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Preface

This book is designed to serve as an introductory text to graduate students who aspire
to specialize in the area of high-enthalpy gas dynamics. A comprehensive knowl-
edge of gas dynamics of perfect gases is taken as the datum for building the subject
coverage of this book. The quantum mechanics and thermodynamics background nec-
essary for the treatment of high-enthalpy flows is briefly reviewed wherever necessary.
Some of the practical aspects that are essential in the application area of high-enthalpy
flows, namely, shocks, nozzle flow, and transport properties, where the flow becomes
chemically reactive are dealt with in detail in this book. The chapter on high-enthalpy
facilities introduces the experimental devices meant for generating high-speed and
high-temperature flows.

This book material has been class tested many times. The response of the stu-
dents over the past two decades has refined the manuscript, to take the present form.
The basic aim of this book is to make a complete text covering both the basic and
applied aspects of theory of high-enthalpy flows for students, engineers, and applied
physicists.

The fundamentals of thermodynamics and gas dynamics are covered, as it is treated
at the undergraduate level. Considerable number of solved examples are given in these
chapters to fix the concepts introduced, and a set of exercise problems along with
answers are listed at the end of these chapters to test the understanding of the material
studied.

To make the readers comfortable with the basic features of enthalpy and gas dynam-
ics, vital features highlighting the concepts associated with such high-speed flows are
given in Chapter 1. The material covered in this book is so designed that any user can
follow it comfortably. The topics covered are broad based, starting from the basic prin-
ciples and progressing toward the physics of the flow that governs the flow process.

The book is organized in a logical manner, and the topics are discussed in a sys-
tematic way. First, the basic aspects of the enthalpy, internal energy, heat, and gas
dynamics are reviewed, to establish a firm basis for the subject of gas dynamic the-
ory. Following this, thermodynamics of fluid flow is introduced with the elementary
aspects, gradually proceeding to the vital aspects of thermal and calorical perfectness
and entropy. The chapter on wave propagation discusses the speed of sound, flow
regimes, similarity parameters, and continuum hypothesis.
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The chapter on high-temperature flows presents the importance and nature of high-
enthalpy flows, most probable macrostate, and counting the number of microstates
in a given state, using Bose–Einstein and Fermi–Dirac statistics. Evaluation of
internal energy, partition function, thermodynamic, and equilibrium properties of
high-temperature air are presented systematically. Kinetic theory of gases is pre-
sented systematically. Following these, inviscid high-temperature flows are analyzed.
The flow traversed by normal and oblique shocks are analyzed with appropriate
equations. Frozen and equilibrium aspects of flow through nozzle are presented in
detail. Inviscid high-temperature flows are analyzed, beginning with the equations
governing such flows followed by nonequilibrium flow through shocks, nozzles,
and over blunt-nosed bodies. The final section of this chapter presents the transport
properties of high-temperature gases.

The chapter on hypersonic flows covers the physics of hypersonic flows systemati-
cally. Newtonian flow model and Mach number independence principles are discussed
to the point. Characteristics of hypersonic flow are presented, highlighting the non-
continuum considerations, equilibrium, and nonequilibrium aspects. The transport
properties and experimental measurements in hypersonic regime are also presented.

The chapter on aerothermodynamics discusses the empirical correlations, viscous
interaction with external flows, computational fluid dynamics (CFD) for hypersonic
flows, and their validation. In the final chapter, the working principle of some high-
enthalpy facilities, along with some of the popular working facilities, is presented.
In the last section of this chapter, all the vital aspects of high-enthalpy flows are
recollected.

This book is the outgrowth of lectures presented over a number of years, at both
undergraduate and graduate levels. The material for these lectures were prepared refer-
ring to the following books. Hypersonic and High Temperature Gas Dynamics, by
J. D. Anderson, McGraw-Hill, Inc. 1989; High Temperature Gas Dynamics, by Tarit
Bose, Springer, 2004; Kinetic Theory of Gases, by Kennard E. H, McGraw-Hill, 1938;
Introduction to Physical Gas Dynamics, by Vincenti W. G and Charles H. Kruger,
Krieger Pub Co, 1975; Hypersonic Flow Theory, by Hayes W.D and Probstein R.F,
Academic Press, 1959 and Hypersonic Aerothermodynamics, by John J Bertin, AIAA
Education Series, 1984. My sincere thanks to these authors for their contribution to
this high-tech science.

The student, or reader, is assumed to have a background in the basic courses of fluid
mechanics, thermodynamics, and gas dynamics of perfect gases. Advanced under-
graduate students should be able to handle the subject material comfortably. Sufficient
details have been included so that the text can be used for self-study. Thus, the book
can be useful for scientists and engineers working in the field of aerodynamics in
industries and research laboratories.

My sincere thanks to my undergraduate and graduate students in India and abroad,
who are directly and indirectly responsible for the development of this book.

I would like to express my sincere thanks to Dr. Yasumasa Watanabe, Assis-
tant Professor, Department of Aeronautics and Astronautics, Graduate School of



Preface xvii

Engineering, The University of Tokyo, Japan, for his help in making some solved
examples along with computer codes and checking the manuscript at different stages
of its development.

I thank Dr. Shashank Khurana, Senior Research Scholar, State Key Laboratory
of Turbulence and Complex Systems, Department of Aeronautics and Astronautics,
Peking University, Beijing, China, for critically checking the manuscript of this book.
I thank my doctoral student Aravindh Kumar and masters student Vinay Chauhan for
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1
Basic Facts

1.1 Introduction

High-enthalpy flows are those with their specific heats ratio as a function of tem-
perature. The word enthalpy is based on the Greek word enthalpies, which means
to put heat into. It comes from the classical Greek prefix en-, meaning to put into,
and the verb thalpein, meaning “to heat.” The earliest writings to contain the concept
of enthalpy did not appear until 1875 when Josiah Willard Gibbs introduced “a heat
function for constant pressure” [1]. However, Gibbs did not use the word “enthalpy”
in his writings. Instead, the word “enthalpy” first appeared in the scientific literature
in a 1909 publication by J. P. Dalton. According to that publication, Heike Kamer-
lingh Onnes (1853–1926) actually coined the word. Over the years, many different
symbols were used to denote enthalpy [2]. It was not until 1922 that Alfred W. Porter
proposed the symbol “H” as the accepted standard [3], thus finalizing the terminology
still in use today.

1.1.1 Enthalpy

Enthalpy is a measure of the total energy of a thermodynamic system. It includes the
internal energy, which is the energy required to create a system, and the amount of
energy required to make room for it by displacing its environment and establishing its
volume and pressure.

Enthalpy is a thermodynamic potential. It is a state function and an extensive quan-
tity. The unit of measurement for enthalpy in the International System of Units (SI)
is the joule, but other historical, conventional units are still in use, such as the British
thermal unit and the calorie.

The enthalpy is the preferred expression of system energy changes in many chemi-
cal, biological, and physical measurements, because it simplifies certain descriptions
of energy transfer. This is because a change in enthalpy takes account of energy trans-
ferred to the environment through the expansion of the system under study.

High Enthalpy Gas Dynamics, First Edition. Ethirajan Rathakrishnan.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
www.wiley.com/go/rathakrishnan
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2 High Enthalpy Gas Dynamics

The total enthalpy, H, of a system cannot be measured directly. Thus, change in
enthalpy, ΔH, is a more useful quantity than its absolute value. The change ΔH is
positive in endothermic reactions and negative in heat-releasing exothermic processes.
ΔH of a system is equal to the sum of nonmechanical work done on it and the heat
supplied to it.

The enthalpy, H, of a homogeneous system is defined as

H = U + p𝕍 (1.1)

where U, p, and 𝕍 , respectively, are the internal energy, pressure, and volume of the
system.

The enthalpy is an extensive property. This means that for a homogeneous system,
the enthalpy is proportional to the size of the system. It is convenient to work with the
specific enthalpy h = H∕m, where m is the mass of the system, or the molar enthalpy
Hm = H∕n, where n is the number of moles (h and Hm are intensive properties) while
working with practical problems. For an inhomogeneous system, the enthalpy is the
sum of the enthalpies of the subsystems composing the system.

H =
∑

k

Hk

where the label k refers to the various subsystems. In a system with continuously
varying p, T , and/or composition, the summation becomes an integral:

H = ∫ 𝜌 h d𝕍

where 𝜌 is the density.
The enthalpy H(S, p) of a homogeneous system can be derived as a characteristic

function of the entropy S and the pressure p as follows.
Let us start from the first law of thermodynamics for a closed system

dU = 𝛿Q − 𝛿W

Here, 𝛿Q is a small amount of heat added to the system and 𝛿W is a small amount of
work performed by the system. In a homogeneous system, only reversible processes
can take place, so the second law of thermodynamics gives

𝛿Q = T dS

where T is the absolute temperature of the system and S is the entropy. Furthermore,
if only p𝕍 work is done, 𝛿W = pd𝕍 . For this case, from first law of thermodynamics

dU = TdS − pd𝕍

Adding d(p𝕍 ) to both sides, we have

dU + d(p𝕍 ) = TdS − pd𝕍 + d(p𝕍 )
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or
d(U + p𝕍 ) = TdS + 𝕍dp

This can be expressed as
dH(S, p) = TdS + 𝕍dp

The expression of dH in terms of entropy and pressure may be unfamiliar to many
readers. However, there are expressions in terms of more familiar variables such as
temperature and pressure [4]

dH = cp dT + 𝕍 (1 − 𝛼T) dp

where cp is the heat capacity at constant pressure (that is, specific heat at constant
pressure) and 𝛼 is the coefficient of (cubic) thermal expansion

𝛼 = 1
𝕍

(
𝜕𝕍
𝜕T

)
p

With this expression, one can, in principle, determine the enthalpy if cp and 𝕍 are
known as the functions of p and T .

In a more general form, the first law of thermodynamics describes the internal
energy with additional terms involving the chemical potential and the number of par-
ticles of various types. The differential statement for dH then becomes

dH = TdS + 𝕍dp +
∑

i

𝜇i dNi

where 𝜇i is the chemical potential per particle for an i-type particle and Ni is the
number of such particles. The last term can also be written as 𝜇idni (with dni, the
number of moles of component i added to the system, and 𝜇i, in this case, the molar
chemical potential) or 𝜇idmi (with dmi, the mass of component i added to the System,
and 𝜇i, in this case, the specific chemical potential).

1.2 Enthalpy versus Internal Energy

The internal energy U can be interpreted as the energy required to create a system,
and the p𝕍 term as the energy that would be required to “make room” for the system
if the pressure of the environment remained constant. When a system, for example, n
moles of a gas of volume 𝕍 at pressure p and temperature T , is created or brought to its
present state from absolute zero, energy equal to its internal energy U plus p𝕍 , where
p𝕍 is the work done in pushing against the ambient (atmospheric) pressure, must
be supplied. In basic physics and statistical mechanics, it may be more interesting to
study the internal properties of the system, and therefore, the internal energy is used. In
basic chemistry, scientists are typically interested in experiments conducted at atmo-
spheric pressure, and for reaction energy calculations, they care about the total energy
in such conditions and, therefore, typically need to use enthalpy H. Furthermore, the
enthalpy is the working horse of engineering thermodynamics as we will see later.



4 High Enthalpy Gas Dynamics

1.2.1 Enthalpy and Heat

In order to discuss the relation between the enthalpy increase and heat supply, let us
return to the first law of thermodynamics for a closed system

dU = 𝛿Q − 𝛿W

Let us apply this to the special case that the pressure at the surface is uniform. In this
case, the work term can be split in two contributions, the so-called p𝕍 work, given
by −p d𝕍 (here p is the pressure at the surface and d𝕍 is the increase in the volume
of the system) and other types of work 𝛿W ′ such as by a shaft or by electromagnetic
interaction. So we write

𝛿W = p d𝕍 + 𝛿W ′

In this case, the first law reads

dU = 𝛿Q − pd𝕍 − 𝛿W ′

Using this, Equation (1.1) can be expressed as

dH = 𝛿Q + 𝕍dp − 𝛿W ′

From this relation, we see that the increase in enthalpy of a system is equal to the
added heat

dH = 𝛿Q

provided that the system is under constant pressure (dp = 0) and that the only work
done by the system is expansion work (𝛿W ′ = 0).

For systems at constant pressure, the change in enthalpy is the heat received by the
system. Therefore, the change in enthalpy can be devised or represented without the
need for compressive or expansive mechanics; for a simple system, with a constant
number of particles, the difference in enthalpy is the maximum amount of thermal
energy derivable from a thermodynamic process in which the pressure is held constant.
The term p𝕍 is the work required to displace the surrounding atmosphere in order to
vacate the space to be occupied by the system.

The total enthalpy of a system cannot be measured directly; the enthalpy change of
a system is measured instead. Enthalpy change is defined by the following equation:

ΔH = Hf − Hi

where ΔH is the “enthalpy change” and Hf is the final enthalpy of the system,
expressed in joules. In a chemical reaction, Hf is the enthalpy of the products. Hi is
the initial enthalpy of the system, expressed in joules. In a chemical reaction, Hi is
the enthalpy of the reactants.

For an exothermic reaction (a reaction which liberates heat) at constant pressure,
the system’s change in enthalpy equals the energy released in the reaction, including
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the energy retained in the system and lost through expansion against its surroundings.
In a similar manner, for an endothermic reaction (a reaction which absorbs heat), the
system’s change in enthalpy is equal to the energy absorbed in the reaction, including
the energy lost by the system and gained from compression from its surroundings. A
relatively easy way to determine whether or not a reaction is exothermic or endother-
mic is to determine the sign of ΔH. If ΔH is positive, the reaction is endothermic, that
is, heat is absorbed by the system because the products of the reaction have a greater
enthalpy than that of the reactants. On the other hand, if ΔH is negative, the reaction
is exothermic, that is, the overall decrease in enthalpy is achieved by the generation
of heat.

Although enthalpy is commonly used in engineering and science, it is impossible to
measure directly, as enthalpy has no datum (reference point). Therefore, enthalpy can
only accurately be used in a closed system. However, few real-world applications exist
in closed isolation, and it is for this reason that two or more closed systems cannot be
compared using enthalpy as a basis, although sometimes this is done erroneously.

A thorough understanding of the gas dynamic theory of perfect gases will be of
great value in understanding the physics and the application aspects of high- enthalpy
flows. To enjoy this advantage, let us briefly revise the gas dynamics of perfect gases
in this chapter.

1.3 Gas Dynamics of Perfect Gases

Gas dynamics is the science of fluid flow in which both density and temperature
changes become significant [5]. Taking 5% change in temperature as significant, it can
be stated that, at standard sea level, Mach number 0.5 is the lower limit of gas dynam-
ics. Thus, gas dynamics is the flow field with speeds Mach 0.5 and above. Therefore,
gas dynamic regime consists of both subsonic and supersonic Mach numbers. Further,
when the flow is supersonic, any change of flow property or direction is taking place
only through waves prevailing in the flow field. That is, supersonic flows are essen-
tially wave-dominated flows. The waves prevailing in supersonic flow fields can be
grouped as compression waves, expansion waves, and Mach waves. The compres-
sion and expansion waves cause finite changes in the flow properties, but the changes
caused by a Mach wave is insignificant. A Mach wave is the weakest isentropic wave.
The compression wave, also called as the shock may be regarded as isentropic and
non-isentropic, depending on its strength. Similarly, even though individual expan-
sion rays are isentropic, their combination may become non-isentropic. For example,
in a centered expansion fan, at the vertex of the fan, the expansion caused becomes
non-isentropic.

The essence of gas dynamics is that when the flow speed is supersonic, the entire
flow field is dominated by Mach waves, expansion waves, and compression or shock
waves. It is only through these waves that the change of flow properties from one state
to another takes place.
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Example 1.1 What will be the speed of sound in air at standard sea level state?

Solution

The temperature of air at sea level state is 15∘C.
The speed of sound in a perfect gas, in terms of temperature, is

a =
√
𝛾RT

where 𝛾 is the ratio of specific heats, R is the gas constant, and T is the temperature.
For air, 𝛾 = 1.4 and R = 287 m2/(s2 K).
Therefore, at T = 15 + 273.15 = 288.15 K, the speed of sound becomes

a =
√

1.4 × 287 × 288.15

= 340.26 m/s
◾

1.4 Compressible Flow

Compressible flow is the science of fluid flow in which the density change asso-
ciated with pressure change is appreciable. Fluid mechanics is the science of fluid
flow in which the temperature change associated with the flow is insignificant. Fluid
mechanics is essentially the science of isenthalpic flows, and thus the main equations
governing a fluid dynamic stream are only the continuity and momentum equations
and the second law of thermodynamics. The energy equation is passive as far as fluid
dynamic streams are concerned. At standard sea level conditions, considering less than
5% change in temperature as insignificant, flow with Mach number less than 0.5 can
be termed as a fluid mechanics stream. A fluid mechanics stream may be compressible
or incompressible. For an incompressible flow, both temperature and density changes
are insignificant. For a compressible fluid dynamic stream, the temperature change
may be insignificant but density change is finite.

But in many engineering applications, such as design of airplane, missiles, and launch
vehicles, the flow Mach numbers associated are more than 0.5. Hence, both temperature
and density changes associated with the flow become significant. Study of such flows
where both density and temperature changes associated with pressure change become
appreciable is called gas dynamics. In other words, gas dynamics is the science of fluid
flow in which both density and temperature changes become significant. A gas dynamic
flow is that in which the entire flow field is dominated by Mach waves, expansion waves,
and shock waves when the flow speed is supersonic. Only through these waves, the
change of flow properties from one state to another takes place. In the theory of gas
dynamics, change of state or flow properties is achieved by the following three means.

1. With area change, treating the fluid to be inviscid and passage to be frictionless.
2. With friction, treating the heat transfer between the surrounding and system to be

negligible.
3. With heat transfer, assuming the fluid to be inviscid.
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These three types of flows are called the isentropic flow, in which the area change
is the primary parameter causing the change of state; the frictional or Fanno flow,
in which the friction is the primary parameter causing the change of state; and the
Rayleigh flow, in which the change in the stagnation (total) temperature (that is, heat
addition or heat removal) is the primary parameter causing the change of state.

All problems in gas dynamics can be classified under the three flow processes
described above, of course with the assumptions mentioned. Although it is impossible
to have a flow process that is purely isentropic or Fanno type or Rayleigh type, in prac-
tice, it is justified in assuming so, because the results obtained with these treatments
prove to be accurate enough for most practical problems in gas dynamics.

1.5 Compressibility

Fluids such as water are incompressible at normal conditions. But at very high
pressures (for example, 1000 atm), they are compressible. The change in volume is
the characteristic feature of a compressible medium under static condition. Under
dynamic conditions, that is, when the medium is moving, the characteristic feature
for incompressible and compressible flow situations are the volume flow rate,
Q̇ = AV = constant at any cross section of a streamtube for incompressible flow,
and the mass flow rate, ṁ = 𝜌AV = constant at any cross section of a streamtube for
compressible flow. In these relations, A is the cross-sectional area of the streamtube,
V and 𝜌 are, respectively, the velocity and the density of the flow at that Cross section,
as illustrated in Figure 1.1.

In general, the flow of an incompressible medium is called incompressible flow and
that of a compressible medium is called compressible flow. Although this statement is
true for incompressible media at normal conditions of pressure and temperature, for
compressible medium such as gases, it has to be modified. As long as a gas flows at
a sufficiently low speed from one cross section to another of a passage, the change in
volume (or density) can be neglected and, therefore, the flow can be treated as incom-
pressible. Although the fluid (gas) is compressible, the compressibility effects may be
neglected when the flow is taking place at low speeds. In other words, although there
is some density change associated with every physical flow, it is often possible (for
low-speed flows) to neglect it and idealize the flow as incompressible. This approxi-
mation is applicable to many practical flow situations, such as low-speed flow around
an airplane during take-off and landing and flow through a vacuum cleaner.

Streamtube

V2

ρ2

2

1

V1

A2

ρ1

A1

Figure 1.1 Elemental streamtube.
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From the above discussion, it is clear that compressibility is the phenomenon by
virtue of which the flow changes its density with change in speed. Now, we may ques-
tion what are the precise conditions under which density changes must be considered?
We will try to answer this question now.

A quantitative measure of compressibility is the volume modulus of elasticity, E,
defined as

Δp = −E
Δ𝕍
𝕍i

(1.2)

where Δp is the change in static pressure, Δ𝕍 is the change in volume, and 𝕍i is the
initial volume. For ideal gases, the equation of state is

p𝕍 = RT

For isothermal flows, this reduces to

p𝕍 = pi𝕍i = constant

where pi is the initial pressure.
The above equation may be written as

(pi + Δp)(𝕍i + Δ𝕍 ) = pi𝕍i

Expanding this equation and neglecting the second-order terms, we get

Δp 𝕍i + Δ𝕍 pi = 0

Therefore,
Δp = −pi

Δ𝕍
𝕍i

(1.3)

For gases, from Equations (1.2) and (1.3), we get

E = pi (1.4)

Hence, by Equation (1.3), the compressibility may be defined as the volume modulus
of the pressure.

1.5.1 Limiting Conditions for Compressibility

By mass conservation, we have the mass flow rate per unit area as ṁ = 𝜌V = constant,
where ṁ is the mass flow rate per unit area, V is the flow velocity, and 𝜌 is the corre-
sponding density. This can also be written as

(Vi + ΔV)(𝜌i + Δ𝜌) = 𝜌i Vi

Considering only the first-order terms, this simplifies to

Δ𝜌
𝜌i

= − ΔV
Vi
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Substituting this into Equation (1.2) and noting that V = 𝕍 (that is, the flow velocity
is equal to the volume) for unit area per unit time in the present case, we get

Δp = E
Δ𝜌
𝜌i

(1.5)

From Equation (1.5), it is seen that the compressibility may also be defined as the
density modulus of the pressure.

For incompressible flows, by Bernoulli’s equation, we have

p + 1
2
𝜌 V2 = constant = pstag

where the subscript “stag” refers to stagnation condition. The above equation may
also be written as

pstag − p = Δp = 1
2
𝜌V2

that is, the change in pressure is equal to 1
2
𝜌V2. Using Equation (1.5) in the above

relation, we obtain
Δp

E
= Δ𝜌

𝜌i
=

𝜌iV
2
i

2E
=

qi

E
(1.6)

where qi =
1
2
𝜌iV

2
i is the dynamic pressure. Equation (1.6) relates the density change

with flow speed.
The compressibility effects can be neglected if the density changes are very small,

that is, if
Δ𝜌
𝜌i

≪ 1

From Equation (1.6), it is seen that for neglecting compressibility,
q

E
≪ 1

For gases, the speed of sound “a” may be expressed in terms of pressure and density
changes as [see Equation (1.11)]

a2 =
Δp

Δ𝜌
Using Equation (1.5) in the above relation, we get

a2 = E
𝜌i

With this, Equation (1.6) reduces to

Δ𝜌
𝜌i

=
qi

E

= 1
2

V2

E∕𝜌i

=
𝜌i

2

V2
i

E
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But E∕𝜌i = a2; therefore,
Δ𝜌
𝜌i

= 1
2

(V
a

)2

(1.7)

In the above equation, the subscript i for the velocity and the speed of sound are
dropped to generalize the relation. The ratio V∕a is called the Mach number M. There-
fore, the condition of incompressibility for gases becomes

M2

2
≪ 1

Thus, the criterion determining the effect of compressibility for gases is the magnitude
of M.

It is widely accepted that compressibility can be neglected when

Δ𝜌
𝜌i

≤ 0.05

That is, when M ≤ 0.3. In other words, the flow may be treated as incompressible
when V ≤ 100 m/s, that is, when V ≤ 360 kmph under standard sea level conditions.
The above values of M and V are widely accepted values, and they may be refixed
at different levels, depending on the flow situation and the degree of accuracy
desired.

Example 1.2 Air at 1.2 atm and 270 K is accelerated isothermally to a state at which
the pressure is 0.8 atm. What is the speed of sound associated with this process?

Solution

Let subscripts 1 and 2 refer to the initial and final states, respectively. Given,
p1 = 1.2 atm, p2 = 0.8 atm, and T1 = T2 = 270 K. Therefore, the corresponding
densities are

𝜌1 =
p1

RT1

= 1.2 × 101,325
287 × 270

= 1.569 kg/m3

𝜌2 =
p2

RT2

= 0.8 × 101,325
287 × 270

= 1.046 kg/m3
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Thus we have

Δ𝜌= 𝜌2 − 𝜌1

= 1.046 − 1.569

=−0.523 kg/m3

Δp = p2 − p1

= 0.8 − 1.2

=−0.4 atm

=−0.4 × 101,325

=−40,530 Pa

The speed of sound is

a =

√
Δp

Δ𝜌

=
√

−40,530
−0.523

= 278.38 m/s
◾

1.6 Supersonic Flow

The Mach number M is defined as the ratio of the local flow speed V to the local speed
of sound a

M = V
a

(1.8)

Thus M is a dimensionless quantity. In general, both V and a are functions of position
and time. Therefore, Mach number is not just the flow speed made nondimensional by
dividing by a constant. That is, we cannot write M ∝ V . However, it is almost always
true that M increases monotonically with V .

A flow with Mach number greater than unity is termed supersonic flow. In a
supersonic flow, V > a and the flow upstream of a given point remains unaffected by
changes in conditions at that point.

1.7 Speed of Sound

Sound waves are infinitely small pressure disturbances. The speed with which sound
propagates in a medium is called speed of sound and is denoted by a. If an infinitesimal
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pi
p1

Pipe of cross-sectional
area A

p1

Piston Pressure
wave

ρ1

b

ρi

pi

a
Δp

V

Figure 1.2 Propagation of pressure disturbance.

disturbance is created by the piston, as shown in Figure 1.2, the wave propagates
through the gas at the velocity of sound relative to the gas into which the disturbance is
moving. Let the stationary gas at pressure pi and density 𝜌i in the pipe be set in motion
by moving the piston. The infinitesimal pressure wave created by piston movement
travels with speed a, leaving the medium behind it at pressure p1 and density 𝜌1 to
move with velocity V .

As a result of compression created by the piston, the pressure and the density next
to the piston are infinitesimally greater than those of the gas at rest ahead of the wave.
Therefore,

Δp = p1 − pi

Δ𝜌= 𝜌1 − 𝜌i

where the pressure change Δp and the density change Δ𝜌 are small.
Choose a control volume of length b, as shown in Figure 1.2. Compression of vol-

ume Ab causes the density to rise from 𝜌i to 𝜌1 in time t = b∕a. The mass flow into
volume Ab is

ṁ = 𝜌1AV (1.9)

For mass conservation, ṁ must also be equal to the mass flow rate A b(𝜌1 − 𝜌i)∕t
through the control volume. Thus,

Ab(𝜌1 − 𝜌i)
t

= 𝜌1AV

or
a(𝜌1 − 𝜌i) = 𝜌1V (1.10)

because b∕t = a.
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The compression wave caused by the piston motion travels and accelerates the gas
from zero velocity to V . The acceleration is given by

V
t
= V

a
b

The mass in the control volume Ab is

m = Ab𝜌

where
𝜌 =

𝜌i + 𝜌1

2

The force acting on the control volume is

F = A(p1 − pi)

Therefore, by Newton’s law,

A(p1 − pi) = m
(

V
a
b

)
A(p1 − pi) = (Ab𝜌)

(
V

a
b

)
or

𝜌Va = p1 − pi (1.11)

Because the disturbance is very weak, 𝜌1 on the right-hand side of Equation (1.10)
may be replaced by 𝜌 to result in

a(𝜌1 − 𝜌i) = 𝜌V

Using this relation, Equation (1.11) can be written as

a2 =
p1 − pi

𝜌1 − 𝜌i

=
Δp

Δ𝜌

In the limiting case of Δp and Δ𝜌 approaching zero, the above equation leads to

a2 =
dp

d𝜌
(1.12)

This is Laplace equation and is valid for any fluid.
The sound wave is a weak compression wave, across which only infinitesimal

change in fluid properties occur. Further, the wave itself is extremely thin, and changes
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in properties occur very rapidly. The rapidity of the process rules out the possibility
of any heat transfer between the system of fluid particles and its surrounding.

For very strong pressure waves, the traveling speed of disturbance may be greater
than that of sound. The pressure can be expressed as

p = p(𝜌) (1.13)

For isentropic process of a gas,
p

𝜌𝛾
= constant

where the isentropic index 𝛾 is the ratio of specific heats and is a constant for a perfect
gas. Using the above relation in Equation (1.12), we get

a2 =
𝛾p

𝜌
(1.14)

For a perfect gas, by the state equation,

p = 𝜌RT (1.15)

where R is the gas constant and T the static temperature of the gas in absolute units.
Equations (1.14) and (1.15) together lead to the following expression for the speed

of sound.

a =
√
𝛾RT (1.16)

Perfect gas assumption is valid as long as the speed of gas stream is not too high.
However, at hypersonic speeds, the assumption of perfect gas is not valid and we
must consider Equation (1.12) to calculate the speed of sound.

Example 1.3 Calculate the speed of sound in oxygen gas at sea level state.

Solution

The temperature at sea level is 15∘C, thus

T = 15 + 273.15

= 288.15 K

For oxygen gas, molecular weight is M = 32. Therefore, the gas constant is

R =
Ru

M
where Ru = 8314 J/(kg K) is the universal gas constant. Thus

R = 8314
32

= 259.81 m2/(s2 K)
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At 288.15 K, oxygen is a perfect gas with 𝛾 = 1.4, Therefore, by Equation (1.16), the
speed of sound is

a =
√
𝛾RT

=
√

1.4 × 259.81 × 288.15

= 323.74 m∕s
◾

1.8 Temperature Rise

For a perfect gas, the thermal state equation is

p = 𝜌RT

The gas constant R can be expressed as

R = cp − cv

where cp and cv are specific heats at constant pressure and constant volume, respec-
tively. Also, 𝛾 = cp∕cv; therefore,

R = 𝛾 − 1
𝛾

cp (1.17)

For an isentropic change of state, an equation not involving T can be written as

p

𝜌𝛾
= constant

Now, between state 1 and any other state, the relation between the pressure and den-
sities can be written as (

p

p1

)
=
(

𝜌

𝜌1

)𝛾

(1.18)

Combining Equations (1.18) and (1.15), we get

T
T1

=
(

𝜌

𝜌1

)𝛾−1

=
(

p

p1

)(𝛾−1)∕𝛾

(1.19)

The above relations are very useful for gas dynamic studies. The temperature, density,
and pressure ratios in Equation (1.19) can be expressed in terms of the flow Mach
number.

Let us examine the flow around a symmetrical body, as shown in Figure 1.3.
In a compressible medium, there will be change in density and temperature at the

stagnation point 0. The temperature rise at the stagnation point can be obtained from
the energy equation.
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∞

Stagnation point

0

Figure 1.3 Flow around a symmetrical body.

The energy equation for an isentropic flow is

h + V2

2
= constant (1.20)

where h is the enthalpy and V is the flow velocity.
Equating the energy at far upstream, ∞, and the stagnation point 0, we get

h∞ +
V2
∞

2
= h0 +

V2
0

2

But V0 = 0, thus

h0 − h =
V2
∞

2

For a perfect gas, h = cpT; therefore, from the above relation, we obtain

cp(T0 − T∞) =
V2
∞

2

that is,

ΔT = T0 − T∞ =
V2
∞

2cp
(1.21)

Combining Equations (1.16) and (1.17), we get

cp = 1
𝛾 − 1

a2
∞

T∞

Hence,

ΔT = 𝛾 − 1
2

T∞M2
∞ (1.22)

that is,

T0 − T∞ = 𝛾 − 1
2

T∞M2
∞

This simplifies to

T0 = T∞

(
1 + 𝛾 − 1

2
M2

∞

)
(1.23)
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For air, 𝛾 = 1.4, and hence,

T0 = T∞(1 + 0.2M2
∞) (1.24)

where T0 is the temperature at the stagnation point on the body. It is also referred to as
total temperature, for example, at the stagnation point 0 on the body shown in Figure
1.3, the flow will attain the stagnation temperature.

1.9 Mach Angle

The presence of a small disturbance is felt throughout the field by means of distur-
bance waves traveling at the local velocity of sound relative to the medium. Let us
examine the propagation of pressure disturbance created by a moving object shown
in Figure 1.4. The propagation of disturbance waves created by an object moving
with velocity V = 0, V = a∕2, V = a, and V > a is shown in Figure 1.4(a), (b), (c),
and (d), respectively. In a subsonic flow, the disturbance waves reach a stationary
observer before the source of disturbance could reach him, as shown in Figure 1.4(a)
and (b). But in supersonic flows, it takes considerable amount of time for an observer
to perceive the pressure disturbance, after the source has passed him. This is one of
the fundamental differences between subsonic and supersonic flows. Therefore, in a
subsonic flow, the streamlines sense the presence of any obstacle in the flow field and
adjust themselves well ahead of the obstacles and flow around it smoothly.

But in a supersonic flow, the streamlines feel the obstacle only when they hit it. The
obstacle acts as a source, and the streamlines deviate at the Mach cone as shown in
Figure 1.4(d). That is in a supersonic flow the disturbance due to an obstacle is sudden
and the flow behind the obstacle has to change abruptly.

Mach cone

Zone of silence

Zone of action

Vt

at

(c) (d)

(b)(a)

μ

Figure 1.4 Propagation of disturbance waves. (a) V = 0, (b) V = a∕2, (c) V = a, and
(d) V > a.
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Figure 1.5 Flow around a wedge. (a) Subsonic flow and (b) supersonic flow.

Flow around a wedge, shown in Figure 1.5(a) and (b), illustrates the smooth and
abrupt change in flow direction for subsonic and supersonic flow, respectively.

For M∞ < 1, the flow direction changes smoothly and the pressure decreases with
acceleration. For M∞ > 1, there is a sudden change in flow direction at the body and
the pressure increases downstream of the shock.

In Figure 1.4(d), it is shown that for supersonic motion of an object, there is a
well-defined conical zone in the flow field with the object located at the nose of the
cone, and the disturbance created by the moving object is confined only to the field
included inside the cone. The flow field zone outside the cone does not even feel the
disturbance. For this reason, von Karman termed the region inside the cone as the zone
of action and the region outside the cone as the zone of silence. The lines at which the
pressure disturbance is concentrated and that generate the cone are called Mach waves
or Mach lines. The angle between the Mach line and the direction of motion of the
body is called the Mach angle 𝜇. From Figure 1.4(d), we have

sin𝜇 = at
Vt

= a
V

that is,

sin𝜇 = 1
M

(1.25)

From propagation of disturbance waves shown in Figure 1.4, we can infer the fol-
lowing features of the flow regimes.

• When the medium is incompressible (M = 0, Figure 1.4(a)) or when the speed of
the moving disturbance is negligibly small compared to the local sound speed, the
pressure pulse created by the disturbance spreads uniformly in all directions.

• When the disturbance source moves with a subsonic speed (M < 1, Figure 1.4(b)),
the pressure disturbance is felt in all directions and at all points in space (neglecting
viscous dissipation), but the pressure pattern is no longer symmetrical.

• For sonic velocity (M = 1, Figure 1.4(c)) the pressure pulse is at the boundary
between subsonic and supersonic flow and the wavefront is a plane.

• For supersonic speeds (M > 1, Figure 1.4(d)), the disturbance wave propagation
phenomenon is totally different from that at subsonic speeds. All the pressure
disturbances are included in a cone that has the disturbance source at its apex, and
the effect of the disturbance is not felt upstream of the disturbance source.
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Figure 1.6 Mach cone.
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Figure 1.7 Shock wave.

1.9.1 Small Disturbance

When the apex angle of wedge 𝛿 is vanishingly small, the disturbances will be small,
and we can consider these disturbance waves to be identical to sound pulses. In such a
case, the deviation of streamlines will be small and there will be infinitesimally small
increase of pressure across the Mach cone as shown in Figure 1.6.

1.9.2 Finite Disturbance

When the wedge angle 𝛿 is finite, the disturbances introduced are finite and then the
wave is not called Mach wave but a shock or shock wave (see Figure 1.7). The angle
of shock 𝛽 is always smaller than the Mach angle. The deviation of the streamlines is
finite and the pressure increase across a shock wave is finite.

1.10 Summary

High enthalpy flows are those with their specific heats ratio as a function of tempera-
ture. The word enthalpy is based on the Greek word enthalpein, which means to put
heat into.

The enthalpy, H, of a homogeneous system is defined as

H = U + p𝕍
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where U, p, and 𝕍 , respectively, are the internal energy, pressure, and volume of the
system. The enthalpy is an extensive property.

For an inhomogeneous system, the enthalpy is the sum of the enthalpies of the
subsystems composing the system.

H =
∑

k

Hk

where the label k refers to the various subsystems. In a system with continuously
varying p, T , and/or composition, the summation becomes an integral:

H = ∫ 𝜌 h d𝕍

where 𝜌 is the density.
The enthalpy can be expressed as

dH(S, p) = TdS + 𝕍dp

This expression of dH in terms of entropy and pressure may be unfamiliar to many
readers. However, there are expressions in terms of more familiar variables such as
temperature and pressure [4]

dH = cp dT + 𝕍 (1 − 𝛼T) dp

where cp is the heat capacity at constant pressure (that is, specific heat at constant
pressure) and 𝛼 is the coefficient of (cubic) thermal expansion

𝛼 = 1
𝕍

(
𝜕𝕍
𝜕T

)
p

With this expression, one can, in principle, determine the enthalpy if cp and 𝕍 are
known as functions of p and T .

The internal energy U can be interpreted as the energy required to create a system,
and the p𝕍 term as the energy that would be required to “make room” for the system
if the pressure of the environment remained constant. Enthalpy is the working horse
of engineering thermodynamics.

The first law of thermodynamics for a closed system

dU = 𝛿Q − 𝛿W

But
𝛿W = p d𝕍 + 𝛿W ′

Thus the first law becomes

dU = 𝛿Q − p d𝕍 − 𝛿W ′



Basic Facts 21

Using this, Equation (1.1) can be expressed as

dH = 𝛿Q + 𝕍dp − 𝛿W ′

From this relation, we see that the increase in enthalpy of a system is equal to the
added heat

dH = 𝛿Q

provided that the system is under constant pressure (dp = 0) and that the only work
done by the system is expansion work (𝛿W ′ = 0).

For systems at constant pressure, the change in enthalpy is the heat received by the
system.

The total enthalpy of a system cannot be measured directly; the enthalpy change of
a system is measured instead. Enthalpy change is defined by the following equation:

ΔH = Hf − Hi

where ΔH is the “enthalpy change” and Hf is the final enthalpy of the system,
expressed in joules. In a chemical reaction, Hf is the enthalpy of the products. Hi is
the initial enthalpy of the system, expressed in joules. In a chemical reaction, Hi is
the enthalpy of the reactants.

Although enthalpy is commonly used in engineering and science, it is impossible
to measure directly, as enthalpy has no datum (reference point).

Gas dynamics is the science of fluid flow in which both density and temperature
changes become significant. Gas dynamics is the flow field with speeds Mach 0.5 and
above. Therefore, gas dynamic regime consists of both subsonic and supersonic Mach
numbers.

The waves prevailing in supersonic flow fields can be grouped as compression
waves, expansion waves, and Mach waves.

The essence of gas dynamics is that when the flow speed is supersonic, the entire
flow field is dominated by Mach waves, expansion waves, and compression or shock
waves. It is only through these waves, the change of flow properties from one state to
another takes place.

Compressible flow is the science of fluid flow in which the density change asso-
ciated with pressure change is appreciable. Fluid mechanics is the science of fluid
flow in which the temperature change associated with the flow is insignificant. Fluid
mechanics is essentially the science of isenthalpic flows, and thus the main equations
governing a fluid dynamic stream are only the continuity and momentum equations
and the second law of thermodynamics. The energy equation is passive as far as fluid
dynamic streams are concerned.

In the theory of gas dynamics, change of state or flow properties is achieved by the
following three means.

1. With area change, treating the fluid to be inviscid and passage to be frictionless.
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2. With friction, treating the heat transfer between the surrounding and system to be
negligible.

3. With heat transfer, assuming the fluid to be inviscid.

These three types of flows are called isentropic flow, in which the area change is
the primary parameter causing change of state; frictional or Fanno flow, in which the
friction is the primary parameter causing change of state; and Rayleigh flow, in which
the change in the stagnation (total) temperature (that is, heat addition or heat removal)
is the primary parameter causing change of state.

Fluids such as water are incompressible at normal conditions. But at very high pres-
sures (for example, 1000 atm), they are compressible. The change in volume is the
characteristic feature of a compressible medium under static condition. Under dynamic
conditions, that is, when the medium is moving, the characteristic feature for incom-
pressible and compressible flow situations are the volume flow rate, Q̇ = AV = constant
at any cross section of a streamtube for incompressible flow, and the mass flow rate,
ṁ = 𝜌AV = constant at any cross section of a streamtube for compressible flow.

In general, the flow of an incompressible medium is called incompressible flow and
that of a compressible medium is called compressible flow.

A quantitative measure of compressibility is the volume modulus of elasticity, E,
defined as

Δp = −E
Δ𝕍
𝕍i

For ideal gases, the equation of state is

p𝕍 = RT

For isothermal flows, this reduces to

p𝕍 = pi𝕍i = constant

For incompressible flows, by Bernoulli’s equation, we have

p + 1
2
𝜌 V2 = constant = pstag

where the subscript “stag” refers to stagnation condition.
The compressibility effects can be neglected if the density changes are very small,

that is, if
Δ𝜌
𝜌i

≪ 1

For gases, the speed of sound “a” may be expressed in terms of pressure and density
changes as

a2 =
Δp

Δ𝜌
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The ratio V∕a is called the Mach number M. The condition of incompressibility for
gases is

M2

2
≪ 1

Thus, the criterion determining the effect of compressibility for gases is the magnitude
of M.

It is widely accepted that compressibility can be neglected when

Δ𝜌
𝜌i

≤ 0.05

That is, when M ≤ 0.3.
The Mach number M is defined as the ratio of the local flow speed V to the local

speed of sound a

M = V
a

Thus M is a dimensionless quantity.
A flow with Mach number greater than unity is termed supersonic flow. In a

supersonic flow, V > a and the flow upstream of a given point remains unaffected by
changes in conditions at that point.

Sound waves are infinitely small pressure disturbances. The speed with which sound
propagates in a medium is called speed of sound and is denoted by a.

In the limiting case of Δp and Δ𝜌 approaching zero, the speed of sound becomes

a2 =
dp

d𝜌

This is Laplace equation and is valid for any fluid.
The sound wave is a weak compression wave, across which only infinitesimal

change in fluid properties occur.
For isentropic process of a gas,

p

𝜌𝛾
= constant

where the isentropic index 𝛾 is the ratio of specific heats and is a constant for a
perfect gas.

For a perfect gas, by the state equation,

p = 𝜌RT

For a perfect gas, the speed of sound can be expressed as

a =
√
𝛾RT
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Perfect gas assumption is valid as long as the speed of gas stream is not too high.
However, at hypersonic speeds, the assumption of perfect gas is not valid and we
must consider Equation (1.12) to calculate the speed of sound.

For a perfect gas, the gas constant R can be expressed as

R = cp − cv

For an isentropic change of state, an equation not involving T can be written as

p

𝜌𝛾
= constant

In a compressible medium, there will be change in density and temperature at the
stagnation point 0. The temperature rise at the stagnation point can be obtained from
the energy equation.

The energy equation for an isentropic flow is

h + V2

2
= constant

where h is the enthalpy and V is the flow velocity.
Equating the energy at far upstream, ∞, and the stagnation point 0, we get

h∞ +
V2
∞

2
= h0 +

V2
0

2

But V0 = 0, thus

h0 − h =
V2
∞

2

The presence of a small disturbance is felt throughout the field by means of dis-
turbance waves traveling at the local velocity of sound relative to the medium. In a
subsonic flow, the disturbance waves reach a stationary observer before the source of
disturbance could reach him. But in supersonic flows, it takes considerable amount of
time for an observer to perceive the pressure disturbance, after the source has passed
him. Therefore, in a subsonic flow, the streamlines sense the presence of any obstacle
in the flow field and adjust themselves well ahead of the obstacles and flow around it
smoothly.

For supersonic motion of an object, there is a well-defined conical zone in the flow
field with the object located at the nose of the cone, and the disturbance created by
the moving object is confined only to the field included inside the cone. The flow field
zone outside the cone does not even feel the disturbance. For this reason, von Karman
termed the region inside the cone as the zone of action and the region outside the cone
as the zone of silence. The lines at which the pressure disturbance is concentrated and
which generate the cone are called Mach waves or Mach lines. The angle between the
Mach line and the direction of motion of the body is called the Mach angle 𝜇.
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Exercise Problems

1.1 Find the limiting flow speed above which air flow becomes a gas dynamic flow
at sea level condition.
[Answer: 612.47 km/h]

1.2 Air is accelerated from 1 atm and 300 K to 0.2 atm. If the speed of sound
associated with the acceleration process is 400 m/s, (a) determine the final tem-
perature. (b) Is this process isentropic?
[Answer: (a) 105.325 K, (b) No.]

1.3 Methane gas at 140 kPa is compressed isothermally, and nitrogen gas at
100 kPa is compressed isentropically. What is the modulus of elasticity of
each gas? Which is more compressible?
[Answer: E = 140 kPa, for both, and both are equally compressible.]

1.4 If the enthalpy of an air stream at 270 K becomes 10 times its value when the
flow is isentropically brought to rest, determine the flow Mach number. Treat
air as perfect gas even at the stagnation state.
[Answer: 6.708]

1.5 Determine the maximum Mach number up to which the flow over an object
flying at sea level can be treated as perfect gas flow.
[Answer: 2.98]

1.6 A balloon filled with gas expands its volume by 2.0 L. If the pressure outside
the balloon is 0.93 bar and the energy change of the gas is 450 J, how much
heat did the surroundings give the balloon? [Hint: 100 J = 1 liter bar].
[Answer: 636 J]

1.7 A heater that operates at 4 V and at 35 ohms is used to heat up 15 g of cop-
per wire. The specific heat capacity of copper is 24.440 J/(mol K). How much
time is required to increase the temperature from 25 to 69∘C? [Hint: power:
P = V2∕R, which is derived from the equation V = IR].
[Answer: 555.47 s]
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2
Thermodynamics of Fluid Flow

2.1 Introduction

Entropy and temperature are the two fundamental concepts of thermodynamics.
Unlike low-speed or incompressible flows, the energy change associated with a
compressible flow is substantial enough to strongly interact with other properties
of the flow. Hence, the energy concept plays an important role in the study of
compressible flows. In other words, the study of thermodynamics which deals with
energy (and entropy) is an essential component in the study of compressible flow.

The following are the broad divisions of fluid flow based on thermodynamic con-
siderations.

1. Fluid mechanics of perfect fluids – fluids without viscosity and heat (transfer)
conductivity – is an extension of equilibrium thermodynamics to moving fluids.
The kinetic energy of the fluid has to be considered in addition to the internal
energy which the fluid possesses even when at rest.

2. Fluid mechanics of real fluids (goes beyond the scope of classical thermodynam-
ics). The transport processes of momentum and heat (energy) are of primary inter-
est here. But, even though thermodynamics is not fully and directly applicable to
all phases of real fluid flow, it is often extremely helpful in relating the initial and
final conditions.

For low-speed flow (flow with Mach number less than 0.5) problems, thermody-
namic considerations are not needed because the heat content of the fluid flow is
so large, compared to the kinetic energy of the flow, that the temperature remains
nearly constant even if the whole kinetic energy is transformed into heat. In other
words, the difference between the static and stagnation temperatures is not significant
in low-speed flows. But in high-speed flows, the kinetic energy content of the fluid can
be so large compared to its heat content that the difference between the static and stag-
nation temperatures can become substantial. Hence, emphasis on the thermodynamic
concepts assumes importance in high-speed flow analysis.
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2.2 First Law of Thermodynamics

Consider a closed system, consisting of a certain amount of gas at rest, across whose
boundaries no transfer of mass is possible. Let 𝛿Q be an incremental amount of heat
added to the system across the boundary (by thermal conduction or by direct radia-
tion). Also, let 𝛿W denote the work done on the system by the surroundings (or by
the system on the surroundings). The sign convention is positive when the work is
done by the system and negative when the work is done on the system. Owing to the
molecular motion of the gas, the system has an internal energy U. The first law of
thermodynamics states that “the heat added minus work done by the system is equal
to the change in the internal energy of the system,” that is,

𝛿Q − 𝛿W = dU (2.1)

This is an empirical result confirmed by laboratory experiments and practical expe-
rience. In Equation (2.1), the internal energy U is a state variable (thermodynamic
property). Hence, the change in internal energy dU is an exact differential and its
value depends only on the initial and final states of the system. In contrast (the non-
thermodynamic properties), 𝛿Q and 𝛿W depend on the process by which the system
attained its final state from the initial state.

In general, for any given dU, there are infinite number of ways (processes) by which
heat can be added and work can be done on the system. In the present course of study,
we will be mainly concerned with only the following three types of processes.

• Adiabatic process – a process in which no heat is added to or taken away from the
system.

• Reversible process – a process that can be reversed without leaving any trace on
the surroundings, that is, both the system and the surroundings are returned to their
initial states at the end of the reverse process.

• Isentropic process – a process that is adiabatic and reversible.

For an open system (for example, pipe flow), there is always a term (U + p 𝕍 )
instead of just U. This term is referred to as enthalpy or heat function H given by

H = U + p 𝕍 (2.2)

H2 − H1 = U2 − U1 + p2𝕍2 − p1𝕍1 (2.3)

where (p2𝕍2 − p1𝕍1) is termed flow work and subscripts 1 and 2 represent states 1 and
2, respectively.

In general, we can say that the following are the major differences between the open
and closed systems.

1. The mass that enters or leaves an open system has kinetic energy, whereas there is
no mass transfer possible across the boundaries of a closed system.

2. The mass can enter and leave an open system at different levels of potential energy.
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3. Open systems are capable of delivering work continuously, because in the system,
the medium that transforms energy is continuously replaced. This useful work,
which a machine continuously delivers, is called the shaft work.

2.2.1 Energy Equation for an Open System

Consider the system shown in Figure 2.1. The total energy E1 at the inlet station 1 and
E2 at the outlet station 2 are given by

E1 = U1 +
1
2

m V2
1 + m g z1 (2.4)

E2 = U2 +
1
2

m V2
2 + m g z2 (2.5)

For an open system, the first-law expressions given by Equation (2.1) has to be
rewritten with the total energy E in place of the internal energy U. Thus, we have

Q12 − W12 = E2 − E1 (2.6)

Substituting for E1 and E2 from Equations (2.4) and (2.5), respectively, we get

Q12 − W12 =
(

U2 +
m
2

V2
2 + m g z2

)
−
(

U1 +
m
2

V2
1 + m g z1

)
(2.7)

For an open system, the shaft (useful) work is not just equal to W12, but the work done
to move the pistons at 1 and 2 must also be considered. Work done with respect to the
system by the piston at state 1 is

W
′

1 = −F1Δ1 (F1 = force and Δ1 = displacement)

W
′

1 = −p1A1Δ1 (p1 = pressure at 1; A1 = cross-sectional area of piston)

W
′

1 = −p1𝕍1

1

2

V1

V2

Ws

z1

z2

Q

m

m

Figure 2.1 An open system.
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Work delivered at 2 is W
′

2 = p2𝕍2. Therefore,

W12 = Ws + p2𝕍2 − p1𝕍1 (2.8)

In Equation (2.8), Ws is the shaft work, which can be extracted from the system, and
(p2𝕍2 − p1𝕍1) is the flow work necessary to maintain the flow. Substituting Equation
(2.8) into Equation (2.7), we get

Q12 − Ws =
(

U2 + p2𝕍2 +
m
2

V2
2 + m g z2

)
−
(

U1 + p1𝕍1 +
m
2

V2
1 + m g z1

)
or

Q12 − Ws =
(

H2 +
m
2

V2
2 + m g z2

)
−
(

H1 +
m
2

V2
1 + m g z1

)
where H1 = U1 + p1𝕍1 and H2 = U2 + p2𝕍2. This is the fundamental equation for an
open system. If there are any other forms of energy, such as, electrical energy or mag-
netic energy, their initial and final values should be added properly to this equation.
The energy equation for an open system is

H1 +
m
2

V2
1 + m g z1 = H2 +

m
2

V2
2 + m g z2 + Ws − Q12 (2.9)

This equation is universally valid. This is the expression of the first law of thermody-
namics for any open system. In most applications of gas dynamics, the gravitational
energy is negligible compared to the kinetic energy. For working processes such as
flow in turbines and compressors, the shaft work Ws in Equation (2.9) is finite, and for
flow processes such as flow around an airplane, Ws = 0. Therefore, for a gas dynamic
working process, Equation (2.9) becomes

H1 +
m
2

V2
1 = H2 +

m
2

V2
2 − Q12 (2.10)

This is usually the case with systems such as turbo machines and internal combustion
engines, where the process is assumed to be adiabatic (that is, Q12 = 0). For a gas
dynamic adiabatic flow process, the energy equation (2.9) becomes

H1 +
m
2

V2
1 = H2 +

m
2

V2
2 (2.11)

or

H1 +
m
2

V2
1 = H0 = constant (2.12)

where H0 is the stagnation enthalpy and H1 is the static enthalpy. That is, the sum of
static enthalpy and kinetic energy is constant in an adiabatic flow.
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2.2.2 Adiabatic Flow Process

For an adiabatic process, the heat transfer is associated with the process, Q = 0. There-
fore, the energy equation is given by Equations (2.11) and (2.12). Dividing Equations
(2.11) and (2.12) by m, we can rewrite them as

h1 +
V2

1

2
= h2 +

V2
2

2
(2.13)

h1 +
V2

1

2
= h0 (2.14)

or, in general,

h + V2

2
= h0 = constant (2.15)

where h = H∕m is called specific static enthalpy and h0 is the specific stagnation
enthalpy. With h = p∕𝜌, Equation (2.15) represents Bernoulli’s equation for incom-
pressible flow,

p + 1
2
𝜌 V2 = p0 = constant

where p0 is the stagnation pressure. That is, for incompressible flow of air, the energy
equation happens to be the Bernoulli equation, because we are not interested in
the internal energy and the temperature for such flows. In other words, Bernoulli’s
equation is the limiting case of the energy equation for incompressible flows. Here
it is important to realize that even though Bernoulli’s equation for incompressible
flow of a gas is shown to be the limiting case of energy equation, it is essentially a
momentum equation. For a closed system,

Q12 − W12 = U2 − U1

In terms of specific quantities, this becomes

q12 −𝑤12 = u2 − u1

For the processes of a closed system, there is no shaft work involved, that is, no useful
work can be extracted from the working medium. There will only be compression or
expansion work. Therefore, 𝑤12 may be expressed as

𝑤12 = ∫
2

1
p dv

where v is the specific volume.
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Thus, the change in internal energy becomes

du = 𝛿q − p dv (2.16a)

Also, h = u + pv; dh = du + p dv + v dp. Using relation (2.16a), we can write the
change in enthalpy as

dh = 𝛿q + v dp (2.16b)

For adiabatic change of state, Equations (2.16a) and (2.16b) reduce to

du = −p dv, dh = v dp (2.16c)

where u, q, and v in Equations (2.16a)–(2.16c) stand for specific quantities of internal
energy, heat energy, and volume, respectively.

2.3 The Second Law of Thermodynamics
(Entropy Equation)

Consider a cold body coming into contact with a hot body. From experience, we can
say that the cold body will get heated up and the hot body will cool down. How-
ever, Equation (2.1) does not necessarily imply that this will happen. In fact, the
first law allows the cold body to become cooler and the hot body to become hotter
as long as energy is conserved during the process. However, in practice, this does
not happen; instead, the law of nature imposes another condition on the process, a
condition that stipulates the direction in which a process should take place. To ascer-
tain the proper direction of a process, let us define a new state variable, the entropy,
as follows:

ds =
𝛿qrev

T
(2.17)

where s is the entropy (amount of disorder) of the system, 𝛿qrev is an incremental
amount of heat added reversibly to the system, and T is the system temperature. The
above definition gives the change in entropy in terms of a reversible addition of heat,
𝛿qrev. As entropy is a state variable, it can be used in conjunction with any type of
process, reversible or irreversible. The quantity 𝛿qrev is just an artifice; an effective
value of 𝛿qrev can always be assigned to relate the initial and final states of an irre-
versible process, where the actual amount of heat added is 𝛿q. Indeed, an alternative
and probably more lucid relation is

ds =
𝛿q

T
+ dsirrev (2.18)

Equation (2.18) applies in general to all processes. It states that the change in entropy
during any process is equal to the actual heat added, 𝛿q; divided by the temperature,
𝛿q∕T; plus a contribution from the irreversible dissipative phenomena of viscosity,
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thermal conductivity, and mass diffusion occurring within the system, dsirrev. These
dissipative phenomena always cause increase of entropy, that is,

dsirrev ≥ 0 (2.19)

The equal sign in the inequality (2.19) denotes a reversible process in which, by defini-
tion, the above dissipative phenomena are absent. Hence, a combination of Equations
(2.18) and (2.19) yields

ds ≥ 𝛿q

T
(2.20)

Further, if the process is adiabatic, 𝛿q = 0, and Equation (2.20) reduces to

ds ≥ 0 (2.21)

Equations (2.20) and (2.21) are two forms of the second law of thermodynamics. The
second law gives the direction in which a process will take place. Equations (2.20) and
(2.21) imply that a process will always proceed in a direction such that the entropy
of the system plus surroundings always increases or at least remains unchanged. That
is, in an adiabatic process, the entropy can never decrease. This aspect of the second
law of thermodynamics is important because it distinguishes between reversible and
irreversible processes.

If ds > 0, the process is called an irreversible process, and when ds = 0, the process
is called a reversible process. A reversible and adiabatic process is called an isentropic
process. However, in a nonadiabatic process, we can extract heat from the system and
thus decrease the entropy of the system.

2.4 Thermal and Calorical Properties

The equation pv = RT or p∕𝜌 = RT is called thermal equation of state, where p, T and
v(1∕𝜌) are thermal properties and R is the gas constant. A gas that obeys the thermal
equation of state is called thermally perfect gas. Any relation between the calorical
properties, u, h, and s, and any two thermal properties is called calorical equation
of state. In general, the thermodynamic properties (the properties that do not depend
on process) can be grouped into thermal properties (p, T , v) and calorical properties
(u, h, s). From Equation (2.16), we have

u = u(T , v), h = h(T , p)

In terms of exact differentials, the above relations become

du =
(
𝜕u
𝜕T

)
v

dT +
(
𝜕u
𝜕v

)
T

dv (2.22)

dh =
(
𝜕h
𝜕T

)
p

dT +
(
𝜕h
𝜕p

)
T

dp (2.23)
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For a constant volume process, Equation (2.22) reduces to

du =
(
𝜕u
𝜕T

)
v

dT

where
(

𝜕u
𝜕T

)
v

is the specific heat at constant volume represented as cv; therefore,

du = cv dT (2.24)

For an isobaric process, Equation (2.23) reduces to

dh =
(
𝜕h
𝜕T

)
p

dT

where
(

𝜕h
𝜕T

)
p

is the specific heat at constant pressure represented by cp; therefore,

dh = cp dT (2.25)

From Equation (2.16a), for a constant volume (isochoric) process, we get

𝛿q = du = cv dT (2.26a)

and for a constant pressure (isobaric) process,

𝛿q = dh = cp dT , 𝛿q = dh = cv dT + p dv (2.26b)

For an adiabatic flow process (q = 0), therefore, from Equation (2.16c), we have

dh = v dp (2.26c)

From Equations (2.26a)–(2.26c), the following can be inferred.

1. If heat is added at constant volume, it only raises the internal energy.
2. If heat is added at constant pressure, it not only increases the internal energy but

also does some external work, that is, it increases the enthalpy.
3. If the change is adiabatic, the change in enthalpy is equal to external work v dp.

2.4.1 Thermally Perfect Gas

A gas is said to be thermally perfect when its internal energy and enthalpy are func-
tions of temperature alone, that is, for a thermally perfect gas,

u = u(T), h = h(T) (2.27a)

Therefore, from Equations (2.24) and (2.25), we get

cv = cv(T), cp = cp(T) (2.27b)
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Further, from Equations (2.22), (2.23), and (2.27a), we obtain(
𝜕u
𝜕v

)
T
= 0,

(
𝜕h
𝜕p

)
T

= 0 (2.27c)

The important relations of this section are

du = cv dT , dh = cp dT

These equations are universally valid as long as the gas is thermally perfect. Other-

wise, in order to have equations of universal validity, we must add
(
𝜕u
𝜕v

)
T

dv to the

first equation and
(
𝜕h
𝜕p

)
T

dp to the second equation.
The state equation for a thermally perfect gas is

pv = RT

In the differential form, this equation becomes

p dv + v dp = R dT

Also,

h = u + pv

dh = du + p dv + v dp

Therefore,
dh − du = p dv + v dp = R dT

that is,
R dT = cp dT − cv dT

Thus,
R = cp (T) − cv(T) (2.28)

For thermally perfect gases, Equation (2.28) shows that although cp and cv are func-
tions of temperature, their difference is a constant with reference to temperature.

2.5 The Perfect Gas

This is even a greater specialization than thermally perfect gas. For a perfect gas, both
cp and cv are constants and are independent of temperature, that is,

cv = constant ≠ cv(T), cp = constant ≠ cp(T) (2.29)

Such a gas with constant cp and cv is called a calorically perfect gas. Therefore, a
perfect gas should be thermally as well as calorically perfect.
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From the above discussions, the following are evident.

• A perfect gas must be both thermally and calorically perfect.
• A perfect gas must satisfy both the thermal equation of state, p = 𝜌 R T , and the

caloric equations of state, cp = (𝜕h∕𝜕T)p, cv = (𝜕u∕𝜕T)v.
• A calorically perfect gas must be thermally perfect, but a thermally perfect gas need

not be calorically perfect. That is, thermal perfectness is a prerequisite for caloric
perfectness.

• For a thermally perfect gas, cp = cp(T) and cv = cv(T); that is, both cp and cv are
functions of temperature. But even though the specific heats cp and cv vary with
temperature, their ratio, 𝛾 becomes a constant and independent of temperature, that
is, 𝛾 = constant ≠ 𝛾(T).

• For a calorically perfect gas, cp, cv, as well as 𝛾 are constants and independent of
temperature.

2.5.1 Entropy Calculation

Entropy is defined by the relation (for a reversible process)

𝛿q = T ds

Using Equations (2.16a)–(2.16c), we can write

T ds = du + p dv (2.30)

T ds = dh − v dp (2.31)

Equations (2.30) and (2.31) are as important and useful as the original form of the
first law of thermodynamics, Equation (2.1).

For a thermally perfect gas, from Equation (2.25), we have dh = cp dT . Substituting
this relation into Equation (2.31), we obtain

ds = cp
dT
T

−
v dp

T
(2.32)

Substituting the perfect gas equation of state, p v = R T , into Equation (2.32), we get

ds = cp
dT
T

− R
dp

p
(2.33)

Integrating Equation (2.33) between states 1 and 2, we obtain

s2 − s1 = ∫
T2

T1

cp
dT
T

− ∫
p2

p1

R
dp

p
(2.34)

Equation (2.34) holds for a thermally perfect gas. The integral can be evaluated if cp
is known as a function of T . Further, assuming the gas to be calorically perfect, for
which cp is constant, Equation (2.34) reduces to
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s2 − s1 = cp ln

(
T2

T1

)
− R ln

(
p2

p1

)
(2.35)

Using du = cv dT in Equation (2.30), the change in entropy can also be expressed as

s2 − s1 = cv ln

(
T2

T1

)
+ R ln

(
v2

v1

)
(2.36)

From the above discussion, we can summarize that a perfect gas is both thermally and
calorically perfect. Further, a calorically perfect gas must also be thermally perfect,
whereas a thermally perfect gas need not be calorically perfect.

For a thermally perfect gas, p = 𝜌RT , cv = cv(T), and cp = cp(T), and for a perfect
gas, p = 𝜌RT , cv = constant, and cp = constant. That is, for a calorically perfect gas,
p = 𝜌RT and cp and cv are constants and independent of temperature. Further, for a
perfect gas, all equations get simplified, resulting in the following simple relations for
u, h, and s.

u = u1 + cv T (2.37a)

h = h1 + cp T (2.37b)

s = s1 + cv ln

(
p

p1

)
− cp ln

(
𝜌

𝜌1

)
(2.37c)

where the subscript “1” refers to the initial state.
Equations (2.37a), (2.37b), and (2.28) combined with the thermal equation of state

(p = 𝜌RT) result in

u = u1 +
1

𝛾 − 1
p

𝜌
, h = h1 +

𝛾

𝛾 − 1
p

𝜌

where 𝛾 is the ratio of specific heats, cp∕cv. For the most simple molecular model, the
kinetic theory of gases gives the specific heats ratio, 𝛾 as

𝛾 = n + 2
n

where n is the number of degrees of freedom of the gas molecules. Thus, for
monatomic gases with n = 3, the specific heats ratio becomes

𝛾 = 3 + 2
3

= 1.67

Diatomic gases, such as oxygen and nitrogen, have n = 5 (three translational degrees
of freedom and two rotational degrees of freedom); thus

𝛾 = 5 + 2
5

= 1.4
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Gases with extremely complex molecules, such as freon and gaseous compounds of
uranium, have large values of n, resulting in values of 𝛾 only slightly greater than
unity. Thus, the value of specific heats ratio 𝛾 varies from 1 to 1.67, depending on the
molecular nature of the gas, that is,

1 ≤ 𝛾 ≤ 1.67

The above relations for u and h are important, because they connect the quanti-
ties used in thermodynamics with those used in gas dynamics. With the aid of these
relations, the energy equation can be written in two different forms as follows.

• The energy equation for an adiabatic process, as given by Equation (2.15), is

h + V2

2
= h0 = constant

When the gas is perfect, it becomes

cpT + V2

2
= cpT0 = constant (2.38a)

• Equation (2.38a), when combined with the thermal state equation, yields

𝛾

𝛾 − 1
p

𝜌
+ V2

2
= constant (2.38b)

Equation (2.38b) is the form of energy equation commonly used in gas dynamics.
This is popularly known as compressible Bernoulli’s equation for isentropic flows.

From Equation (2.38a), we infer that for an adiabatic process of a perfect gas,

T01 = T02 = T0 = constant (2.39)

So far, we have not made any assumption about the reversibility or irreversibility
of the process. Equation (2.39) implies that the stagnation temperature T0 remains
constant for an adiabatic process of a perfect gas, irrespective of the process being
reversible or irreversible.

Consider the flow of gas in a tube with an orifice as shown in Figure 2.2. In such
a flow process, there will be pressure loss. But if the stagnation temperature is mea-
sured before and after the orifice plate, and if it remains constant, then the gas can be
treated as a perfect gas and all the simplified equations (Equation (2.37)) can be used.
Otherwise, it cannot be treated as perfect gas, and Equation (2.37c) can be rewritten as

p2

p1
=
(
𝜌2

𝜌1

)𝛾

exp

[
(s2 − s1)

cv

]
(2.40)
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Orifice plate

Flow

Figure 2.2 Flow through an orifice plate.

2.5.2 Isentropic Relations

An adiabatic and reversible process is called isentropic process. For an adiabatic
process, 𝛿q = 0, and for a reversible process, dsirrev = 0. Hence, from Equation (2.18),
an isentropic process is one for which ds = 0, that is, the entropy is constant. Impor-
tant relations for an isentropic process can be directly obtained from Equations (2.35),
(2.36), and (2.40) by setting s2 = s1. For example, from Equation (2.35), we have

0 = cp ln

(
T2

T1

)
− R ln

(
p2

p1

)

ln

(
p2

p1

)
=

cp

R
ln

(
T2

T1

)

p2

p1
=
(

T2

T1

)cp∕R

(2.41)

From Equation (2.38),
cp − cv = R

1 −
cv

cp
= R

cp

𝛾 − 1
𝛾

= R
cp

because cp∕cv = 𝛾 . Therefore,
cp

R
= 𝛾

𝛾 − 1

Substituting this relation into Equation (2.41), we obtain

p2

p1
=
(

T2

T1

)𝛾∕(𝛾−1)

(2.42)

Similarly, from Equation (2.36),

0 = cv ln

(
T2

T1

)
+ R ln

(
v2

v1

)

ln

(
v2

v1

)
= −

cv

R
ln

(
T2

T1

)
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v2

v1
=
(

T2

T1

)−cv∕R

(2.43)

But it can be shown that
cv

R
= 1

𝛾 − 1

Substituting the above relation into Equation (2.43), we get

v2

v1
=
(

T2

T1

)−1∕(𝛾−1)

(2.44)

As 𝜌2∕𝜌1 = v1∕v2, Equation (2.44) becomes

𝜌2

𝜌1
=
(

T2

T1

)1∕(𝛾−1)

(2.45)

Substituting s1 = s2 into Equation (2.40), we obtain

p2

p1
=
(
𝜌2

𝜌1

)𝛾

(2.46)

This relation is also called Poisson’s equation. Summarizing Equations (2.42), (2.45),
and (2.46), we can write

p2

p1
=
(
𝜌2

𝜌1

)𝛾

=
(

T2

T1

)𝛾∕(𝛾−1)

(2.47)

Equation (2.47) is an important equation and used very frequently in the analysis of
compressible flows.

Using the above-discussed isentropic relations, several useful equations of total
(stagnation) conditions can be obtained as follows. From Equation (2.38a), we have

T0

T
= 1 + V2

2cpT

But for perfect gases,
cp = 𝛾

𝛾 − 1
R

Therefore,

T0

T
= 1 + V2

2 𝛾RT∕(𝛾 − 1)

By Equation (1.16), 𝛾RT = a2; thus

T0

T
= 1 + V2

2a2∕(𝛾 − 1)
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where T is the static temperature, T0 is the stagnation temperature, and V is the flow
velocity. Hence,

T0

T
= 1 + 𝛾 − 1

2
M2 (2.48)

Equation (2.48) gives the ratio of total to static temperature at a point in an isen-
tropic flow field as a function of the flow Mach number M at that point. Combining
Equations (2.47) and (2.48), we get

p0

p
=
(

1 + 𝛾 − 1
2

M2

)𝛾∕(𝛾−1)

(2.49)

𝜌0

𝜌
=
(

1 + 𝛾 − 1
2

M2

)1∕(𝛾−1)

(2.50)

Equations (2.49) and (2.50) give the ratio of total to static pressure and total to static
density, respectively, at a point in an isentropic flow field as a function of the flow
Mach number M at that point. Equations (2.48)–(2.50) form a set of most important
equations for total properties, which are often used in gas dynamic studies. Their value
as a function of M for 𝛾 = 1.4 are tabulated in Table A.1 of Ref. [1].

At this stage, we may ask how Equation (2.47), which is derived on the basis of
the concept of isentropic change of state (which is so restrictive – adiabatic as well
as reversible – that it may find only limited applications), is so important and why it
is frequently used. In compressible flow processes such as flow processes, through a
rocket engine, and flow over an aerofoil, large regions of the flow fields are isentropic.
In the region adjacent to the rocket nozzle walls and the aerofoil surface, a boundary
layer is formed wherein the dissipative mechanisms of viscosity, thermal conduction,
and diffusion are strong. Hence, the entropy increases within these boundary layers.
On the other hand, for fluid elements outside the boundary layer, the dissipative effects
are negligible. Further, no heat is being added to or removed from the fluid element
at these points; hence, the flow is adiabatic. Therefore, the fluid elements outside the
boundary layer experience reversible adiabatic process; hence, the flow is isentropic.
Moreover, the boundary layers are usually thin; hence, large regime of flow fields are
isentropic. Therefore, a study of isentropic flow is directly applicable to many types of
practical flow problems. Equation (2.47) is a powerful relation connecting pressure,
density, and temperature and is valid for calorically perfect gases.

Expressing all the quantities as stagnation quantities, Equation (2.37c) can be
written as

s02 − s01 = cv ln

(
p02

p01

)
− cp ln

(
𝜌02

𝜌01

)
(2.51)

Also, by Equation (2.28),
R = cp − cv
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and from the state equation,
p01

p02
=

𝜌01

𝜌02

T01

T02

Substitution of the above relations into Equation (2.51) yields

s02 − s01 = R ln

(
p01

p02

)
+ cp ln

(
T02

T01

)

For an adiabatic process of a perfect gas,

T01 = T02

Therefore,

s02 − s01 = R ln

(
p01

p02

)
(2.52)

From Equation (2.52), it is obvious that the entropy changes only when there are
losses in pressure. It does not change with velocity, and hence, there is nothing like
static and stagnation entropy. Also, by Equation (2.39), the stagnation temperature
does not change even when there are pressure losses. There is always an increase in
entropy associated with pressure loss. In other words, when there are losses, there will
be an increase in entropy, leading to a drop in stagnation pressure. These losses can
be due to friction, separation, shocks, etc.

Example 2.1 Argon is compressed adiabatically in a steady-flow compressor from
101 kPa and 25∘C to 505 kPa. If the compression work required is 475 kJ/kg, show
that the compression process is irreversible. Assume argon to be an ideal gas.

Solution

As we know, the work required for a process is minimum when the process is isen-
tropic, that is, when the process is adiabatic and reversible. Also, any process requiring
more work than that required for an isentropic process is irreversible.
For an isentropic process, work transfer can be expressed as [1]

𝑤12 = 𝛾

𝛾 − 1
RT1

[
1 −

(
p2

p1

) 𝛾−1
𝛾

]

where subscripts 1 and 2, respectively, refer to the initial and final states. Given that

T1 = 25∘C = 298.15 K, p1 = 101 kPa, p2 = 505 kPa

For argon, 𝛾 = 1.67 and R = 8314∕39.944 = 208.14 J/(kg K), because the molecular
weight of argon is 39.944 [2].
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Substituting these values into the work transfer equation, we get

𝑤12 = 1.67
0.67

× 208.14 × 298.15

[
1 −

(505
101

)0.67∕1.67
]

= −140.34 kJ∕kg

The actual work required, 475 kJ/kg, is more than the isentropic work transfer. Hence,
the process is irreversible. ◾

Example 2.2 The Mach number of an aircraft is the same at all altitudes. If its speed
is 90 kmph slower at 7000 m altitude than at sea level, what is its Mach number?

Solution

From standard atmospheric table, at 7000 m altitude, we get the local temperature Th
as [2]

Th = 242.65 K

Therefore, the speed of sound at 7000 m altitude is

ah =
√
𝛾 RTh

=
√

1.4 × 287 × 242.65

= 312.24 m∕s

At sea level,
T0 = 15∘C = 288.15 K

The speed of sound at sea level is

a0 =
√
𝛾 RT0

=
√

1.4 × 287 × 288.15

= 340.26 m∕s

The Mach number is the same at these two altitudes. Thus,

V0

a0
=

Vh

ah
=

(
V0 −

90
3.6

)
ah

V0
ah

a0
= V0 −

90
3.6

V0

(
ah

a0
− 1

)
= − 90

3.6
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V0

(312.24
340.26

− 1
)
= − 25

V0 = 25
0.08235

= 303.58 m∕s

M =
V0

a0

= 303.58
340.26

= 0.892 ◾

Example 2.3 Air enters a compressor at a stagnation state of 100 kPa and 27∘C. If it
has to be compressed to a stagnation pressure of 900 kPa, calculate the power input to
the compressor when the mass flow rate is 0.02 kg/s. Assume the compression process
to be isentropic.

Solution

Let subscripts 01 and 02 refer to the initial and final stagnation states, respectively.

Given

p01 = 100 kPa, T01 = 27∘C = 300.15 K, p02 = 900 kPa, ṁ = 0.02 kg∕s

The entropy change can be expressed as

s2 − s1 = cp ln

(
T02

T01

)
− R ln

(
p02

p01

)
For an isentropic compression, s2 − s1 = 0. Therefore,

cp ln

(
T02

T01

)
= R ln

(
p02

p01

)

ln

(
T02

T01

)
= R

cp
ln

(
p02

p01

)

= 287
1004.5

ln
(900

100

)
= 0.628

T02 = (e0.628) T01

= (e0.628) × 300.15

= 562.44 K
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The power required is

Power = ṁ Δh

= ṁ cp(T02 − T01)

= 0.02 × 1004.5 × (562.44 − 300.15)

= 5.27 kW
◾

Example 2.4 Show that for air, the difference between stagnation and static tem-
perature in the kelvin scale is approximately 5 × (speed in hundreds of meters per
second)2.

Solution

By energy equation, we have

h + V2

2
= h0

where h and h0, respectively, are the static and stagnation enthalpies and V is the flow
speed. For a perfect gas, h = cpT; thus the energy equation becomes

cp T + V2

2
= cp T0

Therefore, the stagnation temperature rise is

T0 − T = V2

2 cp

= (𝛾 − 1)
𝛾

V2

2 R

because cp = 𝛾

𝛾−1
R.

For air, R = 287 J/(kg K) and 𝛾 = 1.4, under normal temperatures. Substituting for R
and 𝛾 in the above equation, we get

T0 − T = 0.4
2 × 1.4 × 287

V2

= 4.9776 × 10−4 V2 K

≈ 5(V × 10−2)2 K

≈ 5 (speed in hundreds of meters per second)2
◾
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2.5.3 Limitations on Air as a Perfect Gas

The following are the limitations to treat air as a perfect gas, obeying both thermal
state equation and calorical state equations.

• When the temperature is less than 500 K, air can be treated as a perfect gas and the
ratio of specific heats, 𝛾 , takes a constant value of 1.4.

• When the temperature lies between 500 and 2000 K, air is only thermally perfect
and the state equation p = 𝜌 RT is valid, but cp and cv become functions of tempera-
ture, cp = cp(T) and cv = cv(T). Even though cp and cv are functions of temperature,
their ratio 𝛾 continues to be independent of temperature. That is, cp and cv vary with
temperature in such a manner that their ratio continues to be the same constant as
in temperatures below 500 K.

• For temperatures more than 2000 K, air becomes both thermally and calorically
imperfect. That is, cp, cv, as well as 𝛾 become functions of temperature.

In supersonic flight with Mach number, say 2.0 at sea level, the temperature reached
would already be about 245∘C (more than 500 K). But, for 500 K ≤ T ≤ 700 K, we
can still use perfect gas equations and the error involved in doing so will be negligi-
ble, that is, for Mach number less than 2.68, perfect gas equations can be used with
slight error. For temperatures more than 700 K, we must go for thermally perfect gas
equations.

At this stage, we may have some doubt about the possible values of the isentropic
index 𝛾 , when the flow medium is at a temperature that is quite high and the medium
cannot be assumed as perfect. This doubt can be cleared if we consider the flow
medium as an ideal gas, which satisfies perfect gas equations, and has 𝛾 as a constant
and independent of temperature. For a monatomic gas (such as He, Ar, and Ne),
the simplest possible molecular structure gives 𝛾 = 5∕3. This prediction is well
confirmed by experiment. At the other extreme of molecular complexity, very
complicated molecules have large number of degrees of freedom and 𝛾 may approach
unity, which represents the minimum possible value, because cp ≥ cv by virtue
of a general thermodynamic argument (Ref. [3]). Then 𝛾 necessarily has a range
of values

5
3
≥ 𝛾 ≥ 1

Experimental results show that most diatomic gases, nitrogen and oxygen in particular,
have 𝛾 = 7∕5 at room temperature, gradually tending to 𝛾 = 9∕7 at a few thousand
kelvin.

Example 2.5 Compute, tabulate, and plot the variation of cp, cv, specific
enthalpy h, and specific heats ratio 𝛾 of the air as functions of temperature (300 K
≤ T ≤ 30,000 K), assuming that chemical reactions are frozen and the air is composed
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of N2 and O2 with their mass fractions of 0.7656 and 0.2344, respectively, at any
temperature. Also assume that temperatures in all the energy modes (translational,
vibrational, etc.) are the same at any temperature (see Chapter 5 for more details).
Use curve-fit polynomial provided in the reference (NASA-TP-2792) and curve-fit
database in the reference (NASA-TM-102602). Also, give the program listing.

Solution

According to empirical relations given in a literature (NASA-TM-102602), cp for
species “s” is obtained by cs

p(T) =
Ru

Ms

∑5
k=1 As

kTk−1 and cv is written as cs
v = cs

p −
Ru

Ms
.

Curve-fit constants As
k are given in the above literature.

The computed values of cp, cv, h, and 𝛾 for some specific temperatures in the range
from 300 to 30,000 K are listed in Table 2.1.

Table 2.1 Values of cp, cv, h, and 𝛾 for some specific temperatures.

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.30000000E+03 0.10111361E+04 0.72289337E+03 0.60611738E+04 0.13987348E+01
0.40000000E+03 0.10202679E+04 0.73202515E+03 0.10755926E+06 0.13937607E+01
0.50000000E+03 0.10367528E+04 0.74851007E+03 0.21035962E+06 0.13850887E+01
0.60000000E+03 0.10581094E+04 0.76986652E+03 0.31507197E+06 0.13744063E+01
0.70000000E+03 0.10820491E+04 0.79380615E+03 0.42206744E+06 0.13631150E+01
0.80000000E+03 0.11064762E+04 0.81823346E+03 0.53149781E+06 0.13522744E+01
0.90000000E+03 0.11294884E+04 0.84124561E+03 0.64331531E+06 0.13426381E+01
0.10000000E+04 0.11493759E+04 0.86113306E+03 0.75729119E+06 0.13347250E+01
0.11000000E+04 0.11694280E+04 0.88118518E+03 0.87870762E+06 0.13271081E+01
0.12000000E+04 0.11825452E+04 0.89430231E+03 0.99631406E+06 0.13223103E+01
0.13000000E+04 0.11947478E+04 0.90650500E+03 0.11151861E+07 0.13179716E+01
0.14000000E+04 0.12060857E+04 0.91784283E+03 0.12352346E+07 0.13140438E+01
0.15000000E+04 0.12166071E+04 0.92836426E+03 0.13563759E+07 0.13104846E+01
0.16000000E+04 0.12263589E+04 0.93811609E+03 0.14785305E+07 0.13072571E+01
0.17000000E+04 0.12353868E+04 0.94714404E+03 0.16016236E+07 0.13043283E+01
0.18000000E+04 0.12437350E+04 0.95549219E+03 0.17255852E+07 0.13016695E+01
0.19000000E+04 0.12514465E+04 0.96320374E+03 0.18503494E+07 0.12992542E+01
0.20000000E+04 0.12585631E+04 0.97032031E+03 0.19758548E+07 0.12970594E+01
0.21000000E+04 0.12651249E+04 0.97688208E+03 0.21020435E+07 0.12950641E+01
0.22000000E+04 0.12711708E+04 0.98292804E+03 0.22288625E+07 0.12932491E+01
0.23000000E+04 0.12767384E+04 0.98849561E+03 0.23562615E+07 0.12915975E+01
0.24000000E+04 0.12818643E+04 0.99362146E+03 0.24841952E+07 0.12900932E+01
0.25000000E+04 0.12865833E+04 0.99834052E+03 0.26126210E+07 0.12887219E+01
0.26000000E+04 0.12909290E+04 0.10026862E+04 0.27414998E+07 0.12874706E+01
0.27000000E+04 0.12949337E+04 0.10066909E+04 0.28707952E+07 0.12863270E+01
0.28000000E+04 0.12986284E+04 0.10103857E+04 0.30004762E+07 0.12852799E+01
0.29000000E+04 0.13020428E+04 0.10138001E+04 0.31305120E+07 0.12843190E+01
0.30000000E+04 0.13052053E+04 0.10169625E+04 0.32608762E+07 0.12834351E+01
0.31000000E+04 0.13081426E+04 0.10198997E+04 0.33915455E+07 0.12826189E+01

(continued overleaf )
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.32000000E+04 0.13108805E+04 0.10226377E+04 0.35224980E+07 0.12818621E+01
0.33000000E+04 0.13134434E+04 0.10252006E+04 0.36537155E+07 0.12811575E+01
0.34000000E+04 0.13158541E+04 0.10276113E+04 0.37851815E+07 0.12804979E+01
0.35000000E+04 0.13181345E+04 0.10298917E+04 0.39168820E+07 0.12798768E+01
0.36000000E+04 0.13203048E+04 0.10320620E+04 0.40488048E+07 0.12792883E+01
0.37000000E+04 0.13223840E+04 0.10341411E+04 0.41809402E+07 0.12787268E+01
0.38000000E+04 0.13243898E+04 0.10361470E+04 0.43132790E+07 0.12781872E+01
0.39000000E+04 0.13263384E+04 0.10380955E+04 0.44458165E+07 0.12776651E+01
0.40000000E+04 0.13282450E+04 0.10400022E+04 0.45785460E+07 0.12771560E+01
0.41000000E+04 0.13301230E+04 0.10418802E+04 0.47114640E+07 0.12766564E+01
0.42000000E+04 0.13319851E+04 0.10437423E+04 0.48445700E+07 0.12761627E+01
0.43000000E+04 0.13338420E+04 0.10455992E+04 0.49778610E+07 0.12756723E+01
0.44000000E+04 0.13357039E+04 0.10474611E+04 0.51113385E+07 0.12751824E+01
0.45000000E+04 0.13375784E+04 0.10493354E+04 0.52450025E+07 0.12746909E+01
0.46000000E+04 0.13394728E+04 0.10512300E+04 0.53788550E+07 0.12741958E+01
0.47000000E+04 0.13413928E+04 0.10531501E+04 0.55128970E+07 0.12736957E+01
0.48000000E+04 0.13433431E+04 0.10551003E+04 0.56471345E+07 0.12731899E+01
0.49000000E+04 0.13453267E+04 0.10570839E+04 0.57815675E+07 0.12726773E+01
0.50000000E+04 0.13473445E+04 0.10591016E+04 0.59162010E+07 0.12721579E+01
0.51000000E+04 0.13493975E+04 0.10611547E+04 0.60510365E+07 0.12716312E+01
0.52000000E+04 0.13514845E+04 0.10632417E+04 0.61860820E+07 0.12710981E+01
0.53000000E+04 0.13536036E+04 0.10653607E+04 0.63213350E+07 0.12705590E+01
0.54000000E+04 0.13557507E+04 0.10675081E+04 0.64568030E+07 0.12700145E+01
0.55000000E+04 0.13579213E+04 0.10696785E+04 0.65924865E+07 0.12694668E+01
0.56000000E+04 0.13601085E+04 0.10718657E+04 0.67283875E+07 0.12689168E+01
0.57000000E+04 0.13623052E+04 0.10740624E+04 0.68645080E+07 0.12683669E+01
0.58000000E+04 0.13645023E+04 0.10762595E+04 0.70008485E+07 0.12678190E+01
0.59000000E+04 0.13666895E+04 0.10784467E+04 0.71374085E+07 0.12672759E+01
0.60000000E+04 0.13688550E+04 0.10806123E+04 0.72741860E+07 0.12667401E+01
0.61000000E+04 0.13683191E+04 0.10800763E+04 0.74198470E+07 0.12668726E+01
0.62000000E+04 0.13695768E+04 0.10813340E+04 0.75567410E+07 0.12665622E+01
0.63000000E+04 0.13709114E+04 0.10826686E+04 0.76937645E+07 0.12662337E+01
0.64000000E+04 0.13723307E+04 0.10840879E+04 0.78309270E+07 0.12658851E+01
0.65000000E+04 0.13738422E+04 0.10855994E+04 0.79682330E+07 0.12655149E+01
0.66000000E+04 0.13754529E+04 0.10872101E+04 0.81056975E+07 0.12651216E+01
0.67000000E+04 0.13771699E+04 0.10889270E+04 0.82433280E+07 0.12647036E+01
0.68000000E+04 0.13789996E+04 0.10907568E+04 0.83811360E+07 0.12642595E+01
0.69000000E+04 0.13809489E+04 0.10927061E+04 0.85191320E+07 0.12637881E+01
0.70000000E+04 0.13830233E+04 0.10947805E+04 0.86573280E+07 0.12632883E+01
0.71000000E+04 0.13852292E+04 0.10969865E+04 0.87957410E+07 0.12627587E+01
0.72000000E+04 0.13875717E+04 0.10993289E+04 0.89343800E+07 0.12621989E+01
0.73000000E+04 0.13900564E+04 0.11018136E+04 0.90732610E+07 0.12616076E+01
0.74000000E+04 0.13926882E+04 0.11044453E+04 0.92123960E+07 0.12609843E+01
0.75000000E+04 0.13954719E+04 0.11072291E+04 0.93518020E+07 0.12603281E+01
0.76000000E+04 0.13984120E+04 0.11101693E+04 0.94914980E+07 0.12596384E+01
0.77000000E+04 0.14015126E+04 0.11132698E+04 0.96314900E+07 0.12589155E+01
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.78000000E+04 0.14047780E+04 0.11165352E+04 0.97718030E+07 0.12581583E+01
0.79000000E+04 0.14082112E+04 0.11199684E+04 0.99124520E+07 0.12573669E+01
0.80000000E+04 0.14118164E+04 0.11235736E+04 0.10053452E+08 0.12565411E+01
0.81000000E+04 0.14155959E+04 0.11273533E+04 0.10194822E+08 0.12556809E+01
0.82000000E+04 0.14195536E+04 0.11313108E+04 0.10336578E+08 0.12547866E+01
0.83000000E+04 0.14236910E+04 0.11354482E+04 0.10478738E+08 0.12538582E+01
0.84000000E+04 0.14280114E+04 0.11397686E+04 0.10621321E+08 0.12528960E+01
0.85000000E+04 0.14325161E+04 0.11442732E+04 0.10764346E+08 0.12519004E+01
0.86000000E+04 0.14372074E+04 0.11489646E+04 0.10907831E+08 0.12508718E+01
0.87000000E+04 0.14420868E+04 0.11538440E+04 0.11051795E+08 0.12498109E+01
0.88000000E+04 0.14471548E+04 0.11589120E+04 0.11196254E+08 0.12487185E+01
0.89000000E+04 0.14524135E+04 0.11641707E+04 0.11341230E+08 0.12475950E+01
0.90000000E+04 0.14578624E+04 0.11696196E+04 0.11486742E+08 0.12464415E+01
0.91000000E+04 0.14635032E+04 0.11752603E+04 0.11632807E+08 0.12452588E+01
0.92000000E+04 0.14693347E+04 0.11810919E+04 0.11779452E+08 0.12440478E+01
0.93000000E+04 0.14753582E+04 0.11871155E+04 0.11926686E+08 0.12428093E+01
0.94000000E+04 0.14815723E+04 0.11933295E+04 0.12074527E+08 0.12415451E+01
0.95000000E+04 0.14879768E+04 0.11997339E+04 0.12223003E+08 0.12402557E+01
0.96000000E+04 0.14945706E+04 0.12063276E+04 0.12372129E+08 0.12389425E+01
0.97000000E+04 0.15013527E+04 0.12131099E+04 0.12521924E+08 0.12376065E+01
0.98000000E+04 0.15083215E+04 0.12200786E+04 0.12672406E+08 0.12362494E+01
0.99000000E+04 0.15154751E+04 0.12272323E+04 0.12823595E+08 0.12348722E+01
0.10000000E+05 0.15228121E+04 0.12345693E+04 0.12975508E+08 0.12334764E+01
0.10100000E+05 0.15303293E+04 0.12420865E+04 0.13128163E+08 0.12320634E+01
0.10200000E+05 0.15380251E+04 0.12497822E+04 0.13281578E+08 0.12306346E+01
0.10300000E+05 0.15458960E+04 0.12576531E+04 0.13435772E+08 0.12291911E+01
0.10400000E+05 0.15539395E+04 0.12656968E+04 0.13590765E+08 0.12277343E+01
0.10500000E+05 0.15621516E+04 0.12739089E+04 0.13746569E+08 0.12262663E+01
0.10600000E+05 0.15705295E+04 0.12822867E+04 0.13903200E+08 0.12247881E+01
0.10700000E+05 0.15790687E+04 0.12908259E+04 0.14060678E+08 0.12233011E+01
0.10800000E+05 0.15877649E+04 0.12995220E+04 0.14219021E+08 0.12218069E+01
0.10900000E+05 0.15966143E+04 0.13083715E+04 0.14378239E+08 0.12203065E+01
0.11000000E+05 0.16056113E+04 0.13173685E+04 0.14538345E+08 0.12188020E+01
0.11100000E+05 0.16147520E+04 0.13265090E+04 0.14699365E+08 0.12172943E+01
0.11200000E+05 0.16240300E+04 0.13357872E+04 0.14861304E+08 0.12157849E+01
0.11300000E+05 0.16334413E+04 0.13451985E+04 0.15024174E+08 0.12142752E+01
0.11400000E+05 0.16429784E+04 0.13547356E+04 0.15187996E+08 0.12127669E+01
0.11500000E+05 0.16526365E+04 0.13643938E+04 0.15352769E+08 0.12112607E+01
0.11600000E+05 0.16624084E+04 0.13741655E+04 0.15518523E+08 0.12097585E+01
0.11700000E+05 0.16722888E+04 0.13840460E+04 0.15685258E+08 0.12082610E+01
0.11800000E+05 0.16822698E+04 0.13940269E+04 0.15852990E+08 0.12067699E+01
0.11900000E+05 0.16923438E+04 0.14041008E+04 0.16021715E+08 0.12052865E+01
0.12000000E+05 0.17025049E+04 0.14142621E+04 0.16191462E+08 0.12038114E+01
0.12100000E+05 0.17127434E+04 0.14245007E+04 0.16362220E+08 0.12023464E+01
0.12200000E+05 0.17230538E+04 0.14348109E+04 0.16534007E+08 0.12008926E+01

(continued overleaf )
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.12300000E+05 0.17334255E+04 0.14451826E+04 0.16706830E+08 0.11994509E+01
0.12400000E+05 0.17438518E+04 0.14556090E+04 0.16880696E+08 0.11980221E+01
0.12500000E+05 0.17543225E+04 0.14660797E+04 0.17055604E+08 0.11966078E+01
0.12600000E+05 0.17648302E+04 0.14765874E+04 0.17231558E+08 0.11952088E+01
0.12700000E+05 0.17753645E+04 0.14871216E+04 0.17408576E+08 0.11938261E+01
0.12800000E+05 0.17859159E+04 0.14976731E+04 0.17586636E+08 0.11924604E+01
0.12900000E+05 0.17964753E+04 0.15082324E+04 0.17765752E+08 0.11911131E+01
0.13000000E+05 0.18070315E+04 0.15187886E+04 0.17945930E+08 0.11897848E+01
0.13100000E+05 0.18175737E+04 0.15293311E+04 0.18127160E+08 0.11884763E+01
0.13200000E+05 0.18280938E+04 0.15398510E+04 0.18309448E+08 0.11871887E+01
0.13300000E+05 0.18385791E+04 0.15503362E+04 0.18492778E+08 0.11859229E+01
0.13400000E+05 0.18490181E+04 0.15607751E+04 0.18677158E+08 0.11846794E+01
0.13500000E+05 0.18593989E+04 0.15711560E+04 0.18862580E+08 0.11834592E+01
0.13600000E+05 0.18697114E+04 0.15814688E+04 0.19049038E+08 0.11822627E+01
0.13700000E+05 0.18799435E+04 0.15917007E+04 0.19236516E+08 0.11810911E+01
0.13800000E+05 0.18900818E+04 0.16018389E+04 0.19425020E+08 0.11799450E+01
0.13900000E+05 0.19001152E+04 0.16118726E+04 0.19614534E+08 0.11788248E+01
0.14000000E+05 0.19100284E+04 0.16217856E+04 0.19805040E+08 0.11777318E+01
0.14100000E+05 0.19198105E+04 0.16315676E+04 0.19996532E+08 0.11766663E+01
0.14200000E+05 0.19294475E+04 0.16412047E+04 0.20188996E+08 0.11756288E+01
0.14300000E+05 0.19389266E+04 0.16506838E+04 0.20382418E+08 0.11746203E+01
0.14400000E+05 0.19482312E+04 0.16599884E+04 0.20576780E+08 0.11736414E+01
0.14500000E+05 0.19573505E+04 0.16691077E+04 0.20772060E+08 0.11726928E+01
0.14600000E+05 0.19662683E+04 0.16780254E+04 0.20968244E+08 0.11717751E+01
0.14700000E+05 0.19749709E+04 0.16867283E+04 0.21165320E+08 0.11708887E+01
0.14800000E+05 0.19834408E+04 0.16951980E+04 0.21363240E+08 0.11700349E+01
0.14900000E+05 0.19916663E+04 0.17034233E+04 0.21561980E+08 0.11692139E+01
0.15000000E+05 0.19996300E+04 0.17113872E+04 0.21761556E+08 0.11684264E+01
0.15100000E+05 0.20081250E+04 0.17198821E+04 0.22037132E+08 0.11675946E+01
0.15200000E+05 0.20167510E+04 0.17285082E+04 0.22238388E+08 0.11667582E+01
0.15300000E+05 0.20251853E+04 0.17369426E+04 0.22440492E+08 0.11659483E+01
0.15400000E+05 0.20334258E+04 0.17451830E+04 0.22643420E+08 0.11651648E+01
0.15500000E+05 0.20414703E+04 0.17532275E+04 0.22847146E+08 0.11644069E+01
0.15600000E+05 0.20493164E+04 0.17610736E+04 0.23051700E+08 0.11636745E+01
0.15700000E+05 0.20569612E+04 0.17687184E+04 0.23257032E+08 0.11629671E+01
0.15800000E+05 0.20644036E+04 0.17761608E+04 0.23463090E+08 0.11622841E+01
0.15900000E+05 0.20716414E+04 0.17833987E+04 0.23669884E+08 0.11616255E+01
0.16000000E+05 0.20786724E+04 0.17904294E+04 0.23877400E+08 0.11609910E+01
0.16100000E+05 0.20854956E+04 0.17972529E+04 0.24085604E+08 0.11603795E+01
0.16200000E+05 0.20921089E+04 0.18038661E+04 0.24294480E+08 0.11597917E+01
0.16300000E+05 0.20985127E+04 0.18102698E+04 0.24504040E+08 0.11592265E+01
0.16400000E+05 0.21047021E+04 0.18164594E+04 0.24714196E+08 0.11586839E+01
0.16500000E+05 0.21106785E+04 0.18224358E+04 0.24924952E+08 0.11581634E+01
0.16600000E+05 0.21164409E+04 0.18281982E+04 0.25136332E+08 0.11576649E+01
0.16700000E+05 0.21219875E+04 0.18337449E+04 0.25348252E+08 0.11571879E+01
0.16800000E+05 0.21273167E+04 0.18390740E+04 0.25560700E+08 0.11567326E+01
0.16900000E+05 0.21324282E+04 0.18441854E+04 0.25773700E+08 0.11562982E+01
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.17000000E+05 0.21373223E+04 0.18490796E+04 0.25987168E+08 0.11558844E+01
0.17100000E+05 0.21419978E+04 0.18537551E+04 0.26201162E+08 0.11554912E+01
0.17200000E+05 0.21464529E+04 0.18582102E+04 0.26415596E+08 0.11551185E+01
0.17300000E+05 0.21506904E+04 0.18624478E+04 0.26630454E+08 0.11547655E+01
0.17400000E+05 0.21547083E+04 0.18664655E+04 0.26845708E+08 0.11544324E+01
0.17500000E+05 0.21585037E+04 0.18702610E+04 0.27061388E+08 0.11541190E+01
0.17600000E+05 0.21620813E+04 0.18738386E+04 0.27277426E+08 0.11538247E+01
0.17700000E+05 0.21654365E+04 0.18771938E+04 0.27493770E+08 0.11535498E+01
0.17800000E+05 0.21685754E+04 0.18803329E+04 0.27710502E+08 0.11532934E+01
0.17900000E+05 0.21714922E+04 0.18832495E+04 0.27927490E+08 0.11530560E+01
0.18000000E+05 0.21741934E+04 0.18859506E+04 0.28144780E+08 0.11528369E+01
0.18100000E+05 0.21766743E+04 0.18884316E+04 0.28362320E+08 0.11526361E+01
0.18200000E+05 0.21789365E+04 0.18906940E+04 0.28580112E+08 0.11524533E+01
0.18300000E+05 0.21809834E+04 0.18927407E+04 0.28798110E+08 0.11522886E+01
0.18400000E+05 0.21828127E+04 0.18945701E+04 0.29016292E+08 0.11521415E+01
0.18500000E+05 0.21844272E+04 0.18961846E+04 0.29234684E+08 0.11520119E+01
0.18600000E+05 0.21858271E+04 0.18975846E+04 0.29453160E+08 0.11518997E+01
0.18700000E+05 0.21870146E+04 0.18987720E+04 0.29671824E+08 0.11518048E+01
0.18800000E+05 0.21879932E+04 0.18997505E+04 0.29890568E+08 0.11517266E+01
0.18900000E+05 0.21887563E+04 0.19005137E+04 0.30109412E+08 0.11516657E+01
0.19000000E+05 0.21893145E+04 0.19010717E+04 0.30328316E+08 0.11516212E+01
0.19100000E+05 0.21896631E+04 0.19014204E+04 0.30547272E+08 0.11515933E+01
0.19200000E+05 0.21898088E+04 0.19015660E+04 0.30766260E+08 0.11515818E+01
0.19300000E+05 0.21897476E+04 0.19015049E+04 0.30985212E+08 0.11515867E+01
0.19400000E+05 0.21894888E+04 0.19012460E+04 0.31204188E+08 0.11516073E+01
0.19500000E+05 0.21890288E+04 0.19007861E+04 0.31423120E+08 0.11516439E+01
0.19600000E+05 0.21883704E+04 0.19001274E+04 0.31641994E+08 0.11516967E+01
0.19700000E+05 0.21875173E+04 0.18992747E+04 0.31860764E+08 0.11517646E+01
0.19800000E+05 0.21864709E+04 0.18982284E+04 0.32079480E+08 0.11518482E+01
0.19900000E+05 0.21852354E+04 0.18969928E+04 0.32298066E+08 0.11519471E+01
0.20000000E+05 0.21838110E+04 0.18955684E+04 0.32516512E+08 0.11520613E+01
0.20100000E+05 0.21822029E+04 0.18939602E+04 0.32734780E+08 0.11521904E+01
0.20200000E+05 0.21804136E+04 0.18921710E+04 0.32952954E+08 0.11523343E+01
0.20300000E+05 0.21784438E+04 0.18902009E+04 0.33170900E+08 0.11524932E+01
0.20400000E+05 0.21762983E+04 0.18880557E+04 0.33388640E+08 0.11526664E+01
0.20500000E+05 0.21739783E+04 0.18857356E+04 0.33606184E+08 0.11528542E+01
0.20600000E+05 0.21714915E+04 0.18832488E+04 0.33823392E+08 0.11530560E+01
0.20700000E+05 0.21688357E+04 0.18805930E+04 0.34040496E+08 0.11532723E+01
0.20800000E+05 0.21660203E+04 0.18777775E+04 0.34257176E+08 0.11535021E+01
0.20900000E+05 0.21630437E+04 0.18748009E+04 0.34473632E+08 0.11537458E+01
0.21000000E+05 0.21599111E+04 0.18716683E+04 0.34689768E+08 0.11540031E+01
0.21100000E+05 0.21566282E+04 0.18683856E+04 0.34905612E+08 0.11542736E+01
0.21200000E+05 0.21531956E+04 0.18649530E+04 0.35121148E+08 0.11545576E+01
0.21300000E+05 0.21496204E+04 0.18613776E+04 0.35336280E+08 0.11548545E+01
0.21400000E+05 0.21459045E+04 0.18576617E+04 0.35551028E+08 0.11551644E+01

(continued overleaf )
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.21500000E+05 0.21420549E+04 0.18538123E+04 0.35765400E+08 0.11554865E+01
0.21600000E+05 0.21380745E+04 0.18498318E+04 0.35979468E+08 0.11558210E+01
0.21700000E+05 0.21339656E+04 0.18457229E+04 0.36193064E+08 0.11561679E+01
0.21800000E+05 0.21297363E+04 0.18414935E+04 0.36406268E+08 0.11565267E+01
0.21900000E+05 0.21253875E+04 0.18371448E+04 0.36619016E+08 0.11568971E+01
0.22000000E+05 0.21209304E+04 0.18326879E+04 0.36831300E+08 0.11572785E+01
0.22100000E+05 0.21163604E+04 0.18281177E+04 0.37043148E+08 0.11576718E+01
0.22200000E+05 0.21116919E+04 0.18234492E+04 0.37254544E+08 0.11580756E+01
0.22300000E+05 0.21069277E+04 0.18186849E+04 0.37465520E+08 0.11584897E+01
0.22400000E+05 0.21020669E+04 0.18138240E+04 0.37675940E+08 0.11589144E+01
0.22500000E+05 0.20971216E+04 0.18088790E+04 0.37885924E+08 0.11593487E+01
0.22600000E+05 0.20920935E+04 0.18038506E+04 0.38095368E+08 0.11597931E+01
0.22700000E+05 0.20869905E+04 0.17987477E+04 0.38304320E+08 0.11602464E+01
0.22800000E+05 0.20818206E+04 0.17935779E+04 0.38512788E+08 0.11607082E+01
0.22900000E+05 0.20765798E+04 0.17883370E+04 0.38720696E+08 0.11611792E+01
0.23000000E+05 0.20712876E+04 0.17830447E+04 0.38928104E+08 0.11616577E+01
0.23100000E+05 0.20659355E+04 0.17776926E+04 0.39134928E+08 0.11621444E+01
0.23200000E+05 0.20605430E+04 0.17723000E+04 0.39341276E+08 0.11626377E+01
0.23300000E+05 0.20551060E+04 0.17668632E+04 0.39547056E+08 0.11631382E+01
0.23400000E+05 0.20496389E+04 0.17613960E+04 0.39752264E+08 0.11636446E+01
0.23500000E+05 0.20441437E+04 0.17559009E+04 0.39957044E+08 0.11641567E+01
0.23600000E+05 0.20386259E+04 0.17503831E+04 0.40161096E+08 0.11646742E+01
0.23700000E+05 0.20330973E+04 0.17448544E+04 0.40364712E+08 0.11651959E+01
0.23800000E+05 0.20275564E+04 0.17393137E+04 0.40567708E+08 0.11657221E+01
0.23900000E+05 0.20220193E+04 0.17337765E+04 0.40770240E+08 0.11662514E+01
0.24000000E+05 0.20164855E+04 0.17282427E+04 0.40972092E+08 0.11667838E+01
0.24100000E+05 0.20109689E+04 0.17227261E+04 0.41173504E+08 0.11673179E+01
0.24200000E+05 0.20054752E+04 0.17172323E+04 0.41374348E+08 0.11678532E+01
0.24300000E+05 0.20000022E+04 0.17117595E+04 0.41574560E+08 0.11683897E+01
0.24400000E+05 0.19945696E+04 0.17063268E+04 0.41774304E+08 0.11689259E+01
0.24500000E+05 0.19891770E+04 0.17009343E+04 0.41973496E+08 0.11694614E+01
0.24600000E+05 0.19838419E+04 0.16955991E+04 0.42172156E+08 0.11699947E+01
0.24700000E+05 0.19785577E+04 0.16903149E+04 0.42370280E+08 0.11705261E+01
0.24800000E+05 0.19733450E+04 0.16851022E+04 0.42567908E+08 0.11710536E+01
0.24900000E+05 0.19682056E+04 0.16799626E+04 0.42764992E+08 0.11715770E+01
0.25000000E+05 0.19631481E+04 0.16749052E+04 0.42961508E+08 0.11720951E+01
0.25100000E+05 0.19515212E+04 0.16632784E+04 0.43156200E+08 0.11732980E+01
0.25200000E+05 0.19452184E+04 0.16569756E+04 0.43351040E+08 0.11739572E+01
0.25300000E+05 0.19389169E+04 0.16506740E+04 0.43545276E+08 0.11746213E+01
0.25400000E+05 0.19326165E+04 0.16443738E+04 0.43738840E+08 0.11752902E+01
0.25500000E+05 0.19263218E+04 0.16380790E+04 0.43931752E+08 0.11759639E+01
0.25600000E+05 0.19200292E+04 0.16317864E+04 0.44124096E+08 0.11766425E+01
0.25700000E+05 0.19137419E+04 0.16254991E+04 0.44315772E+08 0.11773257E+01
0.25800000E+05 0.19074607E+04 0.16192179E+04 0.44506836E+08 0.11780136E+01
0.25900000E+05 0.19011854E+04 0.16129426E+04 0.44697252E+08 0.11787062E+01
0.26000000E+05 0.18949189E+04 0.16066763E+04 0.44887096E+08 0.11794031E+01
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Table 2.1 (continued)

T [K] cp [J/(kg K)] cv [J/(kg K)] h [J/kg] 𝛾

0.26100000E+05 0.18886595E+04 0.16004167E+04 0.45076232E+08 0.11801049E+01
0.26200000E+05 0.18824092E+04 0.15941665E+04 0.45264788E+08 0.11808109E+01
0.26300000E+05 0.18761699E+04 0.15879272E+04 0.45452740E+08 0.11815213E+01
0.26400000E+05 0.18699392E+04 0.15816964E+04 0.45640052E+08 0.11822364E+01
0.26500000E+05 0.18637207E+04 0.15754779E+04 0.45826704E+08 0.11829557E+01
0.26600000E+05 0.18575154E+04 0.15692726E+04 0.46012812E+08 0.11836792E+01
0.26700000E+05 0.18513214E+04 0.15630786E+04 0.46198256E+08 0.11844071E+01
0.26800000E+05 0.18451412E+04 0.15568983E+04 0.46383056E+08 0.11851392E+01
0.26900000E+05 0.18389761E+04 0.15507333E+04 0.46567256E+08 0.11858752E+01
0.27000000E+05 0.18328248E+04 0.15445819E+04 0.46750836E+08 0.11866155E+01
0.27100000E+05 0.18266890E+04 0.15384462E+04 0.46933836E+08 0.11873597E+01
0.27200000E+05 0.18205708E+04 0.15323280E+04 0.47116172E+08 0.11881077E+01
0.27300000E+05 0.18144691E+04 0.15262263E+04 0.47297956E+08 0.11888598E+01
0.27400000E+05 0.18083838E+04 0.15201411E+04 0.47479084E+08 0.11896157E+01
0.27500000E+05 0.18023179E+04 0.15140752E+04 0.47659608E+08 0.11903754E+01
0.27600000E+05 0.17962703E+04 0.15080275E+04 0.47839564E+08 0.11911390E+01
0.27700000E+05 0.17902415E+04 0.15019988E+04 0.48018860E+08 0.11919061E+01
0.27800000E+05 0.17842339E+04 0.14959911E+04 0.48197604E+08 0.11926768E+01
0.27900000E+05 0.17782458E+04 0.14900032E+04 0.48375700E+08 0.11934510E+01
0.28000000E+05 0.17722803E+04 0.14840375E+04 0.48553232E+08 0.11942288E+01
0.28100000E+05 0.17663357E+04 0.14780929E+04 0.48730196E+08 0.11950099E+01
0.28200000E+05 0.17604122E+04 0.14721693E+04 0.48906508E+08 0.11957947E+01
0.28300000E+05 0.17545134E+04 0.14662706E+04 0.49082272E+08 0.11965823E+01
0.28400000E+05 0.17486359E+04 0.14603929E+04 0.49257392E+08 0.11973735E+01
0.28500000E+05 0.17427826E+04 0.14545398E+04 0.49431964E+08 0.11981677E+01
0.28600000E+05 0.17369551E+04 0.14487123E+04 0.49605976E+08 0.11989648E+01
0.28700000E+05 0.17311506E+04 0.14429078E+04 0.49779376E+08 0.11997652E+01
0.28800000E+05 0.17253717E+04 0.14371289E+04 0.49952188E+08 0.12005686E+01
0.28900000E+05 0.17196196E+04 0.14313768E+04 0.50124440E+08 0.12013745E+01
0.29000000E+05 0.17138918E+04 0.14256492E+04 0.50296120E+08 0.12021835E+01
0.29100000E+05 0.17081918E+04 0.14199489E+04 0.50467240E+08 0.12029953E+01
0.29200000E+05 0.17025183E+04 0.14142755E+04 0.50637756E+08 0.12038095E+01
0.29300000E+05 0.16968719E+04 0.14086292E+04 0.50807736E+08 0.12046264E+01
0.29400000E+05 0.16912532E+04 0.14030103E+04 0.50977128E+08 0.12054460E+01
0.29500000E+05 0.16856633E+04 0.13974207E+04 0.51145996E+08 0.12062676E+01
0.29600000E+05 0.16801012E+04 0.13918584E+04 0.51314256E+08 0.12070920E+01
0.29700000E+05 0.16745691E+04 0.13863262E+04 0.51482020E+08 0.12079185E+01
0.29800000E+05 0.16690642E+04 0.13808215E+04 0.51649192E+08 0.12087473E+01
0.29900000E+05 0.16635901E+04 0.13753473E+04 0.51815848E+08 0.12095782E+01
0.30000000E+05 0.16581455E+04 0.13699026E+04 0.51981904E+08 0.12104113E+01

The plots showing the variations of specific heat at constant pressure, cp; specific heat
at constant volume, cv; the enthalpy h; and the ratio of specific heats 𝛾 with temperature
are given in Figures 2.3–2.6, respectively.
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Program listing

program cpcvg
open(unit=80,file=’cpcvg.txt’,form=’formatted’)
write(80,*) ’#Temperature(K) cp(J/kg.K) cv(J/kg.K) h(J/kg) gamma’

c atmosphere condition
cn20 = 0.7656
co20 = 0.2344

c
do i=3,300

tkel=float(i*100)
call equair(tkel,cn20,co20,hmx,cpmx,cvmx,gamma)
write(80,100) tkel,cpmx,cvmx,hmx,gamma

end do
100 format(5E16.8)

close(unit=80)
stop
end

c
subroutine equair(tkel,cn20,co20,hmx,cpmx,cvmx,gamma)

c=======================================================================
c s-index : 1 2 3 4 5 6 7 8 9 10 11
c species : N2 O2 N O NO NO+ e- N+ O+ N2+ O2+
c----------------------------------------------------------------------
c inputs : tkel = temp.(K)
c cn20, co20 = free-stream composition (mass fraction)
c----------------------------------------------------------------------
c outputs : hmx = enthalpy of mixture(j/kg)
c cpmx = enthalpy of mixture(j/kg)
c ci(i) = mass fraction of i-th species (i=1-11)
c hi(i) = enthalpy of i-th species (i=1-11)
c cpi(i) = specific enthalpy of i-th species (i=1-11)
c----------------------------------------------------------------------
c original code nasa tp2792
c database for curve fit constants from NASA-TM-102602
c modified on 14feb2014 for High Enthalpy Book Example
c=======================================================================

dimension ci(11),cpi(11),hi(11)
dimension aa(11,7,5),wm(11)

c (0) set functions and species constants.
c----------------------------------------------------------------------
c functions. (cp,h)
c----------------------------------------------------------------------

cpbyr(i,k,t)= aa(i,1,k) +aa(i,2,k)*t
1 +aa(i,3,k)*t**2 +aa(i,4,k)*t**3
2 +aa(i,5,k)*t**4
hbyrt(i,k,t)= aa(i,1,k) +aa(i,2,k)*t /2.

1 +aa(i,3,k)*t**2/3. +aa(i,4,k)*t**3/4.
2 +aa(i,5,k)*t**4/5. +aa(i,6,k)/t

c----------------------------------------------------------------------
c coefficients of the approximating polynomials
c for the thermodynamic functions (11 species model)
c divided into five ranges : 300- 1000k, 1000- 6000k, 6000-15000k
c ,15000-25000k,25000-30000k.
c----------------------------------------------------------------------
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data ((aa(i,1,l),l=1,5),i=1,11)/
1 0.36748e+01, 0.32125e+01, 0.31811e+01, 0.96377e+01,-0.51681e+01,
2 0.36146e+01, 0.35949e+01, 0.38599e+01, 0.34867e+01, 0.39620e+01,
3 0.25031e+01, 0.24820e+01, 0.27480e+01,-0.12280e+01, 0.15520e+02,
4 0.28236e+01, 0.25421e+01, 0.25460e+01,-0.97871e-02, 0.16428e+02,
5 0.35887e+01, 0.32047e+01, 0.38543e+01, 0.43309e+01, 0.23507e+01,
6 0.35294e+01, 0.32152e+01, 0.26896e+01, 0.59346e+01,-0.51595e+01,
7 0.25000e+01, 0.25000e+01, 0.25000e+01, 0.25000e+01, 0.25000e+01,
8 0.27270e+01, 0.27270e+01, 0.24990e+01, 0.23856e+01, 0.22286e+01,
9 0.24985e+01, 0.25060e+01, 0.29440e+01, 0.12784e+01, 0.12889e+01,
0 0.35498e+01, 0.33970e+01, 0.33780e+01, 0.43942e+01, 0.39493e+01,
1 0.32430e+01, 0.32430e+01, 0.51690e+01,-0.28017e+00, 0.20445e+01/
data ((aa(i,2,l),l=1,5),i=1,11)/
1 -0.12081e-02, 0.10137e-02, 0.89745e-03,-0.25728e-02, 0.23337e-02,
2 -0.18598e-02, 0.75213e-03, 0.32510e-03, 0.52384e-03, 0.39446e-03,
3 -0.21800e-04, 0.69258e-04,-0.39090e-03, 0.19268e-02,-0.38858e-02,
4 -0.89478e-03,-0.27551e-04,-0.59520e-04, 0.12450e-02,-0.39313e-02,
5 -0.12479e-02, 0.12705e-02, 0.23409e-03,-0.58086e-04, 0.58643e-03,
6 -0.30342e-03, 0.99742e-03, 0.13796e-02,-0.13178e-02, 0.26290e-02,
7 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,
8 -0.28200e-03,-0.28200e-03,-0.37250e-05, 0.83495e-04, 0.12458e-03,
9 0.11411e-04,-0.14464e-04,-0.41080e-03, 0.40866e-03, 0.43343e-03,
0 -0.60810e-03, 0.45250e-03, 0.86290e-03, 0.18868e-03, 0.36795e-03,
1 0.11740e-02, 0.11740e-02,-0.86200e-03, 0.16674e-02, 0.10313e-02/
data ((aa(i,3,l),l=1,5),i=1,11)/
1 0.23240e-05,-0.30467e-06,-0.20216e-06, 0.33020e-06,-0.12953e-06,
2 0.70814e-05,-0.18732e-06,-0.92131e-08,-0.39123e-07,-0.29506e-07,
3 0.54205e-07,-0.63065e-07, 0.13380e-06,-0.24370e-06, 0.32288e-06,
4 0.83060e-06,-0.31028e-08, 0.27010e-07,-0.16154e-06, 0.29840e-06,
5 0.39786e-05,-0.46603e-06,-0.21354e-07, 0.28059e-07,-0.31316e-07,
6 0.38544e-06,-0.29030e-06,-0.33985e-06, 0.23297e-06,-0.16254e-06,
7 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,
8 0.11050e-06, 0.11050e-06, 0.11470e-07,-0.58815e-08,-0.87636e-08,
9 -0.29761e-07, 0.12446e-07, 0.91560e-07,-0.21731e-07,-0.26758e-07,
0 0.14690e-05, 0.12720e-06,-0.12760e-06,-0.71272e-08,-0.26910e-07,
1 -0.39000e-06,-0.39000e-06, 0.20410e-06,-0.12107e-06,-0.74046e-07/
data ((aa(i,4,l),l=1,5),i=1,11)/
1 -0.63218e-09, 0.41091e-10, 0.18266e-10,-0.14315e-10, 0.27872e-11,
2 -0.68070e-08, 0.27913e-10,-0.78684e-12, 0.10094e-11, 0.73975e-12,
3 -0.56476e-10, 0.18387e-10,-0.11910e-10, 0.12193e-10,-0.96053e-11,
4 -0.16837e-09, 0.45511e-11,-0.27980e-11, 0.80380e-11,-0.81613e-11,
5 -0.28651e-08, 0.75007e-10, 0.16689e-11,-0.15694e-11, 0.60495e-12,
6 0.10519e-08, 0.36925e-10, 0.33776e-10,-0.11733e-10, 0.39381e-11,
7 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,
8 -0.15510e-10,-0.15510e-10,-0.11020e-11, 0.18850e-12, 0.26204e-12,
9 0.32247e-10,-0.46858e-11,-0.58480e-11, 0.33252e-12, 0.62159e-12,
0 -0.65091e-10,-0.38790e-10, 0.80870e-11,-0.17511e-12, 0.67110e-12,
1 0.54370e-10, 0.54370e-10,-0.13000e-10, 0.32113e-11, 0.19257e-11/
data ((aa(i,5,l),l=1,5),i=1,11)/
1 -0.22577e-12,-0.20170e-14,-0.50334e-15, 0.20333e-15,-0.21360e-16,
2 0.21628e-11,-0.15774e-14, 0.29426e-16,-0.88718e-17,-0.64209e-17,
3 0.20999e-13,-0.11747e-14, 0.33690e-15,-0.19918e-15, 0.95472e-16,
4 -0.73205e-13,-0.43681e-15, 0.93800e-16,-0.12624e-15, 0.75004e-16,
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5 0.63015e-12,-0.42314e-14,-0.49070e-16, 0.24104e-16,-0.40557e-17,
6 -0.72777e-12,-0.15994e-14,-0.10427e-14, 0.18402e-15,-0.34311e-16,
7 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,
8 0.78470e-15, 0.78470e-15, 0.30780e-16,-0.16120e-17,-0.21674e-17,
9 -0.12376e-13, 0.65549e-15, 0.11900e-15, 0.63160e-18,-0.45131e-17,
0 -0.35649e-12, 0.24590e-14,-0.18800e-15, 0.67176e-17,-0.58244e-17,
1 -0.23920e-14,-0.23920e-14, 0.24940e-15,-0.28349e-16,-0.17461e-16/
data ((aa(i,6,l),l=1,5),i=1,11)/

1 -0.10430e+04,-0.10430e+04,-0.10430e+04,-0.10430e+04,-0.10430e+04,
2 -0.10440e+04,-0.10440e+04,-0.10440e+04,-0.10440e+04,-0.10440e+04,
3 0.56130e+05, 0.56130e+05, 0.56130e+05, 0.56130e+05, 0.56130e+05,
4 0.29150e+05, 0.29150e+05, 0.29150e+05, 0.29150e+05, 0.29150e+05,
5 0.97640e+04, 0.97640e+04, 0.97640e+04, 0.97640e+04, 0.97640e+04,
6 0.11840e+06, 0.11840e+06, 0.11840e+06, 0.11840e+06, 0.11840e+06,
7 -0.74542e+03,-0.74542e+03,-0.74542e+03,-0.74542e+03,-0.74542e+03,
8 0.22540e+06, 0.22540e+06, 0.22540e+06, 0.22540e+06, 0.22540e+06,
9 0.18790e+06, 0.18790e+06, 0.18790e+06, 0.18790e+06, 0.18790e+06,
0 0.18260e+06, 0.18260e+06, 0.18260e+06, 0.18260e+06, 0.18260e+06,
1 0.14000e+06, 0.14000e+06, 0.14000e+06, 0.14000e+06, 0.14000e+06/
data ((aa(i,7,l),l=1,5),i=1,11)/

1 0.23580e+01, 0.43661e+01, 0.46264e+01,-0.37587e+02, 0.66217e+02,
2 0.43628e+01, 0.38353e+01, 0.23789e+01, 0.48179e+01, 0.13985e+01,
3 0.41676e+01, 0.42618e+01, 0.28720e+01, 0.28469e+02,-0.88120e+02,
4 0.35027e+01, 0.49203e+01, 0.50490e+01, 0.21711e+02,-0.94358e+02,
5 0.51497e+01, 0.66867e+01, 0.31541e+01, 0.10735e+00, 0.14026e+02,
6 0.37852e+01, 0.51508e+01, 0.83904e+01,-0.11079e+02, 0.65896e+02,
7 -0.11734e+02,-0.11734e+02,-0.11733e+02,-0.11733e+02,-0.11733e+02,
8 0.36450e+01, 0.36450e+01, 0.49500e+01, 0.56462e+01, 0.67811e+01,
9 0.43864e+01, 0.43480e+01, 0.17500e+01, 0.12761e+02, 0.12604e+02,
0 0.36535e+01, 0.42050e+01, 0.40730e+01,-0.23693e+01, 0.65472e+00,
1 0.59250e+01, 0.59250e+01,-0.59260e+01, 0.31013e+02, 0.14310e+02/

c----------------------------------------------------------------------
c * molecular weight

data wm / 28.,32.,14.,16.,30.,30.,0.0005486,14.,16.,28.,32./
c----------------------------------------------------------------------
c (1) set constants.

runiv = 8.31441
c (2) choose range for thermodynamic func.

k=1
if(tkel .gt. 1000.) k=2
if(tkel .gt. 6000.) k=3
if(tkel .gt. 15000.) k=4
if(tkel .gt. 25000.) k=5

c (3) compute cp(i),h(i)
do 300 i=1,11
cpi(i)= cpbyr(i,k,tkel)*(runiv*1000./wm(i))
hi(i)= hbyrt(i,k,tkel)*(runiv*1000./wm(i))*tkel

300 continue
c (4) mol/mass fraction

do 400 i=1,11
ci(i) = 0.

400 continue
ci(1) = cn20
ci(2) = co20
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c (5) cp & h of mixture
hmx=0.0

cpmx=0.0
cvmx=0.0

do 500 i=1,11
cpmx=cpmx+cpi(i)*ci(i)
cvmx=cvmx+(cpi(i)-runiv*1000./wm(i))*ci(i)
hmx= hmx+ hi(i)*ci(i)

500 continue
gamma = cpmx/cvmx

c
return
end ◾

2.6 Summary

The energy concept plays an important role in the study of compressible flows. In
other words, the study of thermodynamics that deals with energy (and entropy) is an
essential component in the study of compressible flow.

Fluid mechanics of perfect fluids is an extension of equilibrium thermodynamics to
moving fluids. The kinetic energy of the fluid has to be considered in addition to the
internal energy that the fluid possesses even when at rest.

Fluid mechanics of real fluids is the science of fluid flow where the transport pro-
cesses of momentum and heat (energy) are of primary interest.

The difference between the static and stagnation temperatures is not significant in
low-speed flows. But in high-speed flows, the difference between the static and stag-
nation temperature can become substantial.

The first law of thermodynamics states that “the heat added minus work done by
the system is equal to the change in the internal energy of the system,” that is,

𝛿Q − 𝛿W = dU

Adiabatic process – a process in which no heat is added to or taken away from the
system.

Reversible process – a process that can be reversed without leaving any trace on the
surroundings, that is, both the system and the surroundings are returned to their
initial states at the end of the reverse process.

Isentropic process – a process that is adiabatic and reversible.

For an open system (for example, pipe flow), there is always a term (U + p 𝕍 )
instead of just U. This term is referred to as enthalpy or heat function H given by

H = U + p 𝕍

The mass that enters or leaves an open system has kinetic energy, whereas there is
no mass transfer possible across the boundaries of a closed system.

The mass can enter and leave an open system at different levels of potential energy.
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Open systems are capable of delivering work continuously, because, in the system,
the medium that transforms energy is continuously replaced. This useful work, which
a machine continuously delivers, is called the shaft work.

The energy equation for an open system is

H1 +
m
2

V2
1 + m g z1 = H2 +

m
2

V2
2 + m g z2 + Ws − Q12

This equation is universally valid. This is the expression of the first law of thermody-
namics for any open system.

In general,

h + V2

2
= h0 = constant

For a closed system,
Q12 − W12 = U2 − U1

The entropy is defined as

ds =
𝛿qrev

T

An alternative and probably more lucid relation is

ds =
𝛿q

T
+ dsirrev

This applies in general to all processes. It states that the change in entropy during
any process is equal to the actual heat added, 𝛿q; divided by the temperature, 𝛿q∕T;
plus a contribution from the irreversible dissipative phenomena of viscosity, thermal
conductivity, and mass diffusion occurring within the system, dsirrev. These dissipative
phenomena always cause increase of entropy, that is,

dsirrev ≥ 0

The equal sign in the inequality denotes a reversible process where, by definition, the
above dissipative phenomena are absent.

For adiabatic process, 𝛿q = 0, and hence,

ds ≥ 0

If ds > 0, the process is called an irreversible process, and when ds = 0, the process
is called a reversible process. A reversible and adiabatic process is called an isentropic
process.

The equation pv = RT or p∕𝜌 = RT is called thermal equation of state, where p,
T , and v(1∕𝜌) are thermal properties and R is the gas constant. Any relation between
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the calorical properties, u, h, and s, and any two thermal properties is called calorical
equation of state.

If heat is added at constant volume, it only raises the internal energy.
If heat is added at constant pressure, it not only increases the internal energy but

also does some external work, that is, it increases the enthalpy.
If the change is adiabatic, the change in enthalpy is equal to external work v dp.
A gas is said to be thermally perfect when its internal energy and enthalpy are func-

tions of temperature alone.
A gas with constant cp and cv is called a calorically perfect gas. Therefore, a perfect

gas should be thermally as well as calorically perfect.
Entropy is defined by the relation (for a reversible process)

𝛿q = T ds

For the most simple molecular model, the kinetic theory of gases gives the specific
heats ratio, 𝛾 , as

𝛾 = n + 2
n

where n is the number of degrees of freedom of the gas molecules.
For monatomic gases with n = 3,

𝛾 = 3 + 2
3

= 1.67

Diatomic gases, such as oxygen and nitrogen, have n = 5; thus

𝛾 = 5 + 2
5

= 1.4

Gases with extremely complex molecules, such as freon and gaseous compounds of
uranium, have large values of n, resulting in values of 𝛾 only slightly greater than
unity. Thus, the value of specific heats ratio 𝛾 varies from 1 to 1.67, depending on the
molecular nature of the gas, that is,

1 ≤ 𝛾 ≤ 1.67

𝛾

𝛾 − 1
p

𝜌
+ V2

2
= constant

is the form of energy equation commonly used in gas dynamics. This is popularly
known as compressible Bernoulli’s equation for isentropic flows.

An adiabatic and reversible process is called isentropic process.
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The ratio of total to static temperature at a point in an isentropic flow field as a
function of the flow Mach number M is

T0

T
= 1 + 𝛾 − 1

2
M2

The ratio of total to static pressure in terms of M is

p0

p
=
(

1 + 𝛾 − 1
2

M2

)𝛾∕(𝛾−1)

The ratio of total to static density in terms of M is

𝜌0

𝜌
=
(

1 + 𝛾 − 1
2

M2

)1∕(𝛾−1)

The entropy change can be expressed as

s02 − s01 = R ln

(
p01

p02

)

This implies that the entropy changes only when there are losses in pressure. It does
not change with velocity, and hence, there is nothing like static and stagnation entropy.

The following are the limitations to treat air as a perfect gas, obeying both thermal
state equation and calorical state equations.

• When the temperature is less than 500 K, air can be treated as a perfect gas and the
ratio of specific heats, 𝛾 , takes a constant value of 1.4.

• When the temperature lies between 500 and 2000 K, air is only thermally perfect,
and the state equation p = 𝜌 RT is valid, but cp and cv become functions of tempera-
ture, cp = cp(T) and cv = cv(T). Even though cp and cv are functions of temperature,
their ratio 𝛾 continues to be independent of temperature. That is, cp and cv vary with
temperature in such a manner that their ratio continues to be the same constant as
in temperatures below 500 K.

• For temperatures more than 2000 K, air becomes both thermally and calorically
imperfect. That is, cp, cv, as well as 𝛾 become functions of temperature.

Exercise Problems

2.1 Oxygen gas is heated from 25 to 125∘C. Determine the increase in its internal
energy and enthalpy.
[Answer: Δu = 64,950 J/(kg K), Δh = 90,930 J/(kg K)]
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2.2 Air enters a compressor at 100 kPa and 1.175 kg∕m3 and exits at 500 kPa and
5.875 kg∕m3. Determine the enthalpy difference between the outlet and inlet
states.
[Answer: 0]

2.3 Air undergoes a change of state isentropically from 300 K and 110 kPa to a
final pressure of 550 kPa. Assuming ideal gas behavior, determine the change
in enthalpy.
[Answer: 176.19 kJ/kg]

2.4 If the entropy of a gas of volume 5.0 L, initially at 400 K and 1.12 bar, goes up
by 0.787 J/(K mol), what is the final volume of the gas?
[Answer: 8.772 L]

2.5 At a temperature of 30∘C, 0.5 mol of an ideal gas is expanded isothermally and
reversibly from 10 to 20 L. Determine the heat transfer and work associated
with this process.
[Answer: 873.5 J, −873.5 J]

2.6 Find the work required to lift a mass of 80 kg by 15 m above the ground level.
[Answer: 11,772 J]

2.7 Describe the internal energy change and work done when a spring is (a) com-
pressed and (b) expanded.
[Answer: (a) W > 0, (b) W < 0]

2.8 Calculate the internal energy of 1 mol of argon at 300 K. Assume the atoms
behave as an ideal gas.
[Answer: 3741.3 J/mol]

2.9 Calculate the internal energy of 1 mol of hydrogen at 300 K. Assume the
molecules behave as an ideal gas.
[Answer: 6235.5 J/mol]

2.10 A gas expands against a constant external pressure and does 25 kJ of expansion
work on the surroundings. During the process, 60 kJ of heat is absorbed by the
system. Determine the changes in enthalpy and internal energy of the gas.
[Answer: ΔH = 60 kJ, ΔU = 35 kJ]

2.11 A 100 L vessel, containing 6 mol of hydrogen gas at 2 atm, is cooled to 203 K.
Assuming the gas behaves ideally, calculate the changes in internal energy and
enthalpy associated with this cooling process.
[Answer: ΔU = −25.346 kJ, ΔH = −35.484 kJ]
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2.12 Argon gas of volume 200 L, at 140 kPa and 10∘C, undergoes a polytropic pro-
cess leading to 700 kPa and 180∘C. Find the heat transfer associated with this
process.
[Answer: −15.637 kJ]

2.13 Unit mass of nitrogen is heated in an isobaric process from T1 = 300 K to
T2 = 1000 K. Calculate the enthalpy change during this process, treating nitro-
gen as a perfect gas.
[Answer: 727.475 kJ]

2.14 Air in a cylinder changes state from 101 kPa and 310 K to a pressure of
1100 kPa according to the process

pv1.32 = constant

Determine the entropy change associated with this process. Assume air to be
an ideal gas with cp = 1004 J∕(kg K) and 𝛾 = 1.4.
[Answer: −103.8 J/(kg K)]
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3
Wave Propagation

3.1 Introduction

We know that in incompressible flows, the fluid particles will be able to sense the
presence of a body before actually reaching it. This fact suggests that a signaling
mechanism exists, whereby the fluid particles can be informed, in advance, about the
presence of a body ahead of them. The velocity of propagation of this signal must
be apparently greater than the fluid velocity, because the flow is able to adjust to the
presence of a body before reaching it. On the other hand, if the fluid particles were
moving faster than the signal waves as in the case of supersonic flows, the fluid would
not be able to sense the body before actually reaching it and abrupt changes in velocity
and other properties would take place.

An understanding of the mechanism by which the signal waves are propagating
through fluid medium along with an expression for the velocity of propagation of
the waves will be extremely useful in deriving significant conclusions concerning the
fundamental differences between incompressible and compressible flows.

When a fluid medium is allowed to vary its density, the consequence is that the fluid
elements will be able to occupy varying volumes in space. This possibility means that a
set of fluid elements can spread into a larger region of space without requiring a simul-
taneous shift to be made to all fluid elements in the flow field, as would be required
in the case of incompressible flow, in order to keep the density constant. From studies
on physics, we know that a small shift of fluid elements in compressible media will
induce in due course similar small movements in adjacent elements, and in this way,
a disturbance, referred to as an acoustic wave, propagates at a relatively high speed
through the medium. Furthermore, in incompressible flows, these waves propagate
with infinitely large velocity; in other words, adjustments take place instantaneously
throughout the flow, and so in the conventional sense, there are no acoustic or elastic
waves to be considered. With the introduction of compressibility, we thus permit the
possibility of elastic waves having a finite velocity, and the magnitude of this wave
velocity is of great importance in compressible flow theory.
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3.2 Velocity of Sound

A sound wave is a weak compression wave across which only infinitesimal changes in
flow properties occur, that is, across these waves there will be only infinitesimal pres-
sure variations. In the ensuing chapters, we shall study waves where comparatively
large pressure variation occurs over a very narrow front. Such waves are called shock
waves, the flow process across them is nonisentropic and move relative to the fluid
at speeds that exceed the speed of sound. At this stage, one may think of the sound
waves as limiting cases of shock waves where the change in pressure across the wave
becomes infinitesimal.

From Equation (1.16), we have the speed of sound as a =
√
𝛾RT , where T is the

static temperature of the medium in absolute unit. The speed of sound in perfect gas
may be computed by employing Equation (1.16) and for the other fluids by employing
Equation (1.12).

3.3 Subsonic and Supersonic Flows

The velocity of sound is used as the limiting value for differentiating the subsonic
flow from the supersonic flow. Flows with velocity more than the speed of sound are
called supersonic flows, and those with velocities less than the speed of sound are
called subsonic flows. Flows with velocity close to the speed of sound are classified
under a special category called transonic flows.

We saw the propagation of disturbance waves in flow fields with velocities from
zero level to a level greater than the speed of sound and that these disturbances will
propagate along a ‘Mach-cone’. For supersonic flow over two-dimensional objects,
we will have a ‘Mach-wedge’ instead of Mach-cone. The angle 𝜇 for such waves is
measured in a counterclockwise manner from an axis taken parallel to the direction
of freestream as shown in Figure 3.1.

For an observer looking in the direction of flow toward the disturbance, the
wave to his\her left is called left-running wave and the wave to his\her right is
called right-running wave (Figure 3.1). Usually, the disturbance arises at a solid
boundary where the fluid, having arrived supersonically without prior warning

x

M > 1

+μ

– μ

Right-running wave

Disturbance Left-running wave

y

Figure 3.1 Waves in supersonic flows.
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through pressure or sound signals, is made to undergo a change in direction, thus
initiating a disturbance at the boundary that propagates along the Mach waves.

For historical interest, we should mention that Newton was the first to calculate the
propagation speed of pressure waves. On the basis of the assumed isothermal process
in a perfect gas, he found the speed of propagation of sound to be equal to the square
root of the ratio of the pressure to the corresponding density involved in the process,
that is,

a =
√

p

𝜌

Because the science of thermodynamics was not known at Newton’s time, the 117%
difference between his theory and experiment was never justified.

Nearly a century later, Marquis de Laplace rectified Newton’s calculation. The
basic difference between Laplace’s theory and Newton’s theory is that the former
considered an adiabatic process for propagation of pressure waves. This is fully
justified because the compressions taking place in the propagation of pressure waves
produce a very small temperature gradient, and hence, it is not possible for heat
due to compression to be transferred to the surrounding region. The correction
by Laplace from adiabatic process model multiplied Newton’s formula by

√
𝛾 .

The correct expression for speed of sound is a =
√
𝛾RT , which is the same as

Equation (1.16).

Example 3.1 Find the error in the speed of sound in air calculated with Newton’s
formula instead of the correct relation (Equation (1.16)), when (a) p = 1 atm, T =
15∘C; (b) p = 1 atm, T = 30∘C; and (c) p = 10 atm, T = 300 K.

Solution

(a) Given p = 101,325 Pa and T = 15 + 273.15 = 288.15 K.
The density is

𝜌=
p

RT

= 101,325
287 × 288.15

= 1.225 kg∕m3

The speed of sound by Newton’s relation is

aNewton =
√

p

𝜌

=
√

101,325
1.225

= 287.60 m/s
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By Equation (1.16),

aisentropic =
√
𝛾RT

=
√

1.4 × 287 × 288.15

= 340.26 m/s

The error is

Error =
aisentropic − aNewton

aisentropic

= 340.26 − 287.60
340.26

= 0.1548

= 15.48%

(b) Given p = 101,325 Pa and T = 30 + 273.15 = 303.15 K. Therefore,

𝜌=
p

RT

= 101,325
287 × 303.15

= 1.165 kg∕m3

The speed of sound by Newton’s relation is

aNewton =
√

p

𝜌

=
√

101,325
1.165

= 294.91 m/s

By Equation (1.16),

aisentropic =
√
𝛾RT

=
√

1.4 × 287 × 303.15

= 349.01 m/s

The error is

Error =
aisentropic − aNewton

aisentropic

= 349.01 − 294.91
349.01

= 0.1550

= 15.5%
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(c) Given p = 10 × 101,325 Pa and T = 300 K. Therefore,

𝜌=
p

RT

= 10 × 101,325
287 × 300

= 11.77 kg∕m3

The speed of sound by Newton’s relation is

aNewton =
√

p

𝜌

=
√

10 × 101,325
11.77

= 293.41 m/s

By Equation (1.16)

aisentropic =
√
𝛾RT

=
√

1.4 × 287 × 300

= 347.19 m/s

The error is

Error =
aisentropic − aNewton

aisentropic

= 347.19 − 293.41
347.19

= 0.1549

= 15.49% ◾

Example 3.2 Devise a direct procedure to obtain the error in the speed of sound in
air calculated with Newton’s formula instead of the correct relation (Equation (1.16)),
demonstrated in Example 3.1.

Solution

The speed of sound by Newton’s formula is

aNewton =
√

p

𝜌

=

√
𝜌RT
𝜌

=
√

RT
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The speed of sound by Equation (1.16) is

aisentropic =
√
𝛾RT

Thus the error between aNewton and aisentropic is

Error =
aisentropic − aNewton

aisentropic

=
√
𝛾RT −

√
RT√

𝛾RT

= 1 − 1√
𝛾

Thus, for 𝛾 = 1.4, the error is

Error = 1 − 1√
1.4

= 0.1548457

= 15.48457%

Note that the value of the error in a is the same in all the three cases in Example 3.1,
because the error is a function of 𝛾 only. However, due to the truncation error, there is
some difference in the error for the three cases. ◾

3.4 Similarity Parameters

In our discussions in the previous chapters, we saw the Mach number M as a primary
parameter that dictates the flow pattern in the compressible regime of flow. In the
chapters to follow, it will be seen that M is also a parameter that appears almost in
all equations of motion. Here the aim is to show that M is an important parameter for
experimental studies too.

Let us consider a prototype and a model that are geometrically similar. Now, it is our
interest to find the condition that must be met in order to have the flow pattern around
the model to be similar to that around the prototype. Examining the energy equation
and taking into account the effect of viscosity and heat conductivity, it can be shown
that the specific heats ratio, 𝛾 , must be the same for both the model and prototype flow
fields. Thus, it can be concluded that the Mach number, M, must be the same for the
model and prototype if the flows are to be similar. When viscous effects are finite, an
analysis applied to the inertia and viscous terms in the momentum equation leads to
the criterion that the Reynolds number must be the same for ensuring similarity of
flow pattern around the model and the prototype.
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Thus, by considering all the physical equations that govern the flow, namely, the
continuity, momentum, and energy equation and the equations of state (the thermal
and calorical state equations), it is possible to arrive at the following four dimen-
sionless parameters that must be the same for dynamic similarity of the model and
prototype flow fields.

• Mach number, M = V
a

• Reynolds number, ReL = 𝜌VL
𝜇

• Ratio of specific heats, 𝛾 = cp

cv

• Prandtl number, Pr = 𝜇cp

k

where V is the flow velocity, a is speed of sound, 𝜌 is the flow density, L is a charac-
teristic dimension of the body in the flow, 𝜇 is the viscosity coefficient, cp is specific
heat at constant pressure, cv is specific heat at constant volume, and k is the thermal
conductivity of the fluid.

In the potential flow region outside the boundary layer, where the viscous and heat
conduction effects are relatively unimportant, it is usually necessary that only M and 𝛾

are to be the same between the model and prototype flow fields to establish similarity.
Of the two, similarity in M is more important than 𝛾 , because 𝛾 has a relatively weak
influence on the flow pattern.

Within the boundary layer, or in the interior of shock waves, viscous and heat con-
duction effects are significant. Hence, the Reynolds number and Prandtl number must
also be included in the similarity conditions. But the Prandtl number is nearly the
same for all gases and varies only slowly with temperature.

3.5 Continuum Hypothesis

From the kinetic theory of gases, we know that matter is made up of a large number
of molecules that are in constant motion and collision. But in the problems of engi-
neering interest, we are concerned only with the gross behavior of the fluid, thought
of as a continuous material and not in the motion of the individual molecules of the
fluid. Even though the postulation of continuous fluid (continuum) is only a conve-
nient assumption, it is a valid approach to many practical problems where only the
macroscopic or phenomenological information is of interest. The assumption of flu-
ids as continua is valid only when the smallest volume of fluid of interest contains
large number of molecules so that the statistical averages are meaningful. The advan-
tage of continuum treatment is that instead of dealing with the instantaneous states
of large number of molecules, we have to deal with only certain properties describ-
ing the gross behavior of the substance. In compressible flows, the relevant properties
are the density, pressure, temperature, velocity, shear stress, coefficient of viscosity,
internal energy, entropy, and coefficient of thermal conductivity. The macroscopic
approach with continuum hypothesis will fail whenever the mean free path of the
molecules is of the same order of the smallest significant dimension of the problem
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under consideration. The flow in which the mean free path of the molecules is of the
same order or more than the characteristic dimension of the problem is termed rarefied
flow. To deal with highly rarefied gases, we should resort to microscopic approach
of kinetic theory, because the continuum approach of classical fluid mechanics and
thermodynamics is not valid there.

In order to determine whether the condition of continuum is valid, let us consider a
steady flow and perform some approximate calculations of order-of-magnitude nature.

With kinetic theory, it can be shown using an order-of-magnitude approach that the
viscosity coefficient 𝜇 can be expressed as

𝜇 ≈ 𝜌 c 𝜆

and
c ≈ a

where c is the mean molecular velocity, 𝜆 is the mean free path, and a is the speed of
sound.

The Reynolds number of a flying vehicle can be expressed as

ReL = 𝜌VL
𝜇

= 𝜌c𝜆
𝜇

V
a

a
c

L
𝜆

≈ V
a

L
𝜆

where L is a characteristic length of the vehicle. But V∕a = M; therefore,

L
𝜆
≈

ReL

M
(3.1)

Equation (3.1) shows that the ratio of Reynolds number to Mach number is a dimen-
sionless parameter indicative of whether a given problem is amenable to the con-
tinuum approach or not. From this ratio, it is seen that the continuum hypothesis is
likely to fail when the Mach number is very large or the Reynolds number is extremely
low. But we have to exercise caution while using Equation (3.1), because ReL and M
depend on the nature of the problem considered. For example, when ReL is very low
owing to low density, the continuum hypothesis is not valid, whereas when it is very
low due to high viscosity, the continuum concept is perfectly valid and such a flow is
termed stratified flow. However, the rules for determining the validity of the contin-
uum concept in terms of ReL and M can be illustrative by supposing that in a given
problem, the smallest significant body dimension is of the order of the boundary layer
thickness, 𝛿. If ReL is large compared to unity and if the boundary layer flow is also
laminar, then the boundary layer relations for a flat plate gives that

𝛿

L
≈ 1√

ReL
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Figure 3.2 Reynolds number per meter versus Mach number, based on standard atmo-
sphere [2].

Using Equation (3.1), this can be expressed as

𝛿

𝜆
≈

√
ReL

M

For this case, Tsien [1] suggests that the realm of continuum gas dynamics be limited
to instances where the boundary layer thickness is at least 100 times the mean free
path. That is, √

ReL

M
> 100

Figure 3.2 shows the Reynolds number per unit length as a function of flight Mach
number for various altitudes, based on the standard atmosphere.

3.6 Compressible Flow Regimes

The compressible flow regime can be subdivided into different zones based on the
local flow velocity and the local speed of sound. To do this classification, we can
make use of the energy equation as follows.

Consider a streamtube in a steady compressible flow in which the flow does not
exchange heat with the fluid in neighboring streamtubes, that is, the flow process
is adiabatic. The steady-flow energy equation for the adiabatic flow through such a
streamtube is

h + V2

2
= h0
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where h and h0 are the static and stagnation enthalpies, respectively, and V is the flow
velocity. For a perfect gas, h = cpT; therefore,

cpT + V2

2
= cpT0

But cp = 𝛾

𝛾−1
R for perfect gases; thus,

𝛾

𝛾 − 1
RT + V2

2
= 𝛾

𝛾 − 1
RT0

This simplifies to

V2 + 2
𝛾 − 1

a2 = 2
𝛾 − 1

a2
0 = V2

max (3.2)

because a =
√
𝛾RT , the local speed of sound; a0 =

√
𝛾RT0, the speed of sound at the

stagnation state (where V = 0); and Vmax is the maximum possible flow velocity in
the fluid (where the absolute temperature is zero).

Equation (3.2) represents an ellipse and is called as adiabatic steady-flow ellipse.
The adiabatic ellipse can be plotted as in Figure 3.3.

Different realms of compressible flow having significantly different physical char-
acteristics are represented schematically on the adiabatic ellipse. The zones high-
lighted on the adiabatic ellipse are the following.

• Incompressible flow is the flow in which the flow velocity, V , is small compared
to the speed of sound, a, in the flow medium. The changes in a are very small
compared to the changes in V .

• Compressible subsonic flow is the flow in which the flow velocity and the speed of
sound are of comparable magnitude, but V < a. The changes in flow Mach number
M are mainly due to the changes in V .

• Transonic flow is the flow in which the difference between the flow velocity and
the speed of sound is small compared to either V or a. The changes in V and a are
of comparable magnitude.

V
 =

 a

Incompressible

a0

V
 <

 a

a

V > a

Subsonic

Supersonic

Transonic

Hypersonic

VVmax

Figure 3.3 Steady-flow adiabatic ellipse.
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• Supersonic flow is the flow in which the flow velocity and the speed of sound are
of comparable magnitude, but V > a. The changes in Mach number M take place
through substantial variation in both V and a.

• Hypersonic flow is the flow in which the flow velocity is very large compared with
the speed of sound. The changes in flow velocity are very small, and thus varia-
tions in Mach number M are almost exclusively due to the changes in the speed of
sound a.

3.7 Summary

In incompressible flows, the fluid particles will be able to sense the presence of a body
before actually reaching it. On the other hand, if the fluid particles were moving faster
than the signal waves as in the case of supersonic flows, the fluid would not be able
to sense the body before actually reaching it and abrupt changes in velocity and other
properties would take place.

When a fluid medium is allowed to vary its density, the consequence is that the fluid
elements will be able to occupy varying volumes in space.

A small shift of fluid elements in compressible media will induce in due course
similar small movements in adjacent elements, and in this way, a disturbance, referred
to as an acoustic wave, propagates at a relatively high speed through the medium.

A sound wave is a weak compression wave across which only infinitesimal changes
in flow properties occur.

Waves where comparatively large pressure variation occurs over a very narrow
front. Such waves are called shock waves, the flow process across them is nonisen-
tropic, and move relative to the fluid at speeds that exceed the speed of sound.

The speed of sound is given by a =
√
𝛾RT , where T is the static temperature of the

medium in absolute unit.
Flows with velocity more than the speed of sound are called supersonic flows, and

those with velocities less than the speed of sound are called subsonic flows. Flows
with velocity close to the speed of sound are classified under a special category called
transonic flows.

For an observer looking in the direction of flow toward the disturbance, the wave
to his\her left is called left-running wave and the wave to his\her right is called
right-running wave.

The Mach number M is a primary parameter that dictates the flow pattern in the
compressible regime of flow.

The four dimensionless parameters that must be the same for dynamic similarity of
the model and prototype flow fields are

• Mach number, M = V
a

• Reynolds number, ReL = 𝜌VL
𝜇

• Ratio of specific heats, 𝛾 = cp

cv

• Prandtl number, Pr = 𝜇cp

k
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The assumption of fluids as continua is valid only when the smallest volume of
fluid of interest contains large number of molecules so that the statistical averages are
meaningful.

In compressible flows, the relevant properties are the density, pressure, temperature,
velocity, shear stress, coefficient of viscosity, internal energy, entropy, and coefficient
of thermal conductivity.

The flow in which the mean free path of the molecules is of the same order or more
than the characteristic dimension of the problem is termed rarefied flow.

The steady-flow energy equation for the adiabatic flow through such a streamtube is

h + V2

2
= h0

For perfect gases, this simplifies to

V2 + 2
𝛾 − 1

a2 = 2
𝛾 − 1

a2
0 = V2

max (3.3)

• Incompressible flow is the flow in which the flow velocity, V , is small compared
to the speed of sound, a, in the flow medium. The changes in a are very small
compared to the changes in V .

• Compressible subsonic flow is the flow in which the flow velocity and the speed of
sound are of comparable magnitude, but V < a. The changes in flow Mach number
M are mainly due to changes in V .

• Transonic flow is the flow in which the difference between the flow velocity and
the speed of sound is small compared to either V or a. The changes in V and a are
of comparable magnitude.

• Supersonic flow is the flow in which the flow velocity and the speed of sound are
of comparable magnitude, but V > a. The changes in Mach number M take place
through substantial variation in both V and a.

• Hypersonic flow is the flow in which the flow velocity is very large compared with
the speed of sound. The changes in the flow velocity are very small, and thus vari-
ations in Mach number M are almost exclusively due to the changes in the speed
of sound a.

Exercise Problems

3.1 Determine the mean free path for air at sea level state.
[Answer: 4.292 × 10−8 m]

3.2 Determine the Prandtl number of air at sea level state.
[Answer: 0.7]
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3.3 What will be the limiting Mach number up to which a flow with Reynolds num-
ber 106 can be treated as continuum?
[Answer: 10]

3.4 If the maximum velocity obtained by expanding air in a storage tank is 600 m/s,
determine the temperature of air in the tank.
[Answer: 179.2 K]
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4
High-Temperature Flows

4.1 Introduction

In Chapter 1, it was mentioned that a gas can be treated as perfect, with the specific
heats independent of temperature, only when the temperature is below a specified
limit. Also, a perfect gas has to be thermally as well as calorically perfect. For
example, air can be treated as both thermally and calorically perfect for temperatures
less than 800 K, and for temperatures from 800 to 2000 K, it is only thermally perfect
but calorically imperfect. For temperatures above 2000 K, the air is thermally as
well as calorically imperfect. For flows of imperfect gases, none of the gas dynamic
relations obtained with perfect gas assumption are valid.

In many engineering problems of practical interest, the temperature of the flow is
appreciably above the limiting value for which the gas can be treated as perfect. For
example, the flow through rocket engines, arc-driven hypersonic wind tunnels, flow in
shock tubes, high-energy gas dynamic and chemical lasers, and internal combustion
engines are some of the engineering devices with operating temperatures well above
the perfect gas limiting temperature of about 800 K. Hence, flows with temperature
above 800 K need to be analyzed considering the functional dependence of the specific
heats cp and cv on temperature. In this kind of flows with temperature more than 800 K,
if the temperature is in the range from 800 to 2000 K, the flowing gas is termed ther-
mally perfect. This is because, even though cp and cv are functions of temperature, their
ratio continues to be independent of temperature, as in the case of perfect gases. That
is, the specific heats ratio 𝛾 continues to be independent of temperature even for the
case of high-enthalpy flows with temperature less than 2000 K. This implies that the
property relations, such as the ratio of static to stagnation pressures, temperatures, and
densities, as a function of flow Mach number, derived based on perfect gas and inviscid
assumptions can be used for solving high-enthalpy flows that are thermally perfect.
However, for high-enthalpy flows with temperature above 2000 K, even the specific
heats ratio 𝛾 becomes a function of temperature. This makes the isentropic, shock,
Fanno, and Rayleigh flow relations, derived based on perfect gas assumption invalid.
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Therefore, for solving high-enthalpy flows that are both calorically as well as ther-
mally imperfect, each problem has to be dealt with the actual equations governing the
transport of mass, momentum, and energy and the second law of thermodynamics. Our
aim in this chapter is to study some of the fundamental aspects of the high-temperature
effects on compressible flows.

Example 4.1 Determine the specific heats ratio of oxygen gas at 400 K.

Solution

At 400 K, the oxygen can be treated as a perfect gas. For oxygen, the molecular weight
is 32. Therefore, the gas constant becomes

R =
Ru

Mm

= 8314
32

= 259.75 m2∕(s2 K)

From classical thermodynamics, for a perfect gas [1], the specific heat at constant
pressure is

cp = 𝛾

𝛾 − 1
R

= 1.4
1.4 − 1

× 259.75

= 909.125 m2∕(s2 K)

The specific heat at constant volume is

cv =
1

𝛾 − 1
R

= 1
1.4 − 1

× 259.75

= 649.375 m2∕(s2 K)

Therefore, the ratio of specific heats is

𝛾 =
cp

cv

= 909.125
649.375

= 1.4 ◾
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4.2 Importance of High-Enthalpy Flows

To gain an insight into the importance of high enthalpy flow at high speeds, referred
to as hypervelocity flows, let us examine the reentry of a spacecraft into earth’s atmo-
sphere. Let its velocity at 50 km altitude be 11 km/s (equal to escape velocity from
the gravitational attraction of earth). Let the nose shape of the vehicle be blunt, as
shown in Figure 4.1. At this high Mach number, there will be a very strong detached
shock positioned ahead of the blunt nose. The portion of the shock, on either side of
the stagnation streamline, near the nose can be approximated as a normal shock. The
vehicle Mach number at that altitude can be obtained as follows.

The Mach number is defined as

M∞ =
V∞

a∞

where V∞ is the flight speed of the vehicle and a∞ is speed of sound at that altitude. At
50,000 m altitude, the temperature of the atmosphere is about −25∘C, that is, 248 K.
Therefore, the speed of sound, assuming the air as a perfect gas, is

a∞ =
√
𝛾RT∞

=
√

1.4 × 287 × 248

= 315.67 m/s

Thus the Mach number is

M∞ =
V∞

a∞

= 11,000
315.67

= 34.85

M
∞

 > 1

Bow shock

High-temperature
boundary layer

High-temperature
shock layer

Blunt-nosed body

Figure 4.1 Flow field around a blunt-nosed body at reentry.
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From gas dynamics of perfect gases, we know that when M∞ → ∞, the temperature
behind the shock tends to infinity. This theoretical limit indicates that for the present
shock with M1 = 33.4, the temperature T2 behind the shock will be very high. That is,
the massive amount of flow kinetic energy in the hypersonic freestream is converted
to internal energy of the gas across the shock, thereby creating very high temperatures
in the shock layer near the nose.

Downstream of the nose region, the gas in the shock layer expands and forms a
cooler zone around the body. Also, there is a boundary layer with high Mach number
at its outer edge. Hence, there is an intense frictional dissipation within the hyper-
sonic boundary layer, resulting in high temperature. This high temperature can cause
the boundary layer to become chemically reacting. Another challenge associated with
reentry problem occurs when ionization is present in the shock layer, thereby resulting
in the production of a large number of free electrons throughout the shock layer.
Because of the above complications, associated with high-temperature gas streams,
the results of gas dynamics based on perfect gas assumption become invalid for the
analysis of high-enthalpy gas dynamic problems. However, analysis of such problems
become essential because in many flow processes of engineering importance, we come
across high-temperature effects.

Example 4.2 What will be the stagnation temperature at the nose of a reentry vehicle
entering with 11,000 m/s, at an altitude where the atmospheric temperature is 270 K,
based on perfect gas theory?

Solution

Given T∞ = 270 K and V∞ = 11,000 m/s. The corresponding speed of sound and
Mach number are

a∞ =
√
𝛾RT∞

=
√

1.4 × 287 × 270

= 329.37 m/s

M∞ =
V∞

a∞

= 11,000
329.37

= 33.4

From perfect gas theory, the ratio of static temperature, T , to stagnation temperature,
T0, is

T0

T∞
= 1 + 𝛾 − 1

2
M2

∞
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For perfect air, 𝛾 = 1.4; therefore,

T0 =
(

1 + 𝛾 − 1
2

M2
∞

)
T∞

=
(

1 + 1.4 − 1
2

× 33.42
)
× 270

= 60,510.24 K
◾

4.3 Nature of High-Enthalpy Flows

There are two major physical characteristics that cause a high-enthalpy flow to deviate
from calorically perfect gas behavior. These are the following:

• At high temperatures, the vibrational excitation of the gas molecules becomes
important, absorbing some of the energy which, at normal temperatures, would go
into the translational and rotational motion. The excitation of vibrational energy
causes the specific heats of the gas to become a function of temperature, causing
the gas to become calorically imperfect.

• With further increase in temperature, the molecules begin to dissociate and even
ionize. Under these conditions, the gas becomes chemically reacting, and the spe-
cific heats become functions of both temperature and pressure.

Because of the above effects, the high-enthalpy gas flows have the following differ-
ences as compared to flow of gas with constant specific heats (perfect gas).

• The specific heats ratio, 𝛾 = cp∕cv, is a variable.
• The thermodynamic properties (the thermal and calorical properties) are totally

different.
• For high-enthalpy flows, heat transfer rate is predominant.
• Usually, some numerical procedure, rather than analytical approach, is required for

solving high-enthalpy problems.
• Because of these reasons, analysis of high-enthalpy flows are different from that of

gas dynamic flows obeying perfect gas assumption.

4.4 Most Probable Macrostate

It is the macrostate that occurs when the system is in thermodynamic equilibrium.
This plays a dominant role in the study of high-enthalpy gas dynamics, because at
temperatures above 800 K, the vibration excitation of the molecules becomes active;
beyond 2000 K, the molecules in a gas dissociate to become atoms; and beyond
3000 K, the atoms themselves become active and get ionized, heading towards
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Figure 4.2 Microstates in a macrostate.

plasma state. Therefore, it is essential to have a thorough understanding of the kinetic
theory of gases and statistical thermodynamics if we have to deal with high-enthalpy
or high-temperature flows. To make a beginning in this direction, let us start with the
following question:

Find the most probable macrostate of a system with a fixed number of identical
particles,

N =
∑
j

Nj (4.1)

and fixed energy
E =

∑
j

𝜖
′
jNj (4.2)

where 𝜖
′
0, 𝜖

′
1, 𝜖

′
2, … , 𝜖

′
j , respectively, are the energy of molecules N0,N1,N2, … ,Nj.

To solve this problem, consider the gaseous system shown in Figure 4.2, consisting
different groups of molecules at energy levels 𝜖′0, 𝜖

′
1, 𝜖

′
2, … , 𝜖

′
j . The gjs in the figure

show the possible positions that the Nj molecules of energy levels 𝜖′j can occupy. That
is, there are two molecules at energy level 𝜖′0 and they can take any two positions out
of five possible locations (that is, out of g0 = 5). A particular distribution in which
the molecules in each set of molecules N0,N1,N2, … ,Nj can be arranged forms a
macrostate. Two typical macrostates are illustrated in Figure 4.2.

From kinetic theory of gases, we know the following.

• In any given system of molecules, the microstates are constantly changing because
of molecular collisions.

• The most probable macrostate is that macrostate that has the maximum number of
microstates.
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Figure 4.3 Most probable macrostate.

• If each microstate appears in the system with equal probability and there is one
particular macrostate that has considerably more microstates than any other, then
that is the macrostate that will prevail in the system most of the time. A typical vari-
ation of macrostate with number of microstates, W, will be as shown in Figure 4.3.
The macrostate D with the maximum number of microstates is the most probable
macrostate.

• Therefore, if we can count the number of microstates in any given macrostate, we
can easily identify the most probable macrostate.

4.5 Counting the Number of Microstates for a given Macrostate

Molecules and atoms are constituted by the elementary particles, namely, the elec-
trons, protons, and neutrons. Quantum mechanics makes a distinction between two
different class of molecules and atoms, depending on the number of elementary par-
ticles in them as follows.

• Molecules and atoms with even number of elementary particles obey a certain sta-
tistical distribution called Bose–Einstein statistics. Let us call them bosons.

• Molecules and atoms with odd number of elementary particles obey a different
statistical distribution called Fermi–Dirac statistics. Let us call such molecules and
atoms as fermions.

The following is an important distinction between the above two classes.

• For bosons, the number of molecules that can be in any one degenerate state (in any
one of the boxes in Figure 4.4) is unlimited (except, of course, that it must be less
than or equal to Nj).

• For fermions, only one molecule may be in any given degenerate state at any instant.

This distinction has a major impact on the counting of microstates in a macrostate.
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4.5.1 Bose–Einstein Statistics

For the time being, let us consider one energy level, say 𝜖
′
j . This energy level has gj

degenerate states and Nj molecules. Consider gj states as the gj containers, as shown
in Figure 4.4.

Distribute the Nj molecules among the containers, such that three molecules
are present in the first container, two in the second, etc., where the molecules are
denoted by x. The distribution of molecules over these containers represents a distinct
macrostate. If a molecule is moved from container one to container two, a different
macrostate is formed. To count the total number of different microstates possible,
first note that the number of permutations between the symbols x and | is

[Nj + (gj − 1)]!

This gives the number of distinct ways in which the Nj molecules and the (gj − 1)
partitions can be arranged. However, the partitions are indistinguishable. The (gj − 1)
partitions can be permuted in (gj − 1)! different ways. The molecules are also indis-
tinguishable; therefore, they can be permuted in Nj! different ways without changing
the picture drawn in Figure 4.4. Therefore, there are (gj − 1)! Nj! different permuta-
tions that yield the identical picture drawn in Figure 4.4, that is, the same macrostate.
Thus, the number of different ways in which the Nj indistinguishable molecules can
be distributed over gj states is

(Nj + gj − 1)!
(gj − 1)!Nj!

This expression applies to one energy level 𝜖′j with populationNj and gives the number
of different microstates just because of the different arrangements within the energy
level 𝜖′j .

Now, consider the whole set of Njs distributed over the complete set of energy lev-
els (note that Njs define a particular macrostate). Let W denote the total number of
microstates for a given macrostate, the above expression, multiplied over all the energy
levels, yields

W =
∏
j

(Nj + gj − 1)!
(gj − 1)!Nj!

(4.3)

Note that W is a function of all the Nj values, that is,

W = W(N1,N2, … ,Nj, …)

x1

1 2 3 4 gj

x4x2 xjx3

Figure 4.4 Illustration of degenerate states.
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The quantity W is called the thermodynamic probability. The thermodynamic proba-
bility is a measure of the “disorder” of the system. Equation (4.3) can be used to count
the number of microstates in a given macrostate as long as the molecules are bosons.

4.5.2 Fermi–Dirac Statistics

For fermions, only one molecule can be present in any given degenerate state at any
instant, that is, there can be no more than one molecule per box. This implicitly
requires that gj ≥ Nj.

Consider gj boxes. Take one of the molecules and put it in one of the containers.
There will be gj choices or ways of doing this. Take the next molecule and put it in
one of the boxes. However, there are now only (gj − 1) choices, because one of the
containers is already occupied. Likewise, we find the number of ways Nj molecules
can be distributed over gj containers, with only one molecule (or less) per box, is

gj(gj − 1)(gj − 2)· · ·⋅⋅[gj − (Nj − 1)] ≡ gj!

(gj − Nj)!

However, theNj molecules are indistinguishable; they can be permuted inNj! different
ways without changing the degenerate states, illustrated in Figure 4.4. Therefore, the
number of different microstates just because of different arrangements with 𝜖

′
j energy

levels is
gj!

(gj − Nj)!Nj!

Considering all energy levels, the total number of microstates for a given macrostate
for fermions is

W =
∏
j

gj!

(gj − Nj)!Nj!
(4.4)

4.5.3 The Most Probable Macrostate

We saw that the most probable macrostate is defined as that macrostate that contains
the maximum number of microstates. That is, it is the macrostate that has Wmax. Let
us find the specific set of Njs that allows the maximum W. First consider the case of
bosons. From Equation (4.3), we have

W =
∏
j

(Nj + gj − 1)!
(gj − 1)!Nj!

Taking log on both sides, we have

lnW =
∑
j

[ln(Nj + gj − 1)! − ln(gj − 1)! − lnNj!] (4.5)
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At this stage, it is extremely important to note that the total energy of a molecule
consists of translational, rotational, vibrational, and electronic energies. That is, for a
molecule, the total energy is given by

𝜀 = 𝜀trans + 𝜀rot + 𝜀vib + 𝜀el

However, for a single atom, only the translational and electronic energies exist, that
is, for atoms, the total energy is given by

𝜀 = 𝜀trans + 𝜀el

To have a better understanding about the above energy components, let us have a
close look at the microscopic picture of a gas. Let us assume that the gas consists
of a large number of individual molecules. We know that a molecule is a collection of
atoms bound together by a rather complex intramolecular force. A simple concept of
a diatomic molecule (molecule with two atoms) is the “dumbbell” model shown in
Figure 4.5(a).

(c)

(e) (f)

Vz

Vy

Vx

(b)

Translational kinetic energy
of the center of mass
(thermal degrees of freedom is 3)

(a)

(d)

O OC

HH
z

x

y

O

Electron

Nucleus

1. Kinetic energy of
electron in orbit

2. Potential energy of
electron in orbit

Figure 4.5 Molecular energy modes. (a) Diatomic molecule; (b) Translational energy, 𝜀trans;
(c) Rotational energy, 𝜀rot; (d) polyatomic molecule; (e) vibrational energy, 𝜀vib; (f) electrical
energy, 𝜀el.
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The molecules have the following forms (modes) of energy.

• Translational energy, 𝜀trans – the translational kinetic energy of the center of mass
of the molecule is the source of this energy. As shown in Figure 4.5(b), a molecule
has three geometric degrees of freedom in translation. As motion along x-, y-, and
z-coordinate directions constitutes to the total kinetic energy, the molecule is also
said to have three thermal degrees of freedom.

• Rotational energy, 𝜀rot – the rotational energy is due to the rotation of the molecule
about the three orthogonal axes in space, as shown in Figure 4.5(c). The sources of
the rotational energy, 𝜀rot, are (i) the rotational kinetic energy associated with the
molecules rotational velocity and (ii) its moment of inertia. But, for the diatomic
molecule sketched in Figure 4.5(c), the moment of inertia about the internucleus
axis (the z-axis) is very small and, therefore, the rotational kinetic energy about
the z-axis is negligible in comparison to the rotation about the x- and y-axes. Thus,
the diatomic molecule has only two geometric and two thermal degrees of free-
dom. The same is true for a linear polyatomic molecule such as CO2 shown in
Figure 4.5(d). However, for a nonlinear polyatomic molecule, such as H2O shown
in Figure 4.5(d), the number of geometric as well as thermal degrees of freedom in
rotation are three.

• Vibrational energy, 𝜀vib – the molecules and atoms are vibrating with respect to an
equilibrium location within the molecule. For a diatomic molecule, this vibration
may be modeled by a spring connecting the two atoms, as shown in Figure 4.5(e).
Thus, the molecule has vibrational energy, 𝜀vib. The sources of this vibrational
energy are (i) the kinetic energy of the linear motion of the atoms as they vibrate
back and forth and (ii) the potential energy associated with the intramolecular force.
Therefore, although a diatomic molecule vibrates along one direction, namely, the
internucleus axis only, and has only one geometric degree of freedom, it has two
thermal degrees of freedom because of the contribution of kinetic and potential
energies. For polyatomic molecules, the vibrational motion is more complex and
numerous fundamental vibrational modes can exist, with a consequent large num-
ber of degrees of freedom.

• Electronic energy, 𝜀el – the electronic energy is due to the motion of electrons about
the nucleus of each atom constituting the molecule, as shown in Figure 4.5(f).
The sources of electronic energy are (i) the kinetic energy because of its trans-
lational motion throughout its orbit about the nucleus and (ii) the potential energy
because of its location in the electromagnetic force field established principally by
the nucleus. The concepts of geometric and thermal degrees of freedom are usually
not useful for describing electronic energy, because the overall electron motion is
complex.

Quantum mechanics results show that each of the above energies are quantized,
that is, they can exist only at certain discrete values, as illustrated in Figure 4.6. From
the representation of quantized levels of different modes of energy, it is clear that
we are dealing with the combined translational, rotational, vibrational, and electronic
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Figure 4.6 Quantized levels of different energy modes of molecules.

energies of a molecule and that the closely spaced translational levels can be grouped
into a number of degenerate states with essentially the same energy.

Therefore, in Equation (4.5), we can assume that Nj ≫ 1 and gj ≫ 1, leading to

(Nj + gj − 1) ≈ (Nj + gj)

and
(gj − 1) ≈ gj

Moreover, we can employ Sterling’s formula

ln a! = a ln a − a (4.6)

for the factorial terms in Equation (4.5). Thus,

lnW =
∑
j

[(Nj + gj) ln(Nj + gj) − (Nj + gj) − gj ln gj + gj − Nj lnNj + Nj]

This gives

lnW =
∑
j

[
Nj ln

(
1 +

gj
Nj

)
+ gj ln

(
Nj
gj

+ 1

)]
(4.7)

Recall that
lnW = f (Njs) = f (N0,N1,N2, … .,Nj, … .)

Also, for the maximum value of the thermodynamic probability W, we have

d (lnW) = 0 (4.8)
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Thus,

d (lnW) = 𝜕(lnW)
𝜕 N0

dN0 +
𝜕(lnW)
𝜕 N1

dN1 + · · · ⋅ +𝜕(lnW)
𝜕 Nj

dNj + · · · ⋅ + · · · ⋅ (4.9)

Combining Equations (4.8) and (4.9), we get

d (lnW) =
∑
j

𝜕(lnW)
𝜕 Nj

dNj = 0 (4.10)

Differentiating Equation (4.7), with respect to Nj, we get

𝜕(lnW)
𝜕 Nj

= ln

(
1 +

gj
Nj

)
(4.11)

Substituting Equation (4.11) into Equation (4.10), we get

d (lnW) =
∑
j

[
ln

(
1 +

gj
Nj

)]
dNj = 0 (4.12)

In Equation (4.12), the variation of Nj is not totally independent; dNj is subject to two
physical constraints, namely,

1. N =
∑

jNj = constant, and hence, ∑
j

dNj = 0 (4.13)

2. E =
∑

j 𝜖
′
jNj = constant, and hence,∑

j

𝜖
′
j dNj = 0 (4.14)

Assuming 𝛼 and 𝛽 to be two Lagrange multipliers (two constants to be determined),
Equations (4.13) and (4.14) can be written as

−
∑
j

𝛼 dNj = 0 (4.15)

−
∑
j

𝛽 𝜖
′
j dNj = 0 (4.16)

Adding Equations (4.12), (4.15), and (4.16), we get

∑
j

[
ln

(
1 +

gj
Nj

)
− 𝛼 − 𝛽 𝜖

′
j

]
dNj = 0 (4.17)
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From the standard method of Lagrange multipliers, 𝛼 and 𝛽 are defined such that each
term in brackets in Equation (4.17) is zero, that is,

ln

(
1 +

gj
Nj

)
− 𝛼 − 𝛽 𝜖

′
j = 0

or
1 +

gj
Nj

= e𝛼 e𝛽𝜖
′
j

This gives the Nj corresponding to the maximum value of the thermodynamic proba-
bility W as

N∗
j =

gj

e𝛼 e𝛽𝜖
′
j − 1

(4.18)

The superscript “∗” is added to Nj to emphasize that N∗
j corresponds to the maximum

value of W (via) Equation (4.8), that is, N∗
j corresponds to the most probable distri-

bution of molecules over the energy levels 𝜖
′
j . Equation (4.18) gives the most prob-

able macrostate for bosons. That is, the set of values obtained from Equation (4.18)
for all levels

N∗
0 ,N

∗
1 ,N

∗
2 , … ,N∗

j , …

is the most probable macrostate.
Similarly, the most probable macrostate for fermions can be obtained, starting from

Equation (4.4), as

N∗
j =

gj

e𝛼 e𝛽𝜖
′
j + 1

(4.19)

4.5.4 The Limiting Case: Boltzmann’s Distribution

At very low temperatures, T → 0 K, as shown in Figure 4.6, the molecules of the
system are jammed together at or near the ground energy levels, and therefore, the
degenerate states of these low-lying energy levels are highly populated. As a result,
the difference between the Bose–Einstein and Fermi–Dirac statistics are important. In
contrast, at high temperatures, the molecules are distributed over many energy levels,
and therefore, the states are generally sparsely populated, that is, Nj ≪ gj. For this
case, the denominators of Equations (4.18) and (4.19) must be very large, that is,

e𝛼e𝛽𝜖j − 1 ≫ 1

or
e𝛼e𝛽𝜖j + 1 ≫ 1

Hence, in the high-temperature limit, the unity terms in these denominators can be
neglected, and both Equations (4.18) and (4.19) reduce to

N∗
j = gje

−𝛼e−𝛽𝜖
′
j (4.20)
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This limiting case is called the Boltzmann limit, and Equation (4.20) is termed the
Boltzmann distribution.

As all gas dynamic problems generally deal with temperatures above 5 K, the
Boltzmann distribution is appropriate for all our future considerations. That is, we
will be dealing with Equation (4.20) rather than Equation (4.18) or (4.19).

In Equation (4.20), the Lagrange constants 𝛼 and 𝛽 are unknowns. The link between
the classical and statistical thermodynamics is the constant 𝛽. It can be shown that

𝛽 = 1
kT

where k is the Boltzmann constant and T is the temperature of the system. With
𝛽 = 1

kT
, Equation (4.20) can be written as

N∗
j = gj e−𝛼 e−𝜖

′
j∕kT (4.21)

To obtain an expression for 𝛼, recall that

N =
∑
j

N∗
j

Hence, from Equation (4.21), we have

N =
∑
j

gj e−𝛼 e−𝜖
′
j∕kT

= e−𝛼
∑
j

gj e−𝜖
′
j∕kT

or
e−𝛼 = N∑

j
gj e−𝜖

′
j∕kT

(4.22)

Substituting Equation (4.22) into Equation (4.21), we get

N∗
j = N

gj e−𝜖
′
j∕kT

∑
j

gj e−𝜖
′
j∕kT

(4.23)

The Boltzmann distribution given by Equation (4.23) is important. It is the most prob-
able distribution of the molecules over all the energy levels 𝜖′j of the system. Also, 𝜖′j
is the total energy, including the zero-point energy. However, Equation (4.23) can also
be written in terms of 𝜖j, the energy measured above the zero-point energy, as follows.
As 𝜖′j = 𝜖j + 𝜖0, we have

e−𝜖
′
j∕kT∑

j
gj e−𝜖

′
j∕kT

= e−(𝜖j+𝜖0)∕kT∑
j

gj e−(𝜖j+𝜖0)∕kT
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= e−𝜖0∕kT e−𝜖j∕kT

e−𝜖0∕kT
∑
j

gj e−𝜖j∕kT

= e−𝜖j∕kT∑
j

gj e−𝜖j∕kT

Hence, from Equation (4.23), we get

N∗
j = N

gj e−𝜖j∕kT∑
j

gj e−𝜖j∕kT
(4.24)

where the energies are measured above the zero-point energy.
Finally, the partition function Q, also called the state sum, is defined as

Q ≡ ∑
j

gj e−𝜖j∕kT

and the Boltzmann distribution, from Equation (4.24), can be written in terms of the
partition function Q as

N∗
j = N

gj e−𝜖j∕kT

Q
(4.25)

It can be shown that the partition function Q is a function of the volume, 𝕍 , as well
as the temperature, T , of the system, that is,

Q = f (T ,𝕍 )

Equation (4.25) implies that, for molecules and atoms of a given species, quantum
mechanics says that a set of well-defined energy levels, 𝜖j, exist, over which the
molecules or atoms can be distributed at any given instant, and that each energy level
has a certain number of degenerate states gj.

For a system of N molecules or atoms at a given temperature T and volume 𝕍 ,
Equation (4.25) gives total number of such molecules or atoms N∗

j in each energy
level 𝜖j when the system is in thermodynamic equilibrium.

4.6 Evaluation of Thermodynamic Properties

The thermodynamic properties such as the internal energy, enthalpy, entropy, and pres-
sure can be expressed in terms of the partition function Q.
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4.6.1 Internal Energy E

From the microscopic view point, for a system in equilibrium, the energy of the system
is given by

E =
∑
j

𝜖j N
∗
j (4.26)

Note that Equation (4.26) gives the energy E, measured above the zero-point energy.
Combining Equations (4.26) and (4.25), we have

E =
∑
j

𝜖j N
gj e−𝜖j∕kT

Q
= N

Q

∑
j

gj 𝜖j e−𝜖j∕kT (4.27)

Recall that the partition function

Q ≡ ∑
j

gj 𝜖j e−𝜖j∕kT

= f (𝕍 , T)

Differentiating Q with respect to temperature, T , we have(
𝜕Q
𝜕T

)
v

= 1
kT2

∑
j

gj 𝜖j e−𝜖j∕kT

that is, ∑
j

gj 𝜖j e−𝜖j∕kT = kT2

(
𝜕Q
𝜕T

)
v

(4.28)

Substituting Equation (4.28) into Equation (4.27), we get

E = N
Q

kT2

(
𝜕Q
𝜕T

)
v

or

E = NkT2

(
𝜕 ln Q
𝜕T

)
v

(4.29)

If we have 1 mol of atoms or molecules, then N = NA, the Avogadro number
(6.02214179 × 1023)1.

1 The mole, abbreviated mol, is an SI unit that measures the number of particles in a specific substance. One mole is
equal to 6.02214179 × 1023 atoms or other elementary units such as molecules. For example, if we have 1 mol of oxy-
gen atoms, then we have 6.02214179 × 1023 oxygen atoms. The number 6.02214179 × 1023 alone is called Avogadro’s
number (NA) or Avogadro’s constant, after the nineteenth-century scientist Amedeo Avogadro. Each Carbon-12 atom
weighs about 1.99265 × 10−23 g; therefore, (1.99265 × 10−23 g) × (6.02214179 × 1023 atoms) = 12 g of Carbon-12.
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Also, NA k = Ru, the universal gas constant. Consequently, for the internal energy
per mole, Equation (4.29) gives

E = RuT2

(
𝜕 ln Q
𝜕T

)
v

(4.30)

In the science of gas dynamics, a unit mass is more fundamental quantity than a
unit mole. Let M be the mass of the system of N molecules and m be mass of an
individual molecule. Then M = Nm. From Equation (4.29), the internal energy per
unit mass, e, is

e = E
M

= NkT2

Nm

(
𝜕 ln Q
𝜕 T

)
v

(4.31)

But k∕m = R is the specific gas constant. Therefore, Equation (4.31) becomes

e = RT2

(
𝜕 ln Q
𝜕 T

)
v

(4.32)

The specific enthalpy is defined as the sum of the specific internal energy and flow
work,

h = e + pv

But by state equation,
pv = RT

Thus the specific enthalpy becomes

h = e + RT

Substituting for e from Equation (4.32), we have the enthalpy in terms of the partition
function Q as

h = RT + RT2

(
𝜕 ln Q
𝜕 T

)
v

(4.33)

Note that Equations (4.32) and (4.33) are hybrid equations, that is, they contain a
mixture of thermodynamic variables, such as e, h, and T , and a statistical variable Q.

We know that the entropy or the amount of disorder in a system is a function of the
thermodynamic probability, that is,

S = S (Wmax) (4.34)

where S is the entropy and Wmax is the thermodynamic probability.
If we have two systems with S1,W1 and S2,W2, respectively, and add these systems,

the entropy of the combined system is additive, S1 + S2. But the thermodynamic prob-
ability of the combined system is the product of the thermodynamic probabilities of
the individual systems W1W2 (because each microstate of the first system can exist in
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the combined system along with each one of the microstates of the second system).
This suggests that Equation (4.34) should be of the form

S = (constant) ln Wmax (4.35)

Equation (4.35) was first postulated by Ludwig Boltzmann, and the constant is named
in his honor. Thus

S = k lnWmax (4.36)

where k is the familiar Boltzmann constant. Equation (4.36) is the bridge between
classical (represented by entropy S) and statistical thermodynamics (represented by
the thermodynamic probability W).

For the case where Nj ≪ gj, using the approximation that ln (1 + x) ≈ x for x ≪ 1,
Equation (4.7) (in the Boltzmann limit) becomes

lnW =
∑
j

[
Nj ln

gj
Nj

+ Nj

]
or

lnW =
∑
j

Nj

[
ln

gj
Nj

+ 1

]
(4.37)

For W = Wmax, Nj becomes N∗
j . From Equation (4.25), we have

N∗
j = N

Q
gj e−𝛽𝜖j

since
𝛽 = 1

kT
Rearranging, we have

gj
N∗
j

= Q
N

e𝛽𝜖j (4.38)

Substituting Equation (4.38) into Equation (4.37), we have

lnWmax =
∑
j

N∗
j ln

Q
N

+
∑
j

N∗
j +

∑
j

N∗
j 𝛽 𝜖j

= N ln
Q
N

+ N + 𝛽 E

or,

lnWmax = N

(
ln

Q
N

+ 1

)
+ 𝛽 E (4.39)

Substituting Equation (4.39) into Equation (4.36), we get the entropy as

S = k N

(
ln

Q
N

+ 1

)
+ k 𝛽 E (4.40)
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Note that we are treating 𝛽 as unknown and then 𝛽 = 1
kT

. To show that 𝛽 = 1
kT

, consider
the following expression for entropy in terms of the energy, pressure, and volume

T dS = dE + pd 𝕍 (4.41)

or (
𝜕 S
𝜕 E

)
v
= 1

T
(4.42)

From Equation (4.40), we have (
𝜕 S
𝜕 E

)
v
= k 𝛽 (4.43)

Equation (4.42) is from classical thermodynamics, and Equation (4.43) is from sta-
tistical thermodynamics. From Equations (4.42) and (4.43), we get

𝛽 = 1
kT

(4.44)

With this result, Equation (4.40) can be written as

S = k N

(
ln

Q
N

+ 1

)
+ E

T
(4.45)

Combining Equations (4.45) and (4.29), we have

S = N k

(
ln

Q
N

+ 1

)
+ N k T

(
𝜕 ln Q
𝜕T

)
v

(4.46)

This is the statistical thermodynamics result for entropy in terms of the partition func-
tion Q.

From Equation (4.41), we can write

T
(
𝜕 S
𝜕 𝕍

)
T
=
(
𝜕 E
𝜕 𝕍

)
T
+ p (4.47)

Noting that we are dealing with a single chemical species and that the gas is ther-
mally perfect. For a thermally perfect gas, the internal energy is a function of only
temperature; thus (

𝜕 E
𝜕 𝕍

)
T
= 0

Therefore, from Equation (4.47), we have the pressure as

p = T
(
𝜕 S
𝜕 𝕍

)
T

(4.48)

From Equation (4.45), we have(
𝜕 S
𝜕 𝕍

)
T
= N k

(
𝜕 ln Q
𝜕𝕍

)
T

+ 1
T

(
𝜕 E
𝜕 𝕍

)
T
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For a calorically perfect gas, the internal energy is a constant and independent of
temperature; therefore, (

𝜕 E
𝜕 𝕍

)
T
= 0

Hence, (
𝜕 S
𝜕 𝕍

)
T
= N k

(
𝜕 ln Q
𝜕𝕍

)
T

(4.49)

Combining Equations (4.48) and (4.49), we get the pressure in terms of partition func-
tion as

p = N k T

(
𝜕 ln Q
𝜕𝕍

)
T

(4.50)

This is the statistical thermodynamics result for pressure in terms of partition
function Q.

Note that Q is the key factor in all the above equations. Once Q can be evaluated as
a function of volume, 𝕍 , and temperature, T , the thermodynamic state variables can
be calculated.

4.7 Evaluation of Partition Function in terms of T and 𝕍
The partition function Q, by definition, is

Q ≡ ∑
j

gje
−𝜖j∕kT

Now expressions for the energy level 𝜖j is needed for evaluating Q. Recall that the
total energy of a state is the sum of translational, rotational, vibrational, and electronic
energies, that is,

𝜖
′ = 𝜖

′
trans + 𝜖

′
rot + 𝜖

′
vib + 𝜖

′
el

The quantized levels for translational, rotational, vibrational, and electronic energies
are given by quantum mechanics [2, 3]. Let us state the results here without proof.

From quantum mechanics, we have translational energy as

𝜖
′
trans =

h2
P

8 m

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)

where n1, n2, n3 are quantum numbers that can take the integer values 1, 2, 3,
etc., a1, a2, a3 are linear dimensions that describe the size of the system, and
hP (= 6.62606957 × 10−34 (m2 kg)∕s) is the Planck constant.

The rotational energy is given by

𝜖
′
rot =

h2
P

8 𝜋2I
J(J + 1)
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where J is the rotational quantum number, J = 0,1, 2, … , and I is the moment of
inertia of the molecule.

The expression for vibrational energy is

𝜖
′
vib = hP 𝜈

(
n + 1

2

)
where n is the vibrational quantum number, n = 0,1, 2, … , and 𝜈 is the fundamental
vibrational frequency of the molecule.

For electronic energy, no simple expression can be written, and hence, it will con-
tinue to be expressed simply as 𝜖′el.

• In the above expressions for the rotational and vibrational energies, I and 𝜈 for a
given molecule are usually obtained from spectroscopic measurements.

• The translational energy 𝜖
′
trans depends on the size of the system, whereas, 𝜖′rot, 𝜖

′
vib

and 𝜖′el are not. Because of this special dependence of 𝜖′trans on the size of the system,
the partition function Q depends on the volume of the system, 𝕍 , and its tempera-
ture, T .

• The lowest quantum number defines the zero-point energy for each mode, and from
the above expression, the zero-point energy for rotation is precisely zero (that is,
for J = 0, 𝜖′rot = 0), whereas it is a finite value for the other modes.

Consider the energy measured above zero-point energy level. For this, we can write

𝜖trans = 𝜖
′
trans − 𝜖trans 0

≈
h2

P

8 m

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)

Here, we are neglecting the small but finite value of 𝜖trans 0. Also,

𝜖rot = 𝜖
′
rot − 𝜖rot 0

=
h2

P

8 𝜋2 I
J(J + 1)

𝜖vib = 𝜖
′
vib − 𝜖vib 0

= n hP 𝜈

𝜖el = 𝜖
′
el − 𝜖el 0

Therefore, the total energy is

𝜖
′ = 𝜖trans + 𝜖rot + 𝜖vib + 𝜖el + 𝜖0



High-Temperature Flows 101

Now, let us consider the error in the total energy 𝜖 measured above the zero-point
energy 𝜖0, where

𝜖 = 𝜖
′ − 𝜖0

sensible energy,
that is, energy measured
above zero point

= 𝜖trans + 𝜖rot + 𝜖vib + 𝜖el
all measured above
the zero-point energy.
Thus, all are equal to zero at T = 0 K

Recall from Equations (4.24) and (4.25) that the partition function Q is defined in
terms of the sensible energy, that is, the energy measured above the zero-point energy.

The partition function is
Q ≡ ∑

j

gj e−𝜖j∕kT

where
𝜖j = 𝜖i,trans + 𝜖j,rot + 𝜖n,vib + 𝜖l,el

Hence,

Q =
∑

i

∑
j

∑
n

∑
l

gi gj gn gl exp
[
− 1

kT

(
𝜖i,trans + 𝜖j,rot + 𝜖n,vib + 𝜖l,el

)]
or

Q =

[∑
i

gi exp
(
−
𝜖i,trans

kT

)]
×

[∑
j

gj exp

(
−
𝜖j,rot

kT

)]

×

[∑
n

gn exp
(
−
𝜖n,vib

kT

)]
×

[∑
l

gl exp
(
−
𝜖l,el

kT

)]
(4.51)

Note that the “sum” in each parenthesis in Equation (4.51) are the partition functions
of each mode of energy. Thus, Equation (4.51) can be written as

Q = Qtrans Qrot Qvib Qel

Now, the evaluation of Q becomes essentially the evaluation of Qtrans, Qrot, Qvib,
and Qel.

First, let us consider the translational partition function

Qtrans =
∑

i

gi,trans exp
(−𝜖i,trans

kT

)
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In this equation, the summation is over all energy levels, each with gi states. Therefore,
the sum can just as well be taken over all energy states and be written as

Qtrans =
∑

i

exp
(−𝜖i,trans

kT

)

=
∞∑

n1=1

∞∑
n2=1

∞∑
n3=1

exp

[
−

h2
P

8 mkT

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)]

or

Qtrans =

[ ∞∑
n1=1

exp

(
−

h2
P

8 mkT

n2
1

a2
1

)]
×

[ ∞∑
n2=1

exp

(
−

h2
P

8 mkT

n2
2

a2
2

)]

×

[ ∞∑
n3=1

exp

(
−

h2
P

8 mkT

n2
3

a2
3

)]
(4.52)

If each of the terms in each summation above were plotted versus n, an almost contin-
uous curve would be obtained because of the close spacings between the translational
energies. As a result, each summation can be replaced by an integral, resulting in

Qtrans = a1

√
2𝜋 mkT

hP
a2

√
2𝜋 mkT

hP
a3

√
2𝜋 mkT

hP

or

Qtrans =

(
2𝜋 mkT

h2
P

)3∕2

𝕍 (4.53)

where 𝕍 = (a1 a2 a3) is the volume of the system.
To evaluate the rotational partition function, we use the quantum mechanics result

gj = 2J + 1.
Therefore,

Qrot =
∑
j

gj exp

(−𝜖j
kT

)

But

𝜖j =
h2

P

8𝜋2I
J (J + 1)

Therefore,

Qrot =
∞∑

J=0

(2J + 1) exp

[
−h2

P

8𝜋2IkT
J (J + 1)

]
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Again replacing the summation by an integral, we can obtain

Qrot =
8𝜋2IkT

h2
P

(4.54)

For vibration partition function, from quantum mechanics, gn = 1 for all levels of
a diatomic molecule. Hence,

Qvib =
∑

n

gne−𝜖n∕kT

=
∞∑

n=0

e−nhP𝜈∕kT

This is a simple geometric series, with a closed-form expression for the sum, result-
ing in

Qvib = 1
1 − e−nhP𝜈∕kT

(4.55)

For Qel, no closed-form solution is possible. It is expressed as

Qel ≡
∞∑

l=0

gl e−𝜖l∕kT

or
Qel = g0 + g1 e−𝜖1∕kT + e−𝜖2∕kT + · · · (4.56)

4.8 High-Temperature Thermodynamic Properties of a
Single-Species Gas

The partition function, by Equation (4.53), is

Qtrans =

(
2𝜋 mkT

h2
P

)3∕2

𝕍

Taking log on both sides, we have

ln Qtrans =
3
2

ln T + 3
2

ln

(
2𝜋mk

h2
P

)
+ ln𝕍

Differentiating this with respect to temperature T , we have(
𝜕 ln Qtrans

𝜕T

)
𝕍
= 3

2
1
T
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Substituting this into Equation (4.32), we have

etrans = RT2 3
2

1
T

or

etrans =
3
2

RT (4.57)

From Equation (4.54), we have Qrot as

Qrot =
8𝜋2IkT

h2
P

Taking log on both sides, we have

ln Qrot = ln T + ln

(
8𝜋2Ik

h2
P

)

Thus,
𝜕 ln Qrot

𝜕T
= 1

T
(4.58)

From Equations (4.58) and (4.32), we get

erot = RT (4.59)

Similarly, from Equation (4.55), we have

ln Qvib = − ln(1 − e−hP𝜈∕kT)

Differentiating with respect to T , we have

𝜕 ln Qvib

𝜕T
=

hP𝜈∕kT2

ehP𝜈∕kT − 1
(4.60)

From Equations (4.60) and (4.32), we get

evib =
hP𝜈∕kT

ehP𝜈∕kT − 1
RT (4.61)

Let us examine the above results with the theorem of equipartition of energy of
kinetic theory of gases [4], which states that

“each thermal degree of freedom of the molecule contributes 1
2

kT to the energy of

each molecule, or 1
2

RT to the energy per unit mass of gas.”
We know that the translational motion of a molecule or atom contributes three

thermal degrees of freedom. Hence, because of the equipartition of energy, the trans-
lational energy per unit mass should be

etrans = 3
(1

2
RT

)
= 3

2
RT
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This is same as Equation (4.57) obtained from the modern principles of statistical
thermodynamics.

Similarly, for a diatomic molecule, the rotational motion contributes two thermal
degrees of freedom. Therefore,

erot = 2
(1

2
RT

)
= RT

which is same as Equation (4.59).
For vibrational freedom, two degrees of freedom should result in

evib = 2
(1

2
RT

)
= RT

But this is not confirmed by Equation (4.61). Indeed, the factor

hP𝜈∕kT

(e−hP𝜈∕kT − 1)
is less than unity, except when T → ∞, when it approaches unity, thus in general,
evib < RT , in conflict with classical theory. This implies the following.

• The classical results based on macroscopic observations do not necessarily describe
phenomena in the microscopic world of molecules.

• As a result, the equipartition of energy principle is misleading.

Equation (4.61), obtained from quantum mechanics considerations, is the proper
expression for vibrational energy.

Thus, we have for atoms

e = 3
2

RT + eel (4.62)

This implies that, for atoms,

Specific internal energy measured above zero-point energy (sensible energy)
= Translational energy + Electronic energy obtained directly

from spectroscopic measurement

For molecules, we have the internal energy as

e = 3
2

RT + RT +
hP𝜈∕kT

ehP𝜈∕kT − 1
RT + eel (4.63)

Also, we know that the specific heat at constant volume is

cv ≡
(
𝜕e
𝜕T

)
v

Thus, from Equation (4.62), we have the cv for atoms as

cv =
3
2
+

𝜕eel

𝜕T
(4.64)
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For molecules, from Equation (4.63), we have the cv as

cv =
3
2

R + R +
(hP𝜈∕kT)2 ehP𝜈∕kT

(ehP𝜈∕kT − 1)2
R +

𝜕eel

𝜕T
(4.65)

From Equations (4.62)–(4.65), we see that both internal energy, e, and specific heat
at constant volume, cv, are functions of temperature, T , only. This is the case for a
thermally perfect nonreacting gas. That is,

e = f1(T)

cv = f2(T)

This is a consequence of our assumption that molecules are independent (no inter-
molecular forces) during the counting of microstates.

For a gas with only translational and rotational energy, we have the following.
For atoms,

cv =
3
2

R

and for diatomic molecules,

cv =
5
2

R

That is, cv is a constant and independent of temperature. This is the case of a calori-
cally perfect gas. For air around room temperature, being a perfect gas, we have

cp − cv = R

Therefore,

cp = cv + R

Substituting cv =
5
2

R, we have

cp = 7
2

R

Hence, the specific heats ratio 𝛾 becomes

𝛾 =
cp

cv
= 7

5

= 1.4

The theoretical variation of cv for air as a function of temperature T is shown
Figure 4.7.

Consider the perfect gas equation of state. In classical thermodynamics, the
equation is obtained from state postulate (the state postulate is a term used in ther-
modynamics that defines the given number of properties to a thermodynamic system
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Figure 4.7 Variation of cv∕R with temperature.

in a state of equilibrium. The state postulate allows a finite number of properties
to be specified in order to fully describe a state of thermodynamic equilibrium.
Once the state postulate is given, the other unspecified properties must assume
certain values. The state postulate says “the state of a simple compressible system
is completely specified by two independent, intensive properties,” but not from first
principle. With statistical thermodynamics, the equation of state can be obtained
from first principles as follows. From Equation (4.50), we have the pressure, in terms
of partition function, as

p = NkT

(
𝜕 ln Q
𝜕𝕍

)
T

Now, examine the partition function. The only one that depends on volume, 𝕍 , is the
translational partition function Qtrans. Equation (4.53) gives the partition function as

Qtrans =

(
2𝜋mkT

h2
P

)3∕2

𝕍

Taking log on both sides and differentiating with respect to 𝕍 , we have(
𝜕 ln Q
𝜕𝕍

)
T

=
(
𝜕 ln Qtrans

𝜕𝕍

)
T

= 1
𝕍

Hence, the pressure becomes

p = NkT
( 1
𝕍

)
or

p 𝕍 = NkT
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But Nk = R, the gas constant. Thus

p 𝕍 = RT

Note that this is the same as the classical thermodynamic relation obtained from state
postulation.

4.9 Equilibrium Properties of High-Temperature Air

For high-temperature air,

• the equations from statistical thermodynamics can be used directly in the flow
calculations and the thermodynamic properties can be generated internally in the
calculation.

• tables of thermodynamic properties of high-temperature air is presented by Hilsen-
rath and Klein [5]. These tables were calculated using the statistical methods.

• graphical plots of high-temperature air properties are also available. Indeed, a large
Mollier diagram is helpful in such cases.

• the tabulated data can be cast in the form of polynomial correlations that are easy
and convenient to apply within the framework of flow calculations.

4.10 Kinetic Theory of Gases

Some important characteristics of gases are dominated by translational motion. A
study of such matters is the purview of the science of kinetic theory. Consider a gas
in a cubical box as shown in Figure 4.8.

x

y

P1

Cz

Cx
C

Cy

C2

C1

P2

l
z

l

l

Figure 4.8 Illustration of particle velocity components.
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Identify a gas molecule at some instant in time and at some location P1. The particle
has a translational velocity denoted by C. The components of the velocity along x-,
y-, and z-directions are Cx, Cy, and Cz, respectively. Let us assume the gas molecule to
be a structureless “billiard ball,” translating in space and frequently colliding with the
neighboring molecules. Such molecular collisions, given enough time, would estab-
lish a state of equilibrium in the system. Assume that the gas in the box is in equilib-
rium. When the molecule under study reaches the rightface of the box, it is assumed
to specularly reflect from the surface at point P2. Then |C1| = |C2|, that is, the mag-
nitudes of the incident and reflected velocities are equal in magnitude and opposite in
direction, and

Cx2
= −Cx1

, Cy2
= Cy1

, Cz2
= Cz1

where Cx1
and Cx2

, respectively, are the components of incident and reflected veloci-
ties of the molecules in the x-direction, Cy1

and Cy2
, respectively, are the components

of incident and reflected velocities of the molecules in the y-direction, and Cz1
and Cz2

,
respectively, are the components of incident and reflected velocities of the molecules
in the z-direction. The incident velocity C1 and reflected velocity C2 are equal in mag-
nitude but opposite in direction.

During the impact, the molecule experiences a change in momentum in the
x-direction given by 2 mCx, where m is the mass of the molecule. The molecule
makes a number of traverses back and forth across the box in the x-direction over a
unit time (say 1 s). The number of complete traverses per unit time is Cx/2 l, where l
is the length of the box along the x-axis. Hence, the time rate of change of momentum
experienced by the molecule, when impacting the right-hand face of the cube shown
in Figure 4.8, is given by

(2 mCx)
(

Cx

2 l

)
=

mC2
x

l

This is equal to force by Newton’s second law.
As the pressure is force per unit area, pressure exerted by a particle on the right-hand

face is given by
mC2

x

l3
=

mC2
x

𝕍
where 𝕍 is the volume of the system.

Now assume that we have a large number of molecules in the box, each with a dif-
ferent mass mi and different velocity Ci. Then, the pressure exerted by the molecules
in the system on the right-hand face is

p = 1
𝕍

∑
i

mi C2
i,x (4.66)

Similarly, the pressure exerted on the faces perpendicular to y- and z-directions,
respectively, can be expressed as

p = 1
𝕍

∑
i

mi C2
i,y (4.67)
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and
p = 1

𝕍
∑

i

mi C2
i,z (4.68)

The pressure is given by the average of Equations (4.66)–(4.68). Thus

p = 1
3𝕍

∑
i

mi (C2
i,x + C2

i,y + C2
i,z)

that is,

p = 1
3𝕍

∑
i

mi C2
i (4.69)

The total kinetic energy for the system, E′
trans, is given by

E′
trans =

1
2

∑
i

mi C2
i (4.70)

Combining Equations (4.69) and (4.70), we have

p𝕍 = 2
3

E′
trans (4.71)

This is the kinetic theory equivalent of the perfect gas state equation.
Assume that we have 1 mol of molecules in the system. Then the volume 𝕍 in

Equation (4.71) becomes the molar volume 𝕍mol, and Etrans is the kinetic energy per
mole. Thus

p𝕍mol =
2
3

Etrans (4.72)

By state equation, we have
p𝕍mol = RuT (4.73)

where Ru (= 8314 m2/(s2 K)) is the universal gas constant. Thus, the total kinetic
energy of the system becomes

Etrans =
3
2

RuT (4.74)

This result is the same as that in Equation (4.57), we already know. Hence, our simple
kinetic theory model leads to the same result as obtained by statistical mechanics for
the translational energy.

Dividing Equation (4.74) by Avogadro’s number NA (= 6.02214 × 1023 mol−1), we
obtain

Etrans

NA
= 3

2

Ru

NA
T
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etrans =
3
2

kT (4.74a)

where k = Ru∕NA (= 1.3806488 × 10−23 m2 kg∕(s2 K) is the Boltzmann constant.
Equation (4.74a) gives the kinetic energy per mole.

Now, divide Equation (4.69) by the total mass of the system M, where M =
∑

i mi,

p𝕍
M

= 1
3

∑
i mi C2

i∑
i mi

(4.75)

Note that M∕𝕍 = 𝜌, and define a mean square velocity C2 as

C2 ≡
∑

i mi C2
i∑

i mi

(4.76)

Then Equation (4.75) becomes

p

𝜌
= 1

3
C2 (4.77)

This is another form of the kinetic theory equivalent of the perfect gas state equation.
Using Equation (4.68), we find from Equation (4.77) that

C2 = 3RT (4.77a)

The root-mean-square (RMS) velocity is given by√
C2 =

√
3RT (4.78)

From the expression for the mean velocity in Equation (4.77a), the following can be
inferred.

• The translational kinetic energy for a molecule, etrans, is given by 1
2
mi C2

i .

• From Equation (4.74a), etrans is also given by 3
2

kT , independent of the mass of the
molecule.

• Hence, for a gas mixture at temperature T , the heavy molecule will be moving more
slowly, on an average, than the light molecules.

4.11 Collision Frequency and Mean Free Path

Consider a molecule of diameter d moving at the mean molecular velocity, C, shown
in Figure 4.9.

As shown in the figure, any colliding molecule whose center comes within a dis-
tance d of the given molecule is going to cause a collision. As a given molecule moves
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Figure 4.9 Illustration of radius of influence.
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Figure 4.10 Cylindrical volume swept by a molecule of diameter d in 1 s.

through space, its radius of influence will sweep out a cylindrical volume per unit time
equal to 𝜋d2C as shown in Figure 4.10.

If n is the number density, that is, the number of molecule per unit volume, then
the molecule under consideration will experience n𝜋d2C collisions per second. This
is defined as the single particle collision frequency, Z′,

Z′ = n 𝜋 d2 C (4.79)

The mean free path, 𝜆, is defined as the mean distance traveled by a molecule
between two successive collisions. As, in unit time, the molecule travels a distance
C and experiences Z′ collisions during this time, we can write

𝜆 = C
Z′ =

1
n𝜋d2

(4.80)

In the above results of collision frequency, Z′, and mean free path, 𝜆, the mean
velocity, C, which is very much simplified, is taken for analysis. For accurate results,
we should consider the relative velocity rather than the mean velocity. This requires
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a more sophisticated analysis; without going into the details, let us see the results of
collision frequency and mean free path, in terms of the average velocity.

The single particle collision frequency between a single molecule of species A and
the molecules of species B is given by

ZAB = nB 𝜋 d2 CAB (4.81)

where nB is the number density (that is, the number of molecules per unit volume) of
space B and CAB is the mean relative velocity between A and B molecules given by

CAB =

√
8kT
𝜋 m∗

AB

(4.82)

where k is the Boltzmann constant. Hence, we have the single particle collision fre-
quency between a single molecule of species A and the molecules of species B as

ZAB = nB 𝜋 d2
AB

√
8kT
𝜋 m∗

AB

(4.83)

where m∗
AB is the reduced mass, defined as

m∗
AB ≡ mA mB

mA + mB
(4.84)

where mA and mB are the mass of the molecules of species A and B, respectively.
For a single species gas, the single particle collision frequency is obtained as

follows.
For a single species gas, the reduced mass, given by Equation (4.84), with mA =

mB = m, is

m∗ = m2

2m
= m

2

Substituting this into Equation (4.82), we get the average velocity as

C =
√

8kT
𝜋(m∕2)

that is,

C =
√

2

√
8kT
𝜋 m

=
√

2 CAB

The average relative speed is
√

2 times (that is, slightly larger than) the average speed
of one of the particles. Note that this is in accordance with our expectation that the
relative average speed should be between C and 2C.
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Substituting this C into Equation (4.83), we get the single particle collision
frequency as

Z = n𝜋d2
√

2

√
8kT
𝜋 m

But it is essential to note that the total collision frequency Ztot will be n times the single
particle collision frequency, divided by a factor 2 to avoid double counting. Thus the
single particle collision frequency becomes

Z = n√
2
𝜋 d2 C = n√

2
𝜋 d2

√
8kT
𝜋 m

(4.85)

Note that the collision theory is based on collisions and the average total collision
frequency per unit volume given by Equation (4.85) is the key quantity.

The difference between Equations (4.79) and (4.85) is that in Equation (4.85) more
accurate result is achieved by the factor

√
2, which takes into account the relative

velocity between molecules. Also, note that Equation (4.85) for a single species gas
cannot be obtained directly by simply inserting mA = mB in Equations (4.83) and
(4.84). To specialize Equation (4.83) for a single species gas, it must be divided by
an additional factor of 2 because of the collision counting procedure used to drive
Equation (4.83).

For the mean free path of the single species gas, taking into account the relative
velocities of the molecules, it can be shown that

𝜆 = 1√
2 𝜋 d2 n

(4.86)

Note that, in the above equation, 𝜋d2 is called the collision cross section denoted
by 𝜎.

4.11.1 Variation of Z and 𝜆 with p and T of the Gas

From state equation, we have
p = 𝜌RT

where the gas constant R = nk, where n is the number density and k is the Boltzmann
constant. Therefore,

p = nk𝜌T

This gives the number density as
n =

p

kT
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Using this in Equation (4.85), we get the single particle collision frequency as

Z = n√
2
𝜋 d2 C

= n√
2
𝜋 d2

√
8kT
𝜋 m

that is,
Z = C

p√
T

where

C =
√

𝜋

km
2d2

Thus

Z ∝
p√
T

(4.87)

From Equation (4.86), we get the mean free path as

𝜆 = 1√
2 𝜋 d2 n

Substituting n = (p∕kT), we get

𝜆 = 1√
2 𝜋 d2

kT
p

or
𝜆 = C1

T
p

where
C1 = k√

2 𝜋 d2

Thus

𝜆 ∝ T
p

(4.88)

Note that the collision frequency is directly proportional to pressure and the mean
free path is inversely proportional to pressure.

4.12 Velocity and Speed Distribution Functions

ConsiderN molecules of a gas distributed in some manner (not necessarily uniformly)
throughout physical space, shown in Figure 4.11(a). The instantaneous location of a
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Figure 4.11 Volume element in (a) physical and (b) velocity spaces.

molecule is given by the position vector r. The system of N molecules is then rep-
resented by a cloud of N points in the physical space. Also, at the same instant, a
given molecules has a velocity C. For each molecule, there is a corresponding point in
the velocity space, shown in Figure 4.11(b). The velocity distribution function f (r,C)
is defined as the number of molecules per unit volume of physical space at r, with
velocities per unit volume of velocity space at C. That is,

f (x, y, z,Cx,Cy,Cz) dx dy dz dCx dCy dCz

represents the number of particles located between x and x + dx, y and y + dy, and z
and z + dz, with velocities that range from Cx to Cx + d Cx, Cy to Cy + d Cy, and Cz
to Cz + d Cz.

Note that the gaseous system is composed of molecules of constant motion in space
and that they collide with the neighboring molecules, thus changing their velocities
(in both magnitude and direction). Therefore, in the most general case of nonequilib-
rium gas, the molecules will be distributed nonuniformly throughout the space and
time. That is, the number of points within the space volume element dx dy dz, in
Figure 4.11(a), will be a function of r and t, and the number of points at any instant
within the element dCx dCy dCz, in Figure 4.11(b), may be changing with time.

Integrating over all space and all velocities, we get
∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

f (x, y, z,Cx,Cy,Cz)dxdydz dCxdCydCz = N (4.89)

One of the intrinsic values of the velocity distribution function f is that the aver-
age value of any physical quantity Q, which is a function of space and/or velocity,
Q = Q(x, y, z,Cx,Cy,Cz), can be obtained from

Q = 1
N

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

Q f dx dy dz dCx dCy dCz (4.90)

where Q is the average value of the property Q.
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Now consider the case of a gas in translational equilibrium, that is, the number
density n is constant, independent of x, y, and z, and the number of molecular collisions
that tend to decrease the number of points in the volume dCx dCy dCz in velocity
space is exactly balanced by other molecular collisions that increase the number of
points in the elemental space volume dxdydz. For this case, the velocity distribution
function, f , becomes essentially a velocity distribution function f = f (Cx, Cy, Cz),
given by [6]

f (Cx, Cy, Cz) = N
( m

2𝜋kT

)3∕2
exp

[−m
2kT

(
C2

x C2
y C2

z

)]
(4.91)

This is called the Maxwellian distribution. This gives the number of molecules per
unit volume of velocity space located by the velocity vector C. Note that both f and
vdf denote magnitude and direction.

In a system in equilibrium, velocity distribution function f is a symmetric function,
that is,

f (Cx, Cy, Cz) = f (−Cx, Cy, Cz) = f (Cx,−Cy, Cz), …

Thus, for a system under equilibrium, we are concerned only with the magnitude of
the molecular velocity, that is, the speed of the molecules. Hence, we can introduce
speed distribution function 𝜒 (C) as follows. Consider the velocity space shown in
Figure 4.12.

All molecules on the surface of the sphere of radius C have the same speed. Now
consider the space between the spheres of radius C and C + dC. The volume of the
sphere is 4𝜋C2dC.

The number of molecules per unit volume of velocity space is given by Equation
(4.91). Thus the number of particles in the space between the two spheres becomes

4𝜋 N
( m

2𝜋 kT

)3∕2
C2 exp

(
−mC2

2 kT

)
dC

C

dC

Cy

Cx

Inner surface
with radius CCz

Outer surface
with radius C + dC

V
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Figure 4.12 Velocity space between spherical surfaces of radius C and C + dC.
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Figure 4.13 Variation of speed distribution function with molecular speed.

This gives the number of particles with speed between C and C + dC. In turn, the
number of particles with speed C per unit velocity change, which is defined as the
speed distribution function 𝜒 , is given by

𝜒 = 4𝜋 N
( m

2𝜋 kT

)3∕2
C2 e−(mC2∕2kT) (4.92)

Variation of
√

2𝜋 kT∕m
𝜒

N
with C∕

√
2𝜋 kT∕m is shown in Figure 4.13. Values of

most probable speed, Cmp; mean speed, C; and root-mean-square speed,

√
C

2
, are

marked on the plot.
Most probable speed is the speed corresponding to maximum value of 𝜒 , and it can

be obtained by differentiating Equation (4.92) as

Cmp =
√

2RT (4.93a)

where R is the specific gas constant. The constant R can be expressed as

R =
Ru

m

where Ru is the universal gas constant and m is the molecular mass. The gas constant
R can also be expressed as

R = k
m

where k (= 1.38 × 10−23 J/K) is the Boltzmann constant and m is the molecular mass
of the gas.
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Average speed is obtained from Equation (4.90) by replacing Q by C. The result is

C =
√

8RT
𝜋

(4.93b)

Root-mean-square speed is obtained from Equation (4.90) with Q = C2.
Root-mean-square speed is the measure of the speed of particles in a gas that is most
convenient for problem solving within the kinetic theory of gases. It is defined as the
square root of the average velocity of the molecules in a gas. The root-mean-square
(RMS) speed can be expressed as

√
C

2
=

√
3RuT

Mm
(4.93c)

where Mm is the molar mass of the gas in kilograms per mole, R is the molar gas
constant, and T is the temperature in kelvin. Although the molecules in a sample of
gas have an average kinetic energy (and, therefore, an average speed), the individual
molecules move at various speeds and they stop and change direction according to
the law of density measurements and isolation, that is, they exhibit a distribution of
speeds. Some move fast, others relatively slow. Collisions change individual molec-
ular speeds, but the distribution of speeds remains the same. This equation is derived
from kinetic theory of gases using Maxwell–Boltzmann distribution function. The
higher the temperature is, the greater the mean velocity will be. This works well for
both nearly ideal atomic gases such as helium and molecular gases such as diatomic
oxygen. This is because despite the larger internal energy in many molecules (com-
pared to that for an atom), 3RT∕2 is still the mean translational kinetic energy. This
can also be written in terms of the Boltzmann constant (k = 1.38 × 10−23 J/K) as√

C
2
=
√

3kT
m

where m is the mass of one molecule of the gas. But k∕m = R; thus

C
2
=
√

3RT (4.93d)

This can also be derived with energy methods:

Eke =
3
2

nRT = 3
2
NkT

where Eke is the kinetic energy and N is the number of gas molecules.

Eke,molecule =
1
2

m𝑣
2
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Given that 𝑣2 ignores direction, it is logical to assume that the formula can be extended
to the entire sample, replacing m with the entire sample’s mass, equal to the molar
mass times the number of moles n yielding

1
2

nM𝑣
2 = Eke

Therefore, √
C

2
=
√

2Eke

m
which is equivalent.

The same result is obtained by solving the Gaussian integral containing the Maxwell
speed distribution, 𝜒 :√

C
2
=

√
∫

∞

0
C2𝜒 d𝜒

=

√
∫

∞

0
4𝜋

( m
2𝜋kT

)3∕2
C4 e−mC2∕2kTdC

=
√

4𝜋
( m

2𝜋kT

)3∕2 3
8
𝜋1∕2

(2kT
m

)5∕2

=
√

3kT
m

Example 4.3 Calculate the most probable, mean, and RMS speeds of air at standard
sea level state.

Solution

Given T = 15∘C = 288.15 K.
The most probable velocity, by Equation (4.93a), is

Cmp =
√

2RT

=
√

2 × 287 × 288.15

= 406.69 m/s

The mean or average speed, by Equation (4.93b), is

C =
√

8RT
𝜋

=
√

8 × 287 × 288.15
𝜋

= 458.90 m/s
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The root-mean-square speed, by Equation (4.93d), is√
C

2
=
√

3RT

=
√

3 × 287 × 288.15

= 498.09 m/s ◾

4.13 Inviscid High-Temperature Equilibrium Flows

A flow is said to be in local thermodynamic equilibrium if a local Boltzmann distri-
bution, which is given by

N∗
j = N

e−𝜖j∕kT

Q

exists at each point in the flow at the local temperature T .
A flow is said to be in local chemical equilibrium if the local chemical composition

at each point in the flow is the same as that determined by the chemical equilibrium
calculations.

In our present discussions, we will simply assume that the local equilibrium condi-
tions hold at each point in the flow field.

4.14 Governing Equations

Consider the following equations of continuity, momentum, and energy for an inviscid
compressible flow.
Continuity equation:

𝜕𝜌

𝜕t
+ 𝜕(𝜌u)

𝜕x
+ 𝜕(𝜌𝑣)

𝜕y
+ 𝜕(𝜌𝑤)

𝜕z
= 0

Momentum equation (x-, y-, and z-components, respectively):

𝜌
𝜕u
𝜕t

+ 𝜌u
𝜕u
𝜕x

+ 𝜌𝑣
𝜕u
𝜕y

+ 𝜌𝑤
𝜕u
𝜕z

= −
𝜕p

𝜕x

𝜌
𝜕𝑣

𝜕t
+ 𝜌u

𝜕𝑣

𝜕x
+ 𝜌𝑣

𝜕𝑣

𝜕y
+ 𝜌𝑤

𝜕𝑣

𝜕z
= −

𝜕p

𝜕y

𝜌
𝜕𝑤

𝜕t
+ 𝜌u

𝜕𝑤

𝜕x
+ 𝜌𝑣

𝜕𝑤

𝜕y
+ 𝜌𝑤

𝜕𝑤

𝜕z
= −

𝜕p

𝜕z

Energy equation:
𝜕s
𝜕t

+ u
𝜕s
𝜕x

+ 𝑣
𝜕s
𝜕y

+𝑤
𝜕s
𝜕z

= 0
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This is a specialized energy equation for an adiabatic, inviscid flow.

• Continuity equation is a statement that the mass flow rate is conserved.
• Momentum equations are statements of Newton’s second law, F = ma.
• Energy equation is a statement that entropy is constant along a streamline for an

inviscid, adiabatic flow.

If entropy is constant along a streamline, then for an isentropic process of a calor-
ically perfect gas, the quantity p∕𝜌𝛾 is also constant along a streamline, and we can
write the above specialized energy equation in terms of the entropy in the following
form.

𝜕

𝜕t

(
p

𝜌𝛾

)
+ u

𝜕

𝜕x

(
p

𝜌𝛾

)
+ 𝑣

𝜕

𝜕y

(
p

𝜌𝛾

)
+𝑤

𝜕

𝜕z

(
p

𝜌𝛾

)
= 0

Thus, the continuity, momentum, and energy equations in terms of entropy s are valid
for a high-temperature, chemically reacting, inviscid, equilibrium flow.

Note that the above equation in terms of p∕𝜌𝛾 is not valid for such a flow, because
it is a specialized form assuming constant 𝛾 and, hence, applied only to calorically
perfect gases.

The energy equation in terms of entropy s is a statement that the entropy of a moving
fluid element is constant in an adiabatic, inviscid flow. For a high-temperature gas, this
remains true as long as the flow is in local equilibrium.

However, for a nonequilibrium flow, we know that there is entropy increase due to
the irreversible effect of the nonequilibrium process, and hence, the energy equation
does not hold for a nonequilibrium inviscid flow.

For such flows, and essentially for all high-temperature flows, it is preferable to deal
with another variable rather than the entropy in the energy equation.

Let us choose the total enthalpy, h0, as the independent variable and write the energy
equation for an adiabatic inviscid flow as

𝜌
Dh0

Dt
= 𝜌

𝜕h0

𝜕t
+ 𝜌u

𝜕h0

𝜕x
+ 𝜌𝑣

𝜕h0

𝜕y
+ 𝜌𝑤

𝜕h0

𝜕z
=

𝜕p

𝜕t
(4.94)

This equation is valid for both equilibrium and nonequilibrium flows.
Therefore, the governing equations for an inviscid, high-temperature, equilibrium

flows are the following.

Continuity equation:
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0 (4.95)

Momentum equation:

𝜌
DV
Dt

= −∇p (4.96)
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Energy equation:

𝜌
Dh0

Dt
=

𝜕p

𝜕t
(4.97)

where the stagnation enthalpy h0 is given by

h0 = h + V2

2
(4.98)

where h is the static enthalpy and V is the flow velocity. The governing equations
(4.95)–(4.97) constitute three equations for the four unknowns, namely, the density,
𝜌; velocity, V; pressure, p; and enthalpy, h.

Therefore, this system of three equations must be completed by the addition of the
equilibrium thermodynamic properties for the gas, in order to solve for 𝜌, V , p, and h.
Conceptually, we can write these properties in the form

T = T (𝜌, h) (4.99)

p = p (𝜌, h) (4.100)

Therefore, Equations (4.95)–(4.97), (4.99), and (4.100) constitute five equations for
the five unknowns, p, V , 𝜌, h, and T .

In a given calculation, Equations (4.99) and (4.100) can take the form of any of the
following.

• A direct calculation of the equilibrium thermodynamic properties from the
equations of statistical thermodynamics carried out in parallel with the solution of
the flow equations.

• A tabulation of the equilibrium thermodynamic properties.
• Correlations of the equilibrium thermodynamic properties.
• Graphical plots of the equilibrium thermodynamic properties.

It is important to note that the analytical, closed-form solutions of Equations (4.95)–
(4.100) have not yet been obtained in the literature, even for the simplest type of
high-temperature flow problems.

4.15 Normal and Oblique Shocks

Consider a stationary normal shock, as shown in Figure 4.14, with known flow field
ahead of it. Let us assume that the shock is strong enough to compress the flow result-
ing in the downstream temperature, T2, which is high enough to cause vibrational
excitation and chemical reactions behind the shock. Also let us assume that local
thermodynamic and chemical equilibria hold behind the shock. The conditions ahead
of the shock are known, and the problem now is to calculate the properties behind
the shock.
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Normal shock

h1, p1, ρ1, T1 h2, p2, ρ2, T2

To be calculated

V2

Known flow

V1

Figure 4.14 Flow through a stationary normal shock.

The governing equations for the flow across a normal shock (one-dimensional flow)
are

Continuity equation:
𝜌1V1 = 𝜌2V2 (4.101)

Momentum equation:
p1 + 𝜌1V2

1 = p2 + 𝜌2V2
2 (4.102)

Energy equation:

h1 +
V2

1

2
= h2 +

V2
2

2
(4.103)

Note that the Equations (4.101) and (4.102) are general and valid for both reacting
and nonreacting gases.

Assume that the equilibrium thermodynamic properties for high-temperature gas
are known from the techniques discussed, for example, as tables or graphs.

Let us consider these properties in terms of the following functional relations:

p2 = p (𝜌2, h2) (4.104)

T2 = T (𝜌2, h2) (4.105)

Recall that for calculation in perfect gases, Equations (4.101)–(4.105) yield a series
of closed-form algebraic relations for p2∕p1, T2∕T1, M2, etc. as functions of M1.
Derivation of these equations and the physical significance of the flow process through
normal shock in perfect gas are presented in detail by Rathakrishnan [7]. But no such
simple formulae can be obtained when the gas is vibrationally excited and/or chemi-
cally reacting. For such high-temperature flows, Equations (4.101)–(4.105) must be
solved numerically.

To set up such a numerical scheme to solve for flow properties behind the normal
shock, let us first rearrange Equations (4.101)–(4.103).

From Equation (4.101), we can write the velocity, V2, downstream of the shock as

V2 =
𝜌1V1

𝜌2
(4.106)



High-Temperature Flows 125

Substituting Equation (4.106) into Equation (4.102), we get

p1 + 𝜌1V2
1 = p2 + 𝜌2

(
𝜌1V1

𝜌2

)2

(4.107)

Solving Equation (4.107) for p2, we get

p2 = p1 + 𝜌1V2
1

(
1 −

𝜌1

𝜌2

)
(4.108)

Substituting Equation (4.106) into Equation (4.103), we get

h1 +
V2

1

2
= h2 +

(𝜌1V1∕𝜌2)2

2
(4.109)

Solving Equation (4.109), we obtain the enthalpy h2 behind the shock as

h2 = h1 +
V2

1

2

[
1 −

(
𝜌1

𝜌2

)2
]

(4.110)

As the flow properties 𝜌1, V1, p1, h1, etc. ahead of the shock are known, Equations
(4.108) and (4.110) express p2 and h2, respectively, in terms of only one unknown,
namely, the density ratio 𝜌1∕𝜌2. This establishes the basis for an interactive numerical
solution as follows.

1. Assume a value for 𝜌1∕𝜌2 (a value of 0.1 is usually good for a start).
2. Calculate p2 from Equation (4.108) and h2 from Equation (4.110).
3. With these p2 and h2, calculate 𝜌2 from Equation (4.104).
4. Form a new value of 𝜌1∕𝜌2, using the value of 𝜌2 obtained with step 3.
5. Use this new value of 𝜌1∕𝜌2 in Equations (4.108) and (4.110) to obtain new value

of p2 and h2, respectively. Repeat steps 3–5 until convergence is obtained.
6. Now we have the correct values of p2, h2, and 𝜌2. Obtain the correct value of T2

from Equation (4.105).
7. Obtain the correct value of velocity V2 from Equation (4.106).

Example 4.4 Determine the static pressure and temperature rise caused by a normal
shock in a Mach 6 air stream with pressure and temperature ahead of the shock as
80 kPa and 270 K. Also, find the pressure loss caused by the shock.

Solution

Given M1 = 6, p1 = 80 kPa, and T1 = 270 K.
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From normal shock table [8], for M1 = 6,

p2

p1
= 41.833,

T2

T1
= 7.9406,

p02

p01
= 0.029651

From isentropic table, for M1 = 6,

p1

p01
= 0.63336 × 10−3

Therefore,

p2 = 41.833 p1

= 41.833 × 80

= 3346.64 kPa

T2 = 7.9406 T1

= 7.9406 × 270

= 2143.962 K

p01 =
p1

0.63336 × 10−3

= 80
0.63336 × 10−3

= 126.31 × 103 kPa

Thus the static pressure and the temperature are

Δp = p2 − p1

= 3346.64 − 80

= 3266.64 kPa

ΔT = T2 − T1

= 2143.962 − 270

= 1873.962

The total pressure behind the shock is

p02 = 0.029651 p01

= 0.029651 × (126.31 × 103)

= 3.745 × 103 kPa
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Thus the pressure loss caused by the shock is

p01 − p02 = 126.31 × 103 − 3.745 × 103

= 122.56 × 103 kPa ◾

There is a basic practical difference between the shock results for a calorically per-
fect gas and those for a chemically reacting gas.

For a calorically perfect gas, we have the pressure, density, and enthalpy ratios
across a shock as [7]

p2

p1
= f1 (M1)

= 1 + 2𝛾
𝛾 + 1

(M2
1 − 1)

𝜌2

𝜌1
= f2 (M1)

=
(𝛾 + 1)M2

1

(𝛾 − 1)M2
1 + 2

h2

h1
= f3 (M1)

= 1 + 2(𝛾 − 1)
(𝛾 + 1)2

(𝛾M2
1 + 1)

M2
1

(M2
1 − 1)

Note that only the Mach number upstream of the shock, M1, is required to obtain the
ratio of flow properties across a normal shock wave.

But, for an equilibrium chemically reacting gas, we have seen that
p2

p1
= g1 (V1, p1,T1)

𝜌2

𝜌1
= g2 (V1, p1,T1)

h2

h1
= g3 (V1, p1,T1)

Note that, in this case, three freestream properties, namely, the velocity, pressure,
and temperature, are necessary to obtain the properties downstream of a normal
shock wave.

In contrast to a calorically perfect gas, the upstream Mach number M1 no longer
plays a dominant role in the results of normal shock wave in a high-temperature gas.
In fact, for most high-temperature flows, in general, the Mach number is not a partic-
ularly useful quantity.

Consider a reentry vehicle at 5000 m (about 17,000 ft) standard altitude with a
velocity of 10,000 m/s (about 36,000 ft/s). The properties across a normal shock wave
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Table 4.1 The pressure, density, enthalpy, and temperature ratio
across a normal shock at the face of a reentry vehiclea

Property For calorically
perfect gas 𝛾 = 1.4

For equilibrium chemically
reacting gas (CAL report
AG-1729-A-2)

p2/p1 1233 1387
𝜌2/𝜌1 5.972 15.19
h2/h1 206.35 212.8
T2/T1 206.35 41.64

aCornell Aeronautical Laboratory, Inc., Buffalo, NY 14221.

for this case, considering the gas as calorically perfect and chemically reacting, are
listed in Table 4.1.

Note that the chemical reactions have the strongest effect on the temperature T .
This is generally true for all types of chemically reacting flows – the temperature T is
the most sensitive variable. In contrast, the pressure ratio is affected only by a small
amount. Pressure is a “mechanically” oriented variable and is governed mainly by the
fluid mechanics of the flow, and not so much by the thermodynamic. This is substanti-
ated by examining the momentum Equation (4.102). For high-speed flows, V2 ≪ V1,
and p2 ≫ p1. Hence, from Equation (4.102), we have

p2 ≈ 𝜌1V2
1

This is a common hypersonic approximation; note that p2 is mainly governed by the
freestream velocity, and the thermodynamic effects are secondary.

In an equilibrium dissociating and ionizing gas, increasing the pressure at constant
temperature tends to decrease the atom and ion mass fractions; this effect on equilib-
rium normal shock wave properties are shown in Figure 4.15.

Note that the temperature ratio, T2∕T1, is high at high levels of freestream pressure,
p1, and decreases with decrease of freestream pressure. The gas is less dissociated and
ionized at higher pressures, and hence, more energy goes into the translational molec-
ular motion behind the shock rather than into the zero-point energy of the products of
dissociation.

The ratio of density, 𝜌2/𝜌1, across the shock has an important effect on the
shock detachment distance in front of a blunt-nosed body in a hypersonic flow. An
approximate expression for the shock detachment distance, 𝛿, ahead of the nose of a
blunt-nosed body, with spherical nose of radius R, in terms of the density ratio across
the detached shock is [9]

𝛿

R
=

𝜌1∕𝜌2

1 +
√

2 (𝜌1∕𝜌2)
(4.111)
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Figure 4.15 Effect of freestream pressure on the temperature ratio across a normal shock in
equilibrium air.

In the limit of high velocities, 𝜌1∕𝜌2 becomes small compared to unity, and Equation
(4.111) is approximated by

𝛿

R
≈

𝜌1

𝜌2
= 1

(𝜌2∕𝜌1)
(4.112)

Therefore, the value of the density ratio across a normal shock has a major impact on
shock detachment distance; the higher the density ratio, 𝜌2∕𝜌1, is, the smaller is the
shock detachment distance, 𝛿.

The effect of chemical reactions is to increase density ratio, 𝜌2∕𝜌1, which in turn
decreases the shock detachment distance.

Therefore, in comparison to a calorically perfect gas, the shock wave for a chemi-
cally reacting gas (at the same velocity and altitude conditions) will lie closer to the
body, as illustrated in Figure 4.16.

Example 4.5 Mach 4.6 air stream at 0.1 atm and 200 K flows past a blunt nose of
radius of curvature of 33 mm. Determine the shock detachment distance along the
stagnation streamline.

Solution

Let subscripts 1 and 2 refer to the flow state ahead of and behind the shock, respec-
tively. Given M1 = 4.6, p1 = 0.1 atm, T1 = 200 K, and R = 33 mm.
At the given conditions, the freestream can be treated as perfect with specific heats
ratio 𝛾 = 1.4. For M1 = 4.6, from normal shock table, for 𝛾 = 1.4,

𝜌2

𝜌1
= 4.8532
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δcp

δcR

V1, ρ1

Shock wave for
chemically reacting flow

Shock wave for
calorically perfect gas

with γ = 1.4

R

Figure 4.16 Relative locations of bow shock for a perfect and chemically reacting gases.

By Equation (4.111), the shock detachment distance from the blunt nose is

𝛿 = R

[
𝜌1∕𝜌2

1 +
√

2 (𝜌1∕𝜌2)

]

= 33 ×

[
1∕4.8532

1 +
√

2 × 1∕4.8532

]

= 4.14 mm ◾

4.16 Oblique Shock Wave in an Equilibrium Gas

Consider the flow across an oblique shock, as shown in Figure 4.17, at an angle 𝛽

to the freestream flow. It can be shown that Vt1
= Vt2

. This is a basic mechanical

θ

V
n2

V t 1

β

V
n1

V t 2

βV1

Oblique shock

V2

Figure 4.17 Oblique shock in an equilibrium gas.
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result obtained from the momentum equation, and hence, it is not influenced by
high-temperature effects. The thermodynamic changes across the oblique shock are
dictated only by the component of the upstream velocity, Vn1

, perpendicular to the
shock. Therefore, for the high-temperature equilibrium flow across an oblique shock
wave, we have the same basic, familiar results as those for a chemically reacting flow
through a normal shock. Thus,

tan(𝛽 − 𝜃) =
Vn2

Vt2

(4.113)

By multiplying and dividing the right-hand side by Vn1
, we have

tan(𝛽 − 𝜃) =
Vn2

Vt1

=
Vn2

Vn1

Vn1

Vt1

But
Vn1

Vt1

= tan 𝛽; thus

tan(𝛽 − 𝜃) =
Vn2

Vn1

tan 𝛽 (4.114)

This relation in terms of 𝜃, 𝛽, Vn2
, and Vn1

for the equilibrium high-temperature gases is
the analog of the 𝜃–𝛽 –M relation for calorically perfect gases. An equivalent 𝜃–𝛽 –V
diagram for high-temperature air is given in Figure 4.18. A plot of shock angle, 𝛽,
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Figure 4.18 Flow deflection angle–shock angle–velocity diagram for oblique shocks in
high-temperature air at 10,000 ft altitude.
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variation with the flow turning angle, 𝜃, as a function of upstream velocity V1 is given
in Figure 4.18. A similar plot of 𝛽 variation with 𝜃 as a function of upstream Mach
number (𝜃–𝛽 –M plot) for perfect gases is given in Figure 4.3 of Reference 7.

From Figure 4.18, it is seen that

• The 𝜃–𝛽 –M behavior for equilibrium chemically reacting air is qualitatively sim-
ilar to calorically perfect air.

• For the equilibrium chemically reacting results, the flow Mach number, M1,
upstream of the shock is not an important parameter. The results of an oblique
shock wave in a chemically reacting flow depend on the upstream velocity, V1, as
well as the pressure, p1, and the temperature, T1, ahead of the shock.

• It is seen that, for a given flow turning angle 𝜃, (for the weak solution) the
equilibrium shock angle 𝛽 (solid curves) is less than that for a calorically perfect
gas with 𝛾 = 1.4 (dashed curves). This implies that the oblique shock wave will
lie closer to the surface for the chemically reacting equilibrium case as shown
in Figure 4.19.

The reason why the shock in a chemically reacting flow lies closer to the body sur-
face is because of the increased density ratio 𝜌2∕𝜌1 across the wave, in the chemically
reacting flow, compared to the density ratio across the wave in a perfect gas.

For the “strong-shock” solutions, given by the upper portion of 𝜃–𝛽 –M curve, the
solution is just the reverse of weak-shock case.

Note that, as reported by Rathakrishnan [7], all naturally occurring oblique shocks
are weak; thus, in the vast majority of applications, the “weak-shock solution” is used.

The maximum flow deflection angle, 𝜃, allowed for the solution of a straight oblique
shock wave is increased by the effects of chemical reaction.

4.17 Equilibrium Quasi-One-Dimensional Nozzle Flows

Consider the inviscid, adiabatic high-temperature flow through a convergent–
divergent (C-D) nozzle, shown in Figure 4.20. Flow through this kind of passages,
with streamlines having large radius of curvature and without any abrupt change in
the cross-sectional area of the passage, can be regarded as one dimensional.

Shock in a perfect gas
with γ =1.4

Shock in a chemically
reacting flow

M1
θ

Figure 4.19 Comparative locations of oblique shock in a perfect and an equilibrium chemi-
cally reacting gases.
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Figure 4.20 (a) An equilibrium nozzle flow, (b) its Mollier diagram.

First, let us examine whether the chemically reacting flow is isentropic? Given that
the flow is both inviscid and adiabatic. For an equilibrium chemically reacting flow,
by the first and second laws of thermodynamics, we have

Tds = dh − vdp (4.115)

where T is the temperature, s is the entropy, h is the enthalpy, v is the specific volume,
and p is the pressure.

For an adiabatic steady flow, with constant stagnation enthalpy h0, by energy
equation, we have

h + V2

2
= h0

where h and h0, respectively, are the static and stagnation enthalpies and V is the flow
velocity. Thus in the differential form, the above relation for enthalpy becomes

dh + VdV = 0 (4.116)

Along a streamline, by Euler’s equation [by Equation (2.4) of Rathakrishnan [7]],
we have the pressure–velocity relation as

dp

𝜌
+ VdV = 0
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that is,

VdV = −
dp

𝜌
(4.117)

This can be expressed as

VdV = −
dp

𝜌
= −vdp (4.118)

where v (= 1∕𝜌) is the specific volume.
Thus Equation (4.118) becomes

dh − vdp = 0 (4.119)

Substituting this into Equation (4.115), we have

Tds = 0 (4.120)

Hence, the equilibrium chemically reacting flow through a nozzle is isentropic. It is
a general result implying that the equilibrium chemical reactions do not introduce
irreversibilities into the system. Thus, any shock-free, inviscid, adiabatic, equilibrium
chemically reacting flow is isentropic.

4.17.1 Quasi One-Dimensional Flow

One-dimensional flow is that in which the radius of curvature of the streamlines are
very large and the cross-sectional area of the passage (streamtube) does not change
abruptly. Thus, it is a flow where the cross-sectional area of the streamtube is a variable
and a function of one space variable, say x; A = A(x). Also, the flow properties across
any given cross section can be assumed to be uniform and depends only on x. That
is, p = p(x), v = u = u(x), T = T(x), 𝜌 = 𝜌(x) (the coordinate in the stream direction),
and so on.

Let us investigate whether for an equilibrium, chemically reacting quasi-
one-dimensional nozzle flow, sonic flow exists at the throat of the nozzle?

We know that, for an isentropic flow, choking will take place only at the throat and
not at any other location [7]. The area–velocity relation can be expressed as follows.

For any streamtube of cross-sectional area A, the continuity equation is given by

𝜌Au = constant

where 𝜌 is the density and u is the velocity. Differentiating with respect to u, we obtain

d(𝜌Au)
du

= 𝜌u
dA
du

+ A
d(𝜌u)

du
= 0

The term

A
d(𝜌u)

du
= A

[
𝜌 + u

d𝜌
du

]
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This can be expressed as

A
d(𝜌u)

du
= A

(
𝜌 + u

d𝜌
dp

dp

du

)
By Equation (4.117),

dp

du
= −𝜌u

and by Laplace equation, we have

dp

d𝜌
= a2

Substituting for dp

du
and dp

d𝜌
, we have

A
d(𝜌u)

du
= A

[
𝜌 + u

a2
(−𝜌u)

]

= A

(
𝜌 − 𝜌

u2

a2

)
= A𝜌 (1 − M2)

Therefore,
𝜌u

dA
du

+ A𝜌 (1 − M2) = 0

This gives

dA
du

= −A
u
(1 − M2) (4.121)

Equation (4.121) is an important result. It is called the area–velocity relation. This
is valid for any gas, irrespective of whether it is perfect or chemically reacting. Fur-
ther, when M = 1, dA∕A = 0, and therefore, sonic flow does exist at the throat of an
equilibrium chemically reacting nozzle flow.

Examine the h–s (Mollier) diagram for the nozzle flow, shown in Figure 4.20(b). It
is seen that a given point on the Mollier diagram not only gives the enthalpy, h, and
entropy, s, but the pressure, p, and temperature, T , at that point as well (and any other
equilibrium thermodynamic property, because the state of an equilibrium system is
completely specified by any two independent state variables).

Let point 1 on the h–s diagram (Figure 4.20(b)) denotes the known reservoir con-
dition, with stagnation pressure p0 and stagnation temperature T0, for the nozzle flow.
As the flow is isentropic, conditions at all other locations throughout the nozzle must
fall somewhere on the vertical line passing through point 1 on the h–s diagram.

In particular, let us choose a value of u = u2 ≠ 0. The velocity corresponds to this
point can be found from Equations (4.97) and (4.98) as follows.

h0 = constant
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Hence,

h1 +
u2

1

2
= h2 +

u2
2

2
= h0 (4.122)

Thus,

Δh = h0 − h2 =
u2

2

2
(4.123)

Therefore, for a given velocity u2, Equation (4.123) locates the appropriate points on
the Mollier diagram.

In turn, the constant pressure and the constant temperature lines that run through
point 2 define the pressure p2 and the temperature T2 associated with the chosen veloc-
ity u2.

In this way, the variation of the thermodynamic properties of the flow expanding
through the nozzle can be calculated as a function of velocity u, for a given reservoir
condition (that is, for a given p0 and T0).

For an equilibrium gas, the speed of sound, a2 ≡ (𝜕p∕𝜕𝜌)s, is also a unique function
of the thermodynamic state. For example,

a = a (h, s) (4.124)

where h and s, respectively, are the enthalpy and entropy. Thus, at each point on the
Mollier diagram, there exists a definite value of a.

Moreover, at some point along the vertical line through point 1 (Figure 4.20), the
speed of sound a will be equal to the flow velocity u at that point. Such a point is
marked by an asterisk in Figure 4.20. At this point,

u = a = u∗ = a∗

Earlier, it was demonstrated that the location of sonic flow in a nozzle is the throat.
Thus the location where u = a∗, marked by asterisk in Figure 4.20, must also corre-
spond to the throat.

By continuity equation, we have

𝜌uA = 𝜌
∗u∗A∗ (4.125)

where 𝜌, u, and A, respectively, are the local density, velocity, and cross-sectional
area at any location in the streamtube and 𝜌

∗, u∗, and A∗, respectively, are the density,
velocity, and cross-sectional area at the sonic state.

From Equation (4.125), we have

A
A∗ = 𝜌

∗ u∗

𝜌 u
(4.126)

But 𝜌∗ and u∗ are constant for a given stagnation state with pressure p0 and temperature
T0. Therefore, Equation (4.126) allows the calculation of the nozzle area ratio as a
function of flow velocity, u, through the nozzle.
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The appropriate values of u, p, T , and A∕A∗ at different axial locations of the nozzle
for an equilibrium nozzle flow, for a given reservoir condition, can be obtained from
isentropic and area–Mach number relations.

Note that the familiar closed-form algebraic relations that can be obtained for a
calorically perfect gas are not possible for a chemically reacting flow through a noz-
zle. This is analogous to the case of chemically reacting flow through a shock wave.
That is, closed-form algebraic relations cannot be obtained for any high-temperature
chemically reacting flow of interest. Numerical or graphical solutions are necessary
for such cases.

For a calorically perfect gas, the nozzle flow characteristics are given by the local
flow Mach number, M, only. We have the area ratio, temperature ratio, and pressure
ratio as [7]

A
A∗ = f1 (M)

= 1
M2

(
2

𝛾 + 1

(
1 + 𝛾 − 1

2
M2

))(𝛾+1)∕(𝛾−1)

T
T0

= f2 (M)

=
(

1 + 𝛾 − 1
2

M2

)−1

p

p0
= f3 (M)

=
(

1 + 𝛾 − 1
2

M2

)−𝛾∕(𝛾−1)

where subscript 0 refers to the stagnation state. In contrast, for an equilibrium chem-
ically reacting gas, the area ratio, temperature ratio, and pressure ratio are given by

A
A∗ = g1 (p0,T0, u)

T
T0

= g2 (p0,T0, u)

p

p0
= g3 (p0,T0, u)

Note that, as in the case of normal shock, the nozzle flow properties also depend on
three parameters. Also, again we see that unlike in the case of calorically perfect gas,
the Mach number is not the pivotal parameter for a chemically reacting flow.

Some results for the equilibrium supersonic expansion of high-temperature air are
shown Figure 4.21. The mole–mass ratios for N2, O2, N, O, and NO are given as
a function of area ratio, for T0 = 8000 K and p0 = 100 atm. At the given stagnation
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Figure 4.21 Chemical composition of an equilibrium high-temperature air flow through a
nozzle.

temperature of T0 = 8000 K, the air is highly dissociated in the reservoir. As the gas
expands through the nozzle, the temperature decreases, leading to the recombination
of oxygen (O) and nitrogen (N) atoms. This is reflected as decrease of the mole frac-
tions 𝜂O and 𝜂N of oxygen and nitrogen atoms and increase of the mole fractions 𝜂O2

and 𝜂N2
of oxygen and nitrogen molecules, as the gas expands supersonically from

A∕A∗ = 1 to 1000.
A typical result of temperature distribution along the nozzle for equilibrium chem-

ically reacting flow through a rocket nozzle is shown in Figure 4.22. The reservoir
conditions are produced by the equilibrium combustion of an oxidizer (say N2O2, the
hyponitrite) with a fuel (say half-N2H4 and half-unsymmetrical dimethyl hydrazine)
at an oxidizer-to-fuel ratio of 2.25 and a chamber pressure of 4 atm. The calorically
perfect gas is assumed to have a constant specific heats ratio of 𝛾 = 1.20.
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Figure 4.22 Temperature variation of perfect and reacting equilibrium flow through a rocket
nozzle.

Note that, all along the nozzle, the temperature of a reacting equilibrium flow is
higher than that of the calorically perfect gas flow. This is because as the gas expands
and becomes cooler, the chemical composition changes from a high percentage of
atomic species (O and H), in the reservoir with an attendant high zero-point energy,
to a high percentage of molecular products (H2O, CO, etc.) in the nozzle expansion,
with an attendant lower zero-point energy. That is, the gas atoms recombine, giving
up chemical energy that serves to increase the translational energy of the molecules
and, hence, resulting in a higher static temperature than that would exist in the nonre-
acting case.

Also, note that for nozzle flow, the equilibrium temperature is always higher than
that for a calorically perfect gas. But for flow behind a shock wave, the equilibrium
temperature is always lower than that for a calorically perfect gas. In the nozzle flow
case, the reactions are exothermic and energy is dumped into the translational molec-
ular motion, but in the case of normal shock flow, the reactions are endothermic and
energy is taken from the translational mode.

4.18 Frozen and Equilibrium Flows

So far we have discussed flows that were in local thermodynamic and chemical equi-
librium. In reality, such flows never occur precisely in nature. This is because all chem-
ical reactions and vibrational energy exchanges require a certain number of molecular
collisions to occur; because the gas particles experience a finite collision frequency,
such reactions and energy exchanges require a finite time to occur. Therefore, in the
hypothetical case of local equilibrium flow, the equilibrium properties of a moving
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fluid element demand instantaneous adjustment of local temperature, T , and pressure,
p, as the element moves through the flow field. For this, the reaction rates have to
be infinitely large. Therefore, equilibrium flow implies infinite chemical and vibra-
tional rates. The opposite to this flow is that where the reaction rates are practically
zero. Such a flow with no reaction is termed frozen flow. As a result, the chemical
composition of frozen flow remains constant throughout the space and time.

Consider the flow through a C-D nozzle is shown in Figure 4.23. Fully dissoci-
ated oxygen, at 5000 K and 1 atm, from a reservoir is expanded through the C-D
nozzle, shown in Figure 4.23(a). Qualitative variation of flow temperature for equi-
librium and frozen chemically reacting flows, from entry to the exit of the nozzle,
are shown in Figure 4.23(b). Qualitative variation of species concentration for equi-
librium and frozen chemically reacting flows, from entry to the exit, are shown in
Figure 4.23(c). For the case of equilibrium flow, at the nozzle inlet, the mole fraction
of oxygen atom CO = 1 and the mole fraction of oxygen molecule CO2

= 0. As the

CO

T

5000

Reacting flow

Axial distance

Frozen flow

T0 = 5000 K
p0 = 1 atm

Oxygen

1.0

Ci

Axial distance

(c)

(b)

(a)

CO2

CO frozen

Figure 4.23 (a) Fully dissociated oxygen flow through a nozzle, qualitative comparison of
(b) temperature, T , and (c) species concentration, Ci, variation for equilibrium and frozen
chemically reacting flows through the nozzle.
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temperature decreases owing to the expansion of the flow from the nozzle inlet to exit,
the oxygen atoms would recombine; hence, the mole fraction of O (that is, CO) would
decrease and that of O2 (that is, CO2

) would increase, as a function of distance through
the nozzle. If the expansion is such that the equilibrium temperature is equal to the
atmospheric temperature, Te = Tatm, equilibrium conditions demand that virtually all
the oxygen atoms recombine, leading to CO2

= 1 and CO = 0 at the nozzle exit.
For frozen flow, the mass fractions of O and O2 are constant through the nozzle.

Recombination is an exothermic reaction. Therefore, the equilibrium expansion
results in the chemical zero-point energy of the atomic species being transferred into
the transitional, rotational, and vibrational modes of molecular energy. That is, the
zero-point energy of two oxygen atoms is much higher than that of one O2 molecule.
When two oxygen atoms recombine, forming one O2 molecule, the decrease in
zero-point energy results in an increase in the internal molecular energy modes. As a
result, the temperature distribution for reacting equilibrium flow is higher than that
of frozen flow as shown in Figure 4.23(b).

Examine the nonreacting, vibrationally excited flow expanding through a nozzle,
shown in Figure 4.24(a).

For vibrationally frozen flow, vibrational energy remains constant throughout the
flow. In the reservoir, there is diatomic oxygen at a temperature high enough to excite
the vibrational energy but less than the limiting value at which dissociation begins.
If the flow is in local thermodynamic equilibrium, the translational, rotational, and
vibrational energies decrease throughout the nozzle as shown by the solid curves
in Figure 4.24(c). However, if the flow is vibrationally frozen, then evib is constant
throughout the nozzle and equal to its value at the stagnation state in the reservoir. In
turn, because energy is permanently sealed in the frozen vibrational mode, less energy
is available for translational and rotational modes.

Thus, because the temperature T is proportional to the translational energy, the
frozen flow temperature distribution is less than that for equilibrium flow as shown
in Figure 4.24(b). In turn, the distribution of translational energy, etrans, and rotational
energy, erot, will be lower for vibrationally frozen flow as shown in Figure 4.24(c).

Note that a flow that is both chemically and vibrationally frozen has constant spe-
cific heats. This situation is the same as the calorically perfect gas. But no flow in
reality is precisely an equilibrium flow or a frozen flow. However, there are a large
number of flow applications that come very close to such a limiting situation of equi-
librium frozen flow and thus can be analyzed using these assumptions. The judgment
about this depends on the comparison between reaction time and flow speed.

4.19 Equilibrium and Frozen Specific Heats

For an equilibrium chemically reacting gas, the enthalpy of a chemically reacting
mixture can be obtained from the equation

h =
∑

i

ci hi (4.127)
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Figure 4.24 (a) Nonreacting, vibrationally excited flow through a C-D nozzle, comparison of
(b) the temperatures of equilibrium and frozen vibrationally relaxing flow through the nozzle
and (c) the translational, rotational, and vibrational energy of equilibrium and frozen vibra-
tionally relaxing flow through the nozzle.

where h is the static enthalpy of the mixture and ci and hi, respectively, are the mass
fraction and specific enthalpy of the species constituting the system.

By definition, the specific heat at constant pressure is

cp ≡ (
𝜕h
𝜕T

)
p

(4.128)

Thus, for a chemically reacting mixture, Equations (4.127) and (4.128) give

cp =

[
𝜕

𝜕T

(∑
i

ci hi

)]
p
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or

cp =
∑

i

ci

(
𝜕hi

𝜕T

)
p

+
∑

i

hi

(
𝜕ci

𝜕T

)
p

(4.129)

In Equation (4.129), (𝜕hi∕𝜕T)p is the specific heat per unit mass for the pure species
i, cpi

. Hence, Equation (4.129) becomes

cp =
∑

i

ci cpi
+
∑

i

hi

(
𝜕ci

𝜕T

)
p

(4.130)

This gives cp for a chemically reacting mixture.
If the flow is frozen, by definition, there is no chemical reaction, and therefore,

in Equation (4.130), the term (𝜕ci∕𝜕T)p = 0. Thus, for frozen flow, the specific heat
Equation (4.130) becomes

cp = cpf
=
∑

i

ci cpi
(4.131)

With this, Equation (4.130) can be written as

cp
(Specific heat at
constant p for
reacting mixture)

= cpf

(Frozen
specific heat)

+
∑

i

hi

(
𝜕ci

𝜕T

)
p

(Contribution because of
chemical reaction)

(4.132)

Considering the internal energy of the chemically reacting gas given by

e =
∑

i

ci ei

and using the definition of specific heat at constant volume,

cv ≡
(
𝜕e
𝜕T

)
v

Thus, for a chemically reacting mixture, we have

cv =

[
𝜕

𝜕T

(∑
i

ci ei

)]
v

or

cv =
∑

i

ci

(
𝜕ei

𝜕T

)
v

+
∑

i

ei

(
𝜕ci

𝜕T

)
v

The term (𝜕ei∕𝜕T)v is the specific heat per unit mass for the pure species i, cvi
. Hence,

cv =
∑

i

ci cvi
+
∑

i

ei

(
𝜕ci

𝜕T

)
v

(4.133)

This gives cv for a chemically reacting mixture.
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If the flow is frozen, by definition, there is no chemical reaction, and therefore,
in Equation (4.133), the term (𝜕 ci∕𝜕T)v = 0. Thus, for frozen flow, the specific heat
Equation (4.133) becomes

cv = cvf
=
∑

i

ci cvi
(4.134)

With this, Equation (4.133) can be written as

cv
(Specific heat at
constant v for
reacting mixture)

= cvf

(Frozen
specific heat)

+
∑

i

ei

(
𝜕ci

𝜕T

)
v

(Contribution because of
chemical reaction)

(4.133a)

In Equations (4.132) and (4.133), the extra contribution (compared to perfect gas)
is purely due to reactions. The magnitude of this extra contribution can be very large
and usually dominates the value of cp and cv.

Example 4.6 Determine the specific heat at constant pressure for air, assuming it as a
mixture of 78% of nitrogen, 21% of oxygen, and 0.3% of carbon dioxide, neglecting
the contribution to the remaining species, at sea level state.

Solution

At sea level state, the air can be treated as a perfect gas. The specific heats ratio for
O2 and N2 are 1.4 and for CO2, 𝛾 = 1.3. The molecular weight for oxygen, nitrogen,
and carbon dioxide, respectively, are 32, 28, and 44.
For a perfect gas,

cp = 𝛾

𝛾 − 1
R

The cp for O2, N2, and CO2, being perfect gas, by Equation (4.132), are

cpO2
= 𝛾

𝛾 − 1

Ru

M

= 1.4
1.4 − 1

× 8314
32

= 909.34 J/(kg K)

cpN2
= 𝛾

𝛾 − 1
8314
28

= 1.4
1.4 − 1

× 8314
28

= 1039.25 J/(kg K)

cpCO2
= 1.3

1.3 − 1
× 8314

44
= 818.803 J/(kg K)
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Thus, the cp for air becomes

cpair
= 0.78 × cpN2

+ 0.21 × cpO2
+ 0.003 × cpCO2

= 0.78 × 1039.25 + 0.21 × 909.34 + 0.003 × 818.803

= 810.615 + 190.96 + 2.4564

= 1004.031 J/(kg K) ◾

4.19.1 Equilibrium Speed of Sound

The general expression for the speed of sound is

a =

√(
𝜕p

𝜕𝜌

)
s

This is a physical fact and is not changed by the presence of chemical Reactions;
hence, this relation for the speed of sound, a, is valid for both perfect gas flow and
reacting gas flow.

We know that for a calorically perfect gas, the thermal state equation is

p = 𝜌RT

Also, the sound wave being an isentropic wave, the process through the wave can be
represented by

p

𝜌𝛾
= constant

By differentiating, we get
dp = constant 𝛾𝜌𝛾−1d𝜌

that is,

dp

d𝜌
= constant 𝛾𝜌𝛾−1

=
p

𝜌𝛾
𝛾𝜌

𝛾−1

=
𝛾p

𝜌

Substituting this into the above expression for a, we get

a =
√

𝛾p

𝜌

But from state equation,
p

𝜌
= RT
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Hence, the speed of sound in a perfect gas is given by

a =
√
𝛾RT

But this expression for the speed of sound is so restrictive and valid only for calorically
perfect gases.

Now, to find the relation for the speed of sound in an equilibrium reacting mixture,
let us consider an equilibrium chemically reacting mixture at a fixed pressure p and
temperature T . Therefore, the chemical composition is uniquely fixed by pressure and
temperature. Imagine a sound wave passing through this equilibrium mixture. Inside
the wave, the pressure and temperature will change slightly. In other words, the change
of pressure and temperature due to the motion of a sound wave will be infinitesimally
small. This is because the sound wave is a weak isentropic wave.

If the gas remains in local chemical equilibrium through the internal structure of
the sound wave, the gas composition is changed locally within the wave according
to the local variations of pressure and temperature. For this situation, the speed of
sound wave is called equilibrium speed of sound, denoted by ae. In turn, if the gas is
in motion at the velocity V , then V∕ae is termed the equilibrium Mach number, Me.

4.19.2 Quantitative Relation for the Equilibrium Speed of Sound

We know from the first and second laws of thermodynamics that the enthalpy in dif-
ferential form can be expressed as

Tds = de + pdv (4.135)

Tds = dh − vdp (4.136)

The process through the sound wave is isentropic, thus Equations (4.135) and (4.136)
become

de + pdv = 0 (4.137)

dh − vdp = 0 (4.138)

For equilibrium chemically reacting gas, the internal energy can be expressed as

e = e (v,T)

In differential form, this becomes

de =
(
𝜕e
𝜕v

)
T

dv +
(
𝜕e
𝜕T

)
v

dT

or
de =

(
𝜕e
𝜕v

)
T

dv + cv dT (4.139)

because (𝜕e∕𝜕T)v = cv.
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Similarly, the enthalpy can be expressed as

h = h (p,T)

In differential form, this becomes

dh =
(
𝜕h
𝜕p

)
T

dp +
(
𝜕h
𝜕T

)
p

dT

dh =
(
𝜕h
𝜕p

)
T

dp + cp dT (4.140)

because (𝜕h∕𝜕T)p = cp. Substituting Equation (4.139) into Equation (4.137), we
obtain (

𝜕e
𝜕v

)
T

dv + cv dT + pdv = 0

that is,
cv dT +

[
p +

(
𝜕e
𝜕v

)
T

]
dv = 0 (4.141)

Substituting Equation (4.140) into Equation (4.138), we get

dh =
(
𝜕h
𝜕p

)
T

dp + cp dT − vdp = 0

that is,

cp dT +
[(

𝜕h
𝜕p

)
T

− v

]
dp = 0 (4.142)

Dividing Equation (4.142) by Equation (4.141), we get

cp

cv
=

[(𝜕h∕𝜕p)T − v]
[(𝜕e∕𝜕v)T + p]

dp

dv
(4.143)

But v = 1∕𝜌; hence, dv = − d𝜌∕𝜌2. Thus, Equation (4.143) becomes

cp

cv
=

[(𝜕h∕𝜕p)T − 1∕𝜌]
[(𝜕e∕𝜕v)T + p]

(−𝜌2)
dp

d𝜌
(4.144)

As the condition within the sound wave is isentropic, the changes in pressure dp
and density d𝜌 within the wave must take place isentropically. Thus,

dp

d𝜌
≡
(
𝜕p

𝜕𝜌

)
s

≡ a2
e

Hence, Equation (4.144) becomes(
𝜕p

𝜕𝜌

)
s

=
cp

cv

1
𝜌2

[(𝜕e∕𝜕v)T + p][
1
𝜌
− (𝜕h∕𝜕p)T

]
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But (𝜕p∕𝜕𝜌)s = a2
e by definition. Thus,

a2
e =

cp

cv

p

𝜌

[
1 +

(
1
p

)
(𝜕e∕𝜕v)T

]
[1 − 𝜌 (𝜕h∕𝜕p)T]

(4.145)

Let 𝛾 ≡ cp∕cv; also note from the equation of state, p∕𝜌 = RT . Thus, Equation (4.145)
becomes

a2
e = 𝛾RT

[1 + (1∕p)(𝜕e∕𝜕v)T]
[1 − 𝜌 (𝜕h∕𝜕p)T]

(4.146)

This is the expression for the equilibrium speed of sound in a chemically reacting
mixture.

Note that the speed of sound “ae” in an equilibrium reacting mixture is not equal to√
𝛾RT . However, if the gas is calorically perfect, then h = cpT and e = cvT . In turn,

(𝜕h∕𝜕p)T = 0 and (𝜕e∕𝜕v)T = 0, and Equation (4.146) reduces to the familiar result
for the speed of sound in a perfect gas

af =
√
𝛾RT (4.147)

The symbol af is used to denote the frozen speed of sound, because a calorically perfect
gas assumes no reactions.

Equation (4.147) is the speed at which a sound wave will propagate when no chem-
ical reactions take place internally within the wave, that is, when the flow inside the
wave is frozen.

For a thermally perfect gas, h = h (T) and e = e (T). Hence, for this case, also
Equation (4.146) reduces to Equation (4.147).

The full form of Equation (4.146) must be used whenever (𝜕e∕𝜕v)T and (𝜕h∕𝜕p)T
are finite. This occurs

• when the gas is chemically reacting;
• when intermolecular forces are important (that is, for real gases).

In both of the above cases, h = h (T , p) and e = e (T , v). That is, for both reacting
and real gas, the enthalpy and internal energy are functions of two thermodynamic
variables. Hence, Equation (4.146) must be used for calculating the speed of sound.

Note that the equilibrium speed of sound given by Equation (4.146) is a function
of both temperature, T , and pressure, p, unlike the case for calorically or thermally
perfect gas where it depends on temperature only.

4.20 Inviscid High-Temperature Nonequilibrium Flows

We know that a frozen flow is one with the reaction rate constants kf = kb = 0 and the
vibrational relaxation time 𝜏 → ∞, where kf is the forward reaction rate constant and
kb is the backward reaction rate constant.
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An equilibrium flow is one where both the forward and backward reaction rates tend
to infinity (kf → ∞, kb → ∞) and 𝜏 = 0. But in reality, neither of the above flows
occurs exactly.

Let

• 𝜏f be the characteristic time for a fluid element to traverse the flow field of interest,
given by l∕V∞, where l is a characteristic length of the flow field and V∞ is the
velocity of the fluid element;

• 𝜏c be the characteristic time for the chemical reactions and/or vibrational energy to
approach equilibrium.

Then

1. the flow can be approximated as local equilibrium flow if 𝜏f ≫ 𝜏c.
2. the flow can be approximated as frozen if 𝜏f ≪ 𝜏c.

4.20.1 Governing Equations for Inviscid, Nonequilibrium Flows

The governing equation for inviscid, nonequilibrium flows are the following.

Continuity equation:
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0

Momentum equation:

𝜌
DV
Dt

= −∇p

Energy equation:

𝜌
Dh0

Dt
=

𝜕p

𝜕t

where

h0 = h + V2

2

These equations are valid for both equilibrium and nonequilibrium flows.
In addition to the above continuity equation, which is referred to as the global con-

tinuity equation, we must consider the species continuity equation for each individual
chemical species in the mixture.

Consider a fixed, finite-control volume in a nonequilibrium, inviscid, flow of a
chemically reacting gas as shown in Figure 4.25.

Let 𝜌i be the mass of species i per unit volume of the mixture. Hence, the density
of the mixture becomes

𝜌 =
∑

i

𝜌i
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Figure 4.25 Flow through a control volume fixed in space.

The net mass flow of species i flowing out of the control volume is

∫ ∫s
𝜌i V ⋅ dS

where V is the velocity and dS is the surface area of the element.
The mass of species i inside the control volume is

∫ ∫ ∫𝕍
𝜌i d 𝕍

Let �̇�i be the local rate of change of density 𝜌i due to chemical reactions inside the
control volume. Therefore, the net time rate of change of the mass of species i inside
the control volume is due to the following:

1. The net flux of species i through the surface.
2. The creation or extinction of species i inside the control volume due to chemical

reaction.

Thus, in terms of integrals over the control volume, we have

∫ ∫ ∫𝕍
𝜌i d 𝕍 = −∫ ∫s

𝜌i V ⋅ dS + ∫ ∫ ∫𝕍
�̇�i d 𝕍 (4.148)

Equation (4.148) is the integral form of species continuity equation.
Using the divergence theorem, the differential form of the species continuity

equation is obtained directly from Equation (4.148) as

𝜕𝜌i

𝜕t
+ ∇ ⋅ (𝜌i V) = �̇�i (4.149)
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For a nonequilibrium chemically reacting mixture with n different species, we need
(n − 1) species continuity equations of the form of Equation (4.149). These along with
the additional result that ∑

i

𝜌i = 𝜌

provide n equations for the solution of the instantaneous composition of a nonequi-
librium mixture of n chemical species.

An alternative form of the species continuity equation can be obtained as follows.
The mass fraction of species i, Ci, is defined as

Ci =
𝜌i

𝜌

Substituting this relation into Equation (4.149), we get

𝜕(𝜌Ci)
𝜕t

+ ∇ ⋅ (𝜌Ci V) = �̇�i (4.150)

Expansion of this equation gives

𝜌

[
𝜕Ci

𝜕t
+ V ⋅ ∇ Ci

]
+ Ci

[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V)

]
= �̇�i (4.151)

The term

𝜌

[
𝜕Ci

𝜕t

]
is the substantial derivative of Ci, and

Ci

[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V)

]
= 0

by global continuity equation. Thus, Equation (4.151) becomes

DCi

Dt
=

�̇�i

𝜌
(4.152)

In terms of mole-to-mass ratio,

𝜂i =
Ci

Mi

where Ci is the number of moles of species i and Mi is the molar mass of species i in
the mixture, Equation (4.152) becomes

D𝜂i

Dt
=

�̇�i

Mi𝜌
(4.153)

Equations (4.152) and (4.153) are alternative forms of species continuity equation in
terms of substantial derivative.
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Note that the substantial derivative of a quantity is physically the time rate of change
of that quantity as we follow a fluid element moving with the flow. Therefore, from
Equations (4.152) and (4.153), as we follow a fluid element of fixed mass moving
through the flow field, we see that changes in the mass fraction, Ci, or mole-to-mass
ratio, 𝜂i, of the fluid element are only due to the finite rate chemical kinetic changes
taking place within the element. This makes common sense and in hindsight; there-
fore, Equations (4.152) and (4.153) could have been written directly by inspection.

It is essential to note that in Equations (4.152) and (4.153), the flow variables
Ci and 𝜂i inside the substantial derivative are written per unit mass. As long as the
nonequilibrium variable inside the substantial derivative is per unit mass of mixture,
the right-hand side of the conservation equation is simply due to finite-rate chemical
kinetics, such as that shown in Equations (4.152) and (4.153).

In contrast, Equation (4.149) can also be written as

D 𝜌i

D t
= �̇�i − 𝜌i (∇ ⋅ V) (4.154)

If vibrational nonequilibrium is present, in addition to the species continuity
equation, another equation must be added to the system given by Equations
(4.149)–(4.152). If we follow a moving fluid element of fixed mass, the rate of
change of vibrational energy evib for this element is equal to the rate of molecular
energy exchange inside the element. Therefore, we can write the vibrational rate
equation for a moving fluid element as

Devib

Dt
= 1

𝜏
(eeq

vib − evib) (4.155)

where eeq
vib is the equilibrium value of vibrational energy per unit mass of gas and evib

is the local nonequilibrium value of vibrational energy per unit mass of gas. Equation
(4.155) is referred to as vibrational rate equation.

Thus, in an inviscid, nonequilibrium, high-temperature flow, we wish to solve the
flow for p, 𝜌, T , V , h, evib, and Ci, as a function of space and time. The governing
equations that allow for the solution of these variables are the following.

Global continuity equation:
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0 (4.156)

Species continuity equation:

𝜕𝜌i

𝜕t
+ ∇ ⋅ (𝜌iV) = �̇�i (4.157)

or
DCi

Dt
=

�̇�i

𝜌
(4.158)
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or
D𝜂i

Dt
=

�̇�i

Mi𝜌
(4.159)

Momentum equation:

𝜌
DV
Dt

= −∇p (4.160)

Energy equation:

𝜌
Dh0

Dt
=

𝜕p

𝜕t
+ q̇ (4.161)

where

h0 = h + V2

2
(4.162)

In Equation (4.161), q̇ denotes a heat-addition term because of volumetric heating
(say by the radiation absorbed by the gas or lost from the gas). The q̇ term has nothing
to do with the chemical reactions.

The energy exchange due to chemical reactions are naturally accounted for by the
heat of formation appearing in enthalpy h in Equations (4.161) and (4.162). In addition
to the above equations, we also have

State equation
p = 𝜌RT (4.163)

where R = Ru∕𝜇, 𝜇 =
(∑

i (Ci∕M)
)−1

Enthalpy expression is
h =

∑
i

Ci hi (4.164)

where
hi = (etrans + erot + evib + eel) + RiT + (Δ h∘f )i (4.165)

The term evib in Equation (4.165) is obtained with the assumption that local ther-
modynamic equilibrium prevails even though chemical nonequilibrium prevails. In
some cases, this assumption is appropriate. However, when both thermodynamic and
chemical nonequilibrium prevail, evib is a nonequilibrium value that must be obtained
from the vibrational rate Equation (4.155) written for species i as

D(Ci evibi
)

Dt
=

Ci

𝜏i
(eeq

vibi
− evibi

) (4.166)

4.21 Nonequilibrium Normal Shock and Oblique Shock Flows

Consider a strong normal shock wave in a gas. Assume that the temperature within
the shock wave is high enough to cause chemical reactions within the gas.

The thin region where large gradients in temperature, pressure, and velocity occur,
and where the transport phenomena of momentum (𝜇) and energy (K) are important,
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is called the shock. Essentially, a shock is a compression front across which the flow
properties jump.

For shocks in a calorically perfect gas flow or a chemically reacting equilibrium
flow, the flow properties ahead of and behind the shock are uniform, and the gra-
dients (that is, the jump) in flow properties take place almost discontinuously (that
is, abruptly) within a thin region of not more than a few mean free path thickness
(𝜆 ≈ 6.6317 × 10−8 m, for air at sea level).

However, in nonequilibrium flows, all chemical reactions and/or vibrational
excitations take place at a finite rate. As the thickness of a shock wave is of the
order of only a few mean free path, the molecules in a fluid element can experience
only a few collisions, as the fluid element traverses the shock front. Consequently,
the flow through the shock front is essentially frozen. In turn, the flow proper-
ties immediately behind the shock front are frozen flow properties as illustrated
in Figure 4.26.

The temperature and density of nitrogen (N2) gas ahead of the shock are T1 and
𝜌1, respectively. Also, the species concentration of nitrogen atom, CN, is zero, ahead
of the shock. As the fluid element moves downstream, the finite rate reactions take
place, and the flow properties relax towards their equilibrium values. Thus, the flow
properties just behind the shock can be fixed with the perfect gas theory. In addition,
the species concentration of nitrogen atom, CN, immediately behind the shock is still
zero (because the flow is frozen). Downstream of the shock front, the nonequilibrium
flow must be treated with appropriate equations. In this region, the nitrogen molecules,
N2, become either partially or totally dissociated and the species concentration of
nitrogen atom, CN, increases as illustrated in Figure 4.26.

As the reaction is endothermic, the temperature, T , behind the shock decreases,
whereas the density, 𝜌, increases. A procedure of numerical calculation of the

Nitrogen gas

T1

ρ1

(CN)1

Tfrozen

Tequil

ρfrozen

ρequil

(CN)equil

(CN)frozen

Normal shock

Figure 4.26 Properties of reacting nonequilibrium flow behind a normal shock.
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nonequilibrium region behind the shock front can be established as follows. As the
flow is one dimensional and steady, the governing equations become the following.

Global continuity equation:
𝜌 du + u d𝜌 = 0 (4.167)

Momentum equation:
dp = −𝜌 u du (4.168)

Energy equation:
dh0 = 0 (4.169)

Species continuity equation:

u dCi =
�̇�i

𝜌
dx (4.170)

In Equation (4.170), the distance x is measured from the shock front. Equation (4.170)
explicitly involves the finite-rate chemical reaction term �̇�i and a distance dx multi-
plies this term. Hence, Equation (4.170) introduces a scale effect into the solution of
the flow field. In turn, all flow field properties become a function of distance behind
the shock front as illustrated in Figure 4.27.

Equations (4.167)–(4.170) can be solved by using a standard numerical technique
for integrating ordinary differential equations (ODE), such as the well-known
Runge–Kutta (R-K) technique, starting right from the shock front (point 1) and
integrating downstream in steps Δx. The initial conditions at point 1 are obtained by
assuming frozen flow across the shock front.

Note that if we are dealing with atmospheric flow, involving cool, nonreacting air,
then the chemical composition at point 1 is the same as the known composition ahead
of the shock, and the local velocity V , pressure p, temperature T , etc. at point 1 are
the same as calculated for normal shock wave in a calorically perfect gas with specific
heats ratio 𝛾 = 1.4.

1 2 3 4 5 6 7

∆x

Normal shock

u1, p1, T1

u2 (x)

p2 (x)

T2 (x)

M1

Figure 4.27 Grid points for numerical solution of nonequilibrium flow through a normal
shock.
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It is essential to realize that in carrying out such a numerical solution of nonequi-
librium flow, a major problem can be encountered. If one or more of the finite-rate
chemical reactions are very fast (that is, if �̇�i in Equation (4.170) is very large),
then Δx must be chosen very small even when a higher-order numerical method
is used.

The species continuity equations for such very fast reactions are called stiff
equations and readily lead to instabilities in the solution.

A sample result for nonequilibrium flow field behind a normal shock wave in air,
with Mach number, pressure, and temperature ahead of the shock as 12, 130 Pa, and
300 K, respectively, showing the variations of temperature and density behind the
shock front, is shown in Figure 4.28.

The chemical reactions in the air behind a shock front are predominantly dissoci-
ation reactions of oxygen and nitrogen, which are endothermic. Hence, temperature
T decreases and pressure p increases with distance behind the shock front – both by
almost by a factor of 2.

4.21.1 Nonequilibrium Flow behind an Oblique Shock Wave

Consider a straight oblique shock wave as shown in Figure 4.29. Let x denote the
distance downstream of the wave, measured normal to the shock front. From nor-
mal shock wave results, we see that density increases with distance for nonequilib-
rium case.

0.1 1.0 10 100
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Downstream distance from the shock (cm)

ρ/ρ1

6.0

Equilibrium values

Figure 4.28 Temperature and density variation of a nonequilibrium flow through a normal
shock wave in air, with M1 = 12, p1 = 130 Pa, and T1 = 300 K.
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Figure 4.29 Geometry of nonequilibrium flow behind a straight oblique shock wave.

As the mass flow rate per unit area, 𝜌Vn, is a constant for flow across a normal shock
wave, the velocity component Vn must decrease with x, that is, Vn3

< Vn2
. However, as

we know from the analysis of flow through oblique shock in perfect gas, the tangential
velocities Vt1

, Vt2
, and Vt3

are all equal in the nonequilibrium flow behind the oblique
shock also. Thus, because Vt3

= Vt2
, the flow deflection angle 𝜃3 is greater than 𝜃2.

Therefore, the streamlines in the nonequilibrium flow behind a straight oblique shock
front are curved and continually increase their deflection angle until equilibrium con-
ditions are reached far downstream. This implies that in order to create a straight
oblique shock front in a nonequilibrium flow, it is essential to have a compression
corner that is shaped similar to the solid surface shown in Figure 4.29.

The compression surface, after its initial discontinuous deflection of 𝜃2 correspond-
ing to frozen flow, must curve upward until equilibrium deflection angle is reached, as
illustrated in Figure 4.29, to make the oblique shock straight, as shown in the figure.
This curved, nonuniform flow field in the nonequilibrium region behind a straight
oblique shock front, illustrated in Figure 4.29, is an important difference from the
familiar uniform flows obtained for calorically perfect and equilibrium oblique shock
results.

On the basis of the above reasoning, it can be visualized that for the supersonic or
hypersonic nonequilibrium flow over a straight compression corner, the shock wave
will be curved as shown in Figure 4.30.

The wave angle at the corner 𝛽f , shown in Figure 4.30, corresponds to frozen flow.
Far downstream, the wave angle approaches the equilibrium flow value 𝛽e.
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Figure 4.30 Oblique shock in a nonequilibrium flow.

Note that, for a given flow turning angle 𝜃, the equilibrium shock angle 𝛽e is always
less than the frozen wave angle 𝛽f (for 𝛾 = 1.4).

4.21.2 Nonequilibrium Quasi-One-Dimensional Nozzle Flows

Theses kind of flows find application in high-temperature flows through rocket noz-
zle, high-enthalpy aerodynamic testing facilities, etc. Because of these applications,
intensive efforts were made after 1950 to obtain relatively exact numerical solutions
for the expansion of high-temperature gas through a nozzle, when vibration and/or
chemical nonequilibrium conditions prevail within the gas.

• In a rocket nozzle, nonequilibrium effects decrease the thrust and specific impulse.
• In a high-enthalpy (high-temperature) wind tunnel, the nonequilibrium effects

make the flow conditions in the test section somewhat uncertain. Both of these are
adverse effects.

• In contrast, a gas dynamic laser creates a laser medium by intensively promoting
vibrational nonequilibrium in a supersonic expansion. Therefore, this application
aims at obtaining the highest degree of nonequilibrium possible.

Consider the nozzle and grid-points distribution shown in Figure 4.31.
Widely accepted technique for solving nonequilibrium nozzle flows is the time-

marching technique. The following are the steps used for solving such problems.

1. At the first grid point (reservoir conditions), the equilibrium conditions for evib and
Ci, at the given stagnation pressure p0 and temperature T0, are calculated and held
fixed, invariant with time.

2. Guessed value of evib and Ci are then arbitrarily specified at all other grid points
(along with guessed values of all other flow variables); these guessed values rep-
resent the initial conditions for the time-marching solution.
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L

Figure 4.31 Grid points for the time marching of quasi-one-dimensional flow through a
nozzle.

3. For initial values of evib and Ci, it is recommended that equilibrium values be
assumed from the reservoir to the throat and then frozen values be prescribed down-
stream of the throat.

The governing equations for unsteady quasi-one-dimensional flow are the
following.

Continuity equation:
𝜕p

𝜕t
= − 1

A
𝜕(𝜌uA)
𝜕x

(4.171)

Momentum equation:
𝜕u
𝜕t

= −1
𝜌

(
𝜕p

𝜕x
+ 𝜌u

𝜕u
𝜕x

)
(4.172)

Energy equation:
𝜕e
𝜕t

= −1
𝜌

(
p
𝜕u
𝜕x

+ 𝜌u
𝜕e
𝜕x

+ pu
𝜕 ln A
𝜕x

)
(4.173)

where A is the local cross-sectional area of the nozzle, p is the local pressure, and u is
the local velocity.

In addition to these equations, for a nonequilibrium flow, the appropriate vibrational
rate equation and species continuity equation are

𝜕evib

𝜕t
= 1

𝜏
(eeq

vib − evib) − u
𝜕evib

𝜕x
(4.174)

and
𝜕Ci

𝜕t
= −u

𝜕Ci

𝜕x
+

�̇�i

𝜌
(4.175)

Equations (4.171)–(4.175) are solved step by step in time, using the finite-difference
predictor–corrector approach. Along with other flow variables, evib and Ci at each grid
point will vary with time; but after many time steps, all flow variables will approach
a steady state. It is this steady flow field we are interested in as our solution.
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The nonequilibrium phenomena introduce an important new stability criterion for
the time step Δt, in addition to the Courant Frederic Lewis (CFL) criterion. The value
chosen for Δt must be geared to the speed of the nonequilibrium relaxation process
and must not exceed the characteristic time for the fastest finite reaction rate taking
place in the system. That is,

Δt < BΓ (4.176)

where Γ = 𝜏 for vibrational nonequilibrium, Γ = 𝜌(𝜕�̇�i∕𝜕Ci)−1 for chemical nonequi-
librium, and B is a dimensionless proportionality constant found by experience to be
less than unity, sometimes as low as 0.1. The value chosen for Δt in a nonequilibrium
flow must satisfy both Equation (4.176) and the usual CFL criterion, given here as

Δt <
Δx

u + a
(4.177)

which of the two stability criteria is the smaller, and, hence, governs the time step,
depending on the nature of the case being calculated. That is, the stability criterion
with small Δt governs the time step. In other words, the smaller among the time step
Δt based on the governance of Equations (4.176) and (4.177) will be taken as the
time step in the computation. If the local pressure and temperature are low enough
everywhere in the flow, the rates will be slow and Equation (4.177) generally dictates
the value of Δt.

On the other hand, if some of the rates have high-transition probabilities and/or the
local p and T are very high, Equation (4.176) generally dictates Δt. This is almost
always encountered in rocket nozzles with flow of hydrocarbon gases, where some
of the chemical reactions involving hydrogen are very fast and combustion chamber
pressures and temperatures are reasonably high.

Example 4.7 Calculate the number of microstates possible in the macrostate shown
in Figure 4.2, using Bose–Einstein statistics.

Solution

Given there are four energy levels. In energy level 𝜖′0, there are two molecules and five
states. Thus, the thermodynamic probability for energy 𝜖

′
0, with N = 2 and g = 5, by

Equation (4.3), is

W0 =
(N + g − 1)!
(g − 1)! N!

= [2 + (5 − 1)]!
(5 − 1)! 2!

= 6!
4! 2!

= 720
24 × 2

= 15
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For energy level 𝜖′1, N = 5 and g = 6; therefore,

W1 = [5 + (6 − 1)]!
(6 − 1)! 5!

= 10!
5! 5!

= 3,628,800
120 × 120

= 252

For energy level 𝜖′2, N = 3 and g = 5; therefore,

W2 = [3 + (5 − 1)]!
(5 − 1)! 3!

= 7!
4! 3!

= 5040
24 × 6

= 35

For energy level 𝜖′3, N = 2 and g = 3; therefore,

W3 = [2 + (3 − 1)]!
(3 − 1)! 2!

= 4!
2! 2!

= 24
2 × 2

= 6

Thus the thermodynamic probability for the given macrostate, by Equation (4.3), is

W = W0 W1 W2 W3

= 15 × 252 × 35 × 6

= 793,800
◾

4.22 Nonequilibrium Flow over Blunt-Nosed Bodies

Nonequilibrium flow over a blunt nose not only resembles some of the characteristics
of the equilibrium flow and perfect gas flow but also takes on some of the aspects of
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Figure 4.32 Different zones in a high-temperature flow past a blunt-nosed body.

nonequilibrium flow behind shock waves. Examine the nonequilibrium flow past a
blunt-nosed body shown in Figure 4.32.

In the nose region, the chemical composition resembles that in a nonequilibrium
region behind a normal shock wave. But for the streamline that goes through the stag-
nation point (abc), between a and b, the flow is compressed and decelerated; it reaches
zero velocity at the stagnation point b. In doing so, it can be shown that a fluid element
takes an infinite time to traverse the distance ab. This means that local equilibrium con-
ditions must exist at the stagnation point b with its attendant highly dissociated and
ionized state.

The flow then expands rapidly downstream of the stagnation point; indeed, the sur-
face streamline bc encounters very large pressure and temperature gradients in the
region near the sonic point c, that is, dp∕ds and dT∕ds are large negative quantities.
This is similar to the nonequilibrium flow through a C-D nozzle, where it was pointed
out that sudden freezing of the flow can occur downstream of the throat. The same type
of sudden freezing of the flow can be experienced near point c. The streamline begins
to experience a large amount of dissociation and ionization at point b. Because of this,
the frozen flow is characterized by a thin region of highly dissociated and ionized gas
that flows downstream over the body. Slightly ahead of the body nose, streamline A
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also passes through a strong portion of the bow shock and exhibits similar behavior as
the stagnation streamline abc; that is, there is a region of highly dissociated and ionized
nonequilibrium flow along the streamline A, behind the shock, and fairly rapidly pro-
ceeding to freezing state in the vicinity of the sonic line. Much farther away from the
body, streamline B passes through a weaker, more oblique portion of the bow shock.
Consequently, the amount of dissociation and ionization are considerably smaller, but
the nonequilibrium region extends much further downstream along streamline B.

4.23 Transport Properties in High-Temperature Gases

From kinetic theory of gases, we know that the atoms and molecules of a gaseous
system are in continuous random motion. The random motion of atoms and molecules
is the essence of molecular transport phenomena. The motion of molecules cause the
transport of mass, momentum, and energy, popularly termed transport phenomena.
The properties characterizing these transports are diffusion coefficient, D; viscosity
coefficient, 𝜇; and the thermal conduction coefficient, K, referring to the transport of
mass, momentum, and energy, respectively. When a particle (molecule) moves from
one location to another in space, it carries with it a certain momentum, energy, and
mass associated with the particle itself. The transport of this particle motion gives rise
to the transport phenomena of viscosity, thermal conduction, and diffusion.

Consider a gas in a two-dimensional space, showing two particles crossing the hor-
izontal line y = y1, because of the random motion as shown in Figure 4.33(a). Let
𝜙 be some mean property carried by the particle, say its momentum or energy or
mass-related property. Also, assume that 𝜙 has a variation as shown in Figure 4.33(b).
Let Δy be the distance above y1 at which, on an average, particle 1 experienced its last
collision before crossing y1.

Similarly, particle 2 crosses y1 from below. Let Δy be the average distance below
y1 at which particle 2 experienced its last collision before crossing y1. In crossing y1,

Δy
y1

ϕ(y1)

y1

ϕ(y)

y

(b)(a)

y

x

Particle 2

Particle 1

Δy

Figure 4.33 Model for transport phenomena. (a) Two particles crossing the horizontal line
y = y1, because of random motion, and (b) variation of a mean property carried by the particle.
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particle 1 will carry with it a mean value of 𝜙 equal to 𝜙 (y + Δy), and particle 2 will
carry a mean value of 𝜙 equal to 𝜙 (y − Δy). A reasonable value for Δy would be the
mean free path, 𝜆.

The flux of particles (that is, the number of particles per second per unit area) cross-
ing y1 from either above or below is proportional to nC, where n is the number density
and C is the mean speed of the particles. Therefore, the flux of 𝜙 across y1 due to both
directions is

Λ = anC[𝜙(y1 − 𝜆) − 𝜙 (y1 + 𝜆)] (4.178)

where the net flux Λ is positive in the upward direction, and a is a proportionality
constant.

Expanding 𝜙 as Taylor’s series about y = y1, we have

𝜙 (y1 + 𝜆) = 𝜙 (y1) +
d𝜙
dy

𝜆 + d2
𝜙

dy2

𝜆
2

2
+ · · ·

and

𝜙 (y1 − 𝜆) = 𝜙 (y1) −
d𝜙
dy

𝜆 + d2
𝜙

dy2

𝜆
2

2
− · · ·

Substituting this into Equation (4.178) and neglecting 𝜆
2 and higher-order terms,

we get

Λ = −2 a n C 𝜆
d𝜙
dy

(4.179)

Equation (4.179) is a general transport equation for 𝜙.

4.23.1 Momentum Transport

Let the property 𝜙 in Equation (4.179) be the mean momentum of the particles. Fur-
ther, let mCx be the x-component of the momentum vector, where m is the mass of
the particle and Cx is the mean velocity in the x-direction. From Equation (4.179), we
have

Λ = −2 a n C 𝜆 m
dCx

dy
(4.180)

We know from mechanics that, in a flow, the flux of the x-component of momentum in
the y-direction is simply the shear stress 𝜏xy. Thus, Equation (4.180), with 𝜏xy = −Λ,
becomes

𝜏xy = 2 a n C 𝜆 m
dCx

dy
(4.181)

Further, from fluid mechanics, we know that

𝜏xy = 𝜇
𝜕u
𝜕y

= 𝜇
𝜕Cx

𝜕y
(4.182)
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where Cx is the x-component of the flow velocity and 𝜇 is the viscosity coefficient.
Also, Cx = u; thus, from Equations (4.181) and (4.182), we have

𝜇 = 2 a m n C 𝜆 (4.182a)

This constant 𝜇 is termed dynamic viscosity coefficient.

4.23.2 Energy Transport

Let 𝜙 be the mean energy of the particle, given as 3
2

k1T , where k1 is the Boltzmann
constant and T is the temperature.

The flux of energy across y1 is less than that obtained from Equation (4.179) as

Λ = −3 a k1n C 𝜆
dT
dy

Grouping the constants 3ak1 by k, the flux becomes

Λ = −k n C 𝜆
dT
dy

(4.183)

From classical heat transfer, we know that the energy flux (that is, the heat transferred
per second per unit area) is given by

q̇ = −K
𝜕T
𝜕y

(4.184)

where K is the thermal conductivity.
From kinetic theory, we know that Λ in Equation (4.183) is the thermal flux q̇;

therefore, from Equations (4.183) and (4.184), we have the thermal conductivity as

K = k n C𝜆 (4.185)

4.23.3 Mass Transport

Consider the transport of molecular mass in a binary gas mixture made up of A and B
particles, with number densities nA and nB, respectively.

In Equation (4.179), let Λ be the flux of a particles across y1, namely, the number
of A particles crossing y1 per second per unit area. In Equation (4.179), n is the total
number density, n = nA + nB. Therefore, the quantity 𝜙 being transported across y1
must be a probability that the particle crossing y1 is indeed an A particle. This prob-
ability is the mole fraction, 𝜒A; thus 𝜙 = 𝜒A = nA∕n. For this case, Equation (4.179)
can be written as

Λ = −2 a n C𝜆
d(nA∕n)

dy
= −2 a C𝜆

d nA

dy
(4.186)
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We can define the flow of A particles per second per unit area as ΓA and express it as

ΓA = −DAB
d nA

dy
(4.187)

where DAB is the binary diffusion coefficient for species A into B. Comparing
Equations (4.186) and (4.187), where Λ = ΓA, we have

DAB = 2 a C𝜆 (4.188)

We know that the mean free path is given by

𝜆 = 1√
2𝜋d2n

= 1√
2𝜎n

and the mean speed is given by

C =
√

8RT
𝜋

where 𝜎 is the collision cross section. Thus, Equations (4.182a), (4.185), and (4.188)
can be written as

𝜇 = K𝜇

√
T

𝜎
(4.189)

k = KK

√
T

𝜎
(4.190)

DAB = KD

√
T

𝜎n
(4.191)

where K𝜇,KK , and KD are constants.
From Equations (4.189)–(4.191), it is seen that 𝜇 and K for pure gases depend only

on T , whereas DAB depends on both T and n, that is, on temperature and density.
It is important to note that what is presented in this chapter is only the essential

features of high-temperature flows. An elaborate information on this topic, with large
number of appropriate references, can be found in References 10 and 11.

Example 4.8 As an example of vibrational–translational nonequilibrium phe-
nomenon in hypersonic flow past a normal shock shown in Figure 4.34, solve and see
the variation of etr, evib, Ttr, Tvib, 𝜌, p, and u in one-dimensional inviscid flow with
the following procedure. List the code written for this example.
Assume an energy exchange phenomenon in one-dimensional hypersonic flow. Flow
conditions are listed as follows.

• Flow gas composed only of nitrogen molecules N2, with no chemical reactions.
• Freestream condition with typical orbital reentry speed: M1 = 25, T1 = 195 K, and

p1 = 1 Pa.
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Properties just behind the shock
u2, ρ2, p2, Ttr,2
Tv,2, etr,2, evib,2

u(x), ρ(x), p(x), Ttr(x)
Tv(x), etr(x), evib(x)?x = 0

M1 = 25

Energy exchange (vibrational-translational relaxation)
between translational-vibrational mode and
vibrational mode

Normal shock

x

Freestream value
u1, ρ1, Ttr,1
Tv,1, etr,1, evib,1

Figure 4.34 One-dimensional flow past a normal shock wave.

• One-dimensional, inviscid, steady flow problem.
• The thermodynamics state just behind the shock is thermally frozen, that is,

evib = evib,1.

Under the above assumptions, governing equations are written as follows.

d
dx

⎛⎜⎜⎜⎝
𝜌u

𝜌u2 + p
(Et + p)u
𝜌evibu

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

0
0
0

𝜌(eeq
vib−evib)
𝜏

⎞⎟⎟⎟⎟⎠
(1)

These conservation equations are the one-dimensional Euler equations coupled with
a vibrational relaxation equation. Here, we assume that the total energy of the gas Et
can be expressed as in perfect gas, that is,

Et = 𝜌e + 𝜌
u2

2
(2)

where
e = etr + evib (3)

etr =
5
2

RTtr (4)

The vibrational energy term evib of N2 is given as

evib(Tv) =
𝜃vib∕R

e𝜃vib∕Tv − 1
(5)

where 𝜃vib is the characteristic temperature of the oscillator h𝜈∕k and for N2,

𝜃vib = 3395 K (6)

Vibrational relaxation time 𝜏 can be written as

p (atm) ⋅ 𝜏 (s) = exp [A(T−1∕3 − 0.015𝜇1∕4) − 18.42] (7)
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where A = 220, 𝜇 = 14 for N2. Equations (6) and (7) are given in a literature by
Millikan and White [12].
eeq

vib is vibrational energy at equilibrium state and given as

eeq
vib = evib(Ttr) (8)

The equation of state p = 𝜌RT can be combined with Equation (4) and yields

p = 2
5
𝜌etr (9)

Differentiating Equation (9) with x, we have

dp

dx
= 2

5
etr

d𝜌
dx

+ 2
5
𝜌

detr

dx
(10)

Then, the governing equation (1) can be transformed into nonconservative form as

u
d𝜌
dx

+ 𝜌
du
dx

= 0 (11)

𝜌u
du
dx

+
dp

dx
= 0 (12)

𝜌u
detr

dx
+ 𝜌u

devib

dx
+ p

du
dx

= 0 (13)

𝜌u
devib

dx
=

𝜌(eeq
vib − evib)
𝜏

(14)

Equations (11)–(14) can be simplified using Equation (10) and yield the final form as
ordinary differential equations.

du
dx

=
𝜌(eeq

vib − evib)∕𝜏
5
2
𝜌u2 − 𝜌etr − p

(15)

d𝜌
dx

= −𝜌

u
du
dx

(16)

detr

dx
=
(
−5

2
u +

etr

u

) du
dx

(17)

devib

dx
=

eeq
vib − evib

𝜏u
(18)

Properties before the shock wave x < 0 is the freestream condition and initial proper-
ties at just after the shock x = 0 can be obtained assuming thermally frozen flow and
using normal shock relations. The properties at downstream side x > 0 can be solved
by integrating Equations (15)–(18).

Solution

From Figures 4.35–4.39, the variation of properties induced by the relaxation
phenomenon can be clearly seen.
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Figure 4.35 Energy variation behind the shock.

Variation of the translational–rotational energy and vibrational energy behind the
shock is shown in Figure 4.35.
Variation of translational temperature, Ttr; vibrational temperature, Tv; and the differ-
ence between translational temperature and vibrational temperature, (Ttr − Tv), in the
reacting flow behind the shock is shown in Figure 4.36.
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Figure 4.36 Variation of Ttr, Tv, and (Ttr − Tv), in the reacting flow behind the shock.
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From this temperature variation figure (Figure 4.36), we can clearly see that differ-
ence between translational temperature and vibrational temperature (Ttr − Tv) con-
verges to be zero before reaching x = 40 mm. As “nonequilibrium” refers the state
that these temperatures are different (that is, Ttr ≠ Tv), it is clear that the relaxation
progresses mainly in the region 0 < x < 40 mm after the shock. The variation of prop-
erties induced by the relaxation phenomenon can be clearly seen in this region.
Variation of density, pressure, and velocity behind the shock are shown in
Figures 4.37–4.39, respectively.
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Figure 4.37 Density variation behind the shock.
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program tvrel
c=======================================================================
c 1-D relaxation problem for exercise 4.4
c >> Solve ordinary differential equations with Runge-Kutta method
c *** variables ***
c rgas : gas constant for N2
c gamma: specific heats ratio
c fmach: Mach number
c u : flow velocity, m/s
c ttr : translational temperature, K
c tv : vibrational temperature, K
c p : pressure, Pa
c rho : density, kg/m3
c etr : translational-rotational energy, J/kg
c ev,evib: vibrational energy, J/kg
c=======================================================================

open(unit=60,file=’result.txt’,form=’formatted’)
c
c (1) Initial Conditions

rgas =8314./28.
gamma=1.4
xmin = -1.e-3
xmax = 50.e-3
np = 10201
dx = (xmax-xmin)/float(np-1)

c (1-1) Freestream values
fmach1 = 25.
ttr1 = 195.
u1 = fmach1*sqrt(gamma*rgas*ttr1)
tv1 = ttr1
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p1 = 1.
rho1 = p1/(rgas*ttr1)
evib1 = evib(tv1)
etr1 = 5./2. * rgas*ttr1
write(6,*) ’*** freestream properties ***’
write(6,*) ’Mach Number : M =’,fmach1
write(6,*) ’Flow speed : u(m/s) =’,u1
write(6,*) ’Temperature: Ttr(K) =’,ttr1
write(6,*) ’Temperature: Tv(K) =’,tv1
write(6,*) ’Pressure : P(Pa) =’,p1
write(6,*) ’Density : rho(kg/m3)=’,rho1
write(6,*) ’Energy : etr(J/kg)=’,etr1
write(6,*) ’Energy : evib(J/kg)=’,evib1

c (1-2) post-shock properties (initial condition at x=0)
p2 = p1*(1.+2.*gamma/(gamma+1.)*(fmach1**2-1.))
u2 =u1/( (gamma+1.)*fmach1**2/((gamma-1.)*fmach1**2+2.) )
rho2 = rho1*u1/u2
ttr2 = p2/(rgas*rho2)
tv2 = tv1
evib2 = evib(tv2)
etr2 = 5./2. * rgas*ttr2
fmach2 = u2/sqrt(gamma*rgas*ttr2)
write(6,*) ’*** initial properties at x=0 ***’
write(6,*) ’Mach Number : M =’,fmach2
write(6,*) ’Flow speed : u(m/s) =’,u2
write(6,*) ’Temperature: Ttr(K) =’,ttr2
write(6,*) ’Temperature: Tv(K) =’,tv2
write(6,*) ’Pressure : P(Pa) =’,p2
write(6,*) ’Density : rho(kg/m3)=’,rho2
write(6,*) ’Energy : etr(J/kg)=’,etr2
write(6,*) ’Energy : evib(J/kg)=’,evib2

c
write(60,*)’#x(m) u(m/s) p(Pa) rho(kg/m3) T(K) Tv(K) etr evib’

c (3) main loop
do 1000 itr=1,np

c (4) set x position
x =xmin+dx*float(itr-1)
n0=(np-1)/51+1

c (5) x<0 : freestream condition
if(itr.lt.n0) then

rho=rho1
u =u1
etr=etr1
ev =evib1
ttr=ttr1
tv =tv1
p =rho*rgas*ttr
write(60,1001) x,u,p,rho,ttr,tv,etr,ev

1001 format(8E16.8)
c (6) x=0 : initial condition

else if(itr.eq.n0) then
rho=rho2
u =u2
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etr=etr2
ev =evib2
ttr=ttr2
tv =tv2
p =rho*rgas*ttr
write(60,1001) x,u,p,rho,ttr,tv,etr,ev

c (7) integrate into +x direction with 3-step TVD Runge-Kutta method
else

c (7-1) store previous values
rhoold=rho
uold =u
etrold=etr
evold =ev
ttrold=ttr
tvold =tv
pold =p

c (7-2) 1st step
call rhs(rho,u,etr,ev,ttr,tv,p,dr,du,detr,dev)

c (7-3) 2nd step
rho=rho+dx*dr
u =u +dx*du
etr=etr+dx*detr
ev =ev +dx*dev
tv =evinv(ev)
ttr=etr*2./(5.*rgas)
p =rho*rgas*ttr
call rhs(rho,u,etr,ev,ttr,tv,p,dr,du,detr,dev)

c (7-4) 3rd step
rho=.75*rhoold+.25*(rho+dx*dr)
u =.75*uold +.25*(u +dx*du)
etr=.75*etrold+.25*(etr+dx*detr)
ev =.75*evold +.25*(ev +dx*dev)
tv =evinv(ev)
ttr=etr*2./(5.*rgas)
p =rho*rgas*ttr
call rhs(rho,u,etr,ev,ttr,tv,p,dr,du,detr,dev)

c (7-5) update properties
rho=(rhoold+2.*(rho+dx*dr) )/3.
u =(uold +2.*(u +dx*du) )/3.
etr=(etrold+2.*(etr+dx*detr))/3.
ev =(evold +2.*(ev +dx*dev) )/3.
tv =evinv(ev)
ttr=etr*2./(5.*rgas)
p =rho*rgas*ttr
write(60,1001) x,u,p,rho,ttr,tv,etr,ev

end if
1000 continue

write(6,*) ’*** final properties at x=’,xmax*1000.,’(mm) ***’
write(6,*) ’Mach Number : M =’,u/sqrt(gamma*rgas*ttr)
write(6,*) ’Flow speed : u(m/s) =’,u
write(6,*) ’Temperature: Ttr(K) =’,ttr
write(6,*) ’Temperature: Tv(K) =’,tv
write(6,*) ’Pressure : P(Pa) =’,p
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write(6,*) ’Density : rho(kg/m3)=’,rho
write(6,*) ’Energy : etr(J/kg)=’,etr
write(6,*) ’Energy : evib(J/kg)=’,ev
close(unit=60)
stop
end

c=======================================================================
subroutine rhs(rho,u,etr,ev,ttr,tv,p,dr,du,detr,dev)
du=rho*(evib(ttr)-evib(tv))/tau(ttr,p)/(5./2.*rho*u**2-rho*etr-p)
detr=du*(-5./2.*u+etr/u)
dr=-rho/u*du
dev=(evib(ttr)-evib(tv))/(tau(ttr,p)*u)
return
end

c
c=======================================================================
c vibrational relaxation time

function tau(tkel, ppa)
wmu =14.
a =220.
ev =exp(a*(tkel**(-1./3.)-.015*wmu**.25)-18.42)/(ppa/101325.)
return
end

c
c=======================================================================
c vibrational energy

function evib(tkel)
rgas =8314./28.
theta=3395.
ev =theta*rgas/(exp(theta/tkel)-1.)
return
end

c
c=======================================================================
c inverse function of evib(tkel)

function evinv(ev)
rgas =8314./28.
theta=3395.
tkel =theta/alog(theta*rgas/ev +1.)
evinv=tkel
return
end ◾

4.24 Summary

Air can be treated as both thermally and calorically perfect for temperatures less
than 800 K, and for temperatures from 800 to 2000 K, it is only thermally perfect
but calorically imperfect. For temperatures above 2000 K, the air is thermally as well
as calorically imperfect.

In many engineering problems of practical interest, the temperature of the flow
is appreciably above the limiting value for which the gas can be treated as perfect.
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Flows with temperature above 800 K need to be analyzed considering the functional
dependence of the specific heats cp and cv on temperature. In this kind of flows with
temperature more than 800 K, if the temperature is in the range from 800 to 2000 K,
the flowing gas is termed thermally perfect. For high-enthalpy flows with tempera-
ture above 2000 K, even the specific heats ratio 𝛾 becomes a function of temperature.
This makes the isentropic, shock, Fanno, and Rayleigh flow relations, derived based
on perfect gas assumption invalid. Therefore, for solving high-enthalpy flows that are
both calorically as well as thermally imperfect, each problem has to be dealt with
the actual equations governing the transport of mass, momentum, and energy and the
second law of thermodynamics.

The following are the two major physical characteristics that cause a high-enthalpy
flow to deviate from calorically perfect gas behavior.

• At high temperatures, the vibrational excitation of the gas molecules becomes
important, absorbing some of the energy that, at normal temperatures, would go
into the translational and rotational motion. The excitation of vibrational energy
causes the specific heats of the gas to become a function of temperature, causing
the gas to become calorically imperfect.

• With further increase in temperature, the molecules begin to dissociate and even
ionize. Under these conditions, the gas becomes chemically reacting, and the spe-
cific heats become functions of both temperature and pressure.

Because of the above effects, the high-enthalpy gas flows have the following differ-
ences as compared to the flow of gas with constant specific heats (perfect gas).

• The specific heats ratio, 𝛾 = cp∕cv, is a variable.
• The thermodynamic properties (the thermal and calorical properties) are totally

different.
• For high-enthalpy flows, heat transfer rate is predominant.
• Usually, some numerical procedure, rather than analytical approach, is required for

solving high-enthalpy problems.
• Because of these reasons, analysis of high-enthalpy flows are different from that of

gas dynamic flows obeying perfect gas assumption.

The macrostate that occurs when the system is in thermodynamic equilibrium,
referred to as the most probable macrostate, plays a dominant role in the study of
high-enthalpy gas dynamics, because at temperatures above 800 K, the vibration
excitation of the molecules becomes active; beyond 2000 K, the molecules in a gas
dissociate to become atoms; and beyond 3000 K, the atoms themselves become active
and get ionized, heading towards plasma state.

From kinetic theory of gases, the following can be known.

• In any given system of molecules, the microstates are constantly changing because
of molecular collisions.
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• The most probable macrostate is that the macrostate that has the maximum number
of microstates.

• If each microstate appears in the system with equal probability and there is one
particular macrostate that has considerably more microstates than any other, then
that is the macrostate that will prevail in the system most of the time.

Molecules and atoms are constituted by the elementary particles, namely, the elec-
trons, protons, and neutrons. Quantum mechanics makes a distinction between two
different class of molecules and atoms, depending on the number of elementary par-
ticles in them, as follows.

• Molecules and atoms with even number of elementary particles obey a certain sta-
tistical distribution called Bose–Einstein statistics. Let us call them bosons.

• Molecules and atoms with odd number of elementary particles obey a different
statistical distribution called Fermi–Dirac statistics. Let us call such molecules and
atoms as fermions.

The following is an important distinction between the above two classes.

• For bosons, the number of molecules that can be in any one degenerate state (in any
one of the boxes in Figure 4.4) is unlimited (except, of course, that it must be less
than or equal to Nj).

• For fermions, only one molecule may be in any given degenerate state at any instant.

The total number of microstates for a given macrostate with Bose–Einstien statis-
tics is

W =
∏
j

(Nj + gj − 1)!
(gj − 1)!Nj!

The quantity W is called the thermodynamic probability. The thermodynamic
probability is a measure of the “disorder” of the system. This can be used to count
the number of microstates in a given macrostate as long as the molecules are
bosons.

The total number of microstates for a given macrostate for fermions is

W =
∏
j

gj!

(gj − Nj)!Nj!

The most probable macrostate is the macrostate that has Wmax.
The total energy of a molecule consists of translational, rotational, vibrational, and

electronic energies. That is, for a molecule, the total energy is given by

𝜀 = 𝜀trans + 𝜀rot + 𝜀vib + 𝜀el
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However, for a single atom, only the translational and electronic energies exist, that
is, for atoms the total energy is given by

𝜀 = 𝜀trans + 𝜀el

The molecules have the following forms (modes) of energy.

• Translational energy, 𝜀trans – the translational kinetic energy of the center of mass
of the molecule is the source of this energy.

• Rotational energy, 𝜀rot – the rotational energy is due to the rotation of the molecule
about the three orthogonal axes in space.

• Vibrational energy, 𝜀vib – the molecules and atoms are vibrating with respect to an
equilibrium location within the molecule.

• Electronic energy, 𝜀el – the electronic energy is due to the motion of electrons about
the nucleus of each atom constituting the molecule.

Quantum mechanics results show that each of the above energies are quantized, that
is, they can exist only at certain discrete values.

The Nj corresponding to the maximum value of the thermodynamic probability
W is

N∗
j =

gj

e𝛼 e𝛽𝜖
′
j − 1

The superscript “∗” is added to Nj to emphasize that N∗
j corresponds to the maximum

value of W, that is, N∗
j corresponds to the most probable distribution of molecules

over the energy levels 𝜖′j . The above equation gives the most probable macrostate for
bosons.

The most probable macrostate for fermions is

N∗
j =

gj

e𝛼 e𝛽𝜖
′
j + 1

At very low temperatures, T → 0 K, the molecules of the system are jammed
together at or near the ground energy levels, and therefore, the degenerate states
of these low-lying energy levels are highly populated. As a result, the difference
between the Bose–Einstein and Fermi–Dirac statistics are important. In contrast,
at high temperatures, the molecules are distributed over many energy levels, and
therefore, the states are generally sparsely populated, that is, Nj ≪ gj.

In the high-temperature limit,

N∗
j = gje

−𝛼e−𝛽𝜖
′
j
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This limiting case is called the Boltzmann limit, and this equation is termed the Boltz-
mann distribution.

In the above equation, the Lagrange constants 𝛼 and 𝛽 are unknowns. The link
between the classical and statistical thermodynamics is the constant 𝛽. It can be shown
that

𝛽 = 1
kT

where k is the Boltzmann constant and T is the temperature of the system. With
𝛽 = 1

kT
, Equation (4.20) can be written as

N∗
j = gj e−𝛼 e−𝜖

′
j∕kT

The partition function Q, also called the state sum, is defined as

Q ≡ ∑
j

gj e−𝜖j∕kT

and the Boltzmann distribution, from Equation (4.24), can be written in terms of the
partition function Q as

N∗
j = N

gj e−𝜖j∕kT

Q

It can be shown that the partition function Q is a function of the volume, 𝕍 , as well
as the temperature, T , of the system, that is,

Q = f (T ,𝕍 )

The thermodynamic properties such as the internal energy, enthalpy, entropy, and
pressure can be expressed in terms of the partition function Q.

From the microscopic view point, for a system in equilibrium, the energy of the
system is given by

E = NkT2

(
𝜕 ln Q
𝜕T

)
v

If we have 1 mol of atoms or molecules, then N = NA, the Avogadro number
(6.02214179 × 1023).

Also, NA k = Ru, the universal gas constant. Consequently, for the internal energy
per mole, Equation (4.29) gives

E = RuT2

(
𝜕 ln Q
𝜕T

)
v

In the science of gas dynamics, a unit mass is more fundamental quantity than a
unit mole. Let M be the mass of the system of N molecules and m be mass of an
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individual molecule. Then M = Nm. From Equation (4.29), the internal energy per
unit mass, e, is

e = E
M

= NkT2

Nm

(
𝜕 ln Q
𝜕 T

)
v

But k∕m = R is the specific gas constant. Therefore, Equation (4.31) becomes

e = RT2

(
𝜕 ln Q
𝜕 T

)
v

The specific enthalpy is defined as the sum of the specific internal energy and flow
work,

h = e + pv

The enthalpy in terms of the partition function Q is

h = RT + RT2

(
𝜕 ln Q
𝜕T

)
v

The entropy or the amount of disorder in a system is a function of the thermody-
namic probability, that is,

S = S (Wmax)

where S is entropy and Wmax is the thermodynamic probability.
If we have two systems with S1,W1 and S2,W2, respectively, and add these systems,

the entropy of the combined system is additive, S1 + S2. But the thermodynamic prob-
ability of the combined system is the product of the thermodynamic probabilities of
the individual systems W1W2 (because each microstate of the first system can exist in
the combined system along with each one of the microstates of the second system).
This suggests that Equation (4.34) should be of the form

S = (constant) ln Wmax

Equation (4.35) was first postulated by Ludwig Boltzmann, and the constant is
named in his honor. Thus

S = k lnWmax

where k is the familiar Boltzmann constant.
The pressure in terms of partition function is

p = N k T

(
𝜕 ln Q
𝜕𝕍

)
T
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The partition function Q, by definition, is

Q ≡ ∑
j

gje
−𝜖j∕kT

The total energy of a state is the sum of translational, rotational, vibrational, and
electronic energies, that is,

𝜖
′ = 𝜖

′
trans + 𝜖

′
rot + 𝜖

′
vib + 𝜖

′
el

From quantum mechanics, we have

𝜖
′
trans =

h2
P

8 m

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)

𝜖
′
rot =

h2
P

8 𝜋2I
J(J + 1)

𝜖
′
vib = hP 𝜈

(
n + 1

2

)
For electronic energy, no simple expression can be written, and hence, it will con-

tinue to be expressed simply as 𝜖′el.

etrans =
3
2

RT

erot = RT

evib =
hP𝜈∕kT

ehP𝜈∕kT − 1
RT

The theorem of equipartition of energy of kinetic theory states that

“each thermal degree of freedom of the molecule contributes 1
2

kT to the energy of

each molecule, or 1
2

RT to the energy per unit mass of gas.”

Hence, because of the equipartition of energy, the translational energy per unit mass
should be

etrans = 3
(1

2
RT

)
= 3

2
RT

This is same as Equation (4.57) obtained from the modern principles of statistical
thermodynamics.

Similarly, for a diatomic molecule, the rotational motion contributes two thermal
degrees of freedom. Therefore,

erot = 2
(1

2
RT

)
= RT

which is same as Equation (4.59).
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For vibrational freedom, two degrees of freedom should result in

evib = 2
(1

2
RT

)
= RT

But this is not confirmed by Equation (4.61). Indeed, the factor

hP𝜈∕kT

(e−hP𝜈∕kT − 1)
is less than unity, except when T→∞, it approaches unity; thus, in general, evib < RT ,
in conflict with classical theory. This implies the following.

• The classical results based on macroscopic observations do not necessarily describe
phenomena in the microscopic world of molecules.

• As a result, the equipartition of energy principle is misleading.

Equation (4.61), obtained from quantum mechanics considerations, is the proper
expression for vibrational energy.

Thus, we have for atoms

e = 3
2

RT + eel

This implies that for atoms,

Specific internal energy measured above zero-point energy (sensible energy)
= Translational energy + Electronic energy obtained directly from spectroscopic

measurement

For molecules, we have the internal energy as

e = 3
2

RT + RT +
hP𝜈∕kT

ehP𝜈∕kT − 1
RT + eel

The specific heat at constant volume is

cv ≡
(
𝜕e
𝜕T

)
v

Thus, from Equation (4.62), we have the cv for atoms as

cv =
3
2
+

𝜕eel

𝜕T

For molecules, from Equation (4.63), we have the cv as

cv =
3
2

R + R +
(hP𝜈∕kT)2 ehP𝜈∕kT

(ehP𝜈∕kT − 1)2
R +

𝜕eel

𝜕T

For a gas with only translational and rotational energy, we have the following.
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For atoms,
cv =

3
2

R

and for diatomic molecules,
cv =

5
2

R

That is, cv is a constant and independent of temperature. This is the case of a calor-
ically perfect gas. For air around room temperature, being a perfect gas, we have

cp − cv = R

Therefore,
cp = cv + R

Substituting cv =
5
2

R, we have

cp = 7
2

R

Hence, the specific heats ratio 𝛾 becomes

𝛾 =
cp

cv
= 7

5

= 1.4

The kinetic theory equivalent of the perfect gas state equation is

p𝕍 = 2
3

E′
trans

Another form of the kinetic theory equivalent of the perfect gas state equation is

p

𝜌
= 1

3
C2

The root-mean-square (RMS) velocity is given by√
C2 =

√
3RT

The single particle collision frequency, Z′, is

Z′ = n 𝜋 d2 C

The mean free path, 𝜆, is defined as the mean distance traveled by a molecule
between two successive collisions.

𝜆 = C
Z′ =

1
n𝜋d2
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𝜆 ∝ T
p

Note that the collision frequency is directly proportional to the pressure, and the mean
free path is inversely proportional to the pressure.

Most probable speed is

Cmp =
√

2RT

where R is the specific gas constant.
Average speed is

C =
√

8RT
𝜋

The root-mean-square (RMS) speed can be expressed as

√
C

2
=

√
3RuT

Mm

A flow is said to be in local thermodynamic equilibrium if a local Boltzmann dis-
tribution, given by

N∗
j = N

e−𝜖j∕kT

Q

exists at each point in the flow at the local temperature T .
A flow is said to be in local chemical equilibrium if the local chemical composition

at each point in the flow is the same as that determined by the chemical equilibrium
calculations.

The equations of continuity, momentum, and energy for an inviscid compressible
flow are the following.

Continuity equation:

𝜕𝜌

𝜕t
+ 𝜕(𝜌u)

𝜕x
+ 𝜕(𝜌𝑣)

𝜕y
+ 𝜕(𝜌𝑤)

𝜕z
= 0

Momentum equation (x-, y-, and z-components, respectively):

𝜌
𝜕u
𝜕t

+ 𝜌u
𝜕u
𝜕x

+ 𝜌𝑣
𝜕u
𝜕y

+ 𝜌𝑤
𝜕u
𝜕z

= −
𝜕p

𝜕x

𝜌
𝜕𝑣

𝜕t
+ 𝜌u

𝜕𝑣

𝜕x
+ 𝜌𝑣

𝜕𝑣

𝜕y
+ 𝜌𝑤

𝜕𝑣

𝜕z
= −

𝜕p

𝜕y

𝜌
𝜕𝑤

𝜕t
+ 𝜌u

𝜕𝑤

𝜕x
+ 𝜌𝑣

𝜕𝑤

𝜕y
+ 𝜌𝑤

𝜕𝑤

𝜕z
= −

𝜕p

𝜕z
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Energy equation:
𝜕s
𝜕t

+ u
𝜕s
𝜕x

+ 𝑣
𝜕s
𝜕y

+𝑤
𝜕s
𝜕z

= 0

This is a specialized energy equation for an adiabatic, inviscid flow.

• Continuity equation is a statement that the mass flow rate is conserved.
• Momentum equations are statements of Newton’s second law, F = ma.
• Energy equation is a statement that entropy is constant along a streamline for an

inviscid, adiabatic flow.

If entropy is constant along a streamline, then for an isentropic process of a calor-
ically perfect gas, the quantity p∕𝜌𝛾 is also constant along a streamline, and we can
write the above specialized energy equation in terms of the entropy in the following
form.

𝜕

𝜕t

(
p

𝜌𝛾

)
+ u

𝜕

𝜕x

(
p

𝜌𝛾

)
+ 𝑣

𝜕

𝜕y

(
p

𝜌𝛾

)
+𝑤

𝜕

𝜕z

(
p

𝜌𝛾

)
= 0

Thus, the continuity, momentum, and energy equations in terms of entropy s are valid
for a high-temperature, chemically reacting, inviscid, equilibrium flow.

The energy equation for an adiabatic inviscid flow, in terms of h0, is

𝜌
Dh0

Dt
= 𝜌

𝜕h0

𝜕t
+ 𝜌u

𝜕h0

𝜕x
+ 𝜌𝑣

𝜕h0

𝜕y
+ 𝜌𝑤

𝜕h0

𝜕z
=

𝜕p

𝜕t

This equation is valid for both equilibrium and nonequilibrium flows.
Therefore, the governing equations for an inviscid, high-temperature, equilibrium

flows are the following.

Continuity equation:
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0

Momentum equation:

𝜌
DV
Dt

= −∇p

Energy equation:

𝜌
Dh0

Dt
=

𝜕p

𝜕t

The governing equations for the flow across a normal shock (one-dimensional flow)
are

Continuity equation:
𝜌1V1 = 𝜌2V2

Momentum equation:
p1 + 𝜌1V2

1 = p2 + 𝜌2V2
2
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Energy equation:

h1 +
V2

1

2
= h2 +

V2
2

2

These equations are general and valid for both reacting and nonreacting gases. For
perfect gases, a series of closed-form algebraic relations for p2∕p1, T2∕T1, M2, etc. as
functions of M1 can be obtained. But no such simple formulae can be obtained when
the gas is vibrationally excited and/or chemically reacting.

To set up such a numerical scheme to solve for flow properties behind the normal
shock, let us first rearrange Equations (4.101)–(4.103).

The enthalpy h2 behind the shock is

h2 = h1 +
V2

1

2

[
1 −

(
𝜌1

𝜌2

)2
]

As the flow properties 𝜌1, V1, p1, h1, etc. ahead of the shock are known, Equations
(4.108) and (4.110) express p2 and h2, respectively, in terms of only one unknown,
namely, the density ratio 𝜌1∕𝜌2.

There is a basic practical difference between the shock results for a calorically per-
fect gas and those for a chemically reacting gas.

For a calorically perfect gas, only the Mach number upstream of the shock, M1, is
required to obtain the ratio of flow properties across a normal shock wave.

But, for an equilibrium chemically reacting gas, we have seen that

p2

p1
= g1 (V1, p1,T1)

𝜌2

𝜌1
= g2 (V1, p1,T1)

h2

h1
= g3 (V1, p1,T1)

Note that, in this case, three freestream properties, namely, the velocity, pressure,
and temperature are necessary to obtain the properties downstream of a normal
shock wave.

The chemical reactions have the strongest effect on the temperature T . This is
generally true for all types of chemically reacting flows – the temperature T is the
most sensitive variable. In contrast, the pressure ratio is affected only by a small
amount. Pressure is a “mechanically” oriented variable and governed mainly by the
fluid mechanics of the flow, and not so much by the thermodynamic.

For high-speed flows,

p2 ≈ 𝜌1V2
1
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This is a common hypersonic approximation; note that p2 is mainly governed by the
freestream velocity and the thermodynamic effects are secondary.

An approximate expression for the shock detachment distance, 𝛿, ahead of the nose
of a blunt-nosed body, with spherical nose of radius R, in terms of the density ratio
across the detached shock is

𝛿

R
=

𝜌1∕𝜌2

1 +
√

2 (𝜌1∕𝜌2)

tan(𝛽 − 𝜃) =
Vn2

Vn1

tan 𝛽

This relation in terms of 𝜃, 𝛽, Vn2
, and Vn1

for the equilibrium high-temperature gases
is the analog of the 𝜃–𝛽 –M relation for calorically perfect gases.

• The 𝜃–𝛽 –M behavior for equilibrium chemically reacting air is qualitatively sim-
ilar to calorically perfect air.

• For the equilibrium chemically reacting results, the flow Mach number, M1,
upstream of the shock is not an important parameter. The results of an oblique
shock wave in a chemically reacting flow depend on the upstream velocity, V1, as
well as on the pressure, p1, and temperature, T1, ahead of the shock.

The equilibrium chemically reacting flow through a nozzle is isentropic. It is a
general result implying that the equilibrium chemical reactions do not introduce irre-
versibilities into the system. Thus, any shock-free, inviscid, adiabatic, equilibrium
chemically reacting flow is isentropic.

One-dimensional flow is that in which the radius of curvature of the streamlines are
very large and the cross-sectional area of the passage (streamtube) does not change
abruptly.

The area–velocity relation can be expressed as

dA
du

= −A
u
(1 − M2)

This is called the area–velocity relation. This is valid for any gas irrespective of
whether it is perfect or chemically reacting.

For a calorically perfect gas, the nozzle flow characteristics are given by the local
flow Mach number, M, only. In contrast, for an equilibrium chemically reacting gas,
the area, temperature, and pressure ratios are given by

A
A∗ = g1 (p0,T0, u)
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T
T0

= g2 (p0,T0, u)

p

p0
= g3 (p0,T0, u)

Note that, as in the case of normal shock, the nozzle flow properties also depend on
three parameters.

For nozzle flow, the equilibrium temperature is always higher than that for a calor-
ically perfect gas. But for flow behind a shock wave, the equilibrium temperature is
always lower than that for a calorically perfect gas. In the nozzle flow case, the reac-
tions are exothermic, and energy is dumped into the translational molecular motion,
but in the case of normal shock flow, the reactions are endothermic and energy is taken
from the translational mode.

In the case of local equilibrium flow, the equilibrium properties of a moving fluid
element demand instantaneous adjustment of local temperature, T , and pressure, p,
as the element moves through the flow field. For this, the reaction rates have to be
infinitely large. Therefore, equilibrium flow implies infinite chemical and vibrational
rates. The opposite to this flow is that where the reaction rates are practically zero.
Such a flow with no reaction is termed frozen flow. As a result, the chemical compo-
sition of frozen flow remains constant throughout the space and time.

For vibrationally frozen flow, vibrational energy remains constant throughout the
flow. Because the temperature T is proportional to the translational energy, the frozen
flow temperature distribution is less than that for equilibrium flow. In turn, the dis-
tribution of translational energy, etrans, and rotational energy, erot, will be lower for
vibrationally frozen flow.

A flow that is both chemically and vibrationally frozen has constant specific heats.
This situation is the same as the calorically perfect gas. But no flow in reality is pre-
cisely an equilibrium flow or a frozen flow. However, there are a large number of flow
applications that come very close to such a limiting situation of equilibrium frozen
flow and thus can be analyzed using these assumptions.

cp =
∑

i

ci cpi
+
∑

i

hi

(
𝜕ci

𝜕T

)
p

This gives cp for a chemically reacting mixture.
The cp can be written as

cp
(Specific heat at
constant p for
reacting mixture)

= cpf

(Frozen
specific heat)

+
∑

i

hi

(
𝜕ci

𝜕T

)
p

(Contribution because of
chemical reaction)
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cv =
∑

i

ci cvi
+
∑

i

ei

(
𝜕ci

𝜕T

)
v

This gives cv for a chemically reacting mixture.
The cv can be expressed as

cv
(Specific heat at
constant v for
reacting mixture)

= cvf

(Frozen
specific heat)

+
∑

i

ei

(
𝜕ci

𝜕T

)
v

(Contribution because of
chemical reaction)

The general expression for the speed of sound is

a =

√(
𝜕p

𝜕𝜌

)
s

This is a physical fact and is not changed by the presence of chemical reactions; hence,
this relation for the speed of sound, a, is valid for both perfect gas flow and reacting
gas flow.

The speed of sound in a perfect gas is given by

a =
√
𝛾RT

But this expression for the speed of sound is so restrictive and valid only for calorically
perfect gases.

If the gas remains in local chemical equilibrium through the internal structure of
the sound wave, the gas composition is changed locally within the wave according
to the local variations of pressure and temperature. For this situation, the speed of
sound wave is called equilibrium speed of sound, denoted by ae. In turn, if the gas is
in motion at the velocity V , then V∕ae is termed the equilibrium Mach number, Me.

a2
e = 𝛾RT

[1 + (1∕p)(𝜕e∕𝜕v)T]
[1 − 𝜌 (𝜕h∕𝜕p)T]

This is the expression for equilibrium speed of sound in a chemically reacting mixture.
The governing equation for inviscid, nonequilibrium flows are the following.

Continuity equation:
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0

Momentum equation:

𝜌
DV
Dt

= −∇p
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Energy equation:

𝜌
Dh0

Dt
=

𝜕p

𝜕t

where

h0 = h + V2

2

These equations are valid for both equilibrium and nonequilibrium flows.
In addition to the continuity equation above, which is referred to as the global con-

tinuity equation, we must consider the species continuity equation for each individual
chemical species in the mixture.

∫ ∫ ∫𝕍
𝜌i d 𝕍 = −∫ ∫s

𝜌i V ⋅ dS + ∫ ∫ ∫𝕍
�̇�i d 𝕍

This is the integral form of species continuity equation.
Using the divergence theorem, the differential form of the species continuity

equation can be expressed as

𝜕𝜌i

𝜕t
+ ∇ ⋅ (𝜌i V) = �̇�i

The vibrational rate equation for a moving fluid element is

Devib

Dt
= 1

𝜏
(eeq

vib − evib)

where evib is the local nonequilibrium value of vibrational energy per unit mass of gas.
The thin region where large gradients in temperature, pressure, and velocity occur

and the transport phenomena of momentum (𝜇) and energy (K) are important is called
the shock. Essentially, a shock is a compression front across which the flow properties
jump.

For shocks in a calorically perfect gas flow or a chemically reacting equilibrium
flow, the flow properties ahead of and behind the shock are uniform, and the gra-
dients (that is, the jump) in flow properties take place almost discontinuously (that
is, abruptly) within a thin region of not more than a few mean free path thickness
(𝜆 ≈ 6.6317 × 10−8 m, for air at sea level).

However, in nonequilibrium flows, all chemical reactions and/or vibrational exci-
tations take place at a finite rate. As the thickness of a shock wave is of the order of
only a few mean free path, the molecules in a fluid element can experience only a
few collisions, as the fluid element traverses the shock front. Consequently, the flow
through the shock front is essentially frozen.

As the reaction is endothermic, the temperature, T , behind the shock decreases,
whereas the density, 𝜌, increases.
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For a given flow turning angle 𝜃, the equilibrium shock angle 𝛽e is always less than
the frozen wave angle 𝛽f (for 𝛾 = 1.4).

Nonequilibrium quasi-one-dimensional nozzle flows find application in high-
temperature flows through rocket nozzle, high-enthalpy aerodynamic testing
facilities, etc.

• In a rocket nozzle, nonequilibrium effects decrease the thrust and specific impulse.
• In a high-enthalpy (high temperature) wind tunnel, the nonequilibrium effects make

the flow conditions in the test section somewhat uncertain. Both of these are adverse
effects.

• In contrast, a gas dynamic laser creates a laser medium by intentionally fostering
vibrational nonequilibrium in a supersonic expansion. Therefore, this application
aims at obtaining the highest degree of nonequilibrium possible.

Widely accepted technique for solving nonequilibrium nozzle flows is the
time-marching technique.

The governing equations for unsteady quasi-one-dimensional flow are the
following.

Continuity equation:
𝜕p

𝜕t
= − 1

A
𝜕(𝜌uA)
𝜕x

Momentum equation:
𝜕u
𝜕t

= −1
𝜌

(
𝜕p

𝜕x
+ 𝜌u

𝜕u
𝜕x

)

Energy equation:
𝜕e
𝜕t

= −1
𝜌

(
p
𝜕u
𝜕x

+ 𝜌u
𝜕e
𝜕x

+ pu
𝜕 ln A
𝜕x

)
where A is the local cross-sectional area of the nozzle, p is the local pressure, and
u is the local velocity.

In addition to these equations, for a nonequilibrium flow, the appropriate vibrational
rate equation and species continuity equation are

𝜕evib

𝜕t
= 1

𝜏
(eeq

vib − evib) − u
𝜕evib

𝜕x

and
𝜕Ci

𝜕t
= −u

𝜕Ci

𝜕x
+

�̇�i

𝜌

The above equations are solved step by step in time, using the finite-difference
predictor–corrector approach.
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The nonequilibrium phenomena introduce an important new stability criterion for
the time step Δt, in addition to the CFL criterion.

Nonequilibrium flow over a blunt nose not only resembles some of the characteris-
tics of the equilibrium flow and perfect gas flow but also takes on some of the aspects
of nonequilibrium flow behind shock waves. In the nose region, the chemical com-
position resembles that in a nonequilibrium region behind a normal shock wave. But
for the streamline that goes through the stagnation point (abc), between a and b, the
flow is compressed and decelerated; it reaches zero velocity at the stagnation point b.
In doing so, it can be shown that a fluid element takes an infinite time to traverse the
distance ab. This means that local equilibrium conditions must exist at the stagnation
point b with its attendant highly dissociated and ionized state.

The random motion of atoms and molecules is the essence of molecular transport
phenomena. The motion of molecules cause the transport of mass, momentum, and
energy, popularly termed transport phenomena. The properties characterizing these
transports are diffusion coefficient, D; viscosity coefficient, 𝜇; and the thermal con-
duction coefficient, K, referring to the transport of mass, momentum, and energy,
respectively.

The general transport equation is

Λ = −2 a n C 𝜆
d𝜙
dy

The dynamic viscosity coefficient, 𝜇, is given by

𝜇 = 2 a m n C 𝜆

The thermal conductivity can be expressed as

K = k n C𝜆

The binary diffusion coefficient for species A into B can be expressed as

DAB = 2 a C𝜆

Exercise Problems

4.1 Determine (𝜕S∕𝜕E) and the Lagrange multiplier 𝛽 for a gaseous system at
400∘C.
[Answer: 1.486 × 10−3 1/K, 1.08 × 1020 s2/(m2 kg)]

4.2 A vacuum chamber has to be designed for fabricating reflective coatings. Inside
this chamber, a small sample of metal will be vaporized so that its atoms travel
in straight lines (the effects of gravity are negligible during the brief time of
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flight of the atoms) to a surface where they land to form a very thin film. The
sample of metal is at a distance of 30 cm from the surface to which the metal
atoms will adhere. How low must the pressure in the chamber be so that the
metal atoms only rarely collide with air molecules before they land on the sur-
face, if the temperature is 300 K?
[Answer: 19.41 × 10−3 Pa]

4.3 A room is 6.0 m × 5.0 m × 3.0 m. (a) If the air pressure in the room is 1.0 atm
and the temperature is 300 K, find the number of moles of air in the room. (b)
If the temperature increases by 5.0 K and the pressure remains constant, how
many moles of air leave the room?
[Answer: (a) 3.66 × 103 mol, (b) 60 mol]

4.4 Calculate the density and the RMS velocity for hydrogen at 101 kPa and 300 K.
[Answer: 0.081 kg/m3, 1934.24 m/s]

4.5 Determine the mean free path and collision frequency for air at sea level. Take
the radius of air molecule as 2 × 10−10 m.
[Answer: 2.095 × 10−7 m, 2.19 × 109 1/s]

4.6 Find the molar volume (in liters) of an ideal gas at temperature 0∘C and pressure
101,325 Pa.
[Answer: 22.41 L]

4.7 Calculate the number of air molecules in a room of volume 30 m3 at 300 K and
1 atm pressure.
[Answer: 7.342 × 1026]

4.8 Calculate the molecular mass of air, made up of nitrogen (N2) (78.084%),
oxygen (O2) (20.946%), argon (Ar) (0.9340%), carbon dioxide (CO2)
(0.0387%), neon (Ne) (0.001818%), helium (He) (0.000524%), methane
(CH4) (0.000179%), and krypton (Kr) (0.000114%).
[Answer: 28.967 g/mol]

4.9 If the density ratio across the shock at the nose of a blunt-nosed body of nose
radius 1 m is 12, determine the shock detachment distance.
[Answer: 59.17 mm]

4.10 Express the most probable macrostate for fermions as

N∗
j =

gj

e𝛼 e𝛽𝜖
′
j + 1

4.11 Find the temperature at which the RMS speed of a molecule is 350 m/s if (a)
the gas is air and (b) the gas is hydrogen.
[Answer: (a) 142.3 K, (b) 9.9 K]
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4.12 Consider a system with energy levels 𝜖0 = 0 cm−1, 𝜖1 = 12 cm−1 and 𝜖2 = 23
cm−1. Determine numerical values of the partition function at the temperature
corresponding to kT = 10 cm−1, when the system consists a double degenerate
ground state, and four exited states, as shown in Figure 4.40.

ϵ2 = 23 cm−1

ϵ1 = 12 cm−1

ϵ0 = 0 cm−1

Figure 4.40 A system with three exited states.

[Answer: 2.602 units]

4.13 Calculate the number of microstates possible in the macrostate shown in
Figure 4.2, using Fermi–Dirac statistics.
[Answer: 1800]

4.14 If the rotational energy content of 1 kg of nitrogen gas is 148.5 kJ, determine
the temperature of the gas.
[Answer: 500.12 K]

4.15 Determine the translational energy content of a system containing 3 kg of oxy-
gen gas at 35∘C.
[Answer: 360.27 kJ]

4.16 If the root-mean-square velocity of air molecules in a system at 1.3 atm is
600 m/s, determine the specific volume of the gas.
[Answer: 0.911 m3/kg]

4.17 If the number density of oxygen molecules in a system at 1.8 atm is 0.3185 ×
1020 1/m3, find the temperature of the system.
[Answer: 414.95 K]

4.18 If the total kinetic energy of a system at 2.2 atm is 7.7 × 106 m2/(s2 mol), deter-
mine the temperature and the molar volume of the system.
[Answer: 617.43 K, 23.03 m3/(kg mol)]

4.19 A 5 L vessel contains 0.125 mol of an ideal gas at a pressure of 1.5 atm. What
is the average translational kinetic energy of a single molecule?
[Answer: 1.51 × 10−20 J]
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4.20 One mole of an ideal gas does 3000 J of work on its surroundings as it expands
isothermally to a final pressure of 1 atm and volume of 25 L. Determine (a) the
initial volume and (b) the temperature of the gas.
[Answer: (a) 7.652 L, (b) 304.68 K]

4.21 Find the limiting minimum value of shock detachment distance for perfect air
stream past a blunt-nosed body of nose radius 56 mm.
[Answer: 5.92 mm]

4.22 Determine the specific heats ratio of nitrogen gas at 500 K.
[Answer: 1.4]

4.23 A blunt-nosed model is placed in a Mach 3 supersonic tunnel test section. If the
settling chamber pressure and temperature of the tunnel are 10 atm and 315 K,
respectively, calculate the pressure, temperature, and density at the nose of the
model. Assume the flow to be one dimensional.
[Answer: 332.65 kPa, 315 K, 3.68 kg∕m3]

4.24 Air stream with a speed of 200 m/s and temperature 280 K is accelerated. If the
temperature of the accelerated flow is 200 K, determine the speed.
[Answer: 448 m/s]

4.25 Determine the specific heat at constant volume, for sea level air, assuming it
as a mixture of 78% of nitrogen, 21% of oxygen, and 0.3% of carbon dioxide,
neglecting the contribution to the remaining species.
[Answer: 717.3 J/(kg K)]
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5
Hypersonic Flows

5.1 Introduction

In the perfect gas dynamic theory, hypersonic flow is defined as the flow with Mach
number greater than 5, where the change in flow Mach number is dictated by the
change in the speed of sound. That is, in the hypersonic flow regime, the speed of
sound is more dominant than the flow speed itself. But in problems such as the flow
fields around blunt bodies begin to exhibit many of the characteristics of hypersonic
flow when the Mach number is 4, or greater. By definition,

M∞ ≡ V∞

a∞
≫ 1 (5.1)

where M∞ is the freestream Mach number, V∞ is the flow speed, and a∞ is the speed
of sound. That is, the Mach number is greatly larger than unity (M∞ ≫ 1) is the
basic assumption for all hypersonic flow theories. Thus, the internal thermodynamic
energy of the freestream fluid particles is small compared to the kinetic energy of the
freestream for hypersonic flows. In flight applications, this results because the volume
of the fluid particles is relatively large. The limiting case, where M∞ approaches
infinity because the freestream velocity approaches infinity while the freestream
thermodynamic state remains fixed, produces extremely high temperatures in the
shock layer.

The high temperatures associated with hypersonic flight are difficult to match in
ground-test facilities, such as hypersonic wind tunnel and shock tunnel. Therefore,
in wind tunnel applications, hypersonic Mach numbers are achieved through rela-
tively low speeds of sound. Thus, in the wind tunnel, the test-section Mach number,
M∞, approaches infinity because the speed of sound goes to zero while the freestream
velocity is held fixed. As a result, the fluid temperatures in such wind tunnels remains
below the levels that would damage the wind tunnel model.
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Another assumption common to hypersonic flow is that the ratio of the freestream
density to the density just behind a shock is extremely small, that is,

𝜖 ≡ 𝜌∞

𝜌2
≪ 1 (5.2)

where 𝜌∞ is the freestream density and 𝜌2 is the density behind the shock. Equation
(5.2) is known as the small-density-ratio assumption. Thus, this assumption relates
primarily to the properties of the gas downstream of the shock wave. Recall that for a
perfect gas [1],

𝜖 ≡ 𝜌1

𝜌2
= 𝛾 − 1

𝛾 + 1
(5.3)

for a normal shock wave as M∞ → ∞. Thus, 𝜖 is 1/6 for perfect gases with specific
heats ratio 𝛾 = 1.4. It is important to note that a typical hypersonic wind tunnel oper-
ates at conditions where the test gas can be treated as perfect gas. However, during
the reentry flights, the density ratio, 𝜌∞∕𝜌2, can approach as low as 1/20. Thus, the
density ratio simulation in those wind tunnels where the airflow behaves as a perfect
gas does not match the flight values. This will have a significant effect on the shock
stand-off distance, as well as other flow parameters. To generate low-density ratios
for wind tunnel simulations, gases other than air, such as hexafluoroethane (C2F6) for
which 𝛾 = 1.1 or tetrafluoromethane (CF4), also known as carbon tetrafluoride, for
which 𝛾 = 1.2, may be used as the test gas.

5.2 Newtonian Flow Model

When the density ratio across the shock wave, illustrated in Figure 5.1, becomes
small, the shock layer becomes very thin. For this kind of flow situation, we can
assume that the speed and direction of the gas particles in the freestream remain
unchanged until they strike the solid surface exposed to the flow. This flow model
is termed Newtonian flow model because it is similar in character to that described by
Newton in the seventeenth century. For Newtonian flow model, the normal compo-
nent of momentum of the impinging fluid particle is wiped out, whereas the tangential
component of momentum is conserved.

Wall
Shock layer

U
∞,n

U
∞,t

U
∞

Shock wave

Thin shock layer

θb

M
∞

 ≫ 1 ϕ θb

Figure 5.1 Illustration of Newtonian flow model.



Hypersonic Flows 197

The integral form of the momentum equation for a constant-area streamtube normal
to the surface is

p∞ + 𝜌∞V2
∞,n = p∞ + 𝜌∞[V∞ sin 𝜃b]2 = p𝑤 (5.4)

where p∞, 𝜌∞, and V∞, respectively, are the pressure, density, and velocity of the
freestream flow and p𝑤 is the pressure at the wall surface, shown in Figure 5.1.

The pressure coefficient at the wall surface is given by

Cp =
p𝑤 − p∞
1
2
𝜌∞V2

∞

From Equation (5.4), we have the pressure coefficient as

Cp = 2 sin2
𝜃b = 2 cos2

𝜙 (5.5)

This equation for the pressure coefficient is based on the Newtonian flow model, where
2 represents the pressure coefficient at the stagnation point, because 𝜃b = 90∘ at the
stagnation point.

The pressure coefficient as a function of freestream Mach number, M∞, for deflec-
tion angle, 𝜃b, of 10∘ and 30∘ for wedge and cone are compared with Cp of the
Newtonian model (Equation (5.5)) in Figure 5.2.

As seen from Equation (5.5), the pressure coefficient for the Newtonian model is
independent of Mach number and depends only on the angle between the freestream
flow direction and the surface inclination. It is seen in Figure 5.2 that for flow past
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0.0
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Cone (θb = 30°)

Wedge (θb = 30°)

Cp

Cone (θb = 10°)

Wedge (θb = 10°)

Figure 5.2 Pressure coefficient for air flow with 𝛾 = 1.4, past a wedge, a cone, and for the
Newtonian flow model.
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cone, the pressure coefficients for both 10∘ and 30∘ cone angles achieve Mach number
independence once the freestream Mach number, M∞, exceeds 5. But for the wedge,
slightly higher freestream Mach numbers are required before the pressure coefficient
exhibits Mach number independence.

It is seen in Figure 5.2 that for both deflection angles, there is relatively close cor-
relation between the pressure coefficients for sharp cone and Newtonian model. For
a sharp cone of vertex angle 20∘ in a Mach 10 stream of perfect air, the shock wave
angle is 12.5∘. If the cone angle is 60∘, the shock wave angle is 34∘ [2]. Thus, the
inviscid shock layer is relatively thin for a sharp cone in a hypersonic stream. As
the Newtonian flow model assumes that the shock layer is very thin, the agreement
between the pressure coefficient for these two flow models is expected. However, for
a wedge placed in a Mach 10 stream of perfect air, the shock wave angle is 14.43∘ for
wedge angle 20∘ and 38.52∘ for wedge angle 30∘. Because the shock wave angle is
higher at a higher angle of inclination, the pressure on the wedge surface is consider-
ably higher than the pressure given by the Newtonian flow model, with the difference
being greater for the larger deflection angle.

The Newtonian flow model and other theories for the shock layers related to the
Newtonian approximation are based on the small-density-ratio approximation.

5.3 Mach Number Independence Principle

For slender configurations, such as sharp cones and wedges, the strong shock
assumption is

M∞ sin 𝜃b ≫ 1 (5.6)

where M∞ is the freestream Mach number and 𝜃b is the semi-angle of the nose. The
concept termed the Mach number independence principle depends on this assumption.

The Mach number independence principle was derived for inviscid flow by
Oswatitsh. The pressure forces are much larger than the viscous forces for blunt
bodies or slender bodies at large angles of incidence when the Reynolds number
exceeds 105; therefore, one would expect the Mach number independence principle
to hold at these conditions.

Koppenwallner [3] demonstrates that there is a significant increase in the total drag
coefficient for right circular cylinder because of the friction drag when the Knudsen
number, defined as the ratio of mean-free path length to a characteristic dimension
in the flow field, is greater than 0.01. Using the Reynolds number based on the flow
conditions behind a normal shock wave as the characteristic parameter,

Re2 =
𝜌2V2d

𝜇2
(5.7)
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the friction drag for Re2 is given by

CD,f =
5.3

(Re)1.18
(5.8)

where subscript 2 refers to the condition behind the shock.

5.4 Hypersonic Flow Characteristics

The characteristics of hypersonic flow can be computed using the fluid-dynamic phe-
nomena when the configuration geometry, the attitude, or orientation of the geometry
to the freestream flow and the altitude at which the vehicle flies or the test conditions
of a wind tunnel simulation are known. When computer-generated flow field solutions
are used to define the aerothermodynamic environment, matching the fluid-dynamic
similarity parameters becomes a secondary issue. However, it is essential to incor-
porate critical fluid-dynamic phenomena into the computational flow model. Now it
is essential to note that what is a typically important fluid-dynamic phenomenon for
one application may be irrelevant to another. For example, the drag coefficient for
a cylinder whose axis is perpendicular to a hypersonic freestream will be essentially
constant, independent of Mach number and Reynolds number, provided that the Mach
number is sufficiently large so that the flow is hypersonic and the Reynolds number
is sufficiently large so that the boundary layer is thin. For blunt bodies, where skin
friction is a small fraction of the total drag, reasonable estimates of the force coef-
ficient could be obtained from flow fields computed using flow models based on the
Euler equation, that is, neglecting viscous terms in the equations of motion. However,
in the rarefied (low-density) flows encountered at higher altitudes, viscous/inviscid
interactions become important and the effects of viscosity can no longer be neglected.

5.4.1 Noncontinuum Considerations

At very high altitudes, the air becomes highly rarefied that the motion of the individual
particles becomes important. Rarefied gas dynamics concerned with those phenomena
related to the molecular description of a gas flow that occurs at sufficiently low density
should be used to solve the flow field. The dimensionless parameter used to describe
the regimes of rarefied gas dynamics is the Knudsen number, Kn, defined as the ratio
of the mean-free path length, Λ, to some characteristic length, L, in the flow field. The
criterion for free molecular flow is that the mean-free path becomes so large leading
to the Knudsen number to become 10 or more. On the basis of Kn, the flow field is
classified as follows.

• Continuum flow: Kn < 0.01.
• Slip flow: 0.01 < Kn < 0.1.
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• Transition flow: 0.1 < Kn < 1.0.
• Free molecule flow: Kn > 10.

The continuum flow regime is termed the vorticity interaction regime. For a
blunt-nosed body in a hypersonic (or supersonic) flow, there is a bow shock wave
ahead of the nose. The bow shock generates vorticity in the inviscid flow outside
of the boundary layer. The vorticity interaction regime identifies a condition when
conventional boundary layer theory can no longer be used, because the vorticity in
the shock layer external to the viscous region becomes comparable to that within the
boundary layer.

The limits of applicability for the continuum flow theory and a discrete particle
model are illustrated in Figure 5.3.

Thus, there is a portion of the flight environment when the flow can no longer be
regarded as continuum and should be treated as free molecular flow for altitudes above
about 145–160 km for a 300 mm radius sphere whose wall temperature is equal to the
freestream temperature.

Flow field solutions for the nose region of the space shuttle Orbiter by Moss and
Bird [4] indicate that both the direct simulation Monte Carlo (DSMC) and the viscous
shock-layer (VSL) methods provide results that agree closely with the flight measure-
ments at 92.35 km altitude.

From the above discussions, it is evident that there is no single, definite criterion
for an upper-limit altitude above which the continuum model for the flow is no longer
valid. Furthermore, because Kn is a characteristic dimensionless parameter for rarefied
flows, these limits depends on vehicle size. That is, if the nose radius of the vehicle
were increased by a factor of, say, 10 the corresponding density would be decreased
by a factor of 10.

5.4.2 Stagnation Region

The air particles in the shock layer of a hypersonic reentry vehicle undergo vibra-
tional excitation, dissociation, and even ionization. These chemical phenomena absorb
energy, limiting the temperature increase as the kinetic energy of the hypervelocity

Kn
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Euler’s and
N–S equations

Bolzmann’s equation Collisionless
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Bolzmann’s
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(do not form closed set)

Figure 5.3 Classification of flow regimes.
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particles, crossing the bow shock wave, is converted to thermal energy. At low alti-
tudes, where the freestream density is sufficiently high, these chemical phenomenon
tend to reach equilibrium. At higher altitudes, where the freestream density is rela-
tively low, there are not sufficient collisions for the gas molecules to reach an equilib-
rium state. Therefore, the concentration of individual species and the energy contained
in the different internal modes must be calculated by integrating the equations gov-
erning the phenomena.

Examine the flow near the stagnation point of a blunt-nosed body in a hypersonic
stream illustrated in Figure 5.4. The flow passes through a normal shock portion of
the detached shock and reaches state 2 and then decelerates isentropically to the stag-
nation state 02, which constitutes the outer-edge condition for the thermal boundary
layer at the stagnation point. The streamline from the shock wave to the stagnation
point may be curved for nonaxisymmetric flow fields.

The governing equations for steady, one-dimensional, inviscid, adiabatic flow in a
constant-area streamtube are used to compute the conditions across a normal shock
wave. The equations are the following.

Mass conservation or continuity equation:

𝜌1V1 = 𝜌2V2 (5.9)

Momentum equation:
p1 + 𝜌1V2

1 = p2 + 𝜌2V2
2 (5.10)

Energy equation:

h1 +
V2

1

2
= h2 +

V2
2

2
= h0 (5.11)

where h0 is the total or stagnation enthalpy of the flow.

1

Blunt nose

Bow shock

t𝑤
M

∞
 > 1

2

02

Figure 5.4 Flow past a blunt-nosed body.
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Assuming the gas as thermally perfect, we have

p = 𝜌RT = 𝜌
Ru

Mo
T (5.12)

where Ru is the universal gas constant and Mo is the molecular weight of the gas in
the perfect (or reference) state. Introducing the assumption that the gas is calorically
perfect, we have that the specific heat cp is constant and

h = cpT (5.13)

If the gas is both thermally and calorically perfect, the ratio of values of the flow
properties across the shock wave can be written as a unique function of the freestream
Mach number M1 (the Mach number ahead of the shock) and the specific heats
ratio 𝛾 . These relations (the detailed theory and derivation of these are presented in
Reference 1) are

p2

p1
= 1 + 2𝛾

𝛾 + 1
(M2

1 − 1) (5.14)

𝜌2

𝜌1
=

(𝛾 + 1)M2
1

2 + (𝛾 − 1)M2
1

(5.15)

T2

T1
=

h2

h1
=

a2
2

a2
1

= 1 + 2(𝛾 − 1)
(𝛾 + 1)2

(𝛾M2
1 + 1)

M2
1

(M2
1 − 1) (5.16)

p02

p01
=
(

1 + 2𝛾
𝛾 + 1

(M2
1 − 1)

)−1∕(𝛾−1)
{

(𝛾 + 1)M2
1

(𝛾 − 1)M2
1 + 2

}𝛾∕(𝛾−1)

(5.17)

If we assume that the flow decelerates isentropically from the state 2 (just behind the
normal shock portion of the detached shock) to the stagnation point 02 outside of the
thermal boundary layer, combining Equations (5.14) and (5.17), we can express

p1

p02
=

(
2𝛾

𝛾 + 1
M2

1 −
𝛾 − 1
𝛾 + 1

)1∕(𝛾−1)

(
𝛾 + 1

2
M2

1

)𝛾∕(𝛾−1) (5.18)

This is known as the Rayleigh supersonic pitot formula.
For adiabatic flow across the shock, T01 = T02, where T01 and T02 are the stagnation

temperatures. Thus from isentropic relation,

T02

T1
=

T01

T1
=
(

1 + 𝛾 − 1
2

M2
1

)
(5.19)

It is essential to note that it is generally true that the stagnation enthalpy is constant
across a normal shock wave in an adiabatic flow, but the stagnation temperature is
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constant across a normal shock wave only for an adiabatic flow of a perfect gas. One
more aspect to be noted is that Equations (5.14)–(5.19) relate the flow properties
ahead of and behind (that is, the flow properties across) the normal shock wave.

It is seen that the properties ratios in Equations (5.14)–(5.19) depends only on the
specific heats ratio, 𝛾 , and freestream Mach number, M1 (that is, M∞), and do not
depend on the altitude.

In reality, for hypersonic flight, the temperature of the gas molecules that pass
through the detached shock wave increases to very high levels, leading to the exci-
tation of vibrational and chemical energy modes. This excitation lowers the specific
heats ratio of the gas below the freestream value, if it is assumed that equilibrium exits
and that dissociation is not driven to completion. A large amount of energy that would
have gone into increasing the static temperature behind the bow shock wave for a per-
fect gas is used instead to excite the vibrational energy levels or dissociate the gas
molecules. At sea level, at about 900 m/s, the vibrational energy of the air molecules
begin to become important. Oxygen dissociation begins when the freestream veloc-
ity is in the range from 1800 to 2400 m/s. Nitrogen dissociation occurs when the
freestream velocity exceeds 4500 m/s. When the freestream speed exceeds 9000 m/s,
atoms get ionized. Note that the dissociation and ionization reactions are pressure
dependent because each molecule yields two product particles, and such reactions
are inhibited by high pressure. Therefore, high temperature and, consequently, higher
velocity are required to produce the reaction at sea level than at high altitude where
the pressure is much lower than the sea level pressure.

To account for the departure from the thermally perfect equation of state, p = 𝜌RT ,
because of the chemical reaction in air, the compressibility factor z is introduced. The
compressibility factor is the ratio of the molecular weight of the undissociated air to
the mean molecular weight at the conditions of interest. Thus

z =
Mo

M
(5.20)

where M is the mean molecular weight of the gas mixture at the conditions of interest.
Accounting for the change in the gas composition, the equation of state becomes

p = 𝜌
Ru

M
T = 𝜌

Mo

M

Ru

Mo
T = 𝜌 z RT (5.21)

Hansen and Heims [5] reported that the ionization reactions occur at very nearly
the same energy changes so that they may be grouped together as a single reaction,
for the purpose of approximation.

At this stage, it is essential to note that the compressibility factor z is not influenced
by the vibrational excitation and, therefore, z = 1 until the dissociation of oxygen
begins. As air contains about 20% of oxygen, z → 1.2 as the oxygen dissociation
approaches completion. Similarly, z → 2.0 as the nitrogen dissociation approaches
completion and all the molecules have dissociated into atoms. The ionization process
produces further increase in z.
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As energy is absorbed by the gas molecules entering the shock layer, the conserva-
tion laws and their thermophysics induce certain changes in the forebody flow (that
is, the flow just ahead of the nose). The static temperature, the speed of sound, and the
velocity in the shock layer are less for the equilibrium, real gas flow than for a perfect
gas flow. The static pressure for air in thermodynamic equilibrium is slightly larger
than the perfect gas value. The density is increased considerably, and as a result, the
shock layer thickness is reduced significantly.

Computation of properties changes across a normal shock wave, using thermochem-
ical equilibrium air properties [6] shows that for temperatures of 1600 K and below
the air composition does not change in the shock-compression process. Therefore, for
temperatures below 1600 K, the gas can be treated as thermally perfect. Furthermore,
for temperatures below 800 K, it can be seen that the air can be treated as perfect with
constant specific heats ratio of 1.4.

The governing Equations (5.9)–(5.11) are general and not just restricted to perfect
gases alone and can be applied to high-temperature hypersonic flows. There are four
unknowns, namely, p2, 𝜌2, h2, and u2 involved in the three Equations (5.9)–(5.11),
therefore, to solve for these four variables, at least one more equation is necessary.

5.4.3 Stagnation Pressure behind a Normal Shock Wave

Variation of stagnation pressure downstream of a normal shock in reacting air in ther-
modynamic equilibrium and perfect air (with 𝛾 = 1.4) in the Mach number, M∞, range
from 4 to 24 at an altitude of 45,000 m, is presented in terms of dimensionless ratio
p02∕p∞ and the pressure coefficient at the stagnation point, Cp02, in Figures 5.5 and
5.6, respectively.
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Figure 5.5 Variation of stagnation pressure downstream of a normal shock with freestream
Mach number.
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Figure 5.6 Stagnation pressure coefficient (behind a normal shock) with freestream Mach
number.

From Figures 5.5, it is evident that the stagnation pressure computed for air in ther-
modynamic equilibrium is slightly larger than the perfect gas value. The stagnation
pressure coefficient at Mach 4 is about 1.8 for both perfect air and air in thermody-
namic equilibrium as seen from Figure 5.6. There is appreciable difference between
the Cp02

for perfect air and air in thermodynamic equilibrium, for Mach number greater
than 4.

A two-dimensional hypersonic flow field that is ionized and in thermochemical
nonequilibrium was solved numerically by Candler and MacCormack [7]. Compar-
ing the surface pressures for a seven-species reacting gas flow model with those for a
perfect gas flow model for M∞ = 25.9 at 71 km altitude, they found that the surface is
almost identical for each case. But the stagnation point pressure computed using the
reacting gas flow model was slightly higher than the perfect gas value.

Note that for hypersonic flow across the normal shock wave portion of a bow shock,

p1 ≪ 𝜌1V2
1 and p2 ≪ 𝜌2V2

2

where subscripts 1 and 2, respectively, refer to the states ahead of and behind the shock
wave. As a result, we have

p2 ≈ p02 ≈ 𝜌1V2
1

This can be expressed, by multiplying and dividing the terms by 2, as

p2 ≈ p02 ≈ 2 × 1
2
𝜌1V2

1
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or
p2 ≈ p02 ≈ 2q1

Thus, the stagnation point pressure for hypersonic flow is independent of the flow
chemistry and approximately twice the dynamic pressure, q1, ahead of the shock.

At this stage, it is essential to note that this relative insensitivity of the pressure
applies only to pressure downstream of the normal portion of the bow shock wave
near the stagnation point. For locations away from the stagnation point, significant
difference may exist. Although relatively simple techniques can provide first-order
estimates of the pressures away from the stagnation point, there are phenomena that
introduce large uncertainties in the pressure. The pressure distributions for flows
involving shock/shock interactions, shock/boundary layer interactions, and flow
separation, such as base flow, are very sensitive to a number of parameters.

The variation of the stagnation temperature behind a shock as a function of
freestream Mach number, M∞, at an altitude of 45 km, for perfect air and air at
thermodynamic equilibrium are shown in Figure 5.7. It is seen that the energy
absorbed by the dissociation process causes the reacting gas equilibrium temperature
to lie significantly lower than the perfect gas temperature. This difference increases
with increase in freestream Mach number, M∞.

The specific heat correlation as a function of pressure and temperature presented by
Hansen [8] may be used to identify the condition at which the dissociation of oxygen
and nitrogen affects the properties. It is found that at all pressures, the dissociation of
oxygen is essentially complete before the dissociation of nitrogen begins.

For a perfect gas, as we know, the changes in flow properties across a normal shock
wave are functions of Mach number, M1, ahead of the shock and the ratio of specific
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Figure 5.7 Variation of stagnation temperature (T02∕T∞) downstream of a normal shock
wave.
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heats. That is,
p2

p1
= f (M1, 𝛾)

But for a reacting gas in chemical equilibrium, three parameters are necessary to
obtain the ratio of the properties across a normal shock, that is,

p2

p1
= f (V1, p1,T1)

The real gas effects have a significant effect on the temperature downstream of the
shock wave, which will in turn have a significant impact on the density downstream
of the shock wave.

5.5 Governing Equations

To solve the flow field between the bow shock wave and the surface of a vehicle fly-
ing at hypersonic speed, it is necessary to develop the governing equations of motion
and the appropriate flow models. Here, the flow is assumed to be continuum. Let
us consider the flow past a blunt-nosed body moving at a hypersonic speed, shown
in Figure 5.8. Note that the entropy change across a shock wave depends on the
freestream Mach number and the shock inclination angle. Thus, the entropy change
across the bow shock wave depends on where the flow crosses the shock wave. The
flow in the inviscid portion of the shock layer, that is, the flow between the shock wave
and the boundary layer, is rotational. The inviscid flow in region 2 is subsonic. The
flow downstream of that portion of the shock wave where the shock angle is relatively
low, rendering the shock as weak as in region 3, is supersonic, in accordance with
shock theory that the flow past a weak shock will be supersonic, with Mach number
less than the upstream value.

Examine the flow field over the body. The flow process could be a chemical reac-
tion or the exchange of energy among the various modes, for example, translational,
rotational, vibrational, and electronic energies, of the atom and molecule. The transfer
of energy between the various energy modes is accomplished through the collisions
between the molecules and atoms. At high altitudes, where the air density is low,
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Figure 5.8 Hypersonic flow past a blunt-nosed body. (1) Free stream, (2) Subsonic, (3)
Supersonic, (4) Boundary layer.
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chemical states need not necessarily reach equilibrium. Nonequilibrium processes
occur in a flow when the time required for a process to accommodate itself to the
local conditions within a particular region is of the same order as the time it takes for
the air particles to cross that region. If the time required for accommodation is longer
than the transit time, the chemical composition remains “frozen” as the flow moves
around the vehicle.

The shape and the stand-off distance of the bow shock wave are sensitive functions
of the chemical state. The shape of the shock wave is affected by the chemical reac-
tion, because the chemical reaction affects the temperature and, therefore, the density.
Furthermore, the isentropic exponent of the gas process changes with reaction. This
change in the isentropic exponent affects the pressure distribution over the vehicle.
The magnitude of the pressure difference at a specific location, caused by this change
in isentropic exponent, may be small, but the integrated effect on the pitching moment
and on the stability of the vehicle may be significant.

5.5.1 Equilibrium Flows

At sufficiently high density, there are significant number of collisions between parti-
cles to allow the equilibrium of energy transfer between the various modes, the flow is
in thermal equilibrium. For an equilibrium flow, any two thermodynamic properties,
for example, p and T , can be used to uniquely define the state. As a result, the remain-
ing thermodynamic properties and the composition of the gas can be determined.

5.5.2 Nonequilibrium Flows

Nonequilibrium state such as dissociation and recombination may result when the
fluid particles pass through a strong shock wave and, when undergo a rapid expansion.
In both these cases, the nonequilibrium occurs due to the lack of sufficient collisions
to achieve equilibrium during the characteristic time of the fluid motion. If the rate
at which fluid particles move through the flow field is greater than the chemical and
thermodynamic reaction rates, the energy in the internal degrees of freedom, that is,
the energy that would be released if the gas were chemically reacting, is frozen within
the gas. Rakich et al. [9] reported that nonequilibrium effects can occur above an
altitude of 40 km and at velocity greater than 4 km/s.

A dynamic behavior of the flow is significantly affected by the chemical reactions.
Classical translational temperature is defined in terms of the average translational
kinetic energy per particle. This temperature is classically associated with the sys-
tem temperature in the one-temperature model. Park [10] found that the use of the
one-temperature model in the computation of a nonequilibrium reacting flow leads to
a substantial overestimation of the rate of equilibration.

Because of the slow equilibration rate of vibrational energy, multiple-temperature
models are used to describe a flow that is out of equilibrium.
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As per the three-temperature model recommended by Lee [11], “rotational temper-
ature tends to equilibrate very fast with translational temperature and, hence, can be
considered to be equal to heavy-particle translational temperature T . Electron tem-
perature Te deviates from heavy-particle translational temperature T because of the
slow rate of energy transfer between electrons and heavy particles caused by the large
mass disparity between them. Vibrational temperature Tv departs from both electron
temperature Te and heavy-particle translational temperature T because of the slow
equilibrium of vibrational energy with electron and translational energies.”

But Park [10] notes that the three-temperature chemical-kinetic model is com-
plex and requires many chemical rate parameters. As a compromise between the
three-temperature model and the conventional one-temperature model, Park proposed
a two-temperature chemical-kinetic model. One temperature, T , is used to character-
ize the translational energy of both atoms and molecules and the rotational energy of
the molecules. A second temperature, Tv, is used to characterize the vibrational energy
of the molecules, the translational energy of the electrons, and the electronic excitation
energy of the atoms and molecules. As per Park model [12] “without accounting for
the nonequilibrium vibrational temperature, there is little chance that a computational
fluid dynamics (CFD) calculation can reproduce the experimentally observed phe-
nomena. In a one-temperature model, the temperature at the first node point behind
a shock wave is very high, and so the chemical reaction rates becomes very large. In
a two-temperature model, the vibrational temperature is very low behind the shock.”

When a multi-temperature model is used, an independent conservation equation
must be written for each part of energy characterized by that temperature.

5.5.3 Thermal, Chemical, and Global Equilibrium Conditions

A mixture of gases at a point is in local thermal equilibrium when the internal energies
of each species form the Boltzmann distribution for the heavy-particle translational
temperature T across each of their energy spectra. However, when the distribution of
vibrational energies does not fit the Boltzmann distribution for temperature T , ther-
mal nonequilibrium effects are present at that point. For the two-temperature model,
the distribution of vibrational energies still forms the Boltzmann distribution but at a
different temperature Tv. Thermal equilibrium exits when T = Tv.

A mixture of gases at a point is in local chemical equilibrium when the concentration
of chemical species at that point are a function of the local pressure and the local
temperature alone. Chemical equilibrium occurs when the chemical reaction rates are
significantly faster than the time scales of the local fluid motion, so that the species
conservation equations reduce to a balance between the production and destruction
of the species because of the chemical reactions. If the effects of conservation and
diffusion affect local species concentrations, the flow is in chemical nonequilibrium.

If the characteristic time scales for the fluid motion, the vibration relaxation pro-
cess, and the chemical reactions are denoted by tf , tv, and tc, respectively, then the
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thermal equilibrium would prevail if tv ≪ tf , everywhere in the mixture. For chemical
equilibrium, tc ≪ tf , everywhere in the mixture.

5.6 Dependent Variables

For a chemically reacting flow, the solution aims at determining the composition of
the gas. For equilibrium process, once any two thermodynamic properties that are
used as dependent variables have been determined, the equilibrium composition can
be determined. But that is not the case for nonequilibrium process. For nonequilibrium
flows, the mass density or number density for each of the species must be determined.

In the formulations of nonequilibrium hypersonic flows, the number of chemical
species varies from four, that is, N2, O2, N, and O, which allows air to be approxi-
mately modeled by two species: molecules and atoms, to electrons, that is, N2, O2, N,
O, N+, O+, N2

+, O2
+, NO+, and e−, which is used to approximate high-temperature

air (for temperatures greater than 9000 K).
For mass fraction, Ci of species i is defined as

Ci =
𝜌i

𝜌
=

𝜌i∑
𝜌i

(5.22)

where 𝜌 is the overall mass density given by

𝜌 =
N∑

i=1

𝜌i (5.23)

The expression for the density of the mixture can be expressed as

𝜌N = 𝜌 −
N∑

i=1

𝜌i

or

CN = 1 −
N∑

i=1

Ci

This approach allows a strong coupling, because 𝜌 is directly a dependent variable
evaluated from the governing conservation equations.

Summing the mass-production rates (per unit volume) over all of the N species, we
obtain

N∑
i=1

�̇� = 0 (5.24)

The chemical source terms are determined from reactions that occur between
components of the gas.
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5.7 Transport Properties

For applying the equations of motion for a given application, it is essential to develop
appropriate expressions for the transport coefficients that appear in the mass, momen-
tum, and energy flux terms in these equations. Gradients of physical properties in
the flow field cause a molecular transport that is directly proportional to the gradient
but in the opposite direction. The momentum transport in the flow is proportional to
the temperature gradient. In self-diffusion, the transport of molecules is proportional
to the concentration gradient and presented by the mass diffusion coefficient. Thus
the diffusion coefficient, viscosity coefficient, and thermal conductivity are known as
transport properties.

The transport of mass, momentum, and energy are due to the collision of fluid par-
ticles in the flow field. Therefore, the theoretical prediction of the transport properties
requires a knowledge of the energy potential that describes the interaction between the
various colliding particles. Thus, in order to calculate the transport coefficients, once
the relative populations of the constituents have been described, one must develop
models that describe the collision cross section and the dynamics of the collisions
between the particles that make up the flow field.

5.7.1 Viscosity Coefficient

Using the model describing the molecules physically as a rigid, impenetrable sphere
surrounded by an inverse-power attractive force, Sutherland developed the following
empirical relation to calculate the coefficient of viscosity:

𝜇 = 1.46 × 10−6

(
T3∕2

T + 111

)
(5.25)

where T is the temperature in kelvin and the units of 𝜇 are in kg/(m s). This model is
qualitatively correct for fluids in which the molecules attract one another when they
are far apart and exert strong repulsive forces upon one another when they are close
to each other.

It is found that Equation (5.25) closely represent the variation of 𝜇 with temper-
ature for air over a fairly wide range of temperature [13]. However, the success of
Sutherland’s equation representing the variation of 𝜇 with T for several gases does
not establish the validity of Sutherland’s molecular model for those gases. In other
words, in general, it is not adequate to represent the core of a molecule as a rigid
sphere or to take molecular attraction into account to a first order only. The great
rapidity of the exponential increase of 𝜇 with T , as compared to that of nonattrac-
tive rigid spheres, has to be explained as due partly to the “softness” of the repulsive
field at small distances and partly to attractive forces that have more than a first-order
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effect. Therefore, the Sutherland relation can be taken only as a simple interpolation
formula over restricted range of temperature.

The Lennard–Jones model for the potential energy of an interaction, which takes
into account both the softness of the molecules and their mutual attraction at large
distances, has been used by Svehla [14] to calculate the viscosity and thermal conduc-
tivity of gases at high temperatures. It is found that there are significant differences
between the values of viscosity based on these two models.

For temperatures below 3000 K, the viscosity of air is independent of pressure. The
transport properties of air at high temperatures should take into account the collision
cross section for atom/atom and atom/molecule collisions.

5.7.2 Thermal Conduction

The heat flux vector appearing in the energy equation includes contribution result-
ing from transport of energy because of heat conduction, the direct transport of
enthalpy (sensible and formation) by species whose velocity Vi differs from the bulk
(mass-averaged) velocity, the energy transferred by gas radiation, and higher-order
effects.

The thermal conduction in terms of temperature can be expressed as [8]

k = 1.993 × 10−5 T3∕2

T + 112
(5.26)

where T is the temperature in kelvin and the thermal conductivity k is in W/(cm K).

5.7.3 Diffusion Coefficient

In a multicomponent flow in which there are concentration gradients, the net mass flux
of species i is the sum of the fraction of the mass transported by the overall fluid motion
and that transported by diffusion. The diffusional velocity of a particular species is due
to molecular diffusion, pressure gradients, and thermal diffusion. The effect because
of thermal diffusion is a second-order collisional transport effect that moves lighter
molecules to hotter regions of the gas.

The principal contributor to the diffusional transport is modeled in terms of the
concentration gradients for most applications. According to Fick’s law of diffusion,

CiVi = −Di∇Ci (5.27)

where Ci and Vi, respectively, are the mass fraction and velocity of the ith species. By
Equation (5.22),

Ci =
𝜌i

𝜌
=

𝜌i∑
𝜌i
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Equation (5.27) can be expressed as

𝜌iVi = −𝜌Di∇Ci (5.28)

For mass conservation,
N∑

i=1

CiVi = 0

At this stage, it should be noted that the Fick law violates the following realistic
physical aspects:

• Chemical potential gradients, not concentration gradients, drive diffusion.
• When Ci goes to zero, diffusional velocities tend to infinity, according to

Equation (5.27).

However, a diffusion coefficient can be a useful approximation in modeling the flow.
In practical applications, a multicomponent diffusion coefficient Dij is calculated

where collisions occur simultaneously among all species. Values for Dij are usually
found from binary collision theory, that is, considering as many binary mixtures as
there are gas pairs in the mixture. The use of Dij is an approximation, which is cost
justifiable because of its convenience. Bartlett et al. [15] suggest an approximation of
the form

Dij =
D

FiFj
(5.29a)

where

Fi =
(mi

26

)0.461
(5.29b)

Fj =
(

mj

26

)0.461

(5.29c)

D = cT3∕2

p
(5.29d)

where mi and mj are the molecular weights of the ith and jth species, respectively, and
c is a constant.

It is found that over a range of temperature, the thermal conductivity ratio,
k∕kEquation (5.26), is nearly proportional to the specific heat. Thus, until ionization
occurs, the Prandtl number is 1 for air over a wide range of temperature. For this kind
of flow, pressure plays a dominant role in the computation. For a Prandtl number of 1,
Reynolds analogy indicates that the heat transfer coefficient is directly proportional to
the skin friction coefficient for an incompressible flow [16]. The correlation between
the skin friction and the heat transfer holds approximately for computing attached
boundary layers.
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5.8 Continuity Equation

The continuity equation is essentially a mass balance relation. It represents that the
mass within a control volume plus the net outflow of the mass through the surface
surrounding the control volume is equal to the rate at which mass is produced in the
control volume. The general form of continuity equation is

𝜕𝜌i

𝜕t
+ ∇ ⋅ (𝜌(V + Vi)) = �̇�i (5.30)

where V is the mass-averaged velocity, Vi is the diffusion velocity of component
(species) i of the gas mixture, 𝜌 is the overall mass density, 𝜌i is the density of species
i, and �̇�i is the mass-production rate of the ith species. Thus, the net mass flux of
species i is the sum of the fraction of the mass transported by the overall fluid motion
and that transported by diffusion. On the basis of Fick’s law of diffusion, the transport
of species i by diffusion is proportional to the negative of the species concentration.
Thus

𝜕𝜌i

𝜕t
+ ∇ ⋅ (Ci𝜌V) − ∇ ⋅ (𝜌Di∇Ci) = �̇� (5.31)

where 𝜕𝜌i∕𝜕t is the rate of change of mass of species i per unit volume in the cell,
∇ ⋅ (Ci𝜌V) is the flux of mass of species i convected across the cell walls with the
mixture velocity, ∇ ⋅ (𝜌Di∇Ci) is the diffusion of species i across the cell walls, and
�̇� is the mass of species i produced because of chemical reactions.

Usually, instead of solving for the density, 𝜌i, of every one of the individual species
i, the overall (mixture) mass conservation equation is solved to obtain the overall den-
sity, 𝜌, of the mixture. This density, 𝜌, is used in the Navier–Stokes equation. The
overall mass conservation equation is obtained by summing Equation (5.31) over all
the species as

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0 (5.32)

The differential form of the overall continuity equation in Cartesian coordinates is

𝜕𝜌

𝜕t
+ 𝜕

𝜕x
(𝜌u) + 𝜕

𝜕y
(𝜌𝑣) + 𝜕

𝜕z
(𝜌𝑤) = 0 (5.33)

5.9 Momentum Equation

The momentum equation is the representation of Newton’s law that the “sum of the
forces acting on a system of fluid particles is equal to the time rate of change of
linear momentum.” The formulation of momentum equation includes both pressure
forces and viscous forces acting on a surface in space but neglects the weight of the
particles within the control volume. To relate the stresses to the fluid motion, it is
assumed that the stress components may be expressed as a linear function of the com-
ponents of the rate of strain. When all the velocity gradients are zero, that is, when



Hypersonic Flows 215

the shear stress vanishes, the stress components must reduce to the hydrostatic pres-
sure, p. Using index notation, the component momentum equations may be written in
Cartesian coordinates as

𝜕

𝜕t
(𝜌ui) +

𝜕

𝜕xj
(𝜌uiuj) = −

𝜕p

𝜕xj
+ 𝜕

𝜕xj

[
𝜇

(
𝜕ui

𝜕xj
+

𝜕uJ

𝜕xi

)
− 2

3
𝜇
𝜕uk

𝜕xk
𝛿ij

]
(5.34)

The first term on the left-hand side (LHS) is the time rate of change of the ith com-
ponent of momentum per unit volume in a cell, the second term on the left-hand side
represents the ith component of momentum convected across the cell walls with mix-
ture velocity ui, the first term on the right-hand side is the pressure forces acting on
the cell walls in the i-direction, and the second term on the right-hand side represents
the viscous forces acting on the cell walls in the i-direction.

Taking i = 1 and summing over j in Equation (5.34), the x-component of the
momentum equation is obtained as

𝜕

𝜕t
(𝜌u) + 𝜕

𝜕x
(𝜌u2) + 𝜕

𝜕y
(𝜌u𝑣) + 𝜕

𝜕z
(𝜌u𝑤) = −

𝜕p

𝜕x
+ 𝜕

𝜕x

[
2𝜇

𝜕u
𝜕z

− 2
3
𝜇∇ ⋅ V

]

+ 𝜕

𝜕y

[
𝜇

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)]
+ 𝜕

𝜕z

[
𝜇

(
𝜕u
𝜕z

+ 𝜕𝑤

𝜕x

)]
(5.34a)

Taking i = 2 and summing over j in Equation (5.34), the y-component of the momen-
tum equation is obtained as

𝜕

𝜕t
(𝜌𝑣) + 𝜕

𝜕x
(𝜌u𝑣) + 𝜕

𝜕y
(𝜌𝑣2) + 𝜕

𝜕z
(𝜌𝑣𝑤) = −

𝜕p

𝜕y
+ 𝜕

𝜕x

[
𝜇

(
𝜕𝑣

𝜕x
+ 𝜕u

𝜕y

)]

+ 𝜕

𝜕y

[
2𝜇

𝜕𝑣

𝜕z
− 2

3
𝜇∇ ⋅ V

]
+ 𝜕

𝜕z

[
𝜇

(
𝜕𝑣

𝜕z
+ 𝜕𝑤

𝜕y

)]
(5.34b)

Taking i = 3 and summing over j in Equation (5.34), the z-component of the momen-
tum equation is obtained as

𝜕

𝜕t
(𝜌𝑤) + 𝜕

𝜕x
(𝜌𝑤u) + 𝜕

𝜕y
(𝜌𝑤𝑣) 𝜕

𝜕z
(𝜌𝑤2) = −

𝜕p

𝜕z
+ 𝜕

𝜕x

[
𝜇

(
𝜕𝑤

𝜕x
+ 𝜕u

𝜕z

)]

+ 𝜕

𝜕y

[
𝜇

(
𝜕𝑤

𝜕y
+ 𝜕𝑣

𝜕z

)]
+ 𝜕

𝜕z

[
2𝜇

𝜕𝑤

𝜕z
− 2

3
𝜇∇ ⋅ V

]
(5.34c)

Momentum conservation is unaffected by chemical reaction or ionization. Even with
ionization, there is no electrostatic force on the flow for approximate charge neutrality.
However, multicomponent nature of the reacting flow affects the value of the viscosity,
as well as the other transport coefficients (that is, the diffusion coefficient and the
thermal conductivity coefficient). It is essential to note that the viscosity 𝜇 is affected
by the multicomponent nature of the reacting flow but is not affected by the existence
of multi-temperatures.
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For many applications, the terms involving the product of the coefficient of viscosity
times a viscosity gradient are negligible over extensive regions of the flow field. Let
us use the term inviscid flow to describe the flow with viscous stress negligibly small.
The term inviscid flow implies that the combined product of viscosity and the relevant
viscosity gradient (or both normal and shear stresses) has a small effect on the flow
field and not that the fluid viscosity is zero.

For inviscid flows, the momentum Equation (5.34) reduces to

𝜕

𝜕t
(𝜌u) + 𝜕

𝜕x
(𝜌u2) + 𝜕

𝜕y
(𝜌u𝑣) + 𝜕

𝜕z
(𝜌u𝑤) = −

𝜕p

𝜕x
(5.35a)

𝜕

𝜕t
(𝜌𝑣) + 𝜕

𝜕x
(𝜌u𝑣) + 𝜕

𝜕y
(𝜌𝑣2) + 𝜕

𝜕z
(𝜌𝑣𝑤) = −

𝜕p

𝜕y
(5.35b)

𝜕

𝜕t
(𝜌𝑤) + 𝜕

𝜕x
(𝜌𝑤u) + 𝜕

𝜕y
(𝜌𝑤𝑣) 𝜕

𝜕z
(𝜌𝑤2) = −

𝜕p

𝜕z
(5.35c)

Equations (5.35a)–(5.35c) are called the Euler equations.
In reality, most continuum flows will contain regions where the viscous force can

be ignored and the flow can be assumed to be inviscid and regions where the viscous
forces cannot be neglected. For solving such flows, the flow may be divided into the
following two layers.

• The viscous boundary layer adjacent to the wall.
• The inviscid flow outside the boundary layer.

5.10 Energy Equation

For developing the total energy equation, let us assume that the temperature of air
is less than 9000 K, in order to neglect the ionization of atomic species. Also, let us
assume that the transfer of energy by radiation is negligible. The overall thermody-
namic energy per unit mass, that is, the specific internal energy, is defined as

e =
∑

Ciei (5.36)

The specific internal energy is the sum of the energy in heavy-particle translation,
the energy in rotation, the energy in vibration, and the latent chemical energy of the
species. The total energy, et, per unit mass is the sum of the specific internal energy
and the kinetic energy of the molecules per unit mass

et = e + 1
2
(V ⋅ V) = e + 1

2
V2 (5.37)

The overall specific enthalpy is defined as

h =
∑

Cihi =
∑

Ciei +
p

𝜌
(5.38)
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This equation can be expressed as [17, 18]

∑
𝜌i
𝜕hi

𝜕t
+
∑

[𝜌i(V + Vi) ⋅ ∇]hi +
∑

�̇�ihi =
dp

dt
+ ∇ ⋅ (q) + 𝜏 ∶ (∇V) (5.39)

where q is the heat flux vector and 𝜏 is the viscous shear stress tensor. Multiplying
Equation (5.31) by hi and summing over i, we get

∑
�̇�ihi =

∑
hi
𝜕𝜌i

𝜕t
+
∑

hi∇ ⋅ (𝜌iV) −
∑

hi∇ ⋅ (𝜌Di∇Ci) (5.40)

Substituting this into Equation (5.39), we get

𝜕

𝜕t
(𝜌h) + ∇ ⋅

(∑
𝜌ihiV

)
− ∇ ⋅

(∑
𝜌hiDi∇Ci

)
=

dp

dt
− ∇ ⋅ (q) + 𝜏 ∶ (∇V) (5.41)

But ∑
𝜌ihi = 𝜌

∑
Cihi = 𝜌h

Therefore, Equation (5.41) becomes

h
𝜕𝜌

𝜕t
+ 𝜌

𝜕h
𝜕t

+ h[∇ ⋅ (𝜌V)] + 𝜌(V ⋅ ∇)h − ∇ ⋅
[∑

hi𝜌Di∇Ci

]
=

𝜕p

𝜕t
+ (V ⋅ ∇)p

− ∇ ⋅ q + 𝜏 ∶ (∇V) (5.42)

Multiplying the continuity equation by h, we get

h

[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V)

]
= h[0] = 0 (5.43a)

Let us focus on the terms 𝜌𝜕h
𝜕t

and 𝜌(V ⋅ ∇)h on the left-hand side and 𝜕p

𝜕t
and (V ⋅ ∇)p

on the right-hand side of Equation (5.42) and analyze them as follows.

𝜌
𝜕h
𝜕t

+ 𝜌(V ⋅ ∇)h −
𝜕p

𝜕t
− (V ⋅ ∇)p = 𝜌

𝜕

𝜕t

(
e +

p

𝜌

)
+ 𝜌(V ⋅ ∇)

(
e +

p

𝜌

)

−
𝜕p

𝜕t
− (V ⋅ ∇)p

because h = e + p

𝜌
.

By expanding, we get

LHS = 𝜌
𝜕e
𝜕t

−
p

𝜌

𝜕𝜌

𝜕t
+

𝜕p

𝜕t
+ 𝜌(V ⋅ ∇)e −

p

𝜌
[(V ⋅ ∇)𝜌] + (V ⋅ ∇)p −

𝜕p

𝜕t
− (V ⋅ ∇)p

that is,

LHS = 𝜌
𝜕e
𝜕t

+ 𝜌(V ⋅ ∇)e −
p

𝜌

[
𝜕𝜌

𝜕t
+ (V ⋅ ∇) 𝜌

]
(5.43b)
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Multiplying the continuity Equation (5.32) by e, we get

e
𝜕𝜌

𝜕t
+ e∇ ⋅ (𝜌V) = 0 (5.43c)

By multiplying the following momentum equation

𝜌
dV
dt

= −∇p + ∇ ⋅ 𝜏

by the dot product of V , we get

V𝜌 ⋅
dV
dt

= −V ⋅ ∇p + V ⋅ (∇ ⋅ 𝜏)

In terms of the tensor identity presented by Bird et al. [18],

𝜏 ∶ ∇V ≡ ∇ ⋅ (𝜏 ⋅ V) − V ⋅ (∇ ⋅ 𝜏)

From the above two equations, we get

𝜏 ∶ ∇V ≡ V ⋅ (𝜏 ⋅ V) − V ⋅ ∇p − V𝜌 ⋅
dV
dt

(5.43d)

and

𝜌V ⋅
dV
dt

= 𝜌
d
dt

(
V2

2

)
(5.43e)

Substituting Equations (5.43a)–(5.43e) into Equation (5.42), we get

𝜕(𝜌e)
𝜕t

+ ∇ ⋅ (𝜌Ve) + 𝜌
𝜕

𝜕t

(
V2

2

)
+ 𝜌(V ⋅ ∇)

(
V2

2

)
+ V ⋅ ∇p −

p

𝜌

[
𝜕𝜌

𝜕t
+ (V ⋅ ∇) 𝜌

]

− V ⋅ (𝜏 ⋅ V) − ∇ ⋅ q + ∇ ⋅
[∑

hi 𝜌Di∇Ci

]
= 0 (5.44)

The term (V ⋅ ∇p) can be expanded as

V ⋅ ∇p ≡ ∇ ⋅ (pV) −
p

𝜌
(𝜌∇ ⋅ V) (5.45a)

Multiplying Equation (5.22) by V2

2
, we get

V2

2

[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V)

]
= 0 (5.45b)

Substituting Equations (5.45a) and (5.45b) into Equation (5.44), we get

𝜕(𝜌 e)
𝜕t

+ ∇ ⋅ (𝜌Ve) + 𝜌
𝜕

𝜕t

(
V2

2

)
+ V2

2

(
𝜕𝜌

𝜕t

)
+ 𝜌V ⋅ ∇

(
V2

2

)

+ V2

2
∇ ⋅ (𝜌V) + ∇ ⋅ (pV) −

p

𝜌

[
𝜕𝜌

𝜕t
+ (V ⋅ ∇) 𝜌 + 𝜌∇ ⋅ V

]

− V ⋅ (𝜏 ⋅ V) + ∇ ⋅ q − ∇ ⋅
[∑

hi𝜌Di ∇Ci

]
= 0 (5.46)
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Using Equations (5.32) and (5.37), this can be simplified to

𝜕

𝜕t
(𝜌et) + ∇ ⋅ (𝜌Vet) + ∇ ⋅ (pV) − ∇ ⋅ (𝜏 ⋅ V) + ∇ ⋅ q − ∇ ⋅

[∑
hi𝜌Di ∇Ci

]
= 0
(5.47)

In Equation (5.47),

• the first term represents the rate of change of total energy per unit volume in a cell;
• the second term represents the flux of total energy through the cell walls;
• the third term gives the work done by the pressure forces;
• the fourth term gives the work done by the viscous forces;
• the fifth term represents the conduction of energy through the cell walls because of

the temperature gradients;
• the sixth term represents the diffusion of enthalpy through the cell walls because

of the concentration gradients.

For a two-dimensional flow, the total energy in Cartesian coordinates is
expressed as

et = e + 1
2
(u2 + 𝑣

2) =
∑

Ciei + (u2 + 𝑣
2)

Equation (5.47) simplifies to

𝜕

𝜕t
(𝜌et) +

𝜕

𝜕x
[u(𝜌et + p)] − 𝜕

𝜕x
[u𝜏xx + 𝑣𝜏xy − qx] −

𝜕

𝜕x

[∑
hi𝜌Di

𝜕Ci

𝜕x

]

+ 𝜕

𝜕y
[𝑣(𝜌et + p)] − 𝜕

𝜕y
[u𝜏yx + 𝑣𝜏yy − qy] −

𝜕

𝜕y

[∑
hi𝜌Di

𝜕Ci

𝜕y

]
= 0 (5.48)

where

qx = −k
𝜕T
𝜕x

− kv

𝜕Ty

𝜕x
(5.49a)

qx = −k
𝜕T
𝜕y

− kv

𝜕Ty

𝜕y
(5.49b)

For a two-temperature model, there are two temperature gradients: one is because of
the translational/rotational temperature T and the second is because of the vibrational
temperature Tv, k represents the thermal conductivity relating to T and kv designates
the thermal conductivity relating to Tv.

5.11 General Form of the Equations of Motion

The general form of the equations of motion in conservation form may be expressed
as

𝜕U
𝜕t

+
𝜕(Ei − Ev)

𝜕x
+

𝜕(Fi − Fv)
𝜕y

+
𝜕(Gi − Gv)

𝜕z
= S (5.50)
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where subscript i denotes inviscid flow and subscript v denotes viscous flow, the vector
of the chemical source terms in represented by S.

5.11.1 Overall Continuity Equation

Substituting U = 𝜌, Ei = 𝜌u, Fi = 𝜌𝑣, Gi = 𝜌𝑤, and Ev = Fv = Gv = S = 0 in
Equation (5.50), we obtain the overall continuity equation given by Equation
(5.33) as

𝜕𝜌

𝜕t
+ 𝜕

𝜕x
(𝜌u) + 𝜕

𝜕y
(𝜌𝑣) + 𝜕

𝜕z
(𝜌𝑤) = 0

It is essential to note that even though the overall continuity equation applies to both
inviscid and viscous regions, there are no terms relating uniquely to the viscous flow.

5.11.2 Momentum Equation

We know that neglecting the body forces, the x-momentum equation can be written
as

𝜌
𝜕u
𝜕t

+ 𝜌u
𝜕u
𝜕x

+ 𝜌𝑣
𝜕u
𝜕y

+ 𝜌𝑤
𝜕u
𝜕z

= −
𝜕p

𝜕x
+ 𝜕

𝜕x

[
2𝜇

𝜕u
𝜕x

− 2
3
𝜇 ∇ ⋅ V

]

+ 𝜕

𝜕y

[
𝜇

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)]
+ 𝜕

𝜕z

[
𝜇

(
𝜕𝑤

𝜕x
+ 𝜕u

𝜕z

)]
(5.51)

or

𝜌
𝜕u
𝜕t

+ 𝜌u
𝜕u
𝜕x

+ 𝜌𝑣
𝜕u
𝜕y

+ 𝜌𝑤
𝜕u
𝜕z

= −
𝜕p

𝜕x
+

𝜕(𝜏xx)
𝜕x

+
𝜕(𝜏yx)
𝜕y

+
𝜕(𝜏zx)
𝜕z

(5.52)

where

𝜏xx = 2𝜇
𝜕u
𝜕x

− 2
3
𝜇 ∇ ⋅ V

𝜏yx = 𝜇

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)

𝜏zx = 𝜇

(
𝜕u
𝜕z

+ 𝜕𝑤

𝜕x

)

Equations (5.51) and (5.52) are forms of the x-momentum equation that are commonly
used in the study of boundary layers. But Equations (5.51) and (5.52) are not in con-
servation form. Multiplying the overall continuity Equation (5.32) by u and adding to
Equation (5.52), we obtain the conservation-law form of the x-momentum equation as

𝜕(𝜌u)
𝜕t

+ 𝜕

𝜕x
[(p + 𝜌u2) − 𝜏xx] +

𝜕

𝜕y
[(𝜌u𝑣) − 𝜏yx] +

𝜕

𝜕z
[(𝜌u𝑤) − 𝜏zx] = 0 (5.53)
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Comparing Equations (5.53) and (5.50), it is seen that

U = 𝜌u; Ei = p + 𝜌u2; Fi = 𝜌u𝑣; Gi = 𝜌u𝑤

Ev = 𝜏xx; Fv = 𝜏yx; Gv = 𝜏zx; S = 0

5.11.3 Energy Equation

The energy equation for two-dimensional flow, given by Equation (5.48), was obtained
by expanding the vector expressions in Equation (5.47) for a two-dimensional flow.
Following the same procedure for a three-dimensional flow, the energy equation
for a three-dimensional flow can be obtained by substituting the following in
Equation (5.50).

U = 𝜌et

Ei = u(𝜌et + p)

Ev = u𝜏xx + 𝑣𝜏xy +𝑤𝜏xz + qx +
∑

hi𝜌Di
𝜕Ci

𝜕x
Fi = 𝑣(𝜌et + p)

Fv = u𝜏yx + 𝑣𝜏yy +𝑤𝜏yz + qy +
∑

hi𝜌Di
𝜕Ci

𝜕y

Gi =𝑤(𝜌et + p)

Gv = u𝜏zx + 𝑣𝜏zy +𝑤𝜏zz + qz +
∑

hi𝜌Di
𝜕Ci

𝜕z
S = 0

5.12 Experimental Measurements of Hypersonic Flows

In the design of a vehicle to fly at hypersonic Mach number, it is essential to integrate
the experimental data obtained from tests in ground-based facilities with computa-
tional flow field solutions and data obtained from flight tests to define the aerother-
modynamic environments that prevails during the flight of the vehicle. Only flight
tests of the full-scale vehicle can provide the correct representation of the vehicle’s
environment. But the flight tests are very expensive and can be done only after an
extensive design, development, and fabrication program has been completed. How-
ever, numerous researches employing elementary shapes, for example, blunt-nosed
shapes, were conducted to understand the fundamentals of flow process.

Ascomplete simulationof theflowfieldcannotbeobtained inaground-based facility,
the first and most important step in planning a ground-based test program is establishing
the test objectives. The following are the main objectives of the ground-based test.
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• To obtain data defining the aerodynamic forces and moments and heat transfer
distributions for complete configurations whose complex flow field resist compu-
tational modeling.

• To obtain data defining local flow phenomena, such as the inlet flow field, for a
hypersonic air-breathing engine or the shock/boundary layer interaction using a fin
or a wing mounted on a plane surface.

• To acquire detailed flow field data to be used in developing flow models for use in
a computational algorithm.

• To measure the heat transfer and the drag, to be used in comparison with computed
flow field solutions over a range of configuration geometries and flow conditions.

• To document aerodynamic effects of aerosurface settings, failures, etc.
• To certify air-breathing engines.

Experimental programs are needed to validate the numerical models used to repre-
sent physical process and flow chemistry and to calibrate the code to determine the
range of conditions for which the values of the computed parameters are of acceptable
accuracy.

5.13 Measurements of Hypersonic Flows

The parameters that can be measured using hypersonic experimental facilities are the
following.

• The freestream Mach number.
• The freestream unit Reynolds number.
• The freestream velocity,
• The pressure altitude.
• The total enthalpy of the flow.
• The density ratio across the shock wave.
• The wall-to-total temperature ratio.
• The thermochemistry of the flow field.

Among these, some of the parameters are interrelated, for example, the freestream
velocity and the total enthalpy of the flow, and the density ratio across the shock wave.
Furthermore, in many instances where two parameters are related, for example, the
freestream Mach number and the freestream velocity, one may simulate one param-
eter (say the Mach number) but not the other (the velocity, because neither the total
enthalpy nor the speed of sound is matched).

Complete simulations of the flow field cannot be obtained in any one ground-based
facility. Therefore, we must decide which parameters are critical to accomplishing the
objectives of the test program. In fact, during the development of a particular vehicle,
the designer will most unlikely utilize many different facilities with a run schedule,
the model, the instrumentation, and the test conditions for each program tailors to
answer specific questions.
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For vehicles, such as the space shuttle, that operate at high angles of attack dom-
inated by a blunt-nosed entropy layer, Mach number is not a significant parameter.
However, for vehicles such as shuttle orbiter, designed to operate at lower angle of
attack, Mach number and viscous effects become significant. Test facilities and devel-
opment procedure, appropriate for one class of configurations, must be rethought
when a different design is analyzed.

In addition to the nine parameters listed earlier, additional factors include the
following.

• Model scale.
• Test time.
• Types of data available.
• Flow quality, such as uniformity, noise, cleanliness, and steadiness.

Let us consider a program that aims at acquiring experimental data to verify a code’s
ability to accurately model the physics and/or the chemistry of the flow, that is, code
validation data. Measurements at the model surface, for example, heat transfer data
and surface pressure, are not sufficient for validating a code. Code validation data
must include information about the flow field away from the surface, for example, flow
visualization data defining shock waves and density contours, velocity measurements,
and gas-density measurements. In any test program, we must be able to define the
freestream flow, because it is the upstream boundary condition for the flow around
the model. Defining the freestream flow is critical for code validation test programs.
Flow nonuniformity, unsteadiness, or noise may affect the validity of the data and
make them unusable for code validation applications.

The test time is also an important parameter. As shown in Figure 5.9, the test time
may vary from fraction of a millisecond for shock tube flows to hours for “conven-
tional” wind tunnels.
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Figure 5.9 Stagnation temperature as a function of test time for some hypersonic facilities.
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Continuous-flow wind tunnels using air as the test gas have maximum temperatures
around 1000 K. If the flow involves nonequilibrium chemistry, the model scale affects
the relation between the characteristic flow time and the characteristic reaction time.
Furthermore, the specification of the instrumentation must reflect the test time and
the model size. Thus, these many varied factors provide considerable challenge to the
pretest planning effort.

For many applications, experimental data provide the information required for
developing a realistic computational flow models and design data for flow fields
whose complexity resists computer flow models. Thus, the ground-based testing and
CFD play complimentary roles in the design of a hypersonic vehicle.

5.13.1 Hypersonic Experimental Facilities

It is essential to note that there is no single facility capable for simulating hypersonic
flight environment; therefore, different facilities are used to address various aspects
of the design problems associated with hypersonic flight. In this discussion, we will
focus our attention on the types of facilities that are used to simulate the aerothermody-
namic environment, that is, the aerodynamic forces and momentum, the heat transfer
distribution, and the surface pressure distribution. Some of the primary experimental
facilities meant for this are

• shock tubes;
• arc-tunnels;
• hypersonic wind tunnels;
• ballistic free-flight ranges.

5.14 Summary

Usually, hypersonic flow is defined as the flow with Mach number greater than 5,
where the change in flow Mach number is dictated by the change in the speed of
sound, except in problems such as the flow fields around blunt bodies begin to exhibit
many of the characteristics of hypersonic flow when the Mach number is 4, or greater.
By definition,

M∞ ≡ V∞

a∞
≫ 1

The Mach number is greatly larger than unity (M∞ ≫ 1) is the basic assumption for
all hypersonic flow theories.

The high temperatures associated with hypersonic flight are difficult to match in
ground-test facilities, such as hypersonic wind tunnel and shock tunnel. Therefore, in
wind tunnel applications, hypersonic Mach numbers are achieved through relatively
low speeds of sound.
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Another assumption common to hypersonic flow is that the ratio of the freestream
density to the density just behind a shock is extremely small, that is,

𝜖 ≡ 𝜌∞

𝜌2
≪ 1

This is known as the small-density-ratio assumption.
When the density ratio across the shock wave becomes small, the shock layer

becomes very thin. For this kind of flow situation, we can assume that the speed and
direction of the gas particles in the freestream remain unchanged until they strike the
solid surface exposed to the flow. This flow model is termed Newtonian flow model
because it is similar in character to that described by Newton in the seventeenth
century.

The pressure coefficient is given by

Cp = 2 sin2
𝜃b = 2 cos2

𝜙

This equation for the pressure coefficient is based on the Newtonian flow model, where
the 2 represents the pressure coefficient at the stagnation point, because 𝜃b = 90∘ at
the stagnation point.

The pressure coefficient for the Newtonian model is independent of Mach number
and depends only on the angle between the freestream flow direction and the surface
inclination.

For slender configurations, such as sharp cones and wedges, the strong shock
assumption is

M∞ sin 𝜃b ≫ 1

The concept termed the Mach number independence principle depends on this
assumption.

Using the Reynolds number based on the flow conditions behind a normal shock
wave as the characteristic parameter,

Re2 =
𝜌2V2d

𝜇2

the friction drag for Re2 is given by

CD,f =
5.3

(Re)1.18

where subscript 2 refers to condition behind the shock.
A cylinder whose axis is perpendicular to a hypersonic freestream will be essentially

constant.
In the rarefied flows, viscous/inviscid interactions become important and the effects

of viscosity can no longer be neglected.
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At very high altitudes, the air becomes highly rarefied so that the motion of the indi-
vidual particles becomes significant. The dimensionless parameter used to describe
the regimes of rarefied gas dynamics is the Knudsen number, Kn.

On the basis of Kn, the flow field is classified as follows.

• Continuum flow: Kn < 0.01.
• Slip flow: 0.01 < Kn < 0.1.
• Transition flow: 0.1 < Kn < 1.0.
• Free molecule flow: Kn > 10.

The continuum flow regime is termed the vorticity interaction regime.
The air particles in the shock layer of a hypersonic reentry vehicle undergo vibra-

tional excitation, dissociation, and even ionization.
For adiabatic flow across the shock, T01 = T02, where T01 and T02 are the stagnation

temperatures. Thus from isentropic relation,

T02

T1
=

T01

T1
=
(

1 + 𝛾 − 1
2

M2
1

)

In reality, for hypersonic flight, the temperature of the gas molecules that pass
through the detached shock wave increases to very high levels, leading to the exci-
tation of vibrational and chemical energy modes.

The compressibility factor is the ratio of the molecular weight of the undissociated
air to the mean molecular weight at the conditions of interest. Thus

z =
Mo

M

Accounting for the change in the gas composition, the equation of state becomes

p = 𝜌
Ru

M
T = 𝜌

Mo

M

Ru

Mo
T = 𝜌 z RT

For temperatures of 1600 K and below, the air composition does not change in the
shock-compression process. Therefore, for temperatures below 1600 K, the gas can
be treated as thermally perfect. Furthermore, for temperatures below 800 K, it can be
seen that the air can be treated as perfect with constant specific heats ratio of 1.4.

The stagnation pressure computed for air in thermodynamic equilibrium is slightly
larger than the perfect gas value.

For hypersonic flow across the normal shock wave portion of a bow shock,

p1 ≪ 𝜌1V2
1 and p2 ≪ 𝜌2V2

2

The stagnation point pressure for hypersonic flow is independent of the flow chem-
istry and approximately twice the dynamic pressure, q1, ahead of the shock.
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Nonequilibrium state such as dissociation and recombination may result when the
fluid particles pass through a strong shock wave and undergo a rapid expansion.

A dynamic behavior of the flow is significantly affected by the chemical reactions.
The use of a one-temperature model in the computation of a nonequilibrium reacting
flow leads to a substantial overestimation of the rate of equilibration.

Because of the slow equilibration rate of vibrational energy, multiple-temperature
models are used to describe a flow that is out of equilibrium.

A mixture of gases at a point is in local chemical equilibrium when the concentra-
tions of chemical species at that point are a function of the local pressure and the local
temperature alone.

For chemical equilibrium, tc ≪ tf , everywhere in the mixture.
The transport of mass, momentum, and energy are due to the collision of fluid

particles in the flow field.
The empirical relation to calculate the coefficient of viscosity is

𝜇 = 1.46 × 10−6

(
T3∕2

T + 111

)

The thermal conduction in terms of temperature can be expressed as

k = 1.993 × 10−5 T3∕2

T + 112

The general form of continuity equation is

𝜕𝜌i

𝜕t
+ ∇ ⋅ (𝜌(V + Vi)) = �̇�i

The x-component of the momentum equation is

𝜕

𝜕t
(𝜌u) + 𝜕

𝜕x
(𝜌u2) + 𝜕

𝜕y
(𝜌u𝑣) + 𝜕

𝜕z
(𝜌u𝑤) = −

𝜕p

𝜕x
+ 𝜕

𝜕x

[
2𝜇

𝜕u
𝜕z

− 2
3
𝜇∇ ⋅ V

]

+ 𝜕

𝜕y

[
𝜇

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)]
+ 𝜕

𝜕z

[
𝜇

(
𝜕u
𝜕z

+ 𝜕𝑤

𝜕x

)]

The y-component of the momentum equation is

𝜕

𝜕t
(𝜌𝑣) + 𝜕

𝜕x
(𝜌u𝑣) + 𝜕

𝜕y
(𝜌𝑣2) + 𝜕

𝜕z
(𝜌𝑣𝑤) = −

𝜕p

𝜕y
+ 𝜕

𝜕x

[
𝜇

(
𝜕𝑣

𝜕x
+ 𝜕u

𝜕y

)]

+ 𝜕

𝜕y

[
2𝜇

𝜕𝑣

𝜕z
− 2

3
𝜇∇ ⋅ V

]
+ 𝜕

𝜕z

[
𝜇

(
𝜕𝑣

𝜕z
+ 𝜕𝑤

𝜕y

)]
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The z-component of the momentum equation is

𝜕

𝜕t
(𝜌𝑤) + 𝜕

𝜕x
(𝜌𝑤u) + 𝜕

𝜕y
(𝜌𝑤𝑣) 𝜕

𝜕z
(𝜌𝑤2) = −

𝜕p

𝜕z
+ 𝜕

𝜕x

[
𝜇

(
𝜕𝑤

𝜕x
+ 𝜕u

𝜕z

)]

+ 𝜕

𝜕y

[
𝜇

(
𝜕𝑤

𝜕y
+ 𝜕𝑣

𝜕z

)]
+ 𝜕

𝜕z

[
2𝜇

𝜕𝑤

𝜕z
− 2

3
𝜇∇ ⋅ V

]

Momentum conservation is unaffected by chemical reaction or ionization.
For inviscid flows, the momentum equations reduce to

𝜕

𝜕t
(𝜌u) + 𝜕

𝜕x
(𝜌u2) + 𝜕

𝜕y
(𝜌u𝑣) + 𝜕

𝜕z
(𝜌u𝑤) = −

𝜕p

𝜕x

𝜕

𝜕t
(𝜌𝑣) + 𝜕

𝜕x
(𝜌u𝑣) + 𝜕

𝜕y
(𝜌𝑣2) + 𝜕

𝜕z
(𝜌𝑣𝑤) = −

𝜕p

𝜕y

𝜕

𝜕t
(𝜌𝑤) + 𝜕

𝜕x
(𝜌𝑤u) + 𝜕

𝜕y
(𝜌𝑤𝑣) 𝜕

𝜕z
(𝜌𝑤2) = −

𝜕p

𝜕z

These are called the Euler equations.
The overall specific enthalpy is defined as

h =
∑

Cihi =
∑

Ciei +
p

𝜌

For a two-dimensional flow, the total energy in Cartesian coordinates is expressed
as

et = e + 1
2
(u2 + 𝑣

2) =
∑

Ciei + (u2 + 𝑣
2)

For a two-temperature model, there are two temperature gradients: one is because of
the translational/rotational temperature T and the second is because of the vibrational
temperature Tv, k represents the thermal conductivity relating to T and kv designates
the thermal conductivity relating to Tv.

The general form of the equations of motion in conservation form may be expressed
as

𝜕U
𝜕t

+
𝜕(Ei − Ev)

𝜕x
+

𝜕(Fi − Fv)
𝜕y

+
𝜕(Gi − Gv)

𝜕z
= S

The overall continuity equation is

𝜕𝜌

𝜕t
+ 𝜕

𝜕x
(𝜌u) + 𝜕

𝜕y
(𝜌𝑣) + 𝜕

𝜕z
(𝜌𝑤) = 0

It is essential to note that even though the overall continuity equation applies to both
inviscid and viscous regions.
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Neglecting the body forces, the x-momentum equation can be written as

𝜌
𝜕u
𝜕t

+ 𝜌u
𝜕u
𝜕x

+ 𝜌𝑣
𝜕u
𝜕y

+ 𝜌𝑤
𝜕u
𝜕z

= −
𝜕p

𝜕x
+ 𝜕

𝜕x

[
2𝜇

𝜕u
𝜕x

− 2
3
𝜇 ∇ ⋅ V

]

+ 𝜕

𝜕y

[
𝜇

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)]
+ 𝜕

𝜕z

[
𝜇

(
𝜕𝑤

𝜕x
+ 𝜕u

𝜕z

)]

The conservation-law form of the x-momentum equation is

𝜕(𝜌u)
𝜕t

+ 𝜕

𝜕x
[(p + 𝜌u2) − 𝜏xx] +

𝜕

𝜕y
[(𝜌u𝑣) − 𝜏yx] +

𝜕

𝜕z
[(𝜌u𝑤) − 𝜏zx] = 0

In the design of a vehicle to fly at hypersonic Mach number, it is essential to integrate
the experimental data obtained from tests in ground-based facilities with computa-
tional flow field solutions and data obtained from flight tests to define the aerother-
modynamic environments that prevails during the flight of the vehicle.

The parameters that can be measured using hypersonic experimental facilities are
the following.

• The freestream Mach number;
• The freestream unit Reynolds number;
• The freestream velocity;
• The pressure altitude;
• The total enthalpy of the flow;
• The density ratio across the shock wave;
• The wall-to-total temperature ratio;
• The thermochemistry of the flow field.

Complete simulations of the flow field cannot be obtained in any one ground-based
facility. Therefore, we must decide which parameters are critical to accomplishing the
objectives of the test program.

For many applications, experimental data provide the information required for
developing a realistic computational flow models and design data for flow fields
whose complexity resists computer flow models. Thus, the ground-based testing and
CFD play complimentary roles in the design of a hypersonic vehicle.

There is no single facility capable for simulating hypersonic flight environment;
therefore, different facilities are used to address various aspects of the design problems
associated with hypersonic flight. Some of the primary experimental facilities meant
for this are

• shock tubes;
• arc-tunnels;
• hypersonic wind tunnels;
• ballistic free-flight ranges.
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Exercise Problems

5.1 Air at 82 atm and 740 K in a settling chamber runs a Mach 8 tunnel. Treat-
ing the expansion as isentropic, determine (a) the test-section static tempera-
ture, (b) static pressure, (c) velocity, (d) unit Reynolds number of the flow, and
(e) dynamic pressure.
[Answer: (a) −219.53∘C, (b) 851.13 Pa, (c) 1174.24 m/s, (d) 18.652 × 106 per
unit length, (e) 38,130.36 Pa]

5.2 Find the (a) viscosity coefficient and (b) conduction coefficient of air at 620 K.
[Answer: (a) 3.083 × 10−5 kg/(m s), (b) 42.03 × 10−5 W/(m K)]

5.3 Show that for a compressible flow,

ln

(
𝜌2

𝜌1

)
isentropic

≥ ln

(
𝜌2

𝜌1

)
shock

where subscript “shock” indicates the density ratio of a shock wave for which
the pressure ratio is p2∕p1 and the subscript “isentropic” denotes the density
ratio for an isentropic process that spans the same pressure ratio p2∕p1.
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6
Aerothermodynamics

6.1 Introduction

Aerothermodynamics deals with the aerodynamic forces and moments and the
heating distribution of a vehicle that flies at hypersonic speeds. Aerothermodynamics
of a vehicle at hypersonic speeds may include boundary layer transition and turbu-
lence, viscous/inviscid interactions, separated flows, nonequilibrium chemistry and
the effects of catalycity, ablation, and noncontinuum effects. Most of the vehicles
experiencing aerothermodynamic environment contain an air-breathing, scramjet
propulsion system. A typical equipment with this kind of propulsion system is
shown in Figure 6.1. The forebody of the vehicle serves as a compression surface
for the inlet flow, and the afterbody serves as a nozzle. Therefore, we must deal with
the transition process and subsequent three-dimensional turbulent boundary layer
with reasonable accuracy to describe the flow past the forebody and the complex,
three-dimensional flow field at the afterbody where chemistry and viscous/inviscid
interactions are important.

The complex flow field associated with the vehicle shown in Figure 6.1 is usually
studied by testing a scale model of the vehicle in a hypersonic wind tunnel or some
other type of ground-based test facility. For a simple shape, properly nondimension-
alized wind tunnel data can be comfortably applied to the flight environment. All
ground-based tests are only partial simulations of the hypersonic flight environment.
The extrapolation process becomes complicated for complex shapes.

Development of computer hardware and software led to the prediction of the
data associated with the aerothermodynamics of a flying vehicle. Indeed, because
of the continued improvements in computer hardware and software, computational
fluid dynamics (CFD) plays an important role in the design process. The term
computational fluid dynamics implies the integration of two disciplines, namely,
the fluid dynamics and computation. Thus, in a CFD code developed for solving
flow fields, approximations are made both in modeling fluid dynamic phenomena,
for example, turbulence, and in the numerical formulation, for example, developing
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Figure 6.1 A hypersonic vehicle with air-breathing propulsion system.

grids to define the configurations and the flow field points where dependent variables
are to be computed.

A CFD code development and application may follow the steps listed as follows.

• Select the physical process to be considered.
• Decide on mathematical and topographical models.
• Build body geometry and space grid.
• Develop a numerical solution method.
• Incorporate the above into a computer code.
• Calibrate and validate the code against benchmark data.
• Predict aerodynamic coefficients, flow parameters, and aerodynamic heatings.

At this stage, it is essential to note that the hypersonic design process must employ
the synergistic integration of ground-based testing, basic analytic technologies,
computational fluid dynamics, and flight testing. In some instances, data from
ground-based tests are used to develop correlations for use at the design flight
conditions. In other situations, the primary objective of a ground-test program is to
generate high-quality data that can be used to develop, validate, and calibrate numer-
ical codes. In all the cases, it is necessary to compare experimental measurements to
the corresponding computed values.

6.2 Empirical Correlations

The wind tunnel data were usually used in dimensionless form to define the pressure
distribution, the convective heat transfer distribution, and the aerodynamic forces and
moments. For example, the convective heat transfer coefficient, h, measured at a spec-
ified location can be divided by a reference, stagnation-point heat transfer coefficient,
ht,ref , measured at the same flow conditions in a wind tunnel, resulting in a dimension-
less ratio h∕ht,ref . Using this dimensionless rate, the local convective heat transfer rate
at flight can be expressed as

q̇flt =
(

h
ht,ref

)(
q̇t,ref

)
flt

(6.1)

where subscripts ‘flt’ refers to flight condition.
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Wind-tunnel-based empirical correlations complimented by analytical solutions
provide reasonable estimates of the actual flight environment.

6.3 Viscous Interaction with External Flow

The effect of the boundary layer on the inviscid flow field may be represented by
displacing the actual surface by boundary layer displacement thickness. As the
boundary layer displaces the external stream, this stream deflection will change the
shape of the shock wave and, therefore, the flow field. The growth of the boundary
layer is determined by the pressure distribution, the flow properties at the edge of
the boundary layer, while the values of these parameters, themselves, depend on the
magnitude of the displacement effect. For instant, the lower the Reynolds number,
the thicker the boundary layer and greater the viscous-interaction-induced effect on
the flow field. Thus, this viscous/inviscid interactions is a complex phenomenon in
which the boundary layer “history” plays a dominant role. Note that this phenomenon
is more significant for slender bodies, such as slender cones, because the changes
in the effective geometry due to boundary layer growth will be proportionally
larger. Furthermore, the higher the Mach number, the shock wave will lie closer to
the body.

To correlate the viscous/inviscid-interaction-induced flow field perturbations,
Koppenwallner [1] identified two different parameters: one for the pressure and the
other for the skin friction and the heat transfer. To correlate the pressure changes, the
hypersonic viscous interaction parameter is

𝜒 =
M3

∞
√

C∞√
Re∞,x

(6.2)

where

C∞ =
(
𝜇w

𝜇∞

)(
T∞

Tw

)
To correlate the viscous/inviscid-induced perturbations in the skin friction or the heat
transfer, Koppenwallner recommends

V =
M∞

√
C∞√

Re∞,x

(6.3)

as the viscous interaction parameter.
The induced pressure increase divided by the pressure for inviscid flow past a sharp

cone is correlated in terms of the viscous interaction parameter [2]

𝜒c =
M3

c

√
Cc√

Rec,x

(6.4)

where subscript c refers to the inviscid flow properties at the surface of a sharp cone.
Note that use of unperturbed, sharp-cone values of the edge properties in the corre-
lation for the induced pressure, for example, Equation (6.4), rather than the use of
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the freestream values, for example, Equation (6.2), is consistent with the analysis of
Hayes and Probstein [3].

6.4 CFD for Hypersonic Flows

Computational fluid dynamics serves as a useful tool for solving the problems of
hypersonic flow past flying machines. It is important to understand the grid scheme
used to represent the body and the flow field, the numerical algorithms used to obtain
the solution for the flow field, and the models used to represent fluid mechanic phe-
nomena, thermodynamic phenomena, and flow properties for developing a computa-
tional code. The following are some of the books on CFD presenting the fundamental
of this subject in detail.

1. Hirsh C, Numerical Computation of Internal and External Flows, Volume 2: Com-
putational Methods for Inviscid and Viscous Flows, John Wiley & Sons, Chich-
ester, England, 1990.

2. Hoffmann K. A, Computational Fluid Dynamics for Engineers, Engineering Edu-
cation System, Austin, TX, 1989.

Computational fluid dynamics is essentially the numerical solutions of the
equations of motion that describe the main governing equations, namely, the
continuity, momentum, and energy equations. The most general form of these
equations are the compressible Navier–Stokes equations for continuum flow regimes
and the Boltzmann equation for rarefied or low-density flow regimes. Continuum
flow fields have been well simulated for a variety of flow conditions involving
viscous/inviscid interactions and/or flow separation by advancing these equations
in time until a steady state is achieved. When there is no flow reversal and the
flow in the stream-side direction is supersonic, these equations can be simplified
by neglecting the streamwise viscous terms. These simplified equations are termed
the parabolized Navier–Stokes equations. The solution to these equations can be
obtained by streamwise marching techniques. When the viscous/inviscid interactions
are weak, the equations can be further simplified by decoupling the viscous and
inviscid regions from one another and simulating the regions separately in an
interactive manner. Here the inviscid Navier–Stokes equations, termed the Euler
equations, are solved in the inviscid region away from body surfaces. Near the body
surface, the viscous-dominated boundary layer equations are solved. A fourth simpli-
fication that can be used for strong viscous/inviscid interactions is the viscous shock
layer approximation. This method is used for the stagnation region of hypersonic
blunt-nosed bodies between the bow shock and the body surface.

To account for the real-gas effects involving thermochemical nonequilibrium, lead-
ing to the finite rate process for chemical and energy exchange, and radiative transport,
the concentration equations for each chemical species must be added to the governing
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equations of the flow field. For dissociating and ionizing air, there are typically 11
species, namely, N2, O2, N, O, NO, O+, N+, NO+, N2

+, O2
+, and e−. Addition of con-

centration equations for each of these species nearly triples the number of equations
to be solved. When there are combustion or gas/surface interactions or ablative prod-
ucts, the number of species increases further. To account for thermal nonequilibrium
and radiative transport, there are additional energy equations to describe the energy
exchange between the viscous energy modes, such as the translational, rotational,
vibrational, and electronic energies. The range of time scales involved in thermochem-
ical process is many orders of magnitude wider than the mean flow time scale. This
is the single most complicating factor in the computation of aerothermodynamics.

Development of Navier–Stokes codes to generate flow field solutions for complex
three-dimensional reacting gas flows is expensive and time consuming. Monnoyer
et al. [4] show that the coupled solution of the second-order boundary layer and the
Euler equations provides an efficient tool for the calculation of hypersonic viscous
flows. But it is limited to flows with weak interaction only, and no shock/boundary
layer or streamwise separation can be considered.

The zonal method is an approach to reduce computational efforts. In this method,
the flow field is divided into zones according to the local flow characteristics. For
example, the flow over the nose of a blunt-nosed vehicle may be divided into zones
1, 2, and 3 as shown in Figure 6.2.

Zones 1 and 2, being away from the surface, may be treated as inviscid. Also, flow
in zone 1 is subsonic and thus elliptic type. Therefore, a time-iterative Euler code may
be used to solve the elliptic equations characteristics of the subsonic inviscid flow in
the nose region.

Flow in zone 2 is supersonic and thus hyperbolic in nature. This inviscid supersonic
flow outside the boundary layer can be solved using a space-stepping Euler code meant
for the hyperbolic equation.

Flow in zone 3 is adjacent to the surface is boundary layer flow and, hence, of
parabolic type. We know that in the boundary layer, the diffusion in the direction

1

3
2

3

2

Figure 6.2 Flows zones for hypersonic flow past a blunt-nosed vehicle.
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parallel to the surface can be assumed to be negligible and convection in the direction
perpendicular to the wall is very small. The boundary layer equations being parabolic
type, space-marching technique can be used for solving them.

At this stage, it is essential to note that this approach is reliable only if the boundary
layer has little interaction with the inviscid flow. The level of simplifications that may
be introduced into the method in order to obtain numerical solutions for the design pro-
cess depends on the complexity of the application, time available, computer available,
and accuracy desired.

6.4.1 Grid Generation

A code used for computing the aerothermodynamic environment requires a subpro-
gram to define the geometric characteristics of the vehicle and a grid scheme to iden-
tify points or volumes within the flow field.

Large number of techniques have been developed for generating the computational
grids that are required in the finite-difference, finite-volume, and finite-element solu-
tion of partial differential equations for arbitrary regions. Choosing the appropriate
grid suitable for the numerical method used is the key for the successful calculation
of results with acceptable accuracy.

Grids may be structured or unstructured. There are no a priori requirements on how
grids are to be oriented. However, in some cases, the manner in which the flow model-
ing information is formulated may influence the grid structure. For instance, because
the turbulence models are often formulated in terms of distance normal to the surface,
the grid scheme utilized for these turbulent boundary layers employs surface-oriented
coordinates where one of the coordinate axes is locally perpendicular to the body
surface.

The computation of the heat transfer or the skin friction requires resolution of the
flow very near the surface. The effect of grid density on the computed heat trans-
fer rates for Mach 20 flow past a 5∘ semi-vertex angle cone was demonstrated by
Neumann [5]. He found that there comes a time in the solution when adding additional
grid points has no effect on the solution quality.

Siddiqui et al. [6] studied the grid-dependency effects on Navier–Stokes solvers for
varying amounts of damping (that is, artificial viscosity) and different differentiating
schemes. They found that the various algorithms investigated herein are found to be
grip dependent, that is, the resolution of the grid affects the quality of the solution.
Improper mesh sizes can result in underprediction of the heating rates by orders of
magnitude. The degree of accuracy depends on the dissipative nature of the algorithm.
The more dissipative a scheme, the finer the grid resolution that will be required for
an accurate estimation of the heating loads.

At this stage, it is essential to note that it is not always wise to demand large com-
puting capacity merely to push ahead a few more steps before exponentially growing
instabilities caused by numerical truncations swamp the first few significant figures
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in the calculations. A more sensible approach is to face the problem with analysis
and attempt to suppress nonessential instabilities by appropriate numerical methods.
The complexity of the problems makes complete mathematical region in these studies
practically impossible; therefore, we are forced to rely on experience with linearized
equations and familiarity with the physical problem for help in judging the accuracy
of the solution obtained.

6.5 Computation Based on a Two-layer Flow Model

Many of the computer codes that are used to define the aerothermodynamic environ-
ment divide the shock-layer flow field (that is, the flow zone between the bow shock
wave and the surface of the vehicle) into the following two regimes.

• A rotational, inviscid flow in which the viscous effects are negligible.
• The thin, viscous boundary layer adjacent to the surface.

These two flow zones are illustrated in Figure 6.2. The pressure distribution and the
properties at the edge of the boundary layer are determined from the solution of the
inviscid flow. Assuming the boundary layer is thin, the pressure is constant across
the boundary layer. As a result, the pressure at the surface is equal to the pressure
from the inviscid solution at the edge of the boundary layer. The skin friction and the
convective heat transfer are determined from the boundary layer solution.

The codes offering a menu of pressure option with relatively simple methods for the
boundary layer parameters is referred to as conceptual design codes, and the codes
in which simplifications to the governing equations are introduced so that the Euler
equations are solved to define the inviscid flow and the boundary layer equations are
used to describe the inner region.

The term two-layer CFD code refers to the second category. Within each category,
all individual code will include a number of approximations, representing a wide range
of rigor in flow modeling.

6.5.1 Conceptual Design Codes

During the initial phases of a development program, the designer is faced with
evaluating the performance of various configurations that might satisfy the mission
requirements. Thus, the designer has need for computational tools that are capable of
predicting the aerodynamic characteristics, that is, the aerothermodynamic environ-
ment, for a wide variety of configurations. The desired code should be economical
and easy to use, employing engineering methods that represent realistic modeling
of the actual flow about the required configurations over an entire trajectory. As the
configurations may contain wings, fins, flaps, etc., the code should be able to model
strong shock waves associated with viscous/inviscid interactions.
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For computing the inviscid pressure acting on a panel, one of the simple impact or
expansion methods can be used. These methods require the angle and, in some cases,
the freestream Mach number.

Another approach for determining the local pressure includes the calculation of
the interference effects of one component on another. This capability employs some
of the simple impact methods but using the change in angle of an element from a
previous point and the local flow conditions for that point determined from the flow
field subroutine.

The challenging aspect of analyzing the flow over a complex shape is the calcula-
tion of the viscous flow due to difficulties in developing simple yet realistic models for
turbulence, viscous/inviscid interactions, etc. A thorough knowledge of the local flow
properties along surface streamlines is required for a realistic boundary layer solution.
The code developed for supersonic/hypersonic arbitrary body program (S/HABP) [7]
is an engineering approach for calculating the viscous force in a simple manner, retain-
ing the essential characteristics of the boundary layer. The skin friction is calculated
either using the relations for incompressible flow over a flat plate with correlation fac-
tors to account for compressibility and the heating (cooling) to the wall or using an
integral boundary method.

The detailed distribution for the pressure and the skin friction that are computed
using the approximate methods of a conceptual code may differ from the actual dis-
tributions.

6.5.2 Characteristics of Two-Layer CFD Models

Vehicle designed for hypersonic flight in the earth’s atmosphere are with blunt nose.
Owing to this, a detached shock is positioned at the nose of the vehicle, as illustrated
in Figure 6.3. The entropy increase across the shock wave depends on the shock incli-
nation angle; thus the entropy downstream of the shock wave is greatest for streamline
1 and least for streamline 3.

Because all the fluid particles originate in the freestream where the total enthalpy
is uniform, the flow remains isentropic outside the boundary layer. The assumption
that the flow outside the boundary layer is isentropic, that is, the total enthalpy is a
constant, is reasonable, unless the temperatures in the inviscid shock-layer flow are
sufficiently high so that gas radiate out through the shock layer, a phenomenon that
occurs only at very high velocities, that is, in excess of 12 km/s. As the entropy is
constant along a streamline for a steady inviscid adiabatic flow, the entropy will vary
continuously through the shock layer.

A fluid particle crossing the shock wave at a particular location will retain the
entropy and the stagnation pressure associated with the shock inclination at that point
where it crossed the shock layer. The entropy and the stagnation pressure will be con-
stant along a streamline until it enters the boundary layer. As the gas flows over the
body, all of the high-entropy gas initially processed by the bow shock wave, which
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Figure 6.3 Flow past a blunt-nosed vehicle.

is termed the entropy layer, is entrained, or swallowed, by the boundary layer (for
example, streamlines 1 and 2 in Figure 6.3). Additional gas subsequently entrained
by the boundary layer is a cooler lower-entropy gas that has been traversed only the
weaker portions of the shock wave (for example, streamline 3). Therefore, it is essen-
tial to include entropy-layer analysis to have accurate predictions of quantities such
as the edge Mach number and the skin friction.

At low Reynolds number/high Mach number conditions, the interaction
between the rotational external flow and the boundary layer would invalidate
the two-layer approach. However, at moderate-to-high Reynolds numbers, a coupled
Euler/boundary layer approach with features specific to hypersonic flows, for
example, gas chemistry, surface catalycity, and entropy swallowing, provides an
efficient tool for the calculation of hypersonic viscous flows over a wide range of con-
ditions. The two-layer CFD models are restricted to flows with weak viscous/inviscid
interactions. Thus, unless special compensation is introduced to the flow model,
flows with streamwise boundary layer or shock/boundary layer interactions should
not be considered.

The basic principle of a coupled inviscid region/boundary layer for the flow field is
that the flows are matched at their interface. Although there are varieties of ways to
compute the two-layer flow field, the classic approach is to solve the inviscid flow field
just for the actual configuration. The inviscid flow field solution at the boundary sur-
face provides conditions at the edge of the boundary layer, for example, the pressure,
the entropy, and the velocity at the edge of the boundary layer. Subject to the bound-
ary layer conditions at the edge and at the wall, the boundary layer solutions can be
obtained. The spreading of adjacent streamlines can be used to define a scale factor
or “equivalent cross-section radius,” which is analogous to the cross-section radius
for an axisymmetric flow. The equivalent cross-section radius determined from the
divergence of the streamlines allows a three-dimensional flow to be modeled by the
axisymmetric analogue, or small cross-section assumption [8]. As the boundary layer
grows, more and more inviscid flow is entrained into the boundary layer. This has two
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effects on the flow modeling. The effect of the boundary layer on the inviscid flow is
represented by displacing the wall by the displacement thickness, that is, the distance
the external streamlines are shifted to account for the mass-flow deficit due to the pres-
ence of the boundary layer. Boundary layer growth also changes the conditions at the
edge of the boundary layer. The inviscid field might then be computed for the equiv-
alent configuration, that is, the actual configuration plus the displacement thickness.

In a close-coupling strategy, an interactive procedure would be set up, containing
until successive computations yielded a flow that is unchanged within some tolerance.

6.5.2.1 Two-Layer Flow Fields

Many codes have been developed to solve steady-state flow fields over complex
three-dimensional bodies. In the treatment of Marconi et al. [9], all shock waves
within the flow field are followed and the Rankine–Hugoniot relations are satisfied
across them. Weilmuenster [10] scheme, referred to as high alpha inviscid solution
(HALIS), using the conservation form of the Euler equations, can capture the shock
that lie within the computational domain. To simplify the geometry, the upper surface
of the Shuttle wing was filled with an elliptic-curve segment, which eliminated
the need to deal with complex viscous-dominated flow field on the lee-side of the
wing. With this approximation, the pressure field in the vicinity of the interaction
between the fuselage-generated shock wave and the wing-generated shock wave
can be computed. It is essential to note that a computer code developed for inviscid
flows cannot provide information about the heat transfer to the surface. However, the
flow phenomena identified in the computed pressure fields provide insights into the
heating environment, including streaks of locally high heating. Weilmuenster found
that the streaks originate at a point near the wing/body shock interaction and the
severity of the heating decreases with increasing angle of attack that corresponds to
a decreased strength of the interior wing shock as determined by the HALIS code.

At relatively high Reynolds numbers, the presence of the boundary layer has a
second-order effect on the static pressure acting on the windward surface. At angles
of attack where the flow on the lee-side of a slender body separates and forms a vor-
tex pattern, the Euler-based flow models usually fail to represent the attached flow.
When such a configuration is treated with an inviscid code, a cross-flow shock devel-
ops and the surface pressure ahead of the shock wave becomes unrealistically low. A
more realistic lee-side flow pattern can be achieved with an Euler code by employing
a semiempirical model in the inviscid flow properties at separation. This technique
effectively changes the body surface to simulate flow separation.

6.5.3 Evaluating Properties at the Boundary Layer Edge

Vehicles designed for hypersonic flight through earth’s atmosphere usually have blunt
nose to reduce the convective heat transfer and alleviate asymmetric vortex effects
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associated with subsonic portion of the flight. As a result, the bow shock wave is
curved. The entropy increase caused by the shock is proportional to the local incli-
nation of the shock wave and the freestream Mach number. For perfect gas flow, the
entropy increase across the shock wave, with local inclination 𝜃sw, is given by [11]

s2 − s1 = R ln

(
p01

p02

)
(6.5)

where the pitot pressure ratio in terms of Mach number is

p02

p01
=
[

1 + 2𝛾
𝛾 + 1

(
M2

1sin2
𝜃sw − 1

)]−1∕(𝛾−1)
[

(𝛾 + 1)M2
1sin2

𝜃sw

(𝛾 − 1)M2
1sin2

𝜃sw + 2

]𝛾∕(𝛾−1)

Thus, as we saw (Figure 6.3), the streamline passing through the nearly normal por-
tion of the bow shock wave (for example, streamline 1) experiences a larger entropy
increase when crossing the shock than does the streamline passing through the more
oblique portion of the shock wave (for example, streamline 3). As the entropy is con-
stant along a streamline for an inviscid, adiabatic and steady flow, the entropy will vary
continuously through the shock layer, depending on where the streamline crossed the
shock wave. Fluid particles, having crossed the curved shock wave at a particular
inclination, retain the entropy and the stagnation pressure associated with the shock
inclination as they move through the inviscid shock layer. While moving downstream
from the stagnation point, the boundary layer grows into the rotational inviscid flow.
The flow entering the boundary layer is initially the hot high-enthalpy gas that has
been stagnated, after passing through nearly normal portion of the bow shock wave.
As the gas flows over the body, all of the high-entropy gas is eventually entrained,
or swallowed, by the boundary layer. Additional gas subsequently entrained by the
boundary layer is a cooler low-density gas that has passed through the weaker portion
of the shock wave.

The entropy is constant between the streamline crossing the bow shock wave at
the tangency point and the shock wave. However, the entropy gradients in the inviscid
shock-layer flow that are produced when the flow passes through the curved bow shock
wave persist for a considerable length.

The static pressure acting across the boundary layer is relatively insensitive to the
flow field. However, significant entropy gradients can persist for considerable dis-
tances. Thus, when entropy layer swallowing is being considered, the location of the
outer edge of the boundary layer must be defined. Because of rotational nature of the
inviscid flow, the velocity and the temperature gradients are not zero at the outer edge
of the boundary layer but have values associated with the rotational inviscid flow. The
boundary layer edge is often defined as the location where the total enthalpy gradient
goes to zero because the inviscid part of the shock layer is usually assumed to be adi-
abatic. However, the total enthalpy within the boundary layer can exceed the inviscid
value of the total enthalpy in certain cases. In these cases, there will be at least two
locations where the total enthalpy gradient goes to zero.
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Example 6.1 Determine the entropy increase caused by a bow shock in a Mach 7 air
stream along the stagnation streamline, treating air as a perfect gas.

Solution

Given M1 = 7 and 𝛾 = 1.4. Along the stagnation streamline, the shock is almost nor-
mal with 𝜃w = 0∘.

s2 − s1 = R ln

(
p01

p02

)

The pitot pressure ratio in terms of Mach number is

p02

p01
=
[

1 + 2𝛾
𝛾 + 1

(
M2

1sin2
𝜃sw − 1

)]−1∕(𝛾−1)
[

(𝛾 + 1)M2
1sin2

𝜃sw

(𝛾 − 1)M2
1sin2

𝜃sw + 2

]𝛾∕(𝛾−1)

Therefore,

p02

p01
=
[
1 + 2.8

2.4
(72 − 1)

]−1∕0.4
[

2.4 × 72

0.4 × 72 + 2

]3.5

= (57)−2.5(5.44)3.5

= 375.49
24,529.412

= 0.0153077

p01

p02
= 1

0.0153077

= 65.3264

The increase of entropy caused by the shock is

Δs = R ln

(
p01

p02

)
= 287 × ln (65.3264)

= 1199.47 m2∕(s2 K)
◾

6.6 Calibration and Validation of the CFD Codes

Comparison of the flow properties over the surface and flow field, computed with a
CFD code, with experimental data to verify the code’s ability to accurately model the
physics of the flow, is referred to as calibration. In other words, CFD code calibration
implies comparison of computed results with experimental data for realistic geome-
tries that are similar to the ones of design interest, made in order to provide a measure
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of the code’s ability to predict parameters that are required for the design without
necessarily verifying that all the features of the flow are correctly modeled.

Some code developers prefer to compare the results computed using the code under
development with the results computed using an established CFD code. When com-
paring absolute values, such as drag coefficient, all sources of experimental, as well
as computational, errors must be evaluated. For example, because drag is sensitive to
Reynolds number, the measurement accuracy of Reynolds number as well as the other
parameters should be evaluated. As all initial and boundary conditions used in a com-
putation cannot or have not been measured, code sensitivity to those conditions should
be analyzed. All sources of error in the experimental data should be documented. The
sensitivity of the computer code to grid size and shape, and the initial and boundary
conditions, should be documented. This is essential when the code is run by users who
did not develop the code.

Thus, the designer of a hypersonic vehicle must make use of both experimental
and analytical tools available. Although neither ground-test facilities nor CFD pro-
vides the complete answer to a designer’s needs, each offers certain advantages. CFD
can give greater detail of a flow field than is possible in any wind tunnel, as all
aerodynamic parameters are computed at each grid point. CFD provides a capabil-
ity for configuration optimization for determining the effect of configuration changes
before commitment to model construction is made. Thus, CFD helps in making more
effective use of ground-test facilities. On the other hand, when integrated forces and
moments are desired, CFD is subject to the inherent mathematical inaccuracies asso-
ciated with small differences of large numbers.

6.7 Basic CFD – Intuitive Understanding

The purpose of this section is to provide plain explanation for CFD for beginners
and undergraduate students.1 Only essential key points of CFD are explained in an
easy-to-understand way by omitting strictly organized theories. At the end of this
section, a CFD technique is presented to solve a supersonic-flow problem based on
the two-dimensional Euler equations in even-spacing orthogonal grid. For readers who
already know CFD techniques and are looking for further and detailed knowledge of
CFD, it is strongly recommended to see other textbooks specialized in CFD.

6.7.1 Governing Equations Based on Conservation Law

When we try to solve flow fields with CFD, the governing equations are usually written
based on conservation law, that is, the equations describe the variation of conserved

1 This section was developed by Dr. Yasumasa Watanabe, following some portion of the lectures of Professor Kojiro
Suzuki in his course “Aerodynamics Lecture II-B, Department of Aeronautics and Astronautics, The University of
Tokyo” for third year undergraduate students. Dr. Watanabe added a lot of material to help students, who are beginners
to CFD, to understand the CFD basics.
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quantity, for example, mass, momentum, and energy, at a certain control volume. Let
q denote any conserved quantity per unit volume. Then, gross amount in a certain
control volume V is ∫∫∫VqdV . Any change in conserved quantity in V can only take
place via flux ⃗ of q that goes through its boundary Ω, ⃗ = qu⃗. Net increase in the
property q through the boundary Ω is written as −∫∫Ω⃗ ⋅ dS⃗, where S denotes surface
area. The reason for the minus sign in the above term is that the positive direction of
⃗ is always in the direction going outside through the boundary. We can also think of
extra change in q at volume V invoked by external factors such as gravity force. If we
write such change by external factors per unit volume per unit time as �̇�, we obtain
general form of any conservation equations as

𝜕

𝜕t∫ ∫ ∫V
qdV = −∫ ∫Ω

⃗ ⋅ dS⃗ + ∫ ∫ ∫V
�̇�dV (6.6)

Substituting well-known Gauss’s law ∫∫Ω⃗ ⋅ dS⃗ = ∫∫∫V∇ ⋅ ⃗dV , we get

𝜕

𝜕t∫ ∫ ∫V
qdV = −∫ ∫ ∫V

∇ ⋅ ⃗dV + ∫ ∫ ∫V
�̇�dV (6.7)

Therefore,
𝜕q

𝜕t
+ ∇ ⋅ ⃗ = �̇� (6.8)

Expanding second term in the above equation, we finally get

𝜕q

𝜕t
+

𝜕(qu)
𝜕x

+
𝜕(q𝑣)
𝜕y

+
𝜕(qw)
𝜕z

= �̇� (6.9)

The control volume for this problem is as shown in Figure 6.4.

dS

Figure 6.4 Control volume.
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6.7.2 Euler Equations in Conservation Form

The Euler equations are composed of mass, momentum, and energy conservation
equations. Substituting q = 𝜌, Equation (6.9) yields mass conservation equation.

q = 𝜌, �̇� = 0 (6.10)

𝜕𝜌

𝜕t
+ 𝜕(𝜌u)

𝜕x
+ 𝜕(𝜌𝑣)

𝜕y
+ 𝜕(𝜌w)

𝜕z
= 0 (6.11)

Substituting q = (𝜌u, 𝜌𝑣, 𝜌w)T , Equation (6.9) yields momentum equations.

q =
⎛⎜⎜⎝
𝜌u
𝜌𝑣

𝜌w

⎞⎟⎟⎠ , �̇� =
⎛⎜⎜⎜⎝
− 𝜕p

𝜕x

− 𝜕p

𝜕y

− 𝜕p

𝜕z

⎞⎟⎟⎟⎠
(6.12)

𝜕

𝜕t

⎛⎜⎜⎝
𝜌u
𝜌𝑣

𝜌w

⎞⎟⎟⎠ +
𝜕

𝜕x

⎛⎜⎜⎝
𝜌u2

𝜌u𝑣
𝜌uw

⎞⎟⎟⎠ +
𝜕

𝜕y

⎛⎜⎜⎝
𝜌𝑣u
𝜌𝑣

2

𝜌𝑣w

⎞⎟⎟⎠ +
𝜕

𝜕z

⎛⎜⎜⎝
𝜌wu
𝜌w𝑣
𝜌w2

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝
− 𝜕p

𝜕x

− 𝜕p

𝜕y

− 𝜕p

𝜕z

⎞⎟⎟⎟⎠
(6.13)

In order to obtain the energy conservation equation, q is set to be q =(total energy per
unit volume)= Et = 𝜌e + 1

2
(u2 + 𝑣

2 + w2), where e = cvT is the internal energy per
unit mass. Ignoring works done by external body force and heat transfer and consid-
ering only the work done by the pressure, �̇� can be written as �̇� = ∇ ⋅ (−pu⃗). Finally,
we obtain the energy equation as

q = Et = 𝜌e + 1
2
(u2 + 𝑣

2 + w2), �̇� = 𝜕

𝜕x
(−pu) + 𝜕

𝜕y
(−p𝑣) + 𝜕

𝜕z
(−pw) (6.14)

𝜕Et

𝜕t
+

𝜕(uEt)
𝜕x

+
𝜕(𝑣Et)
𝜕y

+
𝜕(wEt)
𝜕z

= 𝜕

𝜕x
(−pu) + 𝜕

𝜕y
(−p𝑣) + 𝜕

𝜕z
(−pw)

Therefore,

𝜕Et

𝜕t
+

𝜕[u(Et + p)]
𝜕x

+
𝜕[𝑣(Et + p)]

𝜕y
+

𝜕[w(Et + p)]
𝜕z

= 0 (6.15)

There are, of course, the Euler equations in nonconservation form such as

(
𝜕

𝜕t
+ u

𝜕

𝜕x
+ 𝑣

𝜕

𝜕y

)⎛⎜⎜⎜⎝
u
𝑣

𝜌

T

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

− 1
𝜌

𝜕p

𝜕x

− 1
𝜌

𝜕p

𝜕y

−𝜌∇ ⋅ u⃗
−p∇ ⋅ u⃗∕(𝜌cv)

⎞⎟⎟⎟⎟⎠
(6.16)

(an example of the 2D Euler equations)
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However, in most cases, when we work on CFD for compressible gas dynamic prob-
lems, conservation form equations are numerically solved but nonconservation form
equations are only occasionally employed as governing equations. This is because
conservation laws and corresponding equations in conservation form equations are
valid even if there are shock waves where discrete changes in properties would take
place. By contraries, differential terms in nonconservation form, such as differentials
of u, v, 𝜌, and T in Equation (6.16), cannot be defined at shock wave positions and
they even diverges at shock waves.

6.7.3 Characteristics of Fluid Dynamic Equations

Before solving the practical gas dynamic problems, we will first check the character-
istics of the one-dimensional Euler equations in order to guess what kind of numerical
techniques are required in solving high-speed fluid dynamic problems.

The 1D Euler equations are given as

𝜕Q
𝜕t

+ 𝜕E
𝜕x

= 0 (6.17)

where

Q =
⎛⎜⎜⎝
𝜌

𝜌u
Et

⎞⎟⎟⎠ , E =
⎛⎜⎜⎝

𝜌u
𝜌u2 + p

u(Et + p)

⎞⎟⎟⎠ (6.18)

Equation (6.17) can be transformed into the following form with simple calculation.

𝜕Q
𝜕t

+ A
𝜕Q
𝜕x

= 0 (6.19)

where

A = 𝜕E
𝜕Q

=

⎛⎜⎜⎜⎜⎜⎝

0 1 0

𝛾−3
2

u2 (3 − 𝛾)u 𝛾 − 1

𝛾−2
2

u3 − 𝛾

𝛾−1
p

𝜌
u 3−2𝛾

2
u2 + 𝛾

𝛾−1
p

𝜌
𝛾u

⎞⎟⎟⎟⎟⎟⎠
(6.20)

As the above Euler equations are a set of coupled equations, it would be a good idea
to decouple the equations to see the essence of the same.

In order to decouple these equations, we can first find the eigenvalues of a matrix A
by solving an equality |𝜆I − A| = 0 (6.21)

and three eigenvalues 𝜆1, 𝜆2, and 𝜆3 are obtained as

⎧⎪⎨⎪⎩
𝜆1 = u − c
𝜆2 = u
𝜆3 = u + c

⎫⎪⎬⎪⎭
(6.22)

where c =
√

𝛾
p

𝜌
is the local speed of sound.
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Corresponding eigenvectors q⃗1, q⃗2, and q⃗3 can also be obtained, and the matrix A
can be diagonalized to be

A = RΛR−1 (6.23)

where

Λ =
⎛⎜⎜⎝
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎟⎟⎠ (6.24)

R = (q⃗1, q⃗2, q⃗3) =
⎛⎜⎜⎝

1 1 1
u − c u u + c

H − uc 1
2
u2 H + uc

⎞⎟⎟⎠ (6.25)

R−1 =

⎛⎜⎜⎜⎜⎜⎝

1
2

(
a + u

c

)
− 1

2

(
bu + 1

c

)
1
2
b

1 − a bu −b
1
2

(
a − u

c

)
− 1

2

(
bu − 1

c

)
1
2
b

⎞⎟⎟⎟⎟⎟⎠
(6.26)

a = b
u2

2
, b = 𝛾 − 1

c2
(6.27)

and H is the total enthalpy.

H = c2

𝛾 − 1
+ u2

2
= cpT + u2

2
= h + u2

2
(6.28)

Substituting Equation (6.23) into Equation (6.19) and multiplying R−1 from the left
side, the one-dimensional Euler equations can be finally decoupled to be separate
advection equations as

𝜕

𝜕t
(R−1Q) + Λ 𝜕

𝜕x
(R−1Q) = 0 (6.29)

The simplest form of the well-known advection equation is written as

𝜕u
𝜕t

+ a
𝜕u
𝜕x

= 0 (6.30)

Here, a is the wave propagation speed because it is well known that the analytical solu-
tion can be written as u = Uinitial(x − at) (wave propagation). Therefore, the decoupled
one-dimensional Euler equations given in Equation (6.29) reveals that in a flow field,
any perturbation or waves will propagate with the speed of 𝜆1 = u − c, 𝜆2 = u, and
𝜆3 = u + c. It should be noted that eigenvalues 𝜆1 = u − c and 𝜆3 = u + c is the speed
of acoustic wave in a flow field and the eigenvalue 𝜆2 = u is the particle speed, sug-
gesting that any information in fluid flow is conveyed by the acoustic wave or the
particle’s movement.

From the above discussions, we can see that numerical techniques to solve the
one-dimensional advection equation can be a basis as well as a key point of solving
the Euler equations.
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6.7.4 Advection Equation and Solving Techniques

Let us consider the simplest form of the one-dimensional advection problem.

Governing Equation
𝜕u(x, t)

𝜕t
+ a

𝜕u(x, t)
𝜕x

= 0 (a > 0) (6.31)

Initial Condition

u(x, t) = u0(x, t) (6.32)

Boundary Condition

u(0, t) = u1(t), u(L, t) = u2(t) (6.33)

The computational domain is as shown in Figure 6.5.
In this problem, a numerical solution can be discretized in t-x plane (in Figure 6.5)

as follows.
un

i = u(xi, tn) = u(iΔx, nΔt) (6.34)

In case of a linear initial value problem such as the one in this section, the Lax Evi-
dence theorem tells us what kind of numerical schemes should be employed to obtain
accurate solution of the partial differential equation. According to the Lax Evidence
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Figure 6.5 Computational domain.
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theorem, if a consistent finite difference scheme is used and if the scheme is stable,
obtained numerical solution converges to the exact solution of the partial differential
equation.

Roughly speaking, the requirement for “consistent finite difference scheme” in the
above theorem restricts the time step Δt in the computation.

If we discretize the advection equation with famous FTCS (forward-time
central-space) scheme as

𝜕u
𝜕t

=
un+1

i − un
i

Δt
(6.35)

𝜕u
𝜕x

=
u n

i+1 − u n
i−1

2Δx
(6.36)

The advection equation can be written in a discretized form as

un+1
i = un

i −
1
2

aΔt
Δx

(
u n

i+1 − u n
i−1

)
(6.37)

Here, the term
𝜈 = aΔt

Δx
(6.38)

is called Courant–Friedrichs–Lewy number or just simply Courant number. The
Courant number is interpreted as a ratio of “analytical (physical) wave propagation
distance in time period Δt” (= a × Δt) to “numerical domain of dependence” (= Δx).
As the quantity un+1

i in the next time step is obtained by adding information from
(i − 1)th to (i + 1)th grid point, this numerical information source region or the numer-
ical domain of dependence Δx must contain physical domain of dependence a Δt in
which any perturbation only in this region affects the quantity in the next time step.
The above statement can be expressed with an inequality

a Δt < Δx (6.39)

Therefore,
𝜈 = a Δt

Δx
< 1 (6.40)

Hence, Courant–Friedrichs–Lewy condition provides confinement to the time step
value Δt as

Δt < 𝜈
Δx
a

(6.41)

The Courant condition is illustrated in Figure 6.6.
As to the other requirement for stability, we can roughly understand it as to use

numerical scheme that is appropriate for the phenomenon under consideration, that
is, we need to calculate properties in the next time step paying attention to the wave
propagation direction, the accuracy of the scheme, and the monotonicity required to
solve shock waves.
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Figure 6.6 Courant condition.

6.7.4.1 Concept of Numerical Flux

In CFD, we usually describe numerical schemes using a concept of numerical flux. If
we set f = au, then the linear advection equation can also be written as

𝜕u
𝜕t

+
𝜕f

𝜕x
= 0, (a > 0) (6.42)

This equation can be discretized using numerical flux f̃ n
i+1∕2 as

ui
n+1 = ui

n − Δt
Δx

(
f̃ n
i+1∕2 − f̃ n

i−1∕2

)
(6.43)

Schematic concept of numerical flux f̃ n
i+1∕2 is illustrated in Figure 6.7.

Δx

Numerical flux
Cell-boundary index

Cell index

i – 1/2

i – 1 i + 1i

i + 1/2

ui
nui – 1

n

fi – 1/2
n fi + 1/2

n

ui + 1
n

˜ ˜

Figure 6.7 Numerical flux.
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The numerical flux f̃ n
i+1∕2 can be interpreted as a flux of a quantity, the quantity u in

this case, going out from ith cell to (i + 1)th cell. Here, we think of un
i as an averaged

value in ith cell. By using the concept of numerical flux, the quantity u increases by
Δt
Δx

f̃ n
i−1∕2 due to the flux coming into the ith cell through (i − 1∕2)th cell boundary. It

also decreases by Δt
Δx

f̃ n
i+1∕2 due to the flux going out from the ith cell through (i + 1∕2)th

cell boundary. Therefore, the net amount of change in an averaged property u in ith
cell is evaluated to be −Δt

Δx

(
f̃ n
i+1∕2 − f̃ n

i−1∕2

)
.

The difference of numerical schemes can also be stated as a difference between
expressions of numerical flux term f̃ n

i+1∕2.
Examples of flux expression for several conventional schemes are written as fol-

lows.

FTCS (Forward-Time Central-Space) Scheme

f̃ n
i+1∕2 = 1

2
(f n

i+1 + f n
i ) (6.44)

First-Order Upwind Scheme

f̃ n
i+1∕2 = f n

i (6.45)

Lax–Wendroff Scheme

f̃ n
i+1∕2 = 1

2
(1 − 𝜈)f n

i+1 +
1
2
(1 + 𝜈)f n

i (6.46)

where f n
i = aun

i .
If we evaluate and expand ui+1

n or ui
n+1 with Taylor expansion

un
i+1 = un

i + Δt ⋅
𝜕u
𝜕t

+ 1
2
Δt2 𝜕

2u
𝜕t2

+ 1
6
Δt3 𝜕

3u
𝜕t3

+ · · · (6.47)

un+1
i = un

i + Δx ⋅
𝜕u
𝜕x

+ 1
2
Δx2 𝜕

2u
𝜕x2

+ 1
6
Δx3 𝜕

3u
𝜕x3

+ · · · (6.48)

we can easily see that the FTCS scheme is a second-order scheme, first-order upwind
scheme is a first-order scheme, and Lax–Wendroff scheme is a second-order scheme.
As numerical flux is a imaginary flux that goes through the cell boundary, its expres-
sions can be defined arbitrarily. However, the accuracy must be evaluated by expand-
ing the terms. It should be noted that FTCS scheme evaluates the flux f̃ n

i+1∕2 as an
average of neighboring cells, that is, it takes information evenly from both upstream
(−i) direction and downstream (+i) direction. The first-order Upwind scheme evalu-
ates the flux f̃ n

i+1∕2 only taking the information from upstream cell in the −i direction;
therefore, it is called upstream scheme. The Lax–Wendroff scheme evaluates the flux
f̃ n
i+1∕2 as a weighted average of neighboring cells.



254 High Enthalpy Gas Dynamics

TVD Scheme

Let us solve the linear advection equation with the above three conventional schemes
and see the advantages and characteristics of each schemes.

A sample code wave.f to solve 1D linear advection equation is given as follows:

program ex6x1

c

c *** Sample code for 1d linear advection problem ***

c

parameter (ndim=101)

dimension x(ndim),uini(ndim),uan(ndim),u(ndim),flux(ndim)

c <1> parameters

mx = 11

nlast = 4

cfl =.5

a = 1.

dx = 1.

dt = cfl/(a/dx)

c <2> grid

do 100 i=1,mx

x(i)=dx*float(i-1)

100 continue

c <3> initial condition

do 200 i=1,mx

if (x(i).lt.5.) then

uini(i)=1.

else

uini(i)=0.

end if

200 continue

c <4> analytical solution

prop=float(nlast)*dt

do 300 i=1,mx

if (x(i).lt.5.+prop) then

uan(i)=1.

else

uan(i)=0.

end if
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300 continue

c <5> numerical solution

do 400 i=1,mx

u(i)=uini(i)

400 continue

do 500 n=1,nlast

do 510 i=1,mx-1

c <5-1> FTCS

flux(i)=.5*(a*u(i+1)+a*u(i))

c <5-2> 1st-order Upwind

c flux(i)=a*u(i)

c <5-3> Lax-Wendroff

c flux(i)=.5*(1-cfl)*a*u(i+1)+.5*(1+cfl)*a*u(i)

510 continue

do 520 i=2,mx-1

u(i)=u(i)-dt/dx*(flux(i)-flux(i-1))

520 continue

500 continue

c *** result file ***

open(unit=50,file=’wave.txt’,form=’formatted’)

write(50,*) ’ x u(initial) u(analytical) u(numerical)’

do 600 i=1,mx

write(50,700) x(i),uini(i),uan(i),u(i)

600 continue

700 format(4E16.8)

close(unit=50)

stop

end

Numerical solutions obtained by using FTCS, first-order upwind, and
Lax–Wendroff schemes are shown in Figures 6.8–6.10.

It can be easily understood that in case of FTCS in Figure 6.8, the wave form is bro-
ken and the scheme failed to compute the solution. This is because FTCS takes wave
propagation information evenly from both upstream (that is, un

i−1 in −i direction) and
downstream sides. In case of first-order Upwind scheme, the wave form propagation
was successfully captured by the computation but its discrete change in the initial
wave form was smoothed by the scheme’s dissipation effect because its accuracy is
only up to first order. By contraries, the Lax–Wendroff scheme could successfully
transfer the wave form with a good accuracy because the scheme is constructed with
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Figure 6.8 Numerical result with FTCS scheme after four steps with Courant number
𝜈 = 0.5.
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Figure 6.9 Numerical result with first-order Upwind scheme after four steps with Courant
number 𝜈 = 0.5.

an accuracy of second order. However, the wave form was slightly disturbed and
we can see a spurious oscillation at 4 < x < 5. This is a direct consequence of using
high-order scheme because Lax–Wendroff scheme tries to capture the wave form
using something like second-order polynomial. Therefore, it cannot allow the wave
form to change suddenly as in a shock wave. Especially, the overshoot of properties
in CFD becomes a serious problem when we deal with chemical reaction problems
because any overshoot in temperature estimation lead to a huge misestimation of
reaction rate and its result will suffer from the error caused by unreal overshoot. There-
fore, we can combine and make use of both the advantage of the first-order Upwind



Aerothermodynamics 257

–0.5
0 2 4

u (initial)
u (analytical)
u (numerical)

x
6 8 10

0.0

0.5

1.0u
1.5

2.0

Figure 6.10 Numerical result with Lax–Wendroff scheme after four steps with Courant
number 𝜈 = 0.5.

scheme to capture the shock without any spurious oscillation and the advantage of
the Lax–Wendroff scheme to accurately capture the waveform other than the shock.

Such kind of schemes to suppress spurious oscillations and realize high-order
scheme other than shock waves are called total variation diminishing (TVD) scheme.
As a hybrid scheme of first-order Upwind and Lax–Wendroff scheme, a general
form of such flux can be written as

un+1
i = un

i −
Δt
Δx

(
u n

i+1 − u n
i−1

)
(6.49)

f̃ n
i+1∕2 = a

(
un

i +
1
2
(1 − 𝜈)Bi+1∕2(u n

i+1 − u n
i )

)
(6.50)

When the term Bi+1∕2 = 0, Equation (6.50) yields first-order Upwind scheme, and
when Bi+1∕2 = 1, Equation (6.50) gives Lax–Wendroff scheme. The idea is to con-
trol Bi+1∕2 depending on the wave form so that we can make use of high-accuracy
scheme, and therefore, the term Bi+1∕2 is called limiter function. In case the wave
form is smoothly changing, we can keep Bi+1∕2 to be around 1.0 to realize high accu-
racy. On the other hand, when there is a discrete change in a wave form, Bi+1∕2 should
be set to 0.0. There are many well-known limiter functions such as

Bi+1∕2 = minmod(1, r), minmod(x1, x2)

= sign(x1) ⋅ max(0,min(|x1|, x2 ⋅ sign(x1))) (6.51)

(Minmod function)

Bi+1∕2 = max(0,min(2r, 1),min(2, r)) (6.52)

(Superbee function)
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Here, parameter r is an indicator of wave-form smoothness and defined as

ri =
un

i − u n
i−1

u n
i+1 − un

i

=
Increase of u at upstream side

Increase of u at downstream side
(6.53)

When r ∼ 1, then the wave form is almost straight and Bi+1∕2 needs to be set to 1.0.
One of the conventional and famous TVD scheme was proposed by Yee [12] and is

called Yee’s symmetric TVD scheme. In this scheme, a numerical flux can be written as

f̃ n
i+1∕2 = a

(
un

i +
1
2
(1 − 𝜈)Bi+1∕2(un

i+1 − un
i )
)
= 1

2

(
(f n

i+1 + f n
i ) + 𝜙i+1∕2

)
(6.54)

where
𝜙i+1∕2 = −a(un

i+1 − un
i ) + a(1 − 𝜈)Bi+1∕2(un

i+1 − un
i ) (6.55)

Let Bi+1∕2(un
i+1 − un

i ) = Q̂i+1∕2, then

𝜙i+1∕2 = −(a𝜈Q̂i+1∕2 + a(un
i+1 − un

i − Q̂i+1∕2)) (6.56)

The above equations are constructed assuming a > 0. If we generalize the equations
and allow a to be a < 0, we can write

𝜙i+1∕2 = −
(Δt
Δx

a2Q̂i+1∕2 + |a|(un
i+1 − un

i − Q̂i+1∕2)
)

(6.57)

Here, Q̂i+1∕2 is a limiter function and we can apply, for example,

Q̂i+1∕2 = minmod(Δi−1∕2,Δi+1∕2,Δi+3∕2) (6.58)

Q̂i+1∕2 = minmod
(

2Δi−1∕2, 2Δi+1∕2, 2Δi+3∕2,
1
2
(Δi−1∕2 + Δi+3∕2)

)
(6.59)

One thing that should be noted here is that when |a| ≪ 1 and a is almost equal to
zero,

𝜙i+1∕2 = −
(Δt
Δx

a2Q̂i+1∕2 + |a|(un
i+1 − un

i − Q̂i+1∕2)
)

(6.60)

is also nearly zero and the numerical flux f̃ n
i+1∕2 is evaluated as an FTCS scheme. In

such a case, the wave form would be broken and the computation may fail to cap-
ture the wave propagation. In order to avoid such problems, |a| in Equation (6.60) is
replaced with

|a| → Ψ(a) =

{ |a| (If|a| > 𝛿)
a2+𝛿2

2𝛿
(If|a| < 𝛿)

}
(6.61)

𝜙i+1∕2 = −
(Δt
Δx

a2Q̂i+1∕2 + Ψi+1∕2(un
i+1 − un

i − Q̂i+1∕2)
)

(6.62)

where 𝛿 ∼ O(0.1). The above correction is called entropy correction because the
manipulation of avoiding 𝜙i+1∕2 to be zero works as an increase in numerical



Aerothermodynamics 259

viscosity (nonphysical viscosity that accompanies numerical scheme) and thereby
making entropy to increase to avoid the formation of nonphysical expansion shock in
a computation. For more details, see an article by Yee [12].

There are many other TVD-type schemes. Readers are recommended to check other
schemes because there is no all-purpose scheme applicable to all the problems.

Finally, the following sample code is a linear advection equation solver with Yee’s
symmetric TVD scheme.

program ex6x2

c

c FORTRAN sample code for 1d linear advection problem

c

parameter (ndim=100)

dimension x(ndim),uini(ndim),uan(ndim),u(ndim),flux(ndim)

c <1> parameters

mx = 41

nlast = 20

cfl =.5

a = 1.

dx = 0.25

dt = cfl/(a/dx)

corr = 0.1

c <2> grid

do 100 i=1,mx

x(i)=dx*float(i-1)

100 continue

c <3> initial condition

do 200 i=1,mx+1

if (x(i).lt.5.) then

uini(i)=1.

else

uini(i)=0.

end if

200 continue

c <4> analytical solution

prop=float(nlast)*dt

do 300 i=1,mx

if (x(i).lt.5.+prop) then

uan(i)=1.
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else

uan(i)=0.

end if

300 continue

c <5> numerical solution

do 400 i=1,mx+1

u(i)=uini(i)

400 continue

do 500 n=1,nlast

do 510 i=2,mx-1

d1=u(i)-u(i-1)

d2=u(i+1)-u(i)

d3=u(i+2)-u(i+1)

sg=sign(1.,d1)

ql=sg*amax1(0.,amin1(2.*sg*d1,2.*sg*d2,2.*sg*d3,.5*sg*(d1+d3)))

ph=abs(a)

if(ph.lt.corr) then ph=(ph**2+corr**2)/(2.*corr)

pha=-(dt/dx*a**2*ql+ph*(d2-ql))

flux(i)=.5*(a*u(i+1)+a*u(i)+pha)

510 continue

do 520 i=3,mx-1

u(i)=u(i)-dt/dx*(flux(i)-flux(i-1))

520 continue

500 continue

c *** result file ***

open(unit=50,file=’wave.txt’,form=’formatted’)

write(50,*) ’ x u(initial) u(analytical) u(numerical)’

do 600 i=1,mx

write(50,700) x(i),uini(i),uan(i),u(i)

600 continue

700 format(4E16.8)

close(unit=50)

stop

end

The result is shown in Figure 6.11. The wave form propagation is successfully
solved with high accuracy without any spurious oscillation.
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Figure 6.11 Numerical result with Yee’s symmetric TVD scheme after 20 steps with Courant
number 𝜈 = 0.5.

6.7.5 Solving Euler Equations – Extension to System Equations

Yee’s symmetric TVD scheme can be extended to system equations such as the 1D
Euler equations as follows.

One-Dimensional Euler Equations

𝜕Q
𝜕t

+ 𝜕E
𝜕x

= 0 (6.63)

where

Q =
⎛⎜⎜⎝
𝜌

𝜌u
Et

⎞⎟⎟⎠ , E =
⎛⎜⎜⎝

𝜌u
𝜌u2 + p

u(Et + p)

⎞⎟⎟⎠ (6.64)

or
𝜕Q
𝜕t

+ A
𝜕Q
𝜕x

= 0 (6.65)

where

A = 𝜕E
𝜕Q

=

⎛⎜⎜⎜⎜⎜⎝

0 1 0

𝛾−3
2

u2 (3 − 𝛾)u 𝛾 − 1

𝛾−2
2

u3 − 𝛾

𝛾−1
p

𝜌
u 3−2𝛾

2
u2 + 𝛾

𝛾−1
p

𝜌
𝛾u

⎞⎟⎟⎟⎟⎟⎠
(6.66)

As it is already stated earlier, the matrix A can be diagonalized to be

A = RΛR−1 (6.67)
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where

Λ =
⎛⎜⎜⎝
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎟⎟⎠ (6.68)

R = (q⃗1, q⃗2, q⃗3) =
⎛⎜⎜⎝

1 1 1
u − c u u + c

H − uc 1
2
u2 H + uc

⎞⎟⎟⎠ (6.69)

R−1 =

⎛⎜⎜⎜⎜⎜⎝

1
2

(
a + u

c

)
− 1

2

(
bu + 1

c

)
1
2
b

1 − a bu −b
1
2

(
a − u

c

)
− 1

2

(
bu − 1

c

)
1
2
b

⎞⎟⎟⎟⎟⎟⎠
(6.70)

a = b
u2

2
, b = 𝛾 − 1

c2
(6.71)

and H is the total enthalpy.

H = c2

𝛾 − 1
+ u2

2
= cpT + u2

2
= h + u2

2
(6.72)

In a similar manner as in the solving procedure of the linear advection equation, the
numerical flux can be written as

Qn+1
i = Qn

i −
Δt
Δx

(
Ẽn

i+1∕2 − Ẽn
i−1∕2

)
(6.73)

Here, the numerical flux Ẽn
i+1∕2 is given similarly as

Ẽn
i+1∕2 = 1

2

(
En

i+1 + En
i − |An

i+1∕2|(Qn
i+1 − Qn

i )
)

(6.74)

where |An
i+1∕2| = Rn

i+1∕2Λ
n
i+1∕2Rn

i+1∕2
−1 (6.75)

Roe Average

The problem at this step is how to evaluate properties such as Rn
i+1∕2 or Λn

i+1∕2 that are
values on (i + 1∕2)th cell boundary. Let the subscript R denotes properties at right (that
is, downstream) cell, which is the properties at (i + 1)th cell in this case. Similarly,
subscript L denotes properties at left (that is, upstream) cell, which is the properties at
ith cell in this case. In the above numerical flux expression in system equations, we
assumed that

ẼR − ẼL = A(QR,QL) ⋅ (QR − QL) = Aaverage(QR − QL) (6.76)
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Therefore, the properties at (i + 1∕2)th cell boundary must satisfy

A(QR,QL) ⋅ (QR − QL) = A(Qi+1∕2) (6.77)

As such an averaged properties at (i + 1∕2)th cell boundary, Roe [13] introduced the
Roe average as

ū =
√
𝜌LuL +

√
𝜌RuR√

𝜌L +
√
𝜌R

(6.78)

H =
√
𝜌LHL +

√
𝜌RHR√

𝜌L +
√
𝜌R

(6.79)

c2 = (𝛾 − 1)
(

H − 1
2

ū2
)

(6.80)

Here, ‘−’ stands for the Roe-averaged quantities where the properties and matrixes
(at (i + 1∕2)th cell boundary) must be evaluated based on the above Roe average.

In light of the above discussions, we finally obtain Yee’s symmetric TVD scheme
for system equations as

Ẽn
i+1∕2 = 1

2

(
En

i+1 + En
i − R

n

i+1∕2Φn
i+1∕2)

)
(6.81)

Φn
i+1∕2 =

⎛⎜⎜⎝
𝜙

1

𝜙
2

𝜙
3

⎞⎟⎟⎠ (6.82)

𝜙
𝓁 = −

(Δt
Δx

𝜆𝓁
2
Q̂𝓁

i+1∕2 + Ψi+1∕2(𝛼𝓁
i+1∕2 − Q̂𝓁

i+1∕2)
)

(6.83)

𝛼
𝓁
i+1∕2 = (R

−1
(Qn

i+1 − Qn
i ))|𝓁 (6.84)

where Q̂𝓁
i+1∕2 is the limiter function such as

Q̂𝓁
i+1∕2 = minmod

(
𝛼
𝓁
i−1∕2, 𝛼

𝓁
i+1∕2, 𝛼

𝓁
i+3∕2

)
(6.85)

6.7.5.1 One-Dimensional Shock Tube Problem

Let us consider well-known shock tube problem. The problem settings are illustrated
in Figure 6.12. The shock tube is filled with the air with the conditions in Figure 6.12.

In a shock tube, a high-pressure chamber at the left side and a low-pressure chamber
at the right side are isolated at time t = 0 s. The computational techniques have already
been explained in the previous sections. On the basis of Yee’s symmetric TVD scheme,
the shock tube problem was solved.

The sample code used in this shock tube problem is shown as follows.



264 High Enthalpy Gas Dynamics
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Figure 6.12 Shock tube problem.

program shktub

c

c*******************************************************

c Shock Tube Problem: 1D Euler eqs solver

c********************************************************

common/ grid1d/ mx,dx,x(-5:505)

common/ cmpcnd/ cfl,dt,nlast,time,eps,g,rhol,ul,pl,rhor,ur,pr

& ,rags,cvgas,ecp

common/ solute/ rho(-5:505),u(-5:505),p(-5:505),e(-5:505)

common/ solver/ q(3,-5:505),qold(3,-5:505),flux(3,-5:505)

c

cc (1)set grid

mx = 401

xmin = -2.0

xmax = 2.0

dx = (xmax-xmin)/float(mx-1)

do 100 i=-2,mx+3

x(i) = xmin+dx*float(i-1)

100 continue

c (2)set parameters

atmpa= 1.013e05

eps = 1.0e-06

g = 1.4

rgas =8.314e+03/28.96

cvgas=rgas/(g-1.0)

c (2-1) Left chamber

c u(m/s),T(K),rho(kg/m3),P(atm)

ul=0

rhol=1.0
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platm=1.0

pl=platm*atmpa

tl=pl/(rgas*rhol)

c (2-2) Right chamber

ur=0

rhor=0.125

pratm=0.1

pr=pratm*atmpa

tr=pr/(rgas*rhor)

c (2-3) Timestep settings

tmsec=2.

time= tmsec*1.0e-03

cfl=0.1

c (2-4) entropy

ecp= 0.125

c

c (3)numerical solutions

uref=sqrt(g*rgas*amax1(tl,tr))

dt = cfl*dx/abs(uref)

nlast= int(time/dt)

time = dt*float(nlast)

c (4) initialize properties

do 300 i=1,mx

if(x(i).lt.0.0) then

c (4-1) Left chamber

rho(i)= rhol

u(i)= ul

p(i)= pl

e(i)= p(i)/((g-1.0)*rho(i))

else

c (4-2) Right chamber

rho(i)= rhor

u(i)= ur

p(i)= pr

e(i)= p(i)/((g-1.0)*rho(i))

end if

c (4-3) conserved quantitiy

q(1,i)= rho(i)
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q(2,i)= rho(i)*u(i)

q(3,i)= rho(i)*(e(i)+0.5*u(i)**2)

300 continue

cc

open(unit=60,file=’sw.plt’,form=’formatted’)

write(60,*) ’VARIABLES="x, m","t, ms","rho, kg/m3","u, m/s",’,

& ’"p, Pa","t, K"’

write(60,*) ’ZONE T="SW",I=’,mx,’,J=’,nlast,

& ’,F=POINT’

do 410 i=1,mx

write(60,9001) x(i),0.,rho(i),u(i),p(i),e(i)/cvgas

410 continue

c (5) Main loop: Time marching

do 1000 n=1,nlast

c

do 1010 i=1,mx

qold(1,i)= q(1,i)

qold(2,i)= q(2,i)

qold(3,i)= q(3,i)

1010 continue

c

call calflx

do 1100 i=4,mx-3

q(1,i)= qold(1,i)-(dt/dx)*(flux(1,i)-flux(1,i-1))

q(2,i)= qold(2,i)-(dt/dx)*(flux(2,i)-flux(2,i-1))

q(3,i)= qold(3,i)-(dt/dx)*(flux(3,i)-flux(3,i-1))

rho(i)= q(1,i)

u(i)= q(2,i)/rho(i)

p(i)= (g-1.0)*(q(3,i)-0.5*rho(i)*u(i)**2)

e(i)= p(i)/((g-1.0)*rho(i))

1100 continue

c

if(mod(n,10).eq.0) write(6,*) ’ .... step = ’,n

do 9010 i=1,mx

write(60,9001) x(i),dt*n*1.e3,rho(i),u(i),p(i),e(i)/cvgas

9010 continue

9001 format(6f15.5)

1000 continue
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close (unit=60)

c waveform at t=2ms

open(unit=70,file=’waveform.txt’,form=’formatted’)

do 9200 i=1,mx

write(70,9201) x(i),rho(i),u(i),p(i),e(i)/cvgas

9200 continue

9201 format(5e15.5)

close (unit=70)

c

write(6,*) ’DONE!’

c

stop

end

c

subroutine calflx

c========================================================================

c Compute Flux with Yee’s Symmetric TVD Scheme

c========================================================================

common/ grid1d/ mx,dx,x(-5:505)

common/ cmpcnd/ cfl,dt,nlast,time,eps,g,rhol,ul,pl,rhor,ur,pr

& ,rags,cvgas,ecp

common/ solute/ rho(-5:505),u(-5:505),p(-5:505),e(-5:505)

common/ solver/ q(3,-5:505),qold(3,-5:505),flux(3,-5:505)

dimension eigl(3,-5:505),rmat(3,3,-5:505),alpha(3,-5:505)

c

c Find L/R values

do 100 i=1,mx-1

q1l= q(1,i )

q1r= q(1,i+1)

q2l= q(2,i )

q2r= q(2,i+1)

q3l= q(3,i )

q3r= q(3,i+1)

c

dq1= q(1,i+1)-q(1,i )

dq2= q(2,i+1)-q(2,i )

dq3= q(3,i+1)-q(3,i )
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c

rl= q1l

ul= q2l/rl

pl=(g-1.0)*(q3l-.5*rl*ul**2)

hl=(q3l+pl)/rl

rr= q1r

ur= q2r/rr

pr=(g-1.0)*(q3r-.5*rr*ur**2)

hr=(q3r+pr)/rr

c Roe Average at i+1/2

ubar= (sqrt(rl)*ul+sqrt(rr)*ur)/(sqrt(rl)+sqrt(rr))

hbar= (sqrt(rl)*hl+sqrt(rr)*hr)/(sqrt(rl)+sqrt(rr))

abar= sqrt((g-1.0)*(hbar-0.5*ubar**2))

abar= sqrt(amax1( abar, amin1(g*pl/rl, g*pr/rr) ) )

c Eigen values and corresponding eigen vectors:

c Matrix R&Lambda at i+1/2

eigl(1,i)= ubar-abar

rmat(1,1,i)= 1.0

rmat(2,1,i)= ubar-abar

rmat(3,1,i)= hbar-ubar*abar

eigl(2,i)= ubar

rmat(1,2,i)= 1.0

rmat(2,2,i)= ubar

rmat(3,2,i)= 0.5*ubar**2

eigl(3,i)= ubar+abar

rmat(1,3,i)= 1.0

rmat(2,3,i)= ubar+abar

rmat(3,3,i)= hbar+ubar*abar

c alpha = R ̂ (-1) . dQ_(j+1/2) = R ̂ (-1) . (Q_(j+1)-Q_j)

bb= (g-1.0)/abar**2

aa= bb*ubar**2/2.0

alpha(1,i)=

1 .5*(aa+ubar/abar) *dq1

2 -.5*(bb*ubar+1./abar) *dq2

3 +.5*bb *dq3

alpha(2,i)=
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1 (1.-aa) *dq1

2 +bb*ubar *dq2

3 -bb *dq3

alpha(3,i)=

1 .5*(aa-ubar/abar) *dq1

2 -.5*(bb*ubar-1./abar) *dq2

3 +.5*bb *dq3

c

100 continue

c compute limiter func. and flux

do 400 i=3,mx-3

corr=ecp*amax1(abs(eigl(1,i)), abs(eigl(2,i)), abs(eigl(3,i)) )

c : Lambda = u-c

abc= abs(eigl(1,i))

if(abc.lt.corr) abc= (abc**2+corr**2)*.5/corr

sgn = sign(1., alpha(1,i))

qlim= sgn*amax1(0.,amin1(sgn*2.*alpha(1,i-1),sgn*2.*alpha(1,i)

& ,sgn*2.*alpha(1,i+1),sgn*.5*(alpha(1,i-1)+alpha(1,i+1)) ))

ph1= -(dt/dx)*eigl(1,i)**2*qlim-abc*(alpha(1,i)-qlim)

c : Lambda = c

abc= abs(eigl(2,i))

if(abc.lt.corr) abc= (abc**2+corr**2)*.5/corr

sgn = sign(1., alpha(2,i))

qlim= sgn*amax1(0.,amin1(sgn*2.*alpha(2,i-1),sgn*2.*alpha(2,i)

& ,sgn*2.*alpha(2,i+1),sgn*.5*(alpha(2,i-1)+alpha(2,i+1)) ))

ph2= -(dt/dx)*eigl(2,i)**2*qlim-abc*(alpha(2,i)-qlim)

c : Lambda = u+c

abc= abs(eigl(3,i))

if(abc.lt.corr) abc= (abc**2+corr**2)*.5/corr

sgn = sign(1., alpha(3,i))

qlim= sgn*amax1(0.,amin1(sgn*2.*alpha(3,i-1),sgn*2.*alpha(3,i)

& ,sgn*2.*alpha(3,i+1),sgn*.5*(alpha(3,i-1)+alpha(3,i+1)) ))

ph3= -(dt/dx)*eigl(3,i)**2*qlim-abc*(alpha(3,i)-qlim)

c Phi_(i+1/2) = R . phi

rphi1= rmat(1,1,i)*ph1+rmat(1,2,i)*ph2+rmat(1,3,i)*ph3

rphi2= rmat(2,1,i)*ph1+rmat(2,2,i)*ph2+rmat(2,3,i)*ph3
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rphi3= rmat(3,1,i)*ph1+rmat(3,2,i)*ph2+rmat(3,3,i)*ph3

q1l= q(1,i )

q1r= q(1,i+1)

q2l= q(2,i )

q2r= q(2,i+1)

q3l= q(3,i )

q3r= q(3,i+1)

rl= q1l

ul= q2l/rl

pl= (g-1.0)*(q3l-.5*rl*ul**2)

hl= (q3l+pl)/rl

rr= q1r

ur= q2r/rr

pr= (g-1.0)*(q3r-.5*rr*ur**2)

hr= (q3r+pr)/rr

e1l= rl*ul

e2l= rl*ul**2+pl

e3l= ul*(q3l+pl)

e1r= rr*ur

e2r= rr*ur**2+pr

e3r= ur*(q3r+pr)

flux(1,i)= .5*(e1l+e1r+rphi1)

flux(2,i)= .5*(e2l+e2r+rphi2)

flux(3,i)= .5*(e3l+e3r+rphi3)

c

400 continue

c

return

end

Results

The results of the shock tube problem are illustrated in Figures 6.13–6.15. As we
can clearly see, the propagation of right running shock and the left running expansion
fan are solved successfully. We can also see a contact surface in temperature result in
Figure 6.15.
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The variation of properties at time t = 2 ms after the removal of the diaphragm are
shown in Figures 6.16–6.18.

For the analytical expressions governing the shock and expansion processes in the
shock tube is given in Section 3.9 of Reference 11.
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Figure 6.13 Result of shock tube problem – pressure.
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Figure 6.14 Result of shock tube problem – velocity.
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Figure 6.15 Result of shock tube problem – temperature.
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Figure 6.16 Result of shock tube problem - pressure at time t = 2 ms.

Note

The time integration was done with first-order accuracy in order to show the sample
code as simple as possible. In the actual computations, it is strongly recommended
to use much higher-order time integration schemes such as the Runge–Kutta
method.
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Figure 6.17 Result of shock tube problem – velocity at time t = 2 ms.
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Figure 6.18 Result of shock tube problem – temperature at time t = 2 ms.

Example 6.2 For the pressure decrease of p3∕p4 = 0.3, caused by the expansion
(Figure 6.16), calculate the flow velocity V3, caused by the expansion, with analytical
expression, and compare this velocity with that in Figure 6.17.

Solution

Given p3∕p4 = 0.3, p4 = 1 atm, and 𝜌4 = 1 kg/m3.



274 High Enthalpy Gas Dynamics

this gives the temperature T4 as

T4 =
p4

R𝜌4

= 101325
287 × 1

= 353 K

The corresponding speed of sound is

a4 =
√
𝛾RT4

=
√

1.4 × 287 × 353

= 376.6 m/s

The flow velocity V3, caused by the expansion, by Equation (3.56) [11], is

V3 =
2a4

𝛾4 − 1

[
1 −

(
p3

p4

)(𝛾4−1)∕(2𝛾4)
]

= 2 × 376.6
1.4 − 1

[1 − (1.4−1)∕(2×1.4)]

= 2 × 376.6
0.4

× 0.158

= 298 m/s

The value of V3 in Figure 6.17 is 300 m/s. Thus the computed value of velocity agrees
within ±0.67%. ◾

Multidimensional Problems
For CFD with the multidimensional Euler equations, such as the 2D Euler equations,

𝜕Q
𝜕t

+ 𝜕E
𝜕x

+ 𝜕F
𝜕y

= 0 (6.86)

This equation can be split into two parts:

𝜕Q
𝜕t

+ 𝜕E
𝜕x

= 0 (6.87)

𝜕Q
𝜕t

+ 𝜕F
𝜕y

= 0 (6.88)

We can first compute 𝜕E
𝜕x

and then 𝜕F
𝜕y

. After that, time integration with the
Runge–Kutta scheme or similar highly accurate method will be employed to obtain
the result. For details and actual procedures, see Example 6.2.
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Example 6.3 Solve an oblique shock problem with CFD computation under follow-
ing conditions.

• Governing equations are the two-dimensional Euler equations.
• Half-angle of a wedge is 20∘.
• Simulate flows with Mach numbers of 2, 3, and 5.
• Compare oblique shock angle with oblique shock equations.

Let us consider the oblique shock wave at the nose of the wedge of semi-vertex angle
20∘, with the computional domain, as shown in Figure 6.19.

Solution

The computation code used in this exercise is given below.

Shock wave

Computational domain

Wedge

Mach 2, 3, 5

20°

Figure 6.19 Oblique shock problem.

program os2d

c***********************************************************************

c 2D Euler Eqs Solver for uniform spacing orthogonal grid

c *** High Enthalpy Book Version ***

c***********************************************************************

c flow conditions

call setflw

c solver

call slvflw

stop

end
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c

subroutine setflw

c***********************************************************************

c subroutine to set flow conditions

c***********************************************************************

parameter( mdx = 202 , mdy = 102 )

common /flwcnd/ g0,rgas,fm0,alpha,u0,v0,p0,rho0,t0

common /cfdcnd/ cfl,dt,ecp,tol,nlast,nlp

common /gridxy/ mx,my,grid,x(mdx,mdy),y(mdx,mdy),dx,dy

c

write(6,*) ’ *** 2-D inviscid flow ***’

write(6,*) ’ ** Schemes **’

write(6,*) ’ Time marching: 3-step TVD Runge Kutta method ’

write(6,*) ’ Advection terms: 2nd order TVD scheme by Yee ’

c (1) freestream conditions

g0 = 1.4

fm0 = 2.0

alpha= 20.0

rad = 3.141592/180.

u0 = 1.*cos(alpha*rad)

v0 =-1.*sin(alpha*rad)

p0 = 1./(g0*fm0**2)

rho0 = 1.

t0 = 1.

c (2) gas constant

rgas = 1./(g0*fm0**2)

c (3) cfd conditions

cfl = .4

ecp = .15

tol = .01

nlast=2000

nlp = 10

c (4) grid settings

xmin = 0.

xmax = 1.

mx = 101

dx = (xmax-xmin)/float(mx-1)

ymin = 0.
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ymax = 1.

my = 101

dy = (ymax-ymin)/float(my-1)

c

do 100 i=1,mx

do 100 j=1,my

x(i,j) = xmin + dx*float(i-1)

y(i,j) = ymin + dy*float(j-1)

100 continue

grid = float(mx*my)

dsmin= amin1(dx,dy)

dt = cfl*dsmin

write(6,*) ’ +++ grid size +++’

write(6,*) ’ mx , my = ’, mx, my

write(6,*) ’ min grid spacing: ’, dsmin

write(6,*) ’ +++ conditions +++’

write(6,*) ’ CFL number = ’, cfl

write(6,*) ’ dt = ’, dt

return

end

c

subroutine slvflw

c***********************************************************************

c subroutine for flow solver: time marching

c***********************************************************************

parameter( mdx = 202 , mdy = 102 )

common /flwcnd/ g0,rgas,fm0,alpha,u0,v0,p0,rho0,t0

common /cfdcnd/ cfl,dt,ecp,tol,nlast,nlp

common /gridxy/ mx,my,grid,x(mdx,mdy),y(mdx,mdy),dx,dy

common /flwprp/ u(mdx,mdy),v(mdx,mdy),p(mdx,mdy),t(mdx,mdy),

& rho(mdx,mdy)

common /consvd/ q(4,mdx,mdy),qold(4,mdx,mdy)

common /flwflx/ dq(4,mdx,mdy)

c (1) set initial conditions

call initfl

call bndcnd

c (2) time marching

write(6,*) ’3step TVD Runge Kutta time marching’

do 1000 n=1,nlast
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c (2-1) copy previous variables

do 100 l=1,4

do 100 i=1,mx

do 100 j=1,my

qold(l,i,j) = q(l,i,j)

100 continue

c (2-2) step-1

call calrhs

do 200 l=1,4

do 200 i=2,mx-1

do 200 j=2,my-1

q(l,i,j) = qold(l,i,j)+dq(l,i,j)

200 continue

call bndcnd

c (2-3) step-2

call calrhs

do 300 l=1,4

do 300 i=2,mx-1

do 300 j=2,my-1

q(l,i,j) = .75*qold(l,i,j)+.25*(q(l,i,j)+dq(l,i,j))

300 continue

call bndcnd

c (2-4) step-3

call calrhs

do 400 l=1,4

do 400 i=2,mx-1

do 400 j=2,my-1

q(l,i,j) = (qold(l,i,j)+2.*(q(l,i,j)+dq(l,i,j)))/3.

400 continue

call bndcnd

c (2-5) residual

res=0.

do 500 l=1,4

do 500 i=1,mx

do 500 j=1,my

res=res+(q(l,i,j)-qold(l,i,j))**2

500 continue

res=sqrt(res/grid)
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c (2-6) monitoring output for terminal

if(mod(n,nlp).eq.0) write(6,*) ’step#’,n,’: residual=’,res

1000 continue

c (3) file output for Tecplot

open(unit=50,file=’plot2d.plt’,form=’formatted’)

write(50,*) ’VARIABLES="X","Y","U","V","P","T","RHO","MACH#"’

write(50,*) ’ZONE T="EULER2D",I=’,mx,’,J=’,my,’,F=POINT’

do 2000 j=1,my

do 2000 i=1,mx

write(50,2100) x(i,j),y(i,j),u(i,j),v(i,j),p(i,j),t(i,j),

& rho(i,j),(u(i,j)**2+v(i,j)**2)/sqrt(g0*rgas*t(i,j))

2000 continue

2100 format(8E16.8)

close(unit=50)

return

end

c

subroutine initfl

c***********************************************************************

c subroutine for initial conditions

c***********************************************************************

parameter( mdx = 202 , mdy = 102 )

common /flwcnd/ g0,rgas,fm0,alpha,u0,v0,p0,rho0,t0

common /cfdcnd/ cfl,dt,ecp,tol,nlast,nlp

common /gridxy/ mx,my,grid,x(mdx,mdy),y(mdx,mdy),dx,dy

common /flwprp/ u(mdx,mdy),v(mdx,mdy),p(mdx,mdy),t(mdx,mdy),

& rho(mdx,mdy)

common /consvd/ q(4,mdx,mdy),qold(4,mdx,mdy)

common /flwflx/ dq(4,mdx,mdy)

c (1) initial condition

do 1000 i=1,mx

do 1000 j=1,my

u(i,j) = u0

v(i,j) = v0

p(i,j) = p0

t(i,j) = t0

rho(i,j) = rho0

1000 continue
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c (2) set conserved variables

do 2000 i=1,mx

do 2000 j=1,my

q(1,i,j)=rho(i,j)

q(2,i,j)=rho(i,j)*u(i,j)

q(3,i,j)=rho(i,j)*v(i,j)

q(4,i,j)=rho(i,j)*(rgas*t(i,j)/(g0-1.)+(u(i,j)**2+v(i,j)**2)/2.)

2000 continue

return

end

c

subroutine bndcnd

c***********************************************************************

c subroutine for boundary conditions

c***********************************************************************

parameter( mdx = 202 , mdy = 102 )

common /flwcnd/ g0,rgas,fm0,alpha,u0,v0,p0,rho0,t0

common /cfdcnd/ cfl,dt,ecp,tol,nlast,nlp

common /gridxy/ mx,my,grid,x(mdx,mdy),y(mdx,mdy),dx,dy

common /flwprp/ u(mdx,mdy),v(mdx,mdy),p(mdx,mdy),t(mdx,mdy),

& rho(mdx,mdy)

common /consvd/ q(4,mdx,mdy),qold(4,mdx,mdy)

common /flwflx/ dq(4,mdx,mdy)

c (1) find flow properties

do 100 i=2,mx-1

do 100 j=2,my-1

rho(i,j)=q(1,i,j)

u(i,j)=q(2,i,j)/q(1,i,j)

v(i,j)=q(3,i,j)/q(1,i,j)

p(i,j)=(g0-1.)*(q(4,i,j)-.5*rho(i,j)*(u(i,j)**2+v(i,j)**2))

t(i,j)=p(i,j)/(rgas*rho(i,j))

100 continue

c (2) i=1 freestream condition

i=1

do 200 j=1,my

u(i,j) = u0

v(i,j) = v0

p(i,j) = p0
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t(i,j) = t0

rho(i,j) = rho0

200 continue

c (3) j=my freestream condition

j=my

do 300 i=1,mx

u(i,j) = u0

v(i,j) = v0

p(i,j) = p0

t(i,j) = t0

rho(i,j) = rho0

300 continue

c (4) j=my wall boundary

c -- > normal velocity component = 0

c -- > tangential velocity component ... extrapolation

c -- > pressure ... normal gradient = 0

c -- > temperature ... energy conservation condition

c -- > density ... gas equation p=rho.R.t

j=1

cp = g0/(g0-1.) * rgas

h0 = cp*t0 + (u0**2+v0**2)/2.

do 400 i=1,mx

u(i,1) = 2.*u(i,2)-u(i,3)

v(i,1) = 0.

p(i,1) = p(i,2)

t(i,1) = (h0-.5*(u(i,1)**2-v(i,1)**2))/cp

rho(i,1) = p(i,1)/(rgas*t(i,1))

400 continue

c (5) i=mx outflow condition

i=mx

do 500 j=1,my

u(i,j) = 2.*u(i-1,j)-u(i-2,j)

v(i,j) = 2.*v(i-1,j)-v(i-2,j)

p(i,j) = 2.*p(i-1,j)-p(i-2,j)

t(i,j) = (h0-.5*(u(i,j)**2-v(i,j)**2))/cp

rho(i,j) = p(i,j)/(rgas*t(i,j))

500 continue
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c (6) set conserved variables

do 600 i=1,mx

do 600 j=1,my

q(1,i,j)=rho(i,j)

q(2,i,j)=rho(i,j)*u(i,j)

q(3,i,j)=rho(i,j)*v(i,j)

q(4,i,j)=rho(i,j)*(rgas*t(i,j)/(g0-1.)+(u(i,j)**2+v(i,j)**2)/2.)

600 continue

return

end

c

subroutine calrhs

c***********************************************************************

c subroutine for advection term evaluation

c compute rhs term from q and store results in dq

c discretization: 2nd order TVD scheme by Yee

c***********************************************************************

parameter( mdx = 202 , mdy = 102 )

common /flwcnd/ g0,rgas,fm0,alpha,u0,v0,p0,rho0,t0

common /cfdcnd/ cfl,dt,ecp,tol,nlast,nlp

common /gridxy/ mx,my,grid,x(mdx,mdy),y(mdx,mdy),dx,dy

common /flwprp/ u(mdx,mdy),v(mdx,mdy),p(mdx,mdy),t(mdx,mdy),

& rho(mdx,mdy)

common /consvd/ q(4,mdx,mdy),qold(4,mdx,mdy)

common /flwflx/ dq(4,mdx,mdy)

dimension um(mdx),vm(mdx),hm(mdx),cm(mdx)

dimension uum(mdx),cmm(mdx),cpm(mdx)

dimension a1(mdx),a2(mdx),a3(mdx),a4(mdx),dlt(mdx)

dimension p1(mdx),p2(mdx),p3(mdx),p4(mdx)

dimension flx1(mdx),flx2(mdx),flx3(mdx),flx4(mdx)

c (1) inviscid flux: x

do 1000 j=2,my-1

do 1100 i=1,mx-1

c (1-1) Roe’s averaging at i+1/2

dr =sqrt(rho(i+1,j)/rho(i,j))

um(i)=(dr*u(i+1,j)+u(i,j))/(dr+1.)

vm(i)=(dr*v(i+1,j)+v(i,j))/(dr+1.)

hm(i)=(dr*(q(4,i+1,j)+p(i+1,j))/rho(i+1,j)
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& +(q(4,i ,j)+p(i ,j))/rho(i ,j))/(dr+1.)

cm2 =(g0-1.)*(hm(i)-.5*(um(i)**2+vm(i)**2))

cm(i)=sqrt(amax1(cm2,amin1(g0*rgas*t(i,j),g0*rgas*t(i+1,j))))

uum(i)=um(i)

cmm(i)=uum(i)-cm(i)

cpm(i)=uum(i)+cm(i)

d1 =q(1,i+1,j)-q(1,i,j)

d2 =q(2,i+1,j)-q(2,i,j)

d3 =q(3,i+1,j)-q(3,i,j)

d4 =q(4,i+1,j)-q(4,i,j)

aa=(g0-1.)*(d1*(um(i)**2+vm(i)**2)/2.-d2*um(i)-d3*vm(i)+d4)

& /cm(i)**2

bb=(-d1*um(i)+d2)/cm(i)

a1(i)=(aa-bb)/2.

a2(i)= d1-aa

a3(i)=(aa+bb)/2.

a4(i)=d1*vm(i)-d3

dlt(i)=abs(uum(i))+abs(vm(i))+cm(i)*sqrt(2.)

1100 continue

a1( 0)=a1( 1)

a2( 0)=a2( 1)

a3( 0)=a3( 1)

a4( 0)=a4( 1)

a1(mx)=a1(mx-1)

a2(mx)=a2(mx-1)

a3(mx)=a3(mx-1)

a4(mx)=a4(mx-1)

do 1200 i=1,mx-1

ff1=(dt/dx)*cmm(i)**2

ff2=abs(cmm(i))

delta=dlt(i)*ecp

if(ff2.lt.delta) ff2=0.5*(cmm(i)**2+delta**2)/delta

s=sign(1. , a1(i-1))

qq =s*amax1(0., amin1( s*a1(i-1), s*a1(i), s*a1(i+1) ))

p1 (i)=-ff1*qq-ff2*(a1(i)-qq)

ff1=(dt/dx)*cpm(i)**2

ff2=abs(cpm(i))

if(ff2.lt.delta) ff2=0.5*(cpm(i)**2+delta**2)/delta
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s=sign(1. , a3(i-1))

qq =s*amax1(0., amin1( s*a3(i-1), s*a3(i), s*a3(i+1) ))

p3 (i)=-ff1*qq-ff2*(a3(i)-qq)

ff1=(dt/dx)*uum(i)**2

ff2=abs(uum(i))

if(ff2.lt.delta) ff2=0.5*(uum(i)**2+delta**2)/delta

s=sign(1. , a2(i-1))

qq =s*amax1(0.,amin1( s*2.*a2(i-1), s*2.*a2(i), s*2.*a2(i+1)

& ,s*.5*(a2(i-1)+a2(i+1)) ))

p2 (i)=-ff1*qq-ff2*(a2(i)-qq)

s=sign(1. , a4(i-1))

qq =s*amax1(0.,amin1( s*2.*a4(i-1), s*2.*a4(i), s*2.*a4(i+1)

& ,s*.5*(a4(i-1)+a4(i+1)) ))

p4 (i)=-ff1*qq-ff2*(a4(i)-qq)

1200 continue

do 1300 i=1,mx-1

aa=p1(i)+p2(i)+p3(i)

bb=-cm(i)*(p1(i)-p3(i))

cc=-p4(i)

flx1(i)= aa

flx2(i)= um(i)*aa+bb

flx3(i)= vm(i)*aa+cc

flx4(i)= hm(i)*aa+um(i)*bb+vm(i)*cc-p2(i)*cm(i)**2/(g0-1.)

c *

e1 =q(2,i,j)+q(2,i+1,j)

e2 =q(2,i,j)*u(i,j)+p(i,j)+q(2,i+1,j)*u(i+1,j)+p(i+1,j)

e3 =q(2,i,j)*v(i,j)+q(2,i+1,j)*v(i+1,j)

e4 =(q(4,i,j)+p(i,j))*u(i,j)+(q(4,i+1,j)+p(i+1,j))*u(i+1,j)

flx1(i)=(e1+flx1(i))/2.

flx2(i)=(e2+flx2(i))/2.

flx3(i)=(e3+flx3(i))/2.

flx4(i)=(e4+flx4(i))/2.

1300 continue

do 1400 i=2,mx-1

dq(1,i,j)=-(flx1(i)-flx1(i-1))*dt/dx

dq(2,i,j)=-(flx2(i)-flx2(i-1))*dt/dx

dq(3,i,j)=-(flx3(i)-flx3(i-1))*dt/dx

dq(4,i,j)=-(flx4(i)-flx4(i-1))*dt/dx
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1400 continue

1000 continue

c (2) inviscid flux: y

do 2000 i=2,mx-1

do 2100 j=1,my-1

c (2-1) Roe’s averaging at j+1/2

dr =sqrt(rho(i,j+1)/rho(i,j))

um(j)=(dr*u(i,j+1)+u(i,j))/(dr+1.)

vm(j)=(dr*v(i,j+1)+v(i,j))/(dr+1.)

hm(j)=(dr*(q(4,i,j+1)+p(i,j+1))/rho(i,j+1)

& +(q(4,i ,j)+p(i ,j))/rho(i ,j))/(dr+1.)

cm2 =(g0-1.)*(hm(j)-.5*(um(j)**2+vm(j)**2))

cm(j)=sqrt(amax1(cm2,amin1(g0*rgas*t(i,j),g0*rgas*t(i,j+1))))

uum(j)=vm(j)

cmm(j)=uum(j)-cm(j)

cpm(j)=uum(j)+cm(j)

d1 =q(1,i,j+1)-q(1,i,j)

d2 =q(2,i,j+1)-q(2,i,j)

d3 =q(3,i,j+1)-q(3,i,j)

d4 =q(4,i,j+1)-q(4,i,j)

aa=(g0-1.)*(d1*(um(j)**2+vm(j)**2)/2.-d2*um(j)-d3*vm(j)+d4)

& /cm(j)**2

bb=(-d1*vm(j)+d3)/cm(j)

a1(j)=(aa-bb)/2.

a2(j)= d1-aa

a3(j)=(aa+bb)/2.

a4(j)=-d1*um(j)+d2

dlt(j)=abs(uum(j))+abs(um(j))+cm(j)*sqrt(2.)

2100 continue

a1( 0)=a1( 1)

a2( 0)=a2( 1)

a3( 0)=a3( 1)

a4( 0)=a4( 1)

a1(my)=a1(my-1)

a2(my)=a2(my-1)

a3(my)=a3(my-1)

a4(my)=a4(my-1)
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do 2200 j=1,my-1

ff1=(dt/dy)*cmm(j)**2

ff2=abs(cmm(j))

delta=dlt(j)*ecp

if(ff2.lt.delta) ff2=0.5*(cmm(j)**2+delta**2)/delta

s=sign(1. , a1(j-1))

qq =s*amax1(0., amin1( s*a1(j-1), s*a1(j), s*a1(j+1) ))

p1 (j)=-ff1*qq-ff2*(a1(j)-qq)

ff1=(dt/dy)*cpm(j)**2

ff2=abs(cpm(j))

if(ff2.lt.delta) ff2=0.5*(cpm(j)**2+delta**2)/delta

s=sign(1. , a3(j-1))

qq =s*amax1(0., amin1( s*a3(j-1), s*a3(j), s*a3(j+1) ))

p3 (j)=-ff1*qq-ff2*(a3(j)-qq)

ff1=(dt/dy)*uum(j)**2

ff2=abs(uum(j))

if(ff2.lt.delta) ff2=0.5*(uum(j)**2+delta**2)/delta

s=sign(1. , a2(j-1))

qq =s*amax1(0.,amin1( s*2.*a2(j-1), s*2.*a2(j), s*2.*a2(j+1)

& ,s*.5*(a2(j-1)+a2(j+1)) ))

p2 (j)=-ff1*qq-ff2*(a2(j)-qq)

s=sign(1. , a4(j-1))

qq =s*amax1(0.,amin1( s*2.*a4(j-1), s*2.*a4(j), s*2.*a4(j+1)

& ,s*.5*(a4(j-1)+a4(j+1)) ))

p4 (j)=-ff1*qq-ff2*(a4(j)-qq)

2200 continue

do 2300 j=1,my-1

aa=p1(j)+p2(j)+p3(j)

bb=p4(j)

cc=-cm(j)*(p1(j)-p3(j))

flx1(j)= aa

flx2(j)= um(j)*aa+bb

flx3(j)= vm(j)*aa+cc

flx4(j)= hm(j)*aa+um(j)*bb+vm(j)*cc-p2(j)*cm(j)**2/(g0-1.)
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c *

f1 =q(3,i,j)+q(3,i,j+1)

f2 =q(3,i,j)*u(i,j)+q(3,i,j+1)*u(i,j+1)

f3 =q(3,i,j)*v(i,j)+p(i,j)+q(3,i,j+1)*v(i,j+1)+p(i,j+1)

f4 =(q(4,i,j)+p(i,j))*v(i,j)+(q(4,i,j+1)+p(i,j+1))*v(i,j+1)

flx1(j)=(f1+flx1(j))/2.

flx2(j)=(f2+flx2(j))/2.

flx3(j)=(f3+flx3(j))/2.

flx4(j)=(f4+flx4(j))/2.

2300 continue

do 2400 j=2,my-1

dq(1,i,j)=dq(1,i,j)-(flx1(j)-flx1(j-1))*dt/dy

dq(2,i,j)=dq(2,i,j)-(flx2(j)-flx2(j-1))*dt/dy

dq(3,i,j)=dq(3,i,j)-(flx3(j)-flx3(j-1))*dt/dy

dq(4,i,j)=dq(4,i,j)-(flx4(j)-flx4(j-1))*dt/dy

2400 continue

2000 continue

return

end

The time integration was computed with the three-step TVD Runge–Kutta method.
The discretization of advection terms was done using the second-order Yee’s Sym-
metric TVD method.
The results of the flow field studied are shown in the following figures. The grids
generated for solving the flow past the oblique shock in Mach 2, Mach 3, and Mach 5
freestream flows are shown in Figure 6.20(a)–(c), respectively.
The Mach number contour plots for the flow past the oblique shock in Mach 2, Mach
3, and Mach 5 freestream flows are shown in Figure 6.21(a)–(c), respectively.
The Pressure contour plot with streamlines, for the flow past the oblique shock in
Mach 2, Mach 3, and Mach 5 freestream flows are shown in Figure 6.22(a)–(c),
respectively.
As it can be clearly seen from Figure 6.21, the oblique shock formed over the 20∘
wedge can be successfully solved with numerical computation. As it can also be seen
in Figure 6.22, streamlines suddenly change their direction at the shock. The shock
angle was measured as in Figure 6.23. From this figure, the shock angle was measured
to be about 52∘–53∘. This value of shock angle is identically the same as that given
in the oblique shock table given in Reference 11.
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Figure 6.20 Computational grid for oblique shock problem. (a) Grid for Mach-2 flow,
(b) grid for Mach-3 flow, and (c) grid for Mach-5 flow.



Aerothermodynamics 289

X

(a)

Y

0.4 0.80 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

Mach#

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9

X

(b)

Y

0.4 0.80 0.2 0.6 1
0

0.2

0.4

0.6

Mach#

2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2
1.9
1.8
1.7

X
(c)

Y

0.4 0.8 10.20 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3
Mach#

4.8
4.6
4.4
4.2
4
3.8
3.6
3.4
3.2
3
2.8

Figure 6.21 Mach number contour plot. (a) Mach 2 flow, (b) Mach 3 flow, and (c) Mach 5
flow.
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2). (a) Mach 2 flow, (b) Mach 3 flow, and (c) Mach-5 flow.
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6.8 Summary

Aerothermodynamics deals with the aerodynamic forces and moments and the heating
distribution of a vehicle that flies at hypersonic speeds. Most of the vehicles experi-
encing aerothermodynamic environment contain an air-breathing, scramjet propulsion
system.

The complex flow field associated with the vehicle is usually studied by testing
a scale model of the vehicle in a hypersonic wind tunnel or some other type of
ground-based test facility.

Computational fluid dynamics implies the integration of two disciplines, namely,
the fluid dynamics and computation.

A CFD code development and application may follow the following steps.

• Select the physical process to be considered.
• Decide upon mathematical and topographical models.
• Build body geometry and space grid.
• Develop a numerical solution method.
• Incorporate the above into a computer code.
• Calibrate and validate the code against benchmark data.
• Predict aerodynamic coefficients, flow parameters, and aerodynamic heatings.

The wind tunnel data were usually used in dimensionless form to define the pres-
sure distribution, the convective heat transfer distribution, and the aerodynamic forces
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and moments. Wind-tunnel-based empirical correlations complimented by analytical
solutions provide reasonable estimates of the actual flight environment.

The effect of the boundary layer on the inviscid flow field may be represented by
displacing the actual surface by boundary layer displacement thickness.

The viscous/inviscid interactions is a complex phenomenon in which the boundary
layer “history” plays a dominant role. This phenomenon is more significant for slender
bodies.

To correlate the viscous/inviscid-interaction-induced flow field perturbations, Kop-
penwallner [1] identified two different parameters: one for the pressure and the other
for the skin friction and the heat transfer. To correlate the pressure changes, the hyper-
sonic viscous interaction parameter is

𝜒 =
M3

∞
√

C∞√
Re∞,x

To correlate the viscous/inviscid-induced perturbations in the skin friction or the heat
transfer, Koppenwallner recommends

V =
M∞

√
C∞√

Re∞,x

as the viscous interaction parameter.
Computational fluid dynamics serves as a useful tool for solving the problems of

hypersonic flow past flying machines. Computational fluid dynamics is essentially
the numerical solutions of the equations of motion that describe the main governing
equations, namely, the continuity, momentum, and energy equations.

To account for the real-gas effects involving thermochemical nonequilibrium, lead-
ing to finite rate process for chemical and energy exchange, and radiative transport,
the concentration equations for each chemical species must be added to the governing
equations of the flow field.

Development of Navier–Stokes codes to generate flow field solutions for complex
three-dimensional reacting gas flows is expensive and time consuming. The coupled
solution of the second-order boundary layer and the Euler equations provides an effi-
cient tool for the calculation of hypersonic viscous flows.

The zonal method is an approach to reduce computational efforts. In this method,
the flow field is divided into zones according to the local flow characteristics.

Large number of techniques have been developed for generating the computational
grids that are required in the finite-difference, finite-volume, and finite-element solu-
tions of partial differential equations for arbitrary regions. Grids may be structured or
unstructured.

The computation of the heat transfer or the skin friction requires resolution of the
flow very near the surface. The effect of grid density on the computed heat trans-
fer rates for Mach 20 flow past a 5∘ semivertex angle cone was demonstrated by
Neumann [5].
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Improper mesh sizes can result in underprediction of the heating rates by orders
of magnitude. The degree of accuracy depends on the dissipative nature of the
algorithm.

Many of the computer codes that are used to define the aerothermodynamic environ-
ment divide the shock-layer flow field (that is, the flow zone between the bow shock
wave and the surface of the vehicle) into the following two regimes.

• A rotational inviscid flow where the viscous effects are negligible.
• The thin viscous boundary layer adjacent to the surface.

During the initial phases of a development program, the designer has need for com-
putational tools that are capable of predicting the aerodynamic characteristics.

For computing the inviscid pressure acting on a panel, one of the simple impact or
expansion methods can be used. These methods require the angle and, in some cases,
the freestream Mach number.

Another approach for determining the local pressure includes the calculation of the
interference effects of one component on another.

The challenging aspect of analyzing the flow over a complex shape is the calculation
of the viscous flow due to difficulties in developing simple yet realistic models for
turbulence, viscous/inviscid interactions, etc.

The detailed distribution for the pressure and the skin friction that are computed
using the approximate methods of a conceptual code may differ from the actual dis-
tributions.

At low Reynolds number/high Mach number conditions, the interaction between
the rotational external flow and the boundary layer would invalidate the two-layer
approach. However, at moderate-to-high Reynolds numbers, a coupled Euler/
boundary layer approach with features specific to hypersonic flows, for example, gas
chemistry, surface catalycity, and entropy swallowing, provides an efficient tool for
the calculation of hypersonic viscous flows over a wide range of conditions.

The basic principle of a coupled inviscid region/boundary layer for the flow field
is that the flows are matched at their interface. The inviscid flow field solution at the
boundary surface provides conditions at the edge of the boundary layer. Boundary
layer growth changes the conditions at the edge of the boundary layer. The invis-
cid field might then be computed for the equivalent configuration, that is, the actual
configuration plus the displacement thickness.

Many codes have been developed to solve steady state flow fields over complex
three-dimensional bodies.

At relatively high Reynolds numbers, the presence of the boundary layer has a
second-order effect on the static pressure acting on the windward surface. At angles
of attack where the flow on the lee-side of a slender body separates and forms a vortex
pattern, the Euler-based flow models usually fail to represent the attached flow.

Vehicles designed for hypersonic flight through earth’s atmosphere usually have
blunt nose to reduce the convective heat transfer and alleviate asymmetric vortex



294 High Enthalpy Gas Dynamics

effects associated with subsonic portion of the flight. As a result, the bow shock wave
is curved. The entropy increase caused by the shock is proportional to the local incli-
nation of the shock wave and the freestream Mach number.

The static pressure acting across the boundary layer is relatively insensitive to the
flow field. However, significant entropy gradients can persist for considerable dis-
tances. Thus, when entropy layer swallowing is being considered, the location of the
outer edge of the boundary layer must be defined.

CFD code calibration implies comparison of computed results with experimental
data for realistic geometries that are similar to the ones of design interest, made in
order to provide a measure of the code’s ability to predict parameters that are required
for the design without necessarily verifying that all the features of the flow are cor-
rectly modeled.

The designer of a hypersonic vehicle must make use of both experimental and ana-
lytical tools available. CFD can give greater detail of a flow field than that is possible
in any wind tunnel, as all aerodynamic parameters are computed at each grid point.
CFD provides a capability for configuration optimization for determining the effect of
configuration changes before commitment to model construction is made. Thus, CFD
helps in making more effective use of ground-test facilities.

Exercise Problem

6.1 If the entropy increase along the stagnation streamline of the blunt-nosed object,
flying in air, is 0.8 kJ/(kg K), determine (a) the freestream Mach number and (b)
the shock strength along the stagnation streamline.
[Answer: (a) 5, (b) 28]
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7
High-Enthalpy Facilities

7.1 Introduction

High-enthalpy facilities are devices to provide hypersonic air flows at high-enthalpy
and high-pressure total conditions. In such a device, real-gas effects are large caus-
ing experimental difficulties to assess the test-section freestream characteristics. Also,
flow contamination is a problem for total enthalpy determination. Some of the pop-
ular high-enthalpy facilities are free-piston tunnels, shock tubes, shock tunnels, hot
shot tunnels, arc tunnels, and gun tunnels. The knowledge of the actual enthalpy is
not an obvious task for high-enthalpy wind tunnels, as it could be for cold hypersonic
wind tunnels. These are experimental aerodynamic facilities that allow testing and
research at velocities considerably above those achieved in the wind tunnels meant
for tests at subsonic and supersonic speeds. The high velocities in these facilities are
achieved at the expense of other parameters, such as Mach number, pressure, and/or
run time.

From the technical features of supersonic and hypersonic tunnels, it is obvious that
the aerodynamic problems of high-speed flight are not completely answered by tests in
these facilities, where the tunnel operating temperature is only high enough to avoid
liquefaction. Also, we know that if the static temperatures and pressures in the test
section of a wind tunnel have to be equal to those at some altitude in the atmosphere
and at the same time that the velocity in the wind tunnel equals the flight velocity of
a vehicle at that altitude, then the total temperatures and pressures in the wind tunnel
must be quite high. It is important to keep the static temperature, static pressure, and
velocity in the test section be the same as those in the actual flight condition, because
only then the temperature and pressure in the vicinity of the model (behind shock
waves and in boundary layers) would correspond to conditions for the vehicle in flight.

Having the proper temperature and pressure in the vicinity of the model is con-
sidered important because at high temperatures, the characteristics of air are com-
pletely different from those at low temperatures. Experimental facilities that have been
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developed to simulate realistic flow conditions at high speeds and are used extensively
for high-speed testing are

• Hotshot tunnels.
• Plasma jets.
• Shock tubes.
• Shock tunnels.
• Light gas guns.

Although it is not our aim to discuss these facilities in this book, let us briefly see them
to have an idea about the facilities that are expected to dominate the experimental study
in the high-speed regime in the future.

7.2 Hotshot Tunnels

Hotshot tunnels are devices meant for the generation of high-speed flows with high
temperatures and pressures for a short duration. The high temperatures and pressures
required at the test section are obtained by rapidly discharging a large amount of elec-
trical energy into an enclosed small volume of air, which then expands through the
nozzle and the test section. The main parts of a typical hotshot tunnels are shown
schematically in Figure 7.1.

The arc chamber is filled with air at pressures up to 270 MPa. The rest of the circuit
is evacuated and kept at low pressures at the order of few micropascals. The high- and
low-pressure portions are separated by a thin metallic or plastic diaphragm located
slightly upstream of the nozzle throat. Electrical energy from a capacitance or induc-
tance energy storage system is discharged into the arc chamber over a time interval of
a few milliseconds. The energy added to the air causes an increase in its temperature
and pressure, and this makes the diaphragm to get ruptured. When the diaphragm rup-
tures, the air at high temperature and pressure in the arc chamber expands through the
nozzle and establishes a high-velocity flow. The high-velocity flow typically lasts for
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Figure 7.1 Main parts of hotshot tunnel.
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10–100 ms periods but varies continuously during the period. The variation of flow
velocity is due to the decay of the pressure and temperature in the arc chamber with
time. The high-velocity flow is terminated when the shock that passed through the
tunnel at the starting of the flow is reflected from a downstream end of the vacuum
tank and arrives back upstream at the model.

Presently, the common operating pressure and temperature of hotshot tunnels are
about 20 MPa and 4000∘C, respectively. The flow Mach number is usually 20 and
above, although there is much variation between facilities. Data collection in hotshot
tunnels are much more difficult than the conventional tunnels because of the short run
times.

7.3 Plasma Arc Tunnels

Plasma arc tunnels are devices capable of generating high-speed flows with very high
temperature. It uses a high-current electric arc to heat the test gas. Unlike hotshot
tunnels, plasma arc tunnels may be operated for periods of the order of many minutes,
using direct or alternating current. Temperatures of the order of 13,000∘C or more can
be achieved in the test gas.

A typical plasma arc tunnel consists of an arc chamber, a nozzle usually for a Mach
number less than 3, an evacuated test chamber into which the nozzle discharges, and
a vacuum system for maintaining the test chamber at a low pressure, as shown in
Figure 7.2.

In the plasma arc tunnel, a flow of cold test gas is established through the arc cham-
ber and the nozzle. An electric arc is established through the test gas between an
insulated electrode in the arc chamber and some surface of the arc chamber. The elec-
tric arc raises the temperature of the test gas to an ionization level, rendering the test
gas as a mixture of free electrons, positively charged ions, and neutral atoms. This
mixture is called plasma, and it is from this that the plasma arc tunnel gets its name.
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Figure 7.2 Schematic of plasma arc tunnel.
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Plasma tunnels operate with low stagnation pressures of the order of 700 kPa or
less, with gases other than air. The enthalpy level of the test gas and, consequently,
the temperature and velocity in a given nozzle are higher for a given power input when
the pressure is low. Argon is often used as the test gas because high temperature and
high degree of ionization can be achieved with a given power input; also the electrode
will not get oxidized in argon environment.

Mostly, plasma arc tunnels are used for studying materials for reentry vehicles.
Surface material ablation tests, which are not possible in low-temperature tunnels or
high-temperature short-duration tunnels, can be made. These tunnels can also be used
for “magneto-aerodynamics” and plasma chemistry fields to study the electrical and
chemical properties of the highly ionized gas in a flow field around a model.

Example 7.1 If the test-section temperature of a arc tunnel run by stagnation state
at 700 kPa and 3200 K is 2000 K, determine the test-section Mach number, assuming
the gas as perfect gas with specific heats ratio 1.5 and molecular weight 28.

Solution

Given T0 = 3200 K, T = 2000 K, Mm = 28, and 𝛾 = 1.5.
For the test gas, the gas constant is

R =
Ru

Mm

= 8314
28

= 296.93 J/(kg K)

The specific heat at constant pressure is

cp =
𝛾

𝛾 − 1
R

= 1.5
1.5 − 1

× 296.93

= 890.79 J/(kg K)

By energy equation,

h + V2

2
= h0

where h = cpT and h0 = cpT0; therefore,

V2 = 2(h0 − h)

V =
√

2cp(T0 − T)

=
√

2 × 890.79 × (3200 − 2000)

= 1461.5 m/s
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The speed of sound at the test section is

a =
√
𝛾RT

=
√

1.5 × 296.93 × 2000

= 943.82 m/s

Thus the Mach number is

M = V
a

= 1461.5
943.82

= 1.55
◾

7.4 Shock Tubes

The shock tube is a device that is used to produce high-speed flow with high tem-
peratures by traversing normal shock waves that are generated by the rupture of a
diaphragm that separates a high-pressure gas from a low-pressure gas. Shock tube
is a very useful research tool for investigating not only the shock phenomena but
also the behavior of the materials and objects when subjected to very high pres-
sures and temperatures. A shock tube and its flow process are shown schematically in
Figure 7.3.

The diaphragm between the high- and low-pressure sections is ruptured and the
high-pressure driver gas rushes into the driven section, setting up a shock wave that
compresses and heats the driven gas. The pressure variation through the shock tube at
the instant of diaphragm rupture and two short intervals later are shown in Figure 7.3.
The wave diagram simply shows the position of the important waves as a function
of time.

When the shock wave reaches the end of the driven (low-pressure) tube, all of the
driven gas will have been compressed and will have a velocity in the direction of
shock wave travel. On striking the end of the tube, the shock gets reflected and starts
traveling back upstream. As it passes through the driven gas and brings it to rest,
additional compression and heating is accomplished. The heated and compressed gas
sample at the end of the shock tube will retain its state except for heat losses until the
shock wave reflected from the end of the tube passes through the driver-gas-driven
interface and sends a reflected wave back through the stagnant gas sample, or the
rarefaction wave reflected from the end of the driver (high-pressure) section reaches
the gas sample. The high-temperature gas samples that are generated make the shock
wave useful for studies of the chemical physics problems of high-speed flight, such
as dissociation and ionization.
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Figure 7.3 Pressure and wave diagram for a shock tube.

7.4.1 Shock Tube Applications

Shock tube being a device capable of producing established flow with uniform tem-
peratures and pressure at high values, which cannot be achieved with conventional
tunnels, finds application in numerous fields in science and engineering.

1. The uniform flow behind the shock wave may be used as a short-duration wind
tunnel. In this role, the shock tube is similar to an intermittent or blowdown tunnel,
but the duration of flow is much shorter, usually of the order of a millisecond. But
the operating conditions (particularly the high stagnation enthalpies), which are
possible, cannot be easily obtained with other types of facility.
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2. The abrupt changes of flow condition at the shock front may be utilized for studying
transient aerodynamic effects and for studies of dynamic and thermal response.

3. Shock tubes can also be used for studies on relaxation effects, reaction rates, dis-
sociation, ionization, etc.

Finally, note that in the shock tube relations, we use different “𝛾” for every flow
zone. This is because in most of the applications, the temperatures experienced by the
gas at these zones are appreciably above the level to assume the gas as perfect gas,
and hence, 𝛾 takes different values corresponding to the local temperature.

Example 7.2 A shock tube is filled with air. The temperature in the low-pressure
chamber is atmospheric. (a) If the shock generated by rupturing the diaphragm moves
at Mach number 10, treating the air traversed by the shock as perfect gas, determine
the stagnation temperature of the air behind the shock. (b) What will be the test time
available for testing a model located at 8 m from the diaphragm?

Solution

Let subscripts 1 and 2, respectively, refer to states ahead of and behind the shock.

(a) Given Ms = 10, T1 = 15∘C = 288.15 K, and 𝛾 = 1.4.
The speed of sound in the low-pressure chamber is

a1 =
√
𝛾RT1

=
√

1.4 × 287 × 288.15

= 340.3 m/s

Thus the shock speed is

Cs = Msa1

= 10 × 340.3

= 3403 m/s

The pressure ratio across the shock is

p2

p1
= 1 + 2𝛾

𝛾 + 1
(M2

s − 1)

= 1 +
(2 × 1.4

1.4 + 1

)
× (102 − 1)

= 116.5

For Ms = 10, from normal shock table [1],

𝜌2

𝜌1
= 5.71429,

T2

T1
= 20.387
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The flow speed of the field traversed by the shock, by Equation (3.45) [2], is

V2 = Cs

(
1 −

𝜌1

𝜌2

)

= 3403 ×
(

1 − 1
5.71429

)
= 2807.48 m/s

The temperature of air stream traversed by the shock is

T2 = 20.387 T1

= 20.387 × 288.15

= 5874.5 K

The Mach number of the air stream traversed by the shock is

M2 =
V2

a2

=
V2√
𝛾RT2

= 2807.48√
1.4 × 287 × 5874.5

= 1.83

From M2 = 1.83, from isentropic table,

T2

T02
= 0.599

The flow across the shock is adiabatic; hence, T02 = T01. Thus, the stagnation
temperature of air behind the shock is

T02 =
T2

0.599

= 5874.5
0.599

= 9807.2 K

(b) Let l be the distance between the model and the diaphragm. The test time t is equal
to l∕V2 − l∕Cs. Thus

t = l
V2

− l
Cs

= 8
2807.48

− 8
3403

= 4.99 × 10−4 s
◾
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7.5 Shock Tunnels

Shock tunnels are wind tunnels that operate at Mach numbers of the order of 25 or
higher for time intervals up to a few milliseconds by using air heated and compressed
in a shock tube. Schematic diagram of a shock tunnel, together with wave diagram, is
shown in Figure 7.4.

As shown in the figure, a shock tunnel includes a shock tube, a nozzle attached to the
end of the driven section of the shock tube, and a diaphragm between the driven tube
and the nozzle. When the shock tube is fired and the generated shock reaches the end of
the driven tube, the diaphragm at the nozzle entrance is ruptured. The shock is reflected
at the end of the driven tube, and the heated and compressed air behind the reflected
shock is available for operation of the shock tunnel. As the reflected shock travels back
through the driven section, it travels only a relatively short distance before striking the
contact surface; it will be reflected back toward the end of the driven section. When
the reflected shock reaches the end of the driven section, it will result in a change in
pressure and temperature of the gas adjacent to the end of the driven section. If the
change in the conditions of the driven gas is significant, the flow in the nozzle will
be unsatisfactory and the useful time will be terminated. The stagnation pressure and
temperature in shock tunnels are about 200 MPa and 8000 K, respectively, to provide
test times of about 6.5 ms.

7.6 Gun Tunnels

The gun tunnel is quite similar to the shock tunnel in operation. It has a
high-pressure-driver section and a low-pressure-driven section with a diaphragm
separating the two, as shown in Figure 7.5.
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Figure 7.4 Schematic of shock tunnel and wave diagram.
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Figure 7.5 A gun tunnel and its wave diagram.

A piston is placed in the driven section, adjacent to the diaphragm, so that when
the diaphragm ruptures, the piston is propelled through the driven tube, compressing
the gas ahead of it. The piston used is so light that it can be accelerated to veloc-
ities significantly above the speed of sound in the driven gas. This causes a shock
wave to precede the piston through the driven tube and heat the gas. The shock wave
will be reflected from the end of the driven tube to the piston, causing further heat-
ing of the gas. The piston comes to rest with equal pressure on its two sides, and
the heated and compressed driven gas ruptures a diaphragm and flows through the
nozzle.

As can be inferred, gun tunnels are limited in the maximum temperature that can
be achieved by the piston design. The maximum temperatures normally achieved are
about 2000 K. Run times of an order of magnitude higher than the shock tunnels are
possible in gun tunnels. In general, the types of tests that can be carried out in gun
tunnels are the same as those in the hotshot tunnels and the shock tunnels.

7.7 Some of the Working Facilities

Some popular facilities meant for experiments at high-enthalpy and hypersonic envi-
ronments are given in this section, to get an idea about the various parameters associ-
ated with such flows. The facilities listed here are meant for gaining a bird’s eye view
about the requirements of facilities meant for generating high-enthalpy environment.
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In addition to what is listed here, there are large number of facilities in active use all
over the world.

7.7.1 Hypersonic Wind Tunnel

The hypersonic wind tunnel Cologne (H2K) at Department Wind tunnels facilities
is one of the busy facilities. The H2K is a “blowdown” wind tunnel with a free jet
test section. It uses contoured, axially symmetrical and replaceable nozzles. For aero-
dynamic testing, nozzles for Mach numbers of 4.8, 5.3, 6.0, 7.0, 8.7, and 11.2 are
available. For aerothermal tests on probes, smaller nozzles with Mach numbers of 3.0
and 5.0 are also in use.

In order to achieve the pressure ratio required for building up the nozzle flow for
about 30 s, the pressure in the test chamber is reduced by a vacuum sphere. Owing
to the large expansion of the air in the nozzle, its static temperature decreases signifi-
cantly. To prevent condensation of air particles and for tests at high temperatures, the
air is preheated. Eight electric heaters with a maximum electrical power of 5 MW heat
the air for up to 1100 K. Depending on the test setup, between 8 and 10 tests per day
can be carried out.

Application areas

The following are some of the specific applications for which the above H2K wind
tunnel is used.

1. For simulation of the air flow around models of future spacecrafts at Mach numbers
of between 4.8 and 11.2.

2. For the measurement of aerodynamic and aerothermodynamic loads on complete
hypersonic flight configurations and their components.

3. For investigations on the interaction of hot plume nozzle flows with the external
base flow.

7.7.2 High-Enthalpy Shock Tunnel (HIEST)

This facility is the largest high-enthalpy shock tunnel of free-piston-driven type
(commonly called HIEST) in the world, constructed by Mitsubishi Heavy Industries
limited, Japan. It simulates airflow of very high temperature and high pressure that
returnable spacecrafts (that is, HOPE X and spaceplanes) encounter when they
reenter the atmosphere. The purposes of this facility are to understand aerodynamic
and aerothermodynamic characteristics of the real gas by simulations using scale
models of spacecrafts and to clarify combustion process and characteristics of ram
jet engines and scramjet engines.

The main specifications and performance parameters are given in the following text.
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Specifications

Secondary reservoir Wrap-around type
Type/capacity 7.7 m3

Compression
Tube length/diameter 42 m/600 mm
Shock tube
Length/diameter 17 m/180 mm
Piston weight 300/440/580 kg
Nozzle exit diameter 500/1200 mm

Performance

Stagnation pressure 150 MPa
Maximum enthalpy 25 MJ/kg
Maximum stagnation temperature 10,500 K
Test duration 2.0 ms

• Piston Blasting System. The world’s first system, developed in coordination with
the National Aerospace Laboratory of Japan, is adopted.

• Piston Shock Absorber. The world’s first long-life damper made from urethane is
adopted.

Features

(i) The largest shock wind tunnel in the world.
(ii) It can simulate both very high temperature and very high pressure at the same

time. The stagnation enthalpy established in this facility is suppose to be the
largest stagnation enthalpy in the world.

(iii) It can perform tests of the longest duration in the world.
(iv) It can perform returnable spacecraft’s aerodynamic and aerothermodynamic tests

as well as scramjet engine’s combustion tests.

Types of tests

(i) Aerodynamic and aerothermodynamic tests on scale models of returnable space-
crafts.

(ii) Combustion process tests on scramjet engines.
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7.7.3 Hypersonic and High-Enthalpy Wind Tunnel

The hypersonic and high-enthalpy wind tunnel at Kashiwa Campus of the Univer-
sity of Tokyo has provision for two-mode operation. Using the high-pressure and
high-temperature air generator, it can used either as a hypersonic wind tunnel (that
is, very high-speed flow) or as a high-enthalpy wind tunnel (that is, very high temper-
ature flow).

This facility is used for studying planetary science, high-speed aerospace transport,
spacecraft, and high-temperature material test.

Heater

Pebble-bed air heater is used to produce the high-temperature gas with the heat
exchange between the air and preheated pebbles. The height of the heater is about
3 m. The wall inside the heater is covered by heat-resistant bricks. Alumina pebbles
are filled in the heater. The air from high-pressure tank is introduced to the heater
from the bottom to the top, after the pebbles are preheated by the burner at the
top of the heater, producing very high temperature air at more than 1200∘C. Such
high-temperature air is necessary not only for the experiments with hot air but also
for energizing the air to accelerate to hypersonic speeds in the hypersonic wind
tunnel.

Nozzle

Hypersonic nozzle of the tunnel converts the thermal energy obtained through the
heater to the kinetic energy. The choked air flow through the very narrow throat is
accelerated by expanding it in the divergent portion downstream of the throat. As the
degree of acceleration depends on the area ratio between the throat and the outlet, the
nozzle throat for the hypersonic wind tunnel is very narrow. The diameter of the nozzle
exit is 200 mm. The curve of the bell-shaped nozzle is smooth and carefully designed
to produce the uniform flow at the test section. Two nozzles for Mach numbers 7 and
8 are available.

Pressure system

Compressor and vacuum pump are used to charge the air in the high-pressure tank
and reduce the pressure in the vacuum tank, respectively. Both are installed in the
special compartment to avoid the spillage of the noise and vibration to the outside.
Both tanks are installed outside. High-pressure vessel is a cylindrical tank of volume
4 m3, which can store the high-pressure dry air produced by the compressor system
to a maximum pressure level of 5 MPa. The stagnation pressure of the air flow is
controlled by the regulator. The temperature of air is raised by pebble-bed heater.
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The maximum flow duration is about 60 s for the hypersonic wind tunnel and 200 s
for the high-enthalpy wind tunnel. The vacuum tank is a spherical tank of volume
180 m3, and 7 m in diameter, and very low pressure level at less than 100 kPa can be
kept for several days. The pressure in the vacuum tank is decreased using a vacuum
pump before the experiment. The air of the hypersonic wind tunnel flow is exhausted
to the tank.

Test section of high-enthalpy wind tunnel

High-temperature air from the heater is injected to the atmosphere as a free jet flow.
The flows are exhausted to outside through the silencer tower. Users can set up the
supersonic nozzle and test-section layout freely, depending on the objectives of each
experiments.

Air cooler

Air cooler used in this facility is a water-cooled heat exchanger to cool the air of
hypersonic wind tunnel before exhausted to the vacuum tank.

Test section of hypersonic wind tunnel

In the test section, the hypersonic flow around the test model can be observed and mea-
sured. This section is an airtight chamber because the pressure inside is much lower
than the atmospheric pressure during the experiment. There are windows of 200 mm
diameter, for the observation, for example, Schlieren images. The model injection
system is installed in the test section. The model is injected to the hypersonic flow
after the flow establishes stably. The angle of attack with respect to the uniform flow
(that is pitch angle) can be controlled from −10∘ to +10∘ from control room remotely.
Owing to the constraint of the blockage ratio, the model size is limited to about 4 cm
in diameter.

7.7.4 Von Karman Institute Longshot Free-Piston Tunnel

The Von Karman Institute (VKI) Longshot free-piston tunnel is a short-duration facil-
ity that can be operated with either nitrogen or carbon dioxide, and it is designed to
provide the attainment of very high Reynolds number hypersonic flows.

It has a Mach number of 14 contoured nozzle of 0.43 m exit diameter and a 6∘
conical nozzle of 0.60 m exit diameter that can be used throughout the Mach num-
ber ranging from 14 to 20. Typical Reynolds numbers at Mach number 14 range from
5 × 103 to 15 × 106 (that is these Reynolds numbers are per unit length). A high preci-
sion incidence mechanism for pitch, roll, and yaw is mounted in the open-jet 4 m3 test
section. Instrumentation includes a force/moment balance, accelerometers, thin-film
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and coaxial thermocouples for heat flux measurements, piezoresistive pressure trans-
ducers, and a Schlieren system.

7.7.5 MHD Acceleration in High-Enthalpy Wind Tunnels

The interest in transporting goods, people, and military equipment around the
world as fast as possible has lead to the development of hypersonic technologies.
In order to utilize these technologies, they must be proven safe, economical, and
efficient. High-enthalpy wind tunnels provide important data required to verify and
optimize specific designs of hypersonic vehicles, such as reentry vehicles. However,
hypersonic facilities that utilize classical adiabatic expansion for gas acceleration
require an incredible amount of resources and have critical limitations. In the late
1950s, researchers began searching for an alternative method for accelerating flow
in high-enthalpy wind tunnels. The use of magnetohydrodynamics (MHD) was
implemented into the flow chain of a wind tunnel to accelerate the gas to higher
speeds. MHD avoids the complications of ultra-high precombustion values by
directly increasing the kinetic energy of the flow implementing Lorentz forces1.

The MHD generator transforms thermal energy and kinetic energy directly into
electricity. MHD generators are different from traditional electric generators in that
they operate at high temperatures without moving parts. MHD was developed because
the hot exhaust gas of an MHD generator can heat the boilers of a steam power plant,
increasing overall efficiency. MHD was developed as a topping cycle to increase the
efficiency of electric generation, especially when burning coal or natural gas. MHD
dynamos are the complement of MHD propulsors, which have been applied to pump
liquid metals and in several experimental ship engines.

An MHD generator, similar to a conventional generator, relies on moving a con-
ductor through a magnetic field to generate electric current. The MHD generator uses
hot conductive plasma as the moving conductor. The mechanical dynamo, in con-
trast, uses the motion of mechanical devices to accomplish this. MHD generators are
technically practical for fossil fuels but have been overtaken by other, less expensive
technologies, such as combined cycles in which a gas turbine’s or molten carbonate
fuel cell’s exhaust heats steam to power a steam turbine.

Natural MHD dynamos are an active area of research in plasma physics and of great
interest to the geophysics and astrophysics communities, because the magnetic fields
of the earth and sun are produced by these natural dynamos.

7.7.6 Measurement Techniques

The measurement techniques are force/moment measurements with six-component
dynamic monitoring service (DMS)- based balances; pressure distribution

1 In physics, particularly electromagnetism, the Lorentz force is the combination of electric and magnetic forces on a
point charge due to electromagnetic fields.
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measurements; temperature and heat flux measurements with thermocouples
and infrared cameras; flow visualization by means of Schlieren optics and oil flow
method (up to 150 kHz); and determination of dynamic derivatives with the free and
forced oscillation methods.

7.8 Just a Recollection

To aid in understanding the different topics discussed, in the previous chapters, and
to provide background material for interested readers who may not have specialized
training in this field, a brief summary of the fundamental attributes of hypersonic flows
is given here. Many of the topics that are introduced in this section are elaborated
further in contributions related to specific subjects related to sustained hypersonic
flight, in the open literature. The differences between the thermal and chemical aspects
of hypersonic flow and supersonic flow are therefore highlighted. The age of some of
the literature in the open source reflects the fact that the problems of hypersonic flight
are not newly discovered.

The hypersonic flight regime includes atmospheric entry and reentry, ground test-
ing, and flight for both powered and unpowered vehicles. Even though it is not cur-
rently certified for flight, there is one operational hypersonic vehicle: the space shuttle
of NASA. At least 20 years before the development of the shuttle, a significant activ-
ity in hypersonic flight research was conducted by the US Air Force in their X-15
program. This vehicle has reached a flight Mach number of 6.7 on its final flight,
which is also used to test a hypersonic ramjet engine. Direct shock impingement on
the pylon holding a dummy engine caused severe heating and structural damage, and
this was one of many lessons learned from the program. Owing to the design of the
X-15, it was not capable of long-duration powered flight, but it provided a great deal
of information on technical problems that still remain a serious obstacle to the devel-
opment of new hypersonic vehicles. It is still astonishing to look back on the rapid
development of high-speed flight in the years after the World War II. The challenge is
to build on this experience and to accomplish the development of a new generation of
flight vehicles.

Although unpowered hypersonic vehicles are not the topic of this book, it is impor-
tant to note that there have been many more successful developments of these types
of vehicle, predominantly in the reentry of manned and unmanned spacecraft of Rus-
sian, American, and European origin into earth’s atmosphere. For example, the Apollo
reentry conditions were 53 km of altitude, 11 km/s of velocity, 270 K of temperature,
and speed of sound of 338 m/s that gave a reentry Mach number of M = 32.5. There
have also been a number of missions to other planets (more vehicles going to these
planets than that have been developed for sustained hypersonic flight within the atmo-
sphere) and the entry speeds into those atmospheres have been even greater. A recent
noteworthy example of this was the Galileo probe to Jupiter that was designed to
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enter the Jovian atmosphere at 60 km/s at an altitude of 1000 km. At this altitude, the
temperature is approximately 800 K, and the atmosphere was assumed to consist of
hydrogen and helium at a mixture of 89 : 11 by mass. Therefore, the entry Mach num-
ber was about 28 for this mission. Even though the entry speed was greater than that
of the Apollo reentry, the Mach number is lower owing to the greater value of the
speed of sound in the hydrogen–helium atmosphere.

Clearly, Mach number is not the only parameter that must be considered for hyper-
sonic flight; in fact, it is often only of secondary importance. In earth’s atmosphere, for
example, the temperature of the outer atmosphere is quite low, so the speed of sound
is lower than that at sea level and higher Mach numbers can be achieved there at lower
speeds. A better measure is the speed itself, because it can also give an indication of the
kinetic energy involved in the trajectory. For hypersonic craft, the flight enthalpy can
usually be estimated very quickly from the speed as h = u2∕2. The amount of aerother-
modynamic heating that the vehicle must deal with is linearly dependent on the kinetic
energy of the vehicle. This is a very important aspect of hypersonic flight through plan-
etary atmospheres. The vehicle encounters such severe heating that a significant part
of the design and development effort is concerned with providing sufficient protec-
tion of the payload without using all payload capacity for doing this. Other general
characteristics of hypersonic flows are that molecules behind a high-velocity shock
wave become vibrationally excited, partially or completely dissociated depending on
their bond energy, and, at very high speeds, partially ionized. These aspects of hyper-
sonic flow are typically called real-gas effects. To clarify what is meant by “real-gas
effects,” it is useful to recall the definitions in the following subsections.

7.8.1 Thermally Perfect Gas

A thermally perfect gas is one that obeys the ideal gas equation of state,

p = 𝜌RT

From compressible flow theory, this relationship implies that internal energy and
enthalpy depend only on temperature.

7.8.2 Calorically Perfect Gas

A calorically perfect gas has constant values of specific heats (that is, constant cp and
cv) independent of temperature.

7.8.3 Perfect or Ideal Gas

This designation refers to a gas that is both thermally and calorically perfect.
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7.8.4 Thermal Equilibrium

A single temperature can be used to describe the different molecular internal energy
modes (which are described in detail in the following). This single temperature
describes the energy modes of all molecules and it is the same as the temperature of
the surroundings.

7.8.5 Chemical Equilibrium

All chemical reactions are in balance and the system does not spontaneously undergo
any change in chemical composition, no matter how slow. For this situation, the dis-
tribution of species is uniquely described by two thermodynamic variables, such as
density and temperature.

Note that a “real gas” is not defined, because it is used by fluid dynamicists to
describe all of the situations that are not perfect. However, it will be shown later that
the most important real or imperfect gas effects for hypersonic flight in earths atmo-
sphere are caloric.

As in other flow regimes, non-dimensional parameters are used to describe hyper-
sonic flow. Most of these parameters are encountered in other flow domains, including
subsonic and supersonic flow, but they are summarized here for convenience.

1. Reynolds number, Re = VL∕𝜈. This can be taken as a measure of the viscous flow
time over the mean flow time.

2. Mach number, M = V∕a. This is a measure of the flow speed relative to the acoustic
propagation speed.

3. Knudsen number, Kn = 𝜆∕L (= M = Re). This is an indication of the collision path
length relative to the flow scale.

4. Prandtl number, Pr = 𝜈∕k. A measure of the thermal diffusion time relative to the
viscous diffusion time.

5. Schmidt number, Sc = 𝜈∕D. This is an indication of the species diffusion time rel-
ative to the viscous diffusion time.

6. Eckert number, E = u2∕h. This indicates the relative magnitudes of kinetic and
thermal energy for the flow.

7. Damkohler number, Da = 𝜏f∕𝜏c. This dimensionless parameter is the ratio of the
characteristic flow time (such as a residence time) to the characteristic chemical
reaction time. When it is very large, the chemical reactions can be complete, and
the flow will likely be in chemical equilibrium. When it is very small, the chemical
reactions will not be complete and the flow chemistry is considered to be frozen.
For hypersonic flow, in contrast to other flow regimes, the Damkohler number plays
an important role, determining whether or not the flow is in equilibrium.

To relate the discussion of thermodynamic and gas dynamic considerations to appli-
cations of interest, it is useful to consider first general high-temperature gas effects
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that are encountered in the hypersonic flight of a typical vehicle (it should be noted
that apart from compressibility, none of the attributes mentioned in the following are
found in the supersonic flow regime).

7.8.6 Caloric and Chemical Effects

The atmospheric composition behind a normal shock ahead of a hypersonic vehi-
cle will differ greatly from the atmosphere ahead of the shock. Diatomic molecules
will be vibrationally excited and dissociated to some extent, and the resulting atoms
and remaining molecules can be partially ionized. Thus, for the remaining post-shock
molecules, the assumption that they behave as calorically perfect gases is no longer
valid. Within a vehicle boundary layer, there is sufficient viscous dissipation to affect
the stream chemistry and this can lead to chemically reacting boundary layers. As
specific heats are no longer constant owing to vibrational excitation and chemical
reaction, their ratio, 𝛾 = cp∕cv, is also no longer constant and also depends on the
temperature. For air, this begins at around 800 K.

7.8.7 Aerodynamic Forces

Another important aspect of hypersonic flight is that the variation in the ratio of spe-
cific heats, 𝛾 , can significantly influence the pressure distribution over a vehicle or
its control surfaces. This is because 𝛾 , which is also the isentropic exponent, directly
influences the rate of expansion or compression of the flow. This can manifest itself
in the setting of control surface angles or even in the trim angle of attack for a vehi-
cle, which can be larger than that predicted for the perfect gas value of 𝛾 by 2∘–4∘.
This was actually observed during the first Shuttle reentry. It was found that there is a
small but consistent difference in pressure values that are slightly higher for the for-
ward region and lower in the aft region for the reacting case. When integrated over
the vehicle surface, this produces a net moment that provided additional pitch-up to
the shuttle nose and required manual control to override. Note that other explanations
have also been given for this, which illustrates how difficult it is to isolate interacting
physical phenomena.

7.8.8 Plasma Effects

For air at 1 atm pressure, oxygen dissociation begins near 2000 K and is complete
at about 4000 K. Nitrogen dissociation begins at about 4000 K and is complete near
9000 K. At higher post-shock temperatures, ionization becomes important. In a par-
tially ionized flow, the free electrons absorb and reflect electromagnetic radiation,
usually in the frequency band of communication systems. In addition, at some level
of ionization, the flow will behave quite differently than a weakly ionized or neutral
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flow, because the interatomic forces will have a strong electrical interaction compo-
nent, which will lead to differences in transport properties.

7.8.9 Viscous and Rarefaction Effects

For flows at very high speeds and low density, which might correspond to a high atmo-
spheric altitude, the mean free path, 𝜆, which is the average distance that a molecule or
atom travels between collisions with its neighbors, can be larger than a characteristic
length, L, of the vehicle. This effect is represented by the Knudsen number 𝜆∕L, and
it is known that when the mean free path is too large, and Kn approaches unity, then
the familiar Navier–Stokes equations can no longer be closed. Another approach to
modeling the flow must be used. The viscous interaction parameter,

V ′
∞ = M∞

√
C′
∞√

Re∞L

where
C′
∞ = (𝜇∞T ′)∕(𝜇′ T∞)

is the Chapman–Rubesin viscosity coefficient based on the reference temperature
conditions. In fact, inviscid analysis can only be used in the “hypersonic” regime,
which is characterized by high Reynolds number and low Mach number conditions. At
higher altitudes, the reverse situation of high Mach number and low Reynolds number
requires careful handling of the viscous interactions that influences the inviscid flow.

7.8.10 Trajectory Dependence

As mentioned earlier, air chemistry is significantly different at the high temperatures
encountered in hypersonic flight applications. Vibrational excitation of molecules, dis-
sociation, and ionization will all occur as temperature is increased. However, with the
exception of vibrational excitation, the onset and the range of these effects will also
vary with density or pressure.

7.8.11 Nonequilibrium Effects

In addition to these effects, when the characteristic flow time is much shorter than the
time to complete chemical reactions or energy exchange mechanisms, then the flow
can be in a nonequilibrium state. It is in this aspect that the Damkohler number plays a
determining role. Note that for a given situation, there can be thermal nonequilibrium,
chemical nonequilibrium, or both. This is a subject of considerable importance, as the
interpretation of physical and chemical phenomena in hypersonic flow applications
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often depend on the assumption of thermal and chemical equilibriums, which allows
for a simpler characterization of the thermal and chemical states of the flow. This
assumption is often used without justification, and it is the objective of many present
research activities to investigate the limits of this assumption.

7.8.12 Ground Test

It is apparent, even to the casual observer, that hypersonic vehicles are not yet readily
available for human transportation. At present, there is only the Space Shuttle, and
the lifetime of this vehicle has already been officially fixed (even though it is already
operating beyond the design lifetime). Consequently, there is very little empirical data
on vehicle design and performance and many design parameters have been barely
explored. Part of the reason for this is the difficulty in simulating flight conditions
on the ground. The relationship between actual flight data and the data from mea-
surements in ground test facilities is not yet well understood. Unfortunately, flight
experiments are expensive, and even ground tests in high-enthalpy facilities are not
cheap, so there is relatively little data to guide the development of analytical and
numerical tools for these applications.

7.8.13 Real-Gas Equation of State

Although most of the discussion concerns thermally perfect gases, it is instructive to
look at other equations of state that can be used for nonperfect gas situations. The
most well known of these equations is the Van der Waal’s equation,

p = RT
v − b

− a
v2

This equation expresses the relationship between the thermodynamic variables in the
same way as the perfect gas equation, but with an important modification to account
for the attractive forces of real-gas behavior at high density in the second term.
Recall that the long-range attractive potential scaling was ≈ −A∕R6 [3], and note
that the second term in the Van der Waal’s equation of state above is −a∕v2. Clearly,
the second term is intended to account for the attractive potential, which becomes
important as density increases. This equation provides a useful qualitative picture of
real-gas behavior, but it is not quantitative. For example, the onset of the real-gas
behavior also depends on temperature, and this effect is not included in the above
equation.

Fortunately, for most applications involving hypersonic flows of air, the departure
from thermal perfection is minimal. For CO2, this is not the case, and as some hyper-
sonic ground test facilities, such as the VKI Longshot Facility use CO2, it is important
to take into account its thermal imperfection when considering the test conditions.
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7.9 Summary

High-enthalpy facilities are devices to provide hypersonic air flows at high-enthalpy
and high-pressure total conditions. Some of the popular high-enthalpy facilities are
free-piston tunnels, shock tubes, shock tunnels, hot shot tunnels, arc tunnels, and gun
tunnels. These are experimental aerodynamic facilities that allow testing and research
at velocities considerably above those achieved in the wind tunnels meant for tests at
subsonic and supersonic speeds.

Experimental facilities that have been developed to simulate realistic flow condi-
tions at high speeds and are used extensively for high-speed testing are

• Hotshot tunnels.
• Plasma jets.
• Shock tubes.
• Shock tunnels.
• Light gas guns.

Hotshot tunnels are devices meant for the generation of high-speed flows with high
temperatures and pressures for a short duration. The high-velocity flow typically lasts
for 10–100 ms periods but varies continuously during the period. Presently, the com-
mon operating pressure and temperature of hotshot tunnels are about 20 MPa and
4000∘C, respectively. The flow Mach number is usually 20 and above.

Plasma arc tunnels are devices capable of generating high-speed flows with very
high temperature. It uses a high-current electric arc to heat the test gas. Unlike hotshot
tunnels, plasma arc tunnels may be operated for periods of the order of many minutes,
using direct or alternating current. Temperatures of the order of 13,000∘C or more can
be achieved in the test gas. Plasma tunnels operate with low stagnation pressures of the
order of 700 kPa or less, with gases other than air. Mostly, plasma arc tunnels are used
for studying materials for reentry vehicles. Surface material ablation tests, which are
not possible in low-temperature tunnels or high-temperature short-duration tunnels,
can be made.

Shock tube is a device that is used to produce high-speed flow with high tem-
peratures by traversing normal shock waves that are generated by the rupture of a
diaphragm that separates a high-pressure gas from a low-pressure gas. Shock tube is
a very useful research tool for investigating not only the shock phenomena but also
the behavior of the materials and objects when subjected to very high pressures and
temperatures. Shock tube being a device capable of producing established flow with
uniform temperatures and pressure at high values, which cannot be achieved with
conventional tunnels, finds application in numerous fields in science and engineering.

Shock tunnels are wind tunnels that operate at Mach numbers of the order of 25 or
higher for time intervals up to a few milliseconds by using air heated and compressed
in a shock tube. A shock tunnel includes a shock tube, a nozzle attached to the end of
the driven section of the shock tube, and a diaphragm between the driven tube and the



High-Enthalpy Facilities 319

nozzle. The stagnation pressure and temperature in shock tunnels are about 200 MPa
and 8000 K, respectively, to provide test times of about 6.5 ms.

The gun tunnel is quite similar to the shock tunnel in operation. It has a
high-pressure-driven section and a low-pressure-driven section with a diaphragm
separating the two. A piston is placed in the driven section, adjacent to the diaphragm,
so that when the diaphragm ruptures, the piston is propelled through the driven tube,
compressing the gas ahead of it. The piston used is so light that it can be accelerated
to velocities significantly above the speed of sound in the driven gas. This causes a
shock wave to precede the piston through the driven tube and heat the gas.

The hypersonic wind tunnel Cologne (H2K) at Department Wind tunnels facilities
is one of the busy facilities. The H2K is a “blowdown” wind tunnel with a free jet
test section. It uses contoured, axially symmetrical and replaceable nozzles. For aero-
dynamic testing, nozzles for Mach numbers of 4.8, 5.3, 6.0, 7.0, 8.7, and 11.2 are
available. For aerothermal tests on probes, smaller nozzles with Mach numbers of 3.0
and 5.0 are also in use. The H2K wind tunnel above can be used for simulation of
the air flow around models of future spacecrafts at Mach numbers of between 4.8 and
11.2. Measurement of aerodynamic and aerothermodynamic loads on complete hyper-
sonic flight configurations and their components. Investigations on the interaction of
hot plume nozzles flows with the external base flow.

HIEST is the largest high-enthalpy shock tunnel of free-piston-driven type in the
world. It simulates airflow of very high temperature and high pressure that returnable
spacecrafts encounter when they reenter the atmosphere.

The hypersonic and high-enthalpy wind tunnel at Kashiwa Campus of the
University of Tokyo has facility for two-mode operation, using a high-pressure
and high-temperature air generator, that is, hypersonic wind tunnel mode (very
high-speed flow) and high-enthalpy wind tunnel mode (very high temperature flow).

The MHD generator transforms thermal energy and kinetic energy directly into
electricity. MHD generators are different from traditional electric generators in that
they operate at high temperatures without moving parts.

The hypersonic flight regime includes atmospheric entry and reentry, ground test-
ing, and flight for both powered and unpowered vehicles.

Although unpowered hypersonic vehicles are not the topic of this book, it is impor-
tant to note that there have been many more successful developments of unpowered
hypersonic vehicle, predominantly in the reentry of manned and unmanned spacecraft
of Russian, American, and European origin into earths atmosphere. There have also
been a number of missions to other planets (more vehicles going to these planets than
have been developed for sustained hypersonic flight within the atmosphere) and the
entry speeds into those atmospheres have been even greater.

Mach number is not the only parameter that must be considered for hypersonic
flight. A better measure is the speed itself, because it can also give an indication of
the kinetic energy involved in the trajectory. For hypersonic craft, the flight enthalpy
can usually be estimated very quickly from the speed as h = u2∕2. The amount of
aerothermodynamic heating that the vehicle must deal with is linearly dependent on
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the kinetic energy of the vehicle. This is a very important aspect of hypersonic flight
through planetary atmospheres.

A thermally perfect gas is one that obeys the ideal gas equation of state,

p = 𝜌RT

A calorically perfect gas has constant values of specific heat independent of tem-
perature. This designation refers to a gas that is both thermally and calorically perfect.

Reynolds number, Re = VL∕𝜈. This can be taken as a measure of the viscous flow time
over the mean flow time.

Mach number, M = V∕a. This is a measure of the flow speed relative to the acoustic
propagation speed.

Knudsen number, Kn = 𝜆∕L (= M = Re). This is an indication of the collision path
length relative to the flow scale

Prandtl number, Pr = 𝜈∕k. A measure of the thermal diffusion time relative to the
viscous diffusion time.

Schmidt number, Sc = 𝜈∕D. This is an indication of the species diffusion time relative
to the viscous diffusion time.

Eckert number, E = u2∕h. This indicates the relative magnitudes of kinetic and ther-
mal energy for the flow.

Damkohler number, Da = 𝜏f∕𝜏c. This dimensionless parameter is the ratio of the char-
acteristic flow time (such as a residence time) to a characteristic chemical reaction
time.

The atmospheric composition behind a normal shock ahead of a hypersonic vehicle
will differ greatly from the atmosphere ahead of the shock. Diatomic molecules will
be vibrationally excited and dissociated to some extent, and the resulting atoms and
remaining molecules can be partially ionized. Within a vehicle boundary layer, there
is sufficient viscous dissipation to affect the stream chemistry and this can lead to
chemically reacting boundary layers. As specific heats are no longer constant owing
to vibrational excitation and chemical reaction, their ratio 𝛾 = cp∕cv is also no longer
constant and also depends on the temperature. For air, this begins at around 800 K.

Another important aspect of hypersonic flight is that the variation in the ratio of
specific heats, 𝛾 , can significantly influence the pressure distribution over a vehicle or
its control surfaces.

For air at 1 atm pressure, oxygen dissociation begins near 2000 K and is complete
at about 4000 K. Nitrogen dissociation begins at about 4000 K and is complete near
9000 K. At higher post-shock temperatures, ionization becomes important. In a par-
tially ionized flow, the free electrons absorb and reflect electromagnetic radiation,
usually in the frequency band of communication systems. In addition, at some level
of ionization, the flow will behave quite differently than a weakly ionized or neutral
flow, because the interatomic forces will have a strong electrical interaction compo-
nent, which will lead to differences in transport properties.



High-Enthalpy Facilities 321

For flow at very high speeds and low density, the mean free path can be larger
than a characteristic length of the vehicle. This effect is represented by the Knudsen
number 𝜆∕L.

Air chemistry is significantly different at the high temperatures encountered in
hypersonic flight applications. Vibrational excitation of molecules, dissociation, and
ionization will all occur as temperature is increased. However, with the exception of
vibrational excitation, the onset and range of these effects will also vary with density
or pressure.

When the characteristic flow time is much shorter than the time to complete chem-
ical reactions or energy exchange mechanisms, then the flow can be in a nonequilib-
rium state.

Hypersonic vehicles are not yet readily available for human transportation. At
present, there is only the Space Shuttle, and the lifetime of this vehicle has already
been officially fixed (even though it is already operating beyond the design lifetime).
Consequently, there is very little empirical data on vehicle design and performance
and many design parameters have been barely explored. Part of the reason for this is
the difficulty in simulating flight conditions on the ground. The relationship between
actual flight data and the data from measurements in ground test facilities is not yet
well understood.

Other equations of state that can be used for nonperfect gas situations. The most
well-known equation of state used for nonperfect gas is the Van der Waal’s equation,

p = RT
v − b

− a
v2

This equation expresses the relationship between the thermodynamic variables in the
same way as the perfect gas equation but with an important modification to account
for the attractive forces of real-gas behavior at high density in the second term.

Fortunately, for most applications involving hypersonic flows of air, the departure
from thermal perfection is minimal.

Exercise Problems

7.1 A shock tube has still air at 0.1 atm and 270 K in its low-pressure chamber. A
normal shock generated by rupturing the diaphragm separating the high-pressure
chamber from the low-pressure chamber moves at 2100 m/s. Determine (a) the
pressure in the high-pressure chamber at the time of diaphragm rupture and (b)
the pressure, temperature, and Mach number of the air traversed by the shock.
Treat air as a perfect gas.
[Answer: (a) 230.9 atm, (b) 4.75 atm, 2137 K, 1.89]

7.2 If a shock tube filled with air at 300 and 400 K at its low- and high-pressure
chambers, respectively, has to generate a shock to traverse air to attain 600 K.
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(a) What should be the shock strength? (b) Also, determine the velocity of the
contact surface and the shock speed.
[Answer: (a) 5.32, (b) V2 = 559.60 m/s, Cs = 818.66 m/s]

7.3 Mach number of 4.3 air stream flows over a blunt-nosed body. Determine the
pressure coefficient at the stagnation point of the nose, with reference to the flow
(a) ahead of and (b) behind the bow shock at the nose.
[Answer: (a) 1.82, (b) 1]
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Isentropic process, 28, 61
Isentropic relations, 39

Just a recollection, 312

Kinetic theory of gases, 108
Knudsen number, 198

Lagrange multipliers, 91
Laplace equation, 13, 23
Lax evidence theorem, 250
Lax-Wendroff scheme, 253
Left-running wave, 66
Limiter function, 257
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Local chemical equilibrium, 121, 146,
183, 209

Local thermodynamic equilibrium, 121,
141, 153

Low-speed flow, 27

Mach angle, 17
Mach cone, 17, 66
Mach line, 18
Mach number

definition of, 10, 11, 81
independence principle, 198

Mach wave, 5, 18, 19
Mass fraction, 210
Mass transport, 165
Maxwellian distribution, 117
Mean free path, 112, 182
Mean relative velocity, 113
Measurement techniques, 311
Measurements of hypersonic flows, 222
MHD acceleration in high

enthalpy wind tunnels, 311
Molecular energy modes, 89
Mole fraction, 165
Mole-mass ratio, 137
Mollier diagram, 108, 135
Momentum equation, 121, 149, 159,

214, 220
Momentum transport, 164, 211
Most probable distribution, 93
Most probable macrostate, 83, 85, 87,

92
Most probable speed, 118
Multidimensional problems, 274

Newtonian flow model, 196
Newton’s law, 13, 214
Noncontinuum considerations, 199
Nonequilibrium effects, 208, 209, 316
Nonequilibrium flow, 148, 208

behind oblique shock, 156
governing equations for, 149
over blunt-nosed bodies, 161

Nonequilibrium normal and
oblique shock flows, 153

Nonequilibrium quasi-one-dimensional
nozzle flows, 158

Normal and oblique shocks, 123
Normal shock, 123

governing equations, 124
one-dimensional flow past, 167

Nozzle flows, 132
area–velocity relation, 135

Oblique shock, 123
in nonequilibrium flow, 158

Oblique shock wave in equilibrium
gas, 130
𝜃–𝛽 –V diagram, 131

One-dimensional Euler equations, 261
Overall continuity equation, 220

differential form of, 214

Partition function
definition of, 94
evaluation of, 99, 101

Perfect gas, 35, 79
state equation, 14
kinetic theory equivalent of, 110

Planck constant, 99
Plasma arc tunnels, 299
Plasma effects, 315
Poisson’s equation, 40
Prandtl number, 71, 320
Pressure coefficient, 197
Pressure in terms of partition

function, 99
Properties across a shock, 202

Quasi one-dimensional flow, 134
characteristics of, 134
equations for unsteady, 159
equilibrium nozzle flows, 132
nonequilibrium nozzle flows, 158, 190

Quantitative Relation for
the equilibrium speed of sound, 146
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Quantized levels of molecules, 90
Quantum numbers, 99

Rarefied flow, 72
Ratio of specific heats, 6, 14, 46
Real gas equation of state, 317
Rayleigh supersonic pitot formula, 202
Rayleigh flow, 7, 22, 79
Real-gas effects, 207, 236, 292, 297, 313
Reduced mass, 113
Reversible process, 28
Reynolds number, 71, 198, 314
Right-running wave, 66
Roe average, 262
Root-mean-square speed, 118, 119
Rotational energy, 88, 89, 99, 177
Rotational quantum number, 100

Schmidt number, 314
Second law of thermodynamics, 2, 32
Shaft work, 29
Shock detachment distance, 128
Shock tubes, 224, 301

applications of, 302
Shock tunnels, 305
Shock wave, 5, 19

definition of, 66, 153
Similarity parameters, 70
Single particle collision frequency, 112
Slip flow, 199
Small-density ratio assumption, 196
Sound wave, 66

definition of, 11, 13
Specialized energy equation, 122
Species continuity equation, 159

alternative forms of, 151
differential form of, 150
integral form of, 150

Specific heat
at constant pressure, 71, 142, 187
for a chemically reacting mixture,

143
for frozen flow, 143

at constant volume, 71, 181, 188
for a chemically reacting mixture,

143
for frozen flow, 141, 143

Specific heats ratio, 37
Specific stagnation enthalpy, 31
Specific static enthalpy, 31
Speed distribution function, 115, 118
Speed of sound, 9, 11, 22, 23,

in a chemically reacting mixture, 188
for a perfect gas, 23
frozen, 148
in a chemically reacting mixture, 148

Stagnation pressure, 31
drop, 42

Stagnation pressure behind
a normal shock wave, 42, 204

Stagnation region, 200
State equation, 110

for a perfect gas, 14
kinetic theory equivalent of, 110, 182

State postulate, 106, 107
State sum, 94, 178
Steady-flow adiabatic ellipse, 74
Steady-flow energy equation, 73
State variable, 28, 32
Steps for CFD code development, 234
Stiff equations, 156
Stratified flow, 72
Subsonic flow, 17, 66

compressible, 74
incompressible, 74

Substantial derivative, 151, 152
Supersonic flow, 5, 11, 66
Supersonic/hypersonic

arbitrary body program (S/HABP),
240

Temperature rise, 15
Theorem of equipartition of

energy, 104, 180
Thermal conduction, 28, 41, 212

coefficient, 163, 191
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Thermal, chemical, and global
equilibrium conditions, 209

Thermal equation of state, 33, 145
Thermal equilibrium, 208, 209, 314
Thermodynamic probability, 87, 92, 96
Thermodynamics of fluid flow, 27
Thermodynamic equilibrium, 83, 94,

121, 141
Thermally perfect flow, 79
Thermally perfect gas, 33, 34, 313
Thermal properties, 60
Three-temperature model, 209
Total temperature, 17
Total Variation Diminishing

(TVD) scheme, 257
Trajectory dependence, 316
Transition flow, 200
Translational energy, 88, 89, 99, 100

per unit mass, 104
Transonic flow, 66, 74
Transport phenomena, 153, 163
Transport properties,

in high-temperature gases, 163
TVD Scheme, 254, 258
Two-layer CFD Models, 239

characteristics of, 240
Two-layer flow fields, 242

Universal gas constant, 14, 96, 110, 118

Van der Waal’s equation, 317
Velocity distribution function, 116, 117

Velocity of sound, 66
Vibrational energy, 83, 88, 89

expression for, 100
Vibrationally frozen flow, 141, 187
Vibrational quantum number, 100
Vibrational rate equation, 152, 159
Viscosity coefficient, 163, 165, 211

empirical relation for, 211
Viscous interaction parameter, 235
Viscous interaction with

external flow, 235
Viscous and rarefaction effects, 316
Volume modulus of elasticity, 8, 22
Volumetric heating, 153
Vorticity interaction regime, 200, 226

Wave propagation, 65
Waves,

compression, 5
expansion, 5
left-running, 66
Mach, 5
right-running, 66
shock, 5

Working facilities, 306

Yee’s symmetric TVD scheme, 254, 258

Zone of action, 17, 18, 24
Zones in a high-temperature flow

past a blunt-nosed body, 162
Zone of silence, 17, 18
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