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I|ntroduction and Dedication

This book is dedicated to Paul Erdés, the greatest mathematician |
have ever known, whom it has been my rare privilege to consider
colleague, collaborator, and dear friend.

| liketo think that Erdés, whose mathematics embodied the princi-
ples which have impressed themselves upon me as defining the true
character of mathematics, would have appreciated this little book
and heartily endorsed its philosophy. This book proffers the thesis
that mathematicsis actually an easy subject and many of the famous
problems, even those in number theory itself, which have famously
difficult solutions, can be resolved in simple and more direct terms.

There is no doubt a certain presumptuousness in this claim. The
great mathematicians of yesteryear, those working in number the-
ory and related fields, did not necessarily strive to effect the ssimple
solution. They may havefelt that the status and importance of mathe-
maticsasan intellectual discipline entailed, perhapsindeed required,
a weighty solution. Gauss was certainly a wordy master and Euler
another. They belonged to atradition that undoubtedly revered math-
ematics, but as a discipline at some considerable remove from the
commonplace. In keeping with amore democratic concept of intelli-
genceitself, contemporary mathematicsdivergesfrom thissomewhat
elitist view. The ssimple approach implies a mathematics generally
available even to those who have not been favored with the natural
endowments, nor the careful cultivation of an Euler or Gauss.

Vil



viii I ntroduction and Dedication

Such an attitude might prove an effective antidote to a generally
declining interest in pure mathematics. But it isnot so much asincen-
tive that we proffer what might best be called “the fun and games’
approach to mathematics, but as a revelation of its true nature. The
insistence on simplicity asserts a mathematics that is both “magi-
cal” and coherent. The solution that strives to master these qualities
restores to mathematics that element of adventure that has always
supplied its peculiar excitement. That adventure isintrinsic to even
the most elementary description of analytic number theory.

The initial step in the investigation of a number theoretic item
is the formulation of “the generating function”. This formulation
inevitably moves us away from the designated subject to aconsider-
ation of complex variables. Having wandered away from our subject,
it becomes necessary to effect areturn. Toward thisend “ The Cauchy
Integral” provesto beanindispensabletool. Yetitleadsus, inevitably,
further afield from all theintricacies of contour integration and they,
in turn entail the familiar processes, the deformation and estimation
of these contour integrals.

Retracing our stepswe find that we have gone from number theory
to function theory, and back again. The journey seemscircuitous, yet
in its wake a pattern is reveaed that implies a mathematics deeply
inter-connected and cohesive.



The Idea of Analytic Number
Theory

The most intriguing thing about Analytic Number Theory (the use of
Analysis, or function theory, in number theory) isits very existence!
How could one use properties of continuous valued functions to de-
termine propertiesof those most discreteitems, theintegers. Analytic
functions? What has differentiability got to do with counting? The
astonishment mounts further when we learn that the complex zeros
of a certain analytic function are the basic tools in the investigation
of the primes.

The answer to al this bewilderment is given by the two words
generating functions. Well, there are answers and answers. To those
of uswho havewitnessed the use of generating functionsthisisakind
of answer, but to those of uswho haven't, thisissimply arestatement
of the question. Perhaps the best way to understand the use of the
analytic method, or the use of generating functions, is to see it in
action in a number of pertinent examples. So let us take a look at
some of these.

Addition Problems

Questions about addition lend themselves very naturally to the use of
generating functions. The link is the simple observation that adding
m and n isisomorphic to multiplying z” and z”. Thereby questions
about the addition of integers are transformed into questions about
the multiplication of polynomials or power series. For example, La-
grange’s beautiful theorem that every positive integer is the sum of

1



2 I. Theldeaof Analytic Number Theory

four squares becomes the statement that all of the coefficients of the
power seriesfor (1 tr4t 44+ ~)4arepositive. How
one proves such a fact about the coefficients of such a power series
is another story, but at least one begins to see how this transition
from integers to analytic functions takes place. But now let’slook at
some addition problemsthat we can solve completely by the analytic
method.

Change Making

How many ways can one make change of a dollar? The answer is
293, but the problem is both too hard and too easy. Too hard because
the available coins are so many and so diverse. Too easy because it
concernsjust one“changee,” adollar. Morefitting to our spiritisthe
following problem: How many ways can we make changefor » if the
coins are 1, 2, and 3? To form the appropriate generating function,
let uswrite, for |z] < 1,

=14+z4+"+ 74

1-=z
1
1-—z2
1
1-73
and multiplying these three equations to get
1
1-21-zH1 -2
=Q+z+"+ A+ 2+ 22+
x (A+22+223 4.0,

Now we ask ourselves: What happens when we multiply out the
right-hand side? We obtain termslike z1+1+1+1. z2. z3+3, Onthe one
hand, this term is z%2, but, on the other hand, it is zfourl'stone2+twos's
and doesn’t this exactly correspond to the method of changing the
amount 12 into four 1's, one 2, and two 3's? Yes, and in fact we

e e R

=14+ 4 45304




Change Making 3

see that “every” way of making change (into 1's, 2's, and 3's) for
“every” n will appear inthismultiplying out. Thusif wecall C(n) the
number of ways of making changefor n, then C (n) will be the exact
coefficient of z” when the multiplication is effected. (Furthermore
al isrigorous and not just formal, since we have restricted ourselves
to |z] < 1 wherein convergence is absolute.)

Thus

n __ 1
2 e = G Sa @

and the generating function for our unknown quantity C(n) is
produced. Our number theoretic problem has been translated into
a problem about analytic functions, namely, finding the Taylor
coefficients of the function =57 -

Fine. A well defined anal ytic problem, but how to solveit?Wemust
resist the temptation to solve this problem by undoing the analysis
which Ied to itsformulation. Thusthe thing not to do |sexpand
.73 respectively into )~ z, Y~ z%,Y" z% and multiply onIy to
discover that the coefficient isthe number of ways of making change
for n.

The correct answer, in this case, comes from an algebraic tech-
niquethat weall learnedin cal cuI us, namely partia fractions. Recall
that this leads to terms I|ke - for which we know the expan-
SIOI’] expllc:ltly (namely, |s Just aconstant timesthe (k — 1)th

i Z n n)

Carrying out tk)1e algebra, then, leads to the partia fractional

decomposition which we may arrange in the following form:

1
1-21-2z9A -2
_1 1 1 1 1 1 1 1
T6d-2° A@-22 4d-2) 3A-

Thus, since

1 d
m:dzl—z ZZ_Z(”+1)Z
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and
1 d 1 d ~~n+1,
(1—z>3252<1—z>2:d_zZ 2 °
_Z(n+2)(n+1)n
= 2 <,
44D n+1l a0 xem)
C(n) = 1 + Z + 2 + 3 2

where x1(n) = 1if 2|n and = 0 otherwise;, xo(n) = 1if 3|n
and = 0 else. A somewhat cumbersome formula, but one which can
be shortened nicely into

l’l2 n
C(”)_[l_2+§+1] 3
where the terms in the brackets mean the greatest integers.

A nice crisp exact formula, but these are rare. Imagine the mess
that occursif the coinsweretheusual coinsof therealm, namely 1, 5,
10, 25, 50, (100?). Theright thing to ask for then isan “asymptotic”
formularather than an exact one.

Recall that an asymptotic formula F (n) for afunction f(n) isone
for which lim,,_, » % = 1. Inthe colorful language of E. Landau,
the relative error in replacing f(n) by F(n) is eventually 0%. At
any rate, wewrite f(n) ~ F(n) whenthisoccurs. One famous such
exampleis Stirling’s formulan! ~ +/27n(%)". (Also note that our

result (3) can be weakened to C (n) ~ fl’—;

So let usassume quite generally that therearecoinsas, ap, as, . . .,
ax, whereto avoid trivial congruence considerations we will require
that there be no common divisiors other than 1. In this generality we
ask for an asymptotic formulafor the corresponding C (). Asbefore
we find that the generating function is given by

1
"= . 4
ZC(n)z T Y R e ——Ty (4

But the next step, explicitly finding the partial fractional decompo-
sition of this function is the hopeless task. However, let us simply
look for one of the terms in this expansion, the heaviest one. Thus




Crazy Dice 5

az = 1 the denominator has a k-fold zero and so there will be a

term = )k All the other zeros are roots of unity and, because we

assumed no common divisiors, all will be of order lower than k.
Thus, although the coefficient of the term < isc(";*17), the

coefficients of al other terms =%~ will be aw’ ("*]). Sinceall of
these j arelessthan &, the sum total of all of thesetermsisnegligible
compared to our heavy term ¢("/*7%). In short C(n) ~ ¢("7*]%), or
even simpler,

k-1
(k — 1!
But, what is ¢? Although we have deftly avoided the necessity of

finding all of the other terms, we cannot avoid thisone (it'sthewhole
story!). So let uswrite

1 c
L —z)(L—z%) - (L—z4%) (L—2oF
multiply by (1 — z)* to get
1_Z 1_Z 1_Z
1—zn1—z% 1—zu

Cn) ~c

+ other terms,

= ¢ + (1 — 2)* x other terms,

l

andfinaly letz — 1. By L’Hopital’srule, for example, - -
whereas each of the other termstimes (1 — z)* goesto 0. The flnal

resultisc = v and our final asymptotic formulareads
nk—l
C(n) ~ . 5
D ar ak — D) ©
Crazy Dice

An ordinary pair of dice consist of two cubes each numbered 1
through 6. When tossed together there are altogether 36 (equally
likely) outcomes. Thus the sums go from 2 to 12 with varied
numbers of repeats for these possibilities. In terms of our ana
lytic representation, each die is associated with the polynomial
2+ 22+ 22 4+ z* + z° + 28 The combined possibilities for the
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sums then are the terms of the product
G+ + 2+ + 2+ e+ P+ B+ A+ 2+ D)
=72+ 2%+ 3 + 42> + 5° + 677
+ 578 + 47% + 370 + 271 + 2

The correspondence, for example, says that there are 3 ways for the
10 to show up, the coefficients of z1° being 3, etc. The questioniis: Is
there any other way to number these two cubeswith positiveintegers
S0 as to achieve the very same alternatives?

Analytically, then, the question amounts to the existence of
positiveintegers, ay, . . ., ae; b1, . . ., bg, SO that

@+ 2+ 42
=22+ 22+ + -+ 30+ 22 4

These would be the “Crazy Dice’ referred to in the title of this sec-
tion. They look totally different from ordinary dice but they produce
exactly the same results!

S0, repeating the question, can

@+ 2+ )
=@+ +32++22+20 (6)
X z+22 4+ 4+ +22+25?

To analyze this possibility, let us factor completely (over the ratio-
nals) thisright-hand side. Thusz + 22+ 23+ 2* + 2°+ 6 = 2 11‘%; =
2(1+z24+79(1+723) = z(1+z+729)(A+2)(1—z+z2). Weconclude
from (6) that the“ a-polynomial” and “ b-polynomial” must consist of
these factors. Also there are certain siderestrictions. Thea’'sand b’s
areto be positive and so a z-factor must appear in both polynomials.
Thea-polynomial mustbe6atz = 1andsothe (1+ z 4+ z?) (1 + 2)
factor must appear in it, and similarly in the b-polynomial. All that
isleft to distribute are thetwo factorsof 1 — z + z2. If one apiece are
given to the a- and b-polynomials, then we get ordinary dice. The
only thing left to try is putting both into the a-polynomial.
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Thisworks! We obtain finally
ZZ“ =z(1+z+ A+ 21— z+7%?
=7+ 4+ + 22+ + 8
and
Zzb =z(1+z+ DA +2) =z+ 22+ 23+ %

Trandating back, the crazy dice are 1,3,4,5,6,8 and 1,2,2,3,3,4.

Now we introduce the notion of the representation function. So,
suppose thereisaset A of nonnegative integers and that we wish to
express the number of waysinwhich agiven integer n can bewritten
as the sum of two of them. The trouble is that we must decide on
conventions. Does order count? Can the two summands be equal ?
Therefore we introduce three representation functions.

r(n) =#{(a,a’) :a,a € A,n =a+ad'};
S0 here order counts, and they can be equal;
ro(n) =#{(a,d) a,a € A,a<ad,n=a+ad},
order doesn’t count, and they can be equal;
r-(n) =#{(a,a’) :a,ad € A,a <ad,n=a+a},

order doesn’t count, and they can’t be equal. In terms of the generat-
ing function for the set A, namely, A(z) = ), 2%, wecan express
the generating functions of these representation functions.

The simplest isthat of r(n), where obviously

> rmz" = A%(2). ©

To deal with r_(n), we must subtract A(z?) from A2%(z) to remove
the caseof a = a’ and then divide by 2 to remove the order. So here

Zr_(n)z” = %[AZ(Z) — A (8
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Finaly for r, (n), we must add A(z?) to this result to reinstate the
caseof a = a’, and we obtain

1
D" = S[A%@) + AR ©)

Can r(n) be “constant?’

Isit possibletodesignanontrivial set A, sothat, say, r, (n) isthesame
for al n? The answer isNO, for we would haveto have0 € A. And
thenl e A,elser, (1) # r.(0). Andthen2 ¢ A, eser,(2) = 2.
Andthen3 € A, dser, (3) = 0 (whereasr, (1) = 1),then4 ¢ A,
elser, (4) = 2. Continuing in this manner, wefind5 € A. But now
wearestymiedsincenow6 =1+ 5,6 = 3+ 3, andr,(6) = 2.
The suspicion arises, though, that this impossibility may just be
aquirk of “small” numbers. Couldn't A be designed so that, except
for some misbehavior at the beginning, r, (n) = constant?
We will analyze this question by using generating functions. So,
using (9), the question reduces to whether there is an infinite set A
for which
1, ) C
5[A°@) + A)] = P@) + —, (10)
2 1-z

P (z) isapolynomial.

Answer: No. Just look what happensif weletz — (—1)*. Clearly
P(z) and 1%2 remain bounded, A2(z) remains nonnegative, and
A(z%) goesto A(1) = oo, acontradiction.

A Splitting Problem

Can we split the nonnegative integers in two sets A and B so that
every integer n is expressible in the same number of ways as the
sum of two distinct membersof A, asit isasthe sum of two distinct
members of B?

If we experiment abit, before we get down to business, and begin
by placing 0 € A, then1 € B, else 1 would be expressible as
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a—+a butnotash + b'. Next 2 € B, else 2would be a + a’ but
not b + b'. Next 3 € A, else 3 would not be a + a’ whereas it
isb + b = 1+ 2. Continuing in this manner, we seem to force
A=1{030569---}andB = {1,2,4,7,8, ---}. Butthe pattern
isnot clear, nor isthe existence or uniquenessof thedesired A, B. We
must turn to generating functions. So observe that we are requiring
by (8) that

1 2 2 1 2 2

E[A (2) — A@ZY)] = E[B (z) — B(z9)]. (11)

Also, because of the condition that A, B be a splitting of the
nonnegatives, we also have the condition that

A(z) + B(z) = L 12)
1-z
From (11) we obtain
A%(z) — B(z) = A(z%) — B(Z), (13)

and so, by (12), we conclude that

[A(z) — B(2)] - 1—; = A(Z) — B,
or

A@z) = B(z) = (1 - 9[AED) — BE)]. (14)

Now thisisarelationship that can be iterated. We see that

A@@®) = B(z®) = (1= A[AGCY - BEH],
so that continuing gives

A@) - B@) = 1 -2~ A[ACH - BEY).

And, if we continue to iterate, we obtain

A@) —B@) =(1-A-2)--1-2"") [A(ZZ") - B(ZZ")] ;
(15
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and so, by lettingn — oo, since A(0) = 1, B(0) = 0, we deduce
that

AR - B =[]a-2. (16)
i=0

And this product is easy to “multiply out”. Every term z" occurs
uniquely since every n is uniquely the sum of distinct powers of 2.
Indeed z" occurswith coefficient +1if n isthe sum of an even number
of distinct powers of 2, and it has coefficient —1, otherwise.

We have achieved success! The sets A and B do exist, are unique,
and indeed are given by A = Integers, which are the sum of an even
number of distinct powersof 2,and B = Integers, which arethe sum
of an odd number of distinct powers of 2. Thisis not one of those
problems where, after the answer is exposed, one proclaims, “oh, of
course” It isn't redly trivia, even in retrospect, why the A and B
have the same r_(n), or for that matter, to what this common r_(n)
isequal. (See below whereit is proved that r_(2%+1 — 1) = 0.)

A = Integers with an even number of 1'sin radix 2. Then and
only then

2k+1
——
111---1=2%1 _1

is not the sum of two distinct A’s.

Proor. A sum of two A’s, with no carries has an even number of
odd

I's(soitwon'tgivelll. - - 1), elselook at thefirst carry. Thisgives
a0digit so, again, it'snot 11 - - - 1.

So r_(2%+1 — 1) = 0. We must now show that all other n have
a representation as the sum of two numbers whose numbers of 1
digits are of like parity. First of all if n contains 2k 1’sthen it isthe
sum of the first k and the second k. Secondly if n contains 2k + 1
1's but adso a 0 digit then it is structured as 111 - - - cA where A

contains 2k + 1 — m 1'sand, say, is of total Iengtnﬁ L thenit can be
expressed as 111---1000---00 plus 1A and these two numbers
m—1 2
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have respectively m 1'sand 2k + 2 — m 1's. These are again of like
parity so we are done.

An Identity of Euler's

Consider expressing n as the sum of distinct positive integers, i.e.,
whererepeatsarenot allowed. (SoForn = 6, wehavetheexpression
1+2+3andaso2+ 4,1+ 5, andjust plain 6 alone.)

Also consider expressing n as the sum of positive odd numbers,
but thistimewhererepeatsareallowed. (Soforn = 6, weget 1+ 5,
3+31+1+1+31+14+1+1+ 1+ 1) Inbothcaseswe
obtained four expressions for 6, and a theorem of Euler’s says that
thisis no coincidence, that is, it says the following:

Theorem. Thenumber of ways of expressing n asthe sumof distinct
positive integers equals the number of ways of expressing n as the
sum of (not necessarily distinct) odd positive integers.

To prove this theorem we produce two generating functions. The
latter is exactly the “coin changing” function where the coins have
the denominations 1, 3, 5, 7, . . . . This generating function is given
by

1
1-21-HA =28
The other generating function is not of the coin changing variety
because of the distinctness condition. A moment’ sthought, however,
shows that this generating function is given as the product of 1 + z,
1+ 22,1+ 25, .. .. For, when these are multiplied out, each z* factor
occurs at most once. In short, the other generating function is

A+2)A+25HA+3---. (18)

Euler’'stheorem in its analytic form is then just the identity

1 = 2 3 ..
1ol _da_5.. ~ 1+rad+ad+5

throughout |z| < 1. (19

17
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Another way of writing (19) is
1-21-2)A-2" - Q+2A+HA+% - =1 (20)

which is the provocative assertion that, when this product is
multiplied out, all of the terms (aside from the 1) cancel each other!

To prove (2) multiply the 1 — z by the 1 + z (to get 1 — z?) and
do the same with 1 — z3 by 1 + z3, etc. This gives the new factors
1—2%1—251— 7 ... and leaves untouched the old factors
1+ 273 14 2% 1+ 25 -- .. These rearrangements are justified by
absolute convergence, and so we see that the product in (20), call it
P(z),isequd to

1-H1-5A-29 - A+HA+H -

which just happensto be P(z?)! So P(z) = P(z?) which of course
means that there can’'t be any terms az*, a # 0, k # 0, in the
expansion of P(z),i.e., P(z) isjust its constant term 1, as asserted.

Marks on a Ruler

Suppose that a 6” ruler is marked as usua a 0, 1, 2, 3, 4, 5, 6.
Using this ruler we may of course measure any integral length from
1 through 6. But we don’t need all of these markings to accomplish
these measurements. Thus we can remove the 2, 3, and 5, and the
marks at 0, 1, 4, 6 are sufficient. (The 2 can be measured between 4
and 6, the 3 can be gotten between 1 and 4, and the 5 between 1 and
6.) Since (3) = 6, thisisa“perfect” situation. The question suggests
itself then, are there any larger perfect values? In short, can there
beintegersa; < a, < --- < a, such that the differences a; — a;,
i > j,takeonall thevalues1,2,3,..., (})?

If we introduce the usual generating function A(z) = Y ,_, z%,
then the differences are exposed, not when we square A (z), but when
we multiply A(z) by A(3). Thus A(z) - A() = Y} ,_; 2% and
if we split this (double) sumasi > j,i = j,andi < j, weobtain

Az) - A <%) = Xn: 7Y +n 4+ Xn: 47,

ij=1 ij=1

i>j i<j
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Our “perfect ruler,” by hypothesis, then requires that the first sum be
equal to 3, 25, N = (}), and since the last sum is the same as
first, with 2 replacing z, our equation takes the simple form

A(z)A() ZZ—I—n—lN (2>

or, summing this geometric series,

N+1 _ _—N
A(z)-AG): Z+—Z+n—1, N = (”) 21)
z z—1 2

In search of a contradiction, we let z lie on the unit circle z = €%,
o that the left side of (21) becomes simply |A(e'?)|?, whereas the
right-hand sideis

N+1 -(N+3) ; 1

Ntz — 7 2 sin(N + 3)6
I I +n—-1= —12 +n-1
72 —z772 Sn 59

and (21) reducesto

‘A(eie)‘z = Y, (22)
2

A contradiction will occur, then, if we pick a® which makes

sin ©=ntlg
—F— <—-(m-1. (23
sin 56
(And we had better assume that n > 5, since we saw the perfect
ruler forn = 4.)
A good choice, then, is to make sin "2‘—5“6 = —1, for exam-

ple by picking 6 = . Inthatcasesn§ < §, =7 > 2,
2
— 1o 2 _ _ 222 gnd g the requirement (23) follows

sin § 60 3
from — 2”5—2’”2 —(n—1or2n?—2n+2> 3r(n — 1). But
2n> —2n +2—-3nn—-1 > 2> —2n+2—-10n — 1) =
2(n —3)> —6 > 2-22 -6 = 2 forn > 5. There are no perfect
rulers!
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Dissection into Arithmetic Progressions

It is easy enough to split the nonnegative integers into arithmetic
progressions. For example they split into the evens and the odds or
into the progressions 2n, 4n + 1, 4n 4 3. Indeed there are many
other ways, but all seem to require at least two of the progressions
to have same common difference (the evens and odds both have 2 as
a common difference and the 4n + 1 and 4n + 3 both have 4). So
the question arises Can the positive integers be split into at least two
arithmetic progressions any two of which have a distinct common
difference?

Of course we look to generating functions for the answer. The
progression an + b, n = 0,1, 2, ... will be associated with the
function >, z"™. Thus the dissection into evens and odds cor-
responds to the identity Y2 02" = > 02z + > "oz, and
the dissection into 2n, 4n + 1, 4n + 3 correspondsto ) - 2" =
3 o7+ Y 4 3™ 243, ete. Since each of these series
is geometric, we can expresstheir sumsby > > )zt = % . Our
guestion then is exactly whether there can be an identity

1 7 7b2 b
1z T-gn 1-ge  Ti
l<ai<ay <...<a. (24)

WEell, just as the experiment suggested, there cannot be such adis-
section, (24) is impossible. To see that (24) does, indeed, lead to a
contradiction, all weneed doislet z — e % and observe that then
al of the terms in (24) approach finite limits except the last term
1jbzkak which approaches co.

Hopefully, then, this chapter has helped take the sting out of the
preposterous notion of using analysisin number theory.
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Problems for Chapter |

1. Produceaset A suchthat r(n) > Oforallninl <n < N, but
with |[A| < V4N + 1.

2. Show that every set satisfying the conditions of (1) must have
|A] < V/N.

3. Show directly, with no knowledge of Stirling’sformula, that n! >
(2)".



[
The Partition Function

Oneof the simplest, most natural, questionsone can ask in arithmetic
is how to determine the number of ways of breaking up agiveninte-
ger. That is, we ask about apositive integer n: In how many ways can
itbewrittenasa + b + ¢ + - - - wherea, b, ¢, . . . are positive inte-
gers?It turnsout that there are two distinct questions here, depending
on whether we elect to count the order of the summands. If we do
choose to let the order count, then the problem becomes too simple.
The answer is just 2"~ and the proof is just induction. Things are
incredibly different and more complicated if order is not counted!

In this case the number of breakups or “partitions’ is1forn = 1,
2forn = 2,3forn = 3,5forn = 4, 7forn = 5, eg., 5 hasthe
representations1+1+1+1+1,2+14+1+1,3+1+1,441,
5 3+ 2,2+ 2+ 1, and no others. Remember such expressions
asl+ 1+ 2+ 1arenot considered different. The table can be
extended further of course but no apparent pattern emerges. There
is afamous story concerning the search for some kind of pattern in
thistable. Thisistold of Mgor MacMahon who kept alist of these
partition numbers arranged one under another up into the hundreds.
It suddenly occurred to him that, viewed from a distance, the outline
of the digits seemed to form a parabolal Thus the number of digits
in p(n), the number of partitions of n, isaround C/n, or p(n) itself
isvery roughly e®v". Thefirst crude assessment of p(n)!

Among other things, however, this does tell us not to expect any
simpleanswers. Indeed | ater research showed that thetrueasymptotic

formulafor p(n) is 4:7 certainly not aformulato be guessed!

17
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Now we turn to the analytic number theory derivation of this
asymptotic formula.

The Generating Function

To put into sharp focus the fact that order does not count, we may
view p(n) asthe number of representations of n asasum of 1's and
2sand 3's..., etc. But thisisjust the “change making” problem
where coinscomein all denominations. Theanalysisin that problem
extends verbatim to this one, even though we now have an infinite
number of coins, So we obtain

> rm =[] 1 _12k @

n=0 k=1

valid for |z| < 1, where we understand that p(0) = 1.

Having thus obtained the generating function, we turn to the sec-
ond stage of attack, investigating the function. This is always the
tricky (creative?) part of the process. We know pretty well what kind
of information we desire about p(n): an estimate of its growth, per-
haps even an asymptotic formulaif we are lucky. But we don’t know
exactly how this translates to the generating function. To grasp the
connection between the generating function and its coefficients, then,
seems to be the paramount step. How does one go from one to the
other? Mainly how does one go from afunction to its coefficients?

It is here that complex numbers really play their most important
role. The point isthat there are formulas (for said coefficients). Thus
we learned in calculus that, if f(z) = ) a,z", thena, = % ,
expressing the desired coefficientsin terms of high derivatives of the
function. But this a terrible way of getting at the thing. Except for
rare“madeup” examplesthereisvery little hope of obtaining thenth
derivative of a given function and even estimating these derivatives
isnot atask with very good prospects. Face it, the cal culus approach
isaflop.

Cauchy’stheorem gives adifferent and more promising approach.
Thus, again with f(z) = )_ a,z", this time we have the formula
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an = 5 [ L8 dz, anintegral rather than a differential operator!

Surely thisisamore secure approach, becauseintegral operators are
bounded, and differential operators are not. The price we pay is that
of passing to the complex numbersfor our z's. Not abad price, isit?

S0 let us get under way, but armed with the knowledge that the
valuable information about f(z) will help in getting a good approx-
imation to [, £5 dz. But aglance at the potentially explosive
shows usthat C had better stay asfar away from the origin asit can,
i.e., it must hug the unit circle. Again, alook at our generating func-
tion Y p(n)z" shows that it's biggest when z is positive (since the
coefficientsarethemselves positive). All inal, we seethat we should
seek approximations to our generating function which are good for
|z| near 1 with special importance attached to those z's which are
near +1.

The Approximation

Starting with (1), F(z) = [, . and taking logarithms, we
obtain

IogF(z)zijlog1 ! - :ZZZ—
k=1 —Z =1 J
Z;ka 271Z - ®)

j=1

Now write z = e " so that Hw > 0 and obtainlog F (e ") =
Zlfil % e"“:'Lfl'
2 — 2 +cx+ - orequivalently (near 0) 2 — & +cx + - -,
we rewritethis as

1/ 1 e kv
log F(e™™) = Z p (m - )
1 1 1 e kv
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2

_ T +1Io(1 )
6w 2 g ¢

1 1 1 e kv
+Z%<ekw—1_ﬁ+ 2 )
Theform of thisseriesisvery suggestive. Indeed we recognize any
series " $ A(kw) = Y 48y as a Riemann sum, approximating
the Riemann integral f0°° @dl for small positive w. It should come

as no surprise then, that such series are estimated rather accurately.
o let usreview the “ Riemann sum story”.

Riemann Sums

Suppose that ¢ (x) is a positive decreasing function on (0, oo) and
that ~ > 0. The Riemann sum }_,°, ¢ (kh)h is clearly equal to the
area of the union of rectangles and so is bounded by the area under
y = ¢(x). Hence Y2, ¢ (kh)h < [;° ¢ (x)dx. On the other hand,
theseries >, , ¢ (kh)h can be construed as the area of this union of
these rectangles and, as such, exceeds the areaunder y = ¢ (x). So
thistime we obtain Y72 ¢ (kh)h > [ ¢ (x)dx.

Combining these two inequalities tells us that the Riemann sum
lieswithin i - ¢ (0) of the Riemann integral. Thisisall very niceand
rather accuratebut it refersonly to decreasing functions. However, we
may easily remedy thisrestriction by subtracting two such functions.
Thereby we obtain

> g (kh) — yr(ki)]h — /o [6(x) — ¥ ()] < h[B(O) + ¥ (O)].
k=1

Calling ¢ (x) — ¥ (x) = F(x) and then observing that ¢ (0) + v (0)
isthetotal variation V of F(x) we have the rather general result

Z F(kh)h — /OO F(x) < h-V(F). 4
k=1 0

To be sure, we have proven this result only for real functions but
in fact it follows for complex ones, by merely applying it to the real
and imaginary parts.
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To modify this result to fit our situation, let us write w = he'?,
h>0,-n/2 <6 < x/2, and conclude from (4) that

Z F(khe'®)h — / F(xe®)dx < h - Vy(F)
0
(V, isthe variation along the ray of argument 0), so that
Z F(kw)w —f F(xe')d(xe'®) < w - Vy(F).
k=1 0

Furthermore, in our case of an analytic F, thisintegral isactually
independent of 6. (Simply apply Cauchy’s theorem and observe that
at oo F falls off like %). We also may use the formula V, (F) =
Jo_ IF'(xe'”)|dx and finally deduce that

Z Fkw)w — /OO F(x)dx < w /OO |F'(xe'?)|dx.
k=1 0 0

Later on we show that

/oo 1 1+e_x dx_lo 1 )
0 e —1 x 2 x g«/Zn’

and right now we may note that the (complicated) function

2 e_xeig e_xeiﬁ

$3030  Dy2020  Dyelf
1 exe

x262i9(exei9 _ 1) xei&(exeig _ 1)2

F/(xele) —

i6

is uniformly bounded by 4%, inany wedge 6] < ¢ < /2(m +
M(c)), so that we obtain

il L) g < @
= k kw 2 N 21

throughout | argw| < ¢ < /2.
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The Approximation. We have prepared the way for the useful ap-
proximation to our generating function. All weneedto doiscombine
(2), (3), and (6), replace w by log % , and exponentiate. Theresultis

= 1
[1i=%

k=1 ~ %
1—7 2
= 1+01—-
27 p<6| %>[ + O 2
. |1 — z]
in <
1-— |z

But we perform one more “neatening” operation. Thus log % is
an eyesore! Itisn't at al analytic in the unit disc, we must replace
it (before anything good can result). So note that, near 1, log % =

(=) + 857 4+ 835 4 = 2 + 01— 2)), 0 iy =
112 4 01— z). Finaly then,

21—z
= 1
[1i==

k=1

1-7 <n21+z
= exp | =
Z

) [1+0@1-2)] (7)

2 12 1 —
. |1 — z]
in <c
1z

This is our basic approximation. It is good near z = 1, which
we have decided is the most important locale. Here we see that
we can replace our generating function by the elementary function

S exp (’{—2 22 ) whose coefficients should then prove amenable.
Z

However, (7) is realy of no use away from z = 1, and, since
Cauchy’s theorem requires values of z al along a closed loop sur-
rounding O, we see that something else must be supplied. Indeed we
will show that, away from 1, everything is negligible by comparison.
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To seethis, let us return to (2) and conclude that

1 1 |z 1 11
logF(z) — — K < ==
Zjl—lzlf 1—|Z|ZJJ

1 <7r2_1>

1—|z|

F ex ! _nz 1 - 8
(z) < exp |1_Z|+ s Y1) ®)

an esti mate which isjust what we need. It shows that, away from 1,

or

where —— |1 i issmaller than = H,F(z) israther small.
Thus, for example, we obtain
11— z|
F(z) < exp when > 3. )
11— z| 1— |z
Also, in this same region, setting
1-z 7?14z =
= — = " 1
$(2) = ap(121_z> Z;qmn, (10)
52 < 2 o 72 2 < 72 2
DSy Pl P\23a -7

S0 that

$(2) < exp(1 ) when 1177 >3 (1D

— |zl 1—1z]

The Cauchy Integral. Armed with these preparations and the
feeling that the coefficients of theelementary function ¢ (z) areacces-
sible, we launch our magjor Cauchy integral attack. So, to commence
the firing, we write

12)

1 F
pn) = qn) = /1 L_06,

27 faans
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and wetry C acircle near the unit circle, i.e.,

C is |zl=nrr <1l (13)
Next we break up C as dictated by our consideration of f%;ﬂl
namely, into
. 11— z|
A istheac |z| =, <3
1-— |z
and (14)
. 11— z|
B isthearc |z] =r, —— > 3.
1-— Iz
So,
pn) —q(n) (15)
1 F(z) — ¢(2) 1 / F(z) — ¢(2)
= d d
2ri /:4 7+l z+ 2ri B s Z

and if we use (7) on this first integral and (9), (11) on this second
integral we derive the following estimates:

1 /F(Z)_¢(Z)dz
A

27 aans

/ 2
M 1-r*?exp (n— i) x thelength of A.

< pn+l 6 1—r

(M’ istheimplied constant in the O of (7) when ¢ = 3).
Asfor thelength of A, elementary geometry gives the formula

V2(1—r)

\/7
and thisiseasily seento be O (1 — r). Wefinaly obtain, then,
1 F(z) —

/ (z) — ¢(2) dz

A

4r arcsin

27-”' Zn+l
1— )52, 72 1
«mET o[ , (16)
rhn 6 1—r

where M is an absolute constant.
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For the second integral,

1 fF(Z)_¢(Z)dz<< 1 -2exp<ir>-2nr
B

2Ti Zn+l 27T rn+1

2 (1
g P 1—r)°

And thisis even smaller than our previous estimate. So combining
the two gives, by (15),

1 — )52 2 9
p(n) — q(n) < M% exp(” ) (17)

6 1—r
But what is r? Answer: anything we please (aslongas0 < r <
1)! We are masters of the choice, and so we attempt to minimize
the right-hand side. The exact minimum is too complicated but the

. 2 . .. .
approximate one occurswhen —— exp ( z L ) isminimized and

. 2 .
thisoccurswhen Z - = n(1 —r),ie,r = 1 — 7. So we

choose this r and, by so doing, we obtain, from (17), the bound

ﬁ

pn) =qgn) + O (n_5/4e”\/’%) . (18)

The Coefficients of ¢ (n)

The elementary function ¢ (z) has arather pleasant definite integral
representation which will then lead to a handy expression for the

q(n).
If we simply begin with the well-known identity

/ edt = J

(o.¢]

and make alinear change of variables (a > 0),

%)
T
/ e_(at_b)zdt = £

00 a

b
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or

00
_ 2.2 ﬁ 2
f e ¢ t €+2abtdt — eb )
—00 a

Thusif we set b? = ”{l—iz and a®> = 1 — z (thinking of z asredl

(Iz] < 1) for now), we obtain

/OO €Zt26+ﬂ‘/gt_t2dt _ ﬁ exp 7T_2 1 ’
oo V1—7z 6 1—-¢

which gives, finally,

—2/12

Y 1 - / eZt e \/_t t dt 19

o—T/12  poo |:t2n f2n=2

$(z) =

=% W (- 1)
the “formula’ for ¢ (n) from which we can obtain asymptotics.

Reasoning that the maximum of theintegrand occursnear t = /n
we change variablesby r = s + /i, and thereby obtain

i|e” 2R1=dr - (20)

00 ,, 2
‘](n) = Cn/ Kn(s)zseizéim) ds, (21)
where
e 2n/3 nn+%
" on e'n!’
1+ 5% S 2T
o 2 [ )]

; 2
(1+ %)

Since K, (s) — 1, we see, at least formally, that the above integral
approaches

/_Z 2se_2<s_#5> ds = /_Z (u + ﬁ%) _”Zdu,
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. u Ea . —u?
where we have set s = 7 + 5 7 Furthermore, since ue is

odd, it is equal to = [ e du = %’37 Thus (21) formally
becomes

) N3 2 nn”
n) ~ )
1 4/3n  e'n!

And score another one for Stirling's formula, which in turn
gives

(22)

e 21/3
q(n) ~ Ve (23)
and our earlier estimate (18) allows us thereby to conclude that
oA/ 21/3
p(n) ~ A (24)

Success! We have determined the asymptotic formula for p(n)!
WEell, almost. We still have two debts outstanding. We must justify
our formal passage to the limit in (21), and we must also prove our
evaluation (5). Sofirst we observethat xe ™ ismaximized at x = 1,
so we deduce that

<1+ %)w—% <1 (25)

(usingx = (1 + Jiﬁ)) and also

S = s2
1+ —|evn <ex (26)
e

n

(usingx = (1 + \/iﬁ)z).
Thus using (25) for positive s, by (21),

K,(s) < e’ for s >0,
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and using (26) for negative s gives us

2n—2
S 7;[)
e
\/—

n

Ka(s)] < (1= )" (’1+ —=

52— 25 12
<(L-—s) VieT®

—(1—5) ezs2+1—(1+s/ﬁ)2
or
1K, ()] < (1 —s)e® ! for s <O. (28)
Thus (27) and (28) give the bound for our integral in (21) of

2
s2—2(s— ==
2se 2< 2f) for s >0,
and
2s5(s — 1)er"V¥  for 5 < 0.

This bound, integrable over (—oo, o0), gives us the required
dominated convergence, and the passage to the limit is indeed
justified.

Finally we give the following:

Evaluation of our Integral (5). To achievethislet usfirst note that
as N — oo our integral isthe limit of the integral

o 1 1 e\ dx
l— —Nx _ - -
,/0 ( ¢ )<ex—1 X + 2 ) X

(by dominated convergence, e.g.). But thisintegral can be split into

/oo(l—eNx)<€x11 ) /(1 Ny
i -

N _
o) 1 X 1 (N+1D)x
= Z/ ek —|—x—2edx + = / dx.
=1 J0 X 2 0

X

Next note that

14+x—¢* 1
— s =- / e dt
X 0
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and

—x _ ,—(N+Dx N+1
e e _/ —sx g
= e S.
1

X
Hence, by Fubini, wemay interchange and obtain, for our expression,
the elementary sum

ZN:fl t dt+1/N+lds
k:10k+t_1 21 S

N

= Il

k 1
((k — 1 log <le> — 1> + > log(N + 1)

(k—1)logk — (k—1)logtk — 1) — N

~
Il
i

1
+ > log(N + 1)

= NlogN —logN —log(N —1) —---—logl— N
1
= NlogN —logN! — N + % log(N + 1).

What luck! Thisis equal to log w and so, by Stirling's
formula, indeed approaches log J% .

(Stirling's formula was used twice and hence needn’t have been
used at all! Thus we ended up not needing the fact that C = /27
intheformulan! ~ C./n(n/e)" sincethe C cancelsagainst aC in
the denominator. The n! formulawith C instead of +/27 isamuch
simpler result.)
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Problems for Chapter |11

1.

Explain the observation that MacM ahon made of aparabolawhen
he viewed the list of the (decimal expansions) of the partition
function.

Provethe“simple” fact that, if order counts(e.g., 2 + 5isconsid-
ered adifferent partition of 7 than 5 4 2), then the total number
of partitions on » would be 2",

Explain the approximation “near 1” of log % asZﬁ + O((l —
2)%). Why does this lead to
1 11+¢

=z +0(1-2)?
log2 21—z (-9

Why is the Riemann sum such a good approximation to the in-
tegral when the function is monotone and the increments are
equal?



The Erdos—Fuchs Theorem

There has always been some fascination with the possibility of near
constancy of the representation functionsr; (n) (of 1 (7), (8) and (9)).
In Chapter | we treated the case of r, (n) and showed that this could
not eventually beconstant. Thefact that r (n) cannot be constant for an
infinite set isreally trivial sincer(n) isodd forn = 2a,a € A, and
even otherwise. The case of r_(n) ismore difficult, and we will treat
itinthischapter asanintroduction to the analysisin the Erdés—Fuchs
theorem.
The Erdés—Fuchstheorem involvesthe question of just how nearly
constant r(n) can be on average. Historically thisall began with the
= {n? : n € Ny}, theset of perfect squares, and the observation
that then rO- 4t Qi) | the average value, is exactly equal to
= ti mes the number of Iattlce points in the quarter disc x, y > 0,
2 + y? < n. Consideration of the double Riemann integral shows
that thisaverage approachestheareaof the unit quarter circle, namely
m/4, and o for this set A, HOHAH@LH0 - % (r(n) isoN
average egual to the constant z /4.)
Thedifficult questionishow quickly thislimit isapproached. Thus
fairly simple reasoning shows that

rO+r) +r@ 4 +rin) 7w +0<i>
n+1 4 vn)’

whereas more involved analysis shows that

rO+r)+r2)+---+rn) B
n+1 N

I
+
Q

N

H

D

w
N—
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=

Very deep arguments have even improved thisto o ( 3>, for ex-

3

n2

ample, and the conjecture is that it is actually O [ —&

€ > 0. On the other hand, further difficult arguments show that it is
not O [ —

nate
Now all of these arguments were made for the very special case

of A = the perfect squares. What a surprise then, when Erdos and

Fuchs showed, by simple analytic number theory, the following:

for every

N———"

Theorem. For any set A, ’(0>+r<1>ﬂi>+~-+r<n> —C+0 ( 1 ) is

3
nz+€

impossible unless C = 0.

This will be proved in the current chapter, but first an appetizer.
We prove that r_(n) can’t eventually be constant.
S0 let us assume that

A%(z) — AZ®) = P(2) + 1LZ : D)
P isapolynomial, and C isapositive constant. Now look for a con-
tradiction. The simple device of letting z — (—1)" which worked
so nicely for the r,. problem, leads nowhere here. The exercisesin
Chapter | were, after all, hand picked for their ssmplicity and involved
only thelightest touch of analysis. Herewe encounter aslightly heav-
ier dose. We proceed, namely, by integrating the modulus around a
circle. From (1), we obtain, for 0 < r < 1,

/ |A%(re'?)|do

/e

< /n |A(r2e®%)|do + fﬂ |P(re'®)|de (2)

T ¥4

ef
. 11 —=ref|’
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Certain estimates are fairly evident. P(z) isapolynomial and so
/ |P(re'®)|d6 < M, (©)

independent of r (0 < r < 1).

We can also estimate the (elliptic) integral ™ m =
2f0 ‘1 - ,gl by the observation that if z is any complex number in
the first quadrant, then |z| < Mz + Jz. Thussincefor 0 < 6 < ,

1 — re isin the first quadrant, ¢~ = L dso s, and
1 —

T—re-?] — <M+3) <el€ ) Hence

iet?
el —r

fﬂ do < 4D
o I1—ref| =7

= O+ (logie” )|

:(9t+£‘s)log(—1+r>

1—7r
<1+r>
= + log .
1—r
The bound, then, is
/ d—9_2n+2log(l+r>. (4)
_. |1 —re?| 1—r

Theintegral [* |A(re')|2d6 isadelight. It succumbsto Parseval’s
identity. Thisis the observation that

/‘” | Zanein9|2d9 — /‘ﬂ Zaneine Zc—lme—imede
/ Z Aname’ "™ 46

T m,n

e

= S [ e
n,m

—TT

and these integrals all vanish except that, when n = m, they are
equal to 2. Hencethisdouble sumis 2z 3 |a,|?. The derivationis
clearly valid for finite or absolutely convergent series which covers
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our case of A(re'?) (but it even holds in much greater “miraculous”
generalities).
At any rate, Parseval’s identity gives us

/ |A(re®)Pd0 = 270 Y " r* = 2w A(). (5)
- acA

The last integral we must cope with is [ |A(r%%?)|d6, and,
unlike integrals of | |2, there is no formulafor integrals of | ]. But
thereisalwaysthe Schwarzinequality [ | f| < (/1- [ |f|®)¥? and
SO at least we can get an upper bound for such integrals, again by
Parseval. The conclusion is that

/ ’ |A(r2e?%)|d0 < 2/ A(r). (6)

T

All four of theintegralsin (2) have been spoken for and so, by (2)
through (6), we obtain

1
A(r2>s\/m+%+c+g'09<1f:>~ ()

It is a nuisance that our function A is evaluated at two different
points, but we can alleviate that by the obvious monotonicity of A,
A(r*) < A(r?), and obtain

C 1
ArD) < VAGCD + M + = Iog(1 + r) ) (8)
T —r
Is something bounded in terms of its own square root? But if x

Jx+a,weobtain(x—3)? <a+ 31 Jx < Ja+3i+1x

a+ % +./a+ %.Thisyieldsapurebound onx. Then

1 1
A(rZ) < M//+£ |Og< +r)+\/Mm+ g |Og< +r> (9)
T T

1—r 1—-r

But, so what? This says that A(r?) grows only at the order of
log ;& asr — 17, but it doesn’t say that A(r?) remains bounded,
does it? Wherein is the hoped contradiction? We must revisit (1)
for this. Thereby we obtain, in turn A%(r?) — A(r*) = P(r?) +
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A%(r?) > P(r?) + A%(r?) > —M +

= — 5, and finadly

C

9
_r2

A(r)>\/ M4+ — (10)

arate of growth which flatly contradicts (9) and so gives our desired
contradiction.

If this proof seems like just so much sleight of hand, let us ob-
serve what is “really” going on. We find ourselves with a set A
whose r;(n) is“amost” constant and this means that A%(z) ~ -

Z

On the one hand, this forces A(z) to be large on the positive aX|s

2 C’
(A(r ) > —m) and, on the other hand Parseval says that the

integral of |A%(z)|isA(r?) and ‘ 1%2‘ (being fairly small except near
1) hasasmall integral, only O(log ££-). (S0 A(r?) < C”log X).

In cruder terms, Parseval tells us that A?(z) is large on average,
so it must be large elsewhere than just near z = 1, and so it cannot
really be like & (Note that the “elsewhere’ in the earlier r, (n)
problem was the locale of —1, and so even that argument seems to
bein this spirit.)

So let us turn to the Erdés—Fuchs theorem with the same strategy
in mind, viz., to bound A (r?) below by for obvious reasons

1-r2

and then to bound it above by Parseval considerations.

Erdés—Fuchs Theorem

We assumethe A isaset for which
r@O+r)+---+rw)=Cn+1+0n*), C >0, (11

and we wish to deduce that o« > %1 As usual, we introduce the
generating function A(z) = ) .4 2% sothat Az(z) = > r(n)z",
and therefore - Az(z) S[r(0) + r(1) + - - - + r(n)]z". Since
Y+ D" = )2 our hypothesis (11) can bewrltten as

! A%(z) =

C
+ ) a7, a, = 0(n"),
T a7 ; (n*)
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OI
n=0 ’ "

Of course we may assume throughout that « < 1. Thereby (12)
yieldsthebound M (1—r2)~*"for }_ a,r?', sothat weeasily achieve
our first goal namely,

C/

A@Gr?) >
1— 72

, C'>0. (13)

As for the other goal, the Parseval upper bound on A(r?), again
we wish to exploit the fact that A%(z) is “near” 1%2 but this takes
some doing. From the look of (12) unlike (1), this“nearness’ seems
to occur only where (1 — z) Y a,z" isrelatively small, that is, only
inaneighborhood of z = 1. We must “enhance’ thislocaleif weare
to expect anything from the integration, and we do so by multiplying
by a function whose “heft” or largenessisall near z = 1. A handy

such multiplier for usisthe function S?(z) where

S@) =1+z+722+---+7"% Nlage (14)
The multiplication of $?(z) by (12) yields
,  CS8(z) N .
[S@AQP = T—— +1-M85@ Y ja. (19
which gives
2
1S(2)A@)? < 1] + 2[8(2) Zanz”l, (16)

and integration leads to

f S(re”)A(re')|?do

T

T de
< CN? / _— 17

- |1 —re

+ 2[ SGre®) Y " a,(re'”)"|do.
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As before, we will use Parseval on the first of these integrals, (4)
on the second, and Schwarz's inequality together with Parseval on
the third.

So write S(z)A(z) = Y c,z", and conclude that [ |S(re’”)
A@re®)|?do = 2m Y |c,|?r?. Since the ¢, are integers, |c,|? =
c? > ¢, andsothisis, furthermore, > 27 3" ¢, r?" = 27 S(r?)A(r?).
(The genera fact then is that, if F(z) has integral coefficients,
[T IF(re”)[?d6 > 2 F(r?).)

Now we introduce a side condition on our parameters r and N
which we shall insist on henceforth namely that

1

1—r2 — 19

Thus, by (14), S(r?) > Nr*¥ > N(1— +)¥ > N1-1)2 = &,
and by (13), A(r?) > —<—, and we conclude that

T ] ) C//N
/ IS(re'YA(re'®)|?do > Vit c” > 0. (19)
— —7r
Next, (4) gives
T do e
CN? — < MN?lo 20
/_n |1 — re?| — gl—r2 (20)

and our last integral satisfies
< \// |S(reie)‘2d9/ ‘Zan(re"e)”
= 27 Zer Z la,|2r? < Zn\/ﬁM,/ZnZ“rZ".

k<N

Applying (13) and (14) again leadsfinally to

/ﬂ S(reie) Z a,(re’y"

T

do

S(re'®) Z a, (re?)"

2
do

M~/N
d@ S W. (21)
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At last, combining (29), (20), and (21) alowsthe conclusion

1
— < Nv1-r?lo ) 22
o —r2 VN1 - r2)« (22
Once again we are masters of the parameters (subject to (18)),
and so we elect to choose r, so that N/1 — 72 = ﬁ Thus

our choiceisto make -2 = N %=1 and note happily that our side
condition (18) issatisfied. Also “plugging” thischoiceinto (22) gives

4

C _
— < N %32 (2 + 3log N). (23)

WeII success is delicious. We certai nly see in (23) the fact that
a > 3 (If the exponent of N, 4a +2 , were negative then this right-
hand si dewoul dgoto0, 2+ 3log N notwithstanding, and (23) would
become false for large N.)
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Problems for Chapter 111

1.

Show that the number of lattice pointsin x4+ y2 < n?,x, y > 0,
IS~ %nz. By the Riemann integral method show that it is, in fact
= %nz + O(n).

If x isbounded by its own squareroot (i.e., by «/x + a), then we
find that it has a pure bound. What if x, instead, is bounded by

x%® + ax1/® 4+ b? Does thisinsure abound on x?

Suppose that a convex closed curve hasits curvature bounded by
8. Show that it must come within 2+/8 of some lattice point.

Produceaconvex closed curvewith curvature bounded by § which

doesn’t come within %) of any lattice point.



AY

Sequences without Arithmetic
Progressions

The gist of the result of Chapter IV is that a sequence of integers
with “positive density” must contain an arithmetic progression (of at
least three distinct terms).

More precisely and in sharper, finitized form, thisis the statement
that, if e > 0, thenfor large enough r, any subset of the nonnegative
integers below n with at least en members must contain three terms
a,b,cwherea < b < canda + ¢ = 2b. Thisisashock to nobody.
If asetis“fat” enough, it should contain al sorts of patterns. The
shock is that thisis so hard to prove.

At any rate we begin with avastly more general consideration, the
notion of an “affine property” of finite setsof integers. Solet usagree
to call aproperty P an affine property if it satisfiesthe following two
conditions:

1. For each fixed pair of integers«, 8 witha #£ 0, theset A(n) has
Pifandonlyif xA(n) + g has P.
2. Any subset of a set, which has P, also has P.

Thus, for example, the property P, of not containing any arith-
metic progressions is an affine property. Again the trivial property
Py of just being any set is an affine one.

Now we fix an affine property P and consider alargest subset of
the nonnegative integers below n, which has P. (Thus we require
that this set has the most members possible, not just to be maximal.)
Theremay be several such sets but we choose one of them and denote
it by S(n; P). We also denote the number of elements of this set by

41
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f(n; P). So, for example, for thetrivia property, f(n; Py) = n, and
for Pa, f(3;Ps) = 2, f(5;Pa) = 4.

It follows easily from conditions 1 and 2 that this f(n) is sub-
additive, i.e,, f(m +n) < f(m) + f(n). If we recal the fact
that subadditive functions enjoy the property that lim,,_, ., % ex-
ists (in fact lim, . L% = inf £22), we are led to define C, =
lim, .o 222 This number is a measure of how permissive the
property P is. Thus Cp, = 1, because P, istotally permissive. The
announced result about progression = free sequences amountsto the
statement that Cp, = 0, so that P, is, in this sense, totally unper-
missive. At any rate, we dwayshave0 < Cp < 1, and we may dub
Cp the permission constant.

The remarkable result proved by Szemerédi and then later by
Furstenberg is that, except for Py, Cp isalways 0. Their proofs are
both rather complicated, and we shall content oursel veswith the case
of P,, which was proved by Roth.

The Basic Approximation Lemma

It turns out that the extremal sets S(n; P) all behave very much as
though their elements were chosen at random. For example, we note
that such a set must contain roughly the same number of evens
as odds. Indeed if 2b1, 2b,, . .., 2b, were its even elements, then
by, b, . .., by would beasubset of (0, 4 ) and so we could conclude
that k < f(%). Similarly the population of the odd elements of
S would satisfy this same inequality. Since 5 ~ %f(n), we con-
clude that both the evens and the odds contain not much more than
half the whole set. Thereby the evens and the odds must be roughly
equinumerous. (Thus, two upper bounds imply the lower bounds.)
Delaying for the moment the precise statement of this “random-
ness,” let us just note how it will prove useful to us with regard to
our arithmetic progression considerations. The point is simply that,
if integers were chosen truly at random with a probability C > 0,
there would automatically be a huge number of arithmetic progres-
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sions formed. So we expect that even an approximate randomness
should produce at least one arithmetic progression.
The precise assertion isthat of the following lemma.

Lemma. Y, csp 2° = Cp Yo, 2" +o(n), uniformlyon|z| = 1.

Remark. In terms of the great Szemerédi—Furstenberg result that
Cp = O(exceptfor P = Py), thisisatotal triviality. We are proving
what in truth is an empty result. Nevertheless we are not prepared
to give the lengthy and complex proofs of this general theorem, and
S0 we must prove the Lemma. (We do what we can.) The proof, in
fact, isreally just an elaboration of the odds and evens considerations
above.

PROOF. The basic strategy is to estimate ¢,(z) = Y, 52"
Cp Y .., 2~ together with all of its partial sums at every root of
unity of order up to N (N is a parameter to be chosen later). The
point isthat, if we have abound on apolynomial and its partial sums
at a point, then we inherit a bound on that polynomial throughout
an arc around that point. (Thereby we will obtain bounds for arcs
between the roots of unity which will fill up the whole circle.)
Specifically, we have the identity

p(z) "oop® [z
— —ZM{)() +1_£<§)’ (1)

2z
I3 m<n £

for any polynomial p of degree at most n, where the p,, denote the
partial sums. (This simply records the result of the “long division.”)
From (1) we easily obtain the bound |p(z)| < ¢ — z|),_,
P (O] + | p(¢)], and so we conclude the following:
If al the partial sums are bounded by M at ¢, the polynomial is
bounded by M (n¢ + 1)throughout an arc of length 2¢ (2

centered at ¢.
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Solet @« < N bechosen, and let w be any oth root of unity, i.e.,
o* = 1. To estimate ¢,, (w), let uswriteit as

Za:a)ﬂ Z 1—CPZ]- )
p=1

acs k<m

a=Be) k=p (@)

and let us note that the first inner sum

O’ﬂ:Z].

aes
a<m

a=p(@)

countsthesize of asubset of S, which therefore has P whichisaffine
to asubset of (0, %), and so hasat most f (%) elements (where we

write f(x) for f([x])).
Thus
Gn(@) = =Y _ o <f <§) - ‘7/3)
g=1

£(z)-ox

B= k<m

k=p(a)
2

= f(%) —Cr %J'@)
20 (5) ) el (2) o)

o o

If wenext notethat ) 7, o isexactly the number of elements of
S which are below m and so is equal to f(n) minus the number of
elements of S which are > m, we obtain

N op= fn)— fn—m) = Con— f(n—m). (4
p=1
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Substituting (4) in (3) gives

m m
qn(®) K 20 [f <;> - Cpa]wL(f(n—M)—Cp(n—m))- )

Now we find it useful to replace the function f(x) — Cpx by its
“monotonemajorant” F(x) = max,,(f(t)—Cpt) andnotethat this
F (x) isnondecreasing and satisfies F(x) = o(x) since f(x) — Cpx
satisfies the same. So (5) can be replaced by

(@) < 20F (g) Y F(n—m) < 2aF (g) +F(n) (6)

(abound independent of m).

So chooseng sothat x > ngimplies F(x) < ex, and then choose
ny sothat x > nyimplies F(x) < ix. From now on we will pick
n > nyandasowill fix N = [*].

Dirichlet’s theorem® on approximation by rationals now teIIs us
that the totality of arcs surrounding these w with length 2 (N D
covers the whole circle. Thus using (2) for ¢(z), ¢ = wand ¢ =

27 27TN0  ~i
2a(N+l) = 2 no gives

q(z) < [2aF (g) + F(n)] (1 + 271%) . %)

We separate two cases:
Casel: o < no. Hereweuse F(Z) < F(n) and obtain [2a F (%) +
Fm](14 22) < 241 (1+ Z2)F(n) < 3a(1+Z2)F(n) =
Ba + 6mrng)F(n) < (6w + 3)ngF (n) < (6w + 3)n0nion < 22¢n.
Casell:a > no. Here[2a F (%) + F(m)](1 + 22) < [20F (%) +
F(n)](1+ 27). But still o < i ,or = >ng. SO F(2) <ez,and
theaboveis < (2en + en)(1 -|— 271) (83 + 6m)en < 22¢n.

In either case Dirichlet’s theorem yields our lemma.

So let P be any affine property, and denote by A = A(n; P) the
number of arithmetic progressionsfrom S(n; P)(where order counts

IDirichlet’stheorem can be proved by considering the powers1, z, z2, - - -, zV for z
any point ontheunitcircle. S nceth@e are N + 1 pointsonthecircle, two of them
Z', j/ must bewithinarclength 2= w11 Of oneanother. Thismeans| arg 77| < N—il
andcaling |i — j| = « givestheresult.
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and equality is allowed). We show that

C3
An; P) = 713712 + o(n?). ®)
The proof is by contour integration. If we abbreviate ), ¢ z* =
g(z), then we recognize A as the constant term in g(z)g(z)g(z?),
and so we may write

1 . dz
A= 5 g2 (2)g(z™% —. )
Tl lz]=1 Z
Now writing G(z) = >, _, z*, g(z) = C»rG(2) + ¢q(z) (Whereg
is“small” by the lemma). If we substitute thisin (9), we obtain

3 1 2 2,42
Cp 271 ) G (2)G(z™) .
plus seven other integrals. Each of these other integralsisthe product
of threefunctions, eacha G or agq, and at least one of themisag. By
our lemma, then, we may estimate each of these seven integrals by
o(n) times an integral of the product of two functions. Both of these
functions are either a |G| or a|g|. As such each is estimable by the
Schwarz inequality, Parseval equality techniques. Thefinal estimate
for each of these seven integrals, therefore, is o(n)/nn = o(n?),
and so (9) gives

A=C3 i G*(2)G(z7d dz + o(n?). (10)
211 J ;=1 Z

But reading (9) for the property P, shows that this integra is

smply A(n; Py) and it is a simple exercise to show that A(n; Py),

the number of triples below n which are in arithmetic progression,

isexactly [ 1. Indeed, then (10) reducesto (8). Q.ED.

All of our discussion thus far has been quite general and is valid
for arbitrary affine properties. We finally become specific by letting

P = P4, and we easily deduce the following:

Theorem (Roth). Cp, = 0.
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Proor. By the definition of P4, the only arithmetic progressions
in S(n; Py) arethetrivial ones, three equal terms, which number is
at most n. Thus A(n; P4) < n, and so, by (8), C,%A% + o(n® < n.
Therefore Cp, = 0.
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Problems for Chapter 1V

1.

Attach a positive rational to each integer from 1 to 12 so that all
A.P’s with common difference d up to 6 obtain their “correct”
measure 1.

Provethat, if we ask for ageneralization of this, then we can only
force the correct measure [% for all A.P’sof common difference
d, by attachingweightsonto 1, 2, ..., n, if d = O(/n).

If we insist only on approximation, however, show that we can
always attach weightsonto 1, 2, . . ., n such that the “measure”
given to every A.P. with common difference < m iswithin e="/"
of 1.



V
The Waring Problem

In afamous letter to Euler, Waring wrote his great conjecture about
sums of powers. Lagrange had already proved his magnificent the-
orem that every positive integer was the sum of four squares, and
Waring guessed that thiswas not just a property of squares, but that,
infact, the sum of afixed number of cubes, fourth powers, fifth pow-
ers, etc., also worked. He guessed that every positive integer was
the sum of 9 cubes, 19 fourth powers, 37 fifth powers, and so forth,
and although no serious guess was made as to how the sequence 4
(squares), 9, 19, 37, ... went on, he simply stated that it did! That
is what we propose to do in this chapter, just to prove the existence
of the requisite number of the cubes, fourth powers, etc. We do not
attempt to find the structure of the 4, 9, 19, . . ., but just to prove its
existence.

So let us fix k and view the kth powers. Our aim, by Schnirel-
mann’s lemmas below, need be only to producea g = g(k) and an
a = a(k) > 0 such that the sum of g(k) kth powers represents at
least the fraction « (k) of all of the integers.

One of the wonderful things about this approachisthat it requires
only upper bounds, despite the fact that Waring's conjecture seems
to require lower bounds, something seemingly totally impossible
for contour integrals to produce. But the adequate upper bounds are
obtained by the so called Weyl sums given bel ow.

So first we turn to our three basic lemmas which will eventually
yield our proof. These are A, the theorem of Dirichlet, B, that of
Schnirelmann, and finally C, the evaluation of the Weyl sums.

49
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A. Theorem (Dirichlet). Given areal x and a positive integer M,
there exists an integer a and a positive number » < M such that

a 1
X =31 = Grroe -

Proor. Consider the numbers O, x, 2x, 3x, ..., Mx al reduced
(mod 1). Clearly, two of these must be within ﬁ of each other.
If these two differ by bx,thenl < b < M and bx (mod 1) is, in
magnitude, < ——. Next pick an integer a that makes bx — a equal

M+1-
tobx (mod1). So |bx —a| < (M—ﬁrl)whichmeanspc— 4| < m
as asserted. Q.E.D.

We also point out that thisis a best possible result as the choice
X = ﬁ showsfor every M. (Again, we may assumethat (a, b) =
1for, if they have acommon divisior, thiswould make theinequality

|b| < M even truer).

B. Schnirelmann’s Theorem. If S isa set of integers with positive
Schnirelmann density and O € S, then every non-negative integer is
the sum of at most £ members of S for somek > 1.

Lemmal. Let S havedensitya and0 € S. Then S & S hasdensity
at least 2o — o2,

Proor. Allthegapsintheset S arecoveredinpart by thetrandlation
of S by theterm of S just before this gap. Hence, at least the fraction
a of this gap gets covered. So from this covering we have density «
from S itself and « timesthe gaps. Altogether, then, we indeed have
a4+ ol — o) =20 — «?, asclaimed.

Lemma 2. If S has density o > % then S @ S contains all the
positive integers.

ProoF. Fix aninteger n which is arbitrary, let A be the subset of
S which lies < n, and let B be the set of all » minus elements of
S. Since A contains more than n/2 elements and B contains at least
n /2 elements, the Pigeonhol e principle guarantees that they overlap.
So supposethey overlap at k. Sincek € A, wegetk € S, and since
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k € B,wegetn — k € S. These are the two elements of S which
sumto n.

Repeating Lemmal j times, then, leadsto asumming of 2/ copies
of S andadensity of 1 — (1 — «)? or more. Sincethis|atter quantity,
for large enough j, will become bigger than %, Lemma 2 tells us
that 2/+* copies of S give us all the integers, just as Schnirelmann’s
theorem claims. Q.E.D.

C. Evaluation of Weyl Sums. Letb € Z, b # Oandk < N,
P(n) be a polynomial of degree k with real coefficients and leading
coefficient integral and primeto b, and let 7 be an interval of length
< N.Then

Z ¢ (P;n)> < N1+0(1)b721—k

nel

where the bound depends on k.

Here — as usual —we denote e(x) = %+,

We proceed by induction on k, which represents the degree of
P(n). Itisclearly truefor k = 1, and generally we may write

S:Ze<Pl()n))

nel

and may assumew.l.o.g.that I = {1, 2,3, ..., N}. Thereby

P D I LRy
ne(l,2,....N} b

j=—N+1
nelj+1,j+2,....j+N}

This inner sum involves a polynomial of degree (k — 1) but has a
leading coefficient which varies with j. If we count those j which
produce a denominator of d, which of course must divide b, then we
observe that this must appear roughly d timesin an interval of length

b. Sothisnumber of j inthefull interval of length 2N + 1isroughly

(2N+1)
=d.
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The full estimate, then, by the inductive hypothesisis
1
<< Nl—H)(l)d_ij < 2k k-2 1

< N2 =72 pod),

N2+0(1)

So we obtain
S << N1+0(1)b_ 21%1 ,

and the induction is complete.
Now we continue as follows:

Lemma3. Letk > 1beafixed integer. There existsa C; such that,
for any positive integers N, a, b with (a, b) = 1,

2e(i)

n=1

_ 21—k
< C1N1+0(1)b 2 .

Our endpoint will be the following:

Theorem. If, for each positive integer s, we write

ry(n) = Z 1,

n + +n =n

n; =0

then there exists g and C such that r,(n) < Cn#/*~1for all n > 0.

The previously cited notions of Schnirelmann allow deducing, the
full Waring result from this theorem:

Thereexistsa G for whichrg(n) > Ofor all n > 0.

To prove our theorem, since

1 K
ry(n) :f |: Z e(xmk)] e(—nx)dx,
0

m<nl/k
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it suffices to prove that there exists g and C for which

1
/
First some parenthetical remarks about thisinequality. Supposeitis
known to hold for some Cy and go. Then, since | Zf:’zl e(xn®)] < N,
it persistsfor Co and any g > go. Thus (1) isaproperty of large g’s,
in other words, it is purely a “magnitude property.” Again, (1) isa
best possible inequality in that, for each g, thereexistsac > 0 such

that
1
J

To see this, note that YV | e(xn*) has a derivative bounded by
2m N**1. Hence, in theinterval (0, ;7).

N

Z e(xn)

n=1

8
dx < CN** fordl n>O0. (1)

N

Z e(xn’)

n=1

8

dx > ¢N¢% foradl n > 0. 2

N

Z e(xn®)

n=1

1 N
>N —2g NFHt —— — —,
- 4 Nk 2

and so (2) followswithc = 2.

Theremainder of our paper, then, will be devoted to the derivation
of (1) from Lemma 3. Henceforth & is fixed. Denote by 1, , v the
x-interval [x — 4] < L, andcal J = N¥x — 4|, j = [J],
wherea, b, N, j areintegerssatisfying N > 0,b > 0,0 < a < b,
(a,b) =1,b < N* 2.

By Dirichlet’stheorem, theseintervals cover (0, 1). Our main tool
isthe following lemma:

Lemma 4. There exists ¢ > 0 and C, such that, throughout any
interval 1, v,

N

Z e(xn®)

n=1

CoN
b+ )

=
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ProOF. Thisisamost trivia if b > N%3, for, since the derivative
of | Y- | e(xn®)| isbounded by 27 N**1,

N

Z e(xn’)

n=1

N

Z e(%nk)

n=1
N1+0(1) 21 N3/2 N1+0(l) 27N

— + < — +
pFI b pFT b4

+ 27_[ Nk+1

a
< x— -
b

by C, which gives the result, since j = 0 automatically. Assume
thereforethat » < N2/, and note the following two simplefacts (A)
and (B). For detailssee[K. Knopp, Theory and Application of Infinite
Series, Blackie& Sons, Glasgow, 1946.] and [G. Polyaund G. Szego,
Aufgaben und Lehrsatze aus der Analysis, Dover Publications, New
York 1945, Vol. 1, Part I1, p. 37]. Q.E.D.

(A) If M isthe maximum of the moduli of the partiad sums)_"_, a,,

V thetota variationof f(r) in0 <t < N, and M’ the maximum
of themodulusof f(z)in0 <t < N, then

N
> anf(n)
n=1

(B) If V isthetota variationof f(r)in0 <t < N, then

<MV +M).

N N
Y fm - / fde| < V.
n=1 0
Now writee = 1 3°7_ e(4n*) and
N
> e(xn®) = 51+ S, ©)
n=1
where
S — . a i a\ i
~SLG) o2
N
SZZ;e[(X— ;—l)nk].
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We apply (A) to S;. To do so, we note that
[ (r) =] =l 2 L Gr) =

b[m/b]<n<m
Also, thetotal variation of e[ (x — ¢ )r*] isequal to 27 |x — 4 [N* <

2”;/ﬁ,whereas M’ = 1. Theresultis

< A+ |a)b < 2b.

1S1] < 47N + 2b < 5a N3, (4

Next we apply (B) to S, and obtain

N 2n+/N
|S2|§/ el(x=2 ) |ar| + VN (5)
0 b b
Since |, e(u*)du converges we get
N a k S k NC3
/o e[(x—z)t}dt:m/; e(u)dugjl/k.
Combining thiswith (5) gives
C4N|O(|
laeSs| < m + Zﬂ\/ﬁ (6)

Now if weapply Lemma3tothecase N = b, weobtain |a| < %

§ = 2%, and by (3) the addition of (4) and (6) gives

N
CsN
Ze(xnk) < ; + T N?®
o b (L + j)V/k
CsN CeN

< + .
T DA+ HYE b+ HY?
Sincej < +/Nandb < N?3,thechoiceC, = Cs+Cg+C1+27,

e = min(s8, ¢, ;) completes the proof.
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Proof of (1). Chooseg > g , € given asabove. By Lemmad4, since
the length of each 1, , v is at most 2N ¥,

'/I‘a,b,N

Summing over dl a, b, j givesthe estimate

k —k
v Z(b-i-J)“_ o

since ) 25 >, ﬁ < 00, and the proof is complete.

N

g
Z e(xn®)

n=1

4
dx< Q—Ni_
I CE AL
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Problems for Chapter V

1. If we permit polynomialswith arbitrary complex coefficients and
ask the “Waring” problem for polynomials, then show that x is
not the sum of 2 cubes, but it is the sum of 3 cubes.

2. Show that every polynomial isthe sum of 3 cubes.

3. Show, in general, that the polynomial x is“pivotal,” that isif x is
the sum of g nth powers, then every polynomial is the sum of g
nth powers.

4. Show that if max(z, b) > 2c¢, where c isthe degree of R(x), then
P® + Q% = R isunsolvable.

5. Show that the constant polynomial 1 can be written as the sum of
~/4n + 1 nth powers of nonconstant polynomials.



\A

A “Natural” Proof of the
Nonvanishing of L-Series

Rather than the usual adjectives of “elementary” (meaning not in-
volving complex variables) or “simple” (meaning not having too
many steps) which refer to proofs, weintroduce anew one, “ natural .’
Thisterm, which isjust as undefinable as the others, isintroduced to
mean not having any ad hoc constructionsor brilliancies. A “natural”
proof, then, isonewhich provesitself, one available to the “ common
mathematician in the streets.”

A perfect example of such a proof and one central to our whole
construction isthe theorem of Pringsheim and Landau. Herethe cru-
cial observation isthat a series of positive terms (convergent or not)
can berearranged at will. Addition remains a commutative operation
when thetermsare positive. Thisisasum of aset of quantitiesrather
than the sum of a sequence of them.

The precise statement of the Pringsheim—Landau theorem is that,
for aDirichlet serieswith nonnegative coefficients, thereal boundary
point of its convergence region must be asingularity.

Indeed this statement proves itself through the observation that
niTt =y, (“;f)k (logn)* is a power seriesin (¢ — z) with non-
negative coefficients. Thusthe (unique) power seriesfor " a,n* =
> a,n® - n** has nonnegative coefficients in powers of (a — z).
So let b be the real boundary point of the convergence region of
> a,n~*, and suppose that b isaregular point and that » < a. Thus
the power seriesin (a — z) continues to converge a bit to the left
of b and, by rearranging terms, the Dirichlet series converges there
also, contradicting the meaning of 5. A “natural” proof of a“natural”
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theorem follows, one with avery nice corollary which we record for
future use.

(2) If a Dirichlet series with nonnegative coefficients represents a
functionwhichis(canbecontinuedto be) entire, thenitiseverywhere
convergent.

Our ultimate aim is to prove that the L-series have no zeros on
the line Mz = 1. Thisis the nonvanishing of the L-series that we
referred to in the chapter title. So let us begin with the smplest of
al L-series, the ¢-function, ¢(z) = ). ni Our proof, in fact, was
noticed by Narasimhan and isasfollows: Assume, par contraire, that
¢(z)hadazeroat 1+ia,area. Then(sic!) thefunction¢ (z)¢ (z+ia)
would be entire. (See the appendix, page no. 63).

Theonly trouble pointscouldbeat z = 1orat z = 1 — ia where
one of thefactorshasapole, but these are then cancelled by the other
factor, which, by our assumption, has a zero.

A bizarre conclusion, perhaps, that the Dirichlet series ¢ (z)¢ (z +
ia) isentire. But how to get a contradiction? Surely there is no hint
fromitscoefficients, they aren’t evenreal. A natural step then would
be to make them real by multiplying by the conjugate coefficient
function, ¢(z)¢(z — ia), which of courseis also entire. We are led,
then, to form ¢2(2)¢(z + ia)t(z — ia).

Thisfunction is entire and has real coefficients, but are they pos-
itive? (We want them to be so that we can use (1).) Since these are
complicated coefficients dependent on sums of complex powers of
divisiors, we pass to the logarithm, 2log ¢(z) + log¢(z + ia) +
log ¢ (z — ia), which, by Euler’s factorization of the ¢-function, has
simple coefficients. A dangerous route, passing to the logarithm, be-
cause this surely destroys our everywhere anayticity. Nevertheless
let us brazen forth (faint heart fair maiden never won).

By Euler’sfactorization, 2log ¢(z) + 1og ¢(z + ia) + log ¢ (z —
ia) =3, (2log == +10g ;= +109 ==z ) = X, o
(2 + p~™ 4+ ptv) and indeed these coefficients are nonnega-
tivel The dangerous route is now reversed by exponentiating. We
return to our entire function while preserving the nonnegativity of
the coefficients. All in all, then,
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(2) ¢%(z)¢ (z +ia)t (z —ia) isan entire Dirichlet serieswith nonneg-
ative coefficients. Combining this with (1) implies the unbelievable
fact that
(3) the Dirichlet series for ¢%(z)¢(z + ia)¢(z — ia) is everywhere
convergent.

The falsity of (3) can be established in may ways, especialy if
we recall that the coefficients are all nonnegative. For example, the
subsen& correspondlng ton = power of 2 is exactly equal to

T - o= 1o Which exceeds =, - 3 dong the
nonnegatlve (real) axis and thereby guarantees divergence at z =
0. Q.E.D.

And so we have the promised natural proof of the nonvanishing of
the ¢ -function which can then lead to the natural proof of the Prime
Number Theorem. We must turn to the general L-serieswhich holds
the germ of the proof of the Prime Progression Theorem. Dirichlet
pointed out that the natural way to treat these progressions is not
one progression at a time but all of the pertinent progressions of a
given modulus simultaneously, for thisleadsto the underlying group
and hence to its dual group, the group of characters. Let us ook, for
example, at the modulus 10. The pertinent progressions are 10k + 1,
10k + 3, 10k + 7,10k + 9, so that the group is the multiplicative
group of 1,3,7,9 (mod 10). The characters are

x1ixiM =1 x1x3 =1 x1(" =1 x1(9 =1,
x3:x3(D) =1 x3(3 =1 x3(7) =1 x3(9 =1,
x7:x1 (D=1 x2:3 =1 x2(7) =1 x2(9 =1,
ot xo(D) =1 xo(3) =1, xo(7) =1, x9(9 =1,

and so the L-series are

L1(2) 1—[ 1 1 1 1

12) = )

Pl et R e e L= Rl
1 1

1 1
113(2):1_[1_17_Z 1_l-p—zl_[1+ip—zl_[1_|_p—z’

p=1
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1 1 ! !
L7(Z):gl_ngl+ingl—ipz Hl—l—p*z,

p=9

and

LQ(Z):H 1;[1+p21:[1+p21;[

pE

(Here 9z > 1 to insure convergence and the subscripting of the
characters is used to reflect the isomorphism of the dual group and
the original group.)

The generating function for the primes in the arithmetic pro-
gressions ((mod 10) in this case) are then linear combinations of
the logarithms of these L-series. And so indeed the crux is the
nonvanishing of these L-series.

What could be more natural or more in the spirit of Dirichlet, but
to prove these separate nonvanishings altogether? So we are led to
take the product of al the L-series! (Landau usesthe same deviceto
prove nonvanishing of the L-series at point 1.)

Theresult isthe Dirichlet series

1 1
Z =
© ,1:[1 (T—p=)* Q )

1 1
* 1:[7 (1= p%) ,E, (1= p2)p

and the problem reducesto showingthat Z (z) iszero—freeon Nz = L

Of course, thisis equivalent to showing that | | b1 T, ISZEro-
freeon Mz = 1, which seems, at first glance, to bea more attractlve
form of the problem. This is misleading, however, and we are bet-
ter off with Z(z), which is the product of L-series and is an entire
function except possibly for a simple pole at z = 1. (See the
appendix.)

Guided by the special caseslet usturn to the general one. So let A
be a positive integer, and denote by G, the multiplicative group of
residue classes (mod A) which are primeto A. Set h = ¢(A), ad
denote the group elementsby 1 = ny, ny, ..., n,. Denote the dual
group of G4 by G 4 and its elements by x1, Xnps - - -5 Xn, &ranged
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so that n; <> x, isan isomorphism of G and G. Next, for %z >
1, write L, (2) = [, [Ty, 1555, and finally set Z(2) =
[, Ln(2). Asinthecase A = 10, elementary algebra leads to
Z@ =1, 1=, m , where h; isthe order of the group
element n;.

Asbefore, Z(z) isentireexcept possibly for asimplepoleat z = 1,
andweseek aproof that Z(1+ia) # Oforreal a. Soagainweassume
Z(1 +ia) = 0,form Z?(z)Z(z + ia)Z(z — ia), and conclude that
it is entire. We note that its logarithm and hence that it itself has
nonnegative coefficients so that (1) is applicable.

So, with dazzling speed, we see that a zero of any L-serieswould
lead to the everywhere convergence of the Dirichlet series (with
nonnegative coefficients) Z2(z) Z(z + ia)Z(z — ia).

The end game (final contradiction) is also as before although 2
may not be among the primes in the resultant product, and we may
have to take some other prime . Nonetheless again we see that the
subseries of powersof 7 divergesat z = 0 which givesusour QED.

Appendix. A proof that the L-series are everywhere analytic func-
tions with the exception of the principal L-series, L, at the single
point z = 1, whichisasimple pole.

Lemma. For any 6 in[0,1), define f(z) = Y 2 5 — 5 for

n=1 (n—0)
Mz > 1. Then f(z) iscontinuable to an entire function.

PROOF. Since, for Rz > 1, [(Fe et dt = =5 [~ e x

z—1 _ TI'®@ i
dt = (nfg)z,bysummmg, we get

Z ! _ 1 foo e x t°71dt
m—0)7 T@ Jo -1

or

Z 1 1 1 /OO e’ e’ R
n—07 z—-1 T@ Jo \e—-1 t '
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e@r

Since ;— — e}’ isanalytic and hasintegrable derivativeson [0, co),
we may integrate by parts repeatedly and thereby get

1 1

Z(n—e)z_z—l

00 k _
I'z+k) Jo dt el — 1 t '

This gives continuation to iz > —k, and, since k is arbitrary, the
continuation isto the entire plane.
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Problems for Chapter VI

1. Prove, by elementary methods, that there are infinitely many
primes not ending in the digit 1.

2. Prove that there are infinitely many primes p for which neither
p+2nor p — 2isprime.

3. Provethat at least 1/6 of the integers are not expressible as the
sum of 3 squares.

4. Provethat I'(z) has no zeros in the whole plane, although, it has
poles.

5. Suppose §(x) decreasesto 0 asx — oo. Produce an e(x) which
goesto 0 at oo but for which § (xe(x)) = o(e(x)).



VII

Simple Analytic Proof of the
Prime Number Theorem

The magnificent Prime Number Theorem has received much atten-
tion and many proofs throughout the past century. If we ignore the
(beautiful) elementary proofs of Erdés and Selberg and focus on the
analytic ones, we find that they all have some drawbacks. The origi-
nal proofs of Hadamard and de la Vallée Poussin were based, to be
sure, on the nonvanishing of ¢(z) in %z > 1, but they also required
annoying estimates of ¢(z) at oo, because the formulas for the coef-
ficients of the Dirichlet seriesinvolve integrals over infinite contours
(unlike the situation for power series) and so effective evaluation
requires estimates at oo.

The more modern proofs, due to Wiener and Ikehara (and also
Heins) get around the necessity of estimating at oo and are indeed
based only on the appropriate nonvanishing of ¢(z), but they are
tied to certain results of Fourier transforms. We propose to return
to contour integral methods to avoid Fourier analysis and also to
use finite contours to avoid estimates at co. Of course certain errors
are introduced thereby, but the point is that these can be effectively
minimized by elementary arguments.

So let us begin with the well-known fact about the ¢ -function (see
Chapter 6, page 60-61)

(z — 1)¢(z) isanaytic and zero-freethroughout iz > 1. (1)

Thiswill be assumed throughout and will allow us to give our proof
of the Prime Number Theorem.

67



68 VII. Simple Analytic Proof of the Prime Number Theorem

In fact we give two proofs. This first one is the shorter and
simpler of the two, but we pay a price in that we obtain one of
Landau’s equivalent forms of the theorem rather than the standard
form 7 (N) ~ N/log N. Our second proof isa more direct assault
on r(N) but is somewhat more intricate than the first. Here we find
some of Tchebychev’'s elementary ideas very useful.

Basically our novelty consistsin using amodified contour integral,

z 1 <
/l:f(Z)N(z + ﬁ>dz,

rather than the classical one, [, f(z)N?z~'dz. Themethod is rather
flexible, and we could use it to directly obtain 7 (N) by choosing
f(z) = log¢(z). We prefer, however, to derive both proofsfrom the
following convergence theorem. Actually, this theorem dates back
to Ingham, but his proof is a la Fourier analysis and is much more
complicated than the contour integral method we now give.

Theorem. Suppose |a,| < 1, and form the series > a,n¢ which
clearly converges to an analytic function F(z) for Rz > 1. If, in
fact, F(z) isanalytic throughout %z > 1, then > a,n~¢ converges
throughout Rz > 1.

PROOF OF THE CONVERGENCE THEOREM. Fixawinfiw > 1.
Thus F(z + w) isanayticin iz > 0. We choose an R > 1 and
determine§ = §(R) > 0,8 < 3 andan M = M(R) sothat

F(z + w) isanalyticand bounded by M in — § < Mz, |z] < R.
(2
Now form the counterclockwise contour I' bounded by thearc |z| =
R, Nz > —§, and the segment Rz = —46, |z| < R. Also denote by
A and B, respectively, the parts of ' in theright and left half planes.
By the residue theorem,

2niF(w) = /

r

z 1 <
F(z +w)N (g + ﬁ> dz. €©)

Now on A, F(z + w) is equal to its series, and we split this into
its partial sum Sy (z + w) and remainder ry(z + w). Again by the
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residue theorem,

/Szv(z—l—w)NZ (1 + ﬁ)dz
A

1
— 27 Sy (w) —[ Sv(z +wN* [ = + = ) dz.
A z R2

with —A as usual denoting the reflection of A through the origin.
Thus, changing z to —z, this can be written as

/SN(z—I—w)NZ <1 + —)dz
B R2

= 27TlSN(U)) — / SN(U) — Z)]ViZ <1 + _2> dz. (4)
A R

Combining (3) and (4) gives
2ri[F(w) — Sy(w)]

S — 1
:/A[rN(Z—I-w)NZ— %](EJF%)@ (5)
-|—/F(z+w)Nz(1+—)dz,
5 R?

and, to estimate these integrals, we record the following (here as
usual we write 9iz = x, and we use the notation « <« S to mean
simply that |o| < |B]):

1 Z 2x ) .
= — = —don = R (in particular on A), 6
.t = a9kl (inp ) (6)
1 Z 1 |z|? 2 )
-4 L “ |1+ = | = —onthelinefz = -6,
z + R? < ) ( + R? ) ‘
lz] < R, @)
s 1 ® dn 1
< = — 8
vz +w) < n:ENH — < fN 1= v ®

and

N N
Sy(w — 7)) K Zn"*l < N 14 / n*tdn
0

n=1
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1 1
= Nx —_ — . 9
(N + x) ©)
By (6), (8), (9), on A,

Sy(w — 1
|:FN(Z + w)N* — w] (E + %)

< 1+1+1 2x<4+ 2
X X N /) R?2 — R2 RN’
and so, by the “maximum times length” estimate (M—L formula) for
integrals, we obtain

— 1 4 2
/[rN(erw)NZ— M} (— + i)clz <« =42
A

WE z R? R N
(10)
Next, by (2), (6), and (7), we obtain
/F( v (24 24
i Z Z R2 Z
R 2 ° 2|x| 3
M- -N7°Zdy+2M | 11
< » (Sy-i— /;Sn R22x (11

- AMR " oM .
~ SN®  R?log®?N
Inserting the estimates (10) and (11) into (5) gives
F(w) — Sy(w) < 2y L MR, M
R N 8N°  R2log? N

and, if wefix R = 3/¢, we note that this right-hand sideis < ¢ for
al large N. We have verified the very definition of convergence!

First Proof of the Prime Number Theorem.

Following Landau, we will show that the convergence of ), 4%

(as given above) implies the PNT. Indeed all we need about this

convergent seriesisthe simple corollary that > _, it(n) = o(N).
Expressing everything in terms of the ¢-function, then, we have

established thefact that ;(_lz) has coefficientswhichgoto 0 on average.
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The PNT isequivalent to the fact that the average of the coefficients
of + (z) isequal to 1. For smply note that

¢ d d 1

- = = —— o =——o
;O = -l = - g]Z[l_pz
B d L p~*log p

p

p
_ Z log p

o pe -1
Thislast seriesisthesameas ) %’” where A (n) islog p whenever
nisapower of p, p any prime, and O otherwise. Soindeed theaverage
of these coefficientsis + Y, _, A(n) whoselimit being 1 isexactly
the Prime Number Theorem.

In short, we want the average val ue of the coefficientsof — % (z) —

¢ (z) to approach 0. Writing this function as

1 | d
L@@ - @l =3 “,Ef) [Z D ,in)]

we may write this average (of thefirst N terms)as

1 logh — d(b
5 2 H@llogh —d(b)]

ab<N
1 2
= = 2 w@llogh — d(b) +2y] - S+

ab<N N

where 2y is chosen as the constant for which

K

> Tlogb — d(b) + 2y]

b=1

becomes O (VK).
Now we use the Landau corollary that }, _\ u(n) = o(N) to
conclude that

1
o D ) K BN,

n<N


Administrator
ferret


72 VII. Simple Analytic Proof of the Prime Number Theorem

where§(N) tendsto 0, and our trick isto pick afunction w(N) which
approaches oo but such that w(N)$ ( N)> approaches 0.
This done, we may conclude that

N N
A O|Nw(N)S
Z;(m [wmm]* [w()[<mﬂ
= N 4+ o(N),

w(

and the proof is complete.

Second Proof of the Prime Number Theorem.

In this section, we begin with Tchebychev’s observation that

3 logp _ logn isbounded, 12)

p=n

which he derived in a direct elementary way from the prime
factorization on n!
The point isthat the Prime Number Theoremiseasily derived from

I
Z '9gp logn convergesto alimit, (13

p=n

by a ssimple summation by parts, which we |eave to the reader. Nev-
ertheless the transition from (12) to (13) is not asimple one, and we
turn to this now.

So, for Rz > 1, form the function

o= 5 H(x ) oy ey 1]

n=1 p=n p p p

Now

Zl_ 1 L /OOl_{t}dt
— - (z—1p? z ) L

1
:@fn<w—1+m”0
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where A ,(z) isanalytic for iz > 0 and is bounded by
1 z2(z — 1)
p (p* =1 xpHt

Hence,

1 log p
f@) = — {Z o1t A(z)} :

where A(z) isanalytic for %z > 7 by the Weierstrass M-test.
By Euler’s factorization formula, however, we recognize that

2 07— Liogeca),
p dZ

pr—1

and so we deduce, by (1), that f(z) isanayticin %z > 1 except for
adouble pole with principal part 1/(z — 1)> + ¢/(z — 1) at z = 1.
Thusif we set

FQ=f@Q+{@ =) =

nZ
where
|
_Zw—logn—c (14)
p=n

we deduce that F(z) isanalyticin iz > 1.
From (12) and our convergence theorem, then, we conclude that

ay
> = converges,
n
and fromthisand thefact, from (14), that a,, +0g n isnondecreasing,
we proceed to provea, — O.
By applying the Cauchy criterion we find that, for N large,

N(14€) a, )
Z 2 < e (15)
N n
and
N
M I S _e2, (16)
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Intherange N to N(1 + €), by (14), a, > ay + l0g(N/n) >
ay —e. 0N a,/n = (ay — ) YN 1/n, and (15) yields
2 62 )
SNt 1 <<€+m =2 +¢°. (17)

N n

ay K € +

Similarly iIn[N(1—¢€), N],a, < ay+10g(N/n) < ay +¢/(1—
€), so that

N a, € Noo1
Z ;S(CIN-I-:L_E) Z .

N(1—e) N(1—e)

and (16) gives
. —€ €? . T €? :62—26
N=1_¢ Z%(l_é)%_l—e Ne/N 1—e€

(18)
Taken together, (17) and (18) establish that ay — 0, and so (13) is
proved.
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Problems for Chapter VII
1. Giventhat ) % converges, prove that Zf:’zl a, = o(N).

2. Giventhat Y % convergesand that a, — a,_, > =%, provethat
a, — 0.

3. Show that d(n), the number of divisors of n, is O (n®) for every
positive ¢.

4. Infact, show that d(n) < n i .
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