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Introduction

Purpose. This book was conceived while I was revising my engineer-
ing mathematics textbook. I noticed that in many engineering and scientific
problems the nature of the boundary condition changes, say from a Dirichlet
to a Neumann condition, along a particular boundary. Although these mixed
boundary value problems appear in such diverse fields as elasticity and biome-
chanics, there are only two books (by Sneddon1 and Fabrikant2) that address
this problem and they are restricted to the potential equation. The purpose
of this book is to give an updated treatment of this subject.

The solution of mixed boundary value problems requires considerable
mathematical skill. Although the analytic solution begins using a conven-
tional technique such as separation of variables or transform methods, the
mixed boundary condition eventually leads to a system of equations, involv-
ing series or integrals, that must be solved. The solution of these equations
often yields a Fredholm integral equation of the second kind. Because these
integral equations usually have no closed form solution, numerical methods
must be employed. Indeed, this book is just as much about solving integral
equations as it involves mixed boundary value problems.

Prerequisites. The book assumes that the reader is familiar with the
conventional methods of mathematical physics: generalized Fourier series,
transform methods, Green’s functions and conformal mapping.

1 Sneddon, I. N., 1966: Mixed Boundary Value Problems in Potential Theory. North
Holland, 283 pp.

2 Fabrikant, V. I., 1991: Mixed Boundary Value Problems of Potential Theory and
Their Applications in Engineering. Kluwer Academic, 451 pp.



Audience. This book may be used as either a textbook or a reference
book for anyone in the physical sciences, engineering, or applied mathematics.

Chapter Overview. The purpose of Chapter 1 is twofold. The first
section provides examples of what constitutes a mixed boundary value prob-
lem and how their solution differs from commonly encountered boundary value
problems. The second part provides the mathematical background on integral
equations and special functions that the reader might not know.

Chapter 2 presents mixed boundary value problems in their historical
context. Classic problems from mathematical physics are used to illustrate
how mixed boundary value problems arose and some of the mathematical
techniques that were developed to handle them.

Chapters 3 and 4 are the heart of the book. Most mixed boundary value
problems are solved using separation of variables if the domain is of limited
extent or transform methods if the domain is of infinite or semi-infinite extent.
For example, transform methods lead to the problem of solving dual or triple
Fourier or Bessel integral equations. We then have a separate section for each
of these integral equations.

Chapters 5 through 7 are devoted to additional techniques that are some-
times used to solve mixed boundary value problems. Here each technique is
presented according to the nature of the partial differential or the domain for
which it is most commonly employed or some other special technique.

Numerical methods play an important role in this book. Most integral
equations here require numerical solution. All of this is done using MATLAB

and the appropriate code is included. MATLAB is also used to illustrate the
solutions.

We have essentially ignored brute force numerical integration of mixed
boundary value problems. In most instances conventional numerical methods
are simply applied to these problems. Because the solution is usually dis-
continuous along the boundary that contains the mixed boundary condition,
analytic techniques are particularly attractive.

An important question in writing any book is what material to include
or exclude. This is especially true here because many examples become very
cumbersome because of the nature of governing equations. Consequently we
include only those problems that highlight the mathematical techniques in
a straightforward manner. The literature includes many more problems that
involve mixed boundary value problems but are too complicated to be included
here.

Features. Although this book should be viewed primarily as a source
book on solving mixed boundary value problems, I have included problems
for those who truly wish to master the material. As in my earlier books, I
have included intermediate results so that the reader has confidence that he
or she is on the right track.



List of Definitions

Function Definition

δ(t − a) =
{∞, t = a,

0, t �= a,

∫ ∞

−∞
δ(t − a) dt = 1

Γ(x) gamma function

H(t − a) =
{

1, t > a,
0, t < a.

H
(1)
n (x), H(2)

n (x) Hankel functions of first and second kind and of order n

In(x) modified Bessel function of the first kind and order n

Jn(x) Bessel function of the first kind and order n

Kn(x) modified Bessel function of the second kind and order n

Pn(x) Legendre polynomial of order n

sgn(t − a) =
{−1, t < a,

1, t > a.

Yn(x) Bessel function of the second kind and order n
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Chapter 1

Overview

In the solution of differential equations, an important class of problems
involves satisfying boundary conditions either at end points or along a bound-
ary. As undergraduates, we learn that there are three types of boundary con-
ditions: 1) the solution has some particular value at the end point or along
a boundary (Dirichlet condition), 2) the derivative of the solution equals a
particular value at the end point or in the normal direction along a boundary
(Neumann condition), or 3) a linear combination of Dirichlet and Neumann
conditions, commonly called a “Robin condition.” In the case of partial dif-
ferential equations, the nature of the boundary condition can change along a
particular boundary, say from a Dirichlet condition to a Neumann condition.
The purpose of this book is to show how to solve these mixed boundary value
problems.

1.1 EXAMPLES OF MIXED BOUNDARY VALUE PROBLEMS

Before we plunge into the details of how to solve a mixed boundary value
problem, let us examine the origins of these problems and the challenges to
their solution.

1



2 Mixed Boundary Value Problems

• Example 1.1.1: Separation of variables

Mixed boundary value problems arise during the solution of Laplace’s
equation within a specified region. A simple example1 is

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < π, 0 < y < ∞, (1.1.1)

subject to the boundary conditions

ux(0, y) = u(π, y) = 0, 0 < y < ∞, (1.1.2)

lim
y→∞u(x, y) → 0, 0 < x < π, (1.1.3)

and {
u(x, 0) = 1, 0 ≤ x < c,
uy(x, 0) = 0, c < x ≤ π.

(1.1.4)

The interesting aspect of this problem is the boundary condition given by
Equation 1.1.4. For x between 0 and c, it satisfies a Dirichlet condition which
becomes a Neumann condition as x runs between c and π.

The problem posed by Equation 1.1.1 to Equation 1.1.4 is very similar
to those solved in an elementary course on partial differential equations. For
that reason, let us try and apply the method of separation variables to solve
it. Assuming that u(x, y) = X(x)Y (y), we obtain

X ′′

X
= −Y ′′

Y
= −k2, (1.1.5)

with
X ′(0) = X(π) = 0, and lim

y→∞Y (y) → 0. (1.1.6)

Particular solutions that satisfy Equation 1.1.5 and Equation 1.1.6 are

up(x, y) = Bn exp
[− (n − 1

2

)
y
]
cos
[(

n − 1
2

)
x
]
, (1.1.7)

with n = 1, 2, 3, . . .. Because the most general solution to our problem consists
of a superposition of these particular solutions, we have that

u(x, y) =
∞∑

n=1

An

n − 1
2

exp
[− (n − 1

2

)
y
]
cos
[(

n − 1
2

)
x
]
. (1.1.8)

1 See, for example, Mill, P. L., S. S. Lai, and M. P. Duduković, 1985: Solution methods
for problems with discontinuous boundary conditions in heat conduction and diffusion with
reaction. Indust. Eng. Chem. Fund., 24, 64–77.
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Substituting this general solution into the boundary condition given by Equa-
tion 1.1.4, we obtain

∞∑
n=1

An

n − 1
2

cos
[(

n − 1
2

)
x
]

= 1, 0 ≤ x < c, (1.1.9)

and ∞∑
n=1

An cos
[(

n − 1
2

)
x
]

= 0, c < x ≤ π. (1.1.10)

Both Equations 1.1.9 and 1.1.10 have the form of a Fourier series except that
there are two of them! Clearly the challenge raised by the boundary condition
along y = 0 is the solution of this dual Fourier cosine series given by Equation
1.1.9 and Equation 1.1.10. This solution of these dual Fourier series will be
addressed in Chapter 3.

• Example 1.1.2: Transform methods

In the previous problem, we saw that we could apply the classic method
of separation of variables to solve mixed boundary value problems where the
nature of the boundary condition changes along a boundary of finite length.
How do we solve problems when the boundary becomes infinite or semi-infinite
in length? The answer is transform methods.

Let us solve Laplace’s equation2

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < ∞, 0 < y < h, (1.1.11)

subject to the boundary conditions

ux(0, y) = 0 and lim
x→∞u(x, y) → 0, 0 < y < h, (1.1.12){

uy(x, 0) = 1/h, 0 ≤ x < 1,
u(x, 0) = 0, 1 < x < ∞,

(1.1.13)

and
u(x, h) = 0, 0 ≤ x < ∞. (1.1.14)

The interesting aspect of this problem is the boundary condition given by
Equation 1.1.13. It changes from a Neumann condition to a Dirichlet condition
along the boundary x = 1.

To solve this boundary value problem, let us introduce the Fourier cosine
transform

u(x, y) =
2
π

∫ ∞

0

U(k, y) cos(kx) dk, (1.1.15)

2 See Chen, H., and J. C. M. Li, 2000: Anodic metal matrix removal rate in electrolytic
in-process dressing. I: Two-dimensional modeling. J. Appl. Phys., 87, 3151–3158.



4 Mixed Boundary Value Problems

which automatically fulfills the boundary condition given by Equation 1.1.12.
Then, the differential equation given by Equation 1.1.11 and boundary con-
dition given by Equation 1.1.14 become

d 2U(k, y)
dy2

− k2U(k, y) = 0, 0 < y < h, (1.1.16)

with U(k, h) = 0. Solving Equation 1.1.16 and inverting the transform, we
find that

u(x, y) =
2
π

∫ ∞

0

A(k)
sinh[k(h − y)]

sinh(kh)
cos(kx) dk. (1.1.17)

Substituting Equation 1.1.17 into Equation 1.1.13, we obtain

− 2
π

∫ ∞

0

k coth(kh)A(k) cos(kx) dk = 1/h, 0 ≤ x < 1, (1.1.18)

and
2
π

∫ ∞

0

A(k) cos(kx) dk = 0, 1 < x < ∞. (1.1.19)

Equation 1.1.18 and Equation 1.1.19 are a set of dual integral equations where
A(k) is the unknown. In Chapter 4 we will show how to solve this kind of
integral equation.

• Example 1.1.3: Wiener-Hopf technique

In the previous example we showed how mixed boundary value problems
can be solved using transform methods. Although we have not addressed the
question of how to solve the resulting integral equations, the analysis leading
up to that point is quite straightforward. To show that this is not always
true, consider the following problem:3

∂2u

∂x2
+

∂2u

∂y2
− α2u = 0, −∞ < x < ∞, 0 < y. (1.1.20)

At infinity, we have that limy→∞ u(x, y) → 0 while along y = 0,{
u(x, 0) = 1, x < 0,

u(x, 0) = 1 + λuy(x, 0), x > 0, (1.1.21)

where 0 < α, λ.

3 A considerably simplified version of a problem solved by Dawson, T. W., and J. T.
Weaver, 1979: H-polarization induction in two thin half-sheets. Geophys. J. R. Astr. Soc.,
56, 419–438.
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Before tackling the general problem, let us find the solution at large
|x|. In these regions, the solution becomes essentially independent of x and
Equation 1.1.20 becomes an ordinary differential equation in y. The solution
as x → −∞ is

u(x, y) = e−αy, (1.1.22)

while for x → ∞ the solution approaches

u(x, y) =
e−αy

1 + αλ
. (1.1.23)

Note how these solutions satisfy the differential equation and boundary con-
ditions as y → ∞ and at y = 0.

Why are these limiting cases useful? If we wish to use Fourier transforms
to solve the general problem, then u(x, y) must tend to zero as |x| → ∞ so
that the Fourier transform exists. Does that occur here? No, because u(x, y)
tends to constant, nonzero values as x → −∞ and x → ∞. Therefore, the
use of the conventional Fourier transform is not justified.

Let us now introduce the intermediate dependent variable v(x, y) so that

u(x, y) =
e−αy

1 + αλ
+ v(x, y). (1.1.24)

Substituting Equation 1.1.24 into Equation 1.1.20, we obtain

∂2v

∂x2
+

∂2v

∂y2
− α2v = 0, −∞ < x < ∞, 0 < y. (1.1.25)

The boundary condition at infinity now reads limy→∞ v(x, y) → 0 while{
v(x, 0) = αλ/(1 + αλ), x < 0,

v(x, 0) = λvy(x, 0), x > 0. (1.1.26)

This substitution therefore yields a v(x, y) that tends to zero as x → ∞.
Unfortunately, v(x, y) does not tend to zero as x → −∞. Consequently, once
again we cannot use the conventional Fourier transform to solve this mixed
boundary value problem; we appear no better off than before. In Chapter
5, we show that is not true and how the Wiener-Hopf technique allows us to
solve these cases analytically.

• Example 1.1.4: Green’s function

In Example 1.1.2 we used transform methods to solve a mixed boundary
value problem that eventually lead to integral equations that we must solve.
An alternative method of solving this problem involves Green’s functions as
the following example shows.



6 Mixed Boundary Value Problems

Consider the problem4

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < L, (1.1.27)

subject to the boundary conditions{
uy(x, 0) = −h(x), |x| < 1,

u(x, 0) = 0, |x| > 1, (1.1.28)

u(x, L) = 0, −∞ < x < ∞, (1.1.29)

and
lim

|x|→∞
u(x, y) → 0, 0 < y < L. (1.1.30)

From the theory of Green’s functions, the solution to Equation 1.1.27 through
Equation 1.1.30 is

u(x, y) =
∫ 1

−1

f(ξ)
∂g(x, y|ξ, 0)

∂η
dξ, (1.1.31)

where g(x, y|ξ, η) is the Green’s function defined by

∂2g

∂x2
+

∂2g

∂y2
= −δ(x − ξ)δ(y − η), −∞ < x, ξ < ∞, 0 < y, η < L,

(1.1.32)
and the boundary conditions

g(x, 0|ξ, η) = g(x, L|ξ, η) = 0, −∞ < x < ∞, (1.1.33)

and
lim

|x|→∞
g(x, y|ξ, η) → 0, 0 < y < L, (1.1.34)

and f(ξ) is an unknown function such that u(ξ, 0) = f(ξ) if |ξ| ≤ 1.
To find g(x, y|ξ, η), we first take the Fourier transform of Equation 1.1.32

through Equation 1.1.34 with respect to x. This yields

d2G

dy2
− k2G = −e−ikξ

L
δ(y − η), (1.1.35)

with the boundary conditions G(k, 0|ξ, η) = G(k, L|ξ, η) = 0. Because

δ(y − η) =
2
L

∞∑
n=1

sin
(nπη

L

)
sin
(nπy

L

)
(1.1.36)

4 Taken with permission from Yang, F., V. Prasad, and I. Kao, 1999: The thermal
constriction resistance of a strip contact spot on a thin film. J. Phys. D. Appl. Phys., 32,
930–936. Published by IOP Publishing Ltd.
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and assuming

G(k, y|ξ, η) =
∞∑

n=1

An sin
(nπy

L

)
, (1.1.37)

direct substitution gives(
n2π2

L2
+ k2

)
An =

2
L

e−ikξ sin
(nπη

L

)
, (1.1.38)

and

G(k, y|ξ, η) =
2
L

e−ikξ
∞∑

n=1

sin(nπη/L) sin(nπy/L)
k2 + n2π2/L2

. (1.1.39)

Inverting the Fourier transforms in Equation 1.1.39 term by term, we obtain

g(x, y|ξ, η) =
1
π

∞∑
n=1

1
n

exp
(
−nπ

L
|x − ξ|

)
sin
(nπη

L

)
sin
(nπy

L

)
(1.1.40)

=
1
2π

∞∑
n=1

1
n

exp
(
−nπ

L
|x − ξ|

)
×
{

cos
[
nπ(y − η)

L

]
− cos

[
nπ(y + η)

L

]}
. (1.1.41)

Because
∞∑

n=1

qn

n
cos(nα) = − ln

[√
1 − 2q cos(α) + q2

]
, (1.1.42)

provided that |q| < 1 and 0 ≤ α ≤ 2π, we have that

g(x, y|ξ, η) = − 1
4π

ln
{

cosh[π(x − ξ)/L] − cos[π(y − η)/L]
cosh[π(x − ξ)/L] − cos[π(y + η)/L]

}
. (1.1.43)

Substituting Equation 1.1.43 into Equation 1.1.31 and simplifying, we have

u(x, y) =
1

2L

∫ 1

−1

f(ξ) sin(πy/L)
cosh[π(x − ξ)/L] − cos(πy/L)

dξ. (1.1.44)

Finally, computing uy(x, 0) and using Equation 1.1.28, we obtain the integral
equation

π

4L2

∫ 1

−1

f(ξ)
sinh2[π(x − ξ)/(2L)]

dξ = −h(x), |x| < 1. (1.1.45)

Integrating by parts with f(1) = f(−1) = 0, an equivalent integral equation
is

1
2L

∫ 1

−1

f ′(ξ) coth[π(x − ξ)/(2L)] dξ = h(x), |x| < 1. (1.1.46)
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Once again, we have reduced the mixed boundary value problem to finding
the solution of an integral equation. Chapter 6 is devoted to solving Equation
1.1.46 as well as other mixed boundary value problems via Green’s function.

• Example 1.1.5: Conformal mapping

Conformal mapping is a mathematical technique involving two complex
variables: z = x + iy and t = r + is. Given an analytic function t = g(z),
the domain over which Laplace’s equation holds in the z-plane is mapped into
some portion of the t-plane, such as an upper half-plane, rectangle or circle. It
is readily shown that Laplace’s equation and the Dirichlet and/or Neumann
conditions in the z-plane also apply in the t-plane. For this method to be
useful, the solution of Laplace’s equation in the t-plane must be easier than
in the z-plane.

For us the interest in conformal mapping lies in the fact that a solution
to Laplace’s equation in the xy-plane is also a solution to Laplace’s equation
in the rs-plane. Of equal importance, if the solution along a boundary in
the xy-plane is constant, it is also constant along the corresponding boundary
in the rs-plane. For these reasons, conformal mapping has been a powerful
method for solving Laplace’s equation since the nineteenth century. Let us
see how we can use this technique to solve a mixed boundary value problem.

Let us solve Laplace’s equation5

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < a, 0 < y < ∞, (1.1.47)

subject to the boundary conditions

u(0, y) = 0, 0 < y < ∞, (1.1.48){
u(a, y) = 1, 0 < y < c,
ux(a, y) = 0, c < y < ∞,

(1.1.49)

and
uy(x, 0) = 0, lim

y→∞u(x, y) → 0, 0 < x < a. (1.1.50)

Consider the transformation t = − cos(πz/a). As Figure 1.1.1 shows,
this transformation maps the strip 0 < x < a, 0 < y < ∞ into the half-plane
0 < �(t): The boundary x = a, y > 0 is mapped into �(t) > cosh(πc/a),
�(t) = 0 while the x-axis lies along −1 < �(t) < 1, �(t) = 0.

Consider next, the fractional linear transformation

s =
αt + β

γt + δ
, (1.1.51)

5 Laporte, O., and R. G. Fowler, 1966: Resistance of a plasma slab between juxtaposed
disk electrodes. Phys. Rev., 148, 170–175.
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Figure 1.1.1: Lines of constant values of of x/a (solid line) and y/a (dashed lines) in the
t-plane given by the conformal mapping t = − cos(πz/a).

where
α = D/k, γ = D, (1.1.52)

β = (D/2)[(1 − 1/k)ψ − (1 + 1/k)], (1.1.53)

δ = (D/2)[(1/k − 1)ψ − (1 + 1/k)], (1.1.54)

D is a free parameter, and

1
k

=
ψ + 3 +

√
8ψ + 8

ψ − 1
; ψ = cosh(πc/a). (1.1.55)

We illustrate this conformal mapping in Figure 1.1.2 when c/a = 1 and D = 1.
Finally, we introduce the conformal mapping s = sn(ζ, k), where sn(·, k)

denotes one of the Jacobian elliptic functions.6 This maps the half-plane
�(s) > 0 into a rectangular box with vertices at (K, 0), (K, K ′), (−K, K ′)
and (−K, 0), where K and K ′ are the real and imaginary quarter-periods,
respectively. We show this conformal mapping in Figure 1.1.3 when c/a = 1
and D = 1.

Why have we introduced these three conformal mappings? After applying
these three mappings, our original problem, Equation 1.1.47 through Equation

6 See Milne-Thomson, L. M., 1965: Jacobian elliptic functions and theta functions.
Handbook of Mathematical Functions, M. Abromowitz and I. A. Stegun, Eds., Dover, 567–
586.
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Figure 1.1.2: Same as Figure 1.1.1 except that we have the additional mapping given
by Equation 1.1.51 with c/a = 1 or k = 0.430 by Equation 1.1.55. If D = 1, α = 2.325,
β = −9.344, γ = 1, and δ = 6.018.

Figure 1.1.3: Same as Figure 1.1.2 except that we have the additional mapping s =
sn(ζ, k), where K = 1.779 and K ′ = 1.918.
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1.1.50, becomes

∂2u

∂ξ2
+

∂2u

∂η2
= 0, −K < ξ < K, 0 < η < K ′, (1.1.56)

subject to the boundary conditions

u(ξ, 0) = 1, u(ξ, K ′) = 0, −K < ξ < K, (1.1.57)

and
uξ(−K, η) = uξ(K, η) = 0, (1.1.58)

where ζ = ξ + iη. The solution to Equation 1.1.56 through Equation 1.1.58 is

u(ξ, η) = 1 − η/K ′. (1.1.59)

By using Equation 1.1.59 and the three conformal mappings, we can solve
Equation 1.1.47 through Equation 1.1.50 as follows: For a rectangular grid
over the domain −K < ξ < K, 0 < η < K ′, we compute the values of
u(ξ, η). Next, using the MATLAB R© procedure ellipj, we find the values of
the Jacobian elliptic functions to compute s. Because ζ is complex, we use
the relationship

sn(x + iy, k) =
sn(x, k)dn(y, k′)

cn2(y, k′) + k sn2(x, k)sn2(y, k′)

+ i
sn(x, k)dn(x, k)sn(y, k′)dn(y, k′)
cn2(y, k′) + k sn2(x, k)sn2(y, k′)

, (1.1.60)

where k′ = 1 − k. Next, we use Equation 1.1.51 to compute t given s. Fi-
nally, z = arccos(−t)/π. Thus, for a particular value of x and y, we have
u(x, y). Figure 1.1.4 illustrates this solution. In Chapter 7, we will explore
this technique further.

• Example 1.1.6: Numerical methods

Numerical methods are necessary in certain instances because the geom-
etry may be simply too complicated for analytic techniques. These techniques
are similar to those applied to solve most partial differential equations. How-
ever, because most of the solutions are discontinuous along the boundary, a
few papers have examined the application of finite differences to mixed bound-
ary value problems.7

7 Greenspan, D., 1964: On the numerical solution of problems allowing mixed boundary
conditions. J. Franklin Inst., 277, 11–30; Bramble, J. H., and B. E. Hubbard, 1965: Ap-
proximation of solutions of mixed boundary value problems for Poisson’s equation by finite
differences. J. Assoc. Comput. Mach., 12, 114–123; Thuraisamy, V., 1969: Approximate
solutions for mixed boundary value problems by finite-difference methods. Math. Comput.,
23, 373–386.
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Figure 1.1.4: The solution to the mixed boundary value problem governed by Equation
1.1.47 to Equation 1.1.50.

Consider the mixed boundary value problem
∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞, (1.1.61)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, lim

|z|→∞
u(r, z) → 0, (1.1.62)

and
u(r,±h) = ±1, 0 < r < a. (1.1.63)

Due to symmetry, we can reduce the domain to the half-space z > 0 by
requiring that u(r, 0) = 0 for 0 ≤ r < ∞.

Although there is an exact solution8 to this problem, we will act as if there
is none and solve it purely by numerical methods. Introducing a grid with
nodal points located at rn = n∆r and zm = m∆z, where n = 0, 1, 2, . . . , N
and m = 0, 1, 2, . . . , M , and applying simple second-order, finite differences
to represent the partial derivatives, Equation 1.1.61 can be approximated by

un+1,m − 2un,m + un−1,m

(∆r)2
+

un+1,m − un−1,m

2n(∆r)2

+
un,m+1 − 2un,m + un,m−1

(∆z)2
= 0, (1.1.64)

8 Bartlett, D. F., and T. R. Corle, 1985: The circular parallel plate capacitor: A nu-
merical solution for the potential. J. Phys. A, 18, 1337–1342. See also Schwarzbek, S. M.,
and S. T. Ruggiero, 1986: The effect of fringing fields on the resistance of a conducting
film. IEEE Microwave Theory Tech., MTT-34, 977–981.
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where n = 1, 2, . . . , N −1 and m = 1, 2, . . . , M −1. Axial symmetry yields for
n = 0:

2u1,m − 2u0,m

(∆r)2
+

u0,m+1 − 2u0,m + u0,m−1

(∆z)2
= 0, (1.1.65)

with m = 1, 2, . . . , M − 1. Finally,

un,0 = un,M = 0, n = 0, 1, 2, . . . , N, (1.1.66)

uN,m = 0, m = 0, 1, 2, . . . , M, (1.1.67)

and
un,H = 1, n = 0, 1, 2, . . . , I, (1.1.68)

where a = I∆r and h = H∆z. In Equation 1.1.64 through Equation 1.1.68,
we have denoted u(rn, zm) simply by un,m.

Although this system of equations could be solved using techniques from
linear algebra, that would be rather inefficient; in general, these equations
form a sparse matrix. For this reason, an iterative method is best. A simple
one is to solve for un,m in Equation 1.1.64. Assuming ∆r = ∆z, we obtain

ui+1
n,m = 1

4

[
ui

n+1,m + ui+1
n−1,m + ui

n,m+1 + ui+1
n,m−1 +

(
ui

n+1,m − ui+1
n−1,m

)
/(2n)

]
,

(1.1.69)
where n = 1, 2, . . . , N − 1 and m = 1, 2, . . . , M − 1. Similarly,

ui+1
0,m = 1

4

(
2ui

1,m + ui
0,m+1 + ui+1

0,m−1

)
, (1.1.70)

where m = 1, 2, . . . , M − 1. Here, we denote the value of un,m during the
ith iteration with the subscript i. This iterative scheme is an example of the
Gauss-Seidel method. It is particularly efficient because un−1,m and un,m−1

have already been updated.
Figure 1.1.5 illustrates this numerical solution by showing un,m at various

points during the iterative process. Initially, there is dramatic change in the
solution, followed by slower change as i becomes large.

1.2 INTEGRAL EQUATIONS

An integral equation is any equation in which the unknown appears in the
integrand. Let ϕ(t) denote the unknown function, f(x) is a known function,
and K(x, t) is a known integral kernel, then a wide class of integral equations
can be written as

f(x) =
∫ b

a

K(x, t)ϕ(t) dt, (1.2.1)

or

ϕ(x) = f(x) +
∫ b

a

K(x, t)ϕ(t) dt. (1.2.2)
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Figure 1.1.5: A portion of the numerical solution of Equation 1.1.61 through Equation
1.1.63 using the Gauss-Seidel scheme to solve the finite differenced equations. The param-
eters used in this example are N = M = 200, ∆r = ∆z = 0.01, a = 0.4, and h = 0.2.

A common property of these integral equations is the fixed limits in the inte-
gral. These integral equations are collectively called “Fredholm integral equa-
tions,” named after the Swedish mathematician Erik Ivar Fredholm (1866–
1927) who first studied them. Equation 1.2.1 is referred to as a Fredholm
integral equation of the first kind while Equation 1.2.2 is a Fredholm integral
equation of the second kind; integral equations of the second kind differ from
integral equations of the first kind in the appearance of the unknown outside
of the integral. In an analogous manner, integral equations of the form

f(x) =
∫ x

a

K(x, t)ϕ(t) dt, (1.2.3)

and

ϕ(x) = f(x) +
∫ x

a

K(x, t)ϕ(t) dt, (1.2.4)

are referred to as Volterra integrals of the first and second kind, respectively.
Named after the Italian mathematician Vito Volterra (1860–1940), they have
in common the property that one of the limits is a variable.



Overview 15

• Example 1.2.1

An example of Volterra equation of the first kind that we will often en-
counter is ∫ x

a

f(t)
[h(x) − h(t)]α

dt = g(x), a < x < b, (1.2.5)

where 0 < α < 1 and h(t) is a strictly monotonically increasing function in
(a, b). Srivastav9 showed that integral equations of the form of Equation 1.2.5
have the solution

f(t) =
sin(πα)

π

d

dt

{∫ t

a

h′(τ)g(τ)
[h(t) − h(τ)]1−α

dτ

}
, a < t < b. (1.2.6)

In a similar manner, the integral equation∫ b

x

f(t)
[h(t) − h(x)]α

dt = g(x), a < x < b, (1.2.7)

where 0 < α < 1 and h(t) is a strictly monotonically increasing function in
(a, b) has the solution

f(t) = − sin(πα)
π

d

dt

{∫ b

t

h′(τ)g(τ)
[h(τ) − h(t)]1−α

dτ

}
, a < t < b. (1.2.8)

To illustrate Equation 1.2.5, let us choose h(τ) = 1 − cos(τ) and α = 1
2 .

In this case, it now reads∫ x

a

f(t)√
cos(t) − cos(x)

dt = g(x), 0 ≤ a < x < b ≤ π, (1.2.9)

has the solution

f(t) =
1
π

d

dt

[∫ t

a

sin(τ)g(τ)√
cos(τ) − cos(t)

dτ

]
, a < t < b. (1.2.10)

Similarly,∫ b

x

f(t)√
cos(x) − cos(t)

dt = g(x), 0 ≤ a < x < b ≤ π, (1.2.11)

has the solution

f(t) = − 1
π

d

dt

[∫ b

t

sin(τ)g(τ)√
cos(t) − cos(τ)

dτ

]
, a < t < b. (1.2.12)

9 Srivastav, R. P., 1963: A note on certain integral equations of Abel-type. Proc.
Edinburgh Math. Soc., Ser. 2 , 13, 271–272.
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A second application occurs if we set h(τ) = τ2. In this case we have the
integral equation (Abel-type integral equation)∫ x

a

f(t)
(x2 − t2)α

dt = g(x), 0 < α < 1, a < x < b, (1.2.13)

which has the solution

f(t) =
2 sin(πα)

π

d

dt

[∫ t

a

τ g(τ)
(t2 − τ2)1−α

dτ

]
, a < t < b. (1.2.14)

Taken together, Equation 1.2.13 and Equation 1.2.14 are known as an interior
Abel transform. Similarly,∫ b

x

f(t)
(t2 − x2)α

dt = g(x), 0 < α < 1, a < x < b, (1.2.15)

has the solution

f(t) = −2 sin(πα)
π

d

dt

[∫ b

t

τ g(τ)
(τ2 − t2)1−α

dτ

]
, a < t < b. (1.2.16)

Equation 1.2.15 and Equation 1.2.16 are known as an exterior Abel transform.
Finally, if α = 1

2 , f(t) = F ′(t), and h(t) = t, Equation 1.2.5 and Equation
1.2.6 yield

F ′(t) =
1
π

d

dt

[∫ t

a

g(η)√
t − η

dη

]
, (1.2.17)

where

g(η) =
∫ η

a

F ′(ξ)√
η − ξ

dξ. (1.2.18)

Combining Equation 1.2.17 and Equation 1.2.18,

F ′(t) =
1
π

d

dt

{∫ t

a

1√
t − η

[∫ η

a

F ′(ξ)√
η − ξ

dξ

]
dη

}
. (1.2.19)

Integrating both sides of Equation 1.2.19 from a to x, we obtain∫ x

a

1√
x − η

[∫ η

a

F ′(ξ)√
η − ξ

dξ

]
dη = π[F (x) − F (a)]. (1.2.20)

In a similar manner, Equation 1.2.7 and Equation 1.2.8 can be combined to
yield ∫ a

x

1√
x − η

[∫ η

a

F ′(ξ)√
η − ξ

dξ

]
dη = π[F (a) − F (x)]. (1.2.21)
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Hafen10 derived Equation 1.2.20 and Equation 1.2.21 in 1910.

• Example 1.2.2

Consider the integral equation of the form∫ x

0

K(x2 − t2)f(t) dt = g(x), 0 < x, (1.2.22)

where K(·) is known. We can solve equations of this type by reducing them
to ∫ ξ

0

K(ξ − τ)F (τ) dτ = G(ξ), 0 < ξ, (1.2.23)

via the substitutions x =
√

ξ, t =
√

τ , F (τ) = f(
√

τ ) / (2
√

τ ), G(ξ) = g
(√

ξ
)
.

Taking the Laplace transform of both sides of Equation 1.2.23, we have by
the convolution theorem

L[K(t)]L[F (t)] = L[G(t)]. (1.2.24)

Defining L[L(t)] = 1/{sL[K(t)]}, we have by the convolution theorem

F (ξ) =
d

dξ

[∫ ξ

0

L(ξ − τ)G(τ) dτ

]
, (1.2.25)

or

f(x) = 2
d

dx

[∫ x

0

tg(t)L(x2 − t2) dt

]
. (1.2.26)

To illustrate this method, we choose K(t) = cos
(
k
√

t
)
/
√

t which has the
Laplace transform L[K(t)] =

√
πe−k2/(4s)/

√
s. Then,

L(t) = L−1

[
ek2/(4s)

√
πs

]
=

cosh
(
k
√

t
)

π
√

t
. (1.2.27)

Therefore, the integral equation∫ x

0

cosh
(
k
√

x2 − t2
)

√
x2 − t2

f(t) dt = g(x), 0 < x, (1.2.28)

has the solution

f(x) =
2
π

d

dx

[∫ x

0

cosh
(
k
√

x2 − t2
)

√
x2 − t2

tg(t) dt

]
. (1.2.29)

10 Hafen, M., 1910: Studien über einige Probleme der Potentialtheorie. Math. Ann., 69,
517–537.
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In particular, if g(0) = 0, then

f(x) =
2x

π

∫ x

0

cosh
(
k
√

x2 − t2
)

√
x2 − t2

g′(t) dt. (1.2.30)

• Example 1.2.3

In 1970, Cooke11 proved that the solution to the integral equation∫ 1

0

ln
∣∣∣∣x + t

x − t

∣∣∣∣ h(t) dt = πf(x), 0 < x < 1, (1.2.31)

is

h(t) = − 2
π

d

dt

[∫ 1

t

α S(α)√
α2 − t2

dα

]
+

2f(0+)
πt
√

1 − t2
, (1.2.32)

where

S(α) =
∫ α

0

f ′(ξ)√
α2 − ξ2

dξ. (1.2.33)

We will use this result several times in this book. For example, at the begin-
ning of Chapter 4, we must solve the integral equation

− 1
π

∫ 1

0

g(t) ln
∣∣∣∣tanh(βx) + tanh(βt)
tanh(βx) − tanh(βt)

∣∣∣∣ dt =
x

h
, 0 ≤ x < 1, (1.2.34)

where 2hβ = π. How does Equation 1.2.31 help us here? If we introduce
the variables tanh(βt) = tanh(β)T and tanh(βx) = tanh(β)X , then Equa-
tion 1.2.34 transforms into an integral equation of the form Equation 1.2.31.
Substituting back into the original variables, we find that

h(t) =
1
π2

d

dt

∫ 1

t

tanh(βα)S(α)

cosh2(βα)
√

tanh2(βα) − tanh2(βt)
dα

 , (1.2.35)

where
S(α) =

∫ α

0

dξ√
tanh2(βα) − tanh2(βξ)

. (1.2.36)

Another useful result derived by Cooke is that the solution to the integral
equation∫ 1

0

g(y) log
( |x2 − y2|

y2

)
dy = πf(x), 0 < x < 1, (1.2.37)

11 Cooke, J. C., 1970: The solution of some integral equations and their connection with
dual integral equations and series. Glasgow Math. J., 11, 9–20.
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is

g(y) =
2

π
√

1 − y2

∫ 1

0

x
√

1 − x2

x2 − y2
f ′(x) dx +

C√
1 − y2

, (1.2.38)

or

g(y) =
2
πy

d

dy

[
τ S(τ)√
τ2 − y2

dτ

]
+

C√
1 − y2

, (1.2.39)

where

S(τ) = τ
d

dτ

[∫ τ

0

f(x)√
τ2 − x2

dx

]
=
∫ τ

0

x f ′(x)√
τ2 − x2

dx. (1.2.40)

If f(x) is a constant, the equation has no solution. We will use Equation
1.2.39 and Equation 1.2.40 in Chapter 6.

• Example 1.2.4

Many solutions to dual integrals hinge on various improper integrals that
contain Bessel functions. For example, consider the known result12 that∫ ∞

0

Jν(βx)
Jµ

(
α
√

x2 + z2
)√

(x2 + z2)µ
xν+1 dx (1.2.41)

=
βν

αµ

(√
α2 − β2

z

)µ−ν−1

Jµ−ν−1

(
z
√

α2 − β2
)

H(α − β),

if �(µ) > �(ν) > −1. Akhiezer13 used Equation 1.2.41 along with the result14

that the integral equation

g(x) =
∫ x

0

f(t)

(√
x2 − t2

ik

)−p

J−p

(
ik
√

x2 − t2
)

dt (1.2.42)

has the solution

f(x) =
d

dx

∫ x

0

t g(t)

(√
x2 − t2

k

)−q

J−q

(
k
√

x2 − t2
)

dt

 , (1.2.43)

12 Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products.
Academic Press, Formula 6.596.6.

13 Akhiezer, N. I., 1954: On some coupled integral equations (in Russian). Dokl. Akad.
Nauk USSR, 98, 333–336.

14 Polyanin, A. D., and A. V. Manzhirov, 1998: Handbook of Integral Equations. CRC
Press, Formula 1.8.71.
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where p > 0, q > 0, and p + q = 1.
Let us use these results to find the solution to the dual integral equations∫ ∞

α

C(k)Jν(kx) dk = f(x), 0 < x < 1, (1.2.44)

and ∫ ∞

0

C(k)J−ν(kx) dk = 0, 1 < x < ∞, (1.2.45)

where α ≥ 0 and 0 < ν2 < 1.
We begin by introducing

C(k) = k1−ν

∫ 1

0

h(t)J0

(
t
√

k2 − α2
)

dt. (1.2.46)

Then,∫ ∞

0

C(k)J−ν(kx) dk

=
∫ 1

0

h(t)
[∫ ∞

0

k1−νJ−ν(kx)J0

(
t
√

k2 − α2
)

dk

]
dt (1.2.47)

=
∫ 1

0

h(t)
xν

(√
t2 − x2

iα

)ν−1

Jν−1

(
iα
√

t2 − x2
)

H(t − x) dt (1.2.48)

= 0, (1.2.49)

because 0 ≤ t ≤ 1 < x < ∞. Therefore, the introduction of the integral defi-
nition for C(k) results in Equation 1.2.45 being satisfied identically. Turning
now to Equation 1.2.44,∫ 1

0

h(t)
[∫ ∞

α

k1−νJν(kx)J0

(
t
√

k2 − α2
)

dk

]
dt = f(x) (1.2.50)

for 0 < x < 1. Now, if we introduce η2 = k2 − α2,∫ ∞

α

k1−νJν(kx)J0

(
t
√

k2 − α2
)

dk

=
∫ ∞

0

Jν

(
x
√

η2 + α2
)

J0(tη)
η√

(η2 + α2)ν
dη (1.2.51)

=
1
xν

(√
x2 − t2

−α

)ν−1

Jν−1

(
−α
√

x2 − t2
)

H(x − t), (1.2.52)

upon applying Equation 1.2.41. Therefore, Equation 1.2.50 simplifies to∫ x

0

h(t)
xν

(√
x2 − t2

−α

)ν−1

Jν−1

(
−α
√

x2 − t2
)

dt = f(x) (1.2.53)
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with 0 < x < 1. Therefore, the solution to the dual integral equations,
Equation 1.2.44 and Equation 1.2.45, consists of Equation 1.2.46 and

h(t) =
d

dt

∫ t

0

f(x)xν+1

(√
t2 − x2

iα

)−ν

J−ν

(
iα
√

t2 − x2
)

dx

 (1.2.54)

if 0 < ν < 1. This solution also applies to the dual integral equation:∫ ∞

α

C(k)J1+ν(kx)k dk = −xν d

dx

[
x−νf(x)

]
, 0 < x < 1, (1.2.55)

and ∫ ∞

0

C(k)J−1−ν(kx)k dk = 0, 1 < x < ∞, (1.2.56)

when −1 < ν < 0.
In a similar manner, let us show the dual integral equation∫ ∞

α

S(k)J0(kx)k dk = f(x), 0 < x < 1, (1.2.57)

and ∫ ∞

0

S(k)J0(kx)(k2 − α2)pk dk = 0, 1 < x < ∞, (1.2.58)

where α ≥ 0 and 0 < p2 < 1.
We begin by introducing

S(k) =
∫ 1

0

h(t)(√
k2 − α2

)p J−p

(
t
√

k2 − α2
)

dt. (1.2.59)

It is straightforward to show that this choice for S(k) satisfies Equation 1.2.58
identically. When we perform an analysis similar to Equation 1.2.50 through
Equation 1.2.53, we find that

f(x) =
∫ x

0

h(t)
tp

(√
x2 − t2

α

)p−1

Jp−1

(
α
√

x2 − t2
)

dt (1.2.60)

if 0 < p < 1; or

f(x) =
1
x

d

dx

[∫ x

0

h(t)
tp

(√
x2 − t2

α

)p

Jp

(
α
√

x2 − t2
)

dt

]
(1.2.61)

if −1 < p < 0. To obtain Equation 1.2.61, we integrated Equation 1.2.57 with
respect to x which yields

1
x

∫ x

0

f(ξ)ξ dξ =
∫ ∞

α

S(k)J1(kx) dx. (1.2.62)
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Applying Equation 1.2.42 and Equation 1.2.43, we have that

h(t) = tp
d

dt

∫ ∞

0

x f(x)

(√
t2 − x2

iα

)−p

J−p

(
iα
√

t2 − α2
)

dx

 (1.2.63)

for 0 < p < 1; and

h(t) = t1+p

∫ t

0

x f(x)

(√
t2 − x2

iα

)−1−p

J−1−p

(
iα
√

t2 − α2
)

dx (1.2.64)

for −1 < p < 0. Therefore, the solution to the dual integral equations Equa-
tion 1.2.57 and Equation 1.2.58 has the solution Equation 1.2.59 along with
Equation 1.2.63 or Equation 1.2.64 depending on the value of p.

1.3 LEGENDRE POLYNOMIALS

In this book we will encounter special functions whose properties will be
repeatedly used to derive important results. This section focuses on Legendre
polynomials.

Legendre polynomials15 are defined by the power series:

Pn(x) =
m∑

k=0

(−1)k (2n − 2k)!
2nk!(n − k)!(n − 2k)!

xn−2k, (1.3.1)

where m = n/2, or m = (n−1)/2, depending upon which is an integer. Figure
1.3.1 illustrates the first four Legendre polynomials.

Legendre polynomials were originally developed to satisfy the differential
equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0, (1.3.2)

or
d

dx

[
(1 − x2)

dy

dx

]
+ n(n + 1)y = 0, (1.3.3)

that arose in the separation-of-variables solution of partial differential equa-
tions in spherical coordinates. Several of their properties are given in Table
1.3.1.

15 Legendre, A. M., 1785: Sur l’attraction des sphéröıdes homogènes. Mém. math. phys.
présentés à l’Acad. Sci. pars divers savants, 10, 411–434. The best reference on Legendre
polynomials is Hobson, E. W., 1965: The Theory of Spherical and Ellipsoidal Harmonics.
Chelsea Publishing Co., 500 pp.
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Table 1.3.1: Some Useful Relationships Involving Legendre Polynomials

Rodrigues’s formula

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n

Recurrence formulas

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0, n = 1, 2, 3, . . .

P ′
n+1(x) − P ′

n−1(x) = (2n + 1)Pn(x), n = 1, 2, 3, . . .

Orthogonality condition

∫ 1

−1

Pn(x)Pm(x) dx =


0, m �= n,

2
2n + 1

, m = n.

For us, the usefulness in Legendre polynomials arises from the integral
representation

Pn[cos(θ)] =
2
π

∫ θ

0

cos[(n + 1
2 )x]√

2[cos(x) − cos(θ)]
dx (1.3.4)

=
2
π

∫ π

θ

sin[(n + 1
2 )x]√

2[cos(θ) − cos(x)]
dx. (1.3.5)

Equation 1.3.4 is known as the Mehler formula.16

• Example 1.3.1

Let us simplify

1√
2

∞∑
n=1

[1 − cos(nx)] {Pn−1[cos(t)] − Pn[cos(t)]} ,

where 0 < x, t < π.

16 Mehler, F. G., 1881: Ueber eine mit den Kugel- und Cylinderfunctionen verwandte
Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung. Math. Ann.,
18, 161–194.



24 Mixed Boundary Value Problems

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

1.5

P

P

P P

0

3 1

2

(x)

(x)

(x)

(x)

Figure 1.3.1: The first four Legendre functions of the first kind.

We begin by noting that

1√
2

∞∑
n=1

[1 − cos(nx)] {Pn−1[cos(t)] − Pn[cos(t)]}

=
1√
2

∞∑
n=0

Pn[cos(t)] − cos[(n + 1)x]Pn[cos(t)]

− 1√
2

∞∑
n=0

Pn[cos(t)] − cos(nx)Pn[cos(t)] (1.3.6)

=
1√
2

∞∑
n=0

Pn[cos(t)] {cos(nx) − cos[(n + 1)x]} (1.3.7)

=
√

2 sin
(x

2

) ∞∑
n=0

Pn[cos(t)] sin
[
(2n + 1)x

2

]
. (1.3.8)

Applying the results from Problem 1, we finally obtain

1√
2

∞∑
n=1

[1−cos(nx)] {Pn−1[cos(t)] − Pn[cos(t)]} =
sin(x/2)H(x − t)√

cos(t) − cos(x)
. (1.3.9)

• Example 1.3.2

Tranter and Cooke17 used Legendre polynomials to prove that
∞∑

n=0

J2n+1(z) cos
[(

n + 1
2

)
x
]

=
z

4
√

2

∫ π

x

sin(η)J0[z sin(η/2)]√
cos(x) − cos(η)

dη. (1.3.10)

17 Tranter, C. J., and J. C. Cooke, 1973: A Fourier-Neumann series and its application
to the reduction of triple cosine series. Glasgow Math. J., 14, 198–201.
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They began by using the formula18

√
2

∞∑
n=0

cos
[(

n + 1
2

)
x
]
Pn[cos(η)] =

{
1/
√

cos(x) − cos(η), 0 ≤ x < η < π,
0, 0 < η < x < π.

(1.3.11)
Now,19

1
2zJ0[z sin(η/2)] =

∞∑
n=0

(2n + 1)Pn[cos(η)]J2n+1(z). (1.3.12)

Here the hypergeometric function in Watson’s formula is replaced with Leg-
endre polynomials. Multiplying Equation 1.3.12 by sin(η)/

√
cos(x) − cos(η),

integrating with respect to η from x to π and using the results from Problem
2, we obtain Equation 1.3.10.

In a similar manner, we also have

∞∑
n=0

J2n+1(z) sin
[(

n + 1
2

)
x
]

=
z

4
√

2

∫ x

0

sin(η)J0[z sin(η/2)]√
cos(η) − cos(x)

dη. (1.3.13)

Problems

1. Using Equation 1.3.4 and Equation 1.3.5, show that the following general-
ized Fourier series hold:

H(θ − t)√
2 cos(t) − 2 cos(θ)

=
∞∑

n=0

Pn[cos(θ)] cos
[(

n + 1
2

)
t
]
, 0 ≤ t, θ ≤ π,

if we use the eigenfunction yn(x) = cos
[(

n + 1
2

)
x
]
, 0 < x < π, and r(x) = 1;

and

H(t − θ)√
2 cos(θ) − 2 cos(t)

=
∞∑

n=0

Pn[cos(θ)] sin
[(

n + 1
2

)
t
]
, 0 ≤ θ, t ≤ π,

if we use the eigenfunction yn(x) = sin
[(

n + 1
2

)
x
]
, 0 < x < π, and r(x) = 1.

2. The series given in Problem 1 are also expansions in Legendre polynomials.
In that light, show that∫ t

0

Pn[cos(θ)] sin(θ)√
2 cos(θ) − 2 cos(t)

dθ =
sin
[(

n + 1
2

)
t
]

n + 1
2

,

18 Gradshteyn and Ryzhik, op. cit., Formula 8.927.

19 Watson, G. N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge

University Press, 804 pp. See Equation (3) in Section 5.21.
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and ∫ π

t

Pn[cos(θ)] sin(θ)√
2 cos(t) − 2 cos(θ)

dθ =
cos
[(

n + 1
2

)
t
]

n + 1
2

,

where 0 < t < π.

3. Using

1√
2

∞∑
n=0

{Pn−1[cos(t)] − Pn[cos(t)]} sin(nx)

=
1√
2

∞∑
n=0

Pn[cos(t)] {sin[(n + 1)x] − sin(nx)}

and the results from Problem 1, show that

1√
2

∞∑
n=1

{Pn−1[cos(t)] − Pn[cos(t)]} sin(nx) =
sin(x/2)H(t − x)√

cos(x) − cos(t)
,

and

1√
2

∞∑
n=1

{Pn−1[cos(t)] + Pn[cos(t)]} sin(nx) =
cos(x/2)H(x − t)√

cos(t) − cos(x)
,

provided 0 < x, t < π.

4. The generating function for Legendre polynomials is

[
1 − 2ξ cos(θ) + ξ2

]−1/2
=

∞∑
n=0

Pn[cos(θ)]ξn, |ξ| < 1.

Setting ξ = h, then ξ = −h, and finally adding and subtracting the
resulting equations, show20 that

2
∞∑

n=0

P2n+m[cos(θ)] h2n+m =
[
1 − 2h cos(θ) + h2

]−1/2

+ (−1)m
[
1 + 2h cos(θ) + h2

]−1/2

for m = 0 and 1.

20 For its use, see Minkov, I. M., 1963: Electrostatic field of a sectional spherical capac-
itor. Sov. Tech. Phys., 7, 1041–1043.
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Multiplying the previous equation by
√

h, setting h = eit, and then sep-
arating the real and imaginary parts, show that

2
∞∑

n=0

P2n+m[cos(θ)] sin
[(

2n + m + 1
2

)
t
]

=
H(t − θ)√

2 [cos(θ) − cos(t)]
,

and

2
∞∑

n=0

P2n+m[cos(θ)] cos
[(

2n + m + 1
2

)
t
]

=
H(θ − t)√

2 [cos(t) − cos(θ)]

+
(−1)m√

2 [cos(θ) + cos(t)]
,

where 0 < t, θ < π/2.

1.4 BESSEL FUNCTIONS

The solution to the classic differential equation

r2 d2y

dr2
+ r

dy

dr
+ (λ2r2 − n2)y = 0, (1.4.1)

commonly known as Bessel’s equation of order n with a parameter λ, is

y(r) = c1Jn(λr) + c2Yn(λr), (1.4.2)

where Jn(·) and Yn(·) are nth order Bessel functions of the first and second
kind, respectively. Figure 1.4.1 illustrates J0(x), J1(x), J2(x), and J3(x) while
in Figure 1.4.2 Y0(x), Y1(x), Y2(x), and Y3(x) are graphed. Bessel functions
have been exhaustively studied and a vast literature now exists on them.21

The Bessel function Jn(z) is an entire function, has no complex zeros, and
has an infinite number of real zeros symmetrically located with respect to the
point z = 0, which is itself a zero if n > 0. All of the zeros are simple, except
the point z = 0, which is a zero of order n if n > 0. On the other hand, Yn(z)
is analytic in the complex plane with a branch cut along the segment (−∞, 0]
and becomes infinite as z → 0.

Considerable insight into the nature of Bessel functions is gained from
their asymptotic expansions. These expansions are

Jn(z) ∼
(

2
πz

)1/2

cos
(
z − 1

2nπ − 1
4π
)
, |arg(z)| ≤ π−ε, |z| → ∞, (1.4.3)

21 The standard reference is Watson, op. cit.
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Figure 1.4.1: The first four Bessel functions of the first kind over 0 ≤ x ≤ 8.
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Figure 1.4.2: The first four Bessel functions of the second kind over 0 ≤ x ≤ 8.

and

Yn(z) ∼
(

2
πz

)1/2

sin
(
z − 1

2nπ − 1
4π
)
, |arg(z)| ≤ π− ε, |z| → ∞, (1.4.4)

where ε denotes an arbitrarily small positive number. Therefore, Bessel func-
tions are sinusoidal in nature and decay as z−1/2.

A closely related differential equation is the modified Bessel equation

r2 d2y

dr2
+ r

dy

dr
− (λ2r2 + ν2)y = 0. (1.4.5)

Its general solution is

y(r) = c1Iν(λr) + c2Kν(λr), (1.4.6)

where Iν(·) and Kν(·) are ν-th order, modified Bessel functions of the first
and second kind, respectively. Both Iν(·) and Kν(·) are analytic functions
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Figure 1.4.3: The first four modified Bessel functions of the first kind over 0 ≤ x ≤ 3.

in the complex z-plane provided that we introduce a branch cut along the
segment (−∞, 0]. As z → 0, Kν(z) becomes infinite. Figure 1.4.3 illustrates
I0(x), I1(x), I2(x), and I3(x) while in Figure 1.4.4 K0(x), K1(x), K2(x), and
K3(x) are graphed.

Turning to the zeros, Iν(z) has zeros that are purely imaginary for ν >
−1. On the other hand, Kν(z) has no zeros in the region | arg(z)| ≤ π/2. In
the remaining portion of the cut z-plane, it has a finite number of zeros.

The modified Bessel functions also have asymptotic representations:

Iν(z) ∼ ez

√
2πz

+
e−z±π(ν+ 1

2 )

√
2πz

, |arg(z)| ≤ π − ε, |z| → ∞, (1.4.7)

and

Kn(z) ∼ πe−z

√
2πz

, |arg(z)| ≤ π − ε, |z| → ∞, (1.4.8)

where we chose the plus sign if �(z) > 0, and the minus sign if �(z) < 0.
Note that Kn(z) decrease exponentially as x → ∞, while In(z) increases
exponentially as x → ∞ and x → −∞.

Having introduced Bessel functions, we now turn to some of their useful
properties. Repeatedly in the following chapters, we will encounter them in
improper integrals. Here, we list some of the most common ones:22∫ t

0

xJ0(kx)√
t2 − x2

dx =
sin(kt)

k
, k > 0, (1.4.9)

∫ ∞

0

e−αxJν(βx)xν dx =
(2β)νΓ

(
ν + 1

2

)
√

π (α2 + β2)ν+ 1
2
, �(ν) > − 1

2 , �(α) > |�(β)|,
(1.4.10)

22 Gradshteyn and Ryzhik, op. cit., Formulas 6.554.2, 6.623.1, 6.623.2, 6.671.1, 6.671.2,
and 6.699.8.
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Figure 1.4.4: The first four modified Bessel functions of the second kind over 0 ≤ x ≤ 3.∫ ∞

0

e−αxJν(βx)xν dx =
(2β)νΓ

(
ν + 1

2

)
√

π (α2 + β2)ν+ 1
2
, �(ν) > − 1

2 , �(α) > |�(β)|,
(1.4.11)∫ ∞

0

e−αxJν(βx)xν+1 dx =
2α(2β)νΓ

(
ν + 3

2

)
√

π (α2 + β2)ν+ 3
2
, �(ν) > −1, �(α) > |�(β)|,

(1.4.12)

∫ ∞

0

sin(bx)Jν(ax) dx =



sin [ν arcsin(b/a)]√
a2 − b2

, b < a,

∞ or 0, b = a,

aν cos(νπ/2)√
b2 − a2

(
b +

√
b2 − a2

)ν , b > a,

�(ν) > −2,

(1.4.13)
and

∫ ∞

0

cos(bx)Jν(ax) dx =



cos [ν arcsin(b/a)]√
a2 − b2

, b < a,

∞ or 0, b = a,

−aν sin(νπ/2)√
b2 − a2

(
b +

√
b2 − a2

)ν , b > a,

�(ν) > −1.

(1.4.14)
Just as sines and cosines can be used in a Fourier series to reexpress

an arbitrary function f(x), Bessel functions can also be used to create the
Fourier-Bessel series

f(x) =
∞∑

k=1

AkJn(µkx), 0 < x < L, (1.4.15)
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Table 1.4.1: Some Useful Relationships Involving Bessel Functions of Integer
Order

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z), n = 1, 2, 3, . . .

Jn−1(z) − Jn+1(z) = 2J ′
n(z), n = 1, 2, 3, . . . ; J ′

0(z) = −J1(z)

d

dz

[
znJn(z)

]
= znJn−1(z), n = 1, 2, 3, . . .

d

dz

[
z−nJn(z)

]
= −z−nJn+1(z), n = 0, 1, 2, 3, . . .

In−1(z) − In+1(z) =
2n

z
In(z), n = 1, 2, 3, . . .

In−1(z) + In+1(z) = 2I ′n(z), n = 1, 2, 3, . . . ; I ′0(z) = I1(z)

Kn−1(z) − Kn+1(z) = −2n

z
Kn(z), n = 1, 2, 3, . . .

Kn−1(z) + Kn+1(z) = −2K ′
n(z), n = 1, 2, 3, . . . ; K ′

0(z) = −K1(z)

Jn(zemπi) = enmπiJn(z)

In(zemπi) = enmπiIn(z)

Kn(zemπi) = e−mnπiKn(z) − mπi
cos(mnπ)
cos(nπ)

In(z)

In(z) = e−nπi/2Jn(zeπi/2), −π < arg(z) ≤ π/2

In(z) = e3nπi/2Jn(ze−3πi/2), π/2 < arg(z) ≤ π

where

Ak =
1

Ck

∫ L

0

xf(x)Jn(µkx) dx. (1.4.16)

The values of µk and Ck depend on the condition at x = L. If Jn(µkL) = 0,
then

Ck = 1
2L2J2

n+1(µkL). (1.4.17)

On the other hand, if J ′
n(µkL) = 0, then

Ck =
µ2

kL2 − n2

2µ2
k

J2
n(µkL). (1.4.18)
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Finally, if µkJ ′
n(µkL) = −hJn(µkL),

Ck =
µ2

kL2 − n2 + h2L2

2µ2
k

J2
n(µkL). (1.4.19)

All of the preceding results must be slightly modified when n = 0 and the
boundary condition is J ′

0(µkL) = 0 or µkJ1(µkL) = 0. For this case, Equation
1.4.15 now reads

f(x) = A0 +
∞∑

k=1

AkJ0(µkx), (1.4.20)

where the equation for finding A0 is

A0 =
2
L2

∫ L

0

f(x)xdx, (1.4.21)

and Equation 1.4.16 and Equation 1.4.18 with n = 0 give the remaining
coefficients.

• Example 1.4.1

Let us expand f(x) = x, 0 < x < 1, in the series

f(x) =
∞∑

k=1

AkJ1(µkx), (1.4.22)

where µk denotes the kth zero of J1(µ). From Equation 1.4.16 and Equation
1.4.18,

Ak =
2

J2
2 (µk)

∫ 1

0

x2J1(µkx) dx. (1.4.23)

However, from the third line of Table 1.4.1,

d

dx

[
x2J2(x)

]
= x2J1(x), (1.4.24)

if n = 2. Therefore, Equation 1.4.23 becomes

Ak =
2x2J2(x)
µ3

kJ2
2 (µk)

∣∣∣∣µk

0

=
2

µkJ2(µk)
, (1.4.25)

and the resulting expansion is

x = 2
∞∑

k=1

J1(µkx)
µkJ2(µk)

, 0 ≤ x < 1. (1.4.26)
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Figure 1.4.5: The Fourier-Bessel series representation, Equation 1.4.26, for f(x) = x,
0 < x < 1, when we truncate the series so that it includes only the first, first two, first
three, and first four terms.

Figure 1.4.5 shows the Fourier-Bessel expansion of f(x) = x in truncated form
when we only include one, two, three, and four terms.

• Example 1.4.2

Let us expand the function f(x) = x2, 0 < x < 1, in the series

f(x) =
∞∑

k=1

AkJ0(µkx), (1.4.27)

where µk denotes the kth positive zero of J0(µ). From Equation 1.4.16 and
Equation 1.4.17,

Ak =
2

J2
1 (µk)

∫ 1

0

x3J0(µkx) dx. (1.4.28)

If we let t = µkx, the integration Equation 1.4.28 becomes

Ak =
2

µ4
kJ2

1 (µk)

∫ µk

0

t3J0(t) dt. (1.4.29)

We now let u = t2 and dv = tJ0(t) dt so that integration by parts results in

Ak =
2

µ4
kJ2

1 (µk)

[
t3J1(t)

∣∣µk

0
− 2
∫ µk

0

t2J1(t) dt

]
(1.4.30)

=
2

µ4
kJ2

1 (µk)

[
µ3

kJ1(µk) − 2
∫ µk

0

t2J1(t) dt

]
, (1.4.31)
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Figure 1.4.6: The Fourier-Bessel series representation, Equation 1.4.37, for f(x) = x2,

0 < x < 1, when we truncate the series so that it includes only the first, first two, first

three, and first four terms.

because v = tJ1(t) from the fourth line of Table 1.4.1. If we integrate by parts
once more, we find that

Ak =
2

µ4
kJ2

1 (µk)

[
µ3

kJ1(µk) − 2µ2
kJ2(µk)

]
(1.4.32)

=
2

J2
1 (µk)

[
J1(µk)

µk
− 2J2(µk)

µ2
k

]
. (1.4.33)

However, from the first line of Table 1.4.1 with n = 1,

J1(µk) = 1
2µk [J2(µk) + J0(µk)] , (1.4.34)

or

J2(µk) =
2J1(µk)

µk
, (1.4.35)

because J0(µk) = 0. Therefore,

Ak =
2(µ2

k − 4)J1(µk)
µ3

kJ2
1 (µk)

, (1.4.36)

and

x2 = 2
∞∑

k=1

(µ2
k − 4)J0(µkx)
µ3

kJ1(µk)
, 0 < x < 1. (1.4.37)

Figure 1.4.6 shows the representation of x2 by the Fourier-Bessel series given
by Equation 1.4.37 when we truncate it so that it includes only one, two,
three, or four terms.
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We have repeatedly noted how Bessel functions are very similar in nature
to sine and cosine. This suggests that for axisymmetric problems we could
develop an alternative transform based on Bessel functions. To examine this
possibility, let us write the two-dimensional Fourier transform pair as

f(x, y) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
F (k, �) ei(kx+�y) dk d�, (1.4.38)

where
F (k, �) =

1
2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−i(kx+�y) dx dy. (1.4.39)

Consider now the special case where f(x, y) is only a function of r =
√

x2 + y2,
so that f(x, y) = g(r). Then, changing to polar coordinates through the
substitution x = r cos(θ), y = r sin(θ), k = ρ cos(ϕ) and � = ρ sin(ϕ), we have
that

kx + �y = rρ[cos(θ) cos(ϕ) + sin(θ) sin(ϕ)] = rρ cos(θ − ϕ) (1.4.40)

and
dA = dx dy = r dr dθ. (1.4.41)

Therefore, the integral in Equation 1.4.39 becomes

F (k, �) =
1
2π

∫ ∞

0

∫ 2π

0

g(r) e−irρ cos(θ−ϕ)r dr dθ (1.4.42)

=
1
2π

∫ ∞

0

r g(r)
[∫ 2π

0

e−irρ cos(θ−ϕ) dθ

]
dr. (1.4.43)

If we introduce λ = θ − ϕ, the integral within the square brackets can be
evaluated as follows:∫ 2π

0

e−irρ cos(θ−ϕ) dθ =
∫ 2π−ϕ

−ϕ

e−irρ cos(λ) dλ (1.4.44)

=
∫ 2π

0

e−irρ cos(λ) dλ (1.4.45)

= 2πJ0(ρr). (1.4.46)

Equation 1.4.45 is equivalent to Equation 1.4.44 because the integral of a
periodic function over one full period is the same regardless of where the
integration begins. Equation 1.4.46 follows from the integral definition of the
Bessel function.23 Therefore,

F (k, �) =
∫ ∞

0

r g(r)J0(ρr) dr. (1.4.47)

23 Watson, op. cit., Section 2.2, Equation 5.
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Finally, because Equation 1.4.47 is clearly a function of ρ =
√

k2 + �2, F (k, �)
= G(ρ) and

G(ρ) =
∫ ∞

0

r g(r)J0(ρr) dr. (1.4.48)

Conversely, if we begin with Equation 1.4.38, make the same substitution,
and integrate over the k�-plane, we have

f(x, y) = g(r) =
1
2π

∫ ∞

0

∫ 2π

0

F (k, �) eirρ cos(θ−ϕ)ρ dρ dϕ (1.4.49)

=
1
2π

∫ ∞

0

ρ G(ρ)
[∫ 2π

0

eirρ cos(θ−ϕ) dϕ

]
dρ (1.4.50)

=
∫ ∞

0

ρ G(ρ)J0(ρr) dρ. (1.4.51)

Thus, we obtain the result that if
∫∞
0

|F (r)| dr exists, then

g(r) =
∫ ∞

0

ρ G(ρ)J0(ρr) dρ, (1.4.52)

where
G(ρ) =

∫ ∞

0

r g(r)J0(ρr) dr. (1.4.53)

Taken together, Equation 1.4.52 and Equation 1.4.53 constitute the Hankel
transform pair for Bessel function of order 0 , named after the German math-
ematician Hermann Hankel (1839–1873). The function G(ρ) is called “the
Hankel transform of g(r).”

For asymmetric problems, we can generalize our results to Hankel trans-
forms of order ν

F (k) =
∫ ∞

0

f(r)Jν(kr) r dr, − 1
2 < ν, (1.4.54)

and its inverse24

f(r) =
∫ ∞

0

F (k)Jν(kr) k dk. (1.4.55)

Finally, it is well known that sin(θ) and cos(θ) can be expressed in terms
of the complex exponential eθi and e−θi. In the case of Bessel functions Jν(z)
and Yν(z), the corresponding representations are called “Hankel functions”
(or Bessel functions of the third kind)

H(1)
ν (z) = Jν(z) + iYν(z) and H(2)

ν (z) = Jν(z) − iYν(z), (1.4.56)

24 Ibid., Section 14.4. See also MacRobert, T. M., 1931: Fourier integrals. Proc. R. Soc.
Edinburgh, Ser. A, 51, 116–126.
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Table 1.4.2: Some Useful Recurrence Relations for Hankel Functions

d

dx

[
xnH(p)

n (x)
]

= xnH
(p)
n−1(x), n = 1, 2, . . . ;

d

dx

[
H

(p)
0 (x)

]
= −H

(p)
1 (x)

d

dx

[
x−nH(p)

n (x)
]

= −x−nH
(p)
n+1(x), n = 0, 1, 2, 3, . . .

H
(p)
n−1(x) + H

(p)
n+1(x) =

2n

x
H(p)

n (x), n = 1, 2, 3, . . .

H
(p)
n−1(x) − H

(p)
n+1(x) = 2

dH
(p)
n (x)
dx

, n = 1, 2, 3, . . .

where ν is arbitrary and z is any point in the z-plane cut along the segment
(−∞, 0]. The analogy is most clearly seen in the asymptotic expansions for
these functions:

H(1)
ν (z) =

√
2
πz

ei(z−νπ/2−π/4) and H(2)
ν (z) =

√
2
πz

e−i(z−νπ/2−π/4)

(1.4.57)
for |z| → ∞ with | arg(z)| ≤ π − ε, where ε is an arbitrarily small positive
number. These functions are linearly independent solutions of

d2u

dz2
+

1
z

du

dz
+
(

1 − ν2

z2

)
u = 0. (1.4.58)

Table 1.4.2 gives additional relationships involving Hankel functions.

Problems

1. Show that

1 = 2
∞∑

k=1

J0(µkx)
µkJ1(µk)

, 0 ≤ x < 1,

where µk is the kth positive root of J0(µ) = 0.

2. Show that
1 − x2

8
=

∞∑
k=1

J0(µkx)
µ3

kJ1(µk)
, 0 ≤ x ≤ 1,

where µk is the kth positive root of J0(µ) = 0.
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3. Show that

4x − x3 = −16
∞∑

k=1

J1(µkx)
µ3

kJ0(2µk)
, 0 ≤ x ≤ 2,

where µk is the kth positive root of J1(2µ) = 0.

4. Show that

x3 = 2
∞∑

k=1

(µ2
k − 8)J1(µkx)
µ3

kJ2(µk)
, 0 ≤ x ≤ 1,

where µk is the kth positive root of J1(µ) = 0.

5. Show that

x = 2
∞∑

k=1

µkJ2(µk)J1(µkx)
(µ2

k − 1)J2
1 (µk)

, 0 ≤ x ≤ 1,

where µk is the kth positive root of J ′
1(µ) = 0.

6. Show that

1 − x4 = 32
∞∑

k=1

(µ2
k − 4)J0(µkx)
µ5

kJ1(µk)
, 0 ≤ x ≤ 1,

where µk is the kth positive root of J0(µ) = 0.

7. Show that

1 = 2αL

∞∑
k=1

J0(µkx/L)
(µ2

k + α2L2)J0(µk)
, 0 ≤ x ≤ L,

where µk is the kth positive root of µJ1(µ) = αLJ0(µ).

8. Using the relationship25∫ a

0

Jν(αr)Jν (βr) r dr =
aβJν(αa)J ′

ν(βa) − aαJν(βa)J ′
ν(αa)

α2 − β2
,

show that

J0(bx) − J0(ba)
J0(ba)

=
2b2

a

∞∑
k=1

J0(µkx)
µk(µ2

k − b2)J1(µka)
, 0 ≤ x ≤ a,

25 Ibid., Section 5.11, Equation 8.
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where µk is the kth positive root of J0(µa) = 0 and b is a constant.

9. Using Equation 1.4.9, show that

H(t − x)√
t2 − x2

= 2
∞∑

k=1

sin(µkt)J0(µkx)
µkJ2

1 (µk)
, 0 < x < 1, 0 < t ≤ 1,

where µk is the kth positive root of J0(µ) = 0.

10. Using Equation 1.4.9, show26 that

H(a − x)√
a2 − x2

=
2
b

∞∑
n=1

sin(µna/b)J0(µnx/b)
µnJ2

0 (µn)
, 0 ≤ x < b,

where a < b and µn is the nth positive root of J ′
0(µ) = −J1(µ) = 0.

11. Given the definite integral27∫ a

0

cos(cx) J0

(
b
√

a2 − x2
)

dx =
sin
(
a
√

b2 + c2
)

√
b2 + c2

, 0 < b,

show that

cosh
(
b
√

t2 − x2
)

√
t2 − x2

H(t − x) =
2
a2

∞∑
k=1

sin
(
t
√

µ2
k − b2

)
J0(µkx)√

µ2
k − b2 J2

1 (µka)
,

where 0 < x < a and µk is the kth positive root of J0(µa) = 0.

12. Using the integral definition of the Bessel function28 for J1(z):

J1(z) =
2
π

∫ 1

0

t sin(zt)√
1 − t2

dt, 0 < z,

show that

x

t
√

t2 − x2
H(t − x) =

π

L

∞∑
n=1

J1

(
nπt

L

)
sin
(nπx

L

)
, 0 ≤ x < L.

26 For an application of this result, see Wei, X. X., and K. T. Chau, 2000: Finite solid
circular cylinders subjected to arbitrary surface load. Part II–Application to double-punch
test. Int. J. Solids Struct., 37, 5733–5744.

27 Gradshteyn and Ryzhik, op. cit., Formula 6.677.6.

28 Ibid., Formula 3.753.5.
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Hint: Treat this as a Fourier half-range sine expansion.

13. Show that

δ(x − b) =
2b

a2

∞∑
k=1

J0(µkb/a)J0(µkx/a)
J2

1 (µk)
, 0 ≤ x, b < a,

where µk is the kth positive root of J0(µ) = 0.

14. Show that

δ(x)
2πx

=
1

πa2

∞∑
k=1

J0(µkx/a)
J2

1 (µk)
, 0 ≤ x < a,

where µk is the kth positive root of J0(µ) = 0.

15. Using integral tables,29 show30 that

u(r, z) =
2Ar

π

∫ ∞

0

e−kzJ0(kr) sin(ka)
dk

k
+

2Ar

π

∫ ∞

0

e−kzJ2(kr) sin(ka)
dk

k

− 4Aa

π

∫ ∞

0

e−kzJ1(kr) cos(ka)
dk

k

satisfies the partial differential equation

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

with the mixed boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,{

u(r, 0) = Ar, 0 ≤ r < a,
uz(r, 0) = 0, a < r < ∞.

29 Ibid., Formulas 6.671.1, 6.671.2, 6.693.1, and 6.693.2.

30 Ray, M., 1936: Application of Bessel functions to the solution of problem of motion
of a circular disk in viscous liquid. Philos. Mag., Ser. 7 , 21, 546–564.



Chapter 2

Historical Background

Mixed boundary value problems arose, as did other boundary value prob-
lems, during the development of mathematical physics in the nineteenth and
twentieth centuries. In this chapter we highlight its historical development by
examining several of the classic problems.

2.1 NOBILI’S RINGS

Our story begins in 1824 when the Italian physicists Leopoldo Nobili
(1784–1835) experimented with the chemical reactions that occur in voltaic
cells. In a series of papers,1 he described the appearance of a series of rain-
bow colored rings on a positively charged silver plate coated with a thin
electrolytic solution when a negatively charge platinum wire was introduced
into the solution. Although Riemann2 formulated a mathematical theory of

1 Nobili, L., 1827: Ueber ein neue Klasse von electro-chemischen Erscheinungen. Ann.
Phys., Folge 2 , 9, 183–184; Nobili, L., 1827: Ueber ein neue Klasse von electro-chemischen
Erscheinungen. Ann. Phys., Folge 2 , 10, 392–424.

2 Riemann, G. F. B., 1855: Zur Theorie der Nobili’schen Farbenringe. Ann. Phys.,
Folge 2 , 95, 130–139. A more accessible copy of this paper can be found in Riemann,
B., 1953: Gesammelte Mathematische Werke. Dover, 558 pp. See pp. 55–66. Archibald
(Archibald, T., 1991: Riemann and the theory of electrical phenomena: Nobili’s ring.
Centaurus, 34, 247–271.) has given the background, as well as an analysis, of Riemann’s
work.

41
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Figure 2.2.1: Despite his short life, (Georg Friedrich) Bernhard Riemann’s (1826–1866)
mathematical work contained many imaginative and profound concepts. It was in his
doctoral thesis on complex function theory (1851) that he introduced the Cauchy-Riemann
differential equations. Riemann’s later work dealt with the definition of the integral and
the foundations of geometry and non-Euclidean (elliptic) geometry. (Portrait courtesy of
Photo AKG, London.)

this phenomenon, it is the formulation3 by Weber that has drawn the greater
attention. Both Riemann and Weber formulated the problem as the solution
of Laplace’s equation over an infinite strip of thickness 2a:

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −a < z < a, (2.1.1)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −a < z < a, (2.1.2)

and {
u(r,±a) = ±U0, r < c,
uz(r,±a) = 0, r > c. (2.1.3)

Although Weber’s explanation of Nobili’s rings was essentially accepted
for a century, its correct solution is relatively recent.4 Using separation of

3 Weber, H., 1873: Ueber die Besselschen Functionen und ihre Anwendung auf die
Theorie der elektrischen Ströme. J. Reine Angew. Math., 65, 75–105. See Section 6.

4 Laporte, O., and R. G. Fowler, 1967: Weber’s mixed boundary value problem in
electrodynamics. J. Math. Phys., 8, 518–522.
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variables or transform methods, the solution to Equation 2.1.1 and Equation
2.1.2 can be written

u(r, z) =
2
π

∫ ∞

0

A(k)
sinh(kz)
cosh(ka)

J0(kr) dk. (2.1.4)

Substituting Equation 2.1.4 into Equation 2.1.3, we obtain the dual integral
equations

2
π

∫ ∞

0

tanh(ka)A(k)J0(kr) dk = U0, 0 ≤ r < c, (2.1.5)

and
2
π

∫ ∞

0

kA(k)J0(kr) dk = 0, c < r < ∞. (2.1.6)

Following Laporte and Fowler, we set

A(k) =
∫ c

0

f(ξ) cos(kξ) dξ. (2.1.7)

Why have we introduced this definition of A(k)? If we substitute Equation
2.1.7 into the condition for r > c in Equation 2.1.3, we have that

uz(r, a) =
2
π

∫ ∞

0

k

[∫ c

0

f(ξ)k cos(kξ) dξ

]
J0(kr) dk, (2.1.8)

or

uz(r, a) =
2
π

∫ ∞

0

[
f(c) sin(kc) −

∫ c

0

f ′(ξ) sin(kξ) dξ

]
J0(kr) dk. (2.1.9)

Because ∫ ∞

0

sin(kt)J0(kr) dk =
H(t − r)√

t2 − r2
, (2.1.10)

uz(r, a) =
2
π

∫ c

0

f ′(ξ)
[∫ ∞

0

sin(kξ)J0(kr) dk

]
dξ, (2.1.11)

since r > c. Finally, by applying Equation 2.1.10 to the integral within the
square brackets of Equation 2.1.11, we see that uz(r, a) = 0 if r > c. Thus,
A(k), defined by Equation 2.1.7, identically satisfies the boundary condition
along z = ±a and r > c.

Turning to the boundary condition for 0 ≤ r < c, we have that∫ ∞

0

tanh(ka)
[∫ c

0

f(ξ) cos(kξ) dξ

]
J0(kr) dk =

πU0

2
, (2.1.12)
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or ∫ c

0

f(ξ)
[∫ ∞

0

(
1 − 2

1 + e2ak

)
cos(kξ)J0(kρ) dk

]
dξ =

πU0

2
. (2.1.13)

We now multiply both sides of Equation 2.1.13 by ρ dρ/
√

r2 − ρ2 and integrate
from 0 to r. Interchanging the order of integration, we obtain that∫ c

0

f(ξ)

{∫ ∞

0

cos(kξ)

[∫ r

0

ρ J0(kρ)√
r2 − ρ2

dρ

]
dk

}
dξ

−2
∫ c

0

f(ξ)

{∫ ∞

0

cos(kξ)
1 + e2ka

[∫ r

0

ρ J0(kρ)√
r2 − ρ2

dρ

]
dk

}
dξ

=
πU0

2

∫ r

0

ρ√
r2 − ρ2

dρ. (2.1.14)

Because ∫ r

0

η J0(kη)√
r2 − η2

dη =
sin(kr)

k
, (2.1.15)

Equation 2.1.14 simplifies to∫ c

0

f(ξ)
[∫ ∞

0

cos(kξ) sin(kr)
dk

k

]
dξ

− 2
∫ c

0

f(ξ)
[∫ ∞

0

cos(kξ) sin(kr)
1 + e2ka

dk

k

]
dξ =

πU0r

2
. (2.1.16)

Upon taking the derivative of Equation 2.1.16 with respect to r, we find that∫ c

0

f(ξ)
[∫ ∞

0

cos(kξ) cos(kr) dk

]
dξ

− 2
∫ c

0

f(ξ)
[∫ ∞

0

cos(kξ) cos(kr)
1 + e2ka

dk

]
dξ =

πU0

2
. (2.1.17)

Finally, noting that

2
π

∫ ∞

0

cos(kξ) cos(kr) dk = δ(ξ − r), (2.1.18)

we find that f(ξ) is given by

f(ξ) − 4
π

∫ c

0

f(τ)
[∫ ∞

0

cos(kξ) cos(kτ)
1 + e2ka

dk

]
dτ = U0. (2.1.19)

In the limit of c → 0, the integral in Equation 2.1.19 vanishes and f(ξ) = U0.
From Equation 2.1.7, A(k) = U0 sin(kc)/k and we recover Weber’s solution:

u(r, z) =
2
π

∫ ∞

0

sin(kc)
sinh(kz)
cosh(ka)

J0(kr)
dk

k
. (2.1.20)
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Figure 2.1.2: The solution u(r, z)/U0 to the mixed boundary value problem governed by
Equation 2.1.1 through Equation 2.1.3 when c/a = 2.

In Chapter 4, we discuss how to numerically solve Equation 2.1.19 for a finite
value of c, so that we can evaluate A(k) and then compute u(r, z). Presently,
in Fig. 2.1.2, we merely illustrate u(r, z) when c/a = 2.

2.2 DISC CAPACITOR

In the previous section we showed that the mathematical explanation
of Nobili’s rings involved solving Laplace’s equation with mixed boundary
conditions. The next important problem involving mixed boundary value
problems was the capacitance of two oppositely charged, parallel, circular
coaxial discs. Kirchhoff5 used conformal mapping to find the approximate
solution for the capacitance of a circular in free space. Since then, a number
of authors have refined his calculation. The most general one is by Carlson
and Illman6 and we now present their analysis.

The problem may be expressed mathematically as the potential problem

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞, (2.2.1)

5 Kirchhoff, G., 1877: Zur Theorie des Kondensators. Monatsb. Deutsch. Akad. Wiss.
Berlin, 144–162.

6 Carlson, G. T., and B. L. Illman, 1994: The circular disk parallel plate capacitor. Am.
J. Phys., 62, 1099–1105.
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Figure 2.2.1: Gustav Robert Kirchhoff’s (1824–1887) most celebrated contributions to
physics are the joint founding with Robert Bunsen of the science of spectroscopy, and the
discovery of the fundamental law of electromagnetic radiation. Kirchhoff’s work on light
coincides with his final years as a professor of theoretical physics at Berlin. (Portrait taken
from the frontispiece of Kirchhoff, G., 1882: Gesammelte Abhandlungen. J. A. Barth, 641
pp.)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞, (2.2.2)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞, (2.2.3)

{
u(r, 0) = V1, 0 ≤ r < 1,
uz(r, 0) = 0, 1 < r < ∞,

(2.2.4)

and {
u(r, L) = V2, 0 ≤ r < 1,
uz(r, L) = 0, 1 < r < ∞.

(2.2.5)
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Using separation of variables or transform methods, the solution to Equa-
tion 2.2.1 is

u(r, z) =
∫ ∞

0

[
A(k)e−k|z| + B(k)e−k|z−L|

]
J0(kr)

dk

k
. (2.2.6)

This solution also satisfies the boundary conditions given by Equation 2.2.2
and Equation 2.2.3. Substituting Equation 2.2.6 into Equation 2.2.4 and
Equation 2.2.5, we obtain the dual integral equations for A(k) and B(k):∫ ∞

0

[
A(k) + B(k)e−kL

]
J0(kr)

dk

k
= V1, 0 ≤ r < 1, (2.2.7)

∫ ∞

0

[
A(k)e−kL + B(k)

]
J0(kr)

dk

k
= V2, 0 ≤ r < 1, (2.2.8)∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞, (2.2.9)

and ∫ ∞

0

B(k)J0(kr) dk = 0, 1 < r < ∞. (2.2.10)

To solve Equation 2.2.9 and Equation 2.2.10, we introduce

A(k) =
2k

π

∫ 1

0

f(t) cos(kt) dt, (2.2.11)

and

B(k) =
2k

π

∫ 1

0

g(t) cos(kt) dt. (2.2.12)

To show that the A(k) given by Equation 2.2.11 satisfies Equation 2.2.9,
we evaluate∫ ∞

0

A(k)J0(kr) dk =
2
π

∫ ∞

0

[∫ 1

0

f(t)k cos(kt) dt

]
J0(kr) dk (2.2.13)

=
2
π

∫ ∞

0

f(t) sin(kt)
∣∣∣∣1
0

J0(kr) dk

− 2
π

∫ 1

0

f ′(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt (2.2.14)

=
2
π

∫ ∞

0

f(1) sin(k)J0(kr) dk

− 2
π

∫ 1

0

f ′(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt (2.2.15)

= 0, (2.2.16)
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because r > 1 and we used Equation 1.4.13. A similar demonstration holds
for B(k).

We now turn to the solution of Equation 2.2.7. Substituting Equation
2.2.11 and Equation 2.2.12 into Equation 2.2.7, we find that∫ 1

0

f(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt

+
∫ 1

0

g(t)
[∫ ∞

0

e−kL cos(kt)J0(kr) dk

]
dt =

πV1

2
. (2.2.17)

Using Equation 1.4.14, we can evaluate the first integral and obtain

h(r) +
∫ 1

0

g(τ)
[∫ ∞

0

e−kL cos(kτ)J0(kr) dk

]
dτ =

πV1

2
, (2.2.18)

where
h(r) =

∫ r

0

f(t)√
r2 − t2

dt. (2.2.19)

If we now multiply Equation 2.2.18 by 2r dr/
(
π
√

t2 − r2
)
, integrate from 0

to t, and then taking the derivative with respect to t, we have

f(t) +
∫ 1

0

g(τ)
[

2
π

d

dt

{∫ t

0

[∫ ∞

0

e−kL cos(kτ)J0(kr) dk

]
r dr√
t2 − r2

}]
dτ

= V1
d

dt

[∫ t

0

r dr√
t2 − r2

]
= −V1

d

dt

[√
t2 − r2

∣∣∣t
0

]
= V1, (2.2.20)

since the solution to Equation 2.2.19 is

f(t) =
2
π

d

dt

[∫ t

0

r h(r)√
t2 − r2

dr

]
. (2.2.21)

Defining

K(t, τ) =
2
π

∫ ∞

0

e−kL cos(kτ)
d

dt

[∫ t

0

rJ0(kr)√
t2 − r2

dr

]
dk, (2.2.22)

we substitute Equation 1.4.9 into Equation 2.2.22 and K(t, τ) simplifies to

K(t, τ) =
2
π

∫ ∞

0

e−kL cos(kτ) cos(kt) dk (2.2.23)

=
L

π

[
1

L2 + (t + τ)2
+

1
L2 + (t − τ)2

]
. (2.2.24)

Therefore, we can write Equation 2.2.20 as

f(t) +
∫ 1

0

K(t, τ)g(τ) dτ = V1. (2.2.25)
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By using Equation 2.2.8, we can show in a similar manner that

g(t) +
∫ 1

0

K(t, τ)f(τ) dτ = V2. (2.2.26)

To evaluate u(r, z) in terms of f(t) and g(t), we substitute Equation 2.2.11
and Equation 2.2.12 into Equation 2.2.6 and find that

u(r, z) =
2
π

∫ 1

0

{∫ ∞

0

[
f(t)e−k|z| + g(t)e−k|z−L|

]
cos(kt)J0(kr) dk

}
dt

(2.2.27)

=
2
π
�
{∫ 1

0

[
f(t)√

r2 + (|z| − it)2
+

g(t)√
r2 + (|z − L| + it)2

]
dt

}
,

(2.2.28)

where we used Equation 1.4.10.
Figure 2.2.2 illustrates u(r, z) when L = 1 and V1 = −V2 = 1. In Chapter

4 we will discuss the numerical procedure used to solve Equation 2.2.25 and
Equation 2.2.26 for specific values of L, V1, and V2. We used Simpson’s rule
to evaluate Equation 2.2.28.

Two special cases of Equation 2.2.25 through Equation 2.2.28 are of his-
torical note. Hafen7 solved the disc capacitor problem when the electrodes
are located at z = ±h and have a radius of a. The electrode at z = h has the
potential of V1 = 1 while the electrode at z = −h has the potential V2 = ±1.
He obtained

u(r, z) =
2
π

∫ a

0

[∫ ∞

0

(
e−k|z−h| ± e−k|z+h|

)
cos(kt)J0(kr) dk

]
f(t) dt,

(2.2.29)
where f(t) is given by

f(t) = 1 ∓ 2h

π

∫ a

−a

f(τ)
(t − τ)2 + 4h2

dτ. (2.2.30)

Hafen did not present any numerical computations.
The second special case occurs when we set V1 = −V2 = V0. For this

special case, Equation 2.2.25 and Equation 2.2.26 have the solution f(t) =
−g(t) = V0h(t), where h(t) is given by

h(t) = 1 +
∫ 1

0

K(t, τ)h(τ) dτ. (2.2.31)

7 Hafen, M., 1910: Studien über einige Probleme der Potentialtheorie. Math. Ann., 69,
517–537. See Section 3.
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Figure 2.2.2: The solution u(r, z) to the mixed boundary value problem governed by
Equation 2.2.1 through Equation 2.2.5 when L = 1 and V1 = −V2 = 1.

Love8 obtained Equation 2.2.31, “Love’s equation,” by solving Laplace’s equa-
tion using spheroidal coordinates; Cooke9 employed Hankel transforms as we
did. Regardless of how Equation 2.2.31 is obtained, it requires numerical
methods to solve it. During the 1950s, the computational resources were
inadequate to handle the case of small L and Cooke10 developed an approx-
imate method to treat this case. Presently these considerations are of purely
historical interest because finite difference methods11 can be used to find the
potential to high accuracy.

2.3 ANOTHER ELECTROSTATIC PROBLEM

The earliest mixed boundary value problem that led to dual Fourier series

8 Love, E. R., 1949: The electrostatic field of two equal circular conducting disks. Quart.
J. Mech. Appl. Math., 2, 428–451.

9 Cooke, J. C., 1956: A solution of Tranter’s dual integral equations problem. Quart.
J. Mech. Appl. Math., 9, 103–110.

10 Cooke, J. C., 1958: The coaxial circular disc problem. Z. Angew. Math. Mech., 38,
349–357.

11 Sloggett, G. J., N. G. Barton, and S. J. Spencer, 1986: Fringing fields in disc capaci-
tors. J. Phys., Ser. A, 19, 2725–2736.
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occurred while solving the potential problem:

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0, 0 ≤ r < ∞, 0 < θ < 2π, (2.3.1)

subject to the boundary conditions

lim
r→0

|u(r, θ)| < ∞, lim
r→∞u(r, θ) → −V r sin(θ), 0 < θ < 2π, (2.3.2)

u(1−, θ) = u(1+, θ), 0 < θ < 2π, (2.3.3)

and {
κur(1−, θ) = ur(1+, θ), 0 < θ < π/2, 3π/2 < θ < 2π,

u(1, θ) = 0, π/2 < θ < 3π/2,
(2.3.4)

where 1− and 1+ denote points slightly inside and outside of the circle r = 1,
respectively.

We begin by using the technique of separation of variables. This yields
the potential

u(r, θ) = −V r sin(θ) +
∞∑

n=1

Cnrn sin(nθ), 0 < r < 1, (2.3.5)

and

u(r, θ) = −V r sin(θ) +
∞∑

n=1

Cnr−n sin(nθ), 1 < r < ∞. (2.3.6)

This potential satisfies not only Equation 2.3.1, but also the boundary condi-
tions given by Equations 2.3.2 and 2.3.3.

We must next satisfy the mixed boundary value condition given by Equa-
tion 2.3.4. Noting the symmetry about the x-axis, we find that we must only
consider that 0 < θ < π. Turning to the 0 < θ < π/2 case, we substitute
Equation 2.3.5 and Equation 2.3.6 into Equation 2.3.4 and obtain

(1 + κ)
∞∑

n=1

n Cn sin(nθ) = (κ − 1)V sin(θ). (2.3.7)

By integrating Equation 2.3.7 with respect to θ, we find that

∞∑
n=1

Cn cos(nθ) =
κ − 1
κ + 1

V cos(θ), 0 < θ < π/2. (2.3.8)

Here, C0 is the constant of integration.
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Let us now turn to the boundary condition for π/2 < θ < π. Substituting
Equation 2.3.5 or Equation 2.3.6 into Equation 2.3.4, we find that

∞∑
n=1

Cn sin(nθ) = V sin(θ). (2.3.9)

In summary then, we solved our mixed boundary value problem, provided
that the Cn’s satisfy Equation 2.3.8 and Equation 2.3.9.

It was the dual Fourier series given by Equation 2.3.8 and Equation 2.3.9
that motivated W. M. Shepherd12 in the 1930s to study dual Fourier series of
the form

cos(mθ) =
∞∑

n=0

An cos(nθ), 0 < θ < π/2, (2.3.10)

and

− sin(mθ) =
∞∑

n=1

An sin(nθ), π/2 < θ < π, (2.3.11)

where m is a positive integer. He considered two cases: If m is an even integer,
2k, he proved that

A2n = (−1)n+k 2k[n][k]
2k + 2n

, (2.3.12)

and

A2n+1 = (−1)n+k 2k[n][k]
2n − 2k + 1

, (2.3.13)

where

[n] =
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
and [0] = 1. (2.3.14)

On the other hand, if m is an odd integer, 2k + 1, then

A2n+1 = (−1)n+k+1 (2k + 1)[n][k]
2k + 2n + 2

, (2.3.15)

and

A2n = (−1)n+k+1 (2k + 1)[n][k]
2n − 2k − 1

. (2.3.16)

How can we solve Equation 2.3.7 and Equation 2.3.8 by using Shepherd’s
results? The difficulty is the (κ − 1)/(κ + 1) term in Equation 2.3.8. To

12 Shepherd, W. M., 1937: On trigonometrical series with mixed conditions. Proc. Lon-
don Math. Soc., Ser. 2 , 43, 366–375.
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circumvent this difficulty, we use Equation 2.3.10 to rewrite Equation 2.3.8 as
follows:

∞∑
n=1

Cn cos(nθ) =
κV

κ + 1
cos(θ) − V

κ + 1
cos(θ) (2.3.17)

=
κV

κ + 1
cos(θ) − V

κ + 1

∞∑
n=1

An cos(nθ), (2.3.18)

or ∞∑
n=1

[
Cn +

V

κ + 1
An

]
cos(nθ) =

κV

κ + 1
cos(θ). (2.3.19)

Similarly, we rewrite Equation 2.3.9 as follows:

∞∑
n=1

Cn sin(nθ) =
κV

κ + 1
sin(θ) +

V

κ + 1
sin(θ) (2.3.20)

=
κV

κ + 1
sin(θ) − V

κ + 1

∞∑
n=1

An sin(nθ), (2.3.21)

or ∞∑
n=1

[
Cn +

V

κ + 1
An

]
sin(nθ) =

κV

κ + 1
sin(θ). (2.3.22)

The An’s are given by Equation 2.3.15 and Equation 2.3.16 with k = 0. Using
either Equation 2.3.19 or 2.3.22, we equate the coefficients of each harmonic
and find that

C1 =
2κ + 1

2(κ + 1)
V, C2 = − V

2(κ + 1)
, (2.3.23)

and

C2n−1 = −C2n = (−1)n+1 1 · 3 · · · (2n − 3)V
2 · 4 · · · 2n

. (2.3.24)

Figure 2.3.1 illustrates the solution to Equation 2.3.1 through Equation 2.3.4
when κ = 6.

2.4 GRIFFITH CRACKS

During the 1920s, A. A. Griffith (1893–1963) sought to explain why a
nonductile material, such as glass, ruptures. An important aspect of his work
is the assumption that a large number of small cracks exist in the interior
of the solid body. Whether these “Griffith cracks” spread depends upon the
distribution of the stresses about the crack. Our interest in computing this
stress field lies in the fact that many fracture problems contain mixed bound-
ary conditions.
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Figure 2.3.1: The solution u(r, θ)/V to the mixed boundary value problem governed by
Equation 2.3.1 through Equation 2.3.4 when κ = 6.

Modeling Griffith cracks is not easy. Therefore, early models made several
assumptions. The first one is that the body is in a state of plane stress.
Under this condition, the body is idealized to a long right cylinder and then
acted upon by external forces which are so arranged that the component of
the displacement in the direction of the cylinder vanishes. The remaining
components remain constant along the length of the cylinder. Computing the
balance of forces on an infinitesimally small element, we find that

∂σx

∂x
+

∂τxy

∂y
+ ρX = 0, (2.4.1)

and
∂τxy

∂x
+

∂σy

∂y
+ ρY = 0, (2.4.2)

where σx and σy are the normal components of the stress while τxy is the
shearing stress. The x- and y-components of the body forces are denoted by
X and Y .

These stresses must now be related to the displacements in the x- and
y-directions, which we shall denote by u(x, y) and v(x, y), respectively. The
stress-strain relations are

Eεx = (1 − σ2)σx − σ(1 + σ)σy , (2.4.3)

Eεy = (1 − σ2)σy − σ(1 + σ)σx, (2.4.4)
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and
Eγxy = 2(1 + σ)τxy , (2.4.5)

where
εx =

∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
, (2.4.6)

and E and σ denote the Young modulus and Poisson ratio of the material,
respectively.

The second assumption involves requiring symmetry about the y = 0
plane so that our domain can be taken to be the semi-infinite plane x ≥ 0.
Taking the Fourier transform of Equation 2.4.1 through Equation 2.4.6 with
X = Y = 0, we have that

dΣx

dx
+ ikTxy = 0, (2.4.7)

dTxy

dx
+ ikΣy = 0, (2.4.8)

d2

dx2
[Σy − σ(Σx + Σy)] − k2 [Σx − σ(Σx + Σy)] = 2ik

dTxy

dx
, (2.4.9)

ikE

1 + σ
V = Σy − σ(Σx + Σy), (2.4.10)

and
E

2(1 + σ)

(
dV

dx
+ ikU

)
= Txy. (2.4.11)

Remarkably these five equations can be combined together to yield(
d2

dx2
− k2

)2
G(x, k) = 0, (2.4.12)

where G(x, k) is one of the quantities Σx, Σy, Txy, U , or V . The solution of
Equation 2.4.12 which tends to zero as x → ∞ is

G(x, k) = [A(k) + B(k)x ]e−|k|x. (2.4.13)

Finally, to evaluate the constants A(k) and B(k), we must state the
boundary condition along the crack where x = 0 and |y| < c. Assuming that
the crack occurred because of the external pressure p(y), we have that

τxy(0, y) = 0, −∞ < y < ∞, (2.4.14)

and {
σx(0, y) = −p(y), |y| < c,

u(0, y) = 0, |y| > c,
(2.4.15)
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where p(y) is a known even function of y. Because

σx(x, y) = − 1
2π

∫ ∞

−∞
P (k) (1 + |k|x) e−|k|x+iky dk, (2.4.16)

σy(x, y) = − 1
2π

∫ ∞

−∞
P (k) (1 − |k|x) e−|k|x+iky dk, (2.4.17)

τxy(x, y) =
ix

2π

∫ ∞

−∞
kP (k)e−|k|x+iky dk, (2.4.18)

u(x, y) =
1 + σ

2πE

∫ ∞

−∞

P (k)
|k| [2(1 − σ) + |k|x ] e−|k|x+iky dk, (2.4.19)

and

v(x, y) = −i
1 + σ

2πE

∫ ∞

−∞

P (k)
|k| [(1 − 2σ) − |k|x ] e−|k|x+iky dk, (2.4.20)

Equation 2.4.16 and Equation 2.4.19 yields the dual integral equations

2
π

∫ ∞

0

P (k) cos(ky) dk = p(y), 0 ≤ y < c, (2.4.21)

and ∫ ∞

0

P (k) cos(ky)
dk

k
= 0, c < y < ∞, (2.4.22)

where

P (k) =
∫ ∞

0

p(y) cos(ky) dy. (2.4.23)

How do we solve the dual integral equations, Equation 2.4.22 and Equa-
tion 2.4.23? We begin by introducing

k = ρ/c, g(η) = c

√
π

2η
p(cη), y = cη, (2.4.24)

and

P (ρ/c) =
√

ρF (ρ), and cos(ρη) =
√

πρη

2
J− 1

2
(ρη), (2.4.25)

so that Equation 2.4.21 and Equation 2.4.22 become∫ ∞

0

ρF (ρ)J− 1
2
(ρη) dρ = g(η), 0 ≤ η < 1, (2.4.26)
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Figure 2.4.1: Most of Ian Naismith Sneddon’s (1919–2000) life involved the University
of Glasgow. Entering at age 16, he graduated with undergraduate degrees in mathematics
and physics, returned as a lecturer in physics from 1946 to 1951, and finally accepted the
Simon Chair in Mathematics in 1956. In addition to his numerous papers, primarily on
elasticity, Sneddon published notable texts on elasticity, mixed boundary value problems,
and Fourier transforms. (Portrait from Godfrey Argent Studio, London.)

and ∫ ∞

0

F (ρ)J− 1
2
(ρη) dρ = 0, 1 ≤ η < ∞. (2.4.27)

In 1938 Busbridge13 studied the dual integral equations∫ ∞

0

yαf(y)Jν(xy) dy = g(x), 0 ≤ x < 1, (2.4.28)

and ∫ ∞

0

f(y)Jν(xy) dy = 0, 1 ≤ x < ∞, (2.4.29)

where α > −2 and −ν − 1 < α − 1
2 < ν + 1. He showed that

f(x) =
2−α/2x−α

Γ(1 + α/2)

{
x1+α/2Jν+α/2(x)

∫ 1

0

yν+1
(
1 − y2

)α/2
g(y) dy

13 Busbridge, I. W., 1938: Dual integral equations. Proc. London Math. Soc., Ser. 2 ,
44, 115–125.
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+
∫ 1

0

ην+1
(
1 − η2

)α/2
[∫ 1

0

g(ηy)(xy)2+α/2Jν+1+α/2(xy) dy

]
dη

}
.

(2.4.30)

If α > 0, Sneddon14 showed that Equation 2.4.30 simplifies to

f(x) =
(2x)1−α/2

Γ(α/2)

∫ 1

0

η1+α/2Jν+α/2(ηx)
[∫ 1

0

g(ηy)y1+ν
(
1 − y2

)α/2−1
dy

]
dη.

(2.4.31)
In the present case, α = 1, ν = − 1

2 and Equation 2.4.30 simplifies to

F (ρ) =

√
2ρ

π

{
J0(ρ)

∫ 1

0

√
y(1 − y2)g(y) dy

+ ρ

∫ 1

0

√
η(1 − η2)

[∫ 1

0

g(ηy)y3/2J1(ρy) dy

]
dη

}
.

(2.4.32)

A simple illustration of this solution occurs if p(y) = p0 for all y. Then,
P (y) = p0cJ1(ck) and u(0, y) = 2(1− ν2)

√
c2 − y2/E. In this case, the crack

has the shape of an ellipse with semi-axes of 2(1 − ν2)p0/E and c.

2.5 THE BOUNDARY VALUE PROBLEM OF REISSNER AND SAGOCI

Mixed boundary value problems often appear in elasticity problems. An
early example involved finding the distribution of stress within a semi-infinite
elastic medium when a load is applied to the surface z = 0. Reissner and
Sagoci15 used separation of variables and spheroidal coordinates. In 1947
Sneddon16 resolved the static (time-independent) problems applying Hankel
transforms. This is the approach that we will highlight here.

If u(r, z) denotes the circumferential displacement, the mathematical the-
ory of elasticity yields the governing equation

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (2.5.1)

14 See Section 12 in Sneddon, I. N., 1995: Fourier Transforms. Dover, 542pp.

15 Reissner, E., and H. F. Sagoci, 1944: Forced torsional oscillation of an elastic half-
space. J. Appl. Phys., 15, 652–654; Sagoci, H. F., 1944: Forced torsional oscillation of an
elastic half-space. II. J. Appl. Phys., 15, 655–662.

16 Sneddon, I. N., 1947: Note on a boundary value problem of Reissner and Sagoci. J.
Appl. Phys., 18, 130–132; Rahimian, M., A. K. Ghorbani-Tanha, and M. Eskandari-Ghadi,
2006: The Reissner-Sagoci problem for a transversely isotropic half-space. Int. J. Numer.
Anal. Methods Geomech., 30, 1063–1074.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (2.5.2)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (2.5.3)

and {
u(r, 0) = r, 0 ≤ r ≤ a,
uz(r, 0) = 0, a ≤ r < ∞.

(2.5.4)

Hankel transforms are used to solve Equation 2.5.1 via

U(k, z) =
∫ ∞

0

r u(r, z)J1(kr) dr (2.5.5)

which transforms the governing partial differential equation into the ordinary
differential equation

d2U(k, z)
dz2

− k2U(k, z) = 0, 0 < z < ∞. (2.5.6)

Taking Equation 2.5.3 into account,

U(k, z) = A(k)e−kz . (2.5.7)

Therefore, the solution to Equation 2.5.1, Equation 2.5.2, and Equation 2.5.3
is

u(r, z) =
∫ ∞

0

k A(k)e−kzJ1(kr) dk. (2.5.8)

Upon substituting Equation 2.5.8 into Equation 2.5.4, we have that∫ ∞

0

k A(k)J1(kr) dk = r, 0 ≤ r < a, (2.5.9)

and ∫ ∞

0

k2A(k)J1(kr) dk = 0, a < r < ∞. (2.5.10)

The dual integral equations, Equation 2.5.9 and Equation 2.5.10, can be solved
using the Busbridge results, Equation 2.4.28 through Equation 2.4.30. This
yields

A(k) =
4a

πk2

[
sin(ak)

ak
− cos(ak)

]
, (2.5.11)

and

u(r, z) =
4a

π

∫ ∞

0

[
sin(ak)

ak
− cos(ak)

]
e−kzJ1(kr)

dk

k
. (2.5.12)
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Figure 2.5.1: The solution u(r, z)/a to the mixed boundary value problem governed by
Equation 2.5.1 through Equation 2.5.4.

We can evaluate the integral in Equation 2.5.12 and it simplifies to

u(r, z) =
2a2

rπ

{
λR sin(ψ + ϕ) − 2R cos(ϕ)

+
r2

a2
arctan

[
R sin(ϕ) + λ sin(ψ)
R cos(ϕ) + λ cos(ψ)

]}
, (2.5.13)

where λ2 sin(2ψ) tan(ψ) = 2, λ2 = 1 + z2/a2, z tan(ψ) = a,

R4 =
(

r2

a2
+

z2

a2
− 1
)2

+
4z2

a2
, and

2z

a
cot(2ϕ) =

r2

a2
+

z2

a2
− 1. (2.5.14)

We illustrate Equation 2.5.13 in Figure 2.5.1.
We can generalize17 the original Reissner-Sagoci equation so that it now

reads
∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
+ K

∂u

∂z
+ ω2u = 0, 0 ≤ r < ∞, 0 < z < ∞,

(2.5.15)

17 See Chakraborty, S., D. S. Ray and A. Chakravarty, 1996: A dynamical problem
of Reissner-Sagoci type for a non-homogeneous elastic half-space. Indian J. Pure Appl.
Math., 27, 795–806.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (2.5.16)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (2.5.17)

and {
u(r, 0) = r, 0 ≤ r ≤ 1,
uz(r, 0) = 0, 1 ≤ r < ∞.

(2.5.18)

If we use Hankel transforms, the solution to Equation 2.5.15 through
Equation 2.5.17 is

u(r, z) =
∫ ∞

0

A(k)e−κ(k)zJ1(kr) dk, (2.5.19)

where κ(k) = K/2 +
√

k2 + a2 and a2 = K2/4 − ω2. Upon substituting
Equation 2.5.19 into Equation 2.5.18, we have that∫ ∞

0

A(k)J1(kr) dk = r, 0 ≤ r < 1, (2.5.20)

and ∫ ∞

0

κ(k)A(k)J1(kr) dk = 0, 1 < r < ∞; (2.5.21)

or ∫ ∞

0

B(k)[1 + M(k)]J1(kr)
dk

k
= 2r, 0 ≤ r < 1, (2.5.22)

and ∫ ∞

0

B(k)J1(kr) dk = 0, 1 < r < ∞, (2.5.23)

where B(k) = 2κ(k)A(k) and M(k) = k/κ(k) − 1.
To solve the dual integral equations, Equation 2.5.22 and Equation 2.5.23,

we set

B(k) = k

∫ 1

0

h(t) sin(kt) dt. (2.5.24)

We have done this because∫ ∞

0

B(k)J1(kr) dk =
∫ 1

0

h(t)
[∫ ∞

0

k sin(kt)J1(kr) dk

]
dt (2.5.25)

= −
∫ 1

0

h(t)
d

dr

[∫ ∞

0

sin(kt)J0(kr) dk

]
dt = 0, (2.5.26)

where we used Equation 1.4.13 and 0 ≤ t ≤ 1 < r. Consequently our choice
for B(k) satisfies Equation 2.5.23 identically.
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Turning to Equation 2.5.22, we now substitute Equation 2.5.24 and in-
terchange the order of integration:

∫ 1

0

h(t)
[∫ ∞

0

sin(kt)J1(kr) dk

]
dt (2.5.27)

+
∫ 1

0

h(τ)
[∫ ∞

0

M(k) sin(kτ)J1(kr) dk

]
dτ = 2r.

Using Equation 1.4.13 again, Equation 2.5.27 simplifies to

∫ t

0

t h(t)√
r2 − t2

dt+
∫ 1

0

h(τ)
[∫ ∞

0

M(k) sin(kτ) rJ1(kr) dk

]
dτ = 2r2. (2.5.28)

Applying Equation 1.2.13 and Equation 1.2.14, we have

t h(t) =
4
π

d

dt

[∫ t

0

η3√
t2 − η2

dη

]
(2.5.29)

− 2
π

∫ 1

0

h(τ)

{∫ ∞

0

M(k) sin(kτ)
d

dt

[∫ t

0

η2J1(kη)√
t2 − η2

dη

]
dk

}
dτ.

Now
d

dt

(∫ t

0

ξ3√
t2 − ξ2

dξ

)
= 2t2, (2.5.30)

and
d

dt

[∫ t

0

ξ2J1(kξ)√
t2 − ξ2

dξ

]
= t sin(kt) (2.5.31)

after using integral tables.18 Substituting Equation 2.5.30 and Equation 2.5.31
into Equation 2.5.29, we finally obtain

h(t) +
2
π

∫ 1

0

h(τ)
[∫ ∞

0

M(k) sin(kt) sin(kτ) dk

]
dτ =

8t

π
. (2.5.32)

Equation 2.5.32 must be solved numerically. We examine this in detail in
Section 4.3. Once h(t) is computed, B(k) and A(k) follow from Equation
2.5.24. Finally Equation 2.5.19 gives the solution u(r, z). We illustrate this
solution in Figure 2.5.2.

18 Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products.

Academic Press, Formula 6.567.1 with ν = 1 and µ = − 1
2
.



Historical Background 63

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rz

u(
r,

z)

Figure 2.5.2: The solution u(r, z) to the mixed boundary value problem governed by
Equation 2.5.15 through Equation 2.5.18.

In 1989 Singh et al.19 extended the classical Reissner-Sagoci problem so
that it now reads

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (2.5.33)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (2.5.34)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (2.5.35)

and 
u(r, 0) = r, 0 ≤ r < a,
uz(r, 0) = 0, a < r < b,
u(r, 0) = 0, b < r < ∞.

(2.5.36)

As we showed earlier, the solution to Equation 2.5.33, Equation 2.5.34
and Equation 2.5.35 is

u(r, z) =
∫ ∞

0

A(k)e−kzJ1(kr) dk. (2.5.37)

19 Singh, B. M., H. T. Danyluk, and A. P. S. Selvadurai, 1989: The Reissner-Sagoci
problem for a half-space with a surface constraint. Z. Angew. Math. Phys., 40, 762–768.
This work was extended in Singh, B. M., H. T. Danyluk, J. Vrbik, J. Rokne, and R. S.
Dhaliwal, 2003: The Reissner-Sagoci problem for a non-homogeneous half-space with a
surface constraint. Meccanica, 38, 453–465.



64 Mixed Boundary Value Problems

Upon substituting Equation 2.5.37 into Equation 2.5.36, we obtain the triple
integral equations: ∫ ∞

0

A(k)J1(kr) dk = r, 0 ≤ r < a, (2.5.38)

∫ ∞

0

k A(k)J1(kr) dk = 0, a < r < b, (2.5.39)

and ∫ ∞

0

A(k)J1(kr) dk = 0, b < r < ∞. (2.5.40)

Let us now solve this set of triple integral equations by assuming that∫ ∞

0

k A(k)J1(kr) dk =
{

f1(r), 0 < r < a,
f2(r), b < r < ∞.

(2.5.41)

Taking the inverse of the Hankel transform, we obtain from Equation 2.5.39
and Equation 2.5.41 that

A(k) =
∫ a

0

rf1(r)J1(kr) dr +
∫ ∞

b

rf2(r)J1(kr) dr. (2.5.42)

Substituting Equation 2.5.42 into Equation 2.5.38 and Equation 2.5.40, we
find that∫ a

0

τf1(τ)L(r, τ) dτ +
∫ ∞

b

τf2(τ)L(r, τ) dτ = r, 0 < r < a, (2.5.43)

and∫ a

0

τf1(τ)L(r, τ) dτ +
∫ ∞

b

τf2(τ)L(r, τ) dτ = 0, b < r < ∞, (2.5.44)

where
L(r, τ) =

∫ ∞

0

J1(kr)J1(kτ) dk. (2.5.45)

At this point, we introduce several results by Cooke,20 namely that

L(r, τ) =
2

πrτ

∫ min(r,τ)

0

t2√
(r2 − t2)(τ2 − t2)

dt (2.5.46)

=
2rτ

π

∫ ∞

max(r,τ)

dt

t2
√

(t2 − r2)(t2 − τ2)
, (2.5.47)

20 Cooke, J. C., 1963: Triple integral equations problems. Quart. J. Mech. Appl. Math.,
16, 193–201.
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∫ b

a

∫ min(r,τ)

0

(· · ·) dt dτ =
∫ r

0

∫ b

t

(· · ·) dτ dt +
∫ a

0

∫ b

a

(· · ·) dτ dt, (2.5.48)

and∫ b

a

∫ ∞

max(r,τ)

(· · ·) dt dτ =
∫ b

r

∫ t

a

(· · ·) dτ dt +
∫ ∞

b

∫ b

a

(· · ·) dτ dt. (2.5.49)

Why have we introduced Equation 2.5.46 through Equation 2.5.49? Ap-
plying Equation 2.5.46, we can rewrite Equation 2.5.43 as

∫ a

0

f1(τ)

[∫ min(r,τ)

0

t2√
(r2 − t2)(τ2 − t2)

dt

]
dτ (2.5.50)

+ r2

∫ ∞

b

τ2f2(τ)

[∫ ∞

τ

dt

t2
√

(t2 − r2)(t2 − τ2)

]
dτ =

πr2

2

for 0 < r < a. Then, applying Equation 2.5.48 and interchanging the order
of integration in the second integral, we obtain∫ r

0

t2F1(t)√
r2 − t2

dt =
πr2

2
− r2

∫ ∞

b

F2(t)
t2
√

t2 − r2
dt, 0 < r < a, (2.5.51)

where

F1(t) =
∫ a

t

f1(τ)√
τ2 − t2

dτ, 0 < t < a, (2.5.52)

and

F2(t) =
∫ t

b

τ2f2(τ)√
t2 − τ2

dτ, b < t < ∞. (2.5.53)

If we regard the right side of Equation 2.5.51 as a known function of r, then it
is an integral equation of the Abel type. From Equation 1.2.13 and Equation
1.2.14, its solution is

t F1(t) = 2t − 1
π

∫ ∞

b

(
2ηt

η2 − t2
− log

∣∣∣∣η − t

η + t

∣∣∣∣)F2(η)
dη

η2
, 0 < t < a,

(2.5.54)
where we used the following results:

d

dt

[∫ t

0

r3

√
t2 − r2

dr

]
= 2t2, (2.5.55)

and

d

dt

[∫ t

0

r3√
(t2 − r2)(η2 − r2)

dr

]
=

t

2

(
2ηt

η2 − t2
− log

∣∣∣∣η − t

η + t

∣∣∣∣) . (2.5.56)
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Turning to Equation 2.5.44, we employ Equation 2.5.46 and Equation
2.5.47 and find that∫ ∞

b

τ2f2(τ)

[∫ ∞

max(r,τ)

dt

t2
√

(t2 − r2)(t2 − τ2)

]
dτ (2.5.57)

+
1
r2

∫ a

0

f1(τ)

[∫ τ

0

t2√
(r2 − t2)(τ2 − t2)

dt

]
dτ = 0,

if b < r < ∞. If we now apply Equation 2.5.49, interchange the order of inte-
gration in the second integral and use Equation 2.5.52 and Equation 2.5.53,
we find that∫ ∞

r

F2(t)
t2
√

t2 − r2
dt = − 1

r2

∫ a

0

t2F1(t)√
r2 − t2

dt, b < r < ∞. (2.5.58)

Solving this integral equation of the Abel type yields

F2(t)
t2

=
2
π

d

dt

{∫ ∞

t

dr

r
√

r2 − t2

[∫ a

0

η2F1(η)√
r2 − η2

dη

]}
, b < t < ∞.

(2.5.59)
Because

d

dt

[∫ ∞

t

dr

r
√

(r2 − t2)(r2 − η2)

]
=

1
2ηt2

log
∣∣∣∣ t − η

t + η

∣∣∣∣− 1
t(t2 − η2)

, (2.5.60)

F2(t)
t

=
1
π

∫ a

0

ηF1(η)
[
1
t

log
∣∣∣∣ t − η

t + η

∣∣∣∣− 2η

t2 − η2

]
dη, b < t < ∞. (2.5.61)

Setting ηF1(η) = 2aX1(η), F2(η)/η = 2aX2(η), c = a/b, and introduc-
ing the variables η = bη1 and t = at1, we can rewrite Equation 2.5.54 and
Equation 2.5.59 as

X1(at1) = t1 − 1
π

∫ ∞

1

[
2ct1

η2
1 − c2t21

− 1
η1

log
∣∣∣∣1 − ct1/η1

1 + ct1/η1

∣∣∣∣]X2(bη1) dη1,

(2.5.62)
when 0 < t1 < 1; and

X2(bt1) =
1
π

∫ 1

0

[
c

t1
log
∣∣∣∣1 − cη1/t1
1 + cη1/t1

∣∣∣∣− 2c2η1

t21 − c2η2
1

]
X1(aη1) dη1, (2.5.63)

when 1 < t1 < ∞.
Once we find X1(at1) and X2(bt1) via Equation 2.5.62 and Equation

2.5.63, we can find f1(r) and f2(r) from

f1(r) = − 2
π

d

dr

[∫ a

r

t F1(t)√
t2 − r2

dt

]
, 0 < r < a, (2.5.64)
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Figure 2.5.3: The solution u(r, z)/a to the mixed boundary value problem governed by
Equation 2.5.33 through Equation 2.5.36 when c = 1

2
.

and

f2(r) =
2

πr2

d

dr

[∫ r

b

t F2(t)√
r2 − t2

dt

]
, b < r < ∞. (2.5.65)

Substituting Equation 2.5.64 and Equation 2.5.65 into Equation 2.5.42 and
integrating by parts, we find that

A(k) =
4ka3

π

∫ 1

0

[∫ 1

t

X1(aτ)√
τ2 − t2

dτ

]
t J0(akt) dt

+
4ka3

c2π

∫ ∞

1

[∫ t

1

τ2X2(bτ)√
t2 − τ2

dτ

]
J2(akt/c)

t
dt. (2.5.66)

Finally, Equation 2.5.37 gives the solution u(r, z). Figure 2.5.3 illustrates this
solution when c = 1

2 .
In the previous examples of the Reissner-Sagoci problem, we solved it in

the half-space z > 0. Here we solve this problem21 within a cylinder of radius
b when the shear modulus of the material varies as µ0z

α, where 0 ≤ α < 1.
Mathematically the problem is

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
+

α

z

∂u

∂z
= 0, 0 ≤ r < b, 0 < z < ∞, (2.5.67)

21 Reprinted from Int. J. Engng. Sci., 8, M. K. Kassir, The Reissner-Sagoci problem
for a non-homogeneous solid, 875–885, c©1970, with permission from Elsevier.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(b, z) = 0, 0 < z < ∞, (2.5.68)

lim
z→∞u(r, z) → 0, 0 ≤ r < b, (2.5.69)

and 
u(r, 0) = f(r), 0 ≤ r < a,

zαuz(r, z)
∣∣∣∣
z=0

= 0, a < r ≤ b,
(2.5.70)

where b > a.
Using separation of variables, the solution to Equation 2.5.67 through

Equation 2.5.69 is

u(r, z) = zp
∞∑

n=1

k−p
n An(kn)Kp(knz)J1(knr), (2.5.71)

where 2p = 1 − α, 0 < p ≤ 1
2 . Here kn denotes the nth root of J1(kb) = 0

and n = 1, 2, 3, . . .. Upon substituting Equation 2.5.71 into Equation 2.5.70,
we obtain the dual series:

∞∑
n=1

k−2p
n AnJ1(knr) =

21−p

Γ(p)
f(r), 0 ≤ r ≤ a, (2.5.72)

and ∞∑
n=1

AnJ1(knr) = 0, a < r ≤ b. (2.5.73)

Sneddon and Srivastav22 studied dual Fourier-Bessel series of the form

∞∑
n=1

k−p
n AnJν(knρ) = f(ρ), 0 < ρ < 1, (2.5.74)

and ∞∑
n=1

AnJν(knρ) = f(ρ), 1 < ρ < a. (2.5.75)

Applying here the results from their Section 4, we have that

An =
21−pΓ(1 − p)kp

n

b2J2
2 (knb)

∫ a

0

t1−pJ1−p(knt)g(t) dt. (2.5.76)

22 Sneddon, I. N., and R. P. Srivastav, 1966: Dual series relations. I. Dual relations
involving Fourier-Bessel series. Proc. R. Soc. Edinburgh, Ser. A, 66, 150–160.
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Figure 2.5.4: The solution u(r, z)/ω to the mixed boundary value problem governed by
Equation 2.5.33 through Equation 2.5.36 when a = 1, b = 2 and α = 1

4
.

The function g(t) is determined via the Fredholm integral equation of the
second kind

g(t) = h(t) +
2
π

sin(πp)tp
∫ a

0

τ1−pg(τ)L(t, τ) dτ, (2.5.77)

where

h(t) =
21+p sin(πp)
πΓ(1 − p)

t2p−1

∫ 1

0

d

dr

[
rf(r)

] dr

(t2 − r2)p
, (2.5.78)

and

L(t, τ) =
∫ ∞

0

K1(by)
I1(by)

I1−p(ty)I1−p(τy) y dy. (2.5.79)

To illustrate our results, we choose f(r) = ωr. Then

h(t) =
21+pω sin(πp)

πΓ(2 − p)
t. (2.5.80)

Figure 2.5.4 illustrates the case when a = 1, b = 2 and α = 1
4 .

Problems

1. Solve Helmholtz’s equation

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
−
(

α2 +
1
r2

)
u = 0, 0 ≤ r < ∞, 0 < z < ∞,



70 Mixed Boundary Value Problems

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
u(r, 0) = q(r), 0 ≤ r < 1,
uz(r, 0) = 0, 1 < r < ∞.

Step 1 : Show that the solution to the differential equation plus the first three
boundary conditions is

u(r, z) =
∫ ∞

0

A(k)e−z
√

k2+α2
J1(kr) dk.

Step 2 : Using the last boundary condition, show that we obtain the dual
integral equations∫ ∞

0

A(k)J1(kr) dk = q(r), 0 ≤ r < 1,

and ∫ ∞

0

√
k2 + α2 A(k)J1(kr) dk = 0, 1 < r < ∞.

Step 3 : If
√

k2 + α2 A(k) = kB(k), then the dual integral equations become∫ ∞

0

k√
k2 + α2

B(k)J1(kr) dk = q(r), 0 ≤ r < 1,

and ∫ ∞

0

kB(k)J1(kr) dk = 0, 1 < r < ∞.

Step 4 : Consider the first integral equation in Step 3. By multiplying both
sides of this equation by dr/

√
t2 − r2, integrating from 0 to t and using∫ t

0

J1(kr)√
t2 − r2

dr =
1 − cos(kt)

kt
,

show that∫ ∞

0

k√
k2 + α2

B(k)
[
1 − cos(kt)

kt

]
dk =

∫ t

0

q(r)√
t2 − r2

dr, 0 ≤ t < 1,
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or ∫ ∞

0

k√
k2 + α2

B(k) sin(kt) dk =
d

dt

[∫ t

0

t q(r)√
t2 − r2

dr

]
, 0 ≤ t < 1.

Step 5 : Consider next the second integral equation in Step 3. By multiplying
both sides by dr/

√
r2 − t2, integrating from t to ∞ and using

∫ ∞

t

J1(kr)√
r2 − t2

dr =
sin(kt)

kt
,

show that ∫ ∞

0

B(k) sin(kt) dk = 0, 1 ≤ t < ∞.

Step 6 : If we introduce

g(t) =
∫ ∞

0

B(k) sin(kt) dk,

show that the integral equations in Step 4 and Step 5 become

g(t) −
∫ ∞

0

[
1 − k√

k2 + α2

]
B(k) sin(kt) dk =

d

dt

[∫ t

0

t q(r)√
t2 − r2

dr

]
,

for 0 ≤ t < 1, and
g(t) = 0, 1 < t < ∞.

Step 7 : Because

B(k) =
2
π

∫ 1

0

g(t) sin(kt) dt,

show that the function g(t) is governed by

g(t) − 2
π

∫ 1

0

g(τ)
[∫ ∞

0

(
1 − k√

k2 + α2

)
sin(kt) sin(kτ) dk

]
dτ

=
d

dt

[∫ t

0

t q(r)√
t2 − r2

dr

]

for 0 ≤ t < 1. Once g(t) is computed numerically, then B(k) and A(k) follow.
Finally, the values of A(k) are used in the integral solution given in Step 1.
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Step 8 : Taking the limit as α → 0, show that you recover the solution given
by Equation 2.5.11 and Equation 2.5.12 with a = 1 and q(r) = r. In the figure
labeled Problem 1, we illustrate the solution when α = 1 and q(r) = r.

2.6 STEADY ROTATION OF A CIRCULAR DISC

A problem that is similar to the Reissner-Sagoci problem involves finding
the steady-state velocity field within a laminar, infinitely deep fluid that is
driven by a slowly rotating disc of radius a in contact with the free surface.
The disc rotates at the angular velocity ω. The Navier-Stokes equations for
the angular component u(r, z) of the fluid’s velocity reduce to

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞. (2.6.1)

At infinity the velocity must tend to zero which yields the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (2.6.2)

and
lim

z→∞ u(r, z) → 0, 0 ≤ r < ∞. (2.6.3)

At the interface, the mixed boundary condition is{
u(r, 0) = ωr, 0 ≤ r < a,

µuz(r, 0) + ηuzz(r, 0) = 0, a < r < ∞.
(2.6.4)

Goodrich23 was the first to attack this problem. Using Hankel transforms,
the solution to Equation 2.6.1 through Equation 2.6.3 is

u(r, z) =
∫ ∞

0

A(k)J1(kr)e−kz dk. (2.6.5)

23 Taken with permission from Goodrich, F. C., 1969: The theory of absolute surface
shear viscosity. I. Proc. Roy. Soc. London, Ser. A, 310, 359–372.
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Substituting Equation 2.6.5 into Equation 2.6.4, we have that∫ ∞

0

A(k)J1(kr) dk = ωr, 0 ≤ r < a, (2.6.6)

and ∫ ∞

0

(ηk2 − µk)A(k)J1(kr) dk = 0, a < r < ∞. (2.6.7)

Before Goodrich tackled the general problem, he considered the following
special cases.

µ = 0

In this special case, Equation 2.6.6 and Equation 2.6.7 simplify to∫ ∞

0

A(k)J1(kr) dk = ωr, 0 ≤ r < a, (2.6.8)

and ∫ ∞

0

k2A(k)J1(kr) dk = 0, a < r < ∞. (2.6.9)

Now, multiplying Equation 2.6.8 by r and differentiating with respect to r,∫ ∞

0

A(k)
d

dr
[rJ1(kr)] dk = 2ωr, 0 ≤ r < a. (2.6.10)

In the case of Equation 2.6.9, integrating both sides with respect to r, we
obtain ∫ ∞

0

k2A(k)
[∫ ∞

r

J1(kξ) dξ

]
dk = 0, a < r < ∞. (2.6.11)

From the theory of Bessel functions,24

d

dr
[rJ1(kr)] = krJ0(kr), (2.6.12)

and ∫ ∞

r

J1(kξ) dξ =
J0(kr)

k
. (2.6.13)

Substituting Equation 2.6.12 and Equation 2.6.13 into Equation 2.6.10 and
Equation 2.6.11, respectively, they become∫ ∞

0

kA(k)J0(kr) dk = 2ω, 0 ≤ r < a, (2.6.14)

24 Gradshteyn and Ryzhik, op. cit., Formulas 8.472.3 and 8.473.4 with z = kr.
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Figure 2.6.1: The solution to Laplace’s equation, Equation 2.6.1, with the boundary
conditions given by Equation 2.6.2 through Equation 2.6.4 when µ = 0.

and ∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < ∞. (2.6.15)

Taking the inverse Hankel transform given by Equation 2.6.14 and Equation
2.6.15, we have that

A(k) = 2ω

∫ a

0

rJ0(kr) dr = 2ωa
J1(ak)

k
. (2.6.16)

Therefore,

u(r, z) = 2ωa

∫ ∞

0

J1(ξ)J1(ξr/a)e−ξz/a dξ

ξ
. (2.6.17)

Figure 2.6.1 illustrates this solution.

η = 0

In this case Equation 2.6.6 and Equation 2.6.7 become∫ ∞

0

A(k)J1(kr) dk = ωr, 0 ≤ r < a, (2.6.18)

and ∫ ∞

0

kA(k)J1(kr) dk = 0, a < r < ∞. (2.6.19)

If we now introduce a function g(r) such that∫ ∞

0

kA(k)J1(kr) dk = g(r), 0 ≤ r < a, (2.6.20)



Historical Background 75

then

A(k) =
∫ a

0

ξ g(ξ)J1(kξ) dξ. (2.6.21)

Upon substituting Equation 2.6.21 into Equation 2.6.18 and interchang-
ing the order of integration,∫ ∞

0

ξ g(ξ)
[∫ ∞

0

J1(kξ)J1(kr) dk

]
dξ = ωr. (2.6.22)

Because25

∫ ∞

0

Jν(kξ)Jν(kx) dk =
2(ξx)−ν

π

∫ min(ξ,x)

0

s2ν√
(ξ2 − s2)(x2 − s2)

ds,

(2.6.23)
Equation 2.6.22 can be rewritten

2
π

∫ r

0

g(ξ)

[∫ ξ

0

s2√
(r2 − s2)(ξ2 − s2)

ds

]
dξ (2.6.24)

+
2
π

∫ ∞

r

g(ξ)

[∫ r

0

s2√
(r2 − s2)(ξ2 − s2)

ds

]
dξ = ωr2.

Interchanging the order of integration,

2
π

∫ r

0

f(s)√
r2 − s2

ds = ωr2, 0 ≤ r < a, (2.6.25)

where we set

f(s) = s2

∫ a

s

g(ξ)√
ξ2 − s2

dξ. (2.6.26)

From Equation 1.2.13 and Equation 1.2.14,

f(s) = ω
d

ds

[∫ s

0

r3

√
s2 − r2

dr

]
= 2ωs2. (2.6.27)

Substituting the results from Equation 2.6.27 into Equation 2.6.26 we find
that

g(ξ) = − 2
π

d

dξ

[∫ a

ξ

2ωτ√
τ2 − ξ2

dτ

]
=

4ωξ

π
√

a2 − ξ2
, 0 ≤ ξ < a, (2.6.28)

25 Cooke, J. C., 1963: Triple integral equations. Quart. J. Mech. Appl. Math., 16,
193–203. See Appendix 1.
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Figure 2.6.2: This is similar to Figure 2.6.1 except that µ �= 0 and η = 0.

after using Equation 1.2.15 and Equation 1.2.16. Therefore,26

A(k) =
4ω

π

∫ a

0

ξ2√
a2 − ξ2

J1(kξ) dξ = 2ωa2

√
2

πka
J 3

2
(ka). (2.6.29)

The solution u(r, z) follows from Equation 2.6.5. Figure 2.6.2 illustrates this
solution.

µ �= 0, η �= 0

In this general case Equation 2.6.6 and Equation 2.6.7 become∫ ∞

0

A(k)J1(kr) dk = ωr, 0 ≤ r < a, (2.6.30)

and ∫ ∞

0

k(1 + aλ0k)A(k)J1(kr) dk = 0, a < r < ∞, (2.6.31)

where λ0 = −η/(aµ). Let us turn to Equation 2.6.30 first. Multiplying Equa-
tion 2.6.30 by (2/π)1/2r2/

√
x2 − r2 and integrating the resulting equation over

r from 0 to x ≤ a, we find that

∫ ∞

0

A(k)

[√
2
π

∫ x

0

r2J1(kr)√
x2 − r2

dr

]
dk = ω

√
2
π

∫ x

0

r3

√
x2 − r2

dr, (2.6.32)

26 Gradshteyn and Ryzhik, op. cit., Formula 6.567.1 with ν = 1 and µ = − 1
2
.
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or

x3/2

∫ ∞

0

A(k)
J 3

2
(kx)√
k

dk =
2
√

2 ωx3

3
√

π
(2.6.33)

after using integral tables. Differentiating both sides of Equation 2.6.33 with
respect to x,∫ ∞

0

√
k A(k)J 1

2
(kx) dk =

2ω
√

2x√
π

, 0 ≤ x < a. (2.6.34)

We now turn to Equation 2.6.31. Multiplying this equation by (2x/π)1/2

/
√

r2 − x2 and integrating the resulting equation over r from x > a to ∞, we
find that∫ ∞

0

k(1 + aλ0k)A(k)

[√
2
π

∫ ∞

x

√
xJ1(kr)√
r2 − x2

dr

]
dk = 0; (2.6.35)

or ∫ ∞

0

√
k(1 + aλ0k)A(k)J 1

2
(kx) dk = 0, a < x < ∞. (2.6.36)

Let us now replace x with r in Equation 2.6.34 and Equation 2.6.36 and
express J 1

2
(z) =

√
2/(πz) sin(z). This yields∫ ∞

0

A(k) sin(kr) dk = 2ωr, 0 ≤ r < a, (2.6.37)

and ∫ ∞

0

(1 + aλ0k)A(k) sin(kr) dk = 0, a < r < ∞. (2.6.38)

We can rewrite Equation 2.6.38 as∫ ∞

0

A(k) sin(kr) dk = −λ0

∫ ∞

0

akA(k) sin(kr) dk, a < r < ∞. (2.6.39)

From the theory of Fourier integrals,

A(k) =
4ω

π

∫ a

0

r sin(kr) dr

− 2λ0

π

∫ ∞

a

[∫ ∞

0

akA(k) sin(kr) dk

]
sin(kr) dr (2.6.40)

= 2ωa2

√
2

πak
J 3

2
(ak)

− 2λ0

π

∫ ∞

0

[∫ ∞

0

aξA(ξ) sin(ξr) dξ

]
sin(kr) dr

+
2λ0

π

∫ a

0

[∫ ∞

0

aξA(ξ) sin(ξr) dξ

]
sin(kr) dr. (2.6.41)
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The second term in Equation 2.6.41 equals aλ0kA(k). Therefore,

(1 + aλ0k)A(k) = 2ωa2

√
2

πak
J 3

2
(ak)

+
2λ0

π

∫ a

0

[∫ ∞

0

aξA(ξ) sin(ξr) dξ

]
sin(kr) dr. (2.6.42)

Interchanging the order of integration, we finally have that

(1 + aλ0k)A(k) = 2ωa2

√
2

πak
J 3

2
(ak) + λ0

∫ a

0

aξA(ξ)K(k, ξ) dξ, (2.6.43)

where

K(y, ξ) =
2
π

∫ a

0

sin(ry) sin(rξ) dr =
1
π

{
sin[a(y − ξ)]

y − ξ
− sin[a(y + ξ)]

y + ξ

}
.

(2.6.44)
One of the intriguing aspects of Equation 2.6.43 is that the unknown is the
Hankel transform A(k). In general, the integral equations that we will see
will involve an unknown which is related to A(k) via an integral definition.
See Equation 2.5.61, Equation 2.5.62 and Equation 2.5.65. In Goodrich’s
paper he solved the integral equation as a variational problem and found an
approximate solution by the optimization of suitable solutions. However, we
shall shortly outline an alternative method for any value of λ0.

In 1978 Shail27 reexamined Goodrich’s paper for two reasons. First, the
solution for the µ = 0 case, Equation 2.6.16, creates a divergent integral when
it is substituted back into dual equations, Equation 2.6.8 and Equation 2.6.9.
Second, the governing Fredholm integral equation is over an infinite range and
appears to be unsuitable for asymptotic solution as λ0 → 0 or λ0 → ∞.

Shail’s analysis for the µ = 0 case begins by noting that

∂2u(r, 0)
∂r2

+
1
r

∂u(r, 0)
∂r

− u(r, 0)
r2

= 0, a ≤ r < ∞ (2.6.45)

from Equation 2.6.1 and Equation 2.6.4. The general solution to Equation
2.6.45 is

u(r, 0) = Cr + D/r, a < r < ∞. (2.6.46)

The values of C and D follow from the limits that u(r, 0) → 0 as r → ∞ and
continuity at u(r, 0) at r = a. This yields

u(r, 0) =
{

ωr, 0 ≤ r < a,
ωa2/r, a < r < ∞.

(2.6.47)

27 Taken from Shail, R., 1978: The torque on a rotating disk in the surface of a liquid
with an adsorbed film. J. Engng. Math., 12, 59–76 with kind permission from Springer
Science and Business Media.
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If we use Equation 2.6.47 in place of Equation 2.6.4, then the solution Equa-
tion 2.6.17 follows directly.

Shail also examined the general case and solved it using the method
of complementary representations for generalized axially symmetric poten-
tial functions. This method is very complicated and we introduce a greatly
simplified version of an analysis first done by Chakrabarti.28

We begin by introducing the function g(x) such that

(1 + aλ0k)A(k) =
2
π

∫ a

0

g(x) sin(kx) dx. (2.6.48)

Turning to Equation 2.6.31 first, direct substitution yields∫ ∞

0

k(1 + aλ0k)A(k)J1(kr) dk

=
∫ a

0

g(x)
[∫ ∞

0

k sin(kx)J1(kr) dk

]
dx (2.6.49)

= −
∫ a

0

g(x)
d

dr

[∫ ∞

0

sin(kx)J0(kr) dk

]
dx (2.6.50)

= 0, (2.6.51)

because 0 ≤ x ≤ a < r < ∞. Thus, our choice of A(k) satisfies Equation
2.6.31 identically.

Turning to Equation 2.6.30 next, direct substitution gives

2
π

∫ a

0

g(x)
[∫ ∞

0

sin(kx)J1(kr)
1 + aλ0k

dk

]
dx = ωr, 0 ≤ r < a; (2.6.52)

or∫ a

0

g(x)
[∫ ∞

0

sin(kx)J1(kr) dk

]
dx (2.6.53)

+
∫ a

0

g(x)
[∫ ∞

0

1 − aλ0k

1 + aλ0k
sin(kx)J1(kr) dk

]
dx = ωπr, 0 ≤ r < a.

From tables,29 the integral within the square brackets of the first integral in
Equation 2.6.53 can be evaluated and Equation 2.6.53 simplifies to∫ r

0

x g(x)√
r2 − x2

dx +
∫ a

0

g(τ)
[∫ ∞

0

1 − aλ0k

1 + aλ0k
sin(kτ) r J1(kr) dk

]
dτ = ωπr2

(2.6.54)

28 Chakrabarti, A., 1989: On some dual integral equations involving Bessel functions of
order one. Indian J. Pure Appl. Math., 20, 483–492.

29 Gradshteyn and Ryzhik, op. cit., Formula 6.671.1.
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for 0 ≤ r < a. Using Equation 1.2.13 and Equation 1.2.14, we can solve for
x g(x) and find that

x g(x) +
2
π

∫ a

0

g(τ)

{∫ ∞

0

1 − aλ0k

1 + aλ0k
sin(kτ)

d

dx

[∫ x

0

ξ2J1(kξ)√
x2 − ξ2

dξ

]
dk

}
dτ

= 2ω
d

dx

[∫ x

0

ξ3√
x2 − ξ2

dξ

]
, 0 ≤ x < a. (2.6.55)

From integral tables,30

d

ds

[∫ s

0

ξ2J1(kξ)√
s2 − ξ2

dξ

]
= s sin(ks), (2.6.56)

and Equation 2.6.55 becomes

g(x) +
2
π

∫ a

0

g(τ)
[∫ ∞

0

1 − aλ0k

1 + aλ0k
sin(kτ) sin(kx) dk

]
dτ = 4ωx, 0 ≤ x < a.

(2.6.57)
Equation 2.6.57 is identical to Chakrabarti’s equations (50) and (52). Once
we solve Equation 2.6.57 numerically, its values of g(x) can be substituted
into Equation 2.6.48. Finally the solution u(r, z) follows from Equation 2.6.5.

The numerical solution of Equation 2.6.57 is nontrivial due to the nature
of the integration over k. To solve it, we use a spectral method. If we take
g(τ) to be an odd function over (−a, a), we have that

g(τ) =
∞∑

n=1

An sin
(nπτ

a

)
, (2.6.58)

sin(kτ) = 2
∞∑

n=1

(−1)nnπ

k2a2 − n2π2
sin(ka) sin

(nπτ

a

)
, (2.6.59)

and

x = −2a

∞∑
n=1

(−1)n

nπ
sin
(nπx

a

)
. (2.6.60)

Substitution of Equation 2.6.58 through Equation 2.6.60 into Equation 2.6.57
gives the infinite set of equations

Am +
∞∑

n=1

HmnAn = Cm, m = 1, 2, 3, . . . , (2.6.61)

30 Ibid., Formula 6.567.1 with ν = 1 and µ = − 1
2
.
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Figure 2.6.3: This is similar to Figure 2.6.1 except that µ, η �= 0 and λ0 = 5.

where

Hmn = 4a(−1)n+mnmπ

∫ ∞

0

1 − aλ0k

1 + aλ0k

sin2(ka)
(k2a2 − n2π2)(k2a2 − m2π2)

dk,

(2.6.62)
and

Cm =
8ωa

mπ
(−1)m+1. (2.6.63)

The system of equations is then truncated to, say, N spectral components
and the system is inverted to yield Am for m = 1, 2, . . . , N . Next, A(k) can
be found via

(1 + aλ0k)
A(ak)

a
= 2

N∑
n=1

n(−1)n

k2a2 − n2π2
sin(ka)An. (2.6.64)

The larger the value of N , the greater the accuracy. Finally,

u(r, z) =
∫ ∞

0

A(ξ)
a

e−ξz/aJ1(ξr/a) dξ. (2.6.65)

Figure 2.6.3 illustrates this solution when λ0 = 5.
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Chapter 3

Separation of Variables

Separation of variables is the most commonly used technique for solving
boundary value problems. In the case of mixed boundary value problems
they lead to dual or higher-numbered Fourier series which yield the Fourier
coefficients. In this chapter we examine dual Fourier series in Section 3.1 and
Section 3.2, while dual Fourier-Bessel series are treated in Section 3.3 and
dual Fourier-Legendre series in Section 3.4. Finally Section 3.5 treats triple
Fourier series.

In Example 1.1.1 we showed that the method of separation of variables
led to the dual cosine series:

∞∑
n=1

an

n − 1
2

cos
[(

n − 1
2

)
x
]

= 1, 0 ≤ x < c, (3.0.1)

and
∞∑

n=1

an cos
[(

n − 1
2

)
x
]

= 0, c < x ≤ π. (3.0.2)

Equations 3.0.1 and 3.0.2 are examples of a larger class of dual trigonometric

83
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equations. The general form of these dual series can be written

∞∑
n=1

npan sin(nx) = f(x), 0 ≤ x < c,

∞∑
n=1

an sin(nx) = g(x), c < x ≤ π,
(3.0.3)



∞∑
n=1

(
n − 1

2

)p
an cos

[(
n − 1

2

)
x
]

= f(x), 0 ≤ x < c,

∞∑
n=1

an cos
[(

n − 1
2

)
x
]

= g(x), c < x ≤ π,
(3.0.4)



∞∑
n=1

(
n − 1

2

)p
an sin

[(
n − 1

2

)
x
]

= f(x), 0 ≤ x < c,

∞∑
n=1

an sin
[(

n − 1
2

)
x
]

= g(x), c ≤ x ≤ π,
(3.0.5)

and 
1
2αa0 +

∞∑
n=1

npan cos(nx) = f(x), 0 ≤ x < c,

1
2a0 +

∞∑
n=1

an cos(nx) = g(x), c < x ≤ π,
(3.0.6)

where −1 ≤ p ≤ 1. Comparing Equation 3.0.1 and Equation 3.0.2 with
Equation 3.0.4, they are identical if we set p = −1. The purpose of this
chapter is to focus on those mixed value problems that lead to these dual
equations and solve them.

3.1 DUAL FOURIER COSINE SERIES

Tranter1 examined dual trigonometric series of the form

∞∑
n=1

(
n − 1

2

)p
an cos

[(
n − 1

2

)
x
]

= F (x), 0 ≤ x < c,

∞∑
n=1

an cos
[(

n − 1
2

)
x
]

= G(x), c < x ≤ π,
(3.1.1)

where p = ±1. The most commonly encountered case is when G(x) = 0.
When p = 1, he showed that

an =
2
π

∫ c

0

h(x) cos
[(

n − 1
2

)
x
]

dx, (3.1.2)

1 Tranter, C. J., 1960: Dual trigonometrical series. Proc. Glasgow Math. Assoc., 4,
49–57.



Separation of Variables 85

where

h(x) =
∫ 1

ξ

χ(η)√
η2 − ξ2

dη, (3.1.3)

χ(η) =
4η

π
sin(c/2)

∫ η

0

F{2 arcsin[x sin(c/2)]}√
(η2 − x2)[1 − x2 sin2(c/2)]

dx, (3.1.4)

and ξ = sin(x/2) csc(c/2).
When p = −1,

an = 2 χ(1) sin(c/2)Pn−1[cos(c)]

− 2 sin(c/2)
∫ 1

0

χ′(η)Pn−1

[
1 − 2η2 sin2(c/2)

]
dη, (3.1.5)

where

χ(η) =
2
π

∫ η

0

xF ′{2 arcsin[x sin(c/2)]}√
η2 − x2

dx + C. (3.1.6)

Here, C is a constant whose value is determined by substituting Equation
3.1.6 into Equation 3.1.5 and then choosing C so that

∞∑
n=1

(
n − 1

2

)−1
an = F (0). (3.1.7)

• Example 3.1.1

To illustrate Tranter’s solution, let us assume that F (x) = 1 if 0 ≤ x < c.
From Equation 3.1.6, we have that χ(η) = C; from Equation 3.1.5, an =
2C sin(c/2)Pn−1[cos(c)]. To evaluate C, we substitute an into Equation 3.1.7
and find that

2C sin(c/2)
∞∑

n=1

(
n − 1

2

)−1
Pn−1[cos(c)] = 1. (3.1.8)

From the generation formula for Legendre polynomials,
∞∑

n=1

x2n−2Pn−1[cos(c)] = [1 − 2x2 cos(c) + x4]−1/2. (3.1.9)

Integrating Equation 3.1.9 from 0 to 1, we have
∞∑

n=1

(
n − 1

2

)
Pn−1[cos(c)] = 2

∫ 1

0

dx√
1 − 2x2 cos(c) + x4

(3.1.10)

=
∫ π/2

0

dθ√
1 − cos2(c/2) sin2(θ)

(3.1.11)

= K[cos2(c/2)], (3.1.12)
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Figure 3.1.1: The solution u(x, y) to the mixed boundary value problem posed in Example
1.1.1 when c = π/2.

where K(·) denotes the complete elliptic integral2 and sin(θ) = 2x/(1 + x2).
Therefore, 2C sin(c/2)K[cos2(c/2)] = 1, and an = Pn−1[cos(c)]/K[cos2(c/2)]
is the solution to the dual Fourier cosine series Equation 3.0.1 and Equation
3.0.2.

Recall that Equation 3.0.1 and Equation 3.0.2 arose from the separation
of variables solution of Equation 1.1.1 through Equation 1.1.4. Therefore, the
solution to this particular mixed boundary value problem is

u(x, y) =
∞∑

n=1

Pn−1[cos(c)]
K[cos2(c/2)]

exp
[− (n − 1

2

)
y
]

n − 1
2

cos
[(

n − 1
2

)
x
]
. (3.1.13)

This solution is illustrated in Fig. 3.1.1 when c = π/2.

• Example 3.1.2

Let us solve3

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < π, 0 < y < π/2, (3.1.14)

2 See Milne-Thomson, L. M., 1965: Elliptic integrals. Handbook of Mathematical Func-
tions, M. Abromowitz and I. A. Stegun, Eds., Dover, 587–626. See Section 17.3.

3 Taken from Whiteman, J. R., 1968: Treatment of singularities in a harmonic mixed
boundary value problem by dual series methods. Quart. J. Mech. Appl. Math., 21, 41–50
with permission of Oxford University Press.
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subject to the boundary conditions

ux(0, y) = 0, u(π, y) = 1, 0 < y < π/2, (3.1.15){
u(x, 0) = 1

2 , 0 ≤ x < π/2,
uy(x, 0) = 0, π/2 < x ≤ π,

(3.1.16)

and
uy(x, π/2) = 0, 0 < x < π. (3.1.17)

Using separation of variables, a solution to Equation 3.1.14 which also
satisfies Equation 3.1.15 and Equation 3.1.17 is

u(x, y) = 1 −
∞∑

n=0

Bn

n + 1
2

cosh
[(

n + 1
2

) (
y − π

2

)]
sinh
[(

n + 1
2

)
π/2
] cos

[(
n + 1

2

)
x
]
. (3.1.18)

If we then substitute Equation 3.1.18 into the mixed boundary condition
Equation 3.1.17, we obtain the dual series

∞∑
n=0

Bn

2n + 1
coth
[(

n + 1
2

)
π/2
]
cos
[(

n + 1
2

)
x
]

= 1
4 , 0 ≤ x < π/2, (3.1.19)

and ∞∑
n=0

Bn cos
[(

n + 1
2

)
x
]

= 0, π/2 < x ≤ π. (3.1.20)

The remaining challenge is to solve this dual series.
Fortunately, in the 1960s Tranter4 showed that the dual trigonometrical

series ∞∑
n=0

An

2n + 1
cos
[(

n + 1
2

)
x
]

= f(x), 0 < x < c, (3.1.21)

and ∞∑
n=0

An cos
[(

n + 1
2

)
x
]

= 0, c < x < π, (3.1.22)

has the solution

An = A0Pn[cos(c)]−
∫ c

0

F (θ)P ′
n[cos(θ)] sin(θ) dθ, n = 1, 2, 3, . . . , (3.1.23)

where

F (θ) =
2
√

2
π

∫ θ

0

f ′(x) sin(x)√
cos(x) − cos(θ)

dx, (3.1.24)

4 Tranter, C. J., 1964: An improved method for dual trigonometrical series. Proc.
Glasgow Math. Assoc., 6, 136–140.
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and A0 is found by substituting Equation 3.1.23 into Equation 3.1.21.
Can we apply Tranter’s results, Equation 3.1.21 through Equation 3.1.24,

to solve Equation 3.1.19 and Equation 3.1.20? We begin by rewriting these
equations as follows:

∞∑
n=0

Bn

2n + 1
cos
[(

n + 1
2

)
x
]

=
1
4
+

∞∑
m=0

Bm

2m + 1
{
1 − coth

[(
m + 1

2

)
π/2
]}

× cos
[(

m + 1
2

)
x
]
, 0 ≤ x < π/2, (3.1.25)

and ∞∑
n=0

Bn cos
[(

n + 1
2

)
x
]

= 0, π/2 < x ≤ π. (3.1.26)

By inspection, we set

f(x) =
1
4

+
∞∑

m=0

Bm

2m + 1
{
1 − coth

[(
m + 1

2

)
π/2
]}

cos
[(

m + 1
2

)
x
]
. (3.1.27)

Substituting Equation 3.1.27 into Equation 3.1.24,

F (θ) = −
√

2
π

∫ θ

0

∞∑
m=0

Bm

{
1 − coth

[(
m + 1

2

)
π/2
]}

× sin(x) sin
[(

m + 1
2

)
x
]√

cos(x) − cos(θ)
dx (3.1.28)

= −
√

2
π

∞∑
m=0

Bm

{
1 − coth

[(
m + 1

2

)
π/2
]}

×
∫ θ

0

sin(x) sin
[(

m + 1
2

)
x
]√

cos(x) − cos(θ)
dx (3.1.29)

=
1
π

∞∑
m=0

Bm

{
1 − coth

[(
m + 1

2

)
π/2
]}

×
∫ θ

0

cos
[(

m + 3
2

)
x
]− cos

[(
m − 1

2

)
x
]√

2[cos(x) − cos(θ)]
dx (3.1.30)

=
1
2

∞∑
m=0

Bm

{
1 − coth

[(
m + 1

2

)
π/2
]} {Pm+1[cos(θ)] − Pm−1[cos(θ)]} ,

(3.1.31)

where we used Mehler formula, Equation 1.3.4. Substituting the results from
Equation 3.1.31 into Equation 3.1.23, we have that

Bn = B0Pn(0) +
1
2

∞∑
m=0

Bm

{
1 − coth

[(
m + 1

2

)
π/2
]}

×
{

[Pm+1(0) − Pm−1(0)] Pn(0) + (2m + 1)
∫ 1

0

Pn(t)Pm(t) dt

}
, (3.1.32)
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because∫ π/2

0

{Pm+1[cos(θ)] − Pm−1[cos(θ)]}P ′
n[cos(θ)] sin(θ) dθ

=
∫ 1

0

[Pm+1(t) − Pm−1(t)] P ′
n(t) dt (3.1.33)

= Pn(t)Pm+1(t)
∣∣1
0
− Pn(t)Pm−1(t)

∣∣1
0
−
∫ 1

0

[
P ′

m+1(t) − P ′
m−1(t)

]
Pn(t) dt

(3.1.34)

= Pn(0)Pm−1(0) − Pn(0)Pm+1(0) − (2m + 1)
∫ 1

0

Pn(t)Pm(t) dt,

(3.1.35)

and Pm(1) = 1. Equation 3.1.32 can be expressed in the succinct form of

Bn = B0Pn(0) + C̃(n, 0)B0 +
∞∑

m=1

C̃(n, m)Bm, (3.1.36)

where

C̃(n, 0) = [coth(π/4) − 1] Pn(0) +
∫ 1

0

Pn(t) dt, (3.1.37)

and

C̃(n, m) =
{

1 − coth
[(

m + 1
2

)
π/2
]}{

[Pm+1(0) − Pm−1(0)] Pn(0)

+ (2m + 1)
∫ 1

0

Pn(t)Pm(t) dt

}
. (3.1.38)

The coefficients Bm/B0 for m ≥ 1 are found by solving the linear equa-
tions ∞∑

m=1

C(n, m)
Bm

B0
= D(n), (3.1.39)

where

C(n, m) =
{

C̃(n, m), n �= m,
C̃(n, m) − 1, n = m,

(3.1.40)

and
D(n) = −Pn(0) − C̃(n, 0). (3.1.41)

Having found these Bm’s, we use Equation 3.1.19 with x = π/4 to compute
B0 via

B0 =
1
4

/{ ∞∑
n=0

Bn/B0

2n + 1
cosh
[(

n + 1
2

)
π/2
]
cos
[(

n + 1
2

)
x
]}

. (3.1.42)
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Figure 3.1.2: The solution u(x, y) to the mixed boundary value problem given by Equation
3.1.14 through Equation 3.1.17.

Finally, u(x, y) follows from Equation 3.1.18. We illustrate this solution in
Figure 3.1.2.

• Example 3.1.3

Let us solve

∂2u

∂x2
+

∂2u

∂y2
= 0, −b < x < b, 0 < y < h, (3.1.43)

subject to the boundary conditions

u(x, 0) = u(x, h) = 0, u(x, c−) = u(x, c+), −b < x < b, (3.1.44){
u(x, c) = 1, |x| < w,

ε1uy(x, c−) = ε2uy(x, c+), w < |x| < b,
(3.1.45)

and
u(−b, y) = u(b, y) = 0, 0 < y < h. (3.1.46)

Figure 3.1.3 illustrates the geometry for this problem.
If we use separation of variables, the solution to Equation 3.1.43 is

u(x, y) =
∞∑

n=1

An

[
ekn(y−c) − e−kn(y+c)

]
cos(knx), 0 < y < c, (3.1.47)
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Figure 3.1.3: Schematic of the geometry of Example 3.1.3.

and

u(x, y) =
∞∑

n=1

Bn

[
ekn(y+c−2h) − ekn(c−y)

]
, c < y < h, (3.1.48)

where kn =
(
n − 1

2

)
π/b. Equation 3.1.47 and Equation 3.1.48 satisfy not only

Equation 3.1.43, but also Equation 3.1.46 and u(x, 0) = u(x, h) = 0. Using
the fact that u(x, c−) = u(x, c+) for |x| < b and Equation 3.1.47 and Equation
3.1.48, we find that

Bn = −An
1 − e−2knc

1 − e−2kn(h−c)
. (3.1.49)

Finally, we substitute Equation 3.1.47 and Equation 3.1.48 into Equation
3.1.45. The results can be written

∞∑
n=1

1 + Hn

n − 1
2

Cn cos
[(

n − 1
2

)
θ
]

= f(θ), 0 < θ < d, (3.1.50)

and ∞∑
n=1

Cn cos
[(

n − 1
2

)
θ
]

= 0, d < θ < π, (3.1.51)

where

Cn =
(
n − 1

2

)
An

1 − e−2kn(h−c)−2knc + κ
[
e−2knh − e−2kn(h−c)

]
1 − e−2kn(h−c)

, (3.1.52)

Hn = −e−2knc + e−2kn(h−c) − 2e−2knh + κ
[
e−2knc − e−2kn(h−c)

]
1 − e−2knh + κ

[
e−2knc − e−2kn(h−c)

] , (3.1.53)

d = πw/b, θ = πx/b, and κ = (ε1 − ε2)/(ε1 + ε2). Here f(θ) = 1.
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Kiyono and Shimasaki5 developed a method for computing Cn. They
showed that

Cn =
2
π

∫ d

0

g(ϕ) cos
[(

n − 1
2

)
ϕ
]

dϕ, (3.1.54)

where

g(ϕ) =
1
π

d

dϕ

[∫ ϕ

0

h(η)√
cos(η) − cos(ϕ)

dη

]
. (3.1.55)

The function h(η) is given by the integral equation

h(η) +
∫ d

0

K(η, ξ)h(ξ) dξ = − d

dη

[∫ d

η

sin(θ)f(θ)√
cos(η) − cos(θ)

dθ

]
(3.1.56)

for 0 < η < d, where

K(η, ξ) = K0(η, ξ) + sin(η)
∞∑

n=1

HnI(η, n − 1)I(ξ, n − 1), (3.1.57)

K0(η, ξ) =
2
π2

sin(η)
cos(η) − cos(ξ)

{√
cos(η) − cos(d)
cos(ξ) − cos(d)

ln

[√
1 + cos(η)

cos(η) − cos(d)

]

−
√

cos(ξ) − cos(d)
cos(η) − cos(d)

ln

[√
1 + cos(ξ)

cos(ξ) − cos(d)

]}
, (3.1.58)

I(ξ, n) =

√
2 cos

[(
n + 1

2

)
d
]

π
√(

n + 1
2

)
[cos(ξ) − cos(d)]

+
√

n + 1
2 Rn(ξ), (3.1.59)

R0(ξ) = 1 − 2
π

arcsin
[
cos(d/2)
cos(ξ/2)

]
, (3.1.60)

R1(ξ) = cos(ξ)R0(ξ) +
2
√

2
π

cos(d/2)
√

cos(ξ) − cos(d), (3.1.61)

and

(n + 1)Rn+1(ξ)−(2n + 1) cos(ξ)Rn(ξ) + nRn−1(ξ)

=
2
√

2
π

cos
[(

n + 1
2

)
d
]√

cos(ξ) − cos(d), n ≥ 1. (3.1.62)

5 Kiyono, T., and M. Shimasaki, 1971: On the solution of Laplace’s equation by certain
dual series equations. SIAM J. Appl. Math., 21, 245–257.
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Figure 3.1.4: The solution u(x, y) to the mixed boundary value problem given by Equation
3.1.43 through Equation 3.1.46.

Figure 3.1.4 illustrates the solution u(x, y) when b = h = 3, c = w = 1,
ε1 = 1 and ε2 = 2.

• Example 3.1.4

Let us solve6

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 ≤ x ≤ π, −∞ < y < ∞, (3.1.63)

subject to the boundary conditions

ux(0, y) = ux(π, y) = 0, −∞ < y < ∞, (3.1.64)

lim
|y|→∞

uy(x, y) → 1, 0 ≤ x ≤ π, (3.1.65)

uy(x, 0−) = uy(x, 0+), 0 ≤ x ≤ c, (3.1.66)

and {
u(x, 0−) = u(x, 0+) = 0, 0 ≤ x < c,
uy(x, 0−) = uy(x, 0+) = 0, c < x ≤ π.

(3.1.67)

6 Reprinted from Int. J. Heat Mass Transfer , 19, J. Dundurs and C. Panek, Heat con-
duction between bodies with wavy surfaces, 731–736, c©1976, with permission of Elsevier.
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If we use separation of variables, the solution to Equation 3.1.63 is

u(x, y) = y + A0 +
∞∑

n=1

Ane−ny cos(nx), 0 < y < ∞, (3.1.68)

and

u(x, y) = y − A0 −
∞∑

n=1

Aneny cos(nx), −∞ < y < 0. (3.1.69)

Equation 3.1.68 and Equation 3.1.69 satisfy not only Equation 3.1.63, but also
Equation 3.1.64 through Equation 3.1.66. Finally, we substitute Equation
3.1.68 and Equation 3.1.69 into Equation 3.1.67. This results in

A0 +
∞∑

n=1

An cos(nx) = 0, 0 ≤ x < c, (3.1.70)

and ∞∑
n=1

nAn cos(nx) = 1, c < x ≤ π. (3.1.71)

To solve Equation 3.1.70 and Equation 3.1.71, we first substitute x =
π − ξ, c = π − γ, A0 = a0/2 and An = (−1)nan. We then obtain

∞∑
n=1

nan cos(nξ) = 1, 0 ≤ ξ < γ, (3.1.72)

and
1
2a0 +

∞∑
n=1

an cos(nξ) = 0, γ < ξ ≤ π. (3.1.73)

Recently Sbragaglia and Prosperetti7 also solved this dual series when it arose
during their study of the effects of surface deformation on a type of superhy-
drophobic surface.

Equation 3.1.72 and Equation 3.1.73 are an example of Equation 3.0.6.
For the special case p = 1, Sneddon8 showed that the solution to Equation
3.0.6 is

a0 =
2
π

[
π√
2

∫ c

0

h(t) dt +
∫ π

c

g(t) dt

]
, (3.1.74)

7 Sbragaglia, M., and A. Prosperetti, 2007: A note on the effective slip properties for
microchannel flows with ultrahydrophobic surfaces. Phys. Fluids, 19, Art. No. 043603.

8 See Section 5.4.3 in Sneddon, I. N., 1966: Mixed Boundary Value Problems in Poten-
tial Theory. North Holland, 283 pp.
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and

an =
2
π

[
π

2
√

2

∫ c

0

h(t) {Pn[cos(t)] + Pn−1[cos(t)]} dt +
∫ π

c

g(t) cos(nt) dt

]
,

(3.1.75)
where n = 1, 2, 3, . . .,

h(t) =
2
π

d

dt

{∫ t

0

sin(x/2)√
cos(x) − cos(t)

dx

×
[∫ x

0

f(ξ) dξ − 1
2αa0x +

∞∑
n=1

bn sin(nx)

]}
, (3.1.76)

and
bn =

2
π

∫ π

c

g(ξ) cos(nξ) dξ. (3.1.77)

Applying these results to Equation 3.1.72 and Equation 3.1.73, we find that

h(t) =
2
π

d

dt

[∫ t

0

ξ sin(ξ/2)√
cos(ξ) − cos(t)

dξ

]
=

√
2 sin(t)

1 + cos(t)
=

√
2 tan(t/2).

(3.1.78)
Therefore,

a0 =
2√
2

∫ γ

0

h(t) dt = −4 ln[cos(γ/2)], (3.1.79)

and

an =
1√
2

∫ γ

0

h(t){Pn[cos(θ)] + Pn−1[cos(t)]} dt (3.1.80)

=
1
n
{Pn−1[cos(γ)] − Pn[cos(γ)]}. (3.1.81)

Returning to the original Fourier coefficient,

A0 = −2 ln[sin(c/2)], (3.1.82)

and
An = − 1

n
{Pn[cos(c)] + Pn−1[cos(c)]}. (3.1.83)

Figure 3.1.5 illustrates the solution when c = 1
2 .

• Example 3.1.5

Let us solve9

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 ≤ x ≤ L, 0 < y < h, (3.1.84)

9 Adapted from Westmann, R. A., and W. H. Yang, 1967: Stress analysis of cracked
rectangular beams. J. Appl. Mech., 34, 693–701.
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Figure 3.1.5: The solution u(x, y) to the mixed boundary value problem given by Equation
3.1.63 through Equation 3.1.67.

subject to the boundary conditions

ux(0, y) = ux(L, y) = 0, 0 < y < h, (3.1.85)

uy(x, h) = S, 0 < x < L, (3.1.86)

and {
uy(x, 0) = 0, 0 < x < a,
u(x, 0) = 0, a < x < L,

(3.1.87)

where L > a.
If we use separation of variables, the solution to Equation 3.1.84 is

u(x, y) = Sy +
∞∑

n=0

An
cosh[nπ(h − y)/L]

cosh(nπh/L)
cos
(nπx

L

)
. (3.1.88)

Equation 3.1.88 satisfies not only Equation 3.1.84, but also Equation 3.1.85
and Equation 3.1.86. Upon substituting Equation 3.1.88 into Equation 3.1.87,
we find the dual series

∞∑
n=0

(nπ

L

)
An tanh

(
nπh

L

)
cos
(nπx

L

)
= S, 0 < x < a, (3.1.89)

and ∞∑
n=0

An cos
(nπx

L

)
= 0, a < x < L. (3.1.90)
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To solve the dual equations, Equation 3.1.89 and Equation 3.1.90, let us
assume that u(x, 0) is known for 0 < x < L. Then

u(x, 0) =
∞∑

n=0

An cos
(nπx

L

)
. (3.1.91)

From the theory of Fourier series we have that

A0 =
1
L

∫ L

0

u(x, 0) dx, (3.1.92)

and

An =
2
L

∫ L

0

u(x, 0) cos
(nπx

L

)
dx. (3.1.93)

Let us assume that we can express u(x, 0) as

u(x, 0) =
∫ a

x

h(t)√
t2 − x2

dt, 0 < x < a. (3.1.94)

Upon substituting Equation 3.1.94 into Equation 3.1.92 and Equation 3.1.93,

A0 =
1
L

∫ a

0

[∫ a

x

h(t)√
t2 − x2

dt

]
dx =

π

2L

∫ a

0

h(t) dt, (3.1.95)

and

An =
2
L

∫ a

0

[∫ a

x

h(t)√
t2 − x2

dt

]
cos
(nπx

L

)
dx (3.1.96)

=
π

L

∫ a

0

h(t)J0

(
nπt

L

)
dt (3.1.97)

for n = 1, 2, 3, . . .. Next, we substitute Equation 3.1.95 and Equation 3.1.97
into Equation 3.1.89,

∞∑
n=1

nπ

L

[∫ a

0

h(t)J0

(
nπt

L

)
dt

]
tanh

(
nπh

L

)
cos
(nπx

L

)
=

LS

π
. (3.1.98)

Integrating both sides of Equation 3.1.98 from 0 to x and interchanging the
order of integration and summation,∫ a

0

h(t)

[ ∞∑
n=1

tanh
(

nπh

L

)
J0

(
nπt

L

)
sin
(nπx

L

)]
dt =

LSx

π
. (3.1.99)

If we integrate the function csc(πz)eiπzJ0(πtz/L) sin(πxz/L) around a
contour which consists of 1) the positive real axis, 2) the positive imaginary
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axis, and 3) the arc in the first quadrant of the circle |z| = N + 1
2 , Sneddon

and Srivastav10 showed that

∞∑
n=1

J0

(
nπt

L

)
sin
(nπx

L

)
=

L H(x − t)
π
√

x2 − t2
− 1

π

∫ ∞

0

e−ξ sinh(ξx/L)I0(ξt/L)
sinh(ξ)

dξ.

(3.1.100)
Therefore, Equation 3.1.99 can be rewritten and made nondimensional with
respect to a so that it becomes∫ x

0

h(t)√
x2 − t2

dt = Sax −
∫ 1

0

K(x, η)h(η) dη, 0 < x < 1, (3.1.101)

where

K(x, η) =
aπ

L

∞∑
n=1

[
tanh

(
nπh

L

)
− 1
]

J0

(nπaη

L

)
sin
(nπax

L

)
− a

L

∫ ∞

0

e−ξ sinh(ξax/L)I0(ξat/L)
sinh(ξ)

dξ. (3.1.102)

Equation 3.1.101 is an integral equation of the Abel type. Applying Equation
1.2.14 and Equation 1.2.15, we find that

h(t) = Sat +
∫ 1

0

L(t, η)h(η) dη, 0 ≤ t ≤ 1, (3.1.103)

where

L(t, η) = − 2
π

d

dt

[∫ t

0

xK(x, η)√
t2 − x2

dx

]
(3.1.104)

=
(aπ

L

)2 ∞∑
n=1

nt

[
1 − tanh

(
nπh

L

)]
J0

(nπaη

L

)
J0

(
nπat

L

)
+

a2

L2

∫ ∞

0

ξte−ξI0(ξat/L)I0(ξaη/L)
sinh(ξ)

dξ. (3.1.105)

Figure 3.1.6 illustrates the solution when a/L = 0.5 and h/L = 1. Keer and
Sve11 applied this technique to the biharmonic equation. Later, Sezgin12 used
this method to solve a coupled set of Laplace-like equations.

10 Sneddon, I. N., and R. P. Srivastav, 1964: Dual series relationships. Proc. Roy. Soc.
Edinburgh, Ser. A, 66, 150–191.

11 Keer, L. M., and C. Sve, 1970: On the bending of cracked plates. Int. J. Solids
Struct., 6, 1545–1559.

12 Sezgin, M., 1987: Magnetohydrodynamic flow in a rectangular duct. Int. J. Numer.
Meth. Fluids, 7, 697–718.
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Figure 3.1.6: The solution u(x, y) to the mixed boundary value problem given by Equation
3.1.84 through Equation 3.1.87.

• Example 3.1.6

So far we have only encountered Fourier cosine series in a rectilinear
problem. Consider now the following problem in spherical coordinates:13

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

∂2u

∂ϕ2
= 0, a < r < ∞, 0 ≤ ϕ ≤ π, (3.1.106)

subject to the boundary conditions

lim
ϕ→0

|u(r, ϕ)| < ∞, lim
ϕ→π

|u(r, ϕ)| < ∞, a < r < ∞, (3.1.107)

lim
r→∞u(r, ϕ) = u0, 0 ≤ ϕ ≤ π, (3.1.108)

and {
u(a, ϕ) = 0, 0 < ϕ < ϕ0,
ur(a, ϕ) = 0, ϕ0 < ϕ < π.

(3.1.109)

If we use separation of variables, the solution to Equation 3.1.106 is

u(r, ϕ) = u0 +
∞∑

n=0

An
en(a−r)

r
cos(nϕ). (3.1.110)

13 See Baldo, M., A. Grassi, and A. Raudino, 1989: Modeling the mechanisms of enzyme
reactivity by the rototranslational diffusion equation. Phys. Review, Ser. A, 39, 3700–
3702.
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Equation 3.1.110 satisfies not only Equation 3.1.106, but also Equation 3.1.107
and Equation 3.1.108. Upon substituting Equation 3.1.110 into Equation
3.1.109, we find the dual series

∞∑
n=0

An cos(nϕ) = −u0a, 0 < ϕ < ϕ0, (3.1.111)

and ∞∑
n=0

An(1 + na) cos(nϕ) = 0, ϕ0 < ϕ < π. (3.1.112)

Let us rewrite Equation 3.1.112 as

∞∑
n=0

An cos(nϕ) = −
∞∑

m=0

Amma cos(mϕ), ϕ0 < ϕ < π. (3.1.113)

Because the left side of both Equation 3.1.111 and Equation 3.1.113 are the
same, the Fourier cosine series expresses the function

f(ϕ) =
{ −u0a, 0 < ϕ < ϕ0,
−∑∞

m=0 Amma cos(mϕ), ϕ0 < ϕ < π,
(3.1.114)

which is given by the right side of Equation 3.1.111 and Equation 3.1.113.
From the theory of Fourier series,

A0 = −au0ϕ0

π
+

1
π

∞∑
m=1

Am sin(mϕ0), (3.1.115)

and

An = −2au0 sin(nϕ0)
nπ

− n

π
An

[
π − ϕ0 − sin(2nϕ0)

2n

]
+

1
π

∞∑
m=1
m �=n

mAm

{
sin[(m − n)ϕ0]

m − n
+

sin[(m + n)ϕ0]
m + n

}
. (3.1.116)

Equation 3.1.115 and Equation 3.1.116 yield an infinite set of equations. If
we only retain the first N terms, we can invert these equations and find
approximate values for the An’s. The potential then follows from Equation
3.1.110. Figure 3.1.7 illustrates this solution when ϕ = π/3 and N = 100.

Problems

1. Solve Laplace’s equation

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0, 0 ≤ r < ∞, 0 < θ < 2π,
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Figure 3.1.7: The solution u(r, ϕ) to the mixed boundary value problem given by Equation
3.1.106 through Equation 3.1.109 when a = 1 and ϕ0 = π/3.

subject to the boundary conditions

lim
r→0

|u(r, θ)| < ∞, lim
r→∞u(r, θ) → V r cos(θ), 0 < θ < 2π,

u(1−, θ) = u(1+, θ), 0 < θ < 2π,

and {
κur(1−, θ) = ur(1+, θ), −π/2 < θ < π/2,

u(1, θ) = 0, π/2 < θ < 3π/2,

where 1− and 1+ denote points slightly inside and outside of the circle r = 1,
respectively.

Step 1 : Use separation of variables and show that the general solution to the
problem is

u(r, θ) = V r cos(θ) +
∞∑

n=0

Dnrn cos(nθ), 0 < r < 1,

and

u(r, θ) = V r cos(θ) +
∞∑

n=0

Dnr−n cos(nθ), 1 < r < ∞.

Note that this solution satisfies not only the differential equation, but also the
first three boundary conditions.
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Problem 1

Step 2 : Using the final boundary condition and the results given by Equation
2.3.10 through Equation 2.3.16, show that

D0 = − V

κ + 1
, D1 =

1 − 2κ

2(κ + 1)
V, D2 = − V

2(κ + 1)
,

and

D2n−1 = −D2n = (−1)n+1 1 · 3 · · · · (2n − 3)V
2 · 4 · · · 2n

,

where n = 2, 3, 4, . . .. The figure entitled Problem 1 illustrates the solution
u(r, θ)/V when κ = 6.

3.2 DUAL FOURIER SINE SERIES

Dual Fourier sine series arise in the same manner as dual Fourier cosine
series in mixed boundary value problems in rectangular domains. However,
for some reason, they do not appear as often and the following example is the
only one that we present.

Consider Laplace’s equation on a semi-infinite strip

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, 0 < y < ∞, (3.2.1)
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subject to the boundary conditions

u(0, y) = u(L, y) = 0, 0 < y < ∞, (3.2.2)

lim
y→∞u(x, y) → 0, 0 < x < L, (3.2.3)

and {
u(x, 0) = U0(x), 0 < x < �,

uy(x, 0) = 0, � < x < L, (3.2.4)

where L > � and U0(x) is a known odd function.
The solution to Equation 3.2.1 and the boundary conditions Equation

3.2.2 and Equation 3.2.3 is

u(x, y) =
∞∑

n=1

Ane−λny sin(λnx), (3.2.5)

where λn = nπ/L. Substituting Equation 3.2.5 into Equation 3.2.4 yields the
dual series of ∞∑

n=1

An sin(λnx) = U0(x), 0 < x < �, (3.2.6)

and ∞∑
n=1

λnAn sin(λnx) = 0, � < x < L. (3.2.7)

To solve these dual equations, let us follow Williams14 and introduce p(x)
such that ∞∑

n=1

λnAn sin(λnx) =
{

p(x), 0 < x < � ,
0, � < x < L.

(3.2.8)

Therefore, the Fourier coefficient is given by

λnAn =
2
L

∫ �

0

p(x) sin(λnx) dx, (3.2.9)

or

nπAn =
∫ �

−�

p(x) sin(λnx) dx (3.2.10)

if we assume that p(x) is an odd function. Upon substituting Equation 3.2.10
into Equation 3.2.6,

1
π

∞∑
n=1

1
n

sin
(nπx

L

)[∫ �

−�

p(t) sin
(

nπt

L

)
dt

]
= U0(x), |x| < �. (3.2.11)

14 Williams, W. E., 1964: The solution of dual series and dual integral equations. Proc.
Glasgow Math. Assoc., 6, 123–129.
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Let us assume that we can Chebyshev express p(t) by the expansion

p(t) =
1√

�2 − t2

∞∑
m=0

B2m+1T2m+1(t/�), (3.2.12)

where Tn(·) is the nth Chebyshev polynomial. Substituting Equation 3.2.12
into Equation 3.2.11 and noting15 that∫ t

−t

eipτTn(τ/t)
dτ√

t2 − τ2
= inπJn(pt), (3.2.13)

then

∞∑
n=1

1
n

[ ∞∑
m=0

(−1)mB2m+1J2m+1

(
nπ�

L

)]
sin
(nπx

L

)
= U0(x). (3.2.14)

Because the Chebyshev polynomial expansion for sin(ax) is

sin(ax) = 2
∞∑

k=0

(−1)kJ2k+1(a)T2k+1(x), a > 0, (3.2.15)

and reexpressing U0(x) as

U0(x) =
∞∑

k=0

b2k+1T2k+1(x/�), (3.2.16)

we obtain from Equation 3.2.14 the following set of simultaneous equations

∞∑
m=0

(−1)m+kB2m+1C2k+1,2m+1 = b2k+1, k = 0, 1, 2, . . . , (3.2.17)

where

C2k+1,2m+1 = 2
∞∑

n=1

1
n

J2m+1

(
nπ�

L

)
J2k+1

(
nπ�

L

)
. (3.2.18)

Finally, we note that Equation 3.2.10 and Equation 3.2.12 yield

nAn =
∞∑

m=0

(−1)mB2m+1J2m+1

(
nπ�

L

)
. (3.2.19)

15 Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products.
Academic Press, Formula 7.355.1 and 7.355.2.
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Figure 3.2.1: The solution u(x, y) to the mixed boundary value problem given by Equation
3.2.1 through Equation 3.2.4 when U0(x) = x/� and L/� = 3.

For a given U0(x), we compute b2n+1. Equation 3.2.17 then yields B2m+1

while Equation 3.2.19 yields An. Finally, u(x, y) follows from Equation 3.2.5.
Figure 3.2.1 illustrates the solution when U0(x) = x/� and L/� = 3.

An alternative method of solving the dual equations Equation 3.2.6 and
Equation 3.2.7 involves introducing Bn = λnAn, Cn = (−1)n−1Bn, ξ = πx/L,
η = π − ξ, and γ = π − π�/L. Then, these dual equations become

∞∑
n=1

nCn sin(nη) = πU0(π − η)/π, 0 < η < γ, (3.2.20)

and ∞∑
n=1

Cn sin(nη) = 0, γ < η < π. (3.2.21)

Why did we derive Equation 3.2.20 and Equation 3.2.21? Consider the
dual series: 

∞∑
n=1

nan sin(nx) = f(x), 0 ≤ x < c,

∞∑
n=1

an sin(nx) = 0, c < x ≤ π.
(3.2.22)

To find an, we introduce the Fourier sine series:

y(x) =
∞∑

n=1

an sin(nx). (3.2.23)
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Clearly, to satisfy Equation 3.2.22, y(x) = 0 if c < x ≤ π. On the interval
[0, c), we assume that

y(x) = sin
(x

2

) ∫ c

x

h(t)√
cos(x) − cos(t)

dt, 0 ≤ x < c, (3.2.24)

where h(x) is unknown. Why have we chosen such an unusual definition for
y(x)?

Recall that we seek an an that satisfies Equation 3.2.22. From the theory
of Fourier series, we know that

an =
2
π

∫ c

0

y(x) sin(nx) dx (3.2.25)

=
1
π

∫ c

0

h(t)

{∫ t

0

cos
[(

n − 1
2

)
x
]− cos

[(
n + 1

2

)
x
]√

cos(x) − cos(t)
dx

}
dt. (3.2.26)

We now simplify Equation 3.2.26 by applying Mehler integral, Equation 1.3.4:

Pn[cos(x)] =
√

2
π

∫ x

0

cos
[(

n + 1
2

)
ξ
]√

cos(ξ) − cos(x)
dξ, (3.2.27)

and find that

an =
1√
2

∫ c

0

h(t) {Pn−1[cos(t)] − Pn[cos(t)]} dt. (3.2.28)

Turning now to the first equation in Equation 3.2.22, we eliminate n
inside of the summation by integrating both sides:

∞∑
n=1

an [1 − cos(nx)] =
∫ x

0

f(ξ) dξ, (3.2.29)

or∫ c

0

h(t)

(
1√
2

∞∑
n=1

[1 − cos(nx)] {Pn−1[cos(t)] − Pn[cos(t)]}
)

dt =
∫ x

0

f(ξ) dξ.

(3.2.30)
Using the results from Example 1.3.1, we can simplify Equation 3.2.30 to

sin
(x

2

)∫ c

0

h(t)
H(x − t)√

cos(t) − cos(x)
dt =

∫ x

0

f(ξ) dξ, (3.2.31)

or ∫ x

0

h(t)√
cos(t) − cos(x)

dt = csc
(x

2

) ∫ x

0

f(ξ) dξ. (3.2.32)
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Finally, using the results given in Equation 1.2.9 and Equation 1.2.10, the
solution to the integral equation Equation 3.2.32 is

h(t) =
2
π

d

dt

{∫ t

0

cos(x/2)√
cos(x) − cos(t)

[∫ x

0

f(ξ) dξ

]
dx

}
, (3.2.33)

or

h(t) =
2
π

cot
(

t

2

)∫ t

0

sin(x/2)f(x)√
cos(x) − cos(t)

dx. (3.2.34)

Consider now the set of dual equation similar to Equation 3.2.22 is

∞∑
n=1

nan sin(nx) = 0, 0 ≤ x < c,

∞∑
n=1

an sin(nx) = f(x), c < x ≤ π.
(3.2.35)

To find an, we begin by introducing a function g(x), defined by

g(x) =
∞∑

n=1

nan sin(nx), c < x ≤ π. (3.2.36)

Next, we assume that g(x) can be represented by

g(x) = − d

dx

[
sin
(x

2

) ∫ x

c

h(t)√
cos(t) − cos(x)

dt

]
(3.2.37)

over the range c < x ≤ π, where h(t) is unknown. From the properties of
Fourier sine series,

nan =
2
π

∫ π

c

g(x) sin(nx) dx (3.2.38)

= − 2
π

∫ π

c

d

dx

[
sin
(x

2

) ∫ x

c

h(t)√
cos(t) − cos(x)

dt

]
sin(nx) dx (3.2.39)

=
2n

π

∫ π

c

sin
(x

2

)[∫ x

c

h(t)√
cos(t) − cos(x)

dt

]
cos(nx) dx (3.2.40)

by integration by parts. Interchanging the order of integration and using
Equation 1.3.5, we have

an =
1√
2

∫ π

c

h(t) {Pn[cos(t)] − Pn−1[cos(t)]} dt. (3.2.41)
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Substituting Equation 3.2.41 into Equation 3.2.35, we obtain the integral
equation

1√
2

∫ π

c

h(t)

[ ∞∑
n=1

{Pn[cos(t)] − Pn−1[cos(t)]} sin(nx)

]
dt = f(x). (3.2.42)

Using the results from Problem 3 in Section 1.3, Equation 3.2.42 simplifies to∫ π

x

h(t)√
cos(x) − cos(t)

dt = − csc
(x

2

)
f(x), c < x ≤ π. (3.2.43)

From Equation 1.2.11 and Equation 1.2.12, we obtain

h(t) =
2
π

d

dt

[∫ π

t

f(x) cos(x/2)√
cos(t) − cos(x)

dx

]
. (3.2.44)

Using the results from Equations 3.2.22, 3.2.28, 3.2.34, 3.2.35, 3.2.41, and
3.2.44, the solution to the dual equations

∞∑
n=1

ncn sin(ny) = g(π − y), 0 ≤ y < γ,

∞∑
n=1

cn sin(ny) = f(π − y), γ < y ≤ π,
(3.2.45)

is
cn =

1√
2

∫ π

0

h(t) {Pn−1[cos(t)] − Pn[cos(t)]} dt, (3.2.46)

where

h(t) =
2
π

cot
(

t

2

)∫ t

0

g(π − ξ) sin(ξ/2)√
cos(ξ) − cos(t)

dξ, 0 ≤ t < γ, (3.2.47)

and

h(t) = − 2
π

d

dt

[∫ π

t

f(π − ξ) cos(ξ/2)√
cos(t) − cos(ξ)

dξ

]
, γ < t ≤ π. (3.2.48)

Therefore, the solution to Equation 3.2.20 and Equation 3.2.21 is

Cn =
1√
2

∫ γ

0

h(t) {Pn−1[cos(t)] − Pn[cos(t)]} dt, (3.2.49)

where

h(t) =
2
L

cot
(

t

2

)∫ t

0

U0[L(π − ξ)/π] sin(ξ/2)√
cos(ξ) − cos(t)

dξ, 0 ≤ t < γ. (3.2.50)
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Consequently, making the back substitution, the dual series

∞∑
n=1

bn

n
sin(nx) = f(x) 0 ≤ x < c,

∞∑
n=1

bn sin(nx) = g(x). c < x ≤ π,
(3.2.51)

has the solution

bn =
n√
2

∫ π

0

k(t) {Pn−1[cos(t)] + Pn[cos(t)]} dt, (3.2.52)

where

k(t) =
2
π

d

dt

[∫ c

0

f(ξ) sin(ξ/2)√
cos(ξ) − cos(t)

dξ

]
, 0 ≤ t < c, (3.2.53)

and

k(t) =
2
π

tan
(

t

2

)∫ π

t

g(ξ) cos(ξ/2)√
cos(t) − cos(ξ)

dξ, c < t ≤ π. (3.2.54)

Using Equation 3.2.51 through Equation 3.2.54, we finally have that

An =
1√
2

∫ π�/L

0

k(t) {Pn−1[cos(t)] + Pn[cos(t)]} dt, (3.2.55)

where

k(t) =
2
π

d

dt

[∫ t

0

U0(Lξ/π) sin(ξ/2)√
cos(ξ) − cos(t)

dξ

]
, 0 ≤ t < π�/L. (3.2.56)

3.3 DUAL FOURIER-BESSEL SERIES

Dual Fourier-Bessel series arise during mixed boundary value problems
in cylindrical coordinates where the radial dimension is of finite extent. Here
we show a few examples.

• Example 3.3.1

Let us find16 the potential for Laplace’s equation in cylindrical coordi-
nates:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < 1, 0 < z < ∞, (3.3.1)

16 Originally solved by Borodachev, N. M., and F. N. Borodacheva, 1967: Considering

the effect of the walls for an impact of a circular disk on liquid. Mech. Solids, 2(1), 118.



110 Mixed Boundary Value Problems

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, ur(1, z) = 0, 0 < z < ∞, (3.3.2)

{
uz(r, 0) = 1, 0 ≤ r < a,
u(r, 0) = 0, a < r < 1, (3.3.3)

and
lim

z→∞u(r, z) → 0, 0 ≤ r < 1, (3.3.4)

where a < 1.
Separation of variables yields the potential, namely

u(r, z) = A0 +
∞∑

n=1

Ane−knzJ0(knr), (3.3.5)

where kn is the nth positive root of J ′
0(k) = −J1(k) = 0. Equation 3.3.5

satisfies Equation 3.3.1, Equation 3.3.2, and Equation 3.3.4. Substituting
Equation 3.3.5 into Equation 3.3.3, we obtain the dual series:

∞∑
n=1

knAnJ0(knr) = −1, 0 ≤ r < a, (3.3.6)

and

A0 +
∞∑

n=1

AnJ0(knr) = 0, a < r < 1. (3.3.7)

Srivastav17 showed that this dual Dini series has the solution

A0 = −2
∫ a

0

t h(t) dt, (3.3.8)

and
An = − 2

knJ2
0 (kn)

∫ a

0

h(t) sin(knt) dt, (3.3.9)

where the unknown function h(t) is given by the regular Fredholm integral
equation of the second kind:

h(t) +
∫ a

0

L(t, η)h(η) dη = t, 0 ≤ t < a, (3.3.10)

and

L(t, η) =
4
π2

∫ ∞

0

K1(x)
I1(x)

sinh(tx) sinh(ηx) dx. (3.3.11)

17 Srivastav, R. P., 1961/1962: Dual series relations. II. Dual relations involving Dini
series. Proc. R. Soc. Edinburgh, Ser. A, 66, 161–172.
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Figure 3.3.1: The solution to Laplace’s equation subject to the boundary conditions given
by Equation 3.3.2, Equation 3.3.3, and Equation 3.3.4 when a = 0.5.

Figure 3.3.1 illustrates this solution when a = 0.5.

• Example 3.3.2

A similar problem18 to the previous one arises during the solution of
Laplace’s equation in cylindrical coordinates:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < 1, 0 < z < ∞, (3.3.12)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, ur(1, z) = 0, 0 < z < ∞, (3.3.13)

{
u(r, 0) = 1, 0 ≤ r < a,
uz(r, 0) = 0, a < r < 1, (3.3.14)

and
lim

z→∞ |uz(r, z)| < ∞, 0 ≤ r < 1, (3.3.15)

where a < 1.
Separation of variables gives

u(r, z) = A0z +
∞∑

n=1

Ane−knz J0(knr)
kn

, (3.3.16)

18 See Hunter, A., and A. Williams, 1969: Heat flow across metallic joints – The con-
striction alleviation factor. Int. J. Heat Mass Transfer , 12, 524–526.
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where kn is the nth positive root of J ′
0(k) = −J1(k) = 0. Equation 3.3.16

satisfies Equation 3.3.12, Equation 3.3.13, and Equation 3.3.15. Substituting
Equation 3.3.16 into Equation 3.3.14, we obtain the dual series:

∞∑
n=1

An
J0(knr)

kn
= 1, 0 ≤ r < a, (3.3.17)

and

A0 −
∞∑

n=1

AnJ0(knr) = 0, a < r < 1. (3.3.18)

Srivastav19 has given the solution to the dual Fourier-Bessel series

αa0 +
∞∑

n=1

an
J0(knr)

kn
= f(r), 0 ≤ r < a, (3.3.19)

and

a0 +
∞∑

n=1

anJ0(knr) = 0, a < r < 1. (3.3.20)

Then,

a0 = 2
∫ a

0

h(t) dt, (3.3.21)

and

an =
2

J2
0 (kn)

∫ a

0

h(t) cos(knt) dt, (3.3.22)

where the function h(t) is given by the integral equation

h(t) −
∫ a

0

K(t, τ)h(τ) dτ = x(t), 0 < t < a, (3.3.23)

x(t) =
2
π

d

dt

[∫ t

0

rf(r)√
t2 − r2

dr

]
, (3.3.24)

and

K(t, τ) =
4
π

(1 − α) +
4
π2

∫ ∞

0

K1(ξ)
ξI1(ξ)

[2I1(ξ) − ξ cosh(τξ) cosh(tξ)] dξ.

(3.3.25)

19 Ibid. See also Sneddon, op. cit., Equation 5.3.27 through Equation 5.3.35.
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Figure 3.3.2: The solution to Laplace’s equation subject to the boundary conditions given
by Equation 3.3.13 through Equation 3.3.15 when a = 1

2
.

Equation 3.3.19 through Equation 3.3.25 provide the answer to our problem
if we set α = 0 and f(r) = 1. Figure 3.3.2 illustrates the solution when a = 1

2 .

• Example 3.3.3

Let us solve Laplace equation20

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < a, 0 < z < ∞, (3.3.26)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(a, z) = 0, 0 < z < ∞, (3.3.27)

{
uz(r, 0) = 1, 0 ≤ r < 1,
ur(r, 0) = 0, 1 < r < a, (3.3.28)

and
lim

z→∞u(r, z) → 0, 0 ≤ r < a, (3.3.29)

where a > 1.
The method of separation of variables yields the product solution

u(r, z) =
∞∑

n=1

AnJ0(knr)e−knz, (3.3.30)

20 See Sherwood, J. D., and H. A. Stone, 1997: Added mass of a disc accelerating within
a pipe. Phys. Fluids, 9, 3141–3148.
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where kn is the nth root of J1(ka) = 0. Equation 3.3.30 satisfies not only
Laplace’s equation, but also the boundary conditions given by Equation 3.3.27
and Equation 3.3.29. Substituting Equation 3.3.30 into Equation 3.3.28, we
obtain the dual series

∞∑
n=1

AnknJ0(knr) = −1, 0 ≤ r < 1, (3.3.31)

and
∞∑

n=1

AnknJ1(knr) = 0, 1 ≤ r < a. (3.3.32)

We begin our solution of these dual equations by applying the identity21

∞∑
n=1

Jν+2m+1−p(ζn)Jν(ζnr)
ζ1−p
n J2

ν+1(ζna)
= 0, 1 < r < a, (3.3.33)

where |p| ≤ 1
2 , ν > p − 1, m = 0, 1, 2, . . ., and ζn denotes the nth root of

Jν(ζa) = 0. By direction substitution it is easily seen that Equation 3.3.32 is
satisfied if ν = 1 and

k2−p
n J2

2 (kna)An =
∞∑

m=0

CmJ2m+2−p(kn). (3.3.34)

Here p is still a free parameter. Substituting Equation 3.3.34 into Equation
3.3.31,

∞∑
n=1

∞∑
m=0

Cm
J2m+2−p(kn)J0(knr)

k1−p
n J2

2 (kna)
= −1, 0 ≤ r < 1. (3.3.35)

Our remaining task is to compute Cm. Although Equation 3.3.35 holds
for any r between 0 and 1, it would be better if we did not have to deal with
its presence. It can be eliminated as follows: From Sneddon’s book,22∫ ∞

0

η1−kJν+2m+k(η)Jν(rη) dη =
Γ(ν + m + 1)rν(1 − r2)k−1

2k−1Γ(ν + 1)Γ(m + k)
P (k+ν,ν+1)

m

(
r2
)

(3.3.36)

21 Tranter, C. J., 1959: On the analogies between some series containing Bessel functions
and certain special cases of the Weber-Schafheitlin integral. Quart. J. Math., Ser. 2 , 10,
110–114.

22 Sneddon, op. cit., Equation 2.1.33 and Equation 2.1.34.
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if 0 ≤ r < 1; this integral equals 0 if 1 < r < ∞. Here P
(a,b)
m (x) = 2F1(−m, a+

m; b; x) is the Jacobi polynomial. If we view Equation 3.3.36 as a Hankel
transform of η−kJν+2m+k(η), then its inverse is

η−kJν+2m+k(η)

=
∫ 1

0

Γ(ν + m + 1)r1+ν
(
1 − r2

)k−1

2k−1Γ(ν + 1)Γ(m + k)
Jν(rη)P (k+ν,ν+1)

m

(
r2
)

dr. (3.3.37)

We also have from the orthogonality condition23 of Jacobi polynomials that∫ 1

0

r2ν+1
(
1 − r2

)k−1
P (k+ν,ν+1)

m

(
r2
)

dr =
Γ(ν + 1)Γ(k)
2Γ(ν + k + 1)

δ0m, (3.3.38)

where δnm is the Kronecker delta. Multiplying both sides of Equation 3.3.35
by r

(
1 − r2

)−p
P

(1−p,1)
m (r2) and applying Equation 3.3.38, we obtain

− Γ(1 − p)
2Γ(2 − p)

δ0j =
∞∑

n=1

∞∑
m=0

Cm
J2m+2−p(kn)J2j+1−p(kn)Γ(j + 1 − p)

2pΓ(j + 1)k2−2p
n J2

2 (kna)
;

(3.3.39)
or ∞∑

m=0

AjmCm = Bj , j = 0, 1, 2, . . . , (3.3.40)

where

Ajm =
∞∑

n=1

J2m+2−p(kn)J2j+1−p(kn)
k2−2p

n J2
2 (kna)

, (3.3.41)

and

Bj =
{−2p−1/Γ(2 − p), j = 0,

0, otherwise.
(3.3.42)

For a given p, we can solve Equation 3.3.40 after we truncate the infinite num-
ber of equations to just M . For a given kn we solve the truncated Equation
3.3.40, which yields Cm for m = 0, 1, 2, . . . , M . Then Equation 3.3.34 gives
An. Finally, the potential u(r, z) follows from Equation 3.3.30. Figure 3.3.3
illustrates this solution when a = 2 and p = 0.5.

• Example 3.3.4

In the previous example we solved Laplace’s equation over a semi-infinite
right cylinder. Here, let us solve Laplace’s equation24 when the cylinder has

23 See page 83 in Magnus, W., and F. Oberhettinger, 1954: Formulas and Theorems for
the Functions of Mathematical Physics. Chelsea Publ. Co., 172 pp.

24 See Galceran, J., J. Cecilia, E. Companys, J. Salvador, and J. Puy, 2000: Analytical
expressions for feedback currents at the scanning electrochemical microscope. J. Phys.
Chem., Ser. B , 104, 7993-8000.
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Figure 3.3.3: The solution to Equation 3.3.26 subject to the boundary conditions given
by Equation 3.3.27 through Equation 3.3.29 when a = 2 and p = 0.5.

a height b. Our problem now reads

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < a, 0 < z < b, (3.3.43)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(a, z) = 0, 0 < z < b, (3.3.44)

{
u(r, 0) = 1, 0 ≤ r < 1,
uz(r, 0) = 0, 1 < r < a, (3.3.45)

and
lim

z→∞u(r, z) → 0, 0 ≤ r < a, (3.3.46)

where a > 1.
The method of separation of variables yields the product solution

u(r, z) =
∞∑

n=1

An coth(knb) [cosh(knz) − tanh(knb) sinh(knz)]
J0(knr)

kn
,

(3.3.47)
where kn is the nth root of J0(ka) = 0. Equation 3.3.47 satisfies not only
Laplace’s equation, but also the boundary conditions given by Equation 3.3.44
and Equation 3.3.46. Substituting Equation 3.3.47 into Equation 3.3.45, we
obtain the dual series

∞∑
n=1

An
coth(knb)

kn
J0(knr) = 1, 0 ≤ r < 1, (3.3.48)
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and
∞∑

n=1

AnJ0(knr) = 0, 1 ≤ r < a. (3.3.49)

Let us reexpress An as follows:

An =
1√

kn J2
1 (kna)

∞∑
m=0

BmJ2m+ 1
2
(km). (3.3.50)

Substituting Equation 3.3.50 into Equation 3.3.49, we have25 that

∞∑
n=1

AnJ0(knr) =
∞∑

m=o

Bm

[ ∞∑
n=1

J2m+ 1
2
(km)J0(knr)√

kn J2
1 (kna)

]
= 0 (3.3.51)

for 1 < r ≤ a. Therefore, Equation 3.3.49 is satisfied identically with this
definition of An.

Next, we substitute Equation 3.3.50 into Equation 3.3.48, multiply both
sides of the resulting equation by r F2 1

(−s, s + 1
2 , 1, r2

)
dr/

√
1 − r2 and in-

tegrate between r = 0 and r = 1. We find that

∞∑
m=0

Cm,sBm =
√

2Γ(s + 1)
Γ
(
s + 1

2

) ∫ 1

0

r√
1 − r2

F2 1

(−s, s + 1
2 , 1, r2

)
dr (3.3.52)

=
{√

2/π, s = 0,
0, s > 0,

(3.3.53)

where

Cm,s =
∞∑

n=1

coth(knb)J2m+ 1
2
(kn)J2s+ 1

2
(kn)

k2
nJ2

1 (kna)
(3.3.54)

and s = 0, 1, 2, . . .. We used

J2s+ 1
2
(kn)√

kn

=
√

2Γ(s + 1)
Γ
(
s + 1

2

) ∫ 1

0

r√
1 − r2

F2 1

(−s, s + 1
2 , 1, r2

)
J0(knr) dr.

(3.3.55)
Equation 3.3.55 is now solved to yield Bm. Next, we compute An from Equa-
tion 3.3.50. Finally u(r, z) follows from Equation 3.3.47.

Figure 3.3.4 illustrates the solution to Equation 3.3.43 through Equa-
tion 3.3.46 when a = 2 and b = 1. As suggested by Galceran et al.,26 the

25 Tranter, op. cit.

26 Galceran, Cecilia, Companys, Salvador, and Puy, op. cit.
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Figure 3.3.4: The solution to Equation 3.3.43 through Equation 3.3.46 when a = 2 and
b = 1.

computation of Bm is assisted by noting that

Cm,s =
∞∑

n=1

[coth(knb) − 1]J2m+ 1
2
(kn)J2s+ 1

2
(kn)

k2
nJ2

1 (kna)

−
∞∑

n=1

J2m+ 1
2
(kn)J2s+ 1

2
(kn)

k2
nJ2

1 (kna)
(3.3.56)

=
∞∑

n=1

[coth(knb) − 1]J2m+ 1
2
(kn)J2s+ 1

2
(kn)

k2
nJ2

1 (kna)
(3.3.57)

− a2

2

[
δms

4s + 1
− 2(−1)m+s

π

∫ ∞

0

K0(t)
t I0(t)

I2m+ 1
2

(
t

a

)
I2s+ 1

2

(
t

a

)
dt

]
,

where δms is the Kronecker delta and we used results from a paper27 by
Tranter to replace the second summation in Equation 3.3.56 with an integral.

• Example 3.3.5

Let us find28 the electrostatic potential due to a parallel plate condenser
that lies within a hollow cylinder of radius a > 1 that is grounded and infinitely
long. See Figure 3.3.5. The governing equations are

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < a, −∞ < z < ∞, (3.3.58)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(a, z) = 0, −∞ < z < ∞, (3.3.59)

27 Tranter, op. cit.

28 See Singh, B. M., 1973: On mixed boundary value problem in electrostatics. Indian
J. Pure Appl. Math., 6, 166–176.
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z

r

z = h

z = 0

1

a

Figure 3.3.5: Schematic of a hollow cylinder containing discs at z = 0 and z = h.

u(r, 0−) = u(r, 0+), u(r, h−) = u(r, h+), 0 ≤ r < a, (3.3.60){
u(r, 0) = G(r), u(r, h) = F (r), 0 ≤ r < 1,

uz(r, 0−) = uz(r, 0+), uz(r, h−) = uz(r, h+), 1 < r < a, (3.3.61)

and
lim

|z|→∞
u(r, z) → 0, 0 ≤ r < a. (3.3.62)

Here, G(r) and F (r) denote the prescribed potential on the discs at z = 0
and z = h, respectively. The parameters h+ and h− denote points that are
slightly above or below h, respectively.

Separation of variables yields the potential, namely

u(r, z) =
∞∑

n=0

Ane−kn(z−h) J0(knr)
kn

, h ≤ z < ∞, (3.3.63)

u(r, z) =
∞∑

n=0

{
An

sinh(knz)
sinh(knh)

+ Bn
sinh[kn(h − z)]

sinh(knh)

}
J0(knr)

kn
, 0 ≤ z ≤ h,

(3.3.64)
and

u(r, z) =
∞∑

n=0

Bneknz J0(knr)
kn

, −∞ < z ≤ 0, (3.3.65)
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where kn is the nth positive root of J0(ka) = 0. Equation 3.3.63 through
Equation 3.3.65 satisfy Equation 3.3.58, Equation 3.3.59, Equation 3.3.60,
and Equation 3.3.62. Substituting Equation 3.3.63 through Equation 3.3.65
into Equation 3.3.61, we obtain the following system of simultaneous dual
series equations:

∞∑
n=0

An
J0(knr)

kn
= F (r), 0 ≤ r < 1, (3.3.66)

∞∑
n=0

Bn
J0(knr)

kn
= G(r), 0 ≤ r < 1, (3.3.67)

∞∑
n=0

{
[1 + coth(knh)]An − Bn

sinh(knh)

}
J0(knr) = 0, 1 < r < a, (3.3.68)

and
∞∑

n=0

{
[1 + coth(knh)]Bn − An

sinh(knh)

}
J0(knr) = 0, 1 < r < a. (3.3.69)

For 0 ≤ r < 1, let us augment Equation 3.3.68 and Equation 3.3.69 with
∞∑

n=0

{
[1 + coth(knh)]An − Bn

sinh(knh)

}
J0(knr) = −1

r

d

dr

[∫ 1

r

t g(t)√
t2 − r2

dt

]
,

(3.3.70)
and

∞∑
n=0

{
[1 + coth(knh)]Bn − An

sinh(knh)

}
J0(knr) = −1

r

d

dr

[∫ 1

r

t h(t)√
t2 − r2

dt

]
,

(3.3.71)
where g(t) and h(t) are unknown functions.

Taken together, Equation 3.3.68 through Equation 3.3.71 are a Fourier-
Bessel series over the interval 0 ≤ r < a. From Equation 1.4.16 and Equation
1.4.17, it follows that

[1 + coth(knh)]An − Bn

sinh(knh)

= − 2
a2J2

1 (kna)

∫ 1

0

d

dr

[∫ 1

r

t g(t)√
t2 − r2

dt

]
J0(knr) dr (3.3.72)

= − 2
a2J2

1 (kna)

[∫ 1

r

t g(t)√
t2 − r2

dt

]
J0(knr)

∣∣∣∣1
0

− 2
a2J2

1 (kna)

∫ 1

0

knJ1(knr)
[∫ 1

r

t g(t)√
t2 − r2

dt

]
dr (3.3.73)

=
2

a2J2
1 (kna)

∫ 1

0

g(t) dt

− 2kn

a2J2
1 (kna)

∫ 1

0

t g(t)
[∫ t

0

J1(knr)√
t2 − r2

dr

]
dt. (3.3.74)
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Now,∫ t

0

J1(knr)√
t2 − r2

dr =
∫ 1

0

J1(kntη)√
1 − η2

dη =
π

2
J2

1
2
(knt/2) =

1 − cos(knt)
knt

, (3.3.75)

where we used tables29 to evaluate the integral. Therefore,

[1 + coth(knh)]An − Bn

sinh(knh)
=

2
a2J2

1 (kna)

∫ 1

0

g(t) cos(knt) dt. (3.3.76)

In a similar manner,

[1 + coth(knh)]Bn − An

sinh(knh)
=

2
a2J2

1 (kna)

∫ 1

0

h(t) cos(knt) dt. (3.3.77)

Solving for An and Bn, we find that

An =
1

a2J2
1 (kna)

[∫ 1

0

g(t) cos(knt) dt + e−knh

∫ 1

0

h(t) cos(knt) dt

]
,

(3.3.78)
and

Bn =
1

a2J2
1 (kna)

[∫ 1

0

h(t) cos(knt) dt + e−knh

∫ 1

0

g(t) cos(knt) dt

]
.

(3.3.79)
Substituting An and Bn into Equation 3.3.66 and 3.3.67 and interchanging
the order of integration and summation,

∫ 1

0

g(t)
[ ∞∑

n=0

J0(knr) cos(knt)
a2knJ2

1 (kna)

]
dt

+
∫ 1

0

h(t)

[ ∞∑
n=0

e−knhJ0(knr) cos(knt)
a2knJ2

1 (kna)

]
dt = F (r), (3.3.80)

and∫ 1

0

h(t)
[ ∞∑

n=0

J0(knr) cos(knt)
a2knJ2

1 (kna)

]
dt

+
∫ 1

0

g(t)

[ ∞∑
n=0

e−knhJ0(knr) cos(knt)
a2knJ2

1 (kna)

]
dt = G(r). (3.3.81)

29 Gradshteyn and Ryzhik, op. cit., Formula 6.552.4.
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It is readily shown30 that

2
a2

∞∑
n=0

J0(knr) cos(knt)
knJ2

1 (kna)
=
∫ ∞

0

J0(rη) cos(tη) dη

− 2
π

∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) dη. (3.3.82)

In a similar manner,

2
a2

∞∑
n=0

e−knhJ0(knr) cos(knt)
knJ2

1 (kna)
=
∫ ∞

0

J0(rη) cos(tη)e−hη dη (3.3.83)

− 2
π

∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) cos(hη) dη.

Substituting Equation 1.4.14, Equation 3.3.82, and Equation 3.3.83 into Equa-
tion 3.3.80 and Equation 3.3.81, we have that∫ r

0

g(t)√
r2 − t2

dt =
2
π

∫ 1

0

g(t)
[∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) dη

]
dt

− 2
π

∫ 1

0

h(t)
[∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) cos(hη) dη

]
dt

−
∫ 1

0

h(t)
[∫ ∞

0

J0(rη) cos(tη)e−hη dη

]
dt + 2F (r), (3.3.84)

and∫ r

0

h(t)√
r2 − t2

dt =
2
π

∫ 1

0

h(t)
[∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) dη

]
dt

− 2
π

∫ 1

0

g(t)
[∫ ∞

0

K0(aη)
I0(aη)

I0(rη) cosh(tη) cos(hη) dη

]
dt

−
∫ 1

0

g(t)
[∫ ∞

0

J0(rη) cos(tη)e−hη dη

]
dt + 2G(r). (3.3.85)

Equation 3.3.84 and Equation 3.3.85 are integral equations of the Abel type.
From Equation 1.2.13 and Equation 1.2.14, we find

g(t) =
4
π

d

dt

[∫ t

0

r F (r)√
t2 − r2

dr

]
+

4
π2

∫ 1

0

g(ξ)
[∫ ∞

0

K0(aη)
I0(aη)

cosh(tη) cosh(ξη) dη

]
dξ

+
4
π2

∫ 1

0

h(ξ)
[∫ ∞

0

K0(aη)
I0(aη)

cosh(tη) cosh(ξη) cos(hη) dη

]
dξ

− 2
π

∫ 1

0

h(ξ)
[∫ ∞

0

e−hη cos(ξη) cos(tη) dη

]
dξ, (3.3.86)

30 See Section 2.2 in Sneddon, op. cit.
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Figure 3.3.6: The electrostatic potential within an infinitely long, grounded, and hollow
cylinder of radius 2 when two discs with potential −1 and 1 are placed at z = 0 and z = 2,
respectively.

and

h(t) =
4
π

d

dt

[∫ t

0

r G(r)√
t2 − r2

dr

]
+

4
π2

∫ 1

0

g(ξ)
[∫ ∞

0

K0(aη)
I0(aη)

cosh(tη) cosh(ξη) cos(hη) dη

]
dξ

+
4
π2

∫ 1

0

h(ξ)
[∫ ∞

0

K0(aη)
I0(aη)

cosh(tη) cosh(ξη) dη

]
dξ

− 2
π

∫ 1

0

g(ξ)
[∫ ∞

0

e−hη cos(ξη) cos(tη) dη

]
dξ. (3.3.87)

For a given F (r) and G(r), we solve the integral equations Equation 3.3.86
and Equation 3.3.87 for g(t) and h(t). Equation 3.3.78 and Equation 3.3.79
give An and Bn. Finally, we can use Equation 3.3.63 through Equation 3.3.65
to evaluate the potential for any given r and z. Figure 3.3.6 illustrates the
electrostatic potential when F (r) = 1, G(r) = −1, and a = h = 2.

• Example 3.3.6: Electrostatic problem

In electrostatics the potential due to a point charge located at r = 0 and
z = h in the upper half-plane z > 0 above a grounded plane z = 0 is

u(r, z) =
1√

r2 + (z − h)2
− 1√

r2 + (z + h)2
. (3.3.88)

Let us introduce a unit circular hole at z = 0 and attach an infinite pipe to



124 Mixed Boundary Value Problems

(0,h)

z

r
(1,0)

Figure 3.3.7: Schematic of the spatial domain for which we are finding the potential in
Example 3.3.6.

this hole. See Figure 3.3.7. Let us find the potential31 in this case.

The potential in this new configuration is

u(r, z) =
1√

r2 + (z − h)2
− 1√

r2 + (z + h)2
+

1
2i

∫ 1

−1

g(t)√
r2 + (z + it)2

dt

(3.3.89)
when 0 ≤ r < ∞ and 0 ≤ z < ∞ and

u(r, z) =
∞∑

n=1

AnJ0(knr)eknz (3.3.90)

when 0 ≤ r ≤ 1 and −∞ < z ≤ 0. The integral32 in Equation 3.3.89 vanishes
when z = 0 and 1 ≤ r < ∞. Here g(t) is an odd real-valued function and
kn denotes the nth root of J0(k) = 0. To determine g(t) and the Fourier
coefficients An, the potential and its normal derivative must be continuous
across the aperture z = 0 and 0 ≤ r ≤ 1. Mathematically these conditions
are

u(r, 0−) = u(r, 0+), 0 ≤ r ≤ 1, (3.3.91)

and
uz(r, 0−) = uz(r, 0+), 0 ≤ r ≤ 1. (3.3.92)

31 Taken from Shail, R., and B. A. Packham, 1986: Some potential problems associated
with the sedimentation of a small particle into a semi-infinite fluid-filled pore. IMA J. Appl.
Math., 37, 37–66 with permission of Oxford University Press.

32 See Section 5.10 in Green, A. E., and W. Zerna, 1992: Theoretical Elasticity. New
York: Dover, 457 pp.
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Equation 3.3.91 yields

∞∑
n=1

AnJ0(knr) = −
∫ 1

r

g(t)√
t2 − r2

dt, 0 ≤ r ≤ 1. (3.3.93)

In deriving Equation 3.3.93, we used√
r2 + (z + it)2 = ξeiη/2,

√
r2 + (z − it)2 = ξe−iη/2, (3.3.94)

with ξ2 cos(η) = r2 + z2 − t2, ξ2 sin(η) = 2zt, ξ ≥ 0, and 0 ≤ η ≤ π. On the
other hand, Equation 3.3.92 gives

1
r

∂

∂r

[∫ r

0

t h(t)√
r2 − t2

dt

]
=

∞∑
n=1

knAnJ0(knr) − 2h

(r2 + h2)3/2
, 0 ≤ r ≤ 1.

(3.3.95)
Using Equation 1.2.13 and Equation 1.2.14, we can solve for g(t) in Equation
3.3.93 and find that

g(t) =
2
π

∞∑
n=1

knAn

∫ t

0

rJ0(knr)√
t2 − r2

dr − 4h

π

∫ t

0

r√
(t2 − r2)(r2 + h2)3

dr

(3.3.96)

=
2
π

∞∑
n=1

An sin(knt) − 4t

π(t2 + h2)
, 0 ≤ t ≤ 1. (3.3.97)

We used Equation 1.4.9 and tables33 to evaluate the integrals in Equation
3.3.96.

Substituting the results from Equation 3.3.97 into Equation 3.3.95, we
obtain

∞∑
n=1

AnJ0(knr) = − 2
π

∞∑
n=1

An

∫ 1

r

sin(knt)√
t2 − r2

dt +
4
π

∫ 1

r

t

(t2 + h2)
√

t2 − r2
dt.

(3.3.98)
The left side of Equation 3.3.98 is a Fourier-Bessel expansion. Multiplying
both sides of this equation by rJ0(kmr) and integrating with respect to r from
0 to 1, we find that

1
2J2

1 (km)Am = − 2
π

∞∑
n=1

An

∫ 1

0

rJ0(kmr)
[∫ 1

r

sin(knt)√
t2 − r2

dt

]
dr

+
4
π

∫ 1

0

rJ0(kmr)
[∫ 1

r

dt

(t2 + h2)
√

t2 − r2

]
dr. (3.3.99)

33 Gradshteyn and Ryzhik, op. cit., Formula 2.252, Point II.
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Figure 3.3.8: The electrostatic potential when a unit point charge is placed at r = 0 and
z = h for the structure illustrated in Figure 3.3.7.

Interchanging the order of integration in Equation 3.3.99 and evaluating the
inner r integrals, we finally achieve

1
2πJ2

1 (km)Am +
∞∑

n=1

An

[
sin(kn − km)

kn − km
− sin(kn + km)

kn + km

]

= 4
∫ 1

0

t

t2 + h2
sin(kmt) dt, (3.3.100)

where m = 1, 2, 3, . . .. To find Am, we truncate the infinite number of equa-
tions given by Equation 3.3.100 to a finite number, say M . As M increases
the Am’s with a smaller m increase in accuracy. The procedure is stopped
when the leading Am’s are sufficiently accurate for the evaluation of Equation
3.3.89, Equation 3.3.90 and Equation 3.3.97. Figure 3.3.8 illustrates this so-
lution when h = 1 and the first 300 terms have been retained when M = 600.

3.4 DUAL FOURIER-LEGENDRE SERIES

Here we turn to problems in spherical coordinates which lead to dual
Fourier-Legendre series. We now present several examples of their solution.
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• Example 3.4.1

Let us solve34 the axisymmetric Laplace equation within the unit sphere:

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < 1, 0 < θ < π, (3.4.1)

subject to the boundary conditions

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 ≤ r ≤ 1, (3.4.2)

lim
r→0

|u(r, θ)| < ∞, 0 ≤ θ ≤ π, (3.4.3)

and {
u(1, θ) = 1, 0 ≤ θ < α,

ur(1, θ) = −bu(1, θ), α < θ ≤ π.
(3.4.4)

Separation of variables yields the solution

u(r, θ) =
∞∑

n=0

AnrnPn[cos(θ)]. (3.4.5)

Equation 3.4.5 satisfies not only Equation 3.4.1, but also Equation 3.4.2 and
Equation 3.4.3. Substituting Equation 3.4.5 into Equation 3.4.4 yields the
dual Fourier-Legendre series

∞∑
n=0

AnPn[cos(θ)] = 1, 0 ≤ θ < α, (3.4.6)

and ∞∑
n=0

(b + n)AnPn[cos(θ)] = 0, α ≤ θ < π. (3.4.7)

Consider Equation 3.4.6. Using Equation 1.3.4 to eliminate Pn[cos(θ)]
and then interchanging the order of integration and summation, we have∫ θ

0

1√
cos(ϕ) − cos(θ)

{ ∞∑
n=0

An cos
[(

n + 1
2

)
ϕ
]}

dϕ =
π√
2
, 0 ≤ ϕ < α.

(3.4.8)
Applying the results from Equation 1.2.9 and Equation 1.2.10,

∞∑
n=0

An cos
[(

n + 1
2

)
ϕ
]

=
1√
2

d

dϕ

[∫ ϕ

0

sin(τ)√
cos(τ) − cos(ϕ)

dτ

]
(3.4.9)

=
√

2
d

dϕ

[√
1 − cos(ϕ)

]
(3.4.10)

= cos(ϕ/2). (3.4.11)

34 See Ramachandran, M. P., 1993: A note on the integral equation method to a diffusion-
reaction problem. Appl. Math. Lett., 6, 27–30.
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In a similar manner, Equation 3.4.7 can be rewritten as

∫ π

θ

1√
cos(θ) − cos(ϕ)

{ ∞∑
n=0

(b + n)An sin
[(

n + 1
2

)
ϕ
]}

dϕ = 0 (3.4.12)

for α < θ ≤ π. Therefore,

∞∑
n=0

(b + n)An sin
[(

n + 1
2

)
ϕ
]

=
∞∑

n=0

(
n + 1

2 − γ
)
An sin

[(
n + 1

2

)
ϕ
]

= 0

(3.4.13)
with α < ϕ ≤ π and γ = 1

2 − b. Integrating Equation 3.4.13 with respect to
ϕ, we have

∞∑
n=0

(
1 − γ

n + 1
2

)
An cos

[(
n + 1

2

)
ϕ
]

= 0. (3.4.14)

The constant of integration equals zero because the left side of Equation 3.4.14
vanishes when ϕ = π.

At this point, let us supplement Equation 3.4.11 with

ψ(ϕ) =
∞∑

n=0

An cos
[(

n + 1
2

)
ϕ
]
, α < ϕ ≤ π. (3.4.15)

Therefore, Equation 3.4.14 can be rewritten

ψ(ϕ) − γ

∞∑
n=0

An

cos
[(

n + 1
2

)
ϕ
]

n + 1
2

= 0. (3.4.16)

From the definition of half-range Fourier series,

An =
2
π

∫ α

0

cos(ϕ̃/2) cos
[(

n + 1
2

)
ϕ̃
]

dϕ̃ +
2
π

∫ π

α

ψ(ϕ̃) cos
[(

n + 1
2

)
ϕ̃
]

dϕ̃

(3.4.17)

=
sin(nα)

nπ
+

sin[(n + 1)α]
(n + 1)π

+
2
π

∫ π

α

ψ(ϕ̃) cos
[(

n + 1
2

)
ϕ̃
]

dϕ̃. (3.4.18)

Substituting Equation 3.4.18 into Equation 3.4.16 and interchanging the order
of integration and summation,

ψ(ϕ) =
2γ

π

[ ∫ α

0

cos(ϕ̃/2)

{ ∞∑
n=0

cos
[(

n + 1
2

)
ϕ
]
cos
[(

n + 1
2

)
ϕ̃
]

n + 1
2

}
dϕ̃

+
∫ π

α

ψ(ϕ̃)

{ ∞∑
n=0

cos
[(

n + 1
2

)
ϕ
]
cos
[(

n + 1
2

)
ϕ̃
]

n + 1
2

}
dϕ̃

]
. (3.4.19)
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Because35

∞∑
n=0

cos
[(

n + 1
2

)
ϕ
]
cos
[(

n + 1
2

)
ϕ̃
]

n + 1
2

= 1
2 ln
[
cos(ϕ̃/2) + cos(ϕ/2)
cos(ϕ̃/2) − cos(ϕ/2)

]
, (3.4.20)

Equation 3.4.19 becomes

ψ(ϕ) =
γ

π

∫ α

0

cos(ϕ̃/2)L(ϕ̃, ϕ) dϕ̃ +
γ

π

∫ π

α

ψ(ϕ̃)L(ϕ̃, ϕ) dϕ̃, (3.4.21)

where

L(ϕ̃, ϕ) = ln
∣∣∣∣cos(ϕ̃/2) + cos(ϕ/2)
cos(ϕ̃/2)− cos(ϕ/2)

∣∣∣∣ . (3.4.22)

To simplify Equation 3.4.21, we set ψ(ϕ) = cos(ϕ/2) + r(ϕ) and it becomes

r(ϕ) − γ

π

∫ π

α

r(ϕ̃)L(ϕ̃, ϕ) dϕ̃ = (2γ − 1) cos(ϕ/2), α < ϕ ≤ π. (3.4.23)

To numerically solve Equation 3.4.23, we introduce n nodal points at
ϕi = α + ih, i = 0, 1, . . . , n − 1, where h = (π − α)/n. We do not have to
compute r(π) because it equals zero since ψ(π) = 0 from Equation 3.4.15.
Then, Equation 3.4.23 becomes

r(ϕi) − γ

π

∫ π

α

r(t)L(t, ϕi) dt = (2γ − 1) cos(ϕi/2), (3.4.24)

where

L(t, ϕ) = ln
∣∣2 cos[(t + ϕ)/4]

∣∣+ ln
∣∣cos(t − ϕ)/4

∣∣ (3.4.25)

− ln
∣∣2 sin[(t + ϕ)/4]

∣∣− ln
∣∣∣∣sin[(t − ϕ)/4]

t − ϕ

∣∣∣∣− ln
∣∣t − ϕ

∣∣.
Why have we written L(t, ϕ) in the form given in Equation 3.4.25? It

clearly shows that the integral equation, Equation 3.4.23, contains a weakly
singular kernel. Consequently, the finite difference representation of the inte-
gral in Equation 3.4.24 consists of two parts. A simple trapezoidal rule is used
for the first four terms given in Equation 3.4.25. For the fifth term, we em-
ploy a numerical method devised by Atkinson36 for kernels with singularities.
Therefore, for a particular alpha and b, we compute dt = (pi-alpha)/N,

35 Parihar, K. S., 1971: Some triple trigonometrical series equations and their applica-
tion. Proc. R. Soc. Edinburgh, Ser. A, 69, 255–265.

36 Atkinson, K. E., 1967: The numerical solution of Fredholm integral equations of the
second kind. SIAM J. Numer. Anal., 4, 337–348. See Section 5 in particular.
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where N is the number of nodal points. The MATLAB code for computing
ψ(ϕ) is

for j = 0:N
tt(j+1) = alpha + j*dt;
pphi(j+1) = alpha + j*dt;
end

% Solve the integral equation Equation 3.4.24 to find r(ϕi).
% Note that r(π) = 0.

for n = 0:N-1 % rows loop (top to bottom in the matrix)

phi = pphi(n+1); bb(n+1) = (2*gamma-1)*cos(phi/2);

for m = 0:N-1 % columns loop (left to right in the matrix)

t = tt(m+1);

% Introduce the first terms from Equation 3.4.24.

if (n==m) AA(n+1,m+1) = 1;
else AA(n+1,m+1) = 0; end

% Compute integral in Equation 3.4.24. Add in the contribution
% from the first four terms of Equation 3.4.25. Use the
% trapezoidal rule. Recall that r(π) = 0.

if (m < N)
arg 1 = (t+phi)/4; arg 2 = (t-phi)/4;
AA(n+1,m+1) = AA(n+1,m+1) ...

- 0.5*dt*gamma*log(abs(2*cos(arg 1)))/pi ...
- 0.5*dt*gamma*log(abs(cos(arg 2)))/pi...
+ 0.5*dt*gamma*log(abs(2*sin(arg 1)))/pi;

if (arg 2 == 0)
AA(n+1,m+1) = AA(n+1,m+1) + 0.5*dt*gamma*log(0.25)/pi;
else
AA(n+1,m+1) = AA(n+1,m+1) ...

+ 0.5*dt*gamma*log(abs(sin(arg 2)/(t-phi)))/pi;
end
end

if (m > 0)
arg 1 = (t+phi)/4; arg 2 = (t-phi)/4;
AA(n+1,m+1) = AA(n+1,m+1) ...
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- 0.5*dt*gamma*log(abs(2*cos(arg 1)))/pi ...
- 0.5*dt*gamma*log(abs(cos(arg 2)))/pi...
+ 0.5*dt*gamma*log(abs(2*sin(arg 1)))/pi;

if (arg 2 == 0)
AA(n+1,m+1) = AA(n+1,m+1) + 0.5*dt*gamma*log(0.25)/pi;
else
AA(n+1,m+1) = AA(n+1,m+1) ...

+ 0.5*dt*gamma*log(abs(sin(arg 2)/(t-phi)))/pi;
end
end

% Use Atkinson’s technique to treat the fifth term in
% Equation 3.4.25. See Section 5 of his paper.

if (m > 0)
kk = n+1-m; Psi 0 = -1;
Psi 1 = 0.25*(kk*kk-(kk-1)*(kk-1));
if ( kk ∼= 0 )
Psi 0 = Psi 0 + kk*log(abs(kk));
Psi 1 = Psi 1 - 0.50*kk*kk*log(abs(kk));
end
if ( kk ∼= 1 )
Psi 0 = Psi 0 - (kk-1)*log(abs(kk-1));
Psi 1 = Psi 1 + 0.50*(kk-1)*(kk-1)*log(abs(kk-1));
end
Psi 1 = Psi 1 + kk*Psi 0;
W 0 = Psi 0 - Psi 1; W 1 = Psi 1;
aalpha = 0.5*dt*log(dt) + dt*W 0;
bbeta = 0.5*dt*log(dt) + dt*W 1;
AA(n+1,m ) = AA(n+1,m ) + gamma*aalpha/pi;
AA(n+1,m+1) = AA(n+1,m+1) + gamma*bbeta/pi;
end

end % end of column loop
end % end of rows loop

% compute r(ϕi)
r = AA\bb′

% compute ψ(ϕ)
for n = 0:N-1
theta = tt(n+1); psi(n+1) = cos(theta/2) + r(n+1);
end
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Once ψ(ϕi) is found with ψ(π) = 0, we compute An via Equation 3.4.18. The
MATLAB code to compute An is

for m = 0:M

if ( m == 0 )
A(m+1) = alpha/pi + sin(alpha)/pi;
else
A(m+1) = sin(m*alpha)/(m*pi) + sin((m+1)*alpha)/((m+1)*pi);
end

% This is the n = 0 term for Simpson’s rule.
A(m+1) = A(m+1) + 2*psi( 1 )*cos((m+0.5)*tt( 1 ))*dt/(3*pi);

% Recall that ψ(π) = 0. Therefore, we do not need the n = N
% term in the numerical integration.
for n = 1:N-1
if ( mod(n+1,2) == 0 )
A(m+1) = A(m+1) + 8*psi(n+1)*cos((m+0.5)*tt(n+1))*dt/(3*pi);
else
A(m+1) = A(m+1) + 4*psi(n+1)*cos((m+0.5)*tt(n+1))*dt/(3*pi);
end; end; end

The final solution follows from Equation 3.4.5. The MATLAB code to realize
this solution is

for j = 1:41
y = 0.05*(j-21);
for i = 1:41
x = 0.05*(i-21);
u(i,j) = NaN; r = sqrt(x*x + y*y); theta = abs(atan2(y,x));

if (r <= 1)
mu = cos(theta);
% Compute the Legendre polynomials for a given theta
% via the recurrence formula
Legendre(1) = 1; Legendre(2) = mu;
for m = 2:M
Legendre(m+1) = (2-1/m)*mu*Legendre(m) - (1-1/m)*Legendre(m-1);
end

% For a point within the sphere, find the solution.
u(i,j) = 0; power = 1;
for m = 0:M
u(i,j) = u(i,j) + A(m+1)*Legendre(m+1)*power;
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Figure 3.4.1: The solution u(r, θ) to the mixed boundary value problem posed in Example
3.4.1 with α = π/4 and b = 0.25.

power = power*r;
end; end; end; end

Figure 3.4.1 illustrates the solution when α = π/4 and b = 0.25.
An alternative method for solving Equation 3.4.6 and Equation 3.4.7 is

to introduce the following integral definition for An:

An =
2n + 1
n + b

∫ α

0

h(t) cos
[(

n +
1
2

)
t

]
dt. (3.4.26)

Integration by parts gives

(n+b)An = 2h(α) sin
[(

n +
1
2

)
α

]
−2
∫ α

0

h′(t) sin
[(

n +
1
2

)
t

]
dt. (3.4.27)

Then,

∞∑
n=0

(n + b)AnPn[cos(θ)] = 2h(α)
∞∑

n=0

sin
[(

n +
1
2

)
α

]
Pn[cos(θ)] (3.4.28)

− 2
∫ α

0

h′(t)

{ ∞∑
n=0

sin
[(

n +
1
2

)
t

]
Pn[cos(θ)]

}
dt

= 0. (3.4.29)

Therefore, our choice for the An satisfies Equation 3.4.7 identically. Here we
used results from Problem 1 at the end of Section 1.3.
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Turning to Equation 3.4.6, we have for An that

∞∑
n=0

n + 1
2

n + b
Pn[cos(θ)]

∫ α

0

h(t) cos
[(

n +
1
2

)
t

]
dt =

1
2
. (3.4.30)

Breaking the summation on the left side of Equation 3.4.30 into two parts,
we can rewrite it as

∞∑
n=0

Pn[cos(θ)]
∫ α

0

h(t) cos
[(

n +
1
2

)
t

]
dt (3.4.31)

=
1
2
−

∞∑
n=0

γ

n + b
Pn[cos(θ)]

∫ α

0

h(τ) cos
[(

n +
1
2

)
τ

]
dτ.

On the left side of Equation 3.4.31, we interchange the order of integration and
summation and employ again the results from Problem 1. Equation 3.4.31
simplifies to∫ θ

0

h(t)√
2[cos(t) − cos(θ)]

dt (3.4.32)

=
1
2
−

∞∑
n=0

γ

n + b
Pn[cos(θ)]

∫ α

0

h(τ) cos
[(

n +
1
2

)
τ

]
dτ.

Upon employing Equation 1.2.9 and Equation 1.2.10, we can solve for h(t)
and find that

h(t) =
1
π

d

dt

{∫ t

0

sin(θ)√
2[cos(θ) − cos(t)]

dθ

}

− 2
π

∫ α

0

h(τ)
( ∞∑

n=0

γ

n + b
cos
[(

n +
1
2

)
τ

]
(3.4.33)

× d

dt

{∫ t

0

sin(θ)Pn[cos(θ)]√
2[cos(θ) − cos(t)]

dθ

})
dτ

=
1
π

d

dt

{√
2[1 − cos(t)]

}
(3.4.34)

− 2
π

∫ α

0

h(τ)

{ ∞∑
n=0

γ

n + b
cos
[(

n +
1
2

)
τ

]
cos
[(

n +
1
2

)
t

]}
dt.

We used results from Problem 2 at the end of Section 1.3 to evaluate the
integral within the wavy brackets in Equation 3.4.33. Therefore, we now have
the Fredholm integral equation

h(t) +
∫ α

0

[K(t − τ) + K(t + τ)]h(τ) dτ =
sin(t)

π
√

2[1 − cos(t)]
, (3.4.35)
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where

K(z) =
1
π

∞∑
n=0

γ

n + b
cos
[(

n +
1
2

)
z

]
. (3.4.36)

Solving Equation 3.4.35 is straightforward. Having determined h(t), An fol-
lows from Equation 3.4.26. Finally Equation 3.4.5 yields u(r, z).

• Example 3.4.2

Let us solve the axisymmetric Laplace equation37

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < ∞, 0 < θ < π,

(3.4.37)
subject to the boundary conditions

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 ≤ r < ∞, (3.4.38)

lim
r→0

|u(r, θ)| < ∞, lim
r→∞u(r, θ) → 0, 0 ≤ θ ≤ π, (3.4.39)

and {
ur(a−, θ) = ur(a+, θ) = −U cos(θ), 0 ≤ θ < α,

ur(a−, θ) = ur(a+, θ), α < θ ≤ π,
(3.4.40)

where a− and a+ denote points located just inside and outside of r = a.
Separation of variables yields the solution

u(r, θ) = Ua

∞∑
n=0

An

( r

a

)n
Pn[cos(θ)], 0 ≤ r < a, (3.4.41)

and

u(r, θ) = −Ua

∞∑
n=0

n

n + 1
An

(a

r

)n+1

Pn[cos(θ)], a < r < ∞. (3.4.42)

Equation 3.4.41 and Equation 3.4.42 satisfy not only Equation 3.4.37, but
also Equation 3.4.38 and Equation 3.4.39. They also yield a continuous value
of ur(a, θ) for 0 ≤ θ ≤ π.

Substituting Equation 3.4.41 and Equation 3.4.42 into Equation 3.4.40
gives the dual Fourier-Legendre series

∞∑
n=0

nAnPn[cos(θ)] = − cos(θ), 0 ≤ θ < α, (3.4.43)

37 Reprinted from Int. J. Solids Struct., 38, P. A. Martin, The spherical-cap crack
revisited, 4759–4776, c©2001, with permission of Elsevier.
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and ∞∑
n=0

(2n + 1)
An

n + 1
Pn[cos(θ)] = 0, α ≤ θ < π. (3.4.44)

Turning to Equation 3.4.44 first, let us introduce the function h(t) such
that

An

n + 1
=

1
2n + 1

∫ α

0

h(t) sin
[(

n + 1
2

)
t
]

dt, h(0) = 0. (3.4.45)

Therefore,

∞∑
n=0

(2n + 1)
An

n + 1
Pn[cos(θ)] =

∫ α

0

h(t)

{ ∞∑
n=0

sin
[(

n + 1
2

)
t
]
Pn[cos(θ)]

}
dt = 0.

(3.4.46)
This follows from Problem 1 in Section 1.3 since 0 ≤ t ≤ α < θ < π. Conse-
quently, our choice for An automatically satisfies Equation 3.4.44.

How do we find h(t)? We begin by integrating Equation 3.4.45 by parts.
This yields

2
(
n + 1

2

)2 An

n + 1
=
∫ α

0

h′(t) cos
[(

n + 1
2

)
t
]

dt − h(α) cos
[(

n + 1
2

)
α
]
.

(3.4.47)
Next, we rewrite Equation 3.4.43 as

∞∑
n=0

2
(
n + 1

2

)2 An

n + 1
Pn[cos(θ)] − 1

2

∞∑
n=0

An

n + 1
Pn[cos(θ)] = −2 cos(θ).

(3.4.48)
Then using Equation 3.4.45, Equation 3.4.47, the results from Problem 1 in
Section 1.3 and the fact that

∞∑
n=0

Pn[cos(θ)]
sin
[(

n + 1
2

)]
n + 1

2

=
∫ t

0

H(θ − τ)√
2 cos(τ) − 2 cos(θ)

dτ, (3.4.49)

we find that∫ θ

0

h′(t)√
2 cos(t) − 2 cos(θ)

dt − 1
4

∫ θ

0

1√
2 cos(t) − cos(θ)

[∫ α

t

h(τ) dτ

]
dt

= −2 cos(θ). (3.4.50)

Finally, we employ Equation 1.2.11 and Equation 1.2.12 and find the inhomo-
geneous Fredholm equation of the second kind:

h′(t) − 1
4

∫ α

t

h(τ) dτ = − 4
π

cos(3t/2), h(0) = 0. (3.4.51)
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Figure 3.4.2: The solution u(r, θ) to the mixed boundary value problem posed by Equation
3.4.37 through Equation 3.4.40 when α = π/4.

To solve Equation 3.4.51, we rewrite it as

h′(t) +
1
4

∫ t

0

h(τ) dτ =
M1

4
− 4

π
cos(3t/2), (3.4.52)

where M1 =
∫ α

0
h(t) dt, an unknown constant. Taking the Laplace transform

of Equation 3.4.52,

(
s2 + 1

4

)
H(s) =

M1

4
− 4

π

s2

s2 + 9
4

, (3.4.53)

or

h(t) =
(

M1

2
+

1
π

)
sin(t/2) − 3

π
sin(3t/2). (3.4.54)

From the definition of M1, M1 = −(4/π) sin(α) sin(α/2). Therefore,

h(t) = sec(α/2) cos(3α/2) sin(t/2)/π − 3 sin(3t/2)/π. (3.4.55)

Figure 3.4.2 illustrates the solution when α = π/4.
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• Example 3.4.3

Let us solve38

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < ∞, 0 < θ < π,

(3.4.56)
subject to the boundary conditions

lim
r→0

|u(r, θ)| < ∞, lim
r→∞u(r, θ) → 0, 0 < θ < π, (3.4.57)

and u(a−, θ) = u(a+, θ) = 1, 0 ≤ θ < α,
u(a−, θ) = u(a+, θ), ur(a−, θ) = ur(a+, θ), α < θ < π − α,

u(a−, θ) = u(a+, θ) = (−1)m, π − α < θ < π,
(3.4.58)

where m = 0 or 1 and 0 < α < π/2. The solution must be finite at the
θ = 0, π.

Separation of variables yields the solution

u(r, θ) =
∞∑

n=0

A2n+m

( r

a

)2n+m

P2n+m[cos(θ)], 0 ≤ r < a, (3.4.59)

and

u(r, θ) =
∞∑

n=0

A2n+m

(a

r

)2n+m+1

P2n+m[cos(θ)], a < r < ∞. (3.4.60)

We have written the solution in this form so that we can take advantage of
symmetry and limit θ between 0 and π/2 rather than 0 < θ < π. Equation
3.4.59 and Equation 3.4.60 satisfy not only Equation 3.4.56, but also Equation
3.4.57. Substituting Equation 3.4.59 and Equation 3.4.60 into Equation 3.4.58
yields the dual Fourier-Legendre series

∞∑
n=0

A2n+mP2n+m[cos(θ)] = 1, 0 < θ < α, (3.4.61)

and

∞∑
n=0

(
2n + m + 1

2

)
A2n+mP2n+m[cos(θ)] = 0, α < θ < π/2. (3.4.62)

38 Minkov, I. M., 1963: Electrostatic field of a sectional spherical capacitor. Sov. Tech.
Phys., 7, 1041–1043.
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At this point, we introduce

A2n+m =
∫ α

0

g(t) cos
[(

2n + m + 1
2

)
t
]

dt (3.4.63)

= g(α)
sin
[(

2n + m + 1
2

)
α
]

2n + m + 1
2

−
∫ α

0

g′(t)
sin
[(

2n + m + 1
2

)
t
]

2n + m + 1
2

dt.

(3.4.64)

Now,

∞∑
n=0

(
2n + m + 1

2

)
A2n+mP2n+m[cos(θ)]

= g(α)
∞∑

n=0

P2n+m[cos(θ)] sin
[(

2n + m + 1
2

)
α
]

(3.4.65)

−
∫ α

0

g′(t)

{ ∞∑
n=0

P2n+m[cos(θ)] sin
[(

2n + m + 1
2

)
t
]}

dt = 0.

Equation 3.4.65 follows from Problem 4 at the end of Section 1.3 as well as
the facts that 0 ≤ t ≤ α < θ < π/2. Therefore, our choice for A2n+m satisfies
Equation 3.4.62 identically.

Turning to Equation 3.4.61,

∫ α

0

g(t)

{ ∞∑
n=0

P2n+m[cos(θ)] cos
[(

2n + m + 1
2

)
t
]}

dt = 1. (3.4.66)

Again, using the results from Problem 4 at the end of Section 1.3, we have

∫ θ

0

g(t)√
2[cos(t) − cos(θ)]

dt = 2−(−1)m

∫ α

0

g(τ)√
2[cos(τ) − cos(θ)]

dτ, (3.4.67)

where 0 ≤ θ ≤ α. Applying Equation 1.2.9 and Equation 1.2.10,

g(t) =
4
π

d

dt

{∫ t

0

sin(θ)√
2[cos(θ) − cos(t)]

dθ

}
− (−1)m

2π

∫ α

0

K(t, τ)g(τ) dτ,

(3.4.68)
where

K(t, τ) = 2
d

dt

[∫ t

0

sin(θ)√
cos(τ) + cos(θ)

√
cos(θ) − cos(t)

dθ

]
(3.4.69)

= sec[(t + τ)/2] + sec[(t − τ)/2]. (3.4.70)
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Figure 3.4.3: The solution u(x, y) to the mixed boundary value problem governed by
Equation 3.4.56 through Equation 3.4.58 when α = π/4 and m = 0.

Evaluating the first integral in Equation 3.4.68, the integral equation that
governs g(t) is

g(t) +
(−1)m

2π

∫ α

0

K(t, τ)g(τ) dτ =
4
π

cos(t/2), 0 ≤ t ≤ α. (3.4.71)

Figure 3.4.3 illustrates our solution when α = π/4 and m = 0.

• Example 3.4.4

Let us solve

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < ∞, 0 < θ < π,

(3.4.72)
subject to the boundary conditions

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 < r < ∞, (3.4.73)

lim
r→0

|u(r, θ)| < ∞, lim
r→∞u(r, θ) → 0, 0 < θ < π, (3.4.74)

and u(1−, θ) = u(1+, θ) = 1, 0 ≤ θ < α,
ur(1−, θ) = ur(1+, θ), α < θ < β,
u(1−, θ) = u(1+, θ) = 0, β < θ < π.

(3.4.75)
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Separation of variables yields the solution

u(r, θ) =
∞∑

n=0

AnrnPn[cos(θ)], 0 ≤ r < 1, (3.4.76)

and

u(r, θ) =
∞∑

n=0

Anr−n−1Pn[cos(θ)], 1 < r < ∞. (3.4.77)

Equation 3.4.76 and Equation 3.4.77 satisfy not only Equation 3.4.72, but
also Equation 3.4.73 and Equation 3.4.74. Substitution of Equation 3.4.76
and Equation 3.4.77 into Equation 3.4.75 yields the triple Fourier-Legendre
series ∞∑

n=0

AnPn[cos(θ)] = 1, 0 ≤ θ < α, (3.4.78)

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = 0, α < θ < β, (3.4.79)

and ∞∑
n=0

AnPn[cos(θ)] = 0, β < θ ≤ π. (3.4.80)

How do we determine An? Recently Singh et al.39 solved the triple series
equation

∞∑
n=0

AnPn[cos(θ)] = f1(θ), 0 ≤ θ < α, (3.4.81)

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = f2(θ), α < θ < β, (3.4.82)

and ∞∑
n=0

AnPn[cos(θ)] = f3(θ), β < θ ≤ π. (3.4.83)

They showed that An is given by

An = 1
2

{∫ α

0

g1(η) sin(η)Pn[cos(η)] dη +
∫ β

α

f2(η) sin(η)Pn[cos(η)] dη

+
∫ π

β

g3(η) sin(η)Pn[cos(η)] dη

}
, (3.4.84)

39 Results quoted with permission from Singh, B. M., R. S. Dhaliwal, and J. Rokne, 2002:
The elementary solution of triple series equations involving series of Legendre polynomials
and their application to an electrostatic problem. Z. Angew. Math. Mech., 82, 497–503.
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where

sin(x)g1(x) = − 1
π

d

dx

[∫ α

x

G1(η) sin(η)√
cos(x) − cos(η)

dη

]
, 0 < x < α, (3.4.85)

sin(x)g3(x) =
1
π

d

dx

[∫ x

β

G3(η) sin(η)√
cos(η) − cos(x)

dη

]
, β < x < π, (3.4.86)

G1(x) +
2
π

cos(x/2)
∫ π

β

sin(η/2)G3(η)
cos(x) − cos(η)

dη =
d

dx

[∫ x

0

F1(θ) sin(θ)√
cos(θ) − cos(x)

dθ

]
(3.4.87)

for 0 < x < α,

G3(x) = − 2
π

sin(x/2)
∫ α

0

cos(η/2)G1(η)
cos(η) − cos(x)

dη − d

dx

[∫ π

x

F3(θ) sin(θ)√
cos(x) − cos(θ)

dθ

]
(3.4.88)

for β < x < π,

F1(θ) = 2f1(θ) −
∫ β

α

f2(η) sin(η)K(η, θ) dη, 0 < θ < α, (3.4.89)

F3(θ) = 2f3(θ) −
∫ β

α

f2(η) sin(η)K(η, θ) dη, β < θ < π, (3.4.90)

and

K(η, θ) =
∞∑

n=0

Pn[cos(θ)]Pn[cos(η)]. (3.4.91)

Let us apply these results to our problem. Because f1(θ) = 1 and f2(θ) =
f3(θ) = 0, F1(θ) = 2 and F3(θ) = 0. Therefore,

An = 1
2

{∫ α

0

g1(η) sin(η)Pn[cos(η)] dη +
∫ π

β

g3(η) sin(η)Pn[cos(η)] dη

}
,

(3.4.92)
where

G1(x) +
2
π

cos(x/2)
∫ π

β

sin(η/2)G3(η)
cos(x) − cos(η)

dη =
2 sin(x)√
1 − cos(x)

, (3.4.93)

for 0 < x < α, and

G3(x) = − 2
π

sin(x/2)
∫ α

0

cos(η/2)G1(η)
cos(η) − cos(x)

dη (3.4.94)
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Figure 3.4.4: The solution u(x, y) to the mixed boundary value problem governed by
Equation 3.4.72 and Equation 3.4.75 when α = π/4 and β = 3π/4.

with Equation 3.4.85 and Equation 3.4.86. Figure 3.4.4 illustrates our solution
when α = π/4 and β = 3π/4.

A special case of particular interest occurs when β → π. Here, Equation
3.4.81 through Equation 3.4.83 reduce to

∞∑
n=0

AnPn[cos(θ)] = f1(θ), 0 ≤ θ < α, (3.4.95)

and ∞∑
n=0

(2n + 1)AnPn[cos(θ)] = 0, α < θ ≤ π. (3.4.96)

From Equation 3.4.92, we have that

An = 1
2

∫ α

0

g1(x) sin(x)Pn[cos(x)] dx (3.4.97)

=
1√
2 π

∫ α

0

g1(x) sin(x)

{∫ x

0

cos
[(

n + 1
2

)
η
]√

cos(η) − cos(x)
dη

}
dx (3.4.98)

=
1√
2 π

∫ α

0

[∫ α

η

g1(x) sin(x)√
cos(η) − cos(x)

dx

]
cos
[(

n + 1
2

)
η
]

dη (3.4.99)

=
1√
2 π

∫ α

0

G1(η) cos
[(

n + 1
2

)
η
]

dη, (3.4.100)
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Figure 3.4.5: The solution u(x, y) to the mixed boundary value problem governed by
Equation 3.4.72 through Equation 3.4.74 and Equation 3.4.104 when α = π/4.

where we used the Mehler integral representation of Pn[cos(x)] and inter-
changed the order of integration in Equation 3.4.98. We also used the fact
that

G1(η) =
∫ α

η

g1(x) sin(x)√
cos(η) − cos(x)

dx (3.4.101)

which follows from Equation 3.4.85, Equation 1.2.11, and Equation 1.2.12.
Sneddon40 was the first to derive the solution to the dual series of Equa-

tion 3.4.95 and Equation 3.4.96; Table 3.4.1 summarizes the results. Subse-
quently Boridy41 derived several additional solutions and they have also been
included in the table.

To illustrate these results, we apply them to a case examined by Collins.42

For f1(θ) = 1,

G1(η) =
2 sin(η)√
1 − cos(η)

= 2
√

2 cos(η/2). (3.4.102)

40 Sneddon, op. cit., Section 5.6.

41 Boridy, E., 1987: Solution of some electrostatic potential problems involving spherical
conductors: A dual series approach. IEEE Trans. Electromagn. Compat., EMC-29,
132–140. c©1987 IEEE.

42 Collins, W. D., 1961: On some dual series equations and their application to elec-
trostatic problems for spheroidal caps. Proc. Cambridge Philosoph. Soc., 57, 367–384.
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Table 3.4.1: The Solution (given in the right column) of Dual Series Involv-
ing Legendre Polynomials (given in the left column). Taken
from Boridy, E., 1987: Solution of some electrostatic poten-
tial problems involving spherical conductors: A dual series
approach. IEEE Trans. Electromagn. Compat., EMC-29,
132–140. c©1987 IEEE.

∞∑
n=0

AnPn[cos(θ)] = F (θ), An =
√

2
π

∫ θ0

0

f(ξ) cos
[(

n +
1
2

)
ξ

]
dξ

0 ≤ θ < θ0

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = 0, f(ξ) =
d

dξ

[∫ ξ

0

F (θ) sin(θ)√
cos(θ) − cos(ξ)

dθ

]
θ0 < θ ≤ π

∞∑
n=0

AnPn[cos(θ)] = 0, An = − 1√
2π

∫ π

θ0

f(ξ) cos
[(

n +
1
2

)
ξ

]
dξ

0 ≤ θ < θ0

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = F (θ), f(ξ) =
∫ π

ξ

F (θ) sin(θ)√
cos(ξ) − cos(θ)

dθ

θ0 < θ ≤ π

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = F (θ), An =
(−1)n+1

√
2 π

∫ π

π−θ0

f(ξ) cos
[(

n +
1
2

)
ξ

]
dξ

0 ≤ θ < θ0

∞∑
n=0

AnPn[cos(θ)] = 0, f(ξ) =
∫ π

ξ

F (π − θ) sin(θ)√
cos(ξ) − cos(θ)

dθ

θ0 < θ ≤ π

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = 0, An =
(−1)n

√
2

π

∫ π−θ0

0

f(ξ) cos
[(

n +
1
2

)
ξ

]
dξ

0 ≤ θ < θ0

∞∑
n=0

AnPn[cos(θ)] = F (θ), f(ξ) =
d

dξ

[∫ ξ

0

F (π − θ) sin(θ)√
cos(θ) − cos(ξ)

dθ

]
θ0 < θ ≤ π
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Substituting Equation 3.4.102 into Equation 3.4.100 and carrying out the
integration, we find that

An =
sin(nα)

nπ
+

sin[(n + 1)α]
(n + 1)π

. (3.4.103)

Figure 3.4.5 illustrates the solution to Equation 3.4.72 through Equation
3.4.74 and {

u(1−, θ) = u(1+, θ) = 1, 0 ≤ θ < π/4,
ur(1−, θ) = ur(1+, θ), π/4 < θ < π.

(3.4.104)

• Example 3.4.5

Let us solve43

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < b, 0 ≤ θ ≤ π,

(3.4.105)
subject to the boundary conditions that

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 ≤ r < b, (3.4.106)

lim
r→0

|u(r, θ)| < ∞, u(b, θ) = 0, 0 ≤ θ ≤ π, (3.4.107)

and {
ur(a−, θ) = ur(a+, θ), 0 ≤ θ < θ0,

u(a, θ) = V0, θ0 < θ ≤ π.
(3.4.108)

Before we solve our original problem, let us find the solution to a simpler
one when we replace Equation 3.4.108 with

u(a, θ) = V0, 0 ≤ θ ≤ π. (3.4.109)

The solution to this new problem is
u(r, θ) = V0, 0 ≤ r ≤ a,

u(r, θ) =
aV0

b − a

(
b

r
− 1
)

, a ≤ r ≤ b.
(3.4.110)

Let us return to our original problem. We can view the introduction of
the aperture between θ0 < θ ≤ π as a perturbation on the solution given by
Equation 3.4.110. Therefore, we write the solution as

u(r, θ) = V0 +
∞∑

n=0

[
1 −
(a

b

)2n+1
]

An

( r

a

)n

Pn[cos(θ)], 0 ≤ r ≤ a,

(3.4.111)

43 Boridy, op. cit.
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and

u(r, θ) =
aV0

b − a

(
b

r
− 1
)

+
∞∑

n=0

An

[(a

r

)n+1

−
(a

b

)2n+1 ( r

a

)n
]

Pn[cos(θ)]

(3.4.112)
for a ≤ r ≤ b. The coefficients in Equation 3.4.111 and Equation 3.4.112 were
chosen so that Equation 3.4.107 is satisfied and u(r, θ) is continuous at r = a.

Turning to the mixed boundary condition, direct substitution yields

∞∑
n=0

(2n + 1)AnPn[cos(θ)] = − bV0

b − a
, 0 ≤ θ < θ0, (3.4.113)

and

∞∑
n=0

[
1 −
(a

b

)2n+1
]

AnPn[cos(θ)] = 0, θ0 < θ ≤ π. (3.4.114)

At this point, we would like to use the results given in Table 3.4.1 but Equation
3.4.114 is not in the correct form. To circumvent this difficulty, let us set
x = a/b < 1. Then we can rewrite Equation 3.4.114 as

∞∑
n=0

AnPn[cos(θ)] =
∞∑

n=0

Anx2n+1Pn[cos(θ)], θ0 < θ ≤ π. (3.4.115)

Setting ξ = cos(θ), let us integrate Equation 3.4.115 from −1 to ξ. We then
have ∞∑

n=0

An

∫ ξ

−1

Pn(ξ) dξ =
∞∑

n=0

Anx2n+1

∫ ξ

−1

Pn(ξ) dξ. (3.4.116)

However, because ∫ 1

−1

Pn(ξ) dξ = 2δn0, (3.4.117)

where δij is the Kronecker delta,

2A0 −
∞∑

n=0

An

∫ 1

ξ

Pn(ξ) dξ = 2A0x −
∞∑

n=0

Anx2n+1

∫ 1

ξ

Pn(ξ) dξ. (3.4.118)

If we differentiate Equation 3.4.118 with respect of x, then differentiate it
with respect of ξ, and finally multiply by x, we obtain

∞∑
n=0

(2n + 1)Anx2n+1Pn[cos(θ)] = 0, 0 ≤ θ < θ0. (3.4.119)
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Figure 3.4.6: The solution u(x, y) to the mixed boundary value problem governed by
Equation 3.4.105 through Equation 3.4.108 when a = 1, b = 2 and θ0 = π/2.

Subtracting Equation 3.4.119 from Equation 3.4.113, we obtain the following
dual equations:

∞∑
n=0

(2n + 1)An

[
1 −
(a

b

)2n+1
]

Pn[cos(θ)] = − bV0

b − a
, 0 ≤ θ < θ0,

(3.4.120)
and

∞∑
n=0

An

[
1 −
(a

b

)2n+1
]

Pn[cos(θ)] = 0, θ0 < θ ≤ π. (3.4.121)

If we set Cn = An

[
1 − (a

b

)2n+1
]
, then we can immediately use the results

from Table 3.4.1 and find that

An = − bV0

π(b − a)
[
1 − (a

b

)2n+1
] {sin(nθ0)

n
− sin[(n + 1)θ0]

n + 1

}
. (3.4.122)

Figure 3.4.6 illustrates our solution when a = 1, b = 2 and θ0 = π/2.
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• Example 3.4.6

A problem44 that is similar to Example 3.4.3 consists of solving

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < 1, 0 < θ < π,

(3.4.123)
subject to the boundary conditions

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 ≤ r < 1, (3.4.124)

lim
r→0

|u(r, θ)| < ∞, 0 < θ < π, (3.4.125)

and 
u(1, θ) = cos(θ), 0 ≤ θ < α,

ur(1, θ) = 0, α < θ < β,
u(1, θ) = cos(θ), β < θ ≤ π.

(3.4.126)

Separation of variables yields the solution

u(r, θ) = rP1[cos(θ)] −
∞∑

n=1

2n + 1
n

CnrnPn[cos(θ)]. (3.4.127)

From the nature of the boundary conditions, we anticipate that C0 = C2 =
C4 = . . . = 0. Upon substituting Equation 3.4.127 into Equation 3.4.126,

∞∑
n=1

Cn(1 + Hn)Pn[cos(θ)] = 0, 0 ≤ θ < α, β < θ ≤ π, (3.4.128)

and
∞∑

n=1

Cn(2n + 1)Pn[cos(θ)] = P1[cos(θ)], α < θ < β, (3.4.129)

where Hn = 1/(2n).
To find C1, C3, C5, . . ., let us set Cn = An + Bn with Bn = (−1)n+1An.

Therefore, Equation 3.4.128 and Equation 3.4.129 can be rewritten

∞∑
n=0

(An + Bn)(1 + Hn)Pn[cos(θ)] = 0, 0 ≤ θ < α, (3.4.130)

∞∑
n=0

An(2n + 1)Pn[cos(θ)] − 1
2P1[cos(θ)] = 0, α < θ ≤ π, (3.4.131)

44 See Dryden, J. R., and F. W. Zok, 2004: Effective conductivity of partially sintered
solids. J. Appl. Phys., 95, 156–160.
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∞∑
n=0

Bn(2n + 1)Pn[cos(θ)] − 1
2P1[cos(θ)] = 0, 0 ≤ θ < β, (3.4.132)

and

∞∑
n=0

(An + Bn)(1 + Hn)Pn[cos(θ)] = 0, β < θ ≤ π. (3.4.133)

In this formulation, A0 and B0 are nonzero although A0 + B0 = 0. For
convenience we introduce H0 ≡ 1 so that no difficulty arises in solving this
system of equations.

Due to symmetry, we must only solve Equation 3.4.130 and Equation
3.4.131. Using the integral representation of Legendre polynomials, Equation
1.3.4, we can rewrite Equation 3.4.130 as

∫ θ

0

{ ∞∑
n=0

(An + Bn)(1 + Hn) cos
[(

n + 1
2

)
t
]} dt√

cos(t) − cos(θ)
= 0

(3.4.134)
after interchanging the order of integration and summation. In a similar
manner, we can use Equation 1.3.5 to write Equation 3.4.131 as

∫ π

θ

d

dt

{ ∞∑
n=0

An cos
[(

n + 1
2

)
t
]− 1

6 cos
(

3t

2

)}
dt√

cos(θ) − cos(t)
= 0.

(3.4.135)
Equation 3.4.134 and Equation 3.4.135 are integral equations of the Abel
type; see Equation 1.2.9 and Equation 1.2.12. In the case of Equation 3.4.134
the quantity within the wavy brackets must vanish. In the case of Equation
3.4.135 the t-derivative of the quantity within the wavy brackets must vanish.
Actually the quantity within the wavy brackets also vanishes because this
quantity equals zero since it vanishes when t = π. Consequently,

∞∑
n=0

(An + Bn)(1 + Hn) cos
[(

n + 1
2

)
t
]

= 0, 0 ≤ t < α, (3.4.136)

and

∞∑
n=0

An cos
[(

n + 1
2

)
t
]− 1

6 cos
(

3t

2

)
= 0, α < t ≤ π. (3.4.137)

To find An, let us introduce an unknown function h(t) such that

∞∑
n=0

An cos
[(

n + 1
2

)
t
]

=
{

cos(3t/2)/6− h(t)/2, 0 ≤ t < α,
cos(3t/2)/6, α < t ≤ π.

(3.4.138)
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Figure 3.4.4: The solution u(x, y) to the mixed boundary value problem governed by
Equation 3.4.123 through Equation 3.4.126 when α = π/4 and β = π/2.

Applying the orthogonality properties of cos
[(

n + 1
2

)
t
]

over [0, π],

An = 1
6δ1n − 1

π

∫ α

0

h(ξ) cos
[(

n + 1
2

)
ξ
]

dξ, (3.4.139)

where δnm is the Kronecker delta. Upon setting Bn = (−1)n+1An and sub-
stituting Equation 3.4.138 into Equation 3.4.136, we obtain

h(t) + 2
∞∑

n=0

An {(−1)n − Hn [1 − (−1)n]} cos
[(

n + 1
2

)
t
]

= 1
3 cos(3t/2).

(3.4.140)
Finally, substituting for An, we obtain an integral equation that governs h(t):

h(t) = cos(3t/2) +
1
π

∫ α

0

K(τ, t)h(τ) dτ, 0 ≤ t < α, (3.4.141)

where K(τ, t) = G(t − τ) + G(t + τ) and

G(ξ) =
∞∑

n=0

{(−1)n − Hn [1 − (−1)n]} cos
[(

n + 1
2

)
ξ
]

(3.4.142)

=
1
4

{
2 sec

(
ξ

2

)
+ π sin

∣∣∣∣ξ2
∣∣∣∣+ cos

(
ξ

2

)
ln
[
tan2

(
ξ

2

)]}
. (3.4.143)

Once h(t) is computed numerically from Equation 3.4.141, we can find An

from Equation 3.4.139. Finally, C2n+1 = 2A2n+1 and u(r, θ) follows from
Equation 3.4.127. Figure 3.4.4 illustrates the solution when α = π/4 and
β = π/2.
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Problems

1. Solve Laplace’s equation

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, a < r < ∞, 0 ≤ θ ≤ π,

subject to the boundary conditions that

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, a < r < ∞, (1)

u(a, θ) = V0, lim
r→∞u(r, θ) → 0, 0 ≤ θ ≤ π, (2)

and {
ur(b−, θ) = ur(b+, θ), 0 ≤ θ < θ0,

u(b, θ) = 0, θ0 < θ ≤ π,
(3)

where b− and b+ denote points slightly inside and outside of r = b, respec-
tively, and 0 < θ0 < π.

Step 1 : First solve the simpler problem when we replace Equation (3) with
u(b, θ) = 0 for 0 ≤ θ ≤ π and show thatu(r, θ) =

aV0

b − a

(
b

r
− 1
)

, a < r < b,

u(r, θ) = 0, b < r < ∞.

Step 2 : Returning to the original problem, show that the solution to the
partial differential equation plus the first two boundary conditions is

u(r, θ) =
aV0

b − a

(
b

r
− 1
)

+
∞∑

n=0

An

[(r

b

)n

−
(a

b

)2n+1
(

b

r

)n+1
]

Pn[cos(θ)]

for a ≤ r ≤ b, and

u(r, θ) =
∞∑

n=0

[
1 −
(a

b

)2n+1
]

An

(
b

r

)n+1

Pn[cos(θ)], b ≤ r < ∞.

Step 3 : Using Equation (3), show that An is given by the dual series:

∞∑
n=0

(2n + 1)AnPn[cos(θ)] =
aV0

b − a
, 0 ≤ θ < θ0,

and ∞∑
n=0

[
1 −
(a

b

)2n+1
]

AnPn[cos(θ)] = 0, θ0 < θ ≤ π.
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Problem 1

Step 4 : Following the analysis given by Equation 3.4.115 through Equation
3.4.121, show that

An =
aV0

π(b − a)
[
1 − (a

b

)2n+1
] {sin(nθ0)

n
− sin[(n + 1)θ0]

n + 1

}
.

The figure labeled Problem 1 illustrates this solution when a = 1, b = 2 and
θ0 = π/2.

2. A problem similar to the previous one involves finding the electrostatic
potential when an uniform external electric field is applied along the z-axis.
In this case,

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, a < r < ∞, 0 ≤ θ ≤ π,

subject to the boundary conditions that

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, a < r < ∞, (1)

u(a, θ) = V0, lim
r→∞u(r, θ) → E0r cos(θ), 0 ≤ θ ≤ π, (2)

and {
ur(b−, θ) = ur(b+, θ), 0 ≤ θ < θ0,

u(b, θ) = 0, θ0 < θ ≤ π,
(3)
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where b− and b+ denote points slightly inside and outside of r = b, respec-
tively, and 0 < θ0 < π.

Step 1 : First solve the simpler problem when we replace Equation (3) with
u(b, θ) = 0 for 0 ≤ θ ≤ π and show that u(r, θ) =

aV0

b − a

(
b

r
− 1
)

, a < r < b,

u(r, θ) = E0r cos(θ) − E0b
3 cos(θ)/r2, b < r < ∞.

Step 2 : Returning to the original problem, show that the solution to the
partial differential equation plus the first two boundary conditions is

u(r, θ) =
aV0

b − a

(
b

r
− 1
)

+
∞∑

n=0

An

[(r

b

)n

−
(a

b

)2n+1
(

b

r

)n+1
]

Pn[cos(θ)]

for a ≤ r ≤ b, and

u(r, θ) = E0r cos(θ)−E0
b3

r2
cos(θ)+

∞∑
n=0

[
1 −
(a

b

)2n+1
]

An

(
b

r

)n+1

Pn[cos(θ)]

for b ≤ r < ∞.

Step 3 : Using the third boundary condition, show that An is given by the
dual series:

∞∑
n=0

(2n + 1)AnPn[cos(θ)] =
aV0

b − a
+ 3E0b cos(θ), 0 ≤ θ < θ0,

and
∞∑

n=0

[
1 −
(a

b

)2n+1
]

AnPn[cos(θ)] = 0, θ0 < θ ≤ π.

Step 4 : Following the analysis given by Equation 3.4.115 through Equation
3.4.121, show that

An =
aV0

π(b − a)
[
1 − (a

b

)2n+1
] { sin(nθ0)

n
− sin[(n + 1)θ0]

n + 1

}

− E0b

π
[
1 − (a

b

)2n+1
] {sin[(n − 1)θ0]

n − 1
− sin[(n + 2)θ0]

n + 2

}
.
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Problem 2

The figure labeled Problem 2 illustrates this solution when a = 0.7, b = 1.4,
θ0 = π/2 and V0 = bE0.

3. Solve45 Laplace equation

∂

∂r

(
r2 ∂u

∂r

)
+

1
sin(θ)

∂

∂θ

[
sin(θ)

∂u

∂θ

]
= 0, 0 ≤ r < ∞, 0 ≤ θ ≤ π,

subject to the boundary conditions that

lim
θ→0

|u(r, θ)| < ∞, lim
θ→π

|u(r, θ)| < ∞, 0 ≤ r < ∞, (1)

lim
r→0

|u(r, θ)| < ∞, lim
r→∞ |u(r, θ)| < ∞, 0 ≤ θ ≤ π, (2)

and {
u(a−, θ) = u(a+, θ) = C1 + C2 cos(θ), 0 ≤ θ < α,

ur(a−, θ) = ur(a+, θ), α < θ ≤ π,
(3)

where a− and a+ denote points slightly inside and outside of r = a, respec-
tively, and 0 < α < π. The parameter C2 is nonzero.

45 Taken with permission from Casey, K. F., 1985: Quasi-static electric- and magnetic-
field penetration of a spherical shield through a circular aperture. IEEE Trans. Electromag.
Compat., EMC-27, 13–17. c©1985 IEEE.
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Problem 3

Step 1 : Show that the solution to the differential equation and first two
boundary conditions are

u(r, θ) = C2

∞∑
n=0

An

( r

a

)n

Pn[cos(θ)], 0 ≤ r ≤ a,

and

u(r, θ) = C2

∞∑
n=0

An

(a

r

)n+1

Pn[cos(θ)], a ≤ r < ∞.

Step 2 : Using the third boundary condition, show that An is given by the
dual series:

∞∑
n=0

AnPn[cos(θ)] = C1/C2 + cos(θ), 0 ≤ θ < α,

and ∞∑
n=0

(2n + 1)AnPn[cos(θ)] = 0, α < θ ≤ π.

Step 3 : Using Table 3.4.1, show that

An =
C1

πC2

{
sin(nα)

n
+

sin[(n + 1)α]
n + 1

}
+

1
π

{
sin[(n − 1)α]

n − 1
+

sin[(n + 2)α]
n + 2

}
.

The figure labeled Problem 3 illustrates this solution when C1/C2 = 0.5 and
α = π/2.
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3.5 TRIPLE FOURIER SINE SERIES

In this closing section we illustrate a mixed boundary value problem that
yields a triple Fourier sine series.

Let us find46 the potential for Laplace’s equation in cylindrical coordi-
nates:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < a, 0 < z < π, (3.5.1)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, 0 < z < π, (3.5.2)


ur(a, z) = 0, 0 ≤ z < α,
u(a, z) = 1, α < z < β,
ur(a, z) = 0, β < z < π,

(3.5.3)

and
u(r, 0) = uz(r, π) = 0, 0 ≤ r < a. (3.5.4)

Separation of variables yields the potential, namely

u(r, z) =
∞∑

n=0

An sin
[(

n + 1
2

)
z
] I0

[(
n + 1

2

)
r
]

I1

[(
n + 1

2

)
a
] . (3.5.5)

Equation 3.5.5 satisfies Equation 3.5.1, Equation 3.5.2, and Equation 3.5.4.
Substituting Equation 3.5.5 into Equation 3.5.3, we obtain the triple Fourier
sine series:

∞∑
n=0

(
n + 1

2

)
An sin

[(
n + 1

2

)
z
]

= 0, 0 < z < α, (3.5.6)

∞∑
n=0

(1 + Mn)An sin
[(

n + 1
2

)
z
]

= 1, α < z < β, (3.5.7)

and ∞∑
n=0

(
n + 1

2

)
An sin

[(
n + 1

2

)
z
]

= 0, β < z < π, (3.5.8)

where

Mn =
I0

[(
n + 1

2

)
a
]

I1

[(
n + 1

2

)
a
] − 1. (3.5.9)

46 See Zanadvorov, N. P., V. A. Malinov, and A. V. Charukhchev, 1983: Radial trans-
mission distribution in a cylindrical electrooptical shutter with a large aperture. Opt.
Spectrosc. (USSR), 54, 212–215.



158 Mixed Boundary Value Problems

To solve Equation 3.5.6 through Equation 3.5.8, we first note that
∞∑

n=0

(
n + 1

2

)
An sin

[(
n + 1

2

)
z
]

= − d

dz

{ ∞∑
n=0

An cos
[(

n + 1
2

)
z
]}

. (3.5.10)

Following Tranter and Cooke,47 we introduce

An =
∞∑

k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)]J2n+1(x)
dx

x
. (3.5.11)

The integral in Equation 3.5.11 can be evaluated48 in terms of hypergeometric
functions. Then,
∞∑

n=0

An cos
[(

n + 1
2

)
z
]

=
1

4
√

2

∞∑
k=0

Bk

∫ π

z

sin(η)√
cos(z) − cos(η)

(3.5.12)

×
{∫ ∞

0

J2k+1[x sin(β/2)]J0[x sin(η/2)] dx

}
dη.

Because49∫ ∞

0

J2k+1[x sin(β/2)]J0[x sin(η/2)] dx (3.5.13)

=
{

0, η > β,
csc(β/2) F2 1[k + 1,−k; 1; sin2(η/2)/ sin2(β/2)], η < β,

∞∑
n=0

An cos
[(

n + 1
2

)
z
]

= 0 (3.5.14)

if z > β. Therefore, it follows from Equation 3.5.10 that Equation 3.5.8 is
also satisfied. On the other hand, if 0 < z < β,
∞∑

n=0

An cos
[(

n + 1
2

)
z
]

=
csc(β/2)

4
√

2

∞∑
k=0

Bk

∫ β

z

sin(η) F2 1[k + 1,−k; 1; sin2(η/2)/ sin2(β/2)]√
cos(z) − cos(η)

dη

(3.5.15)

=
1

4
√

2

∞∑
k=0

Bk

∫ π

y

sin(θ)Pk[cos(θ)]√
cos(y) − cos(θ)

dθ (3.5.16)

=
1
4

∞∑
k=0

Bk

cos
[(

k + 1
2

)
y
]

k + 1
2

, 0 < y < π, (3.5.17)

47 Tranter, C. J., and J. C. Cooke, 1973: A Fourier-Neumann series and its application
to the reduction of triple cosine series. Glasgow Math. J., 14, 198–201.

48 Gradshteyn and Ryzhik, op. cit., Formula 6.574.1

49 Ibid., Formula 6.512.2 with ν = n + 1.
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where we substituted sin(θ/2) = sin(η/2)/ sin(β/2) and sin(y/2) = sin(z/2)
/ sin(β/2). We also used Equation 1.3.4 to simplify Equation 3.5.16. Upon
substituting Equation 3.5.17 into Equation 3.5.10 and carrying out the differ-
entiation, we find that Equation 3.5.6 becomes

∞∑
k=0

Bk sin
{

(2k + 1) arcsin
[

sin(z/2)
sin(β/2)

]}
= 0, 0 < z < α. (3.5.18)

Finally, consider Equation 3.5.7. We can rewrite it
∞∑

n=0

An sin
[(

n + 1
2

)
z
]

= 1 −
∞∑

n=0

MnAn sin
[(

n + 1
2

)
z
]
. (3.5.19)

Substituting Equation 3.5.11, we find that

∞∑
k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)]

{ ∞∑
n=0

sin
[(

n + 1
2

)
z
]
J2n+1(x)

}
dx

x
(3.5.20)

= 1 −
∞∑

k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)]

{ ∞∑
n=0

Mn sin
[(

n + 1
2

)
z
]
J2n+1(x)

}
dx

x
.

The summation over n on the left side of Equation 3.5.20 can be replaced50

by sin[x sin(z/2)]/2 so that we now have
∞∑

k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)] sin[x sin(z/2)]
dx

x
(3.5.21)

= 2 − 2
∞∑

k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)]

{ ∞∑
n=0

Mn sin
[(

n + 1
2

)
z
]
J2n+1(x)

}
dx

x
.

Evaluating51 the integral on the left side of Equation 3.5.21, we finally obtain
∞∑

k=0

Bk

2k + 1
sin
{

(2k + 1) arcsin
[

sin(z/2)
sin(β/2)

]}
(3.5.22)

= 2 − 2
∞∑

k=0

Bk

∫ ∞

0

J2k+1[x sin(β/2)]

{ ∞∑
n=0

Mn sin
[(

n + 1
2

)
z
]
J2n+1(x)

}
dx

x
.

In summary, by introducing Equation 3.5.11, we reduced the triple Fourier
sine equations, Equation 3.5.6 through Equation 3.5.8, to the dual Fourier
sine series ∞∑

k=0

Bk sin
[(

k + 1
2

)
ϕ
]

= 0, (3.5.23)

50 Ibid., Formula 8.514.6.

51 Ibid., Formula 6.693.1.
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and ∞∑
k=0

Bk

k + 1
2

sin
[(

k + 1
2

)
ϕ
]

= 4 − 4
∞∑

k=0

BkFk(ϕ), (3.5.24)

where

Fk(ϕ) =
∞∑

n=0

Mn sin{(2n + 1) arcsin[sin(ϕ/2) sin(β/2)]}

×
∫ ∞

0

J2k+1[x sin(β/2)]J2n+1(x)
dx

x
, (3.5.25)

and ϕ = 2 arcsin[sin(z/2)/ sin(β/2)].
Our final task is to compute Bk. To this end, let us introduce

Bk = APk[cos(ϕ0)] +
∫ π

ϕ0

f(τ)
d

dτ

{
Pk[cos(τ)]

}
dτ, (3.5.26)

where A is a free parameter and ϕ0 = 2 arcsin[sin(α/2)/ sin(β/2)]. Substitut-
ing Equation 3.5.26 into Equation 3.5.23, we obtain

∞∑
k=0

Bk sin
[(

k + 1
2

)
ϕ
]

= A

∞∑
k=0

sin
[(

k + 1
2

)
ϕ
]
Pk[cos(ϕ0)] (3.5.27)

+
∫ π

ϕ0

f(τ)
d

dτ

{ ∞∑
k=0

sin
[(

k + 1
2

)
ϕ
]
Pk[cos(τ)]

}
dτ,

= A
H(ϕ − ϕ0)√

2 cos(ϕ0) − 2 cos(ϕ)
(3.5.28)

+
∫ π

ϕ0

f(τ)
d

dτ

[
H(ϕ − τ)√

2 cos(τ) − 2 cos(ϕ)

]
dτ,

where we used results from Problem 1 at the end of Section 1.3. Because
ϕ < ϕ0, both Heaviside functions in Equation 3.5.28 equal zero and our
choice for Bk satisfies Equation 3.5.23.

Turning to Equation 3.5.24, we take its derivative with respect to ϕ and
obtain ∞∑

k=0

Bk cos
[(

k + 1
2

)
ϕ
]

= −4
∞∑

k=0

BkF ′
k(ϕ). (3.5.29)

Next, we substitute for Bk and find that

A

∞∑
k=0

cos
[(

k + 1
2

)
ϕ
]
Pk[cos(ϕ0)]

+
∫ π

ϕ0

f(t)
d

dt

{ ∞∑
k=0

cos
[(

k + 1
2

)
ϕ
]
Pk[cos(t)]

}
dt (3.5.30)

= −4A

∞∑
k=0

F ′
k(ϕ)Pk[cos(ϕ0)] − 4

∫ π

ϕ0

f(t)
d

dt

{ ∞∑
k=0

F ′
k(ϕ)Pk[cos(t)]

}
dt.
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Figure 3.5.1: The solution u(r, z) to the mixed boundary value problem governed by
Equation 3.5.1 through Equation 3.5.3 when a = π, α = π/3, and β = 2π/3.

If we now integrate the second term in Equation 3.5.30 by parts and again
introduce the results from Problem 1 from Section 1.3, we derive

AH(ϕ0 − ϕ)√
2 cos(ϕ) − 2 cos(ϕ0)

− f(ϕ0)
∞∑

k=0

cos
[(

k + 1
2

)
ϕ
]
Pk[cos(ϕ0)]

−
∫ π

ϕ0

f ′(t)H(t − ϕ)√
2 cos(ϕ) − 2 cos(t)

dt +
∫ π

ϕ0

f(t)
d

dt

{ ∞∑
k=0

4F ′
k(ϕ)Pk[cos(t)]

}
dt

= −A

∞∑
k=0

4F ′
k(ϕ)Pk[cos(ϕ0)]. (3.5.31)

The first two terms in Equation 3.5.31 vanish while the limits of integra-
tion for the integral in the third term run from ϕ to π. Finally, let us multiply
Equation 3.5.31 by sin(ϕ) dϕ/

√
2 cos(τ) − 2 cos(ϕ) and then integrate from τ

to π. We find then that

−
∫ π

τ

sin(ϕ)√
2 cos(τ) − 2 cos(ϕ)

{∫ π

ϕ

f ′(t)√
2 cos(ϕ) − 2 cos(t)

dt

}
dϕ

+
∫ π

ϕ0

f(t)
d

dt

{∫ π

τ

sin(ϕ)√
2 cos(τ) − 2 cos(ϕ)

∞∑
k=0

4F ′
k(ϕ)Pk[cos(t)] dϕ

}
dt

= −A

∫ π

τ

sin(ϕ)√
2 cos(τ) − 2 cos(ϕ)

∞∑
k=0

4F ′
k(ϕ)Pk[cos(ϕ0)] dϕ. (3.5.32)
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Using results given by Equation 1.2.11 and Equation 1.2.12, the first term in
Equation 3.5.32 equals f(τ) and Equation 3.5.32 becomes

f(τ) +
2
π

∫ π

ϕ0

f(t)
dL(τ, t)

dt
dt = −2A

π
L(τ, ϕ0), ϕ0 < τ < π, (3.5.33)

where

L(τ, t) =
∫ π

τ

sin(ϕ)√
2 cos(τ) − 2 cos(ϕ)

∞∑
k=0

4F ′
k(ϕ)Pk[cos(t)] dϕ. (3.5.34)

It is clear from Equation 3.5.33 that f(τ) is proportional to A. Conse-
quently, both Bk and An also are proportional to A. Therefore, A must be
chosen to that u(r, z) = 1 for α < z < β. Figure 3.5.1 illustrates this solution
when a = π, α = π/3 and β = 2π/3. It is better to use

Bk = [A − f(ϕ0)]Pk[cos(ϕ0)] + f(π)(−1)k −
∫ π

ϕ0

f ′(τ)Pk[cos(τ)] dτ (3.5.35)

rather than Equation 3.5.26 so that we avoid large values of the derivative of
the Legendre polynomials for large k near τ = π.
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Chapter 4

Transform Methods

In Example 1.1.2 we showed that applying a Fourier cosine transform
leads to the dual integral equations:

− 2
π

∫ ∞

0

k coth(kh)A(k) cos(kx) dk = 1/h, 0 ≤ x < 1, (4.0.1)

and
2
π

∫ ∞

0

A(k) cos(kx) dk = 0, 1 < x < ∞. (4.0.2)

The purpose of this chapter is to illustrate how these dual integral equations
are solved. In Sections 4.1 and 4.2 we focus on Fourier-type of integrals while
Sections 4.3 and 4.4 treat Fourier-Bessel integrals. Finally Section 4.5 deals
with situations where we have a mixture of Fourier series and transforms,
Fourier and Fourier-Bessel transforms and Fourier series and Laplace trans-
forms.

Before we proceed to our study of dual and triple integral equations, let
us finish Example 1.1.2. We begin by introducing

u(x, 0) =
2
π

∫ ∞

0

A(k) cos(kx) dk. (4.0.3)

163
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Referring back to Equation 1.1.15, we see that u(x, 0) is the solution to Equa-
tion 1.1.11 along the boundary y = 0. Next, for convenience, let us define

g(x) = −du(x, 0)
dx

=
2
π

∫ ∞

0

kA(k) sin(kx) dk. (4.0.4)

From Equation 4.0.2, u(x, 0) is nonzero only if 0 < x < 1. Consequently, g(x)
is nonzero only between 0 < x < 1. Taking the Fourier sine transform of g(x),

kA(k) =
∫ 1

0

g(x) sin(kx) dx. (4.0.5)

If we integrate Equation 4.0.1 with respect to x, we have that

− 2
π

∫ ∞

0

coth(kh)A(k) sin(kx) dk =
x

h
, 0 ≤ x < 1. (4.0.6)

Substituting Equation 4.0.5 into Equation 4.0.6, we have the integral equation

− 2
π

∫ 1

0

g(ξ)
[∫ ∞

0

coth(kh) sin(kξ) sin(kx)
dk

k

]
dξ =

x

h
. 0 ≤ x < 1.

(4.0.7)
The integral within the square brackets in Equation 4.0.7 can be evaluated1

exactly and the integral equation simplifies to

− 1
π

∫ 1

0

g(ξ) ln
∣∣∣∣tanh(βx) + tanh(βξ)
tanh(βx) − tanh(βξ)

∣∣∣∣ dξ =
x

h
, 0 ≤ x < 1, (4.0.8)

where β = π/(2h). The results from Example 1.2.3 can be employed to solve
Equation 4.0.8 after substituting x′ = tanh(βx)/ tanh(β). This yields

g(ξ) =
1
h2

d

dξ

{∫ 1

ξ

tanh(βx)

cosh2(βx)
√

tanh2(βx) − tanh2(βξ)

×
∫ x

0

dτ√
tanh2(βx) − tanh2(βτ)

 dx

}
(4.0.9)

=
tanh(βξ)

h2 cosh2(βξ)
√

tanh2(β) − tanh2(βξ)

×
∫ 1

0

√
tanh2(β) − tanh2(βx)

tanh2(βx) − tanh2(βξ)
dx (4.0.10)

= − π tanh(βξ)

2h2β cosh(β)
√

tanh2(β) − tanh2(βξ)
. (4.0.11)

1 Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products.
Academic Press, Formula 4.116.3.



Transform Methods 165

−2
−1

0
1

2

0

0.5

1

0.25

0.75

−0.8

−0.6

−0.4

−0.2

0

0.2

x
y

u(
x,

y)

Figure 4.0.1: The solution to Equation 1.1.11 subject to the mixed boundary conditions
given by Equation 1.1.12, Equation 1.1.13, and Equation 1.1.14 when h = 1.

Substituting Equation 4.0.11 into Equation 4.0.5, A(k) follows via numerical
integration. Finally, we can use this A(k) to find the solution to Equation
1.1.11 subject to the boundary conditions given by Equation 1.1.12, Equa-
tion 1.1.13, and Equation 1.1.14 by numerically integrating Equation 1.1.17.
Figure 4.0.1 illustrates this solution.

4.1 DUAL FOURIER INTEGRALS

A common technique in solving boundary value problems in rectangular
coordinates involves Fourier transforms. In the case of mixed boundary value
problems, this leads to sets of integral equations. In this section we focus on
commonly occuring cases of dual integral equations.

• Example 4.1.1

Let us solve Laplace’s equation:2

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞, (4.1.1)

2 See Iossel, Yu. Ya., and R. A. Pavlovskii, 1966: A plane steady heat conduction
problem. J. Engng. Phys., 10, 163–166.
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subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞, (4.1.2)

{
u(x, 0) − huy(x, 0) = C, |x| < 1,

u(x, 0) = 0, |x| > 1, (4.1.3)

and
lim

y→∞u(x, y) → 0, −∞ < x < ∞, (4.1.4)

with h > 0.
By using separation of variables or transform methods, the general solu-

tion to Equation 4.1.1, Equation 4.1.2 and Equation 4.1.4 is

u(x, y) =
∫ ∞

0

A(k)e−ky cos(kx) dk. (4.1.5)

Direct substitution of Equation 4.1.5 into Equation 4.1.3 yields the dual inte-
gral equations: ∫ ∞

0

(1 + kh)A(k) cos(kx) dk = C, |x| < 1, (4.1.6)

and ∫ ∞

0

A(k) cos(kx) dk = 0, |x| > 1. (4.1.7)

We begin our solution of these dual equations by introducing

A(k) =
∫ 1

0

g′(t)J0(kt) dt = g(1)J0(k) + k

∫ 1

0

g(t)J1(kt) dt, (4.1.8)

if we assume that g(0) = 0. Turning first to Equation 4.1.7, if we substitute
Equation 4.1.8 into Equation 4.1.7 and interchange the order of integration,
we find that∫ ∞

0

A(k) cos(kx) dk =
∫ 1

0

g′(t)
[∫ ∞

0

J0(kt) cos(kx) dk

]
dt. (4.1.9)

From Equation 1.4.14 and noting that x > t here, the integral vanishes within
the square brackets and we see that our choice of A(k) satisfies Equation 4.1.7
identically.

If we now integrate Equation 4.1.6 with respect to x,∫ ∞

0

A(k) sin(kx) dk +
1
h

∫ ∞

0

A(k) sin(kx)
dk

k
=

Cx

h
. (4.1.10)
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Substituting for A(k) from Equation 4.1.8 and interchanging the order of
integration,∫ 1

0

g′(t)
[∫ ∞

0

J0(kt) sin(kx) dk

]
dt +

g(1)
h

∫ ∞

0

J0(k) sin(kx)
dk

k

+
1
h

∫ 1

0

g(t)
[∫ ∞

0

J1(kt) sin(kx) dk

]
dt =

Cx

h
. (4.1.11)

Evaluating the integrals,3∫ x

0

g′(t)√
x2 − t2

dt +
g(1)
h

arcsin(x) +
1
h

∫ 1

0

ψ(x, t)g(t) dt =
Cx

h
(4.1.12)

with 0 < x < 1, where

ψ(x, t) =
{

x/
[
t
√

t2 − x2
]
, 0 < x < t,

0, 0 < t < x.
(4.1.13)

If we introduce

f(x) =
∫ x

0

g′(t)√
x2 − t2

dt, (4.1.14)

then by Equation 1.2.13 and Equation 1.2.14, we find that

g(t) =
2
π

∫ t

0

ξf(ξ)√
t2 − ξ2

dξ. (4.1.15)

Substituting Equation 4.1.14 and Equation 4.1.15 into Equation 4.1.12,

hf(x) +
2
π

∫ 1

0

N(x, ξ)f(ξ) dξ = Cx − 2
π

arcsin(x)
∫ 1

0

ξf(ξ)√
1 − ξ2

dξ, (4.1.16)

where

N(x, η) = η

∫ 1

η

ψ(x, t)√
t2 − η2

dt =
1
2

ln

 (x + η)|x − η|(
x
√

1 − η2 − η
√

1 − x2
)2

 . (4.1.17)

Equation 4.1.17 shows that the integral on the left side of Equation 4.1.16 is
weakly singular. Therefore, this integral is divided into two parts. We use a
simple trapezoidal rule for the nonsingular term. For the singular term, we
employ a numerical method devised by Atkinson.4 Defining dx = 1/N so that
xn =

(
n − 1

2

)
∆x, n = 1, 2, · · · , N , the MATLAB R© code to find f(x) is

3 Gradshteyn and Ryzhik, op. cit., Formula 6.671.1 and Formula 6.693.7.

4 Atkinson, K. E., 1967: The numerical solution of Fredholm integral equations of the
second kind. SIAM J. Numer. Anal., 4, 337–348. See Section 5 in particular.
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for j = 1:N
xx(j) = (j-0.5)*dx; xxi(j) = (j-0.5)*dx;
end
% the value of x at the interfaces
for j = 0:N
xx e(j+1) = j*dx; xxi e(j+1) = j*dx;
end
% **************************************************************
% Solve the integral equation, Equation 4.1.16
% **************************************************************
for n = 1:N
x = xx(n); b(n) = x; % the right side of Equation 4.1.16
for m = 1:N
xi = xxi(m);
if (n == m)
% the first term on the left side of Equation 4.1.16
AA(n,m) = h;
else AA(n,m) = 0; end
if (n == m)
NN(n,m) = log(sqrt(1-x*x));
else
NN(n,m) = log((x-xi) / (x*sqrt(1-xi*xi)-xi*sqrt(1-x*x))) ;
end
NN(n,m) = NN(n,m) + 0.5*log(x+xi);
% **************************************************************
% Find the non-singular contribution from the integrals
% in Equation 4.1.16
% **************************************************************
AA(n,m) = AA(n,m) + 2*NN(n,m)*dx/pi ...

+ 2*asin(x)*xi*dx/(pi*sqrt(1-xi*xi));
end; end
% **************************************************************
% Add in the contribution from the singular term
% **************************************************************
for n = 1:N
for m = 2:N
k = n-m+1;
psi 0 = -1;
psi 1 = 0.25*(k*k-(k-1)*(k-1));
if (k ∼= 0)
psi 0 = psi 0 + k*log(abs(k));
psi 1 = psi 1 - 0.5*k*k*log(abs(k));
end
if (k ∼= 1)
psi 0 = psi 0 - (k-1)*log(abs(k-1));
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psi 1 = psi 1 + 0.5*(k-1)*(k-1)*log(abs(k-1));
end
psi 1 = psi 1 + k*psi 0;
alpha = 0.5*dx*log(dx) + dx*(psi 0-psi 1);
beta = 0.5*dx*log(dx) + dx*psi 1;
AA(n,m-1) = AA(n,m-1) - alpha/pi;
AA(n, m ) = AA(n, m ) - beta/pi;
end; end
f = AA\b’ % Compute f(x) from Equation 4.1.16

Having found f(x) from Equation 4.1.16, g(t) follows from Equation 4.1.15.

g(1) = 0;
for n = 2:N+1
t = xx e(n); g(n) = 0;
for m = 1:n-1
xi = xxi(m);
g(n) = g(n) + 2*xi*f(m)*dx/(pi*sqrt(t*t-xi*xi));
end; end

With g(t), we can compute A(k) and u(x, y). The maximum number of
wavenumbers included in the computations is K max*dk. The MATLAB code
is

% **************************************************************
% Compute A(k) from Equation 4.1.8.
% Use Simpson’s rule.
% **************************************************************
for n = 1:N
derivative(n) = (g(n+1)-g(n))/dx;
end
for k = 0:K max
ak = k*dk; t = xx(1);
A(k+1) = derivative(1)*besselj(0,ak*t); % k = 0 term
for n = 2:N-1
t = xx(n);
if ( mod(n,2) == 0)
A(k+1) = A(k+1) + 4*derivative(n)*besselj(0,ak*t);
else
A(k+1) = A(k+1) + 2*derivative(n)*besselj(0,ak*t);
end; end
t = xx(N);
% k = kmax term
A(k+1) = A(k+1) + derivative(N)*besselj(0,ak*t);
A(k+1) = A(k+1)*dx/3;
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Figure 4.1.1: The solution to Equation 4.1.1 subject to the mixed boundary conditions
given by Equation 4.1.2 through Equation 4.1.4 when h = 1.

end
% **************************************************************
% Compute the solution u(x, y) for a given x and y.
% Use Simpson’s rule.
% **************************************************************
u(i,j) = 0;
% integral contribution from wavenumber
% between k = 0 and k = K max
% Use Equation 4.1.5.
for k = 0:K max
ak = k*dk; factor = A(k+1)*exp(-ak*y)*cos(ak*x);
if ( (k>0) & (k<K max) )
if (mod(k+1,2) == 0)
u(i,j) = u(i,j) + 4*factor;
else
u(i,j) = u(i,j) + 2*factor;
end
else
u(i,j) = u(i,j) + factor;
end; end
u(i,j) = dk*u(i,j)/3;

Figure 4.1.1 illustates the solution when h = 1.
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• Example 4.1.2

Let us solve Laplace’s equation:5

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞, (4.1.18)

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞, (4.1.19)

lim
y→∞u(x, y) → 0, −∞ < x < ∞, (4.1.20)

and {−uy(x, 0) + hu(x, 0) = f(x), |x| < 1,
uy(x, 0) = 0, |x| > 1. (4.1.21)

Using separation of variables or transform methods, the general solu-
tion to Equation 4.1.18, Equation 4.1.19 and Equation 4.1.20 is u(x, y) =
u+(x, y) + u−(x, y), where

u+(x, y) =
∫ ∞

0

A(k)e−ky cos(kx)
dk

k
, (4.1.22)

and
u−(x, y) =

∫ ∞

0

B(k)e−ky sin(kx)
dk

k
. (4.1.23)

The idea here is that the solution consists of two parts: an even portion
denoted by u+(x, y) and an odd portion denoted by u−(x, y). In a similar
manner, f(x) = f+(x) + f−(x).

Direct substitution of Equation 4.1.22 into Equation 4.1.21 yields the
dual integral equations:∫ ∞

0

(k + h)A(k) cos(kx)
dk

k
= f+(x), |x| < 1, (4.1.24)

and ∫ ∞

0

A(k) cos(kx) dk = 0, |x| > 1. (4.1.25)

To solve these dual integral equations, we introduce

A(k) =
∫ 1

0

g′+(t) [J0(k) − J0(kt)] dt, (4.1.26)

5 See Kuz’min, Yu. N., 1967: Plane-layer problem in the theory of heat conductivity
for mixed boundary conditions. Sov. Tech. Phys., 11, 996–999.
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because∫ ∞

0

A(k)J0(kr) dk =
∫ 1

0

g′+(t)
[∫ ∞

0

cos(kx)J0(k) dk

]
dt

−
∫ 1

0

g′+(t)
[∫ ∞

0

cos(kx)J0(kt) dk

]
dt = 0. (4.1.27)

Thus, our choice for A(k) identically satisfies Equation 4.1.25. This follows
from Equation 1.4.14 since |x| > 1 and 0 ≤ t ≤ 1.

Next, we integrate Equation 4.1.26 by parts and find that

A(k) = −k

∫ 1

0

g+(t)J1(kt) dt (4.1.28)

provided that we require that g+(0) = 0. Substituting Equation 4.1.26 and
Equation 4.1.28 into Equation 4.1.24, we obtain∫ 1

0

g′+(t)
{∫ ∞

0

[J0(k) − J0(kt)] cos(kx) dk

}
dt

= f+(x) + h

∫ 1

0

g+(τ)
[∫ ∞

0

cos(kx)J1(kτ) dk

]
dτ. (4.1.29)

Applying Equation 1.4.14, Equation 4.1.29 simplifies to∫ 1

x

g′+(t)√
t2 − x2

dt = −f+(x) − h

∫ 1

0

g+(τ)
[∫ ∞

0

cos(kx)J1(kτ) dk

]
dτ.

(4.1.30)
Using Equation 1.2.15 and Equation 1.2.16, we solve for g′+(t) and find that

g′+(t) =
2
π

d

dt

[∫ 1

t

xf+(x)√
x2 − t2

dx

]
(4.1.31)

+
2h

π

d

dt

(∫ 1

t

x√
x2 − t2

{∫ 1

0

g+(τ)
[∫ ∞

0

cos(kx)J1(kτ) dk

]
dτ

}
dx

)
.

Integrating both sides of Equation 4.1.31,

g+(t) =
2
π

[∫ 1

t

xf+(x)√
x2 − t2

dx

]
(4.1.32)

+
2h

π

∫ 1

t

x√
x2 − t2

{∫ 1

0

g+(τ)
[∫ ∞

0

cos(kx)J1(kτ) dk

]
dτ

}
dx + C,

where C denotes the arbitrary constant of integration. We must choose C so
that g+(0) = 0. Thus, Equation 4.1.32 becomes

g+(t) =
2
π

[∫ 1

t

xf+(x)√
x2 − t2

dx −
∫ 1

0

f+(x) dx

]
+

2
π

∫ 1

0

K(t, τ)g+(τ) dτ,

(4.1.33)
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where

K(t, τ) = h

∫ 1

t

x√
x2 − t2

[∫ ∞

0

cos(kx)J1(kτ) dk

]
dx

− h

∫ ∞

0

sin(k)J1(kτ)
dk

k
(4.1.34)

=
h

τ

(√
1 − τ2 +

√
1 − t2 − 1 −

∫ 1

s

x2

√
x2 − t2

√
x2 − τ2

dx

)
(4.1.35)

=
h

τ

{√
1 − τ2 +

√
1 + t2 − 1 −

√
1 − t2

√
1 − τ2

− s [K(κ) − E(κ) − F (θ, κ) + E(θ, κ)]
}

, (4.1.36)

where s = max(t, τ), p = min(t, τ), κ = p/s, θ = arcsin(s), F (·, ·) and
E(·, ·) are elliptic integrals of the first and second kind, respectively, K(·) =
F (π/2, ·), and E(·) = E(π/2, ·).

Turning to B(k), we substitute Equation 4.1.23 into Equation 4.1.21 and
obtain ∫ ∞

0

(k + h)B(k) sin(kx)
dk

k
= f−(x), |x| < 1, (4.1.37)

and ∫ ∞

0

B(k) sin(kx) dk = 0, |x| > 1. (4.1.38)

We now set

B(k) = −
∫ 1

0

t g′−(t)J1(kt) dt = k

∫ 1

0

t g−(t)J0(kt) dt (4.1.39)

if g−(1) = 0. Because∫ ∞

0

B(k) sin(kx) dk = −
∫ 1

0

tg′−(t)
[∫ ∞

0

sin(kx)J1(kt) dk

]
dt = 0 (4.1.40)

from Equation 1.4.13 if |x| > 1 and 0 ≤ t ≤ 1, Equation 4.1.38 is identically
satisfied by our choice for B(k).

Substituting Equation 4.1.39 into Equation 4.1.37,

−
∫ 1

0

t g′−(t)
[∫ ∞

0

sin(kx)J1(kt) dk

]
dt

= f−(x) − h

∫ 1

0

τ g−(τ)
[∫ ∞

0

sin(kx)J0(kτ) dk

]
dτ. (4.1.41)
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Figure 4.1.2: The solution to Equation 4.1.18 subject to the mixed boundary conditions
given by Equation 4.1.19, Equation 4.1.20, and Equation 4.1.21 when f+(x) = 0, f−(x) = x
and h = 1.

From Equation 1.4.13,

x

∫ 1

x

g′−(t)√
t2 − x2

dt = −f−(x) + h

∫ 1

0

τ g−(τ)
[∫ ∞

0

sin(kx)J0(kτ) dk

]
dτ.

(4.1.42)
Using Equation 1.2.15 and Equation 1.2.16 and integrating,

g−(t) =
2
π

∫ 1

t

f−(x)√
x2 − t2

dx − 2
π

∫ 1

0

L(t, τ)g−(τ) dτ, (4.1.43)

where

L(t, τ) = hτ

∫ 1

t

[∫ ∞

0

sin(kx)J0(kτ) dk

]
dx√

x2 − t2
(4.1.44)

= hτ

∫ 1

0

dx√
x2 − t2

√
x2 − τ2

=
hτ

s
F (ϑ, κ), (4.1.45)

where ϑ = arcsin
[√

(1 − s2)/(1 − p2)
]
. Figure 4.1.2 illustrates this solution

when f+(x) = 0, f−(x) = x and h = 1.
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• Example 4.1.3

Let us solve Laplace’s equation:6

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h, (4.1.46)

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < h, (4.1.47)

{
uy(x, 0) = A, |x| < 1,
u(x, 0) = 0, |x| > 1, (4.1.48)

and
uy(x, h) = 0, −∞ < x < ∞. (4.1.49)

Using separation of variables or transform methods, the general solution
to Equation 4.1.46, Equation 4.1.47 and Equation 4.1.49 is

u(x, y) =
2
π

∫ ∞

0

A(k) cosh[k(y − h)] cos(kx) dk. (4.1.50)

Direct substitution of Equation 4.1.50 into Equation 4.1.48 yields the dual
integral equations:

2
π

∫ ∞

0

kA(k) sinh(kh) cos(kx) dk = −A, |x| < 1, (4.1.51)

and
2
π

∫ ∞

0

A(k) cosh(kh) cos(kx) dk = 0, |x| > 1. (4.1.52)

We begin our solution of these dual integral equations by noting that for
|x| < 1,

u(x, 0) =
2
π

∫ ∞

0

A(k) cosh(kh) cos(kx) dk (4.1.53)

with u(1, 0) = 0. Because Equation 4.1.53 is the Fourier cosine representation
of u(x, 0),

A(k) cosh(kh) =
∫ 1

0

u(ξ, 0) cos(kξ) dξ = −1
k

∫ 1

0

h(ξ) sin(kξ) dξ, (4.1.54)

6 See Yang, F., and J. C. M. Li, 1993: Impression creep of a thin film by vacancy
diffusion. I. Straight punch. J. Appl. Phys., 74, 4382–4389.
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since u(1, 0) = 0 and h(ξ) = uξ(ξ, 0). Substituting Equation 4.1.54 into
Equation 4.1.51,

2
π

∫ ∞

0

[∫ 1

0

h(ξ) sin(kξ) dξ

]
tanh(kh) cos(kx) dk = A, |x| < 1; (4.1.55)

or

d

dx

{∫ ∞

0

[∫ 1

0

h(ξ) sin(kξ) dξ

]
tanh(kh) sin(kx)

dk

k

}
=

πA
2

, |x| < 1,

(4.1.56)
and

d

dx

{∫ 1

0

h(ξ)
[∫ ∞

0

tanh(kh) sin(kξ) sin(kx)
dk

k

]
dξ

}
=

πA
2

, |x| < 1.

(4.1.57)
Now,∫ ∞

0

tanh(kh) sin(kξ) sin(kx)
dk

k

= 1
2

∫ ∞

0

tanh(kh) {cos[k(x − ξ)] − cos[k(x + ξ)]} dk

k
(4.1.58)

= 1
2 ln
∣∣∣∣ sinh(βx) + sinh(βξ)
sinh(βx) − sinh(βξ)

∣∣∣∣ , (4.1.59)

where β = π/(2h), since7

∫ ∞

0

cos(αx) tanh(βx)
dx

x
= ln
[
coth
(

απ

4β

)]
, α, β > 0. (4.1.60)

Substituting Equation 4.1.59 into Equation 4.1.57 and integrating, we obtain
the integral equation∫ 1

0

h(ξ) ln
∣∣∣∣ sinh(βx) + sinh(βξ)
sinh(βx) − sinh(βξ)

∣∣∣∣ dξ = πAx. (4.1.61)

If we define

γ =
sinh(βξ)
sinh(β)

and γ0 =
sinh(βx)
sinh(β)

, (4.1.62)

we find that∫ 1

0

g(γ) ln
∣∣∣∣γ + γ0

γ − γ0

∣∣∣∣ dγ =
π2A arcsinh[γ0 sinh(β)]

2hβ
, (4.1.63)

7 Gradshteyn and Ryzhik, op. cit., Formula 4.116.2.
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Figure 4.1.3: The solution to Equation 4.1.46 subject to the mixed boundary conditions
given by Equation 4.1.47, Equation 4.1.48, and Equation 4.1.49 when h = 2.

where

g(γ) =
sinh(β)
cosh(βξ)

h

{
arcsinh[γ sinh(β)]

β

}
. (4.1.64)

Therefore, from Example 1.2.3,

∂u(ξ, 0)
∂ξ

= − A
2h

d

dξ

{∫ 1

ξ

sinh(2βτ)√
sinh2(βτ) − sinh2(βξ)

×
∫ τ

0

dη√
sinh2(βτ) − sinh2(βη)

 dτ

}
, (4.1.65)

or, upon integrating,

u(x, 0) = − A
2h

∫ 1

x

sinh(2βτ)√
sinh2(βτ) − sinh2(βx)

×
∫ τ

0

dη√
sinh2(βτ) − sinh2(βη)

 dτ. (4.1.66)

To compute u(x, y), we first evaluate u(x, 0). Next, we numerically integrate
Equation 4.1.54 to find A(k). Finally, we employ Equation 4.1.50. Figure
4.1.3 illustrates this solution when h = 2.

At this point,8 we can also show how to solve Equation 4.1.46, Equation

8 See also Problem 1 in Singh, B. M., T. B. Moodie, and J. B. Haddow, 1981: Closed-
form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta
Mech., 38, 99–109.
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4.1.47, and Equation 4.1.48, while modifying Equation 4.1.49 to read

u(x, h) = 0, −∞ < x < ∞. (4.1.67)

We begin once again using separation of variables or transform methods
to find the general solution to Equation 4.1.46, Equation 4.1.47 and Equation
4.1.67. This now gives

u(x, y) =
2
π

∫ ∞

0

A(k) sinh[k(y − h)] cos(kx) dk. (4.1.68)

Direct substitution of Equation 4.1.68 into Equation 4.1.48 yields the dual
integral equations:

2
π

∫ ∞

0

kA(k) cosh(kh) cos(kx) dk = A, |x| < 1, (4.1.69)

and
2
π

∫ ∞

0

A(k) sinh(kh) cos(kx) dk = 0, |x| > 1. (4.1.70)

To solve Equation 4.1.69 and Equation 4.1.70, we introduce

A(k) sinh(kh) =
∫ 1

0

g(ξ) sin(kξ) dξ. (4.1.71)

Equation 4.1.71 identically satisfies Equation 4.1.70. Substituting Equation
4.1.71 into Equation 4.1.69,∫ ∞

0

[∫ 1

0

g(ξ) sin(kξ) dξ

]
coth(kh) cos(kx) dk =

πA
2

, |x| < 1; (4.1.72)

or

d

dx

{∫ ∞

0

[∫ 1

0

g(ξ) sin(kξ) dξ

]
coth(kh) sin(kx)

dk

k

}
=

πA
2

, |x| < 1,

(4.1.73)
and

d

dx

{∫ 1

0

g(ξ)
[∫ ∞

0

coth(kh) sin(kξ) sin(kx)
dk

k

]
dξ

}
=

πA
2

, |x| < 1.

(4.1.74)
Now,∫ ∞

0

coth(kh) sin(kξ) sin(kx)
dk

k

= 1
2

∫ ∞

0

coth(kh) {cos[k(x − ξ)] − cos[k(x + ξ)]} dk

k
(4.1.75)

= 1
2 ln
∣∣∣∣ tanh(βx) + tanh(βξ)
tanh(βx) − tanh(βξ)

∣∣∣∣ , (4.1.76)
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since9∫ ∞

0

cos(αx) coth(βx)
dx

x
= − ln

[
2 sinh

(
απ

2β

)]
, α,�(β) > 0. (4.1.77)

Substituting Equation 4.1.76 into Equation 4.1.74 and integrating, we obtain
the integral equation∫ 1

0

g(ξ) ln
∣∣∣∣tanh(βx) + tanh(βξ)
tanh(βx) − tanh(βξ)

∣∣∣∣ dξ = πAx. (4.1.78)

If we define

γ =
tanh(βξ)
tanh(β)

and γ0 =
tanh(βx)
tanh(β)

, (4.1.79)

we find that Equation 4.1.78 becomes∫ 1

0

h(γ) ln
∣∣∣∣γ + γ0

γ − γ0

∣∣∣∣ dγ =
πA
β

arctanh[γ0 tanh(β)], (4.1.80)

where

h(γ) =
tanh(β)

d[tanh(βξ)]/dξ
g

{
arctanh[γ tanh(β)]

β

}
. (4.1.81)

Again, using Cooke’s results from Example 1.2.3,

g(ξ) = −A
h

d

dξ

{∫ 1

ξ

tanh(2βτ)

cosh2(βτ)
√

tanh2(βτ) − tanh2(βξ)

×
∫ τ

0

dη√
tanh2(βτ) − tanh2(βη)

 dτ

}
. (4.1.82)

To compute u(x, y), we first evaluate g(ξ). Next, we numerically integrate
Equation 4.1.71 to find A(k). Finally, we employ Equation 4.1.68. Figure
4.1.4 illustrates this solution when h = 2.

Konishi and Atsumi10 have given an alternative method of attacking
the problem given by Equation 4.1.46 through Equation 4.1.48 and Equation
4.1.67. For clarity let us restate the problem:

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h, (4.1.83)

9 Ibid., Formula 4.116.3.

10 Konishi, Y., and A. Atsumi, 1973: The linear thermoelastic problem of uniform heat
flow disturbed by a two-dimensional crack in a strip. Int. J. Engng. Sci., 11, 1–7.
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Figure 4.1.4: The solution to Equation 4.1.46 subject to the mixed boundary conditions
given by Equation 4.1.47, Equation 4.1.48, and Equation 4.1.67 when h = 2.

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞, (4.1.84)

{
uy(x, 0) = 1, |x| < a,
u(x, 0) = 0, |x| > a, (4.1.85)

and
u(x, h) = 0, −∞ < x < ∞. (4.1.86)

We begin by applying Fourier cosine transforms and find that

u(x, y) =
2
π

∫ ∞

0

A(k) sinh[k(y − h)] cos(kx) dk. (4.1.87)

Equation 4.1.87 satisfies the differential equation plus the boundary condi-
tions Equation 4.1.84 and Equation 4.1.86. Substituting Equation 4.1.87 into
Equation 4.1.85, we obtain the dual integral equations

2
π

∫ ∞

0

kA(k)[1 + M(kh)] sinh(kh) cos(kx) dk = 1, 0 ≤ |x| ≤ a, (4.1.88)

where M(kh) = e−kh/ sinh(kh); and

2
π

∫ ∞

0

A(k) sinh(kh) cos(kx) dk = 0, a ≤ |x| ≤ ∞. (4.1.89)
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To solve these dual equations, we set

sinh(kh)A(k) =
π

2

∫ a

0

h(t)J0(kt) dt. (4.1.90)

We have chosen this definition for A(k) because

2
π

∫ ∞

0

A(k) sinh(kh) cos(kx) dk =
∫ a

0

h(t)
[∫ ∞

0

cos(kx)J0(kt) dk

]
dt = 0,

(4.1.91)
where we used integral tables11 with 0 ≤ t ≤ a < |x| < ∞.

Turning to Equation 4.1.80, we have∫ a

0

h(t)
{∫ ∞

0

k[1 + M(kh)] cos(kx)J0(kt) dk

}
dt = 1, (4.1.92)

or ∫ a

0

h(t)
{∫ ∞

0

k cos(kx)J0(kt) dk

}
dt

+
∫ a

0

h(t)
{∫ ∞

0

kM(kh) cos(kx)J0(kt) dk

}
dt = 1. (4.1.93)

Integrating Equation 4.1.93 with respect to x,∫ a

0

h(t)
{∫ ∞

0

sin(kx)J0(kt) dk

}
dt

+
∫ a

0

h(t)
{∫ ∞

0

M(kh) sin(kx)J0(kt) dk

}
dt = x. (4.1.94)

Applying Equation 1.4.13,∫ x

0

h(t)√
x2 − t2

dt+
∫ a

0

h(τ)
{∫ ∞

0

M(kh) sin(kx)J0(kτ) dk

}
dτ = x. (4.1.95)

From Equation 1.2.13 and Equation 1.2.14, we have that

h(t) =
2
π

d

dt

[∫ t

0

x2

√
t2 − x2

dx

]
(4.1.96)

− 2
π

∫ a

0

h(τ)
{∫ ∞

0

M(kh)J0(kτ)
d

dt

[∫ t

0

x sin(kx)√
t2 − x2

dx

]
dk

}
dτ.

11 Gradshteyn and Ryzhik, op. cit., Formula 6.671.8.
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Now, from integral tables,12∫ t

0

x sin(kx)√
t2 − x2

dx =
πt

2
J1(kt) (4.1.97)

and ∫ t

0

x2

√
t2 − x2

dx =
πt2

4
. (4.1.98)

Substituting Equation 4.1.97 and Equation 4.1.98 into Equation 4.1.96 and
taking the derivatives, we finally have

h(t) + t

∫ a

0

h(τ)
{∫ ∞

0

kM(kh)J0(kτ)J0(kt) dk

}
dτ = t. (4.1.99)

Therefore, the numerical solution of Equation 4.1.99 yields h(t). This gives
A(k) from Equation 4.1.90. Finally, the solution u(x, y) follows from Equation
4.1.87.

• Example 4.1.4

For our fourth example, let us solve Laplace’s equation13

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h, (4.1.100)

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < h, (4.1.101)

{
uy(x, 0) = −p(x), |x| < a,

u(x, 0) = 0, |x| > a, (4.1.102)

and
uy(x, h) = 0, −∞ < x < ∞, (4.1.103)

where p(x) is an even function.
We begin by applying Fourier cosine transforms to solve Equation 4.1.100.

This yields the solution

u(x, y) =
2
π

∫ ∞

0

A(k)
e−ky + eky−2kh

1 + e−2kh
cos(kx) dk. (4.1.104)

12 Ibid., Formula 3.753.5.

13 See Singh, Moodie, and Haddow, op. cit.
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Equation 4.1.104 satisfies not only Equation 4.1.100, but also Equation 4.1.101
and Equation 4.1.103. Substituting Equation 4.1.104 into Equation 4.1.102,
we obtain

2
π

∫ ∞

0

A(k) cos(kx) dk = 0, |x| > a, (4.1.105)

and

2
π

∫ ∞

0

k tanh(kh)A(k) cos(kx) dk = p(x), |x| < a. (4.1.106)

To solve this set of dual integral equations, we introduce

kA(k) =
π

2

∫ a

0

g(τ) sin(kτ) dτ. (4.1.107)

Substituting Equation 4.1.107 into Equation 4.1.105, we find that

2
π

∫ ∞

0

A(k) cos(kx) dk =
∫ ∞

0

[∫ a

0

g(τ) sin(kτ) dτ

]
cos(kx)

dk

k
(4.1.108)

=
∫ a

0

g(τ)
[∫ ∞

0

sin(kτ) cos(kx)
dk

k

]
dτ = 0,(4.1.109)

where the integral14 within the square brackets vanishes since |x| > a and
0 ≤ τ ≤ a. Thus, Equation 4.1.107 satisfies Equation 4.1.105 identically.

We now turn our attention to Equation 4.1.106. Substituting Equation
4.1.107 into Equation 4.1.106, we have that∫ ∞

0

tanh(kh)
[∫ a

0

g(τ) sin(kτ) dτ

]
cos(kx) dk = p(x), (4.1.110)

or

d

dx

{∫ a

0

g(τ)
[∫ ∞

0

tanh(kh) sin(kτ) sin(kx)
dk

k

]
dτ

}
= p(x), 0 < x < a,

(4.1.111)
after we interchange the order of integration in Equation 4.1.110. Following
Equation 4.1.59 through Equation 4.1.61, we can show that∫ ∞

0

tanh(kh) sin(kτ) sin(kx)
dk

k
=

1
2

ln
∣∣∣∣sinh(cx) + sinh(cτ)
sinh(cx) − sinh(cτ)

∣∣∣∣ , (4.1.112)

where c = π/(2h). Therefore, substituting Equation 4.1.112 into Equation
4.1.111 and integrating,∫ a

0

g(τ) ln
∣∣∣∣ sinh(cx) + sinh(cτ)
sinh(cx) − sinh(cτ)

∣∣∣∣ dτ = 2
∫ x

0

p(ξ) dξ = F (x), 0 < x < a.

(4.1.113)

14 Gradshteyn and Ryzhik, op. cit., Formula 3.741.2.
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Figure 4.1.5: The solution to Equation 4.1.100 subject to the mixed boundary conditions
given by Equation 4.1.101, Equation 4.1.102, and Equation 4.1.103 when a = 1 and h = 2.

Using the results from Example 1.2.3, the solution to the integral equation
Equation 4.1.113 is

g(τ) = − c sinh(2cτ)

π2

√
sinh2(ca) − sinh2(cτ)

∫ a

0

F ′(x)
√

sinh2(ca) − sinh2(cx)

sinh2(cx) − sinh2(cτ)
dx

+
2cF (0) cosh(cτ)

π2 sinh(cτ)
√

sinh2(ca) − sinh2(cτ)
, 0 < τ < a. (4.1.114)

Because F ′(x) = 2p(x) with F (0) = 0, Equation 4.1.114 simplifies to

g(τ) = − 2c sinh(2cτ)

π2

√
sinh2(ca) − sinh2(cτ)

∫ a

0

p(x)
√

sinh2(ca) − sinh2(cx)

sinh2(cx) − sinh2(cτ)
dx,

(4.1.115)
if 0 < τ < a. Figure 4.1.5 illustrates the special solution when a = 1, h = 2,
and p(x) = p0, a constant.

• Example 4.1.5

Let us solve Laplace’s equation15

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h, (4.1.116)

15 See Yang, F., 1997: Solution of a dual integral equation for crack and indentation
problems. Theoret. Appl. Fract. Mech., 26, 211–217.
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with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < h, (4.1.117)

{
u(x, 0) = sgn(x), |x| < 1,
uy(x, 0) = 0, |x| > 1, (4.1.118)

and
u(x, h) = 0, −∞ < x < ∞. (4.1.119)

We begin by applying Fourier sine transforms to solve Equation 4.1.116.
This yields the solution

u(x, y) =
2
π

∫ ∞

0

A(k)
sinh[k(y − h)]

cosh(kh)
sin(kx) dk. (4.1.120)

Equation 4.1.120 satisfies not only Equation 4.1.116, but also Equation 4.1.117
and Equation 4.1.118. Substituting Equation 4.1.120 into Equation 4.1.118,
we obtain

2
π

∫ ∞

0

A(k) tanh(kh) sin(kx) dk = −1, |x| < 1, (4.1.121)

and ∫ ∞

0

kA(k) sin(kx) dk = 0, |x| > 1. (4.1.122)

To solve this set of dual integral equations, we introduce

kA(k) =
∫ 1

0

g(t) sin(kt) dt. (4.1.123)

Substituting Equation 4.1.123 into Equation 4.1.122, we find that∫ ∞

0

kA(k) sin(kx) dk = − d

dx

[∫ ∞

0

A(k) cos(kx) dk

]
(4.1.124)

= −
∫ 1

0

g(t)
d

dx

[∫ ∞

0

sin(kt) cos(kt)
dk

k

]
dt (4.1.125)

= 0, (4.1.126)

where the integral16 within the square brackets vanishes since |x| > 1 and
0 ≤ t ≤ 1. Thus, Equation 4.1.123 satisfies Equation 4.1.122 identically.

16 Gradshteyn and Ryzhik, op. cit., Formula 3.741.2.
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Figure 4.1.6: The solution to Equation 4.1.116 subject to the mixed boundary conditions
given by Equation 4.1.117 through Equation 4.1.119 when h = 1.

We now turn our attention to Equation 4.1.121. Substituting Equation
4.1.123 into Equation 4.1.121, we have that∫ 1

0

g(t)
[∫ ∞

0

tanh(kh) sin(kx) sin(kt)
dk

k

]
dt = −π

2
, (4.1.127)

or ∫ 1

0

g(t) ln
∣∣∣∣ sinh[πt/(2h)] + sinh[πx/(2h)]
sinh[πt/(2h)] − sinh[πx/(2h)]

∣∣∣∣ dt = −π. (4.1.128)

Upon introducing

ξ = sinh[πt/(2h)]/ sinh[π/(2h)], η = sinh[πx/(2h)]/ sinh[π/(2h)],
(4.1.129)

and

F (ξ) = g

{
2h

π
arcsinh

[
ξ sinh

( π

2h

)]} sinh[π/(2h)]√
1 + ξ2 sinh2[π/(2h)]

, (4.1.130)

Equation 4.1.128 becomes∫ 1

0

F (ξ) ln
∣∣∣∣ξ + η

ξ − η

∣∣∣∣ dξ = − π

2h
. (4.1.131)

Applying the results from Equation 1.2.31 through Equation 1.2.33,

g(t) = − 2 sinh[π/(2h)] cosh[πt/(2h)]
h
√

cosh(πt/h) − 1
√

cosh(π/h) − cosh(πt/h)
(4.1.132)

after back substitution. Figure 4.1.6 illustrates the special case when h = 1.
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• Example 4.1.6

Our next example involves solving Laplace’s equation17

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, −h < y < ∞, (4.1.133)

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, −h < y < ∞, (4.1.134)

u(x,−h) = 0, −∞ < x < ∞, (4.1.135)

uy(x, 0−) = uy(x, 0+), −∞ < x < ∞, (4.1.136){
uy(x, 0−) = uy(x, 0+) = −q(x), |x| < 1,

u(x, 0−) = u(x, 0+), |x| > 1,
(4.1.137)

and
lim

y→∞u(x, y) → 0, −∞ < x < ∞, (4.1.138)

where q(x) is an even function.
Because q(x) is an even function, this suggests that we should apply

Fourier cosine transforms. Therefore, the solution to Equation 4.1.133 through
Equation 4.1.136 and Equation 4.1.138 is

u(x, y) =
2
π

∫ ∞

0

A(k)
sinh[k(y + h)]

cosh(kh)
cos(kx) dk, −h < y < 0, (4.1.139)

and

u(x, y) = − 2
π

∫ ∞

0

A(k)e−ky cos(kx) dk, 0 < y < ∞. (4.1.140)

Substituting Equation 4.1.139 and Equation 4.1.140 into Equation 4.1.137,
we obtain ∫ ∞

0

C(k) cos(kx) dk = 0, |x| > 1, (4.1.141)

and ∫ ∞

0

kC(k)
(
1 + e−2kh

)
cos(kx) dk = −πq(x), |x| < 1, (4.1.142)

where C(k) = A(k)[1 + tanh(kh)].

17 Suggested by a problem solved by Kit, G. S., and M. V. Khai, 1973: Thermoelastic

state of a half-plane weakened by a rectilinear slit. Mech. Solids, 8(5), 36–41.
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To solve this set of dual integral equations, we introduce

C(k) =
∫ 1

0

h′(τ)J0(kτ) dτ, (4.1.143)

where the prime denotes differentiation with respect to the argument of h(τ).
Substituting Equation 4.1.143 into Equation 4.1.141, we find that∫ ∞

0

C(k) cos(kx) dk =
∫ ∞

0

[∫ 1

0

h′(τ)J0(kτ) dτ

]
cos(kx) dk (4.1.144)

=
∫ 1

0

h′(τ)
[∫ ∞

0

cos(kx)J0(kτ) dk

]
dτ = 0, (4.1.145)

where the integral inside the square brackets vanishes by Equation 1.4.14
since |x| > 1 and 0 ≤ τ ≤ 1. Thus, Equation 4.1.143 satisfies Equation
4.1.141 identically.

We now turn our attention to Equation 4.1.142. Substituting Equation
4.1.143 into Equation 4.1.142, we have, after integrating with respect to x,
that∫ ∞

0

[∫ 1

0

h′(τ)J0(kτ) dτ

]
sin(kx) dk

+
∫ ∞

0

[∫ 1

0

h′(τ)J0(kτ) dτ

]
e−2kh sin(kx) dk = −πp(x), (4.1.146)

where p(x) =
∫ x

0 q(η) dη. Now,∫ ∞

0

[∫ 1

0

h′(τ)J0(kτ) dτ

]
sin(kx) dk

=
∫ 1

0

h′(τ)
[∫ ∞

0

sin(kx)J0(kτ) dτ

]
sin(kx) dτ (4.1.147)

=
∫ x

0

h′(τ)√
x2 − τ2

dτ (4.1.148)

after using Equation 1.4.13. Therefore, Equation 4.1.146 becomes∫ x

0

h′(τ)√
x2 − τ2

dτ = −πp(x) −
∫ 1

0

h′(τ)
[∫ ∞

0

e−2kh sin(kx)J0(kτ) dk

]
dτ.

(4.1.149)
Comparing Equation 4.1.149 with Equation 1.2.13, we have from Equation
1.2.14 that

h(x) = −2
∫ x

0

τ p(τ)√
x2 − τ2

dτ (4.1.150)

− 2
π

∫ 1

0

h′(t)
{∫ ∞

0

e−2khJ0(kt)
[∫ x

0

τ sin(kτ)√
x2 − τ2

dτ

]
dk

}
dt
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Figure 4.1.7: The solution to Equation 4.1.133 subject to the mixed boundary conditions
given by Equation 4.1.134 through Equation 4.1.138 when q(x) = h = l.

after integrating with respect to x. Using integral tables,18 Equation 4.1.150
simplifies to

h(x) = −2
∫ x

0

τ p(τ)√
x2 − τ2

dτ − x

∫ 1

0

h′(τ)
[∫ ∞

0

e−2khJ0(kτ)J1(kx) dk

]
dτ.

(4.1.151)
To compute the potential, we first find h′(t) via Equation 4.1.151. Then
C(k) or A(k) follows from 4.1.143. Finally, we employ Equation 4.1.139 and
Equation 4.1.140. Figure 4.1.7 illustrates this solution when q(x) = h = 1.

• Example 4.1.7

In this problem we find the solution to Laplace’s equation19 in the upper
half-plane z > 0 into which we insert a semi-circular cylinder of radius a that
has a potential of 1. See Figure 4.1.8. Mathematically this problem is

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0,

{
0 ≤ r < a, 0 < z < b,

a < r < ∞, b < z < ∞,
(4.1.152)

with the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.1.153)

18 Gradshteyn and Ryzhik, op. cit., Formula 3.771.10.

19 Adapted from Shapiro, Yu. A., 1962: Electrostatic fields of an immersion electron
lens consisting of two semi-infinite cylinders. Sov. Tech. Phys., 7, 501–506.
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(−a,b) (a,b)

r

z

u(r,0) = 0

u(a,z) = 1u(−a,z) = 1

Figure 4.1.8: The geometry for Example 4.1.7. It consists of the upper half-plane z > 0
into which we insert a semi-circular cylinder of radius a that has a potential of 1.

lim
z→∞ |u(r, z)| < ∞, a ≤ r < ∞, (4.1.154)

u(r, 0) = 0, 0 ≤ r < ∞, (4.1.155)

and {
u(a+, z) = u(a−, z), 0 < z < b,

u(a, z) = 1, b < z < ∞.
(4.1.156)

The solution to Equation 4.1.152 through Equation 4.1.155 is

u(r, z) =
π

2

∫ ∞

0

cos(kb)I0(kr)
(π2/4 − k2b2)I0(ka)

sin(kz)
dk

k

−
∫ ∞

0

A(k)
I0(kr)
I0(ka)

sin(kz) dk (4.1.157)

for 0 < r < a; and

u(r, z) =
π

2

∫ ∞

0

cos(kb)K0(kr)
(π2/4 − k2b2)K0(ka)

sin(kz)
dk

k

−
∫ ∞

0

A(k)
K0(kr)
K0(ka)

sin(kz) dk (4.1.158)

for a < r < ∞. The first integrals in Equation 4.1.157 and Equation 4.1.158
satisfy the boundary condition u(a, z) = 1 if z > b, u(a, z) = sin[πz/(2b)]
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if z < b, limr→∞ u(r, z) → 0, and |u(r, z)| < ∞ as z → ∞. Thus the first
integrals are particular solutions to our problem while the second integrals
are homogeneous solutions.

Upon substituting Equation 4.1.157 and Equation 4.1.158 into Equation
4.1.156, we obtain the dual integral equations∫ ∞

0

A(k)
g(k)

[1 − cos(kz)]
dk

k
= Ψ(z), 0 ≤ z < b, (4.1.159)

and ∫ ∞

0

A(k) sin(kz) dk = 0, b < z < ∞, (4.1.160)

where

Ψ(z) =
π

2

∫ ∞

0

[1 − cos(kz)] cos(kb)
g(k) (π2/4 − k2b2)

dk

k2
, (4.1.161)

and g(k) = 2aI0(ka)K0(ka). To solve these dual integral equations, we intro-
duce a function ψ(t) such that

A(k) =
∫ b

0

t ψ(t)J1(kt) dt. (4.1.162)

If we substitute Equation 4.1.162 into Equation 4.1.160, interchange the order
of integration, and then use integral tables,20 we can show that this choice for
A(k) satisfies Equation 4.1.160 identically.

Upon substituting Equation 4.1.162 into Equation 4.1.159,∫ ∞

0

1 − cos(kz)
g(k)

[∫ ∞

0

ψ(t)J1(kt) t dt

]
dk

k
= Ψ(z). (4.1.163)

Setting

h(k) = 1 − 1
k g(k)

, (4.1.164)

Equation 4.1.163 can be rewritten as

∫ ∞

0

[1 − cos(kz)]

[∫ b

0

ψ(t)J1(kt) t dt

]
dk (4.1.165)

−
∫ ∞

0

h(k)[1 − cos(kz)]

[∫ b

0

ψ(t)J1(kt) t dt

]
dk

=
π

2

∫ ∞

0

[1 − cos(kz)] cos(kb)
g(k) (π2/4 − k2b2)

dk

k2
.

20 Gradshteyn and Ryzhik, op. cit., Formula 6.671.1.
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If we now interchange the order of integration in Equation 4.1.165 and use
integral tables,21

1
z

∫ z

0

{
t2√

z2 − t2
[
z +

√
z2 − t2

] + 1

}
ψ(t) dt

−
∫ b

0

t ψ(t)
[∫ ∞

0

1 − cos(kz)
kz

h(k) k J1(kt) dk

]
dt

=
π

2

∫ ∞

0

[1 − cos(kz)] cos(kb)
k2z g(k)(π2/4 − k2b2)

dk. (4.1.166)

Because22

1 − cos(x)
x

=
∫ π/2

0

J1[x sin(θ)] dθ, (4.1.167)

∫ π/2

0

ψ[z sin(θ)] dθ (4.1.168)

−
∫ π/2

0

∫ b

0

t ψ(t)
[∫ ∞

0

h(k)J1[kz sin(θ)]J1(kt) k dk

]
dt dθ

=
π

2

∫ π/2

0

∫ ∞

0

J1[kz sin(θ)]
cos(kb)

g(k)(π2/4 − k2b2)
dk

k
dθ.

Equation 4.1.168 is satisfied identically if ψ(t) satisfies the integral equation

ψ(x) −
∫ b

0

ψ(t)K(x, t) dt = G(x), (4.1.169)

where

K(x, t) = t

∫ ∞

0

[
1 − 1

k g(k)

]
J1(kx)J1(kt) k dk, (4.1.170)

and

G(x) =
π

2

∫ ∞

0

cos(kb)J1(kx)
g(k)(π2/4 − k2b2)

dk

k
. (4.1.171)

Figure 4.1.9 illustrates the solution when a = b = 1.

21 Ibid., Formula 6.671.2.

22 Ibid., Formula 6.519.2 with ν = 1
2

and z = x/2.
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Figure 4.1.9: The solution to the mixed boundary value problem governed by Equation
4.1.152 through Equation 4.1.156.

• Example 4.1.8

Consider the problem of solving Laplace’s equation23 over the quarter
plane

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x, y < ∞, (4.1.172)

with the boundary conditions

lim
x→∞u(x, y) → 0, 0 < y < ∞, (4.1.173)

lim
y→∞u(x, y) → 0, 0 < x < ∞, (4.1.174)

{
u(x, 0) = f(x), 0 ≤ x < 1,
uy(x, 0) = 0, 1 < x < ∞,

(4.1.175)

and {
u(0, y) = f(y), 0 ≤ y < 1,
ux(0, y) = 0, 1 < y < ∞.

(4.1.176)

23 Taken with permission from Gupta, O. P., and S. K. Gupta, 1975: Mixed boundary
value problems in electrostatics. Z. Angew. Math. Mech., 55, 715–720.
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From the form of the boundary conditions along x = 0 and y = 0,
we anticipate that we should use Fourier cosine transforms. Therefore, the
solution to Equation 4.1.172 through Equation 4.1.174 is

u(x, y) =
∫ ∞

0

A(k)e−ky cos(kx) dk +
∫ ∞

0

A(k)e−kx cos(ky) dk. (4.1.177)

Substituting Equation 4.1.177 into Equation 4.1.175, we obtain the dual in-
tegral equations∫ ∞

0

A(k) cos(kx) dk +
∫ ∞

0

A(k)e−kx dk = f(x), 0 ≤ x < 1, (4.1.178)

and ∫ ∞

0

k A(k) cos(kx) dk = 0, 1 < x < ∞. (4.1.179)

To solve Equation 4.1.178 and Equation 4.1.179, we introduce

A(k) = k

∫ 1

0

t h(t)J0(kt) dt = h(1)J1(k) −
∫ 1

0

t h′(t)J1(kt) dt. (4.1.180)

Turning to Equation 4.1.179 first, we have that∫ ∞

0

k A(k) cos(kx) dk = h(1)
∫ ∞

0

k J1(k) cos(kx) dk

−
∫ 1

0

t h′(t)
[∫ ∞

0

k J1(kt) cos(kx) dk

]
dt (4.1.181)

= 0. (4.1.182)

This follows by noting24

∫ ∞

0

kJ1(kt) cos(kx) dk =
d

dx

[∫ ∞

0

J1(kt) sin(kx) dk

]
= 0 (4.1.183)

if 0 ≤ t ≤ 1 < x < ∞. On the other hand, from Equation 4.1.178,

∫ 1

0

t h(t)
[∫ ∞

0

k cos(kx)J0(kt) dk

]
dt

+
∫ 1

0

t h(t)
[∫ ∞

0

k e−kxJ0(kt) dk

]
dt = f(x), (4.1.184)

24 Gradshteyn and Ryzhik, op. cit., Formula 6.693.1.
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Figure 4.1.10: The solution to Equation 4.1.172 subject to the mixed boundary conditions
given by Equation 4.1.173 through Equation 4.1.176.

or

∂

∂x

{∫ 1

0

t h(t)
[∫ ∞

0

sin(kx)J0(kt) dk

]
dt

}
+
∫ 1

0

t h(t)
[∫ ∞

0

k e−kxJ0(kt) dk

]
dt = f(x). (4.1.185)

Using integral tables,25 Equation 4.1.185 simplifies to

∂

∂x

[∫ x

0

t h(t)√
x2 − t2

dt

]
+ x

∫ 1

0

t h(t)
(x2 + t2)3/2

dt = f(x), 0 ≤ x < 1. (4.1.186)

Using Equation 1.2.13 and Equation 1.2.14, we can solve for h(t) and find
that

h(t) +
∫ 1

0

K(t, τ)h(τ) dτ =
2
π

∫ t

0

f(x)√
t2 − x2

dx, (4.1.187)

where

K(t, τ) =
2τ

π

∫ t

0

x√
t2 − x2 (x2 + τ2)3/2

dx =
2t

π(t2 + τ2)
. (4.1.188)

In the case when f(x) = 1, Equation 4.1.187 simplifies to

h(t) +
∫ 1

0

K(t, τ)h(τ) dτ = 1. (4.1.189)

Figure 4.1.10 illustrates the solution.

25 Ibid., Formula 6.671.7 and Formula 6.621.4.
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Problems

1. Solve Laplace’s equation26

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞,

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞,

lim
y→∞u(x, y) → 0, −∞ < x < ∞,

and {
uy(x, 0) = 1, 0 ≤ |x| < 1,
u(x, 0) = 0, 1 < |x| < ∞.

(1)

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(x, y) =
∫ ∞

0

A(k)e−ky cos(kx) dk.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations ∫ ∞

0

kA(k) cos(kx) dk = −π

2
, 0 ≤ |x| < 1,

and ∫ ∞

0

A(k) cos(kx) dk = 0, 1 < |x| < ∞.

Step 3 : Using Equation 1.4.14, show that

A(k) = −π

2

∫ 1

0

tJ0(kt) dt = −πJ1(k)
2k

satisfies both integral equations given in Step 2.

26 See Yang, F.-Q., and J. C. M. Li, 1995: Impression and diffusion creep of anisotropic
media. J. Appl. Phys., 77, 110–117. See also Shindo, Y., H. Tamura, and Y. Atobe, 1990:
Transient singular stresses of a finite crack in an elastic conductor under electromagnetic
force (in Japanese). Nihon Kikai Gakkai Rombunshu (Trans. Japan Soc. Mech. Engrs.),
Ser. A, 56, 278–282.
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Problem 1

Step 4 : Show that the solution to this problem is

u(x, y) = −
∫ ∞

0

J1(k)e−ky cos(kx)
dk

k
.

In particular, verify that u(x, 0) = −√
1 − x2 if |x| < 1. The figure labeled

Problem 1 illustrates the solution u(x, y).

2. Solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞,

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞,

lim
y→∞u(x, y) → 0, −∞ < x < ∞,

and {
u(x, 0) = x, 0 ≤ |x| < 1,
uy(x, 0) = 0, 1 < |x| < ∞.

(1)

Step 1 : Using separation of variables, show that the general solution to the
problem is

u(x, y) =
∫ ∞

0

A(k)e−ky sin(kx)
k

dk.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations ∫ ∞

0

A(k)
k

sin(kx) dk = x, 0 ≤ |x| < 1,
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Problem 2

and ∫ ∞

0

A(k) sin(kx) dk = 0, 1 < |x| < ∞.

Step 3 : Fredricks27 showed that dual integral equations of the form∫ ∞

0

A(k)
k

sin(kx) dk = f(x), 0 ≤ x < a,

and ∫ ∞

0

A(k) sin(kx) dk = 0, a < x < ∞,

have the solution

A(k) = 2
∞∑

n=1

∞∑
m=0

(2m + 1)BnJ2m+1(nπ)J2m+1(ka),

where Bn is given by the Fourier sine series

f(x) =
∞∑

n=1

Bn sin(nπx/a), 0 ≤ x < a.

Clearly f(0) = 0. Use this result to show that

A(k) =
4
π

∞∑
n=1

∞∑
m=0

(−1)n+1

n
(2m + 1)BnJ2m+1(nπ)J2m+1(k).

The figure labeled Problem 2 illustrates this solution u(x, y).

27 Fredricks, R. W., 1958: Solution of a pair of integral equations from elastostatics.
Proc. Natl. Acad. Sci., 44, 309–312. See also Sneddon, I. N., 1962: Dual integral
equations with trigonometrical kernels. Proc. Glasgow Math. Assoc., 5, 147–152.
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3. Following Example 4.1.3, solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < ∞, 0 < y < h,

with the boundary conditions

ux(0, y) = 0, lim
x→∞u(x, y) → 0, 0 < y < h,{

uy(x, 0) = −g(x), 0 < x < a,
u(x, 0) = 0, a < x < ∞,

(1)

and
u(x, h) = 0, 0 < x < ∞.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(x, y) =
2
π

∫ ∞

0

A(k) sinh[k(h − y)] cos(kx) dk.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations

2
π

∫ ∞

0

kA(k) [1 + M(kh)] sinh(kh) cos(kx) dk = g(x), 0 < x < a,

and
2
π

∫ ∞

0

A(k) sinh(kh) cos(kx) dk = 0, a < x < ∞,

where M(kh) = e−kh/ sinh(kh).

Step 3 : Setting

sinh(kh)A(k) =
∫ a

0

τ h(τ)J0(kτ) dτ,

show that the second integral equation in Step 2 is identically satisfied.

Step 4 : Show that the first integral equation in Step 2 leads to the integral
equation

h(t) +
∫ a

0

τ h(τ)
[∫ ∞

0

k M(kh)J0(kτ)J0(kt) dk

]
dτ =

∫ t

0

g(x)√
t2 − x2

dx

with 0 < t < a.

Step 5 : Simplify your results in the case g(x) = 1 and show that they are
identical with the results given in Example 4.1.3 by Equation 4.1.83 through
Equation 4.1.86.
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4. Following Example 4.1.2, solve Laplace’s equation28

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h,

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < h,

{
uy(x, 0) = −p(x)/h, |x| < a,

u(x, 0) = 0, |x| > a, (1)

and
u(x, h) = 0, −∞ < x < ∞.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(x, y) =
2
π

∫ ∞

0

A(k)
e−ky − eky−2kh

1 − e−2kh
cos(kx) dk.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations

2
π

∫ ∞

0

k coth(kh)A(k) cos(kx) dk =
p(x)
h

, |x| < a,

and
2
π

∫ ∞

0

A(k) cos(kx) dk = 0, |x| > a.

Step 3 : Setting

kA(k) =
π

2

∫ a

0

g(τ) sin(kτ) dτ,

show that the second integral equation in Step 2 is identically satisfied.

Step 4 : Show that the first integral equation in Step 2 can be rewritten

d

dx

{∫ a

0

g(τ)
[∫ ∞

0

coth(kh) sin(kτ) sin(kx)
dk

k

]
dτ

}
=

p(x)
h

, 0 < x < a.

28 Suggested from Singh, B. M., T. B. Moodie, and J. B. Haddow, 1981: Closed-form
solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech.,
38, 99–109.
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Problem 4

Step 5 : Using the relationship that∫ ∞

0

coth(kh) sin(kτ) sin(kx)
dk

k
=

1
2

ln
∣∣∣∣tanh(cx) + tanh(cτ)
tanh(cx) − tanh(cτ)

∣∣∣∣ ,
where c = π/(2h), show that Step 4 can be written∫ a

0

g(τ) ln
∣∣∣∣ tanh(cx) + tanh(cτ)
tanh(cx) − tanh(cτ)

∣∣∣∣ dτ =
2
h

∫ x

0

p(ξ) dξ = F (x), 0 < x < a.

Step 6 : By using the results from Example 1.2.3, show that the solution to
the integral equation in Step 5 is

g(τ) = − 2c tanh(cτ) sech2(cτ)

π2

√
tanh2(ca) − tanh2(cτ)

∫ a

0

F ′(x)
√

tanh2(ca) − tanh2(cx)

tanh2(cx) − tanh2(cτ)
dx

+
4cF (0) tanh(ca)

π2 sinh(2cτ)
√

tanh2(ca) − tanh2(cτ)
, 0 < τ < a.

Step 7 : Because F ′(x) = 2p(x)/h with F (0) = 0, show that Step 6 simplifies
to

g(τ) = − 4c tanh(cτ) sech2(cτ)

π2h
√

tanh2(ca) − tanh2(cτ)

∫ a

0

p(x)
√

tanh2(ca) − tanh2(cx)

tanh2(cx) − tanh2(cτ)
dx,

if 0 < τ < a.

Step 8 : For the special case p(x) = p0, a constant, show that

g(τ) =
2p0 sinh(cτ)

πh
√

sinh2(ca) − sinh2(cτ)
, 0 < τ < a.

The figure entitled Problem 4 illustrates this special solution when a = 1 and
h = 2.
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4.2 TRIPLE FOURIER INTEGRALS

In the previous section we considered the case where the mixed boundary
conditions led to two integral equations that are in the form of a Fourier inte-
gral. In the present section we take the next step and examine the situation
where the mixed boundary condition contains different boundary conditions
along three segments.

• Example 4.2.1

For our first example, let us solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞, (4.2.1)

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y, (4.2.2)

lim
y→∞u(x, y) → 0, −∞ < x < ∞, (4.2.3)

u(x, 0) =
{−1, −b < x < −a,

1, a < x < b,
(4.2.4)

and
uy(x, 0) = 0, 0 < |x| < a, b < |x| < ∞. (4.2.5)

The interesting aspect of this problem is the boundary condition along y = 0.
For a portion of the boundary (−b < x < −a and a < x < b), it consists of a
Dirichlet condition; otherwise, it is a Neumann condition.

If we employ separation of variables or transform methods, the most
general solution is

u(x, y) =
∫ ∞

0

A(k)
k

e−ky sin(kx) dk. (4.2.6)

Substituting Equation 4.2.6 into the boundary conditions given by Equation
4.2.4 and Equation 4.2.5, we obtain the following set of integral equations:∫ ∞

0

A(k) sin(kx) dk = 0, 0 ≤ x < a, (4.2.7)

∫ ∞

0

A(k)
k

sin(kx) dk = 1, a < x < b, (4.2.8)

and ∫ ∞

0

A(k) sin(kx) dk = 0, b < x < ∞. (4.2.9)
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We must now solve for A(k) which appears in a set of integral equations.
Tranter29 showed that triple integral equations of the form given by Equation
4.2.7 through Equation 4.2.9 have the solution

A(k) = 2
∞∑

n=1

(−1)n−1AnJ2n−1(bk), (4.2.10)

where the constants An are the solution of the dual series relationship

∞∑
n=1

(−1)n−1An sin
[(

n − 1
2

)
ϕ
]

= 0, 0 ≤ ϕ < γ, (4.2.11)

∞∑
n=1

(−1)n−1 An

n − 1
2

sin
[(

n − 1
2

)
ϕ
]

= 1, γ < ϕ ≤ π, (4.2.12)

and γ is defined by a = b sin(γ/2), 0 < γ ≤ π. If we now introduce the change
of variables θ = π − ϕ and c = π − γ, we find that An is the solution of the
following pair of dual series:

∞∑
n=1

An

n − 1
2

cos
[(

n − 1
2

)
θ
]

= 1, 0 < θ < c, (4.2.13)

and ∞∑
n=1

An cos
[(

n − 1
2

)
θ
]

= 0, c < θ ≤ π. (4.2.14)

Consequently, we have reduced three integral equations to two dual trigono-
metric series. Tranter30 also analyzed dual trigonometric series of the form
given by Equation 4.2.13 and Equation 4.2.14 and showed that in our partic-
ular case

An =
Pn−1[cos(c)]

K(a/b)
, (4.2.15)

where K(·) denotes the complete elliptic integral and Pn(·) is the Legendre
polynomial of order n. Substituting Equation 4.2.15 into Equation 4.2.10 with
a = b cos(c/2), we obtain

A(k) =
2

K(a/b)

∞∑
n=1

(−1)n−1Pn−1[cos(c)]J2n−1(bk). (4.2.16)

29 Tranter, C. J., 1960: Some triple integral equations. Proc. Glasgow Math. Assoc., 4,
200–203. A more accessible analysis is given in Section 6.4 of Sneddon, I. N., 1966: Mixed
Boundary Value Problems in Potential Theory . Wiley, 283 pp.

30 Tranter, C. J., 1959: Dual trigonometric series. Proc. Glasgow Math. Assoc., 4,
49–57; Sneddon, op. cit., Section 5.4.5.
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Figure 4.2.1: The solution for Equation 4.2.1 through Equation 4.2.5 when a = 1 and
b = 2.

Figure 4.2.1 illustrates u(x, y) when a = 1 and b = 2.

• Example 4.2.2

Let us solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < π, (4.2.17)

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < π, (4.2.18)


uy(x, 0) = 0, |x| < a,

u(x, 0) = sgn(x), a < |x| < b,
uy(x, 0) = 0, b < |x|,

(4.2.19)

and
u(x, π) = 0, −∞ < x < ∞, (4.2.20)

where a < b.
A quick check shows that

u(x, y) =
∫ ∞

0

A(k)
sinh[k(π − y)]

sinh(kπ
sin(kx)

dk

k
(4.2.21)

satisfies Equation 4.2.17, Equation 4.2.18 and Equation 4.2.20. Upon substi-
tuting Equation 4.2.21 into Equation 4.2.19, we obtain three integral equa-
tions: ∫ ∞

0

A(k) coth(kπ) sin(kx) dk = 0, 0 < x < a, (4.2.22)
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∫ ∞

0

A(k) sin(kx)
dk

k
= 1, a < x < b, (4.2.23)

and ∫ ∞

0

A(k) coth(kπ) sin(kx) dk = 0, b < x < ∞. (4.2.24)

Singh31 showed that the solution to∫ ∞

0

A(k) coth(kπ) sin(kη) dk = F1(η), 0 < η < a, (4.2.25)

∫ ∞

0

A(k) sin(kη)
dk

k
= F2(η), a < η < b, (4.2.26)

and ∫ ∞

0

A(k) coth(kπ) sin(kη) dk = 0 b < η < ∞ (4.2.27)

is

coth(kπ)A(k) =
2
π

∫ a

0

F1(ξ) sin(kξ) dξ +
2
π

∫ b

a

g[cosh(ξ)] sin(kξ) cosh(ξ/2) dξ

+
2
π

∫ ∞

b

F3(ξ) sin(kξ) dξ, (4.2.28)

where

R(η) =
∫ b

a

g[cosh(ξ)] cosh(ξ/2) ln
∣∣∣∣ sinh(ξ/2) + sinh(η/2)
sinh(ξ/2) − sinh(η/2)

∣∣∣∣ dξ, a < η < b,

(4.2.29)
or

R(η) = πF2(η) −
∫ a

0

F1(ξ) ln
∣∣∣∣ sinh(ξ/2) + sinh(η/2)
sinh(ξ/2) − sinh(η/2)

∣∣∣∣ dξ

−
∫ ∞

b

F3(ξ) ln
∣∣∣∣ sinh(ξ/2) + sinh(η/2)
sinh(ξ/2) − sinh(η/2)

∣∣∣∣ dξ, (4.2.30)

and

g[cosh(η)] = − 2
π2

√
cosh(η) − cosh(a)
cosh(b) − cosh(η)

×
∫ b

a

√
cosh(b) − cosh(ξ)
cosh(ξ) − cosh(a)

R′(ξ) sinh(ξ/2)
cosh(ξ) − cosh(η)

dξ

+
C√

[cosh(η) − cosh(a)][cosh(b) − cosh(η)]
. (4.2.31)

31 Singh, B. M., 1973: On triple trigonometrical equations. Glasgow Math. J., 14,
174–178.
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Figure 4.2.2: The solution for Equation 4.2.17 through Equation 4.2.20 when a = 1 and
b = 2.

In the present case, F1(η) = F3(η) = 0 and F2(η) = 1. Therefore,

g[cosh(η)] =
C√

[cosh(η) − cosh(a)][cosh(b) − cosh(η)]
. (4.2.32)

From Equation 4.2.29 and Equation 4.2.30, we find that∫ b

a

g[cosh(ξ)] cosh(ξ/2) ln
∣∣∣∣ sinh(ξ/2) + sinh(η/2)
sinh(ξ/2) − sinh(η/2)

∣∣∣∣ dξ = π, a < η < b.

(4.2.33)
Substituting Equation 4.2.32 into Equation 4.2.33 and evaluating the integral,
we obtain

C =
sinh(b/2)

K[sinh(a/2)/ sinh(b/2)]
, (4.2.34)

where K(·) denotes the complete elliptic integral. We then introduce this
value of C into Equation 4.2.32 and find that

coth(kπ)A(k) =
2
π

∫ b

a

g[cosh(ξ)] sin(kξ) cosh(ξ/2) dξ. (4.2.35)

Finally, the potential u(x, y) follows from Equation 4.2.21. Figure 4.2.2 illus-
trates the present example.

• Example 4.2.3

A generalization32 of the previous example is

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < h, (4.2.36)

32 See Singh, B. M., and R. S. Dhaliwal, 1984: Closed form solutions to dynamic punch
problems by integral transform method. Z. Angew. Math. Mech., 64, 31–34.
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with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < h, (4.2.37)


uy(x, 0) = 0, |x| < a,
u(x, 0) = f(x), a < |x| < b,
uy(x, 0) = 0, b < |x|,

(4.2.38)

and
u(x, h) = 0, −∞ < x < ∞, (4.2.39)

where a < b.
A quick check shows that

u(x, y) =
2
π

∫ ∞

0

A(k)
e−ky − eky−2kh

1 + e−2kh
cos(kx) dk (4.2.40)

satisfies Equation 4.2.36, Equation 4.2.37 and Equation 4.2.39. Upon substi-
tuting Equation 4.2.40 into Equation 4.2.38, we obtain three integral equa-
tions:

2
π

∫ ∞

0

kA(k) cos(kx) dk = 0, 0 < x < a, (4.2.41)

2
π

∫ ∞

0

tanh(kh)A(k) cos(kx) dk = f(x), a < x < b, (4.2.42)

and
2
π

∫ ∞

0

kA(k) cos(kx) dk = 0, b < x < ∞. (4.2.43)

Let us introduce

2
π

∫ ∞

0

kA(k) cos(kx) dk = g(x) sinh(cx), a < x < b, (4.2.44)

where g(x) is an unknown function and c = π/(2h). Using Fourier’s inversion
theorem,

kA(k) =
∫ b

a

g(τ) sinh(cτ) cos(kτ) dτ. (4.2.45)

If we substitute Equation 4.2.45 into Equation 4.2.42, interchange the order
of integration in the resulting equation, and use∫ ∞

0

cos(kx) cos(kτ) tanh(kh)
dk

k
=

1
2

ln
∣∣∣∣cosh(cx) + cosh(cτ)
cosh(cx) − cosh(cτ)

∣∣∣∣ , (4.2.46)

we find that g(τ) is given by the integral equation∫ b

a

g(τ) sinh(cτ) ln
∣∣∣∣cosh(cx) + cosh(cτ)
cosh(cx) − cosh(cτ)

∣∣∣∣ dτ = πf(x), a < x < b.

(4.2.47)
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Figure 4.2.3: The solution to Equation 4.2.36 subject to the mixed boundary conditions
given by Equation 4.2.37, Equation 4.2.38, and Equation 4.2.39 when a = 1, b = 2, h = 2
and f(x) = f0.

Taking the derivative with respect to x of Equation 4.1.47, we find that∫ b

a

c g(τ) sinh(2cτ)
cosh(2cτ) − cosh(2cx)

dτ =
πf ′(x)

2 sinh(cx)
, a < x < b. (4.2.48)

The solution to Equation 4.1.48 is

g(τ) = − 4
π

√
cosh(2cτ) − cosh(2ca)
cosh(2cb) − cosh(2cτ)

×
∫ b

a

c cosh(cx)f ′(x)
cosh(2cx) − cosh(2cτ)

√
cosh(2cb) − cosh(2cx)
cosh(2cx) − cosh(2ca)

dx

+
B√

[cosh(2cτ) − cosh(2ca)][cosh(2cb) − cosh(2cτ)]
. (4.2.49)

The constant B is found by substituting Equation 4.2.49 into Equation 4.2.47
and solving for B. Figure 4.2.3 illustrates this special case when a = 1, b = 2,
h = 2 and f(x) = f0.

In a similar manner, we can solve Equation 4.2.36, Equation 4.2.37 and
Equation 4.2.39, plus the mixed boundary condition

uy(x, 0) = 0, |x| < a,
u(x, 0) = sgn(x)f(x), a < |x| < b,

uy(x, 0) = 0, b < |x|.
(4.2.50)
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In the present case, the solution is given by

u(x, y) =
2
π

∫ ∞

0

A(k)
e−ky − eky−2kh

1 + e−2kh
sin(kx) dk. (4.2.51)

Substituting Equation 4.2.51 into Equation 4.2.50,

2
π

∫ ∞

0

kA(k) sin(kx) dk = 0, 0 < x < a, b < x < ∞, (4.2.52)

and

2
π

∫ ∞

0

tanh(kh)A(k) sin(kx) dk = f(x), a < x < b. (4.2.53)

Let us introduce

2
π

∫ ∞

0

kA(k) sin(kx) dk = ϕ(x) cosh(cx), a < x < b, (4.2.54)

where ϕ(x) is an unknown function and c = π/(2h). Using Fourier’s inversion
theorem,

kA(k) =
∫ b

a

ϕ(τ) cosh(cτ) sin(kτ) dτ. (4.2.55)

If we substitute Equation 4.2.55 into Equation 4.2.53, interchange the order
of integration in the resulting equation, and simplifying, ϕ(τ) is given by the
integral equation∫ b

a

ϕ(τ) cosh(cτ) ln
∣∣∣∣ sinh(cτ) + sinh(cx)
sinh(cτ) − sinh(cx)

∣∣∣∣ dτ = πf(x), a < x < b.

(4.2.56)
Finally, taking the derivative with respect to x of Equation 4.2.56 and solving
the resulting equation, we find that

ϕ(τ) = − 4
π

√
cosh(2cτ) − cosh(2ca)
cosh(2cb) − cosh(2cτ)

×
∫ b

a

c sinh(cx)f ′(x)
cosh(2cx) − cosh(2ca)

√
cosh(2cb) − cosh(2cx)
cosh(2cx) − cosh(2ca)

dx

+
B√

[cosh(2cτ) − cosh(2ca)][cosh(2cb) − cosh(2cτ)]
. (4.2.57)

The constant B is found by substituting Equation 4.2.57 into Equation 4.2.56
and solving for B. Figure 4.2.4 illustrates this special case when a = 1, b = 2,
h = 2 and f(x) = f0.
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Figure 4.2.4: The solution to Equation 4.2.36 subject to the mixed boundary conditions
given by Equation 4.2.37, Equation 4.2.50, and Equation 4.2.39 when a = 1, b = 2, h = 2
and f(x) = f0.

4.3 DUAL FOURIER-BESSEL INTEGRALS

In the solution of mixed boundary value problems in domains where the
radial direction extends to infinity, Hankel transforms are commonly used to
solve these problems. Here we consider mixed boundary value problems that
lead to dual integral equations.

• Example 4.3.1

One of the simplest mixed boundary value problems involving Hankel
transforms is

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.3.1)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.2)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.3)

and {
u(r, 0) = f(r), 0 ≤ r < 1,
uz(r, 0) = 0, 1 ≤ r < ∞.

(4.3.4)
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Using Hankel transforms, the solution to Equation 4.3.1 is

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr)k dk. (4.3.5)

This solution satisfies not only Equation 4.3.1, but also Equation 4.3.2 and
Equation 4.3.3. Substituting Equation 4.3.5 into Equation 4.3.4, we obtain
the dual integral equations∫ ∞

0

A(k)k J0(kr) dk = f(r), 0 ≤ r < 1, (4.3.6)

and ∫ ∞

0

A(k)k2J0(kr) dk = 0, 1 < r < ∞. (4.3.7)

Equation 4.3.6 and Equation 4.3.7 are special cases of a class of dual in-
tegral equations studied by Busbridge. See Equation 2.4.28 through Equation
2.4.30. Noting that ν = 0 and α = −1 and associating his f(y) with k2A(k),
the solution to Equation 4.3.6 and Equation 4.3.7 is

kA(k) =
2
π

cos(k)
∫ 1

0

ηf(η)√
1 − η2

dη

+
2
π

∫ 1

0

η√
1 − η2

[∫ 1

0

f(ηξ)kξ sin(kξ) dξ

]
dη. (4.3.8)

For the special case, f(r) = C, Equation 4.3.8 simplifies to

kA(k) =
2C

π

sin(k)
k

, (4.3.9)

and

u(r, z) =
2C

π

∫ ∞

0

sin(k)
k

e−kzJ0(kr) dk. (4.3.10)

An alternative form33 of expressing the solution to Equation 4.3.1 through
Equation 4.3.4 follows by rewriting Equation 4.3.5 as

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk. (4.3.11)

Substituting Equation 4.3.11 into Equation 4.3.4, we have that∫ ∞

0

A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (4.3.12)

33 See also Section 5.8 in Green, A. E., and W. Zerna, 1992: Theoretical Elasticity .
Dover, 457 pp.; or Sneddon, op. cit., Section 7.5.
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and ∫ ∞

0

kA(k)J0(kr) dk = 0, 1 < r < ∞. (4.3.13)

Let us introduce

A(k) =
∫ 1

0

g(t) cos(kt) dt = g(1)
sin(k)

k
− 1

k

∫ 1

0

g′(t) sin(kt) dt. (4.3.14)

Then, ∫ ∞

0

kA(k)J0(kr) dk = g(1)
∫ ∞

0

sin(kt)J0(kr) dk

−
∫ 1

0

g′(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt. (4.3.15)

From Equation 1.4.13, these integrals vanish if r > 1 because 0 ≤ t ≤ 1.
Therefore, our choice for A(k) given by Equation 4.3.14 satisfies Equation
4.3.13 identically. On the other hand, Equation 4.3.12 gives∫ 1

0

g(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt = f(r). (4.3.16)

Using Equation 1.4.14, Equation 4.3.16 simplifies to∫ r

0

g(t)√
r2 − t2

dt = f(r). (4.3.17)

From Equation 1.2.13 and Equation 1.2.14, we obtain

g(t) =
2
π

d

dt

[∫ t

0

rf(r)√
t2 − r2

dr

]
. (4.3.18)

Next, substituting Equation 4.3.14 into Equation 4.3.11,

u(r, z) =
∫ ∞

0

[∫ 1

0

g(t) cos(kt) dt

]
e−kzJ0(kr) dk (4.3.19)

=
∫ 1

0

g(t)
[∫ ∞

0

e−kz cos(kz)J0(kr) dk

]
dt (4.3.20)

=
1
2

∫ 1

0

g(t)√
r2 + (z + it)2

dt +
1
2

∫ 1

0

g(t)√
r2 + (z − it)2

dt. (4.3.21)

Recently, Fu et al.34 showed that if f(r) is a smooth function in 0 ≤ r < 1,
so that it can be experienced as the Maclaurin series

u(r, 0) = h +
∞∑

n=1

f (n)(0)
n!

rn, (4.3.22)

34 Fu, G., T. Cao, and L. Cao, 2005: On the evaluation of the dopant concentration
of a three-dimensional steady-state constant-source diffusion problem. Mater. Lett., 59,
3018–3020.
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then

g(t) =
2√
π

[
h√
π

+
∞∑

n=1

f (n)(0)
n!

Γ(1 + n/2)
Γ(1/2 + n/2)

tn

]
. (4.3.23)

The solution of mixed boundary value problems in cylindrical coordinates
often yields dual Fourier-Bessel integral equations of the form∫ ∞

0

G(k)A(k)Jν (kr) dk = rν , 0 ≤ r < 1, (4.3.24)

and ∫ ∞

0

A(k)Jν(kr) dk = 0, 1 ≤ r < ∞, (4.3.25)

where G(k) is a known function of k. In 1956, Cooke35 proved that the
solution to Equation 4.3.24 and Equation 4.3.25 is

A(k) =
2βΓ(ν + 1)

Γ(ν − β + 1)
k1+β

∫ 1

0

f(t)tα+1Jν−β(kt) dt, (4.3.26)

where f(x) satisfies the integral equation

f(x) + x−α

∫ 1

0

tα+1f(t)
{∫ ∞

0

[
ak2βG(k) − 1

]
kJν−β(tk)Jν−β(xk) dk

}
dt

= axν−α−β . (4.3.27)

Here, a, α and β are at our disposal as long as 0 < �(β) < 1 and −1 <
�(ν − β). Cooke suggested that we choose a and β so that G(k) closely
approximates a−1k−2β . The following examples illustrate the use of Cooke’s
method for solving Equation 4.3.24 and Equation 4.3.25 when they arise in
mixed boundary value problems.

• Example 4.3.2

Let us solve36

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < a, (4.3.28)

35 Cooke, J. C., 1956: A solution of Tranter’s dual integral equations problem. Quart.

J. Mech. Appl. Math., 9, 103–110.

36 See Leong, M. S., S. C. Choo, and K. H. Tay, 1976: The resistance of an infinite
slab with a disc electrode as a mixed boundary value problem. Solid-State Electron., 19,
397–401. See also Belmont, B., and M. Shur, 1993: Spreading resistance of a round ohmic
contact. Solid-State Electron., 36, 143–146.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < a, (4.3.29)

{
u(r, 0) = 1, 0 ≤ r < 1,
uz(r, 0) = 0, 1 ≤ r < ∞,

(4.3.30)

and
u(r, a) = 0, 0 ≤ r < ∞. (4.3.31)

Using Hankel transforms, the solution to Equation 4.3.28 is

u(r, z) =
∫ ∞

0

A(k)
sinh[k(a − z)]
k cosh(ak)

J0(kr) dk. (4.3.32)

This solution satisfies not only Equation 4.3.28, but also Equation 4.3.29 and
Equation 4.3.31. Substituting Equation 4.3.32 into Equation 4.3.30, we obtain
the dual integral equations∫ ∞

0

A(k)
k

tanh(ka)J0(kr) dk = 1, 0 ≤ r < 1, (4.3.33)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞. (4.3.34)

Because we can rewrite Equation 4.3.33 as∫ ∞

0

A(k)
k

[1 + D(k)] J0(kr) dk = 1, 0 ≤ r < 1, (4.3.35)

where

D(k) = 2
∞∑

n=1

(−1)ne−2nak, (4.3.36)

this suggests that we can apply Cooke’s results if we set a = 1, G(k) =
[1 + D(k)]/k, α = β = 1

2 , and ν = 0. From Equation 4.3.26, we have that

A(k) =
2k

π

∫ 1

0

t cos(kt)h(t) dt. (4.3.37)

Turning to Equation 4.3.27, we find that

h(x) +
4

πx

∫ 1

0

t h(t)

[∫ ∞

0

∞∑
n=1

(−1)ne−2ank cos(kt) cos(kx) dk

]
dt =

1
x

.

(4.3.38)
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To derive Equation 4.3.38, we used the relation that

J− 1
2
(z) =

√
2
πz

cos(z). (4.3.39)

By interchanging the order of summation and integration in Equation 4.3.38,
this equation simplifies to

h(x) +
∫ 1

0

h(ξ)K(x, ξ) dξ =
1
x

, (4.3.40)

where

K(x, ξ) =
2ξ

πx

∞∑
n=1

[
2na(−1)n

4n2a2 + (x − ξ)2
+

2na(−1)n

4n2a2 + (x + ξ)2

]
. (4.3.41)

Let h(t) = f(t)/t. Then, Equation 4.3.37 becomes

A(k) =
2k

π

∫ 1

0

f(t) cos(kt) dt. (4.3.42)

Because f(t) is an even function of t, we can rewrite Equation 4.3.40 in the
more compact form of

f(t) +
2
π

∫ 1

−1

f(ξ)

[ ∞∑
n=1

2na(−1)n

4n2a2 + (t − ξ)2

]
dξ = 1. (4.3.43)

Once we solve Equation 4.3.43, we substitute f(t) into Equation 4.3.42 to
obtain A(k). This A(k) can, in turn, be used in Equation 4.3.32 to find
u(r, z).

Equation 4.3.43 cannot be solved analytically and we must employ numer-
ical techniques. Let us use MATLAB and show how this is done. We introduce
nodal points at tj = (j − N/2)∆t, where j = 0, 1, . . . , N , and ∆t = 2/N .
Therefore, the first thing that we do in the MATLAB code is to compute the
array for tj :

% create arrays for t and ξ; N2 = N/2
for j = 0:N
t(j+1) = (j-N2)*dt; xi(j+1) = (j-N2)*dt; % dt = ∆t
end

Next, using Simpson’s rule, we replace Equation 4.3.43 with a set of (N +1)×
(N + 1) equations, which is expressed below as AA*f=b′. The corresponding
MATLAB code is as follows:
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for n = 0:N
tt = t(n+1);
b(n+1) = 1; % b′ is the right side of the matrix equation
for m = 0:N
xxi = xi(m+1);
% **************************************************************
% first term on the left side of Equation 4.3.43
% **************************************************************
if (n==m) AA(n+1,m+1) = 1; else AA(n+1,m+1) = 0; end
% **************************************************************
% summation inside of integral
% **************************************************************
coeff = 0; sign = -1; sum = tt-xxi; sum2 = sum*sum;
for kk = 1:1000
anum = 2*kk*a;
coeff = coeff + sign*anum / (anum*anum+sum2);
sign = - sign;
end
% **************************************************************
% approximate the integral by using Simpson’s rule
% **************************************************************
if ( (m>0) & (m<N) )
if ( mod(m+1,2)==0 )
AA(n+1,m+1) = AA(n+1,m+1) + 8*coeff*dt / (3*pi);
else
AA(n+1,m+1) = AA(n+1,m+1) + 4*coeff*dt / (3*pi);
end % end of inside logic loop
else
AA(n+1,m+1) = AA(n+1,m+1) + 2*coeff*dt / (3*pi);
end % end of outside logic loop
end % end of m loop
end % end of n loop
% **************************************************************
% now find f(tj), where tj runs from −1 to 1
% **************************************************************
f = AA\b′;

Having computed f(tj), we are ready to compute A(k)/k given by Equation
4.3.42. Note that we only need to retain those values of f(tj) where tj ≥ 0.
This is done first. Because we plan to evaluate Equation 4.3.42 by using
Simpson’s rule, we also compute the coefficients and store them in the array
simpson. The MATLAB code is as follows:

for n = 0:N2
t2(n+1) = n*dt; f2(n+1) = f(n+N2+1);
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% **************************************************************
% set up coefficients for Simpson’s rule
% **************************************************************
if ((n>0) & (n<N2))
if (mod(n+1,2)==0)
simpson(n+1) = 4*dt/3;
else
simpson(n+1) = 2*dt/3;
end
else
simpson(n+1) = dt/3;
end; end
% **************************************************************
% compute A(k)/k by using Simpson’s rule
% **************************************************************
for m = 0:M
A(m+1) = 0; k = m*dk;
for n = 0:N2
A(m+1) = A(m+1) + simpson(n+1)*f2(n+1)*cos(k*t2(n+1));
end
A(m+1) = 2*A(m+1)/pi;
end

We are now ready to compute the solution u(r, z). For a given r and z, the
solution u is computed as follows:

u = 0;
% use Simpson’s rule to evaluate Equation 4.3.32
for m = 1:M
k = m*dk; factor = sinh(k*(a-z))*besselj(0,k*r)/cosh(k*a);
if (m<M)
if (mod(m+1,2) == 0)
u = u + 4*A(m+1)*factor;
else
u = u + 2*A(m+1)*factor;
end
else
u = u + A(M+1)*factor;
end; end
u = dk*u/3;

Note that because the contribution from k = 0 is zero, we simply did not
consider that case. Figure 4.3.1 illustrates u(r, z) when a = 1. Schwarzbek
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Figure 4.3.1: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.28 through Equation 4.3.31. The parameters used in this plot are a = 1,
M = 200, N = 20, and ∆k = 0.1.

and Ruggiero37 employed this solution to calculate the effect of fringing fields
on the measured resistance of a conducting film between two circular disks.
Rossi and Nulman38 used this analysis to model how a single circular flaw in
a polymeric coated layer can reduce the protection to the underlying surface.

• Example 4.3.3

A similar problem39 to the previous one is

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < a, (4.3.44)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < a, (4.3.45)

37 Schwarzbek, S. M., and S. T. Ruggiero, 1986: The effect of fringing fields on the
resistance of a conducting film. IEEE Trans. Microwave Theory Tech., MTT-34, 977–
981.

38 Rossi, G., and M. Nulman, 1993: Effect of local flaws in polymeric permeation reducing
barriers. J. Appl. Phys., 74, 5471–5475.

39 See Chen, H., and J. C. M. Li, 2000: Anodic metal matrix removal rate in electrolytic
in-process dressing. II: Protrusion effect and three-dimensional modeling. J. Appl. Phys.,
87, 3159–3164. See also Yang, F.-Q., and J. C. M. Li, 1993: Impression creep of a thin
film by vacancy diffusion. II. Cylindrical punch. J. Appl. Phys., 74, 4390–4397.
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u(r, a) = 0, 0 ≤ r < ∞, (4.3.46)

and {
uz(r, 0) = 1/a, 0 ≤ r < 1,
u(r, 0) = 0, 1 ≤ r < ∞.

(4.3.47)

Using Hankel functions, the solution to Equation 4.3.44 is

u(r, z) =
∫ ∞

0

(ka)A(k)
sinh[k(z − a)]

sinh(ka)
J0(kr) dk. (4.3.48)

This solution satisfies not only Equation 4.3.44, but also Equation 4.3.45 and
Equation 4.3.46. Substituting Equation 4.3.48 into Equation 4.3.47, we obtain
the dual integral equations∫ ∞

0

(ka)2A(k) coth(ka)J0(kr) dk = 1, 0 ≤ r < 1, (4.3.49)

and ∫ ∞

0

(ka)A(k)J0(kr) dk = 0, 1 < r < ∞. (4.3.50)

Our solution of the dual integral equations, Equation 4.3.49 and Equation
4.3.50, begins by introducing the undetermined function h(t) defined by

ka A(k) =
2
πa

∫ 1

0

h(t) sin(kt) dt, h(0) = 0. (4.3.51)

The reason for introducing Equation 4.3.51 follows by substituting Equation
4.3.51 into Equation 4.3.50. We obtain

2
πa

∫ ∞

0

[∫ 1

0

h(t) sin(kt) dt

]
J0(kr) dk

=
2
πa

∫ 1

0

h(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt (4.3.52)

= 0, (4.3.53)

since the square bracketed term on the right side of Equation 4.3.52 vanishes.
Therefore, Equation 4.3.50 is automatically satisfied.

To evaluate h(t), we substitute Equation 4.3.51 into Equation 4.3.49 and
find that

2
π

∫ ∞

0

k coth(ka)
[∫ 1

0

h(t) sin(kt) dt

]
J0(kr) dk = 1, (4.3.54)

or

2
π

∫ ∞

0

[∫ 1

0

h(t)k sin(kt) dt

]
J0(kr) dk

− 2
π

∫ ∞

0

q(k)
[∫ 1

0

h(t)k sin(kt) dt

]
J0(kr) dk = 1, (4.3.55)
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where q(k) = 1 − coth(ka). Because∫ 1

0

h(t)k sin(kt) dt = −h(1) cos(k) +
∫ 1

0

h′(t) cos(kt) dt, (4.3.56)

and ∫ ∞

0

cos(kt)J0(kr) dk =
H(r − t)√

r2 − t2
, (4.3.57)

∫ ∞

0

[∫ 1

0

h(t)k sin(kt) dt

]
J0(kr) dk =

∫ 1

0

h′(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt

(4.3.58)

=
∫ r

0

h′(t)√
r2 − t2

dt. (4.3.59)

Substituting Equation 4.3.59 into Equation 4.3.55,∫ r

0

h′(t)√
r2 − t2

dt −
∫ 1

0

h(t)
[∫ ∞

0

q(k)k sin(kt)J0(kr) dk

]
dt =

π

2
. (4.3.60)

If we now define

f(r) =
∫ r

0

h′(t)√
r2 − t2

dt, (4.3.61)

we have from Equation 1.2.13 and Equation 1.2.14 with α = 1
2 that

h′(t) =
2
π

d

dt

[∫ t

0

ηf(η)√
t2 − η2

dη

]
, (4.3.62)

or

h(t) =
2
π

∫ t

0

ηf(η)√
t2 − η2

dη. (4.3.63)

Therefore, Equation 4.3.60 simplifies to

f(r) −
∫ 1

0

h(t)
[∫ ∞

0

q(k)k sin(kt)J0(kr) dk

]
dt =

π

2
. (4.3.64)

Setting r equal to η in Equation 4.3.64, multiplying it by η/
√

x2 − η2 and
integrating the resulting equation from 0 to x, we obtain

h(x) −
∫ 1

0

h(t)
{

2
π

∫ ∞

0

q(k)k sin(kt)

[∫ x

0

ηJ0(kη)√
x2 − η2

dη

]
dk

}
dt

=
∫ x

0

η√
x2 − η2

dη, (4.3.65)
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Figure 4.3.2: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.44 through Equation 4.3.47 with a = 1.

or

h(x) −
∫ 1

0

h(t)
[

2
π

∫ ∞

0

q(k) sin(kx) sin(kt) dk

]
dt = −

√
x2 − η2

∣∣∣x
0

= x.

(4.3.66)
As in the previous example, we must solve for h(x) numerically. The MATLAB

code is very similar with the exception that the kernel in Equation 4.3.43 is
replaced with a numerical integration of

∫∞
0

q(k) sin(kx) sin(kt) dk by using
Simpson’s rule. This integral is easily evaluated due to the nature of q(k).
Figure 4.3.2 illustrates the solution u(r, z) when a = 1.

Let us now generalize our results. We now wish to solve

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < h, (4.3.67)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < h, (4.3.68)

u(r, h) = 0, 0 ≤ r < ∞, (4.3.69)

and {
uz(r, 0) = −g(r), 0 ≤ r < a,

u(r, 0) = 0, a ≤ r < ∞.
(4.3.70)
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The solution to Equation 4.3.67 through Equation 4.3.70 is

u(r, z) =
∫ ∞

0

A(k)
sinh[k(z − h)]

sinh(kh)
J0(kr) dk, (4.3.71)

with ∫ ∞

0

kA(k) coth(kh)J0(kr) dk = g(r), 0 ≤ r < a, (4.3.72)

and ∫ ∞

0

A(k)J0(kr) dk = 0, a < r < ∞. (4.3.73)

We can rewrite Equation 4.3.72 as∫ ∞

0

kA(k)[1 + G(k)]J0(kr) dk = g(r), 0 ≤ r < a, (4.3.74)

where G(k) = 2
∑∞

n=1 e−2nkh.
Our solution of the dual integral equations, Equation 4.3.73 and Equation

4.3.74, starts with the introduction of

A(k) =
∫ a

0

h(t) sin(kt) dt, h(0) = 0, (4.3.75)

or
kA(k) = −h(a) cos(ka) +

∫ a

0

h′(t) cos(kt) dt. (4.3.76)

We can show that Equation 4.3.75 satisfies Equation 4.3.73 in the same man-
ner as we did earlier. See Equation 4.3.52.

Now, Equation 4.3.74 can be rewritten∫ ∞

0

kA(k)J0(kr) dk = g(r) −
∫ ∞

0

kA(k)G(k)J0(kr) dk. (4.3.77)

Substituting Equation 4.3.76 into Equation 4.3.77 and interchanging the order
of integration, we have that∫ a

0

h′(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt − h(a)

∫ ∞

0

cos(kt)J0(kr) dk

= g(r) −
∫ a

0

h(t)
[∫ ∞

0

k sin(kt)G(k)J0(kr) dk

]
dt, (4.3.78)

for 0 < r < a. If we employ Equation 1.4.14 to simplify Equation 4.3.78, then∫ r

0

h′(t)√
r2 − t2

dt = g(r) −
∫ a

0

h(τ)
[∫ ∞

0

k G(k) sin(kτ)J0(kr) dk

]
dτ.

(4.3.79)
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Applying Equation 1.2.13 and Equation 1.2.14,

h′(t) =
2
π

d

dt

[∫ t

0

r g(r)√
t2 − r2

dr

]
(4.3.80)

− 2
π

d

dt

(∫ t

0

{∫ a

0

h(τ)
[∫ ∞

0

kG(k) sin(kτ)J0(kr) dk

]
dτ

}
r dr√
t2 − r2

)
.

Integrating Equation 4.3.80 with respect to t, we obtain the integral equation

h(t) =
2
π

∫ t

0

rg(r)√
t2 − r2

dr − 1
π

∫ a

0

K(t, τ)h(τ) dτ, (4.3.81)

where

K(t, τ) = 2
∫ t

0

[∫ ∞

0

kG(k) sin(kτ)J0(kr) dk

]
r dr√
t2 − r2

(4.3.82)

= 2
∫ ∞

0

kG(k)
[∫ t

0

rJ0(kr)√
t2 − r2

dr

]
sin(kτ) dk (4.3.83)

= 2
∫ ∞

0

G(k) sin(kt) sin(kτ) dk (4.3.84)

=
∫ ∞

0

G(k){cos[k(t − τ)] − cos[k(t + τ)]} dk. (4.3.85)

To compute u(r, z), we must first solve the integral equation, Equation 4.3.81,
then evaluate A(k) using values of h(t) via Equation 4.3.75, and finally employ
Equation 4.3.71.

• Example 4.3.4

Let us solve40

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.3.86)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.87)

lim
z→∞ u(r, z) → 1, 0 ≤ r < ∞, (4.3.88)

u(r, 0) = 0, 0 ≤ r < ∞, (4.3.89)

40 See Lebedev, N. N., 1957: The electrostatic field of an immersion electron lens formed
by two diaphragms. Sov. Tech. Phys., 2, 1943–1950.
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and {
uz(r, b−) = uz(r, b+), 0 ≤ r < a,

u(r, b) = 1, a < r < ∞,
(4.3.90)

where b− and b+ denote points located slightly below and above the point
z = b > 0.

Using transform methods or separation of variables, the general solution
to Equation 4.3.86 through Equation 4.3.89 is

u(r, z) =
z

b
−
∫ ∞

0

A(k)
sinh(kz)
sinh(kb)

J0(kr) dk, 0 ≤ z ≤ b, (4.3.91)

and

u(r, z) = 1 −
∫ ∞

0

A(k)e−k(z−b)J0(kr) dk, b ≤ z < ∞. (4.3.92)

Substituting Equation 4.3.91 and Equation 4.3.92 into Equation 4.3.90, we
have that ∫ ∞

0

2kb

1 − e−2kb
A(k)J0(kr) dk = 1, 0 ≤ r < a, (4.3.93)

and ∫ ∞

0

A(k)J0(kr) dk = 0, a < r < ∞. (4.3.94)

To solve the dual integral equations, Equation 4.3.93 and Equation 4.3.94,
we set

kA(k) =
1
2b

∫ a

0

h(t)[cos(kt) − cos(ka)] dt. (4.3.95)

We have chosen this definition for A(k) because∫ ∞

0

A(k)J0(kr) dk =
1
2b

∫ a

0

h(t)
{∫ ∞

0

[cos(kt) − cos(ka)]J0(kr)
dk

k

}
dt = 0

(4.3.96)
since 0 ≤ t ≤ a < r. This follows from integrating Equation 1.4.13 with
respect to t from 0 and a after setting ν = 0 and noting that a < r.

Turning to Equation 4.3.93, we substitute Equation 4.3.95 into Equation
4.3.93. This yields∫ a

0

h(t)
[∫ ∞

0

cos(kt) − cos(ka)
1 − e−2kb

J0(kr) dk

]
dt = 1, 0 ≤ r < a, (4.3.97)

or ∫ a

0

h(t)
{∫ ∞

0

[cos(kt) − cos(ka)]J0(kr) dk

}
dt (4.3.98)

+
∫ a

0

h(t)
{∫ ∞

0

e−2kb

1 − e−2kb
[cos(kt) − cos(ka)]J0(kr) dk

}
dt = 1.
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We can rewrite Equation 4.3.98 as∫ r

0

h(t)√
r2 − t2

dt +
∫ π/2

0

∫ a

0

h(τ)K[r sin(θ), τ ] dτ dθ = 1, (4.3.99)

where

K[r sin(θ), τ ]

=
2
π

∫ π/2

0

∫ ∞

0

e−2kb

1 − e−2kb
[cos(kt) − cos(ka)] cos[kr sin(θ)] dk dθ (4.3.100)

=
2
π

∫ π/2

0

∫ ∞

0

e−2kb

1 − e−2kb

(
cos{k[t− r sin(θ)]} − cos{k[a − r sin(θ)]}

+ cos{k[t + r sin(θ)]} − cos{k[t + r sin(θ)]}
)

dk dθ.

(4.3.101)

We have also used the integral representation41 for J0(kr),

J0(kr) =
2
π

∫ π/2

0

cos[kr sin(θ)] dθ. (4.3.102)

Introducing the logarithmic derivative of the gamma function,

ψ(z) = −γ +
∫ ∞

0

e−t − e−tz

1 − e−t
dt, �(z) > 0, (4.3.103)

where γ denotes Euler’s constant, we have that

K(t, τ) =
1

2πb
�
{

ψ

[
1 + i

(
a − t

2b

)]
− ψ

[
1 + i

(
τ − t

2b

)]
+ ψ

[
1 + i

(
a + t

2b

)]
− ψ

[
1 + i

(
τ + t

2b

)]}
. (4.3.104)

Because ∫ r

0

h(t)√
r2 − t2

dt =
∫ π/2

0

h[r sin(θ)] dθ, (4.3.105)

Equation 4.3.99 can be rewritten∫ π/2

0

{
h[r sin(θ)] +

∫ a

0

h(τ)K[r sin(θ), τ ] dτ

}
dθ = 1. (4.3.106)

41 Gradshteyn and Ryzhik, op. cit., Formula 8.411.1 with n = 0.



226 Mixed Boundary Value Problems

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

rz

u(
r,

z)

Figure 4.3.3: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.86 through Equation 4.3.90 with a = b = 1.

Equation 4.3.106 is satisfied if

h(t) +
∫ a

0

h(τ)K(t, τ) dτ =
2
π

, 0 ≤ t ≤ a. (4.3.107)

Figure 4.3.3 illustrates the solution u(r, z) when a = b = 1. We first
solve Equation 4.3.107 to find h(t). Then Equation 4.3.95 gives A(k) via h(t).
Finally, u(r, z) follows from Equation 4.3.91 or Equation 4.3.92.

• Example 4.3.5

In the previous examples, the domain has been within a cylinder of given
radius. Here we solve42 Laplace’s equation when the domain lies outside of a
unit cylinder:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 1 ≤ r < ∞, 0 < z < ∞, (4.3.108)

subject to the boundary conditions

ur(1, z) = 0, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.109)

42 See Srivastav, R. P., and P. Narain, 1966: Stress distribution due to pressurized
exterior crack in an infinite isotropic elastic medium with coaxial cylindrical cavity. Int. J.
Engng. Sci., 4, 689–697.
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lim
z→∞ u(r, z) → 0, 1 ≤ r < ∞, (4.3.110)

and {
uz(r, 0) = 1, 1 ≤ r < a,

uzz(r, 0) = f(r), a < r < ∞.
(4.3.111)

Using transform methods or separation of variables, the general solution
to Equation 4.3.108, Equation 4.3.109, and Equation 4.3.110 is

u(r, z) =
∫ ∞

0

A(k)e−kz J0(kr)Y1(k) − Y0(kr)J1(k)
Y 2

1 (k) + J2
1 (k)

dk

k
. (4.3.112)

Substituting Equation 4.3.112 into Equation 4.3.111, we find that∫ ∞

0

A(k)
J0(kr)Y1(k) − Y0(kr)J1(k)

Y 2
1 (k) + J2

1 (k)
dk = 0, (4.3.113)

and ∫ ∞

0

kA(k)
J0(kr)Y1(k) − Y0(kr)J1(k)

Y 2
1 (k) + J2

1 (k)
dk = f(r). (4.3.114)

To solve Equation 4.3.113 and Equation 4.3.114, let us introduce a g(t)
such that∫ ∞

0

A(k)
J0(kr)Y1(k) − Y0(kr)J1(k)

Y 2
1 (k) + J2

1 (k)
dk =

∫ r

a

g(t)√
r2 − t2

dt, a < r < ∞.

(4.3.115)
Now, from Weber’s formula43 the integral equation

F (y) =
∫ ∞

1

xf(x)[J0(xy)Y1(y) − Y0(xy)J1(y)] dx (4.3.116)

has the solution

f(x) =
∫ ∞

0

yF (y)
J0(xy)Y1(y) − Y0(xy)J1(y)

Y 2
1 (y) + J2

1 (y)
dy. (4.3.117)

Therefore, from Equation 4.3.113 and Equation 4.3.115,

A(k) =
∫ ∞

a

g(ξ)[Y1(k) cos(kξ) − J1(k) sin(kξ)] dξ. (4.3.118)

If we multiply Equation 4.3.114 by r/
√

r2 − t2 and integrate from t to ∞, we
obtain

∂

∂t

[∫ ∞

0

A(k)
J1(k) cos(kt) + Y1(k) sin(kt)

Y 2
1 (k) + J2

1 (k)
dk

k

]
=
∫ ∞

t

rf(r)√
r2 − t2

dr.

(4.3.119)

43 Titchmarsh, E. C., 1946: Eigenfunction Expansions Associated with Second Order
Differential Equations. Part I . Oxford, 203 pp. See Section 4.10.
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Substituting for A(k) from Equation 4.3.118 into Equation 4.3.119, we find
after interchanging the order of integration that

∂

∂t

[∫ ∞

a

g(ξ)Q(ξ, t) dξ

]
=
∫ ∞

t

rf(r)√
r2 − t2

dr, (4.3.120)

where

Q(ξ, t) =
∫ ∞

0

[J1(k) cos(kt) + Y1(k) sin(kt)]
J2

1 (k) + Y 2
1 (k)

× [Y1(k) cos(kξ) − J1(kξ) sin(kξ)]
dk

k
, (4.3.121)

or

Q(ξ, t) = −1
2

(∫ ∞

0

sin[k(ξ − t)]
dk

k
−
∫ ∞

0

sin[k(ξ + t)]
dk

k

+ �
{∫ ∞

0

[
H

(2)
1 (k)

H
(1)
1 (k)

+ 1

]
ei(ξ+t)k dk

k

})
. (4.3.122)

Our final task is to evaluate the contour integral

∫
Γ

[
H

(2)
1 (z)

H
(1)
1 (z)

+ 1

]
ei(ξ+t)z dz

z
,

where the contour Γ consists of the real axis from the origin to R, an arc in
the first quadrant |z| = R, 0 ≤ θ ≤ π/2, and imaginary axis from iR to the
origin. As R → ∞, we find that

�
{∫ ∞

0

[
H

(2)
1 (k)

H
(1)
1 (k)

+ 1

]
ei(ξ+t)k dk

k

}
= −π

∫ ∞

0

I1(k)
K1(k)

e−k(t+ξ) dk

k
.

(4.3.123)
Therefore, Equation 4.3.120 becomes

1
2

∂

∂t

{
−π

2

∫ t

a

g(ξ) dξ +
π

2

∫ ∞

t

g(ξ) dξ (4.3.124)

−
∫ ∞

a

g(ξ)
[
π

∫ ∞

0

I1(k)
K1(k)

e−k(t+ξ) dk

k

]
dξ

}
=
∫ ∞

t

rf(r)√
r2 − t2

dr,

or

g(t)+
∫ ∞

a

g(ξ)
[∫ ∞

0

I1(k)
K1(k)

e−k(t+ξ) dk

]
dξ =

2
π

∫ ∞

t

rf(r)√
r2 − t2

dr, (4.3.125)
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Figure 4.3.4: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.108 through Equation 4.3.111 with a = 2.

for a < t < ∞. Figure 4.3.4 illustrates the solution when a = 2.

• Example 4.3.6

Let us solve44

∂2u

∂r2
+

1
r

∂u

∂r
+

1
zp

∂

∂z

(
zn ∂u

∂z

)
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.3.126)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.127)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.128)

and {
u(r, 0) = 1, 0 ≤ r < 1,

znuz(r, z)
∣∣
z=0

= 0, 1 < r < ∞,
(4.3.129)

where κ > 0.

44 Taken from Brutsaert, W., 1967: Evaporation from a very small water surface at
ground level: Three-dimensional turbulent diffusion without convection. J. Geophys. Res.,
72, 5631–5639. c©1967 American Geophysical Union. Reproduced/modified by permission
of American Geophysical Union.
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Using transform methods or separation of variables, the general solution
to Equation 4.3.126, Equation 4.3.127, and Equation 4.3.128 is

u(r, z) = z(1−n)/2

∫ ∞

0

A(k)Kν

[
2νk

1 − n
z(1−n)/(2ν)

]
J0(kr) dk, (4.3.130)

where ν = (1 − n)/(p − n + 2). Substituting Equation 4.3.130 into Equation
4.3.129, we have that∫ ∞

0

A(k)J0(kr)
dk

kν
= C, 0 ≤ r < 1, (4.3.131)

and ∫ ∞

0

kνA(k)J0(kr) dk = 0, 1 < r < ∞, (4.3.132)

where

C =
2

Γ(ν)

(
ν

1 − n

)ν

. (4.3.133)

If we now restrict ν so that it lies between 0 and 1
4 , then

A(k) =
(2k)ν C

Γ(1 − ν)

{
k1−νJ−ν(k)

∫ 1

0

η

(1 − η2)ν
dη

+
[∫ 1

0

ζ

(1 − ζ2)ν
dζ

] [∫ 1

0

(kη)2−νJ1−ν(kη) dη

]}
(4.3.134)

=
2ν−1k C

Γ(2 − ν)
[J−ν(k) + J2−ν(k)] (4.3.135)

= 2ν+1

(
ν

1 − n

)ν sin(νπ)
π

J1−ν(k). (4.3.136)

Consequently, the final solution is

u(r, z) =
[
2ν+1

(
ν

1 − n

)ν sin(νπ)
π

]
z(1−n)/2

×
∫ ∞

0

Kν

[
2νk

1 − n
z(1−n)/(2ν)

]
J0(kr)J1−ν(k) dk. (4.3.137)

Figure 4.3.5 illustrates this solution when n = 1
2 and p = 1.

• Example 4.3.7

Let us solve45

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= κ2u, 0 ≤ r < ∞, 0 < z < ∞, (4.3.138)

45 A simplified version of a problem solved by Borodachev, N. M., and Yu. A. Mamteyew,

1969: Unsteady torsional oscillations of an elastic half-space. Mech. Solids, 4(1), 79–83.
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Figure 4.3.5: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.126 through Equation 4.3.129 with n = 1

2
and p = 1.

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.139)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.140)

and {
u(r, 0) = r, 0 ≤ r < a,
uz(r, 0) = 0, a < r < ∞,

(4.3.141)

where κ > 0.
Using transform methods or separation of variables, the general solution

to Equation 4.3.138, Equation 4.3.139, and Equation 4.3.140 is

u(r, z) =
∫ ∞

0

A(k)J1(kr)e−z
√

k2+κ2
dk. (4.3.142)

Substituting Equation 4.3.142 into Equation 4.3.141, we have that∫ ∞

0

A(k)J1(kr) dk = r, 0 ≤ r < a, (4.3.143)

and ∫ ∞

0

√
k2 + κ2 A(k)J1(kr) dk = 0, a < r < ∞. (4.3.144)
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Setting x = r/a, ξ = ka, and g(ξ) =
√

ξ2 + (κa)2 A(ξ) in Equation 4.3.143
and Equation 4.3.144, we find that∫ ∞

0

g(ξ)√
ξ2 + (κa)2

J1(ξx) dξ = x, 0 ≤ x < 1, (4.3.145)

and ∫ ∞

0

g(ξ)J1(ξx) dξ = 0, 1 < x < ∞. (4.3.146)

By comparing our problem with the canonical form given by Equation 4.3.26
through Equation 4.3.27, then ν = 1 and G(ξ) =

[
ξ2 + (κa)2

]−1/2. Selecting
a = 1, α = − 1

2 , and β = 1
2 , then

g(ξ) =
4ξ

π

∫ 1

0

h(t) sin(ξt) dt, (4.3.147)

and

h(t) +
∫ 1

0

K(t, η)h(η) dη = t, 0 ≤ t ≤ 1, (4.3.148)

where

K(t, η) =
2
π

∫ 1

0

[
1 − ξ√

ξ2 + (κa)2

]
sin(tξ) sin(ηξ) dξ (4.3.149)

=
2
π

∫ 1

0

[√
ξ2 − (κa)2 − ξ√

ξ2 + (κa)2

]
sin(tξ) sin(ηξ) dξ (4.3.150)

=
2
π

(κa)2
∫ 1

0

sin(tξ) sin(ηξ)√
ξ2 + (κa)2

[
ξ +
√

ξ2 + (κa)2
] dξ (4.3.151)

=
κa

2
{L1[κa(η + t)] − I1[κa(η + t)]

− L1[κa|η − t| ] + I1[κa|η − t| ]}, (4.3.152)

where L1(·) denotes a modified Struve function of the first kind. Vasudevaiah
and Majhi46 showed how to evaluate the integral in Equation 4.3.151.

As in the previous examples, we must solve for h(x) numerically. Then
g(ξ) is computed from Equation 4.3.147. Finally, Equation 4.3.142 gives
u(r, z). Figure 4.3.6 illustrates this solution when κa = 1.

46 Vasudevaiah, M., and S. N. Majhi, 1981: Viscous impulsive rotation of two finite
coaxial disks. Indian J. Pure Appl. Math., 12, 1027–1042.
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Figure 4.3.6: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.138 through Equation 4.3.141 with κa = 1.

• Example 4.3.8

Let us solve47

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
+ α2u = 0, 0 ≤ r < ∞, −∞ < z < ∞, (4.3.153)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞, (4.3.154)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞, (4.3.155)

and {
uz(r, 0−) = uz(r, 0+) = 1, 0 ≤ r < a,

u(r, 0−) = u(r, 0+), a < r < ∞.
(4.3.156)

Using transform methods or separation of variables, the general solution
to Equation 4.3.153, Equation 4.3.154, and Equation 4.3.155 is

u(r, z) = ∓
∫ ∞

0

A(k)J0(kr)e−|z|√k2−α2
dk. (4.3.157)

47 See Lebedev, N. N., and I. P. Skal’skaya, 1959: A new method for solving the problem
of the diffraction of electromagnetic waves by a thin conducting disk. Sov. Tech. Phys., 4,
627–637.
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Substituting Equation 4.3.157 into Equation 4.3.156, we have that∫ ∞

0

√
k2 − α2 A(k)J0(kr) dk = 1, 0 ≤ r < a, (4.3.158)

and ∫ ∞

0

A(k)J0(kr) dk = 0, a < r < ∞. (4.3.159)

To solve the dual integral equations, Equation 4.3.158 and Equation
4.3.159, we set

kA(k) =
2
π

∫ a

0

h(t)[cos(kt) − cos(ka)] dt. (4.3.160)

We chose this definition for A(k) because∫ ∞

0

A(k)J0(kr) dk =
2
π

∫ a

0

h(t)
{∫ ∞

0

[cos(kt) − cos(ka)]J0(kr)
dk

k

}
dt = 0,

(4.3.161)
where we have integrated Equation 1.4.13 with respect to t from 0 and a after
setting ν = 0 and noted that 0 ≤ t ≤ a < r.

Turning to Equation 4.3.158, we substitute Equation 4.3.160 into Equa-
tion 4.3.158. This yields∫ a

0

h(t)
{

2
π

∫ ∞

0

√
k2 − α2 [cos(kt) − cos(ka)]J0(kr)

dk

k

}
dt = 1, 0 ≤ r < a,

(4.3.162)
or∫ a

0

h(t)
{

2
π

∫ ∞

0

[cos(kt) − cos(ka)]J0(kr) dk

}
dt (4.3.163)

−
∫ a

0

h(t)

{
2
π

∫ ∞

0

(
1 −

√
k2 − α2

k

)
[cos(kt) − cos(ka)]J0(kr) dk

}
dt = 1.

Let us evaluate

2
π

∫ ∞

0

(
1 −

√
k2 − α2

k

)
[cos(kt) − cos(ka)]J0(kr) dk

=
4
π2

∫ π/2

0

∫ ∞

0

(
1 −

√
k2 − α2

k

)
[cos(kτ) − cos(ka)] cos[kr sin(θ)] dk dθ

(4.3.164)

=
2
π2

∫ π/2

0

∫ ∞

0

(
1 −

√
k2 − α2

k

)(
cos{k[τ − r sin(θ)]} − cos{k[a − r sin(θ)]}

+ cos{k[t + r sin(θ)]} − cos{k[a + r sin(θ)]}
)

dk dθ. (4.3.165)



Transform Methods 235

We used the integral definition of J0(kr) to obtain Equation 4.3.164.
Consider now the integral

L =
2
π

∫ ∞

0

(
1 −

√
k2 − κ2

k

)
[cos(kα) − cos(kβ)] dk, α, β > 0. (4.3.166)

Then

∂L

∂α
= − 2

π

∫ ∞

0

(
k −
√

k2 − κ2
)

sin(kα) dk (4.3.167)

=
2

πα

∫ ∞

0

(
k −
√

k2 − κ2
)

d[cos(kα)] (4.3.168)

=
2

πα

[
iκ −

∫ ∞

0

(
1 − k√

k2 − κ2

)
cos(kα) dk

]
(4.3.169)

=
2

πα

{
iκ − d

dα

[∫ ∞

0

sin(kα)
k

dk

]
+

d

dα

[∫ ∞

0

sin(kα)√
k2 − κ2

dk

]}
(4.3.170)

=
2

πα

{
iκ +

d

dα

[∫ ∞

0

sin(kα)√
k2 − κ2

dk

]}
. (4.3.171)

Using the integral representation for the Bessel and Struve functions48

J0(x) =
2
π

∫ ∞

1

sin(xt)√
t2 − 1

dt, H0(x) =
2
π

∫ 1

0

sin(xt)√
1 − t2

dt, (4.3.172)

with J ′
0(x) = −J1(x) and H ′

0(x) = 2/π − H1(x), we obtain the final result
that

∂L

∂α
= −κ

α
[J1(κα) − iH1(κα)] . (4.3.173)

Upon integrating Equation 4.3.173 with respect to α and noting that L = 0
when α = β, we find that

2
π

∫ ∞

0

(
1 −

√
k2 − κ2

k

)
[cos(kα) − cos(kβ)] dk = κ

{
Ji1(κβ) − Ji1(κα)

− i [Hi1(κβ) − Hi1(κα)]
}

,

(4.3.174)

if α, β > 0, where

Ji1(x) =
∫ x

0

J1(y)
dy

y
, and Hi1(x) =

∫ x

0

H1(y)
dy

y
. (4.3.175)

48 Gradshteyn and Ryzhik, op. cit., Formula 8.411.9 and Formula 8.551.1.
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Figure 4.3.7: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.153 through Equation 4.3.156 with a = 1 and α = 0.1.

Applying these results to Equation 4.3.163, we have

2
π

∫ r

0

h(t)√
r2 − t2

dt − 2α

π

∫ π/2

0

∫ a

0

K[r sin(θ), τ ]h(τ) dτ dθ = 1 (4.3.176)

with

K(r, τ) = 1
2

{
Ji1[α(a − r)] − Ji1[α|t − r|] + Ji1[α(a + r)] − Ji1[α(t + r)]

− iHi1[α(a − r)] + iHi1[α|t − r|] − iHi1[α(a + r)] + iHi1[α(t + r)]
}

.

(4.3.177)

Because ∫ r

0

h(t)√
r2 − t2

dt =
∫ π/2

0

h[r sin(θ)] dθ, (4.3.178)

Equation 4.3.176 can be rewritten

2
π

∫ π/2

0

{
h[r sin(θ)] − α

∫ a

0

K[r sin(θ), τ ]h(τ) dτ

}
dθ = 1, 0 ≤ r < a.

(4.3.179)
Equation 4.3.179 is satisfied if

h(x) − α

∫ a

0

K(x, τ)h(τ) dτ = 1, 0 ≤ x ≤ a. (4.3.180)

Figure 4.3.7 illustrates u(r, z) when a = 1 and α = 0.1.
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In a similar manner,49 we can solve

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
+
(

α2 − 1
r2

)
u = 0, 0 ≤ r < ∞, −∞ < z < ∞,

(4.3.181)
subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞, (4.3.182)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞, (4.3.183)

and {
u(r, 0−) = u(r, 0+) = r, 0 ≤ r < a,
uz(r, 0−) = uz(r, 0+), a < r < ∞.

(4.3.184)

Using transform methods or separation of variables, the general solution
to Equation 4.3.181, Equation 4.3.182, and Equation 4.3.183 is

u(r, z) =
∫ ∞

0

A(k)J1(kr)e−|z|√k2−α2
dk. (4.3.185)

Substituting Equation 4.3.185 into Equation 4.3.184, we have that∫ ∞

0

A(k)J1(kr) dk = r, 0 ≤ r < a, (4.3.186)

and ∫ ∞

0

√
k2 − α2 A(k)J1(kr) dk = 0, a < r < ∞. (4.3.187)

We can satisfy Equation 4.3.187 identically if we set

A(k) =
2k

π
√

k2 − α2

∫ a

0

h(t) sin(kt) dt, (4.3.188)

because∫ ∞

0

√
k2 − α2 A(k)J1(kr) dk =

∫ a

0

h(t)
[∫ ∞

0

k sin(kt)J1(kr) dk

]
dt

(4.3.189)

= −
∫ 1

0

h(t)
d

dr

[∫ ∞

0

sin(kt)J0(kr) dk

]
dt = 0

(4.3.190)

49 See also Ufliand, Ia. S., 1961: On torsional vibrations of half-space. J. Appl. Math.
Mech., 25, 228–233.
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since the integral within the square brackets vanishes in Equation 4.3.190
when 0 ≤ t ≤ a < r.

Turning Equation 4.3.186, we substitute Equation 4.3.188 into it. This
yields∫ a

0

h(t)
[

2
π

∫ ∞

0

k√
k2 − α2

sin(kt)J1(kr) dk

]
dt = r, 0 ≤ r < a, (4.3.191)

or ∫ a

0

h(t)
[

2
π

∫ ∞

0

sin(kt)J1(kr) dk

]
dt (4.3.192)

−
∫ a

0

h(t)
[

2
π

∫ ∞

0

(
1 − k√

k2 − α2

)
sin(kt)J1(kr) dk

]
dt = r.

Let us evaluate

2
π

∫ ∞

0

(
1 − k√

k2 − α2

)
sin(kt)J1(kr) dk

=
4
π2

∫ π/2

0

sin(θ)
{∫ ∞

0

(
1 − k√

k2 − α2

)
sin(kt) sin[kr sin(θ)] dk

}
dθ

(4.3.193)

=
2
π2

∫ π/2

0

sin(θ)
[∫ ∞

0

(
1 − k√

k2 − α2

)(
cos{k[τ − r sin(θ)]}

− cos{k[t + r sin(θ)]}
)

dk

]
dθ. (4.3.194)

We used the integral definition of J1(kr) to obtain Equation 4.3.193.
Consider now the integral

L =
2
π

∫ ∞

0

(
1 − k√

k2 − κ2

)
cos(kα) dk, α > 0. (4.3.195)

Then,

L =
d

dα

[
2
π

∫ ∞

0

(
1 − k√

k2 − κ2

)
sin(kα)

dk

k

]
(4.3.196)

= − d

dα

[
2
π

∫ ∞

0

sin(kα)√
k2 − κ2

dk

]
(4.3.197)

= κ

[
J1(κα) − iH1(κα) +

2i

π

]
. (4.3.198)

Applying these results to Equation 4.3.194, we find

2
πr

∫ r

0

t h(t)√
r2 − t2

dt − 2α

π

∫ π/2

0

{∫ a

0

K[r sin(θ), τ ]h(τ) dτ

}
sin(θ) dθ = r

(4.3.199)
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Figure 4.3.8: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.181 through Equation 4.3.184 with a = 1 and α = 0.1.

with

K(r, τ) = 1
2 {J1[α|τ − r|] − J1[α(t + r)] − iH1[α|t − r|] + iH1[α(t + r)]} .

(4.3.200)
Because

2
πr

∫ r

0

t h(t)√
r2 − t2

dt =
2
π

∫ π/2

0

h[r sin(θ)] sin(θ) dθ, (4.3.201)

Equation 4.3.199 can be written

2
π

∫ π/2

0

{
h[r sin(θ)] − α

∫ a

0

K[r sin(θ), τ ]h(τ) dτ

}
sin(θ) dθ = r (4.3.202)

with 0 ≤ r < a. If we set

h(x) − α

∫ a

0

K(x, τ)h(τ) dτ = f(x), 0 ≤ x ≤ a, (4.3.203)

then Equation 4.3.202 becomes

2
π

∫ π/2

0

r sin(θ)f [r sin(θ)] dθ = r2 (4.3.204)

which has the solution f(x) = 2x. Therefore, h(t) is given by

h(x) − α

∫ a

0

K(x, τ)h(τ) dτ = 2x, 0 ≤ x ≤ a. (4.3.205)

Figure 4.3.8 illustrates u(r, z) when a = 1 and α = 0.1.
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• Example 4.3.9

Let us solve50

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
− α2u = 0, 0 ≤ r < ∞, −h < z < ∞, (4.3.206)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −h < z < ∞, (4.3.207)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.208)

ur(r,−h) = 0, 0 ≤ r < ∞, (4.3.209)

ur(r, 0−) = ur(r, 0+), 0 ≤ r < ∞, (4.3.210)

and {
ur(r, 0−) = ur(r, 0+) = −r, 0 ≤ r < 1,
urz(r, 0−) = urz(r, 0+), 1 < r < ∞.

(4.3.211)

Using transform methods or separation of variables, the general solution
to Equation 4.3.206 through Equation 4.3.210 is

u(r, z) =
∫ ∞

0

A(k)e−λzJ0(kr)
dk

k
, 0 < z < ∞, (4.3.212)

and

u(r, z) =
∫ ∞

0

A(k)
sinh[λ(z + h)]

sinh(λh)
J0(kr)

dk

k
, −h < z < 0, (4.3.213)

where λ =
√

k2 + α2 with �(λ) > 0. Substituting Equation 4.3.212 and
Equation 4.3.213 into Equation 4.3.211, we have that∫ ∞

0

B(k)
(
1 − e−2λh

)
J1(kr)

dk

λ
= −2r, 0 ≤ r < 1, (4.3.214)

and ∫ ∞

0

B(k)J1(kr) dk = 0, 1 ≤ r < ∞, (4.3.215)

where

B(k) = −λeλhA(k)
sinh(λh)

. (4.3.216)

50 See Chu, J. H., and M.-U. Kim, 2004: Oscillatory Stokes flow due to motions of a
circular disk parallel to an infinite plane wall. Fluid Dyn. Res., 34, 77–97.
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To solve the dual integral equations, Equation 4.3.214 and Equation
4.3.215, we introduce

B(k) = k

∫ 1

0

h(t) sin(kt) dt. (4.3.217)

Following Equation 4.3.189 and Equation 4.3.190, we can show that this choice
satisfies Equation 4.3.215 identically.

Turning to Equation 4.3.214, we substitute Equation 4.3.217 into Equa-
tion 4.3.214. This yields∫ 1

0

h(t)
[∫ ∞

0

sin(kt)J1(kr) dk

]
dt (4.3.218)

−
∫ 1

0

h(t)
[
sin(kt)J1(kr) − k

λ

(
1 − e−2λh

)
sin(kt)J1(kr) dk

]
dt = −2r.

From integral tables,51∫ ∞

0

J1(αx) sin(βx) dx =

{
β

α
√

α2−β2
, α > β,

0, α < β,
(4.3.219)

we can evaluate the first term in Equation 4.3.218 and this equation now reads∫ r

0

t h(t)
r
√

r2 − t2
dt (4.3.220)

=
∫ 1

0

h(τ)
[∫ ∞

0

(
1 − k

λ
+

k

λ
e−2λh

)
sin(kτ)J1(kr) dk

]
dτ − 2r.

Upon applying the results from Equation 1.2.13 and Equation 1.2.14,

r h(r) =
2
π

∫ 1

0

h(τ)
{∫ ∞

0

(
1 − k

λ
+

k

λ
e−2λh

)
× sin(kτ)

d

dr

[∫ r

0

ξ2J1(kξ)√
r2 − ξ2

dξ

]
dk

}
dτ

− 4
π

d

dr

(∫ r

0

ξ3√
r2 − ξ2

dξ

)
. (4.3.221)

Now

− 4
π

d

dr

(∫ r

0

ξ3√
r2 − ξ2

dξ

)
= −8r2

π
, (4.3.222)

51 Gradshteyn and Ryzhik, op. cit., Formula 6.671.
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Figure 4.3.9: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.206 through Equation 4.3.211 with h = 1 and α = 1.

and
d

dr

[∫ r

0

ξ2J1(kξ)√
r2 − ξ2

dξ

]
= r sin(kr) (4.3.223)

after using integral tables.52 Substituting these results into Equation 4.3.221
and dividing by r,

h(r) − 2
π

∫ 1

0

h(τ)
[∫ ∞

0

(
1 − k

λ
+

k

λ
e−2λh

)
sin(kτ) sin(kr) dk

]
dτ = −8r

π
.

(4.3.224)
Figure 4.3.9 illustrates u(r, z) when h = 1 and α = 1.

• Example 4.3.10

In the previous examples, the boundary condition was u(r, 0) = 0 or
uz(r, 0) = 0 for 0 < a < r < ∞. In this example we consider the other
situation where u(r, 0) = 0 applies when 0 < r < 1. In particular, we find the
solution53 to

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < h, (4.3.225)

52 Ibid., Formula 6.567.1 with ν = 1 and µ = − 1
2
.

53 Taken from Dhaliwal, R. S., 1967: An axisymmetric mixed boundary value problem
for a thick slab. SIAM J. Appl. Math., 15, 98–106. c©1967 Society for Industrial and
Applied Mathematics. Reprinted with permission.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < h, (4.3.226)

uz(r, h) = 0, 0 ≤ r < ∞, (4.3.227)

and {
u(r, 0) = 0, 0 ≤ r < 1,

uz(r, 0) = −f(r), 1 < r < ∞.
(4.3.228)

Using transform methods or separation of variables, the general solution
to Equation 4.3.225, Equation 4.3.226, and Equation 4.3.227 is

u(r, z) =
∫ ∞

0

A(k)
cosh[k(z − h)]

cosh(kh)
J0(kr) dk. (4.3.229)

Substituting Equation 4.3.229 into Equation 4.3.228, we have that∫ ∞

0

A(k)J0(kr) dk = 0, 0 ≤ r < 1, (4.3.230)

and ∫ ∞

0

kA(k) tanh(kh)J0(kr) dk = f(r), 1 < r < ∞. (4.3.231)

To solve Equation 4.3.230 and Equation 4.3.231, we set

A(k) =
∫ ∞

1

g(t) cos(kt) dt, (4.3.232)

where limt→∞ g(t) → 0. We did this because∫ ∞

0

A(k)J0(kr) dk =
∫ ∞

1

g(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt = 0 (4.3.233)

from Equation 1.4.14 with 0 < r < 1 ≤ t < ∞. Turning to Equation 4.3.231,
the substitution of Equation 4.3.232 yields∫ ∞

0

J0(kr)
[∫ ∞

1

k g(t) cos(kt) dt

]
dk (4.3.234)

−
∫ ∞

0

kM(kh)J0(kr)
[∫ ∞

1

g(t) cos(kt) dt

]
dk = f(r),

where M(kh) = 2/
(
1 + e2kh

)
.
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We now simplify Equation 4.3.234 in two ways. In the first term we
integrate by parts the integral within the square brackets and apply Equation
1.4.13. We then replace J0(kr) by its integral representation.54 This gives

−
∫ ∞

r

g′(t)√
t2 − r2

dt − 2
π

∫ ∞

0

kM(kh)
[∫ ∞

r

sin(kt)√
t2 − r2

dt

]
(4.3.235)

×
[∫ ∞

1

g(x) cos(kx) dx

]
dk = f(r).

Interchanging the order of integration and using the trigonometric product
formula, Equation 4.3.235 becomes

∫ ∞

r

{
g′(t) − 1

πh

∫ ∞

1

g(x) [G′(t + x) + G′(t − x)] dx

}
dt√

t2 − r2
= −f(r),

(4.3.236)
where G(ξ) =

∫∞
0

M(η) cos(ξη/h) dη. Viewing Equation 4.3.236 as an integral
equation of the Abel type, Equation 1.2.15 and Equation 1.2.16 yield

g′(t) − 1
πh

∫ ∞

1

g(x) [G′(t + x) + G′(t − x)] dx =
2
π

d

dt

[∫ ∞

t

rf(r)√
r2 − t2

dr

]
.

(4.3.237)
Integrating Equation 4.3.237 with respect to t,

g(t) − 1
πh

∫ ∞

1

g(x) [G(t + x) + G(t − x)] dx =
2
π

∫ ∞

t

rf(r)√
r2 − t2

dr.

(4.3.238)
For the special case

f(r) =
{

1, 1 < r < a,
0, a < r < ∞,

(4.3.239)

Equation 4.3.238 becomes

g(t) − 1
πh

∫ ∞

1

g(x)K(x, t) dx =
2
π

√
a2 − t2, 1 ≤ t ≤ a, (4.3.240)

and g(t) = 0 for a < t < ∞, where

K(x, t) = 2
∫ ∞

0

M(ξ) cos
(

ξx

h

)
cos
(

ξt

h

)
dξ. (4.3.241)

54 Gradshteyn and Ryzhik, op. cit., Formula 8.41.9
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Figure 4.3.10: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.3.225 through Equation 4.3.228 with a = h = 2.

Figure 4.3.10 illustrates this solution when a = h = 2.

• Example 4.3.11

Let us solve55

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.3.242)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.243)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.244)

and {
αuz(r, 0) − βu(r, 0) = −f(r), 0 ≤ r < 1,

γuz(r, 0) − δu(r, 0) = 0, 1 < r < ∞.
(4.3.245)

All of the coefficients in Equation 4.3.245 are nonzero.
Using transform methods or separation of variables, the general solution

to Equation 4.3.242, Equation 4.3.243, and Equation 4.3.244 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk. (4.3.246)

55 See Kuz’min, Yu. N., 1966: Some axially symmetric problems in heat flow with mixed
boundary conditions. Sov. Tech. Phys., 11, 169–173.
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Substituting Equation 4.3.246 into Equation 4.3.245, we have that∫ ∞

0

(αk + β)A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (4.3.247)

and ∫ ∞

0

(γk + δ)A(k)J0(kr) dk = 0, 1 < r < ∞; (4.3.248)

or ∫ ∞

0

M(k)[1 + g(k)]J0(kr) dk = f(r), 0 ≤ r < 1, (4.3.249)

and ∫ ∞

0

M(k)J0(kr) dk = 0, 1 < r < ∞, (4.3.250)

where

M(k) = α(γk + δ)A(k)/γ, and g(k) =
βγ − αδ

α(γk + δ)
. (4.3.251)

Let us now introduce the function M(k), where

M(k) =
∫ 1

0

h′(t) sin(kt) dt. (4.3.252)

Then, by integration by parts,

M(k) = h(1) sin(k) + k

∫ 1

0

h(t) cos(kt) dt. (4.3.253)

Therefore,∫ ∞

0

M(k)J0(kr) dk =
∫ 1

0

h′(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt = 0 (4.3.254)

if r > 1 by Equation 1.4.13; our choice of M(k) satisfies Equation 4.3.250
identically.

Turning to Equation 4.3.249,∫ ∞

0

[∫ 1

0

h′(t) sin(kt) dt

]
J0(kr) dk = f(r)

−
∫ ∞

0

k

[∫ 1

0

h(t) cos(kt) dt

]
g(k)J0(kr) dk (4.3.255)

if h(1) = 0; or,∫ 1

0

h′(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt = f(r)

−
∫ 1

0

h(t)
[∫ ∞

0

k g(k) cos(kt)J0(kr) dk

]
dt. (4.3.256)
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Upon applying Equation 1.4.13 to the integral within the square brackets on
the left side of Equation 4.3.256,∫ 1

r

h′(t)√
t2 − r2

dt = f(r) −
∫ 1

0

h(τ)
[∫ ∞

0

k g(k) cos(kτ)J0(kr) dk

]
dt.

(4.3.257)
From Equation 1.2.15 and Equation 1.2.16,

h′(t) = − 2
π

d

dt

[∫ 1

t

rf(r)√
r2 − t2

dr

]
(4.3.258)

+
2
π

d

dt

(∫ 1

0

h(τ)
{∫ 1

t

r√
r2 − t2

[∫ ∞

0

k g(k) cos(kτ)J0(kr) dk

]
dr

}
dτ

)
;

or

h(t) = − 2
π

∫ 1

t

r f(r)√
r2 − t2

dr +
2
π

∫ 1

0

K(t, τ)h(τ) dτ, (4.3.259)

where

K(t, τ) =
∫ 1

t

r√
r2 − t2

[∫ ∞

0

k g(k) cos(kτ)J0(kr) dk

]
dr (4.3.260)

=
βγ − αδ

αγ

∫ 1

t

r√
r2 − t2

[∫ ∞

0

γk

γk + δ
cos(kτ)J0(kr) dk

]
dr (4.3.261)

=
βγ − αδ

αγ

∫ 1

t

r√
r2 − t2

[∫ ∞

0

cos(kτ)J0(kr) dk

]
dr

− δ(βγ − αδ)
αγ2

∫ 1

t

r√
r2 − t2

[∫ ∞

0

cos(kτ)J0(kr)
k + λ

dk

]
dr (4.3.262)

=
βγ − αδ

αγ

{
ln

[√
1 − t2 +

√
1 − τ2√|t2 − τ2|

]

+
δ

πγ

∫ 1

0

ln

[√
1 − t2 +

√
1 − η2√|t2 − η2|

]
R(τ, η, δ/γ) dη

}
, (4.3.263)

R(τ, t, k) = sin[k(t + τ)] si[k(t + τ)] + cos[k(t + τ)] ci[k(t + τ)]
+ sin[k|t − τ |] si[k|t − τ |] + cos[k|t − τ |] ci[k|t − τ |], (4.3.264)

λ = δ/γ and si(·) and ci(·) are the sine and cosine integrals.

• Example 4.3.12

Consider56 the axisymmetric Laplace equation

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < 1, (4.3.265)

56 Reprinted from J. Theor. Biol., 81, A. Nir and R. Pfeffer, Transport of macro-
molecules across arterial wall in the presence of local endothial injury, 685–711, c©1979,
with permission from Elsevier.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞ |u(r, z)| < ∞, u(r, 0) = 0, (4.3.266)

and 
u(r, 1) = 1, 0 < r ≤ a,

u(r, 1) +
uz(r, 1)

σ
= 1, a < r < ∞.

(4.3.267)

The interesting aspect of this example is the mixture of boundary conditions
along the boundary z = 1. For 0 < r < a, we have a Dirichlet boundary
condition that becomes a Robin boundary condition when a < r < ∞.

Applying Hankel transforms, the solution to Equation 4.3.265 and the
boundary conditions given by Equation 4.3.266 is

u(r, z) =
σz

1 + σ
+

a

1 + σ

∫ ∞

0

A(k) sinh(kz)J0(kr) dk. (4.3.268)

Substitution of Equation 4.3.268 into Equation 4.3.267 leads to the dual in-
tegral equations:

a

∫ ∞

0

A(k) sinh(k)J0(kr) dk = 1, 0 < r ≤ a, (4.3.269)

and∫ ∞

0

A(k)
[
sinh(k) +

k cosh(k)
σ

]
J0(kr) dk = 0, a < r < ∞. (4.3.270)

A procedure for solving Equation 4.3.269 and Equation 4.3.270 was de-
veloped by Tranter57 who proved that dual integral equations of the form∫ ∞

0

G(λ)f(λ)J0(λa) dλ = g(a), (4.3.271)

and ∫ ∞

0

f(λ)J0(λa) dλ = 0 (4.3.272)

have the solution

f(λ) = λ1−κ
∞∑

n=0

AnJ2m+κ(λ), (4.3.273)

if G(λ) and g(a) are known. The value of κ is chosen so that the difference
G(λ) − λ2κ−2 is fairly small. In the present case, f(λ) = sinh(λ)A(λ, a),
g(a) = 1 and G(λ) = 1 + λ coth(λ)/σ.

57 Tranter, C. J., 1950: On some dual integral equations occurring in potential problems
with axial symmetry. Quart. J. Mech. Appl. Math., 3, 411–419.
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Figure 4.3.11: Educated at Queen’s College, Oxford, Clement John Tranter, CBE, (1909–
1991) excelled both as a researcher and educator, primarily at the Military College of
Science at Woolrich and then Shrivenham. His mathematical papers fall into two camps:
(a) the solution of boundary value problems by classical and transform methods and (b)
the solution of dual integral equations and series. He is equally well known for a series
of popular textbooks on integral transforms and Bessel functions. (Portrait provided by
kind permission of the Defense College of Management and Technology Library’s Heritage
Centre.)

What is the value of κ here? Clearly, we would like our solution to be
valid for a wide range of σ. Because G(λ) → 1 as σ → ∞, a reasonable choice
is κ = 1. Therefore, we take

sinh(k)A(k) =
∞∑

n=1

An

1 + k coth(k)/σ
J2n−1(ka). (4.3.274)

Our final task remains to find An.
We begin by writing

An

1 + k coth(k)/σ
J2n−1(ka) =

∞∑
m=1

Bmn J2m−1(ka), (4.3.275)

where Bmn depends only on a and σ. Multiplying Equation 4.3.275 by dk/k×
J2p−1(ka) and integrating∫ ∞

0

An

1 + k coth(k)/σ
J2n−1(ka)J2p−1(ka)

dk

k

=
∫ ∞

0

∞∑
m=1

Bmn J2m−1(ka)J2p−1(ka)
dk

k
. (4.3.276)
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Because58 ∫ ∞

0

J2n−1(ka)J2p−1(ka)
dk

k
=

δmp

2(2m − 1)
, (4.3.277)

where δmp is the Kronecker delta:

δmp =
{

1, m = p,
0, m �= p,

(4.3.278)

Equation 4.3.276 reduces to

An

∫ ∞

0

J2n−1(ka)J2m−1(ka)
1 + k coth(k)/σ

dk

k
=

Bmn

2(2m − 1)
. (4.3.279)

If we define

Smn =
∫ ∞

0

J2n−1(ka)J2m−1(ka)
1 + k coth(k)/σ

dk

k
, (4.3.280)

then we can rewrite Equation 4.3.279 as

AnSmn =
Bmn

2(2m − 1)
. (4.3.281)

Because59

a

∫ ∞

0

J0(kr)J2m−1(ka) dk = Pm−1

(
1 − 2r2

a2

)
, r < a, (4.3.282)

where Pm(·) is the Legendre polynomial of order m, Equation 4.3.282 can be
rewritten ∞∑

n=1

∞∑
m=1

BmnPm−1

(
1 − 2r2

a2

)
= 1. (4.3.283)

Equation 4.3.283 follows from the substitution of Equation 4.3.274 into Equa-
tion 4.3.269 and then using Equation 4.3.282. Multiplying Equation 4.3.283
by Pm−1(ξ) dξ, integrating between −1 and 1, and using the orthogonality
properties of the Legendre polynomial, we have

∞∑
n=1

Bmn

∫ 1

−1

[Pm−1(ξ)]
2 dξ =

∫ 1

−1

Pm−1(ξ) dξ =
∫ 1

−1

P0(ξ)Pm−1(ξ) dξ,

(4.3.284)

58 Gradshteyn and Ryzhik, op. cit., Formula 6.538.2.

59 Ibid., Formula 6.512.4.
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Table 4.3.1: The Convergence of the Coefficients An Given by Equation
4.3.287 Where Smn Has Nonzero Values for 1 ≤ m, n ≤ N

N A1 A2 A3 A4 A5 A6 A7 A8

1 2.9980
2 3.1573 −1.7181
3 3.2084 −2.0329 1.5978
4 3.2300 −2.1562 1.9813 −1.4517
5 3.2411 −2.2174 2.1548 −1.8631 1.3347
6 3.2475 −2.2521 2.2495 −2.0670 1.7549 −1.2399
7 3.2515 −2.2738 2.3073 −2.1862 1.9770 −1.6597 1.1620
8 3.2542 −2.2882 2.3452 −2.2626 2.1133 −1.8925 1.5772 −1.0972

which shows that only m = 1 yields a nontrivial sum. Thus,

∞∑
n=1

Bmn = 2(2m − 1)
∞∑

n=1

AnSmn = 0, 2 ≤ m, (4.3.285)

and
∞∑

n=1

B1n = 2
∞∑

n=1

AnS1n = 1, (4.3.286)

or
∞∑

n=1

SmnAn = 1
2δm1. (4.3.287)

Thus, we reduced the problem to the solution of an infinite number of linear
equations that yield An. Selecting some maximum value for n and m, say
N , each term in the matrix Smn, 1 ≤ m, n ≤ N , is evaluated numerically
for a given value of a and σ. By inverting Equation 4.3.287, we obtain the
coefficients An for n = 1, . . . , N . Because we solved a truncated version
of Equation 4.3.287, they will only be approximate. To find more accurate
values, we can increase N by 1 and again invert Equation 4.3.287. In addition
to the new AN+1, the previous coefficients will become more accurate. We
can repeat this process of increasing N until the coefficients converge to their
correct values. This is illustrated in Table 4.3.1 when σ = a = 1.

Once we have computed the coefficients An necessary for the desired ac-
curacy, we use Equation 4.3.274 to find A(k) and then obtain u(r, z) from
Equation 4.3.268 via numerical integration. Figure 4.3.12 illustrates the solu-
tion when σ = 1 and a = 2.
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Figure 4.3.12: The solution of the axisymmetric Laplace equation, Equation 4.3.265, with
u(r, 0) = 0 and the mixed boundary condition given by Equation 4.3.267. Here we have
chosen σ = 1 and a = 2.

• Example 4.3.13

Let us now examine the case of systems of partial differential equations
where one of the boundary conditions is mixed. Consider60

∂2u1

∂r2
+

1
r

∂u1

∂r
+

∂2u1

∂z2
= 0, 0 ≤ r < ∞, 0 < z < b, (4.3.288)

∂2u2

∂r2
+

1
r

∂u2

∂r
+

∂2u2

∂z2
= 0, 0 ≤ r < ∞, z < 0, (4.3.289)

subject to the boundary conditions

lim
r→0

|u1(r, z)| < ∞, lim
r→∞u1(r, z) → 0, 0 < z < b, (4.3.290)

lim
r→0

|u2(r, z)| < ∞, lim
r→∞u2(r, z) → 0, z < 0, (4.3.291)

u1(r, b) = 0, 0 ≤ r < ∞, (4.3.292)

lim
z→−∞u2(r, z) → 0, 0 ≤ r < ∞, (4.3.293)

and {
u1(r, 0) = 1, 0 ≤ r < a,

ε ∂u1(r, 0)/∂z = ε0 ∂u2(r, 0)/∂z, a ≤ r < ∞.
(4.3.294)

Using Hankel transforms, the solutions to Equation 4.3.288 and Equation
4.3.289 are

u1(r, z) =
∫ ∞

0

A(k)
sinh[k(b − z)/a]

cosh(bk/a)
J0(kr/a)

dk

k
, (4.3.295)

60 See Gelmont, B., M. S. Shur, and R. J. Mattauch, 1995: Disk and stripe capacitances.
Solid-State Electron., 38, 731–734.
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and
u2(r, z) =

∫ ∞

0

A(k) tanh(kb/a)ekz/aJ0(kr/a)
dk

k
. (4.3.296)

Equation 4.3.295 satisfies not only Equation 4.3.288, but also Equation 4.3.290
and Equation 4.3.292. Similarly, Equation 4.3.296 satisfies not only Equation
4.3.289, but also Equation 4.3.291 and Equation 4.3.293. Substituting Equa-
tion 4.3.295 and Equation 4.3.296 into Equation 4.3.294, we obtain the dual
integral equations∫ ∞

0

A(k) tanh(kb/a)J0(kr/a)
dk

k
= 1, 0 ≤ r < a, (4.3.297)

and∫ ∞

0

A(k) [1 + ε0 tanh(kb/a)/ε]J0(kr/a) dk = 0, a < r < ∞. (4.3.298)

If we define A(k) by

[1 + ε0 tanh(kb/a)/ε]A(k) = k

∫ 1

0

f(t) cos(kt) dt, (4.3.299)

then direct substitution of Equation 4.3.299 into Equation 4.3.298 shows that
it is satisfied identically. We next substitute Equation 4.3.299 into Equation
4.3.297 and interchange the order of integration. This yields∫ ∞

0

tanh(kb/a)J0(kr/a)
1 + ε0 tanh(kb/a)/ε

[∫ 1

0

f(t) cos(kt) dt

]
dk = 1, 0 < t < 1.

(4.3.300)
From Equation 1.4.9, we find that

d

dt

[∫ at

0

r J0(kr)√
t2 − r2/a2

dr

]
= a2 cos(kt). (4.3.301)

Why did we derive Equation 4.3.301? If we multiply both sides of Equation
4.3.300 by r dr/

√
t2 − r2/a2, integrate from 0 to at, differentiate with respect

to t, and use Equation 4.3.301, we obtain the following integral equation that
gives f(t):∫ 1

0

f(τ)
[∫ ∞

0

tanh(kb/a)
1 + ε0 tanh(kb/a)/ε

cos(kt) cos(kτ) dk

]
dτ = 1; (4.3.302)

or,

π

2
f(t)−

∫ 1

0

f(τ)
[∫ ∞

0

1 − tanh(kb/a)
1 + ε0 tanh(kb/a)/ε

cos(kt) cos(kτ) dk

]
dτ =

(
1 +

ε0
ε

)
,

(4.3.303)
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Figure 4.3.13: The solution u1(r, z) to the mixed boundary value problem governed by
Equation 4.3.288 through Equation 4.3.294 when ε = 3ε0.

if 0 < t < 1.
At this point we must solve Equation 4.3.303 numerically to compute

f(t). Before we do that, there are two limiting cases of interest. When ε = ε0,
we have the same problem that we solved in Section 2.2 on the disc capacitor.
The second limit is ε0  ε. In this case u2(r, z) → 0 and u1(r, z) is given by
the solution to Example 4.3.2. Figure 4.3.13 shows the solution somewhere
between these two limits with ε = 3ε0.

• Example 4.3.14

During their study of a circular disk in a Brinkman medium, Feng et
al.61 solved a system of mixed boundary value problems. We join their
problem midway in progress where they derived the following governing partial
differential equations and boundary conditions:

∂2u1

∂r2
+

1
r

∂u1

∂r
− ∂2u1

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞, (4.3.304)

∂2u2

∂r2
+

1
r

∂u2

∂r
− ∂2u2

∂z2
−γ2u2 = 0, 0 ≤ r < ∞, −∞ < z < ∞, (4.3.305)

subject to the boundary conditions

lim
r→0

|u1(r, z)| < ∞, lim
r→∞u1(r, z) → 0, −∞ < z < ∞, (4.3.306)

61 Feng, J., P. Ganatos, and S. Weinbaum, 1998: The general motion of a circular disk
in a Brinkman medium. Phys. Fluids, 10, 2137–2146.
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lim
r→0

|u2(r, z)| < ∞, lim
r→∞u2(r, z) → 0, −∞ < z < ∞, (4.3.307)

lim
|z|→∞

u1(r, z) → 0, 0 ≤ r < ∞, (4.3.308)

lim
|z|→∞

u2(r, z) → 0, 0 ≤ r < ∞, (4.3.309)

∂u1

∂z
+

∂u2

∂z

∣∣∣∣
z=0−

=
∂u1

∂z
+

∂u2

∂z

∣∣∣∣
z=0+

, (4.3.310)

and
∂u1

∂r
+

∂u2

∂r

∣∣∣∣
z=0−

=
∂u1

∂r
+

∂u2

∂r

∣∣∣∣
z=0+

= r, 0 ≤ r < 1,

p(r, 0−) = p(r, 0+), 1 < r < ∞,

(4.3.311)

where
∂p

∂z
= −1

r

∂u1

∂r
and

∂p

∂r
=

1
r

∂u1

∂z
. (4.3.312)

Using Hankel transforms, the solutions to Equation 4.3.304 and Equation
4.3.305 are

u1(r, z) =
∫ ∞

0

A(k)e−k|z| rJ1(kr) dk, (4.3.313)

and
u2(r, z) =

∫ ∞

0

B(k)e−|z|
√

k2+γ2
rJ1(kr) dk. (4.3.314)

Equation 4.3.313 satisfies not only Equation 4.3.304, but also Equation 4.3.306
and Equation 4.3.308. Similarly, Equation 4.3.314 satisfies not only Equation
4.3.305, but also Equation 4.3.307 and Equation 4.3.309. Substituting Equa-
tion 4.3.313 and Equation 4.3.314 into Equation 4.3.310, we find that∫ ∞

0

[
−kA(k) −

√
k2 + γ2 B(k)

]
rJ1(kr) dk = 0, 0 ≤ r < ∞. (4.3.315)

Hence,

B(k) = − k A(k)√
k2 + γ2

. (4.3.316)

Let us now turn to the equation involving p(r, z) in the mixed boundary
condition Equation 4.3.311. Now,

∂p

∂z
= −1

r

∫ ∞

0

A(k)e−k|z| d

dr
[rJ1(kr)] dk = k

∫ ∞

0

A(k)e−k|z|J0(kr) dk.

(4.3.317)
Therefore,

p(r, z) = f(r) +
∫ ∞

0

A(k) sgn(z)e−k|z|J0(kr) dk, (4.3.318)
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Figure 4.3.14: The solution to the mixed boundary value problem governed by Equation
4.3.304 through Equation 4.3.311 when γ = 1.

where f(r) is an arbitrary function of r. The mixed boundary condition,
Equation 4.3.311, then gives

p(r, 0+) − p(r, 0−) = 2
∫ ∞

0

A(k)J0(kr) dk = 0. (4.3.319)

Consider now the first condition in Equation 4.3.311. Substitution of
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Equation 4.3.313 and Equation 4.3.314 yields∫ ∞

0

k

(
1 − k√

k2 + γ2

)
A(k)J0(kr) dk = 1, 0 ≤ r < 1, (4.3.320)

or ∫ ∞

0

kJ0(kr)√
k2 + γ2

(
k +

√
k2 + γ2

)A(k) dk =
1
γ2

, 0 ≤ r < 1; (4.3.321)

or ∫ ∞

0

[1 − F (k)] C(k)J0(kr)
dk

k
= 1, 0 ≤ r < 1, (4.3.322)

where

A(k) =
2C(k)

γ2
, and F (k) = 1 − 2k2√

k2 + γ2
(
k +
√

k2 + γ2
) . (4.3.323)

Using Cooke’s results given in Equation 4.3.24 through Equation 4.3.27
with a = 1, α = β = 1

2 , ν = 0, and G(k) = [1 − F (k)]/k, we have that

A(k) = k

∫ 1

0

h(t) cos(kt) dt, (4.3.324)

where

h(t) =
4

πγ2
+
∫ 1

0

h(τ)K(t, τ) dτ, (4.3.325)

and
K(x, τ) =

2
π

∫ ∞

0

F (k) cos(xk) cos(τk) dk. (4.3.326)

At this point we must solve Equation 4.3.325 numerically to compute h(t).
Once, we have h(t), then A(k) and B(k) follow from Equation 4.3.324 and
Equation 4.3.316, respectively. Finally, Equation 4.3.313 and Equation 4.3.314
yield u(r, z). Figure 4.3.14 illustrates the solution when γ = 1

• Example 4.3.15

Consider the mixed boundary value problem

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.3.327)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.3.328)



258 Mixed Boundary Value Problems

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.3.329)

and {
αuz(r, 0) − βu(r, 0) = −f(r), 0 ≤ r < 1,

u(r, 0) = 0, 1 < r < ∞.
(4.3.330)

Both α and β are nonzero.
In line with previous examples the solution that satisfies Equation 4.3.327

through Equation 4.3.329 is

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk. (4.3.331)

Substituting u(r, z) into the mixed boundary condition,∫ ∞

0

(αk + β)A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (4.3.332)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 ≤ r < ∞. (4.3.333)

At this point we introduce an integral definition for A(k),

A(k) =
∫ 1

0

h(t) sin(kt) dt, h(0) = 0. (4.3.334)

The demonstration that this definition of A(k) satisfies Equation 4.3.333 is
left as part of Problem 6. Turning to Equation 4.3.332, we substitute A(k)
into Equation 4.3.332 and find that

α

∫ 1

0

h(t)
[∫ ∞

0

k sin(kt)J0(kr) dk

]
dt (4.3.335)

+ β

∫ 1

0

h(t)
[∫ ∞

0

sin(kt)J0(kr) dk

]
dt = f(r), 0 ≤ r < 1.

At this point, we would normally manipulate Equation 4.3.335 into a
Fredholm integral equation. This is left as an exercise in Problem 6. Here we
introduce an alternative method developed by Gladwell et al.62 The derivation
begins by showing that∫ x

0

[
t

∫ ∞

0

kA(k)J0(kt) dk

]
dt√

x2 − t2
=
∫ ∞

0

A(k) sin(kx) dk. (4.3.336)

62 Taken from Gladwell, G. M. L., J. R. Barber, and Z. Olesiak, 1983: Thermal problems
with radiation boundary conditions. Quart. J. Mech. Appl. Math., 36, 387–401 by
permission of Oxford University Press; see also Lemczyk, T. F., and M. M. Yovanovich,
1988: Thermal constriction resistance with convective boundary conditions–1. Half-space
contacts. Int. J. Heat Mass Transfer , 31, 1861–1872.
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This follows from interchanging the order of integration and applying Equa-
tion 1.4.9. Next, we view the quantity within the square brackets on the left
side of Equation 4.3.336 as the unknown in an integral equation of the Abel
type. From Equation 1.2.13 and Equation 1.2.14, we have that

t

∫ ∞

0

kA(k)J0(kt) dk =
2
π

d

dt

{∫ t

0

[∫ ∞

0

A(k) sin(kτ) dk

]
τ dτ√
t2 − τ2

}
(4.3.337)

=
2
π

d

dt

{∫ ∞

0

A(k)
[∫ t

0

τ sin(kτ)√
t2 − τ2

dτ

]
dk

}
(4.3.338)

=
d

dt

[
t

∫ ∞

0

A(k)J1(kt) dk

]
(4.3.339)

=
d

dt

{
t

∫ 1

0

h(τ)
[∫ ∞

0

sin(kτ)J1(kt) dk

]
dτ

}
(4.3.340)

=
d

dt

[∫ t

0

τ h(τ)√
t2 − τ2

dτ

]
. (4.3.341)

If we divide the left side of Equation 4.3.341 by t, we have the first term on
the left side of Equation 4.3.335. The second term can be evaluated from
integral tables.63 Consequently Equation 4.3.335 becomes

α

r

d

dr

[∫ r

0

t h(t)√
r2 − t2

dt

]
+ β

∫ 1

r

h(t)√
t2 − r2

dt = f(r), 0 ≤ r < 1. (4.3.342)

To solve Equation 4.3.342, let

h(t) = ψ(θ) =
∞∑

n=0

An cos[(2n + 1)θ], 0 < θ < π/2, (4.3.343)

and

sin(θ)ψ(θ) =
∞∑

n=0

Bn cos[(2n + 1)θ], 0 < θ < π/2, (4.3.344)

where t = cos(θ). If r = cos(ϕ), then

∫ r

0

t h(t)√
r2 − t2

dt =
∞∑′

n=0

An

∫ π

ϕ

sin(2θ) cos[(2n + 1)θ]√
2[cos(2ϕ) − cos(2θ)]

dθ (4.3.345)

=
π

8

∞∑′

n=0

An {Pn+1[cos(2ϕ)] − Pn−1[cos(2ϕ)]} (4.3.346)

63 Gradshteyn and Ryzhik, op. cit., Formula 4.671.1.
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from Equation 1.3.4 and Equation 1.3.5, where the prime denotes that when-
ever P−1(·) occurs, then it is replaced by P0(·). Similarly,∫ 1

r

h(t)√
r2 − t2

dt = 2
∞∑

n=0

Bn

∫ ϕ

0

cos[(2n + 1)θ]√
2[cos(2ϕ) − cos(2θ)]

dθ (4.3.347)

=
π

2

∞∑
n=0

BnPn[cos(2ϕ)]. (4.3.348)

Because

Pn(x) − Pn+2(x)
1 − x2

=
(2n + 3)

2(n + 1)(n + 2)

n∑
k=0

[
1 + (−1)n+k

]
(2k + 1)Pk(x)

(4.3.349)
and using the derivative rule for Legendre polynomials, we find that

1
r

d

dr

[
Pn+1(2r2 − 1) − Pn−1(2r2 − 1)

]
= 4(2n + 1)Pn(2r2 − 1). (4.3.350)

Therefore, Equation 4.3.342 becomes

απ

2

∞∑
n=0

(2n + 1)AnPn(2r2 − 1) +
βπ

2

∞∑
n=0

BnPn(2r2 − 1) = f(r). (4.3.351)

If we reexpress f(r) as the Fourier-Legendre expansion

f(r) =
π

2

∞∑
n=0

(2n + 1)CnPn(2r2 − 1), (4.3.352)

then
αAn +

β

2n + 1
Bn = Cn, n = 0, 1, 2, . . . . (4.3.353)

In addition to Equation 4.3.353, we also have from Equation 4.3.344 that

Bn =
∞∑

m=0

cm,nAn, (4.3.354)

where

cm,n =
2
π

∫ π

0

sin(θ) cos[(2m + 1)θ] cos[(2n + 1)θ] dθ (4.3.355)

=
1
π

(
1

2n + 2m + 3
− 1

2n + 2m + 1
+

1
2n − 2m + 1

− 1
2n − 2m − 1

)
.

(4.3.356)
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We can now solve for An via Equation 4.3.353 and Equation 4.3.354 after we
truncate the set of infinite equations to a finite number. Then h(t) follows
from Equation 4.3.343. Finally, A(k) is computed from Equation 4.3.334 while
u(r, z) is obtained from Equation 4.3.331.

Problems

1. Solve the potential problem64

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞ |u(r, z)| < ∞, 0 < z < ∞,

lim
z→∞u(r, z) → u∞, 0 ≤ r < ∞,

and {
u(r, 0) = u∞ − ∆u, 0 ≤ r < a,

uz(r, 0) = 0, a ≤ r < ∞,

where u∞ and ∆u are constants.

Step 1 : Show that

u(r, z) = u∞ −
∫ ∞

0

A(k)e−kzJ0(kr) dk

satisfies the partial differential equation and the boundary conditions as r → 0,
r → ∞, and z → ∞.

Step 2 : Show that∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < ∞.

Step 3 : Using the relationship65

∫ ∞

0

sin(ka)J0(kr) dk =
{

(a2 − r2)−
1
2 , r < a,

0, r > a,

64 See Fleischmann, M., and S. Pons, 1987: The behavior of microdisk and microring
electrodes. J. Electroanal. Chem., 222, 107–115; Gupta, S. C., 1957: Slow broad side
motion of a flat plate in a viscous liquid. Z. Angew. Math. Phys., 8, 257–261.

65 Gradshteyn and Ryzhik, op. cit., Formula 6.671.7.
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show that kA(k) = C sin(ka).

Step 4 : Using the relationship66∫ ∞

0

sin(ka)J0(kr)
dk

k
=
{

π/2, r ≤ a,
arcsin(a/r), r ≥ a,

show that

u(r, z) = u∞ − 2∆u

π

∫ ∞

0

e−kz sin(ka)J0(kr)
dk

k

= u∞ − 2∆u

π
arcsin

[
2a√

(r − a)2 + z2 +
√

(r + a)2 + z2

]
.

Wiley and Webster67 used this solution in an improved design for a circular
electrosurgical dispersive electrode.

2. Solve Laplace’s equation68

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

with the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
uz(r, 0) = 1, 0 ≤ r < 1,
u(r, 0) = 0, 1 < r < ∞.

(1)

See Problem 5 for a generalization of this problem.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

kA(k)e−kzJ0(kr) dk.

66 Ibid., Formula 6.693.1 with ν = 0.

67 Wiley, J. D., and J. G. Webster, 1982: Analysis and control of the current distribution
under circular dispersive electrode. IEEE Trans. Biomed. Engng., BME-29, 381–385.

68 See Yang, F.-Q., and J. C. M. Li, 1995: Impression and diffusion creep of anisotropic
media. J. Appl. Phys., 77, 110–117. This problem also appears while finding the tempera-
ture field in a paper by Florence, A. L., and J. N. Goodier, 1963: The linear thermoelastic
problem of uniform heat flow disturbed by a penny-shaped insulated crack. Int. J. Engng.
Sci., 1, 533–540.
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Problem 2

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations ∫ ∞

0

k2A(k)J0(kr) dk = −1, 0 ≤ r < 1,

and ∫ ∞

0

kA(k)J0(kr) dk = 0, 1 < r < ∞.

Step 3 : Using Equation 1.4.13 and the result69 from integral tables that

∫ ∞

0

Jν(ax) sin(bx)
dx

x
=


sin[ν arcsin(b/a)]/ν, b ≤ a,

aν sin(νπ/2)

ν
(
b +

√
b2 − a2

)ν b ≥ a,

if �(ν) > −1, show that

A(k) = − 2
kπ

∫ 1

0

t sin(kt) dt = − 2
π

[
sin(k)

k3
− cos(k)

k2

]
satisfies both integral equations given in Step 2.

Step 4 : Show that the solution to this problem is

u(r, z) = − 2
π

∫ ∞

0

[
sin(k)

k2
− cos(k)

k

]
e−kzJ0(kr) dk.

In particular, show that u(r, 0) = −2
√

1 − r2/π if 0 ≤ r < 1. The figure
labeled Problem 2 illustrates the solution u(r, z).

69 Gradshteyn and Ryzhik, op. cit., Formula 6.693.1.
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3. Solve the potential problem70

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
u(r, 0) = U0, r < a,
uz(r, 0) = 0, r > a.

Step 1: By using either separation of variables or transform methods, show
that the general solution to partial differential equation is

u(r, z) =
2
π

∫ ∞

0

A(k)e−kzJ0(kr) dk.

Note that this solution also satisfies the first three boundary conditions.

Step 2: Setting

A(k) =
∫ a

0

f(ξ) cos(kξ) dξ,

show that uz(r, 0) = 0 if r > a.

Step 3: Show that

2
π

∫ ∞

0

J0(kr)
[∫ a

0

f(ξ) cos(kξ) dξ

]
dk = U0, 0 < r < a.

Step 4: By replacing r by η in the integral equation given in Step 3, multiplying
the resulting equation by η dη/

√
r2 − η2, integrating from 0 to r, and taking

the derivative with respect to r, show that

2
π

d

dr

[∫ r

0

η√
r2 − η2

{∫ ∞

0

J0(kη)
[∫ a

0

f(ξ) cos(kξ) dξ

]
dk

}
dη

]
= U0.

Step 5: By interchanging the order of the η and k integrations and using the
relationship that ∫ r

0

η J0(kη)√
r2 − η2

dη =
sin(kr)

k
,

70 See Laporte, O., and R. G. Fowler, 1967: Weber’s mixed boundary value problem in
electrodynamics. J. Math. Phys., 8, 518–522.
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show that the integral equation in Step 4 simplifies to

2
π

d

dr

{∫ a

0

f(ξ)
[∫ ∞

0

sin(kr) cos(kξ)
dk

k

]
dξ

}
= U0.

Step 6: Use the results from Step 5 to show that if f(ξ) = U0, then A(k) =
U0 sin(ka)/k, and

u(r, z) =
2U0

π

∫ ∞

0

sin(ka)
k

e−kzJ0(kr) dk

=
2U0

π
arcsin

[
2a√

(r − a)2 + z2 +
√

(r + a)2 + z2

]
.

4. Solve Laplace’s equation71

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
uz(r, 0) = 1, 0 ≤ r < a,
u(r, 0) = 0, a < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

kA(k)e−kzJ0(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

k2A(k)J0(kr) dk = −1, 0 ≤ r < a, (1)

and ∫ ∞

0

kA(k)J0(kr) dk = 0, a ≤ r < ∞. (2)

71 See Shindo, Y., 1986: The linear magnetoelastic problem of a uniform current flow
disturbed by a penny-shaped crack in a constant axial magnetic field. Eng. Fract. Mech.,
23, 977–982.
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Problem 4

Step 2 : By introducing

kA(k) =
∫ a

0

h(t) sin(kt) dt, h(0) = 0,

show that Equation (2) is automatically satisfied.

Step 3 : By using Equation (1), show that h(t) = −2t/π and

kA(k) = − 2
πk2

[sin(ka) − ka cos(ka)] .

Step 4 : Show that the solution to the problem is

u(r, z) = − 2
π

∫ ∞

0

[sin(ka) − ka cos(ka)] e−kzJ0(kr)
dk

k2
.

The figure labeled Problem 4 illustrates this solution u(r, z).

5. Solve Laplace’s equation72

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

72 See Riffert, H., 1980: Pulsating X-ray sources: The oblique dipole configuration.
Astrophys. Space Sci., 71, 195–201.
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Problem 5

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
u(r, 0) = C1, 0 ≤ r < 1,

uz(r, 0) = −C2/r3, 1 < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

A(k)J0(kr) dk = C1, 0 ≤ r < 1,

and ∫ ∞

0

kA(k)J0(kr) dk = C2/r3, 1 ≤ r < ∞.

Step 2 : Show that

A(k) =
2
π

(C1 − C2)
sin(k)

k
+

4C2

πk

∫ ∞

1

sin(kξ)
dξ

ξ3
.

The figure labeled Problem 5 illustrates this solution u(r, z) when C1 = 1 and
C5 = 5.
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6. Solve the partial differential equation73

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
uz(r, 0) = 0, 0 ≤ r < a,
u(r, 0) = a/r, a < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ1(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

k A(k)J1(kr) dk = 0, 0 ≤ r < a,

and ∫ ∞

0

A(k)J1(kr) dk = a/r, a ≤ r < ∞.

Step 2 : Show that

A(k) =
sin(ka)

k

satisfies the integral equations. The figure labeled Problem 6 illustrates this
solution.

7. A generalization of a problem originally suggested by Popova74 was given
by Kuz’min75 who solved

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

73 Suggested by a problem solved in Appendix A of Raynolds, J. E., B. A. Munk, J.
B. Pryor, and R. J. Marhefka, 2003: Ohmic loss in frequency-selective surfaces. J. Appl.
Phys., 93, 5346–5358.

74 Popova, A. P., 1973: Nonstationary mixed problem of thermal conductivity for the
half-space. J. Engng. Phys., 25, 934–935.

75 Kuz’min, Yu. N., 1966: Some axially symmetric problems in heat flow with mixed
boundary conditions. Sov. Tech. Phys., 11, 169–173.
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Problem 6

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
αuz(r, 0) − βu(r, 0) = −f(r), 0 ≤ r < 1,

u(r, 0) = 0, 1 < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

(αk + β)A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (1)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 ≤ r < ∞. (2)

Step 2 : By introducing

A(k) =
∫ 1

0

h(t) sin(kt) dt, h(0) = 0,
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Problem 7

show that Equation (2) is automatically satisfied.

Step 3 : By using Equation (1) and Equation 1.4.14 and noting that

kA(k) = −h(1) cos(k) +
∫ 1

0

h′(t) cos(kt) dt,

show that

α

∫ r

0

h′(t)√
r2 − t2

dt = f(r) − β

∫ 1

0

h(τ)
[∫ ∞

0

sin(kτ)J0(kr) dk

]
dτ.

Step 4 : Using Equation 1.2.13, Equation 1.2.14 and Equation 1.4.9, show that

αh(t) =
2
π

∫ t

0

rf(r)√
t2 − r2

dr − 2β

π

∫ 1

0

K(t, τ)h(τ) dτ,

where

K(t, τ) =
∫ ∞

0

sin(kt) sin(kτ)
dk

k
=

1
2

ln
∣∣∣∣ t + τ

t − τ

∣∣∣∣ .
The figure labeled Problem 7 illustrates the solution u(r, z) when α = β = 1
and f(r) = 1.

8. Solve76 Laplace’s equation

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

76 A generalization of a problem solved by Mahalanabis, R. K., 1967: A mixed boundary-
value problem of thermoelasticity for a half-space. Quart. J. Mech. Appl. Math., 20,
127–134.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
u(r, 0) = f(r), 0 ≤ r < 1,

γuz(r, 0) = δu(r, 0), 1 < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (1)

and ∫ ∞

0

(γk + δ)A(k)J0(kr) dk = 0, 1 ≤ r < ∞. (2)

Step 2 : By introducing

(γk + δ)A(k) = γk

∫ 1

0

h(t) cos(kt) dt = γh(1) sin(k) − γ

∫ 1

0

h′(t) sin(kt) dt,

show that Equation (2) is automatically satisfied.

Step 3 : By using Equation (1) and Equation 1.4.14 and noting that

A(k) =
∫ 1

0

h(t) cos(kt) dt − δ

γk + δ

∫ 1

0

h(t) cos(kt) dt,

show that∫ r

0

h(t)√
r2 − t2

dt = f(r) + δ

∫ 1

0

h(τ)
[∫ ∞

0

cos(kτ)J0(kr)
dk

γk + δ

]
dτ.

Step 4 : Using Equation 1.2.13, Equation 1.2.14 and Equation 1.4.9, show that

h(t) =
2
π

d

dt

[∫ t

0

rf(r)√
t2 − r2

dr

]
− 2

π

∫ 1

0

K(t, τ)h(τ) dτ,
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Problem 8

where

K(t, τ) = −δ

∫ ∞

0

cos(kt) cos(kτ)
dk

γk + δ

=
δ

2γ

{
sin[λ(t + τ)] si[λ(t + τ)] + cos[λ(t + τ)] ci[λ(t + τ)]

+ sin[λ|t − τ |] si[λ|t − τ |] + cos[λ|t − τ |] ci[λ|t − τ |]},
λ = δ/γ and si(·) and ci(·) are the sine and cosine integrals. The figure labeled
Problem 8 illustrates the solution u(r, z) when γ = δ = 1 and f(r) = 1.

9. Solve Laplace’s equation

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
αuz(r, 0) − βu(r, 0) = −f(r), 0 ≤ r < 1,

uz(r, 0) = 0, 1 < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk
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satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

(αk + β)A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (1)

and ∫ ∞

0

kA(k)J0(kr) dk = 0, 1 ≤ r < ∞. (2)

Step 2 : By introducing

A(k) =
∫ 1

0

h(t) cos(kt) dt, h(1) = 0,

or

kA(k) = −
∫ 1

0

h′(t) sin(kt) dt,

show that Equation (2) is automatically satisfied.

Step 3 : By using Equation (1) and Equation 1.4.13, show that

α

∫ 1

r

h′(t)√
t2 − r2

dt = f(r) − β

∫ 1

0

h(τ)
[∫ ∞

0

cos(kτ)J0(kr) dk

]
dτ.

Step 4 : Using Equation 1.2.15, Equation 1.2.16 and Equation 1.4.14, show
that

αh(t) = − 2
π

∫ 1

t

r f(r)√
r2 − t2

dr +
2β

π

∫ 1

0

K(t, τ)h(τ) dτ,

where

K(t, τ) =
∫ 1

t

r√
r2 − t2

[∫ ∞

0

cos(kτ)J0(kr) dk

]
dr

= ln

[√
1 − t2 +

√
1 − τ2√|t2 − τ2|

]
.

The figure labeled Problem 9 illustrates the solution u(r, z) when α = β = 1
and f(r) = 1.

10. Solve Laplace’s equation

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

with the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,
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Problem 9

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
uz(r, 0) = −f(r), 0 ≤ r < 1,

u(r, 0) = 0, 1 < r < ∞.
(1)

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations ∫ ∞

0

kA(k)J0(kr) dk = f(r), 0 ≤ r < 1,

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞.

Step 3 : If

A(k) =
∫ 1

0

g(t) sin(kt) dt,

show that A(k) satisfies the second integral equation in Step 2 identically.
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Step 4 : Using the first integral equation in Step 2, show that

g(t) =
2
π

∫ t

0

rf(r)√
t2 − r2

dr.

Step 5 : Because

k A(k) = −g(1) cos(k) +
∫ 1

0

g′(t) cos(kt) dt, g(0) = 0,

show that ∫ r

0

g′(t)√
r2 − t2

dt = f(r),

or

g(t) =
2
π

∫ t

0

rf(r)√
t2 − r2

dr.

11. Let us solve Laplace’s equation77

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

with the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
uz(r, 0) = 0, 0 ≤ r < 1,
u(r, 0) = f(r), 1 < r < ∞.

(1)

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr)
dk

k
.

Step 2 : Using boundary condition (1), show that A(k) satisfies the dual inte-
gral equations ∫ ∞

0

A(k)J0(kr) dk = 0, 0 ≤ r < 1,

77 Reprinted from Int. J. Engng. Sci., 9, B. R. Das, Some axially symmetric thermal
stress distributions in elastic solids containing cracks – I. An external crack in an infinite
solid, 469–478, c©1971, with permission Elsevier.
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Problem 11

and ∫ ∞

0

A(k)J0(kr)
dk

k
= f(r), 1 < r < ∞.

Step 3 : If

A(k) = k

∫ ∞

1

h(t) sin(kt) dt = h(1) cos(k) +
∫ ∞

1

h′(t) cos(kt) dt,

with limt→∞ h(t) → 0, show that A(k) satisfies the second integral equation
in Step 2 identically.

Step 4 : Using the first integral equation in Step 2, show that∫ ∞

0

A(k)J0(kr)
dk

k
=
∫ ∞

r

h(t)√
t2 − r2

dt = f(r), 1 < r < ∞.

Step 5 : Solving the integral equation in Step 4, show that

h(t) = − 2
π

d

dt

[∫ ∞

t

rf(r)√
t2 − r2

dr

]
.

The figure entitled Problem 11 illustrates this solution when f(r) = −T0H(a−
r) with a = 2.

12. Let us solve the Poisson equation78

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= κ2u, 0 ≤ r < ∞, −∞ < z < ∞,

78 See Agra, R., E. Trizac, and L. Bocquet, 2004: The interplay between screening
properties and colloid anisotropy: Towards a reliable pair potential for disc-like charged
particles. Eur. Phys. J., Ser. E, 15, 345–357.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞,

{
u(r, 0) = u0, 0 ≤ r < a,
uz(r, 0) = 0, a < r < ∞,

and
lim

|z|→∞
u(r, z) → 0, 0 ≤ r < ∞,

where κ > 0. The case κ = 0 was considered already in Problem 1.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−
√

k2+κ2 |z| dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

A(k)J0(kr) dk = u0, 0 ≤ r < a,

and ∫ ∞

0

√
k2 + κ2A(k)J0(kr) dk = 0, a < r < ∞.

Step 2 : Setting x = r/a, ξ = ka and g(ξ) =
√

ξ2 + (κa)2A(ξ)/u0, show that
dual integral equations in Step 1 become∫ ∞

0

g(ξ)√
ξ2 + (κa)2

J0(xξ) dξ = 1, 0 ≤ x < 1,

and ∫ ∞

0

g(ξ)J0(xξ) dξ = 0, 1 < x < ∞.

Step 3 : Using Equation 4.3.24 through Equation 4.3.27, show that

g(ξ) =
2ξ

π

∫ 1

0

h(t) cos(ξt) dt,

where h(t) is given by the integral equation

h(x) +
∫ 1

0

h(t)

{
2
π

∫ ∞

0

[
k√

k2 + (κa)2
− 1

]
cos(tk) cos(xk) dk

}
dt = 1,



278 Mixed Boundary Value Problems

0

0.5

1

1.5

2 −1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/ar/a

u(
r,

z)
/u

0

Problem 12

for 0 ≤ x ≤ 1.

Step 4 : Show that

2
π

∫ ∞

0

[
k√

k2 + (κa)2
− 1
]

cos(tk) cos(xk) dk

= − (κa)2

π

∫ ∞

0

cos[(t + x)k] + cos[(t − x)k][
k +

√
k2 + (κa)2

]√
k2 + (κa)2

dk.

Given κa, this integral is evaluated numerically and the result is substituted
into the integral equation given in Step 3. The computed values of h(x) are
used to find g(ξ) using a numerical scheme developed by Ehrenmark79 for
integrands that oscillate rapidly. Finally, the potential is computed. The
figure labeled Problem 12 illustrates an example when κa = 1.

13. A problem similar to Example 4.3.2 involves solving Laplace’s equation80

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < L,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < L,

79 Ehrenmark, U. T., 1988: A three-point formula for numerical quadrature of oscillatory
integrals with variable frequency. J. Comput. Appl. Math., 21, 87–99.

80 See Yang, F.-Q., and J. C. M. Li, 1993: Impression creep of a thin film by vacancy
diffusion. II. Cylindrical punch. J. Appl. Phys., 74, 4390–4397.
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uz(r, 0) = 1, 0 ≤ r < 1,
u(r, 0) = 0, 1 < r < ∞,

and
uz(r, L) = 0, 0 ≤ r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)
cosh[k(z − L)]

cosh(kL)
J0(kr) dk

satisfies the partial differential equation and the boundary conditions provided
that A(k) satisfies the dual integral equations∫ ∞

0

kA(k) tanh(kL)J0(kr) dk = −1, 0 ≤ r < 1, (1)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞. (2)

Step 2 : Introducing

A(k) =
2
π

∫ 1

0

f(t) sin(kt) dt,

where f(t) is a real and continuous function, show that Equation (2) is auto-
matically satisfied. Hint: Use Equation 1.4.13.

Step 3 : Using Equation (1), show that f(t) is given by the integral equation

f(x) − 2
π

∫ 1

0

f(t)
{∫ ∞

0

[1 − tanh(kL)] sin(kx) sin(kt) dk

}
dt = −x.

This integral equation must be solved numerically. The values of f(t) are
then used to compute A(k). Finally, the values of A(k) are substituted into
the solution of u(r, z). The figure labeled Problem 13 illustrates this solution
u(r, z) when L = 1.

14. Solve Laplace’s equation81 in cylindrical coordinates:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < L,

81 Reprinted from Solid-State Electron., 42, L. S. Tan, M. S. Leong, and S. C. Choo,
Theory for the determination of backside contact resistance of semiconductor wafers from
surface potential measurements, 589–594, c©1998 with the permission from Elsevier.
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Problem 13

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < L,

{
u(r, 0) = 1, 0 ≤ r < 1,
uz(r, 0) = 0, 1 < r < ∞,

and
u(r, L) = −γuz(r, L), 0 ≤ r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)
k

{[1 + D(k)] cosh(kz) − sinh(kz)}J0(kr) dk,

with D(k) = [kγ +tanh(kL)]/[1+kγ tanh(kL)]−1, satisfies the partial differ-
ential equation and the boundary conditions provided that A(k) satisfies the
dual integral equations∫ ∞

0

A(k)
k

[1 + D(k)] J0(kr) dk = 1, 0 ≤ r < 1, (1)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞. (2)

Step 2 : By introducing

A(k) =
2k

π

∫ 1

0

f(t) cos(kt) dt,
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Problem 14

where f(t) is a real, even and continuous function, show that Equation (2) is
automatically satisfied. Hint: See Section 2.2.

Step 3 : Using Equation (1), show that f(t) is given by the integral equation

f(t) +
1
π

∫ 1

0

f(η)
{∫ ∞

0

D(k) cos[(t − η)k] dk +
∫ ∞

0

D(k) cos[(t + η)k] dk

}
dη = 1.

This integral equation must be solved numerically. Because the integrals
involving cos[(t−η)k] and cos[(t+η)k] can oscillate rapidly, we use a numerical
scheme by Ehrenmark82 for their evaluation. A(k) and B(k) then follow
from f(t). Finally, the solution u(r, z) involves a numerical integration where
the integrand includes both A(k) and B(k). The figure labeled Problem 14
illustrates this solution u(r, z) when γ = L = 1.

14. Solve Laplace’s equation in cylindrical coordinates:

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −h < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −h < z < ∞, (1)

u(r,−h) = 0, 0 ≤ r < ∞, (2)

82 Ehrenmark, op. cit.
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u(r, 0−) = u(r, 0+) = 1, 0 ≤ r < 1,

u(r, 0−) = u(r, 0+), uz(r, 0−) = uz(r, 0+), 1 < r < ∞,
(3)

and
lim

z→∞u(r, z) → 0. (4)

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)
sinh[k(z + h)]

sinh(kh)
J0(kr) dk, −h < z < 0,

and

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr) dk, 0 < z < ∞,

satisfy the partial differential equation and the boundary conditions given by
Equation (1), Equation (2), Equation (4), and u(r, 0−) = u(r, 0+).

Step 2 : Show that the boundary condition given by Equation (3) yields the
dual integral equations∫ ∞

0

C(k)
[
1 − e−2kh

]
J0(kr)

dk

k
= 2, 0 ≤ r < 1, (a)

and ∫ ∞

0

C(k)J0(kr) dk = 0, 1 ≤ r < ∞, (b)

where C(k) = kA(k)[1 + coth(kh)].

Step 3 : Verify that

C(k) =
2k

π

∫ 1

0

cos(kt)g(t) dt

satisfies Equation (b).

Step 4 : Show that g(t) is governed by

g(t) − 2
π

∫ 1

0

g(τ)F (t, τ) dτ =
4
π

,

where

F (t, τ) =
∫ ∞

0

e−2hk cos(kt) cos(kτ) dk

=
4h

π

[
1

4h2 + (t + τ)2
+

1
4h2 + (t − τ)2

]
.
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The figure labeled Problem 15 illustrates this solution when h = 1.

16. Solve

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞,

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞,

and {
u(r, 0) = r, 0 ≤ r < a,
uz(r, 0) = 0, a < r < ∞.

Step 1 : Show that

u(r, z) =
∫ ∞

0

A(k)e−kzJ1(kr) dk

satisfies the partial differential equation and the first three boundary condi-
tions.

Step 2 : Show that the last boundary condition yields the dual integral equa-
tions ∫ ∞

0

A(k)J1(kr) dk = r, 0 ≤ r < a,
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Problem 16

and ∫ ∞

0

kA(k)J1(kr) dk = 0, a < r < ∞.

Step 3 : Using Busbridge’s results (see Equation 2.4.48 and Equation 2.4.49),
show that

A(k) =
4a2

π

[
sin(ka)
k2a2

− cos(ka)
ka

]
.

Step 4 : Show that the solution to the problem is

u(r, z) =
4a

π

∫ ∞

0

[
sin(ka)

ka
− cos(ka)

]
e−kzJ1(kr)

dk

k
.

The figure labeled Problem 16 illustrates this solution.83

4.4 TRIPLE AND HIGHER FOURIER-BESSEL INTEGRALS

In Section 4.3 we examined in detail mixed boundary value problems
which yielded dual integral equations. Here we extend our studies where we
obtain triple integral equations.

83 For an alternative derivation, see Ray, M., 1936: Application of Bessel functions to
the solution of problem of motion of a circular disk in viscous liquid. Philos. Mag., Ser.
7 , 21, 546–564.
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• Example 4.4.1

Let us solve Laplace’s equation84

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.1)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.2)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.3)

and 
u(r, 0) = 1, 0 ≤ r < a,
uz(r, 0) = 0, a < r < 1,
u(r, 0) = 0, 1 < r < ∞,

(4.4.4)

where a < 1.
Using transform methods or separation of variables, the general solution

to Equation 4.4.1, Equation 4.4.2, and Equation 4.4.3 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk. (4.4.5)

Substituting Equation 4.4.5 into Equation 4.4.4, we find that∫ ∞

0

A(k)J0(kr) dk = 1, 0 ≤ r < a, (4.4.6)

∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < 1, (4.4.7)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞. (4.4.8)

To solve this set of integral equations, let us introduce the unknown
functions f(r) and g(r) such that∫ ∞

0

kA(k)J0(kr) dk = f(r), 0 ≤ r < a, (4.4.9)

84 Taken from Tartakovsky, D. M., J. D. Moulton, and V. A. Zlotnik, 2000: Kinematic
structure of minipermeameter flow. Water Resourc. Res., 36, 2433–2442. c©2000 American
Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
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∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < 1, (4.4.10)

and ∫ ∞

0

kA(k)J0(kr) dk = g(r), 1 < r < ∞. (4.4.11)

Invoking the inversion theorem as it applies to Hankel transforms,

A(k) =
∫ a

0

r f(r)J0(kr) dr +
∫ ∞

1

r g(r)J0(kr) dr. (4.4.12)

Substituting Equation 4.4.12 into Equation 4.4.6 and interchanging the order
of integration, we find that

1 −
∫ ∞

1

kg(k)ϑ(r, k) dk =
2
π

∫ r

0

∫ a

ξ

kf(k)√
k2 − ξ2

√
r2 − ξ2

dk dξ, (4.4.13)

where

ϑ(r, k) =
∫ ∞

0

J0(rξ)J0(kξ) dξ =
2
π

∫ min(k,r)

0

dξ√
k2 − ξ2

√
r2 − ξ2

. (4.4.14)

Equation 4.4.13 can be viewed as an integral equation of the Abel type. Ap-
plying Equation 1.2.13 and Equation 1.2.14, we have that

√
a2 − k2 f(k) =

2
π
− 2

π

∫ ∞

1

t
√

t2 − a2

t2 − k2
g(t) dt, 0 ≤ k ≤ a. (4.4.15)

In a similar manner, substituting Equation 4.4.12 into Equation 4.4.8, inter-
changing the order of integration and introducing

θ(r, k) =
2
π

∫ ∞

max(k,r)

dξ√
ξ2 − k2

√
ξ2 − r2

, (4.4.16)

we have

−
∫ a

0

kf(k)θ(r, k) dk =
2
π

∫ ∞

r

∫ ξ

1

k g(k)√
ξ2 − k2

√
ξ2 − r2

dk dξ. (4.4.17)

Again, Equation 4.4.17 can be viewed as an integral equation of the Abel type
so that√

t2 − 1 g(t) = − 2
π

∫ a

0

ξ
√

1 − ξ2

t2 − ξ2
f(ξ) dξ, 1 ≤ t < ∞. (4.4.18)

Next, we rewrite Equation 4.4.15 and Equation 4.4.18 as

a
√

1 − λ2 f(aλ) =
2
π
− 2

π

∫ 1

0

√
1 − a2τ2

1 − a2λ2τ2
g

(
1
τ

)
dτ

τ2
, (4.4.19)
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and

1
µ2

√
1
µ2

− 1 g

(
1
µ

)
= −2a2

π

∫ 1

0

σ
√

1 − a2σ2

1 − a2µ2σ2
f(aσ) dσ. (4.4.20)

Introducing the functions

φ(λ) = a
√

1 − λ2 f(aλ), (4.4.21)

and

ψ(µ) =
1
µ2

√
1
µ2

− 1 g

(
1
µ

)
, (4.4.22)

we obtain

A(k) = a

∫ 1

0

r φ(r)√
1 − r2

J0(akr) dr +
∫ 1

0

ψ(r)√
1 − r2

J0

(
k

r

)
dr, (4.4.23)

φ(r) =
2
π
− 2

π

∫ 1

0

K(r, σ)ψ(σ) dσ, 0 ≤ r ≤ 1, (4.4.24)

and

ψ(r) = −2a

π

∫ 1

0

K(r, τ)φ(τ) dτ, 0 ≤ r ≤ 1, (4.4.25)

where

K(x, y) =
y
√

1 − a2y2

(1 − a2x2y2)
√

1 − y2
. (4.4.26)

Belyaev85 gave an alternative approach to this problem. Again, we wish
to solve Laplace’s equation

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.27)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.28)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.29)

and 
u(r, 0) = V, 0 ≤ r < a,
uz(r, 0) = 0, a < r < 1,
u(r, 0) = 0, 1 < r < ∞,

(4.4.30)

85 See Belyaev, S. Yu., 1980: Electrostatic problem of a disk in a coaxial circular apera-
ture in a conducting plane. Sov. Tech. Phys., 25, 12–16.
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where a < 1.
Using transform methods or separation of variables, the general solution

to Equation 4.4.27, Equation 4.4.28, and Equation 4.4.29 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk. (4.4.31)

Substituting Equation 4.4.31 into Equation 4.4.30, we find that∫ ∞

0

A(k)J0(kr) dk = V, 0 ≤ r < a, (4.4.32)

∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < 1, (4.4.33)

and ∫ ∞

0

A(k)J0(kr) dk = 0, 1 < r < ∞. (4.4.34)

To solve this set of integral equations, we let A(k) = B(k)+D(k). Then,
Equation 4.4.32 through Equation 4.4.34 can be rewritten∫ ∞

0

B(k)J0(kr) dk = f(r), 0 ≤ r < a, (4.4.35)

∫ ∞

0

kB(k)J0(kr) dk = 0, a < r < ∞, (4.4.36)

∫ ∞

0

kD(k)J0(kr) dk = 0, 0 ≤ r < 1, (4.4.37)

and ∫ ∞

0

D(k)J0(kr) dk = g(r), 1 < r < ∞, (4.4.38)

where

f(r) = V −
∫ ∞

0

D(k)J0(kr) dk, (4.4.39)

and

g(r) = −
∫ ∞

0

B(k)J0(kr) dk. (4.4.40)

Equation 4.4.36 and Equation 4.4.37 are automatically satisfied if we
define B(k) and D(k) as follows:

B(k) =
∫ a

0

φ(t) cos(kt) dt, D(k) =
∫ ∞

1

ψ(τ) sin(kτ) dτ. (4.4.41)
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If we substitute Equation 4.4.41 into Equation 4.4.35, we have that∫ a

0

φ(t)
[∫ ∞

0

cos(kt)J0(kr) dk

]
dt = f(r) (4.4.42)

after we interchange the order of integration. Using Equation 1.4.14, Equation
4.4.42 simplifies to ∫ r

0

φ(t)√
r2 − t2

dt = f(r). (4.4.43)

From Equation 1.2.13 and Equation 1.2.14, we obtain

φ(t) =
2
π

d

dt

[∫ t

0

rf(r)√
t2 − r2

dr

]
. (4.4.44)

In a similar manner, we find that

ψ(τ) = − 2
π

d

dτ

[∫ ∞

τ

r g(r)√
r2 − τ2

dr

]
. (4.4.45)

Next, we substitute for D(k) in Equation 4.4.39 and find that

f(r) = V −
∫ ∞

0

[∫ ∞

1

ψ(τ) sin(kτ) dτ

]
J0(kr) dk (4.4.46)

= V −
∫ ∞

1

ψ(τ)
[∫ ∞

0

sin(kτ)J0(kr) dk

]
dτ (4.4.47)

= V −
∫ ∞

1

ψ(τ)√
τ2 − r2

dτ (4.4.48)

for 0 ≤ r < a. Here we have used Equation 1.4.13. In a similar manner, it is
readily shown that

g(r) = −
∫ a

0

φ(t)√
r2 − t2

dt, 1 < r < ∞. (4.4.49)

Finally, we substitute Equation 4.4.48 into Equation 4.4.44 and find that

φ(t) =
2
π

d

dt

[∫ t

0

rV√
t2 − r2

dr

]
(4.4.50)

− 2
π

d

dt

{∫ t

0

[∫ ∞

1

ψ(τ)√
τ2 − r2

dτ

]
r dr√
t2 − r2

}
=

2V

π
− 2

π

∫ ∞

1

ψ(τ)
d

dt

[∫ t

0

r dr√
τ2 − r2

√
t2 − r2

]
dτ (4.4.51)

=
2V

π
− 2

π

∫ ∞

1

τ ψ(τ)
t2 − τ2

dτ. (4.4.52)
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Figure 4.4.1: The solution to Equation 4.4.27 subject to the mixed boundary conditions
given by Equation 4.4.28 through Equation 4.4.30 when a = 0.5.

In a similar manner, we also find that

ψ(τ) = − 2
π

∫ a

0

τ φ(t)
τ2 − t2

dt. (4.4.53)

If we introduce t = ax, τ = ay, Φ(x) = πφ(t)/(2V ), and Ψ(y) = πψ(t)/(2V ),
Equation 4.4.52 and Equation 4.4.53 can be combined to yield

Φ(x) = 1 +
2
π2

∫ 1

0

Φ(ξ)K(x, ξ) dξ, 0 < x < 1, (4.4.54)

where

K(x, ξ) = 2a

∫ ∞

1

η2

(η2 − a2x2)(η2 − a2ξ2)
dη (4.4.55)

=
1

ξ2 − x2

[
ξ ln
(

1 + aξ

1 − aξ

)
− x ln

(
1 + ax

1 − ax

)]
. (4.4.56)

For the special case of ξ = x, we use L’Hospital rule and find that

K(x, x) =
1
2x

ln
(

1 + ax

1 − ax

)
+

a

1 − a2x2
. (4.4.57)

Our computations begin by finding φ(t) from Equation 4.4.54. The function
ψ(τ) follows from Equation 4.4.53. With φ(t) and ψ(τ), we compute B(k),
D(k) and A(k). Finally, Equation 4.4.31 gives the potential u(r, z). Figure
4.4.1 illustrates this potential when a = 0.5.
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Finally Selvadurai86 solved this problem as a system of integral equations.
In the present case we have

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.58)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.59)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.60)

and 
u(r, 0) = 1, 0 ≤ r < a,
uz(r, 0) = 0, a < r < b,
u(r, 0) = 0, b < r < ∞,

(4.4.61)

where b > a.
Using transform methods or separation of variables, the general solution

to Equation 4.4.58, Equation 4.4.59, and Equation 4.4.60 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk. (4.4.62)

Substituting Equation 4.4.62 into Equation 4.4.61, we find that∫ ∞

0

A(k)J0(kr) dk = 1, 0 ≤ r < a, (4.4.63)

∫ ∞

0

kA(k)J0(kr) dk = 0, a < r < b, (4.4.64)

and ∫ ∞

0

A(k)J0(kr) dk = 0, b < r < ∞. (4.4.65)

To solve this set of integral equations, we introduce two new functions
f(r) and g(r) such that∫ ∞

0

kA(k)J0(kr) dk = f(r), 0 ≤ r < a, (4.4.66)

and ∫ ∞

0

kA(k)J0(kr) dk = g(r), b < r < ∞. (4.4.67)

86 Reprinted from Mech. Res. Commun., 23, A. P. S. Selvadurai, On the problem of an
electrified disc located at the central opening of a coplanar earthed sheet, 621–624, c©1996,
with permission from Elsevier.
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Then, because

A(k) =
∫ a

0

r f(r)J0(kr) dr +
∫ ∞

b

r g(r)J0(kr) dr, (4.4.68)

Equation 4.4.63 and Equation 4.4.65 become∫ a

0

τ f(τ)L(τ, r) dτ +
∫ ∞

b

τ g(τ)L(τ, r) dτ = 1, 0 ≤ r < a, (4.4.69)

and∫ a

0

τ f(τ)L(τ, r) dτ +
∫ ∞

b

τ g(τ)L(τ, r) dτ = 0, b ≤ r < ∞ (4.4.70)

after interchanging the order of integration, where

L(τ, r) =
∫ ∞

0

J0(kτ)J0(kr) dk. (4.4.71)

Because87

L(τ, r) =
∫ min(τ,r)

0

ds√
(τ2 − s2)(r2 − s2)

(4.4.72)

=
∫ ∞

max(τ,r)

ds√
(s2 − τ2)(s2 − r2)

, (4.4.73)

Equation 4.4.69 can be rewritten

2
π

∫ r

0

τf(τ)

[∫ τ

0

ds√
(τ2 − s2)(r2 − s2)

]
dτ

+
2
π

∫ a

r

τf(τ)

[∫ r

0

ds√
(τ2 − s2)(r2 − s2)

]
dτ (4.4.74)

+
2
π

∫ ∞

b

τg(τ)

[∫ ∞

τ

ds√
(s2 − τ2)(s2 − r2)

]
dτ = 1,

or, after interchanging the order of integration,

2
π

∫ r

0

[∫ a

s

τ f(τ)√
τ2 − s2

dτ

]
ds√

r2 − s2
+

2
π

∫ ∞

b

[∫ s

b

τ g(τ)√
s2 − τ2

dτ

]
ds√

s2 − r2
= 1.

(4.4.75)

87 Cooke, op. cit.



Transform Methods 293

Setting

F (s) =
∫ a

s

τf(τ)√
τ2 − s2

dτ, 0 ≤ s ≤ a, (4.4.76)

and

G(s) =
∫ s

b

τg(τ)√
s2 − τ2

dτ, b ≤ s ≤ ∞, (4.4.77)

Equation 4.4.75 simplifies to∫ r

0

F (s)√
r2 − s2

ds =
π

2
−
∫ ∞

b

G(s)√
s2 − r2

ds. (4.4.78)

Applying Equation 1.2.13 and Equation 1.2.14 to Equation 4.4.78, we have
that

F (s) = − d

ds

[√
s2 − r2

∣∣∣s
0

]
− 2

π

∫ ∞

b

G(t)

{
d

ds

[∫ s

0

dy√
t2 − s2 + y2

]}
dt,

(4.4.79)
where we interchanged the order of integration and set s2−r2 = y2. Carrying
out the integration in y and simplifying, we finally obtain

F (r) +
2
π

∫ ∞

b

t G(t)
t2 − r2

dt = 1, 0 ≤ r < a. (4.4.80)

In a similar manner, for Equation 4.4.70, we have that∫ a

0

τf(τ)

[∫ τ

0

ds√
(τ2 − s2)(r2 − s2)

]
dτ

+
∫ r

b

τg(τ)

[∫ ∞

r

ds√
(s2 − τ2)(s2 − r2)

]
dτ (4.4.81)

+
∫ ∞

r

τg(τ)

[∫ ∞

τ

ds√
(s2 − τ2)(s2 − r2)

]
dτ = 0,

or∫ a

0

[∫ a

s

τ f(τ)√
τ2 − s2

dτ

]
ds√

r2 − s2
+
∫ ∞

r

[∫ s

b

τ g(τ)√
s2 − τ2

dτ

]
ds√

s2 − r2
= 0.

(4.4.82)
Equation 4.4.82 simplifies to∫ ∞

r

G(s)√
s2 − r2

ds = −
∫ a

0

F (s)√
r2 − s2

ds. (4.4.83)

Applying Equation 1.2.15 and Equation 1.2.16 to Equation 4.4.83, we have
that

G(s) =
2
π

∫ a

0

F (t)

{
d

ds

[∫ ∞

s

r√
(r2 − t2)(r2 − s2)

dr

]}
dt. (4.4.84)
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Carrying out the integration and differentiation within the wavy brackets, we
obtain

G(r) +
2s

π

∫ a

0

F (t)
s2 − t2

dt = 0, b < r < ∞. (4.4.85)

Upon solving the dual Fredholm integral equations, Equation 4.4.80 and Equa-
tion 4.4.85, we have F (r) and G(r). Next, we invert Equation 4.4.76 and
Equation 4.4.77 to find f(r) and g(r). The Fourier coefficient A(k) follows
from Equation 4.4.68 while Equation 4.4.62 yields u(r, z).

• Example 4.4.2

Let us now solve Laplace’s equation88

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.86)

when the boundary conditions are

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.87)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.88)

and 
uz(r, 0) = 0, 0 ≤ r < a,
u(r, 0) = 1, a < r < b,
uz(r, 0) = 0, b < r < ∞,

(4.4.89)

where b > a > 0.
Using transform methods or separation of variables, the general solution

to Equation 4.4.86, Equation 4.4.87, and Equation 4.4.88 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk

k
. (4.4.90)

Substituting Equation 4.4.90 into Equation 4.4.89, we find that∫ ∞

0

A(k)J0(kr) dk = 0, 0 ≤ r < a, (4.4.91)∫ ∞

0

A(k)J0(kr)
dk

k
= 1, a < r < b, (4.4.92)

and ∫ ∞

0

A(k)J0(kr) dk = 0, b < r < ∞. (4.4.93)

The mixed boundary condition, Equation 4.4.89, has led to three integral
equations involving Fourier-Bessel integrals. Our remaining task is to find the
Fourier-Bessel coefficient A(k). Can we find some general result that might
assist us in solving these triple Fourier-Bessel equations?

In 1963 Cooke89 studied how to find A(k) governed by the following

88 Similar to a problem by Borodachev, N. M., and F. N. Borodacheva, 1966: Pentration

of an annular stamp into an elastic half-space. Mech. Solids, 1(4), 101–103.

89 Cooke, op. cit.
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integral equations: ∫ ∞

0

A(k)Jν(kr) dk = 0, 0 ≤ r < a, (4.4.94)

∫ ∞

0

kpA(k)Jν(kr) dk = f(r), a < r < b, (4.4.95)

and ∫ ∞

0

A(k)Jν(kr) dk = 0, b < r < ∞, (4.4.96)

where p = ±1, ν > − 1
2 , and b > a > 0. For p = −1, he proved that

A(k) = k

∫ b

a

rg(r)Jν (kr) dr, (4.4.97)

where

g(r) = − 2
π

rν−1 d

dr

[∫ b

r

η h(η)√
η2 − r2

dη

]
, a < r < b, (4.4.98)

η2νh(η) =
d

dη

[∫ η

a

xν+1f(x)√
η2 − x2

dx

]
− 4

π2

η√
η2 − a2

∫ b

a

t h(t)√
t2 − a2

K(η, t) dt,

(4.4.99)

K(η, t) =
∫ a

0

y2ν(a2 − y2)
(η2 − y2)(t2 − y2)

dy, (4.4.100)

and a < η < b.
We can use Cooke’s results if we set ν = 0. Then, from Equation 4.4.97

through Equation 4.4.100, we have that

A(k) = k

∫ b

a

r g(r)J0(kr) dr, (4.4.101)

where

g(r) = − 2
πr

d

dr

[∫ b

r

η h(η)√
η2 − r2

dη

]
, (4.4.102)

h(η) =
d

dη

[∫ η

a

x√
η2 − x2

dx

]
− 4

π2

η√
η2 − a2

∫ b

a

t h(t)√
t2 − a2

K(η, t) dt

(4.4.103)

=
η√

η2 − a2
− 4

π2

η√
η2 − a2

∫ b

a

t h(t)√
t2 − a2

K(η, t) dt, (4.4.104)
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and

K(η, t) =
∫ a

0

a2 − y2

(η2 − y2)(t2 − y2)
dy (4.4.105)

=
1

2(η2 − t2)

[
η2 − a2

η
ln
(

η + a

η − a

)
− t2 − a2

t
ln
(

t + a

t − a

)]
. (4.4.106)

In the special case when t = η, we employ L’Hospital rule and find that

K(η, η) = − a

2η2
+

η2 + a2

4η3
ln
(

η + a

η − a

)
. (4.4.107)

If we introduce
ηh(η) =

√
η2 − a2 χ(η), (4.4.108)

then Equation 4.102 and Equation 4.4.104 become

g(r) = − 2
πr

d

dr

[∫ b

r

√
η2 − a2

η2 − r2
χ(η) dη

]
, (4.4.109)

and
η2 − a2

η2
χ(η) = 1 − 4

π2

∫ b

a

K(η, t)χ(t) dt. (4.4.110)

To compute u(r, z), we solve Equation 4.4.110 by replacing the integral
with its representation from the midpoint rule. Setting d eta = (b-a) / N,
the MATLAB code for computing χ(η) is:

for j = 1:N
xi(j) = (j-0.5)*d eta + a;
eta(j) = (j-0.5)*d eta + a;
end

for m = 1:N

for K = 0:K max
k = K*dK; factor(K+1,m) = bessel(0,k*eta(m));
end; end

for n = 1:N % rows loop (top to bottom in the matrix)
x = xi(n); b(n) = 1; % right side of the integral equation
for m = 1:N % columns loop (left to right in the matrix)
t = eta(m);
% start setting up Equation 4.4.110
if (n==m) AA(n,m) = (x-a)*(x+a)/(x*x); % first term on left side
else AA(n,m) = 0; end
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% introduce the integral in Equation 4.4.110
temp1 = (x-a)*(x+a)/x; temp2 = (t-a)*(t+a)/t;
if (t == x)
integrand = -a/(2*x*x)+(x*x+a*a)*log((x+a)/(x-a))/(4*x*x*x);
else
integrand = temp1*log((x+a)/(x-a))-temp2*log((t+a)/(t-a));
integrand = integrand/(2*(x*x-t*t));
end
AA(n,m) = AA(n,m) + 4*integrand*d eta/(pi*pi);
end
end
% compute χ(η) and call it f
f = AA\b’

Equation 4.4.109 gives g(r). First use the midpoint rule to compute the
integral and put it in F(n). Then compute the derivative to find g(n). The
MATLAB code for this is:

for n = 1:N
r = a + (n-1)*d eta; F(n) = 0;
for m = n:N
sq = xi(m)*xi(m); temp1 = sqrt((sq-a*a)/(sq-r*r));
F(n) = F(n) + temp1*f(m)*d eta;
end; end

F(N+1) = 0;
for n = 1:N
g(n) = -2*(F(n+1)-F(n))/(pi*xi(n)*d eta);
end

Finally, combining Equation 4.4.90 and Equation 4.4.101,

u(r, z) =
∫ b

a

ηg(η)
[∫ ∞

0

J0(kη)J0(kr)e−kz dk

]
dη, (4.4.111)

after the order of integration is interchanged. The integral within the square
brackets is evaluated using Simpson’s rule. The MATLAB code is:

for j = 1:21
z = 0.1*(j-1);

for K = 0:K max
k = K*dK; Z(K+1) = exp(-k*z);
end
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for i = 1:31
r = 0.1*(i-1); u(i,j) = 0;

for K = 0:K max
k = K*dK; R(K+1) = besselj(0,k*r);
end

for m = 1:N
integral = 0;
for K = 0:K max
k = K*dK; integrand = factor(K+1,m)*R(K+1)*Z(K+1);
if ( (K>0) & (K<K max))
if (mod(K+1,2) == 0)
integral = integral + 4*integrand;
else
integral = integral + 2*integrand;
end
else
integral = integral + integrand;
end
end
integral = integral*dK/3;
u(i,j) = u(i,j) + g(m)*integral*eta(m)*d eta;
end; end; end

Figure 4.4.2 illustrates this potential when a = 1 and b = 2.

• Example 4.4.3

Let us solve Laplace’s equation:90

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.112)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.113)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.114)

90 Taken with permission from Sibgatullin, N. R., I. N. Sibgatullin, A. A. Garcia, and V.
S. Manko, 2004: Magnetic fields of pulsars surrounded by accretion disks of finite extension.
Astron. Astrophys., 422, 587–590.
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Figure 4.4.2: The solution to Equation 4.4.86 subject to the mixed boundary conditions
given by Equation 4.4.87 through Equation 4.4.89 when a = 1 and b = 2.

and 
u(r, 0) = K, 0 ≤ r < a,

uz(r, 0) = A/r3, a < r < b,
u(r, 0) = 0, b < r < ∞,

(4.4.115)

where b > a > 0.
Using separation of variables or transform methods, the general solution

to Equation 4.4.112 is

u(r, z) =
∫ ∞

0

F (k)e−kzJ0(kr) dk. (4.4.116)

This solution satisfies not only Equation 4.4.112, but also Equation 4.4.113
and Equation 4.4.114. Substituting Equation 4.2.116 into Equation 4.2.115,
we obtain the triple integral equations∫ ∞

0

F (k)J0(kr) dk = K, 0 ≤ r < a, (4.4.117)

∫ ∞

0

kF (k)J0(kr) dk = −A/r3, a < r < b, (4.4.118)

and ∫ ∞

0

F (k)J0(kr) dk = 0, b < r < ∞. (4.4.119)
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We begin our solution of Equation 4.4.117 through Equation 4.4.119 by
introducing

F (k) =
∫ a

0

µ1(ξ) sin(kξ) dξ +
∫ b

a

µ2(ξ) sin(kξ) dξ. (4.4.120)

Note that µ1(ξ) is defined over the interval [0, a] while µ2(ξ) is defined over
the interval [a, b]. Substituting Equation 4.4.120 into Equation 4.4.119 and
interchanging the order of integration, we find that∫ ∞

0

F (k)J0(kr) dk =
∫ a

0

µ1(ξ)
[∫ ∞

0

sin(kξ)J0(kr) dk

]
dξ

+
∫ b

a

µ2(ξ)
[∫ ∞

0

sin(kξ)J0(kr) dk

]
dξ (4.4.121)

and Equation 4.4.119 is satisfied because the integrals within the square brack-
ets vanish according to Equation 1.4.13 since r > b > a. In a similar manner,
substituting Equation 4.4.120 into Equation 4.4.117 yields∫ a

r

µ1(ξ)√
ξ2 − r2

dξ +
∫ b

a

µ2(ξ)√
ξ2 − r2

dξ = K, 0 ≤ r < a, (4.4.122)

again by using Equation 1.4.13 and noting that r < a < b.
To solve Equation 4.4.118, we first note that

kF (k) =
∫ a

0

k µ1(ξ) sin(kξ) dξ (4.4.123)

+ µ2(a) cos(ka) − µ2(b) cos(kb) +
∫ b

a

µ′
2(ξ) cos(kξ) dξ

by integrating the second integral in Equation 4.4.120 by parts. Substitut-
ing Equation 4.4.123 into Equation 4.4.118 and interchanging the order of
integration,∫ a

0

µ1(ξ)
[∫ ∞

0

k sin(kξ)J0(kr) dk

]
dξ + µ2(a)

∫ ∞

0

cos(ka)J0(kr) dk

− µ2(b)
∫ ∞

0

cos(kb)J0(kr) dk +
∫ b

a

µ′
2(ξ)

[∫ ∞

0

cos(kξ)J0(kr) dk

]
dξ = − A

r3
.

(4.4.124)

Now, by integration by parts,∫ ∞

0

k sin(kξ)J0(kr) dk =
k

r
sin(kξ)J1(kr)

∣∣∣∣∞
0

− ξ

r

∫ ∞

0

cos(ξk)J1(rk)k dk

(4.4.125)

= − ξ H(r − ξ)
(r2 − ξ2)3/2

, (4.4.126)



Transform Methods 301

where we used tables91 to simplify the integral on the right side of Equation
4.4.125 and d[znJn(z)] = znJn−1(z) dz, n = 1, 2, . . .. Using Equation 1.4.13
and Equation 4.4.126, Equation 4.4.124 becomes

−
∫ a

0

ξrµ1(ξ)
(r2 − ξ2)3/2

dξ +
rµ2(a)√
r2 − a2

+
∫ r

a

rµ′
2(ξ)√

r2 − ξ2
dξ = − A

r2
, (4.4.127)

or

∂

∂r

[∫ a

0

ξµ1(ξ)√
r2 − ξ2

dξ +
∫ r

a

ξµ2(ξ)√
r2 − ξ2

dξ

]
= − A

r2
, a < r < b. (4.4.128)

Upon integrating Equation 4.4.128, we finally obtain∫ a

0

ξµ1(ξ)√
r2 − ξ2

dξ +
∫ r

a

ξµ2(ξ)√
r2 − ξ2

dξ =
A

r
+

aAC

a2
, a < r < b, (4.4.129)

where C is an arbitrary constant.
Because we can write Equation 4.4.129 as an integral equation of the

Abel type:∫ r

a

ξµ2(ξ)√
r2 − ξ2

dξ =
A

r
+

aAC

a2
−
∫ a

0

ξµ1(ξ)√
r2 − ξ2

dξ, a < r < b, (4.4.130)

we can solve for rµ2(r) using Equation 1.2.14. This yields

rµ2(r) =
2
π

d

dr

{∫ r

a

τ√
r2 − τ2

[
A

τ
+

aAC

a2
−
∫ a

0

ξµ1(ξ)√
τ2 − ξ2

dξ

]
dτ

}
.

(4.4.131)
Carrying out the τ integration and the r differentiation, we have that

rµ2(r) =
2
π

[
aA

r
√

r2 − a2
+

aACr

a2
√

r2 − a2
− r√

r2 − a2

∫ a

0

ξ
√

a2 − ξ2

r2 − ξ2
µ1(ξ) dξ

]
.

(4.4.132)
In a similar manner, we can write Equation 4.4.122 as an integral equation of
the Abel type:∫ a

r

µ1(ξ)√
ξ2 − r2

dξ = K −
∫ b

a

µ2(ξ)√
ξ2 − r2

dξ, 0 ≤ r < a. (4.4.133)

Its solution yields

µ1(r) = − 2
π

d

dr

{∫ a

r

τ√
τ2 − r2

[
K −

∫ b

a

µ2(ξ)√
ξ2 − τ2

dξ

]
dτ

}
. (4.4.134)

91 Gradshteyn and Ryzhik, op. cit., Formula 6.699.6.
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Carrying out the τ integration and then taking the r derivative,

µ1(r) =
2
π

[
Kr√

a2 − r2
− r√

a2 − r2

∫ b

a

√
ξ2 − a2

ξ2 − r2
µ2(ξ) dξ

]
. (4.4.135)

Upon substituting Equation 4.4.135 into Equation 4.4.131 and interchanging
the order of integration,√

r2 − a2 µ2(r) =
2aA

πr2
+

2aAC

πa2
− 4K

π2

∫ a

0

ξ2

r2 − ξ2
dξ (4.4.136)

+
4
π2

∫ b

a

√
η2 − a2 µ2(η)

[∫ a

0

ξ2

(r2 − ξ2)(η2 − ξ2)
dξ

]
dη

=
2aA

πr2
+

2aAC

πa2
+

2aK

π2

[
2 +

r

a
ln
(

r − a

r + a

)]
(4.4.137)

+
2
π2

∫ b

a

√
η2 − a2

η2 − r2
µ2(η)

[
η ln
(

η − a

η + a

)
− r ln

(
r − a

r + a

)]
dη.

Introducing the variables x = r2/a2, t = η2/a2, β = b2/a2, µ2(r) = Ay(t)/a2,
and G = a2K/A, Equation 4.4.137 simplifies to

√
x − 1 y(x) =

2
πx

+ C +
2G

π2

[
2 +

√
x ln
(√

x − 1√
x + 1

)]
(4.4.138)

+
1
π2

∫ β

1

√
t − 1 y(t)√
t(t − x)

[√
t ln
(√

t − 1√
t + 1

)
−√

x ln
(√

x − 1√
x + 1

)]
dt

=
2

πx
+ C′ +

1
π2

∫ β

1

y(t)√
t
√

t − 1(t − x)
dt (4.4.139)

×
[
(t − 1)

√
t ln
(√

t − 1√
t + 1

)
− (x − 1)

√
x ln
(√

x − 1√
x + 1

)]
,

where C′ = C + 4G/π2. Equation 4.4.139 has the advantage that its kernel is
not singular. We obtained it from Equation 4.4.138 by using the relationship
that ∫ β

1

y(t)√
t
√

t − 1
dt = 2G, (4.4.140)

which follows from Equation 4.4.133 in the limit of r → a.
The potential is computed as follows: For a specific C′, we find y(x)

from Equation 4.4.139. The corresponding value of G follows from Equation
4.4.140. By varying C′, we can compute the y(x) for a desired G. We com-
pute the function µ1(ξ) from Equation 4.4.135. Finally, combining Equation
4.4.116 and Equation 4.4.120, we have that

u(r, z) =
∫ a

0

µ1(ξ)
[∫ ∞

0

e−kz sin(kξ)J0(kr) dk

]
dξ

+
∫ b

a

µ2(ξ)
[∫ ∞

0

e−kz sin(kξ)J0(kr) dk

]
dξ. (4.4.141)
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Figure 4.4.3: The solution to Equation 4.4.112 subject to the mixed boundary conditions
given by Equation 4.4.113 through Equation 4.4.115 when b/a = 2 and a2K/A = 0.5.

We evaluate numerically the integrals inside of the square brackets (except
for the case when z = 0 where there is an exact expression) and then we
compute the ξ integration. Figure 4.4.3 illustrates the solution for b/a = 2
and G = 0.5.

• Example 4.4.4

Cooke’s results are also useful in solving92

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.142)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.143)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.144)

and 
uz(r, 0) = 0, 0 ≤ r < a,
u(r, 0) = r, a < r < b,
uz(r, 0) = 0, b < r < ∞,

(4.4.145)

92 See Borodachev, N. M., and F. N. Borodacheva, 1966: Twisting of an elastic half-space

by the rotation of a ring-shaped punch. Mech. Solids, 1(1), 63–66.
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where b > a > 0.
Using transform methods or separation of variables, the general solution

to Equation 4.4.142, Equation 4.4.143, and Equation 4.4.144 is

u(r, z) =
∫ ∞

0

A(k)J1(kr)e−kz dk

k
. (4.4.146)

Substituting Equation 4.4.146 into Equation 4.4.145, we find that∫ ∞

0

A(k)J1(kr) dk = 0, 0 ≤ r < a, (4.4.147)

∫ ∞

0

A(k)J1(kr)
dk

k
= r, a < r < b, (4.4.148)

and ∫ ∞

0

A(k)J1(kr) dk = 0, b < r < ∞. (4.4.149)

We can use Cooke’s results if we set ν = 1. Then, from Equation 4.4.97
through Equation 4.4.100, we have that

A(k) = k

∫ b

a

r g(r)J1(kr) dr, (4.4.150)

where

g(r) = − 2
π

d

dr

[∫ b

r

η h(η)√
η2 − r2

dη

]
, (4.4.151)

η2h(η) =
d

dη

[∫ η

a

x3√
η2 − x2

dx

]
− 4

π2

η√
η2 − a2

∫ b

a

t h(t)√
t2 − a2

K(η, t) dt

(4.4.152)

=
(2η2 − a2)η√

η2 − a2
− 4

π2

η√
η2 − a2

∫ b

a

t h(t)√
t2 − a2

K(η, t) dt, (4.4.153)

and

K(η, t) =
∫ a

0

y2(a2 − y2)
(η2 − y2)(t2 − y2)

dy (4.4.154)

=
1

2(η2 − t2)

[
η(η2 − a2) ln

(
η + a

η − a

)
− t(t2 − a2) ln

(
t + a

t − a

)]
− a. (4.4.155)
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Figure 4.4.4: The solution to Equation 4.4.142 subject to the mixed boundary conditions
given by Equation 4.4.143 through Equation 4.4.145 when a = 1 and b = 2.

In the special case when t = η, we employ L’Hospital rule and find that

K(η, η) =
3η2 − a2

4η
ln
(

η + a

η − a

)
− 3a

2
. (4.4.156)

If we introduce
η h(η) =

√
η2 − a2 χ(η), (4.4.157)

then Equation 4.4.151 and Equation 4.4.153 become

g(r) = − 2
π

d

dr

[∫ b

r

√
η2 − a2

η2 − r2
χ(η) dη

]
, (4.4.158)

and

(η2 − a2)χ(η) = 2η2 − a2 − 4
π2

∫ b

a

K(η, t)χ(t) dt. (4.4.159)

The evaluation of u(r, z) begins by solving Equation 4.4.159 by replacing
the integral with its representation from the midpoint rule. With those values
of χ(η), Equation 4.4.158 gives g(r). Finally, combining Equation 4.4.146 and
Equation 4.4.158, we find that

u(r, z) =
∫ b

a

ηg(η)
[∫ ∞

0

J1(kη)J1(kr)e−kz dk

]
dη, (4.4.160)

after we interchange the order of integration. We use Simpson’s rule to eval-
uate the integral within the square brackets. Figure 4.4.4 illustrates this
potential when a = 1 and b = 2.
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• Example 4.4.5

Kim and Kim solved Laplace’s equation93

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.4.161)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.4.162)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.4.163)

and 
urz(r, 0) = 0, 0 ≤ r < a,
ur(r, 0) = −r, a < r < b,
urz(r, 0) = 0, b < r < ∞.

(4.4.164)

Using transform methods or separation of variables, the general solution
to Equation 4.4.161, Equation 4.4.162, and Equation 4.4.163 is

u(r, z) =
∫ ∞

0

A(k)J0(kr)e−kz dk

k2
. (4.4.165)

Substituting Equation 4.4.165 into Equation 4.4.164, we find that∫ ∞

0

A(k)J1(kr) dk = 0, 0 ≤ r < a, (4.4.166)

∫ ∞

0

A(k)J1(kr)
dk

k
= r, a < r < b, (4.4.167)

and ∫ ∞

0

A(k)J1(kr) dk = 0, b < r < ∞. (4.4.168)

To solve this set of integral equations, we introduce

F (r) =
∫ ∞

0

A(k)J1(kr) dk, a < r < b. (4.4.169)

Therefore, the Hankel transform of Equation 4.4.169 is

A(k)
k2

=
∫ b

a

ξF (ξ)
J1(kξ)

k
dξ. (4.4.170)

93 Taken with permission from Kim, M.-U., and J.-U. Kim, 1985: Slow rotation of an
annular disk in a viscous fluid. J. Phys. Soc. Japan, 54, 3337–3341.
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Then, from Equation 4.4.167,∫ b

a

ξF (ξ)
[∫ ∞

0

J1(kξ)J1(kr) dk

]
dξ = r. (4.4.171)

Now,94∫ ∞

0

J1(kξ)J1(kr) dk =
2

πξr

∫ min(r,ξ)

0

τ2

√
r2 − τ2

√
ξ2 − τ2

dτ. (4.4.172)

Because∫ b

a

∫ min(r,ξ)

0

(· · ·) dτ dξ =
∫ r

a

∫ b

τ

(· · ·) dξ dτ +
∫ a

0

∫ b

a

(· · ·) dξ dτ, (4.4.173)

Equation 4.4.171 becomes

∫ r

a

τ2G(τ)√
r2 − τ2

dτ =
πr2

2
−
∫ a

0

τ2

√
r2 − τ2

[∫ b

a

F (ξ)√
ξ2 − τ2

dξ

]
dτ, (4.4.174)

where

G(τ) =
∫ b

τ

F (ξ)√
ξ2 − τ2

dξ, a < τ < b. (4.4.175)

Solving for F (ξ) from Equation 4.4.175 using Equation 1.2.15 and Equation
1.2.16,

F (ξ) = − 2
π

d

dξ

[∫ b

ξ

τ G(τ)√
τ2 − ξ2

dτ

]
. (4.4.176)

Turning to Equation 4.4.174, we treat the right side as a known. Then,
from Equation 1.2.13 and Equation 1.2.14,

G(τ) =

(√
τ2 − a2

τ
+

τ√
τ2 − a2

)
− 4

π2τ
√

τ2 − a2

∫ b

a

ξ G(ξ)√
ξ2 − a2

K(τ, ξ) dξ,

(4.4.177)
where

K(τ, ξ) =
1

2(τ2 − ξ2)

[
τ(τ2 − a2) ln

(
τ + a

τ − a

)
− ξ(ξ2 − a2) ln

(
ξ + a

ξ − a

)]
− a.

(4.4.178)
Our numerical calculation begins by setting τ = a sec(σ) and ξ = a sec(ζ).
Equation 4.4.177 is then finite differenced and solved to yield G(τ). Then,

94 Cooke, op. cit.
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Figure 4.4.5: The solution to Equation 4.4.161 subject to the mixed boundary conditions
given by Equation 4.4.162 through Equation 4.4.164 when b/a = 2

F (ξ) and A(k) follow from Equation 4.4.176 and Equation 4.4.170, respec-
tively. Finally Equation 4.4.165 provides u(r, z). Figure 4.4.5 illustrates this
solution when b/a = 2.

• Example 4.4.6

Let us solve95 Laplace’s equation over a slab of thickness h. The governing
equation is

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < h, (4.4.179)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < h, (4.4.180)

and {
u(r, 0) = f(r), uz(r, h) = g(r), 0 ≤ r < 1,

uz(r, 0) = u(r, h) = 0, 1 < r < ∞.
(4.4.181)

95 Taken from Dhaliwal, R. S., 1966: Mixed boundary value problem of heat conduction
for infinite slab. Appl. Sci. Res., 16, 228–240 with kind permission from Springer Science
and Business Media.
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Using Hankel transforms, the solution to Equation 4.4.179 and Equation
4.4.180 is

u(r, z) =
∫ ∞

0

[A(k) cosh(kz) + B(k) sinh(kz)] J0(kr) dk. (4.4.182)

Substituting Equation 4.4.182 into the mixed boundary conditions, Equation
4.4.181, we find that∫ ∞

0

A(k)J0(kr) dk = f(r), 0 ≤ r < 1, (4.4.183)

∫ ∞

0

[A(k) sinh(kh) + B(k) cosh(kh)] k J0(kr) dk = g(r), 0 ≤ r < 1,

(4.4.184)∫ ∞

0

k B(k)J0(kr) dk = 0, 1 < r < ∞, (4.4.185)

and ∫ ∞

0

[A(k) cosh(kh) + B(k) sinh(kh)] J0(kr) dk = 0, 1 < r < ∞.

(4.4.186)
To solve Equation 4.4.183 through Equation 4.4.186, we introduce

B(k) =
∫ 1

0

ψ1(t) cos(kt) dt, (4.4.187)

and

A(k) cosh(kh)+B(k) sinh(kh) =
∫ 1

0

ψ2(t) sin(kt) dt, ψ2(0) = 0. (4.4.188)

We introduced these relations because Equation 4.4.185 and Equation 4.4.186
are automatically satisfied. Simple algebra yields

A(k) =
1

cosh(kh)

∫ 1

0

ψ2(t) sin(kt) dt −
[
1 − e−kh

cosh(kh)

] ∫ 1

0

ψ1(t) cos(kt) dt,

(4.4.189)
and

A(k) sinh(kh) + B(k) cosh(kh) =
1

cosh(kh)

∫ 1

0

ψ1(t) cos(kt) dt

+
[
1 − e−kh

cosh(kh)

] ∫ 1

0

ψ2(t) sin(kt) dt.

(4.4.190)
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Introducing Equation 4.4.187 and Equation 4.4.189 into Equation 4.4.183 and
Equation 4.4.184, multiplying the resulting equations by dη/

√
r2 − η2 and

integrating from 0 to r, we obtain∫ r

0

dη√
r2 − η2

{
−ψ1(η) − 1

πh

∫ 1

0

ψ1(t) [G1(η + t) + G1(η − t)] dt

+
1

πh

∫ 1

0

ψ2(t) [G2(η + t) − G2(η − t)] dt

}
= f(r), 0 ≤ r < 1,

(4.4.191)

and ∫ r

0

dη√
r2 − η2

{
ψ′

2(η) +
1

πh

∫ 1

0

ψ1(t) [G′
2(η + t) + G′

2(η − t)] dt

− 1
πh

∫ 1

0

ψ2(t) [G′
1(η + t) − G′

1(η − t)] dt

}
= g(r), 0 ≤ r < 1,

(4.4.192)

where

G1(ξ) = −
∫ ∞

0

e−η

cosh(η)
cos(ξη/h) dη and G2(ξ) =

∫ ∞

0

sin(ξη/h)
cosh(η)

dη.

(4.4.193)
In deriving Equation 4.4.191 and Equation 4.4.192, we used Equation 1.4.14
and

J0(kr) =
2
π

∫ r

0

cos(kx)√
r2 − x2

dx. (4.4.194)

Equation 4.4.191 and Equation 4.4.192 are integral equations of the Abel
type. If the quantities inside the large brackets are treated as unknowns, then
Equation 1.2.14 gives

ψ1(η)+
1

πh

∫ 1

0

[K1(η, t)ψ1(t) − K2(η, t)ψ2(t)] dt = − 2
π

d

dη

[∫ η

0

r f(r)√
η2 − r2

dr

]
,

(4.4.195)
and

ψ2(η) +
1

πh

∫ 1

0

[K3(η, t)ψ1(t) + K4(η, t)ψ2(t)] dt =
2
π

∫ η

0

r g(r)√
η2 − r2

dr,

(4.4.196)
if 0 ≤ η < 1, where

K1(η, t) = G1(η + t) + G1(η − t) = −2
∫ ∞

0

e−ξ cos(ηξ/h) cos(tξ/h)
cosh(ξ)

dξ,

(4.4.197)
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Figure 4.4.6: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.4.179 through Equation 4.4.181.

K2(η, t) = G2(η + t) − G2(η − t) = 2
∫ ∞

0

cos(ηξ/h) sin(tξ/h)
cosh(ξ)

dξ, (4.4.198)

K3(η, t) = G2(η + t) + G2(η − t) = 2
∫ ∞

0

sin(ηξ/h) cos(tξ/h)
cosh(ξ)

dξ, (4.4.199)

and

K4(η, t) = G1(η − t) − G1(η + t) = −2
∫ ∞

0

e−ξ sin(ηξ/h) sin(tξ/h)
cosh(ξ)

dξ.

(4.4.200)
We compute u(r, z) as follows: First, we find ψ1(η) and ψ2(η) via Equa-

tion 4.4.195 and Equation 4.4.196. Next, A(k) and B(k) follow from Equation
4.4.187 and Equation 4.4.189, respectively. Finally, Equation 4.4.182 yields
u(r, z). Figure 4.4.6 illustrates the solution when f(r) = 0, g(r) = 1, and
h = 2.

• Example 4.4.7

Let us solve Laplace’s equation:96

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞, (4.4.201)

96 See Kuz’min, Yu. N., 1972: Electrostatic field of a circular disk near a plane containing
an aperture. Sov. Tech. Phys., 17, 473–476.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞, (4.4.202)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞, (4.4.203)

u(r, 0−) = u(r, 0+), 0 ≤ r < ∞, (4.4.204){
uz(r, 0−) = uz(r, 0+), 0 ≤ r < b,

u(r, 0) = 0, b < r < ∞,
(4.4.205)

u(r, h−) = u(r, h+), 0 ≤ r < ∞, (4.4.206)

and {
u(r, h) = V, 0 < r < a,

u(r, h−) = u(r, h+), a < r < ∞,
(4.4.207)

where b > a.
Using Hankel transforms, the solution to Equation 4.4.201 through Equa-

tion 4.4.204 and Equation 4.4.206 is

u(r, z) =
∫ ∞

0

B(k)ekzJ0(kr) dk, −∞ < z ≤ 0, (4.4.208)

u(r, z) =
∫ ∞

0

A(k) sinh(kz) + B(k) sinh[k(h − z)]
sinh(kh)

J0(kr) dk, 0 ≤ z ≤ h,

(4.4.209)
and

u(r, z) =
∫ ∞

0

A(k)ek(h−z)J0(kr) dk, h ≤ z < ∞. (4.4.210)

Substituting Equation 4.4.208 through Equation 4.4.210 into Equation 4.4.205
and Equation 4.4.207, we find that∫ ∞

0

A(k)J0(kr) dk = V, 0 ≤ r < a, (4.4.211)

∫ ∞

0

k
ekhA(k) − B(k)

sinh(kh)
J0(kr) dk = 0, a < r < ∞, (4.4.212)

∫ ∞

0

k
ekhB(k) − A(k)

sinh(kh)
J0(kr) dk = 0, 0 ≤ r < b, (4.4.213)

and ∫ ∞

0

B(k)J0(kr) dk = 0, b < r < ∞. (4.4.214)
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If we introduce

C(k) =
k
[
A(k)ekh − B(k)

]
sinh(kh)

, or A(k) = e−kh

[
B(k) +

sinh(kh)
k

C(k)
]

,

(4.4.215)
then Equation 4.4.211 through Equation 4.4.214 become∫ ∞

0

C(k)J0(kr)
dk

k
= f(r), 0 ≤ r < a, (4.4.216)

∫ ∞

0

C(k)J0(kr) dk = 0, a < r < ∞, (4.4.217)∫ ∞

0

k B(k)J0(kr) dk = g(r), 0 ≤ r < b, (4.4.218)

and ∫ ∞

0

B(k)J0(kr) dk = 0, b < r < ∞, (4.4.219)

where

f(r) = 2V +
∫ ∞

0

C(k)e−2khJ0(kr)
dk

k
−2
∫ ∞

0

B(k)e−khJ0(kr) dk, (4.4.220)

and
g(r) =

1
2

∫ ∞

0

C(k)e−khJ0(kr) dk. (4.4.221)

Equation 4.4.217 and Equation 4.4.219 are satisfied identically if we in-
troduce a φ(t) and ψ(t) such that

C(k)/k =
∫ a

0

φ(τ) cos(kτ) dτ, (4.4.222)

and

B(k) =
∫ b

0

ψ(τ) sin(kτ) dτ. (4.4.223)

Substituting for B(k) and C(k) in Equation 4.4.216 and interchanging the
order of integration, we have that∫ a

0

φ(τ)
[∫ ∞

0

cos(kτ)J0(kr) dk

]
dτ (4.4.224)

= 2V +
∫ a

0

φ(τ)
[∫ ∞

0

e−2kh cos(kτ)J0(kr) dk

]
dτ

− 2
∫ b

0

ψ(τ)
[∫ ∞

0

e−kh sin(kτ)J0(kr) dk

]
dτ,
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or ∫ r

0

φ(τ)√
r2 − τ2

dτ = 2V +
∫ a

0

φ(τ)
[∫ ∞

0

e−2kh cos(kτ)J0(kr) dk

]
dτ

− 2
∫ b

0

ψ(τ)
[∫ ∞

0

e−kh sin(kτ)J0(kr) dk

]
dτ. (4.4.225)

Solving this integral equation of the Abel type,

φ(t) =
4V

π

d

dt

[∫ t

0

τ√
t2 − τ2

dτ

]
(4.4.226)

+
2
π

∫ a

0

φ(τ)
{∫ ∞

0

e−2kh cos(kτ)
d

dt

[∫ t

0

rJ0(kr)√
t2 − r2

dr

]
dk

}
dτ

− 4
π

∫ b

0

ψ(τ)
{∫ ∞

0

e−kh sin(kτ)
d

dt

[∫ t

0

rJ0(kr)√
t2 − r2

dr

]
dk

}
dτ.

Evaluating the first integral on the right side of Equation 4.4.226 and employ-
ing Equation 1.4.9, we finally obtain

φ(t) =
4V

π
+

2
π

∫ a

0

K(t, τ)φ(τ) dτ − 4
π

∫ b

0

M(t, τ)ψ(τ) dτ, (4.4.227)

where

K(t, τ) =
∫ ∞

0

e−2kh cos(kτ) cos(kt) dk =
h

4h2 + (t + τ)2
+

h

4h2 + (t − τ)2
,

(4.4.228)
and

M(t, τ) =
∫ ∞

0

e−kh sin(kτ) cos(kt) dk =
1
2

[
t + τ

4h2 + (t + τ)2
− t − τ

4h2 + (t − τ)2

]
.

(4.4.229)
Turning to Equation 4.4.218 and substituting for B(k), we find that∫ b

0

ψ(τ)
[∫ ∞

0

k sin(kτ)J0(kr) dk

]
dτ = g(r). (4.4.230)

Multiplying Equation 4.4.230 by r dr/
√

t2 − r2, integrating from 0 to t, and
using Equation 1.4.9, Equation 4.4.230 transforms into∫ ∞

0

ψ(τ)
[∫ ∞

0

sin(kτ) sin(kt) dk

]
dτ =

∫ t

0

r g(r)√
t2 − r2

dr, (4.4.231)

or

ψ(t) =
2
π

∫ t

0

r g(r)√
t2 − r2

dr. (4.4.232)
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Figure 4.4.7: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.4.201 through Equation 4.4.207.

Upon substituting Equation 4.4.221, Equation 4.4.232 becomes

ψ(t) =
1
π

∫ ∞

0

C(k)e−kh

[∫ t

0

rJ0(kr)√
t2 − r2

dr

]
dk (4.4.233)

=
1
π

∫ ∞

0

C(k)e−kh sin(kt)
dk

k
(4.4.234)

=
1
π

∫ a

0

φ(τ)
[∫ ∞

0

e−kh sin(kt) cos(kτ) dk

]
dτ (4.4.235)

=
1
π

∫ a

0

M(τ, t)φ(τ) dτ. (4.4.236)

In summary, once we find φ(t) and ψ(t) by solving the simultaneous inte-
gral equations, Equation 4.4.227 and Equation 4.4.236, respectively, we can
compute A(k) and B(k) via Equation 4.4.222, Equation 4.4.223, and Equa-
tion 4.4.215. Finally u(r, z) follows from Equation 4.4.208 through Equation
4.4.210. Figure 4.4.7 illustrates the solution when a = 1, b = 2, and h = 1.

Problems

1. If 0 < a < 1, solve97

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞,

97 See Davis, A. M. J., 1991: Slow viscous flow due to motion of an annular disk; pressure-
driven extrusion through an annular hole in a wall. J. Fluid Mech., 231, 51–71.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞,

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞,

and 
uz(r, 0) = 0, 0 ≤ r < a,
u(r, 0) = 1, a < r < 1,
uz(r, 0) = 0, 1 < r < ∞.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the partial differential equation and the first two boundary
conditions is

u(r, z) =
2
π

∫ ∞

0

A(k)e−k|z|J0(kr) dk.

Step 2 : Using the mixed boundary condition, show that A(k) satisfies the
triple equation∫ ∞

0

kA(k)J0(kr) dk = 0, 0 ≤ r < a, 1 < r < ∞, (1)

and ∫ ∞

0

A(k)J0(kr) dk =
π

2
, a ≤ r ≤ 1. (2)

Step 3 : Given98∫ ∞

0

J0(kr) sin(k)
dk

k
=
{

π/2, 0 ≤ r < 1,
arcsin(1/r), 1 < r < ∞,

and setting

A(k) =
sin(k)

k
−
∫ a

0

F (t)
t

sin(kt) dt −
∫ ∞

1

G(t) cos(kt) dt,

show that Equation (2) is satisfied. Hint: Use Equation 1.4.13 and Equation
1.4.14.

Step 4 : Using99∫ ∞

a

r J0(kr)√
r2 − a2

dr =
cos(ka)

k
, and

∫ a

0

r J0(kr)√
a2 − r2

dr =
sin(ka)

k
,

98 Gradshteyn and Ryzhik, op. cit., Formula 6.693.

99 Ibid., Formula 6.554.3 and Formula 6.554.2.
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show that ∫ ∞

0

A(k) cos(kr) dk = 0, r ≥ 1,

and ∫ ∞

0

A(k) sin(kr) dk = 0, r ≤ a.

Step 5 : Substituting A(k) into the results from Step 4, show that

∫ a

0

F (t)
r2 − t2

dt =
π

2
G(r), 1 ≤ r,

and
1
2

ln
(

1 + r

1 − r

)
=

π F (r)
2r

− r

∫ ∞

1

G(t)
t2 − r2

dt, 0 ≤ r ≤ a.

Step 6 : Eliminating G(r), show that

F (r) − 2r2

π2

∫ a

0

[
1
r

ln
(

1 + r

1 − r

)
− 1

t
ln
(

1 + t

1 − t

)]
F (t)

r2 − t2
dt =

r

π
ln
(

1 + r

1 − r

)
,

for 0 ≤ r ≤ a.

Step 7 : Using the relationship100 that

ln
(

1 + x

1 − x

)
= 2

∞∑
n=1

x2n−1

2n − 1
, |x| < 1,

show that F (0) = 0.

Step 8 : Show that the potential is given by

u(r, z) =
2
π

arcsin

[
2√

z2 + (1 + r)2 +
√

z2 + (1 − r)2

]

− 2
π

∫ a

0

F (t)
[∫ ∞

0

e−k|z| sin(kt)
t

J0(kr) dk

]
dt

− 2
π

∫ ∞

1

G(t)
[∫ ∞

0

e−k|z| cos(kt)J0(kr) dk

]
dt.

100 Ibid., Formula 1.513.1.
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Problem 1

The figure labeled Problem 1 illustrates this solution when a = 0.5.

4.5 JOINT TRANSFORM METHODS

In the previous sections we sought to separate problems according to
whether the kernels of dual or triple integral equations contained trigonomet-
rical or Bessel functions. Such clear-cut lines of demarcation are not always
possible and we conclude with examples where the analysis includes both
Fourier and Hankel transforms as well as Fourier and Fourier-Bessel series.

• Example 4.5.1

In Section 4.1 we solved Laplace’s equation on an infinite strip. See
Equation 4.1.84 through Equation 4.1.100. Here, we again solve101 Laplace’s
equation but on a semi-infinite domain which contains two regions with dif-
ferent properties:

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < ∞, 0 < y < L, (4.5.1)

subject to the boundary conditions

ux(0, y) = 0, 0 < y < L, (4.5.2)

lim
x→∞u(x, y) → 0, 0 < y < L, (4.5.3)

u(x, L) = 0, 0 < x < ∞, (4.5.4)

101 See Shindo, Y., and A. Atsumi, 1975: Thermal stresses in a laminate composite with
infinite row of parallel cracks normal to the interfaces. Int. J. Engng. Sci., 13, 25–42.
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u(h−, y) = u(h+, y), ε1ux(h−, y) = ε2ux(h+, y), 0 < y < L, (4.5.5)

and {
uy(x, 0) = −1, 0 < x < a,
u(x, 0) = 0, a < x < ∞,

(4.5.6)

where h > a. The effect of these two different regions introduces an interfacial
condition, Equation 4.5.5.

The solution to Equation 4.5.1 to Equation 4.5.4 is

u(x, y) =
∫ ∞

0

A(k)
sinh[k(L − y)]

sinh(kL)
cos(kx) dk +

∞∑
n=1

An cosh
(nπx

L

)
sin
(nπy

L

)
(4.5.7)

for 0 < x < h; and

u(x, y) =
∞∑

n=1

Bn exp
(
−nπx

L

)
sin
(nπy

L

)
(4.5.8)

for h < x < ∞. An interesting aspect of this problem is that Equation 4.5.7
contains both a Fourier cosine transform and a Fourier sine series. Substi-
tuting Equation 4.5.7 and Equation 4.5.8 into Equation 4.5.6 yields the dual
integral equations∫ ∞

0

kA(k)[1+M(kL)] cos(kx) dk−
∞∑

n=1

(nπ

L

)
An cosh

(nπx

L

)
= 1, 0 < x < a,

(4.5.9)
and ∫ ∞

0

A(k) cos(kx) dk = 0, a < x < ∞, (4.5.10)

where M(µ) = e−µ/ sinh(µ). To solve this set of dual integral equations, we
introduce

A(k) =
∫ a

0

g(t)J0(kt) dt. (4.5.11)

We chose this definition for A(k) because∫ ∞

0

A(k) cos(kx) dk =
∫ a

0

g(t)
[∫ ∞

0

cos(kx)J0(kt) dk

]
dt = 0, (4.5.12)

where we used Equation 1.4.14. Note that 0 ≤ t ≤ x < ∞.
Turning to Equation 4.5.9, we first integrate it with respect to x and

obtain∫ ∞

0

A(k)[1 + M(kL)] sin(kx) dk −
∞∑

n=1

An sinh
(nπx

L

)
= x, 0 < x < a;

(4.5.13)
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or∫ a

0

g(t)
[∫ ∞

0

sin(kx)J0(kt) dk

]
dt +

∫ a

0

g(t)
[∫ ∞

0

M(kL) sin(kx)J0(kt) dk

]
dt

−
∞∑

n=1

An sinh
(nπx

L

)
= x, 0 < x < a. (4.5.14)

Using Equation 1.4.13, the first term in Equation 4.5.14 can be simplified and
we find that∫ x

0

g(t)√
x2 − t2

dt +
∫ a

0

g(τ)
[∫ ∞

0

M(kL) sin(kx)J0(kτ) dk

]
dτ (4.5.15)

−
∞∑

n=1

An sinh
(nπx

L

)
= x, 0 < x < a.

Solving for g(t) in the first term by using Equation 1.2.13 and Equation 1.2.14,

g(x) +
2
π

∫ a

0

g(τ)
{∫ ∞

0

M(kL)
d

dx

[∫ x

0

t sin(kt)√
x2 − t2

dt

]
J0(kτ) dk

}
dτ

− 2
π

∞∑
n=1

An
d

dx

[∫ x

0

t sinh(nπx/L)√
x2 − t2

dt

]
=

2τ0

π

d

dx

[
t2√

x2 − t2
dt

]
(4.5.16)

when 0 < x < a. Using Equation 4.1.98, Equation 4.1.99, and the fact102 that∫ x

0

t sinh(nπt)√
x2 − t2

dt =
πx

2
I1

(nπx

L

)
, (4.5.17)

we finally obtain

g(x) + x

∫ a

0

g(τ)
[∫ ∞

0

k M(kL)J0(kx)J0(kτ) dk

]
dτ

−
∞∑

n=1

An

(nπx

L

)
I0

(nπx

L

)
= x (4.5.18)

for 0 < x < a.
Before we can solve Equation 4.5.18, we must eliminate An from this

equation. To that end, we apply the interfacial condition Equation 4.5.5 and
find that

− cosh
(

nπh

L

)
An + exp

(
−nπh

L

)
Bn =

2
L

∫ ∞

0

A(k)
nπ/L

k2 + n2π2/L2
cos(kh) dk

(4.5.19)

102 Gradshteyn and Ryzhik, op. cit., Formula 3.365.1 and Formula 3.389.3.
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and

sinh
(

nπh

L

)
An +

ε2
ε1

exp
(
−nπh

L

)
Bn =

2
L

∫ ∞

0

A(k)
k sin(kh)

k2 + n2π2/L2
dk.

(4.5.20)
Solving for An and Bn,

An =
2(1 − ε2/ε1)

L[sinh(nπh/L) + (ε2/ε1) cosh(nπh/L)]
F (nπ/L), (4.5.21)

and

Bn =
2[sinh(nπh/L) + cosh(nπh/L)]

L[sinh(nπh/L) + (ε2/ε1) cosh(nπh/L)]
F (nπ/L), (4.5.22)

where

F (nπ/L) =
∫ ∞

0

A(k)
k sin(kh)

k2 + n2π2/L2
dk (4.5.23)

=
∫ ∞

0

A(k)
nπL cos(kh)
k2L2 + n2π2

dk (4.5.24)

=
π

2
e−nπh/L

∫ a

0

g(t)I0

(
nπt

L

)
dt. (4.5.25)

Finally, we can bring everything into a nondimensional form by introduc-
ing ξ = x/a, η = τ/a, ρ = L/a, κ = a/h, and G(ξ) = h(aξ)/(a

√
ξ ). This

gives

G(ξ) +
∫ 1

0

G(η)K(ξ, η) dη =
√

ξ, (4.5.26)

where

K(ξ, η) =
√

ξη

ρ2

[∫ ∞

0

µM(µ)J0(ξµ/ρ)J0(ηµ/ρ) dµ (4.5.27)

− π2
∞∑

n=1

n(1 − ε2/ε1)e−nπ/(κρ)

sinh[nπ/(κρ)] + ε2 cosh[nπ/(κρ)]/ε1
I0

(
nπξ

ρ

)
I0

(
nπη

ρ

)]
.

Once G(ξ) is computed via Equation 4.5.26, we find An, Bn and A(k) from
Equation 4.5.21, Equation 4.5.22, and Equation 4.5.11, respectively. The
solution u(x, y) follows from Equation 4.5.7 and Equation 4.5.8. Figure 4.5.1
illustrates this solution when h/a = 1

2 and a/L = 1.

• Example 4.5.2

Let us solve103

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < a, −∞ < z < ∞, (4.5.28)

103 Taken with permission from Kim, M.-U., 1981: Slow rotation of a disk in a fluid-filled
circular cylinder. J. Phys. Soc. Japan, 50, 4063–4067.
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Figure 4.5.1: The solution u(r, z) to the mixed boundary value problem governed by

Equation 4.5.1 through Equation 4.5.6 when h/a = 1
2

and a/L = 1.

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(a, z) = 0, −∞ < z < ∞, (4.5.29)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < a, (4.5.30)

and {
u(r, 0) = r, 0 ≤ r < 1,

uz(r, 0−) = uz(r, 0+), 1 < r < a,
(4.5.31)

where a > 1.
Using separation of variables, the general solution to Equation 4.5.28 is

u(r, z) =
∫ ∞

0

A(k)e−k|z|J1(kr) dk +
∫ ∞

0

B(k)I1(kr) cos(kz) dk. (4.5.32)

This solution satisfies not only Equation 4.5.28, but also Equation 4.5.29 and
Equation 4.5.30. Substituting Equation 4.5.32 into Equation 4.5.31, we obtain
the dual integral equations∫ ∞

0

A(k)J1(kr) dk +
∫ ∞

0

B(k)I1(kr) dk = r, 0 ≤ r < 1, (4.5.33)

and ∫ ∞

0

kA(k)J1(kr) dk = 0, 1 < r < a. (4.5.34)
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The interesting aspect of this problem is that the dual integral equations
contain both Fourier and Fourier-Bessel transforms.

We begin our solution of Equation 4.5.33 and Equation 4.5.34 by intro-
ducing

A(k) =
∫ 1

0

h(t) sin(kt) dt. (4.5.35)

If we substitute Equation 4.5.35 into Equation 4.5.34, we can show that this
definition of A(k) satisfies Equation 4.5.34 identically. On the other hand,
Equation 4.5.33 yields

∫ 1

0

h(t)
[∫ ∞

0

sin(kt)J1(kt) dk

]
dt = r −

∫ ∞

0

B(k)I1(kr) dk. (4.5.36)

Because ∫ ∞

0

sin(kt)J1(kr) dk =
t H(r − t)
r
√

r2 − t2
, (4.5.37)

Equation 4.5.36 becomes∫ r

0

t h(t)√
r2 − t2

dt = r2 − r

∫ ∞

0

B(k)I1(kr) dk. (4.5.38)

We now use results from Chapter 1, namely Equation 1.2.7 with α = 1
2 , that

the solution to Equation 4.5.38 is

h(t) =
2
πt

d

dt

{∫ t

0

[
ξ3 −

∫ ∞

0

B(k)ξ2I1(kξ) dk

]
dξ√

t2 − ξ2

}
. (4.5.39)

Using the relationship that∫ t

0

ξ2I1(kξ)√
t2 − ξ2

dξ =
kt cosh(kt) − sinh(kt)

k2
, (4.5.40)

we can simplify Equation 4.5.39 to

h(t) =
2
π

[
2t −

∫ ∞

0

B(k) sinh(kt) dk

]
. (4.5.41)

To evaluate B(k), we first substitute Equation 4.5.32 into the boundary
condition given by Equation 4.5.31. This yields∫ ∞

0

B(k)I1(ka) cos(kz) dk = −
∫ ∞

0

A(η)J1(ηa)e−η|z| dη. (4.5.42)
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Recognizing that the left side of Equation 4.5.42 is the Fourier cosine trans-
form representation of the right side, B(k) is given by

I1(ka)B(k) = − 2
π

∫ ∞

0

{∫ ∞

0

J1(ηa)e−ηz

[∫ 1

0

h(τ) sin(ητ) dτ

]
dη

}
cos(kz) dz

(4.5.43)

= − 2
π

∫ 1

0

h(τ)
{∫ ∞

0

sin(ητ)J1(ηa)
[∫ ∞

0

e−ηz cos(kz) dz

]
dη

}
dτ

(4.5.44)

= − 2
π

∫ 1

0

h(τ)
[∫ ∞

0

sin(ητ)J1(ηa)
η

η2 + k2
dη

]
dτ (4.5.45)

= − 2
π

∫ 1

0

h(τ) sinh(kτ)K1(ka) dτ, (4.5.46)

where we used integral tables104 for the η integration. Substituting Equation
4.5.46 into Equation 4.5.41, we obtain

h(t) =
2
π

{
2t +

2
π

∫ 1

0

h(τ)
[∫ ∞

0

K1(ka)
I1(ka)

sinh(kt) sinh(kτ) dk

]
dτ

}
;

(4.5.47)
or

h(t) − 4
π2

∫ 1

0

h(τ)
[∫ ∞

0

K1(ka)
I1(ka)

sinh(kt) sinh(kτ) dk

]
dτ =

4t

π
, (4.5.48)

for 0 < t < 1. To compute u(r, z), we first solve Equation 4.5.48 to find
h(t). Next, we use Simpson’s rule to evaluate A(k) and B(k) from Equation
4.5.35 and Equation 4.5.46, respectively. Finally, Equation 4.5.32 gives u(r, z).
Figure 4.5.2 illustrates the solution when a = 2.

• Example 4.5.3

Given a < 1 and denoting a nonnegative integer by n, let us solve105

∂2u

∂r2
+

1
r

∂u

∂r
− n2

r2
u +

∂2u

∂z2
= 0, 0 ≤ r < 1, 0 ≤ z < ∞, (4.5.49)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(1, z) = g(z), 0 ≤ z < ∞, (4.5.50)

104 Gradshteyn and Ryzhik, op. cit., Formula 6.718.

105 See Rusia, K. C., 1968: On certain asymmetric mixed boundary value problems of
an electrified circular disc situated inside a coaxial infinite hollow cylinder. Indian J. Pure
Appl. Phys., 6, 44–46.
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Figure 4.5.2: The solution u(r, z) to the mixed boundary value problem governed by

Equation 4.5.28 through Equation 4.5.31 with a = 2.

lim
z→∞u(r, z) → 0, 0 ≤ r < 1, (4.5.51)

and {
uz(r, 0) = f(r), 0 ≤ r < a,
u(r, 0) = 0, a < r < 1.

(4.5.52)

Using separation of variables, the general solution to Equation 4.5.49 is

u(r, z) =
∫ ∞

0

A(k)e−kzJn(kr) dk +
∫ ∞

0

B(k)In(kr) sin(kz) dk. (4.5.53)

This solution satisfies not only Equation 4.5.49, but also Equation 4.5.51 and
the first part of Equation 4.5.50. Substituting Equation 4.2.53 into Equation
4.2.52, we obtain the dual integral equations∫ ∞

0

kA(k)Jn(kr) dk =
∫ ∞

0

kB(k)In(kr) dk − f(r), 0 ≤ r < a, (4.5.54)

and ∫ ∞

0

A(k)Jn(kr) dk = 0, a < r < 1. (4.5.55)

The interesting aspect of this problem is that the dual integral equations
contain both Fourier and Fourier-Bessel transforms.
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We begin our solution of Equation 4.5.54 and Equation 4.5.55 by intro-
ducing

A(k) =
√

k

∫ a

0

h(t)t−(n− 1
2 )Jn+ 1

2
(kt) dt. (4.5.56)

If we substitute Equation 4.5.56 into Equation 4.5.55 and interchange the
order of integration,∫ ∞

0

A(k)Jn(kr) dk =
∫ a

0

h(t)t−(n− 1
2 )
[∫ ∞

0

√
k Jn(kr)Jn+ 1

2
(kt) dk

]
dt.

(4.5.57)
From tables106 and noting that r > t, the value of the integral within the
square brackets equals zero and this choice of A(k) satisfies Equation 4.5.55.

If we integrate Equation 4.5.56 by parts and assuming that h(t)t−(n− 1
2 )

tends to zero as t → 0,

A(k) = −h(a)Jn− 1
2
(ka)√

k an− 1
2

+
1√
k

∫ a

0

h′(t)t−(n− 1
2 )Jn− 1

2
(kt) dt. (4.5.58)

Substituting Equation 4.5.58 into Equation 4.5.54, interchanging the order of
integration, and carrying out the k-integration,

− h(a)
an− 1

2

∫ ∞

0

√
k Jn− 1

2
(ka)Jn(kr) dk +

∫ a

0

h′(t)
tn−

1
2

[∫ ∞

0

√
k Jn− 1

2
(kt)Jn(kr) dk

]
dt

=
∫ ∞

0

kB(k)In(kr) dk − f(r). (4.5.59)

In Equation 4.5.59, the first integral on the left side vanishes while the integral
inside the square brackets can be evaluated using tables. The end result is∫ r

0

h′(t)√
r2 − t2

dt =
√

π

2
rn

[∫ ∞

0

kB(k)In(kr) dk − f(r)
]

, 0 ≤ r < a.

(4.5.60)
Applying the results from Equation 1.2.13 and Equation 1.2.14, we find for
h(t) that

h(t) =
2
π

∫ t

0

r dr√
t2 − r2

{√
π

2
rn

[∫ ∞

0

kB(k)In(kr) dk − f(r)
]}

(4.5.61)

=

√
2
π

∫ t

0

rn+1

√
t2 − r2

[∫ ∞

0

kB(k)In(kr) dk − f(r)
]

dr (4.5.62)

106 Gradshteyn and Ryzhik, op. cit., Formula 6.575.1. Note that this formula has a

typo; the condition should read �(ν + 1) > �(µ) > −1. See p. 100 in Magnus, W., F.
Oberhettinger, and R. P. Soni, 1966: Formulas and Theorems for the Special Functions of
Mathematical Physics. Springer-Verlag, 508 pp.
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= −
√

2
π

∫ t

0

rn+1f(r)√
t2 − r2

dr +

√
2
π

∫ ∞

0

kB(k)
[∫ t

0

rn+1In(kr)√
t2 − r2

dr

]
dk

(4.5.63)

= −
√

2
π

∫ t

0

rn+1f(r)√
t2 − r2

dr + tn+ 1
2

∫ ∞

0

√
k B(k)In+ 1

2
(kt) dk, (4.5.64)

where we used107∫ t

0

rn+1In(kr)√
t2 − r2

dr =
√

π

2
tn+ 1

2√
k

In+ 1
2
(kt), �(n) > −1. (4.5.65)

Turning to the last boundary condition, the second part of Equation
4.5.50,∫ ∞

0

A(k)Jn(k)e−kz dk +
∫ ∞

0

B(k)In(k) sin(kz) dk = g(z), 0 < z < ∞.

(4.5.66)
Noting that Equation 4.5.66 is a Fourier sine transform with B(k) as the
Fourier coefficient,

In(k)B(k) =
2
π

∫ ∞

0

g(z) sin(kz) dz − 2
π

∫ ∞

0

[∫ ∞

0

A(t)Jn(t)e−tz dt

]
sin(kz) dz

(4.5.67)

=
2
π

∫ ∞

0

g(z) sin(kz) dz − 2k

π

∫ ∞

0

A(t)Jn(t)
t2 + k2

dt. (4.5.68)

Substituting for A(k) the expression given by Equation 4.5.56,

In(k)B(k) =
2
π

∫ ∞

0

g(z) sin(kz) dz

− 2k

π

∫ ∞

0

Jn(t)
t2 + k2

[√
t

∫ a

0

h(ξ)
ξn− 1

2
Jn+ 1

2
(tξ) dξ

]
dt (4.5.69)

=
2
π

∫ ∞

0

g(z) sin(kz) dz

− 2k

π

∫ a

0

h(ξ)
ξn− 1

2

[∫ ∞

0

√
t

t2 + k2
Jn(t)Jn+ 1

2
(ξt) dt

]
dξ (4.5.70)

=
2
π

∫ ∞

0

g(z) sin(kz) dz

− 2
π

√
k Kn(k)

∫ a

0

h(ξ)
ξn− 1

2
In+ 1

2
(kξ) dξ. (4.5.71)

107 Sneddon [Sneddon, op. cit., p. 30.] showed how Sonine’s first integral can be rewritten
as ∫ t

0

ξµ+1(t2 − ξ2)νJµ(yξ) dξ = 2νtµ+ν+1y−ν−1Γ(ν + 1)Jν+ν+1(ty).

Equation 4.5.65 follows by setting ξ = r, µ = n, ν = − 1
2
, and y = ik.
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Substituting Equation 4.5.71 into Equation 4.5.64 and interchanging the order
of integration,

h(t) = −
√

2
π

∫ t

0

rn+1f(r)√
t2 − r2

dr + tn+ 1
2

∫ ∞

0

√
k In+ 1

2
(kt)

In(k)
dk (4.5.72)

×
[

2
π

∫ ∞

0

g(z) sin(kz) dz − 2
π

√
k Kn(k)

∫ a

0

h(ξ)
ξn− 1

2
In+ 1

2
(kξ) dξ

]
= −

√
2
π

∫ t

0

rn+1f(r)√
t2 − r2

dr

+
2
π

tn+ 1
2

∫ ∞

0

√
k In+ 1

2
(kt)

In(k)

[∫ ∞

0

g(z) sin(kz) dz

]
dk

− 2
π

tn+ 1
2

∫ ∞

0

h(ξ)
ξn− 1

2

[∫ ∞

0

kKn(k)In+ 1
2
(kt)In+ 1

2
(kξ)

In(k)
dk

]
dξ, (4.5.73)

where 0 < t < a.
From Equation 4.5.73 we can compute h(t), and consequently A(k) and

B(k). The potential u(r, z) then follows from

u(r, z) =
∫ ∞

0

A(k)e−kzJn(kr) dk +
∫ ∞

0

B(k)In(kr) sin(kz) dk (4.5.74)

=
∫ a

0

h(t)
tn−

1
2

[∫ ∞

0

√
k e−kzJn+ 1

2
(kt)Jn(kr) dk

]
dt

+
2
π

∫ ∞

0

In(kr)
In(k)

[∫ ∞

0

g(t) sin(kt) dt

]
sin(kz) dk (4.5.75)

− 2
π

∫ a

0

h(t)
tn−

1
2

[∫ ∞

0

√
k

Kn(k)
In(k)

In(kr)In+ 1
2
(kt) sin(kz) dk

]
dt.

Figure 4.5.3 illustrates Equation 4.5.75 when a = 0.5, n = 1, g(z) = 0 and
f(r) = 1.

We can also use this technique to solve Equation 4.5.49 through Equation
4.5.52 when Equation 4.5.50 reads

lim
r→0

|u(r, z)| < ∞, ur(1, z) = g(z), 0 ≤ z < ∞. (4.5.76)

The analysis is identical to our earlier problem except for computing B(k).
Equation 4.5.71 now becomes

I ′n(k)B(k) =
2
πk

∫ ∞

0

g(z) sin(kz) dz − 2
π

√
k K ′

n(k)
∫ a

0

h(ξ)
ξn− 1

2
In+ 1

2
(kξ) dξ

(4.5.77)
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Figure 4.5.3: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.5.49 through Equation 4.5.52 with a = 0.5, n = 1, g(z) = 0 and f(r) = 1.

and the integral equation governing h(t) now reads

h(t) = −
√

2
π

∫ t

0

rn+1f(r)√
t2 − r2

dr

+
2
π

tn+ 1
2

∫ ∞

0

In+ 1
2
(kt)√

k I ′n(k)

[∫ ∞

0

g(z) sin(kz) dz

]
dk

− 2
π

tn+ 1
2

∫ a

0

h(ξ)
ξn− 1

2

[∫ ∞

0

kK ′
n(k)

I ′n(k)
In+ 1

2
(kt)In+ 1

2
(kξ) dk

]
dξ, (4.5.78)

where 0 < t < a. Figure 4.5.4 illustrates the potential when the modified
boundary condition Equation 4.5.76 occurs and a = 0.8, n = 1, g(z) = 0 and
f(r) = 1. Note that Equation 4.5.75 must be modified to include the new
form of B(k).

• Example 4.5.4

Let us solve108

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, 0 < z < ∞, (4.5.79)

108 Reprinted from Int. J. Engng. Sci., 9, N. J. Freeman and L. M. Keer, On the breaking
of an embedded fibre in torsion, 1007–1017, c©1971, with permission from Elsevier.
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Figure 4.5.4: The solution u(r, z) to the mixed boundary value problem governed by
Equation 4.5.49, Equation 4.5.76, Equation 4.5.51 and Equation 4.5.52 with a = 0.8, n = 1,
g(z) = 0 and f(r) = 1.

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (4.5.80)

lim
z→∞ u(r, z) → 0, 0 ≤ r < ∞, (4.5.81)

u(1−, z) = u(1+, z), 0 < z < ∞, (4.5.82)

ε1
∂

∂r

[
u(r, z)

r

]∣∣∣∣
r=1−

= ε2
∂

∂r

[
u(r, z)

r

]∣∣∣∣
r=1+

, 0 < z < ∞, (4.5.83)

and {
uz(r, 0) = f(r), 0 ≤ r < c,

u(r, 0) = 0, c < r < ∞,
(4.5.84)

where c < 1.
Using separation of variables, the general solution to Equation 4.5.79 is

u(r, z) =
∫ ∞

0

A(k)e−kzJ1(kr) dk +
∫ ∞

0

B(k)I1(kr) sin(kz) dk, 0 ≤ r < 1,

(4.5.85)
and

u(r, z) =
∫ ∞

0

C(k)K1(kr) sin(kz) dk, 1 < r < ∞, (4.5.86)
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where
A(k) =

√
k

∫ c

0

t3/2J3/2(kt)g(t) dt. (4.5.87)

This choice for A(k) ensures that Equation 4.5.85 satisfies Equation 4.5.84 for
c < r < 1.

To satisfy the remaining boundary conditions, we introduce the relation-
ship109∫ ∞

0

k±1/2e−kzJn(kr)Jn± 1
2
(kt) dk =

2
π

∫ ∞

0

k±1/2Kn(kr)In± 1
2
(kt) cos(kz) dk,

(4.5.88)
if z > 0. Then, combining Equation 4.5.82 and Equation 4.5.83 with Equation
4.5.85 and Equation 4.5.86, we find that

2
π

∫ c

0

t3/2g(t)
[∫ ∞

0

k1/2K1(k)I3/2(kt) sin(kz) dk

]
dt +

∫ ∞

0

B(k)I1(k) sin(kz) dk

=
∫ ∞

0

C(k)K1(k) sin(kz) dk, (4.5.89)

and

2
π

∫ c

0

t3/2g(t)
[∫ ∞

0

k3/2K2(k)I3/2(kt) sin(kz) dk

]
dt −

∫ ∞

0

kB(k)I2(k) sin(kz) dk

= β

∫ ∞

0

k C(k)K2(k) sin(kz) dk, (4.5.90)

where β = ε2/ε1. Noting that B(k) and C(k) are Fourier coefficients of Fourier
sine transforms

B(k) = −2(β − 1)
π∆(k)

k1/2K1(k)K2(k)
∫ c

0

t3/2g(t)I3/2(kt) dt, (4.5.91)

and
C(k) =

2
π k1/2∆(k)

∫ c

0

t3/2g(t)I3/2(kt) dt, (4.5.92)

where ∆(k) = I2(k)K1(k) + βI1(k)K2(k).
Turning now to Equation 4.5.84,√

2
π

1
r2

d

dr

[∫ r

0

t3g(t)√
r2 − t2

dt

]
+

2
π

(β − 1)
∫ c

0

t3/2g(t) (4.5.93)

×
[∫ ∞

0

k3/2

∆(k)
K1(k)K2(k)I3/2(kt)I1(kr) dk

]
dt = −f(r), 0 ≤ r ≤ c.

109 Eason, G., B. Noble, and I. N. Sneddon, 1955: On certain integrals of Lipschitz-Hankel
type involving products of Bessel functions. Philos. Trans. R. Soc. London, Ser. A, 247,
529–551.
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Figure 4.5.5: The solution u(r, z) to the mixed boundary value problem governed by

Equation 4.5.79 through Equation 4.5.84 with β = 0 and c = 0.9.

Solving this integral equation of the Abel type,

t g(t)+
2
π

(β−1)
∫ c

0

L(τ, t)τg(τ) dτ = −
√

2
πt2

∫ t

0

τ2f(τ)√
t2 − τ2

dτ, 0 ≤ t, τ ≤ c,

(4.5.94)
where

L(τ, t) =
2
π

∫ ∞

0

K1(k)K2(k)
∆(k)

[
cosh(kτ) − sinh(kτ)

kτ

]
×
[
cosh(kt) − sinh(kt)

kt

]
dk. (4.5.95)

For the special case f(r) = r and defining

G(t) =
3
√

2π

4
t g(t), (4.5.96)

Equation 4.5.95 can be rewritten

G(t) − 2(1 − β)
π

∫ c

0

L(τ, t)G(τ) dτ = −t2. (4.5.97)

Figure 4.5.5 illustrates this special case when β = 0 and c = 0.9.
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• Example 4.5.5

Let us solve the biharmonic equation110

(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)2
u = 0, 0 ≤ r < 1, 0 < z < ∞, (4.5.98)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(1, z) = 1, ur(1, z) = 0, 0 < z < ∞, (4.5.99)

lim
z→∞u(r, z) → 2

(
r2 − r4/2

)
, 0 ≤ r < 1, (4.5.100)

and {
uz(r, 0) = 0, 0 ≤ r ≤ a,
u(r, 0) = 1, a ≤ r ≤ 1,

(4.5.101)

where a < 1.
Using separation of variables, the general solution to Equation 4.5.98 is

u(r, z) = 2
(

r2 − r4

2

)
+
∫ ∞

0

A(k) cos(kz)
[
rI0(k)I1(kr) − r2I1(k)I0(kr)

]
dk

+
∞∑

n=1

BnrJ1(knr)(1 + αnz)e−αnz , (4.5.102)

where αn is the nth positive root of J1(α) = 0. Let us now apply the condition
ur(1, z) = 0. This yields∫ ∞

0

A(k){2I1(k)I0(k)+k[I2
1 (k) − I2

0 (k)]} cos(kz) dk

=
∞∑

n=1

knBnJ0(kn)(1 + knz)e−knz. (4.5.103)

Solving for A(k),

{2I1(k)I0(k) − k[I2
0 (k) − I2

1 (k)]}A(k)

=
2
π

∞∑
n=1

knBnJ0(kn)
∫ ∞

0

(1 + knz)e−knz cos(kz) dz, (4.5.104)

or

π
{
2I0(k)I1(k) − k[I2

0 (k) − I2
1 (k)]

}
A(k) = 4

∞∑
n=1

k4
nJ0(kn)

(k2 + k2
n)2

Bn. (4.5.105)

110 See Jeong, J.-T., and S.-R. Choi, 2005: Axisymmetric Stokes flow through a circular
orifice in a tube. Phys. Fluids, 17, Art. No. 053602.
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Substituting A(k) into Equation 4.5.102 and carrying out the integration over
k, we have

u(r, z) = 2
(

r2 − r4

2

)
+ 4�

{ ∞∑
n=1

k4
nJ0(kn)Bn (4.5.106)

×
∞∑

m=1

rJ0(βm)J1(βmr) − r2J1(βm)J0(βmr)
J2

1 (βm)(α2
n − β2

m)2
e−βmz

}
,

where βm is mth (complex) root of 2J0(β)J1(β) − β
[
J2

0 (β) + J2
1 (β)

]
with

positive real and imaginary parts. Asymptotic analysis shows that these roots
vary as

βm ≈ (m + 1
2

)
π +

i

2
ln
[
(2m + 1)π +

√
(2m + 1)2π2 − 1

]
, m � 1.

(4.5.107)
Our remaining task is to compute Bn. Substituting Equation 4.5.106 into

Equation 4.5.101, we have the dual series:

�
{ ∞∑

n=1

k4
nJ0(kn)Bn

∞∑
m=1

βm[1 − J0(βmr)]
J1(βm)(α2

n − β2
m)2

}
= 0 (4.5.108)

for 0 ≤ r ≤ a;

�
{ ∞∑

n=1

k4
nJ0(kn)Bn

∞∑
m=1

rJ0(βm)J1(βmr) − r2J1(βm)J0(βmr)
J2

1 (βm)(α2
n − β2

m)2

}
= 1

4 (1 − r2)2

(4.5.109)
for a ≤ r ≤ 1.

The procedure for computing Bn is as follows: We truncate Equation
4.5.108 and Equation 4.5.109 to N linear equations with rn =

(
n − 1

2

)
∆r

with ∆r = 1/N ; we truncate the m summation to M terms. Inverting the
N × N system of linear equations, we employ Bn in Equation 4.5.106 to find
u(r, z). Figure 4.5.6 illustrates the results when N = 50 and M = 100 when
a = 1

2 .

• Example 4.5.6: Change of variables

Consider the following two-dimensional heat conduction problem that
arises during the manufacture of p-n junctions:

∂u

∂t
= a2

(
∂2u

∂x2
+

∂2u

∂y2

)
, −∞ < x < ∞, 0 < y < ∞, 0 < t, (4.5.110)

subject to the mixed boundary value conditions

lim
|x|→∞

|u(x, y, t)| < ∞, 0 < y < ∞, 0 < t, (4.5.111)
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Figure 4.5.6: The solution u(r, z) to the mixed boundary value problem governed by

Equation 4.5.79 through Equation 4.5.84 with a = 1
2
.

lim
y→∞ |u(x, y, t)| < ∞, −∞ < x < ∞, 0 < t, (4.5.112){

uy(x, 0, t) = 0, 0 < x < ∞,
u(x, 0, t) = U0, −∞ < x < 0,

0 < t, (4.5.113)

and the initial condition

u(x, y, 0) = 0, −∞ < x < ∞, 0 < y < ∞. (4.5.114)

Kennedy and O’Brien111 solved this mixed boundary value problem by refor-
mulating it in polar coordinates; or,

∂u

∂t
= a2

(
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2

)
, 0 ≤ r < ∞, 0 < θ < π, 0 < t,

(4.5.115)
subject to the boundary conditions

lim
r→0

|u(r, θ, t)| < ∞, lim
r→∞ |u(r, θ, t)| < ∞, 0 < θ < π, 0 < t,

(4.5.116)

111 Kennedy, D. P., and R. R. O’Brien, 1965: Analysis of the impurity atom distribution
near the diffusion mask for a planar p-n junction. IBM J. Res. Develop., 9, 179–186. For
an alternative derivation, see Cherednichenko, D. I., H. Gruenberg, and T. K. Sarkar, 1974:
Solution to a diffusion problem with mixed boundary conditions. Solid-State Electron., 17,
315–318.
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uθ(r, 0, t) = 0, u(r, π, t) = U0, 0 ≤ r < ∞, 0 < t, (4.5.117)

and
u(r, θ, 0) = 0, 0 ≤ r < ∞, 0 < θ < π. (4.5.118)

Equation 4.5.115 through Equation 4.5.117 can be solved via transform
methods. We begin by taking the Laplace transform of these equations and
find that

∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2

∂2U

∂θ2
− s

a2
U = 0, 0 ≤ r < ∞, 0 < θ < π, (4.5.119)

subject to the boundary conditions

lim
r→0

|U(r, θ, s)| < ∞, lim
r→∞ |U(r, θ, s)| < ∞, 0 < θ < π, (4.5.120)

and
Uθ(r, 0, s) = 0, U(r, π, s) =

U0

s
, 0 ≤ r < ∞. (4.5.121)

Let
U(r, θ, s) =

U0

s
+ V (r, θ, s). (4.5.122)

Then, Equation 4.5.119 through Equation 4.5.121 become

∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2

∂2V

∂θ2
− s

a2
V =

U0

a2
, 0 ≤ r < ∞, 0 < θ < π, (4.5.123)

with

lim
r→0

|V (r, θ, s)| < ∞, lim
r→∞V (r, θ, s) → 0, 0 < θ < π, (4.5.124)

and
Vθ(r, 0, s) = V (r, π, s) = 0, 0 ≤ r < ∞. (4.5.125)

We next express the solution to Equation 4.5.123 as the Fourier series

V (r, θ, s) =
∞∑

n=0

Vn(r, s) cos
[(

n + 1
2

)
θ
]
. (4.5.126)

Note that Equation 4.5.126 satisfies the boundary condition given by Equation
4.5.125. Each Fourier coefficient Vn(r, s) is governed by

d2Vn

dr2
+

1
r

dVn

dr
−
[(

n + 1
2

)2
r2

+
s

a2

]
Vn =

2U0(−1)n

πa2
(
n + 1

2

) . (4.5.127)

Solving Equation 4.5.127 by Hankel transforms via

Vn(r, s) =
∫ ∞

0

A(k)Jn+ 1
2
(kr) k dk, (4.5.128)
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we find that

U(r, θ, s) = U0

[
1
s
− 2

π

∞∑
n=0

(−1)n cos
[(

n + 1
2

)
θ
]

s + a2k2
Jn+ 1

2
(kr)

dk

k

]
. (4.5.129)

Straightforward inversion yields the final solution:

u(r, θ, t) = U0

[
1 − 2

π

∞∑
n=0

(−1)n cos
[(

n + 1
2

)
θ
] ∫ ∞

0

e−a2k2tJn+ 1
2
(kr)

dk

k

]
.

(4.5.130)
Now112

∫ ∞

0

e−a2k2tJn+ 1
2
(kr)

dk

k
=

Γ
(

n
2 + 1

4

)
2Γ
(
n + 3

2

) ( r2

4a2t

)n
2 + 1

4

1F1

(
n

2
+

1
4
; n +

3
2
;

r2

4a2t

)
,

(4.5.131)
where 1F1(a; b; z) is the Kummer function. Reexpressing the Kummer func-
tion in terms of Bessel functions,113 Equation 3.5.130 can be written as

u(r, θ, t)
U0

= 1 − 4
π

∞∑
n=0

(−1)n

2n + 1
Bn

(
r2

8a2t

)
cos
[(

n + 1
2

)
θ
]
, (4.5.132)

where

Bn(z) =
√

πz

2
e−z
[
In

2 − 1
4
(z) + In

2 + 3
4
(z)
]
. (4.5.133)

Figure 4.5.7 illustrates Equation 4.5.132 when a2t = 1. In Example 5.2.1 we
will show how we could have solved this problem via the Wiener-Hopf method.

Problems

1. Let us solve a problem114 similar to the one that we examined in Example
4.5.2, namely

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 ≤ r < c, 0 ≤ z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(c, z) = 0, 0 ≤ z < ∞,

112 Gradshteyn and Ryzhik, op. cit., Formula 6.631.

113 Abramowitz, M., and I. A. Segun, 1968: Handbook of Mathematical Functions. Dover
Publications, 1046 pp. See Formula 13.3.6.

114 Reprinted from Int. J. Engng. Sci., 6, B. R. Das, Thermal stresses in a long cylinder
containing a penny-shaped crack, 497–516, c©1968, with permission of Elsevier.
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Figure 4.5.7: The solution u(x, y, t) to the mixed boundary value problem governed by
Equation 4.5.110 through Equation 4.5.114 with a2t = 1.

lim
z→∞u(r, z) → 0, 0 ≤ r < c,

and {
u(r, 0) = f(r), 0 ≤ r < a,
uz(r, 0) = 0, a < r < c,

where c > a.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

A(k)e−kzJ0(kr)
dk

k
+
∫ ∞

0

B(k)I0(kr) cos(kz)
dk

k
.

Step 2 : Show that A(k) and B(k) satisfy the following integral equations:∫ ∞

0

A(k)J0(kr)
dk

k
+
∫ ∞

0

B(k)I0(kr)
dk

k
= f(r), 0 ≤ r < a, (1)

and ∫ ∞

0

A(k)J0(kr) dk = 0, a < r < c. (2)

Step 3 : Show that by defining

A(k) = k

∫ a

0

g(t) cos(kt) dt = g(a) sin(ka) −
∫ a

0

g′(t) sin(kt) dt,
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Equation (2) is satisfied.

Step 4 : From Equation (1), show that g(t) is given by

g(t) +
2
π

∫ ∞

0

B(k) cosh(kt)
dk

k
= k(t),

where

k(t) =
2
π

d

dt

[∫ t

0

rf(r)√
t2 − r2

dr

]
.

Step 5 : From the boundary condition at r = c, show that∫ ∞

0

A(k)e−kzJ0(kc)
dk

k
+
∫ ∞

0

B(k)I0(kc) cos(kz)
dk

k
= 0.

Step 6 : Recognizing that B(k) is the Fourier coefficient in a Fourier cosine
transform, show that

B(k)
I0(kc)

k
= − 2

π

∫ ∞

0

cos(kz)
[∫ ∞

0

A(ξ)e−ξzJ0(ξc)
dξ

ξ

]
dz

= − 2
π

∫ ∞

0

A(ξ)
J0(ξc)
k2 + ξ2

dξ.

Step 7 : Using ∫ ∞

0

ξ

k2 + ξ2
cos(ξt)J0(ξc) dξ = cosh(kt)K0(kc),

show that∫ a

0

g(τ)
[∫ ∞

0

ξ

k2 + ξ2
cos(ξτ)J0(ξc) dξ

]
dτ = K0(kc)

∫ a

0

g(τ) cosh(kτ) dτ,

and

B(k) = −2kK0(kc)
πI0(kc)

∫ a

0

g(τ) cosh(kτ) dτ.

Step 8 : Using the results from Step 7, show that

g(t) −
∫ a

0

g(τ)K(t, τ) dτ = k(t),

where

K(t, τ) =
4
π2

∫ ∞

0

K0(kc)
I0(kc)

cosh(kτ) cosh(kt) dk.
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Problem 1

The figure labeled Problem 1 illustrates the solution when f(r) = 1, a = 1
and c = 2.

2. Given a > 1 and denoting a non-negative integer by n, let us solve115

∂2u

∂r2
+

1
r

∂u

∂r
− n2

r2
u +

∂2u

∂z2
= 0, 0 ≤ r < a, 0 ≤ z < ∞,

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, u(a, z) = g(z), 0 ≤ z < ∞,

lim
z→∞u(r, z) → 0, 0 ≤ r < a,

and {
u(r, 0) = f(r), 0 ≤ r < 1,
uz(r, 0) = 0, 1 < r < a.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

A(k)e−kzJn(kr)
dk

k
+
∫ ∞

0

B(k)In(kr) cos(kz) dk.

Step 2 : Show that A(k) and B(k) satisfy the following integral equations:∫ ∞

0

A(k)Jn(kr)
dk

k
+
∫ ∞

0

B(k)In(kr) dk = f(r), 0 ≤ r < 1, (1)

115 Suggested by Sneddon, I. N., 1962: Note on an electrified circular disk situated inside
a coaxial infinite hollow cylinder. Proc. Cambridge Philos. Soc., 58, 621–624. c©1962
Cambridge Philosophical Society. Reprinted with the permission of Cambridge University
Press.



Transform Methods 341

∫ ∞

0

A(k)Jn(kr) dk = 0, 1 < r < a, (2)

and∫ ∞

0

A(k)e−kzJn(ka)
dk

k
+
∫ ∞

0

B(k)In(ka) cos(kz) dk = g(z), 0 ≤ z < ∞.

(3)

Step 3 : Using Equation (3) and recognizing the B(k) is the coefficient of a
Fourier cosine transform, show that

In(ka)B(k) =
2
π

∫ ∞

0

g(z) cos(kz) dz − 2
π

∫ ∞

0

A(t)Jn(at)
k2 + t2

dt.

Step 4 : Defining

A(k) =

√
πk3

2

∫ 1

0

√
t h(t)Jn− 1

2
(kt) dt,

show that Equation (2) is identically satisfied.

Step 5 : Using the results from Step 3 and Step 4 and following Equation
4.5.42 through Equation 4.5.46, show that

In(ka)B(k) =
2
π

∫ ∞

0

g(z) cos(kz) dz −
√

2
π

Kn(ka)
∫ 1

0

√
kξ In− 1

2
(kξ)h(ξ) dξ.

Hint: ∫ ∞

0

ξ3/2Jn− 1
2
(tξ)Jn(aξ)

dξ

k2 + ξ2
=

√
k In− 1

2
(kt)Kn(ka).

Step 6 : Using Equation (1) and substituting for A(k), show that∫ r

0

tn h(t)√
r2 − t2

dt = rn

[
f(r) −

∫ ∞

0

B(k)In(kr) dk

]
.

Step 7 : Solve the integral equation in Step 6 and show that

tnh(t) =
2
π

d

dt

[∫ t

0

rn+1f(r)√
t2 − r2

dr

]
− 2

π

d

dt

{∫ ∞

0

B(k)
[∫ t

0

rn+1

√
t2 − r2

In(kr) dr

]
dk

}
.

Step 8 : Using the results from Step 5 to eliminate B(k) in Step 7, show that
h(t) is given by the integral equation

h(t) = χ(t) +
∫ 1

0

h(ξ)K(t, ξ) dξ,
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Problem 2

where

K(t, η) =
2
π

√
tη

∫ ∞

0

ξKn(ξa)
In(ξa)

In− 1
2
(tξ)In− 1

2
(ηξ) dξ,

and

χ(t) =
2
π

t−n d

dt

[∫ t

0

rn+1f(r)√
t2 − r2

dr

]
− 2

π

∫ ∞

0

√
ξt In− 1

2
(ξt)

In(ξa)

[√
2
π

∫ ∞

0

g(z) cos(ξz) dz

]
dξ.

The figure labeled Problem 2 illustrates the potential when a = 2, n = 2,
g(z) = 0, and f(z) = 1.

3. Given a > 1 and denoting a non-negative integer by n, let us solve116

∂2u

∂r2
+

1
r

∂u

∂r
− n2

r2
u +

∂2u

∂z2
= 0, 1 ≤ r < ∞, 0 ≤ z < ∞,

subject to the boundary conditions

u(1, z) = 0, lim
r→∞u(r, z) → 0, 0 ≤ z < ∞,

lim
z→∞ u(r, z) → 0, 1 ≤ r < ∞,

116 See Rusia, K. C., 1967: Some asymmetric mixed boundary value problems for a
half-space with a cylindrical cavity. Indian J. Pure Appl. Phys., 5, 419–421. Rusia’s
contribution was to simplify the solution of this problem first posed by Narain, P., 1965:
A note on an asymmetric mixed boundary value problem for a half space with a cylindrical
cavity. Glasgow Math. Assoc. Proc., 7, 45–47. Earlier Srivastav (Srivastav, R. P., 1964:
An axisymmetric mixed boundary value problem for a half-space with a cylindrical cavity.
J. Math. Mech., 13, 385–393.) solved this problem for the special case n = 0.
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and {
u(r, 0) = 0, 1 ≤ r < a,

uz(r, 0) = −f(r), a < r < ∞.

Step 1 : Using separation of variables or transform methods, show that the
general solution to the problem is

u(r, z) =
∫ ∞

0

A(k)e−kzJn(kr) dk +
∫ ∞

0

B(k)Kn(kr) sin(kz) dk.

Step 2 : Show that A(k) and B(k) satisfy the following integral equations:∫ ∞

0

A(k)Jn(kr) dk = 0, 1 < r < a, (1)

∫ ∞

0

kA(k)Jn(kr) dk −
∫ ∞

0

kB(k)Kn(kr) dk = f(r), a < r < ∞, (2)

and∫ ∞

0

A(k)e−kzJn(k) dk+
∫ ∞

0

B(k)Kn(k) sin(kz) dk = 0, 0 ≤ z < ∞. (3)

Step 3 : Defining

A(k) =
√

k

∫ ∞

a

tn+ 1
2 h(t)Jn− 1

2
(kt) dt,

show that Equation (1) is identically satisfied.

Step 4 : Integrating by parts A(k) defined in Step 3, show that

A(k) = −h(a)an+ 1
2√

k
Jn+ 1

2
(ka) − 1√

k

∫ ∞

a

h′(t)tn+ 1
2 Jn+ 1

2
(kt) dt.

Step 5 : Using Equation (2) and substituting the A(k) given in Step 4, show
that∫ ∞

r

h′(t)√
t2 − r2

dt = −
√

π

2
r−n

[
f(r) +

∫ ∞

0

kB(k)Kn(kr) dk

]
, a < r < ∞.

Step 6 : Solve the integral equation in Step 5 and show that

h′(t) =

√
2
π

d

dt

{∫ ∞

t

r1−n

√
r2 − t2

[
f(r) +

∫ ∞

0

kB(k)Kn(kr) dk

]
dr

}
,
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or

h(t) =

√
2
π

∫ ∞

t

r1−n

√
r2 − t2

[
f(r) +

∫ ∞

0

kB(k)Kn(kr) dk

]
dr

=

√
2
π

∫ ∞

t

r1−nf(r)√
r2 − t2

dr +

√
2
π

∫ ∞

0

kB(k)
[∫ ∞

t

r1−nKn(kr)√
r2 − t2

dr

]
dk

=

√
2
π

∫ ∞

t

r1−nf(r)√
r2 − t2

dr +
∫ ∞

0

√
k B(k)t

1
2−nK 1

2−n(kt) dk.

Hint: ∫ ∞

t

r1−nKn(kr)√
r2 − t2

dr =
√

π

2k
t

1
2−nK 1

2−n(kt).

Step 7 : Recognizing that Kn(k)B(k) is the coefficient of a Fourier sine trans-
form given by Equation (3), show that

Kn(k)B(k) = − 2
π

∫ ∞

0

[∫ ∞

0

A(t)Jn(t)e−tz dt

]
sin(kz) dz

= −2k

π

∫ ∞

0

A(t)Jn(t)
t2 + k2

dt.

Step 8 : Substituting the A(k) given in Step 3 into the results given in Step
7, show that

Kn(k)B(k) = −2
√

k

π
In(k)

∫ ∞

a

tn+ 1
2 h(t)Kn− 1

2
(kt) dt.

Step 9 : Using the results from Step 8 to eliminate B(k) in Step 6, show that
h(t) is given by

h(t) = χ(t) −
∫ ∞

a

h(ξ)K(t, ξ) dξ,

where

K(t, ξ) =
2t

π

(
ξ

t

)n+ 1
2
∫ ∞

0

kIn(k)
Kn(k)

Kn− 1
2
(kξ)K 1

2−n(kt) dk,

and

χ(t) =

√
2
π

∫ ∞

t

r1−nf(r)√
r2 − t2

dr.

The figure labeled Problem 3 illustrates this potential when a = 2 and f(z) =
ea−r.
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Chapter 5

The Wiener-Hopf Technique

In Example 1.1.3 we posed a mixed boundary value problem that we could
not solve by using conventional Fourier transforms because the solution does
not vanish as we approach infinity at both ends. The Wiener-Hopf technique
is a popular method that avoids this problem by defining Fourier transforms
over certain regions and then uses function-theoretic analysis to piece together
the complete solution.

Although Wiener and Hopf1 first devised this method to solve singular
integral equations of the form

f(x) =
∫ ∞

0

K(x − y)f(y) dy + ϕ(x), 0 < x < ∞, (5.0.1)

that had arisen in Hopf’s 1928 work on the Milne–Schwarzschild equation,2

it has been in boundary value problems that it has found its greatest ap-
plicability. For example, this technique reduces the problem of diffraction

1 Wiener, N., and E. Hopf, 1931: Über eine Klasse singulärer Integralgleichungen. Sitz.
Ber. Preuss. Akad. Wiss., Phys.-Math. Kl., 696–706.

2 Shore, S. N., 2002: The evolution of radiative transfer theory from atmospheres to
nuclear reactors. Hist. Math., 29, 463–489.
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Figure 5.0.1: One of the great mathematicians of the twentieth century, Norbert Wiener
(1894–1964) graduated from high school at the age of 11 and Tufts at 14. Obtaining a
doctorate in mathematical logic at 18, he repeatedly traveled to Europe for further educa-
tion. His work extends over an extremely wide range from stochastic processes to harmonic
analysis to cybernetics. (Photo courtesy of the MIT Museum.)

by a semi-infinite plate to the solution of a singular integral equation.3 The
Wiener-Hopf technique4 then yields the classic result given by Sommerfeld.5

Since its original formulation, the Wiener-Hopf technique has undergone
simplification by formulating the problem in terms of dual integral equations.6

The essence of this technique is the process of factorization of the Fourier
transform of the kernel function into the product of two other Fourier trans-
forms which are analytic and nonzero in certain half planes.

Before we plunge into the use of the Wiener-Hopf technique for solving
partial differential equations, let us focus our attention on the mechanics of
the method itself. To this end, let us solve the integral equation

f(x) = g(x) +
i

2κ<

(
κ2

> − κ2
<

) ∫ ∞

0

eiκ<|x−ξ|f(ξ) dξ, (5.0.2)

3 Magnus, W., 1941: Über die Beugung electromagnetischer Wellen an einer Halbebene.
Z. Phys., 117, 168–179.

4 Copson, E. T., 1946: On an integral equation arising in the theory of diffraction.
Quart. J. Math., 17, 19–34.

5 Sommerfeld, A., 1896: Mathematische Theorie der Diffraction. Math. Ann., 47,
317–374.

6 Kaup, S. N., 1950: Wiener-Hopf techniques and mixed boundary value problems.
Comm. Pure Appl. Math., 3, 411–426; Clemmow, P. C., 1951: A method for the exact
solution of a class of two-dimensional diffraction problems. Proc. R. Soc. London, Ser. A,
205, 286–308. See Noble, B., 1958: Methods Based on the Wiener-Hopf Technique for the
Solution of Partial Differential Equations. Pergamon Press, 246 pp.
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Figure 5.0.2: Primarily known for his work on topology and ergodic theory, Eberhard
Frederich Ferdinand Hopf (1902–1983) received his formal education in Germany. It was
during an extended visit to the United States that he worked with Norbert Wiener on
what we now know as the “Wiener-Hopf technique.” Returning to Germany in 1936, he
would eventually become an American citizen (1949) and a professor at Indiana University.
(Photo courtesy of the MIT Museum.)

where

g(x) =


i

2κ<
e−iκ<x, x < 0,(

x +
i

2κ<

)
eiκ<x, x > 0,

(5.0.3)

and �(κ>), �(κ<) ≥ δ > 0. This integral equation was constructed by
Grzesik and Lee7 to illustrate how various transform methods can be applied
to electromagnetic scattering problems.

We intend to solve Equation 5.0.2 via Fourier transforms. An important
aspect of the Wiener-Hopf method is the splitting of the Fourier transform
into two parts: F (k) = F+(k) + F−(k), where

F−(k) =
∫ ∞

0

f(x)e−ikx dx (5.0.4)

7 Grzesik, J. A., and S. C. Lee, 1995: The dielectric half space as a test bed for trans-
form methods. Radio Sci., 30, 853–862. c©1995 American Geophysical Union. Repro-
duced/modified by permission of the American Geophysical Union.
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Im

δ

−δ

κ>

κ<

F (k)+

Re

F (k)_

(k)

(k)

Figure 5.0.3: The location of the half-planes F+(k) and F−(k), as well as κ< and κ>, in
the complex k-plane used in solving Equation 5.0.2 by the Wiener-Hopf technique.

and

F+(k) =
∫ 0

−∞
f(x)e−ikx dx. (5.0.5)

Because the integral in Equation 5.0.4 converges only if �(k) < 0+ when
x > 0, we have added the subscript “−” to denote its analyticity in the half-
space below �(k) < 0+ in the k-plane. Similarly, the integral in Equation 5.0.5
converges only where �(k) > 0− and the plus sign denotes its analyticity in
the half-space above �(k) > 0− in the k-plane. We will refine these definitions
shortly.

Direct computation of G(k) gives

G(k) =
1

2κ<(k − κ<)
− 1

2κ<(k + κ<)
− 1

(k + κ<)2
. (5.0.6)

Note that this transform is analytic in the strip |�(k)| < δ. Next, taking the
Fourier transform of Equation 5.0.2, we find that

F+(k) + F−(k) = G(k) +
κ2

> − κ2
<

k2 − κ2
<

F−(k), (5.0.7)

or in the more symmetrical form:

k + κ<

k + κ>
F+(k) +

k − κ>

k − κ<
F−(k) =

k + κ<

k + κ>
G(k). (5.0.8)

This is permissible as long as F+(k) is analytic in the half-space �(k) > −δ,
and F−(k) is analytic in the half-space �(k) < δ. See Figure 5.0.3.
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Let us focus on Equation 5.0.8. A quick check shows that the first term
on the left side is analytic in the same half-plane as F+(k). Similarly, the
second term on the left side is analytic in the same half-plane as F−(k). This
suggests that it might be advantageous to split the right side into two parts
where one term is analytic in the same half plane as F+(k) while the other
part is analytic in the half-plane F−(k). Our first attempt is

k + κ<

k + κ>
G(k) = − 1

2κ<(k + κ>)
+ G̃(k), (5.0.9)

where

G̃(k) =
(

k + κ<

k + κ>

)[
1

2κ<(k − κ<)
− 1

(k − κ<)2

]
. (5.0.10)

The first term on the right side of Equation 5.0.9 is analytic in the same
half-plane as F+(k). However, G̃(k) remains unsplit because of the simple
pole at k = −κ>; otherwise, it would be analytic in the same half-plane as
F−(k). To circumvent this difficulty, we add and subtract out the troublesome
singularity:

G̃(k) =

G̃(k) −
Res
[
G̃(k);−κ>

]
k + κ>

+
Res
[
G̃(k);−κ>

]
k + κ>

= G̃−(k) + G̃+(k),

(5.0.11)
where

G̃+(k) =
(

κ> − κ<

k + κ>

)[
1

2κ<(κ> + κ<)
+

1
(κ> + κ<)2

]
. (5.0.12)

Substituting Equation 5.0.11 into Equation 5.0.9, we can then rewrite Equa-
tion 5.0.8 as

k + κ<

k + κ>
F+(k) − G̃+(k) +

1
2κ<(k + κ>)

= −
(

k − κ>

k − κ<

)
F−(k) + G̃−(k).

(5.0.13)
Why have we undertaken such an elaborate analysis to obtain Equation

5.0.13? The function on the left side of Equation 5.0.13 is analytic in the
half-plane �(k) > −δ, while the function on the right side is analytic in the
half-plane �(k) < δ. By virtue of the principle of analytic continuation, these
functions are equal to some function, say H(k), that is analytic over the entire
k-plane. We can determine the form of H(k) from the known asymptotic
properties of the transform. Here, H(k) must vanish at infinity because 1)
G(k) does and 2) both F+(k) and F−(k) vanish by the Riemann–Lebesque
theorem. Once we have the asymptotic behavior, we can apply Liouville’s
theorem.
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Liouville’s theorem:8 If f(z) is analytic for all finite value of z, and as
|z| → ∞, f(z) = O(|z|m), then f(z) is a polynomial of degree ≤ m.

Here, for example, because H(k) goes to zero as |k| → ∞, m = 0 and H(k) =
0. Thus, both sides of Equation 5.0.13 vanish.

The only remaining task is to invert the Fourier transforms and to obtain
f(x). Because F (k) = F+(k) + F−(k),

f(x) =
1
2π

∫ ∞

−∞
[F+(k) + F−(k)] eikx dk. (5.0.14)

We will evaluate Equation 5.0.14 using the residue theorem. Since

F+(k) =
(k + κ>)G̃+(k)

k + κ<
− 1

2κ<(k + κ<)
(5.0.15)

and

F−(k) =
2κ< (k − κ> − 2κ<)

(k − κ>)(k − κ<)(κ> + κ<)2
, (5.0.16)

we find that
f(x) =

2iκ<

(κ> + κ<)2
e−iκ<x (5.0.17)

if x < 0, while for x > 0,

f(x) =
2κ<

i (κ2
> − κ2

<)

(
2κ<

κ> + κ<
eiκ>x − eiκ<x

)
. (5.0.18)

Having outlined the mechanics behind solving a Wiener-Hopf problem,
we are ready to see how this method is used to solve mixed boundary value
problems. The crucial step in the procedure is the ability to break all of the
Fourier transforms into two functions, one part is analytic on some upper
half-plane while the other is analytic on some lower half-plane. For example,
we split G(k) into G+(k) plus G−(k). Most often, this factor is in the form
of a product: G(k) = G+(k)G−(k). In the next two sections, we will show
various problems that illustrate various types of factorization.

Problems

1. Consider the following equation that appeared in a Wiener-Hopf analysis
by Lehner et al.:9 √

ω2 + λ2 U+(ω) =
1

ω − κ
− T−(ω), (1)

8 See Titchmarsh, E. C., 1939: The Theory of Functions. 2nd Edition. Oxford Univer-
sity Press, Section 2.52.

9 Lehner, F. K., V. C. Li, and J. R. Rice, 1981: Stress diffusion along rupturing plate
boundaries. J. Geophys. Res., 86, 6155–6169. c©1981 American Geophysical Union. Re-
produced/modified by permission of the American Geophysical Union.
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where 0 < λ, κ < 0, U+(ω) is analytic in the upper complex ω-plane 0 < �(ω)
and T−(ω) is analytic in the lower half-plane �(ω) < τ , 0 < τ < λ.

Step 1 : Factoring the square root as
√

ω + λi
√

ω − λi so that

√
ω + λi U+(ω) =

1
(ω − κ)

√
ω − λi

− T−(ω)√
ω − λi

, (2)

show that the left side of (2) is analytic in the upper half-plane 0 < �(ω),
while the second term on the right side is analytic in the lower half-plane
�(ω) < τ .

Step 2 : Show that the first term on the right side of (2) is neither analytic on
the half-plane 0 < �(ω) nor on the lower half-plane �(ω) < τ due to a simple
pole that lies in the lower half-plane �(ω) < 0.

Step 3 : Show that we can split this troublesome term as follows:

1
(ω − κ)

√
ω − λi

=
1

(ω − κ)
√

κ − λi
+
(

1√
ω − λi

− 1√
κ − λi

)
1

ω − κ
, (3)

where the first term on the right side of (3) is analytic in the half-plane
0 < �(ω), while the second term is analytic in the half-plane �(ω) < τ .

Step 4 : Show that the factorization of (1) is

√
ω + λi U+(ω)− 1

(ω − κ)
√

κ − λi

=
(

1√
ω − λi

− 1√
κ − λi

)
1

ω − κ
− T−(ω)√

ω − λi
.

5.1 THE WIENER–HOPF TECHNIQUE WHEN THE FACTORIZATION

CONTAINS NO BRANCH POINTS

In the previous section we sketched out the essence of the Wiener-Hopf
technique. An important aspect of this technique was the process of factor-
ization. There, we reexpressed several functions as a sum of two parts; one
part is analytic in some lower half-plane, while the other part is analytic in
some upper half-plane. Both of these half-planes share some common region.
More commonly, the splitting occurs as the product of two functions. In this
section we illustrate how this factorization arises and how the splitting is
accomplished during the solution of a mixed boundary value problem.
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• Example 5.1.1

Given that h, β > 0, let us solve the partial differential equation10

∂2u

∂x2
+

∂2u

∂y2
− β2u = 0, −∞ < x < ∞, 0 < y < 1, (5.1.1)

with the boundary conditions

uy(x, 1) − βu(x, 1) = 0, −∞ < x < ∞, (5.1.2)

and {
u(x, 0) = 1, x < 0,

uy(x, 0) − (h + β)u(x, 0) = 0, 0 < x.
(5.1.3)

We begin by defining

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx and u(x, y) =

1
2π

∫ ∞

−∞
U(k, y)e−ikx dk.

(5.1.4)
Taking the Fourier transform of Equation 5.1.1, we obtain

d2U(k, y)
dy2

− m2U(k, y) = 0, 0 < y < 1, (5.1.5)

where m2 = k2 + β2. The solution to this differential equation is

U(k, y) = A(k) cosh(my) + B(k) sinh(my). (5.1.6)

Substituting Equation 5.1.6 into Equation 5.1.2 after its Fourier transform
has been taken, we find that

m [A(k) sinh(m) + B(k) cosh(m)] − β [A(k) cosh(m) + B(k) sinh(m)] = 0.
(5.1.7)

The Fourier transform of Equation 5.1.3 is

A(k) =
1
ik

+ M+(k); (5.1.8)

and ∫ ∞

−∞

[
uy(x, 0) − (h + β)u(x, 0)

]
eikx dx

=
∫ 0

−∞
[uy(x, 0) − (h + β)u(x, 0)] eikx dx

+
∫ ∞

0

[uy(x, 0) − (h + β)u(x, 0)] eikx dx, (5.1.9)

10 Taken from V. T. Buchwald and F. Viera, Linearized evaporation from a soil of fi-

nite depth near a wetted region, Quart. J. Mech. Appl. Math., 1996, 49(1), 49–64 by
permission of Oxford University Press.
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or
mB − (h + β)A = L−(k), (5.1.10)

where
M+(k) =

∫ ∞

0

u(x, 0)eikx dx, (5.1.11)

and

L−(k) =
∫ 0

−∞
[uy(x, 0) − (h + β)u(x, 0)] eikx dx. (5.1.12)

Here, we have assumed that |u(x, 0)| is bounded by e−εx as x → ∞ with
0 < ε  1. Consequently, M+(k) is an analytic function in the half-space
�(k) > −ε. Similarly, L−(k) is analytic in the half-space �(k) < 0. We used
Equation 5.1.3 to simplify the right side of Equation 5.1.9.

Eliminating A(k) from Equation 5.1.10,

mB = L−(k) + (h + β)
[

1
ik

+ M+(k)
]

. (5.1.13)

Combining Equation 5.1.7, Equation 5.1.8 and Equation 5.1.13, we have that[
1
ik

+ M+(k)
] [

hm cosh(m) − (β2 + hβ − m2) sinh(m)
]

+ [m cosh(m) − β sinh(m)]L−(k) = 0. (5.1.14)

With Equation 5.1.14, we reached the point where we must rewrite it so
that it is analytic in the half-plane �(k) < 0 on one side, while the other side
is analytic in the half-plane �(k) > −ε. The difficulty arises from the terms
hm cosh(m)− (β2 +hβ −m2) sinh(m) and [m cosh(m)−β sinh(m)]. How can
we rewrite them so that we can accomplish our splitting? To do this, we now
introduce the infinite product theorem:

Infinite Product Theorem:11 If f(z) is an entire function of z with simple
zeros at z1, z2, . . ., then

f(z) = f(0) exp [zf ′(0)/f(0)]
∞∏

n=1

(
1 − z

zn

)
ez/zn . (5.1.15)

Let us apply this theorem to cosh(m) − β sinh(m)/m. We find that

cosh(m) +
β

m
sinh(m) = e−βF (k)F (−k), (5.1.16)

11 See Titchmarsh, op. cit., Section 3.23.
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where

F (k) = e−γki/π
∞∏

n=1

(
1 − ki

λn

)
eki/(nπ), (5.1.17)

γ is Euler’s constant, and λn > 0 is the nth root of β tan(λ) = λ. The reason
why Equation 5.1.16 and Equation 5.1.17 are useful lies in the fact that F (k)
is analytic and nonzero in the half-plane �(k) > −ε, while F (−k) is analytic
and nonzero in the lower half-plane �(k) < 0. In a similar vein,

cosh(m) − β2 + hβ − m2

hm
sinh(m) = e−βG(k)G(−k), (5.1.18)

where

G(k) = e−γki/π
∞∏

n=1

(
1 − ki

ρn

)
eki/(nπ), (5.1.19)

and ρn is the nth root of tan(ρ) = hρ/(β2+hβ+ρ2). Here, G(k) is analytic in
the half-plane �(k) > −ε while G(−k) is analytic in the half-plane �(k) < 0.
Substituting Equation 5.1.16 and Equation 5.1.18 into Equation 5.1.14, we
obtain

hG(k)M+(k)
F (k)

+
F (−k)L−(k)

G(−k)
= − hG(k)

ikF (k)
=

h

ik

[
1 − G(k)

F (k)

]
− h

ik
. (5.1.20)

We observe that the first term on the right side of Equation 5.1.20 is analytic
in the upper half-space �(k) > −ε, while the second term is analytic in the
lower half-plane �(k) < 0. We now rewrite Equation 5.1.20 so that its right
side is analytic in the upper half-plane, while its left side is analytic in the
lower half-plane:

hG(k)M+(k)
F (k)

− h

ik

[
1 − G(k)

F (k)

]
= −F (−k)L−(k)

G(−k)
− h

ik
. (5.1.21)

At this point we must explore the behavior of both sides of Equation
5.1.21 as |k| → ∞. Applying asymptotic analysis, Buchwald and Viera showed
that G(k)/F (k) ∼ k1/2. Since M+(k) ∼ k−1, the first term on the right side
of Equation 5.1.20 behaves as k−1/2. Because L−(k) ∼ k−1/2, the second
term behaves as k−1. From Liouville’s theorem, both sides of Equation 5.1.21
must equal zero, yielding

hM+(k) =
hF (k)
ikG(k)

[
1 − G(k)

F (k)

]
, (5.1.22)

and

L−(k) = − hG(−k)
ikF (−k)

. (5.1.23)
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Figure 5.1.1: The solution to Equation 5.1.1 through Equation 5.1.3 obtained via the
Wiener-Hopf technique when h = 2 and β = 0.1.

Therefore, from Equation 5.1.4, we have

u(x, y) =
1
2π

∫ ∞−εi

−∞−εi

[A(k) sinh(mz) + B(k) cosh(mz)]e−ikx dk, (5.1.24)

where A(k) is given by a combination of Equation 5.1.8 and Equation 5.1.22,
while B(k) follows from Equation 5.1.13, Equation 5.1.22 and Equation 5.1.23.
Consequently,

ikmA(k) =
F (k)
G(k)

and ikmB(k) = (h + β)
F (k)
G(k)

− h
G(−k)
F (−k)

. (5.1.25)

Finally, we apply the residue theorem to evaluate Equation 5.1.24 and
find that

u(x, y) = eβy + he−β
∞∑

n=1

µ2
nG(−iλn)F (iλn)

λ2
n(λ2

n − β) sin(µn)
sin(µny)eλnx, x < 0,

(5.1.26)
where µ2

n = λ2
n − β2, and

u(x, y) = he−β
∞∑

n=1

Bn[(h + β) sin(σny) + σn cos(σny)]e−ρnx, 0 < x,

(5.1.27)
where

Bn =
σn(ρ2

n + hβ)F (−iρn)G(iρn)
ρ2

n[(ρ2
n + hβ)(ρ2

n + hβ − h) + h(h + 2)σ2
n] cos(σn)

(5.1.28)

and σ2
n = ρ2

n − β2. Figure 5.1.1 illustrates this solution when h = 2 and
β = 0.1.
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• Example 5.1.2

In the previous example we used Liouville’s theorem to solve the Wiener-
Hopf problem. In the following three examples, we illustrate an alternative
approach developed by N. N. Lebedev. Here the factorization follows from
trial and error.

Presently we solve12 Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞, (5.1.29)

with the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞, (5.1.30)

lim
y→∞u(x, y) → 0, −∞ < x < ∞, (5.1.31)

u(x, 0) = 0, −∞ < x < ∞, (5.1.32)

and{
u(x, h−) = u(x, h+), ε1uy(x, h−) = ε2uy(x, h+), −∞ < x < 0,

u(x, h−) = u(x, h+) = V e−αx, 0 < x < ∞,
(5.1.33)

with α > 0.
We begin by noting that a solution to Equation 5.1.29 is

u(x, y) =
1
2π

∫ ∞

−∞
A(k)

sinh(ky)
sinh(kh)

eikx dk, 0 ≤ y < h, (5.1.34)

and

u(x, y) =
1
2π

∫ ∞

−∞
A(k)e−|k|(y−h)eikx dk, h < y < ∞. (5.1.35)

Note that Equation 5.1.34 and Equation 5.1.35 satisfy not only Laplace’s
equation, but also the boundary conditions as |x| → ∞, y → ∞, and u(x, 0) =
0. Because

e−αxH(x) =
1

2πi

∫ ∞

−∞

eikx

k − iα
dk, (5.1.36)

the boundary condition given by Equation 5.1.33 yields the dual integral equa-
tions ∫ ∞

−∞
A(k)K(k)eikx dk = 0, −∞ < x < 0, (5.1.37)

12 Taken from Lebedev, N. N., 1958: The electric field at the edge of a plane condenser
containing a dielectric. Sov. Tech. Phys., 3, 1234–1243.
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and ∫ ∞

−∞

[
A(k) − V

α + ik

]
eikx dk = 0, 0 < x < ∞, (5.1.38)

where

K(k) =
khe|k|h

sinh(kh)

(
1 + κe−2|k|h

)
, κ =

ε1 − ε2
ε1 + ε2

. (5.1.39)

At this point Lebedev introduced the factorization

K(w) = K+(w)K−(w) =
whe±wh

sinh(wh)
(
1 + κe∓2wh

)
, (5.1.40)

where the upper sign corresponds to w with �(w) > 0, while the lower sign
holds when �(w) < 0,

K+(w) = Γ
(

1 − iwh

π

)
exp
[
iwh

π
log
(
− iwh

π

)
− iwh

π
+ f

(
− iwh

π

)]
,

(5.1.41)
for −π/2 < arg(w) < 3π/2, K−(w) = K+(−w) with −3π/2 < arg(w) < π/2;
Γ(·) is the gamma function and the logarithm takes its principal value. Here,

f(z) =
1
π

∫ ∞

0

arctan
[

κ sin(2πη)
1 + κ cos(2πη)

]
dη

η + z
, −π < arg(z) < π.

(5.1.42)
The function f(z) is analytic on the complex z-plane cut along the negative
real axis, approaches zero as |z| → ∞, and

f

(
− iwh

π

)
+ f

(
iwh

π

)
= log

(
1 + κe∓2wh

)
, (5.1.43)

where the upper and lower signs are taken according to whether �(w) < 0 or
> 0, respectively. Finally, asymptotic analysis reveals that

K+(w) ≈ √−2iwh, |w| → ∞, −π

2
< arg(w) <

3π

2
, (5.1.44)

and

K−(w) ≈
√

2iwh, |w| → ∞, −3π

2
< arg(w) <

π

2
. (5.1.45)

To show that this factorization of K(w) is a correct one, we use the facts that

Γ
(

1 − iwh

h

)
Γ
(

1 +
iwh

h

)
=

wh

sinh(wh)
, (5.1.46)
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and

log
(
− iwh

π

)
+ log

(
− iwh

π

)
= ∓πi, (5.1.47)

where the upper sign corresponds to �(w) > 0 while the lower sign corre-
sponds to �(w) < 0, as well as Equation 5.1.43.

We now use our knowledge of K(k) to construct a solution to Equation
5.1.37 and Equation 5.1.38. Consider Equation 5.1.37 first. A common tech-
nique for evaluating Fourier integrals consists of closing the line integral along
the real axis with an arc of infinite radius as dictated by Jordan’s lemma and
then using the residue theorem. Because x < 0 here, this closed contour must
be a semi-circle of infinite radius in the lower half of the complex k-plane, i.e.,
�(k) ≤ 0. If K(k)A(k) is analytic within this closed contour, then Equation
5.1.37 is satisfied by the Cauchy-Goursat theorem. A quick check confirms
that if

A(k) =
V K+(αi)

(α + ik)K+(k)
, (5.1.48)

then
K(k)A(k) =

V K+(αi)K−(k)
α + ik

(5.1.49)

is analytic in the lower half-plane �(k) ≤ 0. Using similar arguments for
Equation 5.1.38, because the expression

A(k) − V

ik + α
=

V

ik + α

[
K+(αi)
K+(k)

− 1
]

(5.1.50)

is analytic in the upper half-plane �(k) ≥ 0, Equation 5.1.38 is satisfied.
Substituting Equation 5.1.48 into Equation 5.1.34 and Equation 5.1.35,

we have that

u(x, y) =
V

2πi

∫ ∞

−∞

K+(αi) sinh(ky)
K+(k)(k − αi) sinh(kh)

eikx dk (5.1.51)

for 0 ≤ y ≤ h; and

u(x, y) =
V

2πi

∫ ∞

−∞

K+(iα)e−|k|(y−h)

K+(k)(k − αi)
eikx dk (5.1.52)

for h ≤ y ≤ ∞. Applying the residue theorem to these equations, we find
that

u(x, y)
V

= e−αy sinh(αy)
sinh(αh)

+
1
π

∞∑
n=1

(−1)n

n − αh/π

Γ(1 + αh/π)
Γ(1 + n)

(5.1.53)

× exp
[
ϕ

(
αh

π

)
− ϕ(n) − nπx

h

]
sin
(nπy

h

)



The Wiener-Hopf Technique 361

for 0 ≤ x < ∞, 0 ≤ y ≤ h, where ϕ(z) = f(z) − z log(z) + z. On the other
hand,

u(x, y)
V

=
1 − κ

π
Γ
(

1 +
αh

π

)
eϕ(αh/π) (5.1.54)

×
∫ ∞

0

eϕ(η)eπηx/h sin(πηy/h)
Γ(1 − η)(η + ah/π)[1 + 2κ cos(2πη) + κ2]

dη

for −∞ < x ≤ 0, 0 ≤ y ≤ h;

u(x, y)
V

=
1
π

Γ
(

1 +
αh

π

)
eϕ(αh/π) (5.1.55)

×
∫ ∞

0

eϕ(η)eπηx/h {sin(πηy/h) + κ sin[πη(y − 2h)/h]}
Γ(1 − η)(η + αh/π)[1 + 2κ cos(2hη) + κ2]

dη

for −∞ < x ≤ 0, h ≤ y < ∞; and

u(x, y)
V

= e−αx cos[α(y − h)] − 1
π

Γ
(

1 +
αh

π

)
eϕ(αh/π) (5.1.56)

× PV

{∫ ∞

0

e−ϕ(η)−πηx/π sin[πη(y − h)/h]
Γ(1 + η)(η − αh/π)

dη

}
for 0 ≤ x < ∞, h ≤ y < ∞. Equation 5.1.54 through Equation 5.1.56
follow from deforming the line integration along the real axis to one along the
imaginary axis. See Lebedev’s paper for details. In the limit α → 0, Equation
5.1.53 through Equation 5.1.56 simplify to

u(x, y)
V

=
y

h
+

√
1 + κ

π

∞∑
n=1

(−1)n

n n!
e−ϕ(n)−nπx/h sin

(nπy

h

)
(5.1.57)

for 0 ≤ x ≤ ∞ and 0 ≤ y ≤ h;

u(x, y)
V

=
√

1 + κ

π
(1 − κ)

∫ ∞

0

eϕ(η)+πηx/h sin(πηy/h)
ηΓ(1 − η)[1 + 2κ cos(2πη) + κ2]

dη, (5.1.58)

for −∞ < x ≤ 0 and 0 ≤ y ≤ h;

u(x, y)
V

=
√

1 + κ

π

∫ ∞

0

eϕ(η)+πηx/h {sin(πηy/h) + κ sin[πη(y − 2h)/h]}
ηΓ(1 − η)[1 + 2κ cos(2πη) + κ2]

dη,

(5.1.59)
for −∞ < x ≤ 0 and h ≤ y < ∞; and

u(x, y)
V

= 1 −
√

1 + κ

π

∫ ∞

0

e−ϕ(η)−πηx/h sin[πη(y − h)/h]
ηΓ(1 + η)

dη, (5.1.60)
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Figure 5.1.2: A plot of the solution to Equation 5.1.29 through Equation 5.1.33 in the
limit as α → 0. Here ε1 = 3ε2 = 3.

for 0 ≤ x < ∞ and h ≤ y < ∞. Figure 5.1.2 illustrates Equation 5.1.57
through Equation 5.1.60.

• Example 5.1.3

For the next example, let us solve Laplace’s equation13

1
r

∂

∂r

(
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < ∞, −∞ < z < ∞, (5.1.61)

with the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, −∞ < z < ∞, (5.1.62)

lim
|z|→∞

u(r, z) → 0, 0 ≤ r < ∞, (5.1.63)

and {
ur(a−, z) = ur(a+, z), −∞ < z < 0,

u(a−, z) = u(a+, z) = e−iαz, 0 < z < ∞,
(5.1.64)

with �(α) < 0.
We begin by observing that the solution to Equation 5.1.61 is

u(r, z) =
1
2π

∫ ∞

−∞
A(k)

I0(kr)
I0(ka)

eikz dk, 0 ≤ r ≤ a, (5.1.65)

13 Adapted from Lebedev, N. N., and I. P. Skal’skaia, 1958: Axially-symmetric electro-
static problem for a thin-walled conductor in the form of a half-infinite tube. Sov. Tech.
Phys., 3, 740–748.
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and

u(r, z) =
1
2π

∫ ∞

−∞
A(k)

K0(|k|r)
K0(|k|a)

eikz dk, a ≤ r < ∞. (5.1.66)

Note that Equation 5.1.65 and Equation 5.1.66 satisfy not only Laplace’s
equation, but also the boundary conditions as |z| → ∞ and r → ∞. Because

e−iαzH(z) =
1

2πi

∫ ∞

−∞

eikz

k + α
dk, (5.1.67)

the boundary condition given by Equation 5.1.64 yields the dual integral equa-
tions ∫ ∞

−∞
A(k)K(k)eikz dk = 0, −∞ < z < 0, (5.1.68)

and ∫ ∞

−∞

[
A(k) +

i

k + α

]
eikz dk = 0, 0 < z < ∞, (5.1.69)

where K(k) = I0(ka)/K0(|k|a).
The difficulty in factoring K(k) lies with the presence of K0(z) which

possesses a branch point at z = 0. Our goal remains the same: we wish to
factor K(k) as

K(k) = K+(k)K−(k), (5.1.70)

with the properties:
• The function K+(k) is analytic and has no zeros in a k-plane cut along

the negative imaginary axis; the function K−(k) is analytic and has no
zeros in a plane cut along the positive imaginary axis.

• Both K+(k) and K−(k) have algebraic growth at infinity, namely

K+(k) ≈ √−2ika, |k| → ∞, −π

2
< arg(k) <

3π

2
, (5.1.71)

and

K−(k) ≈
√

2ika, |k| → ∞, −3π

2
< arg(k) <

π

2
. (5.1.72)

Under these constraints, Lebedev and Skal’skaia showed that

K+(w) =
(
−2iwa

π

)1/4

exp
[
−f

(
− iwa

π

)]
(5.1.73)

×
exp

{
− iwa

π

[
1 − γ − log

(
− iwa

π

)
− π

∞∑
n=1

(
1
γn

− 1
nπ

)]}
∞∏

n=1

(1 − iwa/γn)eiwa/γn

,
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and K−(w) = K+(−w), where γ is Euler’s constant, γn is the nth positive
root of J0(·) and

f(z) =
1
π

∫ ∞

0

{
1 − 2

πη [J2
0 (η) + Y 2

0 (η)]

}
log
(
1 +

η

πz

)
dη. (5.1.74)

We now use these properties of K(k) to construct a solution to Equation
5.1.68 and Equation 5.1.69. Our argument is identical to the one given in the
previous example. If we set

A(k) = −i
K+(−α)

(k + α)K+(k)
, (5.1.75)

then

K(k)A(k) = −i
K+(−α)K−(k)

k + α
(5.1.76)

is clearly analytic in the lower half-plane �(k) ≤ 0 and Equation 5.1.68 is
satisfied. Furthermore,

A(k) +
i

k + α
=

i

k + α

[
1 − K+(−α)

K+(k)

]
(5.1.77)

is analytic in the upper half-plane �(k) ≥ 0 and Equation 5.1.69 is satisfied.
Substituting Equation 5.1.75 into Equation 5.1.65 and Equation 5.1.66,

we have that

u(r, z) =
K+(−α)

2πi

∫ ∞

−∞

I0(kr)
I0(ka)

eikz

K+(k)(k + α)
dk (5.1.78)

for 0 ≤ r ≤ a; and

u(x, y) =
K+(−α)

2πi

∫ ∞

−∞

K0(|k|r)
K0(|k|a)

eikz

K+(k)(k + α)
dk (5.1.79)

for a ≤ r < ∞. Applying the residue theorem to these equations, we find that

u(r, z) =
I0(αr)
I0(αa)

e−iαz +
∞∑

n=1

K−(α)J0(γnr/a)e−γnz/a

aiK−(−iγn/a)J1(γn)(α + iγn/a)
(5.1.80)

for 0 ≤ r ≤ a, 0 < z < ∞. On the other hand, if we deform the original
contour that runs along the real axis so that now also runs along the imaginary
axis, we obtain

u(r, z) =
K−(α)

2ai

∫ ∞

0

K+

(
iη

a

)
eηz/aJ0(η)J0

(ηr

a

) dη

α − iη/a
(5.1.81)

for 0 ≤ r < ∞, −∞ < z < 0; as well as

u(r, z) =
K0(±αr)
K0(±αr)

e−iαz (5.1.82)

− K−(α)
πai

∫ ∞

0

e−ηz/a [J0(ηr/a)Y0(η) − J0(η)Y0(ηr/a)]
K−(−iη/a) [J2

0 (η) + Y 2
0 (η)] (α + iη/a)

dη

for a ≤ r < ∞, 0 < z < ∞. Figure 5.1.3 illustrates the solution when
αa = 3 − 0.01 i.
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Figure 5.1.3: A plot of the solution to Equation 5.1.61 through Equation 5.1.64 when
αa = 3 − 0.01 i.

• Example 5.1.4

Let us solve Laplace’s equation14

1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
= 0, 0 ≤ r < b, −∞ < z < ∞, (5.1.83)

with the boundary conditions

lim
z→−∞u(r, z) → 0, 0 ≤ r < b, (5.1.84)

lim
z→∞u(r, z) → 0, 0 ≤ r < b, (5.1.85)

14 Adapted from Lebedev, N. N., and I. P. Skal’skaya, 1960: Electrostatic field of an
electron lens consisting of two coaxial cylinders. Sov. Tech. Phys., 5, 443–450.
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2b
z

r

2a

Figure 5.1.4: Schematic of the geometry in Example 5.1.4.

u(b, z) = 0, u(a−, z) = u(a+, z), −∞ < z < ∞, (5.1.86)

and {
ur(a−, z) = ur(a+, z), −∞ < z < 0,

u(a, z) = V e−αz, 0 < z < ∞,
(5.1.87)

with α > 0 and b > a. Figure 5.1.4 illustrates the geometry of our problem.
We begin by observing that the solution to Equation 5.1.83 is

u(r, z) =
1
2π

∫ ∞

−∞
A(k)

I0(kr)
I0(ka)

eikz dk, 0 ≤ r < a, (5.1.88)

and

u(r, z) =
1
2π

∫ ∞

−∞
A(k)

I0(kr)K0(kb) − I0(kb)K0(kr)
I0(ka)K0(kb) − I0(kb)K0(ka)

eikz dk, a < r < b.

(5.1.89)
Note that Equation 5.1.88 and Equation 5.1.89 satisfy not only Laplace’s
equation, but also the boundary conditions as |z| → ∞ and u(b, z) = 0.
Because

e−αzH(z) =
1

2πi

∫ ∞

−∞

eikz

k − iα
dk, (5.1.90)

the boundary condition given by Equation 5.1.87 yields the dual integral equa-
tions ∫ ∞

−∞
A(k)K(k)eikz dk = 0, −∞ < z < 0, (5.1.91)

and ∫ ∞

−∞

[
A(k) − V

α + ik

]
eikz dk = 0, 0 < z < ∞, (5.1.92)
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where

K(k) =
ln(a/b) I0(kb)

I0(ka) [I0(ka)K0(kb) − I0(kb)K0(ka)]
. (5.1.93)

In the derivation of Equation 5.1.91 we used the Wronskian15 involving I0(·)
and K0(·). We also multiplied Equation 5.1.93 by ln(a/b) so that K(0) = 1.

Before we solve the integral equations, Equation 5.1.91 and Equation
5.1.92, let us examine the singularities in K(k). There are two sources: the
zeros of I0(ka) and I0(ka)K0(kb) − I0(kb)K0(ka). If we denote the nth zero
by iγn/a and iδn/(b − a), respectively, then γn and δn are given by the nth
root of J0(γ) = 0 and

J0

(
aδ

b − a

)
Y0

(
bδ

b − a

)
− J0

(
bδ

b − a

)
Y0

(
aδ

b − a

)
= 0. (5.1.94)

Asymptotic analysis reveals that for large n,

γn = nπ − π

4
+ O(n−1), and δn = nπ + O(n−1). (5.1.95)

Let us now turn to the factorization of K(k). A straightforward applica-
tion of the infinite product theorem yields

K(w) = K+(w)K−(w), (5.1.96)

where

K+(w) =

∞∏
n=1

(1 − iwb/γn)eiwb/γn

∞∏
n=1

(1 − iwa/γn)eiwa/γn

∞∏
n=1

[1 − iw(b − a)/δn]eiw(b−a)/δn

,

(5.1.97)
and K−(w) = K+(−w). An alternative factorization is

K+(w) =

∞∏
n=1

(1 − iwb/γn)eiwb/γn exp

{
iw

π

[
c + π(b − a)

∞∑
n=1

(
1
δn

− 1
γn

)]}
∞∏

n=1

(1 − iwa/γn)eiwa/γn

∞∏
n=1

[1 − iw(b − a)/δn]eiw(b−a)/δn

,

(5.1.98)
where c = (b − a) ln(b − a) + a ln(a) − b ln(b). The advantage of using Equa-
tion 5.1.98 over Equation 5.1.97 is that K±(w) increases algebraically toward
infinity:

K±(w) ≈
√
±2ai ln(b/a)w, |w| → ∞. (5.1.99)

15 Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series and Products.
Academic Press, Formula 8.474.
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We now use this knowledge of K(k) to construct a solution to Equation
5.1.91 and Equation 5.1.92. Following the same reasoning given in Example
5.1.2, K(k)A(k) must be analytic in the lower half-plane �(k) ≤ 0. Similarly,
the expression A(k) − V/(α + ik) must be analytic in the upper half-plane
�(k) ≥ 0. If we set

A(k) =
V K+(αi)

(α + ik)K+(k)
, (5.1.100)

then

K(k)A(k) =
V K+(αi)K−(k)

α + ik
(5.1.101)

is clearly analytic in the lower half-plane �(k) ≤ 0. Indeed, it decays as 1/
√

w
as |w| → ∞. Furthermore,

A(k) +
V

ik + α
=

V

ik + α

[
1 − K+(αi)

K+(k)

]
(5.1.102)

is analytic in the upper half-plane �(k) ≥ 0 and decays as 1/w as |w| → ∞.
Substituting Equation 5.1.100 into Equation 5.1.88 and Equation 5.1.89, we
have that

u(r, z) =
V K+(iα)

2πi

∫ ∞

−∞

I0(kr)
I0(ka)

eikz

K+(k)(k − iα)
dk (5.1.103)

for 0 ≤ r ≤ a; and

u(r, z) =
V K+(αi)

2πi

∫ ∞

−∞

I0(kr)K0(kb) − I0(kb)K0(kr)
I0(ka)K0(kb) − I0(kb)K0(ka)

eikz

K+(k)(k − iα)
dk

(5.1.104)
for a ≤ r ≤ b. Applying the residue theorem to Equation 5.1.103 and Equation
5.1.104, we find for the special case of α = 0 that

u(r, z)
V

= 1 −
∞∑

n=1

J0(γnr/a)e−γnz/a

γnJ1(γn)K+(iγn/a)
(5.1.105)

for 0 ≤ r ≤ a and 0 < z < ∞,

u(r, z)
V

=
1

ln(b/a)

∞∑
n=1

K+(iγn/b)eγnz/b

γ2
nJ2

1 (γn)
J0

(γna

b

)
J0

(γnr

b

)
(5.1.106)

for 0 ≤ r ≤ b and −∞ < z < 0, and

u(r, z)
V

=
ln(b/r)
ln(b/a)

− π

2

∞∑
n=1

J0[δna/(b − a)]J0[δnb/(b − a)]
K+[iδn/(b − a)]

e−δnz/(b−a)

× J0[δnr/(b − a)]Y0[δnb/(b − a)] − J0[δnb/(b − a)]Y0[δnr/(b − a)]
J2

0 [δnb/(b − a)] − J2
0 [δna/(b − a)]

(5.1.107)
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for a ≤ r ≤ b and 0 < z < ∞.
The MATLAB R© code for computing this Wiener-Hopf solution begins by

calculating some useful constants:

c = (b-a)*log(b-a) + a*log(a) - b*log(b);
euler = -psi(1); S = 0.5 - 3*log(2)/pi;

Next we compute γn and δn using Newton’s method. The first guess is pro-
vided by Equation 5.1.95. The MATLAB code is

for m = 1:iprod
k = m*pi - 0.25*pi;
for n = 0:100
F prime = - besselj(1,k); F = besselj(0,k);
k = k - F / F prime;
end
gamma n(m) = k;
k = m*pi; f1 = a/(b-a); f2 = b/(b-a);
for n = 0:100
F prime = - f1*besselj(1,f1*k)*bessely(0,f2*k) ...

- f2*besselj(0,f1*k)*bessely(1,f2*k) ...
+ f2*besselj(1,f1*k)*bessely(0,f2*k) ...
+ f1*besselj(0,f1*k)*bessely(1,f2*k) ;

F = besselj(0,f1*k)*bessely(0,f2*k) ...
- besselj(0,f2*k)*bessely(0,f1*k) ;

k = k - F / F prime;
end
delta n(m) = k;
end

Once we find δn and γn, we turn to K+(·). Because we cannot compute
any expression with an infinite number of multiplications, we truncate it to
just iprod terms. Following Lebedev and Skal’skaya, we rewrite the various
K+(·) in terms of an universal function f(x) as follows:

K+

(
iγm

a

)
= f

(
b − a

a
γm

)
, (5.1.108)

K+

(
iγm

b

)
= f

(
b − a

b
γm

)
, (5.1.109)

and

K+

(
iδm

b − a

)
= f(δm), (5.1.110)
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where

f(x) =
P [bx/(b − a)] exp{−x[a/(b − a) + πS]/π}

P [ax/(b − a)]Q(x)
, (5.1.111)

P (x) =
∞∏

n=1

(
1 +

x

γn

)
e−x/γn , (5.1.112)

Q(x) =
∞∏

n=1

(
1 +

x

δn

)
e−x/δn , (5.1.113)

and

S =
∞∑

n=1

(
1
δn

− 1
γn

)
. (5.1.114)

However, instead of computing P (x), Q(x) and S from Equation 5.1.112
through Equation 5.1.114, we use the properties of logarithms to reexpress
these quantities as

ln[P (x)] = ln
[

Γ(3/4)
Γ(3/4 + x/π)

]
− x

π

[
γ − π

2
+ 3 ln(2)

]
(5.1.115)

+
∞∑

n=1

[
ln
(

1 +
x

γn

)
− x

γn
− ln

(
1 +

x

γ′
n

)
+

x

γ′
n

]
,

ln[Q(x)] = −γx

π
− ln

[
Γ
(
1 +

x

π

)]
(5.1.116)

+
∞∑

n=1

[
ln
(

1 +
x

δn

)
− x

δn
− ln

(
1 +

x

nπ

)
+

x

nπ

]
,

S =
1
2
− 3

π
ln(2) +

∞∑
n=1

(
1
δn

− 1
nπ

− 1
γn

+
1
γ′

n

)
, (5.1.117)

and γ′
n = nπ − π/4. The corresponding MATLAB code is

% Compute S. Used in computing K+(k)
for m = 1:iprod
S = S + 1/delta n(m) - 1/(m*pi)
- 1/gamma n(m) + 1/(m*pi-0.25*pi);

end

% Compute K+(iγn/a). Call it K1(m).
for m = 1:iprod
x1 = b*gamma n(m)/a; x2 = gamma n(m); x3 = (b-a)*gamma n(m)/a;
lnP1 = log(gamma(0.75)/gamma(0.75+x1/pi)) ...
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- x1*(euler-0.5*pi+3*log(2))/pi;
lnP2 = log(gamma(0.75)/gamma(0.75+x2/pi)) ...

- x2*(euler-0.5*pi+3*log(2))/pi;
lnQ = - euler*x3/pi-log(gamma(1+x3/pi));
for n = 1:iprod
gamma p = n*pi - 0.25*pi;
lnP1 = lnP1 + log(1+x1/gamma n(n))-x1/gamma n(n) ...

- log(1+x1/gamma p)+x1/gamma p;
lnP2 = lnP2 + log(1+x2/gamma n(n))-x2/gamma n(n) ...

- log(1+x2/gamma p)+x2/gamma p;
lnQ = lnQ + log(1+x3/delta n(n))-x3/delta n(n) ...

- log(1+x3/(n*pi))+x3/(n*pi);
end
K1(m) = exp(lnP1)*exp(-x3*(c/(b-a)+pi*S)/pi) ...

/ (exp(lnP2)*exp(lnQ));

% *************************************************************
% Compute K+(iγn/b). Call it K2(m)
% *************************************************************

x1 = gamma n(m); x2 =a*gamma n(m)/b; x3 = (b-a)*gamma n(m)/b;
lnP1 = log(gamma(0.75)/gamma(0.75+x1/pi)) ...

- x1*(euler-0.5*pi+3*log(2))/pi;
lnP2 = log(gamma(0.75)/gamma(0.75+x2/pi)) ...

- x2*(euler-0.5*pi+3*log(2))/pi;
lnQ = - euler*x3/pi - log(gamma(1+x3/pi));

for n = 1:iprod
gamma p = n*pi - 0.25*pi;
lnP1 = lnP1 + log(1+x1/gamma n(n)) - x1/gamma n(n) ...

- log(1+x1/gamma p) + x1/gamma p;
lnP2 = lnP2 + log(1+x2/gamma n(n)) - x2/gamma n(n) ...

- log(1+x2/gamma p) + x2/gamma p;
lnQ = lnQ + log(1+x3/delta n(n)) - x3/delta n(n) ...

- log(1+x3/(n*pi)) + x3/(n*pi);
end

K2(m) = exp(lnP1)*exp(-x3*(c/(b-a)+pi*S)/pi) ...
/ (exp(lnP2)*exp(lnQ));

% *************************************************************
% Compute K+(iδn/(b − a)). Call it K3(m)
% *************************************************************

x1 = b*delta n(m)/(b-a); x2 = a*delta n(m)/(b-a);
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x3 = delta n(m);
lnP1 = log(gamma(0.75)/gamma(0.75+x1/pi)) ...

- x1*(euler - 0.5*pi + 3*log(2))/pi;
lnP2 = log(gamma(0.75)/gamma(0.75+x2/pi)) ...

- x2*(euler - 0.5*pi + 3*log(2))/pi;
lnQ = - euler*x3/pi - log(gamma(1+x3/pi));

for n = 1:iprod
gamma p = n*pi - 0.25*pi;
lnP1 = lnP1 + log(1+x1/gamma n(n)) - x1/gamma n(n) ...

- log(1+x1/gamma p) + x1/gamma p;
lnP2 = lnP2 + log(1+x2/gamma n(n)) - x2/gamma n(n) ...

- log(1+x2/gamma p) + x2/gamma p;
lnQ = lnQ + log(1+x3/delta n(n)) - x3/delta n(n) ...

- log(1+x3/(n*pi)) + x3/(n*pi);
end
K3(m) = exp(lnP1)*exp(-x3*(c/(b-a)+pi*S)/pi) ...

/ (exp(lnP2)*exp(lnQ));
end

For a given r and z, the solution u(r, z) is computed using the MATLAB code

% *************************************************************
% Equation 5.1.105
% *************************************************************

if ( (z>0) & (r<=1))
u(ii,jj) = 1;
for n = 1:iprod
num = besselj(0,gamma n(n)*r)*exp(-gamma n(n)*z);
denom = gamma n(n)*besselj(1,gamma n(n))*K1(n);
u(ii,jj) = u(ii,jj) - num/denom;
end; end

% *************************************************************
% Equation 5.1.106
% *************************************************************

if (z<0)
u(ii,jj) = 0;
for n = 1:iprod
num = K2(n)*exp(a*gamma n(n)*z/b)*besselj(0,a*gamma n(n)/b) ...

* besselj(0,a*r*gamma n(n)/b);
denom = gamma n(n)*gamma n(n)*besselj(1,gamma n(n))^2;
u(ii,jj) = u(ii,jj) + num/denom;
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Figure 5.1.5: The solution of Laplace’s equation with the mixed boundary conditions
given by Equation 5.1.84 through Equation 5.1.87 when b/a = 2.

end
u(ii,jj) = u(ii,jj)/log(b/a);
end

% *************************************************************
% Equation 5.1.107
% *************************************************************

if ( (z>0) & (1<=r))
u(ii,jj) = log(b/r)/log(b/a);
for n = 1:iprod
num = besselj(0,a*delta n(n)/(b-a)) ...

* besselj(0,b*delta n(n)/(b-a)) ...
* (besselj(0,a*delta n(n)*r/(b-a)) ...
* bessely(0,b*delta n(n)/(b-a)) ...
- besselj(0,b*delta n(n)/(b-a)) ...
* bessely(0,a*r*delta n(n)/(b-a)));

denom = K3(n)*(besselj(0,b*delta n(n)/(b-a))^2 ...
-besselj(0,a*delta n(n)/(b-a))^2);

u(ii,jj) = u(ii,jj) - 0.5*pi*num*exp(-a*delta n(n)/(b-a))/denom;
end;end

Figure 5.1.5 illustrates this solution.

• Example 5.1.5

The Wiener-Hopf technique is often applied to diffraction problems. To
illustrate this in a relatively simple form, consider an infinitely long channel
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Figure 5.1.6: Schematic of the rotating channel in which Kelvin waves are diffracted.

−∞ < x < ∞, 0 < y < a rotating on a flat plate16 filled with an inviscid,
homogeneous fluid of uniform depth H . Within the channel, we have another
plate of infinitesimal thickness located at x < 0 and y = b. See Figure 5.1.6.
The shallow-water equations govern the motion of the fluid:

−iωu− fv = −∂h

∂x
, (5.1.118)

−iωv + fu = −∂h

∂y
, (5.1.119)

and

−iωh + gH

(
∂u

∂x
+

∂v

∂y

)
= 0, (5.1.120)

where u and v are the velocities in the x and y directions, respectively, h is the
deviation of the free surface from its average height H , g is the gravitational
acceleration and f is one-half of the angular velocity at which it rotates. All
motions within the fluid behave as e−iωt.

A little algebra shows that we can eliminate u and v and obtain the
Helmholtz equation:

∂2h

∂x2
+

∂2h

∂y2
+ k2h = 0, (5.1.121)

where

(ω2 − f2)u = −iω
∂h

∂x
+ f

∂h

∂y
, (5.1.122)

(ω2 − f2)v = −iω
∂h

∂y
− f

∂h

∂x
, (5.1.123)

16 See Kapoulitsas, G. M., 1980: Scattering of long waves in a rotating bifurcated chan-
nel. Int. J. Theoret. Phys., 19, 773–788.
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and k2 = (ω2 − f2)/(gH) assuming that ω > f . We solve the problem when
an incident wave of the form

h = φi = exp[(iωx − fy)/c] (5.1.124)
= exp{k[ix cosh(β) − y sinh(β)]}, (5.1.125)

a so-called “Kelvin wave,” propagates toward the origin from −∞ within the
lower channel A. See Figure 5.1.6. We have introduced β such that f =
kc sinh(β), ω = kc cosh(β) and c2 = gH .

The first step in the Wiener-Hopf technique is to write the solution as a
sum of the incident wave plus some correction φ that represents the reflected
and transmitted waves. For example, in Region A, h consists of φi+φ whereas
in Region B we have only φ. Because φi satisfies Equation 5.1.121, so must
φ. Furthermore, φ must satisfy certain boundary conditions. Because of the
rigid walls, v must vanish along them; this yields

∂φ

∂y
− i tanh(β)

∂φ

∂x
= 0 (5.1.126)

along −∞ < x < ∞, y = 0, a and x < 0, y = b±. Furthermore, because the
partition separating Region A from Region B is infinitesimally thin, we must
have continuity of v across that boundary; this gives[

∂φ

∂y
− i tanh(β)

∂φ

∂x

]
y=b−

=
[
∂φ

∂y
− i tanh(β)

∂φ

∂x

]
y=b+

(5.1.127)

for −∞ < x < ∞. Finally, to prevent infinite velocities in the right half of
the channel, h must be continuous at z = b, or

φ(x, b−) + φi(x, b) = φ(x, b+) (5.1.128)

for x > 0.
An important assumption in the Wiener-Hopf technique concerns the

so-called “edge conditions” at the edge point (0, b); namely, that

φ = O(1) as x → 0± and y = b, (5.1.129)

and
∂φ

∂y
= O(x−1/2) as x → 0± and y = b. (5.1.130)

These conditions are necessary to guarantee the uniqueness of the solution
because the edge point is a geometric singularity. Another assumption intro-
duces dissipation by allowing ω to have a small, positive imaginary part. We
can either view this as merely reflecting reality or ensuring that we satisfy
the Sommerfeld radiation condition that energy must radiate to infinity. As a
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result of this complex form of ω, k must also be complex with a small, positive
imaginary part k2.

We solve Equation 5.1.121, as well as Equation 5.1.126 through Equa-
tion 5.1.128, by Fourier transforms. Let us define the double-sided Fourier
transform of φ(x, y) by

Φ(α, y) =
∫ ∞

−∞
φ(x, y)eiαx dx, |τ | < τ0, (5.1.131)

as well as the one-sided Fourier transforms

Φ−(α, y) =
∫ 0

−∞
φ(x, y)eiαx dx, τ < τ0, (5.1.132)

and
Φ+(α, y) =

∫ ∞

0

φ(x, y)eiαx dx, −τ0 < τ, (5.1.133)

where α = σ + iτ and σ, τ are real. Clearly,

Φ−(α, y) + Φ+(α, y) = Φ(α, y). (5.1.134)

Note that Equation 5.1.131 through Equation 5.1.133 are analytic in a com-
mon strip in the complex α-plane.

Taking the double-sided Fourier transform of Equation 5.1.121,

d2Φ
dy2

− γ2Φ = 0, (5.1.135)

where γ =
√

α2 − k2. In general,

Φ(α, y) =
{

A(α)e−γy + B(α)eγy, if 0 ≤ y ≤ b,
C(α)e−γy + D(α)eγy, if b ≤ y ≤ a.

(5.1.136)

Taking the double-sided Fourier transform of Equation 5.1.126 for the condi-
tions on y = 0, a,

Φ′(α, 0) − α tanh(β)Φ(α, 0) = 0 (5.1.137)

and
Φ′(α, a) − α tanh(β)Φ(α, a) = 0. (5.1.138)

Similarly, from Equation 5.1.127,

Φ′(α, b−) − α tanh(β)Φ(α, b−) = Φ′(α, b+) − α tanh(β)Φ(α, b+). (5.1.139)

From the boundary conditions given by Equation 5.1.137 through Equation
5.1.139,

B = λA, (5.1.140)
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C = −A
sinh(γb)

sinh[γ(a − b)]
eγa, (5.1.141)

and

D = −λA
sinh(γb)

sinh[γ(a − b)]
e−γa, (5.1.142)

where

λ =
γ + α tanh(β)
γ − α tanh(β)

. (5.1.143)

By taking the one-sided Fourier transform of Equation 5.1.126 (from −∞
to 0) for the condition x < 0, we obtain two equations:

Φ′
−(α, b+) − α tanh(β)Φ−(α, b+) = i tanh(β)φ(0, b), (5.1.144)

and

Φ′
−(α, b−) − α tanh(β)Φ−(α, b−) = i tanh(β)φ(0, b), (5.1.145)

because φ(0, b−) = φ(0, b+) = φ(0, b). Using Equation 5.1.144 and Equation
5.1.145 in conjunction with Equation 5.1.139,

Φ′
+(α, b−) − α tanh(β)Φ+(α, b−) + i tanh(β)φ(0, b)

= Φ′
+(α, b+) − α tanh(β)Φ+(α, b+) + i tanh(β)φ(0, b)

= P+(α). (5.1.146)

Finally, the one-sided Fourier transform of Equation 5.1.128 (from 0 to
∞) yields

Φ+(α, b−) +
i exp[−kb sinh(β)]

α + k cosh(β)
= Φ+(α, b+). (5.1.147)

Then, by Equation 5.1.134, Equation 5.1.136, Equation 5.1.144 through Equa-
tion 5.1.146 and the definition of B,

P+(α) = 2A[γ + α tanh(β)] sinh(γb). (5.1.148)

Let us now introduce the function Q−(α) defined by

Q−(α) = 1
2 [Φ−(α, b−) − Φ(α, b+)]. (5.1.149)

From Equation 5.1.136, Equation 5.1.139, Equation 5.1.141, Equation 5.1.143,
Equation 5.1.147 and D = λCe−2γa,

2Q−(α) − i exp[−kb sinh(β)]
α + k cosh(β)

=
2Aγ sinh(γa)

[γ − α tanh(β)] sinh[γ(a − b)]
. (5.1.150)
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Eliminating A between Equation 5.1.148 and Equation 5.1.150, we finally
obtain a functional equation of the Wiener-Hopf type:

2Q−(α) − i exp[−kb sinh(β)]
α + k cosh(β)

=
P+(α)

γ2 − α2 tanh(β)
× γ sinh(γa)

sinh(γb) sinh[γ(a − b)]
.

(5.1.151)
What makes Equation 5.1.151 a functional equation of the Wiener-Hopf type?
Note that Q−(α) is analytic for τ < τ0 while P+(α) is analytic for τ > −τ0.
In order for Equation 5.1.151 to be true, we must restrict ourselves to the
strip |τ | < τ0. Thus, the Wiener-Hopf equation contains complex Fourier
transforms which are analytic over the common interval of τ− < τ < τ+,
where Q−(α) is analytic for τ < τ+ and τ− < τ .

A crucial step in solving the Wiener-Hopf equation, Equation 5.1.151, is
the process of factorization. In the previous section, we did this by adding
and subtracting out a particular singularity. Here, we will rewrite M(α) in
terms of the product M+(α)M−(α), where M+(α) and M−(α) are analytic
and free of zeros in an upper and lower half-planes, respectively. These half-
planes share a certain strip of the α-plane in common. Applying the infinite
product theorem separately to the numerator and denominator of

M(α) =
sinh(γb) sinh[γ(a − b)]

γ sinh(γa)
, (5.1.152)

we immediately find that

M+(α) = M−(−α)

=
{

sin(kb) sin[k(a − b)]
k sin(ka)

}1/2

exp
{

αi

π

[
b ln
(a

b

)
+ (a − b) ln

(
a

a − b

)]}
×

∞∏
n=1

(
1 +

α

αnb

)
eibα/(nπ)

∞∏
n=1

[
1 +

α

αn(a−b)

]
ei(a−b)α/(nπ)

/ ∞∏
n=1

(
1 +

α

αna

)
eiaα/(nπ), (5.1.153)

where αn� = i
√

n2π2/�2 − k2 and � = a or b or (a− b). The square root has a
positive real part or a negative imaginary part. Note that in this factorization
M+(α) is analytic and nonzero in the upper half of the α-plane (−k2 < τ)
while M−(α) is analytic and nonzero in the lower half of the α-plane (τ < k2).

Substituting this factorization into Equation 5.1.151,

2[α − k cosh(β)]M−(α)Q−(α) − ie−kb sinh(β)[α − k cosh(β)]M−(α)
α + k cosh(β)

=
cosh2(β)

[α + k cosh(β)]M+(α)
P+(α).(5.1.154)
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Next, we note that

[α − k cosh(β)]M−(α)
α + k cosh(β)

=
[α − k cosh(β)]M−(α) + 2k cosh(β)M−[−k cosh(β)]

α + k cosh(β)

− 2k cosh(β)M−[−k cosh(β)]
α + k cosh(β)

. (5.1.155)

Therefore, Equation 5.1.154 becomes

2[α − k cosh(β)]M−(α)Q−(α) − i exp[−kb sinh(β)]

×
{

[α − k cosh(β)]M−(α) + 2k cosh(β)M−[−k cosh(β)]
α + k cosh(β)

}
=

cosh2(β)
[α + k cosh(β)]M+(α)

P+(α)

− i exp[−kb sinh(β)]
2k cosh(β)M−[−k cosh(β)]

α + k cosh(β)
. (5.1.156)

The fundamental reason for the factorization and the subsequent alge-
braic manipulation is the fact that the left side of Equation 5.1.156 is analytic
in −τ0 < τ , while the right side is analytic in τ < τ0. Hence, both sides
are analytic on the strip |τ | < τ0. Then by analytic continuation it follows
that Equation 5.1.156 is defined in the entire α-plane and both sides equal an
entire function p(α). To determine p(α), we examine the asymptotic value of
Equation 5.1.156 as |α| → ∞ as well as using the edge conditions, Equation
5.1.129 and Equation 5.1.130. Applying Liouville’s theorem, p(α) is a con-
stant. Because in the limit of |α| → ∞, p(α) → 0, then p(α) = 0. Therefore,
from Equation 5.1.156,

P+(α) =
2ikM+[k cosh(β)] exp[−kb sinh(β)]

cosh(β)
M+(α). (5.1.157)

Knowing P+(α), we find from Equation 5.1.140 through Equation 5.1.144 that

A =
EM+(α)

[γ + α tanh(β)] sin(γb)
, (5.1.158)

B =
EM+(α)

[γ − α tanh(β)] sin(γb)
, (5.1.159)

C = − EM+(α)eγa

[γ + α tanh(β)] sin[γ(a − b)]
, (5.1.160)

and

D = − EM+(α)e−γa

[γ − α tanh(β)] sin[γ(a − b)]
, (5.1.161)



380 Mixed Boundary Value Problems

where

E =
ikM+[k cosh(β)] exp[−kb sinh(β)]

cosh(β)
. (5.1.162)

With these values of A, B, C and D, we have found Φ(α, y). Therefore, φ(x, y)
follows from the inversion of Φ(α, y). For example, for −∞ < x < ∞, 0 ≤ y ≤
b,

φ(x, y) =
E

2π

∫ ∞−εi

−∞−εi

M+(α)
sinh(γb)

[
e−γy

γ + α tanh(β)
+

eγy

γ − α tanh(β)

]
e−iαx dα.

(5.1.163)
For x < 0 we evaluate Equation 5.1.163 by closing the integration along the
real axis with an infinite semicircle in the upper half of the α-plane by Jordan’s
lemma and using the residue theorem. The integrand of Equation 5.1.163 has
simple poles at γb = nπ, where n = ±1,±2, . . . and the zeros of γ±α tanh(β).
Upon applying the residue theorem,

φ(x, y) = −k sinh(β)M2
+[k cosh(β)]

sinh[kb sinh(β)]
ek[−ix cosh(β)+(y−b) sinh(β)]

+
2πiE

b2

∞∑
n=1

(−1)nnM+(−αn)
αnb[(nπ/b)2 + α2

nb tanh2(β)]
(5.1.164)

×
[
nπ

b
cos
(nπy

b

)
+ αnb tanh(β) sin

(nπy

b

)]
e−iαnbx,

where αnb = i
√

n2π2/b2 − k2. The first term of the right side of Equation
5.1.164 represents the reflected Kelvin wave traveling in the channel (0 ≤
y ≤ b, x < 0) to the left. The infinite series represents attenuated, stationary
modes.

In a similar manner, we apply the residue theorem to obtain the solution
in the remaining domains. They are

φ(x, y) = − sinh[k(a − b) sinh(β)]
sinh[ka sinh(β)]

ek[ix cosh(β)−(y+b) sinh(β)]

− 2iE

a

∞∑
n=1

sin(nπb/a)
αnaM−(αna)[(nπ/a)2 + α2

na tanh2(β)]
(5.1.165)

×
[
nπ

a
cos
(nπy

a

)
− αna tanh(β) sin

(nπy

a

)]
eiαnax

for 0 ≤ y ≤ b, 0 < x, and

φ(x, y) =
k sinh(β)M2

+[k cosh(β)]
sinh[kd sinh(β)]

ek[−ix cosh(β)+(y−a−b) sinh(β)]

− 2πiE

d2

∞∑
n=1

(−1)nnM+(αnd)
[(nπ/d)2 + α2

nd tanh2(β)]
(5.1.166)

×
{

nπ

d
cos
[
nπ(y − a)

d

]
+ αnd tanh(β) sin

[
nπ(y − a)

d

]}
e−iαndx
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Figure 5.1.7: The real and imaginary parts of the solution to Equation 5.1.121 subject to
the boundary conditions given by Equation 5.1.126 through Equation 5.1.128 obtained via
the Wiener-Hopf technique when a = 2, b = 1, k = 1 and β = 0.5.

for b ≤ y ≤ a, x < 0, where d = a − b. Finally, for b ≤ y ≤ a, 0 < x, φ(x, y) is
given by the sum of φi(x, y) and the solution is given by Equation 5.1.165.

Figure 5.1.7 illustrates the real and imaginary parts of this solution when
a = 2, b = 1, k = 1 and β = 0.5.

• Example 5.1.6

Let us solve the biharmonic equation17

∇4u =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
= 0, −∞ < x < ∞, 0 < y < 1,

(5.1.167)

17 Taken from Jeong, J.-T., 2001: Slow viscous flow in a partitioned channel. Phys.
Fluids, 13, 1577–1582. See also Kim, M.-U., and M. K. Chung, 1984: Two-dimensional
slow viscous flow past a plate midway between an infinite channel. J. Phys. Soc. Japan,
53, 156–166.
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subject to the boundary conditions

u(x, 1) = 1, uy(x, 1) = 0, −∞ < x < ∞, (5.1.168)

uy(x, 0) = 0, −∞ < x < ∞, (5.1.169)

and {
uyyy(x, 0) = 0, −∞ < x < 0,
u(x, 0) = 0, 0 < x < ∞.

(5.1.170)

We begin our analysis by introducing the Fourier transform

u(x, y) = 1+
∫ ∞

−∞
U(k, y)eikx dk (5.1.171)

= 1+
∫ ∞

−∞

[
A(k) sinh(ky) + B(k) cosh(ky)

+ C(k)y sinh(ky) + D(y)y cosh(ky)
]
eikx dk. (5.1.172)

Substituting Equation 5.1.172 into Equation 5.1.168 and Equation 5.1.169,
we find that

u(x, y) = 1 +
∫ ∞

−∞

[
sinh(ky) − sinh2(k) − k2

sinh(k) cosh(k) + k
cosh(ky) − ky cosh(ky)

+
ky sinh2(k)

sinh(k) cosh(k) + k
sinh(ky)

]
A(k)eikx dk (5.1.173)

for 0 < y < 1. If we now substitute this solution into Equation 5.1.170, we
obtain the dual integral equations∫ ∞

−∞
K(k)A(k)eikx dk = 1, 0 < x < ∞, (5.1.174)

and ∫ ∞

−∞
k3A(k)eikx dk = 0, −∞ < x < 0, (5.1.175)

where

K(k) =
sinh2(k) − k2

sinh(k) cosh(k) + k
= 2

sinh2(k) − k2

sinh(2k) + 2k
. (5.1.176)

To solve the dual integral equations, Equation 5.1.174 and Equation
5.1.175, we rewrite them∫ ∞

−∞
K(k)A(k)eikx dk =

{
f(x), −∞ < x < 0,
1, 0 < x < ∞,

(5.1.177)
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and ∫ ∞

−∞
k3A(k)eikx dk =

{
0, −∞ < x < 0,

g(x), 0 < x < ∞,
(5.1.178)

where f(x) and g(x) are unknown functions. Taking the Fourier transform of
Equation 5.1.177 and Equation 5.1.178 and eliminating A(k) between them,
we find that

K(k)
k3

G−(k) = F+(k) +
1

2πik
, (5.1.179)

where
G−(k) =

1
2π

∫ ∞

0

g(x)e−ikx dx = k3A(k), (5.1.180)

and

F+(k) =
1
2π

∫ 0

−∞
f(x)e−ikx dx. (5.1.181)

Here, F+(k) is an analytic function in the half-plane �(k) > −ε, where ε > 0,
while G−(k) is an analytic function in the half-plane �(k) < 0.

We begin our solution of Equation 5.1.179 by the Wiener-Hopf technique
by noting that we can factor K(k) as follows:

K(k) =
k3

6
K+(k)K−(k), (5.1.182)

where

K+(k) =
∞∏

n=1

(1 + k/kn) (1 − k/k∗
n)

(1 + 2k/k2n−1)
(
1 − 2k/k∗

2n−1

) = K−(−k), (5.1.183)

kn is the nth root of sinh2(k) = k2 with �(kn) > 0 and 0 < �(k1) < �(k2) <
· · ·. Observe that if kn is a root, then so are −kn, k∗

n and −k∗
n. For n � 1,

kn ≈ (n + 1
2

)
πi + ln

[(
n + 1

2

)
π +

√(
n + 1

2

)2
π2 − 1

]
. (5.1.184)

Finally, K±(k) ∼ √
6(∓k)−3/2 as |k| → ∞. Substituting Equation 5.1.182

into Equation 5.1.179 and dividing the resulting equation by K+(k), we find
that Equation 5.1.179 can be written

K−(k)
6

G−(k)− 1
2πikK+(0)

=
F+(k)
K+(k)

+
1

2πik

[
1

K+(k)
− 1

K+(0)

]
. (5.1.185)

Why have we rewritten Equation 5.1.179 in the form given by Equation
5.1.185? We observe that the left side of Equation 5.1.185 is analytic in the
half-plane �(k) < 0, while the right side of Equation 5.1.185 is analytic in
the half-range �(k) > −ε. Thus, both sides of Equation 5.1.185 are analytic
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continuations of some entire function E(k). The asymptotic analysis of both
sides of Equation 5.1.185 shows that E(k) → 0 as |k| → ∞. Therefore, by
Liouville’s theorem, E(k) = 0 and

F+(k) =
1

2πik

[
K+(k)
K+(0)

− 1
]

, (5.1.186)

and

G−(k) =
3

πikK+(0)K−(k)
. (5.1.187)

Therefore, because G−(k) = k3A(k) and defining

Ψ(k, y) = [sinh(ky) − ky cosh(ky)][sinh(k) cosh(k) + k]
+ ky sinh2(k) sinh(ky) − [sinh2(k) − k2] cosh(ky), (5.1.188)

we have from Equation 5.1.173 that

u(x, y) = 1 +
1

2πi

∫ ∞−εi

−∞−εi

K+(k)Ψ(k, y)eikx

K+(0)k[sinh2(k) − k2]
dk (5.1.189)

= 1 +
3
πi

∫ ∞−εi

−∞−εi

K(k)Ψ(k, y)eikx

k4K+(0)K−(k)[sinh(k) cosh(k) + k]
dk. (5.1.190)

The integrals given by Equation 5.1.189 and Equation 5.1.190 can be
evaluated by the residue theorem. For x > 0, we close the line integral given
in Equation 5.1.189 with a semicircle of infinite radius in the upper half-plane
and apply the residue theorem. This yields

u(x, y) = (3−2y)y2+�
{ ∞∑

n=1

K+(kn)Ψ(kn, y)eiknx

K+(0)kn[sinh(kn) cosh(kn) − kn]

}
, (5.1.191)

where kn is the nth zero of sinh2(k) = k2. On the other hand, if x < 0, we
use Equation 5.1.190 and close the line integral with a semicircle of infinite
radius in the lower half-plane. Applying the residue theorem,

u(x, y) = 1 − 6�
{ ∞∑

n=1

ηny sinh2(ηn) sinh(ηny) − [sinh2(ηn) − η2
n] cosh(ηny)

K+(0)K−(−ηn)η4
n cosh2(ηn)

× e−iηnx

}
, (5.1.192)
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Figure 5.1.8: The solution to the biharmonic equation subject to the boundary condi-
tions given by Equation 5.1.168 through Equation 5.1.170 obtained via the Wiener-Hopf
technique.

where ηn is the nth zero of sinh(η) cosh(η) + η = 0 with positive real and
imaginary parts. Figure 5.1.8 illustrates this solution.

Problems

1. Use the Wiener-Hopf technique18 to solve the mixed boundary value prob-
lem

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < 1,

with the boundary conditions

lim
x→−∞u(x, y) → b − ax, lim

x→∞u(x, y) → 0, 0 < y < 1,

{
uy(x, 0) = 0, x < 0,
u(x, 0) = 0, 0 < x,

and
uy(x, 1) = 0, −∞ < x < ∞.

Step 1 : Setting u(x, y) = b − ax + v(x, y), show that the problem becomes

∂2v

∂x2
+

∂2v

∂y2
= 0, −∞ < x < ∞, 0 < y < 1,

18 Adapted from Jeong, J.-T., 2001: Slip boundary condition on an idealized porous
wall. Phys. Fluids, 13, 1884–1890.
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with the boundary conditions

lim
x→−∞ v(x, y) → 0, lim

x→∞ v(x, y) → ax − b, 0 < y < 1, (1)

{
vy(x, 0) = 0, x < 0,

v(x, 0) = ax − b, 0 < x,
(2)

and
vy(x, 1) = 0, −∞ < x < ∞. (3)

Step 2 : Show that

v(x, y) =
∫ ∞

−∞
A(k) [cosh(ky) − tanh(k) sinh(ky)] eikx dk

satisfies the partial differential equation and boundary conditions (1) and (3)
in Step 1 if −ε < �(k) < 0 where ε > 0.

Step 3 : Using boundary condition (2), show that∫ ∞

−∞
A(k)eikx dk = ax − b, 0 < x < ∞,

and ∫ ∞

−∞
k tanh(k)A(k)eikx dk = 0, −∞ < x < 0.

Step 4 : By introducing∫ ∞

−∞
A(k)eikx dk =

{
ax − b, 0 < x < ∞,
f(x), −∞ < x < 0,

and ∫ ∞

−∞
k tanh(k)A(k)eikx dk =

{
g(x), 0 < x < ∞,
0, −∞ < x < 0,

where f(x) and g(x) are unknown functions, show that

A(k) =
bi

2πk
− a

2πk2
+ F+(k),

and

k tanh(k)A(k) =
1
2π

∫ ∞

0

g(x)e−ikx dx = G−(k),

or
K(k)G−(k) =

bi

2πk
− a

2πk2
+ F+(k),
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where

F+(k) =
1
2π

∫ 0

−∞
f(x)e−ikx dx, and K(k) =

cosh(k)
k sinh(k)

.

Note that F+(k) is analytic in the half-plane �(k) > −ε while G−(k) is ana-
lytic in the half-plane �(k) < 0.

Step 5 : Using the infinite product representation19 for sinh and cosh, show
that

K(k) =
K+(k)K−(k)

k2
,

where

K+(k) = K−(−k) =
∞∏

n=1

1 + 2k/[(2n− 1)πi]
1 + k/(nπi)

=
√

π
Γ[1 + k/(πi)]
Γ[12 + k/(πi)]

,

and Γ(·) is the gamma function. Note that K±(k) ∼ √∓ki as |k| → ∞.

Step 6 : Use the results from Step 5 and show that

K−(k)G−(k) =
k2

K+(k)

[
F+(k) − a

2πk2
− b

2πik

]
.

Note that the right side of the equation is analytic in the upper half-plane
�(k) > −ε, while the left side of the equation is analytic in the lower half-plane
�(k) < 0.

Step 7 : Show that each side of the equation in Step 6 is an analytic contin-
uation of some entire function E(k). Use Liouville’s theorem to show that
E(k) = −a/[2πK+(0)]. Therefore,

G−(k) = − a

2πK+(0)K−(k)
,

and

F+(k) =
a

2πk2
− bi

2πk
− aK+(k)

2πk2K+(0)
.

Step 8 : Use the inversion integral and show that

u(x, y) = b − ax

− a

2πK+(0)

∫ ∞−εi

−∞−εi

K+(k)
cosh(k) cosh(ky) − sinh(k) sinh(ky)

k2 cosh(k)
eikx dk

= b − ax

− a

2πK+(0)

∫ ∞−εi

−∞−εi

cosh(k) cosh(ky) − sinh(k) sinh(ky)
K−(k) k sinh(k)

eikx dk.

19 See, for example, Gradshteyn and Ryzhik, op. cit., Formulas 1.431.2 and 1.431.4.
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Problem 1

The equation on the first line should be used to find the solution when x > 0,
while the equation on the second line gives the solution for x < 0.

Step 9 : Use the residue theorem and show that

u(x, y) =
a

π3/2

∞∑
n=1

Γ(n − 1
2 )(

n − 1
2

)
Γ(n)

sin
[(

n − 1
2

)
πy
]
exp
[− (n − 1

2

)
πx
]

if 0 < x, while

u(x, y) = b − ax − a

π3/2

∞∑
n=1

Γ(n + 1
2 )

nΓ(n + 1)
cos(nπy)enπx

for x < 0. Hint: Γ(z + 1) = zΓ(z). The figure labeled Problem 1 illustrates
this solution u(x, y) when b/a = ln(4)/π. This corresponds to the case where
F+(k) is analytic at k = 0.

2. Use the Wiener-Hopf technique to solve the mixed boundary value problem

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < 1,

with the boundary conditions

u(x, 0) = 0, −∞ < x < ∞,

and {
uy(x, 1) = 0, x < 0,
u(x, 1) = 1, 0 < x.

Step 1 : Assuming that |u(x, 1)| is bounded by eεx, 0 < ε  1, as x → −∞,
let us define the following Fourier transforms:

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx, U+(k, y) =

∫ ∞

0

u(x, y)eikx dx,
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and

U−(k, y) =
∫ 0

−∞
u(x, y)eikx dx,

so that U(k, y) = U+(k, y) + U−(k, y). Here, U+(k, y) is analytic in the half-
space �(k) > 0, while U−(k, y) is analytic in the half-space �(k) < ε. Take the
Fourier transform of the partial differential equation and the first boundary
condition and show that it becomes the boundary value problem

d2U

dy2
− k2U = 0, 0 < y < 1,

with U(k, 0) = 0.

Step 2 : Show that the solution to the boundary value problem is U(k, y) =
A(k) sinh(ky).

Step 3 : From the boundary conditions along y = 1, show that

sinh(k)A(k) = L−(k) +
i

k
, and k cosh(k)A(k) = M+(k),

where

L−(k) =
∫ 0

−∞
u(x, 1)eikx dx and M+(k) =

∫ ∞

0

uy(x, 1)eikx dx.

Step 4 : By eliminating A(k) from the equations in Step 3, show that we can
factor the resulting equation as

L−(k) +
i

k
= K(k)M+(k), (1)

where K(k) = sinh(k)/[k cosh(k)].

Step 5 : Using the infinite product representation20 for sinh and cosh, show
that K(k) = K+(k)K−(k), where

K+(k) = K−(−k) =
∞∏

n=1

1 − ik/(nπ)
1 − 2ik/[(2n− 1)π]

.

Step 6 : Use the results from Step 5 and show that (1) can be rewritten

K+(k)M+(k) − i

K−(0)k
=

L−(k)
K−(k)

+
i

kK−(k)
− i

K−(0)k
.

20 See, for example, Gradshteyn and Ryzhik, op. cit., Formulas 1.431.2 and 1.431.4.
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Problem 2

Note that the left side of the equation is analytic in the upper half-plane
�(k) > 0, while the right side of the equation is analytic in the lower half-
plane �(k) < ε.

Step 7 : Use Liouville’s theorem to show that each side of the equation in Step
6 equals zero. Therefore,

L−(k) =
iK−(k)
kK−(0)

− i

k
,

and

U(k, y) =
iK−(k) sinh(ky)

k sinh(k)
.

Step 8 : Use the inversion integral and show that

u(x, y) =
i

2π

∫ ∞+εi

−∞+εi

K−(k) sinh(ky)
k sinh(k)

e−ikx dk,

or

u(x, y) =
i

2π

∫ ∞+εi

−∞+εi

sinh(ky)
k2 K+(k) cosh(k)

e−ikx dk.

The first integral is best for finding the solution when x > 0, while the second
integral is best for x < 0.

Step 9 : Use the residue theorem and show that

u(x, y) = y +
∞∑

n=1

(−1)n

nπ
K−(−nπi) sin(nπy)e−nπx

if 0 < x, while

u(x, y) =
4
π2

∞∑
n=1

(−1)n+1

(2n − 1)2
sin[(2n − 1)πy/2]
K+[(2n − 1)πi/2]

e(2n−1)πx/2

for x < 0. The figure labeled Problem 2 illustrates this solution u(x, y).
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3. Use the Wiener-Hopf technique21 to solve the mixed boundary value prob-
lem

∂2u

∂x2
+

∂2u

∂z2
− u = 0, −∞ < x < ∞, 0 < z < 1,

with the boundary conditions lim|x|→∞ u(x, z) → 0,

∂u(x, 0)
∂z

= 0, −∞ < x < ∞,{
uz(x, 1) = 0, x < 0,
u(x, 1) = e−x, 0 < x.

Step 1 : Because u(x, 1) = e−x, we can define the following Fourier transforms:

U(k, z) =
∫ ∞

−∞
u(x, z)eikx dx, U+(k, z) =

∫ ∞

0

u(x, z)eikx dx,

and

U−(k, z) =
∫ 0

−∞
u(x, z)eikx dx,

so that U(k, z) = U+(k, z) + U−(k, z). Therefore, U+(k, z) is analytic in
the half-plane �(k) > −1, while U−(k) is analytic in the half-plane �(k) <
0. Show that we can write the partial differential equation and boundary
conditions

d2U

dz2
− m2U = 0, 0 < z < 1,

with U ′(k, 0) = 0, U+(k, 1) = 1/(1−ki) and U ′
−(k, 1) = 0, where m2 = k2 +1.

Step 2 : Show that we can write the solution to Step 1 as

U(k, z) = A(k)
cosh(mz)
cosh(m)

,

with U ′
+(k, 1) = m tanh(m)A(k) and A(k) = U−(k, 1) + i/(k + i).

Step 3 : By eliminating A(k) from the last two equations in Step 2, show that
we can factor the resulting equation as

K+(k)U ′
+(k, 1) =

m2 A(k)
K−(k)

=
(k − i)[(k + i)U−(k, 1) + i]

K−(k)
= J,

where m coth(m) = K+(k)K−(k). Note that the left side of the equation
is analytic in the upper half-plane �(k) > −1, while the right side of the
equation is analytic in the lower half-plane �(k) < 0.

21 See Horvay, G., 1961: Temperature distribution in a slab moving from a chamber at
one temperature to a chamber at another temperature. J. Heat Transfer , 83, 391–402.
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Step 4 : It can be shown that K−(k) ∼ |k|1/2 as |k| → ∞. Show that
m2A(k)/K−(k) cannot increase faster than |k|1/2. Then use Liouville’s theo-
rem to show that each side equals a constant value J .

Step 5 : Use the results from Step 4 to show that J = 2/K−(−i).

Step 6 : From the infinite product theorem we have K+(−k) = K−(k) =
Ω(ik), where

Ω(z) =
∞∏

n=1

z

(n − 1/2)π
+
√

1 +
1

(n − 1/2)2π2

z

nπ
+
√

1 +
1

n2π2

.

Use this result and show that

u(x, z) =
1

πΩ(1)

∫ ∞−i

−∞−i

Ω(ik) cosh(mz)
(k2 + 1) cosh(m)

e−ikx dk.

Step 7 : Use the residue theorem and show that

u(x, z) = e−x − 2i

Ω(1)

∞∑
n=0

Ω(iαn) cosh(µnz)
µnαn sinh(µn)

e−iαnx,

where 0 < x, µn = (n + 1/2)πi and αn = −i
√

1 + (2n + 1)2π2/4, and

u(x, z) =
ex

Ω2(1)
+

2i

Ω(1)

∞∑
n=1

cosh(µnz)e−iαnx

αnΩ(−iαn) cosh(µn)
,

where x < 0, µn = nπi and αn = i
√

1 + n2π2. The figure labeled Problem 3
illustrates this solution u(x, z).
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4. Use the Wiener-Hopf technique to solve the mixed boundary value problem

∂2u

∂x2
+

∂2u

∂y2
− β2u = 0, −∞ < x < ∞, 0 < y < 1,

with the boundary conditions

u(x, 1) = 0, −∞ < x < ∞,

{
u(x, 0) = 0, x < 0,

uy(x, 0) − hu(x, 0) = 1, 0 < x,

where h > 0.

Step 1 : Assuming that |u(x, 0)| is bounded by eεx, 0 < ε  1, as x → −∞,
let us introduce the Fourier transforms

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx, U+(k, y) =

∫ ∞

0

u(x, y)eikx dx,

and

U−(k, y) =
∫ 0

−∞
u(x, y)eikx dx,

so that U(k, y) = U+(k, y) + U−(k, y). Here U+(k, y) is analytic in the half-
plane �(k) > 0, while U−(k, y) is analytic in the half-plane �(k) < ε. Show
that we can write the partial differential equation and boundary conditions
as the boundary value problem

d2U

dy2
− m2U = 0, 0 < y < 1,

with U ′(k, 1) = 0, U ′
+(k, 0) − hU+(k, 0) = i/k and U ′

−(k, 0) = 0, where m2 =
k2 + β2.

Step 2 : Show that the solution to Step 1 is U(k, y) = A(k) sinh[m(1 − y)],

U ′
+(k, 0) = sinh(m)A(k), (1)

and

− [m cosh(m) + h sinh(m)] A(k) = U ′
−(k, 0) +

i

k
, (2)

where

U ′
−(k, 0) =

∫ 0

−∞
uy(x, 0)eikx dx.
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Step 3 : It can be shown22 that m coth(m) + h can be factorized as follows:
m coth(m) + h = K(0)P (k)P (−k), where

P (k) =
∞∏

n=1

(
1 − ik

ρn

)(
1 − ik√

n2π2 + β2

)−1

,

K(0) = h+β coth(β), ρn =
√

β2 + λ2
n and λn is the nth root of λ+h tan(λ) =

0. Note that P (k) is analytic in the half-plane �(k) > 0, while P (−k) is
analytic in the half-plane �(k) < ε. By eliminating A(k) from (1) and (2)
in Step 2 and using this factorization, show that we have the Wiener-Hopf
equation

K(0)P (k)U ′
+(k, 0) +

i

k
=

i

k

[
1 − 1

P (−k)

]
− U ′

−(k, 0)
P (−k)

. (3)

Note that the left side of (3) is analytic in the upper half-plane �(k) > 0,
while the right side is analytic in the lower half-plane �(k) < ε.

Step 4 : It can be shown that P (k) ∼ |k|1/2. Show that U+(k, 0) ∼ k−1 and
U ′
−(k, 0) ∼ ln(k) as |k| → ∞. Then use Liouville’s theorem to show that each

side of (3) equals zero.

Step 5 : Use the results from Step 4 to show that

K(0)U+(k, 0) =
1

ki P (k)
.

Therefore,

u(x, y) =
1

2πiK(0)

∫ ∞+εi

−∞+εi

sinh[m(1 − y)]
k sinh(m)P (k)

e−ikx dk

=
1

2πi

∫ ∞+εi

−∞+εi

P (−k) sinh[m(1 − y)]
k[m cosh(m) + h sinh(m)]

e−ikx dk.

The first integral is best for computations when x < 0, while the second
integral is best for x > 0.

Step 6 : Use the results from Step 5 to show that

u(x, y) = − π

K(0)

∞∑
n=1

n sin(nπy)
ξ2
nP (iξn)

eξnx, x < 0,

22 See Appendix A in Buchwald, V. T., and F. Viera, 1998: Linearized evaporation from
a soil of finite depth above a water table. Austral. Math. Soc., Ser. B , 39, 557–576.
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Problem 4

where ξn =
√

n2π2 + β2, and

u(x, y) =
e−β(1−y) − eβ(1−y)

(β + h)eβ + (β − h)e−β
+

∞∑
n=1

λ2
nP (iρn) sin[λn(1 − y)]

ρ2
n[h(1 + h) + λ2

n] sin(λn)
e−λnx,

for 0 < x. The figure labeled Problem 4 illustrates u(x, y) when h = 1 and
β = 2.

5. Use the Wiener-Hopf technique to solve the mixed boundary value problem

∂2u

∂x2
+

∂2u

∂y2
− u = 0, −∞ < x < ∞, 0 < y < 1,

with the boundary conditions

∂u(x, 1)
∂y

= 0, −∞ < x < ∞,

{
u(x, 0) = 1, x < 0,
uy(x, 0) = 0, 0 < x.

Step 1 : Assuming that |u(x, 0)| is bounded by e−εx, 0 < ε  1, as x → ∞,
let us define the following Fourier transforms:

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx, U+(k, y) =

∫ ∞

0

u(x, y)eikx dx,

and

U−(k, y) =
∫ 0

−∞
u(x, y)eikx dx,
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so that U(k, y) = U+(k, y) + U−(k, y). Here, U+(k, y) is analytic in the half-
space �(k) > −ε, while U−(k, y) is analytic in the half-space �(k) < 0. Then
show that the partial differential equation becomes

d2U

dy2
− m2U = 0, 0 < y < 1,

with U ′(k, 1) = 0, where m2 = k2 + 1.

Step 2 : Show that the solution to Step 1 is U(k, y) = A(k) cosh[m(1 − y)].

Step 3 : From the boundary conditions along y = 0, show that

cosh(m)A(k) = M+(k) − i

k
and − m sinh(m)A(k) = L−(k),

where

M+(k) =
∫ ∞

0

u(x, 0)eikx dx and L−(k) =
∫ 0

−∞
uy(x, 0)eikx dx.

Step 4 : By eliminating A(k) from the equations in Step 3, show that we can
factor the resulting equation as

−m2

[
M+(k) − i

k

]
= m coth(m)L−(k).

Step 5 : Using the results that m coth(m) = K+(k)K−(k), where K+(k) and
K−(k) are defined in Step 6 of Problem 3, show that

i

K+(k)
+

K+(k) − K+(0)
k K+(0)K+(k)

− (k + i)M+(k)
K+(k)

=
K−(k)L−(k)

k − i
+

1
k K+(0)

.

Note that the left side of the equation is analytic in the upper half-plane
�(k) > −ε, while the right side of the equation is analytic in the lower half-
plane �(k) < 0.

Step 6 : Use Liouville’s theorem to show that each side of the equation in Step
5 equals zero. Therefore,

M+(k) =
i

k
+

K+(k)
k(k + i)K+(0)

,

and

U(k, y) =
K+(k) cosh[m(1 − y)]

k(k + i)K+(0) cosh(m)
.
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Step 7 : Use the inversion integral and show that

u(x, y) =
1
2π

∫ ∞−εi

−∞−εi

K+(k) cosh[m(1 − y)]
k(k + i)K+(0) cosh(m)

e−ikx dk,

or

u(x, y) =
K−(0)

2π coth(1)

∫ ∞−εi

−∞−εi

m cosh[m(1 − y)]
k(k + i) sinh(m)

e−ikx dk.

The first integral is best for finding the solution when x < 0, while the second
integral is best for 0 < x.

Step 8 : Use the residue theorem and show that

u(x, y) = tanh(1)
K−(0)
K−(−i)

e−x + tanh(1)
∞∑

n=1

(1 + κn)K−(0)
κ2

n K−(−iκn)
cos(nπy)e−κnx

if 0 < x, where κn =
√

1 + n2π2, while

u(x, y) =
cosh(1 − y)

cosh(1)
+

∞∑
n=1

(1 − kn)K+(ikn)
mnk2

nK+(0)
sin(mny)eknx

for x < 0, where kn =
√

1 + (2n − 1)2π2/4 and mn = (2n−1)π/2. The figure
labeled Problem 5 illustrates this solution u(x, y).

5.2 THE WIENER–HOPF TECHNIQUE WHEN THE FACTORIZATION
CONTAINS BRANCH POINTS

In the previous section, the product factors K+(k) and K−(k) were al-
ways meromorphic, resulting in a solution that consisted of a sum of residues.
This occurred because K(k) contained terms such as m sinh(m) and cosh(m),
whose power series expansion consists only of powers of m2, and there were
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no branch points. The form of K(k) was due, in turn, to the presence of a
finite domain in one of the spatial domains.

In this section we consider infinite or semi-infinite domains where K(k)
will become multivalued. As one might expect, the sum of residues becomes a
branch cut integral just as it did in the case of Fourier transforms. There we
found that single-valued Fourier transform yielded inverses that were a sum
of residues, whereas the inverses of multivalued Fourier transforms contained
branch cut integrals.

• Example 5.2.1

An insightful example arises from a heat conduction problem23 in the
upper half-plane y > 0:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, −∞ < x < ∞, 0 < t, y, (5.2.1)

with the boundary conditions{
u(x, 0, t) = e−εx, 0 < ε, x,
uy(x, 0, t) = 0, x < 0,

(5.2.2)

and
lim

y→∞u(x, y, t) → 0, (5.2.3)

while the initial condition is u(x, y, 0) = 0. Eventually we will consider the
limit ε → 0.

What makes this problem particularly interesting is the boundary condi-
tion that we specify along y = 0; it changes from a Dirichlet condition when
x < 0, to a Neumann boundary condition when x > 0. The Wiener-Hopf
technique is commonly used to solve these types of boundary value problems
where the nature of the boundary condition changes along a given boundary
— the so-called mixed boundary value problem.

We begin by introducing the Laplace transform in time

U(x, y, s) =
∫ ∞

0

u(x, y, t)e−st dt, (5.2.4)

and the Fourier transform in the x-direction

U+(k, y, s) =
∫ ∞

0

U(x, y, s)eikx dx, (5.2.5)

23 Simplified version of a problem solved by Huang, S. C., 1985: Unsteady-state heat
conduction in semi-infinite regions with mixed-type boundary conditions. J. Heat Transfer ,
107, 489–491.
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U−(k, y, s) =
∫ 0

−∞
U(x, y, s)eikx dx, (5.2.6)

and

U(k, y, s) = U+(k, y, s) + U−(k, y, s) =
∫ ∞

−∞
U(x, y, s)eikxdx. (5.2.7)

Here, we have assumed that |u(x, y, t)| is bounded by e−εx as x → ∞, while
|u(x, y, t)| is O(1) as x → −∞. For this reason, the subscripts “+” and “−”
denote that U+ is analytic in the upper half-plane �(k) > −ε, while U− is
analytic in the lower half-plane �(k) < 0.

Taking the joint transform of Equation 5.2.1, we find that

d2U(k, y, s)
dy2

− (k2 + s)U(k, y, s) = 0, 0 < y < ∞, (5.2.8)

with the transformed boundary conditions

U+(k, 0, s) =
1

s(ε − ki)
,

dU−(k, 0, s)
dy

= 0, (5.2.9)

and limy→∞ U(k, y, s) → 0. The general solution to Equation 5.2.8 is

U(k, y, s) = A(k, s)e−y
√

k2+s. (5.2.10)

Consequently,

A(k, s) =
1

s(ε − ki)
+ U−(k, 0, s) (5.2.11)

and

−
√

k2 + s A(k, s) =
dU+(k, 0, s)

dy
. (5.2.12)

Note that we have a multivalued function
√

k2 + s with branch points k =
±√

s i. Eliminating A(k, s) between Equation 5.2.11 and Equation 5.2.12, we
obtain the Wiener-Hopf equation:

dU+(k, 0, s)
dy

= −
√

k2 + s

[
U−(k, 0, s) +

1
s(ε − ki)

]
. (5.2.13)

Our next goal is to rewrite Equation 5.2.13 so that the left side is analytic
in the upper half-plane �(k) > −ε, while the right side is analytic in the lower
half-plane �(k) < 0. We begin by factoring

√
k2 + s =

√
k − i

√
s
√

k + i
√

s,
where the branch cuts lie along the imaginary axis in the k-plane from (−∞i,
−√

si] and [
√

si,∞i). Equation 5.2.13 can then be rewritten

1√
k + i

√
s

dU+(k, 0, s)
dy

= −
√

k − i
√

s

[
U−(k, 0, s) +

1
s(ε − ki)

]
. (5.2.14)
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The left side of Equation 5.2.14 is what we want; the same is true of the first
term on the right side. However, the second term on the right side falls short.
At this point we note that√

k − i
√

s

ε − ki
=

√
k − i

√
s −
√
−iε− i

√
s

ε − ki
+

√
−iε − i

√
s

ε − ki
. (5.2.15)

Substituting Equation 5.2.15 into Equation 5.2.14 and rearranging terms, we
obtain

1√
k + i

√
s

dU+(k, 0, s)
dy

+

√
−iε− i

√
s

s(ε − ki)

= −
√

k − i
√

s U−(k, 0, s) −
√

k − i
√

s −
√
−iε− i

√
s

s(ε − ki)
. (5.2.16)

In this form, the right side of Equation 5.2.16 is analytic in the lower half-plane
�(k) < 0, while the left side is analytic in the upper half-plane �(k) > −ε.
Since they share a common strip of analyticity −ε < �(k) < 0, they are
analytic continuations of each other and equal some entire function. Using
Liouville’s theorem and taking the limit as |k| → ∞, we see that both sides
of Equation 5.2.16 equal zero. Therefore,

U−(k, 0, s) = −
√

k − i
√

s −
√
−iε − i

√
s

s(ε − ki)
√

k − i
√

s
, (5.2.17)

A(k, s) =

√
−iε− i

√
s

s(ε − ki)
√

k − i
√

s
, (5.2.18)

and

U(x, y, s) =

√
−iε − i

√
s

2πs

∫ ∞

−∞

exp
(−ikx − y

√
k2 + s

)
(ε − ki)

√
k − i

√
s

dk. (5.2.19)

Upon taking the limit ε → 0 and introducing x = r cos(θ), y = r sin(θ) and
k =

√
s η, Equation 5.2.19 becomes

U(r, θ, s) =
√

i

2πs

∫ ∞

−∞

exp
{
−r

√
s
[
iη cos(θ) + sin(θ)

√
η2 + 1

]}
η
√

η − i
dη.

(5.2.20)
To invert Equation 5.2.20, we introduce

cosh(τ) = iη cos(θ) + sin(θ)
√

η2 + 1. (5.2.21)

Solving for η, we find that η = sin(θ) sinh(τ)−i cos(θ) cosh(τ) = −i cos(θ−iτ).
We now deform the original contour along the real axis to the one defined by
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Figure 5.2.1: The solution to Equation 5.2.1 through Equation 5.2.3 obtained via the
Wiener-Hopf technique.

η. Particular care must be exercised in the case of x > 0 as we deform the
contour into the lower half of the k-plane since 0 < θ < π/2. During this
deformation, we pass over the singularity at k = 0− and must consequently
add its contribution to the inverse. Thus, the Laplace transform of the solution
now reads

U(r, θ, s) =
e−y

√
s

s
H(x) − 1√

2πs

∫ ∞

−∞

sin[(θ − iτ)/2]
cos(θ − iτ)

e−r
√

s cosh(τ) dτ.

(5.2.22)
Taking the inverse Laplace transform of Equation 5.2.22, we obtain

u(r, θ, t) = erfc
(

y√
4t

)
H(x)

−
√

2
π

∫ ∞

0

�
{

sin[(θ − iτ)/2]
cos(θ − iτ)

}
erfc
[
r cosh(τ)√

4t

]
dτ. (5.2.23)

Figure 5.2.1 illustrates this solution when t = 1.

• Example 5.2.2

In Example 1.1.3, we posed the question of how to solve the mixed bound-
ary value problem

∂2u

∂x2
+

∂2u

∂y2
− α2u = 0, −∞ < x < ∞, 0 < y, (5.2.24)

with the boundary conditions limy→∞ u(x, y) → 0, and{
u(x, 0) = 1, x < 0,

u(x, 0) = 1 + λuy(x, 0), 0 < x,
(5.2.25)
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where 0 < α, λ. We showed there that some simplification occurs if we intro-
duce the transformation

u(x, y) =
e−αy

1 + αλ
+ v(x, y), (5.2.26)

so that the problem becomes

∂2v

∂x2
+

∂2v

∂y2
− α2v = 0, −∞ < x < ∞, 0 < y, (5.2.27)

with the boundary conditions limy→∞ v(x, y) → 0 and

v(x, 0) =
αλ

1 + αλ
, x < 0, v(x, 0) = λvy(x, 0), 0 < x. (5.2.28)

In spite of this transformation, we showed in Example 1.1.3 that we could
not solve Equation 5.2.27 and Equation 5.2.28 by using conventional Fourier
transforms. If we assume that |v(x, y)| is bounded by e−εx, 0 < ε  1, as
x → ∞ while |v(x, y)| is O(1) as x → −∞, can we use the Wiener-Hopf
technique here?

We begin by defining the following Fourier transforms in the x-direction:

V+(k, y) =
∫ ∞

0

v(x, y)eikx dx, (5.2.29)

V−(k, y) =
∫ 0

−∞
v(x, y)eikx dx, (5.2.30)

and
V (k, y) = V+(k, y) + V−(k, y) =

∫ ∞

−∞
v(x, y)eikxdx. (5.2.31)

The subscripts “+” and “−” denote the fact that V+ is analytic in the upper
half-space �(k) > −ε, while V− is analytic in the lower half-space �(k) < 0.

Taking the Fourier transform of Equation 5.2.27, we find that

d2V (k, y)
dy2

− m2V (k, y) = 0, m2 = k2 + α2, 0 < y < ∞, (5.2.32)

along with the transformed boundary condition limy→∞ V (k, y) → 0. The
general solution to Equation 5.2.32 is V (k, y) = A(k)e−my. Note that m is
multivalued with branch points k = ±αi.

Turning to the boundary conditions given by Equation 5.2.28, we obtain

A(k) =
αλ

ik(1 + αλ)
+ M+(k) and A(k) + mλA(k) = L−(k), (5.2.33)



The Wiener-Hopf Technique 403

where

M+(k) =
∫ ∞

0

v(x, 0)eikx dx and L−(k) =
∫ 0

−∞
[v(x, 0) − λvy(x, 0)] eikx dx.

(5.2.34)
Eliminating A(k) in Equation 5.2.33, we obtain the Wiener-Hopf equation:

αλ

ik(1 + αλ)
+ M+(k) =

L−(k)
1 + mλ

. (5.2.35)

Our next goal is to rewrite Equation 5.2.35 so that the left side is analytic
in the upper half-plane �(k) > −ε, while the right side is analytic in the lower
half-plane �(k) < 0. We begin by factoring P (k) = 1 + λm = P+(k)P−(k),
where P+(k) and P−(k) are analytic in the upper and lower half-planes, re-
spectively. We will determine them shortly. Equation 5.2.35 can then be
rewritten

P+(k)M+(k) +
αλP+(k)

ik(1 + αλ)
=

L−(k)
P−(k)

. (5.2.36)

The right side of Equation 5.2.36 is what we want; it is analytic in the half-
plane �(k) < 0. The first term on the left side is analytic in the half-plane
�(k) > −ε. The second term, unfortunately, is not analytic in either half-
planes. However, we note that

P+(k)
ik

=
P+(k)

ik
− P+(0)

ik
+

P+(0)
ik

. (5.2.37)

Substituting Equation 5.2.37 into Equation 5.2.36 and rearranging terms, we
obtain

P+(k)M+(k) +
αλ

1 + αλ

[
P+(k)

ik
− P+(0)

ik

]
=

L−(k)
P−(k)

− αλP+(0)
ik(1 + αλ)

. (5.2.38)

In this form, the left side of Equation 5.2.38 is analytic in the upper half-plane
�(k) > −ε, while the right side is analytic in the lower half-plane �(k) < 0.
Since both sides share a common strip of analyticity −ε < �(k) < 0, they are
analytic continuations of each other and equal some entire function. Using
Liouville’s theorem and taking the limit as |k| → ∞, we see that both sides
of Equation 5.2.38 equal zero. Therefore,

M+(k) =
αλP+(0)

ik(1 + αλ)P+(k)
− αλ

ik(1 + αλ)
, (5.2.39)

A(k) =
αλP+(0)

ik(1 + αλ)P+(k)
, (5.2.40)
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Figure 5.2.2: The contours in inverting the integral in Equation 5.2.41.

and

u(x, y) =
e−αy

1 + αλ
+

αλP+(0)
2πi(1 + αλ)

∫ ∞−εi

−∞−εi

e−my−ikx

k P+(k)
dk (5.2.41)

=
e−αy

1 + αλ
+

αλ

2πi

∫ ∞−εi

−∞−εi

P−(k)
P−(0)

e−my−ikx

k(1 + λm)
dk. (5.2.42)

Equation 5.2.41 is best for computing u(x, y) when x < 0. Using the
contour shown in Figure 5.2.2, we deform the original contour to the contour
AGFEDCB shown there. During the deformation, we cross the simple pole
at k = 0 and must add its contribution. Therefore,

u(x, y) =
e−αy

1 + αλ
+

αλ e−αy

1 + αλ
+

αλP+(0)
2πi(1 + αλ)

∫ α

∞

eiy
√

η2−α2+ηx

P+(iη)
dη

η

+
αλP+(0)

2πi(1 + αλ)

∫ ∞

α

e−iy
√

η2−α2+ηx

P+(iη)
dη

η
(5.2.43)

= e−αy − αλP+(0)
π(1 + αλ)

∫ ∞

α

exη sin
(
y
√

η2 − α2
) dη

η P+(iη)
(5.2.44)

= e−αy − αλP+(0)
π(1 + αλ)

∫ ∞

1

eαxξ sin
(
αy
√

ξ2 − 1
) dξ

ξ P+(iαξ)
. (5.2.45)

The contribution from the arcs GA and BC vanish as the radius of the semi-
circle in the upper half-plane becomes infinite.

Turning to the case x > 0, we deform the original contour to the contour
A′G′F ′E′D′C′B′ in Figure 5.2.2. During the deformation we do not cross
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any singularities. Therefore,

u(x, y) =
e−αy

1 + αλ
+

αλ

2πi

∫ α

∞

P−(−iη)
P−(0)

e−iy
√

η2−α2−ηx

1 + iλ
√

η2 − α2

dη

η

+
αλ

2πi

∫ ∞

α

P−(−iη)
P−(0)

eiy
√

η2−α2−ηx

1 − iλ
√

η2 − α2

dη

η
(5.2.46)

u(x, y) =
e−αy

1 + αλ
+

αλ

π

∫ ∞

α

P−(−iη)
P−(0)

e−xη dη

η
(5.2.47)

×
sin
(
y
√

η2 − α2
)

+ λ
√

η2 − α2 cos
(
y
√

η2 − α2
)

1 + λ2(η2 − α2)

=
e−αy

1 + αλ
+

αλ

π

∫ ∞

1

P−(−iαξ)
P−(0)

e−αxξ dξ

ξ
(5.2.48)

×
sin
(
αy
√

ξ2 − 1
)

+ αλ
√

ξ2 − 1 cos
(
αy
√

ξ2 − 1
)

1 + α2λ2(ξ2 − 1)
.

The final task is the factorization. We begin by introducing the functions

ϕ(z) = ϕ+(z) + ϕ−(z) =
P ′(z)
P (z)

=
zλ

m(1 + λm)
, m2 = z2 + α2, (5.2.49)

which is analytic in the region −α < �(z) < α and ϕ±(z) = P ′
±(z)/P±(z).

By definition, ϕ±(z) is analytic and nonzero in the same half-planes as P±(z).
Furthermore,

P±(z) = P±(0) exp
[∫ z

0

ϕ±(ζ) dζ

]
. (5.2.50)

From Cauchy’s integral theorem,

ϕ+(ζ) =
1

2πi

∫ ∞+εi

−∞+εi

ϕ(z)
z − ζ

dz and ϕ−(ζ) = − 1
2πi

∫ ∞+δi

−∞+δi

ϕ(z)
z − ζ

dz,

(5.2.51)
where −α < ε < δ < α. We will now evaluate the line integrals in Equation
5.2.51 by converting them into the closed contours shown in Figure 5.2.2. In
particular, for ϕ+, we employ the closed contour A′B′C′D′E′F ′G′A′ with the
branch cut running from −αi to −∞i, while for the evaluation of ϕ−, we use
ABCDEFGA with the branch cut running from αi to ∞i. For example,

ϕ+(ζ) =
λ

2πi

∫ ∞+εi

−∞+εi

z

m(1 + λm)(z − ζ)
dz (5.2.52)

=
λ

2πi

∫ α

∞

(−iη)(−i dη)(
i
√

η2 − α2
)(

1 + iλ
√

η2 − α2
)

(−iη − ζ)
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Figure 5.2.3: The solution to Equation 5.2.22 and Equation 5.2.23 obtained via the
Wiener-Hopf technique.

+
λ

2πi

∫ ∞

α

(−iη)(−i dη)(
−i
√

η2 − α2
)(

1 − iλ
√

η2 − α2
)

(−iη − ζ)
5.2.53)

=
λ

π

∫ ∞

α

η dη

(ζ + iη)
√

η2 − α2 [1 + λ2(η2 − α2)]
(5.2.54)

=
ρ

π

∫ ∞

0

ds

(s2 + ρ2)
(
ζ + i

√
s2 + α2

) . (5.2.55)

where s2 = η2 − α2 and ρ = 1/λ. A similar analysis of ϕ−(ζ) shows that
P−(−ζ)/P−(0) = P+(ζ)/P+(0). Figure 5.2.3 illustrates u(x, y) when αλ = 1.
The numerical calculations begin with a computation of ϕ+(ζ) using Simp-
son’s rule. Then, P+(ζ)/P+(0) is found using the trapezoidal rule. Finally,
Equation 5.2.45 and Equation 5.2.48 are evaluated using Simpson’s rule.

Problems

1. Use the Wiener-Hopf technique to solve

∂2u

∂x2
+

∂2u

∂y2
− u = −2ρ(x)δ(y), −∞ < x, y < ∞,

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, −∞ < y < ∞,

lim
|y|→∞

u(x, y) → 0, −∞ < x < ∞,

and
u(x, 0) = e−x, 0 < x < ∞.
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The function ρ(x) is only nonzero for 0 < x < ∞.

Step 1 : Assuming that |u(x, y)| is bounded by eεx, where 0 < ε  1, as
x → −∞, let us introduce

U(k, y) =
∫ ∞

−∞
u(x, y)e−ikx dx and U(k, �) =

∫ ∞

−∞
U(k, y)e−i�y dy.

Use the differential equation and first two boundary conditions to show that

U(k, y) = R(k)
e−|y|√k2+1

√
k2 + 1

,

where R(k) is the Fourier transform of ρ(x).

Step 2 : Taking the Fourier transform of the last boundary condition, show
that

R(k)√
k2 + 1

=
1

1 + ik
+ F+(k), (1)

where

F+(k) =
∫ 0

−∞
u(x, 0)e−ikx dx.

Note that R(k) is analytic in the lower half-space where �(k) < ε. Why?

Step 3 : Show that (1) can be rewritten

R(k)√
1 + ik

−
√

2
1 + ik

=
√

1 − ik −√
2

1 + ik
+
√

1 − ik F+(k).

Note that the left side of this equation is analytic in the lower half-plane
�(k) < ε, while the right side is analytic in the upper half-plane �(k) > 0.

Step 4 : Use Liouville’s theorem and deduce that R(k) =
√

2/
√

1 + ik.

Step 5 : Show that

U(k, y) =
√

2√
1 + ik

e−|y|√k2+1

√
k2 + 1

.

Step 6 : Using integral tables, show that

F−1

(
e−|y|√k2+1

√
k2 + 1

)
=

1
2π

∫ ∞

−∞

eikx−|y|√k2+1

√
k2 + 1

dk =
K0(r)

π
,

where r2 = x2 + y2.

Step 7 : Using contour integration, show that

F−1

( √
2√

1 + ik

)
= e−x

√
2

πx
H(x).
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Problem 1

Step 8 : Using the results from Step 6 and Step 7 and applying the convolution
theorem, show that

u(x, y) = e−x

√
2

πx
H(x) ∗ K0(r)

π
.

Step 9 : Complete the problem and show that

u(x, y) =

√
2
π3

∫ ∞

0

e−χ

√
χ

K0

[√
(x − χ)2 + y2

]
dχ

or

u(x, y) =

√
8
π3

∫ ∞

0

e−η2
K0

[√
(x − η2)2 + y2

]
dη.

The figure entitled Problem 1 illustrates this solution.

2. Use the Wiener-Hopf technique to solve

∂2u

∂x2
+

∂2u

∂y2
= u, −∞ < x < ∞, 0 < y,

subject to the boundary conditions

lim
y→∞u(x, y) → 0, −∞ < x < ∞,

{
uy(x, 0) = 0, x < 0,
u(x, 0) = e−x, 0 < x.

Step 1 : Introducing

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx,
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use the differential equation and first two boundary conditions to show that
U(k, y) = A(k)e−y

√
k2+1.

Step 2 : Taking the Fourier transform of the boundary condition along y = 0,
show that

A(k) = U−(k) +
1

1 − ki
and U ′

+(k) = −
√

k2 + 1 A(k), (1)

where

U−(k) =
∫ 0

−∞
u(x, 0)eikx dx and U ′

+(k) =
∫ ∞

0

uy(x, 0)eikx dx.

Here we have assumed that |u(x, 0)| is bounded by e−εx, 0 < ε  1, as x → ∞
so that U+ is analytic in the upper half-plane �(k) > −ε, while U− is analytic
in the lower half-plane �(k) < 0.

Step 3 : Show that (1) can be rewritten

− U+(k)√
1 − ki

+
√

2
1 − ki

=
√

1 − ki U−(k) +
√

1 + ki −√
2

1 − ki
.

Note that the right side of this equation is analytic in the lower half-plane
�(k) < 0, while the left side is analytic in the upper half-plane �(k) > −ε.

Step 4 : Use Liouville’s theorem and deduce that

U−(k) =
√

2
(1 − ki)

√
1 + ki

− 1
1 − ki

.

Step 5 : Show that

U(k, y) =
√

2√
1 − ki

e−y
√

k2+1

√
k2 + 1

=
1 + i

(k + i)
√

k − i

e−y
√

k2+1

√
k2 + 1

.

Step 6 : Finish the problem by retracing Step 6 through Step 9 of the previous
problem and show that you recover the same solution. Gramberg and van de
Ven24 found an alternative representation

u(x, y) = e−x −
√

2
π

∫ ∞

0

e−x
√

η2+1√
η2 + 1

√√
η2 + 1 − 1

sin(ηy) dη, x > 0,

24 Gramberg, H. J. J., and A. A. F. van de Ven, 2005: Temperature distribution in a
Newtonian fluid injected between two semi-infinite plates. Eur. J. Mech., Ser. B., 24,
767–787.
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and

u(x, y) =
√

2
π

∫ ∞

0

ex
√

η2+1√
η2 + 1

√√
η2 + 1 + 1

cos(ηy) dη, x < 0,

by evaluating the inverse Fourier transform via contour integration.

3. Use the Wiener-Hopf technique to solve the mixed boundary value problem

∂2u

∂x2
+

∂2u

∂y2
= u, −∞ < x < ∞, 0 < y,

with the boundary conditions limy→∞ u(x, y) → 0,{
u(x, 0) = 1, x < 0,
uy(x, 0) = 0, 0 < x.

Step 1 : Assuming that |u(x, 0)| is bounded by e−εx as x → ∞, where 0 <
ε  1, let us define the following Fourier transforms:

U(k, y) =
∫ ∞

−∞
u(x, y)eikx dx, U+(k, y) =

∫ ∞

0

u(x, y)eikx dx,

and

U−(k, y) =
∫ 0

−∞
u(x, y)eikx dx,

so that U(k, y) = U+(k, y) + U−(k, y). Here, U+(k, y) is analytic in the half-
space �(k) > −ε, while U−(k, y) is analytic in the half-space �(k) < 0. Then
show that the partial differential equation becomes

d2U

dy2
− m2U = 0, 0 < y,

with limy→∞ U(k, y) → 0, where m2 = k2 + 1.

Step 2 : Show that the solution to Step 1 is U(k, y) = A(k)e−my.

Step 3 : From the boundary conditions along x = 0, show that

A(k) = M+(k) − i

k
and − mA(k) = L−(k),

where

M+(k) =
∫ ∞

0

u(x, 0)eikx dx and L−(k) =
∫ 0

−∞
uy(x, 0)eikx dx.
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Problem 3

Note that M+(k) is analytic in the half-space �(k) > −ε, while L−(k) is
analytic in the half-space �(k) < 0.

Step 4 : By eliminating A(k) from the equations in Step 3, show that we can
factor the resulting equation as

−√
k + i M+(k) + i

√
k + i −√

i

k
=

L−(k)√
k − i

− i3/2

k
.

Note that the left side of the equation is analytic in the upper half-plane
�(k) > −ε, while the right side of the equation is analytic in the lower half-
plane �(k) < 0.

Step 5 : Use Liouville’s theorem to show that each side of the equation in Step
4 equals zero. Therefore,

M+(k) =
i

k
− i3/2

k
√

k + i
and U(k, y) = − i3/2

k
√

k + i
e−y

√
k2+1.

Step 6 : Use the inversion integral and show that

u(x, y) = − i3/2

2π

∫ ∞−εi

−∞−εi

exp
(−ikx − y

√
k2 + 1

)
k
√

k + i
dk.

Step 7 : Using contour integration and Figure 5.2.2, evaluate the integral in
Step 6 and show that

u(x, y) =
1
π

∫ ∞

1

cos
(
y
√

η2 − 1
)

e−xη dη

η
√

η − 1

if x > 0, and

u(x, y) = e−y − 1
π

∫ ∞

1

sin
(
y
√

η2 − 1
)

exη dη

η
√

η + 1

if x < 0. The figure labeled Problem 3 illustrates u(x, y).
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Chapter 6

Green’s Function

The use of Green’s functions to construct solutions to boundary value prob-
lems dates back to nineteenth century electrostatics. In this chapter we first
show how to construct a Green’s function with mixed boundary conditions.
Then we will apply integral representations to a mixed boundary value prob-
lem when the kernel is a Green’s function. In the last section we specialize to
potentials.

6.1 GREEN’S FUNCTION WITH MIXED BOUNDARY VALUE CONDITIONS

We begin our study of Green’s function methods by examining how we might
construct a Green’s function when mixed boundary conditions are present.
Consider the rather simple problem1 of

∂2u

∂x2
+

∂2u

∂y2
= −δ(x)δ(y − b), −∞ < x < ∞, 0 < y < ∞, (6.1.1)

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞, (6.1.2)

1 See Khanzhov, A. D., 1966: A mixed heat conduction boundary problem for a semi-
infinite plate. J. Engng. Phys., 11, 370–371.
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lim
y→∞u(x, y) → 0, −∞ < x < ∞, (6.1.3)

and {
uy(x, 0) = 0, 0 ≤ |x| < a,
u(x, 0) = 0, a < |x| < ∞.

(6.1.4)

Using Fourier cosine transforms, the partial differential equation and the
boundary conditions given by Equation 6.1.2 and Equation 6.1.3 are satisfied
by

u(x, y) =
2
π

∫ ∞

0

[
e−k(b−y)

4k
+ A(k)e−k(b−y)

]
cos(kx) dk, 0 ≤ y ≤ b,

(6.1.5)
and

u(x, y) =
2
π

∫ ∞

0

[
e−k(y−b)

4k
+ A(k)e−k(y−b)

]
cos(kx) dk, b ≤ y < ∞.

(6.1.6)
The arbitrary constant A(k) will be used to satisfy the final boundary con-
dition, Equation 6.1.4. Direct substitution of Equation 6.1.5 and Equation
6.1.6 into this boundary condition yields the dual integral equations∫ ∞

0

[
e−kb

4
− kA(k)ekb

]
cos(kx) dk = 0, 0 ≤ |x| < a, (6.1.7)

and ∫ ∞

0

[
e−kb

4k
+ A(k)ekb

]
cos(kx) dk = 0, a < |x| < ∞. (6.1.8)

Noting

cos(kx) =

√
πkx

2
J− 1

2
(kx), (6.1.9)

we can reexpress Equation 6.1.7 and Equation 6.1.8 as∫ ∞

0

[
e−kb

4
− kA(k)ekb

]√
kxJ− 1

2
(kx) dk = 0, 0 ≤ |x| < a, (6.1.10)

and∫ ∞

0

[
e−kb

4k
+ A(k)ekb

]√
kx J− 1

2
(kx) dk = 0, a < |x| < ∞. (6.1.11)

If we introduce x = aρ and η = ka, Equation 6.1.10 and Equation 6.1.11
become the nondimensional integral equations∫ ∞

0

[
e−kη/a

4
− η

a
A(η)ebη/a

]√
η J− 1

2
(ρη) dη = 0, 0 ≤ |ρ| < 1, (6.1.12)
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and∫ ∞

0

[
ae−bη/a

4η
+ A(η)ebη/a

]√
η J− 1

2
(ρη) dη = 0, 1 < |η| < ∞. (6.1.13)

Let us introduce

B(η) =
1
a2

√
η

a

[
a

4η
e−bη/a + A(η)ebη/a

]
. (6.1.14)

Then Equation 6.1.12 and Equation 6.1.13 become∫ ∞

0

ηB(η)J− 1
2
(ρη) dη = h(ρ) =

√
2

πaρ

b

b2 + a2ρ2
, 0 ≤ |ρ| < 1, (6.1.15)

and ∫ ∞

0

B(η)J− 1
2
(ρη) dη = 0, 1 < |ρ| < ∞. (6.1.16)

The solution to these dual integral equations has been given by Titchmarsh2

with ν = − 1
2 and α = 1. Solving for B(η) we find that

B(η) =

√
2η

π

∫ 1

0

µ3/2J0(µη)
[∫ 1

0

h(µρ)
√

ρ

1 − ρ2
dρ

]
dµ (6.1.17)

=
√

η

a

∫ 1

0

µ J0(µη)√
b2 + a2µ2

dµ. (6.1.18)

Upon using B(η) to find A(k), substituting A(k) into Equation 6.1.5 and
Equation 6.1.6, and then evaluating the integrals, we find that

u(x, y) =
1
2π

{
1
2

ln
[
(b + y)2 + x2

(b − y)2 + x2

]
(6.1.19)

+ ln

∣∣∣∣∣R + a2 + b2 +
√

2(a2 + b2)(y2 − x2 + a2 + R)
(b + y)2 + x2

∣∣∣∣∣
}

where R =
√

(y2 − x2 + a2)2 + 4x2y2. Figure 6.1.1 illustrates the solution
6.1.19 when a/b = 0.5.

Efimov and Vorob’ev3 found the Green’s function for the three-dimen-
sional Laplace equation in the half-space z ≥ 0 with the boundary conditions{

gz(x, y, 0+|ξ, η, 0) = δ(x − ξ)δ(y − η), x2 + y2 < a2,
g(x, y, 0+|ξ, η, 0) = 0, x2 + y2 > a2.

(6.1.20)

2 Titchmarsh, E. C., 1948: Introduction of the Theory of Fourier Integrals. Oxford,
Section 11.16.

3 Efimov, A. B., and V. N. Vorob’ev, 1975: A mixed boundary value problem for the
Laplace equation. J. Engng. Phys., 26, 664–666.
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Figure 6.1.1: The Green’s function given by Equation 6.1.19 when a/b = 0.5.

It is

g(x, y, z|ξ, η, ζ) =
2
πr

arcsin
{

cos[(θ − θ0)/2]
cosh(α/2)

}
, (6.1.21)

where
r2 = (x − ξ)2 + (y − η)2 + (z − ζ)2, (6.1.22)

θ =
i

2
ln
[
x2 + y2 + (z − ai)2

x2 + y2 + (z + ai)2

]
, θ0 =

i

2
ln
[
ξ2 + η2 + (ζ − ai)2

ξ2 + η2 + (ζ + ai)2

]
, (6.1.23)

ρ =
1
2

ln


(√

x2 + y2 + a
)2

+ z2(√
x2 + y2 − a

)2

+ z2

 , ρ0 =
1
2

ln


(√

ξ2 + η2 + a
)2

+ ζ2(√
ξ2 + η2 − a

)2

+ ζ2

 ,

(6.1.24)
ϕ = arctan(y/x), ϕ0 = arctan(η/ξ), (6.1.25)

and

cosh(α) = cosh(ρ) cosh(ρ0) − sinh(ρ) sinh(ρ0) cos(ϕ − ϕ0). (6.1.26)

Similarly, when the boundary conditions along z = 0 read{
g(x, y, 0+|ξ, η, 0) = δ(x − ξ)δ(y − η), x2 + y2 < a2,

gz(x, y, 0+|ξ, η, 0) = 0, x2 + y2 > a2,
(6.1.27)
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then the Green’s function is

g(x, y, z|ξ, η, ζ)

=
2z

πr3
0

arcsin

[ √
R − (x2 + y2 + z2 − a2)

√
a2 − ξ2 − η2√

R(a2 − ξ2 − η2) + r2
1(x, y)r2

1(ξ, η) − 4a2(xξ + yη)

]

+
2
√

2 az

πr2
0

√
(a2 − ξ2 − η2)[R − (x2 + y2 + z2 − a2)]

, (6.1.28)

where
r2
0 = (x − ξ)2 + (y − η)2 + z2, (6.1.29)

r2
1(x, y) = x2 + y2 + a2, (6.1.30)

and
R2 = (x2 + y2 + z2 − a2)2 + 4a2z2. (6.1.31)

6.2 INTEGRAL REPRESENTATIONS INVOLVING GREEN’S FUNCTIONS

Green’s functions have long been used to create integral representations for
boundary value problems. Here we illustrate how this technique is used in the
case of mixed boundary value problems. As before, we will face an integral
equation that must solved, usually numerically.

• Example 6.2.1

For our first example, let us complete the solution of

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < L, (6.2.1)

subject to the boundary conditions{
uy(x, 0) = −h(x), |x| < 1,

u(x, 0) = 0, |x| > 1, (6.2.2)

u(x, L) = 0, −∞ < x < ∞, (6.2.3)

and
lim

|x|→∞
u(x, y) → 0, 0 < y < L, (6.2.4)

using Green’s functions that we began in Example 1.1.4. There we showed
that

u(x, y) =
1

2L

∫ 1

−1

f(ξ) sin(πy/L)
cosh[π(x − ξ)/L] − cos(πy/L)

dξ, (6.2.5)
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where f(x) is given by the integral equation

1
2L

∫ 1

−1

f ′(ξ) coth[π(x − ξ)/(2L)] dξ = h(x), |x| < 1. (6.2.6)

To solve Equation 6.2.6, we write h(x) as a sum of an even function he(x)
and an odd function ho(x). Let us denote by f1(ξ) that portion of f(ξ) due
to the contribution from he(x). Then, by integrating Equation 6.2.6 from −x
to x, we have that

π

∫ x

0

he(t) dt =
∫ 1

0

f ′
1(ξ) ln

∣∣∣∣sinh[π(x − ξ)/(2L)]
sinh[π(x + ξ)/(2L)]

∣∣∣∣ dξ (6.2.7)

=
∫ 1

0

f ′
1(ξ) ln

∣∣∣∣tanh[πx/(2L)] + tanh[πξ/(2L)]
tanh[πx/(2L)] − tanh[πξ/(2L)]

∣∣∣∣ dξ (6.2.8)

for 0 ≤ x ≤ 1. From Example 1.2.3, we have that

f ′
1(x) =

1
L

d

dx

[∫ 1

x

tanh[πξ/(2L)]

cosh2[πξ/(2L)]
√

tanh2[πξ/(2L)] − tanh2[πx/(2L)]

×

∫ ξ

0

he(η)√
tanh2[πξ/(2L)] − tanh2[πη/(2L)]

dη

 dξ

]
, (6.2.9)

or

f1(x) = − 1
L

∫ 1

x

tanh[πξ/(2L)]

cosh2[πξ/(2L)]
√

tanh2[πξ/(2L)] − tanh2[πx/(2L)]

×

∫ ξ

0

he(η)√
tanh2[πξ/(2L)] − tanh2[πη/(2L)]

dη

 dξ (6.2.10)

for 0 ≤ x ≤ 1. Consequently, the portion of the potential u1(x, y) due to
he(η) can be computed from

u1(x, y) =
sin(πy/L)

2L

∫ 1

0

[
f1(ξ)

cosh(π|x − ξ|/L) − cos(πy/L)

+
f1(ξ)

cosh(π|x + ξ|/L) − cos(πy/L)

]
dξ, (6.2.11)

where f1(ξ) is given by Equation 6.2.10.
Turning now to finding that portion of f(ξ), f2(ξ), due to ho(x), Equation

6.2.6 yields

ho(x) =
1

2L

∫ 1

0

f ′
2(ξ) {coth[π(x − ξ)/(2L)] + coth[π(x + ξ)/(2L)]} dξ.

(6.2.12)
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Integrating Equation 6.2.12 from 0 to x,

π

∫ x

0

ho(t) dt =
∫ 1

0

f ′
2(ξ) ln

∣∣∣∣ sinh2[πx/(2L)] − sinh2[πξ/(2L)]
sinh2[πξ/(2L)]

∣∣∣∣ dξ (6.2.13)

for 0 ≤ x ≤ 1. From Example 1.2.4,

f ′
2(x) =

1
2 sinh[πx/(2L)]

d

dx

[∫ 1

x

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πx/(2L)]

×

∫ ξ

0

sinh[πη/(2L)] ho(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ

]

+
πA

2L

cosh[πx/(2L)]√
sinh2[π/(2L)] − sinh2[πx/(2L)]

, (6.2.14)

where A is an undetermined constant and 0 < x < 1. Integrating Equation
6.2.14 with respect to x, we obtain

f2(x) = − 1
2L

∫ 1

x

dχ

sinh[πχ/(2L)]
d

dχ

[∫ 1

χ

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]

×

∫ ξ

0

sinh[πη/(2L)] ho(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ

]

− A

[
π

2
− arcsin

{
sinh[πx/(2L)]
sinh[π/(2L)]

}]
(6.2.15)

for 0 ≤ x ≤ 1. Because f2(0) = 0,

A = − 1
πL

∫ 1

0

dχ

sinh[πχ/(2L)]
d

dχ

[∫ 1

χ

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]

×

∫ ξ

0

sinh[πη/(2L)] ho(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ

]
. (6.2.16)

Consequently, the portion of the potential due to ho(x) is

u2(x, y) =
sin(πy/L)

2L

∫ 1

0

[
f2(ξ)

cosh(π|x − ξ|/L) − cos(πy/L)

− f2(ξ)
cosh(π|x + ξ|/L) − cos(πy/L)

]
dξ. (6.2.17)
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Figure 6.2.1: The solution to Laplace’s equation with the boundary conditions given by
Equation 6.2.2 through Equation 6.2.4 when h(x) = (1 − x)2 and L = 0.1.

The potential due to h(x) equals the sum of u1(x, y) and u2(x, y). Figure
6.2.1 illustrates this solution when h(x) = (1 − x)2 and L = 0.1.

Yang et al.4 solved this problem when they replaced the boundary condi-
tion u(x, L) = 0 with uy(x, L) = 0. In this case the Green’s function becomes

g(x, y|ξ, η) =
2
π

e−π|x−ξ|/(2L) sin
(πy

2L

)
sin
(πη

2L

)
+

1
4π

ln
{

cosh[π(x − ξ)/(2L)] + cos[π(y + η)/(2L)]
cosh[π(x − ξ)/(2L)] − cos[π(y + η)/(2L)]

× cosh[π(x − ξ)/(2L)] − cos[π(y − η)/(2L)]
cosh[π(x − ξ)/(2L)] + cos[π(y − η)/(2L)]

}
, (6.2.18)

and Equation 6.2.6 is replaced with

h(x) = − π

4L2

∫ 1

−1

f(ξ)
cosh[π(x − ξ)/(2L)]
sinh2[π(x − ξ)/(2L)]

dξ (6.2.19)

=
1

2L

∫ 1

−1

f ′(ξ)
sinh[π(x − η)/(2L)]

dξ, |x| < 1. (6.2.20)

If we repeat our previous analysis where we set h(x) = he(x)+ho(x), the
portion of the potential u(x, y) due to he(x) is

4 Taken with permission from Yang, F., V. Prasad, and I. Kao, 1999: The thermal
constriction resistance of a strip contact spot on a thin film. J. Phys. D: Appl. Phys., 32,
930–936. Published by IOP Publishing Ltd.
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u1(x, y) =
sin(πy/L)

4L

×
{∫ 1

0

cosh[πx1/(2L)] f1(ξ)
sinh2[πx1/(2L)] cos2[πy/(2L)] + cosh2[πx1/(2L)] sin2[πy/(2L)]

+
cosh[πx2/(2L)] f1(ξ)

sinh2[πx2/(2L)] cos2[πy/(2L)] + cosh2[πx2/(2L)] sin2[πy/(2L)]
dξ

}
,

(6.2.21)

where x1 = |x − ξ|, x2 = |x + ξ|, and

f1(x) = − 1
2L

∫ 1

x

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πx/(2L)]

×

∫ ξ

0

he(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ. (6.2.22)

On the other hand, the portion of u(x, y) due to ho(x) is

u2(x, y) =
sin(πy/L)

4L

×
{∫ 1

0

cosh[πx1/(2L)] f2(ξ)
sinh2[πx1/(2L)] cos2[πy/(2L)] + cosh2[πx1/(2L)] sin2[πy/(2L)]

− cosh[πx2/(2L)] f2(ξ)
sinh2[πx2/(2L)] cos2[πy/(2L)] + cosh2[πx2/(2L)] sin2[πy/(2L)]

dξ

}
,

(6.2.23)

where

f2(x) = − 1
2L

∫ 1

x

dχ

sinh[πχ/(2L)]
d

dχ

[∫ 1

χ

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]

×

∫ ξ

0

sinh[πη/(2L)] ho(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ

]

− 2A

∫ 1

x

dξ√
sinh2[π/(2L)]− sinh2[πξ/(2L)]

, (6.2.24)

and

A = − 1
4L

∫ 1

0

dχ

sinh[πχ/(2L)]
d

dχ

[∫ 1

χ

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]
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Figure 6.2.2: Same as Figure 6.2.1 except that the boundary condition u(x, L) = 0 has
been replaced with uy(x, L) = 0.

×

∫ ξ

0

sinh[πη/(2L)] ho(η)√
sinh2[πξ/(2L)] − sinh2[πη/(2L)]

dη

 dξ

]
/

∫ 1

0

dξ√
sinh2[π/(2L)] − sinh2[πξ/(2L)]

 . (6.2.25)

The potential due to h(x) equals the sum of u1(x, y) and u2(x, y). We have
illustrated this solution in Figure 6.2.2 when h(x) = (1 − x)2 and L = 0.1.

• Example 6.2.2

Green’s functions are a powerful technique for solving electrostatic potential
problems. Here we illustrate how Lal5 used this technique to find the electro-
static potential to the mixed boundary value problem:

∂2u

∂x2
+

∂2u

∂x2
= 0, −∞ < x, y < ∞, (6.2.26)

u(r, nπ/2) = p0, 0 ≤ r ≤ 1, n = 1, 2, 3, 4. (6.2.27)

5 Taken with permission from Lal, B., 1978: A note on mixed boundary value problems
in electrostatics. Z. Angew. Math. Mech., 58, 56–58. To see how to solve this problem
using conformal mapping, see Homentcovschi, D., 1980: On the mixed boundary value
problem for harmonic functions in plane domains. J. Appl. Math. Phys., 31, 352–366.
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We also require that both u(r, nπ/2) and uθ(r, nπ/2) are continuous if r > 1.
From the theory of Green’s function,

u(r, θ) =
3∑

n=0

∫ 1

0

An(ρ)g(r, θ|ρ, nπ/2) dρ, (6.2.28)

where

g(r, θ|ρ, θ0) = − 1
4π

ln[r2 + ρ2 − 2rρ cos(θ − θ0)]. (6.2.29)

From symmetry, we have that

A0(ρ) = A1(ρ) = A2(ρ) = A3(ρ). (6.2.30)

Upon substituting Equation 6.2.30 into Equation 6.2.28 and applying Equa-
tion 6.2.27, we find that

∫ 1

0

A0(ρ) ln|r4 − ρ4| dρ = −2πp0, 0 ≤ r ≤ 1. (6.2.31)

Let us now introduce r2 = cos(θ/2) and ρ2 = cos(θ0/2), where 0 ≤ θ, θ0 ≤ π,
Equation 6.2.31 becomes∫ π

0

A0(ρ)
sin(θ0/2)

ρ
ln
∣∣cos2(θ/2) − cos2(θ0/2)

∣∣ dθ0 = −8πp0

(6.2.32)∫ π

0

A0(ρ)
sin(θ0/2)

ρ
ln
∣∣∣∣cos(θ) − cos(θ0)

2

∣∣∣∣ dθ0 = −8πp0

(6.2.33)∫ π

0

A0(ρ)
sin(θ0/2)

ρ

{
−2 ln(2) − 2

∞∑
n=1

cos(nθ) cos(nθ0)
n

}
dθ0 = −8πp0.

(6.2.34)

By inspection,

A0(ρ) =
4p0ρ

ln(2)
√

1 − ρ4
. (6.2.35)

Therefore,

u(r, θ) =
4p0

ln(2)

∫ 1

0

ρ√
1 − ρ4

3∑
n=0

g(r, θ|ρ, nπ/2) dρ. (6.2.36)
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Figure 6.2.3: The electrostatic potential which satisfies the boundary condition u(r, nπ/2)
= p0 when r < 1 and n = 0, 1, 2, 3.

Figure 6.2.3 illustrates this solution. Lal also found the approximate electro-
static potential for two-cross-shaped charged strips inside a grounded circular
cylinder.

• Example 6.2.3: The method of Yang and Yao

Building upon Example 1.1.4 and Example 6.2.1, Yang and Yao6 de-
veloped a general method for finding the potential u(x, y) governed by the
nondimensional partial differential equation:

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < L, (6.2.37)

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < L, (6.2.38)

{
u(x, 0) = h(x), |x| ≤ 1,
uy(x, 0) = 0, |x| ≥ 1, (6.2.39)

and
u(x, L) = 0, −∞ < x < ∞. (6.2.40)

6 Yang, F.-Q., and R. Yao, 1996: The solution for mixed boundary value problems of
two-dimensional potential theory. Indian J. Pure Appl. Math., 27, 313–322.
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Their analysis begins by noting that we can express u(x, y) in terms of
the Green’s function g(x, y|ξ, η) by the integral

u(x, y) =
∫ 1

−1

g(x, y|ξ, 0)
∂u(ξ, 0)

∂η
dξ =

∫ 1

−1

f(ξ)g(x, y|ξ, 0) dξ, (6.2.41)

where f(ξ) is presently unknown and the Green’s function g(x, y|ξ, η) is given
by

∂2g

∂x2
+

∂2g

∂y2
= δ(x−ξ)δ(y−η), −∞ < x, ξ < ∞, 0 < y, η < L, (6.2.42)

subject to the boundary conditions

lim
|x|→∞

|g(x, y|ξ, η)| < ∞, 0 < y < L, (6.2.43)

and
gy(x, 0|ξ, η) = g(x, L|ξ, η) = 0, −∞ < x < ∞. (6.2.44)

Using standard techniques,7 the Green’s function equals

g(x, y|ξ, η) = −
∞∑

n=1

2
(2n − 1)π

exp
[
− (2n − 1)π|x − ξ|

2L

]
× cos

[
(2n − 1)πy

2L

]
cos
[
(2n − 1)πη

2L

]
. (6.2.45)

Therefore,

g(x, y|ξ, 0) =
1
π
�
[
ln
(√

r − 1√
r + 1

)]
, (6.2.46)

where r = exp[−π(|x−ξ|−iy)/L ]. Substituting Equation 6.2.46 into Equation
6.2.41 and using Equation 6.2.39, we find that

h(x) =
1
π

∫ 1

−1

f(ξ) ln
∣∣tanh[π(x − ξ)/(4L)]

∣∣ dξ. (6.2.47)

At this point, we specialize according to whether h(x) is an even or odd
function. Because any function can be written as the sum of an even and odd
function, we can first rewrite h(x) as a sum of an even function he(x) and an
odd function ho(x). Then we find the potentials for the corresponding he(x)
and ho(x). The potential for the given h(x) then equals their sum by the
principle of linear superposition.

7 Duffy, D. G., 2001: Green’s Functions with Applications. Chapman & Hall/CRC, 443
pp. See Section 5.2.
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• h(x) is an even function

In this case, Equation 6.2.47 can be rewritten

πh(x) =
∫ 1

0

f(ξ) ln
∣∣tanh[π(x − ξ)/(4L)] tanh[π(x + ξ)/(4L)]

∣∣ dξ (6.2.48)

with 0 ≤ x ≤ 1. Taking the x-derivative,

h′(x) =
2
L

∫ 1

0

f(ξ)
sinh[πx/(2L)] cosh[πξ/(2L)]
cosh(πx/L) − cosh(πξ/L)

dξ; (6.2.49)

or,

h′(x)
sinh[πx/(2L)]

=
1
L

∫ 1

0

f(ξ)
cosh[πξ/(2L)]

sinh2[πx/(2L)] − sinh2[πξ/(2L)]
dξ. (6.2.50)

Using the same techniques outlined in Example 6.2.1, we can solve for f(x)
and find that

f(x) =
1

2L sinh(πx/L)
d

dx

[∫ 1

x

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πx/(2L)]

×

∫ ξ

0

h′(χ) sinh(πχ/L)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]

dχ

 dξ

]

+
2A√

sinh2[π/(2L)] − sinh2[πx/(2L)]
, (6.2.51)

where A is a constant that is determined by f(0+). Substituting these results
into Equation 6.2.41, we obtain the final result.

u(x, y) =
1
π

∫ 1

0

[
ln


√

sinh2[π|x − ξ|/(2L)] + sin2[πy/(2L)]

cosh[π|x − ξ|/(2L)] + cos[πy/(2L)]


+ ln


√

sinh2[π|x + ξ|/(2L)] + sin2[πy/(2L)]

cosh[π|x + ξ|/(2L)] + cos[πy/(2L)]


]
f(ξ) dξ.

(6.2.52)

• h(x) is an odd function
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In the case when h(x) is an odd function, Equation 6.2.47 can be rewritten

πh(x) =
∫ 1

0

f(ξ) ln
∣∣∣∣ tanh[π(x − ξ)/(4L)]
tanh[π(x + ξ)/(4L)]

∣∣∣∣ dξ (6.2.53)

= −
∫ 1

0

f(ξ) ln
∣∣∣∣sinh[πx/(2L)] + sinh[πξ/(2L)]
sinh[πx/(2L)] − sinh[πξ/(2L)]

∣∣∣∣ dξ (6.2.54)

for 0 ≤ x ≤ 1. Again, applying the methods from Example 6.2.1, we find that

f(x) =
1

2L

d

dx

[ ∫ 1

x

sinh(πξ/L)√
sinh2[πξ/(2L)] − sinh2[πx/(2L)]

×
{∫ ξ

0

h′(χ)√
sinh2[πξ/(2L)] − sinh2[πχ/(2L)]

dχ

}
dξ

]

− h(0) sinh[π/(2L)]cotanh[πx/(2L)]

L
√

sinh2[π/(2L)] − sinh2[πx/(2L)]
. (6.2.55)

Substituting Equation 6.2.55 into Equation 6.2.41, the potential is

u(x, y) =
1
π

∫ 1

0

[
ln


√

sinh2[π|x − ξ|/(2L)] + sin2[πy/(2L)]

cosh[π|x − ξ|/(2L)] + cos[πy/(2L)]


− ln


√

sinh2[π|x + ξ|/(2L)] + sin2[πy/(2L)]

cosh[π|x + ξ|/(2L)] + cos[πy/(2L)]


]
f(ξ) dξ

(6.2.56)

for h(x) odd.
In a similar manner, the solution to the nondimensional potential problem

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < L, (6.2.57)

subject to the boundary conditions

lim
|x|→∞

|u(x, y)| < ∞, 0 < y < L, (6.2.58)

{
u(x, 0) = h(x), |x| ≤ 1,
uy(x, 0) = 0, |x| ≥ 1, (6.2.59)

and
uy(x, L) = 0, −∞ < x < ∞. (6.2.60)
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The Green’s function is now governed by

∂2g

∂x2
+

∂2g

∂y2
= δ(x−ξ)δ(y−η), −∞ < x, ξ < ∞, 0 < y, η < L, (6.2.61)

subject to the boundary conditions

lim
|x|→∞

|g(x, y|ξ, η)| < ∞, 0 < y < L, (6.2.62)

and
gy(x, 0|ξ, η) = gy(x, L|ξ, η) = 0, −∞ < x < ∞. (6.2.63)

The Green’s function for this problem is

g(x, y|ξ, η) =
|x − ξ|

2L
−

∞∑
n=1

1
nπ

exp
(
−nπ|x − ξ|

L

)
cos
(nπy

L

)
cos
(nπη

L

)
.

(6.2.64)
Therefore,

g(x, y|ξ, 0) =
|x − ξ|

2L
+

1
π
�[ln(1 − r)], (6.2.65)

where r = exp[−π(|x − ξ| − iy)/L ]. Upon substituting Equation 6.2.65 into
Equation 6.2.41 and using Equation 6.2.39, we obtain an integral equation for
f(ξ), namely,

h(x) =
1
π

∫ 1

−1

f(ξ) ln
∣∣2 sinh[π(x − ξ)/(2L)]

∣∣ dξ. (6.2.66)

Once again, we consider the special cases of h(x) as an even or odd function.

• h(x) is an even function

In this case, Equation 6.2.66 can be rewritten

πh(x) =
∫ 1

0

f(ξ) ln
∣∣4 sinh[π(x − ξ)/(2L)] sinh[π(x + ξ)/(2L)]

∣∣ dξ (6.2.67)

=
∫ 1

0

f(ξ) ln
∣∣2 cosh(πx/L) − 2 cosh(πξ/L)

∣∣ dξ (6.2.68)

for 0 ≤ x ≤ 1. Using the techniques shown in Example 6.2.1,

f(x) =
1

L
√

cosh(πx/L) − 1
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× d

dx

{∫ 1

x

sinh(πξ/L)√
2 cosh(πξ/L) − 2 cosh(πx/L)

×
[∫ ξ

0

h′(χ)

√
cosh(πχ/L) − 1

cosh(πξ/L) − cosh(πχ/L)
dχ

]
dξ

}

+
π sinh(πx/L)

L2
√

[cosh(πx/L) − 1][cosh(π/L) − cosh(πx/L)]

× 1
ln[cosh(π/L) − 1] − ln(2)

×
∫ 1

0

h(χ) sinh(πχ/L)√
[cosh(πχ/L) − 1][cosh(π/L) − cosh(πχ/L)]

dχ. (6.2.69)

Substituting Equation 6.2.69 into Equation 6.2.41, we find that

u(x, y) =
1
2π

∫ 1

0

{
ln(4) + ln[cosh(π|x − ξ|/L) − cosh(πy/L)]

+ ln[cosh(π|x + ξ|/L) − cos(πy/L)]
}
f(ξ) dξ. (6.2.70)

• h(x) is an odd function

Turning to the case when h(x) is an odd function, Equation 6.2.66 can
be rewritten

πh(x) =
∫ 1

0

f(ξ) ln
∣∣∣∣ sinh[π(x − ξ)/(2L)]
sinh[π(x + ξ)/(4L)]

∣∣∣∣ dξ (6.2.71)

= −
∫ 1

0

f(ξ) ln
∣∣∣∣ tanh[πx/(2L)] + tanh[πξ/(2L)]
tanh[πx/(2L)] − tanh[πξ/(2L)]

∣∣∣∣ dξ (6.2.72)

for 0 ≤ x ≤ 1. Using the techniques shown in Example 6.2.1, we find that

f(x) =
1
L

d

dx

{∫ 1

x

tanh[πξ/(2L)]

cosh2[πξ/(2L)]
√

tanh2[πξ/(2L)] − tanh2[πx/(2L)]

×
{∫ ξ

0

h′(χ)√
tanh2[πξ/(2L)] − tanh2[πχ/(2L)]

dχ

}
dξ

]

− 2h(0) tanh[π/(2L)]arcsinh(πx/L)

L
√

tanh2[π/(2L)] − tanh2[πx/(2L)]
. (6.2.73)
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Substituting Equation 6.2.65 and Equation 6.2.73 into Equation 6.2.41, we
obtain the final results that

u(x, y) =
1
2π

∫ 1

0

ln
∣∣∣∣cosh(π|x − ξ|/L) − cos(πy/L)
cosh(π|x + ξ|/L) − cos(πy/L)

∣∣∣∣ f(ξ) dξ (6.2.74)

if h(x) is an odd function.

• Example 6.2.4: The method of Clements and Love

In 1974 Clements and Love8 published a method for finding axisymm-
metric potentials. Mathematically, this problem is given by

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 < r < ∞, 0 < z < ∞, (6.2.75)

subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (6.2.76)

lim
z→∞ u(r, z) → 0, 0 < r < ∞, (6.2.77)

and 
u(r, 0) = U1(r), 0 < r < a,

uz(r, 0) = −σ0(r), a < r < b,
u(r, 0) = U2(r), b < r < ∞.

(6.2.78)

Clements and Love referred to this problem as a “Neumann problem” because
of the boundary condition between a < r < b.

Clements and Love’s method expresses the potential in terms of a Green’s
function:

u(r, z) =
1
2π

∫ ∞

0

σ(ρ)

[∫ π

−π

dϕ√
r2 + z2 + ρ2 − 2rρ cos(ϕ)

]
ρ dρ, (6.2.79)

where σ(ρ) is presently unknown. The quantity inside of the square brackets
is the free-space Green’s function. Clements and Love then proved that σ(ρ)
is given by

ρ σ(ρ) = − 2
π

d

dρ

[∫ a

ρ

ξ f1(ξ)√
ξ2 − ρ2

dξ

]
, ρ < a, (6.2.80)

σ(ρ) = σ0(ρ), a < ρ < b, (6.2.81)
and

ρ σ(ρ) =
2
π

d

dρ

[∫ ρ

b

ξ f2(ξ)√
ρ2 − ξ2

dξ

]
, b < ρ, (6.2.82)

8 Clements, D. L., and E. R. Love, 1974: Potential problems involving an annulus. Proc.
Cambridge Phil. Soc., 76, 313–325. c©1974 Cambridge Philosophical Society. Reprinted
with the permission of Cambridge University Press.
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where f1(ξ) and f2(ξ) are found from the coupled integral equations

f1(r) +
2
π

∫ ∞

b

ξ

ξ2 − r2
f2(ξ) dξ = g1(r), r < a, (6.2.83)

f2(r) +
2
π

∫ a

0

r

r2 − ξ2
f1(ξ) dξ = g2(r), r > b, (6.2.84)

g1(r) = −
∫ b

a

ξ σ0(ξ)√
ξ2 − r2

dξ +
d

dr

[∫ r

0

ξ U1(ξ)√
r2 − ξ2

dξ

]
, r < a, (6.2.85)

and

g2(r) = −
∫ b

a

ξ σ0(ξ)√
r2 − ξ2

dξ − d

dr

[∫ ∞

r

ξ U2(ξ)√
ξ2 − r2

dξ

]
, r > b. (6.2.86)

Clements and Love also considered the case when the mixed boundary
condition along z = 0 reads

uz(r, 0) = −σ1(r), 0 < r < a,
u(r, 0) = U0(r), a < r < b,

uz(r, 0) = −σ2(r), b < r < ∞.
(6.2.87)

Clements and Love referred to this problem as a “Dirichlet problem” because
of the boundary condition between a < r < b.

The potential is given by Equation 6.2.79 once again. In the present case,

σ(ρ) =


σ1(ρ), ρ < a,

σ3(ρ) + σ4(ρ), a < ρ < b,
σ2(ρ), b < ρ.

(6.2.88)

The quantities σ3(ρ) and σ4(ρ) are found from

σ3(r) = ω3(r) +
2b2(b2 − a2)3/2

π
√

b2 − r2

∫ ∞

b

bτ f2(τ)
(b2 − r2)τ2 + (r2 − a2)b2

dτ, (6.2.89)

and

σ4(r) = ω4(r) +
2b2(b2 − a2)3/2

π
√

r2 − a2

∫ a

0

τ2 f1(τ)
(b2 − r2)τ2 + (r2 − a2)b2

dτ. (6.2.90)

To evaluate Equation 6.2.89 and Equation 6.2.90, we must first compute the
quantities U3(r) and U4(r) via

U3(r) = 1
2U0(r) −

[
1
2U0(a) + A

] ( b − r

b − a

)2
+ A

(
b − r

b − a

)3
+
[
1
2U0(b) + B

] (r − a

b − a

)2
− B

(
r − a

b − a

)3
, (6.2.91)



432 Mixed Boundary Value Problems

and
U4(r) = U0(r) − U3(r), (6.2.92)

where

A = U0(a) + 1
2 (b − a)U ′

0(a) and B = U0(b) − 1
2 (b − a)U ′

0(b). (6.2.93)

Having found U3(r) and U4(r), we can compute ω3(r) and ω4(r) from

ω3(r) = − 2
π

∫ ∞

b

t

t2 − r2

√
t2 − b2

b2 − r2
σ2(t) dt

− 2
πr

d

dr

{∫ b

r

s√
s2 − r2

d

ds

[∫ s

0

t U3(t)√
s2 − t2

dt

]
ds

}
, (6.2.94)

and

ω4(r) = − 2
π

∫ a

0

t

r2 − t2

√
a2 − t2

r2 − a2
σ1(t) dt

− 2
πr

d

dr

{∫ r

a

s√
r2 − s2

d

ds

[∫ ∞

s

t U4(t)√
t2 − s2

dt

]
ds

}
. (6.2.95)

Finally, we find f1(ρ) and f2(ρ) from the coupled integral equations

f1(ρ) − 2
π

∫ ∞

b

τ f2(τ)
τ2 − ρ2

dτ = g1(ρ), ρ < a, (6.2.96)

ρ f2(ρ) − 2
π

∫ a

0

τ2 f1(τ)
ρ2 − τ2

dτ = ρ g2(ρ), ρ > b, (6.2.97)

where

g1(ρ) =
ω3(ξ)

(b2 − ρ2)3/2
, ξ = b

√
a2 − ρ2

b2 − ρ2
, ρ < a, (6.2.98)

and

g2(ρ) =
ω4(ξ)

(ρ2 − b2)3/2
, ξ = b

√
a2 − ρ2

b2 − ρ2
, ρ > b. (6.2.99)

Let us illustrate their method by solving9

∂2u

∂r2
+

1
r

∂u

∂r
+

∂2u

∂z2
= 0, 0 < r < ∞, 0 < z < ∞, (6.2.100)

9 See Yang, F.-Q., and J. C. M. Li, 1995: Impression creep by an annular punch. Mech.
Mater., 21, 89–97.
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subject to the boundary conditions

lim
r→0

|u(r, z)| < ∞, lim
r→∞u(r, z) → 0, 0 < z < ∞, (6.2.101)

lim
z→∞ u(r, z) → 0, 0 < r < ∞, (6.2.102)

and u(r, 0) = 2
√

1 − r2/π, 0 < r < a,
uz(r, 0) = 0 a < r < 1,
u(r, 0) = 0, 1 < r < ∞.

(6.2.103)

From the nature of the boundary conditions, we use Equation 6.2.79
through Equation 6.2.86. We begin by computing g1(r) and g2(r). Substitut-
ing U1(ξ) = 2

√
1 − ξ2/π, U2(ξ) = 0, and σ0(ξ) = 0 into Equation 6.2.85 and

Equation 6.2.86, we find that

g1(r) =
2
π

d

dr

[∫ r

0

ξ
√

1 − ξ2

r2 − ξ2
dξ

]
=

2
π

[
1 − r

2
ln
(

1 + r

1 − r

)]
(6.1.104)

if r < a; and g2(r) = 0 with r > 1.
At this point, we must turn to numerical methods to compute u(r, z).

Using MATLAB R©, we begin our calculations at a given radius r and height
z by solving the coupled integral equations, Equation 6.2.83 and Equation
6.2.84. We do this by introducing N nodal point in the region 0 ≤ ξ ≤ a
such that xi = (n − 1) ∗ dr 1, where n = 1,2,. . .,N and dr 1 = a/(N-1).
Similarly, for 1 ≤ ξ < ∞, we introduce M nodal points such that xi = 1+(m-
1)*dr 2, where m = 1,2,. . .,M and dr 2 is the resolution of the grid. Thus,
Equation 6.2.83 and Equation 6.2.84 yield N+M equations which we express
in matrix notation as Af = b, where N equations arise from Equation 6.2.83
and M equations are due to Equation 6.2.84. Because we will evaluate the
integrals using Simpson’s rule, both N and M must be odd integers.

The MATLAB code that approximates Equation 6.2.83 is

A = zeros(N+M,N+M); % zero out the array A
for n = 1:N
r = (n-1)*dr 1;
b(n) = 1 - 0.5*r*log((1+r)/(1-r));
b(n) = 2*b(n) / pi; % introduce g1(r) here
A(n,n) = 1;
% evaluate the integral by Simpson’s rule
for m = 1:M
xi = 1 + (m-1)*dr 2;
integrand = 2*xi / (pi*(xi*xi-r*r));
if ( (m>1) & (m<M) )
if ( mod(m,2) == 0)
A(n,N+m) = 4*dr 2*integrand/3;
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else
A(n,N+m) = 2*dr 2*integrand/3;
end
else
A(n,N+m) = dr 2*integrand/3;
end; end; end

The MATLAB code that approximates Equation 6.2.84 is

for m = 1:M
r = 1 + (m-1)*dr 2;
b(N+m) = 0;
A(N+m,N+m) = 1;
for n = 1:N
xi = (n-1)*dr 1;
integrand = 2*r / (pi*(r*r-xi*xi));
if ( (n>1) & (n<N) )
if ( mod(n,2) == 0 )
A(N+m,n) = 4*dr 1*integrand/3;
else
A(N+m,n) = 2*dr 1*integrand/3;
end
else
A(N+m,n) = dr 1*integrand/3;
end; end; end

Solving these (N +M)× (N +M) equations, we find f which holds f1(ξ)
in its first N elements, while f2(ξ) is given in the remaining M elements:

f = A\b′;
Given f, we now solve for σ(ρ). This is a two-step procedure. First,

we evaluate the bracketed terms in Equation 6.2.80 or Equation 6.2.82. For
accurate computations in Equation 6.2.80, we note that ξ dξ/

√
ξ2 − ρ2 =

d
(√

ξ2 − ρ2
)
. Equation 6.2.82 employs a similar trick. Then, we evaluate

the integral using the trapezoidal rule. Finally, σ(ρ) follows from simple finite
differences.
for m = 1:N-1
t = dr 1*(m-1); bracket 1(m) = 0;
for n = m:N-1
xi end = n*dr 1; xi begin = xi end-dr 1;
f1 = 0.5*(f(n)+f(n+1));
bracket 1(m) = bracket 1(m) + f1*sqrt(xi end*xi end-t*t) ...

- f1*sqrt(xi begin*xi begin-t*t);
end;end
bracket 1(N) = 0;

for n = 1:N-1
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rho(n) = (n-0.5)*dr 1;
sigma(n) = 2*(bracket 1(n)-bracket 1(n+1)) / (pi*dr 1*rho(n));
end

bracket 2(1) = 0;
for m = 2:M
t = 1 + dr 2*(m-1); bracket 2(m) = 0;
for n = 1:m-1
xi end = 1 + dr 2*n; xi begin = xi end - dr 2;
f2 = 0.5*(f(N+n)+f(N+n+1));
bracket 2(m) = bracket 2(m) - f2*sqrt(t*t-xi end*xi end) ...

+ f2*sqrt(t*t-xi begin*xi begin);
end;end

for m = 1:M-1
rho(N-1+m) = 1 + dr 2*(m-0.5);
sigma(N-1+m) = 2*(bracket 2(m+1)-bracket 2(m)) ...

/ (pi*dr 2*rho(N-1+m));
end

With σ(ρ) we are ready to compute Equation 6.2.79. There are two steps.
First, we find the Green’s function via Simpson’s rule; it is called green here.
Then we evaluate the outside integral using the midpoint rule. The final
solution is called u(i,j).

dphi = pi / 10;
for k = 1:(N+M-2)
green = 0;
if (r == 0)
green = 2*pi / sqrt(z*z+rho(k)*rho(k));
else
for ii = 1:21
phi = -pi+(ii-1)*dphi;
denom = r*r+z*z+rho(k)*rho(k)-2*r*rho(k)*cos(phi);
denom = sqrt(denom);
if ( (ii>1) & (ii<21) )
if ( mod(ii,2) == 0)
green = green + 4*dphi/(3*denom);
else
green = green + 2*dphi/(3*denom);
end
else
green = green + dphi/(3*denom);
end; end; end
if (k < N)
u(i,j) = u(i,j) + sigma(k)*green*rho(k)*dr 1;
else
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Figure 6.2.4: The solution to Laplace’s equation with the boundary conditions given by
Equation 6.2.101 through Equation 6.2.103.

u(i,j) = u(i,j) + sigma(k)*green*rho(k)*dr 2;
end;end
u(i,j) = u(i,j)/(2*pi);

Figure 6.2.4 illustrates this solution when N = 51, M = 401, a = 0.5,
and dr 2 = 0.1.

6.3 POTENTIAL THEORY

Potentials have long been used to solve Laplace’s or Poisson’s equation over
some region. Here we show how this method has been extended to mixed
boundary value problems.

• Example 6.3.1

In this example let us find the solution to Laplace’s equation in three dimen-
sions when the boundary condition on the z = 0 plane is{

u(r, θ, 0) = f(r), 0 ≤ r < 1,
uz(r, θ, 0) = 0, 1 < r < ∞.

(6.3.1)

Because of the axisymmetric boundary condition, the solution is simply

u(r, ϑ, z) =
∫ 1

0

∫ 2π

0

ρ σ(ρ)
R

dθ dρ, (6.3.2)
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where
R2 = ρ2 + r2 − 2ρr cos(ϑ − θ) + z2. (6.3.3)

Here R gives the distance from the general point (r, ϑ, z) to the point (r, θ, 0)
on the disk. Because

uz(r, ϑ, z) = −z

∫ 1

0

∫ 2π

0

ρ σ(ρ)
R3

dθ dρ, (6.3.4)

the boundary condition uz(r, ϑ, 0) = 0 is satisfied if r > 1 because R does not
vanish outside of the unit circle. Kanwal and Sachdeva10 found expressions
for σ(ρ) in the special case of

f(r) =
{

λ, 0 ≤ r < α,
1, α < r < 1.

(6.3.5)

From Equation 6.3.1, we have that

f(ρ) =
∫ 1

0

∫ 2π

0

ρ σ(ρ)√
ρ2 + r2 − 2ρr cos(ϑ − θ)

dθ dρ. (6.3.6)

Now,

1√
ρ2 + r2 − 2ρr cos(ϑ − θ)

=
∞∑

n=0

∫ ∞

0

(2 − δ0n)Jn(kr)Jn(kρ) cos[k(ϑ − θ)] dk,

(6.3.7)

J0(kρ) =

√
2k

π

∫ ρ

0

J− 1
2
(kx)

√
x√

ρ2 − x2
dx, (6.3.8)

and ∫ ∞

0

J− 1
2
(kx)J− 1

2
(ky) k dk =

δ(x − y)√
xy

(6.3.9)

where δmn denotes the Kronecker delta. We can then rewrite Equation 6.3.6
as

f(ρ) = 4
∫ ρ

0

[∫ 1

x

t σ(t)√
t2 − x2

dt

]
dx√

ρ2 − x2
. (6.3.10)

If we set

S(x) =
∫ 1

x

t σ(t)√
t2 − x2

dt, (6.3.11)

then
f(ρ)

4
=
∫ ρ

0

S(x)√
ρ2 − x2

dx. (6.3.12)

10 Kanwal, R. P., and B. K. Sachdeva, 1972: Potential due to a double lamina. J. Appl.
Phys., 43, 4821–4822.



438 Mixed Boundary Value Problems

We can invert Equation 6.3.12 and find that

S(x) =
1
2π

d

dx

[∫ x

0

ηf(η)√
x2 − η2

dη

]
, (6.3.13)

or

S(x) =


λ

2π
, 0 < x < α,

λ

2π
+

(1 − γ)x
2π

√
x2 − α2

, α < x < 1.
(6.3.14)

Substituting Equation 6.3.14 into Equation 6.3.11 and inverting,

σ(t) =
1
π2

[
λ√

1 − t2
− (1 − λ)

∫ 1

α

η2√
η2 − α2

√
(η2 − t2)3

dη

]
, 0 < t < α,

(6.3.15)
and

σ(t) =
1
π2

[
λ√

1 − t2
− 1 − λ

t

d

dt

(∫ 1

t

η2√
η2 − α2

√
η2 − t2

dη

)]
, α < t < 1.

(6.3.16)
Figure 6.3.1 illustrates the potential u(x, y, z) when z = 0 and z = 0.2. Here
we also selected α = 0.5 and λ = 2. During the numerical evaluation of
Equation 6.3.2 the integration with respect to ρ was done first and the time
derivative in t σ(t) was eliminated by an integration by parts.

• Example 6.3.2: Fabrikant’s method

In the previous example we found the solution to Laplace’s equation in three
dimensions in the half-space z ≥ 0 with the mixed boundary condition given
by Equation 6.3.1. During the 1980s Fabrikant11 generalized this mixed
boundary value problem to read{

u(r, θ, 0) = f(r, θ), 0 ≤ r < a, 0 ≤ θ < 2π,
uz(r, θ, 0) = 0, a < r < ∞, 0 ≤ θ < 2π.

(6.3.17)

He showed that the solution to this problem is

u(r, θ, z) =
2
π

∫ a

0

{
L

[
�2
1(η)
rη2

]
d

dη

[∫ η

0

L(ρ)f(ρ, θ)
ρ√

η2 − ρ2
dρ

]}
× d�1(η)√

r2 − �2
1(η)

, (6.3.18)

11 Fabrikant, V. I., 1986: A new approach to some problems in potential theory. Z.
Angew. Math. Mech., 66, 363–368. Quoted with permission.
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Figure 6.3.1: The solution to three-dimensional Laplace’s equation with the boundary
conditions given by Equation 6.3.1. The top frame illustrates the solution when z = 0,
while the lower frame gives the potential at z = 0.2. The remaining parameters are α = 0.5
and λ = 2.
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or

u(r, θ, z) =
1
π2

∫ a

0

∫ 2π

0

[
R

ξ
+ arctan

(
ξ

R

)]
z

R3
f(ρ, ϑ) dϑ ρ dρ, (6.3.19)

where R2 = r2 + ρ2 − 2rρ cos(θ − ϑ) + z2,

�1,2(x) = 1
2

√
(x + r)2 + z2 ∓

√
(x − r)2 + z2, (6.3.20)

the operator L(k)σ(r, θ) is given by

L(k)σ(r, θ) =
1
2π

∫ 2π

0

λ(k, θ − ϑ)σ(r, ϑ) dϑ (6.3.21)

=
∞∑

n=−∞
k|n|einθ

[
1
2π

∫ 2π

0

e−inϑσ(r, ϑ) dϑ

]
, (6.3.22)

λ(k, ϑ) =
1 − k2

1 + k2 − 2k cos(ϑ)
=

∞∑
n=−∞

k|n|einϑ, (6.3.23)

and

ξ =
z
√

a2 − ρ2√
�2
2(a) − a2

=

√
�2
2(a) − �2

1(ρ)
√

�2
2(a) − �2

2(ρ)
�2(a)

(6.3.24)

=

√
a2 − ρ2

√
a2 − �2

1(a)
a

=

√
a2 − ρ2

√
�2
2(a) − r2

�2(a)
. (6.3.25)

Equation 6.3.18 is recommended in those cases when the integrals can be
evaluated exactly while Equation 6.3.19 is more convenient when the integrals
must be computed numerically.

To illustrate Fabrikant’s results, consider the case when f(r, θ) = w0, a
constant. In this case,

L(ρ)f(ρ, θ) =
∞∑

n=−∞
ρ|n|einθ

[
1
2π

∫ 2π

0

e−inϑw0 dϑ

]
= w0 (6.3.26)

because all of the terms in the summation vanish except n = 0. Therefore,

d

dη

[∫ η

0

L(ρ)f(ρ, θ)
ρ√

η2 − ρ2
dρ

]
= w0, (6.3.27)

and

L

[
�2
1(η)
rη2

]
d

dη

[∫ η

0

L(ρ)f(ρ, θ)
ρ√

η2 − ρ2
dρ

]
(6.3.28)

=
∞∑

n=−∞

[
�2
1(η)
rη2

]|n|
einθ

[
1
2π

∫ 2π

0

e−inϑw0 dϑ

]
= w0.
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From Equation 6.3.18

u(r, θ, z) =
2w0

π

∫ a

0

d�1(η)√
r2 − �2

1(η)
=

2w0

π
arcsin

[
�2
1(η)
r

]∣∣∣∣a
0

(6.3.29)

=
2w0

π
arcsin

[
�2
1(a)
r

]
. (6.3.30)

Fabrikant also considered the case when the mixed boundary condition
reads {

uz(r, θ, 0) = σ(r, θ), 0 ≤ r < a, 0 ≤ θ < 2π,
u(r, θ, 0) = 0, a < r < ∞, 0 ≤ θ < 2π.

(6.3.31)

In this case he showed that the solution is

u(r, θ, z) = 4C

∫ �2(a)

�2(0)

[∫ g(x)

0

ρ dρ√
g2(x) − ρ2

L
(ρr

x2

)
σ(ρ, θ)

]
dx√

x2 − r2
,

(6.3.32)

u(r, θ, z) = 4C

∫ a

0

{∫ η

0

ρ dρ√
η2 − ρ2

L

[
ρr

�2
2(η)

]
σ(ρ, θ)

}
d�2(η)√
�2
2(η) − r2

, (6.3.33)

or

u(r, θ, z) =
2C

π

∫ a

0

∫ 2π

0

arctan
(

ξ

R

)
σ(ρ, ϑ)

R
dϑ ρ dρ, (6.3.34)

where g(x) = x
√

1 + z2/(r2 − x2) and R and ξ have been defined earlier.
The constant coefficient C equals −1/(2π) in classical potential problems and
different values in other applications. Equation 6.3.32 and Equation 6.3.33
are best when the integrals can be evaluated exactly while Equation 6.3.34
should be used otherwise.

To illustrate Equation 6.3.32 through Equation 6.3.34, consider the case
when σ(r, θ) = σ0, a constant. Then,

L
(ρr

x2

)
σ(ρ, θ) =

∞∑
n=−∞

(ρr

x2

)|n|
einθ

[
1
2π

∫ 2π

0

e−inϑσ0 dϑ

]
= σ0, (6.3.35)

and ∫ g(x)

0

ρ dρ√
g2(x) − ρ2

L
(ρr

x2

)
σ(ρ, θ) = σ0g(x). (6.3.36)

Therefore, using Equation 6.3.32,

u(r, θ, z) = 4Cσ0

∫ �2(a)

�2(0)

g(x)
dx√

x2 − r2
(6.3.37)

= 4Cσ0

∫ �2(a)

�2(0)

√
x2 − r2 − z2

x2 − r2
xdx (6.3.38)
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= 2Cσ0

∫ �2(a)

�2(0)

d(x2 − r2)√
x2 − r2 − z2

− 2Cσ0z
2

∫ �2(a)

�2(0)

d(x2 − r2)
(x2 − r2)

√
x2 − r2 − z2

(6.3.39)

= 4Cσ0

√
x2 − r2 − z2

∣∣∣�2(a)

�2(0)

− 4Cσ0z arctan

(√
x2 − r2 − z2

z

)∣∣∣∣∣
�2(a)

�2(0)

(6.3.40)

= 4Cσ0

√
a2 − �2

1(a) − 4Cσ0z arctan

[√
a2 − �2

1(a)
z

]
, (6.3.41)

where �2
2(0) = r2 +z2 and �2

2(a)+�2
1(a) = a2+r2 +z2. Fabrikant has extended

his work to spherical coordinates12 and crack problems.13

12 Fabrikant, V. I., 1987: Mixed problems of potential theory in spherical coordinates.
Z. Angew. Math. Mech., 67, 507–518.

13 Fabrikant, V. I., and E. N. Karapetian, 1994: Elementary exact method for solving
mixed boundary value problems of potential theory, with applications to half-plane contact
and crack problems. Quart. J. Mech. Appl. Math., 47, 159–174.



Chapter 7

Conformal Mapping

Conformal mapping is a method from classical mathematical physics for solv-
ing Laplace’s equation. It is readily shown that an analytic function w =
ξ + iη = f(z), where z = x + iy, transforms Laplace’s equation in the xy-
plane into Laplace’s equation in the ξη-plane. The objective here is to choose
a mapping so that the solution is easier to obtain in the new domain.

This method has been very popular in fields such as electrostatics and
hydrodynamics. In the case of mixed boundary value problems, this technique
has enjoyed limited success because the transformed boundary conditions are
very complicated and the corresponding solution to Laplace’s equation is dif-
ficult to find. In this chapter we illustrate some of the successful transforma-
tions.

7.1 THE MAPPING z = w + a log(w)

During their study of fringing fields in disc capacitors, Sloggett et al.1 used
this mapping to find the potential in the upper half-plane y > 0 where the
potential equals V along the line y = πa when −∞ < x < a ln(a) − a. Along

1 Sloggett, G. J., N. G. Barton, and S. J. Spencer, 1986: Fringing fields in disc capaci-
tors. J. Phys., Ser. A, 19, 2725–2736.
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Figure 7.1.1: The conformal mapping z = w + a log(w) with a = 2/π. If w = ξ + iη, the
dark (solid) lines are lines of constant ξ while the lighter (dashed) lines give η. The heavy
dark line corresponds to the line −∞ < ξ < 0− and η = 0.

y = 0, u(x, 0) = 0. Figure 7.1.1 illustrates this mapping. In particular, the
following line segments are mapped along the real axis in the w-plane:

z-plane w-plane

−∞ < x < a ln(a) − a y = (aπ)+ −∞ < ξ < −a η = 0
−∞ < x < a ln(a) − a y = (aπ)− −a < ξ < 0− η = 0

−∞ < x < 1 y = 0 0+ < ξ < 1 η = 0
1 < x < ∞ y = 0 1 < ξ < ∞ η = 0

Here the (·)+ and (·)− denote points just above or below (·), respectively.

From Poisson’s integral,

u(ξ, η) =
V

π

∫ ∞

0

η

(ξ − s)2 + η2
ds =

V

π
− V

π
arctan

(
η

ξ

)
. (7.1.1)

Therefore, for a given value of ξ and η we can use Equation 7.1.1 to compute
the potential. Then the conformal mapping provides the solution for the
corresponding x and y. Figure 7.1.2 illustrates this solution. For a given z,
Newton’s method was used to solve for w. Then the potential follows from
Equation 7.1.1.
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Figure 7.1.2: The solution u(x, y) to a mixed boundary value problem where u(x, 0) = 0
for −∞ < x < ∞ and u(x, πa) = V when −∞ < x < a ln(a) − a with a = 2/π.

7.2 THE MAPPING tanh[πz/(2b)] = sn(w, k)

In Example 1.1.5 we illustrated how a succession of conformal mappings could
solve the mixed boundary value problem

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < ∞, 0 < y < b, (7.2.1)

subject to the boundary conditions

u(x, 0) = 0, 0 < x < ∞, (7.2.2){
u(x, b) = 1, 0 < x < a,
uy(x, b) = 0, a < x < ∞,

(7.2.3)

and
ux(0, y) = 0, lim

x→∞u(x, y) → 0, 0 < y < b. (7.2.4)

Here we interchanged x and y and changed the name of some of the parame-
ters. The point here is to show2 that the conformal mapping

tanh
(πz

2b

)
= sn(k, w) (7.2.5)

2 See Wolfe, P. N., 1962: Capacitance calculations for several simple two-dimensional
geometries. Proc. IRE , 50, 2131–2132. See also Gelmont, B., and M. Shur, 1993: Spreading
resistance of a round ohmic contact. Solid-State Electron., 36, 143–146.



446 Mixed Boundary Value Problems

0.2

0.4

0.6

0.8

1

1.25

1.5

0.2

0.4

0.6

0.8

1

1.25

1.5

 π x/(2b)

 π
 y

/(
2b

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.2.1: The conformal mapping tanh[πz/(2b)] = sn(w, k) when a/b = 1
2

and k =
tanh[πa/(2b)]. The solid, dark line gives values of �(w) while the dashed, horizontal lines
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can be used to solve Equation 7.2.1 through Equation 7.2.4, where z = x+ iy,
w = ξ+iη, k = tanh[πa/(2b)], and sn(·, ·) is one of the Jacobi elliptic functions.

Figure 7.2.1 illustrates lines of constant ξ and η within a portion of
the original xy-plane. It shows that the original semi-infinite strip has been
mapped into a rectangular region with 0 < ξ < K and 0 < η < K ′, where
K and K ′ are complete elliptic integrals of the first kind for moduli k and
k′ =

√
1 − k2.

Applying the conformal mapping Equation 7.2.5, the problem becomes

∂2u

∂ξ2
+

∂2u

∂η2
= 0, 0 < ξ < K, 0 < η < K ′, (7.2.6)

subject to the boundary conditions

u(ξ, 0) = 0, u(ξ, K ′) = 1, 0 < ξ < K, (7.2.7)

and
uξ(0, η) = uξ(K, η) = 0, 0 < η < K ′. (7.2.8)

The solution to Equation 7.2.6 through Equation 7.2.8 is simply u(ξ, η) =
η/K ′. Therefore, lines of constant η/K ′ give u(x, y) via Equation 7.2.5. Figure
1.1.4 illustrates the solution.
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Figure 7.3.1: The conformal mapping used to map the half-plane above the boundary
conditions Sm ∪ Sd into the half-plane η > 0 in the w-plane.

7.3 THE MAPPING z = w + λ
√

w2 − 1

This mapping is useful in converting an elliptic shaped domain in the xy-plane
into a rectangular one in the ξη-plane where w = ξ + iη. To illustrate this
conformal mapping, let us solve Laplace’s equation in the half-plane

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, η(x, 0) < y < ∞, (7.3.1)

subject to the boundary conditions

lim
y→∞u(x, y) → 0, −∞ < x < ∞, (7.3.2)

and
∂u

∂n

∣∣∣∣
Sd

= 0, and u|Sm
= 0. (7.3.3)

We begin by solving the problem

∂2u

∂ξ2
+

∂2u

∂η2
= 0, −∞ < ξ < ∞, 0 < η < ∞, (7.3.4)

with the boundary conditions

lim
|ξ|→∞

|u(ξ, η)| < ∞, −∞ < η < ∞, (7.3.5)
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Figure 7.3.2: Plots of the potential u(x, y)/V when λ = 0.5 for various values of C/V .

lim
η→∞ u(ξ, η) → 0, −∞ < ξ < ∞, (7.3.6)

and {
uη(ξ, 0) = 0, |ξ| < 1,
u(ξ, 0) = V, |ξ| > 1. (7.3.7)

The solution to this problem is

u(ξ, η) = V + C �
(
i
√

w2 − 1
)

, (7.3.8)

because
u(ξ, 0) = V + C �

(
i
√

ξ2 − 1
)

= V (7.3.9)

if |ξ| > 1, and
∂u(ξ, 0)

∂η
= C �

(
− ξ√

ξ2 − 1

)
= 0 (7.3.10)

if |ξ| < 1. Therefore,

u(x, y) = V + C �
(

i
−λz +

√
z2 + λ2 − 1

1 − λ2

)
, (7.3.11)

where z = x + iy and C is a free parameter.
Figure 7.3.2 illustrates u(x, y) when λ = 0.5. In the construction of the

conformal mapping and solution, it is important to take the branch cut of√
w2 − 1 so that it lies along the real axis in the complex w-plane.
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7.4 THE MAPPING w = ai(z − a)/(z + a)

Let us solve3 Laplace’s equation in a domain exterior to an infinitely long
cylinder of radius a

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0, a ≤ r < ∞, 0 < |θ| < π, (7.4.1)

subject to the boundary conditions

lim
r→∞u(r, θ) → 0, 0 ≤ |θ| ≤ π, (7.4.2)

and {
ur(a, θ) = 1, 0 ≤ |θ| < α,
u(a, θ) = 0, α < |θ| < π.

(7.4.3)

We begin by introducing the conformal mapping:

w = ξ̃ + iη̃ = ia
z − a

z + a
, (7.4.4)

where z = x + iy. Equation 7.4.1 then becomes

∂2u

∂ξ̃2
+

∂2u

∂η̃2
= 0, −∞ < ξ̃ < ∞, 0 < η̃ < ∞, (7.4.5)

with the boundary conditions

lim
η̃→∞

u(ξ̃, η̃) → 0, −∞ < ξ̃ < ∞, (7.4.6)

and {
uη̃(ξ̃, 0) = 2a2/(ξ̃2 + a2), |ξ̃| < a tan(α/2),

u(ξ̃, 0) = 0, |ξ̃| > a tan(α/2).
(7.4.7)

We now nondimensionalize ξ̃ and η̃ as follows:

ξ =
ξ̃

a tan(α/2)
= − sin(θ)

tan(α/2)
2ar

r2 + a2 + 2ar cos(θ)
, (7.4.8)

and

η =
η̃

a tan(α/2)
= cot(α/2)

r2 − a2

r2 + a2 + 2ar cos(θ)
. (7.4.9)

Figure 7.4.1 illustrates this conformal mapping. Equation 7.4.5 then becomes

∂2u

∂ξ2
+

∂2u

∂η2
= 0, −∞ < ξ < ∞, 0 < η < ∞, (7.4.10)

3 See Iossel’, Yu. Ya., 1971: A mixed two-dimensional stationary heat-conduction prob-
lem for a cylinder. J. Engng. Phys., 21, 1145–1147.
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Figure 7.4.1: The conformal mapping given by Equation 7.4.7 through Equation 7.4.9
with α = π/4. The solid lines are isolines of ξ, while the dashed lines are isolines of η.

with the nondimensional boundary conditions

lim
η→∞ u(ξ, η) → 0, −∞ < ξ < ∞, (7.4.11)

and {
uη(ξ, 0) = 2a tan(α/2)/[1 + ξ2 tan2(α/2)], |ξ| < 1,

u(ξ, 0) = 0, |ξ| > 1.
(7.4.12)

We now solve Equation 7.4.10 through Equation 7.4.12 using the tech-
niques developed in Section 4.1. Applying Fourier cosine transforms, the
solution to Equation 7.4.10 and Equation 7.4.11 is

u(ξ, η) =
∫ ∞

0

A(k)e−kη cos(kξ) dk. (7.4.13)

Substituting Equation 7.4.13 into the mixed boundary condition Equation
7.4.12, we obtain the dual integral equations∫ ∞

0

kA(k) cos(kξ) dk = − 2a tan(α/2)
1 + ξ2 tan2(α/2)

, |ξ| < 1, (7.4.14)

and ∫ ∞

0

A(k) cos(kξ) dk = 0, |ξ| > 1. (7.4.15)
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Figure 7.4.2: The solution of Equation 7.4.1 subject to the mixed boundary conditions
Equation 7.4.2 and Equation 7.4.3 when α = π/4.

To solve these dual integral equations, we define A(k) by

A(k) =
∫ 1

0

g(t)J0(kt) dt. (7.4.16)

A quick check shows that Equation 7.4.16 satisfies Equation 7.4.15 identically.
On the other hand, integrating Equation 7.4.14 with respect to ξ, we find that∫ ∞

0

A(k) sin(kξ) dk = −2a arctan[ξ tan(α/2)], |ξ| < 1. (7.4.17)

Next, we substitute Equation 7.4.16 into Equation 7.4.17, interchange the
order of integration, then apply Equation 1.4.13 and obtain∫ ξ

0

g(t)√
ξ2 − t2

dt = −2a arctan[ξ tan(α/2)], |ξ| < 1. (7.4.18)

Applying the results from Equation 1.2.13 and Equation 1.2.14,

g(t) = −4a

π

d

dt

[∫ t

0

ζ arctan[ζ tan(α/2)]√
t2 − ζ2

dζ

]
(7.4.19)

= − 2at tan(α/2)√
1 + t2 tan2(α/2)

. (7.4.20)

Finally, if we substitute Equation 7.4.16 and Equation 7.4.20 into Equation
7.4.13,
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u(ξ, η) = −2a tan(α/2)
∫ 1

0

t√
1 + t2 tan2(α/2)

[∫ ∞

0

J0(kt)e−kη cos(kξ) dk

]
dt

(7.4.21)

= −
√

2 a tan(α/2)

×
∫ 1

0

t

√
t2 + η2 + ξ2 +

√
(t2 + η2 − ξ2)2 + 4η2ξ2

[(t2 + η2 − ξ2)2 + 4ξ2η2] [1 + t2 tan2(α/2)]
dt (7.4.22)

= −
√

2 a ln

 tan2
(

α
2

)√
(β2

2 − γ2) tan2
(

α
2

)
+ 2δβ2 + β2 tan2

(
α
2

)
+ δ

tan2
(

α
2

)√
(β2

1 − γ2) tan2
(

α
2

)
+ 2δβ1 + β1 tan2

(
α
2

)
+ δ

 ,

(7.4.23)

where β1 = 2η2, β2 = 1 + η2 − ξ2 +
√

(1 + η2 − ξ2)2 + 4ξ2η2, γ = 2ξη, and
δ = 1 + (ξ2 − η2) tan2(α/2). In Figure 7.4.2 we illustrate the solution when
α = π/4.

7.5 THE MAPPING z = 2[w − arctan(w)]/π

Let us solve Laplace’s equation in a domain illustrated in Figure 7.5.1

∂2u

∂x2
+

∂2u

∂y2
= 0,

{−b < x < 0, −∞ < y < ∞,
0 < x < ∞, 0 < y < ∞,

(7.5.1)

subject to the boundary conditions

lim
y→∞ |u(x, y)| < ∞, −b < x < ∞, (7.5.2)

lim
y→−∞ |u(x, y)| < ∞, −b < x < 0, (7.5.3)

and 
u(−b, y) = T0, −∞ < y < ∞,
u(0, y) = T0, −∞ < y < 0,

−uy(x, 0) + hu(x, 0) = 0, 0 < y < ∞.
(7.5.4)

In the previous problem we used conformal mapping to transform a mixed
boundary value problem with Dirichlet and/or Neumann boundary conditions
into a simple domain on which we still have Dirichlet and/or Neumann condi-
tions. In the present problem, Strakhov4 illustrates the difficulties that arise
in a mixed boundary value problem where one of the boundary conditions is
a Robin condition. Here he suggests a method for solving this problem.

4 See Strakhov, I. A., 1969: One steady-state heat-conduction problem for a polygonal
region with mixed boundary conditions. J. Engng. Phys., 17, 990–994.
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0

u(0,y) = T0

yx = −b

x

y

u(−b,y) = T

h u(x,0) − u (x,0) = 0

Figure 7.5.1: The domain associated with the problem posed in Section 7.5.

We begin by introducing the conformal mapping:

z =
2b

π

∫ w

0

τ2

τ2 + 1
dτ = 2b[w − arctan(w)]/π, (7.5.5)

where w = ξ + iη and z = x + iy. Figure 7.5.2 illustrates this conformal
mapping. It shows that the original domain is mapped into the first quadrant
of the w-plane. In particular, the real semi-axis 0 < x < ∞, y = 0 on the
z-plane becomes the real semi-axis of 0 < ξ < ∞, η = 0 on the w-plane. The
boundary x = 0,−∞ < y < 0 maps onto the segment ξ = 0, 0 < η < 1 on
the imaginary axis while the boundary x = −b,−∞ < y < ∞ maps onto the
segment ξ = 0, 1 < η < ∞.

Upon using the conformal mapping Equation 7.5.5, Equation 7.5.1 be-
comes

∂2u

∂ξ2
+

∂2u

∂η2
= 0, 0 < ξ < ∞, 0 < η < ∞, (7.5.6)

with the boundary conditions

lim
ξ→∞

|u(ξ, η)| < ∞, 0 < η < ∞, (7.5.7)

lim
η→∞ |u(ξ, η)| < ∞, 0 < ξ < ∞, (7.5.8)

and
u(0, η) = T0, 0 < η < ∞, (7.5.9)

and
−(1 + ξ2)uη(ξ, 0) + εξ2u(η, 0) = 0, 0 < ξ < ∞, (7.5.10)
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Figure 7.5.2: The conformal mapping given by Equation 7.5.5. The solid lines are lines
of constant ξ, while the dashed lines are lines of constant η.

where ε = 2hb/π.
Motivated by the work of Stokes5 and Chester,6 we set

u(ξ, η) = �[Ψ(w)], (7.5.11)

where Ψ(w) is an analytic function in any finite portion of the first quadrant
of the w-plane. Therefore, the boundary conditions become

�[Ψ(iη)] = T0, 0 < η < ∞, (7.5.12)

and

�
[
−i(w2 + 1)

dΨ(w)
dw

+ εw2Ψ(w)
]∣∣∣∣

w=ξ

= 0, 0 < ξ < ∞. (7.5.13)

At this point we introduce the function χ(w) defined by

Ψ(w) = χ(w) − 2iT0

π
log(w). (7.5.14)

5 Stoker, J. J., 1947: Surface waves in water of variable depth. Quart. Appl. Math., 5,
1–54.

6 Chester, C. R., 1961: Reduction of a boundary value problem of the third kind to one

of the first kind. J. Math. Phys. (Cambridge, MA), 40, 68–71.
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Why have we introduced χ(w)? Because �[−2iT0 log(w)/π] satisfies Laplace’s
equation and the boundary conditions Equation 7.5.12 and Equation 7.5.13
as |w| → ∞ in the first quadrant of the w-plane, we anticipate that χ(w) =
O(1/|w|) as |w| → ∞ and 0 ≤ arg(w) ≤ π/2.

Introducing Equation 7.5.14 into Equation 7.5.12 and Equation 7.5.13,
we find that

�[χ(iη)] = 0, 0 < η < ∞, (7.5.15)

and

�
[
−i(w2 + 1)

dχ(w)
dw

+ εw2χ(w)
]∣∣∣∣

w=ξ

=
2T0

π

ξ2 + 1
ξ

, 0 < ξ < ∞;

(7.5.16)
or

−i(w2 + 1)
dχ(w)

dw
+ εw2χ(w) =

2T0

π

w2 + 1
w

+ iαT0, (7.5.17)

where α is a free constant. Integrating Equation 7.5.17,

χ(w) = T0

(
w − i

w + i

)ε/2

e−iεw

∫ ∞

w

(
ζ − i

ζ + i

)ε/2

eiεζ

[
− 2i

πζ
+

α

ζ2 + 1

]
dζ.

(7.5.18)
We choose those branches of (w−i)ε/2 and (w+i)ε/2 that approach ξε/2 along
the positive real axis as w → ∞. The integration occurs over any path in the
first quadrant of the w-plane that does not pass through the points w = 0
and w = i.

We must check and see if Equation 7.5.15 is satisfied. Let w = iη, 1 <
η < ∞. Then,

χ(iη) = −iT0

(
η − 1
η + 1

)ε/2

eεη

∫ ∞

η

(
τ + 1
τ − 1

)ε/2

e−ετ

[
2
πτ

+
α

τ2 − 1

]
dτ

(7.5.19)
and �[χ(iη)] = 0 for 1 < η < ∞. Therefore, Equation 7.5.15 is satisfied.

Consider now w = iη with 0 < η < 1. We rewrite Equation 7.5.18 as

χ(w) = T0

(
w − i

w + i

)ε/2

e−iεw

{
B +

2i

π

[∫ w

0

((
ζ + i

ζ − i

)ε/2

− eiεπ/2

)
eiεζdζ

ζ

− eiεπ/2

∫ ∞

w

eiεζdζ

ζ

]
− α

∫ w

0

(
ζ + i

ζ − i

)ε/2

eiεζ dζ

ζ2 + 1

}
, (7.5.20)

where we have introduced

B = −2i

π

∫ ∞

0

[(
ζ + i

ζ − i

)ε/2

− eiεπ/2

]
eiεζ dζ

ζ
+ α

∫ ∞

0

(
ζ + i

ζ − i

)ε/2

eiεζ dζ

ζ2 + 1
.

(7.5.21)
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In the case of Equation 7.5.21, the integration can occur along any curve in
the first quadrant of the w-plane that does not pass through the point ζ = i.

Let us now evaluate Equation 7.5.20 along the segment of the imaginary
axis between w = 0 and w = iη where 0 < η < 1. In this case,

�[χ(iη)] = T0

(
1 − η

1 + η

)ε/2

eεη �
(
Be−iεπ/2

)
, 0 < η < 1. (7.5.22)

To satisfy Equation 7.5.22,

�
(
Be−iεπ/2

)
= 0. (7.5.23)

Substituting for B and solving for α,

α =
1 − 2

π

∫∞
0

sin{ε[τ − arctan(τ)]} dτ
τ∫∞

0 cos{ε[τ − arctan(τ)]} dτ
τ2+1

. (7.5.24)

Noting that w = i is a removable singularity,

χ(i) = lim
w→i

χ(w) = − iαT0

ε
, (7.5.25)

Equation 7.5.24 now reads

Ψ(w)
T0

=
(

w − i

w + i

)ε/2

e−iεw

∫ ∞

w

(
ζ + i

ζ − i

)ε/2

eiεζ

[
− 2i

πζ
+

α

ζ2 + 1

]
dζ − 2i

π
log(w).

(7.5.26)
In summary, for a given w, we can compute the corresponding z/b from Equa-
tion 7.5.5. The same w is then used to find Ψ(w) and the value of u(x, y).
Figure 7.5.3 illustrates the solution when ε = 2.

Problems

1. Solve Laplace’s equation7

∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, 0 < y < ∞,

subject to the boundary conditions

lim
|x|→∞

u(x, y) → 0, 0 < y < ∞,

7 See Karush, W., and G. Young, 1952: Temperature rise in a heat-producing solid
behind a surface defect. J. Appl. Phys., 23, 1191–1193.
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Figure 7.5.3: The solution to the mixed boundary value problem governed by Equation
7.5.1 through Equation 7.5.4 with ε = 2.

lim
y→∞u(x, y) → 0, −∞ < x < ∞,

and {
uy(x, 0) = A, |x| < a,
u(x, 0) = 0, |x| > a.

Step 1 : Show that conformal map w =
√

z2 − a2 maps the upper half of the
z-plane into the w-plane as shown in the figure entitled Conformal Mapping
w =

√
z2 − a2.

Step 2 : Show that potential u(x, y) = −A�(√z2 − a2 − z
)

satisfies Laplace’s
equation and the boundary conditions along y = 0.

Step 3 : Using the Taylor expansion for the square root, show that u(x, y) → 0
as |z| → ∞. The figure entitled Problem 1 illustrates this solution.

7.6 THE MAPPING kw sn(w, kw) = kz sn(Kzz/a, kz)

In Section 7.2 we illustrated how conformal mapping could be used to solve
Laplace’s equation on a semi-infinite strip with mixed boundary conditions.
Here we solve a similar problem: the solution to Laplace’s equation over a
rectangular strip with mixed boundary conditions. In particular, we want to
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Problem 1

solve Laplace’s equation:8

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < a, 0 < y < b, (7.6.1)

subject to the boundary conditions

u(x, b) = 0, 0 < x < a, (7.6.2)

8 See Bilotti, A. A., 1974: Static temperature distribution in IC chips with isothermal
heat sources. IEEE Trans. Electron Devices,, ED-21, 217–226.
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Figure 7.6.1: Schematic of (a) z- and (b) w-planes used in Section 7.6 with the conformal
mapping kwsn(w, kw) = kzsn(Kzz/a, kz).{

u(x, 0) = 1, 0 < x < �,
uy(x, 0) = 0, � < x < a,

(7.6.3)

and
ux(0, y) = ux(a, y) = 0, 0 < y < b. (7.6.4)

See Figure 7.6.1. In the w-plane, the problem becomes

∂2u

∂ξ2
+

∂2u

∂η2
= 0, 0 < ξ < Kw, 0 < η < K ′

w, (7.6.5)

subject to the boundary conditions

u(ξ, K ′
w) = 0, 0 < ξ < Kw, (7.6.6)

u(ξ, 0) = 1, 0 < ξ < Kw, (7.6.7)

and
uξ(0, η) = uξ(Kw, η) = 0, 0 < η < K ′

w. (7.6.8)

The z- and w-planes are related to each other via

kw sn(w, kw) = kz sn(Kzz/a, kz), (7.6.9)

where sn(·, ·) is one of the Jacobian elliptic functions, z = x + iy, w = ξ + iη,
kz and kw are the moduli for the elliptic functions in the z- and w-planes,
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respectively. In the z-plane, 0 < x/a < Kz and 0 < y/b < K ′
z, where Kz

and iK ′
z are the quarter-periods of the elliptic function. Therefore, we must

choose kz so that Kz/K ′
z = a/b. Using MATLAB R©, this is done as follows:

% By guessing kz, called k, find the closest value
% of Kz/K ′

z to a/b.
diff = 10000;
for n = 1:19999
k = 0.00005*n;
k prime = sqrt(1-k*k);
K = ellipke(k);
K prime = ellipke(k prime);
ratio = K/K prime;
if (abs(ratio-a/b) < diff)
k z = k; K z = K; K prime z = K prime;
diff = abs(ratio-a/b);
end; end

Once we have k, Kz and K ′
z, we can conpute kw from kw = sn[�Kz/a, kz].

We also need Kw and K ′
w. The corresponding MATLAB code is

% Find the corresponding values of kw, Kw and K ′
w.

[sn,cn,dn] = ellipj(ell*K z/a,k z);
k w = k z*sn;
K w = ellipke(k w);
k prime = sqrt(1-k w*k w);
K prime w = ellipke(k prime);

Having found kz, Kz, K ′
z and kw, we are ready to find the values of ξ

and η corresponding to a given x and y. This is done in two steps. First we
find for a given x and y an approximate value of ξ and η where 0 < ξ < Kw

and 0 < η < K ′
w. Then we use Newton’s method to find the exact one-to-one

mapping. The MATLAB code is

k = k w; k 1 = 1-k;
for jc = 1:200
zeta i = K prime w*(jc-0.5)/200;
for ic = 1:200
zeta r = K w*(ic-0.5)/200;
[s,c,d] = ellipj(zeta r,k); [s1,c1,d1] = ellipj(zeta i,k 1);
denom = c1*c1 + k*s*s*s1*s1;
ss r = s*d1 / denom; ss i = c*d*s1*c1 / denom;
sn(ic,jc) = ss r + i*ss i;
end; end
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Figure 7.6.2: Lines of constant ξ and η given by the conformal mapping by Equation 7.6.9
when a = 2, b = 1, and � = 1.

% Next, for a given x and y, find the nearest point
% in the w-plane.

k = k z; k 1 = 1-k;
for jcount = 1:40
y = b*(jcount-0.5)/40; z i = K z*y/a;
for icount = 1:40
x = a*(icount-0.5)/40; z r = K z*x/a;
[s,c,d] = ellipj(z r,k); [s1,c1,d1] = ellipj(z i,k 1);
denom = c1*c1 + k*s*s*s1*s1;
ss r = s*d1 / denom; ss i = c*d*s1*c1 / denom;
rhs = (k z/k w)*(ss r + i*ss i);
distance = 1000000;
for jc = 1:200
zeta i = K prime w*(jc-0.5)/200;
for ic = 1:200
zeta r = K w*(ic-0.5)/200;
F = sn(ic,jc) - rhs;
if (abs(F) < distance)
XX(icount,jcount) = x/b; YY(icount,jcount) = y/b;
UU(icount,jcount) = zeta r; VV(icount,jcount) = zeta i;
distance = abs(F);
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Figure 7.6.3: Solution to Laplace’s equation with the mixed boundary value problems
given by Equation 7.6.2 through Equation 7.6.4 when a = 2, b = 1, and � = 1.

end; end; end

% now use Newton’s method to get the exact mapping.

zeta r = UU(icount,jcount); zeta i = VV(icount,jcount);
for iter = 1:10
[s,c,d] = ellipj(zeta r,k); [s1,c1,d1] = ellipj(zeta i,k 1);
denom = c1*c1 + k*s*s*s1*s1;
ssn = (s*d1+i*c*d*s1*c1) / denom;
ccn = (c*c1-i*s*d*s1*d1) / denom;
ddn = (d*c1*d1-i*k*s*c*s1) /denom;
F = ssn - rhs; F prime = ccn*ddn;
zeta r = zeta r - real(F/F prime);
zeta i = zeta i - imag(F/F prime);
end
% Compute the potential T (x, y)
TT(icount,jcount) = 1 - zeta i/K prime w;
end; end

Figure 7.6.2 illustrates lines of constant ξ and η. Having computed the map-
ping, the solution for Laplace’s equation is u(ξ, η) = 1 − η/K ′

w. Figure 7.6.3
illustrates the solution after we have transformed back into the xy-plane.
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