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PREFACE 

Mathematics is largely concerned with infinities; yet throughout most of its 
history mathematicians have been uneasy about accepting infinity literally. 
'Actual' infinities (such things as lines of infinite length, infinitesimal num
bers, sums of infinitely many terms, points at infinity, infinite sets, and infinite 
quantifiers) have been viewed with suspicion, and as standards of rigour have 
advanced the tendency has been to rephrase all references to actual infinity 
in terms of 'potential' infinity (for example, defining an infinite sum as the 
limit of finite partial sums). 

By the end of the nineteenth century, this process had reached the point 
where all varieties of actual infinity could be reduced to two basic types: 
infinite sets and infinite quantifiers. The task for the twentieth century has 
been to interpret infinite sets and quantifiers in a way that a finite human mind 
can understand. 

Three rival philosophies of mathematics have emerged to do this: Logi
cism, Formalism and Intuitionism. I subscribe to all three. In this book, 
for expository convenience, I shall approach the subject from an intuition
ist direction, but see Chapters 1, 9 and 35 for discussions of logicism and 
formalism. 

My task is to present a philosophical interpretation of arithmetic and ana
lysis, together with its mathematical implementation. Underlying arithmetic 
and analysis, I shall argue, is a mathematical Theory of Constructions, which 
serves as the foundation (or rather the ground floor) of mathematics. The 
Theory of Constructions is intended to shed light on the following questions. 

• What is a construction? 

• What is the source of our ability to grasp constructions and reason with 
them? 

• What content does a constructive statement have? 

• What is the relation between mathematical constructions and the phys
ical world? 

• What is a proof? 

• How can infinite quantifiers be understood in constructive terms? 

These questions are central to the intuitionistic account of mathematics; yet 
intuitionists have traditionally been very evasive or obscure about them. As 
George (1988) remarks, 'many of his [Brouwer's] sympathizers have con
tented themselves with a hurried mumble about the fundamental nature of it 
all and moved on to the reals, thus admirably heeding R.W. Emerson's advice 
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viii PREFACE 

that when skating over tllin ice, best safety lies in speed.' A serious exam
ination of these questions quickly leads into severe difficulties (Dummett, 
1977, §7.2; Weinstein, 1983). I hope, however, to demonstrate that the ice is 
thicker than George thinks. 

Answering these questions will take up Part I and require consideration 
of the views of most of the major figures in the philosophy of mathematics, 
notably Quine, Frege, Cantor, Wittgenstein, Brouwer, Dummett and Hilbert, 
from an intuitionistie perspective. The result of Part I is a programme 
for founding arithmetic and analysis, which is carried out in Parts II, III 
and IV. Part II describes the Theory of Constructions itself; from a purely 
mathematical point of view it is simply a functional programming language 
together with a program correctness calculus, in the style of Goodman (1972). 
Part III puts the Theory of Constructions to work, using it to interpret a 
sequence of logical theories, culminating in Peano Arithmetic; this follows 
in the tradition of Kreisel (1962, 1965) and Goodman (1970). Part IV extends 
the treatment of Part III to include second-order quantifiers, thus giving an 
interpretation of Second-Order Peano Arithmetic and hence analysis. 

READERSIDP 

This book is intended for three audiences: philosophers of mathematics, 
logicians and computer scientists. 

1. For philosophers of mathematics, I am attempting to provide the 
intended interpretation of constructive arithmetic and analysis, in contrast 
with, say, GOdel's (l958) Dialectica interpretation, which is a philosophically 
minimal nonstandard interpretation. Thus my work is intended to clarify what 
intuitionists mean by the logical constants, proof and truth. See Chapter 7 
in particular for further discussion of the issues that I hope it will illuminate. 
In addition my aim is to reconcile the essential insights of intuitionism, 
formalism and logicism. 

2. For logicians, I am attempting to make the concept of intuitionistic 
proof more accessible to mathematical analysis and reveal the complex sub
structure underlying the constructive logical constants. Intuitionists have 
always stressed that their concept of proof transcends all formal systems, and 
this has made it difficult for logicians to study it. The central mechanisms of 
intuitionistic logic seem to be understood only by intuitionists themselves; 
Godel (1933b, 1938, 1941) and others have complained that intuitionistic 
logic is not really constructive at all because of its reliance on a vague and 
unsurveyable totality of proofs. My theory of proof attempts to overcome this 
problem by construing proofs as well-founded trees. Well-foundedness gives 
proof its essential 'open-ended' character and yet is sufficiently precise and 
objective to be understandable to logicians of all philosophical persuasions. 
Accordingly, Chapter 26 gives a completely explicit account of the nature 
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of an intuitionistic proof, which is used in Chapters 25 and 29 to introduce 
some new intuitionistic logical constants. Chapter 28 presents a Calculus of 
Proof Functions, a formal system describing intuitionistic proof at a level of 
abstraction intermediate between direct constructive manipulation and pred
icate calculus. Chapters 37~3 give a new account of the substructure of 
second-order quantifiers. These developments show that, even at the level of 
arithmetic, intuitionism is not simply a subsystem of platonistic mathematics 
but involves substantial new mathematical theories that have no platonistic 
counterpart. These theories are described in sufficiently explicit a way that 
non-intuitionists can understand and use them. 

3. For computer scientists, it is possible to regard my Expanded Term 
Language (Chapter 16) as a functional programming language with the Term 
Language (Chapter 14) as its machine code, Protologic (Chapters 17 & 20) as 
its correctness calculus, Logic (Chapter 26) as its specification language, and 
the Calculus of Proof Functions (Chapter 28) as a program transformation 
calculus. Hence the Theory of Constructions provides a complete integrated 
theory of programming. The distinctive feature of this approach is that the 
usual capabilities of functional programming (such as pattern matching, com
plex type systems, and interactive stream programming) can be supported in 
the most powerful and rigorous way by mapping them into a language with an 
extremely simple syntax Gust constants, variables and function applications) 
and a firmly grounded informal semantics (see Chapter 13). These ideas are 
elaborated in Chapter 23. 
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PART I: PHILOSOPIDCAL FOUNDATIONS 

CHAPTER 1 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Geology is the study of rocks; astronomy is the study of stars; what is 
mathematics the study of? Mathematics has been variously construed as the 
science of numbers or abstract structures, as deductive reasoning in general, 
as a game with symbols, as a process of free mental 'construction', and as 
a very abstract branch of theoretical physics. Since we cannot agree on 
its subject matter it is not surprising that we differ on what philosophical 
questions to ask about it, what is required to justify it, or indeed whether it 
needs any sort of extra-mathematical foundation. In this chapter I shall try 
to formulate the correct question and to distinguish it from irrelevancies. 

A THOUGHT EXPERIMENT 

To focus our minds on the essentials, consider the following thought experi
ment, a myth in the history of mathematics. 

A shepherd lives alone on a mountain with a large flock of sheep. Every 
night he collects his sheep into a pen to protect them from lions. A problem 
he faces each evening is knowing whether he has gathered all the sheep or 
whether some are missing. There are too many for him to keep track of them 
individually, so he counts them off against a tally of lines scratched into a 
rock at the entrance to the pen. He has no notion of arithmetic; he simply 
matches each line against a sheep as it enters the pen. If he reaches the last 
line as the last sheep enters the pen he concludes that all the sheep are present; 
otherwise he concludes that he needs to go and search for some lost sheep. 

Now, the question is, what is the justification for this procedure? What 
have scratches on rock to do with sheep? Why should he bother with scratches 
when his real concern is with lost sheep? How does his procedure differ from 
other divination techniques involving line marks, such as I Ching? 

The question is complicated by the fact that the procedure is not wholly 
reliable. There are many reasons why it may misdirect him as to whether 
to go looking for lost sheep: he may make an 'error' in matching the sheep 
against lines, a lamb may have been born or a sheep may have died during 
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2 CHAPTER 1 

the day, or some supernatural agency may have made extra scratches on the 
rock. However, the procedure is still usable; his reasoning is as follows. 

(1) I have made no error today, no sheep have appeared or disappeared, and 
no changes have been made to the rock. 

(2) (1) necessarily implies that the procedure tells me correctly whether I 
need to look for lost sheep. 

(3) Therefore the procedure tells me correctly whether I need to look for 
lost sheep. 

Step (1) is justified (to a high degree of confidence) by the shepherd's general 
knowledge and competence in his job. Step (3) certainly follows from steps 
(1) and (2). So the problem is to justify step (2), and in particular to account 
for the strange necessity that the shepherd attributes to it. 

Clearly it is irrelevant to enquire into how the shepherd acquired this 
procedure. He may have been taught it by a passing sage, he may have read 
it in a mathematical journal, he may have discovered it after laborious trial 
and error, he may have worked it out in his head, or it may have come to 
him in. a dream. One might know everything there is to know about how he 
learned of the procedure, what makes him regard it as plausible, what role it 
plays in his life, and how it is represented in his brain; but one would still 
be none the wiser about whether it is justified, that is, whether he should 
go looking for lost sheep when it tells him to. Assume he acquired this 
procedure so long ago that he has forgotten its origin. However, he does 
have a strong conviction that it (or, at least, step (2» is necessarily correct, 
based on an informal grasp of (what we would call) counting and one-to-one 
correspondences. 

His belief is not based on experiment: he could have the same informal 
grasp of the situation even before trying it for the first time. Moreover, he 
believes that it would continue to work if he traded in his sheep and kept 
yaks instead, even though he has never seen a yak before and knows nothing 
about them. 

Our task is to account for this belief, either by dismissing it as delusory 
or by justifying it. Thus our account will deal with either the psychology of 
superstition or the epistemology of mathematics. I shall assume the latter. 

The required account will not be phrased in terms of whether step (2) is 
a consequence of the Zermelo-Fraenkel axioms, nor whether the shepherd 
could write up an account according to contemporary standards of rigour that 
would be accepted for publication in a mathematical journal, nor whether he 
would be successful in applying for a research grant to continue his studies. 
The shepherd, after all, does not care about the Zermelo-Fraenkel axioms, 
nor does he aspire to an academic career. All he cares about is whether he 
has lost any sheep. 
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FIRST CONCLUSIONS FROM THE THOUGHT EXPERIMENT 

The point of the thought experiment is not to suggest that counting arose 
in this way, nor that any individual genius could have invented counting in 
isolation. The point is to pose clearly what I take to be the central problem 
in the philosophy of mathematics. The thought experiment enables us to 
dismiss a number of theories on the nature of mathematics as inadequate or 
beside the point. 

First, consider crude formalism, the view that mathematics consists of 
proposing a list of axioms and seeing what can be derived from them by 
applying syntactic rules of inference. (I use the word 'crude' to distinguish 
this view from Hilbert's formalism, which is discussed in Chapter 9.) On this 
account, each axiom system is considered to define a branch of mathematics; 
axiom systems are valued for their aesthetic appeal (the pleasing shapes 
made by formulae on the page or the imagery they inspire in the mind) or 
abandoned as pointless if a contradiction is derived Gust as chess would be 
rendered pointless by the discovery of a winning strategy). Most formalists 
also say that axiom systems should be valued for their applications to science: 
formal derivations can be used to predict the results of experiments, rather 
like reading tea-leaves. Curry (1954) includes empirical usefulness (in the 
tea-leaf reading sense) and consistency as two criteria for acceptability of 
a formal theory. But his position is a hybrid one: he also counts 'intuitive 
evidence' as a criterion, thus allowing that formulae may be interpreted as 
meaningful propositions. 

There are two objections to the crude formalist view. The first is that it 
ignores the problem that I have introduced with the sheep-counting thought 
experiment: it asserts that mathematics is applicable but offers no explana
tion. Secondly, the proposition that a formula is derivable from a certain list 
of axioms and rules by a certain derivation is itself a necessary mathematical 
truth (or falsehood). If we are to accept formulae and derivations as 'given', 
in the straightforward way that the formalist does, then we might just as well 
accept numbers and the elementary operations of arithmetic as given. 

A second philosophical position that appears questionable, although it 
cannot be dismissed at this point, is platonism, the view that mathematics 
is the science of 'mathematical objects' existing in a remote mathematical 
world. (I spell 'platonism' with a lower-case 'p' to indicate that it refers to a 
contemporary philosophical tendency rather than the views of Plato.) On this 
view, mathematicians study numbers and sets, just as astronomers study stars 
and planets; mathematicians use set-theoretic intuition just as astronomers 
use visual perception. Intuition justifies us in believing in mathematical 
objects in much the same way that perception justifies us in believing in 
physical objects (GOdel, 1964). 

The reason this appears inadequate is that it leaves one wondering what 
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the mathematical world has to do with the physical world. What has 50 to 
do with a flock of fifty sheep? How do one-to-one correspondences (in the 
mathematical world) justify the shepherd's counting procedure? To answer, 
the platonist has to posit a new supply of one-to-one correspondences relating 
mathematical objects to physical objects: these are not themselves mathe
matical objects as they have one foot in each world. If an astronomer made 
an analogous claim about links between stellar and terrestrial phenomena we 
would dismiss it as astrology. The platonist, I think, must appeal to general 
principles of reasoning that apply equally to mathematical, physical, or any 
other sort of object; in so doing, she turns herself into a logicist, and may as 
well jettison the mathematical world and carry out the whole argument in the 
physical world. 

A third philosophical position, which is certainly inadequate, is the 'New 
Directions' tendency (Davis & Hersh 1981; Goodman, 1990, 1991; Hersh, 
1991; Tymoczko, 1991), which seems to overlap with modern platonism 
(Maddy, 1989). This school of thought dismisses all the traditional philoso
phies of mathematics as hopelessly out of touch with current mathematical 
realities and shifts the emphasis to the psychological and social aspects of 
mathematics. It takes mathematics to be a branch of natural science, just like 
physics and chemistry, and denies its truths any special a priori status: that 
is, it denies that mathematics is necessarily true regardless of experience. 

This school criticises philosophers for ignoring aspects of mathematical 
practice such as: the social nature of mathematics; the fallibility of mathe
maticians; computer-generated proofs that are too long for a human to read; 
the informality of proofs as produced and published by mathematicians; and 
historical changes in standards of proof. 

Now, there is some justification in these complaints. The notion of error, 
for example, is central to an understanding of mathematical objectivity but 
was ignored by philosophers prior to Wittgenstein; I shall deal with it in 
Chapters 3 & 4. The relation between informal and formal proofs will be 
discussed in Chapter 9. However, the historical, psychological and social 
issues are wholly irrelevant, as I hope my thought experiment makes clear. 
The shepherd needs a guarantee that if his counting procedure says that all 
the sheep are in the pen then that is so, and it is our task to provide it. If the 
procedure misleads him into losing a sheep he will not be consoled by being 
told that it would be accepted as sound by the mathematical community. 

Similarly the psychological processes by which theorems are discovered, 
generalised, corrected following counter-examples, clarified, checked, and 
finally accepted by the mathematical community are irrelevant to the question 
of how we know, at the end of the discovery process, that the theorem is 
necessarily true. This is the function of proofs; a proof is not intended to 
document the reasoning that led to the theorem's discovery but simply to 
convince the reader that the theorem is true. It is futile to complain that a 
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philosophy of mathematics such as formalism 'is not compatible with the 
mode of thought of working mathematicians' (Davis & Hersh, 1981, p. 343): 
it is not intended as descriptive psychology (see Frege, 1884, Introduction). 
The social and psychological aspects of mathematics are inessential to its 
epistemology. It is, of course, immensely helpful to have colleagues with 
whom to swap ideas and check proofs. Still, our herd instincts are as much a 
hindrance as a help in the pursuit of truth. Mathematical rigour is ultimately 
a matter for the individual conscience, as George Orwell (1949, I, §7) saw 
clearly: 'Freedom is the freedom to say that two plus two make four. If that 
is granted, all else follows.' 

To take the most glamorous weapon in the New Directions armoury, 
consider computer-generated proofs. Imagine a proof in which a theorem 
is shown to hold provided a decidable property holds in a large number 
of special cases, and suppose that a computer is used to check the special 
cases, thus completing the proof. According to the New Directions school 
(Tymoczko, 1979), this constitutes an a posteriori proof of the theorem since 
it relies on the computer's working correctly, and this shows the inadequacy 
of the traditional notion of proof. What is really going on is as follows. Let 
PI be the non-computerised part of the proof. Suppose that the computer 
program is written so as to output its deliberations as a formal proof, P2 , 

which a human could read, although in practice it is far too long to read. (It 
is straightforward to modify any program to produce such output.) Thus PI 
concatenated with P2 is a complete proof of the theorem. Suppose also that 
we write a correctness proof, P3, for the program, as we should always do 
when programming. Then we may reason as follows. 

(1) The computer is in working order and is being operated correctly. 
(2) (1) necessarily implies that PI concatenated with P2 forms an a priori 

proof of the theorem. 
(3) Therefore, we have produced an a priori proof of the theorem. 

Here, step (1) is justified (to a high degree of confidence) by the empirical 
reliability of electronic hardware and experienced operators. Step (2) is 
justified by PI and P3 ; both these proof are written and readable by a human 
mathematician. Step (3) clearly follows from steps (1) and (2). If all is well 
then we have an a priori proof (PI concatenated with P2); if the computer is 
malfunctioning then we have no proof. In no case do we have an a posteriori 
proof. The proof, if it is correct at all, is necessarily correct. 

This leads to two conclusions: computer-generated proofs do nothing to 
undermine the distinct notion of a priori proof; and the reasoning (steps (1), 
(2) and (3» is just like the shepherd's in the thought experiment. In both 
cases, the argument has an empirical component, step (1), and an a priori 
mathematical component, step (2). Computer-generated proofs, therefore, 
pose no new problems for the philosophy of mathematics. 
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I hope the purpose of the sheep-counting thought experiment is now clear. 
It poses the question of how mathematics can be meaningful reasoning. This 
is not merely a problem for the philosophy of applied mathematics: it goes 
to the heart of the meaning of pure mathematics. 

LOGICISM 

In posing the problem in this way I have adopted a logicist position. Logicism 
is the doctrine that mathematics is logic. To explain its connection with the 
present discussion I must begin by clearing away the confusions surrounding 
the terms 'logic' and 'logicism'. 

Logicism is often equated with a technical thesis: that a formal system of 
mathematics, such as Zermelo-Fraenkel set theory or some rival system, is 
derivable from first-order predicate calculus purely by definitions. This thesis 
is generally taken to be false, on the grounds that when Frege attempted to 
accomplish this his system turned out to be inconsistent, and when Whitehead 
and Russell repeated the attempt in Principia Mathematica they were forced 
to assume Axioms of Infinity, Choice and Reducibility (see, for example, 
Church, 1962, and Dummett, 1977, p. 2). Most of Whitehead and Russell's 
theorems, then, were not logical truths but merely logical consequences of 
these three axioms, so their position degenerated into what is known as 'if
thenism'. If one uses set theory instead of the Principia Mathematica system, 
one finds that the 'non-logical' notion of 'set' appears to be indefinable 
in purely 'logical' terms. Consequently, logicism is widely regarded as 
discredited. 

However, these assumptions about what is mathematical and what is logi
cal are highly tendentious. Mathematics cannot be equated, for philosophical 
purposes, with any formal system, since we cannot possibly predict what fu7 
ture branches of mathematics may arise, any more than Archimedes could 
predict category theory (which, by the way, does not fit inside Zermelo
Fraenkel set theory). Nor may logic be equated with first-order predicate 
calculus: we have no right to exclude second-order predicate calculus, modal 
logic, temporal logic, deontic logic, and so on, from 'logic'. The privileged 
status commonly accorded to first-order predicate calculus is a historical ac
cident: it was simply the first formal logical system to be established. The 
exclusion of the concept of set from logic is equally arbitrary. It suggests to 
me a general bad conscience about sets: if we really believed that set theory 
was a general theory of pluralities or multiplicities then we would include 
it in logic without hesitation, as would any logician prior to the twentieth 
century. Shapiro (1992), for example, excludes set theory from logic (and 
hence regards logicism as unviable) on the grounds that set theory is not 'self
evident'. A more natural reaction to the lack of self-evidence of set theory is 
to regard it not as external to logic but as bad logic, a botched attempt at a 
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genera1logic of plurality (see Chapter 2). 
Musgrave (1977) suggests that second-order predicate calculus and set 

theory are regarded as non-logical because, unlike first-order predicate cal
culus, they are incomplete. However, as Musgrave points out, this depends 
on the unwarranted assumption that logic must be formalisable in a sound 
and complete axiom system. 

A second attempt to characterise logicism is that it holds that logic is the 
theory of sound deductive reasoning in general, applicable to objects, events, 
processes, and anything else, and that so is mathematics. An opponent of 
logicism would then claim that mathematics has a special subject-matter, 
while logic is 'topic-neutral' (Detlefsen, 1990a). This distinction seems 
unpersuasive. Compare the following two arguments. 

(1) Modus ponens is a rule of inference, part of the special subject-matter 
of logic (although admittedly it can be applied to propositions of any 
sort). 

(2) Four is a number, part of the special subject-matter of mathematics 
(although admittedly it can be used to count objects of any sort). 

Both arguments seem equally successful in showing that logic or mathe
matics, respectively, has a special subject-matter. It is also often claimed 
(Dummett, 1967; Parsons, 1979-80) that mathematics is committed to the 
existence of specific objects (numbers or sets) while logic has no ontological 
commitments. This is so only in a platonist semantics. In the intuitionistic 
semantics that I shall propose in Chapter 6, an existential formula, say 'there 
exists an even prime number', is neither true nor false but is a statement of 
a problem, solved by 2. The true statement that 2 solves the problem (that 
is, 2 is an even prime) means that if anyone carries out a certain computation 
process without error they will obtain the answer true. This involves no 
commitment to the existence of numbers, persons, computation tokens, or 
anything else. 

I conclude that logic and mathematics cannot be distinguished on grounds 
of subject-matter or ontological commitment. 

Some people distinguish logic from mathematics not by subject-matter 
but by certain allegedly non-logical axioms that mathematics relies on: for 
example the Axioms of Infinity, Choice and Reducibility in Principia Math
ematica or (according to Poincare) the principle of induction. But it is easy 
to think of branches of mathematics (group theory, for example) that do not 
use the axioms in question. 

The boundary between logic and mathematics may appear somewhat ar
bitrary. It is nevertheless worth asserting that logic is mathematics: it saves 
us from wasting time looking for a specifically mathematical subject matter 
or a notion of mathematical necessity distinct from logical necessity. The 
real content of logicism, however, is not about the scope of the words 'math-
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ematics' and 'logic': it is a thesis about the application of mathematics: 'it 
is applicability alone which elevates arithmetic from a game to the rank of 
a science' (Frege, 1903, §91; see also Dummett, 1991, §20). Mathematical 
arguments apply directly to the physical world: for example, '2 + 2 = 4' could 
be taken as simply meaning that a pair of anything together with another pair 
constitute a quadruple. This is in contrast to the commonly held view that 
the applicability of mathematics to science is a miracle. There are, indeed, 
some puzzling aspects in the success of applied mathematics, but the bare 
fact that mathematics applies to the world is not a puzzle; mathematics is 
about things in general and therefore applies to things in particular - such as 
flocks of sheep. 

In this book I shall sometimes use the word 'logic' in the full sense of 
general topic-neutral deductive reasoning and sometimes in the sense of 
formal predicate calculus; but I shall always make clear which sense I mean. 
This terminology is far from ideal, but here as elsewhere I must conform to 
common usage. 

THE NECESSITY OF NECESSITY 

I said above that we have a choice between dismissing mathematical necessity 
as delusory or justifying it, and that I took the latter road. Not everyone 
agrees. The 'naturalistic' philosophers (Nagel, 1944; Quine, 1953) hold that 
there is no distinction between a priori mathematics and a posteriori science; 
mathematics is just a very abstract branch of science and is as empirical as 
any other branch. I shall discuss the version of the argument in Quine's 
(1953) Two Dogmas of Empiricism, as it is the clearest and most influential 
statement of this view. 

Quine sees knowledge as a system of interconnected statements with a 
truth value assigned to each. The assignment of truth values over the whole 
system is likened to a field of force, with experimental experience serving 
as the boundary conditions. At the periphery of the field are observational 
statements like 'the reading on this dial is 15.62 volts', which refer more or 
less directly to particular experiences. In from the periphery are everyday 
facts and general knowledge, such as 'glass is brittle' and 'copper conducts 
electricity', which are less specific in their application. Even further in are 
the laws of physics, then mathematics, and finally, at the very centre, logic. 
From this system of knowledge we derive experimental predictions, and if 
a prediction is falsified then we 'reevaluate' (that is, change the truth values 
of) some relevant statements. 

But the total field is so underdetennined by its boundary conditions, experience. that there is 

much latitude of choice as to what statements to reevaluate in the light of any single contrary 
experience. (ibid.) 
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So we could say that we have misread a dial (thus reevaluating a peripheral 
statement), or that the experiment was conducted wrongly (thus reevaluating 
some 'everyday facts'), or that a law of physics has been refuted; we could 
even revise our mathematics or our logic. Thus any experiment tests our 
knowledge as a whole: no individual statement can be tested in isolation, 
even the most down-to-earth observational statement. 

We nearly always prefer to revise peripheral parts of our knowledge rather 
than central parts, and so logic and mathematics are almost immune from 
revision, being insulated by thick layers of physical theory. However, cir
cumstances could arise in which we would prefer to alter a single axiom 
of set theory or law of logic in response to an experiment rather than make 
a large number of ad hoc alterations in physics, everyday knowledge and 
observations. For example, we might adopt a 'quantum logic' in order to 
simplify the presentation of quantum mechanics. Simplicity and minimal 
disruption are our guiding principles in revising our knowledge. 

The edge of the system must be kept squared with experience; the rest, with all its elaborate 
myths or fictions, has as its objective the simplicity oflaws. (ibid.) 

It follows that there is no sharp division between empirical science and a 
priori mathematics and logic. 

There is a problem here of how statements make contact with experience. 
If some statements were purely observational records of 'sense data' then they 
could be individually refuted when the sense data did not occur as expected. 
Quine, like most modem empiricists, does not accept such pure observational 
statements: no individual statement (and hence presumably no finite set of 
statements) can be tested in isolation. This leaves it unclear how the whole 
system can ever be said to be incompatible with experience. However, 
this is a problem for empiricists generally and is irrelevant to Quine's main 
point, which is to undermine logical necessity. So I shall simply assume, in 
accordance with Quine's evident intentions, that some theories are compatible 
with given experiments and others are not, and that this compatibility relation 
conforms to normal scientific practice for confirming and refuting theories. 

There is one very puzzling feature of Quine'S account. Logical relations 
between statements are represented in two ways: as connections between 
statements and as statements in their own right. 

Reevaluation of some statements entails reevaluation of others, because of their logical inter

connections - the logical laws being in tum simply certain further statements of the system, 
certain further elements of the field. (ibid.) 

Thus, if A implies B then this is represented as an 'interconnection' between 
A and B, but also as a statement, A :J B, assigned the value true. (,Whatever 
Logic is good enough to tell me is worth writing down', said the Tortoise 
(Carroll, 1895), from whom I am borrowing the argument that follows.) Now, 
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are we allowed to assign the truth values true, true, false to the statements 
A, A :::) B, B, respectively? If the answer is yes, then evidently we are 
at liberty to sprinkle truth values at random, and we can accommodate any 
experimental results without revising physics, mathematics or logic, contrary 
to Quine's clear intention. If, however, the answer is no, then Modus Ponens 
is a necessary logical truth, again contrary to intention since he rejects any 
notion of logical necessity. 

Quine may reply that individual statements are meaningless in isolation; 
only entire theories can be said to be correct or incorrect: 'our statements 
about the external world face the tribunal of sense experience not individually 
but only as a corporate body'. So let us restate the Tortoise's argument in 
holistic terms. Let A and B be two mathematical statements such that, in our 
present system of knowledge, T, the statements A, A :::) Band B are assigned 
the values true, false and false, respectively. Let T' be a system just like T 
except that A :::) B is assigned the value true. Now, is T' any worse than T? It 
seems that T and T' are compatible with the same experiences. It is hard to 
be sure of this, in the absence of any account of how theories are supposed to 
be tested against experiment, but assuming it is not too different from normal 
scientific practice I can appeal to two arguments. The first is that A :::) B can 
only playa role in experimental prediction via A and B, and hence since T 
and T' agree on A and B the disagreement on A ::=> B can have no empirical 
consequences. The second is that since A :::) B is a mathematical statement it 
can only affect empirical predictions via physical statements; since T and T' 
agree on all of these then once again the disagreement on A :::) B is insulated 
from experience. 

If so, then we have no empirical grounds for preferring T to T'. When 
two theories account for all experimental results equally well then scientists 
prefer the one that is simplest or most elegant. But this does not help us here. 
T and T' are equally simple, and in any case the statement that T is more 
simple or more elegant than T' must lie outside science (otherwise T and T' 
could each contain a statement asserting 'I am the simplest and most elegant 
system!'). This statement, if true, is also a priori, since, as we have seen, 
isolated statements are not subject to empirical tests. 

Is there some coherence or consistency requirement that renders T' im
mediately unacceptable? The answer is no. The only thing wrong with T' 
is that it violates the law of Modus Ponens (which is contained in both T 
and T'). But unfortunately this violation is only apparent to us by standing 
outside both systems and applying ordinary logic. According to T' there 
is no conflict between asserting Modus Ponens and asserting that, for these 
particular statements, A and A :::) B are true and B is false. 

Therefore there are no grounds for preferring T to T'. Returning to the 
force field analogy, the field is not merely underdetermined by its boundary 
conditions but wholly indeterminate. This is because there are boundary 
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conditions but no field equation. 
Quine's theory of knowledge fails because it is a game with no rules. 

Some statements must be necessary if any are to be usable in inference. 
Modus Ponens is necessary because it simply recapitulates the purpose for 
which we introduced the ':::)' symbol: we decided to say 'A:::) B' as a way 
of expressing the circumstance that we can infer B from A. The necessity 
is not legislated by God, nor is it a symbol-reciting habit drummed into us 
at an early age. We are perfectly free to change the usages of the symbols 
'V' and ':::)', taking them to mean 'apple' and 'orange', perhaps, or to mean 
the operators of so-called 'quantum logic', and this would lead us to revise 
statements involving these symbols; but except in this superficial sense these 
statements are not liable to revision. Their necessity comes from the fact that 
when weuriaefstaIlG-a statement our understanding includes a recall of how 
we intended to use the notation in it, and this obliges us to accept certain 
statements as consequences of our intentions; for example, understanding an 
axiom schema involves being able to see which formulae are instances of it, 
even though those formulae were not explicitly considered when the axiom 
schema was adopted. 

Quine spends much of his paper arguing that no informative account can 
be given of this notion of logical necessity. This is true, but it is not the 
fault of logical necessity; the desired explanation would be a byproduct of 
any workable theory of meaning. Unfortunately we do not have a workable 
theory of meaning. We all accept that some statements are meaningful; we 
are all reluctant to analyse this fact by saying that there are metaphysical 
entities called meanings that these statements possess; most of us are wary 
of reducing meaning to the observable behaviour of the language-user; and 
we have no other analysis to offer. So for the time being we must simply 
accept meaningfulness, and its corollary necessity, as primitive properties of 
statements that we recognise on a case-by-case basis. 

CONCLUSION 

I have stated the central problem in the philosophy of mathematics (or, at 
least, an instance of it), and used it to reject a number of philosophical 
positions and to characterise my own position as logicist. The instance of the 
problem was 

• Explain and justify the shepherd's counting procedure. 

and the problem in general is 

• What does mathematics mean and how can we know for sure that it is 
true? 
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Other questions associated with mathematics are subsidiary or irrelevant. 
The psychology and sociology of mathematics are irrelevant. A relevant but 
subsidiary question is that of ontology: do so-called 'mathematical objects' 
really exist, and what does existence mean anyway? is there a special kind of 
existence for mathematical objects different from that for physical objects? 
I do not mind how these questions are answered, nor even whether they are 
answered at all, provided we end up with an account that tells the shepherd 
whether he needs to look for lost sheep or not. Counting sheep is an arithmetic 
problem; and I anticipate that any account of mathematics that is adequate for 
arithmetic will extend comparatively easily to other branches of mathematics, 
or will reveal those branches to be philosophically unsound. 



CHAPTER 2 

WHAT'S WRONG WITH SET THEORY? 

I have posed the fundamental question in the philosophy of mathematics 
as 'what does mathematics mean and how can we know for sure that it is 
true?' Before developing my answer to this question, I must explain why I 
do not accept the orthodox answer, namely that mathematics is the study of 
sets and that our knowledge of mathematics is derived from our set-theoretic 
intuition using classical logic. In this chapter I shall argue that 'set-theoretic 
intuition', as formalised in the Zermelo-Fraenkel axioms with the axiom of 
choice (ZFC), is conceptually incoherent. In the following chapter I shall 
argue that infinite quantifiers, the distinctive feature of classical logic, are 
meaningless. 

The naive notion of 'set', as it arose in the nineteenth century, contained 
a mixture of informal ideas; but principally sets were seen as being like 
properties except that they were extensional. Thus, to say that an element 
belonged to a set was simply to say that it satisfied the corresponding property, 
and to say that two sets were equal was to say that two properties were 
equivalent. 

This was why the Zermelo-Russell paradox came as a shock. It was not 
merely an unexpected discovery about sets; it cast doubt on the whole notion 
of set. The founders of modem set theory, however, missed this point. They 
merely concluded that evidently not all properties have sets as their extension, 
and they launched an inquiry into the question 'What sets are there?'. But this 
question has no meaning until we establish what the word 'set' means; we 
might just as well ask 'What xlgjphts are there?'. If sets are no longer to be 
understood in terms of properties then we need to find an alternative meaning 
before we can meaningfully ask what sets exist. It is no use appealing to 
'set-theoretic intuition' before the word 'set' has been given a meaning; we 
might just as well appeal to 'xlgjpht-theoretic intuition'. 

An example of what I am complaining about is Quine (1969), who (on 
page 1) proclaims that 'Sets are classes', explains a class as the extension of 
an open sentence, rejects any notion that sets are collections (in the sense 
I explain below), then on page 2 reveals that classes aren't extensions of 
open sentences after all, and then gets distracted into a purely terminological 
discussion of the words 'set' and 'class'. So now we know two things that 
sets/classes are not, but have no inkling of what they are. Thus Quine is in 
no position to pose the problem (page 3) of 'what open sentences to view 
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as determining classes; or, if I may venture the realistic idiom, what classes 
there are', the question that dominates the rest of the book. 

Quine is here following the tradition in set theory that ignores meaning 
altogether and simply posits axioms that it is hoped sets might satisfy. This 
has led to the ZFC system of axioms which is widely accepted today. This 
attitude of 'postulate first and ask questions later' is perfectly sound as a 
heuristic method, provided one remembers to ask the questions. As with any 
heuristic procedure the results have to be justified case-by-case on their own 
merits. In this case the question to ask is: do we arrive at a unique, intuitively 
adequate list of axioms that sharpens our understanding of the notion being 
axiomatised, or does the exercise peter out in an arbitrary and complicated 
mess? The Peano axioms are an example of successful axiomatisation: the 
axioms articulate all the aspects of natural numbers implicit in the informal 
notion of applying successor repeatedly to O. The ZFC axioms, on the other 
hand, are an example of the opposite; the clumsiness, arbitrariness and lack 
of intuitive completeness in the axioms indicate what a mixture of conflicting 
and poorly articulated ideas underlie the use of the word 'set'. Set theorists do 
not see it this way, because they assume that 'set' has a pre-ordained meaning 
and regard themselves as engaged on a purely factual enquiry into the shape 
and size of the set-theoretic universe. 

The primary question, following the paradoxes, should be 'what do we 
mean by "set"?', and the answer should be not a list of axioms about what 
sets exist but an explanation of the informal ideas underlying our various 
uses of the word. There are, in fact, several incompatible notions of set. The 
following list attempts to summarise all the ways in which sets have been 
construed or justified since Cantor: 

(1) sets as consistent multiplicities or multiplicities considered as unities; 
(2) sets as collections; 
(3) sets as classes, in the sense of extensionalised properties; 
(4) the limitation of size view; 
(5) the iterative conception of sets; 
(6) sets as an extrapolation from finite sets of physical objects; 
(7) sets obtained by a transition from potential to actual infinity. 

I shall discuss each of these in tum, indicate how each motivates some but not 
all of the ZFC axioms, and state objections to the use of each as a foundation 
for ZFC. Finally I shall comment on their incompatibility. 

ZFC is, of course, not the only axiomatic system for set theory; however, 
all the axiomatisations draw on much the same mix of ideas, and nearly all of 
what I have to say about ZFC applies to nearly all the other systems. Hence 
I shall only discuss ZFC and shaH-regard a refutation of ZFC as a refutation 
of platonist set theory in general. 
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(1) MULTIPLICITIES CONSIDERED AS UNITIES. 

One of Cantor's later definitions of 'set' was as a consistent multiplicity. 

For a multiplicity can be such that the assumption that all of its elements 'are together' leads to 

a contradiction, so that it is impossible to conceive of the multiplicity as a unity, as one 'finished 

thing'. Such multiplicities I call absolutely infinite or inconsistent multiplicities. '" If on the 

other hand the totality of the elements of a multiplicity can be thought of without contradiction 

as 'being together', so that they can be gathered together into 'one thing', I call it a consistent 

multiplicity or a 'set'. (Cantor, 1899) 

This view has been widely accepted by later set theorists. It motivates a 
restriction of the comprehension principle to avoid the paradoxes, but does 
not explain the ZFC axioms in detail. Any other set theory that successfully 
avoids the paradoxes has equal claim to be considered an axiomatisation of 
consistent multiplicities. 

There is an obvious objection to this notion. When we speak of a 'multi
plicity' or 'totality of elements' we are using a singular noun phrase and so 
we are already thinking of it as one thing. Thus we cannot coherently say 
that a multiplicity cannot be thought of as a single thing, because when we 
say so we are proving ourselves wrong. 

A second objection is that the definition assumes a pre-existing notion of 
multiplicity, and so it fails to prevent someone from saying, since sets are so 
tricky, let's found mathematics on multiplicity theory instead of set theory! 
'Multiplicity theory' leads immediately to the Zermelo-Russell paradox, so 
the notion of multiplicity must be incoherent. If you define something in 
terms of an incoherent notion then the definition is unsuccessful. Inserting 
the qualification 'consistent' does not patch it up; qualified nonsense is still 
nonsense. 

The whole formulation of the definition seems clumsy. Multiplicities 
cannot be 'consisteftt' or 'inconsistent': only theories can be. If positing a 
multiplicity leads to a contradiction then that does not mean that the multi
plicity has the exotic property of inconsistency - it means that there is no 
such multiplicity. One wants to reformulate the definition as follows: there 
is a set satisfying a certain specification iff it is consistent to assume so. 

Defining existence in terms of consistency is an odd position for platonists 
to take. Platonists think of the mathematical universe as independent of our 
apprehension of it; they trust that their modes of reasoning are sound but they 
do not usually expect them to be complete. If the positing of a set leads to a 
contradiction then we can all agree that the set does not exist, but platonists 
should not expect that we can refute the existence of every set that doesn't 
exist, any more than we can discover every set that does. Quite apart from 
platonism, the proposal that existence equals consistency is logically unsafe. 
Suppose we have two multiplicities, A and B, whose definitions are so related 
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that it is consistent to assume that A exists or that B exists, but not consistent 
to assume that both exist (analogous to an irresistible force and an immovable 
object). Then each set is a consistent multiplicity, so both sets exist, which 
leads to a contradiction. Quine (1969, p. 37) gives an example of something 
along these lines. 

(2) SETS AS COLLECTIONS 

By a collection I mean the result of collecting things, for example a heap 
of sand or a stamp collection. It is immediately clear that collections differ 
in many important respects from ZFC sets. First, a collection is not usually 
distinguished from its members: for example to fetch a pair of slippers is to 
fetch the slippers themselves, not to fetch a third object, the 'pair'. As Frege 
says, 'If we bum down all the trees of a wood, we thereby bum down the 
wood' (Geach & Black, 1970, p. 89). A singleton collection is the same as 
its single member (if it is accepted as a collection at all). Secondly, there 
is no empty collection: a stamp collection with no stamps is no collection. 
Thirdly, a collection is created by gathering its members into one place and 
destroyed by dispersing its members; what does this mean when the members 
are not located in space and time? (Chihara (1989) argues similarly about 
heaps.) 

Collections are so unlike sets that it is surprising to find set theorists 
attempting to construe sets as collections. One of Cantor's definitions reads: 

By a 'set' we mean any collection M into a whole of definite, distinct objects m (which are called 

the 'elements' of M) of our perception or of our thought. (Cantor, 1895; translation quoted in 

Dauben, 1979,p. 170) 

There is clearly a notion here of collecting objects, but it is not explained 
how one goes about collecting objects of perception or thought. How do we 
locate, grab hold of, carry to one place, and deposit in a heap, such 'objects'? 
Must we fetch them one at a time, or can we bring them in mental handfuls? 
What aspects of the 'collection' notion are metaphorical, and how does the 
metaphor serve to illuminate set-formation? In a similar vein, Tharp (1989) 
derives the notion of set from 'heaps' and 'agglomerations', and Maddy (1990) 
regards set theory as based on collections of physical objects; thus a set is 
located where its elements are, and is created or destroyed when its elements 
are. Pressed by Chihara (1982) to explain the distinction between a singleton 
set and its element Maddy suggests identifying the two when the element is 
a physical object (considered as a single thing), and also dispensing with the 
empty set and pure sets. This doesn't really answer Chihara, as he could still 
ask what the difference is between {a, b}, {{a, b}}, {{{a, b} }}, ... , where 
a and b are two physical objects. However, this does show that Maddy's sets 
are more like collections than like ZFC sets. 
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GOdel (1944) is also prepared to treat the empty set and the distinction 
between {x} and x as 'fictions' if necessary, 'introduced to simplify the 
calculus like points at infinity in geometry'. This seems a questionable 
analogy. We accept points at infinity without qualms, not due to any syntactic 
consistency proof but due to a representation of the projective plane as the 
system of rays in three-dimensional space: on this view points at infinity are 
simply rays like any other and their presence is natural and inevitable. To 
apply a similar device to set theory would require interpreting it in a more 
fundamental system (or in itself in a different way) and so would deprive it 
of its position as the foundation of all mathematics. 

This half-heartedness about the empty set goes back to Zermelo (1908), 
whose second axiom says: 'There exists a (fictitious) set, the null set, 0, that 
contains no element at all'. To say that the empty set is fictitious is to say that 
there is no empty set; then why propose as an axiom that there is? I suspect 
that the intention is that the formal expression 'there exists' or '3' is not to 
be interpreted literally: thus 3x\fy y rt x is taken as true even though there 
is not really any such x. If this reading is correct then set theorists owe us 
an explanation of the real meaning of 'there exists'; if not then they owe us 
a clear ruling on whether there is an empty set or not, and an axiom system 
that reflects this decision. 

The confusion on this point indicates how strongly set theorists are at
tracted to the idea of sets as collections, despite the consequences for their 
axioms. 

(3) SETS AS CLASSES 

By a class I mean the extension of a property. This may be interpreted in 
two ways: either that for every property there is an associated object called 
its extension, or that when talking about classes we are really talking about 
properties but we are restricting ourselves to use them only extensionally. 
Either way, classes are explained in terms of properties and every property 
automatically defines a class. 

Viewing sets as classes motivates the existence of the empty set, the 
distinction between a singleton set and its member, the axiom of founda
tion (corresponding to the well-foundedness of definitions), and unrestricted 
comprehension. The position as regards the axiom of choice is debatable. 
Cantor's first definition of sets took them to be classes. 

I call an aggregate (a collection, a set) of elements which belong to any domain of concepts 

well-defined, if it must be regarded as internally determined on the basis of its definition and in 

consequence of the logical principle of the excluded middle. It must also be internally determined 

whether any object belonging to the same domain of concepts belongs to the aggregate in question 

as an element or not, and whether two objects belonging to the set, despite formal differences, 

are equal to one another or not. (Cantor, 1882; translation quoted in Dauben, 1979, p. 83) 
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The class interpretation is nowadays usually rejected on account of the 
Zermelo-Russell paradox. This seems to me a strange reaction. The paradox 
does not depend on extensionality; an intensional version ('the property of 
a property's not satisfying itself') may be formulated equally easily. The 
natural response is not 'here is a property with no corresponding set' but 
rather 'here is an apparent property that turns out on examination to be inco
herent'. Similar remarks apply to the Burali-Forti paradox. This strengthens 
the case for interpreting sets as classes: sets and properties suffer from the 
same diseases, so it is natural to suppose that one caught the infectiori from 
the other; and the natural cure is to argue that 'not satisfying oneself' is not a 
legitimate property. However, what is truly paradoxical about the paradoxes 
is that they were universally taken as proving the opposite, that sets could not 
be classes. The official position now is that it is afactual question whether 
for a given property there is a set containing all and only the things possessing 
the property. This implies that sets are understood in some way independent 
of properties, and hence not as classes. 

Yet the class interpretation maintains a ghostly presence. It is the historical 
origin of the concept of set and it accounts for more of the ZFC axioms than 
any other interpretation. When teaching set theory we find it impossible to 
convey to students the point of the empty set and the distinction between x 
and {x} except using the class interpretation. If the students go on to become 
set theorists they are told that the class interpretation is mistaken, but they 
are expected to go on believing by inertia that 0 exists and that x f. {x} . 
Ontogeny recapitulates phylogeny in set theory, if not in biology. 

(4) LIMITATION OF SIZE 

The most distinctive feature of Cantor's view of the mathematical universe 
(compared, say, with Frege's, Russell's or Brouwer's) is his notion of limita
tion of size. On this view, what distinguishes a legitimate mathematical object 
from an illegitimate one is that the latter has too many elements, as measured 
by one-to-one correspondences. This distinction between transfinite (not 
too big) and absolutely infinite (too big) is analogous to a constructivist's 
distinction between finite and infinite. 

This view clearly motivates the axioms of pairing, separation and replace
ment, and perhaps also the axiom of choice, but not, for example, the axiom 
of foundation. 

I have three objections. First, why is size the important factor? If someone 
develops an alternative set theory that admits a universal set but excludes other 
sets in such a way as to avoid the paradoxes while being adequate for ordinary 
mathematics (Quine's (1937) 'New Foundations', for example), why is this 
a philosophical mistake? No explanation has been provided on this point 
(leaving aside Cantor's association of absolute infinity with God (Hallett, 
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1984, §1.1». 
The second objection is that we are not told how big is too big. In 

particular, it would be possible to adhere to this view and deny the power
set axiom (Hallett, 1984, §5.1). Imagine two set theorists arguing about 
the admissibility of a large-cardinal axiom, with one taking a larger view 
of the set universe than the other. What rational grounds are available for 
settling the dispute, assuming the axiom is independent of ZFC? Would it be 
acceptable to say that they have different concepts of 'set', or must we say 
that one is right and the other wrong? The problem is complicated by the fact 
that size is measured by one-to-one correspondences, which are themselves 
sets, and hence their existence is also under dispute. My complaint here is 
not merely that there is no decision procedure but rather that there are no truth 
conditions. If there is one legitimate concept of set, on this interpretation, 
then there must be many, obtained by restricting the size of sets in various 
ways. So the limitation of size idea cannot pinpoint a unique meaning for 
'set'. 

A third objection is that the only reason we have for believing in more 
than one infinite cardinality is Cantor's diagonal argument; without this we 
would probably assume that all infinite sets are countable. It bothers me that 
some diagonal arguments are classified as paradoxes and others are accepted 
as genuine theorems, simply according to whether they lead immediately to 
a contradiction. This is a little like classifying one's burglaries as criminal 
or non-criminal according to whether one is arrested at the scene. If we 
had decided that the mathematical universe is countable (a plausible view 
on the class interpretation) before discovering Cantor's diagonal argument, 
we might well stick to our opinion and dismiss the diagonal argument as a 
paradox. 

(5) THE ITERATIVE CONCEPTION OF SETS 

A picture of sets that many find attractive is that they are formed by transfinite 
iteration of the power-set operation. The set universe is arranged in layers, 
indexed by the ordinals; each layer consists of all subsets of the union of all 
previous layers. GOdel (1964), for example, explains sets in this way: he 
says that a set is something obtainable by transfinite iteration of the operation 
'set of', starting from basic objects such as the integers. 

As a descriptive account this is quite illuminating: it combines the pair
ing, union, power-set, separation and foundation axioms mto a single picture. 
However, it is little use as an explanation of what sets are. The notion of trans
finite iteration is mysterious: as Brouwer (1907, pp. 145-146) complains, 
the transfinite notion of 'and so on' is not repetition of the same thing, as the 
finite 'and so on' is, and thus the transfinite notion is ill-defined. The iterative 
picture presupposes the ordinals; it explains nothing about the impredicative 
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notion of 'all subsets'; and its quasi-constructive style is hypocritical. Maddy 
(1990, p. 102) comments: 

Of course, the temporal and constructive imagery is only metaphorical; sets are understood as 

objective entities, existing in their own right. 

Yet it is just this imagery that accounts for the appeal of the iterative concep
tion. If constructive imagery is attractive, why not become a constructivist? 
Hallett (1984, §6.2b) argues that on any constructivist view, even one that 
grants us infinitistic powers of construction, the impredicativity in the separa
tion and replacement axioms cannot be justified. But if constructive imagery 
is firmly rejected then we lose our picture of the shape of the universe of sets: 
why, for example, should the set universe be populated in such a way that for 
every set there is another set that is its power set? 

(6) EXTRAPOLATION FROM FINITE SETS OF PHYSICAL OBJECTS 

Tharp (1989) and Maddy (1990) both propose that set theory is obtained by 
extrapolation from our everyday experience with small finite sets of physical 
objects (such as pairs of shoes and collections of pairs of shoes). The everyday 
sets can all be specified by enumeration or by a rule of membership, but we 
extrapolate from these to infinite sets not necessarily defined by a rule. The 
properties of sets in general are obtained by extrapolation from those of finite 
sets. For example, we know in the case of finite sets that the union of a finite 
set of finite sets is finite and that any finite set has finitely many subsets; if one 
replaces the word 'finite' by 'transfinite' one obtains the union and power-set 
axioms. This seems to be the main motivation for these two axioms. 

I have problems with this notion of 'extrapolation' of meaning. Unlike the 
notions of abstraction and idealisation, which I shall expound in Chapter 4, 
extrapolation is an obscure technique. Tharp and Maddy both introduce the 
word 'set' using enumerations or rules of membership but go on to say that 
neither is essential to the concept: 'any way of picking out elements gives 
a set', but sets need not be 'given individually by particular specifications' 
(Tharp, 1989). Is there a difference between a way of picking out elements 
and a particular specification? Or is he saying that ways of picking out 
elements only give some of the sets? If so then how are the other sets to be 
understood? Maddy is equally puzzling. 

Carrying this notion [iterative formation of finite sets] into the infinite, subcollections are 
'combinatorially' determined, one for each possible way of selecting elements, regardless of 
whether there is a specifiable rule for these selections. (Maddy, 1990, p. 102) 

What is the difference between a way and a rule? Surely a rule is simply 
anything that determines which elements to include, and any 'possible way 
of selecting elements' accomplishes this and so qualifies as a rule. 
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Perhaps the idea is that rules must be expressed in language, while ways 
need not be; ways could thus involve quantum systems or free choices. But 
such a distinction is unconvincing, since we can introduce names for any 
physical system or free agent and so incorporate their activity into rules. 
In this way we can formulate undecidable, unpredictable or senseless rules. 
(E.g., School Rule No.1 is 'Whatever the Headmaster says, goes', where the 
Headmaster's decisions may be wholly arbitrary.) 

It is surely not intended that rules are things expressible in some fixed 
formal language while ways are expressible in any terms, since this would 
rob the distinction of philosophical significance. 

The method of extrapolation leaves us with no notion of what sets in 
general are, and thus in extrapolating their properties we are forced to rely 
on trial and error. Any property that holds for all finite physical sets we posit 
for all sets, except where this leads to a contradiction. Some properties have 
to be accepted as being peculiar to finite sets, such as not being in one-to-one 
correspondence with a proper subset of oneself, or only being well-orderable 
with one order-type. 

This way of introducing infinite sets is really no better than saying, 'Con
sider cats: we meet them in our everyday lives and are familiar with their 
properties. Now, all the everyday ones are/eline, but we can extrapolate away 
from their felineness to obtain a realm of higher, non-feline cats. Higher cats 
share many properties with their familiar feline brethren. For example, you 
can still stroke them - or at least, most cat-lovers think so, on the grounds 
that we like stroking cats and it seems to lead to no harm.' 

My objections, then, are to the vagueness of the technique of extrapolation 
(leading to doubts about which properties of everyday sets carry over to all 
sets), and the fact that we seem to be extrapolating away from the only thing 
that gave us a handle on the concept in the first place (namely, the enumeration 
or rule of membership). 

(7) SETS FROM POTENTIAL INFINITIES 

One argument used by Cantor to justify the existence of infinite sets went as 
follows. Everyone, even a constructivist such as Kronecker who claims to 
reject infinite sets, finds it necessary to speak of arbitrary finite numbers (for 
example, 'for any arbitrarily large number N there exists a number n > N'). 
This presupposes the existence of all numbers n > N, taken as a whole, and 
this is just what is meant by an infinite set. 

Thus every potential infinity (the wandering limit) leads to a Transfinitum (the sure path for 
wandering), and cannot be thought of without the latter. (Cantor, 1887-8; translation quoted in 

Dauben, 1979,p. 127) 

This claim that potential infinity presupposes actual infinity is a popular ploy 
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amongst defenders of classical logic. Hallett (1984, Part I, Introduction) 
refers to it as Cantor's 'domain principle' and identifies it as one of Cantor's 
three key principles. I shall argue in the next chapter that, on the contrary, 
actual infinity is ill-defined and that there is an independently understood 
notion of potential infinity. However, in the present context there is a much 
easier way of defeating the argument. This is to point out that set theorists 
regard the set universe in much the same way that Kror.ecker regards the 
natural numbers. Set theorists do not accept the universe of sets as a legitimate 
mathematical object, and yet they allow themselves to quantify over all 
sets, assuming without question that classical logic applies to unbounded set 
quantifiers (see Mayberry (1977) for a dissenting view, however). They are 
therefore in a worse position to reject the set of sets than Kronecker is to 
reject the set of natural numbers. 

This argument is essentially Dummett's (1991, Chapter 24), who states 
it in the following form: if we can overcome our initial prejudice against 
speaking of the 'number of all natural numbers', by telling ourselves that 
anything has a number even if we cannot count it, how can we be prevented 
from asking how many transfinite cardinals there are? Merely to cite the 
paradoxes is 'to wield the big stick, not to offer an explanation'. 

SUMMING UP 

This completes my list of the various ways of construing sets. Most of them 
are due to Cantor. For example, the definition 

By an 'aggregate' or 'set' I mean generally any multitude which can be thought of as a whole, 

i.e., any collection of definite elements which can be united by a law into a whole. (Cantor, 
1883, p. 204; translation quoted in Dauben, 1979, p. 170.) 

seems to combine the multiplicity-as-unity view, the collection view and the 
class view. ZFC is a strange hybrid of quasi-constructive and impredicative 
features. The quasi-constructive features show up in the axioms that say 'for 
any x there is a y such that ... ': it is hard to resist the notion that y is con
structed from x, and if we succeeded in purging our minds of this notion the 
intuitive persuasiveness of the axioms would be lost (why should the x's and 
y's be related in this way?). The impredicative features are the unbounded 
quantifiers (assumed to satisfy classical logic) and the replacement and sepa
ration axiom schemata, which can be instantiated with arbitrary formulae. It 
is hard to imagine a philosopher who could believe in all the axioms at once. 

ZFC also seems most ill-adapted to serving as a basis for the rest of math
ematics. In one sense the ZFC set universe is disconcertingly big: all tradi
tional branches of mathematics are concerned exclusively with one minute 
comer of it. Admittedly, twentieth-century platonists have on rare occasions 
found that axioms about large cardinals have consequences for the highly 
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impredicative properties of sets of reals, but they have been singularly unsuc
cessful in developing a distinctive mathematical theory for, say, the N37 'th 
level of the cumulative hierarchy, to place alongside the existing theories of 
the natural numbers, the real numbers, and the real functions. One cannot 
avoid the impression that nearly all of the set universe is mathematically 
useless. 

In another sense the set universe is too small. Many modem branches 
of mathematics are concerned with arbitrary structures, not necessarily sets, 
satisfying certain axioms. For example, group theory applies to any realisa
tion ofthe group axioms, even one involving proper classes. To interpret 'for 
any group' as 'for any set that satisfies the group axioms' is therefore to limit 
the application of group theory artificially. 

It is depressing to read Frege's (1893, §O) criticism of Dedekind's and 
Shrader's notions of set and reflect on how little conceptual clarification 
has taken place in the hundred years since. All my complaints against set 
theory may be summed up in a single charge, one of axiom hacking, that 
is, tinkering with formal systems without proper attention to the underlying 
informal ideas. 



CHAPTER 3 

WHAT'S WRONG WITH INFINITE QUANTIFIERS? 

POTENTIAL AND ACTUAL INFINITY 

The foundation stones of platonist mathematics are the infinite quantifiers, V 
and 3, regarded straightforwardly as infinite conjunction and infinite disjunc
tion. For example, Goldbach's conjecture (that every even number greater 
than 2 is the sum of two primes) is understood as an infinite conjunction '4 is 
the sum of two primes and 6 is the sum of two primes and 8 is the sum of two 
primes and ... '. Wright (1980, I, §7) quotes this example and asks, since 
we understand the decidable predicate 'is the sum of two primes', the binary 
operation 'and', and the sequence of even numbers (which we can effectively 
enumerate), how can we possibly doubt that Goldbach's conjecture is a mean
ingful proposition? The answer is obvious: the dubious part is the three dots 
, ... '. I shall spend this chapter examining these strange punctuation marks. 
They can be understood in two ways, traditionally called 'potential infinity' 
and 'actual infinity'. 'Actual infinity' means viewing the quantifiers as in
finitary analogues of conjunction and disjunction: I shall argue that this is 
meaningless. 'Potential infinity' means viewing the quantifiers, and all other 
apparent references to infinities, in terms of the counting algorithm and other 
computational procedures: I shall defend this basic notion of computation 
against Wittgenstein. 

QUANTIFIERS AS INFINITE CONJUNCTION AND DISJUNCTION 

The case for construing universal quantification as infinite conjunction seems 
to be something like the following. 

If we have two propositions, A and B, it is clear what it means to say that both are true; we write 

this as A 1\ B. This generalises effortlessly to the case of more than two propositions, where 

we write AI 1\ A2 1\ .•. 1\ An. In fact, for any collection of propositions it makes sense to ask 

whether all of them hold; it is irrelevant whether there are finitely or infinitely many propositions. 

Imagine, for example, one truth value associated with every point on a line segment; imagine 

that each point holds up a flag if the value there is false, and not if the value is true; then one can 

imagine looking at the line segment and seeing if any flag is raised. This notion makes sense 

even though one cannot run through all the truth values one by one at a bounded speed in finite 

time. A similar argument applies to existential quantification. Other visualisations are possible: 

see for example Benacerraf & Putnam (1964, p. 17). 

24 
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To help gauge the strength of this argument, compare it with the following 
one, obtained by substituting sums for conjunctions. 

If we have two quantities, x and y, it is clear what it means to talk of the sum of the two; we 

write this as x + y. This generalises effortlessly to the case of more than two quantities, where 

we write Xl + X2 + ... + Xn. In fact, for any collection of quantities it makes sense to speak of the 

total or sum of them all; it is irrelevant whether there are finitely or infinitely many quantities. 

The sum is either a finite number or infinity. Imagine, for example, each quantity represented as 

a line segment; imagine lining up all the segments end to end; then the result must either stretch 

to infinity or stop at a certain point; in either case this gives us the sum of the quantities. This 

notion makes sense even though one cannot line up all the segments one by one at a bounded 

speed in finite time. 

Infinite sums, of course, are not generally accepted in this straightforward way 
by mathematicians, on account of paradoxical sums like 1- ~ + t - ! + ~ - .. " 
which can be made to sum to any real number or to diverge by rearranging 
the terms suitably. This, however, is an accident of history. Suppose we had 
invented infinite series before negative numbers. Then we would probably 
have found the above argument for infinite totals highly persuasive. No 
obvious contradiction would arise from accepting it, and when negative 
numbers were finally proposed we would regard them, not infinite totals, as 
paradoxical. Only a few philosophical sceptics would insist on explaining 
infinite sums in terms of the sequence of finite partial sums. 

From this comparison between infinite conjunctions and infinite sums 
(first suggested by Hilbert (1925, p. 378)) I draw three conclusions. 

• A commutative and associative binary operation may be extended uni
quely to any finite number of unordered arguments, but it is a fallacy to 
infer by analogy that there is a well-defined infinitary notion. 

• A simple visualisation of the infinitary notion is not sufficient justifica
tion, either. 

• Nor is it sufficient that the assumption of the infinitary notion does not 
lead to a contradiction. 

Even all three conditions together are not sufficient. Thus infinite conjunc
tions need a special argument, showing why the step from finite to infinite 
works for conjunctions but doesn't work for sums. As far as I know, no such 
argument has ever been proposed. It certainly will not do to appeal to the 
everyday use of the word 'all'; one might just as well appeal to the everyday 
use of the word 'total' as a justification for infinite sums. 

THE ARGUMENT FROM NONSTANDARD MODELS 

I hope I have succeeded in casting some doubt on the legitimacy of infinite 
conjunctions and disjunctions. My principal argument, however, will be 
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against the notion of infinite set on which the infinite quantifiers rely; it 
resembles Putnam's (1980) argument, though without his general anti-realist 
perspective. If we are to understand universal quantification over, say, the 
natural numbers as infinite conjunction then the domain of quantification, 
the set of natural numbers N, must be 'grasped' as a well-defined totality of 
some sort. Exactly what an infinite totality is, whether it exists, and how we 
can grasp it given acquaintance with only finitely many of its members, are 
puzzling questions: it is not even clear what is at stake. However, so much 
of our cognitive life is mysterious that I do not dismiss infinite sets on that 
account. 

Instead of asking whether N exists I shall state the question as whether 
we can grasp the concept N, that is, whether the symbol 'N' is meaningful 
when we use it. The reason for formulating the question in this way is that a 
symbol only has the meaning that we give it; it wouldn't do to say that it has 
a meaning that passes our understanding. If we mean nothing when we use 
'N' then it is meaningless and we should stop using it. 

My talk of 'grasping concepts' is not intended as a serious semantic theory; 
that is, it is not intended as the first step in an analysis of what is involved 
in understanding a word or a sentence. It simply follows ordinary English 
usage, which I hope is not too misleading, because I have no better way of 
talking about meaning. I shall assume that 'grasping' is a cognitive relation 
between a thinker and a 'concept' and that it is necessary and sufficient to 
justify the thinker in introducing a name for the concept. It follows that we 
must be able to grasp concepts one at a time, since if we could not grasp A 
without simultaneously grasping B we would be in no position to introduce 
a name denoting A (and not denoting B). However, in the case of N I shall 
assume it is only necessary to grasp it up to isomorphism. 

Arguing by contradiction, suppose we have a clear grasp of N sufficient 
to support our use of the expression 'for all elements of N'. I shall infer a 
contradiction from this assumption. 

The argument turns on the possibility of nonstandard models. It is gen
erally accepted by classical mathematicians that in addition to N there are 
many other sets, called nonstandard models of arithmetic, that satisfy just 
the same propositions of elementary number theory as N but are not isomor
phic to N. (Note that this is not an application of Godel's incompleteness 
theorems: it j" actually a corollary of his completeness theorem.) These 
nonstandard .nodels are usually obtained using ultrafilters, and hence depend 
on the axiom of choice. However, my argument does not depend on whether 
my platonist opponent accepts the axiom of choice; it is sufficient that the 
platonist is unable to rule out the possibility of nonstandard models. Pla
tonists believe that they have a grasp of 'the one true N' as opposed to the 
nonstandard imposters. They regard the non-categoricity of axiom systems 
as a model-theoretic curiosity posing no threat to their philosophical position 
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(Fraenkel, Bar-Hillel & Levy, 1973, V, §5). 
Sceptics have asked, how do platonists know that they grasp the correct N? 

How do they even know that two platonists are talking about the same N, or 
that one platonist is talking about the same N on two occasions? Everything 
they can say to try to distinguish one candidate N from another is true or 
false for them both equally. 

The answer one finds in the textbooks on nonstandard analysis is that 
different models of elementary arithmetic differ in which propositions of 
second-order arithmetic they satisfy; this allows one to distinguish 'the one 
true N' as the one that satisfies induction with respect to all second-order 
formulae. This, however, is no help, for second-order logic depends on a 
'for all subsets of S' quantifier. All the second-order characterisation of N 
shows is that two platonists who have different models of arithmetic also 
have different second-order quantifiers. Second-order quantifiers are even 
more philosophically problematic than N; so to found N on them is to do 
it no favour. Similarly it is no help to define N within the universe of set 
theory: two platonists may have different models of set theory with different 
power-set operations. 

Thus it seems that a platonist's grasp of the correct N cannot be demon
strated by any proposition they affirm about it. Hence it cannot be taught to 
young platonists: it must be innate in the human mind and merely brought 
out by the usual verbal explanations ('0, 1, 2, 3, and so on') which, strictly 
speaking, apply to all models equally. Any mathematical behaviour (count
ing, sums, proving and asserting number-theoretic propositions) is carried 
out identically by a platonist with the correct N as by one with a wrong N. 
Even if, as a matter of fact, we all have the right N, there may someday arise 
a strange mental disease that causes its sufferer to learn the wrong N from 
normal early life-experiences. This distressing condition would remain for
ever undiagnosed as it would lead to no disability; indeed (I claim) it would 
make no difference to what is going on in the sufferer's head. But in fact 
evolution is unlikely to have endowed us with any predisposition to grasp the 
correct N since it has no survival advantage over any other N. Thus it is no 
use postulating a special mental faculty that enables us to grasp the correct N 
(as Putnam (1980) suggests the platonist might). If it is legitimate to imagine 
a person who possesses normal human cognitive abilities plus this special 
faculty then it is also legitimate to imagine someone who possesses normal 
human cognitive abilities plus a pathological version of the special faculty 
that leads them to the wrong N; we have no way of defining what it is for the 
special faculty to be in a healthy or pathological state other than by reference 
to the standard N. 

Now, to some philosophers (such as Putnam), who explain mathematical 
knowledge in terms of linguistic behaviour, social consensus or successful 
application, this wouldj'be conclusive evidence that the distinction between 
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the one true N and the others is meaningless; hence the platonist position, 
that 'N' denotes a distinct set, cannot be accepted literally. The foundation 
for 'for all numbers' on infinite conjunction over N thereby vanishes. I am 
not one of those philosophers, however. If I thought that I had a well-defined 
notion of N then it would not bother me particularly if! could not demonstrate 
its correctness, or even communicate it, to anyone else; moreover, if other 
people have the wrong N then that is their problem. 

The trouble is that I don't think I have such a notion. I do have a well
defined notion of counting; I am confident that however long I count I shall 
always know what comes next, and that when I repeat the counting the 
sequence of numbers generated is always the same, barring errors. This 
does not seem to depend on the distinction between the one true Nand 
the nonstandard models. There comes a point where we have to dismiss 
an alleged distinction as meaningless; the point comes when (i) we cannot 
explain the distinction in terms of anything more basic and (ii) we can 
understand the subject perfectly well without it. That point has been reached 
here: there is no notion of standardness for elementarily equivalent models 
of arithmetic. But, as remarked above, to grasp a concept we must be able 
to grasp it in isolation from other concepts. Hence we cannot grasp N. This 
contradicts the initial assumption that we could grasp N. The contradiction 
establishes that we cannot grasp N. 

Note that this argument only applies to mathematical infinities and does 
not rule out the possibility of physical infinities. The reason for the difference 
is that the purposes of mathematical and physical theories are very different. 
A physical theory is intended to account for our sensory experience and 
is judged successful if it provides a simple explanation of a large body of 
sensory data and correct predictions of future experiences. We would be 
justified in believing in an infinity of stars if that led to the best available 
explanation of the observed value of Hubble's constant, say. The notion of 
'the infinite collection of stars' could playa well-defined role in a successful 
physical theory, which is the most that one can ask from any physical concept. 
Mathematical concepts cannot be justified in the same way: we demand more 
from N than that it playa well-defined role in Peano Arithmetic. Thus Tait's 
(1986, §3) objection that arguments against mathematical infinity such as 
mine can be applied equally well to the physical world is mistaken. 

There are several weak counter-arguments the platonist may resort to. 
One is to say that number theory refers indifferently to all models, so there 
is no need to distinguish one as 'the one true N'. Goldbach's conjecture, for 
example, is true in all models or false in all models. However, on this view, 
what reason is there to think that there are any models of the appropriate sort? 
And how are we to distinguish these models from similar N -like structures 
in which Goldbach's conjecture has the opposite truth value? In any case, 
the very notion of infinite set is undermined if it is conceded that we are 
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incapable of grasping any single set. 
A second possible counter-argument is that, although admittedly we can

not distinguish the one true N by formal propositions we may still do so by 
informal explanation. But this will carry no weight unless the informal expla
nation is actually given. It certainly won't do to say 'N contains everything 
you can count up to and nothing else'. 

The effect of my nonstandard models argument is to reinforce the tra
ditional distinction between 'potential infinity' (counting and other iterative 
processes) and 'actual infinity' (the one true N). Platonists typically reject 
this distinction. Their argument (Dedekind, 1890; Tait, 1983) is that to un
derstand counting or any other algorithm it is not sufficient to understand 
the basic steps (starting with 0, applying successor): it is necessary also to 
understand that the steps are to be applied any finite number of times until 
the halting condition is satisfied. Hence counting presupposes number; a 
grasp of N is integral to any meaningful use of numbers. We cannot ex
plain in words or mathematical symbols the difference between the one true 
N and the others because it is such a basic notion that there is no way of 
discussing numbers without presupposing it - in just the same way that we 
cannot explain the difference between a sensation of red and a sensation of 
green because such distinctions are basic to all our talk of colour. 

This amounts to a refusal to allow the intuitionist to take iteration as a 
primitive notion. I have four rejoinders. 

• If a concept A is conventionally explained in terms of a concept B, this 
is merely a fact about natural language usage and does not imply that B 
is philosophically more fundamental than A. A philosopher who wants 
to argue that A is primitive cannot be refuted merely by showing that 
A is synonymous to a phrase involving B. For example, Frege held 
that 'having the same number as' was more fundamental than 'number', 
despite surface syntax. Many pairs of concepts are interdefinable (for 
example, 'open set' and 'closed set'), but it cannot be maintained that 
each member of the pair is more fundamental than the other. I am free 
to argue, therefore, that counting is primitive and is not understood in 
terms of number. 

• The notion of continuing a computation indefinitely ('Follow the arrows 
of this flowchart and keep going') seems to arise unproblematically from 
our basic understanding of time experience, without dependence on any 
notion of infinity. This is most of the point of Brouwer's First Act of 
Intuitionism. 

• The fact that two platonists with different models of N would still count 
the same way undermines the claim that counting depends on N. 

• The platonists' view, that N is defined as the intersection of all sets 
containing 0 and closed under successor, is philosophically perverse: 
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this is a clear-cut case of defining something comparatively clear in 
terms of something obscure and secondary. 

A further platonist counter-argument is that, although we cannot grasp N, 
due to our finite nature, perhaps there are infinite beings who can, by simply 
inspecting each natural number. N therefore would exist as a concept of such 
a being's thinking, and since we may reason about anything that might exist 
it follows that we are entitled to reason about N. (This resembles Cantor's 
view that infinite sets exist in the mind of God (Dauben, 1979, p. 229); see 
also Russell's remark that our inability to run through the whole expansion 
of 1t is not 'logically impossible' but merely 'medically impossible' (Russell, 
1935-6).) The fallacy of this is that if infinite beings are possible then 
so are nonstandard infinite beings, and we have no way of distinguishing 
the standard from the nonstandard ones. Each infinite being might use a 
different N, and we are incapable of singling out the standard being and 
hence the standard N. 

My conclusions from this discussion are that the platonists' N and the 
associated infinite quantifiers go beyond our fundamental understanding of 
iterated processes (counting and other computations), and that they are mean
ingless. 

It follows that number theory needs to be reformulated in terms of compu
tations rather than N. My proposal is not to define N as everything generated 
by counting, thus putting N on a firm foundation, but rather to replace all talk 
of N by talk of counting, thus bypassing N. Our understanding of numbers 
in general is founded on our ability to count and reflect on the process of 
counting, but it does not proceed via any notion of 'everything generated 
by counting'. This amounts to adopting an intuitionistic view of arithmetic. 
Intuitionists understand number in terms of the counting process rather than 
in terms of an intended model. One can of course subject intuitionistic for
mal systems such as Heyting Arithmetic to model-theoretic analysis, but the 
problem of identifying the 'standard' model does not arise for intuitionists 
since their grasp of arithmetic does not depend on models at all. Hence the 
nonstandard models argument cannot be used against intuitionism. 

This leads us to the platonist's final defence: that such a view is too weak 
to support conventional mathematical practice (Peano Arithmetic), and is 
certainly incapable of extension to analysis and higher mathematics. If so 
then perhaps the arguments against N can be dismissed as simply another 
variety of philosophical scepticism. The philosopher's job is to explain why 
mathematics works, or appears to work; if the explanation offered is simply 
that mathematics doesn't work then it is reasonable to reject the explanation 
rather than mathematics. Therefore to complete the argument against N 
I must show that intuitionism can provide an interpretation of arithmetic 
that explains why it works. Intuitionistic arithmetic and platonist arithmetic 
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are rival accounts, since if the intuitionistic account succeeds then N is not 
essential to our understanding of number and the final argument for N falls. 

DEFENCE OF POTENTIAL INFINITY AGAINST WITTGENSTEIN 

My basic notion of computation can be attacked from the opposite direction, 
from a feasibilist or a Wittgensteinian perspective. A feasibilist (Yessenin
Volpin, 1970; Parikh, 1971) holds that even large finite numbers like 101000 

don't exist since we cannot in practice count up to them. A proper response 
to this is in terms of the notion of idealisation (see the next chapter). 

Wittgenstein, on the other hand, in his Philosophical Investigations (Witt
genstein, 1953), attacks my assumption that an infinite sequence of actions 
can be determined by a rule, at least in the way conventionally assumed when 
we speak of computations. What he objects to is the common belief that when 
we learn a rule a special mental process called 'understanding' takes place 
within us that determines how we will apply the rule in all possible future 
cases. This is part of his scepticism about mental states and processes in 
general. Genuine examples of mental states are depression, excitement and 
pain (op. cit., I, §151(a)}, and genuine examples of mental processes are 'a 
pain's growing more and less', and 'the hearing of a tune or a sentence' (I, 
§ 154); he also seems to accept visualising a mental image as a mental process 
or event. But he does not accept cognitive mental processes (being directly 
aware that, as opposed to being directly aware of); the examples he discusses 
are 

• understanding a word (I, §138-142), 

• understanding a rule, having being taught by examples (I, §143-149, 
185-242), 

• reading a written passage aloud (I, §156-178), 

• dreaming (II, §vii), 

• seeing an ambiguous picture in a certain way (he gives an example of a 
picture that can be seen either as a duck's head or a rabbit's head) (II, 
§xi). 

In each case his purpose is to deny that any characteristic mental process 
is taking place. In the case of words and rules, there is no inner process 
of understanding: the only criterion of understanding is correct usage. In 
the case of reading aloud, there is no mental process that distinguishes this 
from reciting a memorised passage or speaking spontaneously. In the case 
of dreaming, it makes no sense to ask whether the dream really took place 
as it seems or whether it was instantaneously fabricated at the moment of 
waking. In the case of seeing an ambiguous picture, there is no difference 
between the experience of seeing it as a duck's head and seeing it as a rabbit's 
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head: the image in the mind's eye is the same. In every case it is the person's 
subsequent behaviour, not their present mental state, that is the criterion for 
understanding, reading aloud, dreaming, or interpreting a picture in a certain 
way. 

Most of us would dispute this, arguing that there is a characteristic mental 
process in each case and that we are directly aware of it by introspection. We 
know what it feels like to understand a rule, and we know that we understand 
the rule even if we never subsequently apply it. Correct usage is a symptom 
of understanding, not a criterion. 

Wittgenstein's answer, I think, is that when we claim to be introspecting 
we are really theorising about the psychological processes that we think must 
be going on just below the surface of consciousness: we believe in these psy
chological processes so firmly that we delude ourselves into thinking that we 
actually experience them. What really happens in our minds when we under
stand something is a sudden feeling of relief, enlightenment or confidence, 
and perhaps a mental picture. But these are merely accidental accompani
ments of understanding: one could understand perfectly well without having 
these sensations, and moreover there is nothing else going on simultaneously 
with these sensations that explains why we now know how to apply the rule. 

Most of us would nevertheless insist that we are directly aware of these 
mental processes, as directly aware as we are of our physical sensations and 
mental images. 

Wittgenstein defends his position sometimes by taking a behaviourist at
titude ('An "inner process" stands in need of outward criteria.' I, §580), and 
sometimes by what might be called the Argument from Insanity ('Always 
get rid of the idea of the private object in this way: assume that it con
stantly changes, but that you do not notice the change because your memory 
constantly deceives you.' II, §xi). The former argument will not convince 
anyone who is not already a behaviourist. The latter is useless because it is 
so indiscriminate: any belief can be undermined in this way, including the 
belief that the Argument from Insanity is unanswerable. All we can do is 
get on with thinking, in the hope that our thoughts have a sufficient minimal 
coherence. 

He also resorts repeatedly to the argument that we cannot convey these 
alleged mental processes (our understanding of a rule or the meaning of 
word, say) to another person unambiguously, either by examples or by verbal 
explanation, since a finite set of examples is always compatible with more 
than one rule and since verbal explanations depend on a correct understanding 
of the words used. Hence we cannot give an account of what it means to 
understand a rule or word correctly. This much is true, but it does nothing to 
shake our naive view that we each understand the rule or word individually, 
even if we cannot fully articulate that understanding and even if, through 
misinterpretation, we each understand it differently. 
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Mostly, however, Wittgenstein does not attempt to argue for his position 
but simply states it in a variety of examples in the hope that eventually the 
scales will fall from our eyes and we shall see that he is right. He adopts 
this method because he sees himself as describing rather than explaining 
or theorising (the distinction is dubious). His examples have the opposite 
effect on me: they convince me of the absolute necessity of recognising these 
mental processes if our mental life is not to become even more of a mystery 
than it already is. 

His views have drastic consequences for the way that logical and mathe
matical necessity are to be understood. Mathematical necessity depends on 
the notion that an algorithm has a unique correct outcome. Logical necessity 
depends on the notion that some statements may be seen to be true simply 
by inspecting the meanings of the words and grammatical constructions used 
in them. Both these assume that once a rule has been adopted it is now de
termined what is to count as correct application of the rule in every possible 
case. 

Wittgenstein, of course, denies this view of how rules work. His account 
of rule-governed behaviour is as follows. Suppose we adopt a general rule 
(say, rules of arithmetic) and then proceed to apply it to a sequence of cases 
(say, a series of sums). In calling it a rule we mean that each application of 
it is to be treated as necessarily correct: that is, we say not merely 'This is 
how the sum worked out this time' but 'This is how it must work out'. Of 
course, in practice, we do not always get the same answer when we apply 
a rule to a case repeatedly, so we need to introduce a notion of 'error' and 
hence a distinction between what seems to be a faithful application of a rule 
and what is a genuinely correct application.Wittgenstein argues that this 
distinction makes no sense in purely introspective terms, since a seemingly 
correct application of the rule is introspectively just like a genuinely correct 
application, except in its outcome. This is true whether the rule is being 
applied by a single person or by a whole society. 

In practice, when we speak of errors we merely mean that an individual's 
application deviates from common usage; there is no ulterior notion of cor
rectness against which either the individual's usage or common usage can be 
compared. Hence the notion of logical or mathematical necessity arises not 
from any abstract notion of correct application of rules but from the contrast 
between an individual and society. A rule is simply a social practice in which 
we treat individual variations as errors. 

It follows that an individual cannot set up and practise a rule in isolation 
- even though it seems to us that we often do exactly that. 

And hence also 'obeying a rule' is a practice. And to think one is obeying a rule is not to obey 

a rule. Hence it is not possible to obey a rule 'privately': otherwise thinking one was obeying a 

rule would be the same thing as obeying it. (I, §202; see also the 'private languages' argument, 
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I. §243-280.) 

It also follows that the application of a rule to a particular case (the outcome 
of a sum, say) is not determined in advance. After we have applied it to the 
case we shall say that the outcome we agree on was the only possible correct 
one; but there was nothing in the rule (as written down or as understood by 
anyone beforehand) that determined the correct outcome. 

An immediate difficulty with this argument is that, although it is in
tended only to attack private rule-following, it applies equally to public 
rule-following and hence appears to undermine any notion of obeying a rule. 
To benefit from training in a rule and to participate in public rule-following 
you need to be able to determine when society is approving of your usage 
and when it is trying to correct you. Society might express approval or 
disapproval by saying 'Yes, that's the way' or 'No, not like that', or in more 
diverse and subtle ways, but in any case you need to classify the speech you 
hear and the gestures you see into two categories, those expressing social 
approval and those expressing disagreement. This classification is purely 
private: it is precisely of the sort that Wittgenstein says is impossible. If his 
position is correct then one cannot draw a meaningful distinction between 
one's seeming to oneself to apply a rule correctly and be approved by society 
and one's actually doing so. By a similar argument one cannot draw such 
a distinction for another person's behaviour. It follows that society cannot 
draw the distinction either (since society is made up of individuals who cannot 
draw the distinction). It follows that there is no such distinction. (Imagine 
a student who thought that grade E was higher than grade A, that the point 
of arithmetic was never to do the same sum the same way twice, and that the 
objective in school was to leave it as early as possible. Such a person would 
go through life thinking themselves a calculating prodigy. In what objective 
sense are they wrong?) 

Wittgenstein's position on rule-following has radical consequences for the 
notion of mathematical proof, which are developed in his Remarks on the 
Foundations of Mathematics; the citations that follow are to the third edition 
(Wittgenstein, 1978). I shall follow the interpretation in Wright (1980, 
XXIII). Wittgenstein's idea of proof seems to be that a proof of 5 + 7 = 12, 
say, might be a diagram showing twelve dots grouped into two sets of five 
and seven. We look at the diagram, count the dots, and make the following 
observations. 

1. I have counted five things and seven things and, on this occasion, ob
tained twelve. 

2. The diagram is so perspicuous that I cannot imagine how I can have 
made a mistake in counting, nor can I imagine how five plus seven 
could ever even seem to give any result other than twelve. 
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3. If I count five things and seven things repeatedly I shall nearly always 
get twelve (Wittgenstein, 1978, I, §31; I, §41). 

Now, these observations do not prove that 5 + 7 = 12. (1) is an empirical 
fact, a report of a counting experiment, (2) is about the limitations of my 
imagination, and (3) is an empirical generalisation. Together they entitle 
me to treat '5+7' and '12' as interchangeable with practical confidence that 
this will rarely generate discrepancies - but they do not make 5 + 7 = 12 a 
necessary truth. The equation only becomes a necessary truth if we adopt 
it as a 'grammatical rule': we say that from now on any calculation that 
contradicts 5 + 7 = 12 shall be treated as erroneous. This, clearly, alters our 
concepts of correct counting and number, since it could lead us to reject as 
erroneous counts that we would previously have accepted as correct. The 
'proof' and the observations (1)-{3) provide a strong practical motivation for 
adopting the equation as necessary but they do not force us to do so. One 
could understand the diagram, believe all three observations, and yet choose 
not to treat 5 + 7 = 12 as a necessary truth. Thus there is an essential element 
of decision in accepting the conclusion of a proof, and each proof requires 
us to modify our concepts in some way. 

The proof doesn't explore the essence of the two figures, but it does express what I am going to 

count as belonging to the essence of the figures from now on.- I deposit what belongs to the 

essence among the paradigms of language. 

The mathematician creates essences. (I, §32) 

We say that a proof is a picture. But this picture stands in need of ratification, and that we give 

it when we work over it. (VII, §9) 

Can 1 say: "A proof induces us to make a certain decision, namely that of accepting a particular 

concept-formation"? 

Do not look at the proof as a procedure that compels you, but as one that guides you.- And 

what it guides is your conception of a (particular) situation. (IV, §30) 

What is proved by a mathematical proof is set up as an internal relation and withdrawn from 

doubt. (VII, §6) 

If this is indeed Wittgenstein's conception of the role of proof then I cannot 
help thinking that it leaves out the essential ingredient. What is the basis for 
observation (3)? We have counted five plus seven and obtained twelve (on 
this occasion); moreover it seems inconceivable how any other result could 
arise. But how do we know that the next time we count it won't seem equally 
inevitable that the result is thirteen? How does the present perspicuity of the 
diagram govern how things will seem in the future? Four possible approaches 
to an answer are suggested in the text. 

First, since observation (3) is intended to be taken as a well-justified 
empirical prediction, one may simply say that it is supported by our previous 
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experience with computations: perspicuous proofs have in the past turned 
out to be highly reliable predictors of future computations (a square triangle 
is inconceivable to us, and, sure enough, square triangles have turned out to 
be exceedingly rare in nature) so we are empirically justified in asserting (3) 
for each new proof. 

Secondly, recognising a proof may be similar to recognising a colour or 
recognising that a rule has been applied correctly: all these require an act of 
interpretation and hence a decision. 

Hitherto we have calculated according to such and such a rule; now someone shews us the proof 

that it can also be done in another way, and we switch to the other technique - not because we 

tell ourselves that it will work this way too, but because we feel the new technique as identical 

with the old one, because we have to give it the same sense, because we recognize it as the same 

just as we recognize this colour as green. ... It might be said: the reasons why we now shift to 

a different technique are of the same kind as those which make us carry out a new multiplication 

as we do; we accept the technique as the same as we have applied in doing other multiplications. 

(IV, §36; see also IV, §30) 

Thus the proof-following mystery is assimilated to the rule-following mys
tery. 

Thirdly, observation (3) may rest on a sort of psychological intuition. 

I know with great certainty that if I multiply 25 by 25 ten times I shall get 625 every time. 

That is to say I know the psychological fact that this calculation will keep on seeming correct 

to me .... Now is that an empirical fact? Of course - and yet it would be difficult to mention 

experiments that would convince me of it. Such a thing might be called an intuitively known 

empirical fact. (IV, §44) 

Fourthly, Wittgenstein states repeatedly that a proof shows us not that a 
proposition holds but how it holds. 

When the proposition seems not to be right in application, the proof must surely shew me why 

and how it must be right; that is, how I must reconcile it with experience. 

Thus the proof is a blue-print for the employment of the rule. (VI, §3) 

The idea seems to be that the proof tells us how to explain away future 
calculations that appear to conflict with the proposition. Unfortunately he 
does not give any examples of how a proof can accomplish this. 

All these four approaches seem to miss the point of what is so convincing 
about proofs. To change the example, consider the statement that P ~ P is 
a theorem of propositional calculus. (Forget the meaning of propositional 
calculus and consider it for present purposes purely as an uninterpreted 
axiomatic system.) A proof of this statement would be a formal derivation 
such as 
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P:) «P:) P):) P) (P:) «P:) P):) P»:) «P:) (P:) P»:) (P:) P» 

P:)P 

(the axiom schemata used here are A:) (8:) A) and (A :) (8:) C) :) «A :) 
B) :) (A :) C», and the rule of inference used is Modus Ponens). According 
to Wittgenstein it is possible to check each step of the derivation and to 
find it unimaginable how the derivation could contain a mistake, and yet to 
refrain from treating the statement that P :) P is derivable as a necessary 
truth. If someone actually took this stance I would ask them, which formulae 
used in the derivation do you accept as necessarily theorems of propositional 
calculus? They would have to point to an axiom that they did not accept was 
necessarily an instance of the relevant axiom schema, or an inference step 
that they did not accept was necessarily an instance of Modus Ponens. Then 
I would conclude that they did not understand the axiom schema or rule of 
inference in question. My point is that, whatever it means to 'understand' 
something, it is certain that understanding a schema involves knowing what is 
an instance ofit. Any uncertainty about whether P:)«P:)P):)P) is an instance 
of the axiom schema A :) (8 :) A) is a criterion (and not merely a symptom) 
of a lack of understanding of the schema. Understanding a schema probably 
involves more than simply being able to judge whether given formulae are 
instances of it, but it certainly includes this ability. Wittgenstein seems 
to make a similar point himself when he says, 'the meaning of "(x).fx" is 
made clear by our insisting on "fa" 's following from it' (I, §10-11), butthe 
discussion is inconclusive. 

Now, 'understanding' is such a contentious issue that I could imagine some 
philosopher insisting that it is possible to understand a schema without being 
certain whether a given (small) formula is an instance of it. But such a sense 
of 'understanding' is so weak that it is hard to see what it would amount to. 

My conclusion is the very unoriginal one that anyone who understands 
the propositional calculus (as an uninterpreted formal system) is constrained 
by their own understanding to accept that the formula P :) P is derivable in it. 
It is simply not coherent to understand a proof and not accept the conclusion 
as a necessary truth. 

Similarly Wittgenstein's account of rule-following seems to miss the es
sential ingredient of rules. Suppose, to take up one of his examples, that, 
after adopting the equation 5 + 7 = 12, we count a group of children and find 
that there are five boys, seven girls, and thirteen children. Then we say that 
'we must have made an error'. The equation has been adopted as a criterion 
of correct counting; adopting the equation modifies our concept of twelve 
(previously twelve was defined purely in terms of direct counting). Thus 
we conclude that the total of thirteen children must be wrong. So, at least, 
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Wittgenstein claims. But this is not in fact how we deal with errors. When 
the results of two calculations (addition of sub-totals and direct counting) 
disagree we do not simply dismiss one as erroneous. We say there must 
have been an error, and we search for it in both calculations. As Dummett 
(1959) says, 'one cannot make some mistake without there having been some 
particular mistake which one has made'. Thus we look through the steps 
of both calculations until we find a step that, when viewed in isolation, is 
patently wrong. Then we correct the step and repeat the rest of that calcula
tion. If the results still disagree then we search for further errors. Eventually, 
the discrepancy always disappears (unless we give up because we are not 
sufficiently motivated). This procedure differs from Wittgenstein's account 
in three important respects. First, we cannot tell, given simply a discrepancy, 
which calculation is erroneous. Secondly, if a calculation is erroneous it must 
contain a specific error, that is, an individual step that is unmistakably wrong. 
Thirdly, the error, once found, is enough by itself to invalidate the calculation 
in which it occurs. The calculation is erroneous in its own right because it 
contains this error: it is not simply overruled by the other calculation. The 
discrepancy with the other calculation is therefore a symptom, not a criterion, 
of error. 

If we repeatedly found ourselves unable to locate errors in conflicting 
pairs of (short) calculations, or if we were unsure about whether a particular 
step was a mistake, then (as Wittgenstein says in another context (I, §37», 
'that would be the end of all sums'. 

This provides the key to the objectivity of rules, the distinction between 
applying a rule correctly and merely seeming to do so. If two mathematicians 
apply the same rule to the same case but obtain different outcomes they do 
not have to appeal to the community or abandon mathematical necessity. 
They can compare their working step by step until they locate the first step at 
which they disagree; then it will be obvious to both of them who has botched 
this step. Whenever we apply a rule the fear of being corrected in this way 
is at the back of our minds; we are always thinking, 'This calculation seems 
correct, but would it stand comparison with someone else's?', and this gives us 
the desired distinction between apparent correctness and actual correctness. 
(Moreover, it is not strictly necessary to have more than one mathematician; 
an individual can simply carry out the calculation repeatedly.) 

My conclusion on Wittgenstein's philosophy of mathematics is that it fails 
by his own standards. His objective is to describe mathematical practice, 
without trying to reform it or justify it, in such a way as to dispel any sense 
of philosophical mystery. But his account seriously misrepresents the way 
mathematicians handle errors, an issue that he correctly treats as central 
to an understanding of mathematical objectivity. And, far from dispelling 
philosophical mystery, it exacerbates it unbearably. It leaves us completely 
mystified as to how proofs prove and how rules regulate. The purpose of 
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stating a rule is precisely to constrain future behaviour, to allow certain 
actions and disallow others, not to license people to regard whatever they do 
as a necessary consequence of the rule. If the Ten Commandments had been 
worded in the style 'Thou shalt not kill; but justifiable homicide is okay, at 
your own discretion' then Moses would scarcely have bothered to carry them 
down the mountain. 

More importantly, it fails to address the question I posed at the beginning, 
that of how mathematics can be meaningful. How, for example, is the 
shepherd in Chapter 1 to know that his sheep-counting procedure is accurate? 
Wittgenstein deliberately avoids such questions. All he would be willing to 
say is that the shepherd does what he does and that another shepherd might 
do something different. Which shepherd would run out of sheep first (given 
certain reasonable physical assumptions about the world)? To answer this, 
we need to go beyond Wittgenstein's account and accept that we understand 
rules, such as counting, in advance of, and independently of, our subsequent 
application of them. The outcome of a computation is pre-determined, not 
because we never make mistakes but because we can always correct our 
mistakes. 

It is useful to compare this conclusion with the previous discussion on 
infinite quantifiers. There, I rejected classical quantifiers because we cannot 
characterise them in language; here I accept the conventional view of rule
understanding even though we cannot characterise it in language. Why the 
difference? I said that an expression may be rejected as meaningless if it 
cannot be explained in terms of anything more basic and if we can get by 
perfectly well without it. (Both these criteria are imprecise but still usable.) 
The point is that we need some realist notion of rule-determination if we 
are to make sense of the everyday facts of rule-using behaviour; we do not 
need a platonist notion of infinite quantifiers to make sense of arithmetic. 
The evidence for the former is Wittgenstein's threadbare and mystifying 
account of mathematics, obtained by trying to do without conventional rule
determination. The evidence for the latter is the rest of this book, where I 
show how to understand significant parts of mathematics without recourse to 
classical quantifiers. 

It follows that if anyone can give a credible of account of mathematical 
practice that does not rely on conventional rule-determination then I must 
abandon everything in this book after this point as philosophically miscon
ceived. 

CONCLUSION 

The conclusion from this discussion of potential and actual infinity is that we 
grasp how to count and can reflect on the way we count, but we have no grasp 
of 'everything that can be generated by counting'. Hence number theory 
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should be developed directly from our algorithmic knowledge of counting 
and not proceed via any notion of infinite set; if such an account succeeds 
then, as explained above, this completes the refutation of actual infinity. 



CHAPTER 4 

ABSTRACTION AND IDEALISATION 

I have argued that mathematics needs to be reconstructed or reinterpreted in 
terms of potential infinity. The first step in this task is to examine the notion 
of a mathematical object and its relation to physical objects. This is the 
subject of the present chapter. 

WHY WE NEED TO ABSTRACT AND IDEALISE 

A popular and time-honoured theory on the nature of mathematical objects is 
that they are obtained by abstraction from physical objects. Cantor explained 
sets, and Dedekind explained numbers, in this way. The idea is that we start 
with a physical object and selectively disregard some of its properties, thus 
creating an object that is like the original one but without the disregarded 
properties. For example, if we disregard the colour of a tabby cat we create 
a colourless cat; if we disregard the number of branches on a tree we obtain 
a tree with no number of branches; if we disregard the identity and inter
relationships of a collection of three objects we obtain the number three. Or 
possibly we do not create a colourless cat but merely the idea of one, which 
for mathematical purposes is, it seems, just as good. 

This remarkable mental faculty fell into disrepute following Frege's hostil
ity (Frege, 1906; Geach & Black, 1970, pp. 84-5), but it is still often appealed 
to (for example, Tharp, 1991). Related to abstraction is idealisation, the pro
cess by which we dismiss inconvenient obstacles by pure will power. Thus 
we say that we can count up to any natural number, even 101000, 'in prin
ciple', idealising away the obvious reasons why we cannot. Idealisation is 
particularly important for us intuitionists: we wish to restrict mathematics 
to mental constructions, but we do not wish to restrict ourselves to practi
cally feasible ones. As George (1993) points out, intuitionism depends on 
a certain distinctive conception of 'what is an appropriate idealization of the 
actual human condition'. 

Abstraction and idealisation are such murky notions that it is sometimes 
suggested that we should develop afeasible mathematics based on construc
tions that can actually be performed (Wright, 1982). Thus, a natural number 
would be defined as anything we can actually count up to. The consequences 
for arithmetic would be severe; for example, the theorem that if m and n 
are natural numbers then mn is a natural number would clearly have to go 
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(Parikh, 1971). Of course, what can be counted up to depends on who is 
doing the counting, with what material aids, in what circumstances, and in 
what notation. For simplicity, let us confine our attention to stroke numerals: 
thus counting up to 5 means writing 'IIIIl'. 

We might begin with some observations of the following sort. 

• Anne can't count up to 101000 because, taking account of the estimated 
lifetime of the universe, the quantum nature of matter, and the finiteness 
of the speed of light, one cannot carry out 101000 actions of any kind in 
this universe. 

• Brian can't count up to 10100 because the human lifespan is too short. 

• CilIa can't count up to 105 on a blackboard because she hasn't a large 
enough supply of chalk (although she might be able to do so in ink on 
paper). 

• David can't count up to 1000 on this blackboard because it is too small. 

• Edward can't count up to 13 because he is too superstitious. 

• Fiona can't count up to the first even prime number greater than two. 

It is clear that to develop a workable theory of what arithmetic problems of 
this sort are practically soluble we must begin by classifying the multifarious 
reasons why some are insoluble, in particular the six above. Anne's problem 
is to do with physics, Brian's is due to human biology, CilIa's is due to her 
choice of writing material, David's is due to his choice of blackboard, Ed
ward's is due to his psychological inhibitions, while Fiona's seems somehow 
'intrinsic' to the task. The importance of this classification is that it indicates 
what we need to do to overcome the various obstacles. Anne needs to do 
some physical research in the hope of overturning current physical theories; 
Brian needs to find some other intelligent lifeform to do the counting; CilIa 
needs to switch to ink and paper; David merely needs to find a bigger board; 
in Edward's case the simplest remedy is to find a less superstitious writer; 
whereas Fiona's problem cannot be solved by any change of writer or writing 
material and indeed seems to resist any sort of solution. 

A second advantage of such a classification is that it achieves what com
puter scientists call a separation of concerns. It is hard to concentrate on the 
psychology of superstition while also keeping in mind the Earth's finite chalk 
reserves and the latest discoveries in cosmology. These matters each have 
their own peculiar laws and techniques and are best studied separately by 
specialists. Thus we assign Anne's problem to physicists, Brian's problem 
to gerontologists or exobiologists, and so on. 

This leaves us with poor Fiona. Her problem is in fact insoluble. To 
explain insolubilities of this sort is the special task of mathematics. We need 
a way of discussing Fiona's problem without being distracted by the heated 
debate between the advocates of white boards and blackboards (which is why 
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we need abstraction) and without being distracted by controversy on the 
possible existence of long-lived intelligent Martians (which is why we need 
idealisation). 

I am sorry if I seem to be belabouring the very obvious, but many people 
have looked askance at abstraction and idealisation; intuitionism in particular 
has been criticised for relying on them (see the discussion of 'extrapolation' 
below). I am trying to show that both abstraction and idealisation are integral 
to mathematics and that we could not develop a theory of feasible arithmetic 
without first developing an abstract, idealised arithmetic. 

A similar story could be told for any branch of science, each of which is 
defined by a characteristic set of abstractions and idealisations. 

Philosophers, therefore, would be better employed putting abstraction and 
idealisation on a firm foundation than trying to do without them. In the next 
section I shall describe how abstraction and idealisation work; in the final 
section I shall distinguish them from mere 'extrapolation', as practised by 
Tharp and Maddy. 

HOW ABSTRACTION AND IDEALISATION WORK 

Let T be our repertoire of knowledge and arguments concerning iterative 
physical processes. One example of an iterative physical process is writing 
strokes on a blackboard or paper, so the problems of Anne and her friends in 
the previous section fall within the scope of T. But T also applies to other 
repeatable processes, such as demolishing houses and crossing the Atlantic. 
Examples of demonstrable propositions in Tare: 
( 1) writing a pair of strokes and then writing another pair is tantamount to 

writing a quadruple of strokes; 
(2) demolishing a pair of houses and then demolishing another pair is tan

tamount to demolishing a quadruple of houses; 
(3) a double-crossing of the Atlantic followed by another double-crossing 

is tantamount to a quadruple-crossing of the Atlantic; 
(4) regardless of what strokes have already been written it is always possible 

to write another one, provided the supply of chalk has not run out, etc.; 
(5) regardless of what houses have already been demolished it is always 

possible to demolish another, provided there are some left, etc.; 
(6) regardless of what Atlantic crossings have already been made it is always 

possible to cross again, provided one's boat hasn't sprung a leak, etc .. 

In the last three examples the 'etc.' denotes a long list of other obstacles that 
might prevent the next step from being carried out. In general, an obstacle is 
anything that prevents us from carrying out a precisely specified task; whereas 
an error is any unwitting deviation from the task that allows us to arrive at a 
wrong result. More precisely, an error is defined as a step that, if we were to 



44 CHAPTER 4 

examine it critically in isolation, we would see to be unequivocally a violation 
of the intended procedure. Errors are more insidious than obstacles, because 
we do not know when we are making one; but they can always be corrected 
by repeating the task more carefully, whereas obstacles cannot always be 
overcome. We cannot do the task so carefully as to exclude altogether the 
possibility of error. Nevertheless, we can make the risk of error arbitrarily 
low by being sufficiently careful; and in the event of a discrepancy between 
two repetitions of a process we can always resolve the matter by comparing 
the processes step by step. As argued in the discussion ofWittgenstein in the 
previous chapter, it is our ability to repeat computations and correct errors 
that gives mathematics its objectivity, its distinction between a seemingly 
correct computation and a genuinely correct one. 

Even worse than errors is imprecision, a lack of determinacy about whether 
the task has been carried out correctly. All empirical concepts admit border
line cases, while all mathematical concepts are exact; this creates a difficulty 
in relating mathematics to the physical world. For example, imagine an apple 
tree containing two apples that are grown together so that they may be con
sidered as a single apple: then there is no well-defined number of apples on 
the tree. Or imagine a sequence of stroke marks on a piece of paper in which 
two strokes are so close together as to be virtually one: then the sequence of 
strokes is not a well-defined numeral. Korner (1960) regards examples such 
as these as a decisive argument against logicism and formalism. 

The solution to the difficulty rests on the fact that even an imprecise 
concept has clear-cut cases. If we accidently write a bad symbol token we 
do not agonise endlessly over whether it is an 'a', an 'a', or an ambiguous 
case: we simply cross it out and write another one, trying repeatedly until 
we succeed. The concept of having succeeded is itself imprecise, but this 
does not matter; we simply continue trying until we have a token that seems 
to us a clear-cut case. It is always possible to do this, barring obstacles, and 
having done so it is unlikely that a reader will misinterpret the token. 

Similar remarks apply to repeatable processes other than token-writing, 
such as demolishing houses or crossing oceans. If, for example, we cross the 
Atlantic from Spain to a Caribbean island and then return home it may be 
disputed whether we have crossed the entire ocean or not. So we write off 
the attempt and do it again, this time taking care to land on the mainland of 
America. 

Thus the fact that any process has ambiguous instances does not under
mine the whole exercise; it simply introduces another source of unreliability, 
alongside errors. Misinterpretations can be made arbitrarily rare by insisting 
on sufficiently clear-cut steps, just as errors can be made arbitrarily rare by 
being sufficiently careful with each step. 

It is usual in the philosophy of mathematics to confine attention to stroke
writing rather than demolition or sea-faring, but the making of marks on 
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flat surfaces has no special philosophical status. Strokes are simply more 
convenient: it is easy to make a large number of them, and the results of 
doing so are on display afterwards. 

Let W be the physical world, to which the arguments of T apply. Now, 
abstraction is an operation acting on T that produces a simpler system of 
arguments, A. A deals with the steps of an unspecified iteration. Examples 
of demonstrable propositions in A are: 

(7) two steps followed by two steps constitute four steps; 
(8) at any stage of iteration it is always possible to take another step, barring 

obstacles; 
(9) if the agent takes two steps and then another two, and then counts the 

result, then barring obstacles, errors and imprecision the answer will be 
four. 

Here, (7) comes by abstraction from the propositions (1)-(3) of T; (8) comes 
by abstraction from (4)-(6); and (9) is a consequence of (7). In A the iterated 
process and the controlling agent (if any) are unspecified. A applies to the 
physical world W just as much as T does; to apply A we choose a process, an 
agent and an occasion, and then any sound argument in A can be instantiated 
to a sound argument in T. The advantages of carrying out arguments in A 
instead of T are that a single argument in A corresponds to many arguments 
in T and that in A we are undistracted by the nature of the iterated process. 

In A, the phrase 'barring obstacles' means 'ifno obstacles are encountered 
on this occasion'; the phrase 'barring errors' means 'if no errors are made 
on this occasion'. A single 'step' in A really means a repeated attempt to 
carry out the step until the result is accepted as clear-cut. The phrase 'barring 
imprecision' then means 'if the step, accepted as clear-cut, is not subsequently 
misinterpreted' . 

Equality, for expressions in A, is defined as follows. We say' X = Y' in A 
iff any instantiation of X in W could also be an instantiation of Y, and vice 
versa. (Here, X and Y are viewed in isolation, not as part of some larger 
expression or argument. Thus, in (7), the two occurrences of 'two steps' 
have the same possible instantiations and so are equal, even though when 
embedded in the expression 'two steps followed by two steps' they cannot 
both denote the same pair of steps.) If 'X = Y' holds in A then X and Yare 
interchangeable in all statements of A. This follows because all statements 
of A correspond by instantiation to statements of T, and replacing X by Y 
does not alter the instantiated statements. 

The disadvantage of A is that it refers to unspecified obstacles, errors and 
imprecision, which merely complicate the arguments. So the next step is 
idealisation, which produces an even simpler system of arguments, I, by 
omitting all phrases like 'barring obstacles, errors and imprecision'. Our 
three propositions of A become: 
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(10) two steps followed by two steps constitute four steps; 
(11) at any stage of iteration it is always possible to take another step; 
(12) if the agent takes two steps and then another two, and then counts the 

result, then the answer will be four. 

I applies to the physical world, W, but not in a straightforward literal way. 
For any sound argument in I there is a corresponding sound argument in A, 
obtained by replacing each atomic proposition (asserting that a certain process 
has a certain outcome) with the proposition that the process has that outcome 
provided no obstacles prevent it from being completed, no errors are made, 
and all steps are clear-cut. The argument in A may then be instantiated to a 
sound argument in T by choosing a particular iterative process, a particular 
agent and a particular occasion. 

Arguments of I tell us what happens on those occasions in which no 
obstacles are encountered and no erroneous or imprecise steps are taken. I 
is therefore a useful system in which to derive truths about W, at least for 
iterative processes in which obstacles, errors and imprecision are rare. 

A number may be defined within I as a stage of iteration; 0 is defined 
as the stage of being about to start; the successor operation is defined as the 
taking of an additional step. With this terminology the propositions (10)-(12) 
may be rewritten as: 

(10') two plus two is four; 
(11') for any number we can form the successor number; 
(12') if the agent adds two and two, the answer will be four. 

This approach to arithmetic via idealisation should be compared with the 
'If-Thenist' approach, which understands any proposition P of arithmetic as 
a conditional statement, 'If there is a model of Peano Arithmetic then P holds 
in it'. If-Thenism is a different way of dealing with obstacles. It amounts 
to prefixing all propositions of T with 'If there is an infinite supply of chalk 
(or whatever) then ... " while the propositions of A would begin with 'If 
an unlimited number of steps is possible, then ... " and idealisation would 
simply remove this qualification. The drawback of this method is that there 
isn't an infinite supply of chalk or anything else, so we would be deducing 
consequences from a false premise. We could rephrase it as 'If there were 
an infinite supply of chalk then it would necessarily follow that ... '; this 
interpretation is meaningful, but it is hard to see how it can be applied to the 
real world of finite resources. Think back to the example of the shepherd 
counting sheep in Chapter 1. We need an assurance that if the rock is big 
enough to hold the tally then the finiteness of the rock does not affect the 
calculation. My account provides this, by prefixing a qualification 'if the 
rock is big enough for this calculation' to each atomic proposition in T; the 
If-Thenist account, which prefixes 'if the rock is infinitely big' to the whole 
proposition, does not, since of course the rock is not infinitely big. 
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This way of introducing numbers may be generalised to other classes 
of abstractions, for example, trees. A tree is either an atom or composite; 
each atom is an instance of one of a specified list of atom types; each 
composite tree may be decomposed in a unique way into subtrees. Numbers 
are a special sort of tree with a single atom type, 0, and one subtree (the 
predecessor) for every composite tree. Whereas numbers were abstracted 
from iterative processes, trees in general are abstracted from any class of 
things, events or processes described recursively by atoms and combination 
rules. Syntactic examples spring to mind: bracketed expressions, sentences 
in context-free languages, and tree diagrams consisting of circles connected 
by line segments. But again I stress that there is nothing special about marks 
on fiat surfaces. Recursive structures occur widely in nature and human 
artifacts, as the following examples show. 

• Sequences of crossings of the Atlantic and the Pacific, giving rise by 
abstraction to lists on a two-element set. 

• A (botanical) tree, where the subtrees are defined by the branching and 
the atoms are leaves. (A bare twig is a composite tree with no subtrees.) 

• An astronomical system consisting, for example, of a star, orbited by 
planets, orbited by moons, orbited by meteoroids, and so on. 

• The history of cell division of an embryo, starting with the fertilised 
egg. 

• A machine consisting of components, which themselves consist of com
ponents, and so on - provided that any component may be analysed into 
sub-components in at most one way. 

• Christmas presents, defined as follows. A supply of atomic presents of 
various types is provided (book tokens, handkerchiefs, bottles of sherry 
... ). A composite present is formed by taking several presents and 
wrapping them in paper. The wrapping paper ensures that there is only 
one way of decomposing a composite present into sub-presents. 

We should perhaps restrict attention to those examples where it makes sense 
to think of analysing a structure into its components and combining several 
structures into a single structure; thus the botanical tree and the history of 
cell division should perhaps be excluded. Trees are then obtained from 
these recursive systems by abstraction and idealisation in the same way that 
numbers were obtained from iterated processes; in fact, iterated processes 
are simply a special kind of recursive system. 

For a precise and formal account of the idealised system I based on trees, 
see the Theory of Constructions, in Part II. 

This completes my account of abstraction and idealisation, which are 
perfectly innocuous procedures. The reason they have attracted suspicion 
in the past is that they have been radically misunderstood. Idealisation has 
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been construed as a process of imagining that our capacities were extended 
by a finite amount - a circular explanation, since we need idealisation to 
define finiteness (Wright, 1982). The abstract system of arguments A has 
been seen as applying not to W but to an 'abstract world' WA (containing 
numbers and trees instead of blackboards, houses and oceans) while I has 
been seen as applying to an ideal world WI (containing an indefatigable agent 
who can count arbitrarily high). Thus abstraction and idealisation have been 
seen as operations that create new worlds out of old ones (colourless cats 
out of tabby cats, for example). WI is a rather strange place to live in: it 
is hard to imagine what it would be like to be able to count up to 101000, 

never to forget anything, to have a brain the size of a galaxy. Even worse, 
it is sometimes supposed that abstraction does not create WA but transforms 
W into WA (thus we do not create a colourless cat alongside the tabby one 
but rob the cat of its colour); Frege seems to have understood abstraction 
in this way. These absurdities are avoided if one keeps firmly in mind that 
abstraction and idealisation are operations on systems of arguments not on 
worlds. WA and WI are unnecessary. The position is illustrated in Figure 1. 
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Figure 1: how abstraction and idealisation work. 

COMPARISON OF IDEALISATION WITH EXTRAPOLATION 

It is important to distinguish the process of idealisation from that of extrap
olation, as used, for example, by Maddy (1988, 1990), Tharp (1989) and 
Lavine (1994, VIII) to obtain the general concept of set from finite sets. 

Lavine begins with a finite theory in which all quantifiers range over 
indefinitely large finite domains of various sizes. By omitting the bounds 
on the quantifiers he obtains a theory in which all quantifiers range over a 
single infinite domain. Extrapolation, then, appears as a purely syntactic 
operation of omitting quantifier bounds; given a formula in the infinite theory 
it would be possible to restore the quantifier bounds and interpret it in a 
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purely finite way. This resembles what I have called idealisation. Lavine, 
however, resists such an eliminative interpretation of infinity (pp. 264-265); 
he regards extrapolation as a substantial semantic step that a constructivist 
would be unlikely to accept (p. 307). Thus his extrapolation is fundamentally 
different from idealisation. 

George (1988) does not distinguish between idealisation and extrapolation, 
and this leads him to argue against intuitionism. He begins by pointing 
out that intuitionists commonly accuse platonists of 'allowing mathematical 
truth to outrun all possible practice'; intuitionists claim that their own view 
of mathematics is more intelligible since it is expressed wholly in terms of 
operations that mathematicians can effectively carry out. George argues that 
the intuitionist is squeezed between two extreme positions: feasibilism and 
transfinitism. Feasibilism rejects idealisation and demands that we restrict 
mathematics to constructions that can actually be carried out in practice. 
(George call this actualism; it is also known as strict finitism and ultra
intuitionism.) Transfinitism, or Cantorian jinitism, is the position of Maddy 
(1988) 'that infinite sets are not so different from finite ones, that the most 
basic properties are ones they share'. Now, George argues that the feasibilist 
can bring the same charge against the intuitionist as the intuitionist brings 
against the transfinitist, that of 'appealing to fictitious extrapolatory abilities'. 
Thus intuitionism is merely the result of a half-hearted attempt to explain 
mathematics in terms of actual mathematical practice, a project that in any 
case George considers ill-conceived. This argument originated with Bernays: 

What does it mean to claim the existence of an Arabic numeral for the foregoing number 
729 

[67257 ], since in practice we are not in a position to obtain it? 

Brouwer appeals to intuition, but one can doubt that the evidence for it really is intuitive. 

Isn't this rather an application of the general method of analogy ... ? '" In short, the point of 
view of intuitive evidence does not decide uniquely in favor of intuitionism. (Bemays, 1935) 

Tait (1986, §12) makes the same point. 
Contrary to this, I shall argue that there are important differences be

tween the feasible-to-finite step and the finite-to-transfinite step, and that the 
differences all work in the intuitionist's favour. 

First, the transfinitist has a problem of deciding which properties of finite 
sets transfer to transfinite sets. Even the most ardent transfinitist has to accept 
that there is a genuine distinction between finite and infinite, and that there are 
some properties peculiar to finite sets and some peculiar to infinite sets. The 
intuitionist may ask, how do we know about the peculiarly infinite properties 
of infinite sets, given acquaintance only with finite sets? How do we know 
that infinite sets resemble finite sets even remotely? The positing of properties 
for infinite sets is bound to rely on trial and error: desirable properties are 
postulated, and withdrawn if they lead to a contradiction. This does not 
bother Maddy, who sees mathematics as ultimately an empirical science, 
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but it is uncomfortable for the rest of us who want mathematical theorems 
to be necessarily true. There is no analogous problem for the intuitionist, 
who does not recognise a precise distinction between feasible and infeasible 
constructions and consequently never has a problem of whether any properties 
are peculiar to feasible constructions. 

The second difference is the mirror image of the first. The intuitionist 
may try to embarrass the feasibilist by asking, which of my numbers do 
you accept as feasible? 104? 108? 1016? 1032? 1064 ? The feasibilist 
dare not give a clear answer, for fear of being trapped into saying something 
like '34219163 is feasible but 34219164 isn't' and because in any case what 
is feasible depends on the non-mathematical circumstances. It is futile for 
the transfinitist to try the same ploy against the intuitionist ('Which of my 
transfinite ordinals do you accept?') because the answer is obvious: 'All the 
ones below Ol'. 

The cause of these differences is that the feasible-to-finite step is an ideali
sation, a simplification of argument by deleting qualifying clauses ('provided 
no obstacles occur'), whereas the finite-to-transfinite step is something very 
different, a complication of argument by introducing new methods (Cantor's 
(1883) 'second principle of generation'). In idealisation there is a clear dis
tinction between what is idealised away (the obstacles) and what remains; in 
the finite-to-transfinite extrapolation we extrapolate away our entire under
standing of sets (based on enumeration and rules of membership). Idealised 
arguments apply (unreliably) to the same world as the unidealised arguments, 
whereas extrapolated arguments purport to apply to a much larger world. 

Idealisation, then, is quite unlike extrapolation; and there is no incon
sistency in accepting the feasible-to-finite idealisation but not the finite-to
transfinite extrapolation. 

CONCLUSION 

Mathematical arguments are abstract and idealised. They appear to deal 
with abstract and ideal objects but in fact deal (unreliably) with iterative 
processes and recursively structured objects in the physical world. The word 
'unreliably' here indicates that their results are only guaranteed to be correct 
on the occasions when no obstacles, errors and ambiguities occur. This 
unreliability is tolerable in practice because: 

• when an obstacle occurs we always know it; 
• we can always reduce the risk of errors by being more careful, and we 

can always resolve discrepancies between two processes by comparing 
them step by step; 

• we can always reduce the risk of imprecision by performing steps more 
carefully, and we can always resolve ambiguities by discarding them 
and repeating the step. 
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WHAT ARE CONSTRUCTIONS? 

CONSTRUCTIONS AS RECURSIVE DATA STRUCTURES 

Constructivism is the thesis that mathematics is an activity of 'mental con
struction'. Discussions of constructivism tend to concentrate on the question 
of constructive reasoning and neglect the more fundamental question: what 
are constructions? In this chapter I shall attempt to answer this and compare 
my answer with Brouwer's views. 

The word 'construction' is a metaphor. Clearly it is supposed to make us 
think of building houses or machines by connecting components together. 
For any sort of construction, components come in certain basic types (bricks, 
wheels, pistons, ... ); we take as many instances as we like of each type 
and connect them together with certain combination procedures (cementing, 
gluing, soldering, screwing, ... ), subject to certain constraints (only two 
things can be glued together at once, bricks have to be cemented not soldered, 
... ) to form an arbitrarily large construction. The word 'construction' is used 
both for the activity of constructing and for the constructed result. Sundholm 
(1983) distinguishes a third sense of the word: the process of construction 
considered as a completed object. 

The traditional mathematical example of a construction occurs in Eu
clidean geometry. A Euclidean construction is formed from any number of 
instances of the basic building blocks (points, lines and circles) by applying 
certain ruler-and-compass combination rules. 

If one had to define constructions in general, one would surely say that a 
type of construction is specified by some atoms and some combination rules 
of the form 'Given constructions Xl, . .. Xk one may form the construction 
C(Xl, ... Xk), subject to certain conditions on Xl, . .. Xk'. A construction, 
then, is defined recursively as either an atom or C(XI, . .. Xk), where C is a 
combination rule and Xl, •.. Xk are constructions satisfying the conditions for 
applying C. 

To state it more shortly, a construction is a recursive structure (see Chap
ter 4 for examples). A mathematical construction is an abstract recursive 
structure (or a tree, as I called it in Chapter 4). Each abstract atom corre
sponds to a type of physical atom: for example the abstract atom brick might 
correspond to physical bricks. In an abstract construction an atom may be 
used several times over (e.g., house(brick, brick, ... brick», but in a physical 
construction each atom may only be used once (thus a house consists of 
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many different bricks of the same type, not the same brick used many times). 
Equality of abstract constructions is defined by: x = y iff x and y could be 
instantiated by the same physical constructions. Equivalently, x = y iff x and 
y are built out of the same atoms using the combination rules in the same 
way. 

This definition of constructions accords well with the way in which they 
seem traditionally to have been viewed by constructivists. The very simplest 
type of construction allows just a single atom (call it '0') and a single combi
nation rule (given a construction x we may construct S(x» with no associated 
conditions: these constructions are called natural numbers. This explains 
the special elementary status that constructivists have always accorded the 
natural numbers. Other types of construction, obtained by allowing more 
atoms, combination rules and associated conditions, include lists, stacks, 
trees, algebraic expressions, logical formulae, sentences and proof trees. 

This view of constructions is certainly adequate to provide a foundation 
for arithmetic (see Part III); it even suffices for analysis (in Part IV I expand 
the interpretation of some constructions but do not enlarge the constructive 
universe). Further extensions of mathematics, for example to a general theory 
of species, may require a broader notion of construction; it is not possible to 
circumscribe in advance all the 'Acts ofIntuitionism' we may make in future. 
Hence the thesis I shall defend in this book is that the constructions involved 
in arithmetic and analysis are precisely the recursive structures. 

The natural operations on constructions are functions that are built out of 
the following primitive steps: making atomic constructions, combining con
structions into a composite construction, taking constructions apart into their 
components, and branching according to the structure of given constructions. 
Such functions are precisely the recursive functions. 

A construction may itself be interpreted as a recursive function: then it is 
called a program. Under such an interpretation, constructions act on other 
constructions, thus forming a computational system. This gives constructions 
an operational semantics as well as a syntax. 

All this will be very familiar to computer scientists. All I am saying is that 
constructions are expressions in a pure functional programming language. 
Bishop (1970) speaks of constructive mathematics as concerning itself with 
'the precise description of finitely performable abstract operations', and com
ments that all such operations may be reduced (by coding, presumably) to 
operations on integers. This view is essentially equivalent to mine. 

CHURCH'S THESIS 

If this view is correct it seems natural to close the constructive universe by as
serting Church's Thesis, that any constructive operation can be implemented 
as a recursive function and thus represented as a construction. Two forms 
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of Church's thesis need to be distinguished. The weak form states that all 
'mechanically computable' functions are recursive; most people, including 
intuitionists, are persuaded by Turing's (1937) arguments in favour of this. 
The strong form states that all 'humanly computable' functions are recursive, 
and it is this version that has attracted scepticism from intuitionists. Kreisel 
(1970) treats the strong thesis as an open question, and Dummett (1977, 
p. 264) describes it as 'not particularly plausible from an intuitionistic stand
point'. Others besides intuitionists, such as GOdel (Wang, 1974, X, §7), have 
also expressed scepticism about the strong thesis. I have no rigid opinion on 
this, but I am inclined to share Turing's (1950) views on artificial intelligence, 
which imply that the strong and weak theses are equivalent. For simplicity 
I shall stick to recursive functions, thus implicitly treating the strong thesis 
as true. If anyone produces a convincing counter-example I expect it will be 
possible to enlarge our notion of recursive function to include it. 

CONSTRUCTIONS AND LANGUAGE 

Although I think it will be generally agreed that the above account represents 
a reasonable formulation of constructivism, it may be disputed whether it 
deserves to be called intuitionistic. There are three alleged distinctions that I 
may be accused of ignoring: 

(1) the distinction between finitism (based on mere 'combinatorial' consid
erations) and intuitionism (which includes non-combinatorial notions 
such as proof (Godel, 1958) and human judgement (Bishop, 1967, Ap
pendix B»; 

(2) the distinction in subject matter between logic and mathematics (math
ematical constructions having a specifically mathematical content); 

(3) the distinction, so important to Brouwer, between linguistic reasoning 
and languageless mathematical activity. 

Thus it may be claimed that my notion of construction is too broad, since it 
includes 'linguistic constructions' as well as 'mathematical constructions', or 
that it is too narrow, since it excludes non-combinatorial constructions and 
anything not expressible in language. In either case it may be considered 
more appropriate to some variety of constructivism other than intuitionism, 
such as finitism, formalism or Markov-style constructivism. 

In the case of (1), I doubt that there is a distinct and viable finitist position 
in the sense intended; I defer discussion of this to Chapter 9. As for (2), 
I have already argued in Chapter 1 that logic and mathematics have equal 
claim to having a special subject matter. I shall discuss (3) here, in the 
light of Brouwer's own writings and interpretations by van Stigt (1990) and 
Detlefsen (1990a). It is necessary for me to discuss Brouwer's views on 
this point in some detail, for if he is right then my view of the constructive 
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universe is fatally distorted by my 'syntactic' perspective and I have missed 
the essentially open-ended nature of mathematical construction. I shall try 
to show in this chapter that there is no philosophical mistake in construing 
recursive syntactic structures as mathematical constructions. Of course it 
does not follow from this that all mathematical constructions are recursive 
structures, but I can at least show that recursive structures are adequate 
for arithmetic and analysis, and I have already conceded that the notion of 
construction may need to be augmented to go beyond analysis. 

BROUWER'S VIEW OF MATHEMATICS AND LANGUAGE 

Brouwer regarded mathematics as obtained by abstraction from our aware
ness of the flow of time. The story starts with the Primordial Happening. A 
sensation occurs in the mind of the Subject. No sooner has it occurred than 
it begins to recede into the past, so there are now two sensations: the original 
one, now retained in memory, and its continuation in the present. The two 
may however be considered as a unity (the second sensation experienced in 
the light of the memory of the first). Next the second sensation also recedes 
into the past, giving three sensations, and the process repeats indefinitely. 

The becoming-aware-of-time is the fundamental happening of the intellect: a moment in life 

falls apart into two qualitatively different things of which the one gives way to the other but is 

retained in memory. . .. 

Of this temporal two-ity, born out of time-awareness, or this two-membered time sequence 

of phenomena, one of the elements can in tum and in the same way fall apart into two parts; in 

this way the temporal three-ity or three-element time sequence is born. Proceeding this process, 

the self-unfolding of the fundamental happening of the intellect creates the time sequence of 

phenomena of arbitrary multiplicity. (Brouwer, 1933b, pp. 45-6) 

If we abstract from the content of the sensations we get the 'empty forms' 
of the Primordial Intuition: one thing splitting into two, two united into an 
ordered pair (a 'two-oneness' or 'two-ity'), and indefinite iteration thereof. 
Brouwer (1907, p. 180) lists the primitive elements of the Primordial Intuition 
as including the notions of 'continuous', 'entity', 'once more' and 'and so 
on'. From the Primordial Intuition mathematics is constructed: the natural 
numbers are nested ordered pairs, the ultimate elements of which are not 
particular sensations but the empty forms of 'first event', 'second event', and 
so on. This is the First Act of Intuitionism. 

However, only at the highest levels of civilization does mathematical activity reach full maturity; 

this is achieved through the mathematical abstraction, which divests two-ity of all content leaving 

only its empty form as the common substratum of all two-ities. 

This common substratum of all two-ities forms the primordial intuition of mathematics, 

which through self-unfolding introduces the infinite as a perceptual form and produces first 
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of all the collection of natural numbers, then the real numbers and finally the whole of pure 

mathematics or simply of mathematics. (Brouwer, 1933b, pp. 47-8) 

The First Act of Intuitionism .. . recognizes that intuitionistic mathematics is an essentially 
languageless activity of the mind having its origin in the perception of a move of time, i.e. of the 

falling apart of a life moment into two distinct things, one of which gives way to the other, but is 

retained by memory. If the two-ity thus born is divested of all quality, there remains the empty 
form of the common substratum of all two-ities. It is this common substratum, this empty form, 

which is the basic intuition of mathematics. (Brouwer, 1952) 

Heyting (1974) gives a similar account in very different language. Thus 
arithmetic arises from abstract awareness of the past and present. The Second 
Act of Intuitionism is awareness of the future as an open-ended field of free 
choices, giving rise to the notion of an infinitely proceeding sequence and 
hence to the intuitionistic continuum (van Stigt, 1990, §4.6.3). 

(Pure) mathematics is an activity of mental construction using only the 
Primordial Intuition. It is independent of any particular sense experience, 
even though the Primordial Intuition was itself originally obtained from 
sensation. Mathematics is perfectly precise and rigorous, and needs no 
philosophical justification or foundation. 

Mathematics may also applied to the task of organising our sensations 
into causal sequences, physical objects, and scientific theories. Applied 
mathematics uses hybrid constructions built out of particular sensations us
ing the Primordial Intuition ('iterative complexes of sensations' (Brouwer, 
1948»; these are to be distinguished sharply from the constructions of pure 
mathematics, built out of the empty forms. 

Language is one such impure construction, and consequently it can never 
be wholly precise. This applies equally to 'natural' languages, such as En
glish, and to formal languages, such as predicate logic, algebraic expressions 
and equations. Brouwer took 'logic' to be any general reasoning expressed 
in language, and I shall follows this usage in this chapter. 

For more details on all these points see van Stigt (1990, §§3.8-3.1O). 
Brouwer regarded the laws of logic as inductive generalisations from 

the linguistic records of our past constructive experience. The tautology 
A ::::> (B ::::> (A 1\ B», for example, arises as follows. When carrying out 
mathematical constructions we often take two constructions and combine 
them. If the two constructions are represented symbolically as P and Q 
then we represent the combined construction by concatenating the linguistic 
representations P and Q and inserting punctuation marks, thus: (P, Q). If 
the original constructions are of types expressed as A and B respectively, 
the combined construction is said to be of a composite type, which we 
represent as A x B or A 1\ B. Suppose we do this many times, with different 
constructions of various types. Then, looking back over the linguistic record 
of our constructions, we notice the common pattern and postulate, as an 
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empirical law, that any two constructions can always be paired and thus we 
can always go from constructions of types A and B to a construction of the 
typeAI\B. We express this using the ':l' symbol asA:l(B:l(AI\B». This law 
is well-supported by experience; therefore, in future, given two constructions, 
we may be highly confident that we shall be able to make a pair of them. But 
this is only an empirical prediction: we cannot be mathematically certain 
until we actually try it and succeed. 

[Speaking of syllogistic reasoning:] However, looking at the words that accompany this primitive 

form of mathematics, we notice in them a surprising mechanism with a regularity which is not 

clear a priori. (Brouwer, 1907, p. 131) 

Moreover, the function of the logical principles is not to guide arguments concerning experience 

subtended by mathematical systems, but to describe regularities which are subsequently observed 

in the language of the arguments. (Brouwer, 1908) 

Detlefsen (l990a) supports this view of A :l (B:l (A 1\ B» and insists that the 
prediction is falsifiable. How do we know, he asks, that any two constructions 
can always be paired in the way expressed linguistically by concatenation? 

'Pairing' is thus a mere tag for an undescribed and rather dubious ... mental operation that is 

supposed to allow us to take any two separate constructional acts and tum them into a single 

(complex) act whose content is the conjunction of the contents of the separate experiences. 
(p.528) 

He accepts that two linguistic expressions can always be concatenated, but 

though 'concatenation' may be clear as an operation on syntactical entities, it gives no indication 

of what its counterpart at the level of mental proof might be. (p. 529) 

Thus A :l (B :l (A 1\ B» is a record of past success but is not binding on the 
future. Similarly the principle of excluded middle, A V oA, is a record of 
success in decidable contexts, but is falsified by unsolved problems. 

Detlefsen's argument is a highly unconventional one, as pairing is nor
mally accepted as an uncontroversial constructive operation. I am not aware 
that Brouwer ever questioned the legitimacy of pairing; however, Detlefsen 
is certainly reflecting accurately Brouwer's general views on the relations 
between mathematics, mathematical language, and theoretical logic. 

It is clear from all this that mathematics is philosophically prior to logic, 
that logic is merely a record of past mathematics and an imperfect guide 
to future mathematics, and that to attempt to found mathematics on formal 
logical systems, in the manner of Frege, Russell or Hilbert, is to eat the menu 
instead of the dinner. 

One quick answer to Detlefsen is that, even if he is right about A :l (B :l 
(A 1\ B», other logical laws such as (A 1\ B) :l A and (A 1\ B) :l B are still sound, 
since we would not accept a construction as being of type A 1\ B unless we 
could decompose it into components of type A and B. Thus A:l (B:l (A 1\ B» 
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may have to be abandoned along with the Excluded Middle, but that is no 
argument against logic as a whole. A second quick answer is that pairing 
is simply Brouwer's abstract two-ity and is therefore at the heart of the 
Primordial Intuition. 

More importantly, however, this account is a serious misrepresentation 
of the way language is used in mathematics. The laws of logic are not 
obtained from empirical studies of the way people think. The tautology 
A:) (B:) (A 1\ B» is accepted on the basis of our understanding of :) and 1\, 
not as an inductive generalisation from a large number of instances that we 
have accepted in the past. 

Brouwer was hostile to any essential reliance on language in mathematics. 
His objections were complex and can be disentangled into three theses. 

• The separation thesis: there is a genuine philosophical distinction be
tween mathematical constructions and linguistic expressions. A linguis
tic expression may at best accompany a mathematical construction; it 
cannot itself be a mathematical construction. 

• Syntactic instability: linguistic expressions, considered purely as com
binations of symbols, are inherently imprecise and unstable. 

• Semantic instability: the correspondence between linguistic expressions 
and the thoughts they represent is inherently imprecise and unstable. 
('The essential weakness of language is the tenuous, unstable link be
tween thought and physical symbol' in van Stigt's (1990, p. 281) words.) 

These theses are related as follows. Syntactic and semantic instability lean 
heavily on the separation thesis (assuming that mathematical constructions 
and mappings between them are precise and stable). The strongest thesis 
is syntactic instability: it implies semantic instability. One could, how
ever, accept semantic instability (perhaps on the grounds that semantics is 
philosophically obscure in comparison with syntax) but believe that when 
linguistic expressions are divested of their meaning and considered purely as 
symbolic structures they become precise and amenable to rigorous metalin
guistic reasoning. This seems to have been Heyting's view, at least some of 
the time. He affirms 'the fundamental ambiguousness of language' and then 
continues: 

However, let us take another point of view. We may consider the formal system itself as an 

extremely simple mathematical structure; its entities (the signs of the system) are associated 

with other, often very complicated, mathematical structures. In this way formalizations may be 

carried out inside mathematics, and it becomes a powerful mathematical tool. (Heyting, 1956, 

p.5) 

This leads him to the position (p. 6) that 'every logical theorem ... is but a 
mathematical theorem of extreme generality; that is to say, logic is a part of 
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mathematics'; but see also p. 102, where he seems to say that the rigour of 
this correspondence is undermined by semantic instability. 

Brouwer asserted the separation thesis in all his pUblications: 

[Replying to an imaginary logician:] The words of your mathematical demonstration merely 

accompany a mathematical construction that is effected without words. (Brouwer, 1907, p. 127) 

The first act of intuitionism completely separates mathematics from mathematical language, in 

particular from the phenomena of language which are described by theoretical logic. (Brouwer, 

1954) 

One apparent exception to this is in his definition of spreads, where he insists 
that the elements of an infinitely proceeding sequence are symbols: 

First of all we determine an indefinitely proceeding sequence of symbols by a first symbol and a 

law which derives from each of these symbols the next one. We could e.g. choose the sequence 

~ formed by the successive 'numerals' 1,2,3, .... (Brouwer manuscript, in van Stigt (1990), 

Appendix 12) 

See also van Stigt (1990, p. 374). On the other hand, Brouwer sometimes 
says that the terms of the sequence are chosen from 'mathematical entities 
previously acquired' rather then symbols (Brouwer, 1952). In an apparent 
attempt to reconcile these alternatives he says: 

Because mathematics is independent of language, the word symbol (Zeichen) and in particular 

the words complex of digits (ZijJemlwmplex) must be understood in this definition in the sense 

of mental symbols, consisting in previously obtained mathematical concepts. (Brouwer, 1947b) 

Here he appears to concede that symbols can sometimes be mental and 
mathematical, which amounts to an abandonment of the separation thesis. 
This concession, is, however, highly atypical of his published views. Not 
too much significance should be read into this anomaly, particularly since, in 
the Cambridge Lectures on Intuitionism (Brouwer, 1981), delivered between 
1947 and 1951, he described infinitely proceeding sequences as composed 
of natural numbers rather than numerals. 

As for the two instability theses, he asserts the impossibility of reliable 
communication, whether verbal or non-verbal, in his early work Life, Art 
and Mysticism (1905, Chapter 5). However, he does not rely heavily on 
instability arguments in his early philosophy of mathematics (Brouwer, 1907, 
1908), where indeed he seems to accept that logical arguments can reliably 
accompany mathematical constructions. His complaint against logicians in 
(1907), (1908) and (1912) is that they neglect the question of whether there 
are any mathematical constructions accompanying their logical systems, that 
they rely on logical principles that are merely empirical regularities, and that 
this leads them to contradictions and uninterpretable notions such as Cantor's 
second number class. He refers to language as 'imperfect' and 'defective' 
(Brouwer, 1907, pp. 141, 169), but these references are incidental to his 
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argument. His later works, however, make clear that any use of language 
is inherently imprecise, even when manipulated metamathematically; this 
indicates a commitment to syntactic as well as semantic instability, although 
he never clearly distinguished the two. 

It follows that the language of daily intercourse between people with a limited memory, being 

necessarily imperfect, limited and of insecure effect, even if it is organised with the utmost 

practically attainable refinement and precision, ... (Brouwer, 1933a; see also Brouwer, 1947b) 

There are indications that he regarded language as unstable because it relies 
upon human memory to associate a construction with a word: since memory 
is fallible we cannot be sure that we always recall the same construction 
when we use a given word. On the question of how to secure the exactness 
of mathematics he says: 

The answer is that the languageless constructions which arise from the self-unfolding of the 

basic intuition, are exact and true, by virtue of their very presence in the memory, but that the 

human faculty of memory which must survey these constructions, is by its nature limited and 

liable to error, even when it seeks the support of linguistic signs. (Brouwer, 1933a) 

It is clear from this that the private use of language does not introduce 
unreliability into mathematics: it reduces (but does not completely eliminate) 
the unreliability caused by fallible memory. Hence the fallibility of memory 
does not explain the unreliability of linguistic reasoning in comparison with 
mathematical construction. 

It seems that the real reason for the imprecision of language is the diversity 
of its everyday uses: 'the stability and exactness which language in its 
grammar and vocabulary seems to possess formally, are to a great extent lost 
again, since far more elementary notions are needed in every-day practice 
than there are words and modes of connecting words in language' (Brouwer, 
1933b, p. 51; see also Brouwer, 1948). This is clearly an assertion of 
semantic, though not syntactic, instability. 

CRITICISM OF BROUWER'S VIEW OF LANGUAGE 

I shall oppose all three theses: I shall argue that linguistic expressions have 
just as much right to be considered 'constructions' as numbers have (Brouwer 
concedes this, though he usually prefers to call them 'verbal edifices'), and 
further that amongst constructions there is no genuine distinction to be drawn 
between the 'linguistic' and the 'mathematical' ones. 

What seems absurd about Detlefsen's pairing argument (see above) is the 
assumption that when forming pairs we are doing two things in parallel: 
pairing mathematical constructions and concatenating linguistic representa
tions. It seems to me that we are only doing one thing, which may be called 
mathematical or linguistic indifferently. 
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Some further examples will help. Consider the following list of (what I 
would call) constructions, ranging from the unmistakably linguistic to the 
unmistakably mathematical: 

(1) a sentence in English; 
(2) a sentence in a formal language, such as a formula or a formal derivation 

in an axiomatic system; 
(3) the parse tree of a sentence in a language; 
(4) a tree as an abstract data structure; 
(5) a list as an abstract data structure; 
(6) a natural number. 

Now, which of these are linguistic and which are mathematical? (1) is clearly 
linguistic and (6) is clearly mathematical. (2) is also surely linguistic: in
tuitionists do not distinguish between 'natural' languages like English and 
formal notations like predicate calculus. (3) is merely an alternative repre
sentation of (1) or (2); (3) is also a special case, or rather an application, of 
(4). (5) is a special case of (4): a list is a tree in which each node has at most 
one subtree. (6) is a special case of (5): a number is a list on a one-element 
set, with 0 being the empty list and successor being the operation of adding 
an element. It is very hard to see where in this sequence of examples there is 
room for a linguistic/mathematical distinction. 

In identifying numbers with a special type of list I have assumed that the 
system of natural numbers is only specified up to isomorphism, so that we 
may take any infinite progression as our number system. I think that anyone 
who wanted to maintain the linguistic/mathematical distinction would have to 
dispute this 'structuralist' view: they would need to argue that numbers have 
some special mathematical character not possessed by lists of any type, and 
hence not captured in Peano's axioms. Indeed, some people have claimed 
exactly this: that the natural number system is determined in some way 
beyond isomorphism by its everyday use in counting. Thus, Russell (1919, 
§I) says 

We want our numbers not merely to verify mathematical formulae, but to apply in the right way 

to common objects. We want to have ten fingers and two eyes and one nose. A system in which 

"I" meant 100, and "2" meant 101, and so on, might be all right for pure mathematics, but 

would not suit daily life. 

Hempel (1945, §7) agrees: 

The Peano system permits of many different interpretations, whereas in everyday as well as in 

scientific language, we attach one specific meaning to the concepts of arithmetic. 

Now it is certainly true that we need to explain how formal arithmetic can be 
used for everyday counting purposes, and to verify that, for example, we say 
'ten' when asked to count the fingers on two hands. However, the conclusion 
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drawn by Russell and Hempel is stronger: that we must understand zero 
and successor as specific things, not merely as the generators of an arbitrary 
infinite progression. Quine (1969, p. 81) denies this, correctly in my view. 
Imagine two people counting somebody's fingers using two different infinite 
progressions as number systems. They will both say 'one, two, three, four, 
five, six, seven, eight, nine, ten: there are ten fingers', regardless of the fact 
that they mean different things by the numerals. The difference in number 
systems does not affect their use of numerals for everyday counting and 
arithmetic purposes; it only shows up if one asks questions like 'Is Julius 
Caesar equal to seven?', and in everyday terms such questions would be 
dismissed as neither true nor false but senseless. Thus the structuralist account 
accords better with everyday usage than does Russell's and Hempel's view. 
So even the system of natural numbers is only known up to isomorphism; 
the same is certainly true for the real numbers (who cares whether a real is a 
Dedekind cut or a class of Cauchy sequences?) and for other mathematical 
systems. 

In order to argue against the mathematicsllanguage distinction I shall 
have to assume its existence temporarily; I shall take natural numbers as 
prototypical examples of mathematical objects, and logical symbols and 
English words as prototypical examples of linguistic objects. I shall try to 
show that, despite the different historical connotations of the words' logic' and 
'mathematics' there is no genuine distinction to be drawn that would justify 
Brouwer's view that a logical proof is not a mathematical construction. To 
see the alleged distinction clearly it is necessary to consider briefly several 
other distinctions with which it is liable to be confused. 

First, there is the distinction between formality and informality. It is 
sometimes assumed that 'logic' is a particular axiomatic system (first-order 
classical predicate calculus, typically), while 'mathematics' is simply what
ever mathematicians do. Thus G6del's incompleteness theorems are taken to 
show that mathematics transcends logical reasoning (Bemays, 1935, p. 283). 
This is an arbitrary and groundless interpretation: it makes perfect sense to 
speak of formal logic and informal logic, formal mathematics and informal 
mathematics. 

A second distinction is between types and tokens. If the letter 'A' is 
written twice on a blackboard then we have two tokens, both of the same 
type, namely 'A'. Likewise if we have two collections of five objects then 
we could call them two 'tokens' of the 'type' 5. A number and a linguistic 
symbol are both types rather than tokens. As such they are abstractions and 
do not occur in a particular mathematician's brain at a particular time or on 
a particular piece of paper (contrary to much of Brouwer's rhetoric). 

Thirdly, one can draw a distinction between, for example, the abstract 
notion of pairing and the particular punctuation scheme by which we rep
resent it (thus we could represent a pair as (A, B) or (AlB) or in a variety 
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of other ways). This may conceivably be what Detlefsen has in mind when 
distinguishing between mental pairing and syntactic concatenation. How
ever, this distinction is not between mathematics and syntax but between 
abstract syntax and concrete syntax (see Lalement (1993, §2.2.5) for more 
information on this distinction). A similar distinction arises within formal 
logic, between, say, the abstract syntax of an existentially quantified formula 
(which simply stipulates that for every variable x and formula A there is a 
formula that is the existential quantification of A with respect to x) and the 
concrete syntax by which it is represented (such as 3xA or (3x:A) or (3x)A 
or (Ex) A). Thus this distinction is no use for the purpose of distinguishing 
formal logic from mathematics: when we discuss predicate calculus philo
sophically we are thinking of a single system (the abstract syntax) not the 
various concrete-syntax realisations of it. 

A fourth distinction is between the private and the public. Brouwer 
thought of language as essentially a social mechanism by which we try to 
control other people and conquer nature; he refers to it as part of 'the power
grid of will-transmission' (Brouwer, 1933b, p. 50). 'All verbal utterances 
are more-or-Iess developed verbal imperatives, i.e. speaking can always be 
reduced to commands or threats, and understanding to obeying' (Brouwer, 
quoted in van Stigt (1990, p. 197). Thus any use of language is tainted by 
impure motives and imprecision. Mathematics, in contrast, is an essentially 
individual activity carried out for its own sake; this accounts for its unique 
rigour and precision. 

The contrast is contrived. Both mathematics and language are, as a 
matter of historical fact, social creations, and are learned by the individual 
from society; both have social and technological uses; both however can 
be practised and extended by an isolated individual for their own sake. It 
is about as easy to imagine mathematics being created from scratch by an 
isolated genius as it is to imagine language being so created. If one is tainted 
by its origin then so is the other. 

A fifth distinction is between a concept as an object of thought and the 
same concept expressed in a physical representation (as a sequence of sounds 
or ink marks, say). Brouwer seems to have regarded mathematical objects as 
existing in a mathematician's mind and as becoming linguistic when they are 
written down or spoken, and Heyting (1956, p. 15) shows a similar tendency. 
Yet surely it is possible to think in words and symbols without writing or 
speaking anything. For example, we can carry out proofs in propositional 
calculus purely mentally; this is surely still 'logic' even though it is not 
written down. Conversely, could we not carry out mathematical arguments 
using physical representations that are not linguistic? (Think of doing sums 
by counting apples, for example.) Brouwer may well be right that the use 
of physical representations introduces unreliability into our arguments, but 
this is no help in separating mathematics from language. A number and an 
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English word are both 'mental objects' in the same sense. 
A sixth distinction is that language typically has a meaning beyond itself 

whereas mathematics does not. When we reason linguistically about numbers 
we have algebraic equations and numbers in mind at once; the equations 
'accompany' the numbers, as Brouwer puts it. Whereas if we think about 
numbers non-linguistically we just have the numbers. This might suggest that 
non-linguistic thinking is more direct and rigorous than linguistic thinking. 
But this cannot be what Brouwer is getting at. For it would imply that if 
we ignore the meaning of the linguistic expressions and study them simply 
as pieces of syntax we restore full rigour. Thus this distinction can only be 
used to support the semantic instability thesis, not syntactic instability. In 
any case, the distinction merely seems to be between thinking with two sorts 
of mental entity and thinking with only one sort; it does not show that the 
equations are any less mathematical than the numbers. 

None of the above distinctions can plausibly be identified with the math
ematics/language distinction; at least, none will do the job that Brouwer 
wants, that of establishing that a proof in symbolic logic is not a mathemat
ical construction. All of these distinctions are independent of the alleged 
mathematics/language distinction (at least, if it is insisted that numbers are 
'mathematical' and words are 'linguistic') and they are therefore no help in 
substantiating the separation thesis. It seems to me that all the arguments 
used by Brouwer to separate mathematics from language rely on a confusion 
with one of the above distinctions. Language requires four elements: 

• a finite alphabet of character types; 
• the ability to recognise and generate an endless supply of tokens of each 

character type, with each token being an instance of a unique type; 
• the ability to combine tokens into arbitrarily large structures, subject to 

self-imposed grammatical restrictions; 
• the ability to parse a linguistic structure uniquely into substructures and 

ultimately into tokens. 

These look to me suspiciously like applications of the Primordial Intuition. 
Brouwer does indeed admit that language is a construction using the Primor
dial Intuition, but he believes that it is an impure one incorporating particular 
sensations, or perhaps incompletely abstracted patterns of sensations (,iter
ative complexes of sensations'). However, when one considers the variety 
of physical representations that have been used for language (ink marks, 
sounds, gestures, flag signals, flashing lights, smoke signals, electric pulses) 
one sees that language is a complete abstraction from the physical nature of 
the signal. The Primordial Intuition is likewise a complete abstraction from 
the Primordial Happening. So the difference between them disappears. 

In my account of abstraction and idealisation (Chapter 4) I argued that 
numbers were abstracted from repeatable operations (cf Brouwer's (1908) 
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characterisation of pure mathematics, 'mathematical systems exempt of liv
ing sensation, i.e. systems constructed out of the abstraction of repeatable 
phenomena, out of the intuition of time', and also Heyting (1956, p. 13». 
Linguistic expressions are abstracted in the same way from such things as 
sequences of ink marks. Since the making of ink marks is one example of 
a repeatable operation, and since any repeatable operation could in principle 
be used to express any language (particularly if it admits a number of vari
eties that can be taken as characters in an alphabet), numbers and linguistic 
expressions are essentially equivalent abstractions. 

Looking back at the examples of constructions (1)-(6), it is hard to see 
how (6) has a rigorous precision that is lost as one moves up the list, at 
least as far as (2). Is the linguistic numeral 'four' any less precise than the 
mathematical number four? On this basis I reject the separation and syntactic 
instability theses. 

To assess the semantic instability thesis, consider the following three 
examples of mappings between constructions. 

(7) A recursive mapping from expressions of the type of example (2) to 
other expressions of the same type is called a syntax-directed translation 
scheme. As a simple, well-known example, consider GOdel's (1933a) 
mapping from classical number theory into intuitionistic number theory, 
which he used to show their proof-theoretic equivalence: 

A f-t A if A is atomic 

A 1\ B f-t A' 1\ B' 

A VB f-t ,(,A' 1\ ,B') 

A ~ B f-t ,(A' 1\ ,B') 

,A f-t ,A' 

VxA f-t VXA' 

where A f-t A' and B f-t B'. 

(8) An example of a recursive mapping from expressions of the type of 
example (6) to other expressions of the same type is the addition function 

(O,n) f-t n 

(Sm, n) f-t Sx where (m, n) f-t x. 

This works in a similar way to (7), using a recursive clause for each kind 
of composite expression (Sm) and a clause for atomic expressions (0). 

(9) Finally (the most important example), consider a semantic mapping 
from expressions in an axiomatic system (say, Heyting Arithmetic, the 
standard formalisation of intuitionistic number theory) to mathematical 
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constructions (whatever they are). Imagine a mapping Pr that maps a 
formal Heyting Arithmetic derivation D of a theorem A to a construction 
Pr(D) that is an intuitionistic proof of A (whatever that means). Such 
a mapping would be analogous to the Curry-Howard correspondence, 
which maps natural deduction derivations to proof terms. The mapping 
Pr is defined by recursion on D, in the style of examples (7) and (8): 
for each axiom A of Heytin~ Arithmetic a proof of A is specified, and 

for each rule of inference, ~, it is shown how to obtain a proof 

of A from proofs of B, . .. c. 1t follows that any theorem of Heyting 
Arithmetic, derived by a derivation D, has a proof, Pr(D). Indeed, 
D may be regarded as the proof, since as soon as we know D the 
conversion to Pr(D) is routine and since, from an intuitionistic point of 
view, knowing how to carry out a construction is as good as having done 
it (see the Brouwer manuscripts in van Stigt (1990), Appendix 8, p. 450, 
and Appendix 9, p. 454; also Heyting (1956), p. 99). D is a high-level 
specification of how to build the construction Pr(D), or equivalently it is 
the construction, expressed in high-level terms. The existence of such a 
Pr would show that formal reasoning in Heyting Arithmetic is a sound 
way of arriving at intuitionistic proofs. (I shall actually construct such 
Pr functions for various axiomatic systems later in this book.) 

What view would Brouwer take of such a Pr function? The issue is whether 
logical arguments can be reliably accompanied by mathematical construc
tions. In his early period Brouwer accepted that one can apply logical princi
ples purely formally, in full confidence that the corresponding mathematical 
constructions could be carried out, provided one avoids use of the Excluded 
Middle (Brouwer, 1907, pp. 159-160; Brouwer, 1908). In his later publica
tions, however, he inserted an explicit qualification implying semantic, and 
probably also syntactic, instability. 

Suppose that, in customary mathematical language trying to deal with an intuitionist mathemat

ical system, the figure of an application of one of the principles of classical logic occurs, does 

then this figure of language accompany an actual languageless mathematical procedure in the 

actual mathematical system concerned? 

A careful examination reveals that the answer is, in general, in the affirmative, as far as the 

principles of identity, contradiction and syllogism are concerned, if one allows for the inevitable 

inadequacy of language as a mode of description and communication. But with regard to the 

principle of the excluded third it cannot, except in special cases, be affirmative (Brouwer, 1947a, 

p. 1; see also Brouwer, 1952) 

It seems that, for the later Brouwer, possessing D is not tantamount to 
possessing Pr(D) since D and Pr are inherently imprecise while Pr(D), as a 
mathematical construction, is precise. However, looking back at the examples 
(1)-(9), the kinship between (2) and (6) is so strong that I cannot accept that 
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formal derivations are imprecise while numbers are precise, and the analogy 
between the 'syntactic' mapping (7), the 'mathematical' mapping (8) and 
the 'semantic' mapping (9) is so strong that I cannot accept that addition is 
precise while Pr is imprecise. A 'semantic' mapping is simply a function 
between two classes of constructions, and seems to me no more unstable than 
any other function. It follows that formal logic is a rigorous predictor of what 
mathematical constructions are possible (provided we drop the Excluded 
Middle, of course), and furthermore that constructing a formal derivation D 
is tantamount to constructing the intuitionistic proof Pr(D). 

In this respect I would seem to be deviating significantly from Brouwerian 
orthodoxy (at least, that of the later Brouwer) and Detlefsen's interpretation, 
and perhaps missing the central point of intuitionism. This is not entirely my 
fault. Brouwer's classification seems arbitrary, and Detlefsen tells us a lot 
about what constructive activity is not, but gives no examples or insight into 
what it is. So I must persist in my misunderstanding, if misunderstanding it 
is. 

INTUITION 

I have spoken of Brouwer's 'Primordial Intuition' and 'intuitionism', but apart 
from these special expressions I have so far carefully avoided any use of the 
term 'intuition'. This reflects three misgivings about the word. 

First, there is the vagueness and variety of its uses. Mathematicians use 
the word indiscriminately for any ideas that are not expressed formally -
thus lumping together notions that are informal because they underlie one's 
chosen formal foundational system with notions that are simply too confused 
or poorly developed to be formulated rigorously. 

My second misgiving about 'intuition' concerns its connotation of mystic 
insight. The word suggests a special mental faculty by which we derive infal
lible knowledge not obtainable by ordinary means. Thus Korner (1960, VII), 
for example, rejects intuitionism on the sole ground that intuitionists have 
disagreed on supposedly 'self-evident' constructions. He cites the principle 
of ex falso quodlibet, false :J A, which, construed intuitionistically, states that 
we could transform a given proof of an absurdity, if such a thing were possi
ble, into a proof of an arbitrary formula A. This principle is an accepted part 
of intuitionistic logic, although Heyting (1956, p. 102) is hesitant about it, 
saying that it requires a wider interpretation of implication, while Dummett 
(1977, §1.2) suggests that it may require a special stipulation, KoImogorov 
(1925) rejects it as lacking intuitive foundation, and van Dalen (1973, §2.1) 
defends it as an immediate consequence of the decidability of proof. Since 
intuitionists can disagree, Korner argues, intuitionistic logic cannot follow 
from a self-evident and rigorous intuition. 

Now, Korner is surely being unfair here. He is applying a standard that 
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nothing could satisfy. However lucid and rigorous a theory is, there is no 
defence against someone's disputing its principles through misunderstanding 
them, nor against someone's hi-jacking its terminology to advance a rival 
theory (e.g., Griss's views on negation, perhaps). Intuitionism is no more 
vulnerable to this than any other philosophical position; intuitionism does not 
rely on a faculty of self-evident intuition any more than any other position. 
Every philosophy is based on informal ideas that are supposed to be accepted 
on their own evidence. Brouwer was given to proclaiming his founding ideas 
as Acts of Intuitionism, while other authors are more inclined to play them 
down and present their theories as 'presuppositionless', but this is simply a 
difference of expository style. The specific point about exfalso quodlibet is 
easily dealt with. I shall show in Chapter 19 that this principle arises naturally 
and inevitably out of a general theory of constructions. It does not need to 
be specifically postulated and it raises no special interpretational difficulties. 

My third reservation about 'intuition', as used by Brouwer to describe the 
structural invariants of time awareness, is that these invariants are intended 
to be known a priori (Brouwer, 1907, p. 99; 1912). That is, Brouwer claims 
(following Kant) that we know the structure of time independently of any 
experience; the reason for this is that we are so constructed that we can only 
take in sensations in a certain way, and this imposes a temporal structure 
on events. Now, as I see it, the structure of time is given by two binary 
relations on events: A = B (read as 'A is simultaneous with B') iff A and 
B are experienced together; A -< B (read as 'A is before B') iff A could be 
remembered while B is being experienced (where 'could be' allows for what 
we would normally call forgetting or simply not recalling). It is essential 
to our notions of present experience, memory, forgetting and free will that 
= be an equivalence relation and -< be a partial order. In addition it is 
conventionally assumed that -< is a total, dense order with no last element. 

However, it seems to me that the properties of -< are contingent: we 
can imagine future time not satisfying them. Cosmologists consider the 
possibility that there may be a literal end to the universe, a last moment of 
time. The many-worlds interpretation of quantum mechanics can be read 
as saying that time is continually branching - nobody notices the branching 
ordinarily because any initial segment of time is totally ordered. Many 
physicists doubt that time is infinitely divisible. I can even, just about, 
imagine time suddenly turning two-dimensional. In short, it seems perfectly 
coherent to imagine the required properties of -< failing. 

Does this matter for mathematics? I think that intuitionist mathematics 
would survive the failure of these properties, just as Euclidean geometry 
survived Einstein. We would simply have to speak of 'Brouwerian' time, by 
analogy with 'Euclidean' space. And this demonstrates that mathematics is 
not founded epistemologically on the properties of time. 

It is, however, so founded cognitively. Our ability to understand infinity 
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is founded on our understanding of a process repeated in time. The point is 
best made by a comparison with Frege. Consider the problem of defining 
Frege's ancestral relation, 'y follows in the <I>-series after x', where <I> is a 
given binary relation. In modern terminology the ancestral relation is simply 
the transitive closure, <I> +. Frege (1884, §79) defines it by 

x <1>+ y iff VF «Ve (x <I> e ::J F(e» !\ Vd, e «F(d) !\ d <I> e) ::J F(e») ::J F(y» 

(where F(u) means that u falls under the concept F); whereas anyone who 
regards mathematics as abstracted from time experience would define it by 

x <1>+ y iff y may be obtained from x by iterating <1>: x <I> a <I> b <I> c <I> ... <I> y 

(where iteration is understood by abstraction from sequences of events). The 
question is not which definition is mathematically more elegant or convenient 
but which is philosophically more elementary. Frege dismisses the iterative 
definition as follows. 

Next, there may be those who will prefer some other definition as being more natural, as for 

example the following: if starting from x we transfer our attention continually from one object 

to another to which it stands in the relation cp, and if by this procedure we can finally reach y, 

then we say that y follows in the cp-series after x. 

Now this describes a way of discovering that y follows, it does not define what is meant by 

y's following. Whether, as our attention shifts, we reach y may depend on all sorts of subjective 

contributory factors, for example on the amount of time at our disposal or on the extent of our 

familiarity with the things concerned. Whether y follows in the cp-series after x has in general 

absolutely nothing to do with our attention and the circumstances in which we transfer it; on the 

contrary, it is a question of fact ... 

My definition lifts the matter onto a new plane; it is no longer a question of what is 

subjectively possible but of what is objectively definite. (Frege, 1884, §80) 

I have two counter-arguments. First, we can remove the subjective factors 
from the notion of 'shifting attention' by abstraction and idealisation, as 
explained in Chapter 4, so producing an objective mathematical notion of 
iteration. Secondly, Frege's account depends on quantification over concepts, 
a notion that he simply takes for granted. The prospects for founding iteration 
on our time awareness seem much better than the prospects for founding 
second-order quantifiers on our supposed grasp of a surveyable platonist 
universe of concepts. 

It is on this vital point that I think Brouwer is right: he is starting mathe
matics at the right place, and this leads him to an essentially sound view of 
the mathematical world. This is why, despite disagreeing over the status of 
language and the a-priority of time, I persisfin calling myself an intuitionist. 
The fundamental notions required for intuitionistic mathematics (namely, the 
abstract and idealised notions of iteration, recursive construction and recur
sive transformations) are in practice accepted by nearly everyone, especially 
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by formalists, who could not even define a formula without them. Brouwer 
has provided the only explanation we have of why and how they are funda
mental. On Frege's view, in contrast, arithmetic would be just another branch 
of second-order logic. 



CHAPTER 6 

TRUTH AND PROOF OF LOGICAL FORMULAE 

So far I have argued that abstract and idealised talk about numbers, other 
constructions, and recursive functions is meaningful. Thus, for example, it 
is meaningful to assert equations and inequalities such as 

77 > 100 x 7! (1) 

and compound statements involving equations and inequalities such as 

if 231 x 886 = 204666 and 886 =I 0 then 204666 -:- 886 = 231, (2) 

and even statements involving letters, such as 

if m x n = p and n =I 0 then p -:- n = m, 

provided the letters denote specific numbers or other constructions. I have, 
however, claimed that it is meaningless to say 

for all numbers, m, n,p, if m x n = p and n =I 0 then p -:- n = m, (3) 

or 
there is a number n such that nn > 100 x n! (4) 

since quantifiers over infinite sets are meaningless. Hence the possibilities 
for arithmetic would seem rather limited. 

All the same, it is hard to dismiss (3) and (4) as meaningless with complete 
sincerity. General considerations about multiplication and division would 
seem to show that (3) is true by definition regardless of the values of m, nand 
p; it is hard to contemplate (2) without feeling that it would hold whatever 
numbers were chosen, and how else can we say this but by asserting that (3) 
is true? Likewise, (1) would appear in some sense to justify (4). 

There is a solution to the dilemma. Intuitionists would understand (4) not 
as an assertion that somewhere in the mathematical world there lives an n 
such that nn > 100 x n! but as a demand for an n such that nn > 100 x n!, or 
as the problem of finding such an n. The demand is satisfied, or the problem 
is solved, by 7 - or, as we say technically, 7 is a 'proof' of (4). Clearly (4) 
must be meaningful, otherwise we would be in no position to say that 7 is a 
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'proof' of it while 6 is not; but it gets its meaning by a strange route, via this 
special notion of 'proof' . 

This approach may be generalised to other logical formulae, involving 
logical connectives and quantifiers nested without restriction, provided the 
atomic formulae are decidable. Formulae may be understood in terms of 
what would count as a 'proof' ofthem. In Kreisel's (1962) words, 'The sense 
of a mathematical assertion denoted by a linguistic object A is intuitionis
tic ally determined (or understood) if we have laid down what constructions 
constitute a proof of A.' 

This is an unusual use of the word 'proof', and shows how intuitionistic 
semantics diverges from classical semantics. Classically, a formula is under
stood as a proposition. That is to say, it is understood in terms of what is 
required for it to be true (given an assignment of values to its free variables). 
The classical semantics of a formal system (say, first-order number theory) 
may be thought of as a box with two inputs: a formula and an assignment of 
values to variables. The output is the truth value of the formula. A proof, 
then, is any argument showing that a formula is true for all values of the 
variables. The notion of proof does not enter into the semantics at all: it is 
purely derivative. 

classical 
semantics 

true 

or not? 

formula _____ ----, 

values intuitionistic 
proof~ semantics 

Figure 2: classical and intuitionistic semantics. 

proved 

or not? 

Intuitionistic semantics is fundamentally different (see Figure 2). The box 
has three inputs: the formula, an assignment of values to variables, and a 
construction. The output is a truth value, depending on all three inputs; it is 
interpreted as saying whether the construction is a proof of the formula (with 
those values for the variables) or not. Thus if you input the formula (4), no 
values, and the construction 7, the output is true; if you input (4), no values, 
and 6, the output is false. 

Note that the intuitionistic semantics does not mention truth. So where 
does truth come in and how is it related to proof? There seem to be four 
views on this. 

(1) It is often said that once a formula has been proved then it becomes true, 
and remains so forever. Before it was proved it had no truth value. 

(2) Alternatively one may say that when a formula is proved this shows that 
it was true all along; if its negation is proved then it was false all along. 

(3) A more austere view is that an assertion 'A is true' (where A is a formula 
containing infinite quantifiers) is simply an abbreviation for a certain 
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assertion of the form 'p is a proof of A'. 'A is true' is to be read as 
'mumble, mumble is a proof of A'. We say 'A is true' when we have 
a proof P but do not wish to specify it at the moment because it is 
irrelevant to our present purpose. 

(4) The simplest view of all is to drop the concept of truth altogether for 
formulae of this kind and simply speak of proof. Thus, 3n (n + 3 = 5) is 
proved by 2 but is nevertheless not true: it is grammatically incapable 
of possessing a truth value. 

Interpretation (1) is often linked to a thoroughgoing anti-realism in which 
truth for indicative sentences generally (not just mathematical ones containing 
infinite quantifiers) is explained in terms of what is required to prove them. 
Dummett (1975), for example, suggests two grounds for rejecting classical 
logic in favour of intuitionistic logic. The first is the doctrine that 'meaning is 
use'; the second is a radical scepticism about subjunctive conditionals, under 
which even a proposition such as' 101010 + 1 is prime or composite' does not 
become true until we compute whether 101010 + 1 is prime. Goodman (1979a), 
Wright (1982) and George (1988) point out that arguments of this sort lead 
not to intuitionism but to a feasibilist or Wittgensteinian position. Although 
there is some overlap of attitudes between Wittgenstein and intuitionism 
(his most nearly intuitionist remark is 'Generality in mathematics does not 
stand to particularity in mathematics in the same way as the general to the 
particular elsewhere.' (Wittgenstein, 1978, V, §25» it is generally recognised 
that Wittgenstein's doctrines are just as destructive of intuitionist philosophy 
as of platonism (Gonzalez, 1991). 

Intuitionism takes a robustly realist view of constructions and decidable 
operations on them, as Weinstein (1983) emphasises, while simultaneously 
holding that there is something suspect about the notion of truth when applied 
specifically to mathematical formulae containing infinite quantifiers. This is 
not part of a general scepticism about truth; radical anti-realist assumptions 
are not necessary here (as interpretation (4) shows) and they are too powerful 
for the job. I sympathise with Heyting's position, that intuitionism should 
be based on minimal philosophical presuppositions. ('The only philosoph
ical thesis of mathematical intuitionism is that no philosophy is needed to 
understand mathematics.' (Heyting, 1974).) 

Interpretation (2) is more appropriate to a classical mathematician inter
ested in constructivity than to a constructivist. On this view it makes sense 
to ask whether Goldbach's conjecture is true, even though we have not yet 
proved it. We cannot assert that Goldbach's conjecture is either true or false 
but perhaps we can assert that it is either true or not true. In addition a 
question arises of whether everything that is true is destined to be proved, or 
merely could be proved in some sense requiring an infinite quantifier over fu
ture time or possible futures. Hodes (1982) advocates interpreting 'A is true' 
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as 'there exists a proof of A', where existence is understood intuitionistically, 
just as in 'there exists a natural number'. But this does not accomplish much: 
the point of the exercise is to explain intuitionistic truth and existence claims, 
not to presuppose them. 

Dummett (1977, §1.2) tries to steer a middle course between interpreta
tions (1) and (2), which I don't entirely understand. 

Interpretation (3) has the great merit of short-cutting all these difficulties 
while not impeding constructive mathematics in any way. A clear statement 
of this position is in Nordstrom et al. (1990, Chapter 4). The disadvantage is 
that it tempts a careless reader to lapse into the previous two interpretations. 
Thus, many authors on intuitionism seem to start with interpretation (3) and 
then slip into (1) or (2). An example is Martin-Lof (1987), who says that 'to 
know that a proposition is true is to know a proof of it', and then he cancels 
the two 'know's to conclude that to be true is to be provable. 

For these reasons I prefer (4). It avoids all philosophical difficulties 
associated with the relation between truth and proof. The only cost is that 
we must remember to refrain from describing a formula as true even after we 
have found a proof of it. Think of a formula as an incomplete proposition, a 
proposition with a gap. It has no truth value on its own; its meaning consists in 
the fact that when a construction is inserted in the gap it becomes a complete 
proposition and so becomes true or false. A construction whose insertion 
yields a true proposition is called aproof. Interpretation (4) is recommended 
by Dummett (1982, p. 91); it is also consistent with Hilbert's notion of a 
'partial proposition' (Hilbert, 1925, p. 378; Bernays, 1935, p. 278) and with 
Kolmogorov's (1932) view offormulae as statements of problems. 

Which of the interpretations is orthodox intuitionism? Heyting (1956, 
p. 3) banishes the question as metaphysical. Goodman's (1970, §1) account 
is typical: 

For the intuitionistic mathematician, on the other hand, it does not make sense to talk about the 

truth of a mathematical proposition independently of the question of whether or not one has a 

proof of it. Classically, in order to explain the meaning of a proposition it suffices to give the 

conditions under which it is true. Intuitionistically, one must rather explain what it means to 

have a proof of the proposition. 

He goes on to explain how the proof of a formula is defined in terms of 
proof of its components. If there is a notion of truth at all it would appear 
to be wholly derived from the notion of proof, and to be theoretically idle, 
since it plays no role in building up the meaning of a formula. We have the 
choice therefore of dispensing with it or retaining it as a parasite. Goodman, 
however, does not draw this conclusion, and it is not clear which of the four 
above interpretations he took in 1970. Subsequently (Goodman, 1979b) he 
settled for interpretation (1) and abandoned intuitionism on the grounds that it 
'denies the objective reality of mathematical truth' and 'without the practical 
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reality of mathematical truth there would be no such thing as mathematical 
rigour.' This mistake could be avoided on interpretation (4), under which the 
proof relation is perfectly objective. 

THE CREATIVE SUBJECT 

Let's try another way of approaching the question. Consider a typical event in 
the constructive life of a Brouwerian Mathematical Subject: at eight o'clock 
one evening, while taking a bath, Maud suddenly realises that 420232437 
is an odd perfect number. (It probably isn't really, but never mind.) As 
philosophers of mathematics, how are we to analyse this event? It seems to 
me that the event has three components: 
(1) the construction produced (420232437); 
(2) the property that makes the construction interesting (being an odd perfect 

number); 
(3) the mathematically irrelevant circumstances (the person, the time, the 

place, and the reasons that made her consider the particular number 
420232437). 

In intuitionistic tenninology (at least, my version of it), (1) is called a 'proof', 
(2) is called a 'fonnula', and (3) is not called anything. The event is summed 
up as 

420232437 r- being an odd perfect number. 

(I shall always use the 'r-' symbol for the intuitionistic proof relation.) I 
should explain how we distinguish the three components. (2) is distin
guished from (1) and (3) by the fact that we could fonnulate (2) separately 
and use it in two ways: before the discovery of a proof, as a statement of 
a problem (imagine Maud sitting in the bath, musing 'An odd perfect num
ber?'), and afterwards as an exclamation (imagine Maud proclaiming from 
the bathroom window, 'An odd perfect number!'). The distinction between 
(1) and (3) arises because constructions must be repeatable. When Maud 
reports her discovery so that she or someone else can duplicate it, she does 
not say 'Get into the bath at 8 o'clock, ... '; she says 'Consider the number 
420232437, ... '. Constructive events must be repeatable, otherwise there 
would be no notion of correcting errors, and indeed no notion of error and no 
objectivity in mathematics (see Chapters 3 & 4). (Brouwer is often loosely 
described as a 'subjectivist' because he believed that mathematics is all in the 
mind, but he was committed to objectivity in my sense just as much as any 
other mathematician.) We therefore must be able to distinguish the aspects 
of a constructive experience that need to be recreated when repeating the 
construction from those that do not, that is, to distinguish (1) from (3). 

It is (2) that is the closest intuitionistic analogue to a classical proposition 
(,There is an odd perfect number'); the exclamation usage of (2) is analogous 
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to a classical assertion or judgement. The exclamation may be regarded 
as justified (by the possession of 420232437) or as misleading (if uttered by 
someone who has not found an odd perfect number). The notions of 'justified' 
and 'misleading', however, are quite unlike the classical notions of 'true' and 
'false', in that classical truth depends only on the proposition, while justified 
exclamation depends obviously and essentially on the possession of a proof. 
In an attempt to appease classical logicians, intuitionists have traditionally 
referred to these exclamations as 'judgements' and the formulae exclaimed as 
'propositions', even speaking of them as 'true' and 'false'. This terminology 
seems to me completely misguided. An intuitionist view of mathematics is 
solely concerned with recording (the mathematically relevant aspects of) the 
constructions produced by various mathematicians at various times. This 
statement needs to be qualified in two ways if it is not to be misleading. First, 
when we speak of mental constructions we are concerned with mental types 
rather than mental tokens, since it is essential that constructions be repeat
able. Secondly, some mathematical constructions entail general statements 
about infinite classes of constructions: if we construct a general method for 
transforming Xs into Y s then we have discovered that if the method is applied 
to any X it will produce a Y. Thus we are doing more than reporting individ
ual constructive episodes in our mental life. The fact remains, however, that 
occurrences of constructions are the whole story; there are no additional facts 
about truth or provability. That is why the primitive assertion of intuitionism 
is of the form (*) above. 

A failure to analyse Maud's constructive experience into its natural com
ponents leads to spurious philosophical problems and diversions - most 
notoriously, the Theory of the Creative Subject, in which the basic assertion 
is not (*) but 

r (8 o'clock) being an odd perfect number. 

Proof, on this view, is a relation between a time and a formula. Axioms about 
this relation are posited that involve quantifying over all times. Confusion 
ensues about what it means to have a proof at a particular time (if rt A and 
rt A :J B does it follow that rt B or that 3t' > t (rt' B)?) and also between 
modal and actual time (does 3t (r t A) mean that A is destined to be proved or 
that A may be proved if we follow the right constructive path?); see Dummett 
(1977, §6.3) for more on these questions. 

All this seems to me a pointless excursion into epistemic logic. The 
relation 'r t A' really means 'the Subject has a construction P at time t 
and knows that P r A', and it is only the 'p r A' part that is relevant to 
intuitionistic semantics, while the epistemic difficulties are all in the rest of 
the phrase. If we are going to include time in the proof relation, why not go 
all the way and say 

r (Maud, in bath, 8 o'clock) being an odd perfect number ? 
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CONCLUSIONS 

To give an intuitionistic account of a branch of mathematics it is necessary 
and sufficient to define the relation P r- A (meaning that the construction P 
proves the formula A) and to explain and justify any necessary relationships 
of the form 'if P r- A then Q r- B'. The notion of truth applies to expressions 
of the form P r- A but not to the formula A in isolation. 

In this book I shall use the word 'proof in two senses: in the sense of 
intuitionistic proof, as expounded in this chapter, and in the usual mathemat
ical sense of the (formal or informal) argument in support of a proposition. 
This ambiguity is undesirable, but it is an attempt to conform to common 
mathematical usage, and it will always be clear which sense is intended. 
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THE NEED FOR A THEORY OF CONSTRUCTIONS 

The principal task of this book is to provide a theory of constructions, ex
plaining what constructions are, what we can do with them, and how they 
provide a foundation for predicate calculus, arithmetic and analysis. Before 
doing so I should explain why we need such a theory, why the informal 
remarks on the subject by Brouwer and Heyting are not sufficient. 

THE MEANINGS OF THE LOGICAL CONSTANTS, (I): 
HOW TO PROVE A FORMULA 

Consider the standard intuitionistic explanations of the meanings of the logi
cal constants. The meaning of a formula containing logical constants is given 
by what you have to do to prove it. 

• To prove an atomic formula, expressing the result of a computation, you 
simply need to carry out the computation. 

• To prove a conjunction A A B you must prove A and prove B. 

• To prove a disjunction A V B you must either prove A or prove B (also, 
some would say, you must indicate which you have done). 

• To prove an implication A ::J B you must show how to prove B given that 
you can prove A, that is, how to transform any state of affairs in which 
you have proved A into one where you have proved B. 

• To prove a universal quantification 'v'xA you must show how, given any 
construction x (of the correct type), to prove A for that value of x. 

• To prove an existential quantification 3xA you must specify an instance 
x (of the correct type) and prove A for that value of x. 

THE MEANINGS OF THE LOGICAL CONSTANTS, (II): 
WHAT IS A PROOF? 

The above definitions are consistent with the views of constructivists gen
erally (see for example Heyting, 1956, VII; Bishop, 1967, §1.3; van Dalen, 
1973, §2.1; Dummett, 1977, p. 12; Beeson, 1985, §II.6; Troelstra & van 
Dalen, 1988, Chapter 1, §3.1). Indeed, they could be taken as constitu
tive of constructivism in the wider sense (including intuitionism, Markov's 
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and Bishop's positions, and various forms of 'finitism', but not including 
predicativism). Differences of opinion, however, emerge in the attempt to 
express them more concretely. Intuitionists (and apparently most other con
structivists) believe that proving means finding a construction of a certain 
sort, called a proof (Heyting, 1956, p. 98); so we ought to ask, for each of 
the above clauses, how the proving activity is represented as a construction. 
(Some such concrete representation seems required if the ~-clause is to be
come manageable.) This construction should encapsulate the difference in 
epistemic state between someone who has proved the formula and someone 
who understands it but has not yet proved it. 

What, then, is a proof? One view (Sundholm, 1983, proposition III) is 
that proofs are sequences or trees of formulae, like the proof trees in classical 
formal logic, in which case the A-clause means that the only way to prove 
A A B is by A-introduction from A and B, while the V-clause says that the 
only way to prove A V B is by V-introduction from A or from B. But what 
then does the ~-clause mean? The only possible answer, on this reading, is 
that a proof of A ~ B is a proof of B from the premise A; likewise a proof 
of'v'xA would have to be a free-variable proof of A. However, as Dummett 
(1977, §1.2) points out, this is far too restrictive, as we would be unable to 
justify induction or the inference 

on this basis. 

'v'x(A ~B) 

3xA ~ 3xB 

A second view is that a proof of A A B is a pair (P, Q), where P is a proof 
of A and Q is a proof of B, a proof of 'v'xA is a function transforming any 
given x to a proof of A, and similarly for the other clauses. Thus a proof is not 
a tree of formulae but a pair, a function of a certain type, or whatever other 
construction is required by the proof clauses. I shall assume this formulation 
since it seems to involve no loss of generality. Possessing a proof of A A B is 
tantamount to possessing P and Q, which in tum is tantamount to possessing 
the pair (P, Q). SO, even if the proof is not really a pair, the proof and pair are 
interconvertible and possession of one represents the same state of knowledge 
as possession of the other. As Dummett (1977, p. 344) remarks, it makes no 
difference from the intuitive point of view precisely how a proof is coded as 
a construction. 

Having abandoned the first view we must distinguish carefully between a 
derivation, which is a tree of formulae conforming to the axioms and rules 
of some axiomatic system, and an intuitionistic proof, which is a pair, a 
function, or some other construction as required by the proof clauses. 

This reveals a legitimate sense in which intuitionistic mathematics really 
is prior to logic (taking 'logic' to mean predicate calculus, the theory of 
the logical constants A, V, ~, 'v' and 3): the logical constants are to be 
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defined, via the above proof clauses, in terms of an underlying theory of 
constructive reasoning. Hence the logical constants are not available for use 
in constructive reasoning, so we need a theory to spell out what is available. 

This is a murky area, and constructivists are not in agreement even on 
the broadest issues. We all agree that to prove 'v'xA we must know how to 
transform any given x to a proof of A, but what does this mean? Here are 
three readings: 

(l) we possess, somewhere in our repertoire of functions, one that, unbe
knownst to us, converts any x into a proof of A; or 

(2) we possess such a function and we know by divine revelation that it 
converts any x into a proof of A; or 

(3) we possess such a function and know by constructive reasoning that it 
converts any x into a proof of A. 

Heyting (1974), for example, says 'A proof of ['v'xA] consists in a general 
method which converts the construction of a natural number x into a proof 
of [A].' This suggests interpretation (1); but it could plausibly be argued 
that, constructively speaking, to possess a general method entails knowing 
that it is a general method. Interpretations (1) and (2) seem to me rather 
perverse; only interpretation (3) is faithful to the intention that a proof should 
encapsulate the difference in knowledge between someone who has made a 
certain constructive discovery and someone who has not. 

If interpretation (3) is adopted then the proof of 'v'xA must be not just a 
function F but a pair (E, F), where E is constructive evidence that F maps 
any x to a proof of A; likewise a proof of A :J B is a pair (E, F), where E 
is evidence that F maps proofs of A to proofs of B. These references to 
'evidence' are known as second clauses, and are formalised in Kreisel's and 
Goodman's systems (see the next chapter). A variation on this is to require 
that F be presented in such a way as to make it manifest that it does what it 
is supposed to. This amounts to incorporating E in the description of F; this 
approach is adopted in Martin-Lof's system. 

But what is this notion of 'evidence'? According to Beeson (1985, §11.6) 
it is simply constructive proof; thus the definitions of the logical constants 
are circular, like Tarski's classical truth definitions. This is, I think, a con
structivist but not an intuitionist position, since it removes any sense in which 
constructive activity is prior to predicate calculus. It also overlooks the fact 
that the logical constants (if that is what they are) on the right-hand sides 
of the proof clauses are only used in a very restricted way; therefore to 
understand the right-hand sides we do not already need to grasp the full 
sense of the logical constants. This raises the possibility that the clauses for 
the logical constants can serve as genuine explanations of their meaning, as 
clearly intended by Heyting (1956, VII) and reaffirmed by Dummett (1977, 
p. 409). Then 'evidence' must refer to some primitive system of constructive 
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reasoning not using the logical constants. Items of evidence need to be rep
resentable as constructions so that they can be incorporated in the proofs of 
A :J Band V'xA. 

USES OF A THEORY OF CONSTRUCTIONS 

The goal of a theory of constructions is to provide a coherent and self
contained system of constructive reasoning that is philosophically prior to 
predicate calculus and that can be used to give an interpretation of formal 
systems such as Heyting Arithmetic in a way that is faithful to the intended 
meanings of the logical constants. A successful theory of constructions could 
be used to shed light on the murky areas of intuitionistic logic, such as: 

• why the principle of excluded middle is constructively unsound (the 
answer may seem obvious from the informal definitions of the logical 
constants, but Tait (1983) and Troelstra & van Dalen (1988, exercise 
1.3.4) have pointed out that these definitions, together with the principle 
that truth equals provability, are consistent with classical logic); 

• the status of Markov's principle, -, 'In P(n) :J 3n -,P(n) for decidable 
predicates P, which is accepted by some constructivists but not by 
intuitionists; 

• whether, and in what sense, proof is decidable (see Chapter 10); 

• whether 'impossible constructions' are admissible, as used in the logical 
principle of exfalso quodlibet, false :J A (see Chapter 19); 

• why intuitionists believe that having a method for producing a construc
tion is tantamount to having the construction (Heyting, 1956, p. 99; 
Dummett, 1977, p. 20); 

• to investigate the completeness of intuitionistic predicate calculus and 
other formal systems with respect to the intended meanings of the logical 
constants; 

• to determine the extent to which constructive reasoning can be for
malised (see Chapter 10); 

• to explicate, or exorcise, Brouwer's notion of a 'fully analysed proof', 
as used in his proof of the principle of Bar Induction; 

• to compare intuitionistic reasoning with Hilbert's finitary reasoning (see 
Chapter 9); 

• to compare different constructivists' notions of constructive proof (Bee
son (1985, p. 410) suggests that these may have little in common beyond 
adherence to the laws of Heyting's predicate calculus and arithmetic); 

• to assess Sundholm's (1983) distinction between a proof as a 'process 
of construction', a proof as the 'object obtained as the result of a process 
of construction', and a proof as a 'construction-process as object'; 
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• to compare intuitionistic proof in the full sense with apparently weaker 
notions such as free-variable proof and proof from hypotheses (Dum
mett, 1977, p. 15); 

• to understand the impredicativity involved in quantifying over all proofs, 
in the definition of implication (it is very hard to capture the full intended 
meaning of intuitionistic implication in a theory of constructions, as the 
next chapter shows). 

Discussing the last point, Dummett (1977, §7.2) draws a distinction between 
canonical proofs (the proofs mentioned in the definitions of the logical con
stants) and demonstrations (the 'proofs' that appear in textbooks, which are 
merely means for constructing a canonical proof). He argues that the universe 
of canonical proofs must be stratified according to the logical complexity of 
the formulae involved, otherwise the definitions of ::) and V would become 
vacuous. (This should be compared with Goodman's theory of constructions 
(Chapter 8), in which a similar stratification of proofs is proposed to avert a 
self-referential paradox.} On the other hand, when Dummett considers the 
need for 'second clauses' he concludes that there is no way of circumscribing 
the complexity of the evidence E: 'it is at just this point that any confines 
within which we seek to enclose the possible complexity of a proof of a given 
conclusion will be burst.' 

Dummett arrives at the drastic conclusion that the notion of canonical 
proof will never be completely stable and that theorems of the form A ::) B 
can never be regarded as permanently proved, since we may one day invent 
exotic proofs of A that cannot be transformed into proofs of B. 

It is to save intuitionism from this fate that a theory of constructions is 
necessary. I shall spend the rest of this book setting up this theory and using it 
to interpret predicate calculus, arithmetic and analysis. In the process, some 
of the questions listed above will be solved; the others will become more 
amenable to rigorous treatment. 

In summary, Weinstein (1983) is surely correct in saying of the intuitionist 
philosophy that 'The success of this account depends upon our ability to give 
an explanation of the basic proof relation. Problems of both a technical and 
philosophical nature have frustrated attempts to explicate this relation. If 
intuitionism is to remain of philosophical interest, these problems must be 
overcome.' 



CHAPTER 8 

THEORIES OF CONSTRUCTIONS 

The questions for this chapter are: what does the intuitionistic proof relation 
mean? and what system of constructive reasoning is required for defining and 
manipulating this relation? I shall discuss attempts to answer these questions 
by Kleene, GOdel, Kreisel, Goodman, Scott and Martin-USf; I shall explain 
why I find none of their systems entirely satisfactory; and I shall sketch 
informally the ingredients that an adequate theory answering these questions 
should contain. 

PROOF, EVIDENCE AND PROTOLOGIC 

Constructive reasoning seems to involve three notions: 

• the notion of proof of a formula, represented here by the symbol 'f-'; for 
example one might define 

N f- 3n(nn > 100 x n!) iff NN> 100 x N! 

• a notion of evidence, as used in the second clauses; for example one 
might define 

(E, F) f- A :J B iff E is evidence that F maps proofs of A 

to proofs of B 

(the term 'evidence' is due to Kleene (1945), who seems to have been 
the first to point out the need for it) 

• a reasoning system, typically a sequent calculus, for deriving statements 
of the form P f- A or ' E is evidence that ... ' from other such statements; 
I shall call a system of this sort protologic. Protologic is typically used 
for establishing that all theorems of intuitionistic predicate calculus or 
arithmetic have proofs in the sense of f-. 

Note that I am not advocating such a three-fold division of labour; I simply 
introduce it as a framework encompassing all the systems discussed below. 
There is no standard terminology for these three components; not all systems 
have all three, and some authors use the word 'proof for two or more of them. 
I shall use the terms 'proof, 'evidence' and 'protologic' strictly as above. I 
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shall reserve the word 'formula' for expressions of predicate calculus and 
arithmetic (unlike many ofthe authors cited below). I shall also consistently 
use the symbol '1-' for the proof relation, the symbol '--t' for the sequent 
arrow in protologic, and the symbols' N, 'V', ':J', '3' and '''I' for the logical 
constants in formulae. 

KLEENE'S REALISABILITY 

The first theory of constructions that I am aware of is due to Kleene (1945). 
He begins with Hilbert's and Bernays' notion of an intuitionistic formula as a 
'partial judgement' or 'incomplete communication'. A proof is a construction 
that completes the communication. The proof relation P I- A (which Kleene 
expresses as P realises A) has the following clauses for the logical constants. 
(Note that constructions are coded as natural numbers, 2a3b codes the pair of 
a and b, and {e} is the e'th partial recursive function.) 

e I- A (for atomic A) iff A is true and e is 0 
2a3b I- A 1\ B iff a I- A and b I- B 
~~I-AVB ilial-A 
213b I- A V B iff b I- B 

e I- A :J B iff, for all q, if q I- A then {e}(q) I- B 
2x 3a I- 3xA iff a I- A 

e I- "IxA iff, for all x, {e } (x) I- A 

No protologic is provided, but Kleene reports several results, using con
ventional mathematical arguments, relating realisability to intuitionistic and 
classical truth; in particular, every theorem of intuitionistic number theory is 
realisable. 

Kleene points out how realisability deviates from intuitionistic proof. An 
intuitionistic proof is intended to encapsulate a mathematical discovery so 
that it can be communicated to someone else: 'A complete communication of 
the discovery to another person would have to provoke in the latter the same 
discovery' (§2). Thus, in the case of "IxA, to complete the communication 
we need not just the function {e} but also evidence that it does indeed map 
any number x to a proof of A. In other words, we need second clauses. 

Kleene's notion of realisability has since been developed by other au
thors in directions that take it further away from intuitionistic proof; these 
developments are outside the scope of this survey. 

GODEL'S DIALECTICA INTERPRETATION 

G6del (1958) provides a formal interpretation of intuitionistic arithmetic into 
a system of finite-type primitive recursive arithmetic T (see also Weyl (1921) 
and GOdel (1941». T is a many-sorted theory with variables for (natural) 
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numbers, functions from numbers to numbers, functionals acting on those 
functions, and so on up to all finite types. The intended model of T is the 
computable functions of all finite types (GOdel takes this as an informally 
understood primitive notion). 

The formulae of T are built up from equalities A = B (where A and B 
are terms of the same type) using the propositional connectives. Equality 
is intensional and decidable at all types, so the propositional connectives 
may be construed truth-functionally. The axioms are those of propositional 
logic with equality, the Peano axioms, and definition by A-abstraction and 
primitive recursion. 

Godel maps each formula A of arithmetic to a formula 3:!,vyAD(!,y), 
where,! and y are sequences of variables of various types and Av('!, y) is a 
formula of T:-His interpretation theorem is that if A is derivable in Heyting 
Arithmetic then, for some sequence of terms t, AD(t,y) is derivable in T. 

This can be construed as a theory of constructions in the following way. 
The constructions are the computable functions of finite type. A proof of A 
is the sequence of terms t in the interpretation theorem. There are no second 
clauses and hence there is no evidence. The protologic is the axioms and 
rules of T. 

The interpretation of the logical constants is essentially equivalent to 
Kleene's except for the ~-clause 

A ~ B maps to 3y:,~'v'~,.!f(AD~,~~,}0) ~ BD(y:~),}0) 

where A and B map to 3y'v'?;AD(y'?;) and 3~'v'.!fBD(~'.!f) respectively. This 
clause is significantly stronger than the usual intuitionistic interpretation: 
according to Godel's clause, to prove A ~ B one must produce functions y:, ~ 
such that an instance BD(Y:(Y),}0 of BD(~,.!f) follows from a single instance 
AD(y, ~(y, .!f» of AD(y, ?;). Intuitionistically, one would allow ~ to depend not 
juston y-but on the proof of 'v'?;AD(Y,y, and one would allow the proof of an 
instance of BD(~'.!f) to depend on more than a single instance of AD(y,?;). 

This difference is deliberate. GOdel intends T as the minimal extension 
of 'finitary' reasoning in which intuitionistic logic can be interpreted; he 
does not advocate adopting his interpretation as the intended meaning of 
the logical constants. Bishop (1970), however, does. He claims it provides 
a purely 'numerical' interpretation of proof that is adequate for mathemat
ics. He regards 'v'yAD(t,y) as a complete mathematical statement and A or 
3,! 'v'y AD(,!, y) as ail incomplete mathematical statement. To prove A we must 
produce t and recognise somehow that 'v'~ ADU,~) holds. 

KREISEL'S ABSTRACT THEORY OF CONSTRUCTIONS 

The first theory of proof to incorporate evidence seems to be Kreisel's (1962; 
1965, §§2.21, 2.31). This theory is intended primarily for technical purposes 
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since Kreisel (1962, p. 199) regards Heyting's informal explanations of the 
logical constants as already adequately clear. 

Kreisel's notion of construction includes basic constructions such as 0 
and 1 (representing true and false) and various truth functions acting on 0 
and I, such as negation, conjunction and implication; but it also includes 
non-finitary 'abstract' constructions (in Gooel's (1958) sense). All functions 
are total (Kreisel, 1962, p. 206), and hence all terms denote constructions. 
Apart from this, Kreisel's theories are very general and assume very little 
about the shape and nature of the constructive universe. 

The proof relation P f- A is expressed by rA(P, at. ... an) = 0 or by 
n[p, at. . .. an;A], where aj, ... an are values for the free variables of A; the 
construction rA or n is defined by recursion on the structure of A. 

Evidence is provided by a primitive undefined predicate n: if t is a 
term (denoting a construction) and a is a notion (a decidable property of 
constructions) then net; x· a [x]) means that t is evidence that any construction 
x satisfies a. This predicate is assumed to be decidable: 'we recognize a 
proof of an assertion of this form when we see one' (Kreisel, 1965, §2.14). 
(Note that Kreisel uses the word 'proof for both proof (n) and evidence (n).) 
This implies that proof (n) will be decidable. 

Evidence is used in his proof clauses for ::J and V, which may be para
phrased as follows. 

(Ct. C2) f- A ::J B iff CI is evidence that, 

for any construction q, q f- A ::::} C2(q) f- B 

(CI, C2) f- VxA iff CI is evidence that, for any construction x, C2(X) f- A 

where::::} is a truth-functional operator acting on the truth values 0 and 1. 
Kreisel's (1965) protologic is an axiomatic system involving truth-funct

ional combinations of expressions such as a = band n(a;x . a[x]), where 
a and b are terms and a is a notion. (The 1962 system was restricted to 
equalities a = b, but the effect is the same.) Since the terms a and b may 
contain free variables the meaning of a = b is that, for all values of the free 
variables, a and b denote the same construction. 

The axioms of the protologic, in the 1965 system, include a reflection 
principle 

n(a;x· a[x]) ::::} a[t]. 

This allows evidence to be transferred into protologic: if we have evidence 
a for a[x] then we can derive protologically any instance a[t]. Both systems 
also have a converse principle, allowing for transfer from protologic to evi
dence: if p is a protological derivation of a ::::} 13 and x does not occur in a 
then 
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is an axiom, for some term ap • 

Then for any theorem A of intuitionistic predicate calculus a term p can 
be obtained such that p f-- A is provable in protologic. 

Kreisel (1962) gives a finitist consistency proof for a weakened version 
of his system. However, a strong version of the system is inconsistent 
(Goodman, 1970, §9). 

GOODMAN'S THEORY OF CONSTRUCTIONS 

Goodman (1970) defines a theory of constructions as 'a type-free and logic
free theory directly about the rules and proofs which underlie constructive 
mathematics'. Goodman's system is a development of Kreisel's, modified to 
avoid the inconsistency and to admit partial functions. 

His language ofterms is extremely simple, consisting of constants (which 
include combinators and pairing functions), variables and functions applica
tions. A-abstractions are available as metanotation, translatable into combi
nator expressions in the usual way. (The semantics of this part of the system 
is discussed in Goodman (1972).) 

Goodman assumes a primitive evidence constant 1t (he calls it a 'proof 
predicate') such that 

1tUV has the value true iff v is evidence that, for all z, uz has the value true. 

1t is assumed to be decidable but is otherwise unexplained: 'We shall take 
such proofs as basic and will not attempt to analyze their internal structure.' 
However, in Goodman (1973a, §6) he provides a hint of the intended mean
ing: 'We can think of the insight [represented by v] as the visualization, or 
grasping, of the totality of the computations of the values of the function [u].' 

For each formula A he defines a term IA I (like Kreisel's r A) such that IA Ixy 
has the value true iff y f-- A (with x representing a sequence of values for 
A's free variables). His clauses for the logical constants resemble Kreisel's. 
Most importantly, in the clause for ::J he interprets the conditional operation 
~ truth-functionally, as Kreisel does, although with non-strict evaluation in 
the second argument. The justification he gives for this is that the clause is 
intended as a definition of implication and therefore the ~ operator used in 
it must be something simpler than implication if the definition is to escape 
circularity. The truth-functional expression 'X ~ y' is of course only appli
cable if X and Y are decidable; hence intuitionistic proof must be decidable. 

Goodman's protologic differs substantially from Kreisel's; it is a calculus 
of sequents of the form 

A = B, ... C = D ----* E = F 
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where A, B, ... C, D, E, F are tenns and X = Y means X and Y have the same 
construction as their values. There are structural rules, axioms and rules for 
equality, axioms for the combinators and other constants, and an induction 
rule. 

If one assumes in addition a reflection principle that everything for which 
there is evidence is true then Goodman (1970, §9) shows infonnally that this 
leads to a self-referential paradox. He blames this on the impredicativity 
of ::J, and recovers by stratifying his universe of constructions according 
to the principle that proofs must be about objects already constructed. He 
defines a sequence of grasped domains as follows. The basic domain B 
contains 'purely finitistic' things (the partial recursive functions, I think); for 
any domain x, the extended domain Ex includes x, all proofs about members 
of x, and certain other constructions. Every construction must belong to one 
of the grasped domains B, EB, E(EB), E(E(EB» . ... This sequence does not 
continue into the transfinite: we cannot define E"(B)=Un En(B) because 'The 
rule which leads from the nth level to the (n + 1 )st level is not a rule which we 
can understand' (Goodman, 1973a, §6). This is a puzzling statement because 
in the previous paragraph he undertook to explain this incomprehensible rule, 
finishing with the sentence 'Continuing in this way, we can construct the nth 
level for arbitrary n.' Continuing in what way? Why explain something 
that cannot be understood? My puzzlement increases on reading (Goodman, 
1970, § 10) that there are constants that do not belong to any grasped domain. 
The evidence predicate 1t is modified to take a third argument, the grasped 
domain over which the given proof applies; consequently 1t itself belongs to 
no grasped domain and apparently is not a construction. 

This is a problem that often arises with stratified systems. First it is argued 
on general grounds that every well-defined object must belong to some level; 
then we are shown some special objects that don't. 

To make matters worse, Goodman is forced to posit two reducibility 
operators to cope with the impredicativity in the interpretation of::J. (Kreisel 
(1965, §2.215) also mentions, but does not adopt, a reducibility hypothesis.) 
Weinstein (1983) argues that Goodman's reducibility principle is implausible. 

Axioms are added to proto logic for grasped domains, the reducibility 
operators and the evidence predicate 1t; a reflection principle (1970, VIII7) 
is also added, without paradox this time, and a 'rule of proof' (1970, VIII8) 
saying that protological derivations can be turned into evidence, as in Kreisel's 
system. 

The resulting theory is equivalent to Heyting Arithmetic: a fonnula is a 
theorem of Heyting Arithmetic iff there is a tenn that proves it (Goodman, 
1973a,b). 

Kreisel (1970) endorses Goodman's theory with one reservation, that 
although most 'notions' have a limited range of significance (which can be 
identified with a grasped domain) there are some notions that apply to all 
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constructions. 

SCOTT'S CONSTRUCTIVE VALIDITY 

Scott (1970) complains (justly) that Kreisel and Goodman provide no analysis 
of their notion of evidence, which enters into their systems in a 'mysterious 
way simply to allow certain properties to be decidable'; he dismisses the 
notion as unnecessary. 

His system includes constructions and species, with a single sort of vari
ables ranging over both. The constructions include certain basic objects 
and total functions mapping constructions to constructions; apart from this, 
what he means by a 'construction' is far from clear, but certainly differs 
greatly from the notion I describe in Chapter 5. In some ways his universe 
of constructions is very large, including within it a model of higher-order 
arithmetic. On the other hand it is does not appear to include all the recursive 
functions: he deliberately omits an iteration operator, in order to keep the 
functions total. Constructions are described by a language of terms con
taining constants, variables, function applications, pairs and pair projections, 
infinite products (which are identified with A-abstractions), infinite trees, 
infinite disjoint sums, and primitive recursion on trees. 

The logical constants are defined as usual but without second clauses 
(:) is defined in terms of V and V is defined in terms of 3). Like many 
constructivists, Scott is squeamish about the principle of ex falso quodlibet, 
so in his interpretation of a logical formula he inserts instances of the principle 
as a side condition where required. Every formula of arithmetic and analysis 
is interpreted as a species, so that the proof relation, P I- A, is represented by 
species membership, PEA. 

His protologic is a calculus of sequents A, ... B --+ C, where the expres
sions A, . .. B, C are of the form cr = "C or cr E "C (cr and "C being terms). The 
protologic consists of structural rules and axioms for equality (which consti
tute what he calls 'urlogic'), together with axioms and rules for the various 
constructs in the term language. 

Scott shows how, given any theorem of intuitionistic predicate calculus A, 
to find a term P and a protological derivation of the sequent --+ PEA; and 
he suggests that the converse may hold. 

Since there is no system of evidence his proof relation E is apparently not 
decidable. As he acknowledges in a postscript, this is unsatisfactory: 'the 
desired reduction oflogical complexity has not been obtained'. He suggests 
that reflection principles could be used to produce higher-order constructions 
and reinstate a theory like Kreisel'S, a proposal I shall adopt in my own theory 
of constructions (see Chapters 9 & 10). 
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MARTIN-LOF'S TYPE THEORY 

Martin-Lof's system (1975) is a development of Scott's. It is based on the 
Curry-Howard correspondence (Lalement, 1993, §4.2.5), according to which 
a logical formula is interpreted as a type and the proofs of the formula are 
objects of that type. Consequently the proof relation P I- A is written as 
PEA ('P is of type A'). 

The closed normal terms (listed by Martin-Lof on p. 100) form a model of 
the theory and hence may be regarded as the constructions; Martin-Lof does 
not speak of an intended model, so the possibility of other constructions, not 
expressible as closed normal terms, remains. All functions representable as 
closed terms are total (by Theorem 3.3) and recursive (by Theorem 3.15). 

A sequence of universes, Vo, VI, V2 ••. , is assumed, each closed under the 
term-forming constructs, such that Vo E VI E V2 E .... 

The logical constants are explained according to the Curry-Howard cor
respondence: thus, V is the infinite product n, ::> is a special case of n, :3 
is the infinite disjoint union ~, 1\ is a special case of ~, and V is a disjoint 
union +. Equality, numbers and recursion are also dealt with, thus giving an 
interpretation of the language of first-order arithmetic. 

It follows from this that there are no second clauses and hence no evidence. 
The protologic is a natural deduction system involving judgements of the 

form PEA and P conv Q (the latter meaning that P and Q are definitionally 
equal). The system has rules for term formation and 'conv', and four rules for 
every term-forming construct: a reflection (or formation) rule, an introduction 
rule, an elimination rule, and a conversion rule. 

The key result (Theorem 3.3 and the following paragraph) is that every 
closed term reduces to a unique closed normal term. An application of this 
is that the proof relation PEA is decidable (for closed terms P and A). For 
we can reduce P and A to unique closed normal terms pI and A', and then 
extract from pI its type and compare it with A' (Theorem 3.13). This relies 
on the fact that every closed normal term has a unique type, which is evident 
from its syntactic form. This is in accordance with the principle that every 
construction is presented to us as an element of a specified type (§1.1). 

Every formula in the language of Heyting Arithmetic is derivable in 
Heyting Arithmetic if and only if it has a proof (that is, an element of the 
corresponding type) in a version of Martin-Lot's system without universes 
(Thompson, 1991, Theorem 8.8). 

The system is elaborated in Martin-USf (1982, 1984), in which we are told 
that the protologic deals with judgements of the following four forms: 

A type, A=B, aEA, a=bEA 

meaning, respectively, that A is a type, A and B are the same type, a is an 
object of type A, and a and b are equal objects of type A (note that every type 
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now has an associated equality relation; this replaces the syntactic 'conv' 
relation in the 1975 system). The 1982 and 1984 systems reveal a shift 
in motivation: Martin-Lof's purpose is now not to represent the full notion 
of intuitionistic proof but only the 'computational' part of proof (Beeson, 
1985, §XI.23). Functions are now treated extensionally and proof becomes 
an abstract version of realisability (see Diller & Troelstra, 1984). I shall 
therefore restrict attention to the 1975 system. 

The decidability of the proof relation is bought at a price. Under the 
Curry-Howard correspondence, the terms of the system correspond to formal 
derivations in a natural deduction formulation of Heyting Arithmetic; reduc
ing a closed term to closed normal form corresponds to normalising a natural 
deduction derivation (Girard et al., 1989, §§3.5-3.6). In effect, Martin
Lof's system takes canonical proofs, in Dummett's (1977, §7.2) sense, to 
be normalised natural deduction derivations. Dummett himself rejects such 
an identification (pp. 398-399) for the following reason. A natural deduc
tion derivation for A ::> B corresponds to a function that we can immediately 
recognise as transforming proofs of A to proofs of B. By contrast, a proof 
of A ::> B in the full intuitionistic sense is a function that can be recognised, 
perhaps with the aid of afurther proof, as transforming proofs of A to proofs 
of B; the 'further proof' (which I would call the 'evidence') may be arbitrarily 
complex. 

Dummett's point seems to me sound. In Martin-Lof's system the only 
functions representable are those definable by primitive recursion: these in
clude the primitive recursive functions themselves and also functions defined 
by higher-order primitive recursion such as Ackermann's function, but this 
is still only a recursively enumerable subclass of all the recursive functions 
(Thompson, 1991, §4.8). Now, suppose we had a function that we knew trans
formed proofs of A to proofs of B, but the function was not representable in 
the system. Then we would have a proof of A ::> B in the intuitionistic sense 
but not in Martin-Lof's sense. The system cannot be extended to include all 
recursive functions because this would also admit partial recursive functions 
and hence the normalisation theorem would fail and proof would no longer 
be decidable. 

The conclusion is that there is a conflict between the decidability of the 
proof relation and the desire to represent the full meaning of the intuitionistic 
logical constants, at least in systems of this sort with no second clauses. 

Sundholm (1983) suggests a new way of looking at the decidability ques
tion. He distinguishes between the process of constructing a proof and the 
constructed proof object; he proposes that it should be decidable whether a 
given constructive process produces a proof of a given formula A, but it need 
not be decidable whether a given constructed object is a proof of A. If P is 
the constructed object, the process of constructing P seems to correspond to 
the protological derivation D of the judgement P f- A. Sundholm's proposal 
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seems to be that protologic is decidable but f- need not be, and hence there 
is no need for second clauses; the evidence is provided by the construction 
process rather than being part of the constructed proof object. 

It is not clear to me what this new point of view accomplishes. Recall 
from Chapter 7 that the intended meaning of A :J B is that we imagine we 
have proved A and we show how to obtain a proof of B. That is, we imagine 
that we not only possess a proof object P for A but also remember the process 
D by which we obtained it; we can use both P and D to build a proof of 
B. Hence we must regard the pair (D, P), rather than P, as the real proof 
of A (in the canonical sense used in the definition of ::J). Then the proof 
relation (D, P) f- A becomes decidable once more, and second clauses have 
been reinstated, with D as the evidence. Sundholm's apparent intention is to 
avoid second clauses by insisting that the proof of B depend only on P and 
not on D. In that case, circumstances could arise in which we know how to 
obtain a proof of B provided we first succeed in proving A, but yet we do not 
have a proof of A :J B. This seems to be an unjustifiable divergence from the 
intended meaning of implication. (The question discussed in this paragraph 
was first raised by Kreisel (1970, pp. 145-146, note 11).) 

UNRESOLVED QUESTIONS 

The above theories, of course, raise more questions than they answer. 
First, what are constructions? It is not enough to be given a language of 

terms denoting (some of the) constructions; we need a much more explicit 
idea of the shape and size of the constructive universe than anyone has given 
so far. This is particularly so for those systems that distinguish between 'fini
tary' and higher-order constructions; Goodman's and Martin-Lof's stratified 
systems provide some idea of how higher-order constructions arise but they 
cannot be the whole story: having constructed a sequence of levels it always 
makes constructive sense to take the union of them. The issue here is the 
open-endedness of constructive mathematics, which is related to the problem 
of how to handle the impredicativity in the interpretation of:J. It would be 
absurd to demand a formal theory of open-endedness, but we do need an 
explanation of how open-endedness is accommodated within a formal theory 
of all constructions. 

Secondly, we need an informative theory of evidence. Kleene, GOdel, 
Scott and Martin-Lof try to do without evidence, and lose contact with 
the intended notion of intuitionistic proof as a consequence. Kreisel and 
Goodman simply posit evidence as an undefined primitive notion. We need 
to know the general form of the statements to which evidence applies, which 
is the general form of a complete mathematical communication in Kleene's 
sense; Kreisel, Goodman and Bishop take it to be of the form 'for any x (in 
a domain), A(x)', where A is decidable, but this needs an argument. We also 
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need to know about the nature of the constructions that are used as evidence. 
The assumption that the evidence predicate is decidable (and hence proof is 
decidable) ought to be justified (or refuted) from a theory of evidence, not 
simply stipulated. 

Thirdly, the nature and status of protologic are obscure. Since evidence is 
apparently intended to deal with the general form of a constructive statement it 
is puzzling that we find ourselves introducing a separate system of protologic. 
What is its relation to evidence? What is the general form of a protological 
expression: a sequent (Goodman, Scott), or an equality (Kreisel, 1962), or 
a universally quantified propositional function of equalities (GOdel), or a 
universally quantified decidable statement (Kreisel, 1965), or one of Martin
Lofs four judgement forms, and why? What axioms and rules should be 
included in protologic? 

Most importantly, what philosophical significance does an interpretation 
of arithmetic in a theory of constructions have? The intention is to reduce 
intuitionistic predicate logic and arithmetic to a more elementary system 
of constructive reasoning. If this is to succeed we need to characterise 
both evidence and protologic as coherent systems (not just opportunistic 
collections of axioms and rules) that are philosophically more primitive than 
predicate logic and that are themselves philosophically justifiable. This 
would be easier if we had one basic system instead of two, as we could then 
argue that it formalised constructive reasoning in general. 

MY ANSWERS TO THE UNRESOLVED QUESTIONS 

Briefly, my answers to the above questions are as follows. 
Constructions are recursive structures interpretable as partial recursive 

functions, as explained in Chapter 5. There are no 'higher-order' construc
tions. I shall represent constructions by a term language that is like Good
man's but without the stratification and the mysterious undefined operators. 
Every construction will be expressed by a term; or rather, every construction 
will be a term: there is no need for a distinction between mathematics and 
syntax (see Chapter 5). The open-endedness of constructivity is represented 
via well-foundedness of trees (see Chapter 10), taking up Scott's suggestion 
of using reflection principles. 

Evidence is coded protologic. That is, a piece of evidence (as used in the 
second clauses) is a protological derivation encoded as a construction. Thus 
there is only one basic system of constructive reasoning, protologic. 

Protologic is a calculus of sequents as explained in the next section. I 
shall argue that the sequents represent the general form of a constructive 
statement and that the axioms and rules embody all of the ingredients of our 
understanding of constructions. 
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INFORMAL INGREDIENTS OF PROTOLOGIC 

Protologic is the system of reasoning that underlies predicate calculus and has 
a direct constructive meaning. The name 'protologic' is intended to suggest 
its relation to 'logic' (in two senses of the word). First, if we take 'logic' to 
mean predicate calculus then protologic is prior to logic. Secondly, if we 
take 'logic' to be the general theory of deductive reasoning then protologic is 
the most primitive form of logic, at least for mathematical purposes. 

Consider this second sense of 'logic'. In my discussion of Quine (Chap
ter 1) I asserted that logical necessity arises from the fact that when we 
understand the meaning of a word this understanding is inextricably tied up 
with seeing that certain general statements hold for it. Thus a byproduct of 
defining a construction is an ability to reason constructively with it. Con
structions are essentially programs (Chapter 5), so we may take as an example 
the factorial function, defined by 

f::, 
fact(O) = 1, 

f::, 
fact(n + 1) = (n + 1) x fact(n). 

Now, one could not be said to understand this definition unless one could see 
the correctness of arguments such as 

for any n, fact(n + 3) = (n + 3) x fact(n + 2) 

= (n + 3) x (n + 2) x fact(n + 1) 

= (n + 3) x (n + 2) x (n + 1) x fact(n) 

(assuming the usual properties of + and x). The equations are true 'by 
definition', as we say. A second example is the functionf defined on positive 
integers by 

f::, f::, f::, 
f(1) = 1, f(2n) = f(n) + 1, f(2n + 1) = f(6n + 4) + 1 (n ~ 1). 

It is not known whether f is total, so we need to phrase our arguments in the 
style 

for any n, v ~ 1, iff(2n + 1) = v thenf(6n + 4) + 1 = v 

and so f(3n + 2) + 2 = v 

or possibly 

for any m, v ~ 1, if [f(m) = v and odd(m)] 

then [{(3m + 1) + 1 = v and even(3m + 1)] 

therefore f«3m + 1)/2) + 2 = v. 
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The typical form for the statements that make up these arguments seems to 
be 

for any constructions x, ... y, if A and ... B have the value true 

then so does C 

where the terms A, ... B, C represent computations involving x, ... y. 
But what do 'for any', 'if ... then' and 'and' mean here? They cannot be 

understood as 'i, ::::> and /\, since we are supposed to be working at a level 
below predicate calculus. Nor can 'if ... then' be truth functional, since it is 
applied to computations such asf(m) = v that may not halt. Let us therefore 
invent a new notation for them: 

(x, ... y)A, ... B -t C 

where 'for any', 'if ... then' and 'and' are represented by brackets, an arrow, 
and a comma, respectively. The apparent universal quantification 'for any 
x, ... y' is to be understood in the sense of Russell (1908, II). If P is a 
constructive argument, 'for any x, P' means that P works regardless of x; 
that is, we can see the correctness of P without needing to enquire into 
the meaning of x. P is really an argument schema; it becomes a complete 
argument if a value is chosen for x, but even in advance of choosing x the 
schema is already sound, so that we are guaranteed that whatever instance of 
P we form it will be sound. Russell distinguishes this from the classical 'for 
all x', which is an infinite conjunction of all instances; it is also different from 
the constructivists' ''ix', where the proofs of the instances may take different 
forms for different values of x. Russell traces the distinction between 'for 
all' and 'for any' to Frege (1893, §17) and ultimately to Euclid's general and 
particular enunciations; the notion of 'for any' is also taken as primitive by 
Herbrand (1931, footnote 3). 

The three phrases 'for any', 'if ... then' and 'and' are not three 'protological 
constants' but are inseparable parts of a single construct (x, ... y) A, ... B -t 
C, which I shall call a protological sequent. 

The above examples of constructive reasoning require a protological ax
iom schema 

(x, ... y)A -t B 

where B is obtained by rewriting subterms of A according to the defining 
clauses of the constructions used; in addition we need various structural rules 
to give a workable sequent calculus . 

. What else do we need? We need to capture all the knowledge about 
a construction that is implicit in an understanding of its definition. The 
functions fact and f above are defined by recursion; a recursive definition 
says not only that the function defined satisfies its recursion equations but that 
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it only has a value when the recursion equations require it to. This requires a 
principle of induction. All constructivists agree that induction is a legitimate 
element of constructive reasoning, at least if it is only applied to decidable 
predicates; they either take this for granted or give a circular justification 
(Heyting, 1956, p. 14; Troelstra & van Dalen, 1988, Chapter 3, §1.1). I 
shall attempt to say something more informative here about why induction is 
intrinsic to constructive reasoning. 

Recall from Chapter 4 how mathematical constructions (such as numbers) 
are obtained by abstraction from physical constructions (such as counting 
processes or other repetitive events). Consider two intensionally isomorphic 
physical computation processes A and B. By 'intensionally isomorphic' I 
mean that there is a one-to-one correspondence between the ways in which 
they are carried out, such that they may be regarded as instantiations of 
the same abstract computation. For example, A and B may be the 'same' 
computation repeated by one person at different times, or they may be the 
'same' computation carried out in different languages (English and French, 
say). The use of abstraction requires that A and B should deliver the same 
(or corresponding) results: if the English computation halts at step 72 with 
the result 'five' then the French computation should halt at step 72 with the 
result 'cinq'. This requirement may be stated thus: if there is a mapping 
(such as English-to-French translation) that maps any step of A to a correct 
step of B then the whole computation A will map to the whole computation 
B. The local correspondence between individual steps implies a global 
correspondence between the entire computations. 

Some principle of this form is required if we are to abstract from com
putation episodes; if we could not do this then we would have no notion of 
repeating a computation, and therefore no notion of error and correctness in 
computations (see Chapters 3 & 4). Computation episodes would not be cor
rect or erroneous; they would just happen. Hence the result of a computation 
episode would have no consequences beyond itself. 

If such a principle is granted, however, it gives us a powerful supply of 
constructive arguments in sequent form 

(x, ... y)A -+ B; 

this is to be read as 'the computation A is related step by step to the com
putation B (regardless of x, ... y) in such a way that if the former results in 
the value true then so must the latter'. The principle can be generalised, 
since what counts as a 'step' is somewhat arbitrary. For a precise formulation 
see the Fxpt Rules in the formal version of protologic (Chapter 17) and the 
commentary in Chapter 18. 

A sequent (x, ... y) A, ... B -+ C is an incomplete proposition, since it 
refers to an intensional relationship between the computations A, . .. Band 
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the computation C without specifying it. The protological derivation by 
which the sequent is derived in the sequent calculus of Chapter 17 indicates 
how this intensional relationship is built up; thus the protological derivation 
completes the proposition, showing how the computations A, ... B are related 
to the computation C. Because a sequent is an incomplete proposition, 
sequents cannot be nested. That is, it would be meaningless to form complex 
expressions such as 

(x) [(y) A, [B -+ C] -+ D], E, F -+ [(z) G -+ H], I. 

To summarise, protologic expresses all that we know about constructions 
when we understand their definitions. Protologic is a coherent whole: it 
would make no sense, for example, to study the proof-theoretic effects of 
weakening or omitting the induction principle, since induction is founded 
solidly in the abstraction operation that divides the world into mathematical 
and non-mathematical aspects, without which mathematics would be impos-
sible. Protologic is expressed in terms of sequents (x, ... y) A, ... B -+ C, 

. which express intensional relationships between computations A, ... B and a 
computation C and which entail that, for any x, ... y, if A, ... B result in true 
then so must C. Since this means that we can know the result of C before 
evaluating it, this gives protologic a direct 'predictive' meaning, in Bishop's 
(1970) terminology. 

The story is not quite complete. For simplicity I have omitted reflection 
principles, which, as I shall argue in Chapter 10, also belong in protologic. 

EVIDENCE AS ENCODED PROTOLOGIC 

Evidence is whatever we use to establish statements of the form 

for any q, if q I-- A then F(q) I-- B (in the definition of :J), 

for any x, F(x) I-- A (in the definition of \/). 

Note that both of these are in the sequent form (x, ... y) A, . .. B -+ C used 
by protologic (if we allow the number of terms A, ... B to be zero). Since 
protologic represents directly meaningful constructive reasoning in general 
it seems compelling to identify evidence with protologic and say 

(E, F) I-- A :J B iff E is the code of a protological derivation 

of (q) q I-- A -+ F(q) I-- B 

(E, F) I-- \/xA iff E is the code of a protological derivation 

of (x) -+ F(x) I-- A. 



THEORIES OF CONSTRUCTIONS 97 

(The :)-clause will need further modification for technical reasons; see Chap
ter 27.) This identification also has the advantage that it raises the possibil
ity of justifying Kreisel's and Goodman's axioms stating that protological 
derivations can be transferred into evidence and vice versa. 

Note that on this view the 'if ... then ... ' in the definition of :J is not 
truth-functional (as claimed by Kreisel and Goodman) and the general form 
of the statements to which evidence applies is a sequent rather than the 'for 
any x (in a domain), A(x)' form assumed by Kreisel, Goodman and Bishop. 



CHAPTER 9 

IDLBERT'S FORMALISM 

In this chapter I attempt to disentangle the complex relationship between 
intuitionism and Hilbert's formalism. I do this for two reasons: to dispel 
the widespread impression that Hilbert's philosophy is a rival to intuition
ism, and to advance the formulation of constructive reasoning begun in the 
previous chapter. In this chapter, the word 'intuitionism' will refer only 
to mathematics based on the First Act of Intuitionism: Brouwerian choice 
sequences and species are excluded from consideration here since there is 
nothing in formalism with which to compare them. 

Interpreting Hilbert is a difficult task, partly because even his most com
prehensive philosophical expositions (Hilbert, 1925, 1927) are very sketchy, 
and partly because it is far from clear how Hilbert responded to developments 
in logic of the 1930s (GOdel's incompleteness theorems and recursive func
tion theory). My purpose in discussing Hilbert is ultimately philosophical 
rather than exegetic; I am concerned with the question of what options are 
available to someone who accepts Hilbert's general outlook and objectives. 

It is usual to interpret Hilbert's formalism in such a way as to bring it into 
immediate conflict with Godel's second incompleteness theorem. Such an 
interpretation is not forced upon us by his writings. I shall present a more 
sympathetic exposition. 

HILBERT'S PROGRAMME 

According to most accounts (for example, Komer, 1960, IV), Hilbert set out 
to put classical mathematics on a firm philosophical foundation by showing 
that it could be expressed in a single formal system and that this system 
is consistent. The formal system itself was to be treated as a meaningless 
symbol structure, and its consistency was to be proved using meaningful 
('contentual') finitary metamathematical reasoning. 

This account leaves one puzzled as to why a consistency proof should be 
considered to remove all philosophical doubts from mathematics. It would, 
to be sure, guarantee us freedom from paradoxes; we could continue to 
live in 'Cantor's paradise'. But the cost would be high: we would have to 
give up the common mathematical belief that terms such as 'real number' and 
'set' have a meaning and that mathematical theorems express their properties. 
Mathematicians take the apparent consistency of mathematics as evidence for 
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the soundness of its underlying ideas; but a consistency proof would remove 
this evidence by explaining away consistency as a purely syntactic property 
of the formal system. What one wants from a philosophy of mathematics 
is an interpretation of mathematics, according to which the concepts and 
theorems mean something (even if not what we naively thought). A mere 
consistency proof provides no such interpretation, and so mathematics would 
lose much of its appeal. 

This is, in any case, a misleading description of Hilbert's programme. It is 
true that Hilbert sought to express common mathematical practice in a formal 
system and to prove the system consistent. But the above account overlooks 
the special reason why Hilbert wanted a consistency proof. 

Hilbert (1925) took it for granted that certain simple mathematical state
ments, including numerical equations such as 53 - 5 = 5!, were meaningful 
and sound in just the way that mathematicians commonly understand them. 
Call this subsystem of mathematics D. Since there are no variables or logical 
constants in D, every formula is decidable: it has a truth value that can be 
discovered simply by evaluating it. Proofs in D consist simply of step-by-step 
evaluations of equations. Hilbert continues as follows: 

But the science of mathematics is by no means exhausted by numerical equations and it cannot 

be reduced to these alone. One can claim, however, that it is an apparatus that must always yield 

correct numerical equations when applied to integers. But then we are obliged to investigate the 

structure of the apparatus sufficiently to make this fact apparent. (Hilbert, 1925, p. 376) 

Thus, let M be a formal system adequate to express the whole of classical 
mathematics. D is a subsystem of M, weaker both in what it can express 
and in what it can prove. Hilbert's contention is that M is a conservative 
extension of D: that is, any formula of D can be proved in M iff it can 
be proved in D. If so, then M may be regarded as a system for deriving 
true numerical equations in D without having to evaluate them. Suppose 
that, using some sophisticated argument involving transfinite set theory, we 
succeed in deriving in M an equation such as 123456789..;- 9 = 13717421. 
Then the conservativeness property tells us that the equation is true, that is, 
that a direct evaluation would verify it. Using M in this way we can derive 
a large number of true equations that it would be tedious or impracticable to 
verify directly and individually. This is the proper role of mathematics: as a 
sound tool for deriving directly checkable equations. 

Note that this is a holistic view of mathematics. The system M has a 
meaningful interpretation (or at least a purposeful role), but the individual 
formulae in M do not and therefore should not strictly speaking be regarded 
as expressing propositions. Hilbert calls them ideal propositions, by analogy 
with ideals in number theory, points at infinity in projective geometry, and 
imaginary numbers in analysis: the ideal propositions are added to the real 
propositions in order to produce a more mathematically tractable system. 
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Since every formula in D can be proved or refuted in D by a computation, 
and since the computation may be expressed as a proof in M, it follows that 
the conservativeness of Mover D is a consequence of the consistency of 
M. Hence the problem of justifying the use of M reduces to the problem of 
proving it consistent: 

for. extension by the addition of ideals is legitimate only if no contradiction is thereby brought 

about in the old. narrower domain. that is. if the relations that result for the old objects whenever 

the ideal objects are eliminated are valid in the old domain. (p.383) 

As this quotation illustrates, Hilbert did not distinguish clearly between 
consistency and conservativeness, and sometimes spoke as if consistency 
were an end in itself. However, the example with Fermat's last theorem in 
Hilbert (1927, p. 474) makes it clear that conservativeness is the real goal. 

In summary, Hilbert's programme was to codify mathematics in a formal 
system M, prove the consistency of M, infer that M is a conservative extension 
of D, and thereby justify M as a tool for deriving correct formulae of D. 

FINITARY REASONING 

How do we set about showing that M is consistent? To say that a formal 
system is consistent is to say that there is no derivation tree conforming to 
the rules of the system whose conclusion (root node) is a standard absurdity 
such as 1 i- 1. Since formulae and derivation trees can be coded as numbers, 
with the syntax, axioms and rules being represented as recursive functions, 
this is equivalent to saying that there is no natural number with a certain 
decidable property. Thus the metamathematical reasoning we use in proving 
consistency is essentially a form of number theory (Hilbert, 1925, p. 383), 
known as finitary or finitist reasoning. This number-theoretic reasoning 
must be accepted as directly meaningful and sound - there is no question of 
formalising it and proving its consistency. 

Hilbert did not specify precisely what was included in the term 'finitary 
reasoning', probably because he expected to produce a consistency proof that 
his colleagues would accept as finitary on its own merits, without recourse to a 
general definition. It is generally considered today that no known consistency 
proof for arithmetic deserves to be called finitary and that probably no finitary 
consistency proof is possible. To make sense of this claim it is essential to 
delimit as precisely as possible the class of finitary arguments. There are three 
issues to be settled: the subject matter of finitary reasoning, the general form 
of a finitary proposition, and the finitarily acceptable modes of inference. I 
shall consider Hilbert's (1925) account in detail. 

In the first place (p. 376), finitary reasoning is exclusively concerned with 
discrete symbol structures ('extralogical concrete objects'): 
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If logical inference is to be reliable, it must be possible to survey these objects completely in all 

their parts, and the fact that they occur, that they differ from one another, and that they follow 

each other, or are concatenated, is immediately given intuitively 

Examples of such objects are numerals, formulae and equations. 
The first sort of finitary proposition to be introduced are the numerical 

equations A = B, where A and B are terms built up from numerals using 
arithmetic operations; note that no variables have been introduced yet (p. 376). 
In addition, truth-functional combinations of such equations and statements 
involving decidable predicates (such as' ... is a prime number') are finitary 
(p. 377). These make up the system I have called D. Infinite truth-functional 
combinations (Le., quantified equations) are not finitary: 

such a passage to the infinite is no more permitted without special investigation and perhaps 

certain precautionary measures than the passage from a finite to an infinite product in analysis, 

and initially it has no meaning at all. (p. 378) 

An existentially quantified decidable statement can only be interpreted as a 
'partial proposition' - not a real proposition but merely an incomplete sketch 
of one (p. 378). 

On page 378 Hilbert considers for the first time general statements, such 
as 'if a is a numeral, we must always have a + 1 = 1 + a'. This is not a 
numerical equation, nor can it be understood as an infinite conjunction of 
numerical equations, 'but only as a hypothetical judgement that comes to 
assert something when a numeral is given.' Such hypothetical judgements 
are finitarily meaningful, but they cannot meaningfully be negated or used as 
subformulae of composite propositions. 

On page 380 variables are introduced into the equation language; Hilbert 
distinguishes carefully between a + b = b + a as a meaningful hypothetical 
judgement (conditional on the construction of arbitrary numerals a and b), 
and the meaningless ideal proposition a + b = b + a (as used in ordinary 
mathematical practice). 

In summary, Hilbert says (p. 380) that there are three kinds of formula: 

(1) 'finitary propositions that contain only numerals, like 3> 2,2+3=3+2, 
2 = 3, and 1 f= 1', to which classical logic applies in an unproblematic 
way; 

(2) 'finitary propositions of problematic character'; 
(3) 'ideal propositions'. 

What is in the second category? Hilbert's remarks are cryptic, but it is 
clear from the context that what is 'problematic' about them is that classical 
logic does not apply to them. Hence, to identify the problematic finitary 
propositions we need to look back at Hilbert's examples to see which ones 
are finitarily meaningful and yet not subject to c1assicallogic. There is only 
one plausible candidate: the hypothetical judgement a + 1 = 1 + a on page 
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378. Detlefsen (1990b, p. 353) claims that bounded existential quantifications 
over decidable propositions are also 'problematic finitary', but I find this an 
implausible reading. 

Two examples of finitary argument are given on page 383: the standard 
proof of the irrationality of .,fi and a consistency proof for M. So clearly we 
must admit arguments of the following forms as finitary: 

for any numerals a, b, if a2 = 2b2 , and a and b are co-prime, 

and 

then a is even so b is even; hence contradiction 

for any formal derivation d in M, if the conclusion of d is 1 =I- 1 

then ... contradiction. 

It appears from this that the general form for a (problematic) finitary propo
sition is 

for any a, b, ... c, if pea, b, ... c) then Q(a, b, ... c) (*) 

where a, b, ... c represent numbers, formal derivations, or elements of other 
symbol systems, and P and Q represent computations to be applied to 
a,b, ... c. 

This reading of Hilbert is not quite the orthodox one. Kreisel (1965, 
§3.411) takes the general form of a finitary proposition to be a free-variable 
equation a(n) = ben) (tacitly quantified over n), and similarly Weinstein 
(1983) takes it to be 'v'nA(n), where A is decidable. On this reading, in 
order to represent the .,fi argument we must interpret 'if ... then ... ' as a 
truth-functional operator. Hence I think Kreisel and Weinstein would rewrite 
my general finitary proposition (*) as 

for all a, ... c, pea, ... c) = false or Q(a, ... c) = true. 

This is somewhat unnatural. Hilbert's notion of hypothetical judgement 
suggests a more natural way of reading the 'if . .. then' in (*): 

Q(a, .. . c) comes to assert a truth when a, .. . c are given 

satisfying P(a, . .. c). 

This interpretation is essentially different from the truth-functional one, as 
becomes clear if one allows P and Q to be partial functions. 

I conclude that finitary propositions are either computations or general 
hypothetical statements .of the above form. 
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The next question is what fonns of reasoning are finitarily sound. I 
propose (uncontroversially) that they include, among other things, simple 
rewriting of tenns (replacing definiens by definiendum) and also induction 
using decidable predicates (otherwise there would be no hope of consistency 
proofs!). 

Notice that, on this view, finitary reasoning turns out to resemble closely 
the protologic introduced in Chapter 8. It is my intention eventually to 
identify finitary reasoning with protologic, but I am not yet ready to do 
so because I have not yet finished describing either protologic or finitary 
reasoning. 

THE SIGNIFICANCE OF GODEL'S INCOMPLETENESS 
THEOREMS 

My interpretation of Hilbert's programme is unorthodox in another respect. 
Let us call the system of finitary reasoning F. It is commonly said (Giaquinto, 
1983) that Hilbert wanted to prove that M was a conservative extension of F, 
rather than a conservative extension of D as I have claimed. A variation of 
this, proposed by Detlefsen (1990b), is that Hilbert wanted to show that M is 
consistent with F. 

In defence of my interpretation I appeal to the first passage from Hilbert 
(1925, p. 376) quoted above. M is required to 'yield correct numerical equa
tions when applied to integers', where by 'numerical equations' Hilbert means 
equations involving numerals but not variables: equations with variables are 
not considered until p. 378 and are not counted as 'numerical equations'. 
Thus Hilbert's requirement is that M should be a conservative extension of 
D. 

It may be argued that conservativeness over D is tantamount to conserva
tiveness over F: the example with Fennat's last theorem in Hilbert (1927, 
p. 474) shows how the fonner extends to the latter. However, I still object 
to the fonnulation 'M is a conservative extension of F', not because of the 
word 'conservative' but because of the word 'extension', which implies that 
every argument in F also belongs to (or can be fonnalised as) a proof in 
M. This interpretation would bring Hilbert into direct collision with GOdel's 
second incompleteness theorem, for if F is a subtheory of M then a finitary 
consistency proof for M is (or can be fonnalised as) a consistency proof for 
M in M, which is impossible if M is consistent. 

Most commentators on Hilbert's programme do indeed seem to believe 
that F is required to be a subsystem of M, and hence that his philosophy has 
been refuted by GOdel's theorem. 

The second theorem implies the impossibility of proving the consistency of formalized classical 

mathematics by finitist methods. For in spite of a certain vagueness in demarcating the notion 
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of finitist proofs, any such proof can be arithmetized and incorporated into [formal first-order 

arithmetic]. (Korner 1960, IV) 

See also Kreisel (1965, p. 98), Dummett (1977, p. 2) and Giaquinto (1983). 
Hilbert's successors have responded by relativising his programme, that is, 
by identifying useful weakened versions of classical theories and proving 
their consistency relative to other, more constructive, predicative or finitary 
theories (Sieg, 1988; Simpson, 1988; Feferman, 1988). Sieg says of this 
approach that 'It does not claim to solve foundational problems once and 
for all, but rather tries to provide material for an informed reflection on the 
epistemology of (parts of) mathematics'. 

The assumption that F is a subtheory of M seems to be motivated partly 
by the misunderstanding mentioned above, that Hilbert intended M to be a 
conservative extension of F rather than of D, and partly by a vague feeling 
that finitary reasoning ought to be weaker than classical reasoning (Shapiro, 
1992). Bernays (1935) comments that no finitary argument has yet been 
suggested that cannot be formalised in Peano Arithmetic but that lacking a 
precise delimitation of finitary argument it is hard to demonstrate the point 
conclusively. 

Detlefsen (1979), however, points out that Hilbert's programme does not 
require F to be a sub theory of M. The nearest Hilbert himself comes to a 
direct statement on the matter is: 

For, if to the real propositions we adjoin the ideal ones, we obtain a system of propositions in 

which all the simple rules of Aristotelian logic hold and all the usual methods of mathematical 

inference are valid. (Hilbert, 1927, p. 471) 

This sentence says two things: that the language of F is contained in the 
language of M, and that M contains classical logic; it does not state any 
relation between the real and the ideal modes of reasoning. 

How then do Gbdel's incompleteness theorems apply to Hilbert? The 
theorems may be paraphrased as follows: informal contentual reasoning 
concerning the natural numbers has the ability to transcend any recognisably 
consistent formal system, however strong the ingredients we put in the for
mal system. Therefore an informal system F, intended to encompass all our 
meaningful arguments about numbers, cannot be contained within any formal 
system M, even if M is adequate for normal present-day mathematical prac
tice. But as Detlefsen (1979) also points out, Hilbert does not require F to be 
formalisable. Therefore there is no threat to Hilbert's programme, as Gbdel 
himself pointed out at the end of his original paper (Gbdel, 1931), though 
he changed his mind shortly afterwards (Gbdel, 1933b). (See also Detlefsen 
(1990b) and Detlefsen (1986) for further objections to the use of Gbdel's first 
and second theorems, respectively, against Hilbert's programme.) 

Finitary reasoning, then, cannot be encompassed by any formal system. 
The next section will develop the mathematical consequences of this fact. 
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FINITARY AND CONSTRUCTIVE REASONING 

In the early days of Hilbert's programme it was assumed by many that finitary 
reasoning was simply constructive reasoning with numbers (Herbrand, 1931). 
However, it is now generally believed that finitary reasoning is a weaker 
notion than constructive reasoning, at least as understood by intuitionists. 
The distinction appears to have originated in the 1920s and to have been first 
stated in print by Bernays (1935) and GOdel (1933b, 1958), who attributed 
it to Hilbert (1925), though Hilbert's remarks do not seem to justify this; 
subsequently it was taken up by researchers into intuitionism (Kreisel, 1962, 
1965, 1970; Weinstein, 1983; Troelstra & van Dalen, 1988, Chapter 1, §4.5) 
and formalism (Giaquinto, 1983; Feferman, 1988). The usual account of the 
distinction is as follows. 

Finitary (or finitist) reasoning is concerned exclusively with concrete, 
combinatorial symbols (spatio-temporal configurations) and operations on 
them. We are allowed to reason about infinitely many concrete symbols 
at once, but all the properties, operations and arguments we use must be 
intuitive, visualisable or surveyable. For example, a function on symbols 
is only finitarily acceptable if it can be computed mechanically and if we 
can see, by surveying all possible executions, that it is total (Kreisel, 1965, 
§3.412; Tait, 1981). 

Constructive (or intuition is tic) reasoning, however, goes beyond the fini
tary viewpoint by considering abstract objects such as proofs, functions from 
concrete symbols to concrete symbols, functionals of higher type, rules, and 
'constructions in general'. It admits properties, such as being a proof of a for
mula and being a meaningful rule, that are decidable (in the sense that we can 
decide them using intelligent judgement) but are not necessarily recursive. 
This looks like a denial of Church's Thesis, at least in its strong form, but it is 
not quite. One may accept this view and still believe that for every 'abstract' 
function on numbers there is a recursive function extensionally equivalent to 
it; thus Church's Thesis becomes a (rather implausible) axiom of reducibility 
for intuitionistic mathematics (Kreisel, 1970). 

Giaquinto's (1983) characterisation is typical: 'intuitionism was based on 
an abstract phenomenology of mental constructions yet to be made precise, 
whereas Hilbert's formalism was based on mechanical (primitive recursive) 
reasoning about finite arrays of symbols.' 

The words in italics above are being used in a special sense that is never 
really explained; instead of an explanation we get a long list of synonyms. 
Some of the terminology is most unfortunate. 'Spatio-temporal', 'concrete' 
and 'abstract' suggest the token-type distinction, which is not what is in
tended; McCarty (1983) is surely correct to speak of concrete mathematics 
as concerned with physically realisable items rather than physically realised 
items. Moreover, the word 'intuitive' invites confusion with 'intuitionistic'; 
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for example, Weinstein (1983) says that for intuitionists, but not for Hilbert, 
'decidable properties of proofs may involve considerations about the intuitive 
content of these mathematical constructions', which is the opposite ofthe us
age of 'intuitive' above. The terms combinatorial and non-combinatorial give 
the best expression of what seems to be intended. The idea, I think, is that, 
although proofs, meaningful rules, and so on, may individually be expressed 
in symbols, there is no systematic notation that expresses all the valid proofs 
or rules and only valid ones, so we cannot be said to have expressed what 
makes a proof correct or a rule meaningful; therefore these notions always 
elude spatio-temporal representation. 

As the Giaquinto quotation indicates, the concrete-abstract distinction 
leans heavily on the apparent obscurity of the intuitionistic notion of proof. 
Any explicit account of intuitionistic proof, such as I am giving in Chapters 8 
and 10, is bound to diminish the apparent distance between intuitionism and 
finitism. 

Attempts to express the finitary viewpoint formally have produced two 
characterisations: (i) finitary reasoning admits induction with decidable prop
erties over any ordinal less than EO, but not over EO itself (GOdel, 1958); and 
(ii) finitary reasoning is Primitive Recursive Arithmetic (Tait, 1981). 

GOdel explains his ordinal characterisation as follows. 

the validity of inference by recursion up to Eo surely cannot be made immediately intuitive, as it 

can up to, say, 002 . More precisely, we can no longer survey the various structural possibilities 

that obtain for descending sequences, and therefore we cannot intuitively recognize that every 

such sequence will necessarily tenninate. (Godel, 1958, p. 243) 

GOdel is unwilling to commit himself on whether our inability to survey up 
to EO is merely a practical matter of feasibility, like our inability to count up 
to 10100, or whether it is intrinsic, like our inability to count up to (0. If the 
former then the 'finitary standpoint' he is describing would have no special 
philosophical significance (it would vary from person to person and from 
time to time), so I shall take him to be tentatively asserting the latter. 

EO seems a very odd choice for the first unsurveyable ordinal. If we can 
survey the lesser ordinals (0, (OOl, (OOl"', and so on, why can we not survey 
the sequence of these ordinals (which is only of order-type (0), and is this 
not tantamount to surveying the limit, EO, of the sequence? After all, any 
descending sequence in EO is a descending sequence in one of (0, (OOl, (OOl , 

A regular ordinal would seem a better choice. However, whatever ordinal 
we choose, it remains the case that if you can survey all the ordinals less than 
a. then you can survey a.; to believe in induction over all ordinals less than 
a. is tantamount to believing in induction over a.. The only way out appears 
to be to say that a finitist can survey each ordinal below a certain a., when 
presented individually, but cannot know that they can survey all of them and 
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hence cannot make the transition to ll. In other words, no one can knowingly 
be a finitist. 

Let's try the other characterisation and see if it is any less puzzling. 
Primitive Recursive Arithmetic, first formulated by Skolem (1923), is Heyting 
Arithmetic without the logical constants. The formulae are of the form 
M = N, where M and N are terms built up from ° and numeric variables 
using primitive recursive functions. (Skolem also allows truth-functional 
combinations of such equations, but this involves no gain in generality.) The 
logic may be expressed as a natural deduction system with equality, Peano's 
axioms, and an induction rule. 

A consequence of identifying finitary reasoning with Primitive Recursive 
Arithmetic is that the only functions known to be total are the primitive 
recursive ones; this accords with Godel's (1972) statement that 'while any 
primitive recursive definition is finitary, the general principle of primitive re
cursive definition is not a finitary proposition, because it contains the abstract 
concept of function'. Let us examine this doctrine more closely. There are 
two possible reasons for rejecting the general concept of primitive recursive 
function. One might accept any particular primitive recursive definition but 
be unable to grasp the class of primitive recursive definitions in its entirety 
and hence be unable to diagonalise out of it; or, more radically, one might 
reject the general concept of function, as suggested by GOdel's statement. I 
shall discuss the two possibilities separately. 

First, is it really possible to accept each instance of primitive recursion 
while denying the general concept? The primitive recursive functions can 
all be expressed as expressions built up from 0, successor, projection func
tions, composition, and a recursion operator; for example, in the notation of 
Chapter 16, multiplication is 

reCI (reco(O, proj~), comp2(recl (proj~, compi (S, proj~», proA, proj~». 

We can enumerate all such expressions primitive recursively; let Rm be the 
m'th such expression. (Assume Rm is represented as a unary function, using 
a coding of tuples in the usual way.) We can also express the evaluation 
of Rm(n) as a process of applying simple primitive recursive rewriting rules 
repeatedly until a numeral is obtained. Hence we can define the universal 
function over the primitive recursive functions, U, by 

U(m,n) = Rm(n). 

U itself is not primitive recursive. It would appear to be the simplest example 
of a finitarily inadmissible function: the finitist can execute the function, for 
any given m and n, but cannot survey all possible executions and therefore 
cannot see that execution halts for all m and n. 
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Now, if! ever met a flesh-and-blood finitist, in this sense, 1 would point out 
to them the general notation for primitive recursive functions, the enumeration 
Rm , and the universal function U, and ask them why, since they accept each 
instance Rm they do not accept U. There are, as far as 1 can see, only four 
ways in which they might reply. 

(1) '1 don't grasp the common pattern you are trying to point out. To 
me, each primitive recursive function is unique; they don't fit into any 
systematic scheme that I can see.' 

(2) '1 see the pattern but 1 don't accept its general validity. Admittedly, all 
the functions 1 have ever defined can be expressed in your notation, and 
admittedly 1 cannot produce a single counter-example of an Rm that is 
unacceptable to me, but still the notation is not generally sound: it is 
just an amazingly successful heuristic device.' 

(3) '1 accept that each instance Rm is admissible, but U is not.' 
(4) 'Now 1 see that U is admissible.' 

Of these responses, (1) seems to me disingenuous: the finitist can certainly 
grasp the primitive recursive mapping that turns minto Rm and can certainly 
execute U on any given m and n, since U works by iterating a primitive 
recursive function until a primitive recursive halting condition is satisfied. 
Response (2) is a possible position, though an extremely uncomfortable one: 
the finitist simply lives with the miracle that non-finitary methods produce 
meaningful results without seeking a rational explanation. Response (3) is 
incoherent: if you accept that each Rm is total then you have conceded that 
U is total. Response (4) seems to me the only viable one, but it amounts to 
abandoning finitism. 

1 concede that it is a perfectly mathematically well-defined policy to admit 
each primitive recursive function in one's reasoning while excluding U. 1 
also concede that it is psychologically possible that a person could understand 
each particular instance of primitive recursion and yet fail to understand 
a general notation for it. What 1 question is whether this constitutes a 
significant philosophical position that is more secure than accepting primitive 
recursion in general. It is equally psychologically possible that a person could 
understand addition and subtraction but balk at multiplication and division. 
One could imagine explaining to them that doubling means adding a number 
to itself and tripling means adding three copies of a number together, and in 
general every multiplication is a repeated addition. It is perfectly possible 
that they could still fail to understand, no matter how many examples one 
goes through. But that does not justify treating their limited arithmetic as 
a highly sceptical philosophical position that is more secure than arithmetic 
involving multiplication and division. The same applies to the finitist who 
accepts particular primitive recursions but not primitive recursion in general: 
to present this as scepticism (and not merely stupidity) it is necessary to show 
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that there is some philosophical advantage in taking this position. What is 
needed is a way of justifying primitive recursive functions on a case-by-case 
basis that does not immediately provide a general justification for primitive 
recursion, and it is hard to see how this could be possible. In a formal 
system it is certainly the case that accepting a general principle is strictly 
stronger than accepting all its instances, but things are different for informal 
philosophical argument since any grounds for accepting all the instances are 
also grounds for accepting the general principle. 

This brings us to the second possible reason for rejecting the concept of 
primitive recursive function. The trouble might not be in the concept of 
primitive recursion but in the concept of function. Tait (1981) says: 'For 
the finitist to recognize the validity of primitive recursive arithmetic, he 
must recognize the general validity of definition of functions by primitive 
recursion. But he cannot even formulate this since it involves the notion of 
function.' GOdel says something very similar (see above). This claim that 
a finitist doesn't understand the concept of function is obscure to me. The 
finitist needs to understand something about functions in general in order to: 
(i) know what to do with them (that is, understand that one is supposed to 
present them with arguments and obtain values by a process of execution), 
and (ii) understand questions of the form 'Do you accept ... as defining 
a function?'. If one asked a finitist 'What sort of thing is multiplication?', 
they would surely say something like 'It is a symbol expression that I can 
use to turn two numbers into a number'. This minimal understanding of the 
function concept, apparently presupposed by Tait (see p. 532 in particular) 
and GOdel, is quite adequate to understand U: one simply grasps the (primi
tive recursively specifiable) syntax and operational semantics of the class of 
expressions Rm , and (tries to) survey the structural possibilities for executions 
of expressions conforming to this syntax. Everything, then, depends not on 
a grasp of a general concept of function but on this metaphorical notion of 
'surveyability' . 

Unfortunately, all the rhetoric about 'spatio-temporal configurations', 
'surveyability' and 'the finite standpoint' is very little help when it comes 
to drawing the boundary of the finitary. All recursive definitions can be 
expressed in discrete symbolic notation; yet to see that the function defined 
is total always requires an act of understanding. To visualise infinitely many 
computation sequences necessarily requires some grasp of infinity; this vi
sualisation must be intensional, since no one can imagine infinitely many 
individual things at once. U does not involve an abstract concept of function 
any more than individual primitive recursive functions do. Obviously, recur
sive definitions get harder to visualise or survey as they get more complicated, 
and everyone will have a limit to what they can visualise in practice, but the 
functions do not suddenly become unvisualisable-in-principle at any point. I 
do not object in principle to the notion of surveyability; indeed, I shall make 
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use of something similar myself in the next chapter. I do, however, object 
to Godel's and Tait's strange and arbitrary stipulations about what can and 
cannot be surveyed. 

My conclusion is that what GOdel and Tait call 'finitism' is a perfectly 
well-defined mathematical system but is not a philosophical position that 
anyone could consciously subscribe to (a conclusion that I think Tait would 
endorse). To realise that you are a finitist is to become an intuitionist. 

It follows, then, that if we are to turn Hilbert's sketchy remarks about 
finitary reasoning into a stable philosophical standpoint we must admit steps 
such as the one that takes us from the primitive recursive functions Rm to the 
universal function V. This is a reflection principle; it takes us from a formal 
system, each expression in which is grasped individually, to a grasp of the 
system as a whole. Of course, the story does not stop at V. Given V we 
can form the system of all functions defined using primitive recursion and 
V, and then define the universal function VI over this system. Repeating 
this procedure gives a sequence of successively more powerful functions 
V, VIo V2, ... , leading to a limit function VO) defined by 

(where I am assuming each Vm function is expressed as a unary function 
using a coding of pairs). Naturally, VO) is followed by VO)+10 VO)+2' .... 
There is no way we can call a halt to this progression once we have admitted 
reflection principles. The sequence continues to all Va for which we can 
recognise a. as well-founded (by surveying all the descending sequences, in 
Godel's terminology). As we saw in the discussion of EO, there is a difficulty 
in determining the extent of our ability to recognise ordinals as well-founded. 
I shall return to this problem in the next chapter. 

My proposal to admit reflection principles is analogous to Detlefsen's 
(1979) argument that a form of w-rule should be included in finitary reason
ing. Detlefsen remarks that 'the dubitability of T U Con(T) is no greater than 
that of T'; that is, any philosophical grounds adequate for accepting a theory 
T as sound are also adequate for accepting the soundness of its formalised 
consistency statement, Con(T). He further argues that, for theories with 
finitely many axioms and axiom schemata, T is no more dubitable than some 
finitely axiomatised part of T ('epistemic compactness'). It follows that the 
finitist who accepts a particular formal system as contentually sound is inex
orably led to accept reflection principles, indefinitely iterated; this generates 
a transfinite sequence of ordinal logics (Turing, 1939). Detlefsen's w-rule 
needs to be formulated with care if it is to escape triviality (Ignjatovic, 1994), 
but his point is nevertheless sound. 

The preceding discussion shows that the finitist is obliged to accept an 
open-ended system of recursive functions; this echoes Herbrand's (1931, 



HILBERT'S FORMALISM 111 

p. 628) statement that 'it is impossible to describe all intuitionistic proce
dures of reasoning (since it is impossible to describe all procedures for the 
construction of functions)', where Herbrand identifies 'intuitionistic' with 
'finitist'. For the sake of a uniform notation for recursive functions it is 
tempting also to admit partial recursive functions. These are certainly fini
tarily meaningful as descriptions of algorithmic processes, since each step in 
execution is primitive recursive; it ought to be possible for a finitist to discuss 
such processes without prejudging whether they will halt. For this reason I 
propose to allow the computations P and Q in the general Hilbertian finitary 
hypothetical judgement (*) discussed above, 

for any a, b, ... c, if pea, b, ... c) then Q(a, b, ... c). 

to be partial recursive functions. Hilbert gives little guidance on what class 
of recursive functions he would admit - un surprisingly, since recursive func
tion theory did not exist at the time of writing. There can certainly be no 
finitary objection to allowing the P function in (*) to be partial recursive, 
since the phrase 'for any a, ... c, if P(a, . .. c)' may be rewritten using stan
dard theorems of recursive function theory in the form 'for any a, ... c, U, if 
P'(a, .. . c, u)', where pI is primitive recursive and u codes a computation of 
P(a, ... c). However, when one tries to rewrite 'Q(a, .. . c)' as 'Q'(a, ... c, v)' 
in the same way, there is a difficulty of where the value of v comes from. If 
we supplied information about how v is obtained from a, ... c, u then the hy
pothetical judgement (*), with partial recursive P and Q, could be understood 
in terms of primitive recursive functions, pI and Q', and so would certainly 
be finitarily intelligible. 

This hypothetical judgement should be compared with the general sequent 
form in proto logic 

(x, ... y)A, ... B -7 C 

(see Chapter 8). The fact that sequents may have several terms (A, ... B) 
on the left-hand side while hypothetical judgements have only one (P) is 
obviously inessential since several terms can be combined into one using 
truth-functional conjunction; thus protological sequents and hypothetical 
judgements agree in syntax. They also agree in intended meaning. In both 
cases we are not simply making an extensional statement about the results 
of the computations Pea, ... c) and Q(a, ... c): we are also relating the com
putation processes u and v. Hypothetical judgements with partial recursive 
functions are finitarily acceptable provided they are interpreted intension
ally, as relations between (primitive recursively specifiable) computation 
processes - exactly as for protological sequents. 

Furthermore, the case for including reflection principles in finitary rea
soning applies with equal force to protologic. Hence, as I shall argue in 
detail in Chapter 10, protologic consists of the informal ingredients listed 
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in Chapter 8 plus reflection principles. This makes protologic the same as 
finitary reasoning. I conclude, then, that formalists and intuitionists both 
have the same underlying system of constructive reasoning. This may be a 
controversial conclusion. It is commonplace to point out that finitary rea
soning is weaker than intuitionistic predicate calculus (since the former does 
not allow nested quantifiers), and it is frequently inferred that finitism is 
weaker than intuitionism; but this is a misleading comparison. Intuitionistic 
predicate calculus does not play an analogous role in intuitionism to the role 
of finitary reasoning in formalism. In intuitionism, intuitionistic predicate 
calculus is not taken as primitive but is explained in terms of an underlying 
theory of constructions (see Chapter 7), which is the intuitionists' version of 
'contentual reasoning'. Intuitionists do not think in predicate calculus; they 
think in constructions, and predicate calculus emerges as a set of high-level 
regularities in the constructive activity. So the proper comparison should be 
between finitary reasoning and protologic, and these are identical because 
they are both based on the same informal set of ideas. 

INFORMAL AND FORMAL PROOFS 

Hilbert's programme involved two steps: expressing mathematical practice in 
a formal system, and proving the system consistent. I have already discussed 
an objection to the second step, that it is impossible on account of GOdel's 
second incompleteness theorem. The first step has also come under attack. 
All varieties of formalism rest on the assumption that mathematics can, and 
indeed should, be formalised. The normal historical process of clarifying 
mathematical concepts and making proofs more rigorous naturally leads to 
formal systems. Informal mathematics is mathematics that has not yet been 
fully formalised and is therefore not yet wholly rigorous. I shall call this 
the Central Dogma of Formalism. There is no assumption here that a single 
formal system will suffice for all mathematics for. all time, simply that any 
particular body of ideas and techniques can be formalised. 

Davis & Hersh (1981) oppose this with the thesis that mathematics is 
inherently informal. What is generally called a proof in mathematics, they 
point out, is actually a prose argument, interspersed with mathematical nota
tion, that is intended to convince a knowledgeable reader of the truth of the 
theorem. Such an informal proof will be organised into steps of reasoning, 
like a formal proof, but the steps are much larger than those permitted in 
any formal system and rely essentially on intuition and routine arguments 
that the reader is expected to fill in. Indeed, an informal proof is often more 
convincing than a formal one as it is much shorter and gives us a better 
understanding of what is going on. Past generations of mathematicians such 
as Newton and Euler used the concepts of real number, convergence, and so 
on, without knowing what are today regarded as their precise definitions; on 
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a formalist account it is a mystery how they made any progress. Tragessor 
(1992) argues in a similar vein. 

Now, formalism is perfectly willing to acknowledge that informal con
cepts and arguments often pre-date the corresponding formalisation and have 
a separate heuristic role. However the Central Dogma insists that for epis
temological purposes informal proofs have no life of their own: an informal 
proof is only convincing to the extent that it hints at a formal proof. 

Davis & Hersh (ibid., pp. 363-369) illustrate their notion of informal 
proof by describing a heuristic argument, due to Good and Churchhouse, 
for the Riemann hypothesis, which they seem to find completely convincing, 
more so even than a very complicated formal proof would be. Personally I 
am unconvinced by the heuristic argument. How are they to persuade me? 
If it were an ordinary mathematical proof, of the sort that is published in 
books and journals, Davis & Hersh could break the argument into smaller 
and smaller steps until I am forced to accept it or an error comes to light. At 
each stage they could ask me 'Which step of the proof do you challenge?'; I 
would have to choose one such step, and they would break it down into even 
smaller steps. By the time we had reached the level of detail of a completely 
formal proof the dispute would be settled. This ability to formalise any part 
of a proof on demand is what makes it convincing. Davis & Hersh's heuristic 
argument cannot be so formalised, and that is why it is unconvincing to 
anyone who is not immediately swayed by the rhetoric. 

This reveals why the Central Dogma of Formalism is correct. Formal 
proofs, meaningfully interpreted, are the most convincing examples of rea
soning known to us; anything else is, to some degree, unconvincing. Ideally, 
therefore, all proofs would be formal; the second-best is that all proofs should 
be written out in sufficient detail as to convince the reader that they can be 
formalised. Davis & Hersh manage to give the impression that complete 
formality is a remote, superhuman goal, but this is not so, as is shown by the 
fact that we can write and read lengthy computer programs, which are com
pletely formal. Programmers, forced to deal with complex formal objects, 
have developed appropriate notations (high-level programming languages) 
to make them tractable. Analogous techniques for mathematics have not yet 
been developed because mathematicians (unlike computers) are prepared to 
tolerate informality. 

FORMALISM AND INTUITIONISM 

So far I have been defending Hilbert against all objections. It may be 
asked, why do I, as an intuitionist, defend Hilbert? Aren't intuitionism and 
formalism supposed to be deadly enemies? 

It is true that Brouwer and Hilbert saw each other as opponents. Their true 
relationship, however, is more complex. Brouwer did not see the opposition 



114 CHAPTER 9 

as fundamental: he argued (1927) that the choice between fonnalism and 
intuitionism would 'be reduced to a matter of taste, as soon as the following 
insights ... are generally accepted', that is, as soon as the fonnalists also 
become intuitionists. 

Two of these four insights, Brouwer noted, were already accepted by 
Hilbert. These were: (i) the distinction, invented by Frege (1885) and 
Brouwer (1907, pp. 173-174), between fonnal mathematics as a meaningless 
symbol system and meaningful (,contentual') metamathematics; and (ii) the 
invalidity of the principle of excluded middle in contentual reasoning. The 
other two insights were not yet accepted. 

Third insight. The identification of the principle of excluded middle with the principle of the 

solvability of every mathematical problem. 

Fourth insight. The recognition of the fact that the (contentual) justification of formalistic 

mathematics by means of the proof of its consistency contains a vicious circle, since this 

justification rests upon the (contentual) correctness of the proposition that from the consistency of 

a proposition the correctness of the proposition foIIows, that is, upon the (contentual) correctness 

of the principle of excluded middle. (Brouwer, 1927) 

These two 'insights' are misunderstandings on Brouwer's part. First, Hilbert's 
belief that all mathematical problems are solvable plays no part in his fonnal
ist philosophy of mathematics. Moreover, Hilbert never claimed to possess 
a general method for solving all problems, as would be required from a 
constructive point of view to justify the principle of excluded middle in con
tentual reasoning. The other misunderstanding is that Brouwer did not see 
why Hilbert should regard a proof of consistency as establishing the cor
rectness of the fonnal system; so he guessed that Hilbert was relying on a 
contentual principle of excluded middle somehow to go from consistency to 
correctness. Brouwer seems not to have been aware of the role of conser
vativeness in Hilbert's programme. This is borne out by the following later 
criticism of 'New Fonnalism' (Hilbert). 

But no attention was paid by New Formalism to the circumstance that, between the perfection 

of mathematical language and the perfection of mathematics proper, no clear connection can be 

seen. (Brouwer, 1952) 

Heyting (1956, p. 4; 1974) displays similar attitudes. Brouwer's view of 
Hilbert, then, was based on a clear perception of where Hilbert borrowed 
from Brouwer but simple misunderstandings of the distinctive features of 
Hilbert's programme. (See Giaquinto (1983) for more on this.) 

Hilbert's view of Brouwer was more accurate. He understood that the real 
point of difference between them was that Brouwer insisted that every fonnula 
should have a meaningful interpretation, whereas Hilbert required only that 
the fonnal system as a whole should have a meaningful interpretation with 
respect to its decidable part (Hilbert, 1927, p. 475). 
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This insight can be developed as follows. Suppose we want to carry out 
Hilbert's programme for a given formal mathematical system. A particularly 
simple form that the consistency proof might take is to associate a finitarily 
meaningful predicate P A with every formula A in such a way that 

• for each axiom A we can find an object that satisfies P A, 

. A···B .. .. 
• for each rule of mference --- we can obtam an object satlsfymg Pc 

given objects satisfying PA, .~. PB, 

• for each variable-free atomic formula ('numerical equation') A there is 
an object satisfying P A iff A is true. 

Then it would follow that a numerical equation is only derivable in the system 
if it is true, as required. But this consistency proof is also an intuitionistic 
interpretation of the formal system, if we read P A as ' ... is a proof of A'. 
Hence the intuitionist's problem of making sense of a formal system is simply 
the formalist's problem of proving its consistency - with one difference, that 
the intuitionist insists on an interpretation (PA ) for every formula A, whereas 
the formalist would be satisfied with an interpretation of the system as a 
whole and hence has a wider choice of consistency proofs. 

Here I rely on two controversial points of interpretation: that the for
malist and the intuitionist have the same underlying system of contentual 
constructive reasoning (as argued above), and that Brouwer's view of lin
guistic entities as strictly external to mathematics is mistaken (as argued in 
Chapter 5). 

CONCLUSIONS ON FORMALISM 

Hilbert's formalism can best be described as a variety of constructivism 
that accepts the use of formal systems as a reliable aid in mathematical 
constructive activity. My interpretation of Hilbert is unorthodox on the 
following points: 

• finitary reasoning consists of decidable propositions and hypothetical 
judgements (rather than decidable propositions and universal generali
sations of them, as is usually supposed); 

• finitary reasoning is not a subtheory of ideal mathematics, and hence 
Godel's second incompleteness theorem poses no threat to Hilbert's 
programme; 

• finitary reasoning includes reflection principles; 
• finitary propositions may involve partial recursive functions and not 

merely primitive recursive functions; 
• finitary reasoning equals protologic, the fundamental system of con

structive reasoning underlying intuitionistic arithmetic (which, of cou
rse, is not to say that finitary reasoning equals intuitionistic arithmetic); 
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• formalism is compatible with intuitionism, in that a successful intu
itionistic interpretation of a branch of mathematics would accomplish 
Hilbert's programme for that branch. 

When I call myself a formalist I mean two things: that I accept the Central 
Dogma that all proofs must be formalisable (though not in a single system), 
and that my interpretation of arithmetic and analysis in this book may be 
regarded as carrying out Hilbert's programme (see Chapter 35 especially). 



CHAPTER 10 

OPEN-ENDEDNESS 

FORMALITY AND INFORMALITY 

The discussion of 'finitist' functions in the previous chapter drew attention to 
an essential aspect of mathematics, which I shall call open-endedness - its 
ability to transcend any particular formal system. A mathematical domain 
is open-ended when, given any (sound) formal theory supposedly character
ising it, we have a general method for producing an element of the domain 
outside the theory. Open-endedness (also called essential incompleteness 
and incompletability) implies that a foundation for mathematics can never 
be entirely formal. The question therefore arises of what use formality is in 
founding mathematics and how the formal part of the foundation is related 
to the informal part. 

In a typical axiomatic foundation, say ZFC set theory, the formal part is 
the axiom system, where all syntactic devices are decidable and so is the 
notion of a correct ZFC proof. The informal part consists of seeing that 
the axioms are true and the rules of inference preserve truth; this depends 
on an informal understanding of the logical constants, the universe of sets, 
and set membership. The answer to the question 'what use is formality?' is 
obvious in this context. Formality separates, in any set-theoretic argument, 
the philosophical concerns (about the legitimacy of the general concept of set) 
from the purely mathematical concerns (about whether standard set-theoretic 
modes of reasoning are being applied correctly). If set theory were not 
formalised every new theorem would provoke a fresh philosophical dispute; 
long proofs would be subject to greater suspicion than short proofs since 
the dubious set-theoretic assumptions were being used a greater number of 
times. The benefit of formalisation is that the philosophical principles can 
be summed up in a finite list of schemata; then philosophical criticism of the 
principles can proceed independently from the mathematical elaboration of 
their consequences. The axioms mark the boundary between the philosophy 
and the mathematics. 

This separation of qualitatively different concerns is the essential means by 
which any difficult intellectual problem is solved. We may expect formality 
to playa similarly helpful role in any foundation of mathematics. 

The unsatisfactory aspect of this, at least in the case of ZFC set theory, 
is that we are unable to give a rational account of how the informal part, 
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the choice of axioms, is carried out. Set theorists have indeed developed 
some heuristic principles for choosing axioms (Maddy, 1988), but they have 
little to say on their rational justification and there is often disagreement on 
how they are to be applied in a particular case. If two set theorists disagree 
on whether to admit a strong axiom of infinity, it is not clear whether there 
is an objective matter of fact about who is right. (See Skolem (1922) for 
further discussion of the use of a single axiomatic system as a foundation for 
mathematics. ) 

We require, then, for any foundation of mathematics, that it sharply delimit 
the division of labour between the formal and informal parts, that it explain 
how the two parts fit together, and that it say something informative about 
what the correctness of the informal part consists in. This is the task of the 
present chapter. 

OPEN-ENDED DOMAINS 

The phenomenon of open-endedness arises in all philosophies of mathemat
ics. Here are some examples of open-ended domains. 

1. The total recursive functions. Given any recursively enumerable class 
of total recursive functions it is always possible to generate by diago
nalisation a total recursive function outside the class. 

2. The class of well-defined rules. The semantic paradoxes arise from the 
fact that we cannot pin down the meaning of 'well-defined' definitively. 

3. Large cardinals in set theory. Each axiom of infinity suggests a stronger 
one. 

4. Ordinal logics. An attempt to characterise informal arithmetic proof 
might start with Heyting Arithmetic or Peano Arithmetic, add a for
malised statement of its consistency to give an extended theory, and 
repeat the extension operation trans finitely (Turing, 1939). The ques
tion of how far the iteration can proceed was raised but not answered in 
the previous chapter. 

5. Well-founded trees. Mirimanoff's paradox (see below) shows that the 
universe of all well-founded trees can never be circumscribed. 

6. Intuitionistic proof. Goodman's paradox (see Chapter 8) shows that 
proof eludes characterisation in any decidable form. 

These examples are of course related. Clearly, the same phenomenon is at 
work in all the cases. 

One of the examples stands out as being particularly tractable: exam
ple (1) is the only case where we have a very explicit, universally agreed, 
philosophically uncontentious theory of what the objects in question are like. 
I shall therefore take it as the model for understanding open-endedness in 
general. 
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Imagine that we were discussing the general notion of an 'effective' func
tion in the 1920s, before the development of recursive function theory. We 
might identify simple classes of effective functions, such as the primitive 
recursive functions, and observe that it is always possible to extend the class 
by repeated diagonalisation. We might plausibly infer that there is a vast 
uncountable hierarchy of effective functions. This would seem paradoxical, 
since surely every effective function is defined by a rule expressible in a finite 
number of characters from a fixed alphabet (note the link between examples 
(1) and (2». We might conclude that the notion of effectiveness is ill-defined 
or ineffable. 

This is, however, not the way effective functions are understood today. We 
broaden our point of view to include partial functions, and then all functions 
become expressible in a single formal notation (such as Turing Machine 
codes). The universe of effective functions is not enormously big; it is just 
an undecidable subset of a countable domain. A total recursive function 
has two aspects: a decidable aspect (its syntax as a Turing Machine and its 
operational semantics) and an undecidable aspect (its totality). 

The same shift in perspective can be applied to the other examples. In 
the case of set theory, G6del (1946) has suggested that, by analogy with the 
absolute notion of computability, there may be absolute notions of demon
strability and definability, not relative to a formal system, which are closed 
under diagonalisation. Thus we might some day be able to characterise ax
ioms of infinity: 'An axiom of infinity is a proposition which has a certain 
(decidable) formal structure and which in addition is true.' Further, Kreisel 
(1965, p. 113) suggests that for every set-theoretic formula A there might be 
an axiom of infinity A' such that A {:::::::} A' is provable in ZFC. If so, this 
would split set-theoretic truth into two components: a decidable component 
(proof in ZFC) and an undecidable component (the truth of the. axiom of 
infinity). I propose that a similar approach be taken to the other examples of 
open-ended domains. 

PROOF AND WELL-FOUNDEDNESS 

Of all the examples of open-ended domains given above, the one that is 
most important for my purposes is (6), intuitionistic proof. Intuitionists 
have traditionally been very evasive about what a proof actually is (although 
they have had a lot to say about what it isn't), and this has created the 
impression that intuitionistic proof is something exotic and transcendental, 
forever eluding rational description (hence the spurious concrete/abstract 
distinction discussed in Chapter 9). I find this situation unsatisfactory and 
intend to be completely explicit about what a proof is. 

As argued in Chapter 9, contentual constructive reasoning must include the 
ability to formalise one's past constructive reasoning and, by diagonalisation, 
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transcend it. Thus, once we have grasped some methods of constructive 
argument, say the protologic outlined informally in Chapter 8, it is possible 
to code such arguments in a formal axiomatic system and define a construction 
(that is, a recursive function) DTo such that 

DTo(D, S) = true iff D is the code of a formal derivation tree 

for the sequent S 

where the formal derivations are formalised applications of the protological 
methods of argument previously recognised as sound. Having defined DTo 
we immediately recognise that the reflection principle 

(x, ... y) DTo(D, [ -t C]) -t C 

is generally sound, that is, if the sequent -t C is derivable then the value 
of C is true. If we add this reflection principle as an axiom schema to 
protologic then we obtain a larger system of constructive argument, coded by 
a construction DT1 instead of DTo. Immediately we see that the reflection 
principle 

(x, ... y) DT1(D, [ -t C]) -t C 

is generally sound; and if we add it as an axiom schema to protologic we 
obtain a system represented formally by a new construction DT2. If we 
iterate this procedure to give DT3, DT4 , ... , we may next recognise that all 
reflection principles of the form 

(x, ... y) DTn(D, [ -t C]) -t C, 

where n=O, 1,2, ... , are sound, and if we add them all toprotologic we obtain 
a still larger system, represented by a new construction DTw. The procedure 
may be continued to give DTa for all ordinals a that we can recognise as 
well-founded. 

Thus we have an open-ended system of protological theories (ordinal 
logics). However, as I suggested in the previous section, this is not the correct 
way to look at it. Instead of thinking of protologic as indefinitely extensible 
we should think of it as a subclass of a decidable system. That is, define a 
construction DT representing derivations that include the basic ingredients 
of protologic (as described in Chapter 8) plus any reflection principle of the 
form 

(x, ... y) DT(D, [ -t C]) -t C. 

(See Chapter 21 for the formal definition of DT.) Then this system is closed 
under reflection. The price we pay, of course, is that it is no longer sound; 
the sound derivations are an undecidable subsystem of this formal system 
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(just as the total recursive functions are an undecidable subclass of the partial 
recursive functions). 

The soundness of a derivation D may be investigated as follows. D is 
a finite tree of sequents, including in general some reflection principles of 
the form (x, ... y) DT(V, [ ---+ C]) ---+ C. The soundness of D depends on 
the soundness of all instances of all the V's (that is, for all values of the 
constructions x, ... y). Each of these V instances depends for its soundness 
on all instances of the derivation trees occurring in its reflection principles, 
and so on. Let us form a new tree, consisting of D as the root node, all the 
instances of the derivations V as the child nodes of D, and so on: in general, 
X is a child of Y iff X is an instance of a derivation tree occurring in one of 
Y's reflection principles. Call this tree the reflection tree of D. Then D is 
sound provided D's reflection tree is well-founded. 

The conclusion is that all protological arguments can be represented in a 
single formal notation (coded by DT), and that the soundness of a protologi
cal argument (coded formally by D) for a sequent S depends on two factors: 
whether DT(D, S) holds and whether D's reflection tree is well-founded. 
Thus protological reasoning turns out to have two aspects: a decidable as
pect, which can be specified once-and-for-all by a construction DT, and an 
undecidable aspect, well-foundedness. (The programme sketched here is 
carried out explicitly in Chapter 21.) 

This accomplishes the task set at the beginning of this chapter, at least 
in the case of protological argument: it explains how protologic consists of 
a formal and an informal component, and it identifies what the correctness 
of the informal component consists in. This account requires that well
foundedness be treated as a primitive notion, grasped informally prior to 
all formalisation. This seems a plausible position in view of the way in 
which a perception of well-foundedness seems to be required whenever we 
make intelligent use of any formal system: we understand a definition, or 
are convinced by a proof, or grasp that a function is total, by following the 
train of logical dependencies backwards until they cease. This also seems 
to be the idea behind the notion of 'grounded truth', as used in semantic 
theories with 'truth gaps'. Feferman (1991) describes two ways of extending 
Peano Arithmetic to make it closed under reflection and shows that they 
are equivalent to two ordinal logics based on Peano Arithmetic. In these 
theories 'truth' is a partial predicate applying only to grounded formulae, that 
is, formulae whose truth is determined ultimately by the truth values of the 
atomic formulae; an ungrounded formula would be, for example, one whose 
truth depends in a circular way on itself. Groundedness, then, is a form of 
well-foundedness, existing outside the formal system. 

The special extra-formal role of well-foundedness is brought out vividly 
in proofs of program correctness. A program is said to be correct iff given 
any input satisfying a certain precondition it produces output satisfying a 
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certain postcondition. A proof of correctness consists of two components: 
a proof of partial correctness (which says that the program will produce 
correct output if it halts) and a proof of halting. Partial correctness can be 
completely axiomatised in predicate calculus. Proof of halting proceeds by 
mapping each possible state of a program during an iteration to an element of 
a well-founded tree and showing that the element decreases at each iteration 
step, or, to put it more picturesquely, by surveying the structural possibilities 
for the execution of the program. (See Loeckx & Sieber, 1984.) Thus 
proof of correctness consists of a decidable component and an informal 
perception of well-foundedness. Program correctness is especially relevant 
to my concerns, since protologic is simply a program correctness calculus. 
I cannot, however, make use of the usual correctness calculi as they stand 
since they rely on predicate calculus. My point is merely that they correctly 
identify well-foundedness as an essential element of a correctness proof 
standing outside the formal system. 

However, we are not yet finished. Recall from Chapter 8 the distinction 
between evidence and proof. Protologic is only a theory of evidence. The 
account just given of evidence (as consisting of a decidable part plus well
foundedness) needs to be extended to proof. 

At first sight this may appear difficult. It is clear from Chapter 8 that proofs 
consist of such things as numbers, protological derivations, pairs of proofs, 
and functions mapping proofs of one sort to proofs of another sort. However, 
I shall show that all these may be regarded as trees of various higher types. 
A logical formula specifies a type of tree, and a proof of the formula is a tree 
of that type which satisfies a certain decidable condition and is well-founded. 
Thus proof, like evidence, has a decidable part and a well-foundedness part. 

TREE CODINGS 

One reason for caution in taking well-foundedness as a primitive, informally 
understood notion is Mirimanoff's paradox, which goes as follows. Take all 
the well-founded trees (that is, one representative of each isomorphism class) 
and connect them together into a super-tree T that has all the well-founded 
trees as subtrees. Observe that T is well-founded, since any descending 
sequence of nodes starting at the root passes immediately into a well-founded 
tree. Therefore T is (isomorphic to) one of its own subtrees. This implies 
that there is an infinite descending sequence of nodes in T, contradicting the 
well-foundedness of T. 

This paradox might suggest that there is no general notion of well
foundedness, only limited notions relating to particular classes of trees. I 
prefer, however, to interpret it in a different way. In reality there are no 
trees in the abstract, only trees coded as constructions. Indeed, it is even 
misleading to speak of coding trees as constructions, as if trees and construc-
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tions were two different sorts of mathematical object. Constructions are the 
only mathematical objects there are. What we should really say is that some 
constructions are interpreted as trees. To explain what this means we need 
the following terminology. 

A tree consists of nodes, one of which is the root node. Each node has 
zero or more child nodes; a node with no children is called a leaf. The 
descendants of a node are its children, its children's children, and so on. 
Every node except for the root is a child of exactly one other node and is a 
descendant of the root; the root itself is a child of no node. A subtree is a 
tree consisting of one of the root's children and all the child's descendants. 

To interpret a construction as a tree means to specify which construc
tions are (interpreted as) its subtrees and to specify how to interpret those 
constructions as trees. The simplest way to do this is to define a class of 
trees by a relation R between constructions such that if R(X, Y) holds then Y 
is considered a subtree of X; by applying R repeatedly we can develop the 
entire structure of the tree (that is, its subtrees, its subtrees' subtrees, and so 
on) given the construction representing the whole tree. Alternatively we may 
apply different relations at different points in the tree; but the appropriate re
lation to use at any stage must be specified when we explain how to interpret 
a construction as a tree. 

I shall call a tree coding any scheme for interpreting a class of constructions 
as trees, whether by a single relation R, by several relations, or in any other 
way. 

An example of a tree coding is coded protologic. As indicated above, a 
construction D may represent a formal proto logical derivation in the form 
of a finite tree of sequents. But D also has an associated reflection tree, 
which is typically infinitely branching. Thus the one construction D can be 
interpreted in two ways, as a derivation tree or as a reflection tree, according 
to the tree coding used. (See Chapter 21, where the reflection tree coding is 
called rt.) 

A trivial example of a tree coding is one that says: let any construction 
X represent a tree consisting of a root node with no children. In Chapter 21 
this coding is called leaf because in such a tree the root is a leaf. 

Two tree codings, II and :£, can be combined to give more complex 
codings. Define a coding, called product(II,:£) in Chapter 21, by saying 
that a construction is interpreted as a tree iff it is a pair (X, Y), where X is 
interpreted as a tree according to II and Y is interpreted as a tree according 
to :£; X and Yare the subtrees of (X, Y). Note that (X, Y) is well-founded iff 
both X and Yare. 

Also, define a coding map(II,:£) by saying that, to interpret a construction 
F as a tree, we apply F to all constructions representing well-founded trees 
according to the coding II, and we regard the values obtained as the subtrees 
of F. That is, T counts as a subtree of F iff F(X) has the value T for some X 
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representing a well-founded tree of type IT. The subtree T is to be interpreted 
as a tree according to the coding L. The point of this complicated definition 
is that it implies that F is well-founded iff all its subtrees are, that is, iff F 
maps well-founded trees (of type IT) to well-founded trees (of type L). This 
shows that the concept of a mapping between well-founded trees of various 
types can be construed as a higher form of well-foundedness. 

The map(IT, L) coding may be considered unsatisfactory in that to deter
mine whether T is a subtree of F we need to search through infinitely many 
constructions X to find one that is mapped to T by F. This defect could 
be remedied by complicating the interpretation of F slightly, as follows. A 
subtree of F is now a pair (X, T) such that X is a well-founded tree according 
to IT and F maps X to T; moreover, (X, T) has a single subtree T, interpreted 
according to L as before. However, in this book I shall stick to the first 
formulation for simplicity. 

The above devices allow us to define a large supply of tree codings by 
starting with rt and leaf and using product and map repeatedly. Statements 
of the form 'X is well-founded and Y is well-founded' or 'F maps well
founded trees to well-founded trees' can be construed as single statements of 
well-foundedness, using the product and map devices. This will be useful in 
the interpretation of the logical constants (Chapter 25): it will allow me to 
say that 

• any logical formula is semantically analysed as having two components, 
a recursive function A and a tree coding IT; 

• a construction P is a proof ofthe formula iff A(P) has the value true and 
P represents a well-founded tree according to IT. 

Thus intuitionistic proof, like evidence, consists of a decidable aspect and an 
undecidable well-foundedness aspect. 

My account of interpreting constructions as trees amounts to saying that 
to define a tree coding one must specify (a) which constructions represent 
trees, (b) for those that do represent trees, which constructions represent their 
subtrees, and (c) the tree coding for interpreting the subtree constructions. An 
equivalent but more elegant way of saying this is that to specify a tree coding 
it is necessary and sufficient to specify which sequences of constructions 
count as branches; where a branch is a finite sequence of constructions, of 
which the first represents the whole tree and each subsequent construction 
represents a subtree of the previous one. 

Notice how Mirimanoff's paradox is defused. It is not that there is no 
general notion of well-foundedness but rather that there is no universal coding 
of trees. Every so-called tree is actually a construction interpreted as a tree 
according to some particular tree coding, and one cannot define in a non
circular way a tree coding that allows the paradox to work. 

I assume that once we have defined a tree coding we grasp the notion 
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of well-foundedness for trees of this type. More precisely, once we have 
defined what it means for a sequence of constructions to be a branch we 
grasp what it means for a construction to represent a well-founded tree. 
This assumption is necessary to make sense of the map(fI,~) coding. In 
a tree coding such as map(map(rt, leaf), rt), the meanings of rt and leaf 
are grasped directly; from that we grasp the meaning of a branch of type 
map(rt, leaf), hence a well-founded tree of type map(rt, leaf), hence a 
branch of type map(map(rt, leaf), rt), and finally a well-founded tree of type 
map(map(rt, leaf), rt). In short, we have a general grasp of well-founded ness. 

I cannot defend this assumption, should it come under philosophical attack. 
I merely assert it. If! were given to Brouwerian rhetoric I would call the grasp 
of well-foundedness the Third Act of Intuitionism. It may be objected that 
well-foundedness can be understood in several ways: when saying that a tree 
is well-founded do I mean (a) that induction up the tree is generally sound, 
or (b) that every descending sequence of nodes reaches a leaf? Clearly 
(a) implies (b); the converse is Brouwer's principle of Bar Induction. I 
understand well-foundedness as (a) and so do not need Bar Induction. 

DECIDABILITY OF PROOF 

I have claimed that intuitionistic proof consists of a decidable component 
and an undecidable component. This appears to conflict with the orthodox 
view, originating with Kreisel, that intuitionistic proof must be decidable. 
On closer inspection it turns out that Kreisel and others mean the word 
'decidable' in a special sense: they mean that in any given case we can 
decide whether a construction proves a formula, not that we can encapsulate 
our decision ability in an algorithm. Kreisel (1962) says 'we are adopting 
the basic intuitionistic idealization that we can recognize a proof when we 
see one', and it is hard to quarrel with this. Intuitionism rejects the platonist 
notion of an external mathematical reality, according to which statements are 
true or false independently of our knowledge, and replaces it with a semantics 
based on proof. Equally, the intuitionist cannot accept that a construction is 
or is not a proof independently of our knowledge; it is inherent in the very 
notion of intuitionistic proof that we can effectively recognise one when we 
see one. A proof is a construction that encapsulates a mathematical discovery 
(see Chapter 7); if we could not recognise whether a given construction were 
a proof then it would thereby fail to be a proof. 

There is a second reason for wanting proof to be decidable. Goodman 
(1970, §6) and Dummett (1977, p. 409) point out that Heyting's accounts of 
the meanings of the logical constants are intended as 'genuine explanations', 
and hence the right-hand sides must not presuppose the logical constants. 
Therefore the words 'and', 'or' and 'if' occurring on the right-hand sides can 
only be understood as truth-functional operators; this means that the-proof 
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judgements they operate on must have truth values in the classical way and 
hence must be decidable. 

So far I agree (except that I do not regard the 'if' in the implication 
clause as truth-functional, as explained in Chapter 8, but that does not affect 
the argument). However, I think I disagree on the reason why we cannot 
express our capacity to decide proofhood in an algorithm. According to the 
orthodox intuitionistic story, proof is effectively decidable but probably not 
algorithmically decidable, since proof depends on an intuitive understanding 
of the meaning of the constructions involved (Dummett, 1977, pp. 264, 357). 
This stress on meaning and understanding seems also to be behind the general 
agnosticism on Church's Thesis (Bishop, 1967, Appendix B; Kreisel, 1970; 
Troelstra, 1977, § 1.3). It is also central to the debate on finitary reasoning (see 
Chapter 9), where it is often claimed that intuitionism is concerned with the 
meaning of constructions while finitism relies purely on formal combinatorial 
properties of symbol patterns. 

I have severe reservations about this line of thought. It assumes that 
human beings are not equivalent to Turing Machines. Neuroscience suggests 
that the human mind is a function of the human brain and that the brain 
is a complex system of cells whose individual behaviour is explicable by 
well-understood chemical and physical laws; if so then it appears likely that 
a human mind could be simulated by a Turing Machine. Whether such 
a Turing Machine would be genuinely conscious is irrelevant for present 
purposes, since all that concerns us is that it would duplicate our decisions 
on which constructions are proofs of which formulae. Hence the distinction 
between machine-computable and person-computable would vanish. 

Now, the possibility of such a Turing Machine is, of course, a controversial 
issue in the philosophy of artificial intelligence. I do not mean to settle it 
here, merely to point out that it cannot be banished by casual introspection 
or by brandishing the words 'meaning' and 'understanding'. Philosophers of 
mathematics would be well advised to remain neutral on the question. 

Let us consider the possibility that a particular mathematician, Andrew, 
is equivalent to some Turing Machine, TA . Then we can enumerate the con
structions that Andrew would recognise as proofs and from the enumeration 
we can produce a proof that Andrew would not recognise. (If one accepts my 
view that proofs are essentially well-founded trees then we simply hook all of 
Andrew's trees together to form a single super-tree.) Clearly Andrew cannot 
carry out this procedure himself, because if he did he would recognise the 
new proof as sound; so what is stopping him? He can certainly understand 
the general procedure that produces a new proof from an enumeration of 
proofs; the one thing he cannot do is recognise TA as a correct simulation of 
himself. 

Another mathematician, Barbara, may be able to recognise all the proofs 
that Andrew can and also recognise that TA simulates Andrew. Hence Barbara 
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can produce and recognise the proof that is beyond Andrew. Andrew's proofs 
are 'mechanical' from Barbara's point of view since she can encompass them 
all in a single algorithm TA, ·but from Andrew's point of view they rely 
essentially on individual acts of understanding. Barbara, in turn, is described 
by another Turing Machine, Tn, but this fact can only be recognised by a 
higher mathematician, Charles. And so on. 

Two conclusions emerge from this. First, 'mechanicalness' is a relative 
matter: each Turing-Machine-equivalent mathematician has his or her own 
conceptual horizon, limiting the proofs that he or she can recognise. Sec
ondly, 'mechanicalness' is a collective property of a system of proofs rather 
than a property of individual proofs. After all, any individual proof P, how
ever sophisticated, can always be recognised by an algorithm, namely the 
algorithm that says' Accept the input string iff it is P'. 

A special case of this 'conceptual horizon' phenomenon is GOdel's and 
Tait's portrait of the finitist (Chapter 9), who can recognise each primitive 
recursive function but cannot recognise primitive recursion in general. This 
positioning of the conceptual horizon is not particularly plausible or worthy 
of special attention. 

Now consider the alternative possibility, that Andrew is not equivalent to 
any Turing Machine. Then one can still imagine a higher mathematician, 
Barbara, who can recognise that all the proofs Andrew recognises are sound 
and who can enumerate all such proofs and hence generate a proof that 
Andrew cannot recognise. Andrew himself cannot recognise that all his 
proofs are sound. A similar picture emerges as in the previous case. 

In conclusion, I reject the absolute distinction between mechanical and 
meaningful, and replace it with a relativistic picture of conceptual horizons. 
Relativistic, however, does not mean subjectivist: the correctness of proofs 
is still an objective matter since it is tied to well-foundedness, even though 
we cannot capture well-foundedness formally. 

The task set at the beginning of this chapter was to explain how math
ematics splits into formal and informal aspects and to describe the nature 
and objective correctness of the informal part (without falling into the trap 
of attempting to formalise it). My answer is that the informal aspect is well
foundedness. An intuitionistic proof is a tree, whose correctness consists in 
satisfying a decidable (that is, recursive) condition and in being well-founded. 
This is a much more explicit account of what a proof is than has been given 
by any intuitionist hitherto. 

I have not yet explained in detail how the formal and informal aspects 
work together to produce a notion of proof consistent with the intuitionists' 
traditional understanding of the logical constants. This will become clear 
later (Chapter 21 onwards). 



CHAPTER 11 

ANALYSIS 

Previous chapters have been exclusively concerned with logic and arithmetic, 
based on what Brouwer called the First Act of Intuitionism. To extend the 
treatment to the theory of real numbers requires, in Brouwer's view, a new 
mental ingredient, the Second Act of Intuitionism. Further extensions would 
require additional new insights and new sorts of construction. This process 
is never completed: there is no definitive inventory of ideas on which the 
whole of mathematics is based. 

I share this view. In this chapter I shall consider how the step from 
arithmetic to analysis should be accomplished. I define analysis as a system 
of first-order predicate logic containing variables for real numbers and the 
axioms for a complete ordered field. Variables for sets of reals or functions 
defined on the reals are not included. The completeness property is expressed 
in an axiom schema 
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for any formula A in which y and z do not occur free. Analysis may be inter
preted in second-order arithmetic, if we regard a real number as a Dedekind 
cut of rationals, a rational as a pair of integers, and an integer as a pair of 
natural numbers, in the usual way. Hence the task for this chapter is to justify 
the introduction of second-order quantifiers into arithmetic. 

Some constructivists would approach this problem by setting up a weak 
predicative system of analysis that is a conservative extension of arithmetic 
but is still adequate for most of conventional mathematical practice (see 
Sieg (1988) for information on such systems). My aim, however, is to 
interpret the second-order quantifiers in their full impredicative sense. The 
theory I produce in the end will be formally identical to classical analysis, 
without the special continuity principles usually associated with intuitionistic 
analysis. Nevertheless, my theory will be based on genuinely intuitionistic 
philosophical principles. 

128 
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CHOICE SEQUENCES 

Brouwer and all later intuitionists have interpreted analysis in terms of the 
notion of a choice sequence or infinitely proceeding sequence. A choice 
sequence is a sequence a = (ao, aI, a2, ... ) 'whose terms are chosen more or 
less freely from mathematical entities previously acquired' (Brouwer, 1952; 
see also the Brouwer manuscripts in van Stigt, 1990, pp. 445, 457). In another 
manuscript Brouwer adds, 

Such freedom is to be understood in its widest sense: it may entail the absence of any law, or it 

may entail a set of restrictions, which fail to determine the sequence uniquely; these restrictions 

may even be allowed to change during the development of the sequence. (van Stigt, 1990, p. 434) 

The meanings of 'chosen' and 'freely' are not entirely clear. 'Chosen'implies 
that some agency is determining the terms, while 'freely' implies that some 
other agency is not determining the terms; this is not very informative. 
Heyting's formulation is more illuminating: 

... a sequence that can be continued ad infinitum. The question how the components of the 

sequence are successively detennined, whether by a law, by free choices, by throwing a die, or 

by some other means, is entirely irrelevant. (Heyting, 1956, p. 32) 

The key word here is 'irrelevant'. When treating a sequence as a choice 
sequence we pay no attention to the process by which the terms are generated 
but simply consider the terms themselves. Choice sequence theory applies 
to all sequence-generating processes, whether deterministic, probabilistic or 
completely arbitrary. The intention is that choice sequences be treated purely 
extensionally: any operation carried out with a choice sequence should only 
depend on a finite number of the terms of the sequence. 

CRITIQUE OF CHOICE SEQUENCE THEORY 

The basic idea of a choice sequence seems clear and simple, but puzzling 
complications arise when we attempt to develop it into a formal theory 
adequate for an interpretation of analysis. 

Troelstra (1977) and Dummett (1977, §7.4) provide good surveys of the 
development of the subject. For simplicity let us confine our attention to 
sequences whose terms are natural numbers. We wish choice sequences to 
satisfy various principles such as 

Equality: a = ~ ¢=:} a == ~ 
Density: Vu 3a a E u 

Open Data: Va V~ «A(a,~) 1\ a '" ~) ~ 3n Vy ~n a (y '" ~ ~ A(y, ~))) 

Va3n-continuity: Va 3nB(a, n) ~ Va 3m 3n V~ ~m a B(~, n) 
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where 'a', '13' and 'y' are choice sequence variables, 'm' and 'n' are natural 
number variables, 'u' is a variable for finite sequences, == and = are in
tensional and extensional equality of choice sequences respectively, A(a, 13) 
depends extensionally on a and 13 and contains no other choice sequence 
variables, B(a, n) depends extensionally on a and contains no other choice 
sequence variables, a E u holds iff u is an initial segment of a, and y ~n a 
holds iff y and a agree on their first n terms. 

We also wish the universe of choice sequences to satisfy various versions 
of the axiom of choice and to be closed under continuous operations: that is, 
the result of applying a continuous operation to a choice sequence should be 
a choice sequence. (A continuous operation is a function f mapping a choice 
sequence a to a choice sequence 13, where each term I3n is calculated by f 
from only some initial segment (ao, ai, a2,' .. ak(n») of a.) Unfortunately, 
these desiderata are not compatible. If 13 is defined as f( a) then this typically 
implies some constraints on the terms of 13. For example, 13 may be defined 
by 

'<:In I3n = an + 1. 

Then we have some intensional information about 13: we know that "In I3n > 0 
and '<:In I3n = an + 1. This violates the Open Data Principle, which says in 
effect that all our knowledge of choice sequences is extensional. The usual 
response to this is to distinguish various classes of choice sequence, each 
class satisfying a different subset of the above principles: lawless sequences 
are given purely extensionally and satisfy Open Data, while other, restricted 
choice sequences such as 13 have an intensional component. A special case of 
a restricted sequence is a lawlike sequence, whose terms are fully determined 
by a rule. 

This distinction leads to a proliferation of notions of choice sequence 
and creates difficulties that have never been satisfactorily resolved. I shall 
summarise the various classes of choice sequence listed by Troelstra and 
Dummett. 
(1) The simplest notion is that of a sequence given by a generating process 

subject to no constraints (other than that the terms be of a certain type, 
usually natural numbers); 'at any stage of the process, all the information 
regarding a consists of a finite initial segment' (Troelstra, 1985, §2.2). 
Troelstra (1983, p. 208) calls these proto-lawless sequences; they are 
believed to satisfy Equality, Open Data and '<:Ia:3n-continuity, but not 
Density. 

(2) Proto-lawless sequences can be made to satisfy Density if we permit an 
initial segment of the sequence to be set 'by hand', thus ensuring that 
there is always a sequence starting with any given finite number of terms. 
These modified sequences are known as lawless sequences and are 
believed still to satisfy the Equality Principle (Kreisel, 1968). Troelstra 
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(1983, p. 212) points out that Open Data may fail if the fonnula A(a,~) 
involves the function <PI defined by the rule: for any lawless sequence y, 
<P/(Y) is the initial segment ofy that is set 'by hand'. HoweverTroelstra 
asserts that Open Data holds for all fonnulae A(a,~) not involving <PI' 

(3) A notion of choice sequence adequate for analysis should include re
stricted, and even lawlike, sequences as well as lawless ones; ideally, 
it should be closed under continuous operations. A simple way of in
cluding restricted sequences is to consider as a choice sequence any 
sequence that is constrained by a spread law but is otherwise lawless; 
this includes lawless and lawlike sequences as special cases. How
ever, this class of choice sequences is still not closed under continuous 
operations (Dummett, 1977, p. 426). 

(4) Brouwer (1952) viewed a choice sequence as given by a sequence of 
choices of pairs (an,Rn), where an is the nth tenn of the sequence 
and Rn is a finite set of restrictions to be applied to subsequent choices 
an+l, a n+2,' .. (where Rm ~ Rn for m < n). The restrictions in Rn 
are usually taken to be expressible as a single spread law: that is, as 
n increases a is required to belong to successively narrower spreads. 
Unfortunately, as Troelstra (1977, p. 131) shows, this class of choice 
sequences is again not closed under continuous operations. 

(5) Closure under continuous operations can be achieved if we define a 
choice sequence as any sequence obtained by applying a continuous op
eration to a tuple of lawless sequences. (A variation on this is to choose a 
single lawless sequence a and consider all sequences obtainable from a 
by applying continuous operations.) Unfortunately this class of choice 
sequences fails to satisfy Va3n-continuity (Troelstra, 1977, p. 65). 

(6) In an attempt to satisfy both closure under continuous operations and 
Va3n-continuity, Troelstra (1977, Appendix C; 1983, §8) describes a 
modified and much more complicated notion, GC sequences, which 
are generated freely subject to a sequence of restrictions that involve 
defining the sequence in tenns of subordinate choice sequences using 
continuous operations. 

(7) Dummett(l977, pp. 435-451) finds Troelstra's accountofGC sequences 
ambiguous and argues that the proofs of Va3n-continuity and closure 
under continuous operations fail. Dummett describes an even more 
complicated version ofthis idea for which, he argues, Troelstra's proofs 
work. 

Although notion (7) appears to satisfy the fonnal requirements for intuitionis
tic analysis, it is hard to accept it as a satisfactory explication of the infonnal 
notion of 'a sequence that can be continued ad infinitum'. As Goodman 
(1979a) remarks, Dummett 'finishes with a notion built up from lawless se
quences and continuous functionals in a manner so complex that it is hard to 
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believe that he intends this to be the fundamental notion on which analysis 
is to be founded.' Note that Troelstra (1977, pp. 77, 138, 158) expresses 
a similar caution about the not-quite-so-complicated GC sequences. The 
development of the concept of choice sequence through a series of ever more 
complicated formulations, each of which tries to patch up the surface defects 
of the previous, until the final version collapses under its own weight, is char
acteristic of a formal theory that has lost touch with its underlying informal 
ideas (cfaxiomatic set theory). 

Vesley (1979) and Gielen et al. (1981) express doubts about the wisdom of 
attempting to reduce Brouwer's concept of choice sequence to a supposedly 
more primitive concept of lawless sequence. I am inclined to agree that 
classifying the choice sequences into proto-lawless, lawless and non-lawless 
is a mistake. Consider the following examples. 

Example 1. Consider a sequence a that is law less except for the constraint 
that each term is 0 or 1; now define a 'mirror-image' sequence 13 by applying 
the following continuous operation to a: 

'<In I3n = 1 - an· 

The relationship between the sequences a and 13 is symmetric, so it seems 
arbitrary to say that a is a lawless sequence of Os and Is while 13 is not. 
The two sequences cannot both be lawless, because that would contradict 
the Open Data Principle (taking A(a, (3) as '<In an + I3n = 1). As mentioned 
above, the law less sequences are believed to satisfy Open Data, provided the 
formula A(a, (3) does not involve Troelstra's <1>[ function. 

Troelstra's (1977, pp. 16, 48) explanation, in a situation similar to this 
mirror-image example, is that we have a choice of which sequence to consider 
as lawless; 'we cannot refer to [a] and [13] as both being lawless within the 
same context'. 

Dummett (1977, p. 421), however, denies this interpretation. 

But, again, it is not a matter of there being two choice sequences, either of which we may, if 

we will, take as being a lawless sequence, provided that we do not so take the other, but of its 

being impossible that we should know [the mirror-image relation] to hold of any two lawless 

sequences. 

His point seems to be that, for any two mirror-image choice sequences, one 
must have been defined first and the other defined in terms of the first; thus 
the second cannot be lawless. 

It is curious that Dummett and Troelstra disagree on this fundamental 
matter affecting the very nature of lawlessness and yet their disagreement 
has no consequences for the subsequent development of the theory. This 
suggests that, even at this early stage, the formal theory is not closely tied to 
the informal ideas. 
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The mirror-image example throws serious doubt on the notion of a lawless 
sequence (and the notion of a proto-lawless sequence, to which the same 
considerations apply). Suppose we have generated a by repeatedly tossing 
a coin and counting Heads as 0 and Tails as 1. Suppose another person 
observes this process and also uses it to generate a choice sequence, but 
they interpret Heads as 1 and Tails as O. A third person agrees with us 
that Heads is 0 and Tails is 1, but thinks that the proper way to read a coin 
is to crawl underneath the table (which is made of glass) and look at the 
underside of the coin. Clearly the second and third persons will regard ~ as 
'the proto-lawless sequence generated by the coin-tossing' and a as its mirror 
image. It seems to me that there is no objective matter of fact about which 
of a and ~ is directly obtained from the coin-tossing and which is defined 
in terms of the other. It follows that a and ~ must be treated symmetrically. 
The same considerations apply to any other sequence-generating process: 
there are always many equally good ways of interpreting the process as the 
generation of a sequence of numbers, for we have a choice of which aspects 
of the process to regard as relevant and how to encode those aspects as a 
number. If ~ is obtained from a by a continuous operation then any process 
that may be construed as generating a may be re-construed as generating ~ 
instead. Perhaps we should take up Troelstra's suggestion (see the quotation 
above) that lawlessness depends on the context; this means, I take it, that a 
sequence may be described as lawless provided we are not at the same time 
considering other sequences with respect to which it is constrained. But this 
is tantamount to abandoning the notion of lawlessness altogether. 

Example 2. This example also concerns the application of Open Data to 
lawless sequences. Let a be any lawless sequence and define ~ by prefixing 
the sequence a by o. Consequently we have 

~o=O 

Now, a consists of finitely many pre-specified terms followed by infinitely 
many free choices; therefore so does ~ (it just has one more pre-specified 
term). Thus ~ is also lawless. But this again contradicts Open Data (taking 
A(a,~) as 'in ~n+l = an)· 

Example 3. The lawless sequences are generally believed to satisfy the 
Equality Principle, a = ~ {:::::::} a == ~ (Kreisel, 1968, §2; Troelstra, 1977, 
§2.5; Dummett, 1977, p. 420). Troelstra's (1983, p. 208) justification reads, 
in part, 'if a ¢. ~, then at no stage will the available data (always involving 
only finitely many values of a and ~) ever permit us to assert that a and ~ will 
forever coincide, hence a f. ~'. (Cf also Troelstra (1985, p. 221): 'the only 
way in which we can know that a, ~ have the same values for all arguments 
is to know that a, ~ are a priori given to us as the same source (process).') 
Now, let m be any natural number and let a be any proto-lawless sequence. 
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Define a lawless sequence ~ whose first term ~o is set 'by hand' to m and 
whose subsequent terms are chosen by the same free generating process as 
a's terms. Thus we have 

~o=m Vn > 0 ~n = an· 

Now, we have a ¢ ~, since a and ~ are given to us in different ways. In case 
this is not quite convincing, consider again Troelstra's ct>[ function, defined 
above; ct>[(a) is the empty sequence, while ct>[(~) is a one-term sequence. 
Thus a ¢ ~. 

Hence, assuming the Equality Principle, a =I- ~. But from (*) we have 
a = ~ ¢=::} Vn an = ~n ¢=::} (0.0 = ~o /\ Vn > 0 an = ~n) ¢=::} 0.0 = m. 
Therefore, 0.0 =I- m. 

Since this holds for arbitrary m and a we have Vm Va 0.0 =I- m (where a 
ranges over the proto-lawless sequences), and hence by intuitionistic logic 
-,30. 3m 0.0 = m - in words, no proto-lawless sequence has a first term! 

Example 4. Let a be a proto-lawless sequence and let ~ be a sequence 
given by the same generating process as a, but in the case of ~ we discount the 
first ten terms as 'practice runs' and regard the sequence proper as starting at 
0.10. Consequently, Vn ~n = an+IO. Clearly f3 is related to a by a continuous 
operation but ~ ¢ a. Now, is ~ proto-lawless? It surely must be, since the 
process generating the terms of ~ is just as free as the process generating the 
terms of a (it is, after all, the same process). However, admitting both a and 
f3 as proto-lawless is clearly contrary to the principle of Open Data, which 
is conventionally assumed to hold for proto-lawless sequences (Troelstra, 
1983, p. 211). Now, Open Data is the most fundamental of all continuity 
principles, and the proto-lawless sequences are the most extensional of all 
types of choice sequence; if Open Data fails even for proto-lawless sequences 
then the prospects for intuitionistic analysis are bleak. The most that could 
be salvaged would be a weak form of Open Data 

Va (A(a) :J 3n Vy ~n a A(y)) 

where A(a) has no free choice sequence variables other than a. 
It is for this reason that Troelstra (1983, p. 215) says (in connection with 

a different example) 'we cannot select a subsequence [of a lawless sequence] 
and call it lawless as well'. And yet if we consult Troelstra's own criterion for 
proto-lawlessness in the same paper, 'at any moment only an initial segment 
is known, and no restrictions are imposed on future choices' (p. 208), it is 
hard to see how it can apply to a and not to ~. The choice of f3 257 is the same 
act as the choice of 0.267, but it would be absurd to regard this as a restriction 
on the choice of ~257 (unless it is a restriction for a thing to be the same as 
itself). Note that ~ is not defined in terms of a: rather, /3 and a are read from 
the same generating process in different ways. 
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What all four examples show is that the notions of proto-lawless sequence 
and lawless sequence are trickier than they look. For example it is not clear 
whether a lawless sequence is a proto-lawless sequence prefixed by finitely 
many terms (as assumed in Example 2) or whether it is a proto-lawless se
quence with finitely many terms at the beginning overwritten by new values 
(as assumed in Example 3): the two conceptions are not necessarily equiva
lent in view of Example 4. The conventional explanations of these concepts 
do not adequately justify the principles that are attributed to them and the 
theory that is based on them. The difficulty is in doing justice simultaneously 
to the intensional and the extensional aspects of choice sequences. 

GETTING RID OF TIME: BLACK BOXES 

I have a more fundamental misgiving about choice sequences as convention
ally depicted, concerning their temporal aspect. Brouwer (1955) says that 
time enters into mathematics in two ways: first, propositions acquire truth 
values as we discover proofs of them; secondly, mathematical objects such 
as choice sequences may actually grow in' time. 

in intuitionistic mathematics a mathematical entity is not necessarily predetenninate, and may, 
in its state of free growth, at some time acquire a property which it did not possess before. 
(Brouwer, 1955) 

I am extremely uncomfortable with this intrusion of time into mathematics. 
How, for example, is the time-scale of the choice sequence related to the time
scale of the intuitionist analyst who reasons about it? Is it possible that <X = <X 

may be false because <X has grown in the interval between writing the left-hand 
side of the equation and writing the right-hand side? Posy (1974) argues that 
Brouwer's introduction of choice sequences required a fundamental alteration 
in his ontology of mathematical constructions; he further proposes (Posy, 
1976, 1977) that choice sequences are best interpreted in epistemic terms, 
using the theory of the creative subject, thus in effect linking Brouwer's two 
sources of time variation. 

I have already argued in Chapter 6 that the first kind of time variation 
(propositions' acquiring truth values as we prove them) is unnecessary and 
misconceived. I shall now argue the same for the other kind. 

I propose to replace the picture of a choice sequence as a process generating 
values one after another with the picture of a black box, that is, a device that 
generates a value when supplied with a natural number argument. The output 
of the black box is determined by its input: presenting the same input on 
different occasions always produces the same output regardless of any other 
values previously input. When reasoning about black boxes we consider only 
the output produced for particular inputs, taking no account of what is going 
on inside the box. 
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Black boxes are equivalent to choice sequences, but have the advantage 
of avoiding the temporal element. By 'equivalent' I mean that any black box 
can be simulated by a choice sequence and vice versa. To see this, consider 
any choice sequence a, generating values ao, aI, a2, ... one after the other. 
This can be simulated by a black box that outputs an when the input is n: 
if we feed the inputs 0, 1, 2, . .. in succession to such a black box then it 
will produce the outputs ao, aI, a2, ... , thus simulating the choice sequence. 
Conversely, consider any black box; let an be its output when the input is 
n. This black box can be simulated by the choice sequence ao, aI, a2, ... , 
in the following way. When an input of n is provided we generate the first 
n + 1 terms ao, ... an of the choice sequence (unless we have already done 
so, in which case we simply remember the terms generated) and output an. 
Thus the choice sequence, used in this way, behaves like the black box. 

This argument shows that choice sequences and black boxes are equally 
useful as a foundation for intuitionistic analysis. A disadvantage of taking 
black boxes as the basic notion is that we need to make the assumption that the 
behaviour of the box is deterministic and history-independent: that is, it will 
always produce the same output for a certain input. This may seem a slightly 
artificial assumption given that we are pretending not to know anything about 
what is going on inside the box. No such assumption is required for choice 
sequences. However, the overriding advantage of black boxes over choice 
sequences is that a black box is not in a 'state of free growth' and cannot 
'acquire a property which it did not possess before'. Thus the intrusion of 
time is revealed to be inessential. I shall accordingly take black boxes rather 
than choice sequences to be the fundamental notion from now on. I shall 
extend the idea slightly by allowing as input any construction rather than 
merely natural numbers, and I shall assume that the output is a construction. 
The continuity issues discussed in the previous section arise for black boxes 
just as they do for choice sequences, but in view of the difficulties described 
I shall not adopt any continuity, equality or choice principles. 

Since a construction is essentially a program, the Theory of Constructions 
may be viewed as a theory of digital computation. Adding black boxes 
turns it into a theory of hybrid computation, that is, a theory of a digital 
computer embedded in a system of devices of various sorts (black boxes) that 
pass constructions to and from the digital computer. The digital computer 
is plugged into this system at several sockets by means of which it can 
communicate with the black boxes. The digital computer's programming 
language contains two new primitive commands: (i) connect a new black 
box to a certain socket; (ii) send a construction to a certain socket and receive 
a construction back. Once a box has been connected it remains plugged in for 
the rest of the computation. Every socket has a unique name, say' SI " 'S2', 

, S3', ... , but black boxes are anonymous; in both of the above commands 
the computer names the socket in question, but in the first command it has no 
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control over which box will be connected to the socket. This introduces an 
element of indeterminism: if the same computation is executed repeatedly, 
different boxes may be chosen and different results may be obtained. 

The notion of sockets is useful in explaining how we distinguish one 
black box from another. It is usually assumed in choice sequence theory that 
we have two kinds of knowledge about a (proto-lawless) choice sequence: 
extensional knowledge (finitely many terms of the sequence) and the identity 
of the sequence. The latter is necessary if we are to talk about more than 
one choice sequence at once without confusing them, and yet it may seem 
mysterious how we can have just this isolated piece of intensional information 
about a choice sequence. The notion of sockets makes this clearer. The 
digital computer is aware of all its sockets but has no knowledge of which 
black boxes are plugged into them. Sockets are finite, completely known 
objects with unique names. The digital computer can handle sockets at 
will in computations (their names could be constants in the programming 
language); in particular it can compare one socket with another. 

PUTTING BLACK BOXES TO WORK 

On the basis of the above explanation it would be possible to introduce 
symbols for black box sockets into protologic. If Sl is a socket name then 
SIX would be a term that is evaluated by evaluating X, sending the resulting 
construction to the socket Sl, and receiving a construction back. 

However, this is not quite what is needed for the interpretation of analysis. 
I shall use black boxes in the informal part of the interpretation, as tree 
codings. Recall from Chapter 10 that a tree coding is defined by specifying 
which finite sequences of constructions XI.'" Xk count as branches of a 
tree. A black box may be used for this purpose. If we supply the list 
[XI, ... Xk] (which is a single construction) to a black box, we can say that 
the sequence X I, ... Xk is a branch iff the black box returns the construction 
true. On second thoughts, if XI, ... Xk is a branch then any initial segment 
XI. ... Xi (for i < k) must also be a branch, so we need to modify our 
procedure to incorporate this constraint. Let us feed the sequence of lists 
[Xd, [XI,X2], [XJ,X2,X3], ... [XI, ... Xk ] one at a time to the black box, and 
regard X I, ... Xk as a branch iff true is returned in response to each list. In this 
way any black box defines a tree coding, which may be represented formally 
by the corresponding socket name. We do not of course know precisely 
which sequences of constructions the box will accept as branches, but we 
can still carry out well-foundedness arguments involving this tree coding that 
work regardless of the input-output behaviour ofthe black box (or, as I shall 
usually say, regardless of the input-output behaviour of the socket). That is, 
we can say things like 'for any input-output behaviour of the socket SI. T is 
a well-founded tree according to the coding II', where II may involve the 
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tree coding expressed by SI. From such a statement we may infer that T is 
a well-founded tree according to n', where n' is the tree coding obtained 
from n by replacing SI by a tree coding ~; the justification for this inference 
is that we may imagine that plugged into the socket SI is a black box that 
simulates L. 

This amounts to a sort of universal quantification over tree codings. It 
is analogous to the 'for any construction' quantifier used in protologic (see 
Chapter 8). It does not assume that we have any grasp of the 'universe of all 
tree codings', any more than the 'for any construction' quantifier requires a 
grasp of the 'universe of all constructions'. It simply requires that we grasp 
what it means for a given device to serve as a black box, that is, to receive 
and return constructions in a deterministic and history-independent way, and 
that we can form general well-foundedness arguments concerning the inputs 
and outputs of such a device that do not involve consideration of its inner 
workings. It seems clear that we can do this. 

This brings out a difference between the 'for any input-output behaviour 
of a socket' and the 'for any construction' quantifiers. The latter allows 
one to dissect the given construction and consider the various possibilities 
for its components. The former does not: we are speaking only about the 
behaviour of the socket. Also, the former as yet only applies to statements 
of well-foundedness. 

This new 'for any input-output behaviour of a socket' quantifier is powerful 
enough to serve as the foundation stone for an interpretation of analysis, as 
Part IV shows. It is usual for constructivists to object to analysis on account 
of the impredicativity of the 'for all real numbers' or 'for all subsets of 
N' quantifier, but I believe the above argument shows that this objection is 
misconceived. Suppose we produce a general argument of the form 'for 
any input-output behaviour of SI, ... ', and then we somehow use this to 
define a tree coding~. We may next imagine that plugged into SI is a 
black box simulating the tree coding ~, and thus, as pointed out above, we 
may instantiate the general argument by removing the 'for any input-output 
behaviour of SI' prefix and replacing' SI' by '~' throughout. The usual 
predicativist's objection to this is that to understand 'for any behaviour of SI' 

we must first grasp the range of the variable' SI " and this range cannot include 
~ because L is only defined after grasping 'for any behaviour of SI'. The 
objection is fallacious since it harks back to the view of a universal quantifier 
as an infinite conjunction, according to which a grasp of the quantifier depends 
on a grasp of every possible conjunct. I have already argued against this view 
of quantifiers in Chapter 3. Even apart from predicativity concerns, if a grasp 
of 'for all natural numbers' depended on a grasp of each natural number 
individually then it would be forever out of our reach, since we can only 
grasp finitely many things at a time. 

My intensional 'for any construction' and 'for any behaviour of a black 
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box' quantifiers do not presuppose a grasp of any construction or black box, 
let alone all of them. (As Frege says, 'It is surely clear that when anyone 
uses the sentence "all men are mortal" he does not want to assert something 
about some Chief Akpanya, of whom perhaps he has never heard' (Geach 
& Black, 1970, p. 83).) The predicativist objection therefore represents a 
kind of half-hearted constructivism, in which some constructive scruples are 
adopted but quantifiers are still viewed extensionally. 

So much for the universal black box quantifier; what about the correspond
ing existential quantifier? This is much harder to justify. It may seem that 
'for some input-output behaviour of a socket SI, ... ' can be asserted if we 
can specify precisely how the black box plugged into SI is to behave to make 
, ... 'true. But it is not clear what is required in general for such an existen
tially quantified argument to be sound. (By contrast, a universally quantified 
argument 'for any behaviour of SI, ... ' is really an argument schema, which 
works regardless of the meaning of SI.) Hence I shall take a cautious view 
and not introduce such an existential quantifier. This means that in the in
terpretation of analysis in Part IV we shall lack a second-order existential 
quantifier. However, this defect can be remedied in a purely formal way by 
the device of defining the second-order existential quantifier, :32 , as -, 'rj2-, , 

just like the interpretation of the existential quantifier of Peano Arithmetic 
in Heyting Arithmetic (see Chapters 33 and 47). This gives a theory whose 
logic is formally classical, that is, an interpretation of Second-Order Peano 
Arithmetic. 

CONCLUSION 

I propose to interpret analysis (or rather second-order number theory) in 
terms of the notion of a black box, which is an atemporal variant of the usual 
intuitionistic notion of a choice sequence. Black boxes will be used to reason 
about 'arbitrary' tree codings, leading ultimately to a second-order universal 
quantifier and hence to Second-Order Peano Arithmetic. This programme is 
carried out in Part IV. 

I make no use of the various continuity and choice principles that other 
intuitionists use in analysis. This is not because I reject them but because, as 
explained above, it is not yet clear how to incorporate them without damaging 
the integrity of the choice sequence or black box idea. In any case, they are 
not required for my interpretation of Second-Order Peano Arithmetic. (They 
probably would be involved in a third-order version, involving quantification 
over real functions.) One should not however jump to the conclusion that my 
interpretation of analysis is 'not intuitionistic'. What makes an interpretation 
of mathematics intuitionistic or platonistic is not any detail of the formal 
systems it deals with (such as the presence or absence of the axiom A V -,A) 
but rather the philosophical starting point. 



PART II: THE THEORY OF CONSTRUCTIONS 

CHAPTER 12 

INTRODUCTION TO PART II 

Following the informal principles in Part I (particularly Chapters 5 & 8), 
we are now in a position to set up a formal theory of constructions. This 
consists of two main parts: a Term Language for expressing constructions, 
and a Protologic expressing the relations between constructions. 

The theory of constructions will subsequently be used to interpret arith
metic and analysis. 

MODULAR ORGANISATION 

I shall organise the mathematical chapters in Parts II, III and IV as a sequence 
of theories and intermediate chapters. Each theory is a chapter consisting 
of a list of definitions and theorems; a theorem is either a derived expression 
in a formal system or a metamathematical assertion about a formal system. 
Between each theory and the next is an intermediate chapter in which the 
concepts of the next theory are defined in terms of the concepts of the previous 
theory (and those of earlier theories), and the theorems of the next theory 
are proved using those of the previous theory (and earlier theories). An 
intermediate chapter may in addition contain local definitions and theorems, 
used only within that chapter. 

Thus, each theory is the interface between the intermediate chapter that 
precedes it and everything that follows it. Each theory summarises the pre
ceding intermediate chapter, omitting local definitions and theorems, many 
details of definitions, and all proofs. 

There are four reasons for adopting this modular organisation. 

• It makes explicit the logical dependencies between the various defini
tions and theorems that make up the theories. 

• The theories may be of intrinsic mathematical or philosophical interest, 
independently of their use here as stepping-stones on the way to an 
interpretation of arithmetic and analysis. Each theory is a self-contained 
module giving a description of constructive mathematics at a particular 
level of detail and abstraction. 
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• It makes the arguments easier to follow by controlling cross-references. 
When reading a proof in an intermediate chapter one only needs to keep 
in mind the definitions and theorems stated in the previous theory (with 
occasional references back to earlier theories) plus the ones introduced 
so far in the present chapter, not everything in all the chapters so far. 

• It allows the reader to skip chapters and resume the story at the next 
theory. 

SUMMARY OF THE FIVE THEORIES IN PART II 

• The Term Language (T) is a simple notation for expressing construc
tions: it consists of some constants representing primitive constructions, 
variables, and function applications. The semantics of terms is given by 
a reduction relation. 

• The Expanded Term Language (ET) consists of the Term Language plus 
generalised A.-abstractions and instantiation notation. A compilation 
relation, t-7, defines a mapping from ET into T. Some metanotation is 
introduced, including a powerful mechanism for defining functions by 
pattern matching, and is characterised by metamathematical theorems. 

• Protologic (P) is a sequent calculus for deriving intensional relationships 
between computations. 

• Expanded Protologic (EP) consists of Proto logic plus some higher-level 
derived sequents and rules of inference. 

• The Coding of Trees (CT) deals with the undecidable component of the 
theory of constructions, the well-foundedness of trees (see Chapter 10). 
This theory is concerned with setting up coding schemes for various 
classes of tree, most importantly protological derivation trees and their 
associated reflection trees. This requires that protological derivations 
be coded as constructions; a function DT is defined such that DT(D, X) 
reduces to true iff D is the code of a protological derivation for the 
sequent X. 

Between T and ET is an intermediate chapter interpreting all the ET con
structs and properties in T. Similarly, there are intermediate chapters between 
P and EP, and between EP and CT. There is, however, no need for an inter
mediate chapter between ET and P. In addition, there are occasional chapters 
of commentary to explain how the theories implement the philosophical re
quirements of Part I. The final chapter of Part II discusses the use of ET as a 
functional programming language. 



CHAPTER 13 

DESIGN OF THE TERM LANGUAGE 

The first of the theories listed above is the Term Language: this is a simple no
tation for expressing constructions. Since any construction may be regarded 
as an algorithm, the term language is a programming language. Any pro
gramming language would do, but to allow easy mathematical manipulation 
I use a pure functional language. 

Unfortunately, existing functional languages are unsuitable as a basis for 
intuitionistic mathematics because they are inspired by various versions of 
the A-calculus. 

WHAT'S WRONG WITH A-CALCULUS? 

I quarrel with two features of A-calculus: extensionality and normal order 
reduction. The A-calculus takes an extensional view of functions: I is 
regarded as the same function as g if Ix and gx have the same value for all 
x (this is shown by the fact that terms inside A-abstractions can be reduced). 
Since this applies recursively, I is also equal to g if fxy = gxy for all x, y, and 
so on. The result is a system of functions in which: 

• the notion of equality is obscure, since equality of functions depends on 
equality of values, where the values are objects of the same kind as the 
functions (and any obscurity about when 'two' functions are equal is an 
obscurity about what a function is); 

• it is hard to 'survey' the whole universe of functions; 

• the existence of a normal form, and hence the meaning, of a term depends 
on what reduction orders are allowed; 

• it is unclear what, if anything, a term with no normal form means; 

• there is no intended model of the system {various models are known 
(Barendregt, 1984, Chapter 18), but none can be plausibly construed as 
a formulation of what SchOnfinkel, Curry and Church had in mind when 
they founded combinatory logic and A-calculus). 

It is generally accepted (by friend and foe alike) that intuitionism requires an 
intensional notion of function (Dummett, 1977, §1.2; Tait, 1983). 

My second objection is to normal order reduction, that is, the policy of 
always reducing the leftmost subterm first {for example, reducing {Ax.y)A to 
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y before reducing A). The case for normal order is that if any reduction order 
reduces a term to an irreducible term then so does normal order reduction. 
Hence, although many reduction orders are permitted in A-calculus, normal 
order is generally considered the most important. The case against it is that 
it loses contact with the origin of A-calculus as a general theory of function 
application. Consider for example the functions plus, pred, sub, mult and 
div defined on natural numbers by 

plus(O, n) = n 

plus(Sm, n) = S(plus(m, n» 

pred(O) = 0 
pred(Sn) = n 

mult(O, n) = 0 

mult(Sm, n) = plus(mult(m, n), n) 

sub(m,O) =m 

sub(m, Sn) = pred(sub(m, n» 

div(O,n) = 0 

div(Sm, n) = S(div(sub(Sm, n), n» 

where S is the successor function. (div is integer division, rounding upwards.) 
Then what is the value of mult(O, div(5, O»? A supporter of normal order 
reduction would argue, 'If you reduced div(5, 0) first you would get an infinite 
loop, so it is better to apply the mult rule first, giving an answer 0; this is the 
only value you could get by any reduction route, so clearly we should accept 
it as the correct value'. Any other mathematician, however, would say, 'The 
mult rule cannot be applied until we know that the argument div(5, 0) succeeds 
in denoting a number: that is, we must reduce div(5,0) first, and since this 
gives no result we must conclude that the entire expression has no value'. 
The latter view has been adopted as standard after centuries of experience 
with mathematical notation, as it leads to a clear and simple semantics; the 
former view seems to me an attempt to frustrate understanding. None of 
the usual reduction strategies in A-calculus quite corresponds to the standard 
mathematical notion of function evaluation. If reduction is not intended to 
represent function application, as mathematicians in general understand it, 
then what is it for? 

The literature on A-calculus and functional programming does not seem 
to address the question of intended meaning. When researchers in this field 
speak of 'semantics' they mean a mapping from functional programs into 
A-terms (Revesz, 1988, §5.4; Hannan, 1993), which in tum are mapped into 
some non-constructive system (Meyer, 1982), or the functional program may 
be mapped into a non-constructive system directly (Cardelli & Longo, 1991); 
from the point of view of explicating meaning this would seem to be a step 
backwards, since the functional program, as an algorithm, is philosophically 
much better understood than the non-constructive object it maps to. A 
further step back is typically taken in category-theoretic semantics where one 
abandons the idea that A-terms denote functions acting on sets of objects; as 
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Hyland (1991) points out, a purely algebraic characterisation of 'application' 
and 'A-abstraction' severs all contact with the original informal notion of 1..
calculus as 'a theory of a countable world of intensional functions'. Brookes 
& Geva (1992) use category-theoretic notions (comonads and the associated 
Kleisli category) to model lazy, demand-driven evaluation, in which partial 
information about a function's value is determined by partial information 
about the argument. Their semantics is intensional in that it represents the 
sequence of steps by which the argument is evaluated. However, this is not 
the sort of intensionality one needs for intuitionistic mathematics, in which 
the argument of a function is a construction (not a term that needs evaluating) 
and the aim is to model the steps in the application of the function to the 
argument. Other approaches to 'non-extensional semantics' (Martini, 1992) 
do not seem to address the question of what non-extensional information is 
required. 

For these reasons I cannot sympathise with Barendregt's (1984, p. vii) 
statement that 'Constructions in the lambda calculus give the right intuition 
for constructions in, for example, the semantics of programming languages'. 
There seems to be no clear semantics for A-calculus as a language of algo
rithms acting on other algorithms; A-calculus therefore cannot be used as it 
stands as a foundation for intuitionistic mathematics. 

The' A-calculus-like' principles I wish to retain are as follows. 

• The objects of interest (call them constructions) are functions from 
constructions to constructions. 

• A term is a specification of a sequence off unction applications involving 
constructions; the steps in carrying out the function applications are 
called reductions. 

• In addition, terms may contain variables, interpreted as representing 
arbitrary constructions. 

• Consequently, the following are terms: a constant (denoting a basic 
construction), a variable, and a function application, AB, where A and 
B are terms; terms of this form will be called simple terms. 

• For every term A and variable x there is a term (AxA) denoting a function 
that maps x to A (in some sense). 

AN INTENSIONAL AND COMPOSITIONAL REPLACEMENT 
FOR A-CALCULUS 

Contrary to A-calculus, I require the following three features. 

• Intensional functions: (hA) is not equal to (Ax. B) unless A is the same 
term as B. (Ax.A) cannot be reduced. 
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• Compositional semantics: the value of a term is obtained from (and only 
from) the values of its subterms; thus if a subterm has no value then the 
whole term has no value. 

• Variables stand for arbitrary constructions: a true statement such as 'A 
reduces to B' or 'A cannot be reduced', involving terms with variables, 
should continue to hold when the variables are replaced by arbitrary 
constructions. (This condition is essential if variables are really to stand 
for arbitrary constructions, yet it is not satisfied by any of the common 
varieties of A-calculus.) 

The intended semantics of terms is roughly as follows (thinking only of terms 
without variables for the moment). 

• The reference or value of a term is the term obtained by reducing 
the original term repeatedly until it cannot be reduced any more. If 
reduction never halts then the term has no value. The sense of a term 
is the reduction process starting at that term. Every term has a sense. 
The reference and sense of a term together constitute its meaning. (This 
terminology is modelled on Frege's (1892).) 

(This semantics will be refined in the next chapter.) These stipulations have 
the following consequences. 

• Terms are reduced from the inside out. In reducing AB we must reduce 
A and B completely and then apply the value of A to the value of B. It 
doesn't matter in which order we reduce A and B as the two reductions 
are independent (hence this is not quite applicative order reduction). 
Thus, the term AB obtains its value only via the values of A and B. (Here 
I follow Goodman (1972), although Goodman doesn't explicitly define 
a reduction relation; his semantics is given by a valuation function.) 

• If two terms reduce to the same irreducible term then they have different 
senses but the same reference (like the phrases 'the morning star' and 
'the evening star', which both refer to Venus), while if a term has no 
irreducible form then it has a sense but no reference (like the phrase 'the 
present king of France'). 

• The conversion rules of A-calculus fail. Let A(;) mean the result of 
replacing each free occurrence of the variable x in the term A by the 
term X, assuming no variable clashes occur. Then (Ax.A)X and A(;) 
need not have the same value: for example, (Ax.(J...f .fx»(Plus(2, 2» 
has the value (J...f f4), which is different from (J...f f(Plus(2, 2))), since 
(At f(Plus(2, 2») is a function that, when applied to f, adds 2 and 2, 
whereas (J...f f 4) does no addition but simply uses the result, 4. (However, 
(AxA)x will reduce to A, thus ensuring that (Ax.A) is in some sense a 
function mapping x to A.) Furthermore, (AxAx) does not have the same 
value as A - the latter may have no value, while the former is irreducible 
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and is its own value. Whether (Ax.A) has the same value as (Ay.A(i) is 
somewhat arbitrary: we are free to set up the system so as to distinguish 
them or not, as we choose. 

• There is a conflict between the above requirements: clearly, the value 
of (Ax.A) depends on the sense of A, not merely its value. The conflict 
is resolved by distinguishing two languages: 

- the Term Language, consisting only of simple terms (constants, 
variables and function applications); 

- the Expanded Term Language, containing simple terms and addi-
tional constructs such as (Ax.A). 

Terms in the Expanded Term Language may be compiled into simple 
terms in the usual way using s, id and k combinators. The requirement 
that the value of a term depend only on the values of its subterms 
applies only to simple terms. The use of two languages combines 
the advantages of both languages: the (Ax.A) notation is much more 
readable than combinators, while in proofs by structural induction on 
terms one need only consider simple terms . 

• There are two notions of substitution. Textual substitution, A(;) (men
tioned above), is a cumbersome concept due to the problem of variable 
clashes and the distinction between free and bound occurrences of vari
ables. Also it has no simple semantic significance, due to the failure 
of J3-conversion. More useful is semantic substitution or instantiation, 

A[;l in which A is compiled into a simple term before x is replaced by 

X; smce there are no bound variables in simple terms this circumvents 

the problems of textual substitution. Another way of reading A [;] is as 

'A, evaluated in an environment in which x has the same value as X'. 
Some people express this as 'let x = X in A' or 'A where x = X'. 

The Expanded Term Language consists of the Term Language plus the A[;] 
instantiation construct and a generalisation of the (Ax.A) construct. Compil
ing expanded terms into simple terms amounts to replacing A-abstractions by 
combinators and then carrying out the instantiations. 

In addition to these constructs there is a variety of metanotation necessary 
to make the language usable, including a mechanism for defining functions by 
pattern matching. Each new notational device could be treated as an extension 
to the language, with a compilation operation mapping terms containing the 
new notation into terms not containing it, just as was done with the (Ax.A) and 

A [;] constructs. However, it would be profligate to do this every time, and 

in any case the compilation operation is usually straightforward and obvious, 
so in such cases I shall treat the notation as metanotation rather than as an 
official part of the Expanded Term Language. 
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SYNTACTIC OBJECTS 

As argued in Chapters 4 and 5, mathematical constructions are abstract recur
sive structures built out of a given supply of atoms. From now on I shall call 
the atoms characters, I shall specify a fixed set of atoms called an alphabet, 
and I shall assume that the atoms are combined into sequences (rather than 
more complicated structures such as binary trees). Thus the constructions 
may be thought of as character strings. The advantage of thinking of them 
in this way is that syntactic techniques such as formal grammars, formal 
translation schemes, and metanotation may be applied conveniently to them. 
Thus all my 'objects' are expressions in various languages; if they denote 
something they denote other expressions, or possibly themselves, not some 
other non-syntactic kind of entity. 

Here, of course, I am relying heavily on my main conclusion from Chap
ter 5, that there is no valid distinction between 'mathematical' recursive 
structures and 'linguistic' recursive structures, and hence that a syntactic per
spective may be applied to mathematical constructions without any change 
of subject matter or loss of rigour. 

USE-MENTION CONVENTIONS 

One of the peculiarities of formal logic is that having defined a formal 
language to work with one hardly ever writes down a term in the language. 
Usually the expressions one actually writes down differ from terms in two 
respects: 

• they contain some metanotation; 

• they contain metavariables referring to arbitrary variables or terms, and 
metaconstants referring to particular terms. 

For example, one may write '(Ax.(A,B) = nil)'. The pair construct here, 
'(A, B)', is metanotation, so one really means '(Ax.sAB = nil)' (using s as 
the pairing operation). The '=' notation is also metanotation and so needs 
rewriting. Further, the letter' x' is not a variable but is a metavariable denoting 
a variable, while the letters 'A' and 'B' denote terms. The term one really 
means is the one obtained by replacing 'x', 'A' and 'B' by what they denote. 
All this can be stated systematically as follows. 

An identifier is a sequence of one or more identifier characters, possibly 
with more such characters attached as subscripts or superscripts, where an 
identifier character is a roman or greek letter (upper or lower case, possibly 
underlined), a digit, a prime, or one of the special characters' e', '*', ' 1\', '3', 
'D', '6', '.', 'V', '1\', ">' or ":>'. An identifier may be used in the following 
four ways. 
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• As a constant. There are eleven constants, which are atoms of the Term 
Language. 

• As a metavariable denoting a variable. In this case the identifier will 
begin with a lower-case letter. Examples: 'x', 'Yt', 'first', 'rest', on', 
'x'. 

• As a metavariable denoting a term. In this case the identifier will begin 
with an upper-case letter (unless otherwise specified). Examples: 'A', 
, P', 'Treeu ' . 

• As a metaconstant, introduced to denote a particular term. Examples: 
'DT', 'Aw', 'projt', '\;f', 'D d '. 

A metaterm of the Expanded Term Language is an expression that is like a 
term except that it may contain metavariables, metaconstants and metanota
tion. A metaterm denotes the term obtained by replacing all metavariables 
and metaconstants by what they denote and rewriting all metanotation. (The 
term is said to be an instance of the metaterm.) 

For example, consider applying this procedure to the metaterm '(Ax.(A, B) 
= nil)'. 

1. Assume 'x' denotes the variable 'X', 'A' denotes the term '«X)(Y»', and 
'B' denotes the term '(kk)'; then replacing gives '(AX.«(X)(Y», (kk» = 
nil)'. 

2. The pair metanotation '«(X)(Y», (kk»' is rewritten as 's«X)(Y»(kk)'. 
The equality metanotation 's«X)(Y»(kk) = nil' is rewritten as 'equal 
(s«X)(Y»(kk» nil'. Brackets, usually omitted for readability, are re
stored, giving finally the term '(A(X).«equal«s«X)(Y»)(kk»)nil»'. 

Note that the A-abstraction notation does not need rewriting since it is an 
official part of the Expanded Term Language rather than a metanotation. 
Thus, in this example, 

'(Ax.(A,B) = nil)' denotes '(A(X).«equal«s«X)(Y»)(kk)))nil))' 

or, to state it more simply, 

(Ax.(A, B) = nil) is '(A(X).«equal«s«X)(Y»)(kk»)nil»'. 

This shows that terms may be denoted by metaterms without using inverted 
commas or Quinean quasi-quotation. Note that, under these conventions, 
every term is a metaterm denoting itself. (This self-denotation does not 
interfere with the reference and sense of the term, introduced above. I 
shall reserve the words 'denote' and 'denotation' for the relation between 
metanotation and formal notation; it is entirely unrelated to the semantics of 
the formal notation itself.) 
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These use-mention conventions will be applied to all the tenn languages, 
sequent languages and fonnula languages used in this book; they are, I think, 
in accord with common mathematical practice but they are rarely spelt out, 
even in works of mathematical logic. (For some alternative ways of dealing 
with use and mention see Frege (1893), Carnap (1937) and Quine (1951).) 



CHAPTER 14 

THE TERM LANGUAGE 

The Term Language is a simple functional programming language for ex
pressing constructions. A construction on its own cannot get up to any mis
chief, but if you put two of them together a computation generally ensues; 
this is expressed by a reduction relation, [>. 

A term represents a stage in the execution of a computation: thus if a 
construction F is applied as a function to a construction X to give as value 
a construction Y this computation is expressed as a sequence of reductions 
FX [> Tl [> T2 [> ••• t> Y. Terms may also contain variables, which 
stand for unspecified constructions. Thus a term represents an incompletely 
specified stage in a computation, and a construction is simply a term that 
has no variables and cannot be further reduced. A reduction sequence in 
which the terms contain variables represents a 'schematic computation' - a 
computation that works regardless of what constructions are substituted for 
the variables. 

My list of constants is similar to that of Goodman's (1972) combinatory 
logic (except for fxpt); my reduction relation defines the evaluation process 
that 1 think is intended in his semantics, or something very much like it. 

SYNTAX OF THE TERM LANGUAGE 

• The constants are's', 'id', 'k', 'equal', 'if', 'true', 'false', 'former', 
'latter', 'fxpt' and 'nil'. 

• A variable is a finite sequence of one or more characters from the 
alphabet' A' - 'Z'. The variables may be enumerated in an infinite 
sequence in order of increasing length, variables of the same length 
being ordered lexicographically; this ordering will be called standard 
order. 

• An atom is a constant or a variable. 

DEFINITION. A term is a sentence in the following language. (I shall make 
use of standard techniques for defining formal languages; see Aho, Sethi & 
Ullman (1986).) 

• The alphabet (set of characters) is {'a', 'd', 'e', 'f', 'i', 'k' - 'u', 'x',' A' 
-' Z', 'C, ')'}. 
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• The lexicon (set of tokens) is { 'can', 'vbI', '(" ')' }. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'can', recognising variables and replacing them by the token 
'vbI', and recognising the tokens '(' and ')'. 

• The grammar of the language is as follows. 
- The terminals are the tokens. , 
- The sole nonterminal is T, which is the start symbol. 
- The production rules are T -+ can I (vbl) I (T T ). 

EXAMPLE. Consider the term '«id«s(ABC»k»«A)nil»'. Lexical analysis 
turns it into the sequence of tokens ( ( can ( ( can ( vbl ) ) can) ) ( ( vbl ) can) ), 
where spaces are used to separate the tokens. This is parsed as a T by matching 
it against ( T T ): 

( ( can ( ( con ( vbl ) ) con» « vbl) con» 
, ... ' '----v----" 

T T 

Let's look at how the second subterm, ( (vbl) can), is parsed: it is recognised 
as a T by matching it against ( T T ): 

( (vbl) can) 
~ """'-" 

T T 

where the two subterms ( vbl ) and con are recognised as T's directly using 
the rules T -+ (vbl) and T -+ can. There are in total eleven terms (that 
is, substrings matched against T) in the original term. 

EXERCISE. Apply the same procedure to the term (s«(XY)nil)(C») and 
verify that the term contains fourteen tokens and seven terms. 

META TERMS 

As explained in Chapter 13, identifiers will be used as metaconstants, de
noting particular terms, and as metavariables, denoting ar':>itrary terms or 
variables. A metaterm is an expression that is like a term except that it may 
contain metaconstants and metavariables and that brackets may be omitted in 
three contexts: the brackets around the whole metaterm and around variables 
may be omitted, and so may the brackets in the context (AB)C. Optional 
brackets and spaces may also be added to make the metaterm more readable. 
To state it more precisely, we add' , and the identifier characters to the alpha
bet, we add three new tokens' termcon', 'vblvbl' and 'termvbl' to the lexicon, 
and we modify lexical analysis so that spaces are removed, metaconstants 
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are replaced by 'termcon', metavariables denoting variables are replaced by 
'vblvbl', and metavariables denoting terms are replaced by 'termvbl'; the 
grammar for metaterms is 

T-+TLIL 
L -+ con I vbl I (T) I termcon I vblvbl I termvbl 

where the start symbol is T. 
An instance of a metaterm is a term obtained as follows. 

1. Choose a term or a variable, as required, for each metavariable in the 
metaterm. 

2. Replace all metaconstants and metavariables by the terms or variables 
they denote. 

3. Add and remove brackets as required. 
4. Remove spaces. 

(This could be specified formally as a syntax-directed translation from 
metaterms to terms; I shall not do so, for lack of a universally agreed notation 
for such mappings.) 

EXAMPLE. Consider the metaterm 'AB(id x)', where 'A' is a metavariable 
denoting a term, 'B' is a metaconstant denoting the term '(s«X)id»', and 'x' 
is a metavariable denoting a variable. Lexical analysis turns the metaterm 
into the token sequence termvbl termcon ( con vblvbl ), which as parsed as 
shown: 

termvbl termcon ( con vblvbl) 
---....--~ '-v-' "'"'-.-" 

L L L L ---....-- "'--'" 
T T , "., ~ 

T T , ... 
L 

.... 
T 

We can form an instance of the metaterm as follows. 

1. Let the metavariable 'x' denote the variable' X' and let the metavariable 
'A' denote the term '(kk)'. 

2. Replacing metaconstants and metavariables gives' (kk )(s« X)id) )(id X)'. 
3. Adding brackets gives '«(kk)(s«X)id»)(id (X»)'. 
4. Removing spaces gives the term '«(kk)(s«X)id»)(id(X»)'. 

A metaterm may be used in two ways: as a schema, denoting any of its 
instances, or to denote a particular one of its instances. The latter will be 
implied when particular terms or variables have already been chosen for the 
metavariables. 
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EXERCISE. Verify that 'AB(id x)' has the same instances as '(AB)(id x)', but 
not the same instances as 'A(B(id x))'. 

It is often convenient to use superfluous brackets to emphasise the structure 
of a metaterm. My syntax allows such brackets to be added and removed at 
will, without affecting the term denoted by the metaterm. For example, it is 
literally correct, as well as highly convenient, to say that (AB)C is the same 
term as ABC, and f(x) is the same term as fx: of course' (AB)C' is a different 
metaterm from' ABC', but they denote the same term. 

REDUCTION 

The semantics of terms is given by the reduction relation, 1>, between terms, 
defined by the following clauses. The clauses must be applied in order, 
except for the two on line 0), which may be applied in either order: that is, 
a clause X I> Y is only applicable if no clause higher in the list applies to 
X. It follows that when reducing a term all proper subterms must be reduced 
first, and only when they cannot be reduced further may reduction rules be 
applied at the top level. 

AB I> A'B if A I> A', AB I> AB' if B I> B' 

sABC I> (AC)(BC) 

idA I> A 

kABI>A 

equal A A I> true 

equal(AB)( CD) I> false if equal A C I> false 

(1) 

(2) 
(3) 

(4) 
(5) 

or equal B D I> false (6) 

equal a b I> false if a and b are constants (7) 

equal a (UV) I> false if a is a constant (8) 

equal (UV) a I> false if a is a constant (9) 

equal A B I> equal A B (10) 

if true A B I> A (11) 

if false A B I> B (2) 

if CAB I> if CAB (13) 

former(AB) I> A (14) 

former a I> nil if a is a constant (15) 

former x I> former x if x is a variable (16) 

latter (A B) I> B (17) 
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latter a [> nil if a is a constant (18) 

latter x [> latter x if x is a variable (19) 

fxpt A B [> A(jxpt A)B (20) 

x A [> x A if x is a variable (21) 

• Let [>* be the reflexive and transitive closure of [>. If A [>* B then I 
shall say that A reduces to B. Let <I and <1* be the converses of [> 

and [> * • Let [> * <I be the equivalence relation generated by [>. Let A pt 
mean that A is irreducible (that is, there is no B such that A [> B). 

• A construction is an irreducible term with no variables. (Equivalently, 
a construction is a constant or a term of the form sA, sAB, kA, equal A, 
if A, if A B, true A B ... C,false A B ... C,fxpt A, or nil A B ... C, where 
A, B, ... C are constructions.) 

EXAMPLES. Using superscripts on ' [> , to indicate which reduction rules are 
being applied: 

(a) if (equal (latter(sskx» (kx» (/xpt ky) (/xpt id) 
[> 1,2 if (equal (latter«sx)(kx») (kx» (jxpt ky) (jxpt id) 
[> 1,17 if (equal (kx) (kx» (jxpt k y) (/xpt id) [> 1,5 if true (jxpt ky) (jxpt id) 
[> 11 fxpt k y [> 20 k(/xpt k)y [> 4 fxpt k pt 

(b) equal (k(sy» (id(k(nil z))) [> 1,3 equal (k(sy» (k(nil z» [> 6 false pt, 
where the second step works since equal (sy) (nil z) [> 6 false, which 
works since equal s nil [> 7 false 

(c) equal k k [>5 true pt (it doesn't also reduce to false using rule 7 because 
rule 7 can only apply when rules 1-6 are inapplicable) 

(d) if true x (/xpt id y) [> 1,20 if true x (id(/xpt id)y) [> 1,3 if true x (jxpt id y) 
[> 1,20 if true x (id(/XPt id)y) [> ••• and so on in an infinite loop (no other 
reduction rule can apply until fxpt id y has finished reducing, which it 
never does). 

THEOREM 1. (Confluence.) If T [> U and T [> V, where U is not V, then 
there is a term W such that U [> Wand V [> W. 

Proof. The only indeterminism in the reduction rules is 

AB [> {A'B where A [> A', 
AB' where B [> B'. 

Then take Was A'B'. I 
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THEOREM 2. If a term reduces to an irreducible term then any other sequence 
of reduction steps starting at the same term reduces in the same number of 
steps to the same result. 

Proof From the confluence theorem. I 

EXERCISE. Show that there are 120 ways of reducing the term 

if (equal x (idx» (sididtrue) (kkkk) 

to an irreducible term and that they all give the same result in seven steps. 
Here are two of the 120 ways: 

(i) if (equal x (idx» (s idid true) (kkkk) 
I> if (equal xx) (sididtrue) (kkkk) 
I> if (equal xx) (s id id true) (kk) I> if true (s id id true) (kk) 
I> if true «id true)(id true» (kk) I> if true (true(id true» (kk) 
I> if true (true true) (kk) I> true true, • 

(ii) if (equal x (idx» (sididtrue) (kkkk) 
I> if (equal x (id x» «id true)(id true» (kkkk) 
I> if (equal x (idx» «idtrue)true) (kkkk) 
I> if (equal x (idx» «idtrue)true) (kk) 
I> if (equal x (idx» (true true) (kk) I> if (equal xx) (true true) (kk) 
I> if true (true true) (kk) I> true true, . 

THEOREM 3 . 

• A 1>*<] B iff A 1>* C <]* B for some C. 

• If A 1>*<] B , then A 1>* B. 

Proof. From the confluence theorem. I 

THEOREM 4. If A I> B then any variable occurring in B also occurs in A. 

THE INTENDED INTERPRETATION OF CONSTRUCTIONS 

A construction F may be regarded as representing an algorithm that receives 
as input a construction X. concatenates F and X, and reduces FX to a 
construction, which it outputs. This algorithm is a transformation from 
constructions to constructions; it is indeterministic in reduction order though 
not in outcome, and it may not halt. In some cases it is rather trivial: 
for example, true represents an algorithm that converts X to true X and 
false represents an algorithm that converts X to false X. (Since 'true' and 
'false' are different identifiers it follows that true and false represent different 
algorithms.) Other constructions perform useful jobs: the constant fxpt acts 
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as a least fixed-point operator which provides for iteration and recursion, 
equal acts as an algorithm that tests two constructions for equality, and 
former and latter act as algorithms that dissect a composite construction into 
its two components. 

I say 'algorithm' rather than 'function' to emphasise that its intension 
matters: there is no attempt to regard all extensionally equivalent algorithms 
as equal. Any two constructions represent different algorithms. 

THE INTENDED INTERPRETATION OF TERMS 
WITHOUT VARIABLES 

A term with no variables represents a computation that, if it halts, will halt 
at a construction (by Theorem 4). The steps of the computation are specified 
by the reduction relation. More precisely, a variable-free term has a sense 
and a reference, defined as follows. 

The sense of a variable-free term is the collection of reduction processes 
starting at that term, and the reference or value of the term is the construction 
at which all the reduction processes halt. A process of reduction to irreducible 
form is called an evaluation. Thus: 

• a term lacks a value if the reduction processes never halt (it still possesses 
a sense, however); 

• two terms have the same value but different senses if they reduce to the 
same construction. 

EXAMPLE. The sense of the term sid id id is the pair of reduction processes 
sid id id I> (id id)(id id) I> id(id id) I> id id I> id ~ 
sid id id I> (id id)(id id) I> (id id)id I> id id I> id ~ 

and the value of the term is id. All the terms sid id id, (id id)(id id), id(id id), 
(id id)id, id id and id have different senses but the same value. 

THE INTENDED INTERPRETATION OF TERMS WITH VARIABLES 

Terms with variables have no sense or reference; they get their meaning 
indirectly from the fact that if one replaces their variables by constructions 
one obtains terms without variables. 

DEFINITION. An instantiation of a term by constructions consists of choosing 
a construction X for each variable v occurring in the term and replacing each 
occurrence of v by X. A simultaneous instantiation by constructions consists 
of doing this to two or more terms, where each occurrence of v must be 
replaced by the same construction X in each term. 
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The idea is that a reduction A I> B I> C I> ••• I> Z ~ involving terms 
with variables is to be regarded as a reduction schema encompassing all the 
instances A' I> B' I> C' I> ••• I> Z' ~ , where A', ... Z' are obtained from 
A, ... Z by a simultaneous instantiation of the variables by constructions. For 
example, the reduction 

latter(if (equal (idx) x) (ky) z) 

I> latter(if (equal xx) (ky) z) 

I> latter(if true (ky) z) I> latter(ky) I> y ~ 

encompasses such instances as 

latter(if (equal (id (kk» (kk» (k(ss» (truefalse» 

I> latter(if (equal (kk) (kk» (k(ss» (truefalse» 

I> latter(if true (k(ss» (truefalse» I> latter(k(ss» I> ss ~ 

This interpretation presupposes that reduction satisfies the following two 
properties: 

(1) if A I> B then A' I> B', where A' and B' are any simultaneous instanti
ation of A and B by constructions; 

(2) if A ~ then A' ~ , where A' is any instantiation of A by constructions. 

These properties seem simple and obvious, as well as necessary if variables 
are to do their job of 'standing for' arbitrary constructions. Unfortunately 
they are impossible to satisfy: consider 

latter(if (equal (id x) nil) (ky) z) I> latter(if (equal x nil) (ky) z) I> ••• ? 

The instances of this reduction take a different course depending on whether 
the construction replacing x is nil or not; there is no schema covering all the 
reductions. 

What should equal x nil reduce to? (Or if xyz or former x or xy, for that 
matter?) It is not safe to reduce to any other term, because that would violate 
property (1). It is not safe even to call it irreducible, since that would violate 
(2). Dropping (2) and retaining (1) is not an option, since (1) and (2) are 
intimately interdependent: a term can only reduce when all its subterms are 
irreducible. 

The solution in such cases is to make the term reduce to itself (see rules 
10, 13, 16, 19 and 21). Then we can salvage properties (1) and (2) in a 
slightly weakened form, in the following theorem. 
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THEOREM 5 . 

• If A [>* B then A' [>* B', where A' and B' are any simultaneous 
instantiation of A and B by constructions . 

• If A pt then A' pt , where A' is any instantiation of A by constructions. 

Proof. At least one of the following three cases must hold. 
Case 1: A [> T, where T is a term other than A. Then A' [> T' by the 

same reduction rule, where A' and T' are any simultaneous instantiation of 
A and T by constructions. 

Case 2: A [> A. Then A' [>* A', in zero reduction steps, where A' is any 
instantiation of A by constructions. 

Case 3: Apt. Then A' pt , where A' is any instantiation of A by construc
tions. 

The theorem follows by induction. I 

Thus the reduction of a term with variables still says something about the 
reduction of its instantiations, but the steps do not always correspond one-to
one. 

SUMMARY 

A metaterm denotes a term, which may be instantiated by constructions to 
give a term with no variables, whose value (if any) is a construction, which 
represents an algorithm acting on constructions. 

PARTIAL REDUCTION 

Partial reduction is a reduction-like process for obtaining information about 
the evaluation of a term given incomplete information about it. Typically, 
given a term F, one wants to know something about the evaluation of FX for 
an unknown construction X. I shall define two partial reduction relations, -->. 

and -', for use in setting up the Fxpt Rules in Protologic (see Chapter 17). 

DEFINITION. Given two variables, f and v, define a partial reduction relation 
-->. (with respect to f and v) by the following clauses, where the two on the 
first line must be applied before the others. 

AB -->. A'B if A -->. A', AB -->. AB' if B --->. B' 

sABC -->. (AC)(BC) 

idA -->. A 

kAB -->. A 
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if CAB X --I. if C (AX)(BX) 

va --I. v if a is a constant 

VV --I. V 

v(AB) --I. vAB 

fa --I. v if a is a constant 

fv --I. V 

f(if C A B) --I. if C (fA) lfB) 

a --I. v if a is equal, true, false, former, 

latter, fxpt or nil 
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x --I. v if x is a variable other than f and v 

Let ~ be the reflexive and transitive closure of --I., let L- and L be the 
converses of --I. and ~,and let L be the equivalence relation generated 
by ~. Let A -f- mean that A --I. B for no B. 

(Note: I referred in the above definition to 'two variables', f and v. It is 
implied that they are different variables: there is no need to say 'two distinct 
variables', since if they were the same there would not be two of them. If I 
wanted to allow f and v to be the same variable I would say instead 'Let f 
and v be variables ... '.) 

THEOREM 6. (Confluence) If T --I. U and T --I. V, where U is not V, then 
there is a term W such that U --I. W and V --I. W. Consequently if A L 
B -f- then A ~ B. 

Proof As in Theorems 1 and 3. I 

DEFINITION. A term <II is continuous iff v(<IIfv) ~ v, where --I. is defined 
with respect to f and v, for two variables f, v not occurring in <II. (This 
definition is independent of the choice off and v.) 

Informally, to say that <II is continuous means that <IIfv depends on f only in 
an extensional way; that is, in the evaluation of <IIFX, for any constructions 
F and X, the only time the evaluation depends on the internal structure of 
F is when terms of the form F T, for some T, are reduced. This rules out 
reductions such as former FI>··· and ifF AB I> ••• , since they depend on 
the structure of F; but it permits reductions such as id F I> F and sFAB I> 

(FA)(FB), since they work regardless of F's structure. The point of --I. is 
to determine whether a term A depends on f only extensionally; A ~ v is 
a sufficient condition for this, and vA ~ v is a weaker sufficient condition, 
adequate for most cases - hence the above definition. 

The notion of continuity will be used in Chapter 17, where the protological 
Fxpt Rules will be restricted to continuous functions. 
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EXAMPLES. Let <I> be s(s(ks)(s(kk)(s id (s id (kk)))))id. Then 

* v(<I>fv) -->. v(s(k(j(jk)))fv) -->. v(s(k(jv»)jv) -->. v(s(kv)jv) 

-->. v( (kvv)(jv» -->. v( v(jv» -->. v( vv) -->. VV -->. V 

so <I> is continuous. 
Now let '¥ be s(k(s id»(s(k(s id»(s(kk)id». Then 

v(,¥fv) ~ v(s id (s id (kj»v) ~ v(v(vl» -->. vv(vl) -->. v(vf) -->. vvl 

-->. vi f>-

so '¥ is not continuous. 

DEFINITION. Given two variables, I and v, define another partial reduction 
relation ---r (with respect to I and v) by the following clauses, which must 
be applied in order (except that there is no ordering between the two rules on 
the first line). 

AB ---r A'B if A ---r A', AB ---r AB' if B ---r B' 

IA ---rV 

vA ---rV 

Av ---rV 

sABC ---r (AC)(BC) 

idA ---rA 

kAB ---rA 

Let ~ be the reflexive and transitive closure of ---r . Let A p mean that A 
---r B for no B. 

DEFINITION. A term <I> is non-constant iff <l>fx ~ v, where ---r is defined 
with respect to I and v, for three variables I, v,x not occurring in <1>. (This 
definition is independent of the choice of I, v and x.) 

Informally, <l>fx ~ v means that the evaluation of <l>FX, for any constructions 
F and X, involves at least one reduction of the form F T I> ••• , for some 
term T. Hence if F is an empty function and <I> is non-constant then <l>F will 
also be an empty function. 

Non-constant functions will be used in Chapter 17, where one ofthe Fxpt 
Rules will involve a restriction to non-constant continuous functions. 
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EXERCISE. Let cP be s(s(ks)(s(kk)id»)(k(s(kk)id)). Show that cP is non
constant by completing the partial reduction 

cpfx ~ ... ~ f(kx) ~ 

EXERCISE. Let 'P be s(k(s(s if k)))k. Show that 'P is not non-constant by 
completing the partial reduction 

'Pfx ~ ... ~ sifkxf ~ ... 



CHAPTER 15 

FROM THE TERM LANGUAGE TO 
THE EXPANDED TERM LANGUAGE 

The Term Language (T) is very simple and hence very easy to reason about; 
however, it is also very hard to use. Thinking of the Term Language as 
machine code, we need a higher-level language, an Expanded Term Language 
(ET), for day-to-day use. This, together with its accompanying metanotation, 
will have all the facilities one expects in a functional programming language: 
A.-abstractions, function definitions using pattern matching, pairs, tuples, 
lists, numbers, and primitive and general recursive functions. The language 
is general-purpose, so a version of Church's Thesis may be formulated for it. 
It is also possible to encode terms within the language. 

See Chapter 23 for a comparison ofET with other functional programming 
languages. 

The Expanded Term Language is compiled into the Term Language in a 
way based on the traditional interpretation of A.-calculus into combinators. 

SYNTAX OF THE EXPANDED TERM LANGUAGE (ET) 

The notions of constant, variable and atom are understood as in the Term 
Language. 

DEFINITION. A term ofET is a sentence in the following language. 

• The alphabet is that ofT plus {'A.', '.', ' [', ']'}. 

• The lexicon is that ofT plus {'A.', '.', ' [', ']' }. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The sole nonterminal is T, which is the start symbol. 
- The production rules are T --+ con I (vbf) I (T T) I 

(A.T.T) I (T[~bl]) 

162 
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Note that this grammar contains that ofT. From now on, the word 'term' will 
mean a term of ET; a term of T will be called a simple term. A term of the 

form ( AT. T ) is called a A-abstraction; a term of the form ( T [ ~bl ] ) is 
called an instantiation. 

EXAMPLE. Applying lexical analysis to the term '(A(k(X».«XY)[~]»' gives 
the following sequence of tokens, which is parsed as shown. 

T 
~ 

(A (e ~) . (~ [ :~7 ] ) ) 
T T T 

_________' 'V T T 
.... 
T 

Note that the parse is unique. 

METATERMS 

Metaterms are defined as expressions that are like terms except that they may 
contain metaconstants, metavariables and the metanotation introduced later 
in this chapter, and that some brackets may be omitted. Optional brackets 
and spaces may also be added. To state it more precisely, the alphabet is that 
of metaterms of T plus the characters needed for metanotation; the lexicon 

is that of metaterms of T plus {' A', ' .', ' [" ' ] , }; lexical analysis is the same 
as for metaterms of T; and the grammar IS 

T-tTLIT[~bdIL 
L -t con I vbl I (T) I (A T. T) I termcon I vblvbl I termvbl I 

where the start symbol is T and' ... ' represents production rules for all the 
metanotation introduced below. Instances of metaterms are defined and used 
as in T - to obtain an instance, replace each metaconstant or metavariable by 
a term or variable, add and remove brackets as required, remove spaces, and 
rewrite all metanotation. 

EXAMPLE. Let 'A' denote '(kk)" 'B' denote '(ss)', 'C' denote '(X)', 'x' denote 

'X', 'y' denote 'Y', and 'z' denote' Z'. Then the metaterm 'AB[~] C~][:], 
denotes the term '«««kk)(ss»[(~)])(X»[(Y)])[(~)])'. 
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Observe that AB\;] is the same term as (AB)[;], not A(B[;]): that is, the 

metaterms 'AB[; , and '(AB)[;] , denote the same term, for any A, B, C and 
x. 

The first piece of metanotation is that a multiple instantiation, A [~1] .. -[;: ] , 
will often be abbreviated to A[~I::::;: 1 or A[~l where! is the (possibly empty) 
sequence of variables X1o • •• Xk and K is dte sequence of terms X 10 ••• Xk· 

Underlined lower-case letters generally will be used to denote sequences of 
variables. Similarly, underlined capital letters will be used to denote sequence 
of terms; the intended number of terms in the s~uence will always be clear 

from the context (for example, if the notation A[~J is used then K is intended 
to have the same number of terms as ! has variables). Note that multiple 

instantiation is not simultaneous instantiation: [~] is simply an abbreviation 
for a sequence of instantiations applied one at a orne. 

INTERPRETATION OF THE EXPANDED TERM LANGUAGE 
IN THE TERM LANGUAGE 

Every term is compiled into a simple term by applying the compilation 
relation, I-t, repeatedly. I-t is defined as follows, where the clauses may be 
applied in any order. 

AB I-t A'B if A I-t A' 

AB I-t AB' if B I-t B' 

(M.B) I-t (t..A'.B) if A I-t A' 

(M.B) I-t (t..A.B') if B I-t B' 

(t..PQ.B) I-t s(s(k(t..P.(t..Q.B)))Jormer)latter 

(t..a. UV) I-t s(t..a.u)(t..a. V) if a is an atom 

(Ax.x) I-t id if x is a variable 

(t..a.b) I-t kb if a and b are atoms and not both the same variable 

A[:] I-t A'[:] if A I-t A' 

A[:] I-t A[:'] if B I-t B' 

PQ[:] I-t (p[:])(Q[:]) 

x[:] I-t B 

a[:] I-t a if a is an atom other than x 
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Let ~ (read as 'compiles to') be the reflexive and transitive closure of ~. Let 
t-I and ~ be the converses of ~ and ~. Let ++ (read as 'is equivalent 
to') be the equivalence relation generated by ~. Let A f/t mean that there 
is no B such that A ~ B. 

EXAMPLE. Let x and y be two variables. Then 

(').x.nilxy) ~ s(').x.nilx)(').x.y) ~ s(s('Ax.nil)(').x.x»(').x.y) 

~ s(s(k nil)(').x.x»(').x.y) ~ s(s(k nil)(').x.x»(k y) 

~ s(s(k nil)id)(k y) f/t . 

EXERCISE. What would the result have been in the previous example if x and 
y had been the same variable? 

Observe that the compilation of a term of the form ('Ax.B) resembles the 
traditional translation of I.-abstractions into combinators. However, a more 
general kind of I.-abstraction, (AA.B), is allowed; its properties will be dis
cussed from Theorem 15 onwards. 

EXERCISE. Let x and y be two variables. Show that ('Ax.yx) [t:ue ] ~~lse] ~ 
s(kfalse)id f/t. 
You should have found in the previous exercise that when a term of the form 

A[:] is compiled the lambda-abstractions and instantiations in A have to be 
compiled away before B can be substituted for x. This avoids complications 
arising from substitution into the scope of bound variables. 

THEOREM 1. A f/t iff A is simple. 

THEOREM 2. Any compilation sequence A ~ B ~ C ~ ... halts. For 
any term A there is a unique term A * such that A ~ A * f/t. 
(1 shall call A * the compiled form of A, and shall always use this asterisk 
notation for it.) 

Proof To see that compilation always halts, consider the following mapping 
d from tenns to positive integers. 

d(a) is 1 if a is an atom 

d(AB) is d(A) + d(B) + 1 

d«').A.B» is 12d(A)d(B) 

d(A[:]) is 2d(A)d(B) 
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It is straightforward to check that if T t-+ T' then d(T) > d(T'). Therefore 
any compilation sequence halts. 

The proof that A" is unique uses the usual confluence property: if T t-+ 

U and T t-+ V then there is a W such that U ~ Wand V ~ W. (There 
are ten cases where U and V may differ, and in each case the desired W is 
obvious.) Therefore, as usual, if A ~ B and A ~ C there is a D such that 
B ~ D and C ~ D. If in addition B, C f-j+ then B, D and C must be the 
same term. I 

THEOREM 3. A 4 B iff A* is B*. 

THEOREM 4. A[~] 4 A. 
Proof A[~] ~ A*[~] ~ A* ~ A, where the second step is shown by 
structural induction on the simple term A * , using the compilation clauses 

where a is any atom other than x. I 

FREE VARIABLES 

It is normal to distinguish betweenfree and bound occurrences of a variable 
in a term: for example, in the term (Ax.yX)X one would say the first two 
occurrences of x are bound and the third is free; also, any occurrence of x 

in A is bound in A[;l. However, the notion of an occurrence of a variable 

is rather hard to handie rigorously - though it can be done (Lalement, 1993, 
§2.2.4). It is much easier to define a binary relation 'occurs-free-in' between 
variables and terms, and bypass 'occurrences' altogether. The intention is 
that x occurs-free-in A iff x occurs (in the informal sense) in A". The 'occurs
free-in' relation is all that is needed; there is no need to define 'occurrence', 
'bound variable' or 'scope'. 

DEFINITION. The relation vET (read informally as 'the variable v occurs 
free in the term T') is defined as follows. 

vEa 

v EAB 

v E (AA.B) 

v E A[!] 

iff v is a, for any atom a 

iffvEAorvEB 

iffv~AandvEB 

iff (v E A and x is not v) or (v E B and x E A). 
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This notation may be extended to sequences of variables and terms: x, y, ... z 
E A, B, ... C means that each of the variables x, y, ... z occurs free in each 
of the terms A, B, ... C; while x, y, ... z rI. A, B, ... C means that none of the 
variables occurs free in any of the terms. The free variables of T are the 
variables v such that vET. 

EXAMPLES. Let x, y and z be any three variables. 
(1) x E (kx)(yz) since x E kx since x Ex. 
(2) x E (Ay.XZY) since x rI. y and x E xzy, since x E xz since x E x. 
(3) y rI. (Ay·XZY) since y E y. 

EXERCISES. Again, let x, y and z be any three variables. Show that 

THEOREM 5. Any term has finitely many free variables. 

THEOREM 6. If A t-+ B then x E A iff x E B. Hence x E A iff x E A *. 

THEOREM 7. A[:] 4 A, if x rI. A. 

Proof A[:] ~ A*[:] ~ A* ;, A, where the second step is verified by 
structural induction on the simple term A * using the compilation clauses 

a[:] t-+ a, 

where a is any atom other than x. I 

BINDING INDEPENDENCE 

I shall often define a term by saying something like 'let Fbe (Ax.(Ay.Ay(Bx»), 
where x and y are two variables', without saying what the variables x and y 
are. To justify definitions of this sort it is necessary to show that the term F 
is the same, up to compilation, regardless of the choice of x and y, as long 
as they are not the same variable and are not already present in A and B. To 
state this formally, I introduce the following temporary metanotation. 
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DEFINITION. The relation v -< T (informally, v occurs in T) is defined by 

v-<a 
v -< AB 
v -< (M.B) 

v -< A[~] 

iff v is a, for any atom a 
iffv-<Aorv-<B 
iffv-<Aorv-<B 

iff v -< A or v -< B or v is x. 

THEOREM 8. For any T, there are only finitely many v such that v -< T. 

EXAMPLE. x, y and z are the variables occurring in (AX.xy[ ~]). 

THEOREM 9. If A t-+ B and v -< B then v -< A. 

DEFINITION. T{n (informally, T with x replaced by y), is defined by 

x{n is y 

a{n is a if a is an atom other than x 

(pQ){n is (p{n )(Q{n ) 
(AA.B){n is (AA{n.B{n) 

(T[n){n is (T{n")[~ HI] . 

(Observe that, in T{n, y is substituted for x indiscriminately, without regard 
for binding.) 

THEOREM 10. If A tft then A[~] ~ A{n. 

THEOREM 11. If A t-+ Band y ~ A then A{n t-+ B{n. 

THEOREM 12. If x rt A and y ~ A then A{n ;." A. 

Proof Let A t-+ A' t-+ .. , t-+ A * tft. Since y ~ A we have y ~ A, A', ... A * 
by Theorem 9. Hence A{U t-+ A'{n t-+ ... t-+ A*{n by Theorem 11. 
Also, x rt A * since x rt A, by Theorem 6. So 

by Theorems 10 and 7, as required. I 
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DEFINITION. A notation (whether metanotation or an official part of the 
language) is binding-independent iff the choice of variables for its bound 
metavariables makes no difference, up to compilation, provided different 
metavariables denote different variables not otherwise occurring in the nota
tion. More precisely, a notation (denoting a term) is binding-independent iff 
replacing all occurrences of a variable that does not occur free in the term by 
a variable that does not occur in the notation leaves the term unchanged, up 
to compilation. 

THEOREM 13. All constructs of the Expanded Term Language are binding
independent. 

Proof This simply restates the previous theorem. I 

Thus the choice of x in (Ax.A) or A[;] makes no difference, up to compilation, 

provided x r:t X. 

EXAMPLE. Let u, v, w, x, y, z be six variables. Then, by binding independence, 

(AX.ky(XZw[n» 4 (AU.ky(uvw[~]». 

REDUCTION IN THE EXPANDED TERM LANGUAGE 

DEFINITION. The reduction relations 1>, 1>*, <l, <l*, I>*<l and rt in the 
Term Language are extended to the expanded language by 

A I> B iff A* I> B* 

A<lB iff A*<lB* 

A rt iff A* rt . 

A 1>* B iff A* 1>* B* 

A I> * <l B iff A * I> * <l B* 

EXAMPLES. Let x and y be two variables. 
(1) (Ax.(kx)(yy»z I> «Ax.kx)z)«AX.YY)Z), since 

(Ax.(kx)(yy»z ~ s(s(klc)id)(s(ky)(ky»z I> «s(kk)id)z)«s(ky)(ky»z) 
~ «Ax.kx)z)«Ax.yy)z). 

(2) equal(formerx)(lattery)[~'~] 1>* equalkk I> true, since 

(equal(former x)(latter y)[~:~ ])* is equal(former(ky»(latter«ky)k». 

EXERCISE. Let x, y be two variables. Show that equal(former x)(latter y)[ ~::] 
reduces only to itself. 
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DEFINITION. A construction is an irreducible tenn with no free variables. 

That is, a tenn is a construction in the Expanded Tenn Language iff it compiles 
into a construction of the Tenn Language. 

EXERCISE. Let x,y,z be three variables. Verify that (Ay.(AX.XY» and 

(AX.XYZ)[; ] [~rue] are constructions. 

THEOREM 14. (The instantiation theorem.) 

• If X )t and A [>* B then A[;] [>* B[;J. 
• If X )t and A )t then A[;] )t . 

• If X [>* Y then A[;] [>* A[!l 
Proof For the first part, since A[;] ~ A*[;*] and B[;] ~ B*[;·] it is 

sufficient to show A*[;·] [>* B*[;*]' This follows from the [> clauses in 

the Tenn Language, as in Theorem 5 of the Tenn Language. The other two 
parts are similar. I 

EXAMPLES. 
(1) Consider the reduction 

if (equal (latter(sx»x) (kx) nil 

[> if (equalxx) (kx) nil 

[> if true (kx) nil [> kx)t . 

If we instantiate x by ky throughout and compile we obtain 

if (equal (latter(s(ky») (ky» (k(ky» nil 

[> if (equal (ky) (ky» (k(ky» nil 

[> if true (k(ky» nil [> k(ky»)t . 

(2) if (equallformer x) s) (kx) nil [> if (equallformer x) s) (kx) nil, so, 
instantiating x by ky, we obtain if (equallformer (ky» s) (k(ky» nil [>* 

if (equallformer (ky» s) (k(ky» nil, which is trivially true since [>* is 
reflexive. This tells us nothing about the reduction of this tenn, which 
is as follows: 

if (equallformer (ky» s) (k(ky» nil [> if (equal k s) (k(ky» nil 

[> if false (k(ky» nil [> nil )t 

THEOREM 15. (AA.B) )t . 
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Proof. (M.B) ~ (M * .B*), which is shown to be irreducible by structural 
induction on the simple term A * , as follows. 

Case 1: A* is of the form PQ. Then 

(M * .B*) t----+ s(s(k('AP.('AQ.B*»)former)latter Jt , 

since, by inductive hypothesis, ('AP.('AQ.B*» Jt ; 
Case 2: A * is an atom a. Then, using structural induction on the simple 

term B*, 
- ('Aa.uV) t----+ s('Aa. U)('Aa. V) Jt, since, by inductive hypothesis, 

('Aa.u) Jt and ('Aa. V) jt ; 
- ('Aa.a) t----+ id Jt , if a is a variable; 
- ('Aa.b) t----+ kb Jt, if a and b are atoms but not both the same 

variable. I 

The ('Ax. B) notation is intended to suggest a function that maps any x to B, so 
we require ('Ax.B)x t>* B to hold. Similarly we would expect ('AA.B)A t>* B 
to hold: that is, (M.B) should be a function that maps any construction that 
is an instantiation of A to the corresponding instantiation of B. On second 
thoughts, this is only feasible in the case where A is irreducible (or reduces 
to an irreducible term). The following theorem is a generalisation that not 
only gives ('AA.B)A t>* B when A Jt but can also give useful results when A 
is reducible. 

THEOREM 16. (M.B)A[~] t>* B[~], provided y Jt and A[~] Jt . 

Proof. (M.B)Ar~] ~ ('AA*.B*)A*[~] t>* B*[~] ~ B[~], as required, 
where the second step is verified by structural induction on the simple term 
A * as follows. 

Case 1: A* is PQ. Then p[~] Jt and Q[~] Jt ,and hence 

('AA * .B*)A * [~] ~ s(s(k('AP.('AQ.B*»[~])former)latter(PQ[~]) 

t> * ('AP.('AQ.B*»[~] (former(PQ[~] »(latter(PQ[~]» 

t> * ('AP.('AQ.B*»[~] (p[~])(Q[~]) 
~ ('AP.('AQ.B*»P[~] (Q[~]) t>* ('AQ.B*)[~] (Q[~]) 

~ ('AQ.B*)Q[~] t> * B* [~] , 

as required, using the inductive hypothesis twice. 
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Case 2: A * is an atom, a. Then the required reduction, (t..a.B*)a[~] t>* 

B* [~], follows by the instantiation theorem (14) from (t..a.B*)a t> * B*, which 
is verified by structural induction on the simple term B* , as follows: 

- if B* is XYthen (t..a.xY)a I-t s(t..a.X)(t..a.Y)a t> «t..a.x)a)«t..a.Y)a) 
t>* XY, by inductive hypothesis, as required; 

- if B* is a and a is a variable then (t..a.a)a I-t ida t> a, as required; 
- if B* is an atom b, where a and b are not both the same variable, 

then (t..a.b)a I-t kba t> b, as required. I 

* EXAMPLE. Let W,x,y,z be four variables. Then (Ax.if (equalxy) w z)x I-t 

s(s(s(k if)(s(s(k equal)id)(ky»(kw»(kz»x t>* if (equalxy) w z. 

EXERCISE. Show that (Ax.kx(equalxx»x t>* kx(equalxx). Find, how
ever, another reduction of (Ax.kx( equal xx»x that does not pass through 
kx(equal xx). 

This exercise shows that, even though (Ax.B)x may be reduced to B, it is also 
possible (in cases where B is reducible) to reduce in a way that bypasses 
B by carrying out the reductions in a different order. The indeterminism 
in reduction order arises because, when reducing XY, one has a choice of 
whether to reduce X first, or reduce Y first, or interleave the reductions. 
Indeed, this example reveals why the indeterminism is necessary. If the 
order were deterministic then the reduction mechanism would have to be 
clairvoyant to decide the reduction order that ensures that (t..x.B)x reduces to 
B in all cases. Only by allowing a free choice of order in reducing subterms 
can one ensure that at least some of the reductions of (t..x.B)x pass through B. 

EXAMPLE. Let x and y be two variables. Then (A.xy.yx)(xy)[t~~e.t;lse] t>* 

yx[t~~e.t;lse], since 

(t..xy. yx )(xy) [t~~e.t;lse ] 

I-t s(s(k(t..x.(t..y.yx»)former)latter(xy)[t~~e.t;lse] 

~ s(s(k(s(s(ks)(k id»(s(kk)id»}former)latter(xy)[t~~e.t;lse] 

~ s(s(k(s(s(ks)(k id»(s(kk)id»)former)latter(truefalse) 

t> * s(s(ks)(k id»(s(kk)id) truefalse 

* fi I * [true.talse] t> a se true t--t yx x, y . 
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THEOREM 17 . 

• ('A.x.T)X 1>" T[:], if X pt ; 

• ('A.x.(A.y.T»XY 1>* T[:] [;], if X, Y pt and y ~ X,x. 

Proof Theorem 16 gives (A.x.T)x 1>* T and hence (A.x.(A.y.T»xy 1>* T, so 
the conclusions follow by instantiating x by X and y by Y (Theorem 14). I 

EXAMPLE. Note that, if X is irreducible, (A.x.(A.y.T»X reduces to (A.y.T)[:], 

not to (A.y.T[:]). For example, 

('A.x.(A.y.sxy»(truefalse) I> * (A.y.sxy)[tru~alse] ~ s(s(ks)(kx»id[tru~alse] 

~ s(s(ks)(k(truefalse»)id, 

assuming x and y are two variables, which is different from (Ay.Sxy[t:ue/alse]) 

~ s(s(ks)(s(k true)(kfalse)))id. The difference is that where the former has 
k(truefalse) the latter has s(k true)(kfalse). The former represents a function 
that takes an input Y and produces a term s(true false) Y using the construction 
true false; the latter actually builds the construction true false out of its atomic 
components true and false, whereas in the former case true false was supplied 
prefabricated. 

The distinction, then, between (A.y.T)[:l and (A.y.T[:h arises from the 

strictly intensional view of functions. Providing X as a prefabricated compo
nent and providing instructions for building X are two very different things. 

EVALUABLE TERMS 

An evaluable term is simply a term that reduces to an irreducible term. 
Evaluable terms have many useful properties similar to those of irreducible 
terms. 

DEFINITION. A term T is evaluable iff equal TTl>" true, or, equivalently, 
iff T 1>* T' pt for some term T'. 

THEOREM 18. If A 1>*<3 B then A is evaluable iff B is evaluable. 

THEOREM 19. If AB is evaluable then so are A and B. 

Proof The only way AB can reduce to an irreducible term is by first reducing 
A and B independently to irreducible terms A' and B', and then reducing A' B' 
to an irreducible term; this implies that A and B are evaluable. I 
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THEOREM 20. If T[;] is evaluable and x E T then X is evaluable. 

Proof If Tr;] is evaluable then so is T*[;l. since T[;] ~ T*[;l' The 
conclusion then follows from the previous dteorem by structural m uction 
on the simple term T*. I 

THEOREM 21. If X is evaluable then (Ax.T)X C>*<1 T[;]. 

Proof Let X c>* X' It . Then (Ax.T)X c>* (Ax.T)X' c>* T[;'] <1* T[;] by 

Theorems 17 and 14. I 

THEOREM 22. If T and X are evaluable then so are T[;] and (Ax.T)X. 

Proof Let T c>* T' It and X c>* X' It. Then T[;] c>* T[;'] c>* 

T'[;'] It by Theorem 14, so T[;] is evaluable. (Ax.T)X is also evaluable, 

since (Ax.T)X C>*<1 T[;J. I 

THEOREM 23. If X is evaluable and A C>*<1 B then A~] C>*<1 B[;J. 
Proof Let X c>* X' It and A c>* C <1* B. Then A~] c>* A[;'] c>* C[;'] 
<1* B[;'] <1* B[;] by Theorem 14. I 

MORE ON A-ABSTRACTIONS 

EXAMPLE. Theorem 16 shows that (AX.T) is a function that expects its 
argument to be an instantiation of X. But what does (AX. T) do if provided 
with an argument Y that is not of this form? The answer is that it insists on 
interpreting Y as an instantiation of X, without noticing that it is not, and 
produces the corresponding instantiation of T. For example, 

(Akx.xy)(sss) ~ s(s(k(Ak.(Ax.xy»)jormer)latter(sss) 
C> * (Ak.(AX.xy»(ss)s C> sy, 

assuming x and y are two variables. In this case the function (Akx.xy) has tried 
to interpret sss as an instantiation of kx, which means matching s against x and 
producing the result sy; it doesn't notice that ss fails to match k. In general, 
the result of applying (AX.T) to a construction Y is always an instantiation 
of T, as the next two theorems establish. 
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THEOREM 24. If a is a constant and X pt then (Aa.T)X [>* T. 

Proof (Aa.T)X ~ (Aa.T*)X [>* T* ~ T, as required, where the second 
step is verified by structural induction on the simple term T* as follows. 

Case 1: T* is an atom, b. Then (Aa. T*)X I--t kbX [> b, as required. 
Case 2: T* is UV. Then 

(Aa. T*)X I--t s(Aa. U)(Aa. V)X [> «Aa. U)X)«Aa. V)X) [> * UV, 

by inductive hypothesis, as required. I 

THEOREM25. If (AX.T)Y is evaluable, where X has free variables yandy fJ. Y, 

then (AX.T)Y [>* T[~l for some irreducible terms 1:: whose free variables 
are included in those of Y. In the special case where Y is a construction the 
condition that (AX.T)Ybe evaluable may be dropped. 

Proof Since (AX.T)Y is evaluable, so is Y; thus (AX.T)Y [>* (AX*.T)Y' 

for some irreducible term y'. I shall show that (AX* .T)Y' [>* T[~] using 

structural induction on the simple term X*. The inductive hypothesis is a 

slight generalisation of this: if (AX* . T)[~] Y' is evaluable then (AX* . T)[~] Y' 

[>* T[~][~], provided U pt and ~ fJ. Y'. 
Case 1: X* is a constant, a. Then (Aa.T)Y' [>* T, by the previous 

theorem, so (Aa.T)[~] Y' [>* T[~]. by Theorem 14, as required. 

Case 2: X* is a variable, v. Then (AV.T)Y' [>* T[~/], by Theorem 17, so 

(Av.T)[;l Y' [>* T[~/][;], by Theorem 14, as required. 
Case 3: X* is PQ. Then, from the compilation clause for (APQ.T), 

(APQ.T)[;] Y' [>* (AP.(AQ.T»[;] (former Y')(latter Y') 

and since this is evaluable we have former Y' [>* Y1 pt and latter Y' [>* 
Y2 pt for some Y}, Y2. The reduction continues 

(AP.(AQ.T»[;] (former Y')(latter Y') [> * (AP.(AQ. T»[;] Y1 Y2 

[> * (AQ. T)[:] [;] Y2 

by inductive hypothesis, where m are the free variables of P and M are 
irreducible terms whose free variables are included in those of Y1 (and hence 
in those of Y). Applying the inductive hypothesis again, 
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where !.! are the free variables of Q, N are irreducible terms whose free 
variables are included in those of Y2 (and hence in those of y), and V is a 
rearrangement of N, M, eliminating repetitions of instantiations of the same 

variable. This gives (APQ.T)[~l y' [>* Tr~][~] as required. 
This completes the proof of fue genera~ case. In the special case where Y 

is a construction we may drop the condition that (AX.T)Y be evaluable since 
the two places where it is required in the above argument are (i) to show that 
Y is evaluable (but we already know this if Y is a construction), and (ii) to 
show that former y' and latter y' are evaluable (but this is always true if Y is 
a construction). I 

BRANCH METANOTATION 

This section sets up a conditional construct which is useful in defining func
tions that branch depending on the value of their argument. 

DEFINITION. For any terms C, F and G, the metanotation (branch C F G) 
means 

s(s(s(s(k if)C)(k F»(k G»id. 

THEOREM 26. If C, F, G Jt then (branch C F G) Jt . 

THEOREM 27. If C, F, G,X Jt then (branch C F G)X [>* if (CX) F G X. 

PATTERN-MATCHING METANOTATIONS 

The (AA.B) construct allows one to define functions by pattern matching. For 
example, a function swap, satisfying the relation 

swap(u, v) [>* (v, u), 

could be defined simply as (A(U, v).(v, u». (Here I am using a pairing notation, 
'( ... , ... )', which will be formally introduced later.) However, this is a very 
limited form of pattern matching. In most pattern-matching definitions one 
needs several defining clauses, to be applied in order, possibly with recursion. 
For example, suppose one represents a list of constructions A, B, C, D by 
nested pairing: (A, (B, (C, (D, nil)))). Now suppose one wishes to define a 
function member that detects whether a given construction is an element of a 
given list. One would like to be able to define member by simply stipulating 
its reduction clauses 

member(x, (x, rest» [> * true 

member(x, (first, rest» [> * member(x, rest) 

member(x, nil) [> * false, 
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where these clauses are to be applied in order. Thus, to detennine whether 
C is a member of (A, (B, (C, (D, nil)), we reduce 

member(C, (A, (B, (C, (D,nil))) [>* member(C, (B, (C, (D, nil)) 

[>* member(C,(C,(D,nil») [>* true. 

Here, the argument pair (C, (A, (B, (C, (D, nil))) is first matched against the 
pattern (x, (x, rest». It doesn't match, so it is next matched against the pattern 
(x, (first, rest». This time it does match, with x matching C, first match
ing A, and rest matching (B, (C, (D, nil))), so we apply this clause, giving 
member(C, (B, (C, (D, nil»». Then we apply the definition recursively, and 
so on. As a second example, 

member(D, (A, (B, (C, nil)))) [>* member(D, (B, (C,nil») 

[>* member(D,(C,nil» 

[>* member(D,nil) [>* false. 

As the first step towards being able to set up such definitions, we need, for 
each pattern X in a defining clause, a function checkx that detennines whether 
a given argument is of the fonn X (for some instantiation of the free variables 
in X). (Recall that (AX.T) simply assumes its argument is of the fonn X 
without checking.) 

DEFINITION. For any tenn X define a construction checkx by 

checka is equal a if a is a constant 

checkv is k true if v is a variable 

checkpQ is (branch (s(k checkp)former) (s(k checkQ)latter) (kfalse» 

checkx is checkx' if X t-+ X'. 

THEOREM 28. The' checkx ' notation is binding-independent; in fact, the 
choice of variables in X makes no difference at all to checkx . 

THEOREM 29. Suppose XY Jt . Then 

• checkpQ(XY) [>* checkQY, if checkpX [>* true 

• checkpQ(XY) [>* false, if checkpX [>* false. 

Proof checkpQ(XY) is 

(branch (s(k checkp )former) (s(k checkQ)latter) (kfalse»(XY) 

[> * if (s(k checkp )former(XY» (s(k checkQ)latter) (k false) (XY) 

[>* if (checkpX) (s(k checkQ)latter) (kfalse) (XY) 

[>* {S(k checkQ)latter (XY) [>* checkQY if checkpX [>* true 
k false (XY) [> false if checkpX [> * false 

as required. I 
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THEOREM 30. checkxX[~] 1>* true, provided y jt and x[~] jt . 

Proof. checkxX[~] ~ checkx.(X*[~]) 1>* true, as required, where the 
second step is venfied by structural induction on the simple term X* as 
follows. 

Case 1: X* is a constant, a. Then checka(a[~]) ~ equal a a I> true. 

Case 2: X* is a variable, x. Then CheCkx(x\~]) is k true (x[~]) I> true. 

Case 3: X* is PQ. Then checkpQ(PQ[~) ~ checkpQ«p[~])(Q[~]» 
1>* checkQ(Q[~]) (by the previous theorem, since checkp(P[~]) 1>* true by 

inductive hypothesis) 1>* true by inductive hypothesis again. I 

EXAMPLES. Let u, v, w,x,y be five variables. 
(1) checkk;x(loc) 1>* true, 
(2) checksxy(s(kz)z) 1>* true, 
(3) check(uvXsw) ((truefalse)(nil (sx») 1>* false since s mismatches nil, 
(4) checksuu(s truefalse) 1>* true, 
(5) checknil nil(id) I> * true. 

Examples (4) and (5) show the defects of the 'checkx ' construct. In (4) 
true and false are both matched against u: there is no attempt to verify that 
constructions matching the same variable are the same. In (5), former and 
latter are applied to the argument id to extract its 'components', giving nil 
and nil: the checknilnil function doesn't notice that id is an atom. 

These problems are solved by the' matchx ' notation, which is a refinement 
of checkx . 

DEFINmON. For any term X define a construction matchx as 

(branch check x (s(s(k equal)('AX.x»id) (kfalse». 

THEOREM 31. The 'matchx' notation is binding-independent. 

Proof. This follows since the checkx notation and all ET constructs are 
binding-independent. I 

THEOREM 32. If checkxY 1>* false then matchxY 1>* false. 

Proof. If checkx Y 1>* false then Y 1>* Y' jt, for some Y', and checkx Y' 
1>* false, so matchxY 1>* matchxY' 1>* if (checkxY') ( ... ) (kfalse) Y' 1>* 
k false Y' I> false. I 
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THEOREM 33. matchxX[~] [>* true, provided V ~ and X[~] ~ . 

Proof. 

179 

matchxX[~] [>* if (checkxX[~]) (s(s(k equal)('AX.X»id) (kfalse) (X[~]) 

[> * (s(s(k equal)('AX.X»id) (X[~]) 

[> * equal «'AX.X)X[~]) (X[~]) 

[>* equal(X[~])(X[~]) [> true. 

I 

THEOREM 34. If matchxY [>* true, where X has free variables ~ and ~ f/. Y, 

then Y [> * <l X[~] for some irreducible terms y whose free variables are 

included in those of Y. 

Proof. SincematchxY [>* true we must have Y [>* Y' ~ for some y'. Thus 

matchxY [>* matchxY' 

[>* if (checkxY') (s(s(kequal)('AX.X»id) (kfalse) y'. 

If this term reduces to true then checkx Y' [> * true and 

s(s(k equal)('AX.X» id Y' [> * equal «'AX.x)y') Y' [> * true. 

From the latter it follows that ('AX .X) Y' [> * Y'. But by Theorem 25 ('AX .X)Y' 

[> * X[~] for some irreducible terms y whose free variables are included in 

those of Y, hence Y [>* Y' <l* X[~], as required. I 

EXAMPLES. Repeating our checkx examples, 
(1) matchkxCkx) [>* true, by Theorem 33, 
(2) matchsxy(s(kz)z) [>* true, by Theorem 33, 
(3) match(uv)(sw)((truefalse)(nil (sx») [>* false, by Theorem 32, 
(4) matchsuu(s truefalse) [>* equal «'A(suu).suu)(s truefalse» (s truefalse) 

[>* equal (sfalsefalse) (s truefalse) [> false, 
(5) matchnilnil(id) [>* equal «'A (nil nil).nil nil)id) id [>* equal (nil nil) id 

[> false. 
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Clearly matchx does not suffer from the same problems as checkx . Why 
not just define matchx as s(s(k equal)('AX .X) )id, since it is this subterm that 
seems to be doing all the work in the previous theorem? The answer is that 
although this would give matchxY r>* true just when we want, it would fail 
to give a value when we want false. For example, match(true(nilnil»(jalsex) 
would fail to give a value with this definition, whereas with the definition 
actually used it successfully reduces to false. 

The first application of matchx is to introduce a refinement of the ('AX.T) 
construct. Recall that ('AX.T) construes its argument as an instantiation of 
X (even if it is not) and outputs the corresponding instantiation of T. We 
would prefer a function that produces no result when the argument is not an 
instantiation of X. 

DEFINITION. For any terms X and T define the metanotation ('AX: T) as 

(branch matchx ('AX.T) (jxpt id)). 

THEOREM 35. ('AX: T) Jt ; and y E ('AX: T) iff yET and y fI. X. 

THEOREM 36. The '('AX: T)' notation is binding-independent. 

Proof This follows since the 'matchx ' notation and all ET constructs are 
binding-independent. I 

THEOREM 37. ('AX: T)X[~] r>* T[~], if 1::: Jt and x[~] Jt . 
Proof Using Theorems 33 and 16, 

('AX: T)X[~] r>* (if (matchxX[~]) «'Ax.T)[~]) ifxptid)) (x[~]) 

r>* «'Ax.T)[f])(x[n) r>* T[~] 

as required. I 

THEOREM 38. If ('AX: T)[;] Y is evaluable, where U are irreducible terms, X 

has free variables ~ and ~ fI. Y, then Y r>*<l xr~l for some irreducible terms 
1::: whose free variables are included in those of Y. 
Proof Since ('AX: T)[;] Y is evaluable we have, for some irreducible Y', 

('AX: T)[;] Y r>* ('AX: T)[;] Y' r>* if (matchxY') «'AX.T)[;]) ifxptid) Y', 

which is only evaluable if matchx Y' reduces to true, in which case Y r> * Y' 

r>*<l x[~] by Theorem 34, as required. I 
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DEFINING FUNCTIONS USING PATTERN MATClllNG 

This section introduces a more powerful mechanism for defining functions 

with several defining clauses and recursion. The special symbol ,~, will be 
used to identify definitions of this sort. 

DEFINITION. The expression 

where f rt X I, ... Xh means that a metaconstant is about to be introduced to 
denote the term.fxptct>, where ct> is 

(Af·(branch matchx1 (AXI.TI) 

(branch matchx2 (AX2. T2) ••• 

(branch matchxt (AXk.Tk)f) ... »). 

The following theorems will show that fxpt ct> is a function that, applied to 
a construction Y, matches Y successively against the patterns Xlo X2, ... , 

until it finds the first pattern Xi that matches (that is, Y 4. Xi[~] for 

some constructions y and variables 0; then the result is the corresponding 

instantiation T{~]. If no pattern matches then there is no result. 

THEOREM 39. fxptct> It; y E.fxptct> iff y is notf and, for some i, yETi but 
y rt Xi· 

THEOREM 40. The definition of fxptct> is binding-independent (that is, inde
pendent of the choice of variables for the metavariables in Xl, ... Xk). 

Proof. This follows since the 'matchx ' notation and all ET constructs are 
binding-independent. I 

THEOREM 41. Let 1 ~ i ~ k, let ~ E Xi, and let y be any terms such that 

f rt y, V It ,X{~] It and, for eachj < i, matchxjXi[~] ~* false; then 
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Proof By Theorems 33 and 16, 

<I> f (x{~]) 

t>* (branch matchXt O"Xl.Tl ) ... (branch matchxi (/-"'Xi.Ti)"')" ,)(Xi[~]) 

t>* (/-"'Xi.Ti)(Xi[~]) ~ (/-"'Xi.Ti)Xi[~] t>* Ti[~]; 
so 

fxpt<I> (Xi[n) t> <I>(fxPt<I»(Xi[~]) ~ <I>f(Xi[~])~Pt<!>] t>* Ti[~]~Pt<!>] 

by the instantiation theorem (14), as required. I 

THEOREM 42. If (fxpt <I> )[~] Y is evaluable, where U are irreducible terms, 

Xi has free variables ~, and ~ rf. Y (for each i = 1, ... k), then Y t>*<l xr~l 
for some i and some irreducible terms t: whose free variables are included 
in those of Y. 

Proof Since (fxpt <I> )[~] Y is evaluable we must have, for some irreducible 
y' , 

(fxPt<I»[~] Y t>* (fxPt<I»[~] y' t> <I>[~] (fxPt<I>[~])Y' 
t>* (branch matchxt ... )y', 

which is evaluable only if matchxi y' t> * true for some i, in which case Y t> * 

y' t> * <l Xi[~] by Theorem 34, as required. I 

The usual way of using this definition mechanism will be to say 'Define f by 

f Xl ~ Tl, .. .f Xk ~ Tk'. Such a definition means, from now on, use f as a 
metaconstant to denote fxpt <I> (rather than the bound variable in <I> it denoted 

above). The reduction fxpt<I> (Xi[~l) t>* Ti[~]~Pt<!>] may then usually be 

written simply asf (Xi[n) t>* T{~ . The most commonly used instance of 
this will be f Xi t> * Ti ; but bear in mind that this is only applicable when Xi 
is irreducible and matchXjXi t>* false for each j < i. 

EXAMPLE. The list membership function referred to above can be defined as 
follows (given a suitable pairing operation ( ... , ... )). Let x, first and rest be 
three variables; define a construction member by 

f:" 
member(x, (x, rest)) true, 

f:" 
member(x, (first, rest)) = member(x, rest), 

f:" 
member(x, nil) = false. 
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This gives member(x, (x, rest» t>* true; and member(X, (First, Rest» t>* 

member(X, Rest) for any constructions X, First and Rest, provided X is not 
First; and member(x, nil) t> * false, as required. 

EXAMPLE. Suppose we define a coding of binary trees as constructions 
as follows: false represents an empty tree, and tru;e X Y represents a tree 
consisting of a node and two subtrees coded as X and Y. (This is rather an 
inelegant coding scheme; better coding techniques will be introduced shortly.) 
We can define a function tree that checks whether a given construction is a 
tree code by 

6. 
treeifalse) = true, 

6. 
tree(true x y) = if (treex) (treey)false, 

6. 
tree(x) = false, 

where x and y are two variables. Then, for example, 

tree(true (truefalsefalse)false) 

t> * if (tree(true false false» (tree false )false 

t> * if (if (treefalse) (treefalse)false) truefalse 

t> * if true true false t> true. 

(Check that the conditions of Theorem 41 are satisfied.) 

EXERCISES. Using the same binary tree coding, 
(1) define a function reflect that swaps the left and right subtrees of each 

node, for example 

reflect(true (truefalse (truefalsefalse» false) 

t> * true false (true (true falsefalse )false); 

(2) define a function flatten that rearranges a binary tree into a right
branching tree with the same number of nodes, for example 

flatten(true (truefalsefalse) (truefalsefalse» 

t> * true false (true false (true false false». 
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REGULAR FUNCTION DEFINITIONS AND CONTINUITY 

Theorem 41 shows that a function defined by pattern matching satisfies its 
defining 'equations'. But that is only half the story. We would also like 
to be able to argue by induction with respect to such recursively defined 
functions. For example, we would like to be able to argue that any binary 
tree has a certain property by induction on the structure of the tree. We shall 
see in Chapter 19 that such arguments can be formalised within protologic 
using a coding of binary trees (as above), the function tree defined by pattern 
matching, and the Fxpt Rules of protologic. But to apply the Fxpt Rules 
it is necessary to check that the function <I> used in the pattern-matching 
definition is continuous (in the sense defined in the Term Language). This 
section establishes a simple and useful sufficient condition for continuity in 
pattern-matching definitions. 

The partial reduction relations -->., ~, L-, L, ~,f>-, ---r, ~, 
p defined in the Term Language may be extended to the Expanded Term 
Language by 

A -->.B iff A* -->. B* A ~B iff A* ~ B* 

A L-B iff A* L- B* A LB iff A* L B* 

A~B iff A* ~ B* Af>- iff A* f>-
A---rB iff A* ---r B* A~B iff A* ~ B* 

Ap iff A* p . 

DEFINITION. A function definition f X 1 ~ TI, .. .J Xk ~ Tds regular iff, 
for each i = 1, ... k, Xi , and VTi ~ v, where v is a fresh variable and ~ 
is the partial reduction relation with respect to f and v. 

(Note: when I speak of a 'fresh' variable, as in the above definition, I mean 
a variable that has not been used so far in the current definition or theorem.) 

THEOREM 43. In a regular function definition of a termfxpt<l>, <I> is continu
ous. 

* Proof Given the two variables f and v, call a term T Junctional iff v(Tv) -->. 

v. The proof of the theorem is divided into the following steps. 

(1) Iff rt X and X , then vX ~ v. 
Proof: since X , , comparing the I> and -->. clauses we see that the 
only -->. rules that might apply to X are a -->. V (where a is equal, 
true, false, former, latter, fxpt or nil) or x -->. V (where x is a variable 
other than f and v). After applying these rules wherever possible we 
apply v(AB) -->. vAB, va -->. V (where a is a constant), and vv -->. V 

repeatedly, to give vX ~ v. 
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(2) (AJ.T)f ~ T. 
Proof: by structural induction on T*, using the cases 

('Af·AB)f t-+ s(AJ.A)(AJ·B)f ~ «AJ.A)f)«AJ·B)f) ~ AB 

(AJ.f)f t-+ idf --'- f 
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(AJ.a)f t-+ kaf ~ a if a is a constant or a variable other than f. 

(3) (branch e A B) is functional if e, B and A are. 
Proof: suppose v(ev) ~ v, v(Av) ~ v and v(Bv) ~ v. Then e 
~ e' f>- , e'v ~ e" f>- and veil ~ v, for some terms e' and e". 
Similarly A ~ A' f>-, A'v ~ A" f>- and vAil ~ v, for some terms 
A' and A"; and B ~ B' f>- , B'v ~ B" f>- and VB" ~ v, for some 
terms B' and B". Then 

v«branch e A B)v) ~ v«branch e' A' B')v) ~ v(if (C'v) A' B' v) 

~ v{if e" A' B' v) --'- v(if e" (A'v) (B'v» 

~ v(if e" A" B") ~ v if e" A" B" ~ v. 

(4) ('AX.T)v ~ T, iff rf- X. 
Proof: by structural induction on T* within structural induction on X* , 
using the cases 

('APQ.T)v ~ ('AP.('AQ.T»(vv)(vv) ~ ('AP.('AQ.T»vv ~ ('AQ.T)v 

~T 

('AaAB)v t-+ s{'Aa.A)('Aa.B)v ~ «'AaA)v)«'Aa.B)v) ~ AB 

if a is an atom 

('Av.v)v t-+ idv --'- v 

{'Ax.x)v t-+ idv --'- v L- x if x is a variable other than vandf 

('Aa.b)v t-+ kbv ~ b if a and b are atoms but are not both 

the same variable. 

(5) checkx is functional. 
Proof: by structural induction on X*. If X* is an atom we have 

v(checka v) is v(equaZ a v) --'- v(vav) ~ v if a is a constant 

v(checkxv) is v(k true v) --'- v(kvv) ~ v if x is a variable 
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while if X* is PQ then checkpQ is functional by (3) since its components 
s(k checkp)former, s(k checkQ)latter and k false are functional, as is 
verified by 

v(s(k checkp)formerv) L v(checkpv) ~ v 

v(s(k checkQ)latterv) L v(checkQv) ~ v 

v(kfalse v) --" v(kvv) ~ v 

assuming that checkp and checkQ are functional and using Theorem 6 
of the Term Language. 

(6) matchx is functional iff rt. X and X pt . 
Proof: check x and kfalse are functional, as was shown in (5). Also, 
s(s(k equal)(').,X.x»id is functional, since by (4) and (1) 

v(s(s(k equal)(').,X.X»idv) ~ v(v«').,X.x)v)v) L v(vXv) ~ v(vv) ~ v, 

which establishes that v(s(s(k equal)(').,X.X»idv) ~ v. The result 
follows by (3). 

(7) wf is functional. 
Proof: f is functional, since v(fv) --" vv --" v; so is (').,X;.T;) for each i, 
since v«').,Xj.T;)v) L vT; ~ v by (4). The result follows by (6), (3) 
and (2). 

(8) w is continuous. 
Proof: by (7), v(wjV) ~ v. I 

EXERCISE. Check that the definitions of tree, reflect and flatten are regular. 

METANOTATION 

DEFINITION. Equality notation: A =B is equal A B. 

DEFINITION. The construction boolean is (')..x.if x true true). 

THEOREM 44. boolean(true) 1>* true and boolean(jalse) 1>* true. 

DEFINITION. Truth-functional conjunction: A & B is if A B false; and 
At & ... &Ak is At & (A2 & ... (Ak-t &Ak) .. . ). 

THEOREM 45. If X pt then true & X I> X and false & X I> false. 
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DEFINITION. Pairs: (A, B) is sAB. The constructions left and right are 
(A,(a, b).a) and (A,(a, b).b), where a and b are two variables. 

(The choice of the variables a and b makes no difference, up to compilation, 
due to binding-independence.) 

DEFINITION. Tuples: (AI.A2,A3" .Ak-I,Ak) is 

(AI. (A2' (A3,'" (Ak-I.Ak)·· .»), 

for k ~ 2. This notation is used for grouping a known number of terms in 
order. 

DEFINITION. Lists: [AI.A2, ... Ak] is (A .. [A2, ... Ak]) and [] is nil. Thus 
[AI.A2,' .. Ak] is (A.,A2, . .. Ako nil) for k ~ 1. This notation is used instead 
of tuples when the number of terms varies. 

We would like to use tuples and lists in pattern-matching definitions, so it is 
necessary to verify that the pattern-matching functions checkx and matchx 
are able to recognise them and decompose them correctly. This is established 
by the following two theorems. 

THEOREM 46. Suppose U, V jt . Then 

* {checkyV 
check(x,y)(U, V) I> false 

if checkxU 1>* true, 
if checkxU 1>* false. 

Proof. By Theorem 29, if checkxU 1>* true then checksx(sU) 1>* 

1>* true, so checksxy(sUV) 1>* checkyV, as required. 
If, on the other hand, checkxU 1>* false then checksx(sU) 1>* 

1>* false, so checksxy(sUV) 1>* false. I 

checkxU 

checkxU 

THEOREM 47. If U, V jt then checkni1(U, V) 1>* false and check(U,v)nil 1>* 

false. 

Proof. checknil(U, V) is equal nil (sUV) I> false, as required. 
For the second part, 

s(k checks }former nil 1>* checksCformer nil) I> equal s nil I> false 

and hence 

s(k checksu }former nil 1>* check(suiformer nil) I> checkc.su)nil 

and hence 

1>* if (s(k checks}former nil) ( .. . )(kfalse)nil 

1>* false 

checkc.suv)nil 1>* if (s(k checksu }former nil) ( ... )(kfalse) nil 1>* false 

as required. I 
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EXERCISES. Let u, v, W,x,y,z be six variables. Show that 
(1) check(x/alse,z)(true,false, w) 1>* true, 
(2) check[x,y,zl [u, v] 1>* false, 

(3) check[x,Yl [u, v, nil] 1>* false. 

EXAMPLE. We can define a function concat that concatenates two lists by 

I::> 
concat(nil, other) other 

I::> 
concat«(first, rest), other) = (first, concat(rest, other» 

where first, rest and other are three variables. Let us show that 

concat([a,b],[c,d,eD 1>* [a,b, c,d, e], 

where a, b, c, d, e are five variables. First, match(nil,other)([a, b], [c, d, eD 1>* 

false (by Theorems 46, 47 and 32). Hence, by Theorem 41, 

t([ b] [ d ]) * (fi t t( t th »[a, [bl, [C,d,el] conca a, ,c, , e I> rs ,conca res, 0 er first,rest,other 

~ (a, concat([b), [c, d, e])). 

Repeating the argument gives (a, (b, concat(nil, [c, d, e]))), which reduces to 
(a, b, [c, d, eD, which is the desired result [a, b, c, d, e]. 

EXERCISES. 

(1) Define a function reverse that reverses the order of elements in a list and 
verify that reverse[a, b] 1>* [b, a], where a and b are two variables. 

(2) Define a function insert that inserts a given element in a given list, unless 
it is already present in which case it just returns the list unaltered. (Hint: 
don't use member.) 

(3) Define a function remove that removes a given element from a given 
list, unless it is not present in which case it just returns the list unaltered. 
(Again, don't use member.) 

(4) Define a function union that combines two lists into a single list, remov
ing any repetition of elements. 
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CONSTRUCTORS 

The purpose of this section is to introduce readable notations for representing 
algebraic data structures as constructions, following as closely as possible the 
standard notations of functional programming. Consider stacks for example. 
Given an element data type, it is usual to introduce two 'constructors', empty 
and push, which generate stacks of elements as follows: 

• empty is a stack (informally regarded as the stack with no elements); 

• if e is an element and s is a stack then push(e, s) is a stack (informally 
regarded as a stack obtained by adding e at the top of s). 

All stacks are generated by applying push repeatedly to empty; a typical 
stack is push(el ,push(e2,push(e3 , empty))). Having defined stacks one then 
defines functions pop, top and null: 

pop(empty) = empty, 

pop(push(e, s)) = s, 

top(push(e, s)) = e, 

null(empty) = true, 

null(push(e, s)) = false, 

(note that top(empty) is undefined). Now, I wish to follow this notation 

exactly, except with' =' replaced by '~'. Hence I need to define constructors. 
There are two kinds of constructor: O-ary constructors, such as empty, which 
take no arguments; and I-ary constructors, such as push, which take a tuple 
of arguments. I shall choose sets of constructions with suitable properties to 
act as O-ary and I-ary constructors. 

DEFINITION. A I-a!}' constructor is a construction of the form true [id, ... id]. 
A O-a!}' constructor is a construction of the form false false [id, ... id]. 

There is an infinite supply of constructors of each type. Whenever I say 
something like 'Let A, B, C be three fresh l-ary constructors' I mean take 
the next three unused I-ary constructors from the infinite supply. I shall use 
constructors for forming terms like 

A(B(x, M), y, C(B(N, N))), 

built up out of O-ary constructors (M and N) and variables (x and y) by 
applying l-ary constructors (A, B and C) to tuples. Terms of this sort are 
used for coding trees and other structured objects. I shall show that all 
such terms are irreducible and distinguishable using checkx and hence using 
matchx , allowing them to be used freely as patterns in function definitions. 

THEOREM 48. If F is a I-ary constructor and X .P' then FX .P' . 



190 CHAPTER 15 

THEOREM 49. If P and Q are two O-ary constructors or two l-ary constructors 
then checkpQ 1>* false. 

Proof Let X and Ybe two lists of the form [id, . .. id] (with different numbers 
of elements). From Theorems 46 and 47, 

check(id,x)(id, Y) 1>* checkx Y 

chec"<id,x)nil 1>* false 

and hence by induction checkxY 1>* false. 

checknil{id, X) 1>* false 

Thus for two O-ary constructors, falsefalseX andfalsefalse Y, by Theo
rem 29, 

check(falsefalse xlfalse false Y) 1>* checkx Y 1>* false 

and for two l-ary constructors, true X and true Y, 

check(true X)(true Y) 1>* checkx Y 1>* false 

as required. I 

THEOREM 50. If F and G are two I-ary constructors, and X, Y " then 
checkFX(GY) 1>* false, FX = GY I> false, and checkFx{FY) 1>* checkxY. 

Proof The previous theorem says that checkFG 1>* false, and hence by 
Theorems 29 and 48, checkFX{GY) 1>* false. By the reduction clauses in the 
Term Language, F=G I> false and hence FX=GY I> false. By Theorem 30, 
checkFF 1>* true, and hence, by Theorem 29, checkFX{FY) 1>* checkx Y. I 

THEOREM 51. If B is a O-ary constructor, F is a I-ary constructor, and X , , 
then checkB{FX) 1>* false, checkFXB 1>* false, B = FX I> false, and FX = B 
I> false. 

Proof Using Theorem 29, checkB{FX) 1>* false since checkfalsetrue I> false. 
Similarly, checkFXB 1>* false since checktruJalse I> false. The other two 
reductions, B = FX I> false, and FX = B I> false, follow from the reduction 
clauses in the Term Language since false = true I> false and true = false I> 

false. I 

EXAMPLE. Define a new coding of trees, in which every node has 0, 1 or 2 
subtrees, as follows. Let none be a fresh O-ary constructor, and one and two 
be two fresh l-ary constructors. 

• none represents a leaf of the tree; 

• one(X) represents a tree with one subtree, X; 

• two(X, Y) represents a tree with two subtrees, X and Y. 
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EXERCISE. Redefine the functions tree, reflect and flatten, described earlier, 
for this new tree coding. Check that the conditions of Theorem 41 are 
satisfied. What does Theorem 42 tells us in this case? 

The difference between this tree coding and the previous coding of binary 
trees, which did not use constructors, may appear slight. However, the use of 
constructors makes a big difference to the readability of complex arguments 
involving tree codes: see the proofs of Theorems 14 and 15 in Chapter 21, 
for example. 

EXERCISE. Define a coding of predicate calculus formulae as constructions. 
You should assume that a supply of object variables Xt, X2, X3, ... and a supply 
of predicate variables PI, P2 , P3 , ... are provided, that the atomic formulae 
are of the form Pm(xn), and that the first-order quantifiers VXn and 3xn are the 
only quantifiers allowed. Define the following functions: 

(1) vbls, which lists the index numbers of the free object variables in a 
formula; thus vbls applied to the code of "Ix s (Pt (Xl) /\ P2(Xs) /\ Pt(X3» 
would give [1,3]; 

(2) sub, which, when applied to m, n and the code of a formula, gives the 
code of the formula with Xm substituted for all free occurrences of Xn 
(ignore the problem of variable clashes). 

NUMBERS, PRIMITIVE RECURSIVE FUNCTIONS, 
AND NUMERIC TERMS 

This section introduces (natural) numbers and arithmetic. Numbers are 
simply a certain recursively defined class of constructions, like stacks or 
binary trees. They have no privileged status; their properties are simply 
special cases of the properties of constructions in general. 

DEFINITION. Let 0 be a fresh O-ary constructor, let S be a fresh 1-ary 
constructor, and let pre be latter. 

DEFINITION. The numbers are 0, SO, S(SO), S(S(SO», '" . Let 1 be SO, 2 be 
Sl, and so on up to 34. (These are all the numbers we shall need names for 
in this book.) 

THEOREM 52. If N , then SN , . Thus all numbers are constructions. 

THEOREM 53. pre(Sn) I> n and Sn = 0 I> false. 



192 CHAPTER 15 

DEFINITION. Define a number predicate num by 

t::. 
numO = true 

t::. 
num(Sn) = numn. 

THEOREM 54. If m and n are numbers then 

hk * {true c ec mn ~ false 
if m is n, 
if m is not n 

and the same is true for matchmn. 

Proof Note that, for any numbers m and n, 

• checkm m ~* true and matchm m ~* true (Theorems 30 & 33); 

• checksm(Sn) ~* checkmn (Theorem 50); 

• checksm 0 ~* false (Theorem 51); 

• c.hecko Sn ~ false (Theorem 51). 

These facts imply that if m is not n then checkmn ~ * false and hence (by 
Theorem 32) matchmn ~* false. I 

EXAMPLE. Addition and subtraction may be defined using pattern-matching 
by 

t::. 
plus(O, y) = y, 

t::. 
plus(Sx,y) = S(Plus(x,y», 

where x and y are two variables. 

t::. 
minus(x,O) = x, 

minus(x, Sy) ~ pre(minus(x, y» 

EXERCISE. Define multiplication and integer division (with upward rounding) 
similarly. 

EXAMPLE. We can define a function list, which checks whether a given 
construction is a list, and a function length, which determines the numbers 
of elements in a list, by 

list(nil) 
t::. t::. = true, length(nil) = 0, 

list(first, rest) 
t::. 

list(rest) , t::. = length(first, rest) S(length(rest) ), 

list(x) 
t::. 
= false, 

where first and rest are two variables. 
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EXERCISE. Modify the coding of trees defined earlier, in which each node 
had 0, 1 or 2 subtrees, so that each leaf holds a number, and define a function 
sum that adds up all the numbers in a given tree. 

DEFINITION. A k-ary primitive recursive (k-PR) function is a term defined as 
follows. 

o is O-PR 

Sis I-PR 

prol is k-PR for any numbers i, k satisfying 1 ~ i ~ k 

compl(H, Fb ... Fl) is k-PR if H is l-PR 

and Fb . .. Fl are k-PR (where k, 1 ~ 1) 

reck(F, G) is (k + 1)-PR if F is k-PR and Gis (k + 2)-PR (where k ~ 0). 

Here, 

projjk is (A(nt, ... nk).nj) for each i, k satisfying 1 ~ i ~ k 

compl is (A(h,ft. ... fi)·(Ax.hiftx, .. . fix») 

reck is (Aif,g).Tk) where Tk is defined by 

{ Tk(O, nt, ... nk) ~ f(nt, ... nk), 

Tk(Sm, nt, ... nk) ~ gem, nt, ... nb Tk(m, nt, ... nk» 

where nJ, ... nb h,fJ, .. . fi, x,f, g, m are all different variables. (Note that 
f(nt, . .. nk) is to be understood as! when k = O. This convention will apply 
throughout; that is, FO is a metanotation for F.) 

EXERCISE. Redefine addition, subtraction and multiplication as primitive 
recursive functions. (The answer for multiplication is given in the section on 
finitary and constructive reasoning in Chapter 9.) 

THEOREM 55. Primitive recursive functions have no free variables and are 
evaluable. 

Proof It is clear that they have no free variables. The proof that they are 
evaluable is by structural induction on the primitive recursive function. 

0, S and proil are constructions and so are evaluable. 
If the primitive recursive functions H, F t, ... F/ are evaluable then 

comp/(H,F}, ... F/) t>*<] (Ax.hiftx , ... fix»[Z~:·::I'], 

which is also evaluable by Theorems 22 and 18. 
If the primitive recursive functions F and G are evaluable then req(F, G) 

t> * <] Tk~';] which is also evaluable. I 
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DEFINITION. A numeric term is 0, a variable, or F(Nh ... Nk), where k ~ 1, 
F is k-ary primitive recursive and Nh . .. Nk are numeric tenns. 

Numeric tenns will be used in the syntax of Heyting Arithmetic and Peano 
Arithmetic. 

CHURCH'S THESIS 

In future I want to be able to implement any 'mechanically effective' oper
ation on constructions as a construction in the Expanded Tenn Language. 
Often the desired construction cannot be defined concisely using the notation 
introduced so far, so I simply want to say, by appeal to Church's Thesis (the 
weak fonn - see Chapter 5), that a construction implementing the operation 
exists and to introduce a metaconstant to denote it. 

To justify this procedure it is necessary to introduce a notion of recur
sive function applicable to constructions. Recursive functions were defined 
_ origin~lly on numbers; modern treatments of the subject often generalise 
them to free monoids (Eilenberg & Elgot, 1970); from this it is easy to see 
how to apply them to any recursively generated data structure. Simply de
fine the recursive functions to include the atomic structures (analogous to 
o in the definition of primitive recursive functions above); functions build
ing a composite structure out of its immediate components (analogous to 
S); projection functions proir; the composition of any recursive functions; 
and functions defined by primitive recursion and unbounded iteration from 
recursive functions. 

To apply this procedure to constructions, recall a characterisation of con
structions given in the Tenn Language: a (simple) construction is a constant 
or sA, sAB, kA, equal A, if A, if A B, true A B ... C, false A B ... C, fxpt A 
or nilA B ... C, where A,B, . .. C are (simple) constructions. Hence we may 
regard the constructions as a recursively generated system in their own right, 
not merely as a subclass of the tenns. 

DEFINITION. A recursive function is a construction defined as follows. (In 
this definition, Xh ... Xn,U, v,yare n+3 variables and,!is short for Xh ... xn.) 

• Each constant is a recursive function. 

• (Construction-building functions.) The following constructions are re-
cursive functions, for any n = 1,2, ... : (A(X,y).sxy), (A(x,y).ifxy), 
(A{,!}.true Xl ... xn), and (A{,!}.false Xl ... xn), (A{,!}.nil Xl ... Xn). 

• The projection functions proir are recursive functions, for 1 ~ i ~ n. 

• (Composition.) If A,Bh'" Blo where I ~ 1, are recursive functions 
then so is (Ay.A(BI(Y), ... Bl(y))). 
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• (Primitive recursion.) If AI, ... All, B are recursive functions then so is 
F, defined by 

1:,. 
F(s,~) Al(~) 

1:,. 
F(id,~) = A 2W 

. .. and so on for the other constants 
1:,. 

F(nil,~) All(~) 
1:,. 

F(uv,~ = B(u, v,~,F(u,~,F(v,~)) . 

• (Unbounded iteration.) If A, B, C are recursive functions then so is F, 
defined as 

fxpt (Af.(branch A B (s(kf)(A,(y,~).( Cy,~))))). 

EXERCISE. Show that, when F is defined by unbounded iteration from A, B, C, 

* {B(Y,K) if A(Y,K) t>* true 
F(Y,K) t> F(CY,K) if A(Y,K) t>* false, 

for any constructions Y,K 

EXAMPLE. Unbounded iteration works by iterating C until A is satisfied, then 
applying B. As a special case, let B be projf+l and C be S; then F(O,K) t>* 

the least number Y such that A(Y,K) t>* true, provided A(N,K) t>* false for 
N = 1, ... Y - 1. This represents f..t-recursion for numeric functions. 

THEOREM 56. (Weak Church's Thesis: first version.) For any mechanically 
effective partial operation mapping constructions to constructions, invariant 
under compilation of the argument, there is a recursive function F such that 
for any constructions A, B, 

FA t>* B iff the operation maps A to a term +; B. 

Proof This says that any effective operation can be expressed in terms 
of constants, construction-building functions, projection functions, composi
tion, primitive recursion, and unbounded iteration, and so can be implemented 
as a recursive function. The justification for this is just as in the traditional 
numeric version of Church's Thesis. I 
This theorem needs to be strengthened. Often I want not merely to map a 
construction to a construction but to map any irreducible term 'of the form 
A' to an irreducible term 'of the form B'. That is to say, for any choice of 

constructions K for the free variables ~ of A, I want to map A[~] to B[~]. The 

above version of Church's Thesis allows me to im~lement thiS as a recursive 

function F such that, for any constructions K, F(Al~]) t>* B[~J. but I would 

like the stronger reduction FA t>* B. 
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THEOREM 57. (Weak Church's Thesis: second version.) For any mechani
cally effective partial operation mapping constructions to constructions, in
variant under compilation of the argument, there is a recursive function F 
such that for any irreducible terms A, B, with free variables !, 

FA 1>* B iff, for any constructions K, the operation maps A[~] to 
* [X] -a term B B!. 

Proof The first version of Church's Thesis provides a recursive function F 

such that, for any constructions K, F(A[i]) 1>* B[i] iff the operation maps 

A [i] to a term 4 B[i]· 
Now, first suppose that A[i] is mapped to the corresponding instantiation 

B[i] (up to 4), regardless of the constructions K It follows that F does not 

need to examine the internal composition of the constructions K occurring in 

A[i): it may move them around, copy them, insert them in new terms, and 

compare different occurrences of the same construction to check that they are 
equal, but it does not need to take them apart or compare them with anything 
else. In other words, F may be defined in such a way that it only manipulates 
each of the constructions K as a whole. A precise way of saying this is that 

the reduction F(A[i]) 1>* B[i] is of the form F(A [i]) I> T] [i] I> T2 [i] I> 

•.. I> Bri], where each reduction step works regardless of K, and hence FA 
I> T] I> 'T2 I> .,. I> B, as required. 

The converse is easy. If FA 1>* B then, for any constructions K, F(A[i]) 
1>* B[i] by the instantiation theorem (14), and so, by the first version of 

Church's Thesis, the effective operation maps A[i] to a term 4 B[i]. I 

In future, whenever I say something like 'define a recursive function F such 
that FA 1>* B' I shall be invoking the appropriate version of Church's Thesis. 
To paraphrase the second version of the Thesis, such a definition is legiti
mate provided there is an effective operation, invariant under compilation, 
mapping any instantiation of the free variables of A by constructions to the 
corresponding instantiation of B. This condition needs to be verified by 
inspection in each case. 

CODING OF TERMS 

Church's Thesis will often be used in conjunction with a coding of terms, 
that is, a representation of terms as irreducible terms. A term T may be 
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represented by (AL!J.T) where:! are some of its free variables. The point of 
this is that it inhibits the reduction of T, since (A[i).T) is always irreducible, 
and it also binds the variables:!. As a special case, if we choose:! to be all 
the free variables of T then (A[,!].T) is a construction representing T. 

We may, however, wish to bind only some of the free variables. Suppose 
T has two free variables, x and y; we might WiShl to be instantiated by its 

value Y before coding, and the resulting term T[~ (with free variable x) to 
be coded as a construction. We can achieve this e eet by taking the code to 
be (A[xl.T), which has free variable y. 

I shall show that the (A[i).T) representation is unique, up to compilation 
and replacement of the variables :!. 

THEOREM 58. If a is an atom then (Aa.A) 4. (Aa.B) iff A 4. B. 

Proof If A 4. B then it follows immediately that (Aa.A) 4. (Aa.B). 
Conversely, suppose (AaA) 4. (Aa.B); then (AaA*) 4. (Aa.B*). I shall 
show, by structural induction on the simple term A *, that this implies A * is 
B*. 

(AaA *) t-+ id, kh or s(Aa.u)(Aa. V), depending on whether A * is a (and 
a is a variable), whether A* is an atom b (where a and b are not both the 
same variable), or whether A * is UV, respectively. A similar remark applies 
to (Aa.B*). Hence there are three cases in which (Aa.A *) 4. (Aa.B*) holds. 

Case 1: A * and B* are both a, and a is a variable. 
Case 2: A * and B* are both an atom b, where a and b are not both the 

same variable. 
Case 3: A* is UVand B* is PQ, for some simple terms U, V,P, Q, where 

(Aa.U) 4. (Aa.P) and (Aa. V) 4. (Aa.Q), so that by inductive hypothesis U 
is P and V is Q. 

In each case A * is B*. This gives A 4. B, as required. I 

THEOREM 59. Let Xl> ... Xm and Yl> . .. Yn be sequences of variables without 
repetitions. Then (A[Xl> ... xmlA) 4. (A[YI, ... Yn].B) iff m is n and A' 4. 
B', where A' and B' are the results of replacing Xl, ... Xm and YI, ... Yn by 
Zl, ... Zn in A and B, respectively, for any sequence of variables Zl,··· Zn 
(without repetitions) that do not occur in A,B,xl> ... Xm,Yh ... Yn. 

Proof Recall the variable replacement notation T {n used in the section 
on binding-independence: A' may be written as An:} ... {~} and B' as 
B{zi } ... {z.} provided m is n YI y. ' . 

First suppose m is n and A' 4. B' for any such sequence Zl, ... Zn. 
Choosing one such sequence, (A [Xl , ... xm].A) 4. (A[Zh ... Znl.A/) 4. 
(A[Zl> ... Zn].B') 4. (A[Yh ... Ynl.B), using binding-independence. 
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Conversely, suppose (A[X}, ... xml.A) 4 (A[y}, ... Ynl.B). Let z}, ... Zn be 
a sequence of variables, without repetitions, not occurring in A, B, xl, ... Xm , 

Yl, ... Yn· The proof that m is n and A' 4 B' is by induction on m. If m is 
not 0 then 

(A[X}, ... xml.A) 

I--t S(S(k(ASXI.(A[x2, ... xml.A»}former)latter 

I--t s(s(k(s(s(k(AS.(AXI.(A[X2, ... xml.A»)}former)latter)}former)latter 

whereas if m is 0 then (A[xI, ... xml.A) is (Anil.A) and hence 

(A[X}, ... xml.A) I--t kA or I--t s(J...nil.P)(J...nil.Q) 

for some P and Q. Since (Anil.Q) ~ latter, all these three cases are 
distinguishable by inspecting the structure of (J...[x}, ... xml.A)*. 

Similar remarks apply to (J...[yt. ... YnlB). Hence m is 0 iff n is O. In the 
case where m and n are not 0, we have 

(J...S.(AXI.(J...[X2, ... xml·A))) 4 (J...S·(J...YI·(J...[Y2, ... Ynl.B))) 

and hence by the previous theorem 

and so, by binding-independence, 

and hence, by the previous theorem again, 

Then, by inductive hypothesis, m is n and 

as required. 
In the other case, where m and n are 0, we have Q:nil.A) 4 (Ani/.B), and 

so, by the previous theorem, A 4 B, as required. I 
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THE EXPANDED TERM LANGUAGE 

This chapter summarises the Expanded Term Language developed in the 
previous chapter. As explained in Chapter 12, the present chapter is a 
'theory' chapter, whereas the previous one was an 'intermediate chapter'. This 
means that the present chapter summarises everything about the Expanded 
Term Language that is needed for the rest of the book, omitting proofs, the 
details of some definitions, commentary, and some theorems of purely local 
significance. Thus this chapter presents the Expanded Term Language as a 
high-level programming language, independently of how it is 'implemented' 
in the low-level Term Language. 

SYNTAX OF THE EXPANDED TERM LANGUAGE (ET) 

The notions of constant, variable and atom are understood as in the Term 
Language. 

DEFINITION. A term ofET is a sentence in the following language. 

• The alphabet is that ofT plus {'A', '.', ' [', ']' }. 

• The lexicon is that ofT plus {'A', '.', ' [', ,], }. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The sole nonterminal is T, which is the start symbol. 
- The production rules are T -t con I (vbl) I (T T) I 

(AT.T) I (T[~bl]) 
From now on, the word 'term' will mean a term of ET; a term of T will be 
called a simple term. A term of the form (A T . T) is called a A-abstraction; 

a term of the form ( T [ ~bl ] ) is called an instantiation. 

199 
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META TERMS 

Metaterms are defined as expressions that are like terms except that they may 
contain metaconstants, metavariables and the metanotation introduced later 
in this chapter, and that some brackets may be omitted. Optional brackets 
and spaces may also be added. To state it more precisely, the alphabet is that 
of metaterms of T plus the characters needed for metanotation; the lexicon 

is that of metaterms of T plus { 'A', ' .', ' [" ' ] , }; lexical analysis is the same 

as for metaterms of T; and the grammar IS 

T-+TLI T[~bd IL 
L -+ con 1 vbl 1 (T) 1 (A T. T) 1 termcon 1 vblvbl 1 termvbl 1 ... 

where the start symbol is T and ' ... ' represents production rules for all the 
metanotation introduced below. Instances of metaterms are defined and used 
as in T - to obtain an instance, replace each metaconstant or metavariable by 
a term or variable, add and remove brackets as required, remove spaces, and 
rewrite all metanotation. 

The first piece of metanotation is that a multiple instantiation, A ~I] ... [~k], 
will often be abbreviated to A[~I:'.:'.:: 1 or A[~], where -! is the (possibly empty) 
sequence of variables x}, ... Xk and i is the sequence of terms X I. ... Xk. 

INTERPRETATION OF THE EXPANDED TERM LANGUAGE 
IN THE TERM LANGUAGE 

The compilation relation t-+ is defined as follows, where the clauses may be 
applied in any order. 

AB t-+ A'B if A t-+ A' 

AB t-+ AB' if B t-+ B' 

(M.B) t-+ (AA'.B) if A t-+ A' 

(M.B) t-+ (AA.B') if B t-+ B' 

(APQ.B) t-+ s(s(k(AP.(AQ.B»)Jormer)latter 

(Aa. UV) t-+ s(Aa.u)(Aa. V) if a is an atom 

(Ax.x) t-+ id if X is a variable 

(Aa.b) t-+ kb if a and b are atoms and not both the same variable 

A[!] t-+ A'[!] if A t-+ A' 

A[!] t-+ A[!'] if B t-+ B' 

PQ[!] t-+ (p[!])(Q[!]) 
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x[!] ~ B 

a[!] ~ a if a is an atom other than x 

Let ~ (read as 'compiles to') be the reflexive and transitive closure of ~. Let 
f-! and ~ be the converses of ~ and ~. Let 4 (read as 'is equivalent 
to') be the equivalence relation generated by ~. Let A ~ mean that there 
is no B such that A ~ B. 

THEOREM 1. A ~ iff A is simple. 

THEOREM 2. Any compilation sequence A ~ B ~ C ~ ... halts. For 
any term A there is a unique term A" such that A ~ A * ~. 

THEOREM 3. A 4 B iff AoO is BoO. 

THEOREM 4. A[~] 4 A. 

FREE VARIABLES 

DEFINITION. The relation vET (read informally as 'the variable v occurs 
free in the term T') is defined as follows. 

vEa 

v EAB 

v E (AA.B) 

v E A[!] 

iff v is a, for any atom a 

iffvEAorvEB 

iff v ~ A and v E B 

iff (v E A and x is not v) or (v E B and x E A). 

Then x, y, ... z E A, B, ... C means that each of the variables x, y, ... z occurs 
free in each of the terms A,B, ... C; while x,y, ... z ~ A,B, ... C means that 
none of the variables occurs free in any of the terms. The free variables of T 
are the variables v such that vET. 

THEOREM 5. Any term has finitely many free variables. 

THEOREM 6. If A ~ B then x E A iff x E B. Hence x E A iff x E A oO. 

THEOREM 7. A[;] 4 A, if x st A. 
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BINDING INDEPENDENCE 

DEFINITION. A notation (whether metanotation or an official part of the 
language) is binding-independent iff the choice of variables for its bound 
metavariables makes no difference, up to compilation, provided different 
metavariables denote different variables not otherwise occurring in the nota
tion. More precisely, a notation (denoting a term) is binding-independent iff 
replacing all occurrences of a variable that does not occur free in the term by 
a variable that does not occur in the notation leaves the term unchanged, up 
to compilation. 

THEOREM 13. All constructs of the Expanded Term Language are binding
independent. 

REDUCTION IN THE EXPANDED TERM LANGUAGE 

DEFINITION. The reduction relations [>, [>*, <l, <l*, [>*<l and ~ in the 
Term Language are extended to the expanded language by 

A [> B iff A * [> B* 

A <l B iff A* <l B* 

A ~ iff A* ~ . 

A [> * B iff A * [> * B* 

A [> * <l B iff A * [> * <l B* 

DEFINITION. A construction is an irreducible term with no free variables. 

THEOREM 14. (The instantiation theorem.) 

• If X ~ and A [>* B then A[;] [>* B[;]' 
• If X ~ and A ~ thenA[;] ~. 
• If X [>* Y then A[;] [>* A[.!l 

THEOREM 15. (AA.B) ~ . 

THEOREM 16. (A.A.B)A[~] [>* B[~]. provided y ~ and A[~] ~ . 
THEOREM 17. 

• (Ax.T)X [>* T[;] , if X ~ ; 

• (AX.(Ay.T»XY [>* T[;] [;], if X, Y ~ and y ~ X,x. 
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EVALUABLE TERMS 

DEFINITION. A term T is evaluable iff equal T T [>* true, or, equivalently, 
iff T [> * T' )t for some term T'. 

THEOREM 18. If A [>*<1 B then A is evaluable iff B is evaluable. 

THEOREM 20. If T[;] is evaluable and x E T then X is evaluable. 

THEOREM 21. If X is evaluable then (Ax. T)X [>*<1 T[;]' 

THEOREM 22. If T and X are evaluable then so are T[;] and (Ax.T)X. 

THEOREM 23. If X is evaluable and A [>*<1 B then A[;] [>*<1 B[;]' 

MORE ON A-ABSTRACTIONS 

THEOREM 24. If a is a constant and X )t then (Aa. T)X [> * T. 

THEOREM 25. If (AX. T)Y is evaluable, where X has free variables ~ and ~ tI. Y, 

then (AX.T)Y [>* T[~l for some irreducible terms .l: whose free variables 

are included in those of Y. In the special case where Y is a construction the 
condition that (AX.T)Y be evaluable may be dropped. 

BRANCH METANOTATION 

DEFINITION. For any terms C, F and G, the metanotation (branch C F G) 
means 

s(s(s(s(k if)C)(k F))(k G))id. 

THEOREM 26. If C, F, G )t then (branch C F G) )t . 

THEOREM 27. If C,F, G,X )t then (branch C F G)X [>* if (CX) F G X. 
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PATTERN-MATCHING METANOTATIONS 

For any term X, a construction checkx is defined. This notation is binding
independent. 

THEOREM 29. Suppose XY pt . Then 

• checkpQ(Xy) 1>* checkQY, if checkpX 1>* true 

• checkpQ(XY) 1>* false, if checkpX 1>* false. 

THEOREM 30. checkxX[~] 1>* true, provided Y pt and x[~] pt . 

DEFINITION. For any term X define a construction matchx as 

(branch checkx (s(s(k equal)(')..X.X»id) (kfalse». 

THEOREM 31. The 'matchx ' notation is binding-independent. 

THEOREM 32. If check x Y 1>* false then matchx Y 1>* false. 

THEOREM 33. matchxX[~] 1>* true, provided Y pt and x[~] pt . 

THEOREM 34. If matchxY 1>* true, where X has free variables ~ and ~ ti. Y, 

then Y I> * <l x[~] for some irreducible terms V whose free variables are 
included in those of Y. 

DEFINITION. For any terms X and T define the metanotation (')..X: T) as 

(branch matchx (')..X.T) ifxpt id). 

THEOREM 35. (')..X: T) pt ; and y E (')..X: T) iff yET and y ti. X. 

THEOREM 36. The '(')..X: T)' notation is binding-independent. 

THEOREM 37. (')..X: T)X[~] 1>* T[~], if Y pt and x[~] pt . 

THEOREM 38. If (')..X: T)[~] Y is evaluable, where U are irreducible terms, X 

has free variables ~ and ~ ti. Y, then Y 1>* <l xr~l for some irreducible terms 
Y whose free variables are included in those of Y. 
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DEFINING FUNCTIONS USING PATTERN MATClllNG 

DEFINITION. The expression 

fXI 
L:>. 

TI 

f X2 
L:>. 

T2 = 

L:>. 
fXk = Tko 

where f r;. X ... .. Xb means that a metaconstant is about to be introduced to 
denote the termfxpt<t>, where <t> is 

(t..f.(branch matchx1 (t..XI.TI) 

(branch matchx2 (t..X2· T2) ... 

(branch matchxk (t..Xk· Tk) f) ... ))). 

THEOREM 39. fxpt <t> , ; y E fxpt <t> iff y is not f and, for some i, y E Tj but 
yr;.Xi• 

THEOREM 40. The definition of fxpt <t> is binding-independent (that is, inde
pendent of the choice of variables for the metavariables in X I, ... Xk). 

THEOREM 41. Let 1 ~ i ~ k, let ~ E Xi, and let V be any terms such that 

f r;. y, V , ,Xi[~] , and, for each j < i, matchxiX1n [> * false; then 

THEOREM 42. If (fxpt <t> )[~] Y is evaluable, where U are irreducible terms, 

Xi has free variables Vi, and ~ r;. Y (for each i = 1, ... k), then Y [>*<1 xr;,l 
for some i and some irreducible terms y whose free variables are included 
in those of Y. 

The usual way of using this definition mechanism will be to say 'Define f 
by f Xl ~ T ..... f Xk ~ Tk'. Such a definition means, from now on, use 
f as a metaconstant to denote fxpt <t> (rather than the bound variable in <t> it 
denoted above). 
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REGULAR FUNCTION DEFINITIONS AND CONTINUITY 

The partial reduction relations -->., ~, L-, L, G, f'-, -r, ~, p defined 
in the Term Language may be extended to the Expanded Term Language by 

A -->. B iff A * -->. B* A ~ B iff A * ~ B* 

AL-B iff A* L- B* ALB iff A* L B* 

AGB iff A* G B* Af'- iff A* f'-
A-rB iff A* -r B* A~B iff A* ~ B* 

Ap iff A* p . 

DEFINITION. A function definition f Xl ~ TI, ... f Xk ~ Tk is regular iff, 
for each i = 1, ... k, Xi , and VTi ~ v, where v is a fresh variable and ~ 
is the partial reduction relation with respect to f and v. 

THEOREM 43. In a regular function definition of a term fxpt <1>, <I> is continu
ous. 

METANOTATION 

DEFINITION. Equality notation: A = B is equal A B. 

DEFINITION. The construction boolean is (Ax.if x true true). 

THEOREM 44. boolean(true) [>* true and boolean(jalse) [>* true. 

DEFINITION. Truth-functional conjunction: A & B is if A B false; and 
AI & ... &Ak is AI & (A2 & ... (Ak-I &Ak)" .). 

THEOREM 45. If X , then true & X [> X and false & X [> false. 

DEFINITION. Pairs: (A, B) is sAB. The constructions left and right are 
(A(a, b).a) and (A(a, b).b), where a and b are two variables. 

DEFINITION. Tuples: (AJ,A2,A3 ... Ak-J,Ak) is 

(AI, (A 2, (A3,··· (Ak-I,Ak)·· .»), 

for k ~ 2. 

DEFINITION. Lists: [A 1,A2, ... Ak] is (AI, [A2, ... Ak]) and [] is nil. 

THEOREM 46. Suppose U, V,. Then 

h k (U V) * {checky V if checkx U [> * true, 
c ec (X,Y) , [> false if checkxU [>* false. 

THEOREM 47. If U, V , then checknil(U, V) [>* false and check(u,v)nil [>* 

false. 
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CONSTRUCTORS 

Special types of constructions called O-ary constructors and l-ary construc
tors are defined; there is an infinite supply of each. 

THEOREM 48. If F is a l-ary constructor and X jt then FX jt . 

THEOREM 49. If P and Q are two O-ary constructors or two l-ary constructors 
then checkpQ t>* false. 

THEOREM 50. If F and G are two l-ary constructors, and X, Y jt, then 
checkFX(GY) t>* false, FX = GY t> false, and checkFX(FY) t>* checkx Y. 

THEOREM 51. If B is a O-ary constructor, F is a l-ary constructor, and X jt , 
then checkB(FX) t>* false, checkFXB t>* false, B = FX t> false, and FX = B 
I> false. 

NUMBERS, PRIMITIVE RECURSIVE FUNCTIONS, 
AND NUMERIC TERMS 

Three constructions, 0, S and pre, are defined. 

DEFINITION. The numbers are 0, SO, S(SO), S(S(SO)), .... Let 1 be SO, 2 be 
SI, and so on up to 34. 

THEOREM 52. If N jt then SN jt . Thus all numbers are constructions. 

THEOREM 53. pre(Sn) t> nand Sn = 0 t> false. 

DEFINITION. Define a number predicate num by 

.t::. 
numO true 

.t::. 
num (Sn) num n. 

THEOREM 54. If m and n are numbers then 

h k * {true if m is n, 
c ec mn t> fi I ·f . a se I m IS not n 

and the same is true for matchmn. 

DEFINITION. A k-ary primitive recursive (k-PR) function is a term defined as 
follows. 

o is O-PR 

Sis I-PR 

prol is k-PR for any numbers i, k satisfying 1 ~ i ~ k 

compl(H, Ft. . .. F/) is k-PR if His I-PR 

and Ft. ... F/ are k-PR (where k, I ~ 1) 

reck(F, G) is (k + l)-PR if F is k-PR and Gis (k + 2)-PR (where k ~ 0). 
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Here, 

projl is (A(nl, ... nk).nj} for each i, k satisfying 1 ~ i ~ k 

compl is (A(h,fl, . . . fi}.(AX.hifIX, .. . fix)}} 

reCk is (Aif,g}.Tk) where Tk is defined by 

{ Tk(O, nr, ... nd ~ f(nr, ... nk}, 

Tk(Sm, nr, ... nk} ~ g(m, nr, ... nb Tk(m, nr. ... nk}} 

where nl, ... nk, h,Jr, . . . fi,x,J, g, m are all different variables. (Note that 
f(nl, ... nk) is to be understood as f when k = O. This convention will apply 
throughout; that is, FO is a metanotation for F.} 

THEOREM 55. Primitive recursive functions have no free variables and are 
evaluable. 

DEFINITION. A numeric term is 0, a variable, or F(Nr, ... Nk}, where k ~ 1, 
F is k-ary primitive recursive and NI, . .. Nk are numeric terms. 

CHURCH'S THESIS 

Recursive functions are defined as a special kind of construction. 

THEOREM 56. (Weak Church's Thesis: first version.) For any mechanically 
effective partial operation mapping constructions to constructions, invariant 
under compilation of the argument, there is a recursive function F such that 
for any constructions A, B, 

FA t>* B iff the operation maps A to a term ++ B. 

THEOREM 57. (Weak Church's Thesis: second version.) For any mechani
cally effective partial operation mapping constructions to constructions, in
variant under compilation of the argument, there is a recursive function F 
such that for any irreducible terms A, B, with free variables ,!, 

FA t>* B iff, for any constructions K, the operation maps A[~] to 
* ~] -a term ++ BLi . 

CODING OF TERMS 

THEOREM 59. Let Xl, ... Xm and YI, ... Yn be sequences of variables without 
repetitions. Then (A.[xr, . .. xml.A) ++ (A[yr. ... Ynl.B) iff m is n and AI ++ 
BI, where AI and B' are the results of replacing Xl, ... Xm and Yl, ... Yn by 
Zl, ... Zn in A and B, respectively, for any sequence of variables Zl,··· Zn 
(without repetitions) that do not occur in A,B,xr, .. . Xm,Yt. ... Yn. 
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THEPROTOLOGICAL SEQUENT CALCULUS 

Protologic is a system for elementary reasoning with constructions, as sketch
ed in Chapter 8. See the following chapter for a detailed justification of the 
axioms and rules. 

SEQUENTS 

A protological sequent is an irreducible term of the form 

([F, ... G),H) 

where F, .. . G is a (possibly empty) sequence of irreducible terms and H is 
an irreducible term. Most sequents I use will be of the form 

([(A.[g].A), ... (A [g].B») , (A.[g].C» 

where g is a (possibly empty) sequence of variables and A, ... B, C are terms; 
such sequents will be expressed by the metanotation 

(g)A, ... B -+ C. 

If a sequent has no free variables, its informal meaning is that, for any 
construction X, the evaluations of FX, ... GX are related to the evaluation of 
HX in such a way as to guarantee that the value of HX is true if the values of 
FX, ... GX are true. In the case of a sequent of the form (g) A, ... B -+ C, 
this means that, after instantiating ~ by any constructions, the evaluation of 
C is related to the evaluations of A, ... B in such a way as to guarantee that 
the value of C is true if the values of A, . .. B are true. A sequent with 
free variables has no meaning as it stands but becomes meaningful if its free 
variables are instantiated by constructions. 
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NAMING CONVENTIONS IN AXIOMATIC SYSTEMS 

Protologic is defined by a list of axiom schemata and rules of inference. 
Before giving this list, I had better explain some naming conventions. Each 
axiom schema and rule of inference is given a descriptive name, followed 
usually by an abbreviated name in brackets. Occasionally two similar axiom 
schemata or rules share a name. In formal derivations, each axiom used 
will be labelled with the abbreviated name of the schema it comes from, 
and each inference step will be labelled with the abbreviated name of the 
rule of inference being applied; premises of the derivation will sometimes 
be labelled 'pO', 'pI', 'p2', ... , and sometimes left unlabelled. In informal 
arguments, full names will be used instead of the abbreviated names. 

Theorems and derived rules of protologic will also be named and used in 
the same style. 

These conventions will apply also to the other formal systems, CPF, LPT, 
HA and PA, introduced in Part III, and their second-order versions in Part IV. 

AXIOM SCHEMATA OF PROTOLOGIC 

Evaluation (eval): -t T where T 1>* true 
Truth (tr): (y T -t T = true (~) T = true -t T 
Reduction (red): (~) A -t B where A I> B or B I> A 
Transitivity (trans): (~) A = B, B = C -t A = C 

In addition, any instantiation of the above axioms by irreducible terms is an 
axiom. That is, if t[F, ... G], H) is an instance of an axiom schema and X , 

then ([F[~], ... G ~]],H[~]) counts as an instance of the same schema. 

RULES OF INFERENCE 

Rules with a double line are reversible; r and A are sequences of terms. 

Exchange (exch): 

Contraction (con): 

Thinning (thin): 

(z) r, A, B, A -t C ~,x,y,z) r -t T 

(y r, B, A, A -t C ~,y,x,~) r -t T 

(z)A, A, r -t C (X,X,z) r -t T 

(x,y r -t T (~)A, r -t C 

(z) r -t T 

(~)A, r -t T 

eyr-tT 
where x rt r, T 

(x,~) r -t T 

Cut: 
~) r -t A (y A, A -t B 

(~)r,A-tB 
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Decomposition (de): 
(~) AB = T, r --+ C (y AB = T, r --+ C 

(a, y aB = T, A = a, r --+ C 
where a, b rt. A, B, T, r, C. 

(b,~) Ab = T, B = b, r --+ C 

(~) C = true, A = X, r --+ T (~) C = false, B = X, r --+ T 

(!:.)(i/CAB)=X, r --+ T 
If: 

Fxpt: 
(u,f,x,z) <t>(Xf)x = u, r --+ X('¥f) x = u 

(u, x, z) fxpt <t> x = u, r --+ X(jxpt'l')x = u 
(u,f,x,z) X('I'f) x = u, r --+ <t>(Xf)x = u 

(u, x,!:.) X(jxpt 'I')x = u, r --+ fxpt <t> x = u 
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where: u,f,x are three variables not occurring free in <t>, '1', X and r; Xf 
is evaluable; <t>, '¥ and X are continuous; and in the second rule X is non
constant. 

In addition, any instantiation of the above inferences by irreducible terms is 
an inference. That is, if 

([U}, ... Vtl, WI) ([Uk>' .. Vk], Wk) 
([F, ... G],H) 

is an instance of a rule of inference, and X jJ , then 

([UI[;],'" VI [;]], WI [;]) ([Uk[;], ... Vk[;]], Wk[;]) 

([F[;], ... G[;]],H[;]) 
counts as an instance of the same rule. 

Reflection principles are also allowed in Protologic (for the reasons given 
in Chapters 9 and 10). Consideration of reflection principles will be post
poned to Chapter 21. 
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COMMENTARY ON THE PROTOLOGICAL AXIOMS 
AND RULES 

Protologic is defined by a list of axiom schemata and rules of inference. Since 
these are taken as primitive constituents of constructive reasoning there is 
no question of proving their correctness formally; however, it is still useful 
to motivate them informally by showing how they serve to pin down the 
meaning of a sequent and the constants of the Term Language, by relating 
them to the underlying philosophical principles, and by showing that when 
translated into conventional mathematical statements they are provable by 
conventional mathematical arguments. 

First there are the structural axioms and rules (Evaluation, Truth, Reduc
tion, Exchange, Contraction, Thinning and Cut), which make explicit the 
intended meaning of the sequent form (~) A, ... B -t C: they express, for 
example, the facts that the order of the variables ~ and of the terms A, ... B 
doesn't matter, that repetition of variables or terms doesn't matter, and that 
all that matters about a term is whether it reduces to true. 

The remaining axioms and rules are elimination rules for various features 
of the Term Language. In general, let A be a syntactic constructor in some 
formal language, so that given terms T1, • •• Tk of the language one can form 
a larger term A(TJ, ... Tk). Then an elimination rule for A is anything that 
says, 'if A(T1, ••• Tk) has some property than T1, ••• Tk have some other 
properties'. An introduction rule for A says the converse: 'if TJ, ... Tk have 
some properties then A(TJ, . .. Tk) has a property'. The semantics of A is 
characterised by its introduction and elimination rules. 

The reduction clauses of the Term Language serve as introduction rules; 
for example, they tell us that (if true A B) has the value X if A has the 
value X and (if false A B) has the value X if B has the value X. We also 
need an elimination rule, saying that (if CAB) only has a value if C has the 
value true or false. The reduction clause if CAB I> if CAB achieves this 
effect, since if neither of the previous if clauses applies then this clause will 
cause reduction to loop. However, it does not say explicitly that (if CAB) 
is undefined, only that it has the same value as itself. This is inexpressible 
as a reduction clause, hence the elimination rule for if is provided by the If 
Rule of protologic, which says that if (if CAB) has a value X this can only 
be because C has the value true and A has the value X or C has the value 
false and B has the value X. 

212 



COMMENTARY ON THE PROTOLOGIC 213 

Likewise with equal. The reduction clauses state circumstances under 
which A = B reduces to true or false: they constitute an introduction rule for 
equality. The corresponding elimination rule is that if A = B reduces to true 
then A and B are interchangeable in all extensional contexts. This will be 
expressed in the Equality Theorem of Expanded Protologic (see below); this 
theorem is a consequence of the Transitivity Axiom Schema of Protologic, 
so the latter may be regarded as the elimination rule for equal. 

The Decomposition Rules constitute an elimination rule for concatenation 
of terms. The reduction clauses 

AB I> A'B if A I> A', AB I> AB' if B I> B' 

tell us that AB may be evaluated by evaluating A and B to irreducible terms 
a and b, and then evaluating abo The Decomposition Rules say that AB can 
only be evaluated by this route: if AB has the value T this can only be because 
A has a value a and aB has the value T, and likewise for the other rule. 

The final case is the Fxpt Rules. The reduction clause fxpt A B I> 

Aifxpt A)B is an introduction rule since it allows us to find the value of 
fxpt A B assuming we can evaluate expressions involving A and B. The Fxpt 
Rules say that fxpt A B only has a value when obtained by applying fxpt A B 
I> Aifxpt A)B repeatedly. 

I shall show that the Fxpt Rules, when translated into conventional math
ematical notation, can be justified by conventional mathematical arguments. 
The inspiration for this is Loeckx & Sieber (1984); see this book for more 
details of the notation and standard results used below. Let <1>, '¥ and X be 
continuous, let -.1 be an empty function (undefined for all arguments) and let 
f ~ g mean that the partial function g is an extension of the partial function 

f· 

THEOREM 1. Let X, <I> and '¥ be continuous. If <I>(Xj) ~ X('¥j) for any 
partial function f then fxpt <I> ~ Xifxpt '¥). 

Proof The condition <I>(Xj) ~ X(,¥f) (for any j) implies by induction 
<l>n(Xf) ~ x(,¥nj) for any natural number n and any f (using the monotonicity 
of <1>, which follows from its continuity). Now,Jxpt<l> is interpreted as the 
least fixed-point of <1>, which is U~O <l>n(-.1), and likewise for fxpt'¥, so 

"in <l>n(-.1) ~ <l>n(X -.1) ~ X(,¥n -.1) ~ X(jxpt '¥) 

using the monotonicity of <I> and X, so 

00 

fxpt <I> = U <l>n(-.1) ~ X(jxpt '¥) 
n=O 

as required. I 
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THEOREM 2. Let X, <I> and '¥ be continuous and X be non-constant (meaning 
X1- = 1-). If X('¥f) ~ <I>(Xf) for any partial function f then X(jxpt,¥) ~ 
jxpt<l>. 

Proof Similar to Theorem 1. I 
The Fxpt Rules follow from these theorems. Theorem 1 may be expressed 
in sequent notation as 

(u,f, x) <I>(Xf)x = u -+ X(,¥f)x = u 

(u,x)jxpt<l>x = u -+ X(jxpt'¥)x = u 

Now, if we imagine X, <I> and '¥ as depending on some new variables ~, 
which are constrained to satisfy some conditions r (not involving u,f, x) and 
are held constant throughout the argument, then we obtain a more general 
rule 

(u,f,x,~) <I>(Xf)x = u, r -+ X('¥f)x = u 

(u,x,~)fxpt<l>x = u, r -+ X(jxpt'¥)x = u 

which is the first Fxpt Rule, as required. The second Fxpt Rule is obtained 
from Theorem 2 in a similar way. 

The above is a conventional mathematical justification of the Fxpt Rules. 
More illuminating, however, is an informal heuristic argument relating them 
to the philosophical discussion of induction in Chapter 8. For this, I shall 
continue to use conventional mathematical notation and I shall skate over 
many technical details to make the main points stand out. Suppose <1>, '¥ and 
X are of the form 

{ Rx if Cx = true 
<l>jx = f(Hx) if Cx = false 

{ 
R'x if C'x = true 

'¥x= 't f(H' x) if C' x = false 

Xf=fol 

for some partial functions C, R, H, C', R', H', I. Then the first Fxpt Rule, 
omitting ~ and r, boils down to 

(u,f, x) <I>(j 0 I)x = u -+ ,¥f(lx) = u 

(u,x)fxpt<l>x = u -+ fxpt'¥(lx) = u 

using the definition of X. The premise of this follows by the If Rule from the 
two cases 

(u,f, x) Cx = true, Rx = u -+ C' (Ix) = true & R' (Ix) = u 

(u,f,x) Cx = false, f(l(Hx» = u -+ C'(lx) = false &f(H'(lx» = u 

using the definitions of <I> and '¥, and these sequents follow from 

C~C'ol 

R~R'ol 

10H ~H' 01. 

This is depicted as a 'one-way' commutative diagram in Figure 3. 
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H H 

H'] H' :[::?~ 
Figure 3: the relations between the computations in the Fxpt Rules. 

As in the discussion of induction in Chapter 8, imagine fxpt cD as an algorithm 
in English andfxpt'I' as the 'same' algorithm in French; let I be English-to
French translation. Then the first Fxpt Rule says that if C', R' and H' are 
the French translations of C, Rand H, then the whole computation!xpt'I' is 
the French translation of !xpt <1>, and so produces the same outcome, u. The 
premises of the rule assert a local relation between any step of fxpt cD and 
a step of fxpt 'I', while the conclusion asserts a global relation concerning 
the whole computations. Thus the effect of the rule is to piece together the 
previously constructed local relations into a global relation. This local-to
global transition is just the function of induction, as explained in Chapter 8. 
Similar considerations apply to the second Fxpt Rule. 

Protologic is a program correctness calculus. Of all the various systems 
of this sort in the literature, the one it most closely resembles is Goodman's 
(1972) combinatory logic. This is a sequent calculus with the usual structural 
rules and special axioms and rules that correspond, in my system, to instances 
of the Reduction axiom schema and the derived rules of Instantiation, Sym
metry, Equality and Self-Equality (see the next chapter). Goodman's rule 
that equality is a decidable predicate corresponds to my If Rule. There is 
nothing in the system corresponding to my Fxpt Rules (though the version 
in Goodman (1970) includes a structural induction rule). The reason for the 
similarity between our systems is that my intended semantics of terms fol
lows Goodman's in requiring that a term AB be evaluated by first evaluating 
A and B (see Chapter 13). The principal difference between our systems 
is that, in order to give an interpretation of the logical constants, Goodman 
(1970) needs to add a primitive evidence predicate 1t, constants concerning 
'grasped domains' (B, E and G), and two reducibility operators (F and p). 
In my system 1t (or DT, as I call it) is defined explicitly (see Chapter 21) and 
the other constants are dispensed with. 
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FROM PROTOLOGIC TO EXPANDED PROTOLOGIC 

Expanded Proto logic (EP) consists of Protologic plus the following derived 
sequents and rules of inference. Just as Protologic provides elimination 
rules for the constructs of the Term Language, so Expanded Protologic will 
provide elimination rules for the higher-level constructs and metanotation of 
the Expanded Term Language. 

I shall give formal derivations in full, displaying every step and marking 
all axioms and inferences according to the naming conventions explained in 
Protologic, except that occasionally two simple steps will be combined into 
one or a use of the Exchange Rule will go without saying where this makes 
the derivation easier to read. In all derivations r is a sequence of terms. 

PRELIMINARY DERIVATIONS 

THEOREM 1. Tautology (taut): (?;) r, T -+ T. 

Proof 

(?;) T -+ T = true (tr) (z) T = true -+ T (tr) 
- cut 

I 

(y T -+ T 
-----thin 
(?;)r,T-+T 

(z) r -+ A 
THEOREM 2. Compilation (comp): (?;) A -+ B 

(?;) r -+ B 
if A 4. B. 

(z)A, r -+ C 
(yB, r -+ C 

Proof Let C be a term such that A l> C or C l> A (if A 1 then take C as 
idA; otherwise take C such that A l> C). Then B l> Cor C l> B. Now, the 
sequent (?;) A -+ B is derived by 

(?;) A -+ C (red) (z) C -+ B (red) 
- cut 

(?;)A -+ B 

and the rules are derived from this by Cut. I 

216 
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THEOREM 3. Reduction (red): (~) A __+ B 

if A !>*<J B. 

(z) r __+ A 

(~) r __+ B 
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(z)A, r __+ C 

(~) B, r __+ C 

Proof From Tautology and Compilation by Cutting with instances of the 
Reduction Axiom Schema. I 

THEOREM 4. Separation rule (sep): 

if v tf- A,B,r, T. 

(z) A = B, f __+ T 

(v,~) A = v, B = v, r __+ T 

Proof Recall that X = Y is equal X Y. 

(~) equal A B, r __+ T 
========== tr, cut 
(~) equal A B = true, r __+ T 

==============de 
(v,~) equal A v = true, B = v, r __+ T 
============== tr, cut 

(v,~) equal A v, B = v, r __+ T 

I 

THEOREM 5. Symmetry (symm): (~) A = B __+ B = A. 

Proof Let v be a fresh variable, that is, a variable that does not occur in any 
term mentioned in the theorem so far. 

I 

(~) B = A __+ B = A (taut) 
----------sep 
(v, z) B = v, A = v __+ B = A 

- exch 
(v,~) A = v, B = v __+ B = A 

sep 
(~)A=B--+B=A 

PROPERTIES OF THE INSTANTIATION NOTATION 

The instantiation notation T[;] was described in Chapter 13 as 'semantic 

substitution', in contrast with ordinary 'textual substitution', since it respects 

the principle that the value of T[;] depends on the value of X, not on any 

other aspect of X. Thus T[;] behaves exactly as T would in a context in 

which x = X. This is encapsulated in protologic in the following theorems 
and derived rules. 
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THEOREM 6. Equality theorem and rules (eq): (~A = B, T[:] -t T[~] 
(~) A = B, r -t T[~] (~) A = B, T[~], r -t C 

(~)A =B, r -t T[:] (~)A =B, T[:] , r -t C 

Proof The Equality Theorem (~) A = B, T[:] -t T[~] follows from 

by Compilation and taking U as true; the latter sequent is derived by structural 
induction on the simple term T* as follows. 

Case 1: T* is x. Then the desired sequent compiles to an instance of 
Transitivity: (~) A = B, B = U -t A = U. 

Case 2: T* is any other atom, a. Then the desired sequent compiles to an 
instance of Tautology: (~) A = B, a = U -t a = U. 

Case 3: T* is PQ. Then let p and q be two fresh variables; the derivation 
is as follows (with 'ih' standing for the inductive hypothesis). 

(~) A = B, p[~] Q[~] = U -t p[~] Q[~] = U (taut) 

-------------------------------------------~ 
(p, q,~) A = B, pq = U, p[~] = p, Q[~] = q -t p[~] Q[~] = U . 
------------------------------------------- lh, cut 

(p,q,~)A = B, pq = U, p[:] = p, Q[:] = q -t p[~] Q[~] = u 
-------------------------------------------~ 

(~) A = B, p[:] Q[:] = U -t p[~] Q[~] = u 
-------------------------------comp 

WA =B, T*[:] = U -t T*[~] = U 

The Equalitr. Rules are derived from the Equality Theorem using Cut and 
Symmetry. I 

THEOREM 7. Self-equality (se): (~) T~] -t X = X if X is evaluable or 
xE T. 

Proof If X is evaluable then X = X 1>* true, so the sequent follows by 
Reduction and Thinning from -t true. In the other case, where x E T, the 
sequent is obtained from 

(~ T* [:] = U -t X = X 

by Compilation and taking U as true. This latter sequent is derived by 
structural induction on the simple term T* as follows. 
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Case 1: T* is an atom. Then it must be x, so the derivation is 

(z) X = U -+ U = X (symm) (z) X = U, U = X -+ X = X (trans) 
- - cut, con 

(~)X=U-+X=X 
----------------comp 

(~) T*[:] = U -+ X = X 

as required. 
Case 2: T* is PQ. Then x E P or x E Q. Let p and q be two fresh 

variables; then the derivation is 

---------------------------------------------~n 

(p,q,~) pq = U, p[:] = p, Q[:] = q -+ X = X 
---------------------------------de 

(~) p[:] Q[:] = U -+ X = X 
--------------------comp 

(~) T*[:] = U -+ X = X 

(where again 'ih' is the inductive hypothesis). I 

THEOREM 8. Pre-instantiation rule (pre-inst): 
(y,~) A[~], ... B[~] -+ c[~] 

(~) A[:] , ... B[:] -+ c[:] 
where: y tJ. X,A[:] , ... B[:] ,c[:J; and X is evaluable or x E A or ... x E B. 
Proof. 

(y,~) A~ ] , ... B[~] -+ c[~] 
-----------------------------~n 

(y,~) X = y, X = y, A[~] , ... B[~] -+ c[~] 
------------------------------~ 

(y,~)X=y, X=y, A[:], ... B[:] -+ c[:] 
------------------------------sep 

(~) X = X, A[:] , ... B[:] -+ c[:] 
se, cut 

(~) A[:] , ... B~] -+ C[:] 
I 
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THEOREM 9. Instantiation rule (inst): 
(~) A[;] .... B[;] -t c[;] 

(x.z)A •... B -t C 

where X is evaluable or x E A or ... x E B. 

Proof Let u be a fresh variable. 

(x.~) A •... B -t C 
--------------~n 

I 

(x.u.z)A •... B -t C 
- comp 

(x. u.~) A[~] .... B[~] -t C[~] . 
------------------- pre-mst 

(u.~) A[~ ] .... B[~] -t C[~] . 
------------------- pre-mst 

(~) A[;] .... B[;] -t C[;] 

(x.~)x=X. A •... B -t C 
THEOREM 10. Extraction rule (ext): 

(~) A[;] .... B[;] -t C[;] 
where x rt. x. and X is evaluable or x E A or ... x E B. 

Proof In one direction: 

(x.~)x=X. A •... B -t C 
----------------------- inst 

(~) X = X. A[;] .... B[;] -t C[;] 
----------------------- se, cut 

(~) A[;] .... B[;] -t c[;] 
In the other direction: 

(~) A[;] .... B[;] -t C[;] 
----------------------- ~n 

(x.~)x=X. A[;] •... B[;] -t c[;] 

I 

----------------------- eq 
(x.~)x=X. A •... B-t C 

(~) r -t A[i] (~) r. A[i] -t C 

THEOREM 11. Conversion rules (conv): [ ] [ ] 
(~) r -t B i (~) r. B i -t C 

where A t>*<l B and the variables,! are all different and occur free in A and 
B. 
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Proof The rules follow by Cut with 

which follow by Instantiation from 

(,!,~) A --+ B and (,!,~) B --+ A, 

which follow by Reduction. I 

PROPERTIES OF TRUTH-FUNCTIONAL OPERATORS 

THEOREM 12. Falsity elimination (false-el): (z)false -+ A. 
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(This is where the principle of ex falso quodlibet makes its appearance in 
the system. As promised in Chapter 5, this principle arises naturally and 
inevitably from a general theory of constructions, without need for any special 
stipulations. ) 

Proof 

-+ true (eva!) 
--------thin 
~) false = true -+ true 

------------------roo 
(z)false = true -+ (if false ('Anil.A) (k true»nil 

(~)false = true -+ (if true ('Anil.A) (k true»nil eq 
----------------red 

(z) false --+ A 
I 

THEOREM 13. Boolean rule (bool): 

(z) x = true, r -+ C (z) x = false, r -+ C 

(~ boolean x, r -+ C 

Proof 

(~) x = true, r -+ c (~) x = false, r -+ C 
-----------thin thin 
(~ x = true, true = true, r -+ C (z) x = false, true = true, r -+ C 

- if 
(~) (if x true true) = true, r -+ C 
----------- tr. cut 

(z) if x true true, r -+ C 
- roo 
(~) boolean x, r -+ C 

I 
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THEOREM 14. Branch rule (branch): 

(z) ex, FX = U, r --t T (z) ex =false, GX = U, r --t T 

(~) (branch e F G)X = U, r --t T 

Proof Let p be a fresh variable. Then we can derive 

(~) ex, FX= U, r --t T 
-------------de 
(p,~) ex, F = p, pX = U, r --t T 

-------------- tr, cut 
(P,z) ex = true, F = p, pX = U, r --t T 

and similarly 

(~) ex = false, GX = U, r --t T 
---------------de 
(p,~) eX=false, G=p, pX= U, r --t T 

and hence, applying the If Rule to the above two, 

(p,~) (if (eX) F G) = p, pX = U, r --t T (it) 
---------------~ 

(~) (if (ex) F G)X = U, r --t T 
-----------cony 
(~) (branch e F G)X = U, r --t T 

as required. I 

THEOREM 15. Conjunction (&): 

(~) At. ... Ak --t Al & ... &Ab 

for i = 1, ... k. 

Proof These sequents may be derived by Exchange and Cut from instances 
of the schemata (y X, Y --t X & Y, (~) X & Y --t X, and (~) X & Y --t Y, 
which are derived as follows. 

(~) Y --t Y (taut) 
cony 

(~) Y --t true & Y 
---------- thin 
(y X = true, Y --t true & Y 

eq 
(z) X = true, Y --t X & Y 
- tr, cut 

(y X, Y --t X & Y 
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(z) false _+ X (Jalse-el) 
- red 

(~) X = true _+ X (tr) (z) false = true _+ X 
---------- thin - thin 
(y X = true, Y = true _+ X (y X = false, false = true _+ X 
-------------------------if 

(z) (X & Y) = true _+ X 
- tr. cut 

(~)X&Y-+X 

(z) false _+ Y (Jalse-el) 
- red 

(~) Y = true _+ Y (tr) (z) false = true _+ Y 
---------- thin thin 
(z) X = true, Y = true _+ Y (z) X = false, false = true _+ Y 
- - H 

(z) (X & Y) = true _+ Y 
- tr. cut 

(yX&Y_+Y 
I 

RULES FOR THE PATIERN-MATCHING NOTATIONS 

The rules in this section are essential for proving the correctness of functions 
defined by pattern matching. They formalise some of the theorems of the 
Expanded Term Language. For example, Theorems 33 and 34 of Chapter 16 
show that matchx Y 1>* true iff Y is an instantiation of X (for any construction 
Y). This is formalised in the Match Rule (Theorem 17, below), which says 
that the condition matchx T is equivalent to X = T for suitable values of the 
free variables of X. 

THEOREM 16. (')...X.T) rule «')...X.T»: 
(y,z)T=U,r_+c 

(~) (')...X.T)Y = U, r _+ C 

where yare the free variables of X and y rt Y, U, r, c. 
Proof This is derived by compiling X to X* and applying structural induction 
on the simple term X* , as follows. 

Case 1: X* is a constant, a. Then let y be a fresh variable; the derivation 
is 

(z) T = U, r _+ C 
- thin 

(y,~) T= U, r _+ C 
-----------roo 
(y,y (')...a.T)y = U, r _+ C 
----------- inst 
(~) (')...a.T)Y = U, r _+ C 

Case 2: X* is a variable, v. The derivation is 
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(V,~) T= U, r -t C 
--------- red 
(v,Z) (Av.T)v = U, r -t C 

- inst 
(Y (Av.T)Y = U, r -t C 

Case 3: X* is PQ. Then let vp and Vq the free variables of P and Q 
respectively, and let m be a fresh variable; The derivation is 

(:~,~) T= U, r -t C 
--------con, exch 
(vq, vp,Y T = U, r -t C 
-- ih 

(vp,~) (AQ.T)(latter Y) = U, r -t C 
-----------------00 
(m, vp,~) (AQ.T) = m, m(latter Y) = U, r -t C 

- ih 
(m,Z) (AP.(AQ.T»(jormer Y) = m, m(latter Y) = U, r -t C 

- de 
(Z) (AP.(AQ.T»(jormer Y)(latter Y) = U, r -t C 

(~) (APQ.T)Y = U, r -t C 

where 'ih' indicates a use of the inductive hypothesis. I 

THEOREM 17. Match rule (match): (~) matchxT, r -t C 
(~,~) X = T, r -t C 

where X is irreducible, with free variables y, and y rt. T, r, C. 

conv 

Proof. Recall from the Expanded Term Language that matchx is 

(branch checkx (s(s(k equal)(AX.X»id) (kfalse». 

The derivation in one direction is 

(~) matchxT, r -t C 
----------thin 
(v,z) X = T, matchxT, r -t C 
- - eq 

(v, z) X = T, matchxX, r -t C 
- - red 
(y,~) X = T, true, r -t C 

-t true (eva!) 
-----thin 
(y,~) -t true 
-------------------~t 

Conversely, 

(y,~)X= T, r -t C 

(y,y X = T, r -t C 
-------- (AX.T) Rule 
(y (AX.x)T = T, r -t C 

------------ thin 
(~) checkx T, (AX.X)T = T, r -t C 

---------------conv 
(~) checkx T, s(s(k equal)(AX.X»id T, r -t C 

------------------tr, cut 
(~) checkxT, s(s(k equal)(AX.X»id T = true, r -t C 
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and we also have, for a fresh variable t, 

(t, z) false -+ C (false-el) 
- red 

(t, z) k false t = true -+ C 
- inst 

(~) k false T = true -+ C 
--------------------------------~n 
(~) checkx T = false, k false T = true, r --+ C 

and hence, merging the previous two derivations using the Branch Rule, 

(~) (branch checkx (s(s(k equaZ)(AX.x»id) (kfalse)) T = true, r -+ C 
----------------------------------------------- tr, cut 

(~) matchx T, r --+ C 

as required. I 

THEOREM 18. Fxpt induction rule (fxpt-ind): 

(u, x,~) q,Ax = u, r -+ Ax = u 
(u,x,~)fxptq,x = u, r -+ Ax = u 

where A ;< , q, is continuous, and u, x are two variables not occurring free in 
q"A,r. 

Proof Let f, v, a be three fresh variables, let X be the tenn ka, and let '¥ be 
the tenn id. Now, Xf is evaluable, and '¥ and X are continuous since 

V('¥ fo) ->. vifv) ->. vv ->. V 

v(Xfo) ->. v(kvfo) ->. v(vv) ->. vv ->. V, 

where ->. is defined with respect to f and v, so the first Fxpt Rule may be 
applied, as follows. 

Cu, x,~) q,Ax = u, r --+ Ax = u 
--------------------------- ext 
(u,x,a,~)q,ax=u, a=A, r-+ax=u 
-----------------------------~n 
(u,f,x,a,~) q,ax = u, a =A, r --+ ax = u 

--------------------------------- red 
(u,f, x, a,~) q,(Xf)x = u, a = A, r --+ X('¥f)x = u 
---------------------------------- fxpt 
(u,x,a,~)fxptq,x=u, a=A, r-+x(jxpt'¥)x=u 
-----------------------------------red 

(u,x,a,z)fxptq,x = u, a =A, r -+ ax = u 
- ext 

(u,x,~)fxptq,x = u, r --+ Ax = u 
I 
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THEOREM 19. (AX: n rule «AX: T»: (~) (AX: ny = u, r -+ C 
(y,~)X= Y, T= U, r -+ C 

where X is irreducible, with free variables y, and y ¢ Y, U, r, C. 

Proof Recall from the Expanded Term Language that (AX: T) is 

(branch matchx (AX.n ifxpt id). 

The derivation in one direction is 

(~) (AX: T)Y = U, r -+ C 
------------------------~n (Y,y X = Y, (AX: T)Y = U, r -+ C 
------------------------~ 
(y,yX= Y, (AX:nX= U, r -+ C 
------------------------ red 

(y,~)X= Y, T= U, r -+ C 

Conversely, let u,f, x, v be four fresh variables; then since id is continuous 
(v(idfv) ~ vifv) ~ vv ~ v) we can derive 

(u,x,z) id(ka)x = u -+ kax = u (red) 
- fxpt-ind 

(u,x,z)fxPt id x = u -+ kax = u - roo 
(u,x, z)fxpt id x = u -+ a = u 

for any constant a, and hence 

(u,x,z)fxptid x = u -+ true = u 
(u, x, z) fxpt id x = u -+ false = u 
(u, x, !:.) false = u -+ u = false 
(u, x, ~) true = u, u = false -+ true = false 
(u,x,~) true =false -+ false 
(u,x,~)false -+ C 

an instance of the above 
another instance 
symm 
trans 
red 
false-el 

-------------------------------------------------cut 
(u,x, z)fxpt id x = u -+ C 

- inst 
(z)fxpt id Y = U -+ C 

-----------------------------~n 
(~) matchxY = false, fxptid Y = U, r -+ C 

Also, we can derive 

(Y,y X = Y, T = U, r -+ C 
----------------------- red 
(Y,y X = Y, (AX.T)X = U, r -+ C 
-----------------------eq 
(Y,y X = Y, (AX.T)Y = U, r -+ C 
------------------------maoch 
~) matchxY, (AX.T)Y = U, r -+ C 



FROMPTOEP 

Merging the previous two derivations using the Branch Rule gives 

(z) (branch matchx (AX.T) ifxpt id)Y = U, r -* C 

as required. I 

ELIMINATION RULE FOR FUNCTIONS DEFINED 
USING PATTERN MATCIDNG 

Consider a term fxpt <1> defined by 

t::;. 
!Xk = Tk 

where! fj. XI, ... Xk. Recall from the Expanded Term Language that 
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<1> is (Af.(branch matchxt (AXI.TI )··· (branch matchxl: (AXk.Tk)f)·· .». 

THEOREM 20. (Elimination rule for pattern matching.) 

(u,~,~) TI~] = u, r -* AXI = U ••• (u,~,~) Tk~] = u, r -* AXk = U 

(u,x,~)fxpt<1>x = u, r -* Ax = U 

where: A , ; VI, ..• Vk are the variables occurring free in XI,'" Xko respec
tively;!, u, x, ~ ... vI: fj. r, A, <1>; U fj.!, VI, ••• Vk; and the function definition 
is regular. - - - -

Proof. Since the function definition is regular, <1> is continuous by Theorem 43 
of the Expanded Term Language. Letybeafresh variable; then, for i=l ... k, 
we have the derivation 

(u,~,y Tj~] = u, r -* AXj = U 

-------------ext 
(j,u, Vj,z)!=A, Tj = u, r -* AXj = U -- ~ 

(j,u,Vj,z)!=A, (AXj.Tj)Xj=u, r -*AXj=u -- ~ 

if, u,y, Vj,y! = A, Xj = y, (AXj.Tj)y = u, r -* Ay = U 
- match 

(j, U, y,~)! = A, matchxiY, (AXj . Tj)y = u, r -* Ay = U 

Combining these derivations with (j, u, y,~) ! = A, fy = u, r -* Ay = U 

(derived by Equality) using the Branch Rule gives 
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if, u,y, z)! = A, cf>fy = u, r -+ Ay = u (branch, red) 
- ext 

(u,y,Z) cf>Ay = u, r -+ Ay = u 
- fxpt-ind 

(u,y,Z)fxptcf>y = u, r -+ Ay = u 
- thin or con 

(u,x,y,z)fxptcf> y = u, r -+ Ay = u 
- inst 

(u,x,~)fxptcf>x = u, r -+ Ax = u 

as required. I 

NUMERIC INDUCTION 

THEOREM 21. num-elimination rule (num-el): 

(u,z) true = u, r -+ AO = u (u,n,z)An = u, r -+ A(Sn) = u 

(u,n,~) numn = u, r -+ An = u 

where A , , u, n f!. r,A, and u is not n. 

Proof This is simply the Elimination Rule for Pattern Matching, in the case 
of num. (The regularity condition is satisfied since v true --" vv --" v and 
v(num n) --" v(num v) --" vv --" v, where v is a fresh variable and --" is 
the partial reduction relation with respect to num and v.) I 

THEOREM 22. Induction rule (ind): 
(y r -+ B[~] (n,~) B[;] , r -+ B[~n] 

(n,~) num n, r -+ B[;] 

where n f!. r,B. 

Proof Let u be a fresh variable and let F be the construction O.true: true). 
The (AX: T)-rule, in the case of F, gives 

~) true = Y, true = u -+ C 
~FY=u-+ C 

from which we can derive immediately the three sequents 

~ Y, true = u -+ FY = u, 

(}0 FY = u -+ Y, 

(}0FY=u-+true=u 

(1) 

(2) 

(3) 

for any term Y. Now let A be the irreducible term (Ax.FB). The Induction 
Rule is derived by beginning with 
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(n,~) B[~ ], r ~ B[~n] 
-------------Wn 
(u,n,~) true = u, B[~], r ~ B[~n] 

---------------cut,(l) 

(u,n,~) true = u, B[~], r ~ F(B[~n]) = u 
--------------- cut,(2),(3) 

(u,n,~) F(B[~]) = u, r ~ F(B[~n]) = u 
---------------red 

(u,n,~)An = u, r ~ A(Sn) = u 

and then using this in the following derivation 

(~) r ~ B[~] 
---------Wn 
(u,~) true = u, r ~ B[~] 

------------ cut,(l) 

(u,~) true = u, r ~ F(B[~]) = u 

------------roo 
(u,n,z)An = u, r ~ A(Sn) = u 
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(u,~) true = u, r ~ AO = u 
- num-el 

I 

(u,n,z) numn = u, r ~ An = u 
- red 

(u,n,~) numn = u, r ~ F(B[~]) = u 
------------- cut,(2) 

(u, n,~) num n = u, r ~ B[~] . 
------------------- mst 

(n,~) numn = true, r ~ B[~] 

(n,~) numn, r ~ B[~] 
tr, cut 

EXERCISES. Derive the sequents 

(1) (~) X = Y ~ SX = SY 
(2) (n) num n ~ n = plus(n, 0) 
(3) (m,n) numn ~ S(plus(n,m» =plus(n,Sm) 
(4) (m,n) numm, numn ~ p[us(m,n) = plus(n,m) 
(5) (nJ, ... nk) numnJ, ... numnk ~ numif(nt. .. . nk» where f is k-ary 

primitive recursive. 

(Hint: follow the usual Peano Arithmetic proofs. Recall that plus was defined 
in an example in Chapter 15.) 
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EXERCISES. Derive the List Rule: 

(~) r ---+ B[;il] (e,l,~) B[~], r ---+ B[~e'l)] 

(1,~) list(l), r ---+ B[~] 

where e, I rf. r, B. Use it to derive the following sequents. 

(1) (ll, 12) list(l}), list(l2) ---+ list(concat(lJ, 12» 
(2) (I) list(l) ---+ list(reverse(l) 
(3) (l) list(l) ---+ num(length(l» 
(4) (1}, 12) list(l}), list(12) ---+ 

length(concat(ll, 12» = plus(length(ll), length(l2» 
(5) (I) list(l) ---+ length(l) = length(reverse(l» 
(6) (e,1) list(l), member(e,l) ---+ member(e, reverse(l) 
(7) (e,l) list(l), member(e, reverse(l» ---+ member(e, l) 

(Recall that the functions list, concat, reverse, length and member were 
defined in examples and exercises in Chapter 15.) 

EXERCISE. State and derive a protological Tree Rule, analogous to the List 
Rule and Numeric Induction, for the coding of trees considered in an exercise 
in Chapter 15 in which each node has 0, 1 or 2 subtrees and each leaf holds a 
number. It should make use of a function tree, defined by pattern matching, 
such that tree(t) [>* true iff the construction t is the code of a tree. Use the 
Tree Rule to derive the sequent 

(t) tree(t) ---+ num(sum(t». 

EXERCISE. State and derive a general structural induction rule for a construc
tion f defined by 

where Vi are the free variables of the pattern Xi' Numeric Induction, the List 
Rule and the Tree Rule should be special cases of this rule. 
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EXPANDED PROTOLOGIC 

Expanded Protologic consists of Protologic plus the following theorems and 
derived rules of inference. 

PRELIMINARY DERIVATIONS 

THEOREM 1. Tautology (taut): (~) r, T ~ T. 

THEOREM 3. Reduction (red): (~) A ~ B 

if A [>*<J B. 

THEOREM 5. Symmetry (symm): (~) A = B ~ B = A. 

(z)A, r ~ c 
(~) B, r ~ c 

PROPERTIES OF THE INSTANTIATION NOTATION 

THEOREM 6. Equality theorem and rules (eq): (~) A = B, T[~] -+ T[~] 
(~) A = B, r ~ T[~] (~) A = B, T[~], r ~ c 

(~)A=B, r~T[~] (~)A=B, T[~], r~c 

THEOREM 7. Self-equality (se): (~) T[;] ~ X = X if X is evaluable or 
xE T. 

(x, z) A, ... B ~ C 
THEOREM 9. Instantiation rule (inst): 

(~) A[;], ... B[;] ~ c[;] 
where X is evaluable or x E A or ... x E B. 

(x,z)x=X, A, ... B ~ C 
THEOREM 10. Extraction rule (ext): 

(~) A[;] , ... B[;] -+ c[;] 
where x rt. X, and X is evaluable or x E A or ... x E B. 
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(~) r -t A[i] (~) r, A[i] -t e 
THEOREM 11. Conversion rules (conv): [ ] [ ] 

(~) r -t B i (~) r, B i -t e 
where At>" <l B and the variables:! are all different and occur free in A and 
B. 

PROPERTIES OF TRUTH-FUNCTIONAL OPERATORS 

THEOREM 12. Falsity elimination (false-el): (~)false -t A. 

THEOREM 13. Boolean rule (bool): 

(~) x = true, r -t e (~) x = false, r -t e 
(~) boolean x, r -t e 

THEOREM 14. Branch rule (branch): 

(~) ex, FX = U, r -t T (~) ex =false, GX = U. r -t T 

(~) (branch e F G)X = U, r -t T 

THEOREM 15. Conjunction (&): 

(~) At. ... Ak -t Al & ... &Ak, 

fori=I •... k. 

RULES FOR THE PATTERN-MATCHING NOTATIONS 

C:~,~) T= U, r -t e 
(~) (AX.T)Y = U, r -t e THEOREM 16. (AX.T) rule «AX.T»: 

where ~ are the free variables of X and ~ fJ. Y, U, r, e. 

(~) matchxT, r -t e 
THEOREM 17. Match rule (match): 

(~,~)X = T, r -t e 
where X is irreducible, with free variables ~, and ~ fJ. T, r, c. 

THEOREM 18. Fxpt induction rule (fxpt-ind): 

(u,x,~) cl>Ax = u, r -t Ax = u 

(u,x, z)jxptcl>x = u, r -t Ax = u 

where Art, cI> is continuous, and u,x are two variables not occurring free in 
cI>,A.r. 

THEOREM 19. (AX: T) rule «AX: T»: (~) (AX: T)Y = U, r -t e 
(~,~)X= Y, T= U, r -t e 

where X is irreducible, with free variables ~, and ~ fJ. y, U, r, C. 
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ELIMINATION RULE FOR FUNCTIONS DEFINED 
USING PATTERN MATCHING 

Consider a term fxpt <I> defined by 

where f rt Xl> ... Xk· 

THEOREM 20. (Elimination rule for pattern matching.) 
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(u,~,~) TI~] = u, r -+ AX1 = U ••• (u,~,~) Tk~] = u, r -+ AXk = U 

(u, x,~) fxpt <l>x = u, r -+ Ax = u 

where: A , ; VI, ... Vk are the variables occurring free in X I, ... Xko respec-
tively; f, u, x, v~ ... Vk rt r ,A, <1>; u rt f, VI, ... Vk; and the function definition 
is regular. - - - -

NUMERIC INDUCTION 

where n rt r,B. 

(y r -+ B[~] (n,~) B[~] , r -+ B[;n] 
(n,~) num n, r -+ B[~] 

THEOREM 22. Induction rule (ind): 
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FROM EXPANDED PROTOLOGIC TO THE CODING OF TREES 

Protologic has been set up as a formal axiomatic system, and hence it is 
possible to code protological derivation trees as terms, to reason about them 
within protologic, and to formulate reflection principles. I shall define a 
construction DT such that DT(D,X) e>* true iff D is a coded protological 
derivation of the sequent X, allowing reflection principles. I shall also 
describe the encoding of trees in general and prove some general theorems 
about well-foundedness. These concepts and theorems constitute the next 
theory, the Coding of Trees (CT). 

REFLECTION PRINCIPLES 

A reflection principle is a sequent of the form 

(~) DT(U, [ ---+ C]) ---+ C 

for any terms U and C, where DT is the construction to be defined below. 
Here, ---+ C is a sequent with no quantified variables and no terms on the 
left-hand side, in other words (nil, ('Anil.C». I enclose it in '[ ... ]' brackets 
to mark it as a sequent; whenever I use the (~) A, ... B ---+ C metanotation for 
a sequent occurring as a subterm in a larger term I shall always enclose it in 
these special brackets. 

In addition, any instantiation of the above reflection principle counts as 

a reflection principle: that is, [(~) DT(U, [ ---+ C]) ---+ c][i] is the general 
form for a reflection principle, for any irreducible terms K and variables ,!. 

CODING OF PROTOLOGICAL DERIVATION TREES 

A derivation tree (from a given list of premises Xo, ... Xk-l) is a tree of 
sequents whose leaves are protological axioms, reflection principles, and 
premises from the given premise list, and whose other nodes are related by 
the protological inference rules. A derivation (from a given premise list) is a 
derivation tree with its conclusion sequent (the root of the tree) removed. 

Let premise, none, one, two and rp be five fresh l-ary constructors. 
Number the axiom schemata and rules of protologic 1, ... 17. A derivation 
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tree is coded as an irreducible tenn (D, X), where D is the code of a derivation 
and X is the conclusion sequent; the derivation code D is 

premise(i) 

none(n) 

one(n,P, Y) 

if X is the i'th premise, Xi (numbering them from 0) 

if X is an instance of axiom schema n 

if X is inferred by rule n from a coded derivation tree, 

(P, Y) 

two(n, P, Y, Q, Z) if X is inferred by rule n from coded derivation trees, 

(P, Y) and (Q, Z) 

if X is a reflection principle, 

[(~) DT(U, [-t C]) -t C][~J. 

EXAMPLE. Recall from Chapter 17 that a sequent such as (x, y, z) U, V, W -t 
X is really a tenn ([(A,[x,y,z].u),(A,[x,y,z].V),(A[x,y,z].W)],(A,[x,y,z].x». 
The proto logical derivation 

A (axiom 5) B (axiom 2) 
--------rule 12 

C rule 13 
P (premise 0) Q 
----------rule 15 

E 

is coded as 

two(l5,premise(0), P, one(l3, two(12, none(5),A, none(2) , B), C), Q). 

The free variables of the code of a derivation or derivation tree are the free 
variables of its constituent sequents. 

INTERNAL REPRESENTATION OF PROTOLOGICAL INFERENCE 

By appeal to Church's Thesis (see the Expanded Tenn Language), let info, 
in/I, inf2 and RP be four recursive functions such that for any irreducible 
tenns X, Y, Z and F, and any construction D, 

in/o(n, X) t> * true iff X is an instance of axiom schema n 

infI (n, Y, X) t> * true iff f is an instance of rule n 

inf2(n, Y, Z, X) t> * true iff YXZ is an instance of rule n 

RP(F,D,Y) t>* true iff Fis (A,[~].U)[~] and 

Y is [~) D(U, [ -t C]) -t C][~J. 
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info should be defined in such a way that info (1 , [ -t T]) 1>* T, in accor
dance with the Evaluation Axiom Schema. The definitions are legitimate 
applications of Church's Thesis since the protological axioms, rules and re
flection principles all have the property that a sequent, pair of sequents or 
triple of sequents represents an axiom, reflection principle or inference iff 
any instantiation of its free variables by constructions does. 

THE DERIVATION TREE PREDICATE, DT 

Define a construction DT by 

DT(none(n),x) 
f::,. 

info(n,x) = 

DT(one(n,p, y), x) 
f::,. 

inf!(n,y,x) & DT(p,y) = 

DT(two(n,p,y, q,z),x) 
f::,. 

inf2(n,y,z,x) & DT(p,y) & DT(q,z) = 

DT(rp(j),x) 
f::,. 

RP(j,DT,x) = 

where n, x, y, z, p, q,f are seven variables. Then DT(D, X) 1>* true iff (D, X) 
is the code of a derivation tree with no premises, or in other words iff D is 
the code of a derivation with no premises for the sequent X. Note that RP, 
with DT supplied as its second argument, detects reflection principles. 

EXAMPLE. Consider the derivation one(13, two(12, none(5), A, none(2), B), 
C) of the sequent Q (part of the derivation in the previous example). Applying 
DT gives 

DT(one(13, two(12, none(5),A, none(2), B), C), Q) 

1>* infi(13, C, Q) & DT(two(12, none(5),A, none(2), B), C) 

1>* true & inf2(12,A,B, C) & DT(none(5),A) & DT(none(2),B) 

1>* true & true & info(5,A) & info (2, B) 

I> * true & true & true & true 

I> * true 

where inf! (13, C, Q), in/2(12,A, B, C), info(S,A) and info(2, B) all reduce to 
true since (we suppose) ~ is an instance of protological rule 13, A c B is an 
instance of rule 12, A is an instance of axiom schema 5, and B is an instance 
of axiom schema 2. 

This establishes that one(13, two(12, none(5),A, none(2), B), C) is a deri
vation of Q, or in other words that the pair (one(13, two(12, none(5),A, 
none(2), B), C), Q) is a derivation tree. 
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DEFINITION. Let £ be the construction none(1). 

THEOREM 1. DT(£, [ -+ T]) [>* T. 

THEOREM 2. DT(rp(A,[z],U), [(;;) DT(U, [ -+ C]) -+ C]) [>* true. 

TREE CODES AND WELL-FOUNDEDNESS 

Recall the discussion of the interpretation of constructions as trees in Chap
ter 10. This section provides a formal apparatus for defining tree codings. 

DEFINITION. A type symbol is a construction that has been given an interpre
tation as representing a coding of a class of trees as constructions. 

DEFINITION. A well-foundedness relation, T : II, is defined in the following 
sequence of steps. 

• Let T be a construction and II be a type symbol; then T : II means that 
T is a well-founded tree, according to the coding II. 

• Let T be a term with no free variables and II be a type symbol; then 
T : II means that if T [>* T' yt (T' thus being a construction) then 
T' : II (in the previous sense). 

(Note that as a consequence of this, if the reduction of T fails to halt then 
T : II holds vacuously.) 

• Let T be an arbitrary term, with free variables ~, and II be a type 

symbol; then T : II means that, for any constructions K, T[~] : II (in 

the previous sense). 

• Let T be an arbitrary term and II be a term that reduces to a type symbol 
II'; then T : II means that T : II' (in the previous sense). 

To summarise, T : II means that, for any constructions K, if T[~] reduces to 

a construction T' then T' is a well-founded tree of type II', where II' is the 
type symbol to which II reduces. 

The quantifier 'for any constructions K' is to be understood in the protolog
ical sense as explained in Chapter 8. Note that the order of the instantiations 

[~] makes no difference, up to 4, nor would it make a difference if we 

included extra instantiations [n, where y r!. T. 

The relation X : II cannot be represented in the term language (that is, 
one cannot define a construction WF such that WF(X, II) [> * true iff X : II), 
for two reasons. First, well-foundedness is undecidable except for trivial 
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classes of trees. Secondly, the relation depends on the interpretation of the 
construction n' as a coding of trees, but the assignment of tree-codings to 
constructions is a piecemeal process and is never completed. 

From now on the identifiers 'n', '~', '<1>', ''P', 'g' and '8', sometimes 
with subscripts or primes, will always be used as metavariables denoting type 
symbols (or terms that reduce to type symbols). I shall say 'X is of type n' 
iff the construction X is a tree according to the n coding. Likewise if I refer 
to 'X (of type n)' then I am regarding X as a tree according to the n coding. 

THEOREM 3. (Well-foundedness reduction rule.) 

• If A 1>*<] B then A : n iff B : n. 
• If n 1>*<] ~ then A : n iff A : ~. 

Proof For the first part, let n 1>* n' pt , let:! be the free variables of A and 

B, and let K be any constructions. Then A[i] 1>*<1 B[i], so Ali] and B[i] 
reduce to the same construction, if any. Thus A[i] : n' iff B[i : n'. This 
establishes that A : n iff B : n, as required. 

The second part follows since n and ~ reduce to the same type symbol. I 

DEFINITION. Let leaf be a fresh O-ary constructor. Make it a type symbol by 
letting it represent the following (trivial) coding of trees: any construction X 
represents a tree with no subtrees. 

THEOREM 4. (leaf rule.) For any term T, T : leaf. 

Proof Let:! be the free variables of T, and let K be constructions. If T[i] 

reduces to a construction T' then T' : leaf since T' codes a tree with no 
subtrees; so T : leaf. I 

DEFINITION. Let map be a fresh l-ary constructor. For any type symbols n 
and ~, define a type symbol map(n,~) representing trees F whose subtrees 
are the constructions T such that FX 1>* T for some construction X : n. 
The subtrees T are coded according to ~. (See Chapter 10.) 

THEOREM 5. (map rule.) 

• If A : map(n,~) and B : n then AB : ~. 
• If, for any construction B : n, AB : ~,then A 
• If X pt , Y. rt X, U are constructions, and T[~] 

map(leaf, ~). 

map(n,~). 

~, then (AX.T)[~] 
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Proof. Let n 1>* n' Jt and L [>* L' Jt. For the first part, let:! be the 

free variables of AB and let K be any constructions. Suppose AB[~] reduces 

to a construction, C'. Then A[~] and B[~] must reduce to constructions, A' 
and B', such that A'B' 1>* C'. The hypotheses that A : map(n,L) and 

B : n mean that A[~] : map(n', L') and B[~] : n', which in tum mean that 

A' : map(n', L') and B' : n'. Hence, by the map coding, C' (of type L') 
is a subtree of A' (of type map(n', L'». The latter tree is well-founded and 
hence so is the former: this is expressed as C' : L'. This establishes that 
AB : L, as required. 

For the second part, let :! be the free variables of A and let K be any 

constructions. Suppose A[~] reduces to a construction, A'. Consider any 

construction B : n'. If A'B [>* T Jt then by the map coding T (of type 
L') is a subtree of A' (of type map(n',L'». By hypothesis, AB : L', which 

means, since AB[~] 1>* A'B [>* T Jt, that T : L'. This shows that an 

arbitrary subtree T of A' is well-founded, and therefore A' is well-founded, 
which is written as A' : map(n', L'). This establishes that A : map(n, L), 
as required. 

For the third part, let ~ be the free variables of X, let y be the free variables 

of ('AX. T)[~], and let r be constructions. Consider any ;onstruction B : leaJ. 

Then ('Ax.T)[~J~] B 4 ('AX.T)B[~]~] [>* T[f][~]~] 4 T[~][f]~] for 
some constructions Z. br7heorem 25 of the Expanded Term Language. Now, 

by hypothesis, T[~] [f]~] : L'. Hence, by the second part of this theorem, 

('Ax.T)[~]~] : map(leaJ,L'). This establishes that ('Ax.T)[~] : map(leaJ,L), 

as required. I 

THEOREM 6. (Well-foundedness instantiation rule.) If A : n and X Jt then 

A[:] : n. 

Proof: Using the map rule, if A : n then ('Ax.A) : map(leaJ, n) and X : leaJ 

so Al:] <1* ('Ax.A)X : n. I 

DEFINITION. Let product be a fresh l-ary constructor. For any type symbols 
n and L, define a type symbol product(n, L) representing trees of the form 

(X, Y) with two subtrees, X of type nand Y of type L, 

for any constructions X and Y. 
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THEOREM 7. (product rule.) 

• Any construction T such that T : product(TI,:r) is of the fonn (X, Y) 
for some constructions X : TI and Y : :r. 

• left: map(product(TI,:r),TI). 

• right : map(product(TI, :r), :r). 

• For any tenns A and B, if A : TI and B : :r then (A, B) : product(TI, :r). 

Proof Let TI I> * TI' yt and:r 1>* :r' yt . 
The first part follows immediately from the definition of product(TI', :r'). 
For the second part, consider any construction T : product(TI, :r); then T 

is (X, Y), for some constructions X : TI' and Y : :r', so left T [>* X : TI' <J* 

TI. By the map rule this implies left : map(product(TI, :r), TI), as required. 
The third part is similar. 

For the fourth part, let,! be the free variables of A and B, and let K be any 

constructions. Suppose (A,B)[~] reduces to a construction T. Then A[~] and 

B[i] must also reduce to constructions, A' and B', and T must be (A',B'). 

The hypotheses that A : TI and B : :r mean that A' : TI' and B' : :r'. By 
the product coding this implies that T : (roduct(TI', :r'). This establishes 
that (A, B) : product(TI, :r), as required. 

EXAMPLES. 

(1) «nil, true), ss) : product(product(leaf, leaf), leaf). The tree represented 
by the construction «nil, true), ss) according to this tree coding is 

«nil, true), ss) 

/ \ 
(nil, true) ss 

/ \ 
nil true 

In fact, any tree of the fonn «X, Y), Z) is well-founded, for any construc
tions X, Y, Z, so we can say that «x, y), z) : product(product(leaf, leaf), 
leaf). 

(2) (Ax. (x, (nil, x») : map(ll,product(TI ,product(leaf, TI») for any type 
symbol TI. The tree is, in part, as follows 
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(u.(x, (nil, x») 

I I \ 
(X .. (nil,XI » (X2, (nil,X2» (X3, (nil,X3» 

I \ I \ I \ 
Xl (nil,X)) X2 (nil,X2) X3 (nil,X3) 

11\ I \ 11\ I \ 11\ I \ 
nil Xl nil X2 nil X3 

11\ 11\ 11\ 

where X I, X2, X3 are three of the constructions that encode well-founded 
trees of type n. This tree is clearly well-founded. 

DEFINITION. Let pi be a fresh l-ary constructor. For any type symbols 
n I, ... nb define a type symbol pi[n I, ... nk] representing trees of the form 

[X ..... Xk] with subtrees X ..... Xk of type n ..... nk respectively. 

(This includes the case of k = 0: nil represents a tree of type pi(nil) with no 
subtrees.) 

THEOREM 8. (pi rule.) 

• Any construction T such that T : pi[n, ... ~] is of the form [A, ... B], 
for some constructions A : n, ... B : ~ . 

• For any terms A, ... B, if A : n, ... B : ~ then [A, ... B] : pi[n, . .. ~]. 

Proof The proof is similar to the proof of the product rule. I 

EXAMPLE. [(x, y), z, (u, v)] : pifproduct(leaf, leaf), leaf,product(leaf, leaf)], 
since, for any constructions X, Y, Z, U, V the tree 

[(X, Y),Z,(U, V)] 

I I \ 
(X, Y) Z (U, V) 

I \ I \ 
X Y U V 

is well-founded. 
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THEOREM 9. (ifwell-foundedness rule.) if: map(leal,map(n,map(n, n))). 

Proof. Consider any constructions X : leal, A : nand B : n. Then there 
are three cases for the reduction of if X A B. 

Case 1: Xis true. Then ifXAB [> A : n. 
Case 2: X is lalse. Then if X A B [> B : n. 
Case 3: X is any other construction. Then if X A B reduces only to itself; 
thus if X A B : n by default. 

In each case, ifXAB : n, so if : map(leal, map(n, map(n, n»). I 
THEOREM 10. (Recursion well-foundedness rule.) 

reco : map(product(n, map(product(leal, n), n», map(leal, n». 

Proof. Recall from the Expanded Term Language that 

reco is (A,(j,g).To) where {TO(O) ~ I, 
To(Sm) ~ g(m, To(m» 

where I, g, m are three variables. This implies that reco(j, g) [>* To , , To(O) 
[>* I and To(Sm) [>* g(m, To(m». 

Consider any constructions X : product(n, map(product(leal, n), n» and 
N : leal. The task is to show that recoX N : n. 

X is (F, G), for some constructions F : n and G : map(product(leal, n), 

n). Thus recoXN [>* To~·;lN. Suppose the latter term reduces to a 
construction. By induction on ilie length of this reduction I shall show that 

TO~';]N : n. 
By Theorem 42 of the Expanded Term Language, since To~';] N reduces 

to a construction, N ++ 0 or SM for some construction M. 

In the case where N ++ 0, we have To~';] N [>* F : n, as required. 

In the case where N ++ SM, we have To~';] N [>* G(M, To~';] M), in 

at least one reduction step; hence the reduction of To~';] N to a construction 

involves, and so is longer than, a reduction of To~';] M to a construction. 

Assuming, by inductive hypothesis, that To~';] M : n, and recalling that 

G : map(product(leal, n), n) and M : leal, it follows that G(M, To~';] M) : 

n, and hence To~';] N : n, as required. 

This inductive argument establishes that Tr;-; 1 N : n and hence reco X N : 

nand reco : map(product(n,map(product{l~a},n),n»,map(leal,n», as 
required. I 
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THEOREM 11. (jxpt id well-foundedness rule.) fxpt id : map(ll, ~). 

Proof. Consider any construction X : ll. Then !xpt id X does not reduce 
to a construction; hence by default jxpt id X : ~. By the map rule jxpt id : 
map(ll, ~), as required. I 

It was explained in Chapter 10 that every protological derivation tree has 
an associated reflection tree, whose well-foundedness is essential for the 
protological derivation tree to be sound. I shall define the coding for reflection 
trees in such a way that the same construction can serve as the code for the 
derivation tree (via the coding defined at the start of this chapter) and as 
the code for the associated reflection tree (via the coding rt, defined below). 
The difference between the two codings is that, in the derivation tree coding, 

a reflection principle 1p(A[~].U)[:] is regarded as a leaf, whereas, in the 

reflection tree coding rt, the reflectlon principle is regarded as having all its 

instances u[:] [f] as subtrees. 

DEFINITION. (Reflection trees.) Let rt be a fresh O-ary constructor and let it 
represent the following coding of trees: 

none(N) has no subtrees 

one(N, P, Y) has one subtree, P, oftype rt 

two(N, P, Y, Q, Z) has two subtrees, P and Q, of type rt 

1p(F) has subtrees, T, of type rt, where FX t>* T pt 
for some construction X 

for any constructions N, P, Y, Q, Z, F. Informally, a tree of type rt is a proto
logical derivation (with no premises) re-interpreted as a reflection tree. The 
notion of reflection tree here is essentially the same as the one in Chapter 10. 

EXAMPLE. Here is (part of) a tree of type rt. X and Y are arbitrary construc
tions. 

two(12, none(4),A, 1p(A[x,y].one(6, 1p(A[z].none(3»,B», C) 

/ \ 
none(4) 1p(A[x,y].one(6,1p(A[z].none(3»,B» 

/ I \ 
one(6, 1p(A[z].none(3», B[;,'J]) 

I 
1p(A[z].none(3» 

I 
none(3) 
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THEOREM 12. (Properties of rt.) 

• none : map(leaf, rt), 

• £ : rt, 
• one : map(product(leaf,product(rt, leaf», rt), 

• two : 
map(product( leaf, product( rt, product( leaf, product( rt, leaf»», rt), 

• rp : map(map(leaf, rt), rt). 

Proof From the definitions of rt and £, and the map and product rules. I 

THEOREM l3. (Soundness of protologic.) If DT(D, ([F, . .. G], H» t>* true, 
D : rt, F, ... G,H,X are constructions, and FX t>* true, '" GX t>* true, 
then HX t> * true. 

This theorem affirms that protological derivations with well-founded reflec
tion trees are sound with respect to the informal semantics in Chapter 17. 
This is the only theorem about proto logic that assumes the philosophical 
soundness of protologic; hence I shall organise the arguments in Parts III and 
IV so that the dependence of the interpretation theorems on this theorem can 
be clearly isolated (see Chapter 35). 

DEFINITION. Define a construction join by 

join(premise(O) ) 
~ 

left = 
join(premise(Sn) ) 

~ 
s(k(join(premise(n»»right 

join(none(n» 
~ 

k(none(n» 

join(one(n,p,y» 
~ 

(')..j.(Al.one(n,jpl, y»)join = 
join(two(n,p,y, q,z» 

~ 
(')..j.(A.l.two(n,jpi, y,jql, z»)join 

join(rp(j) 
~ 

k(rpif» = 

where n,p,y, q, z,j, I,f are eight variables. 

The function join attaches a list of derivations to the premises of another 
derivation. 

EXAMPLE. Let D be a coded derivation of the form 

two(15,premise(O),Xo, one(13, two(l2, none(5),A,premise(1),X1 ), B), C). 
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for a sequent E. Note that the sequents Xo and Xl appear as premises in 
D. Now, suppose we have coded derivations Do and DI for Xo and Xl 
respectively, neither derivation having any premises; then combining the 
three derivations using join gives a derivation for E with no premises. 

join(D)[Do,Dd 1>* two(15,Do,Xo, 

one(13, two(12, none(5),A,DI ,XI),B), C) 

DT(join(D)[Do, Dd, E) 1>* true & DT(Do, Xo) 

& (true & (true & true & DT(DI,XI))) 

1>* true 

Moreover, join(D) [Do, Dd is well-founded (in the rt coding) provided Do 
and DI are. The next theorem verifies that these properties hold in general. 

THEOREM 14. (The join-lemma.) Suppose D is the code of a protological 
derivation without reflection principles of a sequent X from the premises 
Xo, .. . Xk-l (k ~ 0) . 

• ForanytermsDo, ... Dk_J,ifDT(Do,Xo) 1>* true, ... DT(Dk-J,Xk-l) 
1>* truethenDT(join(D)[Do, ... Dk_d,X) 1>* true. 

• For any variables:! and terms l{, jOin(D[:]) : map(pi[~], rt). 
k times 

Proof To prove the first part, suppose that DT(Di,Xi) 1>* true, for each 
i = 0, ... k - 1. It follows that, for each i, Di 1>* D~ pt , for some term D~. 
Let L be [D~, ... D~_t1. 

The proof that DT(join(D)[Do, ... Dk-d,X) 1>* true is by structural in
duction on the derivation encoded by D; since the derivation has no reflection 
principles there are four cases. 

Case 1: D is premise(i) and X is Xi, for some number i = 0, ... k - 1. 
Then 

join(D)[Do, ... Dk-d 1>* join(premise(i»L 1>* D:, 

using the first two clauses of the definition of join, and hence 

DT(join(D)[Do, ... Dk-d,X) 1>* DT(D:,Xi) 1>* true, 

since DT(Di,Xi) 1>* true, as required. 
Case 2: Dis none(n) and X is a instance of axiom schema number n. 

Then 
join(D)[Do, ... Dk-d 1>* join(none(n»L 1>* none(n) 

and hence 

DT(join(D)[Do, ... Dk-d,X) 1>" DT(none(n),X) 1>" info(n,X) 1>* true 
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as required. 

Case 3: D is one(n, P, Y), where !. is an instance of rule n. Then by 
inductive hypothesis (applied to P, Y i; place of D,X) 

DT(join(P)[Do, ... Dk- d, Y) t> * DT(join(P)L, Y) t> * DT( U, Y) t> * true 

for some irreducible U; consequently, 

join(D)[Do ... Dk-d t> * join(one(n, P, Y»L t> * one(n,join(P)L, Y) 

t> * one(n, U, Y) P' 

and hence 

DT(join(D)[Do ... Dk-l],X) t>* DT(one(n, U, y),X) 

as required. 

t>* inil(n, Y,X) & DT(U, Y) 

t> * true & true 

t> * true 

C 4 . h YZ.. f ase : D IS two(n, P, Y, Q, Z), were - IS an Instance 0 rule n. Then 

by inductive hypothesis (applied to P, Y in ~lace of D, X) 

DT(join(P)[Do, ... Dk- d, Y) t> * DT(join(P)L, y) t> * DT( U, Y) t> * true 

for some irreducible U, and likewise (applying the inductive hypothesis to 
Q,Z) 

DT(join(Q)[Do, ... Dk- d, Z) t> * DT(join(Q)L, Z) t> * DT(V, Z) t> * true 

for some irreducible V; consequently, 

join(D)[Do, ... Dk_d t>* join(two(n,P,Y,Q,Z»L 

and hence 

t> * two(n,join(P)L, Y,join(Q)L, Z) 

t>* two(n, U, Y, V,Z) P' 

DT(join(D)[Do, ... Dk- d, X) t> * DT(two(n, U, Y, V, Z), X) 

t>* ini2(n, Y,Z,X) & DT(U, Y) & DT(V,Z) 

t> * true & true & true 

t>* true 
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as required. This completes the proof of the first part of the theorem. 

To prove the well-foundedness part, let ~ be the free variables of D[i] 

and let Z. be constructions. Suppose join(D[i])[f] reduces to a construction; 

then D[~il also reduces to a construction, D'. Consider any construction L : 

pi[rt, ... rtl. Then L is [Do, . .. Dk-d, for some constructions Do, ... Dk-l : 

rt. The task is to show thatjOin(Dr~i])L : rt. I shall show this by induction 

on the structure of the protologicat derivation encoded by D. 
Case 1: Dis premise(i), for some number i = o ... k - 1. Then 

join(Premise(i)[~'i])L ~ join(premise(i))L [>* D; : rt, as required. 

Case 2: Dis none(n). Thenjoin(D[~'i])L [>* k(none(n))L [> none(n) : rt, 

as required. 

Case 3: D is one(n, P, Y). Then D' is one(n, P', Y'), where p[~i] [> * 

P' )1 and Y[~'i] [>* Y' )1 . Applying the inductive hypothesis to P, 

join(P')L <1* jOin(p[~'~])L : rt 

join(D[~i])L 1>* join(one(n, P', Y'))L 1>* one(n,join(P')L, Y') : rt, 

as required. 
Case 4: Dis two(n,P, Y,Q,Z). Then D' is two(n,P', Y', Q',Z'), where 

p[~'i] [>* P' )1 , Y[~'il 1>* Y' )1 ,Q[~'i] [>* Q' )1 and z[~i] [>* z' )1 . 
Applying the inductive bypothesis to P and Q, 

join(P')L <1* join(P[~'i])L : rt 

join(Q')L <1* jOin(Q[~'i])L : rt 

join(D[~'~])L [> * join(two(n, P', Y', Q', Z')L 

[>* two(n,join(P')L, Y',join(Q')L,Z') rt, 

as required. I 

The argument in the join-lemma can be formalised within protologic. That 
is, not only can we show that if Do, ... Dk-l are derivations of Xo, ... Xk-l 
respectively then join(D)[Do, . -.. Dk- d reduces to a derivation of X, but we 
can also derive the sequen: 

(do, ... dk-l'~) DT(do, Xo), ... DT(dk- 1, Xk-I) 

-7 DT(join(D)[do, ... dk- d, X). 
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The protological derivation required to do this can be generated automatically 
from the following information: ~,Xo, ... Xk-l, D, X. The function Join that 
generates the derivation is introduced in the next theorem. 

THEOREM 15. (The Join-lemma.) If D is the code of a protological derivation 
without reflection principles of the sequent X from the premises Xo, ... Xk-l 
(k ~ 0) then 

• DT(Join(Code), [(do, ... dk-lo~) DT(do,Xo), ... DT(dk-loXk-l) 
~ DT(join(D)[do, ... dk-tJ, X)]) 1>* true; 

• Join(Code) : rt; 

where the construction Join is defined below, Code is «A, [z]. [Xo, ... Xk-tJ), 
(A,[~].(D,X))), and do, ... dk- l ~ D,Xo, ... Xk-loX. -

Proof As temporary metanotation, let 4 be the sequence of variables 
do, ... dk- lo let sq{T, W} be the sequent 

(4,~) DT(do, Xo), ... DT(dk-I' Xk-l) ~ DT(join(T)[4], W) 

for any term Tand sequent W, and abbreviate DT(do,Xo), ... DT(dk-I,Xk- l ) 
to LHS, and (A.[z].[Xo, ... Xk-l]) to M. 

I shall first show that sq{D, X} is derivable from the corresponding se
quents for D's subtrees. Since the derivation encoded by D contains no 
reflection principles there are four cases. 

Case 1: Dis premise(i) and X is Xj, for some number i = 0, ... k - 1. Then 
DT(join(D) [4] , X) 1>* DT(dj,Xa, so sq{D,X} is derivable by Reduction. 
Define a recursive function derl such that derl (i, (A, [z].X) , M) reduces to the 
code of this derivation of sq{D, X}. -

Case 2: Dis none(n) and X is an instance of axiom schema n. Then 

DT(join(D) [4] , X) 1>* DT(none(n), X) 1>* info(n, X) 1>* true, 

so sq{ D, X} is derivable by Reduction. Define a recursive function der2 such 
that der2 (n, (A.[~].X), M) reduces to the code of this derivation of sq{ D, X}. 

Case 3: D is one(n, P, Y), where f is an instance of rule n. Then 

sq{D,X} is derivable from the premise sq{P, Y} (which is labelled 'pO', 
meaning premise number 0): 

(4,~) ~ in/I(n,Y,X) (red) sq{P,Y} (pO) 
----------------& 
(4,y LHS ~ in/len, Y,X) & DT(join(P)[4], Y) 
----------------corn 

(4, y LHS ~ DT(one(n,join(P)[d], Y), X) 
- red 

(4,~) LHS ~ DT(join(D) [4] , X) 
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Define a recursive function der3 such that der3(n, (A[~].(P, Y», (A[~].X), M) 
reduces to the code of this derivation. Y Z 

Case 4: Dis two(n, P, Y, Q, Z), where - is an instance of rule n. Then 

sq{D, X} is derivable from the premises sqrp, Y} and sq{Q,Z} as in Case 3 
(the premises are numbered 0 and 1 respectively): 

(4,z) -t in/2(n,Y,Z,X) (red) sq{P,Y} (pO) sq{Q,Z} (pI) 
- & 

(4,~) LHS -t inh(n, Y, Z, X) & DT(join(P)[4], Y) & DT(join(Q) [4], Z) 
cony 

(4, z) LHS -t DT(two(n,join(P)[4], Y,join(Q)[4], Z), X) 
- ~ 

(4,~) LHS -t DT(join(D) [4], X) 

Define a recursive function der4 such that der4(n, (A[~].(P, Y», (A[~].(Q, Z», 
(A[~].X), M) reduces to the code of this derivation. 

Next define a term-rearranging recursive function F such that 

F(A[~].(premise(I),X» [>* (l,I,(A[~].X» 

F(A[~].(none(N), X» [> * (2, N, (A[~].x» 

F(A[~].(one(N, P, y), X» [> * (3, N, (A[~].(P, y», (A[~].x» 
F(A[~].(two(N, P, Y, Q, Z), X» [> * (4, N, (A[~].(P, y», (A[~].(Q, Z», 

(A[~].X» 

for any terms X, P, Y, Q, Z and any constructions I, N; and define a construc
tion G by 

G«(l, i, x), m) ~ join(derl (i,x, m»nil 

G«2, n, x), m) ~ join(der2(n, x, m»nil 

G«3, n, u,x), m) ~ join(der3(n, U,X, m»[G(Fu, m)] 

G«4, n, u, v,x), m) ~ join(der4(n, u, V,X, m»[G(Fu, m), G(Fv, m)] 

where i, n,x, u, v, m are six variables. Then I claim that 

DT(G(F(A[~].(D,X»,M),sq{D,X}) [>* true 

and G(F(A[~].(D, X», M) : rt. 

The proof is by structural induction on the derivation encoded by D. There 
are four cases. 

Case 1: Dis premise(i) and X is Xi, for some number i = 0, ... k - 1. 
Then 

G(F(A[~].(D,X», M) [> * G«1, i, (A[~].X», M) 

[> * join(derl (i, (A[~].X), M»nil 
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where, as stated above, derl (i, (A.[z].X), M) reduces to the code of a derivation 
without reflection principles of sq{ D, X} from no premises; so (*) follows 
by the join-lemma. 

Case 2: Dis none(n) and X is an instance of axiom schema n. Then 

G(F(A.[~].(D,X»,M) t>* G«2,n,(A.[~].X»,M) 

t> * join(der2(n, (A.[~].x), M»nil 

where, as stated above, der2 (n, (A. [z] .x), M) reduces to the code of a derivation 
without reflection principles of sq{D,X} from no premises; so (*) follows 
by the join-lemma. 

Case 3: Dis one(n, P, Y), where ~ is an instance of rule n. Then 

G(F(A.[~].(D, X», M) 

t> * G«3, n, (A.[~].(P, Y», (A.[~].X», M) 

t>* join(der3(n, (A.[~].(P, Y», (A.[~].X), M»[G(F(A.[~].(P, Y», M)] 

where, as stated above, der3(n, (A.[~].(P, Y», (A.[~.x),M) reduces to the code 
of a derivation without reflection principles of sq{D,X} from sq{P, Y}. 
Also, by the inductive hypothesis (*), applied to P, Y in place of D,X, 

DT(G(F(A.[~].(P, y»,M),sq{P, Y}) t>* true 

and G(F(A.[~].(P, Y», M) : rt. 

So (*) follows by the join-lemma. 

Case 4: Dis two(n, P, Y, Q, Z), where YXZ is an instance of rule n. Then 

G(F(A.[~].(D, X», M) 

t> * G«4, n, (A.[~].(P, Y», (A.[~].(Q, Z», (A.[~].X», M) 

t> * join(der4(n, (A.[~].(P, Y», (A.[~].(Q, Z», (A.[~].X), M» 

[G(F(A.[~].(P, Y», M), G(F(A.[~].(Q, Z», M)] 

where, as stated above, der4(n, (A.[~.(P, Y», (A.[~].(Q, Z», (A.[~.X), M) re
duces to the code of a derivation without reflection principles of sq{D,X} 
from the premises sq{P, Y} and sq{Q,Z}. So (*) follows by the join-lemma 
and the inductive hypothesis. 

This completes the proof of the claim. Finally, define Join as (A.(m, d). 
G(Fd, m», where m, d are two variables. Then 

Join(Code) t>* G(F(A.[~].(D,X»,M), 

living DT(Join(Code), sq{D,X}) t>* true and Join(Code) : rt, as required. 
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Theorem 13 says that protological derivations with well-founded reflection 
trees are sound. The following theorem shows what happens if the well
foundedness condition is dropped. The proof uses a protological version of 
the Zermelo-Russell paradox to construct an unsound derivation tree with 
ill-founded reflection tree. 

THEOREM 16. There is a construction D* such that DT(D*, [ -+ false]) [>* 
true. 

Proof. Let x, d, q, do, d1 be five variables, let X be the construction 

('Ax.('Ad.DT(d, [(q) xxq -+ false]))), 

and let Do be the code of the protological derivation 

(q) xxq -+ false .(pI) 
-----mst 

-+ xxq (pO) xxq -+ false 
----------cut 

-+ false 

By the Join-lemma, 

DT(Join(Code), [(do,d}, q,x) DT(do, [ -+ xxq]), 

where Code is 

DT(d}, [(q) xxq -+ false]) -+ 

DT(join(Do)[do,dl ], [ -+ false])]) [>* true, 

«'A[q,x].[[ -+ xxq], [(q) xxq -+ false]]), ('A[q,x].(Do, [ -+ false]))). 

Moreover, by Theorem 2, 

DT(1p('A[q]Join(Do[~])[E, q]), 

[(q) DT(join(Do[~])[E,q], [-+ false]) -+ false]) [>* true. 

Now let DI be the code of the protological derivation 

(do, d l , q, x) DT(do, [ -+ xxq ]), DT(d1, [(q) xxq -+ false]) 
-+ DT(join(Do)[do, dtl, [ -+ false]) .(pO) 

--------::---------------mst 
(q, x) DT(E, [ -+ xxq ]), DT(q, [(q) xxq -+ false]) 

-+ DT(join(Do)[e, q], [ -+ false]) 
------------------red 
(q,x) xxq, Xxq -+ DT(join(Do)[e, q], [ -+ false]) inst 

(q) XXq, XXq -+ DT(join(Do[~])[E, q], [ -+ false]) 
-----------------coo 

(q) XXq -+ DT(join(Do[~])[E, q], [ -+ false]) 
---------------cut withRP 

(q) XXq -+ false 
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where the final step is a cut with the reflection principle 

(q) DT(join(Do[:])[e,q], [ -+ false]) -+ false, 

which is premise 1. Now let D2 be 

join(D.)[Join(Code), rp(A[q]Join(Do[;])[e, q])]. 

Then by the join-lemma 

DT(D2, [(q) XXq -+ false]) [> * true. 

Next let D3 be the code of the protological derivation 

(q) XXq -+ false (pO) 
----------------~n 
(q) X = x, XXq -+ false 

eq 
(q) x = x, xxq -+ false 

Then by the join-lemma 

DT(join(D3)[D2], [(q) x = X, xxq -+ false]) [>* true 

and hence by instantiation 

DT(join(D3[;])[D2], [(q) x = X, xxq -+ false][;]) [>* true. 

Also let D4 be the coded protological derivation 

two(12,one(1l, e, [ -+ x = X][;]), [(q) -+ x = X][:] , 

join(D3[:])[D2], [(q) x = X, xxq -+ false] [:]) 

(recall that rule 12 is Cut and rule 11 is a Thinning rule). By the definition 
of DT, 

DT(D4, [(q) xxq -+ false] [:]) [>* true 

and hence, by the definition of X, 

XXD4 [>* true. 

Now let Ds be the code of the protological derivation 

(q) XXq -+ false .(pO) 
----------- mst 

-+ XXD4 (eva!) XXD4 -+ false 
----------------------- cut 

-+ false 

giving, by the join-lemma, 

DT(join(Ds)[D2]' [ -+ false]) [> * true. 

This implies join(Ds)[D2] [>* D*, for some construction D*, and 

DT(D* , [ -+ false]) [> * true, 

as required. I 



CHAPTER 22 

THE CODING OF TREES 

REFLECTION PRINCIPLES 

A reflection principle is a sequent of the form [(~) DT(U, [ -+ C]) -+ c1[i], 
where K are irreducible terms. (Anything enclosed within '[ ... ]' brackets IS 

a sequent.) 

CODING OF PROTOLOGICAL DERIVATION TREES 

A derivation tree (from a given list of premises Xo, ... Xk-l) is a tree of 
sequents whose leaves are protological axioms, reflection principles, and 
premises from the given premise list, and whose other nodes are related by 
the protological inference rules. A derivation (from a given premise list) is a 
derivation tree with its conclusion sequent (the root of the tree) removed. 

Derivations and derivation trees may be coded as irreducible terms, using 
five l-ary constructors premise, none, one, two and rp. The free variables 
of the code of a derivation or derivation tree are the free variables of its 
constituent sequents. 

THE DERIVATION TREE PREDICATE, DT 

Four constructions are defined: DT, £,join and Join. 

THEOREM 1. DT(£, [ -+ T]) e>* T. 

THEOREM 2. DT(rp(A.[z].U), [(~) DT(U, [ -+ C1) -+ C1) e>* true. 

TREE CODES AND WELL-FOUNDEDNESS 

DEFINITION. A type symbol is a construction that has been given an interpre
tation as representing a coding of a class of trees as constructions. 

A well-foundedness relation T : II is defined, where T is any term and II is 
a type symbol (or a term reducing to a type symbol). 

253 
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From now on the identifiers 'n', '~', '<1>', ''f', '0' and '9', sometimes with 
subscripts or primes, will always be used as metavariables denoting type 
symbols (or terms that reduce to type symbols). 

THEOREM 3. (Well-foundedness reduction rule.) 

• If A t>*<J B then A : n iff B : n. 
• If n t>*<J ~ then A : n iff A : ~. 

Two fresh O-ary constructors, leaJ and rt, are introduced, along with three 
fresh l-ary constructors, map, product and pi. The following type symbols 
are defined: leaJ, map(n, ~), product(n, ~), pi[<I>}, . .. <l>k], and rt, where 
n,~, <I>}, ... <l>k are type symbols. 

THEOREM 4. (leaJ rule.) For any term T, T : leaJ. 

THEOREM 5. (map rule.) 

• If A : map(n,~) and B : n then AB : ~. 

• If, for any construction B : n, AB : ~,then A 

• If X jt, !! rf- X, U are constructions, and T[;] 
map(leaJ, ~). 

map(n,~). 

~, then (AX.T)[;] 

THEOREM 6. (Well-foundedness instantiation rule.) If A n and X jt then 

A[:] : n. 

THEOREM 7. (product rule.) 

• Any construction T such that T : product(n,~) is of the form (X, Y) 
for some constructions X : n and Y : ~. 

• left : map(product(n, ~), n). 

• right : map(product(n, ~), ~). 

• For any terms A and B, if A : n and B : ~ then (A, B) : product(n, ~). 

THEOREM 8. (pi rule.) 

• Any construction T such that T : pi[n, ... ~] is of the form [A, ... B], 
for some constructions A : n, ... B : ~. 

• For any terms A, ... B, if A : n, ... B : ~ then [A, ... B] : pi[n, . .. ~]. 

THEOREM 9. (if well-foundedness rule.) if : map(leaJ, map(n, map(n, n»). 
THEOREM 10. (Recursion well-foundedness rule.) 

reco : map(product(n, map(product(leaJ, n), n», map(leaJ, n». 

THEOREM 11. (fXpt id well-foundedness rule.) fxpt id : map(n, ~). 
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THEOREM 12. (Properties of rt.) 

• none : map(leaf, rt), 

• £ : rt, 

• one : map(product(leaf,product(rt, leaf)), rt), 

• two : 
map(product(leaf, product(rt, product(leaf, product(rt, leaf»)), rt), 

• rp : map(map(leaf, rt), rt). 

THEOREM 13. (Soundness of protologic.) If DT(D, ([F, .. . G],H» 1>* true, 
D : rt, F, ... G,H,X are constructions, and FX 1>* true, ... GX 1>* true, 
then HX 1>* true. 

THEOREM 14. (The join-lemma.) Suppose D is the code of a protological 
derivation without reflection principles of a sequent X from the premises 
Xo, ... Xk-l (k 2: 0). 

• For any terms Do, ... Dk-l, if DT(Do, Xo) 1>* true, ... DT(Dk-I' Xk- l ) 
1>* true then DT(join(D)[Do, ... Dk-d,X) 1>* true. 

• For any variables,! and terms K, join(D[:]) : map(pi[~], rt). 

k times 

THEOREM 15. (The Join-lemma.) If D is the code of a protological derivation 
without reflection principles of the sequent X from the premises Xo, ... Xk - l 
(k 2: 0) then 

• DT(Join(Code), [(do,.·. dk-l'~) DT(do,Xo), ... DT(dk-I,Xk-l) 
-+ DT(join(D)[do, ... dk-I],X)]) 1>* true; 

• Join(Code) : rt; 

where Code is «A[~].[Xo,··.Xk-d),(A[~J.(D,X))), and do, ... dk- l 1. D, 
Xo,·· .Xk-I'X. 

THEOREM 16. There is a construction D* such that DT(D*, [ -+ false]) 1>* 
true. 

LAYOUT OF WELL-FOVNDEDNESS ARGUMENTS 

In all well-foundedness proofs using the theorems in this chapter, I shall adopt 
the following display conventions. Each step will be shown on a separate 
line, with indentation to indicate the scope of informal quantifiers, as in the 
following outline example. 
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join(D})nil rt, by the join-lemma. 
For any construction X : product(}'.,4l), 

X is (A,B), for some constructions A }'. and B 4l. 
For any construction Y : 'P, 

FY: Q. 

F : map('P, Q) 
TX t>* C : II. 

T : map(product(}'.,4l),II). 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

Here, each well-foundedness assertion follows from the preceding lines using 
the theorems in this chapter. 

In line 1, I am supposing D} is the code of a protological derivation without 
reflection principles or premises. Then the assertion join(D} )nil : rt follows 
by the join-lemma with k = o. 

Line 2 is an informal quantifier ranging over well-founded trees X of type 
product(}'.,4l). The scope of the quantifier is lines 3-7, as the indentation 
indicates. 

Line 3 follows by the product rule from the hypothesis X : product(}'., 4l). 
Line 4 introduces a second quantifier, nested within the first. Its scope is 

line 5, indicated by the double indentation. 
Line 5 deduces (in some way not indicated here) that FY : Q. 

Line 6 (outside the quantification over Y) follows by the map rule from 
the fact if Y : 'P then FY : Q. 

Line 7 deduces (somehow) from the preceding lines that C : II, and since 
(we suppose) TX t>* C the conclusion is drawn that TX : II. 

Line 8 (outside the quantification over X) follows by the map rule from 
the fact that if X : product(}'., 4l) then TX : II. 
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THE EXPANDED TERM LANGUAGE AS A FUNCTIONAL 
PROGRA~NGLANGUAGE 

The Expanded Tenn Language (ET) is a notation for expressing construc
tions, which are essentially data structures and algorithms. Thus ET may be 
regarded in computer science tenns as a functional programming language, 
with the Tenn Language as its machine code and Protologic and Expanded 
Protologic as its correctness calculus. In this chapter I shall discuss the use 
of ET as a practical programming language, in comparison with other func
tional languages such as LISP (McCarthy, 1960), FP (Backus, 1978) and 
its successor FL (Backus, Williams & Wimmers, 1990), Standard ML (Mil
ner, Tofte & Harper, 1990; Milner & Tofte, 1991), Miranda (Holyer, 1991), 
Haskell (ACM, 1992; Davie, 1992), and Hope (Burstall, MacQueen & San
nella, 1980). (See also Chapter 13 for a comparison of ET with A-calculus.) 
The issues to be considered for each language are 

• correctness proofs, 

• functions as 'first-class' objects, 

• data types, including polymorphism and overloading, 

• pattern matching, 

• lazy data structures, streams and interactive programming, 

• modularity and programming in the large, 

• efficiency of execution. 

My main conclusion will be thatET, despite being a simple type-free language 
with strict evaluation, is able to fulfil most of the purposes that have led to the 
introduction of complex type systems and lazy evaluation in other languages. 

CORRECTNESS PROOFS 

Functional programming languages lend themselves readily to mathematical 
analysis; in the case of ET the properties of programs can be established 
either by infonnal argument (as in Chapter 15) or fonnally using Expanded 
Protologic. ET has a number of distinctive features that make such arguments 
more tractable and powerful than in the case of other functional languages. 

First, ET's syntax is very much simpler than other languages': compare 
for example the grammar of ET with the eleven pages of syntax charts for 
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Standard ML in Paulson (1991). The main reason for this is that features 
such as numbers, tuples, lists, algebraic types and pattern-matching function 
definitions are treated as metanotation in ET, whereas in other languages 
they are taken as part of the core syntax. Treating these features as meta
notation means that they are available when one wants to use them, yet they 
do not need to be taken into account when proving meta-theorems. In ET 
all metanotation is rewritten in terms of constants, variables, function appli
cations, A-abstractions and instantiations; moreover the A-abstractions and 
instantiations are removed by compilation. Hence if one wants to prove a 
meta-theorem by structural induction on terms there are only three cases to 
consider: constants, variables and function applications (see Chapter 15 for 
many examples of such proofs). Structural induction would be very much 
more difficult in the other languages, with their more elaborate syntax. Simi
larly there is no need to include special axioms and rules for numbers, tuples, 
etc., in Protologic; rather, theorems and rules for them can be derived as part 
of Expanded Protologic. 

A second advantage of ET is that it is accompanied by a correctness cal
culus, .Expanded Protologic, which encompasses the whole of constructive 
reasoning (if you believe the arguments in Chapters 8-10) and hence in
corporates program transformation techniques such as those of Burstall & 
Darlington (1977), while prohibiting invalid transformations where a total 
function is transformed into a partial function (Darlington, 1987), and it also 
incorporates FP's functional algebra (Harrison & Khoshnevisan, 1987). 

The third advantage of ET is its clear informal semantics. All functional 
languages are inspired by the principle of referential transparency, which 
states that the behaviour of any expression should be determined by its 
value, which is in tum determined by the values of its syntactic components 
(and not by the execution history, as in imperative languages). However 
several functional languages (LISP, Hope, Standard ML and FL) also include 
imperative features and hence do not live up to this principle. Recall from 
Chapter 13 the three principles on which ET is founded: 

• that functions are intensional, 

• compositionality - a strengthened form of referential transparency, 

• that a (free) variable stands for an arbitrary construction. 

These simplify the semantics considerably. In Miranda for example there are 
eight kinds of value: a value may be either data or a function, either finite 
or infinite, and either total or partial. In ET these is only one kind, since 
there is no distinction between data and functions, all values are finite, and 
all evaluation is strict. 

The consequences of these principles will be expanded on below. 
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FUNCTIONS AS OBJECTS 

An essential principle of the general-purpose computer is the unity of pro
grams and data. Both programs and data are represented as bit strings in the 
machine's memory, and the same sequence of bits can be interpreted as either. 
Thus a bit string may be generated by a compiler (during which process it is 
viewed as a data structure), then treated as a program and executed; alterna
tively, instead of being executed it could be taken as an input to a program 
that analyses its storage requirements or optimises it. Thus programs can 
be constructed, manipulated and taken apart by other programs in arbitrary 
ways. 

One would wish the same principle to be embodied in high-level language 
(albeit expressed in terms of high-level data structures rather than bit strings). 
Yet very few high-level languages allow this. Even functional languages, 
which claim to treat functions as 'first-class' objects (Milner & Tofte, 1991, 
Preface; Davie, 1992, p. 38), in fact treat functions as a special kind of object 
that can only be created individually by the user, using a special function 
definition notation, or produced by A-abstraction or via higher-order functions 
(these all being direct or indirect ways of forming lambda-abstractions or 
partially evaluated lambda-abstractions such as (A.x.(Ay.T»X), and whose 
internal composition cannot be examined. The only exception is the earliest 
functional language, LISP, where a A-expression is a list and can be created 
or decomposed like any other list. Unfortunately this feature was abandoned 
in later languages. It is reinstated in ET, where the only kind of object is a 
construction, any construction may act as a function, and any constructive 
function on constructions can be implemented as a construction. 

In other languages the special treatment of functions is sometimes justified 
by taking an extensional interpretation: if a function is given only in extension 
then it makes no sense to decompose it into syntactic components (Davie, 
1992, p. 19; Holyer, 1991, p. 183). My reply to this is that computing 
deals only with intensional functions (algorithms); one may wish to think 
of an algorithm as representing an extensional function, but the extensional 
function is in the eye of the beholder. The only circumstances in which it 
might be more natural to think of functions extensionally would be if it were 
possible to test functions for extensional equality, but of course this is not 
possible in any programming language. 

DATA TYPES 

Functional languages usually have elaborate type systems, including num
bers, characters, booleans, tuples, lists, algebraic types, and polymorphic 
types. ET is somewhat unusual in being type-free, although of course all the 
aforementioned data structures can be defined. The view I take of types is 
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that type-checking is a limited form of correctness proof and therefore should 
be considered as part of protologic. The conventional type apparatus can be 
translated into protologic as follows. 

The first step is to identify a type with the function that tests whether 
a construction is an instance of the type. For example, the type of natural 
numbers is identified with the function num defined by 

numO t:. 
= true, 
t:. 

num(Sn) = num(n). 

Hence I would interpret an algebraic type definition for binary trees of num
bers 

data tree == empty ++ tip(num) ++ node(tree # tree) 

(in Hope syntax) as a function definition 

t:. 
tree(empty) = true, 

t:. 
tree(tip(n» num(n), 

t:. 
tree(node(tt. t2» = tree(tt> & tree(t2), 

where empty is a O-ary constructor, tip and node are two l-ary constructors, 
and n, tl, t2 are three variables. Polymorphic type definitions are handled in 
a similar way. For example, the Hope definition 

data treeof(alpha) == empty ++ tip(alpha) ++ node(tree # tree) 

(where alpha is a type variable representing an arbitrary type) is interpreted 
as saying that treeo! is ('A.a.F), where F is defined by 

F(empty) 
t:. 
= true, 

F(tip(n» 
t:. 

a(n), = 

F(node(tl' t2» 
t:. 

F(tl) & F(t2)· = 

As a second polymorphic example, lists of any given type a make up the 
type listo!(a), where listo! is ('A.a.F) and F is defined by 

t:. 
F(nil) = true, 

t:. 
F(first, rest) = a(first) & F(rest). 
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In addition, deep polymorphism is possible, that is, polymorphic types 
parametrised by a polymorphic type rather than a monomorphic type as 
above. Deep polymorphism is usually not implemented in functional lan
guages. 

The second step is to identify a function type signature 

with a protological sequent 

where a, ... J3 are the free type variables in At. . .. Ab B. This works with 
any kind of types At. . .. Ab B, except for function types. (Higher-order 
function types, therefore, cannot be represented using protologic, although 
of course higher-order functions can be defined. If one really wanted higher
order function types one would have to use the protological interpretation of 
predicate calculus in Part ill.) For example, suppose we define a polymorphic 
function extract: treeof(a) ~ listof(a) that selects the items of type a from 
a binary tree and makes a list of them: 

e,. 
extract(empty) = nil, 

e,. 
extract(tip(n» = [n], 

e,. 
extract(node(t., t2» = concat(extract(t.), extract(t2», 

where concat concatenates two lists. In this case the type signature means 

(a, t) treeof(a)(t) ~ listof(a)(extract(t». 

The third step is to consider type checking as a protological derivation 
process. For example, to check the type signature extract: treeof(a) ~ 
listof(a) we apply the general structural induction rule for pattern matching, 
introduced in the final exercise of Chapter 19, to the type treeof(a), giving 

{ 

(a) ~ B[!mpty] 
(a, n) a(n) ~ B[~p(n)] 

(a, tt. t2) B[~ ] , B[~] ~ B[~ode(tl.tz)] 

(a, t) treeof(a)(t) ~ B~] 
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If we take B as listof(a)(extract(x)) in this rule then the conclusion is the 
desired sequent and the premises are 

(a) ---+ listof(a)(extract(empty» 

(a, n) a(n) ---+ listof(a)(extract(tip(n») 

(a, tl, t2) listof(a)(extract{tl », listof(a)(extract(t2» 

---+ listof(a)(extract(node(tl, t2))) 

of which the first two are derived by Reduction and the third is derived by 
Instantiation and Reduction from 

which is derivable by the general structural induction rule, applied to listof( a) 
(cf the List Rule in Chapter 19). Clearly this derivation procedure is deter
mined by the syntactic structure of the definitions of treeof(a) and listof(a), 
and hence type checking is decidable. It would be possible to define general 
type checking and type inference algorithms for ET, resembling the ones 
used for Standard ML, Miranda and Haskell; however, I prefer to take a 
more general view and define type checking as any decidable subsystem of 
proto logic, to be chosen by the language implementor or programmer. 

Overloaded functions are easily implemented in ET. For example, suppose 
we define an integer type by 

integer(int(m, n» ~ num(m) & num(n) 

where int is a fresh l-ary constructor. (In other words, an integer is essentially 
a pair of natural numbers.) Then we may wish to define functions equal and 
plus that apply both to natural numbers and integers (equal and plus are said 
to be 'overloaded'). We define plus first and then equal. 

plus(O,n) 
l::. 
= n, 

plus(Sm,n) 
l::. 

S(plus(m, n», = 

plus(int(m, n), int(p, q» 
l::. 

int(plus(m,p),plus(n, q» 

equal(O,O) 
l::. 
= true, 

equal(O, Sn) 
l::. = false, 

equal(Sm, 0) 
l::. = false, 

equal(Sm, Sn) 
l::. 

equal(m, n), = 

equal(int(m, n), int(p, q» 
l::. 

equal(plus(m, q),plus(n,p)). 
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The example can be extended to include rational numbers, the rational type 
being defined by 

6. 
rational(rat(p, int(n, n») = false, 

rational(rat(p, q» ~ integer(p) & integer(q) 

where rat is a fresh l-ary constructor. It is left as an exercise for the 
reader to define equal, plus, minus, times and divide as overloaded functions 
applicable to natural numbers, integers and rationals. (The use of 'laws', as 
in the first version of Miranda, to reduce integers and rationals to a unique 
representation (Davie, 1992, §4.9), seems unnecessary.) 

A feature of complex type systems that is not usually implemented in func
tionallanguages (because it makes type checking undecidable) is dependent 
types. For example, consider a type vector(n) of n-dimensional vectors (ex
pressed as tuples): in ordinary type notation, vector(n) = real x ... x real. 

, y , 

n times 
This can be defined in ET by 

6. 
vector(n)v vector' (n, v), 

6. 
vector'(1,x) = real(x) , 

6. 
vector' (S(Sn), (x, 1» real(x) & vector(Sn, l), 

assuming the type real is already defined. 
To conclude, the whole conventional type apparatus of functional pro

gramming, with the exception of higher-order function types, can be easily 
interpreted as metanotation in ET. The advantages of handling types in this 
way are as follows: 

• there is no need to complicate the syntax with type variables, type 
declarations, or special notations for polymorphism or overloading; 

• extensions to the type system may be made without fear of disrupting 
the existing type theory (for example, one might worry that deep poly
morphism introduces self-referential paradoxes), since the semantics is 
taken care of by the translation into ET; 

• types are constructions, so they can be manipulated in arbitrary ways 
(in the usual jargon, types are 'first-class citizens'); 

• a type discipline, requiring explicit type declarations and adherence 
to a limited set of types, can be enforced through a type-checking 
preprocessor, when desired; 

• alternatively, the type system can be extended when desired to a more 
powerful (and undecidable) system to support correctness proofs, as in 
Martin-Lof's (1975) type theory. 
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The type system can be as restricted or as flexible as one likes, since the 
full power of protologic is available. Any type system involves a trade-off 
between flexibility and security, and the optimal trade-off will be different 
for different software development projects. Hence the application program
mer should be free to load a suitable type-checking module for a particular 
application, or even different ones for different parts of a large system, just 
as one loads different library modules for different applications. 

PATTERN MATCHING 

One feature that ET shares with most other functional languages is the ability 
to define functions by pattern matching. The purpose of pattern matching 
is to allow function definitions to be written in a declarative equational 
style, avoiding the use of conditional expressions. Languages vary in the 
versatility of their pattern-matching mechanisms. In Hope, for example, one 
cannot rely on the patterns being applied in order, and hence one needs to 
avoid 'overlapping' patterns (that is, two patterns in one definition that can 
match the same argument), while in Standard ML no variable may occur more 
than once in a pattern. Consider for example the definition of the member 
function, which tests whether a given x is a member of a given list. In ET the 
definition is 

£:, 
member(x, nil) = false, 

£:, 
member(x, (x, rest» = true, 

£:, 
member(x, (first, rest» member(x, rest) 

the clauses being applied sequentially (see Chapter 15 for discussion of this 
and other examples). In Hope or Standard ML the definition would have to 
be rewritten as 

£:, 
member(x, nil) = false, 

member(x, (first, rest» ~ if x = first then true else member(x, rest) 

(using improvised syntax). Since the purpose of pattern matching is to re
place conditional expressions with equations covering the separate cases, the 
rewritten version is surely undesirable. Overlapping patterns are controver
sial (Moor, 1987). The most important objection to them is that they make 
the semantics of the function definition dependent on the order in which the 
clauses are applied and not just on the meaning of the individual clauses 
as equations; thus they appear to undermine the declarative nature of the 
definition. 
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In ET this objection can be countered using the formal theory of pattern 
matching. The semantics of a pattern-matching function definition 

is given by Theorems 41 and 42 of the Expanded Term Language and by 
Theorem 20 of Expanded Protologic, in which 

(u, x,~) fxpt ct>x = u, r -+ Ax = U 

is derived from the premises 

for i = 1, ... k. Now, admittedly there is nothing in this rule that takes account 

of the fact that the clauses f Xj ~ Tj are applied in order. However, the rule 
could be strengthened by writing the ith premise as 

(u,~,~)matchXt(Xj)=false, ... matchxi_t(Xj)=!alse, Tj~]=u, r -+ AXj=u 

(the proof in Chapter 19 is easily modified). This expresses in a purely 

declarative way the fact that the ith clause ! Xj ~ T j only applies to 
arguments matching Xj but not matching Xl, ... Xj-I. I did not write the rule 
in this form in Expanded Protologic because I thought it was complicated 
enough as it was and the stronger form was not needed at the time. 

A further variation on pattern-matching is that Haskell allows guards in 
the defining clauses. For example, the factorial function could be defined in 
Haskell by 

fac n In> 0 = n * fac( n-J) 
fac 0 = J 

where the guard n > 0 must be satisfied if the first clause is to apply. A 
similar facility could easily be added to the pattern-matching notation ofET: 
one simply replaces matchn by (branch matchn ('An.n > 0) (k false», or, 
in general, matchxi by (branch matchxi ('AXj.Gj) (k false», where Gj is the 
guard condition on pattern Xj. 
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LAZY DATA STRUCTURES, STREAMS AND 
INTERACTIVE PROGRAMMING 

Some functional languages (Miranda and Haskell, for example) use lazy 
evaluation, a method of evaluating expressions that is similar to normal 
order reduction in A-calculus except that repeated sub-expressions are only 
evaluated once. Other languages (Hope, FP, FL and Standard ML) use 
strict evaluation, in which arguments are fully evaluated before functions are 
applied to them, although Hope does provide lazy lists and an intensional 
conditional expression. LISP is normally strict but allows evaluation to be 
suppressed for some function arguments. 

Lazy evaluation is considered by some (Hughes, 1990) to be an essential 
feature of functional programming: its most important application is lazy 
lists, potentially infinite data structures that can be used to represent input or 
output streams in interactive programs, and that can allow complex functions 
to be decomposed cleanly into several pipelined processes. In intuitionis
tic terminology, infinite lazy lists are simply choice sequences and. stream 
functions (such as Add and Dup in the examples below) are continuous 
functions, so it is highly desirable that this style of programming should be 
implementable in a language that is intended to serve as the foundation for 
intuitionistic mathematics. 

In Chapter 13 I argued in favour of strict evaluation, on semantic grounds, 
so it might appear that lazy programming is not possible in ET. However, 
it is easy to implement the useful lazy facilities in a strict language. For 
example, an intensional conditional expression if C then A else B, in which 
C is evaluated, then either A or B depending on whether the value of C is true 
or false, can be defined in strict languages using 'functions of no arguments': 
the ET version is 

if C (Anil.A) (Anil.B) nil. 

I did not define such a metanotation in ET because it does not appear to be 
needed: the strict (branch C F G) construct (which is identical to the FP 
construct C --t F; G) is better suited to the contexts in which conditionals 
are used (see Chapter 15 for examples). 

Lazy lists can be implemented in ET in the same way as in other strict 
languages such as Standard ML (Myers, Clack & Poon, 1993, Appendix F). 
Define the metanotation 

(A: L) IS (Anil.(A, L» 

and two functions 
head x 

t:;. 
left(x nil), 

tail x 
t:;. 

right(x nil). = 
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EXERCISE. Verify that for any tenns A and L, 

• (A: L) 11' , (A : L)nil 1>* (A, L), 

• head(A: L) 1>*<] A and tail(A : L) 1>*<] L, if A and L are evaluable. 

As a simple example, define the lazy list from n by 

l:;. 
from n = (n :from(Sn». 

EXERCISE. Verify that 

• from 11' ,andfrom n andfrom(Sn) are evaluable, 

• headifrom n) 1>* nand tailifrom n) 1>*<] from(Sn), 

and hence that head(tailK (from N» reduces to N + K, for any numbers N, K 
(where tailK T is a metanotation for tail(tail(· .. (tail T)··· »). , , .... 

K times 

Stream functions, that is functions that act incrementally on lazy lists, may be 
defined in the usual way. For example, consider a function Add that receives 
as input a stream of numbers no, nlo n2, n3, ... and has to output the sums of 
consecutive pairs no + nI, n2 + n3, .... This is implemented in ET by 

Add 1 ~ (plus(head I, head(taill) : Add(tail(tail/))). 

EXERCISE. Verify that 

• Add 11', 
• Add 1 is evaluable, and hence Add X is evaluable if X is, 

• head(AddX) 1>*<] plus(headX,head(tailX» and tail(AddX) 1>*<] 

Add(tail(tail X», if head X and head(tail X) reduce to numbers and 
tail(tail X) is evaluable. 

Given as input a lazy list L, and assuming that L is irreducible and that 
head(tailK L) reduces to a number AK for each number K, it then follows that 
head(tailK(AddL» reduces to A2K + A2K+I , for any number K. As a second 
example of a stream function, consider a function Dup that duplicates its 
inputs: given no, nI, n2, ... it outputs no, no, nI, nI, n2, n2, .... This is defined 
in ET by 

Dupl ~ (head I: (head I: Dup(taill)). 
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EXERCISE. Verify that 

• Dup ;t, 
• Dup 1 is evaluable, and hence Dup X is evaluable if X is, 

• head(Dup X) £>*<1 head X if head X is evaluable, 

• head(tail(DupX» 1>*<1 headX and tail(tail(DupX» £>*<1 Dup(tailX), 
if head X and tail X are evaluable. 

These techniques can be applied to interactive programming. Suppose we 
connect the output stream of Add to the input stream of Dup and connect the 
output stream of Dup to the input stream of Add. To start the interaction, let 
us put 1 on the input stream of Dup. This can be specified informally by 

stream! = (1 : Add(stream2», 

stream2 = Dup(stream.). 

We can eliminate the mutual recursion and express this formally in ET as 

t:,. 
stream! nil = (1, Add(Dup(stream.»). 

EXERCISE. Verify that 

• head(tailK stream!) reduces to 2K, 

• tailK+! stream! is evaluable, 

• tailK+! stream! £>*<1 Add(Dup(tailK stream.», 

by induction on K (take the conjunction of the three statements as in
ductive hypothesis). This shows that stream! consists of powers of two, 
[1,2,4,8, ... ]. 

If one of the processes Add or Dup were replaced by a human user this would 
represent a model of interactive input-output, with the input and output appro
priately synchronised. The above calculations show how from assumptions 
about the user's behaviour we can deduce the course of the interaction. 

This examples indicate how the advantages of lazy programming can be 
achieved in a strict language without sacrificing the semantic clarity of strict 
evaluation. 
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MODULARITY AND PROGRAMMING IN THE LARGE 

A practical programming language needs a mechanism for dividing a complex 
program into self-contained pieces, called modules, that interact with each 
other through narrowly defined interfaces. Within each module data struc
tures and algorithms are encapsulated and may not be accessed from outside 
the module except through the interface; hence the interface of a module with 
the rest of the program serves as a specification for its behaviour. Modules 
should be stored in separate files, with the module specification and imple
mentation in different files to allow separate compilation when a module 
implementation is changed. A common kind of module is an abstract data 
type, which defines a single data type together with functions for creating 
and manipUlating instances of the type. 

Several functional languages (Miranda, Hope and Haskell) provide a crude 
kind of modularity. However, the module specification and implementation 
are not separated into different files, and sometimes an unnecessary distinc
tion is drawn between abstract data types and other modules. 

Standard ML has a more developed module system, in which signatures 
play the role of module specifications and structures play the role of module 
implementations. 

A modular organisation is used throughout most of this book, with the 
'theory' chapters being module specifications and the 'intermediate' chapters 
being module implementations (see Chapter 12). However, I have not as yet 
described any formal module notation for ET. Here is an example of how 
modules in ET would look. Consider the problem of implementing a stack 
as an abstract data type, where the elements of the stack may be of anyone 
type specified by the user. The specification would look as follows. 

module specification stacks; 
export stackof, empty, push, pop, top, null; 
(a.) -t stackof(o.)(empty) 
(e, s, a.) o.(e), stackoj(o.)(s) -t stackof(o.)(push(e, s» 
(s, a.) stackof(o.)(s) -t stackof(o.)(Pop(s» 
(s, a.) stackof(o.)(s), null(s) = false -t o.(top(s» 
(s, a.) stackof(o.)(s) -t boolean(null(s» 
(e, s, a.) o.(e), stackoj(o.)(s) -t pop(push(e, s» = s 
(e, s, a.) o.(e), stackoj(o.)(s) -t top(push(e, s» = e 
-t null(empty) 

(e, s, a.) o.(e), stackoj(o.)(s) -t null(push(e, s» = false 
end stacks. 

The module implementation would contain definitions of stackof, empty, 
push, pop, top and null, and protological derivations of the sequents in the 
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module specification. Any other module that wished to use, say, a stack of nat
ural numbers would import the stacks module and use the type stackof(num) 
with instances such as empty, pusheS, empty) and push(3,push(7, empty». 

Note that the module specification contains both sequents expressing 
type signatures (such as (s, a) stackof(a)(s) -i stackof(a)(pop(s») and 
sequents expressing correctness (such as (e, s, a) aCe), stackof(a)(s) -i 
pop(push(e, s» = s) and thus forms a complete specification of the abstract 
data type - unlike module interfaces in most other programming languages, 
where only type signatures are provided. 

This shows that ET lends itself naturally to modular programming. It 
may also be possible to implement the functors of Standard ML or the 
parameterised modules of OBJ (Goguen, 1990) in ET. An object-oriented 
style could certainly be supported. 

EFFICIENCY OF EXECUTION 

Functional languages tend to be inefficient in terms of execution time, due 
to the very high level of the languages, their reliance on heap storage and 
hence the frequent need to pause for garbage collection, the lack of updat
able data structures, and the complexities of implementing lazy evaluation. 
These difficulties (except for the last) also apply to ET. The simplest way of 
implementing ET is to compile ET terms into terms of T (the simple Term 
Language) and then to implement reduction of the T terms using an inter
preter. This method works, but produces extremely large T terms, arising 
from the compilation of nested A-abstractions, which are extremely slow to 
run. The size of the T terms can be reduced by introducing new combinators. 
Some common choices (Diller, 1988) are B, C, W,B', C', S', where 

Bxyz I> x(yz) 

B' wxyz I> wx(yz) 

Cxyz I> xzy 

C' wxyz I> w(xz)y 

Wxy I> xyy 

S' wxyz I> W(XZ) (yz). 

For example, this allows (Ax. w(xy» to compile to Bw( C id y) rather than 
s(kw)(s id (ky». A more powerful set of combinators Sn, kn' id~, Un may be 
introduced as metanotation of T, as follows. For n=O, 1,2, ... and i= 1, ... n, 

soXY is XY Sn+l XY is sn(sn(kns)X)Y 

koX is X kn+1X IS sn(knk)(knX) 

idn+1 
n+l is knid ·di 

l n+l is sn(knk)id~ 

unX is sn+! (Sn+l (sn(knk)X)(kJormer»(knlatter). 
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(Af!. T), 

(Af!.XY) ~ sn{Af!.X){Af!. Y), 

(Af!.b) ~ knb if b is a constant, or a variable but not at. ... an, 

( "I ) ~ l'dni fl.f!.ai r--r if ai is a variable and not ai+l, .. . an, 

fori=l, ... n, 

(Af!.{AXY.T) ~ un{Af!.{AX.(AY.T)). 

These combinators allow nested A-abstractions to be expressed concisely. 

EXAMPLE. 

(Axy(uv).vuxk) ~ uo(Axy.{Auv.vuxk» ~ uo(uo{Ax.(Ay.(Auv.vuxk»))) 

~ uo(uo(u2(Ax.(Ay.{Au.(A v. vuxk»)))) 

~ uO(UO(U2(S4(S4(S4(id! idl)id!)(k4k))))). 

EXERCISE. Derive formulae for the number of atoms in snXY, knX, id~ and 
unX in terms of the number of atoms in X and Y, and hence show that the 
term in the previous example has 302 atoms when compiled. 

EXERCISE. Derive simple reduction rules for snXY, knX, id~ and unX. 

Another way of mitigating the problem of enormous T terms is what might 
be called lazy compilation, that is, only compiling an ET term as far as is 
necessary for a particular computation. An example is 

(Ax.(AZ.XXX)y) = (Aw.www) ~ s(Ax.(Az.xxx»(ky) = s{Aw.ww)id t> false. 

In this case the two A-abstractions have only been compiled as far as is 
necessary to determine that their final components (ky and id) are different 
and hence the equality can reduce to false without compiling further. 

In a real implementation of ET one would also wish to implement certain 
metanotational constructs in a special way, particularly pattern matching and 
lazy lists, rather than simply rewriting them into ET syntax. The definitions 
given in this book for ET metanotation, the compilation mapping from ET to 
T, and the T reduction mechanism, should be regarded as a formal semantics 
rather than a practicable implementation method. 
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CHAPTER 24 

INTRODUCTION TO PART III 

The Theory of Constructions can be used to give an interpretation of first
order number theory. First-order number theory consists of formulae built 
up from atomic formulae using logical connectives and quantifiers, where 
the atomic formulae express the results of primitive recursive computations. 
The standard formalisation of this theory is Peano Arithmetic. 

The key idea in the interpretation is that the meaning of a number-theoretic 
formula is given by what constructions count as proofs of it. In contrast with 
classical semantics, where the notion of proof is defined in terms of a prior 
notion of truth, in intuitionism the semantics of a formula is given entirely 
by the proof relation, 1-. As I argue in Chapter 6, the notion of truth does not 
enter into the semantics at all. 

Formulae, then, are interpreted as tests for constructions or, as I shall say, 
as proof functions (functions testing whether a given construction is to count 
as a proof). 

As argued in Chapter 10, the proof relation is undecidable; however this 
does not rule out a formal theory shedding some light on it. Every proof is 
a tree, under some encoding of trees as constructions. Every proof function 
has two components: a decidable test A to be applied to constructions, and a 
coding n of a class of trees as constructions. For a construction to succeed as 
a proof it must pass the A test and it must represent a well-founded tree, under 
the coding n. The division of labour between these two components of the 
proof function, A and n, is such that if all the atomic formulae of the given 
formula were replaced by true then the A test would be trivially satisfiable, 
while the n component would be unchanged. The tree coding n depends on 
the logical structure of the formula in terms of connectives and quantifiers 
but is independent of the atomic formulae; whereas the A component looks 
after the atomic formulae but ignores questions of well-foundedness. 

The following mathematical chapters are organised into theories and inter
mediate chapters (in the manner explained in Chapter 12), carrying straight 
on from the Coding of Trees theory in Part II. There are five theories, as 
follows. 

272 
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• Logic (L) contains definitions of the basic logical constants, which are 
constructions acting on proof functions. Previous accounts of intuition
istic logic have aped classical logic in taking 1\, V, ::::), 3 and Vas logical 
primitives (though it is sometimes pointed out that V can be defined in 
terms of 3 (Dummett, 1977, §2.1), and Kreisel (1962) has speculated 
that there may be other intuitionistic propositional connectives than the 
usual ones). I depart from this tradition by starting with a different and 
more expressive supply of logical constants, val, con, predify, 1\, 3, 0 
and 6. The intuitionistic proof relation I- is defined in this theory as a 
relation between terms and proof functions. 

• The Calculus of Proof Functions (CPF) formalises the relations between 
proof functions. It is an axiomatic theory dealing with sequent expres
sions of the form I, ... J '* K; such a sequent means roughly that a 
proof of the proof function K may be obtained from proofs of the proof 
functions I, ... J. In particular, if,* K is derivable in CPF then K has 
an intuitionistic proof. 

• Logic of Partial Terms (LPT) is an axiomatic theory essentially con
sisting of first-order intuitionistic predicate calculus with equality and 
induction, adapted to dealing with terms that may not have values. LPT 
is expressed wholly in terms of logical formulae rather than proof func
tions. The usual logical constants, V, ::::) and V, are defined in terms 
of the primitive logical constants (via another logical constant, denoted 
'. '). An unexpected feature of these definitions is that two notions of 
implication emerge: there is one logical constant, ::::), which obeys the 
usual introduction and elimination rules and therefore truly deserves the 
name 'implication', and there is a stronger logical constant, > ('super
implication'), which corresponds to the sequent arrow '* of CPF and 
which is closer to the traditional intuitionists' definition of implication. 
Of the two, > is more primitive: ::::) is defined in terms of >. Every 
formula of LPT may be interpreted as a proof function; every theorem of 
LPT corresponds to a theorem of CPF and therefore has an intuitionistic 
proof. 

• Heyting Arithmetic (HA) emerges as a restriction of LPT, in which the 
variables range over numbers and all terms are built out of primitive re
cursive functions. This gives the intended interpretation of intuitionistic 
arithmetic; the axioms all have proofs, the rules of inference all preserve 
provability, and intuitionistically unsound modes of reasoning, such as 
Markov's Principle, are unprovable. 

• Peano Arithmetic (PA) is HA plus the Principle of Excluded Middle, 
and is interpreted in HA using a Gooel-Gentzen double-negation inter
pretation. This is obviously not the intended interpretation of PA, but it 
is the best interpretation an intuitionist can give to it. 
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Thus the outcome is an interpretation ofPeano Arithmetic showing how every 
theorem has an intuitionistic proof. It is traditional in intuitionism to take HA 
rather than PA as the formalisation of number theory, but the proof-theoretic 
difference between them is so slight that I prefer to go all the way to PA. This 
may help to dispel the widespread impression that intuitionism is 'classical 
mathematics minus the Excluded Middle'. 
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FROM THE CODING OF TREES TO LOGIC 

In intuitionism a fonnula of predicate calculus is interpreted as a proof 
function (that is, a function that tests whether a given construction is to 
count as a proof), and will be represented here as a tenn, I. If IX 1>* true 
then I shall say that X passes the test, or is a proof of I. If this were the 
whole story then proofuood would be decidable. So to take account of the 
undecidable well-foundedness aspect of proof (Chapter 10) I is required to 
consist of a decidable part A and a tree coding ll. The definition of proof is 
amended to read: X is a proof of I iff AX 1>* true and X : ll. (Thus every 
proof is a tree.) 

As a special case, suppose A is of the fonn (t..nil.T) and II is leaf; then any 
construction will count as a proof of I if T 1>* true, and no construction will 
count otherwise. Such a proof function I may be regarded as representing the 
atomic formula T. This corresponds to the intuitionistic principle that atomic 
fonnulae are decidable and so have a truth value without need of proof. 

A predicate is something that associates a proof function with any con
struction x. For simplicity I shall always assume that the II part of the proof 
function does not depend on x. 

The logical constants are functions that build a new proof function or 
predicate out of given proof functions or predicates. In this chapter I shall 
define fonnally the notions of proof function and predicate, introduce atomic 
fonnulae and the basic logical constants (val, con, predify, /\, :3,0 and 6), 
and prove their properties. 

PROOF FUNCTIONS, PROOFS AND PREDICATES 

DEFINITION. Let Pfn be a fresh l-ary constructor. A proof function is a tenn 
I such that I 1>* pfn(A, ll) st ,for some tenn A and type symbol ll. 

DEFINITION. Let pred be a fresh l-ary constructor. A predicate is a tenn P 
such that P 1>* pred(F, ll) st , where Fx is evaluable for any variable x and 
II is a type symbol. 

I shall use the letters 'I' and '1' to denote proof functions and the letter' P' to 
denote a predicate. 

275 
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THEOREM 1. Let X be an irreducible term. If I is a proof function then so is 

1[;], and if P is a predicate then so is p[;]. 
Proof. First, sUPfose I is a proof function and let I t>* pfn(A, n) ~ . Then 

1[;] t>* pfn(A[; ,n) ~ , which is also a proof function. 

Secondly, suppose P is a predicate, let P t>* pred(F, J:.) ~ and let u be a 

fresh variable; thus Fu is evaluable. Now, p[;] t>* pred(F[;] ,J:.) ~ ,where, 

for any variable v, F[;] v ?t (FU)[;][~], which is evaluable since Fu is. 

This shows that p[;] is a predicate. I 

DEFINITION. The relation 1-, between terms and proof functions, is defined 
by: 

X I- I iff I t>* pfn(A,n) ~ , AX t>* true and X: n. 

If X I- I holds then X is said to be an intuitionistic proof (or just a proof) of 
I. 

The following theorem verifies the familiar intuitionistic principle that pos
sessing a method for obtaining a proof is tantamount to possessing a proof. 

THEOREM 2. (Extensionality of 1-.) If X t>*<1 Yand I is a proof function 
then X I- I iff Y I- I. Moreover if I t>*<1 J then X I- I iff X I- J. 

Proof. Immediate from the definition and the well-foundedness reduction 
rule. I 

THEOREM 3. If Q I- I and X ~ then Q[;] I- 1[;]' 
Proof. Let I t>* pfn(A, n) ~. The hrnothesis that Q I- I means that AQ 

t>* true and Q : n. Hence A[;] Ql;J t>* true and Q[;] : n. Thus 

Q[;] I- pfh(A~] ,n) <1* I[;J. I 

THE BASIC LOGICAL CONSTANTS 

DEFINITION. (Atomic formulae.) For any term T let r T 1 be the proof function 
pfn( ('A nil. T), leaf). 
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THEOREM 4. (Conservativeness of I- over reduction.) Let r be any tenn, let 
:! be any variables, and let K be any irreducible tenns . 

• If Q is a construction then Q I- frl [~] iff r[~] [>* true . 

• IfQisanytennsuchthatQl-fr1[i]thenr[i] [>* true. 

Proof. Note that (Anil.T)[i] Y [>* r[i], for any irreducible tenn Y, since 

(Anil.T)[i] Y 4 «Anil.r)y)[i][n [>* r[i][;] 4 r[i]. where y is a fresh 
variable. 

To prove the L~t part of the theorem, Q I- frl [i] iff (Anil.T)[i] Q [>* 

true and Q leaf, and this is the case iff r[i] [>* true. 

For the second part, if Q I- f r 1 [i] then (Anil. T)[ij Q [> * true, so Q [> * 

Q' , for some Q' and (Anil.T)[i] Q' [>* true, so r[i [>* true. I 

Next we need some functions relating proof functions to predicates. The 
'value' of a predicate pred(F, IT) at an 'argument' x is the proof function 
pfn(Fx, IT); note that the decidable part Fx depends on x but the tree coding 
IT never does. Conversely, given a proof function pfn(A, IT) and a variable 
x we can obtain a predicate pred«Ax.A), IT) by A-abstraction. In the special 
case where the proof function does not depend on x it is easier to fonn the 
predicate pred(kA, IT) instead. These three operations will be accomplished 
by the functions val, predify and con respectively. 

DEFINITION. Define the constructions val and con by 

val is (Apred(j, U).(AX.pfn(jX, u))) 

con is (Apfn(a, u).pred(ka, u» 

where f, u, x, a are four variables. 

THEOREM 5. If P is a predicate and X , then val P X is a proof function. If 
I is a proof function and X , then con I is a predicate and vale con l)X [> * <l 

I. 

Proof. Let P [>* pred(F, IT) , , and let x be a fresh variable. Then Fx is 
evaluable so Fx [>* B , for some tenn B. Hence val P X [>* pfn(FX, IT) 

[> * pJn(B[;] , IT) , . This establishes that val P X is a proof function. 

Let I [>* pJn(A, 'L) ,. Then conI [>* pred(kA, 'L) " and kAx [>* 

A , , for any variable x, so conI is a predicate. Moreover, val(conl)X [>* 

pfn(A, 'L) <l* I, as required. I 
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DEFINITION. Define a construction predify as 

('At.pred(s(k('A.pjn(a, u).a»t, ('A.pjn(a, u).u)(t nil») 

where t, a, u are three variables. 

THEOREM 6. If I is a proof function and x is a variable then predify('Ax.I) is 
a predicate and val(predify('Ax.I»x t>*<] I. 

Proof Let I t> * pjn(A, n) )'t ; let a, u be two fresh variables. Then 

predify('Ax.I) 

t> * pred(s(k('Apjn(a, u).a»('Ax.l), ('Apjn(a, u).u)«'Ax.I) nil» 

t> * pred(s(k('Apjn(a, u).a»('Ax.I), ('Apjn(a, u).U)(Pjn(A[ ;il] ,II») 

t> * pred(s(k('Apjn(a, u).a»('Ax.I), II) )'t 

Also, for any variable y, 

s(k('Apjn(a, u).a»('Ax.I)y t> * ('Apjn(a, u).a)«'Ax.l)y) 

t>* ('A.pjn(a,u).a)(Pjn(A[~] ,II» t>* A[~] )'t, 

so s(k('Apjn(a, u).a»('A.x.I)y is evaluable. This confirms that predify('Ax.I) is a 
predicate. In addition, 

val(predify('A.x.l))x t> * pjn(s(k('Apjn(a, u).a»('Ax.I)x, II) 

t>* pjn«'Apjn(a, u).a)«'Ax.I)x), II) 

as required. I 

t> * pjn«'Apjn(a, u).a)(pjn(A, II», II) 

t>* pjn(A,II) <]* I 

Next I shall define two familiar intuitionistic logical constants, conjunction 
(A) and existential quantification (3). 

DEFINITION. Define constructions Ad, Aw and A by 

Ad is ('A(a, b).('A.(q, r): aq & br» 

Aw is product 

A is ('A(pjn(a, u),pjn(b, v».pjn(Ad(a, b), Aw(u, v») 

where a, b, u, v, q, r are six variables. 



FROMCTTOL 279 

THEOREM 7. If I and J are proof functions then so is I\(I,J). 

Proof Let I t> * pfo{A, II) [t and J t> * pfo{B,~) [t ; let q, r, a, b be four 
fresh variables. Then 

I\(I,J) t>* Pfo(l\d(A,B),l\w(n,~» 

t>* pfo«A.(q,r):aq&br)[~:!] ,product(II,~» [t 

which is clearly a proof function. I 

THEOREM 8. If I and J are proof functions and Q is a term, then Q f- 1\(1, J) 
iff Q t>* (RIo R2) [t , where Rl f- I and R2 f- J. 

Proof As in the previous theorem, let I t>* pfo(A, II) [t, let J t>* 

pfo(B,~) [t , and let q, r, a, b be four fresh variables. Then 

I\(I,J) t>* Pfo«A(q,r):aq&br)[~:!] ,product(II,~» [t 

Now, if Q f- I\(I,J) then (A(q,r):aq&br)[~:!lQ t>* true and Q : 

product(II, ~). Hence, by Theorem 38 of the txpanded Term Language, 
Q t>*<J (RJ,R2) for some irreducible terms RJ,R2' which means that Q t>* 
(R\, R2) [t . It follows that AR\ & BR2 t>. true, and also R\ : II and R2 : ~. 
Thus R\ f- I and R2 f- J. 

The converse is similar. I 

DEFINITION. Define constructions 3d , 3w and 3 by 

3d is (Aj.(A(X, q):jxq» 

3w is (Au.product(leaj, u» 

3 is (Apred(j, u).pfo(3d, 3wu» 

where j, x, q, u are four variables. 

THEOREM 9. If P is a predicate then 3P is a proof function. 

Proof Let P t> * pred(F, II) [t ; let x, q,j be three fresh variables. Then 

3P t> * pfo(3dF,3wII) t> * pfo«A(X, q):jXq)~] ,product(leaj, II» [t 

which is clearly a proof function. I 
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THEOREM 10. If P is a predicate and Q is a term, then Q I- 3P iff Q e> * 
(X,R) , ,where R I- valPX. 

Proof As in the previous theorem, let P e>* pred(F, ll) , and let x, q,f be 

three fresh variables. Then 3P e>* pfn«A,(x, q):fxq)~] ,product(leaf, ll» , . 

Now, if Q I- 3P then (A,(x, q):ftq)~] Q e>* true and Q : product(leaf, ll). 

Hence, by Theorem 38 of the Expanded Term Language, Q e> * <l (X, R) for 
some irreducible terms X,R, which means that Q e>* (X,R) , . It follows 
that FXR e>* true and R : ll. But val P X e>* pfn(FX, ll) e>* pfn(A, ll) , 
for some term A where FX e> * A , , so AR e> * true and hence R I- val P X. 

The converse is similar. I 

Next comes an unfamiliar logical constant, O. Loosely speaking, a proof 
of 0 (I, P) is a function mapping any x and any proof of J to a proof of 
val P x, together with a protological derivation shpwing that this property 
holds. The logical constant 0 combines implication (or, strictly speaking, 
super-implication - see Chapter 29) with universal quantification. The reason 
for combining them is simply that it saves duplication of arguments in later 
chapters. 

DEFINITION. Define constructions Od, Ow, 0 and elo by 

Od is (A,(a,f).(A,(d, t): DT(d, [(q,x) aq ~ ft(tqx)]») 

Ow is (A,(u, v).product(rt, map(u, map(leaf, v»))) 

o is (A,(pfn(a, u),pred(f, v».pfn(Dd(a,f), 0 w(u, v))) 

elo is right 

where a,f, d, t, q, x, u, v are eight variables. 

THEOREM 11. If J is a proof function and P is a predicate then 0 (J, P) is a 
proof function. 

Proof Let! e>* pfn(A,ll), andP e>* pred(F,"f.),. Leta,f,d,t,q,xbe 
six fresh variables and let Fx e> * B , . Then 

O(l,P) e>* pfn(Dd(A,F),Ow(ll,"f.» 

e> * pfn«A,(d, t): DT(d, [(q,x) aq ~ ft(tqX)]»[~:~] , 
product(rt, map(ll, map(leaf, "f.»» , 

which is clearly a proof function. I 
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THEOREM 12. For any proof function I, predicate P, and terms Q,R, where 
I, P, Q, R have no free variables, and any construction X, if Q I- I and 
R I- O(I,P) then eloRQX I- valPX. 

Proof LetI t>* pjh(A, n) .II' , let P t>* pred(F, I:.) .II' , and let a,f, t, q,x be 
five fresh variables. ThenvalPX t>* pjh(FX,I:.) t>* pjh(B,I:.) .II' forsome 
term B. Now, our hypotheses that Q I- I and R I- D(l, P) mean that AQ t>* 
true, Q : n, Od(A,F)R t>* true, and R : Ow(n,I:.). It follows that Q t>* 
Q' and AQ' t> * true for some construction Q'; and similarly R t> * R' and 
D d(A, F)R' t> * true for some construction R'. 

By Theorem 38 of the Expanded Term Language, R' t>*<J (D, T), for 
some irreducible terms D and T; hence in fact R' t>* (D, T) .11', and 

thus DT(D, [(q,x) aq -+ .fx(tqx)][~j:n) t>* true, D : rt, and T : 
map(n, map(leaJ, I:.». 

Now, the sequent [(q,x) aq -+ .fx(tqx)][~:;:n is really 

([(A,[q, x].aq)[ ~ ]], (A,[q, x]f.x(tqx»~·:']>, 

and we have (A[q,x].aq)[~] [Q',X] t>* AQ' t>* true, so by the soundness 

of protologic we may infer that true <J* (A[q,x]fx(tqx»~'i] [Q', X] t>* 

FX(TQ'X) t>*<J B(elcRQX). 

I 
Also, elc R Q X t>" <J TQX : I:., so we have verified that elc R Q X I- val P X. 

EXERCISE. Why do we need to assume that I, P, Q, R, X have no free vari
ables in the previous theorem? What is the most that may be concluded if 
I, P, Q,R,X have free variables? 

A variation of 0 that we shall also need is 6, defined next. Loosely speaking, 
6(l,P) is a predicate with the property that a proof of val(6(l,P»x is a 
function transforming any proof of I to a proof of val P x, together with a 
protological derivation verifying that the function works as claimed. 

DEFINITION. Define constructions 6 d , 6 w and 6 by 

6 d is (A(a,f).(Ax.Od(a,k(jx»» 

6 w is Ow 

6 is (A(pjh(a, u),predlf, v».pred(6d(a,j), 6 w(u, v))) 

where a,f, x, u, v are five variables. 
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THEOREM 13. If / is a proof function, P is a predicate, and x is a variable, 
then .6.(1, P) is a predicate and val(.6.(I, P»x t>* <] 0(1, con(val P x». 

Proof Let / t>* p}h(A,n) , and P t>* pred(F,'£.) , . Let a,f,u be three 
fresh variables. Then 

.6.(1, P) 

t> * pred(.6.d(A, F), .6.w(rr, '£.» 
t>* pred«Ax.Dd(a,k(fx)))[::~] ,product(rt, map(rr,map(leaj, '£.»))) , 

Moreover, using the properties of evaluable terms in the Expanded Term 
Language, Fu is evaluable and hence so is k(Fu); Od(a,f) is evaluable and 

hence so is Od(A, k(Fu» <]* (Ax.Dd(a, k(fx)))[::~] u. Thus, for any variable 

y, (Ax.Dd(a, k(fx)))[::~] y is evaluable. This estaplishes that .6.(1, P) is a 
predicate. Moreover, 

as required. I 

val(.6.(/, P»x t> * <] p}h(Dd(A, k(Fx», Ow(rr, '£.» 
t> * <] o (P}h(A, rr),pred(k(Fx), '£.» 
t> * <] 0 (I, con(val P x» 

EXERCISE. Show that, if A, B, C, D are terms and x is a variable then 

is a proof function. 

The logical constants introduced above generate all the proof functions 
needed for the interpretation of arithmetic, though they certainly do not 
generate all proof functions possible. 

The protological properties of the logical constants 1\ and 0 can be 
summed up in the following theorems. 

THEOREM 14. Protologicall\d-rule: 
(q, r,~) Aq, Br, r -+ c[~q,r)] 

(P,~) I\d(A, B)p, r -+ C 

where p, q, r are three variables, p r{. A, B, r, and q, r r{. A, B, r, C. 

Proof Let a and b be two fresh variables. 
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(q, r,!:) Aq, Br, r -+ C[~q,r)] 
=~~-~~-=~=====~=~ext 

(a,b,p,q, r,~) a =A, b = B, (q,r) = p, aq, br, r -+ C 
&,cut 

(a,b,p,q,r,!:.)a=A, b=B, (q,r)=p, aq&br, r -+ C 
============================(U:D 

(a, b, p,!:.) a = A, b = B, ('A(q, r): aq & br)p, r -+ C 
=========================red 

(a,b,p,!:.)a=A, b=B, I\d(a,b)p, r -+ C 
=============ext 

(p, z) I\d(A, B)p, r -+ C 
I 

THEOREM 15. Protological Dd-rule: 

(d, t,!:.) DT(d, [(q, x) aq -+ .fx(tqx)]), r -+ C[~d,t)] 
(p, z) Dd(a,f)p, r -+ C 

where q,x, a,f, d, t,p are seven variables, p fI. r, and d, t fI. r, c. 
Proof 

(d, t,!:.) DT(d, [(q, x) aq -+ .fx(tqx)]), r -+ C[~d,t)] 
==================ext 
(p, d, t, !:.)(d, t) = p, DT(d, [(q, x) aq -+ .fx(tqx)]), r -+ C 
===================(U:D 

(p,!:.) ('A(d, t): DT(d, [(q,x) aq -+ .fx(tqx)]»p, r -+ C 
===========-========== red 

(p, Z) Od(a,f)p, r -+ C 
I 

THEOREM 16. O-lemma: 
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• DT(Elc(Y)u, [(a,f, q,x, r) aq, Dd(a,f)(Yur) -+ .fx(el[J(Yur)qx)]) 1>* 

true 

• Elo : map(map(w, map(leaf, Ow{ll, ~»), map(w, rt» 

• elo : map(Dw(IT,~),map(IT,map(leaf,~») 

where the construction Elo is defined in the proof, Y is any construction, W, 
IT and ~ are type symbols, and u, a,f, q,x, r are six variables. 

Proof Let d, d' ,t be three fresh variables. Let DI be the code of the 
protological derivation 

(q,x) aq -+ .fx(tqx) ,(PI) 
------mst 

-+ aq (pO) aq -+ .fx(tqx) 
-----------cut 

-+ .fx(tqx) 
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where the premises are labelled 'pO' and 'pI' to indicate their order in the 
premise list. By the Join-lemma 

DT(Join(Code), [(d', d, t, a,f, q,x, r) DT(d', [ --+ aq]), 

DT(d, [(q,x) aq --+ fx(tqx)]) 

--+ DT(join(Dl)[d', d], [ --+ fx(tqx)])]) [> * true 

where Code is 

«A[t, a,f, q,x, r].[[ --+ aq], [(q,x) aq --+ fx(tqx)]]), 

(A[t, a,J,x, q, r].(Dt. [ --+ fx(tqx)]))). 

Let In be join(D})[£, left(Yur)] and let ~ be d, t, a,f, q, x, r. By Theorem 2 in 
the Coding of Trees, 

DT(rp(A[z].Jn), [(z) DT(Jn, [ --+ fx(tqx)]) --+ fx(tqx)]) [>* true. - -

Now let T be the term DT(d, [(q, x) aq --+ fx(tqx)]), and let D2 be the code 
of the proto logical derivation 

(d', z) DT(d', [ --+ aq ]), T --+ DT(join(D})[d', d], [ --+ fx(tqx)]) (pO) - ~ 

(z) DT(£, [ --+ aq]), T --+ DT(join(D1)[£,d], [ --+ fx(tqx)]) - ~ 

(~) aq, T --+ DT(join(D})[£, left(d, t)], [ --+ fx(tqx)]) 
--------------------thin 
(z) aq, (d, t) = Yur, T --+ DT(join(Dd[£, left(d, t)], [ --+ fx(tqx)]) 
- ~ 

(z) aq, (d, t) = Yur, T --+ DT(Jn, [ --+ fx(tqx)]) 
- cut with pI 

(~) aq, (d, t) = Yur, T --+ fx(tqx) 
------------red 
(yaq, (d, t) = Yur, T --+ fx(e1o(d, t)qx) 
--------------~ 
(yaq, (d, t) = Yur, T --+ fx(elo(Yur)qx) 

-----------------(AX:D 
(a,f, q, x, r) aq, (A(d, t): n(Yur) --+ fx(elo(Yur)qx) 
-----------------roo 

(a,f, q,x, r) aq, Od(a,f)(Yur) --+ fx(elo(Yur)qx) 

where the step marked 'cut with pI' is a Cut with the sequent 

(~) DT(Jn, [ --+ fx(tqx)]) --+ fx(tqx), 

which is premise 1. Define a recursive function Elo such that 

E1c(Y) [> * (Aujoin(D2)[Join(Code), rp(A[~].Jn)]). 
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Then by the join-lemma 

DT(Elo(Y)u, [(a,f, q,x, r) aq, Dd(a,J)(Yur) -t .fx(eldYur)qx)]) 1>* true 

as required. 
To check the well-foundedness conditions, 

for any constructions Y : map(cII,map(leaj,D w(ll,1:.») and U : ell, 
c:rt 
YUr : Dw(ll,1:.) 1>* product(rt,map(n,map(leaj,1:.») 
left(YUr) : rt 

In[~] ~ join(D})[c,lejt(YUr)] : rt, by the join-lemma 

(A[~.Jn)[ ~I : map(leaj, rt), by the map rule 

rp(A[~].Jn)~] : rt 
Join(Code) : rt, by the Join-lemma 

Elo(Y)U 1>* jOin(D2[~])[JOin(Code), rp(A[~].Jn)[~]] : rt, by the join
lemma. 

EID : map(map(cII, map(leaj. Ow(ll, 1:.»). map(cII. rt». as required. 
Also. for any construction V : D w(ll.1:.), 

V is (D. T). for some constructions D : rt and T : map(n, map(leaj. 1:.» 
e10 V 1>* T : map(n.map(leaJ,1:.». 

elo : map(D w(n.1:.),map(n.map(leaj.1:.»), as required. 
I 
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LOGIC 

PROOF FUNCTIONS, PROOFS AND PREDICATES 

DEFINmON. Let pfn be a fresh l-ary constructor. A proof function is a term 
I such that I [>* pfn(A, II) ;t ,for some term A and type symbol II. 

DEFINmON. Let pred be a fresh l-ary constructor. A predicate is a term P 
such that P [>* pred(F, II) ;t , where Fx is evaluable for any variable x and 
II is a type symbol. 

I shall use the letters '1' and 'J' to denote proof functions and the letter' P' to 
denote a predicate. 

THEOREM 1. Let X be an irreducible term. If I is a proof function then so is 

1[;], and if P is a predicate then so is p[;]' 
DEFINmON. The relation 1-, between terms and proof functions, is defined 
by: 

X I- I iff I [> * pfn(A, II) ;t , AX [> * true and X: II. 

If X I- I holds then X is said to be an intuitionistic proof (or just a proof) of 
I. 

THEOREM 2. (Extensionality of 1-.) If X [>*<3 Y and I is a proof function 
then X I- I iff Y I- I. Moreover if I [>*<3 J then X I- I iff X I- J. 

THEOREM 3. If Q I- I and X ;t then Q[;] I- 1[;]. 

286 
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THE BASIC LOGICAL CONSTANTS 

DEFINITION. (Atomic fonnulae.) For any tenn T let r T' be the proof function 
pjn«Anil.T), leaf). 

THEOREM 4. (Conservativeness of r over reduction.) Let T be any tenn, let 
,! be any variables, and let X. be any irreducible tenns . 

• If Q is a construction then Q r rT' [i] iff T[i] e>* true . 

• If Q is any tenn such that Q r rT' [i] then T[i] e>* true. 

DEFINITION. Define the constructions val and con by 

val is (')..pred(f, u).(')..x.pjn(Jx, u») 

con is (')..pjn(a, u).pred(ka, u» 

where j, u, x, a are four variables. 

THEOREM 5. If P is a predicate and X st then val P X is a proof function. If 
1 is a proof function and X st then con 1 is a predicate and val( con I)X e> * <I 

I. 

DEFINITION. A construction predify is defined. 

THEOREM 6. If 1 is a proof function and x is a variable then predify(')..x./) is 
a predicate and val(predify(')..x./»x e>*<1 I. 

DEFINITION. Define constructions I\d, I\w and 1\ by 

I\d is (')..(a, b).(')..(q, r): aq & br» 

I\w is product 

1\ is (')..(pjn(a, u),pjn(b, v».pjn(l\d(a, b), I\w(u, v») 

where a, b, u, v, q, r are six variables. 

THEOREM 7. If 1 and J are proof functions then so is 1\(/, J). 

THEOREM 8. If 1 and J are proof functions and Q is a tenn, then Q r 1\(/, J) 
iff Q e>* (RbR2) st ,where R. r 1 and R2 r J. 

DEFINITION. Define constructions 3d , 3w and 3 by 

3d is (')..j.(')..(x, q):fxq» 

3w is (')..u.product(leaj, u» 

3 is (')..pred(f, u).pjn(3J, 3wu» 

where j, x, q, U are four variables. 
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THEOREM 9. If P is a predicate then 3P is a proof function. 

THEOREM 10. If P is a predicate and Q is a term, then Q f- 3P iff Q t> * 
(X, R) p£ , where R f- val P X. 

DEFINITION. Define constructions Od, Ow, 0 and elo by 

Od is ('A(a,f).('A(d, t): DT(d, [(q,x) aq -+ jx(tqx)]») 

Ow is ('A(u, v).product(rt, map(u, map(leaj, v»))) 

o is ('A(pjn(a, u),pred(j, v».pjn(L.ld(a,f), Ow(u, v») 

elo is right 

where a,j, d, t, q, x, u, v are eight variables. 

THEOREM 11. If I is a proof function and P is a predicate then 0 (I, P) is a 
proof function. 

THEOREM 12. For any proof function I, predicate P, and terms Q, R, where 
I, P, Q, R have no free variables, and any construction X, if Q f- I and 
R f- O(l,P) then eloRQX f- valP X. 

DEFINITION. Define constructions 6.d , 6.w and 6. by 

6.d is ('A(a,j).('Ax.Dd(a, k(jx»))) 

6.w is Ow 

6. is ('A(pjn(a, u),predlf, v».pred(6.d(a,f), 6.w(u, v») 

where a,f, x, u, v are five variables. 

THEOREM l3. If I is a proof function, P is a predicate, and x is a variable, 
then 6.(/, P) is a predicate and val(6.(I, P»x t> * <l 0 (I, con(val P x». 

(q, r,~) Aq, Br, r -+ c~q·r)] 
(P,~) Ad(A, B)p, r -+ C 

THEOREM 14. Protological Ad-rule: 

where p, q, r are three variables, p 1- A, B, r, and q, r 1- A,B, r, C. 

THEOREM 15. ProtologicaIOd-rule: 

(d, t,~) DT(d, [(q,x) aq -+ jx(tqx)]), r -+ C~d.t)] 

(p,~) 0 d(a,j)p, r -+ C 

where q,x,a,j,d,t,p are seven variables, p 1- r, and d, t 1- r, C. 
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THEOREM 16. D-Iemma: 

• DT(ElriY)u,[(a,f,q,x,r) aq, Dd(a,J)(Yur) -t f.x(e1o(Yur)qx)]) t>* 

true 

• E10 : map(map(<I>,map(leaf,Dw(ll,I:.»),map(<I>, rt» 

• e10 : map(Dw(n,I:.),map(n,map(leaf,I:.») 

where the construction Elo is defined in the proof, Y is any construction, <1>, 
n and I:. are type symbols, and u, a,f, q, x, r are six variables. 



CHAPTER 27 

FROM LOGIC TO THE CALCULUS OF PROOF FUNCTIONS 

The previous theory, Logic, defined the notions of proof function, proof and 
predicate, and the primitive logical constants that operate on them. The next 
theory, Calculus of Proof Functions (CPF), is an axiomatic system consisting 
of logical sequents of the form I, ... J => K; the informal meaning of such a 
sequent is roughly that if the proof functions I, . .. J have proofs then K has 
a proof. The present chapter will show how to interpret CPF in protologic, 
using the properties of the logical constants stated in Logic. 

LOGICAL SEQUENTS 

A logical sequent is a sentence in the following language. 

• The alphabet is that of the Expanded Term Language plus' " and '=>'. 

• The tokens are those of the Expanded Term Language plus ',' and '=>'. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbI', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The non-terminals are S, LHS, Ps, P, T; the start symbol is S. 
- The production rules are 

S -t LHS => P 
LHS -t Ps I E 

Ps -t P, Ps I P 
P-tT 
T -t con I (vbl) I (T T) I (').. T . T) I (T [ ~bz] ) 

In addition there is a context-sensitive constraint, that all the substrings 
matching P must be proof functions. 

290 
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METANOTATION 

All the metanotation of the Expanded Term Language will be allowed in the 
terms in logical sequents. The letters 'I', 'J' and 'K' will be used as meta
variables denoting proof functions, the letters 'r' and 'A' as metavariables 
denoting (possibly empty) sequences of proof functions, and the letters' P', 
, PI' and 'P2 ' as metavariables denoting predicates. Metasequents and their 
instances are defined by analogy with metaterms and their instances in the 
Expanded Term Language. The typical metanotation for a sequent will be 
'r => I'. 

CODING OF LOGICAL SEQUENTS AS CONSTRUCTIONS 

DEFINITION. If the proof functions in the sequent r => J have free variables 
~ then the code of the sequent, {r => J}, is the construction (A[~].([r], J». 

(Note that this definition requires that the variables z be listed in some 
particular order. I shall use standard order (defined in the Term Language), 
and indeed throughout this chapter whenever I refer to the free variables of 
some terms I shall assume the free variables are listed in standard order.) 

THE PROOF RELATION, IF ,FOR LOGICAL SEQUENTS 

DEFINITION. The relation Q IF h, ... It => J (read as 'Q proves h, ... Ik 
=> J') where h, ... It => J is a logical sequent, Q is a term with no free 
variables, and the proof functions II," . It, J have free variables :!, means 
that 

• Q ~ .. (D, (A[:!].T» Jt ,for some D and T, 

• h ~ .. P./h(Ahnl) Jt, ... It ~ .. P./h(Abnk) Jt ,J ~ .. p./h(B,r.) Jt , 
• DT(D, [(ql,' .. qb:!) Alqh ... Akqk -+ B(T[qh'" qk])]) ~ .. true, 

• D : rt and T : map(pi[nl, ... nk], r.), 

where ql, ... qk are k variables different from :!. 

Note that the intended interpretation of the logical sequent arrow => is not 
exactly intuitionistic implication. The meaning of => is given precisely by 
the IF relation. To prove a sequent I => J one has to find a function 
T such that (i) if Q satisfies the decidable part of the requirements for a 
proof of I then T[Q] satisfies the decidable part of the requirements for a 
proof of J, and (ii) if Q is a well-founded tree (under I's tree coding) then 
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T[Q] is also well-founded (under l's tree coding). Because the decidable 
and undecidable parts of proof are treated separately here this is a stronger 
condition than implication, in which one simply has to map any proof of I to 
a proof of l. This means that the logical constant corresponding to => (which 
I shall introduce in Chapter 29 and call super-implication, » is stronger than 
intuitionistic implication (::J). In fact, ::J will be defined in terms of >: A::J B 
is essentially A > (true> B). 

THEOREM 1. (Extensionality of ~ .) If Q t> * <I Q' then Q ~ r -+ I iff 
Q' ~ r -+ I. 

DEFINITION. Define a construction pr as (A(d, t).t nil nil), where d, t are two 
variables. 

THEOREM 2. (Soundness of ~ with respect to 1-.) If Q ~ => I, where I 
has no free variables, then pr(Q) I- I. 

Proof Let I t>* pjn(A, n) tf . The hypothesis that Q ~ => I means that 

• Q t>* (D, (Anil.T» tf ,for some D and T, 

• DT(D, [ -+ A(Tnil)]) t>* true, 

• D : rt and T : map(pi(nil), II). 

The sequent [ -+ A(T nil)] is, more explicitly, (nil, (Anil.A(T nil)). Hence, 
by the soundness theorem for protologic, (Anil.A(Tnil)nil t>* true and so 
A(Tnil) t>* true. In addition, nil : pi(nil) by the pi rule, so Tnil : II. 
Therefore pr(Q) t>* Tnill- I. I 

THEOREM 3. (Completeness of ~ with respect to 1-.) If Q I- I then 
in(A[~]'(Q, I» ~ I, where ~ are the free variables of I and Q, for a certain 
construction in. 

Proof Let I t>* pjn(A, II) tf. The hypothesis that Q I- I means that AQ t>* 

true and Q : II. Now let! be the free variables of I, let y be the variables of 

~ that are not in!, let T be the term (Anil.Q~h, where Q-is a sequence of Os 

with as many terms as ~, and let Do be the coZfe of the protological derivation 

-+ true (eva!) 
----thin 
(z) -+ true 
- red 
(z) -+ AQ 
- inst 

W -+AQ~] 
-----red 
W -+ A(Tnil) 
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Then by the join-lemma 

DT(join(Do)nil, [(~) -t A(T nil)]) 1>* true 

and join(Do) : map(pi(nil), rt), giving join(Do)nil : rt. Since TX 1>* 

Q~] : n for any construction X : pi(nil) we also have T : map(pi(nil), n). 
Now define the construction in such that 

in(A[~].(Q, I)) 1>* (join(Do)nil, (A, [Jl.T» 

giving 
in(A,[~].(Q, l» ~ => I 

as required. I 

THEOREM 4. For any proof function I and predicate P, there is no tenn Q 
such that Q ~ D(l, P) => rfalse'. 

Proof Let I 1>* pjh(A, n) ~ and P 1>* pred(F, 'f.) ~. Then rfalse' t--+ 

pjh(kfalse, leaf) and 

for some tenn B and type symbol «1>. Let ~ be the free variables of 1 and P, let 
q, r, x, a,f, t be six fresh variables, and suppose that Q ~ 0 (l, P) => rfalse'. 
This means that Q 1>" (D, (A[~].T» ~ where 

• DT(D, [(r, z) Br -t kfalse (T[r])]) 1>* true, 

• D : rt and T : map(pi[ «1>], leaf). 

Now let Q be a sequence of Os with as many tenns as~. We can find a 

construction R such that Bm R 1>* true, as follows. Recall the construction 

D* in the Coding of Trees with the property that DT(D*, [ -t false]) 1>* 
true. Let Do be the code of the protological derivation 

-t false (pO) 
------thin 
(q,x) aq -t false (q,x)false -t fx(tqx) (jalse-el) 
----------------cut 

(q,x) aq -t fx(tqx) 

Then by the join-lemma, 

DT(join(Do)[D*], [(q, x) aq -t fx(tqx)]) [>" true, 
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and hence, by the definition of D d, 

Dd(a,,n(join(Do)[D*], t) [>* true 

and hence, by instantiation, 

so (join(Do[::;',!d])[D*], id) [>* R, for some construction R, and B[~] R 

[>* true. On the other hand, kfalse (T[~l [RD certainly does not reduce 
to true: the only irreducible term it could reduce to is false. Hence the 
sequent (r,~) Br -+ kfalse (T[r]) is unsound. (In detail, the sequent is 
really ([(A,[r, z].Br)], (A,[r, z].kfalse (T[r]))), and we have (A,[r, z].Br)[R, Q] 

[>* B[~l R [>~ true but (A,[r, ~].kfalse (T[r]))[R, Q] [>* kfals;(T[~l [RD, 
which ~oes not reduce to true). This contradicts the soundness of protologic. 
Hence there is no such proof Q. I 

CALCULUS OF PROOF FUNCTIONS (CPF) 

The axioms and rules of CPF are all instances of the following schemata. 

Truth introduction (true-in): ::::} r true' 
Falsity elimination (false-el): rfalse'::::} 1 
Reduction (red): I::::} J where 1 [> J or J [> /; 

rX' ::::} ry, where X [> Yor Y [> X 
A-introduction (A-in): /, J ::::} A(I, J) 
A-elimination (A-el): A(I,J)::::} 1 A(/,J) ::::} J 
:3-introduction (:3-in): val P x ::::} :3P 
O-expansion (O-exp): I::::} D(J,con/) 
D-compression (D-comp): D(r true', 6(1,P» ::::} D(I, P) 

Term existence (te): r T[:] , ::::} :3(predify(A,x. r x = X' » 
where x E T but x fJ. X 

Equality (eq): 

Thinning (thin): 

r X = Y 1, val P X ::::} val P Y 

rX = yl, rT[:]' ::::} rT[~] , 
r::::}J 

I, r::::} J 

Exchange (exch): 
r, I, J, ll::::} K 

r, J, /, ll::::} K 

where X, Y rt ; 



Contraction (con): 

3-elimination (3-el): 

FROMLTO CPF 

I, I, r =? J 

I, r =? J 

valPx, r =? I 

3P, r =? I 
wherexf/. p,r,1 

O-introduction & elimination (D-in & O-el): I=? valPx 
=? O(l,P) 

where x f/. I,P 

o -transitivity (0 -tr): 
I, val PI X=? J 

where X pt 

Cut: 
r=?1 I, !1 =? J 

r,!1=?J 

Boolean rule (bool): 
[x = true', r =? I [ x = false', r =? I 

[boolean x 1, r =? I 

val P n =? val P (Sn) 
where n f/. P 

[numn' =? valPn 
Induction (ind): 

=? valPO 

INTERPRETATIONS OF THE CPFAXIOMS AND RULES 
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For each CPFaxiom I shall produce a proof of it, and for each CPF rule of 
inference I shall show how to obtain a proof of the conclusion sequent from 
proofs of the premise sequents. It will then follow that any CPF derivation 
can be mechanically transformed into a proof (in the H= sense); I shall 
construct explicitly a function spr that carries out this transformation. 

THEOREM 5. (CPF truth introduction axiom.) 

Prl ( {=? [true'}) H= =? [true', 

where the construction Prl is defined below. 

Proof. Note that [true' f-t pJn(k true, leaf). Let T be id; then k true (T nil) 
c>* true, so 

DT(£, [-+ ktrue(Tnil)]) c>* true. 

Now let Prl be k(£, (Anil.T». Then Prl({=? [true'}) c>* (£,(Anil.T», 
which satisfies the decidable part of the proof relation Prl ( {=? [true'}) H= 
=? [true'. 

To check the well-foundedness conditions, 
£ : rt. 
For any construction X : pi(nil), 

TX : leaf, by the leaf rule. 
T : map(pi(nil), leaf), as required. 
I 
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THEOREM 6. (CPF falsity elimination axiom.) 

Pr2( {rfalse 1 ~ I}) H= rfalse 1 ~ I, 

where the construction Pr2 is defined below. 

Proof Let I [>* pfo(A,fl) ~ , and note that rfalse1 H pfo(kfalse,leaf). 
Let,! be the free variables of I, let q be a fresh variable, let T be fxpt id, and 
let Dl be the code of the protological derivation 

(q,:f)false -+ A(T[q)) (false-e!) 
--------- red 
(q,,!) kfalseq -+ A(T[q]) 

Then by the join-lemma 

DT(join(Ddnil, [(q,,!) kfalseq -+ A(T[q])]) [>* true 

which implies that join(Ddnil [> * D for some construction D. So define a 
recursive function Pr2 such that Pr2(efalse1 ~ I}) [>* (D,(A[,!].T», thus 
satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <]* join(Ddnil : rt, by the join-lemma, as required. 
T is fxpt id : map(pi[leaj], fl), by the fxpt id well-foundedness rule, as 

required. 
I 

THEOREM 7. (First CPF reduction axiom.) Pr3( {I ~ J}) H= I ~ J, 
where I [> J or J [> I, and the construction Pr3 is defined below. 

Proof Let I, J [>* pfo(A, n) ~ . Let,! be the free variables of I, J, let q be 
a fresh variable, and let T be (A.[q].q). Then A(T[q]) [>* Aq, so let Dl be 
the code of the protological derivation of the sequent (q,,!) Aq -+ A(T[q]) by 
Reduction. Then by the join-lemma 

DT(join(D1)nil, [(q,,!)Aq -+ A(T[q])]) [>* true 

which implies that join(Ddnil [>* D for some construction D. So define 
a recursive function Pr3 such that Pr3({1 ~ J}) [>* (D,(A.[,!].T», thus 
satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <]* join(Ddnil : rt, by the join-lemma, as required. 
For any construction X : pi[n], 

X is [Q], for some construction Q : fl, by the pi rule 
TX [>* Q : fl. 

T : map(pi[n], n), as required. 
I 
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THEOREM 8. (Second CPF reduction axiom.) 

Pr4«(fXl ::::} ryl}) ~ rXl::::} ryl, 

where X I> Yor Y I> X, and the construction Pr4 is defined below. 
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Proof Let,! be the free variables of X, Y, let q be a fresh variable, let T be 
id, and let Dl be the code of the proto logical derivation 

(q,!) X -t Y (red) 
-----------red 
(q,,!) ('Anil.x)q -t ('Anil.Y)(T[q]) 

Then by the join-lemma 

DT(join(Dl)nil, [(q,,!) ('AniI.X)q -t ('Anil.Y)(T[q])]) 1>* true 

which implies that join(Ddnil 1>* D for some construction D. So define a 
recursive function Pr4 such that Pr4«(fXl ::::} ryl}) 1>* (D,('A[,!].T», thus 
satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <]* join(Ddnil : rt, by the join-lemma, as required. 
For any construction X : pi [leafl , 

TX : leaf, by the leaf rule. 
T : map(pi[leafl, leaf), as required. 
I 

THEOREM 9. (CPF A-introduction axiom.) 

Pr5( {I, J ::::} A(l, J)}) ~ I, J ::::} A(l,]), 

where the construction Pr5 is defined below. 

Proof Let I 1>* pfo(A, n) JI' and J 1>* pfo(B, r.) JI' . Then 

for some term C. Let,! be the free variables of I, J, let p, q, r be three fresh 
variables, let T be (A[q, r].(q, r», and let Dl be the code of the protological 
derivation 

(p,!) Ad(A, B)p -t Ad(A, B)p (taut) 
-----------l\d-ruJe 
(q, r,,!) Aq, Br -t Ad(A, B)(q, r) 
-----------red 

(q, r,,!) Aq, Br -t C(T[q, r]) 
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Then by the join-lemma 

DT(join(D1 )nil, [(q, r,~) Aq, Br ~ C(T[q, r)))) [> * true 

which implies that join(D1)nil [>* D for some construction D. So define 
a recursive function Prs such that Prs({I, J,* I\(I,J)}) [>* (D,(A[~].T», 
thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <1* join (D1 )nil : rt, by the join-lemma, as required. 
For any construction X : pi[n, ~], 

X is [Q, R], for some constructions Q : nand R : ~ 
TX [>* (Q,R) : product(n,~). 

T : map(pi[n,~],product(n,~», as required. 
I 

THEOREM 10. (First CPF I\-elimination axiom.) 

Pr6( {I\(I, J) '* I}) H= 1\(1, J) '* I, 
where the construction Pr6 is defined below. 

Proof Let I [>* pfn(A, n) , and J [>* pfn(B,~) , . Then 

I\(I,J) [>* pfn(l\d(A,B),l\w(n,~» [>* Pfn(C,product(n,~», 

for some term C. Let ~ be the free variables of I, J, let p, q, r be three fresh 
variables, let T be (A[(q, r»).q), and let Dl be the code of the protological 
derivation 

(q, r,~) Aq, Br ~ Aq (taut~ed 

(q, r,~) Aq, Br ~ A(T[(q, r)]) 
---------- Ad-rule 

(p, ~ I\d(A, B)p ~ A(Tfp)) 
---------red 

(p,~ Cp ~ A(Tfp)) 

Then by the join-lemma 

DT(join(D})nil, [(p,~) Cp ~ A(Tfp)))) [>* true 

which implies thatjoin(Dl)nil [>* D for some construction D. So define a 
recursive function Pr6 such that Pr6( {I\(I,1) '* I}) [>* (D, (A[~.T», thus 
satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <1* join(D1)nil : rt, by the join-lemma, as required. 
For any construction X : pifproduct(n,~)], 

X is [(Q, R)], for some constructions Q : n and R : ~ 
TX [>* Q : n. 

T : map(pifproduct(n,~)],n), as required. 
I 
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THEOREM 11. (Second CPF /\-elimination axiom.) 

Pr7({/\(I,J) =? J}) H= /\(/,J) =? J, 

where the construction Pr7 is defined below. 

Proof. As in the previous theorem. I 

THEOREM 12. (CPF 3-introduction axiom.) 

Prs({valPx =? 3P}) H= valPx =? 3P, 

where the construction Prs is defined below. 
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Proof. Let P t>* pred(F, n) ~ . Then val P x t>* pfn(Fx, n) t>* pfn(A, n) ~ 
and 3P t>* pfn(3dF,3wn) t>* pfn(B,product(leaf, n» ~ , for some terms 
A and B. Let ~ be the free variables of p,x, let q be a fresh variable, and let 
T be (A[q].(X,q». Then B(T[q]) t>*<] 3dF(X,q) t>* Fxq t>* Aq, so let Dl 
be the code of the protological derivation of the sequent (q,~) Aq -+ B(T[q]) 
by Reduction. Then by the join-lemma 

DT(join(Ddnil, [(q, z) Aq -+ B(T[q])]) t> * true 

which implies that join(Dl )nil t> * D for some construction D. So define a 
recursive function Prs such that Prs( {val P x=? 3P}) t>* (D, (A[~].T», thus 
satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <]* join(Dl )nil : rt, by the join-lemma, as required. 
For any construction Z : pi[n] , 

Z is [Q], for some construction Q : n 
x : leaf 
12 t>* (x, Q) : product(leaf, n). 

Tis map(pi[n],product(leaf, n», as required. 
I 

THEOREM 13. (CPF D-expansion axiom.) 

Pr9({I =? D(J, conI)}) H= I=? D(J, conI), 

where the construction Pr9 is defined below. 

Proof. LetI t>* pfn(A,n) ~ and J t>* pfn(B,'L) ~ . Then 

D(J,con/) t>* pfn(Dd(B,kA),Dw('L,n» t>* pfn(C,cf» ~ 

for some term C and type symbol cf). 

Let ~ be the free variables of I,J, let d,t,f,a,b,q,r,x be eight fresh 
variables, let X be the term (t = k(kq» & if = ka) & aq, and let Dl be the 
code of the protological derivation 
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(r,x) aq --+ kax(k(kq)rx) (red) 
---------------Wn 

--+ X (pO) . 
thm 

(r,x) --+ X 

(r,x) t = k(kq), J = ka, aq, br --+ kax(k(kq)rx) 

(r,x) t = k(kq), J = ka, aq, br --+ Jx(trx) 
-------------& 

(r,x) X, br --+ fx(trx) 
-------------------cut 

(r, x) br --+ fx(trx) 

eq 

Now let T be (A[q].(join(DI[~(kq)][7][:][~])[£],k(kq))). Then by the Join

lemma 

DT(Join( Code), [(d, t,j, a, b, q,?,) DT(d, [ --+ X]) --+ 
DT(join(D1)[d], [(r,x) br --+ JxCtrx)])]) [>* true 

where Code is 

«A [t,j, a, b, q, ~].[[ --+ X])), (A[t,j, a, b, q, ~].(DI' [(r,x) br --+ Jx(trx)]))). 

Now let D2 be the code of the protological derivation 

(d, t,j, a, b, q, z) DT(d, [--+ X]) --+ DT(join(Dd[d], [(r, x) br --+ fx(trx)]) (pO) 
- ~ 

(t,j, a, b, q,~) DT(£, [--+ X]) --+ DT(join(Dd[£], [(r,x) br --+ JxCtrx)]) 
-----------------------red 

(t,j, a, b, q,~) X --+ DT(join(D})[£], [(r, x) br --+ fxCtrx)]) 
cony 

(t,j, a, b, q,~) X --+ o d(b,j)(join(D})[£] , t) 
---------------------& 
(t,j, a, b, q,~) t = k(kq), J = ka, aq --+ Dd(b,j)(join(DI )[£], t) 
---------------------~t 

(a,b,q,~) aq --+ Dd(b,ka)(join(DI[~(kq)][7])[£],k(kq)) . 
------------------mst 

(q,~) Aq --+ Dd(B, kA)(join(DI [~(kq)] [7 ][:] [~])[£], k(kq)) 
------------------red 

(q,~) Aq --+ C(T[q)) 

Then by the join-lemma 

DT(join(D2)[Join(Code»), [(q,~) Aq --+ C(T[q])]) [>* true 

which implies that join(D2)[Join(Code)] [>* D for some construction D. 
So define a recursive function Pr9 such that Pr9({l '* D(J,conl)}) [>* 

(D, (A[~].T», thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

Join(Code) : rt, by the Join-lemma 
D <J* join(D2) [Join( Code)] : rt, by the join-lemma, as required. 
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For any construction V : pi[ll] , 
V is [Q], for some construction Q : II 
e:rt 
join(Dl [~(kq)] [7]~][: ][~])[E] : rt, by the join-lemma. 
For any constructIons R : l: and X : leaf, 

k(kQ)RX 1>* Q : II. 
k(kQ) : map(l:, map(leafr' II» 

TV 1>* (join(Dl[~(kq)][7J[~]r:][~])[E],k(kQ» 
: product(rt,map(l:,map(leaf,II») <J* Dw(l:,II) 1>* cl>. 

T : map(pi[II] , cl», as required. 
I 

THEOREM 14. (CPF D-compression axiom.) 
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PrlO({D(rtruel,~(I,P»::::} D(I,P)}) ~ D(rtruel,~(I,P»::::} O(I,P), 
where the construction PrlO is defined below. 

Proof Let I 1>* pfn(A, II) , and P 1>* pred(F,l:) , . Then 

D (r true 1 , ~(I, P» 1>* <J pfn(Dd(k true, ~d(A, F», D w(leaf, ~w(II,l:))) 
I> * pfn(B, cl» , 

D(I,P) 1>* pfn(Dd(A,F),Dw(II,l:» 1>* pfn(C,Q), 

for some terms B, C and type symbols cl>, Q. 

Let z be the free variables of I, P, let a, b, d, d', d",f, g, h, m, q, r, t, v, w,x 
be fifteen fresh variables, let 

Y be (At.(t..x.txx», 

M be (Aw.(t..x.elo(Ytx)wx», 

X be (m = M) & (g = ~d(a,f» & (b = k true), 

and let Dl be the code of the protological derivation 

(a, h, w,x, r) aw, Dd(a, h)(Ytr) ~ hx{elo(Ytr)wx) .(pl) 
----------------lflst 
(w,x) aw, Dd(a,k(fx»(Ytx) ~ k(fx)x(eldYtx)wx) 
----------------conv 

{V, x) bv ~ gx(tvx) .(p2) 
------lflst 

(x) bx ~ gx(txx) 
------thin 
(w,x) bx ~ gx{txx) 

(w,x) aw, ~d{a,f)x(txx) ~ fx(Mwx) 
-------------thin 
(w,x) X, aw, ~d(a,f)x(txx) ~ fx{Mwx) 
-------------&,~ 

(w,x) X, aw, gx{txx) ~ fx{mwx) 
---------------------cut 

(w,x) bx, X, aw ~ fx(mwx) 
-----------&,eq 

~ X (pO) (w,x) ktruex. X, aw ~ fx{mwx) 
---- thin red 
(w,x) ~ X (w,x) X, aw ~ fx(mwx) 
---------------cut 

(w,x) aw ~ fx(mwx) 
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Then by the Join-lemma 

DT(Join(Code), [(d" ,d',d,m, t,g, b, a,f,~) DT(d", [ ---+ X]), 

DT(d', [(a, h, w,x, r) aw, Dd(a, h)(Ytr) ---+ hx(elo(Ytr)wx)]), 

DT(d, [(v,x) bv ---+ gx(tvx)]) 

---+ DT(join(D1)[d",d',dJ, [(w,x) aw ---+ .fx(mwx)])]) [>* true 

where Code is defined in the required way as «A[m, t, g, b, a,f, ~].[[ ---+ X], 
[(a, h, w,x, r) aw, Dd(a, h)(Ytr) ---+ hx(e1o(Ytr)wx)], [(v,x) bv ---+ gx(tvx)]]), 
(A,[m, t, g, b, a,f,z].(D lo [(w,x) aw ---+ fx(mwx)]»). Also, by the D-Iemma, 

DT(Elo(Y)t, [(a, h, w,x, r) aw, Dd(a, h)(Ytr) ---+ hx(e1o(Ytr)wx)]) [>* true. 

Let T be (A,[(d,t)].(jOin(Dl[~][~d(a.r)][!true][:jJ)[t',Elo(Y)t,dJ,M», let r 
be the four tenns g = D.d(a,f), b = k true, a = A, f = F, let E be the tenn 
DT(d, [(v,x) bv ---+ gx(tvx)]), and let D2 be the code of the protological 
derivation 

(d", d',d, m, t, g, b, a,f,~) DT(d", [ ---+ X]), 

DT(d', [(a, h, w,x, r) aw, Dd(a, h)(Ytr) ---+ hx(e1o(Ytr)wx)]), (pO) 

E ---+ DT(join(D1)[d",d',dJ, [(w,x) aw ---+ .fx(mwx)]) 
----------------------inst 
(d,m, t, g, b, a,f, z) DT(t', [ ---+ X]), 

DT(E1o(Y)t, [(a, h, w,x, r) aw, Dd(a, h)(Ytr) ---+ hx(e1o(Ytr)wx)]), 

E ---+ DT(join(D})[t' , EIo(Y)t,dJ, [(w,x) aw ---+ .fx(mwx)]) 
------------------------------------------roo 

(d, m, t, g, b, ai, z) X, E ---+ 
DT(join(D1)[t', E1o(Y)t, dJ, [(w,x) aw ---+ fx(mwx)]) 

----------------------------------------- cony 
(d,m,t,g,b,a,f,z) X, E ---+ Dd(a,f)(join(D1)[t',Elo(Y)t,dJ,m) 

-------------------------------------------&.~n 
(d, m, t, g,b, a,f, z)m = M, r, E ---+Dd(a,f)(join(Dl)[t', Elo(Y)t,dJ, m) 

- ~ 

(d,t,g,b,a,f,~) r, E ---+ Dd(a,f)(join(Dl[~])[t',Elo(Y)t,dJ,M) 
---------------------------------------~ 
(d,t,g,b,a,f,~) r, E---+ 

Dd(a,f)(join(Dl [~] [~d(af)] [! true] [:f ])[t', EIo(Y)t, dJ, M) 

---------------------------------------roo 
(d,t,g,b,a,f,z) r, E ---+ Dd(a,f)(T[(d,t)]) 

- Dd-rule 
(q,g,b,a,f,z) r, Dd(b,g)q ---+ Dd(a,f)(T[q]) 

-------------------------------------- ext 
(q,a,f,z) a =A, f = F, Dd(k true, D.d(a,f)q ---+ Dd(a,f)(T[q]) 

- ext 
(q,z) Dd(k true, D.d(A, F»q ---+ Dd(A, F)(T[q]) - roo 

(q, y Bq ---+ C(T[q]) 
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Then by the join-lemma 

DT(join(D2)[Join(Code)], [(q,~) Bq -+ C(T[q])]) 1>* true 

which implies thatjoin(D2)[Join(Code)] 1>* D for some construction D. So 
define a recursive function PrlO such that 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

Join(Code) : rt, by the Join-lemma 
D <3* join(D2)[Join(Code)] : rt, by the join-lemma, as required. 
For any construction Z : pi[<t>] , 

Z is [Q], for some construction Q : <t> <3* Dw(leaj, .6w(II, 1:)) 
Q is (Do, To), for some constructions Do : rt and To : 

map(leaj, map(leaj, .6w(II, 1:))) 
£ : rt 
For any constructions W : map(leaj, map(leaj, .6w (n, 1:))) and R : leaj, 

YWR 1>* WRR : .6w(II, 1:), which is Dw(II, 1:). 
Y : map(map(leaj, map(leaj, .6w (II , 1:))), map(leaj, Dw(II, 1:))) 
Elo(Y) : map(map(leaj, map(leaj, .6w(II, L))), rt), by the D-lemma 
Elo(Y)To : rt 

join(Dl[~][~d(aJ)][!true][:f][~o:~])[£,Elo(Y)To,Do] : rt by the join-

lemma. 
For any constructions W : n and R : leaj, 

M[;O] WR 1>* elo(YToR)WR 1>* e1o(ToRR)WR : L, by the D-Iemma. 

M[;O] : map(n, map(leaj, 1:)) 

TZ 1>* (join(Dl [~][~d(a!)][!true ]r:f][~~'~o 1)[£, E1o(Y)To, Do], M[;O]) 
: product(rt,map(n,map(leaf,L))) <3* bw(n,L) 1>* Q. 

T : map(pi[<t>],Q), as required. 

I 

THEOREM 15. (CPF term existence axiom.) 

Prll(eT[;] 1 => 3(predijy(Ax. rX=X 1))}) H= 
r T[;] 1 => 3(predijy(Ax. r x = Xl)), 

where x E T but x rt. X, and the construction Prll is defined below. 
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Proof Let predify('Ax. r x = X l ) [> * pred(F, ll) , . Then 

pfn(Fx, ll) <]* val(pred(F, fI))x <]* val(predify('Ax. r x = X l ))x [> * <] r x = X l , 

using the properties of val and predify from Logic. This implies that Fx [> * 
('Anil.x = X) and II is leaf. Hence 

:J(predify('Ax. r x = X l )) [> * pfn(:JdF, :Jwleaf) 

[> * pfn(B,product(leaj, leaf)) , 

for some term B. 
Let 3'; be the free variables of Tr;], let q be a fresh variable, let T' be the 

term ('Anil.(X, nil)), and let D t be the code of the protological derivation 

(x, q, z) x = X -+ F x nil (red) 
- red 

(x, q, z) x = X -+ :JdF(x, nil) 
- thin 

(x, q, 3';) X = X, T -+ :JdF(x, nil) 
----------- ext 

(q,3';) T[;] -+ :JdF(X,nil) 
----------red 

(q,3';) ('Anil.T[;])q -+ B(T'[q]) 

Then by the join-lemma 

DT(join(Dt)nil, [(q,3';) ('Anil.T[;])q -+ B(T'[q])]) [>* true 

which implies thatjoin(Dt)nil [>* D for some construction D. So define a 

recursive function Prtt such that Prtt ({ rT [;] 1 ::::} :J(predify('Ax. r x = Xl))}) 

[> * (D, ('A [3';]. T')), thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

D <]* join(Ddnil : rt, by the join-lemma, as required. 
For any construction Z : pi[leaf], 

T' Z [> * (X, nil) : product(leaf, leaf). 
T' : map(pi[leaj] ,product(leaf, lea!)), as required. 
I 

THEOREM 16. (First CPF equality axiom.) 
PrdeX=yl, vaIPX::::}vaIPY}) ~ rX=Yl, vaIPX::::}vaIPY, 

where X, Y , and the construction Pr12 is defined below. 

Proof Let -! be the free variables of P,X, Y, and let q, r, u be three fresh 
variables. Let P [>* pred(F, ll) , , where Fu [>* A , , for some term A. 

Thus valPX [>* pfn(FX,TI) [>* pfn(A[:] ,ll) "and likewise for valPY. 

Let T be ('A[q, r].r) and let D t be the code of the protological derivation 
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(q, r,~) X = Y, A[!] r --+ A[~] r Ceq) 
--------------------------------red 
(q, r,~) (Anil.x = Y)q, A[!] r --+ A[~] (T[q, r]) 

Then by the join-lemma 

DT(join(Dl)nil, [(q, r,~) (Anil.x = Y)q, A[!] r --+ A[~] (T[q, r])]) t>* true 

which implies that join(Ddnil t>* D for some construction D. So define a 
recursive function Pr12 such that Pr12 ( { r X = Y 1, val P X ~ val P Y}) t> * 
(D, (AW.T», thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <1* join(Dl )nil : rt, by the join-lemma, as required. 
For any construction Z : pi[leaj,I1], 

Z is [Q, R], for some construction Q : leaj and R : 11 
TZ t>* R : 11. 

T : map(pi[leaj, 11], 11), as required. 
I 

THEOREM 17. (Second CPF equality axiom.) 

Prn(eX= yl, rT[!]l ~ rT[~]l}) IF rX= yl, rT[!]l ~ rT[~]l, 
where the construction Prn is defined below. 

Proof Let ~ be the free variables of X, Y, T[!] ,T[~], let q, r be two fresh 

variables, let T' be id, and let Dl be the code of the protological derivation 

(q, r,~) X = Y, T[!] --+ T[~] Ceq) 
-----------------------------------------red 
(q, r,~) (Anil.X = Y)q, (Anil.T[!])r --+ (Anil.T[~])(T'[q, r]) 

Then by the join-lemma 

DT(join(Dl )nil, 

[(q, r,~) (Ani/.X = Y)q, (Anil.T[!])r --+ (Anil.T[~])(T'[q, r])]) 

t>* true 

which implies that join(Ddnil t>* D for some construction D. So define a 

recursive function Prn such that Prn(eX = yl, rT[!] 1 ~ rT[~]l}) t>* 

(D, (A[~].T'», thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 
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D <J* join(D1 )nil : rt, by the join-lemma, as required. 
For any construction X : pi[leaf, leaf], 

T'X : leaf, by the leaf rule. 
T' : map(pi[leaf, leaf], leaf), as required. 
I 

THEOREM 18. (CPF thinning rule.) 
If Q ~ r =} J then Pr14(Q, {r =} J}, {I, r =} J}) ~ I, r =} J, 
where the construction Pr14 is defined below. 

Proof Let I 1>* pjn(A, n) P', let J 1>* pjn(B,1:) P', and let the proof 
functions of r reduce to pjn(C},tPl), .. . pjn(Cn,tPn) p'. Let:! be the free 
variables of r,J, let y be the free variables of l,r,J, let q}, ... %,r be 
n + 1 fresh variables, -and abbreviate q}' ... qn to q. The hypothesis that 
Q ~ r =} J means that Q 1>* (D, (A.[:!].T» P' where 

• DT(D, [(q,:!) Clql, ... Cnqn -+ B(T[q])]) 1>* true, 

• D : rt and T : map(pi[tP}, ... tPn], 1:). 

Let T' be ("-[r, q].T[q]) and let Dl be the code of the protological derivation 

(q,:!) C1q}, ... Cnqn -+ B(T[q]) (pO) 
- - thin 

(r,q,~)Ar, Clq}, ... Cnqn -+ B(T[q]) 
----------------------------red 
(r, q,~) Ar, Clq}' ... Cnqn -+ B(T'[r, q]) 

Then by the join-lemma 

which implies that join(Dl )[D] 1>* D' for some construction D'. So define a 
recursive function Pr14 such that Pr14«D, (,,-[:!l.T», {r =} J}, {I, r =} J}) 
1>* (D', (A.[y].T'», thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D' <J* join(Dl )[D] : rt, by the join-lemma, as required. 
For any construction X : pi[n, tP}, ... tPn ], 

X is [R, Ql, ... Qn] for some constructions R : n, Ql tP}, ... Qn tPn 

T'X 1>* T[Q}. ... Qn] : 1:. 
T' : map(Pi[n, tP}. ... tPn], 1:), as required. 
I 

THEOREM 19. (CPF exchange rule.) If Q ~ r, I, J, A=} K 
then PrlS(Q, {r, I, J, t1 =} K}, {r, J, I, A=} K}) ~ r, J, I, A=} K, 
where the construction PrlS is defined below. 
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Proof Let! [>* pjh(A,n) pt, let f [>* pjh(B,r..) pt, let K [>* pjh(C,c'f.» pt, 
let the prooffunctions of r reduce to pjh(EI , 'P I)' ... pjh(Em, 'Pm) pt , and let 
the proof functions of fl. reduce to pjh(FI,QI), ... pjh(Fn,Qn) pt. Let,! be 
the free variables ofr,l,J, fl., K, let Ut. .. . Um, q, r, Vt. ... Vn be m+n+2 fresh 
variables, and abbreviate UI, . .. Um to !! and VI, ... Vn to~. The hypothesis 
that Q F r, I, f, fl. =} f means that Q [>* (D, (A[,!).T» pt where 

• DT(D,[(!!,q,r,~,:!)Elut. ... Emum' Aq, Br, FIVt. ... Fnvn-+ 
C(T[!!, q, r,~])]) [> * true, 

• D : rtand T : map(pi['PI, ... 'Pm,n,r..,Qt. ... Qn],c'f.». 

Let T' be (A[!!, r, q,~. T[!!, q, r, ~]), and let DI be the code of the protological 
derivation 

(!!, q, r, ~,:!) EI UI, ... Emum, Aq, Br, FI VI, ... Fn Vn -+ C(T[!!, q, r,~]) (pO) 
----------------------------------------------exch 
(!!,r,q,~,:!)EIUt. ... Emum' Br, Aq, Flvl, ... Fnvn -+ C(T[!!,q,r,~]) d 
-----------------------------------------------re 
(!:!c,r,q,~,:!)EIUh ... Emum' Br, Aq, Flvl, ... Fnvn -+ C(T'[!!,r,q,~]) 

Then by the join-lemma 

DT(join(DI)[D), 

[(!:!c, r, q, ~,.,!) Elut. ... Emum, Br, Aq, FI Vt. ... Fnvn -+ C(T'[!!, r, q, ~)]) 

[> * true 

which implies that join(D})[D) [> * D' for some construction D'. So define 
a recursive function Prl5 such that PrI5«D, (A (:!1.T», {r, I, f, fl. =} K}, 
{r, f, I, fl. =} K}) [> * (D', (A [:!). T'», thus satisfying the decidable part of 
the proof relation. 

To check the well-foundedness conditions, 
D' <]* join(Dd[D) : rt, by the join-lemma, as required. 
For any construction X : pi['P I, ... 'Pm, r.., n, Q I, ... Qn), 

X is [Ut. ... Um,R, Q, VI. ... Vn], for some constructions UI 'Pt. ... 
Um : 'Pm,R : r..,Q : n, VI : QJ, ... Vn : Qn 

T'X [>* T[UJ, ... Um, Q,R, VI, ... Vn) : c'f.>. 
T' : map(pi['P I , ... 'Pm,r..,n,QJ, ... Qn),c'f.», as required. 
I 

THEOREM 20. (CPF contraction rule.) If Q F I, I, r =} f 
then PrI6(Q, {I, I, r =} f}, {I, r =} f}) F I, r =} f, 
where the construction Prl6 is defined below. 

Proof Let 1 [>* pjh(A, n) pt, let f [>* pjh(B, r..) pt, and let the proof 
functions of r reduce to pjh(CJ,c'f.>}), ... pjh(Cn,c'f.>n) pt. Let:! be the free 
variables of I, r, f, let q, r, UJ, ..• Un be n + 2 fresh variables, and abbreviate 
UJ, ... Un to!!. The hypothesis that Q F I, I, r =} f means that Q [>* 

(D, (A [:!1.T», where 
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• DT(D. [(q. r.!!.i) Aq. Ar. ClUj, ... CnUn -+ B(T[q. r.!!])]) [>* true. 

• D : rtand T : map(pi[n.n,<pl' . .. <Pnl.1:). 

Let T' be ().[q. !!.I.T[q. q.!!]) and let Dl be the code of the protological 
derivation 

(q. r.!!. :~) Aq. Ar. C l Ul • ... Cnun -+ B(T[q. r.!!.I) :(pO) 
---------------- mst 
(q.!!.:!) Aq. Aq. Cl Ul • ... Cnun -+ B(T[q. q.!!.I) 
------------------con 

(q.!!. i) Aq. Cl Ul • ... Cnun -+ B(T[q. q.!!]) d 
---------------re 
(q. !!.i) Aq. ClUJ, .. . CnUn -+ B(T'[q.!!]) 

Then by the join-lemma 

DT(join(D1)[DJ. [(q.!!.i)Aq. CIUI •. ·· Cnun -+ B(T'[q.!!])]) [>* true 

which implies thatjoin(D1)[DJ [>* D' for some construction D'. So define 
a recursive function Prl6 such that 

PrI6«D. (A[:!].T». {I. I. r => f}. {I. r => f}) [>* (D'. (A[:!l.T'». 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions. 

D' <1* join(DI )[DJ : rt. by the join-lemma. as required. 
For any construction X : pi[n. <PJ, ... cI>n]. 

X is [Q. UJ, ... Un], for some constructions Q : n. UI : cI>1.··· Un : cI>n 
T'X [>* T[Q. Q. UJ, .. . Un] : 1:. 

T' : map(pi[n.cI>I •... cI>n].1:).asrequired. 
I 
THEOREM 21. (CPF 3-elimination.) If Q H= val P x. r => 1 
then Pr17(Q, {val P x. r => I}. {3P, r => I}) H= 3P. r => I, 
where x tf. p. r, I, and the construction Pr17 is defined below. 

Proof Let P [> * pred(F. n) jt • let 1 [> * pfn(A,1:) jt • and let the proof 
functions of r reduce to pfn(EI.cI>I), ... pfn(En.cI>n) jt . Then 

val P x [> * pfn(Fx. n) [> * pfn(B. n) jt 

3P [>* pfn(3dF,3wn) [>* pfn(C.product(leaj,n» jt 

for some terms Band C. 
Let y be the free variables of p.x. r,l.let ~ be the free variables of p. r.l. 

let p,j.q. rl •... rn be n + 3 fresh variables. and abbreviate rl • ... rn to!... The 
hypothesis that Q H= valPx, r => 1 means that Q [>* (D.()'[y].T» jt. 
~re -

• DT(D. [(q.!...y) Bq, Elrl • ... Enrn -+A(T[q.!..])]) [>* true. 

• D: rtandT: map(pi[n.cI>I •... cI>nJ.1:). 

Let T' be (). [(x. q). d. T[ q,!..]) and let DI be the code of the protological 
derivation 
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(q, r, y) Bq, Elr], ... Enrn -+ A(T[q, rD (pO) 
- red 

(q,r,y) Fxq, Elrl, ... Enrn -+A(T'[(x,q),r]) 
- ~ 

(P,J,q,r,y)j=F, p=(x,q),jxq, Elr], ... Enrn -+A(T'[P,r]) 
- (AX: T) 

(p,J,r,!,.)j=F, (A(X,q):jxq)p, Elrl, ... Enrn -+A(T'[P,rD 
--------------------red 

(p,J,r,!,.)j=F, 3J.fp, Elrl, ... Enrn -+A(T'[P,r]) 
-----------------ext 

(p, r, z) 3dFp, Elrl, ... Enrn -+ A(T'[P, r]) 
- ~ 

(p, r,!,.) Cp, Elr], ... Enrn -+ A(T'[P, r]) 

Then by the join-lemma 

DT(join(DI)[D),[(P,[,!,.)Cp, Elr], ... Enrn -+A(T'[P,r.J)]) [>* true 

which implies that join(DI )[D) [> * D' for some construction D'. So define 
a recursive function Prl7 such that 

Prl7«D,(AQ:).T»,{vaIPx, r ~ I}, {3P, r ~ I}) [>* (D',(A[!,.).T'», 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

D' <J* join(Dd[D) : rt, by the join-lemma, as required. 
For any construction Z : pi[product(leaj, 0), <PI, ... <pn), 

Z is [(X, Q), RI , . .. Rn), for some constructions X : leaj, Q : 0, 
RI : <P], ... Rn : <Pn 

T[;] : map(pi[O,<PI, ... <pn),I:), by the well-foundedness instantiation 
rule 

T'2 [>* T[;] [Q,R I , ... Rnl : I: 

T' : map(pi[product(leaj, TI), <PI, ... <pnl, I:), as required. 
I 

THEOREM 22. (CPF 0 -introduction rule.) If Q H= I ~ val P x 
then PrIS(Q, {I ~ val P x}, {~O(I,P)}) H= ~ o (I, P), 
where x tj. I, P, and the construction Prls is defined below. 

Proof Let I [>* pftz(A,O) ~ and P [>* pred(F,I:) ~; then 

val P x [> * pftz(Fx, I:) [> * pftz(B, I:) ~ 

O(I,P) [>* pftz(Dd(A,F),Dw(O,I:» [>* pftz(C,<p) ~ 

for some terms B, C and type symbol <P. Let y be the free variables of I, P, x, 
let!,. be the free variables of I, P, and let q, dl,{h a,J, u be six fresh variables. 
The hypothesis that Q H= I ~ val P x means that Q [>* (D, (A[y).T» ~ , 
where -

• DT(D, [(q.:~) Aq -+ B(T[q])]) [>* true, 

• D : rt and T : map(pi[n], I:). 
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Let U be (Aq.(AX.T[q])), let X be (a = A) & if = F) & (u = U), and let D\ be 
the code of the protoiogical derivation 

(q,y)Aq -7 B(T[q]) (pI) 
- inst 

(q,x) Aq -7 B(T[q]) 
-------red 
(q,x) Aq -7 Fx(Uqx) 

--------------thin 
(q,x) a = A, f = F, u = U, Aq -7 Fx(Uqx) 
--------------eq 
(q,x) a = A, f = F, u = U, aq -7 fx(uqx) -7 X (pO) 

----thin ---------------& 
(q,x) -7 X (q,x) X, aq -7 fx(uqx) 
------------------cut 

(q,x) aq -7 fx(uqx) 

Then by the Join-lemma 

DT(Join(Code), [(db d2 , a,f, u,~) DT(dt. [ -7 X]), 

DT(d2, [(q,~) Aq -7 B(T[q])]) 

-7 DT(join(Dd[d\,d2 ], [(q,x) aq -7 fx(uqx)])]) [>* true 

where Code is 

«A[a,f, u, ~].[[ -7 X], [(q,~) Aq -7 B(T[q])]]), 

(A[a,f, u, ~].(Dt. [(q, x) aq -7 fx(uqx)]))). 

Let T' be (Anil.(join(D\ [~:~'~])[£' D], U» and let D2 be the code of the 
protological derivation 

(dt. d2 , a,f, u, z) DT(dt. [ -7 X]), DT(d2 , [(q, y) Aq -7 B(T[q])]) 

- -7 DT(join(D\)[db d2], [(q,~ aq -7 fx(uqx)]) (pO) 

----------------------inst 
(a,f, u,~) DT(£, [ -7 X]), DT(D, [(q,~) Aq -7 B(T[q])]) 

-7 DT(joinCD\)[£,D], [(q,x) aq -7 fxCuqx)]) 
---------------------red 
(a,f, u,~) X, true -7 DT(join(D\)[£,D], [(q,x) aq -7 fx(uqx)]) 

conv 
(a,f, u,z) X -7 DdCa,f)(join(Dd[£, D], u) 

---------------------& 
(a,f,u,~) a =A, f= F, u = U -7 Dd(a,f)(join(Dd[£,D],u) 
---------------------ext 

(~) -7 DdCA,F)(join(D\[~:~'~])[£,D], U) 
-------------red 

C~) -7 C(T' nil) 
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Then by the join-lemma 

DT(join(D2)[Join(Code)], [(~) ---+ C(T' nil)]) 1>* true 

which implies that join(D2)[Join(Code)] 1>* D' for some construction D'. 
So define a recursive function PrI8 such that 

PrI8«D, (AQ:].T)), {I :::::} val P x}, {:::::} 0 (I, PH) 1>* (D', (A[~].T')), 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

Join(Code) : rt, by the Join-lemma 
D' <l* join(D2)[Join(Code)] : rt, by the join-lemma, as required. 
£ : rt 
join(DI[~:~·~])[£,D] : rt, by the join-lemma. 

For any constructions Q : n and X : leaf, 

T[;] : map(pi[n], ~), by the well-foundedness instantiation rule 

UQX 1>* T[;] [Q] : ~. 
U : map(n, map(leaj, ~)). 
For any construction Z : pi(nil), 

T'Z 1>* (join(D{~:r~])[£,D], U) product(rt,map(n,map(leaj,~))) 
<l* Dw(n,~) I> <1>. 

T' : map(pi(nil), <1», as required. 
I 

THEOREM 23. (CPF D-elimination rule.) If Q fF :::::} 0(1, P) 
then PrI9(Q,{:::::} D(I,P)},{I:::::} vaIPx}) fF I:::::} valPx, 
where x 1. I, P, and the construction PrI9 is defined below. 

Proof Let 1 1>* pfn(A, n) ~ and P 1>* pred(F,~) ~ . Then 

D(I,P) 1>* pfn(Dd(A,F),Dw(n,~)) 1>* pfn(B,<1» ~ 

valPx 1>* pfn(Fx,~) 1>* Pfn(C,~) ~ 

for some terms B, C and type symbol <1>. Let y be the free variables of I, P, 
let ~ be the free variables of I, P;x, and let a,f~ q, r, u be five fresh variables. 
The hypothesis that Q fF :::::} D(I,P) means that Q 1>* (D,(A[y].T)) ~ 
where -

• DT(D, l(Y) ---+ B(Tnil)]) 1>* true, 

• D : rt and T : map(pi(nil), <1». 
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Now let T' be (A[q).elo(Tnil)qx) and Y be (Anil: (A[y): Tnil). By the 
[J-IeDlrna -

DT(Elo(Y)u, [(a,f, q,x, r) aq, [Jd(a,f)(Yur) ---+ ft(e1o(Yur)qx)]) 1>* true. 

Let DI be the code of the protological derivation 

(a,f, q,x, r) aq, Dd(a,f)(Yur) ---+ ft(elo(Yur)qx) JR!) 
(a,f, q, Z, r) aq, Dd(a,f)(Yur) ---+ ft(elo(Yur)qx) 

- ~ 

(y) ---+ B(T nil) (pO) (q, yAq, [Jd(A, F)(Yu[y)) ---+ Fx(elo(Yu[y))qx) 
- thin - - red 

(q,~) ---+ B(T nil) (q,yAq, B(Tnil) ---+ C(T'[q)) 
--------------------cut 

(q,~) Aq ---+ C(T'[q)) 

Then by the join-leDlrna 
I 

DT(join(D1)[D, Elo(Y)u) , [(q,~) Aq ---+ C(T'[q])]) 1>* true 

which implies, by the instantiation theorem (14) of the Expanded Term 
Language, 

DT(join(DI [~])[D, Elo(Y)O), [(q,~) Aq ---+ C(T'[q))]) 1>* true 

which implies that join(DI [~])[D, Elo(Y)O) 1>* D' for some construction D'. 

So define a recursive functIon Prl9 such that 

PrI9«D, (A~).T», {=> [J(l, P)}, {I => val P x}) 1>* (D', (A[~).T'», 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

nil : pi(nil), by the pi rule 
T nil : <I> <J* [Jw(I1, l:) 
Y : map(leaf, map(leaf, Dw(I1, l:»), applying the map rule twice 
Elo(Y) : map(leaf, rt), by the [J-IeDlrna 
Elo(Y)O : rt 

D' <J* join(D1 [~])[D, Elo(Y)O) : rt, by the join-leDlrna, as required. 

For any construction Z : pi[II], 
Z is [Q], for some construction Q : II 
T'Z 1>* elo(Tnil)Qx : l:, by the [J-IeDlrna. 

T' : map(pi[I1], l:), as required. 
I 
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THEOREM 24. (CPF 0 -transitivity rule.) If Q H= I, val PIX ~ J 
then Pr2o(Q,{I, val PI X ~ J},{D(I,PI ), D(J,P2) ~ D(I,P2)}) H= 

D(I,PI ), D(J,P2) ~ D(I,P2), 
where X jt and the construction Pr20 is defined below. 
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Proof. Let I [> * pjn(A, II) jt , J [> * pjn(B,~) jt ,PI [> * pred(F, Cl» jt , and 
P2 [>* pred(G, '1') jt . Then 

val PI X [> * pjn(FX, Cl» [> * pjn(F', Cl» jt 

D(I,PI ) [>* pjn(Ct.o.I) jt 

D(J,P2) [>* pjn(C2, 0.2) jt 

D(I,P2) [>* pjn(C3, 0.3) jt 

for some terms F', C I, C2, C3 and type symbols 0. I, 0.2, 0.3. Let y be the free 
variables of I, Pt. X,J, let ~ be the free variables of I, PI,J, P2, and let g be 
the free variables of X that are not in ~. 

Now let q, r, 11,12,14, do, dl , d2, d3 , a, b,f, g, v, w be fifteen fresh variables. 
The hypothesis that Q H= I, val PI X ~ J means that Q [>* (D, (A [y].T» jt , 
where -

• DT(D, [(q, r,~) Aq, F'r -+ B(T[q, rD]) [>* true, 

• D : rt and T : map(pi[II, Cl>], ~). 

Let X be X[~], where Q is a sequence of Os, let T be T[~], let T4 be 

(Aq.t2(T[q, tl qXm, let Z be (a = A) & (b = B) & if = F) & (t4 = T4), and 
let D4 be the code of the protological derivation that begins with 

(q,r,y)Aq, F'r -+ B(T[q,rD (p3) 
- roo 

(q, r,~) Aq, FXr -+ B(T[q, rD 
inst 

(q, r) Aq, FXr -+ B(T[q, rD thin (v, w) bv -+ gW(t2VW) (P~n 

(q, r, w)Z, Aq, FXr-+ B(T[q, rn (q, r, v, w) bv -+ gW(t2VW) . 
----------&,eq mst 
(q, r, w)Z, aq,jXr-+b(T[q, rD (q, r, w)b(T[q, rD-+ gW(t2(T[q, rDw) 
-----------------------cut 

(q, r, w) Z, aq, jXr -+ gw(t2(T[q, rDw) . 
--------------mst 
(q, w) Z, aq, jX(tlqX) -+ gW(t2(T[q, tlqXDw) 
--------------rOO 

(q, w) Z, aq, jX(tlqX) -+ gw(T4qw) 
-----------&,eq 
(q, w) Z, aq, jX(tlqX) -+ gw(t4qw) 
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and then continues as follows 

(q,x) aq -+ !x(tlqX) .(Pl) 
------1OSt 
(q) aq -+ [X(tlqX) -+ Z (pO) 
------thin ---thin 
(q, w)aq-+/X(tlqX) (q, w)Z, aq,/X(tlqX)-+gW(t4qw) (q, w)-+Z 
----------------------cut 

(q, w) aq -+ gW(t4qw) 

Now let p be the sequence of variables a, b,J, g,~. Then by the Join-lemma 
we have -

DT(Join(Code), [(do, d}, d2,d3, t}, t2, t4,e) 

DT{do, [ -+ Z]), 

I> * true 

DT(d}, [(q,x) aq -+ !x(tlqX)]), 

DT(d2, [(v, w) bv -+ gW(t2VW)]), I 

DT(d3, [(q, r,~) Aq, F'r -+ B(T[q, r])]) 

-+ DT(join(D4) [do , d}, d2,d3), [(q, w) aq -+ gW(t4qw)])]) 

where Code is 

«A[t}, t2, t4,e).[[ -+ Z], 

[(q,x) aq -+ !x(tlqX)], 

[(v, w) bv -+ gW(t2VW)], 

[(q, r,~) Aq, F'r -+ B(T[q, r])]]), 

(A[t}, t2, t4,e).(D4, [(q, w) aq -+ gW(t4qw)]))). 

Let T' be (A.[(d},tt>,(d2,t2»).(join(D4[~~~·::::~])[e,dI.d2,D), T4», let r be 
the two terms 

DT(d}, [(q,x) aq -+ !x(tlqX)]), DT(d2, [(v, w) bv -+ gW(t2VW)]), 

let L\ be the four terms 

a=A, b=B,/=F, g=G, 

and Ds be the code of the protological derivation 
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(do, dI , d2,d3, tI, t2, t4, e) DT(do, [ -+ Z]), r, 
DT(d3, [(q, r,~) Aq, F'r -+ B(T[q, rD]) (pO) 

-+ DT(join(D4)[do, dlo d2, d3], [(q, w) aq -+ gW(t4qw)]) 
---------------------inst 

(dI ,d2,tI.12,t4,e)DT(e, [ -+ Z]), r, 
DT(D, [(q, r,~) Aq, F'r -+ B(T[q, r D]) 

-+ DT(join(D4)[e, d .. d2, D], [(q, w) aq -+ gW(t4qw)]) 
----------------------red 
(d .. d2, t .. t2, t4,e) Z, r, true 

-+ DT(join(D4)[e,d .. d2,D], [(q, w) aq -+ gw(t4qw)]) 
----------------------conv 

(d .. d2, tlo t2, 14,P) Z, r -+ Dd(a, g)(join(D4)[e, d., d2, D], (4) 
- ~& 

(dI , d2, tlo t2, t4,e) t4 = T4, d, r -+ Dd(a, g)(join(D4)[e, d .. d2, D], t4) 
ext 

(d.,d2,t.,t2,e) d, r -+ Dd(a,g)(join(D4[r4])[e,dI,d2,D], T4) 

-----------------------~ 

(d., d2, tlo t2,e) d, r -+ Dd(a, g)(join(D4[r~~t;:·;])[e, d., d2, D], T4) 
-----------------------red 

(d.,d2, t .. t2,p) d, r -+ Dd(a, g)(T'[(d .. tI), (d2, t2)]) 
- Dd-rule 

(q, r,e) d, Dd(a,j)q, Dd(b, g)r -+ Dd(a, g)(T'[q, rD 
----------------ext 
(q, r, z) Dd(A, F)q, Dd(B, G)r -+ Dd(A, G)(T'[q, rD 

- roo 
(q, r,~) CIq, C2r -+ C3(T'[q, rD 

Then by the join-lemma 

DT(join(Ds)[Join(Code)], [(q, r, z) CIq, C2r -+ C3(T'[q, rD]) t> * true 

which implies that join(Ds)[Join(Code)] t>* D' for some construction D'. 
So define a recursive function Pr20 such that 

Pr2o«D,(A.~].T», {I, val PI X =:} J}, {D(/,PI), D(J,P2) =:} D(/,P2)}) 

t>* (D', (A.[~].T'» 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

Join(Code) : rt, by the Join-lemma 
D' <3* join(Ds)[Join(Code)] : rt, by the join-lemma, as required. 
For any construction M : pi[O .. 02] <1* pi[Dw(n, cl»,Dw(l:, '1')], 

M is [Q,R], for some constructions Q : 0 w(n, cl» and R : 0 w(l:, '1') 
Q is (D .. TI)for some constructions DI : rt and TI : map(n, map(leaJ, C:P» 
R is (D2, T2) for some constructions D2 : rt and T2 : map(l:, map(leaJ, '1'» 
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£ : rt 
.. (D [hA,B,F,G][TI,T2])[" D D D]' t b th .. I Jom 4 14, a, b,t, g 110 12 '" }, 2, . r, y e Jom- emma 

T : map(pi[O, ell], l:), by the well-foundedness instantiation rule 
For any constructions U : 0 and V : leaj, 

T1UX : ell 
T[U, Tl UX] : l: 

T4[~:'~] UV t>* T2(T[U, T1UXDV : 'P. 

T4[~:'~] : map(O, map(leaj, 'P» 

T'M t>* (join(D [T4,A,B,F,G][TI,T2])[£ D D D] T, [TIoT2J) 4 14, a, b,t. g II, 12 ,}, 2, ,4 II, 12 
: product(rt,map(O,map(leaj, 'P») ~* Dw(n, 'P) t> 03. 

T' : map(pi[O 1,02],03), as required. 

I 

THEOREM 25. (CPF cut rule.) 

If Ql IF r =? I and Q2 IF I, tJ. =? J 
then Pr21(Ql, Q2, {r =? I}, {I, tJ. =? J}, {r, tJ. =? J}) IF r, tJ. =? J, 
where the construction Pr21 is defined below. 

Proof Let! t>* pfrz(A,O) t>* , let J t>* pfrz(B, l:) rt , let the proof functions 
of r reduce to pfrz(C}, ellt>, ... pfrz(Cm, ellm) rt , and let the proof functions of 
tJ. reduce to pfrz(El, 'PI)," ·pfrz(En, 'Pn) rt . 

Let:! be the free variables of r, I, let y be the free variables of I, tJ.,J, 
let ~ be the free variables of r, tJ.,J, let r},-: .. rm , q, u}, ... Un be m + n + 1 
fresh variables, and abbreviate r}, ... rm to r. and Ul," . Un to g. Let r' 
be the sequence of terms C1rb'" Cmrm and tJ.' be the sequence of terms 
EIUb' .. Enun· The hypotheses that Ql IF r =? I and Q2 IF I, tJ. =? J 
mean that Ql t>* (Db (A[,!].Tl» rt and Q2 t>* (D2' (A~].T2» rt , where 

• DT(Db [(r.,:!) r' --+ A(TI [r.])]) t> * true 

• Dl : rt and Tl : map(pi[ell}, ... $m], 0) 

• DT(D2,[(q,g,~)Aq, I::J.' --+B(T2[q,gD]) t>* true 

• D2 : rt and T2 : map(pi[O, 'Pb ... 'Pn],~)' 

Let }f be the variables of :! and y that are not in z, let T' be the term 

(A[r.,!:!l.T2[Tl[r.],!:!lr~]), where Q is-a sequence of Os, ~d let Do be the code 

of the protological derivation 
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(q, g, y) Aq, fl.' -7 B(T2[q, g]) (pI) 
- ~n 

(r., q, g,:!, y) Aq, fl.' -7 B(T2[q,!!1) (r.,:!) r' -7 A(T]W) (pO~n 

(r., g,:!,~) r' -7 A(T] [E]) 
- inst 

(r., g,:!,~) A(T] L[]), fl.' -7 B(T2[T] [r.],!!1) 
------------------------------------------------cut 

(r., g,:!,~) r', fl.' -7 B(T2[T] [E],!!1) 
------------------------ inst 

(r.,g,~) r', fl.' -7 B(T2[Tj[!.l.!!1[~]) 
------------------------ red 

(r., g,~) r', fl.' -7 B(T'[r., g]) 

Then by the join-lemma 

DT(join(Do)[Dj, D2], [(r, g,~) r', fl.' -7 B(T' [r., !!1)]) 1>* true 

which implies that join(Do)[D],D2] 1>* D' for some construction D'. So 
define a recursive function Pr2l such that 

Pr2l((Dj, (A.[:!l.Tj», (D2, (A~].T2»' {r => I}, {I, fl. => J}, {r, fl. => J}) 

I> * (D', (A.[~]. T'», 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

D' <1* join(Do)[Dj, D2] : rt, by the join-lemma, as required. 
For any construction X : pi[<I>j, ... <l>m, 'P], ... 'Pn], 

Xis [R\, ... Rm,V\, ... Vn],forsomeconstructionsR\ : <I>\, ... Rm : <l>m, 
V\ : 'P], ... Vn : 'Pn 

T2 [Tl [Rt. ... Rm], V\, ... Vn] : L 

T'X 1>* T2[Tl [RJ, ... Rm], Vt. ... Vn][~] : L, by the well-foundedness 
instantiation rule. 

T' : map(pi[<I>\, ... <l>m' 'P], ... 'Pn], L), as required. 
I 

THEOREM 26. (CPF boolean-elimination rule.) 
If Ql H= r x = true 1, r => I and Q2 ~ r x = false 1, r => I then 
Pr22(Ql, Q2, ex = truel , r => I}, { x = false 1 , r => I}, 
{rbooleanxl, r => I}) H= rbooleanxl, r => I, 
where the construction Pr22 is defined below. 

Proof Let I 1>* pfn(A, n) pt and let the proof functions r reduce to 
Pfn(Bl, L\), ... pfn(Bt. Lk) pt . Note that 

r x = true 1 is pfn((Anil.x = true), leaf), 

r x = false 1 is pfn((Anil.x = false), leaf), 

r boolean xl is pfn((Anil.booleanx), leaf). 
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Let z be the free variables of x, r, f, let q, r1, ... rb Y, v be k+ 3 fresh variables, 
and -abbreviate rb .. . rk to r. and B 1 rb ... Bkrk to r'. The hypotheses that 
Q1 IF r x = true 1, r ~ f and Q2 IF r x = false 1, r ~ f mean that Q1 [> * 
(D1' (A[~].T1» pt and Q2 [>* (D2, (A[~J.T2» pt , where 

• DT(Db[(q,r.,~)(Anil.x=true)q, r'-+A(T1[q,r.])]) [>* true 
andDT(D2,[(q,r.,~)(Anil.x=false)q, r'-+A(T2[q,r.])]) [>* true, 

• D1,D2 : rtand T1,T2 : map(pi[leaf'~1' ... ~k],n). 

Now, let T~ be (Ay.T1y), let T~ be (Ay.T2y), let Fbe (Av.ifV T~ T~ [q,r.]), let T 
be (Ay.if x T~ T~ y) and let Do be the code of the protological derivation that 
starts with 

(q,r.,~) (Anil.x = true)q, r' -+ A(T1[q,r.]) (pO) 
--------------red 

(q, r.,~) x = true, r' -+ A(F true) 
--------------------eq 

(q, r.,~) x = true, r' -+ A(Fx) 

and similarly derives 

(q,r.,~) (Anil.x=false)q, r' -+ A(T2[q,r.]) (pi) 
--------------red 

(q,r.,~)x=false, r'-+A(Ffalse) 

(q, r.,~) x = false, r' -+ A(Fx) 
eq 

and then combines the two branches using the Boolean Rule to give 

(q, r., 3;) boolean x, r' -+ A(Fx) (bool) 
---------------red 
(q, r.,3;) (Anil.booleanx)q, r' -+ A(T[q,r.]) 

Then by the join-lemma 

DT(join(Do)[D1,D2], [(q,r.,~) (Anil.booleanx)q, r' -+ A(T[q,r.])]) [>* true 

which implies that join(Do)[D1' D2] [> * D for some construction D. So 
define a recursive function Pr22 such that 

Pr22«Db (A[~].T1»' (D2, (A[~].T2»' {r x = true 1, r ~ f}, 
ex = false 1, r ~ f}, {r boolean x 1, r ~ f}) [> * (D, (A[~].T», 

thus satisfying the decidable part of the proof relation . 
. To check the well-foundedness conditions, 

D <l* join(Do)[Db D2] : rt, by the join-lemma, as required. 
For any construction Y : pi[leaf'~1' ... ~k], 

T~Y [>* T1Y : n and T~Y [>* T2Y : n. 
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T~ : map(pi[leaJ, ~}, ... ~k], n) and T~ : map(pi[leaJ, ~}, ... ~kl, n) 
if x T~ T~ : map(pi[leaJ,~}, ... ~k]' n), by the if well-foundedness rule. 
For any construction Y : pi[leaJ, ~lo .•. ~k]' 

TY c>* ifxT~ T~ Y : n. 
T : map(pi[leaJ, ~ 1, ... ~kl, n), as required. 
I 

THEOREM 27. (CPF induction rule.) 
If Ql IF =? val P 0 and Q2 IF val P n =? val P (Sn) then 
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Pr23(Q}, Q2, {=? val PO}, {val P n =? val P (Sn)}, e num n 1 =? val P n}) 
IF r num n 1 =? val P n, 

where n tt P and the construction Pr23 is defined below. 

Proof Let P c>* pred(F,n) ~ , let y be the free variables of P, let z be 
the free variables of P,n, and let q,Q,g,x be four fresh variables. Thus 
val P x c>* pjn(Fx, n) c>* pjn(B, n) ~ , for some term B. Hence val PO 

c>* pjn(Br~] ,n) ~,and similarly for valPn and vaIP(Sn). The hypotheses 

that Ql ~ =? valPO and Q2 IF valPn =? vaIP(Sn) mean that Ql c>* 
(D}, (A~].Tl» ~ and Q2 c>* (D2, (A[~J.T2» ~ , where 

• DT(Dl, l<l') -+ B[~] (Tl nil)]) c>* true 

• Dl : rt and Tl : map(pi(nil), n) 

• DT(D2, [(q,~) B[~] q -+ B[~n] (T2[q]))) c>* true 

• D2 : rt and T2 : map(pi[n], n). 

Recall from the Expanded Term Language the recursion operator reco, satis
fying reco( a, g) c> * To, To(O) c> * a and To(Sn) c> * g(n, Ton). Let A be Tl nil, 
G be (A(n, q).T2[q]), C be (An.Fn(reco(A, G)n», and T be (Anil.reco(A, G)n); 
then let Do be the code of the protological derivation 

(q,~) B[~] q -+ B[~n] (T2[q]) (pI) 

---------red 
(q, z) Fnq -+ F(Sn)(G(n, q» 

<l') -+ B[~] (Tl nil) (pO) (y Fn(reco(A~ G)n) -+ F(Sn)(G(n, reco(A, G)n» inst 
------cony cony 

<l') -+ CO (~) Cn -+ C(Sn) ind 

(n,y) numn -+ Cn 
- thin 

(q,Z) numn -+ Cn 
- red 

(q,~) (Anil.num n)q -+ B[~] (T[q]) 
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Then by the join-lemma 

DT(join(Do)[Dt.D2]' [(q,~) (Anil.numn)q ---+ B[;] (T[q])]) 1>* true 

which implies that join(Do)[D1,D2] 1>* D for some construction D. So 
define a recursive function Pr23 such that 

Pr23«Dt. (AQ).T1», (D2, (A[~].T2))' {::::} val PO}, {val Pn ::::} val P(Sn)}, 

{rnumn' ::::} vaIPn}) 1>* (D,(A[~].T), 

thus satisfying the decidable part of the proof relation. 
To check the well-foundedness conditions, 

D <1* join(Do)[D1, D2] : rt, by the join-lemma, as required. 
nil : pi(nil), by the pi-rule 
A is Tl nil : n. 
For any construction W : product(leaj, n), 

W is (N, Q), for some constructions N : leaj and Q : n 
T2[~] : map(pi[n], 0), by the well-foundedness instantiation rule 

GW 1>* T2[~] [Q] : n. 
G : map(product(leaj, n), n). 
reco(A, G) : map(leaj, n), by the recursion well-foundedness rule. 
For any construction Z : pi[leaf] , 

12 1>* reco(A, G)n : n. 
T : map(pi[leaj], n), as required. 

I 

FORMAL INTERPRETATION OF CPF IN PROTOLOGIC 

The previous section has shown that every axiom of CPF has a proof (in the 
~ sense) and every rule of inference preserves provability. It follows that 
every CPF theorem is provable. In this section I shall show explicitly how to 
generate a proof of a logical sequent from its CPF derivation. First we need 
a way of coding CPF derivations as constructions. 

DEFINITION. A coding of CPF derivations as constructions is defined as 
follows. Number the axiom schemata and rules of CPF, 1,2, ... 23, in the 
order in which they are listed above. A derivation with conclusion r ::::} I, 
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from a list of premises numbered 0,1,2, ... , is coded as 

(premise(i), {r ::::} l}) if r ::::} 1 is premise number i 

(none(n), {r ::::} l}) If r ::::} 1 is an instance of axiom schema n 

(one(n, P), {r ::::} l}) if r ::::} 1 is derived by rule n from one 

subderivation, P 

(two(n, P, Q), {r ::::} l}) if r ::::} 1 is derived by rule n from two 

subderivations, P and Q. 

321 

(Note that the conclusion sequent is part of the code of the derivation. Thus 
this code is analogous to the code of a protological derivation tree, rather 
than the code of a protological derivation - see the beginning of Chapter 21.) 

DEFINITION. Define a construction spr by 
.6. 

spr(none(1),a) = Prl(a) 

.6. 
spr(none(13), a) Pr13(a) 

.6. 
spr(one(14, (u, b», a) Pr14(spr(u, b), b, a) 

.6. 
spr(one(20, (u, b», a) Pr20(spr(u, b), b, a) 

.6. 
spr(two(21 , (u, b), (v, c», a) Pr21 (spr(u, b), spr(v, c), b, c, a) 

.6. 
spr(two(22, (u, b), (v, c», a) Pr22(spr(u, b), spr(v, c), b, c, a) 

.6. 
spr(two(23, (u, b), (v, c», a) = Pr23(spr(u, b), spr(v, c), b, c, a) 

where a, u, b, v, c are five variables. 

THEOREM 28. If D is the code of a CPF derivation (with no premises) of a 
logical sequent r ::::} 1 then spr(D) IF r::::} l. 

Proof By structural induction on the CPF derivation using the extensionality 
of IF (Theorem 1 ofthis chapter). I 
THEOREM 29. (CPF interpretation theorem.) If D is the code of a CPF 
derivation (with no premises) of a logical sequent::::} I, where I has no free 
variables, then pr(spr(D» f-- l. 

Proof By the previous theorem, spr(D) IF ::::} I so, by the soundness 
theorem for IF with respect to f-- (Theorem 2 of this chapter), pr(spr(D» f-- I. 
I 
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Future chapters will apply this interpretation theorem to CPF derivations 
compiled from derivations in higher-level formal systems. The compilation 
process requires the following function, glue, which is used to attach CPF 
derivations to the premises of other CPF derivations. It is a variation of 
the function join defined for protological derivations, and can be used on 
derivations in a variety of formal systems, provided they are coded in a 
similar way to CPF derivations. 

DEFINITION. Define a construction glue by 

t::.. 
glue«premise(O), a), «d, a), rest» = (d, a) 

glue«premise(Si), a), (first, rest» ~ glue«premise(i), a), rest) 
t::.. 

glue«none(n), a), dlist) (none(n), a) 

glue«one(n,p), a), dlist) ~ (one(n, glue(p, dlist», a) 

t::.. 
glue«two(n,p, q), a), dlist) = 

(two(n, glue(p, dUst), glue(q, dUst», a). 

where a, d, i,first, rest, n,p, q, dUst are nine variables. 

THEOREM 30. (The glue-lemma for CPF.) If D is the code of a CPF derivation 
of a logical sequent S from premise sequents To, ... Tko and Do, ... Dk are the 
codes of CPF derivations (with no premises) of To, ... Tk respectively, then 
glue(D, [Do, ... DkD 1>* the code of a CPF derivation (with no premises) of 
S. 

Proof By a straightforward structural induction on the derivation encoded 
byD. I 

EXAMPLE. Let D be the coded CPF derivation 

(two(21, (one(16, (premise(O), W», X), (premise(l), Y», Z), 

where W,X, Y,Z are coded logical sequents; note that D is the code of a 
derivation of Zfrom the premises Wand Y. Let Do be (one(17, (none(5), U», 
W), a coded CPF derivation of W; and let Dl be (none(lO), Y), a coded CPF 
derivation of Y. Then 

glue(D, [Do, DIl) 

1>* (two(21, (one(16, (one(17, (none(5), U», W»,X), (none(lO), Y»,Z) 
, " ,----

Do DI 

which is the code of a CPF derivation of Z without premises. 
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CALCULUS OF PROOF FUNCTIONS 

LOGICAL SEQUENTS 

A logical sequent is a sentence in the following language. 

• The alphabet is that of the Expanded Term Language plus ',' and '::::}'. 

• The tokens are those of the Expanded Term Language plus',' and '::::}'. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The non-terminals are S, LHS, Ps, P, T; the start symbol is S. 
- The production rules are 

S -+ LHS::::} P 
LHS -+ Ps I E 

Ps -+ P, Ps I P 
P-+T 
T -+ con I (vbl) I (T T) I (A. T . T) I (T [ ;bl ] ) 

In addition there is a context-sensitive constraint, that all the substrings 
matching P must be proof functions. 

METANOTATION 

All the metanotation of the Expanded Term Language will be allowed in the 
terms in logical sequents. The letters 'I', 'J' and 'K' will be used as meta
variables denoting proof functions, the letters 'r' and '11' as metavariables 
denoting (possibly empty) sequences of proof functions, and the letters' P', 
'PI' and 'P2' as metavariables denoting predicates. Metasequents and their 
instances are defined by analogy with metaterms and their instances in the 
Expanded Term Language. The typical metanotation for a sequent will be 
'f::::} 1'. 
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THE PROOF RELATION, IF ' FOR LOGICAL SEQUENTS 

A proof relation IF is defined between terms with no free variables and 
logical sequents. A construction pr is defined. 

THEOREM 1. (Extensionality of IF .) If Q t> * <I Q' then Q IF r ~ 1 iff 
Q' IF r ~ I. 
THEOREM 2. (Soundness of IF with respect to 1-.) If Q IF => I, where 1 
has no free variables, then pr(Q) I- I. 

THEOREM 3. (Completeness of IF with respect to 1-.) If Q I- 1 then 
in(A[~J.(Q, I)) IF I, where ~ are the free variables of I and Q, for a certain 
construction in. 

THEOREM 4. For any proof function 1 and predicate P, there is no term Q 
such that Q IF 0 (I, P) => rfalse'. 

CALCULUS OF PROOF FUNCTIONS (CPF) 

The axioms and rules of CPF are all instances of the following schemata. 

Truth introduction (true-in): => r true' 
Falsity elimination (false-el): rfalse' => 1 
Reduction (red): 1 => I where 1 t> lor I t> I; 

rX' => ry, where X t> Yor Y t> X 
A-introduction (A-in): I, I => A(I, I) 
A-elimination (A-el): A(I,I) => 1 A(I,I) => I 
3-introduction (3-in): val P x=> 3P 
D-expansion (D-exp): 1 => o (I, conI) 
D-compression (D-comp): ocr true', 6(I,P)) => D(I,P) 

Term existence (te): rT[;] , => 3(predify(Ax. rx = X')) 

where x E T but x fj. X 

Equality (eq): rX = Y', valP X=> valP Y where X, Y , ; 
rX = yl, rT[:]' => rT[~] , 

r=>I 
Thinning (thin): 

I, r => I 

Exchange (exch): 

Contraction (con): 

r, I, I, II => K 

r, I, I, II => K 

I, I, r => I 
I, r => I 

3-elimination (3-el): 
valPx, r => I 

3P, r => 1 
where x fj. P, r,l 
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o -introduction & elimination (0 -in & 0 -el): 

where x ¢ I,P 

I=> valPx 
=> O(I,P) 

o -transitivity (0 -tr): 
I, val PI X=> J 

Cut: 
r=>1 I, /1 => J 

r, /1 => J 

Boolean rule (bool): 

Induction (ind): 
=> valPO 

rbooleanx', r => I 

valPn => vaIP(Sn) 
rnumn, => valPn 

where X pt 

where n ¢ P 

FORMAL INTERPRETATION OF CPF IN PROTOLOGIC 
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A coding of CPF derivations as constructions is defined. A construction spr 
is defined. 

THEOREM 28. If D is the code of a CPF derivation (with no premises) of a 
logical sequent r => I then spr(D) H= r => I. 

THEOREM 29. (CPF interpretation theorem.) If D is the code of a CPF 
derivation (with no premises) of a logical sequent => I, where I has no free 
variables, then pr(spr(D» I- I. 

DEFINITION. Define a construction glue by 

6-
glue«premise(O), a), «d, a), rest» = (d, a) 

glue«premise(Si), a), (first, rest» ~ glue«premise(i), a), rest) 
6-

glue«none(n), a), dlist) = (none(n), a) 

glue( (one(n, p), a), dlist) ~ (one(n, glue(p, dlist», a) 
6-

glue«two(n,p, q), a), dlist) 

(two(n, glue(p, dlist), glue(q, dUst», a). 

where a, d, i,first, rest, n,p, q, dlist are nine variables. 

THEOREM 30. (The glue-lemma for CPE) If D is the code of a CPF derivation 
of a logical sequent S from premise sequents To, ... Tko and Do, ... Dk are the 
codes of CPF derivations (with no premises) of To, . .. Tk respectively, then 
glue(D, [Do, ... Dk]) 1>* the code of a CPF derivation (with no premises) of 
S. 
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FROM CALCULUS OF PROOF FUNCTIONS 
TO THE LOGIC OF PARTIAL TERMS 

In this chapter some derived logical constants, 1\, ., V, > and :J, are defined 
and their CPF properties are established. Next, formulae are introduced: 
these are expressions in the style of predicate calculus, built up from atomic 
formulae (which are simply terms) using the logical constants 1\, V, :J, :3 
and V. Every formula is interpreted as a proof function and thus inherits a 
notion of intuitionistic proof. The Calculus of Proof Functions (CPF), when 
restricted to interpreted formulae, turns into Logic of Partial Terms (LPT). 
LPT is an axiomatisation of first-order intuitionistic predicate calculus with 
equality, reduction and induction, adapted to take account of the fact that not 
all terms have values. Every theorem of LPT (without free variables) has an 
intuitionistic proof. 

LPT is similar to Beeson's (1985, Chapter VI, §l) system of the same 
name, except that Beeson includes, for any term t, an atomic formula t -!-, 
which says that t has a value. Since t -!- is provably equivalent to t = t in 
Beeson's system, the former is redundant and I shall not use it. Another 
difference between my system and Beeson's is that I shall not use any substi
tution notation in LPT formulae; substitution is more trouble than it is worth, 
and its introduction will be delayed until Peano Arithmetic (see Chapter 33). 

LEXICAL CONVENTIONS 

In this chapter, the identifiers' l', 'J' and' K', sometimes with subscripts, will 
be used to denote proof functions, the identifiers 'P' and 'Q' will be used 
to denote predicates, and the identifiers 'r' and '~' will be used to denote 
(possibly empty) sequences of proof functions. 

NEW LOGICAL CONSTANTS 

Let i, g, p,j be four variables. 

DEFINITION. Define the construction 1\ by 

1\ nil l:;. r true 1 

I\(i,g) 
l:;. 

l\(i,l\g). 
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THEOREM 1. If It, . . . In are proof functions (where n ~ 1) then 

/\[l], ... In] t>*<l 1\(1t, ... I\(/n, [true') ... ). 
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THEOREM 2. If r is a sequence of proof functions then /\[r] is a proof 
function. 

DEFINITION. Define the construction • as (Ai.D ( [ true' , con i». 

THEOREM 3. If I is a proof function then so is .1. 

DEFINITION. Define the construction V as (Ap.D ( [ true' ,p». 

THEOREM 4. If P is a predicate then VP is a proof function. 

DEFINITION. Define the construction> (pronounced 'super-implication') as 
(A(i,j).D(i, conj». 

DEFINITION. Define the construction :J ('implication') as (A(i,j).>(i, .j». 

THEOREM 5. If I and J are proof functions then so are >(/, J) and :J(I, J). 

The logical constants > and V are special cases of 0, and • may be regarded 
as a special case either of > or of V. 

To understand the meanings of these logical constants, recall first how the 
CPF sequent arrow => works. A proof (in the sense of ~ ) of I => J involves 
a function T such that, for any construction Q: (i) if Q satisfies the decidable 
part of the proof relation Q f- I then T[Q] satisfies the decidable part of the 
proof relation T[Q] f- J; and (ii) if Q satisfies the well-foundedness part of 
Q f- I then T[Q] satisfies the well-foundedness part of T[Q] f- J. 

Now, a proof of .1 is (loosely speaking, ignoring some technicalities) a 
construction X and a derivation of the protological sequent -t AX, where 
A is the decidable part of I. If we have a construction X such that AX 
t> * true then we can derive -t AX using the special derivation e. Thus 
given something satisfying the decidable part of the requirements for a proof 
of I we obtain something satisfying the decidable part of the requirements 
for a proof of .1. The converse, however, fails. If we have a derivation 
(not necessarily with a well-founded reflection tree) of -t AX we cannot 
conclude that AX t>* true. Consequently we shall find that I => ./ is a 
theorem of CPF but .1 => I is not, except in special cases. If. [U' => [U' 
were a theorem, for arbitrary terms U, this would amount to saying that all 
reflection principles were sound, irrespective of the well-foundedness of the 
reflection tree. (In particular, Theorem 4 in the Calculus of Proof Functions 
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shows that e rfalse 1 =? rfalse 1 has no proof and hence is not derivable in 
CPF.) Thus, within CPF, el is a slightly weakened fonn of I. 

A proof of >(I,}), where I 1>* pjh(A, II) ~ and J 1>* pjh(B, "L) ~ , is 
(loosely speaking) a function T and a protological derivation of the sequent 
(q) Aq -+ B(Tq). To prove >(1, J), it is necessary to map every construction 
Q satisfying the test A to a construction TQ satisfying the test B; the mapping 
must work on all such Q, even those that are not well-founded according 
to II. In addition, T must map everything well-founded according to II to 
something well-founded according to "L. Thus super-implication (» treats 
the decidable and well-foundedness parts of proof separately and is analo
gous to the CPF sequent arrow =?; as such it is stronger than intuitionistic 
implication in the usual sense, which simply involves mapping proofs of I to 
proofs of J. 

To obtain intuitionistic implication in the intended sense we need to fonn 
the proof function >(1, eJ). A proof of >(1, eJ) is (loosely speaking) a 
function T, a function D, and a protological derivation D' of (q) Aq -+ 
DT(Dq, [ -+ B(Tq)]). The well-foundedness conditions are: D' : rt; 
DQ : rt if Q : II; and TQ : "L if Q : II. These conditions guarantee that 
if AQ 1>* true and Q : II then B(TQ) 1>* true and TQ : "L. That is, if Q 
is a proof of I then TQ is a proof of J. Hence >(1, eJ) may be interpreted as 
'I implies J'. This explains the way implication (:J) is defined above. We 
shall see below that :J, defined in this way, satisfies the correct introduction 
and elimination rules. 

A logical sequent r =? I may be read infonnally as 'r super-implies [" 
whereas one of the fonn r =? el may be read infonnally as 'r implies 1'. 

SOME DERIVATIONS IN CPF 

THEOREM 6. Tautology (taut): I =? I 

Proof. Let J be a proof function such that I I> J or J I> I. (If I ~ , take 
J as id I; otherwise take J such that I I> J.) Then the CPF derivation is as 
follows. 

I =? J J =? I (red) 

I=?I cut 

I 

THEOREM 7. Reduction properties (red): if T 1>* true, 
r=?I r, I, /),. =?K 

r=?J r, J, /),. =? K 
if I 1>*<] J. 

Proof. By Cut, Exchange, true-introduction, and the Reduction axioms. I 
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THEOREM 8. Symmetry (symm): rX = y' => ry = X' 

Proof. Let x be a fresh variable and P be the predicate predify(Ax. r x = X'). 

rx=X', rx=X' => rX=X' (eq) 
----------con 

I 

THEOREM 9. A-theorems and rule (A): 
(a) => A nil 
(b) I, A[r] => 1\[1, r] 
(c) r => I\[r] 
(d) 1\[1, r] => 1 
(e) 1\[/, r] => A[r] 
(t) I\[K}, ... Kn1 => Kj, for i = 1, ... n 
(g) r,!1 => 1 

I\[r], !1 => 1 

Proof. 
(a): by Reduction from the CPFaxiom => r true' . 
(b): by Reduction from CPF A-introduction. 
(c): from (a) and (b) using Exchange and Cut. 
(d), (e): by Reduction from CPF A-elimination. 
(t): from (d) and (e) using Cut. 
(g): from (c) and (t) using Cut, Exchange and Contraction. I 

THEOREM 10 .• -introduction (.-in): 1 => .1 

Proof. 

1 => D(r true' , conI) (D-exp) 
-------red 

1 =>.1 
I 

THEOREM 11. Shift rule (shift): 
r => D(A(/,J),P) 

r, 1 => D(J,P) 
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Proof. Let x be a fresh variable. 

I, 1 ::::} A(I, l) <A-in) 
-----exch 
l, I::::} A(I,1) 

--------roo 
l, val(con I)x ::::} A(I,J) D-tr 

I::::} D(l, conI) (O-exp) O(l,conI), O(A(I,J),P)::::} D(l,P) 
---------------------cut 

I, O(A(I,J),P) ::::} O(l,P) 
---------exch 

r::::} O(A(I,J),P) O(A(I,J),P), I::::} O(l,P) 
-----------------cut 

I 
r, I::::} O(l,P) 

THEOREM 12. Extended O-introduction rule (O-in+): 

where x ~ r, I, P. 

r, I::::} val P x 

r::::} D(I,P) 

Proof. 
r, I ::::} val P x 1\ 

1\ [r] , I::::} val P x 
------- A-e), cut, con 

I 

A(I\[r],l) ::::} val P x 
-------D-in 
::::} 0 (A(I\[r], I), P) 
------- shift 

I\[r] ::::} O(l,P) 1\ 
r ::::} O(l,P) 

THEOREM 13. D-instantiation rule (D-inst): 

where x ~ I,P, Q,X and X , . 

Proof. Let 1 be A(I, val P X). 

I, val P X ::::} val Q x 
------- A-e), cut, con 

I, valPX::::} valQx 

O(l,P) ::::} 0(1, Q) 

l::::} valQx D . I, valPX::::} 1 <A-in) 0 
-In -tr 

::::} D(l, Q) 0(1, P), D(l, Q) ::::} 0(1, Q) 
--------------------cut 

I 
0(1, P) ::::} 0(1, Q) 

THEOREM 14. D-monotonicity rule (O-mono): 

where x ~ I, P, Q. 

I, val P x ::::} val Q x 

0(1, P) ::::} 0(1, Q) 

Proof. Recall from Logic that val(D.(I, Q»x I>*<J 0 (I, con(val Qx». Let y 
be a fresh variable. 
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I, val P x =* val Q x 

I, val P x =* val(con(val Qx»y 
----------O-inst 
O(l,P) =* O(l,con(vaIQx» 
---------- red 

0(1, P) =* val(6(1, Q»x 
----------- thin 
0(1, P), r true' =* val(6(1, Q»x 0 . 

-m+ 
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0(1, P) =* 0 (r true' ,6(1, Q» 0 (r true' , 6(1, Q» =* 0 (I, Q) (D-comp) 
----------------------cut 

I 
O(l,P) =* 0(1, Q) 

THEOREM 15. e-compression (e-comp): e(O(l, P» =* 0(1, P) 

Proof Let x and y be two fresh variables, and let Q be 6(1, P). 

val P x =* val P x (taut) 
-------thin 
I, val P x =* val P x 

----------red 
I, val P x =* val(con(val P x»y . 
----------O-mst 
0(1, P) =* 0(1, con(val P x» 

------------thin 
rtrue" O(l,P) =* 0(1; con(val Px» 
------------red 
r true', val(con(D (I, P)))x =* val Q x 0 

-mono 
O( r true', con(O(l, P))) =* O( r true', Q) _____________ red 

e(O(l, P» =* O( r true', Q) O( r true" Q) =* 0(1, P) (O-comp) 
---------------------cut 

I 
e(O(l,P» =* O(l,P) 

THEOREM 16. >-introduction rule (>-in): 

Proof Let x be a fresh variable. 

I 

r,I=*J 
------red 
r, 1=* val(conJ)x 0 . 

-m+ 
r =* 0(1, conJ) 
------red 

r =* >(I,J) 

THEOREM 17. >-transitivity (>-tr): >(I,J), >(J,K) =* >(I,K) 

Proof Let x be a fresh variable. 
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J :::} J (taut) 
---thin 
I, J :::} J 

-------red 
I, val( con J)x :::} J 

--------------D-tr 
O(I,conJ), D(J,conK):::} D(I,conK) 
--------------red 

>(1,]), >(J, K) :::} >(1, K) 

THEOREM 18 .• -transitivity (.-tr): 
r, I:::} J 

r, .I:::} .J 

Proof 

I 

r, I:::} J 
---->-in 
r :::} >(1, J) 

>( f true', I), >(1, J) :::} >( r true',]) (>-tr) 
-------------red 

.1, >(1, J) :::} .J 
------------------cut 

r, .I:::} .J 

THEOREM 19 .• -elimination (.-el): •• 1 :::} .1 
:::} .1 
:::}I 

r, I:::} .J 
r, .I:::} .J 

Proof Let x be a fresh variable . 

I 

• (D(f true', conI» :::} Oetrue' , conI) (.-comp) 
---------------rro .. I:::} .1 

:::} .1 d -------re 
:::} D ( f true' , con I) 0 

-e\ 
f true' :::} val( con I)x 
-------rro 

:::} r true' (true-in) f true' :::} I 
-----'----'---------cut 

:::}I 

r, I:::} .J 
.-tr 

r, .I:::} •• J •• J :::} .J ( .-el, above) 
------------cut 

r, .I:::} .J 

THEOREM 20. Cut rule with. (.-cut): 
r :::} .1 I, !.l. :::} .J 

r, !.l. :::} .J 
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/, I). =} eJ 
----exch 
1)., / =} eJ 
----e-eI 

r =} e/ 1)., e/ =} eJ 
---------cut 

r, I). =} eJ 

THEOREM 21. \i-elimination (\i-el): \iP =} e(val P x) 

Proof Let y be a fresh variable. 

I 

val P x =} val P x (taut) 
---------thin 
r true 1, val P x =} val P x 

-------------red 
r true 1, val P x=} val(con(val P x»y . 

--------------D-mst 
D( r true 1, P) =} D(r true 1, con(val P x» 
-------------- red 

\iP =} e(val P x) 

THEOREM 22. \i-introduction rule (\i-in): 

where x f{. r, P. 

r =} e(val P x) 

r =} \iP 
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Proof Let Q be 6(rtrue 1, P), giving valQx l>*<J D(rtruel,con(vaIPx» 
l>*<J e(val P x). 

I 

r =} e(val P x) 
-----red 
r =} val Qx 

------- thin 
r, r true 1 =} val Q x D . 

-m+ 
r =} D ( r true 1 , Q) 

D(rtruel,Q) =} D(rtruel,P) (D-comp) 
----------red 

D (r true 1, Q) =} \i P 
--------------------cut 

r =} \iP 

EXERCISES. Derive the following logical sequents and rules in epF. 

=} >(I,J) 
/=}J 

/=}J 

D(J,P) =} D(I,P) 

e/ =} / eJ =} J 

e(I\(I, J» =} 1\(1, J) 

>(;\[1).], J) =} >(A[I, 1).], J) 

>(A[r,l,J, 1).], K) =} >(A[r, J,l, 1).], K) 
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>(1\[1, I, n, J) =? >(1\[1, n, J) 

>(f\[n, I), >(1\[/, ~],J) =? >([r, ~],J) 

Define a 'new' version of implication, 3, as (')..(i,j).>(i, >(i,j»). Investigate 
the CPF properties of 3. 

EXERCISES. 

1. Find proof functions 1 and J for which -:J(I, J) =? >(1, J) is not a CPF 
theorem. 

2. Find a predicate P for which .:3P =? :3P is not a CPF theorem. 

LPT FORMULAE 

Aformula of LPT is a sentence in the following language. 

• The alphabet is that of the Expanded Term Language (ET) plus' 1\', 'V', 
'-:J', ':3', 'V'. 

• The tokens are those ofET plus' 1\', 'V', 'J', ':3', 'V'. 
• Lexical analysis consists of recognising constants and replacing them by 

the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The non-terminals are F, T; the start symbol is F. 
- The production rules are 

F --+ T I (F 1\ F) I (F V F) I (F -:J F) I :3 vbl F I V vbl F 

T --+ con I (vbl) I (T T) I (').. T . T) I (T [ ~bd ) 
(Note that this grammar contains that of ET: a term of ET is any string 
matching the non-terminal T. A formula that is a term will be called an 
atomic formula.) 

METAFORMULAE 

The letters 'A', 'B' and 'e' will be used as metavariables to denote formulae. 
A metaformula is an expression that is like a formula except that it may 
contain metaconstants, metavariables and ET metanotation, some brackets 
may be omitted, and optional brackets and spaces may be added. To state 
it more precisely, the alphabet is that of ET metaterms plus 'I\', 'V', '-:J', 
':3', 'V'; the tokens are those ofET metaterms plus '1\', 'V', '-:J', ':3', 'V', 
and a new one 'formvbl'; lexical analysis is as for ET metaterms except that 
metavariables denoting formulae are replaced by 'formvbl'; and the grammar 
is 
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F -+ PI\F I PVF I P-:JF I P 
P -+ 3 vbl P I V vbl P I (F) I T I formvbl 

T-+TLITUbl] IL 
L -+ con I vbl I (T) I (A T . T) I termcon I vblvbl I termvbl I 

where the start symbol is F and ' ... ' represents production rules for ET 
metanotation. 

EXAMPLE. Let 'x' and 'y' be metavariables denoting variables, and 'A', 'B' 
and 'C' be metavariables denoting formulae. Then the lexical analysis and 
parsing of the metaformula 'Vx3y A -:J B -:J C' are as follows. 

V vblvbl 3 vblvbl formvbl -:J formvbl -:J formvbl ---- ---- ----p p p V J _____ 

P F 
v '" P F , 

'" F 

Note that quantifiers have higher syntactic precedence than propositional 
connectives and the precedence of propositional connectives increases from 
left to right: 'A -:J B V C 1\ D' is parsed as if it were 'A -:J (B V (C 1\ D»'. 

An instance of a metaformula is a formula obtained from the metaformula 
by choosing a term, variable or formula (as required) for each metavariable 
in the metaformula, replacing each occurrence of each metavariable by the 
chosen term, variable or formula, replacing each metaconstant by the term 
it denotes, adding and removing brackets as required, removing spaces, and 
rewriting all metanotation. A metaformula may be used in two ways: as a 
schema, standing for any of its instances, or to denote a particular one of 
its instances. The latter will be implied when particular formulae, terms or 
variables have previously been chosen for the metavariables. 

FREE VARIABLES IN FORMULAE 

For any variable v and LPT formula A, the relation v E A ('v occurs free in 
A ') is defined by: 

• if A is a term T, v E A iff vET in the sense ofET; 

• v E A 1\ B iff v E A V B iff v E A -:J B iff v E A or v E B; 

• v E 3xA iff v E VxA iff v isn't x and v EA. 

The free variables of A are the variables v such that v E A. 

THEOREM 23. Any LPT formula has finitely many free variables. 
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INTERPRETATION OF LPT FORMULAE AS PROOF FUNCTIONS 

Each formula A is interpreted as a proof function r A' • as follows. 

r T' (where T is a term) has already been defined in Logic 

rA 1\ B' is 1\ (rA" rB') 

rA VB' is r3.x(booleanx 1\ (x = true ~ A) 1\ (x = false ~ B))' 

for a variable x ~ A, B 

r A ~ B' is ~ (r A' , r B ') 

r 3.x A' is :l(predifY(Ax. r A')) 

rVxA'isV(predifY(Ax.rA')) 

THEOREM 24. (Free variables in formulae.) If A is an LPT formula then 
vEAiffvE rAj. 

Note that the interpretation of A V B is independent (up to compilation) of 
the choice of x, since r A VB' is, more explicitly, 

:l(predifY(Ax. 1\ (pfn«Anil.booleanx), leaf), 

1\( ~ (p.fn«Anil.x = true), leaf), r A'), 

~ (p.fn«Anil.x = false), leaf), r B' ))))) 

(recall the binding-independence property in the Expanded Term Language). 

THEOREM 25. For any formulae A, B, term Q, variables y, and irreducible 

terms t, we have Q I- rA 1\ B'~] iff Q ~* (R1,R2) , ,where Rl I- rA '~] 
and R2 I- r B' ~]. 

Proof. This follows immediately from Theorem 8 of Logic, since r A 1\ B' ~] 

++ l\(rA,~],rB'~]). I 

THEOREM 26. For any formula A, variable x, term Q, variables y (not 

including x), and irreducible terms t, we have Q I- r3.xA'~] iff Q ~* 
(X,R) , ,where R I- rA' m[;} 
Proof. This follows from Theorem 10 of Lor!c, since, if we take P as the 

predicate predifY(Ax. rA ')~]' we have r:lxA'~] ++ :lP and rA' ~][;] <J* 

va[PX. I 
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THEOREM 27. For any formulae A,B (with free variables y between them), 
any terms Q, R (with no free variables), and ani constructions I, if Q I-
rA:JB1~] andR I- rA 1~] then el:>(Q,R) I- rB1~J (fora certain construction 

el:> ). 

Proof. Define el:> as O .. (q, r).elo (elo q TO) nil 0). Now, 

rA:JB1~] 4 :J(rA1~],rB1~]) [>*<] >(rA1~],.rB1~]) 

[>* O(rA 1~] ,con(D(r true 1, con( r B1 ~])))), 

so applying Theorem 12 of Logic gives 

elo Q R 0 I- val(con(D( r true 1, con(r B 1 ~]»)))O [>* O( r true 1, con( r B 1 ~]», 

and, applying the same theorem again (since nil I- r true 1 and Q, R are 
evaluable), 

as required. I 

THEOREM 28. For any formulae A, B (with free variables y between them), 

any term Q (with no free variables), and any constructions I,if Q I- r A V B 1 ~] 
then either selectv (Q) [> * true and ely (Q) I- r A 1 ~] or selectv (Q) [> * false 

and elv{Q) I- r B 1 ~] (for certain constructions selectv and elv). 

Proof. Let x, r}, r2, T3 be four fresh variables, define selectv as left, define ely 
as (A(X, (rt. (r2' r3»).el:>(ij x r2 r3, nil», and let C be the formula boolean X 1\ 

(x=true:JA)I\(x=false:JB). Now, rAVB1~] 4 :3(PTedifY(AX.rC1)~]); 
and our hypothesis that Q I- r A VB 1 ~] implies by Theorem 10 of Logic that Q 

[>* (X,R) ;t ,where R I- val(predifY(Ax. r C1)~])X [>* r C1 ~][;J. Applying 

Theorem 25 twice, R 4 (R}, (R2,R3», where R} I- r boolean xl [;], R2 I

r X= true:J A 1 ~][;], and R3 I- rx = false:J B1~][;]. Hence, by Theorem 4 

of Logic, (booleanx)[;l 4 boolean X [>* true, which implies that X 4 
true orfalse. Hence sefectv(Q) [>* true orfalse. 
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In the first case, in which selecty(Q) 1>* X -4 true, we have R2 I
r x = true:> A' ~][:ue] and nil I- rx=true' [:ue] , so Theorem 27 gives ely(Q) 

1>* el:>(R2, nil) I- r A' ~], as required. 

In the second case, where selecty(Q) 1>* X -4 false, we have R3 I
r x = false :> B'~] ~alse] and nil I- r x = false ' ~alse ], so Theorem 27 gives 

ely(Q) 1>* el:>(R3,nil) I- rB'~],asrequired. I 

EXERCISE. State and prove a converse to Theorem 28. 

THEOREM 29. For any formula of the form VxA (with free variables y), any 

term Q (with no free variables), and any constructions I,X, if Q I- rV;A'~] 
then elv(Q, X) I- r A '~] [;] (for a certain construction elv). 

Proof. Let elv be ('A(q, x).e1o q nil x~, where q is a fresh variable. Now, nil I
r true' and Q I- V(predify('Ax. r A ')~ p, so Q is evaluable and by Theorem 12 of 

Logic e1v(Q, X) 1>*<1 elo Q nil X I- val(predify('Ax. r A ' )~])X 1>* r A ' ~] [;]. 

I 

SOME CPF DERIVATIONS INVOLVING INTERPRETED FORMULAE 

THEOREM 30. 1\ properties (1\): 

rAl, rB,=>rAI\B' rAI\B,=>rA' rAI\B,=>rB' 

fA', rB'=>K 

rAI\B'=>K 

r => rAj A=> rB' 

r, A=> rA I\B' 

Proof. Since r A 1\ B' is 1\( r A' , r B') it follows that r A', r B' => r A 1\ B 1, 
r A 1\ B' => r A' ,and r A 1\ B' => r B' are CPFaxioms. The rules then follow 
by Cut, Exchange and Contraction. I 

THEOREM 31. :> properties (:»: 
r, rA' => .rB' 

r=>rA:>B' 

r, rAj => rB' 

r=>rA:>B' 

Proof. The CPF derivations are as follows; bear in mind that r A :> B' is 
:>(A', rB') 1>*<1 >(rA1,.rB'). 
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>etrue', rAj), >(rA1,.rB') => >(rtruel,.rB') ~-tr) 

• r A', r A :J B' => •• r B' •• r B' => • r B' (e-el) 

r A' => • r A' ( e-in) • r A 1, r A :J B' => • r B ' 
-------------------------------------cm 

rA1, rA:JB' => .rB' 

r,rA,=>.rB' . 
----------- >-m 
r => >eA 1, .rB') red 

r=>rA:JB' 

r, r A' => r B' r B' => • r B' (e-in) 

I 

--------------------- cut 
r, rA' => .rB' 
--------- ::), above 
r => rA :JB' 

THEOREM 32. 3 properties (3): r A' => r3xA' 
rA 1, r => J 

r3xA', r => J 
where x ~ r,J. 

cut 

Proof. Let P be the predicate predify(Ax. r A'); thus 3P is r 3x A' and val P x 
1>*<] rAj. 

I 

val P x => 3P (3-in) 
--------- red 
rA' => r3xA' 

THEOREM 33. V properties (V): 

where x ~ r. 

rA',r=>J 
---------- red 
valPx, r => J 
--------- 3-el 
r3xA 1, r => J 

r => .rA' 

r => rVxA' 

Proof. Let P be the predicate predify(Ax. r A'); thus VP is rVxA' and val P x 
1>*<] rAj. 

VP => • (val P x) (V-el) 
------red 
rVxA' => .rA' 

I 

r=>.rA' 
---------- red 
r => .(vaIPx) . 
---------- V-m 

r=>Vp 
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THEOREM 34. Specification rule (spec): 

where X , and x ~ X, r,J. 

Proof 

:::} rx = X' (red) 

I 

THEOREM 35. V-introduction (V-in): rA':::} rA VB' rB':::} rA VB' 

Proof I shall only give the first derivation; the second is similar. Let x be 
a fresh variable, let T be the formula x = true, and let F be the formula 
x = false. First we need the following two CPF derivations. 

rT':::} rtrue=x' (symm) rtrue=x', rbooleantrue':::} rbooleanx' (eq) 
------------------------------------------------cut 

r T 1, r boolean true' :::} r boolean x' 
----------------------- exch 

:::} r boolean true' (red) r boolean true', r T' :::} r boolean x' 
cut 

rT' :::} rbooleanx' (1) 

rT', r F' :::} r true = false' (eq) r true = false' :::} rfalse' (red) ________________________________________ cut 

r T', r F' :::} rfalse' rfalse' :::} r B' (false-el) 
--------------------------------- cut 

rT', rF' :::} rB' (2) 

Then the main CPF derivation is as follows. 

I 

r A' :::} r A' (taut) 
-------thm 
rA 1, rT' :::} rA' rT', r F' :::} r B' (2) 
-------::> :J 
rA':::} rT:JA' rT':::} rF:JB' 
-----------------------------A 

rA 1, rT' :::} r(T :JA) 1\ (F:J B)' 
----------------------- exch 

rT':::} rbooleanx' (1) rT', rA':::} r(T:JA) 1\ (F:JB)' 
------------------------------------------- A,con 

r T', r A' :::} r boolean x 1\ (T :J A) 1\ (F :J B)' 
-------------------------------- 3, cut 

rT', rA':::} rAV B' 
--------s~c 

rAj :::} rA VB' 

THEOREM 36. V-elimination rule (V-el): 
rAj, r:::}.K rB', r:::} .K 

rA VB', r:::}.K 
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Proof. Again, let x be a fresh variable, let T be the formula x = true, and let 
F be the formula x = false. First we need the following two CPF derivations. 

fTl, fT::JAl =} efAl (:) fAl, r =} eK 
------------------- .-cut 

fTl, fT::JA1, r =} eK (1) 

fB1, r =} eK 
------------------ .-cut 

fFl, fF::JB1, r =} eK (2) 

Now the main CPF derivation is as follows. 

fTl, fT::JA1,r=}eK(l) fFl, fF::JB1,r=}eK(2) 
-----------------------thin,boo\ 

fbooleanxl, fT::JA1, fF::JB1, r =} eK 
--------------------------A 
f boolean x /\ (T ::J A) /\ (F::J B) 1, r =} eK 
---------------------3 

fA V Bl, r =} eK 

I 

THEOREM 37. Extraction theorems (ext): 

fVX(X = X::J A) 1 =} e(val(predify(t..x. fA l»X) 

e(val(predify(t..x. fA 1 »X) =} fVx (x = X ::J A) 1 

where x ¢ X and X jJ . 

Proof. Let Bbe the formulax=X::JA and Pbe the predicate predify(t..x. fA 1). 

fX =X1, valPx =} valPX (eq) 
--------------red 

fx=Xl , fAl =} valPX 
----------------- .-tr 
f X = X 1, e fA 1 =} e( val P X) 
-----------------exch 
efAl, fx=X l =} e(vaIPX) 

-------------------------------------- cut, con 
fx=Xl , fBl =} e(valPX) 
---------exch 
fB1, fx=Xl =} e(vaIPX) 

----------------------- .-cut 
fVxBl, fx=X l =} e(valPX) 
----------- spec, exch 

fVxBl =} e(valP X) 
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r X = x', val P X =? val P x (eq) 
red 

r x = X' =? r X = x' (symm) r X = x', val P X =? r A' 
-------~------------cut 

I 

r x = X,, val P X =? r A' 
--------exch, ::) 

valPX =? rB' 
e-tr 

-(valPX) =? _rB' 
-------\1 
-(vaIPX) =? rVxB' 

EXERCISE. Derive in CPF the logical sequents 

r 3x (x = X 1\ A)' =? val(predify(t..x. r A'))X 
val(predify(t..x. r A'))X =? r:3x (x = X 1\ A) , 

where x ct:. X and X ,t 

LOGIC OF PARTIAL TERMS 

The axioms and rules of LPT are all instances of the following schemata. 

I\-axioms: A ~ B ~ (A 1\ B) (A 1\ B) ~ A (A 1\ B) ~ B 
V -axioms: A ~ (A V B) B ~ (A V B) (A V B) ~ (A ~ C) ~ (B ~ C) ~ C 
~-axioms: A :J B ~ A (A ~ B ~ C) ~ (A ~ B) :J A ~ C 
Truth and falsity (true-in, false-el): true false ~ A 
Quantifier axioms (:3-in, V-el): A ~ 3xA VxA ~ A 

Term existence (te): T[;] ~ 3xx = X where x E T but x ct:. X 

Reduction (red): X :J Y where X I> Yor Y I> X 

Equality (eq): X = Y ~ T[:] ~ T[~] 
A A~B 

Modus ponens: 
B 

Quantifier rules (:3-el, V-in): 
A~B 

:3xA ~ B 

B~A 

B~VxA 
where x ct:. B 

Induction (ind): 

where n ct:. x,A 

Vx(x = 0 ~A) Vx(x= n ~A) ~ Vx(x = Sn ~A) 

numn ~ Vx(x= n ~A) 
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CPF DERIVATIONS CORRESPONDING TO THE LPT AXIOMS 
AND RULES 
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I shall show that for each axiom A of LPT the logical sequent::::} r A 1 is deriv-
. A ... B::::} rAl ... ::::} rBl 

able III CPF, and that for each rule -- ofLPT the rule r 1 
C ::::} C 

is derivable in CPF. 

THEOREM 38. LPT /\-axioms: A=>B=>(A/\B) (A/\B)=>A (A/\B)=>B 

Proof The corresponding CPF derivations are as follows. 

rAl, rBl::::} rA/\B l (A) 
-------:J 
r A 1 ::::} r B => (A /\ B) 1 rA/\Bl::::} rAl (A) 
-------:J ------:J 

rA /\Bl ::::} rBl (I\) 
------:J 
::::} r (A /\ B) => B 1 ::::} r A => B => (A 1\ B) 1 

I 
::::} r (A 1\ B) => A 1 

THEOREM 39. LPT V-axioms: 
A => (A V B) B => (A V B) (A V B) => (A => C) => (B => C) => C 

Proof The CPF derivations are as follows. 

rA 1 ::::} rA V Bl (V) 
------:J 
::::} r A => (A V B) 1 

r Bl ::::} rA V Bl (V) 
------:J 
::::} r B => (A V B) 1 

I 

rAVB1, rA=>Cl , rB=>Cl::::}.rCl 
:J 

rAVB1, rA=>Cl ::::} r(B=> C)=> Cl 
:J 

rA V Bl ::::} rCA => C) => (B => C) => Cl 
:J 

::::} r (A V B) => (A => C) => (B => C) => C 1 

THEOREM 40. LPT =>-axioms: A => B => A (A => B => C) => (A => B) => A => C 

Proof The CPF derivations are as follows. 

rA 1 ::::} rA 1 (taut) 
------thin 
rAl, rBl::::} rAl 

:J 
rAl::::} rB=>Al 
-----:J 
::::}rA=>B=>Al 
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rB', rB:J C' =} .rC' (:)) 
exch 

rB:JC', rB' =}.rC' 
--------------------- .-cut 

THEOREM 41. LPT truth and falsity axioms (true-in, false-el): 

true false :J A 

Proof. =} r true' is a CPFaxiom, while for false :J A the CPF derivation is 
as follows. 

rfalse' =} r A' (false-el) 

I 

-----:) 

=} rfalse:J A' 

THEOREM 42. LPT quantifier axioms (3-in, V-el): A:J 3xA VxA :J A 

Proof. The CPF derivations are as follows. 

rA' =} r3xA' (3) rVxA' =} .rA' (V) 
-----:) 

=} rA:J3xA' 
-----:) 

=} rVxA:JA' 
I 

THEOREM 43. LPT term existence axiom (te): T[;] :J 3xx = X, 

where x E Tbutx rt. X. 

Proof. The CPF derivation is as follows. 

rT[;] , =} r3xx = X' (te) 

--------:) 

I 
=} rT[;] :J 3xx = X' 
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THEOREM 44. LPTreductionaxiom(red): X:>Y where X I> Yor Y I> X. 

Proof The CPF derivation is as follows. 

I 

fX' =* fy' (red) 
----:J =*fX:>Y' 

THEOREM 45. LPT equality axiom (eq): X = Y:> T[:] :> T[~] 

Proof The CPF derivation is as follows. 

fX= Y', fT[:]' =* fT[~]' (eq) 

----------:J 
fX = Y' =* fT[:] :> T[~] , 
------------------:J 
=* fX = Y:> T[:] :> T[~] , 

I 

THEOREM 46. LPT modus ponens rule: 
A A:>B 

B 

Proof The CPF derivation is as follows. 

I 

=* fA:>B' ----:J =*fA' fA'=*.fB' ----------------- cut 

THEOREM 47. LPT quantifier rules (3-el, 'V-in): 

where x rJ. B. 

Proof The CPF derivations are as follows. 

I 
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THEOREM 48. LPT induction rule (ind): 

Vx(x = 0::) A) Vx(x = n::) A)::) Vx(x = Sn::) A) 
where n tf. x,A 

numn::) Vx(x = n::) A) 

Proof Let P be the predicate predify('Ax. r A'), and let Q be 6( r true' , P). 
Recall from Logic that val Q x [>*<1 De true', con (val P x» [>*<1 .(val P x). 
The CPF derivation is as follows. 

I 

=? rVx (x = n ::) A) ::) Vx (x = Sn ::) A) 1 
--------------:J 
rVx(x = n::) A)l =? • rVx(x = Sn::) A) 1 

=? rVx(x = 0::) A)' .(val P n) =? • rVx (x = Sn ::) A)' 
ext, cut 

ext, cut ext, .-cut 
=? .(val P 0) .(val P n) =? .(val P (Sn» 
-----red --------- red 

=? valQO valQn =? val Q (Sn) . 
--------------------lnd 

rnumn' =? valQn 
--------roo 
rnumn' =? .(vaIPn) 

---------- ext, cut 
rnumn' =? rVx(x=n::)A)' 
----------:J 
=? r num n ::) Vx (x = n ::) A)' 

FORMAL INTERPRETATION OF LPT 

DEFINITION. A coding of formulae as constructions is defined as follows. 
Let atomic, and, or, implies, exists and all be six fresh l-ary constructors. 
If A is a formula with free variables z (listed in standard order), the code of 
A, ((A)), is defined as (A[~J(A), where 

(T) is atomic(T) if T is atomic 

(A 1\ B) is and«(A), (B) 
(A V B) is or( (A), (B) 
(A::) B) is implies«(A), (B) 

(3.xA) is exists('A[x].(A) 

(VxA) is all('A[x].(A). 

DEFINITION. A coding of LPT derivations as constructions is defined as fol-
lows. Number the axiom schemata and rules of inference of LPT, 1,2, ... 19. 
A derivation with conclusion A, from a list of premises numbered 0,1,2 ... , 
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is coded as 

if A is premise number i 

if A is an instance of axiom schema n 
(premise(i), ({A}}) 
(none(n), «A}) 
(one(n,X), {(A))) 
(two(n,X, y), «A}}) 

if A is derived by rule n from the subderivation X 

if A is derived by rule n from subderivations X, Y. 

DEFINITION. Define recursive functions TIo ••• T19 such that 

• for n= 1, ... 15, if A is an instance ofLPT axiom schema n then Tn( «A)) 
t> * the code of the corresponding CPF derivation (given above) of => r A 1 

from no premises; 

• for n = 17, 18, if ~ is an instance of LPT rule n then Tn( «B}), «A}}) t> * 

the code of the corresponding CPF derivation (given above) of => r A 1 

from the premise :::} r B 1 ; 

• for n = 16,19, if BAC is an instance ofLPT rule n then Tn«(B}), «C}), 
«A))) t>* the code of the corresponding CPF derivation (given above) 
of :::} r A 1 from the premises :::} r Bland :::} r C 1 • 

DEFINITION. Define a construction ep/ by 

6 
ep/(none(1), a) = Tl (a) 

6 
ep/(none(15), a) = TlS(a) 

6 
ep/(two(16, (u, b), (v, c», a) = glue(T16(b, e, a), [ep/(u, b), cp/(v, em 

6 
ep/(one(17, (u, b», a) = giue(T17(b, a), [ep/(u, b)]) 

6 
ep/(one(18, (u, b», a) = glue(T18(b, a), [ep/(u, b)]) 

6 
ep/(two(19, (u, b), (v, c», a) = giue(T19(b, e, a), [cp/(u, b), cp/(v, e)]) 

where a, b, e, u, v are five variables. (This uses the glue function defined in 
Chapter 28.) 

THEOREM 49. If D is the code of an LPT derivation (with no premises) of a 
formula A then ep/(D) t>* the code of a CPF derivation (with no premises) 
of the logical sequent :::} r A 1 • 
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Proof The argument is by structural induction on the LPT derivation encoded 
by D. Since the derivation has no premises there are only three cases. 

Case 1: D is (none(n), ((A}}), where A is an instance of LPT axiom 
schema n. Then cpf(D) 1>* Tn«((A}}) 1>* a CPF derivation of =? rA' from 
no premises, as required. 

Case 2: D is (one(n, (U, ((B}) », ((A}}), where ~ is an instance of LPT rule 

of inference n. Then Tn( ((B}), ((A}}) 1>* a CPF derivation of =? r A' from the 
premise =? rB'. By the inductive hypothesis, cpf(U, ((B}}) 1>* thecodeofa 
CPF derivation of =? r B' from no premises. Hence by the glue-lemma for 
CPF cpf(D) 1>* glue(Tn«((B}} , ((A}}), [cpf(U, ((B}})]) 1>* a CPF derivation of 
=? r A' from no premises, as required. 

Case 3: Dis (two(n, (U, ((B)}), (V, (( C)} », ((A}}), where BA C is an instance 

ofLPT rule of inference n. Then Tn( ((B}) , (( C)~, ((A}}) 1>* a CPF derivation of 
=? r A' from the premises =? r B' and =? r C . By the inductive hypothesis, 
cpf(U, ((B}}) and cpf(V, ((C}}) reduce to the codes of CPF derivations of 
=? r B' and =? r C' , respectively, from no premises. Therefore 

cpf(D) I> * glue(Tn «((B}), (( C)}, ((A}}), [cp!( U, ((B}) ), cpf( V, (( C)} )]) 

which by the glue-lemma for CPF reduces to the code of a CPF derivation of 
=? r A' from no premises, as required. I 

THEOREM 50. (LPT interpretation theorem.) If D is the code of an LPT 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cp!(D») I- rA'. 

Proof By the previous theorem, the extensionality theorem for 1-, and the 
interpretation theorem for CPF. I 

THEOREM 51. (The glue-lemma for LPT.) If D is the code of an LPT 
derivation of an LPT formula A from premises Bo, ... Bko and Do, ... Dk are 
the codes of LPT derivations (with no premises) of Bo, ... Bk respectively, 
then glue(D, [Do, ... DkD 1>* the code of an LPT derivation (with no premises) 
ofA. 

Proof By structural induction on the derivation encoded by D. I 

EXERCISE. Define a substitution notation A(;), meaning the formula obtained 
by substituting the term X for the variable x in the formula A, provided no 
variable clashes occur, in such a way that the logical sequents 

rA(;)' =? rA'[;] rA ,[;] =? rA(;)' 

are derivable in CPF, assuming x rf. X and X ,. (Hint: see the end of 
Chapter 33.) Why may these sequents be underivable if X is reducible? 
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LOGIC OF PARTIAL TERMS 

LPT FORMULAE 

Aformula of LPT is a sentence in the following language. 

• The alphabet is that of the Expanded Term Language (ET) plus' /\', 'V', 
':J', '3', ''iI'. 

• The tokens are those ofET plus' /\', 'V', ':J', '3', ''iI'. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The non-terminals are F, T; the start symbol is F. 
- The production rules are 

F -+ T I (F /\ F) I (F V F) I (F:J F) I 3 vbl F I 'iI vbl F 

T -+ con I (vbl) I (T T) I (A T . T) I (T [ ~lJd ) 
(Note that this grammar contains that of ET: a term of ET is any string 
matching the non-terminal T. A formula that is a term will be called an 
atomic formula.) 

METAFORMULAE 

The letters' A', 'B' and 'c' will be used as metavariables to denote formulae. 
A metaformula is an expression that is like a formula except that it may 
contain metaconstants, metavariables and ET metanotation, some brackets 
may be omitted, and optional brackets and spaces may be added. To state 
it more precisely, the alphabet is that of ET metaterms plus' /\', 'V', ':J', 
'3', ''iI'; the tokens are those ofET metaterms plus '/\', 'V', ':J', '3', ''\f', 
and a new one 'formvbl'; lexical analysis is as for ET metaterms except that 
metavariables denoting formulae are replaced by 'formvbl'; and the grammar 
is 
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F -+ PAF I PVF I P-:JF I P 
P -+ "3 vbl P I V vbf P I (F) I T I formvbl 

T-+TLI TUbl] IL 
L -+ con I vbl I (T) I (A T . T) I termcon I vblvbl I termvbl I 

where the start symbol is F and ' ... ' represents production rules for ET 
metanotation. 

An instance of a metaformula is a formula obtained from the metaformula 
by choosing a term, variable or formula (as required) for each metavariable 
in the metaformula, replacing each occurrence of each metavariable by the 
chosen term, variable or formula, replacing each metaconstant by the term 
it denotes, adding and removing brackets as required, removing spaces, and 
rewriting all metanotation. A metaformula may be used in two ways: as a 
schema, standing for any of its instances, or to denote a particular one of 
its instances. The latter will be implied when particular formulae, terms or 
variables have previously been chosen for the metavariables. 

FREE VARIABLES IN FORMULAE 

For any variable v and LPT formula A, the relation v E A ('v occurs free in 
A') is defined by: 

• if A is a term T, v E A iff vET in the sense ofET; 

• v E A A B iff v E A V B iff v E A -:J B iff v E A or v E B; 

• v E 3xA iff v E VxA iff v isn't x and v EA. 

Thefree variables of A are the variables v such that v EA. 

THEOREM 23. Any LPT formula has finitely many free variables. 

INTERPRETATION OF LPT FORMULAE AS PROOF FUNCTIONS 

Each formula A is interpreted as a proof function r A 1. This interpretation 
extends the interpretation of terms T as proof functions r T 1, introduced in 
Logic. 

THEOREM 25. For any formulae A, B, term Q, variables y, and irreducible 

terms t, we have Q I- r A A B l ~] iff Q 1>* (R b R2) ~ , where R 1 I- r A 1 ~] 
and R2 I- r Bl ~J. 
THEOREM 26. For any formula A, variable x, term Q, variables y (not 

including x), and irreducible terms t, we have Q I- r"3xA l ~] iff Q 1>* 

(X,R) , , where R I- rA 1 ~][;J. 
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THEOREM 27. For any formulae A,B (with free variables y between them), 
any terms Q, R (with no free variables), and an~ constructions I, if Q f-. 

rA::JB1~] andR I- rA 1~] then el:>(Q,R) I- rBl~J (fora certain constructioD 

el:> ). 

THEOREM 28. For any formulae A,B (with free variables y between them), 

any term Q (with no free variables), and any constructions I,if Q I- r A VB 1 ~] 
then either selectv (Q) 1>* true and ely (Q) I- r A 1 ~] or selectv (Q) 1>* false 

and ely (Q) I- r B 1 ~] (for certain constructions selectv and elv). 

THEOREM 29. For any formula of the form VxA (with free variables y), any 

term Q (with no free variables), and any constructions I,X, if Q I- rV';A 1 ~] 
then ely(Q, X) I- r A 1 ~] [:] (for a certain construction ely). 

LOGIC OF PARTIAL TERMS 

The axioms and rules of LPT are all instances of the following schemata. 

A-axioms: A ::J B ::J (A A B) (A A B) ::J A (A A B) ::J B 
V -axioms: A ::J (A V B) B ::J (A V B) (A V B) ::J (A ::J C) ::J (B ::J C) ::J C 
::J-axioms: A ::J B ::J A (A ::J B ::J C) ::J (A ::J B) ::J A ::J C 
Truth and falsity (true-in, false-el): true false::J A 
Quantifier axioms (3-in, V-el): A ::J 3xA VxA ::J A 

Term existence (te): T[:] ::J 3xx = X where x E Tbut x ~ X 

Reduction (red): X ::J Y where X I> Y or Y I> X 

Equality (eq): X = Y::J T[!] ::J T[~] 

A A::JB 

B 
Modus ponens: 

Quantifier rules (3-el, V-in): 
A::JB 

3xA::JB 

B::JA 

B::JVxA 
where x~ B 

Induction (ind): 

where n ~ x,A 

'Ix (x = O::J A) 'Ix (x = n::J A)::J 'Ix (x = Sn ::JA) 

numn::J 'Ix (x = n::J A) 
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FORMAL INTERPRETATION OF LPT 

A coding of LPT derivations as constructions is defined, using six l-ary 
constructors atomic, and, or, implies, exists and all. A construction cpf is 
defined. 

THEOREM 49. If D is the code of an LPT derivation (with no premises) of a 
formula A then cpf(D) [>* the code of a CPF derivation (with no premises) 
of the logical sequent * r A' . 

THEOREM 50. (LPT interpretation theorem.) If D is the code of an LPT 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpf(D))) f- r A'. 

THEOREM 51. (The glue-lemma for LPT.) If D is the code of an LPT 
derivation of an LPT formula A from premises Bo, ... Bb and Do, ... Dk are 
the codes of LPT derivations (with no premises) of Bo, ... Bk respectively, 
then glue(D, [Do, ... DkD [>* the code of an LPT derivation (with no premises) 
ofA. 
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FROM LOGIC OF PARTIAL TERMS TO 

HEYTING ARITHMETIC 

Heyting Arithmetic (HA) is first-order intuitionistic number theory. It will be 
obtained from the Logic of Partial Terms (LPT) by restricting the range of 
the variables to numbers. Every HA derivation can be transformed into an 
LPT derivation. Therefore every theorem of HA (without free variables) has 
an intuitionistic proof. 

LEXICAL CONVENTIONS 

The identifier 'A' will denote an LPT formula; all other upper-case letters 
will denote terms. These conventions will apply until HA formulae are 
introduced. 

'~' will be used as an abbreviation for a (possibly empty) sequence of 
variables nlo ... nk; and 'num ~ :J A' will be used as a metanotation for 
num nl :J ... num nk :J A. Other underlined metavariables will be used in a 
similar way. 

SOME THEOREMS AND DERIVED RULES OF LPT 

First note that LPT contains intuitionistic propositional calculus, so I shall 
use the latter freely in the LPT derivations that follow, marking each use with 
the label 'pc'. 

THEOREM 1. LPT reduction theorems (red): U:J V, where U 1>*<] V; 
T, where T 1>* true. 

Proof U:J V follows from LPT reduction axioms using intuitionistic 'propo
sitional calculus; T then follows from true:J T and the axiom true. I 

THEOREM 2. LPT self-equality theorem (se): T[:] :J X = X, 

where x E T but x ~ X. 
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Proof 

I 

T~] ~ 3xx = X (le) 

CHAPTER 31 

x=X~x=X~X=X (eq) 
--------pc 

x=X~X=X 
------3-eJ 

3xx=X~X=X 

------------------pc 
T[:] ~X=X 

THEOREM 3. LPT symmetry theorem (symm): X = Y ~ Y = X. 

Proof 

X = y ~ X = X (se) X = Y ~ X = X ~ Y = X (eq) 

x=y~y=x pc 
I 

THEOREM 4. LPT reversed equality theorem (r.eq): X = Y ~ T[~] ~ T[!] 
Proof 

X = y ~ y = X (symm) Y = X ~ T[~] ~ T[!] (eq) 

-------------------pc 
X = Y ~ T[~] ~ T[!] 

I 

THEOREM 5. LPT specification rule (spec): 

where x E T but x fj X,A. 

Proof 

T[:] ~ 3xx = X (te) 

x=X ~A 3-eJ 

3xx=X~A 

--------------pc 
T[;] ~A 

I 

THEOREM 6. LPT simplification rule (simp): 
numn~A 

A 
where n fj A. 
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Proof. 

num 0 (red) n = 0 :> num 0 :> num n (r.eq) num n :> A 
----~~------------------------~-------------~ 

I 

n=O:>A 
----spec 

num 0 (red) num 0 :> A 
----------------------~ 

A 

P:> ... Q:>R 
THEOREM 7. LPT instantiation rule (inst): 

p[:] :> ... Q[:] :> R[:] 
where P, ... Q,R are terms, x ¢ X, and x E P or ... or x E Q. 

Proof. Let T be one of the terms P, ... Q such that x E T. 

P:> ... Q:>R 
----------------~ 
x=X:>P:> ... Q:>R 

----------------------- r.eq, eq, ~ 

x = X:> p[:] :> ... Q[:] :> R~] 
-----------------------spec 

T[:] :> p[:] :> ... Q[:] :> R[:] 
----------------------~ 

p[:] :> ... Q[:] :> R[:] 
I 
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THEOREM 8. LPT primitive recursion theorem (pr): num!!:> num (F(!!» 
where !! are k variables, nJ, ••• nb and F is a k-ary primitive recursive 
function. 

Proof. The argument is by induction on the structure of F. There are five 
cases; uses of the inductive hypothesis are marked by 'ih'. 

Case 1. F is O. Then the formula to be derived is num 0, which is an 
instance of the LPT reduction theorem, since num 0 e> * true. 

Case 2. F is S. Then the formula to be derived is numnt :> num(S(nt», 
which is an instance of the LPT reduction theorem, since num(S(nd) e>* 

numnt· 
Case 3: F is proi/. Then the required formula is derived in LPT by 

numni:> num(proi/(!!» (red) 
-----------------~ 
num!! :> num (projNw) 
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Case 4: F is compl(H, (Flo'" FI)), where H is l-ary primitive recursive 
and Flo' .. FI are k-ary primitive recursive (with k, 1 ~ 1). Let:! be 1 fresh 
variables, Xl, •.• Xl. Then the required formula is derived in LPT by 

numx::J num (H(,!)) (ih) 
- inst 

(~ . 1 1) num (FI (fl.)) ::J ... ::J num (H(FI (m, ... FI(m)) lor l = ,... red 
num II ::J num (Fj(m) (ib) num (F I (m) ::J ... ::J num (F(fl.)) 
-----------------------~ 

num II ::J num (F(fl.)) 

Case 5: F is reck_I(G,H), where Gis (k - 1)-ary primitive recursive and 
H is (k + 1 )-ary primitive recursive. Let II be m, y and let X, v be two fresh 
variables. Let A be the formula numy::J (numx A num(F(x,y))). For any 
term X such that X Jt and X ct. X, let Ax be the formula num y::J (numX 1\ 
num (F(X, l.)))' First we need the following three LPT derivations. 

X = X::J numx::J numX (eq) x = X::J num (F(x,l.)) ::J num (F(X,l.)) (eq) 

x = X ::J A ::J Ax 
----------- ~ 

x = X ::J (x = X ::J A) ::J Ax 
----------- V-el, ~ 
X = X ::J Vx (x = X ::J A) ::J Ax 
-----------------s~ 

X = X (red) X =X::J Vx(x = X::J A)::J Ax 
-----------------------~ 

Vx(x = X ::J A) ::J Ax (1) 

pc 

X = X ::J num X ::J num x (r.eq) X = X ::J num (F(X, y)) ::J num (F(x, y)) (r.eq) 

X = X ::J Ax ::J A 
- - pc 

-----pc 
Ax ::J X = X ::J A 

---------- V-in 
Ax ::J Vx (x = X ::J A) (2) 

num y ::J num (G(y)) (ih) 

numO (red) 
- - red,~ 

numy::J num(F(O,y)) 
Ao - - ~ 

--------2, pc 
Vx(x = O::J A) (3) 

Now the required formula is derived in LPT as follows. 
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numm:J numy":J numv:J num(H(m,y", v» (ih) 
---------------------inst 
numm:J numy:J num(F(m,y»:J num(H(m,y,F(m,y») 

----red 
numm:J numy:J num(F(m,y»:J num(F(Sm,y» 
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- - - red, pc 
num m :J num y.. :J num (F(m, y..» :J (num (Sm) 1\ num (F(Sm, y..))) 
-----------------------pc 

Am:J ASm 
------------1,2, pc 

VX(X = ° :J A) (3) VX(x = m:J A) :J Vx(x = Sm:J A) . 
-----------------------lnd 

I 

numm:J Vx(x = m :JA) 
---------l,pc 

numm :JAm 
------------pc 
num m :J num y.. :J num (F(m, y..» 

THEOREM 9. LPT numeric tenns theorem (num): num II :J num N, 
where N is a numeric tenn with free variables ll. 

Proof. Recall from the Expanded Tenn Language that a numeric tenn is 0, 
a variable, or F(NJ, . .. Nk), where k ~ 1, F is a k-ary primitive recursive 
function and NJ, ... Nk are numeric tenns. The proof is by induction on the 
structure of the numeric tenns. There are three cases. 

Case 1: N is 0. Then the fonnula to be derived is num 0, which is an LPT 
reduction theorem. 

Case 2: N is a variable, n. Then the fonnula to be derived is num n:Jnum n, 
which is a theorem of LPT by propositional calculus. 

Case 3: N is F(NJ,' .. Nk), where k ~ 1, F is a k-ary primitive recursive 
function, and NJ, . .. Nk are numeric tenns. Let Zi be the free variables of N i, 
for i = 1, ... k, and let,!: be k fresh variables. Therequired fonnula is derived 
by 

(for i = 1, ... k) 
num ~ :J num Ni (ih) 

num,!: :J num (F(,!:» (pr) 
-------------inst 
numNJ :J ... :J numNk :J numN 

------------------------pc 
num II :J num N 

where use of the inductive hypothesis is marked by 'ih'. I 

THEOREM 10. LPT conversion theorem (conv): num,!::J M = N 
where M and N are numeric tenns with free variables,!:, and M e>*<3 N. 

Proof. Let II be the free variables of N. 
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numll:::J numN (num) numN:::J N = N (se) N = N:::J M = N (red) 
--~~--------------------------------------------~ 

numn :::JM=N 
- ~ 

num:!:::JM=N 
I 

EXERCISE. Recall the substitution notation A(;) for LPT formulae introduced 
in the exercise at the end of Chapter 29. Derive in LPT the formulae 

3xx=X 

A(;) :::J 3x(x = X 1\ A) 

3xx = U :::J A(;') :::J 3xA 

assuming that x rt. X, U, V and X pt . 

3x(x=X 1\ A) :::JA(;) 

3xx = U:::J V'xA:::J A(;') 

FORMULAE OF HEYTING ARITHMETIC 

An HA formula is a sentence in the following language. 

• The alphabet is that of the Expanded Term Language plus' 1\', 'V', ':::J', 
':IN', '\fN'. 

• The tokens are those of the Expanded Term Language plus' 1\', 'V', ':::J', 
':IN', '\fN'. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbI', and recognising every other token. 

• The grammar of the language is as follows. 
- The terminals are the tokens. 
- The non-terminals are F, N, T; the start symbol is F. 
- The production rules are 

F -+ true I false I N = N I (F 1\ F) I (F V F) I (F:::J F) I 
:IN vbl F I \fN vbl F 

N-+T 
T -+ con I (vbl) I (T T) I (A. T . T) I (T [ ~bd ) 

In addition, there is a context-sensitive constraint that strings matching N 
must be numeric terms. Formulae matching true, false or N = N are called 
atomic formulae. 
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HA METAFORMULAE 

From now on, the identifiers 'A', 'B' and 'C' will be used as metavariables 
to denote HA formulae. Metaformulae and their instances are defined as for 
LPT formulae, except that metaformulae may contain the metanotation -,A 
for A :) false; '-,' has the same syntactic precedence as the quantifiers (for
mally, we add a production rule P --+ -, P to the grammar of metaformulae). 

The identifiers 'F', 'G' and 'H', possibly with subscripts, will denote 
primitive recursive functions. All other identifiers beginning with capital 
letters will denote numeric terms. 

FREE VARIABLES IN HA FORMULAE 

For any variable v and HA formula A, the relation v E A (' v occurs free in 
A') is defined by: 

• v rt 0, v E n iff v is n, 

• v E F(Nlo . .. Nk) iff v E Nl or ... or v E Nko 

• v rt true, v rtfalse, v E Nl = N2 iff v E Nl or v E N2, 

• v E A 1\ B iff v E A V B iff v E A :) B iff v E A or v E B, 

• v E :3NnA iff v E VNnA iff v isn't n and v E A. 

The free variables of A are the variables v such that v E A, listed in standard 
order. 

THEOREM 11. Any formula has finitely many free variables. 

INTERPRETATION OF HA FORMULAE IN LPT 

For any HA formula A, with free variables ~, 

• AN is defined by 
AN is A, for an atomic formula A; 
(A 1\ B)N is AN 1\ BN; (A V B)N is AN V BN; (A :) B)N is AN:) BN; 

(:3NnA)N is :3nCnumn 1\ AN); CVNnA)N is VnCnumn :)AN). 

• ALPT is num~:) AN. 

ALPT is the LPT interpretation of the HA formula A. Note that AN and ALPT 
have the same free variables as A. For an atomic formula A with no free 
variables, ALPT is A. 
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EXERCISE. Suppose we define a substitution notation A(~), meaning the HA 
formula obtained by substituting the numeric term N for the variable n in the 
HA formula A, assuming no variable clashes occur, similar to the substitution 
notation for LPT formulae considered in previous exercises. Show that any 
formula of the form 

is derivable in LPT. Why does the converse fail? 

AXIOMS AND RULES OF INFERENCE OF HA 

A-axioms: A:J B :J (A A B) (A A B) :J A (A A B) :J B 
V-axioms: A:J (A V B) B:J (A V B) (A V B):J (A:J C):J (B:J C):J C 
:J-axioms: A:J B :J A (A :J B :J C) :J (A :J B) :J A :J C 
Truth and falsity (true-in,false-el): true false:J A 
Quantifier axioms (:3N-in, 'f'-el): A:J :3NnA VNnA :J A 
Term existence (te): :3Nn n = N where n rt. N 
Equality (eq): N = N M = N:J N = M U = V:J V = W:J U = W 

M = N:J F(XIo .. . Xi-IoM,Xi+ Io .·. Xk) = F(XIo'" Xi-IoN,Xi+Io ... Xk) 
Peano axioms (P): -,Sn = 0 Sm = Sn:J m = n 
Axioms for primitive recursive functions (pr): 

proil(!JJ = ni where 1 ~ i ~ k 
compl(H, (FI, ... FI»(!!) = H(FI (!!), ... FI(!!» 
reck(F, G)(O,!!) = F(!!) req(F, G)(Sm,!!) = G(m,!!, reck(F, G)(m,!!) 

where!! is nl,'" nko His I-ary primitive recursive, F, Flo'" FI are k-ary 
primitive recursive, and G is (k + 2)-ary primitive recursive 

Modus ponens: 
A A:JB 

B 
A:JB B:JA 

Quantifier rules (:3N-el, 'liN-in): where n rt. B 
:3NnA :J B B :JVNnA 

VNx(x = O:J A) VNx(x = n:J A) :J 'f'x(x = Sn:J A) 
Induction (ind): 

\fNx(x = n:J A) 
where n rt. x,A 

LPT DERIVATIONS CORRESPONDING TO THE HA AXIOMS 
AND RULES 

I shall show that, for each axiom A of HA, A LPT is a theorem of LPT, and 

th ~ h If' fi A .. . B fHA ALPT ... BLPT. d' d I at, lor eac ru e 0 m erence -C- 0 , CLPT IS a enve ru e 

ofLPT. 
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THEOREM 12. The HA 1\, V, ~, truth and falsity axioms all translate to 
theorems of LPT. 

Proof For example, the interpretation of A ~ B ~ A is num ~ ~ A N ~ BN ~ AN, 
where z are the free variables of A and B, which is derived from the LPT 
axiom AN ~ BN ~ AN. Similarly for the others. I 

THEOREM 13. The HA quantifier axioms: A ~ :JNnA VNnA ~ A. 

Proof Let ~ be the free variables of A. The LPT derivations of (A ~ :JNnA)LPT 
and (VNnA ~ A)LPT are 

Vn(numn ~ AN) ~ (numn ~ AN) (If-el) 
------------------------~ 

numn ~ Vn(numn ~ AN) ~ AN 

num~ ~ Vn (numn ~ AN) ~ AN 

(numn 1\ AN) ~ :In(numn t\AN) (3-in) 
-----------------------~ 
numn ~AN ~ :In(numn 1\ AN) 

num ~ ~ AN ~ :In (num n 1\ AN) 

In each case the last step is sound because if n E A then n is one of the ~ 
variables, while if n rf:. A then we may remove the num n, using Simplification, 
and add num ~ in its place. I 

THEOREM 14. The HA term existence axiom: :JNnn = N, where n rf:. N. 

Proof Let ~ be the free variables of N. The LPT derivation of (:JNn n = N)LPT 
is 

n = N ~ num N ~ num n (r.eq) (num n 1\ n = N) ~ :In (num n t\ n = N) (3-in) 
---------------------------------------------------~ 

n = N ~ numN ~ :In(numn 1\ n = N) 
----------------------------s~c 

num Z ~ num N (num) num N ~ num N ~ :In (num n 1\ n = N) 
- ~ 

num~ ~ :In(numn 1\ n = N) 

I 

THEOREM 15. The first three HA equality axioms: 
N=N M=N~N=M U=V~V=W~U=W 

Proof Let:! be the free variables of N, y be the free variables of M and 
N, and ~ be the free variables of U, V and W. The LPT derivations of the 
interpretations of the axioms are as follows. 
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num!:::> numN (num) numN :::> N = N (se) 
--~~-------------------------~ 

num!:::>N=N 

M=N:::>N=M (symm) 
----------------pc 
numl:::>M=N:::>N=M 

u = v :::> v = W :::> U = W (r.eq) 
--------------pc 
num!e:::> U= V:::> V= W:::> U= W 

I 

THEOREM 16. The fourth HA equality axiom: 
M=N:::>F(XIo ·· .Xi-IoM,Xi+Io ... Xk)=F(XIo ·· .Xi-IoN,Xi+!, ... Xk). 

Proof Let U be the term F(X 1, ... Xi-I, M, Xi+ 1, ... Xk) and let V be the 
term F(XIo ... Xi-IoN,Xi+!, . .. Xk). Let! be the free variables of U, and y 
be the free variables of U and V. The LPT derivation of the interpretation of 
the axiom is as follows. 

num!:::> num U (num) num U:::> U = U (se) 
-----------------------------pc 

num!:::> U = U M = N:::> U = U:::> U = V (eq) 
-----------------------------------------pc 

numx:::>M=N:::> U= V - pc 
numl:::>M=N:::> U= V 

I 

THEOREM 17. The HA Peano axioms..., Sn = 0 and Sm = Sn :::> m = n. 

Proof Recall the construction pre from the Expanded Term Language and 
recall (Theorem 53) that pre(Sn) I> n and Sn = 0 I> false. Let! be the 
variables m, n in standard order. The LPT derivations of the interpretations 
of the axioms are 

Sn = 0 :::> false (red) 
--------------pc 
numn:::> Sn = 0 :::>false 

Sm = Sn:::> pre(Sm) = pre(Sm):::> pre(Sm) = pre(Sn) (eq) 
-----------------------------------red.~ 

m = m (red) Sm = Sn :::> m = m :::> m = n 
----~~----------~-------------------pc 

Sm=Sn :::>m=n 
------------------~ 
num!:::> Sm =Sn:::> m = n 

I 
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THEOREM 18. The HA axioms for primitive recursive functions: 
proH(ill = nj where 1 ~ i ~ k 
compl(H, (Flo ... Fl»(n.) = H(Fl(n.), ... Fl(ill) 
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reck(F, G)(O, ill = F(!ll req(F, G)(Sm,!!) = G(m,!!, reck(F, G)(m, ill) 
where!! is nlo' .. nko His I-ary primitive recursive, F, Flo' .. Flo Fare k-ary 
primitive recursive, and G is (k + 2)-ary primitive recursive. 

Proof. The LPT inteq>retations of these formulae are all instances of the LPT 
conversion theorem. I 

THEOREM 19. The HA modus ponens rule: 
A A~B 

B 
Proof. Let! be the free variables of A, y be the free variables of B, and ~ be 

ALPT - (A ~ B)LPT 
the free variables of A ~ B. Then BLPT is derived in LPT by 

num~~AN ~BN 
---------------------------~ 

numz ~ BN 
- simp,~ 

num~~BN 

I 

THEOREM 20. The HA quantifier rules: 

where n rt. B. 

A~B B~A 

3NnA ~ B B ~ 'l7'Nn A 

Proof. Let y be the free variables of A ~ B (which are also the free variables 
of B ~ A) and ~ be the free variables of 3NnA ~ B (which are also the free 
variables of B ~ 'rnA). Then y is ~ with the possible addition of n. The LPT 
derivations of the interpretations of the rules are 

numy~AN ~BN 
- ~ 

(numn t\AN) ~ numz ~ BN 
- 3-el 

3n(numn t\AN) ~ num~ ~ BN 
~ 

num~ ~ 3n(numn t\AN) ~ BN 

num~~BN ~AN 
----------~ 
numz ~ BN ~ numn ~ AN 

- 'v'-in,~ 

num~ ~ BN ~ 'l7'n(numn ~AN) 

where in each case the use of the quantifier rule is justified since n rt. 
num~,BN. I 

THEOREM 21. The HA induction rule: 

'rx(x = 0 ~A) 'rx(x= n ~A) ~ 'rx(x= Sn ~A) 

'l7'NX(X= n ~A) 
where n rt. x,A. 
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Proof Let y be the free variables of VNx(x = n ~ A) and let z be the free 
variables oCVNx (x = 0 ~ A). (Thus y is z with the addition of n.) Let B be 
num~::J numx::J AN. First we need the f~llowing LPT derivations, where N 
is any numeric term. 

(VNx(x = N ::J A»N ::J numx ::J x = N ::J AN (V-e) 
-----------------------------~ 

(num~::J (VNx(x = N::J A»N) ::J x = N ~ B 
----------------------------------- V-in 
(num~ ::J (VNx(x = N ::J A»N) ::J Vx(x = N ::J B) (1) 

Vx (x = N ::J B) ::J (x = N ::J B) (V-el) 
--------------------------------~ 
Vx(x = N::J B)::J numz::J numx::J x = N ~ AN 

- V-in, ~ 
Vx(x = N::J B) ::J num~::J (VNx(x = N::J A»N (2) 

x = Sn ::J numx ::J num (Sn) (eq) 

X = Sn ~ numx ::J num n red, ~ Vx (x = Sn ::J B) ::J (x = Sn ~ B) (V-el) 
---------------------------------------------~ 

(numn ~ Vx(x = Sn::J B» ~ x = Sn::J B 
---------------------------------- V-in 
(num n ~ Vx (x = Sn ::J B» ::J Vx (x = Sn ::J B) (3) 

numz::J (VNx(x = O::J A»N (premise) 
- l,~ 

Vx(x=O::JB) (4) 

Then the LPT derivation of the interpretation of the induction rule is as 
follows. 

num~::J (VNx(x = n::J A»N ::J (VNX(X = Sn ::J A»N (premise) 
-----------------------------------------------~ 
numn ~ (numz::J (VNx(x = n::J A»N)::J numz ~ (VNx(x = Sn::J A)N) 

- - 1,2,pc 
num n ::J Vx (x = n ::J B) ::J Vx (x = Sn ::J B) 
--------------------- 3,pc 

Vx(x = O::J B) (4) Vx(x = n::J B)::J Vx(x = Sn::J B). 
-----------------------------lnd 

I 

numn::J Vx(x = n::J B) 
----------------- 2,pc 
num~ ~ (VNx(x = n ~ A»N 

FORMAL INTERPRETATION OF HA 

DEFINITION. A coding ofHA formulae as constructions is defined as follows. 
If A is a formula with free variables ~, the code of A, ((A)), is defined as 



(A[~].(A), where 

FROM LPT TO HA 

(T) is atomic{T) if T is atomic 

(A 1\ B) is and{ (A), (B) 
(A V B) is or{(A) , (B) 

(A :J B) is implies{ (A), (B) 
(3NxA) is exiStS{A[X].(A) 

(VNxA) is all{A[x].(A). 
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DEFINITION. A coding of HA derivations as constructions is defined as 
follows. Number the axiom schemata and rules of inference ofHA, 1,2, ... 27. 
A derivation with conclusion A, from a list of premises numbered 0,1,2 ... , 
is coded as 

(premise(i), ((A))) 

(none{n), ((A))) 

(one{n, X), ((A))) 

(two{n, X, Y), ((A))) 

if A is premise number i 
if A is an instance of axiom schema n 

if A is derived by rule n from the subderivation X 

if A is derived by rule n from subderivations X, Y. 

DEFINITION. Define recursive functions T ..... T27 such that 

• for n= 1, ... 23, if A is an instance ofHA axiom schema n then Tn{ ((A))) 
t>* the code of the corresponding LPT derivation (given above) of ALPT 

from no premises; 

• for n = 25,26, if ~ is an instance of HA rule n then Tn{((B)) , ((A))) 
t> * the code of the corresponding LPT derivation (given above) of A LPT 

from the premise BLPT; 

• for n = 24,27, if B A C is an instance of HA rule n then Tn{ ((B)), (( C)), 
((A))) t>" the code of the corresponding LPT derivation (given above) 
of A LPT from the premises BLPT and CLPT • 

DEFINITION. Define a construction Ipt by 

f:l. 
Ipt{none{I), a) = Tl (a) 

f:l. 
Ipt{none(23), a) T23(a) 
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6. 
Ipt(two(24, (u, b), (v, c», a) = glue(T24(b, c, a), [lpt(u, b), lpt(v, e)]) 

6. 
Ipt(one(25, (u, b», a) glue(T25(b, a), [lpt(u, b)]) 

6. 
Ipt(one(26, (u, b», a) = glue(T26(b, a), [lpt(u, b)]) 

6. 
Ipt(two(27, (u, b), (v, e», a) = glue(T27(b, e, a), [lpt(u, b), lpt(v, e)]) 

where a, b, c, u, v are five variables. 

THEOREM 22. If D is the code of an HA derivation (with no premises) of a 
formula A then Ipt(D) [>* the code of an LPT derivation (with no premises) 
of ALPT. 

Proof By structural induction on the derivation encoded by D. I 

THEOREM 23. (HA interpretation theorem.) If D is the code of an HA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr( epf(lpt(D)))) f- r A LPT 1 . 

Proof By the previous theorem, the extensionality theorem for f-, and the 
interpretation theorem for LPT. I 

THEOREM 24. (The glue-lemma for HA.) If D is the code of an HA derivation 
of A from premises BJ, . .. Bko and DJ, ... Dk are the codes ofHA derivations 
(with no premises) of BJ, ... Bk respectively, then glue(D, [D1, ... Dk]) t>* 
the code of an HA derivation (with no premises) of A. 

Proof By structural induction on the derivation encoded by D. I 

UNPROVABILITY OF THE EXCLUDED MIDDLE 

The theory of proof developed in this book is meant to provide the intended 
interpretation of intuitionistic logic and arithmetic. Hence it is necessary to 
check not merely that all theorems ofHA have proofs but that intuitionistically 
unsound principles do not have proofs; preferably this should be done by 
arguments that follow our informal reasons for believing that the principles 
in question are unsound, rather than by roundabout methods that happen to 
produce results coinciding with our informal expectations. I shall construct 
an instance of the principle of excluded middle that has no proof and hence 
is not a theorem of HA; and I shall follow as closely as possible the informal 
motivation for disbelieving the excluded middle, namely that if it were sound 
we would have a general method for deciding 111 problems and hence for 
solving the halting problem. 

Let {M} be the Mth function in an enumeration of the partial recursive 
functions and let F be a primitive recursive function such that, for any 
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numbers M,N, F(M,N) 1>* 0 iff the evaluation of {M}(M) halts in exactly 
N steps. Let A be the HA atomic formula F(m, n) = 0 (where m and n are two 
variables) and let A be the contrary atomic formula minus(1, F(m, n» = O. 
Thus, for any numbers M, N, 

A[~~] 1>* true iff {M}(M) halts in exactly N steps; 

A[ ~'~] I> * true iff {M}(M) does not halt in exactly N steps. 

THEOREM 25. The proof function r (,<:/Nm (3NnA V'<;fNnA»LPTl has no proof 
and hence '<;fNm (3NnA V '<;fNnA) is not a theorem of HA. 

Proof Suppose P I- r ('<:/Nm (3NnA V '<;fNnA»LPT1. Without loss of generality, 
assume P has no free variables, since otherwise we can instantiate the free 
variables by 0, using Theorem 3 of Logic. Then, for any number M, by 
Theorem 29 of the Logic of Partial Terms (LPT), 

Now, we certainly have nil I- r num m 1 [~], by Theorem 4 of Logic, so, 

applying Theorem 27 of LPT, 

ei-:>(eiv(P,M),nil) I- r«3NnA)N V,<:/NnA)Nl[~] 

and hence, by Theorem 28 of LPT, selectv(el-:>(elv(p, M), nil) 1>* true or 
false. 

In the first case, where seiectv(ei-:>(eiv(P,M), nil» 1>* true, we have 

and hence, by Theorem 26 of LPT, elv(el-:> (elv(P, M), nil» 1>* (N,R) rJ , 
where 

Hence, by Theorem 25 of LPT, R 4 (R to R2), where 

and 

giving (numn)[~l 1>* true and A[~,~] 1>* true. Thus N is a number and the 

evaluation of {M}(M) halts in N steps. 
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In the second case, where selectv(el"J(elv(P,M), nil) [>* false, we have 

and hence, by Theorem 29 of LPT, for any number N, 

and by Theorem 27 of LPT, since nil f- r num n 1 [~], 

This implies A[~:~] [>* true, and hence the evaluation of {M}(M) does 

not halt in exactly N steps. Since N was an arbitrary number, {M}(M) is 
undefined. 

To summarise, selectv(el"J(elv(P,M),nil) reduces to true or false ac
cording to whether {M}(M) is defined or not. This of course leads to a 
contradiction by a familiar argument: we can define a total recursive func
tion H on numbers such that 

H( ) = { {x}(x) + 1 if selectv(el"J(elv(p,x), nil» [>* true 
x 0 if selectv (e1"J (elv(P, x), nil) [>* false 

and then, if k is the code number of H in the enumeration of partial recursive 
functions, {k }(k) is defined, so 

{k}(k) = {k}(k) + 1 

which is the desired contradiction. I 

Some variations on this result, which are provable in the same way, are: 

• there is no general method of proving r (3NnA V \;{NnA)LPT1 [~]; 
• there is no general method of deriving 

3Nn F(M, n) = 0 V \INn minus(l, F(M, n» = 0 

inHA. 
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HEYTING ARITHMETIC 

FORMULAE OF HEYTING ARITHMETIC 

An HAformula is a sentence in the following language. 

• The alphabet is that of the Expanded Tenn Language plus' 1\', 'V', '::J', 
'3N ', ''<tN'. 

• The tokens are those of the Expanded Tenn Language plus' 1\', 'V', '::J', 
'3N', ''IN'. 

• Lexical analysis consists of recognising constants and replacing them by 
the token 'con', recognising variables and replacing them by the token 
'vbl', and recognising every other token. 

• The grammar of the language is as follows. 
- The tenninals are the tokens. 
- The non-tenninals are F, N, T; the start symbol is F. 
- The production rules are 

F -+ true I false I N = N I (F 1\ F) I (F V F) I (F::J F) I 
3N vbl F I 'IN vbl F 

N-+T 
T -+ con I (vbl) I (T T) I (A T . T) I (T [ ~bl ] ) 

In addition, there is a context-sensitive constraint that strings matching N 
must be numeric tenns. Fonnulae matching true, false or N = N are called 
atomic fonnulae. 

HA METAFORMULAE 

From now on, the identifiers 'A', 'B' and 'C' will be used as metavariables 
to denote HA fonnulae. Metaformulae and their instances are defined as for 
LPT fonnulae, except that metafonnulae may contain the metanotation -.A 
for A ::J false; '-.' has the same syntactic precedence as the quantifiers (for
mally, we add a production rule P -+ ---, P to the grammar of metafonnulae). 

The identifiers 'F', 'G' and 'H', possibly with subscripts, will denote 
primitive recursive functions. All other identifiers beginning with capital 
letters will denote numeric tenns. 

369 
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FREE VARIABLES IN HA FORMULAE 

For any variable v and HA formula A, the relation v E A ('v occurs free in 
A ') is defined by: 

e v f/. 0, v E n iff v is n, 

evE F(NI. ... Nk) iff v E NI or ... or v E Nb 

e v f/. true, v f/. false, v E NI = N2 iff v E NI or v E N2, 

evEAAB ~ vEAVB ~ vEA~B ~vEAmvE~ 

evE 3NnA iff v E VNnA iff v isn't n and v EA. 

Thefree variables of A are the variables v such that v E A, listed in standard 
order. 

THEOREM 11. Any formula has finitely many free variables. 

INTERPRETATION OF HA FORMULAE IN LPT 

A mapping from HA formulae to LPT formulae is defined: if A is an HA 
formula then A LPT is the corresponding formula. For an atomic formula A 
with no free variables, ALPT is A. 

AXIOMS AND RULES OF INFERENCE OF HA 

A-axioms: A ~ B ~ (A AB) (A AB) ~A (A A B) ~ B 
V -axioms: A ~ (A V B) B ~ (A V B) (A V B) ~ (A ~ C) ~ (B ~ C) ~ C 
~-axioms: A ~ B ~ A (A ~ B ~ C) ~ (A ~ B) ~ A ~ C 
Truth and falsity (true-in, false-el): true false ~ A 
Quantifier axioms (3N-in, VN-el): A ~ 3NnA \lNnA ~ A 
Term existence (te): 3Nnn = N where n f/. N 
Equality (eq): N = N M = N ~ N = M U = V ~ V = W ~ U = W 

M=N ~F(X ..... Xi-I,M,Xi+I. ... Xk) = F(XI. ... Xi-I.N,Xi+I. ... Xk) 
Peano axioms (P): ..., Sn = 0 Sm = Sn ~ m = n 
Axioms for primitive recursive functions (pr): 

proH(rf) = ni where 1 ~ i ~ k 
compl(H, (Ft. ... F/»(!!) = H(FI(rf),··· Fl([!» 
reck(F, G)(O, rf) = F([!) req(F, G)(Sm, rf) = G(m,!!, req(F, G)(m, rf) 

where !! is n ... .. nb H is I-ary primitive recursive, F, FI. ... F/ are k-ary 
primitive recursive, and G is (k + 2)-ary primitive recursive 

A A~B 
Modusponens: B 

Quantifier rules (3N-el, VN-in): 
A~B 

B ~\fNnA 

B~A 
where n f/. B 



HEYTING ARITHMETIC 371 

Induction (ind): 

where n ~ x,A 

"<rx(x = 0:::) A) "<rx(x = n :::) A) :::) "<rx(x = Sn :::) A) 

"fNx (x = n :::) A) 

FORMAL INTERPRETATION OF HA 

A coding of HA derivations as constructions is defined. A construction [pt 
is defined. 

THEOREM 22. If D is the code of an HA derivation (with no premises) of a 
formula A then Ipt(D) t>* the code of an LPT derivation (with no premises) 
of ALPT. 

THEOREM 23. (HA interpretation theorem.) If D is the code of an HA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cp!(lpt(D)))) I- r ALPT1. 

THEOREM 24. (The glue-lemma for HA.) If D is the code of an HA derivation 
of A from premises B Io .. . Bko and D Io •.• Dk are the codes ofHA derivations 
(with no premises) of BIo . .. Bk respectively, then glue(D, [D}, . .. Dk]) t>* 
the code of an HA derivation (with no premises) of A. 

UNPROVABILITY OF THE EXCLUDED MIDDLE 

Let {M} be the Mth function in an enumeration of the partial recursive 
functions and let F be a primitive recursive function such that, for any 
numbers M,N, F(M,N) t>* 0 iff the evaluation of {M}{M) halts in exactly 
N steps. Let A be the HA atomic formula F(m, n) = 0 (where m and n are two 
variables) and let A be the contrary atomic formula minus(l, F(m, n» = O. 

THEOREM 25. The proof function r ("fNm (3NnA V "<rnA»LPTl has no proof 
and hence "<rm(3NnA V "<rnA) is not a theorem ofHA. 
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FROM HEYTING ARITHMETIC TO PEANO ARITHMETIC 

Peano Arithmetic (PA) is classical first-order number theory; it differs from 
Heyting Arithmetic (HA) only in including the Excluded Middle, A V --,A. I 
shall obtain PA from HA by a variation, due to Gentzen (1933), of GOdel's 
(1933a) double-negation interpretation. It follows that every theorem of PA 
(without free variables) has, via its HA, LPT and CPF interpretations, an 
intuitionistic proof. 

My formulation of PA differs from the usual versions in that it lacks any 
notion of substitution, which makes the quantifier and equality axioms appear 
weaker. This appearance however is illusory: the usual axioms and rules of 
PA can be derived from my PA, as I shall show at the end of this chapter. 

LEXICAL CONVENTIONS 

The letters 'A', 'B' and 'C', sometimes with subscripts, will denote HA 
formulae; the letters 'F', 'G' and 'H', possibly with subscripts, will denote 
primitive recursive functions; all other metavariables beginning with a capital 
letter denote numeric terms. 

SOME HA DERIVATIONS 

Since HA contains intuitionistic propositional calculus I shall use the latter 
freely in the HA derivations that follow, marking all such uses with the label 
'pc'. 

THEOREM 1. HA reversed equality theorem (r.eq): M =N ~M = U ~ N = U 

Proof. 

M=N~N=M (eq) N=M~M= U~N= U (eq) 

M=N~M=U~N=U ~ 
I 

THEOREM 2. HA specification rule (spec): 
n=N~A 

A 
where n tJ. N,A. 
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Proof. 

I 

THEOREM 3. HA bivalence theorem (biv): m = n V..,m = n, 
where m and n are two variables. 

Proof. Let x be a fresh variable. For any numeric terms P and Q, let A pQ be 
the formula P = Q V ..,p = Q, let Bp be the formula VNnApn, and let CQ be 
the formula Bm :J Asm,Q' Then we have the following HA derivations, where 
where M, N, U, V and W are any numeric terms such that x, n tJ. M and 
xtJ.N. 

U = V :J V = U (eq) V = U :J U = V (eq) 

A A (1) pc 
uv:J vu 

U = V :J U = W :J V = W (r.eq) U = V :J V = W :J U = W (eq) 
----------------------------------------------pc 

U = V :J Auw :J Avw (2) 

AON :J ANO (1) x = N :J N = x (eq) N = x :J ANO :J AxO (2) AxO :J AOx (1) 
-------------------------------------------------pc 

AON :J x = N :J AOx . 
----------------_____ '<tN-m 
AON :J VN x (x = N :J AOx) (3) 

M=x:JAMn :JAxn (2) 

M=x:JBM :JAxn 
------------- '<tN-in,pc 
M =x:J BM:J Bx x = M :J M = x (eq) 

-------------------------------pc 
BM :J x = M :J Bx 

------------------- '<tN-in 
BM :J VNx (x = M :J Bx) (5) 

pc 
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x = m :J Axn :J Amn (2) 

x = m :J Bx :J Amn . _______ yN_m,pc 
X = m :J Bx :J Bm 

-----------------------pc 
X = m:J VNX(X = m:J Bx):J Bm 
------------s~c 

VNX(X = m:J Bx):J Bm (6) 

x = N :J N = x (eq) N = x:J ASm,N :J Asm,x (2,t,pc) 
-------------------pc 

ASm,N :J x = N :J Asm,x 
---------pc 

CN :J X = N :J Cx 
---------- yN-in 
CN:J VNx(x = N:J Cx) (7) 

0= Sn:J Sn = 0 (eq) 

true (true-in) 

pc 

m = n :J Sm = Sn (eq) Sm = Sn :J m = n (P) 
------------------pc 

Amn :J ASm,sn 
-------------------pc 

CSn (10) 
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-,Sm = 0 (P) 
---pc 

Asm,o CSn (10) 
--pc -------7,pc 

Co '<;{N x (x = Sn :::J Cx) 
------7,pc -------------- pc 
VNx(x = 0:::> Cx) VNx(x = n:::> Cx):::> VNx(x = Sn:::> Cx). 
-----------------------Ind 

VNx(x = n:::J Cx) 
------- 8,pc 

Cn \.IN' 
V -In 

Bo (9) Bm :::J BSm 
------ 5,pc -------------- 5,6,pc 
VNx(x = 0:::> Bx) VNx(x = m:::> Bx):::> VNx(x = Sm:::> Bx). 
----------------------Ind 

The conclusion, Amn , is m = n V -,m = n, as required. I 

PAFORMULAE 

The formulae, metaformulae and free variables of Peano Arithmetic are the 
same as those of Heyting Arithmetic, except that metaformulae may contain 
the substitution metanotation introduced below. The letters' A', 'B' and' C' 
will from now on be used as metavariables denoting PA formulae; 'F', 'G' 
and 'H', possibly with subscripts, denote primitive recursive functions; all 
other metavariables starting with a capital letter denote numeric terms. 

INTERPRETATION OF PA FORMULAE IN HA 

For any PA formula A, the corresponding HA formula, AH, is defined as 
follows. 

A H is A if A is an atomic formula 
(B 1\ C)H is BH 1\ CH 

(B V C)H is ,(,BH 1\ ,CH) 

(B :::> C)H is BH :::> CH 

(3NnB)H is ,VNn,BH 

(VNnB)H is VNnBH 

THEOREM 4. v E A iff v E AH , 

THEOREM 5. PA double negation theorem (,,): for any PA formula A, 
, ,A H :::> A H is a theorem of HA. 
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Proof By structural induction on A, as follows. There are eight cases; uses 
of the inductive hypothesis are marked by 'ih'. 

Case 1: A is true. Then -,-,AH :J AH is derived in HA by 

true (true-in) 
-----pc 
-, -, true :J true 

Case 2: A isfalse. Then -,-,AH:J AH is «(false :Jfalse) :Jfalse) :Jfalse, 
which is a theorem of HA by intuitionistic propositional calculus. 

Case 3: A is M = N. Then -,-,AH :J AH is derived by 

m = n V -,m = n (biv) 
-----------------------------eq,pc 
m = M :J n = N :J (M = N V -,M = N) 
-----------------------------s~c 

M=NV -,M=N 
---------------pc 
-,-,M=N:JM=N 

where m, n are two fresh variables. 

Case 4: A is B /\ C. Then -, -,A H :J A H is derived in HA by 

AH :J CH (pc) 
---------- pc 
-, -,A H :J -, -, CH -, -, CH :J CH (ih) 

----------------------------------------------------pc 
-,-,AH :J AH 

Case 5: A is B V C. Then -,-,AH :J AH is 

which is a theorem of HA by intuitionistic propositional calculus. 

Case 6: A is B:J C. Then -,-,AH :>AH is derived in HA by 

BH :J (BH :J CH) :J CH (pc) 
----------------------pc 
BH :J -, -, (BH :J CH) :J -, -, CH -, -, CH :J CH (ih) 
-----------------------------------------pc 

-,-,(BH:J CH):J (BH:J CH) 

Case 7: A is 3Nn B. Then -, -,AH :J AH is -, -, -, \;fin -,BH :J -, \;fin -,BH, 
which is a theorem of HA by intuitionistic propositional calculus. 
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Case 8: A is VNnB. Then •• AH ::JAH is derived by 

This completes the proof. I 

•• BH ::J BH (ih) 
pc 
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AXIOMS AND RULES OF INFERENCE OF PEANO ARITHMETIC 

I\-axioms: A ::J B ::J (A 1\ B) (A 1\ B) ::J A (A 1\ B) ::J B 
V-axioms: A ::J (A V B) B::J (A V B) (A V B)::J (A::J C)::J (B::J C)::J C 
::J-axioms: A ::J B ::J A (A ::J B ::J C) ::J (A ::J B) ::J A ::J C 
Excluded middle: A V .A 
Truth and falsity (true-in,false-el): true false::J A 
Quantifier axioms C3N-in, VN-el): A ::J :JNnA VNnA ::J A 
Term existence (te): :JNnn = N where n 1. N 
Equality (eq): N = N M = N ::J N = M U = V::J V = W::J U = W 

M = N::J F(XJ, ... Xi-I,M,Xi+I , ... Xk) = F(XJ, ... Xi-I,N,Xi+I, ... Xk) 
Peano axioms (P): .Sn = ° Sm = Sn ::J m = n 
Axioms for primitive recursive functions (pr): 

prol(!1) = ni where 1 :S i :S k 
compl(H, (Fl, ... FI»(!1) = H(Fl (!1),.·· F I(!1» 
reck(F, G)(O,!1) = F(!];) reck(F, G)(Sm,!1) = G(m,!1, reck(F, G)(m, !1» 

where !1 is nl, ... nb His l-ary primitive recursive, FJ, ... FI and Fare k-ary 
primitive recursive, and G is (k + 2)-ary primitive recursive 

A A::JB 
Modus ponens: B 

A::JB B::JA 
Quantifier rules (:IN-el, "IN-in): where n 1. B 

:JNnA ::J B B ::J VNnA 

Induction (ind): 

where n 1. x, A 

VNx(x ~ O::J A) VNx(x = n::J A)::J VNx(x = Sn::J A) 

VNX(X = n::J A) 

HA DERIVATIONS CORRESPONDING TO THE PA AXIOMS 
AND RULES OF INFERENCE 

I shall show that, for any axiom A of PA, AH is a theorem of HA, and that, 
., If· ., A ... BfA H ... BH. d· d f lor any ru e 0 llllerence -- 0 PA, H IS a enve rule 0 HA. 

C C 



378 CHAPTER 33 

THEOREM 6. The interpretations of the PA axiom schemata and rules that 
involve only atomic formulae, 1\, ::J and VN are also axioms and rules of HA. 

Proof For example, the PA axiom (A 1\ B) ::J A is interpreted as the HA axiom 
(AH 1\ BH)::J AH. Similarly for the others. I 

THEOREM 7. PA V -axioms: 
A::J~Vm B::J~Vm ~vm::J~::J~::J~::J~::JC 

Proof The corresponding HA derivations are 

AH ::J (AH V BH) (pc) 
--------pc 
AH ::J -,(-,AH 1\ -,BH ) 

THEOREM 8. PA excluded middle axiom: A V -,A. 

Proof This is interpreted as -,(-,AH 1\ -,-,AH ), which is a theorem ofHA by 
intuitionistic propositional calculus. I 

THEOREM 9. PA 3N-in axiom: A ::J 3NnA. 

Proof The corresponding HA derivation is 

I 

THEOREM 10. PA term existence axiom: 3Nn n = N where n fI. N. 

Proof The corresponding HA derivation is 

\/Nn -, n = N ::J -, n = N (VN-el) 
--------pc 
n=N::J -,VNn-,n=N 
--------s~ 

-,VNn-,n=N 
I 
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THEOREM 11. PA 3N-el rule: where n f/. B. 

Proof The rule's interpretation is derived as follows. 

I 

FORMAL INTERPRETATION OF PA 

DEFINITION. A coding ofPA fonnulae as constructions is defined as follows. 
If A is a fonnula with free variables z (listed in standard order), the code of 
A, ((A)), is defined as (t..[~].(A), where 

(T) is atomic(T) if T is atomic 

(A 1\ B) is and«(A), (B) 

(A V B) is or«(A), (B) 
(A :J B) is implies( (A), (B) ) 
(3NxA) is exists(t..[x].(A) 

(VNxA) is all(t..[x].(A}). 

DEFINITION. A coding of PA derivations as constructions is defined as 
follows. Number the axiom schemata and rules of inference ofPA, 1,2, ... 28. 
A derivation with conclusion A, from a list of premises numbered 0,1,2 ... , 
is coded as 

(premise(i), ((A}) 

(none(n), ((A}) 

(one(n,X), ((A))) 

(two(n, X, Y), ((A}}) 

if A is premise number i 

if A is an instance of axiom schema n 

if A is derived by rule n from the subderivation X 

if A is derived by rule n from subderivations X, Y. 
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DEFINITION. Define recursive functions Tt. . .. T28 such that 

• for n= 1, ... 24, if A is an instance ofPA axiom schema n then Tn«((A))) 
[> '" the code of the corresponding HA derivation (given above) of A H 

from no premises; 

• for n = 26,27, if ~ is an instance of PA rule n then Tn( ((B)), ((A))) t> '" 

the code of the corresponding HA derivation (given above) of A H from 
the premise BH; 

• for n=25, 28, if BAC is an instance ofPArule n then Tn( ((B)), ((C)), ((A))) 

[> '" the code of the corresponding HA derivation (given above) of A H 

from the premises BH and CH • 

DEFINITION. Define a construction ha by 

lJ. 
ha(none(1),a) = Tt(a) 

lJ. 
ha(none(24), a) T24(a) 

lJ. 
ha(two(25, (u, b), (v, e)), a) glue(T2s(b, e, a), [ha(u, b), ha(v, e)]) 

lJ. 
ha(one(26, (u, b)), a) glue(T26(b, a), [ha(u, b)]) 

lJ. 
ha(one(27, (u, b)), a) glue(T27(b, a), [ha(u, b)]) 

lJ. 
ha(two(28, (u, b), (v, e)), a) glue(T28(b, e, a), [ha(u, b), ha(v, e)]) 

where a, b, e, u, v are five variables. 

THEOREM 12. If D is the code of a PA derivation (with no premises) of a 
formula A then ha(D) [> * the code of an HA derivation (with no premises) 
ofAH. 

Proof By structural induction on the derivation encoded by D. I 

THEOREM 13. (PA interpretation theorem.) If D is the code of a PA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(epJ(lptCha(D))))) I- r (AH)LPT1. 

Proof By the previous theorem, the extensionality theorem for 1-, and the 
interpretation theorem for HA. I 
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SUBSTITUTION IN PA FORMULAE 

Peano Arithmetic is often stated in an apparently stronger form than the 
version I have given. For example, the elimination axiom for 'tf' is usually 
stated not as 'tf'nA ::J A but as 'tf'nA ::J A(~), where A(~) is the formula 
obtained by substituting a term N for all free occurrences of n in A, assuming 
there are no 'variable clashes'. Here I shall show that the stronger forms of 
the axioms and rules are derivable in my formulation of PA. (The same can 
be done in HA, since the derivations do not require the Excluded Middle, 
or even in a modified form in LPT; but the notion of substitution is such a 
nuisance that I prefer to delay its introduction to the very end.) 

The first step is to define when substitution is possible. A notation 
N 4 A, meaning that the numeric term N is substitutable for the variable n 
in the formula A, is defined as follows. 

• N 4 A if A is an atomic formula; 

• N 4 A 1\ B iff N 4 A V B iff N 4 A ::J B iff N 4 A and N 4 B; 

• N 4 3NmA iff N 4 'tf'mA iff n rt. 3NmA or (m rt. Nand N 4 A). 

If N 4 A, then the formula A(~) is defined by: 

• O(~) is 0, n(~) is N, m(~) is m if m isn't n; 

• F(N}, ... Nk)(~) is F(Nl(~)' ... Nk(~)' for k ~ 1; 

• true(~) is true, false(~) is false, (Nl = N2)(~) is Nl(~) = N2(~); 
• (A 1\ B)(~) is A(~) 1\ B(~), (A V B)(~) is A(~) V B(~), 
• (A::J B)(~) is A(~) ::J B(~); 
• (3NmA)(~) is 3NmA and ('tf'mA)(~) is 'tf'mA, if n rt. 3NmA; 

• (3NmA)(~) is 3Nm (A(~) and ('v'NmA)(~) is 'v'Nm (A(~), if n E 3NmA 
andmrt. N. 

THEOREM 14. Properties of substitution: 
n 

• 0 '-t A; 

• if M and N have the same free variables, then M 4 A iff N 4 A; 

• n 4 A and A(~) is A; 

• if n rt. A then N 4 A and A(~) is A; 

• if N 4 A then m E A(~) iff (m E Nand n E A) or (m E A and n isn't 
m). 

EXERCISE. Show that if N 4 A then N 4 AH and A(~)H is AH(~), using 
the same definition of substitution for HA formulae as for PA formulae. 
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PA THEOREMS AND DERIVED RULES INVOLVING SUBSTITUTION 

Note that PA contains classical propositional calculus, so I shall use the latter 
freely in the derivations that follow, marking such uses with the label 'pc'. 

THEOREM 15. PA equality theorem for terms (eq.term): 

M=N~ TW) = T(~). 

Proof By structural induction on T using propositional calculus and the 
equality axioms 

N=N U=V~V=W~U=W 

I 
M =N~F(Xh ... Xi-hM,Xi+h··· Xk) =F(X1,·· . Xi-hN,Xi+1>· .. Xk)· 

THEOREM 16. PA equality theorem for formulae (eq.form.): 

M=N~AW) ~A(n, 

where M Y A and N Y A. 

Proof By structural induction on A. There are eight cases; uses of the 
inductive hypothesis are marked by 'ih'. 

Case 1: A is true. Then the formula to be derived is M = N ~ true ~ true, 
which is a theorem of PA, by propositional calculus. 

Case 2: A isfalse. Then the formula to be derived is M=N~false~false, 
which is also a theorem of PA, by propositional calculus. 

Case 3: A is U = V, where U and V are numeric terms. Then the desired 
formula, M = N ~ UW) = VW) ~ U(~) = V(n, follows by propositional 
calculus from the PA theorems 

M=N~N=M 

N=M ~ U(n = U(~) 

U(n = U(~) ~ UW) = VW) ~ U(n = VW) 

M=N~ v(:) = V(~) 
U(~) = V(~) ~ V(~) = V(~) ~ U(~) = V(~) 

(eq axiom) 

(eq.term) 

(eq axiom) 

(eq.term) 

(eq axiom). 

Case 4: A is B /\ C. Then the desired formula is derived in PA as follows. 

M = N ~ B(~) ~ B(~) (ih) M = N ~ C(~):J C(~) (ih) 
-------------------------------------------~ 

M=N~AW)~A(n 
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Case 5: A is B V C. This is similar to Case 4. 
Case 6: A is B:J C. Then the desired formula is derived in PA as follows. 

M = N:J N = M (eq) N = M:J B(':) :J B('1) (ih) 
--------------------------------ih 

M = N :J CW) :J C(':) (ih) M = N :J B(':) :J BW) 
------------------------------------------pc 

M=N:JAW) :JA(':) 
Case 7: A is 3N nB. The substitutability conditions tell us that x tJ. 3NnB 

or (n tJ. M,N and My Band N Y B). In the former subcase (x tJ. 3NnB) 
the formula to be derived is M = N :J 3Nn B :J 3Nn B, which is a theorem of 
PA by propositional calculus. In the latter subcase the PA derivation is as 
follows. 

M = N :J B('1) :J B(':) (ih) B(':) :J 3Nn B(':) (:IN-in) 
--------------------------------------~ 

M = N:J B('1) :J 3NnB(':) 
--------------------- :IN-el, pc 

M = N:J 3NnB('1) :J 3NnB(':) 

Case 8: A is rfN n B. This is similar to Case 7. I 

THEOREM 17. PA specification rule (spec): 
n=N:JA 

A 
where n tJ. N,A. 

Proof 

__ n_= __ N_:J_A_ :IN-el 

3Nnn = N (te) 3Nnn = N:J A 
--------~---------------~ 

A 
I 

THEOREM 18. PA substitution rule (sub): 
B 

Bef) 
whereN Y B. 

Proof Let m be a fresh variable (and thus m Y B). The PA derivation is as 
follows. 

B n = m :J B :J B(':) (eq.fonn.) 
----------~ 

n = m:J B(':) 
--------- spec, since n ¢ m, B(;:') 

B(':) m = N :J B(':) :J B(~) (eq.fonn.) 
-------------------------------------~ 

m =N:J B(~) 
--------- spec, since m ¢ N, B(ff) 

B(~) 
I 
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THEOREM 19. PA quantifier theorems with substitution: 

A(~) ::) 3NnA, VNnA :J A(~), where N ~ A. 

Proof 

I 

VNnA :J A (\IN-el) 
-----sub 
VNnA ::) A(~) 

THEOREM 20. PA variable change rule (vch): 

where n rt. Band n Y B. 

B(~) 
B 

Proof If n is m then there is nothing to prove, so assume n is not m. The PA 
derivation is as follows. 

B(~) n = m :J B(~) :J B (eq.form.) 
pc 

n=m:JB . ,; 
---- spec, since n 'F m, B 

B 
I 

THEOREM 21. PA quantifier rules with substitution: 

where n YA and n rt. 3NmA,B. 

Proof If n is m then the rules are simply the 3N-el and VN-in rules of PA, so 
assume n is not m. Then n rt. A, B and the PA derivations are as follows. 

I 

A(~) :J 3NnA(~) (:IN-in) 
------vch 

A ::) 3NnA(~) A(~) :J B 
:IN-el ----- :IN-el 

3NmA :J 3NnA(~) 3NnA(~) :J B 
----------------~ 

3NmA:J B 

B:J A(~) 
----- \IN-in 
B:J VNnA(~) 

VNnA(~) :J A(~) (\IN-el) 
------vch 
VNnA(~) :J A 

\IN-in 
VNnA(~) :J VNmA 

-----------------pc 
B:J 'fNmA 
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THEOREM 22. PA extraction theorems (ext): 

A(~) :> VNm (m = N :> A) VNm (m = N :> A) :> A(~), 

where m fi. N and N ~ A. 

Proof. 

m = N :> N = m (eq) N = m :> A(~) :> A (eq.form.) 
---------------------------------~ 

m=N:>A(~):>A 
-------~ 

A(~) :> m = N :> A 
----------VN-in, since m ri A(~) 
A(~) :> VNm (m = N :> A) 
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VNm (m = N :> A) :> (m = N :> A) ('IN-e!) m = N :> A :> A(~) (eq.form.) 
------------------------------------------~ 

m = N :> VNm (m = N :> A) :> A(~) 
--------------------- spec, since m ri N,A(~) 

I 
VNm (m = N :> A) :> A(~) 

THEOREM 23. PA induction rule with substitution: 
A(~) 

where n fi. A and n ~ A. 

Proof. If m is n then m fi. A, so the rule is A ~:> A , which is trivial. If m 

is not n then the PA derivation is as follows. (Note that 0 ~ A and Sn ~ A 
by Theorem 14.) 

A~) A~):>A~) 
----------- ext, ~ --------------ext, ~ 
VNm (m = 0 :> A) VNm (m = n :> A) :> VNm (m = Sn :> A) . 
------------------------------------------- md 

VNm (m = n :> A) 
----------- ext, ~ 

A(~) 
I 
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PEANO ARITHMETIC 

PAFORMULAE 

The fonnulae, metafonnulae and free variables of Peano Arithmetic are the 
same as those of Heyting Arithmetic, except that metafonnulae may contain 
the substitution metanotation introduced below. The letters 'A', 'B' and 'C' 
will from now on be used as metavariables denoting PA fonnulae; 'F', 'G' 
and 'H', possibly with subscripts, denote primitive recursive functions; all 
other metavariables starting with a capital letter denote numeric tenns. 

A mapping from PA to HA is defined: if A is a PA fonnula then AH is the 
corresponding PA fonnula. For atomic A, AH is A. 

AXIOMS AND RULES OF INFERENCE OF PEANO ARITHMETIC 

A-axioms: A ~ B ~ (A A B) (A A B) ~ A (A A B) ~ B 
V -axioms: A ~ (A V B) B ~ (A V B) (A V B) ~ (A ~ C) ~ (B ~ C) ~ C 
~-axioms: A ~ B ~ A (A ~ B ~ C) ~ (A ~ B) ~ A ~ C 
Excluded middle: A V -,A 
Truth and falsity (true-in, false-el): true false ~ A 
Quantifier axioms (3N-in, '1N-el): A ~ 3NnA '1NnA ~ A 
Tenn existence (te): 3Nnn = N where n fj. N 
Equality (eq): N = N M = N ~ N = M U = V ~ V = W ~ U = W 

M =N ~ F(Xlo ... Xi-1,M,Xi+1, ... Xk) = F(Xlo.· .Xi-1,N,Xi+lo ... Xk) 
Peano axioms (P): -,Sn = 0 Sm = Sn:::> m = n 
Axioms for primitive recursive functions (pr): 

protc!!) = ni where 1 ::; i ::; k 
comp/(H, (FI,··· F/»C!!) = H(FIC!!),··· F/(!1» 
reck(F, G)(O, W = F(W reck(F, G)(Sm,!1.) = G(m,!1., reck(F, G)(m, W) 

where!1. is nlo ... nko His l-ary primitive recursive, Ft. . .. F/ and Fare k-ary 
primitive recursive, and G is (k + 2)-ary primitive recursive 

A A~B 
Modus ponens: 

B 
Quantifier rules (3N-el, 'IN_in): 
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B~A 

B ~ 'lNnA 
where n fj. B 



Induction (ind): 

where n tt x, A 

PEANO ARITHMETIC 

FORMAL INTERPRETATION OF PA 

387 

A coding of PA derivations as constructions is defined. A construction ha is 
defined. 

THEOREM 12. If D is the code of a PA derivation (with no premises) of a 
formula A then ha(D) [>* the code of an HA derivation (with no premises) 
ofAH. 

THEOREM 13. (PA interpretation theorem.) If D is the code of a PA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpf(lpt(ha(D»)))) f- r (AH)LPT1. 

SUBSTITUTION IN PA FORMULAE 

A notation N Y A, meaning that the numeric term N is substitutable for the 
variable n in the formula A, is defined as follows. 

• N Y A if A is an atomic formula; 

• N Y A 1\ B iff N y A V B iff N y A :J B iff N y A and N Y B; 

• Ny :JNmA iff Ny \;INmA iff n tt :JNmA or (m tt Nand Ny A). 

If Ny A, then the formula A(~) is defined by: 

• O(~) is 0, n(~) is N, m(~) is m if m isn't n; 

• F(N\, ... Nk)(~) is F(N\(~), ... Nk(~)' for k ~ 1; 

• true(~) is true, false(~) isfalse, (N\ = N2)(~) is N\(~) = N2(~); 

• (A 1\ B)(~) is A(~) 1\ B(~), (A V B)(~) is A(~) V B(~), 

• (A:J B)(~) is A(~) :J B(~); 

• (:JNmA)(~) is :JNmA and (\;INmA)(~) is \;INmA, if n tt :JNmA; 

• (:JNmA)(~) is :JNm (A(~) and (\;INmA)(~) is \;INm (A(~), if n C :JNmA 
and m tt N. 
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PA THEOREMS AND DERIVED RULES INVOLVING SUBSTITUTION 

THEOREM 16. PA equality theorem for formulae (eq.form.): 

M = N :) A(~) :) A(n, 
where M 4 A and N 4 A. 

THEOREM 19. PA quantifier theorems with substitution: 

A(~) :) 3NnA, VNnA :) A(~), where N Y A. 

THEOREM 21. PA quantifier rules with substitution: 

where n 4 A and n rt 3NmA,B. 

THEOREM 23. PA induction rule with substitution: 
A(~) 

where n rt A and n 4 A. 



CHAPTER 35 

CONCLUSIONS ON ARITHMETIC 

The interpretation of arithmetic is now complete. What does it accomplish? 

• It demonstrates that any formula of Peano Arithmetic may be inter
preted as a proof function, that is, as a demand for a construction of a 
certain sort. The PA formula A is translated into a Heyting Arithmetic 
formula A H, which is in turn translated into a formula of the Logic of 
Partial Terms, (AH)LPT, which is in tum interpreted as a proof function, 
r(AH)LPT1. 

• It shows that any formal derivation in Peano Arithmetic of the formula 
A may be understood as a high-level description of an intuitionistic 
proof of a proof function. The (coded) Peano Arithmetic derivation D 
is compiled into a (coded) Heyting Arithmetic derivation ha(D), which 
is in tum compiled into a (coded) derivation in Logic of Partial Terms, 
lpt(ha(D», which is in tum compiled into a (coded) derivation in the 
Calculus of Proof Functions, cpj(lpt(ha(D))), which is in tum compiled 
into a proof spr(cpj(lpt(ha(D»» (in the sense of ~ ), which is finally 
compiled into a proof pr(spr(cpj(lpt(ha(D»») (in the sense of 1-) of the 
proof function r (A H )LPT 1 . 

• Consequently, formulae of Peano Arithmetic are meaningful, not as 
propositions but as demands for constructions. Formal derivations 
within Peano Arithmetic are meaningful, not as arguments establish
ing truths but as systematic ways of building constructions. 

• Assuming the Central Dogma of Formalism (see Chapter 9), that all 
mathematics can be captured in formal systems (and in particular that 
ordinary arithmetic is captured in Peano Arithmetic), this shows that 
our grasp of arithmetic can be understood entirely in terms of con
structions and protologic, and hence ultimately in terms of our abstract 
understanding of algorithms and well-foundedness. 

• A grasp of 'the infinite set of natural numbers', or even 'all the natural 
numbers at once', is therefore not essential to our understanding and use 
of numbers. This completes the proof (Chapter 3) that these phrases 
are meaningless. Thus, as explained in Chapter 3, not only does the 
intuitionistic account of arithmetic succeed but also the platonist account 
fails. 
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• The interpretation of arithmetic may also be regarded as an implemen
tation of Hilbert's programme, if one is prepared to accept protologic as 
finitary reasoning (as advocated in Chapter 9). For, let T be a term with 
no free variables, considered as a PA atomic formula. Then TH is T (see 
Peano Arithmetic, Chapter 34), and hence (TH)LPT is T (see Heyting 
Arithmetic, Chapter 32). Thus, by the conservativeness theorem of I
over reduction (see Logic, Chapter 26), 

X I- r (TH)LPTl iff X I- r T 1 iff T t> * true 

for any construction X. That is, r (TH)LPTl has an intuitionistic proof iff 
T t>* true. In particular, r (jalseH)LPTl has no intuitionistic proof, and 
hence (by the interpretation theorem for PA) false is not a theorem of 
PA. Thus PA is consistent. 

• Someone who didn't accept the soundness theorem for protologic (see 
the Coding of Trees, Chapter 22) would not accept the conclusion that PA 
is consistent. They would accept that PA derivations can be transformed 
into proofs of logical sequents but would not accept the soundness 
of the mapping pr from proofs of logical sequents to proofs of proof 
functions (see the Calculus of Proof Functions, Chapter 28). Their 
conclusion would be that if D is the code of a PA derivation of false 
then spr(cpf(lpt(ha(D)))) IF =? 1alse 1, which implies that there is a 
protological derivation with well-founded reflection tree for the sequent 
-7 false. In short, PA is consistent relative to protologic. 

• Let us return briefly to the question oflogicism. Opponents of logicism 
claim that PA consists of 'logic' (by which they mean the axioms and 
rules for /\, V, :), :3 and 'rI, and perhaps equality) plus special axioms 
and rules about the 'mathematical' subject matter (the Peano axioms, 
the axioms for the primitive recursive functions, the term existence ax
iom, and the induction rule). Tracing this distinction back through HA, 
LPT and CPF to Expanded Protologic and Protologic, they would seem 
committed to the position that there is something special about the Fxpt 
Rules and primitive recursive function definitions that sets them apart 
from the rest of Protologic and the Term Language as 'mathematical'. 
Since Protologic simply consists of structural axioms and rules plus 
elimination rules for various features of the Term Language, it is hard 
to see why the Fxpt Rules should be considered mathematical while 
the If Rule and Decomposition Rules are not. Equally, it is hard to 
see anything especially 'mathematical' about primitive recursive defi
nitions compared with the other metanotation in the Expanded Term 
Language. Alternatively the anti-logicist might take the view that the 
whole Theory of Constructions is mathematical, in which case the con
clusion is that mathematics is prior to logic, as Brouwer said. In any 
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case, the distinction between the 'logical' and 'mathematical' aspects 
of PA is superficial: it evaporates as one delves into the protological 
underpinning of PA. 



PART IV: THE INTERPRETATION OF ANALYSIS 

CHAPTER 36 

INTRODUCTION TO PART IV 

By analysis I shall mean a system of first-order predicate calculus with 
variables for real numbers and the usual axioms for a complete ordered field. 
The completeness property is expressed in an axiom schema 

(3xA 1\ 3y'v'x(A:Jx ~ y»:J 3z'v'y(z:::; y {:::} 'v'x(A:Jx ~ y» 

for any formula A in which y and z do not occur free. Note that variables 
for functions or sets of reals are not included. I shall not make use of the 
continuity principles that are common in intuitionistic analysis, since, as 
explained in Chapter II, their correct formulation is not yet clear. 

Analysis may be interpreted in second-order number theory, if we regard 
a real number as a Dedekind cut in the rationals, a rational as a pair of 
integers, and an integer as a pair of natural numbers. Thus the problem 
of finding an interpretation of classical analysis reduces to the problem of 
interpreting second-order Peano Arithmetic (2PA). 2PA is just like first
order Peano Arithmetic except that in addition to the first-order variables 
(ranging over the natural numbers) it has second-order variables (ranging 
over predicates or sets of natural numbers), with second-order quantifiers 
(32 and 'v'2) to bind them, and corresponding axioms and rules. The atomic 
formula N 1= a means that the numeric term N satisfies the predicate a. The 
Comprehension Axiom Schema states that any formula A defines a predicate 
a: 

32a 'v'Nn (n 1= a {:::} A) 

where A may contain n as a free variable but not a. 
Recall that the interpretation of arithmetic (Part III) started from the Cod

ing of Trees (the final theory of Part II) and proceeded through a sequence of 
theories, Logic, Calculus of Proof Functions, Logic of Partial Terms, Heyting 
Arithmetic and finally to Peano Arithmetic. In Part IV I shall extend each of 
the aforementioned theories to 'second-order' versions, as follows. 

• The Coding of Trees (CT, Chapter 22) will be extended to the Second
Order Coding of Trees (2CT, Chapter 38) by the addition of type vari
ables representing arbitrary tree codings. 
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• Logic (L, Chapter 26) will be extended to Second-Order Logic (2L, 
Chapter 40) by the addition of type predicates and some new logical 
constants, apply, val', predify' and "I'. 

• Calculus of Proof Functions (CPF, Chapter 28) will be extended to 
Second-Order Calculus of Proof Functions (2CPF, Chapter 42) by the 
addition of introduction and elimination rules for apply and "I', and 
instantiation rules. 

• Logic of Partial Terms (LPT, Chapter 30) will be extended to Second
Order Logic of Partial Terms (2LPT, Chapter 44) by the addition of a 
new atomic formula x F a. and a second-order universal quantifier "120., 

with appropriate axioms and rules. Note that no second-order existential 
quantifier can be defined at this stage. 

• Heyting Arithmetic (HA, Chapter 32) will be extended to Second-Order 
Heyting Arithmetic (2HA, Chapter 46) by the addition of a new atomic 
formula N 1= a. (where N is a numeric term) and a second-order uni
versal quantifier. 

• Peano Arithmetic (PA, Chapter 34) will be extended to Second-Order 
Peano Arithmetic (2PA, Chapter 48) by the addition of the atomic for
mula N 1= a. and the second-order universal and existential quantifiers. 

In addition, the intermediate chapters (Chapters 21, 25, 27, 29, 31 and 33) 
will be extended accordingly. For example, Chapter 31, which interprets HA 
in LPT, will be extended to an interpretation of 2HA in 2LPT (Chapter 45). 
The theories and intermediate chapters are shown in Figure 4. 

Part IV 
~-------------------, // 2CT ..... 2L ..... 2CPF....-2LPT ..... 2HA ..... 2PAI (6/f ---, ---1---f ---f ----f 

Cr~-E~---P-~~;.::;-CT)I~L-~-CPF~Lp,.-:.;HA:;;Ai 
---------------- ,---------------_.-/ 

Part II Part III 

Figure 4: the theories in Parts II. III and IV; a thick arrow represents an intennediate 
chapter. where one theory is interpreted in another (the arrow points from the interpreting 
theory to the interpreted theory). and a thin arrow shows where one theory is an extension 
of another (the arrow points towards the extended theory). 

The final result will be an interpretation theorem for 2PA similar to the 
interpretation theorem for PA. This gives an intuitionistic meaning to classical 
analysis. 

Note the absence of a second-order existential quantifier in all theories 
except 2PA; even in 2PA it is only present in a formal sense, and is inter
preted as --, "12--, in 2HA, by analogy with the interpretation of the first-order 
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existential quantifier of PA in HA. This is because it seems to be impossible 
to define a constructive notion of existence for predicates of numbers; that 
is, one cannot specify convincingly what it means to construct a predicate of 
numbers in general (see Chapter 11). This is no obstacle to the interpretation 
of analysis, however. 

THE FOUR SORTS OF VARIABLES 

In Parts II and III all the variables were considered to be of the same sort. 
In Part IV these variables are divided into several sorts: object variables, 
type variables, and second-order variables. Object variables are further 
subdivided into first-order variables and function variables. Each of these 
sorts of variable is given as an infinite sequence, arranged in a standard order. 

For the sake of definiteness, let us say that a first-order variable is a variable 
beginning with 'A', a function variable is a variable beginning with '8', a 
type variable is a variable beginning with 'C', and a second-order variable 
is a variable beginning with 'V'-'Z'. Let us say that the standard order for 
each sort of variable is the restriction to those variables of the standard order 
on all the variables. 

An object term is a term all of whose free variables are object variables. 
All the metavariables that denote variables used in Parts II and III began 

with lower-case roman letters and ranged over all variables. When these 
theories are incorporated in second-order theories the metavariables in the 
Term Language, the Expanded Term Language, Protologic and Expanded 
Protologic will still range over all variables, but the metavariables in the 
Coding of Trees, Logic and Calculus of Proof Functions will be reinterpreted 
as ranging only over object variables, and the metavariables in Logic of 
Partial Terms, Heyting Arithmetic and Peano Arithmetic will be reinterpreted 
as ranging only over first-order variables. All the arguments of Parts II and 
III remain sound under this reinterpretation. In addition, lower-case greek 
letters will be used as metavariables ranging over other sorts of variables. 
The conventions on this will be explicitly stated at the start of each chapter. 
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FROM EXPANDED PROTOLOGIC 
TO THE SECOND-ORDER CODING OF TREES 

Recall that the Theory of Constructions (Part II) ended with the Coding of 
Trees (CT). The first step in the interpretation of analysis is to extend CT to 
a second-order version (2CT), incorporating variables for tree codings; this 
is the purpose of the present chapter, which is to be viewed as extending 
the arguments in Chapter 21 ('From Expanded Protologic to the Coding of 
Trees'). 

LEXICAL CONVENTIONS 

Two sorts of variables will be used in this chapter: object variables and 
type variables. The metavariables that denote variables will be interpreted as 
follows . 

• Those beginning with lower-case roman letters range over object vari
ables . 

• The letters '7t', '0", '</>" 'X', '\If' and 'w' range over type variables. 

These conventions are also imposed on all the definitions and theorems inher
ited from Chapter 21. All the metavariables denoting variables in Chapter 21 
began with lower-case roman letters, and consequently they will now be in
terpreted as ranging over object variables (this of course does not affect the 
soundness of the proofs). 

TYPE VARIABLES AS TREE CODINGS 

A type variable is interpreted as standing for a 'socket', in the sense of 
Chapter 11. That is, it represents a connection to a black box that, given an 
input construction, returns an output construction obtained in an unknown 
but deterministic way from the input construction. Chapter 11 describes how 
a socket may be interpreted as a tree coding. Consequently, a type variable 
represents a tree coding, and hence may be used as a type symbol and as a 
component in composite type symbols, such as map(7t,product(a,IjJ». 

In Chapter 21, all type symbols were constructions; now, type variables 
are allowed to occur free in type symbols. A type variable 7t may occur in 
a type symbol ~ in any position where it would be meaningful to insert any 
type symbol; this is expressed in the following theorem. 
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THEOREM 1. If II and l: are type symbols then so is l: [~]. 

If II contains free type variables n, .. . 0 then a statement such as 'T is a 
well-founded tree of type II' is meaningless in isolation, since we have not 
specified what black boxes are plugged into the sockets n, ... 0. However, 
as explained in Chapter 11, it is possible to make general statements of 
the form 'for any input-output behaviour of n, ... 0, A', where A is a well
foundedness statement or argument involving free type variables n, ... 0. 

This will be represented by the notation 1t •••• cr{A}; the variables n, ... 0 are 
to be regarded as bound in 1t •••• cr{A l As an additional piece of notation, if 
Ij), ... '11 are all the free type variables of A then ~ .... IJf{A} is abbreviated to 
{Al 

TYPE MAPPINGS AND any type 

DEFINITION. A type mapping is an irreducible term M such that Mn reduces 
to a type symbol for any type variable n. 

DEFINITION. Let any type be a fresh l-ary constructor. For any type mapping 
M, choose n rt M and let Mn 1>* l: pt . Now let anytype(M) represent the 
following coding of trees. To interpret a construction X as a tree of type 
any type(M) , connect a new black box to the socket corresponding to n and 
then interpret X as a tree of type l:. 

This definition uses the indeterministic 'connect a new black box' operation 
introduced in Chapter 11; hence whether a construction is a tree of type 
any type(M) , and if so whether it is well-founded, will depend on the black 
box chosen. The interpretation of X does not, however, depend on the choice 
of the variable n, since one socket is as good as another. 

Note the difference between anytype(M) and Mn; anytype(M) is indeter
ministic (that is, if we interpret X as a tree of this type repeatedly we will get 
differing results), whereas Mn is indeterminate (that is, we cannot interpret 
X as a tree of this type until someone tells us what n represents). 

EXAMPLE. map(anytype(An.product(o,n»,o) is a type symbol, which is 
indeterminate until a black box is connected to the socket represented by o. 
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THE WELL-FOUNDEDNESS RELATION 

Due to the indeterminism introduced by anytype(M) the basic well-founded
ness statement T : II, defined in Chapter 21, needs to be amended as follows 
(the new features are in italics). 

DEFINITION. The relation T : II is defined as follows. 

• Let T be a construction and II be a type symbol; then T : II means that 
T is a well-founded tree, according to the coding II ,for any input-output 
behaviour of the black boxes connected in the course of interpreting T 
and its subtrees. 

• Let T be an object term and II be a term that reduces to a type symbol; 
then T : II is obtained from the previous clause as in Chapter 21. That 
is, let ,! be the free variables of T and let II t> * II' Jt; then T : II 

means that, for any constructions K, if T[~] t> * T' Jt then T' is a well

founded tree of type II', for any behaviour of the black boxes chosen in 
interpreting T' and its subtrees. 

(Observe that the relation T : II is only defined if T is an object term and 
if black boxes have already been chosen for all the free type variables in II.) 
All the theorems in CT concerning the T : II relation remain true under this 
extended definition, with type variables allowed in the type symbols and the 
terms T restricted to object terms, provided we enclose each entire argument 
in I ... }, 

If a type variable 7t occurs free in a type symbol ~ then the meaning of 
~ as a tree coding depends on the meaning of 7t as a tree coding. However, 
this dependence will always satisfy the property that the well-foundedness 
condition X : ~ (for an arbitrary construction X) is a function of the well
foundedness condition Y : 7t (for arbitrary Y). Hence we may replace 7t 

in ~ by any other type symbol having the same well-foundedness condition 
without disturbing the meaning of the well-foundedness condition for~. This 
property is a consequence of the way that type symbols are built up from 
their components. 

EXAMPLE. I shall show that (AX.(X,X» : anytype(A7t.map(7t,product(7t,7t»). 
To interpret (AX.(X,X» as a tree we must begin by connecting a black box to 
the socket 7t. (We will get different trees depending on the black box chosen.) 
Now, the subtrees of (h.(x,x» are of the form (X,X), where X : 7t, and 
they are interpreted using the product(7t, 7t) coding; hence they each have two 
subtrees, X and X, both interpreted according to the 7t coding. Thus we see 
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that (AX.(X,X» is interpreted as a well-founded tree. 

(AX.(X,X» 

/ I \ 
(X, X) 

/ \ 
X X 

EXAMPLE. I shall show that 

{id : map(anytype(A1t.map(1t,product(1t, 1t»), map(cr,product(cr, cr»)}. 

There is a single free variable, cr, here, so we must choose a black box to 
connect to the socket cr. Now, whatever the behaviour of this black box, 
we can interpret id as a tree according to the map definition. One subtree 
of id is (Ax.(X,X», since, as shown in the previous example, (AX.(X,X» : 
anytype(A1t.map(1t,product(1t,1t»), and id(AX.(X,X» [> (AX.(X,X» ,. The 
subtree (AX. (x, x» is interpreted as a tree by the coding map(cr,product(cr, cr» 
and is found to be well-founded. A similar argument applies to the other 
subtrees of id. Hence the whole tree is well-founded. 

id 

I 
(AX. (x, x» 

/ I \ 
(X, X) 

/ \ 
X X 

THEOREM 2. (Well-foundedness type instantiation rule.) If n and L are type 

symbols and T is an object term then {if n{ T : L} then T : L[~]}. 
Proof Assume 1t E L, since otherwise the conclusion follows immediately. 
Let 1t, cp, ... 'V be the free variables of L (which must all be type variables, 
since L is a type symbol), and let x, .. . w be the free variables of n (which 
are also all type variables). Now, regardless of the input-output behaviour of 
the sockets cp, ... 'V, X, ... ro, the following holds. Suppose n {T : L}, let :! 
be the free variables of T (which must all be object variables) and let K be 
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any constructions. If T[:] reduces to a construction T' then, by hypothesis, 

T' : ~ for any input-output behaviour of the socket n. 

We wish to infer from this that T' : ~[~J. The simplest way to do 

this would be to imagine that connected to the socket n is a black box that 
behaves, as a tree coding, like n. Unfortunately this may not be possible, 
since n may be indeterministic while black boxes are always deterministic. 
We can, however, consider a black box that, when connected the socket n, 
gives X : n iff X : n for any construction X. This black box would 
work as follows: it would accept the branch [Xl, for any construction X, and 
would accept branches of the form [X, X, ... Xl, with more than one X, iff 
X : n does not hold. Then X would represent a well-founded tree iff X : n 
holds, as required. It follows that replacing n by n in ~ would not alter the 

well-foundedness condition of~; this gives T' : ~[~], as required. I 

THEOREM 3. (any type rule.) Let M be a type mapping and T be an object 
term. 

• If n ~ M then {T : anytype(M) iff 71 {T : Mn} l-
• If n is a type symbol then {if T : anytype(M) then T : Mn}. 

Proof For the first part, let Mn t>* ~ ~ , let <1>, ... \If be the free variables of 
M, and let:! be the free variables of T. Then, regardless of the input-output 
behaviour of the sockets <1>, ... \If, the following two paragraphs hold. 

Suppose T : anytype(M). Now, regardless of the input-output behaviour 
of the socket n, the following holds. Let K be any constructions and suppose 

T[:] reduces to a construction T'. This means that T' : anytype(M). Then 

by the definition of anytype(M), T' : ~,which verifies that T : Mn, as 
required. 

Conversely, suppose 71 {T : Mn}, let K be any constructions, and suppose 

T[:] reduces to a construction T'. This means that, regardless of the input

output behaviour of n, T' : ~. By the definition of anytype(M) this shows 
that T' : anytype(M). This establishes that T : anytype(M), and hence 
completes the proof of the first part of the theorem. 

For the second part, let n be a fresh type variable and let Mn t> * ~ ~ . 
By the first part of this theorem and Theorem 2, 

{if T : anytype(M) then 7l{ T : Mn t>* ~} and so T : ~[~] <J* Mn}. 

I 
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THE SECOND-ORDER CODING OF TREES 

This theory consists of the Coding of Trees (Chapter 22), with the metavari
abIes that denote variables restricted to range only over object variables, plus 
the following definitions and theorems. In this chapter, metavariables that 
denote variables are interpreted as follows . 

• Those beginning with lower-case roman letters range over object vari
ables . 

• The letters 'n', 'cr', '<p', 'X', ''If' and '00' range over type variables. 

Any type variable is a type symbol, interpreted as a socket connected to a 
black box. If A is a well-foundedness statement or argument then n .... aIA} 
means 'for any input-output behaviour of the sockets n, ... cr, A'; and if 
<p, ... 'If are all the free type variables of A then IA} means $ .... IjIIA}. 

THEOREM 1. If nand l: are type symbols then so is l:[~J. 

TYPE MAPPINGS AND any type 

DEFINITION. A type mapping is an irreducible term M such that Mn reduces 
to a type symbol for any type variable n. 

A fresh l-ary constructor, any type, is introduced, and a new type symbol 
anytype(M) is defined, for any type mapping M. 

THE WELL-FOUNDEDNESS RELATION 

The well-foundedness relation T : n is amended; it is only defined when 
T is art object term and when black boxes have been chosen for all the free 
type variables of n. The well-foundedness theorems of Chapter 22 remain 
sound, when enclosed in I ... }. 

THEOREM 2. (Well-foundedness type instantiation rule.) If nand l: are type 

symbols and T is an object term then I if n{ T : l:} then T : l:[~]}. 
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THEOREM 3. (any type rule.) Let M be a type mapping and T be an object 
term . 

• If n rt M then {T : anytype(M} iff 1l{ T : Mn II. 
• If n is a type symbol then {if T : anytype(M} then T : Mn}. 
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FROM THE SECOND-ORDER CODING OF TREES 

TO SECOND-ORDER LOGIC 

Second-order logic (2L) is obtained from first-order logic (L) by adding type 
predicates and the logical constants apply, val', predify' and V'. In this 
chapter I shall extend the arguments of Chapter 25 (,From the Coding of 
Trees to Logic') to include these new logical constants and their properties. 
Some notions defined in Chapter 25 need to be modified slightly to take 
account of the difference between object and type variables. 

VARIABLE RESTRICTIONS 

The variable conventions are as in the previous chapter; that is, metavariables 
that denote variables are interpreted as follows. 

• Those beginning with lower-case roman letters range over object vari
ables. 

• The letters 'n', '0', 'cf, 'X', ''II' and 'ill' range over type variables. 

These conventions are also imposed on all the definitions and theorems 
inherited from Chapter 25 (hence all the metavariables denoting variables 
there now range over object variables). 

Recall that a proof function was defined in Chapter 25 as a term I such 
that I [>* pjn(A, II) ~ where II is a type symbol; and a predicate was defined 
as a term P such that P [>* pred(F, II) ~ where Fx is evaluable for any 
variable x and II is a type symbol. I now impose the additional requirement 
that A and F be object terms (that is, all their free variables must be object 
variables). Similarly, in the proof function r T 1, I require that T be an object 
term; and Theorem 1 of Chapter 25 is replaced by the following theorem. 

THEOREM 1. Let II be a type symbol and X be an irreducible object term. 

• If I is a proof function then so are I[~] and I[;} 
• If P is a predicate then so are p[ ~] and p[; J. 
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Proof. For the first part, let! [>* pjn(A, 'I:.) st· Then I[~] [>* pjn(A, 'I:.[~l) st, 
which is a proof function since 'I:.[~] is a type symbol. Also, 1[; [>* 

pjn(A[;] ,'I:.) st ,which is a prooffunction since A[;] is an object term. 

For the second part, let P [> * rred(F, <1» st and let u be a fresh variable; 

thus Fu is evaluable. Now, p[~ 1>* pred(F, <I>[~]) st , and <I>[~] is a type 

symbol; thus p[ ~] is a predicate. Moreover, p[; J 1>* pred(F[;] , <1» st, 
where, for any variable v, F\;] v ~ (FU)[;][~], which is evaluable since Fu 

is. This establishes that p[; is a predicate. I 

THE PROOF RELATION 

In Chapter 25 the proof relation I-- was defined by 

XI--I iff 11>* pjn(A,II) st, AX 1>* true and X: II. 

I now modify this by requiring that X be an object term and replacing X : II 
by IX : IT}. 

THE LOGICAL CONSTANT apply 

It is my intention in Chapter 43 to expand the Logic of Partial Terms to 
include second-order variables a, /3, ... ranging over predicates. A new 
atomic formula x F a will be introduced, meaning 'the construction x 
satisfies the predicate a', and it will be necessary to interpret this atomic 
formula as a proof function. The obvious interpretation of x F a. is val a x, 
but unfortunately this is not a proof function since it is not evaluable. No 
other way of interpreting x F a is apparent, and this technical difficulty 
threatens to prevent us from developing a second-order logic. The problem 
can be overcome by the following awkward but workable procedure, which 
is best explained in two steps. 

(1) Interpret x F a as val(pred(j, n))x rather than val ax, where! and n are 
suitably chosen variables. This is an improvement since we can make 
some progress in reducing val(pred(j,n))x: 

val(pred(j, n))x 1>" pjnlfx, n) I> •••• 

Unfortunately the reduction gets stuck at this point, since fx reduces 
only to itself. 

(2) Replace val(pred(j, n))x by apply(pred(j, n) )x, where apply is a new 
logical constant defined in such a way that apply(pred(j, n))x is evalu
able but apply is otherwise as similar as possible to val. 
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I shall define apply now and carry out the rest of the procedure in Chapter 43. 
In what follows let n be a type variable and j, x be two object variables. 

DEFINITION. Define the construction apply as 

(A(pred(j, n)).(Ax.pjn(s(s(kf)(kx))id, n))). 

THEOREM 2. For any predicate P, apply P x is a proof function. Also, 
apply(pred(j, n))x is a proof function. 

Proof Let P [>* pred(F, m pt . Then 

applyPx [>* apply(pred(F,n))x [>* pjn(s(s(kF)(kx))id,n) pt, 

which is a proof function. Similarly, 

apply(pred(j,n))x [>* pjn(s(s(kf)(kx))id,n) pt , 

which is a proof function. I 

TYPE PREDICATES AND ASSOCIATED LOGICAL CONSTANTS 

Recall that a predicate was defined as a certain kind of term P that, when 
applied to a variable x, produces a proof function val P x whose decidable 
part depends on x. Similarly I shall define a type predicate as a certain kind 
of term P' that, when applied to a type variable n, produces a proof function 
val' P'n whose well-foundedness part depends on n. Type predicates are 
used in conjunction with a quantifier V' that ranges over types. 

In the following definitions and theorems, let n be a type variable and 
a,f, m, x be four object variables. 

DEFINITION. Let pred' be a fresh I-ary constructor. A type predicate is a 
term P' such that P' [> * pred' (A, M) pt , where A is an object term and M is 
a type mapping. 

DEFINITION. Define the construction val' as (Apred' (a, m).(An.pjn(a, mn))). 

THEOREM 3. If P' is a type predicate then val' P' n is a proof function. 

Proof Let P' [>* pred'(A,M) pt ,where M is a type mapping. Then Mn [>* 

~ pt for some type symbol~, and val' P'n [>* pjn(A,Mn) [>* pjn(A,~) pt , 
which is a proof function, as required. I 
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DEFINITION. Define a construction predify' as 

(Af·pred' «'Apjn(a, n).a)if nil), s(k('Apjn(a, n).n»f). 

THEOREM 4. If I is a proof function and n is a type variable then predify' ('An.I) 
is a type predicate and val'(predify'('An.I»n [>*<J I. 

Proof Let I [>* pjn(A, fI) yt . Then 

predify' ('An.I) [> * pred' «'Apjn(a, n).a)«'An.I) nil), s(k('Apjn(a, n).n»('An.I» 

[> * pred' (A, s(k('Apjn(a, n).n»('An.I» yt 

Now s(k('Ap/n(a, n).n»('An.l) is a type mapping since, for any type variable 
cr, 

s(k('Apjn(a,n).n»('An.l)cr [>* ('Apjn(a,n).n)(l[~]) [>* fI[~] 

which is a type symbol. This establishes that predify' ('An .1) is a type predicate. 
Moreover, val'(predify'('An./»n [>* pjn(A,fI) <J* I, as required. I 

DEFINITION. Define the construction V' as ('Apred'(a, m).pjn(a, anytype(m»). 

THEOREM 5. If P' is a type predicate then V' P' is a proof function. 

Proof Let P' [>* pred'(A,M) yt. Then V'P' [>* pjn(A,anytype(M» yt , 
which is a proof function since anytype(M) is a type symbol. I 
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SECOND-ORDER LOGIC 

Second-order logic (2L) consists of first-order logic (L, Chapter 26), with 
the metavariables that denote variables restricted to range only over object 
variables, plus the following definitions and theorems. In this chapter, meta
variables that denote variables are interpreted as follows. 

• Those beginning with lower-case roman letters range over object vari
ables. 

• The letters 'n', ocr', '$', 'X', ''II' and 'w' range over type variables. 

The definitions of proof functions, predicates and r T 1, inherited from Chap
ter 26, are now restricted by requiring that the terms A, F and T, respectively, 
be object terms. 

Theorem 1 of Chapter 26 is replaced by the following theorem. 

THEOREM 1. Let n be a type symbol and X be an irreducible object term. 

• If I is a proof function then so are l[ ~] and 1[;]. 
• If P is a predicate then so are p[~] and p[;]' 

THE PROOF RELATION 

The proof relation f- is defined by 

X f-l iff I 1>* p}n(A,n) pt, AX 1>* true and IX nJ 

where X is an object term and I is a proof function. 

THE LOGICAL CONSTANT apply 

Let n be a type variable andf,x be two object variables. 

DEFINITION. Define the construction apply as 

(A(pred(f,n».(Ax.p}n(s(s(kf)(kx»id,n »). 

THEOREM 2. For any predicate P, apply P x is a proof function. Also, 
apply(pred(f,n »x is a proof function. 

406 
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TYPE PREDICATES AND ASSOCIATED LOGICAL CONSTANTS 

Let n be a type variable and a,j, m, x be four object variables. 

DEFINITION. Let pred' be a fresh I-ary constructor. A type predicate is a 
term p' such that P' 1>* pred' (A, M) ~ , where A is an object term and M is 
a type mapping. 

DEFINITION. Define the construction val' as (Apred' (a, m).(An.pjn(a, mn))). 

THEOREM 3. If p' is a type predicate then val' p'n is a proof function. 

DEFINITION. A construction predify' is defined. 

THEOREM 4. If I is a proof function and n is a type variable then predify' (An.I) 
is a type predicate and val' (predify' (An.l))n 1>* <l I. 

DEFINITION. Define the construction V' as (Apred' (a, m).pjn(a, anytype(m))). 

THEOREM 5. If p' is a type predicate then V' p' is a proof function. 
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FROM SECOND-ORDER LOGIC TO 
SECOND-ORDER CALCULUS OF PROOF FUNCTIONS 

Second-Order Calculus of Proof Functions (2CPF) is obtained from Calculus 
of Proof Functions (CPF) by adding axioms and rules for the logical con
stants introduced in Second-Order Logic. In this chapter I shall extend the 
arguments of Chapter 27 ('From Logic to Calculus of Proof Functions') to 
incorporate these new axioms and rules. 

I 

LEXICAL CONVENTIONS 

In addition to the conventions of Chapter 27, 'p" will be used to denote a type 
predicate. As in the previous chapter, metavariables that denote variables will 
be interpreted as follows. 

• Those beginning with lower-case roman letters range over object vari
ables. 

• The letters 'n', '0", 'cp', 'X', '\If' and '0}' range over type variables. 

LOGICAL SEQUENTS AND H= 
The notion of a logical sequent is carried over unchanged from Chapter 27. 
Note that in the definition of the code of a sequent the variables z are all the 
free variables, of any sort. Recall that the proof relation H= for sequents was 
defined in Chapter 27 as follows. 

DEFINITION. The relation Q H= It, ... h =} J, where It, .,. h =} J is a 
logical sequent, Q is a term with no free variables, and the proof functions 
It, ... h, J have free variables !, means that 

• Q 1>* (D, (A,[,!].T)) Jt , for some D and T, 

• It 1>* pfiz(At. III) Jt , ... h 1>* pfiz(At. Ilk) Jt ,J 1>* pfiz(B, r.) Jt , 
• DT(D, [(qI> ... qk,!) Al ql, ... Akqk -+ B(T[qI> ... qkD]) 1>* true, 

• D : rt and T : map(pi[Il 1> ••• Ilk], r.), 

where ql, ... qk are k variables different from !. 

408 
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This definition now needs to be modified in two ways to take account of 
the presence of type variables: the variables:! are now merely all the free 
object variables; and secondly T : map(pi[TI 1, ... TIk], L) is replaced by 
{T : map(pi[TI 1, ... TIk], L) }. (There would be no point in enclosing D : rt 
in { ... } as rt has no free type variables.) 

The theorems about ~ (Theorems 1-4) continue to hold. 

SECOND-ORDER CALCULUS OF PROOF FUNCTIONS 

The axiom schemata and rules of inference of 2CPF are those of CPF (with 
the metavariables that denote variables restricted to object variables and the 
metavariables that denote terms restricted to object terms) plus the following. 

apply-introduction (apply-in): val P x => apply P x 

apply-elimination (apply-el): apply P x => val P x 

V'-elimination (V'-el): V' pi => val' pi 1t 

V'-introduction rule (V'-in): 
I => val' pi 1t 

I=> V'P' 

I=>J 
Instantiation rules (inst): 

I~] => J~] 

where 1t r:f: I, pi 

I=>J 

where F is an irreducible object term and TI is a type symbol. 

Note that the apply axioms show that apply P x is equivalent to val P x. This 
is in accordance with the purpose of introducing apply in Chapter 39: apply 
was to be a variation of val that allows second-order variables to be introduced 
into LPT formulae in such a way that those formulae can be interpreted as 
proof functions - see Chapter 43. Note also that the V' axiom and rule differ 
from the V theorem and derived rule in CPF in that they do not involve the 
logical constant •. 

INTERPRETATIONS OF THE 2CPFAXIOMS AND RULES 

For each 2CPFaxiom I shall produce a proof of it, and for each 2CPF rule of 
inference I shall show how to obtain a proof of the conclusion sequent from 
proofs of the premise sequents. The arguments for the axiom schemata and 
rules inherited from CPF carry over unchanged from Chapter 27, except that 
all variables referred to there are object variables, all terms are object terms, 
and all well-foundedness arguments must now be enclosed in { ... }. Hence 
it is only necessary to consider the new 2CPFaxiom schemata and rules. 
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THEOREM 1. (2CPF apply-introduction axiom.) 
Pr24( { val P x =? apply P x}) IF val P x =? apply P x, 

where the construction Pr24 is defined below. 

Proof Let P e>* pred(F, ll) , . Then 

val P x e> * pfn(Fx, ll) e> * pfn(A, ll) , 

apply P x e> * pfn(B, ll) , 

for some term A, where B is s(s(kF)(kx»id. 
Now let z be the free object variables of P and x, let q be a fresh object 

variable, and let T be the term (A[q].q). Then B(T[q]) e>* Fxq e>* Aq, so 
let Dl be the code of the protological derivation of the sequent (q,~) Aq ~ 
B(T[q]) by Reduction. Then by the join-lemma 

DT(join(Ddnil, [(q,~) Aq ~ B(T[q])]) e> * true 

which implies that join(Dl)nil e>* D for some construction D. So de
fine a recursive function' Pr24 such that Pr24 ( {val P x =? apply P x} ) e> * 
(D, (A[~].T», thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <1* join(Dl)nil : rt, by the join-lemma, as required. 
( For any construction X : pi[ll], 

X is [Q] for some construction Q : II 
TX e>* Q : ll. 

T : map(pi[ll], 0), as required. } 
I 

THEOREM 2. (2CPF apply-elimination axiom.) 
Pr2s({applyPx =? valPx}) IF applyPx =? valPx, 

where the construction Pr25 is defined below. 

Proof Similar to the previous theorem. I 

THEOREM 3. (2CPF V'-elimination axiom.) 
Pr26 ( {V' p' =? val' p' n}) IF V' p' =? val' p' n, 

where the construction Pr26 is defined below. 

Proof Let p' e> * pred' (A, M) , . Then 

V'P' e>* pfn(A,anytype(M» , 

val' P'n e>* pfn(A,Mn) e>* pfn(A,"2:.) , 

for some type symbol "2:.. Let:! be the free object variables of p', let q 
be a fresh object variable, let T be (A[q].q), and let Dl be the code of the 
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protological derivation of the sequent (q,~) Aq -+ A(T[q]) by Reduction. 
Then by the join-lemma 

DT(join(D})nil, [(q,~) Aq -+ A(T[q]))) 1>* true 

which implies thatjoin(D})nil 1>* D for some construction D. So define a 
recursive function Pr26 such that Pr26 ( {V' P' => val' p' 1t}) 1>* (D, (AL!].T», 
thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D <1* join(Dl)nil : rt, by the join-lemma, as required. 
( For any construction X : pi[anytype(M») , 

X is [Q), for some construction Q : anytype(M) 
Q : M1t 1>* L, by the any type rule (second part) 
TX 1>* Q : L. 

T : map(pi[anytype(M») , L), as required. I 
I 

THEOREM 4. (2CPF V'-introduction rule.) If Q IF I => val' p' 1t 

then Pr27(Q, {I => val' p' 1t}, {I => V' P'}) IF I => V' p', 
where 1t rt I, P', and the construction Pr27 is defined below. 

Proof Let! 1>* p/n(B,<I», and P' 1>* pred'(A,M) , . Then 

V' P' 1>* p/n(A, anytype(M» , 

val' P'1t 1>* p/n(A,M1t) 1>* p/n(A,L) , 

for some type symbol L. Let ~ be the free object variables of I, P', and let 
q, y, z be three fresh object variables. The hypothesis that Q IF I => val' p' 1t 

means that Q 1>* (D, (A[!).T» , where 

• DT(D, [(q,~ Bq -+ A(T[q]))) 1>* true, 

• D : rt and (T : map(pi[<I»,L)). 

This shows that Q also satisfies the decidable part of the requirements for a 
proof of I => V' P', so define Pr27 by 

A 
Pr27(q, y, z) = q. 

To check the well-foundedness conditions, 
D : rt, by hypothesis, as required. 
( n{ T : map(pi[<I», L)), by hypothesis (separating the 1t quantifier from 

the others). 
For any construction X : pi[<I», 

n{ TX : L <1* M1t I, 
TX : anytype(M), by the any type rule. 

T : map(pi[<I»,anytype(M», as required. I 
I 
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THEOREM 5. (First 2CPF instantiation rule.) 

If Q H= I=> J then Pr28(Q, {I => J}, {I~] => J~]}) H= I~] => J~], 
where F is an irreducible object term and the construction Pr28 is defined 
below. 

Proof Let! e>* pfn(A,~) , and J e>* pfn(B,<I» , . Then 

I~] e>* pfn(A~] ,~) , 

J~] e>* pfn(B~] ,<I» , 

Let y be the free object variables of I, J, let ~ be the free object variables 

of I~],J~], and let q be a fresh object variable. The hypothesis that 

Q H= I=> J means that Q e>* (D, (A~].T))' where 

• DT(D, [(q,;~)Aq ---+ B(T[q])]) e>* true, 

• D : rt and (T : map(pi[~], <I>)}. 

Let Dl be the code of the protological derivation 

(q,y)Aq ---+ B(T[q]) (pO) 
- thin 

(q,j, z) Aq ---+ B(T[q]) 
- inst 

(q,~) A~] q ---+ B~] (T~] [q]) 

Then by the join-lemma 

DT(join(Dd[D], [(q,~) A~] q ---+ B~] (T~] [q])]) e> * true 

which implies that join(Dl)D e> * D' for some construction D'. So define 

a recursive function Pr28 such that Pr28 (Q, {I => J}, {I~] => J~]}) e> * 

(D', (A[~].T~])), thus satisfying the decidable part of the proof relation. 

To check the well-foundedness conditions, 
D' <1* join(Dd[D] : rt, by the join-lemma, as required. 
(.T : map(pi[~],<I», by hypothesis 

T~] : map(pi[~], <1», by instantiation (Theorem 6 of the Coding of Trees), as 
required. } 

I 
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THEOREM 6. (Second 2CPF instantiation rule.) 

If Q IF I=> J then Pr29(Q, {I => J}, {I[~] => J[~]}) IF I[~] => J[~]. 
where n is a type symbol and the construction Pr29 is defined below. 

Proof LetI [> * pfn(A, J:.) Jt and J [> * pfn(B, cf» Jt . Then 

I[~] [>* pfn(A,J:.[~]) Jt 

J[~] [>* pfn(B, cf>[~]) Jt 

Leq~ be the free object variables of I,J, and let q, y, z be three fresh object vari
abIes. The hypothesis that Q IF I => J means that Q [>* (D, (A. !":!].T» Jt 
where 

• DT(D, [(q,,!) Aq --t B(T[q])]) [>* true, 

• D : rl and IT: map(pi[J:.], cf>H. 
This shows that Q also satisfies the decidable part of the requirements for a 

proof of l[ ~] => J[ ~], so define Pr29 by 

f::>. 
Pr29(q, y, z) = q. 

To check the well-foundedness conditions, 
D : rl, by hypothesis, as required. 
I 1IIT : map(pi[J:.],cf>)}, by hypothesis (separating the 1t quantifier from 

the others), 

T : map(pi[J:.] , cf»[~l ~ map(Pi[J:.[~]], cf>[~]), by instantiation (Theorem 2 
of the Second-Oriter Coding of Trees), as required. } 

I 

FORMAL INTERPRETATION OF 2CPF IN PROTOLOGIC 

DEFINITION. The coding of CPF derivations as constructions is extended to a 
coding of 2CPF derivations by including the three new axiom schemata and 
the three new rules, numbered 24, ... 29. 
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DEFINITION. The definition of the construction spr is augmented by the 
clauses 

spr(none(24), a) 
1:::.. 

Pr24 (a) = 
spr(none(25), a) 

I:::. 
Pr25 (a) = 

spr(none(26), a) 
I:::. 

Pr26 (a) = 
spr(one(27, (u, b)), a) 

I:::. 
Pr27(spr(u, b), b, a) = 

spr(one(28, (u, b)), a) 
I:::. 

Pr2S(spr(u, b), b, a) = 
spr(one(29, (u, b)), a) 

I:::. 
Pr29(spr(u, b), b, a). = 

THEOREM 7. If D is the code of a 2CPF derivation (with no premises) of a 
logical sequent r => [ then spr(D) ~ r => [. 

Proof By structural induction on the 2CPF derivation, using the extension
ality of ~ (Theorem 1 of Chapter 27). I 

THEOREM 8. (2CPF interpretation theorem.) If D is the code of a 2CPF 
derivation (with no premises) of a logical sequent => [, where [has no free 
variables, then pr(spr(D)) I- [. 

Proof By the previous theorem and the soundness theorem for ~ with 
respect to I- (Theorem 2 of Chapter 27). I 

THEOREM 9. (The glue-lemma for 2CPF.) If D is the code of a 2CPF deriva
tion of a logical sequent S from premise sequents To, . .. Tko and Do, ... Dk 
are the codes of 2CPF derivations (with no premises) of To, . .. Tk respec
tively, then glue(D, [Do, ... DkD 1>* the code of a 2CPF derivation (with no 
premises) of S. 

Proof By a straightforward structural induction on the derivation encoded 
by D. I 
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SECOND-ORDER CALCULUS OF PROOF FUNCTIONS 

The Second-Order Calculus of Proof Functions (2CPF) is obtained from the 
Calculus of Proof Functions (CPF) in Chapter 28 as follows. 

LEXICAL CONVENTIONS 

In addition to the conventions of Chapter 28, 'p" will be used to denote a type 
predicate. As in the previous chapter, metavariables that denote variables will 
be interpreted as follows . 

• Those beginning with lower-case roman letters range over object vari
ables . 

• The letters '1t', 'a', 'cp', 'X', ''II' and 'w' range over type variables. 

LOGICAL SEQUENTS AND H= 
The notion of a logical sequent is carried over unchanged from CPF. The 
proof relation H= is modified slightly to take account of the presence of type 
variables. The theorems about H= (Theorems 1-4) continue to hold. 

SECOND-ORDER CALCULUS OF PROOF FUNCTIONS 

The axiom schemata and rules of inference of 2CPF are those of CPF (with 
the metavariables that denote variables restricted to object variables and the 
metavariables that denote terms restricted to object terms) plus the following. 

apply-introduction (apply-in): val P x => apply P x 

apply-elimination (apply-el): apply P x => val P x 

V' -elimination (V' -el): V' p' => val' p' 1t 

I => val' p' 1t 
V' -introduction rule (V' -in): 

I=> V'P' 

Instantiation rules (inst): 
I=>J 

where 1t fj. I, p' 

I=>J 

where F is an irreducible object term and n is a type symbol. 

415 
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FORMAL INTERPRETATION OF 2CPF IN PROTOLOGIC 

The coding of CPF derivations as constructions and the definition of spr are 
extended to 2CPF derivations. 

THEOREM 7. If D is the code of a 2CPF derivation (with no premises) of a 
logical sequent r ~ [ then spr(D) H= r ~ [. 
THEOREM 8. (2CPF interpretation theorem.) If D is the code of a 2CPF 
derivation (with no premises) of a logical sequent ~ [, where [has no free 
variables, then pr(spr(D» I-- [. 

THEOREM 9. (The glue-lemma for 2CPF.) If D is the code of a 2CPF deriva
tion of a logical sequent S from premise sequents To, . .. Tko and Do, ... Dk 
are the codes of 2CPF derivations (with no premises) of To, ... Tk respec
tively, then glue(D, [Do, ... DkD [>* the code of a 2CPF derivation (with no 
premises) of S. 
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FROM SECOND-ORDER CALCULUS OF PROOF FUNCTIONS 
TO SECOND-ORDER LOGIC OF PARTIAL TERMS 

In this chapter, the syntax of formulae in the Logic of Partial Terms (LPT) is 
extended to include the atomic formula x 1= a and the second-order universal 
quantifier \/2, interpreted as a combination of \/' and \/. Axioms and rules for 
these new constructs are added to LPT, giving Second-Order Logic of Partial 
Terms (2LPT). In this chapter I shall extend the interpretation ofLPT in CPF 
given in Chapter 29 to an interpretation of 2LPT in 2CPF. 

Recall from Chapter 36 that there are several sorts of variables: object 
variables (consisting of first-order variables and function variables), type 
variables, and second-order variables. Metavariables that denote variables 
are interpreted in this chapter as follows. 

• Those beginning with lower-case roman letters range over object vari
ables (unless otherwise specified). 

• The letters In', 'cr', 'ep', 'X', '\JI' and 'm' range over type variables. 

• The letters 'a', '13' and 'y' range over second-order variables. 

Informally, the first-order variables are to be thought of as ranging over the 
universe of 'individuals' of 2LPT. A predicate of individuals is represented 
by a second-order variable, or sometimes by pred(j, n), where f is a function 
variable and n is a type variable. 

2LPT FORMULAE 

The language of 2LPT formulae is obtained by augmenting the language of 
LPT formulae as follows. 

• The characters '1=' and ''r:j2' are added to the alphabet. 

• The tokens 'vbh', '1=' and '\/2' are added to the lexicon. 

• Lexical analysis is modified so that all first-order variables are replaced 
by 'vbl' and all second-order variables are replaced by 'vbl2 ' (no function 
or type variables are allowed). 

• The production rules F -+ vbl 1= vbh I \:;2 vbl2 F are added to the 
grammar. 

(Note that, as a consequence of this grammar, strings matching T are terms 
containing only first-order variables.) 
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EXAMPLE. \Po. 3x(x F 0./\ x = y) :) Y F 13 is a formula, provided x,y are 
first-order variables and 0.,13 are second-order variables. 

The metavariables 'A', 'B' and 'C' denote 2LPT formulae; 'I', 'J' and 'K' 
denote proof functions; 'r' and 'a' denote sequences of proof functions; 'P' 
and 'Q' denote predicates; 'P" denotes a type predicate. 

Metaformulae and their instances are defined by the obvious generalisation 
of the LPT case, except that metaformulae may contain the metanotation 
A {::} B for (A :) B) /\ (B :) A) and ...,A for A :) false. 

FREE VARIABLES IN 2LPT FORMULAE 

The relation v E A, defined for variables v and LPT formulae A, is extended 
to 2LPT formulae by letting v be first~ or second-order and adding the clauses 

• v E x F a. iff v is x or v is a., 
• v E \Po.A iff v isn't a and v EA. 

Thefr~e variables of A are the (finitely many) first- and second-order variables 
v such that v E A, listed in standard order. 

INTERPRETATION OF 2LPT FORMULAE AS PROOF FUNCTIONS 

Establish a one-to-one correspondence between the second-order variables 
and the function variables (since both supplies of variables are given as infinite 
sequences), and likewise establish a one-to-one correspondence between the 
second-order variables and the type variables. When I want to make use of 
these two one-to-one correspondences I shall say something like 'letf and 7t 

be the function and type variables corresponding to a'. 
The interpretation of LPT formulae is extended to 2LPT formulae by 
r x F a 1 is apply(pred(j, 7t) )x, 
rV'2aA 1 is V"(predify'(A7t.V'(predify(Af. rA 1»»; 

where f and 7t are the function and type variables corresponding to a. 

THEOREM 1. Let A be a 2LPT formula. 

• If x is a first-order variable then x E A iff x ErA 1• 

• If a. is a second-order variable, and f and 7t are the function and type 
variables corresponding to a, then a E A iff fErA l iff 7t ErA 1 • 

THEOREM 2. Let A be a 2LPT formula. 

• r A 1 is a proof function. 

• If x is a first-order variable then predify(Ax. r A 1) is a predicate. 

• If 7t is a type variable then predify'(A7t. rA 1) is a type predicate. 
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EXAMPLE. To return to the example of \f-a 3x(x F a 1\ x = y) ::> y F ~, its 
interpretation as a proof function is 

::>('V' (predify' (A1t.'V(predify(Af.3(predify(Ax. 

1\ (apply(pred(j, 1t »x, r x = y' »»»), 
apply(pred(g, (J »y) 

where f and 1t are the function and type variables corresponding to a, and g 
and (J are the function and type variables corresponding to ~. We can check 
that this is a proof function as follows: 

• apply(pred(j, 1t»x and apply(pred(g, (J »y are proof functions, by The
orem 2 of Second-Order Logic; 

• r x = y' is a proof function, by definition (see Logic); 

• l\(apply(pred(j,1t»x, rx = y') is a proof function, by Theorem 7 of 
Logic; 

• 3(predify(Ax. 1\ (apply(pred(j, 1t »x, r x = y' ») is a proof function (call it 
I), by Theorems 6 and 9 of Logic; 

• 'V(predify(Af./» is a proof function, by Theorem 6 of Logic and Theo
rem 4 of Chapter 29; 

• 'V'(predify'(A1t.'V(predify(Af./»» is a proof function, by Theorems 4 and 
5 of Second-Order Logic; 

• ::>('V' (predify' (A1t.'V(predify(Af./»», apply(pred(g, (J »y) is a proof func
tion, by Theorem 5 of Chapter 29. 

SOME 2CPF DERIVATIONS INVOLVING INTERPRETED FORMULAE 

All the CPF derivations given in Chapter 29 also apply in 2CPF, with the meta
variables denoting variables restricted to object variables (or to first-order 
variables if the metavariable occurs in a metaformula), the metavariables de
noting terms restricted to object terms (or to terms with only first-order free 
variables if the metavariable occurs in a metaformula), and the metavariables 
denoting formulae ranging over 2LPT formulae. 

THEOREM 3. 2CPF \f- properties (\f--el & \f--in): 
rB' ~ .rA' 

r\f-aA' ~ .rA' rB' ~ r'PaA' where a ~ B. 

Proof. Let f and 1t be the function and type variables corresponding to 
a. Let P be the predicate predify(Af. r A') and P' be the type predicate 
predify'(A1t.'VP); note that r\f-aA' is'V'P'. The required 2CPF derivations 
are as follows. 
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rB,::}.rA' 
--=----.:.-~- red 
r B' ::} .( val P f) 
------- \I-in 

V' P' ::} val' P'n (\I'-el) VP::} .(val P f) (\I-el) 
------------roo roo 

rB' ::} VP 
--=--~-=--- red 

V'P'::}VP Vp::}.rA' 
--~~------------...:...-- cut 

I 

r B' ::} val' P' n . 
------\l'-m 

rB' ::} V'P' 

THEOREM 4. 2CPF -, "12-, theorem: 

Proof The 2CPF derivation is as follows. 

I 

r A', r A :) false' ::} • rfalse' (:)) 
----------- exch 

ryla. -,A' ::} • r -,A 1 (\l2-el) r -,A " r A' ::} • rfalse' 
.-cut 

rV2a. -,A 1, r A' ::} • rfalse' 
--------~-- :J 

r A' ::} rV2a. -,A :) false' 
------------ rewriting 

rA' ::} r -,"120. -,A 1 

SECOND-ORDER LOGIC OF PARTIAL TERMS 

Second-Order Logic of Partial Terms (2LPT) consists of the axiom schemata 
and rules of inference of LPT (with the formula metavariables ranging over 
2LPT formulae, the term metavariables ranging over terms whose free vari
ables are all first -order, and the variable metavariables ranging over first-order 
variables) plus the following. 

Equality (eq2): x = y :) x Fa.:) Y F a. 
Comprehension (comp): -,"120. -,Vx(x Fa.-<=> A) where a. rI. A 
V2-elimination (V2-el): yla.A:) A 

B:)A 

B:) 'V2a.A 
where a. rI. B 

Note that the Comprehension schema says' -, "120. -, , instead of' 320.' because 
2LPT lacks an 32 quantifier. 

EXAMPLE. '(A 1\ B) :) B' is an axiom schema of LPT and therefore also an 
axiom schema of 2LPT, but its instances are different in the two theories. 
In LPT, (x = Y 1\ w = z) :) x = y is an instance for any variables x,y, w,z, 
whereas in 2LPT it is only an instance (indeed, only a formula) if x,y, W,z 
are first-order variables. On the other hand, 2LPT has instances that LPT 



FROM 2CPF TO 2LPT 421 

lacks, such as (x F a 1\ y F ~) ~ x F a (where x,y are first-order and a, ~ 
are second-order). 

2CPF DERIVATIONS CORRESPONDING TO 
THE 2LPT AXIOMS AND RULES 

I shall show that for each axiom A of 2LPT the logical sequent => fA 1 is 

derivable in 2CPF, and that for each rule of inference A .~. B of 2LPT the 

I f · j: => fA 1 ... => fBl . d . bl . 2CPF Th j: ru e 0 InlerenCe => f cl IS enva e In . e arguments lor 

the axiom schemata and rules ofLPT still work here (with the metavariables 
reinterpreted as above), so it is sufficient to consider the new axiom schemata 
and rules. 

THEOREM 5. 2LPT equality axiom: x = y ~ x F a ~ y F a 

Proof Let! and 1t be the function and type variables corresponding to a, 
and let P be the predicate predlfy(Ax.apply(pred(j,1t»x). Then valPx 1>* 

f X F a l, and val P y 1>* f Y F a l. The required 2CPF derivation is as 
follows. 

fX=yl, valPx=> valPy (eq) 

--------------------roo 
fx=yl, fx F a l => fy F a l 
--------------------:::> 
fx=yl => fxFa~yFal 
------------------- :::> 
=> fx=y~xFa~yFal 

I 

THEOREM 6. 2LPT comprehension axiom: ...,\;Pa ...,Vx(x Fa¢::} A) 

where a ft A. 

Proof Let! and 1t be the function and type variables corresponding to a. 
Let P be the predicate predify(Ax. fA l), and let P 1>* pred(F, n) ;t . 
LetQbethepredicatepredify(Ax.I\(~(fx F a l , fAl),~(fAl, fx F a l»). 
Let B be the formula Vx (x Fa¢::} A). 

By Theorem 1 of Second-Order Logic, Q~'~] is a predicate and f Bl ~.~] 
is a proof function. The 2CPF derivation is as follows. 
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apply P x ~ val P x (apply-el) val P x ~ apply P x (apply-in) 
-------- e-in. cut -------- e-in. cut 
apply P x ~ .(val P x) . val P x ~ .(apply P x) . 

--------- >-m --------- >-m 
~ >(applyPx,.(vaIPx» ~ >(vaIPx,.(applyPx» 
---------red --------- red 
~ ~(applyPx, rAj) ~ ~(rA',applyPx) . 
------------------- A-m. cut 

~ A(~(applyPx, rAl),~(rAl,applyPx» 
---------------red 

~ val (Q~·~])X 
e-in. cut 

~ .(val (Q~'~])x) . 
-------V-m 

~ VQ[F.rr] J.n 
----rewriting 

~ rB,[F.rr] J.n 

I 

THEOREM 7. 2LPT V2-el and V2-in: V2a A ~ A 
B~A 

B~V2aA 
where a ~ B. 

Proof The required 2CPF derivations are as follows. 

r~aA' ~ .rA' C,P-el) 
------:J 
~ rV2aA ~A' 

I 

FORMAL INTERPRETATION OF 2LPT 

DEFINITION. Let atomic2 and a1l2 be two fresh I-ary constructors. The 
coding, ((A)), of LPT formulae, A, as constructions is extended to 2LPT 
formulae by adding the clauses 

(x F a) is atomic2(x, a) 

(V2aA) is a1l2(A[a].(A). 

DEFINITION. The coding of LPT derivations as constructions is extended 
to 2LPT derivations by including the three new axioms and the new rule, 
numbered 20, ... 23. 
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DEFINITION. Define recursive functions T20, ... T23 such that 

• for n = 20,21,22, if A is an instance of 2LPT axiom schema n then 
Tn«((A))) t>* the code of the corresponding 2CPF derivation (given 
above) of ~ r A' from no premises; 

• if ~ is an instance of2LPT rule 23 then T23«((B)) , ((A))) t>* the code of 

the corresponding 2CPF derivation (given above) of ~ r A' from the 
premise ~ rB'. 

DEFINITION. The definition of the construction cpj is extended by the clauses 

l:;. 
cpj(none(20), a) = T20(a) 

l:;. 
cpj(none(21), a) = T21 (a) 

l:;. 
cpj(none(22), a) = T22(a) 

l:;. 
cpj(one(23, (u, b», a) = glue(T23 (b, a), [cpj(u, b)]). 

THEOREM 8. If D is the code of a 2LPT derivation (with no premises) of a 
formula A then cpj(D) t>* the code of a 2CPF derivation (with no premises) 
of the logical sequent ~ r A' . 

Proof. By structural induction on the derivation encoded by D. I 

THEOREM 9. (2LPT interpretation theorem.) If D is the code of a 2LPT 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpj(D») f- r A'. 

Proof. By the previous theorem, the extensionality theorem for f-, and the 
interpretation theorem for 2CPF. I 

THEOREM 10. (The glue-lemma for 2LPT.) If D is the code of a 2LPT 
derivation of a 2LPT formula A from premises Bo, ... Bko and Do, ... Dk are 
the codes of 2LPT derivations (with no premises) of Bo, ... Bk respectively, 
then glue(D, [Do, ... Dk]) t>* the code ofa 2LPT derivation (with no premises) 
ofA. 

Proof. By structural induction on the derivation encoded by D. I 
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SECOND-ORDER LOGIC OF PARTIAL TERMS 

Second-Order Logic of Partial Terms (2LPT) is obtained from Logic of 
Partial Terms (LPT, Chapter 30) as follows. In this chapter, metavariables 
that denote variables are interpreted as follows. 

• Those beginning with lower-case roman letters range over first-order 
variables. 

• The letters 'a', '13' and 'y' range over second-order variables. 

2LPT FORMULAE 

The language of 2LPT formulae is obtained by augmenting the language of 
LPT formulae as follows. 

• The characters' F' and 'V2' are added to the alphabet. 

• The tokens 'vb/z', 'F' and 'V2' are added to the lexicon. 
• Lexical analysis is modified so that all first-order variables are replaced 

by'vbl' and all second-order variables are replaced by' vbl2 ' (no function 
or type variables are allowed). 

• The production rules F -+ vbl F vbl2 I V2 vbl2 F are added to the 
grammar. 

The metavariables 'A', 'B' and 'C' denote 2LPT formulae. 
Metaformulae and their instances are defined by the obvious generalisation 

of the LPT case, except that metaformulae may contain the metanotation 
A ¢:::> B for (A :J B) 1\ (B :J A) and ..,A for A :J false. 

FREE VARIABLES IN 2LPT FORMULAE 

The relation v E A, defined for variables v and LPT formulae A, is extended 
to 2LPT formulae by letting v be first- or second-order and adding the clauses 

• v E x F a iff v is x or v is a, 
• v E VZaA iff v isn't a and v EA. 

The free variables of A are the (finitely many) first-and second-order variables 
v such that v E A, listed in standard order. 

The interpretation of each LPT formula A as a proof function r A 1 is 
extended to 2LPT formulae. 

424 
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SECOND-ORDER LOGIC OF PARTIAL TERMS 

Second-Order Logic of Partial Terms (2LPT) consists of the axiom schemata 
and rules of inference of LPT (with the formula metavariables ranging over 
2LPT formulae, the term metavariables ranging over terms whose free vari
ables are all first-order, and the variable metavariables ranging over first-order 
variables) plus the following. 

Equality (eq2): x = y :J x 1= a :J y 1= a 
Comprehension (comp): ..., .... ;2a ..., Yx (x 1= a ¢:::? A) where a f/:. A 
y2-elimination (y2-el): y2aA:J A 

y2-introduction rule (y2-in): 
B:JA 

where a f/:. B 

FORMAL INTERPRETATION OF 2LPT 

The coding of LPT derivations as constructions and the definition of cpj are 
extended to 2LPT derivations, using two fresh I-ary constructors, atomic2 
and a1l2. 

THEOREM 8. If D is the code of a 2LPT derivation (with no premises) of a 
formula A then cpj(D) 1>* the code of a 2CPF derivation (with no premises) 
of the logical sequent => r A 1 . 

THEOREM 9. (2LPT interpretation theorem.) If D is the code of a 2LPT 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpj(D))) r r A'. 

THEOREM 10. (The glue-lemma for 2LPT.) If D is the code of a 2LPT 
derivation of a 2LPT formula A from premises Bo, ... Bk> and Do, ... Dk are 
the codes of 2LPT derivations (with no premises) of Bo, ... Bk respectively, 
then glue(D, [Do, ... DkD 1>* the code ofa 2LPT derivation (with no premises) 
ofA. 
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FROM SECOND-ORDER LOGIC OF PARTIAL TERMS 
TO SECOND-ORDER HEYTING ARITHMETIC 

Second-Order Heyting Arithmetic (2HA) is obtained from Heyting Arith
metic (HA) by admitting atomic formulae of the form N 1= a. and the 
second-order universal quantifier. In this chapter I shall extend the interpre
tation of HA in LPT given in Chapter 31 to an interpretation of 2HA in 2LPT. 
Metavariables that denote variables will be interpreted as follows . 

• Those beginning with lower-case roman letters range over first-order 
variables . 

• The letters 'a.', '13' and 'y' range over second-order variables. 

The definition of numeric terms (given originally in the Expanded Term 
Language) is now restricted by requiring that all their free variables be first
order. 

SOME 2LPT THEOREMS 

All the LPT derivations in Chapter 31 still apply, with 'A' now interpreted 
as ranging over 2LPT formulae, the metavariables denoting terms restricted 
to terms whose variables are all first-order, and'the metavariables denoting 
variables restricted to first-order variables. In addition we have the following 
2LPT derivations. 

THEOREM 1. First 2LPT replacement theorem (repl): 
M = N ::> (Vz (z = M ::> A) ¢:::} Vz (z = N ::> A» where z ¢ M, N. 

Proof Half of this is derived by 

M = N ::> z = N ::> Z = M (r.eq) 
------------------------~ 

Vz(z = M ::>A)::> (z = M ::>A) (V-eJ) M = N::> (z = M ::>A)::>z = N::>A 
---------------------------------------------------~ 

M = N::> Vz(z = M::> A) ::> z = N::> A . 
------------------------------ V -In, ~ 
M = N::> Vz(z.= M::> A)::> Vz(z = N::> A) 

and the other half follows from this by using M = N ::> N = M and swapping 
M andN. I 

426 
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THEOREM 2. Second 2LPT replacement theorem (rep2): 
Vu(u = T::::> u F a) {:::> Vv(v = T::::> v F a) where u, v ct. T. 

Proof If u is v then the theorem is an instance of A {:::> A, so assume u is 
not v. The 2LPT derivation, in one direction, is 

u = v ::::> v = T ::::> u = T (r.eq) u = v ::::> u Fa::::> v F a (eq2) 
-----------------------------------------~ 

u = v ::::> (u = T::::> u F a) ::::> v = T::::> v F a 
------------------------------- V-e), ~ 
U = v ::::> Vu (u = T ::::> u F a) ::::> v = T ::::> v F a 
-------------------------------s~c 
v = v::::> Vu(u = T::::> u Fa)::::> v = T::::> v F a v = v (red) 

--------------------------------------------~ 
Vu (u = T ::::> u F a) ::::> v = T ::::> v F a 

V-in 
Vu(u = T::::> u Fa)::::> Vv(v = T::::> v F a) 

and the converse is obtained by swapping u and v. I 

THEOREM 3. Third 2LPT replacement theorem (rep3): 
n F a {:::> Vx(x = n::::> x F a) where x is not n. 

Proof The implication in one direction is derived by 

x = n ::::> n = X (syrrun) n = x ::::> n Fa::::> x F a (eq2) 
-------------------------------------~ 

nFa::::>x=n::::>xFa . 
------------------- V-Ill 
n Fa::::> Vx(x = n::::> x F a) 

and the converse is derived by 

I 

x = n ::::> x Fa::::> n F a (eq2) 
-----------------------~ 
x = n ::::> (x = n ::::> x F a) ::::> n F a 

------------------------- V-e), pc 
X = n::::> Vx(x = n::::> x F a)::::> n Fa 
-------------------------s~c 

n = n (red) n = n ::::> Vx (x = n ::::> x F a) ::::> n F a 
---------------------------------------~ 

Vx(x = n::::> x F a)::::> n Fa 

FORMULAE OF SECOND-ORDER HEYTING ARITHMETIC 

The language of 2HA fonnulae is obtained by augmenting the language of 
HA fonnulae as follows. 

• The characters 'F' and 'y2' are added to the alphabet. 

• The tokens 'vb12', 'F' and ''112' are added to the lexicon. 
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• Lexical analysis is modified so that all first-order variables are replaced 
by 'vbl' and all second-order variables are replaced by 'vbl2 ' (no function 
or type variables are allowed). 

• The productions rules F -t N F vbl2 I ';f2 vbh F are added to the 
grammar. 

The strings matching N are still required to be numeric terms (in the new 
sense, that is, with all free variables first-order). 

2HA METAFORMULAE 

The metavariables 'A', 'B', and 'C' will now denote 2HA formulae. As in 
HA, 'F', 'G' and 'H', possibly with subscripts, denote primitive recursive 
functions; all other metavariables starting with a capital letter denote numeric 
terms. 

Metaformulae and their instances are defined by an obvious generalisation 
of the HA case, except that metaformulae may contain the metanotation 
A -¢=} B for (A -:J B) 1\ (B -:J A). 

FREE VARIABLES IN 2HA FORMULAE 

The relation v E A, defined for variables v and HA formulae A, is extended 
to 2HA by allowing v to be first- or second-order and adding the clauses 

• v E N F a. iff v E N or v is a., 

• v E 'v'2o.A iff v isn't a. and v EA. 

Thefree variables of A are the (finitely many) first- or second-order variables 
v such that v E A, listed in standard order. 

INTERPRETATION OF 2HA FORMULAE IN 2LPT 

The mapping from HA formulae to LPT formula is extended to a mapping 
from 2HA formulae to 2LPT formulae. The definition of AN is extended by: 

• (N F o.)N is 'In (n=N -:In F o.)(where n is the first first-order variable, 
in standard order, such that n ~ N); 

• ('120. A)N is '120. (AN). 

The definition of ALPT becomes: ALPT is numg -:J AN, where g are the free 
first-order variables of A. 

Note that AN and ALPT have the same free variables as A. 
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AXIOMS AND RULES OF INFERENCE OF 2HA 

The axiom schemata and rules of inference of 2HA are those of HA (with the 
formula metavariables ranging over 2HA formulae, the term metavariables 
ranging over numeric terms, and the variable metavariables ranging over 
first-order variables) plus the following. 

Equality (eq2): M = N :) (M Fa-¢=> N F a) 
Comprehension (comp): -,V2a -,"fNn(n Fa-¢=> A) where a fj. A 
V2-elimination (V2-el): ~aA :) A 

~-introduction rule (V2-in): 
B:)A 

V2 where a fj. B 
B:) aA 

2LPT DERIVATIONS CORRESPONDING TO 
THE AXIOMS AND RULES OF 2HA 

I shall show that, for each axiom A of 2HA, A LPT is a theorem of 2LPT, and, 
& h If· & A ... B f ALPT . .. BLPT . . 
lor eac ru e 0 mlerence -e- 0 2HA, eLPT IS a denved rule 

of 2LPT. The arguments of Chapter 31 still apply (with the metavariables 
reinterpreted as above), so it is only necessary to consider the new axiom 
schemata and rules. 

THEOREM 4. 2HA equality axiom: M = N:) (M Fa-¢=> N Fa). 
Proof. The axiom translates into 2LPT as 

num~:) M = N:) (Vm(m = M:) m F a) -¢=> Vn(n = N:) n Fa» 

where m fj. M, n fj. N, and ~ are the free first-order variables of M and N. Let 
x be a fresh first-order variable. The 2LPT formula follows by propositional 
calculus from the 2LPT theorems 

I 

Vm(m = M:) m Fa) -¢=> Vx(x = M:) x F a) 

M = N :) (Vx (x = M :) x F a) -¢=> Vx (x = N :) x Fa» 
Vx (x = N :) x F a) -¢=> Vn en = N :) n F a) 

(rep2) 

(rep 1) 

(rep2). 

THEOREM 5. 2HA comprehension axiom: -, V2a -, "fNn (n Fa-¢=> A) 
where a fj. A. 

Proof. Let ~ be the free first-order variables of A, excluding n. Now, 
(n F a)N is Vx ex = n :) x 1= a) for some x fj. n. The 2LPT derivation of the 
interpretation of the axiom is as follows. 
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• \fla • Vn (n Fa-¢:::} AN) (comp) n Fa-¢:::} Vx (x = n ::J x F a) (rep3) 
-----------------------V-rules,pc 

.V2a .Vn(Vx(x = n::J x F a) -¢:::} AN) 
------------------V-rules,pc 
• V2a. Vn (num n ::J (Vx(x = n ::J x F a) -¢:::} AN» 

---------------------pc 
num ~ ::J .V2a. Vn (numn ::J (Vx (x = n ::J x F a) -¢:::} AN» 

where 'V-rules' denotes use of the V-in, V-el, \fl-in and V2-el axioms and 
rules. I 

THEOREM 6. 2HA V2-elimination axiom: V2aA ::J A. 

Proof Let ~ be the free first-order variables of A. The formula (\fla A ::JAP'T 
is derived in 2LPT as follows. 

I 

THEOREM 7. 2HA V2-introduction rule: 
B::JA 

B::J V2aA 
where a rI. B. 

Proof Let z be the free first-order variables of A and B. The 2LPT derivation 
of the 2LPT interpretation of the rule is as follows. 

num Z ::J BN ::J AN 
- VZ-in, pc 

num ~ ::J BN ::J \fla AN 

I 

FORMAL INTERPRETATION OF 2HA 

DEFINITION. The coding, ((A)), of HA formulae, A, as constructions is 
extended to 2HA formula by adding the clauses 

(N F a) is atomic2(N, a) 

(V2aA) is aIl2(A[a).(A}). 

DEFINITION. The coding of HA derivations as constructions is extended 
to 2HA derivations by including the three new axioms and the new rule, 
numbered 28, ... 31. 
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DEFINITION. Define recursive functions T28, ... T31 such that 

• for n = 28,29,30, if A is an instance of 2HA axiom schema n then 
Tn«((A}}) [>* the code of the corresponding 2LPT derivation (given 
above) of ALPT from no premises; 

• if ~ is an instance of 2HA rule 31 then T31«((B}}, ((A}}) [>* the code 

of the corresponding 2LPT derivation (given above) of ALPT from the 
premise BLPT. 

DEFINITION. Extend the definition of the construction lpt by adding the 
clauses 

Ipt(none(28), a) 
6. 

T28(a) = 
Ipt(none(29), a) 

6. 
T29(a) = 

Ipt(none(30), a) 
6. 

T30(a) 

Ipt(one(31, (u, b», a) 
6. 

glue(T31 (b, a), [lpt(u, b)]). = 

THEOREM 8. If D is the code of a 2HA derivation (with no premises) of a 
formula A then Ipt(D) [>* the code of a 2LPT derivation (with no premises) 
of ALPT. 

Proof By structural induction on the derivation encoded by D. I 

THEOREM 9. (2HA interpretation theorem.) If D is the code of a 2HA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpJ(lpt(D»» f- r ALPTl . 

Proof By the previous theorem, the extensionality theorem for f-, and the 
interpretation theorem for 2LPT. I 

THEOREM 10. (The glue-lemma for 2HA.) If D is the code of a 2HA derivation 
of A from premises B 1, ... Bb and Dl, ... Dk are the codes of2HA derivations 
(with no premises) of BIo ... Bk respectively, then glue(D, [Db ... Dk]) [>* 

the code of a 2HA derivation (with no premises) of A. 

Proof By structural induction on the derivation encoded by D. I 
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SECOND-ORDER HEYTING ARITHMETIC 

Second-Order Heyting Arithmetic (2HA) is obtained from Heyting Arith
metic (HA, Chapter 32) as follows. Metavariables that denote variables will 
be interpreted as follows. 

• Those beginning with lower-case roman letters range over first-order 
variables. 

• The letters 'a', '13' and 'y' range over second-order variables. 

The definition of numeric terms (given originally in the Expanded Term 
Language) is now restricted by requiring that all their free variables be first
order. 

FORMULAE OF SECOND-ORDER HEYTING ARITHMETIC 

The language of 2HA formulae is obtained by augmenting the language of 
HA formulae as follows. 

• The characters 'F' and '\/2' are added to the alphabet. 
• The tokens 'vbI2 ', 'p' and '\/2' are added to the lexicon. 
• Lexical analysis is modified so that all first-order variables are replaced 

by 'vbI' and all second-order variables are replaced by 'vbh ' (no function 
or type variables are allowed). 

• The productions rules F -+ N F vbl2 I \/2 vbl2 F are added to the 
grammar. 

The strings matching N are still required to be numeric terms (in the new 
sense, that is, with all free variables first-order). 

2HA METAFORMULAE 

The metavariables 'A', 'B', and 'c' will now denote 2HA formulae. As in 
HA, 'F', 'G' and 'H', possibly with subscripts, denote primitive recursive 
functions; all other metavariables starting with a capital letter denote numeric 
terms. 

Metaformulae and their instances are defined by an obvious generalisation 
of the HA case, except that metaformulae may contain the metanotation 
A ~ B for (A ::J B) /\ (B::J A). 
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SECOND-ORDER HEYTING ARITHMETIC 433 

FREE VARIABLES IN 2HA FORMULAE 

The relation v E A, defined for variables v and HA formulae A, is extended 
to 2HA by allowing v to be first- or second-order and adding the clauses 

• v E N F a. iff v E N or v is a., 
• v E V2o.A iff v isn't a. and v EA. 

Thejree variables of A are the (finitely many) first- or second-order variables 
v such that v E A, listed in standard order. 

The mapping from each HA formulae A to an LPT formula A LPT is 
extended to a mapping from 2HA formulae to 2LPT formulae. 

AXIOMS AND RULES OF INFERENCE OF 2HA 

The axiom schemata and rules of inference of 2HA are those of HA (with the 
formula metavariables ranging over 2HA formulae, the term metavariables 
ranging over numeric terms, and the variable metavariables ranging over 
first-order variables) plus the following. 
Equality (eq2): M = N ::J (M F a. {:::? N F a.) 
Comprehension (comp): -.'120. -.VNn(n Fa. {:::? A) where a. rt. A 
V2-elimination (V2-el): V2o.A ::J A 

B::JA 
where a. rt. B 

FORMAL INTERPRETATION OF 2HA 

The coding of HA derivations as constructions and the definition of Ipt are 
extended to 2HA derivations. 

THEOREM 8. If D is the code of a 2HA derivation (with no premises) of a 
formula A then Ipt(D) e>* the code of a 2LPT derivation (with no premises) 
of ALPT. 

THEOREM 9. (2HA interpretation theorem.) If D is the code of a 2HA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpj(lpt(D)))) I- rALPT1. 

THEOREM 10. (The glue-lemma for 2HA.) If D is the code of a 2HA derivation 
of A from premises B b ... Bko and Dl, ... Dk arethecodesof2HAderivations 
(with no premises) of B1, •.• Bk respectively, then glue(D, [Db ... Dk]) e>* 
the code of a 2HA derivation (with no premises) of A. 



CHAPTER 47 

FROM SECOND-ORDER HEYTING ARITHMETIC 
TO SECOND-ORDER PEANO ARITHMETIC 

Second-Order Peano Arithmetic (2PA) is obtained from Peano Arithmetic 
(PA) by adding second-order quantifiers, ":;2 and :32, and atomic formulae of 
the form N F a. In this chapter I shall extend the interpretation of PA in HA 
given in Chapter 33 to an interpretation of 2PA in 2HA. Metavariables that 
denote variables will be interpreted as in 2HA, namely as follows. 

• Those beginning with lower-case roman letters range over first-order 
variables. 

• The letters 'a', '13' and 'y' range over second-order variables. 

FORMULAE OF 2PA 

The language of 2PA formulae is obtained by augmenting the language of 
PA formulae as follows. 

• The characters 'F', ':32, and ''V2' are added to the alphabet. 

• The tokens 'vbl2 ', 'F', ':32 , and ,-vz, are added to the lexicon. 

• Lexical analysis is modified so that all first-order variables are replaced 
by 'vbl' and all second-order variables are replaced by 'vbl2 ' (no function 
or type variables are allowed). 

• The productions rules F 4 N F vb12 I :32 vb12 F I 'V2 vb12 F are 
added to the grammar. 

The strings matching N must be still be numeric terms. 
The metavariables 'A', 'B', and 'C' will now denote 2PA formulae. As 

in PA, 'F', 'G' and 'H', possibly with subscripts, denote primitive recursive 
functions; all other metavariables starting with a capital letter denote numeric 
terms. 

Metaformulae and their instances are defined by an obvious generalisation 
of the PA case, except that metaformulae may contain the extended substitu
tion notation defined below, the metanotation A {::} B for (A ::J B) /\ (B ::J A), 
and the metanotation a ~ ~ for 'tf'n (n F a {::} n F 13), where n is the first 
first -order variable in standard order. 
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FREE VARIABLES IN 2PA FORMULAE 

The relation v E A in PA is extended to 2PA by allowing v to be first- or 
second-order and adding the clauses 

• v E N F a. iff v E N or v is a., 

• v E 32o.A iff v E y2o.A iff v isn't a. and v EA. 

As before, the free variables of A are the (finitely many) first- and second
order variables v such that v E A, listed in standard order. 

INTERPRETATION OF 2PA FORMULAE IN 2HA 

The interpretation of PA formulae in HA is extended to 2PA by the clauses: 
(N F o.)H is -, -,N F a. 
(32o.A)H is -,y2o. -,(AH) 
(y2o.A)H is "120. (AH). 

THEOREM 1. v E A iff v E AH, for any first- or second-order variable v. 

THEOREM 2. 2PA double negation theorem (-,-,): for any 2PA formula A, 
-,-,AH ::>AH is a theorem of2HA. 

Proof Using structural induction on A, the cases where A is true, false, 
M = N, B 1\ C, B V C, B::> C, 3NnB and \;/NnB are dealt with as in the PA 
double negation theorem. There are three new cases. 

Case 9: A is N F a.. Then -, -,AH ::> AH is -, -, -, -,N Fa.::> -, -,N F a., 
which is a theorem of 2HA by propositional calculus. 

Case 10: A is 320. B. Then -,-,AH ::> AH is -,-, -, "120. -,BH ::> -,"120. -,BH, 
which is a theorem of 2HA by propositional calculus. 

Case 11: A is 'V2o.B. Then -,-,AH ::> AH is -,-,y2o.BH ::> y2o.BH, which 
is derived in 2HA as follows. 

y2o. BH ::> BH (V2-el) 
-------pc 
-, -, y2o. BH ::> -, -,BH 

I 
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AXIOMS AND RULES OF 2PA 

The axiom schemata and rules of inference of Second-Order Peano Arith
metic are those of Pea no Arithmetic (with the formula metavariables ranging 
over 2PA formulae, the term metavariables ranging over numeric terms, and 
the variable metavariables ranging over first-order variables) plus the follow
ing. 

Equality (eq2): M = N :J (M ~ a. {:::> N ~ a.) 
Comprehension (comp): 320. VNn (n ~ a. {:::> A) where a. ~ A 
Quantifier axioms (32-in, V2-el): A:J 32o.A V2o.A :J A 

Quantifier rules (32-el, V2-in): where a. ~ B 

2HA DERIVATIONS CORRESPONDING TO 
THE 2PA AXIOMS AND RULES 

For each axiom A of 2PA I shall show that AH is a theorem of 2HA, and for 

h I f · fi A ... BfA H ... BH . . 
eac ru eo m erence -c- 0 2PA I shall show that H IS a denved 

rule of inference of 2HA. All the HA derivations in Cha~ter 33 still work 
in 2HA (with the metavariables reinterpreted as above), so it is sufficient to 
consider the new axiom schemata and rules. 

THEOREM 3. 2PA equality axiom: M = N :J (M ~ a. {:::> N ~ a.). 

Proof The theorem translates into 2HA as 

which follows by propositional calculus from the 2HA axiom 

M = N :J (M ~ a. {:::> N ~ a.). 

I 

THEOREM 4. 2PA comprehension axiom: 320. VNn (n ~ a. {:::> A) 
where a. ~ A. 

Proof Let Bbe the 2HA comprehension axiom, ,V2o. ,VNn(n ~ a. {:::> AH). 

The 2HA derivation of (320. VNn (n ~ a. {:::> A»H is as follows. 
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-,-,AH ::J AH (-.-.) 
-----pc 

(n 1= ex. {=? AH)::J (-,-,n 1= ex. {=? -,-,AH) (PC) -,-,AH {=? AH ___ ____ ________ pc 

B (comp) 

(n 1= ex. {=? AH) ::J (-,-,n 1= ex. {=? AH) 
----------------VN-in,VN-eJ,pc 
YNn(n 1= ex. {=? AH)::J YNn(-,-,n 1= ex. {=? AH) 
---------------- V2-in,V2-eJ,pc 

B :::> -, y2ex. -, VNn (-, -,n 1= ex. {=? AH) 
--------------------pc 

-, y2ex. -, VNn (-, -,n 1= ex. {=? AH) 

I 

THEOREM 5. 2PA quantifier axioms: A ::J 32ex.A y2ex.A ::J A. 

Proof The 2HA derivations of (A:::> 32ex.A)H and (y2ex.A :::>A)H are as follows. 

I 

THEOREM 6. 2PA quantifier rules: 
A::JB B::JA 

32ex. A ::J B B ::J \:j2ex. A 
where ex. r/:. B. 

Proof The corresponding 2HA derivations are as follows. 

I 

FORMAL INTERPRETATION OF 2PA 

DEFINITION. Let exiStS2 be a fresh 1-ary constructor. The coding, ((A)), of 
PA formulae, A, as constructions is extended to 2PA formula by adding the 
clauses 

(N 1= ex.) is atomic2(N, ex.) 

(32ex.A) is exists2(A[ex.].(A) 

(y2ex. A) is a1l2(A[ex.]. (A). 
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DEFINITION. The coding of PA derivations as constructions is extended 
to 2PA derivations by including the four new axioms and two new rules, 
numbered 29, ... 34. 

DEFINITION. Define recursive functions T29 , ... T34 such that 

• for n = 29,30,31,32, if A is an instance of 2PA axiom schema n then 
Tn( ((A}}) 1>* the code of the corresponding 2HA derivation (given above) 
of A H from no premises; 

• for n = 33,34, if ~ is an instance of2PA rule n then Tn«((B}}, ((A}}) 1>* 

the code of the corresponding 2HA derivation (given above) of AH from 
the premise BH. 

DEFINITION. Extend the definition of the construction ha by adding the 
clauses 

ha(none(29), a) 
6. 

T29(a) = 

ha(none(30), a) 
6. 

T30(a) 

ha(none(31), a) 
6. 

T31 (a) = 

ha(none(32), a) 
6. 

T32(a) 

ha(one(33, (u, b», a) 
6. 

glue(T33(b, a), [ha(u, b)]) 

ha(one(34, (u, b», a) 
6. 

glue(T34(b, a), [ha(u, b)]). 

THEOREM 7. If D is the code of a 2PA derivation (with no premises) of a 
formula A then ha(D) 1>* the code of a 2HA derivation (with no premises) 
ofAH. 

Proof By structural induction on the derivation encoded by D. I 

THEOREM 8. (2PA interpretation theorem.) If D is the code of a 2PA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cp!(lpt(ha(D))))) I- r (AH)LPT1. 

Proof By the previous theorem, the extensionality theorem for 1-, and the 
interpretation theorem for 2HA. I 
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SUBSTITUTION IN 2PA FORMULAE 

The substitutability relation N Y. A is defined as in PA (with' n' ranging 
over first-order variables) plus the following clauses: 

• NYM Fa; 
• Ny :J2yA iff Ny 'V2yA iff N YA; 

• 13 ~ A, if A is atomic (true,false, M = N or N Fa); 

• 13 ~ A 1\ B iff 13 ~ A V B iff 13 ~ A ~ B iff 13 ~ A and 13 ~ B; 

• 13 ~ :JNmA iff 13 ~ VNmA iff 13 ~ A; 

• 13 ~ :J2y A iff 13 ~ 'V2y A iff a rf. :J2y A or (y isn't 13 and 13 ~ A). 

If N y A, then the formula A(~) is defined as in PA with the following 
additional clauses: 

• (M F a)(~) is M(~) F a; 

• (:J2y A)(~) is :J2y (A(~) and ('V2y A)(~) is y2y (A(~). 

If 13 ~ A, then the formula A(~) is defined by: 

• true(~) is true, false(~) isfalse, (M = N)(~) is M = N; 

• (N F a)(~) is N F 13, (N F y)(~) is N F y if y isn't a; 

• (A 1\ B)(~) is A(~) 1\ B(~), (A V B)(~) is A(~) V B(~); 
• (A ~ B)(~) is A(~) ~ B(~); 
• (:JNmA)(~) is :JNm(A(~), (VNmA)(~) is VNm(A(~); 
• (:J2y A)(~) is 32y A and ('</2y A)(~) is y2y A, if a rf. :J2y A; 

• (:J2y A)(~) is 32y (A(~) and ('V2y A)(~) is 'V2y (A(~), if a E 32y A and y 
isn't 13. 

THEOREM 9. (Properties of substitution.) Let v be a first- or second-order 
variable . 

• 04A. 
• If M and N have the same free variables, then M 4 A iff N 4 A. 

• v 4 A and A(~) is A. 

• If n rf. A then N y. A and A(~) is A. 

• If a rf. A then 13 ~ A and A(~) is A. 

• If Ny A then v E A(~) iff (v E Nand n E A) or (v E A and n isn't v). 

• If 13 ~ A then v E A(~) iff (v is 13 and a E A) or (v E A and a isn't v). 
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2PA THEOREMS AND DERIVED RULES 
INVOLVING SUBSTITUTION 

2PA contains classical propositional calculus; I shall mark uses of the latter 
in 2PA derivations with the label 'pc'. 

THEOREM 10. 2PA first-order equality theorem for formulae (eq.form.): 

M = N :> (A(~) {=} A(n), where M 4 A and N 4 A. 

Proof By structural induction on A, as in the PA equality theorem for 
formulae. I 

The substitution theorems and rules derived in PA still apply, with 'A', 'B' 
and 'C' ranging over 2PA formulae and the metavariables denoting variables 
ranging over first-order variables. 

THEOREM 11. 2PA second-order equality theorem for formulae (eq2.form.): 

(ct ~ 13) :> (A(~) {=} A(~), where ct ~ A and 13 ~ A. 

Proof By structural induction on A, as follows. If A is N 1= y then the formula 
is VNn (n 1= ct {=} n 1= 13) :> (N 1= ct {=} N 1= 13), which is an instance of 
the theorem VNnA:> A(~). (Note that N ~ (n 1= ct {=} n 1= 13).) If A is any 
other atomic formula then the whole formula is (ct ~ 13) :> (A {=} A), which 
is a 2PA theorem by propositional calculus. 

The other cases are as in the previous theorem. I 

THEOREM 12. 2PA second-order specification rule (SpeC2): 

where ct rf. J3,A. 

Proof 

I 

ct~J3:>A 
-----32-eJ 

32ct ct ~ 13 (comp) 32ct ct ~ 13 :> A 
---------------------------~ 

A 

THEOREM 13. 2PA second-order substitution rule (sub2): 

IX 
where 13 <-t B. 

Proof Let y be a fresh variable (and so y ~ B). The 2PA derivation is as 
follows. 
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B (a ~ y) :J (B :J Bra) (eq2·fonn.) 
-----------pc 

(a ~ y) :J B(~) 
-----SpeC2 

Bra) (y ~ ~) :J (Bra) :J B(~) (eq2.fonn.) 

(y ~ ~) :J B(~) 
pc 

-----Spec2 

B(~) 
I 
THEOREM 14. 2PA second-order quantifier theorems with substitution: 

A(~) :J 32aA, '<PaA :J A(~), where 13 ~ A. 

Proof The 2PA derivations are as follows. 

I 

A :J 32a A (32-in) 
----SUb2 

A(~) :J 32aA 

'v'2a A :J A ('v2-el) 
-----SUb2 

'v'2aA :J A(~) 

THEOREM 15. 2PA second-order variable change rule (vch2): 
B(~) 

B 
(l 

where ~ (j. B and ~ ~ B. 

Proof If ~ is a then there is nothing to prove, so assume ~ is not a. The 
2PA derivation is as follows. 

I 

(~ ~ a) :J (B(~) :J B) (eq2.fonn.) 
---------------pc 

(~ ~ a):J B 
----Spec2 

B 

THEOREM 16. 2PA second-order quantifier rules with substitution: 

A(~) :J B B :J A(~) 
32aA :J B B :J '.;/2 a A 

Proof If ~ is a then the rules are 32-el and '<P-in, so assume ~ is not a. Then 
~ (j. A, B and the 2PA derivations are as follows. 

A(~) :J 32~A(~) (32-ill) 
-----VCh2 

A :J 32~A(~) 
------ 32-el 

A(~):J B 
----32-el 

32aA :J 32~A(~) 32~A(~):J B 
--------------pc 

32aA:J B 
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'PIlA(~) :::> A(~) (va-e) 
-----VCh2 

'I2IlA(~) :::>A 
-----Y2-in 

B :::>A(~) 
----Y2-in 

B:::> 'Pf3A(~) 'Pf3A(~) :::> 'PexA 
--------------~ 

B:::> 'PexA 
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SECOND-ORDER PEANO ARITHMETIC 

Second-Order Peano Arithmetic (2PA) is obtained from Peano Arithmetic 
(PA, Chapter 34) as follows. Metavariables that denote variables will be 
interpreted as in 2HA, namely as follows. 

• Those beginning with lower-case roman letters range over first-order 
variables. 

• The letters 'a.', 'J3' and 'V' range over second-order variables. 

FORMULAE OF 2PA 

The language of 2PA formulae is obtained by augmenting the language of 
PA formulae as follows. 

• The characters 'F', '32' and '\/2' are added to the alphabet. 

• The tokens 'vbI2', 'F', '32 ' and '\f2' are added to the lexicon. 

• Lexical analysis is modified so that all first-order variables are replaced 
by 'vbI' and all second-order variables are replaced by 'vbl2 ' (no function 
or type variables are allowed). 

• The productions rules F ~ N F vbl2 I 32 vbl2 F I \f2 vbl2 F are 
added to the grammar. 

The strings matching N must be still be numeric terms. 
The metavariables 'A', 'B', and 'c' will now denote 2PA formulae. As 

in PA, 'F', 'G' and 'H', possibly with SUbscripts, denote primitive recursive 
functions; all other metavariables starting with a capital letter denote numeric 
terms. 

Metaformulae and their instances are defined by an obvious generalisation 
of the PA case, except that metaformulae may contain the extended substitu
tion notation defined below, the metanotation A <=? B for (A ::J B) 1\ (B ::J A), 
and the metanotation a. ~ ~ for \:jNn (n F a. <=? n F ~), where n is the first 
first-order variable in standard order. 
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FREE VARIABLES IN 2PA FORMULAE 

The relation v E A in PA is extended to 2PA by allowing v to be first- or 
second-order and adding the clauses 

• v E N F a. iff v E N or v is a., 

• v E 32o.A iff v E V2o.A iff v isn't a. and v EA. 

As before, the free variables of A are the (finitely many) first- and second
order variables v such that v E A, listed in standard order. 

The mapping from each PA formula A to an HA formula AH is extended 
to a mapping from 2PA formulae to 2HA formulae. 

AXIOMS AND RULES OF 2PA 

The axiom schemata and rules of inference of Second-Order Peano Arith
metic are those ofPeano Arithmetic (with the formula metavariables ranging 
over 2PA formulae, the term metavariables ranging over numeric terms, and 
the variable metavariables ranging over first-order variables) plus the follow
ing. 

Equality (eq2): M = N => (M F a. {:::} N F a.) 
Comprehension (comp): 320. VNn (n F a. {:::} A) where a. fj. A 
Quantifier axioms (32-in, V2-el): A=> 32o.A V2o.A => A 

A=>B 

32o.A => B 

FORMAL INTERPRETATION OF 2PA 

where a. fj. B 

The coding of PA derivations as constructions and the construction ha are 
extended to 2PA derivations. 

THEOREM 7. If D is the code of a 2PA derivation (with no premises) of a 
formula A then ha(D} 1>* the code of a 2HA derivation (with no premises) 
ofAH. 

THEOREM 8. (2PA interpretation theorem.) If D is the code of a 2PA 
derivation (with no premises) of a formula A with no free variables, then 
pr(spr(cpf(lpt(ha(D)))}} f- r (AH}LPT1. 
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SUBSTITUTION IN 2PA FORMULAE 

The substitutability relation N ~ A is defined as in PA (with 'n' ranging 
over first-order variables) plus the following clauses: 

• N ~ M 1= a.; 

• N ~ :32y A iff N ~ V2y A iff N ~ A; 

• fl ~ A, if A is atomic (true, false, M = Nor N 1= a.); 

• fl ~ A A B iff fl ~ A V B iff fl ~ A :J B iff ~ ~ A and fl ~ B; 

• ~ ~ :3NmA iff ~ ~ VNmA iff ~ ~A; 
• fl ~ :32y A iff fl ~ VZy A iff a. rf. :32y A or (y isn't ~ and fl ~ A). 

If N ~ A, then the formula A(~) is defined as in PA with the following 
additional clauses: 

• (M 1= o.)(~) is M(~) 1= a.; 

• (:32y A)(~) is :32y (A(~) and (V2y A)(~) is V2y (A(~). 

If ~ ~ A, then the formula A(~) is defined by: 

• true(~) is true, false(~) isfalse, (M = N)(~) is M = N; 

• (N 1= o.)(~) is N 1= ~, (N 1= y)(~) is N 1= y if y isn't a.; 

• (A A B)(~) is A(~) A B(~), (A V B)(~) is A(~) V B(~); 
• (A:J B)(~) is A(~) :J B(~); 
• (:3NmA)(~) is :3Nm(A(~), (VNmA)(~) is VNm(A(~); 

• (:32y A)(~) is :32y A and (V2y A)(~) is V2y A, if a. rf. :32y A; 

• (:32y A)(~) is :32y (A(~) and (VZy A)(~) is V2y (A(~), if a. E :32y A and y 
isn't fl. 

2PA THEOREMS AND DERIVED RULES 
INVOLVING SUBSTITUTION 

THEOREM 10. 2PA first-order equality theorem for formulae (eq.form.): 

M = N :J (A(~) *=> A(~), where M 4 A and N 4 A. 

The substitution theorems and rules derived in PA still apply, with 'A', 'B' 
and 'C' ranging over 2PA formulae and the metavariables denoting variables 
ranging over first-order variables. 
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THEOREM 11. 2PA second-order equality theorem for formulae (eq2.form.): 

(a := f3) :J (A(n {=} A(~), where a ~ A and f3 ~ A. 

THEOREM 14. 2PA second-order quantifier theorems with substitution: 

A(~) :J 32aA, V2aA :J A(~), where f3 ~ A. 

THEOREM 16. 2PA second-order quantifier rules with substitution: 

A(~) :J B B :J A(~) 
where f3 ~ A and f3 tj. 32a A, B. 
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CONCLUSIONS ON ANALYSIS 

The interpretation of Second-Order Peano Arithmetic is now complete. As 
pointed out in Chapter 36, this is also an interpretation of a formal theory 
of analysis containing variables for real numbers, the axioms for a complete 
ordered field, and classical predicate calculus. Real numbers are present in 
this system in all their impredicative glory, due to the Comprehension Axiom 
Schema of 2PA. 

The interpretation accomplishes the same things for analysis as the inter
pretation of Peano Arithmetic did for arithmetic in Part ill (see Chapter 35). 
That is, it shows that analytic formulae and formal derivations may be un
derstood in purely constructive terms, and hence it undermines the classical 
account of analysis. It also accomplishes Hilbert's programme for analysis. 

A project for the future is to extend the interpretation to include sets of 
reals or functions defined on the reals, and also to incorporate some of the 
continuity principles used in traditional intuitionistic analysis. 
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