "1"-1)(M).

(ii) Given q E [1, n), one has that Hq (M) C LP(M), where 1/p = 1/q - 1/n
if and only if there exists a lower bound for the volume of small balls which
is uniform with respect to their center.

Point (ii) in such a theorem means that for any r > 0 there exists v, > 0
such that for any x E M, V01R(B.T(r)) > v,. By Gromov's result, Theorem 1.1,
since the manifolds considered have their Ricci curvature bounded from below, it is
sufficient to have such a lower bound for one ro > 0. Independently, let (M, g) be a
smooth, complete Riemannian n-manifold satisfying the assumptions of Theorem
3.2. Namely, its Ricci curvature satisfies that Rc(M.g) > kg for some k E R, and
there exists v > 0 such that for any x E M, Volg (B,l. (1)) > v. By Theorem 3.2, for
any q E [l, n), there exists A > 0 such that for any u E Hq (M),

(IMlul,*dv(g)) <A((f,loul°dv(g))i/g+(IIIuludv(g))11q
'/P

Note here that the proof of Theorem 3.2 gives the exact dependence of A: it de-
pends only on n, q, k, and v. Finally, we have seen in Chapter 2 that for compact
n-manifolds, Hi C LP for any q E [1, n) and any p > 1 such that p < nq/(n-q),
that is, for any p such that 1/p > 1/q - 1/n. One can ask here if such a result still
holds for complete manifolds. As a first remark, one can note that for complete,
noncompact manifolds, one must have that p > q. Indeed, given (R", e) the Eu-
clidean space, let ua E C°O(R") be some smooth function such that ua(x) = 1 /IxI'
if IxI > 1. As one can easily check, for p E [1, q), E Hi (R") while
u"IP It LP(IR"). This proves the above claim. On the contrary, one can prove that
the embeddings H9 C LP do hold for complete n-manifolds as soon as p > q.
This is the subject of the following result:

PROPOSITION 3.7 Let (M, g) be a smooth, complete n-dimensional Riemannian
manifold such that its Ricci curvature is bounded from below and such that there
exists v > 0 with the property that for any x E M, Vol, (B,(1)) 2! v. For any
q E [1, n) real and any p E [q, nql (n - q)], Hi (M) C LP(M).
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PROOF: Set q* = nq/(n - q), and let p E [q, q*]. As a simple application of
Holder's inequality, one gets that for any u E D(M),

l r f la/q

(IM uIPdv(g)

1/p

) ( lugdv(g)) (M
uq'dv(g))

M

where a E [0, 1] is given by

a= 1/p - 1/q*

1/q - 1/q*

By Theorem 3.2, there exists A = A(n, q, k, v) such that for any u E D(M),

(L,
1/q* 1/q / 1/q

l

ulq* dv(g))
< A(f IVulg dv(g)) + A[ j lulg dv(g))

M ` M

Since for any x and y nonnegative, and any a E [0, 1], x' y 1-a < x + y, one gets
that for any p E [q, q*], and any u E £(M),

/ 1/P

fm
lul,"dv(g))

\
I/q 1/9

`fm lulg dv(g)) + (fm lull* dv(g))

< /
A`J IVulgdv(g))

1/q

+(A+1)`f Iulgdv(g))
11q

M M

Clearly, this proves the proposition. 0

To end this section, let us now make some remarks. As a first remark, note that
the assumption we made till now on the Ricci curvature is satisfactory but certainly
not necessary. Indeed, there exist complete manifolds for which the whole scale
of Sobolev embeddings H'? c LP is valid, but for which the Ricci curvature is not
bounded from below. Just consider the space R" with a conformal metric g = e"e
to the Euclidean metric e, the conformal factor u being bounded and chosen such
that the Ricci curvature of g is not bounded from below. With such a choice, one
gets examples of the kind mentioned above. As a second remark, recall that we
have seen in Chapter 2 that for compact manifolds, the embeddings H' C LP with
p < nq/(n - q) are compact. One can ask here if such a property still holds for
complete manifolds. The answer is negative. Just think to R" with its Euclidean
metric e, and let u E ,(R") be such that 0 < u < 1, u = I in Bo(l), and u = 0
in R"\Bo(2). For m an integer, set u",(x) = u(x - xm) where xE R" is such
that Ixm I = m. Clearly, (u,") is bounded in Hq (lR") by IIu IIH; , while for any m,
Iluml1 p = Ilullp > 0. Since (u",) converges to 0 for the pointwise convergence,
one gets as a consequence of what has been said that (u,") does not converge in
LP(M). This proves the above claim. On the contrary, we will see in Chapter 9
that symmetries may help to reverse the situation.
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3.3. Sobolev Embeddings H

We briefly discuss in this section the validity of Sobolev embeddings in their
second part for complete manifolds. Recall that by Sobolev embeddings in their
second part, we refer to embeddings such as HA C C"'. In the 1970s, Aubin [7]
and Cantor [37] proved that such embeddings were valid for complete manifolds
with bounded sectional curvature and positive injectivity radius. We prove here
that the result still holds under the weaker assumption that the Ricci curvature is
bounded from below and that the injectivity radius is positive. Extensions will be
discussed at the end of the section. Given (M, g) a smooth, complete manifold and
m an integer, we denote by CB (M) the space of functions u : M -* R of class Cm
for which the norm

m

IluIIc'. = E sup I(Viu)(X)I
xEMj.0

is finite. In the same order of ideas, given A E (0, 1), we denote by CB(M) the
space of continuous functions u : M R for which the norm

(x)I
IIUIICA = sEMIu(x)I + x su M

1u(Y) - u
dg(x,y)A

is finite, where dR denotes the distance associated to g. The first result we prove is
the following:

THEOREM 3.4 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below and positive injectivity radius. For q > 1
real and m < k two integers, if 1 /q < (k - m)/n, then Hk (M) C CB (M).

PROOF: First we prove that for q > n, H9(M) C C°e(M). By Theorem
1.2, one has that for any Q > 1 and a E (0, 1), the radius rH =
rH(Q, 0, a) is positive. Fix, for instance, Q = 2 and a = 1/2. For any x E M
one then has that there exists some harmonic chart cpx : B.r(rH) -+ R' such that
the components g,1 of g in this chart satisfy

1

2 sij < gij < 23ij

as bilinear forms. Let (x,) be a sequence of points of M such that

1. M=U1Bx;(9)and
2. there exists N such that each point of M has a neighborhood which inter-

sects at most N of the Bx, (rH )'s.

The existence of such a sequence is given by Lemma 1.1. Let also

p:[0,00)--). [0,1]
be defined by

1 if0<t<rA
P(t)= 3- Ht if <t<32 - 4

0 ift > 3r,,
4
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and let

ai(x) = p(dg(xi,x))

where dg denotes the distance associated to g and x E M. Clearly, a, is Lipschitz
and bounded, with compact support in Bx,(rh). Set

IqI+I

17i - y [ql+I
m am

where [q] is the greatest integer not exceeding q. As one can easily check, I)i and

?1i
11q are also Lipschitz with compact support in Bx, (rH). In particular, one gets

by Proposition 2.4 that giIN E Ho I (Bx, (rH)). Moreover, one has that (q;) is a
partition of unity subordinate to the covering (B,,(rH)), that V,7,'kq exists almost
everywhere, and that there exists a positive constant H such that for all i, I V ili1q I <
H a.e. Given U E f(M), one clearly has that

II r1il lqullco = II01;1qu)
oW.,I

IIco

for all i. Independently, starting from the inequalities satisfied by the gij's, one
easily gets that there exists C > 0 such that for any i and any u £)(M),

II(nil
/qu)

o w.r,I IIHI < CIIrJi
U11H

where the norm in the left-hand side of this inequality is with respect to the Eu-
clidean metric. Since HQ(R") c CB(R"), this leads to the existence of some
A > 0 such that for any i and any u E D(M),

Ilgi'euIIC" <
A1177f11quIIH9

Given U E 1)(M) one can write that

IIUIIq.o = II
11ilulgll

C
< Ilnrlul°IICO =

0

A7
II11;IIguIIHq

Let µ = µ(q) be such that for x > 0 and y > 0, (x + y)g < µ(xq + y9).
for u E £(M),

Ilull.o <AgµE(J IV(n,Ilqu)I'dv(g)+
fMM

Here, one has that

IV(r1;lqu)Igdv(g)
i M

<µ fm Iorlil/glglulgdv(g)+A f lrloulgdv(g)
M

ai

Then,
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<µNH4 J luI4dv(g)+µ fm IVulQdv(g)
M

(< µ(NH4 + 1)(f IVul` dv(g) + fm lul4 dv(g))
M

Hence, there exists B > 0 such that for any u E D (M),

IIull") < Bllull'q

Clearly, by Theorem 3.1, this proves that Hi (M) C CB (M). Let us now prove that
for q, k, and m as in the theorem, Hk (M) C CR (M). Given U Eekq (M), one has
by Kato's inequality that for any integer s,

IOIVSUII < IVS+1uI

Lets E {0..... m). By Proposition 3.6 one has that Hk ,(M) C H('' (M) where

1 1 k-s-1
p+ q n

In particular, ps > n. Hence, according to what has been said above, H, ' (M) C
C°(M). Given s E {0, ... , m} and u E Ck (M) one then gets that

IIV`uIIco < CI(s)IIV'uIIH;, < C2(s)IIOSuIIHR < C2(S)IIuNHA

by Kato's inequality, and where C, (s) and C2(s) do not depend on u. As an imme-
diate consequence of such inequalities, one gets that Hk (M) C C'Q (M) for q, k,
and m as above. This ends the proof of the theorem. 0

Let us now prove the following result:

THEOREM 3.5 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below and positive injectivity radius. For q > 1
real and A E (0, 1) real, if 1 /q < (1 - ,t)/n, then H" (M) c CB-(M).

PROOF: Here again, given Q > 1 and a E (0, 1), one has by Theorem 1.2 that
the radius rH = rH (Q, 0, a) is positive. Fix, for instance, Q = 2
and a = 1/2. For any x E M one then has that there exists some harmonic chart
cpx : B,X(rH) -+ R" such that the components g,, of g in this chart satisfy

(3.2)
1

2
Srr < gri < 2Sij

as bilinear forms. Let also r E (0, rH) sufficiently small, for instance, r < rH13,
such that for any x E M, the minimizing geodesic joining two points in Bx(r) lies
in Bx(rH). We use in what follows that for 9, a regular, bounded, open subset of
R", and q, X as in the theorem, HQ (S2) c CB (92). For such an assertion, we refer
the reader to Adams [1]. Given q and A as in the theorem, let x and y be two points
of M such that x # y.

Suppose first that d5(x, y) > r. Then for any u E D(M),

Iu(y) - u(x)I < 2
IlullCO

dg(x, y) A rx
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By Theorem 3.4, this leads to the existence of C, > 0 such that for any u E D(M),

Iu(Y) - u(x)I
< CIIIuIIH4dg(x, y)x I

Suppose now that d8(x, y) < r. By (3.2) one easily gets that

I9x(Y) - cox(x)I < -12-d. (x, y)

Hence,

lu(y)-u(x)I <2J, I(uo(P.r')((Px(Y))-(u
dg (x, Y)I - I(Px(Y) - (P"(x)Il

Similarly, one easily gets from (3.2) that there exists C2 > 0 such that for any
u E D(M),

J IV(U0 -I)I9dx <C2J IVuI9dv(g)
0 B1(r)

L Bx (r)

where S2 = P.,(Bx(r)), and dx stands for the Euclidean volume element. Since
H" (S2) C CB(S2), such inequalities lead to the existence of C3 > 0 such that for
any u E D(M),

Iu(Y) - u(x)I
-z -311-11Wdg(x, y)a 1

Take C4 = max(CI, C3). Then, for any x and yin M, with the property that x 34 y,
and for any u E D(M),

l u(y) - u(x)I
< C411 uII HQ

d8(x, Y)A I

Such an inequality, combined with Theorem 3.4, leads to the existence of C5 > 0
such that for any u E D(M),

IIUIIcA < C511UIIH;

By Theorem 3.1, one then gets that Hq (M) C CB (M). This ends the proof of the
theorem. El

Theorem 3.5 has been generalized by Coulhon [56] in the spirit of what has
been said in the preceding section. More precisely, it is proved in [56] that for
(M, g) a smooth, complete Riemannian n-manifold, for q > 1 real and X E (0, 1)
real, if 1/q < (1 - k)/n, then the embedding of Hq (M) in CB (M) does hold
as soon as the Ricci curvature of (M, g) is bounded from below and that for any
ro > 0, there exists C(ro) > 1, such that for any x E M and any r E (0, ro),

C(ro)-'r" < Volg (Bx(r)) < C(ro)r"

Under the assumption that

<C2 f Iul9dv(g)

inf Vol, (Bx(1)) > 0
xEM
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this last property is an easy consequence of Gromov's theorem, Theorem 1.1. One
then gets the following generalization of Theorem 3.5. We refer the interested
reader to Coulhon [56] for its proof.

THEOREM 3.6 Let (M, g) be a smooth, complete Riemannian n-manifold with
Ricci curvature bounded from below. Assume that

inf Vol, (BC(1)) > 0
rEM

where Vol,, (B., (1)) stands for the volume of Bx (1) with respect to g. For q > 1
real and X E (0, 1) real, if 1/q < (1 - k) In, then H (M) C C,, (M).

As a remark, note that with the same arguments as the ones used in the second
part of the proof of Theorem 3.4, one gets from Theorem 3.6 that for (M, g) as
in the statement of Theorem 3.6, for q > 1 real and for m < k two integers, if
1 /q < (k - m)/n, then Hk (M) c C'B (M).

3.4. Disturbed Sobolev Inequalities

As already mentioned, Theorem 3.2 is less general than the result obtained
by Varopoulos in [192]. The exact setting of this result is that for any complete
Riemannian n-manifold (M, g) satisfying Rc(M.R) > kg for some k E R, there
exists a positive constant A = A(n, k), depending only on n and k, such that for
any u E £(M),

where
(I luln1(n-1)vdv(g)) <Af (IVul + Iul)vdv(g)

M

V(X)
1

Volg(B,:(l))
for X E M. It is easy to see that one recovers Theorem 3.2 from such a result.
Indeed, the assumptions of Theorem 3.2 imply that v is bounded above while by
Theorem 1.1 v is bounded from below. This leads to the statement of Theorem 3.2.
The proof presented by Varopoulos of such a result was based on rather intricate
semi-group techniques. A more natural proof, together with generalizations of this
result, were obtained in Hebey [1081. We present them here. As a starting point,
one can use the following result of Maheux and Saloff-Coste [154]. In a certain
sense, this result generalizes the one of Buser [35] to Sobolev inequalities.

THEOREM 3.7 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature satisfies Rc(M,q) > kg for some k E R, and let p, q
be two real numbers such that 1 < q < n and p E [q, nq/(n - q)]. There exists
a positive constant A = A(n, p, q, k), depending only on n, p, q, and k, such that
for any x E M, any r E (0, 1], and any u E C' (B, (r)),

i/I,
lu-ur(x)I1'dv(g))

IVu1N dv(g))< Ar Volg (Bx(r)) I 4
(r)
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fB,(r)u,(x) = I

V°IR(B,(r)) fB,.(r) u dv(g).

PROOF: We only sketch the proof and refer to Maheux and Saloff-Coste [154]
for more details. Fix R E (0, 1] real. By Gromov's theorem, Theorem 1.1, there
exists some positive constant Co = Co(n, k) such that for any x E M and any
r E (0, R),

V (x, 2r) < CoV (x, r)

where V(x, r) stands for the volume of Bx(r) with respect to g. Independently,
by the work of Buser [35], for any q > 1 real, there exists some positive constant
CI = C1(n, k, q) such that for any x E M, any r E (0, R), and any u E C°°(M),

f lu-ur(x)1 dv(g) <C1r" f IVuI?dv(g)
x(r) x(r)

From such inequalities (this is the main point in the argument), one gets that for
any q > I real, there exists a positive constant C2 = C2(n, k, q) such that the
following holds: For any x E M satisfying the property that

Vy E Br(R) , Vt E (0, R], V(y, t) > K(x, R)t"

one has that for any u E C°O(Bx(r)),

sup { A Wig (BX(R) 11 [ Iu I > ,1)) vl In,, i
x>o J

CZ[K(x, R)-q/" (IVul" + R-9IUIg)dv(g)
L

x luldv(g)
Bx(r)

As in Maz'ja [155] (see also Bakry, Coulhon, Ledoux, and Saloff-Coste [18]),
this leads to the fact that for any q E [I, n) real, there exists a positive constant
C3 = C3(n, k, q) such that the following holds: For any x E M satisfying the
property that

Vy E Bx(R), Vt E (0, R], V(y, t) > K(x, R)t"

one has that for any u E C" (R)),

UP

fB,

1 /q

lu - uR(x)I Pdv(g)) < C3K(x, R)-1/' (IVulg dv(g))
1\

(R)

where p = nq/(n - q). By Gromov's theorem, Theorem 1.1, one can take

K(x, R) = C(n, k)R-"V(x, R)

This ends the proof of the theorem. 0

Coming back to Theorem 3.7, for q = 1 and p = n/(n - 1), one gets, in
particular, that for any r c- (0, 1] there exists a positive constant A = A(n, k),
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depending only on n and k, such that for any x E M and any U E C' (B.,, (r)),
I/P

lulldv(g))

< A Vol,
(B.,(r))-I/n

\J IVuldv(g) + f luldv(g)
B,(r) Br(r) /

Starting from such inequalities, we then get the following extension of Varopou-
los's result. In particular, as already mentioned, this provides us with a simple and
more natural proof of this result.

THEOREM 3.8 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature satisfies Rc(M,R) ? kg for some k E R, and let p,
q be two real numbers such that 1 < q < n and I l p = 1 /q - 1 In. Then for
any (a, B) E R x ]I8 satisfying ,8/q - a/p > I/n, there exists a positive con-
stant A = A(n, q, k, a, fl), depending only on n, q, k, a, and f, such that for any
u E D(M),

(I,

where
1

Vol5 (B." (1))

for x E M. In particular, there exists a positive constant A = A (n, k), depending
only on n and k, such that the Varopoulos inequality

(n- I )/n

f luln/(,t-I)vdv(g)) < A f (lvul + lul)vdv(g)
M M

holds for any u EarD(M).

First we prove the following result, that is, the case q = 1 in Theorem 3.8:

LEMMA 3.4 Let (M, g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature satisfies Rc(M,R) > kg for some k E R. Then for any
(a, l4) E R x R satisfying fi - a > 1 In, there exists a positive constant A =
A(n, k, a, fi), depending only on n, k, a, and fi, such that for any u E D (M),

(IM

lulPv°` dv(g))
I/P

<

A(((( I/4

f Ivul9vfldv(g)) + (f lul"v0dv(g)
M

(f

lulu1(n-1)vadv(g) < A f (foul + lul)vfdv(g)
M

where v(x) = Vo1K(ax(1)), X E M.

PROOF: Let (xi) be a sequence of points of M such that
1. M=U,B2,(Z),
2. Br; (1) n B,1(4) = 0 if i A j, and
3. there exists N = N(n, k), depending only on n and k, such that each point

of M has a neighborhood which intersects at most N of the Bx, (1)'s.
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The existence of such a sequence is given by Lemma 1.1. Let also

p : [0, oo) -+ [0, 1]

be defined by

1 if0<t< 1
PQ)= 3-4t if2 t<3

0 ift >

and let

a; (x) = p(d8(xi,x))

where d8 denotes the distance associated to g and x E M. Clearly, a, is Lipschitz
with compact support. Hence, by Proposition 2.4, a, E Hi (M). Furthermore,
since supp a; C Bx; (4 ), we get without any difficulty that a; E Ho I (Bxi (1)). Let

a,tli=[
Lnn an

Then, since I Vai I < 4 a.e., we get by (3) that for any i, Ili E Ho, (B.; (1)), (,,)
is a partition of unity subordinate to the covering (Bx1(1)), Vg; exists almost ev-
erywhere, and there exists a positive constant H = H(N) such that JVn1I < H
a.e. Independently, by Theorem 1.1, we get that there exists a positive constant
C = C(n, k) such that for any x E M,

Vol8 (B,(1)) > C Vol8 (B,,(2))

As a consequence, for any x E M and any y E Bx(1),

Vol8 (B.(1)) > C Vol, (B,.(1))

(since y E B,(1) implies that B,. (1) C B(2)). Similarly, for any x E M and any
y E Bx (1), we clearly have (by symmetry) that

Vol8 (BY(1)) > C Vol8 (Bx(1))

Furthermore, once more by Theorem 1.1, there exists a positive constant V =
V (n, k) such that for any x E M,

Vo18(B., (1)) < V

Let a, 0 E R be such that

n-1 1

JB- a>-
n n

Multiplying (I,) by Vol8(Bx(1))-(, -Oal n, and according to what we have just said,
we get that there exists a positive constant A = A (n, k) such that for any x E M
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and any u E C' (B, (1)),

lulul(n-1)va dv(g)

Vo19
(B.r(1))-((n-1)af 1)/n+

fB
( IVuI + Iul)dv(g)

,(I)

Vo1g
(B.r(1))B-((n-I)a+I)ln

Voig (BX(1))->4 ((IVuI + Iul)dv(g)
Br(I)

A' (IVuI + lul)v6 dv(g)
B,(1)

where

A' = AV/3--((n-I)a+1)/uC-Il11

depends only on n, k, a, and P. As a consequence, for any i and any u E

C°O(Bs; (1)),

(f .

Iuln/(n-I)va dv(g)) < A' f (IVuI + Iul)v'sdv(g)
Br (I) B,,(I)

Let U E D(M). We then have

(fm
Iulnl(n-I)vadv(g)1

)/

< IniUln/(n-I)vadv(g)/\t

B'i(1)

< A'Ef (IV(nru)I +n,lul)v' dv(g)
i M

r<A' fM1)IIulvdv(g)+A'dv(g)+A'f Iulvdv(g)

r i
M M

<A'NH / Iulvfldv(g)+A' f IVulvIdv(g)+A' f Iulvsdv(g)
M M

< A f (IVuI + IuI)v, dv(g)
M

where A = A'(1 + NH) depends only on n, k, a, and P. Clearly, this ends the
proof of the lemma.

Let us now prove Theorem 3.8.

PROOF OF THEOREM 3.8: We proceed as in the proof of Lemma 2.1, but
starting from Lemma 3.4. Let a, fi be as in Lemma 3.4, and let (p, q) be two real
numbers such that 1 < q < n and 1/p = l/q - 1/n. By Lemma 3.4 there exists
A = A(n, k, a, f) > 0 such that for any u e £(M),

(n- I )/n

(fm

Iuln/(n

1)vadv(g))
<A f (IVuI+IuI)v'ldv(g)

M
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Let u E /D(M) and set (p = I uI P01 -1)/". Applying Holder's inequality, we get that

ul"vdv(g)
(IM

l

(n-1)/n

(fAM
Irrn/(n-1)vadv(g)l

)
/

< Af (IV VI + I(vl)vpdv(g)
M rAp(n - 1)

f IuIP'IVulvpdv(g)+AJ lulP(n-1)/nvpdv(g)
n fm M

IDulgvq(P-a/q')dv(g)J< (fm
1 u I

Pq'vadv(g))
\fmn

+A
r l(J luIP'g'vadv(g)

11q '

) (J
lulgvq(fi-a/q')dv(g)

1/q

M M

where 1/q + 1/q' = 1 and p' = p(n - 1)/n - 1. But p'q' = p since 1/p =
1/q - 1/n. As a consequence, for any u E 0(M),

1/p

ulPvadv(g))
(IM

l

Ap(n - 1) 1/q )/g

((f IDulgvYdv(g)) + (f IulgvYdv(g)) )n M

where y = q()B - a/q'). Noting that y/q - a/p = l3 - "n 11 a, we end the proof of
the theorem. 0

To end this section, we now say some words about a result proved by Schoen
and Yau [177]. Here again, the norms are disturbed by some function of the ge-
ometry of the manifold. Recall that given (M, g) and (M, g) two Riemannian
manifolds, an immersion V : M M is said to be conformal if Sp*g is a confor-
mal metric to g, that is, of the form V*g = of g' for some f E C°°(M). In what
follows, (S", h) stands for the standard unit sphere of R"'PROPOSITION

3.8 Let (M, g) be a smooth Riemannian n-manifold, n > 3, not
necessarily complete. Assume that there exists a conformal immersion cp from
(M, g) to (S", h). Then for any u E SU(M),

(IM
lu 12n/(n-2) dv(g)

4
I Vu l2 dv(g) + 4(n - 1 Scal(M.g) u2 d v(g)

n(n - 2)wn/" Q ) f
where wn is the volume of (S", h) and Scal(M,g) is the scalar curvature of (M, g).

PROOF: We proceed as in Schoen and Yau [177]. Define

Q(M) = info
-2) J u(Lgu)dv(g)

fM Iuj dv(g)=11 M
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where

LRU = ARU +
4(n - 1) Scal(M.g) u

is the conformal Laplacian of g. As one can easily check, for any v E Cx(M),
v > 0, and any u E C'°(M),

v(n+2)/(n-2)Lg (u)

where g' = v4/(i-2jg. By Obata [163],

Q(S') = n(n - 2)wl

4
The inequality of the proposition is then equivalent to Q(M) > Q(S"). Let
be an exhaustion of M by compact domains with smooth boundary. We then have

Q(M) = lim Q(12,)
1-. ,o

Thus, in order to show that Q(M) > Q(S"), it is enough to show that Q(12) >
Q(S") for any domain 12 c M with 9 compact and 812 smooth. Now the proof is
by contradiction. Hence, we suppose that for some 12 as above, Q(12) < Q(S").
By standard variational techniques, one then gets that there exists a smooth func-
tion u > 0 in 12 satisfying fn u2i/("-'-) dv(g) = I as well as

LRU = Q(12)u("+'-)/("-'`) in Q. u = 0 on 812

If we extend u by defining u = 0 in M\12, we then have

Lgu <
Q(c2)u(n+2)1(n--2) in M, f u2n/(n-2) dv(g) = I

M

where the inequality is understood in the distributional sense. Let (p be the confor-
mal immersion of the proposition, (p : (M, g) -> (S", h). We define a function u
on S" by u 0 in S"\(p(S2), and for Y E (p(S2),

a(y) = max (V(x)-'"-2)/4u(x)

where (p'h = ag. Since (p is an immersion, the set (p-) (y) fl S2 is finite, and for each
x E (p-' (y) fl 12 there is a neighborhood U, of x such that (p is a diffeomorphism
of Ur onto (p(U,r), a neighborhood of y. Let (p;' denote the inverse of this local
diffeomorphism. By the conformal invariance property of the conformal Laplacian,
if

u.r(y) _)Br(y),"-21/4U(4 '(y)), y E

where ((p.,')*g = fish, then L{,u,,. < Q(S2)uc"+2110,-2) in (p(U,). Hence, we see
that u is a nonnegative Lipschitz function on S" satisfying

Lhu _<
Q(S2)u("+2)1(n-2)

on S". Again by conformal invariance, we have

L
u2nl(n_2) dv(h) =

fT
u2n/("-2) dv(g)

UO r
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and hence we see that fs u2n/("-2) dv(h) < 1. By integrating the differential in-
equality satisfied byf , one then gets that

ju(L),u)dv(h) < Q(S2) u2nl(n-2) dv(h)
.

Since f ,, u2n/(n-2) dv(h) < 1, this inequality implies that Q(S") < Q(S2), a con-
tradiction. This ends the proof of the proposition.

Concerning the assumptions of Proposition 3.8, one has (see, for instance,
Kulkarni in [138]) that for any simply connected, conformally flat Riemannian
n-manifold (M, g), there exists a conformal immersion from (M, g) to the stan-
dard sphere (S", h). Recall here that a Riemannian n-manifold (M, g) is said to
be conformally flat if for any x E M, there exist f E C°°(M) and 12 an open
neighborhood of x such that of g is flat on Q. Spaces of constant curvature are
conformally flat. More generally, when n > 4, (M, g) is conformally flat if and
only if its Weyl curvature is zero. Combining the above fact with Proposition 3.8,
one gets the following result:

COROLLARY 3.2 Let (M, g) be a smooth, complete, conformally flat n-manifold
n > 3. For any simply connected domain 92 of M, and any u EC(M),

(n-2)/n
u l2n/(n-2) d v(g))

fm
l

4
2/n IVul2 dv(g) +

n-2
M

Scal(M.8) u2 dv(g)
n(n - 2)wn Q 4(n - 1)

where wn is the volume of (S", h) and Scal(M,8) is the scalar curvature of (M, g).

As a final remark, consider (M, g) a smooth, compact Riemannian n-manifold.
Suppose g is Einstein. By Obata [163] one has that if (M, g) is not conformally
diffeomorphic to the standard sphere (S", h), then, up to a constant scale factor,
g is the unique metric of constant scalar curvature in its conformal class. As a
consequence of the resolution of the Yamabe problem by Aubin [9) and Schoen
[175], one easily gets that for any compact Einstein n-manifold (M, g), any g' in
the conformal class of g, and any u E C°O(M),

n - 2
(IM

(n-2)/n
Scal(M.8) Volg) lulzn/(n-z) dv(g')

4(n-1) J

-
IVu12dv(g')+ n -2

Scal(M.8')u2dv(g')
IM 4(n - 1) M

When Scal(M,g) > 0, this provides us with disturbed Sobolev inequalities. Such in-
equalities can be useful. We refer the reader to Hebey-Vaugon [118] for an example
of an application.



CHAPTER 4

Best Constants in the Compact Setting I

Let (M, g) be a smooth, compact Riemannian n-manifold. By the Sobolev
embedding theorem one has that for any q E [1, n) real, H" (M) C LP(M) where
1/p = l/q - 1/n. We write here that for any q E [1, n), there exist two real
numbers A and B, that may depend, of course, on the metric, such that for any
u E Hi (M),

(Iq.gen)

l I /P (f Uq / r 11q

(IM Jul'dv(g)I <A\J Ioulgdv(g)) +BI J lulgdv(g))
M \ M

In such a notation, gen stands for generic, and (Iy will be referred to as the
generic Sobolev inequality of order q. Let us now start with some definitions. First
we define

Aq(M) = {A E R s.t. 3B E R for which (IQ gen) is valid}

and in a parallel manner, we define

.Bq(M) _ {B E R s.t. 2A E R for which (Iq gel) is valid}

Clearly, if A E Aq(M), and if A' > A, then A' E Aq(M). In the same way, if
B E £q(M), and if B' > B, then B' E Sq(M). As a consequence, Aq(M) and
8q (M) are intervals of right extremity +oo. The relevant real numbers for .Aq (M)
and Sq(M) are then

Jaq (M) = inf deq (M)

flq(M) = infgq(M)

By definition, aq(M) and /q(M) are the best constants associated to the generic
inequality (I gen) of order q.

Two parallel research programs are associated to this notion of best constants.
In the first one, priority is given to the best (first) constant aq (M). In the second
one, priority is given to the best (second) constant P. (M). For the sake of clarity,
we start with the first two questions of these programs. Two more questions will
be asked in Chapter 5.

Before stating the two questions we note that to say that A. (M) is a closed set,
in other words, to say that aq(M) E A, (M), means that there exists B E R such

75
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that for any u E H7 (M),

(Iq.opt)

(IM

U/P (f \ 1/q r J/q'dv)
aq(M)(

Iouldv(g)) J JuJdv(g))
M

In a parallel manner, to say that 9,7(M) is a closed set, in other words, to say that
iSg (M) E 2q (M), means that there exists A E R such that for any u E HI (M),

(Jq,opt)

f
I/P / I/q h/g

`J IuVPdv(g)) < AI f JVulgdv(g)) +fq(M)(f IuIgdv(g))
M \ M M

In what follows, we use the letter I when dealing with inequalities where priority is
given to the best (first) constant aq (M), and the letter J when dealing with inequal-
ities where priority is given to the best (second) constant P. (M). We refer to these
two inequalities as the optimal Sobolev inequalities of order q.

Program A, Part I Program B, Part I
Question 1A: Is it possible to Question 12: Is it possible to
compute explicitly a (M)? compute explicitly fig (M)?
Question 24: Is Aq(M) a Question 22: Is 2q(M) a
closed set? In other words, closed set? In other words,
is (I(,) valid? is (J' .o t) valid?

Now we start with the discussion of these two programs. As one will see, questions
IS and 22 are very simple. This will not be the case for questions 1 A and 24,
which are much more difficult.

4.1. Program 2, Part I

As said above, the mathematics involved in questions 1'8 and 22 are very
simple. The result that answers these questions is the following: Given (M, g) a
smooth, compact Riemannian manifold, Vol(M.g) denotes the volume of (M, g).

THEOREM 4.1 For any smooth, compact Riemannian n-manifold (M, g), and for
any q e [1, n) real, A. (M) = Vol-M/ ). Moreover, 2q(M) is a closed set, so that
for any smooth, compact Riemannian n-manifold (M, g), and any q E [1, n) real,
there exists A E R such that for any u E Hi (M).

UP

I (J Iul'dv(g)) <

Uq +/q

A(f JVulgdv(g)) +Vol-MUg> (L Iulgdv(g))

where 1/p = l 1q - l 1n. In other words, fq (M) = Vo1-M/A) and the optimal
inequality (Jq,oa) is valid.
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PROOF: Let (M, g) and q E [1, n) be given. On the one hand, by taking
u = 1 in (I9 gel), one gets that B > In particular, Bq(M) > Vol(,y/g).
On the other hand, one has by the Sobolev-Poincare inequality (see Section 2.8 of
Chapter 2) that there exists some positive real number A = A(M, g, q) such that
for any u E Hi (M),

(JM

)/q
lu - uI Pdv(g) J < A(JM IVulg dv(g))

where 1/p = 1/q - 1/n and u = Vol(M g)
fm udv(g). As a consequence, for any

UEHi(M),

(JM

UP

(IM

)/q

I

ujPdv(g)) 5)()I fMudv(g)
But, by Holder's inequality,

(IM
1

) /q

fm
udgVolM()

l ulg dv(g) J

Since 1/p = 1/q - 1/n, these two inequalities imply that for any u E H4(M),
)/P

(LIuIhhlIv(8) <

IM

Iq

(JM

)lq
A(Ioulgdv(g)) + Vol')

Combining this inequality with the fact that 0q(M) > Vol-1/812), one sees that
)Bq(M) = Vo1-'/g") and that Sq(M) is a closed set. This ends the proof of the
theorem. 0

Concerning such a result, one knows on which geometric quantities the remain-
ing constant A depends. As shown by Ilias [123), A depends only on n, q, a lower
bound for the Ricci curvature, a lower bound for the volume, and an upper bound
for the diameter. More precisely, given (M, g) a smooth, compact Riemannian
n-manifold, suppose that its Ricci curvature, volume, and diameter satisfy

Rc(M.8) ? kg, Vol(M.) > v, diam(M,x) < d

where k, v > 0 and d > 0 are real numbers. Then for any q E [1, n), there exists
a positive constant A = A(n, q, k, v, d), depending only on n, q, k, v, and d, such
that for any u E H9(M),

I/P

JI
(fJ

I

uIPdv(g)) <

( q.opt)

(
I/q

(fM

I/q

A\fM IVuldv(g)) +VoI(MR) IuI"dv(g))

where 1 /p = 1 /q -1 /n. In other words, if two compact Riemannian manifolds of
same dimension satisfy the same lower bounds on the Ricci curvature and volume,
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and the same upper bound on the diameter, then they satisfy the same optimal
inequality (J' ,.Pt).

Independently, we considered inequality (I9 gen) as a starting inequality. One
can consider instead inequality (Iq,gen) below. Clearly, there exist A, B E R such
that for any u E HQ (M),

(Iq.gen) f( l r
J <AI IVul4dv(g)+BJ Iul"dv(g)\ Iulpdv(g)

a/r

/ M

where 1/p = 1/q -1/n. Roughly speaking, (Iq,gen) _ (Iq 5 )q, in the sense that we
elevate each term in (I9 gen) to the power q. As one can easily check, by Theorem

4.1, the best constant B in such an inequality is )Bq(M)9 = Vol).-M/RInstead of
considering inequality (J) op,), one can now consider the stronger inequality (Jq.,P,)
_ (Jq op,)9. That is, there exists A E R such that for any u E Hq(M),

`9/p
(Jqopt) (f Iulpdv(g)) <AJ IVuI9du(g)+fq(M)g r lulgdv(g)

M M JM

In the spirit of what we did above, one can ask if such an inequality is valid. The
case q = 2 received an affirmative answer by Bakry [171. Its proof extends to the
case 2* < q < 2, with q # 2 if n = 2, where

2* = 2n/(n + 2)

is the conjugate exponent of 2* = 2n/(n - 2). The remaining case where I < q <
2* has been treated by Druet, so that, as stated below, Theorem 4.2 is due to Bakry
[17] and Druet (oral communication). As one will see, the arguments involved in
the proof of such a result are still simple, though more delicate than the ones we
used to solve questions IS and 2.2.

THEOREM 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold. For any
q E [1, 2) if n = 2, and any q E [1, 2] if n > 3, there exists A E R such that for
any u E Hq(M),

q
.)

pt)(Jq
l9/p

(JM I

ulpdv(g) J < AfM IVuIgdv(g)+Vbl(M/8) fM IuIgdv(g)

where 1/p = 1/q - 1/n. In particular, the optimal inequality (Jq,op,) is valid for
any q on any 2-dimensional compact Riemannian manifold, and for any q < 2 on
any compact Riemannian n-dimensional manifold if n > 3.

PROOF: Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2.
Following Bakry [17] and as a starting point, we prove that for any p > 2, and any
u E LP(M),

C

2/p

fM
Iulpdv(g)l<
_ 2

(
2/p

VoltM(g) !)lp (L u dv(g)) + (p - 1) \
IM l u - Ul p dv(g)
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where

u JI u dv(g)
VOl(M.g) M

As one can easily check, it is enough to prove such an inequality for any u E
C°(M). For homogeneity reasons, and since the inequality is obviously satisfied if
fm u dv(g) = 0, we can then restrict ourselves to functions u E C°(M) for which
fm u dv(g) = Vol(M,g). For such functions, one can write that

u=I+tv where t>0isreal andvEC°(M)
is such that fm vdv(g) = 0 and fM v2dv(g) = 1. The above inequality then
becomes

(JM

l2/P (
2/P

11+tvI"dv(g) j <Vol2M"g)+t2(P- 1)\f Ivl"dv(g))/ M

Let
2/P

w(t) f II +tvI"dv(g))
M

Then (p(0) = Vo1(M g) and wp'(0) = 0. As a consequence, one just has to prove that

P/

fm

2/

(P"(t) < 2(P - 1)( Ivl"dv(g))

to get the inequality. Here, a simple computation shows that

W"(t) 2p\P - \fM 11 +tvl"-IVdv(g)/ (Lil +tvl"dv(g))

p (21p)-1

fm
+2(p - 1)

/
I r I1 +tvl"dv(g)) I1 +tvIP-2v2dv(g)

M

But p > 2, so that the first member in the right-hand side of this equality is non-
positive, while by Holder's inequality

J I 1 +tvJP-2
tVJI-IVC f I 1 +tvI"dv(g) +1-2/P1 J

IvI"dv(g))'/P

M M / \ M

Hence,
2/P

cp"(t) < 2(P - 1)( j
flvl"dv(g))-

and we get the inequality we were looking for. From now on, let q be such that
2 <q <2,withq 542ifn=2,andletpbegivenbyl/p= l/q-1/n. Since
q > 2`, p > 2. Let A > 0 be such that for any u E H' (M),

4/P
-uI"dv(g)) <AJMlVul9dv(g)(Lu

The existence of A comes from the Sobolev-Poincare inequality we discussed in
Section 2.8 of Chapter 2. Let u E HQ(M). Since q < 2, q/2 < 1, and for a
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and b two nonnegative real numbers, (a + by/2 < a4/2 + by/2. According to the
inequality of the beginning of the proof, we can then write that

q/P
Iul'dv(g))

fm
9/P

VOl(M(8) )/P Lt udv($)I + (P - 1)712(fM I u - ilPdv(g))

q /'
(M(8)vol"I)/f udv(g) +(P-1)g12A J IVul'dv(g)

M M

<VOl(M1S)(q(P-I)'P)f lulgdv(g)+(p-1)q/2A J IVulgdv(g)
M M

and since

q-1-q(P-1) =-q

p n

this proves that (Jq.0p,) is valid for q E [2*, 2], with q # 2 if n = 2. Suppose now

that q E [1, 2*] and let us follow the argument of Druet. Since q < 2*, for p such
that 1 /p = l 1q -1/n, one has that p < 2. Following Druet (oral communication),
we start with the proof that for any u E LP(M),

9/P

fM Iul'dv(g)) < VOI(Mg)
q I

fudv(g)I4

+(1 + p(P -
I)(n-1))q/P ( /M Iu - u I P dv(g))

9/P

Here, as one can easily check, we can assume that u E C°(M) and that fm u dv(g)
# 0. Let us write that

U=u(1+v)

where v is such that fm v dv(g) = 0. With obvious notation,

J
I1 + vIP dv(g) = I 1 + vIP dv(g) + f1-1<V-'0) 11 + vIP dv(g)

M

+f 11+vlPdv(g)
v<-II

Since p < 2, the following holds:

forx0real, (1+x)P <1+px+xP,
for0x<l, (1-x)P<1-px+xP,
for x > l real, (x - 1)P < xP
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Hence,

L I1 + vlPdv(g)

< f dv(g)+J IvVPdv(g)+pJ vdv(g)+f dv(g)
[v>0) {u>0 (v>0) (-1<v<0)

+ f MP dv(g) + pf vdv(g) + f IvlPdv(g)
(-I<v<0) (-I<v<o) v<-I)

so that

1 I1 +VIPdv(g)

= Volg({v ? -1)) + f IvIPdv(g) + p f vdv(g)
M (v>--I)

=Vo1g({v>-1))+f IvlPdv(g)+pf vdv(g) - p fvdv(g)
M M (v<-I)

= Volg({v > -1}) + f IvIP dv(g) + p f Ivldv(g)
M (u<-I )

Then, by Holder's inequality,

Lit +vIPdv(g)Vo1g({v-1))+ fm
1/P

+ p Vol8({v < -1))(P-1)/P(f IvlPdv(g))
1\ M

Set

Xo = Volg({v > -1})

and for X E [0, V) real, let

f (X) = X + IIvIIP + PIIvIIP(V - X)(P-1)/P

where V stands for Vol(M,g) and II IIP for the LP-norm. Then,

f'(X) = 1 - (P - 1)IIvIIP(V - X)-1/P

so that
lim f'(X) = -00

Suppose first that f'(0) < 0, in other words, that

1 < (p - 1)IIvf1PV-I/P

Since f' is nonincreasing, one gets that f (X0) < f (0). Hence,

IM I 1 + vlPdv(g) IlvlI+ PIIvIIVP {1 + P(P -Suppose

now that f'(0) > 0, in other words, that

I >- (P -1)IIvIIPV-1/P
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Let

X`=V-(P-1)Pllvllp

Then X, is such that f'(X,) = 0 and one has that

f (X0) 5 f (Xd
As one can easily check, this leads to

+vPdv(g) V+IIvII+P(P-1)PIIvII
IM I

Summarizing,

L I1 + vJP dv(g) VOl(M.g) +(1 + p(P - 1)P-I) fM
lvlP dv(g)

and since q/p < 1, one can write that
4/P

(fIl+vv'dv(g))
4/pV 4/P

vIP dv(g))
IM

I

Multiplying such an inequality by lu 14 one then gets the inequality we were looking
for: Vu E LP(M),

4/P

fm l uI P dv(g)) < Vol((M
g)

4
I fu u dv(g)

I9

`

+ (1 + p(p - 1)(P-)))4/P( f Iu - ul Pdv(g)
M

4/P

Independently, by Sobolev-Poincard, there exists A > 0 such that for any u E
HI (M),

4/P

lu -ulPdv(g) < A f Ivul4dv(g)Q
while, by Holder's inequality,

judv(g)VOl gfMIul4dv(g)

Hence, for any u E H'? (M),

\4/P
\fMlu1Pdv(g)) <Vo1(M8)'JMlul4dv(g)

+ (1 + p(P -
1)P'))4/PA f Ivul4 dv(g)

M

and since
q _1=_4
p n

one gets that (Jy 0P,) is also valid if q E [1, 2']. This ends the proof of the theorem.
0
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Let us now deal with the validity of (Jq 0P1) for q > 2. A very simple argument,
somehow inspired by the argument of Bakry, shows that (Jq °p,) is never valid in
such a case. As far as we know, and as surprising as it may seem, this result is
stated there for the first time.

PROPOSITION 4.1 For any smooth, compact Riemannian n-manifold, n 3, and
any q E (2, n), (Jry.0) is not valid.

_

PROOF: Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
and let q E (2, n) be given. Let also u E C°D(M) be some nonconstant function.
For t > 2 real, and 8 > 0, we define

wr(£) = J Il +euj'dv(g)
M

Clearly, one has that

(PI (E) = Vol(M.g)

Hence,

fm
+t udv(g) 8+ r(t

2

1) ffMU2dv(g))82+0(82)

LI! + euJ dv(g) = Vol(M.g) + ( fm udv(g)1£

+ q(q2
1) ( M

u2dv(g))e2 +o(82)

and

qlp
+gVol[ 5, ([Mudv(g)")ey -1(1 11 +£ulpdv(g)

)
M

q(q - p) 1-2

(IM
\ 2

+ Volt) u d v(g) J 22 + 0(£2)

Suppose now that (Jq.ap,) is valid. Noting that for q > 2,

IM
IV(1 + £U)Iq dv(g) = 0(82)
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one would get that for any e > 0,

Vo1(Mg) +gVol/
s-R)i

(JMudv(g))E

+ q(P2 1) Vol°-1

(fm u2dv(g))82
(M.g)

q(q - p) 2u+
2

VolIM g) 1 fm dv(g) E2

< Vo1,M + q VoIMg) J u dv(g) IE
M ///

+ q(q2 1) Volti.g) (fu2dv(g))52+o(52)

But

q =1-q
p n

so that, as one can easily check, such an inequality implies that

(P-1)fMu2dv(g)<(p-q)
1

Vol(Ludv(g)) +(q-1)fMu2dv(g)
(M.g)

This means again that

Vol(M.g) f
M

u2dv(g) < (fuivg))2
which is impossible as soon as u is nonconstant. This ends the proof of the propo-
sition. 0

Before studying questions 1.4 and 2., let us now say some words about the
role of aq (M) when studying partial differential equations on Riemannian mani-
folds. This is the subject of the next section. This section can be omitted from a
first reading.

4.2. The Role of aq(M)

Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3. The confor-
mal class [g) of g is

[g] _ {8 = u4R(n-2)g, u E CO0(M), u > 01

If u41(n-2)g is a conformal metric to g, one has that

(E,)
4(n - 1)

Dgu + Scalg u = Scalg u(n+2)1(n-2)n -2
where Scalg and Scala are the scalar curvatures of g and g. In 1960, Yamabe [199)
attempted to prove that given a compact Riemannian n-manifold (M, g), n > 3,
there always exists a metric conformal to g of constant scalar curvature. Coming
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back to the transformation law (131), this means that for any compact Riemannian
n-manifold (M, g), n > 3, there exists A real, and u E C' (M), u > 0, solution of

4(n - 1)
Agu + Scalg U = Xur"+2>/("_2)

n-2
Yamabe's claim was that such X and u always exist. Unfortunately, his proof con-
tained an error, discovered in 1968 by Trudinger [186]. Trudinger was able to
repair the proof, but only with a rather restrictive assumption on the manifold. Fi-
nally, the problem was solved in two steps, by Aubin [9] in 1976 and Schoen [175]
in 1984. In particular, Schoen discovered the unexpected relevance of the positive
mass theorem of general relativity. This marked a milestone in the development of
the theory of nonlinear partial differential equations. While semilinear equations
of Yamabe type arise in many contexts and have long been studied by analysts, this
was the first time that such an equation was completely solved. A rather complete
discussion of the Yamabe problem in book form can be found in Hebey (109].

Now let (M, g) be a smooth, compact Riemannian n-manifold, n > 2. Let
also q E (1, n), and a, f two smooth functions on M. Following Druet [73], we
discuss here the existence of positive solutions u E H9(M) to the equation

(E2) Aq..u +a(x)uq- = f (x)u'-'

where p = n q and

Aq.gu = -dive (IVulq-2Vu)

is the q-Laplacian associated to g. (Note that A2,g = Ag). Such equations will be
referred to as "generalized scalar curvature type equations:' By regularity results
(see, for instance, Druet [73]), any solution u of (E2) is CI ` for some a E (0, 1).
By Trudinger [186] it is C°O if q = 2. As a remark, one can note that the C-
regularity is, in general, optimal. Think of (R", e), the Euclidean space, and note
that

u=q - Ilxli+v--r
q

is a solution of Aq,eU = -n in lR".
We present here the following result of Druet [73], the formal generalization

to all q of Aubin's result [9] proved in the case q = 2. It clearly illustrates the role
aq (M) plays when studying such type of equations. Let Lq,g be defined by

Lq,gu = Aq.gU +a(x)ulq-2u

We say that Lq.g is coercive if there exists A > 0 such that for any u E H (M),

ulgdv(g)1(u)>X fu l

where 1(u) = ff(Lq.gu)udv(g), so that

1(u) = IM (Ioulq +a(x)lulq)dv(g)
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As one can easily check, Lq.. is certainly coercive if a > 0 on M. We also let

A=IUEH1(M)/ fm flulldv(g)=1}

where p = . One then has the following result of Druet [73]:

THEOREM 4.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q E (1, n) some real number, and let a, f be smooth, real-valued functions on M.
We assume that Lq.g is coercive and that f is positive somewhere on M. If

(max f (x)) " inf I (u) < I
.'EM UEA aq(M)q

then equation (E2) possesses a positive solution u E C1 "(M), a E (0, 1).

The proof of Theorem 4.3 proceeds in several steps. In the first step, one gets
solutions for "subcritical" equations. For S E (q, p) real, let

Ac= {uEHq (M)/ f flul5dv(g)=1}
ll M JJJJJ

and
gs = inf I (u)

uCA,

Then the following holds:

LEMMA 4.1 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q E (I. n) some real number, and let a, f be smooth, real-valued functions on
M. We assume that Lq,g is coercive and that f is positive somewhere on M. Set
p = nq/(n - q). For any s E (q, p) real, the equation

Aq,gu +a(x)uq-1 = lusf(x)us-'

possesses a positive solution us E A, fl CI "(M), a E (0, 1).

PROOF: Let (u,) be a minimizing sequence in A, for g,. Namely, ui E A,
for any i, and

lim I(ui)=g,
i-'+00

Without loss of generality, up to replacing u, by l ui I, one can assume that the u i s
are nonnegative. Since Lq.g is coercive, (ui) is a bounded sequence in H9(M). Up
to the extraction of a subsequence, since HQ (M) is reflexive, and by the Rellich-
Kondrakov theorem, this leads to the existence of some us E H,?(M) such that

ui - us in HI(M), u, -+ U. in L`(M), ui --+ U. a.e.

One then gets that us > 0 a.e., and that u, E As. Moreover, the weak convergence
in HI (M) implies that

1(u5) < liminf I (ui)
I-l+00

Hence, 1(us) = gs. By Euler's equation, the fact that us is a minimizer for I on
A, leads to the fact that u, is a solution of

Oq.gu, + a(x)us-1 = g, f (x)u'-I
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The result then easily follows from maximum principles and regularity results.

From now on, the general idea is to get the solution u of Theorem 4.3 as the
limit of (a subsequence of) (us), s - p. As a first remark, one can prove here that

lim sup µ, < inf I (u)
,.-p ueA

For such an assertion, let e > 0 be given, and let v E A, v nonnegative and such
that

I(v) < inf 1(u)+e
uEA

For s close to p,
r _I

v, _ (J f(x)vtdv(g)) v
M //

makes sense and belongs to As. Hence, 1(v,) ? µ,. Noting that 1(v,) --i. I (v) as
s -+ p, one gets that

lim sup µ, < 1(v) < inf I (u) + e
s_,p eCA

The fact that such an inequality holds for any e > 0 proves the above claim.
In what follows, up to the extraction of a subsequence, we assume that there

exists lim,-p µs. We let
1A = lim µs

s_p

One then has the following:

LEMMA 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 2,
q E (1, n) some real number, and let a, f be smooth, real-valued functions on
M. We assume that Lq.g is coercive and that f is positive somewhere on M. Set
p = nq/(n - q). For S E (q, p) real, let (us) be as in Lemma 4.1 with the
additional property that (µ,) has a limit s as s -+ p. Suppose that a subsequence
of (u,) converges in some Lk (M), k > 1, to a function u 0 0. Then u e C 1 -'(M),
a E (0, 1), u is positive, and

L q.gu +a(x)uq-i = If(x)up-1

In particular, µ > 0 and, up to rescaling, u is a solution of (E2).

PROOF: Clearly, (us) is bounded in Hi (M). Up to the extraction of a subse-
quence, and as s --3- p, we can assume that

u, u in Hi (M) , u, -+ u in Lq(M), us -+ u a.e.

In particular, u is nonnegative. Moreover, since IVu,I is hounded in Lq(M), we
can assume that for s -+ p,

I ou, lq-2VU, - E
in LPI(p (M). Similarly, we can assume that

us-1 - up-1 in Lpl(n-1)(M)
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since (us-') is bounded in LP/(s-1)(M) C LPI(p-"(M). By passing to the limit as
s tends to p in the equation satisfied by the us's, one then gets that

- div(E) + a(x)u9-' = µf (x)up-'

One can prove here that E = IVul9-2Vu, as in Demengel-Hebey [61] (see also
Druet [73]). Hence, u is a solution of

1 q.gU +a(x)ue-I = Lf(X)Up-1

By maximum principles and regularity results, one then gets that u is positive and
that u E C'-"(M) for some a E (0, 1). Moreover, multiplying the above equation
by u and integrating over M shows that µ > 0. This proves the lemma.

As a general remark on this result, one can note that

inf I (u)
uEA

and that u of Lemma 4.2 belongs to A, so that u realizes the infimum of I on A.
Indeed, multiplying the equation of Lemma 4.2 by u and integrating the result over
M, one gets that

,a f f (x)updv(g) =
fM

(loin" +a(X)U9)dv(g)

< liminf I (jVu, +a(x)u9)dv(g)s-.p

= lim inf µs

Hence, fm f (x)up dv(g) < 1. Let

Uv=/
(fm

FJ (x)u" dv(g))

Then V E A and, according to what has been said above,

fm

i-P
µ<I(v)=µ(f(x)updv(g))

As a consequence, fm f (x)up dv(g) > 1, so that fm f (x)up dv(g) = 1 and µ is
the infimum of I on A. This proves the above claim. Now the proof of Theorem
4.3 proceeds as follows:

PROOF OF THEOREM 4.3: Let (us) be as in Lemma 4.1. Up to the extraction
of a subsequence, one can assume that

lim µs = µ
s-. p

exists. Moreover, by the Rellich-Kondrakov theorem, and still up to the extraction
of a subsequence, one can also assume that (us) converges to some u in Lq(M) as
s tends to p. By Lemma 4.2, Theorem 4.3 reduces to the proof that u 0- 0. By
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definition of aq(M), one has that for any e > 0, there exists B£ > 0 such that for
any u E H'? (M),

q/p

IVuJ9dv(g)+BF f lulldv(g)
fm

Iul"dv(g)) (aq(M)q+e)
I.

M

By assumption, there exists e > 0 such that

Fix such an s. Then, for any s,

/ f \q/p

fJM
u°dv(g)J < (aq(M)9 +e)ps + Be j u9dv(g)

\\ M

for some b, independent of s. Moreover, one has that

1 1

us d v(g)J
f (x)us dv(g) < fm

max f (x) max f (x) M
XEM XEM

(aq(M)q + c) uinf I (u) <
1

lYI
m

xf(x))n

XEM

< (f u° dv(g)) Vol(MR)
M J

Hence,

((

q/p
1 1

gs - Y_4
Vol(M g) (mM f(x))

and one gets that

1 1

Y_Y 4

V01(M.g) (mom f(x))

Since

dv(g)(M)q + 6) A., + he
IM

u

lim sup its < inf I (u)
S-!p uEA

one gets by passing to the limit as s tends to p that

1
Y

< (aq (M)q + e) inf I (u) + BE f uq d v(g)
(mM

f(x)\,. UcA M

According to the choice of e, one then gets that fu uq dv(g) > 0. In particular,
u 0 0. As already mentioned, this proves Theorem 4.3. 0

As a straightforward application of Theorem 4.3, Druet [73] obtains the follow-
ing result. Here, for A as above, one just has to remark that the constant function

)/p
uo (fM1xdvs)
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belongs to A. Writing that

1(u) < 1(uo)

one then gets the following corollary:

COROLLARY 4.1 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
2, q E (1, n) be some real number, and let a, f be smooth, real-valued functions
on M. We assume that 4. is coercive and that f is such that fm f (x)dv(g) > 0.
If

max f (x)
cEM a(x)dv(g) <

fm f(x)dv(g) M aq(M)q

then equation (E2) possesses a positive solution u E C"a (M), a E (0, 1).

As another example of the kind of results that can be derived from Theorem
4.3, we mention the following result of Druet [731. Consider the u's defined by

I -(n/q)
uE = (E + rgl(q-I )) fi(r)

where r is the distance to some point xo where f attains its maximum, and where
(p is a smooth cutoff function. By studying the expansion of

J(ue) = I (ue)

(fM f (X)up dv(g))g/p

for E << 1, one gets the following corollary: In such a result, one has to use the
explicit value of aq (M) given by Theorems 4.4 and 4.5. We refer to Druet [731 for
more details on the proof of this result. However, note that similar computations to
the ones involved in such a proof will be developed in Sections 4.3 and 4.4 below.

COROLLARY 4.2 Let (M, g) be a smooth, compact Riemannian n-manifold, q E
(1, n) real such that q2 < n, and let a, f be smooth, real-valued functions on M.
We assume that a is such that Lq,g is coercive, that f is positive somewhere, and
that there exists x0 E M such that f (xo) = max.XEM f (x) and for which we are in
one of the following cases:

1. q <2,n>3q-2,anda(x0) <0.
8(n-I) -Apf(xo) 2ScaIR(Xo)2. q = 2 and (n-2)(n-4)a(xo) < f(xo) + n-4

x) < Scal8(xc).3. q > 2 and (n+34 g) I,f
f (X0)

Then equation (E2) possesses a positive solution u E CI (M), a E (0, 1).

Such a corollary has two very interesting consequences. One will be discussed
later on in Section 4.3. The other one concerns the Nirenberg problem. Let (Sn, h)
be the standard n-dimensional unit sphere of IIBn+I, n > 3. The Nirenberg problem
consists in characterizing the scalar curvatures of conformal metrics to h. Given
f E C°°(S") and coming back to (EI), this means that one will have to find condi-
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tions on f for (E,) with h in place of g and f in place of Scal1 to have a solution.
In other words, since Scalh = n (n - 1), and up to some harmless constant, one
will have to find conditions on f that ensure the existence of u E Cx(S"), u > 0,
solution of

(E3) Ahu + "(n - 2)_ _
4

When looking to such a problem, as discovered by Kazdan and Warner [130] (see,
also, Section 6.3 of Chapter 6), obstructions do exist. More precisely, if u is a
solution of the above equation, then necessarily

f (of, Q4)u2n"("-2) dv(h) = 0
s

for all first spherical harmonics i on S", where is the scalar product associated
to h. In particular, for any s > 0 and any first spherical harmonic i, functions of
the form f = 1 + though as closed as we want to the constant function l for
which (E3) has a solution, are not the scalar curvature of some conformal metric
to h. In particular, for any e > 0, there exist smooth functions f on S" such that
11f - I II c' < c and such that (E3) does not possess positive solutions. Conversely,
such an equation can be seen as the limiting case for q -> 2, q > 2, of the
generalized scalar curvature equations

(E4) Aq.9U +
n(n - 2)uq_I = fuP-1

4

where p = . By Corollary 4.2, one easily gets that there exists some eo > 0I"q

'Isuch that for any q E (2, fn), and any f E C°C(S"), if 11f - l IIc2 < co, then
(E4) possesses a positive solution. As unexpected as it may seem, Corollary 4.2
shows that the well-known Kazdan-Warner obstructions are specific properties of
the limiting equation (E3).

Many references that illustrate the role of a2(M) when studying PDEs do exist.
Among others, let us mention Aubin [9], Brezis-Nirenberg [34), and Schoen [175],
but also Djadli [68], Escobar-Schoen [78], Jourdain [129], and works of the author.
A survey reference on the subject could be Hebey [103].

4.3. Program A, Part I

Contrary to Program 2, Part I, Program A, Part I seems to involve serious
difficulties. As surprising as it may seem, one has to face serious problems even
when dealing with the first question of this program. Many authors have worked
on this question. We mention Aubin [10], Federer-Fleming [80], Fleming-Rishel
[83], Rosen [170], and Talenti [183]. The first definitive and important result on the
subject was obtained independently by Aubin [10] and Talenti [183]. It is stated as
follows:
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THEOREM 4.4 Let I < q < n and 1/p = 1/q - 1/n.
1. For any u E JD(R"),

(4.1)

where

(
l/P / ( 1/9

l

ulPdx)
< K(n,q){ J Ioulgdx)

R" J \\ Rtt I
l/n

K(n,1)= 1(-__)
n

wn-I
1 - ))I-11q( r(n + 1) )/n

n(n(q

n- q r(n/q)r(n + 1- n/q)wn-(
when q > I, and wn_) is the volume of the standard unit sphere of R.

2. K(n, q) is the best constant in (4.1) and if q > 1, the equality in (4.1) is
attained by the functions

1
n/q-I

uax) = (.l + Ixl )
where .l is any positive real number.

PROOF: We only sketch the proof of the result. For more details, we refer to
[10], [12], or [183]. Let us consider the case q > 1. The second part of point 2
is easy to check. So we are left with the proof of (4.1), together with the fact that
K(n, q) is the best constant. By standard Morse theory (see, for instance, Aubin
[12] for the following claim), it suffices to prove (4.1) for continuous nonnegative
functions u with compact support K, K being itself smooth, u being smooth in
K and such that it has only nondegenerate critical points in K. For such a u, let
u" : ]R" -+ R, radially symmetric, nonnegative, and decreasing with respect to Ix I,
be defined by:

Vole({X E R"/u*(x) > t}) = VO1e({X E IR"/u(X) > t})

where e stands for the Euclidean metric. One can check that u' has compact sup-
port and is Lipschitz. Moreover, one easily gets from the co-area formula that for
anym >- 11,

JR L f(u*)m
J

IVulm dx > l Vu* I"' dx and ut dx = dxR...

n n

As a consequence, it suffices to prove (4.1) for decreasing absolutely continuous
radially symmetric functions which equal zero at infinity. Denote by g such func-
tions. The problem then reduces to compute the maximum of

00 00

1(g) = f Ig(r)IPr"-' dr when J(g) = J lg'(r)Igr"-' dr
0 0

is a given positive constant. Set

1 "/q- 1

y -
(X+rq/(q-1))
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By Bliss [30] one has that the corresponding value 1(y) is an absolute maximum.
One then gets that the best value of K in the Sobolev inequality

1/P

(JR.

IUIPdx\ < K(L
Ioul9dx)

is

K = I In
1(Y)1 /PJ(Y)-I/q

w"-I
Simple computations give that K = K(n, q). This proves the theorem.

Regarding Theorem 4.4, note that when q = 2,

4

0

n(n - 2)Wnl"

where wn denotes the volume of the standard unit sphere of R"'. Such a result is
an easy consequence of the properties satisfied by the 1' function, that is, r(l) = 1,
1'(1/2) = /7-r, and 1'(x + 1) = xl'(x), and of the fact that

1)! 2,rn+1
w2" -2n-t-1 =_ (2n - 1)! n!

Note also that when q = 1, (4.1) is the usual isoperimetric inequality [80], [831,
and [79]. A very nice proof of such an inequality is presented in Gromov [96] (see,
also, Chavel [45]). The extremum functions are here the characteristic functions of
the balls of 1R". When q = 1, (4.1) is sharp, for an easy computation shows that

(n-I)/n
((

l I

ulx} = K(n, 1)(1 +0(1/k))I
Iukl"/dxl

\fR11"
J

where the uk's are defined by: uk (x) = 1 when 0 < Ix I < 1, uk (x) = 1 +k(1- Ix 1)
when 1 < Ixi < 1 + 1/k, and uk(x) = 0 when lxi -2: 1 + 1/k. Note here that
K(n, 1) is the limiting value of K(n, q) as q -+ 1.

REMARK 4.1. Okikiolu [164], Glaser-Martin-Grosse-Thirring [92], and Lieb
[148] generalized Theorem 4.4 when q = 2. One has that for any real number
0<b<Iand any uED(1R"),

\1/P 1/2

(4.2) (IX

Ll I-bplulPdx} Kn.p\J IVU12dx
R"

Moreover, the equality in (4.2) is attained by the function

U(X) = ( 1 + Ix12t/r)-r

where p = 2n/(2b + n - 2), r = 2/(p - 2), t = (n - 2)/2,

Kn W-(P-2)/2Pt-(P+2)/2pMI/2P = n 1 p

and

Mp = ((2r + 1)1'(2r)/rl'(r)2) (r/4)2/P(r + 1)-'

We refer the reader to [148] for more details on this result.



94 4. BEST CONSTANTS IN THE COMPACT SETTING I

Starting from Theorem 4.4, one gets the answer to question 1 A. The first result
one has to prove here is the following:

PROPOSITION 4.2 Let (M, g) be a Riemannian n-manifold (not necessarily com-
pact), and let q E [ 1, n) be some real number. Suppose that there exist A, B E 1W
such that for any u E £(M),

lI/P (f l I/q / /' IN

fu IuIPdv(g)< AVuI"dv(g) +BI J lulgdv(g)M/ \ M
where 1/p = 1/q - 1/n. Then A > K(n, q), where K(n, q) is as in Theorem 4.4.

PROOF: In order to prove the proposition, one can use truncated Bliss func-
tions [30] brought to zero at the edge of a ball. Such an argument is carried out
explicitly in [117] for q = 2. We present here the following proof by contradic-
tion. Suppose that there exist a Riemannian n-manifold (M, g) and real numbers
q E [1, n), A < K(n, q), and B, such that for any u E 1)(M),

`UP /
fm

l Uq / r 11q

(((4.3) \fm lul°dv(g) J <AI IVulgdv(g)) +B(J lulgdv(g)
/ \ / \\\ M

where 1 /p = 1 /q - 1 In. Let X E M. It is easy to see that for any e > 0 there
exists a chart (S2, (p) of M at x, and there exists S > 0 such that V (Q) = BO(S) the
Euclidean ball of center 0 and radius S in R", and such that the components g+j of
g in this chart satisfy

(1 - 08;j < gtj < (l +E)Sti
as bilinear forms. Choosing a small enough we then get by (4.3) that there exist
So > 0, A' < K(n, q), and B' E R such that for any S E (0, So) and any u E
D(Bo(S)),

I/P / 1/q

(
1/q

1 lul dx< A1 IVulgdx +B'\j
l ulgdx\\\

JJJ R" /// R"fR.

But by Holder,

( fBo(s) Bo
Iulg dx)

IN
< Vol, (B(10)) 1/11 (

if(S) I ulPdxI

I/n

/
where e denotes the Euclidean metric. Hence, choosing S small enough, we get
that there exist S > 0 and A" < K(n, q) such that for any u E D(Bo(S)),

) A"( f Vudx)
(fRJ

1/q

IulPdx

1/P

\\ R"

Let U E ,(R"). Set ux(x) = u(Ax), ) > 0. For A large enough, ux E 10(Bo(S)).
Hence,

(
UP \ i/q

l

ux11 dx) < A"(r IVuxlg dx
"Ll 111 JR

But

(\ fR luxIP dx)
UP

= A,-11/p IR" IuIP dx)1 /P
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while
1/q 1/q

Ivu;,11dx) /IVulgdx)
R" / R" /

Since 1/p = 1/q - 1 In, we get that for any u E D(1$"),

1/p 1/q

(JR.
Iul"dx) A"( / Dulgdx)

l fR'r

Since A" < K(n, q), such an inequality is in contradiction with Theorem 4.4. This
ends the proof of the proposition. 0

Let us now give the answer to question 1A as first obtained by Aubin in [10].

THEOREM 4.5 Let (M, g) be a smooth, compact Riemannian n-manifold. For any
e > 0 and any q E [1, n) real, there exists B E R such that for any u E Hi (M),

f q/p

fm
Vulq dv(g) + B J IuI' dv(g)J

lull dv(g)) (K(n, q)q + e) fm I
M

where 1 / p = l 1q - 1/n and K (n , q) is as in Theorem 4.4. In particular, for
any smooth, compact Riemannian n-manifold (M, g), and any q E [1, n) real,
aq(M) = K(n, q).

PROOF: Let e > 0 be given, and let q E ( 1, n) be given. For any x in M, and
any n > 0, there exists some chart (S2, (p) at x such that the components g,j of g in
this chart satisfy

1+n
S,i < gii < (1 + n)Sij

as bilinear forms. Coming back to the inequality of Theorem 4.4, and by choosing
n > 0 small enough, one can then assume that for any smooth function u with
compact support in 0,

(J1
(4.4) I uI p dv(g)

qll
) < (icn, q)q + 2) L IVulg dv(g)

M can be covered by a finite number of charts (f21, (A=I..... N because it is com-
pact. Denote by (a,),=1....N a smooth partition of unity subordinate to the covering

Set

algl+1

N IqI+1
m=1 am

where [q] is the greatest integer not exceeding q. Clearly, nil /g E C1 (M) and n,
has compact support in n for any i. For U E C'°(M), we write that

N N N

IIiIIq = IIu4IIp/q II niugll < Ilniugllp/q = II17 i1/qulln

i_1 p/q i=1 i=1
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where II Iln stands for the norm of LP(M). Coming back to (4.4), one then has that
for any u E C°°(M),

q/p

fm
julldv(g))(

N

<(K(n,q)7+2) fM\'li/glvul+lu11vn;/gl)gdv(g)

N
±/4< (icn, q)q + 2 f (lvulgni +Nlvul7-I IV,? In,(q-I)/9lul

M i=1

+ vlul7lvn; /glg)dv(g)

< (K(n, q)7 + )q + I NHII VuIIq-1 IIuIIq + vNHI II uIII)

by Holder's inequality, where µ and v are such that

(1+t)q<1+µt+vtq
for any t > 0, for instance, µ = q max(1, 2q-2) and v = max(1, 2q-2), and where
H is such that for any i, IV n; /q, < H. From now on, let en > 0 be such that

(K(n,q)9 + 2)(I + Eo) < K(n, q)q +

For any positive real numbers x, y, and A,

qxq-'y < A(q - 1)x7 + X1-qyq

By taking x = IIVuIIq, y = IIullq, and

qEo
µ(q - 1)NH

one then gets that for any u E C°O(M),

,NHIIVuII7-' IIullq S EOllvueq +CIIuIIq

where

C
_NH( qEo )I-q

q µ(q - 1)NH
Hence, for any u E CO0(M),

q/P

ulPdv(g))(JM I

/'
< (icn.q)q+ E2)(1+eo) f IVulQdv(g)+B fJul'dv(g)

< (K(n,q)q+E)IM Ivulgdv(g)+Bf Iulgdv(g)
M
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where

B = (K(n, q)g + 2)(C + vNHg)

In particular, the inequality of Theorem 4.5 is valid. Now, noting that

(x+y)'/q <xUq+y"/q

for x and y nonnegative, one gets that for any s > 0, there exists B > 0 such that
for any u E Hi (M),

/fm I/P
lldv(g)1

II lu

l)/q
J Ioulgdv(g)! +BU/q fm lul9dv(g)/ M

(11q

< (K(n, q) + ellq) J I Vulg dv(g)) + B11q f lulg dv(g)
M M

Clearly, such an inequality combined with Proposition 4.2 shows that aq (M) _
K(n, q). This ends the proof of the theorem.

Concerning Theorem 4.5, we will see in Section 7.1 of Chapter 7, when dealing
with complete manifolds, that B depends only on n, q, s, a lower bound for the
Ricci curvature of (M, g), and a lower bound for the injectivity radius of (M, g).
Anyway, now that the answer to question I A has been given, let us deal with
question 2A. We start with the following result of Hebey-Vaugon (119], which
fully answers the question when q = 2:

THEOREM 4.6 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
There exists B E R such that for any u E H2(M),

(fm
12/p /'

I2 opt) luIpdv(g) J < K(n,2)'- J lVul2dv(g)+B( u2dv(g)/ M M

where 1 l p = 1 /2 - 1 In. In particular, for any smooth, compact Riemannian
n-manifold (M, g), n > 3, inequality (Iz LPt) is valid and A2(M) is a closed set.

PROOF: We give only a very general idea of how the proof works and will
come back to the complete proof when discussing the case of complete manifolds
in Section 7.3 of Chapter 7. Let a > 0 be some positive real number, and for
u E HI2(M), let

f IVu12dv(g)+a f u2dv(g)
Ia(u) = M

1

M

(fm lulOdv(g))'/p

Clearly, the result is equivalent to the existence of some ao > 0 such that

inf 1,,,o (u) > 1

UEH (M)\(0) ° - K(n, 2)2
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The proof here proceeds by contradiction: We assume that for any a > 0,

inf I (u) < I
uEHi (M)\{0} K(n, 2)2

By standard variational techniques, as used in the proof of Theorem 4.3 of Section
4.2, such an inequality leads to the following: For any a > 0, there exists ua E
COD(M), ua > 0, and there exists A, E (0, K(n, 2)-2), such that

Agua + aua = 'X"' UP01-1

on M, and fm ua dv(g) = 1. The idea then is to prove that for a large enough, the
ua's do not exist. This looks very much to what is given for free in the Euclidean
context by the Euclidean Pohozaev identity (see the remark below). In order to
prove that the ua's do not exist for a large enough, we let a +oo. Here,
the ua's develop one concentration point. By a careful study of what happens at
this point, involving a rather sophisticated blowup argument, and surprisingly by
coming back to the Euclidean Pohozaev identity, one gets the contradiction. A
major point in the final argument is to estimate the difference that exists between
the Euclidean metric and the Riemannian metric after rescaling. Details on such an
approach will be given in Section 7.3 of Chapter 7 when proving the more general
Theorem 7.2. 0

REMARK 4.2. Suppose that M is some smooth, bounded, star-shaped domain
9 of R with respect to 0, that g is the Euclidean metric, and that ua = 0 on as2.
The Euclidean Pohozaev identity states that for any smooth function u such that
u=0onf(xaS2,

r f
)(au)2 do = -2

J
(Vux)Deu dx - (n - 2) J u1eu dx

st n s
where v is the unit outer normal to 8s2, is the Euclidean scalar product, dx
stands for the Euclidean volume element, and D, stands for the Euclidean Lapla-
cian. For ua a positive solution of

n-1A"Ua + aua = Xaua

in S2 with respect to the Euclidean metric, such that ua = 0 on a92, one then gets
that

ua dxf(x , da = -2a 12
n

The fact that 52 is star-shaped with respect to 0 implies that the left-hand side
member of this equality is nonnegative. Clearly, this proves that the ua's do not
exist as soon as a > 0. In the more general context of an arbitrary, compact
manifold, coming back to the sketch of the proof of Theorem 4.6 we discussed
above, one gets the existence of some ao > 0 such that the ua's do not exist as
soon as a > ao.

Concerning Theorem 4.6, we will see in Section 7.2, when dealing with com-
plete manifolds, that B depends only on n, a lower bound for the injectivity radius
of (M, g), and an upper bound for the norm of the Riemann curvature Rmg of
(M, g) and for the norm of the first covariant derivative V Rmg of Rmg. Anyway,
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now that we have answered question 2A for q = 2, one can ask what happens for
q # 2. The first result we mention is the following one of Aubin [10]:

THEOREM 4.7 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q E [1, n) real. Suppose either that n = 2 or that (M, g) has constant sectional
curvature. Then inequality (I' .opt) is valid and A. (M) is a closed set.

PROOF: Let us just sketch the proof. As shown by Aubin [10] when n = 2,
or by Schmidt and Dinghas [66] when g has constant sectional curvature, for K an
upper bound of the sectional curvature of g in a ball (in spirit small) of M, and for
9 a smooth, bounded domain in such a ball, the area of ast is greater than or equal
to the area in a space of constant curvature K of the boundary of a ball having the
same volume as U. From such a result, by standard arguments of Morse theory, and
with a symmetrization process via the co-area formula, somehow similar to the one
we described in the proof of Theorem 4.4, one gets that any point in M possesses
some open neighborhood S2 where (I1 oP,) is valid for all u E£(S2). (We refer
to Aubin [10] for details on such an assertion. The point is that (Ig 0P,) is actually
valid on the standard sphere.) A localization process, similar to the one used in the
proof of Theorem 4.5, then shows that (Iy .P,) must be valid for any u E Hq (M).
This proves the theorem.

As in Section 4.1, one can start now with inequality (I4,gen) instead of in-
equality (Iy.gen). Given (M, g) a smooth, compact Riemannian n-manifold, and
q E [1, n) real, one can then consider the (possibly valid) following inequality:
There exists B E R such that for any u E Hi (M),

4/P

(f IuIl"dv(g)) < K(n, q)" f B J IuI`rdv(g)
M M M

where 1/p = l/q - 1/n. Clearly, the validity of (I9,oP,) implies that of (I1..P,)
since q ? 1 and, roughly speaking, (Iy 0P,)w in the sense that we elevate

each term in (Iy..P,) to the power q. One can now ask if such an inequality is valid.
According to Theorem 4.6, (I; op,) is valid on any smooth, compact Riemannian
manifold. Independently, and when dealing with the standard unit sphere (S", h)
of R", one has the following result of Aubin [101:

PROPOSITION 4.3 Let (S", h) be the standard unit sphere of R"+i. Inequality
(IN 0P,) is valid on (S", h) for any q E [1, n) if n = 2 and any q E [1, 2] if n > 3.

PROOF: Here again, let us just sketch the proof. Let P be some point in
S", and let r the distance to P. Once more by arguments from standard Morse
theory, and by a symmetrization process, it suffices to prove that (Iy.,pt) is valid
for functions of the form g(x) = g(r), g a nonnegative, absolutely continuous,
decreasing function on [0, ir]. In geodesic normal coordinates at P,

r"-1 1h1 = sin' - i r
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By Theorem 4.4, as one can easily be convinced, one has that for g as above,

LWn-1

"
I g(sirn'r)(n-1)/qI

rn-1 dr]glp

of K n q)q f
"

n- 1drJ
ILL

/I

o r

As shown by Aubin [10], one can then prove that there exists some constant C,
such that

Wn-' f" sin r)(n-u/g1Igrn-1
dr <

J IVglgdv(h)+C1J luIgdv(h)
^ sn

and that there exists some constant C2 such that

[wJ /'gt(sinr)(n-1)/g)'r1 drlq/P >

r 1 J
/

fs.

qlp

gP dv(h)/ ) C2 fn gq dv(h)
s

Clearly, this proves the proposition. 0

Let us now deal with (Iq opt) for q > 2. The first result on the subject is the
following very nice, though simple, result of Druet [74].

THEOREM 4.8 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q e [1, n) real. Assume that q > 2, that q2 < n, and that the scalar curvature of
(M, g) is positive somewhere. Then inequality (Iq..p) is false on (M, g).

PROOF: Let xo E M be such that Scal(M.g)(xo) > 0, where Scal(M,g) stands
for the scalar curvature of g. For e > 0, we set

uE = (s+r,?- 1-9(P(r)

where r denotes the distance to xo, (p is smooth such that 0 < co < 1, (p = I
on (- z , 1), and (p = 0 if r > 8, and 8 > 0, 8 small, is real. In order to prove
Theorem 4.8, one just has to prove that for any a > 0, and for a small enough,
J(u.) < K(n, q) -q, where

fMIDuFlgdv(g)+af uedy(g)
J(ue) q

(ff u° dv(g)) v
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Here, rather standard computations lead to

r / f(1aJ udv(g) = I +s)sn-1 ds Is y +ll

ff uF dv(g) _ Wn-1 (1
+saT)-"sn-I ds 6

M
rm

J
(1 +si)-"Sn+I ds

0
n42(y-I) --n 24

X e a 4
4-1f

dv(g) C+K(n,q)_ (wnI f(i +s )"snds)eIM
- q - 1) u'" I

Sca116n
(xo)

JOO(1
+ sY ' )2z

xs+"+1ds e v +o e v )

where wn-I stands for the volume of the standard unit sphere (Sn-1, h) of 1R". As
a remark, note that the above integrals do exist as soon as q > 2 and q2 < n. Now,
as a consequence of such inequalities, one gets that

K(n,q)QJ(uE) +eyx (AI +A2e +A3y +I-9

)

+O(62Y_+1

4))
where A I > 0, A2 > 0 real are independent of e, and

A3
Scal(M,8)(xo) q .f0 (1 +s )-nsn+I ds

=
6n p f0O(1 +S1)-"Sn-I ds

- +n- If-(, +s )-nav s ds

Since q > 2 and g2 < n,

1-n+2q-1
<qz _

n <0
q q q

Hence, one will find e > 0 small enough such that

J(uE) <

f 00(1 +ST )-nSej+n+1 ds\0

1

1

K(n, q)q

if A3 < 0. But, as one can easily check,

q r(n-9-2+2)r(9+v-3)
A3

2n2 r(n --)1'("- - 1) Sca11M.X1(xo)

q q
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As a consequence, A3 < 0 as soon as Scal(M,g)(xo) > 0. Clearly, this ends the
proof of the theorem. 0

As a consequence of this result of Druet [74] and of Theorem 4.7, one gets
that inequality (I9 ,P,) is valid on the standard unit sphere (S", h), while inequality
(Iq'opt) is not valid on (S", h) if q > 2 and q2 < n. This leads to the following
corollary:

COROLLARY 4.3 For q > 2, there exist smooth, compact Riemannian manifolds
for which (I, P) is true while (I1 .0p) is false.

Coming back to Theorem 4.8, one can ask if its assumptions are sharp or not.
Concerning the assumption that q > 2, we already know by Theorem 4.6 and
Proposition 4.3 that it is sharp. A very surprising fact (think, for instance, of Propo-
sition 4.1) is that the assumption on the scalar curvature is also sharp, as proved by
the following result of Druet [74]:

PROPOSITION 4.4 Let (T", g) be a smooth, flat, compact n-dimensional torus.
For any q E [1, n) real, inequality (Iy,oP,) is true on (T", g).

PROOF: The proof of such a result is more subtle than that of Theorem 4.8. It
proceeds by contradiction. We closely follow the lines of Druet [741. By Theorem
4.7, we may assume that q > 1. Let q E (1, n) real be given. Fora > 0, set

l,Xa =m i (IVu14dv(g)+aJ lul'dv(g)
(f

T^

where

A = {u E H4(T")/J" lul°dv(g) = I
ll i

Assume that (Iq,oP,) is false on (T", g). Then for any a > 0,

1
Xa <

K(n, q)q

By standard variational techniques, as developed in the proof of Theorem 4.3, one
gets from such an inequality that for any a > 0, there exists some function ua E A,
ua > 0, solution of

(4.5) Aq,gua + aua-1 = Aaup-1

where Aq,g is the q-Laplacian of g. By maximum principles ua > 0, while by
regularity results ua E C (.x (T") for some X E (0, 1). In particular, ua E C ((T" ).
Let us now say that x E T" is a point of concentration of (ua) if for all S > 0,

lim sup J ua
a-.

dv(g) > 0
OO Ba (b)

First, we claim that, up to a subsequence, (ua) has a unique point of concentration.
The existence of such a point is evident since T" is compact. Conversely, let x E
T" be a point of concentration of (ua). Let us prove that x is unique. For that
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purpose, let S > 0, S small, and let rt E ((B, (S)) such that 0 < >7 < 1 and q = 1
on Bx (S/2). Multiplying (4.5) by if u,,, k > 1 real, and integrating over T" lead to

Jr. 17QUa0g.gu« dv(g) + a f 11quk+q-1 dv(g) _ Aa j 17 k+p-1 dv(g)
T n

Standard computations, using Theorem 4.5, then lead to the following situation:
for any s > 0, there exist positive constants BE and CF such that for any a > 0,

E 1 -
(k +

q

- 1l9 )/ 1

k
s A« (K(n' q)v + s) \ fr(a) UPa

dv(g)
p

/ k{y_1 p P

x I J n t 17ua °) dv(g))
r \

(4.6) j CE(K(n,
q)4 + s)IVl,I? + BErlgjua+Q-1 dv(g)

+ (k + q - 1)4(1
+ e)(K(n, q)q + s)

4

Hl 4 `

x (f dv(g)) (f Ioualgdv(g))
T" T"

Since x is assumed to be a point of concentration of (ua), one has that for 8 > 0

U
es

lim sup UP dv(g)) p = a > 0
a9--oo .,(S)

where a < 1. Assume that a < 1 for some S > 0. Then we may takes > 0 small
enough, and k > 1 sufficiently close to 1, such that

1 - f k + q - 1) I + 8 A« (K(n, q)9 + s)a > 0
9

Since the right-hand side of (4.6) is bounded for k > 1 close to 1, this leads to the
existence of some M > 0 such that for all a >> 1

(fri
+q-, p \ v

(>7ua 4 ) dv(g)1 <M

By Holder's inequalities,
r

fU« dv(g) =
J

Up-q-k+lUg+k-1 dv(g)
Bx()

) dv(g)) Vn Ua
p-v dv(g))fT" `iiua q

Hence,

updv) < M1 ki Ua p-aja(8
r

dv(g))
(a)

e-Y



104 4. BEST CONSTANTS IN THE COMPACT SETTING I

and since for k > 1 sufficiently close to 1,
(k-1)p0<p- p-q <p,

one gets that

(4.7) Jim sup f uP dv(g) = 0
a-+oo , (s1

Indeed, multiplying (4.5) by ua, integrating over T", and letting a go to +oo leads
to

lim u,q dv(g) = 0a-ocJTy
By compactness, one then gets that

lim sup ua dv(g) = 0
a-+oo T+,

for any 0 < s < p. But (4.7) is absurd. As a consequence, a =land

lim sup J ua dv(g) = 1
ayoo Br(S)

for all 8 > 0. As one can easily check, up to the extraction of a subsequence, this
shows that the concentration point x of (ua) is unique. The above claim is proved.
Now, thanks to inequality (4.6), we easily get that there exist s > 0 and M > 0
such that for any S2 C T"\{x), and any a >> 1,

/u+dv(8)
By Moser's iterative scheme, as developed, for instance, in Serrin [179] (see, also,
Trudinger [184] and Vcron [197]), one then gets that

ua -+ 0 in Ca(T"\(x))

as a -+ +oo. All we have said till now holds on arbitrary, compact Riemannian
manifolds. Starting from now, we use the specificity of (T", g). Since (T", g) is
flat, there exists some small ball B, centered at x, such that (B, g) is isometric
to the Euclidean ball of same radius. By Theorem 4.4, one then gets that for any
u E Hg1(B),

K(n,q)gJ IVuI1dv(g)(f1u1'dvg))"
a

The goal now is to prove that such an inequality, combined with the facts that

Aq.rUa + aua-1 = jaUa-I

that ua E A, and that ?a < K(n, q)-q, leads to a contradiction. Clearly, this will
end the proof of the proposition. In what follows, let)? be a smooth function on T"
such that r) = 1 on B' c B, q = 0 on T" \ B, B' another ball centered at x. Then

\n
fa

(rlua)P dv(g) I < K(n, q)q IV (nua)Iq dv(g)/
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so that, setting rl' = I - n,

uadv(8))" < (joiua)hldv(g))"
a

K(n, q)l f IV((1 - 1?')ua)I' dv(g)

In what follows, C will always denote some constant independent of a. We
have that

XV((1-n')Ua)Ig < (IVual
+IV()?'Ua)I)4

< 1Vua1, +CIVUaIq--IIV(n'u«)I +CIV(n'u«)Ig
< (1 + C 11')IVualg + CUaIvU«Ig-11011'1 + CIV(n'Ua)I9

But

IV(n'U«)Ig < C(n'),IVualg
+Cualoll'1,7

so that

f IV((1-n')U«)Igdv(g)

<J IVual"dv(g)+Cf IVUalgdv(8)
" r T"\8'

+CJ uiIoualg-I dv(g)+C f ugdv(g)
.n\Br Tn\B,

Hence,

( In /'
f uadv(g)K(n,q)g J IVuaIQdv(8)+C f Ioualgdv(g)

T" T"\ B'

+ C f u4o, dv(g) + Cf uaIVualg-I dv(g)
T"\B' "\B'

Multiplying (4.5) by ua and integrating over T" leads to

I IVuaIgdv(g)+af u`!dv(g) =,1«
n Tn

As a consequence, we get that

/ Y

( f ua dv(g)) < A«K(n, q)g - aK(n, q)9 fu uq dv(g)
'

+ Cf IVualgdv(g)+C fmwM\8' M\B'

+Cf uaIVuaIg-1 dv(g)
M\8'



106 4. BEST CONSTANTS IN THE COMPACT SETTING I

Since 1laK(n, q)g < 1, this leads to

(aK(n, q)g - C) u, du(g)
"

Y

< I ` (fUdV()) +Cf IVualdv(g)
T"\B'

+Cf ualVualg-'dv(g)
T"\B'

ua dv(8) + C J IVual9 dU(8)f "\B' T'\B'

+Cf uaIVuaIq-1 dv(g)
T"\B'

that is to say,

aKT"\B- IVu«Igdv(g)fr"\s' ua dv(g) f
(n, q )q - C

fT" uqa dv(g)
+ C

fT" uq dv(g)

+ CfT -\B,
uaJVualq-' dv(g)

fT" ua dv(g)

By Holder's inequalities, one then gets that

(4.8)

Here,

aK(n, 4)q - C <
fr"\B' uP dv(g) + C fT"\B, IVualq dv(g)

fT" u'r d v(9) fT" ua dv(g)

fT"\B' IVualg dv(g) s4

+ C( fT"uadv(g) /

fT"\B' up dv(g)
< gup uP_q

Jr ua dv(g) T"\B'

which tends to 0 as a -). +oo, since

ua -+ 0 in C°a(T"\{x))

as a -+ +oo.
Let us now get estimates on the expression

fT"\B' IVualgdv(g)
fT" uct dv(g)

Let B" c B' a ball centered at x, and let q" > 0 be a smooth function on T"
such that rt" = 0 on B" and rl" = 1 on T"\B'. Multiplying (4.5) by (rl")qua and
integrating over T", we obtain

f (n")gIVualq dv(g) + q f (n")q-1 uaIVUa1q-2(Vn", Vua)dv(g) <
" "

K(n, q) -q f(II)uPdu(g)
"
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Hence,

j jf (71")gIVUa.Iydv(S) < CIil"VUaI'-1U4 dv(g)+C(jl")4u"dv(S)
" " "

i
f ( f

G c( u°

dv(S))v(

I17!'Vualy dv(S)

T" T"

+ C J (>)")yu« dv(g)

and as a consequence

fr (r!")'IDUalydv(g)
q

fr fr d v(g) )
+ C fT"\a dv(g)

fr ua d v(g)
Here again, one has that

uP dv(g) < sup uP-q

fT.. Uadv(g) r"\B

which tends to 0 as a -+ +oo, since

q

ua -+ 0 in C°c(T"\(x))

as a -+ +oo. Hence,

fT"\8' I oua l y d v(S)

-
fr l0ua ly d y(8) <_ C

`'fr" U" dv(g) dv(g)fr" u
Coming back to (4.8), and letting a - +oo, one gets the desired contradiction.
As already mentioned, this ends the proof of the proposition.

Looking carefully at the proof of Proposition 4.4, one sees that the arguments
involved in such a proof are very general. Such arguments provide us with a local-
ization process for the (IQ op) optimal inequality. This is expressed in the following
result:

THEOREM 4.9 (Druet's localization) Let (M, g) be a smooth compact n-dimen-
sional Riemannian manifold. Suppose that for some q E [ 1, n) the (I4 op,) inequal-
ity is locally valid in the sense that any x in M possesses an open neighborhood n
with the property that for any u .D (Q),

4/P

(Iy.oPt) (I I ul Pdv(S)) < K(n, q)y f
I

VUlq dv(g) + BX
I 1

u1" dv(g)

for some B,. E R independent of u. Then inequality (Iy.oPt) is globally valid on
(M, g): There exists B E R such that

r
(Iq.oP,) [ f IuIP dv(g))

q/P
< K(n, q)y f IVuly dv(g) + B f luly dv(g)

M M M

for any u E HQ (M).
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PROOF: If q = 1, the proof goes in a very simple way via a partition-of-unity
argument. One just has to glue together the local inequalities to get the global one.
Suppose now that q > 1. The proof then goes as in the proof of Proposition 4.4.
Assuming that (I9,opt) is not globally valid, one gets some sequence (ua)a>o of
positive C functions on M, A E (0, 1), such that for any a,

llq.gua + aua-I = Aaua

for some real number ka E (0, K(n, q)-q), and such that for any a,

JM
ua d v(g) = I

As in the proof of Proposition 4.4, one then gets that, up to a subsequence, (ua)
has a unique point of concentration x E M, with the property that

ua --> 0 in C (M\{4

as a -+ +oo. Suppose now that there is some open neighborhood Q of x, and that
there exists Bx E JR such that for any u E .(12),

1 q/P
` f Jul,* dv(g)) K(n, q)q f IVulg dv(g) + BX

I.
lulg dv(g)

\ M M M

Without loss of generality, we can assume that St = B is a ball centered at x.
Following what has been done in the proof of Proposition 4.4, the goal now is to
prove that such an inequality, combined with the fact that

Oq,gua + aua-I = k,,uP-1

that fu UP dv(g) = 1, and that k,,, < K(n, q)-g, lead to a contradiction. Clearly,
this will end the proof of the theorem. In what follows, let n be a smooth function
on M such that n = 1 on B' C B, n = 0 on M\B, B' another ball centered at x.
Then

C J (nua)0 dv(g)) < K(n, q)qf I V (nu«) I q dv(g) + BX J (nua)' dv(g)
e B

so that, setting n' = 1 - n,

r P

J UP dv(g)

f n
( f (nua)P dv(g))\ e

< K(n, q)q IM IV(1 - n')u)Idv(g) + Bf(ua) dv(g)

< K(n,q)q IM X0((1 - n')ua)Iq dv(g) + Bx fM ua
dv(g)
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As in the proof of Proposition 4.4,

/'
L Iv((1 - ri')ua)j"dv(g) < L IVUaIydv(g)+C fM\B, IDuaIydv(8)

+ C f uaIvualy-1 dv(g)
rM\B'

+ C
J

uq dv(g)
M\ B'

for some constant C independent of a, while

I Vu. I" dv(g) + a f ua dv(g) = Aa
fm

As a consequence, we get that

U,* dv(g) J < kaK(n, q)g - aK(n, 9)Q
I.

u« dv(g)r
B'

+ C f IDuaIydv(g)+C f uadv(g)
M\B' M\B'

IM
+C uIVuaI9'dv(g)+dv(g)

fB

for some other constant C independent of a. Since kaK(n, q)9 < 1, and noting
that

/ 1N
Udv(g)1 - ( f UPdv(g)fM\B'°

' /
this leads to

(4.9)
aK(n, q)I - (B., + C)

fM\B'U.IVU.IQ-1 dv(g)
+C +C

fM U',? dv(8) fm ua dv(8) fm W, dv(8)

< fM\B, up dv(g) fM\B' I Vua I9 dv(g)

fMUadv(g)
+C

fMUadv(8)

IVuaNdv(8)1

fm UC d v(g) J
With the same arguments used in the proof of Proposition 4.4, and since

ua + 0 in Ca(M\{x})

as a +oo, one has that

fm B, UPdv(g) fm B' IVuaIQdv(g)

fM\B' uP dv(g)

CI l+oo fu ua dv(8)
- 0
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and that

JM\B' IVualgdv(g)
< C'

JUadv(g)fm
for some constant C' independent of a. By taking the limit as a -a +oo in (4.9),
one then gets the desired contradiction. This ends the proof of the theorem.

Theorem 4.9 leads to several important results. One gets, for instance, the
following proposition of Druet [74]:

PROPOSITION 4.5 Let (H", ho) be a smooth, compact, n-dimensional hyperbolic
space. For any q E [1, n) real, inequality (Iq.(,,) is true on (H", ho).

PROOF: Let (H", ho) be the simply connected hyperbolic space of n-dimen-
sions. Any point in H" possesses some neighborhood that is isometric to an open
subset of H". By a result of Aubin [10], for any u E D (fin), and any q E [1, n),

a/n
( f luI° dv(ho)J < K(n, q)q

I.
IVulq dv(ho)

yn

Hence, any point in H" possesses some open neighborhood 0 such that for any
q c- [ 1, n), and any u E £ (0),

/ l
( f Iulpdv(ho)

4/A

) < K(n,q)q f IVulgdv(ho)\ y" J y
By Druet's localization, Theorem 4.9, this proves the result. 0

As another striking example of application of Druet's localization, the follow-
ing result holds (Druet, oral communication):

THEOREM 4.10 For any smooth, compact Riemannian 2-manifold, and any q E
[ 1, 2), (Igq,op,) is valid.

PROOF: Let (M, g) be a smooth, compact Riemannian manifold of dimension
2. Without loss of generality, up to resealing. we can assume that the sectional
curvature of (M, g) is less than or equal to 1. As shown by Aubin [10], for any
x in M, there exists some Sx > 0 such that for any smooth, bounded domain
92 C Bx(SS), the area of 892 is greater than or equal to the area in the standard
sphere (S2, h) of the boundary of a ball having the same volume than 92. Let
q E [1, 2) be given. From such a result and with a symmetrization process via
the co-area formula similar to the one we described in the proof of Theorem 4.4,
one gets that any point x in M possesses some open neighborhood Qx with the
following property: For any smooth, nonnegative continuous function u on M,
with compact support K C 92x, K being itself smooth, u being smooth in K and
such that it has only nondegenerate critical points in K, and for any P E S2, there
exists some Lipschitz function u' : S2 - R, depending only on the distance r to
P, and decreasing with respect to r such that IIVu"Ilq IIVuIIq, IIu"IIq = IIuIIq,
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and IIu* lip = 11u IIP. By Proposition 4.3, one has that there exists B E IR such that
for any f E Hq (S2),

( \ q/p

`III p dv(h)/ } _K(n, q)q I Vf Iq dv(h) + B If Iq dv(h)
fS2 j', f

s=

Hence,

(1S2

\
f fS2

lu*lpdv(h)) < K(n,q)'Vudv(h)+B 'gdv(h)
/lI '-

an for u as above,

q/p

f IuIpdv(g)) < K(n,q)( fm IVuI"dv(g)+B f IuIgdv(g)
M

By standard arguments from Morse theory, one then easily gets that such an in-
equality is actually valid for any u E D(SZx). In other words, and for any q E
[ 1, 2), (Iq .p,) is locally true. By Theorem 4.9, this proves the result. O

Coming back to Propositions 4.4 and 4.5, these propositions suggest that the
optimal inequality (Iq .pt) should be valid when dealing with manifolds of nonpos-
itive curvature. As recently noticed by Aubin, Druet, and the author [13], this is
basically the case. This is the subject of the following theorem, another very nice
application of Druet's localization. More precisely, one gets that the validity of the
Cartan-Hadamard conjecture in dimension n (as discussed in Chapter 8) implies
the validity of (Iq"p,) on compact Riemannian n-dimensional manifolds of non-
positive sectional curvature. Apart from the 2-dimensional case which has already
been discussed in Theorem 4.10, and since the Cartan-Hadamard conjecture is true
in dimensions 3 and 4, (Iq.opt) is valid in such dimensions.

THEOREM 4.11 Let (M, g) be a smooth, compact Riemannian n-manifold of non-
positive sectional curvature, and let q E [ 1, n). Suppose n = 3 or 4. Then inequal-
ity (Iq q,.pd is valid on (M, g).

PROOF: Let (M, g) be the universal Riemannian covering of (M, g). Since
the sectional curvature of g is nonpositive, the sectional curvature of g is also
nonpositive. In particular, (Al, g) is a Cartan-Hadamard manifold. As shown in
Section 8.2 of Chapter 8, the validity of the Cartan-Hadamard conjecture implies
that for any u e f(M), and any q E [1, n),

/ f q/p

I f IuIP dv(g)) < K(n, q)q IVuI'1 dv(g)
M M

Hence, under the assumption that the Cartan-Hadamard conjecture is true, any
point in M possesses some open neighborhood S2 such that for any q E [1, n) and
any u E £ (S2),

q/p

\ fm I uIP dv(g))
< K(n, q)q f Ipu11 dv(g)

M
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By Druet's localization, Theorem 4.9, one then gets that (Iq p,) is globally valid.
Since the Cartan-Hadamard conjecture is true in dimensions 3 and 4 (see Section
8.2 of Chapter 8), this proves the theorem. O

Let us now come back to Proposition 4.4. In this result, the torus may be seen
as a limit case of the manifolds in question in Theorem 4.8. Looking more precisely
to the developments involved in the proof of Theorem 4.8, as shown by Druet [74],
the torus also appears to be a limit case of compact Ricci flat manifolds which are
not flat. As shown by Berger [25], 4n-dimensional Riemannian manifolds whose
holonomy group is contained in Sp(n) are Ricci flat. Such manifolds are also called
hyperkahlerian manifolds. Explicit examples of compact hyperkahlerian manifolds
that are not flat have been given by Beauville [20] in all dimensions. We refer the
reader to the excellent reference by Besse [28] for more details on the subject. The
following result is once more due to Druet [74]:

THEOREM 4.12 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q E [1, n) real. Assume that (M, g) is Ricci fat, but not flat. If q > 4 and q2 < n,
then inequality (Iq.0pi) is false on (M, g).

PROOF: The proof is similar to that of Theorem 4.8. Let Weyl(M g) be the
Weyl curvature of g, and let xo E M be such that IWeyl(M.g)(xo)I > 0. Fore > 0,
we set

1_n

uE = (E + 4T) 9 gp(r)

where r denotes the distance to xo, So is smooth such that 0 < (p < 1, go = 1 on

(- z ,
z
), and (p = 0 if r > S. and S > 0, S small, is real. In order to prove the

result, one just has to prove that for any a > 0, and for e small enough, J(uE) <
K(n, q)-q, where

JM IDuEI9dv(g)+a fMUgdv(g)
J(uE) =

( s
(fM UE d v(g)) n

Similar computations to those involved in the proof of Theorem 4.8 then lead to
the following:

K(n, q)gJ(U,) < 1 + e4-' 1 B1 + B2eq + B3E1-a+4 +O(E1-9+4Yy'q

where B i > 0, B2 > 0, are independent of E, and

83 - IWeyl(M.g)(xo)12 n - q f0coo (I

120n(n + 2) ( n f- (1 + s
)-nsn-'

dsf )- °0
(1 +s )-ns +n+3dS

0

f °O (1 ds
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Since q > 4 and q2 < n, one has that
z_

1-n+4q-1 <q n <0
q q q

Hence, one will find e > 0 small enough such that

J(uf) <
I

K(n, q)q

if B3 < 0. As one can easily check, B; < 0 if IWeyl(M.S)(xo)12 > 0. This ends the
proof of the theorem. O

As a direct consequence of such a result, and of Theorem 4.8, one gets the
following corollary:

COROLLARY 4.4 Let (M, g) be a smooth, compact, n-dimensional Riemannian
manifold of nonnegative Ricci curvature. Assume that for some q real with q > 4
and qz < n, inequality (Iq P,) is true on (M, g). Then g is flat, and M is covered
by a torus.

Corollary 4.4 can be seen as the compact version of the result of Ledoux [140]
that we will discuss in Chapter 8: For (M, g) a smooth, complete Riemannian n-
manifold of nonnegative Ricci curvature, and q E [I, n) real, if for any u E D(M),

qlp

\ luV 'dv(g)
< K(n,q)4 J IVuI4dv(g),

fu M

then (M, g) must be isometric to the Euclidean space (R", e). As a remark, note
that it would be nice in Corollary 4.4 to improve the assumptions q > 4 and q2 < n.
However, by Proposition 4.3, it is necessary to assume that q > 2. Finally, note
that by Theorem 4.4 and Theorem 4.9, if (M, g) is compact and flat, then (I9..P,) is
true on (M, g) for any q E [ 1, n) real. The argument goes here as in the proof of
Proposition 4.5, noting that any compact flat manifold is covered by the Euclidean
space.

By summarizing what has been said in this section, one gets a complete answer
to question IA. According to the works of Aubin and Talenti, the value of aq (M)
is known, explicit, and depends only on n and q. Then, concerning question 2d
and its extension to the (Iq,ge1) inequality, one has that the validity of (I4,op,) implies
the validity of (Iq op,), and that the following results hold:

1. (I9,op) is valid for all q on any smooth, compact Riemannian manifold of
constant sectional curvature (Aubin).

2. (12 opt) is valid on any smooth, compact Riemannian n-manifold, n > 3
(Hebey-Vaugon).

3. Given (M, g) a smooth, compact Riemannian n-manifold, (1qq.(, ) is not
valid as soon as q > 2, q 2 < n, and the scalar curvature of g is positive
somewhere (Druet).

4. Given (M, g) a smooth, compact Riemannian n-manifold of nonnegative
Ricci curvature, (Iq op,) is not valid as soon as q > 4, q2 < n, and g is not
flat (Druet).
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5. (Iq.opt) is valid for all q on any 2-dimensional smooth, compact Riemannian
manifold (Druet).

6. (Iq.ap,) is valid for all q on compact flat spaces, compact hyperbolic spaces,
and smooth, compact n-manifolds of nonpositive sectional curvature as long
as the Cartan-Hadamard n-dimensional conjecture is true, so, in particular,
if n = 3 or 4 (Druet, Aubin-Druet-Hebey).

Contrary to what we said about the optimal inequality (Jq,opt) of program 2 (see
Proposition 4.1), the (I) optimal inequality may be valid for q > 2. On the
one hand, as when dealing with Program 2, there is really a difference between
the optimal inequalities (Ig,op) and (Iq,opt). As an example, (Iq.ap,) is valid on the
standard unit sphere, while (Iy,op,) is not for q > 2. On the other hand, the geometry
interferes with the validity of (lq.apt).

4.4. On the Scale of Optimal Inequalities

According to the preceding section, there exist smooth, compact manifolds for
which the optimal inequality (Iq op<) is valid while the stronger optimal inequality
(Iq,opt) is not valid. Given (M, g) a smooth, compact Riemannian n-manifold,
q E [1, n) real, and 0 E [1, q] real, let us now consider the possible validity of the
following inequality: There exists B E I8 such that for any u E H? (M),

(Blq.opt)

/ 9/p 9/q
( f luI, dv(g)) < K(n, q)° {

It
Ioulq dv(g))

M M
9/q

+ B(
p

1uIg dv(g))
M

where p = nq/(n - q). A conjecture of Aubin [10] on the subject is that (1q 1,
is valid on any smooth, compact Riemannian manifold with 0 = q/(q - 1) when
q > 2. Note here that the validity of (I4!ap,) implies that of (I9 opt) as soon as
01 > 92. The first result we have on the subject is the following result of [10].

PROPOSITION 4.6 For q > 2, the optimal inequality ('8q opt) is valid with 0 =
q/(q - 1) on the standard unit sphere (S", h) of Il8"+'

PROOF: Basically, the proof of such a result proceeds as in the proof of Propo-
sition 4.3. For q > 2, let 0 = q/(q - 1). Let also P be some point in S", and let
r denote the distance to P. Here again, by arguments from standard Morse theory,
and by a symmetrization process, it suffices to prove that (Iq.op) is valid for func-
tions of the form g(x) = g (r), g a nonnegative, absolutely continuous, decreasing
function on [0, n]. By Theorem 4.4, one has that

J0

1g

-,-)("-t)/glnr"-I drjq/p

9)q f I rg(sinr)("-I)/ql g

r
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As shown by Aubin [10], one can now prove that there exists some constant CI
such that

TIy

w,,_1 r dr
p r

( j IVglgdv(h))
I /(y - 1)

+c1(f
IuIgdv(h))

1/(q - I)

s
and that there exists some constant C2 such that

r f n Igsinr)(n-1)1q I' r"-I)r

L J
-1dr

o r

fs.

9/(q-I )p I/(q- 1)

g°dv(h)) _ c2(S ggdv(h))

Clearly, as one can easily be convinced, the optimal inequality (Iy_°pt) follows from
such inequalities. This proves the proposition.

For more details on the proof of Proposition 4.6, we refer the reader to [10).
Independently, as another result on the subject, one has the following theorem of
Druet [741:

THEOREM 4.13 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q E [1, n) real. Assume that q > 2, that q2 < n, and that the scalar curvature
of (M, g) is positive somewhere. Then inequality (1'9 ,.,Pt) is false on (M, g) for any
0>2.

PROOF: Here again, the proof is similar to that of Theorem 4.8. Using the
same notation used there, we now have that

K(n,q)BJo(u..) < 1 +84-I(Cl +C26v"+1Q +C3S2 y!+1_

+o(E 4 +1-N)+n(e2 +1-q

Here, C 1 > 0, C2 > 0 real are independent of e,

(fM +a(fM Iulgdv(g))"
J9(u)

it
(fm IuI°dv(g))P

and

C3 =
8 Sca1(M,g)(xo) q fo (1 +sv h)-"s"+1 ds

6nq P fO0(1+5T)-"s1 I ds
--

fr,°
(1

+s-4T)-"sT4n-1 ds0

Hence, C3 < 0 if Scal(M.g)(xo) > 0. As one can easily check, for 0 > 2, such
an expansion leads to the existence of e > 0 small such that JB(u,) < K(n, q)-e.
This proves the theorem.
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When priority is given to the second constant, one can also deal with the scale
of optimal inequalities. For (M, g) a smooth, compact Riemannian n-manifold,
q E [1, n) real, and 0 E [1, q] real, let us now consider the following inequality:
There exists A E R such that for any u E HI (M),

B/P

(J luIpdv(g)) <
(J9

q.opt) (f / l9/q

(IM

B/q

A\JM IVuldv(S) + +VOl)
lulgdu(g))

where p = nq/(n - q). As for the (1q 0,. inequality, if (Jq.op1) is valid, then (JO-1

is also valid for 02 < Ol . Regarding the scale (Jq opt) of optimal inequalities, using
the same kind of arguments as used in Section 4.1, one gets the following result,
which was observed by Druet:

THEOREM 4.14 Let (M, g) be a smooth, compact Riemannian n-manifold, and let
q E [ 1, n) real. If q < 2, then for any 0 E [ 1, q], (Jy.op1) is valid. Conversely, if
q > 2, (Jq opt) is valid if and only if 0 < 2.

PROOF: By Theorem 4.2, (J9,op1) is valid if q < 2. Hence, for any 0 E [1, q],
Jq ,p1) is also valid. Suppose now that q > 2. By Bakry's inequality, discussed in

the beginning of the proof of Theorem 4.2, one has that for any u E LP(M),

( f
to/p

(IM

2

\ M l ul p dv(g))
< Vol"1)/u dv(g))

r f 2/p
+(p-1)I JMIu-ulpdv(g))

where

u= u dv(g)
Vol(M.g) M

Independently, by the Sobolev-Poincard inequality we discussed in Section 2.8 of
Chapter 2, there exists A > 0 such that for any u E HI (M),

(LU l
2/p (f 2/q- lpdv(g))

A(J IVuldv(g))
M

Hence, for any u E HI (M),
2/p

M lulpdv(g)) < Vol-2(p 1)/p (Luvt:8))
22/q

+ (p - 1)A( f IVulq dv(g))
M

and since by Holder's inequality,

/ r
2 2(q-1)/9

21q

I udv(g)) < Vol(M.g)
(fm

lulgdv(g))
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one gets that there exists A > 0 such that for any u E HI (M),

(JM

1 2/p
( 12/q

Julndv(g)) A\fM (Vudv(g))/

_2/n 2/q
+ VOI(M.g) (JM

luI ?dv(g)/
In other words, (J9 is valid. Hence, (J 0 ,) is valid for 9 _< 2. Summarizing, we
are left with the proof that for q > 2 and 0 > 2, (Jq °p,) is false. The argument here
goes as in the proof of Proposition 4.1. Let U E C°°(M) be some nonzero function
such that fm u dv(g) = 0. Then, for e > 0,

\ e/p

fu II+EUI°dv(g)) =

Vo1BMg)+e(p2 1) Vol(M.g) (Lu2 dv (g) e2+o(E2)
//J

B/q

+euVI dv(g)fu 11

VolGIq g) +e(q2 1) 2-1
(g))+ o(e2)8)

(IM
while, since 9 > 2,

l
8/q

(f IV(l +su)lgdv(g) J =o(e2)
M /

Assume now that (J'°A,) is valid. One would get that for any s > 0,
6M

VOI(Mg) + p2 1) (fm u2 d v(g) )s2 </
B_B O(q _ 1) g g

VoI7M.1) +
2

8)
(IM u2 d v(g)}s2 + o(e2)

But
9 9 9

pT q n
so that, as one can easily check, such an inequality is impossible. This ends the
proof of the theorem.

Note added in proof: After the manuscript was completed, O. Druet ("The best
constants problem in Sobolev inequalities," preprint of the University of Cergy-
Pontoise, October 1998, and to appear in Mathematische Annalen) got the complete
answer to the conjecture of Aubin [10] we mentioned at the beginning of Section
4.4. He even proved more since for q > 2, 0 = q/(q - 1) can be replaced by
0 = 2. With the notation of Section 4.4, the result of Druet is the following:
Given any smooth, compact Riemannian n-dimensional manifold (M, g), n > 2,
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and q E (1, n) real, the optimal inequality (Iq is valid on (M, g) with 0 = q if
q < 2, and 0 = 2 if q > 2. Together with Theorem 4.13, one sees that the relevant
exponent in the (IQ scale of optimal inequalities is really 0 = 2 for q > 2, and
not 6 = q/(q - 1) as suggested by the original conjecture. The idea that 0 = 2
would be the relevant exponent appeared to Druet when he got Theorem 4.13, but
also Theorem 4.14, stating that the (Jq P,) optimal inequality is valid with 0 = q if
q < 2 or with 0 = 2 if q > 2, and is not valid with 9 > 2 if q > 2. One has to
note here that the above-mentioned result of Druet implies that:

1. For any smooth, compact n-dimensional Riemannian manifold, n > 2, and
any q E (1, n), the optimal inequality (Iy,pt) is valid on (M, g), and

2. for any smooth, compact n-dimensional Riemannian manifold, n > 2, and
any q E (1, 2], the optimal inequality (Iy ap,) is valid on (M, g).

As we recently learned, a similar result was also announced by Aubin and Li (to
appear in Comptes Rendus de l'Academie des Sciences de Paris, 1999).



CHAPTER 5

Best Constants in the Compact Setting II

We are concerned in this chapter with the continuation of Programs A and
9 of Chapter 4. Two more questions will be asked. For the sake of clarity, and
according to what has been said in Sections 4.1 and 4.3, we restrict ourselves to
the case q = 2.

In what follows, let (M, g) be a smooth, compact Riemannian n-manifold,
with n > 3. According to Theorem 4.6, there exists some B E R such that for any
u E HI (M),

(I2 opt) r f
\2/p

<
f

fu\J IuIpdv(g) f a2(M)2J IVuI2dv(g)+BJ u2dv(g)
M / M

where p = 2n/(n - 2), and a2(M) = K(n, 2) has its precise value given by
Theorem 4.4 (see, also, 4.5). Namely,

(r2(M) =
n(n - 2)wn/"1

where w is the volume of the standard unit sphere of R". One can now define
Bo(g) as the smallest possible B in (12 op). Namely, one can define

Bo(g) = inf { B E R s.t. (I2."pt) is valid}

Clearly, (I2 opt) holds with Bo(g) in place of B. One then has that for any u E
H? (M),

2/p

(I2.OPT) ( fm IuIp dv(g)) K(n, 2)2 f IDul2 dv(g) + Bo(g) f u2dv(g)
M M

Here, OPT refers to the fact that (IZ ovr) is totally optimal, in the sense that the
two constants K(n, 2)2 and Bo(g) cannot be lowered. As a remark, one can note
that by taking u - 1 in (IZ op,.), one gets that necessarily, Bo(g) > Vol'),(MRwhere
Vol(M.g) denotes the volume of (M, g).

Similarly, when giving the priority to the second constant, one has by Theorem
4.2 that there exists A E R such that for any u E HI 2(M),

(J2 opt) (IM

2/p

lu IVul2dv(g)+fi2(M)2I u2dv(g)dv()) AfM
M

4

119
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where p = 2n/(n - 2), and 62 (M) = Vol-M/R). One can now define Ao(g) as the
smallest possible A in (j2,. ). Namely, one can define

Ao(g) = inf { A E R s.t. (J2 0P,) is valid}

Clearly, (J2 ,Pt) holds with Ao(g) in place of A. One then has that for any u E
HI 2(M),

(
2/p

IM\Mlulpdv(g))
Ao(g)lVul2dv(g)+VOIIM/8)IMu2dv(g)

As above, OPT refers to the fact that (J; 0PT) is "totally optimal" in the sense that

the two constants A0(g) and Vol-2/s) cannot be lowered. Note that by Proposition

4.2, Ao(g) ? K(n, 2)2.
In what follows, we say that some nonzero function u E H? (M) is an ex-

tremum function for (12 OPT) if

2/p /'

fm
lulpdv(g)) K(n,2)2 J IVuI2dv(g)+Bo(g) f uzdv(g)

M M

Similarly, we say that some function u E H] 2(M), u nonconstant, is an extremum
function for (j2. OPT) if

(IM

2/p

lulpdv(g)) = Ao(g)IM IVu12dv(g)+V0I(M'S)
fMU2dv(g)

One can then ask two more questions in each program. They are stated as follows:

Program ,A, Part H Program S, Part II
Question 3A: Can one compute Question 32: Can one compute
or have estimates on Bo(g)? or have estimates on Ao(g)?
Question 4.4: Under which Question 42: Under which
conditions does one have that conditions does one have that

(I2.OPT) possesses extremum (J2,OPT) possesses extremum
functions? functions?

Once more, when looking to these questions, one can see that more complete an-
swers have been obtained concerning Program 2, Part II, than concerning Program
A, Part II. First, we start with the case of the standard unit sphere. For such a man-
ifold, Ao(g) = a2(M)2 and Bo(g) = )62(M)2, so that (122 2

OFF) ,= (J2.0 .). Moreover,
all the extremum functions here are explicitly known.

5.1. The Case of the Standard Unit Sphere

Let (S", h), n > 3, be the standard unit sphere of W. For such a specific
manifold, as one will see in Theorem 5.1 below, special phenomena occur when
dealing with Program A, Part II, and Program 2, Part If. Except for its more recent
very last part, Theorem 5.1 is due to Aubin [9].
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THEOREM 5.1 Let (Sn, h) be the standard unit sphere of R"+', n > 3. For any
u E Hi (Sn),

\ 2/p
(I) (IuIpdv(h)/} < K(n,2)2 IVU12dv(h)+11"u2dv(h)f"fs. J
where wn is the volume of (S", h) and p = 2n/(n - 2). In particular, Ao(h) _
K(n, 2)'-, B°(h) = Wn- , and (I2 OPT) = (J2 OPT) = (I). Moreover, given x° E S"
and # > 1 real,

uxo.p(x) = (,B - cosr)'-i
where r denotes the distance from x° to x is an extremum function for (I). Con-
versely, if u is a nonconstant extremum function for (I), then up to a constant scale
factor, u is one of the uxo,p's.

PROOF: Let us start with the fact that (I) is true. As an easy consequence of
Proposition 4.2,

inf
UEH

fs" (Iyu12 + n(4 2)u2)dv(h) < I

(fS"
Iu12n/(n-2)dv(h))(n-2)/n - K(n, 2)2

where Hi (S7)* stands for the set of nonzero functions of H2(S"). Suppose here
that

fs^ (IVu12 + "(42)u2)dv(h) 1

(f ',
I ul2n/(n-2) dv(h))(n-2)/n < K(n, 2)2

One clearly gets from such an inequality that for f E C°O(S"), f close to 1 in the
C°-norm,

fs" (Iyu12 + n(42 u2)dv(h) 1

uEH?I(f
S^ f lull»/(i-2)

dv(h))(n-2)/n < (max f)(n-2)1nK(n, 2)2

As shown in Section 4.2 of Chapter 4, this leads to the existence of u e C°°(S"),
u > 0, a solution of

Ahu +
n(n - 2)u = fu(n+2)l(n-2)

4
In other words, one gets that there exists e > 0 such that for any f E CO°(S"), if
f is such that 11f - 111co < e, then f is the scalar curvature of some conformal
metric to h. The point, then (see, for instance, Section 6.3 of Chapter 6 or the
discussion at the end of Section 4.2), is that such a result is in contradiction with
the obstructions of Kazdan and Warner [130]. As a conclusion, one has that

fs" (Iyu12 + "(4 2)u2)dv(h) 1
inf -

uEH?(S")' (fS J U n/(n-2)
dv(h))("-2)/n K(n, 2)2

and inequality (1) is true.
Let us now prove that the uxo,,6's are extremum functions for (I). In geodesic

normal coordinates,
1

Ay f = -
rn

ar (r"-' I _h j ar f )
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and one has here that
r"-' IhI = sinn-1 r

Simple computations then lead to the fact that

4 2 (n+2)/(n-2)
n(n - 2) Ihux0.f + u-'CO.B = (f - 1)ux0.,s

Moreover,
2n/(n-2) sin' 1 I

J "
ux0.8 dv(h) = (On-1

0 COSt)n
dt

and one then easily gets that

(Q2 - l)n/2
J

u2n/(n-2) dv(h) = wl' nx0,f n

Recall now that

Hence,

K(n, 2)2 =
4

n(n - 2)wn/"

K(n, 2)2 J n
IDux0,,612 dv(h) + J n u20 dv`h)

- >g2- 1 f u2n/(n-2)
dv(h)2/n x0.P

wn "

1 4

2/" n n n - 2 Ahux°.P + u.r0, dv(h)
wn JS ( ) /

2

S,'

and th is proves that the u0,p's are extremum functions for (I). In order to end the
proof of the theorem, let us now consider some nonconstant extremum function
u of (I). Then v = uI is also a nonconstant extremum function for (I). Up to
multiplication by a positive constant scale factor, we can assume that

f.
Since v realizes the infimum of

2n-2dv(h) =

J(u) - ((J

/

(IVu2 + 2u2)dv(h)

n

Iui2a/n2dv(h))n2/n

S

it is a solution of
4nn-

2) Ohv +n(n - 1)v = On - 1)v2n2By

regularity results and the maximum principle, one then gets that v is smooth and
positive. On the one hand, this shows that IuI > 0, so that u is either everywhere
positive or everywhere negative. On the other hand, the fact that v is a positive,
smooth solution of the above equation implies that g = v4/2h has constant
scalar curvature n(n -1). By Obata [163], one then gets that g and h are isometric.

u2n/(n-2) dv({i)}
x0, )_ (I
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The proof of the last part of the theorem then reduces to the fact that for uV > 0
given by V*h = u4I(n-2)h, where tp E Conf(S") is a conformal diffeomorphism
of (S", h), there exist A > 0, i8 > 1, and xo E S" such that uq = Auxo,p. Since
the group of isometries of (S", h) acts transitively on S", it suffices to restrict our
attention to conformal diffeomorphisms p such that (p(P) = P for some fixed P in
S". Indeed, given cp E Conf(S"), choose A E O(n + 1) an isometry of (S", h) such
that A((p(P)) = P, and note that (A o (p)*h = cp*h. From now on, let Confp(S")
be the group of conformal diffeomorphisms Sp of (S", h) such that cp(P) = P.
Let Prp be the stereographic projection of pole P, and let (P E Confp(S"). Then
>li = Prp o(p o PrP' is a conformal diffeomorphism of the Euclidean space (R", e).
As is well-known,

i=AoBoC
where A E O(n), B is a translation, and C is a dilatation. As usually done, we
assimilate R" with Pl, that is, the hyperplane of R"+1 that is orthogonal to the line
passing through P and - P. Here, one has that

(Pr;i)*h(x) =
(1 + X12)2e

Take B under the form B (x) = x + a and take C under the form C (x) = Ax,
A# 0. Then,

. 4A2
*(PrP1)h(x) = (1

+ IAx +a12)2e

As one can easily check, this leads to

VP h(x)
=,k2 1 + I Prp(x)I2 2h(x)

* (I + IAPrp(x) +a12)
Set

a(x) _ 1 + I Prp(x)12

1 + IAPrp(x) + a12
The goal then is to compute a. Without loss of generality, we can assume that if
a = 0, then A -A ± 1. Since

1Prp(x)=P+ 1-(P,x)(x-P)

and since P and Prp(x) are orthogonal for any x E S", one has that
2

2 2I+IPrp(x)I = IPrp(x)-PI = 1-(P,x)
In the same order of ideas, and since a E Pl, one has that

1 + IAPrp(x) +a12 = 1 - A2 + IA(Prp(x) - P) +a12

= 1 + Ia12 - A2 + A2IPrp(x) - P12 + 2A(Prp(x), a)

2

= l+lal2-A2+ 1-(P,x)(a,x)+ I-(P,x)
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Hence,

a(x) =
2

R - (Q, x)
where R = 1 + 1a12 + k2 and

Q=(1+Ia12-,12)P-211a
Set x0 =

IQI
Q. As one can easily check (see below), Q # 0 since either a # 0 or

a = 0 and then X # ±1. Clearly,x0 E S" and

a(x) 12 (a - (xo, x))

where P = R /IQ 1. Noting that

IQ12=4,t2la 12+(1+1a12-112)2

one easily gets that 0 > 1. Moreover, for r the distance between x0 and x on S",
one has that cos r = (xo, x). Hence,

4A2 (n-2)/4

uw(x) = (IQ12) (f-cosr)1-

and this proves the theorem.

Before ending this section, we mention that the above inequality (I) has been
extended by Beckner [21] to powers 2 < k < p, where p = 2n/(n -2). This is the
subject of the result below. We refer to [21] for its proof, but also to Bakry-Ledoux
[19] and Fontenas [84], where the result is proved in the more general context of
an abstract Markov generator.

THEOREM 5.2 Let (S", h) be the standard unit sphere of R"+', n > 3. For any
k E [2, p], and any u E H (S^),

2/k _

\Jsn
lulkdv(h) < k 2 fn Ioul2dv(h)+ k J"u2dv(h)

nw" cu"

where co" is the volume of (S", h) and p = 2n/(n - 2).

5.2. Program 8, Part II

Three main results are available on the subject. Let us start with question
3S. We prove first the following general result. As in the case of the remaining
constant in (JZ opd, Ao(g) has an upper bound depending only on the dimension n
of the manifold, and on a lower bound for the Ricci curvature, a lower bound for
the volume, and an upper bound for the diameter.

THEOREM 5.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature, volume, and diameter satisfy

Rc(M 5) > kg, V0l(M,9) > V, dlam(M.5) < d

for some k, v > 0, and d > 0 real. There exists A = A(n, k, v, d), depending only
on n, k, v, and d, such that Ao(g) < A. In other words, for any smooth, compact
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Riemannian n-manifold (M, g), n > 3, such that Rc(M,g) ?: kg, VOl(M,g) > v, and
diam(M,8) < d, one has that for any u E HI (M),

2/P

1 fm IuI dv(g) < A fu u2dv(g)

where p = 2n/(n - 2).

PROOF: Let AI be the first nonzero eigenvalue of the Laplacian A. associated
tog. As shown by Yau [200], there exists some positive constant A = A(n, k, v, d),
depending only on n, k, v, and d, such that Ai A. In particular, this implies that
for any u E HI (M),

jIu_il2dv(g) f
A M

where

u f u dv(g)
VOl(M.g) M

Independently, one clearly has by Gromov's theorem, Theorem 1.1, that there ex-
ists some positive constant a = a(n, k, v, d), depending only on n, k, v, and d,
such that for any x E M, Vol8 (Bx (1)) > a. According to what has been said
in Chapter 3, Section 3.2, one then gets that there exists some positive constant
A = A(n, k, v, d), depending only on n, k, v, and d, such that for any u E Hi 2(M),

12/P
Cf IuIPdv(g) J <A f IVu12dv(g)+A fm u2dv(g)

M / M

where p = 2n/(n - 2). As a consequence, combining these two inequalities, there
exists a positive constant A = A(n, k, v, d), depending only on n, k, v , and d,
such that for any u E HI (M),

2/P
CIu -u12dv(g)) < Af IVU12dv(g)

fu

Independently, as shown in the proof of Theorem 4.2, for any u E LP(M),

2/p\fM Iul"dv(g) J < VOl(M(8) ))/P fM
udv(g)J2

2/P

+ (P - 1)
( f l u- u JP dv(g))

M
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Hence, for any u E HI (M),

(l.
2/P

JuIPdv(g))

2

(
2/P

V01(M(8) l)/P ( f u dv(g)) + (p - 1) \J Iu - i ' dv(g))
M M

2l)/P( fm udv(g)+(P- 1)A IVul2dv(8)1\M
< Vol(M(2(p-l)/P) r u2dv(g) +(p - 1)AJ IDu12dv(g)

fm M

and this proves the theorem. O

In the case of positive Ricci curvature, one can give an explicit expression for
the upper bound A of Theorem 5.3. This is the subject of the following result, due
to Ilias [123]. We refer also the reader to Bakry-Ledoux [19) and Fontenas [84].

THEOREM 5.4 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature satisfies that Rc(M,g) > (n - 1)kg for some k > 0.
Then

Ao(g)
4

n(n - 2)k ,tyg)

so that for any u E Hi2(M),

fr
(J JuIPdv(g)

2/n

) :5
n(n-2)kVo12/" fu JVul2dv(g)

(M.g)

+ VOl(M/8) fM Ill 12 dv(g)

where p = 2n/(n - 2).

PROOF: Without loss of generality, we can assume that k = 1. In other words,
we can assume that Rc(M,g) > (n - 1)g. Let Af(M) be the space of smooth
functions having only nondegenerate critical points. By standard arguments of
Morse theory, it suffices to prove the inequality of the theorem for u E A((M), u
nonnegative. Let ,B = Vol(M.g) /w". As shown by Gromov [95] (see also Berard,
Besson, and Gallot [22]), for S2 a smooth domain in M, and B a geodesic ball in
the standard sphere (S", h), if Vol,(0) _)B Vol,,(B), then

Areag(a9) >)BAreah(aB)

By rather standard arguments of symmetrization, one can then associate to each u
in ,M(M), u nonnegative, some radially symmetric function u' on S" such that for
any m > I real,

"I"'dv(h)/' Iulmdv(g) = 0 fspl Iu
M

ivu'I"'dv(h)j
r

IVulmdv(g) >- # )sn
M
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Just define u' by

Vo18((xEM/u(x)>t))=fVolh({xES"/u*(x)>t))
By Theorem 5.1, one then has that

( f
2/P

luIPdv(g))

2/p

=
(Of

Iu*IP dv(h))n

fn

K(n, 2)2fi2/P f Ipu*12 dv(h) + f 2/PCV0 2/" Iu*12 dv(h)
$n

< K(n,2)'0n^1
IM

IDu12dv(g)+IP-IWR2/f u2dv(g)
M

K(n, 2)2W2/n
2 2/n 2

V012/n fM
1vUl dv(g) +VOI(M.8) fM U dv(g)

(M.8)

4

2 Vole/"
fm 1Vu12dv(g) + Vo1(M/8)

M
u2dv(g)

n(n - ) (M,8)

This proves the theorem. 0
Let us now deal with question 4S. We prove here the following result, due to

Bakry and Ledoux [19].

THEOREM 5.5 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3.
We assume that for all u E HI (M),

( lf :5
4

IuIP dv(g)
2/P

n
Ivul2 dv(g)/ (n - 2) Vo12/" fm(M,8)

+ VOI(M/8) fM IU12 dv(g)

and that there exists some real-valued Lipschitz function f on M such that

max l V f (x) I< 1 and max I f (y) - f (x)1= n'
xEM X.yEM

Then
4

Ao(g) _
n(n - 2) VoI(M"8)

and there exist nonconstant extremum functions for (J2 OPT). More precisely, if we
translate f such that fu sin(f )d v(g) = 0, for every A E (-1, +1),

U Ifx1 dv(8)
2/P

lVfal2dv(8)I n(n - 2) Vole/" fm(M,8)

IfxI2 dv(g)+ Vol(M/8) fm

where fA = (1 + A sin(f )) I-"/2 and p = 2n/(n - 2).
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PROOF: Let f be a real-valued Lipschitz function on M such that

max I V f (x) I< 1 and max If(y) - f (x) I= Yr
xEM x,YEM

As one can easily check, there exists 0 E JR such that

JM
sin(f + 9)dv(g) = 0

In what follows, let f stand for f + 0. Following Bakry and Ledoux [191, for
A E (-1, 1), we set

F(A) = (1 + A sin(f ))2-" dv(g)
fm

while for k > 0, we let Dk be the differential operator on (-1, 1) defined by

Dk = 1XdA+I

We set also a = (n - 2)/n = 2/p, and let

G=D"_1F

The proof then proceeds in several steps.

S,rEP1:Fork E(-1,1),

(Dn_2G)a +a(l - A2)V-21"Dn-2G < (1 +a)V-2/"G

where V = Vol(u,8).
In order to prove this claim, let

fz = (I +), sin(f
Then, since

one gets that

mxJVf(x)I<1,

IM

( \2
IVfxl2dv(g) <

l2
-

1)2
J A2f

(1
+sin(f))-"(1-cos2(f))dv(g)

Applying the Sobolev inequality

U IuIPdv(g)
2/P

) <n(n-2)V2/"JMIVUI2dv(g)+V-2/nJMIul2dv(g)

with u = fx, this leads to

+Asin(f))dv(g))(L°

2/n +sin(f))2dv(g)
fM

V

+ aX2 V-2/" f(1 + sin(f ))(1- cos2(f))dv(g)
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where, as above, V stands for Vo1(M,g). Now, note that

+ A sin(f ))-"A(A)dv(g)F(A) = (1

F'(A) = (n - 2) J (1 +.Asin(f))-"B(A)dv(g)
M

F"(A) = (n - 1)(n - 2) J(1 +Asin(f))-"C(A)dv(g)
M

where

Clearly,

A(A) = 1 +2Asin(f)+A2sin2(f)
B(A) = - sin(f) -,X sin2(f )
C(A) = sin2 (f)

A(A) + 2AB(A) = 1 - A2C
where C = C(A). Hence, coming back to the above inequality,

129

(JM° +Asin(f))"dv(g)//l+a(1 -A2)V2fM +Asin(f))dv(g)

(I +a)V-2/"F(A) +
2Aa V-2/"F'(A)
n-2

= (1 +a)V-2/"G(A)
Noting that

IM
(1 + A sin(f))-" dv(g) = F(A) + 2 2AF'(A) + (n - 1)(n - 2)

A2F"(A)
n

= D"-2G(A)
this proves Step 1.

Let us now consider the differential equation

(Dn-2H)° +a(1 - A2)V-2/"D"-2H = (1 +a)V-2/"H
where ,X E (-1, 1) and V = VOl(M,g). For c E R, set

Hc(A) =
1 + a

U,(,X) 1 +
1 + a

(1

where
cA + c2A2 (1 - ),2)

Uc(A) =
1 - A2

As one can easily check, the H4's are solutions of the above differential equation.
The second step in the proof of Theorem 5.5 is as follows:

STEP 2: Assume that G(Ao) < HH(),o) for some Ao E [0, 1). Then G(X) <
Hc(A) for everyA E [Ao, 1).

In order to prove this claim, let v = v(t, A) be the unique nonnegative solution
of

va + a (1 - ),2)
V-2/n v = (I + a) V -2/"t
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One has that v is increasing in t. In addition,

D.-2(G - HH) < v(G, A) - v(HH, ).)

Hence, Dn_2(G - HH) < 0 on the set {G < Ht). Suppose that for some Al E
(Ao,1), G(A1) > H,(A1) Set

A,=infIX >Ao/G(A)=HH(A)}
Then A. E (A0, 1) and G < HH on [Ao, A.]. Hence, Dn_2(G - H1) < 0 on this
interval. Integrating between Ao and A one gets that

A0n`2(G - HH)(Ao) > A:-2(G - HH)(A.)

Since G(A0) < HH(Ao), this contradicts the fact that G(A.) = HA.). This proves
Step 2.

As a third and last step, one has the following:

STEP 3: Assume that

IM
(1+sin(f))dv(g) <+oo

Then 11(1 + sin(f))-1 III < +oo
In order to prove this claim, we apply the Sobolev inequality

r l(IM lul°dv(g)

2/P

c n(n -2) Vo12/" £ IVul2dv(g)
(M.g)

+ Vol) f Iul2 dv(g)

to the family of functions

with s > n - 2. Set
u = (I +sin(f))`,/2

l + sin(f ))-` dv(g)F(s) = fm (

Since

mxJVf(x)I<I,
xem

one gets from the above inequality that

F(#s)110 < V-21"F(s) + CV-21's2F(s + 1)

where = 1/a and C = 2/n(n - 2). Noting that j3s > s + 1 when s > n - 2,
it already follows by iteration that F(s) < +oo for every s > n - 1. We aim to
prove that

sup F(s) I/' < +00
s-n-I

from which the conclusion follows. Here, it may be assumed that F(s) > 1 for
some s large enough. Otherwise, there is nothing to prove. But then, by Jensen's
inequality,

F(fs)1/f < (1 + Cs2)V-2/"F(s + 1)
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By a simple iteration procedure, this yields Step 3.

Let us now prove Theorem 5.5. We claim here that G = Ho. As a starting
point, since

JM
I sin(f)dv(g) = 0,

one has that G'(0) = 0. By Step 2 one then easily gets that for every c > 0,
G < Ht on [0, 1). By continuity, this leads to G < Ho on [0, 1). Suppose now
that there is some Ao > 0 such that G(,ko) < Ho(Ao). Then there exists c < 0 such
that G(,ko) < HH(xo). Again by Step 2, this implies that G(1l) < HH(A) for every
A E [A0, 1). Letting X -r 1, one then gets that G(1) < +oo. But

G(1) = f (1 +sin(f))I-"1 1+ n 1 sin(f) Idv(g)

so that

1(1 +sin(fdv(g) n - 1G(1)
2

Hence, by Step 3, we get that

11(1 + sin(f ))-`III < +oo

Since

max 1f(y)-f(x)1=ir
X.PEM

there is some xo E M with the property that [f (xo), f (xo) + Jr] C Im f . Clearly,
this contradicts the above inequality. Hence, G = Ho on (0, 1). Replacing f by
- f , one then gets that G = Ho on (-1, 1). As a consequence,

(Dn_2G)c' +a(1 - x2)V-2/"Dn_2G = (1 +a)V-2/"G

on (-1, 1). Coming back to what we said in the proof of Step 1, this means again
that

2/p

JM Ifxl° dv(g)}
n(n - 2) Vol(,.,)2/" M

IVfl2 dv(g)r+
JM IfkI2 dv(g)

for every A E (-1, 1). Clearly, this proves the theorem. O

Concerning Theorem 5.5, it has been established by Bakry and Ledoux [19]
for an abstract Markov generator L. As stated above, namely, in the Riemannian
context with L = 0R, take care that combined with Theorem 5.4, it basically gives
Theorem 5.1. Under the assumption that Rc(M.g) > (n - 1)g, which ensures by
Theorem 5.4 the validity of the Sobolev inequality in question in Theorem 5.5, the
existence of f as in Theorem 5.5 implies that (M, g) is isometric to the standard
unit sphere (S", h). Indeed, the existence of f as in Theorem 5.5 implies that
diam(M.g) > it. On the other hand, one has by Myer's theorem that diam(M,5) < it.
Hence, diam(M,g) = it, and by the Toponogov-Cheng maximal diameter theorem
(see [45]), one gets that (M, g) is isometric to (S", h).
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5.3. Program .4, Part II

Let us start with question 34. First, as already mentioned in Chapter 4, one
has the following result of Hebey and Vaugon [117]. Such a result will be proved
in Chapter 7, Section 7.2, when dealing with complete manifolds.

THEOREM 5.6 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
3. Suppose that its Riemann curvature Rm(M,g) and its injectivity radius inj(M.g)
satisfy

IRm(M.g) I :s A,, I V Rm(M.g)1 < A2, inj(M.g) ? i

for some A, > 0, A2 > 0, and i > 0 real. There exists B = B(n, A,, A2, i),
depending only on n, A 1, A2, and i, such that Bo(g) < B. In other words, for any
smooth, compact Riemannian n-manifold (M, g), n > 3, such that IRm(M,g) I <
A1, J V Rm(M,g) I < A2, and inj(M,g) > i, one has that for any u e H2 (M),

2/p

\fM
JuJ"dv(g)1< K(n,2)2 f

M
IVu12dv(g)+Bf

M
u`dv(g)

where p = 2n/(n - 2).

As will be discussed in Chapter 7, the role played by Rm(M,g) could certainly
be replaced by an analogous one but with Rc(M,g) in place of Rm(M,g). The best
result here, as one will see in Chapter 7, would be that B depends only on n, a
bound for IRc(M,g) I, and a lower bound for inj(M g). The reason for such a fact
comes from the following result:

PROPOSITION 5.1 Let (M, g) be a smooth Riemannian n-manifold (not necessar-
ily compact) of dimension n > 4. Suppose that there exists B E R such that for
any u E D(M),

(5.1)
(1

(n-2)/n
Iu I2n/(n-2)

d v(g) <

K(n,2)2( IVU12dv(g)+BJ u2dv(g))
\ M M J

where K (n, 2) is as in Theorem 4.4. Then, for any x E M,

B > 4(n - 1)
Scal(M.g)(x)

where Scal(M,g) is the scalar curvature of (M, g). In particular,

Bo(g) >
n 2

4(n - i)
K(n, 2)2 (mM Scal(M,g) )

when M is compact.

PROOF: We proceed as in Aubin [9]. Let x E M and let r > 0 be such that
r < inj(M,g)(x) where inj(M,g)(x) is the injectivity radius at x. Then in geodesic
normal coordinates

1 /' 1f I - 6n Scal(M,g)(x)r2 + 0(r4)
(On-1 S(r)



5.3. PROGRAM A. PART 11

where S(r) = {y E M / d8 (x, y) = r). Fore > 0, we define

I

uE = (e +
r2`1-n/2

- (e +
821-n/2

if r < S

uE = 0 otherwise

where 8 E (0, inj(M,g)(x)) is given and r = dg(x, ). Easy computations lead to

(1)
J

IVu8I2dv(g)
M

- (n - 222w _ 1
In

/2
e 1

_n/2 (I - 6nn(+
24) Scal(M.8)(x) e + o(e))

if n > 4

e (n - 222wn_ 1
e I -n/2

! 6n SCal(M.g) (x)e loge + o(e log e))
\\\

ifn=4
(2)

J
uEdv(g)

M- 2(n - 2)(n - 1)wn-1
In/2e2-n/2 +o(e2-"/2) ifn > 4

n (n - 4)
(on-1 loge + o(log e) if n = 4

2

(3) u2n/(n-2)dv(g)

M

> (n - 2)wi_1
I"12 e-"/2 1 - 1 Scal x e + o(e) if n > 4

2n 6(n - 2) )
> (n - 2)Wn_I 1n/2 e-n/2(1 + o(e loge)) if n = 4

2n

where In = f +°°(1 + t)-Pt9 dt. Independently, one easily checks that

Con (n - 2)In/2
2n-)W n

n-1

Hence,

(n - 2)2w12-1 n/2 - 1 (n - 2)Wn-) 12/2
(n-2)/12

2 1" 7(n-,2) 2 ( 2n 1" )
and as a consequence of the developments made above, we get that

fM I' 14 12 dv(g) + B fM uEdv(g)
(n-2)ln

(fM

I + e

(4(12 - 1)
B - Scal(M.g) (x)) +0(8)

K n,2) n(n-4) n-2 )
ifn>4

133

5 K(4 2)2 (1 + 8
(Scal(M 8)(x) - 6B) a log e + o(e loge)) ifn = 4
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Since (5.1) implies that

fM IVuFI2 dv(g) + B fm uEdv(g) 1

( /M IuF dv(g))(n- )/" K(n, 2)2

we must have
4(n - 1)

B > Scal
n - 2 (M.R)(x)

This ends the proof of the proposition. 0
Going further on and when looking for analogues of Theorem 5.4, namely,

when looking for explicit upper bounds of Bo(g) for a large class of manifolds,
one has to face a kind of no man's land. No such results are available. Until now,
the best we were able to do was to get explicit expressions of upper bounds for
some specific manifolds. The following result is due to Hebey and Vaugon [113]:

PROPOSITION 5.2 Let (]P"(R), g) be the standard real projective space of dimen-
sion n, n > 3. Then

n+2
0 g - 2/n(n - 2)w

where w is the volume of the standard unit sphere (S", h).

PROOF: First we claim that there exist n + I open subsets 12; of P"(R) and
n + 1 functions i7, : 12i -+ R such that

1. is an open covering of IP"(R),
2. for all i, (12;, g) is conformally diffeomorphic to some connected, open

subset of R" endowed with the Euclidean metric,
3. for all i, >), and belong to Ho 1(12;) n C°(12;),

4. for all i, 0 < ,); < 1 and I V,/t-7; I E C°(12; ), and
5.

E1=1 = I and En+'
IO Eli 12 = n.

In order to prove the claim, let us denote by Pi,..., the n + 1 points of S"
whose coordinates in R"+1 are

(1,0,...,0,0),(0, 1,...,0,0),...,(0,0,..., 1,0),(0,0,...,0, 1)
Let also G be the subgroup of 0(n + 1) whose elements are Id and -Id, the
antipodal map. We denote by 5i, i = 1, . . . , n + 1, the functions on S" defined by

iji(x) = cost (d(P,. x))

where d is the distance on S". Let also 52;, i = 1, ... , n + 1, the half-spheres
centered at P; defined by

f2i={xES"/d(P;,x)< 2}
If 11 : S" -+ IP" (I[8) is the

canonical

projection, then, as one can easily check, the
following holds:

6. for any i, the restriction of P to S2i is an isometry from S2; onto n (S2; ),
7. for any i, i, is G-invariant so that it defines some ri; : P" (R) -+ IF,
8. if Sti = II (12;), then (12i);=i, is an open covering of P1 (R),
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9. for any i, (52;, g) is conformally diffeomorphic to some connected, open
subset of I[l;" endowed with the Euclidean metric,

10. for any i, i = 0 on 1P"(IIt)\52;,
11. "+I1 rj = l and y''+11 ii, 1, and
12. f o r any i, I V n; I2 ° F = I o iii I' on f2;.

Noting that

Dfli I2(x) = 1 - cost (d(Pi, x)) = 1 - ni

one gets the second part of point (5). This proves the above claim.
Starting now from the existence of (52,, rti)1=1.....n+1, we prove the proposition.

Given U E C°°(P"(R)), one has that

n+1

IuI1n/(n-2) = I1U211n/(n-2) = II 17iu211n/(n-2)I2
i=1

n+1 n+1
1117,U2 '/2

11n/(n-2) _ II

,?iUII2n/(n-2)

i=1 1=1

where 11 IIP stands for the norm of LP(IP"(R)). Independently, by point (6) above,
and Theorem 5.1, one has that

(n-2)/n

I niUI2n/("-2)dv(g)

K(n, 2)2 f I0( rliu)I2dv(g) + 2/n f rliu2dv(g)
Pn(R) W,r Pn(R)

Using now point (5) above, one gets that for any u E C°° (1P" (1[1:)),

IU12n/(n-2) dv(g)I( R)
'

n+1 (n-2)/n

I
,7iUI2n/(n-2) dv(g)JP"

(R)
i=1

n+I n+l

K(n,2)2 fP(R) Io( U)12dv(g)+n2/nu2dv(g)
i=1 Pn(R)

n+I

IVul2+IV I2u2+UV1V u)dv(g)=K(n,2)2
i=1

JP(R) (17,

+Wn2/"f u2dv(g)
Pn(R)
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= K(n,2)2J IVU12dv(g)+nK(n,2)2J u2dv(g)

f
PP(R)

+u2dv(g)
f"(R)

= K(n, 2)2 J IVuI2 dv(g) + (n + J u2 dv(g)
P"(R) (n - 2)W "(R)

This ends the proof of the proposition. 0

Concerning Proposition 5.2, recall that Bo(g) has to be greater than or equal to
the volume of (P" (R), g) to the power -2/n. Hence, for the real projective space
(P" (R), g),

(2)2/fl Bo(g)
n+2

(On (n - 2)Wn1"

Since
n+2

nll+oo (n - 2)22/"

the above estimation is asymptotically sharp. On the other hand, we have no idea
what the exact value of Bo(g) for (IP"(R), g) is. More generally, one has the fol-
lowing extension of Proposition 5.2. Such a result is also due to Hebey and Vaugon
[113].

PROPOSITION 5.3 Let G C O (n + 1) be a cyclic group of order k acting freely on
the unit sphere S" of IR"+i, n > 3. Set M = S"/G and let g be the metric on M
obtained as the quotient metric of the standard metric h of S". Then

Bo(g):
4 21"k2)(n+ll-l+n(n-2)

n (n - 2)Wn
RI+

4 2J 4

where con denotes the volume of the standard unit sphere (Sn, h).

PROOF: Here again, one can prove the existence of n + 1 open subsets S2i of
M, and n + 1 functions rli : S2i -+ R such that

1. (S2;)i=1,,,,,n+1 is an open covering of M,
2. for all i, (92i, g) is conformally diffeomorphic to some connected open sub-

set of IR" endowed with the Euclidean metric,
3. for all i, i , and i belong to Ho) (S2i) fl C°(S2i), and
4. for all i, 0 < qi < 1 and I V ni I E C°(S2i)

with the additional properties that E; it rli = 1 and

n+I

V
k42

i-1 \
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For such a claim, we refer the reader to [113]. Then the proof proceeds as in the
proof of Proposition 5.2. Given U E CO0(M), one has that

n+I

IIUII22nl(n-2) II nrullzn/(n-2)

while for any i,

(I.
(n-2)l

I

nlu12n#n-2)dv(g) <

K(n,2)2 fMIV( ri;u)I2dv(S)+cvn/"JM>)'u2dv(S)

By the properties of (n;), one then gets with similar computations to those used in
the proof of Proposition 5.2 that for any u E C°°(M),

(
(n-2)l

\f lul2n/(n-2) dv(S))
M

< K(n,2)2 f IVul2dv(g)
M

R
n(n-2)

+K(n,2)2[(l+ 4/ 2
}-1+ 4

]
fu2dv(g)

L

This ends the proof of the proposition.

Regarding Proposition 5.3, recall that if n is even, the only nontrivial subgroup
of O(n + 1) that acts freely is the antipodal group { Id, -I d }. For n even, Propo-
sition 5.3 is just Proposition 5.2. On the other hand, for n odd, one has that for
any integer k > 1, there exists some cyclic subgroup of O(n + 1) of order k that
acts freely on S". Moreover, according to Zassenhaus [201] (see, also, Kobayashi
and Nomizu [136]), any subgroup of O(n + 1) acting freely on S" and of order ab
where a and b are prime integers (not necessarily distinct) must be cyclic.

Let us now come back to specific results. By Hebey-Vaugon [113], one also
has the following:

PROPOSITION 5.4 Let SI(T), T > 0, be the circle of radius T centered at 0 in R2.
We consider S I (T) x S"- I endowed with its standard product metric gr. Then

1 + (n - 2)2T2
Bo(gr)

n (n - 2)T
where w,, denotes the volume of the standard unit sphere (S", h).

PROOF: Let P be some point on SI (T). Let also Q = P. Then 51(T)\{P)
and SI(T)\(Q) are isometric to (0, 27rT) so that

(SI(T)\(P)) X Sn-I and (SI(T)\(Q)) x Sn-I

are isometric to (0, 2irT) x Sn-I. Note now that (0, 27rT) x S"-I is conformally
diffeomorphic to the annulus

C={xERn/1 <IxI <e2nr)
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the inverse diffeomorphism op from R"\(0} to R x S"-) being given by p(x) =
(log Ix1, X S"-( and n2 = (S'(T)\{Q}) x S"-
Define also n( and 112 by

(),=cost 112(Te10,z) =sine (11)
2

where 0 at Q equals 0. Then

1. (120i= 1,2 is an open covering of S' (T) x S"-(,
2. for all i = 1, 2, (Q7, gT) is conformally diffeomorphic to some connected

open subset of R" endowed with the Euclidean metric,
3. for all i = 1, 2, n7 and n7 belong to Ho ((SZ7) fl C°(St7 ),

4. for all i = 1, 2, 0 < ni < 1 and I V,/-r)7 I E C°(S27 ), and
2 25. F_7-, nr = 1 and F7-, IV 11;12 = 1/4T2.

As in the proof of Proposition 5.2, one then has that for u smooth on S I (T) x S"-

2

II n7ull22n/(n-2)

while for any i = 1, 2,

(1ICTSfl 1

i=I

I 117uI2n/(n-2) dv(gr)

<K(n,2)2 f IV(
niu)I2dv(gT)

1(T)xs"-

+ (n - 2)2
K(n,

2) 2

f nju2 dv(gT)
4 1(T)xS"-1

Note here that the scalar curvature of gT equals (n - 1)(n - 2). By (5) above and
similar computations to those made in the proof of Proposition 5.2, one then gets
that for any u smooth on S((T) x S"-(,

SI(T)xs"-1
Iu12n,(n_2)dv(gT)

< K(n, 2)2 f IVu12dv(gT)
'(T)xs"

fl(T)XSH-l

+ (n

4

2)2 K(n, 2)2 udv(gT)

+
1iK(n, 2)2 f u2 dv(gT)

4T '(T)xs"

This ends the proof of the proposition. O

Finally, we prove the following result of Hebey-Vaugon [1131:

PROPOSITION 5.5 Let (Hq, h°) be a compact, q-dimensional hyperbolic space,
let (SP, h) be the standard unit sphere of IlSP+1, and let M = Hq x SP be endowed
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with its product metric gq,p There exists some constant C(Jf ), independent of p,
such that for any p,

1
_ 1) Scal(M.gq.P) +C(Hq)JBo(Sq.p) < K(nq,p, 2)2

nn
.p

2

4(,p
where nq, p = p + q, Seal(M,gg,) = p(p - 1) - q(q - 1) is the scalar curvature of
(M, 9q. p), and K(nq. p, 2) is as in Theorem 4.4.

PROOF: Let (UJ)i=i,...,, be a covering of Hq by simply connected open sub-
sets, and let (ai)i=i...... , be a smooth partition of unity subordinate to this covering.
On Ui x SP we define

a?(x)
77i (x, Y) = m a2(x)

J= j
As in the proof of Proposition 5.2, given u E COO(Hq x Se), one has that

m

IIuII2n/(n-2) II niull2,/(n-2)
i .l

Set n = ny.P. By corollary 3.2, one has that for any i

(j.,q xSP
I

iul2n/(n-2)
dV(Sq.p)

< K(n,2)2 J V( 1iu)12dv(Sq.p)
H4xSP

r+ (n - 2) I(p(p - 1) - q(q - 1))K(n, 2)2 J riiu2 dv(Sq.p)
4(n - 1) HgxSP

Similar computations to those made in the proof of Proposition 5.2 then lead to the
following: For any u E COO(Hq X SP),

l (n--2)/n

1
Iu I2n/(n-2) d v(S )

Hg x SP

< K(n, 2)2 J IVuI2 dv(Sq.p) + C(Hq)K(n, 2)2 f u2 dv(Sq.p)
11HgxSP gxSPP

+ (n - 2)
(p(p - 1) - q(q - l))K(n, 2)2 u2dv(Sq.p)4(n - 1) fHg X SP

where
m

C(H") = max V" Io vil2
Hg

i=1

the function (pi : Hq -+ R being defined by Vi(x) = a?(x)/ a? (x). Clearly,
this ends the proof of the proposition. 0

Let us now deal with question 4.6. By Theorem 5.1, Bo(h) = cv2/n for the
standard unit sphere (S", h), and one knows explicitly all the extremum functions
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. Since the scalar curvature Scal(sn,h) is equal to n(n - 1), one can alsoof (12 OPT)
write that

B0(h) = 4(n - 1)
K(n, 2)2(max Scal(Sn,),) )

n

We will be concerned in what follows with the conformal class of h. As one can
see, though simple, such a context leads to interesting and surprising phenom-
ena. Let [[h]] be the set of conformal metrics to h having the same volume as h.
Namely,

[[h]] = {g E [hj / Vol(sn.g) = Wn J

where [h] denotes the conformal class of h, and, as usual, w" = Vol(sn,h). The
question of the explicit value of Bo(g) and of the existence of extremum functions
for (IZ OPT) is not affected by rescaling. In other words, answering such questions
for g E [[h]] is equivalent to answering such questions for g E [h]. The point here
is that for X > 0 real, Bo(Ag) = A-' Bo(g), and that if u is an extremum function
for (IZ OPT) with respect to g, then X-("-')/4u is an extremum function for (12 wT)
with respect to Ag. Hence, without loss of generality, we can restrict ourselves to
[[h]]. The first result we prove here, due to Hebey [110], completely answers the
question for n > 4.

THEOREM 5.7 Let (Sn, h) be the standard unit sphere of l[1"+), n >_ 4, and let
g E [[h]]. Then

Bo(g) =
n 2

4(n -
1)K(n,2)2(maxScal(sn,g))

and one has that there exist nonzero extremum functions for (IZ OPT) if and only
if the scalar curvature Scal(sn,g) of g is constant. In such a case, g and h are
isometric, and if co is an isometry from (S", h) onto (S", g), then u is an extremum

function for (12 OPT) with respect to g if and only if u o (p is an extremum function
for (IZ OPT) with respect to h.

PROOF: Let g E [[h]] and I. be the functional defined on Hi (S")\(0) by

1g(u} =
fsn IVu12/dvs(g) + 4n 2 fsn Scal(sn.g) u2dv(g)

Us. Iu I2n/("-2)
d!1(g))(n-2)/n

lf
where Scal(sn,g) stands for the scalar curvature of g. As is well-known (see, for
instance, [109]), info Is (u) is a conformal invariant. Hence, by Theorem 5.1,

(5.2) inf L W = inf 1(u) =h

1

u g u K(n, 2)2

Independently, and by Proposition 5.1,

(5.3) Bo(g) ? 4(n - 1) K (n, 2)2 (max Scal(sn,g) )
n
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In order to prove the first part of the theorem, we proceed by contradiction.
Suppose that

(5.4) Bo(g) > 4(n - 1) K(n, 2)2 (max Scal(sn,g) )

Coming back to the definition of Bo(g), one has that for B < Bo(g) there exists u
in H, (S")\{0} such that

J IVU12dv(g)+ B J u2dv(g) <
n K(n, 2)2 sn

I
(n-2)/n

2 lul2n/(n-2) dv(g))
K(n, 2) Sn

Hence, (5.4) implies that
Im g u

U K(n, 2)2

This is in contradiction with (5.2). As a consequence, and coming back to (5.3),

4 )Bo(g) = n - 2
K(n, 2)2(maxScal(sn,g)

(n - 1)

This proves the first part of the theorem. Let us now prove its second part. Suppose
that (I2.OPT) with respect to g possesses some extremum function uo. By definition,

fSn IVuoI2 dv(g) + (max Scal(sn.g)) fsn uo dv(g) 1

(JSn
Ju012n/(n-2)dv($))(n-2)/n K(n, 2)2

and uo realizes the minimum of the functional

J(u)=
fsn you 12

dv(g) + a(ni)
(Max Scal(Sn.g) ) fsn u2 dv(g)

fS"
IuI2nl(n-2)

dv(g))(n-2)/n

Without loss of generality, one can assume that uo > 0 a.e, and that

JSn

0n/(n-2)u0 dv(g) = I

By classical variational techniques, one then gets that uo is a weak solution of

Aguo
+ n - 2 (max

Scal(sn,g) )uo = I 2 u(n+2)/(n-2)

4(n - 1) Sn K(n, 2)

where Ag is the Laplacian of g. By maximum principles and regularity results, uo
is everywhere

f
pand smooth. Hence,

n Scal(sn,g) uo d v(g) < (Max Scal(sn,g)) fn uo d v(g)

as soon as Scal(s?,g) is nonconstant. In such a case, one gets that

1 = inf Ig(u) < I8(uo) < J(uo) =
K (n, 2)2 K(n, 2)2
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which is absurd. As a consequence, (IZ OPT) with respect to g does not possess ex-
tremum functions if Scal(S.g) is nonconstant. Conversely, if Scal(Sm,g) is constant,
then, by a well-known result of Obata [163], g and h are isometric. In such a sit-
uation, it is clear that (IZ OPT) with respect to g possesses extremum functions, and
that if (p is an isometry from (S", h) onto (S", g), then u is an extremum function
for (IZ OPT) with respect tog if and only if u oqp is an extremum function for (12 OPT)
with respect to h. This proves the theorem.

Now that Theorem 5.7 is proved, it is natural to ask what happens when n = 3.
Here, it seems that there does not exist a complete answer in the spirit of the answer
given above for n > 4. More precisely, when dealing with the case n = 3, one has
the following result of Hebey [110]. Note that 4i = s for n = 3.

THEOREM 5.8 Let (S3, h) be the standard unit sphere of ]R4. For any g E [[h]],

Bo(g) <
1

8
K(3,2)' (max Scal(S;,g) )

but there now exists some g E [[h]] such that

Bo(g) < 8 K(3, 2)2 (max Scal(s.,g) )

Independently, in the case of equality, there exist nonzero extremum functions for
(Iz op.1.) if and only if the scalar curvature Scal(s3.g) of g is constant. In such a case,
g and h are isometric, and if co is an isometry from (S3, h) onto (S3, g), then u is an
extremum function for (12 OPT) with respect to g if and only if u o (p is an extremum
function for (12 OPT) with respect to h.

The proof of Theorem 5.8 proceeds in several steps. Its main ingredient is the
following result of Brezis and Nirenberg [34]: For any bounded domain 92 of R3,
and any u E )(92),

(JR Iu I6dx
;

\ 1/3

K(3, 2)'-
J

IVuI2 dx - ,(S2) fR u dx
R; ;

where

K(3,2)2(32))2/3-
and Vole(Q) stands for the Euclidean volume of 9. In what follows, let S be the
unit ball of i3 centered at 0. The first result we prove is the following: It is an easy
consequence of the above result of Brezis and Nirenberg.

LEMMA 5.1 There exists 61 E C°°(1R3) such that for any u E 2 (1R3)

/
fR3

1/3 f

fR

juI'dx< K(3,2)22 IVuI2dx+01u2dx
/ Rj I

w ith the property that 61(0) = -A(2) and 01(x) = 0 as soon as fix( > 2.
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PROOF: Let n E C°O(II83), 0 < n < 1, be such that n(x) = I if Ixi < 1/2,
and n(x) = 0 if IxI > 3/4. Set

n2
(1 - 17)2

171 =
)7

2 + (1 - n)2 112 = n2 + - 17)2

For any u E D(]R),

/ \1/3
fR Iul6dx f = IIUIIL6 = Iiu2IIL3 = II( 1t1u)2+( 172u)2110

; /
< II( 1u)211 c= + II ( n2U)2IIc; < II n1uII26 + it n2UII2L L6

On the one hand, one has by the result of Brezis and Nirenberg that

II nlu}I 6 < K(3,2)2 f; fiV( n1u)I2dx-A(B)
;

1i1U2dx
R

On the other hand, one has by Theorem 4.4 that

II n2UII,6 < K(3, 2)2f IV( 112u)12dx
R;

As a consequence,

Iul6dx
JR

/1/3

K(3, 2)2 f3
R

IV( fIU)12 dx + K(3, 2)2 f Io( 2u)I2 dx
R

-,X(B)f n1 u2 dx

= K(3, 2)2 f 111 I VU 12 dx + K(3, 2)2 f 10 111 12u2 dx
R3

p
R;

R
u(V n1 Vu)dx + K(3, 2)2 J 372Ioul2 dx+ f

+ K(3, 2)2 f 10 >7212u2 dx + fu(Vn2Vu)dx

-A(B) f 11u2dx
R;

IVu12dx=K(3,2)2f
R3

+ f (K(3, 2)2(IV nl 12 + Io 11212) - A(B)nl)u2 dX

since n1 + 172 = 1. Setting

B1 = K(3, 2)2(IV 11112 +
IV,.,/n2 11) - A(B)nl

this proves the lemma.

As an easy consequence of Lemma 5.1, one gets the following result:

0
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LEMMA 5.2 Let x0 E S3. There exists 02 E CO0(S3) such that for any u E COO(S3),

1/3

(13 U16dv(h)K(3, 2)2 rIVU12dv(h)

+ Bo(h) J u2 dv(h) + J 02u2 dv(h)
s3 s3

with the property that 02(xo) < 0.

PROOF: Let P : S3\(-xo} R3 be the stereographic projection of pole -x0.
Then

(P-1)*h(x) (1 + 112)2 e

where e stands for the Euclidean metric of R3. Set g = and let cp be the
function defined by

4 1/4

P(x) ((1 + 1x12)2}

One has that g = V4e. By conformal invariance of the conformal Laplacian

u - Au + 8 Scal(s3.g) U

(see, for instance, [10x9]), one gets that for

f
au E

J Iou12 dv(g) + ; Scal(s3,g) u2dv(g)

= j; u (isu + g Scal(sz,g) U I dv(g)

=
R
f UV-'(,&e (u p))tp6 dx

3

= f 3IV(uw)12dx

R

where As is the Laplacian of g and De is the Euclidean Laplacian. Independently,
it is clear that

f
3

Iu16dv(g) = fR j Iu(P16dx

By Lemma 5.1 one then gets that for any u E D(R3),

1/3

f R31u16dx)

/
_ { f Iu(01°dx

1/3

)
\ R

01(uco)2dx<K(3,2)2 4-3 IV(u')12dx+J
3
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= K(3, 2)2 IVu I2dv(g) +
K(3, 2)2

Scal(s3 g) u2dv(g)
f3 8 JR3

+ f(9Iq7_4)u2dv(g)
3

= K(3, 2)2 IVuI2 dv(g) + Bo(h) u2 dv(g)f
R3 J °(01

V-4)u2dv(g)+ r
R3

Note here that since g and h are isometric, Scal(s3,g) = 6. Set

0 = (01 (P-4) o P

Then 0 is defined on S3\{-xo), and as an easy remark, one has that

0(xo) = -A(B)gq(0)-4 < 0

Independently, and since g are h isometric, one gets from the above developments
that for any u E D(S3\{-xo)),

1 /3

Iu16dv(h) < K(3, 2)2 f I V ul2dv(h)S; Sp;

+ Bo(h) J u2 dv(h) + f 9u2 dv(h)
s3 3

But 01(x) = 0 for IxI >> 1. Hence, 0 = 0 near -xo. We extend 9 by 0 at -xo.
Let r > 0 real be such that 9 = 0 on B_xo(r), where B_,ro(r) stands for the ball
of center -xo and radius r in S3. Let also n E CO°(S3), 0 < n < 1, be such that
n(x) = 1 if dh (-xo, x) < r/2, and ?7 (x) = 0 if dh (-xo, x) > 3r/4, where dh is the
distance on S3 associated to h. As in the proof of Lemma 5.1, we set

n1 =
n and

(1 -
n)2

n2 + (1 - n)2
n2 = n2 + (1 - n)2

Given U E COO(S3), one can write that

1u2dv(h)I I
nlulli6 < K(3,2)2J 1U )1 2

dv(h)+Bo(h) fs

11'./172U1126 < K(3, 2)2 f, Io( mu)I2dv(h)

+ Bo(h) n2u2 dv(h) + 9n2u2 dv(h)f
S3

f
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Similar computations to the ones involved in the proof of Lemma 5.1 then lead to
the following: For any u E CO°(S3),

1/3

fs
( f

IU16dv(h)\l

) < K(3, 2)2 IVU12dv(h)
s; / 1

+ Bo(h)
.

u2 dv(h) + f 92u2 dv(h)
s, j

where 02 = K (3, 2) 2 (I o 0 i I2 + IV,/?-, 2-12) + 0712. As one can easily be convinced,
this proves the lemma.

In order to prove Theorem 5.8, we also need the following result:

LEMMA 5.3 Let A E C0°(S3) be some smooth function on S3. Given xo E S3 and
3 > 0 real, there exists u E C°O(S3), u positive, and there exists 1l > 0 real such
that

J Ahu + Au = -Au5 on S3\B.ro(8)

Js3 u6 dv(h) = W3

where Ah is the Laplacian of h, and B,to (8) is the ball in S3 of center x0 and radius
8.

PROOF: Let A E CO0(S3) be such that

A= A on S3\BXoI S I and jAdv(h)<zo\3
For q E (2, 6) real, let H. be the functional defined on Hi (S3)\(0) by

Hq(u) =
fs, IpuI2dv(h)+fs, Au2dv(h)

fs3 Iulq dv(h))2/q

and let r
jeq= fu E H?(S3)/J Iulgdv(h)=1}

33 11

Let also
'Xq = inf Hq(u)

uE9eq

Then clearly xq < 0 since Hq (1) < 0. Independently, as one can easily check, A.q
is finite, and (Aq)q is bounded. By standard variational techniques, and since the
embedding of H? in Lg is compact (Theorem 2.9), one easily gets that there exists
uq E C0°(S3), U q > 0, such that

J Ahuq + Auq = Aquq-I

fs3 uq dv(h) = 1

Note now that the uq's are bounded in H2(S3) . Hence, up to the extraction of a
subsequence, there exists u E HI 2(S3) such that as q -+ 6,

1. uq u in Hi (S3),
2. uq -+ u in L2(S3),
3. uq u a.e., and
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4. uy-1 - u5 in L6/5(S3).

Similarly, and without loss of generality, one can assume that

limAq=A

where A < 0 is real. As an easy consequence of such properties, one then gets that
u is a weak solution of

0),u + Au = Au5
By maximum principles, either u = 0 or u > 0, while by standard regularity
results, u E CO0(S3). In order to prove the lemma, as one can easily be convinced,
we are left with the proof that u # 0. For that purpose, let us write that

2/q
1 = (ju:dvh))

;

u6 dv(h) W2(1/q-1/6)

S;
y 3\f /1/;

< W3(1/q-1/6)x(3, 2)2 f IVugI2 dv(h) + Bo(h)(v2(1/q-1/6)

fS3
uy dv(h)

s;
< W3(11q-1/6)x(3, 2)2Aq - W;(1/q-1/6)x(3, 2)2

J
Auq dv(h)

s3

+ Bo(h)0)201q-116) j uy dv(h)
s;

< W;(1/q-1/6)K(3, 2)2Aq + Cq J uq dv(h)
S3

where Cq > 0 is given by

Cq = W3(I/q-1/6)K(3, 2)2 max IAI + Bo(h)(d3(1 /q-1/6)
S;

From what has been said above, and by passing to the limit as q -+ 6, one gets
from the above inequality that

1 < AK(3, 2)2 + C J
u2 dv(h)

s3

where C = limq,6 Cq is given by

C = K(3,2)2 Max IAI + Bo(h)
S3

As a consequence, since A < 0, fS3 u22 dv(h) 96 0 and u 0 0. As already men-
tioned, this proves the lemma.

With such lemmas, Lemmas 5.1 to 5.3, we are in position to prove Theorem
5.8.

PROOF OF THEOREM 5.8: Let g E [[h]]. With the same arguments as those
used in the proof of Theorem 5.7, one gets that

Bo(g) <

8

K(3,2)' (max Scal(s3,8)
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From now on, let So E COD(S3), So > 0, such that g = to4h, and let B be real. Given
U E C°O(S3), we write that

J
IVuI2 dv(g) + B f u2 dv(g)

3 sI

fs

/

J u ( su + 8 Scal(s3,g) udv(g) + i ` B - g Scal(sa,g) u2 dv(g)
swhere

i 5 is the Laplacian of g. By conformal invariance of the conformal Lapla-
cian

1

u -+ A,u +
8

Scal(s3,g) u

(see, for instance, [1091), one has that

rr
IVul2dv(g)+a j u2dv(g)

3 s3

= f IV(uc,)I2dv(h)+ 3 f (u(p)2dv(h)
3 4 3

r /( 1

+ f ; (a - 8 Scal(s3.g) )q,4(uqO2 dv(h)

while, as one can easily
check,``

1uw16dv(h)f Iul6dv(g) = j
3 3

From such relations, one gets that

inf fs3 IVu/I2dv(g) +
B fS, u2 dv(g)

u (f S3lul6dv(g))I/3

inf
fs3 IVuI2dv(h)+4 fs, u2dv(h)+fs3(B - s Scal(s3g))(p4u2dv(h)

u
(fs3

and by Lemma 5.2,

inf fs3 I Vu 11 dv(g) + B fs3 u2 dv(g)

(fs3 lu16dv(g))I/3 - K(3, 2)2

as long as

Set

02B - gScal(s3g)) 4>-
K (3,

(5.5) B = max (K324 + 8 Scal(s3.g) /S3 ,

As a consequence of what has been said up to now, one will get that

Bo(g) <
8

K(3,2)' ( max Scal(s3,g)
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if g is such that

(5.6) B <

8

max Scal(si,g)
3

where B is as in (5.5). In order to prove the existence of such a g, let xo E S3 and
let S > 0 be real such that 92 < 0 on Bx0(28), where Bxa(2S) is the ball in S3 of
center xo and radius 23. Set

A-4+K(3,2)202

and let cp E COO(S3), cp > 0, the function given by Lemma 5.3, solution of

J Ahco + Asp = -Acp5 in S3\B.YO(S)

fs3cp6dt)(h) =W3

where A real is positive. Setting g = cp4h, one gets that

92(x) . I . 92(x) 80W + 6(p

Fm

so that

K(3, 2)2cp4(x)
+ [ 8cps (x)

(Ahcp + Acp)(x)

(5.7)
02(2)

4 + 1 Scal(53,g)(x) _ -A < 1 max Scal(s3.g)
K(3, 2) cp (x) 8 8 s3

for all x E S3\Bxo(S). Independently, let e > 0 be such that 92 < -s and cp4(x) <
1/s in Bxo(S). Then, for all x E Bx0(8),

(5.8)
K(392 (x) x)

+ 8 Scabs3.g)(x) 8 Scal(s3 g)(x) -
K(3,

2)252

< 1 max Scal(s3.g)
8 s3

From (5.7) and (5.8), one gets that (5.6) is satisfied by g. Hence, there exists
g E [[h]] such that

Bo(g) < 8 K(3, 2)2 ( max Scal(s3,g) )

Let us now prove the last part of Theorem 5.8. Let g E [[h]] be such that

Bo(g) = 8 K(3, 2)2 ( max Scal(s3,g) )

One gets, as in the proof of Theorem 5.7, that (I? OPT) possesses extremum func
tions if and only if Scal(s3,g) is constant. Here again, by Obata [163], g and h are
isometric when Scal(s3,g) is constant. In such a situation, it is clear that (Ii OPT)
with respect to g possesses extremum functions, and that if sp is an isometry from
(S3, h) onto (S3, g), then u is an extremum function for (li oNr) with respect tog if
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and only if u o is an extremum function for (I; OPT) with respect to h. This ends
the proof of the theorem.

Finally, note that one can prove that for any g E [[h]], h the standard metric of
S3,

,

Bo ?: gK(3, 2)2(minScal(s3.8))

with equality if and only if Scal(sa g) is constant, hence if and only if g and h are
isometric (by Obata [163)). To see this, one can use the conformal invariance of
the conformal Laplacian

U 4 Egu + 8 Scal(s;.g)

If g = v4h, one gets, as in the proof of Theorem 5.8, that for any u E COO(S3),

fs; IVul2dv(g)+ K(3.2)2Bo(g) fs3u2dv(g)

(1S; Iulb dv(g))1/3

fs3IV(uv)I2dv(h)+4fss(uv)2dv(h)

(fS; luvl6dv(h))1/3

+ fs; (K(3.2)2a'o(&) - s Scal(s3.8))v4(uv)2 dv(h)

(fs3
luvlbdv(h))113

Hence, taking u = in this equality, one gets that

K(3, 2)2 K(3, 2)2 + cr)1 3 L (K(, 2)2 Bo(g) - g Scal(s3.g) )v4 dv(h)

As a consequence,

max (K(',3 2)2 Bo(g) - 8 Scal(s3.g) 0
S3 ,

with the property that in the case of equality to 0, Scal(S3 g) has to be constant. This
proves the above claim.

5.4. The Role of Bo(g)

We have already seen in Chapter 4, Section 4.2, the role played by 012(M)-
Namely, a2(M) is connected with the existence of solutions to scalar curvature
type equations

Ogu + au = fu (n+2)1(n-2)

where a and f are smooth functions on M. We will see here, as initiated by Hebey-
Vaugon [113], that Bo(g) is connected with the existence of multiple solutions for
such equations. For the sake of clarity, we deal here with the multiplicity attached
to the Yamabe problem. Similar results have been obtained in [113] when dealing
with the Nirenberg problem.
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Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, let [g] be the
conformal class of g. Namely,

[g] = {g = u4/(++-2)g, u E C°°(M), u > 0}

According to Aubin [9] and Schoen [175], [g] possesses at least one metric of
constant scalar curvature. Up to some harmless constant, this means that for any
smooth, compact Riemannian n-manifold, n > 3, there exists I E R, and there
exists u E C°O(M), u > 0, such that

(E) Ogu + n 2 Scal(M.r) U _ ,.u(n+2)/(n-2)

4(n - 1)
where Scal(M,g) is the scalar curvature of (M, g). The problem here is to find con-
ditions on the manifold for [g] to possess several metrics having the same constant
scalar curvature. This reduces again to finding conditions on the manifold for (E)
to possess several solutions. On such a problem, the main results available are neg-
ative ones. Namely, [g] possesses, up to constant scale factors, a unique metric of
constant scalar curvature in each of the following cases:

1. [g] possesses some metric g with the property that fm Scal(M.1) dv(g) < 0
(Aubin [9]), or

2. [g] possesses an Einstein metric, and (M, g) is not conformally diffeomor-
phic to the standard sphere (Sn, h) of the same dimension (Obata [163]).

Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, its Yamabe func-
tional J is defined on Hi (M)\{0} by

fM IVul2((dv(g) + a(nt) fM (nScal(M.g) u2dv(g)J(u) _
\fM

lul2n/(n-2)dv(g))-2)/n

According to the resolution of the Yamabe problem by Aubin [9] and Schoen [175],
one has that

inf J(u) <
I

U - K(n, 2)2
this inequality being strict if (M, g) is not conformally diffeomorphic to the stan-
dard n-dimensional sphere. We also define CO(g) as the smallest constant C such
that for any u E HI 2(M),

K(n

1 (n-2)/n

2)2
(
fu

Iu12n/(n-2) dv(g)' <
, `J

J. Vu2dv(g) +
n - 2

M
2 dv(g) +CM u2 dv(g)

I I 4(n - 1)
Scal(M,g) u

where K (n, 2) is as in Theorem 4.4. Clearly,

K(n, 2)2Co(g) < Bo(g) - 4(n - 1) K(n, 2)2(tniin Scal(M.g) )

with equality if Scal(M,g) is constant. The first result we prove is the following one
of Hebey-Vaugon [113]:
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THEOREM 5.9 Let n : (M, g) (MI, $1) be a Riemannian covering with b
sheets, b > 1, where (M, g) and (MI, gl) are smooth, compact Riemannian n-
manifolds, n > 3. Suppose that (M, g) is not conformally difeomorphic to the
standard n-dimensional sphere and that

Co(gl)Vol"" <K(n,2)2 b2-1/"

Then [g] possesses two distinct metrics having the same constant scalar curvature.

PROOF: Let J be the functional defined on Hi (M)\{0} by

fM IVu12dv(g) + 4(,,i) fm Scal(M.g) u2dv(g)J(u) = -
(fM lu 12n/(n-2) d v(g))

(n-2)/"

and let JI be the functional defined on H, (MI)\{0} by

fM,
IVuI2 dv(g1) + 4(n-I) fM1 Scal(M,,g1) u2 dv(gl)

A (u) = / (n-2)/n(fM, Iu12n/(n-2)dv(g1)

From the resolution of the Yamabe problem by Aubin [9) and Schoen [175], one
gets that there exists u E C°°(M), u > 0, and u I E CO0(MI ), u I > 0, such that

J(u) = inf J(v), J1(u1) = inf J, (v)
V V

Without loss of generality, since J and J1 are homogeneous, one can assume that
u and ul are both of norm I in LP(M) and LP(M1), where p = 2n/(n - 2). Then
u and u I are solutions of

Agu +
n - 2

Scal(M.g) u = xuP-I4(n - 1)
n-2

Aglul + 4(n - 1)
SCal(M,.g1) uI = X I u

where A = J (u) and X I = J (u I). Set u = u I o 17. Then u is a solution of

Agu +
n - 2

Scal(M,8) ii 10-
4(n - 1)

on M. On the one hand, still from the resolution of the Yamabe problem by Aubin
[9] and Schoen [175], one has that

J(u) <
1

K(n, 2)2

On the other hand, by the definition of Co(g1),

1
J(u) = b2/"JI(u1) ? b2/17(K( 1 2)2 - Co(g1) fm ui dv(g1) f

Since uI is of norm 1 in LP(MI),

f ui dv(gi) < Vol21n ) = b-2/" Vol21 g)
Mi
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Hence, one will have that J (u) < J (55) if

1
b'-/"

1

K(n, 2)2 - Co(g))b-2/" Vole/ng)) > K(n, 2)2

This is the inequality of the theorem. Under such an inequality, one then gets that,
up to a constant scale factor, u4/(i-2)g and u"4/("-2)g are distinct but have the same
constant scalar curvature. Clearly, this proves the theorem.

As a remark, note that the value of the constant scalar curvature has no interest
when dealing with such a problem. The point here is that if A > 0, then

Scal(M_A8) _ Scal(M.

so that any value can be prescribed. More generally, with the same arguments than
those used in the proof of Theorem 5.9, one easily gets the following result, also
due to Hebey-Vaugon [113].

THEOREM 5.10 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
and let ni : (M, g) -* (M,, g;) be m Riemannian coverings with b; sheets, I <
b, < < bm. Set b o = 1 and assume that f o r any i = 1, ... , m,

Co(g1) Vol,/y'g) K(n, 2)2 (b?/" - b2/1)

with the additional property that (M, g) is not conformally diffeomorphic to the
standard n-dimensional sphere. Then [g] possesses m + 1 distinct metrics having
the same constant scalar curvature.

A simple computation shows that for J the Yamabe functional on (M, g), and
u a smooth positive function on M,

4n-1
n - 2) J(u) = Vol(M s,)/" J Scal(Ms) dv(g)

M

where g = u4/("-2)g. For u such that it realizes the minimum of J, one then gets
that g = u4/(n-2) g has constant scalar curvature A, and that

J(u) = (n - 2)A
Vol2/"

4(n - 1) (M.R)

Coming back to the proof of Theorem 5.9, and by extension of Theorem 5.10, we
set MO = M and rio = Id. As one can easily check, them + 1 metrics of Theorem
5.10 are of the form gi = (u, o fl;)41(i-2)g, i = 0, ... , m, where the u,'s realize
the minimum of the Yamabe functional J; on M;, and if JO = J is the Yamabe
functional on M,

J(vo) < J(VI) < ... < J(i)m)

where v; = u, o ni. Noting that J (v;) = bF"' J; (u; ), and according to what has
been said above, one then gets that

VOI(M.g0) < VOl(M.gi) < ... < VOl(M.gm)
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In other words, the metrics of Theorems 5.9 and 5.10 are distinguished by their
volumes. In particular, one can get more distinct metrics having the same constant
scalar curvature in the presence of symmetries.

When dealing with multiplicity for the Yamabe problem, only very few explicit
examples are known. First, one has the case of the standard unit sphere (S", h)
where the structure of the set of conformal metrics to h having the same constant
scalar curvature is explicitly known. Namely, g E [h] is such that Scal(S..g) =
Scal(sn,h) if and only if there exists a conformal diffeomorphism q of (S", h) such
that g = V*h. In particular, g and h have the same volume. Then, one has the
case of the product manifold S'(T) x S"', as first studied by Schoen [176]. In
Schoen's study of S1(T) x S"-1, the main point is that the scalar curvature equation
on S1 (T) x Sn-' reduces to some equation on R. Here again, one has a rather
explicit description, depending on the parameter T, of the set of conformal metrics
having the same constant scalar curvature. As done in Hebey-Vaugon [113], one
recovers the multiplicity part of Schoen's result by using Theorem 5.10. This is the
subject of the following:

COROLLARY 5.1 Let S1 (T) x S' 1, n > 3, be endowed with its standard product
metric gT. For any integer k, there exists T (k) > 0 such that for any T > T (k),
[gT] possesses k distinct metrics having the same constant scalar curvature. More-
over, these metrics have distinct volumes.

PROOF: Let Gi, i = 1, ... , k, be k finite groups of rotations on S' of order
b, = i. One then gets k Riemannian coverings

11, : (S1(T) x Sn-1,9T) (S1 T I
X

Sn-1,gr)W(T) \ t/ '

By Proposition 5.4, as one can easily check,

Co(g1) < 4T,

Hence, applying Theorem 5.10, one will get the result if for all i = 2,..., k,
2

4T2
(2lrTcon-1)2/" < K(n, 2)2 (i2(" - (i - 1)2kn)

Clearly, such inequalities are satisfied for T large enough. This proves the lemma.

Other specific examples can be deduced from the approach presented here.
Think, for instance, of (Hq, ho) some compact, hyperbolic Riemannian q-manifold,
q > 2, having the property that it is a nontrivial Riemannian covering of some other
compact, hyperbolic Riemannian q-manifold. Let gq.p = ho + h be the product
metric on Hq x SP, where (Se, h) stands for the standard p-dimensional sphere.
By Theorem 5.9 and Proposition 5.5, as one can easily check, [gq,p] possesses two
distinct metrics having the same constant scalar curvature provided that p is large
enough. Moreover, one will get a third metric by noting that for p large enough,
J (1) > info J (u), where J stands for the Yamabe functional on Hq X Sp. For p
large enough, [gq,p] then possesses three distinct metrics having the same constant
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scalar curvature. For more details on the role that Bo(g) can play when dealing
with the existence of several solutions to scalar curvature equations, including the
case of the Nirenberg problem, we refer the reader to Hebey-Vaugon [113].

5.5. One More Question

By Theorem 5.1, the totally optimal inequality

2/Pf
M

JulI dv(g)) S a2(M)2f
M

IVu12dv(g)+f2(M)2 f
M

u2dv(g)

is valid on the standard unit sphere (S", h), n > 3. This leads to the following
question: For which compact Riemannian n-manifold (M, g), n > 3, do we havc
that for any u E Hi (M),

(IM

2/P

(1)
I uI P dv(g))

c K(n, 2)2 IM I Vu12 dv(g) + Vol(M'8) IM u2 dv(g)

where p = 2n /(n - 2). A rather natural guess here (which may or may not be true)
would be that if (M, g) is such that (I) is valid, then, up to a constant scale factor,
(M, g) and (S", h) are isometric. On such a question, whose first appearance can
be found in Hebey [108], only very partial answers have been obtained. Let us start
with the following one of Hebey-Vaugon [113]. Regarding terminology, we say
that U is a conical neighborhood of some subset A of H'(M) if it is a neighborhood
of A in H, 2(M) which satisfies that for any u E U and any I > 0, ku E U.

PROPOSITION 5.6 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 3, and of constant scalar curvature. Let k1 be the first nonzero
eigenvalue of the Laplacian Og associated to g, let v = Vol(M.5) be the volume of
(M, g), and let w" be the volume of the standard unit sphere (S", h).

(i) If (I) is valid, or more generally, if there exists some neighborhood U of
A = (1) in Hi (M) such that (I) is valid for any u E U, then A i > n u&2/".

(ii) Conversely, if Ai > n(")2/" there exists a conical neighborhood U of
A = (-1, 11 in Hi (M) such that (I) is valid for any u E U.

PROOF: Let H be the functional defined on H? (M)\(0) by

H(u) = - J(u) IIUII2n/(n-2)

(K(n', 2)2 11U 112

where II 11, stands for the LP-norm of (M, g), and J is the Yamabe functional

_ JM
IVu12 dv(g) + i. 2)) f M Scal(M.g) u2 dv(g)

J(u) ((/' (n-2)/n
lfM

1u12n/(n-2)dv(g})

For Co(g) as in the preceding section, Co(g) = sup H(u), so that

Bo(g) 4(n - 1) K(n, 2)2(Scal(M,g)) + K(n, 2)2( sup H(u))
U

when is constant.
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First, we prove point (ii) of the proposition. For U E H, (M), as one can easily
check,

n - 2 Scal(Mg) dv(g) p l
2(n - 1)v

(JM
v

f udv(g) - J Sca1(M R) udv(g)
M M

Hence, 1 is a critical point of H if and only if Scal(M.5) is constant. In such a case,
one has that

H"(1) - (u, u) = -v f IVul22dv(g)
M

+ (
dv(g)- (fMudv())2)

V J
Set

W={ l+ u, u E Hi(M), fM11t(g=0!
l

When restricted to W, H is such that

H"(1) (u,u)

v I .Lin( U") - 1) f IVul2dv(g)
J M

Assuming that Ai > n(? )2/", one then gets that -H"(1) is coercive. Hence,
the constant function 1 realizes a local maximum of H on W, and since H is
homogeneous, this leads to point (ii).

Let us now prove point (i). Suppose that 1 is a local maximum of H. Then
H"(1) (u, u) < 0 for all u E H, (M). In particular, for any u E H, (M) such that
fm u d v(g) = 0,

(con\

2/n

n
IM u2 dv(g) f IouP2 dv(g)

v M

Hence,
z

WnX, >n
V

and this ends the proof of the proposition. 0
As a consequence of Proposition 5.6, (1) is satisfied by an infinite number of

nonhomothetic functions on the projective space (P"(R), g). Conversely, one has
the following result. In its statement, n = 3 can be replaced by n odd, and the idea
extends to products S' (t) x S"- 1, t << 1.

PROPOSITION 5.7 There exist standard quotients of the standard 3-sphere where
(I) is not valid.
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PROOF: Consider S3 c ]EI4 = C2, and for k integer, let Gk = {a) be the
finite group generated by Uk, where

ok(z, z') = z')

It is clear that Gk acts freely on S3. Set Pk = S3/Gk, and let gk be its stan-
dard metric induced from the standard metric h of S3. Let also u be the function
u(z, z') = Iz12. Since u is Gk-invariant for any k, it defines some function Uk on
Pk. Suppose now that for any k, (I) holds on (Pk, gk). One would have that for any
k,

1/3

fPk

Iukl6dv(gk)) < K(3, 2)2
J

IVukl2dv(gk)
PA

+ Vol(pf
)
f uk dv(gk)

A

and hence that for any k,
1/3 r

)s; u6dv(h)) < K(n, 2)2 2/3 J i IVuI2dv(h)

u2dv(h)+k)32/3'53

Letting k goes to +oo, this would mean that

u6 dv(h)
1/3

< W3 2/3 J/' u2 dv(h)lf )
\ s3 s3

Since u is nonconstant, such an inequality is false. This proves the proposition. 0

Given (M, g) a smooth, compact Riemannian n-manifold, n > 3, denote by
Yam(M, g) its Yamabe energy. By definition,

Yam(M, g) = I J Scal(M.g) dv(g)(n-2)/n
VOl(M

g)
M

where Scal(M,g) is the scalar curvature of (M, g). As an easy consequence of
Proposition 5.1, one has the following result:

PROPOSITION 5.8 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 4. If (I) is valid, then Yam(M, g) < Yam(S", h).

PROOF: If (I) is valid, one gets by Proposition 5.1 that for any x e M,

Vol(M,g) >
n - 2

K(n, 2)'- Scal(M,g)(x)4(n-1)
Integrating such an inequality over M leads to

Yam(M, g) <
4(n - 1)

(n - 2)K(n, 2)2

that is, Yam(M, g) < Yam(S", h). This proves the proposition. 0
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Combining Proposition 5.8 and the well-known fact that for any g in the con-
formal class of h one has that Yam(S", g) > Yam(S", h) with equality if and only
if g has constant sectional curvature (see, for instance, [142]), we then get that the
guess mentioned at the beginning of this Section is true in the conformal class of
the standard metric h of S", n > 4.

PROPOSITION 5.9 Let g be a Riemannian metric on S", n > 4, conformal to the
standard metric h. If (I) is valid for (S", g), then, up to a constant scale factor, g
and h are isometric.

Independently, combining Propositions 5.6 and 5.8, we get the following:

PROPOSITION 5.10 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 4, and let X 1 be the first nonzero eigenvalue of the Laplacian Ag
associated to g. Assume that the scalar curvature of (M, g) is constant. If (I) is
valid, then

I >
1

n I 1
Scal(m,g)

where Scal(M,g) is the scalar curvature of (M, g).

With regards to such a proposition, note that, as proved by Aubin [9], the
inequality

Ai >
n

1 Scal(M.g)

is also satisfied by Yamabe metrics. By definition, a Yamabe metric is a metric
which realizes the infimum of the Yamabe energy in its conformal class. On the one
hand, Yamabe metrics have constant scalar curvature. On the other hand, thanks
to the resolution of the Yamabe problem by Aubin and Schoen, every conformal
class possesses at least one Yamabe metric. Coming back to Proposition 5.8, one
can also prove that any Yamabe metric g on a compact n-manifold M is such that

Yam(M, g) < Yam(S", h)

With respect to Propositions 5.8 and 5.10, metrics for which (I) is valid look very
much like Yamabe metrics. The following result is an easy consequence of Theo-
rem 5.5 of Bakry and Ledoux.

PROPOSITION 5.11 Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n, n > 3. If (I) is valid, then

diam(,y,8) Vol-"" < diam(Sn,h) Vol(S h)

where diam stands for the diameter, Vol for the volume, and (S", h) is the standard
unit sphere of I8"+1, for which diam(S-,h) = it and Vol(Sn,h) = w".

PROOF: The proof is by contradiction. Suppose that (1) is valid and that

diam 8 Vol-M/g) > 7rw,-,1/"

Clearly, (I) and diam(M,g) are scale invariant. Up to rescaling, one can then

assume that diam(M,g) = it. As a consequence, Vol-M1g) > (On-' In and we get that
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for any u E H; (M),

(JIM

(n-2)/n
IuI 2n2du(g)) <

4 2/n f IVu12 dv(g) + Voi-21n) f u2 dv(g)
n(n - 2)Vol(M,8) M M

By Theorem 5.5, letting f = r, the distance function to some suitable point in M,
leads to the existence of some nonconstant uo E H, (M) such that

(JIM
l (n-2)/n

I2/(n2) dv(g) / _Iu0

4
21n f IVuol2dv(g) + Vol(M f uodv(g)

n(n - 2) V01(M g) M M

Independently, and since (I) is valid, one also has that

(I.
(n-2)/n

Iu0I2n/(n-2) dv(g)) <

4

n(n - 2)cv2/" fu I

Vuol2 dv(g) + Vo1(,. )

M
uodv(g)

The fact that fM I Vuo12 dv(g) # 0 then implies that Vol")()ys< wn
21", which is the

contradiction we were looking for. This ends the proof of the proposition. 0
Finally, as a straightforward application of what has been said in Section 2.9,

one gets the following:

PROPOSITION 5.12 For any A > 0 there are only finitely many diffeomorphism
types of compact Riemannian n-manifolds (M, g) for which I K(M,s) I Vol(y"g) < A
and (1) is valid simultaneously, where K(M,g) denotes the sectional curvature of
(M, g).





CHAPTER 6

Optimal Inequalities with Constraints

We discuss in this short chapter conditions under which one can lower the value
K(n, q) of the best possible A in the generic Sobolev inequality (Iq gel) of Chapter
4. More precisely, we show that orthogonality conditions allow one to lower the
value K (n, q) of the best possible A in (I9 gen). The discussion includes the general
case of a compact manifold in the first section, and the special case of the sphere
in the second section. In the third section we discuss simple applications of these
results to the Nirenberg problem.

6.1. The Case of an Arbitrary Compact Manifold

The results of this section have their origin in the work of Aubin [11]. Ex-
tensions to complete manifolds can be found in Hebey [108]. We start with the
following result (Aubin [11]):

THEOREM 6.1 Let (M, g) be a smooth, compact Riemannian n-manifold, let q E
[1, n) be real, and let p be such that 1/p = 1/q - 1/n. Let also fi, i = 1, ... , N,
be N changing sign functions of class C' satisfying that EN 1 I fi I q = 1. For any
e > 0 there exists B E R such that

\ q/p K(n, q)g r

fmlulpdv(g)2q" +e)J IVul"dv(g)+BIuI'dv(g)
M

for any u E Hq (M) satisfying

fm
filfilp-'Iulpdv(g)=0

foralli=l,...,N.
PROOF: We proceed as in Aubin [11]. For f : M --* R set f+ = max(f, 0)

and f = max(-f, 0) so that f = f+ - f_. If U E HQ(M) satisfies the orthogo-
nality conditions of Theorem 6.1, then, for any i,

fm (fr+)plulpdv(g) =
IM

(ff-)plulpdv(g)

Independently, fi+u, as well as fi_u, belong to Hq (M). By Theorem 4.5 we then
get that for any e > 0 there exists B' E R such that for any i and any u E H9 (M),

q/p

fm
Ifi±ulpdv(g)) (K(n,q)q +e) fut IV(fitu)11 dv(g)

+B' f Ifi±ul9dv(g)
M

161
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Suppose now that u satisfies the orthogonality conditions of Theorem 6.1 and that

JM V(fi+U)dv(g) IV(fi-u)I'dv(g)

Then,

q/PIfiuIPdv(g)\

(
fm /

q/P
2q/P( f Ifi-uIPdv(g) J

_s2q/P(K(n,q)q+e) IV(fi-u)Igdv(g)+2q/PB' f If-uJgdv(g)f M

2q/P-1 (K(n, q)q + e) (IM I V (fi-u)I" dv(g) + IV (f;+u)I9 dv(g))

+2q/PBl f Ifiulgdv(g)
M

<2-'/ (K(n,q)g+E)IM IO(fU)Igdv(g)+2q/PB'f IfiuIgdu(g)
M

since 1/p = 1/q - 1/n and

IV(ft-U)Iq + IV(fi+u)Iq = IV(fiu)I9

almost everywhere. Noting that the result would have been the same under the
assumption

fM IV(fi-u)I" dv(g) IV(fi+u)I"dv(g)

we get that for any e > 0 there exists B" E R such that for any i and any u E
Hr(M) satisfying the orthogonality conditions of Theorem 6.1,

q/P (K(n, q)qf lfilllPdv(g)) <1 2g/n
(6 i. )

+ B"f If,UIgdv(g)
M

One can then proceed as in the proof of Theorem 4.5, with I fi I? in place of >7j.
Let e > 0 be given, and let u E Hq(M) satisfying the orthogonality conditions of
Theorem 6.1. Then

N N N

IIUIlP=IIUgIIP/qlfilqugl IIIfiI"UgIIP/qIlfiUllP
i 1 P/q 1 1 i I= = =

where II IIS stands for the norm of LS (M). Coming back to (6.1) with
i

in place of
e, one then gets that for any u E Hq (M) satisfying the orthogonality conditions of
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Theorem 6.1,

((
glP

\L IuIPdv(g)1J
M /

K(n, q)q e) N
2ql" +21 L

(Ifilloul+Iullofil)gdv(g)
i=1

N

+B"1Ifiulgdv(g)
i=1 fm

(:5K(n, q)g E) r N f
29/" +2 J \IDulglfilq +IIIVUIq-il0f Ilfillq-1IIuI

M

+vluIgIVfilq)dv(g)+B"f Iulgdv(g)
M
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(K(nlY'
)(IIs7uII< +q +µNHlloullq-1 Ilullq +vNHgllullq)

+B- f lulgdv(g)
M

by Holder's inequality, where µ and v are such that

(1 + t)q < I+ pd.t + Vtq

for any t > 0 (for instance, µ = q max(1, 2q-2) and v = max(1, 21?-2)) and where
H is such that for any i, I o fi I H. From now on, let co > 0 be such that

K(n,q)q + e 1+so) < K(n,q)g +6
2qln 2 2qln

For any positive real numbers x, y, and A,

qxq-l y < ,X(q - 1)xq +ki-qyq

By taking x = II'UIIq, Y = IIUIIq, and

qso
µ(q - 1)NH

one then gets that for any u E Hiq (M),

,NHIIVuIIq-'IIUIIq soilVuIIq+Cllullq

where

_ NH ( so I-q

C

µq
µ(q R 1)NH)
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Hence, for any u E HQ (M) satisfying the orthogonality conditions of Theorem 6.1,

q/p
lull dv(g))(fM

(K2glq)q+2)(1+so) f IVul"dv(g)+BJ lulgdv(g)' M M

K(n, q)g
24/n

+s f loulgdv(g)+B f luI"dv(g)
M M

where
(K(nYl + 2 (C + vNHq) + B"

Clearly, this ends the proof of the theorem. O

In the case q = 2, one gets more than Theorem 6.1. More precisely, one has
the following:

THEOREM 6.2 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
let p = 2n/(n - 2), and let fi, i = 1, ... , N, be N changing sign functions of
class C 1 satisfying that F_N fit = 1. There exists B E R such that

L I ul p dv(g))
21p

<
K(

22/n JM

Ioul2 dv(g) + B f u2 dv(g)

for any u E H; (M) satisfying J

JM fiIfilp-'Iulpdv(g) =0

for all i = 1,...,N.

PROOF: We proceed as in the proof of Theorem 6.1, but using Theorem 4.6 in-
stead of Theorem 4.5. For f : M --,- IL set f+ = max(f, 0) and f_ = max(- f, 0)
so that f = f+ - f-. If U E H? (M) satisfies the orthogonality conditions of The-
orem 6.2, then for any i,

fm
(fi+)plulpdv(g) =

fm
(f-)plulpdv(g)

ndependently, fi+u as well as f,1_u belong to H? (M). By Theorem 4.6 we thenI
get that there exists B' E IR such that for any i and any u e HI(M),

2/p

IV(fi-+u)l2dv(g)(f Ififulpdv(g)) :5 K(n,2)2
I.

M M

+ B' f (fi+U)2dv(g)
M

Suppose now that u satisfies the orthogonality conditions of Theorem 6.2 and that

JM Io(fi+u)I2dv(g) 2fm IV(fi-u)I2dv(g)
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Then,

\J If;uj1 dv(g)
M

2/n

l 2/P= 22/P( fm If;-ulPdv(g) J1\ /
< 22/nK(n, 2)2

fm
IV(f;-u)12 dv(g) + 22/nB' f (f;-u)2 dv(g)

M

V(fi+u)I2dv(g))22/P-'K(n,2)2(J IV(f-u)12dv(g)+ IM I
M

+221PB'

fM
(f; u)2 dv(g)

< 2-2/"K(n, 2)2
J IV (fiu)12dv(g) +221PB' f (f;u)2dv(g)

M M

since 1/p = 1/2 - 1/n and

lo(f;-u)I'' + IV(f;+u)I2 = IV(fu)I2

almost everywhere. Noting that the result would have been the same under the
assumption

f Io(f;;-u)I2dv(g) >_
JM

Io(I+u)12dv(g)
M

we get that there exists B" E R such that for any i and any u E 'H? (M) satisfying
the orthogonality conditions of Theorem 6.2,

2/n

If,ulPdv(g)) <(6.2)
(JM

K(n,

fm
22/

2)2
Io(f;u)I2 dv(g) + B" f (f u)2 dv(g)

M

One can then proceed as in the proof of Theorem 4.5 or Theorem 6.1, though the
argument here is slightly simpler. Given U E H (M) satisfying the orthogonality
conditions of Theorem 6.2, we write that

Ilulip = IIu211n12 = II f,2u21I E I1f;2u211n/2 = II frulln
1=1 P/2 ;=1 ;=1
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where II II, stands for the norm of LS (M). Coming back to (6.2), one then gets that
for any u E HI 2(M) satisfying the orthogonality conditions of Theorem 6.2,

2/P
IuI "dv(g))

K(n, 2)2 N
{

22/n f
i=1 M

N
+ B / (f; u)2 dv(g)

i=1 JM

IM

K(n, 2)2

fM
dv(g) + (B" + NH2) u2 dv(g)

where H is such that for any i, IV fi I < H. Clearly, this ends the proof of the
theorem. 0

6.2. The Case of the Sphere

We present here a result of Aubin [11]. As one will see in the next section,
such a result has nice applications when dealing with the Nirenberg problem. In
what follows, (S", h) denotes the standard unit sphere of 1[ 1

THEOREM 6.3 Let (4i)i=1....... +I be the first spherical harmonics obtained by re-
stricting the coordinates xi of R"+' to S", and let (S", h) be the standard unit
sphere of R"+' . Let s > 0, let q E [1, n) be real, and let p be such that 1 / p =
1 /q - 1 In. There exists B E R such that

q

I uI Pdv(h))9

P
< (IIn,2gln +s) fn $

IouI dv(h)+B fn Iulgdv(h)
Sn $

for any u E Hiq(S") satisfying Vi = 1, ... , n + 1, fS, 4i I uI P dv(h) = 0.

PROOF: Let q E (0,
2)

real to be chosen later on. Let also A be the vector
space of first spherical harmonics. Following Aubin [11], we claim first that there
exists a family (0i=1.....k E A such that

k

1+n< IliIg/P<1+2n

with the additional property that I:;i I < 2-P for any i. Indeed, let P be in S" and
let rp denote the distance to P. The function 4P = cos(rp) belongs to A and, as
one can easily check,

'Sn
dv(h) = cons(

in the sense that the integral does not depend on P. From such a property of the
family (vp)PEs"", one easily gets the existence of (li)i_i....,k. From now on, let hi
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of class C 1 be such that h; 4; > 0 everywhere and such that

Ih;lg - I ;Ig/vl < (k
pII)

Then,
k

1<Ih;lg<1+3t)

while by the mean-value theorem,

n

jIh;I- I Il
+ ()')'IIhiI - I ;Iq/nl < p(q)

Let B,, real be such that for any u E H9(S"),

r
\f lulPdv(h)

a/n
<K(n,q)'(1+n)J IVulgdv(h)+BqI Iulgdv(h)

Sn s"

For u nonnegative in HQ (S"), one can write that

(J'
lq/P

(
lq/P

uPdv(h)/ _ f".
(ug)P'dv(h)s"

I

<
f (IhiIu1)P/gdv(h))q/P

f4/p
l(Ih;Iqug)P/gdv(h))

"

k

r
l4/n

I

h;IPuPdv(h)
= (fs IGiven

f : S" -;' 1R, let f+ = max(f, 0) and f_ = max(-f, 0). For u nonnegative
in H°(S") such that for all 4 E A

euP dv(h) = 0"
one has that

f ;+uP dv(h) = f
,

j_uP dv(h)

Hence, for u as above,

rr
q/P

\f Ih;IPuPdv(h))Sn

s

9/P
j(ha_)PuPdv(h))_ f" (h;+)PUP dv(h+

S
f ;+uP dv(h) + Eo f un dv(h) + fsn (h;_)PuP dv(h)

9/P

n S"
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_ (fit i_uPdv(h)+so J uPdv(h)+ J (h;_)PUPdv(h)
s" s"

q/P
S 2Y/P ( f

it

((h, )P + EO )u1' dv(h))

52glP( f (hi_+so)PUPdv(h)
)Y/P

< 2Y/PK(n, q)Y(1 + rl) f Iv((hi- + eo)u)Ig dv(h)

+ Bi f (hi_ + eo)gu' dv(h)

where so = (q )1/P
k

. Similarly,( \ Y/P

\Js
IhiIPuPdv(h) I <2Y/PK(n,q)Y(1+ii) J IV((hi++eo)u)lQdv(h)

+ B,,f (hi+ + eo)gug dv(h)
it

Set

H = max max IVhiI
i-1.....k S"

and let µ and v independent of i and u such that

f IV((hi,+eo)u)IYdv(h)

< f (hit + so)YIVuIY dv(h)
s^

\\
+/LH( f Ivulgdv(h))

(Y- 1)/Y (fudv(h)) 11qsn
v(h)+ vHg f ug d

sn

Let also M,i > 0 be such that for x and y nonnegative,

xY-1 y <
µHkxg +

M,7yg

Then,

f Iv((h,±+eo)u)1 dv(h) < f (hit+so)gloulgdv(h)

+"f IVulg dv(h) + M,,j ug dv(h)
k ,, ^

+ vHg f ug dv(h)
sn

Noting that for ri small, hif + so < 1, one gets that

(hit +so)' < h,# +q(hif +eo)g-leo < hf +qeo
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As a consequence, for u nonnegative in Hi (S") such that for all r; E A

fu1'dv(h) = 0
^

one gets that

9/P
uP dv(h))

k 9/P
Ih;IPuPdv(h))

^

k

:5E I21P'-'K(n,q)I(I+ij)f
I V ((h`-

+EO)u)I4dv(h)
i-

S.

+
B2°

j(h1_ + Eo)g d v(h)

+2n-iK(n,q)4(1+)1) f^ IV((hi++EO)U)1 dv(h)

+ Zn j(h + EO)U dv(h)J

k

[f(h1_<2oK(n,

f (hi+ + so)4IVuI4 dv(h)
"

+2kf
"
IVuI?dv(h)+Cn f "ugdv(h)]

s s

< 2n-'K(n, q)4(1 +rl)[f (E Ih;I4)Ioulgdv(h)
S" i=1

+2gkso fsn IVulgdv(h)+2n f Ioulgdv(h)J
s"

+kC,I f ugdv(h)
"

where C,1 and C' do not depend on u. Hence, for u nonnegative in H9(S") such
q

that for all E A

f tuP dv(h) = 0
^
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one gets that

fs.

q/P
UPdv(h))

< 2 v' I K (n, q)l (1 + r/) [ 1 + 3r1 + 2gkeo + 2ii] f
s"

I Vu 1'7 dv(h)

+ C,, J uQ dv(h)
S

(( llr IVulQdv(h)-
/'

1. q

+ t f u" dv(h)
s.

where C,, does not depend on u. Given s > 0, one can now choose r small enough
such that

rr
l2p-' K(n,q)Q(1 +r1)[l +

3'i+2q(!)I/pi+2i]

< K(2

/q)y '
Clearly, this proves the theorem. 0

6.3. Applications to the Nirenberg Problem

Let (Sn, h) be the standard unit sphere of R"+'. For the sake of clarity, we
assume in what follows that n > 3. The conformal class of h, denoted by [h], is

[h] = {g = u4/("-2)h , u E C' (S"), u > 01

As already mentioned in Chapter 4, if g = u4/(n-2)h is a conformal metric to h,
then

Ahu +
n-2

Scalh u = n - 2
Scalg u("+2)/(n-2)

4(n - 1) 4(n - 1)
where Scalh and Scale denote the scalar curvatures of h and g. Set

d([h]) = if E C°O(S") s.t. f is the scalar curvature of
some metric conformal to h }

The Nirenberg problem, also called the Kazdan and Warner problem, consists of
describing the set ,8([h]) of scalar curvature functions of conformal metrics to h. In
other words, one will have to find conditions on some smooth function f on S" for
f to belong to .8([h]). Up to some harmless constant, and since Scalh = n(n - 1),
this is equivalent to finding conditions on f for the existence of u E C°O(S"),
u > 0, solution of the equation

(E)
Ahu

+ n(n - 2)_ - fu (n+2)/(n-2)
4

Multiplying (E) by u and integrating over S", one sees that maxsn f > 0 is a neces-
sary condition for f to belong to .8([h]). Contrary to similar problems on compact
manifolds distinct from the sphere, such a condition is not the only necessary one,
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as discovered by Kazdan and Warner [130]. As one can easily check, given (M, g)
some Riemannian manifold, and u, v smooth functions on M,

2(Vu, Ov)A8u = (2V2v + (A5V)g) (Vu, Vu)

where (, ) is the scalar product associated to g, and where = means that the equal-
ity holds up to divergence terms. Suppose now that we are on the sphere, and let
be some first spherical harmonic on S". Namely, is an eigenfunction associated
to the first nonzero eigenvalue X( = n of Ah. One has that

2V21; + (Ah )h = (n - 2)l;h
As a consequence of what has been said, one gets that for any smooth function u
on S", and any first spherical harmonic on S",

2(Vu, V )Ahu = (n - 2): IVuI2

But

IouI2 = -2nu2 + uApu

so that for any smooth function u on S", and any first spherical harmonic i on S",

1
2(Vu, V )Ahu - -(n - 2)(1nu24 - UAhu

Suppose now that u is a solution of equation (E) for some f E C°°(S"). Noting
that

2fu(n+2)/(n-2)(Vu, V) -n - 2u2n/(n-2)(pf,
off) + (n - 2) fu2n/(n-2)4

n

and that

one gets that

u(Vu,
Ve)

= 2u2t

u2nl(n-2)(Of, V) = 0
In other words, if f r= CO0(S") and u E C°°(S"), u > 0, satisfy (E), then for any
first spherical harmonic on S",

f (0. V )u2n/cn-2) dv(h) = 0

Such a condition is known as the Kazdan-Warner condition. In particular, one
sees that for any e > 0 and any first spherical harmonic , functions of the form
f = 1 + e4, though as close as we want to the constant function I for which
(E) has a solution, are not the scalar curvature of some metric conformal to h.
Moreover, by conformal invariance of the problem, one gets that for any conformal
diffeomorphism rp of (S", h), and any first spherical harmonic i;' on S", f = I +l; ov
does not belong to d ([h]). Conversely, as a nice and simple application of Theorem
6.3, one can prove the following result (Hebey [104]):

THEOREM 6.4 Let f E C°O(S") be such that maxsn f > 0. There exists a first
spherical harmonic on S" and a conformal di`eomorphism rp of (S", h) such
that f - (l; o gyp) is the scalar curvature of some confornal metric to h.
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The history of this result goes back to the work of Aubin [11]. It was proved
there that for f E C°O(S"), f everywhere positive and such that

max f < 41/(n-2) Mn f

there exists a first spherical harmonic on S" with the property that f - l; is the
scalar curvature of some conformal metric to h. In what follows, let A be the space
of first spherical harmonics, and for f E C°°(S") and q E (1, p], let

A.q =

j J{ u E H (S"), u ? 0, f uy dv(h) = 1, u4 dv(h) = 0, n E A j
^ n JJJ

where p = 2n/(n - 2). Let also

Af.q = inf 1(u)

where I is the functional defined on H? (S") by

1(u) = j IVul2dv(h)+n(n-2) u2dv(h)
n 4 fn

In order to prove Theorem 6.4, we first prove the following:

LEMMA 6.1 Let f be a smooth function on S" and q E (1, p) real Assume either
that fsn f d v (h) > 0 or that f is positive at two antipodal points of S". Then A f,q
as defined above is attained. In particular, there exists uq E A f,,?, uq smooth and
positive such that I (uq) = A f,q and such that the Euler-Lagrange equation

n(n-2) 1

Ahuq + 4 uq = Afq(f - 4f.q)uq q

is satisfied for some f.q E A.

PROOF: As a first remark, note that Afq is not empty. Indeed, the condition
that f is positive at two antipodal points of S" implies that there are globally sym-
metrical functions in Afq, i.e., functions such that u(x) = u(-x) for all x E S",
while the condition fsn f dv(h) > 0 implies that there is at least one positive con-
stant in Afq . Let us now consider (ui) E A f.q a minimizing sequence for Afq.
Since the embedding of H, 2(S") C Lq(S") is compact (Theorem 2.9), we may
suppose, up to the extraction of a subsequence, that there exists uq E H? (S") such
that

1. ui uq in HI (S"),
2. ui --> uq in L2(S"),
3. ui + uq in Lq(S"), and
4. uiuga.e.

The strong convergence in L'(Sn) together with the convergence almost every-
where implies that uq E Afq, while the weak convergence in Hi (S") together
with the strong convergence in L2(S") implies that I(uq) < Afq. As a conse-
quence, uq realizes Afq. Maximum principles and regularity results then end the
proof of the lemma. 0
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Together with such a result, one gets easily that

(6.3) lira Sup.kfq <'lf.p
q-*p

Indeed, let u E AI p, u > 0 and bounded, be such that 1(u) < Xf p + e, e > 0. Set
vq = up/q. Then, as one can easily check, vq E Afq. Hence, A.Iq :5 1 (v,). But

lim I (vq) = I (u)
q-'p

As a consequence,

limsupXfq < XIp +e
q- P

for all e > 0. This proves (6.3). Independently, and as an easy consequence of
Theorem 6.3, one has the following:

LEMMA 6.2 For any s > 0, there exists BE E R, and qq E (1, p) real, such that

n/(n+q) K(n, 2)2 nq/2(n+q)

luI dv(h)) 22/n +s)\J IDul2dv(h)
(fs. s"16.41

)"qtAj,t-rqj

for any q E (q, p] and any u E H (S") such that fs" l; lulq dv(h) = 0 for all
4EA.

PROOF: For s E [ 1, n), let X (s) = SS . Then X is strictly increasing and goes
from nn I to +oo. For q < p close to p, let sq < 2 be such that X (sq) = q, that is,Sq

= Given qo < p close to p, and e > 0, one gets from Theorem 6.3 that
there exists Bo > 0 such that for any u E H2 (Sn) satisfying fs" l; Iulgo dv(h) = 0
for all E A,

(6.5)

I/qo (K(n,s )'go Eli/SVO 1/Sao

Js" l

ulgo dv(h))
< \ 2Sga/n + 2l (Js" I

Vul
sQa d v(h))

/ r I /SVa

+ Bo( J us9o dv(h))
$"

Let q E (qo, p), and for u E H (S") satisfying fs" 1; lulq dv(h) = 0 for all E A,
set (y = l ul q/qo Then fs" l; I00 dv(h) = 0 for all E A. Moreover, one has by
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Holder's inequalities and (6.5) that

\ /qo

I"
luI?dv(h))

/qo

fs.
K< s up p(-\

(n2so S/)+ E )I/Sq(J.
IVvIsgo dv(h)

"

/ f lI/svo

+80 ipsoJ so dv(h)
/s"

I/SVO(K(n,sqo)S'Io + sl 9 ( fIu1o)0IVulo dv(h))
J qo t fs

+ Bo( lul(o - I)sgolulsvo dv(h)
I /Sq0

}
Js" /

K(n s )sgo s )'/'go (/' - (sv-syp)/sgsgo
qo q J lul( I)sgosg/(sg"sgo)/It

2sgo/" 2 qo S"

l
I /sq

x(IvuI'gdv(h)/
S"

+Bo
lulsvdv(h))I/s4

\ S" fs.

Hence, noting that

(so - 1)SgpSq `
q and

Sg - S9o - 1 1

(sq - sqo) sgsgo qo q

one gets that for any u E H (S") satisfying that f s. I u I q dv(h) = 0 for all E A,
and for any q E (qo, p],

I Uq (K(n+ Sgo)4° 6 s0" lul dv(h)I \ 2sgo/" + 2/ 9o ( JS
I ulsg dv(h)

l 1/sy

+B0(J Iulsgdv(h)/
\ $"

Independently, and by Holder's inequalities,

p \) W,(,2-Sg)/f Ioulsgdv(h) _< (J ivul2dv(h)
Sq

/2

Sq /2

J Iulsgdv(h) < \J u2dv(h)) co,(,2-sq)/2

" \ S"
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Hence, for any q E (qo, p], and any u E Hi 2(S") such that f s. t luJ4 dv(h) = 0 for

fSn

\ I/q
IulQdv(h)111

< CeJ(2-sq)/2Sq (K(n, sg0)s4o E /svo /

fs

21 /2
" 2sgo/" + 2

l(Ivu dv(h)R

+ B W(2-sq)/2sq

0 n
)

1/2

JS"
u2 dv(h)

We now choose qo < p sufficiently close to p such that for any q E (qo, p],

) < (K(n, 2)2 3s) '/sq(2-sq)/2sq (K (n, sgo)sqo e
/sqo

Wn 2sgo/n + 2 J _ 22/n + 4

B (2-sq)/2sq 2B0Wn o

One then gets that for any u E H (S") such that fsnjujg dv(h) = 0 for all E A
and for any q E (qo, p),

f
I/y 2)2 3s '/sq( /' 1/2

.

(K(n,
22/n + 4 (fs.

u2dv(h)+2B0 Js^

Choose now r? > 0 real such that

K 2)2 2)2
22/n

+ 4 1(1 + r]) < K22/n +

Clearly, there exists C,) > 0 such that for any q E [qo, p], and any x, y nonnegative,

(X + y)Sq < (1 + f )xS9 + Cn ysq

Combined with (6.6), one gets that for any q E (qo, p], and any u E H? (S") such
that fS. IuIg dv(h) = 0 for all l E A,

(f JuI'dv(h))sq/q < (122/2)2 +e)(f
Ioul2dv(h)}sq/2

f
sq/2

+ (2Bo)sgC11
u2

dv(h) J
s"

Noting that for q E (qo, p],

(2Bo)S Cq < (1 + 2B0)2Cn

one gets (6.4) with, as a possible value for BE,

B£ = (1 + 2B(,)2Cn

Setting qF = qo, this ends the proof of the lemma.

Now, we prove the following result:
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LEMMA 6.3 Let f be a smooth function on S". Assume either that fs, f dv(h) >
0 or that f is positive at two antipodal points of S". If

22/"
inf I (u) <

l (n-2)/nuEAfp K(n,2)2(maxf)
S^

then there exists t f E A such that f - l; f E &([h J).

PROOF: Let uq be given by Lemma 6.1. As one can easily check, (uq) is
bounded in H, 2(S"). Without loss of generality, up to the extraction of a subse-
quence, one can then choose the uq's such that

1. uq - u in Hi (S"),
2. uq -4 u in L2(S"),
3. u9-) - uP-"' in LP/(P-))(M), and
4. uq -+ u a.e.

as q -+ p and for some u E H]2(S,,), u > 0. Moreover, one can choose the uq's
such that

llIrn X f,q = Aq-p
does exist. Let s > 0 be given. By Lemma 6.2, one easily gets the existence of
Be > 0, independent of q, such that for q close to p,

\ n/(n+q)
1 fugdv(h) I/

n/(ntq) / In/(n+q)

(6.7) \
< (max f) ()sn uy dv(h)/

< (maxf )"l ("+q)
(K(n, 2)2 +6 knql2(n+q)

2/n J M
/2(n+q)

+Be(ugdv(h) `
fs.

n9

Moreover, one has by (6.3) that

nq/2(ntq)+s Afqlim max f 2/n /l P( S

/(n+q)

\ K('2)2

< / max f)( ^
I +s) f,P

Let us now choose e > 0 such that \ /
(max f)) ^

(K22/2)2
+eP < 1

The existence of such an e is given by the assumption of the lemma. Coming back
to (6.7), one gets that there exists C > 0 such that for q close to p,

f u22 dv(h) > C
^
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Hence, u is not identically zero. In particular, .l > 0, since X = 0 would imply that
(ug) converges to 0 in Hi (S") as q -> p. Let us now write that tf.q = µq: q for
µg > 0 real and eq E A such that IItq Ilco = 1. Since A is of finite dimension, we
may assume that (tg) converges Co to some i E A as q -+ p. Thus, IltllCo = 1.
Multiplying the equation of Lemma 6.1 by z; quq and integrating over S" leads to

f tgUq(Ahuq)dv(h) + n(n4 2) J n tquq dv(h) _
A

A.f.q
Sn

fcqugdv(h)-µgAfq
Sn 2U2

2

Noting that

S
f :quq(Ahuq)dv(h) = f1l :gIVug12dv(h)+ n f qugdv(h)

n 2 n

one gets that

f jµq fg 4gUq = Jlf.q fly f4gUq dv(h) - 4glVUgl2dv(h)
^ n

n 2 jqudv(Iz)_
1

Clearly, the right-hand side member of this equality is bounded, while by Holder's
inequalities

lq/z

µgAfq
jn quq > µq)lf.q (On-Zuq fn I gl4/quq dv(h))

Hence, there exists M > 0, independent of q, such that

q/2
(6.8) µgxf.q I w (q-z)lq

I q I °lquq dv(h) I < M
sn I

As a consequence,

(6.9) lira sup µg < +00
q-'P

Indeed, suppose by contradiction that it is not the case. By passing to the limit as
q -+ p in (6.8), one would get that

(6.10) f ItI2("-2)/"u2dv(h) = 0
,

But (x E S" / t (X) = 0) has measure zero, and u $ 0. Hence, (6.10) is impos-
siblc, so that (6.9) holds. As a consequence of (6.9), and up to the extraction of a
subsequence, one can now assume that (µg) converges to some µ as q -+ p. By
(1) to (4) above, and by passing to the limit as q -+ p in the equation satisfied by
the ug's, one then gets that u is a solution of

Ahu +
n(n4

2)u = )'(f - µt')u°-i
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Just note here that for any rp EfC°°(Sn),

so that yuq-' iuP-' in LP'(P-')(M). By maximum principles and regularity
results, u > 0 and u E C°°(Sn). This ends the proof of the lemma.

With such a lemma, one easily gets the above-mentioned result of Aubin [11]:
For f smooth and positive on S", if

mM f < 4'1(n-2) min f

then there exists 4 E A such that f -: E .8([h]). Just note here that the constant
function uo = (fsn f dv(h))-'/P belongs to Af p, and that

1

V (n-2)/n
K(n, 2)2(min f)

Let us now prove Theorem 6.4.

PROOF OF THEOREM 6.4: Let X E S". By choosing (p, (y) = e'y in the
stereographical model, one sees that there exists a one-parameter subgroup (io, } of
conformal diffeomorphisms of (S", h) such that for all y # fx,

lim (pt (y) = x and lim gyp, (y) = -x
1 +00 (-.-00

Moreover, given w E C°(S"), set w, = w o apt. Then, w, -+ w(x) as t -* +oo
uniformly on compact subset of S"\{-x) and in LS(S") for all s E [1, +oo). Let
f be as in the theorem. We choose x such that f (x) = maxsn f . For {(p,) as above,
andit=fo ,,

lim 1 f f, dv(h) = max f
t-.+00 Wn sn Sn

In particular, one has that for t large enough, fsn f, dv(h) > 0 and

(6.11) 22 " 2) (max f) < J f, dv(h)
s

Fix such a t so that (6.11) is true. Note in addition that maxsn f = maxsn f, and
that the constant function uo = (fsn f, dv(h))-'/P belongs to Af,.p. Then,

4-P <
4(fsn f,dv(h))(n-2)/n

and one gets by (6.11) that the assumptions of Lemma 6.3 are satisfied for ft. As
a consequence, there exists E A such that f, - E &([h]). By conformal
invariance, this means again that f - ( o V, ') E .3([h]). The theorem is proved.

0

n(n - 2)wn

Coming back to Lemma 6.3, and with a somehow subtler argument, one can
prove the following (Hebey [104]):
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THEOREM 6.5 Let f be a smooth function on S3. Suppose that there exists x E S3
such that f (x) = f (-x) = maxs3 f > 0. Then there exists a first spherical
harmonic on S3 such that f - is the scalar curvature of some metric conformal
to h.

PROOF: Let f and x be as in the theorem. For r the distance to x, and fi > 1
real, we set

w# = (,B - cos r)-1/2 and w, = cos r)-1/2

Let vo = w+ + w- and

r 1/6

dv(h)) voup = I J f v
s33

For /3 > 1 sufficiently close 1, up E A16. Moreover, rather simple computations
lead to the following expansion:

1(u,6) = 3(2W3)2/3(max f)
I/3

4 S.3

X [1 + w3 (82 - 1)1/2((f62 - 1) J ; (W )5w- dv(h)

1 (p2 - 1) f f (we+)Sw- dv(h)
(max f) s3

S3 1

1
(/32 - 1) f (w,; )5w+ dv(h)l) s(max f f3

+ ('62 - 1)1/2£(f
- 1)]

where e (fl - 1) tends to 0 as ,B -+ 1. Thus, one will find /3 > 1 close to 1 such that

(6.12) 1(u,6) <
3

(2W3)
2/3( max f

1/3
)

4 S.1

if

lim (w+ )'w- dv(h)E (/B2 - 1) L(

1

(,62 - 1) f(wg)5w dv(h)
max f) s`

S3

1- (/32 - 1) J f (w-)5w+ dv(h) < 0
max f) s3

S1

As one can check, such a limit equals -167r /3 since

l im (p2 - 1) J ; f (w+ )5w- dv(h) = 137r f (x)
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and

('82 - 1) f; f (w-)Sw4 167r
dv(h) = 3 f (-x)

for any f E C°°(S3). As a consequence, there exists > 1 close to 1 such that
(6.12) is true. In particular, the inequality of Lemma 6.3 holds. This ends the proof
of the theorem.

Regarding Theorem 6.5, note that by Escobar-Schoen [78] (see also Hcbey
[101, 103] for an extension to groups acting without fixed points), if f is such
that f (x) = f (-x) for all x E S3, then f E .3([h]). In other words, under the
assumption that f is (globally) invariant for the action of the antipodal map, one
can take = 0 in Theorem 6.5. Independently, and for a much more sophisticated
application to the Nirenberg problem of Sobolev inequalities with constraints like
those in Theorem 6.3, we refer the reader to Chang-Yang [44] and Chang-Gursky-
Yang [43].

REMARK 6.1. The results stated above are of course not the only ones avail-
able on the Nirenberg problem. Such results have been chosen in order to illustrate
some simple possible applications of Sobolev inequalities with constraints as de-
veloped in the two first sections of this chapter. For more details on the Nirenberg
problem, we refer the reader to the books or survey type articles [42, 103, 109, 1761
and the references they contain.



CHAPTER 7

Best Constants in the Noncompact Setting

In this chapter, we deal with complete manifolds, not necessarily compact,
and ask again some of the questions of Program A we considered in Chapters
4 and 5. For an analogue to the questions involved in Program B, we refer the
reader to Chapter 8. Given (M, g) a smooth, complete Riemannian n-manifold,
and q E [1, n) real, we say that the generic Sobolev inequality (Ig gen) of order q is
valid if there exist A and B real such that for any u E HQ (M),

(lqi,gen)

fm

I/P
r

I/q I/q

IuIPdv(S)<A(J IVulgdv(g)+B(f Iulgdv(g)M
M

where 1/p = 1/q - 1/n. As already mentioned in Chapter 3, there are no reasons
when dealing with complete manifolds for the generic Sobolev inequalities to be
valid. Indeed, as seen in Chapter 3, there exist complete manifolds for which all
the (I9 gen)'s are false. Anyway, since the manifolds we will consider all have
their Ricci curvature bounded from below, one has by Theorem 3.3 that for such
manifolds

1. the scale (I9 gen), 1 < q < n, of generic Sobolev inequalities is coherent
and,

2. one, and hence all, of the (I9 gen)'s is valid if and only if the volume of
any ball of radius I is bounded from below by some positive real number
independent of its center.

Clearly, the validity of (IQ gen) is equivalent to the validity of (Iq,gen), where we say

that (I .gen) is valid if there exist A and B real such that for any u E Hq(M),

\
(Iq.gen) (f IuIP dv(g)

q/PJ- Af Ivulg dv(g) + B f Iulg dv(g)
M M M

where 1 /p = 1 /q - 1 In. As in Chapter 4, given q E [ 1, n) real, we define

Aq(M) = (A E R s.t. 3B E R for which (I9 gen) is valid)

Here again, one clearly has that Aq (M) is an interval of right extremity +oo. Then,
we define

aq (M) = inf .Aq (M)

which is, by definition, the best first constant associated to (IQ We deal here
with the following questions:

Question 1. Is it possible to compute explicitly aq(M)?

181
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Question 2. For A E 4q (M) close to aq(M), can one compute or have esti-
mates on the remaining constant B of (Iq.ge1)?

Question 3. Is Aq(M) a closed set? Namely, one has that aq(M) E Aq(M)?
Question 4. When Aq(M) is a closed set, and for A = aq(M), can one com-

pute or have estimates on the remaining constant B of (I'.ge1)?

Note that to say that 4q (M) is a closed set means that there exists B E R such that
for any u E Hi(M),

(Iq'1,opt)

)

I/P

( l 11q 11q

<aq(M)\JMJDulgdv(g) f +B(fMlulgdv(g)

Such an inequality will be referred to as the optimal Sobolev inequality of order
q. Getting estimates for the remaining constant B of (I,?, gC,) when A = aq (M), as
asked in question 4, means that one gets estimates for the remaining constant B of
(Iq.opt)

7.1. Questions 1 and 2

Proposition 4.2 of Chapter 4 still holds in this context. For the sake of clarity,
we recall it here.

PROPOSITION 7.1 Let (M, g) be a Riemannian n-manifold (not necessarily com-
plete), and let q E [1, n) be some real number. Suppose that there exist A, B E R
such that for any u E .0(M),

fm

1/P 1/q 1/q

IuvPdv(g)< A(f IVulgdv(g)+B(f 1ulgdv(g)M
M

where I/p = I/q - 1/n. Then A > K(n, q), where K(n, q) is as in Theorem 4.4.

As a consequence of such a result, one gets that necessarily, aq(M) > K (n, q).
Conversely, Aubin [10] was able to prove that aq(M) < K(n, q), and hence that
aq(M) = K (n, q) when the manifold considered has bounded sectional curvature
and positive injectivity radius. In Hebey [107], we were able to prove that we still
have that aq(M) = K (n, q) if the bound on the sectional curvature is replaced by a
lower bound on the Ricci curvature. This is, of course, a much weaker assumption.
In particular, the result becomes very sharp if one compares it with what has been
said in Chapter 3 (see Theorem 3.3 and Proposition 3.6). Given (M, g) a smooth,
complete Riemannian n-manifold, and q E [1, n) real, let us say that the quasi-
optimal Sobolev inequality of order q is valid if for any e > 0, there exists Be E R
such that for any u E HI (M),

(Iqt,E_opt)

1P
11/q

fm
IuIPdv(g)) (K(n,q)+E)(ff IVulgdv(g) J

1/q /
+BE(fM Iulgdv(g))
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where 1 /p = I /q - I In. Roughly speaking, Hebey's result mentioned above states
that for complete manifolds with Ricci curvature bounded from below, the validity
of the generic Sobolev inequalities is equivalent to the validity of the quasi-optimal
Sobolev inequalities. This holds also for and (Iq,Ep), where we say that
the quasi-optimal Sobolev inequality is valid if for any s > 0 there exists
Be E R such that for any u E HQ(M),

(Iqq.6-opt)

lq/P

fm
IuIPdv(g)) (K(n,q)q+e)fM IVulgdv(g)+BElulgdv(g)

We can thus write that for any q E [1, n),

(lq.gen) .4* (Iq,e-op)

As one will see, the result also gives an answer to question 2, by showing that for
A = K(n, q) + e, the remaining constant B of (Iy, gen) depends only on n, e, q, a
lower bound for the Ricci curvature, and a lower bound for the injectivity radius.
More precisely, Hebey's result [1071 can be stated as follows:

THEOREM 7.1 Let (M, g) be a smooth, complete Riemannian n-manifold. Sup-
pose that its Ricci curvature Rc(M,g) is such that Rc(M,g) > kg for some k E R, and
that its injectivity radius inj(M g) is such that inj(M.g) ? i for some i > 0. For any
e > 0, and any q E [1, n), there exists B = B(e, n, q, k, i), depending only on e,
n, q, k, and i, such that for any u E H' (M),

(Iq.s-opt)
VP

IulPdv(g)) < (K(n,q)"+e)fI IVulgdv(g)+B fm (ulgdv(g)
fu

1

In particular, for any e > 0, and any q E [1, n), there exists B = B(e, n, q, k, i),
depending only on e, n, q, k, and i, such that for any u E H' (M),

(Iq1.E-op)

UP

(fM

1/q

(fM lul' dv(g)) (K(n, q) + IVulq dv(g))

r I/q

+ B
/(J lulgdv(g))

M

Here, 1/p = I/q - 1/n, and K(n, q) is as in Theorem 4.4.

As a straightforward consequence of this result, one has that ag(M) = K(n, q)
for complete manifolds with Ricci curvature bounded from below and positive in-
jectivity radius.

COROLLARY 7.1 For any smooth, complete Riemannian n-manifold (M, g) with
Ricci curvature bounded from below and positive injectivity radius, and for any
q E [1, n) real, aq(M) = K(n, q), where K(n, q) is as in Theorem 4.4.

In order to prove Theorem 7.1, we first establish the following lemma:
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LRMMA 7.1 Let (M. g) be a smooth, complete Riemannian n-manifold. Suppose
that its Ricci curvature RC(M.R) is such that RC(M.8) > kg for some k E R, and that
its injectivity radius inj(M,R) is such that inj(M.g) > ifor some i > 0. For any e > 0
there exists a positive constant S = 8(e, n, k, i), depending only on E, n, k, and i,
such that for any x E M, any q E [ 1, n), and any u E d` ) (Bx (S)),

q/p

fAM
{ f lulpdv(g)) < K(n,gY'(I +E) IVulgdv(g)

M

where I /p = 1/q - 1/n, and K(n, q) is as in Theorem 4.4.

PROOF: According to Theorem 1.2, there exists 8 = S(e, n, k, i) > 0 for
any e > 0 with the following property: For any x E M there exists a harmonic
coordinate chart cp : Bx(8) -+ R" such that the components gig of g in this chart
satisfy

(1+e)-IS;j <gij <(1+E)S;i
as bilinear forms. One then has that for any x E M, any 1 < q < n, and any
u E £(Bx(8)),

JM

and

Iou11dv(g) > (I +E)-("+g)/2 fR"

IV(u o(P-1)(x)Igdx

JM
lulpdv(g) < (1 +E)"/2 L I(u o(P-')(x)Ipdx

R"

where 1/p = 1/q - 1/n. Independently, by Theorem 4.4,
\q/p

(I(uop-')(x)11dx/ J <K(n,q)' IV(uogp-')(x)Igdx
fR11 411

As a consequence, we get that for any e > 0 there exists S = S(e, n, k, i) > 0 such
that for any x E M, any 1 < q < n, and any u E £)(Bx(8)),

q/p

Iulpdv(g)) < K(n,q)g(I +E)" I IVulgdv(g)
fm M

where 1 /p = 1 /q - 1 /n. This ends the proof of the lemma. 0
With such a result, we are now in position to prove Theorem 7.1.

PROOF OF THEOREM 7.1: Let 1 < q < n be given and let p = nq/(n -
q). By Lemma 7.1 there exists S = S(e, n, q, k, i) > 0 such that for any u E
£(B,(8)),

( (Jcn l
Iul"dv(g)

a/p

) < , q)' +E)L IVulgdv(g)M 2 M

Without loss of generality, we can assume that S < i for any e > 0. Independently,
by Lemma 1.1 we get that for any e > 0 there exists a sequence (xj) of points of
M such that

1. M = Uj Bx,(S/2) and
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2. there exists N = N(s, n, q, k, i) such that each point of M has a neighbor-
hood which intersects at most N of the B_,, (8)'s

where 8 = 8(8, n, q, k, i) is as above. Let

=q

IYI+IQ,

Lm
amyl+1

where [q] is the greatest integer not exceeding q, and the function aj E D(B_,f (8))
is chosen such that

0 < aj < 1, aj = 1 in B.,,(8/2) and IVajI < 4/8

As one can easily check, (11j) is a smooth partition of unity subordinate to the cov-

ering (B.,, (8)), rl1Iq E CI (M) for any j, and there exists H = H(s, n, q, k, i) > 0
such that for any j, IV /YI < H. Fix e > 0 and let u E 1)(M). On the one hand,

IlulIP = IIU"IIP/9 =
II

nj uYll :5 lInjugllp/Y
P/Y

Pj .1

where II II. stands for the norm of Ls(M). On the other hand, for any j,

1111;l

uiIP + 2 J IIV(nj/YU)IIP

As a consequence we get that

f
Y/P

`J
IuIPdv(g))

M

vul+Iullvn)/)dv(g)5 (K(n,q)q+2)F
IM

< (K(n, q)q + 2)
J (Ivulq;?j + I,clvulq-I

M j
11u1 gl v,1i/gIq)dv(g)

< (An , q)q + 2)(1IvuIIq +µNHpvupq-1lluIIq + vNHglluilq)

by Holder's inequality and where µ and v are such that for any t > 0,

(1 + t)Y < 1 + At + Vtq

For instance, one can choose µ = q max(1, 2q-2) and v = max(l, 2q-2). Now, let
co > 0 be such that

s
{ K(n, q)q + 2)(1 + so) < K(n, q)q + e

Since for any positive real numbers x, y, and A,

qxq-I y < 11(q - 1)xq + ),I -Yy/
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if we take x = IIVullq, Y = Ilullq, and X = qso//i(q - 1)NH, we get that

µNHIIVuIIg-' IIUIIq < collVulI9 + CIIuiI9

where

C -
(,tNH)( qsoq

`Fs(q - 1)NH}
Hence, for any u E £(M),

uldv(g)(IM I

f
< (n.q' +

s
2)(i + so) f IVulq dv(g) -I- B

JM
IuI4 dv(g)

< (K(n, q)9 + s) J IVuI9 dv(g) + B J IuIQ dv(g)
M M

where

B= (K(n, q)4 + 2/) (C + vNH9)

This ends the proof of the theorem.

7.2. Questions 3 and 4

When dealing with Question 3, Aubin [10] was able to prove that .42(M) is
a closed set for complete manifolds with constant sectional curvature and positive
injectivity radius. On the one hand, this result has been extended by Hebey-Vaugon
[113] to complete, conformally flat manifolds with bounded sectional curvature
and positive injectivity radius. A more sophisticated statement, where one only
needs the conformal flatness at infinity, was then found in [117]. This is the subject
of Theorem 7.4 below. On the other hand, the above-mentioned result of Aubin has
been extended to complete manifolds with Riemann curvature bounded up to the
order 1 and positive injectivity radius. This is the subject of the following theorem
of Hebey-Vaugon [117], from which one easily gets Theorem 4.6 of Chapter 4. For
the sake of clarity, the proof of this theorem is postponed to the following section.

THEOREM 7.2 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
Suppose that its Riemann curvature Rm(M.5) is such that

IRm(M.5) I < A, and lV Rm(M.S) I < A2

for some nonnegative constants A, and A2, and that its injectivity radius is such
that inj(M 8) > i for some i > 0. There exists B = B(n, A,, A2, i), depending only
on n, A,, A2, and i, such that for any u E H1(M),

2/p r
(1z.opt) \ f IuI" dv(g)) < K(n, 2)2 f IVuI2 dv(g) + B J u2 dv(g)

M / M M
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In particular, there exists B = B(n, A 1, A2, i), depending only on n, A 1, A2, and
i, such that for any u E Hi (M),

1

(IZ.opt)

\ I/p \ 1/2 / r 1/2

(IM IuVpdv(g) 1 < K(n,2)( f IVU12dv(g) I +BI J u2dv(g))
II \ M / ` M 11

Here 1 l p = 1 /2 - I In, and K (n, 2) is as in Theorem 4.4.

As a straightforward consequence of such a result, one gets the following:

COROLLARY 7.2 For any smooth, complete Riemannian manifold with Riemann
curvature bounded up to the order 1, and with positive injectivity radius, A2(M)
is a closed set.

As another straightforward consequence of Theorem 7.2, note that the follow-
ing holds:

COROLLARY 7.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n >
3. For any Riemannian covering (M, g) of (M, g), there exists B E R such that
for any u E Hi (M),

f
M

2/p

luvpdv(g)1K(n,2)2 IR
IVuI2dv8)+BJ u2dv8)

where 1/p = 1 /2 -1 /n and K (n, 2) is as in Theorem 4.4. In particular, A2 (M) is
a closed set for any Riemannian covering (M, g") of a compact Riemannian mani-
fold.

Let us now come back to the statements of Theorems 7.1 and 7.2. When com-
paring Theorem 7.2 and Theorem 7.1, one can ask if the conclusion of Theorem
7.2 still holds under the assumptions that the Ricci curvature of the manifold is
bounded from below, and that the injectivity radius of the manifold is positive. In
other words, one can ask if it is possible to take s = 0 in Theorem 7.1. A surprising
fact here is that the answer to such a question is negative. This is the subject of the
following result:

THEOREM 7.3 For any integer n > 4, there exist smooth, complete Riemannian n-
manifolds with Ricci curvature bounded from below and positive injectivity radius
for which (12 opt) is not valid.

PROOF: Let (M, g) be a smooth, complete Riemannian n-manifold, n > 4,
with Ricci curvature bounded from below and positive injectivity radius. Suppose
that (IZ op) is valid. By Proposition 5.1 one gets that for any x E M,

(7.1) Scal(M,g)(x) <
n - 2 K(n, 2)2

where B is the second constant of (12 op), and Scal(M.) is the scalar curvature of
g. Noting that the existence of a lower bound for the Ricci curvature and of an
upper bound for the scalar curvature leads to the existence of a global bound for
the Ricci curvature, one gets from (7.1) that the Ricci curvature of g is bounded. In

4(n-1) B
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other words, for n > 4, and for (M, g) a smooth, complete Riemannian n-manifold
with Ricci curvature bounded from below and positive injectivity radius, if (I2 M)
is valid, then its Ricci curvature is bounded. Independently, one can show that in
any dimension there exist complete manifolds with Ricci curvature bounded from
below and positive injectivity radius having the property that their Ricci curvature
is not bounded. (References on the construction of such manifolds will be found
in Anderson-Cheeger [6]). According to what has been said above, (IZ ,p,) must be
false for such manifolds. Clearly, this ends the proof of the theorem. 0

Roughly speaking, coming back to what has been said in the preceding section,
one has that

(12.gen) * (12.e-°pt) (Ii.°Pt)

A natural guess here would be that the conclusion of Theorem 7.2 holds under
the assumptions that the Ricci curvature of the manifold is bounded and that the
injectivity radius of the manifold is positive. As a first step, it would certainly be
simpler to prove that the conclusion of Theorem 7.2 is valid under the assumptions
that the Ricci curvature of the manifold is bounded up to the order 1 and that the
injectivity radius of the manifold is positive. The following result is due to Hebey-
Vaugon [117].

THEOREM 7.4 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
Suppose that its Ricci curvature is bounded, that its injectivity radius is positive,
and that g is conformally flat outside some compact subset of M. There exists
B E lR such that for any u E HI 2(M),

(
2/p

JM IM\L luIdv()) K(n,2)2IVu12dv(g)+Bu2dv(g)
M

In particular, there exists B E IR such that for any u E Hi (M),

(121.opt)

1/p / / 1/2 / r 1/2

(fMd) K(n,2)(J IVU12dv(g)) +B1 J u2dv(g))
` M ` M

Here l /p = 1/2 - 1/n, and K(n, 2) is as in Theorem 4.4.

PROOF: Let p > 0 be such that p < inj(M,g), the injectivity radius of (M, g).
Given X E M, B., (p) is simply connected. For x E M such that g is conformally
flat on Bx(p), one gets by Proposition 3.8 that for any u E D(B,,(p)),

2/p

(7.2) M
(f lulpdv(g)) < K(n,2)2\j IVul2dv(g)

M

+ 4(n - 1) M
Sca1(M g) u2 dv(g)}

where Scal(M,g) stands for the scalar curvature of g. Independently, and as an easy
consequence of what will be said in the next section, for any p E (0, inj(M,g)), and
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any x E M, there exists B E R such that for any u E £(B,(p)),

2/p

u2dv(g)(7.3)
(IM

lulpdv(g)) <K(n,2)2J
M

IVu12dv(S)+BJ
M

Fix p < inj(M,8), p > 0. By Lemma 1.1 one gets the existence of a sequence (xi)
of points of M such that

1. M=UiB,(Z)and
2. there exists N integer such that each point of M has a neighborhood which

intersects at most N of the Bxj (p)'s.

Let

9i= 2
m am

where ai E V (Bxj (p)) is chosen such that

0<ai <1, ai=1inBzj(2) and Ioail <4/p

As one can easily check, (rli) is a smooth partition of unity subordinate to the
covering (Bxf (p)), ,In--j E C' (M) for any j, and there exists H > 0 such that for
any j, I O rii I < H. From now on, let K be a compact subset of M such that g is
conformally flat outside of K. Let jo be such that

B,,(p)nK=0
for j > jo. By (7.3) one has that for any j < jo there exists Bi E R such that for
any u E D(M),

2/p r
l/ulpdv(g)) <_ K(n,2)2J IV( u)I2dv(S)

fm M

+ BJ J qiu2 d v(g)
M

Independently, and by (7.2), one has that for any j > jo, and any u E D(M),

(JM

2/p
I njulpdv(g)) <K(n,2)2JM IVC r7iu)I2dv(g)+S JMr/iu2dv(g)

where

S 4(n - 1)
K(n, 2)2(sup IScal(M.g) I)

Clearly S < +oo since the Ricci curvature of g is bounded. Given U E 1)(M), one
has that

IIu11P = I1u211p/2 = II IlrJiu211p/2 = 11,.107iu11P

p/2 I i

where II II stands for the norm of L5 (M). Set

B= max(Bi,...,Bio,S)
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Then, for any u E £(M),
\2/p

Q lul°dv(g) `/

< K(n,2)2
fM IV

(qj,/2u)I2dv(g)+B>fM3,u2dv(g)

(VVuVaji)dv(g)K(n,2)2(1:J 1jIVuI2dv(g)+ IM u
M

+.._J u2l
viii12

I2

dv(g) +B JMr)jU2dv(g)

< K(n,2)2J
M

IVu12dv(g)+(B+K(n,2)2NH2)J u2dv(g)
M

This ends the proof of the theorem. 17

As a straightforward consequence of Theorem 7.4, coming back to Question
3, one has the following:

COROLLARY 7.4 For any smooth, complete Riemannian manifold (M, g) with
bounded Ricci curvature and positive injectivity radius that has the property that it
is conformally flat outside some compact subset of M, ,42(M) is a closed set.

Now that such results have been stated, one can ask what happens for q 0 2.
As in Chapter 4, we say that the optimal Sobolev inequality (I1 ,apt) is valid if there
exists B E IR such that for any u E Hi (M),

(Iq.opt) (f IuIpdv(g)}9/p

<K(n,q)° f IVuledv(g)+B f Iu14dv(g)
M M M

where 1/p = 1/q - 1/n, and K(n, q) is as in Theorem 4.4. Here again, one has
the following result of Druet [74]. The proof of such a result is the same than that
of Theorem 4.8.

THEOREM 7.5 Let (M, g) be a smooth, complete Riemannian n-manifold, and let
q E [1, n) real. Assume that q > 2, that q2 < n, and that the scalar curvature of
(M, g) is positive somewhere. Then inequality (Iq,opt) is false on (M, g).

Conversely, one has the following result of Aubin [10]:

THEOREM 7.6 Let (M, g) be a smooth, complete Riemannian n-manifold with
positive injectivity radius. Let also q E [1, n) real. Suppose either that n = 2
and that (M, g) has bounded sectional curvature, or that n > 3 and that (M, g)
has constant sectional curvature. Then inequality (I9 opt) is valid and Ay (M) is a
closed set.

The proof of such a result proceeds as in the proof of Theorem 4.7. We refer
the reader to [10] for more details.
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7.3. Proof of Theorem 7.2

The proof of Theorem 7.2 proceeds in several steps. As one can see, it mixes
PDE and geometric arguments. Let g be a smooth, Riemannian metric on R".
Suppose that for some A, > 0 and A2 > 0, IRm(R",g) I < A, and IV Rm(Rn.g) 1 <
A2 on Bo(4), the Euclidean ball of center 0 and radius 4. We say that g satisfies
(*) if the following holds:

(i) the canonical coordinate system of 2R" when restricted to Ba(2),
the Euclidean ball of center 0 and radius 2,

(*) is a normal geodesic coordinate system at 0 for g

(ii) for any x E Bo(1), the Euclidean ball of center 0 and
radius 1, 2 < min (S, injg(x))

where S is as in Theorem 1.3 of Chapter 1, and injg(x) stands for the injectivity
radius of (R", g) at x. Let us denote by B = Bo(l) the Euclidean ball of center
0 and radius 1. If (ii) holds, then for any x E 6, 8 is contained in the geodesic
ball for g of center x and radius min(S, injg(x)). The first result we prove is the
following:

LEMMA 7.2 Let n > 3 be given. Suppose that for any positive constants A, and
A2, and any smooth, Riemannian metric g on R" such that

1(a) IRm(R..g) I < A, and IV Rm(Rn.g) 1 :5 A2 in BOO),
the Euclidean ball of center 0 and radius 4

1(b) g satisfies (*)

there exists some B = B(n, A,, A2) real, depending only on n, A,, and A2, with
the property that for any u e f) (S),

l2/p
IVu12dv(g)+B I u2dv(g)fa Iulpdv(g)) 5 K(n,2)2

I.

where 1/p = 1 /2 -1 /n. Then for any positive constants A,, A2 and i, and for any
smooth, complete Riemannian n-manifold (M, g) satisfying that IRm(M,g) I < A,,
IV Rm(M.g) 15 A2, and inj(M,g) > i, there exists some h = B(n, A,, A2, i) real,
depending only on n, A,, A2, and i, such that for any u E Hi (M),

r2/p

M M
fm IuI" dv(g) J 5 K(n, 2)2 J IDuI2 dv(g) + B

J
u2 dv(g)

/

where 1/p = 1/2 - 1/n.

PROOF OF LEMMA 7.2: Let (M, g) be a smooth, complete Riemannian n-
manifold such that IRm(M,g) 15 A,, IV Rm(M,g) I < A2, and inj(M,R) > i for some
positive constants A,, A2, and i. Let S be given by Theorem 1.3 of Chapter 1. For
A > 0 real, as one can easily check,

IRm(M.Ag) I = A-(IRm(M.g) I

I V Rm(M.Ag) I = )l3/210 Rm(M.g) I

inj(M.Ag) _V_ inj(M.g)
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Since

Jim S(n, A,, A2) = +oo

there exists A = A(n, A 1, A2, 0, A >> 1 depending only on n, A 1, A2, and i, such
that

min (S, inj(M.Ag)) > 5

Set g = Xg. Clearly, the Ricci curvature of g" is bounded from below by some
real number depending only on n, A,, A2, and i. By Lemma 1.1 of Chapter 1,
one then gets that there exists a sequence (xm) of points of M, and some integer
N = N(n, A,, A2, i), depending only on n, A,, A2, and i, such that

1. the family (Bxm (2 )) is a covering of M and
2. every point in M has a neighborhood that intersects at most N of the BXm(1)'s

where BXm (z) and B,. (1) refer to g. Let am E £ (Bxm (1)) be such that 0 < am < 1,
am = 1 in B,Cm (z ), and I Vam I < 4 (for the norm with respect tog). Set

Lj

One then gets that (rim) is a partition of unity subordinate to the covering (B,rm(1))
such that for any m, nm/2 is smooth and IVr)m2I < H (for the norm with respect to
g), where H = H (n, A 1, 12, i) is some positive real number depending only on n,
A,, A2, and i. By considering the pullback of g by the exponential map of g at xm,
and by gluing this metric with the Euclidean metric in Bo(5)\Bo(4), we get some
metric defined on R". Clearly, this metric satisfies the assumptions of the lemma.
Hence, for any m, and any u E C°O(M),

( 12/p
1(rlm2u)I°dv(8) I < K(n,2)2

IMM /
+ B

J
(n 12u)2 dv(8)

M

where B = B(n, A,, A2, i) depends only on n, A,, A2, and i. As in the proof of
Theorem 7.1, one has that for any u E C' (M),

(' (2u)I°dv()
2/°

)J IuI°dv(g)
2/p

) ` (IM IM
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As a consequence, for any u E C' (M),
2/p

uIpdv())(JM l

< K(n,2)2EIM (rlmZU)2dv(, )
", M

= K(n,2)2 fX n",IVuI2dv(8)+K(n,2)2>J u(0°uV,i7 )dv(g)
MM

r
m

Ion"; 2I2U2 dv(g) + B J (>Jm/2U)2 dv(g)
Mm m

Since E," um = 1, this leads to

( l 2/p

fmf luIpdv(8) J <- K(n,2)2 IVU12dv(8)+B' f u22dv(S)
M / M

where B' = NH2K(n, 2) 2 + B. Clearly, B' depends only on n, A,, A2, and i,
since this is the case for N, H, and B. Coming back to g, one then gets that for
any u E C°O(M),

rM

f4m

2/p

MJ lul'dv(g)) K(n,2)2 IVul22dv(g)+B"J u2dv(g)
\\

where B" = AB'. Here again, B" depends only on n, At, A2, and i. This ends the
proof of the lemma. 0

By Lemma 7.2, the proof of Theorem 7.2 reduces to proving that for any n > 3,
A, > 0, and A2 > 0, there exists some constant B = B(n, A,, A2), depending
only on n, A,, and A2, such that for any smooth, Riemannian metric g on R"
satisfying the points (a) and (b) of Lemma 7.2, and for any u E )(S),

r ' 2/p

411
Iulpdv(g)/I ) < K(n, 2)2 J Ivul2dv(g) +B u2dv(g)

R"

where 1/p = 1/2 - 1/n. This is what we are going to do now.
For g some smooth metric on R", let H02,1 (B) be the completion of £D(2) with

respect to the standard norm

Hull = f 1Vul2dv(g) + f u2dv(g)

Since 2 is relatively compact, H.2.,(2) does not depend on g. For a > 0 real, and
U E Hot(.2),u 00, we define

f Ioul2dv(g)+a f su2dv(g)
zg.a(u) _

(fB
luIPdv(g))2/p

Lemma 7.2 can be stated as follows: For any n > 3, A, > 0, and A2 > 0, there
exists a = a(n, A,, A2), depending only on n, A,, and A2, such that for any
smooth, Riemannian metric g on R" satisfying the points (a) and (b) of Lemma
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7.2, and for any u E Ho 1(B), u 0 0, Ig.a(u) > K(n, 2)-2. To see this, just set
B = aK(n, 2)2.

From now on, we proceed by contradiction. Hence we suppose that there exist
n > 3, A 1 > 0, and A2 > 0 such that the following holds: For any a > 0, there
exists a smooth, Riemannian metric ga on R" such that

(i) IRmga I < A 1 and IV Rmga 1 _< A2 in Bo(4)

() (ii) ga satisfies (*)

(iii) info Iga..a(U) < K(n 2);

where Rmga stands for the Riemann curvature of ga, and the infimum info I..,, (u)
is taken over the U E H02, (S), u A 0. For convenience, we set la = Iga,a. The
first result we prove is the following:

LEMMA 7.3 Let a > 0 and ga be as in (**). There exists (pa E C2(2) n Ho 1(B),
(pa > 0 in B, and there exists xa E (0, K(n, 2) -2), such that

(7.4) Agacoa + aqa = X.,(pf, in B

(7.5) jw:dv(a) = 1

where Oga is the Laplacian of ga.

PROOF: Forq E (1, pr], let

f l
3eq={uEH01(.3)/lulgdv(ga)=1}

ll 11

Let also µq be defined by
Aq = inf Ea(u)

u6Jeq

where

u2dv(ga)Ea(u) = J IVu 12dv(ga)+afs

For q < p, the embedding of H.2,, (2) in L'? (2) is compact. Fix such a q, and
let ((pi) E X. be a minimizing sequence for µq. Without loss of generality, up to
replacing (pi by I(p; I, we can assume that the poi's are nonnegative. Since a > 0, ((p;)
is a bounded sequence in Ho 1(B). Up to the extraction of a subsequence, since
H.2.,(2) is reflexive, and since the embedding of H02,1(2) in Lq(2) is compact,
this leads to the existence of coq E Ho 1 (B) such that

(pi - (pq in Ho , (2), (pi (pq in Lq(B) , (pi (pq a.e.

One then gets that coq > 0 a.e., and that V. E Seq. Moreover, the weak convergence
in N2,,(2) implies that

E. ((pq) < lim inf E. ((pi)

Hence, Ea((pq) = µq, and (pq is a solution of

A8a(pq +a(pq =
Agwq_
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in S. By maximum principles and regularity results, (pq is positive in 2 and (pq E
C2O).

Let us now get the solution (pa we are looking for as the limit of the (pq's,
q -+ p. As a first remark, let e > 0 be given, and let * E Np, t/! nonnegative, be
such that

Ea(>//) inf Ea(u)+e
uE3ep

For q as above, *q = Il llq 1 i belongs to 3Cq. Hence, Ea(*q) > µq. Noting that
Ea(*q) - Ea(*) as q p, one gets that

lim sup E.cq < Ea(*) < inf Ea(u) + e
q_ P E3Pp

Since this inequality holds for any e > 0,

lira sup µq < inf Ea (u)
q-+ p uEJCp

From now on, and up to the extraction of a subsequence, we assume that

µ = lim µq
q-'p

exists. As one can easily check, ((pq) is a bounded sequence in Ho ,(2). Since
Ho I (2) is reflexive, and since for s < p the embedding of Ho i(2) in L`(2) is
compact, we get the existence of some (Pa E Ho 1 (2) such that, up to a subse-
quence,

(pq - Soa in H02,1 (S) (pq+coa inL2(2), Spq-+ c°a a.e.

In particular, (pa is nonnegative and, since ((o9-is bounded in LP/Nq-1)(2) C
LP' P ')(S), we can assume that

pq-i - cop-' in LPI("-' (2)

By passing to the limit as q tends to p in the equation satisfied by (pq, one then gets
that

4, (Ga + of (P., = 1A (R'P', -,

By maximum principles and regularity results, (pa E C2(2) and either Spa 0 or
(pa>Oin S.

Let us now prove that (pa ; 0. As for compact manifolds without boundary,
the best first constant f o r the embedding of H 1(2) in LP(2) is K(n, 2). Hence,
for any e > 0, there exists some Bf E IR such that for any u E Ho i (2),

2/pf
s

luIpdv(ga)l<(K(n,2)2+e)
I.

IVU12dv(ga)+BF fe
u2dv(ga)

The proof of such a claim goes in a very standard way (see, for instance, Aubin
[12] for details). By our contradiction assumption,

inf Ea(u) <
1

uE3ep K(n, 2)2
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Let s > 0 be such that

(K (n, 2)2 +s) inf Ea(u) < 1
uEJfr

and take u = (pq in the above inequality. Then

(fco:dvta)2/P_<

(K(n,2)2+E µq+Be f cogdv(ga)

Moreover, one has that

-P(f:dv(ga))'vo1u(2)'f Vdv(ga)

2) stands for the volume of B with respect to ga. Since Wq E Xeq,where Volga (

2/P

VOlga(2)P^q < ( fs ro dv(ga))

and one has that

Volga(,B) 1p-q2 < (K (n, 2)2 + --)µq + Be f Soq2dv(ga)

By passing to the limit as q -+ p in this inequality, and since

µ C uE Ea(u)r

we get that

1 < (K(n, 2)2 + s) uinf Ea(u) + Bf f Spat, dv(ga)
n S

By the above choice of e, this implies that

I, Spy dv(ga) > 0

Hence, Spa 0 0, so that, as already mentioned, Spa is positive in S. In particular,
multiplying by qqa the equation satisfied by spa and integrating over S shows that
µ>0.

In order to end the proof of the lemma, let us now prove that

A= inf Ea(u)
uERP

and that (pa E Je4, so that (pa realizes the infimum of Ea on 3ep. Multiplying by Qa
the equation satisfied by rpa, and integrating the result over 2, one gets that

µf coPdv(ga) = f (IVlpaI2 +a(p,2)dv(ga)

:51i qm Pf fB (JVSogI2 +ccp9)dv(ga) = Jim nfµq

Hence,

cP dv(ga) < 1
L
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Let J r = II9« II p I Va . Then ifi E 3fp, and

/ . L E.(*) = A
aco«

dv(ga)

As a consequence,

jcodv(ga)? I

so that ca E 34, and µ is the infimum of Ea over 34. Setting

a = inf Ea(u)
uEJt.p

this ends the proof of the lemma.

Since the proof of Theorem 7.2 is by contradiction, we assume the existence of
g« and boa, as in Lemma 7.3. We start with the study of some of the basic properties
satisfied by the spa's. In what follows, we consider a sequence of real numbers a
which tends to +oo, and we successively pass to subsequences. As a first result,
we prove the following:

LEMMA 7.4 Up to a subsequence,

(i) lima->+c, (Pa = 0 a.e.,
(ii) lima +oo fs Wa d v(ga) = 0, and
(iii) limas+00 Aa = K(n

211

where ,X,, and cpa are as in l.enuna 7.3.

PROOF: As a starting point, note that

K(1
2)za (Padv(ga) :5 f Iv(paI2dv(g«)+a V,2,, dv(ga) _ xa <

1

Hence,

lim J rp dv(g«) = 0uy+oo $
Moreover, since ga satisfies (**), one gets from Theorem 1.3 that for any x E £

1

4e < g. (x) < 4e

where e stands for the Euclidean metric of 1R', and the inequality has to be under-
stood in the sense of bilinear forms. As a consequence,

and lira f 9 dx = 0
a--).too

After passing to a subsequence, one then gets that

lira ca = 0 a.e.

Suppose now that there exists some subsequence (Aa) of (Aa) such that

1
Jim Xa=.<
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Let s > 0 be such that
(1 4- SIX <

1

K(n, 2)2
In the spirit of Theorem 7.1 (see Hebey [107] for more details), there exists a
positive constant Be, independent of a, depending only on e, n, and A,, such that
for any u E Ha 1(s),

(fIuv'dv(ga)2"'
(I +e)K(n2)2

f IVU12dv(g) + Be J u2dv(ga))s B

From such an inequality, one gets that
r

X. =
J

IVpaI2dv(ga)+a 1 (p,,dv(ga)

(1 + e)K(n, 2)2
+ (a - Be) f Spa dv(ga)

since

I, (p, dv(ga) = I

As a consequence,

K(n 2)2 -
(1 + s)a.a + (1 + s)(a - Be) f$ (pa dv(ga) < 0

Noting that such an inequality is obviously false for a >> 1, one gets that

1

a-++oo a K(n, 2)2
This ends the proof of the lemma.

A slight improvement of point (ii) of Lemma 7.4 is the following:

0

LEMMA 7.5 lim a f (pa dv(ga) = 0
a-i+oo

PROOF: Let e > 0. In the spirit of Theorem 7.1 (see Hebey [107] for more
details), there exists BE > 0, depending only on s, n, and A,, such that for any
u E Ho 1(s),

2/p

(fIuv'dv(s)) < (K(n,2)2+e)f2 IVu12dv(ga)+Be f
s a)u2dv(g

By (7.4) and (7.5),

((
2/Pf IV(Pa12dv(ga)+a f (p«dv(ga)=A'a\f (p,,dv(ga)

s s
Hence,

f Iv(pal2dv(ga)+a f (p«dv(ga) <

Aa(K(n,2)2+s) 1Vipa12dv(ga)+AaB f (padv(ga)ff
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Noting that

one gets that

a
E

B
v2 dv(g«) K(n, 2)4 + K(n 2)2 f V.2 dv(ga)

By Lemma 7.4, point (ii), this leads to

lim sun a I ip2 d v(g) <
E

« )4

Since E > 0 is arbitrary, one gets the lemma.
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0

As a definition, let us say that x E £ is a concentration point for ((pa) if the
following holds: For any 8 > 0,

limsup f WPdv(ga) > 0
a-*+oo k(s)

where Vx (S) = B. (S) fl .B, Bx (S) the Euclidean ball of center x and radius S.

LEMMA 7.6 If x is a concentration point for ((pa), then, for any 8 > 0,

lim supf co d v(ga) = 1
a-++oo Va (d)

where spa is as in Lemma 7.3, and Vx (S) is as above.

PROOF: Let X E £ and let ri E `)(R") be such that 0 < i < 1 and n = 1 in
Bx(3/2), where Bx(3/2) stands for the Euclidean ball of center x and radius 3/2,
S > 0 small. Let also k > 1 real. As one can easily check, multiplying (7.4) by
172Va and integrating by parts lead to

(k 4 1)2 f 2(k 1)2 fs 11 dv(ga)

(7.6) -
k + 1 , dv(g«) + a f 172wa+1 dv(ga)

= ,Xa r dv(ga)
2

Since ga satisfies (**), one gets by Theorem 1.3 that there exists C > 0, indepen-
dent of a, such that I V,i I < C and I A8.;? I < C for all a. For s > 0, let BE > 0,
independent of a, be such that for any u E H02.1 (S),

2/p
1 f lulpdv(ga)) (K(n,2)2+E)

I.

IVu12dv(ga)+B, fs u2dv(ga)
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As above, we refer to Hebey [107] for details on the proof of the existence of such
a Be. By Holder's inequalities,

"Vak+p-1

rl dv(ga)

= f8
(p-2)lp

( I 2/p(fs

a
dv(g,,))

< \ J
)p d v(g))

\ c
Combining (7.6), the fact that I V rl I and I A,. n I are uniformly bounded, and the
above Sobolev inequality, we get the following: Vs > 0, 3C, > 0, independent of
a, such that Va, VS << 1, Vk E [ 1, p - I],

1. I V (17
(p«k+1)/2) I2 dv(ga)

(k + 1)2
((

(p-2)/n
C1+

4k
Xa(K(n,2)2+s)\J coadv(ga))

V,(8)f
x

J
IO(o(Pak+1)/2)12 dv(ga)

Since by Lemma 7.4,
1

li am
a-.+oo a K(n, 2)2

we get that: Vs > 0, 3C, > 0, independent of a, such that Va >> 1, VS << 1,
Vk E [l, p - 1],

f2
IV(nWnak+1)/2)12 dv(ga)

(k + 1)2 (p-2)/p
(7.7) < Cl + 4k ((1 + s) \f SOa

dv(ga))

f
vr(6)

x JS

Let us now suppose that for some Sop > 0,

lim sup J (padv(ga) < I
a ++oo JVr(60)

By (7.7), and up to the extraction of a subsequence, we get that for k > 1 suffi-
ciently close to 1, and for S << 1,

I. C2
lo(nty«k+l)l2)I2dv(ga)+C3

S

where C_ E (0, 1) and C3 > 0 are independent of a. Hence,

I o(ncv,,(,k+1)/2) I Z dv(ga) C4
J;
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where C4 > 0 is independent of a. For S << 1, set

A = lim sup f (per dv(ga)
a-*+oo JV,(S/2)

By definition, if x is a concentration point for ((pa), then A > 0. Independently, by
Holder's inequalities,

dv(ga < f
fV(o/2) (pa (d/2)JV 2

\ (n+2)/n(k+l )

(nk-2)/n(k+I )

)dVa (6a )V
(fVr/2)

(nk -2)/n(k+I )

CS \ fvr
,n(k+l)l(nk-2) dv(ga)

t\ (S/2) a

since

I, C4

and where C5 > 0 is independent of a. Hence, if we set

kl _ n(k + 1)
nk - 2

we get that kI E (1, p) and that, up to a subsequence,

99Jdv(ga)>C6

where C6 > 0 is independent of a. We claim now that this is in contradiction with
Lemma 7.4. Indeed, for k > 1 sufficiently close to 1, kI > 2, and by Holder's
inequality,

ki du(ga) :5 (fodv(a))

where

Since

and since by Lemma 7.4

1 _ I

a = k) p
I I

2 p

J cpdv(ga) = 1

altmof (padv(ga)=0

this proves the claim. As a consequence, if x is a concentration point for ((pa), then
for any S > 0,

lim sup J cpa dv(ga) = I
a->+oo vs(S)

This ends the proof of the lemma.

(pa(k+I)/(n-2) dv(ga
)

0
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Lemma 7.6 leads to the following:

LEMMA 7.7 Up to a subsequence, (rp has one and only one concentration point.
Moreover, II (P. II L°°(2) -+ +oo as a +00.

PROOF: Since

jcoL'dv(a) = 1

it is clear that ((pa) has at least one concentration point. Let x be such a point. By
Lemma 7.6, for any q E N* there exists a such that

1 -
1

< J
rpf dv(ga) 1

q
The subsequence ((pa) = (Vay) we just defined then satisfies that for any S > 0,

lim J cpadv(ga)=1
a-.+oo Vx(S)

As one can easily check, this implies that (Spa) has one and only one concentration
point. Independently, and since by Theorem 1.3,

14e<ga<4e
where e is the Euclidean metric, one has that

n

(padv(ga) <
V'(8)

Since for any S > 0,

lim f cpa dv(ga) =I
a-'+00 V,(6)

one clearly gets by passing to the limit, and by taking S smaller and smaller, that

+00ll+moa

This ends the proof of the lemma. 0
Going on with the study of the behavior of the roc's with respect to the notion

of concentration point, one gets the following:

LEMMA 7.8 Let x be the concentration point of (rpa) given by Lemma 7.7. As
a -+ +oo, (Pa -+ 0 in C1 (dB\(X)).

PROOF: Let Y E W, y 34 X. Since y is not a concentration point for ((pa),
there exists some 0 < S << 1 such that

lim sup
J

cpa d v(ga) = 0
a-.+00 V, (S)

Independently (see (7.6) and (7.7)), for a >> I

(7.8) f IV(ncG«+))/2)12dv(ga) <CI f
a .s
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where

and where

(k + 1)2
(( l (p-2)/p

C) =
4k

(1 +s)\f
ca dv(ga)/v, (a)

C2 < k2k 1
f

nl
(Ga+' dv(ga) + k

+ 1 f IVnl2(pk,+l dv(ga)
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Let e be the Euclidean metric. Since ga satisfies (**),

14e<ga<4e

for all a. Hence, there exists a constant C > 0, independent of a, such that Ionl <
C and I Oga n I < C for all a. As a consequence, we get that for all k E [ 1, p - 1 ],

(i) lima +. f IO(?I(P«k+1)/2)12dv(ga) = 0 and
(ii) pp(k+1)/2 dv($a) = 0.fv,(S12)

According to (ii), we can now use (7.8) with

k=p2-1
2

Therefore,

lim (pa 14 d v(ga) = 0
CI-++00 Vv(s')

for some 0 < S' << 1. More generally, and by induction, we get that for any y # x,
and any q, there exists 0 < S << I such that

lim f (pa dv(ga) = 0
a-*+oo , .(a)

Hence, see Gilbarg-Trudinger [91], Theorem 8.25, since

Aga(Pa <
Aa(PCI

and since ga satisfies (**), we obtain that for any relatively compact subset w of
B\{x),

lim (pa = 0 in LO°(w)a.+oo
The result then easily follows from Lemma 7.9 below and Gilbarg-Trudinger [91],
theorem 8.32 and corollary 8.36. 0

Let x be the concentration point of ((pa). By w @ £\{x} we mean that w is a
relatively compact subset of a£\{x). One then has the following:

LEMMA 7.9 Let x be the concentration point of ((pa). For any q and any w c
B\{x}, aQll(PaIIL-(S) -+ 0 as a +oo. In particular, for any w C X\{x),
all (P.11Lo(2)-+Oasa-++00.
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PROOF: Let y E B, Y A x, and let 8 > 0 be such that x 0 V,.(8). By (7.6),

aq+I f g2(pak+I dv(ga) C,aq J P«+1 dv(ga) +C2aq J (Pa+Pdv(g«)
J V,(S) V,.(S)

where C, and C2 can be chosen independent of a. Moreover, according to what
) and any m,we proved above, for any co C= £\{xf",

Jim 4pa dv(ga0
a ++oo

Hence, by induction on q, we get that for any y x, any m, and any q, there exists
0 < S « 1, such that

lim aq
J

V,, dv(ga) = 0
a > +oo k(s)

Finally (see Gilbarg-Trudinger [91], theorem 8.25), since

Aga9Pa < XAPa-)

and since ga satisfies (**), we obtain that for any q and any w C. B\{x),

a 0

This ends the proof of the lemma.

From now on, we set
(n-2)/4

ua =
a

(Potn(n - 2)
where Xa and cpa are as in Lemma 7.3. Here again, (ua) concentrates at x, and, as
one can easily check,

(7.9) Agaua + aua = n(n - 2)uP-'

in B. Moreover, one has that

n
(7.10) lira

J
uP dv(g

w
a-,+roo B a a) = 2

(7.11) lim f IVual2dv(ga) =
n(n -2)cun

a-.+00 2n

Let xa be some point of B such that

ua (xa) = II ua II L'O(J9)

and let µa E (0, +oo) be such that

According to Lemma 7.7 and Lemma 7.8,

lim xa = x and Iim µa = 0
a-s+oo a-.+oo

As a first remark, one has the following:

LEMMA 7.10 There exists C > 0, independent of a, such that for any a, at < C.
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PROOF: Since Ag,,ua(xa) > 0,

aµ; (n-2)/2 < n(n - 2)µ-(n+2)/2

so that ap., < n(n - 2). This proves the lemma. 0
An important step in the proof of Theorem 7.2 is now given by the following

lemma:

LEMMA 7.11 Up to a subsequence,

lim
d(xa, a°B) _ +oo

a-+00 Act

where d stands for the Euclidean distance, and xa and µa are as above.

PROOF: Since xa x as a +oo, the result is immediate if x it M.
Without loss of generality, we can then assume that x = (0, ... , 0, 1) E a2.
Since ga satisfies (**), one gets by Theorem 1.3 that there exists a constant K,
independent of a, such that for any a and any i, j, k = 1, ... , n,

(7.12) 4 Sid < g S 4Srj in Bo(2)

(7.13) Ig I < K, I akg I < K in Bo(2)

where B°(2) stands for the Euclidean ball of center 0 and radius 2, where (7.12)
has to be understood in the sense of bilinear forms, and where the stand for
the components of ga in the canonical chart of R". Hence, by Ascoli, there exists
a Riemannian metric g in Bo(3/2) such that, after passing to a subsequence,

lim ga = g in Co.t/2(Bo(3/2)),
a-.+00
for any a, ga satisfies (7.12) and (7.13),
1
4Sj1 < Sri < 4S;/ in Bo(3/2).

From now on, let qa E 0(n) be such that aa(xa) = xR E [0, x], where [0, x]
stands for the segment [0, x] = (tx, 0 <- t < 1). We still denote by ga the metric
(q; ')*ga, and by ua the function ua o or;,. Since xa -+ x as a -+ +oo, we get
that qa -+ Id as a -+ +oo. Hence, we still have

(7.14) for any a, ga satisfies (7.12) and (7.13)

(7.15) lim ga = g in
a-x+00

In addition, according to (7.9), (7.10), and (7.11), the following holds:

(7.16) for anya,uaEC2(B)f1Ho1(8)andua>0 in.B
(7.17) for any a, Oga,ua + aua = n(n - 2)uP-' in 2

(7.18) alim0 I uP,dv(ga) = 2n

(7.19) a lima I Dua I2 d v(ga =
n(n

2
-

n

2)wn

s
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(7.20) for any a, ua(X:) = µa(n-2),2
= IIuaIIL O( )

Since d(xa, 3L) = d(xa, x), we have to prove that

d(xR, x)
lim = +oo

a-.+oo N,a

Let va be defined in La = B_xI,,Q(1//,La) by

V. (y) = µ(n-2'W2ua (M-ay + x)

We have 0 < va 1 and U dBa = E where

E= {(Xj,....x") E Rn/x <0}
In addition, 0 E for all a, and if we assume that (µa) is decreasing, we get that
`La C Ba' as soon as a < a'. Let us also define the metric ha by

ha(y) = ga(IA.y +x)
for y E La. By (7.14), we get that for any a

(7.21) 4S,J <h <4Sii in La

in the sense of bilinear forms, and we get that

there exists a constant K independent of a,
(7.22) such that for any a and any i, j, k = 1, ... , n,

IhIjI<KandIdkh 1 :5 Kit,, in S,,,

Combining (7.15) with (7.22) leads to the fact that for any w ca E,

lim ha = g(x) in C' (w)
a-.+00

Moreover, since
Ag,ua + aua = n(n - 2)up-'

in 2, we get that for any a,

(7.23) Ahava + (aµa)va = n(n - 2)vp
in 2a. Note here that (7.23) may also be written in the following form:

(7.24) -Di(ha Ih.I Div.) + (aµ2)va = n(n - 2)vc -'

where 1h0 I stands for the determinant of the matrix (h ), and where (ha) _
(h Ij)-'. Let us now set

ya =
xa - x

Aa
For any a, ya E La and va (ya) = 1. As a starting point, we claim that

d(x',, x)
lim inf " > 0

Fa
The proof here is by contradiction. Suppose that, after passing to a subsequence,

liminfd(x",x) =0
a-++o0 µa
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Then ya 0 as a -+ +oo. Moreover, by a slight modification of corollary 8.36
of Gilbarg-Trudinger [91] that can be found in Hebey-Vaugon [119], by (7.21),
(7.22), and (7.23), and since 0 < va < 1, we get that the va's are C) bounded in a
neighborhood of 0. Hence, by the mean value theorem,

1 = Iva(ya) - va(0)I < Cd(O,ya)

which is impossible. This proves the above claim. Let us now prove that

lim
d (xa ' x) _ +oo

ay+oo /-La

Here again the proof is by contradiction. We assume that, after passing to a subse-
quence,

lim
d(xa' x) = A

a-'+00 µa
where A > 0 is real. Up to the extraction of another subsequence, we may also
assume that

lim Y. = y°
a-.+m

for some y0 E E. By Gilbarg-Trudinger [91], theorem 8.32, by (7.21), (7.22), and
(7.24), and since 0 < va < 1, the va's are equicontinuous in any compact subset
of E. Hence, by Ascoli, there exists v E C°(E) such that for any w C= E, some
subsequence of (va) converges to v in LO0(w). In particular, 0 < v < 1, v $ 0,
and v(y) = 1. Now, note that for anyJ w C E, and any a >> 1,

a f u2 dv(g = aµ4 v« dv(ha) > atca f va dv(ha)
a w

Hence, since ha satisfies (7.21), since v $ 0, and since

1. (nn_2)
(n-2)/2

fcodv(a)udv(g) _

lim aµ'2 = 0
a)'+00

As a consequence, by (7.24), and since

lim ha = g(x) in C1O(E)
a++oo

we get that

(7.25) t g(x)v = n(n - 2)v"-)

in E. Now, note that there exists a E Gl(n) such that o(E) = E and o*g(x) = e,
where e is the Euclidean metric of R". For convenience, we still denote by v the
function v o a. Then, we get from (7.25) that

(7.26) Aev = n(n - 2)v"-'

in E. Let
_w(x)-

2

1
(n-2)/2

(1 + 1x1 )
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where IxI = d(0, x). We set

h = UJ41(n-2)e

a- ,L
Since Scalh = 4n(n - 1), where Scalh is the scalar curvature of h, we get from
(7.26) that

(7.27) Ahv + n(n - 2)u = n(n - 2)v"P-1

in E. Moreover, by (7.18), (7.21),

a

and (7.23),

IOva12dxIVvaI2dv(h)+n(n-2)J L. vadv(h)=J
f

a r
< C,

J
IOva12dv(ha)

a
C2

J
v.1 dv(ha)

a
= C2 J ua dv(ga) < C3

s
where C1, C2, and C3 are positive constants independent of a. As a consequence,
the sequence (va) is bounded in H0 i (E), the Sobolev space H01(E) being con-
sidered with respect to h. On the other hand, for any w C= E, there exists a subse-
quence (va) of (va) such that

lim 1)a = v
a-.+oo

in LO0(w)

Hence, since any bounded sequence in a Hilbert space possesses a subsequence
which converges weakly, we get that v r: H01(E). In what follows, let Sn be the
unit sphere of 1[t1+ 1, and, with a slight modification of the notation we have adopted
until now, let c be the canonical metric of Sn induced from the Euclidean metric
e of IIBn+i. By stereographic projection, E becomes a half-sphere S+ of S. By
(7.27) we then get a positive solution vi E Ha I (S+) of

Qcv' + n(n - 2) v, - n(n - 2) up-1

4 4
in S+. Let P be the pole of S+ and let (b be the stereographic projection of pole
- P. As one can easily check, v2 = VI o ch- 1 satisfies

V2 E H0 1 (aB) and v2 > 0 in 2
tV n(n-2)UP-I in 9e 2 = 4 2

By Pohozaev [167] (see also Kazdan-Warner [131]), such a v2 does not exist. As a
consequence,

lim
d(xa

, x) = +oo
a-++oo

This ends the proof of the lemma.
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From now on, let expXa be the exponential map of ga at xa. We set %Pa = expxa
and

ga = gaga
Ua=aa0

Since ga satisfies is defined in an open neighborhood of BO(2) where Bo(2)
stands for the Euclidean ball of center 0 and radius 2. Moreover, one has that for
any a, Wa C Bo(2). By Theorem 1.3 of Chapter 1, there exists a constant K,
independent of a, such that for any a and any i, j, k = 1, ... , n,

(7.28) 4 5,., < g"! < 48;j in Bo(2)

(7.29) IS1I K and K in Bo(2)

where Bo(2) stands for the Euclidean ball of center 0 and radius 2, where (7.28)
has to be understood in the sense of bilinear forms, and where the g 's stand for
the components of ga in the canonical chart of R". Along the same line of thinking,
one easily gets that for any a

(7.30) w,, is star shaped at 0

(7.31) for any i, j, k = 1, . . . , n, g""," (0) = S,J, akg","i (0) = 0

(7.32) ua E c2(-w;) fl Ho) (Wa) and aaa > 0 in Wa

(7.33) Agaa'a +aua = n(n - 2)uP-) in Wa

(7.34) ua (0) = II ua II L-(.,,) = pa (n-2)/2

and that

Wn
(7.35)

-
lim u`pdv(ga -

7 36

a.+oo n2

n(n - 2)W
li D" 2 d( . ) m I v(ga) =. I

a ++oo n2f1d

Since ga satisfies (7.29), one gets by Ascoli that there exists a Riemannian
metric g' in Bo(2) such that, up to the extraction of a subsequence,

(7.37) lim in C°''l2(Bo(2))
a-. +00

In what follows, we assume that ga satisfies (7.37). By (7.31), one then gets that
gig (0) = 3,j. Let us now set

t1a(y) = an-2)/2aa(,.y)

ha(Y) = 8a(! aY)

for y E Sta where Sta = µa Wa is given by

}a= 1-X,
x EWa

Act 1
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As one can easily check,

(7.38) 0<ia < 1 and va(0)= I

(7.39) Ohava + (al-ta)v« = n(n - 2)i5, in 12a

Independently, since ga and ga satisfy (7.12) and (7.28), one gets by Lemma 7.11
that

lim d(0, aS2a) = +ooa-+rK
where d stands for the Euclidean distance. Hence, U 12a = R". More precisely,
for any w cc IR", there exists a° such that for any a > a0i co C Sta. On the other
hand, by (7.29), one gets that f o r any a a n d any i, j, k = 1, ... , n,

(7.40) IhaJ I < K and Iakh I < KA, in 12a

As above, let e be the Euclidean metric of 1R". Since g(0) = e, one gets by com-
bining (7.37) and (7.40) that for any w C= ]R",

(7.41) lim ha = e in C 1 (w)
a- +o°

We start here by the study of some of the basic properties that the Ia's satisfy.
On such a subject, first note that by (7.28), (7.38), (7.39), (7.41), and Gilbarg-
Trudinger [911, theorem 8.32, the 1 a's are equicontinuous on any compact subset
of R". Hence, by Ascoli, there exists v e C°(18") such that for any w c R", a
subsequence of (va) converges to v in L°O(w). As a consequence, 0 <- i < 1, and
vv"(0) = 1. In particular, v I0 0.

LEMMA 7.12 Up to a subsequence, aµ2 0 as a -+ +oo.
01

PROOF: For any co R n,

a f ua dv(g = a f u2 dV(ga) = aµ2 f Ua dV(ha) aµa J 1 dv(ha)
2 a w

On the other hand,
(n-2)/4

aua _ G
(n - 2) (Pa

Since v -# 0, one easily gets by Lemma 7.5 that, up to the extraction of a subse-
quence,

lim aµa = 0

On such an assertion, recall that ha satisfies (7.41). This ends the proof of the
lemma. 0

By (7.39), (7.41), and Lemma 7.12, we get that v` E C"°(IR") and that

tell = n(n - 2)1P-I

in lR", where Ae stands for the Euclidean Laplacian. Hence, according to Caffa-
relli-Gidas-Spruck [36] (see also Obata [163]), one has that

I n-2)/2

v(Y)- (I + 1Y11 2
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where IyI stands for the Euclidean distance from 0 to y. Let us now prove the
following:

LEMMA 7.13 For ua as above,

- 2)wn
lim IVu"a 12 dx =

n (n

2na>+oo L
where dx stands for the Euclidean volume element, and the norm in the integral is
with respect to the Euclidean metric.

PROOF: By Lemma 7.8,

lim ua = 0 in Cll(,C(.8\(0))
a-'+co

Hence, for any S > 0, S << 1,

lim J IDuaI2dx = lim J I Dua 12 dx
a- +00 ", - +oo Bo(a)

where B0(8) stands for the Euclidean ball of center 0 and radius S. Since g"(0) = e,
the Euclidean metric, we get by (7.37) that for any s > 0, there exist 8 > 0 and
ao >> 1, such that for any a > ao,

Ilga - ellco(BO(s)) < s

Hence, for any s > 0, there exists S > 0, 8 << 1, such that

(1 -s)JIDuaI2dv(Sa) <
J

IDuaI2dx
Bo(a) Bo(a)

and

f IDuaI2dx < (1 +s)J IDual2dv(b'a)
o(a) B0 (S)

Independently, by (7.36),

f - 2/.
lim IouaI2dv(ga) =

n(n - 2) cv
a-*+00 2n

a

while by Lemma 7.8

J
anfor instance, (7.28), oneJ gets that for any S > 0 small,

lm IDuaI2dv(a) = lm lVuaI2dv(a)
o of-+M p(d)

This ends the proof of the lemma. O

Lemma 7.13 leads to the following:

LEMMA 7.14 For va as above, with the convention that va = 0 outside Sta, and
as a -+ +oo, va -+ v in L P (R" ).

PROOF: We prove that

lim IV(Ua-v)I2dx=0
R
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Clearly, the lemma follows from such a result. As one can easily check,

J IV(va. -
v")J2dx = f IovaI2dx+ IVj I2dx -2J (ova, o)dx

JRn J la " n.
where .)rstands for the Euclidean scalar product of R". But

J
(ova, V1)dx =

J
u"aEevdx = n(n - 2) f ia`P-' dx

S2a S2a L.
and, since 0 < va < 1, we get that

f
lim I DP-' dx = J V dx

a-,+oo Rn

Independently, by Lemma 7.13,

lim IVvalzdx = lim J I "

&-).+m L.
"'++00

a 2"

Finally,

f lvvf2dx=n(n-2)
iPdx=n(n-2)w"

"

J
Rn 2"

Therefore,

2 n(n - 2)w" n(n - 2)w" n(n - 2)w"
alimp fR.IV(V._v) dx=

2"
+ 2" -2 2" =0

This ends the proof of the lemma. 0
From now on, let

or = v41(n-2)ha

j h = v41("-2)e

where e stands for the Euclidean metric of R". Let also Uia By (7.39), one
has that

4(n - 1) 4(n - 1)
ava=4n(n-1)v"a-'n-2 Ah,Va+ n-2

aµ2

and if Sha stands for the scalar curvature of ha, we can write that

4(n - 1)

(4(n

- 1) 2 -Sha
n - 2

v"« = 4n(n - 1)v"POha va + Sry 5. + n-2 aµa a

On the other hand, we have

4(n - 1)

n-2 Ahava+Sha D.
4(n - 1)
n-2 Ohawa+ShaU/a )13P_'

and

Hence, we get that

4(n - 1)
n - 2 OryaV + Sryav =ShallP-i

(7.42) Ary. wa + C ha
v

+ "µa) wa = n (n - 2) w P-'
\\\

UP- I UP-2

in Sta. Let us now prove the following:
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LEMMA 7.15 For a >> 1,

>0
vp-i + op-2

in Sta.

PROOF: Set 0a (y) = µa y. As one can easily check,

(S2«, µaha) -+ (W«, Sa)

is an isometry. Hence,

Ahav= 2('ia(vo0ai))o0
Independently, since the canonical coordinate system of IR" is a normal geodesic
coordinate system at 0 for ga, we get that for any radial function u = u(r),

via U = Oeu - U'a,. log Iga I

where r = Ix I is the Euclidean distance from 0 to x, A, stands for the Euclidean
Laplacian, and Iga I is as in Aubin [12], theorem 1.53. Noting that

expxa : (W., 8a) - * (S, g)

is an isometry, one gets by Aubin [12), theorem 1.53, that there exists a constant
A > 0, independent of a, such that

Ia,, log 1j-a11 < Ar

As a consequence,
Aha0 > A, U - Ap rIU,I

and since

Aeii = n(n - 2)i ' ' and v'(y) = -(n - 2)IYI(1 + IYI2)-"/

we get that

Oha v aµ&
2 2 2 2-}

y"P
> n(n-2)+aµ«(1+IYI

-P -(n-2)A L IyI) (I+IYI )-1 -2

Hence,

= n(n - 2) +aµ2(1 + 1y12) + (a - (n - 2)A)µ21YI2(I + 1y12)

y aµ2

tlp-I + Up-2
0

if a > (n - 2)A. This ends the proof of the lemma.

From (7.37) and Lemma 7.15, we get that

(7.43) Di,awa :5 n(n -

in SZa. We set

0
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Clearly, 0a = R"\66 where 8a is an open neighborhood of 0 such that for any
S > 0 and any a >> 1, 8a C Bo(S), where Bo(8) stands for the Euclidean ball of
center 0 and radius S. In addition, since

cp : (Qa, ha) -+ (0a, Ha)

is an isometry, we get by (7.43) that

(7.44) AHaWa < n(n - 2)W'

in 0a. Finally, for any y E 0a, and any i, j = 1, ..., n,

H'j(Y) =
IyIZ l(SikIY12 - 2YjYk) (SjmIYI2 - 2yiy,")

'' + IYI2
./n k-M

IY14 IYI4

where the H[ stands for the components of Ha in the canonical chart of R", and
where the g stand for the components of g"a in the canonical chart of R". Hence,
by (7.28) and (7.29) we get that

3A > 1 such that for any a and any y c- 0, fl B, A-'St, <
(7.45} HH'j(y) < ASij as bilinear forms

(7.46)
3K > 0 such that for any a > O and any i, j = 1, ... , n, I Hj'jI <
Kin Bafl B
for any 8 > 0, 3K' > 0 such that for any a > 0 and any i, j, k =

(7.47) 1, ... , n, 18kH;0j' I < K' in 0a n (B\Bo(&))

where Bo(S) stands for the Euclidean ball of center 0 and radius S.

LEMMA 7.16 For Wa as above, with the convention that Wa = 0 outside 0a, and
as a -+ +oo, Wa + 1 in LP (S).

PROOF: We have

J IWa - IIPdx<C,
f

IWa-1I"dv(Ha)= C, f Iwa-11°dv(ha)

=C1J Iva-vI'dv(ha)

< C2J Iv"a - DIPdx
a

since, by (7.28) and (7.45), ha and Ha are uniformly equivalent to the Euclidean
metric. Hence, according to Lemma 7.14, we get that

lim 1Wa - 1IPdx =Oa-+xf2
This ends the proof of the lemma. 0

Now we prove the following main estimate. Note that as a consequence of
such an estimate, and since v(y) 0 as IyI -* +oo, one gets that 1a -r v in
L°O(IR").

LEMMA 7.17 There exists a positive constant C, independent of a, such that for
i and i as above, and for a >> 1, va < CD on Sta.
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PROOF: As one can easily check, the inequality of the lemma is equivalent
to the existence of a constant C > 0 such that for any a >> 1 and any y E S2a,
wa(y) < C. Since for any O C= ]R",

Jim wa = 1

in LO°(®), we just have to prove that there exist a constant C > 0 and R > 0 such
that for any a >> 1 and any y E S2a, 1%)a(y) < C as soon as IyJ > R. Obviously,
this is equivalent to the existence of a constant C > 0 and to the existence of 80 > 0
such that for any a >> 1 and any y E Oa, Wa(y) < C as soon as IyI < So. From
now on, let n E C°°(]R") be such that 0 < n < 1, n = I in B0(S/2), n = 0
in 1R"\Bo(S), 0 < S < 1. As one can easily check, multiplying (7.44) by n2 W«,
k > 1, and integrating by parts lead to

(7.48)
4k

(k + 1)2 ,Joa
IV(nW+ )l )I dv(H«)

(k + I)2 f 1

fIV'I2W«+1
dv(Ha)

< n(n - 2)
J

n2Wa+p-' dv(Ha)
a

On the other hand, Holder's inequalities for the right-hand side of (7.48) give

f t12Wk,+p-1 dv(Ha) <
a

l 2/p (p-2)lp

fe.

(nwak+I)/2)Pdv(Ha))

(J W'dv(Ha)/
Bo(8)

where B0(S) stands for the Euclidean ball of center 0 and radius S. Finally, since
for any u E D(R"),

r f
l2/p

<iJ I

uIPdx/ K(n, 2)2 f
"

IVul2dxk R

we get by (7.45) that there exists a constant C1 > 0, independent of a, such that

(f 2/p

\J
(nW,(k+1)l2)Pdv(Ha) < Ci f

As a consequence, we get that

IV(fWak+I)l2)I2dv(Ha) <
ea

(
(p-2)/p

(f1Wak+l)/2)I2dv(Ha)C2+C3(J WP, dv(Ha)) fe. IV
Bo(o)

where C3 > 0 is independent of a, and

C2 < k - 1

18a
dv(Ha) + k + 1Jf IVnI2W+1 dv(H)

2k
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By Lemma 7.16, for any k we can choose S > 0, 8 << 1, such that

C3(J
W,',' dv(Ha)) C4

aoca

where C4 < 1. Hence, if we proceed as in the proof of Lemma 7.8, we get that

for any q E N, 33 > 0, S << 1, such that for any a >> 1,

(7 49).
q

B,0)

Wadx <C5

On such an assertion, recall that Ha satisfies (7.45) and (7.47). Let us now write
(7.44) in the following form:

Di(H' IH.IDjW.) > -n(n -2) I IWW

where (H ,j) stands for the inverse matrix of (Hi"j), and I Ha I stands for the determi-
nant of (Hi 'j). By (7.45), (7.46), (7.49), and Gilbarg-Trudinger [91], theorem 8.25,
we get the existence of a constant C6 > 0, and the existence of So > 0, So << 1,
such that for any y E Oa, Wa(y) < C6 if IyI < So. As already mentioned, this
ends the proof of the lemma.

With such an estimate we are now able to get the contradiction we were looking
for and hence prove Theorem 7.2. The argument starts here with the Pohozaev
identity [167]. For the sake of completeness, let us say some words about this
identity. Given 0 a smooth, bounded domain of R", let v be the unit outer normal
to a52. As one can easily check, for any smooth functions u and v,

-2(Aeu)(Vu, Vv) = div(2(Vu, Vv)Vu - Ioul2Vv)
- IDuI2(Aev) - 2(Vu, Hess(v).Vu)

where Ae stands for the Euclidean Laplacian, and the scalar product is with
respect to the Euclidean metric. Let v(x) = 2Ixl2, and assume that u = 0 on 852.
Integration by parts then leads to

pf(x v da = -2 J(Vu x)(Aeu)dx - (n - 2) J u(Aeu)dx
sz z n

Su ch a relation is referred to as the Pohozaev identity. Starting from this identity,
the proof of Theorem 7.2 goes in the following way:

PROOF OF THEOREM 7.2 (FINAL ARGUMENT): In what follows, the Ci's
are positive constants independent of a. We let e be the Euclidean metric, and
va be the unit outer normal to 852a for e. Since ga satisfies (**), by Theorem 1.3
of Chapter 1 we get that there exists a constant K, independent of a, such that for
any aand any i, j,k= 1,...,n,

(7.50) 4 S;i < g'," < 43;j in wa

(7.51) K and K inw,
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where (7.50) has to be understood in the sense of bilinear forms. By the Pohozaev
identity,

f(YkaI)A1 /'
dx

+n-2J
«(ev)dX =

pa 2 "a

- 1

(Y+ V.)(ava Va)2 da
2 'na

But (y, va) > 0 since S2a is star shaped at 0. Hence,

(7.52) j(ykai3)dx +
2 f

i3 (Dev«)dx < 0
0 2

Independently, since j,, satisfies (7.50), for any X E R",

h'XiXj > ,tIX12

where A = 1 /4 and (h J) stands for the inverse matrix of (P.). Let us now write
that

ADeVr = AhaVa + (h i - a.S'!)aij Va - hi r(ha) ja.V«C1 a

where the r(ha) 's stand for the Christoffel symbols of ha. Multiplying (7.52) by
A, we get that

(7.53)

f(Yk0ki5a)ha1iadX +

2 f
v`a dx

2. 2

+ f (Ykakva)(h j - )ASij)aiiva dx - f (Ykakv«)(h'r(h«) j)a,,,i dx
a pa

+ n 2 2 f ia(hi - AS'j)aiivadx - n 2 2 f v"«(hi

Since 5., satisfies (7.39),

f(Yka)idx + n - 2 r
VaOhaVa dx

o f 2 Sta

= (ykakja)(n(n - 2)va"1 - (aj )va)dx

n-2
2

va(n(n - 2)0,P,,-' - (aµa)va)dx+ ja

In addition, since Va = 0 on aS2a, integration by parts gives

f (YkakVa),°-'dx=-n22f vadx
n= - vadxI (ykakUa)vadx fz a 2 .
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Hence,

)oa
i dx(Ykakv""a)Ahava dx +

n
2

2
)o. v.Ahalla dx = 01µ'a )

o.
of

and (7.53) can be written in the following form

(7.54)
r

aµo2, Jf U,,,dx+J (YkakU.)(h' -XS'j)aji5adx

- J (Ykak13 22 J va(ha -'j)a1jvadx
12a a

_n va (ha
2 J

2 ij r(ha);j"')am D. dx
2 a

<0

Let us now concentrate on the different terms of (7.54). As a starting point, we
get by integration by parts that

f(yk813)(hif - A8')aUdx
a

r f_ / (Y' Va)(avaia)2((h' - X8'j)vav )da - J (aiha)ykajtlaakia dXBoa

- f (hkj -,.Skj)akv"aajva dx - J (ha - AS'j)xkaikvaajv"a dx
t a na

where the vin's stand for the coordinates of v. Similarly,

L (h f - A S'f )xkaik13aaj Va dx

_ I (y, va)(avaia)2((h j - AS'j)vavj )da f (Ykakh'j)a,vaajv'a dx
Boa ta

- nI (h' - X8'j)aivaaj1a dx _ (h'j - A8ij)ykaiv"aajkiadx
SZa Joa

Hence,

L (hij -.LS'j)ykaikvaajiadx

1
(Y, va)(avava)2((hija

-ad'J)v;avja)dQ

2

f
oa

- 1
J

(ykakhj)a;vaajvadx - n f (hi -A8'j)aivaajaadx
2 S2a 2 ja
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and we get that

f (Ykakva)(h
j - AS'j)apj va dx

l
=

2
(Y, va)(av«va)2((ha - AS'j)v"vj)daIb(7.55)

Similarly,

n
(8,ha )ykajllaakva dx

+n 22J (hf -AS'j)a,Vaajiadx+2 f (ykakhj)8,a"aaju. dx
b

f Va(h'j - AS'j)aj 6,, dx = -f (ha - AS'')ajVaajva dx

-f (a.hi)Vaajvadx

and

n
(a;h')v'aajia dx = --1f (a;jh j)v'2 dx

2 2b

Therefore,

ua(ha -AS'j)a,jvadx=-12. (ha -AS'j)a,vaaj0.dx
(7.56)

La

+ Z f (a,jhj)v`adx
«

Finally,

(7.57) f 0.(ha r(ha) j)amva dx = -2 f
Za

(am(ht r(ha)'7 ))i dx

Hence, by (7.54), (7.55), (7.56), and (7.57), we get that

aµa v'2 dx + f (y, va)(av«Va)2((h' - AS'j)v,av )dafzQ

2 na

+ 2 f (ykakha)a,vaajVadx - f(8ih1)ykdi5akI3dx
n

+ n 4 2 f2a (arjhU 2 dx + 4
2f

(am(h Jr(ha) ))va dx

f (ykha r(ha)m)aktaami5 dx
a

<0

For any y E aS2a,

(y,va)>0 and (h'-AS'j)v"vj">0
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As a consequence,

(Y, va)(av«lla)2((h« - AS'f )v"v7 )da > 0
frt«

and we get that
r

vv"a2dx+ I J (yk8,0)a;o«aa D.
2aµ« L

SZa

- f (a;ha)ykai,dkIadx+n2 f (a;jha)Uadx
(7.58) 4n2

+ f
4

(a,K(h'r(ha);.))v"a dx -
Q

(Ykh' I'(h«) )akvaamUa dx
« a,

<0
By (7.50) and (7.51),

I akh'(Y)I = µ«I (ak8')(µay)I <
Hence, by (7.39), (7.50), and (7.51), integration by parts leads to

Y'(3kh )adv«a'va dxlka
< C2µ f Iy121oual2dx

C3µ«Jf IYI21VUaI2dv(ha)

= -C3µ« (o(IYI2vva))va dv(ha)

fna

spa

= C3µ« dv(ha) - C3µa2 f (VIY120a)a dv(ha)
a

= C3µa f IY12(Ah0Ua)Ua dv(ha) - C4µ« f (Aha IxI2)v« dv(ha)
a

C3µ2a f IYI2(ohaUa)U« dv(ha) + Csµ« f U2 dv(h«)
la 2a

= C3µ« f IYI2I5 (n(n - 2)vp-' - ap ia)dv(ha) + C5µ« f i dv(ha)
2a 2a

5 Csµ« fs2 va2, dx + C6µ«f IY I2ii" dx
a na

Therefore,
r

(7.59) f yk(akh')a,vaaJi dxl <Csµ« f iig2dx+C6µ«J IYI2vadx
a

and with the same arguments we get that

f(7.60) f (a,h«)ykajvaakv"a dxl - C7µ« f 1a2 dx + Cg.t IYI2v` dxk
111 a
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Independently, by (7.50) and (7.51), for any X E R",

I(ykhf'r(ha) J)XkXm1 < C91kaIYI2IXI2

Hence,

1

J(Ykhiir(h)m)81a_dxC0
j IY12IVIal2dx901

a

and, here again,

(7.61)

f(YLh(ha))dk1cram15adx idx + C121u« f IYI2i dx
a

Now, we are left with two terms in the study of (7.58). First, by (7.51),

l

f(diJh)i3dx= f(8ih)(dii)dx
a I .

<C13µ«f (

Therefore, since

fIyI2IV1aI2dX C15 f ii dx + C1b f y2i dx
a nu j2a

we get that

(7.62) fa (a;,h`J)va dxl < C12u2 f v« dx + C1s/2« f IYI2v dx

Similarly, since

If am(h r(ha) j)v« dxl = ! fhtrha.amdx
s a

we get with the same arguments as those used to establish (7.62) that

(7.63) l f am(hfJr(ha)1)v«dxl F19µ« f v2dx+C20µ« f IYI2v°dxaLa
Now, combining (7.58) with the estimates (7.59) to (7.63), we get that

(7.64) a f v« dx < C21 f v« dx + C22 f Iyl2va dx

lim Va
a-++oo

uniformly in any compact subset of R", for a >> 1,

v2 dx > 0(7.65) fo., v« dx > fs
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Moreover, by the fundamental estimate of (Lemma 7.17, and since n > 3,

(7.66) J Ixl2va dx < C23 J IxI2iY'dx < C24

Combining (7.64), (7.65), and (7.66), we then get that a < C25, the contradiction
we were looking for. This ends the proof of the theorem.

7.4. Explicit Inequalities

Let (]R', e) be the n-Euclidean space, (S", h) be the standard unit sphere of
R"+1, (H", ho) be the n-dimensional, simply connected hyperbolic space, and
(r (R), p) be the n-dimensional projective space with its canonical metric induced
from h. We consider here the following inequality: For (M, g) as in Theorem 7.2,
and for any u E H1 (M),

r r
r

2/p

l2opt) \J lul°dv(g)) <K(n,2)2J IVul2dv(g)+BJ u2dv(g)
M M M

where 1 /p = 1 /2 - 11n, and K (n, 2) is as in Theorem 4.4.
The purpose of this section is to prove the following result, where, in the spirit

of Question 4, explicit optimal inequalities are obtained for some specific mani-
folds. As already mentioned, case (i) below is due to Aubin [10] and Talenti [183].

THEOREM 7.7 The optimal inequality (12 2.0p') is valid with

(i) B = O for (R", e)

(ii) B = -W4 for (H", ho)
(iii) B = 2/( for (S x H", h + ho), m > 2, n 2

(m+n)W,n+n -
(iv) B="-"+Zfor (P"'(R) x H",p+ho),m>2.n2

(m+n-2)w,,,+n

(v) B = for (S" xR,h+e),n>2
(n+ I )w,.+)

(vi) B = (n-n-- for (]P"(R) x R, p + e), n > 2

(vii) B = - for (H" x R, ho + e), n > 2
(n+ I

where w,, denotes the volume of (S", h). Furthermore, at least when the dimension
of the manifold is greater than or equal to 4, these values are the best possible for
(R", e), (H", ho), (S' x Hn, h + ho), (S" x R, h + e), and (H" x R, ho + e).

PROOF: Regarding points (i), (ii), (iii), (v), and (vii), the result is an easy con-
sequence of Proposition 5.1 of Chapter 5 and Proposition 3.8 of Chapter 3, since
the manifolds in question in these points are conformally flat, simply connected,
and of constant scalar curvature. Hence, we are left with the proof of points (iv)
and (vi). We present the proof of (iv). The proof of (vi) proceeds with the same
arguments.

According to what has been said in the proof of Proposition 5.2, there exist
m + I simply connected open subsets cZ of 1Pm (R), and m + 1 functions ,, : S2i
R such that

1. (St;);=1,..,,,r+1 is an open covering of P1 (R),
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2. for all i, r); and belong to H1 (S2;) fl C°(cZ,),
3. for all i, 0 < r1; < I and I V r); I e CO(-0-j), and

m+I m+I 2 =4. Fi=1 rl; =land i=1 IV,/,-?, l - M.

Let i , : IP' (IR) x H" R be defined by ij (x, y) = rii (x). As in the proof of
Theorem 7.4, one has that for u E £ (]?"'(R) x H'),

m+l

IIUII2N/(N-2) < II
glPUII2N,(N-2)

r=1

where N = m + n, and II II, stands for the norm of L' (M). Independently, since
92i x H" is simply connected, since p+ho is conformally flat, and since the scalar
curvature of p + ho equals m (m - 1) - n (n - 1), one gets from Proposition 3.8 of
Chapter 3 that for any i and any u E £ (lP" (lib) x H"),

II
)211V(Vl,-7,U)112+B(m,n)11 1-177-U 112

where

(m +n)(m +n - I)rvmm+n+n)
B(m,n) =

m(m - 1) - n(n - 1)

Similar computations to those made in the proof of Theorem 7.4 then lead to the
following: For any u E D(M),

IIullp < K(N, 2)2IIVuIIi + BIIuII2

where
/ 'n+1

B=K(N,2)21 sup E IV i);2)+B(m,n)
\\\ P'"(R)xR" i=1

By point (4) above,

Hence,

m+I

IV I2=m
i=1

_
B

(m-n)(m+n-2)+4m m-n+2
(m + n)(m + n - 2)w."(m+n) _ (m + n - 2))21(m+n)

+n m+n

This ends the proof of the theorem. 0





CHAPTER 8

Euclidean-Type Sobolev Inequalities

Let (M, g) be a smooth, complete Riemannian n-manifold of infinite volume,
and let q E [1, n) real. We say that the Euclidean-type Sobolev inequality of order
q is valid if there exists Cq > 0 real such that for any u E a(M),

lq/P f
fm IulPdv(g) I Cgfm JVulgdv(g)

where 1 /p = 1 /q -1 In. As shown by Theorem 2.5, such an inequality is satisfied
by the Euclidean space. In the first section of this chapter, we try to find some nice
conditions on (M, g) for such inequalities to be valid. Note here that the study of
(IQ.gen) can be seen as the analogue of Program 2 we studied in Chapters 4 and 5,
since for infinite-volume manifolds,

Regarding such an assertion, given (M, g) some smooth, complete Riemannian
n-manifold of finite volume, recall that by Proposition 3.5 there do not exist real
numbers A and B such that for any u E £(M),

(IM
\ l I/q / r

Iulpdv()
I/p

J < A( f dv(g)) +\I J IuIdv()
i/q

)/ M M

unless M is compact. In particular, one cannot expect to get inequalities such as

(f l1/P l/q

`J lulpdv(g))
< A(f IVulgdv(g))

M

+ Vol-'IMg)n
(IM

lulg dv(g))
IN

In other words, one cannot expect to extend Program 2 to complete manifolds of fi-
nite volume, and a natural extension of Program s to complete manifolds is the one
mentioned above, dealing with infinite-volume complete manifolds and Euclidean-
type Sobolev inequalities. As a starting point (this is an arbitrary choice), one fixes
here the value of lq(M) to be zero. The study of the validity of then refers
to Question 22, while getting estimates on C2 refers to Question 393. Still when
dealing with complete, noncompact manifolds of finite volume, as one can easily
check, the Euclidean-type Sobolev inequalities must be false. One can use here the
preceding argument, or note that there is a serious problem when taking u = 1 in

225
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One may ask instead if the Sobolev-Poincarb inequalities

(
If

lu - ulPdv(g)
9/P

) < A f IVulgdv(g)
M M

are valid for complete manifolds of finite volume. This could be motivated by the
idea that the Euclidean-type Sobolev inequalities are the infinite-volume versions
of the Sobolev-Poincar6 inequalities. As one can easily check, the answer to such
a question is negative, unless once more the manifold is compact. The point here
is that the validity of such a Sobolev-Poincare inequality implies the validity of the
generic Sobolev inequality of same order, so we are back to Proposition 3.5. Inde-
pendently, and in the second section of this chapter, we will discuss the question of
the best value of C. in By Theorem 4.4, one has that the best value of Cq
is K(n, q)q for the Euclidean space.

8.1. Euclidean-Type Generic Sobolev Inequalities

Let (M, g) be a smooth, complete Riemannian n-manifold of infinite vol-
ume. We discuss in this section conditions on the manifold for the Euclidean-type
generic Sobolev inequality (I9°ge1) to be valid. Clearly, since the validity of (IQ°ge.)

implies that of (Iq there exist complete manifolds for which all the (IQ d. )'s
are false. As a first result, one has the following analogue of Lemma 2.1.

LEMMA 8.1 Let (M, g) be a smooth, complete Riemannian n-manifold of infinite
volume. Suppose that for some q E [1, n), (Ieud.) is valid. Then, for all s E [q, n),q.gen

(Is gen) is valid. In particular, if is valid, then for all s E [1, n), (Is gen) is
valid.

PROOF: Let q E [1, n) and let C > 0 be such that for any u E a)(M),
I/P I/q

f IuIPdv(g)) < C(f IVulgdv(g))
M M

where 1/p = 1/q - 1/n. Given S E (q, n), and u E D(M), let also Sp =
IuI'("-q)/"q where t is such that 1/t = 1/s - 1/n. Then, as in the proof of Lemma
2.1, one gets with Holder's inequalities that

(I lul'dv(g)

cIPdv())_ (IM I

:5 C(f Ivcylgdv(g))
I19

M

I/q
UI°gIVu11 dv(g))= C(a + 1)(fm I

r
(s-q)/qs I/$

< C(a + 1) (f
I uI

gas/(s-q) dv(g))
(J Ivuls dv(g))

M M
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where a = '(- - 1. But
nq

I s - q 1

p qs
Hence, for any u E £ (M),

and
qas

s-q
=t

227

r ( I/s

( f lul'dv(g)
I/1

) <
t(n

n

_
q)C( fM IVulsdv(g)

This proves the lemma. \ (]

Following Carron [391, we start here with the discussion of the existence of
C2. Namely, we discuss the validity of (1'2"e-,): There exists C2 such that for any
u E ,0(M),

2/p

(I2gen) 1 J Iulpdv(g)) _< C2 f IVuI2dv(g)
\ M M

where 1/p = 1/2 - 1/n. Let 9 be some subset of M. By 0 C M we mean that S2
is a regular, bounded, open subset of M. Then, A°(S2) denotes the first eigenvalue
of the Laplacian Ag for the Dirichlet problem on 12, while Volx(S2) denotes the
volume of 9 with respect to g. Recall here that

° SZ inf rst IVuI2dv(g)
( ) =

neHo i(S2)\101 M u2 dv(g)
We say in what follows that the Faber-Krahn inequality is valid if there exists A >
0 such that for any 92 C= M,

(FK) AD (92) > A Volg(S2)--2/n

The following proposition is due to Carron [39]:

PROPOSITION 8.1 Let (M, g) be a smooth, complete Riemannian manifold of di-
mension n, n > 3, and of infinite volume. The following two propositions are
equivalent:

(i) The Euclidean-type generic Sobolev inequality (I; gel) is valid.
(ii) The Faber-Krahn inequality (FK) is valid.

Furthermore, taking C2 to be the best constant in (IZ ge;,), and A to be the best
constant in (FK), one has that CZ 1 < A < C(n)C2-; 1 where C(n) > I is explicit
and depends only on n.

PROOF: The proof follows the lines of [39]. Suppose first that there exists
C2 > 0 such that for any u E .(M),

\2/p

(IM
lulpdv(g)) Cf IVU`dv(g)

M

By Holder's inequality one easily gets that if 92 is some regular, bounded, open
subset of M and if u $ 0 satisfies

J Axu = A°(Q)u in SZ

Lu=0 on89
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then

f0
IVu12 dv(g)

<A(2) Vo1g(S2)2/n
(fsz

IuIPdv(g))2/p

Hence, for any regular, bounded, open subset 0 of M,

(8.1) ;'D(n) > C2 ( Volg(a)-21n

This proves that (i) implies (ii). Suppose now that there exists A > 0 such that for
any S2 C= M, )'D(S2) ? A Volg (S2)-2/". Let S2 C. M be given. For s > n we set

AS(12) = inf a.°(U)Volg(U)2/s
uc=st

and we set

µ M IVul2dv(g)f5(S2) = inf
uED(12) (fM Ill l2s/(s-2)

dv(g))(s-2)/s

Since 2s/(s - 2) < p when s > n, one easily gets by standard variational tech-
niques that for any s > n, there exists us E C°°(12) fl Ho) (12) such that

u(5+2)/(s-2)Ogus = /A5(S2 ) s in S2

IUS > 0 inn, fD u2s5/(5-2)dv(g) = 1

One can then prove (see [39]) that for any 0 < t < Ilu5ll0.

Volg ((x E S2 s.t. us (x) > 11U, lloo - t)) >
A5(S2) S/2( t S/2

(2(s+4)/4) A.'(Q)llusll002)/(s-2))

Hence, if we set L = II us IIoo , we get that

1 = J/(-2dv(g)
z

But

Vo18({x E 92 s.t. Us(x) > t})t(s+2)1(5-2)dt

(s -

L

2) o

2s
L Volg({x E 9 s.t. u5(x) > L - t})(L - t)(5+2)1(s-2)dt

i2(L - t)22dt2s

(2(s+4)/4

AS(S2) 1/2 L

(s - 2) p,5(Q)L(5+2)/(5-2)

1 - 9)Y-'de = r(x)r(y)ex-)(
r(x + y)

where r(x) = fo tr-'e-' dt is the Euler function, and
L

f'f/2(L - f)(s+2)/(s-2)dt = L5(5+2)/2(5-2)

Jo Jo
As a consequence, we get that for any s > n,

)

es/2(1 - e)(s+2)/(s-2) de

AS(n) < C(s)µs(S2)
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where

2(s-+4)/4( 2sr(1 +s/2)r(2s/(s - 2)) 2/s

C(s) =
(s - 2) r ((s2 + 4s - 4)/2(s - 2))

Now, by assumption,

Hence, if u E D(S2),

As (Q) > A Volg (0)21s-21n

2/p (s-2)/s
Iu12slcs-2)dv(g))

(JM
lulpdv(g)) = lim (fm

s-'n+ \

< lim (C(s)As(S2)-') IVU12dv(g)
s-n+ fm

< 1 (slim C(s) Vol5(g2)2/n-2/s) r IVU12dv(g)
A -,n+ J JfM
C(n)

fm
IVu12dv(g)A

and we get that for any 92 C= M and any u E .)(12),

(8.2)
d2gyp C(n)) f IVuI2dv(g)

(JM A M

This ends the proof of the first part of the proposition. The second part easily
follows from (8.1) and (8.2). 0

Before stating the next result, let us say some words about the existence of
positive Green functions on complete, noncompact Riemannian manifolds. Let
(M, g) be a complete, noncompact Riemannian manifold and let x be some point
of M. One can then prove that, uniformly with respect to x, either there exist
positive Green functions of pole x, and in particular there exists a positive minimal
Green's function of pole x, or there does not exist any positive Green function of
pole x. More precisely, let SZ C= M be such that x E 92 and let G be the solution of

J Ag G = Sx in n
G=0 on 312

Set G'(y) = G(y) when y E 92, G°(y) = 0 otherwise. Obviously, Gn _< if
g2CS2'.

One then has the following:

THEOREM 8.1 Set G,r(y) = sup)n s.t. ,o) G°(y), Y E M. Then,

(i) either Gx (y) = +oo, Vy E M, or
(ii) G.,(y) < +00, dy E M\(x).

This alternative does not depend on x and in case (ii), Gx is the positive minimal
Green function of pole x.
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In case (i) the manifold is said to be parabolic; in case (ii) the manifold is said
to be nonparabolic. By Cheng-Yau [48], one has that if for some x E M,

Vol. (Bx(r))
lira inf - < +00
r-.+,no r-

then (M, g) is parabolic. This explains, for instance, why R2 is parabolic while R3
is not. More generally, it is proved in Grigor'yan [94] and Varopoulos [189] that if
for some x E M,

+00

Voig

r d r

JI (Bx(r))
= +00

then again, (M, g) is parabolic. Conversely, Varopoulos proved in [189] that if the
Ricci curvature of (M, g) is nonnonnegative and if

+DO r dr
J Volt (Bx(r)) < +00

I

then (M, g) is nonparabolic. Independently (see Grigor'yan [941), one has that if

dr
< +00

I
h(r)2

where
h(r) = inf Areag(892)

10CM S.t. Volx(S2)<r)

then (M, g) is nonparabolic. For more details on these questions we refer the
reader to Cheng-Yau [48], Grigor'yan [94], Varopoulos [189], and the references
contained in these papers.

Let us now prove the following result. Extracted from Carron [39], it gives a
very nice answer to the question we asked at the beginning of this section.

THEOREM 8.2 Let (M, g) be a smooth, complete Riemannian n-manifold of infi-
nite volume, n > 3. The following two propositions are equivalent:

(i) The Euclidean-type generic Sobolev inequality (I. gel) is valid.
(ii) (M, g) is nonparabolic and there exists K > 0 such that for any x E M

and any t > 0,

Volg({y E M s.t. G.(y) > 1)) < Kt-n/(n-2)

where G, is the positive minimal Green function of pole x.

PROOF: The proof follows the lines of [39]. Suppose first that there exists
C2 > 0 such that for any u E D(M),

1(JM
l ul 'dv(g)) Cf IVU12dv(g)

M

Let X E M, let 0 be some regular, bounded, open subset of M such that x E 0,
and set

cr(y) = min (G." (y), t)
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where GO is as in Theorem 8.1 and where t > 0 is given. Applying the above
inequality to 4'f we get that

f l (n-2)/n

J
Io4',I2dv(g) ? C21 Q J

M /
CZ-) Vol, ({y E M s.t. GO(y) > t})(

2)/nt2

while if e = {y E M s.t. Gn(y) < t) and 0 = (y E M s.t. GO(y) = t),

I. IV4,12dv(g) = f IVGO12dv(g)
re

r
= f® G"(OgG")dv(g) - t J (a, Gn)ds = t

since 08Gn = 0 in S2\(x). As a consequence, for any x E M, any t > 0, and any
bounded, open subset S2 of M such that x E 12,

Volg ({y E M s.t. GO(y) > t j) < C2n1(n-2)t-n1(n-2)

By Theorem 8.1 one then gets that (M, g) is nonparabolic and that for any x E M
and anyt>0,

Volg ({y E M s.t. G.,(Y) > t}) < CZ/(n-2)t-n/(n-2)

where Gx is the positive minimal Green function of pole x. This proves that (i)
implies (ii).

Suppose now that (M, g) is nonparabolic and that there exists K > 0 such that
foranyxEMandanyt>0,

Volg ({y E M s.t. G,r(y) > t)) < Kt-n/(n-2)

Let S2 be some regular, bounded, open subset of M and let u $ 0 be such that

Ogu = XD(12)U in 0
u=0 on 3Q

For any x E 92,

u(x) _,L° (S2) Gnudv(g) <A°(cZ)( f GOdv(g))(suPu(Y)))
a yEn

where GO is as in Theorem 8.1. We now choose x E 92 such that

u(x) = supu(y)
YE12

Since G° < G, we get that
+00

1 < Jl°(S2) fn Gx dv(g) _ °(S2) fo VoiB ({y E S2 s.t. G, (y) > t })dt

while, by assumption,

Volg ({y E S2 s.t. G., (Y) > t }) < min (Vol8(12), Kt-n/(n-2))
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As a consequence,
+00 r+0o

J
Volg({y E 92 s.t. G., (y) > t))dt < T Volg(S2) + K J t-"/("-'-)dt

where T is such that KT-n/("-2) = Volg(S2). Hence,

J

+00

Vol, Qy E 0 s.t. G,(y) > tl)dt < 2K(n-2)/n Volg(f2)2/n
0

and we get that for any 92 C= M,

'XD(Q) > 2

n
K-(n-2)/n Volg(S2)-2/n

By Proposition 8.1, this ends the proof of the theorem.

Now that we have answered our question for q = 2, and hence for q > 2, let
us discuss the case q = 1, namely, the validity of (P"- ): There exists CI such that
for any u E £(M),

(IM

l I/P

(Ii gen) l ul Pdv(g))
C1 J IVuldv(g)

M

where I/p = 1 - 1/n. We start here by a result of Hoffman and Spruck [121].
As a consequence of their work (see also Michael and Simon [1571), one has the
following:

THEOREM 8.3 The Euclidean-type generic Sobolev inequality (I1 gl-) is valid on
any smooth, complete, simply connected Riemannian manifold of nonpositive sec-
tional curvature.

PROOF: In [121], Hoffman and Spruck studied the case of submanifolds M of
a Riemannian manifold M. For M -+ M an isometric immersion of Riemannian
manifolds of dimension n and m, respectively, let

K = sectional curvature in M
H = mean curvature vector field of the immersion
R = injectivity radius of M restricted to M

We assume that K < a2, where a is a positive real number or a pure imaginary
one. Let g be the Riemannian metric on M. As a main point, that we assume here,
Hoffman and Spruck [121] got that for any C' function u vanishing on 8M

(IM

l (n-I )/n
IuIn/(n-11 dv(g) J -< C(n, 0)

Im
( IVul + IHI x lul)dv(g)/

a2(1 -9)-21n (con I Volg(suppu))2/" < 1

and 2po < R, where

_ a-I sin-' all - Volg(suppu))
I/n fora real

PO (1 -9)-IIn(WnI Volg(suppu))I/" fora imaginary
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In such a result, 0 E (0, 1) is a free parameter, C(n, 0) > 0 depends only on n and
0, and Volg (supp u) stands for the volume with respect to g of the support of u.
Starting from the above inequality, and noting that for M = Al as in the theorem,
R = +oo, one easily gets that the (I, gl;,) inequality is valid. 0

REMARK 8.1. Let (M, g) be a smooth, complete, simply connected Riemann-
ian n-manifold with sectional curvature less than or equal to K < 0. Define the
Cheeger constant IB(M) of M by

IB(M) = inf
Area9(92)

n Vol9(S2)

where a ranges over smooth bounded domains of M. As a simple application of
the divergence theorem, Yau [200] got that IB(M) > (n - By standard
arguments, as used in Federer [79] and Federer-Fleming [80] (see, for instance,
Chavel [45]), one then gets that for any u E £(M),

IVuldv(g)luldv(g) < I
fmM (n-1),

As a remark, by taking V = l u IQ in such an inequality, this in turn implies that for
any q > 1 and any u E £)(M),

9

M I

uladv(g)
\(n - M

Ivul4dv(g)

In particular, for such manifolds,

(lull = (fIvuIdv(g)
)1/q

is a norm on H9 (M) which is equivalent to the standard one.

Since the validity of (I, gea) implies that of (I? gall), one has that the validity of

(Pull- ) implies that (M, g) is nonparabolic and that there exists K > 0 such that
for any x E M and any t > 0,

Vol9((y E M s.t. G.r(y) > t)) < Kt-n/(n-2)

where Gx is the positive minimal Green function of pole x. As a remark, this result
was already contained in Grigor'yan [94]. One can now ask if such a necessary
condition is also sufficient. The answer is positive if the Ricci curvature is nonneg-
ative, but negative in general. Such results are due to Carron [40], Coulhon-Ledoux
[57], and Varopoulos [191]. More precisely, one has the following:

THEOREM 8.4 (i) Let (M, g) be a smooth, complete Riemannian n-manifold
of infinite volume, n > 3. If (M, g) has a nonnegative Ricci curvature, then
(I gea) is valid if and only if (M, g) is nonparabolic and there exists K > 0
such that for any x E M and any t > 0,

Vols ({y E M s.t. G, (y) > t }) < Kt-n/(n-2)

where GX is the positive minimal Green function of pole x. In particular,
the validity of (I,°gen) is equivalent to the validity of (Iz .1- ).
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(ii) For any n > 3, there exist smooth, complete Riemannian n-manifolds of
infinite volume for which (IZ g'-) is valid but (1 gen) is not. Furthermore,
one can choose these manifolds such that the sectional curvature is bounded
and the injectivity radius is positive.

PROOF: We restrict ourselves to the proof of point (i). For point (ii), we refer
to Coulhon-Ledoux [57]. By Lemma 8.1 and Theorem 8.2, if (Ielge-) is valid, then
(M, g) is nonparabolic and there exists K > 0 such that for any x E M and any
t>0,

Vol, ((y E M s.t. Gx(y) > t}) < Kt-n/ln-2)

where Gx is the positive minimal Green function of pole x. Conversely, let us
assume that (M, g) is nonparabolic and that there exists K > 0 such that for any
xEMandanyt>0,

Volg ((y E M s.t. Gx(y) > t}) < Kt

where Gx is the positive minimal Green function of pole x. Under such assump-
tions, and according to Theorem 8.2, (Iz gea) is valid. What we have to prove is that

(I gen) is also valid. Following Carron [40], this will be a consequence of the work
of Buser [35]. Let S2 be some domain in M, and let r > 0 real. We define

S2 = {x E M s.t. Voig (Bx(r) n a) > 2 Vol, (Bx(r))1

By the work of Buser [35], and since (M, g) has nonnegative Ricci curvature,

Volg (f2) > Volg (92) - ci (n)r Area, (80)

Set
_ Vo1g(Q)

Then,

r 2ci (n) Area, (8S2)

V018 (S2) >
2

Volg (12)

and f2 36 0 if S2 # 0. Let xo E SZ be such that

(8.3) 2 Volg (Bxo(r)) < Volg (Bxo(r) n s2) < Volg(12)

Since (IZ g'-) is valid, and according to Proposition 8.2, the Faber-Krahn inequality
(FK) is also valid. We claim here that this implies that

n/2

(8.4) V019 (Bxo (r)) > (_)A rn

where A is given by (FK) . Indeed, one has by (FK) that

A Volg
(Bx(r))-2/n < 'XD(Bx(r))
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Let u(y) = r -dg(xo, y), dg the distance associated tog, and take u in the Rayleigh
quotient which defines), D(Bx(r)). One gets that

XDIB (r)) <
4 Vol, (Bxo(r))

X r2 Volg (Bx0(r/2))

Hence,
Ar2 ( (r)te

Volg (Bxa(r)) > (-i-) Vol\B0\/
By induction as in the proof of Lemma 2.2, this proves the above claim. Going on
with the proof of Theorem 8.4, one then gets by (8.3) and (8.4) that

c2 (n) A"12 r" < 2 Vol, (SZ)

According to the choice of r, this leads to the existence of c3(n) > 0 such that

Volg(S2)("-1)1n < c3(n) I Areag(8S2)

By classical arguments based on the co-area formula, as developed in the proof of
Lemma 3.3 of Chapter 3, one easily gets from such an inequality that (I) is
valid. 0

Finally (see, for instance, [401 for more details), we mention that if (M, g) is a
nonparabolic, complete Riemannian n-manifold whose Ricci curvature is bounded
from below, and if there exists K > 0 such that for any X E M and any t > 0 the
positive minimal Green's function Gx of pole x satisfies

Volg ({y E M s.t. Gx(y) > t}) < Kt-"l("-I)

then the Euclidean-type generic Sobolev inequality (I gC1) is valid. However, such
a result is not sharp. Indeed, (I) is valid for the Euclidean space R" while the
condition above is obviously not satisfied by the positive minimal Green function
Gx of R". Recall here that

1

X (n - 2)W"-I ly - Xln-2

where w" denotes the volume of the standard unit sphere (S", h) of R"t'

8.2. Euclidean-Type Optimal Sobolev Inequalities

We discuss in this section the value of the best constant Cq in (IQ ge"). By
Theorem 4.4, one has that C. = K(n, q)q for the Euclidean n-dimensional space.
Using the same arguments as the ones used in the proof of Proposition 4.2 of Chap-
ter 4, one can easily get that for any smooth, complete Riemannian n-manifold of
infinite volume, if is valid, then Cq > K(n, q)q. The point we would like to
discuss here is the so-called Cartan-Hadamard conjecture. By definition, a Cartan-
Hadamard manifold is a smooth, complete, simply connected Riemannian mani-
fold of nonpositive sectional curvature. For such manifolds, as already seen in theo-
rem 8.3 of Hoffman and Spruck, (Il,°ge-) is valid. The Cartan-Hadamard conjecture,
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a longstanding conjecture in the mathematical literature, states that for Cartan-
Hadamard manifolds, (Ij g -) holds with the best possible value C) = K(n, 1).
In other words, the Cartan-Hadamard conjecture states that for Cartan-Hadamard
n-dimensional manifolds, the Euclidean-type optimal Sobolev inequality (r opt) is
valid. Concerning the terminology, we say that (Ii opt) is valid if for any u Edi)(M),

1 )/P
(li opt) lull dv(g) ` < K(n, 1)ff IVuldv(g)

where 1 /p = 1-1 /n, and K (n, 1)/is as in Theorem 4.4. As a remark, this isequiv-
alent to saying that for any smooth, bounded domain 12 on a Cartan-Hadamard
n-dimensional manifold (M, g),

Areag(a12) >-
K(n, 1)

Volg(12))-n

The proof of such an assertion is quite standard, and goes back to Federer and
Fleming [80]. In order to see this, let us prove that

(8.5) inf
fm I Vuldv(g) = i if Areaa(8S2)

u
(f (g))(n-])In VM lul"/(n-I)[jvn Olg('Z))-;i

As a starting point, consider 12 a smooth bounded domain in (M, g). For suffi-
ciently small e > 0, let uE be the function

1 ifxE12
uF(x) = 1 - sd8(x, 8c2) ifx E M\12, d8(x, as2) < e

0 ifx E M\12, dg(x, 812) > e

where d8 stands for the distance associated to g. Clearly, uF is Lipschitz for all
e > 0. As one easily sees,

,uoMUE/(n-))dv(g) = Volg(12)

Furthermore,

IVuEl = e

0

if x E M\S2, dg (x, asz) < e
otherwise

Hence,

limf IVusldv(g) = li m Volg ({x ¢ 12/dg(x, as2) < el) = Areag(812)

and one gets that

inf
fm IVuldv(g)

< inf
Areag(a12)

U (fM Iuln/(n-))dv(g))("-))/n - si Volg(12)'-

Let us now prove the opposite inequality, that is

& IVuIdv(g) IAreag(812)
(8.6) iu

(fM
IuI"l(n-I)dv(g))(n-))/" -- nf VO1g(Q)I
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Given U E D (M), let
S2 (t) = {x / Iu(x)I > t)

and V(t) = Volg(n(t)), for t E R,,, the regular values of u. The proof of (8.6) is
based on the co-area formula (see Chavel [[45]):

fIVuldv(g)=J"0 ( j fda)dt
o s,

where E, = jug -I (t). Indeed, one gets by the co-area formula that
00

1

fm IVuldv(g) inf V e( ) S2) /'
V(t)t dt

g
n J

and

I'M

lulnntdv(g)
= fm (A" n 1tIl-Idt Idv(g)

J

e
anL

n-1 2

n °0

dv(g))th /("-I )dt

n-1 0
In order to prove (8.6), it suffices then to prove that

1I00r
n - I

ft1/(n_1)Vt)dt)
-

(8.7)
J

V(t)t-n dt 2: (
n

To establish (8.7), set

S , n fF(s) = f V(t)Idt, G(s) _ (til("-I)V(t)dt)

One has that F(O) = G (0), and since V (s) is a decreasing function of s,

G'(s) =
n

n 1 \n n l) (f tt )V
(t)dt)- su/("-t)V(s)

0

( n )_'1"(fsj11(n- I )dt) s1/(n-I)V(s)I-n.`=
V(s)I n = F'(s)

Clearly, (8.7) easily follows. Hence, (8.6) is true, and then (8.5) is also true. This
proves the claim.

Given (M, g) some Cartan-Hadamard n-dimensional manifold, and q e [1, n),
let us denote by (I9 op,) the following optimal inequality: For any u E D (M),

UP I/q
(Jeud.

opt)
(I'M

IuJp dv(g)) K(nq)
/
I f IVurq dv(g))
` M

where 1 /p = 1 /q - 1 In and K (n, q) is as in Theorem 4.4. Coming back to ideas
developed in Aubin [10], one gets the following result:
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PROPOSITION 8.2 Let (M, g) be a n-dimensional Cartan-Hadamard manifold.
Suppose that (Ii opt) is valid on (M, g). Then for any q E [1, n), (Q o,) is valid on
(M, g)

PROOF: Let (M, g) be an n-dimensional Cartan-Hadamard manifold. By as-
sumption, according to what has been said above, one has that for any smooth
bounded domain S2 in M,

Area, (a0) > I

Vo1B(S2)1- it - K(n, 1)

Let e be the Euclidean metric in IR". Since for any ball B in II8",

Areae(aB) _ 1

VO1e(B)'- " K(n, 1)

one gets that for any smooth bounded domain S2 in M, and any ball B in R",

(8.8)
Area, (a9) Areae(8B)

V018(S2)1
".

Vol, (B)'- I's

By classical Morse theory (see, for instance, Aubin [12] for the following claim),
it suffices to prove (Iq a ) for continuous nonnegative functions u with compact
support K, K being itself smooth, u being smooth in K and such that it has only
nondegenerate critical points in K. For such a u, let u' : R" -+ IR, radially
symmetric, nonnegative, and decreasing with respect to Ix I, be defined by:

(8.9) Vole {x ER"/u*(x)>t))=Vol5({x EM/u(x)>t})
One can check that u* has compact support and is Lipschitz. Set

V(t) = Volg Ux E M/u(x) > t})

and let E, = u -I (t). All that follows is based on the co-area formula (see Chavel
[45]):

M fdv(g) = Jo"o UE, I ul
One has here that

V'(t) = -f Ivul-1 da

E

Independently, by Holder's inequality, and for m > I real,
I/m

(J
p

E

l (m-1)/m

U

l
J da <

,
IVul-' dor k

Ivulm-I da

According to (8.8),
Area,(E,) > Area, (E, )

where E, = (u*)-1(t). Since I Vu* I is constant on E*, one gets with (8.9) that

Ivulm-' da Areae(E, )mIVu*Im-1 Areae(E; )1-m
f,

Ivu*Im-1 da
E;
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Integrating with respect to t then gives by the co-area formula that

JM

IVulm dv(g) > j IVu*In' dx
"

Similarly, for m > 1 real, one gets with the co-area formula that

f umdv(g) = -J WttV'(t)dt
M 0

so that, as above, one gets with (8.9) that

JM
u"' dv(g) = f(u*)mdx

"

By Theorem 4.4, one can then write that for q E [1, n) real, and u and u* as above,
I/P \ I/P

L
I/q

(IM
Iul'dv(g)) _ (f lu*IPdx) < K(n,q)(J Ivu*Igdx)

R" / R"

1/q
<K(n,q)( f IVulgdv(g))

M

As already mentioned, this proves the proposition. 0
As one can see, the Cartan-Hadamard conjecture has been proved to be true

for 2-, 3-, and 4-dimensional Cartan-Hadamard manifolds. Such results are given
here without any proof, apart for the 4-dimensional case due to Croke [60] that we
discuss. The 2-dimensional case is due to Weil [198]. One then has the following:

THEOREM 8.5 The Euclidean-type optimal Sobolev inequality (I',o,) is valid on
any 2-dimensional Cartan-Hadamard manifold.

The 3-dimensional case of the Cartan-Hadamard conjecture is due to Kleiner
[132]. One then has the following:

THEOREM 8.6 The Euclidean-type optimal Sobolev inequality (I, 1-) is valid on
any 3-dimensional Cartan-Hadamard manifold.

The 4-dimensional case of the Cartan-Hadamard conjecture is due to Croke
[60]. Here, Croke gets some explicit Euclidean-type generic Sobolev inequality
(Ij ge'n) for all n > 3, with the property that one recovers (Ii o -) for n = 4. For
n > 3, let

n-2 rr/2 n-2
C(n) = "_ i (J cosnfn-2)(t) sin'-2(t)dt

n I

where wn denotes the volume of the standard unit sphere (Sn, h) of ][8n+1. As one
can easily check, C(4)I/4 = K(4, 1). Croke's result [60] can then be stated as
follows:

THEOREM 8.7 Let (M, g) be a n-dimensional Cartan-Hadamard manifold, n > 3.
For any u E D (M),

(fM
IulPdv()) <_ C(n)JM IVuldv(g)
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where 1/p = 1 - 1/n, and C(n) is as above. In particular, the Euclidean-type
optimal Sobolev inequality (Ii .opt) is valid on any 4-dimensional Cartan-Hadamard
manifold.

PROOF: According to what has been said above, it suffices to prove that for
any smooth, bounded domain 92 in M,

Area8(aS2) > 1

Vo18(0)1-1

C(n)

We follow the lines of Croke [60]. Let S2 be a smooth, bounded domain in M.
Every geodesic ray in 12 minimizes length up to the point it hits the boundary. Let
n : US2 -+ 12 represent the unit sphere bundle with the canonical (local product)
measure. For V E US2, let y be the geodesic with y,;(0) = v and let l; `(v) represent
the geodesic flow, that is, '(v) = For V E US2, we let

1(v) = max it / y(t) E 91

For X E act, we define Nx as the inwardly pointing unit normal vector to as at x.
In addition, let n : U+)92 -+ aQ be the bundle of inwardly pointing vectors, that
is,

U+a0 = {u E US2 / n(u) E a12, (u, Nn(u)) > 0}

The main tool in the proof of the Theorem is a formula due to Santalo [174]. In
such a context, one has that for all integrable functions f ,

r r 1(u)

'(u)) cos(u)dt )duJ f (u)du = j
(fo

f (
un u+an

where cos(u) represents (u,and the measure on U+aSZ is the local product
measure du where the measure of the fiber is that of the unit upper hemisphere.
From this formula, one gets that

Vo18(12) = I J 1(u) cos(u)du
(n-I u+asi

Moreover, one can prove that

and that

fu +an

1(u)

fuan cos(ant(u))
au < Area(oSZ)

cosy (ant(u)) cos% (u)du < A(n) Area, (aS2)

2

where

fa
A(n) = Wn-2 'I cos"1("-2)(t) sinn-2(t)dt
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and ant(u) = We refer to Croke [60] for such assertions. By Holder's
inequality, one has that

Vols(S2) = I 1(u)cos(u)du

e

Hence,

JWn-I U+aO

I ( l(u)
cos-h(ant(u))cos(u)du

Wn-1 u+aa cosn`=I(ant(u))

1 r l(u)n-1 \
Wn-I Ju+a0 cos(ant(u))

du)

x (f cos7 (ant(u)) cos (u)du)
\ u+asz

Vols(S2) <
I

Area,(892) TA(n) A eag(8S2)
Wn-I

and one gets that
Areag(a12) 1

V01g(S2)1-N C(n).'
As already mentioned, this proves the theorem. 0

Now that these results have been stated, one can ask what happens to the
Euclidean-type optimal Sobolev inequality (I1.0pt ,and more generally to (IA oPt),
for the opposite sign of the curvature, namely, for manifolds of nonnegative cur-
vature. By Theorem 7.5, one already knows that for q > 2 such that q2 < n,
(Iq°o!,) must be false if the scalar curvature of the manifold is positive somewhere.
Similarly, one has by Proposition 5.1 that if n > 4 and (IZ oi) is valid, then the
scalar curvature of the manifold must be nonpositive. The following rigidity result
of Ledoux [140] answers the question we just asked:

THEOREM 8.8 Let (M, g) be a smooth, complete n-dimensional Riemannian man-
ifold with nonnegative Ricci curvature. Suppose that for some q E [1, n), (I9 'Pt) is
valid. Then (M, g) is isometric to the Euclidean space (lRn, e) of the same dimen-
sion.

PROOF: Following Ledoux [140], suppose that (Iq o,) is valid for some q E
[1, n). We assume here that q > 1, and refer to what is said below for the case
q = 1. Let xo be some given point in M and let r be the distance to X. For A > 0
real, and 0 > 1 real, we set

ux,B(x) +
(r)/_l)t

Set al so
1 /' 1

Fe(d) = n
- 1 r 9/(9-I) n l dv(g)

M (.+(B) ) -
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Clearly, Fe is well defined and of class C'. Indeed, as one can easily check, an
integration by parts leads to

I +°° I
FB(A) = V' r drn- 1 q(A+()/( q-1) ii

q - i V
(es)(A+sq/(q-1))" ds

o

where V(s) stands for the volume of BXO(s) with respect to g. From Gromov's
comparison theorem (see Theorem 1.1), one has that V(s) < V0(s) for any s,
where Vo(s) = Icon-1s" is the volume of the Euclidean ball Bo(s) in R". This
proves the above claim. Take now u = ux,B in (l4 "Pt). Since 0 > 1 we get that

(IM
'/P <dv

r ql(q-1) " (g))

(n -)\
rr

(r)gl(q-I) 1/q

K(n, q) \
q

n dv(g))\9 - I M (A+(B))

Set
1 q_,1)g

K(n, q)q \n - q
Then, as one can easily check,

a(- Fe(A))q/n - AFF(A) (n - 1)FB(A)

for every A > 0. Set now

H(A) = I
f

1 dx
n - 1 . (A + IXIg/(q-1))n-1

By Theorem 4.4,

a(- AH'(A) = (n - 1)H(A)

and one can write that H (X) = AA' - y , where

_ I
R

I AA
n - 1

R.

(I + Ixlq/(q-1))n-1

that is, A = H(1). The claim here is that if FB(Ao) < H (Xo) for some Ao > 0, then
FB(A) < H(X) for all A E (0, Ao). In order to see this, suppose that there exists
some Al E (0, lo) such that FB(A,) > HQ-1). Let

A.=sup (A <Ao/FB(A)=H(A)}

For A > 0, (px(X) = aXq/n + AX is strictly increasing in X > 0 so that the
differential inequality satisfied by Fe reads as -

-FB(A) < vx' ((n - I)FB(A))

while the differential equality satisfied by H reads as

-H'(A) = Sox'((n -- 1)H(A))
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As a consequence,

for .x such that FB(A) < H(A). In particular, (FB - H)' 0 on [A,, Ao], and one
gets that

0 = (Fe - H) (A.) < (Fe - H)(Ao) < 0
which is a contradiction. This proves the above claim.

Let us now come back to the expression of F0. As one can easily check,

FB(A) = q J
p+00

V (0S)
S1/(q-))

dsq - 1 o
(A+sq/(q-1))n

q +00 SIN-1)

0
V (S) dfq - 1

s(0q/(q-1).k + sgl(q-1))n
o

For V(s) and Vo(s) as above, V(s) ^- Vo(s) as s -+ 0. One then gets that for any
e > 0, there exists 8 > 0 such that for all k > 0,

r+00 SI/(q-1)
ds

0
V (s)

(0q/(q-1).k + sq/(q-1))n

f S

> (1 - e)
J VOW

((Iq/(q-1)A + Sq/(q-I)TIT
ds

1-8 a/ealy-'1/y
S

(0q/(q-1)A)q-1 Jo
Vos)(1 +sq/(q_1))n ds

Recall now that H(A) = AA' - y , where

=
1 /' 1

A
n - 1 R (1 + Xlq/(q-1))n-I

dx

q f+OOVq

- 1 o(s) (1 + sq/(g-I)) ds

Hence,

lim inf
FB

(A) > On > 1
H(A)

From the above claim, it follows that FB (A) > H (A) for all A > 0, so that

j
+00 S1/(9-I)

(V (Hs) - Vow) (A + Sgl(q-1))n
ds > 0

for all A > 0. Letting 0 -+ 1, this leads to
+00 SiJ(q-I)

f (V (s) - Vow) (A + sg/(g-1))n

ds > 0

for all A > 0. By Gromov's comparison theorem, Theorem 1.1, V (s) -< Vo(s) for
all s. As a consequence, V (s) = Vo(s) for all s, and by the case of equality in
Bishop's comparison theorem (see the Bishop-Gromov's comparison theorem in
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Chavel [451), one gets that (M, g) is isometric to the Euclidean space (R", e) of
same dimension. This proves the theorem. 0

Regarding Theorem 8.8, note that the particular case q = 1 in such a result
was well known. In this case, as already mentioned, the Euclidean-type optimal
Sobolev inequality is equivalent to the isoperimetric inequality

1Area8(8S2) >
K(n, 1)

Vo18(S2)I_n

If we let V(s) be the volume of B0(s) with respect to g, we have that

dV(s)
= Arcag (8Bx0(s))

ds
Hence, setting 92 = B0(s) in the isoperimetric inequality, we get that

1 V(s)(n-I)1n <
dV(s)

K(n, 1) ds
for all s. Integrating yields

V sO ? 1 s"nnK(n, 1)"

and since K (n , 1) =
n

bn I " , one gets that for every xo and for every s,

Vol, (B..0(s)) > Vol, (Bo(s))

where Bo(s) is the ball of center 0 and radius s in the Euclidean space (Rn, e).
Under the assumption that (M, g) has nonnegative Ricci curvature, one gets from
Gromov's comparison theorem, Theorem 1.1, that for every xo and every s,

Vo18 (BX0(s)) < Vol, (Bo(s))

Hence, for every xo and every s,

Vol8 (Bx0(s)) = Vol, (Bo(s))

and one gets from the case of equality in Bishop's comparison theorem (see the
Bishop-Gromov's comparison theorem in Chavel [45]) that (M, g) is isometric to
the Euclidean space (R", e).

8.3. Nash's Inequality

Many inequalities may be derived from the Euclidean-type generic Sobolev
inequalities (Iqlucl- ). As a very small part of a much more general situation, we
restrict our attention here to the case q = 2, and discuss the equivalence that exists
between the Euclidean-type generic Sobolev inequality (IZ $e-) of Section 8.1, and
the Nash inequality (N) of Nash [161] (as stated below). We refer the reader to the
exhaustive [18] by Bakry, Coulhon, Ledoux, and Saloff-Coste for discussions on
Gagliardo-Nirenberg type inequalities

tIUIIr < CIIou11
IIUIIs-a

and more information on the subject.
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Let (M, g) be a smooth, complete Riemannian n-manifold of infinite volume,
n > 3. We say that the Nash inequality (N) is valid if there exists a constant C > 0
such that for any u E D(M),

(N)
(fu2dv(g))'+'

<C(
MIVul2dv(g))\f luldv(g))M M

Such an inequality first appeared in the celebrated Nash [161] when discussing
the Holder regularity of solutions of divergence from uniformly elliptic equations.
Following what is done in the above-mentioned [18] by Bakry, Coulhon, Ledoux,
and Saloff-Coste, we prove here the following:

THEOREM 8.9 Let (M, g) be a smooth, complete Riemannian n-manifold, n > 3.
The Euclidean-type generic Sobolev inequality (I. g«) and the Nash inequality (N)
are equivalent in the sense that if one of them is valid, the other one is also valid.

PROOF: The implication (IZ gen) (N) easily follows from Holder's inequal-
ity, since for any u E D(M),

f u22dv(g) :5 (f IuI"dv(g))( f luldv(g))'

M M \ M /
where p = 2n/(n -2). The converse implication, (N) = (I2 gen), is a little bit more
subtle. Given U E D(M), and k E Z, we let Uk be defined by

uk(X) = O if lu(x)I < 2k

uk(x) = Iu(x)I - 2k if 2k < lu(x)I < 2k+1

Uk(X) = 2k if Iu(x)l > 2k+1

and we let

Bk = {x E M12k < l u (x) I < 2k+1 }

Applying Nash's inequality to Ilk, one gets that

rr

I+n

l fm uk d v(g)<
C \

f,6k IVuk l2 d v(g)) \ fm ukdv(g)

(22k Volg l{IuI > 2k+1 }))1+2/n <

C(f IVuI2dv(g))(2k Volg ({IuI
Bk

Seta =n/(n+2),and for every k E Z,

ak = 2pk Volg ((Jul > 2k}) , bk = f
k

IVuI2dv(g)

where p is as above. With this notation, the preceding inequality raised to the
power a, and multiplied by 2P 2, yields

ak+1 :5 21
Cabaa-(I-a)

k k
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By Holder's inequality,

rEak =>ak+1 <
2PCa(Fbk)a(Fak

keZ kEZ kEZ kEZ

1-a

2(1-a)

<2PCa(rbk) (>ak)
`kkEZZ J kkEZZ

1: ak < [2"c°(bk

keZ kEZ

Clearly,

while

)a]I/(2a_I)

VU12dv(g)Ebk < JM I

Iy
IuIP dv(g) < (2P - 1) yak

kEZ

Hence, for any u E a) (M),

(IM
pdv(g)

2/p
< (2P - 1)2/P22(p-I)C

J IVu12 dv(g)}IuI
M

so that (N) (IZ se.). The theorem is proved. 0
Concerning the optimal version of Nash's inequality, the sharp constant in (N)

has been computed by Carlen and Loss [38] for the Euclidean space. The argument
they used is very elegant. Here is their result.

THEOREM 8.10 For any u E £(R"),

where

(fu2dv(g))'CRRVuI2dv(g))(jIuldv())

(n + 2)(n+2)/n

C"

_
22/"nAN(a)I212/"

is sharp. In such an expression, IS I denotes the volume of the unit ball 2 in
IR", and kN (2) denotes the first nonzero Neumann eigenvalue of the Laplacian on
radial functions on S.

PROOF: Let us first prove that the inequality of the theorem does hold. As in
the proof of Theorem 4.4, it suffices to establish this inequality for nonnegative,
radially symmetric, decreasing functions. Following Carlen and Loss [38], let u be
such a function. For r > 0 arbitrary, let

_ u(x) if IxI < r 0 if Ixl < r
v(x)

0 if Ixl > r
and w(x) =

u(x) if Ixi > r
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Clearly,

IIuII2 = IIvlli + IIwII2

and since u is radially decreasing,

In particular,

Let

w(x) < u(r) < Ilvlll

IIwIIi -` IBlrnllvllllltIll

ISIrn Ilvlll

be the average of v. One gets from the variational characterization of xN that

IIvll2= f (v-v)2dx+ f i2dx
$p(r) So (r)

2 2

xc(Bo(r)) L0(r)
IVvl dx + I2Irn IIvlli

Lor. Ivvl2dx + IIvlli

2
VU 1122 +

where £o(r) stands for the Euclidean ball of center 0 and radius r. According to
what we said above, and noting that

IlullI ? IIvIII(IIvIII+IIhIII)

this leads to

(8.10) IIuII2 x"()IIouII2+ IBlrnllull

The right-hand side in this inequality is minimized at
nX"(aB)\I/(n+2)(

Ilulll
\2/(n+2)

(8.11) rmin =
2121 / IIouII2)

As one can easily check, taking r = rmin in (8.10) gives the inequality of the the-
orem. To see that this inequality is sharp, let uo be some eigenfunction associated
to XN (2). Set

U(X) = uo(Ix1) - uo(I) if IxI < I
0 iflxI>1

Clearly, u saturates (8.10) with r = 1. For such a function, rmin = 1. One then
easily gets from (8.11) that u also saturates the Nash inequality we just got. This
ends the proof of the theorem. 0
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In addition to Theorem 8.10, Carlen and Loss [38] also determined the cases
of equality in the optimal Nash inequality. As in the above proof, let uo be some
eigenfunction associated to AN(2), and set

u(x) uo(IxI) - u0(1) if IxI < I
0 iflxI> 1

Then u is an extremum function for the optimal Nash inequality if and only if after
a possible translation, scaling, and normalization, u = u. As one can easily check,
a particularly striking feature of this result is that all of the extremals have compact
support. Another reference on the subject is Beckner ("Geometric proof of Nash's
inequality," IMRN, 2, 1998, 67-71).

Concerning complete, noncompact Riemannian manifolds, note here that by
the arguments used in the proof of Proposition 8.2, the optimal version of Nash's
inequality does hold on n-dimensional Cartan-Hadamard manifolds as soon as the
Cartan-Hadamard conjecture in dimension n is true. In particular, by Theorems 8.5,
8.6, and 8.7, the optimal version of Nash's inequality does hold on 2-dimensional,
3-dimensional, and 4-dimensional Cartan-Hadamard manifolds. On the contrary
(see the recent Druet-Hebey-Vaugon [75]), the optimal version of Nash's inequality
is false as soon as the scalar curvature is positive somewhere. In a way similar to
Theorem 8.8 (see once more Druet-Hebey-Vaugon [75]), one can also prove that
if the Ricci curvature of the manifold is nonnegative and the optimal version of
Nash's inequality does hold, then the manifold must be flat.



CHAPTER 9

The Influence of Symmetries

The idea in this chapter is to show that Sobolev embeddings can be improved
in the presence of symmetries. This includes embeddings in higher L" spaces
and compactness properties of these embeddings. Such phenomena have been ob-
served in specific context by several authors. We especially point out the work of
Lions [150] dealing with the Euclidean space, where the first systematic study of
the subject was carried out. The goal here is to study the question in the more
general context of arbitrary Riemannian manifolds. For the sake of clarity, we de-
cided to separate the compact setting from the noncompact one. As one can see,
when dealing with compact manifolds, one just has to consider the minimum orbit
dimension of the group considered. On the other hand, when dealing with noncom-
pact manifolds, one has also to consider the geometry of the action of the group at
infinity.

9.1. Geometric Preliminaries

For the sake of clarity, we introduce here the notation and the background
material we will use in the sequel. Though many of the results of the next sections
do hold for arbitrary Riemannian manifolds, we assume in what follows, as done
in the rest of the book, that the manifolds considered are at least complete. We
refer to Hebey-Vaugon [120] for analogous results when dealing with noncomplete
Riemannian manifolds.

Given (M, g) a smooth, complete Riemannian n-manifold, we denote its group
of isometries by Isomg(M). It is well-known that Isomg(M) is a Lie group with
respect to the compact open topology, and that Isomg(M) acts differentiably on
M (see, for instance, [135]). Since (this is actually due to E. Cartan) any closed
subgroup of a compact Lie group is a Lie group, we get that any compact subgroup
of Isomg (M) is a sub-Lie group of Isomg (M). Moreover, one has that Isomg (M)
is compact if M is compact. For G some subgroup of Isomg(M), let CI (M) be
the set of functions u E C' (M) for which u oa = u for all a E G, and let )G(M)
be the set of functions u E .D(M) for which u o a = u for all or E G. Similarly,
forp> 1, let

H°G(M)={uEH°(M)/VQEG, uoa=u}

One has that AG(M) C HPG(M), and if G is compact, one gets from the exis-
tence of the Haar measure that DG(M) is dense in Hi G(M). From now on, let
(M, g) and (N, h) be smooth Riemannian manifolds, and let 17 : M -+ N be a
submersion. We recall that R is said to be a Riemannian submersion if for any x

249
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in M,
I1,(x) : (Hx, g(x)) --* (Ty(N), h(y))

is an isometry, where y = 11(x) and Hx denotes the orthogonal complement of
T. (171-'(y)) in Tx (M). Assume now that dim M > dim N, that R : M -+ N
is a Riemannian submersion, and that for any y E N, R (y) is compact. Let
v : N - R be the function defined by

v(y) L_ volume of R (y) for the metric induced by g

Then (see, for instance, [27]), for any 0 : N -+ R such that Ov E L 1(N), one has
that

fm

r
(9.1) (0 o 11)dv(g) =

J (vv)dv(h)
N

Independently, by O'Neill's formula (see, for instance, [28] or [88]), if 11 : M -+
N is a Riemannian submersion, for any orthonormal vector fields X and Y on N
with horizontal lifts k and Y,

K(N,h)(X, Y) = K(M.5)(X, Y) + 4+[X, Yri2

where K(M,g) and K(N,h) stand for the sectional curvatures of (M, g) and (N, h),
and where the superscript v means that we are concerned with the vertical com-
ponent of [X, ft As an immediate consequence of this formula, one gets that the
sectional curvature of (N, h) is bounded from below if that of (M, g) is bounded
from below. This in turn implies that the Ricci curvature of (N, h) is bounded from
below if the sectional curvature of (M, g) is bounded from below.

We now recall some facts about the action of compact subgroups of Isom,(M).
For G a compact subgroup of Isomg (M), and x a point of M, we denote by

O,'G = (a(x), a r= G)

the orbit of x under the action of G, and we denote by

S,'o =(aEG/a(x)=x)
the isotropy group of x. It is by now classical (see, [32] and [64]), that for any x
in M, 01 is a smooth, compact submanifold of M, the quotient manifold G/S.1
exists, and the canonical map G/SS -+ O1 is a diffeomorphism. (The
isotropy group of any other point in O' is actually conjugate to SIG). An orbit 01
is said to be principal if for any y e M, SS possesses a subgroup that is conjugate
to S. Principal orbits are then of maximal dimension (but there may exist orbits
of maximal dimension that are not principal). We refer to [32] for more details on
the subject. Anyway, we will use the following basic facts in the sequel:

1, S2 = U{x s.c. OG is principal) Oc is a dense, open subset of M,

and if R : M -+ M/G denotes the canonical surjection,
2. the quotient space M/G is Hausdorff and 11 is a proper map, and
3. fI(St) = 92/G possesses the structure of a smooth, connected manifold for

which n, when restricted to 0, becomes a submersion.
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Here again, these points can be found in [32]. Furthermore, one clearly has that the
metric g on M induces a quotient metric h on 92/G for which n, when restricted
to S2, becomes a Riemannian submersion from (S2, g) to (12/G, h). The distance
dh associated to h then extends to M/G by

dh(n(x), n(y)) = dg(Ox, 0Y
G)

for any x, y E M, where dg denotes the distance associated to g. We refer to [88]
for the constructions involved in these statements.

9.2. Compact Manifolds

For the sake of clarity, we start discussing improvement of Sobolev embed-
dings in the presence of symmetries by considering the case of compact manifolds.
The more general case of complete manifolds will be treated in the sequel. Let
(M, g) be a smooth, compact Riemannian manifold, and let G be a subgroup of
Isomg(M). As already mentioned, up to replacing G by its closure in Isomg(M),
one can assume that G is compact. The first result we prove is the following:

LEMMA 9.1 Let (M, g) be a smooth Riemannian n-manifold (not necessarily com-
pact or complete), and let G be a compact subgroup of Isomg (M). Let X E M and
set k = dim O. Assume k > 1. There exists a coordinate chart (S2, cp) of M at x
such that:

(i) cp(12) = U x V, where U is some open subset of Rk and V is some open
subset of Rn-k and

(ii) Vy E 6, u x n2((p(y)) C cp(O fl m where n2 : Rk X Rn-k -+ Rn-k is

the second projection.

PROOF: Let 4) : G -+ M be defined by (b (a) = a(x). It is by now classical
that 4) has constant rank (see, for instance, [64]). Since SG = <h-' (x), we get that

dim SG = dim G - Rank 0

On the other hand (see Section 9.1 and [64]),

dim (G/S') = dim O' = dim G - dim SG

Hence, Rank W = k. As a consequence, there exists a k-dimensional submanifold
H of G such that Id e H and 0 1 1 i is an embedding. Let N be an (n - k)-
dimensional submanifold of M such that

Tx(D(H) ( D = TxM ,

and let W : H x N -+ M be defined by W (o, y) = or (y). Clearly, W is smooth and
DW(Id.x) is an isomorphism. Let (U', (pi) be a chart of H at Id and (V', (p2) be a
chart of N at x, U' and V' being such that Wiu')'v, is a diffeomorphism. To get the
lemma one just has to set S2 = W (U' x V') and .p = ((pj o (p2 o 'i ' ), where

With such a lemma we are now in position to prove our first result (Hebey-
Vaugon [108, 120]). As one can see, for functions that possess enough symme-
tries, Sobolev embeddings are valid in higher LP spaces. Similar results have been
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obtained in specific contexts by Cotsiolis-Iliopoulos [57], Lions [151], and Ding
[65].

THEOREM 9.1 Let (M, g) be a smooth, compact Riemannian n-manifold, and
q > 1 real. Let G be a compact subgroup of Isom t (M). Assume that for any
x E M, Card O' = +oo where Card stands for the cardinality, and set k =
minxe y dim O. Then, k > 1 and

(i) if n - k < q, for any real number p > 1, H'G(M) C LP(M) and the
embedding is continuous and compact and

(ii) if n - k > q, for any real number 1 < p < (n - k)q/(n - k - q),
HiLG (MC LP(M), the embedding is continuous, and compact provided
that p < (n - k)q/(n - k - q).

In particular, there exists po > nq/(n - q) such that for any I < p < po,
H1 G(M) C LP(M), the embedding being continuous and compact.

PROOF: By Lemma 9.1, and since M is compact, it is covered by a finite
number of charts (S1m, com)m=,,.,.,N with the properties that for any m:

(i) 'pm(S2m) = Urn x Vm, where U is some open subset of 118k,", Vm is some
open subset of W-km, and k,n integer is such that km > k,

(ii) Um, Vm are bounded, and Vm has smooth boundary,
(iii) Vy E 12m, Um X n2(V,n(y)) C'Pm(OG n Q.), and
(iv) Sam > 0 with am I Sj < g7 < an,Sij as bilinear forms.

In (iii), 1`12 : lRkm x R"-km -+ R"-kn, denotes the second projection, and in (iv), the
gm's denote the components of g in (12m, fpm). Let u E CG (M). Since u o o = u
for any a E G, we get that foranym,anyx,x' E Um, andanyy E Vm,

u0Cpm'(x,y)=uo'm' (x" Y)
As a consequence, for any m there exists um E C°O(R"-km) such that for any
X E U. and any y E Vm, one has that

u o fp,, (x, y) = um (y)

(Without loss of generality, one can assume that V. is actually defined on some
open set S2m containing SZm such that fpm (am) = Um x Vm with Vm C Vm.) We
then get that for any m and any real number p > 1,

f lulPdv(g) = f (lull detgv o(p,,,'(x, y)dxdy
,,, fu., X V

< A. f Iu o(P;'(x, y)IPdxdy
Un, X V,,,

Am f Ium(y)IPdy

where A. and A. are positive constants that do not depend on u. Similarly, one
has that for any m and any p > 1,

f IulPdv(g) > B. 4. lum(y)IPdy
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and

f IVul'dv(g) >- B,"f loum(y)IPdy

where B,,, > 0 and B> 0 do not depend on u. Combining these inequalities and
the Sobolev embedding theorem for bounded domains of Euclidean spaces, we get
that for any m and any real number q > 1,

(v) if n - km < q, then for any real number p > 1 there exists Cm > 0 such
that for any u E CC (M),

(fsi"
lulPdv(g))UP <C,n((/ Ioul"dv(g))'Iq+( fpm Iul"dv(g))'/q

(vi) if n - k," > q, then for any real number 1 < p < n" k"`1 there exists
Cm > 0 such that for any u E C' (M),

(f JuIPdv(g))UP <C((f IVUIgdt(S))'lq+(f Iul9dv(g))11q)
2m S2m 2m

But:

(vii) n - km < n - k so that f o r q < n - km, t"-k"'I > (n-k)q
n-km-q - +l-k-q'

(viii) (fM IuV dv(g))'" < m_i (fe,,,
IuIPdv(g))",

(Ix) nr= ((fe,,, IVUIq dv(g))Il4 + (f12'. IuI'
dv(g))114)

N((fM
Ioulgdv(g))11e

+ (fM Iulgdv(g))1/q)

As a consequence, for any real number q > 1:

(x) if n - k < q, then for any real number p > 1, H G(M) C LP(M) and
(xi) if n - k > q, then for any real number 1 < p < (n - k)q/(n - k - q),

H, G(M) c LP(M).
This proves the validity and the continuity of the embeddings in question in the
theorem. By standard arguments, as developed in the proof of Theorem 2.9, one
then easily gets that these embeddings are compact for any p > I in case (x), and
any p < (n - k)q/(n - k - q) in case (xi). This ends the proof of the theorem. 0

9.3. Optimal Inequalities for Compact Manifolds

When G has finite orbits, as one may easily check, there is no hope to get
embeddings in higher LP spaces. In such a situation, one has to deal with optimal
inequalities. Given (M, g) a smooth, compact Riemannian n-manifold, and q E
[1, n), let A, B E 1R be such that for any u E HI (M),

(Iqi.gen)

UP Uq 11q

(IM
v(g)) (f Iouldv(g)) +B(f Iuldv())

M M
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where 1 / p = 1 /q -1 / n. Given G a compact subgroup of Isom5 (M) that possesses
finite orbits, let us say that (IQ gen) is G-valid if it holds for all u E H'.G(M).
Mimicking what was done in Chapter 4, we define the best constants

aq,G(M) = inf {A E R s.t. 3B E R for which (Iq gen) is G - valid}

Pq.G(M) = inf {B E R s.t. 3A E R for which (IQ gen) is G - valid}

Following what was done in Section 4.1 of Chapter 4, one clearly gets that 13q.G (M)

= and that there exists A E R such that (I, ,gen) with B = is G-
valid. As one may easily check, the arguments used in the proofs of Theorems 4.1,
4.2, and Proposition 4.1, are G-invariant arguments. The challenging question in
such a context is to know what is the exact value of the best constant aq.G (M), and
if there exists B E R such that (Iq gel) with A = aq G(M) is G-valid. The first
result we prove here is the following (Hebey-Vaugon [108]):

LEMMA 9.2 Let (M, g) be a smooth, compact Riemannian n-manifold, G a com-
pact subgroup of Isom& (M), Go the connected component of the identity in G, and
p, q two real numbers such that 1 < q < n and p = nq/(n - q). Let 0 be a
compact subset of M such that 0 is stable under the action of Go (i.e., o O = 0,
for any a E Go), and such that for any x E 0, Card OGO(x) _ +oo where Card
stands for the cardinality. Then there exists S > 0 such that for any e > 0 there
exists B E R with the following property: For any u E C' (M),

rr

q/P

`J IulPdv(g)) <s f IVulgdv(g)+B f IuI'dv(g)
M M M

as soon as suppu C 06 = {y E M S. I. dg(y, 0) < 6), where dg is the distance
associated to g.

PROOF: Because 0 is compact, it is covered by a finite number of charts
(SZ,n, Wpn) satisfying assumptions (i) to (iv) of the proof of Theorem 9.1, with k > 1
given by

k = min dim OGo
XE0

We choose S > 0 such that Os C U12, Let 1 < q < n and p = nq/(n - q). Set

Hq(M) = {u E HQG(M) s.t. SUPPU C Os)

With similar arguments to those developed in the proof of Theorem 9.1, one can get
that the embedding of Hq(M) in LP(M) is compact. Independently, by a classical
result of Lions [149], if 2i, -02, 23 are three Banach spaces, u : 2 -+ 22 is
a compact linear operator, and v : 22 -+ 23 is a continuous one to one linear
operator, then, for any e > 0 there exists B > 0 such that for any x E 2I,

IIu(x)1122 -< ellxlls, + Bpv o u(x)IIs3

Applying this result with 2, = Hq(M), 22 = LP(M), and 23 = LQ(M), one gets
the lemma. 0

With such a lemma, we are in position to prove the following result of Hebey-
Vaugon [108]. It gives the answer to the first part of the question we asked.
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THEOREM 9.2 Let (M, g) be a smooth, compact Riemannian n-manifold and let
G be a compact subgroup of Isomg (M). Let k = Card OG', where Card
stands for the cardinality. For any q E [1, n) real, and any e > 0, there exists
B E R such that for any u E HI G(M),

q/p K(n, qg
(JM IuV'dv(8))

+) IM IvuI'7dv(8)+Bf udv(g)
M

where 1 / p = I 1q - 11n, K (n , q) is as in Theorem 4.4, and, as a convention,
K(n, q)q/kql" = 0 if k = +oo. Moreover, K(n, q)q/kqI' is the best constant in
such an inequality, so that aq,G(M) = K(n, q)/kl j".

PROOF: If k = +oo, Theorem 9.2 is an easy consequence of Theorem 9.1
and the result of Lions mentioned above. One can then suppose that k < +oo. Let
I < q < n be given, and Go be the connected component of the identity in G. Let
xEM.

If Card OG < +oo, let OG _ {x1, ... , xm { with the convention that x1 = x.
We then choose 8 = 8(x) E (0, inj(M.B)) small enough such that for any i 0 j,
B,r; (S) f1 Bxj (8) = 0, and we define Ux = Uf , Bxj (S).

Suppose now that Card Ox = +oo. One has that O1 is a smooth, compact
submanifold of M of dimension greater than or equal to 1. Let OG = 0, U. . U
with the convention that x E 0,, the 0;'s being the connected components of
The 0;'s are compact since 0' is compact. Furthermore, 0, is clearly stable
under the action of Go, and for any y E 0,, one has that Card OGYo = +oo. We
now choose S = 8(x) small enough such that

(i) 8 is less than the one given by Lemma 9.2 (with 0 = 01),

(ii) for any i 34 j, Bf f1 Bjs = 0 where Ba = (y E M s.t. dg(y, 0;) < S), and
O

(iii) for any i, (p; : B?s -). R defined by Vi (y) = d8 (y, 0.)2 is smooth.

Here again, we define Ux = U 1 BjI. One then has that for any x E M, Ux is
stable under the action of G. Now since M is compact, let x1, ... , xN E M be
such that

N

M=UU,

For any s > 0, let fe E C°O(R) be such that f£(t) > 0 if t < e and f£(t) = 0 if
i = 1, ..., N we set

ari(x) = fs;(dg(x, x,1)2) if U; = 8. = 8(x1)

a j(x) = fs;(dg(x, O;j)2) if Ux; = Ujm`1B; ,', B, = 8(xi)

The a, 's,i = 1,...,N, j = 1,... , mi, are smooth. We set

ay+l
tj

liij = [91+I

where [q] is the greatest integer not exceeding q, i = 1, ... , N, j = 1, ... , m;.
Clearly, r1; j is a smooth partition of unity of M such that:
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(iv) for any i, j, rl; q E C' (M),
(v) there exists H E R such that for any i, j, 1 V (ri,!!q)1 < H, and

(vi) for any i = 1, ... , N and any j j' = 1, ... , mi, >)ij iii/- = 0.

Furthermore, as one easily can easily check, f o r any i = 1, ... , N and any j, j' _
1, ... , mi, there exists a E G such that iii j, = i7ij o a. According to what we have

just said, one then has that for any u E CG(M),

q/P

f
P/q q/P

fm I uI P dv(g)) _ (J ?ri; Iulq dv(g))
M i/

E (JM
I E

?,jlUlglP/9dv(S))9/P

i-1 j=1
!I

N lq/P_Emi' ( f
t M_

Let i E { 1, ... , N} be given and suppose that Card O' < +oo. By Theorem 4.5,
for any si > 0, there exists Bi E R such that for any u E CG (M),

lq/P

(JM InuVPdv(g) j

(K(n,q)q+si)J

Independently, suppose that Card O" = +oo. Since rhi 1 is Go-invariant (as one
easily checks), we get by Lemma 9.2 that for any si > 0 there exists Bi E R such
that for any u E CG (M),

1/q P
q/P r

JM(M dv()) s,f 1V(,1)u)Idv(g)+B1rjiIuIgdv(g)

Let

11 = ( 1 s.t. Card Oj < +oo } and 12 = {i s.t. Card Oj = +oo }

Similar computations to the ones involved in the proof of Theorem 4.5 lead to the
following: For any u E CG(M),

IIuIIp <
J mq/P(K(n,

q)q + E,)
iEI1

x ( f IVulqr?i1dv(g)+AHIIVull9-'IIUII9+VH'IIuIIq)
M

+ (J Ioulgi 11 dv(g) +,HIIouIIq-' IIUIIq + vH9IIUII9)
Mi612

+ N( maxNBim4/P)Iluilq
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where it > 0 and v > 0 depend only on q, and where II - IIP stands for the norm of
LP(M). Independently, f o r any i = 1, ... , N,

1

dv(g)IVulyn, i dv(g) _ -
IMM m,

m, > k = min Card OG (x)
XEM

Since I - q/p = q/n, choosing e, = E when i E I1 and E; < K(n, q)y(m;/k)y/"
when i E 12 gives that for any E > 0, there exists B E JR such that for any
u E Ca (M),

N

IlullP <
K(n,q)4+s(Iloullq+PH(

m, )IIVullp-'IluIIa
Wrl

N

+VIIymi +Ilullg)+BIIuIIq

Noting that for any e > 0, there exists C£ > 0 such that for any positive real num-
bers x and y, xy-' y < Exy + Ce yy, one easily obtains the inequality of Theorem
9.2 from this last inequality. This ends the proof of the first part of the theorem.
Concerning the second part, namely, that K (n, q)y / kq/" is the best constant, one
can use test functions centered at some minimal orbit. Suppose that k < +oo, and
let (x1, ... , xk ) some minimal orbit of G. For X E M and s > 0, define

'ue.x = (e+r ) (P(r)

where r denotes the distance to x, (p is smooth such that 0 < V < 1, P = 1 on
(-1, z ), and q. = 0 if r > 8, and 8 > 0, 8 small, is real. With similar computations
to the ones involved in the proof of Theorem 4.8, one gets that for any B real

JM IVue..clydV(g)+B fMlle..rdy(g) 1
lim

A/p ( q)ye-.o
(fM uex d v(g)) K n'

For e > 0, set
k

ue = ue.x;
i=1

For 8 > 0 small enough, ue is G-invariant. MMoreover,

IM IVudv(g) = k J IDu, Iy dv(g)
M

JME dv(g) = k fu uE..Y, dv(g)

judv(g) = k fu uF x, dv(g)
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Hence, for any B real,

lim
fM lOuE//l9/dv(g) + B fm u£ dv(g) - k' o

6-.0 (fM uE
dv(g))9/P K(n, q)q

Clearly, this proves the second part of the theorem.

Regarding Theorem 9.2, one can take e = 0 in the case q = 2. This is the
subject of the following result of Hebey-Vaugon [1081:

THEOREM 9.3 Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3,
and let G be a compact subgroup of Isomg (M) that possesses at least one finite
orbit. Let k = minXEM Card OG(x) where Card stands for the cardinality. There
exists B E R such that for any u E H21,G (M),

( J
r l2/P K(n, 2)2 2 2

( k2/ fm IVul dv(g)+B I u dv(g)
\ M

where I l p = 1/2 - 1 In and K (n, 2) is as in Theorem 4.4. In particular, there
exists B E R such that (I2 gel) with A = a2.G(M) is G-valid.

PROOF: We proceed as in the proof of Theorem 9.2, using Theorem 4.6 in-
stead of Theorem 4.5. We then have that for any i E I,, there exists Bi E R such
that for any u E C,'g'O(M),

I

2!P

)Idv(g)
C fM Inil 2 ul

pdv(g))
K(n, 2)2fM I V

(n;i2u 2

nilu2dv(g)+Bi f
M

As a consequence, for any u e CG (M),

2/p

`f Iul,*dv(g))
M

m;"-2)/"K(n, 2)21 f 1Vu12ni1 dv(g) + J u2$V(ni(2u)12 dv(g)
M

\
+ f uv°uvvn;I dv(g))

(IM

M

+ E m(n-2)/'e
IVu12ni1dv(g)+

IM
u21V(;i2u)12dv(g)

iE12

+f uV'uVvnil dv(g))
M

+ N( max f u2 dv(g)
=1....,N M
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Independently, for any i = 1, ... , N,

and

IVul2nml dv(g) =
1

J IVu12ri;j dv(g)
mr

j=1 M

1 m;

fdv(g) = dv(g)
m,

j

m; > k = min Card OG'
xeM

Choosing
2/n

e; < K(n, 2)2 (mr

k

we then get that for any u E C' (M),

\ f 1ulpdv(g)
)2/v

< K(n, 2)2 fIVuI27,ijdv(g)k2/M
;j

K(n, 2)2 V"uV,,dv(g)+
k2/n IM u

K(n, 2)2
N

2 2+ k2/n ( m; ) X u d u(g)

2 dv(g)+ N(. max B;m1.-2)/n) IM ur=1.....N

K(n, 2)2 r
/ J

Ivu12q;j dv(g)k2n

K(n, 2)2 N

u2dv(g)+ k2pr (
r-1

+ N(, max B;m;"-2)I-) fu2 dv(g)
+=1....N 1

since F_,.j rJ; j = 1. Let

K(n, 2)2

(
N

B =
k2/n

I Em;)H2+N( max B;m,"-2)/n)

\\\ l r=1,...,N
r-l

Then for any u E CG (M),

(ffuII'dv()2/K(n,2)2

[ IVul2dv(g)+B I u2dv(g)

This ends the proof of the theorem.
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Let (M, g) be a smooth, compact Riemannian n-manifold, let q E [1, n) real,
and let G be a compact subgroup of Isom,, (M). Suppose that G does not possess
finite orbits and let k be the minimum dimension of OC, X E M. Suppose that
n - k > q. By Theorem 9.1, HqG(M) C LP(M) for p = (n - k)q/(n - k - q).
In other words, there exist A and B real such that for any u E CG (M),

f l
)/P )/q IN

J IuIPdv(g)) _< A(J IVu11dv(g)) +B(f luI'dv(g))
M M \ M

where p is as above. Mimicking what has been done in the proof of Theorem 4.1,
the best constant B in such an inequality, denoted by &.G (M), is

&.G(M) = Vol-)/("-k)

(Mg)

Moreover, there exists A E R such that the above inequality with B = flq,G(M) is
G-valid. Following what we did in Theorems 9.2 and 9.3, the challenging question
there is to know what is the value of the best constant A in the above inequality.
An answer to this question has recently been announced by Iliopoulos [124] in the
following particular case: (M, g) = (S", h), the standard unit sphere of R"{(, and
G = 0(m 1) x O(m2), with m) and m2 two integers such that m) +m2 = n + 1,
m) > m2 > 2. In such a context, k = m2 - 1 so that n - k = mi. For q <m1, one
then gets that there exist A and B real such that for any u E CC (S"),

r )/P Uq r 1/q

(9.2) J IulPdu(h)) < A(J IVulgdv(h)) + B( IuI"dv(h))ss" s

where p = m)q/(mi - q). The result announced by Iliopoulos [124] is that the
best constant A in (9.2), denoted by a = aq,G(S"), is such that

a ?

a

where 1/q" = 1/q+ 1/m2 -1/m(, ws stands for the volume of (SS, h), and
is as in Theorem 4.4. In particular, one gets from this result that

-aq.G(Sn) = ",mco,,, K(m, q)

when mi = m2 = m. We refer the reader to Iliopoulos [124] for more details on
this result.

9.4. Compactness for Radially Symmetric Functions

In this section, we start dealing with complete, not necessarily compact, man-
ifolds. As an example of the compactness results one can get in the presence of
symmetries, we present a result first obtained by Berestycki-Lions [24], Coleman-
Glazer-Martin [53], and Strauss [182]. Their proof was based on the special struc-
ture that radially symmetric functions on R" have. The proof we present here is
slightly different. For q I real, set

HRr(R") _ {u E HQ (R") s.t. u is radially symmetric}
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By u is radially symmetric, we mean that u is invariant under the action of 0(n).
Recall that by Proposition 3.7, for any q E [1, n) and any p E [q, nq/(n - q)],
Hq (R") C LP(R"). In particular, for q and p as above, H9r(R1) C LP(R"). The
result of Berestycki-Lions [24], Coleman-Glazer-Martin [53], and Strauss [182]
can then be stated as follows:

THEOREM 9.4 For any q E [1, n) real, and any p E (q, ) real, the embedding
is q

of HQr(Rn) in LP(R") is compact.

The proof of Theorem 9.4 is based on the following compactness lemma, an
easy consequence of Lemma 2.4 of Chapter 2. We refer the reader to Adams [1]
for its proof.

LEMMA 9.3 Let 12 be an open subset of IR", p > 1 real, and 3f C LP(S2). Suppose
there exists a sequence (0j) of subdomains of S2 having the following properties:

(i) For each j, S2/ C S2/+1,
(ii) for each j, 3f is precompact in LP(S22), and

(iii) for every s > 0, there exists j such that jn\Q1 Iu I P dx < E for every u E 3e.

Then R is precompact in LP(S2).

With such a result, we are now in position to prove Theorem 9.4.

PROOF OF THEOREM 9.4: Let 1 < q < n and q < p < nq/(n - q) be
given. By the mean value theorem for integrals one easily gets that there exists a
positive constant C such that for any rf E C°°([0, 1]),

J
I if(t)IPdt <C(J 1 (If,(t)19+If(t)IQ)dt)p/9

0

It is then easy to see that for any integer k and any f E C' ([k, k + 1]),
k+1 rk+I p/q

I If(t)IPdt <C(J (I f '(t) Iq + I f (t) Iq)dt)
k k

Let k be an integer and set

Ck={xEIR s.t.k<IxI <k+l)
If D, (R") stands for Do(,,) (RI), D,- (R") is dense in H;r(R"). Noting that p/q >
1, one then has that for any u E D, (R") and any real number R > 1,

fR"\B0(R)
Iu(x)IPdx

Iu(x)IPdx
k7(RJ )ck

k+I

<[v"_1 (k+1)"-I f Iu(t)IPdt
k?JRJ k

r k+I p/q
< Cwn_1 (k + 1)"-I + f (Iu'(t)I9 + Iu(t)Iq)dt)

k>(RJ
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= CCVn-1 E (k + 1)("-1)(1-p/q)

k?(R)
p1q

X ((k )n-
kn-' f (u'(,)IQ + Iu(t)lq)dt

k
)
J

2(n-I)P/gCwn-I /q (k + 1)(n-1)(1-P/q)

k>IRI

\\N/q
x (J (lvu(x)lq + lu(X)lq)dx1

2("-I )P/gCw _P/q P/q
n 1 (IVu(x)Iq + Iu(x)lq)dX)

([R] + 1)(n-1)(P/q-1) JRfl\B(R) J
where [R] is the greatest integer not exceeding R, and wn_I stands for the volume
of the standard unit sphere (S" - I , h) of R". As a consequence, we get that there
exists a positive constant A such that for any R > 1 and any u E Dr(R"),

I/P

( lu(x)IPdx < A([R] + 1)-(n-1)(1/q-I/P)IIuIIH
\ R"\Bo(R)

By density such an inequality is then valid for any u E H9r(Rn). Independently,
since 1 /q - 1 /p > 0, one has that

lim ([R] + 1)-(n-I)(I/q-I/p) = 0

By Lemma 9.3, this ends the proof of the theorem. 0
As an important remark, note that the compactness of HIr (R") C LP(R) is

not true anymore for p = q or p = nq/(n -q). Suppose first that p = nq/(n -q).
Let u E 2)(R), u i* 0, be radially symmetric. For X > 1 real, set

U, (X) =
A9-'u(Ax)

As one can easily check, uA is also radially symmetric, and

(I) `dk, IluallHj < IIuIIH4,
(ii) VA, Ilex11P = IlullP, and

(iii) limA.+oo ux = 0 a.e.

where II Il, stands for the LP-norm in R. By (i), (ux) is bounded in H r(R"),
while by (ii) and (iii), there does not exist a subsequence of (u).) that converges in
LP (RI) as X -I +oo. Suppose now that p = q. For u as above, and for X E (0, 11
real, set

n

ux(X) = AQu(Ax)

Here again, u)L is radially symmetric, and

(iv) VA, IIUAIIH; q < IIuIIH; ,

(v) VA, IIuAIIP = 11 u 11,,, and
(vi) limk-.O+ ua = 0 a.e.
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By (iv), (ux) is bounded in H;(IR"), while by (v) and (vi), there does not exist a
subsequence of (ux) that converges in L"(R") as X -+ 0+. As mentioned above,
this proves that the compactness of the embedding of H9 ,(l[8") in LP(R) is not
true anymore for p = q or p = nq/(n - q).

9.5. A Main Lemma for Complete Manifolds

Let (M, g) be a smooth, complete Riemannian n-manifold. For q > 1 real,
and n, k two integers, we define p* = p*(n, k, q) by

fp*=n ifn-k>q
j4

p*=+oo ifn - k<q
When k > 1 and q < n, one then has that p* > nq/(n - q). The purpose of this
section is to prove the following result of Hebey-Vaugon [120]:

LEMMA 9.4 (Main Lemma) Let (M, g) be a smooth, complete Riemannian n-ma-
nifold, and G be a compact subgroup of Isom* (M). Let q > 1 be given,

k = min dim O,',
XEM

and p* = p*(n, k, q) be as above. For p > 1 real, consider the two following
conditions:

Ap. There exists C > 0 and there exists a compact subset K of M such that for
any u E £G(M),

K I

uI dv(g)J < C
\((\ fm

IVuI"dv(g))Q
I I\ / + I fM IuIgdv(g))\

BP. For any e > 0 there exists a compact subset KE of M such that for any
U E .DG(M),

(fM\K I uI"dv(g)/ r < K ((fm IVUIgdv(g))' + L I

uIgdv(g))' )

If 1 < p < p* and Ap holds, then H°G(M) C L"(M) and the embedding is
continuous. If 1 < p < p* and Bp holds, then the embedding is compact.

In order to prove the main lemma, we need first the following result:

LEMMA 9.5 Let (M, g) be a smooth, complete Riemannian n-manifold, K be a
compact subset of M, and G be a compact subgroup of Isom8 (M). Let q > 1 be
given,

k = min dim O. ,
XEK

and p* = p*(n, k, q) be as above. Noting that functions on M can be seen as
functions on K, for any 1 < p < p*, HgG(M) C L"(K), and the embedding is
continuous. Furthermore, the embedding becomes compact if p < p*.
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PROOF: If k = 0, the result is a straightforward consequence of the standard
Sobolev embedding theorem. We assume in the sequel that k > 1. By Lemma 9.1
one has that K is covered by a finite number of charts (S2m, such that
for any m:

(i) (Pm($2m) = U. x V,,, where Um is some open subset of lR ', V. is some
open subset of R"-km, and km E N satisfies km > k;

(ii) Um and Vare bounded, and V," has a smooth boundary;
(iii) Vy E S2m, Um X r12((Pm(Y)) C rPm(OC fl u,) where n2 : Rkm x R"-k- is

the second projection; and
(iv) 3am > 0 with am-'8,, < g; < amS+, as bilinear forms, where the g,f's are

the components of g in (S2m, rpm).

From now on, let u E £DG(M). According to (iii), and since u is G-invariant, one
has that for any m, any x, x' E Um, and any y E Vm,

u orp",'(x, y) = u o9Pm'(X , y)

As a consequence, for any m there exists Urn E C°°(R"-'4n) such that for any
xEU.andanyyE V,n,

u o (PM' (X, Y) = um (Y)

(Without loss of generality, one can assume that rpm is actually defined on some
open set S2m containing 5m such that com(S2m) = Um x Vm with Vm C Vm). We
then get that for any m and any real number p > 1,

L Iul"dv(g) = f (IuIP orpm'(x,Y)dxdy
mx J

S Am f Iu ocom1(x,y)IPdxdy
x V.

= Am f Ium(y)I"dy
Vm

where A. and Am are positive constants that do not depend on u. Similarly, one
has that for any m and any p > 1,

and

IuIPdv(g) >- 8,. Ium(y)IPdy
Vfom

f12M IVulPdv(g) > Bm f IVUm(y)IPdy
Vin

where B. > 0 and Bm > 0 do not depend on u. Combining these inequalities and
the Sobolev embedding theorem for bounded domains of Euclidean spaces, we get
that for any m and any real number q > 1,

(v) if n - km < q, then for any real number p > 1 there exists C. > 0 such
that for any u E DG (M),

(fszIuV'dv(g))"
<Cm ((J dv(g))")



9.5. A MAIN LEMMA FOR COMPLETE MANIFOLDS 265

(vi) if n - km > q, then for any real number 1 < p S , there exists
C> 0 such that for any u E DG (M),

C m Jul'dv(8))i < C"r ((Lm IVuI'dv(g))9 + (n,,, l
ul'dv(g))")

But:

(vii) n - km < n - k so that p*(n, km, q) > p*(n, k, q),
(viii) (fK IulPdv(g))UP < EN=1 (ff2m IulPdv(g))UP, and

(ix)
EN=i Ioulgdv(g))1j9+(fnm Iulgdv(g))l1q)

N((f,
IVul9dv(g))11q+(fM lulgdv(g))l1q)

As a consequence, for any q > 1 and any real number 1 < p < p*, H'G(M) C
LP(K), and the embedding is continuous. By standard arguments, as developed in
the proof of Theorem 2.9, one then easily gets that these embeddings are compact
provided that p < p*. This ends the proof of the lemma.

We are now in position to prove the main lemma.

PROOF OF LEMMA 9.4: Suppose that A. holds for 1 < p < p*, p real. Then
there exists a positive constant C, and a compact subset K of M such that for any
U E Hga(M),

JM\K
P

\\M )9 \IM )4)P
while by Lemma 9.5, there exists some positive constant C2 such that for any u E

9
Hrc (M),

JK IuIPdv(g) < C2 ((fu IVUlgdv(g))4 + ( fM
luIgdv(g))9P

Hence, for any u E Hi r, (M),

(f11"i.(g)< (C1 +C2)IIuII,

so that Hg6(M) c LP(M), and the embedding is continuous. Suppose now that
BP holds for some 1 < p < p*. Let (K,) be a sequence of compact subsets of M
such that K; C K;+,, U, K; = M, and such that for any u E H O(M),

1 JM IUIPdv(g)J < t 1\\ fm IVulgdv(g) J + (M IUlgdv(g))9)\Ki

Let (Uk) be some sequence of functions in HqG (M) such that for any k, II Uk IIH; <
Co. By induction, and with Lemma 9.5, one easily gets that for any i there exists a
subsequence (uk) of (Uk) such that

1. if i < j, (uk) is a subsequence of (uk), and
2. (uk) converges in LP(K;).
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Let u' be the limit of (uk) in LP(K;). For any i, denote by u; one of the uk's such
that

I u; - u' I° dv(g)) < 1

(1K

r 1

,

Then, (u;) is a subsequence of (uk). We now assert that (u;) converges in LP(M).
(Obviously, this will end the proof of Lemma 9.4). In order to prove the claim,
we first remark that for j > i, ui = u' in K;. We then note that the u"s, when
extended by 0 in M\K,, form a Cauchy sequence in LP(M). This comes from the
fact that for j > i,

(IM
IuJ - u' IP dv(g)

)1;

= I J Iu'VPdv(g))
\\\

Kj

\ K;

(r IuJ -u'IPdv(g)) L + (L\K1 lujlPdv(g))r +KJ

Let u be the limit of the u''s (extended by 0 in M\K;) in LP(M). According to
what we have just said,

(f u'-uIPdv(g))v<Co

-:-
I.Al

for any i. One then gets the claim by noting that for any i,

(IMui-ulPdv(g))

u' - ulPdv(g))Pf lu! - u'Ipdv(g))P + Q l
M

Co P P 2Co + 1
<

i
+(f lu, - u'IPdv(g)) + (f Ju;J'dv(g)) <

; M\Kj

This ends the proof of the lemma.

9.6. The Codimension 1 Case

0

Let (M, g) be a smooth, complete Riemannian n-manifold, and G be a com-
pact subgroup of Isom8 (M). In what follows, the action of G is said to be of
codimension 1 if

max dim O' = n - 1
xeM

One can then prove (see (321) that the quotient M/G is homeomorphic to an inter-
val of R. For X E M, let v(O1) be the volume of O1 for the metric induced by g.
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As in Section 9.5, let also p* = p*(n, k, q) be defined

p* _ nk ifn - k > q
9

+oo ifn - k < q
The purpose of this section is to prove the following result of Hebey-Vaugon [120):

THEOREM 9.5 Let (M, g) be a smooth, complete Riemannian n-manifold, let G
be a compact subgroup of Isomg (M) whose action is of codimension 1, and set

k = min dim O.'
.XEM

Consider the two following assumptions:

H 1. There exist C > 0 and a compact subset K of M such that for any x E
M\K, v(Ox) > C.

H2. For any e > 0 there exists a compact subset K£ of M such that for any
x E M\KE, v(OG) >

For q > 1, let p* = p*(n, k, q) be as above. If H1 holds, then for any q > 1
and any real number p E [q, p*], HgG(M) C LP(M) and the embedding is
continuous. If H2 holds, then for any q > 1 and any p E (q, p*), the embedding
of H1.G(M) in LP(M) is compact.

PROOF: If M is compact, the result is already contained in Theorem 9.1 (or in
the standard Sobolev embedding theorem for compact manifolds if G has a fixed
point). We assume in what follows that M is not compact. Let 11 : M -+ M/G
be the canonical projection from M to M/G. As already mentioned, M/G is
homeomorphic to some interval I of R. Since fI is a proper map (see Section 9.1),
M/G is noncompact and I is homeomorphic either to R itself, or to [0, +oo). In
what follows, we assume that I is homeomorphic to [0, +oo). (The difficulties
involved in the case where I is homeomorphic to R are all contained in the case
where I is homeomorphic to [0, +oo)). Let us identify I with [0, +oo). By [32],
one has that for any t E (0, +00),17 -I (t) is a principal orbit (of dimension n - 1),
and that 0 = 11- I (0) has dimension k < n - 1. Furthermore (see Section 9.1) one
has that

II : M\O - (0, +00)
is a Riemannian submersion with respect to g and the quotient metric h (induced
from g) on (0, +oo). In what follows, v denotes the function on (0, +oo) defined
by v(fl(x)) = v(Ox), and we set h = v2h. Suppose now that H, holds. In order
to prove the first part of the theorem, by the main lemma of Section 9.5, one has to
prove that for p ? q, there exist e > 0 and a compact subset K of M such that for
any u E Dc (M),

((f(!M\R
Pu)Ioul9dv(g))' +(f Iulidv(g))9)

Lct Kbe the compact subset of M given by H I. Then, 17 (K) is contained in some
interval [0, R], K = R-1([0, R]) is a compact subset of M such that K C k, and
11(M\K) = (R, +oo). If U E )0(M) we denote by u the function on [0, +oo)
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defined by u o tl = u. Let 1 < q < p be given. By (9.1) we get that for any
U E DG(M),

!M\k

+00

IuIPdv(g) = f IuV°dv(h)
R

On the other hand, since we are in dimension 1, and since again by (9.1),

I
+00

dv(h) = Volg(M) ,

one easily gets that ((0, +oo), h) and ((0, Vols(M)), e) are isometric, where e
denotes the Euclidean metric of R and Volg(M) denotes the volume of (M, g).
Hence, by the standard Sobolev inequality for intervals of R (see Lemma 9.6 for a
slight improvement of such an inequality), we get that there exists C > 0 such that
for any u E DG (M),

1 +00

IuIP dv(h))
r

< C \fR + I uI
q)dv(h)1

(Since there might be some possible confusion in what follows, the subscript h in
I V4 1h means that we take the norm of Vu with respect to the metric h). Since
by H, one has that v is bounded from below on [R, +oo), we get that for any
U E DG (M),

YIuIPdv(g)<C ((v_211h + Iulq)dv(h))
R

fR

+oo(Ivuih
+ Iulq)dv(h)\\

But H : (M\O, g) -+ ((0, +oo), h) is a Riemannian submersion. Hence, for any
x E M\O and any u E AG(M), IVuIh(rl(x)) =1 Vu 1. (x). As a consequence, and
again by (9.1), we get that for any u E £G (M),

IV f+00uJq dv(g) = f IVuIn dv(h)
M\K R

Clearly, one also has that for any u E D(-, (M),
+

lulgdv(g) =f IuIgdv(h)f
\ IC RM

so that we get the existence of some e > 0 and some compact subset k of M such
that for any u E .)G(M),

(fM\ KIujPdv(g) I
P

< C
((A, IVuI dv(g))y

+ (fM Iulgdv(g))y)

As already mentioned, this proves the first part of Theorem 9.5.

In order to prove the second part of Theorem 9.5, we need the following
lemma:
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LEMMA 9.6 Let R be endowed with its standard metric e, and let I be some non-
compact interval of Ut.

(i) If I is bounded and of length S, then for any p, q > 1,

(jIurdv(e) S-(f lu'Idv(e))Q forany u E £(1)- Jr /
(ii) If I is not bounded, then for any 1 < q < p, and any e > 0, there exists

CE > 0 (depending only on e, p, and q) such that,
s

J juI"dv(e))r < C6
I

lu'Igdv(e)+s f uj4dv(e) foranyu E 0(I)
f t

PROOF: Suppose that I is bounded. Without loss of generality, one can as-
sume that I = (0, S] or I = (0, S). Let U E £(1). Then, for any x E (0, S),

14 -q
u'(t)dtl

fox0 0

x

Iu(x)I = I

fox
Iu'(t)Igdt) `fo dt)

<S'-q( f lu'Igdv(e))

As a consequence, we get that for any u E 0(I),

(f
luI"dv(e))P

<S'+ q(f lu'lgdv(e))
t

that proves (i). Suppose now that I is not bounded, and let 1 < q < p and
e > 0 be given. Without loss of generality, we can assume that I = [0, +oo) or
I = (0, +oo). For 8 > 0 real, consider the covering

R = U (mS, (m + 2)3)
meZ

and let (im) be a smooth partition of unity subordinate to this covering such that
for any m, E C°°(][8) and I Co/S for some Co > 0 that does not
depend on m and S. For any u E £ (1) one then has that

(f luI'dv(e))"=(f (iimiuii)" dv(e))"))"P

1

Mez

(117

fl mqulPdv(e))P

by (i), one easily gets that

(f
inmgulPdv(e))P <(23)P q (f I()7 mq)u'+(1lmq),uIgdv(e))Q

where Im = in (mS, (m + 2)8). From now on, let µ > 0, depending only on
q, be such that for x, y > 0, (x + y)q < µ(xq + yq). One then has that for any
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U E V(1),

(.1 i i uV dv(e))

(28)p4µ°(f (17nrlurlq+l(r7nr4)rlglulq)dv(e))
urn

and since any t in I meets at most two of the I,n's, we get that for any u ED(l),n

l ul

P

dv(e)l < (2S)q+y_Iµ { j I

u'Igdv(e) + 2S° f Jul? dv(e)q
i

One then obtains the result by choosing S such that (2Q + r C0 jA)S r -' = E. This
ends the proof of the lemma. O

We now return to the proof of Theorem 9.5.

PROOF OF THEOREM 9.5 (CONTINUED): Suppose that H2 holds, and let s
> 0 and 1 < q < p be given. Assume first that Voig (M) _ +oo. By Lemma 9.6,
there exists CF > 0 such that for any unbounded interval I of R and any u` E £(I),

( f IuIPdv(e) f r <Ce f lu'( dv(e)+s f (ulgdv(e)

Let KE (given by H2) be some compact subset of M such that for any x E M\KE,

v(OG) >_

With the notation of the first part of the proof of Theorem 9.5, II(KE) is con-
tained in some interval [0, Re], KE = n-' ([0, RE]) is a compact subset of M
such that KE c KE, and TI(M\Ke) = (RE, +oo). Noting that ((0, +oo), h) and
((0, V018(M)), e) are isometric, and that by (9.1),

Volh ((Re, +oo)) = Volg(M\Ke) = +co

one then gets, with the same kind of arguments as those used in the first part of the
proof of Theorem 9.5, that for any u E 1 G (M),

+oo(r n +00

fR,
lul°dv(S)<CEJ IVulhdv(h)+elulgdv(h)

oe

CE

+00
lvulgv-dv(h)+cflulgdv(h)

fR,
r

RF

< CE
J
+ IV"Iq dv(h) + s

+ lu'lq
dv(h)

Ca RE RF

=e (fe fVudv(g)+ \Klulgdv(g))
M\K

As a consequence, condition BP of the main lemma is satisfied, and we get that the
embedding of HgG(M) in LP(M) is compact provided that p < p'. Assume now
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that Volg (M) < +oo. Let KE (given by H2) be some compact subset of M such
that for any x E M\KE,

where A = (Volg(M))1+1/P-11q. Let R. and Kf be as above. Here,

Volt, +oo)) = Volg(M\Ke) < Volg(M) < +oo

so that by part (i) of Lemma 9.6, we get that for any u E )G (M),

P
2 too +oo

r
` luI 'dv(g)) < 'k f

Re

=1 IVuJhv_'-dv(h)
M\K, Re RE

}f +00

< A(- J
Ioulh dv(h)

f
E

= s J
lVul? dv(g)

M\KE

Hence, condition BP of the main lemma is satisfied, and the embedding of H;G(M)
in LP(M) is again compact provided that p < p'. This ends the proof of the
theorem.

As a concrete and easy example of applying Theorem 9.5, note that one recov-
ers Theorem 9.4 dealing with functions on R" that are radially symmetric.

9.7. The General Case

Let (M, g) be a smooth, complete Riemannian n-manifold, and G be a com-
pact subgroup of Isomg(M). We treat here the case where the action of G is not
necessarily of codimension 1. Following Hebey-Vaugon [1201, for x E M and
r > 0 we set

Tr(OG) = {y E M/dg(y, O") < r)
where dg is the distance associated to g. If OG is principal, we define the principal
radius Rpr(OG) by

RPr(Ox) = sup {r > 0/Vy E T, (0G'), OY is principal,

and dr' < r, Tr,(OG) is compact)

and the principal tube Tpr(OG) by

Tpr(OG) = Tr(Ox) where K = min (i. )l

The action of G on M is then said to be uniform at infinity if there exist a > I and
a compact subset K of M such that the following holds: For any x E M\K such
that OG is principal, and for any y, y' E Tpr(Op),

v(OY) < av(O1)

where, as in Theorem 9.5, and v(OR) denote the volume of O and O for
the metric induced by g. Independently, we will say that the action of G on M is of
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bounded geometry type if the Ricci curvature of (S2/G, h) is bounded from below,
where = U Oc

)x s.t O' is principal)

and h is the quotient metric (induced from g) on £2/G (see Section 9.1). By
O'Neill's formula (Section 9.1), the action of G on M is of bounded geometry
type if the sectional curvature of (M, g) is bounded from below.

We prove here the following result of Hebey-Vaugon [120]. As in Section 9.5,
we define p* = p*(n, k, q) by

k-q if n - k >P.
_ -kq q

1+00 ifn-k<q
Since several groups are involved in the statement of Theorem 9.6, G; -principal
means principal for G; (and for x E M, Tp,(Ox,) is the principal tube with respect
to G;). In what follows, Volg(Tp,(Ox )) stands for the volume of Tpr(O1,) with
respect to g.

THEOREM 9.6 Let (M, g) be a smooth, complete Riemannian n-manifo" G be
a compact subgroup of Isomg (M), and G1, ... , GS be s compact subgroups of G
such that the actions of the G; 's on M are of bounded geometry type and uniform
at infinity, i = 1, ..., s. Let kmin = minXEM dim O", k; = maxXEM dim O. be the
dimension of the principal orbits of G;, and k = min{kmin, kl,... , ks}. Consider
the two following assumptions:

Hl. There exist C > 0 and a compact subset K of M such that for any point
x in M\K there is some i for which O. is G; principal and for which
Volg(Tpr(OG.)) ? C.

H2. For any e > 0 there exists a compact subset K& of M such that for any
point x in M\KF there is some i for which OG', is G; principal and for
which Volg(Tpr(OG.)) > E.

For q > 1 let p* = p* (n, k, q) be as above. If H; holds, then for any q
and any real number p E [q, p*], HQG(M) C LP(M), and the embedding is
continuous. If H2 holds, then for any q > I and any p E (q, p*), the embedding
of H90(M) in LP(M) is compact.

In order to prove Theorem 9.6, we first need the following result:

LEMMA 9.7 Let (M, g) be a smooth Riemannian n-manifold, not necessarily com-
plete, such that Rcg > Xg for some A E R. For x E M set

Sx = sup IS > 0 / Bx (S) is compact }

and let sx = min(l, lo). For any subset V of M, there exists an integer N =
N(n, A), depending only on n and A, and there exists I C V, such that V C
UxEI Bx (ex ), and such that for any y E V,

Card IX EI/yEBx(Ex)} <<N

where Card stands for the cardinality.
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PROOF: First, we claim that for any x, x' E M,

(9.3) Iex - Sx'I
10

dg(x, x')

In order to prove the claim, one can assume that Sx < +oo for any x. (If not, M
is complete by Hopf-Rinow's theorem, ex = 1 for any x, and the claim is trivial).
One can then note that the claim will be proved if we show that for any x, x' E M,

Isx - Sx'I < dg(x,x)
Assume for that purpose that Sx > Sx-. Then, either dg(x, x') > S_r, and the in-
equality above is trivial, or dg (x, x') < Sx - q for some rl > 0, and one gets
that

Bx, (Sx - dg (x, x')) C Bx (Sx - 0
so that SX- > Sx - dg (x, x') by definition of Sx and Sx,. In any case, this proves the
claim. Now, consider

V

Then X is partially ordered by inclusion, and obviously every chain in X has an
upper bound. Hence, by Zorn's lemma, X contains a maximal element 1. We now
prove that (Bx(ex)), x E I, is the covering we are looking for. First, we claim that

V C U B.(8X)
XE/

In order to prove the claim, let us consider y some point in V. If for any x E 1,
dg(x, y) >

ii
(EX + sy), then I U (y) E X, so that by the maximality of I, Y E I.

If not, there exists some x E I such that dg(x, y) < 21(eX + e,.). But by (9.3),

ey
10

dg (x, y) + ex, so that

dg(x,y) <
10

21 ex+
21I

dg (x, y) + 2110 ex

dg (x, y) < ex, and y E Bx(ex). This proves the claim. Now, let y E V and suppose
that y belongs to N balls Bx1(e.) of the covering. Set s, = ex, and assume that the
ci's are ordered so that Si > eZ > > 8N. Clearly, one has that

N

U Bx1(ei) C By(2e1)
i=1

and since for i # j, dg (x,, xj) > i (e; + si ), one gets that for i # j,

Bx1t 106; f1Bx,(8J)10=0
Independently, note that by (9.3), ///

e1 -EN < 10dg(x1,xN) < 10(dg(x1,Y)+dg(y,xN)):51 (ei +sN)
10

so that 8N > 9 sl. Note also that for any i, the balls Bx1(3s1) are relatively com-
pact, with the additional property that B,(2e1) C Bx,(3s1). According to all these
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remarks and by Gromov's result, Theorem 1.1 of Chapter 1, one gets that there
exists C(n, A) > 0, depending only on n and A, such that

N N

Volg (B,.(2s,)) > Volg (Bx; (zoe%)) > > Vole (B-r,( °,i El))

N

C(n, A) >2 Vol,, (B., (3E,))
;=l

> NC(n, A) Volg (B, (2si ))

(We use here a different version of Theorem 1.1, namely, that the completeness
of the manifold can be dropped in such a result provided that B.r(R) is relatively
compact. In such a situation, as one can easily check, the proof of Theorem 1.1 is
unchanged). Hence, N < c;n.;.> , and this ends the proof of the lemma. 0

We are now in position to prove Theorem 9.6.

PROOF OF THEOREM 9.6: For any i = 1, ... , s, let

Sti ox
Gi

(x s.t. O. is G,-principal)

and denote by hi the quotient metric (induced from g) on 12i/Gi. Set n; _
dim(S2i / G; ), and if fli : S2i -+ U1/G i is the canonical submersion, let vi be
the function on Sli/Gi defined by vi(lli(x)) = v(OG,). Suppose now that H,
holds. Then there exist C > 0, a > 1, and a compact subset K of M, such that
for any x E M\K, Oo, is Gi-principal for some i E (1, . . . , s), with the additional
properties that:

(i) Vy, Y' E Tpr(Oc;), v(OG.) av(OG;), and
(ii) Volg(Tpr(OG.)) > C.

Let gL; C M\K be such that for any x E 4Li, O', is Gi-principal and (i) and (ii)
hold. By assumption one has that

(9.4) M\K = U Ui
;=l

Independently, and since for any z, z' E S2i,

di (fii (z), fl; (z')) = dg(Oz , Oc,)
one has that for any x E 92i and any n > 0,

(9.5) Tn(OG;) = TI; ' (BnI(X)(n))

Noting that fli is a proper map, and that fl, is surjective, one then gets that for
x E S2,, y = 11i (x), and Sy as in Lemma 9.7,

(9.6) Rpr(Oc;) = S,.

From now on, let Vi = fli(Ui), and (Bti.(s)), y E Ii, be the covering of V; C
12 / Gi given by Lemma 9.7. Let also 1 < q < p and i E (1, ... , s) be given. For
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the sake of clarity, we assume in what follows that k; > 1. (If k; = 0, G; is finite
and 11, : SZ; -* S2; / G; is a finite covering. We then proceed as below, noting that
(9.1) is still valid with the convention that v (OGi) = Card OG; ). For U E Do (M),
let u; be the function on M/ G; defined by iii o 11; = u. By (9.1) one has that

f IuIPdv(g) = f Iu,IPvdv(h )

while

Hence,

f Iu;IPvdv(hi) <
J8,(e,)v' yEI

f IuIPdv(g) <- F f Iu,IPvdv(h,)
1'EI;

I sup v) f Iu';IPdv(h;)
B) (E0YE/j

By Maheux and Saloff-Coste's result, Theorem 3.7 of Chapter 3 (see also [154]),
and since the action of G; on M is of bounded geometry type, one then obtains that
for p < p*(n, k;, q), there exists C; > 0 such that

f IuIPdv(g) <
;

/ ! e

C; I sup v (Volh; B,.(s,.))1-Q I f (Ipu; I' + lu, Iq)dv(hj)1 v

yeh \B,'(e,) \\\ B,(e,) J

(Theorem 3.7, and what is done in [154], hold for noncomplete manifolds, provided
that the ball considered is relatively compact). One can then write that

v

f IuVPdv(g) Ci
(_SUPB,(E)

e (Vo1h; B,(s,.)) 4

iyE/; (infB, (E,) v) v
\e

x (
/f

(IVU;Iq+Iu;Iq)vdv(h;) )9
\ B,(e,)

///

Now note that by Gromov's result, as used in the proof of Lemma 9.7, there exists
fli > 0 (depending only on (n(- k;) and a lower bound for Rch;) such that

Volhi (BY(sy)) > P, VOlhi (B.(KY))

where K,. = min(l, Z`'). Since 1 < q, one then gets by (i), (9.1), (9.5), and (9.6)

that there exists C; > 0 such that for any y E 1;,

(_5UPBy(,)ve)(v1 oh
B,.(s,.))i-y

v) 9
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where x E U; is such that 11; (x) = y. By (ii), Lemma 9.7, and (9.1), one then has
that there exists C; > 0 and an integer Ni such that

f lull dv(g) < I f (IVii jq+Iu;I")vdv(h;)i\JB,(VO
e
4

<
Iuil)Vdv(h,))4

<N'4C`(f
('u, Iq+Iu;Iq)vdv(h;))q

,;/G;

NQ C;
`

f (IVulq + Iulq)dv(g))

(Since Ii, : (Q;, g) (S2;/G;, hi) is a Riemannian submersion, for any x E S2;
and any u E DG(M), IVu;I(fl;(x)) = IVuI(x)). As a consequence, we have
proved that for any i E (1, ... , s), any q > 1, and any p such that q _< p
p*(n, k;, q), there exists a positive constant µ; such that for any u E ,)G(M),

J IuI°dv(g) lei f (IVuIq + IuI9)dv(g)
, ;

By (9.4), and since

p*(n, k, q) _< min (p*(n, kmin, q), p*(n, ki, q))

for any i, this implies that for any q > 1 and any p such that q < p < p*(n, k, q),
there exists A > 0 such that for any u e 2G (M),

(L IVuId(g) 9 + \fM dv(g))7)(L\K
By the main lemma of Section 9.5, this proves the first part of Theorem 9.6.

Let us now prove the second part of Theorem 9.6. We assume here that H2
holds. Let e > 0 be given. Then, there exists a > 1 and a compact subset KE of M
such that for any x E M\KE, OG, is G;-principal for some i E {1, ... , s}, with the
additional properties that

(iii) `dy, y' E Tpr(OG,), v(Oy.) av(Ov.) and

(iv) Vo18 (Tpr(OG)) > E
Let U; C M\KE be such that for any x E U;, O. is G;-principal and (iii) and (iv)
hold. Here again, (9.4) is valid. By (iv) and the computations developed above, one
then easily obtains that for any q > 1 and any p such that q < p < p*(n, k, q),
there exists A > 0, independent of e, such that for any u E DG (M),

(IM\K.
Iulodv(g))r

<
,(,g4-1 ((L IVulgdv(g))

+ (L IuI dv(g)))
Since s > 0 is arbitrary, such an inequality implies that condition B. of the main
lemma is satisfied. This ends the proof of the theorem.
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As a first remark on Theorem 9.6, note that when G is reduced to the identity,
all the orbits are principal and the principal tubes Tpr(OC) are just the balls B,r(l).
Condition H, of Theorem 9.6 is then optimal by Theorem 3.3. Here, and by con-
vention, v(O') = Card O' if G is a finite group, while fl : S2 fZ/G is a finite
covering, so that the action of G on M is of bounded geometry type if and only
if the Ricci curvature of (M, g) is bounded from below. As another remark, note
that an interesting property of Theorem 9.6 is that it allows the study of product
manifolds. This can be seen as a kind of atomic decomposition. We illustrate this
fact in the following proposition. For the sake of simplicity, the assumptions are
not as general as they could be.

PROPOSITION 9.1 Let (Mi, gi), i = 1 , ... , m, be m complete Riemannian mani-
folds o f dimensions ni, and f o r any i E { 1, ... , ml, let Gi be a compact subgroup
of Isomg; (Mi ). Suppose that for any i E { 1, ... , m):

(i) the Ricci curvature of (Mi, g;) is bounded from below,
(ii) there exists ci > 0 such that for any x E Mi, Volg; (Bx(1)) > ci,

(iii) the action of Gi on Mi is of bounded geometry type,
(iv) there exists a, > I such that for any principal orbit Ox., x E Mi, and any

y,Y' E 7,r(OG,), v(OG;) < and
(v) there exist r, > 0 and a compact subset Ki of Mi such that for any principal

orbit 06., x E Mi\Ki, Rpr(OG > ri.
Consider the two following assumptions:

H, . For any i E ( 1, ... , m), there exist Ci > 0 and a compact subset Ki of M,
such that for any x E Mi\Ki, O. is principal and Volg;(Tpr(Os,)) Ci.

H2. For any i E { 1, ... , m) and any e > 0, there exists a compact subset KE of
Mi such that for any x E M, \K, OG', is principal and Volg; (Tpr(OG. )) > E.

LetM = M, x x M,,,, g = g, + + gm, and G be the compact subgroup of
Isomg (M) defined by G = G, x ... x G,,,. For any i E (1, ... , m), let also kmin

be the minimum orbit dimension of Gi, and kmax be the maximum orbit dimension
of Gi. Set

(
m

k =min 1 kmin+ kmax+ +kmax }

and for q > 1, let p' = p*(n, k, q) be as above, where n = E;"_i ni. If Hi holds,
then for any q > 1 and any real number p E [q, p'], H'1.G(M) C L'(M), and the
embedding is continuous. If H2 holds, then for any q > 1 and any p E (q, p'), the
embedding of HqG (M) in LP(M) is compact.

PROOF: Let Gi, i = 1, ... , m, be the compact subgroups of G defined by

G,=G,

2<i <m-1
Gm=(Id,)xx{Idm_,}xGm



278 9. THE INFLUENCE OF SYMMETRIES

where I di denotes the identity of Mi. One easily checks that by (i) and (iii), the
action of the Gi's on M is of bounded geometry type, and that by (iv), the action
of the Gi's on M is uniform (at infinity). The result then comes from the fact
that by (ii) and (v), H1 (respectively, H2) of Theorem 9.6 holds for M and the
Gi's, if H1 (respectively, H2) of Proposition 9.1 holds. This ends the proof of the
proposition. 0

As a concrete and easy example of application of Proposition 9.1, hence of
Theorem 9.6, one recovers a result of Lions [150] dealing with functions on W
that are cylindrically symmetric. More precisely, one has the following:

COROLLARY 9.1 Let m > 2 and n 1, . . . , nm be integers such that n, > 2 for all i.
Let also G be the subgroup of Isom8 (R") defined by

where n ni, S is the Euclidean metric, and R" = 1EY"' x x IVm. For
q> 1, set p'=nq/(n-q)ifq <n,and p'=+ooifq>n.Thenforany q> 1
and any P E (q, p*), the embedding of HQa(It") in Lp(R") is compact.



CHAPTER 10

Manifolds with Boundary

For dimension reasons, we decided in these notes to deal only with closed man-
ifolds, that is, with manifolds without boundaries. For completeness, we briefly
comment here on some results in the case of manifolds with boundaries. We refer
the reader to the references appearing below for more details on the subject.

Let (M, g) be a smooth, compact n-dimensional Riemannian manifold with
boundary. For q E [1, n), and u E C°O(M), we let

1/q 1/9

IuIdv(g))IIUIIH; = (IM IVuIdv(g)) + (fm

and we set

H° (M) = completion of Coo (M) with respect to II II H;

H04,I = completion of .D(M) with respect to 11'11 Hq

As one can easily check, a simple adaptation of what we said in Chapter 2 leads
to the fact that the Sobolev and Rellich-Kondrakov theorems do hold for these
spaces. For more detail on such an assertion, we refer the reader to Aubin [12]. In
particular, one has the following:

THEOREM 10.1 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary. For q E [1, n) real, set p = nq/(n - q). Then, for any
q E [1, n), and any k E [1, p], HIq (M) C Lk(M) and Ho 1(M) C Lk(M), with the
additional property that these embeddings are compact if k E [1, p).

Regarding the notion of best constants for such spaces, here again a simple
adaptation of what we said in Chapter 4 shows that the best first constant for the
embedding of Ho

1
in LP(M) is K(n, q), where K(n, q) is as in Theorem 4.4.

With more subtle arguments, as shown by Cherrier [51], one gets that the best first
constant for the embedding of Hq (M) in LP(M) is 21 /"K(n, q).

THEOREM 10.2 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary. For q E [1, n) real, set p = ngl(n - q). For any q E [1, n),
and any e > 0, there exist B1, B2 E R such that for any u E Ha 1(M),

q/P
( I IuIPdv(g)) <(K(n,q)q+s) f Ioulgdv(g)+B1J Iuigdv(g)

M M M

279
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with the additional property that K (n, q) is the best constant in such an inequality,
and such that for any u E HI (M),

1 q/p /' r

fm Iulpdv(g))
<(2"K(n,q)q+J IVulgdv(g)+B2J Iulgdv(g)

M M

with the additional property that 2gl" K(n, q)g is the best constant in such an in-
equality-

Following what was done in Chapter 4, one can now ask if the above inequali-
ties do hold with s = 0. By the work of Druet [74], the answer to such a question
is no for the embedding of Ho q in LP(M) if q > 2, q2 < n, and the scalar
curvature of g is positive somewhere. Conversely, the following was proved in
Hebey-Vaugon [119]:

THEOREM 10.3 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let p = 2n/(n - 2). There exists B E R such
that

(IM

2/p

Iuldv(g)) K(n,2)2 JM IVU12dv(g)+BIM u2dv(g)

or any u E HO 1 (M).f
Still when dealing with best-constants problems, one can ask for sharp trace

inequalities. Set

K(n) = 2
(n -2)w,1,

As shown by Beckner [21] and Escobar [76],

1 fR" IVul2dx

K(n)
-1nf

(faR' IuIgdo)2/q

where q = 2(n - 1)/(n - 2), and the infimum is taken over functions u such that
Vu E L2(IR+) and U E Lq(M)\{0}. Moreover, this infimum is achieved (Lions
[151]). The extremum functions there were found independently in [21] and [76].
The following theorem is due to Li and Zhu [145]:

THEOREM 10.4 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let q = 2(n - 1)/(n - 2). There exists B E R
such that for any u E Hi (M),

(
2/q

IuI'dv(g)) <K(n) f IVul2dv(g)+BAM u2dv(g)
aM M

with the additional property that K (n) is the best constant in such an inequality.

Somewhat more closely related to the inequalities we discussed in these notes,
Li and Zhu [146] also got the following:
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THEOREM 10.5 Let (M, g) be a smooth, compact, n-dimensional Riemannian ma-
nifold with boundary, n > 3, and let p = 2n/(n - 2). There exists B1, B2 E
such that for any u E H1 (M),

\2/P

\J IuIPdv(g)) 2^K(n,2)2fm IVuI2dv(g)+B1]M u2dv(g)
M /

+ u2dQB2 M
with the additional property that 221"K(n, 2) 2 is the best constant in such an in-
equality. Moreover, one can take B1 = 0 in the above inequality if and only if

12/P
{ f IulPdv(g)) < 2WK(n, 2)2 f IVu12dv(g)
\ M M

for any u E H01(M)\{0}.

As an easy consequence of this result of Li and Zhu, one gets that for SZ a
smooth, bounded domain in R", there exists B E R such that for any u E

r 2/P
t f IulPdx I <2 K(n,2)2 f IVuI2dx+B I u2dQ

n asp

Extensions of such an inequality are studied in Zhu [202]. Again when dealing with
open subsets of Euclidean space, sharp Sobolev inequalities with remainder terms
are studied in Brezis and Lieb [33], while sharp Sobolev inequalities for functions
vanishing on some part of the boundary are studied in Lions, Pacella, and Tricarico
[152].

When dealing with best-constants problems, one may also discuss the value
of the best second constant. The arguments when studying such a question are
similar to the ones presented in Section 4.1 of Chapter 4. The value of the best
second constant depends here on whether we are concerned with the embedding
Ho 1(M) C LP(M) or the embedding H'(M) C LP (M), p = nq/(n - q). Given
(M, g) a smooth, compact, n-dimensional Riemannian manifold with boundary,
and q E [1, n) real, one gets with similar arguments to the ones used in Section 2.8
that there exists A E R such that for any u E H01(M),

q/P

` IuIIdv(g)) <_ A f IVulgdv(g)fM
The best second constant for the embedding of Ho 1(M) in LP(M) is then non-
positive. It may be zero or negative. Just consider smooth, bounded, open subsets
of either the Euclidean space, or the hyperbolic space, and look at what we said
in Section 7.4. On the contrary, as one can easily check by considering some
nonzero constant function, the value of the best second constant for the embedding
of H°(M) in LP(M) has to be greater than or equal to Vol-11n, Where Vol(1N.,)
stands for the volume of (M, g).

For results on the influence of symmetries on manifolds with boundary in the
spirit of the work in Chapter 9, we refer the reader to Hebey-Vaugon [120].
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