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Preface

In 1986 a new method of structural steel design was introduced in the United
States with the publication of the Load and Resistance Factor Design Specification
for Structural Steel Buildings. Load and resistance factor design, or LRFD, has
joined the old allowable stress design (ASD) method as a recognized means for
the design of structural steel frameworks for buildings.

Although ASD has enjoyed a long history of successful usage and is familiar
to engineers and architects, the author and most experts prefer LRFD because it
is a truer representation of the actual behavior of structural steel and unlike
ASD, it can provide equivalent margins of safety for all structures under all
loading conditions (as explained in Chap. 1). For these reasons it is anticipated
that LRFD will replace ASD as the standard method of structural steel design.

This work is the first Schaum’s Outline on the subject of structural steel design.
After a long and rewarding use of other titles in the Schaum’s Series (first as an
undergraduate and graduate engineering student, then through 20 years of profes-
sional practice, and as a university professor), the author is pleased to have been given
the opportunity to write this book. Because of the newness of LRFD and the scarcity
of instructional materials, this book was written for as wide an audience as possible,
including students enrolled in undergraduate and graduate engineering and architectural
curricula, and practicing engineers, architects, and structural steel detailers. The
author believes that everyone in need of instruction and/ or experience in LRFD can
benefit from the Schaum’s approach of learning by problem-solving. The only
prerequisite for an understanding of this text is the same as for an undergraduate
course in structural steel design: a basic knowledge of engineering mechanics.

The author wishes to thank Mr. John F. Carleo, Publisher; Mr. John A. Aliano,
Executive Editor; Ms. Margaret A. Tobin, Editing Supervisor, of the Schaum
Division at McGraw-Hill, and their staff for their valuable contributions
to this work. Special thanks go to the author’s wife, Pninah, for her patience and
assistance with typing the manuscript. Too numerous to mention, but significant in
developing his knowledge and enjoyment of the subject matter, are his mentors and
professional and academic colleagues, especially the people at AISC.

ABRAHAM J. ROKACH
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Introduction

This book covers structural steel design for buildings using the load and
resistance factor design (LRFD) method. The following authorities on the LRFD
method are cited frequently in the text, usually in abbreviated form.

AISC: American Institute of Steel Construction, Inc., Chicago, Illinois.

AISC LRFD Specification: Load and Resistance Factor Design Specification
for Structural Steel Buildings, published by AISC.

AISC LRFD Manual: Load and Resistance Factor Design Manual of Steel
Construction, also published by AISC.

Equations in this text are numbered as follows. Equations taken from the
AISC LRFD Specification are accompanied by their AISC numbers in parenth-
eses, thus ( ); other equations are numbered in brackets, thus [ ].



Chapter 1

Structural Steel

NOTATION

E = modulus of elasticity of steel = 29,000 kips per square inch (ksi)
E, = tensile strength, ksi
F, = yield stress, yield point, or yield strength, ksi

DEFINITIONS

Structural steel, as defined by AISC (in the LRFD Specification and elsewhere), refers to the
steel elements of a structural frame supporting the design loads. It includes steel beams, columns,
beam-columns, hangers, and connections.

Beam—A structural member whose primary function is to carry loads transverse to its
longitudinal axis. Beams are usually horizontal and support the floors in buildings. (See Fig.
1-1.)

Column—A structural member whose primary function is to carry loads in compression along its
longitudinal axis. In building frames, the columns are generally the vertical members which
support the beams. (See Fig. 1-1.)

Beam-column—A structural member whose function is to carry loads both transverse and
parallel to its longitudinal axis. A building column subjected to horizontal forces (such as wind)
is actually a beam-column.

Hanger—A structural member carrying loads in tension along its longitudinal axis.

Connection—The material used to join two or more structural members. Examples of
connections are beam-to-beam and beam-to-column.

MECHANICAL PROPERTIES

The major advantage of steel is its high strength relative to the strengths of the other common
structural materials: wood, masonry, and concrete. Unlike masonry and concrete, which are weak in
tension, steel is strong in both tension and compression. Because of its high strength, structural steel
is widely used in construction. The tallest and longest-span structures are predominantly steel.

Typical stress-strain curves for structural steel are shown in Fig. 1-2. They are based on the
application of tensile forces to a test specimen. The ordinates (i.e., vertical axes) indicate stress,
which is defined as load divided by cross-sectional area. Units for stress are Kips (or kilopounds; i.e.,
1000 Ib) per square inch, commonly noted as ksi. The abscissas (i.e., horizontal axes) indicate strain,
which is a measure of elongation under tension and is defined as the increase in length divided by the
original length. Units for strain are inches per inch; strain is dimensionless.

The stress-strain curve in Fig. 1-2(a) is that of A36 steel, the most commonly used structural
steel. Note the linear relationship between stress and strain in the “elastic range,” that is, until the
yield point is reached. The most important design properties of A36 steel [see Fig. 1-2(a)] are

F,, the yield point, the stress at which the proportionality between stress and strain ceases. A36
steel has both an upper and a lower yield point. For design purposes, the yield point of A36 steel
is taken as F, = 36 ksi, the minimum lower yield point.

3




4 STRUCTURAL STEEL [CHAP. 1

Column
Beam

Fig. 1-1 Structural steel frame

F,, the tensile strength, the maximum stress that the material is capable of sustaining. For A36
steel, F, =58 to 80 ksi.

E, the modulus of elasticity, which is the (constant) ratio of stress to strain in the elastic range.
For A36 steel, £ =29,000 ksi.

The stress-strain curve in Fig. 1-2(b) is characteristic of several of the higher-strength steels. All
structural steels have the same modulus of elasticity (£ =29,000 ksi). Unlike A36 steel,
however, the higher-strength steels do not have a definite yield point. For these steels, F, is the yield
strength as determined by either of the two methods shown in Fig. 1-2(b): the 0.2 percent offset
value or the (.5 percent strain value.

In the AISC Specifications and Manuals, F, is called the yield stress and, depending on the grade
of steel, can be either the yield point or the yield strength, as defined above.

F,

u

» Yield point:
$ F, =36ksi+
7
E
Strain, in/in
(a)
Yield strengths:
Fr—m—=
T |
ot [
< I
g IS
2 5 : Z
RME K
SH IS
| |
| |
—
0.002 0.005
Strain, in/in
(b)

Fig. 1-2 Stress-strain curves for structural steels: (a) A36 steel; (b) High-strength steel
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AVAILABILITY

Fourteen types of structural steel have been approved by the AISC LRFD Specification for use
in buildings. In the LRFD Specification, Sec. A3.1, they are listed by their ASTM (American
Society for Testing and Materials) specification numbers. The yield stress of these steels ranges from
36 ksi for the common A36 steel to 100 ksi for A514 steel. As can be seen from Table 1-1
(adapted from Part 1 of the AISC LRFD Manual), the yield stress of a given grade of steel is not a
constant. It varies with plate thickness; very thick structural shapes and plates have reduced yield
stresses.

A36 steel is by far the most commonly used type of structural steel for two reasons:

1. In many applications, the loads and stresses are moderate. Little, if any, saving would result
from the use of higher-strength steels.

2. Even where stress considerations would favor the use of lighter (possibly more economical)
high-strength members, other criteria may govern. Heavier members may be required to
provide increased stiffness to prevent overall or local instability or excessive deflection.
Because stiffness is a function of the geometric properties of the member and is not affected
by strength, no advantage would be gained from using high-strength steel in such cases.

Table 1-1 Availability of Structural Steel

Steel Type ASTM Designation F,, ksi Plate Thickness, in
Carbon A36 36 =8
32 >8
AS529 42 =
High-strength Ad41 50 <13
low-alloy 46 3-13
42 13-4
40 4-8
A572—Grade 65 65 =13
—Grade 60 60 =13
—~Grade 50 50 =4
—Grade 42 42 =6
Corrosion-resistant A242 50 =3
high-strength 46 314
low-alloy ) 13-4
AS588 50 =4
46 4-5
42 5-8
Quenched and A514 100 =21
tempered alloy 90 256

STRUCTURAL SHAPES

A structural member can be a rolled shape or can be built up from two or more rolled shapes or
plates, connected by welds or bolts. The more economical rolled shapes are utilized whenever
possible. However, special conditions (such as the need for heavier members or particular
cross-sectional geometries) may dictate the use of built-up members.

Available rolled shapes are catalogued in Part 1 of the AISC Manual. Those most commonly
used in building construction include wide flange (or W), angle (or L), channel (or C), and tee (or
WT). They are shown in Table 1-2 with examples of their nomenclature. Examples of common
built-up shapes are given in Fig. 1-3.
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Table 1-2 Rolled Structural Steel Shapes and Their Designations

Example of Explanation of
Type of Shape Cross Section Designation Designation

W (wide flange) W14x90* Nominal depth, 14 in;

weight, 90 1b/ft

C (channel) C12x%30 Depth, 12 in;

weight, 30 1b/ft

Depth
f—— E {]
Depth

L (angle) - L4x3x} Long leg, 4in;
" % A short leg, 3in;
3 g Thickness thickness, % in
S
Leg
fe—>]
dimension
WT (structural tee T WT7x45% Nominal depth, 7 in,
cut from W shape) £ weight, 45 1b/ft
L
a

* Cutting a W14Xx90 in half longitudinally results in two WT7x45.

L L L

Welded plate girder Cover plated W shape

W shape with shelf angle

Fig. 1-3 Common built-up structural shapes

DESIGN METHODS

Two methods for selecting structural steel members are recognized in current engineering
practice in the United States. The allowable stress design (ASD) method has been codified by AISC,
from 1923 to the present, in nine successive editions of their Specification for the Design, Fabrication
and Erection of Structural Steel for Buildings (also known as the AISC Specification). This document
has been incorporated by reference in virtually every building code in the United States. Containing
the AISC Specification as well as numerous design aids for the ASD method has been the AISC
Manual of Steel Construction (also known as the AISC Manual). The new load and resistance factor
design (LRFD) method was introduced officially by AISC in 1986 with their publication of the Load
and Resistance Factor Design Specification for Structural Steel Buildings (also known as the AISC
LRFD Specification) and the Load and Resistance Factor Design Manual of Steel Construction (also
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Chapter 2

Introduction to LRFD

NOTATION
D = dead load
E = earthquake load
L = live load

L, = roof live load

M = margin of safety
0 =load

R = rain load

R = resistance
R, = nominal resistance

S = snow load

W = wind load

A = reliability index

y = load factor

¢ = resistance factor

o = standard deviation

BASIC CONCEPTS

Load and resistance factor design (LRFD) is a method for designing structures so that no
applicable limit state is exceeded when the strucure is subjected to all appropriate combinations of
factored loads. Limit state is a condition in which a structure or a structural component becomes
unfit. A structural member can have several limit states. Strength limit states concern safety and
relate to maximum load-carrying capacity (e.g., plastic hinge and buckling). Serviceability limit states
relate to performance under normal service conditions (e.g., excessive deformation and vibration).

The LRFD method, as applied to each limit state, may be summarized by the formula

2y.Q; = ¢R, [2.1]

In the terminology of the AISC LRFD Specification, the left side of the inequality is the required
strength and the right side is the design strength. The left side represents the load combinations; that
is, the summation (denoted by X) of the various loads (or load effects) Q;, multiplied by their
respective load factors y;. The left side is material-independent; the loads are taken from the
governing building code and the LRFD load factors were derived from statistical building load
studies. Loads and load combinations are covered later in this chapter. On the right side of the
inequality, the design strength for the given limit state is the product of the nominal strength or
resistance R, and its resistance factor ¢. Succeeding chapters of this text cover the limit states
applicable to columns, beams, and other structural elements, together with the corresponding
resistances and resistance factors.

Associated with each limit state are values for R, and ¢, where R, (as calculated from the
equations given in the subsequent chapters) defines the boundary of structural usefulness; ¢ (always
less than or equal to one) depends on the variability of R,. Test data were analyzed to determine the

8



CHAP. 2] INTRODUCTION TO LRFD 9

uncertainty in each resistance. The greater the scatter in the test data for a given resistance, the
lower its ¢ factor.

PROBABILITY THEORY

The following is a brief, simplified explanation of the basis of LRFD in probability theory.
The load effect Q and the resistance R are assumed to be statistically independent random
variables with probability distributions as shown in Fig. 2-1(a). Let the margin of safety

M=R-Q (2.2]

As long as M is positive (i.e., R > Q), a margin of safety exists. However, because  and R are
random variables, there will always be some probability of failure (M <0). This unacceptable
probability is shown shaded in Fig. 2-1(a) and (b). The latter figure is a probability distribution for
M, which is also a random variable.

Resistance, R
Load effect, Q

Q\

Frequency

|
l
|
|
1
0

(@)

Margin of safety, M = R — Q

Ho, |
5 |
|

Frequency

|
|
|
M
®
Fig. 2-1 Probability distributions: (a) load effect Q and resistance R; (b) margin of safety M =R — QO

Referring to Fig. 2-1(b), the probability of failure can be set to a predetermined small quantity
(say, 1 in 100,000) by specifying that the mean value of M be % standard deviations above zero; i.e.
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where M = mean value of M
0y, = standard deviation of M
2B = reliability index
In Eq. [2. 1], the one parameter left to the discretion of the authors of the LRFD Specification is ¢;
the load factors y; have been derived independently by others from load statistics. The resistance
factor ¢ depends on 2 as well as on the uncertainty in the resistance R,,. The selection of a reliability

index % determines the value of ¢ for each limit state. In general, to reduce the probability of
failure, % would be increased, resulting in a lower value for ¢.

LOADS

Structural loads are classified as follows.

Dead load (D)—The weight of the structure and all other permanently installed features in the
building, including built-in partitions.

Live load (L)—The gravity load due to the intended usage and occupancy; includes the weight

of people, furniture, and movable equipment and partitions. In LRFD, the notation L refers to
floor live loads and L,, to roof live loads.

Rain load (R)—Load due to the initial rainwater or ice, excluding the contribution of ponding.
Snow load (S).
Wind load (W).
Earthquake load (E).
In design, the dead load is calculated from the actual weights of the various structural and
nonstructural elements. All the other design loads are specified by the governing building code.

When beams support large floor areas or columns support several floors, building codes generally
allow a live-load reduction. The reduced live load is used in LRFD.

LOAD COMBINATIONS

The required strength is defined in the AISC LRFD Specification as the maximum (absolute
value) force obtained from the following load combinations.

1.4D (A4-1)
1.2D +1.6L + 0.5 (L, or S or R) (A4-2)
1.2D + 1.6 (L, or S or R) + (0.5L or 0.8W) (A4-3)
1.2D + 1.3W +0.5L +0.5 (L, or S or R) (A4-4)
1.2D + 1.5E + (0.5L or 0.25) (A4-5)
0.9D — (1.3W or 1.5E) (A4-6)

[Exception: The load factor on L in combinations (A4-3), (A4-4), and (A4-5) shall equal 1.0 for
garages, areas occupied as places of public assembly, and all areas where the live load is greater than
100 1b/ft*.]

Loads D, L, L,, S, R, W, and E represent either the loads themselves or the load effects (i.e.,
the forces or moments caused by the loads). In the preceding expressions, only one load assumes its
maximum lifetime value at a time, while the others are at their “‘arbitrary point-in-time” values.
Each combination models the design loading condition when a different load is at its maximum.
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Load Combination Load at Its Lifetime Maximum
(A4-1) D (during construction; other loads not present)
(A4-2) L
(A4-3) L, or S or R (a roof load)
(A4-4) W (acting in the direction of D)
(A4-5) E (acting in the direction of D)
(A4-6) W or E (opposing D)

Load combinations (A4-1) to (A4-6) are for computing strength limit states. In determining

serviceability limit states (e.g., deflections) the unfactored (service) loads are used.

2.1.

2.2,

2.3.

Solved Problems

The moments acting on a floor beam are a dead-load moment of 50 kip-ft and a live-load
moment of 35 kip-ft. Determine the required strength.

Because dead load and floor live load are the only loads acting on the member, L, =S=R=W =E =0.
By inspection of formulas (A4-1) to (A4-6), it is obvious that one of the first two formulas must govern,
as follows.
1.4D = 1.4 x 50 kip-ft = 70 kip-ft (A4-1)
1.2D + 1.6L = 1.2 x 50 kip-ft + 1.6 x 35 kip-ft = 116 kip-ft (A4-2)

Because it produces the maximum required strength, the second load combination governs. The
required strength is 116 kip-ft.

Floor beams W21 x50, spaced 10 ft 0 in center-to-center, support a superimposed dead load of
651b/ft*> and a live load of 401b/ft>. Determine the governing load combination and the
corresponding factored load.

Total dead load D = 50 Ib/ft + 65 Ib/ft* x 10.0 ft = 700 Ib/ft
Total live load L =40 1b/ft* X 10.0 ft = 400 Ib/ft
Asin Prob. 2.1, L, =S=R=W=E=0.
The two relevant load combinations are
1.4D = 1.4 x 700 Ib/ft = 980 Ib/ft (A4-1)
1.2D 4+ 1.6L = 1.2 x 700 Ib/ft + 1.6 x 400 1b/ft = 1480 1b/ft (A4-2)

The second load combination, which gives the maximum factored load, 1480 Ib/ft (or
1.48 kips/ft), governs.

Roof design loads include a dead load of 35 Ib/ft?, a live (or snow) load of 251b/ft>, and a
wind pressure of 151b/ft* (upward or downward). Determine the governing loading.
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The six load combinations are

Load Combination Factored Load, 1b/ft*

(A4-1) 1.4 % 35 =49
(A4-2) 1.2%35+0+0.5%25 =55
(A4-3) 1.2%35+ 1.6 25+ 0.8 x 15 =94
(A4-4) 1.2%35+1.3%x15+0+0.5%25 =74
(A4-5) 1.2x354+0+0.2%25 =47
(A4-6) 0.9%x35-1.3x15 =12

The third load combination governs; it has a total factored load of 94 Ib/ft*.

2.4. The axial forces on a building column from the code-specified loads have been calculated as
200 kips of dead load, 150 kips (reduced) floor live load, 25 kips from the roof (L, or § or R),
100 kips from wind, and 40 kips from earthquake. Determine the required strength of the
column.
Load Combination Factored Axial Force, kips
(A4-1) 1.4 % 200 =280
(A4-2) 1.2 %200+ 1.6 X 150 + 0.5 X 25 =493
(A4-3a) 1.2 %200+ 1.6 x 25+ 0.5 x 150 =355
(A4-3b) 1.2 X 200 + 1.6 X 25 + 0.8 X 100 =360
(A4-4) 1.2 %200+ 1.3x 100+ 0.5 x 150 + 0.5 x 25 =458
(A4-5a) 1.2 X200+ 1.5x 40+ 0.5 x 150 =375
(A4-5b) 1.2x200+1.5x40+ 0.2 X 25 =305
(A4-6a) 0.9 %200 — 1.3 X 100 = 50
(A4-6b) 0.9 x 200 — 1.5 x 40 =120
The required strength for the column is 493 kips, based on the second load combination.
2.5. Repeat Prob. 2.4 for a garage column.

According to the AISC LRFD Specification, load combinations (A4-3) to (A4-5) are modified for
garages, areas of public assembly, and areas with live load exceeding 100 Ib/ft*, as follows.

1.2D +1.6 (L, or S or R) + (1.0L or 0.8W) (A4-3)
1.2D + 1.3W + 1.0L + 0.5 (L, or S or R) (A4-4")
1.2D + 1.5E + (1.0L or 0.25) (A4-5")

The solution to Prob. 2.4 is still valid for garages except for load combinations (A4-3a), (A4-4), and
(A4-5A), which become

Load Combination Factored Axial Force, kips

(A4-3a’) 1.2 X200+ 1.6x25+ 1.0 x 150 =430
(A4-4") 1.2x200+1.3x100+1.0x 150+ 0.5%x25 =533
(A4-5a") 1.2 X200+ 1.5x40+ 1.0 X 150 =450
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2.6.

2.7.

2.8.

Because 533 kips is greater than 493 kips, the required strength for the garage column is 533 kips, which
is obtained from modified load combination (A4-4).

Supplementary Problems

A beam-column is subjected to the following forces by the service loads indicated. Axial compression,
P =60kips (dead load), Skips (live load). Bending, M = 10 kip-ft (dead load), 3 kip-ft (live load).
Determine the governing load combination and the required axial compressive and bending strengths.

Ans. Load combination (A4-1) governs for axial compression; the required strengths are P, = 84 kips,
M, = 14 kip-ft. Load combination (A4-2) governs for bending moment; the required strengths are
P, =80kips, M, =17 kip-ft. Both of the preceding P,-M, pairs should be checked in the design of the
beam-column.

A member is subjected to the following axial forces: 35 kips (axial compression from dead load) and
30 kips (axial compression or tension from wind). Determine the governing load combinations and the
required strengths.

Ans. Axial compression: P, =81kips; load combination (A4-4). Axial tension: P, =8Kkips; load
combination (A4-6).

The axial forces on a building column are as follows: 50 kips dead load, 40 kips floor live load, 10 kips
roof live load, and 55 kips wind. Determine the required strength.

Ans. Axial compression: P, =157 kips; load combination (A4-4). Axial tension: P, =27 kips; load
combination (A4-6).



Chapter 3

Tension Members

NOTATION

A, = effective net cross-sectional area of member, in?

A, = gross cross-sectional area of member, in*

A, = net cross-sectional area of member, in’

E = modulus of elasticity of steel = 29,000 ksi

F, = specified minimum tensile strength, ksi

F, = specified minimum yield stress, ksi
g = gage (i.e., the transverse center-to-center spacing between fastener gage lines), in
[ = member length, in

P = (unfactored) axial force in member, kips

P, = nominal axial strength of member, kips
s = pitch (i.e., the longitudinal center-to-center spacing of any two consecutive holes), in
U = reduction coefficient

A = axial elongation of member, in

¢,P, = design strength of tension member, in
¢, = resistance factor for tension = 0.90 or 0.75

INTRODUCTION

This chapter covers members subjected to pure tension, such as hangers and truss members.
When a tensile force is applied through the centroidal axis of a member, the result is a uniform
tension stress at each cross section. Tensile forces not acting through the centroid cause bending in
addition to tension; lateral forces also cause bending. Members with combined bending and tension
are discussed in Chap. 7.

CROSS-SECTIONAL AREAS

The design tensile strength of a structural steel member depends on the appropriate
cross-sectional area. The three cross-sectional areas of interest are the gross area A,, the net area
A,, and the effective net area A,.

The gross area of a member at any point is the total area of the cross section, with no deductions
for holes.

The net area is the gross area minus the area of the holes. In computing the net area for tension,
the width of a hole is taken as ¢ in greater than its specified dimension. Since tolerances require that
a bolt hole be 1 in greater than the diameter of the bolt, the width of a hole is assumed for design
purposes to be twice 1g in, or g in, greater than the diameter of the bolt.

The net area of an element is its net width multiplied by its thickness. For one hole, or two or
more holes running perpendicular to the axis of the member, the net width is the gross width minus
the sum of the widths of the holes. However, if a chain of holes extends across a part in a diagonal or
zigzag fashion, the net width is the gross width minus the sum of the hole dimensions plus the

14
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quantity s*/4g for each gage space in the chain, where

s = pitch (i.e., the longitudinal center-to-center spacing of any two consecutive holes), in
g = gage (i.e., the transverse center-to-center spacing between fastener gage lines), in (See
Fig. 3-1.)

It may be necessary to examine several chains to determine which chain has the least net width.

Fig. 3-1 Definitions of s and g

The concept of effective net area accounts for shear lag in the vicinity of connections. When the
member end connection transmits tension directly to all cross-sectional elements of the member, A,
equals A,. But if the end connection transmits tension through some, but not all, of the
cross-sectional elements, a reduced effective net area is used instead. For bolted and riveted
members

A, =UA, (B3-1)
For welded members
A, =UA, (B3-2)
Design values for U and A, are given in Sec. B3 of the AISC LRFD Specification. For W, M, or
S shapes and structural tees cut from these shapes:

If the tensile force is transmitted by transverse welds, A, equals the area of the directly
connected elements.

If the force is transmitted by bolts, the value of U depends on the criteria listed in Table 3-1.

Table 3-1 Values of U for Bolted W, M, S, WT, MT, and ST Shapes

Criteria U

(a) Flange width = 3 X depth; connection is to the flanges; minimum of three fasteners per line in

the direction of stress 0.90
(b) Minimum of three fasteners per line in the direction of stress otherwise not meeting criteria (a) | 0.85
(c) Two fasteners per line in the direction of stress 0.75
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TENSION MEMBERS

DESIGN TENSILE STRENGTH

Two criteria limit the design tensile strength ¢,P,.

a. For yielding of the gross cross section

¢, =0.90

P,=FA,
b. For fracture in the net cross section

¢, =0.75

P,=FA,

where ¢, = resistance factor for tension
P, = nominal axial strength, kips
F, = specified minimum yield stress, ksi
F, = specified minimum tensile strength, ksi

[CHAP. 3

(D1-1)

(D1-2)

Limitation a is intended to prevent excessive elongation of the member. Since the fraction of the

total member length occupied by fastener holes is usually small, the effect of early yielding of the
reduced cross sections on the total elongation of the member is negligible. Hence the gross section is

used. Limit state b deals with fracture at the cross section with the minimum A,.

DISPLACEMENT

The increase in the length of a member due to axial tension under service loads is

Pl

A=——r
EA,

where A = axial elongation of the member, in

3.1.

P = (unfactored) axial tensile force in the member, kips

[ = length of the member, in
E = modulus of elasticity of steel = 29,000 ksi

Solved Problems

[3.1]

Determine the gross and net cross-sectional areas of a plate 12in X 2in with a 1-in-diameter

hole. (See Fig. 3-2.)

Gross area = gross width X thickness

A, =12in X 2in=24in’

Net area = net width X thickness

Net width = gross width — hole diameter

For design, hole diameter = 1in + =in=1.061in
Net width=121in — 1.06in = 10.94 in

A, =10.94in X 2in=21.88 in®
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)
P
[ ) Z—> P 12 in

Fig. 32

|

3.2, Use the same information as in Prob. 3.1, except with two 1-in-diameter holes positioned as
shown in Fig. 3-3.

Gross width of plate =12 in A, =24in’ as above
Chain ACE or BDF (one hole):
Net width = 12in — 1.06 in = 10.94 in
Chain ACDF (two holes, one space):

2
Net width = gross width — Z hole diameters + = :—

4in)?
—12in-2 x 1.06in + "
4 X 61n

=10.54in
Because 10.54 in < 10.94 in, chain ACDF is critical in this case.

A, = net width X thickness
=10.541in X 2 in = 21.08 in?

12 in

2 in

Fig. 3-3

3.3.  Use the same information as in Prob. 3.1, except with three 1-in-diameter holes positioned as
shown in Fig. 3-4.

A, =24in®
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i
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!

N

£
i [

LE(E

Fig. 3-4

Regarding net width, by inspection, chains BDG (one hole), ACDG (two holes, one space), and BDEF
(two holes, one space) are not critical. (The reader can verify this by calculation.) For the other chains

2

Chain Net Width (in) = Gross Width — X Hole Diameters + X :—
g
ACEF 12— 2% 1.06 = 9.88in
ACDEF 12-3%1.0642x —10.31in
4x3

Chain ACEF with the minimum net width, 9.88 in, is critical.

A, =9.88in X 2in=19.75in"

3.4. Holes have been punched in the flanges of the W10x49 in Fig. 3-5 for four 1-in-diameter
bolts. The holes lie in the same cross-sectional plane; A, = 14.4 in*>. Determine the net area.

For design, hole diameter = lin + gin=1.13in.

A, = A, — 4 xhole diameter X flange thickness
=14.4in* — 4 x 1.13in x 0.560 in

A,=11.88in
0.560 in
W10 x 49
0.560 in
10.0 in ¥
Fig. 3-5

In Probs. 3.5 to 3.8, determine the design tensile strength of a W10x49 in A36 steel, with the
conditions stated.
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3.5.

3.6.

3.7

3.8.

3.9.

No holes; the two flanges and the web are all welded to the supporting member.

Here, A, = A, = 14.4in". For A36 steel, F, =36 ksi and F, = 58 ksi.
Design strength ¢, P, = minimum of

0.90F,A, = 0.90 x 36 ksi X 14.4 in” = 467 kips
0.75F,A,=0.75 x 58 ksi X 14.4in” = 626 Kips
¢, P, = 467 kips, based on yielding of the gross section.

No holes; only the flanges of the W10x49 are welded to the support.
A, =14.4in?
For welded connections, effective net area

A, = area of directly connected elements
= area of the two flanges
=2(10.0in % 0.560 in) = 11.20 in’
Design strength ¢, P, = minimum of
0.90F,A, = 0.90 x 36 ksi X 14.4 in”> = 467 kips
0.75F, A, =0.75 x 58 ksi x 11.20 in" = 487 kips
Again ¢ P, =467 kips, based on yielding of the gross section.

The hole pattern of Fig. 3-5, but not at the end support; the flanges of the W10x49 are
welded to the support.

A, =14.4in

At the support, A, = flange area = 11.20 in’, as in Prob. 3.6. At the holes (away from the member end),
A,=A,=11.88in’, as in Prob. 3.4.
The design strength ¢, P, = the minimum of

0.90F,A, = 0.90 x 36 ksi x 14.4 in” = 467 kips
0.75F,A, =0.75 x 58 ksi X 11.2 in* = 487 kips
0.75F,A, =0.75 x 58 ksi X 11.88 in® = 517 kips

The design strength for tension is 467 kips.

The connection of the W10Xx49 to its support is by bolting as in Fig. 3-5, two bolts per line
along the member length direction (i.e., a total of eight holes).

Reduction coefficient U = 0.75. For bolted connections, A, = UA, =0.75 X 11.88 in> = 8.91 in°>.
Design strength ¢, P, = minimum of

0.90F,A, = 0.90 x 36 ksi X 14.4in” = 467 kips
0.75F,A,=0.75 x 58 ksi x 8.91 in” = 388 kips

¢, P, = 388 kips, based on fracture of the net section.

How much service dead load can be carried by the W10x49 in Probs. 3.5 to 3.8?

Assuming that dead load is the only load, the governing load combination in Chap. 2 is the first: 1.4D.
1.4D < ¢,P,

Maximum service dead load D = ¢,P,/1.4.
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In Probs. 3.5 to 3.7, ¢,P, = 467 kips. Maximum service dead load = 467 kips/1.4 = 333 kips.
In Prob. 3.8, ¢,P, = 388 kips. Maximum service dead load = 388 kips/1.4 = 277 Kips.

3.10. A WI10x49 tension hanger, 5 ft long, carries a service load of 250 kips. Calculate its axial
elongation.

Pl 250 kips X (5.0 ft X 12 in/ft)

EA, 29,000 ksi x 14.4 in®

g

=0.036in

Elongation A =

Supplementary Problems

In Probs. 3.11 to 3.13, determine the net cross-sectional area and critical chain of holes.

3.11. A 10in x 1.5in plate with two i3-in holes, as in Fig. 3-6.
Ans. A, =12.0in?; critical chain is ABCD.

|D Z 1
ce -
P /| § —»p 10 in g
i i

1.5in

-

Fig. 3-6

3.12. A 10in X 1.5in plate with four i3-in holes, as in Fig. 3-7.
Ans. A, =12.0in?; critical chain is ACEG.

-

(G H
—

- |Eo oF a
pe—/| -/ —>p
—Ico epD —

IA B
3in
ey
-

|I%10in 1
je il

Fig. 3-7
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3.13. A 10in x 1.5in plate with five £-in holes, as in Fig. 3-8.
Ans. A, =11.50in?; critical chain is ACEFH.

H d
N
l Fe [ X¢; _
3 in
P Z | ®F —_—p 10 in
3inT | -
ce ®D 'y
4 B 1.5 in
2in2in fe—

Fig. 3-8

In Probs. 3.14 to 3.16, determine the design tensile strength of the double-channel configuration (2 C6x10.5) in
Fig. 3-9. Steel is A36. The cross-sectional area of each channel is 3.09 in’.

2C6 x 10.5

Fig. 3-9

3.14. All elements of the channels are welded to the support. At certain sections away from the end
connection, a single 3-in-diameter bolt joins the channels, as in Fig. 3.10, to form a built-up section.

Ans.  ¢,P, =200 kips.

0.314 in —,H<_

2C6 x 10.5

Fig. 3-10

3.15. Only the webs of the channels are welded to the support. Away from the support, some sections have a
i-in-diameter bolt, as in Fig. 3-9, to form a built-up section. Ans.  ¢.P, =164 kips.
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3.16. The connection of the channels to their support is as shown in Fig. 3-10 with three 3-in-diameter bolts in
the direction of stress. Ans.  ¢,P, =200 kips.

3.17. Calculate the increase in length of the 3-ft-long tension hanger in Fig. 3-9 (2 C6x10.5) under an axial
service load of 100 kips. Ans. A =0.020in.



Chapter 4

Columns and Other Compression Members

NOTATION
A, = gross cross-sectional area of member, in?
b = width, in
bs= width of flange, in
d = depth, in

E = modulus of elasticity of steel = 29,000 ksi
F,, = critical comprehensive stress, ksi

F, = compressive residual stress in flange, ksi

F, = specified minimum yield stress, ksi

G = alignment chart parameter defined in Eq. [4.2]
G' = alignment chart parameter defined in Eq. [4.1]

h., h,, = web dimensions defined in Fig. 4-1in
I = moment of inertia, in*
K = effective length factor
KL = effective length, ft

Kl = effective length, in

L = length of member, ft

[ = length of member, in

P = (unfactored) axial force in member, kips

P, =nominal axial strength of member, kips

P, =required axial strength, kips

r = radius of gyration of the cross section, in

t = thickness, in

t,, = thickness of web, in

A = axial shortening of member, in

A.= column slenderness parameter

A, = limiting width-thickness ratio for compact section
A, = limiting width-thickness ratio for column design

¢.P, = design strength of compression member, kips

¢. = resistance factor for compression = 0.85

INTRODUCTION

This chapter covers members subjected to pure compression such as columns and truss
members. When a compressive force is applied through the centroidal axis of a member, a uniform
compression stress develops at each cross section. Bending is caused by compressive forces not
acting through the centroid-or by lateral forces. Bending combined with compression is discussed in
Chap. 8.
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The strength of compression members is limited by instability. The instability can be either local
buckling or overall (column) buckling.

LOCAL BUCKLING

The cross sections of structural steel members are classified as either compact, noncompact, or
slender-element sections, depending on the width-thickness ratios of their elements.

A section is compact if the flanges are continuously connected to the web, and the
width-thickness ratios of all its compression elements are equal to or less than A,.

A section is noncompact if the width-thickness ratio of at least one element is greater than A,
provided the width-thickness ratios of all compression elements are equal to or less than 4,.

If the width-thickness ratio of a compression element is greater than A,, that element is a slender
compression element; the cross section is called a slender-element section.

Steel members with compact sections can develop their full compressive strength without local
instability. Noncompact shapes can be stressed to initial yielding before local buckling occurs. In
members with slender elements, elastic local buckling is the limitation on strength.

Columns with compact and noncompact sections are designed by the method described herein
(and in Chap. E of the AISC LRFD Specification). Nearly all building columns are in this category.
For the occasional case of a slender-element column, the special design procedures listed in App.
B5.3 of the AISC LRFD Specification are required, to account for local buckling. Because of the
penalties imposed by App. B5.3, it is generally more economical to avoid slender elements by
increasing thicknesses.

To summarize: if, for all elements of the cross section, the width-thickness ratios (b/t, d/t,, or
h./t,) are equal to or less than A,, column design should be by the method of this chapter.
Otherwise, the method given in App. B5.3 of the LRFD Specification must be used. The
width-thickness ratios for columns and the corresponding values of A4, are defined in Table 4-1 and
Fig. 4-1, which are based on Sec. BS of the AISC LRFD Specification.

Table 4-1 Limiting Width-Thickness Ratios for Columns

Limiting Width-Thickness

Width- Ratio, A,

Thickness
Column Element Ratio General A36 Steel
Flanges of W and other I shapes b/t 95/VF, 15.8
and channels; outstanding legs
of pairs of angles in continuous
contact
Flanges of square and rectangular b/t 238/VEF, — E* 46.7 (rolled)
box sections; flange cover plates 53.9 (welded)

and diaphragm plates between lines
of fasteners or welds

Legs of single angle struts and b/t 76/VE, 12.7
double angle struts with separators;
unstiffened elements (i.e., supported
along one edge)

Stems of tees d/t 127/VF, 21.2
All other stiffened elements (i.e., b/t
supported along two edges) h./t, 253/VF, 42.2

*F, = compressive residual stress in flange: 10 ksi for rolled shapes, 16.5 ksi for welded sections.
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b = b2 b = b2 b =b;
b b b,
] ] ]
h h, h
b =b,2
b b, by b
DRLEN . ] .
[il,
b
l h, !
h,
t
b=b;— 3t
h.=h, — 3t

Fig. 4-1 Definitions of widths (b, d, and h,) and thickness (flange or leg thickness r and web thickness t,) for
use in Table 4-1

COLUMN BUCKLING

The most significant parameter affecting column stability is the slenderness ratio Kl/r, where [ is
the actual unbraced length of the column, in; K/ is the effective length of the column, in; and r is the
radius of gyration of the column cross section, in. Column strength equations are normally written
for ideal “pin-ended” columns. To make the strength equations applicable to all columns, an
effective length factor K is used to account for the influence of end conditions on column stability.

Two methods for determining K for a column are presented in Sec. C2 of the Commentary on
the AISC LRFD Specification: a judgmental method and an approximate analytical method. A
discussion of the two methods follows.

EFFECTIVE LENGTH FACTOR: JUDGMENTAL METHOD

Six cases are shown in Table 4-2 for individual columns, with their corresponding K values, both
theoretical and recommended. The more conservative recommendations (from the Structural
Stability Research Council) reflect the fact that perfect fixity cannot be achieved in real structures.

The LRFD Specification distinguishes between columns in braced and unbraced frames. In
braced frames, sidesway is inhibited by diagonal bracing or shear walls. In Table 4-2, case d (the
classical pin-ended column, K =1.0) as well as cases a and b represent columns in braced frames:
K =1.0. AISC recommends that K for compression members in braced frames “shall be taken as
unity, unless structural analysis shows that a smaller value may be used.” It is common practice to
assume K = 1.0 for columns in braced frames.
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Table 4-2 Effective Length Factors K for Columns

(a) (b) (c) (d) (e) H
| P&y bl Lk
[ P s.l.l
Buckled Shape of Column I / |
Shown by Dashed Line I/ /’ // l'
I / / !
) K I !
1 [ !
/
t i I
Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended design
values when ideal conditions 0.65 0.80 1.2 1.0 2.10 2.0
are approximated
“4“ | Rotation fixed and translation fixed
End condition code ﬁ?‘ Rotation free and translation fixed
B | Rotation fixed and translation free
7 Rotation free and translation free

Reproduced with permission from the AISC LRFD Manual.

[CHAP. 4

Cases ¢, e, and fin Table 4-2 cover columns in unbraced frames (sidesway uninhibited); K =1.0.
The K values recommended therein may be used in column design.

EFFECTIVE LENGTH FACTOR: ANALYTICAL METHOD

If beams are rigidly connected to a column, nomographs are available for approximating K for
that column. Two such “‘alignment charts” have been developed: one for “sidesway inhibited” (i.e.,
braced frames, K =<1.0); the other, for “sidesway uninhibited”” (i.e., unbraced frames, K =1.0).
Again, for columns in braced frames, it is customary to conservatively let K =1.0. For columns in
unbraced frames, the alignment chart in Fig. 4-2 may be used to determine K. Because the
alignment charts were developed with the assumption of purely elastic action, the stiffness reduction
factors (SRF) in Table 4-3 are available to account for inelastic column behavior. (Figure 4-2 has
been reproduced with permission from the Commentary on the AISC LRFD Specification. Table 4-3

is a corrected version of Table A in the AISC LRFD Manual, Part 2.)

The procedure for obtaining K from Fig. 4-2 is as follows.

1. At each of the two joints (A and B) at the ends of the column, determine / (the moment of
inertia, in*) and [ (the unbraced length, in) of each column ci and each beam gi rigidly
connected to that joint and lying in the plane in which buckling of the column is being

considered.

2. At each end of the column, A and B

Gl

_ UMD+ D
(I/I)gl + (I/I)gZ

[4.1]
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Fig. 4-2 Alignment chart for effective length of columns in unbraced frames having rigid joints

Table 4-3 Stiffness Reduction Factors for A36 Steel for Use

with Fig. 4-2

Pl,*/Ag, ksi SRF P,,/Ag, ksi SRF
30 0.05 20 0.76
29 0.14 19 0.81
28 0.22 18 0.85
27 0.30 17 0.89
26 0.38 16 0.92
25 0.45 15 0.95
24 0.52 14 0.97
23 0.58 13 0.99
22 0.65 12 1.00
21 0.70

* P, is the required strength and A, is the gross cross-sectional

area of the subject column.

3. Adjust for inelastic column action

where SRF is the stiffness reduction factor for the column obtained from Table 4-3.

G, =G/, X SRF
Gy =Gl x SRF

27

[4.2]

4. For a column end attached to a foundation, G = 10 for a “pin” support and G = 1 for a rigid

support are recommended.

5. Determine K by drawing a straight line from G, to G on the alignment chart in Fig. 4-2.
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DESIGN COMPRESSIVE STRENGTH

Column buckling can be either elastic or inelastic. For design purposes, A.=1.5is taken as the
boundary between elastic and inelastic column buckling.

)»"ﬁl 5 E2-4
Corm E ki)

For columns with cross-sectional elements having width-thickness ratios equal to or less than 4,, the
design compressive strength is ¢.P,, where

¢.=0.85
(E2-1)
P,=AF,
If A.=1.5, column buckling is inelastic.
E, = (0.658")F, (E2-2)
or in the alternate form given in the Commentary on the AISC LRFD Specification
E, = [exp(—0.4192))]F, (C-E2-1)
where exp(x) = e".
If A, >1.5, column buckling is elastic.
0.877
E == A (E2:3)

The terms in these equations include

A. = slenderness parameter

F, = specified minimum yield stress, ksi

E = modulus of elasticity of steel = 29,000 ksi
¢. = resistance factor for compression

P, = nominal compressive strength, kips
A, = gross cross-sectional area, in®

F., = critical compressive stress, ksi

Equation (E2-3) is the Euler equation for column instability multiplied by 0.877 to account for the
initial out-of-straightness of actual columns. Equation (E2-2) and (its equivalent) Eq. (C-E2-1) are
empirical equations for inelastic column buckling, providing a transition from F, = F, at A, =0 (i.e.,
Kl/r = 0) to the modified Euler equation [Eq. (E2-3)] for elastic buckling at A.>1.5. For A36 steel
A, = 1.5 corresponds to a slenderness ratio K//r of 133.7.

COLUMN DESIGN

According to Sec. B7 of the AISC LRFD Specification, for compression members KI/r
“preferably should not exceed 200.”

In design, selection of an appropriate column can be facilitated by referral to tables in one of
two ways. The design compressive strengths ¢ P, of W and other rolled shapes are tabulated in the
AISC LRFD Manual, Part 2. Column shapes can be selected directly from those tables. For built-up
sections and rolled shapes not tabulated, Table 4-4 for A36 steel (and similar tables for other grades
of steel in the AISC LRFD Specification) can be used in iterative design. In both cases, reference to
tables replaces the need to solve the column strength equations [Eqgs. (E2-1) to (E2-4)].
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Table 4-4 Design Compressive Stresses for A36 Steel
Design Stress for Compression Members of 36 ksi Specified Yield-Stress Steel, ¢.=0.85*%

Kl ¢, | Kl ¢F, | Kl ¢E,| K  ¢F, | K ¢F

cry

i3 ksi r ksi r ksi r ksi r ksi
1 30.60 41 28.01 81 21.66 121 14.16 161 8.23
2 30.59 42 27.89 82 21.48 122 13.98 162 8.13
3 30.59 43 27.76 83 21.29 123 13.80 163 8.03
4 30.57 44 27.64 84 21.11 124 13.62 164 7.93
5 30.56 45 27.51 85 20.92 125 13.44 165 7.84
6 30.54 46 27.37 86 20.73 126 13.27 166 7.74
7 30.52 47 27.24 87 20.54 127 13.09 167 7.65
8 30.50 48 27.11 88 20.36 128 12.92 168 7.56

O

30.47 49 26.97 89 20.17 129 12.74 169 7.47
10 30.44 50 26.83 90 19.98 130 12.57 170 7.38

11 30.41 5]} 26.68 91 19.79 131 12.40 171 7.30
12 30.37 52 26.54 92 19.60 132 1223 172 7.21
13 30.33 53 26.39 93 19.41 133 12.06 173 7.13
14 30.29 54 26.25 94 19.22 134 11.88 174 7.05
15 30.24 55 26.10 95 19.03 135 11.71 175 6.97

16 30.19 56 25.94 96 18.84 136 11.54 176 6.89
17 30.14 57 25.79 97 18.65 137 11.37 177 6.81
18 30.08 58 25.63 98 18.46 138 11.20 178 6.73
19 30.02 59 25.48 99 18.27 139 11.04 179 6.66
20 29.96 60 25.32 100 18.08 140 10.89 180 6.59

21 29.90 61 25.16 101 17.89 141 10.73 181 6.51
22 29.83 62 24.99 102 17.70 142 10.58 182 6.44
23 29.76 63 24.83 103 17.51 143 10.43 183 6.37
24 29.69 64 24.67 104 17.32 144 10.29 184 6.30
25 29.61 65 24.50 105 17.13 145 10.15 185 6.23

26 2953 66 24.33 106 16.94 146 10.01 186 6.17
27 29.45 67 24.16 107 16.75 147 9.87 187 6.10
28 29.36 68 23.99 108 16.56 148 9.74 188 6.04
29 29.28 69 23.82 109 16.37 149 9.61 189 5.97
30 29.18 70 23.64 110 16.19 150 9.48 190 5.91

31 29.09 71 23.47 111 16.00 151 9.36 191 5.85
32 28.99 72 23.29 112 15.81 152 9.23 192 5.79
33 28.90 73 23.12 113 15.63 153 9.11 193 5,713
34 28.79 74 22.94 114 15.44 154 9.00 194 5.67
35 28.69 75 22.76 115 15.26 155 8.88 195 5.61

36 28.58 76 22.58 116 15.07 156 8.77 196 5.55
37 28.47 77 22.40 117 14.89 157 8.66 197 5.50
38 28.36 78 22,22 118 14.70 158 8.55 198 5.44
39 28.25 79 22.03 119 14.52 159 8.44 199 5:39
40 28.13 80 21.85 120 14.34 160 8.33 200 5.33

* When element width-thickness ratio exceeds 1,, see App. B5.3, LRFD Specification.
Reproduced with permission from the AISC LRFD Manual.
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Building columns are most commonly W shapes, in the W14-W4 series. The W14 and W12
series are well suited to carrying heavy loads in multistory buildings. The W16 to W40 series are
seldom used for columns because of their inefficiency due to their relatively low values of r, (the
radius of gyration about the weak y axis). The most efficient column sections are structural shapes
with r, =7, (i.e., equal radii of gyration about both principal axes). Included in this category are pipe
and tube shapes, which are often used in lightly loaded single-story applications. Because they are
rolled only with relatively small cross sections, structural pipes and tubes are not available for
carrying heavy column loads.

DISPLACEMENT
The decrease in the length of a member due to axial compression under service loads is
A= i 4.3
~EA [4.3]

g
where A = axial shortening of the member, in

P = (unfactored) axial compressive force in the member, kips
[ =length of the member, in

Solved Problems

In Probs. 4.1 to 4.3, determine whether the given column shape is a slender-element section:

(a) In A36 steel (F, =36 ksi)
(b) If F,=50ksi

4.1. W14x34.

If the width-thickness ratio of an element is greater than 4,, it is a slender element.
Referring to Table 4-1 and Fig. 4-1, for the flanges of a W shape

(95
—=15.8 if F, =36 ksi
95 |V ol ek
k 2= 13.4 if F, =50 ksi

LV50

for the web of a W shape

(253 . .
—=42.2 if E, = 35 ksi

5= 253 36
k £53=35.8 if F, =50 ksi

LVS0

From the Properties Tables for W Shapes, in Part 1 of the AISC LRFD Manual (Compact Section
Criteria), for a W14x34, flange b/t = b;/2t; =7.4, web h./t, =43.1.

Since web (h /t, =43.1) > (1, = 42.2), the web of a W14x34 is a slender element in A36 steel. A
W14x34 is a slender-element section if F, =36 or 50 ksi.

4.2. WI14x43.

From the Properties Tables for W Shapes, for a W14 x43, flange b/t=b,/2t, =715, web h/t,=37.4.
(a) In A36 steel, flange A, = 15.8, web A, =42.2. (See Prob. 4.1.) Since flange (b/t =7.5) < (4, =15.8)
and web (k. /t, = 37.4) < (X, =42.2), a W14x43 column is not a slender-element section in A36 steel.
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(b) However, if F, =50ksi, flange A, =13.4, web A, =35.8. (See Prob. 4.1.) Because web (h./t, =
37.4) > (4, =35.8), a W14x43 column is a slender-element section if F, = 50 ksi.

4.3. The welded section in Fig. 4-3.

Referring to Table 4-1 and Fig. 4-1, for the flanges of a welded box section

238
— == =539 if F =36ksi
L. 28 _|\B6-165 ‘ Y
" VE-F 238 . .
' — 411 f  E=50k
V50 -165 ! .
for the web
23 _ 0o it F=36ksi
= ) 1 = S1
L 28 V36 '
"TVE )25
’ 2—_3=35A8 if  F =50ksi
V50 i

For the 18 in X 18 in box section in Fig. 4-3,
b=h =18in—2x%in=17in

=t,=t=}in

(a) 1In A36 steel, b/t and h./t, <A, in all cases; there are no slender elements.
(b) If F, =50ksi, there are also no slender elements, because b/t and A /t,, <A, in all cases.

18 in |

o

i&in _ﬂ l«— ¢ = % in (typical) h

7
y

Fig. 4-3
In Probs. 4.4 to 4.7, determine the effective length factor K, from Table 4-2, for the given columns.

4.4. A building column free to rotate at each end, in a braced frame.

As a result of the bracing, lateral translation of the ends of the column is inhibited. ‘‘Rotation free and
translation fixed” at both ends is case d in Table 4-2; K = 1.0.

4.5. A building column in a braced frame; deep beams rigidly connected to the column restrict
rotation of its ends.

This corresponds to case a, “‘rotation fixed and translation fixed” at each end. Although K =0.65 is
indicated for this case in Table 4-2, it is customary to let K = 1.0 as a conservative minimum.
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4.6.

4.7.

COLUMNS AND OTHER COMPRESSION MEMBERS [CHAP. 4

A building column in a rigid frame (not braced); end rotation is inhibited by deep beams.

“Rotation fixed and translation free” is case ¢; K = 1.2 is recommended.

The same as in Prob. 4.6, except that the base of the column is “‘pin-connected” to a footing.

“Rotation fixed and translation free” at the top and “‘rotation free and translation fixed” at the bottom
is case f; K =2.0.

In Probs. 4.8 to 4.10, use the alignment chart to determine K. All steel is A36.

4.8.

The column shown in Fig. 4-4.

W21 X 50 N
(typical beam) i
T
=1 4 L
25 c
i ) Z | Column required strength:
= % & P, = 750 kips
.-t s
*%
L | 3
= % -
' B
A

Fig. 4-4

All columns are W14x99, 15 ft 0in long; all beams are W21x50, 30 ft 0 in long. The webs of
all members are in the same plane, as shown.

For the typical column, W14x99: /, = 1110 in*

[=15.0ft x 12 in/ft = 180 in

[_1110in* _ o
St (], n"
I, 180in

é

For the typical beam, W21x50: [, = 948 in*

[ =30.0ft X 12 in/ft = 360 in

I, 984in* o
= =2.73in
I, 360in "

According to Eq. [4.1], the alignment chart parameter

_Ima+ U/

G = U+ U

At both the upper (A) and lower (B) joints

_2x6.17in*

Ga= G = i

From Eq. [4.2], G = G' x SRF.

Determining SRF (the stiffness reduction factor):

P, 750 kips

A, 29.1in°

=25.8 ksi

8

Interpolating in Table 4-3, SRF =0.39. At joints A and B, G, =G, =G' xSRF=2.26x0.39=0.83. In

Fig.

4-2, a straight line drawn from G, = 0.88 to G, = 0.88 intersects with K =1.3.
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4.9. Repeat Prob. 4.8, with the W14x99 columns (in Fig. 4-4) turned 90°.

For the typical column, W14x99: , =402 in*
402 in*

=1801 I./l. = =2.23in’
/=180in ;i 180n in
Typical beam [,/l, =2.73, as in Prob. 4.8.
At joints A and B
2x2.23in’
T B g
2x2.73in

The stiffness reduction factor, SRF =0.39, as above. At joints A and B, G,=Gz=G' XSRF =
0.82 x0.39=0.32.
In Fig. 4-2, a straight line extended from G, =0.32 to G, = 0.32 indicates that K =1.1.

4.10. The column shown in Fig. 4-5. Column connection to the footing is (a) rigid, (b) pinned.

The W10x33 column is 12 ft O in high; the W16x26 beam is 30 ft O in long. The webs of the
column and the beam are in the plane of the frame.

W16 x 26 J

2

-

Column required strength:
P, = 200 kips

W10 x 33

Fig. 4-5

For the W10x33 column: /, = 170 in*
[=12.0ft X 12in/ft = 144 in
I _170in*

[ 144in

«

For the W16Xx26 beam: I, = 301 in*

=1.18in’

1'=30.0 ft x 12 in/ft = 360 in
I _301in*

L~ 360in

«

From Eq. [4.1], G, = 1.18/0.84 = 1.41

=0.841in’

P, 200ki
il Wi B 1 OO
A, 9.71in-

&g

From Table 4-3, by interpolation, SRF =0.72. At joint A, G, =G X SRF=1.41 x0.72=1.02.

(a) For rigid attachment to the foundation, G, =1.0. K =1.3 in Fig. 4-2.

(b) For pin connection to the foundation, G, = 10. Drawing a line in Fig. 4-2 from G,=1.02 to
Gy = 10 indicates that K = 1.9.
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4.11. In A36 steel, select a 6-in pipe (see Table 4-5) for a required axial compressive strength of

4.12.

4.13.

4.14.

200 kips; KL =10.0 ft

Table 4-5 6-in Pipe Sections

A, in’ r,in
Standard weight 5.58 2.25
Extrastrong 8.40 2.19
Double extrastrong 15.60 2.06

Try a 6-in standard weight pipe:

Kl 10.0ft X 12in/ft
ro 2.25in

From Table 4-4 by interpolation, ¢ F,, = 26.34 ksi.

The design strength for this pipe, ¢.P, = ¢.F, = A, =26.34kips X 5.58in” = 147 kips < 200 kips
required.

Try a 6-in extrastrong pipe:

=533

Kl 10.0 ft X 12 in/ft
—=——"————=54.8
r 2.191n

Interpolating in Table 4-4, ¢ .F, =26.13 ksi. The design strength, ¢ P, = ¢.F,, A, = 26.13 kips/in® X
8.40 in” = 219 kips > 200 kips required. This is okay.

Determine the design strength of a W8X40 column (A36 steel).
K.L,=K,L,=15.0ft
For a W8x40 section, A =11.7in’, r, =3.53in, r, =2.04in. Since r,<r., K, /r, governs.

K[, 15.0ft X 12in/ft
ro 2.041in

=88.2

From Table 4-4, ¢ F,, = 20.32 ksi.
The design strength of the column

¢.P, = 6.F., A, =20.32 kips/in® x 11.7 in> = 238 Kips

From the Column Tables in the AISC LRFD Manual, select a W10 column (A36 steel) for a
required strength of 360 kips; K, L, = K,L, = 12.0 ft.

From Table 4-6 (reproduced with permission from the AISC LRFD Manual), it can be seen that in A36
steel, for K,L, =12.0ft, the design axial strength of a W10x49 column, ¢ P, =372kips. Since the
372 kips > 360 kips required strength, use a W10x49 column.

Select the most economical W10 column for the case shown in Fig. 4-6. Given: A36 steel;
K =1.0; required strength = 360 kips.

From Fig. 4-6: K.L,=10x24.0ft=24.0ft, K,L,=1.0x12.0ft=12.0ft. Assume y-axis buckling
governs. From Table 4-6, for K,L, =12.0ft, select a W10x49 (¢.P, = 372 kips > 360 kips required).
Check x-axis buckling.



Table 4-6
F, =36 ksi ¥
F, =50 ksi
COLUMNS * *
W shapes
Design axial strength in kips (¢ = 0.85) =
Designation W10
Wt. /ft 60 54 49 45 39 33
E, 36 50 36 50 36 50 36 50 36 | 50 36 50
0 539 | 748 | 483 | 672 | 441 | 612 | 407 | 565 | 352 | 489 | 297 | 413
6 517 | 706 | 464 | 634 | 422 | 577 | 380 | 515 | 328 | 444 | 276 | 373
7 509 | 692 | 457 | 621 | 416 | 565 | 371 | 497 | 320 | 428 | 269 | 360
8 500 | 675 | 449 | 606 | 409 | 551 | 361 | 478 | 311 | 412 | 261 | 345
9 491 | 657 | 440 | 590 | 401 | 536 | 350 | 458 | 301 | 393 | 252 | 329
= 10 480 | 638 | 431 | 572 | 392 | 520 | 337 | 436 | 290 | 374 | 243 | 312
é 11 469 | 617 | 420 | 553 | 382 | 502 | 324 | 412 | 278 | 353 | 233 | 294
2 & 12 457 | 595 | 409 | 533 | 372 | 484 | 311 | 388 | 266 | 332 | 222 | 276
s e 13 444 | 571 | 398 | 512 | 361 | 465 | 296 | 364 | 254 | 310 | 211 | 257
3£ 14 430 | 547 | 385 | 490 | 350 | 444 | 282 | 339 | 241 | 289 | 200 | 239
§ g 15 416 | 523 | 373 | 468 | 338 | 424 | 267 | 315 | 228 | 267 | 189 | 220
g %D 16 401 | 497 | 360 | 445 | 326 | 403 | 252 | 290 | 215 | 246 | 177 | 202
£ 2 17 387 | 472 | 346 | 422 | 314 ' 382 | 237 | 266 | 201 | 225 | 166 | 184
E35 18 371 | 446 | 332 | 399 | 301 | 361 | 222 | 243 | 188 | 205 | 155 | 167
= = 19 356 | 421 | 318 | 376 | 288 | 340 | 207 | 221 | 175 | 185 | 144 | 150
BE 20 340 | 395 | 304 | 353 | 275 | 319 | 192 | 199 | 162 | 167 | 133 | 135
L
G B 22 309 | 346 | 276 | 309 | 250 | 278 | 164 | 164 | 138 | 138 | 112 | 112
27 24 27¢ | 299 | 248 | 266 | 224 | 239 | 138 | 138 | 116 | 1i6 94 94
é 26 248 | 255 | 221 | 227 | 199 | 204 | 118 | 118 99 99 80 80
53 28 219 | 220 | 195 | i96 | 175 | 176 | 102 | 102 85 85 69 69
30 191 | 191 | 170 | 170 | 153 | 153 38 88 74 74 60 60
32 168 | 168 | 150 | 150 | 134 | 134 78 78 65 65 53 53
33 158 | 158 | 141 | 141 | 126 | 126 73 73 61 61 |
34 149 | 149 | 133 | 133 | 119 | 119
36 133 | 133 | 118 | 118 | 106 | 106
Properties
U 138 1.52 | 1.38 | 1.53 [ 1.39 | 1.54 | 1.75 | 1.93 | 1.77 | 1.96 | 1.81 | 2.00
P, (kips) 99 | 138 83 | 116 73 | 101 79 | 109 64 89 55 77
P, (ksi) 15 21 13 19 12 17 13 18 11 16 10 15
P,. (kips) 209 | 246 | 143 | 168 | 111 | 131 | 121 | 142 88 | 104 69 81
P,, (kips) 94 | 130 77 | 106 64 88 78 | 108 57 79 38 53
L, (ft) 107 9.110.7| 9.11106 | 9.0| 84| 7.1 | 83| 7.0| 81| 69
L, (ft) 48.1 | 32.6 | 43.9 | 30.2 | 40.7 | 28.3 | 35.1 | 24.1 | 31.2 | 21.8 | 27.4 | 19.7
A (in®) 17.6 15.8 14.4 13.3 11.5 9.71
[, (in*) 341 303 272 248 209 170
I, (in*) 116 103 93.4 53.4 45 36.6
r, (in) 2.57 2.56 2.54 2.01 1.98 1.94
Ratio r,/r, 1.71 1.71 1.71 2.15 2.16 2.16

Note: Heavy line indicates K/ r of 200.
Reproduced with permission from the AISC LRFD Manual.
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Framing plans

Fig. 4-6

For a W10x49, the ratio r,/r, = 1.71. (See bottom line in Table 4-6.) The equivalent K, L, for use in
the Column Tables:
K.L, 24.0ft

Ly )equiv = = =14.0ft
(K) \)equnv r‘/r‘ 171

In Table 4-6, for KL = 14.0 ft, the W10x49 with a design strength ¢ P, = 350 kips is not adequate.
Use a W10x54 column with a design strength ¢.P, =385 kips (KL = 14.0 ft) > 360 kips required.
Since r,/r, = 1.71 for the W10x54, as originally assumed, recomputation of (K, L, ).,y 1S NOt necessary.

A WI10x49 column, 10ft long, carries a service load of 250 kips. Calculate its axial
shortening.

Pl 250 kips x (10.0 ft X 12 in/ft)

Shortening, A = —— = : :
ortening, &= E A~ 29,000 kips/in® X 14.4in°

=0.0721in
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4.16.

The section shown in Fig. 4-3 is used for a 40-ft column; K, = K, = 1.0. Determine the design
compressive strength if the steel is A36.

The design compressive strength

¢.P, = ¢.F, A, (E2-1)
The value of ¢ F, can be obtained from Table 4-4, if K//r is known. In this problem
Kl =1.0x40.0ftx 12in/ft =480 in
b
r=1\/—
A
A=(18in)"— (17in)*=35.0in"
(18in)* — (17 in)*

I.=1,=l=—"————"=1788in*
12
1788 in*
A A I 5
35.0in"
Kl 480in
— =67.2
r 7.15in

By interpolation in Table 4-4, for K//r =67.2, ¢ F., =24.13 ksi, the design compressive strength
¢.P, =24.13 kips/in® X 35.0 in> = 845 kips

Supplementary Problems

Are the following columns slender-element sections if
(a) F,=36ksi?
(b) F, =50ksi?

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

W12x26. Ans. (a) Yes. (b) Yes.
W12x35. Ans. (a) No. (b) Yes.

From Table 4-2, determine the effective length factor K for a column totally fixed at the bottom and
totally free at the top. Ans. K=2.1; case e.

Use the alignment chart to calculate K for the column in Fig. 4-7 (A36 steel). All columns are W12x45,
I5ft Oin long; all beams are W16x31, 20ft Oin long. The webs of all members are in the same
plane. Ans. K=1.3.

Complete the design of the column in Prob. 4.8. Assume K, =14, L ,=15.0ft, for buckling
perpendicular to the frame in Fig. 4-4. Select the most economical W14, Ans. W14x109.

Complete the design of the column in Prob. 4.9. Assume K, =14, L =15.0ft. Select the most
economical W14. Ans. W14x99.

Repeat Prob. 4.14 for a required strength of 300 kips. Ans. W10x45.
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W16 x 31 i =
X 1= L
(sypical beam) % ¢ T
T A T
@ E 8
x —g © | Column required strength:
xS &= P, = 150 kips
— 2
e
g
| B
Z Z X
T B i

Fig. 4-7

4.24. Calculate the decrease in length of the 24-ft column in Prob. 4.22 under an axial load of 200 kips.
Ans. A=0.15in.

B —



Chapter 5

Compact Beams and Other Flexural Members

NOTATION

A = cross-sectional area of member, in’

A,, = area of the web, in’
b = width, in

b, = width of flange, in

C, = bending coefficient, defined in Eq. [5.10]

C,, = warping constant, in°
¢ = distance from the centroid to the extreme fiber, in
d = overall depth, in

E = modulus of elasticity of steel = 29,000 ksi

F, = compressive residual stress in flange, ksi

F, = specified minimum yield stress, ksi

f, = maximum normal stress due to bending, ksi

G = shear modulus of elasticity of steel = 11,200 ksi
h = web dimension defined in Fig. 5-7, in

h., h,, = web dimensions defined in Fig. 5-2, in

I = moment of inertia, in*

J = torsional constant, in*

L, = unbraced length, ft

L,, = limiting unbraced length for full plastic bending capacity (C, > 1.0), ft
L, = limiting unbraced length for full plastic bending capacity (C, = 1.0), ft

L, = unbraced length which is the boundary between elastic and inelastic lateral-torsional
buckling, ft

| = length of member, in
M = bending moment, kip-in
M., = elastic buckling moment, kip-in
M, = nominal flexural strength of member, kip-in
M,, = plastic moment, kip-in
M, = buckling moment at L, = L, and C, = 1.0, kip-in
M, = smaller end moment in an unbraced length of beam, kip-in
M, = larger end moment in an unbraced length of beam, kip-in
P = concentrated load on member, kips
r = radius of gyration, in
S = elastic section modulus, in®
t = thickness, in
t,, = thickness of web, in
V = shear force, kips
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V, = nominal shear strength, kips
w = unit load, kips per linear ft
X, = parameter defined in Eq. (FI-8)
X, = parameter defined in Eq. (FI1-9)
x = subscript relating symbol to the major principal centroidal axis
y = subscript relating symbol to the minor principal centroidal axis
Z = plastic section modulus, in’
A = deflection of beam, in
4, = limiting width-thickness ratio for compact section
¢,M, = design flexural strength, Kip-in
¢, = resistance factor for flexure = 0.90
¢, V, = design shear strength, kips

¢1V

resistance factor for shear = 0.90

INTRODUCTION

This chapter covers compact flexural members not subjected to torsion or axial force.
Compactness criteria as they relate to beams are described in the next section; noncompact flexural
members are covered in Chap. 6. Axial tension combined with bending is the subject of Chap. 7;
axial compression combined with bending is discussed in Chap. 8. Torsion and the combination of
torsion with flexure are covered in Chap. 9.

The strength of flexural members is limited by local buckling of a cross-sectional element (e.g.,
the web or a flange), lateral-torsional buckling of the entire member, or the development of a plastic
hinge at a particular cross section.

The equations given in this chapter (and in Chap. F of the AISC LRFD Specification) are valid
for flexural members with the following kinds of compact cross sections and loadings: doubly

|
L 41
- A

Shear center (

Fig. 5-1 Examples of beams covered in Chap. 5: (a) W shape (doubly symmetric) loaded in a plane of
symmetry; (b) channel shape (singly symmetric) loaded through shear center in plane of symmetry or parallel
to web
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symmetric (e.g., W, box, and solid rectangular shapes), loaded in a plane of symmetry [as in Fig.
5-1(a)] and singly symmetric (e.g., channel shapes), loaded in the plane of symmetry or through the
shear center parallel to the web [as in Fig. 5-1(b)].

The shear center is defined and its significance is explained in Chap. 9. Shear center locations for
channels are given in the Properties Tables in Part 1 of the AISC LRFD Manual.

Loads not applied as shown in Fig. 5-1(a) and (b) will cause torsion, or twisting of the member.
However, if restraint against torsion is provided at the load points and points of support, the
equations of this chapter are still valid.

COMPACTNESS

The concept of compactness relates to local buckling. As described in more detail in Chap. 4,
cross sections are classified as compact, noncompact, or slender-element sections. A section is
compact if the flanges are continuously connected to the web, and the width-thickness ratios of all its
compression elements are equal to or less than 4,. Structural steel members with compact sections
can develop their full strength without local instability. In design, the limit state of local buckling
need not be considered for compact members.

Compactness criteria for beams (as stated in Sec. BS of the AISC LRFD Specification) are given
in Table 5-1 and Fig. 5-2. If the width-thickness ratios of the web and flange in flexural compression
are equal to or less than 4,, beam design is by the standard method described in this chapter.
Otherwise the special provisions of Chap. 6 (taken from the appendixes of the AISC LRFD
Specification) are required.

Table 5-1 Limiting Width-Thickness Ratios for Beams

Limiting Width-Thickness
Ratio, 2,
Width-Thickness
Beam Element Ratio General A36 Steel
Flanges of W and other I shapes b/t 65/VF, 10.8
and channels
Flanges of square and rectangular b/t 190/VE, 31.7
box sections; flange cover plates
and diaphragm plates between
lines of fasteners or welds
Webs in flexural compression h./t, 640/VE, 106.7

FLEXURAL BEHAVIOR

The distribution of internal normal strains and stresses on the cross section of a beam is shown in
Fig. 5-3. It is based on the idealized stress-strain diagram for structural steel in Fig. 5-4, which is a
simplified version of the actual stress-strain curves in Fig. 1-2.

As shown in Fig. 5-3, the normal strain distribution is always linear. The magnitude of strain is
proportional to the distance from the neutral (or centroidal) axis. On one side of the neutral axis,
the fibers of the flexural member are in tension (or elongation); on the other side, in compression (or
shortening). The distribution of normal stresses depends on the magnitude of the load. Under
working loads and until initial yielding, stresses (which are proportional to strains in Fig. 5-4) are
also linearly distributed on the cross section. Beyond initial yielding, the strain will increase under
additional load. The maximum stress, however, is the yield stress F,. Yielding will proceed inward,
from the outer fibers to the neutral axis, as the load is increased, until a plastic hinge is formed.
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b=b2 b=b,2 b=b,
P__i_,q |<___bf__,| P_b_f_q
e
y —
h. h. h.
B i
——
}4——b/———>‘ 14___1’____,‘
L T
t
h. L
X {
» i
b=b,~ 3t -
h.=h, =3t

Fig. 5-2 Definitions of widths (b and k) and thickness (flange thickness ¢ and web thickness ¢,) for use in
Table 5-1

Beam Cross

section

: Stresses
Strains
L,V "
Compression Tension Working Initial Plastic
load yielding hinge

Fig. 5-3 Flexural strains and stresses
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Stress, ksi

Strain, in/in

Fig. 5-4 Idealized stress-strain diagram for structural steel

The plastic hinge condition (under which the entire cross section has yielded) represents the absolute
limit of usefulness of the cross section. Only beams which are compact (i.e., not susceptible to local
buckling) and adequately braced (to prevent lateral-torsional buckling) can attain this upper limit of
flexural strength.

The relationships between moment and maximum (extreme fiber) bending stresses, tension or
compression, at a given cross section have been derived in a number of engineering mechanics
textbooks. At the various stages of loading, they are as follows:

Until initial yielding

M =5f, [5.1]
At initial yielding

M, = SF, [5.2]
At full plastification (i.e., plastic hinge)

M,=ZF, [5.3]

Because of the presence of residual stresses F, (prior to loading, as a result of uneven cooling
after rolling of the steel member), yielding actually begins at an applied stress of F, — F,. Equation
[5.2] should be modified to

M, =S(F, - F) (5.4]
Equation [5.3] is still valid, however. The plastic moment is not affected by residual stresses.
(Because of their existence in a zero-moment condition before the application of loads, the tensile
and compressive residual stresses must be in equilibrium.)
The terms in Eqgs. [5.1] to [5.4] are defined as
M = bending moment due to the applied loads, kip-in
M, = bending moment at initial yielding, kip-in
M, = plastic moment, kip-in
S = elastic section modulus, in®
Z = plastic section modulus, in®
f» = maximum normal stress due to bending, ksi
F, = specified minimum yield stress, ksi

F, =the maximum compressive residual stress in either flange; 10 ksi for rolled shapes;
16.5 ksi for welded shapes

1
Elastic section modulus § = - [5.5]
c
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where I is the moment of inertia of the cross section about its centroidal axis, in*; and c¢ is the
distance from the centroid to the extreme fiber, in. The Properties Tables in Part 1 of the AISC
LRFD Manual include the values of I, S, and Z for all the rolled shapes listed.

ELASTIC VERSUS PLASTIC ANALYSIS

Design by either elastic or plastic analysis is permitted by the AISC LRFD Specification (Sec.
A5.1). The more popular elastic analysis has been adopted throughout this text. When an elastic
analysis procedure (such as moment distribution or a typical frame analysis computer program) is
used, the factored moments are obtained assuming linear elastic behavior. Although this assumption
is incorrect at the strength limit states, the fact that elastic analysis is less complex and is valid under
normal service loads has led to its widespread use.

Several restrictions have been placed on plastic design. They are stated in the AISC LRFD
Specification in Secs. A5.1, B5.2, C2.2, E1.2, F1.1, H1.2, and I1.

DESIGN FLEXURAL STRENGTH: C,=1.0, L, =L,

The design strength of flexural members is ¢,M,, where ¢, =0.90. For compact sections, the
design bending strength is governed by the limit state of lateral-torsional buckling.

As the name implies, lateral-torsional buckling is an overall instability condition of a beam
involving the simultaneous twisting of the member and lateral buckling of the compression flange.
To prevent lateral-torsional buckling, a beam must be braced at certain intervals against either
twisting of the cross section or lateral displacement of the compression flange. Unlike the bracing of
columns (which requires another structural member framing into the column), the bracing of beams
to prevent lateral-torsional buckling can be minimal. Even the intermittent welding of a metal (floor
or roof) deck to the beam may be sufficient bracing for this purpose.

The equations for the nominal flexural strength M, follow from the preceding discussion of
flexural behavior. Length L, is defined as the distance between points of bracing. Compact shapes
bending about their minor (or y) axes will not buckle before developing a plastic hinge.

M, =M, =Z,F, [5.6]

for bending about the minor axis regardless of L,.
Compact sections bending about their major (or x) axes will also develop their full plastic
moment capacity without buckling, if L, < L,,.
M, =M, =ZF [5.7]
for bending about the major axis if L, = L,,.
If L, = L,, lateral-torsional buckling occurs at initial yielding. From Eq. [5.4],

Mnx =er =S\(F:v _E) [58]

for bending about the major axis if L, = L,.
If L,<L,<L, M, for bending about the major axis is determined by linear interpolation
between Egs. [5.7] and [5.8]:

Lh—L
M,=M,, —(M,,— M, <___,,) 5.
o= (M= M) 7 [5.9]
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In the foregoing

Z, = plastic section modulus with respect to the minor centroidal (or y) axis, in®
Z, = plastic section modulus with respect to the major centroidal (or x) axis, in’

S, = elastic section modulus with respect to the major centroidal (or x) axis, in’
Lengths L, and L, are defined in Sec. F1.2 of the AISC LRFD Specification as follows.

For I-shaped sections and channels bending about their major axis

300r,
L,= VE (F1-4)
For solid rectangular bars and box beams '
3750r,
L,=——2VJA (F1-5)
Mp

where r, = the radius of gyration with respect to the minor centroidal (or y) axis, in
A = cross-sectional area, in’
J = torsional constant, in*
The limiting laterally unbraced length L, and the corresponding buckling moment M, are
determined as follows.

For I-shaped sections, doubly symmetric and singly symmetric with the compression flange larger
than or equal to the tension flange, and channels loaded in the plane of the web

X
L =2 A 3 NA + X (B, — B (F1-6)
F—F

M, = (F, - F)S, (F1-7)

' 7 |EGJA
where X, :5_} — (F1-8)

C, /S \?

X, =4—-2 (_"> -

=475 (F1-9)

where E = modulus of elasticity of steel = 29,000 ksi
G = shear modulus of elasticity of steel = 11,200 ksi
I, = moment of inertia about the minor centroidal (or y) axis, in*
C,, = warping constant, in°
For symmetric box sections bending about the major axis and loaded in the plane of symmetry,
M, and L, shall be determined from formulas (F1-7) and (F1-10), respectively.
For solid rectangular bars bending about the major axis

57,000r,\/JA
L =228 )
, ) (F1-10)
M, =F,S, (FI-11)

Values of J and C,, for many structural shapes are listed in Torsion Properties Tables in Part 1 of
the AISC LRFD Manual.

The practical design of steel beams (C, = 1.0) can best be done graphically by (1) reference to
the beam graphs in the section entitled Design Moments in Beams, in Part 3 of the AISC LRFD
Manual, where ¢,M,, is plotted versus L, for F, = 36 and 50 ksi or (2) constructing a graph similar to

Fig. 5-5 from data in the Load Factor Design Selection Table, also in Part 3 of the AISC LRFD
Manual.
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$:M,

$M, e / $,M, for C, = 1.0

bM, 1+
$,M,, forC, = 1.0

e

f i L,
L L

Fig. 5-5 Determination of design flexural strength ¢, M, (C, = 1.0)

BENDING COEFFICIENT C,

The bending coefficient is defined as

My (MO
C,,—[l.75+1.05 M2+0.3<M2> ]~2.3 [5.10]
where M, is the smaller and M, is the larger end moment for the unbraced segment of the beam
under consideration. If the rotations due to end moments M, and M, are in opposite directions, then
M,/ M, is negative; otherwise, M,/M, is positive. Coefficient C,, = 1.0 for unbraced cantilevers and
for members where the moment within part of the unbraced segment is greater than or equal to the
larger segment end moment (e.g., simply supported beams, where M, = M, =0).

Coefficient C, accounts for the effect of moment gradient on lateral-torsional buckling. The
LRFD moment capacity equations were derived for a beam with a constant moment braced only at
the supports, failing in lateral-torsional buckling; C, =1.0. If the moment diagram between two
successive braced points is not constant, the described region is less susceptible to lateral-torsional
buckling; in general, 1.0=C, =2.3.

DESIGN FLEXURAL STRENGTH: C,=1.0, L, =L,
Incorporating C, requires modification of Eqs. [5.8] and [5.9]. Equation [5.7] does not change.
M, =M, =Z.F, [5.7]
for bending about the major axis if L, = L,,. However,
M,.=CM,=C,S.(F,—F)=M,, [5.11]

for bending about the major axis if L, =L,, and the linear interpolation equation, Eq. [5.9],
becomes
Ly,

__92)] =M, (F1-3)

M, = C,,[M,, — (M, — M,)(Lr I

for L,, < L, <L,. All the terms in the equations are as defined above. The relationships are shown
graphically in Fig. 5-6, where it can be seen that L,, is the unbraced length at which Eqs. [5. 7] and
(F1-3) intersect.
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o.M,
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oM, > $,M, for C, > 1.0
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$M, - ¢,M, for C, = 1.0 \o\
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$,M,, for C,= 1.0 S N
+ | 1 L

L, L, L
Fig. 5-6 Determination of design flexural strength ¢, M, (C, > 1.0)

The design of steel beams (1.0 < C, =2.3) should be done graphically by developing a plot
similar to that in Fig. 5-6. After determining C, with Eq. [5.10], one can find the other required
parameters (L,, ¢,M,, L,, and ¢,M,) in the Load Factor Design Selection Table in Part 3 of the
AISC LRFD Manual.

When C, > 1.0, there is a twofold advantage in including C, > 1.0 in Eqgs. [5.11] and (F1-3), and
not conservatively letting C, = 1.0 (as in the graphs in Part 3 of the AISC LRFD Manual): (1) the
unbraced length for which M, = M, is extended from L, to L,,, and (2) for L, > L,,, the moment
capacity M, is multiplied by C,. The reader can find these facts depicted in Fig. 5-6.

DESIGN FLEXURAL STRENGTH: L,>L,

If the unbraced length L, > L, and C, = 1.0, elastic lateral-torsional buckling occurs. There is a
significant reduction in the flexural design strength ¢,M, as L, increases beyond L,. Intermediate
bracing should be provided, if possible, to avoid such uneconomical designs. However, if L, > L,

M,=M.=M, (F1-12)
for bending of a compact section about its major axis.

The critical elastic moment M,, is defined as follows. For doubly symmetric I-shaped members
and channels loaded in the plane of the web

T TE\?
M, =C— \/EI 6 + (—) LiC.,
"L, V7 L,/ "

CS.X &2 XiX;
= \/1+ F1-13
Lylr, 2(Ly/1y)? ( )

For solid rectangular bars and symmetric box sections

_57,000C,VJA
cr T Lb/ry

i

(FI-14)
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GROSS AND NET CROSS SECTIONS

Flexural members are usually designed on the basis of their gross sections. According to Sec. Bl
of the AISC LRFD Specification, the rules for beams with holes in the flanges are as follows:

(1) No deducation is made for holes in a given flange if the area of the holes is equal to or less
than 15 percent of the gross area of the flange.

(2) For holes exceeding this limit, only the area of holes in excess of 15 percent is deducted.

DESIGN SHEAR STRENGTH

The shear strength of beams should be checked. Although flexural strength usually controls the
selection of rolled beams, shear strength may occasionally govern, particularly for short-span
members or those supporting concentrated loads. In built-up members, the thickness of the web
plate is often determined by shear.

For rolled shapes and built-up members without web stiffeners, the equations in Sec. F2 of the
AISC LRFD Specification can be somewhat simplified, as follows. The design shear strength is
¢, V,, where ¢, =0.90.

For —h—sﬂzi
tn” VE
V,=0.6EA, [5.12]
For ﬁ< L = 923
VE, "t,” VE,
V,=0.6FA, 41:5;:E [5.13]

>

———————
| I | |
| |
}}:

Fig. 5-7 Definition of A for various shapes
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where V, = nominal shear strength, kips
A,, = area of the web, in*=dt,,
d = overall depth, in
t,, = thickness of web, in
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[5.14)

h = the following web dimensions, in: clear distance between fillets, for rolled shapes;

clear distance between flanges for welded sections (See Fig. 5-7.)

The limit states for shear strength are yielding of the web in Eq. [5.12], inelastic buckling of the

web in Eq. [5.13], and elastic buckling of the web in Eq. [5.14].

DISPLACEMENT AND VIBRATION

The two primary serviceability considerations for beams are displacement and vibration.
Traditionally, the maximum deflections of floor beams have been limited to 355 of the span under the
service live load specified in the governing building code. Depending on the use of the member and
its span, other deflection criteria (stated in inches or in fractions of the span) may be more
appropriate. Formulas for maximum beam deflections under various loading conditions are given in
many textbooks on engineering mechanics and in the AISC LRFD Manual, Part 3, under the
heading Beam Diagrams and Formulas. The most common beam loadings are shown here in Table

5-2, together with the resulting maximum shears, moments, and deflections.

Table 5-2 Beam Formulas

Loading Condition Maximum Value Location
Simple beam—uniform load
W M= w_l" Midspan
[ ] 8 P
%‘ 97 v wl End
== n
- ’ - 3 S
\ 2. Mid
" 384E] 1dspan
Simple beam—concentrated load at center
P
Pl
M= 7 Midspan
ﬁ ;97 P
1 112 ; 12 V== Ends
-t Bt | 2
I =l
/\ _ PP Mid
M 48E1 ‘dspan
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Table 5-2—contd.

[CHAP. 5

Loading Condition

Maximum Value

Location

Simple beam—concentrated load at any point

- >|

P
’——» X Pab i
M= e Point of load
Pa
% ;97 V= T Right end
o a s b o a >b
< 1 T > A=Pab(a+2b)v3a(a+2b) . a(a +2b)
- > 27Ell “V 3
M /\
Cantilever beam—uniform load
w le 5
— = 5 Fixed end
| / V=wl Fixed end
- #i wi*
) t/ B -831- Frec end
Cantilever beam—concentrated load at free end
P
l M =PI Fixed end
§ =P Fixed end
3
1 ! = i Free end
f— | 3EI

Beams that are otherwise satisfactory have occasionally been the cause of annoying floor
vibrations. Particularly sensitive are large open floor areas with long-span beams, free of partitions
and other significant sources of damping, or energy release. To prevent excessive vibration it has
been customary to specify the minimum depth of floor beams as a fraction (e.g., 35) of their span.
Another approach is to perform a simplified dynamic analysis. The subject of structural dynamics is
beyond the scope of this text. Information on beam vibrations is available in several published

journal papers, including:

T. M. Murray, “Acceptability Criterion for Occupant-Induced Floor Vibrations,

Engineering Journal, 2d Quarter, 1981.

7 AISC

T. M. Murray, “Design to Prevent Floor Vibrations,” AISC Engineering Journal, 3d Quarter,

1975.
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Solved Problems

In Probs. 5.1 to 5.3, determine whether the given beam is compact: (a) in A36 steel (F, =36 ksi),
(b) if F, =50Kksi.

5.1.

5.2.

W6x15.

If the width-thickness ratio of an element is greater than 4, the section is noncompact.
Referring to Table 5-1 and Fig. 5-2, for the flanges of a W shape

65
—2 —10.8 if F =36ksi
L 65 _ |3 w3 .
=
VF,
v | B2 92 it E=50ksi
V30 '
for the web of a W shape
640
2 1067 if F =36ksi
L _640_ | V36 e .
e
VE 18 905 it E=50ksi
V30 :

From the Properties Tables for W Shapes, in Part 1 of the AISC LRFD Manual (Compact Section
Criteria): for a W6Xx15

b b
fl —=—=115
anget 2tf

h
web —=21.6

Since flange (b/t=11.5)> (4, =10.8), the W6x15 beam is noncompact in A36 steel. Likewise, it is
noncompact if F, = 50 ksi.

W12Xx65.
From the Properties Tables for W Shapes, for a W12Xx65
b b
flange — =-S=99
t 2
h(’
web —=24.9

w

(a) In A36 steel
flange 4, = 10.8
web 4, =106.7 (See Prob. 5.1.)
Since flange (b/t=9.9) <(A, =10.8), and web (h./t, =24.9) <(4,=106.7), a WI2X65 beam is
compact in A36 steel.
(b) However, if F, =50 ksi

flange A, =9.2
web 4, =90.5 (See Prob. 5.1.)

Because flange (b/t =9.9) > (4, =9.2), a W12x65 beam is noncompact if £ = 50 ksi.
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5.3.

5.4.
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The built-up beam section in Fig. 5-8.

Referring to Fig. 5-2:

b, 18in
flange —=—= — =
t 2t 2X1in
h, 401
web — = l_n =80.0
0.51n

Wi

(a) The beam is compact in A36 steel because flange (b/r=9.0)<(4,=10.8) and web (h./t,
80.0) < (4, = 106.7).

(b) The beam is also compact if F, =50 ksi because flange (b/t =9.0)<(A4,=9.2) and web (h/t,
80.0) < (4, = 90.5).

]
L e}
—> *—3in g
(9]
g K= .
.
¥ 2
v L1 N

y

ET | 18 in
— =

Fig. 5-8

For the cross section in Fig. 5-8, with four lis-in-diameter holes for bolts (two holes per
flange, as shown), determine the design values of

(a) S, the elastic section modulus for major axis bending.

(b) Z,, the plastic section modulus for major-axis bending.

For design purposes, the width of each bolt hole is taken as ic in greater than the nominal dimension of
the hole. The 15 percent rule” is then applied to determine whether the gross section may be used in

flexural design. For each flange
Hole area =2 X (15 + i) in X 1in =2.25in’
Gross area = 181in X 1 in = 18 in’
Hole area _ 2.25in’

= —=13%
Gross area  18in” ’

Since the area of the holes is less than 15 percent of the flange area, the holes may be disregarded; the
gross cross section is used in flexural design.

(a) S,=1/c, where x is the major centroidal axis. For the symmetric section in Fig. 5-7, the centroid
can be located by inspection. (Otherwise, calculation would be required.) Also

= =2l1in
2

_d 42 in
=3
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The contributions of the two flanges and the web to the moment of inertia I, are

BT®
Element 4 AD?
ements 12
18in % (Lin)? .
2 Flanges [SLIZ(’—“) +(18in x 1in)(20.5 in)“] x 2 =15,132 in*
0.5in X (40 in)?
Web 0-5inx (@0in) _ ) 667in*
12
L 17,799 in*
17,799 in*
y =——— = 848in°
S, 1in 848 in

(b) Z,=ZAD, where A is the cross-sectional area of each element and D represents its distance from

the centroidal axis. In calculating Z,, the upper half of the web (in flexural compression) and the
lower half (in flexural tension) are taken separately.

Elements AD
2 Flanges [(18in x 1in) X 20.5in] X 2 =738 in®
2 half-Webs [(20in X 0.5in) X 10 in X 2 = 200 in®
Z, 938 in’
Z. =938in"

5.5. Repeat Prob. 5.4 for four 13-in-diameter holes.

For each flange, gross area = 18in” (as in Prob. 5.4), 15 percent of gross area = 0.15 x 18 in® = 2.70 in?,
hole area =2 x (13 + 15)in X 1 in = 3.25 in".

In flexural design, only the hole area in excess of 15 percent of the flange area is deducted. Design
hole area =3.25in> — 2.70 in> = 0.55 in” for each flange.

(a) Adjusting [, in Prob. 5.4:
Hole I, = ZAD* =[0.55in” X (20.5in)*] X 2 = 462 in*
Net section /, = gross section I, — hole I,
=17,799 in* — 462 in*

=17,337in*
I, 17,337in? .
Net section §, = = = _m =826in’
c 21in

(b) Adjusting Z, in Prob. 5.4:
Hole Z, =2AD = (0.55in” X 20.5in) X 2 =23 in’

Net section Z, = gross section Z, — hole Z,
=938in* —23in’
=915in’

5.6. For a simply supported W24x76 beam, laterally braced only at the supports, determine the
flexural design strength for () minor-axis bending and (b) major-axis bending. Use the Load
Factor Design Selection Table for Beams in Part 3 of the AISC LRFD Manual, an excerpt
from which appears herein (with permission) as Table 5-3. Steel is A36.
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M,

Fig. 5-9

$,M, = 540 kip-ft W24 x 76
C, =10
$,M, = 343 kip-ft
1 | L,
L,=28.0ft L, =234ft

[CHAP. 5

The W24x76 is a compact section. This can be verified by noting that in the Properties Tables in Part 1
of the AISC LRFD Manual, both b,/2t, and A, /t, for a W24 x76 beam are less than the respective flange

and web values of A, for F, = 36 ksi (Table 5-1).

(a) For minor- (or y-) axis bending, M,, =M, = Z F, regardless of unbraced length (Eq. [5.6]). The
flexural design strength for minor-axis bending of a W24 x76 is always equal to ¢, M,, = ¢,Z F, =
0.90 x 28.61in’ x 36 ksi = 927 kip-in = 77 kip-ft.

(b) The flexural design strength for major-axis bending depends on C, and L,. For a simply supported
member, the end moments M, =M, =0; C, = 1.0.

Figure 5-9 can be plotted from the information in Table 5-3:

For 0< L, <(L,=8.0ft),

®sM, = ¢, M, = 540 kip-ft

At L, =L, =23.41t, p,M,, = ¢,M, = 343 kip-ft. Linear interpolation is required for L, <L, <L,. For
L, > L,, refer to the beam graphs in Part 3 of the AISC LRFD Manual.

Table 5-3 Excerpt from Load Factor Design Selection Table (AISC LRFD Manual,

Part 3)
For F, = 36 ksi
Z.xv (prpv ¢hMrv Lp Lr
in’ Shape kip-ft kip-ft ft ft
224 W24 x84 605 382 8.1 24.5
221 W21x93 597 374 Tt 26.6
212 W14 x120 572 371 15.6 67.9
211 W18x97 570 367 11.0 38.1
200 W24 X76 540 343 8.0 234
198 W16x100 535 341 10.5 42.1
196 W21x83 529 333 7.6 24.9
192 W14 x109 518 337 1545 62.7
186 W18x86 502 324 11.0 35.5
186 W12x120 502 318 13.0 75.5
177 W24 X68 478 300 7.8 224
175 W16x89 473 302 10.4 38.6
Note: Flexural design strength ¢, M, = ¢, M, as tabulated is valid for L, =L,,. If C,=1.0,
L,, = L,; otherwise, L,, > L,. Here ¢, =0.90.
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5.7

5.8.

For the same W24X76 beam in major-axis bending, laterally braced at its centerline, with
either a uniform load or a concentrated load at the center, determine the flexural design
strength.

According to Eq. [5-10]

03 ()]
=|175+1.05—+0.3 =2.3
G, [ 75 v v

2 2

Refer to Table 5-2. For either unbraced half of the beam under either loading indicated, M, =0 and
M,>0; M,/M,=0. In Eq. [5-10], C, =(1.75+ 1.05x 0+ 0.3 x 0) = 1.75.

Figure 5-10 can be derived from Fig. 5-9 as follows. For all L,, the design flexural strength for
C, =175, ¢M,.(C, =1.75) = 1.75 X ¢p,M,(C, = 1.0) = ¢,M,,.. The previous (C, = 1.0) design flexural
strengths are multiplied by (C, =1.75); however, the plastic moment strength (¢,M,, = 540 kip-ft)
cannot be exceeded.

¢bM W24 x 76
" _ i g C, =175
CobsM, = 1.75 x 540 kip-ft = 945 kip-ft
—————— _—
% R
. P CobsM, = 1.75 X 343 kip-ft
ey / = 600 kip-ft
$,M, = 540 kip-fi T
.M, = 343 kip-fi Bl P
BN
b
~
g
~ ~
L,
; 4 L,
L, =80f L =2341
Fig. 5-10

Select the most economical rolled shape for a 27-ft simply supported floor beam. The upper
(compression) flange of the beam is adequately welded to the floor deck at 1 ft 0-in intervals.
Dead load supported by the beam (including its own weight) is 1.3 kips per linear foot; live
load is 2.6 kips per linear foot. Steel is A36. Assume:

(a) There is no member depth limitation.

(b) The deepest (architecturally allowable) member is a W21.

(c) The deepest desired member is a W18.

For the case of dead load and floor live load only, the critical load combination in Chap. 2 is formula
(A4-2):

L.2D +1.6L +0.5(L, or S or R) = 1.2 x 1.3 kips/ft + 1.6 x 2.6 kips/ft + 0 = 5.7 kips/ft
For uniformly distributed loads, maximum M = wl*/8 and V = wl/2. (See Table 5-2.)
_ 5.7 kips/ft x (27 ft)’
8
kips 27 ft

x 2B ki
ft 2 s

Required M, = 521 kip-ft

Required V,, =5.7

Here, L, =1.0< L, (all rolled shapes).
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5.9.

5.10.

5.11.
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(a) In Table 5-3, as in the beam Selection Table in the LRFD Manual, the most economical beams
appear in boldface print. Of those beams, the one of least weight for which ¢, M, = ¢, M, =
521 kip-ft is a W24 x76.

Checking shear strength with Eq. [5.12], for h/t, = (418/\/E = 418/V36 = )69.7

V,= 0.6EA, =0.6X36ksi X dt,,
¢.V, =0.90 % 0.6 x 36 ksi dt,, = 19.4 ksi X dt,

For a W24x76, h/t, =49.0<69.7. (See Properties Tables for W Shapes in the AISC LRFD Manual,
Part 1.) Then ¢, V, = 19.4 ksi X 23.92in X 0.440 in = 205 kips > 77 kips required. Use a W24Xx76.

(b) By inspection of Table 5-3, the least-weight W21 for which ¢,M,, = ¢, M, =521Kkip/ft is a
W21x83. Checking shear: ¢,V, =19.4ksi x dt,. For a W21x83, ¢,V,=19.4 ksi X 21.43 in X
0.515 in = 214 kips > 77 kips required. Use a W21x83.

(c) By inspection of Table 5-3, the least-weight W18 for which ¢,M,. = ¢, M, =521 kip-ft is a
W18x97. Checking shear: ¢,V, =19.4ksi x dt,. For a W18x97, ¢,V, =19.4ksi X 18.59in x
0.535 in = 193 kips > 77 kips required. Use a W18x97.

(Note: In lieu of calculations, the design shear strengths ¢, V, for W shapes can be found tabulated
in the section Uniform Load Constants in Part 3 of the AISC LRFD Manual.)

Repeat Prob. 5.8 assuming that the floor deck is not present and the beam is laterally braced
only at midspan and the supports.

For this case, C, =1.75, as in Prob. 5.7. From Fig. 5-10, it is evident that L, =13.5ft<L,, for a
W24x76. Similar plots will show the same values for the other beam sections in Table 5-3. For these
shapes, the design flexural strength ¢, M, = ¢,M,,, as for the fully braced case. Accordingly, the results
of Prob. 5.8 are still valid.

Repeat Prob. 5.8 for a beam braced only at its end supports.

Here, C, = 1.0. For some of the W shapes in question, L, > L,. The beam graphs in Part 3 of the AISC
LRFD Manual (for C, = 1.0, F, =36ksi) are helpful in this case. In the graphs, the solid lines denote
the most economical W shape; the dashed lines indicate alternates. One page of the AISC beam graphs
is reproduced (with permission) as Fig. 5-11, where it can be seen that at L, = 27 ft, among the members
with ¢, M, =521 kip-ft, a W21x101 (solid line) is most economical; a W18x119 (dashed line) can be
used if beam depth is limited to 18 in.

Determine C, for the span of the continuous beam shown in Fig. 5-12.

(a) Lateral braces are provided only at the supports.

(b) Lateral braces are provided at midspan and the supports.

(a) In Eq. [5.10], M,/M,= —(500 kip-ft/500 kip-ft) = —1.0 where M,/M, is negative because the end
moments M, and M, cause rotations in opposite directions.

M, (M,>2
=1. 05—=+03l—) =23
G, 175+105M2+ M,

=1.75 + 1.05(= 1.0) + 0.3(=1.0)?
=1.75—-1.05+0.3
=1.0



CHAP. 5]

$,M, —Design moment (2.0 kip-ft increments)
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COMPACT BEAMS AND OTHER FLEXURAL MEMBERS

Beam design moments (¢ = 0.9, C, = 1, F, = 36 kips/in®)

32 34 36 38

Unbraced length, ft

Fig. 5-11 (Reproduced with permission from the AISC LRFD Manual.)
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¢

¢ _ __ _ [

J --"_A ‘*——___| —————— VAN J
|

200 kip-ft
Required flexural
strength, M,
; 1

500 kip-ft 500 kip-ft

Fig. 5-12

(b) In Eq. [5.10], M,/ M, = +(200 kip-ft/500 kip-ft) = +0.4 for both halves of the span. Here, M,/M, is
positive because the moments M, and M, cause rotations in the same direction.

C, = 1.75 + 1.05(+0.4) + 0.3(+0.4)°
=1.75+0.42 + 0.05
=2.22

5.12. Determine C, for the span of the continuous beam shown in Fig. 5.13. Lateral bracing is
provided only at the supports.

In Eq. [5.10], M,/M,= +(400 kip-ft/400 kip-ft) = +1.0, where M,/M, is positive because the end
moments M, and M, cause rotations in the same direction.

M
C,=175+1.05 M‘

iy

M,
+0.
(3

5

> =23

=175+ 1.05(+1.0) + 0.3(+1.0)’=2.3
=1.75+1.05+0.3=23

=3.10=23
=23
C P T = = [
J A S —— - =7\ J
400 kip-ft

Required flexural -\
et o \'
400 kip-ft

Fig. 5-13
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5.13. Determine the following parameters for the built-up section in Fig. 5-8: DM, GuM,, L,
and L, (strong axis bending). Assume A36 steel.

According to Eq. [5.7], M,, = ZF,. As determined in Prob. 5.4, Z, =938 in°’.
oM, = ¢, Z F, =0.90 X 938 in” x 36 ksi
= 30,391 kip-in = 2533 kip-ft

According to Eq. [5-8], M, =S.(F, — F). The residual stress F, = 16.5kips for welded shapes. As
determined in Prob. 5.4, S, = 848 in’.

oM, = ¢,S.(F, — F) = 0.90 x 848 in* X (36 — 16.5)ksi
= 14,882 kip-in = 1240 kip-ft
According to Eq. (F1-4), for I-shaped members

_ 300,
P \/F

L

The radius of gyration
I

“
r,o=\/=

A

The contributions of the two flanges and the web to the moment of inertia /, are

BT?
El t +AD?
ements 3
lin X (18in)*
2 Flanges [i% + 0] x2=972in*
40in % (0.5 in)*
Web VX O30 4= 0.4 in*
12
I 972in*

Cross-sectional area A = (18in X 1in) X 2 +40in X 0.5in = 56 in> and

972 in’ .
r,= —-=4.17in
’ 56 in”

300x4.17in
P \/%

According to Eq. (F1-6), for I-shaped members

}\/1 +V1+ X,(F, - F)

n  |EGJA

X == |——
LS, 2

X2=4C“' (i)-
1, \GJ

Here, r,=4.17in, F,—F = (36— 16.5)ksi=19.5ksi, S,=848in’, A =56in> E =29,000 ksi, G=
11,200 ksi, and

=208in=17.4ft

nX

L=
F,

where

>bt?
3

J==—=4{[18in x (1in)’]2 + [40in X (0.5 in)"]}

=13.67 in*
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For I-shaped members, C,, = (I,/4)(d —t;)*. Then

[ 848in* % (42— 1)in

=005
11.200 ksi X 13.67 in4]

. \/29,000ksix11.2001<si><13,67m4><56m2
' 848in’ 2

= 1306

4.17in x 1306 z
L,=22 02 PN/ 4 V1 +0.05(19.5 ksi)®
19.5 ksi

=658 in = 55 ft

5.14. Simply supported 30-ft-long floor beams, WI18x35, are spaced 10ft Oin center-to-center.
What is their maximum deflection under a live load of 50 Ib/ft*?

Kips

1b 1b
=50—x10.0ft=500—=
" ft* 0% ft

0.5
f

For a W18x35 beam, I, = 510in. From Table 5-2, for a uniformly loaded simply supported beam, the
maximum deflection

B Swi*
T 384E]

k' "
5% o.s%’fx (30 ft)*
= : x (12 in/ft)’

K
384 x 29,000 —P% % 510 in*
n-

) ) ) =0.621in
Since live load deflection

L 30 i
sl PO X TR TR

- 0
360 360 Sl

it should generally be acceptable.

5.15. Determine the maximum deflections of the same W18x 35 beams under concentrated loads of
7.5 kips at midspan.

From Table 5-2. for a concentrated load on a simply supported beam at midspan; the maximum
deflection
P’ 7.5kips X (30 ft)* x (12 in/ft)’

TA8EI '
48 48 x 29,000 P

1
in’

x 510 in*

=0.491in

Supplementary Problems

Are the beams in Probs. 5.16 and 5.17 compact

(a) In A36 steel?
(b) If F,=50ksi?
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5.16. W14x90.
Ans. (a) Yes. (b) No.

5.17. W21x68.
Ans. (a) Yes. (b) Yes.

5.18. For the W10x49 in Prob. 3.4 (Chap. 3), determine the appropriate design cross section for bending.

Ans. The gross section.

5.19.  The simply supported beam in Fig. 5-14 is subjected to a concentrated factored force of 50 kips. Steel is
A36. Assume continuous lateral bracing.
(a) Determine the required flexural strength.
(b) Select the most economical W shape.
(c) Select the most economical W21.
(d) Select the most economical W16.

Ans.  (a) M, =400 kip-ft. (b) W24x62. (c) W21x68. (d) W16x77.

P, = 50 kips
7 ’]; 16 i , 16 fi 7
< > )
Fig. 5-14

5.20. The beam in Fig. 5-14 is braced at the supports and quarter points only. Determine C, for each
unbraced length.

Ans. (See Fig. 5-15.)

Fig. 5-15

5.21.  Select the most economical W section for the beam in Fig. 5-14, braced at the (a) supports and quarter
points only; (b) supports and midspan only; (c¢) supports only.

Ans.  (a) W24x62. (b) W24X62. (c) W18x97.

5.22. 'The unfactored concentrated live load for the W24x62 beam in Fig. 5-14 is 20 kips. Determine the
maximum live-load deflection.

Ans. A=0.611n.



Chapter 6

Noncompact Beams and Plate Girders

NOTATION
A = cross-sectional area of member, in’
A,, = cross-sectional area of stiffener or pair of stiffeners, in’
A, =web area, in® = dr,,
a = clear distance between transverse stiffeners, in
a, = ratio of web area to compression flange area
b = width, in
by= width of flange, in
C, = bending coefficient, defined in Eq. [5.10]
C, = shear parameter defined in Eqs. (A-G3-5) and (A -G3-6)
D = coefficient for use in Eq. (4-G4-2)
d = overall depth, in
F., = critical plate girder compression flange stress, ksi
F, = compressive minimum yield stress, ksi
F, , = specified minimum yield stress of the stiffener material, ksi
h, h.= web dimensions defined in Fig. 6-2, in
[ = moment of inertia, ir.*
I, = moment of inertia of stiffener or pair of stiffeners, in*
J = torsional constant, in*
j = coefficient defined in Eq. (A-G4-1)
k = coefficient defined in Eq. (A-G3-4)
L, = unbraced length, ft
M, = nominal flexural strength of member, kip-in
M, = plastic moment, kip-in
M, = limiting buckling moment when 4 = 4,, Kip-in
M, = required flexural strength, Kip-in
Rp¢ = plate girder flexural coefficient, defined in Eq. (A-G2-3)

r = radius of gyration, in
rr = radius of gyration of the compression flange plus one-third of the compression

portion of the web taken about an axis in the plane of the web, in
S = elastic section modulus, in’
S,. = elastic section modulus referred to the compression flange, in’
S, = elastic section modulus referred to the tension flange, in’
t = thickness, in
t;= thickness of flange, in
t,, = thickness of web, in
V,, = nominal shear strength, kips

62
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V,, = required shear strength, kips
x = subscript relating symbol to the major principal centroidal axis
y = subscript relating symbol to the minor principal centroidal axis
Z = plastic section modulus, in’
A =slenderness parameter (e.g., width-thickness ratio)
A, =largest value of A for which M, = M,
A, = largest value of A for which buckling is inelastic
¢»M, = design flexural strength, kip-in
¢, = resistance factor for flexure = 0.90
¢, V,, = design shear strength, kips
¢, = resistance factor for shear = 0.90

INTRODUCTION

This chapter covers flexure of noncompact members, that is, beams with a width-thickness ratio
(for flange or web) > 4,. The subject of the next section is noncompact beams with a width-thickness
ratio (4): 4, <A =4,. Plate girders with slender webs (4> 4,), usually stiffened, are covered in the
following section.

NONCOMPACT BEAMS

The flexural design strength is ¢,M,, where ¢, =0.90. For noncompact beams, the nominal
flexural strength M, is the lowest value determined from the limit states of

lateral-torsional buckling (LTB)

flange local buckling (FLB)

web local buckling (WLB).
For A, <A=2A,, M, in each limit state is obtained by linear interpolation between M, and M,, as
follows.

For the limit state of lateral-torsional buckling,

A=A N1
M,l:C{M—M—M,< Lioi=M, -Fl-
»| M, — (M, )/1,—/1,,” i (A-FI-2)
For the limit states of flange and web buckling
A~ A,
M, = Mp — (MI, = M,)(m—) (A-F1-3)
3 P

For all limit states, if A<A,, M, =M,. Expressions for M,, as well as for M,, A, 4,, and 4, in
each limit state, are given in Table 6-1 (which is an abridged version of Table A-F1.1 in App. F
of the AISC LRFD Specification).

As shown schematically in Fig. 6-1, the flexural design of noncompact beams can be
accomplished by

Looking up in Table 6-1 values for M, and M,, 4,, and 4, for each of the relevant limit states.
Graphically interpolating in each case to obtain an M, for the given A.
Selecting the minimum M, as the nominal flexural strength.
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Table 6-1 Flexural Strength Parameters

Cross Sections M, Limit State M, A A, A,
Channels and doubly and E,Z, LTB: doubly (F,—F)S. | L, 300 See Egs. (F1-6), (FI-8),
singly symmetric I-shaped symmetric r, VF, and (F1-9) in Chap. §
beams bending about members and '
major axis channels
;Tn?m:::gc‘y (F-F)S.| Ly 300 | Value of A for which
members =FE,S, r, VF, M., =M, withC, =1
b 65 141
F,—F)S — —_—
FLB (F, — F)S, p VE 10 for rolled shapes
106
m for welded shapes
h 640 970
WLB ES. — —= =
Sl | VR VE,
Channels and doubly sym- | FZ, FLB ES, Same as for major-axis bending
metric I-shaped members
bending about minor axis
Solid rectangular bars L, 3570 VJA 57,000 VJA
. . . FZ, LTB E;S; — —— ——
bending about major axis 4 4 7 M, M,
Symmetric box sections
L 3570 VJIA 7,000 V.
loaded in a plane of FZ LTB (F,— F)S, =k _—— 37,000 via
’ , M M
symmetry d 2 7
b 190 238
e Mol | VR VE-F,
h 640 970
B F, —= —_ .
WL S L VF, VE,

MPQ——————-— ————N——AT\
le— — — — — = — — — — — —
Ty M, (WLB)

Minimum M, for design M, (FLB)

' f
1 |
1 | l
| ' |
| | |
| | l
| l l
| | |
: - : l ‘ —
A T LA T x, A, T %, A
A A A

\ ~ P - J . _
FLB LTB WLB

Fig. 6-1 Nominal flexural strength of a noncompact beam (example)
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Shear capacity should also be checked, as indicated in Chap. 5. The design shear strength is

¢, V., where ¢, =0.90 and V,,, the nominal shear strength, is determined from Eq. [5.12], [5.13], or
[5.14].

The definitions of the terms used above are

A =slenderness parameter = minor axis slenderness ratio L,/r, for LTB = flange width-

thickness ratio b/t, defined in Fig. 5-2, for FLB = web dépth-thickness ratio h./t,,
defined in Fig. 5-2, for WLB

A, = the largest value of A for which M, = M,
A, = largest value of A for which buckling is inelastic
M, = nominal flexural strength, kip-in
M,, = plastic moment, Kip-in
M, = buckling moment at A = 4,, kip-in
C, = bending factor, as defined in Eq. [5.10]
V,, = nominal shear strength, kips

Additional terms used in Table 6-1 are

F, = specified minimum yield stress, ksi
Z, = plastic section modulus about the major axis, in’
Z, = plastic section modulus about the minor axis, in’
S, = elastic section modulus about the major axis, in’
S.c =S, with respect to the outside fiber of the compression flange, in’
S.. = S, with respect to the outside fiber of the tension flange, in’
S, = elastic section modulus about the minor axis, in’
L, = laterally unbraced length, in
r, = radius of gyration about the minor axis, in
b, t, h., t, = dimensions of cross section, defined in Fig. 5-2, in
A = cross-sectional area, in’

J = torsional constant, in*

F, = compressive residual stress in the flange = 10 ksi for rolled shapes = 16.5 ksi for
welded shapes

PLATE GIRDERS

In the AISC LRFD Specification, two terms are used for flexural members: beam and plate
girder. The differences between them are as follows.

Beam Plate Girder
Rolled or welded shape Welded shape
No web stiffeners and Web stiffeners or
web h./t, =970/ VF, web h./t,, >970/VF,, or both

Stiffeners are discussed later in this chapter. Web stiffeners are not required if web h,/t,, <260
and adequate shear strength is provided by the web in accordance with Eqs. [5.12] to [5.14].

(Please note: Two different parameters in the AISC LRFD Specification refer to the clear height
of the web: 4 and h.. In Sec. BS of the LRFD Specification they are thus defined:

For webs of rolled or formed sections, & is the clear distance between flanges less the fillet or
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corner radius at each flange; 4, is twice the distance from the neutral axis to the inside face of
the compression flange less the fillet or corner radius.

For webs of built-up sections, 4 is the distance between adjacent lines of fasteners or the clear
distance between flanges when welds are used and A, is twice the distance from the neutral axis

to the nearest line of fasteners at the compression flange or the inside face of the compression
flange when welds are used.

The distinction between h and A, is shown in Fig. 6-2, where it can be seen that for doubly symmetric
cross sections, h = h_.)

] ]«—————Compression flanges————| ]
Y
th,
Neutral axis ¢ +h,
h h
N
v
<«————————— Tension flanges —————>
(a)
[ <———— Compression flanges —————[ ]
S
9P
th,
h Neutral axis - . ,
L0 .
=)

Tension flanges ——————»[ ]
(same as compression flanges)

(b)

Fig. 6-2 Definitions of 4 and A, (a) singly symmetric built-up sections; (b) doubly symmetric built-up sections

For plate girders, the maximum permissible web slenderness 4 /¢, depends on the spacing of the
stiffeners.

If
h 2000
=1.5, —— A-G1-1
=V ( )
If
Helf, Ceacilo. (A-G1-2)
h 7t VE(E+E)
where a = clear distance between transverse stiffeners, in
t,, = web thickness, in
F, = specified minimum yield stress of steel, ksi

E, = compressive residual stress in flange = 16.5 ksi for plate girders

Plate girders are covered in App. G of the AISC LRFD Specification. The stiffening of slender
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plate girder webs enables them to exhibit significant postbuckling strength through “tension field
action.” After the web buckles, a girder acts like a Pratt truss: the stiffeners become vertical
compression members, and the intermediate web panels act as diagonal tension members.

DESIGN FLEXURAL STRENGTH OF PLATE GIRDERS

The design flexural strength is ¢,M,, where ¢, =0.90. To determine the nominal flexural
strength M,: if h./t, =970VE,, see Chap. 5 for compact shapes, and see the previous section of
Chap. 6 for noncompact shapes.

If h./t, >970/VF, (i.e., the web is slender), M, is governed by the limit states of tension flange
yielding and compression flange buckling, as follows.

For yielding of the tension flange

M, = S.RpcF, (A-G2-1)
For buckling of the compression flange
M, = S, .RpcF., (A-G2-2)
The nominal flexural strength M, is the lower value obtained from these equations, where
Ry = 1-0.0005 a,(ﬁf—ﬂ)sl.ﬂ (A-G2-3)

where a, =ratio of web area to compression flange area
F., = critical compression flange stress, ksi
F, = minimum specified yield stress, ksi
S, = elastic section modulus referred to compression flange, in®

S, = elastic section modulus referred to tension flange, in’
The critical stress F,, in Eq. (A-G2-2) depends on the slenderness parameters 4, 4,, 4,, and Cp.
For A=A,

E,=F (A-G2-4)
For A, <A=A4,
E,= C,,E.[l —% G__i”)] <F, (A-G2-5)
By
For A> A,
E, = (4-G2-6)

The slenderness parameters are determined for both the limit state of lateral-torsional buckling and
the limit state of flange local buckling; the lower value of F,, governs.

For the limit state of lateral-torsional buckling

L
A= r—” (A-G2-7)
T
300
b= T (A-G2-8)
¥
756
A = e— - -
= VE (A-G2-9)

Cp(; = 286,000Ch (A ‘GZ']O)
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where C, is determined from Eq. [5.10] and r7 is the radius of gyration of compression flange
plus one-third of the compression portion of the web taken about an axis in the plane of the
web, in. For the limit state of flange local buckling

A= %ff (A-G2-11)
3= (A-G2-12)
VE,
A= 150 (A-G2-13)
VF,
Cps=11,200 (A-G2-14)
C,=1
The limit state of web local buckling is not applicable.
DESIGN SHEAR STRENGTH OF PLATE GIRDERS
The design shear strength is ¢, V,, where ¢, = 0.90.
For h/t, < 187Vk/F,
V,=0.6A_F, (A-G3-1)
For h/t, > 187Vk/F,
V,= 0.6Awa<Cl, + L) (A-G3-2)
1.15V1 + (a/h)?
except for end panels and where
3.0
a or
E> 260 [6.1]
(h/t,)?
In such cases tension field action does not occur and
V,=0.6A_F,C, (A-G3-3)
In the preceding equations
k=5+ W (A-G3-4)

except that kK = 5.0 if Expression [6. 1] is true or if no stiffeners are present; A,, is the area of the web,
in®=dt,,; and d is the overall depth, in.

If
h k 187Vk /K
187\/Es—5234\/:, C, ST (A-G3-5)
E t, E, hit,

h k 44,000 k
2034 \ﬁ , Gmare® A-G3-6
. F (It )F, (4-G3-6)

If
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WEB STIFFENERS

Transverse stiffeners are required if web i/t =260 or web shear strength, as determined from
Chap. 5 (for unstiffened beams), is inadequate. The stiffeners should be spaced to provide sufficient
shear strength in accordance with the preceding provisions for plate girders.

Additional requirements for stiffeners are

L, =at)j [6.2]
whenever stiffeners are required
E’ ‘/u 2
and A ZF' [0.15Dhtw(1 -C,) — 18t 1 =0 (A-G4-2)
y,st v'n
for tension field action
2.5
here j=———2=0.5 A-G4-1
and I, = moment of inertia of a transverse web stiffener about an axis in the web center for

stiffener pairs or about the face in contact with the web plate for single stiffeners, in*
A,, = cross-sectional area of a transverse web stiffeners, in”
F, = specified minimum yield stress of the girder steel, ksi
F, ,, = specified minimum yield stress of the stiffener material, ksi

D = 1.0 for stiffeners in pairs
1.8 for single angle stiffeners
2.4 for single plate stiffeners

V,, = required shear strength at the location of the stiffener, ksi
and C, and V, are as defined above.

Plate girders with webs that depend on tension field action [i.e., their shear strength is governed
by Eq. (A-G3-2)], must satisfy an additional criterion, flexure-shear interaction.

V., V. V.
If 0f—Lac—2 =21 33
M?l u M”
MU ‘/vll
then o T0.625 ¢ =<1.24 (A-G5-1)

n n

must be true. Here, V, and M, are the required shear and moment strengths at a cross section
calculated from the factored loads; V, and M, are the nominal shear and moment strengths
(V, = ¢V, and M, = ¢M,; ¢ =0.9).

STIFFENER DETAILS

Special requirements apply to stiffeners at concentrated loads or reactions; see Chap. 12.

The web stiffeners provided in accordance with the provisions cited in this chapter may be
one-sided or two-sided. If a pair of stiffeners is used, they can be welded to the web only. Single
stiffeners are also welded to the compression flange, as are stiffeners attached to lateral bracing. The
welds connecting stiffeners to girder webs are stopped short of the flange four to six web thicknesses
from the near toe of the web-to-flange weld.
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ROLLED VERSUS BUILT-UP BEAMS

Because they are more economical than their welded equivalents, rolled beams are used
whenever possible. Rolled W shapes (the most popular beams) are available in depths of 4 to 40 in
(W4 to W40). Welded girders are used when (1) the depth must exceed 40 in or (2) the rolled shapes
available for the specified depth do not provide sufficient bending strength (a function of Z,) or
stiffness (a function of /). Regardless of whether rolled or welded shapes are utilized, beams are
normally oriented to take advantage of the superior major-axis properties (Z, > Z,and [, >1)).

Solved Problems

6.1. For the welded section in Fig. 6-3 (selected from the table of Built-Up Wide-Flange Sections
in Part 3 of the AISC LRFD Manual), determine the design moment and shear strengths.
Bending is about the major axis; C, =1.0. The (upper) compression flange is continuously
braced by the floor deck. Steel is A36.

\
X

28.5
«

58 in
56 in

— | |e— 1, = 7/16in

First, compactness should be checked. Working with Table 6-1 (for a doubly symmetric 1 shape bending
about its major axis):

Flange A=—-=—= —=9.0

(For the definition of b for a welded I shape, see Fig. 5-2.)

Fl 3, =0 _ 65
ange ;7—\?:%_%:10.8

For the flange A < 4,. Therefore, the flange is compact, and M, = M, for the limit state of flange local
buckling (FLB).

h, 56i .
Web a=e=2_ 1280  (See Fig. 6:2.)
f, isIN
640 640
Web A,=—=—""_
25 /Ev \/':% =106.7
970 970

Web h=—==—x_161.7
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For the web, (4, =106.7) <(A =128.0) <(A, = 161.7). The web is noncompact; M,, <M, <M,, for the
limit state of web local buckling (WLB); M,,, is determined from Eq. (A-F1-3).

Next, a check is made of lateral bracing, relating to the limit state of lateral-torsional buckling
(LTB). For this continuously braced member, L, =0; M,, = M,, for LTB.

Summarizing;:
Limit State M,
LTB M,
FLB M,
WLB M, <M, <M,

The limit state of WLB (with minimum M,,) governs. To determine M,,, M,,, and M,, for a doubly

1223
symmetric I-shaped member bending about the major axis, refer again to Table 6-1.

There M,, = F,Z,, M,, = F,S, for WLB and from Eq. (A-FI-3) (for WLB):

A—A,,)
Py

The properties S, and Z, of the cross section in Fig. 6-3 must now be calculated.

Mnx = Mpx - (Mpx - er)(

58 in
2

I
S,=-, where c=-= =29in
c 2

The contributions of the two flanges and the web to the moment of inertia I, are

BT*
El t —+AD?
ements 12
18in x (1in)? 5
2 Flanges [—‘—“12#'1+(18mx1m)(28.5in)-]2 =29 244 in*
.44 in X in)?
Web M +0= 6,403 in*
12
I 35,647 in*
35,647 in*
=——, — 0. 3
=g = 1230in

To determine Z,, we calculate ZAD, where A is the cross-sectional area of each element and D
represents its distance from the centroidal x axis.

In calculating Z,, the upper and lower halves of the web are taken separately.

Elements AD

Flanges [(18in x 1in) x 28.5in]2 = 1026 in®

25 Webs [(28in x 0.441in) X 14in]2 = 343in’

Z, 1369 in®
Z,=1369in’

Determining flexural strengths, we obtain

_ 36 kips/in® X 1369 in’

B 12in/ft

36 kips/in® x 1230 in’
12 in/ft

M, =EZ,

= 4107 kip-ft

M,.=FES, = = 3690 kip-ft
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The value of M, can be obtained by linear interpolation using Fig. 6-4 or Eq. (A-FI1-3): M, =
3946 kip-ft.
The design flexural strength ¢, M, = 0.90 x 3946 kip-ft = 3551 kip-ft.
Shear strength for an unstiffened web is governed by Eq. [5.12], [5.13], or [5.14], depending
on h/t,.
Here, h/t, =561in/0.44 in = 128.0.
523 523

128>—=——==87.2
VE V3

Equation [5. 14] governs:

132,000 (58in X 0.44 in) X 132,000
Y (/1) (128.0)
=204.4 kips

The design shear strength ¢, V, = 0.90 x 204.4 kips = 184.0 kips.

V,=A

6.2. The welded beam in Prob. 6.1 frames into a column as shown in Fig. 6-5. Design web
stiffeners to double the shear strength of the web at the end panel.

1'/}.-_

]f\]l;

. S——

Fig. 6-5

At end panels there is no tension field action. The nominal shear strength for a stiffened web is
determined from Eq. (A-G3-3): V, = 0.6AF,C,. Assuming

h>234 a C —M A-G3-6
. £’ S TwinyE (4-G3-6)
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Substituting for C, in Eq. (A-G3-3), we obtain

44,000k . 26,400 k
(h/t,)’F, " (/1)

V., =0.6A,F X

As indicated in the text of this chapter, the case of no stiffeners corresponds to k =5. (This can be
verified by comparing the just-derived expression for V, with Eq. [5. 14].)
To double the shear strength, let k =2 x 5=10. In Eq. (A-G3-4)

5

k=S+ Gy

10

This implies a/h = 1.0 or a = h; thus, the clear distance between transverse web stiffeners a = h =561n.
Checking the original assumption, we obtain

i S6in K 10
L. =12 .o)>( 4\ﬁ= 4\/:=123.3) k.
(:W Hddm & By =25 ok

Stiffener design can be determined as follows. Because tension field action is not utilized, Eqs. (A-G4-2)
and (A-G5-1) can be ignored. However, Formula [6.2] must be satisfied: [, = at, j

2.5
where j = -—2=0.5
= (arny
2.5
j=—=-2=0.5

12
I, =56in x (0.44in)’ X 0.5 =2.34in*

Try a pair of stiffener plates, 25 in X } in as in Fig. 6-6
yap p g

—»{ |«—0.25in

Wep | Stiffeners
2.5in — eners

i % % 5.44 in
T 2.5 inl /

L

0.44 in

Fig. 6-6

The moment of inertia of the stiffener pair about the web centerline

~ 0.25in % (5.44in)’

I,= 0 =3.35in">2.34in* o.k.

Try a single stiffener plate, 35 in X } in, as in Fig. 6-7.
y P g

Web

/

0.44 in 3

3.5in Stiffener

—>{ |«—0.25in

Fig. 6-7
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The moment of inertia of the stiffener about the face of the web

_0.25in X (3.5in)’

L == 3 =3.57in*>2.34in" o.k.

6.3. See Prob. 6.1 and Fig. 6-3. Change the web thickness to t, = 3in. Determine the design
moment and shear strengths.

Checking web slenderness, we obtain

h, 56 970
<~‘= = =224)><A,=—=ﬂ_1617
¢ 0.25in F V3o oL

Because the web is slender, the member is classified as a plate girder, and the flexural design provisions
of this chapter govern [Egs. (A-G2-1) to (A-G2-14)]. (Since h/t, =224 <260, the girder web need only
be stiffened if an increase in its shear strength is required.)

The flexural design equations can be solved as follows:

For the limit state of LTB

L
A=—2=0 (A-G2-7)
rr
because L, =0 for continuous bracing.
For the limit state of FLB
b, 18in
=—=—"7"2=90 A-G2-11
2t;, 2X1lin ( )
65 65
9.0<(A =—=—-=10.8) A<G2-
P \/F\ \/% ( G 12)
Because A < 4, for both LTB and FLB
E,=F, =36ksi (A-G2-4)
for this plate girder.
h. 970
Rpg =1—0.0005 ,(—‘———— -G
- ol \/F> =1.0 (A-G2-3)

The ratio of web area to compression flange area
~56in X 0.25in
= T Binx Lin

Rpc=1-0.0005 x 0.78(224 — 161.7) = 0.98

=0.78

The nominal flexural strength M, is the minimum of
M, =S.RpcF, (A-G2-1)
M, = S.RpcF., (A-G2-2)

For a doubly symmetric shape, S,, =S..=S,. From above, F, =F, by Eq. (A-G2-4). Therefore, both
equations for M, reduce to

Mn.r = S\'RPG F;

in this case.
Determining S,, we obtain

=W ogin

d_58
2 2

S, =—, where c¢=
.
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6.4.

The contributions of the two flanges and the web to the moment of inertia /, are

BT?
Elements + AD?
12
18in x (1in)’ o .
2 Flanges [—-mlzﬂ +(18in X 1in)(28.5 m)‘]?, =29244in*
0.25(56 in)*
Web 0.25(6in)” = 3,659in*
12
I 32,903 in*
32,903 in*
s P g
29 1in
1135 in® x 0.98 x 36 kips/in>
M, = S.Ry.F, = 3337 Kip-ft
n xIV\PG1Ly 12 ln/ft lp

The design flexural strength ¢, M, = 0.90 x 3337 kip-ft = 3003 kip-ft.
Shear strength for an unstiffened web is governed by Eq. [5.12], [5.13], or [5.14], depending

on h/t,.
Here, h/t, =561in/0.25in = 224.0

523 523

ﬁ:@: 87.2)

224><

Equation [5. 14] governs

_ 4 132000 _ (58in x 0.25in)132,000
(R (224.0)
= 38.1 kips

The design shear strength ¢, V,, = 0.90 x 38.1 kips = 34.3 kips.

Va

Design web stiffeners for the end panels of the plate girder in Prob. 6.3, to increase shear
strength. Assume a =24 in.

Tension field action is not permitted for end panels of girders. The nominal shear strength is obtained
from Eq. (A-G3-3) in this chapter: V, =0.6A4, FC,.

To determine C,:
S

Y@ >t @awmisemy

. h  56in k [32.2
Since (- = = ) ( \/: _ it )
025 224 ) > (234 K 234 36 221.4
44,000 &
" (hIL)F,
Substituting for C, in Eq. (A-G3-3), we have

k=5

32.2

by Eq. (A-G3-6)

44,000 k
(h/t,)F,

26,400 k
nw (h/tn)z

_(58in x 0.251in)26,400 x 32.2
(56in/0.25 in)*

= 246 kips

V,=0.6AF, x
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The design shear strength becomes ¢, V, = 0.90 x 246 kips = 221 kips, a large increase over the 34.3-kip
I, =at)j

=

strength of an unstiffened web (in Prob. 6.3).
Stiffener design (with no tension field action) consists of complying with Formula [6.2]:

where - 2.5 2=0.5
"y 7

2.5
=—=2=11.6
(24 in/56 in)”

I,=24inx(0.25in)*x 11.6 =4.35in"

(]

Among the possible stiffener configurations are

(a) A single stiffener plate 4in X }in
[The moment of inertia of the single stiffener about the face of the web
0.25in X (4in)’
=+(m)= 5.33in*>4.35in'  o.k.]

(b) A pair of stiffener plates 3in X } in
[The moment of inertia of the stiffener pair about the web centerline

0.25 % (6.25 in)*
\.,=¥=5.o9m*>4.35m‘ 0.k.]

Repeat Prob. 6.4 for an intermediate web panel, including tension field action.

6.5.
As in Prob. 6.4, k =32.2, h/t, =224, and C, is determined from Eq. (A-G3-6).

_M000k _44.000x322
" (h/t,)’F, (224)x36

The nominal shear strength (including tension field action) is governed by Eq. (A-G3-2).
1-C,
V,= 0.6A.‘,F\,[Cv + —]
' L15SV1+ (a/h)’
1-0.78 .
] =300 kips

[0.78 + .
1.15V1 + (24in/56 in)’

The design shear strength is ¢, V, = 0.90 x 300 kips = 270 kips.
Stiffener design taking advantage of tension field action must comply with formulas [6.2],

(A-G4-2), and (A-G5-1). The designs in the solution to Prob. 6.4 comply with formula [6.2]. Checking

‘o
V, = 0.6 X (58in x 0.25 in) X 36 ~22
mn-

formula (A-G4-2), we obtain
J-

E V. 5
- [o. 15Dht, (1 - C,) ——— 182

Ay =
- F oV,

Assume V, = ¢, V, =270 kips.

(a) A single stiffener plate 4in X } in
36 ksi . 270 kips . .
= 0.15%2.4%x56in X 0.251in X (1 —0.78) X ——— — 18(0.251in)* | = —0.02 in°

6 ksi [ 5 in in x ( 8) 270 Kips 8(0.251in) ] 0.02 in

Any single stiffener plate (A,, > 0) is satisfactory.

Aw

(b) A pair of stiffener plates 3in X jin

36 ksi . . 270 kips . ] o,
=——-|0. ] 0.25in x (1 = 0. X —18(0.2 | =-0. B
A, {0 15X 1.0 X 561in X in X (1-0.78) 270 Kips 8(0.25in) 0.66 in

36 ksi
Any pair of stiffener plates (A,, > 0) is okay.
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6.6.

6.7.

Regarding criterion (A-G5-1) (flexure-shear interaction): V, =270kips, V, =300kips, M, =
3337 kip-ft (from Prob. 6.3). Let the required flexural strength M, = 1500 kip-ft at the same cross
section.

1 \ v 300 kips
Vi —M=O‘18/ft) > (1.334= 15hR

= - =0.12 ft)
M, 1500 kip-ft M, 3337 kip-ft /

Because (

criterion (A-G5-1) (flexure-shear interaction) need not be satisfied.

Determine the minimum web thickness for the plate girder in Fig. 6-3, both with and without
web stiffeners; assume A36 steel.

According to the AISC LRFD Specification (App. G), in unstiffened girders //t,, must be less than 260.

R <260 implies that 1, >—= =220 _ (5
= X —_— — =), n
3 IMPHEs That v =560~ 260 :
In stiffened girders (a/h = 1.5):
h 2000 2000
—E—— e —— =333
t.. VE V36
In stiffened girders (a/h > 1.5):
4,000
h_ 14000 14,00 o
tw VE(F, +16.5) V36(36+ 16.5)

The minimum web thickness:
h 56in

PRI STE
=333 333 =

if the stiffeners are closely spaced (a/h = 1.5). The theoretical minimum web thicknesses for this plate

girder are 0.22in if not stiffened and 0.17 in if stiffened. However, because of the need to weld (the
flange plates and stiffeners) to the web, a web thickness of less than j in is inadvisable.

Repeat Prob. 6.1 (Fig. 6-3) with the following changes: b, = 30in, L, =40 ft, and C, = 1.75.

Checking compactness with Table 6-1 (for a doubly symmetric I-shape bending about its major axis):

b, 30i
Flange g=l_Br_ = i
t 2t 2X1lin
65 65
Flange A= —F = —% =10.8
Flange ” 1o 1o 24.0

“VE-165 \36-165
For the flange, (4, = 10.8) < (1 =15.0) < (4, =24.0).
From Prob. 6.1, for the web (which has not changed)
(A, =106.7) < (A=128.0) < (4, =161.7)

The flanges and web are noncompact; M, <M, <M, for the limit states of FLB and WLB. In both cases,
M, is determined using the linear interpolation Eq. (A-FI-3).

Regarding lateral bracing and the limit state of LTB: A=L,/r,, where r,=VI/A. The
cross-sectional area A = (30in X 1in)2 + (56 in X 0.44 in) = 84.5in”. The contributions of the two flanges
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and the web to the moment of inertia /, are

BT’
Element +AD?
ents 5
: - \3
2 Flanges [ﬂ'—xl(jo—'") + 0]2 = 4500 in*
Web 56in x (0.44 in) +0 =04in*
12
I 4500 in*
4500 in* .
y = 84.5in,—7.30m
For LTB, i Sy
L X121
P L L L
r, 7.31in
For LTB
300 300
A, = =—==50.0
" VE V36

For LTB, A, can be determined (as indicated in Table 6-1) from Eqs. (F1-6), (FI-8), and (FI1-9) in
Chap. 5, as follows.

L X, >
A =—=——V1+VI+X,(FE - F)
F,,—F,\/ V1+X.(F, - F)

where

x [EGIA C. (S \
2= X,=4 (—)
S, 2 T \GJ

F'\.—F,=(36—16‘5) ksi = 19.5 ksi, A=84.5in’
E =29,000 ksi, G =11,200 ksi,
ZthJ 1

3 =7 ([30in x (1in)]2 + [S6n x (0.4 in)’]} = 21.6in*

For I-shaped members, C, = 1,/4(d —t;)°. Then

L I, I,

*T ¢ d/2 s8in/2 29in

X, =

J

The contributions of the two flanges and the web to the moment of inertia /, are

BT®

Element +AD?
ements 12
30in x (1 in)’ ;
2 Flanges [—mT(m)+(30mx1in)(28.5in)-]2 = 48,740 in*
44in x (56in)’
Web s inXigelny . o = 6,403in’
12
I 55,143 in*

_55,143in’

. : =1901in’
291in
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=900

¥ 7 \/29,000 kips/in® x 11,200 kips/in® x 21.6in* X 84.5 in
1

~ 1901 in° 2
B [1901 in® x (58 — 1) m]z 020
"1 11,200 ksi x 21.6in* :

For LTB,

A, :ngo—(; V1+V1+0.20(19.5)" = 144.3

For the limit state of LTB
(A, =50.0) < (1=65.8) < (4, =144.3)

In summary, for all three limit states (LTB, FLB, and WLB), 4, <4 <A4,; that is, the member is a
noncompact beam, and the ‘‘noncompact beam’ provisions of this chapter apply.

The equations for M, and M, are given in Table 6-1 (for a doubly symmetric I shape bending about
its major axis)

M,.=FZ,
M o= {(E — F)S; for LTB and FLB
" ES, for WLB

To determine Z,, we obtain ZAD.
In calculating Z,, the upper and lower halves of the web are taken separately.

Elements AD
2 Flanges [(30in X 1in) X 28.5in]2 = 1710 in’
2 half-Webs | [(28inx0.44in) x 14in]2= 343in’
Z; 2053 in®
Z,.=2053in’

Determining flexural strengths, we obtain

_ 36 kips/in® x 2053 in’

M, =FZ
e 12in/ft

= 6159 kip-ft

For LTB and FLB

19.5 kips/in® X 1901 in®
12 in/ft

M,=(F,— F)S, = = 3089 kip-ft

For WLB

36 kips/in® x 1901 in’
12 in/ft

M, =FES, = = 5703 kip-ft

The various results for A and M are plotted in Fig. 6-8. From the figure, or by solving Eqs. (A-F1-2) and
(A-F1-3), it is evident that FLB governs for minimum M,,,; M, = 5182 kip-ft.

The design flexural strength ¢, M, = 0.90 x 5182 kip-ft = 4664 kip-ft.

The design shear strength is 184 kips as in Prob. 6.1.

6.8. Repeat Prob. 6.7 with an additional change. The thickness of the web is £, = § in.

The design shear strength is as in Probs. 6.3 (for an unstiffened web), 6.4, and 6.5 (for a stiffened web).
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M, = 6159 kip-ft

|
e —
s \;\ m M, = 5703 kip-ft (V
M,, = 5182 kip-ft | e l P M, = 5406 kip-fi
l | — | | (LTB, C, = 1.75)
| | — : |
3 | ) T~ s, |
= | M., = 3089 kip-ft i ' ~ M, = 3089 kip-ft
| (FLB) | ‘ (LTB,C, = 1.0)
[ LTB '
| A 1
| . ' h
| A =658 :
| 1, =500 l ' A= 1443
e a— f : L : t A
A, = 10.8T A, =24.0 A, = 106.7 T A, = 161.7
A=15 A=128
~— _J A v )
FLB WLB
Fig. 6-8

Regarding flexural strength, the plate girder provisions must be applied because

(E— e —224)><20—20—161 7)
t, 025in VE V36

The appropriate equations are (A-G2-1) to (A-G2-14).
For the limit state of LTB, A=L,/r,

L300 300 _ o0

PTNE V36 T
756 756

A =——=-——==126.0
VE, /36

Determining r;, we obtain r, = VI, /A of a segment consisting of the compression flange plus
one-sixth of the web. (See Fig. 6-9.)

BT®
El t +AD?
emen 12
. s N\3
Flange LinX G0in)” o _ 250 in?
12
: S \3
L Web 9.3inx (0.25in)" . _,
12
I 2250 in*

v

A=(30inx 1in) + (9.3in x 0.25in) =32.3in’

250in°_
= —rt s n
=Nz o

_ L, _40ftx 12in/ft
" rr 83in

A =57.5

For LTB, (4, =50.0)<(A=57.5)<(4,=126.0). The value of C, is normally determined from Eq.
[5.10]; however, C, = 1.75 is stated in Prob. 6.7.



CHAP. 6] NONCOMPACT BEAMS AND PLATE GIRDERS 81

g _ 566in —93in
—>{ *«—0.25in N
Fig. 6-9
Regarding the limit state of FLB
=2% =2 s
A= \1/5%) = \]/%%= 25.0

For FLB, (4, =10.8) < (A =15.0) < (4, =25.0); C,, = 1.0 for FLB. The critical compression flange stress
F, is the lower value obtained on the basis of LTB and FLB. Because A, <A <4, for both LTB and
FLB, Eq. (A-G2-5) applies in both cases.

For LTB, we obtain

1 ( 57.5-50.0

2\126.0— 50.0)] =30k

D.,=175x36 ksi[l —

E,=36ksi
For FLB

1 (15.0 -10.8

e
2\25.0= 10.8)] =Sttt

E,=10x36 ksi[l -
F,=30.7 ksi

=1.0

Rpg=1-— 0.0005(1,(5!—" - )
t VE,
_ 561in X 0.25 in 047
30in X 1in
56in 970

0.25in  \/30.7

RP(,-=1—0.0005><0.47><< )51.0

Rp;=0.99
For the limit state of tension flange yielding
M, = S.RpcF, (A-G2-1)
For the limit state of compression flange buckling,
M,. = S.RpcF, (A-G2-2)

Because the plate girder is doubly symmetric, S, =S, =S,. Also, (F, =30.7ksi) < (F, =36 ksi). Eq.
(A-G2-2) governs.
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Determining S, :

Element BT3+ADZ
n
12
30in x (1in)’ N
2 Flanges [llz(—m—)—ﬂm inx 1 in)(28.5in)“]2 = 48,740 in*
0.25in X (56 in)’ _
Web —_— 4. = 3.,659in*
12
I, 52,399 in*
I 52399in*
§ == 22 D a0 i
T 58in/2 '“

The nominal flexural strength

1807 in® X 0.99 x 30.7 ksi
12 in/ft

Mnr = S.\'RPGET =

= 4576 kip-ft
The design flexural strength ¢, M, = 0.90 X 4576 kip-ft = 4119 kip-ft.

Supplementary Problems

For Probs. 6.9 to 6.12, refer to Fig. 6-10 and determine

(a) Whether the flexural member is a compact beam, noncompact beam, or plate girder.
(b) The design flexural strength.
(¢) The design shear strength.

Assume A36 steel, L, =0, C, =1.0.

F
v
-

78 in

T

5

6.9. b, =13in,t, =2in, t,=3in.
Ans. (a) Noncompact beam. (b) ¢,M,, =7829 kip-ft. (c) ¢, V, =391 Kips.




CHAP. 6] NONCOMPACT BEAMS AND PLATE GIRDERS

6.10.

6.11.

6.12.

6.13.

6.14.

b,=13in, t, =2in, t, =} in.

Ans. (a) Plate girder. (b) ¢,M,, =5763 kip-ft. (c) ¢, V, =25 kips.

b, =26in, t, = lin, t,, =} in.

Ans.  (a) Noncompact beam. (b) ¢,M,, = 7406 kip-ft. (c) ¢, V, = 381 kips.

b, =26in, t, = 1in, t, =} in.

Ans. (a) Plate girder. (b) ¢,M,, =5955Kkip-ft. (c) ¢,V, =24 kips.
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Design stiffeners to increase the design shear strength of the plate girder in Prob. 6.12 to 280 kips.

Neglect tension field action.

Ans.  Single 5in X j in stiffener plates or pairs of 4in X } stiffener plates, spaced at 2 ft Oin in either

case.

For the plate girder with stiffeners in Prob. 6.13, determine the design shear strength if tension field

action is included. Ans.  ¢,V, =371 kips.



Chapter 7

Members in Flexure and Tension

NOTATION

e = eccentricity, in or ft
M = bending moment, kip-in or kip-ft
M, . = nominal flexural strength for x-axis bending, kip-in or kip-ft
M, = nominal flexural strength for y-axis bending, kip-in or kip-ft
M, = required flexural strength for x-axis bending, kip-in or kip-ft
M,, = required flexural strength for y-axis bending, kip-in or kip-ft
P = axial tensile force, kips
P, = nominal tensile strength, kips
P, = required tensile strength, kips
x = major principal centroidal axis
y = minor principal centroidal axis
¢,M,,. = design flexural strength for x-axis bending, kip-in or kip-ft
¢»M,,, = design flexural strength for y-axis bending, kip-in or kip-ft
¢,, = resistance factor for flexure = 0.90
¢, P, = design tensile strength, kips
¢, = resistance factor for tension = 0.90 or 0.75 (See Chap.3.)

INTRODUCTION

This chapter applies to singly and doubly symmetric members subjected to combined axial
tension and bending about one or both principal axes. The combination of tension with flexure can
result from any of the following:

(1) A tensile force that is eccentric with respect to the centroidal axis of the member, as in
Fig. 7-1(a)

(a) (b) (¢)

Fig. 7-1 Combined tension and flexure

84
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(2) A tension member subjected to lateral force or moment, as in Fig. 7-1(b)
(3) A beam transmitting wind or other axial forces, as in Fig. 7-1(c)

INTERACTION FORMULAS

The cross sections of members with combined flexure and tension must comply with Formula
(H1-1a) or (H1-1b), whichever is applicable:

For (P,/¢,P,)=0.2

})ll 8 Mux MuY
—( 2 )51.0 (H1-la)
¢1Pn 9 (prnx d)any
For (P,/¢,P,) <0.2 p M M.
u ( ux uy >510 (H]-]b)
2¢1R1 (Pthx (Pthy

In these interaction formulas, the terms in the numerators (P,, M,,, and M,,) are the required
tensile and flexural strengths calculated from the combinations of factored loads in Chap. 2. The
terms in the denominators are as follows: ¢,P, is the design tensile strength as determined in Chap.
3, and ¢, M, is the design flexural strength as determined in Chap. 5 or 6. The subscript x refers to
bending about the major principal centroidal (or x) axis; y refers to the minor principal centroidal
(or y) axis.

Interaction formulas (H1-1a) and (H1-1b) cover the general case of axial force combined with
biaxial bending. They are also valid for uniaxial bending (i.e., if M,, =0 or M,, =0), in which case
they can be plotted as in Fig. 7-2.

$P, T
|
l
|
|
|
|
|
P, ‘
l
P, M l
. .8 M, |
+ 3 =1
oP, 9 oM, |
|
02¢P b —— e e e -
__1_ P., Mu _ /d-lv
2(¢Pn)+¢th ! ;
M, 094,M, M,

Fig. 7-2 Interaction formulas (H1I-la) and (H1-1b) modified for axial load combined with bending about one
axis only

Solved Problems

7.1.  Find the lightest W8 in A36 steel to support a factored load of 100 kips in tension with an
eccentricity of 6in. The member is 6 ft long and is laterally braced only at the supports;
C, =1.0. Try orientations (a) to (c¢) in Fig. 7-3.
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e 100 kips - ® 100 kips
e=6 inI e=6 iri

Fig. 7-3

Given

_ 100 kips X 6in

P, =100 kips; M, =P -
“ ps 12 in/ft

u u

= 50 kip-ft

For orientation (a) in Fig. 7.3
P,=100kips, M, =50kip-ft, M, =0
Try a W8x28: the design tensile strength (for a cross section with no holes)
o.F, =9 EA,
=0.90 X 36 ksi X 8.25 in” = 267 kips

[Chap. 3, Eq. (D1-1)]

For (L, = 6.0 ft) < (L, = 6.8 ft), the design flexural strength for x-axis bending

¢[7Mnr = ¢hMp = ¢hz,r1:y (Chap 5, Eq [5 7])
090 x27.2 in® X 36 ksi
- 12 in/ft

=73.4 kip-ft

which is also the tabulated value for ¢,M, for a W8x28 in the Beam Selection Table in Part 3 of the
AISC LRFD Manual.

P, 100 kips
é,P, 267 kips

the first of the two interaction formulas applies.

Since

=0.37>0.2

P, 8/ M, M,,
+—< + '>5L0
P, 9\OM,. PM,,
8 ( 50 kip-ft )
374= (o——40)=0.37+0.61=098<1.0 ok
037+ 5734 xipse 0 N

For orientation (b) in Fig. 7-3
P,=100kips, M, =0, M, =50kip-ft
Again, try a W8x28. For all L,, the design flexural strength for y-axis bending
oM, = pM, = ¢, Z,F, (Chap. 5, Eq. [5.6])

_0.90 X 10.1in* X 36 ksi
B 12 in/ft

=27.2 kip-ft

Because M,, =50 kip-ft > ¢, M,,, = 27.2 kip-ft, a W8x28 is inadequate. Try a W8x48: A, =14.1in",
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Z,=229in’
0.90 x 22.9in* x 36 ksi
M, = = 61.8 kip-ft
Py 12in/ft P
kips . 5 :
¢.P,=¢,FA, =0.90 X 36— x 14.1in° = 457 Kips
in”

Because (P,/,F,) = (100 kips/457 kips) = 0.22 > 0.2, interaction formula (HI-1a) again applies.

1)11 8 Mux Mu\'
+—<—+—>s1.o
oP, 9\¢o,M,. oM,
50 kip-ft
0.22+§<0 —"_’)=0.22+0‘72=0.94<1.0 o.k.
9 \" T 618 kip-ft

For orientation (c) in Fig. 7-3, assume that the load is eccentric with respect to both principal axes.
Referring to Fig. 7-3(c)
e, =ecos45°=61in x0.707=4.21in
,=esind5°=6inx0.707=4.2in
_ 100 kips x 4.2in

M.=P = 35.4 kip-ft
wx u€x 12 in/ft 1p
100 kips x 4.2 i
M, =P, =——2 " 22 35 4 kip-fi
’ ’ 12 in/ft
Again, try a W8X48. As above
P, 100 ki
— = P 022 0.2
¢.P, 457 kips

@.M,, = 61.8 kip-ft

Although the W8x48 is not listed in the Beam Selection Table in the AISC LRFD Manual, L, and
¢»M,,, can be calculated. From Eq. (FI-4) (Chap. 5):

3007, 3007,
L,=——=—+=50p
" VE /36 i

=50x2.08in=1041in = 8.7 ft
Since (L, =6.0ft) < (L, =8.7ft)
oM, = ¢M, = ¢, Z.F, (Chap. 5, Eq. [5.7])

090 X 49.0in” x 36ksi
B 12 in/ft

= 132 kip-ft

In Interaction Formula (HI-1a)

35.4 kip-ft 35.4 kip-ft) _
132 kip-ft * 61.8 kip-ft/

0.22 + 5(0.27 4+ 0.57)
022+0.75=0.97<10 o.k.

O.22+§ (
9

The most efficient configuration is orientation (a), strong axis bending, which requires a W8x28 as
opposed to a W8x48 for the other two cases.

7.2.  Determine the maximum axial tension that can be sustained by a continuously braced
WI10x19 beam with a required flexural strength M,, =54 kip-ft; A36 steel. Given are
M, = 54 kip-ft and M,,, = 0.
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For a W10x19

.
$.P, = ¢, F.A, =0.90 x 36~

—5 X 5.621in” = 182 kips
in

Since L, =0.<L,, $,M,, = ¢,M, = 58.3 kip-ft (A36 steel) as listed in the Beam Selection Table in the
AISC LRFD Manual.

M, 54 Kip-
w 1p ft =708
¢»M,, 58.3 kip-ft

Inspection of Formulas (HI-1a) and (H1-1b) indicates that (P,/¢,£,) <0.2 is required. Consequently,
the latter interaction formula governs.

P M., M,
( - ) =1.0
20.P, \¢oM,. ¢.M,,
it +(0.934+0.)=<0
2 x 182 kips ) U
P, =26 Kkips

The maximum required (or factored) axial tensile force is 26 kips.

Check the adequacy of a W10x30 as a simply supported beam carrying the concentrated
factored load shown in Fig. 7-4. The beam is of A36 steel and has lateral bracing only at the
supports.

. N,, = 8.66 kips
N, = 10 kips
N, \ 1
;__300 Y
1 N, = 5 kips
9 g —_— X —>
6 ft 6 ft e e
o > H*___‘._H
Fig. 7-4

This is a case of biaxial bending with no axial load (P, = 0). Interaction Formula (H1-1b) is applicable
since P,/P,=0<0.2.
For P, =0, Formula (H1-1b) reduces to

M

ux

M,
#———zz 1.0
¢th.\‘ ¢I)Mny
As shown in Fig. 7-4, the factored force N, is skewed with respect to the principal axes. It must first be
resolved into components parallel to each principal axis, as follows.

N,, = N, cos 30° = 10 kips x 0.866 = 8.66 kips
N,. = N, sin 30° = 10 kips x 0.500 = 5.0 kips

ux

The respective bending moments are

8.66 kips x 12 ft
Mo = 1ps

ux T

= 26.0 kip-ft

_ 5.0Kkips X 12 ft

M, = | = 15.0 kip-ft

where M,

ux

and M,, are the required flexural strengths for x- and y-axis bending, respectively.
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The design flexural strengths are determined as in Chap. 5. For a simple beam, C, = 1.0. For x-axis
bending, ¢, M, (L, =12.0ft; C, = 1.0) can be determined either directly from the beam graphs in Part
3 of the AISC LRFD Manual or by interpolation of the data in the Beam Selection Table presented
therein. The latter procedure is shown in Fig. 7-5.

$,M,, = 98.8 kip-ft

$,M,, = 63.2 kip-ft

x |
N ‘ WI0 x 30
! C, =10
|
|
| l
T R ‘ T
L,=57ft [ L, =2031t
| L,
L, =12.0ft
Fig. 7-5
Using either method one obtains ¢, M, = 83.4 kip-ft for the W10x30.
For y-axis bending (regardless of L,)
0.90 x 8.84 in’ X 36 ksi
duM,, = ¢»Z,F, = = > = 23.9 kip-ft

12 in/ft
Substituting in the interaction formula for biaxial bending (P, = 0), we obtain

26.0kip-ft _15.0kip-ft _
83.4kip-ft ' 23.9Kip-ft
031 + 063 =094<10 ok

7.4. A 4-in-diameter standard pipe hanger (4 =3.17in’, Z =4.31in’) supports a factored load of
40 kips. For A36 steel, determine the maximum acceptable eccentricity e; see Fig. 7-6.

L/ s

e |Pu
Fig. 7-6

P, =40kips. Here

.
$.P, = ¢,FA, =0.90 X 36— x 3.17 in = 103 kips
mn-
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AR

7.6.

MEMBERS IN FLEXURE AND TENSION

Because
P, 40 ki
o I 039502
¢.P, 103 kips
use Formula (HI-1a), which for uniaxial bending becomes
P, 8 M
——4+-——=1.0
b, 9o.M,

[CHAP. 7

M, = P,e. Because it has no “strong’ and ‘“‘weak™ axes, a pipe section cannot fail in lateral-torsional

buckling. For all L,,

Ki

0oM, = M, = ¢, ZF, = 0.90 X 4.31 in’ X 36 —=

in
Substituting in the modified Formula (H I-1a), we have
40 kips x
0.39 4 5 J0kips xe
9 140 kip-in
e=2.4in

Supplementary Problems

Repeat Prob. 7.4 for P, =20 kips. Ans. e=6.3in.

= 140 kip-in

Select the least-weight W12 in A36 steel to resist an axial tension P, =200kips combined with

M, = 100 kip-ft and M,,, = 50 kip-ft. Ans. WI12x72.
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Chapter 8

Beam-Columns: Combined Flexure and
Compression

NOTATION

B, = moment magnification factor for beam-columns defined in Eq. (H1-3)
B, =moment magnification factor for beam-columns defined in Eqgs. (H1-5) and
(H1-6)
C,, = coefficient for beam-columns defined in Eq. (H1-4)
E = modulus of elasticity of steel = 29,000 ksi
H = horizontal force, kips
[ = moment of inertia, in*
K = the effective length factor
L = story height, in
[ = unbraced length, in
M = bending moment, kip-in or kip-ft
M,, = first-order factored moment due to lateral frame translation, kip-in or kip-ft
M,, = first-order factored moment assuming no lateral frame translation, kip-in or
kip-ft
M, = nominal flexural strength for x-axis bending, kip-in or kip-ft
M,,, = nominal flexural strength for y-axis bending, kip-in or kip-ft
M, = required flexural strength including second-order effects, kip-in or kip-ft
M, = M, for x-axis bending, kip-in or kip-ft
M,, = M, for y-axis bending, kip-in or kip-ft
M, = smaller end moment in an unbraced length of beam, kip-in or kip-ft
M, = larger end moment in an unbraced length of beam, kip-in or kip-ft
m = a factor given in Table 8-1 for use in Eq. [8.2]
P = axial compressive force, kips
P, = a function of K/ defined by Eq. [8.1], kips
P, = nominal compressive strength, kips
P, =required compressive strength, kips

P, . = effective axial load for a beam-column, to be checked against the Column Load
Table in AISC LRFD Manual

U = a factor given in Table 8-1 for use in Eq. [8.2]
x = major principal centroidal axis
y = minor principal centroidal axis
A, = translational deflection of the story under consideration, in
Y H = sum of all horizontal forces producing A, kips
2 P., ¥ P,=sum for all columns in a story of P, and P,, respectively

¢,M,, = design flexural strength for x-axis bending, kip-in or kip-ft
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¢,M,, = design flexural strength for y-axis bending, kip-in or kip-ft
¢, = resistance factor for flexure =0.90
¢.P, = design compressive strength, kips
¢. = resistance factor for compression = (.85

INTRODUCTION

This chapter covers singly and doubly symmetric beam-columns: members subjected to
combined axial compression and bending about one or both principal axes. The combination of
compression with flexure may result from (either)

(a) A compressive force that is eccentric with respect to the centroidal axis of the column, as in
Fig. 8-1(a)

(b) A column subjected to lateral force or moment, as in Fig. 8-1(b),
(¢c) A beam transmitting wind or other axial forces, as in Fig. 8-1(c).

P
pla P
o
| —
| I S T S
| — 7 7
[ —
I
77777 7777
(a) (b) (o)

Fig. 8-1 Combined compression and flexure

INTERACTION FORMULAS

The cross sections of beam-columns must comply with formula (HI-1a) or (H1-1b), whichever is
applicable.

For (P,/¢.P,) =0.2

P, 8/ M, M,
u +_< ux + uy ) =1.0 (Hl-la)
¢(~ R: 9 (Pb Mn.r (pb Mny

For (P./¢.P,) <0.2

IJu < Mux Muy

+
2¢<‘ Pn (ph Mn,\' (pthy

Although the interaction formulas for beam-columns appear identical with their counterparts in
Chap. 7, there are some significant differences in the definitions of the terms. For beam-columns:

)SLO (HI-1b)

M,., M,, = required flexural strengths (based on the factored loads) including second-
order effects, kip-in or kip-ft

P, = required compressive strength (based on the factored loads), kips
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¢.P, = design compressive strength as determined in Chap. 4, kips
$sM,., M, = design flexural strengths as determined in Chap. 5 or 6, kip-in or kip-ft
¢. = resistance factor for compression = (.85

¢, = resistance factor for flexure =0.90

The subscript x refers to bending about the major principal centroidal (or x) axis; y refers to the
minor principal centroidal (or y) axis.

SIMPLIFIED SECOND-ORDER ANALYSIS

Second-order moments in beam-columns are the additional moments caused by the axial
compressive forces acting on a displaced structure. Normally, structural analysis is first-order; that is,
the everyday methods used in practice (whether done manually or by one of the popular computer
programs) assume the forces as acting on the original undeflected structure. Second-order effects are
neglected. To satisfy the AISC LRFD Specification, second-order moments in beam-columns must
be considered in their design.

Insiead of rigorous second-order analysis, the AISC LRFD Specification presents a simplified
alternative method. The components of the total factored moment determined from a first-order
elastic analysis (neglecting secondary effects) are divided into two groups, M,, and M,.

1. M, —the required flexural strength in a member assuming there is no lateral translation of
the structure. It includes the first-order moments resulting from the gravity loads (i.e., dead
and live loads), calculated manually or by computer.

2. M,—the required flexural strength in a member due to lateral frame translation. In a braced
frame, M, =0. In an unbraced frame, M, includes the moments from the lateral loads. If
both the frame and its vertical loads are symmetric, M, from the vertical loads is zero.
However, if either the vertical loads (i.e., dead and live loads) or the frame geometry is
asymmetric and the frame is not braced, lateral translation occurs and M,, # (. To determine
M, (a) apply fictitious horizontal reactions at each floor level to prevent lateral translation
and (b) use the reverse of these reactiors as “‘sway forces™ to obtain M,,. This procedure is
illustrated in Fig. 8-2. As is indicated there, M, for an unbraced frame is the sum of the
moments due to the lateral loads and the *“‘sway forces.”

’ P, P,
P_L | i‘ vV, + &
Lyp, P
by v Ve vk,
Fp, Lp,
vl A Ve ven,
1 | 1 1

Original frame = nonsway frame + sway frame
for M,, for M,

Fig. 8-2 Frame models for M,, and M,

Once M,, and M, have been obtained, they are multiplied by their respective magnification
factors, B, and B,, and added to approximate the actual second-order factored moment M,.

Mu:B]Mrlr+BZM/I (HI‘Z)
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As shown in Fig. 8-3, B, accounts for the secondary P — 9 effect in all frames (including

sway-inhibited), and B, covers the P — A effect in unbraced frames. The analytical expressions for
B, and B, follow.

C
B=—2"—=1.0 -3
A= RJP) B
where P, is the factored axial compressive force in the member, kips
_m’El 21
e (KI)Z [ S ]

where K = 1.0, I is the moment of inertia (in*), and / is the unbraced length (in). (Both / and [ are
taken in the plane of bending only.)

.y
/

—
)
] 1
M, = HL
Skl M =M, + PO L M, =M, +PA
=B M, =8, M,
]
QE L/f
(a) (b)

Fig. 8-3 [Illustrations of secondary effects. (a) column in braced frame; (b) column in unbraced frame

The coefficient C,, is determined as follows.

(1) For restrained beam-columns not subjected to transverse loads between their supports in
the plane of bending

M,

-

C,=06-04 (H1-4)
where M,/M, is the ratio of the smaller to larger moment at the ends of the portion of the
member unbraced in the plane of bending under consideration. If the rotations due to end
moments M, and M, are in opposite directions, then M,/M, is negative; otherwise M,/M, is
positive.

(2) For beam-columns subjected to transverse loads between supports, if the ends are

restrained against rotation, C,, =0.85; if the ends are unrestrained against rotation,
G = 1.0,

Two equations are given for B, in the AISC LRFD Specification:

£ e (HI-5)
1;2 1_-)“( th )
Y HL
1
or B,= TP (H1-6)
Ty
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where y p — required axial strength of all columns in a story (i.e., the total factored gravity load
above that level), kips

A, = translational deflection of the story under consideration, in
Y. H = sum of all horizontal forces producing A, kips
L = story height, in

Y. P, = summation of P, for all columns in a story.

Values of P, are obtained from Eq. {8.1], considering the actual K and [ of each column in its plane
of bending. Equation (H1-5) is generally the more convenient of the two formulas for evaluating B,.
The quantity A,,/L is the story drift index. Often, especially for tall buildings, the maximum drift
index is a design criterion. Using it in Eq. (HI-5) facilitates the determination of B,.

For columns with biaxial bending in frames unbraced in both directions, two values of B, (B,
and B,;) are needed for each column and two values of B, for each story, one for each major
direction. Once the appropriate B, and B, have been evaluated, Eq. (HI1-2) can be used to
determine M, and M, for the applicable interaction formula.

PRELIMINARY DESIGN

The selection of a trial W shape for beam-column design can be facilitated by means of an
approximate interaction equation given in the AISC LRFD Manual. Bending moments are
converted to equivalent axial loads as follows.

Pu.eﬁ' = Pu + Muxm + M mU [82]

where P, .« is the effective axial load to be checked against the Column Load Table in Part 2 of the

AISC LRFD Manual; P,, M,,, and M,, are as defined in interaction formulas (H1-1a) and (H1-1b)

(P., kips; M,., M,,,, kip-ft); and m and U are factors from Table 8-1, adapted from the AISC LRFD
Manual.

Table 8-1 Values of m and U for Eq. [8.2]; F, = 36 ksi

m
KL, ft 10 12 14 16 18 20 =22 U
W4 4.3 3.1 23 1.9 — — — 1.4
W5 4.7 3.8 2.9 2.3 1.8 1.7 — 1.3
Woé 3.8 3.2 2.8 2.4 2.3 1.9 1.8 1.9
W8 3.6 3:5 3.4 3.1 2.8 2.4 2.4 1.5
W10 3.1 3.0 3.0 2.9 2.8 2.5 2.4 1.5
Wi2 2.5 2.5 2.4 2.4 2.4 2.4 2.4 1.5
W14 22 2.0 2.0 2.0 2.0 2.0 2.0 1.5

Once a satisfactory trial section has been selected (i.e., P, . = the tabulated ¢_P,), it should be
verified with formula (HI-1a) or (H1-1b).
Solved Problems

8.1.  In A36 steel, select a W14 section for a beam-column (in a braced frame) with the following
combination of factored loads: P, = 800 kips; first-order moments M, = 200 kip-ft, M, =0,
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single curvature bending (i.e., equal and opposite end moments); and no transverse loads
along the member. The floor-to-floor height is 15 ft.

For a braced frame, K = 1.0 for design (see Chap. 4); K.L, = K,L, =1.0x 15ft =15 ft. Select a trial
W14 shape using Eq. [8.2].
P,.i=P,+ M, m+M,mU
For a W14 with KL =15 ft m = 1.0 and U = 1.5, in Table 8-1. Substituting in Eq. [8.2], we obtain
P, .« = 800 + 200 x 2.0 + 0 = 1200 kips

In the AISC Column Load Tables (p. 2-19 of the LRFD Manual) if F =36ksi and KL =15 ft,
¢.P, = 1280 kips (>P, . = 1200 kips) for a W14x159.
Try a W14x159. To determine M, (the second-order moment), use Eq. (HI1-2).

M, = B\M,, + B:M,
Because the frame is braced, M, =0.
M,=BM, or M, =B,x?200Kkip-ft
According to Eq. (H1-3)

Cn

=—=1.0
1-P,J/P.

B,

where C,, = 0.6 — 0.4(M,/M,) for beam-columns not subjected to lateral loads between supports.
For M, = M, = 200 kip-ft in single curvature bending (i.e., end moments in opposite directions),

My_ 200
M, 200
C,=0.6—-0.4—-1.0)=1.0

-1.0

For a W14x159, I, = 1900 in*

. a’El, X 29,000 kips/in® x 1900 in*
"TU(KI? T (LOx15ftx 12in/ft)?

= 16,784 kips

In Eq. (HI-3)
= - o —=1.05
1 — 800 kips/16,784 Kips

B,

Here, M, = 1.05x 200 kip-ft =210 kip-ft, the second-order required flexural strength. (Substituting
M, =210 kip-ft in preliminary design, Eq. [8.2] still leads to a W14 X159 as the trial section.)
Selecting the appropriate beam-column interaction formula, (HI-1a) or (H1-1b), we have

P, 800 kips

=——=0.63>0.2
¢.P, 1280 kips
Use formula (H1-1a), which, for M,, =0, reduces to
il +§——M"' =1.0
pP. 9 PM,,

To determine ¢,M,, (the design flexural strength), refer to Chap. 5 of this text or the Load Factor
Design Selection Table for Beams in the AISC LRFD Manual. Since the W14 x 159 is not tabulated
therein, the basic equations are used instead. From Eq. [5.10] in Chap. 5:

2

M M)\’
C,=1.75+1.05 ‘+0.3<—‘> =23
M M,

5
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8.2.

Again, M,/M,= —1.0.
C,=1.75+1.05(-1.0) + 0.3(=1.0)*=1.0

If C, = 1.0, M, = M, = Z,F, for bending about the x axis if L, = L, (see Eq. [5.7]): L, = (300r,/VF,) for
W shapes bent about the x axis [Eq. (FI-4)]. For a W14x159, r, = 4.01in and

(300 x 4.01in)/(12 in/ft)

L= = 16.7ft
r V3—6
Because (L, = 15.0ft) < (L, =16.7 ft),
7in® x 36 kips/in®
M, =z, F, =220 P/ _ g61 kip-tc

12 in/ft

and ¢,M,, =0.90 x 861 kip-ft = 775 kip-ft
Substituting the interaction formula, we obtain

0.63 4 5 210 kip-f
9" 775 kip-ft

=0.63+0.24=0.87<1.0 o.k.

By a similar solution of interaction formula (H-1a), it can be shown that a W14x145 is also adequate.

Assume the beam-column in Prob. 8.1 is turned 90° that is, M, =0, M, =200 kip-ft
(first-order moments). Select the appropriate W14 section.

Again, for a braced frame, K = 1.0.
KL =K, L,=10x15ft=15ft

In selecting a trial W14 shape with Eq. [8.2], m = 1.0 and U = 1.5 (Table 8-1). Substituting in Eq. [8.2],
we obtain

Pud1 P +Mu\m +M mU

uy

=800 + 0+ 200 x 2.0 x 1.5 = 1400 kips

In the Column Load Tables of the AISC LRFD Manual (p. 2- 19) it F,=36ksi and KL =15 ft,
¢.P, = 1430 kips (>P, . = 1400 kips) for a W14x176.

Try a W14x176. To determine M,, (the second-order moment), use Eq. (H1-2), which, for a
braced frame (M, =0), becomes M, = B,M,,, or M,, = B, X200 kip-ft. As in Prob. 8.1, C,,=1.0 for
equal end moments in single curvature bending (i.e., end rotations in opposite directions). Determining
P, for y-axis bending of a W14x 176, (I, = 838 in*)

b m°El, % 29,000 ksi/in” x 838 in*
‘(K (1.0 x 15 ft x 12 in/ft)*

= 7403 kips

In Eq. (HI-3)

Ca 1.0
B, = = e —=1.12
1—=P,/P, 1—2800kips/7403 kips
The second-order required flexural strength M, = 1.12 x 200 kip-ft = 224 kip-ft.
Substituting M,,, = 224 kip-ft in preliminary design Eq. [8.2]

P,.s=800+0+224x2.0x1.5
= 1472 kips
> 1430 kips = ¢.P, for W14x176
<1570 kips = ¢.P, for W14x193
(See p. 2-19 of the AISC LRFD Manual.)
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Try a W14x193: [, =931 in*

B 7*El, 7 x 29,000 kips/in® X 931 in*
CT(KD? T (1.0 x 15 ft X 12 in/ft)?

= 8224 kips

In Eq. (HI-3)
Co  _ 1.0 -
(1-P,/P.) 1-800kips/8224kips

B, =

The second-order required flexural strength M,, = 1.11 x 200 kip-ft = 222 kip-ft.
Selecting the appropriate beam-column interaction formula, (H1-1a) or (HI-1b)

P .
P B00KipS _ 5105
¢.P, 1570 kips

Use formula (H1-1a), which, for M, =0, reduces to

P, 8 My _ o
¢.P, 9PM,,

To determine ¢,M,, (the design flexural strength), refer to Chap. 5 of this text. From Eq. [5.6],
M,, =M, =Z F, (for minor-axis bending) regardless of the unbraced length L,.
For a W14x193, Z, =180 in’

_180in" x 36 kips/in®

M, = = 540 kip-ft
12in/ft P
and ¢, M,, = 0.90 x 540 kip-ft = 486 kip-ft.
Substituting in the interaction formula, we obtain
0.51 + 8 X 222 kip-ft k?p_ﬂ
9 486 kip-ft

=0.51+0.41=0.92<1.0 o.k.

Select a W14 section (A36 steel) for a beam-column in a braced frame with the factored
loads: P, =200 kips; first-order moments M, =200 kip-ft, M, =200kip-ft. The 15-ft-long
beam-column is subjected to transverse loads; its ends are “‘pinned.”

For a braced frame, K = 1.0.
K.L.=K,L =10x15ft=15ft
Select a trial W14 shape using Eq. [8.2]:

P,.w=P,+M,.m+ M, mU

For a W14 with KL =15ft; m =2.0 and U = 1.5, in Table 8-1. Substituting in Eq. [8.2], we obtain
P, . =200+ 200 x 1.0 4+ 200 x 2.0 X 1.5 = 1200 kips

In the Column Load Tables of the AISC LRFD Manual (p. 2-19), if F, =36ksi and KL =15ft,
¢.P, = 1280 kips (>P, . = 1200 kips) for a W14 x159.

Try a W14x159. To determine the required second-order moments, M,, and M,, use Eq. (HI-2),
which, for a braced frame (M, =0), reduces to

M(u = Bthu and Muv = Blmey
According to Eq. (HI-3)

B . Cm.r - l 0
" 1-p/P,

Cisy
By, et 2
' I—Rz/P(v
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For a beam-column subjected to transverse loads and with ends unrestrained against rotation, C,, = 1.0.
Therefore, C,... =C,,, = 1.0.

For a W14x159, I, = 1900 in*

a’El, % 29,000 Kips/in® x 1900 in*

p = TEL _ T — 16,784 kips
“ T (KL (1.0 x 15 ft x 12 in/ft)’ bs
In Eq. (HI-3)
1.0
B, = - —=1.01
1 =200 kips/16,784 kips
M, = 1.01 x 200 kip-ft = 202 kip-ft
I, =748 in*
- JrzEI'vw _ 7 % 29,000 kips/inZ- X 74§ in? — 6608 kips
C(KL)” (1.0 x 15 ft X 12 in/ft)”
In Eq. (H1-3)

1.0
= - —=1.03
1 — 200 kips/6608 kips
M,, = 1.03 x 200 Kip-ft = 206 Kip-ft

B

The second-order required flexural strengths are M,, =202 kip-ft and M,, = 206 kip-ft. (Substituting
these values in preliminary design Eq. [8.2] reconfirms a W14x 159 as the trial section.)
Selecting the appropriate beam-column interaction formula, (HI-1a) or (HI-1b), we obtain

P, 200 kips
—=—7—=0(0.16<0.2
¢.P, 1280 kips

Use formula (H1-1b):

P, M, M,,
+ ( + - ) =1.0
20.P, \¢,M,. ¢,M,,

For a simply supported member (i.e., end moments M, = M, =0), C, = 1.0. In the solution to Prob. 8.1
it was determined that for a W14x 159 (L, = 15 ft, C, = 1.0), ¢, M, =775 kip-ft.

The value of ¢,M,, can be determined from Eq. [5.6]: M,, = M, = Z,F, (for minor-axis bending)
regardless of the unbraced length L,.
For a W14x159, Z, = 146 in°,

146 in® X 36 kips/in®
M,; = :
12 in/ft
¢pM,,, =0.90 x 438 kip-ft = 394 kip-ft

= 438 kip-ft

Substituting in Interaction formula (HI-1b), we obtain

0.16 (202 kip-ft & 206 kip-ft)

St
2 775 kip-ft =~ 394 kip-ft

=0.08+0.26+0.52=0.86<1.0 o.k.
By a similar solution of interaction formula (HI-1b), it can be shown that a W14 x 145 is also adequate.
8.4. In A36 steel, select a W12 section for a beam-column (in a symmetric unbraced frame;

K =1.2) with the following factored loads: P, = 400 kips; first-order M, = 100 kip-ft due to
wind, all other moments equal zero. Member length is 12 ft. The allowable story drift index
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(A,n/L) is 755, or 0.0025, as a result of a total horizontal (unfactored) wind force of 80 kips.
The total factored gravity load above this story is 4800 kips.

Given: P, =400kips, M,, =0, M, =0, M, =100kip-ft, Y P, =4800kips, A,,/L =0.0025, ¥ H =
80 kips, KL = 1.2 x 12 ft = 14.4 ft.
From Eq. (HI-2), M,, = B,M,,, where [according to Eq. (HI-5)]

= =1.1
4800 kips 8
—————— ((:0025)

80 kips

The second-order required flexural strength M, = 1.18 x 100 kip-ft = 118 kip-ft.
Selecting a trial W12 shape with Eq. [8.2], we obtain

P, =P, +M,.m+ M, mU
where for a W12 (KL =14.4ft), m =2.4 and U = 1.5.
P, .; =400+ 118 X 2.4 4+ 0 = 683 kips

By interpolation in the Column Load Tables of the AISC LRFD Manual (p. 2-24), if F, =36 ksi and
KL =14.41ft, ¢.P, =732 Kkips (>P, . = 683 kips) for a W12x96.
Selecting the appropriate beam-column interaction formula, (H1-Ia) or (HI-1b), we obtain

P, 400Kkips
¢.P, 732kips

0.55>0.2

Use formula (HI-1a), which, for M,, =0, reduces to

PH 8 Mll«“
—+-———=1.0
o.P, 9PM,,
The design flexural strength ¢, M, for a W12x96 can be determined from the Beam Selection Table on
page 3-15 of the AISC LRFD Manual: because (L, =12 ft) <(L, =12.91t), ¢,M,, = ¢, M, = 397 kip-ft,
as tabulated. Substituting in the interaction formula:
1 iD-
0.55+ 5 L8kip-ft
9 397 kip-ft
0.554+0.26=0.81<1.0 o.k.

By a similar solution of interaction formula (H1-1a), it can be shown that a W12x87 and a W12Xx79 are
also adequate.

Assume the beam-column in Prob. 8.4 is turned 90°; i.e., M, =0, M,, =100 kip-ft, M,,, =0.
Select the appropriate W12 section.

Given: P,=400kips, M, =0, M,, =0, M, =100kip-ft, ¥ P, =4800kips, A, /L =0.0025, ¥ H =
80 kips, KL = 1.2 x 12 ft =14.4 ft.

From Eq. (HI1-2), M,, = B:M,,, where B,=1.18 as in Prob. 8.4. The second-order required
flexural strength M,, = 1.18 x 100 kip-ft = 118 kip-ft. Selecting a trial W12 shape with Eq. [8.2], we
obtain

P

I

e =P, + M, .m + Mume
where for a W12 (KL = 14.4ft), m =2.4, and U = 1.5.
P, . =400+ 0+ 118 x 2.4 x 1.5 =825 kips
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8.6.

By interpolation in the Column Load Tables (p. 2-23 in the AISC LRFD Manual), if F, = 36
KL =14.4ft, ¢.P, =920 kips (>P, .« = 825 kips) for a W12x120.
Selecting the appropriate beam-column interaction formula, we obtain

P, 400 Kkips

—= =0.43>0.2
¢.P, 920 Kkips
Use formula (H1-1a), which, for M,, =0, reduces to
B 8 M,
w S Mw _ 4y
oL 9PM,,

To determine ¢,M,, (the design flexural strength), refer to Chap. S of this text. From Eq
M,, =M, = Z F, (for minor-axis bending) regardless of the unbraced length L,.
For a W12 x 120, Z, =85.4in*, and
_ 85.4in’ x 36 kips/in’
- 12 in/ft
¢»M,, = 0.90 X 256 kip-ft = 231 kip-ft

= 256 kip-ft

Substitution in the interaction formula yields

§ - 118 kip-ft

9 231 kip-ft
=0.43+0.45=0.88<1.0 o.k.

0.43 +
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ksi and

. [5.6],

Select a W12 section (A36 steel) for a beam-column in a symmetric unbraced frame with the
factored loads: P, = 150 kips; first-order moments M,, = 100 kip-ft, M,, =100 kip-ft, M, =
M,, =0. The story height is 12ft; K, =K, = 1.2. For all columns in the story, ), P, =
3000 kips, ¥ P, = 60,000 kips for bending about east-west axes, and ¥ P, = 30,000 kips for

bending about north-south axes; see Fig. 8-4.

Column to be designed

-
Vs - T
N
Fig. 8-4
Since M, =M,, =0, Eq. (H1-2) becomes
Mu,\ = le MI/,\
M,= Bva/:y
where [according to Eq. (H1-6)]
B — 1
* 1-%LPJ/LP,
1
B,,

*“1-%P/LP,
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From the statement of the problem, Y P, = 3000 kips, Y, P., = 60,000 kips, and Y, P., = 30,000 kips.
Substituting, we obtain

1
B, = : -
7123000 kips/60.000 Kips

1
B.,

>~ 1273000 kips/30,000 kips
The second-order required flexural strengths are
M, = 1.05 x 100 kip-ft = 105 kip-ft
M,, = 1.11 x 100 kip-ft = 111 kip-ft
Selecting a trial W12 shape with Eq. [8.2], we obtain
P,s=P +M,m+M,mU,
where for a W12 (KL =1.2x12ft=14.4ft), m =2.4 and U = 1.5.

P,.s=1504+105% 2.4+ 111 x 2.4 x 1.5 = 802 kips

By interpolation in the Column Load Tables (on p. 2-24 in the AISC LRFD Manual), if F, =36 ksi
and KL = 14.4 ft, it follows that ¢ P, = 811 kips (>P, . = 802 kips) for a W12 x 106.
Try a W12 X 106. Select the appropriate beam-column interaction formula.

P, 150 kips
¢.P, 811Kkips

=0.18<0.2

Use interaction formula (H1-1b):

P, M, M.,
+ ( +—=

) =1.0
2¢rPn th nx ¢(Mm

The design flexural strengths for a W12 x 106 can be determined as follows. Because (L, =12 ft) <
(L, =13.0ft), ¢p,M,, = ¢,M, = 443 kip-ft, as tabulated in the Load Factor Design Selection Table for
Beams (on p. 3-15 of the AISC LRFD Manual).

For all values of L,, ¢yM,, = ¢p,M, = ¢, Z,F,; Z, =75.1in" for a W12x106.

0.90 x 75.11in° X 36 kips/in2
12 in/ft

¢h ny — =203 klp-ft

Substituting in interaction formula (H1-1b), we obtain

0.18 (105 kip-ft , 111 kip-ft) _
2 \443kip-ft = 203 kip-ft/
0.09+0.24+055=087<1.0 o.k.

By a similar solution of interaction formula (H1-1b), it can be shown that a W12 x 96 is also adequate.

Select a W14 section (A36 steel) for a beam-column in an unbraced frame with the factored
loads: P, =300kips, M,, =M, = 50kip-ft, M,, =120 kip-ft, M,, = 80 kip-ft (reverse curva-
ture bending with equal end moments in the same direction in all cases; no transverse loads
along the span). The story height is 14 ft; K, = K, = 1.2. The allowable story drift index is s,
or 0.0020, due to total horizontal (unfactored) wind forces of 100 kips in the north-south
direction and 70 kips in the east-west direction (see Fig. 8-4). The total factored gravity load
above this level Y, P, = 6000 kips.

Given: K, =K, =12, L, =L, =14ft.
KL =K,L,=12x14ft=16.8ft
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The second-order required flexural strengths [from Eq. (H1-2)] are
M, = B\ M,, + Bs M,
Mu\‘ = BI\‘va + BZ\‘MII\‘

where
C‘IIL\
B,=—=1.0
L= Pyl Py
C
B,=—2—=1.0
O 1-RJE,
1
Bl\ =
|- X P, (Aulz\')
YH \ L
B — i
”—1 EP,,(A,M,\>
YH. \ L
Before the selection of a trial section, P, and P, (and hence, B,., and B,,) are unknown. Let
B, =B, =10.
B, = - ! . =1.14
1 = (6000 kips/100 kips)(0.0020)
1
B,

2= T2 (6000 kips/70 kips)(0.0020) Ll
M, = 1.0 x 50 kip-ft + 1.14 x 120 kip-ft = 187 kip-ft
M, = 1.0 x50 kip-ft + 1.21 x 80 kip-ft = 147 kip-ft
Selecting a trial W14 shape with Eq. [8.2] yields
P,.w=P,+M,.m+M,mU
where for a W14 (KL = 16.8 ft), m =2.0, and U = 1.5.
P, .+=300+ 187 x 2.0+ 147 x 2.0 X 1.5 = 1115 kips

By interpolation in the Column Load Tables (on p. 2-19 of the AISC LRFD Manual), if F, =36 ksi and
KL =16.8ft, ¢.P, = 1144 kips (>P, . = 1115 kips) for a W14Xx145. '

Try a W14x145. First, determine B,, and B,,. For reverse curvature bending with equal end
moments, M,/M,=+1.0. From Eq. (HI-4), C,, =0.6—-0.4(M/M,)=0.6—-0.4(+1.0)=0.2; C,, =
C,,, = 0.2. In the equation for B, (H1-3), P, is based on K in the plane of bending with K =1.0. (By
contrast, ¥ P, in Eq. (H1-6) for B, is based on the actual K/ of each column in its plane of bending).
Referring to P. in Eq. (H1-3), for a W14x145

I, =1710in*
¥ 7% % 29,000 kips/in® X 1710 in*
- g El_x‘ _z 000 kips/in . , in” _ 17 341 Kips
t(KL)? (1.0 x 14 ft x 12 in/ft)"
I,=677 in*
°El, %% 29,000 kips/in® X 677 in*
- b1 . b4 ips/in . ! in® _ 6865 Kips
TO(KL)T (1.0 x 14 ft x 12 in/ft)’
0.2
B, = - —=1.0
1300 kips/17,341 kips
=1.0
B 0.2

y = : —=1.0
1 — 300 kips/6865 kips
=1.0
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Since B, = B,, = 1.0 as originally estimated, the resulting second-order required flexural strengths are
correct; i.e., M,, = 187 kip-ft and M, = 147 kip-ft. Also, the selection of a W14x 145 as the trial section

is valid.
Selecting the appropriate beam-column interaction formula, (H1-1a) or (H1-1b), we obtain

P, _ 300 kips

= —=0.26>0.2
¢.P, 1144 kips

Use formula (H1-1a).

F 8( M, M,
9\

— =1.0
(pl'Mn.l ¢th\')

¢.P,

To determine the design flexural strengths ¢, M, and ¢, M,, for a W14x145 (L, = 14 ft)

M, M,\°
,=1.75+1.05(—)+ .3(—) =23
Gy M 4 M,

according to Eq. [5.10]. For reverse curvature bending with equal end moments, M,/M, = +1.0.
C, =175+ 1.05(+1.0) + 0.3(+1.0)°=2.3

=23
;, 3007, _ 300x398in
" \E /36 x 12in/ft

for a W14x 145, according to Eq. (¥1-4) in Chap. 5.
Since (L, =14ft)<(L,=16.6ft)<L,,

(PhMm = ¢hMp = ¢bZ.ro
_0.90 x 260 in® X 36 kips/in®

=16.6ft

= 702 kip-ft
12in/ft P
4)th\‘ = (PhMp = ¢I?ZVE'
] e X £ 5D
=0 90 x 133 in” x 36 kips/in — 359 kip-ft

12 in/ft
Substituting in interaction formula (H1-la):

187 kip-fi 47 kip-f
0.26+§<8 ?pt 17k-1p t)
702 kip-ft = 359 kip-ft

=

9

8
0.26+§(O.27+0.41)=0.86< 1.0 o.k.

Supplementary Problems

8.8.  Repeat Prob. 8.1 with a W14x145.

Ans. It is satisfactory.

8.9. For Prob. 8.2, find the most economical W12.
Ans. WI12x210.
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8.10. Repeat Prob. 8.3 with
(a) A W14x145
(b) A W14x132

Ans. (a) Satisfactory. (b) Unsatisfactory.

8.11. For Prob. 8.4, find the most economical W14.
Ans. WI14x82.

8.12. For Prob. 8.5, find the most economical W14.
Ans. W14x99.

8.13. For Prob. 8.6, find the most economical W14.
Ans.  W14x90.

8.14. Repeat Prob. 8.7 with
(a) A W14x132.
(b) A W14x120.

Ans. (a) Satisfactory. (b) Unsatisfactory.

105



Torsion

NOTATION

A = cross-sectional area of member, in’
A,, = area of the web, in?
e = eccentricity with respect to the shear center, in
F., = critical, or buckling, stress, ksi
F, = specified minimum yield stress, ksi
fur = normal stress due to (warping) torsion, ksi
fun = total normal stress under factored loads, ksi
fun = total shear stress under factored loads, ksi
fis7 = shear stress due to St. Venant torsion, Ksi
fuwr = shear stress due to warping torsion, ksi
G = shear modulus of elasticity of steel = 11,200 ksi
J = torsional constant, in*
[ = distance from the support, in
M, = required flexural strength for x-axis bending, kip-in
M,, = required flexural strength for y-axis bending, kip-in
P, = required axial strength, tension or compression, kips
S, = elastic section modulus for x-axis bending, in’
S, = elastic section modulus for y-axis bending, in’
T
t = distributed torsional moment, kip-in/linear in

concentrated torsional moment, kip-in

V., = required shear strength, kips
6 = angle of rotation, radians

¢ = appropriate resistance factor

INTRODUCTION

Chapter 9

This chapter covers torsion, acting alone or in combination with tension, compression, and/or
bending. Torsion, or twisting of cross sections, will result from the bending of unsymmetric
members. In symmetric members (such as I-shaped beams), torsion will occur when the line of
action of a lateral load does not pass through the shear center. The emphasis in this chapter is on
torsion of symmetric shapes, those most commonly used in construction.

SHEAR CENTER

The shear center of a cross section, which is also the center of rotation, can be located by
equilibrium of the internal torsional shear stresses with the external torsional forces. Such a
calculation is unnecessary in most cases because the following rules (illustrated in Fig. 9-1) are

applicable.

For W and other doubly symmetric shapes, the shear center is located at the centroid.
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Singly symmetric cross sections, such as C shapes, have their shear centers on the axis of
symmetry, but not at the centroid. (The shear center locations for C sections are given in the
Properties Tables in Part 1 of the AISC LRFD Manual.)

Fig. 9-1 Shear center locations

As shown in Fig. 9-2, the torsional moment, 7T or ¢, equals the magnitude of the force multiplied
by its distance from the shear center e.

P
P l
P P N e e i
S—— I . — . -
¢ ¢\ [ - ¢ ®
-
—_—l ———-; Tt B
T=P, =P, T=P T=P

= we

Fig. 9-2 Torsional moments

AVOIDING OR MINIMIZING TORSION*

As is demonstrated later in this chapter, open sections, such as W and C shapes, are very
inefficient in resisting torsion; thus, torsional rotations can be large and torsional stresses relatively
high. It is best to avoid torsion by detailing the loads and reactions to act through the shear center of
the riember. In the case of spandrel members supporting building facade elements, this may not be
possible. Heavy exterior masonry walls and stone panels can impose severe torsional loads on
spandrel beams. The following are suggestions for eliminating or reducing this kind of torsion.

1. Wall elements may span between floors. The moment due to the eccentricity of the wall with
respect to the edge beams can be resisted by lateral forces acting through the floor
diaphragms. No torsion would be imposed on the spandrel beams.

2. If facade panels extend only a partial story height below the floor line, the use of diagonal
steel “kickers™ may be possible. These light members would provide lateral support to the
wall panels. Torsion from the panels would be resisted by forces originating from structural
elements other than the spandrel beams.

* This section is reprinted with permission from the author’s earlier work, Guide to Load and Resistance Factor Design of
Structural Steel Buildings, American Institute of Steel Contruction (AISC), Chicago, 1986.
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3. Even if torsion must be resisted by the edge members, providing intermediate torsional
supports can be helpful. Reducing the span over which the torsion acts will reduce torsional
stresses. If there are secondary beams framing into a spandre] girder, the beams can act as
intermediate torsional supports for the girder. By adding top and bottom moment plates to
the connections of the beams with the girder, the bending resistances of the beams can be
mobilized to provide the required torsional reactions along the girder.

4. Closed sections provide considerably better resistance to torsion than do open sections;
torsional rotations and stresses are much lower for box beams than for wide-flange
members. For members subjected to torsion, it may be advisable to use box sections or to
simulate a box shape by welding one or two side plates to a W shape.

DESIGN CRITERIA

When torsion is present, the provisions in Sec. H2 of the AISC LRFD Specification must be
applied. The expressions given therein [Formulas (H2-1) to (H2-3)] limit the total normal and shear
stresses occurring at any point. These stresses may result from torsion alone or from torsion
combined with other effects.

AISC formulas (H2-1) to (H2-3) may be rewritten as follows.

(1) For the limit state of yielding under normal stress (i.e., axial tension or compression)

fun = (pE [9 1]
where ¢ =0.90 and
Pll MllY Mll\'
fun _Z +— S = S :tfnT [92]
(2) For the limit state of yielding under shear stress, '
fun =0.69F, [9.3]
where ¢ =0.90 and
Ve
fuvz—‘ifvSTivaT [94]
A
(3) For the limit state of buckling
fun = P Fey [9.5]
or
fmv o d)('E'r [9 6]

as applicable; where ¢, = 0.85, F, is obtained from the appropriate buckling formula [e.g.,
Eq. (E2-2) or (E2-3) in Chap. 4] and f,, and f,, are the compressive normal and shear
stresses resulting from Eqs. [9.2] and [9.4], respectively.
The terms in Expressions. [9.1] to [9.6] are defined as follows.
f.. = total axial (or normal) stress under factored loads, ksi
fi = total shear stress under factored loads, ksi
.+ =normal stress due to torsion, ksi
f.s7 = shear stress due to St. Venant torsion, ksi
f.wr = shear stress due to warping torsion, ksi
P, = required axial load strength, tension or compression, kips
M,., M,, = required flexural strengths for x- and y-axis bending, kip-in
V, = required shear strength, kips
A = cross-sectional area, in’
A, = web area, in’

Il

S,, S, = elastic section moduli for x- and y-axis bending, in’

The terms St. Venant torsion and warping torsion are explained below.
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ST. VENANT TORSION

When a torsional moment is applied to a circular bar or tube, each cross section rotates in its
own plane without warping. Resistance to torsion is provided by shear stresses in the cross-sectional
plane. This kind of “pure” torsion is called St. Venant torsion. Noncircular cross sections, when
subjected to the same torsional moment, tend to warp; that is, plane sections do not remain planar.
Theoretically, if warping were totally unrestrained, all cross sections would experience St. Venant
torsion only. However, end conditions and geometry restrain warping. In addition to the shear
stresses of St. Venant torsion, noncircular cross sections are also subjected to the normal and shear
stresses of warping torsion.

In Table 9-1, f,s;, the shear stress due to St. Venant torsion, is given for various cross-sectional
shapes.

Table 9-1 St. Venant Torsion

Shear Stress Torsional Constant
fust (ksi) J (in*)
Closed sections
Zr nR*
J 2
Round bar
R,
Tr T
4D = S (RL=R!
. 2 (R: - RY)
Round tube
- g
l ’wT 5, 5
1 T 2t,t,b°h*
h —>l<tl—‘->T<—t tht] bl‘: +hl,
=% =5 T
‘L 2bht,
o
Rectangular tube
bI - e
T, th?
b 2b°t
-
Square tube
':{ k., ] B0 Tt bt’
5 ¥ T (approx.)
Rectangular bar
Open sections
Tt Sbe? (approx.; for exact values,
7‘ 3 see AISC LRFD Manual,
pp. 1-133—1-161)
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WARPING TORSION

Warping torsion is most significant for open sections, specifically, shapes rolled or fabricated as a
series of planes. This is in contrast to closed sections, where St. Venant torsion predominates. The
subject of torsion for such commonly used open sections as W and C shapes is covered in detail in
the AISC publication Torsional Analysis of Steel Members (1983). Final design of beams subjected to
torsion should be verified with the tables and charts contained therein. However, the simplified
procedure presented here may be used for preliminary design.

As shown in Fig. 9-3, the effects of warping torsion on I beams can be approximated by
converting the torsional moment T into an equivalent force couple acting on the flanges. The normal
and shear stresses due to warping torsion are assumed equal to the corresponding stresses resulting
from the bending of each flange acting as a separate beam and subjected to the lateral force T/d’.

br
| - L
' - - le 5l
4\‘ ? ? - /
= d' Beam flange > M' =PL=TL/d'
T A
—— ’ /4!
P =T’ pr=d

Fig. 9-3 Warping torsion: approximation for W shapes

DEFORMATION
The angle of rotation, in radians. for all types of cross sections is

T

=
GJ

[9.7]
where T = applied torsional moment, Kip-in
[ = distance from the support, in
G = shear modulus of elasticity of steel = 11,200 ksi

J = torsional constant, in*

(Values of J for common structural shapes are given in a special section, Torsion Properties, in Part
1 of the AISC LRFD Manual. For cross sections not tabulated, the formulas for J in Table 9-1 may
be used.)

Solved Problems

For Probs. 9.1 to 9.4, refer to Fig. 9-4. A twisting moment of 10 kip-ft is applied to the end of a 5-ft
shaft in Fig. 9-4(a). Determine

The maximum shear stress

The maximum normal stress

The maximum angle of rotation
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9.1.

9.2.

10 kip-ft
\ |
V
» 5ft0in |
Solid 10 Outer diameter = 10 in
in diameter Inner diameter = 8 in
(a) (b) (c)
| /A/
10 in 10 in
v [ ]
10 in 10 in
(d) (e)
All plates 1 in thick
Fig. 9-4

For the cross section in Fig. 9-4(b).

The only active force in Fig. 9-4(a) is the torsional moment: there are no axial forces or bending
moments. Because the round bar in Fig. 9-4(b) does not warp, this is a case of “pure” St. Venant
torsion. Normal stresses are zero throughout.

Torsional shear stresses can be determined from Table 9-1. For a round bar

7 R*
fosr= 7’ where  J = ”2
The maximum shear stresses are at the outer edge, where r =R = 10in/2 = 5 in.
AR* 7 x(5in)*
2 2

J= =982 in*

The maximum shear stress

TR (10 kip-ft X 12in/ft) X 5 i
P = VLI /) XSin_ G 61 ksi
J 982 in

According to Eq. [9.7], the maximum angle of rotation occurs at the free end (where / =5 ft). In radians

Tl
e
_ (10kips/in® x 12 in/ft) x (5 ft x 12 in/ft)
11,200 kips/in® X 982 in*
= (.00065 radian

6

To convert angles from radians to degrees, recall that a full circle = 360° =27 radians, or 180° =
n radians:

180°

=—7— % 0.00065 radian = 0.038°
o radians

For the cross section in Fig. 9-4(c).

The torsional behavior of a hollow circular shaft is similar to that of a round bar: St. Venant torsion with
no warping; no normal stresses.
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From Table 9-1, the torsional shear stresses
T, 7
fosr= 7 where J= 3 (R =R}
N . .
J=E[(51n) —(4in)*] =580 in

The maximum shear stresses are at the outer edge, where r =R, =5 1in.

TR, (10kip-ft x 12 in/ft) X 5in
J 580 in*

=1.04 ksi

fux'r =

The angle of rotation, in radians

Gl 11,200 kips/in® x 580 in*

g T _ (10kip-ftx 12in/f)(5 ft x 12 in/ft)

=0.0011 radian
In degrees

180°

=————— % 0.0011 radians = 0.064°
o radians

For the cross section in Fig. 9-4(d).

When a square tube is twisted, warping is minor; the normal and shear stresses due to warping are small
and are generally neglected.
Referring to Table 9-1, for a square tube the St. Venant torsional shear stresses are

T
2b%t

fosT=

where b is the distance between the centerlines of the opposite sides, b =10in—lin=9in; r = lin.

10 kip-ft X 12 in/ft .
= — = =074k
Just 2x(9in)> X 1in .

According to Eq. [9.7], the maximum angle of rotation is at the free end.
Tl
0=—
GJ
From Table 9-1
J=th*=1inx (9in)* =729 in’

In radians
= (10 kip-ft x 12 in/ft)(5 ft X 12 in/ft)
11,200 kips/in® x 729 in’
=0.00088 radian
In degrees
180°

=————— % 0.00088 radian = 0.051°
ot radians
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9.4. For the cross section in Fig. 9-4(e).
In open sections, such as the I shape in Fig. 9-4(e), the torsional stresses are

Shear stresses due to St. Venant torsion
Shear stresses due to warping torsion
Normal stresses due to warping torsion
The St. Venant shear stresses can be determined from Table 9-1.
Tt
waT = 7
where 1, is the thickness of the element under consideration and
_Zbr’

J
3

In this case, ¢, = 1 in for the web and both flanges.
J=142%x10in X (1in)*+ 8in x (1in)’] =9.33 in*
The St. Venant shear stresses
_ (10kip-ft x 12in/ft) X lin
fusr = 9.33in*

To determine the stresses due to warping torsion, the approximation in Fig. 9-3 can be used.

=12.9ksi

M = 133 kips X 5.0 ft
= 66.7 kip-ft

13.3 kips
b;=101in |
fr=1in ~— 133 kips ‘L
+ Beam flange
- 9in
V = 13.3 kips
10 kip-ft = 120 kip-in = 13.3 kips X 9 in —L > 13 3 kips e 5.0ft |
|‘ |
Fig. 9-5

As shown in Fig. 9-5, the torsional moment of 10 kip-ft can be resolved into a force couple of 13.3 kips
(equal and opposite forces) on each flange. Each flange is assumed to act as an independent
(1in X 10in) rectangular beam resisting its 13.3-kip load. The shear V =13.3kips and maximum
moment (at the support) M = 13.3 kips x 5.0 ft = 66.7 kip-ft.

For a rectangular member, the maximum shear stress
L5V 1.5x13.3kips

wWT = =— —— = 2.0 ksi
fowr tiby 1in X 10in .
The maximum normal stress
M
f;1T = E
tb; )
where S = ) (the section modulus of the flange)
lin X (10in)*
L L T
6
66.7 kip-ft x 12 in/ft
For= P T in/ =48.0 ksi
16.7 in’

Combining stresses, we obtain the values shown in Fig. 9-6.
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| I S | I ———
12.9 kips/in® 2.0 kips/in? B 48.0 kips/in®
/ //
/
(_—ill
L
f\ST f\ WT fnT
Shear stresses — Shear stresses — Normal stresses —
St. Venant torsion warping torsion warping torsion
(flanges and web) (flanges only) (flanges only)
Fig. 9-6

As is shown in Fig. 9-6, the maximum shear stress is in the flanges: f,, = f.s7 + fowr= (12.9 + 2.0) ksi =
14.9 ksi. The maximum normal stress is also in the flanges: f,,, = f, = 48.0 ksi.
The maximum angle of rotation, from Eq. [9.7], is

Tl
6=—
GJ
where J is as determined above: J =9.33in".
In radians
(10 kip-ft x 12 in/ft)(S ft X 12in/ft)
a 11,200 kips/in® x 9.33 in*
= (0.069 radian
In degrees
180°
6 = ——— x 0.069 radians = 3.9°
o radians

A comparison of the solutions to Probs. 9.1 to 9.4 indicates that open sections are poor in torsional
resistance. The stresses and rotations of the I shape are at least an order of magnitude greater than those
of the closed sections under the same torsional loading.
For the beams in Probs. 9.5 to 9.8, plot the variation along the span of
Flexural shear V
Bending moment M

Torsional moment 7

9.5. The cantilever beam in Fig. 9-7(a).

P P
N v brevieevevy ﬂ:,l
k. I} !
< - ‘ . ‘
(a) (b)
lP l P
Ly O O SN A AR AR AR }1
[ 1 [ [ 1 1
A+ R A Ao -
L 12 L 12 ) '4_ i N
il [l | =1

Fig. 9-7
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The procedure for drawing the shear V, moment M, and torsion T diagrams is essentially the same:
(a) Determine the support reactions by statics.
(b) Plot the appropriate left-handed reaction on the diagram.

(c) Obtain additional points on the diagram by cutting sections along the beam and solving for the
required forces by statics.

(d) Ascertain closure at the right side of the diagram.

See Fig. 9-8.

Pe

A

Y

Fig. 9-8
9.6. The cantilever beam in Fig. 9-7(b).
See Fig. 9-9.
wl
V }\
wi?/2
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9.7.

9.8.

9.9.

TORSION

The simply supported beam in Fig. 9-7(c).

See Fig. 9-10.
P2
14
P2
Pl/4
; /\
Pe/2
T
Pel2
L 12 o 12 N
~ >
Fig. 9-10

The simply supported beam in Fig. 9-7(d).
See Fig. 9-11.

wi/2

|
wi?/8

N

wel/2

/|

Fig. 9-11

[CHAP. 9

In A36 steel, select a W shape with side plates to support the wall panel shown in Fig. 9-12.
The beam is simply supported and has a span of 20 ft. The wall panel weighs 150 Ib/ft’.
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d =12y = —ty)
(10.17 in) — (0.36 in)

(b; =2 X t2) = (b, — 1) = (5.75in — 0.25in) | =550 im—=—Af_
" " ;«j_‘-./_.‘{
g: "?/ o v
9in

Fig. 9-12

The vertical load on the beam consists of the weights of the wall panel and the beam:

1b
=150 —= X
w (wall panel) = 150 X Zm/m

w (beam assumed) =100 Ib/ft

x 12 ft =900 Ib/ft

w (total) = 1000 Ib/ft
w = 1000 Ib/ft = 1.0 kips/ft

As a result of an eccentricity of 9 in for the wall panel, the torsional moment

b 9in Ib-ft
= = — X —=675—-
we =900 & X i/t ft

= 0.675 kip-ft/ft
For the case of dead load only [i.e., Formula (A4-1) in Chap. 2], the factored loads are

w, = 1.4w = 1.4 x 1.0 kips/ft = 1.4 kips/ft
t,= 1.4t = 1.4 x 0.675 kip-ft/ft = 0.945 kip-ft/ft

A W shape with side plates is a box section with negligible warping torsion. The problem of designing
this beam for flexure combined with torsion can be divided into the following components. Flexure is
resisted by the W shape; the flexural normal stresses by the flanges; and the flexural shear, by the web.
The torsion (which in this case involves mainly St. Venant shear stresses) is resisted by a ‘“box”
consisting of the flanges and side plates.

The shear, moment, and torsion diagrams for this case [corresponding to Fig. 9-7(d)] appear in Fig.
9-11. The location of the maximum moment (and, hence, the maximum flexural normal stresses) is at
midspan. Flexural and torsional shear are maximum at the end supports.

Design for flexure.

w,[> 1.4 kips/ft x (20 ft)’
g8 8

M, = = 70 kip-ft

Because a box shape will not experience lateral torsional buckling, ¢, M, = ¢,M,. From p. 3-16 of the
AISC LRFD Manual, for a W10x22, ¢, M, = 70.2 kip-ft > 70 kip-ft required. Try a W10x22.
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Check flexural shear. From the shear diagram in Fig. 9-11, the maximum flexural shear is

w,l 1.4 kips/ft X 20 ft
w 2 - 2

= 14 kips

From p. 3-33 of the AISC LRFD Manual, for a W10x22, ¢,V, = 47.4 kips > 14 kips required. The
W10x22 is okay.

Regarding torsional shear, try i-in side plates. The maximum torsional moment (as shown in Fig.
9-11) 1s

1l kip-ft 20 ft
T, . .- 0.945 l—g— X g = 9.45 kip-ft

The torsional shear stresses for a rectangular tube (from Table 9-1) are

For the side plates (where ¢t = 0.25in)

9.45 kip-ft X 12 in/ft
2x5.50in x 9.811in x 0.25 in

fosr= =4.2ksi

For the flanges (where ¢ =0.36)

9.45 kip-ft x 12 in/ft

ST X 5.50x 9.8 x036in > K

In both cases, the torsional shear stresses are within the limits set by Formula [9.3]:
fiw =0.69F, = 0.6 x 0.90 X 36 ksi = 19.4 ksi

Use a W10x22 beam with -in side plates.

For the beam in Prob. 9.9, select a W shape without side plates.

The major differences between a box section and a W shape acting as beams are in the resistance to
torsion. Unlike the box beam in Prob. 9.9, a W section will experience significant warping torsion. As a
result

(1) Normal stresses due to warping torsion are superimposed on the flexural normal stresses. (Both
types of normal stresses are maximum in the flanges at midspan of the member.)

(2) Shear stresses due to warping torsion are superimposed on the shear stresses from St. Venant
torsion. (Both are maximum at the supports; the former occur only in the flanges, while the latter
occur in the web as well.)

(3) Also, the web shear stresses from St. Venant torsion add to the flexural shear stresses. (Both are
maximum at the supports; the later are primarily in the web.)

Warping Torsion

Figure 9-13, which corresponds to Fig. 9-3, approximates the effects of warping torsion on the W14x99
beam. The uniformly distributed factored torque t, = 0.945 kip-ft/ft (obtained in the solution to Prob.
9.9) is resolved into equal-and-opposite uniform loads on the flanges. Each flange is assumed to be a
laterally loaded beam spanning between the end supports.
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=
= , 20 ft
g d'=(d—1) }% =I
lol' b; = 14.565 in
Sy ——]
4 3
. N EEEREERNRE
© e . kip _ 20 ft
: £ 945 k VD) P
< ‘H %Q — 0 194152 ép = (.84 kip/ft w.Li2 = 0.84 S X 2
i S i |\=8.4 kip
X, w, = % = 0.84 kip/ft |4
W14 x 99
kip-ft
1, =0<945% w,L? —084@5>< 20 ft
8 U ft 8

Fig. 9-13

From Fig. 9-13, the equivalent uniform lateral flange load is 0.84 kip/ft and the resulting maximum
shear and moment are V,, = 8.4 kips and M,, = 42 kip-ft, respectively.
The maximum warping normal stress is

M,
for= S
1,b; .
where S'==— (section modulus of flange)
_ 0.78 in X (14.565 in)" — 7 6in®
6
42 kip-ft X 12 in/ft
= 2RI IZIN_ g 5
27.6in°

The maximum warping shear stress is
1.5V,
bt

_ 1.5x8.4Kkips
~ 14.565in X 0.78 in

(for shear on a rectangular shape)

fowr=

=1.1ksi

St. Venant Torsion
As given in Table 9-1 for open sections, the shear stresses due to St. Venant torsion are f, s, = T1,/J.

For a W14x99, J =5.37in", as tabulated under Torsional Properties in Part 1 of the AISC LRFD
Manual. For a W14x99, ¢, =0.78in and r,=0.485in. Maximum T, =9.45 kip-ft, as determined in

Prob. 9.9.

In the flanges
9.45 kip-ft X 0.78 in X 12 in/ft
P AT Wl 15 ki

fusr= 5.371n°
In the web
9.45 kip-ft X 0.485in X 12 in/ft .
ST — =10.2 ksi
5.37in
Flexure

From Prob. 9.9, as a result of flexure: maximum M,, =70 kip-ft and maximum V, = 14 kips. The
corresponding flexural normal and shear stresses are M,,/S, and V,/A,,.
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From Part 1 of the AISC LRFD Manual, the required properties of a W14x99 are
S, =157 in’
A, =dt,=14.161n X 0.485in = 6.87 in*

Then
M,. 70 kip-ft x 12 in/ft ,
S, 157 in° Bkl
V. 1dkips .
A, ogrim 20k

Combining Stresses
(1) Normal stresses (maximum in the flanges at midspan). From Eq. [9.2]

P,
=3t 1,
=0+5.4Kksi+0+18.3ksi =23.7 ksi
®F, = 0.90 x 36 ksi = 32.4 ksi
(f=23.7ksi) <(F,=32.4ksi)  o.k.

M ux M uy

tfor

(2) Flange shear stresses (maximum at the supports). Because flexural shear is negligible in the flanges
of a W shape, Eq. [9.4] reduces to

fuw =Fost + fowr
=16.5ksi+ 1.1 ksi=17.6ksi
0.6¢F, =0.6 X 32.4 ksi = 19.4 ksi
(fi = 17.6 ksi) < (0.6¢F, = 19.4 ksi) o.k.

(3) Web shear stresses (maximum at the supports): Warping shear stresses are zero in the web of a W
section. Equation [9.4] becomes

V,

v =-_“i LA
f. A fust

=2.0ksi + 10.2 ksi = 12.2 ksi
0.6¢9F, = 19.4 ksi (as above)

(fo =12.2ksi) < (0.6¢F, = 19.4ksi)  o.k.

Regarding the limit state of buckling, because a W14 x99 is compact in A36 steel, local buckling need
not be considered. However, if the 20-ft member is not laterally braced, lateral-torsional buckling
should be checked using Formula [9.5]: £, = ¢.F,,, where ¢.=0.85. To determine F,,, use the ratios

Q . (pth

£ oM,

For a simply supported member (C, = 1.0), the beam graphs (in Part 3 of the AISC LRFD Manual)
indicate for a W14x99

¢ M, = 450 kip-ft (L, =20ft)
¢,M, = 467 kip-ft (L, =L,=15.51t)
From this ratio, it follows that
F, 450 kip-ft
36 ksi 467 kip-ft
F.,=34.7ksi

Formula [9.5] becomes f,, =0.85 X 34.7 ksi =29.5 ksi. Because f,, =23.7 ksi <29.5 ksi, the W14x99
beam is satisfactory.
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Supplementary Problems

Design a box beam (A36 steel, 20ft long) to carry the 1501b/ft> wall panel shown in Fig. 9-12.

9.11.
Determine the magnitudes and locations of the maximum normal and shear stresses.

Ans. 10in X 10in X 2 in.

<

for = =2 = 18.8 ksi

Sr
Vi ,
ﬁu' == +ﬁ'ST =14.0 ksi

3

9.12. If F, =50ksi, select a W shape to carry the wall panel in Fig. 9-12.

Ans. W14 x 90.
In Probs. 9.13 to 9.15, a uniform torque of 1.0 kip-ft/ft is applied to the shaft shown in Fig. 9-14. Determine the
maximum shear and normal stresses.

1.0 kip-ft/ft
f f f 7 7
[ [ | | ]
N v\ v LU U\
| 6 ft 0 in N
[ >

Fig. 9-14

9.13. Round bar, 3-in diameter.

Ans. f,sr=13.6ksi, f, =0.

9.14. Standard pipe, 3-in diameter.
Ans.  fos7=209ksi, f, =0.

9.15. Square tube, 3in X 3in X }§in thick.
Ans.  f,sr=19.0ksi, f, =0.



Chapter 10

Composite Members

NOTATION

Ap = bearing area of concrete, in’
A, = cross-sectional area of concrete, in’
A, = cross-sectional area of longitudinal reinforcing bars, in®
A, = cross-sectional area of structural steel, in’
A, = cross-sectional area of a shear stud, in’
b = width of a rectangular steel tube, in
C, = bending coefficient, defined in Eq. [5.10]
¢, = 1.0 for concrete-filled pipe and tubing; 0.7 for concrete-encased sections [Eq. (12-1)]
¢> = 0.85 for concrete-filled pipes and tubing; 0.6 for concrete-encased sections [Eq. (12-1)]
c3 = 0.4 for concrete-filled pipe and tubing; 0.2 for concrete-encased sections [Eq. (12-2)]
D = outer diameter of pipe sections, in
E = modulus of elasticity of steel = 29,000 ksi
E. = modulus of elasticity of concrete [Eq. [10.1]), ksi
E,, = modified modulus of elasticity for the design of composite compression members, ksi
F,, = critical compressive stress, ksi
F,, = modified yield stress for the design of composite compression members, ksi
F, = minimum specified tensile strength of a stud shear connector, ksi
F, = specified minimum yield stress of the structural steel shape, ksi
F,, = specified minimum yield stress of the longitudinal reinforcing bars, ksi
f. = specified compressive strength of the concrete, ksi
H, = stud length (Fig. 10-2), but not to exceed (h, + 3), in
h. = steel beam web dimension defined in Fig. 5-2, in
h, = nominal steel deck rib height (Fig. 10-2), in
K = effective length factor for columns
L, = unbraced length of beam, ft
L. = length of channel shear connector, in
L,, = limiting unbraced length for full plastic bending capacity (C, > 1.0), ft
, = limiting unbraced length for full plastic bending capacity (C, = 1.0), ft
[ = unbraced length of the member, in
M,, = nominal flexural strength of member, kip-in or kip-ft
N, = number of studs in one rib at a beam intersection, but not to exceed 3

n = number of shear connectors required between a section of maximum moment and the
nearest section of zero moment

P, = elastic buckling load, defined in Eq. [10.9], kips
P, = nominal axial strength of member, kips
P,. = the part of P, resisted by the concrete, kips

122
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P, = required axial strength, kips
Q,, = shear capacity of one connector, kips

Y. Q, =summation of Q, between the point of maximum moment and the nearest point of
zero moment, kips

r,, = modified radius of gyation for composite columns, in
t = thickness of steel, in
t, = flange thickness, in
t,, = web thickness, in
V,, = total horizontal shear transferred between sections of maximum and zero moments.
kips
w = unit weight of concrete, Ib/ft?
w, = as defined in Fig. 10-2, in
A. = column slenderness parameter
5 = resistance factor for bearing on concrete = (.60
¢, M, = design flexural strength, kip-in or kip-ft
¢, = resistance factor for bending
¢.P, = design strength of compression member, kips

¢.P,. = the portion of the design compressive strength of a composite column resisted by the
concrete, kips

¢. = resistance factor for axial compression = (.85

INTRODUCTION

Composite members consist of rolled or built-up structural steel shapes and concrete. Examples
of composite members shown in Fig. 10-1 (p. 125) include (a) concrete-encased steel columns,
(b) concrete-filled steel columns, (c¢) concrete-encased steel beams, and (d) steel beams interactive
with and supporting concrete slabs. In contrast with classical structural steel design, which considers
only the strength of the steel, composite design assumes that the steel and concrete work together in
resisting loads. The inclusion of the contribution of the concrete results in more economical designs,
as the required quantity of steel can be reduced.

The provisions for the design of composite columns, beams, and beam-columns discussed in this
chapter are from Chap. I of the AISC LRFD Specification. Design aids are provided in Part 4 of the
AISC LRFD Manual.

COLUMNS AND OTHER COMPRESSION MEMBERS

The design of composite compression members is similar to that of noncomposite columns. The
equations for composite design (Egs. [10.2] to [10.6], below) are the same as Eq. (E2-1) to (E2-4)
in Chap. 4, with the following exceptions: in the design of the structural steel section in a composite
member, a modified yield stress F,,, and a modified modulus of elasticity E,, are used to account for
the contributions of the concrete and the longitudinal reinforcing bars.

A, A,
Fm,vzf;'_%cll:jvr;%—CZfCZ (12'1)
A,
Em =E+ (‘3E(‘X (12'2)

s

where E.=w"Vf! [10.1]
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and F,,, = modified yield stress for the design of composite columns, ksi
F, = specified minimum yield stress of the structural steel shape, ksi
F,, = specified minimum yield stress of the longitudinal reinforcing bars, ksi
f . =specified compressive strength of the concrete, ksi

E,, = modified modulus of elasticity for the design of composite columns, ksi

E = modulus of elasticity of steel = 29,000 ksi
E,. = modulus of elasticity of concrete, ksi
w = unit weight of concrete, Ib/ft’

A, = cross-sectional area of concrete, in”

A, = cross-sectional area of longitudinal reinforcing bars, in*

A, = cross-sectional area of structural steel, in’

[CHAP. 10

For concrete-filled pipe and tubing: ¢, = 1.0, ¢,=0.85, and c;=0.4. For concrete-encased shapes
¢, =0.7, ¢;=0.6, and c¢;=0.2. Utilizing F,, and E,, as defined above, the design strength of axially

loaded composite columns is ¢.P,, where ¢.=0.85 and
P, = AF,
If A.=1.5 (inelastic column buckling)
E, = (0.658")F,,
or F,, = [exp(—0.4191))]F,,
where exp(x) =e".

If A_> 1.5 (elastic column buckling)

0.877
E,= (= B

Az
Kl |F,,
where Ko = g —
rm‘JT E"l
and A, = cross-sectional area of structural steel, in’

K = effective length factor, discussed in Chap. 4
[ = unbraced length of the member, in

[10.2)

[10.3]

[10.4)

[10.5]

[10.6)

r,, = radius of gyration of the steel shape, but not less than 0.3 times the overall thickness of

the composite cross section in the plane of buckling, in

In Sec. 12, the AISC LRFD Specification places the following restrictions on composite columns.

(a) The cross-sectional area of structural steel A, =4 percent of the total area of the composite

cross section. Otherwise, design as a reinforced concrete column.

(b) Concrete encasement of steel shall be reinforced with longitudinal bars and lateral ties.
Maximum spacing of lateral ties shall be two-thirds of the least dimension of the composite
cross section. The minimum cross-sectional area of all reinforcement (lateral and
longitudinal) shall be 0.007 in? per inch of bar spacing. A clear concrete cover of at least

1.5 in must be provided outside all reinforcement at the perimeter.

(c) Minimum design f is 3 ksi for normal-weight concrete, and 4 ksi for lightweight concrete.

Maximum design f is 8 ksi.

(d) For both structural and reinforcing steel, design F, = 55 ksi.
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(e) The wall thicknesses of structural steel members filled with concrete

| E, .
t=b i for each face of width b in rectangular tubes,

F;
t=D 8—‘E for pipes of outside diameter D
(f) If a composite cross section includes two or more steel shapes, the shapes shall be
connected with batten plates, tie plates, or lacing to prevent buckling of each shape before
hardening of the concrete.

(g) The part of the design compressive strength resisted by the concrete ¢ P, must be
developed by direct bearing at connections.

¢rchSl7¢ch"AB [10 7]

where ¢ = 0.60 = the resistance factor in bearing on concrete and A, = the bearing area, in?.

The design of composite columns can be accomplished through the Composite Column Tables in
Part 4 of the AISC LRFD Manual for the cross sections tabulated therein, or the above equations
for all cross sections.

BEAMS AND OTHER FLEXURAL MEMBERS

The most common case of a composite flexural member is a steel beam interacting with a
concrete slab, as shown in Fig. 10-1(d). The slab can be either a solid reinforced concrete slab or a
concrete slab on a corrugated metal deck. In either case, stud or channel shear connectors are
essential to ensure composite action. (When designed in accordance with this section, a beam is
composite regardless of the type of deck. A steel deck is designated as a composite deck when it
contains embossments on its upper surfaces to bond it to the concrete slab; the beams supporting it
may or may not be composite in this case.)

14 in minimum
clear cover

2 in minimum

e d 2 in minimum cover
T (typical)

Fig. 10-1 Examples of composite members

Three criteria determine the effective width of a concrete slab acting compositely with a steel
beam. On either side of the beam centerline, the effective width of concrete slab cannot exceed
(a) one-eighth of the beam spin, (b) one-half of the distance to the centerline of the adjacent beam,
or (c¢) the distance to the edge of the slab.
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The horizontal shear forces between the steel beam and concrete slab, to be transferred by the
shear connectors, are as follows.

In regions of positive moment, between the points of zero and maximum positive moments (e.g.,
between a support point and midspan on a uniformly loaded, simply supported beam), the
smallest of (1) 0.85f/A, (the maximum possible compressive force in the concrete), (2) A,F, (the
maximum possible tensile force in the steel), and (3) X Q, (the capacity of the shear
connectors).

In regions of negative moment, between the points of zero and maximum negative moments
(e.g., between the free end and the support on a cantilever beam), the smaller of (4) A,F,, (the
maximum possible tensile force in the reinforcement) and (5) ¥ Q, (the capacity of the shear
connectors).

When sufficient shear connectors are provided (in accordance with the section on shear
connectors below) to allow condition 1, 2, or 4 above to govern, there is full composite action.
However, if the number of shear connectors is reduced and condition 3 or 5 governs, the result is
partial composite action.

DESIGN FLEXURAL STRENGTH
For positive moment, the design flexural strength ¢, M, is determined as follows.

It hc/tw5640/\/E (i.e., the web of the steel beam is compact, which is true for all rolled W
shapes in A36 steel), ¢, =0.85, and M, is calculated from the plastic stress distribution on the
composite section. The assumptions are (a) a uniform compressive stress of 0.85f. and zero
tensile strength in the concrete, (b) a uniform steel stress of F, in the tension area and
compression area (if any) of the steel section, and (c) that the net tensile force in the steel
section equals the compressive force in the concrete slab.

If h(/tw>640/\/E (i.e., the web of the steel beam is not compact), ¢, =0.90, and M, is
calculated from the elastic stress distribution, considering the effects of shoring. The assumptions
are (a) the strains in the steel and concrete are proportional to the distance from the neutral
axis; (b) steel stress, tension or compression, equals strain times E, but cannot exceed F;
(c) concrete compressive stress equals strain times E., but cannot exceed 0.85f¢; and (d) tensile
strength is zero in the concrete.

For negative moments the design flexural strength ¢,M, is determined by most engineers
according to the provisions in Chap. 5, neglecting composite action. However, if the steel beam is
compact and adequately braced (i.e., L, =L, for C,=1.0, or L,=L,, for C,>1.0) and the slab
reinforcement is properly developed, the negative flexural design strength may be determined as
follows: ¢, = 0.85, and M, is calculated from the plastic stress distribution on the composite section.
The assumptions are

(a) a tensile stress of F,, in all adequately developed longitudinal reinforcing bars within the
effective width of the concrete slab

(b) no tensile strength in the concrete
(c) a uniform stress of F, in the tension and compression areas of the steel section and

(d) that the net compressive force in the steel section equals the total tensile force in the
reinforcement

The issue of shoring is important in composite design. If temporary shores are used during
construction to help the steel beams support the newly poured “wet” concrete, design is as outlined
above, with the composite section resisting the total factored load, dead plus live. If shoring is not
anticipated, the bare steel beam must also be checked for adequacy to support the wet concrete and
other construction loads (properly factored) in accordance with the requirements of Chap. 5.
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Because of beam stress redistribution under full plastification, the total factored load for unshored
construction can still be assumed to act on the composite section, whenever design with a plastic
stress distribution is allowed by the AISC LRFD Specification. However, if an elastic stress
distribution is required, (1) the unshored loads applied prior to curing of the concrete (defined as
attaining 75 percent of f;) must be taken by the steel beam alone, and (2) only the subsequent loads
can be resisted by composite action. In the latter case, the total flexural stress at any point in the
steel beam is a superposition of the two effects.

SHEAR CONNECTORS

Acceptable as shear connectors are headed steel studs of minimum four stud diameters in length
and rolled steel channels. The nominal strength of a single stud shear connector in a solid concrete
slab is

O, =0.5A,Vf.E.<A_F, (I5-1)

where A, is the cross-sectional area of the stud, in®, and F, is the minimum specified tensile strength
of the stud, Kksi.
The nominal strength of a single channel shear connector in a solid concrete slab is

Qn = 03(tf + O'Stw)l‘t‘ Vf:'Ec (15-2)
where f; = flange thickness of the channel, in

t,, = web thickness of the channel, in
L. = length of the channel, in

The number of shear connectors required between a section of maximum moment and the

nearest section of zero moment is

Qﬂ
where Q, = the shear capacity of one connector [as determined from Eq. (/5-1) or (I5-2)], kips and
V,, = the total horizontal shear force to be transferred, kips.

As discussed above, in regions of positive moment, Vj, = the minimum of (0.85f/A., AF,, and
2 Q,), while in regions of negative moment, V,, = the minimum of (A, F, and L 0,).

Shear connectors may be uniformly distributed between the points of maximum and zero
moment. However, when a concentrated load is present, enough connectors must be placed between
the point of concentrated load and the point of zero moment to adequately develop the moment
capacity required at the concentrated load.

The following restrictions on the placement and spacing of shear connectors are imposed by the
AISC LRFD Specification:

n

[10.8]

(a) Minimum 1-in lateral concrete cover, except when installed in a steel deck

(b) Diameter of studs =2.5 times the thickness of the flange to which they are welded, unless
they are located over the web

(c) Minimum center-to-center spacing of studs, longitudinally along the supporting beam, six
diameters in solid slabs and four diameters in decks; laterally, four diameters in all cases

(d) Maximum center-to-center spacing of shear connectors of eight times the total slab thickness

SPECIAL PROVISIONS FOR STEEL DECKS

When a metal deck is used, the diameter of the shear studs must not exceed 3in. The studs may
be welded to the steel beam either through the deck (which is the usual practice) or through holes
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punched in the deck. Additional restrictions affecting the studs and deck (from Sec. 13.5 of the AISC
LRFD Specification) are shown in Fig. 10-2, which is reproduced (with permission) from the
Commentary on the AISC LRFD Specification.

14 in minimum

r
[

2 in minimum

SUSIANINER TOTIY sy Ber RSN I 2 in minimum
N i / 41 \ =) -
L § # 2 ;‘ i L3 AR h, < 3in

14 in minimum

wr

2 in minimum L

2 in minimum

h, < 3in

14 in minimum

2 in minimum

y
2 in minimum

h, < 3in

w, = 2 in minimum

Fig. 10-2 Special provision for steel decks

When the deck ribs are perpendicular to the steel beam

(a) The concrete below the top of the steel deck is ignored in calculating A, and other section
properties.

(b) The longitudinal spacing of shear studs =32 in.

(c) The nominal strength of each shear stud [i.e., the middle term in Expression (I5-1), above]
is multiplied by the reduction factor

0.85 /w,\ /H
—— (= ——s—l.0>sl.0 13-1
w ) G (13-
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where N, = the number of studs in one rib at a beam intersection (=3 in this formula, even if
more than three studs are present) and w,, h,, and H, are as defined in Fig. 10-2, in inches.
In calculations, H, = (h, + 3) must be used.

(d) The steel deck must be anchored to all supporting members at a spacing =16 in. Welded
studs or arc spot (puddle) welds are satisfactory for this purpose.

When the deck ribs are parallel to the steel beam

(a) The concrete below the top of the steel deck is included in calculating A, and other section
properties.

(b) The deck may be cut longitudinally at a rib and separated to form a concrete haunch over
the supporting steel beam, as shown at the bottom of Fig. 10-2.

(c) When h,=1.5in, w,=21in for the first stud in the transverse direction plus four stud
diameters for each additional stud.

(d) When w,/h, <1.5, the nominal strength of each shear stud [i.e., the middle term in
Expression (/5-1), above] must be multiplied by the reduction factor

063’<ﬂ"—10)<10 132
o \n, )T (£3-2)

r r

CONCRETE-ENCASED BEAMS

The special case of a concrete-encased beam [shown in Fig. 10-1(c)], where shear connectors are
not required for composite action, is as follows. A beam totally encased in concrete cast with the
slab may be assumed bonded to the concrete if

(a) Concrete cover of the sides and soffit of the beam is at least 2 in.
(b) The top of the beam is at least 13 in below and 2 in above the bottom of the slab.

(c) The concrete encasement has sufficient welded wire mesh or bar reinforcing steel to prevent
spalling of the concrete.

The design flexural strength of concrete-encased beams is ¢,M,, where ¢, =0.90 and M, is
calculated from either (a) the elastic stress distribution on the composite section, considering the
effects of shoring, or (b) the plastic stress distribution on the bare steel section (i.e., M, = M, =ZF).
Either way, there is no need to consider local buckling or lateral-torsional buckling of the steel beam
because such buckling is inhibited by the encasement.

BEAM-COLUMNS: COMBINED FLEXURE AND COMPRESSION

Doubly and singly symmetric composite beam-columns are designed by the method presented in
Chap. 8 for ordinary beam-columns [including Interaction Formulas (H1-la) and (HI-1b), and
simplified Second-Order Analysis Equations (H1-2) to (H1-6)], but with the following exceptions.

In Egs. (H1-1a) and (H1-1b), ¢ P, is as defined in this chapter for composite columns; similarly
¢»M,,, where ¢, =0.85 and M, is the nominal flexural strength calculated from the plastic stress
distribution on the composite cross section. However, if (P,/¢.P,)<0.3, M, is determined by
linear interpolation between M, (calculated from the plastic stress distribution on the composite
cross section) at (P,/¢.P,)=0.3 and M, for the appropriate composite beam (e.g., a
concrete-encased beam) at P, = 0.

In Egs. (H1-3) and (H1-6)

E,,
532 [10.9]

where A, F,,, and A, are as defined in this chapter. See Eqs. (/2-1) and [10.6].

P.=A
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Beam-columns must conform with the minimum requirements for composite columns, listed as
items (a) to (g) earlier in this chapter, under the heading Columns and Other Compression
Members. If shear connectors are required for a beam (i.e., when P, = 0), they must be provided for
that member whenever (P,/¢.P,) <0.3.

DESIGN SHEAR STRENGTH

The design shear strength for composite beams is taken as the shear strength of the steel web, as
for noncomposite beams. The equations for shear strength in Chaps. 5 and 6 are, therefore, valid for

composite flexural members.

Solved Problems

10.1. Select a 6-in concrete-filled pipe column for a required axial compressive strength of 200 kips,
where KL =10.0ft, F, =36ksi, f/=3.5ksi, normal weight (145 1b/ft*) concrete. See Prob.

4.11.

In Prob. 4.11, a noncomposite 6-in extrastrong pipe was required for the same conditions.
Try a 6-in standard-weight concrete-filled pipe. (See Fig. 10-3.)

6.065 in inside diameter D,

6.625 in outside diameter D

r = 0.280 in
Fig. 10-3

Check minimum wall thickness of pipe:

t= D22 = 6,625 in |—0 kS 0.083 in
= — = 0.023 —  —————— = V. i 1
8E 8 % 29,000 ksi

t=10.2801in>0.083 in o.k.

Check minimum cross-sectional area of steel pipe:

A, = 7(R* = R?) =’4—’<Dl— D?)

T o " n
= 7 [(6.625in)* — (6.065in)’] = 5.6 in”
A, =7R>= ;—TD,Z - g X (6.065 in)* = 28.9 in>
A, 5.6in’

=0.16>4% o.k.

A+A 56in+289in



CHAP.

10.2.

10] COMPOSITE MEMBERS 131

In the absence of reinforcing bars, Eqs. (/2-1) and (/2-2) become
A

F.y=F+cfe—=

¢ =5 Bl

X

-

A
E,,=E+ ¢ E,
AX
where E. = w' Vf/, ¢;=0.85, c;=0.4.
The modulus of elasticity of the concrete

E.=145"7V3.5 = 3267 ksi

The modified yield stress for composite design is

. . 28.9in’
E,, =36 ksi +0.85 x 3.5ksi X —
} 5.61in"

=51.4ksi

The modified modulus of elasticity for composite design is

E, = 29,000 ksi + 0.4 X 3267 ksi x 251
5.6in°

= 35,744 ksi

The radius of gyration of a hollow circular shape

VD’ + D?
r Zf (See AISC LRFD Manual, p. 7-21.)
V(6.625 in)* + (6.065 in)’

= =2.25in
4

for the bare steel pipe.
The modified radius of gyration for composite design

r,, =r=0.3D (the overall dimension)
=2.25in=(0.3 X 6.625in =1.99in)

=2.25in
The slenderness parameter
Kl .
K [
rmt NV E,

_10.0ftx 12in/ft [ 51.4ksi I
2.25in %X 7 35,744 ksi

F, = (0.658")F,,
=0.658"" x 51.4 ksi = 43.2 ksi

Because A, < 1.5

The design compressive strength
¢.P, = p.AF,
=().85 X 5.6in° x 43.2 kips/in®
= 205 kips > 200 kips required

(¢.P, =205 kips for this case is also tabulated on p. 4-100 of the AISC LRFD Manual.)
The 6-in standard-weight concrete-filled pipe-column is satisfactory.

Determine the design compressive strength of a W8x40 (A36 steel) encased in a 16in X 16 in
(f.=3.5ksi) normal-weight concrete column in Fig. 10-4. Reinforcement is four No. 7
(Grade 60) bars longitudinally, and No. 3 ties at 10 in horizontally; K, L, = K, L, = 15.0 ft.
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S o
4 =
555

16 1n 11.4in

Checking minimum requirements

(a)

(b)

(c)
(d)

For a W8x40, A, =11.7in’, total area = 16 in X 16 in = 256 in°

W70, 6% > 4% mini k
Yot~ 6% o minimum o.k.
Lateral tie spacing = 10 in
<3 X 16 in outer dimension = 10.7 in o.k.
Minimum clear cover =1.5in o.k.

Horizontal No. 3 bars: A, =0.11in" per bar

>0.007 in* X 10 in spacing = 0.07 in® o.k.
Vertical No. 7 bars: A, =0.60in" per bar

>0.007 in* X 11.4in spacing = 0.08 in>  o.k.

3.0 ksi <(f.=3.5ksi) <8.0ksi for normal weight concrete o.k.
Use F,, =55 ksi for reinforcement in calculations, even though actual F,, = 60 ksi for Grade 60 bars.

Determine F,, and E,:

A, LA,

B =E % ClE'rX + le(A_\

where A, = the cross-sectional area of four No. 7 longitudinal bars =4 X 0.6 in° = 2.4 in’
A, = cross-sectional area of W8x40 = 11.7 in’

A.,=16inx16in— (11.7in° + 2.4in”) =242 in”
For concrete-encased shapes, ¢, =0.7 and ¢, = 0.6.

2.4in? . 242in®
+0.6X3.5ksi X ——

F, =36ksi+0.7 X 55 ksi X ) .
o o LT 11.7in°

=87.3 ksi

A,
E,=E+cE —
A

=
where  ¢;=0.2 for concrete-encased shapes

E, = w'" Vf!=145"°\/3.5 = 3267 ksi for 3.5-ksi normal-weight (145 Ib/ft*) concrete
E,, =29,000 ksi + 0.2 x 3267 ksi x 242 in°/11.7 in® = 42,513 ksi
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The modified radius of gyration
1, =r,(W8x40) = 0.3 X 16 in (overall dimension)
=2.04in=4.801in
=4.801n

Kl B
/1( = —_ny
r.t VE

_15.0ftx 12in/ft [ 87.3ksi 5
T 480inxnx 42.513ksi

F, = (0.658")F,,
=0.658"%" x 87.3 ksi = 77.2 ksi

The slenderness parameter

The critical stress

The design compressive strength
¢.P, = ¢.AFE,
=0.85% 11.7in* X 77.2 kips/in’
=768 kips
(¢.P, =768 kips for this case is also tabulated on p. 4-73 of the AISC LRFD Manual.)

The 768-kip design strength is considerably more than the 238-kip design strength of a
noncomposite W8x40 column under the same conditions. See Prob. 4.12.

10.3. Determine the design compressive strength of the composite column in Prob. 10.2 if
fe=5.0Kksi.

As in Prob. 10.2, the minimum requirements for a composite column are satisfied; A, =2.4in>,
A, =11.7in*, A, =242in%, ¢, =0.7, ¢, =0.6, c;=0.2.

Ar /Ar
Fm»‘ = E’ + CIE'V— + le('_
‘ V V Ax As

2.4in? 242 in?
=36 ksi + 0.7 X 55 ksl K= £ 06K 5D ks ¥
11.7in 11710

.71in
=105.9 ksi

E. = w"Vfl=145"%V/5.0 = 3904 ksi
A,
E,=E+c,E.—
AS
242 in’

= 29,000 ksi + 0.2 x 3904 ksi X —
11.7 in”

= 45,150 ksi

r,, =4.801n as in Prob. 10.2.
_ Kkt _|E,
r.t VE,

_15.0ft x 12in/ft [ 105.9ksi 058
4.80in X 7 45,150 ksi

A
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F, = (0.0658")F,,
=0.658""" x 105.9 ksi = 92.1 ksi
¢.F,=¢AF,
=0.85%x 11.71in> X 92.1 ksi
=916 kips
(as also tabulated on p. 4-85 of the AISC LRFD Manual).

Assume all the column load in Prob. 10.3 enters the composite column at one level.
Determine A, the required bearing area of concrete.
PPoe =B, — PPy

In other words, the part of the design compressive strength resisted by the concrete equals the total
design compresive strength of the composite column minus the portion resisted by the steel.
In this case, ¢.P, =916 kips and ¢ P,, = 238 kips.

¢.P,. =916 kips — 238 kips = 678 kips
According to formula [10.7]

¢('F‘m' = 17¢Bf(" B

or A ¢Pc 678 kips
B

- r =133 2
1.7¢sf. 1.7%0.60 %5 ksi n

The required concrete-bearing area of 133 in® can be satisfied by applying the load to a 12in X 12in
bearing plate placed on the column.

For Probs. 10.5 to 10.9, determine

10.5.

(a) The effective width of concrete slab for composite action
(b) V, (the total horizontal shear force to be transferred) for full composite action
(c) The number of 3-in-diameter shear studs required if F, = 60 ksi

A W18x40 interior beam is shown in Fig. 10-5. Steel is A36, beam span is 30 ft Oin, and
beam spacing is 10ft 0in. The beams are to act compositely with a 5-in normal-weight
concrete slab; .= 5.0 ksi.

L B2

— 1 - I

L s=10ft0in s=10ft0in
=

5in

>
>

Fig. 10-5

(a) For an interior beam, the effective slab width on either side of the beam centerline is the minimum
of

= =3.75ft=45in

L_30.0ft
8

s 10.0ft
= =5.00 ft

The effective slab width is 2 X 45in =90 in.
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(b) In positive moment regions, V), for full composite action is the smaller of

0.85f.A, = 0.85 x Sksi X (90in X 5in)

= 1913 kips
A,F,=11.8in” x 36 ksi = 425 kips
V, = 425 kips

(c) The nominal strength of a single shear stud [from Eq. (/5-1)] is
Q. =0.5ANSE, =AF,

For a }-in-diameter stud,

0.75in\’ .
A“. = Jt<—2“—> =0.441n"
E, = w"Vf!=145"°\/5.0 = 3904 ksi
E, = 60 ksi

Q, =0.5 % 0.44 in*V/5.0 ksi x 3904 ksi = 0.44 in? X 60 ksi
= 30.9 kips = 26.4 kips
=26.4 kips per stud
The number of shear connectors between the points of zero and maximum moments is

Vi 425 kips

T 0, 26.4kips/stud
=16.1 or 17 studs

For the beam shown in Fig. 10-6, the required number of shear studs is 2n =2 x 17 = 34,

¢
}: n studs - n studs 4»{
45 | ke
M.
Fig. 10-6

Assuming a single line of shear studs (over the beam web), stud spacing = 30.0 ft/34 = 0.88 ft =
10.6in. This is greater than the six-stud diameter (or 6 X 3 in = 4.5 in) minimum spacing, and less than
the eight slab thickness (or 8 X 5in =40 in) maximum spacing, which is satisfactory.

10.6. A W24Xx68 edge beam is shown in Fig. 10-7. Steel is A36, and the beam span is 32 ft 0 in. The
beam is to act compositely with a 4-in lightweight concrete (110 Ib/ft’) slab; £/ = 3.5 ksi.

kN
~Z 4in

Iw24 x 68 I - T

Fig. 10-7

(a) For the edge beam in Fig. 10-7, the effective slab width on the exterior (or left) side of the beam
centerline is the minimum of L/8=32.0ft/8 =4.0ft. or distance to edge of slab=1.0ft = 12 in.
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The effective slab width on the interior (or right) side of the beam centerline is the minimum of

L 32.0ft

—= =4.0ft

8 8

s 5.0ft _

—= =2.5ft=30in
2 2

The effective slab width is (12in + 30 in) = 42 in.
(b) In the positive moment regions, V), for full composite action is the smaller of
0.85f!A.=0.85x 3.5 ksi X (42 in X 4in) = 500 kips
A,F, =20.11in" x 36 ksi = 724 kips
V;, = 500 kips
(¢) The nominal strength of a single shear stud [from Eq. (I5-1)] is
0,=0.5A, VfE.<A_F,
F,=60ksi A, =0.44in’ for 3-in-diameter studs
E.=w"Vfl=110"°V3.5 = 2158 ksi
0, =0.5x 0.44 in\/3.5 ksi x 2158 ksi = 0.44 in* X 60 ksi
=19.1 kips = 26.4 kips
=19.1 kips per stud

The number of shear connectors between the points of zero and maximum moments is
n=V,/Q, =500kips/19.1 kips per stud =26.1 or 27 studs. For the beam shown in Fig. 10-6, the
required number of shear studs is 2n =2 X 27 = 54.

Assuming a single line of shear studs (over the beam web), stud spacing = 32.0 ft/54 = 0.59 ft =
7.1in. This is greater than the six stud diameter (or 6 X in =4.5in) minimum spacing, and less
than the eight slab thickness (or 8 X 4 in = 32 in) maximum spacing, which is satisfactory.

10.7. Assume the beams in Fig. 10-5 are cantilever beams: A36 steel, with a cantilever span of 8 ft
0in. Slab reinforcement is No. 4 bars (A, = 0.20 in® per bar) at 1 ft 0 in center-to-center. Bars
are Grade 60 steel.

(a) For an interior beam, the effective slab width on either side of the beam centerline is the minimum

of
.0
£=8—ﬁ= 1.0 ft
8 8
s _ 10.0 ft:S.Oft
2 2

The effective slab width is 2 x 1.0 ft = 2.0 ft.

(b) In negative-moment regions (such as cantilevers): V, = A F,, for full composite action, where A,
and F,, are the cross-sectional area and minimum yield stress of the reinforcement, respectively.
Because the slab is in tension, the concrete cannot participate in composite action.

For an effective slab width of 2.0 ft

A= 0.20 in® y 1 bar
bar ft
V, = 0.40 in” X 60 ksi = 24 Kips

x 2.0 ft width = 0.40 in’

(c) The nominal strength of a single shear stud is Q,=26.4kips. Although n=V,/0,=
24 kips/26.4 kips per stud = 0.9 would indicate that one stud is satisfactory, the actual number of
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shear studs is governed by the maximum spacing of eight times the slab thickness:

_ span
~ maximum spacing
_ 8.0ft x 12in/ft

8% 5in = 2.4 or 3 shear studs

10.8. Repeat Prob. 10.5 with the following modification: The 5-in normal-weight concrete slab
(shown in Fig. 10-5) consists of 2in of concrete on a 3-in steel deck, with ribs spanning
perpendicular to the W18x40 steel beam. See Fig. 10-8.

1 ft 0 in (typical)

e

7% in

M .

-~

Z 4% in Z

W18 x40

Fig. 10-8

Verifying compliance with the special provisions for steel decks (Fig. 10-2):
Nominal deck rib height 4, = 3 in maximum
Slab thickness above steel deck =2 in minimum
Average width of concrete rib w, = (4.75 + 7.25) in/2 = 6.0 in > 2 in minimum
Shear stud diameter = (.75 in maximum
Height of shear stud H, = (h, + 1.5in) = (3.0+ 1.5)in=4.51n

Use 43-in-long 3-in-diameter shear studs.

(a) The effective slab width is 90 in, as in Prob. 10.5.

(b) Because the deck ribs are perpendicular to the steel beam, the concrete below the top of the steel
deck is ignored in calculating A, and other section properties. In regions of positive moment, Vv, for
full composite action is the smaller of

0.85fA. = 0.85 x 5ksi x (90 in X 2 in) = 765 kips
AJF, = 11.8in* X 36 ksi = 425 kips
V, = 425 kips
(c) For a solid slab, the nominal strength of a single shear stud (as determined in Prob. 10.5) is
Q.=0.5A,VflE.<A,F,
= 30.7 kips = 26.4 kips (I5-1)

When the deck ribs are perpendicular to the steel beam, the middle term of Expression (15-1) is
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multiplied by the reduction factor
/N, \h,
From the solution to this problem, w,=61n, h, =3in, H, =4.5in. Assume the number of stud
connectors in one rib at a beam intersection N, = 2. The reduction factor in expression (/3-1) is
0.85 6in <4.5 in
V2 3in\ 3in

e 1.0) =1.0 (13-1)

— 1.0) =0.60

Then
0, =30.7 kips x 0.60 = 26.4 kips
=18.5 kips = 26.4 kips
= 18.5 kips per stud

The maximum number of shear connectors between the points of zero and maximum moments is
n=V,/0, =425kips/18.5kips per stud=23studs. As indicated by Fig. 10-6, the required
minimum number of shear studs is 2n =2 X 23 = 46.

Because the deck ribs are spaced at 1 ft 0in center-to-center, as shown in Fig. 10-8, there are
30 ribs for the 30-ft beam span. It is advisable to place two shear studs per rib, for a total of 60
studs.

The reader can verify that the minimum center-to-center spacing of shear studs in deck ribs of four
diameters (i.e., 4x0.75in=31in) in any direction allows the two studs in each rib to be placed
longitudinally or transversely in the case at hand (a W18x40 beam and a deck with a 4.75-in rib width at
the bottom).

Repeat Prob. 10.6 with the following modification: The 4-in lightweight concrete slab (shown
in Fig. 10-7) consists of 2 in of concrete on a 2-in steel deck, with ribs spanning perpendicular
to the W24x68 steel beam. See Fig. 10-9.

7 in 1 ft O in (typical)
| > ‘ i
2 in
Ry
le—» \
5in }
{ W24 x 68
Fig. 10-9

Verifying compliance with the special provisions for steel decks (Fig. 10-2):

Nominal deck rib height 4, =2 in <3 in maximum

Slab thickness above steel deck = 2 in minimum

Average width of concrete rib w, = (5+7)in/2 = 61in > 2 in minimum
Shear stud diameter = 0.75 in maximum

Height of shear .©ad H, = (h, + 1.5in) = (2.0+ 1.5)in=3.5in

Use 33-in long 3-in-diameter shear studs
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(a) The effective slab width is 42 in, as in Prob. 10.6.

(b) Because the deck ribs are perpendicular to the steel beam, the concrete below the top of the steel
deck is ignored in calculating A..

In regions of positive moment, V, for full composite action is the smaller of
0.85f/A, =0.85x 3.5ksi X (42in x 2in) = 250 kips
A,F, =20.11in" X 36 ksi = 724 kips
V, =250 kips

(c) For a solid slab, the nominal strength of a single shear stud (as determined in Prob. 10.6) is
Qn = O'SA:r \ff("EC = Aer4
= 19.1 kips = 26.4 kips (15-1)

If the deck ribs are perpendicular to the steel beam, the middle term of expression (/5-1) is
multiplied by the reduction factor

0.85 (w,\ H,
i (h—) (h—— 10)=1.0 (13-1)

From the solution to this problem, w, =6in, h, =2in, H, =3.5in.
The reduction factor in expression (/3-1) is

@ <w><35 in
VN, \2in/\ 2in

Regardless of the number of shear studs in one rib at a beam intersection (i,e., N,=1, 2, or 3), the
reduction factor equals 1.0.

- 1.0) =1.0

Q, =19.1kips X 1.0 = 19.1 kips per stud

The minimum number of shear connectors between the points of zero and maximum moments is
n="V,/Q, =250kips/19.1 kips per stud = 13.1 or 14 studs.

As indicated by Fig. 10-6, the required minimum number of shear studs is 2n =2 X 14 = 28.
Because the deck ribs are spaced at 1 ft 0 in center-to-center, as shown in Fig. 10-9, there are 32 ribs for
the 32-ft beam span. It is advisable to place one shear stud per rib, for a total of 32 studs.

10.10. Determine the design flexural strength of the W18x40 beam in Prob. 10.5 with full composite
action. Assume the beam is shored during construction.

Because the beam is shored, the entire load acts on a composite member. From the Properties Tables
for W Shapes in Part 1 of the AISC LRFD Manual, for a W18x40

h 640 640
i=51.())<<—=—=106.7>
(zw VE /36

The design flexural strength is ¢,M,, where ¢, =0.85 and M, is calculated from the plastic stress
distribution on the composite section.

From the solution to Prob. 10.5: the maximum possible compressive force in the concrete slab
C =0.85f!A. = 1913 kips; the maximum possible tensile force in the steel beam T = A F, = 425 kips. To
satisfy equilibrium, it is necessary that C =T =425 kips. The plastic stress distribution is as shown in
Fig. 10-10, with the plastic neutral axis (PNA) in the slab. In Fig. 10-10, C = 0.85fba, where a is the
depth of the compression block (in) and b is the effective slab width (in).
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a2
’I 77 7 7 7 ] _ v_ N C=0.85f ba
Zr IZ i T <o,

PNA

d e
2 l
d} T=AF, —1 —»] —l—
‘ <ro,
L =
F,
Fig. 10-10
From Prob. 10.5, f/=5.0ksi, b =90 in.
c ips
Then, o= 42511‘."" =1.11in
P 085 % 5.0 X 90 in
mn
The nominal flexural strength
d a
M,=T =T<—+t——>
VR
17.901 1.111
= 425 kips X (Tm+5in— m)

=425 kips X 13.39in
= 5693 kip-in = 474 kip-ft

The design flexural strength for full composite action is ¢, M, = 0.85 X 474 kip-ft = 403 Kip-ft.

This is nearly double the (¢,M, =) 212-kip-ft design compressive strength of a noncomposite
W18x40 beam of the same A36 steel (assuming adequate lateral bracing; i.e., L, = L,). (The composite
beam is braced by the shear studs, spaced at 10.6 in, embedded in the concrete.)

10.11. Determine the design flexural strength of the W18x40 beam in Prob. 10.8. The 5-in-thick
solid concrete slab (in Fig. 10-5) is replaced with 2 in of solid concrete on a 3-in steel deck

with ribs perpendicular to the beam as shown in Fig. 10-8. Assume the beam is shored during
construction.

When the deck ribs are perpendicular to the beam, the concrete below the top of the deck is neglected.
In the case at hand, only the upper 2 in of concrete can be considered effective.

In Prob. 10.10, the PNA was located at 1.11 in below the top of the slab. (See Fig. 10-10.) All the
concrete below the PNA is assigned zero strength because it is in tension. The solution to this problem is
identical with that of Prob. 10.10; thus, a slab on a steel deck is equivalent to a solid slab if the deck is
entirely within the tension zone of the concrete.

10.12

Repeat Prob. 10.10. Assume the beam is not shored during construction.

The solution to Probs. 10.10 and 10.11 (where the plastic stress distribution is used to determine M,,) is
also valid for unshored construction. However, the bare steel beam must be checked for adequacy to
support all loads applied prior to the concrete attaining 75 percent of its specified strength f.
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The construction loads on the noncomposite W18 x 40 beam in Prob. 10.10 (see Fig. 10-5) are

Dead Load
Beam =40 Ib/ft
Ib  5in thick 625 1b/ft
= — X ——— x 10.0 ft wide =———
Slab =130 e > o i < WIEE = 665 Ib/ft

Construction Live Load (assumed)
1b
=20ft—2>< 10.0 ft wide =200 Ib/ft

The factored uniform load is 1.2D + 1.6L:

b Ib

w,=1.2X 665E+ 1.6 X200 — = 1118 — = 1.12 kips/ft
‘ ft ft ft

The required strength M, = w,L/8.

M, = 1.12 kips/f;x (30.0 ft)*

= 126 kip-ft

<¢,M, for the W18x40 alone, if L, =16ft. (See AISC LRFD Manual, p. 3-74.) The unshored
noncomposite W18x40 beam is adequate during construction if it is laterally supported at least at one
point (midspan).

10.13. Assume the moment diagram in Fig. 10-11 represents the required flexural strength of the
composite W18x40 beam in Probs. 10.5 and 10.10. Determine the distribution of shear studs

along the span.

3@10ft0in =301t0in

350 kip-fi

75

Fig. 10-11

In the solution to Prob. 10.10 it was determined that the design flexural strength of this composite beam
for full composite action is ¢,M, =403 kip-ft. Since the required flexural strength M, < 350 kip-ft
throughout the span, try partial composite action. Instead of the (2n =) 34 shear studs determined for
Prob. 10.5(c) for full composite action, try (2n =) 28 shear studs; i.e., n = 14 shear studs on each side of
the midspan maximum-moment section.

Check spacing.

_30.0ft X 12 in/ft
B 28 studs

<(8 =8 X 5in=) 40 in maximum spacing o.k.

=12.9in

For partial composite action, the hcrizontal shear transferred by the studs between the points of zero
and maximum moments V,=Y Q,=nQ, =14 studs X 26.4 kips/stud =370 kips. [The value Q, =
26.4 kips per stud was determined in the solution to Prob. 10.5(c).]
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Referring to Fig. 10-10

C=0.85f/ba=Y Q,=370kips
C 370 kips

= = =097
4= 0.85f1b 0.85 % 5.0 kips/in® X 90in n
d
M,,=7:,=C[,=C<—+t—g)
2772
17.90 0.97
=370kipsx( 5 M Sin— 2‘“)

=370 kips X 13.47 in
= 4983 kip-in = 415 kip-ft

[CHAP.

10

The design flexural strength for partial composite action is ¢,M, =0.85x 415 kip-ft = 353 kip-ft

>350 kip-ft required. This is okay.

Try a uniform distribution of shear studs and check the design flexural strength at the concentrated

loads, where the required strength is 300 kip-ft. (See Fig. 10-12.)

Proposed *‘uniform’’
shear stud distributions

Total
Full composite action 12 10 12 34

Partial composite action ;; 10 8 0 9 78

3@ 10ft0in =30ft0in

| |
= =

Fig. 10-12

At the points of concentrated load (partial composite action), n = 10 and

y
V, =Y 0, =nQ, = 10 studs X 26.4 —= = 264 kips
stud

Referring to Fig. 10-10

C=0.85flba=Y O, =2064Kips

c 264 kips 0.69i
a: —_— = .
0.85f(b_ 0.85x 5.0 kips/in’ X 90 in n
M,=Te=C —C(El-!-t—g)
= e TRETIND 2
17.901 0.691
=264kips><< 2‘“+51n— 2"’)

=264 kips X 13.60 in
= 3592 kip-in = 299 kip-ft

The design flexural strength for partial composite action is ¢,M, =0.85 x 299 kip-ft = 254 kip-ft

< 300 kip-ft required. Not adequate.
Try n = 12 shear studs from the end supports to the points of concentrated load

g
V, =nQ, = 12 studs X 26.4 —2 = 317 kips
stud
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10.14.

Referring to Fig. 10-10

C 317 kips :
a= — = — —=0.831in
0.85f/b  0.85x 5.0 kips/in® X 90 in
d
M,,=C<—+t—g)
2 2
17.901 831
=317kipsx($+5m—m‘>

=317 kips X 13.4in
= 4291 kip-in = 358 kip-ft
¢»M, = 0.85 x 358 kip-ft = 304 kip-ft > 300 kip-ft required. This is okay. (See Fig. 10-13.)

The correct shear stud distributions are

Total
Full composite action 12 10 12

. . : 34
Partial composite action ;: B 7 B 9 3
5

‘ 3@10ft0in=30ft0in
- >

Fig. 10-13

Verifying that the four studs between the concentrated loads satisfy the limitation on maximum spacing
(of eight slab thicknesses), we obtain

_10.0ft x 12 in/ft _
- 4 studs -
<8t=8 X 5in=401n o.k.

30in

Determine the design flexural strength of the W24X68 beam in Prob. 10.6 with full composite
action. Assume the beam is not shored during construction.

From the Properties Tables for W shapes in Part 1 of the AISC LRFD Manual, for a W24 x68

%, 40 640
(—‘= 52.0) < (29: s 106.7)
s VE /36

Thus, the web is compact. Accordingly, the design flexural strength is ¢,M,, where ¢, = 0.85 and M, is
calculated from the plastic stress distribution on the composite section. However, the absence of shoring
necessitates that the noncomposite steel beam be checked for adequacy to support all loads applied
before the concrete has reached 75 percent of its specified strength f.

(a) Design flexural strength (M,) of the composite beam. From the solution to Prob. 10.6, the
maximum possible compressive force in the concrete slab C,. =0.85f/A. = 500 kips; the maximum
possible tensile force in the steel beam T = A F, = 724 kips.

To satisfy equilibrium, 7' = C. The steel can be either in tension only, or in partial tension and
compression, whereas the concrete cannot be in tension. The solution is 7 =C = (500 +
724) kips/2 = 612 kips. The plastic stress distribution is as shown in Fig. 10-14. Because the net
compressive force in the steel is less than the beam flange yield force (i.e., [C, = (612 — 500) kips =
112 kips] = [bst;F, = 8.965 in x 0.585 in x 36 kips/in® = 189 kips]), the plastic neutral axis (PNA) is
located in the upper beam flange.
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0.85 f

| |
t C. = 0.85 fibr = 500 kips
¢ T [/ 7% [l e i
Yo -a falt ol
G —a PNA 7
L. T, = b,(t, — a)F, = 77 kips
. T, = (A, — 2bst;)F, = 346 kips
d - T, = b,t,F, = 189 kips
i 5 il — — T, —»|
- Fy
b,
Fig. 10-14
The distance from the top of the beam to the PNA
C. 112 ki
== = ~0.347in

b,E, 8.965 in X 36 kips/in®

The contribution to M, from each element of beam or slab = element (tensile or compressive)
force X the distance of element force from the PNA.

Contributions to M,, from

t
Compression in the slab = C, (E + a)
) 4in . L
=500 kips x (T +0.347 m) = 1174 kip-in

Compression in upper beam flange = ng

0.347i
= 112 kips X o =19  kip-in
T —
Tension in upper beam flange = ;(,z_a)
0.585 — 0.347) i
=77 kips X (—iﬁ =9 kip-in
L d
Tension in beam web = Tw(i - a>
23.73i
= 346 kips x ( M 0.347 in) = 3985 kip-in

t
Tension in lower beam flange = T,»(d - é = a)

0.585in ‘
2

= 189 kips x (23.73 in — ~0.347 in) = 4364 kip-in

9551 kip-in
M, = 9551 kip-in = 796 kip-ft.

The design flexural strength ¢,M, = 0.85 x 796 kip-ft = 677 kip-ft. This compares with
¢,M, = 478 kip-ft for a noncomposite W26x68 beam.

(b) Unshored steel beam supporting construction loads.
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Dead Load

Beam =68 Ib/ft
Ib 4inthick /[ 5.0 175 Ib/ft
Slab=150 = X ———— X 1.0+—)ft ide =———
! f€ " 12in/ft ( 2 243 1b/ft

Construction Live Load (assumed)

b 5.0

=203 % (1.0+%) ft wide =70 1b/ft

The factored uniform load is 1.2D + 1.6L:
b 1b
w,=12X 243E +1.6X% 705 =404 1b/ft

= (.40 kips/ft
The required strength is M, = w, L*/8.
0,40 kips/ft x (32.0 ft)’
w 8

<¢,M, for the W24x68 even if L, =the full 32-ft span. (See AISC LRFD Manual, p. 3-71.)
The unshored noncomposite W24 x 68 beam is adequate during construction even if it is not laterally
braced.

= 52 kip-ft

10.15. Determine the design flexural strength of the W24Xx68 beam in Prob. 10.9. The 4-in solid
concrete slab (in Fig. 10-7) is replaced with 2 in of solid concrete on a 2-in steel deck with ribs
perpendicular to the beam, as shown in Fig. 10-9.

In the solution to Prob. 10.14 it was determined that

(a) Because the web of a W24x68 beam is compact, the design flexural strength is ¢,M,, where
» =0.85 and M, is calculated from the plastic stress distribution on the composite section.

(b) The unshored noncomposite W24 x68 beam can adequately support the 4-in solid concrete slab in
Fig. 10-7. (It can surely carry the lighter 2-in solid slab on 2-in deck.)

Regarding M,,, from the solution to Prob. 10.9 the maximum possible compressive force in the concrete
slab C.=0.85fA. =250 kips; the maximum possible tensile force in the steel beam T = A F, =724 kips.
To satisfy equilibrium, 7' = C = (250 + 724) kips/2 = 487 kips. The plastic stress distribution is as shown
in Fig. 10-15. Because the net compressive force in the steel is greater than the beam flange yield force
(i.e., [C, = (487 — 250) kips = 237 kips] > [bst;F, = 8.965 in X 0.585 in x 36 kips/in® = 189 kips]), the plas-
tic neutral axis (PNA) is located in the web. Ignoring the web fillets of the beam, the distance from the

+ ¥ 1 0.85f'
g o = —J—— C, = 0.85f'bt' = 250 kips
T =T T > — =1 <«—— C, = b,1,F, = 189 kips
Ay u PNA <«—C, % 1,aF, = 48 kips
F,
T, 2 1,(d — 21, — @)F, = 298 kips
d T, = b,t,F, = 189 kips
(d—2t,—a)
—> 1, T, —»
X g —— — T, —]
f — F
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bottom of the upper beam flange to the PNA is approximately

_C. 48 kips _3
“=1E _0.415inx 36 kips/in®

21in

The contribution to M, from each element of beam or slab=element (tensile or compressive)
force X the distance of element force from the PNA.

Contributions to M,, from

’

t

Compression in the slab = Cc<a +it+t— 5)
. 2.0\, .

=250 kips X (3.2 +0.585+4.0 - 7) in =1696 Kkip-in

T
Compression in upper beam flange = C,-(a + 5’)

0.585

= 189 kips X (3.2 + T) in =660  kip-in

Compression in beam web = ng
3.2i
= 48 kips x = o =77 kip-in
d—2t —
Tension in beam web = T,“%
23.73-2x0.585-3.2)i
— 298 kips x I8 oms iy

2
Tension in lower beam flange = T;(d — 3¢, —a)
=189 kips X (23.73 —3 x 0.585-3.2)in =3714 kip-in

9032 kip-in

M, = 9032 kip-in = 753 kip-ft.

The design flexural strength ¢, M, = 0.85 X 753 kip-ft = 640 kip-ft. In comparison with the 677 kip-ft
design flexural strength in Prob. 10.14, the 640 kip-ft determined herein represents a mere 5 percent
reduction. The inability of the 2 in of concrete within the deck to participate in composite action is not
very significant.

10.16. Assume the concrete-encased W8x40in Prob. 10.2 and Fig. 10-4 is a beam. Determine the
design flexural strengths ¢, M, and ¢, M,, for bending about the major and minor axes.

As indicated in this chapter, in the section entitled Concrete-Encased Beams, concrete encasement
satisfying the stated minimum requirements prevents both local and lateral-torsional buckling of the
beam. Of the two methods given in the AISC LRFD Specification for determining ¢,M, for
concrete-encased beams, the simpler one is based on the plastic stress distribution on the steel section
alone.

For x-axis bending (regardless of L,)

¢uM,.. = puM, = ¢, Z,F,
~0.90 x 39.8 in’ x 36 kips/in®
- 12 in/ft
= 107 kip-ft
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For y-axis bending (regardless of L,)

M, = oM, = ¢beE'
0.90 x 18.5 in’ x 36 kips/in®
N 12in/ft
= 50 kip-ft

10.17. Assume the concrete-encased W8x40 in Prob. 10.2 and Fig. 10-4 is a beam-column (ie.,
subjected to combined flexure and compression). Determine the design flexural strengths
¢sM,, and ¢, M, for use in the interaction formulas.

For composite beam-columns, ¢,M, is determined as follows: ¢, = 0.85, and M, is calculated from the
plastic stress distribution on the composite cross section. However, if (P./¢.P,)<0.3, M, is determined
by linear interpolation between M, (calculated as just described) at (P,/¢.P,)=0.3, and M, for a
composite beam at P, = (.

A formula is given in the Commentary on the AISC LRFD Specification (p. 6-175 in the AISC
LRFD Manual) for the determination of M, for composite beam-columns where 0.3 < (P,/¢.P,)<1.0:

h, A,F,
- : ) (C-14-1)

1
M. =M, = ZE, + = hv—Z,A,F‘.,+<~— ,
' 3= 2B\ T 17,
where A, =web area of the encased steel shape, in”; 0 for concrete-filled tubes
Z = plastic section modulus of the steel shape, in”

¢, = average distance from the tension and compression faces to the nearest longitudinal
reinforcing bars, in

h, = width of the composite cross section perpendicular to the plane of bending, in

h, = width of the composite cross section parallel to the plane of bending, in

From Prob. 10.2 and Fig. 10-4: i, = h,=161n, ¢, = [13 + 3 + (§/2)] in =2.31in, A, = 4 X 0.60 in* (for each
No. 7 bar) =2.4in’. Also, fe=3.5ksi, F, =36ksi, F, =60ksi, Z, =39.8 in?, Z,=18.5in’, A, = (A, —
2bt,)=(11.7 in® — 2 x 8.070 in X 0.560 in) = 2.66 in>.

For 0.3=(P,/¢.P,) <1.0:

kips 1
M, =39.8in’ 36£+§x (16in —2 x 2.3 in)
m- N

, kips /16in 2.66in" X 36 ksi
X2.4in* x 60— + (= - - )
n in® 2 1.7 x 3.5 kips/in® X 16 in
= ki
X 2.66 in” X 36 —bo
in”

= 2650 kip-in = 221 kip-ft
@M, =0.85 x 221 kip-ft = 188 kip-ft

kips 1
M,, =18.5in’ X 36 _‘95+§>< (16in — 2 x 2.3 in)
i in’
ki i 66 in? i
S A in? % 60 .1;25+<16m_ 266m. x?€k51 ' )
in® 2 1.7 X 3.5 kips/in® X 16 in
kips

X 2.66in” X 36 —
mn-
= 1883 kip-in = 157 kip-ft
¢»M,, = 0.85 X 157 kip-ft = 134 kip-ft



148 COMPOSITE MEMBERS [CHAP. 10

For P, =0, M, = ZF, (as in Prob. 10.16 for the same concrete-encased member)

0.85 % 39.8 in® X 36 kips/in’
12 in/ft

¢)th.\' = 085sz =

=101 kip-ft
0.85 x 18.5 in® X 36 kips/in’

oM, =0.85Z F, =

12 in/ft
= 47 kip-ft
The results are plotted in Fig. 10-16.
188 kip-ft
134 kip-ft
: |
= 2
101 kip-ft ‘ < ‘
1 47 kip-ft ‘
; I
——t I —t— I
0 0.3 1.0 0 0.3 1.0
(P./$P,) (P./¢.P,)
Fig. 10-16

10.18. The built-up beam in Prob. 6.1 and Fig. 6-3 acts compositely with a solid normal-weight
concrete floor slab (f.=5.0ksi, effective width=100in, thickness=4in). Assuming full
composite action and shored construction, determine the design flexural strength ¢, M,,,.

A review of the solution to Prob. 6.1 indicates that the web of the beam is noncompact.

h 640
e 128, )>(—=1o .7)
<tw 80)> ({7=106

Accordingly, the design flexural strength is determined as follows: ¢, =0.90, and M, is calculated from
the superposition of elastic stresses, considering the effects of shoring. Corresponding elastic stress
diagrams for the shored and unshored cases are shown in Fig. 10-17, where

S, = section modulus of the bare steel beam, in’
S..5, Sy, = section moduli of the transformed section, in®
n =modular ratio = E/E,

M, = required flexural strength due to the (factored) loads applied before the concrete
has attained 75 percent of f

M,, = required flexural strength due to the (factored) loads applied after the concrete has
achieved 75 percent of f.

M, = total required flexural strength = (M,,, + M,,)

If construction is shored, all loads are resisted by composite action. The two limitations on flexural
strength are the maximum stresses in the steel and concrete. From Fig. 10-17, the limiting conditions are

M, =M, = ¢S, ,F,
M, = ¢, M, = ¢p,nS, (0.85f))
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Transformed area of slab
Effective width =6
bik e M. <4,085F) M <4085
i H l I‘lS,,_, S ‘ "S:m i ¢

TR
ﬁ r_—JENA (elastic neutral l7

axis of transformed secnon)
M, M,

Composite beam <éuF, S, S

(%]

b

M, M,
(52 + 52 ) <bF,
Qs b

Shored construction Unshored construction

Fig. 10-17

The modular ratio n = E/E,.
E. = w"Vf]=145"%V/5.0 = 3904 ksi

29,000 ksi
T 3904 ksi

The transformed section for this composite beam is shown in Fig. 10-18.

| b =100in
s S —
b/n = 100in/7.4 = 13.5 m\
>

L1 |
r=4 in_ Z | ]/ /{ 2in L‘%‘%" Y W AET
Al l ] L 16.41in| 2
; £ ENA ®
A.=135in X 4in = 54 in* 2 R — S
; _135inx @in)’ ‘ 14.6 in
C 12 — T S =
=72 in’ e ; ‘
A, = 60.5 in’ Q ‘
1, = 35.647 in* ] l v
Fig. 10-18

Locating the elastic neutral axis (ENA), relative to the centroid of the steel beam

YA, _(29+2)in><54in3_146,
Yo A+ A, (Gare0s)im 146

By the parallel axis theorem, the moment of inertia of the transformed section about the ENA
L,=Y (Ic.o + AD?)
=L +AD!+1 +A.D?
= 35,647 in" + 60.5 in” X (14.6 in)*
+72in* + 54in” X (16.4 in)’
= 63,139 in*
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10.19.

10.20.

10.21.
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The required section moduli are
_63,139in* 1448 in?
"= g3 6im
63,139 in*
,=————=3431in’
= gam oon

The design flexural strength of the composite section ¢, M, = the minimum of

0.90 x 1448 in’ X 36 kips/in”

Str E = = = ip-
PoSurn 2in/it 3910 kip-ft
0.90 x 7.4 x 3431 in’ ; ips/in?
$unS, (0.85f1) = I x (5% 5 Mipsin )
12 in/ft
= 8093 kip-ft

The design flexural strength ¢, M, = 3910 kip-ft.
Shear stud requirements for this noncompact composite member are the same as those for compact
members.

Supplementary Problems

Select an 8in X 8in concrete-filled structural steel tube for a required axial compressive strength of
500 kips. Assume KL =12.0ft, F, =46 ksi, f; = 3.5 ksi, normal-weight (145 Ib/ft’) concrete.

Ans. TS8X 8 x 5.

Determine the design compressive strength of a W14x120 (A36 steel) encased in a 24in X 24in
(f.=5.0ksi) normal-weight concrete column. Reinforcement is four No. 10 (Grade 60) bars
longitudinally and No. 3 ties at 16 in horizontally. Assume K.L, = K, L, = 13.0 ft.

Ans. ¢ P, =2500 kips.

For the column in Prob. 10.20, select a bearing plate to transfer to the concrete the load it must resist.

Ans. 18in X 18in.

For Probs. 10.22 and 10.23, determine

(a) The effective slab width for composite action

(b) V, (the total horizontal shear force to be transferred) for full composite action

(c) The number of 3-in-diameter shear studs required if F, = 60 ksi

10.22.

10.23.

A W24x55 interior beam is shown in Fig. 10-19. Steel is A36, beam span is 32 ft 0 in, and beam spacing
is 12 ft 0 in. The beams are to act compositely with a 5-in normal-weight concrete slab, consisting of 2 in
of solid concrete on a 3-in steel deck, with ribs perpendicular to the beam; f! =5 ksi, Q, = 18.5 kips per
stud. Ans. (a) b=96in. (b) V, =583 kips. (c) 2n = 64 shear studs.

A W24x55 edge beam is shown in Fig. 10-19. Steel is A36, and the beam span is 30 ft 0 in. The beam is
to act compositely with the concrete and deck described in Prob. 10.22.

Ans. (a) b=5lin. (b) V,=434kips. (c) 2n =48 shear studs.
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10.24.

10.25.

10.26.

10.27.

| j*Zin
— - e e 1
1 i L
W24 x 55 W24 x 55
6 in s=12ft0in s=12ft0in
e
Fig. 10-19

Determine the design flexural strength ¢,M, for the W24 x55 interior composite beam in Prob. 10.22.
Assume full composite action. Ans.  ¢,M, =781 kip-ft.

Determine the design flexural strength ¢, M, for the W24x55 edge composite beam in Prob. 10.23.
Assume full composite action. Ans. ¢, M, = 715 kip-ft.

If the concrete-encased W14x120 in Prob. 10.20 is a beam-column with P,/¢ P, > 0.3, determine ¢,M,,
and ¢, M,,. Ans.  ¢,M,, =920 kip-ft, ¢, M,, = 623 kip-ft.

Assuming the concrete-encased W14x120 in Prob. 10.20 is a beam (i.e., P, =0.), determine ¢, M, and
oM, . Ans.  ¢,M,, =572 kip-ft, ¢, M,, =275 kip-ft.



Chapter 11

Connections

NOTATION

A gp = cross-sectional area of the base material, in?
A, = as defined in Eq. [11.10], in®
A, = gross area subjected to tension, in®
A, = net area subjected to tension, in’

A,, = net area subjected to shear, in’

A, = projected bearing area, in’

A, = gross area subjected to shear, in?
A,, = effective cross-sectional area of the weld, in®
A, = area of steel bearing on a concrete support, in’

A, =maximum area of supporting surface that is geometrically similar to and
concentric with the loaded area, in?

B = width of column base plate, in
b, = width of column flange, in
C = distance between the centers of bolt holes, in
C’ = clear distance between holes, in
C,, C,, C; = tabulated values for use in Eqs. [11.2] to [11.4], in
¢ = as defined in Eq. [11.11], in
d = nominal bolt diameter, in = depth of column section, in
d, = diameter of the standard size hole, in
Fyp = nominal strength of the base material, ksi
Fixx =nominal tensile strength of the weld metal, ksi
F, = specified minimum tensile strength, ksi
F,, = nominal strength of the weld electrode, ksi
F, = specified minimum yield stress, ksi
f! = the specified compressive strength of the concrete, ksi
L = distance in the line of force from the center of a bolt hole to an edge, in
m = as defined in Fig. 11-6, in
N =length of column base plate, in
n = as defined in Fig. 11-6, in
P = force transmitted by one fastener to the critical connected part, Kips
P, = as defined in Eq. [11.9]
P, = nominal strength for bearing on concrete, Kips
P, = required column axial strength, Kips
R,, = nominal strength, Kips
t = thickness of the connected part, in

t; = thickness of column flange, in

152
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t, = thickness of plate, in
¢ = resistance factor
¢. = resistance factor for bearing on concrete
¢ Fgy, = design strength of the base material, ksi
¢F, = design strength of the weld electrode, ksi
@ P, = design strength for bearing on concrete, kips
¢R,, = design strength, Kips

INTRODUCTION

The types of connections used in steel structures are too numerous to cover fully in a single
chapter. However, the provisions of Chap. J in the AISC LRFD Specification are the basis for
connection design in LRFD. The present chapter has a twofold purpose: (1) to outline the basic
LRFD Specification requirements for connections and (2) to provide some common examples of
connection design. For additional information, the reader is referred to Part 5 of the AISC LRFD
Manual, which contains nearly 200 pages of data on connections. Although there are a number of
excellent books on structural steel connections, nearly all are based on allowable stress design (ASD). It is
anticipated that similar books based on LRFD will be published in the next few years.

The most common connectors for steel structures are welds and bolts, which are discussed in the
following sections.

WELDS

Of the various welding procedures, four are acceptable in structural work: shielded metal arc,
submerged arc, flux-core arc, and gas metal arc. All four involve fusion welding by an electric arc
process; that is, the heat of an electric arc simultaneously melts an electrode (or welding rod) and
the adjacent steel in the parts being joined. The joint is formed from the cooling and solidification of
the fused material. The American Welding Society Structural Welding Code-Steel (AWS D1.1)
specifies the electrode classes and welding processes that can be used to achieve ‘“‘matching” weld

|

I

(a) (b)

Fig. 11-1 Structural welds: (a) complete-penetration groove weld; (b) partial-penetration groove weld;
(c) longitudinal fillet weld; (d) transverse fillet weld; (e) plug or slot weld
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metal, that is, weld metal that has a nominal tensile strength Fryyx similar to that of the base steel
being connected.

As illustrated in Fig. 11-1, three types of structural welds are normally used in building
construction: groove (complete and partial penetration), fillet (longitudinal and transverse), and plug

or slot welds. The design strength of welds is the lower value of

OFsmAsm and ¢F,A,

Table 11-1 Design Strength of Welds

Nominal
Types of Weld Resistance Strength
and Stress Material Factor ¢ Fgypor E,

Required Weld
Strength
Level

Complete-Penetration Groove Weld

Tension normal to

“Matching” weld

effective area Fiow 0-90 E must be used
Compressmn normal to Base 0.90 K Weld metal with a
effective area d strength level
equal to or less

Tension or compression than “matching”
parallel to axis of weld may be used
Shear on effective area Base 0.90 0.60F;,

Weld electrode 0.80 0.60Fcxx

Partial-Penetration Groove Welds

Compression normal to
effective area

Base 0.90 E
Tension or compression
parallel to axis of weld
Shear parallel to axis Base
of weld Weld electrode 0.75 0.60F:xx
Tension normal to Base 0.90 F;
effective area Weld Electrode 0.80 0.60Fg

Weld metal with a
strength level equal
to or less than
“matching” weld
metal may be used

Fillet Welds

Stress on effective Base
area Weld electrode 0.75 0.60F;xx
Tension or compression Base 0.90 E,

parallel to axis of weld

Weld metal with a
strength level equal
to or less than
“matching” weld
metal may be used

Plug or Slot Welds

Shear parallel to faying Base
surfaces (on effective Weld electrode 0.75 0.60Fgxx
area)

Weld metal with a
strength level equal
to or less than
“matching” weld
metal may be used
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when applicable, where
Fzp = nominal strength of the base material, ksi
F, = nominal strength of the weld electrode, ksi
Apgpy = cross-sectional area of the base material, in?
A, = effective cross-sectional area of the weld, in?
¢ = resistance factor.

(<

e
SR

RY

Weld face

Throat area

Wil

=
Leg size )
i Root line

Root Normal | throat size

Normal throat size

T Size

S

J vy
SN
f 2y /

74
Throat Throat

Convex

Normal throat size

; ; N
Deep-penetration throat size

s
g

Groove agle Groove (and bevel)

Ny angle
\@n'«s\A Bevel angle W
tz;;e

M Root &
24 N>
Backing bar .
Root Root face
opening—> —> L— Root opening

Preparation

i

Weld size

inforcement —
Rei Effective throat

NS

AR

Weld face

Penetration
(fusion zone)
—

Root Weld throat 0 Root face

Backing bead = ‘Veld size
Full penetration

Root
opening

Partial penetration

(b)

Penetration
Normal throat size

Concave

Spacer bar

~>j L Root opening

Groove size

Root face Groove angle
—

Fillet size

I L
vin Eff. throat
Partial penetration
(when reinforcing fillet is specified)

Fig. 11-2 Weld nomenclature: (a) fillet weld; (b) groove weld
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Values for ¢, Fgp, and F, are given in Table 11-1, which is Table J2.3 in the AISC LRFD
Specification.* A,, the effective cross-sectional areas of weld to be used in conjunction with F, are
the effective length times the effective throat thickness, for groove and fillet welds; and the nominal
cross-sectional area of the hole or slot, for plug welds. The nomenclature for fillet and groove welds
is shown in Fig. 11-2, reprinted from the AISC publication Engineering for Steel Construction
(1984).* Minimum sizes of groove and fillet welds are given in Tables 11-2 and 11-3, which are
Tables J2.4 and J2.5 in the AISC LRFD Specification.* For both groove and fillet welds, the
tabulated minimum weld size is determined by the thicker of the two parts joined. However, the
weld size should not exceed the thickness of the thinner part joined. Additional restrictions on welds
are given in Sec. J2 of the AISC LRFD Specification.

Table 11-2 Minimum Effective Throat Thickness of Partial-
Penetration Groove Welds

Material Thickness of Thicker Minimum Effective Throat
Part Joined, ¢, in Thickness,* in
t=3 5
i<t=} i
3 1
3<t=3 :
i<ei=1; 16
B
1l<e=2} 3
2;<t=6 3
t>6 :

* Leg dimension.

Table 11-3 Minimum Size of Fillet Welds

Material Thickness of Thicker Minimum Size of Fillet
Part Joined, ¢, in Weld,* in

r=3 5

i<t=3 s

i<t=j i

t>3 6

* Leg dimension of fillet welds.

Most common welded connections used in buildings have been designated by AISC and AWS as
prequalified, that is, exempt from tests and qualification if they have been properly designed and
detailed. Examples of prequalified welded joints and standard welding symbols are given in the
AISC LRFD Manual, beginning on page 5-177.

BOLTS

Bolts consist of a cylindrical shank (partially threaded to receive a nut) with an attached head.
High-strength bolts, type A325 or A490, are required in most structural applications; they must be
sufficiently tightened to achieve the minimum bolt tension values listed in Table 11-4 (which is Table
J3.1 in the AISC LRFD Specification*). For those cases not included in Sec. J1.9 of the AISC

* Reproduced with the permission of AISC.
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LRFD Specification, ordinary A307 machine bolts may be used; they are tightened to a “‘snug-tight”
condition only. High-strength bolts must comply with the Research Council on Structural
Connections Specification for Structural Joints Using ASTM A325 or A490 Bolts, which appears in
Part 6 of the AISC LRFD Manual.

Table 11-4 Minimum Bolt Tension, kips*

Bolt Size, in A325 Bolts A490 Bolts

B 12 15

= 19 24

4 28 35

z 39 49

1 51 64

15 56 80

13 71 102

12 85 121

13 103 148

* Equal to 0.70 of minimum tensile strength of bolts, rounded
off to nearest kip, as specified in ASTM specifications for A325
and A490 bolts with UNC threads.

Bolts may be loaded in tension (i.e., parallel to their axes), shear (i.e., perpendicular to their
axes), or a combination of shear and tension. The strengths of A307, A325, and A490 bolts are given
in the accompanying tables as follows.

AISC LRFD
This Chapter Specification Ref.* Subject
Table 11-5 Table J3.2 Design tensile strength;
design shear strength
Table 11-6 Table J3.3 Tensile stress limit for
combined shear and tension
Table 11-7 Table J3.4 Nominal slip-critical
shear strength of
high-strength bolts

* Reproduced with the permission of AISC.

For bolts loaded in tension only, the design tensile strength is equal to ¢ multiplied by the nominal
tensile strength, as given in Table 11-5. For bolts loaded in shear only, the design shear strength is
equal to ¢ multiplied by the nominal shear strength, given in Table 11-5. If a combination of tension
and shear acts on a bolt, the maximum tensile stress is determined from Table 11-6 and the
maximum shear stress, from Table 11-5. In all cases, stresses (in ksi) are converted to forces by
multiplying by the nominal cross-sectional area of the bolt (ignoring the threads).

A special category of slip-critical joints is recognized by the AISC LRFD Specification. Where
joint slippage is undesirable (e.g., if there are frequent load reversals, leading to the possibility of
fatigue), the designer may specify “slip-critical” high-strength bolts. Because this is a serviceability
criterion, the (unfactored) service loads are used in conjunction with Table 11-7. If the load
combination includes either wind or seismic load together with live load, the total service load may
be multiplied by 0.75. To determine the design shear strength, the nominal values in Table 11-7 are
multiplied by ¢ = 1.0 (except ¢ =0.85 for long-slotted holes if the load is parallel to the slot). If a
bolt in a slip-critical connection is subjected to a service tensile force T, the nominal shear strength
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Table 11-5 Design Strength of Fasteners
Shear Strength in
Bearing-Type
Tensile Strength Connections
Nominal Nominal
Resistance Strength, Resistance Strength

Description of Fasteners Factor ¢ ksi Factor ¢ ksi
A307 bolts 0.75 45.0 0.60 27.0
A325 bolts, when threads are
not excluded from shear planes 90.0 0.65 54.0
A325 bolts, when threads are
excluded from shear planes 90.0 72.0
A490 bolts, when threads are
not excluded from shear planes 112.5 67.5
A490 bolts, when threads are
excluded from the shear planes 112.5 90.0
Threaded parts meeting the
requirements of Sec. A3,
when threads are not excluded
from the shear planes 0.75F, 0.45F,
Threaded parts meeting the
requirements of Sec. A3,
when threads are excluded
from the shear planes 0.75F, 0.60F,
AS502, Grade 1, hot-driven
rivets 45.0 36.0
AS502, Grades 2 and 3, hot-driven
rivets 60.0 48.0

Table 11-6 Tension Stress Limit (F,), ksi, for Fasteners in Bearing-Type Connections

Description of Fasteners

Threads Included in
the Shear Plane

Threads Excluded
from the Shear Plane

A307 bolts 39— 1.8f, =30
A325 bolts 85— 1.8, <68 85 — 1.4f, =68
A490 bolts 106 — 1.8f, =84 106 — 1.4f, < 84

Threaded parts A449 bolts
over 1i-in diameter

0.73F, — 1.8f, = 0.56F,

0.73F, — 1.4f, < 0.56F,

AS502 Grade 1 rivets

44— 1.3f, <34

AS502 Grade 2 rivets

59— 1.3f, =45
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in Table 11-7 is multiplied by the reduction factor (1 — 7/7,), where T, is the minimum pretension

CONNECTIONS

force for that bolt in Table 11-4.

Table 11-7 Nominal Slip-Critical Shear Strength of High-Strength Bolts*

Nominal Shear Strength, ksi

Type of Standard-Size Oversized and Short- Long-Slotted
Bolt Holes Slotted Holes Holest
A325 17 15 12
A490 21 18 15

*Class A (slip coefficient 0.33). Clean mill scale and blast cleaned surfaces with class A
coatings. For design strengths with other coatings, see RCSC Load and Resistance
Factor Design Specification for Structural Joints Using ASTM A325 or A490 Bolts.

+ Tabulated values are for the case of load application transverse to the slot. When the
load is parallel to the slot, multiply tabulated values by 0.85.

Bolt bearing strength, minimum spacing, and minimum edge distance depend on the dimensions
of the bolt holes. Nominal dimensions for standard, oversize, short-slotted, and long-slotted holes
are given in Table 11-8 (Table J3.5 in the AISC LRFD Specification*). Unlike standard holes, use of

the other types of holes requires approval of the designer and is subject to the restrictions in Sec.
J3.7 of the AISC LRFD Specification.

Table 11-8 Neminal Hole Dimensions, in

Hole Dimensions, in

Bolt Standard Oversize Short-Slot Long-Slot

Diameter, in (Dia.) (Dia.) (Width x Length) (Width X i_ength)
o 2 2 x 4 % x 13

3 6 o 16 X § 1o X 15

: : : B B

5 o L5 1o X 13 1s X 276

1 14, 2 ok o6 1 15 % 2

=11 d 4% d+3 (d+1s)x{a+3) | (d+4)x(2.5%d)

Two bolt-spacing schemes are possible.
(1) In the preferred scheme,
C=3d L=1.5d

where C = distance between the centers of bolt holes, in

and

L = distance in the line of force, from the center of a bolt hole to an edge, in
d = nominal diameter of the bolt, in.

The design bearing strength ¢R, for each of two or more bolts in the line of force must be
checked (even if the connection is slip-critical); ¢ =0.75. For standard or short-slotted

* Reproduced with the permission of AISC.
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holes,

R, =2.4 dtF, (J3-1a)
For long-slotted holes perpendicular to the load

R, =2.0dtF, (J3-1b)
If deformation of the bolt hole need not be considered, then, in all cases

R, =3.04dtF, (J3-1d)

In these equations, ¢ is the thickness of the connected part, in, and F, is the specified tensile
strength of the connected part, ksi.

In the alternate scheme, the distance between the centers of bolt holes

2.67d [11.1]
C={ P d,
+ =+ .
ALY [11.2]
C'=d
L+C [11.3]
L= ¢Ft ° '
st i [11.4)

The design bearing strength must be checked (regardless of whether the connection is
slip-critical). Where L < 1.5d, the design bearing strength (for each of one or more bolts in
the line of force) is ¢R,,, where ¢ = 0.75 and

R, = LtF, (J3-1c)

In the preceding equations

P = force transmitted by one fastener to the critical connected part, kips
d, = diameter of the standard size hole, in
C' = clear distance between holes, in

C, =0 for standard holes; otherwise use the value in Table 11-9 (Table J3.6 in the AISC
LRFD Specification*)

Table 11-9 Values of Spacing Increment C,, in

Slotted Holes
Parallel to Line

Nominal Perpendicular of Force
Diameter of Oversize to Line
Fastener Holes of Force Short Slots Long Slots*
=3 5 0 6 13d -1
1 6 0 i 145
=13 i 0 = 13d — £

* When length of slot is less than maximum allowed in Table 11-8, C; may be reduced
by the difference between the maximum and actual slot lengths.

* Reproduced with the permission of AISC.
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C, =0 for standard holes; otherwise use the value in Table 11-10 (Table J3.8 in the AISC
LRFD Specification™)

C, = the value in Table 11-11 (Table J3.7 in the AISC LRFD Specification*)

Regardless of which bolt spacing scheme is selected, the maximum edge distance is

Table 11-10 Values of Edge Distance Increment C,, in

Slotted Holes

Nominal Perpendicular

Diameter of to Edge

Fastener, Oversized Parallel to
in Holes Short Slots | Long Slots* Edge
= :—ﬁ i

1 5 8 id 0
=13 1 2

8

* When length of slot is less than maximum allowable (see Table 11-8), C,
may be reduced by one-half the difference between the maximum and actual

slot lengths.

Table 11-11 C;: Minimum Edge Distance, in (Center of Standard Hole

to Edge of Connected Part)

Nominal At Rolled Edges of
Rivet or Bolt At Sheared Plates, Shapes or Bars
Diameter, in Edges or Gas Cut Edges
1 7 3

2 8 4

1 i

i 15 1

d 1; 15

1 13 1}

13 2 13

15 2} i

>11 13 x diameter 1% x diameter

L<{12t
~ l6in

CONNECTING ELEMENTS AND MAIN MEMBERS AT CONNECTIONS

Connecting elements include stiffeners, gusset plates, angles, brackets, and the panel zones of
beam-to-column connections. Considering the possible modes of failure, the following limit states
should be examined for applicability to connecting elements and the adjacent parts of main

* Reproduced with the permission of AISC.
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members. The design strength is R, where
(1) For tensile yielding

¢ =0.90
R, = AgF,

(2) For tensile fracture

¢ =0.75
R,=A,F, where A, =0.854,

(3) For shear yielding

¢ =0.90
R,=0.6A,,F,
(4) For shear fracture
¢ =0.75
R, =0.6A,,F,
(5) For block shear rupture
¢ =0.75

R, = the greater value of
{0.6Angy + A,F,
0.64,.F, + AF,
In the preceding equations:

A, = gross area subjected to tension, in’
A, = net area subjected to tension, in’
A, = gross area subjected to shear, in®
A, = net area subjected to shear, in®

[CHAP. 11

(J5-1)

(J5-2)

(J5-3)

(J4-1)

(CJ4-1)
(CJ4-2)

An explanation of block shear rupture follows. At beam end connections where the top flange is
coped (as in Fig. 11-3) and in similar situations, one plane is subjected to shear while a perpendicular
plane is subjected to tension. Failure can occur in one of two ways: fracture of the (net) section in
tension accompanied by yielding of the (gross) section in shear [Eq. (C-J4-1)], or fracture of the (net)
section in shear accompanied by yielding of the (gross) section in tension [Eq. (C-J4-2)]. The design

strength is based on the larger-capacity failure mode, which governs.

Coped
—

]I\JL

.
Tensile area —

Fig. 11-3 Block shear rupture

Failure by tearing
Shear area +— out of shaded portion
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TYPICAL CONNECTIONS

The discussion in the earlier sections of this chapter concerned the design strengths of the
components of connections: the connectors (i.e., welds and bolts) and the connecting elements
(stiffeners, gusset plates, etc.). The required strength of a connection is determined from an analysis
of the entire structure with the factored loads acting on it. A detailed analysis of the connection
produces required strengths for its components.

Analysis, design, and construction must follow consistent assumptions. Connections, for
example, may or may not transfer moment. Whichever assumption was made by the engineer must
be communicated to the contractor. Use of a type of connection not intended in the analysis and
design will cause a redistribution of internal forces in the structure, leading to overstress and possible
failure.

Examples of shear and moment connections for beams are shown in Figs. 11-4 and 11-5. The
groove-welded splice in Fig. 11-4(a) develops the full strength of the beam and transfers the full
moment and shear. However, the shear splice in Fig. 11-4(b) is not capable of transferring any
significant moment. Unless otherwise specified on the design drawings, splices are groove-welded
with full-penetration welds. Regarding beam end connections, the simple connections in Fig. 11-5(a)
will only transmit shear. To transter moment requires moment connections similar to the ones shown
in Fig. 11-5(b). When not indicated otherwise, beam-to-beam and beam-to-column connections are
assumed to be simple shear connections. Where moment connections are required, they should be
specified together with their required flexural strengths.

® o
N

|
£ 7 7 o
|

T

(a) (b)

Fig. 11-4 Beam splices: (a) groove-welded moment splice; (b) bolted shear splice

1 ] s
E = ==
B 1 = L [} —
7 i % f : : /
4
3 i ==
Bolted
Double angle HL% \Seate d Welded _i_{/}
(a) (b)

Fig. 11.5 Beam-to-column connections: («) simple (shear) connections; (b) moment connections

In connections combining bolts with welds, only high-strength bolts designed as slip-critical can
share the load with the welds. Otherwise, the welds alone must resist all connection forces.

Groups of welds or bolts that transmit axial force into a member should preferably be
proportioned so that the center of gravity of the group coincides with the centroidal axis of the
member. Likewise, when three or more axially loaded members meet at a joint, their centroidal axes
should preferably intersect at one point. Where eccentricities are unavoidable, the additional
moments they cause must be included in the design of the members and the connections.
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BEARING ON STEEL AND CONCRETE
The design bearing strength for steel bearing on steel is ¢R,,, where ¢ =0.75
R,=2.0EA, (J8-1)

and A,, = the projected bearing area, in’.
For steel bearing on concrete (e.g., column base plates bearing on footings), the design bearing
strength is ¢.F,, where ¢.=0.60

0.85 f.A, (for bearing on the full area of concrete) [11.5]

P,= [A
r 0.85 flA, ITZ (for bearing on less than the full area of concrete) [11.6]
1

where  f(=specified compressive strength of the concrete, ksi
A, = area of steel bearing on a concrete support, in’

A, =maximum area of supporting surface that is geometrically similar to and concentric
with the loaded area, in?

[As
d\/—=2.
an A1

The design of a column base plate involves

(a) The determination of its length N and width B. By setting the design bearing strength
¢ P, = P, the required strength (or factored column load), an appropriate plate area A, can
be determined. The bearing plate dimensions N and B are selected to make N X B=A,.

(b) The determination of its thickness #,. The thickness of base plates is not covered in the
AISC LRFD Specification. However, according to the Column Base Plates Design
Procedure in Part 2 of the AISC LRFD Manual, base plate thickness ¢, (in inches) is the
largest value obtained from the following three formulas.

t 2y t i L=¢ 2F [11.7]
= ————— =n Sr———— = _— .
»~"Noorsn' 7 "NoogsN' 7 “No9Ea,

where N, B, d, b;, m, and n (all in inches) are as defined in Fig. 11-6, and

P
P,=—"b :
— d [11.8]
Ay= P S ¢ 11
770.6(0.85VA,/bdf ) ~0.6(1.7f2) [11.9]
=3l(d +b; — 1) = V(d + b; — ;)" — 4(Ay, — 1,b,)] [11.10]
The design of bearing plates for beams is covered in the next chapter.
b
S | i

m

o
<
>
0954 |
=z

=
o
]
\Q"
=
]
|

Fig. 11-6 Column base plate
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Solved Problems

11.1. In Fig. 11-1(a) and (b), the plates are 3 in wide and § in thick. The base material is A36 steel,
for which the matching weld is E70 (Fzxx = 70ksi). Determine the design tensile strengths
(kips) for
(a) The complete penetration groove weld in Fig. 11-1(a).
(b) The minimum partial penetration groove weld, as in Fig. 11-1(b).

(a) For tension normal to a complete penetration groove weld (according to Table 11-1), the design
strength

¢ Fgp = 0.90F, = 0.90 X 36 ksi = 32.4 ksi
In kips

¢P, = pFgpApn =32.4

"
P % 3in % 0.75 in
mn

=72.9 kips
(Note: As indicated in Table 11-1, matching E70 weld must be used with A36 steel in this case.)
(b) The minimum effect throat thickness of partial-penetration groove welds (as given in Table 11-2) is

*in for }-in plates.

According to Table 11-1, for tension normal to the effective area of a partial penetration
groove weld, the design strength is the lower value of

OFpnAnn = OF, Ay = 0.90 x 36 kips/in® X 3in X § in = 72.9 kips
OF,A, = $(0.60F:xx)A, =0.80(0.60 x 70 kips/in®) X 3in X } in
=25.2 kips

if an E70 electrode is used. For an E70 electrode, the design tensile strength is 25.2 kips.

As indicated in Table 11-1, an E60 electrode (with strength Fpyy =60ksi, less than the
matching E70 weld metal) may also be used. If the weld is E60, the design strength of the weld

¢F,A, again controls: ¢F,A, =0.80(0.60 Fryy) % 3in X iin, where Fpyy =60ksi; ¢F,A, =
21.6 kips if an E60 electrode is used.

11.2. Repeat Prob. 11.1 for plates of unequal thickness: 31in and 1§ in.

The effective throat thickness for a complete-penetration groove weld is the thickness of the thinner
plate joined, or 15 in. For tension normal to the effective area of a complete penetration groove weld, a
matching E70 electrode must be used. The design tensile strength is

GFuriApy = OF, Ay = 0.90 X 36 kips/in® X 3 in X 3% in
= 18.2 kips

11.3. A vertical complete-penetration groove weld is used to join the two halves of a W24x176
beam (A36 steel). Determine the design shear strength of the web splice.

According to Table 11-1, for shear on the effective area of a complete-penetration groove weld, the
design strength is the lower value of

@Fzy =0.90(0.60F,) = 0.9 X 0.6 X 36 ksi = 19.4 ksi

¢F, = 0.80(0.60F;xx)

{0.8 x 0.6 x 70 ksi = 33.6 ksi for E70
0.8 % 0.6 x 60 ksi = 28.8 ksi for E60
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Regardless of whether an E60 or E70 electrode is used, the strength of the base material in the web of
the W24x176 beam (¢Fy,, = 19.4 ksi) governs.

PV, = 19.4ksi x dt,,

kips

=19.4—x25.24in x 0.750 in = 368 kips
in

The tabulated design shear strength of a W24x76 beam (on p. 3-31 of the AISC LRFD Manual) is, in
fact, 368 kips.

Two vertical partial-penetration groove welds, each with an effective throat thickness of 3 in,

are used to join the two halves of a W24Xx 176 beam. Determine the design shear strength of
the web splice.

According to Table 11-1, for shear parallel to the axes of partial-penetration groove welds the following
limit states should be considered:

Shear fracture of the base material [Eq. (J4-1)]
¢R, =0.75(0.6A,,F,)

"
=0.75 % 0.6(25.24 in X 0.750 in) X 58 ,;‘f
1
=494 kips
Shear yielding of the base material [Eq. (J5-3)]
$R, = 0.90(0.6A,,F,)
— 0.9 X 0.6(25.24 in X 0.750 in) x 36 25
n

= 368 kips as in Prob. 11.3.
Shear yielding of the weld (Table 11-1)
QF, =0.75(0.60F:xx)

B {0.75 %X 0.6 x 70 ksi = 31.5 ksi for E70
0.75 x 0.6 x 60 ksi = 27.0 ksi for E60

The shear area for the two partial-penetration groove welds is d X 2 X Lin; i.e.

A, =2524in%x2x0.25in=12.62in"

¢R, = ¢F.A,
ki 5 .
31522 % 12,62 in? = 398 kips for E70
m
= k'
27.0~22 % 12.62 in® = 341 kips for E60

in
In conclusion, the design shear strength at the splice is

368 kips (based on the limit state of shear yielding of the base material) for E70 electrodes
341 kips (based on the limit state of shear yielding of the weld material) for E60 electrodes

In Fig. 11-1(c), the plates are 3 in and 4 in wide and 3 in thick. The base material is A36 steel.
The two fillet welds are each 3 in long. Determine the design tensile strength of the splice for
the minimum size fillet weld: (a) E70, (b) E60.

According to Table 11-3, } in is the minimum size fillet weld for 3-in plates. The effective area of weld

equals its length times the effective throat thickness. As shown in Fig. 11-7, a fillet weld is approximated
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11.6.

_ Throat = 0.707 X leg

=) |
Leg
— E:

|

N

Fig. 11-7

as an equal-leg right triangle. The throat thickness (which is the minimum distance from the root of the
joint to the face of the fillet weld) is calculated as 0.707 times the leg dimension. In this case, for a leg
dimension of }in

Throat =0.707 X 0.25in =0.18 in
The total effective area of weld

A, =2x3inx0.18in=1.06 in
According to Table 11-1, the design strength for fillet welds is
¢F, =0.75(0.60Fgxx) = 0.45Fzxx

(a) For E70 electrodes

ki ki
OF, =0.45 X 10~ = 31 .52
m mn
In kips, the design strength
ki 5 .
GF,A, =31.5~2 x 1.06 in® = 33.4 kips
m

(b) For E60 electrodes

ki ki
OF, = 0.45 X 60— = 27,0 22
n- n
In kips, the design strength
i i .
¢F,A, =21.0 —i;pf x 1.06 in® = 28.6 kips

As indicated in Table 11-1, for tension parallel to the axis of the weld, the design tensile strength of the
plates should also be checked, as follows.

ki kips
.1p’s= 14 .1pzs
in” in

@Fyn = 0.90F, = 0.90 x 36

QP, = ¢pFpApnm
where Ap,, is the cross-sectional area of each plate. For the narrower plate, Agy, =31in X 3 in = 2.25in’.

kips

@P, =32.4— x 2.25in> = 72.9 kips

in

Since (¢ P, = ¢FyrApp) > F,A, the design tensile strengths of the plates are not critical in this case.

In Prob. 11.5, determine the design tensile strength for the maximum size of fillet weld:
(a) E70, (b) E60.

According to Sec. J2.2(b) of the AISC LRFD Specification, the maximum size of fillet welds

Equals plate thickness, if <} in

Equals plate thickness — i in, if plate thickness =1 in
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In this case, for a 3-in plate, the maximum fillet weld = (3 — 4)in =0.75 in — 0.06 in = 0.69 in. For a leg
dimension of 0.69 in, throat = 0.707 X 0.69 in = 0.49 in. The total effective area of weld A, =2 X 3in X

0.49in =2.92in”

(a) For E70 electrodes, ¢F, =31.5ksi, as determined in Prob. 11.5. In kips, the design strength
¢F,A, =31.5ksi X2.92in” = 91.9 kips. However, since the design tensile strength of the narrower
(3-in) plate is less, it governs. As determined for Prob. 11.5, ¢ P, = 72.9 kips, based on the limit

state of yielding of the plate.

(b) For E60 electrodes, ¢F, =27.0ksi, as determined in Prob. 11.5. In kips, the design strength

¢F,A, =21.

y
o—,‘n%s X 2.92in* = 78.8 kips
1

Again, the design tensile strength of the plate governs: ¢ P, = 72.9 kips.

Determine the design tensile strength of a §-in-diameter bolt if it is (a) A325, (b) A490,

(c) A307.
The nominal cross-sectional area of a Z-in-diameter bolt is
D 2 7 02 R
A= Jr(;) = n(S—ZL") =0.60in’
The design tensile strength of a bolt
¢F, = ¢F,A

where ¢ =0.75 and F,, is as listed in Table 11.5.

(a) For a {-in-diameter A325 bolt, the design tensile strength

PP, =0.75 X 90

ki 5 .
,;25 X 0.60 in® = 40.6 kips
1

(b) For a g-in-diameter A490 bolt, the design tensile strength

¢P,=0.75x 112.5

kips
i

(c) For a }-in-diameter A307 bolt, the design tensile strength

¢P,=0.75x45.0

kips

in®

5~ % 0.60 in” = 50.7 kips
n

% 0.60 in* = 20.3 kips

Determine the design shear strength of a §-in-diameter bolt if it is (a) A325-N, (b) A325-X,

(c) A490-N, (d) A490-X, (e) A307.

Bolts may be utilized in single shear or double shear. As shown in Fig. 11-8, the terms single and double
shear refer to the number of planes across which shear is transferred through the bolts. The shear
strength values in Table 11-5 are for single shear; for double shear, they may be doubled. Single shear is

assumed in this exercise.

L ]
[ I

bd

Single shear

r

Lo

]
]

T

i

Double shear

Fig. 11-8
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The suffixes N and X refer to a bearing-type (i.e., non-slip-critical) connection, where

N designates threads included in the shear plane.
X designates threads excluded from the shear plane.

The design shear strength of a bolt
PV, = ¢k,A

where ¢ and F,, are as listed in Table 11-5.
The nominal cross-sectional area of a Z-in-diameter bolt is A = 0.60 in” (as calculated in Prob. 11.7).

(a) For a {-in-diameter A325-N bolt, the design shear strength

PV, =0.65% 54.0

y
IPS  0.60 in® = 21.1 kips
1

n2

(b) For a -in-diameter A325-X bolt, the design shear strength

k .
HV, = 0.65 X 72.0 ,;‘ZS x 0.60 in® = 28.1 kips
1

(c) For a {-in-diameter A490-N bolt, the design shear strength

kips
in®

¢V, =0.65x67.5 x 0.60 in> = 26.4 kips

(d) For a }-in-diameter A490-X bolt, the design shear strength

k
% % 0.60 in? = 35.2 kips
m

@V, =0.65 x 90.0

(e) For a }-in-diameter A307 bolt, the design shear strength
kip
i

OV, =0.60 x 27.0—2 x 0.60 in® = 9.7 kips
n

11.9. A Z-in-diameter A325 bolt is subjected to combined shear and tension. Determine the design
tensile force assuming the required shear force is 10 kips.

The nominal cross-sectional area of a Z-in-diameter bolt is 0.60 in®.
The shear stress f, = 10 kips/0.60 in” = 16.6 kips/in’

(a) According to Table 11-6, for A325-N bolts (threads included in the shear plane), the design tensile
stress

F,= (85— 1.8f, = 68) ki
= (85— 1.8 X 16.6 = 68) ksi

=55.1ksi
The design tensile force
o
EA=55.1 ,;‘ZS X 0.60 in = 33.0 kips
1

(b) For A325-X bolts (threads excluded from the shear plane), the design tensile stress
F, = (85— 1.4f, = 68) ksi
= (85— 1.4 X 16.6 = 68) ksi
=61.7 ksi
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The design tensile force
kips o ;
EA=61.7 P % 0.60 in" = 37.1 kips

Determine the shear strength of a {-in-diameter A325 bolt in a slip-critical connection.

(Please note: The strengths of slip-critical connections are expressed as unfactored forces in Table 11-7.)
Assuming standard-size holes, f, = 17 ksi for A325 bolts. Shear strength

"
B2 % 0.60in* = 10.2 kips

A=17-
A in

Maximum service load shear on the bolt is 10.2 kips. As noted in Table 11-7, f, = 17 ksi and the other
shear strengths tabulated therein are for class A surfaces (with slip coefficient 0.33). Higher shear
strengths for high-strength bolts in slip-critical connections are available for class B (slip coefficient 0.50)

and class C (slip coefficient 0.40) surfaces. The higher values are given in the Specification for Structural
Joints Using ASTM A325 or A490 Bolts, which appears in Part 6 of the AISC LRFD Manual.

Repeat Problem 11.10 for a service tensile force of 20 kips acting in combination with the
shear.

If tension is present, the shear values in Table 11-7 are to be multiplied by (1 — 7/T,), where T is the
service tensile force and 7, is the minimum pretension load for the bolt in Table 11-4.

T 20 ki
10.2 kips X (1 - —) =10.2 kips X (1 e

T; 39 kips) = 5.0 kips maximum service load shear

Check the bearing strengths of the {-in-diameter bolts in Probs. 11.8 and 11.10. Assume two
or more bolts in the line of force connecting two 3-in plates of A36 steel; standard holes;
center-to-center distance of 3in; and edge distance of 13 in.

Edge distance (L=1.5in)=(1.5d =1.5x {in=1.31in). Spacing (C=3.0in)=(3.0d =3.0 X {in=
2.631in). Equation (J3-1a) is applicable and the design bearing strength is ¢R,, where ¢ =0.75 and
R,=2.44dtF,.

¢R, =0.75Xx2.4 X } X }in X 58 kips/in®
= 34.3 kips per bolt

In Prob. 11.8, the only bolt governed by bearing strength is the A490-X in part (d), for which
(¢R, =34.3kips) <(¢V, =35.2kips). All the other bolts are governed by shear strength, because
¢V, <(¢R, = 34.3 kips).

Regarding Prob. 11.10, where the bolt is in a slip-critical connection, the limiting service load shear
of 10.2 kips obviously governs over the limiting factored load bearing value of 34.3 kips.

The end of a W12x87 beam (A36 steel) has been prepared as shown in Fig. 11-9 for
connection to a supporting member. The three holes are 1 in diameter for Z-in-diameter

bolts. Determine the design shear strength of the beam web.

The applicable limit states are shear yielding, shear fracture, and block shear rupture. For shear yielding
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Fig. 11-9
[of gross section (1) in Fig. 11-9]
¢R, =0.90 X 0.6A,F, (J5-3)
A, = (d-cope)t = (12.53 in — 2in) X 0.515in = 5.42in’
®R, = 0.9 X 0.6 X 5.42 in” X 36 ksi = 105 kips
For shear fracture [of net section (1) in Fig. 11-9]
(J4-1)

OR, =0.75 % 0.6A,,F,
A, = (d-cope-3d,)t = (12.53in — 2in — 3 % {3 in) X 0.515 in = 3.97 in’

@R, =0.75x% 0.6 X 3.97 in® x 58 ksi = 104 kips
For block shear rupture [of section (2) in Fig. 11-9] ¢ =0.75 and R, = the greater value of
0.6A,.F, + A,F,
0.6A,,F, + A.F,

(C-J4-1)
(C-J4-2)

A,, = gross area of the vertical part of (2)
A,, = net area of the vertical part of (2)
A, = gross area of the horizontal part of 2)
A, = net area of the horizontal part of (2)
A, =(13in+2x3in) x 0.515in = 3.86 in’
An=(13in+2X3in—23 X 13) % 0.515 in = 2.66 in’
A,=15inx0.515in=0.77 in’
A,=(13in—3x {2in) X 0.515in=0.53 in”

where

R, is the greater of

ki ki .
0.6 % 3.86in” X 36%’% 0.53 in* X 58—_—:);: 114 kips
1 1

ki ki
P8 | 0.77in* x 36 i;‘f = 120 kips
1

0.6 X 2.66in” X 58

2

R, = 120 kips
¢R, =0.75 x 120 kips = 90 kips

The design shear strength is 90 kips, based on the governing limit state of block shear rupture.

11.14. Design a base plate for a W14x90 column with a factored axial load of 700 kips. All steel is
A36. The base plate is on a footing 2 ft 0in x 2 ft Oin; f; =4 ksi.
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The design bearing strength for steel bearing on concrete is determined from Eq. (11.5) or (11.6); the
former for bearing on the full area of concrete, and the latter for bearing on less than the full area. The
dimensions of the W14x90 column d b, =14.02in X 14.52in. Try a 16in X 16in base plate and use

Eq. (11.7).
A,=241in X 24in =576 in* A,=16in X 16 in = 256 in*
kips
L= =0.60
fC 4 inZ ¢
The design bearing strength
, A
¢.P, =0.85/A, /,le
Kips 576in’
=0.85x4— X in’ X
0.85 x o 256in 7561

= 1306 kips > 700 kips required o.k.
Referring to Fig. 11-6
N=16.0in, d=14.0in m=0.5(N —0.95d)
=0.5(16in —0.95 < 14in) = 1.35in
B=16.0in, b;=14.52in  n=0.5(B — 0.80b;)
=0.5(161in —0.80 x 14.52in) =2.19in
To determine ¢, solve Eqs. [11.8] to [11.10]

B 700 kips
bd=———"—
BN rd 16in X 16 in

= 556 kips

P, = X 14.02 in X 14.52 in

A= P, S
0.6(0.85VA/bdf!)  0.6(1.7f7)

B 556 kips

©0.6(0.85V576in*/(14.52 in x 14.0 in)4 kips/in®
556 kips

~0.6 X (1.7 x 4 kips/in?)

=162in?>136 in®

=162 in?

c=3ld+b—t)=V(d+b, —t,) = 4A, — 1,b,)]
(d+b, —t;) = (14.02 + 14.52 — 0.71) in = 27.83 in

¢=14[27.83in - V(27.83in)* —4(162 in>— 0.71 in X 14.52 in)]
c=4.26in

Referring to Eq. [11.8]

m=1.351n, n=2.19in c=4261n

\/ 2P, 2 X 700 kips <l
0.9F,BN V0.9 x 36 kips/in® X 16in x 16in

2P, 2 X 556 kips
0.9E A, 0.9 x 36 kips/in® X162 1n?
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11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

11.22.

11.23.

Base plate thickness #, is the largest of (1.35inx0.41=0.55in), (2.19inx0.41=0.90in), and
(4.26 in X 0.46 = 1.96 in). Use a base plate 16 in x 2 in X 16 in.

Supplementary Problems

Complete penetration groove welds are used to join the flanges of the two halves of the W24 X176 beam
(A36 steel) in Prob. 11.3. Determine (a) the design flexural strength at the splice and (b) the
appropriate electrode.

Ans. (a) ¢,M, = 1115 kip-ft, (b) matching E70.

The flanges of the two halves of the same W24x 176 beam are joined by 3-in partial-penetration groove
welds. Determine (a) the design flexural strength at the splice and (b) the appropriate electrode.

Ans.  ¢,M, =446 kip-ft for E70; ¢, M, = 383 kip-ft for E60.

In Fig. 11-1(d), the plates are 3in wide and 3 in thick. the base material is A36 steel. Determine the
design tensile strength of the splice for the minimum size fillet weld: (a) E70, (b) E60.

Ans. (a) 33.4kips, (b) 28.6 kips.

In Prob. 11.17, determine the design tensile strength for the maximum size fillet weld: (a) E70, (b) E60.
Ans. (a) 72.9 kips, (b) 72.9 kips.

Repeat Prob. 11.8 for a 3-in-diameter bolt.
Ans. (a) 15.5kips, (b) 20.7 kips, (c) 19.4 kips, (d) 25.8 kips, (e) 7.2 kips.

Repeat Prob. 11.9 for a j-in-diameter bolt.

Ans. (a) 19.6 kips, (b) 23.6 kips.

Repeat Probs. 11.10 and 11.11 for 3-in-diameter bolts.
Ans. 7.5kips, 2.1 kips.

Determine the bearing strength of 3-in-diameter bolts connecting i-in plates of A36 steel; standard
holes; center-to-center distance of 2} in; and edge distance of 15 in.

Ans. 19.6 kips.

Determine the design shear strength of the web of the W21x44 beam (A36 steel) in Fig. 11-10. The five
holes are 17%-in-diameter for 1-in-diameter bolts.

Ans. 121 kips.
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_,i |<_
1 2in
2in
o
- o
Z o 4@3Lin=14in
o
o
W21 x 44
Fig. 11-10

11.24. Design a base plate for a W8x 67 column with a factored axial load of 450 kips. All steel is A36. The
base plate will occupy the full area of concrete support; f. = 3.5 ksi.

Ans. Base plate 14in X 13 in X 14 in.



Chapter 12

Other Design Considerations

NOTATION

b; = flange width, in

d = depth of the member, in

d. = web depth clear of fillets, in=d — 2k

F, = specified minimum yield stress

K = effective length factor for columns

k = distance from outer face of the flange to web toe of the fillet, in
[ = stiffener height, in

N =length of bearing, in

P,

n

= nominal axial compressive strength of the column, kips
P, = required axial compressive strength of the column, Kips
R,, = nominal strength, kips
R, =required strength, kips
R, = nominal shear strength, kips

t; = flange thickness, in

t,, = web thickness, in

X = parameter in Egs. (K1-6) and (K1-7)

Y = parameter in Egs. (K1-6) and (K1-7)

¢ = resistance factor
¢R,, = design strength, kips
¢R, = design shear strength, kips

INTRODUCTION

Additional provisions for steel structures are given in the final three chapters of the AISC LRFD
Specification, as follows:

Chap. K—Strength Design Considerations
Chap. L—Serviceability Design Considerations
Chap. M—Fabrication, Erection, and Quality Control

The strength and stability provisions relating to concentrated forces are discussed herein.

CONCENTRATED LOADS AND REACTIONS

A concentrated force acting on a member introduces high stresses in its vicinity. To prevent
failure, the required (or factored) concentrated load or reaction R, (kips) must be checked against
the design strength ¢R,, (kips), as determined by the appropriate limit states. For each limit state, ¢
is the resistance factor and R, is the nominal strength.

(1) Local Web Yielding. This limit state applies to all concentrated forces (tensile or

compressive) in the plane of the web. The design strength of the web at the toe of the fillet

175
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is ¢R,, where ¢ = 1.0 and R, depends on whether the concentrated force is a load or a
reaction.

a. For a concentrated load (acting along a member at a distance from either end greater
than d, the depth of the member)

R, = (5k + N)E¢t, (K1-2)
b. For a concentrated reaction (acting at or near the end of the member)
R,= 2.5k + N)Ept, (K1-3)
In the preceding equations
k = distance from outer face of the flange to web toe of the fillet, in
N = length of bearing, in
F, = specified minimum yield stress, ksi
t,, = web thickness, in

If a pair of stiffeners is provided on opposite sides of the web at the concentrated force,
covering at least half the member depth, this limit state need not be considered.

(2) Web Crippling. This limit state applies to all concentrated compressive forces in the plane of
the web. The design compressive strength of the web is ¢R,, where ¢ =0.75 and R,
depends on whether the concentrated force is a load or a reaction.

a. For a concentrated load (acting along a member at a distance from either end greater

than d/2)
N 1.5 E
R, = 135t3v[1 + 3(—)(53) } ' (K1-4)
d/\t by

b. For a concentrated reaction (acting at or near the end of the member)

R, = 685 1+3(5)('—W)1'5] By (K1-5)
" " d/\ Ly

where d is the depth of the member, in, and # is flange thickness, in. If the concentrated
force exceeds ¢R,, a pair of stiffeners must be provided in accordance with the Stiffener
Requirements section later in this chapter.

(3) Sidesway Web Buckling. This limit state relates to concentrated compressive force applied
to one flange in the plane of the web, where no lateral bracing or (half-depth) stiffeners are
provided. The design compressive strength is ¢R,, where ¢ =0.85 and R, depends on
whether the loaded flange is restrained against rotation.

a. For the loaded flange restrained against rotation
If Y<2.3: R,=X(1+0.4Y°) (K1-6)
fYy=23: this limit state need not be checked
b. For the loaded flange not restrained against rotation
tY<17: R, = X(0.4Y7) (K1-7)
ftYy=17: this limit state need not be checked
In the preceding expressions

12,0007,
e inizes

I however, if the web flexural stresses (due to the factored loads) < F, at
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the concentrated load, the value of X may be doubled.
y = deby
It,
[ = maximum laterally unbraced length along either flange at the point of load, in
b, = flange width, in
d. = web depth clear of fillets, in = d — 2k.

(4) Compression Buckling of the Web. This limit state relates to concentrated compressive
forces applied to both flanges. The design compressive strength is ¢R,, where ¢ =0.90 and

4100z, VF,
R, =—\/T (K1-8)
d,

If the concentrated force exceeds ¢R,, a pair of stiffeners must be provided in accordance
with the Stiffener Requirements section later in this chapter.

(5) Local Flange Bending. This limit state applies to a concentrated tensile force acting on one
flange. The design strength is ¢ R,,, where

$=090 and R,=6.250F, (K1-1)

If the length of loading perpendicular to the member web <0.15b; (the member flange
width) or if a pair of (half-depth) web stiffeners is provided, this limit state need not be
considered.

(6) Columns with Web Panels Subject to High Shear. This limit state applies to column webs at
beam-to-column moment connections. The design shear strength of the column web is ¢R,,,
where ¢ =0.90 and R, the nominal shear strength, depends on the (factored) column axial

load P,.
a. If
P,=0.75P,: R, =0.7Fd.t, (K1-9)
b. If
P,
P,>0.75P,: R, :0.7Fyd(tw[1.9— 12(;)] (K1-10)

n

where P, is the required axial compressive strength of the column, kips, and P, is the
nominal axial compressive strength of the column, kips.

Column web shear can be determined as shown in Fig. 12.1. If it exceeds the design shear
strength [calculated from Eqs. (K1-9) or (K1-10)], the column web must be reinforced with diagonal
stiffeners or web doubler plates.

1

v,
LV,
M\ 7/ d' 7

-—

R )
Required shear strength

LV.=V.— M + M)d

A
Fig. 12-1 Column web panel shear
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STIFFENER REQUIREMENTS

When web stiffeners are required at a concentrated force because of (2) crippling of the web or
(4) compression buckling of the web, they must satisfy the following additional provisions of the
AISC LRFD Specification. They are to be designed as columns (i.e., as axially compressed
members, as in Chap. 4) with an effective length K/ =0.75h. As specified in Sec. K1.8 of the AISC
LRFD Specification, part of the beam web can be considered as working with the pair of stiffeners.

For all web stiffeners provided at concentrated loads and reactions: If the concentrated force is
tensile, the stiffeners must be welded to the loaded flange. If the force is compressive, the stiffeners
can either bear on or be welded to the loaded flange.

Solved Problems

12.1. The unstiffened end of a W21x62 beam of A36 steel rests on a concrete support (f,. = 3 ksi).
Design a bearing plate for the beam and its (factored) end reaction of 100 kips. (See Fig.
12-2.) Assume the area of concrete support A, =6 X A, (the area of the bearing plate).

Laterally supported by floor deck j\

1[ N+25k - %
}

<—>|-+{‘—>

B

< - |<————->[

Fig. 12-2

For the concentrated compressive reaction of 100 kips acting on the bottom flange, the applicable limit
states are (1) local web yielding and (2) web crippling. (It is assumed that the beam is welded to the base
plate and both are anchor-bolted to the concrete support. This should provide adequate lateral bracing
to prevent sidesway web buckling.)

Corresponding to the applicable limit states are Eqs. (K1-3) and (KI-5), each of which has N, the
length of bearing, as a parameter.

Solving for N, we obtain

R,<¢R, = $(2.5k + N)F.t,
100 kips = 1.0(2.5 X 13 in + N) X 36 kips/in® X 0.40 in (K1-3)
N=3.5in

Fit
t

<

R,= ¢R, = 68’ [1 + 3 (K1-5)

w

A —— 7[1+3< )<o4om >‘5] kips_0.615in
_ :

T00kips ol = 680 in) 20.99in/\0.0615 in in®  0.40in
N=8.6in

The minimum length of bearing is N = 8.6 in. Rounding up to the next full inch, let N =9in.
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The area of the bearing plate is determined by the bearing strength of the concrete support. Using
Eq. [11.6] from Chap. 11, the design bearing strength is

' A2
¢eP, = P X 0.85f A1y =
1

where VA,/A, =2.
Substituting in Eq. [11.6], we obtain
. kips
100 kips = 0.60 X 0.85 X 3 = XA X2
i
The area of the bearing plate A, =32.7in".
Because the bearing plate dimensions are
A, 32.7in’ .
N = —= =9I
BN=A;: B N 9in 3.61in

However, B cannot be less than the flange width of the W21x62 beam, b, =8.24. Rounding up, let
B =9in. A formula for bearing plate thickness is given on page 3-50 of the AISC LRFD Manual:

L [2.22Rn?
B A,F,

y

where R = 100 Kips
_B—2k_9in—2><1§in

n > > =3.13in
A,=BN=9in x9in=81in’
F, =36 ksi
222X 100kips X 31310 _ ..
’_\[ 81in” X 36 ksi =0-80in

Use a bearing plate 1in X 9in X 9in.

12.2. In Prob. 12.1, can the bearing plate be eliminated?

For the W21x62 beam to bear directly on the concrete support, its bottom flange must be sufficiently

thick to act as a bearing plate.
[2.22Rn*
t= =0.6151
A in

Let
the flange thickness of the W21x62 beam. Because B = b, = 8.24 in

_B—2k 824in—2X1gin
2 9

t \/2.22 x 100 kips x (2.75 in) B4i8:
= o =0. n
A, X 36 kips/in® '

n =2.75in

A, =123in" (>32.7 in’ required for bearing on concrete)

yoAi_A_13in’
B b, 824in

=15.0in

By increasing the length of bearing of the beam on the concrete to 15in, the bearing plate can be
eliminated.
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12.3. A column with a 12-in-long base plate rests on the top flange of a W18x50 beam (A36 steel),
20 ft long. Determine the maximum column load if the beam is (a) not stiffened or braced
along its entire span and (b) not stiffened but braced at the load point.

(a) For a concentrated compressive force acting on the top flange of a beam, the applicable limit states
are (1) local web yielding, (2) web crippling, and (3) sidesway web buckling. The corresponding
equations are (K1-2), (K1-4), and (K1-7) (assuming no restraint against rotation).

y
P,= R, =1.0(5k + N)Et, = 1.0(5 x 1.25 in + 121in) 36 — x 0.355 in (K1-2)
n
P, =233 kips
R N\ /t\"°1 |Et
P,<$R, =0.75 x 135:;[1 + 3<E)<7> ] = (K1-4)
AV )

=0.75 x 135(0.355 in)?

12in \/0.355in\"* 5701
[1+3<——'" )( m) ] AL

17.99in/\0.570 in 0.355in
P, =192 kips
P, = ¢R, =0.85x X(0.4Y?)
Y=1C£f- d.=d—-2k=(17.99in —2 % 1.25in) = 15.49 in

It,,

15.49in x 7.495 in
= =1.36<1.7 (K1-7)

(20 ft x 12 %‘)0.355 in

Since Y <1.7 and the loaded flange is not stiffened, braced, or restrained against rotation, Eq.
(K1-7) must be checked.

5 = 12,000, _ 12,00000.355in)’ _

d, 15.491in 3
P, =0.85 x 35 % 0.4(1.36)°
=30 kips

The maximum (factored) column load is 30 kips based on the governing limit state of sidesway web
buckling [Eq. (K1-7)].

(b) If the top flange is braced at the load point, the limit state of sidesway web buckling does not
apply. The governing limit state is web crippling [Eq. (K1-4)], with a design strength of 192 kips.
The shear strength of the web of the beam should always be checked. For a W18x50.

¢.V,=0.90 X 0.6Fdt,,
kips

=0.90 X 0.6 X 36—
mn

X 17.991in x 0.355in

¢, V, =124 kips. If, for example, the concentrated column load P, = 192 kips acts at midspan and is
the only load on the beam except for its own weight, the required shear strength

_ 192 kips N 0.050 kips/ft x 20 ft
7 2 2

(V, =96.5 kips) < (¢, V, = 124 kips)  o.k.

12.4. Determine the maximum load that can be hung from a plate (12 in long X 7 in wide) welded to
the bottom flange of a W18x50 beam. All steel is A36.
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For a concentrated tensile force acting on the bottom flange of a beam, the applicable limit states are (1)
local web yielding and (5) local flange bending. The corresponding equations are (K1-2) and (KI-1). In
solving Eq. (K1-2) for a W18x50 with a 12-in load bearing (in Prob. 12.3) it was determined that
P, <233 kips.

Because the width of plate =7in>0.15b; (=0.15%x7.495in=1.12in), Eq. (KI-I) must be
checked:

P,=¢R, =0.90 X 6.2503F,
=0.90 X 6.25(0.570 in)° X 36 ksi
P, =66 kips

The maximum (factored) hanging load is 66 kips, based on the limit state of local flange bending. If
stiffeners are provided or if the hanging load is confined to the central 0.15b; (=1.12in) of the beam
flange, 233 kips can be hung.

Two W27x84 beams are rigidly connected to a W14x 145 column (all of A36 steel). The
forces due to ‘the various loadings are shown in Fig. 12-3. Determine whether column web
stiffeners are required.

l 360 kips 240 kips l 300 kips
. 100 kip-ft 100 kip-ft 125 kip-ft 125 kip-ft
150 kip-ft '*n“{/]'“r 150 kip-ft P —\T{/}*T P g 1Vhr
/ 250 kips
—

A \ {

Al By __%L

Dead load Live load Wind load
(d =2 X 1,12)
=(d —1t;) = (26.71 in — 0.640 in)
=26.07in = 2.17 ft

Fig. 12-3

In determining whether column web stiffeners are required, the significant parameters are F, the beam
flange forces (tension and compression); V, the column shear; and P, the column axial load.

Under dead load

T g
V=0
P =360 kips
Under live load

100 kip-ft
2171t

V=0

= 46 kips

P =240 kips




182 OTHER DESIGN CONSIDERATIONS [CHAP. 12

Under wind load
_ 125 kip-ft

217 o Kips
V=250 kips — 2 x 58 kips = 134 kips
P =300 kips

The relevant load combinations from Chap. 2 are

1.4D (A4-1)

= 1.4 % 69 kips = 97 kips
V,=0
P, = 1.4 x 360 kips = 504 kips
1.2D + 1.6L (A4-2)
F, =1.2 X 69 kips + 1.6 X 46 kips = 156 kips
V,=0
P, = 1.2 % 360 kips + 1.6 x 240 kips = 816 kips
1.2D +1.3W +0.5L (A4-4)

F,=1.2x69kips + 1.3 x 58 kips + 0.5 X 46 kips = 181 kips
V, = 1.3 X 134 kips = 174 kips
P,=1.2 x 360 kips + 1.3 x 300 kips + 0.5 X 240 kips = 942 kips
0.90D —1.3W (A4-6)
F,=0.9 x 69 kips — 1.3 X 58 kips = —13 kips
V.= —1.3 X 134 kips = —174 kips
P, =0.9 x 360 kips — 1.3 x 300 kips = —66 kips

Regarding stiffening the web of the W14 x 145 column, all the significant required strengths (F,, V,, and
P,) are maximum under load combination (A4-4): 1.2D + 1.3W +0.5L. They are as follows:
F, = 181 kips, V, = 174 kips, and P, = 942 kips.

The applicable limit states are

(1) local web yielding, (2) web crippling, (4) compression buckling of the web, (5) local flange bending,
and (6) columns with web panels subject to high shear.

The corresponding equations are Eqs. (K1-2), (K1-4), (KI1-8), and (K1-1).
R, =1.0(5k + N)Et, (K1-2)

For the W14x 145 column, k =1.751n, ¢, = 0.680 in. Let the length of bearing N = 0.640 in, the flange
thickness of the W27x84 beam

.
@R, = 1.0(5 % 1.75in + 0.640 in) X 36 i;‘is % 0.680 in
=230 kips
. N\/t.\""]_ |Et
R, =0.75 X 135t;[1+3(—)<—) ] ki) (K1-4)
d/\t t,
0.6401in\ /0.680in\ " kips  1.090 in
=0. .680in)*| 1 + )( ,>]36,,>< -
0.75% 135 x (0.680 in) [1 3(14.78m 1.090 in in® ~ 0.680 in
= 378 kips
41002, VE,
R, =0.90 X ——=—2 (K1-8)

c
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where d. = d — 2k. For the W14x145 column, d, =14.78in —2 X 1.75in = 11.28 in.

4100(0.680 in)*V/36 ksi

Bl (30X 11.281in
=617 kips
#R, = 0.90 X 6.25¢2F, (K1-1)

=0.90 X 6.25 x (1.090 in)? X 36 ksi
= 241 kips

Because (F, = 181 kips) < ¢R, for all the preceding limit states, horizontal stiffeners for the column web,
between beam flanges, are not required.

Regarding the last limit state cited, column web panels subject to high shear, Eq. (K1-9) or (K1-10)
may apply, depending on P, and P,. Assuming the column is laterally supported by beams in both
perpendicular directions at the connection level (i.e., the unbraced length / =0), P, = A F, [from Chap.
4, Egs. (E2-1) to (E2-4)]. For the W14Xx145 column

P, =42.71in" x 36 ksi = 1537 kips
Since (P, =942 kip) < (0.75P, = 0.75 x 1537 kips = 1153 kips), Eq. (K1-9) governs
#R, =0.90 x 0.7F,d.1,

kips

i
in?

=0.90 x 0.7 X 36

x 11.28 in X 0.680 in

= 174 kips

Because V, = ¢R, = 174 kips, the shear capacity of the web panel is sufficient; it need not be reinforced.
If V,>¢R,, the column web panel would require reinforcement by either (a) a vertical plate
welded to the column web, to increase f, in the panel to that required to make ¢R, =V,, or (b)

diagonal stiffeners in the column web panel to resist the portion of the shear beyond the capacity of the
column web.

Regarding horizontal stiffeners in column webs between beam flanges for moment connections, a

stiffener design procedure and additional design aids are provided on pp. 2-12 to 2-14 of the AISC
LRFD Manual.

Supplementary Problems

The unstiffened end of a W16Xx50 beam of A36 steel rests on a concrete support (f. =4 ksi). The beam
end reaction is 100 kips. Assume the area of concrete support equals the area of the bearing plate.

(a) Design a bearing plate for the beam.
(b) Can the bearing plate be eliminated?

Ans. (a) Beam bearing plate 1in X 7in X 7 in.
(b) Yes, if the length of bearing is increased from 7in to 11 in.

A W14x82 column rests directly on the top flange of a W27x146 beam, 30 ft long. If the beam has no
stiffeners, but is braced at the load point, determine the maximum column load.

Ans. P, =495 kips.
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12.8. In Fig. 12-3, assume there is a W27x84 beam on the left side only. The forces on the W27 beam and the
W14x145 column are as shown. If column web stiffeners are required, design them.

Ans.  Stiffeners not required.

12.9. In Fig. 12-3, assume the column web panel has a required shear strength of 300 kips. Determine the
thickness of the web plate to be welded to the panel.

Ans. t=1in.
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Allowable stress design (ASD), 67 Columns, 3, 23-30
American Institute of Steel Construction, Inc. composite, 123-125
(AISC), 1, 6-7 Combined forces:

AISC LRFD Manual, 1, 6-7 flexure and compression, 91-95

AISC LRFD Specification, 1, 6-7 flexure and tension, 84—85
Analysis: flexure and torsion, 108

elastic, 44 Compact members:

first order, 93 beams, 41

plastic, 44 columns, 24

second order, 93 Composite members, 122-130
Area, cross-sectional: beam-columns, 129-130

effective net, 15 beams, 125-129

gross, 14, 48 effective slab width, 125

net, 14-15, 48 full composite action, 126
Availability, 5 partial composite action, 126
A36 steel, 3-4 shear connectors, 126—129

shoring, 126-127
steel decks, 127-129
columns, 123-125
compressive strength, 124
concrete-encased beams, 129
composite, 129-130 flexural strength, 126-127
interaction formulas, 92-93 shear strength, 130
preliminary design, 95 Compressive strength, 28, 124
second order analysis, 93-95 Compression members (see Columns)
Beam formulas, 49-50 Concentrated loads and reactions, 175-178
Beams, 3 Connections, 3, 152-164
compact, 39-50 block shear rupture, 162

Base plates, 164
Beam-columns, 3, 91-95

composite, 125-129 bolts, 156-161

noncompact, 41, 63-65 high strength, 157

symmetric, 40-41, 64, 66 slip-critical joints, 157
Bearing: design strength, 154-156, 162

on concrete, 125, 164 moment, 163, 177

on steel, 164

typical, 163
plates, 178-179 welds, 153-156
Bending: (see Beams and Plate girders) Cross-sectional area:

biaxial, 88-89 effective net, 15
Bending coefficient, 46 gross, 14, 28, 48
Block shear rupture, 162 net, 14-15, 48
Bolts, 156-161 Cross sections:

high strength, 156-157 closed, 108-110

slip-critical joints, 157

compact, 24, 41
Braced frames, 25-26

noncompact, 24, 41

Buckling: open, 107-110
column, 25-28 slender element, 24
elastic, 28
inelastic, 28
lateral-torsional, 40, 44-47, 63-65, 67 Definitions, 3
local, 24, 40, 41 Deformation, torsional, 110
flange, 24, 41, 63-66, 67 Design strength, 8
web, 24, 41, 63-65, 76-177 compressive, 28, 124
Built-up members, 5-6, 66, 70 connections, 154-156, 162
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Design strength (Cont.)
flexural, 44—47, 63-65, 67-68, 126—127
shear, 48-49, 68, 130
tensile, 16
Displacements:
compressive, 30
flexural, 49-50
tensile, 16

Effective length, 25

Effective length factor:
analytical method, 26-27
judgmental method, 25-26

Effective net section, 15-16

Elastic analysis, 44

Euler, 28

First order analysis, 93
Flange bending, 177
Flexural members (see Beams)

Flexural strength, 44-47, 63—65, 67-68, 126-127

Gross section, 14, 16, 48

Hangers, 3, 14

Interaction formulas, 85, 92, 129
Instability, (see Buckling)

Limit states, 8

Load and resistance factor design (LRFD), 6-7,

8-11

LRFD Manual, 1, 6-7

LRFD Specification, 1, 6-7
Load combinations, 8, 10-11
Load factors, 8, 10
Loads:

dead, 10

earthquake, 10

factored, 8, 10

live, 10

rain, 10

service, 11

snow, 10

wind, 10

Mechanical properties, 3—4
Modulus of elasticity, 4, 123
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Moment connections, 163, 177
Moment of inertia, 26, 43—44

Net section, 14-16, 48
Nominal strength or resistance, 8
Noncompact members:

beams, 41, 63-65

columns, 24

P-delta secondary effects, 94
Plastic analysis, 44

Plastic hinge, 40, 41, 43
Plate girders, 65-69
Probability theory, 9-10
Properties, mechanical, 3-4

Required strength, 8, 10
Residual stresses, 43
Resistance, 8
Resistance factors, 8—10
compression, 28, 124
flexure, 44, 63, 67, 126, 129
shear, 48, 68, 130
tension, 16
torsion, 108
Rolled shapes, 5-6, 30, 70

Second order:

analysis, 93

effects, 94

moments, 92-95
Section modulus:

elastic, 43

plastic, 43
Sections (see Cross sections)
Serviceability, 8
Shapes, structural:

built-up, 5-6, 66, 70

rolled, 5-6, 30, 70
Shear center, 41, 106-107
Shear connectors, 126-129
Shear strength, 48—49, 68, 130
Shoring, 126-127
Slender element members, 24
Slenderness ratio, 25-28
Slip-critical joints, 157
Stability (see Buckling)
Stiffeners, web:

details, 69, 178

requirements, 65, 69, 176-178
Stiffness, S
Stiffness reduction factors, 26-27




Strength, 8

Stress—strain diagrams, 3—4, 41-43
Structural steel, 3-7

Sway forces, 93

Tension field action, 67

Tension members, 14-16

Tensile strength, 4, 16

Torsion, 106-110
avoiding or minimizing, 107-108
deformation, 110
design criteria, 108
St. Venant, 109
shear center, 41, 106-107
warping, 110

Unbraced frames, 25-27
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Unbraced length, 26, 44-47

Vibration of beams, 49-50

Web:
buckling, 176-177
crippling, 176
panels, 177
stiffeners (see Stiffeners, web)
yielding, 175-176
Welds, 153-156
Width-thickness ratios, 24, 41, 63—-65

Yield point, 3
Yield strength, 4
Yield stress, 4, 123
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