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bodies, the physics of gravitational waves, and the impact of radiative losses on gravitating
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examines real-life applications, such as planetary motion around the Sun, the timing of
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Preface

During the past forty years or so, spanning roughly our careers as teachers and research
scientists, Einstein’s theory of general relativity has made the transition from a largely
mathematical curiosity with limited relevance to the real world to arguably the centerpiece
of our effort to understand the universe on all scales.

At the largest scales, those of the universe as a whole, cosmology and general relativity
are joined at the hip. You can’t do one without the other. At the smallest scales, those of
the Planck time, Planck length, and Planck energy, general relativity and particle physics
are joined at the hip. String theory, loop quantum gravity, the multiverse, branes and bulk –
these are arenas where the geometry of Einstein and the physics of the quantum may be
inextricably linked. These days it seems that you can’t do one without the other.

At the intermediate scales that interest astronomers, general relativity and astrophysics
are becoming increasingly linked. You can still do one without the other, but it’s becoming
harder. One of us is old enough to remember a time when the majority of astronomers felt
that black holes would never amount to much, and that it was a waste of time to worry about
general relativity. Today black holes and neutron stars are everywhere in the astronomy
literature, and gravitational lensing – the tool that relies on the relativistic bending of light –
is used for everything from measuring dark energy to detecting exoplanets.

Given the surge of interest in general relativity, it is no surprise that the last several years
have witnessed the publication of a multitude of new textbooks on Einstein’s theory. Many
of them are cut from a very similar cloth: they cover the fundamentals of the theory at
an introductory level, including the spacetime formulation of special relativity, elements
of differential geometry, the Einstein field equations, black holes, gravitational waves, and
cosmology. This book is cut from a very different cloth. Here you will not (spoiler alert!)
find any discussion of cosmology, and although black holes will appear in many places,
you will not find anything about the joys and wonders of the Kerr metric.

This book is about approximations to Einstein’s theory of general relativity, and their
applications to planetary motion around the Sun, to the timing of binary pulsars, to grav-
itational waves emitted by binary black holes, and to many other real-life, astrophysical
systems.

The first approximation to general relativity is, of course, Newton’s gravity. Although the
theories are conceptually very different, it must be admitted that the overwhelming majority
of phenomena in the universe can be very adequately described by the laws of Newtonian
gravity. To a high degree of accuracy, Newton rules the Sun, the Earth, the solar system,
all normal stars, galaxies, and clusters of galaxies. Accordingly, almost a quarter of this
book is devoted to Newton’s theory. This choice reflects one of our (not so) hidden agendas.
During our careers of teaching general relativity and advising graduate students, we have

xi
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xii Preface

too often encountered students who are superbly motivated to study Einstein’s theory, but
who cannot say more than “inverse square law” and “elliptical orbits” when asked what they
know about Newtonian gravity. In our view, general relativity is a theory of gravity, and if
you wish to comprehend its importance for astrophysics, you must first master what Newton
has to say about gravitating bodies, rotating bodies, tidally interacting bodies, perturbed
Keplerian orbits, and so on. We therefore make it our mission, in Chapters 1, 2, and 3, to
provide a thorough discussion of the wonders of Newtonian gravity.

In the following two chapters we quickly review special relativity, the foundations of
general relativity as a metric theory of gravity, the mathematical formulation of the theory,
and its most famous solution, the Schwarzschild metric. We emphasize that Chapters 4 and
5 are very much a minimal package. The coverage is sufficient for our intended purposes in
the remainder of the book, but it is no substitute for a proper education in general relativity
that can be acquired from the traditional textbooks.

We get to our main point by Chapter 6. This is the development of a set of systematic
schemes, known as post-Minkowskian theory and post-Newtonian theory, for obtaining
approximate solutions to the Einstein field equations. The idea is to go from the exact
theory, which governs the behavior of arbitrarily strong fields, such as those near black
holes, to a useful approximation that applies to weak fields, such as those inside and near
the Sun, those inside and near white dwarfs, and those at a safe distance from neutron stars
and black holes. The approximation, of course, reproduces the predictions of Newtonian
theory, but we go beyond this and formulate a method of approximation that can be pushed
systematically to higher and higher order, and generate increasingly accurate descriptions
of a weak gravitational field. Along the way, we make the case that this approximation
can also describe important situations involving compact objects such as neutron stars and
black holes; not the up-close-and-personal geometry of a compact object, to be sure, but its
motion around another body (compact or not), so long as the mutual gravitational attraction
is weak.

This program occupies us through Chapters 6, 7, 8, and 9. In Chapter 10 we apply the
approximation methods to the description of relativistic effects on the dynamics of the solar
system, the measurement of time on the Earth’s surface and in orbit, the bending of light
by a massive body, and the dynamics of spinning bodies. In Chapter 11 we explore the rich
physics of gravitational waves, and in Chapter 12 we investigate the impact of radiative
losses on the dynamics of gravitating systems. We conclude the book in Chapter 13 with a
brief overview of alternative theories of gravity.

The central theme of this book is therefore the physics of weak gravitational fields. The
reader may object that we give up too much by eliminating strong fields from our discussion;
after all, exact solutions to the Einstein field equations describe the full richness of curved
spacetime, whether strong or weak. Unfortunately, there are extremely few exact solutions to
Einstein’s equations that are physically interesting. The Schwarzschild solution is obviously
interesting and important, and so is the Kerr solution for rotating black holes (although
the Kerr metric makes no appearance in this book). But no exact solution to Einstein’s
equations has ever been found that describes a simple double-star system in orbital motion.
And no exact solution is known that describes any kind of bounded, physical system that
radiates gravitational waves.
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The problem is that Einstein’s field equations are so complicated that it is almost always
necessary to impose a high degree of symmetry (spherical symmetry, spatial homogeneity,
stationarity, etc.) in order to make progress toward finding a solution. Furthermore, a
solution to Einstein’s equations is, by definition, a spacetime; it must encompass the entire
past history and future fate of the system, everywhere in space. For a binary-star system,
for example, the solution must, at least in principle, run from the distant past, when a
tenuous cloud of gas coalesced to form the stars, all the way to the distant future, when
the stars, having possibly collapsed to form neutron stars or black holes along the way,
have merged into a single object (possibly a single black hole); it must also describe the
gravitational waves that are generated during the entire time by the orbital motion and
merger of the two stars, and by the relaxation of the merged object to a final stationary state.
It should not come as a surprise that nobody has found a solution that describes such a wide
range of phenomena. Ironically, a body of beautiful mathematical work has demonstrated
conclusively that given suitable initial conditions, a solution to Einstein’s equations always
exists, at least within a specified part of the spacetime. Sadly, such existence theorems do
not tell us how to find such solutions.

Often, when one talks about exact solutions to the Einstein field equations, one means
analytic solutions, or solutions that can be expressed in terms of reasonably well known
mathematical functions. Perhaps this is too restrictive. What about numerical solutions?
Given a sufficiently powerful computer, it should be possible to solve Einstein’s equations
numerically without imposing any symmetries. After all, the field equations of general
relativity are partial differential equations, and these can readily be converted into the kind
of difference equations that are suited to digital computing. This has turned out to be a
very difficult challenge. Part of the difficulty is computational: simulation of the simplest
spacetimes requires enormous computational power and memory. Part of the difficulty is
mathematical: one must identify, from a broad spectrum of possibilities, a formulation of
the field equations that is best suited for numerical work. There has been enormous progress
on these fronts in the last 20 years, and spectacular breakthroughs have occurred in the last
ten. Today (in 2013), numerical relativity is a major sub-branch of gravitational physics. It
is now possible to simulate the final dozen orbits of two inspiralling and merging compact
objects (black holes or neutron stars), the gravitational collapse of a dead stellar core on its
way to form a supernova, the formation and evolution of accretion disks around black holes,
the interaction of a binary neutron-star system with the strong magnetic fields it supports,
and the generation of gravitational waves by such strongly gravitating systems.

As spectacular as this progress has been, at present it is still not possible to simulate the
final thousand orbits of a compact binary inspiral. The limitations are both technical (a vast
range of grid resolutions is required) and computational (insufficient memory and speed,
even with the largest parallel processors). But approximately 990 of those orbits can be
described by the weak-field methods that we develop in this book. It was found that there is a
very good agreement between the approximation methods and those of numerical relativity
when their domains of applicability overlap. So in addition to their obvious applications
to the solar system, the weak-field methods have proved to be unreasonably effective in
describing situations, such as the late stages of binary inspirals, where the fields are not so
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weak and the motions not so slow. And the combination of these methods with numerical
relativity has proved to be a powerful tool for many important problems.

The vast majority of high-precision experiments that were carried out to test general
relativity can be fully understood on the basis of the post-Newtonian methods that we
develop in this book. And even though the departures from Newtonian gravity are very,
very small on and around Earth, modern technology has made them not only detectable, but
also essentially important in the precision measurement of time. A well-known example is
the Global Positioning System, which simply would not work if relativistic corrections were
not taken into account. Today every relativist proudly points to the GPS as an example –
admittedly, perhaps, the only example – of a practical application of general relativity. We
describe how this comes about in Chapter 10.

Finally, a central motivation for this book is the expectation that soon after its initial pub-
lication, gravitational waves will be measured directly and routinely, and that gravitational-
wave astronomy, enabled by ground-based laser interferometers, by pulsar timing arrays,
and possibly by a future space-based antenna, will become a new standard way of “listen-
ing” to the universe. The approximation methods that we develop in this book are the tools
for understanding gravitational radiation, and it is our hope that students and researchers
wishing to join this new scientific venture will turn to our book to learn and master these
tools.
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1 Foundations of Newtonian gravity

The central theme of this book is gravitation in its weak-field aspects, as described within
the framework of Einstein’s general theory of relativity. Because Newtonian gravity is
recovered in the limit of very weak fields, it is an appropriate entry point into our discussion
of weak-field gravitation. Newtonian gravity, therefore, will occupy us within this chapter,
as well as the following two chapters.

There are, of course, many compelling reasons to begin a study of gravitation with a
thorough review of the Newtonian theory; some of these are reviewed below in Sec. 1.1. The
reason that compels us most of all is that although there is a vast literature on Newtonian
gravity – a literature that has accumulated over more than 300 years – much of it is
framed in old mathematical language that renders it virtually impenetrable to present-day
students. This is quite unlike the situation encountered in current presentations of Maxwell’s
electrodynamics, which, thanks to books such as Jackson’s influential text, are thoroughly
modern. One of our main goals, therefore, is to submit the classical literature on Newtonian
gravity to a Jacksonian treatment, to modernize it so as to make it accessible to present-day
students. And what a payoff is awaiting these students! As we shall see in Chapters 2 and
3, Newtonian gravity is most generous in its consequences, delivering a whole variety of
fascinating phenomena.

Another reason that compels us to review the Newtonian formulation of the laws of
gravitation is that much of this material will be recycled and put to good use in later
chapters of this book, in which we examine relativistic aspects of gravitation. Newtonian
gravity, in this context, is a necessary warm-up exercise on the path to general relativity.

In this chapter we describe the foundations of the Newtonian theory, and leave the
exploration of consequences to Chapters 2 and 3. We begin in Sec. 1.1 with a discussion of
the domain of validity of the Newtonian theory. The main equations are displayed in Sec. 1.2
and derived systematically in Secs. 1.3 and 1.4. The gravitational fields of spherical and
nearly-spherical bodies are described in Sec. 1.5, and in Sec. 1.6 we derive the equations
that govern the center-of-mass motion of extended fluid bodies.

Gravitation rules the world, and before Einstein ruled gravitation, Newton was its king.
In this chapter and the following two we pay tribute to the king.

1.1 Newtonian gravity

The gravitational theory of Newton is an extremely good representation of gravity for a
host of situations of practical and astronomical interest. It accurately describes the structure

1
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2 Foundations of Newtonian gravity

Table 1.1 Values of ε for representative gravitating systems.

Earth’s orbit around the Sun 10−8

Solar system’s orbit around the galaxy 10−6

Surface of the Sun 10−5

Surface of a white dwarf 10−4

Surface of a neutron star 0.1
Event horizon of a black hole ∼1

of the Earth and the tides raised on it by the Moon and Sun. It gives a detailed account of
the orbital motion of the Moon around the Earth, and of the planets around the Sun. To be
sure, it is now well established that the Newtonian theory is not an exact description of the
laws of gravitation. As early as the middle of the 19th century, observations of the orbit
of Mercury revealed a discrepancy with the prediction of Newtonian gravity. This famous
discrepancy in the rate of advance of Mercury’s perihelion was resolved by taking into
account the relativistic corrections of Einstein’s theory of gravity. The high precision of
modern measuring devices has made it possible to detect relativistic effects in the lunar orbit,
and has made it necessary to take relativity into account in precise tracking of planets and
spacecraft, as well as in accurate measurements of the positions of stars using techniques
such as Very Long Baseline Radio Interferometry (VLBI). Even such mundane daily
activities as using the Global Positioning System (GPS) to navigate your car in a strange
city require incorporation of special and general relativistic effects on the observed rates of
the orbiting atomic clocks that regulate the GPS network. But apart from these specialized
situations requiring very high precision, Newtonian gravity rules the solar system.

Newtonian gravity also rules for the overwhelming majority of stars in the universe. The
structure and evolution of the Sun and other main-sequence stars can be completely and
accurately treated using Newtonian gravity. Only for extremely compact stellar objects,
such as neutron stars and, of course, black holes, is general relativity important. Newtonian
gravity is also perfectly capable of handling the structure and evolution of galaxies and
clusters of galaxies. Even the evolution of the largest structures in the universe, the great
galactic clusters, sheets and voids, whose formation is dominated by the gravitational
influence of dark matter, are frequently modelled using numerical simulations based on
Newton’s theory, albeit with the overall expansion of the universe playing a significant role.

Generally speaking, the criterion that we use to decide whether to employ Newtonian
gravity or general relativity is the magnitude of a quantity called the “relativistic correction
factor” ε:

ε ∼ G M

c2r
∼ v2

c2
, (1.1)

where G is the Newtonian gravitational constant, c is the speed of light, and where M , r ,
and v represent the characteristic mass, separation or size, and velocity of the system under
consideration. The smaller this factor, the better is Newtonian gravity as an approximation.
Table 1.1 shows representative values of ε for various systems.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-01 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:57

3 1.2 Equations of Newtonian gravity

Context is everything, of course. It is now accepted that general relativity, not Newtonian
theory, is the “correct” classical theory of gravitation. But in the appropriate context,
Newton’s theory may be completely adequate to do the job at hand to the precision required.
For example, Table 1.1 implies that a description of planetary motion around the Sun, at
a level of accuracy limited to (say) one part in a million, can safely be based on the
Newtonian laws. The Newtonian theory can also be exploited to calculate the internal
structure of white dwarfs, provided that one is content with a level of accuracy limited to
one part in one thousand. For more compact objects, such as neutron stars and black holes,
Newtonian theory is wholly inadequate.

1.2 Equations of Newtonian gravity

Most undergraduate textbooks begin their treatment of Newtonian gravity with Newton’s
second law and the inverse-square law of gravitation:

m I a = F , (1.2a)

F = −GmG M

r2
n . (1.2b)

In the first equation, F is the force acting on a body of inertial mass m I situated at position
r(t), and a = d2r/dt2 is its acceleration. In the second equation, the force is assumed to be
gravitational in nature, and to originate from a gravitating mass situated at the origin of the
coordinate system. The force law involves mG , the passive gravitational mass of the first
body at r , while M is the active gravitational mass of the second body. The quantity G is
Newton’s constant of gravitation, equal to 6.6738 ± 0.0008 × 10−11 m2 kg−1 s−2. The force
is attractive, it varies inversely with the square of the distance r := |r| = (x2 + y2 + z2)1/2,
and it points in the direction opposite to the unit vector n := r/r . An alternative form of
the force law is obtained by writing it as the gradient of a potential U = G M/r , so that

F = mG∇U . (1.3)

This Newtonian potential will play a central role in virtually all chapters of this book.
If the inertial and passive gravitational masses of the body are equal to each other,

m I = mG , then the acceleration of the body is given by a = ∇U , and its magnitude is
a = G M/r2. Under this condition the acceleration is independent of the mass of the body.
This statement is known as the weak equivalence principle (WEP), and it was a central
element in Einstein’s thinking on his way to the concepts of curved spacetime and general
relativity. Although Newton did not explicitly use our formulation in terms of inertial
and passive masses, he was well aware of the significance of their equality. In fact, he
regarded this equality as so fundamental that he opened his treatise Philosophiae Naturalis
Principia Mathematica with a discussion of it; he even alluded to his own experiments
showing that the periods of pendulums were independent of the mass and type of material
suspended, which establishes the equality of inertial and passive masses (he referred to them
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as the “quantity” and “weight” of bodies, respectively). Twentieth-century experiments have
shown that the two types of mass are equal to parts in 1013 for a wide variety of materials (see
Box 1.1).

Box 1.1 Tests of the weak equivalence principle

Ausefulway to discuss experimental tests of theweak equivalence principle is to parameterize theway it could
be violated. In one parameterization, we imagine that a body is made up of atoms, and that the inertial mass
m I of an atom consists of the sumof all themass and energy contributions of its constituents. Butwe suppose
that the different forms of energy may contribute differently to the gravitational mass mG than they do to
m I . One way to express this is to write

mG = m I (1 + η) ,

whereη is a dimensionless parameter that measures the difference. Because different forms of energy arising
from the relevant subatomic interactions (such as electromagnetic and nuclear interactions) contribute dif-
ferent amounts to the total, depending on atomic structure, η could depend on the type of atom. For exam-
ple, electrostatic energy of the nuclear protons contributes a much larger fraction of the total mass for high-Z
atoms than for low-Z atoms.
Using this parameterization, we find from Eq. (1.2) that the acceleration of the body is given by

a = −mG

m I

G M

r2
n = − (1 + η)

G M

r2
n .

The difference in acceleration between two materials of different composition will then be given by

�a = a1 − a2 = − (η1 − η2)
G M

r2
n .

One way to place a bound onη1 − η2 is to drop two different objects in the Earth’s gravitational field (g =
G M/r2 ≈ 9.8 m s−2), and compare their accelerations, or how long they take to fall. Although legend
has it that Galileo Galilei verified the equivalence principle by dropping objects off the Leaning Tower of Pisa
around 1590, in fact experiments like this had already been performed and were well known to Galileo; if he
did indeed drop things off the Tower, hemay simply have been performing a kind of classroom demonstration
of an established fact for his students. Unfortunately, the “Galileo approach” is plaguedby experimental errors,
such as the difficulty of releasing the objects at exactly the same time, by the effects of air drag, and by the
short time available for timing the drop.
A better approach is to balance the gravitational force (which depends onmG ) by a support force (which

depends onm I ); the classic model is the pendulum experiments performed by Newton and reported in his
Principia. The period of the pendulum depends on mG/m I , g, and the length of the pendulum. These
experiments are also troubled by air drag, by errors in measuring or controlling the length of the pendulum,
and by errors in timing the swing.
The best approach for laboratory testswas pioneered byBaronRoland von Eötvös, a Hungarian geophysicist

working around the turn of the 20th century. He developed the torsion balance, schematically consisting of a
rod suspended by awire near itsmid-point,with objects consisting of differentmaterials attached at each end.
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The point where thewire is attached to achieve a horizontal balance depends only on the gravitationalmasses
of the two objects, so this configuration does not tell us anything. But if an additional gravitational force can
be applied in a direction perpendicular to the supporting wire, and if there is a difference inmG/m I for the
two bodies, then the rodwill rotate in one direction or the other and thewirewill twist until the restoring force
of the twisted wire halts the rotation. There is no effect whenmG/m I is the same for the two bodies. The
additional force could be provided by a nearby massive body in the laboratory, a nearby mountain, the Sun,
or the galaxy. Eötvös realized that, because of the centrifugal force produced by the rotation of the Earth, the
wire hangs not exactly vertically, but is tilted slightly toward the south; at the latitude of Budapest, Hungary,
the angle of tilt is about 0.1 degrees. Thus the gravitational acceleration of the Earth has a small component,
about g/400, perpendicular to the wire, in a northerly direction. By slowly rotating the whole apparatus
carefully about the vertical direction, Eötvös could compare the twist in two opposite orientations of the rod,
and thereby eliminate a number of sources of error.
Eötvös found nomeasurable twist, within his experimental errors, for many different combinations of ma-

terials, and hewas able to place an upper limit of |η1 − η2| < 3 × 10−9, corresponding to a limit on any
difference in acceleration of the order of 7 × 10−11 m s−2. Even though the driving acceleration is only a
tiny fraction of g, there is an enormous gain in sensitivity to tiny accelerations, mainly because the apparatus
is almost static and can be observed for long periods of time. Torsion balance experiments were improved by
Robert Dicke in Princeton and Vladimir Braginsky in Moscow during the 1960s and 1970s, and again during
the 1980s as part of a search for a hypothetical “fifth” force (no evidence for such a force was found). Themost
recent experiments, performed notably by the “Eöt-Wash” group at the University of Washington, Seattle,
have reached precisions of a few parts in1013; these experiments used the Sun or the galaxy as the source of
gravity.
All these experiments exploit only a tiny fraction of the available acceleration. The only way to make full

use of g while maintaining high sensitivity to acceleration differences is to design a “perpetual” Galileo drop
experiment, namely by putting the different bodies in orbit around the Earth. Various satellite tests of the
equivalenceprinciple are inpreparation,with thegoal of reaching sensitivities ranging from10−15 to10−18.
Such experiments come with a high monetary cost: compared to laboratory experiments, space experiments
are extraordinarily expensive.
Another test of the equivalence principle was carried out using the Earth–Moon system. The two bodies

have slightly different compositions, with the Earth dominated by its iron–nickel core, and the Moon domi-
nated by silicates. If therewere a violation of the equivalence principle, the twobodieswould fallwith different
accelerations toward the Sun, and this would have an effect on the Earth–Moon orbit. Lunar laser ranging is a
technique of bouncing laser beams off reflectors placed on the lunar surface during the American and Soviet
lunar landing programs of the 1970s, and it has reached the capability ofmeasuring the Earth–Moon distance
at the sub-centimeter level. No evidence for such a perturbation in the Earth–Moon distance has been found,
so that the Earth and the Moon obey the equivalence principle to a few parts in 1013. We describe the laser
ranging measurements of the Moon in more detail in Box 13.2.
The weak equivalence principle is one of the most important foundational elements of relativistic theories

of gravity. We will return to it in Chapter 5, on our way to general relativity.
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We shall assume that the weak equivalence principle holds perfectly, and make this an
axiom of Newtonian gravity. We shall return to this principle in Chapter 5 and present it
as an essential foundational element of general relativity, and we shall return to it again in
Chapter 13 – in a different version known as the strong equivalence principle – and present
it as a highly non-trivial property of massive, self-gravitating bodies in general relativity.

The weak equivalence principle allows us to rewrite Eqs. (1.2) in the form of an equation
of motion for the body at r(t), and a field equation for the potential U :

a = ∇U , (1.4a)

U = G M/r . (1.4b)

These equations are limited in scope, and they do not yet form the final set of equations that
will be adopted as the foundations of Newtonian gravity. Their limitation has to do with
the fact that they apply to a point mass situated at r(t) being subjected to the gravitational
force produced by another point mass situated at the origin of the coordinate system. We
are interested in much more general situations. First, we wish to consider the motion of
extended bodies made up of continuous matter (solid, fluid, or gas), allowing the bodies
to be of arbitrary size, shape, and constitution, and possibly to evolve in time according
to their own internal dynamics. Second, we wish to consider an arbitrary number of such
bodies, and to put them all on an equal footing; each body will be subjected to the gravity
of the remaining bodies, and each will move in response to this interaction.

These goals can be achieved by generalizing the primitive Eqs. (1.4) to a form that applies
to a continuous distribution of matter. We shall perform this generalization in Secs. 1.3
and 1.4, but to complete the discussion of this section, we choose to immediately list and
describe the resulting equations.

Our formulation of the fundamental equations of Newtonian gravity relies on a fluid
description of matter, in which the matter distribution is characterized by a mass-density
field ρ(t, x), a pressure field p(t, x), and a velocity field v(t, x); these quantities depend on
time t and position x within the fluid. Our formulation relies also on the Newtonian potential
U (t, x), which also depends on time and position, and which provides a description of the
gravitational field. The equations that govern the behavior of the matter are the continuity
equation,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.5)

which expresses the conservation of mass, and Euler’s equation,

ρ
dv

dt
= ρ∇U − ∇ p , (1.6)

which is the generalization of Eq. (1.4a) to continuous matter; here

d

dt
:= ∂

∂t
+ v · ∇ , (1.7)

is the convective time derivative associated with the motion of fluid elements. The equation
that governs the behavior of the gravitational field is Poisson’s equation

∇2U = −4πGρ , (1.8)
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where

∇2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1.9)

is the familiar Laplacian operator; Poisson’s equation (known after its originator Siméon
Denis Poisson, who unfortunately is not related to either author of this book), is the
generalization of Eq. (1.4b) to continuous matter.

As was stated previously, these equations will be properly introduced in the following
two sections. To complete the formulation of the theory we must impose a relationship
between the pressure and the density of the fluid. This relationship, known as the equation
of state, takes the general form of

p = p(ρ, T, · · · ) , (1.10)

in which the pressure is expressed as a function of the density, temperature, and possibly
other relevant variables such as chemical composition. The equation of state encodes
information about the microphysics that governs the fluid, and this information must be
provided as an input in most applications of the theory.

A complete description of a physical situation involving gravity and a distribution of
matter can be obtained by integrating Eqs. (1.5), (1.6), and (1.8) simultaneously and self-
consistently. The solutions must be subjected to suitable boundary conditions, which will
be part of the specification of the problem. All of Newtonian gravity is contained in these
equations, and all associated phenomena follow as consequences of these equations.

1.3 Newtonian field equation

In this section we examine the equations that govern the behavior of the gravitational field,
and show how Eq. (1.8) is an appropriate generalization of the more primitive form of
Eq. (1.4b).

We recall that the relation U = G M/r applies to a point body of active gravitational mass
M situated at the origin of the coordinate system. Suppose that we are given an arbitrary
number N of point bodies, and that we assign to each one a label A = 1, 2, · · · , N . The
mass and position of each body are then denoted MA and r A(t), respectively. If we assume
that the total Newtonian potential U is a linear superposition of the individual potentials
UA created by each body, we have that the potential at position x is given by

U =
∑

A

UA = G
∑

A

MA

|x − r A| . (1.11)

The generalization of this relation to a continuous distribution of matter is straightforward.
We convert the discrete sum

∑
A MA to a continuous integral

∫
d3x ′ρ(t, x′), and we replace

the discrete positions r A with the continuous integration variable x′. The result is

U (t, x) = G

∫
ρ(t, x′)
|x − x′| d3x ′ , (1.12)
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one of the key defining equations for the Newtonian potential. The integral can be evaluated
as soon as the density field ρ(t, x′) is specified, regardless of whether ρ is a proper solution
to the remaining fluid equations. As such, Eq. (1.12) gives U as a functional of an arbitrary
function ρ. The potential, however, will be physically meaningful only when ρ itself is
physically meaningful, which means that it must be a proper solution to the continuity and
Euler equations.

The integral equation (1.12) can easily be transformed into a differential equation for the
Newtonian potential U . The transformation relies on the identity

∇2 1

|x − x′| = −4πδ(x − x′) , (1.13)

in which δ(x − x′) := δ(x − x ′)δ(y − y′)δ(z − z′) is a three-dimensional delta function
defined by the properties

δ(x − x′) = 0 when x 	= x′, (1.14a)

f (x)δ(x − x′) = f (x′)δ(x − x′) for any smooth function f (x), (1.14b)∫
δ(x − x′) d3x ′ = 1 for any domain of integration that encloses x. (1.14c)

These properties further imply that δ(x′ − x) = δ(x − x′). The identity of Eq. (1.13) is
derived in Box 1.2. If we apply the Laplacian operator on both sides of Eq. (1.12) and
exchange the operations of integration and differentiation on the right-hand side, we obtain

∇2U = G

∫
ρ(t, x′)∇2 1

|x − x′| d3x ′

= −4πG

∫
ρ(t, x′)δ(x − x′) d3x ′

= −4πGρ(t, x) ;

the identity was used in the second step, and the properties of the delta function displayed
in Eq. (1.14) allowed us to evaluate the integral. The end result is Poisson’s equation,

∇2U = −4πGρ , (1.15)

whose formulation was anticipated in Eq. (1.8).
It is possible to proceed in the opposite direction, and show that Eq. (1.12) provides

a solution to Poisson’s equation (1.15). A powerful tool in the integration of differential
equations is the Green’s function G(x, x′), a function of a field point x and a source point
x′. In the specific context of Poisson’s equation, the Green’s function is required to be a
solution to

∇2G(x, x′) = −4πδ(x − x′) , (1.16)

which is recognized as a specific case of the general differential equation, corresponding
to a point mass situated at x′. Armed with such an object, a formal solution to Eq. (1.15)
can be expressed as

U (t, x) = G

∫
G(x, x′)ρ(t, x′) d3x ′ ; (1.17)
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Box 1.2 Proof that∇2|x − x′|−1 = −4πδ(x − x′)

To simplify the proof of Eq. (1.13) we set x′ = 0without loss of generality; this can always be achieved by a
translation of the coordinate system. This gives rise to the simpler equation

∇2r−1 = −4πδ(x) , (1)

with r := |x|.
We first show that∇2r−1 = 0whenever x 	= 0. Derivatives of r−1 can be evaluated with the help of

the identities
∂r

∂x j
= n j ,

∂n j

∂xk
= ∂nk

∂x j
= 1

r

(
δ jk − n j nk

)
,

where x j := (x, y, z) is a component notation for the vector x,n j := x j/r , and δ jk is the Kronecker
delta, equal to one when j = k and zero otherwise. These equations hold provided that r 	= 0. According
to this we have that

∂

∂x j
r−1 = − 1

r2
n j

and

∂2

∂x j∂xk
r−1 = 1

r3

(
3n j nk − δ jk

)
.

Because n is a unit vector, it follows that∇2r−1 = 0whenever r 	= 0.
To handle the special case r = 0 we introduce the vector j := ∇r−1 and write the left-hand side of

Eq. (1) as∇ · j . Integrating this over a volume V bounded by a spherical surface S of radius η, we obtain∫
V

∇ · j d3x =
∮

S
j · d S

by virtue of Gauss’s theorem. Here d S is an outward-directed surface element on S, which can be expressed
as d S = nη2 d
, with d
 denoting an element of solid angle centered at n. The vector j is equal
to−η−2n on S, and evaluating the surface integral returns−4π .
Because ∇2r−1 vanishes when x 	= 0 and integrates to −4π whenever the integration domain

encloses x = 0, we conclude that it is distributionally equal to−4πδ(x). The proof is complete.

the steps involved in establishing that this U is indeed a solution to Poisson’s equation are
identical to those that previously led us to Eq. (1.15) from Eq. (1.12). The difference is
that in the earlier derivation the identity of the Green’s function was already known. In the
approach described here, the result follows simply by virtue of Eq. (1.16). It is not difficult,
of course, to identify the Green’s function: comparison with Eq. (1.13) allows us to write

G(x, x′) = 1

|x − x′| . (1.18)

Not surprisingly, the Green’s function represents the potential of a point mass situated
at x′.
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1.4 Equations of hydrodynamics

In this section we develop the foundations for the equations of hydrodynamics, as displayed
previously in Eqs. (1.5) and (1.6).

1.4.1 Motion of fluid elements

Definition of fluid element

We begin by describing any material body as being made up of fluid elements, volumes of
matter that are very small compared to the size of the body, but very large compared to the
inter-molecular distance, so that the element contains a macroscopic number of molecules.
The fluid description of matter is a coarse-grained one in which the molecular fluctuations
are smoothed over, and the fluid element is meant to represent a local average of the matter
contained within. The coarse-graining could be described in great detail, for example, by
introducing a microscopic density η(t, x) that fluctuates wildly on the molecular scale, as
well as smoothing function w(|x − x′|) that varies over a much larger scale; the macroscopic
density would then be defined as ρ(t, x) = ∫

η(t, x′)w(|x − x′|) d3x ′. We will not go into
such depth here, and keep the discussion at an intuitive, elementary level.

Each fluid element can be characterized by a mass density ρ (the mass of the element
divided by its volume), a pressure p (the normal force per unit area acting on the surface
of the element), and a velocity v (the average velocity of the molecules in the element).
Other variables, such as viscosity, temperature, entropy, mean atomic weight, opacity, and
so on, can also be introduced (some of these appear in Sec. 1.4.2). Apart from the velocity,
all fluid variables are assumed to be measured by an observer who is momentarily at rest
with respect to the fluid element. This description is adequate in a Newtonian setting, but
it will have to be refined later, when we transition to the relativistic setting of Chapters 4
and 5.

Perhaps the most important aspect of a fluid element is that it keeps its contents intact
as it moves within the fluid. During the motion the element may alter its shape and even
its volume, but it will always contain the same collection of molecules; by definition no
molecule is allowed to enter or leave the element. (It may be helpful to think of the molecules
as being tagged, and of the fluid element as a bag that contains the tagged molecules.) A
very important consequence of this property is that the total mass contained in a fluid
element will never change; it is a constant of the element’s motion.

Euler equation

We now apply Newton’s laws to a selected fluid element of volume V . The mass of the
element is ρV , and from Newton’s second law we have that

(ρV)a = F , (1.19)
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where F is the net force acting on the element, and a is its acceleration. This can be
expressed as dv/dt , the rate of change of the element’s velocity vector as it moves within
the fluid. It is important to observe that this rate of change follows the motion of the fluid
element, and that it does not keep the spatial position fixed; this observation gives rise to
an important distinction between the convective, or Lagrangian, derivative d/dt , which
follows the motion of the fluid, and the partial, or Eulerian, derivative ∂/∂t , which keeps
the spatial position fixed.

The Lagrangian time derivative d/dt takes into account both the intrinsic time evolution
of fluid variables and the variations that result from the motion of each fluid element. The
fluid changes its configuration in a time interval dt , and a selected fluid element moves from
an old position x to a new position x + dx. A fluid quantity f (t, x), such as the mass density
or a component of the velocity vector, changes by d f = f (t + dt, x + dx) − f (t, x) when
we follow the motion of the fluid element. To first order in the displacement this is d f =
(∂ f/∂t)dt + (∇ f ) · dx, or

d

dt
f (t, x) = ∂

∂t
f (t, x) + dx

dt
· ∇ f (t, x)

= ∂

∂t
f (t, x) + v · ∇ f (t, x) . (1.20)

This equation provides a link between the Lagrangian and Eulerian time derivatives.
Returning to Eq. (1.19), we assume that the force F acting on the fluid element comes

from gravity and pressure gradients. By analogy with the expression in Eq. (1.3), the
gravitational force is written as

Fgravity = (ρV)∇U , (1.21)

where we assume that the inertial mass density and passive gravitational mass density
are equal, as dictated by the weak equivalence principle. To derive an expression for the
pressure-gradient force, we consider a cubic fluid element, and for the moment we focus
our attention on the x-component of the force. The normal force acting on the face at
x = x1 is p(x1)A, in which A is the cross-sectional area of the fluid element. Similarly,
the normal force acting on the face at x = x2 = x1 + dx is −p(x2)A, with the minus sign
accounting for the different directions of the normal vector. It follows that the net force
acting in the x-direction is (p1 − p2)A ≈ −(dp/dx)�xA = −(dp/dx)V . Generalizing to
three dimensions, we find that the pressure-gradient force is given by

Fpressure = −V ∇ p . (1.22)

Inserting Eqs. (1.21) and (1.22) within Eq. (1.19) and dropping the common factor of V ,
we obtain Euler’s equation of hydrodynamics in a gravitational field,

ρ
dv

dt
= ρ∇U − ∇ p . (1.23)
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This equation (in spite of its name) is written in terms of the Lagrangian time derivative.
An alternative formulation is

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ρ∇U − ∇ p , (1.24)

and this involves the Eulerian time derivative.

Continuity equation

Conservation of the number of molecules in each fluid element implies that the mass of
each element stays constant as it moves within the fluid. This is expressed mathematically as
d(ρV)/dt = 0, in terms of the Lagrangian time derivative. It is simple to show, however (see
Box 1.3), that V−1dV/dt = ∇ · v, and the equation of mass conservation can be expressed
as

dρ

dt
+ ρ∇ · v = 0 . (1.25)

The Eulerian form of this equation is

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.26)

and in this guise it is known as the continuity equation.

Box 1.3 Proof thatV−1dV/dt = ∇ · v

Consider a cubic fluid element of sides L , volumeV = L3, moving with an averaged velocityv. The face of
the cube at x + L/2moves with a velocity v(x + L/2, y, z), while the face at x − L/2moves with
a velocity v(x − L/2, y, z). In a time�t the length of the cube in the x-direction changes by [vx (x +
L/2, y, z) − vx (x − L/2, y, z)]�t ≈ L(dvx/dx)�t . Repeating this argument for the y and
z-directions, we find that the change in the cube’s volume is

�V ≈ L3

(
1 + dvx

dx
�t

)(
1 + dvy

dy
�t

)(
1 + dvz

dz
�t

)
− L3 ≈ V∇ · v�t .

Taking the limit�t → 0, we obtain the desired result.

1.4.2 Thermodynamics of fluid elements

We now focus our attention on a selected fluid element. We assume that the molecular mean
free path (the average distance travelled by a molecule between collisions) as well as the
photon mean free path (the average distance travelled by a photon before being scattered
or absorbed by a molecule) are both very small compared to the size of the fluid element.
Equivalently, we assume that the time required for the fluid element to change in a significant
way is very long compared to the time scales that characterize interactions among molecules
and photons within the fluid element. It follows from these assumptions that at any given
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moment of time, the fluid element can achieve a state of local thermodynamic equilibrium
in which its matter content is characterized by a local temperature T (t, x), and in which the
photons are characterized by a black-body spectrum at the same temperature. We can also
ascribe a local entropy S(t, x), a local internal energy E(t, x), and other thermodynamic
variables to the fluid element. These quantities may vary from one fluid element to the
next, and they may vary with time, but they do so on time and distance scales that are
long compared to those associated with the molecular processes that drive each element
toward equilibrium. We can therefore apply the laws of thermodynamics locally to each
fluid element.

First and second laws

The first law of thermodynamics, applied to a fluid element, reads

dE = δQ + δW , (1.27)

in which E is the internal energy of the fluid element, δW = −p dV the work done on the
fluid element, and δQ the heat absorbed. This can be expressed as

δQ = (ρV)q dt − V∇ · H dt , (1.28)

where q is the energy per unit mass generated within the fluid element per unit time,
and H is the heat-flux vector, defined in such a way that H · d S is the heat crossing an
element of surface area (described by d S) per unit time. In general, ρq represents heat
that is generated internally (for example by chemical or nuclear reactions), and ∇ · H
represents heat imported from neighboring fluid elements (for example by heat conduction
or radiation). The second term can be motivated by considering a cubic element, and
examining the heat entering the element from the x-direction. The heat absorbed in a time
dt is given by the flux Hx (x) entering the face at x times the area A of that face, minus the
flux Hx (x + dx) leaving at x + dx times the area A. The net result is −∂ Hx/dx(A dx),
and including the y and z directions gives −V∇ · H dt , as required.

Defining the energy density ε := E/V , we can rewrite the first law of thermodynamics
in the form

dε − ε + p

ρ
dρ = (ρq − ∇ · H) dt . (1.29)

A useful alternative variable is the internal energy per unit mass � := ε/ρ, for which the
first law takes the form

d� + p d

(
1

ρ

)
=
(

q − 1

ρ
∇ · H

)
dt . (1.30)

The second law of thermodynamics states that for any reversible process, δQ = T dS ,
where S is the entropy of the fluid element. Introducing the entropy per unit mass s :=
S/(ρV), we have that

T ds =
(

q − 1

ρ
∇ · H

)
dt , (1.31)
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14 Foundations of Newtonian gravity

and the first law can now be expressed as

d� + p d

(
1

ρ

)
= T ds . (1.32)

As a special case of these laws, we consider a situation in which the fluid element, in
addition to being in local thermodynamic equilibrium, is also in thermal equilibrium with
neighboring elements. In such circumstances there is no net transfer of heat, and the element
evolves adiabatically, with ds = 0. This requires that

∇ · H = ρq , (1.33)

and the first law can then be expressed in the restricted form

d� = −p d

(
1

ρ

)
= p

ρ2
dρ . (1.34)

Equation of state

Given a system of known composition, labelled symbolically by X , there exists a relation
p = p(ρ, T ; X ) between the pressure, density, and temperature called the equation of state.
The equation of state is a necessary input into any application of the laws of thermodynam-
ics, and to complete our discussion we provide a brief review of some of the equations of
state that are relevant to the description of stellar configurations. We make no attempt to be
complete here, as equations of state are the subject of a multitude of textbooks on statistical
mechanics and thermodynamics.

The temperature inside most main-sequence stars is extremely high, and typically the
kinetic energy of the atoms is very large compared to their interaction energy; the stellar
matter can therefore be taken to be non-interacting, and to make up an ideal gas. Most
stellar interiors are completely ionized, and the free electrons can also be treated as an ideal
gas. The equation of state is then the familiar p = nkT , where n is the number density and
k is Boltzmann’s constant. The total pressure is the sum of the partial pressures, and the
ionic contribution is

pI = nI kT = ρ

μI mH
kT , (1.35)

where mH is the atomic mass unit, and μI is the mean atomic number of the ions. This is
defined by

1

μI
:=

∑
i

Xi

Ai
, (1.36)

where Xi is the fraction by mass of the i th species (
∑

i Xi = 1), and Ai is its atomic mass
number. For stars in which hydrogen and helium dominate over heavier elements (called
metals by stellar astrophysicists), one often writes μ−1

I := X + 1
4 Y + (1 − X − Y )〈A−1〉,

in which X is the mass fraction of hydrogen, Y is the mass fraction of helium, and 〈A−1〉
is an average of A−1

i over the metals.
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15 1.4 Equations of hydrodynamics

For the electrons we have that

pe = nekT = ρ

μemH
kT , (1.37)

where

1

μe
:=

∑
i

Zi Xi

Ai
, (1.38)

with Zi denoting the atomic number of the i th ionic species. Because Zi/Ai ≈ 1/2 for
most elements except hydrogen (for which Z/A = 1), we can approximate μ−1

e by X +
1
2 (1 − X ) = 1

2 (1 + X ) for most stellar materials. The total gas pressure is then

pgas =
(

1

μI
+ 1

μe

)
ρ

mH
kT := ρ

μmH
kT , (1.39)

where μ−1 := μ−1
I + μ−1

e . The energy density of such a classical ideal gas is given by
εgas = 3

2 pgas.
Another important constituent of stars is radiation. As we have seen, under conditions

of local thermodynamic equilibrium (which are upheld in stellar interiors) the radiation
within each fluid element can be treated as a black body of the same temperature T as the
fluid element. The equation of state and energy density for the radiation are given by

prad = 1

3
aT 4 , (1.40)

and εrad = aT 4 = 3prad, where

a := 8π5k4

15h3c3
(1.41)

is the radiation constant (σ := 1
4 ac is the Stefan-Boltzmann constant). The total pressure

inside a star is then p = pgas + prad, and the total energy density is ε = εgas + εrad.
At the sufficiently high densities that characterize dead stars such as white dwarfs and

neutron stars, matter becomes degenerate, and the equation of state changes dramatically.
This occurs when the temperature T and number density n are such that the characteristic
momentum (or uncertainty in the momentum) of a particle of mass m, �p ∼ √

mkT ,
multiplied by the typical interparticle distance �x ∼ n−1/3, starts running afoul of the
Heisenberg uncertainty principle, which requires that �x�p ≥ h̄. This state of degeneracy
occurs when mkT ≤ h̄2n2/3, or when

T ≤ TF , TF := h̄2

2km
(3π2n)2/3 (1.42)

after inserting the appropriate numerical coefficients. Here TF is the Fermi temperature
associated with a free fermion gas of number density n and constituent mass m. For a
white dwarf, the electrons are degenerate, while the ions, being at least 2000 times more
massive, are not. In a neutron star, as a consequence of the much higher density, the neutrons
and the residual protons and electrons are degenerate. In laboratory situations involving
low densities, the Fermi temperature is typically extremely low, and normal matter is
rarely degenerate (an exception is the conduction electrons in metals, for which the Fermi



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-01 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:57

16 Foundations of Newtonian gravity

temperature is much higher than room temperature). In a white dwarf, by contrast, the high
densities involved imply that the Fermi temperature is of the order of 109 K, while the
star’s actual temperature typically ranges between 106 K and 107 K. For the even higher
densities associated with neutron stars, the ratio T/TF is even smaller; in this case the Fermi
temperature is of order 1012 K, while the star’s actual temperature is also comparable to
106 K.

To conclude our discussion we review the important case of the polytropic equation of
state, in which p is related directly to the density, and in which T has been eliminated
by assuming that each fluid element is in thermal equilibrium with neighboring elements.
Under these conditions Eqs. (1.29) and (1.33) imply that ρ dε − (ε + p) dρ = 0, and we
further assume that the fluid is such that the energy density is proportional to the pressure,
so that

ε = η p . (1.43)

The dimensionless constant η (usually denoted n, which is avoided here because n has
already been assigned the meaning of number density) is known as the polytropic index;
we have seen that η = 3

2 for an ideal gas, while η = 3 for a photon gas. Combining these
relations we find that ηρ dp − (η + 1)p dρ = 0, and this can be integrated to yield

p = Kρ� , � := 1 + 1/η , (1.44)

where K is an integration constant. This is the polytropic equation of state, which relates
pressure and density during an adiabatic thermodynamic process; the exponent � is known
as the adiabatic index.

1.4.3 Global conservation laws

The equations of hydrodynamics give rise to a number of important global conservation
laws. These refer to global quantities, defined as integrals over the entire fluid system, that
are constant in time whenever the system is isolated, that is, whenever the system is not
affected by forces external to it. For fluids subjected to pressure forces and Newtonian
gravity, the globally conserved quantities are total mass, momentum, energy, and angular
momentum. Because these are fundamentally important in any physical context, we examine
them in detail here, providing precise definitions and proofs of their conservation. For these
derivations we introduce a number of mathematical tools that will prove helpful throughout
this book.

Integral identities

The conserved quantities are all defined as integrals over a volume of space that contains the
entire isolated system. The domain of integration V is largely arbitrary, and is constrained
by only two essential conditions: it must be a fixed region of space that does not evolve in
time, and it must contain all the matter. It is useful to think of this domain as extending
beyond the matter; it could, in fact, extend all the way to infinity. An essential property of
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17 1.4 Equations of hydrodynamics

the boundary S of the region of integration is that all matter variables (such as the mass
density ρ and the pressure p) vanish on S.

The global quantities are integrals of the form
∫

V f (t, x) d3x , in which f (t, x) is a
function of time and space that will typically involve the fluid variables. The integral itself
is a function of time only; to simplify the notation we shall henceforth omit the label V on
the integration symbol. For any such integral we have that

d

dt

∫
f (t, x) d3x =

∫
∂ f

∂t
d3x . (1.45)

This property follows because V is independent of time, and because the variable of
integration x also is independent of time.

We next consider integrals of the form F(t) := ∫
ρ(t, x) f (t, x) d3x , in which a factor

of the mass density ρ was extracted from the original function f . As we shall prove below,
such integrals obey the identity

d

dt

∫
ρ(t, x) f (t, x) d3x =

∫
ρ

d f

dt
d3x , (1.46)

in which, as usual,

d f

dt
= ∂ f

∂t
+ v · ∇ f (1.47)

is the convective (or Lagrangian) time derivative.
We may generalize the result by allowing f to depend on two position vectors, x and

x′. We define the integral F(t, x) := ∫
ρ(t, x′) f (t, x, x′) d3x ′ and apply Eq. (1.46) to it.

Because F depends on x in addition to t , the time derivative is correctly interpreted as a
partial derivative that keeps the spatial variables fixed, and we obtain

∂ F

∂t
=
∫

ρ ′
(

∂ f

∂t
+ v′ · ∇′ f

)
d3x ′ , (1.48)

in which ρ ′ is the mass density expressed as a function of t and x′, v′ is the velocity field
expressed in terms of the same variables, and ∇′ is the gradient operator associated with x′.
Now, the Lagrangian time derivative acting on F is d F/dt = ∂ F/∂t + v · ∇F , and from
Eq. (1.48) and the definition of F(t, x) we find that this can be expressed as

d

dt

∫
ρ(t, x′) f (t, x, x′) d3x ′ =

∫
ρ ′ d f

dt
d3x ′ , (1.49)

with

d f

dt
:= ∂ f

∂t
+ v · ∇ f + v′ · ∇′ f (1.50)

denoting a generalized Lagrangian derivative.
For a final application of Eq. (1.46) we define F(t) := ∫

ρ(t, x)F(t, x) d3x =∫
ρρ ′ f (t, x, x′) d3x ′d3x . According to Eqs. (1.46) and (1.49) we find that the time deriva-

tive of this integral is given by

d

dt

∫
ρ(t, x)ρ(t, x′) f (t, x, x′) d3x ′d3x =

∫
ρρ ′ d f

dt
d3x ′d3x , (1.51)

in which d f/dt is once more given by Eq. (1.50).
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18 Foundations of Newtonian gravity

We have yet to establish Eq. (1.46). The steps are straightforward, and they rely on the
continuity equation (1.26), Gauss’s theorem, and the fact that ρ vanishes on the boundary
S of the domain of integration. We have

d

dt

∫
ρ(t, x) f (t, x) d3x =

∫ (
ρ

∂ f

∂t
+ f

∂ρ

∂t

)
d3x

=
∫ (

ρ
∂ f

∂t
− f ∇ · (ρv)

)
d3x

=
∫ (

ρ
∂ f

∂t
+ ρv · ∇ f

)
d3x −

∮
fρv · d S

=
∫

ρ
d f

dt
d3x . (1.52)

The continuity equation was used in the second step. In the third step the volume integral of
the total divergence ∇ · ( fρv) was expressed as a surface integral, which vanishes because
ρ = 0 on S. In the fourth step we recover Eq. (1.46), as required.

Mass, momentum, and center-of-mass

The total mass of the fluid system is

M :=
∫

ρ(t, x) d3x . (1.53)

While the integral should in principle be a function of time, it is a direct consequence of
Eq. (1.46) – applied with f = 1 – that d M/dt = 0. The total mass of the fluid system is a
conserved quantity that does not change with time. This is an obvious consequence of the
fact that mass is conserved within each fluid element.

The total momentum of the fluid system is

P :=
∫

ρ(t, x)v(t, x) d3x . (1.54)

To verify that this is also a conserved quantity, we apply Eq. (1.46) with f = v and get

d P

dt
=
∫

ρ
dv

dt
d3x =

∫
ρ∇U d3x −

∫
∇ p d3x (1.55)

after inserting Euler’s equation (1.23). The pressure integral is easy to dispose of: applying
Gauss’s theorem we find that it is equal to

∮
p d S, and this vanishes because p = 0

everywhere on S. The integral involving the Newtonian potential requires more work,
but we shall show presently that ∫

ρ∇U d3x = 0 , (1.56)

a result that is fundamentally important in the Newtonian theory of gravity. With all this
we find that d P/dt = 0, and conclude that total momentum is indeed conserved. This is a
consequence of (or a statement of) Newton’s third law, the equality of action and reaction.
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The center-of-mass of the fluid system is situated at a position R(t) defined by

R(t) := 1

M

∫
ρ(t, x)x d3x . (1.57)

Because M is conserved, the center-of-mass velocity V := d R/dt is given by

V := 1

M

∫
ρ(t, x)v(t, x) d3x , (1.58)

as obtained from Eq. (1.46) by applying the identity dx j /dt = ∂x j /∂t + v · ∇x j = v j to
each component of x. The integral is recognized as the total momentum, and we find that
V is a conserved quantity. It follows that the center-of-mass moves according to

R(t) = R(0) + V t , (1.59)

with V := P/M . It is always possible to choose a reference frame such that R(0) = 0 and
V = 0, so that R(t) = 0; this defines the center-of-mass frame of the fluid system.

To establish Eq. (1.56) we recall the expression of Eq. (1.12) for the gravitational
potential, on which we apply the gradient operator. Focusing our attention on the x j

component of ∇U , we have that

∂U

∂x j
= G

∫
ρ ′ ∂

∂x j

1

|x − x′| d3x ′. (1.60)

The partial derivative can be evaluated explicitly, and can be seen to be equal to −|x −
x′|−3(x j − x ′ j ). Inserting ∂U/∂x j within the integral of Eq. (1.56), we find that∫

ρ
∂U

∂x j
d3x = G

∫
ρρ ′ ∂

∂x j

1

|x − x′| d3x ′d3x . (1.61)

To show that this vanishes we employ a clever trick that will recur frequently throughout
this book. It consists of swapping the variables of integration (x ↔ x′), and of writing the
integral in the alternative form∫

ρ
∂U

∂x j
d3x = G

∫
ρ ′ρ

∂

∂x ′ j

1

|x′ − x| d3xd3x ′

= G

∫
ρρ ′ ∂

∂x ′ j

1

|x − x′| d3x ′d3x . (1.62)

Explicitly we find that the partial derivative with respect to x ′ j is equal to +|x − x′|−3(x j −
x ′ j ), which is equal and opposite to the derivative with respect to x j . This property follows
directly from the fact that |x − x′|−1 depends on the difference between x and x′. Taking
this property into account in Eq. (1.62), we find that∫

ρ
∂U

∂x j
d3x = −G

∫
ρρ ′ ∂

∂x j

1

|x − x′| d3x ′d3x . (1.63)

Comparing Eqs. (1.61) and (1.63), we find that the integral vanishes, as was already stated
in Eq. (1.56).
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Energy

The total energy of a fluid system comprises three components. The first is the kinetic
energy

T (t) := 1

2

∫
ρv2 d3x , (1.64)

the second is the gravitational potential energy


(t) := −1

2

∫
ρU d3x = −1

2
G

∫
ρρ ′

|x − x′| d3x ′d3x , (1.65)

and the third is the internal thermodynamic energy

Eint(t) :=
∫

ε d3x =
∫

ρ� d3x . (1.66)

In these expressions, ρ is the mass density expressed as a function of t and x, ρ ′ is the mass
density expressed in terms of t and x′, v2 := v · v is the square of the velocity vector, ε is
the density of internal thermodynamic energy, and � := ε/ρ is the specific internal energy.
The total energy is

E := T (t) + 
(t) + Eint(t) , (1.67)

and while T , 
, and Eint can each vary with time, we shall prove that E is a conserved
quantity. The definition provided here for total kinetic energy is immediately plausible: we
take the kinetic energy of each fluid element, 1

2 (ρV)v2, and integrate over the entire fluid.
The definition of total internal energy is also immediately plausible. The definition of total
gravitational potential energy is more subtle, and its suitability is ultimately justified by the
fact that the total energy turns out to be conserved. Nevertheless, we may observe that 


is −(ρV)U , the potential energy of each fluid element in the field of all other elements,
integrated over the entire fluid; the factor of 1

2 is inserted to avoid a double counting of
pairs of fluid elements.

To prove that E is conserved we calculate how each term in Eq. (1.67) changes with
time. We begin with T , and get

dT
dt

=
∫

ρv · dv

dt
d3x =

∫
ρv · ∇U d3x −

∫
v · ∇ p d3x (1.68)

after involving Euler’s equation. The first integral can be expressed as∫
ρv · ∇U d3x = G

∫
ρρ ′ v · ∇ 1

|x − x′| d3x ′d3x , (1.69)

or it can be expressed as∫
ρv · ∇U d3x = G

∫
ρ ′ρ v′ · ∇′ 1

|x′ − x| d3xd3x ′ (1.70)

by exploiting the “switch trick” introduced after Eq. (1.61). Adding the two expressions
and dividing by 2, we obtain∫

ρv · ∇U d3x = 1

2
G

∫
ρρ ′(v · ∇ + v′ · ∇′) 1

|x − x′| d3x ′d3x . (1.71)
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Because |x − x′|−1 does not depend on time, we may re-express this as∫
ρv · ∇U d3x = 1

2
G

∫
ρρ ′ d

dt

1

|x − x′| d3x ′d3x , (1.72)

in which d/dt is the generalized Lagrangian derivative of Eq. (1.50). Invoking now the
integral identity of Eq. (1.51), applied with f = |x − x′|−1, as well as the definition of 


provided in Eq. (1.65), we finally arrive at∫
ρv · ∇U d3x = −d


dt
, (1.73)

which tells us how 
 changes with time.
Returning to Eq. (1.68), we next examine the second integral, in which we express v · ∇ p

as ∇ · (pv) − p∇ · v. The total divergence gives no contribution (because p vanishes on
S), and Eq. (1.25) implies that ∇ · v = −ρ−1dρ/dt . All this gives us∫

v · ∇ p d3x =
∫

p

ρ

dρ

dt
d3x (1.74)

for the second integral. Inserting this and Eq. (1.73) within Eq. (1.68), we finally obtain

dT
dt

= −d


dt
−
∫

p

ρ

dρ

dt
d3x (1.75)

for the rate of change of the total kinetic energy.
The final step is to compute d Eint/dt . Starting with Eq. (1.66) and involving Eq. (1.46)

with f = �, we find that

d Eint

dt
=
∫

ρ
d�

dt
d3x . (1.76)

Assuming that each fluid element is at all times in thermal equilibrium with neighboring
elements, we invoke the first law of thermodynamics as stated in Eq. (1.34): ρ d� =
(p/ρ) dρ. This gives

d Eint

dt
=
∫

p

ρ

dρ

dt
d3x (1.77)

for the rate of change of the total internal energy. Combining Eqs. (1.73), (1.75), and (1.77),
we find that d E/dt = 0, and arrive at the conclusion that E is indeed conserved.

Angular momentum

The total angular momentum of a fluid system is defined by

J :=
∫

ρx × v d3x . (1.78)

The steps required to show that the angular momentum is conserved are now familiar. We
use Eq. (1.46) with f = x × v to evaluate d J/dt , and obtain

d J

dt
=
∫

ρx × ∇U d3x −
∫

x × ∇ p d3x (1.79)
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after inserting Euler’s equation. The first integral is evaluated as∫
ρx × ∇U d3x = −G

∫
ρρ ′ x × (x − x′)

|x − x′|3 d3x ′d3x

= G

∫
ρρ ′ x′ × (x − x′)

|x − x′|3 d3x ′d3x

= −1

2
G

∫
ρρ ′ (x − x′) × (x − x′)

|x − x′|3 d3x ′d3x ,

so that ∫
ρx × ∇U d3x = 0 . (1.80)

The “switch trick” was exploited in the second step, and in the third step we added the two
expressions and divided by 2. For the second integral we make use of the vector-algebra
identity x × ∇ p = −∇ × (px) + p∇ × x; the second term vanishes identically, and the
integral of the first term can be expressed as a vanishing surface integral. Thus∫

x × ∇ p d3x = 0 , (1.81)

and we have arrived at the conservation statement d J/dt = 0.

Virial theorems

Another important set of global relations satisfied by an isolated fluid system is known as
the virial theorems. They involve a number of new global quantities. The first is

I jk(t) :=
∫

ρ(t, x)x j xk d3x , (1.82)

the quadrupole moment tensor of the mass distribution, an object that will accompany us
throughout this book. The second is

T jk(t) := 1

2

∫
ρv j vk d3x , (1.83)

the kinetic energy tensor of the fluid system, a tensorial generalization of T defined by
Eq. (1.64); it is easy to see that T is the trace of the kinetic energy tensor. The third is


 jk(t) := −1

2
G

∫
ρρ ′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x , (1.84)

the gravitational energy tensor of the fluid system, a tensorial generalization of 
 defined
by Eq. (1.65); once again it is easy to see that 
 is the trace of the gravitational energy
tensor. And finally, the virial theorems involve

P(t) :=
∫

p d3x , (1.85)

the integrated pressure of the fluid system.
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23 1.4 Equations of hydrodynamics

The tensorial version of the virial theorem is a statement about the second time derivative
of the quadrupole moment tensor. Applying these derivatives to Eq. (1.82) and making use
of Eq. (1.46) yields

d2 I jk

dt2
= 2

∫
ρv j vk d3x + 2

∫
ρx ( j dvk)

dt
d3x , (1.86)

where we inserted parentheses around the indices in the second integral to indicate sym-
metrization: x ( j dvk)/dt := 1

2 (x j dvk/dt + xkdv j /dt). (The operations of symmetrization
and antisymmetrization of tensorial indices are described more fully in Box 1.4). Inserting
now the Euler equation within Eq. (1.86), we obtain

d2 I jk

dt2
= 2

∫
ρv j vk d3x − 2G

∫
ρρ ′ x ( j (x − x ′)k)

|x − x′|3 d3x ′d3x

− 2
∫

x ( j ∂k) p d3x , (1.87)

in which ∂k p is a shorthand notation for ∂p/∂xk . To proceed we exploit the “switch trick”
in the second integral, and integrate the third integral by parts. The end result is

1

2

d2 I jk

dt2
= 2T jk + 
 jk + Pδ jk , (1.88)

the statement of the tensor virial theorem. Taking the trace of Eq. (1.88) returns

1

2

d2 I

dt2
= 2T + 
 + 3P , (1.89)

the scalar virial theorem; here I (t) := ∫
ρr2 d3x is the trace of the quadrupole moment

tensor.
Many applications of the virial theorems involve stationary systems, for which

d2 I jk/dt2 = 0. For such systems the virial theorems reduce to

2T jk + 
 jk + Pδ jk = 0 , (1.90a)

2T + 
 + 3P = 0 . (1.90b)

Other applications involve periodic systems, for which we may integrate Eqs. (1.88) and
(1.89) over a complete period of the system. In these circumstances the terms involving the
quadrupole moment tensor disappear also, and Eqs. (1.90) continue to hold in a coarse-
grained form; the equations now involve averages of T jk , 
 jk , and P over a period of the
system.

The virial theorems are powerful tools, and they can be exploited to great benefits in
the study of stellar structure. In the context of this book we find them most useful in our
study of post-Newtonian equations of motion (in Chapter 9) and gravitational waves (in
Chapter 11).
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Box 1.4 Symmetrized and antisymmetrized indices

We define symmetrized and anti-symmetrized indices according to

A( j Bk) := 1

2

(
A j Bk + Ak B j

)
,

A[ j Bk] := 1

2

(
A j Bk − Ak B j

)
.

These definitions apply equally well to tensors, for example C ( jk) = 1
2 (C jk + Ckj ) and C [ jk] =

1
2 (C jk − Ckj ). Tensors of higher ranks can also be symmetrized and antisymmetrized in an obvious way,
so that a symmetrized rank-q tensor is defined by

C (k1k2···kq ) := 1

q!

(
Ck1k2···kq + · · · ) ,

where the remaining terms consist of all possible permutations of the q indices. An antisymmetrized rank-q
tensor is defined by

C [k1k2···kq ] := 1

q!

(
Ck1k2···kq ± · · · ) ,

where the sign of each term is positive when the index order is an even permutation of the original order, and
negative when it is an odd permutation.

1.4.4 Mass–momentum tensor

An alternative formulation of the equations of hydrodynamics reveals a nice parallel with
the relativistic equations to be introduced in Chapters 4 and 5. This formulation is based on
the Eulerian (as opposed to Lagrangian) version of these equations, as given by Eqs. (1.24)
and (1.26):

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.91a)

ρ

(
∂v

∂t
+ v · ∇v

)
= ρ∇U − ∇ p . (1.91b)

It involves a repackaging of the main fluid variables, such as the mass density ρ and the
momentum density ρv, into a mass–momentum tensor with components T tt , T t j , T jt , and
T jk .

To elaborate the new formulation it is helpful to work in terms of vector components
(such as x j ) instead of the vectors themselves. In this language, for example, we would
write ∇ · v as

∑
j (∂v j/∂x j ). To save a lot of unnecessary writing we adopt an important

convention that was first introduced by Einstein in his papers on general relativity (he
jokingly considered it to be a great mathematical discovery). According to the Einstein
summation convention, we omit the summation symbol whenever two indices are repeated,
and automatically sum the indices (such as j with j) over the full range of their values – in
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this case x , y, and z, or more generally, over all three spatial dimensions. Thus we write
∇ · v simply as ∂v j/∂x j .

In the component language the continuity equation (1.91a) takes the form of

∂ρ

∂t
+ ∂

∂x j
(ρv j ) = 0 , (1.92)

and we can also show, by making use of the continuity equation, that the left-hand side of
Eq. (1.91b) can be written as

∂

∂t
(ρv j ) + ∂

∂xk
(ρv j vk) .

To recast the right-hand side of Eq. (1.91b) we invoke Poisson’s equation (1.15) and express
ρ in terms of ∇2U ; this yields

ρ
∂U

∂x j
= − 1

4πG
∇2U

∂U

∂x j
, (1.93)

which can be re-expressed as

ρ
∂U

∂x j
= − 1

4πG

∂

∂xk

(
∂U

∂x j

∂U

∂xk
− 1

2
δ jk

∂U

∂x p

∂U

∂x p

)
. (1.94)

To verify the equality of these two expressions makes a worthy exercise in index ma-
nipulation. Recall that according to the summation convention, (∂U/∂x p)(∂U/∂x p) =
∇U · ∇U = |∇U |2. Continuing our work on the right-hand side of Eq. (1.91b), we note
that ∂p/∂x j can be written as ∂(pδ jk)/∂xk .

Collecting these results, we find that we may write the continuity and Euler equations in
the compact form

∂

∂t
T tt + ∂

∂xk
T tk = 0 , (1.95a)

∂

∂t
T jt + ∂

∂xk
T jk = 0 , (1.95b)

where the components of the mass–momentum tensor are given by

T tt := ρ , (1.96a)

T t j := ρv j , (1.96b)

T jt := ρv j , (1.96c)

T jk := ρv j vk + p δ jk + 1

4πG

(
∂U

∂x j

∂U

∂xk
− 1

2
δ jk

∂U

∂x p

∂U

∂x p

)
. (1.96d)

Notice that the tensor is symmetric under an exchange of any pair of indices.
It is worthwhile to introduce yet more notation to simplify the appearance of Eqs. (1.95).

We shall henceforth denote the partial derivatives of a function f by

∂t f := ∂ f

∂t
, ∂ j f := ∂ f

∂x j
. (1.97)

In addition, we shall use Greek indices (such as α and β) to denote all four space and time
variables; Greek indices run over the values t , x , y, and z, while Latin indices continue to
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run over the three spatial values. In this notation, the partial derivatives of Eq. (1.97) are
collectively denoted ∂α f . To reflect this new usage, we shall extend the Einstein summation
convention so that it applies also to repeated Greek indices; here summation will run over
the four spacetime values, while summation over repeated Latin indices will continue to
run over the three spatial values.

With these new rules, the continuity and Euler equations (1.95) can be written in the
wonderfully compact form

∂β T αβ = 0 . (1.98)

This is a set of four distinct equations, and we stress that summation of β extends over
the four values t , x , y, and z. Some comments are in order. The first is an admission of
humility: while we have managed to combine space and time indices into a seemingly unified
expression, we hasten to point out that there is absolutely nothing relativistic about this.
What we have here is a mere repackaging of the Newtonian equations of hydrodynamics,
in a compact form that happens to anticipate the relativistic versions of Chapters 4 and 5.
The second comment is a subtle one of interpretation. The original continuity and Euler
equations, Eqs. (1.5) and (1.6), were derived from basic principles of Newtonian mechanics,
and they would continue to hold even if Eq. (1.15), the equation governing the behavior
of the gravitational potential, turned out to be invalid. By contrast, Poisson’s equation was
involved in the derivation of Eq. (1.98), and its validity therefore rests on the validity of
the Newtonian field equation. This reveals that in the context of Newtonian mechanics,
Eq. (1.98) is not quite as fundamental or general as the continuity and Euler equations. We
shall see in Chapter 5 that the point of view is very different in a relativistic context; there
it is Eq. (1.98) – or a suitable generalization thereof – that forms the fundamental starting
point of a derivation of the relativistic continuity and Euler equations; in particular, we
shall see that Eq. (1.98) is quite independent from, and indeed more fundamental than, the
Einstein field equations.

Writing the equations of hydrodynamics in the form of Eqs. (1.95) or (1.98) suggests
a very efficient way of deriving the conservation statements regarding mass, momentum,
angular momentum, and center-of-mass motion for an isolated system. We first introduce
new definitions for these quantities:

M :=
∫

T tt d3x , (1.99a)

P j :=
∫

T jt d3x , (1.99b)

R j := 1

M

∫
T tt x j d3x , (1.99c)

J j := ε j pq

∫
x pT qt d3x , (1.99d)

where ε j pq is the completely anti-symmetric Levi–Civita symbol, whose value is 1 if j pq
is an even permutation of 123 (or xyz), −1 if it is an odd permutation, and zero if any two
indices take on the same value. The Levi–Civita symbol is a convenient tool for constructing
cross products when using the index language; you may easily check that the components
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of a × b are ε j pqa pbq , if you keep in mind the implied summation of p and q. The new
definitions of Eqs. (1.99) are fully equivalent to the old definitions of Eqs. (1.53), (1.54),
(1.57), and (1.78).

It is then a simple matter to take the time derivative of each one of these quantities,
to exploit the fact that according to Eq. (1.95), a time derivative of T tt or T jt is equal
to a spatial divergence, and to use Gauss’s theorem to re-express the volume integral as
a surface integral; because T t j or T jk vanishes on the surface, this integral vanishes, and
the quantity is conserved. (This statement is true only when the domain of integration V
extends over all space, and the boundary S is situated at infinity. Unlike our previous usage
in Sec. 1.4.3, here it is not sufficient for S to merely enclose the fluid system. The reason
is that while ρ and p can be trusted to vanish outside the matter, the Newtonian potential
U cannot; instead it falls off as G M/r far away from the fluid system. To ensure that the
surface integral associated with T jk vanishes, it is necessary to place S at infinity, where
∂ jU properly vanishes.) The end result of this efficient computation is the statement that
M , P , and J are constant, and that d R/dt = P/M . You will be asked to go through the
steps of these computations in Exercise 1.5. It is interesting to observe that the proof of the
constancy of J relies critically on the fact that T jk is symmetric in its indices; the detailed
expression for T jk is never required.

Another result that follows by repeated use of Eq. (1.98) and Gauss’s theorem is

1

2

d2

dt2

∫
T tt x j xk d3x =

∫
T jk d3x . (1.100)

Because
∫

T tt x j xk d3x is the quadrupole moment tensor of the mass distribution, this is
an alternative statement of the tensor virial theorem, which can be shown to be equivalent
to the statement given previously in Eq. (1.88). You will be asked to go through the steps
of this computation in Exercise 1.6.

It is important to appreciate that the formulation of the equations of motion using a
mass–momentum tensor does not yield an expression for the conserved energy; for that we
must follow our earlier derivation and deal directly with Euler’s equation. In a relativistic
formulation of the equations, however, the statement of energy conservation would also
follow, and would in fact supersede the statement of mass conservation. The reason, of
course, is that in a relativistic context, mass is but a form of energy, to be naturally included
in a breakdown such as Eq. (1.67). In a relativistic context, therefore, mass conservation
arises as a special case of energy conservation. In Newtonian mechanics conservation of
mass is necessarily separated from conservation of energy.

1.5 Spherical and nearly spherical bodies

We next consider the problem of calculating the gravitational potential U for various kinds
of bodies. The simplest case has already been dealt with: as we have seen, the potential of
a single point mass M at the origin of the coordinate system is given by U = G M/r . We
wish to go well beyond this simplest case, and to construct the Newtonian potential for a
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more realistic, finite-sized body with an arbitrary mass density ρ. A body can often be taken
to be spherically symmetric as a first approximation, and we shall begin our presentation
with a complete description of this idealized case. This is not sufficient, however, because
deviations from spherical symmetry can often be very important. We shall therefore devote
the remainder of this section to a description of non-spherical bodies. While our treatment
will be exact, the formalism that we develop – based on a multipole expansion of the mass
distribution and the gravitational potential – is most powerful when applied to bodies that
deviate only modestly from spherical symmetry.

For our purposes in this section it is best to express the Laplacian operator in spherical
polar coordinates (r, θ, φ), and to write Poisson’s equation (1.15) as(

1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

r2 sin2 θ

∂2

∂φ2

)
U = −4πGρ , (1.101)

in which ρ and U are functions of t , r , θ , and φ. We recall that the relation to Cartesian
coordinates is given by x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ .

1.5.1 Spherical bodies

The mass density ρ and gravitational potential U of a spherical body depend on t and r
only, and in this case Eq. (1.101) reduces to

1

r2

∂

∂r

(
r2 ∂U

∂r

)
= −4πGρ(t, r ) . (1.102)

Integrating once, we obtain

∂U

∂r
= −4πG

r2

∫ r

0
ρ(t, r ′)r ′2 dr ′ , (1.103)

where the constant of integration (actually a function of t) was chosen so that the gravita-
tional force at r = 0 vanishes, as it must by symmetry. To ensure this we make the physically
reasonable requirement that the density ρ must be finite at r = 0; then the integral behaves
as 1

3 ρ(t, 0)r3 near r = 0, and ∂U/∂r properly vanishes at r = 0.
The integral in Eq. (1.103) defines the mass contained inside a sphere of radius r , which

we write as

m(t, r ) :=
∫ r

0
4πρ(t, r ′)r ′2 dr ′ . (1.104)

The mass density drops to zero at the surface of the body, and the body’s total mass is

M := m(t, r = R) =
∫ R

0
4πρ(t, r ′)r ′2 dr ′ , (1.105)

with R denoting the body’s radius. It was already established in Sec. 1.4.3 that M does not
depend on time, in spite of the fact that m(t, r ) itself may depend on time. For example, a
pulsating star would display a time-dependent density ρ, a time-dependent internal mass
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function m, and a time-dependent stellar radius R, but its total mass M would still be
constant.

Returning to Eq. (1.103), we find that the gravitational force acting on a fluid element of
unit mass situated at radius r is given by

∂U

∂r
= −Gm(t, r )

r2
. (1.106)

We observe that in spherical symmetry, the force is completely determined by the mass
contained inside the sphere of radius r , and that any spherical distribution of matter outside
this sphere contributes nothing to the force. While this result is an almost trivial conse-
quence of integrating Poisson’s equation, it was far from obvious to Newton while he was
struggling to prove it with the traditional geometrical methods that he adopted throughout
the Principia. He describes this struggle in a commentary that follows Proposition 8 in
Book 2:

“After I had found that the gravity toward a whole planet arises from and is compounded
of the gravities toward the parts and that toward each of the individual parts it is inversely
proportional to the squares of the distances from the parts, I was still not certain whether
that proportion of the inverse square obtained exactly in a total force compounded of a
number of forces, or only nearly so. For it could happen that a proportion which holds
exactly enough at very great distances might be markedly in error near the surface of the
planet, because there the distances of the particles may be unequal and their situations
dissimilar. But at length, by means of Book 1, Propositions 75 and 76 and their corollaries,
I discerned the truth of the proposition dealt with here.”

In Propositions 75 and 76, Newton proves that spherical bodies attract each other with a
force inversely proportional to the square of the distance between their centers; previously,
in Proposition 71, he proved that the force on a particle outside a spherical distribution of
matter is given by Eq. (1.106).

Outside the spherical body, m(t, r ) = M and Eq. (1.106) becomes

dU

dr
= −G M

r2
. (1.107)

The gravitational force is now time-independent and completely determined by the total
mass of the body. These statements apply to the potential itself: the gravitational potential
outside a spherical body is constant in time regardless of the time-dependence of the matter
distribution, and determined by the body’s total mass. As we shall see in Chapter 5, a similar
statement can be made in general relativity, where it is known as Birkhoff’s theorem.

The potential itself is determined by integrating Eqs. (1.106) and (1.107). We impose
continuity of U at r = R and the boundary condition that U should vanish at r = ∞. We
obtain

U (t, r ) = G M

R
+ G

∫ R

r

m(t, r ′)
r ′2 dr ′ (1.108)
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inside the matter (for r < R), and

U (r ) = G M

r
(1.109)

outside the matter (for r > R). Integration by parts reveals that an equivalent expression
for the internal potential is

U (t, r ) = Gm(t, r )

r
+ 4πG

∫ R

r
ρ(t, r ′)r ′ dr ′ . (1.110)

This expression can be seen to apply outside the matter as well, where ρ = 0 and m = M .
The potential at the center of the body is given by U (t, 0) = 4πG

∫ R
0 ρ(t, r ′)r ′ dr ′.

1.5.2 Non-spherical bodies

Multipole expansions

Spherical symmetry is a convenient simplification, but real bodies are seldom spheri-
cally symmetric. Rotation, interactions with other bodies, and stresses caused by solid
materials (such as crusts in neutron stars) can lead to deviations from spherical symme-
try. For bodies such as planets or stars, these deviations are usually small. This makes
the method of multipole expansions a useful and powerful tool in modelling the gravi-
tational field of such objects. If the deviations from spherical symmetry are small, the
contributions to the gravitational potential of higher multipole moments of the mass
distribution are progressively smaller, so that often a small number of moments is suf-
ficient to give an accurate description of the gravitational field for most problems of
interest.

Conversely, the determination of the multipole moments of a body by a precise measure-
ment of its external field can supply important diagnostic information about its interior.
Indeed, geodesy is the science of determining the Earth’s gravitational field to high pre-
cision as a means of understanding the Earth’s internal structure and dynamics. Modern
geodetic measurements using precise tracking of Earth-orbiting satellites are determining
the Earth’s multipole moments up to � = 360, corresponding to variations in the Earth’s
surface gravity on a scale of 100 km. From these data it is possible to study such phe-
nomena as the ongoing rebound of the continents following the disappearance of ice-age
glaciers, seasonal variations of the amount of water in the Amazon basin, and the effects
of volcanism and continental drift.

Some bodies, such as disk-shaped spiral galaxies, are not close to being spherical,
and in such cases the method of multipole expansions must be relinquished in favor of
other methods, mainly numerical, to solve for the gravitational potential. In the labo-
ratory, for example, experiments to measure the gravitational constant G or to test the
weak equivalence principle must carefully account for stray gravitational forces caused
by nearby laboratory apparatus. This involves the determination of the gravitational field
of strangely shaped objects, often including wires and knobs. The masses and shapes
of all these objects must be measured precisely, and the gravitational field calculated
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numerically, often using techniques borrowed from engineering, such as “finite element”
methods.

Spherical-harmonic decomposition

We shall focus our attention on a nearly spherical body, and provide a description of its
gravitational field in terms of a multipole expansion. The key analytical tool to achieve this
is a systematic expansion of our main variables, ρ and U , in terms of spherical-harmonic
functions Y�m(θ, φ), in which � is an integer that ranges from 0 to ∞, while m is a second
integer that ranges from −� to � for each value of �; the polar angles θ and φ were introduced
previously in Eq. (1.101).

We recall that the spherical harmonics are solutions to the eigenvalue equation(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
Y�m = −�(� + 1)Y�m , (1.111)

in which the left-hand side is recognized as the angular piece of the Laplacian operator in
Eq. (1.101). For m = 0 they are given explicitly by

Y�0(θ ) =
√

2� + 1

4π
P�(cos θ ) , (1.112)

where

P�(μ) := 1

2��!

d�

dμ�
(μ2 − 1)� (1.113)

are the well-known Legendre polynomials; in this case the spherical harmonics are inde-
pendent of φ. For m > 0 they are given explicitly by

Y�m(θ, φ) =
√

2� + 1

4π

(� − m)!

(� + m)!
Pm

� (cos θ )eimφ , (1.114)

where

Pm
� (μ) := (−1)m(1 − μ2)m/2 dm

dμm
P�(μ) (1.115)

are the associated Legendre functions. For m < 0 we use the formula

Y�,−m(θ, φ) = (−1)mY ∗
�m(θ, φ) . (1.116)

The spherical harmonics form a set of orthogonal functions, and they are normalized so
that ∫

Y�m(θ, φ)Y ∗
�′m ′(θ, φ) d
 = δ��′δmm ′ , (1.117)

where d
 := sin θ dθdφ is an element of solid angle in the direction specified by θ and
φ; the integral extends over the entire two-sphere (any surface r = constant), from φ = 0
to φ = 2π , and from θ = 0 to θ = π . The spherical harmonics also form a complete set
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of orthonormal functions, meaning that any square-integrable function on the two-sphere –
any well-behaved function f (θ, φ) – can be expanded as

f (θ, φ) =
∞∑

�=0

�∑
m=−�

f�mY�m(θ, φ) , (1.118)

with coefficients given by

f�m =
∫

f (θ, φ)Y ∗
�m(θ, φ) d
 . (1.119)

The spherical-harmonic functions of order � = {0, 1, 2, 3} are listed in Box 1.5.

Box 1.5 Spherical harmonics

The spherical-harmonic functions of lowest order are given explicitly by

Y00 = 1√
4π

,

Y10 =
√

3

4π
cos θ ,

Y11 = −
√

3

8π
sin θ eiφ ,

Y20 =
√

5

16π
(3 cos2 θ − 1) ,

Y21 = −
√

15

8π
sin θ cos θ eiφ ,

Y22 =
√

15

32π
sin2 θ e2iφ ,

Y30 =
√

7

16π
(5 cos3 θ − 3 cos θ) ,

Y31 = −
√

21

64π
sin θ(5 cos2 θ − 1) eiφ ,

Y32 =
√

105

32π
sin2 θ cos θ e2iφ ,

Y33 = −
√

35

64π
sin3 θ e3iφ .

As explained in the main text (in Sec. 1.5.3), the spherical harmonics can be expressed as an expansion in
symmetric-tracefree (STF) tensors, according to

Y�m(θ, φ) = Y ∗〈L〉
�m n〈L〉,
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in whichY 〈L〉
�m is a constant STF tensor, while n〈L〉 is a STF combination of unit radial vectors, with n :=

[sin θ cos φ, sin θ sin φ, cos θ]. Specific examples are

Y 〈z〉
10 =

√
3

4π
,

Y 〈x〉
11 = −

√
3

8π
, Y 〈y〉

11 = i

√
3

8π
,

Y 〈xx〉
20 = −

√
5

16π
, Y 〈yy〉

20 = −
√

5

16π
, Y 〈zz〉

20 = 2

√
5

16π
,

Y 〈xz〉
21 = −1

2

√
15

8π
, Y 〈yz〉

21 = i

2

√
15

8π
,

Y 〈xx〉
22 =

√
15

32π
, Y 〈xy〉

22 = −i

√
15

32π
, Y 〈yy〉

22 = −
√

15

32π
,

Y 〈xxz〉
30 = −

√
7

16π
, Y 〈yyz〉

30 = −
√

7

16π
, Y 〈zzz〉

30 = 2

√
7

16π
,

Y 〈xxx〉
31 =

√
21

64π
, Y 〈xxy〉

31 = − i

3

√
21

64π
, Y 〈xyy〉

31 = 1

3

√
21

64π
,

Y 〈xzz〉
31 = −4

3

√
21

64π
, Y 〈yzz〉

31 = 4i

3

√
21

64π
, Y 〈yyy〉

31 = −i

√
21

64π
,

Y 〈xxz〉
32 = 1

3

√
105

32π
, Y 〈xyz〉

32 = − i

3

√
105

32π
, Y 〈yyz〉

32 = −1

3

√
105

32π
,

Y 〈xxx〉
33 = −

√
35

64π
, Y 〈xxy〉

33 = i

√
35

64π
, Y 〈xyy〉

33 =
√

35

64π
, Y 〈yyy〉

33 = − i

√
35

64π
.

Only the independent, non-vanishing components are listed, and other components can be obtained by
exploiting the index symmetries ofY 〈L〉

�m .

Reduced Poisson equation

To integrate Eq. (1.101) we decompose the mass density ρ and Newtonian potential U in
spherical harmonics,

ρ(t, r, θ, φ) =
∑
�m

ρ�m(t, r )Y�m(θ, φ) , (1.120a)

U (t, r, θ, φ) =
∑
�m

U�m(t, r )Y�m(θ, φ) , (1.120b)
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in which the coefficients

ρ�m(t, r ) =
∫

ρ(t, r, θ, φ)Y ∗
�m(θ, φ) d
 , (1.121a)

U�m(t, r ) =
∫

U (t, r, θ, φ)Y ∗
�m(θ, φ) d
 (1.121b)

are now allowed to depend on t and r ; in Eq. (1.120) the summation sign is a shorthand no-
tation for the double sum that appears in Eq. (1.118). Making the substitution in Eq. (1.101)
produces the decoupled set of ordinary differential equations

L U�m = −4πGr2ρ�m , (1.122)

in which

L := ∂

∂r
r2 ∂

∂r
− �(� + 1) (1.123)

is an effective Laplacian operator (multiplied by r2) that involves the radial coordinate
only. Equation (1.122) is a dimensionally-reduced version of Poisson’s equation, and we
have simplified the problem of finding a solution to a partial differential equation in three
variables to that of finding solutions to an infinite number of ordinary differential equations.

It is helpful here, as it was in Sec. 1.3, to integrate Eq. (1.122) with the help of a Green’s
function g�(r, r ′), which is required to be a solution to

L g�(r, r ′) = −4πδ(r − r ′) . (1.124)

It is easy to verify that once the Green’s function is available, U�m can be obtained for any
ρ�m by evaluating the integral

U�m(t, r ) = G

∫
g�(r, r ′)ρ�m(t, r ′)r ′2 dr ′ . (1.125)

The Green’s function is not difficult to construct. First we observe that if U<(r ) and U>(r )
are independent solutions to the homogeneous equation L U = 0, then

g(r, r ′) = U<(r )�(r ′ − r ) + U>(r )�(r − r ′) (1.126)

is a solution to Eq. (1.124) provided that U>(r ′) − U<(r ′) = 0 and U ′
>(r ′) − U ′

<(r ′) =
−4π/r ′2. We omit the label � to simplify the notation, and a prime on U indicates dif-
ferentiation with respect to r ; �(r − r ′) is the Heaviside step function, equal to one when
r − r ′ > 0 and zero otherwise, and such that �′(r − r ′) = δ(r − r ′). For U<(r ) we choose
a solution that is finite at r = 0, and this requirement forces U< ∝ r �. For U>(r ) we choose
a solution that is finite at r = ∞, and this requirement forces U> ∝ r−(�+1). The junction
conditions at r = r ′ determine the constants of proportionality (which actually depend on
r ′), and we finally arrive at

g�(r, r ′) = 4π

2� + 1

[
r �

r ′�+1
�(r ′ − r ) + r ′�

r �+1
�(r − r ′)

]
= 4π

2� + 1

r �
<

r �+1
>

, (1.127)

where r< := min(r, r ′) and r> := max(r, r ′).



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-01 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:57

35 1.5 Spherical and nearly spherical bodies

Substituting Eq. (1.127) in Eq. (1.125) returns

U�m(t, r ) = 4πG

2� + 1

[
r �

∫ ∞

r

ρ�m(t, r ′)
r ′�+1

r ′2 dr ′ + 1

r �+1

∫ r

0
r ′�ρ�m(t, r ′)r ′2 dr ′

]
, (1.128)

and this expression is ready to be inserted within Eq. (1.120). We express our final result as

U (t, r, θ, φ) = G
∑
�m

4π

2� + 1

[
q�m(t, r )

Y�m(θ, φ)

r �+1
+ p�m(t, r )r �Y�m(θ, φ)

]
, (1.129)

where

q�m(t, r ) :=
∫ r

0
r ′�ρ�m(t, r ′)r ′2 dr ′ (1.130)

and

p�m(t, r ) :=
∫ R

r

ρ�m(t, r ′)
r ′�+1

r ′2 dr ′ . (1.131)

These relations apply directly to the body’s interior, in which ρ�m 	= 0, and the integral
defining p�m was truncated to a sphere of arbitrary radius R that surrounds the matter
distribution. They apply also to the body’s exterior, where ρ�m = 0, but here they simplify
to

Uext(t, r, θ, φ) = G
∑
�m

4π

2� + 1
q�m(t, R)

Y�m(θ, φ)

r �+1
; (1.132)

the term involving p�m vanishes, and q�m was evaluated at r = R, because the integrals of
Eqs. (1.130) and (1.131) are now evaluated outside the matter distribution.

Integral solution

The results of Eqs. (1.129) and(1.132) can be reproduced by proceeding directly from the
integral solution to Poisson’s equation,

U (t, x) = G

∫
ρ(t, x′)
|x − x′| d3x ′ . (1.133)

The strategy is to express |x − x′|−1, the three-dimensional Green’s function of Eq. (1.18),
as the spherical-harmonic decomposition

1

|x − x′| =
∑
�m

4π

2� + 1

r �
<

r �+1
>

Y ∗
�m(θ ′, φ′)Y�m(θ, φ) , (1.134)

in which (r, θ, φ) are the spherical polar coordinates of the field point x, while (r ′, θ ′, φ′)
are the coordinates of the source point x′; we recall that r< := min(r, r ′) and r> :=
max(r, r ′). We recognize the radial Green’s function g�(r, r ′) in the first factor within
the sum in Eq. (1.134), and the product of spherical harmonics accounts for the angular
dependence.

When we insert Eq. (1.134) within U (t, x) and evaluate the integral outside the matter
distribution, we find that r< = r ′ and r> = r because the variable of integration r ′ is always
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36 Foundations of Newtonian gravity

smaller than r ; we end up once more with Eq. (1.132), with q�m(t, R) given by Eq. (1.130)
and ρ�m given by Eq. (1.121). When instead we evaluate the integral inside the matter,
the radial integration must be broken up into two pieces, the first ranging from r ′ = 0 to
r ′ = r , for which r< = r ′ and r> = r , and the second ranging from r ′ = r to r ′ = R, for
which r< = r and r> = r ′; we end up with Eq. (1.129), with q�m(t, r ) and p�m(t, r ) given
by Eqs. (1.130) and (1.131), respectively.

To establish Eq. (1.134) we make use of two fundamental properties of the Legendre
polynomials. The first is that the polynomials come with a generating function

1√
1 − 2ημ + η2

=
∞∑

�=0

η� P�(μ) , (1.135)

in which η is an arbitrary number smaller than unity, and μ is the argument of the Legendre
functions. In this representation, P�(μ) is recognized as the set of coefficients in a Taylor
expansion of the generating function in powers of η. In our particular application η is iden-
tified with r</r>, μ is identified with cos γ := x · x′/(rr ′), and we identify the generating
function with r>|x − x′|−1. Equation (1.135) yields

1

|x − x′| =
∞∑

�=0

r �
<

r �+1
>

P�(cos γ ) . (1.136)

The second property is the addition theorem

P�(cos γ ) = 4π

2� + 1

�∑
m=−�

Y ∗
�m(θ ′, φ′)Y�m(θ, φ) , (1.137)

in which γ is related to the angles (θ, φ) and (θ ′, φ′) by

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) . (1.138)

Inserting Eq. (1.137) in Eq. (1.136) returns Eq. (1.134).

Multipole moments

The quantities I�m(t) := q�m(t, R), as defined by Eqs. (1.121) and (1.130), are the multipole
moments of the mass distribution. Their full expression is

I�m(t) :=
∫

ρ(t, x)r �Y ∗
�m(θ, φ) d3x , (1.139)

where the domain of integration extends over the volume occupied by the matter. (Because
the domain is independent of the field point x, it is no longer necessary to adorn the variables
of integration with primes.) In terms of these the external potential is given by

Uext(t, x) = G
∑
�m

4π

2� + 1
I�m(t)

Y�m(θ, φ)

r �+1
; (1.140)

this expression is copied directly from Eq. (1.132) – this is such an important result, we
feel compelled to display it twice.
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37 1.5 Spherical and nearly spherical bodies

The moment corresponding to � = m = 0 is known as the monopole moment, and it is
intimately related to the body’s total mass:

I00 =
∫

ρY00 d3x = M√
4π

. (1.141)

The moments corresponding to � = 1 (and m = {−1, 0, 1}) are known as the dipole
moments. These all vanish when we place the origin of the coordinate system at the
body’s center-of-mass, so that

∫
ρx d3x = 0. This conclusion follows from a simple

computation:

I10 =
√

3

4π

∫
ρ r cos θ d3x =

√
3

4π

∫
ρz d3x = 0 , (1.142a)

I1±1 = ∓
√

3

8π

∫
ρ r sin θe±iφ d3x = ∓

√
3

8π

∫
ρ(x ± iy) d3x = 0 . (1.142b)

Moments of higher degree are called quadrupole (� = 2), octopole (� = 3), hexadecapole
(� = 4), and so on. When the body is spherically symmetric, only I00 is non-zero, and the
potential U does not depend on the angles (θ, φ). When the body is axially symmetric
about the z axis, only the moments with m = 0 are non-zero, and U is independent of
the azimuthal angle φ. Notice that each I�m scales as M R�, with R denoting a characteristic
length scale of the body. The mass multipole moments introduced here are in a close
correspondence with the charge multipole moments defined in electromagnetism; in fact,
our definitions are virtually identical to those adopted by J.D. Jackson (1998) in his famous
textbook Classical Electrodynamics.

Axially symmetric bodies

A body is axially symmetric when its mass density is invariant under a rotation about a
symmetry axis. The condition can apply exactly to an idealized body, or it can apply as
a good approximation to a realistic body (the Sun, for example). Taking the z-direction
to be aligned with the symmetry axis, we find that the mass density is independent of the
azimuthal angle φ, and it follows that the only non-vanishing multipole moments are those
with m = 0. It is conventional to express the moments in terms of dimensionless quantities
J� defined by

J� := −
√

4π

2� + 1

I�0

M R�
, (1.143)

in which the characteristic length scale R is chosen to be the body’s equatorial radius. This
definition is adopted, for example, in Allen’s Astrophysical Quantities, a repository of useful
information about most areas of astrophysics.

The gravitational potential of an axially symmetric body can then be written in the form

Uext(t, x) = G M

r

[
1 −

∞∑
�=2

J�

(
R

r

)�

P�(cos θ )

]
. (1.144)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-01 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:57

38 Foundations of Newtonian gravity

The dominant term in the sum is provided by the dimensionless quadrupole moment J2,
and this is frequently expressed in terms of the body’s principal moments of inertia, defined
by

I1(t) ≡ A(t) :=
∫

ρ(t, x)(y2 + z2) d3x , (1.145a)

I2(t) ≡ B(t) :=
∫

ρ(t, x)(x2 + z2) d3x , (1.145b)

I3(t) ≡ C(t) :=
∫

ρ(t, x)(x2 + y2) d3x . (1.145c)

We have

J2 = − 1

M R2

∫
ρr2

[
3 cos2 θ − 1

2

]
d3x

= 1

M R2

∫
ρ

[
r2 − 3z2

2

]
d3x

= 1

M R2

∫
ρ
[
x2 + y2 − 1

2 (x2 + z2) − 1
2 (y2 + z2)

]
d3x

= C − 1
2 A − 1

2 B

M R2

= C − A

M R2
. (1.146)

In the last step we used the fact that A = B for an axially symmetric body.

1.5.3 Symmetric tracefree tensors

We next turn to an alternative decomposition of the gravitational potential that involves
tensorial combinations of the unit vector n := x/r instead of spherical harmonics. Each
tensor that we shall construct from n will have the property of being symmetric under the
exchange of any two of its indices, and of being tracefree in any pair of indices; these
tensors are known as symmetric tracefree tensors, or STF tensors. The decompositions in
STF tensors and spherical harmonics both involve building blocks that consist of irreducible
representations of the rotation group labelled by a multipole index �. The decomposition in
spherical harmonics relies on spherical polar coordinates, and keeps the polar angles (θ, φ)
segregated from the radial coordinate r . The decomposition in STF tensors relies on the
original Cartesian coordinates, which are all put on an equal footing. In our experience we
have found that it is helpful to be conversant in both languages; some applications are best
handled with spherical harmonics, and some are most easily treated with STF tensors.

Taylor expansion of the external potential

We return to the integral representation of the gravitational potential U ,

U (t, x) = G

∫
ρ(t, x′)
|x − x′| d3x ′ , (1.147)
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39 1.5 Spherical and nearly spherical bodies

and consider a field point x that lies outside the matter distribution. With |x′| < |x|, we
carry out a Taylor expansion of |x − x′|−1 in powers of x′:

1

|x − x′| = 1

r
− x ′ j ∂ j

(
1

r

)
+ 1

2
x ′ j x ′k∂ j ∂k

(
1

r

)
− · · · (1.148a)

= 1

r
− x ′ j ∂ j

(
1

r

)
+ 1

2
x ′ jk∂ jk

(
1

r

)
− · · · (1.148b)

=
∞∑

�=0

(−1)�

�!
x ′L∂L

(
1

r

)
. (1.148c)

Once more we adopt the Einstein summation convention and sum over repeated indices in
an expression like x ′ j x ′k∂ j ∂kr−1. In the second line we introduce a condensed notation in
which an expression like x jkn stands for the product x j xk xn , and ∂ jkn stands for ∂ j ∂k∂n .
In the third line we introduce an even more compact multi-index notation, in which an
uppercase index such as L represents a collection of � individual indices. Thus, x L stands
for x j1 j2··· j� , ∂L stands for ∂ j1 j2··· j� , and x L∂L involves a summation over all � pairs of repeated
indices.

Substituting Eq. (1.148) into Eq. (1.147) gives

Uext(t, x) = G
∞∑

�=0

(−1)�

�!
I 〈L〉∂〈L〉

(
1

r

)
, (1.149)

with

I 〈L〉(t) :=
∫

ρ(t, x′)x ′〈L〉 d3x ′ (1.150)

defining a set of STF multipole moments for the mass distribution. The STF label, and the
meaning of the angular brackets around the multi-index L , will be explained shortly. For
the time being we may note that a comparison between Eq. (1.149) and Eq. (1.140) reveals
a close relationship between Y�m/r �+1 and ∂〈L〉r−1, and another between I�m and I 〈L〉. The
correspondence will be made precise below.

STF combinations

We next compute the derivatives of r−1 that appear in Eq. (1.149). We make repeated use
of the identities

∂ j r = n j , (1.151a)

∂ j nk = ∂kn j = 1

r

(
δ jk − n j nk

)
, (1.151b)
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where n := x/r is a unit radial vector imagined to be expressed in terms of the Cartesian
coordinates (x, y, z). We obtain

∂ j r
−1 = −n jr

−2 , (1.152a)

∂ jkr−1 = (
3n j nk − δ jk

)
r−3 , (1.152b)

∂ jknr−1 = −
[
15n j nknn − 3

(
n j δkn + nkδ jn + nnδ jk

)]
r−4 , (1.152c)

and so on; it is understood that r 	= 0 in these operations. We observe that the tensors on the
right-hand side are all symmetric under an exchange of any two indices, and that they all
vanish when a trace is taken over any pair of indices (which means that the indices within
the pair are made equal and summed over); these are all examples of STF tensors. These
properties are inherited from the definitions on the left-hand side: a tensor such as ∂ jknr−1

is necessarily symmetric because the partial derivatives commute with each other, and it
is necessarily tracefree because, for example, δ jk∂ jknr−1 = ∇2∂nr−1 = ∂n∇2r−1 = 0. We
conclude that each tensor in the collection ∂Lr−1 is an STF tensor, a property that we can
emphasize by enclosing L between angular brackets. More generally, any STF tensor will
be distinguished with angular brackets; we shall write, for example, A〈 jkn〉 for an STF
tensor of rank 3, and A〈L〉 for an STF tensor of rank �.

Conventionally, STF products of vectors such as n j are obtained by beginning with the
“raw” products n j nk · · · and then removing all traces, maintaining symmetry on all indices.
Explicit examples are

n〈 jk〉 = n j nk − 1

3
δ jk , (1.153a)

n〈 jkn〉 = n j nknn − 1

5

(
δ jknn + δ jnnk + δknn j

)
, (1.153b)

n〈 jknp〉 = n j nknnn p − 1

7

(
δ jknnn p + δ jnnkn p + δ j pnknn + δknn j n p

+ δkpn j nn + δnpn j nk
) + 1

35

(
δ jkδnp + δ jnδkp + δ j pδkn

)
. (1.153c)

For example n〈 jkn〉 is tracefree because δ jkn〈 jkn〉 = nn − 1
5 (3nn + nn + nn) = 0,

δ jnn〈 jkn〉 = 0, and δknn〈 jkn〉 = 0.
The general formula for such STF products is

n〈 j1 j2··· j�〉 =
[�/2]∑
p=0

(−1)p �!(2� − 2p − 1)!!

(� − 2p)!(2� − 1)!!(2p)!!

× δ( j1 j2δ j3 j4 · · · δ j2p−1 j2p n j2p+1 n j2p+2 · · · n j�) , (1.154)

in which [�/2] is the largest integer not larger than �/2, equal to �/2 when � is an even
number and to (� − 1)/2 when � is odd; all � indices are enclosed within round brackets,
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which indicates the symmetrization operation defined in Box 1.4. In a more compact
notation we have

n〈L〉 =
[�/2]∑
p=0

(−1)p (2� − 2p − 1)!!

(2� − 1)!!

[
δ2P nL−2P + sym(q)

]
, (1.155)

where δ2P stands for a product of p Kronecker deltas (with indices running from j1 to j2p),
nL−2P stands for a product of � − 2p unit vectors (with indices running from j2p+1 to j�),
and “sym(q)” denotes all distinct terms arising from permuting indices; the total number
of terms within the square brackets is equal to q := �!/[(� − 2p)!(2p)!!].

Note that the tensor n〈 jk〉 contains five independent components; the number would
be six for a general symmetric tensor, but the vanishing trace removes one component
from the total count. This number matches the five values of m that belong to � = 2.
Similarly, the tensor n〈 jkn〉 contains seven independent components, and this matches the
seven values of m that belong to � = 3. It can be shown that in general, n〈L〉 contains 2� + 1
independent components, and this is also the number of integers in the interval between −�

and +�.
Comparing Eqs. (1.152) and (1.153) we find that ∂ j r−1 = −n jr−2, ∂ jkr−1 = 3n〈 jk〉r−3,

and ∂ jknr−1 = −15n〈 jkn〉r−4. The general rule can be obtained by induction:

∂Lr−1 = ∂〈L〉r−1 = (−1)�(2� − 1)!!
n〈L〉
r �+1

. (1.156)

We may now return to Eq. (1.149), which can be expressed as

Uext(t, x) = G
∞∑

�=0

(2� − 1)!!

�!
I 〈L〉 n〈L〉

r �+1
, (1.157)

and explain the reason for the angular brackets on I 〈L〉. In the preceding step, displayed in
Eq. (1.148c), we expressed |x − x′|−1 as a sum of terms x ′L∂Lr−1, and substitution into
Eq. (1.147) returned U as a sum of terms I L∂Lr−1, with I L := ∫

ρ ′x ′L d3x ′ denoting the
“raw” multipole moments. In view of Eq. (1.155), however, I L differs from I 〈L〉 by a sum
of terms involving Kronecker deltas, and these automatically give zero when multiplied
by the tracefree ∂Lr−1. As a result, we find that I L∂Lr−1 = I 〈L〉∂〈L〉r−1, and that Uext can
indeed be expressed as in Eq. (1.149).

It is worthwhile to display the main rule by which we were able to reach this conclusion:
whenever an arbitrary tensor AL multiplies an STF tensor B〈L〉, the outcome is

AL B〈L〉 = A〈L〉 B〈L〉, (1.158)

where A〈L〉 is the tensor obtained from AL by complete symmetrization and removal of all
traces.
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STF identities

The STF tensors n〈L〉 satisfy a number of helpful identities, including

n〈L〉n〈L〉 = �!

(2� − 1)!!
, (1.159a)

n j n
〈 j L〉 = � + 1

2� + 1
n〈L〉 , (1.159b)

n〈L〉n〈 j L〉 = (� + 1)!

(2� + 1)!!
n j . (1.159c)

Other identities involve a second unit vector n′:

n′
〈L〉n

〈L〉 = �!

(2� − 1)!!
P�(μ) , (1.160a)

n′
〈L〉n

〈 j L〉 = �!

(2� + 1)!!

[
d P�+1

dμ
n j − d P�

dμ
n′ j

]
, (1.160b)

where μ := n · n′.
To establish these identities we begin with Eq. (1.160a), and write its left-hand side

as n′
Ln〈L〉 after invoking the rule of Eq. (1.158). We substitute Eq. (1.155) for n〈L〉 and

perform the index contractions. For each value of p in the sum we find that 2p factors of
n′ multiply Kronecker deltas, returning unity, while the remaining � − 2p vectors multiply
an n, returning μ�−2p. Because all q terms are equal to each other, we get

n′
〈L〉n

〈L〉 =
[�/2]∑
p=0

(−1)p �!(2� − 2p − 1)!!

(� − 2p)!(2� − 1)!!(2p)!!
μ�−2p . (1.161)

Making use of the identities (2p)!! = 2p p! and (2� − 2p − 1)!! = (2� − 2p)!/[2�−p(� −
p)!], we find that this is also

n′
〈L〉n

〈L〉 = �!

(2� − 1)!!

1

2�

[�/2]∑
p=0

(−1)p (2� − 2p)!

p!(� − p)!(� − 2p)!
μ�−2p , (1.162)

and the sum (together with the prefactor of 2−�) is recognized as a representation of
the Legendre polynomial P�(μ). We have recovered Eq. (1.160a), and we notice that
Eq. (1.159a) is a special case with n′ = n, μ = 1, and P�(μ) = 1.

To establish Eq. (1.159b) we observe that the product n j n〈 j L〉 is necessarily STF in the
indices contained in L , and that it must therefore be proportional to n〈L〉. The constant of
proportionality can be determined by making use of Eq. (1.159a) in the form of n〈 j L〉n j nL =
(� + 1)!/(2� + 1)!!; the end result is Eq. (1.159b). The identity of Eq. (1.159c) can be
established by similar means.

To establish Eq. (1.160b) we observe that n′
〈L〉n

〈 j L〉 must be a vector constructed from
n j and n′ j . We may write it as (� + 1)!(an j + bn′ j )/(2� + 1)!! and work to determine
the coefficients a and b; the factor of (� + 1)!/(2� + 1)!! is inserted for convenience.
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Using Eqs. (1.159b) and (1.160a) it is easy to see that a and b must satisfy the equations
a + bμ = P�(μ) and aμ + b = P�+1(μ). The solutions are a = (μP�+1 − P�)/(μ2 − 1)
and b = (μP� − P�+1)/(μ2 − 1), and these can be re-expressed as a = (� + 1)−1d P�+1/dμ

and b = −(� + 1)−1d P�/dμ by exploiting the recurrence relations satisfied by the Legendre
polynomials. The end result is Eq. (1.160b).

Correspondence with spherical harmonics

We are now ready to reveal the correspondence between the STF tensors n〈L〉 and the
spherical harmonics Y�m(θ, φ). It comes about when n is expressed as

n = [sin θ cos φ, sin θ sin φ, cos θ ] , (1.163)

and when it is recognized that n〈L〉 is a set of functions of θ and φ that can be decomposed
in spherical harmonics, as in Eq. (1.118). The decomposition, however, involves a single
value of � (instead of a sum over all values), and the 2� + 1 values of m that belong to this �.
The reason is that n〈L〉 is not just any function; as we show in Box 1.6, it is an eigenfunction
of the (angular piece of the) Laplacian operator: r2∇2n〈L〉 = −�(� + 1)n〈L〉. Because n〈L〉

satisfies the same eigenvalue equation as Y�m(θ, φ), the expansion must be of the form

n〈L〉 := N�

�∑
m=−�

Y 〈L〉
�m Y�m(θ, φ) , N� := 4π�!

(2� + 1)!!
, (1.164)

where Y 〈L〉
�m is a constant STF tensor that satisfies Y 〈L〉

�,−m = (−1)mY ∗〈L〉
�m , and N� is a

normalization constant chosen for future convenience. In Box 1.5 we display a few members
of Y 〈L〉

�m for selected values of �.
When we multiply Eq. (1.164) by Y ∗

�m ′ and integrate over the whole sphere, we obtain

Y 〈L〉
�m = 1

N�

∫
n〈L〉Y ∗

�m(θ, φ) d
 . (1.165)

When we next multiply this expression by n′
〈L〉 and make use of Eq. (1.160a), we get

Y 〈L〉
�m n′

〈L〉 = 1

N�

∫
n〈L〉n′

〈L〉Y
∗
�m(θ, φ) d
 = 2� + 1

4π

∫
P�(μ)Y ∗

�m(θ, φ) d
 . (1.166)

When, finally, we insert the addition theorem of Eq. (1.137) with cos γ = μ = n · n′ and
perform the integration, we arrive at

Y�m(θ, φ) = Y ∗〈L〉
�m n〈L〉, (1.167)

a decomposition of the spherical harmonics in STF tensors. Equation (1.167) is the inverse
of Eq. (1.164), and N� was chosen so as to make the overall factor on the right-hand side
of Eq. (1.167) equal to unity.
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Box 1.6 Proof that r2∇2n〈L〉 = −�(� + 1)n〈L〉

To prove that n〈L〉 satisfies the eigenvalue equation, it is convenient to work instead with the scalar field
ψ := A〈L〉n〈L〉, in which A〈L〉 is an arbitrary STF tensor of constant elements. Because this tensor is
arbitrary, it can be chosen so as to single out any particular element of n〈L〉, and it becomes sufficient to
prove thatψ itself satisfies the eigenvalue equation.
Wewrite the scalar field asψ = A〈L〉x L/r � anddifferentiate it oncewith respect to x j . Because A〈L〉

is completely symmetric,we have that A〈L〉∂ j x L = A〈k1k2···k�〉∂ j xk1k2···k� = �A〈 jk2···k�〉x
k2···k� =

�A〈 j L−1〉x L−1. Combining this with ∂ j r−� = −� n jr−(�+1), we find that

∂ jψ = �A〈 j L−1〉
x L−1

r �
− �A〈L〉

x L

r �+1
n j .

Proceeding along the same lines to compute the second derivative, and noting that A〈 j j L−2〉 = 0 and
∂ j n j = 2/r , we finally arrive at

r2∇2ψ = −�(� + 1)ψ .

Becauseψ = A〈L〉n〈L〉 and A〈L〉 is arbitrary, this proves thatn〈L〉 itself satisfies the eigenvalue equation.

With the connection between STF tensors and spherical harmonics displayed in
Eqs. (1.164) and (1.167), it is easy to show that the multipole moments of Eqs. (1.139) and
(1.150) are related by

I�m = Y 〈L〉
�m I〈L〉 , (1.168a)

I 〈L〉 = 4π�!

(2� + 1)!!

�∑
m=−�

Y ∗〈L〉
�m I�m . (1.168b)

With these results, the equivalence of Eqs. (1.140) and (1.149) is immediately established.
The foregoing results give rise to another identity, which will be required in Chapter 6.

We rewrite Eq. (1.164) in terms of a different �′ and different direction n′ and get

n′〈L ′〉 = N�′

�′∑
m ′=−�′

Y 〈L ′〉
�′m ′ Y�′m ′ (θ ′, φ′) . (1.169)

Multiplying by Y ∗
�m(θ ′, φ′), integrating over d
′, and using the orthonormality of the

spherical harmonics, we next obtain∫
Y ∗

�m(θ ′, φ′)n′〈L ′〉 d
′ = δ��′ N� Y 〈L〉
�m . (1.170)

If we now multiply each side by Y�m(θ, φ), sum over m, and insert Eq. (1.164), we finally
obtain

�∑
m=−�

Y ∗
�m(θ, φ)

∫
Y�m(θ ′, φ′)n′〈L ′〉 d
′ = δ��′ n〈L〉 ; (1.171)

this is the required identity.
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Angular averages

There will be many occasions, in this book, when we need to calculate the average of a
quantity ψ(θ, φ) over the surface of a sphere:

〈〈ψ〉〉 := 1

4π

∫
ψ(θ, φ) d
 . (1.172)

Of particular interest are the spherical average of products n j nknn · · · of radial vectors.
These are easily computed using the fact that the average of the STF tensor n〈 jkn···〉 must be
zero; this property follows directly from Eq. (1.164) and the identity

∫
Y�m(θ, φ) d
 = 0

(unless � = 0). In this way we obtain

〈〈n j 〉〉 = 0 , (1.173a)

〈〈n j nk〉〉 = 1

3
δ jk , (1.173b)

〈〈n j nknn〉〉 = 0 , (1.173c)

〈〈n j nknnn p〉〉 = 1

15

(
δ jkδnp + δ jnδkp + δ j pδkn

)
, (1.173d)

and so on. These results can also be established directly, by recognizing that the tensorial
structure on the right-hand side is uniquely determined by the complete symmetry of the
left-hand side and the fact that δ jk is the only available geometrical object. The numerical
coefficient can then be determined by taking traces; for example, 1 = δ jkδnp〈〈n j nknnn p〉〉 =
1
15 (9 + 3 + 3), and this confirms that the numerical coefficient must indeed be 1

15 .
The general expression for such angular averages can be shown to be given by

〈〈nL〉〉 = 1

(� + 1)!!

[
δL + sym(q)

]
, (1.174)

when � is an even number, and 〈〈nL〉〉 = 0 when � is odd; we use the same notation as in
Eq. (1.155), in which δL stands for a product of �/2 Kronecker deltas, and sym(q) denotes
all distinct terms obtained by permuting indices; the total number of terms within the square
brackets is equal to q = (� − 1)!!.

1.6 Motion of extended fluid bodies

In this final section of Chapter 1 we examine a specific kind of fluid system, one that consists
of separated blobs of fluids surrounded by vacuum. Each blob is called a “body,” and the
bodies are imagined to be in orbital motion around one another, the motion governed by
the mutual gravitational attractions. Examples of such systems abound in the universe:
we may be speaking of a binary system of main-sequence stars, or of a solar system of
(gaseous) planets orbiting a central sun. (Although the discussion below relies on the bodies
being made up of a perfect fluid, the final results apply just as well to solid bodies such as
Earth-like planets.)
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1.6.1 From fluid configurations to isolated bodies

Consider, therefore, a fluid configuration that is broken up into a collection of separated
bodies. The configuration is characterized by two length scales, the typical size R of each
body, and the typical separation r between bodies. We assume that R < r , so that the bodies
are indeed separated, and surrounded by vacuum regions of space; our discussion excludes
contact binaries, in which two stars share a common envelope. Each body is assumed to be
isolated, in the sense that no matter is ejected from, nor accreted by, the body. Our discussion
therefore excludes stars with strong stellar winds, such as Wolf–Rayet stars, which can lose
mass at a dynamically significant rate. It excludes also interacting binary-star systems, for
which a transfer of mass from one star to the other can have important effects on the orbital
motion. The assumption, however, is a good one for most binary stars, and also for our solar
system, in which the effects of the solar wind and its associated mass loss on planetary
motions can be safely neglected, at least over the time scales we might be interested in.

The formalism developed in this section applies to separated and isolated bodies, and it
actually relies on the stronger inequality R � r , which states that the inter-body separation
is very large compared with the extension of each body. The strong inequality comes with
a number of important consequences that we now describe.

The external, inter-body dynamics is governed by mutual gravitational interactions, and
it proceeds on an orbital time scale given approximately by Torb ∼ (r3/Gm)1/2, where
m is the mass of a typical body. The internal, intra-body dynamics is governed instead by
hydrodynamical processes, and it proceeds on an internal time scale given approximately by
Tint ∼ (Gρ)−1/2 ∼ (R3/Gm)1/2. So Tint � Torb when R � r , and the internal and external
dynamics take place over widely separated time scales. A consequence of this fact is that
the internal and external dynamics are largely decoupled from each other. It is possible, for
example, for an orbiting body to be in a state of (approximate) hydrodynamic equilibrium
even when external gravitational forces are applied to it, and for the orbital motion to be
(approximately) independent of the details of the internal state.

As we shall see in Chapter 2, the strong inequality R � r also implies that the tidal
interaction between bodies is small. When other sources of deformation (such as rotation)
are also small, the bodies can be taken to be nearly spherical. In such circumstances the
gravitational field of each body can be well approximated by a multipole expansion of the
sort developed in Sec. 1.5.2.

The (approximate) decoupling of the internal and external dynamics, and the (approxi-
mate) near-spherical nature of the bodies, produce a substantial simplification of the math-
ematical description of the inter-body motion. Instead of the original description, which
involved the fine-grained fluid variables (ρ, p, v), the orbital motion can be described with
a smaller set of coarse-grained variables that characterize each body as a whole; these
include the body’s mass, center-of-mass position, spin angular momentum, and a number
of multipole moments which encapsulate the required details of the internal dynamics.

Our main goal in this section is to accomplish this coarse-grained description of the
external dynamics. In Chapter 2 we shall return to the internal dynamics and describe
the internal structure of self-gravitating bodies. It is important to bear in mind that while
the internal and external problems are approximately decoupled from one another, they
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47 1.6 Motion of extended fluid bodies

are not fully decoupled: Some aspects of the external dynamics (such as the tidal coupling
between bodies) depend on internal processes, and aspects of the internal dynamics (such as
tidal deformations) depend on the orbital motion; ultimately and fundamentally the internal
and external problems are informed by each other. A simple example is provided by the
Earth–Moon system. The Moon raises tides (both solid and oceanic) on the Earth, and these
depend on the Moon’s orbital position; the tidal deformation of the Earth then modifies its
own gravitational potential, and this affects the orbit of the Moon.

1.6.2 Center-of-mass variables

We consider a fluid system that is broken up into a number N of separated and isolated
bodies, in the sense provided in Sec. 1.6.1. Each body is assigned a label A = 1, 2, . . . , N ,
and each body occupies a volume VA bounded by a closed surface SA. The mass density
ρ is assumed to be equal to ρA inside VA, and zero in the vacuum region between bodies.
The fluid dynamics inside each body is governed by the Euler and continuity equations –
Eqs. (1.23) and (1.25) – and the gravitational potential U is given everywhere by Eq. (1.12).

The total mass of body A is given by

m A :=
∫

A
ρ(t, x) d3x , (1.175)

where the domain of integration is a fixed region of space that extends slightly beyond
the volume VA; it is sufficiently small that it contains no other body, but sufficiently large
that it continues to contain body A as it moves about in a small interval of time dt . It is
easy to show, using the techniques developed in Sec. 1.4.3, that m A is time-independent:
dm A/dt = 0.

We define the center-of-mass position of body A (see Box 1.7) by

r A(t) := 1

m A

∫
A

ρ(t, x)x d3x , (1.176)

and we similarly define the center-of-mass velocity and acceleration by

vA(t) := 1

m A

∫
A

ρ(t, x)v d3x , (1.177)

and

aA(t) := 1

m A

∫
A

ρ(t, x)
dv

dt
d3x . (1.178)

The integration techniques of Sec. 1.4.3 imply that

vA = d r A

dt
, aA = dvA

dt
. (1.179)

In addition to these variables we introduce

I 〈L〉
A (t) :=

∫
A

ρ(t, x) (x − rA)〈L〉 d3x , (1.180)

the STF multipole moments of body A, which refer to its center-of-mass position r A(t); note
that the dipole moment I j

A = ∫
A ρ(x − rA) j d3x vanishes by virtue of Eq. (1.176). These
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definitions, and the results of Eq. (1.179), form the core of the coarse-grained formulation
of the external problem. Instead of the original fluid variables (ρ, p, v), the equations of
motion of each body will be written in terms of r A(t) and I 〈L〉

A (t); instead of functions of
time and space, the formulation involves functions of time only.

Box 1.7 Is the center-of-mass unique?

The definition of the center-of-mass position proposed in Eq. (1.176) is not unique. For example, we could
equally well propose the alternative definition r A := m−1

A

∫
A(ρ2/〈ρ〉)x d3x , in which 〈ρ〉 is the

mean density inside body A; this would in general produce a different position for the center-of-mass.
The main requirements for a sensible definition of center-of-mass are that it be located somewhere inside
the body (it should not wander too far off), that it be useful and convenient, and that it be used consistently
in all developments. Once these requirements are satisfied, the freedom of choice is unlimited, and ultimately
the most important aspect is the matter of convenience.
It is important to bear in mind that the choice carries no physical consequence: there is nomeasurable way

to determine the true position of the center-of-mass. When astronomers track planets using telescopes, they
track the geometrical center of the image, or the location of the edge as it occults a star or the Sun. When
they bounce radar or laser beams off planets, they determine the distance between the beam emitter and a
point on the surface.When theydetermine themotionof aplanet by trackinga satellite orbiting around it, they
perform a complicated reduction of the orbital data to determinewhat they call a “normal point,” the effective
center-of-mass of the planet that controls the spacecraft’s orbit. Given the shape and orientation of the body,
one only needs to be able to go back and forth between the center-of-mass, as conventionally defined, and
the place on the surface that is actually being located, or to the trajectory of an orbiting satellite.
The choice of center-of-mass proposed in Eq. (1.176) is useful and convenient because r A(t) remains at

rest or moves uniformly when the body is not subjected to a net force, and because Eqs. (1.179) have a nice
structure. As we shall see, the equations of motion for extended bodies based on Eq. (1.176) are about as
simple as they can be (although we admit that simplicity is a subjective notion).
The lack of uniqueness becomes even more acute in special and general relativity, because there are now

many different densities that could be involved in a definition of center-of-mass: density of rest mass alone,
or density of rest mass plus other forms of internal energy, such as kinetic, thermodynamic, or even gravita-
tional binding energy. One could even include contributions from the gravitational potential energy provided
by other bodies in the system, so that the center-of-mass position of a body might depend on the location of
its neighbors. In addition, the very act of integrating the vector x over the body is problematic in relativity,
because of ambiguities associated with the choice of reference frame. The problem is most serious in general
relativity, because of the additional ambiguities associated with the choice of coordinate system. And finally,
deep and subtle issues arise in the definition of center-of-mass for spinning bodies in special and general rela-
tivity. There is a vast literature devoted to attempts to define the center-of-mass, most of it extremely formal,
and little of it of practical use. In the relativistic part of this book wewill accept the arbitrariness of the center-
of-mass, and adopt definitions that are as useful and convenient as we can make them, even if they are not
provided with complete relativistic rigor.
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The equations of motion of body A are obtained by inserting Euler’s equation (1.23)
within Eq. (1.178). The term involving the pressure gradient is easily disposed of: it
integrates to zero after invoking Gauss’s theorem, because p = 0 on the boundary of the
domain of integration. What remains is

m AaA =
∫

A
ρ∇U d3x . (1.181)

Summing over all bodies and making use of Eq. (1.56), we find that

N∑
A=1

m AaA =
∫

all space
ρ∇U d3x = 0 . (1.182)

This is a statement of Newton’s third law, and a confirmation that

R := 1

m

∑
A

m A r A , (1.183)

the barycenter of the N -body system, moves uniformly with a constant velocity V ; here
m := ∑

A m A is the total mass of the system.

1.6.3 Internal and external potential

The gravitational potential that appears in Eq. (1.181) is produced in part by body A, and in
part by all the remaining bodies. To distinguish between these contributions we decompose
U as

U = UA + U¬A , (1.184)

with

UA(t, x) = G

∫
A

ρ(t, x′)
|x − x′| d3x ′ (1.185)

denoting the piece produced by body A – the internal potential – and

U¬A(t, x) =
∑
B 	=A

G

∫
B

ρ(t, x′)
|x − x′| d3x ′ (1.186)

denoting the piece produced by the remaining bodies – the external potential.
When we insert Eq. (1.184) within Eq. (1.181) we find that the internal potential makes

no contribution to the equations of motion. This comes as a consequence of the identity∫
A

ρ∇UA d3x = 0 , (1.187)

which is the statement of Eq. (1.56) applied to body A instead of the entire fluid system;
the identity is established by following the same sequence of steps that led to the derivation
of Eq. (1.56). As a result of this simplification, the equations of motion become

m AaA =
∫

A
ρ∇U¬A d3x , (1.188)

and they involve only the external potential of Eq. (1.186).
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1.6.4 Taylor expansion of the external potential

At this stage we incorporate our assumption that the bodies are well separated, so that
RA � rAB , with RA denoting the characteristic size of body A, and rAB := |r A − r B |
denoting the typical separation between bodies. The variable of integration x in Eq. (1.188)
ranges over the small scale RA, and because the external potential U¬A varies over the much
larger scale rAB , it is appropriate to express it as the Taylor expansion

U¬A(t, x) = U¬A(t, r A) + (x − rA) j ∂ jU¬A(t, r A)

+ 1

2
(x − rA) jk∂ jkU¬A(t, r A) + · · · , (1.189)

in which the potential is evaluated at x = r A after differentiation. In a compact multi-index
notation, this is

U¬A(t, x) =
∞∑

�=0

1

�!
(x − rA)L∂LU¬A(t, r A) . (1.190)

Because the external potential satisfies Laplace’s equation ∇2U¬A = 0 within the volume
occupied by body A, its partial derivatives form a STF tensor, and using the rule of
Eq. (1.158) we can write

(x − rA)L∂LU¬A = (x − rA)L∂〈L〉U¬A = (x − rA)〈L〉∂〈L〉U¬A . (1.191)

This gives rise to our final expression for the external potential,

U¬A(t, x) =
∞∑

�=0

1

�!
(x − rA)〈L〉∂LU¬A(t, r A) , (1.192)

from which we have removed the redundant angular brackets on ∂〈L〉.
The gradient of the external potential is then given by

∂ jU¬A(t, x) =
∞∑

�=0

1

�!
(x − rA)〈L〉∂ j LU¬A(t, r A) , (1.193)

and substitution within Eq. (1.188) returns

m Aa j
A =

∞∑
�=0

1

�!
I 〈L〉

A (t) ∂ j LU¬A(t, r A) (1.194)

after involving the definition of Eq. (1.180). At this stage we have the equations of motion
expressed in terms of the multipole moments of body A and partial derivatives of the
external potential U¬A evaluated at x = r A.

To proceed we must work on the external potential. We return to its definition of
Eq. (1.186), and for each body B within the sum we express the variable of integration x′

as

x′ = r B(t) + x̄′ , (1.195)
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with x̄′ describing a displacement from B’s center-of-mass. Each term in the sum is of the
form

G

∫
B

ρ(t, r B + x̄′)
|x − r B − x̄′| d3 x̄ ′ , (1.196)

in which the new integration variable x̄′ ranges over the small scale RB . Because x − r B

is of the order of the much larger scale rAB , it is appropriate to express the denominator as
the Taylor expansion

|x − r B − x̄′|−1 = |x − r B |−1 − x̄ ′p∂p|x − r B |−1 + 1

2
x̄ ′pq∂pq |x − r B |−1 + · · ·

=
∞∑

�′=0

(−1)�′

�′!
x̄ ′L ′

∂L ′ |x − r B |−1

=
∞∑

�′=0

(−1)�′

�′!
x̄ ′〈L ′〉∂L ′ |x − r B |−1 . (1.197)

Making the substitution in Eq. (1.196) and invoking once more the definition of Eq. (1.180),
we arrive at

U¬A(t, x) = G
∑
B 	=A

∞∑
�′=0

(−1)�′

�′!
I 〈L ′〉

B ∂L ′ |x − r B |−1 , (1.198)

an expression for the external potential that involves the multipole moments of each external
body B.

We may now take the additional derivatives that are required in Eq. (1.194) and evaluate
the result at x = r A. The result is

∂ j LU¬A(t, r A) = G
∑
B 	=A

∞∑
�′=0

(−1)�′

�′!
I 〈L ′〉

B ∂ j L L ′

(
1

rAB

)
, (1.199)

with rAB := |r A − r B | denoting the inter-body distance. The notation requires some care
in interpretation: by ∂ j L L ′r−1

AB we mean “take �′ + � + 1 derivatives of |x − r B |−1 with
respect to x and evaluate the result at x = r A.” To simplify this and eliminate the risk of
confusion, we choose to express the operation in the equivalent form

∂ A
j L L ′

(
1

rAB

)
,

which now means “take �′ + � + 1 derivatives of r−1
AB with respect to r A.”

1.6.5 Equations of motion for isolated bodies

The hard work is over. Substitution of Eq. (1.199) into Eq. (1.194) returns our final expres-
sion for the center-of-mass acceleration of body A. We obtain

m Aa j
A = G

∑
B 	=A

∞∑
�=0

∞∑
�′=0

(−1)�′

�!�′!
I 〈L〉

A I 〈L ′〉
B ∂ A

j L L ′

(
1

rAB

)
. (1.200)
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This equation, as it stands, is exact. Because each multipole moment I 〈L〉
A scales as m A R�

A,
each term in the sum scales as

Gm Am B

r2
AB

(
RA

rAB

)�( RB

rAB

)�′

,

and the assumption that RA � rAB ensures that each term gets progressively smaller; the
equation is exact, but it is most useful as a starting point for an approximation scheme. For
many applications involving a small ratio RA/rAB , the sums can be safely truncated after
just a few terms. For other applications, however, a large number of terms may be required.
An example is the motion of a satellite in a low Earth orbit, which is sensitive to many of
Earth’s multipole moments; in the satellite geodesy project GRACE (Gravity Recovery and
Climate Experiment), multipole moments up to � ∼ 360 have been measured.

To rewrite Eq. (1.200) in a friendlier form we first isolate the early terms in the sums over
� and �′, noting that the monopole moment of body A is simply its mass, IA = m A, and
that its dipole moment vanishes, I j

A = 0, by virtue of the definition of the center-of-mass.
We next split the sums into a piece that is linear in the higher multipole moments (coming
from the terms � = 0, �′ ≥ 2 or �′ = 0, � ≥ 2) and another piece that involves products of
the moments. This yields

a j
A = G

∑
B 	=A

{
− m B

r2
AB

n j
AB +

∞∑
�=2

1

�!

[
(−1)� I 〈L〉

B + m B

m A
I 〈L〉

A

]
∂ A

j L

(
1

rAB

)

+ 1

m A

∞∑
�=2

∞∑
�′=2

(−1)�′

�!�′!
I 〈L〉

A I 〈L ′〉
B ∂ A

j L L ′

(
1

rAB

)}
, (1.201)

where nAB := r AB/rAB is a unit vector that points from body B to body A. This expression
implies that

∑
A m AaA = 0, a statement that was already established in Eq. (1.182).

The equations displayed in Eq. (1.201) form a complete set of equations of motion for
the N bodies once their masses and multipole moments as functions of time are specified.
They can be integrated once the initial position and velocity of each body are given. The
equations, however, provide an incomplete description of the physical system, because
they do not determine the time-evolution of the multipole moments; these will, in general,
depend on the details of the internal structure of each body and the motion of the remaining
bodies. The multipole moments capture the remaining coupling between the internal and
external problems (as discussed in Sec. 1.6.1), and additional information must be supplied
in order to turn Eq. (1.201) into a closed system of equations of motion. We shall return to
this issue in Chapter 2.

The multipole moments of a perfectly spherical body vanish, I 〈L〉
A = 0 for � 	= 0, and

when all the bodies are spherical we find that Eq. (1.201) reduces to the familiar set of
point-mass equations of motion,

a j
A = −

∑
B 	=A

Gm B

r2
AB

n j
AB . (1.202)

When the bodies are not spherical, we observe that the motion of body A is affected by the
distortion of the gravitational potential caused by the deformation of the other bodies; this
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influence is described by the terms in Eq. (1.201) that involve I 〈L〉
B . It is affected also by

the coupling of its own non-spherical mass distribution to gradients of the monopole field
of each external body; this influence is described by the terms in Eq. (1.201) that are linear
in I 〈L〉

A . And finally, it is affected by couplings between its own multipole moments and
those of the external bodies, as described by the last line in Eq. (1.201). This last effect is
analogous to the dipole–dipole coupling in electrodynamics, except for the fact that there is
no dipole moment in gravitation; the leading effect comes from a quadrupole–quadrupole
interaction. The presence of terms involving I 〈L〉

A in the equations of motion implies that
the motion of a body can depend on its internal structure, by virtue of its finite size and
the non-spherical coupling of its mass distribution to the external gravitational field. This
observation does not constitute a violation of the weak equivalence principle; a violation
would imply a dependence on internal structure that remains even when the bodies have a
negligible size.

1.6.6 Conserved quantities

In Sec. 1.4.3 we showed that the total mass, momentum, energy, and angular momentum of
a fluid configuration are conserved as a consequence of the fluid’s dynamics. We recall that
the total momentum P is defined by Eq. (1.54), the total energy E is defined by Eq. (1.67),
and the total angular momentum J is defined by Eq. (1.78). These quantities continue to
be conserved when the fluid configuration describes a system of isolated bodies, and in this
section we derive expressions for the total momentum, energy, and angular momentum of
an N -body system.

We begin with the definition of total momentum, P = ∫
ρv d3x , in which the integral

over all space may be written as a sum of integrals extending over each body. In each integral
we decompose v as (v − vA) + vA, with the first term describing a velocity relative to the
center-of-mass of body A. The integral of ρ(v − vA) vanishes by virtue of the definition of
the center-of-mass – refer back to Eq. (1.177) – and the second integral yields m AvA. The
final result is

P =
∑

A

m AvA ; (1.203)

as expected, the total momentum is a simple sum of individual momenta.
A similar computation returns

J =
∑

A

(
SA + m A r A × vA

)
(1.204)

for the total angular momentum, where

SA :=
∫

A
ρ
(
x − r A

) × (
v − vA

)
d3x (1.205)

is the intrinsic angular momentum of body A – its spin. We see that the total angular
momentum is a simple sum of individual spin and orbital angular momenta.

The calculation of the total energy involves a computation of the kinetic energy
T = 1

2

∫
ρv2 d3x , the gravitational potential energy 
 = − 1

2

∫
ρU d3x , and the internal
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(thermodynamic) energy E int = ∫
ε d3x . For the kinetic and internal energies we immedi-

ately get

T =
∑

A

(
TA + 1

2
m Av2

A

)
(1.206)

and

E int =
∑

A

E int
A , (1.207)

where

TA := 1

2

∫
A

ρ
∣∣v − vA

∣∣2 d3x (1.208)

is the internal kinetic energy of body A, while

E int
A :=

∫
A

ε d3x (1.209)

is its own thermodynamic energy.
The computation of 
 requires more work. We first return to Eq. (1.184) and decompose

the gravitational potential into internal and external pieces, U = UA + U¬A. This gives rise
to


 =
∑

A

(

A − 1

2

∫
A

ρU¬A d3x

)
, (1.210)

in which


A := −1

2

∫
A

ρUA d3x (1.211)

is the internal gravitational potential energy of body A. To evaluate the second term we
follow the strategy of Sec. 1.6.4 and express U¬A(t, x) as a Taylor expansion about x = r A.
Using the expression of Eq. (1.192), we obtain

− 1

2

∫
A

ρU¬A d3x = −1

2
m AU¬A

(
t, r A

) − 1

2

∞∑
�=2

1

�!
I 〈L〉

A ∂LU¬A

(
t, r A

)
, (1.212)

in which I 〈L〉
A (t) are the multipole moments of body A, as defined by Eq. (1.180); there is

no � = 1 term in the sum because I j
A = 0 by virtue of the definition of the center-of-mass.

In the remaining steps we express the external potential as an expansion in inverse powers
of rAB := |r A − r B |, as in Eq. (1.198). After some simplification we arrive at our final
expression, which is recognized below as the collection of terms involving the nested sums
over pairs of bodies.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-01 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:57

55 1.6 Motion of extended fluid bodies

Collecting results, we find that the total energy of a system of isolated bodies is given by

E =
∑

A

E A +
∑

A

1

2
m Av2

A − 1

2

∑
A

∑
B 	=A

Gm Am B

rAB

− 1

2

∑
A

∑
B 	=A

∞∑
�=2

1

�!

[
(−1)�Gm A I 〈L〉

B + Gm B I 〈L〉
A

]
∂ A

L

(
1

rAB

)

− 1

2

∑
A

∑
B 	=A

∞∑
�=2

∞∑
�′=2

(−1)�′

�!�′!
G I 〈L〉

A I 〈L ′〉
B ∂ A

L L ′

(
1

rAB

)
, (1.213)

where E A := TA + 
A + E int
A is the self-energy of body A. The manipulations following

Eq. (1.67) can immediately be adapted to each body, and the conclusion is that each self-
energy is individually conserved. Because the term

∑
A E A merely contributes an irrelevant

constant to E , it can be safely removed from a conventional accounting of total energy,
which holds that the energy should vanish when vA → 0 and rAB → ∞. In the final analysis
we shall retain only the center-of-mass kinetic energies and the mutual interaction energies
in Eq. (1.213).

When the bodies are spherical, so that I 〈L〉
A = 0 for � 	= 0, the total energy reduces to

E =
∑

A

1

2
m Av2

A − 1

2

∑
A

∑
B 	=A

Gm Am B

rAB
, (1.214)

the familiar expression for a system of point masses.

1.6.7 Equations of motion for binary systems

We next specialize the general discussion of this section to a system of two bodies. Our
binary system consists of a first body of mass m1 and multipole moments I 〈L〉

1 at a position
r1, and a second body of mass m2 and multipole moments I 〈L〉

2 at a position r2. The total
mass of the binary system is m := m1 + m2. In place of r1 and r2 it is useful to work with
the barycenter position

R := m1

m
r1 + m2

m
r2 , (1.215)

and the relative separation

r := r1 − r2 . (1.216)

This vector was denoted r12 in preceding subsections, and we simplify other notations in a
similar way by defining

r := |r| , n := r/r . (1.217)

It is useful to note that r21 = −r , n21 = −n, and that r21 = r . In addition to the relative
separation we also introduce the relative velocity v := d r/dt = v1 − v2 and the relative
acceleration

a := d2r

dt2
= a1 − a2 . (1.218)
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Solving for r1 and r2, we find that

r1 = R + m2

m
r , r2 = R − m1

m
r . (1.219)

The motion of the binary system is determined when R(t) and r(t) are both known
as functions of time. The motion of the barycenter is uniform: as we saw at the end of
Sec. 1.6.2, it is described by R(t) = R(0) + V t , where V := P/m is a constant velocity
vector. The relative motion is governed by

a j = −Gm

r2
n j + Gm

∞∑
�=2

1

�!

[
I 〈L〉
1

m1
+ (−1)� I 〈L〉

2

m2

]
∂ j L

(
1

r

)

+ Gm
∞∑

�=2

∞∑
�′=2

(−1)�′

�!�′!
I 〈L〉
1

m1

I 〈L ′〉
2

m2
∂ j L L ′

(
1

r

)
, (1.220)

an effective one-body equation that can easily be obtained from Eq. (1.201). The derivation
relies on the fact that ∂2

j r
−1
21 = −∂1

j r
−1
12 := −∂ j r−1; in this notation ∂ j indicates partial

differentiation with respect to the Cartesian coordinate r j associated with the relative
separation r . From Eq. (1.213) we find that the total energy (excluding self-energies) of a
two-body system is given by

E = 1

2
mV 2 + 1

2
μv2 − Gμm

r

− Gμm
∞∑

�=2

1

�!

[
I 〈L〉
1

m1
+ (−1)� I 〈L〉

2

m2

]
∂L

(
1

r

)

− Gμm
∞∑

�=2

∞∑
�′=2

(−1)�′

�!�′!
I 〈L〉
1

m1

I 〈L ′〉
2

m2
∂L L ′

(
1

r

)
, (1.221)

in which μ := m1m2/m is the system’s reduced mass.
As a specialization of these equations we assume that the multipole moments of one

of the bodies, say body 1, are negligible. This simplification would apply, for example, to
a planet orbiting the Sun (the planet has negligible moments), to a satellite orbiting the
Earth (the satellite has negligible moments), or to a non-rotating black hole or neutron star
orbiting a normal star (the compact object has negligible moments). In this case we find
that the relative acceleration simplifies to

a j = −Gm

r2
n j + Gm

∞∑
�=2

(−1)�

�!

I 〈L〉
2

m2
∂ j L

(
1

r

)
, (1.222)

and the total energy becomes

E = 1

2
mV 2 + 1

2
μv2 − Gμm

r
− Gμm

∞∑
�=2

(−1)�

�!

I 〈L〉
2

m2
∂L

(
1

r

)
. (1.223)

For a planet orbiting the Sun, or a spacecraft orbiting the Earth, m1 is much smaller than
m2, and m/m2 � 1. In this case the equations describe the motion of a spherical body in
the multipole field of a heavy, central object. In situations involving comparable masses,
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however, such as a black hole or neutron star orbiting a normal star, the ratio m/m2 could
be substantially larger than unity, reflecting the fact that the motion of both bodies can be
strongly affected by the multipole moments of body 2.

Specializing even further, we now take body 2 to be symmetric about an axis aligned
with the unit vector e. The symmetry requires the body’s multipole moments I 〈L〉 to be
proportional to the STF tensor e〈L〉, so that I 〈L〉 = α�e〈L〉 for some coefficient α�. We wish
to relate this to the dimensionless multipole moments J� introduced in Eq. (1.143). To
achieve this we align the z-direction with the vector e and invoke Eqs. (1.112), (1.167), and
(1.168). After some algebra we obtain α� = −m R� J�, so that

I 〈L〉
2 = −m2 R�

2 (J�)2 e〈L〉
2 ; (1.224)

to indicate that all quantities refer to body 2 we have inserted the label “2” on all quantities
(such as mass, radius, symmetry axis, and multipole moments) that appear in Eq. (1.224).

Equation (1.222) can then be written as

a j = −Gm

r2

[
n j −

∞∑
�=2

(2� + 1)!!

�!
(J�)2

(
R2

r

)�

e〈L〉
2 n〈 j L〉

]
, (1.225)

after making use of Eq. (1.156) to express the derivatives of r−1 in terms of STF products
of the vector n; the product e〈L〉

2 n〈 j L〉 could be further simplified by invoking Eq. (1.160b).
With similar manipulations we can show that the total energy becomes

E = 1

2
mV 2 + 1

2
μv2 − Gμm

r

[
1 −

∞∑
�=2

(J�)2

(
R2

r

)�

P�(e2 · n)

]
; (1.226)

to arrive at this result we have made use of Eq. (1.159a) to express e〈L〉
2 n〈L〉 in terms of

Legendre polynomials.
For modestly deformed bodies, and for sufficiently large separations, the � = 2 term

dominates in both Eq. (1.225) and Eq. (1.226). In this case the relative acceleration becomes

a = −Gm

r2

⎧⎪⎩n − 3

2
(J2)2

(
R2

r

)2{[
5(e2 · n)2 − 1

]
n − 2(e2 · n)e2

}⎫⎪⎭ ; (1.227)

the expression involves the total mass m := m1 + m2, and it applies to a binary system of
arbitrary mass ratio. This equation, the specialization of Eq. (1.220) to a spherical body
moving in the monopole and quadrupole field of an axisymmetric body, is the foundation for
the study of a number of important phenomena, including the effect of the solar quadrupole
moment on the orbit of Mercury, and the precession of the planes of Earth-orbiting satellites.
We shall return to these applications in Chapter 3.

1.6.8 Spin dynamics

As we saw back in Eq. (1.205), the spin angular momentum of body A is defined by

SA(t) :=
∫

A
ρ(t, x)(x − r A) × (v − vA) d3x , (1.228)
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and it refers to its center-of-mass position r A and velocity vA. In terms of components we
use the permutation symbol ε j pq to describe the vectorial product, and we write

S j
A(t) := ε j pq

∫
A

ρ(x − rA)p(v − vA)q d3x . (1.229)

We wish to find an equation of motion for SA(t), and we shall proceed by following the
general method outlined in Secs. 1.6.2, 1.6.3, and 1.6.4.

We begin by differentiating Eq. (1.229) with respect to t . Exploiting once again the
techniques developed in Sec. 1.4.3, we find that

d S j
A

dt
= ε j pq

∫
A

ρ(v − vA)p(v − vA)q d3x + ε j pq
∫

A
ρ(x − rA)p(dv/dt − aA)q d3x

= ε j pq
∫

A
ρ(x − rA)p dvq

dt
d3x , (1.230)

where we have used the fact that
∫

A ρ(x − rA)p d3x = 0 by virtue of the definition of the
center-of-mass position. In this we insert Euler’s equation (1.23) and obtain

d S j
A

dt
= ε j pq

∫
A

ρ(x − rA)p∂qU d3x − ε j pq
∫

A
(x − rA)p∂q p d3x . (1.231)

The second term, involving the pressure p, can be integrated by parts; after discarding
the boundary term we are left with ε j pqδpq

∫
A p d3x , which vanishes identically. We have

obtained

d S j
A

dt
= ε j pq

∫
A

ρ(x − rA)p∂qU d3x , (1.232)

and in this we insert the decomposition of the gravitational potential in terms of internal
and external pieces, as in Eq. (1.184). It is easy to show that the contribution from the
internal potential,

ε j pq

∫
A

ρ x p∂qUA d3x − ε j pqr p
A

∫
A

ρ ∂qUA d3x ,

is in fact zero. The first term vanishes by virtue of Eq. (1.80) (applied to body A instead
of the entire N -body system), and the second term vanishes thanks to Eq. (1.187). The
evolution of the spin is therefore governed by

d S j
A

dt
= ε j pq

∫
A

ρ(x − rA)p∂qU¬A d3x , (1.233)

which involves the gravitational potential U¬A(t, x) produced by the bodies external to A.
At this stage we import Eq. (1.193), which provides an expression for ∂qU¬A(t, x) as a

Taylor expansion in powers of x − r A. Inserting this within Eq. (1.233), we obtain

d S j
A

dt
= ε j pq

∞∑
�=0

1

�!
I pL

A ∂q LU¬A(t, r A)

= ε j pq
∞∑

�=0

1

�!
I 〈pL〉

A ∂q LU¬A(t, r A) . (1.234)
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In the second line we allowed ourselves to enclose the indices pL within angular brackets,
recognizing that the difference between I 〈pL〉

A and I pL
A involves a number of Kronecker

deltas that either (i) force indices contained in ∂q L to be equal, giving zero when acting on
U¬A, or (ii) force the derivative operator to be of the form ∂pq L−1, which vanishes when
multiplied by ε j pq . We next import Eq. (1.199) and obtain

d S j
A

dt
= Gε j pq

∑
B 	=A

∞∑
�=0

∞∑
�′=0

(−1)�′

�!�′!
I 〈pL〉

A I 〈L ′〉
B ∂ A

〈q L L ′〉

(
1

rAB

)
. (1.235)

To write this in a friendlier form we observe that the terms with � = 0 make no contributions
(because the dipole moment of body A vanishes), that the terms with �′ = 0 involve m B

only, and that the terms with �′ = 1 also make no contributions. We can therefore split the
sum into two pieces, one linear in the moments of body A, and the other involving products
of moments. We have

d S j
A

dt
= Gε j pq

∑
B 	=A

∞∑
�=1

1

�!
m B I 〈pL〉

A ∂ A
〈q L〉

(
1

rAB

)

+ Gε j pq
∑
B 	=A

∞∑
�=1

∞∑
�′=2

(−1)�′

�!�′!
I 〈pL〉

A I 〈L ′〉
B ∂ A

〈q L L ′〉

(
1

rAB

)
, (1.236)

and this equation determines the behavior of each spin once the multipole moments and
the center-of-mass motion of each body are specified.

We next specialize the discussion to an N -body system that consists of a spinning body
A with non-vanishing multipole moments, and external bodies B with negligible multipole
moments. In addition, we assume that body A is symmetric about an axis aligned with the
unit vector eA. Under these conditions we have that

SA = SAeA, SA := |SA| , (1.237)

and Eq. (1.224) implies that the body’s multipole moments are given by

I 〈L〉
A = −m A R�

A (J�)A e〈L〉
A . (1.238)

This relation is inserted within Eq. (1.236), along with Eq. (1.156), and after some algebra
we obtain

d S j
A

dt
= −ε j pq

∑
B 	=A

Gm Am B

rAB

∞∑
�=1

(−1)�+1 (2� + 1)!!

�!
(J�+1)A

(
RA

rAB

)�+1

e〈pL〉
A n〈q L〉

AB .

(1.239)
This is simplified with the help of Eq. (1.160b), and we express the final result as

d SA

dt
= −

∑
B 	=A

Gm Am B

rAB
(eA × nAB)

∞∑
�=2

(−1)�(J�)A

(
RA

rAB

)� d P�

dμAB
, (1.240)
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in which P�(μAB) is a Legendre polynomial, and μAB := eA · nAB . This equation implies
that the magnitude of the spin vector stays constant, because according to Eq. (1.237),
d SA/dt = eA · d SA/dt = 0. And indeed, we observe that each term in the sum over B
would give rise to a precession of eA in the direction of nAB ; after summation the pre-
cession is seen to take place in a direction given by a weighted average of all the vectors
nAB .

As we shall see in Chapter 3, one notable consequence of Eq. (1.240) is the disturbance
of the Earth’s axis caused by the coupling of its equatorial bulge with the gravitational fields
of the Sun and Moon. This leads to the famous precession of the equinoxes, with its cycle
of approximately 26 000 years.

1.7 Bibliographical notes

The presentation of the basic equations of Newtonian gravity in Sec. 1.2 follows the
standard treatment found in many undergraduate texts, including the venerable Newtonian
Mechanics by French (1971). The theory, of course, was created in Newton’s own Principia,
which can be accessed in the superb English edition with extensive commentary by Cohen,
Whitman, and Budenz (1999). The Eöt-Wash torsion balance experiment is described in
Su et al. (1994) and Baessler et al. (1999).

The theory of Green’s functions touched upon in Secs. 1.3 and 1.5 is developed system-
atically in many textbooks on mathematical methods, including the excellent Mathematical
Methods for Physicists by Arfken, Weber, and Harris (2012).

The discussion of Sec. 1.4 relies on elements of fluid mechanics, thermodynamics, and
statistical physics. Those are covered in many textbooks. An elegant and sophisticated
development of fluid mechanics can be found in the classic Fluid Mechanics by Landau
and Lifshitz (1987), and another useful resource is Kundu, Cohen, and Dowling (2011).
A comprehensive presentation of thermodynamics and statistical physics can be found
in Reif’s Fundamentals of Statistical and Thermal Physics, now available in a new 2008
edition.

The development of multipole expansions to integrate Poisson’s equation in Sec. 1.5
relies on the theory of spherical harmonics, a topic covered in most textbooks on mathe-
matical methods. These developments are virtually identical to those related to the elec-
trostatic potential, which are described in most textbooks on electromagnetism; the most
comprehensive is the classic Classical Electromagnetism by Jackson (1998). The use of
symmetric-tracefree tensors as substitutes for spherical harmonics was pioneered by Sachs
(1961) and Pirani (1964); a systematic treatment can be found in Thorne (1980), and an-
other useful resource is Damour and Iyer (1991). The citation from the Principia is taken
from the Cohen, Whitman, and Budenz edition. The book Allen’s Astrophysical Quantities
is edited by Cox (2001).

An overview of the GRACE geodesy project, mentioned in Sec. 1.6, can be found at
www.csr.utexas.edu/grace/gravity/geodesy.html.
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1.8 Exercises

1.1 Show explicitly that for a function f (t, x, x′),

∂2

∂t2

∫
ρ ′ f d3x ′ =

∫
ρ ′
(

∂2 f

∂t2
+ 2v′ · ∇′ ∂ f

∂t
+ dv′

dt
· ∇′ f + v′ j

v′k∂ j ∂k f

)
d3x ′ .

1.2 Given the Newtonian potential U (t, x), one can define a superpotential X (t, x), a
superduperpotential Y (t, x), and another superlative potential Z (t, x) that satisfy the
equations

∇2 X = 2U , ∇2Y = 12X , ∇2 Z = 30Y .

Find explicit expressions for X , Y , and Z as integrals over the mass density ρ(t, x′),
assuming that ρ vanishes outside some finite region of space.

1.3 Using the expression for the superpotential X obtained in the preceding problem,
show that

∂2

∂t2
X (t, x) = −

∫
ρ ′ dv′

dt
· (x − x′)

|x − x′| d3x ′

+
∫

ρ ′

|x − x′|
{

v′2 − [v′ · (x − x′)]2

|x − x′|2
}

d3x ′ .

1.4 Prove that ∫
ρ(t, x)x j vk d3x = 1

2

d I jk

dt
+ 1

2
ε jkp J p ,

where I jk is the quadrupole moment tensor of the mass distribution, and J p is the
total angular momentum.

1.5 Assuming that T αβ = 0 far away from the system, use the equations of hydrodynamics
in the form of ∂β T αβ = 0 to verify explicitly that the total mass M , momentum P ,
and angular momentum J of an isolated system are all constant.

1.6 With the same assumptions as in the preceding problem, prove that a statement of the
tensorial virial theorem is

d2 I jk

dt2
=
∫

T jk d3x ,

where I jk := ∫
T tt x j xk d3x . Then show that with T jk given by Eq. (1.96), the virial

theorem takes the explicit form of Eq. (1.88).

1.7 Use the spherical-harmonic expansion of |x − x′|−1 to verify that

U (t, r ) = Gm(t, r )

r
+ 4πG

∫ R

r
ρ(t, r ′)r ′dr ′

for a spherical matter distribution.

1.8 Show explicitly that ∂ jknpr−1 = 105n〈 jknp〉/r5.
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1.9 Show that the forms of n〈 jk〉, n〈 jkn〉, n〈 jknp〉 given by Eq. (1.153) satisfy the general
formula of Eq. (1.155).

1.10 Find n〈 jknpq〉 by explicit construction.

1.11 Show that the internal gravitational potential of Eq. (1.129) can be expressed as

U = G
∞∑

�=0

(−1)�

�!

[
q〈L〉(t, r ) ∂Lr−1 + p〈L〉(t, r ) x 〈L〉

]
,

where

q〈L〉(t, r ) :=
∫ r

0
ρ(t, x′)x ′〈L〉 d3x ′ , p〈L〉(t, r ) :=

∫ R

r
ρ(t, x′)∂Lr ′−1 d3x ′ .

In the integral defining q〈L〉(t, r ), the domain of integration is the region of space
bounded by a sphere of radius r := |x|. In the integral defining p〈L〉(t, r ), the domain
of integration is the region of space bounded inwardly by a sphere of radius r , and
outwardly by a sphere of arbitrary radius R that lies outside the distribution of matter.

1.12 For � = 2, 3, and 4, show explicitly that n′〈L〉n〈L〉 = [�!/(2� − 1)!!]P�(μ), where
μ := n′ · n.

1.13 Fill in all the steps that are required to establish the STF identities of Eqs. (1.159)
and (1.160).

1.14 If e and n are unit vectors, show that

e〈q L〉n〈pL〉 = �!

(2� + 1)(2� + 1)!!

[
δ pq d P�

dμ
− (

epeq + n pnq
)d2 P�+1

dμ2

+ e(pnq)

(
2

d2 P�

dμ2
+ (2� + 1)

d P�+1

dμ

)
+ (2� + 1)e[pnq] d P�+1

dμ

]
,

where μ = e · n, and use this to verify Eq. (1.240). Hint: exploit the fact that e〈q L〉 ∝
∂q L (1/R) and n〈pL〉∂pL (1/r ), where R and r are independent distance variables.

1.15 Determine the STF tensors Y 〈L〉
�m for � = 1, � = 2, and � = 3, and thereby verify the

results listed in Box 1.5.

1.16 Using the general equation of motion (1.201), show explicitly that
∑

A m AaA = 0.
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2 Structure of self-gravitating bodies

In Chapter 1 we introduced the foundations of Newtonian gravity, and presented the equa-
tions that govern the gravitational potential of spherical and nearly spherical bodies. We
also examined the center-of-mass motion of extended bodies, and witnessed the remarkable
near-decoupling of the external dynamics – the motion of each body as a whole – from the
internal dynamics – the internal fluid motions within each body. As we saw in Chapter 1,
the details of internal structure, encapsulated in multipole moments of the mass distribution,
have a limited influence on the motion of the body as a whole. In this chapter we take the
focus away from the external dynamics and examine the internal structure and dynamics
of extended, self-gravitating bodies. We shall return to the theme of the near-decoupling of
the external and internal dynamics, and reveal the limited influence of the center-of-mass
motion and the external bodies on the structure of a selected body.

We begin in Sec. 2.1 with a review of the equations of fluid mechanics that are relevant
to the internal dynamics; these are best formulated in the moving reference frame of a
selected body A in an N -body system. In Sec. 2.2 we examine the simplest models of
internal structure, involving spherical symmetry, assuming that the body is non-rotating
and not influenced by external bodies. The simplicity permits a gentle acquisition of much
insight into the structure of realistic bodies, and we shall introduce models of increasing
complexity: incompressible fluids, polytropes, isothermal spheres, and degenerate fermion
gases as models of white dwarfs. Rotation can only be ignored for so long, however, and
in Sec. 2.3 we examine the physics of rotating, self-gravitating bodies; we first present
elements of a general theory, and then construct models of incompressible, rigidly ro-
tating bodies in hydrostatic equilibrium – the famous Maclaurin spheroids and Jacobi
ellipsoids.

While our discussion in Sec. 2.3 is not restricted to slow rotations and small deviations
away from spherical symmetry, it is severely limited by the assumption that the fluid is
incompressible. In Sec. 2.4 we relax this assumption and formulate a general theory of
deformed bodies that accommodates an arbitrary equation of state. Though limited to small
deformations, the theory is sufficiently powerful that it can handle any perturbation that
causes a deformation from spherical symmetry, including rotation and tidal fields created
by external bodies. The theory, therefore, allows us to return to the main theme introduced
previously – the near-decoupling of the external and internal dynamics – and to calculate
the effects of a tidal field on the body’s structure. The tidal dynamics of extended bodies is
examined in some detail in Sec. 2.5, both in the context of static tides (which occur slowly,
on a time scale that is long compared with the internal dynamical time scale) and dynamical
tides (which occur rapidly).

63
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64 Structure of self-gravitating bodies

2.1 Equations of internal structure

Our main goal in this chapter is to describe the internal structure of a body A in a system
of N bodies, making some assumptions regarding its composition, and accounting for
the influence of the external bodies. The motion of the body’s center-of-mass position
r A(t) was examined in Sec. 1.6, and there we observed that this motion is largely (but
not completely) insensitive to the details of internal structure, which are encapsulated in a
number of multipole moments I 〈L〉

A (t). In this section we shall find that the internal structure
is largely (though not completely) insensitive to the details of the center-of-mass motion
and the presence of external bodies.

The foundations of our analysis are the same as in Chapter 1. We take the body to consist
of a perfect fluid of mass density ρ(t, x), pressure p(t, x), and velocity field v(t, x). These
quantities are governed by Euler’s equation

ρ
dv

dt
= ρ∇U − ∇ p (2.1)

and the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 . (2.2)

The gravitational potential U (t, x) is produced by all the bodies in the system, and it is
governed by Poisson’s equation

∇2U = −4πGρ . (2.3)

The center-of-mass variables of body A were introduced back in Sec. 1.6.2. They com-
prise the body’s total mass m A, center-of-mass position r A, velocity vA, acceleration aA,
and multipole moments I 〈L〉

A . In Sec. 1.6.3 the gravitational potential was decomposed as
U = UA + U¬A, in terms of a piece UA produced by body A alone – the internal potential –
and a piece U¬A produced by the remaining bodies – the external potential. In Sec. 1.6 we
showed that the acceleration of body A is caused by the external potential, and its general
expression was displayed in Eq. (1.200).

To determine the internal motions of body A we focus on the position x̄ := x − r A of a
fluid element relative to the center-of-mass position, and on its relative velocity v̄ := v − vA.
The equation that governs the behavior of the relative velocity is easily obtained from Euler’s
equation, and we write it in the form

ρ
d v̄

dt
= ρ∇̄UA − ∇̄ p + ρ∇̄(

U¬A − aA · x̄
)
, (2.4)

in which ∇̄ is the gradient operator in the relative coordinates x̄. The first two terms on
the right-hand side account for the purely internal aspects of the body’s dynamics, and the
remaining terms account for the influence of the external bodies; the last term, involving
the body’s acceleration, is a fictitious force that arises because the body’s center-of-mass
frame is not inertial.
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65 2.1 Equations of internal structure

We recall from Sec. 1.6.3 that the internal potential is given explicitly by

UA(t, x̄) = G

∫
A

ρ(t, x̄′)
|x̄ − x̄′| d3 x̄ ′ . (2.5)

For the external potential we follow the strategy of Sec. 1.6.4 and express it as a Taylor
expansion about the body’s center-of-mass. From Eq. (1.192) we get

U¬A(t, x̄) =
∞∑

�=0

1

�!
∂LU¬A(t, 0)x̄ L (2.6a)

= U¬A(t, 0) + g j (t)x̄
j −

∞∑
�=2

1

�!
EL (t)x̄ L , (2.6b)

where

g j (t) := ∂ jU¬A(t, 0) , EL (t) := −∂LU¬A(t, 0) ; (2.7)

the derivatives of the external potential are evaluated at the center-of-mass x̄ = 0. The multi-
index notation, in which L stands for a collection of � individual indices, was introduced
back in Sec. 1.5.3. We observe that since the external potential satisfies Laplace’s equation
∇2U¬A = 0 within the volume occupied by the body, the tensors EL are symmetric and
tracefree (STF). We observe also that the term � = 0 in Eq. (2.6) is spatially constant, and
that it plays no role whatever in Eq. (2.4); we may therefore remove it from the expansion.
The body’s acceleration can also be expressed in terms of the expanded external potential.
From Eq. (1.194) we obtain

a j
A =

∞∑
�=0

1

�!

I 〈L〉
A (t)

m A
∂ j LU¬A(t, 0) (2.8a)

= g j −
∞∑

�=2

1

�!

I 〈L〉
A (t)

m A
E j L (t) ; (2.8b)

the term with � = 1 vanishes because I j
A = 0 by virtue of the definition of the center-of-

mass.
With Eqs (2.6) and (2.8) we find that the external terms in Euler’s equation combine to

give

U eff
¬A := U¬A − aA · x̄ = −

∞∑
�=2

1

�!

[
EL (t)x̄ L − I 〈L〉

A (t)

m A
E j L (t)x̄ j

]
. (2.9)

The cancellation of g j in this expression implies that the external terms in Eq. (2.4) are much
smaller than the internal terms; this is the near-decoupling of the external dynamics from
the internal dynamics. With r̄c denoting a characteristic length scale within the body, we
have that the internal potential scales as UA ∼ Gm A/r̄c. The (effective) external potential
is dominated by the � = 2 term, and this scales as Gm Br̄2

c /r3
AB , with rAB denoting a typical

inter-body distance. The ratio of external and internal influences is therefore given by

U eff
¬A

UA
∼ m B

m A

(
r̄c

rAB

)3

, (2.10)

and this is indeed much smaller than unity when the bodies are well separated (r̄c � rAB).
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When the body is spherical, or when its deviations from spherical symmetry are suf-
ficiently small to be neglected, the coupling between the higher multipole moments I 〈L〉

A

and E j L can be neglected in the acceleration. In such circumstances the effective external
potential simplifies to

U eff
¬A = −

∞∑
�=2

1

�!
EL (t)x̄ L . (2.11)

We shall return to this expression later on in the chapter.
In the next two sections we shall neglect the external terms and examine the equilibrium

states of a completely isolated body. We shall incorporate the external terms in Secs. 2.4
and 2.5, and see how they affect the body’s internal structure.

2.2 Equilibrium structure of a spherical body

We begin our exploration of the equilibrium structure of an isolated body with the simplest
conceivable model, that of a non-rotating and spherically symmetric object.

2.2.1 Equations of body structure

Hydrostatic equilibrium

The equations that govern the equilibrium structure of an isolated body were already
identified back in Sec. 1.5, and they can be recovered from Eq. (2.4) by setting v̄ j = 0 and
omitting the external terms. In spherical symmetry the equation of hydrostatic equilibrium
is

dp

dr
= ρ

dU

dr
, (2.12)

in which we drop the bar over the radial variable and the label A on the gravitational
potential to simplify the notation. Poisson’s equation can be integrated to give

dU

dr
= −Gm(r )

r2
, (2.13)

in which m(r ) is the mass contained within a sphere of radius r ; this is related to the density
by

dm

dr
= 4πr2ρ . (2.14)

We recall from Sec. 1.5 that according to Eq. (2.13), the potential inside the body can be
expressed as

Uin = Gm(r )

r
+ 4πG

∫ R

r
ρ(r ′)r ′ dr ′ , (2.15)
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67 2.2 Equilibrium structure of a spherical body

in which R is the body’s radius, at which p = 0. The potential outside the body is

Uout = G M

r
, (2.16)

in which M := m(r = R) is the body’s total mass. Again we adjust the notation employed
in Sec. 2.1 and denote the total mass M instead of m A; this switch of notation was also
made in Chapter 1.

Equation of state; energy production and transport

These equations must be supplemented by an equation of state

p = p(ρ, T ; X ) (2.17)

that relates the pressure to the density ρ, temperature T , and chemical composition X of the
matter making up the body. In addition, equations must be provided to account for energy
production and transport within the body. One such equation was already considered back
in Sec. 1.4.2, where it was shown that in conditions of thermal equilibrium, the heat-flux
vector H and the rate of energy production per unit mass q are related by the conservation
equation ∇ · H = ρq. In spherical symmetry this reduces to

1

r2

d

dr
(r2 H ) = ρq , (2.18)

where H is the radial component of H . This equation, in turn, must be supplemented by
a relation q = q(ρ, T ; X ) that links the rate of energy production to the local conditions
within the fluid. Once H (r ) is known, the temperature profile is determined by the equation
of radiative transport,

dT

dr
= − 3

4ac
κρ

H

T 3
, (2.19)

where κ is the mean opacity, which also depends on the local conditions within the fluid,
and a is the radiation constant.

This set of equations is overly simplistic; realistic stellar models (like the standard solar
model that describes the structure of our Sun) are far more complicated. Among many
simplifying assumptions, we have taken the composition X to be uniform throughout the
body; this assumption is violated in a highly evolved star, in which nuclear reactions have
produced a large radial variation in the abundances of heavy elements. It is also violated
for planets that might have a mantle or crust that cannot be modeled as a perfect fluid. We
have also assumed that radiation is the only relevant mechanism of energy transport; this is
violated in most main-sequence stars, which harbor large convection zones.

In our simplified picture, a stellar model is constructed by simultaneously integrating
Eqs. (2.12), (2.13), (2.14), (2.18), and (2.19). The relevant boundary conditions at r = 0 are
that p = pc (the central pressure), m = 0, H = 0, and T = Tc (the central temperature).
At the boundary r = R we find that p = 0, m = M , H = L/(4π R2) with L denoting
the stellar luminosity, and T achieves its surface value T (R). This is a formidable set
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68 Structure of self-gravitating bodies

of equations; q and κ are typically provided in tabular form, and the equations must be
integrated numerically.

Virial theorem and other integral properties

The equilibrium configuration must satisfy the virial theorem of Eq. (1.90), which we write
in the restricted form


 + 3P = 0 , (2.20)

in which 
 = − 1
2

∫
ρU d3x is the body’s gravitational potential energy, and P = ∫

p d3x
is the integrated pressure. We have left the kinetic-energy term out of Eq. (2.20) because
we are applying the theorem to a static configuration that has no kinetic energy.

The integrated pressure is P = 4π
∫ R

0 pr2 dr for a spherical body, and integration by
parts brings this to the form

P = −4π

3

∫ R

0

dp

dr
r3 dr . (2.21)

Substitution of Eqs. (2.12) and (2.13) produces

3P = 4πG

∫ R

0
ρ(r )m(r )r dr , (2.22)

and we wish to show that the right-hand side is an expression for −
. One way to establish
this is to insert Eq. (2.15) within the definition of 
; this yields


 = −2πG

∫ R

0
ρmr dr − 8π2G

∫ R

0
dr ρ(r )r2

∫ R

r
dr ′ ρ(r ′)r ′ , (2.23)

which we re-express as


 = −2πG

∫ R

0
ρmr dr − 8π2G

∫ R

0
dr ′ ρ(r ′)r ′

∫ r ′

0
dr ρ(r )r2 (2.24)

by altering the order of integration in the second term. The right-most integral is recognized
as m(r ′)/(4π ), and the second term becomes −2πG

∫ R
0 ρ(r ′)m(r ′) dr ′, the same as the first

term. Our final expression for 
 is therefore


 = −4πG

∫ R

0
ρ(r )m(r )r dr , (2.25)

and we confirm the validity of Eq. (2.20).
Other integral properties of the equilibrium configuration can be obtained in a similar way.

Integration of dp/dr from r = 0 to r = R produces −pc, and substitution of Eqs. (2.12)
and (2.13) within the integral reveals that

pc = G

∫ R

0

ρ(r )m(r )

r2
dr . (2.26)
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We next integrate pr3 from the center to the surface. Exploiting integration by parts as we
did before, we find that ∫ R

0
pr3 dr = 1

4
G

∫ R

0
ρmr2 dr . (2.27)

But ρr2 = (4π )−1dm/dr , and the integrand can be expressed as the total derivative
(8π )−1dm2/dr . Integration produces

M2 = 32π

G

∫ R

0
p(r )r3 dr . (2.28)

When pressure depends only on density

When the pressure depends only on density, and does not depend on temperature, the main
equations of hydrostatic equilibrium decouple from the energy equations, and they can be
handled separately. These can be given either as a set of first-order differential equations,

dp

dr
= −ρ

Gm

r2
,

dm

dr
= 4πr2ρ , (2.29)

or they can be combined into a single second-order differential equation for the pressure,

1

r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGρ ; (2.30)

in both cases it is assumed that ρ is given as a function of the pressure. In most applica-
tions, especially those involving computational methods, the formulation of Eq. (2.29) is
a more practical one. In some applications, however, Eq. (2.30) can be advantageous, as it
sometimes leads to a differential equation that can be solved in closed form.

Box 2.1 Newtonian gravity, neutrinos, and the Sun

One of the most surprising successes of the standard solar model, with its foundation grounded in Newtonian
gravity, was the role it played in the discovery of neutrino oscillations. The chain of nuclear reactions that
convert hydrogen tohelium in theSunproducesneutrinos as aby-product. In 1964, RaymondDavis Jr. and John
Bahcall proposed an experiment to measure the flux of high-energy neutrinos from the decay of 8B produced
in a side chain of the solar nuclear reactions. These neutrinos are able to convert 37Cl to radioactive 37Ar. The
experiment involved a swimming-pool sized container of ordinary cleaning fluid (C2Cl4), from which Davis
could extract minute amounts of 37Ar (a few atoms per month) using specially designed chemical techniques.
Beginning in 1968, Davis reported that the flux of neutrinos was about one third of what was expected from
standard solar models. While there was initial skepticism of his result, the “solar neutrino problem” survived
numerous double-checks and refinements of his experiment.
Suspicion fell on the solar models used to predict the neutrino flux. To construct a solar model is an exceed-

ingly complicated task. In addition to Newtonian gravity, one must provide the initial elemental abundances
fromwhich the Sunwas formed, input all the relevant nuclear reactionswith theirmeasured rates, incorporate
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the correct heat transfer from core to surface (involving both radiative transport and convection), and evolve
the Sun for 4.5 billion years. The resultingmodel must match the current solar luminosity and the surface ele-
mental abundances. The reaction rates in the solar core are extremely sensitive to temperature; a 1% change
in temperature can induce a 30% change in the neutrino flux from 8B. Decades of reanalyses and refinements
of the solar models failed to resolve the solar neutrino problem.
Meanwhile, developments in particle physics opened the possibility that neutrinos might not be strictly

massless. As a consequence, they could undergo “neutrino oscillations,” whereby an electron neutrino trans-
mutes into a muon neutrino (and to a smaller extent into a tau neutrino) and back. Mikheev, Smirnov and
Wolfenstein showed that this effect, while operative in vacuum, could be enhanced during passage through
matter, such as the solar interior. The experimental results could be explained if a sufficient number of the
initial 8B electron neutrinos had converted to muon or tau neutrinos, because the conversion of 37Cl to 37Ar is
induced only by electron neutrinos.
The solution to the solar neutrino problem was provided by new solar neutrino experiments, notably

Kamiokande and super-Kamiokande in Japan, GALLEX in Germany, SAGE in Russia, and SNO in Canada. All
the experiments confirmed the deficit of solar electron neutrinos. But the Japanese and Canadian experiments
were sensitive to all three typesof neutrinos, andSNOcouldactually distinguishbetween thedifferent varieties
of neutrinos; they ultimately verified that the total flux of neutrinos agreed completely with the predictions of
the solar models based on Newtonian gravity.

2.2.2 Incompressible fluid

The simplest equilibrium structure is obtained when one assumes that the fluid is incom-
pressible, that is, that the mass density is uniform throughout the body. We express this
mathematically as

ρ(r ) =
{

ρ0 r ≤ R
0 r > R

, (2.31)

where ρ0 is a constant. Another way of expressing this is ρ(r ) = ρ0�(R − r ), with �

denoting the Heaviside step function. The pressure of an incompressible fluid is unrelated to
the density, and it must be determined by integrating the equation of hydrostatic equilibrium.
The incompressible fluid is an exceedingly crude and entirely unphysical model – it leads, for
example, to a formally infinite speed of sound within the body. Nevertheless, its simplicity
makes it an attractive starting point for a study of equilibrium structures, and we shall have
many occasions to return to it in this chapter.

From Eq. (2.14) we find that the mass function within the body is given by

m(r ) = 4π

3
ρ0r3 = M(r/R)3 , (2.32)

with

M = 4π

3
ρ0 R3 (2.33)
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denoting the total mass. From Eqs. (2.12) and (2.13) we find that the pressure profile is
given by

p(r ) = pc(1 − r2/R2) , (2.34)

with

pc = 2π

3
Gρ2

0 R2 = 3

8π

G M2

R4
(2.35)

denoting the central pressure p(r = 0); the constant of integration was chosen so that p(r )
properly vanishes at the boundary r = R. And from Eq. (2.15) we find that the gravitational
potential inside the body is given by

Uin = G M

2R

(
3 − r2/R2

)
; (2.36)

outside the body it takes the usual form Uout = G M/r , and the potential is continuous
(though not differentiable) at r = R.

Evaluation of Eq. (2.25) reveals that the gravitational potential energy of an incompress-
ible body is


 = −3

5

G M2

R
, (2.37)

and by virtue of the virial theorem, the integrated pressure is P = − 1
3 
 = 1

5 G M2/R.

2.2.3 Polytropes and the Lane–Emden equation

Polytropic equation of state and polytropes

A polytrope is a body in hydrostatic equilibrium for which the matter satisfies the polytropic
equation of state

p = Kρ� , � := 1 + 1/n , (2.38)

where K and � are constants; the related constant n is called the polytropic index. We
first encountered this equation of state near the end of Sec. 1.4.2, where it was shown to
result from thermal equilibrium when the energy density ε of a fluid element is related to
the pressure p by ε = np (note that n was denoted η in Sec. 1.4.2). Equation (2.38) is an
example of an equation of state that is independent of temperature, which implies that an
equilibrium configuration can be constructed without having to consider the equations of
energy production and transport.

Polytropes have the advantage of being more physical than models involving an incom-
pressible fluid, but they are still a far cry from representing a realistic stellar structure.
Nevertheless, they were studied extensively in the 19th and early 20th century in an effort
to gain insight into stellar astrophysics at a time when almost nothing was known about
how stars actually operate; the simplicity of Eq. (2.38) encouraged the development of a
rich body of work that may not be directly applicable to real stars (although we shall see the
connection with white dwarfs later in this section), but is nevertheless beautiful and worthy
of study. This effort was initiated by Lord Kelvin, who noted that Eq. (2.38) should apply
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to a star in convective equilibrium. The study of stellar structure based on the polytropic
equation of state was taken up by Lane and developed systematically by Ritter. The work,
as it stood in 1907, was summarized in a treatise by Emden, and it was passed on (with
further developments) to later generations by Chandrasekhar (1958) in his classic text An
introduction to the study of stellar structure.

Scales

Our goal is to integrate the equations of hydrostatic equilibrium, either Eqs. (2.29) or
Eq. (2.30), for a fluid with a polytropic equation of state. Before getting started with this
task it is helpful to introduce a number of scaling quantities that are relevant to this problem.
We have

ρc := central density, (2.39a)

pc := central pressure, (2.39b)

r0 := length scale, (2.39c)

m0 := mass scale. (2.39d)

While ρc and pc provide their own definitions, with the equation of state giving pc =
Kρ

1+1/n
c , r0 and m0 must still be determined. To define m0 we simply note that it must scale

as ρcr3
0 and insert a convenient numerical factor; we set

m0 := 4πρcr
3
0 . (2.40)

To define r0 we appeal to the equation of hydrostatic equilibrium, dp/dr = −Gρm/r2, and
note that the left-hand side scales as pc/r0 while the right-hand side scales as Gρcm0/r2

0 ;
inserting a convenient numerical factor, we set

r2
0 := (n + 1)pc

4πGρ2
c

= (n + 1)K

4πG
ρ(1−n)/n

c . (2.41)

Combining this with Eq. (2.40), we find that the mass scale takes the explicit form

m0 = (n + 1)3/2 K 3/2

(4π )1/2G3/2
ρ(3−n)/(2n)

c . (2.42)

From Eqs. (2.40) and (2.41) we also get Gm0/r0 = (n + 1)pc/ρc, a useful relation among
the various scales. Other relations are

pc = (4π )1/3G

n + 1
ρ4/3

c m2/3
0 (2.43)

and

mn−1
0

rn−3
0

= 1

4π

[
(n + 1)K

G

]n

, (2.44)

which reveals that mn−1
0 /rn−3

0 is actually independent of the central density ρc.
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Dimensionless variables and Lane–Emden equation

Having introduced the relevant scales, the next step is to express the equations of hydrostatic
equilibrium in dimensionless and scale-free form. We introduce

ξ := r/r0 (2.45)

as a dimensionless radial variable, and

μ := m/m0 (2.46)

as a dimensionless mass function. We also write

ρ := ρcθ
n , (2.47)

and adopt θ as a dimensionless substitute for the density function. For the pressure we then
have

p = pcθ
n+1 , (2.48)

in accordance with the equation of state of Eq. (2.38).
With these variables Eqs. (2.29) become

dθ

dξ
= − μ

ξ 2
,

dμ

dξ
= ξ 2θn . (2.49)

These equations are integrated outward from ξ = 0, where the boundary conditions

θ (ξ = 0) = 1 , μ(ξ = 0) = 0 (2.50)

are imposed. Integration proceeds until θ = 0 at ξ = ξ1, which marks the body’s boundary,
where both the pressure and density vanish. The body’s total mass is then

M = m0μ1 , (2.51)

with μ1 := μ(ξ = ξ1), while the body’s radius is

R = r0ξ1 . (2.52)

From Eqs. (2.40), (2.51), and (2.52) it is easy to see that the mean density of a polytrope is
given by

ρ̄ := 3M

4π R3
= ρc

(
3μ1

ξ 3
1

)
. (2.53)

It is useful to note that according to Eq. (2.49), μ1 = −ξ 2
1 θ ′(ξ1), in which a prime indicates

differentiation with respect to ξ .
As in Eq. (2.30), the equations displayed in Eq. (2.49) can be combined into a single,

second-order differential equation for the density variable θ . This equation,

1

ξ 2

d

dξ

(
ξ 2 dθ

dξ

)
= −θn , (2.54)
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Table 2.1 Numerical integration of the Lane–Emden equation for various
polytropes. The first column lists the polytropic index n, and the second column
lists� = 1 + 1/n. The third column lists ξ1, the value of the radial variable at
which θ = 0. The fourth column listsμ1, the value of the dimensionless mass

function at ξ = ξ1.

n � ξ1 μ1

1/2 3 2.752698054 3.788651185
2/3 5/2 2.871323871 3.538747902
1 2 3.141592654 3.141592654

3/2 5/3 3.653753736 2.714055120
2 3/2 4.352874596 2.411046012
3 4/3 6.896848619 2.018235951
4 5/4 14.97154635 1.797229914

is the famous Lane–Emden equation. For most applications the first-order formulation of
Eq. (2.49) is more practical, but as we shall see below, for selected values of n Eq. (2.54)
leads to a simple differential equation that can be integrated exactly.

Properties of polytropes

Because Eqs. (2.49) and (2.54) are independent of K and ρc, they can be integrated once
and for all for any selected value of n; the solutions are scale-free and independent of
both K and ρc. For a given n and K (that is, for a given equation of state), the solu-
tion gives rise to an entire family of stellar models parameterized by the central density
ρc. As Eq. (2.42) reveals, the mass M = m0μ1 increases with ρc when n < 3, but it de-
creases with increasing density when n > 3. From Eq. (2.41) we observe that the radius
R = r0ξ1 increases with ρc when n < 1, but that it decreases with increasing density
when n > 1. Combining these statements, we find that the mass increases with the ra-
dius when n < 1 and n > 3, while it decreases with increasing radius when 1 < n < 3.
Note that when n = 3 (or � = 4/3), the mass turns out to be independent of the cen-
tral density; we shall come back to this observation in our study of white dwarfs. Note
also that when n = 1 (or � = 2), it is the radius that becomes independent of the central
density.

In Box 2.2 we describe how the Lane–Emden equations can be integrated numerically,
and in Table 2.1 we display the results of such numerical integrations. In Fig. 2.1 we present
plots of the density as a function of radius. The figure shows that as n increases and �

decreases, so that the equation of state becomes increasingly soft, the polytropes become
centrally dense, with a density profile that falls off increasingly rapidly away from r = 0.
For stiffer equations of state (for n small and � large), the density becomes increasingly
uniform.
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Fig. 2.1 Density versus radius for various polytropes. The density is normalized to the central densityρc , and the radius is
normalized to the body radius R.

Box 2.2 Integration of the Lane–Emden equation

Equations (2.49) must be integrated outward from ξ = 0, and the boundary conditions are θ(0) = 1 and
μ(0) = 0. A difficulty is immediately encountered withdθ/dξ , which evaluates to0/0 at ξ = 0; since
μ goes to zero as 1

3ξ 3, the equation is actually well-behaved at the center, but this formulation of the equa-
tions is ill suited to a direct numerical integration.
To avoid this difficulty it is helpful to adopt

ν := μ

ξ 3

as a substitute variable. The differential equations become

dθ

dξ
= −ξν ,

dν

dξ
= 1

ξ
(θn − 3ν) ,

and the equation for θ is now better behaved near ξ = 0. The boundary conditions are now θ(0) = 1 and
ν(0) = 1

3 . The equation for ν is still presenting a problem at ξ = 0. To take care of this we perform the
transformation

x := ln ξ



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-02 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:36

76 Structure of self-gravitating bodies

and adopt x as a new independent variable. The differential equations become

dθ

dx
= −e2xν ,

dν

dx
= θn − 3ν ,

and they are nowwell conditioned for numerical integration, except for the fact that integrationmust proceed
from x = −∞.
The solution to this last difficulty is to start the integration from x = xinit, where xinit is large and nega-

tive. Starting values for the dependent variables can then be obtained by expanding θ and ν in powers of ξ ,
with coefficients determined by substituting the approximations within the differential equations. In this way
we obtain

θ = 1 − 1

6
ξ 2 + n

120
ξ 4 + O(ξ 6)

and

ν = 1

3
− n

30
ξ 2 + n(8n − 5)

2520
ξ 4 + O(ξ 6) .

By choosing ξ = exinit sufficiently small, the errors can be adjusted to be below a chosen tolerance, and
numerical integration of the equations can be attempted with standard methods such as the fourth-order
Runge-Kutta algorithm.
Integration proceeds until x = x1 = ln ξ1, which marks the first point at which θ changes sign. To de-

termine the precise location requires finding the root of the equationθ(x) = 0. The simplest way to achieve
this is to perform a bisection search: One first identifies an x0 such that θ(x0) > 0 and an x2 such that
θ(x2) < 0, so that x1 must be between x0 and x2. One next evaluates θ(x) at the half-way point. If the
sign is positive, then x0 is moved to this new position while x2 is left where it was; if the sign is negative,
then x0 is left alone while x2 is brought to the new position. The cycle repeats until the interval contain-
ing x1 has shrunk to a sufficiently small size. At this stage x1 is known to sufficient numerical accuracy, and
μ1 = ν(x1)e3x1 can be evaluated with the same degree of accuracy.

Gravitational potential energy

We wish to show that the gravitational potential energy of a polytrope is given by


 = − 3

5 − n

G M2

R
. (2.55)

This result and the virial theorem imply that the integrated pressure is

P = −1

3

 = 1

5 − n

G M2

R
. (2.56)

These results indicate that models with n ≥ 5 are peculiar; we shall examine the special
case n = 5 below, and see what happens when n > 5.
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Our starting point is Eq. (2.25), in which we substitute Eqs. (2.45), (2.46), and (2.47).
After taking into account Eq. (2.40), we obtain


 = −Gm2
0

r0

∫ ξ1

0
μ θnξ dξ . (2.57)

This integral can be written in a number of equivalent forms. We first use Eq. (2.49) to
eliminate μ in favor of −ξ 2θ ′, in which a prime indicates differentiation with respect to ξ ;
after integration by parts we arrive at


 = −Gm2
0

r0

3

n + 1

∫ ξ1

0
ξ 2θn+1 dξ . (2.58)

Proceeding from this expression, we next eliminate θn in favor of μ′/ξ 2 and write the
integrand as θμ′; integration by parts yields


 = −Gm2
0

r0

3

n + 1

∫ ξ1

0

μ2

ξ 2
dξ , (2.59)

after expressing θ ′ as −μ/ξ 2. If we next return to Eq. (2.57) and eliminate θn in the same
way, we obtain the integrand μμ′/ξ ; integration by parts produces


 = −Gm2
0

r0

[
μ2

1

2ξ1
+ 1

2

∫ ξ1

0

μ2

ξ 2
dξ

]
. (2.60)

The second term matches the expression displayed in Eq. (2.59), and combining these
expressions, we finally arrive at


 = − 3

5 − n

Gm2
0μ

2
1

r0ξ1
, (2.61)

which is the same statement as Eq. (2.55).

Special cases with exact solutions

The Lane–Emden equation can be integrated exactly for special values of n. The first such
case is n = 0, which is actually a singular limit of the formalism. While Eq. (2.54) is
perfectly well behaved when n = 0, the polytropic equation of state is singular, and the
density becomes unrelated to the pressure. Accordingly, the definition of θ provided by
Eq. (2.47) breaks down, but we observe that Eq. (2.48) remains meaningful when n = 0; it
becomes p = pcθ , and this relation supplies θ with a new definition. To keep the remaining
equations meaningful, we introduce a new density scale ρ0, a new length scale r0, and a
new mass scale m0 defined by

r2
0 = pc

4πGρ2
0

, m0 = 4πρ0r3
0 ; (2.62)

these definitions replace Eqs. (2.40) and (2.41), and the density scale ρ0 is unrelated to the
central pressure pc. The dimensionless variables then refer to the new scales: ξ = r/r0,
θ = p/pc, and μ = m/m0.
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With these changes we find that Eqs. (2.49) or (2.54) apply just as well to the case n = 0.
Integration is straightforward, and we find that the solutions are

θ = 1 − 1

6
ξ 2 , μ = 1

3
ξ 3 . (2.63)

These results imply that the pressure vanishes at ξ = ξ1 = √
6, and that the body’s dimen-

sionless mass is μ1 = 2
√

6. Incorporating the scales, we have found that

R =
√

6r0 , M = 2
√

6m0 . (2.64)

The fact that the mass function is exactly proportional to r3 implies that the density is
uniform within the body: at any radius r we have that ρ = ρ0. The n = 0 limit of a
polytrope, therefore, corresponds to an incompressible body, and the results obtained here
are fully compatible with those described in Sec. 2.2.2. Note, in particular, that Eq. (2.55)
reduces to Eq. (2.37) when n = 0.

Another case that admits an exact solution is n = 1, corresponding to � = 2. The gen-
eral solution to Eq. (2.54) is θ = (c1 sin ξ + c2 cos ξ )/ξ , where c1 and c2 are integration
constants, and imposing the boundary conditions yields

θ = sin ξ

ξ
, μ = sin ξ − ξ cos ξ . (2.65)

These results imply that the boundary is at ξ = ξ1 = π , and the body’s dimensionless mass
is μ1 = π . Incorporating the scales of Eqs. (2.41) and (2.42), we find that

R =
√

π K

2G
, M =

√
2π K

G
ρc . (2.66)

We note that R is independent of the central density, while M increases linearly with ρc.
A final case that gives rise to an exact solution is n = 5. To find this solution it is helpful

to change the dependent variable from θ to f := θ−2. The Lane–Emden equation becomes

1

2
f f ′′ − 3

4
( f ′)2 + 1

ξ
f f ′ = 1 , (2.67)

in which a prime indicates differentiation with respect to ξ . This is a non-linear differential
equation, but a solution can be found by substituting a trial solution of the form f =
1 + ∑∞

p=1 apξ 2p. This reveals that the exact solution is f = 1 + 1
3 ξ 2. In terms of the

original variables, we have

θ = (
1 + 1

3 ξ 2
)−1/2

, μ = 1

3
ξ 3
(
1 + 1

3 ξ 2
)−3/2

. (2.68)

These results imply that the body does not have a well-defined surface: θ vanishes at
ξ = ξ1 = ∞. Nevertheless, the total mass is finite and equal to μ1 = √

3. In this case
Eq. (2.42) produces

M = 18
√

2K 3/2

(4π )1/2G3/2

1

ρ
1/5
c

, (2.69)

and we see that M decreases very slowly with an increasing central density ρc. We observed
previously that Eq. (2.55) for the gravitational potential energy does not apply when n = 5;
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in fact, the equation is meaningless when n = 5 and R = ∞, but it is nevertheless true that

 is finite in this case. It can also be shown that all polytropes with n ≥ 5 have an infinite
radius.

2.2.4 Isothermal spheres

Another equation of state that leads to simple equilibrium configurations is

p = ρkT

μmH
+ 1

3
aT 4 , (2.70)

in which the temperature T is assumed to be uniform; μ is the mean atomic number (which
is not to be confused with the dimensionless mass function), mH is the atomic mass unit,
and a is the radiation constant. The first term in the equation of state is the pressure exerted
by an ideal gas, and the second term is the radiative pressure. This equation of state is
relevant when convection brings large portions of the body into thermal equilibrium at a
constant temperature; this is in contrast to radiative equilibrium, where the temperature
varies because of radiation transport. The equation of state (without the radiation term)
is also adopted in simple models of star clusters, where two-body scattering processes
bring the stars into an approximate Maxwellian distribution of velocities, with a common
“temperature” related to the velocity dispersion in the cluster.

Because T is constant, the radiation term does not give rise to a pressure gradient, and
therefore it does not participate in the hydrostatic equilibrium. So for a given T , the effective
equation of state is

p = Kρ , (2.71)

where K := kT/(μmH); this is a special case of a polytropic equation of state with � = 1
and n = ∞. This limit is too singular to be handled by the Lane–Emden equation, and we
must give it a separate treatment.

As usual we introduce the relevant scaling quantities: we have the central density ρc, the
central pressure pc = Kρc, and we introduce a length scale r0 and a mass scale m0 with the
relations

r2
0 := pc

4πGρ2
c

= K

4πGρc
(2.72)

and

m0 = 4πρcr
3
0 . (2.73)

A useful relation among these quantities is Gm0/r0 = pc/ρc = K . The scale-free, dimen-
sionless variables are

ξ := r/r0 , e−ψ := ρ/ρc = p/pc , μ := m/m0 . (2.74)

With these substitutions it is easy to show that the equations of hydrostatic equilibrium,
displayed in Eq. (2.29), take the form of

dψ

dξ
= μ

ξ 2
,

dμ

dξ
= ξ 2e−ψ . (2.75)
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Fig. 2.2 Plots of the dimensionless density e−ψ and rescaled massμ/(2ξ ) as functions of the dimensionless radius ξ . While
the density decreases monotonically with increasing ξ , it does so too slowly for the massμ to converge to a finite
limit; the figure reveals thatμ/(2ξ ) converges, but that the mass increases without bound. For reasons explained in
the text, the inset shows a plot of ( 12ξ

2e−ψ − 1)ξ 1/2 as a function of log ξ .

These can be combined into a single, second-order differential equation for ψ :

1

ξ 2

d

dξ

(
ξ 2 dψ

dξ

)
= e−ψ . (2.76)

The equations are integrated outward from ξ = 0, with boundary conditions ψ(0) = 0 (so
that e−ψ = 1 at the center) and μ(0) = 0; integration proceeds until e−ψ = 0. The equations
can be integrated once and for all for any K and central density ρc, and the solution describes
an entire family of equilibrium structures parameterized by ρc. Numerical integration of the
equations is facilitated by the tricks described in Box 2.2; it is useful to note that for ξ � 1,
the functions are well approximated by the expansions ψ = 1

6 ξ 2 − 1
120 ξ 4 + 1

1890 ξ 6 + O(ξ 8)
and ν := μ/ξ 3 = 1

3 − 1
30 ξ 2 + 1

315 ξ 4 + O(ξ 6).
In Fig. 2.2 we display the results of a numerical integration of Eqs. (2.75). The most

important observation is that while the density decreases monotonically with increasing
radius, it does so too slowly to give rise to a well-defined surface and a finite mass for the
body. In fact, it can be shown that when ξ � 1, e−ψ behaves as

e−ψ = 2

ξ 2

[
1 + A

ξ 1/2
cos

(√
7

2
ln ξ + δ

)
+ O(ξ−1)

]
, (2.77)

where A and δ are constants that must be matched to the numerical results. The asymptotic
behavior e−ψ ∼ 2/ξ 2 implies that the mass increases as μ ∼ 2ξ , and this is confirmed by the
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numerical results. The figure’s inset shows a plot of ( 1
2 ξ 2e−ψ − 1)ξ 1/2 ∼ A cos(

√
7

2 ln ξ +
δ), and the plot confirms the existence of logarithmic oscillations of constant amplitude.

These results make it clear that the isothermal equation of state cannot describe a
complete star or star cluster. Nevertheless, it is often adopted to model the core of a star
or star cluster, where the conditions are approximately isothermal. The model is cut off
at some appropriate radius, and the solution is matched to another solution for the outer
region of the body, where a different equation of state takes over.

2.2.5 White dwarfs

A white dwarf is a low-mass star that has come to the end state of its stellar evolution,
following a long life on the main sequence. It is a dead star that is no longer able to
support itself with radiative pressure produced by thermonuclear reactions in the core,
because these have ceased after virtually all the hydrogen and helium have been converted
to heavier elements. As the star starts to shrink (after it has ejected its outer layers),
the density increases sufficiently for the electrons to become degenerate, and it is the
degeneracy pressure of the electrons that will continue to support the star against further
gravitational collapse. White dwarfs have masses typically ranging between 0.5M� and
0.7M�, with the majority of them tightly clustered around 0.6M�; masses as low as 0.2M�
and as high as 1.3M� have been observed. The typical radius of a white dwarf is of
the order of 9 × 103 km, somewhat larger than the Earth; the typical density is of the
order of 4 × 108 kg/m3. A typical white dwarf has a composition dominated by 12C and
16O. In this section we construct the equation of state for a degenerate electron gas, and we
integrate the equations of hydrostatic equilibrium to uncover the internal structure of a white
dwarf.

Conditions for degeneracy and relativity

Electron degeneracy was reviewed briefly in Sec. 1.4.2, where it was shown to result when
the temperature T becomes smaller than the Fermi temperature

TF = h̄2

2mek

(
3π2ne

)2/3
, (2.78)

which was first introduced in Eq. (1.42); here me is the electron’s mass, and ne is its number
density. This equation reveals that the Fermi temperature is high when the density is high,
and these are the conditions that prevail inside a white dwarf.

To turn the criterion T < TF into something more useful, we estimate the temperature of
a white dwarf by relating it to its pressure and mass density; taking the ideal-gas equation
of state as a rough guide, we have kT ∼ p/ne, where p is the pressure within the star.
Because the matter is electrically neutral, and because most of the mass is contained in the
ions (instead of the electrons), we write ne ∼ ρ/mH, in which ρ is the total mass density.
With p ∼ G M2/R4 and ρ ∼ M/R3, we find that kT ∼ GmH M/R. The Fermi temperature,
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on the other hand, is given by kTF = h̄2 M2/3/(mem2/3
H R2), and the criterion for degeneracy

is

M1/3 R <
h̄2

Gmem5/2
H

, (2.79)

or (
M

M�

)1/3( R

R�

)
< 10−2 (2.80)

after inserting the relevant numbers. For the typical white dwarf described previously, the
left-hand side evaluates to 0.01, and the criterion is (marginally) satisfied.

The electrons are not only degenerate, they are also relativistic. (We are speaking of
special relativity, not general relativity; as Table 1.1 indicates, the gravitational potential
is still too modest for general relativity to play a significant role in the structure of white
dwarfs.) To estimate the size of the relativistic corrections we examine the quantity x :=
| p|/(mec), the ratio of an electron’s momentum to mec; relativistic effects are important
when x > 1. For a degenerate gas the momentum is given by the Fermi momentum,
which is linked to the density by the relation (derived below) ne = x3/(3π2λ3

e), in which
λe := h̄/(mec) is the Compton wavelength of the electron. With this we find that

x ∼ λeρ
1/3

m1/3
H

∼ λe

m1/3
H

M1/3

R
, (2.81)

or

x ∼ 10−2

(
M

M�

)1/3( R�
R

)
(2.82)

after inserting the relevant numbers. For the typical white dwarf described previously, we
have that x ∼ 1, which indicates that relativistic effects are indeed important.

Equation of state

We wish to construct the equation of state of a degenerate, and relativistic, electron gas. To
do this we rely on techniques borrowed from the kinetic theory of gases, which features the
distribution function f (x, p) as a starting point of most calculations. This is defined so that

g

(2πh̄)3
f (x, p) d3x d3 p

is the number of particles in a phase-space cell of volume d3x d3 p at position x and
momentum p. The factor g is the number of internal states associated with a particle of
given momentum, and in the case of an electron (a spin- 1

2 particle), this is equal to 2. It can
be shown that the distribution function is a relativistic invariant, so that x and p can refer
to any Lorentz frame.

The distribution function gives rise to the number density

ne = 2

(2πh̄)3

∫
f (x, p) d3 p , (2.83)
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the energy density

ε = 2

(2πh̄)3

∫
E f (x, p) d3 p , (2.84)

and the pressure

p = 1

3

2

(2πh̄)3

∫
| p|v f (x, p) d3 p , (2.85)

where E = √| p|2c2 + m2
ec4 is the relativistic energy, and v = | p|c2/E the relativistic

speed, of a particle with momentum p. The equation for the pressure expresses the fact
that pressure is a flux of momentum, and the factor of 1

3 reflects the isotropy of the gas.
Note that we must be cautious to distinguish the pressure p from the magnitude | p| of the
momentum vector.

We are interested in the relation between the pressure p and the number density ne. To
work this out we need an expression for f , and in our case this is given by the famous
Fermi–Dirac distribution. To simplify we assume that T � TF, and adopt the limiting form
that applies at zero temperature. This is simple: f = 1 when | p| is smaller than the Fermi
momentum pF, and f = 0 when | p| > pF. Then the expression for the number density
gives rise to ne = 2(2πh̄)−3

∫ pF

0 4π | p|2 d| p|, which integrates to

ne = x3

3π2λ3
e

, (2.86)

where x := pF/(mec) is a dimensionless version of the Fermi momentum, and λe :=
h̄/(mec) is the electron’s Compton wavelength. The electron gas is relativistic when x > 1,
and Eq. (2.86) indicates that the average inter-particle distance n−1/3

e is then smaller than
the Compton wavelength.

The integral for the pressure produces

p = mec2

3π2λ3
e

φ(x) , (2.87)

where

φ(x) :=
∫ x

0

y4 dy√
1 + y2

= 3

8

[
x
(

2
3 x2 − 1

)√
1 + x2 + ln

(
x +

√
1 + x2

)]
. (2.88)

The function φ(x) admits the approximations

φ(x) = 1

5
x5 − 1

14
x7 + O(x9), (2.89)

when x � 1, and

φ(x) = 1

4
x4 − 1

4
x2 + O(1), (2.90)

when x � 1. The equation of state is obtained by combining Eq. (2.86) for ne(x) with
Eq. (2.87) for p(x); in its exact formulation the equation of state is expressed in parametric
form.
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For our purposes we must relate the pressure to the mass density ρ instead of the number
density ne. To achieve this we return to the discussion of Sec. 1.4.2, and re-introduce the
atomic mass unit mH and the mean molecular weight per electron μe; this, we recall, is
defined by the relation μ−1

e := ∑
i Zi Xi/Ai , in which Zi is the atomic number of an ion

of type i , Xi is the mass fraction of this ion, and Ai is its atomic mass number. In terms of
these quantities we have that ρ = μemHne. Combining this with our previous results, we
find that the equation of state of a white dwarf is given by

ρ = μemH

3π2λ3
e

x3 , p = mec2

3π2λ3
e

φ(x) , (2.91)

with φ(x) given by Eq. (2.88). For a typical white dwarf containing mostly 12C (Z = 6,
A = 12) and 16O (Z = 8, A = 16), the mean molecular weight is μe = 2.

In the non-relativistic regime x � 1 the approximation of Eq. (2.89) can be exploited,
and the equation of state simplifies to

p = Kρ5/3 , K = (3π2)2/3h̄2

5μ
5/3
e mem5/3

H

; (2.92)

this is a polytropic equation of state with � = 5
3 . In the extreme relativistic regime x � 1

the approximation of Eq. (2.89) takes over, and the equation of state simplifies to

p = K ′ρ4/3 , K ′ = (3π2)1/3h̄c

4μ
4/3
e m4/3

H

; (2.93)

this is another polytropic equation of state with � = 4
3 .

Equations of structure

The scaling quantities relevant to a white-dwarf equilibrium are defined by

p0 := mec2

3π2λ3
e

, (2.94a)

ρ0 := μemH

3π2λ3
e

, (2.94b)

r2
0 := 1

f 2
c

p0

4πGρ2
0

, (2.94c)

m0 := 4π f 3
c ρ0r3

0 , (2.94d)

where the numerical factor fc, which is defined precisely below, is introduced for conve-
nience. A useful relation among these quantities is Gm0/r0 = fc p0/ρ0. The length scale
can be expressed as

r0 =
√

3π

2 fcμe

mPl

mH
λe = 3.88466 × 106 1

fc

(
2

μe

)
m , (2.95)
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where mPl := √
h̄c/G is the Planck mass, and the mass scale can be expressed as

m0 =
√

3π

2μ2
e

m3
Pl

m2
H

= 0.721459

(
2

μe

)2

M� . (2.96)

The numerical value of the density scale is ρ0 = 1.94787 × 109 (μe/2) kg/m3.
The scale-free, dimensionless variables are

ξ := r/r0 , x3 := ρ/ρ0 , φ(x) := p/p0 , μ := m/m0 , (2.97)

where φ(x) is the function defined in Eq. (2.88). In terms of these variables, the equations
of hydrostatic equilibrium, Eqs. (2.29), become

dx

dξ
= − fc

√
1 + x2

x

μ

ξ 2
,

dμ

dξ
= 1

f 3
c

ξ 2x3 . (2.98)

The equations are integrated outward from ξ = 0, with boundary conditions x(0) = xc

(related to the central density) and μ(0) = 0. Integration proceeds until x = 0 at the stellar
boundary ξ = ξ1.

In place of x it is convenient to adopt a variable θ that is similar to the Lane–Emden
variable introduced in Sec. 2.2.3. This is defined by

1 + fcθ :=
√

1 + x2 , (2.99)

where

fc :=
√

1 + x2
c − 1 (2.100)

is the precise definition for the numerical factor introduced previously. The new density
variable θ begins at 1 when ξ = 0 and x = xc, and it drops to zero when ξ = ξ1 and x = 0.
With θ substituting for x , the structure equations become

dθ

dξ
= − μ

ξ 2
,

dμ

dξ
= ξ 2θ3/2

(
θ + 2/ fc

)3/2
. (2.101)

As usual the equations can be combined into a single, second-order differential equation
for θ :

1

ξ 2

d

dξ

(
ξ 2 dθ

dξ

)
= −θ3/2

(
θ + 2/ fc

)3/2
. (2.102)

The equations of white-dwarf structure bear a striking resemblance to the polytropic equa-
tions displayed in Eqs. (2.49) and (2.54). There is, however, a major difference: in the case
of polytropes the structure equations were completely universal and independent of ρc; here
the equations feature a direct dependence upon fc, which is tied to the central density. For
a selected value of fc, a solution to Eqs. (2.101) or (2.102) yields a unique white-dwarf
model with a radius and mass given by

R = ξ1r0 , M = μ1m0 ; (2.103)

here μ1 := μ(ξ1) is the dimensionless mass function evaluated at the stellar boundary.
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Fig. 2.3 Mass of a white dwarf, in units of the solar mass, as a function of the central-density parameter fc . Models with
fc � 1 are non-relativistic, while models with fc � 1 are extremely relativistic. The mass increases with fc , and it
asymptotes to the Chandrasekhar limit as fc → ∞.

Properties of white dwarfs

In Figs. 2.3 and 2.4 we display the results of a numerical integration of Eqs. (2.101) for
many selected values of fc. Models with fc � 1 are non-relativistic, while models with
fc � 1 are extremely relativistic. In all cases the mean molecular weight per electron is set
equal to μe = 2. The main features revealed by the plots are that the mass increases with
fc, but never beyond a limit of approximately 1.46M�, and that the radius decreases with
increasing mass.

In the non-relativistic regime fc � 1, Eqs. (2.101) simplify to dθ/dξ = −μ/ξ 2 and
dμ/dξ = (2/ fc)3/2ξ 2θ3/2. With the rescalings

ξ = (
1
2 fc

)3/4
ξ̄ , θ = θ̄ , μ = (

1
2 fc

)3/4
μ̄ , (2.104)

the equations become d θ̄/d ξ̄ = −μ̄/ξ̄ 2 and dμ̄/d ξ̄ = ξ̄ 2θ̄3/2, and these are precisely the
equations that govern the hydrostatic equilibrium of a polytrope with n = 3

2 . The essential
properties of the solution are displayed in Table 2.1, which reveals that ξ̄1 = 3.65375374 and
μ̄1 = 2.71405512. These results, together with the approximation fc = 1

2 x2
c = 1

2 (ρc/ρ0)2/3,
imply that the mass and radius of a white dwarf are given by

M = 0.496028

(
2

μe

)5/2(
ρc

109 kg/m3

)1/2

M� (2.105)
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Fig. 2.4 Radius of a white dwarf, in units of 106 km, as a function of its mass, in units of the solar mass. The radius decreases
with increasing mass, and goes to zero as the mass reaches the Chandrasekhar limit.

and

R = 1.12160 × 107

(
2

μe

)5/6(109 kg/m3

ρc

)1/6

m (2.106)

in the non-relativistic regime. These results reveal that M increases with the central density
as ρ

1/2
c , while R decreases as ρ

−1/6
c .

In the extreme relativistic regime fc � 1, Eqs. (2.101) simplify to dθ/dξ = −μ/ξ 2 and
dμ/dξ = ξ 2θ3; in this limit the white dwarf is a polytrope with n = 3. In this case Table 2.1
reveals that ξ1 = 6.89684862 and μ1 = 2.01823595. Together with the approximation
fc = xc = (ρc/ρ)1/3, these results imply that the mass and radius of a white dwarf are
given by

MChandra = 1.45607

(
2

μe

)2

M� (2.107)

and

R = 3.34598 × 107

(
2

μe

)2/3(109 kg/m3

ρc

)1/3

m (2.108)

in the extreme relativistic regime. These expressions reveal that R decreases as ρ
−1/3
c with

increasing central density, but that the mass is independent of the central density. The
numerical results show that Eq. (2.107) is the maximum mass realized on the sequence of
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white-dwarf models; it is the famous Chandrasekhar limit, which was first discovered in
1930.

For a typical white dwarf of mass M = 0.6M�, the numerical results imply that the
central-density parameter is fc = 0.546, revealing that the conditions are only mildly rel-
ativistic. The central density is ρc = 3.19 × 109 kg/m3, and the radius of such a white
dwarf is R = 8.85 × 106 km. From these values we can infer that the mean density
ρ̄ = 3M/(4π R3) is 0.129 times the central density.

Chandrasekhar mass: balance between Fermi and gravitational energies

We have found that in the extreme relativistic regime, the white-dwarf mass is equal to
a universal factor multiplying the mass scale m0, which, according to Eq. (2.96), is itself
proportional to m3

Pl/m2
H. Thus, MChandra ∝ m3

Pl/m2
H, and this dependence can be understood

on the basis of a simple argument that originates with Landau. The argument works for any
system of degenerate fermions, and we can apply it to neutron stars as well as white dwarfs.

In the extreme relativistic regime, the Fermi energy of a fermion is given by pFc, which,
by the uncertainty principle, is comparable to h̄c/�x ∼ h̄cn1/3 ∼ h̄cN 1/3/R, where N is
the total number of fermions in the body. On the other hand, the gravitational energy per
fermion is approximately −G MmH/R, with M ∼ NmH. (When the argument is applied to
neutrons, the gravitational energy is dominated by the neutrons, and mH is approximately
the neutron’s mass. When the argument is applied to electrons, the gravitational energy is
dominated by the ions, and a factor of μe should be inserted to relate the number of fermions
to the mass. In both cases the relevant mass is the atomic mass unit mH.) Collecting results,
we find that the total energy of the system may be expressed as

E ∼ h̄cN 4/3

R
− G N 2m2

H

R
. (2.109)

The key point is that each term is inversely proportional to R. Now, the stability of the
configuration is dictated by the overall sign of the total energy. When E is positive, a
decrease in R produces an increase in energy, and this behavior indicates stability with
respect to gravitational collapse. When E is negative, a decrease in R produces a decrease
in energy, and this points to an instability.

Stability under gravitational collapse therefore places an upper limit on the number of
fermions that can be relativistically degenerate. This limit is given by h̄cN 4/3 > G N 2m2

H,
or N 2/3 < (mPl/mH)2, recalling that mPl := √

h̄c/G is the Planck mass. We then find that
the body’s maximum mass is given by

Mmax ∼ NmaxmH ∼ m3
Pl

m2
H

, (2.110)

which is the same scaling as m0, as defined by Eq. (2.96).
The value of the maximum mass does not depend on the identity of the degenerate

fermion; apart from numerical factors, the result should be the same for electrons and for
neutrons. So, if neutron stars were subjected to Newtonian gravity, and if their equation
of state were indeed that of an ideal gas of degenerate fermions, then they would have
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a maximum mass also given by Eq. (2.107), but with μe replaced by μn , whose value
depends on the ratio of free neutrons to neutrons still bound in nuclei. The catch, of course,
is that neutron stars are not subjected to Newtonian gravity: because ε ∼ G M/(c2 R) ∼ 0.2
for neutron stars, the gravitational fields are too strong for a Newtonian treatment, and
they must be described by general relativity. The other catch is that neutron stars are not
actually made up of an ideal gas of degenerate neutrons: the densities are so high (of the
order of 1017 kg/m3) that the neutrons are subjected to short-range strong interactions, beta
decay and inverse beta decay, and the possible conversion to exotic particles such as pion
condensates and strange hadrons. The neutrons are not free, and their interactions at such
high densities are poorly understood; as a consequence, the maximum mass of neutron stars
is somewhat uncertain, lying between about 2 and 3 solar masses.

2.3 Rotating self-gravitating bodies

The equilibrium structures examined in Sec. 2.2 were all spherically symmetric and non-
rotating. Rotation, however, is everywhere: planets rotate, the Sun rotates, stars and galaxies
rotate. Neutron stars observed as pulsars rotate; one of the fastest, PSR J1748-2446ad, spins
at a rate of 716 times per second. Black holes are expected to have substantial rotation.
Because astronomical objects are formed by gravitational collapse, the slightest amount of
angular momentum in the progenitor material results in a rotational angular velocity that
is magnified by the collapse, limited only by the shedding of material when the centrifugal
forces exceed the gravitational forces.

Our previous models of non-rotating, spherically-symmetric, self-gravitating bodies al-
lowed us to explore many basic properties of stars and planets, but the idealization is not
realistic when applied to real astronomical bodies. We must consider rotation, and the re-
lated complication that rotating bodies are not spherical. And when we do so, the number
of basic questions increases greatly, and their answers depend on the detailed nature of the
body.

Do bodies rotate rigidly? That is, do they rotate with an angular velocity that is in-
dependent of position within the body? It turns out that this is impossible under some
conditions, and the body must then undergo differential rotation, or must develop merid-
ional currents, fluid flows in a direction parallel to the rotation axis. The Sun rotates
differentially; the angular velocity in the polar regions is about 2/3 that at the equator,
and the angular velocity at the center could be as much as 10 times higher than that at the
surface.

What is the shape of a rotating fluid body? In a general situation the shape cannot be
fixed a priori, and must be determined along with the rest of the body’s structure. To keep
the problem tractable, however, it is helpful to adopt a specific class of shapes for the
body, and then determine whether these shapes are compatible with the equations of stellar
structure. For example, the simplest shape one might expect for a rotating body is one for
which one or more of the three cross sections has the form of an ellipse. If one of the cross
sections is circular while the other two are elliptical, the shape is known as a spheroid;



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-02 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:36

90 Structure of self-gravitating bodies

if all three cross sections are elliptical, the shape is an ellipsoid. We shall see below that
in the special case of a rigidly rotating body of uniform density, the equations of stellar
structure are compatible with a spheroidal or ellipsoidal shape, provided that the angular
velocity does not exceed a certain limit; beyond this maximum value, differential rotation is
required to support the body. In the limit of slow rotation, for general density distributions
and equations of state, we show in Sec. 2.4 that the shape is spheroidal to the first order of
approximation. In general, however, the shape of a rotating body is neither a spheroid nor
an ellipsoid, and it must be determined by solving the equations of stellar structure with no
built-in assumptions – a most difficult task.

Are rotating bodies axially symmetric? Not necessarily: a rotating body can be in hydro-
static equilibrium and assume a shape that is not symmetric about the axis of rotation. In
fact, we shall see that one can construct an equilibrium model of a rotating body that has two
equally valid solutions, one an axisymmetric spheroid, and the other a non-axisymmetric
ellipsoid; and one can show that some of the spheroids are subjected to instabilities that
convert them into ellipsoids.

In this section we take advantage of simple models to address several of these questions.

2.3.1 Foundations of the theory of rotating bodies

Rotating frame

We again consider an isolated body, governed by Eq. (2.4), in which we continue to ignore
the external terms. But now we assume that v̄, the velocity of a fluid element relative to the
body’s center-of-mass, can be decomposed as

v̄ = ω × x̄ + u . (2.111)

The first term is a rotational velocity, which refers to a local frame of reference that rotates
with an instantaneous angular velocity ω(t, x) with respect to the center-of-mass frame;
the angular velocity may in general depend on time and spatial position, but we assume
that its direction is along a fixed axis described by the unit vector e. The second term is the
intrinsic velocity of the fluid element in the rotating frame of reference.

The acceleration of the fluid element is then given by

d v̄

dt
= ω × v̄ + dω

dt
× x̄ + du

dt

= ω × (ω × x̄) + ω × u + dω

dt
× x̄ + du

dt

= −ω2� + 2ω × u + dω

dt
× x̄ + a , (2.112)

where we have used the fact that du/dt = ω × u + a, with a denoting the acceleration in
the rotating frame, and where

� := x̄ − e(e · x̄) (2.113)

is the projection of the position vector to the plane perpendicular to the rotation axis. If
we align the z̄-direction with e, then � = [x̄, ȳ, 0] and � := |�| = (x̄2 + ȳ2)1/2 is the usual
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cylindrical radial coordinate of a (�, z̄, φ̄) coordinate system. The first term in Eq. (2.112)
is the centrifugal acceleration, the second is the Coriolis acceleration, present if the fluid
has intrinsic motion in the rotating frame; the third term is a rotational acceleration effect,
and the final term is the intrinsic acceleration of the element in the rotating frame.

Steady rotation; equilibrium configuration

We now introduce some simplifying assumptions. First, the rotation is taken to be steady,
in the sense that ω is independent of time. Second, the fluid motion is taken to be purely
rotational, in the sense that u = 0. Third, the system is taken to be stationary when viewed
by a non-rotating observer, so that ∂ρ/∂t = 0. And fourth, the density is also taken to be
constant when viewed by an observer following the fluid, so that dρ/dt = 0.

The last two assumptions, combined with the equation of continuity, ∂ρ/∂t + ∇ · (ρv̄) =
0 or dρ/dt + ρ∇ · v̄ = 0, imply that

v̄ · ∇ρ = 0 and ∇ · v̄ = 0 . (2.114)

The second assumption implies that v̄ = ω × x̄, and it follows that

0 = (ω × x̄) · ∇ρ

= ω · (x̄ × ∇)ρ

= ω
∂ρ

∂φ̄
. (2.115)

This is the statement that the mass density of a rotating body must be axially symmetric,
independent of the azimuthal angle φ̄. We also have

0 = ∇ · v̄

= ∇ · (ω × x̄)

= (x̄ × ∇) · ω

= ∂ω

∂φ̄
, (2.116)

the statement that the angular velocity also must be independent of φ̄.
With these assumptions, Euler’s equation, Eq. (2.4), reduces to

1

ρ
∇ p = ∇U + ω(x̄)2� . (2.117)

This equation, together with Poisson’s equation for the gravitational potential U , governs
the equilibrium structure of our stationary rotating body.

Stratification

As we saw in Sec. 2.2, a feature of spherical bodies is that the surfaces of constant ρ,
constant p, and constant U all coincide, because these surfaces are all spherical. In the
case of a rotating body, is it still true that these level surfaces coincide? We wish to show
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that under some conditions on the angular velocity, surfaces of constant ρ and constant p
continue to coincide, and there also exists a generalized potential � with coincident level
surfaces. We shall find, however, that the surfaces of constant U do not in general coincide
with the other level surfaces.

To explore this, we take the curl of Eq. (2.117) and obtain

− 1

ρ2
∇ρ × ∇ p = 2ω ∇ω × � . (2.118)

Now, surfaces of constant ρ and constant p will coincide when ∇ρ × ∇ p = 0, which
implies (assuming that ω 	= 0) that ∇ω × � = 0. Since we already know that ∂ω/∂φ̄ = 0,
this implies that ∂ω/∂ z̄ = 0 and we conclude that ω = ω(�). We have found that when the
body rotates uniformly (ω = constant), or when its angular velocity depends on � only,
then the surfaces of constant ρ and constant p coincide.

When ω is either constant or a function of � only, we can further show that there exists
a centrifugal potential �C associated with the centrifugal acceleration term in Eq. (2.117).
This follows because the centrifugal acceleration has a vanishing curl,

∇ × (ω2�) = 2ω∇ω × � = 0 , (2.119)

and is therefore given by the gradient of a scalar function. The potential is given by

�C(�) :=
∫ �

ω(�′)2�′d�′ , (2.120)

and a generalized potential

� := U + �C (2.121)

can be introduced to simplify the form of the structure equations, which become

∇ p = ρ∇� . (2.122)

Taking the curl of this equation, we conclude finally that with the stated assumptions, the
surfaces of constant p, constant ρ, and constant � all coincide. Notice that this statement
does not imply that surfaces of constant U and constant �C coincide with each other, nor
with the level surfaces of the total potential �.

Global properties

Back in Sec. 1.4.3 we established the virial theorem of stationary fluid configurations,

2T + 
 + 3P = 0 , (2.123)

where T is the total kinetic energy, 
 the gravitational potential energy, and P the integrated
pressure; these quantities are defined by Eqs. (1.64), (1.65), and (1.85), and the virial
theorem was first stated in Eq. (1.90). Since P ≥ 0 and 
 is negative, we can immediately
derive a bound on the ratio of kinetic to potential energy for a rotating body:

τ := T
|
| ≤ 1

2
. (2.124)
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For a rotating body with v̄ = ω × x̄, the kinetic energy is given by

T = 1

2

∫
ρv̄2 d3 x̄

= 1

2

∫
ρω2

[
r̄2 − (e · x̄)2

]
d3 x̄

= 1

2

∫
ρω2�2 d3 x̄ . (2.125)

The angular momentum is given by

J =
∫

ρ x̄ × (ω × x̄)d3 x̄

=
∫

ρω
[
er̄2 − x̄(e · x̄)

]
d3 x̄

= e

∫
ρω�2d3 x̄ , (2.126)

where we use the axisymmetry of ρ and ω to obtain the final result. When the rotation is
uniform, so that ω = constant, these equations simplify to

T = 1

2
ω2 I , J = ωI e , (2.127)

where

I :=
∫

ρ�2 d3 x̄ (2.128)

is the body’s moment of inertia about the axis of rotation.
We continue to assume that the rotation is uniform. In this case the centrifugal potential

simplifies to

�C = 1

2
ω2�2 , (2.129)

and from this we find that ∇2�C = 2ω2. For the total potential of Eq. (2.121) we then get
∇2� = −4πGρ + 2ω2. Integrating this equation over the body and using Gauss’s theorem,
we find that ∮

∇� · nd S = −4πG M + 2ω2V , (2.130)

where M and V are the mass and volume of the body, respectively, and n is an outward-
pointing unit vector on the body’s surface. But Eq. (2.122) implies that ∇� · n = ρ−1∇ p ·
n, which must be negative everywhere on the surface, because p vanishes there and is
positive everywhere inside. As a result, we obtain the Poincaré inequality

ω2 < 2πGρ̄ , (2.131)

where ρ̄ = M/V is the body’s mean density. Recall that the angular velocity required
for a particle to be on a circular orbit at the body’s equator is given approximately
by (dφ̄/dt)2 ∼ G M/r3

eq ∼ Gρ̄, with req denoting the equatorial radius. The condition
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ω2 ∼ Gρ̄ marks the mass-shedding limit, because a body rotating faster than this will shed
matter from its equatorial regions. The inequality of Eq. (2.131) is therefore the statement
that a rotating body in equilibrium cannot exceed the mass-shedding limit. The Poincaré
inequality provides a rather generous upper bound on a body’s angular velocity, and we
shall find that actual bounds are much tighter; the numerical coefficient on the right-hand
side of Eq. (2.131) can be reduced by a factor approximately equal to 4.

Transformation to the rotating frame

We have developed the structure equations of a rotating body by referring to the rotating
frame to measure the velocity u and acceleration a of a fluid element. We have, however,
continued to measure the position x̄ relative to the non-rotating frame, and to conclude this
section we wish to complete the transformation to the rotating frame. We shall now relax
most of the assumptions introduced previously, except for the rather restrictive one that ω

is taken to be a constant (independent of time and spatial position).
The original frame x̄ = (x̄, ȳ, z̄) is attached to the body’s center-of-mass, and is non-

rotating. The new frame x = (x, y, z) that we introduce here is also attached to the center-
of-mass, but is rotating rigidly with an angular velocity ω. We align the z̄-direction with
the rotation axis, and the transformation between the two frames is given by

x̄ = x cos(ωt) − y sin(ωt) , ȳ = x sin(ωt) + y cos(ωt) , z̄ = z . (2.132)

The inverse transformation is obtained simply by reversing the sign of ω. For our develop-
ments it is useful to employ an index language in which x̄ is represented by the coordinates
xā while x is represented by x j . The transformation can then be expressed as

xā = �ā
j (t) x j , (2.133)

in which �ā
j (t) are the elements of the rotation matrix. The inverse transformation is

x j = �
j
ā(t) xā , (2.134)

with �
j
ā(t) denoting the elements of the inverse matrix. The identities

�ā
j�

j
b̄

= δā
b̄ , �

j
ā�ā

k = δ
j
k (2.135)

express the fact that a transformation followed by its inverse is an identity transformation.
Suppose that we follow the motion of a fluid element. In the non-rotating frame the

motion is described by xā(t), while it is described by x j (t) in the rotating frame. The
velocity of the fluid element is vā = dxā/dt in the non-rotating frame, and u j = dx j /dt
in the rotating frame. The relation is provided by differentiating Eq. (2.133) with respect to
time, and we obtain

vā = �ā
j

(
u j + ω

j
k xk

)
, (2.136)

where

ω
j
k := �

j
ā�̇ā

k (2.137)
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is the angular-velocity tensor (the overdot on the right-hand side indicates differentiation
with respect to time). A simple calculation reveals that

ω jk = −ε jknωn , (2.138)

where ε jkn is the permutation symbol and ωn = ωen are the components of the angular-
velocity vector. Because ω

j
k xk = (ω × x) j , we see that Eq. (2.136) is essentially the same

statement as Eq. (2.111). Differentiation of Eq. (2.136) then produces

dvā

dt
= �ā

j

(
a j + 2ω

j
kuk − C j

k xk
)
, (2.139)

in which a j := du j /dt is the acceleration of the fluid element in the rotating frame, and

C jk := −ω jnωn
k = ω2

(
δ jk − e j ek

)
(2.140)

is the centrifugal tensor. The second term on the right-hand side of Eq. (2.139) is recognized
as the Coriolis acceleration, while the third term is the centrifugal acceleration. Equation
(2.139) is essentially the same statement as Eq. (2.112) when the angular velocity is
restricted to be a constant.

We now wish to formulate the equations of fluid dynamics in the rotating frame. A subtle
issue concerns the meaning of partial derivatives, because differentiating with respect to t
while keeping x̄ constant (for a non-rotating observer) is very different from performing the
operation while keeping x constant (for a rotating observer). The relation can be uncovered
by expressing a function f of the variables (t, xā) as f (t, �ā

j x
j ) and performing the

differentiations. We obtain(
∂ f

∂t

)
xā

=
(

∂ f

∂t

)
x j

−
(

∂ f

∂x j

)
ω

j
k xk , (2.141a)(

∂ f

∂xā

)
=
(

∂ f

∂x j

)
�

j
ā , (2.141b)

in which the subscript on the time derivative indicates which variable is kept fixed.
With these rules it is easy to show that the continuity equation keeps its usual form in

the rotating frame, (
∂ρ

∂t

)
x j

+ ∂

∂x j

(
ρu j

) = 0 , (2.142)

that Euler’s equation becomes

du j

dt
= ∂ jU − 1

ρ
∂ j p − 2ω

j
kuk + C j

k xk , (2.143)

and that Poisson’s equation also keeps its usual form,

∇2U = −4πGρ , (2.144)

in which the Laplacian operator refers to the rotating frame x j .
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When the configuration is stationary in the rotating frame (u j = 0), Euler’s equation
reduces to

1

ρ
∂ j p = ∂ j� , (2.145)

where � = U + �C is the total potential introduced previously, with

�C = 1

2
C jk x j xk = 1

2
ω2
(
x2 + y2

)
(2.146)

the centrifugal potential of Eq. (2.129), now written in terms of the rotating-frame coordi-
nates x j .

2.3.2 Rotating bodies of uniform density

Back in Sec. 2.2.2 we found that the mathematics of spherical bodies of uniform density were
particularly simple, though physically unrealistic. In a similar way, rigidly rotating bodies of
uniform density admit a relatively simple treatment in Newtonian theory, and the results can
be expressed in terms of simple integrals that, unfortunately, cannot in general be evaluated
in closed form. Even though the assumption of uniform density is no more realistic here than
it was in the case of a spherical body, the resulting models capture many important properties
of realistic rotating bodies. Because the mathematics are relatively simple, these models
attracted the attention of many of the great mathematical physicists of the 18th and 19th
centuries, and many of the resulting models bear their names: the spheroids of Maclaurin,
the ellipsoids of Jacobi, Dirichlet, Dedekind, and Riemann. Although incomplete, this body
of work was not much pursued in the 20th century; as Chandrasekhar famously expressed
it, “the subject quietly went into a coma.” It was, however, vigorously revived by Lebovitz
and Chandrasekhar in the nineteen sixties, and the entire subject came to a beautiful close
in Chandra’s monumental Ellipsoidal figures of equilibrium.

In this section we assume that the figure of a rigidly rotating body of uniform density is
an ellipsoid, and seek to determine the conditions that ensure consistency with the equations
of hydrostatic equilibrium.

Gravitational potential inside an ellipsoid

The hardest part of the task ahead is to calculate the gravitational potential inside a body
of uniform density, under the assumption that its surface is described by the equation

x2

a2
1

+ y2

a2
2

+ z2

a2
3

= 1 , (2.147)

in which the constants a1, a2, and a3 are the ellipsoid’s semi-axes in the three principal
directions. The description is given in the body’s rotating frame, which is assumed to rotate
rigidly about the z-direction with an angular velocity ω. When a1 = a2 the body is axially
symmetric about the z-direction, and the surface is a spheroid.
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We state the answer before getting on with the work:

U = πGρ
(

A0 − A1x2 − A2 y2 − A3z2
)
, (2.148)

where

A0 := a1a2a3

∫ ∞

0

du

�
, (2.149)

and

Ai := a1a2a3

∫ ∞

0

du

�
(
a2

i + u
) , (2.150)

with

�2 := (
a2

1 + u
)(

a2
2 + u

)(
a2

3 + u
)
. (2.151)

The integrals must be evaluated numerically when a1 	= a2, but they admit closed-form
expressions when the body is axisymmetric; these will be revealed below. The quadratic
form of Eq. (2.148) is remarkably simple, and it is easy to show that U satisfies Poisson’s
equation (for a constant density) for any set of Ai s that satisfies the constraint A1 + A2 +
A3 = 2; as we shall see, the set of Eq. (2.150) does indeed possess this property.

To calculate U we follow the general strategy devised by Moulton in his classic text on
celestial mechanics. We let x = (x, y, z) be the point at which U is evaluated (which is
interior to the ellipsoid), and we let x′ = (x ′, y′, z′) be a source point within the ellipsoid.
To locate x′ we employ spherical coordinates (r̃ , θ̃ , φ̃) centered upon x, so that

x ′ = x + r̃ sin θ̃ cos φ̃ , y′ = y + r̃ sin θ̃ sin φ̃ , z′ = z + r̃ cos θ̃ . (2.152)

The distance between the two points is evidently r̃ . The source point is on the surface when
x ′ = xs, y′ = ys, z′ = zs, with (xs, ys, zs) a solution to Eq. (2.147). In terms of the spherical
coordinates, the surface is described by the equation r̃ = rs(θ̃ , φ̃), and the function rs is
determined by inserting Eqs. (2.152) within Eq. (2.147). This gives rise to the quadratic
equation

αr2
s + 2βrs + γ = 0 , (2.153)

with

α := sin2 θ̃ cos2 φ̃

a2
1

+ sin2 θ̃ sin2 φ̃

a2
2

+ cos2 θ̃

a2
3

, (2.154a)

β := x sin θ̃ cos φ̃

a2
1

+ y sin θ̃ sin φ̃

a2
2

+ z cos θ̃

a2
3

, (2.154b)

γ := x2

a2
1

+ y2

a2
2

+ z2

a2
3

− 1 . (2.154c)

We see that α > 0, and since x is an interior point, we have that γ < 0; the sign of
β depends on θ̃ and φ̃. We note that while α and γ are preserved under a reflection
(θ̃ , φ̃) → (π − θ̃ , φ̃ + π ) across the origin at x, β changes sign under the reflection. The
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appropriate solution to the quadratic equation is

rs = −β +
√

β2 − αγ

α
; (2.155)

the other solution would produce a negative radius.
The gravitational potential is given by

U (x) = G

∫
ρ(x′)

|x − x′| d3x ′ = Gρ

∫
r̃ dr̃d
̃ , (2.156)

where we make use of the fact that d3x ′ = r̃2 dr̃d
̃, with d
̃ := sin θ̃ d θ̃dφ̃. Integration
with respect to the radial variable yields

U = 1

2
Gρ

∫
r2

s (θ̃ , φ̃) d
̃ , (2.157)

and the remaining integration is over the usual range of the angular coordinates. Insertion
of Eq. (2.155) gives

U = 1

2
Gρ

[∫
2β2 − αγ

α2
d
̃ − 2

∫
β
√

β2 − αγ

α2
d
̃

]
, (2.158)

and with the stated properties of α, β, and γ under a reflection across x, we see that
the second integral vanishes because contributions from one hemisphere cancel out the
contributions from the opposite hemisphere. The potential simplifies to

U = 1

2
Gρ

∫
2β2 − αγ

α2
d
̃ . (2.159)

When we expand 2β2 − αγ in full, we find that it is a quadratic form that involves diagonal
terms proportional to x2, y2, and z2, and non-diagonal terms proportional to xy, xz, and
yz; each term is multiplied by a specific function of θ̃ and φ̃. Examining the non-diagonal
terms closely, we find that once again the integrals vanish by symmetry. What is left over
is the expression of Eq. (2.148), with

A0 = 1

2π

∫
d
̃

α
, (2.160a)

A1 = 1

2πa2
1

∫ (
1 − 2 sin2 θ̃ cos2 φ̃

a2
1 α

)
d
̃

α
, (2.160b)

A2 = 1

2πa2
2

∫ (
1 − 2 sin2 θ̃ sin2 φ̃

a2
2 α

)
d
̃

α
, (2.160c)

A3 = 1

2πa2
3

∫ (
1 − 2 cos2 θ̃

a2
3 α

)
d
̃

α
, (2.160d)

where α continues to be given by Eq. (2.154).
The remaining task is to evaluate the integrals and bring them to the standard form

displayed in Eqs. (2.149) and (2.150). The good news is that only A0 requires evaluation,
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because all other integrals can be obtained by exploiting the identity

Ai = 1

a2
i

(
1 − ai

∂

∂ai

)
A0 , (2.161)

which is easily established from the previous expressions; there is no summation over the
index i in the second term. To evaluate A0 we note first that the symmetries of the integrand
allow us to restrict the range of integration to 0 < φ̃ < π

2 , at the cost of introducing a factor
of 4; and in this range it is helpful to switch integration variables to t := tan φ̃, which varies
from 0 to ∞. In terms of the new variable we have that α = (p + qt2)/(1 + t2) with

p := sin2 θ̃

a2
1

+ cos2 θ̃

a2
3

, q := sin2 θ̃

a2
2

+ cos2 θ̃

a2
3

. (2.162)

With dφ̃ = dt/(1 + t2) the integration is immediate, and we obtain

A0 = 2

π

∫ π

0
sin θ̃ d θ̃

∫ ∞

0

dt

p + qt2
=
∫ π

0

sin θ̃ d θ̃√
pq

. (2.163)

To evaluate the remaining integral we note that the range of integration can be restricted to
0 < θ̃ < π

2 (introducing a factor of 2), and in this range it is helpful to adopt u := a2
3 tan2 θ̃

as a new integration variable, which varies from 0 to ∞. In terms of the new variable we
have that

p = 1

a2
1

a2
1 + u

a2
3 + u

, q = 1

a2
2

a2
2 + u

a2
3 + u

, (2.164)

and with sin θ̃ d θ̃ = 1
2 a3(a2

3 + u)−3/2 du, we find that the integral for A0 assumes the form
originally given in Eq. (2.149). The expression for Ai is then recovered by exploiting the
identity of Eq. (2.161).

The proof that A1 + A2 + A3 = 2 begins with

A1 + A2 + A3 = a1a2a3

∫ ∞

0

du

�

(
1

a2
1 + u

+ 1

a2
2 + u

+ 1

a2
3 + u

)
, (2.165)

and proceeds by recognizing that the expression within brackets is 2�−1d�/du. Integration
can then be carried out, and since �−1 = 0 at the upper limit while �−1 = (a1a2a3)−1 at
the lower limit, the result follows immediately.

Equilibrium conditions

The equilibrium conditions for a rigidly rotating ellipsoid of uniform density are de-
rived from Eq. (2.145). When ρ is a constant the equation implies that p/ρ = U + �C +
constant, with U given by Eq. (2.148) and �C = 1

2 ω2(x2 + y2). Making the substitutions,
we find that the pressure is given by

p

πGρ
= constant −

(
A1 − ω2

2πGρ

)
x2 −

(
A2 − ω2

2πGρ

)
y2 − A3z2 . (2.166)

This, in particular, must apply to the surface of the ellipsoid (where p = 0), and because
the surface is also described by Eq. (2.147), we find that the coefficients of the quadratic
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forms must be related by the constraints

a2
1

(
A1 − ω2

2πGρ

)
= a2

2

(
A2 − ω2

2πGρ

)
= a2

3 A3 . (2.167)

These equations give rise to the equilibrium conditions satisfied by the rotating ellipsoid.
The equations can be solved for the angular velocity, and the solution can be expressed

in a number of ways:

ω2

2πGρ
= a2

1 A1 − a2
3 A3

a2
1

(2.168a)

= a2
2 A2 − a2

3 A3

a2
2

(2.168b)

= a2
1 A1 − a2

2 A2

a2
1 − a2

2

. (2.168c)

Only two of these relations are independent, and they are mutually compatible when

a2
1a2

2(A1 − A2) + (
a2

1 − a2
2

)
a2

3 A3 = 0 . (2.169)

Inserting the integral expressions for Ai displayed in Eq. (2.150), we find that the angular
velocity is given by

ω2

2πGρ
= a1a3

a2

(
a2

2 − a2
3

) ∫ ∞

0

u(
a2

2 + u
) (

a2
3 + u

) du

�
(2.170a)

= a2a3

a1

(
a2

1 − a2
3

) ∫ ∞

0

u(
a2

1 + u
) (

a2
3 + u

) du

�
(2.170b)

= a1a2a3

∫ ∞

0

u(
a2

1 + u
) (

a2
2 + u

) du

�
, (2.170c)

and that the compatibility condition becomes

(
a2

1 − a2
2

) [
a2

1a2
2

∫ ∞

0

1(
a2

1 + u
) (

a2
2 + u

) du

�
− a2

3

∫ ∞

0

1(
a2

3 + u
) du

�

]
= 0 . (2.171)

The first two expressions for ω2 imply that the principal axes of a rotating ellipsoid must
be constrained by a1 > a3 and a2 > a3: the shortest axis must be the rotation axis, and
the figure is oblate, not prolate. The compatibility condition implies either one of two
statements: either a1 = a2 and the ellipsoid is axially symmetric, or the three axes must be
adjusted to ensure that the integral constraint

a2
1a2

2

∫ ∞

0

1(
a2

1 + u
) (

a2
2 + u

) du

�
= a2

3

∫ ∞

0

1(
a2

3 + u
) du

�
(2.172)

is satisfied; for selected values of a1 and a2, this equation can be solved for a3. The axisym-
metric branch defines the Maclaurin spheroids, which will be described in detail below.
The non-axisymmetric branch constrained by Eq. (2.172) defines the Jacobi ellipsoids, to
which we turn next.
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Table 2.2 Solutions to the equilibrium conditions for Jacobi ellipsoids.
The first entry of the table, for a1 = a2, is the point of bifurcation from

the Maclaurin sequence.

a2/a1 a3/a1 ω2/(2πGρ)

1.00 0.5827241662 0.1871148374
0.95 0.5677381338 0.1869173572
0.90 0.5518726119 0.1862832772
0.85 0.5350575095 0.1851433886
0.80 0.5172160586 0.1834185183
0.75 0.4982641698 0.1810182506
0.70 0.4781097616 0.1778396039
0.65 0.4566520785 0.1737657518
0.60 0.4337810349 0.1686649517
0.55 0.4093766373 0.1623899695
0.50 0.3833085784 0.1547785068
0.45 0.3554361455 0.1456555096
0.40 0.3256086868 0.1348388928
0.35 0.2936670362 0.1221514037
0.30 0.2594465778 0.1074435407
0.25 0.2227831754 0.0906367278
0.20 0.1835242862 0.0718047786
0.15 0.1415500250 0.0513316734
0.10 0.09681524257 0.0302360801
0.05 0.04944350586 0.0109330058

Returning to Eq. (2.166), we insert the relations of Eq. (2.167) to simplify the expression
for the pressure, and we adjust the constant to ensure that p = 0 on the surface of the
ellipsoid. The end result of this exercise is

p = pc

(
1 − x2

a2
1

− y2

a2
2

− z2

a2
3

)
, (2.173)

where pc := πGρ2a2
3 A3 is the central pressure.

Jacobi ellipsoids

Solutions to the compatibility condition of Eq. (2.172) are presented in Table 2.2, which
also lists the corresponding values of ω2 calculated according to Eq. (2.170c). Because a1

can be adopted as the fundamental length scale of the rotating body, the values of a2 and
a3 are given in units of a1. The table is constructed by choosing a2/a1 and solving the
compatibility condition for a3/a1; without loss of generality we take a2 to be smaller than
a1. Two main observations can be made regarding the numerical results. The first is that
as we proceed along the Jacobi sequence, with a2/a1 decreasing from unity, we find that
a3/a1 decreases, giving rise to an increasingly elongated and flattened figure. The second
is that the angular velocity decreases along the sequence, so that the most deformed figure
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is the one with the least angular velocity; the maximum value of ω2 on the sequence is a
factor of 0.187 smaller than the Poincaré bound of Eq. (2.131).

The mass of a Jacobi ellipsoid is given by

M =
∫

ρ d3x = 4π

3
ρa1a2a3 , (2.174)

its angular momentum is

J = ω

∫
ρ(x2 + y2) d3x = 1

5
Mω

(
a2

1 + a2
2

)
, (2.175)

and its total kinetic energy is

T = 1

2
ωJ = 1

10
Mω2

(
a2

1 + a2
2

)
. (2.176)

To perform these integrals it is helpful to adopt a system of ellipsoidal coordinates (s, θ, φ)
related to the original system (x, y, z) by x = a1s sin θ cos φ, y = a2s sin θ sin φ, and z =
a3s cos θ ; the volume integral covers the interval 0 < s < 1 and the usual range of the
angular variables. From the results displayed in the table it is possible to show that J , when
measured in units of

√
G M3ā with ā := (a1a2a3)1/3, increases along the Jacobi sequence.

Maclaurin spheroids

When a1 = a2 the rigidly rotating body becomes a Maclaurin spheroid. In this case A0, Ai ,
and ω can all be expressed as simple functions of the eccentricity

e :=
√

1 − (a3/a)2 , (2.177)

in which we have set a := a1 = a2. Inserting a3 = a
√

1 − e2 within Eqs. (2.149) and
(2.150), we find that the integrals evaluate to

A0 = 2a2

√
1 − e2

e
arcsin e , (2.178a)

A1 = A2 =
√

1 − e2

e3
arcsin e − 1 − e2

e2
, (2.178b)

A3 = −2

√
1 − e2

e3
arcsin e + 2

e2
. (2.178c)

On the other hand, the relation ω2/(2πGρ) = A1 − (a3/a)2 A3 produces

ω2

2πGρ
=

√
1 − e2

e3
(3 − 2e2)arcsin e − 3

1 − e2

e2
. (2.179)

This expression for the angular velocity is plotted in Fig. 2.5. The figure reveals that the
angular velocity first increases with the eccentricity, but that it reaches a maximum of
ω2/(2πGρ) = 0.224666 when e = 0.929956. It then decreases to zero as the eccentricity
increases toward unity; in this limit we have an infinitely thin disk rotating with negligible
angular velocity.

It is known, however, that the sequence of Maclaurin spheroids never comes close to
these extremes. There exists on the sequence a point of bifurcation at which a Maclaurin
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Fig. 2.5 Squared angular velocityω2/(2πGρ) as a function of eccentricity e for Maclaurin spheroids. The plot reveals an
ascending branch, along which the angular velocity increases with eccentricity, and a descending branch, along which
the angular velocity decreases. The figure also shows the Jacobi sequence, which bifurcates from the Maclaurin
sequence when e = 0.812670.

spheroid and a Jacobi ellipsoid with a1 = a2 are both valid solutions to the equilibrium
equations; this point occurs at e = 0.812670, where ω2/(2πGρ) = 0.187115. Going be-
yond the bifurcation point, it is observed that for a given eccentricity, the Jacobi ellipsoid
has a smaller total energy than the corresponding Maclaurin spheroid, and this suggests
that in the presence of a dissipative mechanism, such as viscosity or gravitational radiation
damping, the Maclaurin spheroid is unstable to perturbations that eventually convert it to a
Jacobi ellipsoid. This conclusion is confirmed by a stability analysis: the bifurcation point
marks the onset of a secular instability that drives a Maclaurin spheroid toward a Jacobi
ellipsoid. There is also, further along the sequence beyond e = 0.952887, a regime of dy-
namical instability that, even in the absence of dissipation, converts a Maclaurin spheroid
to a Jacobi ellipsoid.

From the results obtained previously in the case of Jacobi ellipsoids, we find that the
mass, angular momentum, and kinetic energy of a Maclaurin spheroid are given by

M = 4π

3
ρa3

√
1 − e2 , (2.180a)

J = 2

5
Mωa2 , (2.180b)

T = 1

5
Mω2a2 . (2.180c)
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In addition to these results, a computation of the gravitational potential energy – refer to
Exercise 2.3 – reveals that


 = −3

5

G M2

a

arcsin e

e
, (2.181)

so that

τ := T
|
| = 3

2e2

(
1 − e

√
1 − e2

arcsin e

)
− 1 . (2.182)

This relation implies that as e increases from 0 to 1, τ increases monotonically from 0 to 1
2 .

The maximum angular velocity is reached when τ = 0.237902, and the point of bifurcation
occurs at τ = 0.137528.

The gravitational potential inside a Maclaurin spheroid is given by Eq. (2.148) with
A1 = A2, and the quadratic form implies that it contains multipoles of order � = 0 and
� = 2 only. The external potential, on the other hand, is more complicated, and must be
expressed as an infinite multipole expansion

Uext = G M

r

[
1 −

∞∑
�=2

J�

(a

r

)�

P�(cos θ )

]
, (2.183)

where cos θ := z/r , and where the dimensionless multipole moments

J� := − 1

Ma�

∫
ρr � P�(cos θ ) d3x (2.184)

were first introduced in Sec. 1.5.2 – refer to Eq. (1.143). The existence of an infinite number
of multipole moments has to do with the fact that the internal and external potentials must
match across a spheroidal surface; in this context, a simple internal potential can give rise
to a complicated external potential. After performing the radial integration we find that the
multipole moments become

J� = − 2πρ

(� + 3)Ma�

∫
R�+3(θ )P�(cos θ ) d cos θ , (2.185)

where R(θ ), given explicitly by

1

R2
= sin2 θ

a2
+ cos2 θ

a2
3

, (2.186)

is the description of the spheroidal surface in the spherical coordinates (r, θ, φ). Mercifully
these integrals can be evaluated, and after a short computation we obtain

J� = 3(−1)�/2+1

(� + 1)(� + 3)
e� (2.187)

for the multipole moments of a Maclaurin spheroid. You will be asked to go through the
steps of this calculation in Exercise 2.4.
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When the eccentricity is small, the various functions encountered previously can be
expanded in powers of e, and they become

A0 = 2a2

[
1 − 1

3
e2 − 2

15
e4 + O(e6)

]
, (2.188a)

A1 = A2 = 2

3

[
1 − 1

5
e2 − 4

35
e4 + O(e6)

]
, (2.188b)

A3 = 2

3

[
1 + 2

5
e2 + 8

35
e4 + O(e6)

]
, (2.188c)

ω2

2πGρ
= 4

15
e2

[
1 + 1

7
e2 − 8

231
e4 + O(e6)

]
, (2.188d)


 = −3

5

G M2

a

[
1 + 1

6
e2 + 3

40
e4 + O(e6)

]
, (2.188e)

τ = 2

15
e2

[
1 + 10

21
e2 + 92

315
e4 + O(e6)

]
. (2.188f)

2.4 General theory of deformed bodies

When we relax the assumption of uniform density, the problem of finding the structure of a
general rotating body becomes much more involved, even when we retain the assumption of
rigid rotation. On the other hand, most planets and stars rotate sufficiently slowly that they
deviate only slightly from spherically symmetry. For example, the Earth’s dimensionless
quadrupole moment J2 is approximately 10−3, and the higher J�s are a thousand times
smaller; for the Sun, J2 � 2 × 10−7. For these slowly-rotating bodies it is appropriate to
take an approach in which the deviations from spherical symmetry are assumed to be small.
This is the standard fare of perturbation theory, in which one starts with an unperturbed,
spherical configuration and deforms it so slightly that all equations can be linearized with
respect to the deviations from spherical symmetry.

The perturbative approach to deformed bodies is sufficiently general that we can consider
bodies with arbitrary equations of state, and deformations that result not only from rotation,
but also from tidal fields produced by external bodies. Our goal in this section is to develop
this framework. We shall continue to restrict our attention to equilibrium configurations,
but in Sec. 2.5.3 we will relax this assumption and consider fully dynamical perturbations
of spherical bodies.

2.4.1 Fluid equations

We return to Eq. (2.4), the statement of Euler’s equation in the moving (but non-rotating)
frame of a given body A in a system of N separated bodies. We now keep the external
terms associated with the remote bodies, and adopt the simplified form of Eq. (2.11), which
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neglects the influence of A’s higher multipole moments on its motion in the external gravi-
tational field – these vanish in spherical symmetry, and produce second-order corrections in
perturbation theory. Assuming that A is rotating rigidly with angular velocity ω, we subject
Euler’s equation to a transformation to the rotating frame, in the way described near the end
of Sec. 2.3.1 – refer to Eq. (2.139).

Collecting results, we find that Euler’s equation takes the form of

du j

dt
= − 1

ρ
∂ j p − 2ε jknωkun + ∂ j � , (2.189)

where u is the velocity vector in the rotating frame, ω := [0, 0, ω] is the angular-velocity
vector, and

� := U + �C + Utidal (2.190)

is a generalized potential that includes the body’s gravitational potential U (previously
denoted UA), the centrifugal potential

�C = 1

2
ω2(x2 + y2) , (2.191)

and the tidal potential

Utidal = −
∞∑

�=2

1

�!
EL (t)x L , (2.192)

which was previously denoted U eff
¬A. The STF tensors EL (t) := −∂LU¬A(t, 0) are the tidal

moments associated with the external potential; they are obtained by differentiating U¬A

with respect to x j and evaluating the result at the body’s center-of-mass x = 0. In our
treatment the tidal moments are taken to be known functions of time; their specification
depends on the particular application.

As usual the Euler equation must be supplemented by the continuity equation ∂tρ +
∂ j (ρu j ) = 0 and Poisson’s equation ∇2U = −4πGρ for the body’s potential; the expression
of Eq. (2.192) implies that the tidal potential satisfies Laplace’s equation ∇2Utidal = 0, and
we also have that ∇2�C = 2ω2.

For our developments below it is useful to decompose the centrifugal potential �C into
monopole and quadrupole pieces, according to

�C = ��=0
C + ��=2

C , (2.193)

with

��=0
C = 1

3
ω2(x2 + y2 + z2) = 1

3
ω2r2 (2.194)

and

��=2
C = 1

6
ω2(x2 + y2 − 2z2) = −1

3
ω2r2 P2(cos θ ) . (2.195)

The monopole piece satisfies ∇2��=0
C = 2ω2, while ∇2��=2

C = 0.
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The tidal potential depends on time through the tidal moments, which contain all the
relevant information about the changing positions of the external bodies. This time de-
pendence implies that there is an inherent contradiction between Euler’s equation and the
goal of finding equilibrium configurations. The contradiction would indeed be severe if the
external bodies were in A’s immediate vicinity, and in such circumstances no equilibrium
solutions could ever be found. (We shall consider this situation in Sec. 2.5.3.) But the
contradiction is very mild when the external bodies are remote and move on an orbital time

scale Torb ∼
√

r3
AB/G M that is much longer than the internal, hydrodynamical time scale

Tint ∼ (Gρ)−1/2 ∼
√

R3/G M ; here rAB is a typical inter-body separation, R is the body’s
radius, and the time scales are indeed well separated when rAB � R. In such circumstances,
the time dependence contained in EL (t) is too slow to take the body out of equilibrium; the
solutions will still carry a dependence upon t inherited from the tidal moments, but this
reflects a parametric dependence instead of a genuine dynamical dependence.

2.4.2 Unperturbed configuration

The unperturbed configuration of the fluid is spherically symmetric and in equilibrium; it
corresponds to the absence of external bodies and rotational effects. The equations that
govern such a configuration were presented in Sec. 2.2: we have the equation of hydrostatic
equilibrium,

dp

dr
= ρ

d

dr

(
U + ��=0

C

)
, (2.196)

and Poisson’s equation

1

r2

d

dr

(
r2 dU

dr

)
= −4πGρ (2.197)

for the body potential. It is assumed that the density ρ and pressure p are related by an
equation of state. For convenience we choose to insert the monopole piece of �C in the
equation of hydrostatic equilibrium, in spite of the fact that it is part of the perturbation. This
choice is motivated by the fact that unlike all other terms in the perturbing potential, ��=0

C is
spherically symmetric, and thus naturally included as part of the unperturbed configuration.

To solve the unperturbed equations we introduce an effective potential

Ũ := U + ��=0
C (2.198)

associated with an effective mass density

ρ̃ := ρ − ω2

2πG
, (2.199)

so that ∇2Ũ = −4πGρ̃. If we also introduce an effective mass function m̃(r ) defined by

dm̃

dr
= 4πr2ρ̃ , (2.200)
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then dŨ/dr = −Gm̃/r2 and the equation of hydrostatic equilibrium becomes

dp

dr
= −ρ

Gm̃

r2
. (2.201)

Note that this equation involves the actual mass density ρ together with the effective mass
function m̃. We assume that these equations can be solved for a selected equation of state,
and that ρ(r ), p(r ), m̃(r ), and Ũ (r ) are known for the unperturbed configuration. The stellar
radius R is such that p(r = R) = 0, and the total mass is M = m̃(r = R) + ω2 R3/(6πG).

2.4.3 Fluid perturbations

The introduction of Utidal and ��=2
C in Euler’s equation creates a perturbation of the fluid

configuration. The density changes from ρ to ρ + δρ, the pressure from p to p + δp,
the body potential from U to U + δU , and the fluid velocity u j is no longer zero if the
equilibrium is disturbed. We suppose that the perturbation is small, and we work consistently
to first order in all perturbation variables.

The perturbation of any fluid quantity Q can be described either in terms of its Eulerian
perturbation δQ (as was done previously), or its Lagrangian perturbation �Q. The Eulerian
point of view is macroscopic: Q is compared to its unperturbed value Q0 at the same position
in space, and

δQ := Q(t, x) − Q0(t, x) . (2.202)

The Lagrangian point of view is microscopic: Q is compared at the same fluid element,
which is displaced by the vector ξ (t, x) relative to its position x in the unperturbed config-
uration. The Lagrangian perturbation is

�Q := Q(t, x + ξ ) − Q0(t, x) = δQ + ξ j∂ j Q0 . (2.203)

From the definition of the displacement vector it is obvious that

�u = dξ

dt
, (2.204)

where d/dt is the Lagrangian time derivative, which refers to the unperturbed flow. When
the unperturbed fluid is in equilibrium, d/dt = ∂/∂t .

The commutation rules,

δ∂t = ∂tδ , (2.205a)

δ∂ j = ∂ j δ , (2.205b)

�∂t = ∂t� − (∂tξ
j )∂ j , (2.205c)

�∂ j = ∂ j � − (∂ jξ
k)∂k , (2.205d)

�
d

dt
= d

dt
� , (2.205e)

are easy to establish, and they permit an efficient manipulation of the perturbed Euler equa-
tion. For example, δ(∂ j Q) = ∂ j Q − ∂ j Q0 while ∂ j (δQ) = ∂ j (Q − Q0) = ∂ j Q − ∂ j Q0,



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-02 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:36

109 2.4 General theory of deformed bodies

and we see that the operations commute. As another example, �(∂ j Q) =
δ(∂ j Q) + ξ k∂k j Q0 = ∂ j (δQ) + ξ k∂ jk Q0 while ∂ j (�Q) = ∂ j (δQ) + ∂ j (ξ k∂k Q0) =
∂ j (δQ) + (∂ jξ

k)(∂k Q0) + ξ k∂ jk Q0, and we see that these operations do not commute.
The mass of a selected portion of the fluid stays constant during a perturbation. In the

unperturbed configuration the portion of the fluid occupies the volume V ; in the perturbed
configuration it occupies the volume V + �V . The mass of the unperturbed configuration is∫

V ρ d3x , the mass of the perturbed configuration is
∫

V +�V (ρ + δρ) d3x , and we insist that
the two integrals must produce the same number. The first integral for the mass of the per-
turbed configuration can be expressed as

∫
V ρ d3x + ∮

S ρξ · d S, where S is the closed sur-
face bounding V , and d S is its (outward-directed) surface element. After converting the sur-
face integral to a volume integral, we find that the statement of mass conservation is

∫
V [δρ +

∂ j (ρξ j )] d3x = 0. Because this statement must hold for any piece of the fluid, we have

δρ = −∂ j (ρξ j ) , (2.206)

or

�ρ = −ρ∂ j ξ
j . (2.207)

These are time-integrated forms of the perturbed continuity equation.
By virtue of the equation of state satisfied by the fluid, the perturbation of the pressure is

directly linked to the density perturbation. The link is provided by the quantity �1, which
is defined by the (Lagrangian) statement

�p

p
= �1

�ρ

ρ
. (2.208)

In general �1 is a function of time and position within the fluid; for adiabatic changes
it is given by cP/cV , the ratio of specific heats. According to this equation, the Eulerian
perturbation of the pressure is given by

δp = −�1 p ∂ jξ
j − ξ j∂ j p . (2.209)

The perturbation of Euler’s equation can be formulated in either the Eulerian picture or
the Lagrangian picture. We begin with the Lagrangian picture, and submit Eq. (2.189) to
the operator � and use the commutation rules to simplify the results. For example, the
perturbation of the left-hand side is �(du j /dt), which can be written as d(�u j )/dt by
virtue of the commutation rules; invoking now Eq. (2.204), we write this in its final form of
d2ξ j/dt2. Proceeding in a similar way with the remaining terms, we find that the perturbed
Euler equation can be expressed as

d2ξ j

dt2
= �ρ

ρ2
∂ j p − 1

ρ
∂ j �p − 2ε jknωk dξ n

dt
+ ∂ j �� + (

∂ j ξ
k
)( 1

ρ
∂k p − ∂k�

)
. (2.210)

When the unperturbed state is an equilibrium configuration, the unperturbed velocity field
vanishes, the factor multiplying ∂ j ξ

k vanishes, and the equation simplifies to

∂2ξ j

∂t2
= �ρ

ρ2
∂ j p − 1

ρ
∂ j �p − 2ε jknωk ∂ξ n

∂t
+ ∂ j �� . (2.211)
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When the perturbed state is also an equilibrium configuration, ∂ξ j/∂t = 0 and the equation
simplifies further.

Moving next to the Eulerian picture, we now submit Eq. (2.189) to the operator δ and
use the commutation rules to simplify the result. For example, the perturbation of the first
term on the right-hand side is δ(ρ−1∂ j p) = −ρ−2(δρ)∂ j p + ρ−1δ(∂ j p) = −ρ−2(δρ)∂ j p +
ρ−1∂ jδp. Proceeding in a similar way with the other terms, and assuming once more that the
unperturbed state is an equilibrium configuration, we find that the perturbed Euler equation
can also be expressed as

∂2ξ j

∂t2
= δρ

ρ2
∂ j p − 1

ρ
∂ jδp − 2ε jknωk ∂ξ n

∂t
+ ∂ j δ� . (2.212)

The equation simplifies further when the perturbed configuration is also in equilibrium.
The perturbed Euler equation, either Eq. (2.211) or Eq. (2.212), can be solved once we

incorporate the expressions obtained previously for δρ (or �ρ) and δp (or �p). A missing
ingredient is the perturbation of the body’s gravitational potential, which is best calculated
in the Eulerian picture. It satisfies Poisson’s equation

∇2δU = −4πGδρ , (2.213)

and the solution can be fed into Euler’s equation.

2.4.4 Perturbed equilibrium

Perturbation equations

When the perturbed fluid is also in equilibrium, ∂ξ j/∂t = 0 and Eq. (2.212) simplifies to

δρ

ρ2
∂ j p − 1

ρ
∂ j δp + ∂ j δ� = 0 . (2.214)

The perturbation of the generalized potential is decomposed as

δ� = δU + V , (2.215)

where

V := Utidal + ��=2
C (2.216)

is the potential driving the perturbation; we recall that Utidal is given by Eq. (2.192), and
that ��=2

C is defined by Eq. (2.195).
Our task is to solve Eq. (2.214), assuming that V is specified. To achieve this we choose

ξ j to describe the displacement of a fluid element on a spherical surface ρ = constant
in the unperturbed configuration to the deformed surface ρ = constant in the perturbed
configuration (the mass density is numerically the same on both surfaces). This ensures
that �ρ ≡ 0, and Eq. (2.208) further ensures that �p = 0. These results imply that

∂ j ξ
j = 0 (2.217)

and

δρ = −ξ j ∂ jρ , δp = −ξ j∂ j p . (2.218)
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Because the unperturbed density ρ and pressure p depend on r only, these equations involve
only ξ r , the radial component of the displacement vector; we shall not need to solve for the
angular components, which are constrained by the divergence-free condition.

Spherical-harmonic decomposition

To proceed it is helpful to decompose all perturbation quantities in spherical harmonics:

ξ r =
∑
�m

r f�m(r )Y�m(θ, φ) , (2.219a)

δρ =
∑
�m

ρ�m(r )Y�m(θ, φ) , (2.219b)

δp =
∑
�m

p�m(r )Y�m(θ, φ) , (2.219c)

δU =
∑
�m

U�m(r )Y�m(θ, φ) , (2.219d)

V =
∑
�m

V�m(r )Y�m(θ, φ) , (2.219e)

in which (r, θ, φ) are spherical polar coordinates associated with the rotating frame x j ; note
that a factor r has been inserted in the relation between ξ r and its (dimensionless) coefficients
f�m . By virtue of Eqs. (2.192) and (2.195), the spherical-harmonic decompositions begin
at � = 2, with m running from −� to �.

The equations for δρ and δp imply that

ρ�m = −rρ ′ f�m (2.220)

and

p�m = −r p′ f�m = ρGm

r
f�m , (2.221)

where a prime indicates differentiation with respect to r . We invoked Eq. (2.201) to replace
p′ in the last equation. We no longer distinguish between the effective mass function m̃(r )
and the actual mass function m(r ), because the difference is of first order in the perturbation,
and would therefore be of second order after multiplication by f�m .

The spherical-harmonic components of δU have already been introduced and examined
in Sec. 1.5.2 – refer to the discussion following Eq. (1.122). By virtue of Poisson’s equation
they satisfy the differential equation

r2U ′′
�m + 2rU ′

�m − �(� + 1)U�m = −4πGr2ρ�m (2.222)

in the body’s interior. Outside the body they are given by

U out
�m (r ) = 4πG

2� + 1

I�m

r �+1
, (2.223)

where I�m are the body’s multipole moments.
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Because ∇2V = 0, the spherical-harmonic components of the driving potential satisfy
the homogeneous version of Eq. (2.222),

r2V ′′
�m + 2r V ′

�m − �(� + 1)V�m = 0 . (2.224)

This equation is satisfied both inside and outside the body, and the only admissible solution
is

V�m(r ) = 4π

2� + 1
d�mr � , (2.225)

where d�m are the moments of the driving potential; these are readily computed once V is
specified.

We now insert the spherical-harmonic decompositions within Eq. (2.214). It is easy to
see that the radial component of the equation produces

p′
�m = −Gm

r2
ρ�m + ρ

(
U ′

�m + V ′
�m

)
, (2.226)

where we have used Eq. (2.201) to eliminate p′. The angular components imply

p�m = ρ
(
U�m + V�m

)
. (2.227)

When we differentiate this with respect to r and substitute back in the previous equation,
we obtain

Gm

r2
ρ�m = −ρ ′(U�m + V�m

)
. (2.228)

When combined with Eqs. (2.220) and (2.221), the last two equations yield

Gm

r
f�m = U�m + V�m . (2.229)

This last equation summarizes the entire content of Euler’s equation for a perturbed
equilibrium.

It has become clear that the functions f�m(r ) – or, as we shall see below, their substitutes
η�(r ) – determine the entire set of unknowns ρ�m , p�m , and U�m . Our main goal, therefore, is
to calculate them for a specified driving potential V . And from f�m(r ) we wish to extract use-
ful information about the deformation, such as the geometrical shape of the deformed sur-
face, and the multipole moments I�m of the deformed mass distribution. Before we explain
how f�m is computed and this information extracted, we summarize the results in Box 2.3.

Box 2.3 Clairaut–Radau equation and Love numbers

The potential driving the body to a perturbed equilibrium state from an unperturbed equilibrium is

V = Utidal + ��=2
C =

∑
�m

4π

2� + 1
d�mr �Y�m(θ, φ) ,

where the tidal potential is given by Eq. (2.192), and the quadrupole piece of the centrifugal potential is
defined by Eq. (2.195). It is assumed that the unperturbed configuration is spherically symmetric, and the
multipole expansion begins at � = 2.
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The gravitational potential of the deformed body is

U = −G M

r
+
∑
�m

4π

2� + 1

G I�m

r �+1
Y�m(θ, φ) ,

where M is the body’s total mass and I�m the multipole moments of the mass distribution. By virtue of the
perturbation equations, these are related to the coefficients d�m of the driving potential by

G I�m = 2k� R2�+1d�m ,

where k� are the gravitational Love numbers, which depend on the details of the unperturbed
configuration.
The shape of the deformed boundary is described by r = R + δR, with

δR =
∑
�m

4π

2� + 1
R�mY�m(θ, φ) ,

and the perturbation equations imply that the coefficients R�m are related to d�m by

R�m = h�

R�+2

G M
d�m ,

where h� are the surficial Love numbers, which also depend on the details of the unperturbed
configuration.
The compute the Love numbers we require a solution to the Clairaut–Radau equation,

rη′
� + η�(η� − 1) + 6D(η� + 1) − �(� + 1) = 0 ,

where a prime indicates differentiation with respect to r , and

D := 4πρ(r )r3

3m(r )

encodes the relevant information regarding the body’s structure. The differential equation is integrated
outward from r = 0, with the boundary condition η�(r = 0) = � − 2. It proceeds to r = R, and
η�(r = R) is computed. The Love numbers are then given by

k� = � + 1 − η�(R)

2
[
� + η�(R)

] , h� = 1 + 2k� .

Clairaut’s equation

To determine f�m(r ) we rely on Eq. (2.229), which we insert within Eq. (2.222), taking
into account Eq. (2.224). We simplify the expression by making use of Eq. (2.220) and the
equation m ′ = 4πr2ρ for the unperturbed mass function. The end result is the second-order
differential equation

r2 f ′′
�m + 6D

(
r f ′

�m + f�m

) − �(� + 1) f�m = 0 , (2.230)
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where

D(r ) := 4πρ(r )r3

3m(r )
= ρ(r )

ρ̄(r )
(2.231)

is a function that encodes the relevant details of the unperturbed configuration, contained
in ρ(r ) and m(r ); ρ̄ := 3m(r )/(4πr3) is the mean density inside a sphere of radius r . This
is Clairaut’s equation, named after the French mathematician Alexis Clairaut (1713–1765).
The equation is integrated outward from r = 0, and the boundary conditions can be deter-
mined by a local analysis near r = 0: becauseD ∼ 1 in the limit, we find that f�m ∼ a�mr �−2

with a�m an arbitrary constant, and from this it follows that f ′
�m ∼ (� − 2)a�mr �−3. These

behaviors indicate that the Clairaut equation is ill-conditioned for numerical integration,
and we cast it in a more practical form below. It should be noted that f�m(r ) is determined
up to a multiplicative factor a�m , which is fixed by the junction conditions at r = R.

To extract useful information from f�m(r ) we assume specifically that the unperturbed
density ρ(r ) goes smoothly to zero at the boundary. We exclude discontinuities to ensure
that ρ�m(r ) is non-singular at r = R – refer to Eq. (2.220) – and to ensure that U�m and its
first derivative are continuous at r = R – refer to Eq. (2.222). While discontinuities could
be accommodated in a more complete treatment of the perturbation equations, we choose
to exclude such complications from our discussion; we shall, however, examine the special
case of an incompressible fluid below.

We first wish to relate the multipole moments I�m of the deformed mass distribution to
the coefficients d�m of the driving potential; we expect a linear relationship mediated by
the functions f�m . To find this relation we evaluate Eq. (2.229) at r = R and exploit the
continuity of U�m at the boundary to equate it to its external expression of Eq. (2.223). This
gives

G M

R
f�m(R) = 4π

2� + 1

[
G I�m

R�+1
+ d�m R�

]
. (2.232)

Repeating the procedure with the first derivative of Eq. (2.229), we also obtain

G M

R

[
R f ′

�m(R) − f�m(R)
]

= 4π

2� + 1

[
−(� + 1)

G I�m

R�+1
+ �d�m R�

]
. (2.233)

These equations can be solved for d�m and I�m , and we get

d�m = G M

4π R�+1

[
R f ′

�m(R) + � f�m(R)
]

(2.234)

and

G I�m = −G M

4π
R�
[

R f ′
�m(R) − (� + 1) f�m(R)

]
. (2.235)

These equations provide the desired relationship between I�m and d�m . This is recast in a
simpler form below.

We next determine the geometrical figure of the deformed boundary, at which the per-
turbed pressure p + δp goes to zero. The deformed boundary is described mathematically
by r = R + δR(θ, φ), and the definition of the displacement vector ξ j makes it clear that
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δR = ξ r . From this we find that

δR =
∑
�m

4π

2� + 1
R�mY�m(θ, φ) , (2.236)

with 4π (2� + 1)−1 R�m := R f�m(R). We may express this in terms of I�m and d�m with the
help of Eq. (2.232), and because I�m is linearly related to d�m , we conclude that R�m is
proportional to d�m , with a coefficient that depends on f�m and its first derivative. This
relation is given explicitly below.

Radau’s equation and Love numbers

Clairaut’s equation (2.230) is independent of the azimuthal number m, and the dependence
of the solutions on m must be inherited from the junction conditions at r = R. And indeed,
we have seen that f�m(r ) is determined up to a multiplicative factor a�m , and the dependence
on m must be contained in this number. These considerations imply that the function

η� := r f ′
�m

f�m
= d ln f�m

d ln r
, (2.237)

known as Radau’s function, must be independent of m. And as it turns out, this combination
of f�m and f ′

�m is precisely what is involved in the relation between I�m and d�m . Returning
to our previous expressions, we see that the relationship can be expressed as

G I�m = 2k� R2�+1d�m , (2.238)

where k� is a dimensionless quantity given by

k� := � + 1 − η�(R)

2
[
� + η�(R)

] . (2.239)

The key point is that k� is independent of m, and determined by the Radau function, which
is itself determined by Eq. (2.230). We see that the relation of Eq. (2.238) is valid for
any perturbed equilibrium driven by a potential V characterized by its spherical-harmonic
coefficients d�m , and that the details of the body’s composition are encapsulated in the
constants k�. These all-important numbers are known as gravitational Love numbers, and
they are named after the British geophysicist A.E.H. Love (1863–1940), who introduced
them early in the 20th century. The numbers are also known in the astronomical and
celestial mechanics literature as “apsidal constants,” because they control the size of tidal
and rotational deformations of stars in close binary systems, which lead to observable
perturbations in the “line of apsides” (also known as the longitude of pericenter); we
describe these perturbations in Sec. 3.4.4. The reader should be warned that our definition
of k� is the one adopted by astronomers; geophysicists also use Love numbers to describe
gravimeter measurements made on the surface of the Earth, but their definition of k�

includes an additional factor of two.
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Table 2.3 Gravitational Love numbers k� for various polytropes characterized by the polytropic index n and� = 1 + 1/n.
The notation e-p at the end of each number stands for × 10−p.

� n = 1/2 n = 2/3 n = 1 n = 3/2 n = 2 n = 3 n = 4
� = 3 � = 5/2 � = 2 � = 5/3 � = 3/2 � = 4/3 � = 5/4

2 4.49154e-1 3.75966e-1 2.59909e-1 1.43279e-1 7.39384e-2 1.44430e-2 1.19488e-3
3 2.03384e-1 1.64696e-1 1.06454e-1 5.28485e-2 2.43940e-2 3.69989e-3 2.23093e-4
4 1.25063e-1 9.85460e-2 6.02413e-2 2.73931e-2 1.15077e-2 1.40970e-3 6.55706e-5
5 8.75838e-2 6.74240e-2 3.92925e-2 1.65688e-2 6.41997e-3 6.56211e-4 2.46927e-5
6 6.60100e-2 4.97911e-2 2.78270e-2 1.09837e-2 3.96610e-3 3.46899e-4 1.09340e-5
7 5.21751e-2 3.86488e-2 2.08099e-2 7.74547e-3 2.62762e-3 2.00562e-4 5.43272e-6

The relation between R�m and d�m can also be expressed in a similar form. From our
previous results it is easy to see that

R�m = h�

R�+2

G M
d�m , (2.240)

where h� is another dimensionless quantity given by

h� = 1 + 2k� . (2.241)

These numbers also are independent of m and determined by the Radau function; they are
known as surficial Love numbers, and are mostly of interest to geophysicists.

In principle the Radau function can be obtained from f�m after integrating Eq. (2.230). It
is more practical, however, to formulate a differential equation directly for η�. By inserting
Eq. (2.237) within Eq. (2.230) it is easy to see that the equation becomes

rη′
� + η�(η� − 1) + 6D(η� + 1) − �(� + 1) = 0 , (2.242)

which is known as Radau’s equation. This is a first-order differential equation, but unlike
Eq. (2.230) it is non-linear in the dependent variable. Radau’s equation is integrated outward
from r = 0 with the boundary condition

η�(r = 0) = � − 2 , (2.243)

and the integration proceeds to the boundary, where η�(r = R) is obtained. The computa-
tion produces the Love numbers k� and h�, and the deformed equilibrium of the body is
completely determined. The function η�(r ) and its differential equation are named after the
Prussian-French astronomer and mathematician Rodolphe Radau (1835–1911).

In Table 2.3 we present the results of a computation for deformed polytropes. (Refer to
Exercise 2.7 for helpful computational details.) We observe that k� decreases as n increases
(� decreases, so that the equation of state becomes softer), and that this behavior is more
pronounced as � increases. This reflects the body’s internal structure: when n is large and
the equation of state is soft, the body is centrally dense with most of its mass confined to
the core, where the factor r � involved in the definition of the multipole moments is small
and getting smaller with increasing �. Mathematically, this behavior comes about because
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D decreases rapidly to zero when n is large; with D negligible near the surface, Eq. (2.230)
implies that f�m(r ) ∝ r �+1 and η� � � + 1, which produces k� � 0.

We note that when n = 1 and ρ = ρc sin(ξ )/ξ , where ξ is the dimensionless radial
variable introduced in Sec. 2.2.3, Clairaut’s equation can be integrated exactly to give

f�m = ξ j�(ξ )

ξ cos ξ − sin ξ
(n = 1) , (2.244)

where j� is a spherical Bessel function. This analytical result can be used as a check on the
numerical computations.

It can be shown, see Exercise 2.9, that the magnitude of the gravitational acceleration of
a test mass (for example a gravimeter) on the surface of a deformed body is perturbed from
the nominal value G M/R2 by a factor proportional to [� + 2h� − 2(� + 1)k�]d�m . The first
term is the direct perturbation caused by the perturbing force, the second results from the
displacement of the surface from its unperturbed location, and the third comes from the
redistribution of the matter and the resulting perturbation of the body’s gravitational field.
Similarly, one can calculate the “tilt” of a gravimeter, the angle between the gravitational
acceleration and a normal to the body’s surface; this is controlled by the factor (1 − h� +
2k�)d�m . For perfect-fluid bodies, the relation h� = 1 + 2k� implies that the tilt vanishes
– the surface is always perpendicular to a plumb line. But for a heterogeneous body like
the Earth, with both solid and liquid components, the Love numbers are no longer linked,
and gravimeter and tilt measurements can be used to shed light on the nature of the Earth’s
interior.

Uniform density

Our previous developments did not allow for a discontinuity of the unperturbed density ρ

at the unperturbed boundary r = R. As an example of a model involving a discontinuous
density and requiring a separate treatment, we examine the simplest case of a homogeneous
body with density ρ(r ) = ρ0�(R − r ), in which ρ0 is a constant and �(R − r ) is the
Heaviside step function. The body comes with a mass function m(r ) = (4π/3)ρ0r3 and a
total mass M = (4π/3)ρ0 R3.

From Eq. (2.220) we find that

ρ�m = ρ0 R f�m(R) δ(r − R) , (2.245)

indicating that the density perturbation is supported at the boundary only. The presence of
a δ-function in ρ�m implies that the first derivative of U�m is discontinuous at the boundary,
which invalidates many of the manipulations carried out previously. From Eq. (2.222) we
indeed find that the junction conditions at r = R are now given by[

U�m

] = 0 ,
[
U ′

�m

] = −3G M

R2
f�m(R) , (2.246)

where [ψ] := ψ(r = R + ε) − ψ(r = R − ε) denotes the jump of a function ψ across
r = R (ε is a small, positive constant). Because ρ�m vanishes inside the body, the internal
solution to Eq. (2.222) is 4π (2� + 1)−1c�mr � for some constants c�m , and the external
solution continues to be 4π (2� + 1)−1G I�mr−�−1. Continuity of U�m at r = R implies that
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c�m = G I�m R−2�−1, and the remaining junction condition yields

G I�m = 3

4π
G M R� f�m(R) , (2.247)

which replaces Eq. (2.235).
The link to d�m is provided by Eq. (2.229), which requires no modification in this context

because both U�m and V�m are continuous at the boundary. We find that

d�m = 2(� − 1)

3

G I�m

R2�+1
, (2.248)

and collecting results, we finally obtain the Love numbers of an incompressible fluid:

k� = 3

4(� − 1)
, h� = 2� + 1

2(� − 1)
. (2.249)

It is amusing to note that these results can be recovered on the basis of the recipe presented
in Box 2.3, in spite of the fact that the discontinuity at r = R invalidates its usage. Indeed,
the uniform-density model implies that D = 1 throughout the body, and in this case the
solution to Clairaut’s equation is f�m ∝ r �−2, leading to η� = � − 2. The Love numbers can
then be computed by applying the general relations, and the results agree with our previous
answers.

2.4.5 Rotational deformations

As a first application of the general theory we consider an isolated body subjected to a rigid
rotation of angular velocity ω. We therefore leave Utidal out of the perturbing potential V ,
but we include ��=2

C and seek to determine its effect on a body of arbitrary composition.
In Sec. 2.5 we shall apply the general theory to a body subjected to tidal forces.

The perturbing potential is obtained from Eq. (2.195), which we write as

V = ��=2
C = 1

6
ω2r2(1 − 3 cos2 θ ) = −1

3

√
4π

3
ω2r2Y20(θ ) . (2.250)

The potential is characterized by the single non-vanishing coefficient

d20 = −1

3

√
5

4π
ω2 , (2.251)

and the perturbation is a pure axisymmetric quadrupole. To express our results below it is
helpful to introduce a mean density ρ̄ defined by M := 4π

3 ρ̄ R3, as well as the parameter

ζ := 2ω2 R3

3G M
= ω2

2πGρ̄
, (2.252)

which is a dimensionless measure of the rotational deformation.
According to Eq. (2.238), the quadrupole moment of the rotating body is

G I20 = −2

3

√
5

4π
k2ω

2 R5 , (2.253)
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and this leads to a dimensionless quadrupole moment J2 := −√
4π/5I20/(M R2) given by

J2 = k2ζ . (2.254)

According now to Eqs. (2.236) and (2.240), the deformation of the boundary is described
by δR = (4π/5)h2(R4/G M)d20Y20, or

δR = 1

4
h2ζ R(1 − 3 cos2 θ ) . (2.255)

This allows us to define an equatorial radius

a := R + δR
(
θ = π

2

) = R

(
1 + 1

4
h2ζ

)
, (2.256)

and a polar radius

a3 := R + δR(θ = 0) = R

(
1 − 1

2
h2ζ

)
, (2.257)

and to express the equation describing the surface, to first order in ζ , as

1

(R + δR)2
= sin2 θ

a2
+ cos2 θ

a2
3

. (2.258)

Comparing with Eq. (2.186), we see that this is the equation of a spheroid. We conclude
that to first order in perturbation theory, any rotationally deformed body assumes the shape
of a spheroid.

The equatorial and polar radii give rise to an eccentricity given by

e2 := 1 − a2
3

a2
= 3

2
h2ζ , (2.259)

and the relation between the quadrupole moment and the eccentricity is then

J2 = 2k2

3h2
e2 . (2.260)

For a body of uniform density, k2 = 3
4 and h2 = 5

2 , and these relations become ζ = 4
15 e2

and J2 = 1
5 e2. Comparing with Eqs. (2.187) and (2.188d), we see that these results agree

with those obtained previously for a Maclaurin spheroid of small eccentricity.

2.5 Tidally deformed bodies

Anybody who has spent time at the sea shore has experienced tides. In some parts of the
world, such as the Bay of Fundy in Canada or the mouth of the River Severn in England,
they are spectacular. In other areas the tides are barely noticeable. Tides are caused by
inhomogeneities in the gravitational attraction of the Moon and Sun on the Earth. To lowest
order, all parts of the Earth fall toward the Moon with the same acceleration; but the
acceleration of a point on the side closest to the Moon is larger than that of a point at the
center of the Earth, and this acceleration is itself larger than that of a point on the surface
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opposite to the Moon. Furthermore, points on the sides of the Earth perpendicular to the
direction to the Moon have a small component of their acceleration toward the center of
the Earth. As a result the tidal deformation has a characteristic quadrupolar shape, leading
to the twice-per-day phenomenon of ocean tides. The solar tide is a little less than half as
strong as the lunar tide. Depending on the relative position of the Sun and Moon in the sky,
the tidal amplitudes vary from the large “spring tide” to the smaller “neap tide.”

The ocean tides are very complex, because they depend not only on the gravitational
attraction of the Sun and Moon, but also on the interaction between the water and the
continental shelf where we landlubbers observe them. Less noticeable in daily life, but
equally important, are the “solid” Earth tides, the tidal deformations of the full Earth.
These are measured and analyzed to high precision using gravimeters, which measure time
variations of g, the acceleration at the surface of the Earth. Measurements such as these
are used to determine the Earth’s gravitational Love numbers k�, which reveal information
regarding its internal structure.

Tidal interactions are also important in many close binary-star systems. The modification
to each star’s gravitational potential caused by the tidal deformation leads to observable
perturbations in the orbital motion, to be described in Chapter 3. These can be exploited to
learn something about the stellar interiors through the inferred values of k�.

Tidal deformations can lead to heating and dissipation of angular momentum. In the
Jovian system, tidal heating is responsible for the spectacular volcanic activity observed on
Io’s surface, which far exceeds in intensity the activity seen on Earth. In the Earth–Moon
system, tidal torquing is responsible for the facts that the Moon is receding from the Earth
and that the length of the day is slowly increasing. Interestingly, it was Immanuel Kant
(1724–1804) who first suggested that this might be the case, long before the effect could
be measured. He reasoned that the Moon presents the same face to the Earth because its
rotation has slowed down by virtue of tidal dissipation, and that therefore the same must
be happening to the Earth. Eventually, the two bodies will become tidally locked, rotating
and revolving with the same angular velocity, and with the same side facing each other in
perpetuity. If the Earth is still populated with sentient beings when this occurs, then half of
them will never have the privilege of observing the clair de lune.

In this section we explore the physics of tides on a fluid body. We first examine static tides
in Sec. 2.5.1, in which the external tidal field varies so slowly that it never takes the body
out of hydrostatic equilibrium. The tools required to describe such tides were fashioned in
Sec. 2.4, and this will be our second application of the general theory of deformed bodies.
In Sec. 2.5.2 we incorporate viscous dissipation in our discussion of static tides, and reveal
some of its most important consequences. We conclude with an exploration of dynamical
tides in Sec. 2.5.3; here the tidal field varies so rapidly that it forces the body out of its
equilibrium state. This is a vast domain of study, and our discussion will be limited to a
very simplified model involving a body of uniform density.

2.5.1 Static tides

As a second application of the general theory of deformed bodies developed in Sec. 2.4, we
consider a rotating or non-rotating body subjected to a tidal field created by one or more
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external bodies. We ignore the body’s rotational deformation, which was treated separately
in Sec. 2.4.5, and focus on the tidal deformation. We therefore leave ��=2

C out of the
perturbing potential V , include Utidal, and seek to determine its effect on a body of arbitrary
composition.

The tidal potential was first introduced in Sec. 2.1, where it was denoted U eff
¬A, and a

simplified expression valid for a body with small multipole moments I 〈L〉
A was first written

down in Eq. (2.11) on page 66. Working in the body’s rotating frame, we copy this here as

V = Utidal = −
∞∑

�=2

1

�!
EL (t)x L , (2.261)

in which the tidal moments EL (t) are time-dependent STF tensors that serve to specify the
tidal environment. They are defined by

EL (t) := −∂LU¬A(t, 0) , (2.262)

in which the gravitational potential U¬A created by the external bodies is differentiated
� times with respect to x j and the result evaluated at the body’s center-of-mass x = 0.
The tidal moments depend on time, but as was discussed near the end of Sec. 2.4.1, this
dependence is assumed to be sufficiently slow that the tidal field is never able to the take
the body out of hydrostatic equilibrium. This assumption will be relaxed in Sec. 2.5.3.

The tidal potential is naturally expressed as an expansion in STF tensors, but the general
theory of Sec. 2.4 relies on an expansion in spherical harmonics. The translational tools
were developed in Sec. 1.5.3, where we showed that the STF product n〈L〉, with n := x/r
denoting a unit vector in the direction of x, can be expressed as

n〈L〉 = 4π�!

(2� + 1)!!

�∑
m=−�

Y 〈L〉
�m Y�m(θ, φ) (2.263)

in terms of spherical harmonics, with Y 〈L〉
�m the constant STF tensor defined by

Y�m(θ, φ) = Y ∗〈L〉
�m n〈L〉 , (2.264)

an expansion of the spherical-harmonic functions in STF tensors; the asterisk indicates com-
plex conjugation. Inserting x L = r �nL within Eq. (2.261) and making use of the spherical-
harmonic decomposition of n〈L〉, we quickly find that the coefficients d�m involved in the
decomposition of the perturbing potential, as defined by Eq. (2.225), are given by

d�m = − 1

(2� − 1)!!
Y 〈L〉

�m EL . (2.265)

A few steps of algebra next reveal that

EL = − 4π�!

2� + 1

�∑
m=−�

d�mY ∗〈L〉
�m (2.266)

is the inverse relation.
According to Eq. (2.238), the tidal field deforms the body so as to create the multipole

moments G I�m = 2k� R2�+1d�m . We wish to express this in STF form, and the required
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translation was worked out in Sec. 1.5.3 – refer to Eq. (1.168). Collecting results, we find
that the STF multipole moments of a body deformed by an external tidal field are given by

G I〈L〉 = − 2k�

(2� − 1)!!
R2�+1EL , (2.267)

in which k� are the body’s gravitational Love numbers. This expression can be inserted
within the general multipole expansion of the body’s potential, which is displayed in
Eq. (1.157). We find

U = G M

r
−

∞∑
�=2

2k�

�!

R2�+1

r �+1
ELnL , (2.268)

and the total gravitational potential is

U + Utidal = G M

r
−

∞∑
�=2

1

�!

[
1 + 2k�

(
R/r

)2�+1
]
EL x L . (2.269)

This expression leaves out a term g j x j , where g j := ∂ jU¬A(0) is the body’s acceleration in
the field of the external bodies; as we saw back in Sec. 2.1, this term plays no role because
it is cancelled out by a fictional force originating from the translation to the body’s moving
frame. Focusing on the tidal terms, we see that the total perturbation at r = R is given by a
contribution proportional to (1 + 2k�)ELnL from each tidal moment; the first unit of ELnL

is the direct contribution from the tidal field, and the remaining 2k� units come from the
body’s response to the applied tidal field.

The body’s deformed surface is described by Eq. (2.236), in which we insert Eqs. (2.240)
and (2.265). After conversion to an expansion in STF tensors, we find that the surface of a
body deformed by tidal forces is described by r = R + δR with

δR = −
∞∑

�=2

1

�!
h�

R�+2

G M
ELnL , (2.270)

where h� are the surficial Love numbers.
In many circumstances it is sufficient to keep only the leading, quadrupole term in the

expansions of Eqs. (2.268) and (2.270). Truncating all expressions at � = 2, we find that
the tidal potential simplifies to

Utidal = −1

2
E jk(t)x j xk , (2.271)

in which E jk(t) is the tidal quadrupole moment. The body’s quadrupole moment is then

G I〈 jk〉 = −2

3
k2 R5E jk , (2.272)

and its potential simplifies to

U = G M

r
− k2

R5

r3
E jkn j nk . (2.273)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-02 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:36

123 2.5 Tidally deformed bodies

In this truncated description the surface deformation becomes

δR = −1

2
h2

R4

G M
E jkn j nk . (2.274)

When the body is a member of an N -body system, the tidal field is supplied by the remaining
N − 1 bodies, and in this case the tidal quadrupole moment is given by

E jk = −
∑
B 	=A

Gm B∂ A
jk

1

rAB

= −3
∑
B 	=A

Gm B

r3
AB

n〈 jk〉
AB

= −
∑
B 	=A

Gm B

r3
AB

(
3n j

ABnk
AB − δ jk

)
, (2.275)

in which rAB := |r AB | = |r A − r B | is the distance between body A and body B, and
nAB := r AB/rAB is a unit vector pointing from body B to body A. To arrive at this
expression for E jk we assume that the multipole moments I 〈L〉

B of the external bodies are
small, so that they need not be included in the expression for the external potential. We have
reverted to the notation of Sec. 1.6, in which the mass of body B is denoted m B instead of
MB . Similarly, the mass of body A will be denoted m A instead of MA.

As a concrete example, imagine that our body is non-rotating, and that it is the first
member of a two-body system on a circular orbit of radius r := r12 and angular velocity 
 =√

Gm/r3, in which m = m1 + m2. Taking the x-y plane to coincide with the orbital plane,
we have that n12 = [cos 
t, sin 
t, 0], and we write n = [sin θ cos φ, sin θ sin φ, cos θ ].
With this we find that

E jkn j nk = −3
Gm2

r3

[
sin2 θ cos2(φ − 
t) − 1

3

]
. (2.276)

We see that the tidal field is proportional to Gm2/r3, and by virtue of its dependence on
cos2(φ − 
t) = 1

2 + 1
2 cos 2(φ − 
t), we see that it oscillates at twice the orbital frequency


. The peak position of the tidal bulge is obtained when the argument of the cosine function
vanishes, and we find that φbulge = 
t ; the bulge is at all times aligned with the orbiting
body.

2.5.2 Tidal dissipation

Our discussion of static tides was based on an assumption that the body is adequately
modeled as a perfect fluid of mass density ρ and pressure p. For many applications this
model is indeed adequate, but in some aspects it is deficient, and the deficiency is somewhat
severe in the context of tidal dynamics. What is missing from a perfect-fluid model is a
mechanism to dissipate energy, and in this section we attempt to incorporate this important
effect in the physics of tides.

The simplest way to include a dissipative mechanism in fluid mechanics is to let the fluid
be a viscous fluid, and to add the (kinematic) viscosity ν to the list of fluid variables, along
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with ρ and p. This is defined in such a way that the frictional force on a fluid element is
given by the kinematic viscosity multiplied by the mass density multiplied by the element’s
cross-sectional area multiplied by the velocity gradient across the fluid element; the unit
of ν is then m2/s. The inclusion of viscosity in the fluid dynamics requires a modification
of Euler’s equation, which is generalized to the famous Navier–Stokes equation. It would
take us much too far afield to formulate a perturbation theory based on the Navier–Stokes
equation, and to find solutions that describe a tidally deformed body. Such developments
are beyond the scope of this book, and we shall instead be satisfied with displaying the
final outcome of this analysis. We provide no proof, but attempt to motivate the answer by
appealing to an analogous physical system (see Box 2.4).

Box 2.4 Driven harmonic oscillator

As we shall see in Sec. 2.5.3, the physics of tidal deformations is closely analogous to the physics of a simple
harmonic oscillator driven by an external force. In this analogy, the oscillator’s position x from equilibrium
plays the role of the tidal deformation (asmeasured by themass quadrupolemoment I〈 jk〉), and the external
force f plays the role of the applied tidal field (as measured by the tidal quadrupole momentE jk ).
In the absence of damping, the oscillator’s response to the external force is governed by

ẍ + ω2x = f,

in which an overdot indicates differentiation with respect to t , andω is the oscillator’s natural frequency. We
assume that the internal time scale Tint := ω−1 is very short compared with the external time scale Text

associated with the behavior of the external force. The general solution to this equation is

x(t) = x(0) cos ωt + 1

ω
ẋ(0) sin ωt + 1

ω

∫ t

0
f (t ′) sin ω(t − t ′) dt ′,

and repeated integration by parts turns this expression into

x(t) =
[

x(0) − 1

ω2
f (0) + · · ·

]
cos ωt + 1

ω

[
ẋ(0) − 1

ω2
ḟ (0) + · · ·

]
sin ωt

+ 1

ω2

[
f (t) + · · · ],

in which the neglected terms are smaller than the leading terms by a factor of order (Tint/Text)2 � 1.
Averaging over the oscillations to keep track of the long-termmotion, we arrive at

〈x(t)〉 = 1

ω2

[
f (t) + · · · ],

and this result is analogous to Eq. (2.272).
We next incorporate dissipation in the oscillator’s response by inserting a damping term in the differential

equation, which now reads

ẍ + 2ζω ẋ + ω2x = f,
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whereζ is a dimensionless parameter.We consider an overdamped situationwithζ � 1, so that the damp-
ing time scale Tdamp := (ζω)−1 is very short compared with the oscillation time scale Tint. The general
solution to the differential equation is

x(t) = x(0)e−ζωt

(
cosh λωt + ζ

λ
sinh λωt

)
+ 1

λω
ẋ(0)e−ζωt sinh λωt

+ 1

λω

∫ t

0
f (t ′)e−ζω(t−t ′) sinh λω(t − t ′) dt ′,

whereλ :=
√

ζ 2 − 1. Repeated integration by parts turns this into

x(t) = transient terms + 1

ω2

[
f (t) − τ ḟ (t) + · · · ],

where τ := 2ζ/ω; the transient terms all decay exponentially, and the neglected terms are smaller than
the leading term by a factor of order (τ/Text)2 � 1. This result is analogous to Eq. (2.277), and because
f (t) − τ ḟ (t) = f (t − τ ) + · · · , we see that the effect of dissipation is to create a delay τ between
the action of the force and the oscillator’s response. We have assumed that the delay is short compared with
the external time scale. Because τ = 2T 2

int/Tdamp � Tint, this can be arranged when Tint/Text �
Tdamp/Tint � 1.

Equation (2.272) reveals that in the absence of viscosity, the body’s quadrupole moment
is related to the tidal quadrupole moment by G I〈 jk〉(t) = − 2

3 k2 R5E jk(t), in which k2 is
the gravitational Love number and R is the body’s radius; we see that the body responds
instantaneously to the applied tidal field. In the presence of viscosity the relation becomes

G I〈 jk〉(t) = −2

3
k2 R5

[
E jk(t) − τ Ė jk(t) + · · · ] (2.277a)

= −2

3
k2 R5

[
E jk(t − τ ) + · · · ], (2.277b)

in which an overdot indicates differentiation with respect to t ; as for Eq. (2.272), this
equation is formulated in the body’s rotating frame. The new parameter τ has the dimension
of time, and it represents a viscosity-induced delay between the action of the tidal field
and the body’s response. The viscous delay must be proportional to the fluid’s kinematic
viscosity, and it must be related to the body’s radius R and its mass M ; dimensional analysis
reveals that it must be of the form τ ∝ ν̄ R/(G M), in which ν̄ is the averaged kinematic
viscosity over the volume occupied by the fluid. The numerical coefficient will depend on
the details of internal structure, and this dependence could be captured by introducing a third
Love number, in addition to k2 and h2. For our purposes it is preferable to adopt τ itself as a
dimensionful “Love quantity,” a parameter that characterizes the body’s internal structure.
We assume that τ is much larger than the internal time scale Tint ∼ (Gρ)−1/2 ∼

√
R3/G M

associated with the fluid’s dynamics, and that it is also much smaller than the external

time scale Text ∼
√

r3
AB/G M associated with the orbital dynamics. The neglected terms in

Eq. (2.277) are of order (τ/Text)2 � 1 relative to the leading term proportional to E jk .
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The viscous delay also appears in a modified relation between the surface deformation
δR and the applied tidal field. In this case it is possible to show that Eq. (2.274) becomes

δR = −1

2
h2

R4

G M

[
E jk(t) − τ Ė jk(t) + · · · ]n j nk (2.278a)

= −1

2
h2

R4

G M

[
E jk(t − τ ) + · · · ]n j nk, (2.278b)

and here also we see that the tidal deformation is delayed with respect to applied tidal field.
An important consequence of the inclusion of viscosity within the fluid dynamics is that

it leads to energy dissipation, in the form of heat production, within the body. Another
important consequence is that it gives rise to a transfer of angular momentum between
the body and the remote bodies responsible for the tidal field. To calculate this effect
we work initially in the non-rotating frame xā , and we recall that the tidal potential is
given by Utidal = − 1

2Eāb̄x ā x b̄, so that the density of tidal forces acting within the body is

fā = ρ∂āUtidal = −ρEāb̄x b̄. These forces exert a torque, and integrating over the body, we
find that the rate of change of the body’s angular momentum is given by

d Sā

dt
= εāb̄c̄

∫
xb̄ f c̄ d3 x̄ . (2.279)

We obtain

d Sā

dt
= −εāb̄c̄ E c̄

p̄

∫
ρxb̄x p̄ d3 x̄ (2.280)

after inserting our expression for the force density. The integral is the body’s mass
quadrupole moment, which can be decomposed as I b̄ p̄ = I 〈b̄ p̄〉 + 1

3 δb̄ p̄ I . The trace term
can be seen to give no contribution to the torque, and we find that

d Sā

dt
= −εāb̄c̄ I 〈b̄ p̄〉E c̄

p̄ (2.281)

gives the rate at which the body’s angular momentum changes as a result of the tidal
interaction.

We next write the spin vector as S = Se, in terms of a magnitude S and a direction e,
and obtain an expression for d S/dt by projecting d S/dt in the direction of e. Since we are
now dealing with a scalar quantity, we may express each tensorial quantity in the body’s
rotating frame x j . We obtain

d S

dt
= −ε jkne j I 〈kp〉E n

p , (2.282)

in which we insert Eq. (2.277). We observe that the term proportional to Ekp makes no
contribution to d S/dt , and our final expression is

d S

dt
= 2

3
k2τ R5ε jknEk

pĖ pn . (2.283)

We note that the effect is proportional to τ ; there is no transfer of angular momentum
without viscosity.

As a concrete example we return to the discussion initiated at the end of Sec. 2.5.1. Once
more we take our body to be the first member of a two-body system on a circular orbit of
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radius r and angular velocity 
 =
√

Gm/r3, in which m = m1 + m2. The body is rotating
with an angular velocity ω, and we assume that the rotation axis e is perpendicular to the
orbital plane. In the rotating frame the tidal quadrupole moment is given by

E jk = −Gm2

r3

(
3n j

12nk
12 − δ jk

)
, (2.284)

in which n12 = [cos(
 − ω)t, sin(
 − ω)t, 0]. With n = [sin θ cos φ, sin θ sin φ, cos θ ]
pointing toward a point on the surface, we have that the tidal deformation is proportional to

E jk(t − τ )n j nk = −3
Gm2

r3

{
sin2 θ cos2

[
φ − (
 − ω)(t − τ )

] − 1

3

}
. (2.285)

The peak position of the tidal bulge is now given by

φbulge = φ2 − (
 − ω)τ, (2.286)

in which φ2 := (
 − ω)t is the angular position of the second body as measured in the rotat-
ing frame of the first body. We observe that the viscous delay creates a misalignment between
the tidal bulge and the direction of the orbiting body. When ω < 
, that is, when the second
body orbits faster than the first body rotates, we find that φbulge < φ2; the tide lags behind
the orbiting body. When ω > 
, that is, when the first body rotates faster than the second
body orbits, we find instead that φbulge > φ2; the tide leads in front of the orbiting body.

The viscosity-produced misalignment between the tidal bulge and the orbiting body is
directly implicated in the transfer of angular momentum. When the bulge lags behind the
orbiting body, the tidal forces acting on the excess mass in the bulge create a positive
torque that increases the body’s angular momentum. When the bulge leads in front of the
orbiting body, the torque is negative and produces a decrease in angular momentum. This
intuition is confirmed with an explicit evaluation of d S/dt from Eq. (2.283), making use
of Eq. (2.284). After making the substitutions and simplifying, we eventually arrive at

d S

dt
= 6k2

Gm2
2 R5

r6
(
 − ω)τ. (2.287)

This expression confirms that S increases when ω < 
, and that it decreases when ω > 
.
A consequence of this transfer of angular momentum is that the body evolves toward an
equilibrium state with ω = 
; eventually the body will become tidally locked, and rotate at
the same frequency as the orbital motion. This phenomenon is observed everywhere in the
solar system, including in our own backyard: our Moon always shows the same face (ignor-
ing librations), and this is the result of its tidal interaction with the Earth. In fact, the moons
of all planets in the solar system tend to be tidally locked, unless their orbits are too large
to permit a significant tidal interaction. The Earth, however, is not yet tidally locked to the
Moon’s orbital motion: the scaling of d S/dt with the square of the remote mass implies that
the time scale for tidal locking is much longer for the larger body than for the smaller body.

2.5.3 Dynamical tides

The discussion of Secs. 2.5.1 and 2.5.2 was limited to tidal interactions that occur over an
external time scale Text that is very long compared with the internal time scale Tint associated
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with the fluid dynamics of the deformed body. In this section we relax this condition, and
consider a regime in which Text/Tint may not be large; this is the realm of dynamical tides.

As we have done previously, the body is assumed to be spherical and in hydrostatic
equilibrium in the absence of a tidal interaction. To keep the problem simple we further
assume that the body is non-rotating and possesses a uniform density ρ0. The body is
perturbed by external bodies which generate a tidal potential

Utidal = −1

2
E jk(t) x j xk , (2.288)

in which E jk(t) are time-dependent tidal moments. For an external object of mass M2 at a
distance r from the reference body, we have seen that E jk ∼ G M2/r3.

Tidal response in the dynamical regime

The tidal forces created by Utidal produce a (small) perturbation in the fluid configuration
of the body. As we shall justify below, we can think of E jk(t) as a driving force, and of
the fluid configuration as a harmonic oscillator of natural frequency ω2 that responds to
this driving force. The response is measured by I 〈 jk〉(t), the body’s tracefree quadrupole
moment, which vanishes in the unperturbed state. We shall find that

G I〈 jk〉(t) = −2

5
G M R2F〈 jk〉(t) , (2.289)

where

F〈 jk〉(t) := 1

ω2

∫ t

−∞
E jk(t ′) sin ω2(t − t ′) dt ′ (2.290)

is the typical response function of a driven oscillator – refer to Box 2.4. For a body of
uniform density, the natural frequency associated with a quadrupolar (� = 2) driving force
is given by

ω2 =
√

4

5

G M

R3
. (2.291)

This is comparable to the Keplerian angular velocity of an object orbiting just above
the body’s surface, and therefore larger than the orbital angular velocity 
 of any one
of the external objects. For a single external object of mass M2 at a distance r from
the reference body, we have that 
2 ∼ G M/r3 with M := M1 + M2, so that ω2/
 ∼
(M1/M)1/2(r/R)3/2 > 1. A typical situation would have r � R and ω2/
 � 1, but we are
interested in close encounters with ω2/
 of order unity.

When the time scale over which E jk(t) varies is very long compared with ω−1
2 , that is,

when ω2/
 � 1, the integral of Eq. (2.290) can be evaluated by repeated integration by
parts. This yields

F〈 jk〉 = ω−2
2 E jk − ω−4

2 Ë jk + ω−6
2

(4)

E jk + · · · , (2.292)

in which an overdot (or a number within brackets) indicates differentiation with respect to
t . Inserting this and Eq. (2.291) within Eq. (2.289), we find that the quadrupole moment
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becomes

G I〈 jk〉 = −1

2
R5

(
E jk − ω−2

2 Ë jk + ω−4
2

(4)

E jk + · · ·
)

. (2.293)

The leading term corresponds to the limit of static tides, and this result agrees with
Eq. (2.272) when k2 = 3

4 , the value of the gravitational Love number for an incompressible
fluid.

Normal-mode analysis

To establish Eq. (2.289) we return to the formalism of fluid perturbations presented in
Sec. 2.4.3 and relax the assumption that the perturbed configuration is an equilibrium
state. We go back to Eq. (2.212), from which we eliminate the Coriolis term because the
body is non-rotating. Recognizing that all perturbation variables depend linearly upon the
displacement vector ξ j , it is useful to write the perturbed Euler equation in the abstract
form

∂2ξ j

∂t2
+ L j

k ξ k = ∂ jUtidal , (2.294)

in which L j
k is a linear differential operator that appears in implicit form in Eq. (2.212) –

it is related to the terms involving δρ, δp, and δU . We seek to integrate Eq. (2.294) with
the boundary conditions that ξ j be regular at r = 0 and continuous at r = R. We proceed
via a normal-mode analysis of the equation.

The normal modes of oscillation of a fluid configuration are solutions to the homogeneous
equation ∂t tζ

j + L j
k ζ k = 0, which are taken to be in the form

ζ j (t, x) = e−iωt f j (x) , (2.295)

where ω is the mode frequency and f j (x) its spatial profile, which is a solution to

L j
k f k = ω2 f j . (2.296)

This is a second-order differential equation for f j , and a general solution will contain two
freely-specifiable constants of integration. Since the equation is homogeneous in f j , one of
these is an overall multiplicative constant, and the second constant is determined by one of
the two boundary conditions that f j must satisfy. The second boundary condition will not
be satisfied unless ω, the only other tunable parameter, is chosen appropriately. Equation
(2.296) therefore specifies an eigenvalue problem for the frequencies ω and mode functions
f j . The eigenfrequencies and eigenfunctions will be assigned an abstract label λ, which is
typically discrete. (Later on λ will be identified with the spherical-harmonic indices �m.)

The differential operator L j
k was shown by Chandrasekhar to be self-adjoint with respect

to the integration measure ρ d3x . This fact implies a number of useful properties for the
eigenvalues and eigenfunctions. First, the eigenvalues ω2

λ are real. Second, the eigenfunc-
tions f j

λ are orthogonal, in the sense that
∫

f ∗
λ · f λ′ρ d3x = Nλδλ,λ′ , where an asterisk

indicates complex conjugation and Nλ is a normalization constant. Third, the eigenfunc-
tions are (believed to be) complete, in the sense that any vectorial function ξ admits an
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expansion of the form

ξ (t, x) =
∑

λ

aλ(t) f λ(x) , (2.297)

in which the expansion coefficients are given by

aλ(t) = 1

Nλ

∫
ξ · f ∗

λ ρ d3x . (2.298)

These equations are the key to solving Eq. (2.294).
Assuming that the mode functions and frequencies have all been identified, we expand

the displacement vector as in Eq. (2.297) and the driving force as

∂ jUtidal =
∑

λ

uλ(t) f j
λ (x) , (2.299)

with

uλ = 1

Nλ

∫
∂ jU

tidal f ∗ j
λ ρ d3x . (2.300)

We substitute the expansions within Eq. (2.294), make use of Eq. (2.296), and take advantage
of the orthogonality of the eigenfunctions. We obtain, after simplification, a sequence of
ordinary differential equations for the mode coefficients aλ:

äλ + ω2
λaλ = uλ . (2.301)

Each equation describes a harmonic oscillator of natural frequency ωλ subjected to a driving
force uλ(t). We suppose that the driving force vanishes in the distant past, and assume that
each mode is quiet before the action of the force; we therefore subject Eq. (2.301) to the
initial conditions aλ(t = −∞) = 0 = ȧλ(t = −∞). It is easy to check that the solution is

aλ(t) = 1

ωλ

∫ t

−∞
uλ(t ′) sin ωλ(t − t ′) dt ′ . (2.302)

At this stage the problem is formally solved. With each frequency ωλ and mode function
f λ previously identified, the displacement vector can be constructed as in Eq. (2.297). The
density perturbation is then given by Eq. (2.206), the pressure perturbation by Eq. (2.209),
and δU is obtained by integrating Eq. (2.213).

The normal modes of a fluid configuration depend on the unperturbed configuration.
For a uniform-density model the eigenvalue problem can be shown to give rise to three
separate classes of modes. In Cowling’s terminology, we have the so-called p-modes,
which are essentially acoustic waves driven by pressure fluctuations, the g-modes, which
are essentially gravity waves driven by buoyancy, and the f-modes (also known as Kelvin
modes), which are essentially gravity waves confined to the surface. (Note that the term
“gravity wave” designates a fluid wave whose restoring force is gravity rather than fluid
pressure. The terminology is standard in atmospheric physics, for example, but gravity
waves should not be confused with the “gravitational waves” of general relativity.) In the
case considered here, in which the perturbation is driven by a quadrupolar tidal force, it
is known that the p-modes and the g-modes do not get excited by the tidal interaction;



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-02 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:36

131 2.5 Tidally deformed bodies

the overlap integrals of Eq. (2.300) vanish for these modes. (This was actually established
by one of us back in 1983, at a time when the other had not yet started his university
education.) The only modes that matter in our problem are the f -modes, for which the
eigenvalue equation can be integrated very easily.

f -modes

The defining property of these modes is the fact that they satisfy the divergence-free
condition

∂ j f j = 0 . (2.303)

The eigenvalue equation is obtained from Eq. (2.212), and we have that ∂ j (δp/ρ − δU ) =
ω2e−iωt f j . The form of the equation implies that f j must be the gradient of a scalar function
ψ ,

f j = ∂ j ψ . (2.304)

This, in turn, implies that the divergence-free condition becomes

∇2ψ = 0 , (2.305)

and the mode equation simplifies to

δp/ρ − δU = ω2e−iωtψ . (2.306)

To solve these equations we expand ψ in spherical harmonics,

ψ(x) =
∑
�m

g�m(r )Y�m(θ, φ) , (2.307)

and seek to determine the radial functions g�m(r ). Laplace’s equation immediately implies
that they must be proportional to r �. The mode equation will then be used to determine the
eigenfrequencies ω�.

From Eq. (2.206) we find that the mode produces a perturbation in density given by
δρ = −e−iωt f j ∂ j ρ, while Eq. (2.209) implies that δp = −e−iωt f j∂ j p. For the uniform-
density model under consideration, these equations become

δρ = ρ0δ(r − R)
∑
�m

g′
�m(R)Y�m(θ, φ)e−iωt (2.308)

and

δp/ρ = 4π

3
Gρ0r

∑
�m

g′
�m(r )Y�m(θ, φ)e−iωt , (2.309)

in which a prime indicates differentiation with respect to r . The perturbation in density gives
rise to a change in the body’s gravitational potential. Expanding in spherical harmonics as
in Eq. (2.219d), we find that U�m ∝ r � inside the body, while U�m ∝ r−�−1 outside the body.
Demanding continuity of U�m at r = R, but imposing the proper discontinuity in U ′

�m to
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account for the delta function in δρ, we arrive at

U�m = 4π

2� + 1
Gρ0 Rg′

�m(R) (r/R)� (2.310)

inside the body. To get the solution outside the body we simply replace the last factor by
(R/r )�+1.

Collecting results, we find that the mode equation reduces to

4π

3
Gρ0 rg′

�m(r ) − 4π

2� + 1
Gρ0 Rg′

�m(R) (r/R)� = ω2g�m(r ) . (2.311)

To simplify the notation we suppress the �m label and introduce the dimensionless quantities
x , y, and ε such that r := Rx , g := Rg′(R)y, and ω2 := (4π/3)Gρ0ε

2. With these variables
the mode equation becomes

x
dy

dx
− ε2 y = 3

2� + 1
x� , (2.312)

which is to be integrated between x = 0 and x = 1. The solution must be regular at x = 0
and satisfy the boundary condition dy/dx = 1 at x = 1; this follows directly from its
definition in terms of g(r ). It is already known that y must be proportional to x�, in
order for ψ to satisfy Laplace’s equation. The boundary condition at x = 1 determines the
constant of proportionality: we find that y = �−1x�. It then follows from the mode equation
that ε2 = 2�(� − 1)/(2� + 1). The modes are now completely determined.

To summarize, we have found that the f -modes are labelled by the index λ ≡ �m, that
the eigenfrequencies are independent of m and given by

ω2
� = 8π

3
Gρ0

�(� − 1)

2� + 1
, (2.313)

and that the eigenfunctions are

f j
�m = ∂ jψ�m , ψ�m = R2(r/R)�Y�m(θ, φ) . (2.314)

The normalization is chosen so that f j
�m has the dimension of length. It is easy to check

that N�m := ∫
f ∗

�m · f �m ρ0 d3x = �ρ0 R5.

Tidal deformation

We may now involve the f -modes in the solution of our problem. We first return to the
overlap integral of Eq. (2.300), which becomes

u�m = 1

�R�+3

∫
∂ jUtidal∂ j

(
r �Ȳ�m

)
d3x , (2.315)

or

u�m = 1

�R�+3

∮
Utidal∂ j

(
r �Ȳ�m

)
d S j (2.316)
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after an integration by parts. Here d S j = R2n j d
 is the surface element on the spherical
boundary of the (unperturbed) body, and the integral simplifies to

u�m = 1

R2

∮
UtidalȲ�m d
 (2.317)

after evaluation of the radial derivative.
The tidal potential is integrated against spherical-harmonic functions on the surface of

the body, and the operation is simplified by the fact that Utidal is a quadrupolar potential.
We write

Utidal = −1

2
E jk(t)x j xk = −1

2
R2E jk(t)n〈 jk〉 , (2.318)

and to evaluate the integral we rely on the relationship between STF tensors and spherical
harmonics that was uncovered back in Sec. 1.5.3. According to Eq. (1.164),

n〈 jk〉 = 8π

15

2∑
m=−2

Y 〈 jk〉
2,m Y2,m(θ, φ) , (2.319)

where Y 〈L〉
�m is the constant STF tensor defined by Y�m = Y ∗〈L〉

�m n〈L〉. Evaluation of the
overlap integral yields

u2,m(t) = −4π

15
Y 〈 jk〉

2,m E jk(t) , (2.320)

and all other coefficients u�m vanish. Substitution of this result into Eq. (2.302) produces

a2,m(t) = −4π

15
Y 〈 jk〉

2,m F jk(t) , (2.321)

where

F jk(t) := 1

ω2

∫ t

−∞
E jk(t ′) sin ω2(t − t ′) dt ′ (2.322)

is the response function of Eq. (2.290). The only relevant frequency is ω2, and this is
obtained by setting � = 2 within Eq. (2.313); the result is Eq. (2.291).

We may now construct the displacement vector. Substitution of a�m(t) into Eq. (2.297)
produces

ξ j =
∑

m

a2,m f j
2,m

=
∑

m

a2,m∂ j
(
r2Y2,m

)
= ∂ j

(
−4π

15
r2Fpq

∑
m

Y 〈pq〉
2,m Y2,m

)

= ∂ j

(
−1

2
r2Fpqn pnq

)
, (2.323)

and we finally arrive at

ξ j = −F j
k(t)xk . (2.324)
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The problem is now completely solved. From this we may obtain all other perturbation
variables. For example, the velocity field is

v j = −Ḟ j
k(t)xk , (2.325)

the density perturbation is

δρ = −Rρ0δ(r − R)F jkn j nk , (2.326)

the pressure perturbation is

δp = −4π

3
Gρ2

0F jk x j xk , (2.327)

and the perturbation in the body’s gravitational potential is

δU = −4π

5
Gρ0F jk x j xk . (2.328)

Quadrupole moment

Our final task is to compute I 〈 jk〉(t), the body’s quadrupole moment tensor,

I 〈 jk〉 =
∫

V +�V
(ρ + δρ)x 〈 jk〉 d3x , (2.329)

in which V + �V is the region of space occupied by the deformed body (while V is the
spherical region occupied by the unperturbed body). This can be written as

I 〈 jk〉 =
∫

V
ρ x 〈 jk〉 d3x +

∫
�V

ρ x 〈 jk〉 d3x +
∫

V
δρ x 〈 jk〉 d3x . (2.330)

The first integral gives the unperturbed quadrupole moment, which vanishes. The second
integral can be expressed as

∮
S ρ x 〈 jk〉 ξ · d S, where S is the boundary of the unperturbed

body, and d S is its surface element. The quadrupole moment is therefore

I 〈 jk〉 =
∮

S
ρ x 〈 jk〉 ξ · d S +

∫
V

δρ x 〈 jk〉 d3x . (2.331)

In this we insert Eq. (2.324) for ξ , and Eq. (2.326) for δρ.
Our expression for I 〈 jk〉 appears to be ill defined, because it is not clear what the value

of ρ is on the surface, where it abruptly jumps from ρ0 to zero. If, for example, the surface
integral is evaluated just below r = R, then ρ = ρ0 and we obtain a non-zero value. In this
case the volume integral is zero, because δρ is proportional to δ(r − R) and the integral
just misses the delta function. On the other hand, if the surface integral is evaluated just
above r = R, then ρ = 0 and the integral is zero. In this case the volume integral does not
vanish, and fortunately, the result turns out to be the same in either case. We arrive at the
unambiguous expression

I 〈 jk〉 = −8π

15
ρ0 R5F 〈 jk〉 . (2.332)

This is the same statement as in Eq. (2.289). Our treatment of the tidal interaction is now
complete.
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2.6 Bibliographical notes

The physics of stellar structure described in Sec. 2.1 is covered in a lot more depth in
a number of textbooks, which also discuss stellar evolution; among our favorites is the
very accessible text by Hansen, Kawaler, and Trimble (2004). The phenomenon of neutrino
oscillations, shown in Box. 2.1 to have essential consequences on the physics of the Sun, was
first proposed by Wolfenstein (1978) and explored further by Mikheev and Smirnov (1985
and 1986). Our discussion of polytropes in Sec. 2.2.3, isothermal spheres in Sec. 2.2.4, and
white dwarfs in Sec. 2.2.5 is heavily inspired by Chandrasekhar’s An introduction to the study
of stellar structure (1958). Another useful reference on the astrophysics of white dwarfs
and other compact bodies is Shapiro and Teukolsky (1983). The story of Chandrasekhar
calculating the structure of white dwarfs and discovering the mass limit while traveling
to England from India is famous; his discovery was published in Chandrasekhar (1931).
Laudau’s argument in favor of neutron stars was published in Landau (1932).

Our presentation of the theory of rotating bodies in Sec. 2.3 relies heavily on the excellent
treatise by Tassoul (1978). The Maclaurin spheroids and Jacobi ellipsoids of Sec. 2.3.2
are explored in much greater detail in Chandrasekhar’s Ellipsoidal figures of equilibrium
(1987), a must-read for anyone interested in the structure and stability of rotating bodies.
Our method to calculate the internal gravitational potential of an ellipsoid of uniform
density is borrowed from Chapter IV of Moulton’s text (1984).

The general theory of deformed fluid bodies developed in Sec. 2.4 can be pieced together
from a number of useful sources, including Kopal (1959 and 1978) and Cox (1980).
The formalism of fluid perturbations described in Sec. 2.4.3 is borrowed directly from
Chandrashekhar’s Ellipsoidal figures of equilibrium. The gravitational and surficial Love
numbers were introduced by British geophysicist Augustus Edward Hough Love in his 1911
book. The Love numbers of polytropes were first computed by Brooker and Olle (1955).

The discussion of tides in Sec. 2.5 barely scratches the surface of a very rich field. A
general introduction to the phenomenon can be found in Mccully (2006). Our presentation
of the dynamical tides of a body of uniform density in Sec. 2.5.3 is based on Turner (1977)
and Will (1983). The standard classification of fluid perturbation modes was introduced in
Cowling (1941).

2.7 Exercises

2.1 Consider a power-series solution for the Lane–Emden equation, θ = ∑
p apξ p.

(a) Show that the boundary conditions at ξ = 0 require that a0 = 1 and a1 = 0.
(b) Show that ap = 0 for all odd values of p.
(c) Determine a2, a4, and a6 for a general polytropic index n, and reproduce the

expansions displayed in Box 2.2. Show also that your expansion agrees with the
exact results for n = 0, n = 1, and n = 5.
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2.2 Explain why 
 is ambiguous for a polytrope of index n = 5. Show by a direct
calculation that, for n = 5, 
 = −√

2π (81/16)K 5/2G−3/2.

2.3 Calculate the gravitational potential energy 
 for a Maclaurin spheroid, and verify
the result of Eq. (2.181).

2.4 Fill in the gaps left in the calculation of the dimensionless multipole moments J� of
a Maclaurin spheroid, and verify the result of Eq. (2.187).

2.5 Show that the surface of a rotationally deformed body can be described by

r = a(1 − α + α cos 2L) ,

where a is the equatorial radius and L is the geographical latitude, which ranges from
π
2 at the North Pole to −π

2 at the South Pole. Determine α in terms of the surficial
Love number h2 and the rotational-deformation parameter ζ . Evaluate α for the Earth
and compare with the observed value of 0.001677.

2.6 Show that for a rotationally deformed body of arbitrary composition, the body’s
moment of inertia I := ∫

ρ(x2 + y2) d3x is given by I = I0 + δ I , with

I0 = 8π

3

∫ R

0
ρr4 dr

denoting the unperturbed piece, and

δ I = 2

3
k2ζ M R2

the perturbation. Here k2 is the gravitational Love number, and ζ is the deformation
parameter. Assume that the unperturbed density goes smoothly to zero at r = R.

2.7 Show that for a body with a polytropic equation of state, the function D behaves as

D = 1 − n

15
ξ 2 + n(19n − 25)

3150
ξ 4 + O(ξ 6)

near ξ = 0. Use this expression to derive the expansion

η� = l − 2 + 2n(� − 1)

5(2� + 3)
ξ 2 − n(� − 1)

525

× (76n − 100)�2 + (144n − 300)� − (165n + 225)

(2� + 3)2(2� + 5)
ξ 4

+ O(ξ 6)

for the Radau function.

2.8 The quadrupole moment J2 of the Sun is known from helioseismology measurements
to be 2.2 × 10−7. Its rotation period is approximately 25 days. From these facts,
estimate k2 for the Sun and compare the result with the entry in Table 2.3 for the
ideal gas equation of state (� = 5/3). From this comparison, what do you infer about
the density distribution of the Sun as compared to a simple polytrope? What factors
could lead to such a difference?
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2.9 Consider a gravitating body with an � = 2 deformation, with d2m = d2Y ∗
2m(e), where

e is a given direction. A gravimeter measures the acceleration of a test body on the
surface of the body. Assume that the surficial Love number h2 is independent of k2.
(a) Show that the variation in the magnitude of the acceleration over the surface is

proportional to 1 + h2 − 3k2.
(b) Show that the angle between the direction of the acceleration and the normal to

the surface is proportional to 1 − h2 + 2k2.

2.10 We consider two fluid configurations, one with a homogeneous mass density ρ0, the
other with a density ρ(r ) that deviates only slightly from ρ0; we write ρ = ρ0 + δρ,
and assume that δρ is small compared with ρ0. We assume that the nearly homoge-
neous body has the same radius R and the same total mass M as the homogeneous
body. We have seen that η� = � − 2 for the homogeneous body, and selecting � = 2,
we assume η2(r ) � 1 for the nearly homogeneous body.
(a) Prove that under the circumstances described here, Radau’s equation for the nearly

homogeneous body simplifies to

rη′
2 + 5η2 + 6δD = 0 ,

where δD := D − 1 is also taken to be small.
(b) Calculate δD in terms of δρ, and prove that

η2(R) = − 15

ρ0 R5

∫ R

0
δρ(r )r4 dr .

(c) Calculate the moment of inertia I := ∫
ρ(r )(x2 + y2) d3x of the nearly homoge-

neous body, and relate it to I0, the moment of inertia of the homogeneous body.
Then show that

η2(R) = −3
(
I/I0 − 1

)
.

(d) Calculate k2 to first order in (I/I0 − 1).
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3 Newtonian orbital dynamics

In this chapter we apply the tools developed in the previous two chapters to an exploration
of the orbital dynamics of bodies subjected to their mutual gravitational attractions. Many
aspects of what we learned in Chapters 1 and 2 will be put to good use, and the end result
will be considerable insight into the behavior of our own solar system. To be sure, the
field of celestial mechanics has a rich literature that goes back centuries, and this relatively
short chapter will only scrape the surface. We believe, however, that we have sampled the
literature well, and selected a good collection of interesting topics. Some of the themes
introduced here will be featured in later chapters, when we turn to relativistic aspects of
celestial mechanics.

We begin in Sec. 3.1 with a very brief survey of celestial mechanics, from Newton to
Einstein. In Sec. 3.2 we give a complete description of Kepler’s problem, the specification
of the motion of two spherical bodies subjected to their mutual gravity. In Sec. 3.3 we
introduce a powerful formalism to treat Keplerian orbits perturbed by external bodies or
deformations of the two primary bodies; in this framework of osculating Keplerian orbits,
the motion is at all times described by a sequence of Keplerian orbits, with constants of
the motion that evolve as a result of the perturbation. We shall apply this formalism to
a number of different situations, and highlight a number of important processes that take
place in the solar system and beyond. In Sec. 3.5 we examine the three-body problem and
briefly touch upon the general case of N bodies. We conclude in Sec. 3.6 with a review of
the Lagrangian formulation of Newtonian mechanics.

3.1 Celestial mechanics from Newton to Einstein

The triumph of Newton’s mechanics and universal gravitation is largely contained in the
confrontation with the observed motion of celestial bodies in our solar system, which was
initiated by Kepler even before Newton’s laws became available. The two-body dynamics
of Newton’s theory immediately accounted for Kepler’s laws, which state that the orbits
of bodies in the solar system are ellipses that trace out equal areas in equal times, with
periods inversely proportional to the 3/2 power of their diameters. Edmund Halley used
Newton’s equations to point out that the comets that had been observed in 1531, 1607, and
1682 were actually a single object that orbits the sun with a period ranging from 75 to
76 years. Refined orbital calculations carried out by Alexis Clairaut led to the successful

138
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prediction of the comet’s return in 1759. The difficult problem of describing the detailed
motion of the Moon, in particular the advance of its perigee, was successfully tackled by
Clairaut using Newtonian theory; a first attempt was actually made by Newton himself,
but with somewhat incorrect results that discouraged him and motivated him to start
a new career at the Royal Mint. Finally, in a triumph of theoretical prediction, Urbain
Jean Joseph Le Verrier in France, and independently John Couch Adams in England,
pointed out that certain anomalies in the orbit of Uranus could best be explained by
the existence of an additional planet, and each astronomer made a rough prediction of
where such a planet might be found. In 1846, a day after receiving Le Verrier’s prediction
for its position, German astronomers discovered the new planet, which is now called
Neptune.

This accumulation of successes built such confidence in Newton’s theory that when
the crisis occurred, the shock was almost palpable. The crisis was caused by Mercury.
By the middle of the nineteenth century, astronomers had established that the perihelion of
Mercury (the point of closest approach to the Sun) was advancing at a rate of 575 arcseconds
per century relative to the fixed stars. Although the two-body solution of Newton’s theory
requires the perihelion to be fixed in direction, it seemed clear that the advance should be
caused by the gravitational influences of the other planets (mostly Venus because of its
proximity, and Jupiter because of its large mass) on Mercury’s orbit. Fresh from his success
with the prediction of Neptune, Le Verrier applied his methods to the problem of Mercury.
He calculated the amount that each planet would contribute to Mercury’s perihelion advance
(see Table 3.1), but the total fell short of the measured value, by an amount comparable to
40 arcseconds per century. The modern value of the discrepancy is 42.98 ± 0.04 arcseconds
per century, based upon improved measurements of Mercury’s orbit using radar ranging,
combined with improved data on the masses and orbits of the other planets, and accurate
numerical ephemeris codes for calculating orbits.

The discrepancy could not be attributed to calculational errors or faulty observations,
and no viable explanation could be found for the next 50 years. In the spirit of Neptune,
Le Verrier and others supported the existence of another planet between Mercury and the
Sun, which was given the provisional name Vulcan. But despite systematic astronomical
searches, no credible evidence for such a planet was ever discovered. If changing the
solar system would not do, perhaps a change of theory might fare better? Simon Newcomb
proposed that all would be well with Mercury if the inverse square law of Newtonian gravity
were changed to the inverse power of 2.0000001574. Such a change, however, would also
contribute to the advance of the lunar perigee, and once improved data on the lunar orbit
became available, Newcomb’s proposal was shown not to be viable.

The resolution of the problem of Mercury is by now legendary. The place is Berlin,
the time November 1915. Albert Einstein, using the new equations of general relativity,
calculates the motion of Mercury and shows that the relativistic laws of orbital motion
account for the notorious discrepancy. Einstein was overjoyed, and later wrote to a friend
that this discovery gave him palpitations of the heart. The modern value for the shift
predicted by general relativity, using the best data for all relevant quantities, is 42.98
arcseconds per century, in perfect agreement with the measured value.
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Table 3.1 Planetary contributions to Mercury’s
perihelion advance (in arcseconds per century).

Planet Advance

Venus 277.8
Earth 90.0
Mars 2.5
Jupiter 153.6
Saturn 7.3

Total 531.2
Discrepancy 42.9

Modern measured value 42.98 ± 0.04
General relativity prediction 42.98

3.2 Two bodies: Kepler’s problem

Kepler’s problem is to determine the motion of two bodies subjected to their mutual
gravitational attraction, under the assumption that each body can be taken to be spherically
symmetric. This is the simplest problem of celestial mechanics, but also one of the most
relevant, because to a good first approximation, the motion of any planet around the Sun
can be calculated while ignoring the effects of the other planets. It is also a problem that
can be solved exactly and completely, in terms of simple functions.

3.2.1 Effective one-body description

The foundations for Kepler’s problem were provided back in Sec. 1.6.7. We have a first
body of mass m1, position r1, velocity v1 = d r1/dt , and acceleration a1 = dv1/dt , and
a second body of mass m2, position r2, velocity v2 = d r2/dt , and acceleration a2 =
dv2/dt . We place the origin of the coordinate system at the system’s barycenter R, so that
m1r1 + m2r2 = 0. The position of each body is then given by

r1 = m2

m
r, r2 = −m1

m
r, (3.1)

in which m := m1 + m2 is the total mass and r := r1 − r2 the separation between bodies.
Similar relations hold between v1, v2 and the relative velocity v := v1 − v2 = d r/dt . The
relative acceleration a := a1 − a2 = dv/dt is obtained from Eq. (1.220) by removing all
terms that involve the multipole moments of each body (which vanish when the bodies are
spherical); we have

a = −Gm

r2
n, (3.2)

where r := |r| is the distance between bodies, and n := r/r a unit vector that points from
body 2 to body 1. This is the equation of motion for the relative orbit, and thanks to Eq. (3.1),
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its solution is sufficient to determine the individual motion of each body. Equation (3.2)
can be interpreted as describing the motion of a fictitious particle at position r in the
field of a gravitating center of mass m at r = 0; as such our two-body problem has been
reformulated as an effective one-body problem. This radical simplification of the original
problem, which involved six independent degrees of freedom (the three components of
each position vector) instead of the current three (the three components of the separation
vector), is a consequence of the conservation of total momentum, which implies that the
motion of the barycenter position R is uniform and therefore trivial.

According to Eq. (1.221), the total energy of the two-body system is given by

E = 1

2
μv2 − Gμm

r
, (3.3)

in which μ := m1m2/m is the reduced mass of the system; to obtain this expression we
once more dropped all terms involving multipole moments, and set V = d R/dt = 0 in the
barycentric frame. The system’s total angular momentum is given by Eq. (1.204), which
reduces to

L = m1r1 × v1 + m2r2 × v2 = μr × v (3.4)

for a two-body system. Because the bodies are assumed to have no spin, and because
the angular momentum is contained entirely in the orbital motion, we use the standard
notation L instead of J for the angular-momentum vector. It is a simple matter to verify
that d E/dt = 0 by virtue of Eq. (3.2), and that d L/dt = 0 by virtue of the sole fact that
the acceleration a is directed along r .

The constancy of the angular-momentum vector has far-reaching consequences on the
motion of the bodies. Because L is a constant vector orthogonal to both r and v, the motion
must take place in a fixed plane that is at all times perpendicular to L. We therefore have
achieved another radical simplification of the problem: by confining the motion to a plane
we have eliminated one degree of freedom from the original three associated with the
effective one-body problem.

3.2.2 Orbital plane

We take the orbital plane to coincide with the x–y plane of the coordinate system, and
we align L with the z-direction. To simplify the notation in subsequent developments, we
write

L = μh, h := r × v = hez, (3.5)

with h := |h| denoting the magnitude of the constant vector r × v.
It is helpful to describe the motion with the polar coordinates r and φ, defined such that

the components of the separation vector are given by

r = [r cos φ, r sin φ, 0]; (3.6)

both r and φ depend on time. A vectorial basis in the orbital plane can be built from the
constant unit vectors ex and ey , but it is useful to introduce also the time-dependent unit
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vectors

n := [cos φ, sin φ, 0], λ := [− sin φ, cos φ, 0], (3.7)

which are closely tied to the description of the orbital motion. The vector n := r/r points
from body 2 to body 1, while λ is orthogonal to it. The vectors satisfy

dn

dφ
= λ,

dλ

dφ
= −n. (3.8)

The basis is completed with ez , which is normal to the orbital plane and aligned with the
angular-momentum vector.

The vectors r , v, and a can each be decomposed in the orbital basis. Simple computations
involving Eqs. (3.8) produce

r = r n, (3.9a)

v = ṙ n + r φ̇ λ, (3.9b)

a = (
r̈ − r φ̇2

)
n + 1

r

d

dt

(
r2φ̇

)
λ, (3.9c)

in which an overdot indicates differentiation with respect to t .

3.2.3 First integrals

The acceleration of Eq. (3.9) may now be inserted within Eq. (3.2), and the absence of a
component along λ immediately implies that r2φ̇ is a constant of the motion. Because r2φ̇ is
equal to the z (and only non-vanishing) component of the vector r × v, we have rediscovered
the statement of angular-momentum conservation. Taking Eq. (3.5) into account, we have
that

r2φ̇ = h. (3.10)

In this form we can see that conservation of angular momentum gives rise to Kepler’s
second law: r (rdφ) is twice the area swept by the orbit as it advances by an angle dφ, and
r2φ̇ is twice the area swept per unit time; conservation of angular momentum implies equal
areas for equal times.

The radial component of the equation of motion yields r̈ − r φ̇2 = −Gm/r2, or

r̈ − h2

r3
= −Gm

r2
(3.11)

after involving Eq. (3.10). This second-order differential equation for r (t) can be integrated
once by applying the ṙ -trick: multiply the equation by ṙ and recognize that each term is a
total derivative with respect to time. Integration produces

1

2
ṙ2 + h2

2r2
− Gm

r
= ε, (3.12)

in which ε is another constant of the motion. From Eq. (3.3) it is easy to see that E = με,
and we have rediscovered the statement of energy conservation.
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Fig. 3.1 Effective potential for Kepler’s problem, together with lines of constant ε. The radial variable r is presented in units of
p := h2/(Gm), and Veff is presented in units of Gm/p. The regions of allowed motion correspond to ε ≥ Veff(r), and
turning points occur when ε = Veff(r). The different types of Keplerian motion (hyperbolic, parabolic, and elliptical)
are shown.

It is instructive to rewrite Eq. (3.12) in the form

1

2
ṙ2 = ε − Veff (r ), (3.13)

in which the effective radial potential is defined as

Veff (r ) := h2

2r2
− Gm

r
. (3.14)

This new form allows us to explore the qualitative features of Keplerian motion without
having to perform additional calculations. In Fig. 3.1 we display a plot of Veff (r ) for h 	= 0,
with zero on the vertical axis denoting the limiting value of the effective potential as
r → ∞. The potential consists of an attractive (negative) gravitational well, and a repulsive
(positive) centrifugal barrier rising to infinity as r → 0. Motion is allowed when ṙ2 ≥ 0,
that is, when ε ≥ Veff (r ), and regions where this condition is met are easily identified in
the figure. A turning point occurs when ṙ = 0 and ε = Veff (r ); at such points the radial
velocity changes sign, and the motion changes from incoming to outgoing, or from outgoing
to incoming.

We can easily imagine how a particle would move in this effective potential. If the
particle has an energy ε > 0, then there is a single turning point at some innermost radius
rmin, and the motion takes place for r ≥ rmin. The particle starts at infinity with a negative
radial velocity ṙ = −√

2ε and a vanishing angular velocity φ̇. As r decreases, ṙ becomes
increasingly negative, and φ̇ increases to obey conservation of angular momentum, until the
particle reaches the turning point at r = rmin. At this point ṙ turns positive, and the particle
begins its way back to infinity. As we shall see below, the particle follows a hyperbola in the
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orbital plane, and motion with ε > 0 is known as hyperbolic motion. Such an orbit is not
bound to the gravitating center, as revealed by the fact that the total energy is dominated by
(positive) kinetic energy instead of (negative) gravitational potential energy. The limiting
case of an unbound orbit corresponds to ε = 0. Here the particle begins from rest at infinity,
proceeds to a single turning point at r = rmin, and returns to a state of rest at infinity. In
this case the path is a parabola in the orbital plane, and motion with ε = 0 is known as
parabolic motion.

When ε < 0, that is, when gravitational potential energy dominates over kinetic energy,
the diagram reveals that there are now two turning points at r = rmin and r = rmax. In this
case the orbital motion is bound to the gravitating center, and takes place between the
innermost and outermost radii. We shall see that the bound orbit describes an ellipse, and
motion with ε < 0 is known as elliptical motion. A special case of elliptical motion occurs
when ε is made equal to the minimum value of the effective potential. In this case the
turning points merge to a single radius r0, and motion proceeds at this fixed radius; this is

a circular orbit with h2 = Gmr0, φ̇ =
√

Gm/r3
0 , and ε = −Gm/(2r0).

The preceding discussion was couched in terms of a particle moving in the effective
potential Veff (r ). It is important to understand, however, that this “particle” at position r(t)
is in fact a fictitious representation of the relative orbit, which, as we saw back in Eq. (3.2),
is subjected to a fictitious gravitating center of mass m at r = 0. The motion described
previously is therefore a description of the relative orbital motion. But thanks to Eqs. (3.1),
the motion of each body is merely a scaled version of the relative motion, and it can be
described in the same language; the bodies move about each other on opposite sides of the
barycenter. In the limit of small mass ratios, m1/m2 � 1, it becomes increasingly true that
r1 → r and r2 → 0; in this limiting case m1 becomes a test mass in the field of m2 → m,
its orbit coincides with the relative orbit, and m2 stays put at the barycentric position.

3.2.4 Solution to Kepler’s problem

Formal solution; integrable systems

Formally, a solution to Kepler’s problem can be obtained by integrating Eq. (3.13) to get

t − ti = ±
∫ r

ri

dr ′√
2[ε − Veff (r ′)]

, (3.15)

inverting the result for r (t), and integrating Eq. (3.10) to get

φ − φi = h

∫ t

ti

dt ′

r (t ′)2
, (3.16)

which gives φ(t). In these equations, ti is the time at which r = ri , and φi is the orbital
angle at time ti . By following this procedure we convert the task of solving the second-
order differential equations of (3.2) to the task of performing two integrations, or, to use an
older but still popular terminology, evaluating two quadratures. When a dynamical problem
such as this one can be reduced to doing quadratures, the problem is said to be completely
integrable. A full discussion of integrable systems is beyond the scope of this book, but
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roughly speaking, a dynamical system is completely integrable when it possesses a sufficient
number of conserved quantities. In the case of Kepler’s problem, it is the constancy of total
momentum (which allowed us to eliminate the motion of the barycenter), of total angular
momentum (which allowed us to restrict the motion to a plane and to reduce the angular
equation to φ̇ = h/r2), and of energy (which resulted in an equation for ṙ2) that make the
problem completely integrable.

Completely integrable systems are mathematically elegant, and are extremely convenient
when they come along, but unfortunately they are rather rare in physics. Fortunately for us,
however, the Kepler problem is one of them. More generally, because Eq. (3.15) is valid
for any effective potential Veff (r ), motion in any spherically symmetric, static potential is
always integrable.

The formal solutions of Eqs. (3.15) and (3.16) are not very useful from a practical point
of view. We could try to carry out the integrals explicitly, but the results would not be
illuminating. Alternatively, we could evaluate the integrals numerically, but the resulting
tables would be of limited utility, and they would provide very little insight. We shall
therefore proceed differently.

Spatial solution; conic sections

As a first step toward integrating the equations of motion, we eliminate t from the system
of equations (3.10), (3.11), and adopt the orbital angle φ as independent variable. This
strategy allows us to unravel the spatial aspects of the orbit – its shape in the orbital plane –
and we shall return to the problem of describing the motion in time at a later stage. We also
adopt u := 1/r as a convenient substitute for r , and derive a differential equation for it by
applying the chain rule of differential calculus. For example, we have that ṙ = −u−2u̇ =
−u−2φ̇u′ = −hu′ and r̈ = −h2u2u′′, in which a prime indicates differentiation with respect
to φ. Making the substitutions within Eq. (3.11), we quickly arrive at

u′′ + u = Gm

h2
. (3.17)

The general solution to this simple equation is

u = Gm

h2

[
1 + e cos(φ − ω)

]
, (3.18)

in which e and ω are arbitrary constants of integration.
Returning to the original radial variable, the spatial solution to Kepler’s problem is

r = p

1 + e cos(φ − ω)
, (3.19)

in which

p := h2

Gm
(3.20)

is a quantity known as the orbit’s semi-latus rectum. We note that a solution with e < 0
is equivalent to one with e > 0, provided that ω is changed to ω + π ; we will adopt the
convention that e is never negative.
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The curve described by Eq. (3.19) is a conic section, an ellipse when e < 1, a hyperbola
when e > 1, and a parabola when e = 1, with r = 0 situated at one of the curve’s foci. The
parameter e is called the eccentricity of the orbit. Note that r achieves a minimum when
φ = ω. This is the point of closest approach in the orbit, called the periapsis or pericenter,
and ω is known as the longitude of pericenter ; its role is to fix the orientation of the orbit
in the orbital plane. The term pericenter is usually adapted to reflect the identity of specific
astronomical bodies. For example, we have perihelion for the Sun, perigee for the Earth,
perijove for Jupiter, and periastron for binary star systems. No consensus has emerged to
date for the closest approach to a black hole, but the word peribothron is gaining popularity;
it was crafted by our colleague Sterl Phinney from the Greek root “bothros,” which means
hole or pit.

We examine first the elliptical orbits with e < 1. In this case the motion described by
Eq. (3.19) is periodic, with period �φ = 2π , and we have recovered Kepler’s first law, that
planets move on elliptical paths around the Sun. We have already seen that φ = ω describes
the periapsis or pericenter, and we now see that φ = ω + π describes the point of greatest
separation, called apoapsis or apocenter. The pericenter and apocenter distances from the
focus are given by

rperi = p

1 + e
, rapo = p

1 − e
. (3.21)

The sum of these is the major axis of the ellipse, and we define the semi-major axis a to
be

a := 1

2
(rperi + rapo) = p

1 − e2
. (3.22)

The semi-latus rectum can also be expressed in terms of these quantities:

p = 2rperirapo

rperi + rapo
. (3.23)

A special case of elliptical motion occurs when e = 0. In this case r = p is constant, and
the orbit is circular.

We examine next the hyperbolic and parabolic orbits with e ≥ 1. In these cases the motion
is no longer periodic, and the notion of apocenter ceases to be meaningful. Similarly,
while we can still define a quantity a related to p := h2/(Gm) by a = p/(1 − e2), this
quantity also loses its usefulness, being negative for hyperbolic orbits and formally infinite
for parabolic orbits. The pericenter still occurs at φ = ω, with rperi = p/(1 + e), and r
approaches infinity as cos(φ − ω) → −e−1. It is easy to show that the net change between
the asymptotic angle φin

∞ of the incoming part of the orbit and the asymptotic angle φout
∞ of

the outgoing orbit is given by

�φ := φout
∞ − φin

∞ = 2 arccos(−e−1). (3.24)

This reduces to �φ = 2π when e = 1.
Returning to the general case with any e, we invoke Eqs. (3.10), (3.19), and (3.20) to

derive the following useful expressions for the radial and angular velocities of a Keplerian
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orbit:

ṙ =
√

Gm

p
e sin(φ − ω), (3.25a)

φ̇ =
√

Gm

p3

[
1 + e cos(φ − ω)

]2
. (3.25b)

From these we obtain

v2 = Gm

p

[
1 + 2e cos(φ − ω) + e2

] = Gm

(
2

r
− 1 − e2

p

)
(3.26)

for the squared orbital velocity. From Eq. (3.12) we get an expression for the total energy
E := με,

E = −Gμm
1 − e2

2p
= −Gμm

2a
. (3.27)

We recall that μ := m1m2/m is the system’s reduced mass, and that a is related to p by
Eq. (3.22). And finally, from Eq. (3.5) we have that

L = μ
√

Gmp ez (3.28)

is the system’s total angular momentum.

Motion in time; eccentric anomaly

So far we have determined the orbit as a function of φ, and the description involves three
arbitrary constants, p, e, and ω, known as orbital elements. As we have seen, the semi-
latus rectum p is a substitute for angular momentum, while the associated semi-major
axis a := p/(1 − e2) is a substitute for orbital energy. The true nature of the longitude of
pericenter ω will be revealed below.

The description of the orbit is completed by giving φ as a function of time. This can be
accomplished by integrating Eq. (3.25b), in the form of

t − T =
√

p3

Gm

∫ φ

ω

dφ′[
1 + e cos(φ′ − ω)

]2
, (3.29)

where the constant T , called the time of pericenter passage, is a fourth orbital element.
This equation can be inverted to give φ(t), and Kepler’s problem is now solved.

There remains, however, the practical problem of evaluating the integral of Eq. (3.29).
We henceforth specialize to elliptical motion, and introduce another running parameter on
the orbit, known as the eccentric anomaly u. This is defined by the relations

cos f = cos u − e

1 − e cos u
, sin f =

√
1 − e2 sin u

1 − e cos u
, (3.30)
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in which f := φ − ω is the true anomaly, the orbital angle as measured from the pericenter.
The inverted relations are

cos u = cos f + e

1 + e cos f
, sin u =

√
1 − e2 sin f

1 + e cos f
, (3.31)

and these relationships are neatly summarized by the half-angle formula

tan
1

2
f =

√
1 + e

1 − e
tan

1

2
u. (3.32)

These equations reveal that u = 0 at pericenter (where φ = ω and f = 0), that u = π at
apocenter (where f = π ), and that u = 2π at the end of a complete orbital cycle. Other
useful relations are

d f

du
=

√
1 − e2

1 − e cos u
,

du

d f
=

√
1 − e2

1 + e cos f
. (3.33)

The eccentric anomaly gives rise to a useful alternative description of the orbit. Making
the substitutions reveals that

r = a(1 − e cos u), (3.34a)

ṙ =
√

Gm

a

e sin u

1 − e cos u
, (3.34b)

u̇ =
√

Gm

a3

1

1 − e cos u
, (3.34c)

v2 = Gm

a

1 + e cos u

1 − e cos u
= Gm

(
2

r
− 1

a

)
. (3.34d)

The main advantage of this description resides in Eq. (3.34c), which can be immediately
integrated to give

t − T =
√

a3

Gm

(
u − e sin u

)
. (3.35)

This is known as Kepler’s equation, which gives t as a simple function of the eccentric
anomaly u. The equation can be inverted to yield u(t), see Box 3.1, and this can finally be
inserted within Eqs. (3.30) or (3.32) to express f as a function of time.

A description in terms of the eccentric anomaly is often a judicious choice when it is
required to integrate over time. As a simple example, we can calculate the orbital period P
of an elliptical orbit using Eq. (3.35). When u increases by 2π , t increases by P , and with
very little effort we find that

P = 2π

√
a3

Gm
. (3.36)

While the period can also be obtained directly from Eq. (3.29), the integration is far more
laborious. That P is proportional to a3/2 is Kepler’s third law of planetary motion.
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Box 3.1 Solving Kepler’s equation

We wish to find the eccentric anomaly u that corresponds to a given time t . For this purpose it is useful to
rewrite Kepler’s equation as

u − e sin u = M :=
√

Gm

a3
(t − T ) = 2π

t − T

P
,

and to map themean anomaly M to the interval0 ≤ M < 2π by subtracting an appropriate multiple of
P from t − T .
A time-honored method to solve Kepler’s equation is based on Newton’s root-finding method. It is an

implementation of the iterative scheme

un+1 = un + M − (un − e sin un)

1 − e cos un

untilu converges to the desired accuracy. The iterations are seeded withu0 = M , and the scheme typically
requires a small number of iterations (fewer than six or so) for machine-precision accuracy.

Constancy of the pericenter; Runge–Lenz vector

We have seen that Keplerian motion within a fixed orbital plane is characterized by four
constants of the motion, the orbital elements p, e, ω, and T . We have seen that constancy
of p is tied to conservation of angular momentum, and that constancy of a := p/(1 − e2)
is tied to conservation of energy (so that constancy of e is also assured). In addition, the
appearance of T as an integration constant was expected from the fact that the gravitational
potential Gm/r does not depend explicitly on time. Constancy of ω, however, is not related
to the spherical symmetry of the potential nor its time independence; we must seek a
deeper cause. It is worth emphasizing that constancy of ω is a very important property of
a Keplerian orbit: It ensures that the orientation of the orbit stays fixed, that the position of
the pericenter does not move, and when the orbit is bound, that the orbit retraces itself after
each orbital cycle.

The constancy of ω is the result of a hidden symmetry of Kepler’s problem, associated
with the specific 1/r nature of the gravitational potential; the symmetry does not exist for
other potentials. The symmetry gives rise to a conservation statement for the Runge–Lenz
vector, defined by

A := v × h

Gm
− n, (3.37)

in which h := r × v and n := r/r . A short computation using a = −Gmn/r2 and ṙ = n · v

shows that

d A

dt
= 0, (3.38)

and the manipulations do indeed reveal that constancy of A relies on the specific form
of the gravitational acceleration. The Runge–Lenz vector can be evaluated explicitly by
making use of the Keplerian results displayed previously, including Eqs. (3.5), (3.7), (3.9),
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and (3.25). The result is

A = e
(
cos ω ex + sin ω ey

)
, (3.39)

and it reveals that the vector points in the fixed direction of the pericenter. The vector has
a length e, and constancy of A as a vector implies that both e and ω are constants of the
motion.

3.2.5 Keplerian orbits in space

The description of Keplerian orbits given previously achieved a remarkable degree of
simplicity, thanks in part to conservation of angular momentum, which guarantees that the
motion takes place in a fixed orbital plane. The description was entirely “orbit-centric,” in
that the reference frame was selected specifically to give a simple description of the orbital
plane; and the simplicity was achieved largely by adopting the polar coordinates (r, φ)
attached to the orbital plane. In many applications this description is entirely adequate, but
in many others it is necessary to provide a fuller description that is less orbit-centric. For
example, one might wish to describe the motion of two or more planets around the Sun
(under the assumption that the Sun’s motion and inter-planet interactions are negligible),
with each planet moving in a different orbital plane; in such a case one would like to adopt
the same reference frame for all the planets. Another example, which will be explored
in some detail below, involves a two-body system perturbed by external bodies, or by a
deformation of each body from a spherical configuration; these perturbations cause the
orbital plane to move, and these motions must be described relative to a fixed reference
frame. For such applications we require a fuller description of the orbital motion in space,
relative to a reference frame that is not attached to the orbital plane.

We were already given an orbital frame with coordinates (x, y, z), such that the fixed
orbital plane coincides with the x–y plane, and such that the angular-momentum vector is
aligned with the z-direction. The orbital frame comes with the constant basis vectors ex , ey ,
and ez , as well as the time-dependent basis n, λ, and ez . We now introduce a fundamental
frame with coordinates (X, Y, Z ), and seek to describe the orbital motion in this new frame.
We adopt the X–Y plane as a reference plane in the new frame, and the Z -axis as a
reference direction. The fundamental frame comes with a constant vectorial basis eX , eY ,
and eZ . We assume that the orbital and fundamental frames share the same origin, so that
X = Y = Z = 0 when x = y = z = 0. The choice of fundamental frame is arbitrary, and
is often dictated by convention or convenience. For example, in the description of planetary
motion in the solar system, the reference plane is chosen to coincide with Earth’s own orbital
plane (called the ecliptic). As another example, in the description of satellites orbiting the
Earth, the fundamental plane is chosen to coincide with Earth’s equatorial plane. In each
case the direction of the X -axis is selected by convention.

The description of the orbital motion relative to the fundamental frame requires the
introduction of additional orbital elements. The situation is represented in Fig. 3.2, which
shows the orbital plane crossing the fundamental plane at an angle ι called the inclination;
this is the angle between the z-direction of the orbital frame and the Z -direction of the
fundamental frame. The line of intersection between the two planes is known as the line
of nodes, and the point at which the orbit cuts the fundamental plane from below is the
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Fig. 3.2 Orbital motion viewed in the fundamental reference frame.

ascending node; the descending node is the point at which the orbit cuts the plane from
above. The angle 
 between the X -direction and the line of nodes is the longitude of
the ascending node. The diagram also shows ω, the longitude of pericenter introduced
previously, which is now defined specifically as the angle between the line of nodes and the
direction to the pericenter, as measured in the orbital plane. In this new description of the
orbital motion, it is conventional to align the x-axis of the orbital plane with the direction
to the pericenter, thereby deviating from our previous practice. And finally, the diagram
shows the true anomaly f , the angle between the separation vector r and the direction to
the pericenter, as measured in the orbital plane. The complete listing of orbital elements
therefore consists of the principal elements p and e, the positional elements ι, 
, and ω,
and the time element T ; the total number of elements is six, and it is no accident that this
number corresponds to the number of initial conditions required to select a unique solution
to Kepler’s problem.

With these definitions and conventions, we show in Box 3.2 that the components of the
separation vector r in the fundamental (X, Y, Z ) frame are given by

r X = r
[
cos 
 cos(ω + f ) − cos ι sin 
 sin(ω + f )

]
, (3.40a)

rY = r
[
sin 
 cos(ω + f ) + cos ι cos 
 sin(ω + f )

]
, (3.40b)

r Z = r sin ι sin(ω + f ), (3.40c)

in which r = p/(1 + e cos f ). Differentiation with respect to time and involvement of
Eqs. (3.25) give us the components of the velocity vector,

vX = −
√

Gm

p

{
cos 


[
sin(ω + f ) + e sin ω

] + cos ι sin 

[
cos(ω + f ) + e cos ω

]}
,

(3.41a)

(continued overleaf)
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vY = −
√

Gm

p

{
sin 


[
sin(ω + f ) + e sin ω

] − cos ι cos 

[
cos(ω + f ) + e cos ω

]}
,

(3.41b)

svZ =
√

Gm

p
sin ι

[
cos(ω + f ) + e cos ω

]
. (3.41c)

The results of Box 3.2 also allow us to express the orbital basis vectors n and λ as

n = [
cos 
 cos(ω + f ) − cos ι sin 
 sin(ω + f )

]
eX

+ [
sin 
 cos(ω + f ) + cos ι cos 
 sin(ω + f )

]
eY

+ sin ι sin(ω + f ) eZ (3.42)

and

λ = [− cos 
 sin(ω + f ) − cos ι sin 
 cos(ω + f )
]

eX

+ [− sin 
 sin(ω + f ) + cos ι cos 
 cos(ω + f )
]

eY

+ sin ι cos(ω + f ) eZ . (3.43)

In addition, the direction to the pericenter is given by

ex = (
cos 
 cos ω − cos ι sin 
 sin ω

)
eX

+ (
sin 
 cos ω + cos ι cos 
 sin ω

)
eY

+ sin ι sin ω eZ , (3.44)

while the direction of the angular-momentum vector is

ez = sin ι sin 
 eX − sin ι cos 
 eY + cos ι eZ . (3.45)

In terms of these we have that A = eex and h = hez , with h := √
Gmp.

The description of the orbital motion in the fundamental frame allows us to provide
simple definitions for the orbital elements. We have that

p := h2

Gm
, (3.46a)

e := |A|, (3.46b)

cos ι := ez · eZ = h · eZ

h
, (3.46c)

sin ι sin 
 := ez · eX = h · eX

h
, (3.46d)

sin ι sin ω := ex · eZ = A · eZ

e
. (3.46e)

To this we may add a := p/(1 − e2) and the time element T , which is defined by Eq. (3.29).
These definitions are elementary and fundamental, because they are formulated directly in
terms of the fundamental vectors of the problem, the reduced angular-momentum vector
h = r × v and the Runge–Lenz vector A defined by Eq. (3.37). They will play a large role
in the next section.
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Box 3.2 Orbital and fundamental frames

A close examination of Fig. 3.2 and some thought reveal that the fundamental (X, Y, Z ) frame can be ob-
tained from the orbital (x, y, z) frame by a sequence of three rotations. The first is a rotationR1 by an angle
−ω around the z-axis, to align the rotated x-axis with the line of nodes. The second is a rotation R2 by an
angle−ι around the new x-axis, to align the rotated z-axis with the final Z-axis. The third is a rotationR3 by
an angle−
 around the new z-axis, to align the rotated x-axis with the final X-axis. The rotation matrices
are given by

R1 =
⎛
⎝ cos ω − sin ω 0

sin ω cos ω 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝1 0 0

0 cos ι − sin ι

0 sin ι cos ι

⎞
⎠ ,

R3 =
⎛
⎝ cos 
 − sin 
 0

sin 
 cos 
 0
0 0 1

⎞
⎠ ,

and the overall transformation between the orbital and fundamental frames isX = R3R2R1 x, with x rep-
resenting a columnvectorwith components (x, y, z), andX a columnvectorwith components (X, Y, Z ).
The end result of the transformation is

X = (
cos 
 cos ω − cos ι sin 
 sin ω

)
x

− (
cos 
 sin ω + cos ι sin 
 cos ω

)
y

+ (
sin ι sin 


)
z,

Y = (
sin 
 cos ω + cos ι cos 
 sin ω

)
x

− (
sin 
 sin ω − cos ι cos 
 cos ω

)
y

− (
sin ι cos 


)
z,

Z = (
sin ι sin ω

)
x + (

sin ι cos ω
)
y + (

cos ι
)
z.

The components of r displayed in Eqs. (3.40) follow from these results by inserting x = r cos f ,
y = r sin f , and z = 0.
From the coordinate transformation we can easily obtain the old basis vectors in terms of the new:

ex = ∂x

∂x
= (

cos 
 cos ω − cos ι sin 
 sin ω
)
eX

+ (
sin 
 cos ω + cos ι cos 
 sin ω

)
eY

+ (
sin ι sin ω

)
eZ ,

ey = ∂x

∂y
= −(

cos 
 sin ω + cos ι sin 
 cos ω
)
eX

− (
sin 
 sin ω − cos ι cos 
 cos ω

)
eY

+ (
sin ι cos ω

)
eZ ,

ez = ∂x

∂z
= (

sin ι sin 

)
eX − (

sin ι cos 

)
eY + (

cos ι
)
eZ ,

in which the position vector x is expressed as x = X eX + Y eY + Z eZ .
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The orbital vectors of Eqs. (3.42) and (3.43) are obtained by inserting these results within the relations
n = cos f ex + sin f ey and λ = − sin f ex + cos f ey , which are inherited from Eqs. (3.7);
the new relations reflect the change of convention regarding the choice of x -direction.

3.3 Perturbed Kepler problem

We saw in the preceding section that the motion of two spherical bodies under their mutual
gravitational attraction can be solved exactly and completely. As we shall see in Sec. 3.5, the
same cannot be said of the three-body problem, and in general, the N -body problem does not
admit an exact solution. Many situations of interest, however, involve more than two bodies.
The Sun–Earth–Moon system is an extremely pertinent example, and the motion of any
planet around the Sun is affected by the massive presence of Jupiter. While these systems
cannot be given an exact description, we can nevertheless make progress by appealing to the
fact that in many applications, the additional bodies have only a small effect on the orbital
motion of a two-body system. In the Sun–Earth–Moon system, the dominant interaction is
between the Sun and the Earth, and the gravitational effects of the Moon on Earth’s orbital
motion are small. Similarly, while Jupiter is indeed a massive body, it is sufficiently far
from the other planets that its gravity has a small effect on them. The approximate analysis
of small external influences on a system dominated by an internal interaction is the realm
of perturbation theory, and in this section we formulate a perturbation theory for Kepler’s
problem.

3.3.1 Perturbing force

We return to the two-body problem of Sec. 3.2, but now suppose that the relative acceleration
a := a1 − a2 between bodies is given by

a = −Gm

r2
n + f , (3.47)

in which m := m1 + m2, r := r1 − r2, r := |r|, n := r/r , and where f is a perturbing
force per unit mass, which may depend on r , v := v1 − v2, and time. The presence of the
perturbing force implies that the Keplerian motion reviewed in Sec. 3.2 is no a longer a
solution to the equations of motion. As a consequence we can no longer expect h := r × v

to be a constant vector, the orbit to be elliptical, the pericenter to stay in a fixed position,
and so on. But with f assumed to be small, we would expect the Keplerian description to
remain approximately true. Our main goal is to find a useful way of describing the small
deviations from Keplerian motion produced by the perturbing force. Below we shall follow
the convention from celestial mechanics, and refer to f as a perturbing force, in spite of
the fact that it is really a force per unit mass.
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It is helpful to introduce, as we did previously, a vectorial basis adapted to the orbital
motion of the two bodies. The first member of the basis will be n, which is already singled
out in Eq. (3.47). The third member will be ez := h/h, which is necessarily orthogonal to
n; this vector can no longer be assumed to be a constant vector. The second member of
the basis is then λ, which is defined to be orthogonal to both n and ez . We take the triad
of vectors (n, λ, ez) to form a right-handed basis. When f = 0 the vector basis reduces
to the one introduced back in Sec. 3.2, but the bases are quite distinct in the presence of
a perturbing force; for reasons that will become clear later, we perversely adopt the same
notation in spite of this important distinction.

The vectorial basis can be used to decompose any vector relevant to the description of
the perturbed orbital motion. Examples are

r = r n, (3.48a)

v = ṙ n + v⊥ λ, (3.48b)

h = h ez, (3.48c)

in which ṙ := v · n and v⊥ := v · λ; it is easy to verify that h = rv⊥. Another example is
the perturbing force, which is decomposed as

f = R n + S λ + W ez, (3.49)

in terms of components R, S , and W . Yet another example is the Runge–Lenz vector

A := v × h

Gm
− n = A ex , ex = cos α n − sin α λ, (3.50)

which is given a component A cos α along n, and a component −A sin α along λ; there is no
component along ez because A is orthogonal to h. Here we have defined the Runge–Lenz
vector exactly as in Sec. 3.2, but we can no longer expect A to be a constant vector. We
have given the vector a length A, and Eq. (3.50) serves as a definition for the unit vector ex ,
which is also not a constant vector. In an unperturbed situation A would be equal to e, α

would be equal to the true anomaly f , and ex would indeed be a constant vector; but none
of these statements can be expected to hold when f 	= 0.

The effect of the perturbing force f on the vectors h and A can be calculated by appealing
directly to their definitions. We find that

dh

dt
= r × f = −rW λ + rS ez (3.51)

and

Gm
d A

dt
= f × h + v × (r × f ) = 2hS n − (

hR + rṙS
)
λ − rṙW ez . (3.52)

These equations imply that

dh

dt
= rS (3.53)

and

Gm
d A

dt
= h sin α R + (

2h cos α + rṙ sin α
)
S, (3.54)
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as well as

h
dez

dt
= −rW λ (3.55)

and

Gm A
dex

dt
= −[

h cos α R + (−2h sin α + rṙ cos α)S
](

sin α n + cos α λ
) − rṙW ez .

(3.56)
These equations tell us, for example, that S produces a change in the magnitude of the
angular-momentum vector, while W produces a change in its direction. Similarly, both R
and S produce a change in A’s magnitude, as well as a change of direction orthogonal to
ez .

3.3.2 Osculating orbits

How are we to solve Eq. (3.47)? A direct approach, of course, is always possible: one inserts
the given expression for the external force and integrates the second-order differential
equations directly, either by analytical methods when the problem is sufficiently simple (a
rare occasion), or by numerical methods. The approach provides an answer, but very little
insight into the effects of the perturbation on various key aspects of the orbit. We shall favor
instead a clever reformulation of the perturbed problem that was initially devised by Euler
and Lagrange. This reformulation, known as the method of osculating orbital elements,
is an application to orbital dynamics of the well-known method of variation of arbitrary
constants to integrate differential equations (reviewed in Box 3.3).

Box 3.3 Variation of arbitrary constants

The method of variation of arbitrary constants to integrate differential equations is best introduced by
examining a simple example. Consider a simple harmonic oscillator of unit frequency driven by an external
force f (t). The system is described by the differential equation

ẍ + x = f, (1)

in which x is the displacement from equilibrium, and an overdot indicates differentiation with respect to t . To
integrate this equation we begin with the general solution to the homogeneous problem, ẍ + x = 0. This
solution can be expressed as

x(t) = x0 cos t + v0 sin t, (2)

in which x0 := x(t = 0) and v0 := ẋ(t = 0) are the arbitrary constants of the solution. This solution
also gives us

ẋ(t) = v0 cos t − x0 sin t. (3)

Returning to the original differential equation with a driving force f (t), we declare that Eqs. (2) and (3) shall
also be a solution to Eq. (1), and evade the obvious contradiction by allowing x0 andv0 to become functions of
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time. Equation (3)will be compatiblewith Eq. (2) provided that ẋ0 cos t + v̇0 sin t = 0, and substitution
of Eqs. (2) and (3) within Eq. (1) yields−ẋ0 sin t + v̇0 cos t = f . Solving for ẋ0 and v̇0, we find that

ẋ0 = − f sin t, v̇0 = f cos t, (4)

and these equations now replace Eq. (1). The solutions are to be insertedwithin Eqs. (2) and (3) for a complete
solution of the original problem.
These steps define the method of variation of arbitrary constants. One begins with the general solution

to a homogeneous differential equation, with the appropriate number of arbitrary constants. One next solves
the inhomogeneous problem by formally adopting the functional form of the homogeneous solution, and
promoting the arbitrary constants to new variables. After some manipulations, the original problem acquires
a new formulation as a set of first-order differential equations for the new variables.

Themethod

The starting point of the method of osculating orbital elements is to recall that the general
solution to the unperturbed Kepler problem can be expressed as

r(t) = rKepler(t, μa), v(t) = vKepler(t, μa), (3.57)

where rKepler and vKepler are the functional forms displayed in Eqs. (3.40) and (3.41), with
μa denoting a collection of six constants of the motion, which we take to be the orbital
elements (p, e, ι, 
, ω, T ). These vectors satisfy the differential equations

d rKepler

dt
= vKepler,

dvKepler

dt
= −Gm

rKepler

r3
Kepler

, (3.58)

which define the unperturbed Kepler problem.
The vectors rKepler and vKepler can also provide a solution to the perturbed problem if we let

the orbital elements μa become functions of time: μa → μa(t). The original mathematical
problem expressed by Eq. (3.47) can then be formulated as a set of first-order differential
equations for μa , and the solutions to these are to be inserted within Eqs. (3.57) to obtain a
complete solution to the perturbed problem. The meaning of the method is that at any time
t1, the orbit is taken to be a Keplerian orbit with orbital elements μa(t1) that refer to this
time only; at another time t2 the orbit will still be Keplerian, but the orbital elements will
have evolved to new values μa(t2). Another way of describing this is to say that at any time
t1, there exists a Keplerian orbit with elements μa(t1) that is tangent to the perturbed orbit
at that time; this is the osculating orbit, the term originating in the Latin word osculatio,
which means “to kiss.”

We shall therefore express the solution to Eq. (3.47) as

r(t) = rKepler
(
t, μa(t)

)
, v(t) = vKepler

(
t, μa(t)

)
, (3.59)

with rKepler and vKepler still standing for the functional forms of Eqs. (3.40) and (3.41), but
with the orbital elements μa now allowed to be functions of time. Differentiating r with
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respect to time gives

d r

dt
= ∂ rKepler

∂t
+
∑

a

∂ rKepler

∂μa

dμa

dt
. (3.60)

The left-hand side is v, and the first term on the right-hand side is vKepler, because rKepler is
differentiated with respect to t while keeping the orbital elements constant, thereby defining
Keplerian motion. The equation is compatible with Eq. (3.59) provided that∑

a

∂ rKepler

∂μa

dμa

dt
= 0, (3.61)

and we have obtained our first osculating condition. Similarly, differentiating v with respect
to t gives

dv

dt
= ∂vKepler

∂t
+
∑

a

∂vKepler

∂μa

dμa

dt
. (3.62)

The left-hand side is a = aKepler + f , and the first term on the right-hand side is the
Keplerian acceleration aKepler. The second osculating condition is∑

a

∂vKepler

∂μa

dμa

dt
= f , (3.63)

and these equations can be solved for dμa/dt .

Osculating equations

The purpose of the foregoing discussion was primarily to describe the conceptual aspects of
the method of osculating orbital elements. While Eqs. (3.61) and (3.63) could in principle
be solved for dμa/dt in terms of the perturbing force, it is easier in practice to obtain
dμa/dt directly from the definitions of the orbital elements displayed in Eqs. (3.46). The
orbital elements are given explicitly in terms of the fixed vectorial basis (eX , eY , eZ ), as well
as the angular-momentum vector h and the Runge–Lenz vector A, which change according
to Eqs. (3.51)–(3.56). The method authorizes us to substitute Keplerian relations on the
right-hand side of these equations, so that h is at all times equal to

√
Gmp(t), A is at all

times equal to e(t), α is at all times equal to the true anomaly f , r is at all times equal to
p/(1 + e cos f ), and ṙ is at all times equal to (Gm/p)1/2e sin f .

By following this approach we quickly arrive at

dp

dt
= 2

√
p3

Gm

1

1 + e cos f
S, (3.64a)

de

dt
=
√

p

Gm

[
sin f R + 2 cos f + e(1 + cos2 f )

1 + e cos f
S
]
, (3.64b)

dι

dt
=
√

p

Gm

cos(ω + f )

1 + e cos f
W, (3.64c)

sin ι
d


dt
=
√

p

Gm

sin(ω + f )

1 + e cos f
W, (3.64d)

(continued overleaf)
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dω

dt
= 1

e

√
p

Gm

[
− cos f R + 2 + e cos f

1 + e cos f
sin f S − e cot ι

sin(ω + f )

1 + e cos f
W
]
,

(3.64e)

a listing of equations that govern the behavior of the osculating orbital elements. To these
we can add

da

dt
= 2

√
a3

Gm
(1 − e2)−1/2

[
e sin f R + (1 + e cos f )S

]
, (3.65)

in case a := p/(1 − e2) is preferred over p in the selection of orbital elements. Note that p
and e (or a and e) are affected only by components of f in the orbital plane, while 
 and
ι are affected only by the component out of the plane. All components of the perturbing
force affect ω.

We are missing an equation for the variation of T , the time of pericenter passage, which
determines the true anomaly f via Eq. (3.29). It is more practical, however, to close the
system of equations by providing an expression for d f/dt , from which the true anomaly
can be obtained directly. Because f is the angle between the (varying) pericenter and the
position vector r , we have that cos f = r · ex/r , and this can immediately be differentiated
with respect to time. In this we insert Eq. (3.56) for dex/dt , the usual Keplerian relations
for d r/dt , and we obtain

d f

dt
=
√

Gm

p3
(1 + e cos f )2 + 1

e

√
p

Gm

[
cos f R − 2 + e cos f

1 + e cos f
sin f S

]
(3.66)

after some simplification. The result can also be expressed as

d f

dt
=
(

d f

dt

)
Kepler

−
(

dω

dt
+ cos ι

d


dt

)
, (3.67)

which shows that d f/dt differs from the usual Keplerian expression by a term dω/dt +
cos ι d
/dt which possesses a direct geometrical meaning. We recall that ω is the angle
from the (varying) pericenter to the (varying) line of nodes, as measured in the orbital
plane, while 
 is the angle from the line of nodes to the (fixed) X -direction, as measured in
the reference X–Y plane. The combination dω + cos ι d
 can then be seen to describe the
change in the direction to the pericenter relative to the X -direction, as measured entirely
in the orbital plane. The non-Keplerian terms in Eqs. (3.66) and (3.67) therefore appear
because the true anomaly f is measured relative to a varying set of directions.

The relevance of the combination dω + cos ι d
 can also be inferred from Eq. (3.56),
which gives the rate of change of the direction to the pericenter. After inserting the appro-
priate Keplerian relations in this expression, we find that

dex

dt
=
(

dω

dt
+ cos ι

d


dt

)(
sin f n + cos f λ

) +
(

sin ω
dι

dt
− sin ι cos 


d


dt

)
ez, (3.68)

which reveals that dω + cos ι d
 does indeed describe the change of ex within the orbital
plane, while sin ω dι − sin ι cos 
 d
 describes the change in the orthogonal direction.
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First-order approximation

The formalism of osculating orbital elements, in the formulation of Eqs. (3.64) and (3.66),
is exactly equivalent to the original formulation of the equations of motion in Eq. (3.47); no
approximations have been introduced in the transcription. The usefulness of the formalism,
however, is most immediate when the perturbing force is small, so that the changes in the
orbital elements are small. In such a context one can achieve a very good approximation of
the orbital dynamics by inserting the constant, zeroth-order values on the right-hand side
of the equations, and integrating with respect to t to get the first-order changes. In such
applications it can be convenient to use f as independent variable instead of t , and in this
approximate context one can neglect the non-Keplerian terms on the right-hand side of
Eq. (3.66). The system of osculating equations becomes

dp

d f
� 2

p3

Gm

1

(1 + e cos f )3
S, (3.69a)

de

d f
� p2

Gm

[
sin f

(1 + e cos f )2
R + 2 cos f + e(1 + cos2 f )

(1 + e cos f )3
S
]
, (3.69b)

dι

d f
� p2

Gm

cos(ω + f )

(1 + e cos f )3
W, (3.69c)

sin ι
d


d f
� p2

Gm

sin(ω + f )

(1 + e cos f )3
W, (3.69d)

dω

d f
� 1

e

p2

Gm

[
− cos f

(1 + e cos f )2
R + 2 + e cos f

(1 + e cos f )3
sin f S

− e cot ι
sin(ω + f )

(1 + e cos f )3
W
]
, (3.69e)

with

dt

d f
�
√

p3

Gm

1

(1 + e cos f )2

×
{

1 − 1

e

p2

Gm

[
cos f

(1 + e cos f )2
R − 2 + e cos f

(1 + e cos f )3
sin f S

]}
(3.70)

providing the temporal information.
In most applications of the formalism it is found that the orbital elements undergo two

types of changes. The first is an oscillation with a period equal to the orbital period P (or
multiples of P), as given by Eq. (3.36); such changes are typically uninteresting. The second
type is a steady drift that does not average out after a few orbital cycles; such changes,
which are known as secular changes, are typically much more interesting, because they
accumulate over time and eventually lead to large departures from the initial Keplerian
orbit. The secular change of an orbital element μa over a complete orbit is given by

�μa =
∫ P

0

dμa

dt
dt =

∫ 2π

0

dμa

d f
d f, (3.71)
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and division by the orbital period P gives a notion of average, or secular, time derivative:(
dμa

dt

)
sec

:= �μa

P
. (3.72)

The integrations are best carried out in the form involving the true anomaly f , but the
factors of 1 + e cos f in the denominator can sometimes produce integrals that are difficult
to evaluate. When such a situation is encountered, it is usually advantageous to make a
change of variables from f to the eccentric anomaly u, as defined by Eqs. (3.30)–(3.33).

3.4 Case studies of perturbed Keplerianmotion

Our purpose in this section is to explore some of the non-Keplerian aspects of celestial
mechanics by working through a number of examples that are of real relevance to the solar
system. We shall investigate these effects by exploiting the method of osculating orbital
elements introduced in the preceding section.

3.4.1 Perturbations by a third body

We first examine a two-body system, such as the Sun–Mercury system, perturbed by a
remote third body such as Jupiter. This is an example of a three-body problem, and we
shall have occasion in Sec. 3.5 to give this problem a more complete treatment. Here we
provide an approximate discussion, relying on the fact that the third body is remote, so that
its gravitational influence on the two-body system is weak. This influence can be described
as a perturbation, and its effects can be investigated by means of the method of osculating
orbits.

To set up the problem we recall that the two-body system involves a mass m1 at position
r1 and a mass m2 at position r2. The third body has a mass m3 and a position r3. As usual
we let m := m1 + m2, r := r1 − r2, and we also introduce R := r3 − r2; note that R no
longer stands for the position of the two-body pericenter. We also have r := |r|, R := |R|,
n := r/r , and N := R/R. We assume that R � r .

From Eq. (1.202) we find that the acceleration of the first body is given by

a1 = −Gm2
n

r2
− Gm3

r − R

|r − R|3 , (3.73)

while

a2 = Gm1
n

r2
+ Gm3

N

R2
(3.74)

is the acceleration of the second body. The relative acceleration is a := a1 − a2, and removal
of the Keplerian term gives us the perturbing force

f = −Gm3

(
r − R

|r − R|3 + N

R2

)
. (3.75)
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Taking into account the assumption that R is large compared with r , we simplify this
expression by expanding in powers of r/R, and obtain, to leading order,

f = −Gm3r

R3

[
n − 3(n · N)N + O(r/R)

]
. (3.76)

We see that the ratio of f to the Keplerian acceleration is of order (m3/m)(r/R)3, and
therefore small by virtue of our assumption that R � r . The components of the perturbing
force in the Keplerian basis (n, λ, ez) are

R := f · n = −Gm3r

R3

[
1 − 3(n · N)2

]
, (3.77a)

[−2pt]S := f · λ = 3
Gm3r

R3
(n · N)(λ · N), (3.77b)

W := f · ez = 3
Gm3r

R3
(n · N)(ez · N), (3.77c)

and these can immediately be inserted within the equations that govern the evolution of the
osculating orbital elements.

The expressions for R, S , and W refer to any two-body system perturbed by a remote
third body, but to proceed we consider the specific situation mentioned previously: We
examine the orbit of a planet like Mercury around the Sun, perturbed by an outer planet
such as Jupiter. For simplicity we assume that Mercury and Jupiter move in the same orbital
plane (when in reality they have a relative inclination of approximately 6 degrees), and we
align the reference X–Y plane with this common orbital plane; this implies that ι = 0, and
since 
 is not defined, it may be set equal to zero. Again for simplicity, we assume that
Jupiter moves on a circular orbit (a good approximation), with a constant radius R and
angular frequency 
3 =

√
G(m2 + m3)/R3. Its true anomaly is given by F = 
3t , and it

changes very little in the course of a complete Mercury orbit; we have that

�F := 
3 P = 2π

(
m2 + m3

m1 + m2

)1/2( a

R

)3/2

� 1, (3.78)

with P denoting Mercury’s orbital period, and a := p/(1 − e2) its semi-major axis. The
direction to Jupiter is

N = cos F eX + sin F eY , (3.79)

and Eqs. (3.42), (3.43), and (3.45) reveal that

n = cos( f + ω) eX + sin( f + ω) eY , (3.80a)

λ = − sin( f + ω) eX + cos( f + ω) eY , (3.80b)

and ez = eZ . From these expressions we find that n · N = cos( f + ω − F), λ · N =
− sin( f + ω − F), ez · N = 0, and the components of the perturbing force become

R = −Gm3r

R3

[
1 − 3 cos2( f + ω − F)

]
, (3.81a)

S = −3
Gm3r

R3
sin( f + ω − F) cos( f + ω − F), (3.81b)

W = 0, (3.81c)

in which we may substitute r = p/(1 + e cos f ).
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Mercury’s orbital evolution in response to Jupiter’s perturbation is governed by
Eqs. (3.64). As we explained near the end of Sec. 3.3.2, we are primarily interested in the
secular variation of the orbital elements p, e, and ω, as calculated according to Eq. (3.71)
using the equations listed in Eq. (3.69). The integrals over f are easily evaluated by adopt-
ing the eccentric anomaly u as an integration variable, and by assuming that F is constant
over Mercury’s orbital cycle – refer to Eq. (3.78). After some manipulations we arrive at

�p := −15π
m3 p4

m R3
e2(1 − e2)−7/2 sin 2(ω − F), (3.82a)

�e := 15π

2

m3 p3

m R3
e(1 − e2)−5/2 sin 2(ω − F), (3.82b)

�ω := 3π

2

m3 p3

m R3
(1 − e2)−5/2

[
1 + 5 cos 2(ω − F)

]
(3.82c)

for the net change in the orbital elements after a complete Mercury orbit. From these
results it can be inferred that �a = 0: Mercury does not undergo a secular variation of its
semi-major axis, and the change in p = a(1 − e2) simply reflects a change in eccentricity.

These expressions reveal that depending on Jupiter’s position on its orbit, Mercury’s
eccentricity e and longitude of perihelion ω either increase or decrease in the course of a
complete orbit. After an extremely long time, much longer than Jupiter’s own orbital period,
the change in e will average out, but Mercury’s perihelion will advance at an average rate
of

〈�ω〉 = 3π

2

m3

m

(
p

R

)3

(1 − e2)−5/2 = 3π

2

m3

m

(
a

R

)3

(1 − e2)1/2 (3.83)

per orbit.
Inserting the numerical values for Mercury and Jupiter from Table 3.2, we find that

〈�ω〉 = 1.79 × 10−6 radians per orbit; the smallness of this effect provides ample justifi-
cation for a calculation limited to first-order perturbation theory. It is customary to express
the perihelion advance as a rate in units of arcseconds (as) per century. To achieve this
conversion we use the fact that 1 rad = 2.063 × 105 as, and take into account the fact that
Mercury’s orbital period is P = 0.2408 yr; we obtain 〈(dω/dt)sec〉 = 154 as/century. This
is very close to the accurately computed value of 153.6 as/century displayed in Table 3.1.
The accuracy, however, would not be as good if we applied Eq. (3.83) to the perturbation
produced by Earth’s gravitational attraction; here we would get 69.2 as/century, quite a
difference from the accurate value of 90 as/century. The reason for this lack of success is
that r/R � 0.38 for the Earth, so that an accurate computation of the perihelion advance
requires higher-order terms in the expansion of the perturbing force in powers of r/R. In
addition, the approximation formulated in Eq. (3.78) is not so good in the case of the Earth,
because Earth’s period is only four times longer than Mercury’s (instead of forty times
longer for Jupiter). Nevertheless, the method of osculating orbital elements would allow
us to incorporate such details systematically in a straightforward manner, leading to the
accurately calculated planetary perturbations listed in Table 3.1.

As we have seen in Sec. 3.1, the sum total of the contributions from all the planets to
Mercury’s perihelion advance does not account for the observed effect. The discrepancy,
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Table 3.2 Orbital elements of selected planets. The astronomical unit (AU) is the Earth–Sun distance, equal
to 149.60 × 106 km. The inclination is measured in degrees, minutes of arc, and seconds of arc. The inverse

mass is measured in units of the inverse solar mass, with M� = 1.9889 × 1030 kg.

Semi-major Orbital Inclination Inverse
axis period to ecliptic mass

Planet (AU) (yr) Eccentricity ◦ · ′·′′ 1/M� = 1

Mercury 0.387099 0.24085 0.205628 7.0.15 6010000
Venus 0.723332 0.61521 0.006787 3.23.40 408400
Earth 1.000000 1.00004 0.016722 0.0.0 328910
Mars 1.523691 1.88089 0.093377 1.51.0 3098500
Jupiter 5.202803 11.86223 0.04845 1.18.17 1047.39
Saturn 9.53884 29.4577 0.05565 2.29.22 3498.5

the famous 43 as/century, is accounted for by relativistic corrections to the equations of
motion, which can be incorporated as additional contributions to the perturbing force. We
will return to this question in Chapter 10.

3.4.2 The Kozai mechanism

In 1962, the Soviet dynamicist Michael Lidov and the Japanese astronomer Yoshihide
Kozai independently discovered a remarkable phenomenon that occurs when an object
orbits a massive body under the perturbing influence of a distant body, when the two orbits
are inclined relative to each other. As a result of the perturbed dynamics, there is a periodic
exchange between the orbital eccentricity and inclination, such that when one increases, the
other decreases. This effect, known as the Kozai mechanism, has important implications
for the behavior of asteroids, satellites of planets, extrasolar planets, and multiple-star
systems.

To study this effect we re-examine the situation of the previous section, but now allow
the orbiting body (m1) to have an inclination ι relative to the orbit of the perturbing body
(m3), which is placed in the reference X–Y plane. For simplicity we take the perturbing
body to move on a circular orbit, and we choose the line of nodes of the inclined orbit to
be situated at 
 = 0. The components of the perturbing force are still given by Eqs. (3.77),
but the orbital basis vectors are now

n = cos(ω + f ) eX + cos ι sin(ω + f ) eY + sin ι sin(ω + f ) eZ , (3.84a)

λ = − sin(ω + f ) eX + cos ι cos(ω + f ) eY + sin ι cos(ω + f ) eZ , (3.84b)

ez = − sin ι eY + cos ι eZ ; (3.84c)

the direction to the perturbed body is still given by Eq. (3.79). We calculate the secular vari-
ation of the orbital elements a, e, ω, and ι by inserting these expressions withinEqs. (3.69),
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integrating over a complete orbital cycle, and averaging over the position of the perturbing
body. The final results are

〈�a〉 = 0, (3.85a)

〈�e〉 = 15π

2

m3

m

(
a

R

)3

e(1 − e2)1/2 sin2 ι sin ω cos ω, (3.85b)

〈�ω〉 = 3π

2

m3

m

(
a

R

)3

(1 − e2)−1/2
[
5 cos2 ι sin2 ω + (1 − e2)(5 cos2 ω − 3)

]
, (3.85c)

〈�ι〉 = −15π

2

m3

m

(
a

R

)3

e2(1 − e2)−1/2 sin ι cos ι sin ω cos ω. (3.85d)

From Eqs. (3.85b) and (3.85d) we notice that e(1 − e2)−1〈�e〉 + tan ι〈�ι〉 = 0, which leads
to the remarkable conservation law,√

1 − e2 cos ι = constant (over long time scales). (3.86)

This is actually the consequence of angular-momentum conservation. The component of
the total angular-momentum vector normal to the orbital plane of the perturbing body is
L Z = L1+2

Z + L3
Z , and if we assume that L3

Z is separately conserved (thereby ignoring the
gravitational effects of m1 and m2 on the perturbing body), we find that L1+2

Z = μh · eZ =
μ

√
Gmp cos ι must be conserved. Because a := p/(1 − e2) does not vary over long time

scales, conservation of angular momentum implies that (1 − e2)1/2 cos ι cannot vary, in
agreement with our previous statement.

When the longitude of pericenter ω lies in the first or third quadrants, we see from
Eqs. (3.85) that the eccentricity increases while the inclination decreases; when ω lies
instead in the second or fourth quadrants, the eccentricity decreases while the inclination
increases. The equations also reveal that as long as cos2 ι/(1 − e2) > 3/5, ω increases
monotonically, on the same time scale as the variations in e and ι. For orbits with sufficiently
low inclinations, therefore, there is a periodic exchange between eccentricity and inclination
as the pericenter keeps on advancing.

For high-inclination orbits, such that cos2 ι/(1 − e2) < 3/5, the orbital evolution is very
different. In this case, ω approaches a critical angle ωc such that 〈�ω〉 = 0, and the motion
of the pericenter ceases; the critical angle is determined by

cos2 ωc = 3(1 − e2) − 5 cos2 ι

5(1 − e2 − cos2 ι)
. (3.87)

Meanwhile, if e is initially in an increasing phase and ι in a decreasing phase, the ratio
cos2 ι/(1 − e2) will be driven toward the limiting value of 3/5, and ω will settle to a final
value of ωc = π

2 or ωc = 3π
2 . The final outcome is a stationary solution of the perturba-

tion equations with 〈�e〉 = 〈�ι〉 = 〈�ω〉 = 0, occurring at critical values ec, ιc, and ωc

constrained by

ωc = π

2
or

3π

2
,

cos2 ιc

1 − e2
c

= 3

5
. (3.88)
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This equilibrium is stable; it can be shown that a perturbation away from equilibrium leads
to oscillations of e, ι, and ω about their critical values, with a period

PKozai = 2

3
√

15

m

m3

(
R

a

)3 1

ec sin ιc
P, (3.89)

where P is the period of the orbiting body. This stationary solution is called the Kozai
resonance. You will be asked to verify these statements in Exercise 3.7.

The Kozai mechanism can have important consequences: as the orbital eccentricity
increases, the orbiting body can pass sufficiently close to the inner regions of the system
at pericenter to interact with other bodies there, or even be tidally captured or disrupted by
the central body. Conversely, the body could find itself sufficiently far away at apocenter to
interact with more distant objects and be ejected from the system. This mechanism accounts
for many observed features of the asteroid belts, of minor satellites of Jupiter, and of objects
within the Kuiper belt. As an example, many high-eccentricity comets are found to be in
Kozai resonances, with their longitude of pericenter in the vicinity of π

2 or 3π
2 .

3.4.3 Effects of oblateness

As our next case study we examine a two-body system perturbed by the oblateness of
one of its members. As we saw back in Sec. 2.3, the oblateness is most often due to
rotational flattening, and here the deformed body is taken to have an axisymmetric shape;
the deformation from spherical symmetry is measured by its quadrupole moment, and we
neglect the gravitational influence of higher-order multipole moments. Examples of such
systems abound. We could be dealing with Mercury orbiting an oblate, rotating Sun, or an
artificial satellite orbiting the Earth, or else a neutron star orbiting a rotating, normal star.

The equations of motion for such a system were worked out back in Sec. 1.6.7, and
according to Eq. (1.227), the perturbing force is given by

f = 3

2
J2

Gm R2

r4

{[
5(e · n)2 − 1

]
n − 2(e · n)e

}
, (3.90)

with J2 denoting the dimensionless quadrupole moment of the deformed body, R its radius,
and the unit vector e indicating the direction of the symmetry axis. As usual we have
m := m1 + m2, r := r1 − r2, r := |r|, and n := r/r . In Eq. (3.90) we specifically identify
the oblate body with m2, and m1 is assumed to be spherical; a swap of identities involves
changing the sign of n, and therefore the sign of the perturbing force.

We choose the reference X–Y plane to be orthogonal to the symmetry axis of m2, so that e
is aligned with the Z -direction. The orbital plane has an inclination ι relative to the reference
plane, and the orbital basis is given by Eqs. (3.42)–(3.45). According to these equations,
e · n = sin ι sin(ω + f ), e · λ = sin ι cos(ω + f ), e · ez = cos ι, and the components of the
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perturbing force in the orbital basis are

R = 3

2
J2

Gm R2

r4

[
3 sin2 ι sin2(ω + f ) − 1

]
, (3.91a)

S = −3J2
Gm R2

r4
sin2 ι sin(ω + f ) cos(ω + f ), (3.91b)

W = −3J2
Gm R2

r4
sin ι cos ι sin(ω + f ), (3.91c)

with r = p/(1 + e cos f ).
We calculate the secular variation of the orbital elements p, e, ι, ω, and 
 by inserting

these expressions within Eqs. (3.69), and integrating over a complete orbital cycle. (In this
case there is no need to involve the eccentric anomaly u in the evaluation of the integrals;
the factor of r−4 in the perturbing force ensures that there are no remaining factors of
1 + e cos f in the denominators, and all integrations are elementary.) The end results
are

�p = 0, (3.92a)

�e = 0, (3.92b)

�ι = 0, (3.92c)

�ω = 6π J2

(
R

p

)2(
1 − 5

4
sin2 ι

)
, (3.92d)

�
 = −3π J2

(
R

p

)2

cos ι. (3.92e)

The first two equations imply that �a = 0; there is no secular change in the eccentricity,
no secular change in the semi-major axis, and no secular change in the inclination. There
are, however, secular changes in the line of nodes (measured by �
) and in the pericenter
(measured relative to the line of nodes by �ω). The last two equations imply

�ω + cos ι �
 = 3π J2

(
R

p

)2(
1 − 3

2
sin2 ι

)
; (3.93)

as we saw back in Sec. 3.3.2, this is the pericenter advance relative to the reference X -
direction, as measured in the orbital plane. At zero inclination, when e · n = 0, the changes
are produced by the r−4 modification to the gravitational acceleration, which is still directed
along n. For inclined orbits, the angular dependence of the perturbing force produces an
additional contribution. An associated effect is a precession of the angular-momentum
vector h around the symmetry axis e, which produces a rotation of the line of nodes. The
precession is predicted by Eq. (3.51), which becomes

dh

dt
= 3J2

Gm R2

r3
(e · n)(e × n) (3.94)

in the case of the perturbing force of Eq. (3.90). This describes a precession because h
does not change on a secular time scale, and because e · h stays constant during the orbital
evolution.
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For Mercury, the perihelion advance induced by the Sun’s oblateness is negligible.
Inserting the relevant orbital elements and the value (J2)� = 2.2 × 10−7, we obtain
(dω/dt)sec + cos ι(d
/dt)sec = 0.03 as/century, which is just below the observational
uncertainties assigned to the measurement of the advance (refer to Table 3.1). The conclu-
sion relies on a reliable determination of the Sun’s oblateness, something that was difficult
to come by. In fact, it is extremely difficult to measure the Sun’s J2 directly, because at
planetary distances, its effects are just too small to be measured. The best way to obtain
a reliable estimate would be to send a spacecraft to a low solar orbit, well inside the orbit
of Mercury, and to measure precisely how J2 affects its orbit; but despite a number of
proposals for such a mission over the years, none has yet come to pass.

During the 1960s, Robert Dicke and Mark Goldenberg attempted to determine J2 by
measuring the Sun’s visual shape. Because the surface of the Sun is an equipotential (recall
the discussion in Sec. 2.3.1), its shape is affected by J2 in a way that can be directly related
to the deformation of the external gravitational field. The shape was measured by inserting
a circular, opaque disk in front of a telescopic image of the Sun, leaving only a thin visible
ring at the edge of the Sun, and measuring the difference in brightness of the visible ring
between the equator and pole of the Sun. If the Sun were oblate, the ring at the equator
should extend further beyond the occulting disk, and should therefore be brighter. But
many factors had to be corrected for, including the effects of atmospheric distortion on
the observed shape of the Sun, and the effects of possible temperature differences between
the polar and equatorial regions of the Sun, which would lead to brightness differences
not associated with the shape. Dicke and Goldenberg claimed to have measured a J2 of
the order of 2.5 × 10−5, over 100 times larger than the currently accepted value. Dicke
postulated that such a large oblateness would occur if the core of the Sun were rotating
much faster than its outer layers, thereby generating more centrifugal flattening than would
be expected on the basis of the observed surface rotation alone.

A value of J2 this large would mean that solar oblateness contributes as much as 4
as/century to Mercury’s perihelion advance, which would destroy the agreement of the
measured advance with the prediction of general relativity. But it would have supported
the scalar-tensor theory of gravity (to be presented in Chapter 13) that Dicke himself had
developed with Carl Brans, whose prediction for the relativistic part of the advance could be
fit to 39 as/century by tuning a coupling constant. (The flexibility to tune the Brans–Dicke
parameter to obtain this low value was short lived; accurate observations of the relativistic
light deflection eventually constrained the coupling constant to such an extent that the
Brans–Dicke prediction for the perihelion advance of Mercury became only marginally
different from Einstein’s.) Later observations of the visible shape of the Sun by Henry Hill
and others, along with observations to try to better understand the temperature differences,
did not fully resolve this controversy.

The resolution came with the advance of helioseismology. This was the discovery that the
Sun vibrates in a superposition of thousands of normal modes with an array of frequencies,
as could be observed by measuring the frequency spectrum of Doppler-shifted solar spectral
lines. The specific pattern of frequencies depends on the Sun’s angular-velocity profile.
Through a systematic program of ground-based and space-based observations of the Sun,
it became possible to determine the Sun’s rotational profile over much of its interior. The
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conclusion was that the core does not rotate much faster than the surface, and solar models
consistent with this information produced the currently accepted value of J2 = 2.2 × 10−7;
this is approximately what one would infer from a Sun that rotates uniformly at its observed
surface rate. The bottom line is that, as far as Mercury’s motion and general relativity are
concerned, the solar quadrupole moment does not play a significant role.

The quadrupole moment of the Earth does play an important role in the motion of
artificial satellites. The effect on the line of nodes can be examined for a satellite placed on
a circular orbit with radius a. Using (J2)⊕ = 1.08 × 10−3 and dividing �
 by the satellite’s
orbital period P = 2πa3/2/(Gm)1/2 = 83.91(a/R)3/2 minutes, we can show that(

d


dt

)
sec

= −3639

(
R

a

)7/2

cos ι degrees/year, (3.95)

where R is the Earth’s radius. For example, the orbit of the Laser Geodynamics Satellite
(LAGEOS) I, with a = 1.93R and ι = 109◦.8, precesses at a rate of 120 degrees per year.
A satellite with a = 1.5R and ι = 65.9◦ would precess at a rate of 360 degrees per year.
Such an orbit is called Sun synchronous because it always presents the same face to the
Sun, varying only in its inclination relative to the ecliptic because of the 23.5◦ tilt of the
Earth’s spin axis.

3.4.4 Tidally interacting bodies

In our next case study we examine a system of two bodies that deform each other by
tidal interactions. The physics of tides was reviewed in some depth in Sec. 2.5, and here
we consider a situation in which the orbital period P = 2πa3/2/(Gm)1/2 is long compared
with the hydrodynamical time scale Tint ∼ (Gρ)−1/2 ∼ R3/2/(Gm)1/2 that characterizes the
internal dynamics of each body; this is the realm of static tides.

We first take the bodies to be non-rotating. According to the theory developed in
Sec. 2.5.1, a body of radius R subjected to a tidal potential Utidal = − 1

2E jk x j xk acquires
a mass quadrupole moment given by G I〈 jk〉 = − 2

3 k2 R5E jk , with k2 denoting the body’s
gravitational Love number, which depends on the details of its internal structure. In the
case of a two-body system, we have a first body of mass m1, radius R1, Love number (k2)1,
and quadrupole moment I 〈 jk〉

1 , and a second body of mass m2, radius R2, Love number
(k2)2, and quadrupole moment I 〈 jk〉

2 . According to Eq. (2.275), the tidal quadrupole mo-
ment created by m2 and acting on m1 is given by E jk

1 = −(Gm2/r3)(3n j nk − δ jk), while
the tidal moment created by m1 and acting on m2 is E jk

2 = −(Gm1/r3)(3n j nk − δ jk); as
usual, we have that m := m1 + m2, r := r1 − r2, r := |r|, and n := r/r . From all this we
find that the tidally-induced mass quadrupole moment of the first body is given by

I 〈 jk〉
1 = 2

3
(k2)1

m2 R5
1

r3

(
3n j nk − δ jk

)
, (3.96)

while

I 〈 jk〉
2 = 2

3
(k2)2

m1 R5
2

r3

(
3n j nk − δ jk

)
(3.97)

is the mass quadrupole moment of the second body.
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The equations of motion for two deformed bodies were obtained back in Sec. 1.6.7,
and Eq. (1.220) provides an expression for the relative acceleration a := a1 − a2. If we
remove the Keplerian term, truncate the multipole expansions to the leading, quadrupole
order, and neglect the quadrupole–quadrupole interaction (which is much smaller than the
monopole–quadrupole interactions that we keep), we obtain

f j = 1

2
Gm

(
I 〈kn〉
1

m1
+ I 〈kn〉

2

m2

)
∂ jkn

(
1

r

)
(3.98)

for the perturbing force. Inserting the preceding expressions for the mass quadrupole
moments, as well as Eq. (1.152) for ∂ jknr−1, we find that this becomes

f = −6
Gm

r7

(
(k2)1

m2

m1
R5

1 + (k2)2
m1

m2
R5

2

)
n. (3.99)

The perturbing force is directed along n, and its only non-vanishing component is R. With
S = W = 0, we see that the tidal interaction has no effect on p, ι, and 
; the only orbital
elements that can undergo a change are e and ω.

We insert our expression forRwithin Eqs. (3.69), integrate over a complete orbital cycle,
and obtain the secular changes �e = 0 and

�ω = 30π

(
1 + 3

2
e2 + 1

8
e4

)[
(k2)1

m2

m1

(
R1

p

)5

+ (k2)2
m1

m2

(
R2

p

)5
]

. (3.100)

These results imply that e (and therefore a) do not undergo a secular change, but the
pericenter advances at a steady rate that depends on the orbital parameters, the body
radii, and the gravitational Love numbers. Astronomers call this phenomenon the apsidal
advance, and for a class of close binaries, this effect gives an important clue to the internal
structure of each star, via the ability to infer k2. These systems have masses of the order of
a few solar masses, orbital periods of the order of 10 days, and modest eccentricities. The
resulting apsidal advance can then be expressed as the rate(

dω

dt

)
sec

= 0.06 f (e)

(
M�
m

)5/3(10 days

P

)13/3

×
[

(k2)1

0.01

m2

m1

(
R1

R�

)5

+ (k2)2

0.01

m1

m2

(
R2

R�

)5
]

degrees/century, (3.101)

where f (e) = (1 + 3
2 e2 + 1

8 e4)/(1 − e2)5. Many close binaries are eclipsing, and by com-
bining light-curve data on the timing of eclipses with spectroscopic data on the orbital
motion, it is possible to determine the masses and radii as well as the apsidal advance rate,
and thereby estimate k2 for each star. In most cases, there is good agreement between the
values of k2 obtained by implementing this method and those determined by stellar models
for stars having the observed masses and spectra. As we shall see in Chapter 10, the general
relativistic contribution to the apsidal advance is small, generally a few percent of the tidally
induced advance.
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Box 3.4 DI Herculis: A tidal troublemaker

There are a few systems for which the nice picture of a tidally induced apsidal advance does not work. The
most famous isDIHerculis, a high eccentricity (e � 0.48), highmass (m � 10 M�) systemwith a10.55
day period. In this case, the relativistic contribution to the apsidal advance is large, 2.34 degrees per century,
while the tidal contribution is predicted to be 1.93 degrees per century, giving a total predicted advance of
4.27 degrees per century. Unfortunately, the observed apsidal advance is only 1.00 ± .30 degrees per cen-
tury. While there were a few attempts to use this discrepancy as evidence against general relativity, more
conventional explanations involve purely Newtonian mechanisms. First, there could be a large misalignment
between the rotation axis of each star and the orbital plane, such that the contribution of the rotationally-
induced quadrupole moments to�ωwould be negative, or retrograde. Second, there could be a third star in
the vicinity of the system, whose perturbative effects on all the orbital elements would complicate how�ω

is inferred from the eclipse light-curve data, leading to a value in better agreement with the prediction. The
book is not yet closed on DI Herculis.

Our discussion thus far has excluded the dissipative aspects of tidal dynamics that were
reviewed in Sec. 2.5.2. To explore these effects we examine specifically the case of a moon
orbiting a planet. We take the first body to be the planet, the second body to be the moon,
and we place the bodies on a circular orbit of relative separation r . Both bodies are now
rotating, and we take the moon to be tidally locked, so that it rotates with the same angular
velocity as the orbit. The planet, on the other hand, rotates with an angular velocity ω1 that
differs, in general, from the orbital angular velocity 
.

According to Eq. (2.277), the quadrupole moment of each body is given by

G I〈 jk〉 = −2

3
k2 R5

(
E jk − τ Ė jk

)
(3.102)

in the body’s rotating frame. The effect of the first term was investigated previously, and
we henceforth ignore it. We keep the second term, the one associated with the dissipative
aspects of the tidal interaction; the parameter τ is the body’s viscous delay. Because the
moon is co-rotating with the orbit, the tidal field measured in its rotating frame is constant,
and this implies that we can set I 〈 jk〉

2 = 0; for our purposes here, the moon is not deformed
by the tidal forces exerted by the planet. The planet, however, is deformed by the moon’s
tidal field, and we find that its quadrupole moment is given by

I 〈 jk〉
1 = −2(k2)1

m2 R5
1

r3
(
 − ω1)τ1

(
n j λk + λ j nk

)
(3.103)

in the rotating frame. Inserting this within the perturbing force of Eq. (3.98), we find that
its dissipative piece is given by

f diss = −6(k2)1Gm
m2

m1

R5
1

r7
(
 − ω1)τ1 λ. (3.104)

Its only non-vanishing component is Sdiss := f diss · λ.
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The dissipative piece of the perturbing force can now be inserted within the osculating
equations (3.69). We find that r is the only orbital element that is affected by the perturbation,
and that it changes by

�r = −24π (k2)1
m2

m1

R5
1

r4
(
 − ω1)τ1 (3.105)

in the course of a complete orbital cycle. The sign of the change is related to the sign of

 − ω1. When ω1 < 
, that is, when the moon orbits faster than the planet rotates, we
find that �r < 0, so that the moon slowly approaches the planet in a shrinking orbit; an
example of such a situation is found in the Mars–Phobos system. When ω1 > 
, that is,
when the planet rotates faster than the moon orbits, we find instead that �r > 0, so that the
moon recedes from the planet in an expanding orbit; the Earth–Moon system is a familiar
example of such a situation. These conclusions are in accord with our discussion of angular-
momentum transfer in Sec. 2.5.2. We saw that the planet gains spin angular momentum
when ω1 < 
, and the shrinking orbit confirms that this gain comes at the expense of the
orbital angular momentum. Similarly, the planet loses its spin when ω1 > 
, and this loss
allows the orbit to gain angular momentum and to expand.

3.4.5 Luni-solar precession of the Earth

In this final case study we describe how the gravitational attraction of the Moon and the
Sun on an oblate Earth causes a precession of its spin around the normal to the ecliptic
plane. This is the origin of the famous precession of the equinoxes, with its period of
approximately 26 000 years.

The motion of a body’s spin vector S subjected to gravitational torques exerted by other
bodies was determined back in Sec 1.6.8. According to Eq. (1.240), an axisymmetric body
of mass m, radius R, and dimensionless quadrupole moment J2, placed in the gravitational
field of a first mass m1 at a distance r1, and of a second mass m2 at a distance r2, undergoes
a spin precession described by

d S

dt
= −3Gm J2 R2

[
m1

r3
1

(e · n1)(e × n1) + m2

r3
2

(e · n2)(e × n2)

]
. (3.106)

Here, e is the direction of the body’s rotation axis, so that S = Se, n1 is the direction to
m1, and n2 the direction to m2. Note that in this application, m stands for the body’s mass
instead of the total mass of the system. It is easy to see from Eq. (3.106) that S is a constant,
so that d S/dt = Sde/dt .

For simplicity, and as a rather good approximation, we take the Moon and the Sun to
move on circular orbits in the ecliptic plane, which we identify with the reference X–Y
plane. The direction to the Moon is then

n1 = cos(
1t) eX + sin(
1t) eY , (3.107)

with 
1 denoting the Moon’s angular velocity, while the direction to the Sun is

n2 = cos(
2t + ψ) eX + sin(
2t + ψ) eY , (3.108)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

173 3.5 More bodies

with 
2 denoting the Sun’s angular velocity, and ψ representing the Sun’s initial phase on
its orbit. The Earth’s rotation axis is tilted by an angle α = 23.4◦ relative to the ecliptic,
and we express its direction as

e = sin α cos β eX + sin α sin β eY + cos α eZ , (3.109)

in terms of a time-dependent precessional angle β. As we shall see, Eq. (3.106) implies
that α remains constant on a secular time scale.

We insert these expressions within Eq. (3.106) and average the result over a large number
of orbital cycles. We obtain

(
de

dt

)
sec

= −3Gm J2 R2

2S
sin α cos α

(
m1

r3
1

+ m2

r3
2

)(
− sin β eX + cos β eY

)
. (3.110)

Substitution of Eq. (3.109) on the left-hand side confirms that (dα/dt)sec = 0, and gives
rise to a rate of change for the precessional angle,

(
dβ

dt

)
sec

= −3Gm J2 R2

2S
cos α

(
m1

r3
1

+ m2

r3
2

)
. (3.111)

Inserting the relevant numbers, including S = 5.86 × 1033 kg m2/s and J2 = 1.08 × 10−3,
we obtain |(dβ/dt)sec| = 7.74 × 10−12 rad/s, or 5040 as/century, which is very close to
the accepted value of 5029 as/century. The precessional period Pprec = 2π |(dβ/dt)sec|−1

amounts to the previously quoted value of 26 000 years.

3.5 More bodies

We saw back in Sec. 3.2 that the problem of two spherical bodies moving under their
mutual gravitational attraction can be solved completely and exactly. The same cannot be
said, however, when the bodies have significant deformations from spherical symmetry, or
when we go beyond two bodies; in such cases there are no exact solutions, except in very
special situations. In this section we touch briefly on the three-body problem, and say a few
words about the general N -body problem; throughout this section the bodies are assumed
to be spherical.

3.5.1 The 3-body problem

General problem

Adding just one body to a two-body system brings a remarkable complexity to the problem
of motion. The equations of motion are simple enough to write down. In the familiar
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notation we have

a1 = −Gm2
r12

r3
12

− Gm3
r13

r3
13

, (3.112a)

a2 = +Gm1
r12

r3
12

− Gm3
r23

r3
23

, (3.112b)

a3 = +Gm1
r13

r3
13

+ Gm2
r23

r3
23

, (3.112c)

where, for example, r12 := r1 − r2. According to the discussion of Sec. 1.6.6, the equations
of motion admit the conserved quantities

P = m1v1 + m2v2 + m3v3, (3.113a)

L = m1r1 × v1 + m2r2 × v2 + m3r3 × v3, (3.113b)

E = 1

2
m1v

2
1 + 1

2
m2v

2
2 + 1

2
m1v

2
2 − Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
. (3.113c)

Momentum conservation implies that the system’s barycenter, situated at

R := 1

M

(
m1r1 + m2r2 + m3r3

)
, (3.114)

with M := m1 + m2 + m3, moves uniformly according to R(t) := R(0) + P t/M . We shall
describe the 3-body system in the barycentric frame, and set R = 0 at all times.

In the two-body problem it proved helpful to write the equations of motion in terms of
the separation vector between the two bodies, which produces a reduction to an effective
one-body problem. Here we follow Jacobi and accomplish a similar reduction to an effective
two-body problem by introducing the alternative variables

r := r1 − r2, (3.115a)

ρ := r3 − m1

m
r1 − m2

m
r2, (3.115b)

in which m := m1 + m2; the vector r is the separation between body 1 and body 2, while ρ

is the separation between body 3 and the barycenter of the 1–2 subsystem. The barycenter
condition R = 0 can be used to express each position vector in terms of the new variables;
we find that

r1 = m2

m
r − m3

M
ρ, (3.116a)

r2 = −m1

m
r − m3

M
ρ, (3.116b)

r3 = m

M
ρ. (3.116c)

Similar relations hold between the individual velocity vectors and the relative velocities v :=
d r/dt and V := dρ/dt . The separation vectors become r12 = r , r13 = −(ρ − m2r/m),
and r23 = −(ρ + m1r/m) in the Jacobi variables.
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Making the substitutions, we quickly find that the equations of motion of the effective
two-body problem are

d2r

dt2
= −Gm

r

r3
+ Gm3

(
ρ − m2r/m

|ρ − m2r/m|3 − ρ + m1r/m

|ρ + m1r/m|3
)

, (3.117a)

d2ρ

dt2
= −G M

m

(
m1

ρ − m2r/m

|ρ − m2r/m|3 + m2
ρ + m1r/m

|ρ + m1r/m|3
)

, (3.117b)

and that the conserved quantities become

L = m1m2

m
r × v + mm3

M
ρ × V , (3.118a)

E = 1

2

m1m2

m
v2 + 1

2

mm3

M
V 2 − Gm1m2

r
− Gm1m3

|ρ − m2r/m| − Gm2m3

|ρ + m1r/m| (3.118b)

in the Jacobi variables.
The equations of motion (3.117) are extraordinarily complex, and in spite of massive

efforts by the best physicists and mathematicians of past centuries, including Lagrange,
Laplace, Jacobi, Hill, and especially Poincaré, the solution space is still poorly understood
today. Special solutions are known. For example, when the three bodies are confined to
a plane it is possible to find solutions with r12 = r13 = r23, so that the bodies form an
equilateral triangle. In this configuration, each body follows its own elliptical orbit around
the barycenter, with the triangle expanding and shrinking as the bodies pass simultaneously
through their apocenter and pericenter; in the special case of circular orbits, the three bodies
rotate as a rigid equilateral triangle around the barycenter. Another example is the “figure-
of-eight” solution, in which three equal-mass bodies chase each other on a closed orbit
that takes the shape of the number eight; the solution has zero total angular momentum.
Understanding the three-body problem is of considerable astrophysical interest, since over
500 stars in our galaxy have been identified as triple systems, including the north star Polaris
and our nearest neighbor, Alpha Centauri.

Restricted problem

There is a special case of the three-body problem that offers sufficient simplicity to permit
a detailed exploration. Known as the restricted three-body problem, this is a situation in
which one of the three bodies has a negligible mass compared to the others, and the other
two bodies are placed on a circular orbit, undisturbed by the third body. In this case the
three-body problem reduces to an independent two-body problem with a specified solution
(the circular orbit), and the decoupled problem of a test body moving in the gravitational
field of the orbiting bodies.

We take the light body to be m3, and let m3 � m1 and m3 � m2, so that M � m =
m1 + m2. In this limit the equations of motion become d2 r̄/dt2 = −Gm r̄/r3 for the two-
body system, and

d2ρ̄

dt2
= −Gm1

ρ̄ − m2 r̄/m

|ρ̄ − m2 r̄/m|3 − Gm2
ρ̄ + m1 r̄/m

|ρ̄ + m1 r̄/m|3 (3.119)
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for the third body; the reason for adorning each vector with an overbar will be revealed
presently. In this limit we have r̄1 = (m2/m)r̄ , r̄2 = −(m1/m)r̄ , and r3 = ρ̄. The circular
orbit of the two-body system is described by

r̄ = r cos(
t) ēx + r sin(
t) ēy, (3.120)

with r = constant and 
 :=
√

Gm/r3 denoting the orbital angular velocity.
The equations are presented in a frame (x̄, ȳ, z̄) that is attached to the barycenter of the

three-body system. This frame is non-rotating, and accordingly, the motion of the two-body
system is described by the circular orbit of Eq. (3.120). To proceed it is helpful to switch
reference frames, and to choose instead a frame (x, y, z) that is co-rotating with the orbiting
bodies. The tools to achieve this were developed near the end of Sec. 2.3.1, and the notation
adopted here, with bars placed on the non-rotating coordinates and no decoration placed
on rotating coordinates, follows the conventions adopted back in Chapter 2. The coordinate
transformation is given by x̄ = x cos 
t − y sin 
t , ȳ = x sin 
t + y cos 
t , z̄ = z, and
the two-body system appears stationary in the rotating frame; the separation vector is now
given by

r = r ex , (3.121)

and body 1 is now fixed at coordinates x1 = (m2/m)r and y1 = 0, while body 2 is at
coordinates x2 = −(m1/m)r and y2 = 0.

Simple manipulations reveal that the equations of motion of the test body become

d2ρ

dt2
+ 2� × dρ

dt
= ∇� (3.122)

in the rotating frame, where � := 
 ez is the angular-velocity vector, and

� = 1

2

2

[
ρ2 − (ρ · ez)

2
] + Gm1

|ρ − m2r/m| + Gm2

|ρ + m1r/m| , (3.123)

a generalized potential that includes both gravitational and centrifugal terms; in Eq. (3.122)
the gradient operator ∇ refers to the three components of the vector ρ in the rotating
frame. The equations admit a first integral, which is obtained by taking the scalar product
of Eq. (3.122) with dρ/dt and recognizing that each term is a total derivative with respect
to t . Integration produces the Jacobi integral

1

2
V 2 − � = C, (3.124)

where V := |dρ/dt | is the speed of the test body in the rotating frame, and C is a constant
of the motion, a generalized energy known as Jacobi’s constant.

Equilibria of the restricted problem

The motions predicted by Eq. (3.122) are extremely diverse, and a complete exploration
would require numerical integration of the equations. The question we shall investigate
here is whether the equations admit stationary solutions with dρ/dt = 0 = d2ρ/dt2. If
such solutions exist, they would occur at values of ρ such that ∇� = 0, that is, at stationary
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points of the generalized potential. A little thought reveals that a stationary solution requires
the test body to be in the same plane as the orbiting bodies.

To simplify the analysis we adopt r as a unit of length, and divide all distances by r so
that they become dimensionless. Similarly, we adopt m := m1 + m2 as a unit of mass, and
divide all masses by m so that they too become dimensionless. In those units, the first body
is situated at x1 = m2, the second body at x2 = −m1, and the orbital angular velocity is√

G. We take the test body to have coordinates ρ = (x3, y3, 0), and let

r1 := r13 = |ρ − m2r/m| =
√

(x3 − m2)2 + y2
3 , (3.125a)

r2 := r23 = |ρ + m1r/m| =
√

(x3 + m1)2 + y2
3 . (3.125b)

With m1 + m2 now restricted to be unity, the individual masses are determined by the mass
ratio q := m1/m2 ≤ 1; we have that

m1 = q

1 + q
, m2 = 1

1 + q
, (3.126)

and we adopt the convention that the first body will be the less massive of the two main
bodies.

The generalized potential is given by

G−1� = 1

2

(
x2

3 + y2
3

) + m1

r1
+ m2

r2
(3.127)

in the rescaled variables, and differentiation with respect to x3 and y3 produces the
equilibrium conditions x3 − m1(x3 − m2)/r3

1 − m2(x3 + m1)/r3
2 = 0 and y3 − m1 y3/r3

1 −
m2 y3/r3

2 = 0. These can be re-expressed as

0 = m1(x3 − m2)(1 − r−3
1 ) + m2(x3 + m1)(1 − r−3

2 ), (3.128a)

0 = y3
[
m1(1 − r−3

1 ) + m2(1 − r−3
2 )

]
, (3.128b)

by exploiting the identity m1 + m2 = 1. The existence of stationary solutions hinges on
finding solutions to these algebraic equations. As we shall see below, there are five distinct
solutions, which are known as the Lagrange points L1, L2, L3, L4, and L5. The first three
equilibria have y3 = 0 and describe co-linear configurations, with all three bodies aligned
on the x-axis; these equilibria are unstable. The last two equilibria have r1 = r2 = 1 and
describe triangular configurations, with all three bodies equidistant from each other; these
equilibria are stable for sufficiently small mass ratios. The five equilibria are represented in
Fig. 3.3.

We first consider the solutions to Eqs. (3.128) with y3 = 0. In this case r1 = |x3 − m2|,
r2 = |x3 + m1|, and we must distinguish three subcases. For L1 we take the test body
to be between the other two bodies, so that −m1 < x3 < m2; in this case we have that
r1 = m2 − x3, r2 = x3 + m1, and Eq. (3.128a) can be expressed as

q = r2 − r−2
2

r1 − r−2
1

, r1 + r2 = 1 (L1). (3.129)
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L1 L2L3

L4

L5

m1m2

−1

−1 0 1

0

1

Fig. 3.3 The five Lagrange points of a restricted three-body system with mass ratio q = 1
2 .

It is easy to see that a solution exists for any value of q ≤ 1, with r1 ≤ 1
2 . For example,

with q = 1
2 so that m1 = 1

3 and m2 = 2
3 , the solution is x3 � 0.23742. For L2 we take the

test body to be beyond body 1, so that x3 > m2; in this case we have that r1 = x3 − m2,
r2 = x3 + m1, and Eq. (3.128a) can now be expressed as

q = −r2 − r−2
2

r1 − r−2
1

, r2 − r1 = 1 (L2). (3.130)

A solution exists for any value of q ≤ 1 with r1 ≤ 0.7. For example, with q = 1
2 the

solution is x3 � 1.24905. Finally, for L3 we take the test body to be beyond body 2, so
that x3 < −m1; in this case we have that r1 = m2 − x3, r2 = −(x3 + m1), and Eq. (3.128a)
yields

q = −r2 − r−2
2

r1 − r−2
1

, r1 − r2 = 1 (L3). (3.131)

A solution exists for any value of q ≤ 1 with 1.7 ≤ r1 ≤ 2. For example, with q = 1
2 the

solution is x3 � −1.13636.
We next consider the solutions to Eqs. (3.128) with y3 	= 0. It is easy to see that a

simultaneous solution to these equations requires r1 = r2 = 1, so that the configuration is
an equilateral triangle. Inserting this constraint within Eq. (3.125) reveals that there are two
distinct solutions described by x3 = 1

2 − m1 = m2 − 1
2 and y3 = ± 1

2

√
3; the solution with

y3 > 0 is L4, and the one with y3 < 0 is L5. For q = 1
2 , L4 is situated at x3 = 0.16667 and

y3 = 0.86603, while L5 is situated at x3 = 0.16667 and y3 = −0.86603.
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A stability analysis reveals that L1, L2, and L3 are unstable equilibria: small displace-
ments from these points produce motions that take the test body far away. The remaining
Lagrange points, however, are stable provided that (refer to Exercise 3.12)

q <
1 − 1

9

√
69

1 + 1
9

√
69

� 0.04; (3.132)

in this case a small displacement produces a small oscillation around the equilibrium point.
In the solar system, the stable Lagrange points of the Sun–Jupiter system are occupied

by large collections of asteroids. These orbit the Sun along Jupiter’s orbital path, with one
group, called the “Greek” asteroids, 60◦ ahead of it (at L4), and the other group, called the
“Trojan” asteroids, 60◦ behind it (at L5). The asteroids remain in those positions because
they are less disturbed by planetary perturbations, being protected by the weak potential
well provided by the gravitational fields of the Sun and Jupiter combined with centrifugal
forces. Similarly, there is a distribution of interplanetary dust at the Earth–Sun Lagrange
points, and two small moons lie at the stable Lagrange points of the system formed by
Saturn and Tethys, one of its moons.

It turns out that the L1 and L2 points of the Earth–Sun system are very useful places to
park a spacecraft. Even though these equilibria are unstable, the instability is weak, and a
relatively small amount of thrust is sufficient to keep the spacecraft in a small orbit around
the Lagrange point. For example, the Solar and Heliospheric Observatory (SOHO) was
placed at L1, pointing continuously sunward. The Wilkinson Microwave Anisotropy Probe
(WMAP) and the Planck satellite were both placed at L2, so that they could point away
from the Sun and Earth. The James Webb Space Telescope (the replacement for Hubble) is
also destined for L2.

3.5.2 The N -body problem

Very little can be said about the detailed motion of an N -body system, even when the
equation of motion of each body is given by the simplest expression

aA = −
∑
B 	=A

Gm B
r AB

r3
AB

. (3.133)

General statements can still be made, but they concern only the most global and coarse-
grained aspects of the motion. For example, we know from Sec. 1.6.6 that the system’s total
momentum, energy, and angular momentum are conserved quantities. These, we recall, are
given by P = ∑

A m AvA, E = T + 
, and L = ∑
A m A r A × vA, with

T = 1

2

∑
A

m Av2
A (3.134)

denoting the total kinetic energy, and


 = −1

2

∑
A

∑
B 	=A

Gm Am B

rAB
(3.135)
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the total gravitational potential energy. Another global statement is the virial theorem

1

2

d2 I

dt2
= 2T + 
, (3.136)

where I = ∑
A m A|r A|2 is the quadrupole-moment scalar of the N -body system. This

version of the virial theorem is a specialization to isolated bodies of the general theorem of
Sec. 1.4.3, which applies to any fluid configuration. Though they are limited in information
content, the global statements are nevertheless useful because they rest upon the most
fundamental aspects of Newtonian dynamics. They can, actually, be very powerful at
probing the nature of complicated systems. For example, the virial theorem played an
important role in deducing the existence of dark matter in the universe.

The virial theorem applies when an N -body system such as a star cluster can be regarded
as being isolated and gravitationally bound, and it is useful when the system can also be
regarded as being in a steady state, so that Ï ≈ 0. In such situations the theorem implies that
T ≈ 1

2 |
|. The kinetic energy of the cluster can be expressed as 1
2 M〈v2〉, where M is the

total mass of the cluster, and 〈v2〉 is a suitable average of v2 over all stars in the cluster. On
the other hand, the gravitational potential energy is approximately equal to −G M2/(2R),
where R is the cluster’s radius. If the distribution of velocities is assumed to be isotropic,
then 〈v2〉 ≈ 3〈v2

r 〉, with vr denoting the component of the stellar velocity along the line of
sight, which can be measured from the Doppler shift of the spectral lines (after removing
the overall shift caused by the bulk motion of the cluster relative to the Earth). The radius
R is determined from the cluster’s angular size combined with an estimate of its distance.
With these ingredients, the “virial mass” of the cluster is given by G Mvirial � 6R〈v2

r 〉, and
within a factor of order unity, we should expect this to be a reliable estimate of the cluster’s
total mass. The problem is that the virial mass determined in this way turns out to be as
much as 10 times larger than the “visible mass” determined by measuring the brightness of
the cluster and multiplying by the mass-to-light ratio known from stellar-structure theory
for the kinds of stars contained in the cluster. When the virial method was applied to clusters
of galaxies (with each galaxy viewed as a point body), the discrepancy between the virial
and visible masses was even larger.

One proposed explanation for the discrepancy held that star clusters are really not bound
at all, so that the virial theorem does not apply to them. Another possible explanation is
that the clusters are not in a steady state, so that the assumption Ï ≈ 0 is not valid. But
observations of many clusters and detailed analyses have suggested that these avenues are
not promising. An alternative explanation is that there is additional mass in the system
that contributes to the gravitational binding, but does not emit any light – this is the dark
matter hypothesis. Eventually it was shown that the amount of dark matter implied by the
virial-mass discrepancy in star clusters and galaxies is consistent with the amount required
to explain the rotational properties of many spiral galaxies, the angular fluctuations in
the cosmic microwave background radiation, and the growth of large-scale structure in the
early universe. The dark matter hypothesis has now become a central feature of the standard
cosmological model.
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3.6 Lagrangian formulation of Newtonian dynamics

Our exploration of Newtonian gravity is coming to a close, but we would be remiss if
we didn’t touch upon the wonderful developments initiated by Maupertuis and Euler and
completed by Lagrange and Hamilton. Their principle of least action has become a unifying
principle for all of physics, being applicable to such disparate fields as mechanics, fluid
dynamics, and field theory including general relativity. Our treatment here will be extremely
brief; we expect the reader to have encountered this topic in greater depth elsewhere. We
include it regardless because we shall have occasion to refer to Lagrangians and action
functionals in later portions of the book, and wish to provide a quick reference manual to
accompany these references.

3.6.1 Lagrangian and action principle

We consider a dynamical system with an arbitrary number of degrees of freedom. We
describe the motion of the system with generalized coordinates q j (t), which may be
chosen arbitrarily to give the simplest description; the generalized coordinates give rise to
the generalized velocities q̇ j (t) := dq j /dt . The system possesses a kinetic energy T and
a potential energy 
 which depend upon the generalized coordinates and velocities. The
system’s Lagrangian function is defined to be L(q̇ j , q j ) := T − 
. The system’s action
functional is

S[q] :=
∫ t2

t1

L(q̇ j , q j ) dt, (3.137)

the integral of the Lagrangian function between two fixed times. The action can be evaluated
for any path q j (t) that joins an initial configuration q j (t1) to a final configuration q j (t2),
whether or not this path satisfies the equations of motion of the dynamical system.

The true path of the dynamical system – the one that satisfies the equations of motion –
is identified as the one that produces an extremum of the action functional. This means the
following. Suppose that the true path is q̄ j (t), and that we examine an arbitrary variation
of this path described by the small displacements δq j (t), thereby constructing a trial
path q j

trial(t) = q̄ j (t) + δq j (t). We insist that the trial path should begin from the same
configuration as the true path, and that it should also end in the same configuration as
the true path, so that the displacements must obey δq j (t1) = 0 = δq j (t2); apart from this
the functions δq j (t) are arbitrary. The action functional can be evaluated on the true path,
and it can be evaluated on the trial path; it will be an extremum when the difference
δS := S[qtrial] − S[q̄] vanishes to first order in the displacements. As we shall see, the
condition δS = 0 gives us a means to identify q̄ j (t). It can be shown that when t2 − t1 is
not too large, the extremum is in fact a minimum – the action is minimized when evaluated
along the true path. When t2 − t1 increases beyond a certain threshold (called a kinetic
focus), the extremum turns into a saddle point of the action functional.
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To carry out the variation of the action we write

δS = S[qtrial] − S[q̄]

=
∫ t2

t1

[
L
(
q̇ j

trial, q j
trial

) − L
(

˙̄q j , q̄ j
)]

dt (3.138)

and express the trial Lagrangian as a Taylor expansion about the true path, obtaining

L
(

˙̄q j , q̄ j
) + ∂L

∂ q̇ j
δq̇ j + ∂L

∂q j
δq j

to first order in the displacements; summation over the repeated index j is understood. The
variation of the action becomes

δS =
∫ t2

t1

(
∂L

∂ q̇ j

d

dt
δq j + ∂L

∂q j
δq j

)
dt, (3.139)

and integration by parts of the first term produces

δS = ∂L

∂ q̇ j
δq j

∣∣∣∣t2
t1

+
∫ t2

t1

(
− d

dt

∂L

∂ q̇ j
+ ∂L

∂q j

)
δq j dt. (3.140)

The boundary terms vanish because of the conditions δq j (t1) = 0 = δq j (t2), and since the
variations δq j (t) are otherwise arbitrary, we find that δS = 0 requires

d

dt

∂L

∂ q̇ j
− ∂L

∂q j
= 0. (3.141)

These are the Euler–Lagrange equations for the dynamical system, which give rise to
second-order differential equations for the generalized coordinates q j (t). The Euler–
Lagrange equations, therefore, provide the equations of motion to be satisfied by the
dynamical system, as dictated by the principle of extremum action.

The Euler–Lagrange equations can be written in the form

ṗ j = ∂L

∂q j
, (3.142)

in which p j := ∂L/∂q̇ j is the generalized momentum associated with the coordinate q j .
An immediate consequence of this equation is that when L does not depend explicitly on
one (or more) of its generalized coordinates, say q∗, then the associated momentum p∗ is
necessarily a constant of the motion. In this way, momentum conservation is seen to arise
as a consequence of a symmetry of the dynamical system.

3.6.2 Lagrangian mechanics of a two-body system

We apply these ideas to a system of two spherical bodies moving under their mutual
gravitational attraction. We follow the description of Sec. 1.6.7 and adopt the vari-
ables R := (m1/m)r1 + (m2/m)r2 and r := r1 − r2 as generalized coordinates; here
m := m1 + m2 is the total mass of the system, and μ := m1m2/m is the reduced mass. The
corresponding generalized velocities are V := d R/dt and v = d r/dt . The kinetic energy of
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the system is T = 1
2 mV 2 + 1

2 μv2, and its gravitational potential energy is 
 = −Gμm/r .
The Lagrangian of the two-body system is therefore

L = 1

2
mV 2 + 1

2
μv2 + Gμm

r
. (3.143)

We see immediately that L does not depend explicitly on the coordinates R, and this implies
that the corresponding momentum P := ∂L/∂V = mV is constant; we have recovered the
fact that the total momentum of a two-body system is a conserved quantity. Taking this into
account, we recognize that the first term in the Lagrangian is an irrelevant constant which
plays no role in the dynamics of the relative orbit. We may remove it, and take the effective
Lagrangian to be

L = 1

2
μv2 + Gμm

r
. (3.144)

The reduction to an effective one-body problem has been achieved at the level of the
Lagrangian, instead of at the level of the equations of motion.

The gravitational potential energy 
 is spherically symmetric, and this motivates the use
of spherical polar coordinates (r, θ, φ) instead of the original Cartesian coordinates (x, y, z)
associated with the separation vector r . The transformation, given by x = r sin θ cos φ,
y = r sin θ sin φ, and z = r cos θ , can implemented directly within the Lagrangian, which
becomes

L = 1

2
μ
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

) + Gμm

r
. (3.145)

Another symmetry is revealed: the Lagrangian does not depend explicitly on φ, and the
generalized momentum pφ = ∂L/∂φ = μr2 sin2 θ φ̇ is a constant of the motion. Because φ

is an angular coordinate, pφ has the interpretation of an angular momentum, and it is in fact
the component of the angular-momentum vector L = μr × v in the z-direction. Because
this direction was selected arbitrarily in the definition of the spherical coordinates, we can
conclude that in fact, all components of the angular-momentum vector are conserved. This
statement implies that the motion takes place in a fixed orbital plane, and this plane can be
identified with the equatorial plane θ = π

2 without loss of generality.
Setting θ = π

2 and θ̇ = 0 in the Lagrangian, we finally obtain

L = 1

2
μ
(
ṙ2 + r2φ̇2

) + Gμm

r
(3.146)

for the fully reduced Lagrangian that governs the planar motion of a two-body system. At
this stage it is easy to show that the Euler–Lagrange equations produce the orbital equations
first obtained in Sec. 3.2.3.

3.6.3 Lagrangian mechanics of a test mass

To conclude this brief tour of Lagrangian mechanics, we examine the dynamics of a test
body in the gravitational field of other massive bodies. In this case the dynamical system
consists only of the test body, which is given a mass m, position r(t), and velocity v(t). The
gravity of the external bodies is described by their gravitational potential U (t, x), which
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is supposed to be known as a function of space and time. The particle’s kinetic energy
is 1

2 mv2, and its potential energy – its interaction energy with the remaining bodies – is
−mU (r), in which the potential is evaluated at x = r(t). The particle’s Lagrangian is

L = 1

2
mv2 + mU (r). (3.147)

In this case the Lagrangian possesses whatever symmetry is displayed by the gravitational
potential U ; in general there will be no particular symmetry.

The generalized momentum associated with r is p = ∂L/∂v = mv, which is recognized
as the usual momentum vector. The Euler–Lagrange equations read

d p

dt
= m∇U (r), (3.148)

in which the potential is differentiated with respect to r . The left-hand side is ma =
md2r/dt2, and the right-hand side is recognized as the gravitational force exerted by the
external bodies. We have recovered the familiar Newtonian equations of motion, ma = F
with F = m∇U .

Thus ends our survey of Newtonian gravity. Now onward with relativity!

3.7 Bibliographical notes

Kepler’s problem (Sec. 3.2) is a staple of Newtonian mechanics, and its solution is pre-
sented in most textbooks devoted to this topic, including French (1971). More complete
presentations, including the three-dimensional aspects of Keplerian orbits (as reviewed in
Sec. 3.2.5), are typically found in books on celestial mechanics; among our favorites are
the old classic by Brouwer and Clemence (1961) and the more modern text by Murray and
Dermott (2000).

The method of osculating orbital elements developed in Sec. 3.3 is also standard fare of
books on celestial mechanics; these also contain many more applications of the formalism
than the few presented in Sec. 3.4. The Kozai mechanism was discovered independently
by Lidov (1962) and Kozai (1962). The first measurement of the solar oblateness by Dicke
and Goldenberg is presented in their 1967 article. An accessible introduction to the rich
field of helioseismology can be found in Narayanan (2012). The motion of the Moon is
treated in great detail in Brown (1960). A broad overview of the gravitational N -body
problem (Sec. 3.5), with applications to the solar system, stellar and galactic dynamics, and
cosmology, is contained in the compilation of lectures edited by Steves and Maciejewski
(2001).

Our presentation of Lagrangian mechanics in Sec. 3.6 does not do justice to this most
elegant formulation of the laws of mechanics, and we add insult to injury by not even
mentioning the Hamiltonian and Hamilton–Jacobi versions of the theory. These topics,
fortunately, are thoroughly treated in many textbooks. A very terse but elegant presentation
can be found in the classic Mechanics by Landau and Lifshitz (1976), and a more leisurely
treatment in Goldstein, Poole, and Safko (2001).
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3.8 Exercises

3.1 In this problem we examine the conic sections of Kepler’s problem.
(a) For an orbit with e 	= 1 and ω = 0, consider a coordinate transformation to

new variables x̄ and ȳ, of the form x̄ = r cos φ + pα, ȳ = r sin φ, where r =
p/(1 + e cos φ) and α is a constant. Find the value of α that converts the curve
to an ellipse or hyperbola, described by the equation

x̄2

A2
± ȳ2

B2
= 1,

where the positive and negative signs correspond to an ellipse and hyperbola,
respectively. Determine A and B in terms of the semi-latus rectum p and eccen-
tricity e.

(b) For e = 1, find the transformation that converts the curve into a parabola de-
scribed by x̄ = C ȳ2. Determine C in terms of p.

3.2 Suppose that the solar system is filled with a uniform distribution of dark matter
with constant mass density ρ. Taking this distribution into account, calculate the
modified gravitational potential of the Sun, and find the perturbing force f acting on
a planetary orbit. Find the relation between orbital period P and semi-major axis a
for a circular orbit, and calculate the secular changes in the planet’s orbital elements.
Place a bound on ρ using suitable solar-system data.

3.3 In some relativistic theories of gravity, the “graviton” is not massless as in general
relativity, but possesses a mass mg . In the Newtonian limit, the graviton mass gives
rise to a modified Poisson equation of the form(

∇2 + 1

λ2

)
U = −4πGρ,

in which λ = h/(mgc) is the Compton wavelength of the graviton. Show that the
spherically symmetric potential of a body of mass m is given by U = (Gm/r )e−r/λ.
Applying this to the Sun as in the preceding problem, place a bound on λ using
solar-system data.

3.4 A test body of mass μ orbits a body of mass m, radius R, and dimensionless
quadrupole moment J2 relative to a symmetry axis e; all other J�s are assumed
to vanish. Prove that the following quantities are constants of the orbital motion:
(a) The total energy, given by

E = 1

2
μv2 − Gμm

r
+ 1

2

Gμm J2 R2

r3

[
3(n · e)2 − 1

]
.

(b) The angular momentum along e, given by Le = μh · e, where h := r × v.
(c) A third quantity, constant to first order in J2, given by

C = h2 + J2 R2

[
(e · v)2 − 2

Gm

r
(e · n)2

]
,
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where n := r/r . This third constant is analogous to the “Carter constant” in the
Kerr geometry of a rotating black hole.

3.5 Consider a spherical body on an inclined, circular orbit about an axisymmetric body
of radius R and even multipole moments J�, with � = 2, 4, 6, and so on. To first order
in perturbation theory, calculate the secular changes in the relevant orbital elements.
In particular, show that:
(a) the inclination is constant, that is, �ι = 0;
(b) the line of nodes changes by an amount

�
 = −3π cos ι

∞∑
�=2

J�

(
R

p

)�

C�,

where C2 = 1, C4 = − 5
2 (1 − 7

4 sin2 ι), and C6 = 35
8 (1 − 9

2 sin2 ι + 33
8 sin4 ι).

3.6 The equations that govern the evolution of the osculating orbital elements have
singularities when e = 0 and ι = 0.
(a) Show that the bad behavior of the equations when e = 0 can be cured by imple-

menting the transformation α = e cos ω and β = e sin ω. Obtain the osculating
equations for the new elements α and β.

(b) Show that the bad behavior of the equations when ι = 0 can be cured by im-
plementing the transformation μ = tan ι cos 
 and ν = tan ι sin 
. Obtain the
osculating equations for the new elements μ and ν.

3.7 Show that the period of oscillation of the Kozai resonance is given by Eq. (3.89), and
that the orbital elements ω, ι, and e vary according to

ω = π

2
+ A sin(2π t/PKozai),

ι = ιc − 1

2
Aec cos(2π t/PKozai),

e = ec + 5

6
A sin ιc cos ιc cos(2π t/PKozai),

on a secular time scale; here A is an arbitrary amplitude for the oscillations.

3.8 From the equations for �e, �ω, and �ι in the Kozai mechanism, show that

e2 cos2 ω sin2 ι − 3

5
e2 + cos2 ι = constant .

3.9 (a) Consider a two-body system on a circular orbit with separation r and angular
velocity 
 = (Gm/r3)1/2, where m = m1 + m2 is the total mass. Body 2 may
be treated as a point mass, but body 1 is tidally distorted by body 2. Because of
tidal dissipation in body 1, r changes over one orbit by

�r = −24π (k2)1
m2

m1

R5
1

r4
(
 − ω1)τ1 ,

where R1, ω1, (k2)1, and τ1 are the radius, rotational angular velocity, Love
number, and viscous delay of body 1, respectively – refer to Eq. (3.105). Find the
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rate of change of orbital angular momentum, L = μr2
. Comparing your result
with Eq. (2.287), what can you conclude about the total angular momentum of
the system, J = L + S1?

(b) The Earth–Moon distance is known to be increasing at a rate of about 3.8 cm/yr.
Assuming a value k2 ≈ 0.15 for the Love number of the Earth, estimate the angle
between the Earth’s tidal bulge and the Earth–Moon direction. Does the bulge lie
ahead of or behind that line?

(b) Show that when the Earth eventually becomes tidally locked with the Moon, the
length of the day (and of the month) will be about 48 current days. You may
ignore the rotational angular momentum of the Moon, and you may assume that
to a good approximation, the moment of inertia of the Earth about its rotation
axis is given by 0.33M⊕ R2

⊕.

3.10 Consider a point at a position r̄(t) on a circular orbit of radius r around a central body
of mass m, orbiting with angular velocity 
, with 
2 = Gm/r3. Consider also a test
body moving on nearby orbit, at a position δ r̄(t) relative to the point on the circular
orbit. Assume that δr � r .
(a) In a coordinate system that rotates around the central body with angular velocity


, show that the equations of motion of the test body are given by

d2

dt2
δr + 2� × d

dt
δr = 
2

[
3(n · δr)n − (ez · δr)ez

]
to first order in δr; here � := 
ez is the angular-velocity vector, and n := r/r .

(b) Prove that the general solution to the equations of motion takes the form of the
linear superposition δr = c1δr1 + c2δr2 + c3δr3 + c4δr4, where cn are arbitrary
constants, and

δr1 = cos(
t − χ1) n − 2 sin(
t − χ1) λ,

δr2 = n − 3

2

t λ,

δr3 = λ,

δr4 = cos(
t − χ4) ez,

are the four eigenmodes of the perturbed orbit; χn are arbitrary phases.
(c) Describe the motion that corresponds to each mode, and show that each mode

is generated by a perturbation in the orbital elements (p, e, ι, 
) relative to the
unperturbed, circular orbit. Relate the constants cn to the variations of the orbital
elements.

(d) Find a solution with c2 = c3 = 0, but with c1 	= 0 and c4 	= 0, describing a
relative orbit that is circular, with a constant radius δr . What is the angle between
the plane of the relative orbit and that of the original, unperturbed orbit?

(e) Now find a solution describing three satellites that are moving on the same circular
relative orbit, such that initially they are placed at the vertices of an equilateral
triangle. Show that as each satellite follows its orbit, the constellation maintains
the shape of an equilateral triangle. This configuration was adopted for the three
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satellites making up the Laser Interferometer Space Antenna (LISA), a proposed
space-based gravitational-wave detector.

3.11 In this problem we explore further the general three-body problem introduced in
Sec. 3.5.1.
(a) Show that there exist planar solutions for which r12 = r13 = r23.
(b) Show that the general bound solution for r := rAB is given by

r = p/(1 + e cos φ) ,

r2 dφ

dt
= (G Mp)1/2,

nAB = cos(φ − ψAB) eX + sin(φ − ψAB) eY ,

with an orbital period given by P = 2πa3/2/(G M)1/2, where a := p/(1 − e2)
and M := m1 + m2 + m3, and where the three phases ψAB differ by π

3 .
(c) Show that aA, the semi-major axes of the individual orbits, are given by

a1 = (m2
2 + m2m3 + m2

3)1/2

M
a,

with the others obtained by suitable permutations.

3.12 Consider a small displacement δρ about the Lagrange point L4 or L5 of the restricted
three body problem. Expand ∇� to first order in the displacement, and include the
Coriolis term in the equations of motion. Substitute δρ = δρ0e−i pt and show that the
solutions for the frequency p are real, and thus that the Lagrange points are stable, if
and only if the mass ratio q satisfies the criterion of Eq. (3.132).

3.13 Assuming that q := m1/m2 � 1, show that the unstable Lagrange points L1 and L2

lie on either side of body 1, at a distance d given by d � r (q/3)1/3, where r is the
distance between bodies 1 and 2. Calculate d for the Earth–Sun system.
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4 Minkowski spacetime

The preceding chapters were devoted to a Newtonian description of the gravitational in-
teraction, and it is now time to embark on an exploration of its relativistic aspects. As we
shall argue in the next chapter, a relativistic theory of gravity that respects the principle of
equivalence reviewed in Sec. 1.2 must be a metric theory in which gravitation is a manifes-
tation of the curvature of spacetime. The simplest metric theory of gravitation is Einstein’s
general relativity, and our task in this chapter and the next is to introduce its essential
elements. Subsequent chapters will develop the weak-field limit of general relativity, and
in these chapters we will return to notions (such as gravitational potentials and forces) that
are familiar from Newtonian physics. But a proper grounding of the weak-field limit must
rest on the exact theory, and we shall now work to acquire the required knowledge. It is,
of course, unlikely that a mere two chapters will suffice to introduce all relevant aspects of
general relativity. What we intend to cover here is a rather minimal package, the smallest
required for the development of the weak-field limit.

This chapter is devoted to a description of physics in Minkowski spacetime (also known as
flat spacetime), which codifies in a particularly elegant way the kinematical rules of special
relativity. We begin in Sec. 4.1 with a description of spacetime itself, and we next present the
(flat) spacetime formulation of some familiar laws of physics: In Sec. 4.2 we examine the
special-relativistic formulation of hydrodynamics, in Sec. 4.3 we turn to electrodynamics,
and in Sec. 4.4 we consider the dynamics of point particles. These spacetime formulations
of the laws of physics exclude gravitation, and the inclusion of this important interaction
can only be achieved by modifying the very structure of spacetime (from flat to curved);
this is the topic of Chapter 5.

4.1 Spacetime

4.1.1 Lorentz transformation and spacetime

Einstein was the first to realize that a kinematical transformation between a reference frame
S (believed to be “at rest”) and another reference frame S′ (moving with a uniform speed
v relative to S) must be given by

t ′ = γ (t − vx/c2) , x ′ = γ (x − vt) , y′ = y , z′ = z , (4.1)
189
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where

γ := 1√
1 − (v/c)2

, (4.2)

if it is to observe the two fundamental axioms of relativistic physics. These are that the
laws of physics must take the same form in all inertial frames, and that the speed of light c
must be the same in all inertial frames. Einstein’s inertial frame was the same as Galileo’s:
a frame in which a body freed from the action of external forces moves uniformly on a
straight line. An inertial frame is a significant extrapolation from what we observe in nature,
where bodies tend to slow down because of friction, and move on curved paths because
of gravity. The first observation does not introduce an essential difficulty, because one can
imagine reducing friction to negligible levels by various tricks (think of air hockey tables).
But gravity is another matter, and Einstein soon realized that it would necessitate a radical
rethinking of inertial frames and the nature of spacetime. We shall come to this in due
course, but for the time being we restrict our attention to such ideal inertial frames, in the
absence of gravity.

The transformation of Eq. (4.1) is known as a Lorentz transformation. It was first identified
by Lorentz and Poincaré to give rise to an invariance of Maxwell’s equations relative to
a choice of inertial frame, and then recognized to have universal validity and to apply to
actual measurements of space and time by Einstein. In Eq. (4.1) it was assumed that S′

moves with respect to S in the x-direction; it is straightforward to generalize the Lorentz
transformation to arbitrary translational directions (see Exercise 4.1).

The Lorentz transformations have a direct impact on the very structure of space and
time, and they suggest the merging of each notion into a unified spacetime. To begin this
discussion, let us define an event as any recognizable phenomenon that occurs at a specific
position in space and at a specific moment in time as measured by a clock at that position;
in a frame S an event is labeled by the three spatial coordinates x , y, and z, as well as a
time coordinate t . Suppose that two events occur at different places but at the same time
when observed in the frame S. These events are separated by a displacement �x , and
they are such that �t = 0. When observed in S′, however, we have that �x ′ = γ �x and
�t ′ = −γ v�x/c2 	= 0; the events are no longer simultaneous, and their spatial separation
differs from �x by a factor of γ . As another example, consider two other events that are
seen in S to occur at the same spatial position (so that �x = 0), but at two different times
separated by the interval �t . When observed in S′ we find that �x ′ = −γ v�t 	= 0 and
�t ′ = γ �t ; the events are no longer in the same spatial position, and their separation in
time differs from �t by a factor of γ .

The message of the Lorentz transformations is that space by itself is not absolute (as it
is in Newtonian mechanics), and time by itself also is not absolute. There is, nevertheless,
a union of space and time – spacetime – that can be considered to be absolute. This
comes about because the Lorentz transformation preserves the quadratic form �s2 :=
−(c�t)2 + (�x)2 + (�y)2 + (�z)2, which takes on the same value whether evaluated in S
(as shown here), or evaluated in S′ (by replacing all unprimed quantities with their primed
version). This is conveniently written in the differential form

ds2 = −(cdt)2 + dx2 + dy2 + dz2, (4.3)
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and �s2 or ds2 gives us an absolute, or Lorentz-invariant, notion of (squared) distance
between two events in spacetime. We shall refer to �s2 or ds2 as the spacetime interval.
Two inertial observers, one attached to S and another attached to S′, will measure the same
value of �s2 for the spacetime interval between two selected events.

Note that �s2 can be either positive, negative, or zero. When two events are seen in S
to be mostly separated in time, so that (c�t)2 > (�x)2, then �s2 < 0, and this conclusion
is shared by any other inertial observer. Such events are said to have a timelike separation.
There exists, in fact, a frame S′ in which �x ′ = 0, so that �s2 = −(c�t ′)2. In this frame,
�t ′ is the interval of time between two events at the same spatial position, as measured
by a clock that sits at that position, and we define this to be the proper time interval
�τ := �t ′ = c−1(−�s2)1/2 between the two events. It has the same value in any inertial
frame.

When, on the other hand, two events are seen in S to be mostly separated in space, so
that (c�t)2 < (�x)2, then �s2 > 0, and this conclusion also is shared by any other inertial
observer. Such events have a spacelike separation. There exists a frame S′ in which �t ′ = 0,
so that �s2 = (�x ′)2. In this case �x ′ gives the displacement between two simultaneous
events, and this defines the proper distance �� := �x ′ = (�s2)1/2 between the two events.
This also is a Lorentz invariant.

When, finally, two events are linked by a signal propagating at the speed of light, so that
�x = c�t , then �s2 = 0; the spacetime interval can be zero even when the events are
widely separated both in time and in space. Such separations are called null, or lightlike.
No Lorentz transformation can make two null-separated events occur simultaneously or at
the same spatial position.

Box 4.1 Tests of special relativity

Special relativity, the physics built on Minkowski spacetime, has been so thoroughly integrated into the fabric
of modern physics that its validity is rarely challenged, except by cranks and crackpots. But we should remem-
ber that it does rest on a strong empirical foundation, including some classic tests.
In addition to the famous Michelson–Morley experiment, which failed to find evidence of a variation of

the speed of light with the Earth’s velocity through a putative “aether,” several classic experiments have been
performed to verify that the speed of light is independent of the speed of the emitter. If the speed of light
were given by c + kv, where v is the velocity of the emitter, and k is a parameter to be measured, then
orbits of binary-star systems would appear to have an anomalous eccentricity unexplainable by normal New-
tonian gravity. This test is not unambiguous at optical wavelengths, however, because light is absorbed and
re-emitted by the intervening interstellar medium, thereby losing thememory of the speed of the source; this
phenomenon is known to astronomers as extinction. But at X-raywavelengths, the path length of extinction is
tens of kiloparsecs, so nearby X-ray binary systems in our galaxy may be used to test the velocity dependence
of light. Using data from three such systems, Kenneth Brecher in 1977 obtained a bound |k| < 2 × 10−9,
for typical orbital velocities v/c ∼ 10−3.
At the other extreme, a 1964 experiment at CERN used ultrarelativistic neutral pions moving at v/c ≥

0.99975 as the source of light. Photons produced by the decayπ0 → γ + γ were collimated and timed
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over a flight path of 30 meters. The result for the speed was 2.9977 ± 0.0004 × 108 m/sec, in agree-
ment with the laboratory value. This experiment thus set a bound |k| < 10−4 for v ≈ c.
The observational evidence for time dilation is overwhelming. In the 1930s, Ives and Stilwell measured

the frequency shifts of radiation emitted in the forward and backward direction by moving ions of H2 and H3

molecules. The first-order Doppler shift cancels out from the sumof the forward andbackward shifts, revealing
the second-order time-dilation effect, which was found to agree with theory. (Ironically, Ives was a die-hard
opponent of special relativity.)
A classic experiment published by Rossi and Hall in 1941 showed that the lifetime ofμ-mesons was pro-

longed by the Lorentz factor γ = (1 − v2/c2)−1/2. Muons are created in the upper atmosphere when
cosmic-ray protons collide with nuclei of air, producing pions, which decay quickly to muons. With a rest half-
life of 2.2 × 10−6 s, a muon travelling near the speed of light should travel only 2/3 of a kilometer on
average before decaying to a harmless electron or positron and two neutrinos. Yet muons are the primary
component of cosmic rays detected at sea level. With time dilation and a typical speed of v/c ∼ 0.994,
their lives as seen from Earth are prolonged by a factor of nine, enough for them to reach sea level. Rossi and
Hall measured the distribution of muons as a function of altitude and also measured their energies, and con-
firmed the time-dilation formula. In fact, since collisions between cosmic-ray muons and DNA molecules are
a non-negligible source of natural genetic mutations, one could argue that special relativity plays a role in
evolution!
In an experiment performed in 1966 at CERN, muons produced by collisions at one of the targets in the ac-

celerator were deflected by magnets so that they would move on circular paths in a storage ring. Their speeds
were 99.7 percent of the velocity of light, and the observed twelve-fold increase in their lifetimes agreed with
the prediction with 2 percent accuracy. Also, since the storage ring was 5 meters in diameter, the muons’ ac-
celerations were greater than the gravitational acceleration on the Earth’s surface by a factor of 1019; these
accelerations had no effect on their decay rates.
The incorporation of Lorentz invariance into quantum mechanics provided further support for special rel-

ativity. The first attempt at integration was the discovery of the Dirac equation, the relativistic generalization
of Schrödinger’s equation, with its prediction of anti-particles and elementary particle spin. Complete inte-
gration came with the development of relativistic quantum field theory, which naturally embodies the Pauli
exclusion principle by demanding that the creation and annihilation operators of spinor fields satisfy anticom-
mutation relations in order to satisfy Lorentz invariance. Because the Pauli exclusion principle explains the
occupation of atomic energy levels by electrons, one could argue, with but a hint of chauvinism, that special
relativity explains Chemistry! The modern incarnations of quantum field theory, such as Quantum Electro-
dynamics, Electroweak Theory, Quantum Chromodynamics, and String Theory, all have Lorentz invariance as
foundations.

4.1.2 Metric tensor

It is convenient to combine the spatial coordinates (x, y, z) and the time t that label a
spacetime event into a unified spacetime coordinate xα = (ct, x, y, z). The Greek index α,
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and all other Greek indices that appear below, run over the values {0, 1, 2, 3}; we choose
x0 = ct to represent time (rescaled by a factor of c so that all coordinates have dimensions
of length), and x1 = x , x2 = y, x3 = z to represent the spatial coordinates. We shall often
represent the spatial coordinates as the three-dimensional vector x with components x j ;
the Latin index j (and all others like it) run over the values {1, 2, 3}.

In this notation Eq. (4.3) can be expressed as

ds2 = ηαβdxαdxβ, (4.4)

where ηαβ is a diagonal matrix with entries η00 = −1, η11 = η22 = η33 = 1, and where
(according to the Einstein summation convention introduced in Sec. 1.4.4) all repeated
indices are summed over. The matrix has the purpose of converting coordinate intervals
dxα , which are affected by a change of reference frame, to the spacetime interval ds2, which
is a Lorentz invariant; it is called the metric tensor of Minkowski spacetime. Below we shall
distinguish very clearly between vectors and tensors (such as dxα) that are affected by a
coordinate transformation, and scalar quantities (such as ds2) that are spacetime invariants.

Equation (4.4) possesses the irresistible interpretation of expressing the inner product
between the spacetime vector dxα with itself. We shall adopt this geometric point of view,
and use the metric ηαβ to define the inner product between any two vectors. If Aα is
a spacetime vector (an object that transforms as the coordinate increments dxα under a
Lorentz transformation) and Bα is another, then by definition ηαβ Aα Bβ shall be their inner
product; it may be verified that the inner product between two vectors is a Lorentz invariant.
The inner product of a vector with itself, ηαβ Aα Aβ , is called the norm of the vector. Keep
in mind that in Minkowski spacetime, norms are not necessarily positive: the norm of a
timelike vector is always negative, and the norm of a lightlike vector is always zero.

We shall also use the Minkowski metric to raise and lower indices. Given a vector Aα ,
we define an associated quantity Aα (known as a dual vector) by the operation

Aα = ηαβ Aβ. (4.5)

This operation is called “lowering the index,” and it produces A0 = −A0, A1 = A1, A2 =
A2, and A3 = A3. The operation can be inverted if we introduce the inverse Minkowski
metric ηαβ , a diagonal matrix with entries η00 = −1 and η11 = η22 = η33 = 1. The inverse
metric is defined by the statement

ηαμημβ = δα
β, (4.6)

which is equivalent to the matrix equation η−1η = 1. The inverse operation is

Aα = ηαβ Aβ, (4.7)

and it is called “raising the index.”

4.1.3 Kinematics of particles

The laws of physics must be formulated in spacetime. We begin this reformulation with an
examination of the motion of particles. In Newtonian mechanics the motion of a particle is
described mathematically by equations of the type x = r(t), which assign to the particle,
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at any time t , the position determined by the vectorial function r(t). This gives rise to a
parameterized curve in three-dimensional space, and absolute time t assumes the role of
the parameter.

In spacetime we promote t to one of the coordinates, and resist the temptation of using
it also as a parameter. Instead we look for a description of the motion of the general form
xα = rα(λ), which assigns, for any value of the parameter λ, the spacetime coordinates
determined by the functions rα(λ). We wish the parameter λ to be a Lorentz invariant, and
for this we select proper time τ , the time as measured by a standard clock that is attached
to the moving particle. This is a spacetime invariant because any inertial observer will
agree, irrespective of her own motion, that a clock moving with the particle marks time at
precisely the rate measured by this particular clock; she will not, of course, claim that her
own clock marks time at this rate. The trajectory of the particle in spacetime, therefore,
will be described by the parametric equations xα = rα(τ ), with proper time τ assuming the
role of the parameter; the trajectory is known as the particle’s world line in spacetime.

The invariant dτ can be related to the spacetime interval ds2 evaluated for two neighbor-
ing points on the world line. A central aspect of physics in flat spacetime is the statement,
well supported by empirical evidence, that the rate at which a standard clock marks time
may depend on its velocity, but it does not depend on its acceleration. The clock attached
to the particle, therefore, marks time at precisely the same rate as a clock carried by an
inertial observer, provided that the observer’s velocity matches the particle’s velocity when
the measurement is carried out. To be sure, the velocities will be matched only momentar-
ily if the particle is accelerated, but at that time the particle will be at rest relative to the
observer. And at this moment, the two clocks will mark time at precisely the same rate. The
observer’s inertial frame will be referred to as the particle’s momentarily comoving Lorentz
frame, or MCLF. It is a most useful notion, and we will invoke it repeatedly to simplify
subtle arguments.

As we have said, the particle is momentarily at rest in the comoving frame, and in
this frame S′, proper time τ advances at the same rate as observer time t ′; we have
dτ = dt ′. We also have that the (absent) spatial motion of the particle is described by
dx ′ = dy′ = dz′ = 0 in the comoving frame. The spacetime interval along the world line
is therefore ds2 = −(cdt ′)2 = −(cdτ )2. Because each side of the equation is a Lorentz
invariant, we conclude that the relation

dτ = c−1
√

−ds2 (4.8)

is valid in any reference frame. Proper time, therefore, measures the accumulation of
spacetime interval along the particle’s world line.

Having selected proper time as a natural parameter on the world line, we define the
particle’s velocity vector as

uα = drα

dτ
. (4.9)

Notice that this is a spacetime vector, with four components. Notice also that uα , like drα =
dxα , does indeed transform as a vector under Lorentz transformations. The spacetime
velocity vector can be related to v = d r/dt , the three-dimensional velocity vector of
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Newtonian mechanics. If we factorize dt/dτ on the right-hand side of Eq. (4.9), we end up
with uα = (dt/dτ )(drα/dt), or

uα = γ (c, v), γ := dt/dτ, (4.10)

if we break it down in terms of time and spatial components. The quantity γ , defined
here as dt/dτ , bears a close relationship with the Lorentz factor introduced in Eq. (4.2).
The relation is revealed when we compute the spacetime norm of the velocity vector. We
have ηαβuαuβ = (ηαβdrαdrβ)/(dτ )2, and in the numerator we recognize ds2, the spacetime
interval between two neighboring events on the world line; taking Eq. (4.8) into account,
we conclude that

ηαβuαuβ = −c2. (4.11)

Substituting Eq. (4.10) into this, we arrive quickly at

γ = 1√
1 − (v/c)2

, (4.12)

an alternative expression for the factor γ . Here v2 := v · v is the three-dimensional norm of
the Newtonian velocity vector. It should be noted that this γ differs from the γ of Eq. (4.2)
in one essential aspect: The velocity parameter that appears here is the particle’s velocity
vector v(t), which depends on time if the particle is accelerated; the velocity parameter that
appears in Eq. (4.2) is the constant speed of the frame S′ relative to S.

4.1.4 Momentum and energy

In Newtonian mechanics, the momentum p of a particle is obtained by multiplying the
velocity vector v by the particle’s mass m. In relativistic mechanics the closest analogue is
the spacetime vector

pα = muα, (4.13)

with m denoting the particle’s rest-mass, the mass as measured when the particle is mo-
mentarily at rest in some inertial frame S. It follows from Eqs. (4.11) and (4.13) that

ηαβ pα pβ = −m2c2. (4.14)

From Eq. (4.10) we see that the spatial components of the momentum vector are p = γ mv,
and the factor γ is a relativistic correction to the Newtonian expression. The time component
is p0 = γ mc, and to probe its significance we expand γ in powers of v/c; the result can
be expressed as cp0 = mc2 + 1

2 mv2 + 3
8 mv4/c2 + · · · In the first term we recognize the

particle’s rest-mass energy mc2, in the second term we recognize the Newtonian kinetic
energy 1

2 mv2, and in the third and higher terms we have relativistic corrections. From this
we conclude that cp0 represents the relativistic energy of the particle. We can therefore
express the momentum vector as

pα = (E/c, mγ v), E = γ mc2, (4.15)
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and Eq. (4.14) gives rise to the well-known formula E2 = p2c2 + m2c4 for the relativistic
energy of a particle; here p2 = γ 2m2v2. The central message of Eq. (4.15) is that in
relativistic mechanics, energy and momentum are no longer separate notions; they join
together in a unified four-dimensional momentum vector.

Box 4.2 Relativistic mass

Because the restmass of a particle is defined andmeasured in the particle’sMCLF, it is a Lorentz invariant. It is a
constant label that stays with the particle nomatter what it is doing, and nomatter what reference frame the
observer uses to study the particle’s motion. This definition of relativistic rest-mass is not universally accepted.
For example, in an effort tomake themomentum formula p = γ mv lookmore “Newtonian,”many authors
have defined a “relativistic mass” γ m that increases with velocity. In our view, this concept has sown more
confusion than enlightenment, and fortunately, its usage has declined steadily over the years; we will never
adopt it in this book. In our terminology, the quantityγ m is the energy E of the particle divided byc2, which
does increase with velocity;m is the rest mass, which does not. The relativistic momentum is γ mv. It is not
like Newton’s momentum; get over it.

The quantity E is the energy of the particle as measured by an observer at rest in the
frame S. An interesting question is: what would its energy be if it were measured by a
moving observer? We are given a particle moving with momentum pα , an observer moving
with velocity uα

obs, and we wish to determine Eobs, the particle’s energy as measured by the
moving observer. The observer, we note, may be accelerated; we make no requirement that
either motion be inertial.

To answer this question we consider a Lorentz frame S′ that is momentarily comoving
with the observer at the moment that she encounters the particle and makes the measurement.
Because the observer is momentarily at rest in this frame, the result of the measurement will
be cp′0, the time component of the momentum vector in S′ multiplied by the speed of light.
On the other hand, the observer’s own velocity vector in S′ possesses a time component only,
and this is given by u′0

obs = c. We may therefore say that the measured energy is p′0u′0
obs,

and in S′ this is equal to −ηαβ p′αu′β
obs. Apart from the minus sign, this is the inner product

between the vectors pα and uα
obs, and since the inner product is a spacetime invariant, it can

be evaluated in the original frame S. We conclude that the particle’s energy, as measured
by the observer, can be expressed as

Eobs = −pαuα
obs. (4.16)

Note that we have used the metric to lower the index on pα . Substitution of Eqs. (4.10) and
(4.15) into Eq. (4.16) reveals that

Eobs = mc2(1 − v · vobs/c2)√
1 − (v/c)2

√
1 − (vobs/c)2

, (4.17)

where v(t) is the Newtonian velocity of the particle, while vobs(t) is the observer’s velocity;
each velocity vector may depend on time.
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Fig. 4.1 Instantaneous rest frame of a particle moving on a timelike world line in spacetime.

4.1.5 Particle rest-frame

Suppose that we follow the motion of a particle with velocity vector uα . At any point on
the world line we may employ the unit vector eα

(0) := uα/c to define a preferred (timelike)
direction in spacetime; this is a unit vector because the norm of uα is equal to −c2. This
direction and the three (spatial) directions orthogonal to it define the particle’s rest frame
at this moment (see Fig. 4.1). The spatial directions are spanned by three unit vectors eα

(1),
eα

(2), and eα
(3); these are chosen to be mutually orthogonal, and they are also orthogonal to

eα
(0).

Any vector field Aα(τ ) on the world line can be decomposed in the vectorial basis just
defined. We have

Aα = A(0)eα
(0) + A(1)eα

(1) + A(2)eα
(2) + A(3)eα

(3), (4.18)

and A(0) = −Aαeα
(0), A( j) = Aαeα

( j) are the projections of the vector onto the selected basis.
For concreteness, suppose that the particle is momentarily moving in the x-direction

when viewed in a frame S. Then eα
(0) = uα/c = γ (1, v/c, 0, 0), and an appropriate spatial

basis is given by eα
(1) = γ (v/c, 1, 0, 0), eα

(2) = (0, 0, 1, 0), and eα
(3) = (0, 0, 0, 1). It is easy

to verify that these vectors are all of unit length and mutually orthogonal. We observe that
when v = 0, the vector eα

(1) points in the x-direction; in a frame S′ momentarily comoving
with the particle, the vector points in the x ′-direction. (We shall make use of this observation
in the following subsection.)

Given a vector field Aα(τ ) on the world line, its component along the timelike direction
eα

(0) can easily be extracted by acting with the longitudinal projection operator −eα
(0)e(0)β ;
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we get (−eα
(0)e(0)β

)
Aβ = A(0)eα

(0). (4.19)

On the other hand, the components orthogonal to uα can be extracted by acting with the
transverse projection operator

Pα
β := δα

β + eα
(0)e(0)β = δα

β + uαuβ/c2; (4.20)

simple manipulations do indeed reveal that

Pα
β Aβ = A( j)eα

( j). (4.21)

The projection operator satisfies the identities

Pα
βuβ = 0 = uα Pα

β, Pα
μ Pμ

β = Pα
β, Pα

α = 3, (4.22)

and it can be expanded as Pαβ = eα
(1)e

β

(1) + eα
(2)e

β

(2) + eα
(3)e

β

(3) in terms of the transverse basis
eα

( j).

4.1.6 Photons

A particle moving with the speed of light traces a world line along which ds2 vanishes
everywhere. According to Eq. (4.8), this implies that dτ = 0 along the word line, and we
conclude that the proper time of a photon is not defined. This, finally, implies that the
photon’s velocity vector uα also is not defined.

Nevertheless, the momentum vector of a photon is well defined, in spite of the fact that
m = 0 and uα is not defined. It can be obtained by a limiting procedure in which the speed
of the particle is taken to reach c, with dτ and m each taken to approach zero while keeping
their ratio dτ/m fixed. In other words, the momentum vector is defined as the limit

pα = lim
drα

d(τ/m)
, (4.23)

in which the particle’s speed approaches the speed of light. In the limit the rescaled world-
line parameter τ/m becomes λ, the photon’s world line is represented by the parametric
relations rα(λ), and we have pα = drα/dλ. The momentum of a photon satisfies the null
condition

pα pα = 0 , (4.24)

which states that the photon’s rest-mass m is zero. The time component of the momentum
vector (the photon’s energy h̄ω as measured by an observer attached to the frame S,
divided by the speed of light) is not independent of the spatial components. If we write
pα = (h̄ω/c, h̄k), with the spatial components expressed in terms of a wave vector k, then
Eq. (4.24) gives rise to the well-known dispersion relation ω2 = c2k2, where k2 = k · k.
This allows us to express the momentum vector as

pα = h̄ω

c
(1, k̂), (4.25)
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where k̂ is a unit vector (in the three-dimensional, Newtonian sense) that indicates the
photon’s direction of propagation, so that k = (ω/c)k̂.

Box 4.3 Photons: An alternative viewpoint

The reader might object to the limiting procedure used in Eq. (4.23), because it is not a physically realizable
procedure. The deeper justification for Eqs. (4.24) and (4.25) comes from Maxwell’s equations and quantum
mechanics. In the limit where the wavelength of light is short compared to all other scales of variation in the
problem (the geometrical optics limit), Maxwell’s equations require that the spacetime wave vector kα :=
∂α S benull,where S is the phase of thewave. Quantization ofMaxwell’s equations then reveals that h̄kα =
( h̄ω/c)(1, k̂) = pα . The geometrical optics limit is discussed further in Box 5.6, in the context of curved
spacetime.

The argument that leads to Eq. (4.16) applies just as well to photons, and we may
immediately state that

h̄ωobs = −pαuα
obs (4.26)

is the photon’s energy as measured by an observer moving with a velocity uα
obs. With

uα
obs = γ (c, vobs), this is

h̄ωobs = h̄ω
1 − k̂ · vobs/c√

1 − (vobs/c)2
, (4.27)

and we have obtained the well-known formula for the Doppler effect applied to light and
other forms of radiation. Although we derived Eq. (4.27) using relativistic methods, it is
good to remember that it is really a mixture of the non-relativistic, first-order Doppler effect
caused by the piling up or stretching out of the waves as seen by the moving observer – the
−k̂ · vobs/c term, which can be applied to any type of wave by replacing c by the actual
wave speed – and the relativistic time dilation of the observer’s clock compared to the
laboratory clock – the usual γ factor.

Another interesting phenomenon involving light is its aberration, the observed property
that the apparent position of an astronomical body depends on the velocity of the observer.
This phenomenon was first discovered by James Bradley in 1725, and a few years later
he developed a theory of aberration based on Newton’s corpuscular model for light. The
explanation was simple: the apparent position shifts for the same reason that you have to
tilt your umbrella forward when walking through an otherwise vertical rainfall. Bradley’s
theory did not survive the transition to a wave theory of light, but it is interesting to note
that the wave theory could not account for the aberration until various ad hoc models of a
dragged aether were concocted precisely to save the phenomenon. It was Einstein, finally,
who showed how to reconcile aberration with Maxwell’s theory in his famous 1905 paper
on the electrodynamics of moving bodies.

Suppose that in a frame S, a photon with frequency ω is moving in the direction of
the unit vector k̂. We align our coordinates so that k̂ = (cos αrest, sin αrest, 0); the photon
moves in the x-y plane, and its trajectory makes an angle αrest with respect to the x-axis.
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This is the angle that is measured by an observer at rest in the frame S, and we can derive
a formula for cos αrest that involves spacetime invariants only. For this purpose we re-
introduce the photon’s momentum vector pα = c−1h̄ω(1, k̂), the observer’s velocity vector
uα

rest = (c, 0, 0, 0), and the spatial vector eα
rest = (0, 1, 0, 0) that points in the x-direction;

this vector is orthogonal to uα , and is one of the three spatial vectors that span the rest
frame of our observer. It is easy to verify that

cos αrest = c
pαeα

rest

−pβuβ
rest

(4.28)

is the desired formula.
We next introduce another observer – let’s call her Leslie – moving relative to S with a

velocity uα . We assume that at the time Leslie encounters the photon, she is momentarily
moving in the x-direction, so that uα = γ (c, v, 0, 0). At this moment Leslie is at rest relative
to the comoving frame S′, which moves uniformly with speed v with respect to S. For an
observer (a third!) at rest in this frame, Eq. (4.28) applies, because it is expressed in terms
of spacetime invariants. Because the angle α measured by Leslie is the same as the angle
measured by the third observer (the one at rest in S′), we can immediately state that

cos α = c
pαeα

−pβuβ
, (4.29)

where eα is a spatial vector that points in the direction of the x ′-axis. An expression for this
was worked out in the preceding subsection; we have that eα = γ (v/c, 1, 0, 0). Making the
substitutions for pα , uα , and eα in Eq. (4.29) returns

cos α = cos αrest − v/c

1 − (v/c) cos αrest
. (4.30)

This gives the photon’s angle α, as measured by an observer moving with speed v, in terms
of the angle αrest measured by an observer at rest. Equation (4.30) is the mathematical
description of the aberration of light. Like the Doppler effect, this is a mixture of non-
relativistic and relativistic effects. To first order in v/c, the effect can be derived simply
by calculating the angle between the vector ck̂ − v (light’s velocity as seen in S′) and the
vector v. Relativistic effects occur at order (v/c)2. The first-order effect applies just as well
to raindrops, provided that you replace c by the appropriate speed of the projectile.

4.1.7 Particle dynamics

Our considerations so far have been entirely kinematical, and in the next three sections we
will examine some dynamical aspects of physics in Minkowski spacetime. As a warm-up
exercise we describe here what would be required of a dynamics of (massive) particles.

The acceleration vector of a particle with world line rα(τ ) and velocity uα(τ ) = drα/dτ

is defined as

aα := duα

dτ
. (4.31)
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It is an important fact that in spacetime, the acceleration is everywhere orthogonal to the
velocity:

aαuα = 0; (4.32)

this is an immediate consequence of the normalization condition ηαβuαuβ = −c2. (To see
this, differentiate with respect to τ , and use the symmetry of the metric tensor.) Equation
(4.32) implies that the four components of the vector aα are not all independent. If we write
uα = γ (c, v) and aα = (a0, a), then Eq. (4.32) implies that a0 = (a · v)/c. Note that while
v = d r/dt is the Newtonian velocity vector, a is not equal to the Newtonian acceleration;
we have a = d2r/dτ 2 instead of d2r/dt2.

A dynamical law will relate the acceleration of a particle to the forces acting upon it. A
relativistic version of Newton’s second law must take a vectorial form in spacetime, and we
therefore write

Fα = maα, (4.33)

where m is the particle’s rest mass and Fα is a force vector supplied by the dynamical
theory. To be consistent with the basic kinematical constraint of Eq. (4.32), the force
vector must be everywhere orthogonal to the velocity vector. If we write Fα = (F0, F),
then F0 = (F · v)/c. Apart from the factor of c, we recognize on the right-hand side the
relativistic generalization of the rate at which the spatial components of the force do work
on the particle. The zeroth component of Eq. (4.33), therefore, is a relativistic statement of
the work–energy theorem.

4.1.8 Free particle motion andmaximum proper time

A freely moving particle is one on which no forces act. For such a particle, aα = 0,
uα = uα

0 = constant, xα = xα
0 + uα

0 τ , and the particle moves on a straight line in spacetime.
This motion, as trivial as it may seem, arises from an action principle, just as in Newtonian
dynamics.

In Newtonian dynamics the action functional of a free particle is given by S = ∫ 2
1 L dt ,

with a Lagrangian function L = 1
2 mv2. In relativistic dynamics the action must be a Lorentz

invariant, and it must have the dimension of an energy multiplied by time. We adopt

S = −mc2
∫ 2

1
dτ (4.34)

as a suitable candidate with the required properties, and show that it leads to sensible results.
We saw back in Sec. 4.1.3 that the interval of proper time dτ along any world line is

related to the spacetime interval ds2 by dτ = c−1
√−ds2. Writing this in full, we have

dτ = 1

c

√
−ηαβ drαdrβ

= 1

c

√
−ηαβ

drα

dt

drβ

dt
dt, (4.35)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-04 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:0

202 Minkowski spacetime

where, in the second step, we divided the coordinate interval drα along the world line by
the coordinate-time interval dt . These manipulations reveal that the action of Eq. (4.34)
can be expressed in the standard form S = ∫ 2

1 L dt , with a relativistic Lagrangian

L = −mc

√
−ηαβ

drα

dt

drβ

dt
. (4.36)

A more explicit form is

L = −mc2
√

1 − v2/c2, (4.37)

where v2 := v · v. To see that the action of Eq. (4.34) is in fact a sensible choice, we
expand the Lagrangian in powers of v/c and examine the non-relativistic limit. We get L =
−mc2 + 1

2 mv2 + 1
8 mv4/c2 + · · · , and we see that up to the irrelevant constant −mc2, the

Lagrangian is equal to the Newtonian kinetic energy 1
2 mv2 to leading order; the additional

terms are relativistic corrections to the kinetic energy.
The particle’s dynamics is obtained by demanding that the action of Eq. (4.34) be

stationary under arbitrary variations of the world line, with the usual provision that all
world lines must link the same initial event 1 to the same final event 2. The calculus
of variations implies that the Lagrangian of Eq. (4.36) must satisfy the Euler–Lagrange
equations

d

dt

∂L

∂vα
− ∂L

∂rα
= 0, (4.38)

where vα := drα/dt . The Lagrangian is actually independent of rα , and we obtain

ηαβ

d

dt

(
vβ

√−ημνvμvν

)
= 0. (4.39)

This implies that

d

dt

(
drα/dt

dτ/dt

)
= d

dt

(
drα

dτ

)
= 0, (4.40)

and converting the coordinate-time derivative to a proper-time derivative, we arrive at

aα = duα

dτ
= d2rα

dτ 2
= 0, (4.41)

which indeed corresponds to free particle motion.
The action functional of a relativistic particle is directly related to the elapsed proper time

between the events 1 and 2. An extremum of the action is therefore an extremum of proper
time, and it can be verified that the uniform motion of a free particle actually maximizes the
elapsed proper time between the two events. This conclusion is a feature of timelike curves
in spacetime; for spacelike curves we would find instead that a straight line minimizes the
proper distance between two events.
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4.2 Relativistic hydrodynamics

4.2.1 Fluid variables

In Chapter 1 we introduced a number of variables that describe the physical state of a
Newtonian fluid. These were the velocity field v, the mass density ρ, the pressure p, the
internal energy density ε, the rate of heat generation q, and the heat flux H ; all of these
are functions of time t and position x within the fluid. A spacetime formulation of the
laws of hydrodynamics also involves such quantities, and it is straightforward, for example,
to promote the Newtonian velocity field v to a relativistic velocity field uα = γ (c, v). It
is more delicate, however, to generalize the densities ρ and ε, because of issues of frame
dependence that arise in special relativity. In which frame is the mass density to be defined?
An answer is required, because Lorentz contraction implies that a density measured in one
frame S will differ by a factor of γ from a density measured in another frame S′. The most
useful answer turns out to be: measure all densities at an event xα = (ct, x) in spacetime in
the Lorentz frame that is momentarily comoving with the fluid element at that event. Thus,
the fluid’s proper mass density ρ(xα) shall be the mass per unit volume as measured in the
MCLF of a fluid element at xα; as such ρ is a spacetime invariant whose value does not
depend on the Lorentz frame. Similarly, we define ε(xα) to be the proper density of internal
(thermodynamic) energy contained in a fluid element at xα , as measured in the comoving
Lorentz frame. These quantities combine naturally into

μ := ρc2 + ε, (4.42)

the total energy density (including rest-mass energy and internal energy) of the fluid
element. Like ρ and ε, μ is a spacetime invariant.

We shall also agree that the fluid’s pressure p(xα) is to be measured in the momentarily
comoving Lorentz frame at xα , and like the densities considered previously, p also is a
spacetime invariant. Our list of fluid variables is now complete; for our purposes in this
book we shall not require relativistic generalizations of the heat variables q and H .

4.2.2 Mass current

Having introduced the proper mass density ρ(xα), which refers to an infinite number of
momentarily comoving frames spread out throughout the fluid, we now wish to introduce
quantities that describe the fluid’s mass distribution as seen in a single (and global) Lorentz
frame S; we shall think of this as the “laboratory frame.” We define

c−1 j0 := fluid mass density, as measured in S, (4.43a)

j k := mass flux in the xk-direction, as measured in S; (4.43b)

the mass flux j is defined so that j · d S = j kd Sk is the mass crossing an element of
surface d Sk per unit time. These quantities combine to form a spacetime vector jα (which
transforms appropriately under a Lorentz transformation), and the factor of c−1 was inserted
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to ensure that all components of jα have a dimension of (mass)(velocity)/(volume). We
shall call this vector the mass current.

The quantity c−1 j0 is the fluid’s mass density as measured in the laboratory frame S.
This differs from the proper density ρ by a factor of γ , which takes into account the Lorentz
contraction of a moving fluid element along its direction of motion. We have c−1 j0 = γρ,
and we see that j0 = ρu0. The mass flux j k is the mass density of a fluid element multiplied
by its velocity (all measured in S), and we have j k = (γρ)vk = ρuk . We conclude that the
mass-current vector can be related to the proper density ρ and the velocity field uα by

jα = ρuα. (4.44)

This equation reveals very clearly that jα is indeed a spacetime vector, because it is the
product of a scalar ρ and a vector uα .

Conservation of (rest-)mass is a very important property of a fluid, and we next work on
a mathematical formulation of this property. We examine a three-dimensional volume V of
the fluid, bounded by a two-dimensional surface "; the volume is arbitrarily large or small,
and is taken to be in a fixed position in the laboratory frame S. The fluid flows freely in and
out of the volume, and

− d

dt

∫
V

c−1 j0 d3x = −
∫

V

∂ j0

∂x0
d3x (4.45)

is the amount of mass that leaves V per unit time. On the other hand,∮
"

j kd Sk =
∫

V

∂ j k

∂xk
d3x (4.46)

is the amount of mass that crosses the surface " per unit time; we use the divergence theorem
to convert the surface integral into a volume integral. Conservation of mass dictates a strict
equality between the two results, and the arbitrariness of V implies that

∂α jα = 0. (4.47)

This equation is the mathematical expression of local mass conservation; the mass-current
vector is divergence-free in spacetime. We shall explore the consequences of this equation
below.

4.2.3 Energy-momentum tensor

Having introduced the proper energy density μ in Eq. (4.42), we next turn to a description
of energy density, energy flux, momentum density, and momentum flux as viewed in the
laboratory frame S. But instead of defining a vector field, as we did for the mass current,
we are forced here to define a tensor field. This can be seen most easily by considering
the energy density of a fluid element that moves through the laboratory with speed v. The
energy contained in the fluid element is increased by the relativistic factor γ , while its
volume is decreased by the Lorentz contraction factor 1/γ . Its energy density is therefore
equal to μγ 2 = μu0u0/c2, and this suggests that we need a tensor to properly describe this
quantity.
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We define

T 00 := energy density, (4.48a)

cT 0 j := energy flux in the x j -direction, (4.48b)

c−1T j0 := density of j-component of momentum, (4.48c)

T jk := flux of j-momentum in the xk-direction; (4.48d)

these quantities are all measured in S. The fluxes are defined so that cT 0 j d S j is the energy
crossing an element of surface d Sj per unit time, while T jkd Sk is the j-component of the
momentum vector crossing the element d Sk per unit time. The quantities defined above
combine to form the energy-momentum tensor T αβ , and each component of this tensor has
a dimension of (energy)/(volume).

The argument that led to Eq. (4.47) can easily be adapted to describe the local conservation
of energy and momentum. In this way we find that ∂β T 0β = 0 is a statement of energy
conservation, while ∂β T jβ = 0 is a statement of momentum conservation (one for each
spatial direction labeled by j). All together, these give rise to the tensorial statement

∂β T αβ = 0 (4.49)

of energy-momentum conservation. The energy-momentum tensor is divergence-free when
energy and momentum are locally conserved.

Our considerations thus far have been general, and we next specialize them to the case at
hand, that of a perfect fluid. We wish to relate T αβ to other fluid variables such as μ, p, and
uα . To begin we consider the special case of a fluid at rest, without pressure. In this case
the fluid’s energy density in S is the same as its proper density, and we have that T 00 = μ.
In addition, the fluid’s momentum is zero, and all fluxes vanish, so that T 00 is the only
non-vanishing component of the energy-momentum tensor. On the other hand, the fluid’s
velocity field is uα = (c, 0, 0, 0), and we deduce the equality T αβ = μuαuβ/c2.

We next consider the case of a moving fluid, still without pressure. We select a fluid
element and a moment of time, and we let uα = γ (c, v) be the velocity vector of the fluid
element at that time. The energy density of the fluid element as measured in S differs from μ

by two factors of γ , as we discussed previously; we have T 00 = μγ 2. The energy flux is this
multiplied by the velocity of the fluid element: cT 0 j = (μγ 2)v j . The density of momentum
can be expressed as (energy density)(momentum/energy), and since the momentum per
energy of a fluid element is p j /(cp0) = v j /c2, this is c−1T j0 = (μγ 2)(v j/c2). And finally,
the momentum flux is T jk = (μγ 2)(v j vk/c2). Once more we find that these results are
summarized by the equation T αβ = μuαuβ/c2.

This expression must be altered to account for the fluid’s pressure. We return to the fluid at
rest and re-examine the spatial components of the energy-momentum tensor. By definition
we have that T jkd Sk is the rate of momentum transfer across an element of surface d Sk .
This is also, by Newton’s second law, the force acting on the surface element (directed out
of the surface). In the case of a perfect fluid, for which there are no shear forces generated by
viscosity, the only such force is created by pressure, and the pressure necessarily acts in the
surface’s normal direction. From this we conclude that for a perfect fluid at rest, T jk must
be equal to p δ jk . The result remains valid for a moving fluid, provided that the equality is
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stated in the MCLF of each fluid element. A more general statement must involve a tensor
Pαβ that replaces δ jk and reduces to it in the comoving Lorentz frame. This tensor must be
orthogonal to uαuβ/c2, and it was identified back in Eq. (4.20) as the transverse projection
operator Pαβ = ηαβ + uαuβ/c2. We conclude, finally, that the pressure contribution to the
energy-momentum tensor must be pPαβ .

All in all we have obtained the following expression for the energy-momentum tensor of
a perfect fluid:

T αβ = μuαuβ/c2 + p
(
ηαβ + uαuβ/c2

) = (μ + p)uαuβ/c2 + p ηαβ, (4.50)

where, we recall, μ = ρc2 + ε is the fluid’s proper energy density.
We note that according to Eq. (4.50), the energy-momentum tensor is symmetric under

an exchange of indices,

T βα = T αβ. (4.51)

This property is in fact very general, and not restricted to the specific case of a perfect fluid.

4.2.4 Fluid dynamics

All of fluid mechanics is contained in the conservation statements ∂α jα = 0 = ∂β T αβ ,
along with the assignments of Eqs. (4.44) and (4.50).

We first examine the consequences of Eq. (4.47), in which we substitute jα = ρuα . If
we also write uα = γ (c, v), then the equation of mass conservation states that

∂t (γρ) + ∂ j (γρv j ) = 0. (4.52)

This is the relativistic generalization of Eq. (1.26), the Eulerian version of the continuity
equation first encountered in Chapter 1; the relativistic equation reduces to the Newtonian
version when v/c � 1 and γ � 1. The equation of mass conservation can also be expressed
in Lagrangian form, if we write it first in the form uα∂αρ + ρ∂αuα = 0. The first term is
the derivative of the proper density in the direction of the velocity field; if we focus
our attention on a selected fluid element moving on a world line rα(τ ), and write uα =
drα/dτ for its velocity vector, then uα∂αρ is recognized as dρ/dτ , the change in proper
density as we follow the world line of the fluid element. Equation (4.47) can therefore
be expressed as

dρ

dτ
+ ρ∂αuα = 0, (4.53)

and this is the relativistic generalization of Eq. (1.25). This equation informs us that
∂αuα = −ρ−1dρ/dτ = V−1dV/dτ , where V = δm/ρ is the volume of a fluid element of
mass δm.

We next work on Eq. (4.49), in which we substitute Eq. (4.50). Simple manipulations
first return

0 = uα

(
dμ

dτ
+ (μ + p)∂βuβ

)
+ (μ + p)

duα

dτ
+ c2 Pαβ∂β p, (4.54)
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in which we have written dμ/dτ for uβ∂βμ and duα/dτ for uβ∂βuα , adopting the La-
grangian point of view that these derivatives follow the world line of a selected fluid
element. The first set of terms in this expression is directed along uα , while the remaining
terms are orthogonal to uα – refer to Eqs. (4.22) and (4.32). We set each orthogonal piece
of this equation to zero, and obtain

dμ

dτ
+ (μ + p)∂βuβ = 0 (4.55)

and

(μ + p)
duα

dτ
+ c2 Pαβ∂β p = 0. (4.56)

To elucidate the meaning of Eq. (4.55) we make the substitutions μ = ρc2 + ε and ∂αuα =
−ρ−1dρ/dτ . After some cancellations we obtain

dε

dτ
− ε + p

ρ

dρ

dτ
= 0. (4.57)

This is precisely the same equation, Eq. (1.29), that was recognized in Chapter 1 as ex-
pressing the first law of thermodynamics for isentropic flows. To see this clearly, replace
ρ by δm/V and write Eq. (4.57) as d(εV) = −pdV , which is a more recognizable form
of the first law. It is a remarkable fact that the laws of thermodynamics do not require
modifications in the transition from Newtonian physics to Minkowski spacetime, mainly
because they are formulated in the momentarily comoving Lorentz frame of each fluid
element.

Equation (4.56) is the relativistic generalization of Euler’s equation, which was first
displayed in Eq. (1.23); it involves the acceleration duα/dτ = uβ∂βuα of a fluid element
and the (spatially projected) pressure gradient ∂β p. Note that the presence of the projection
operator Pαβ in this equation guarantees that the acceleration duα/dτ is orthogonal to the
velocity uα .

A more explicit statement of Euler’s equation is

(ρ + ε/c2 + p/c2)
duα

dτ
= −(

ηαβ + uαuβ/c2
)
∂β p. (4.58)

An even more explicit version is obtained when we write uα = γ (c, v) for the velocity field
and focus on the spatial components of Eq. (4.58); this yields

γ (ρ + ε/c2 + p/c2)(∂t + v · ∇)(γ v j ) = −∂ j p − γ 2v j (∂t + v · ∇)p/c2. (4.59)

This differs from the non-relativistic version in a number of places. First, the quantity that
multiplies the Lagrangian derivative d(γ v j )/dt on the left-hand side is ρ + ε/c2 + p/c2

instead of just ρ; this tells us that in special relativity, the internal energy ε and the
pressure p participate in the fluid’s inertial response. Second, the Newtonian velocity v j is
multiplied by γ to convert it to a relativistic velocity, and the whole equation is multiplied
by γ to convert the time derivative d/dt to a proper-time derivative d/dτ . Third, the
right-hand side is modified by a term involving dp/dt , the Lagrangian derivative of the
pressure. All modifications become small when v/c � 1, and in the limit we recover
ρ(∂t + v · ∇)v = −∇ p, the non-relativistic version of Euler’s equation.
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4.3 Electrodynamics

4.3.1 Maxwell’s equations

The spacetime formulation of Maxwell’s theory involves an electromagnetic field tensor
Fαβ whose components are defined, in a frame S, in terms of the electric field E and the
magnetic field B. The tensor is antisymmetric, Fβα = −Fαβ , and it therefore contains six
independent components. We make the assignments

F01 = c−1 E x , F02 = c−1 E y , F03 = c−1 Ez , (4.60)

as well as

F12 = Bz , F23 = Bx , F31 = B y . (4.61)

These equations are summarized by F0 j = c−1 E j and Fi j = εi jk Bk , where εi jk is the
permutation symbol introduced in Sec. 1.4.4. The field Fαβ transforms as a tensor under
a Lorentz transformation, and this gives rise to the well-known transformation rules for E
and B (see Exercise 4.8).

The spacetime formulation of electrodynamics must also involve a source for the elec-
tromagnetic field, and we take this to be a charged fluid. We introduce the proper charge
density ρe(xα) as the charge per unit volume that is measured by an observer momentarily
comoving with the fluid element at xα; as such ρe, like the proper mass density ρ introduced
in Sec. 4.2, is a spacetime invariant whose value does not depend on the Lorentz frame.
We introduce also a charge-current vector jα

e whose definition is very close to that of the
mass-current vector of Eq. (4.44). We have that c−1 j0

e is the charge density as measured in
the laboratory frame S, while j k

e is the charge flux (or current) in the xk-direction. If uα is
the fluid’s velocity field, then

jα
e = ρeuα. (4.62)

The local statement of charge conservation is ∂α jα
e = 0.

The spacetime formulation of Maxwell’s equations is

∂β Fαβ = μ0 jα
e , ∂α Fβγ + ∂γ Fαβ + ∂β Fγ α = 0, (4.63)

where μ0 is a constant (known as the permeability of vacuum) that determines the units
of the theory. It is connected to another constant ε0 (known as the permittivity of vacuum,
or the dielectric constant) by the relation ε0μ0 = c−2. The first four equations are known as
the inhomogeneous (or sourced) Maxwell equations; the remaining equations are known as
the homogeneous (or source-free) Maxwell equations. It is easy to verify, for example, that
when α = 0, the first equation returns ∇ · E = (c−1 j0

e )/ε0, which is the usual statement of
Gauss’s law. As another example, setting α = 0, β = 1, and γ = 2 in the second equation
returns the z-component of ∂t B + ∇ × E = 0, the usual statement of Faraday’s law.

Note that by antisymmetry of the electromagnetic field tensor, ∂αβ Fαβ vanishes iden-
tically. This implies, together with the inhomogeneous Maxwell equations, that ∂α jα

e is
necessarily zero in Maxwell’s theory; charge conservation is automatically enforced.
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4.3.2 Vector potential

The scalar potential � and the vector potential A of the conventional formulation of elec-
trodynamics can be combined into a spacetime vector Aα = (�/c, A). The electromagnetic
field can then be expressed in terms of the potential:

Fαβ = ∂α Aβ − ∂β Aα. (4.64)

These relations reproduce the familiar E = −∂t A − ∇� and B = ∇ × A. Their main
virtue is that once Fαβ is expressed in this way, the homogeneous Maxwell equations are
automatically satisfied.

The remaining (inhomogeneous) equations can then be recast as differential equations
for the potentials. These, however, cannot be uniquely determined, because Eq. (4.64) is
unaffected by a gauge transformation of the form

Aα → Aα + ∂αχ, (4.65)

in which χ is any function of the spacetime coordinates xα . This gauge freedom can be
exploited to simplify the equations to be satisfied by the potentials. A popular and useful
choice for the gauge function χ enforces the Lorenz-gauge condition

∂α Aα = 0. (4.66)

With this choice of gauge, the inhomogeneous Maxwell equations are readily shown to take
the form of a wave equation for the vector potential:

�Aα = −μ0 jα
e , (4.67)

where

� := ηαβ∂α∂β = − 1

c2

∂2

∂t2
+ ∇2 (4.68)

is the wave operator in Minkowski spacetime. The Lorenz gauge is named after Ludvig
Lorenz (1829–1891), a Danish mathematician and physicist. He is often confused with his
more famous Dutch colleague Hendrik Lorentz (1853–1928), and in the past the Lorenz
gauge was almost universally known as the Lorentz gauge. This, however, is a historical
slight that we do not wish to propagate.

Equations (4.67) and (4.68) indicate that the electromagnetic field propagates as a wave,
and that the speed of propagation is c, the speed of light. This conclusion is not just an
artifact of our choice of gauge: the electromagnetic field tensor itself can be shown to satisfy
a wave equation. Simple manipulations starting from Eq. (4.63) do indeed reveal that Fαβ

must be a solution to �Fαβ = −μ0(∂α jβ
e − ∂β jα

e ).

4.3.3 Energy-momentum tensor

The electromagnetic field carries energy and momentum, and it exerts forces (and does
work) on a charged fluid. These aspects of Maxwell’s theory are encoded in the field’s
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energy-momentum tensor

T αβ = 1

μ0

(
Fαμ Fβ

μ − 1

4
ηαβ Fμν Fμν

)
. (4.69)

In terms of E and B we have that Fμν Fμν = −2(E2/c2 − B2), T 00 = (E2/c2 + B2)/(2μ0),
cT 0 j = (E × B) j /μ0, and

T jk = − 1

μ0c2

(
E j Ek − 1

2
δ jk E2

)
− 1

μ0

(
B j Bk − 1

2
δ jk B2

)
, (4.70)

where we write E2 := E · E and B2 := B · B. We recognize in T 00 the energy density of
the electromagnetic field (as measured in the laboratory frame S), in cT 0 j the j-component
of the energy flux (also known as the Poynting vector), and T jk is the Maxwell stress tensor.
To illustrate its meaning we consider a field configuration such that E = 0 and B points
in the x-direction at some selected position in the laboratory frame. For this configuration
T xx = −B2/(2μ0), and this represents a tension (negative pressure) along the magnetic
field lines. We also have T yy = T zz = B2/(2μ0), and this represents a pressure in the
directions perpendicular to the field lines.

The field’s energy and momentum are not conserved in general, because of the fact
(pointed out previously) that the field exerts forces and does work. Straightforward manip-
ulations starting from Eq. (4.69) reveal that

∂β T αβ = 1

μ0

[
−Fα

μ

(
∂β Fμβ

) − 1

2
Fμν

(
∂α Fμν + ∂ν Fα

μ + ∂μ F α
ν

)]
, (4.71)

and substitution of Maxwell’s equations (4.63) simplifies this to

∂β T αβ = −Fα
μ jμ

e . (4.72)

This equation states that there is indeed an exchange of energy and momentum between
the field and the charged fluid. The spatial components of the right-hand side of Eq. (4.72)
become −γρe(E + v × B) when Eq. (4.62) is used and Fαβ is expressed in terms of E
and B. We recognize this as (minus) the Lorentz-force density acting on a fluid with proper
charge density ρe and (Newtonian) velocity field v.

The total energy-momentum tensor of the system fluid + field includes a contribution
T αβ

field from the field and a contribution T αβ

fluid from the fluid (as described in Sec. 4.2). The
total energy and momentum are conserved when the system is isolated, and we then have

∂β

(
T αβ

fluid + T αβ

field

) = 0. (4.73)

This equation gives rise to a charged version of the relativistic Euler equation:

(ρ + ε/c2 + p/c2)
duα

dτ
= −(

ηαβ + uαuβ/c2
)
∂β p + ρe Fα

βuβ. (4.74)

The first term on the right-hand side describes the familiar pressure forces acting within the
fluid; the second term represents the electromagnetic forces. The Euler equation is to be
supplemented by the mass-conservation equation (4.53), the first law of thermodynamics
(4.57), and Maxwell’s equations (4.63).
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4.4 Point particles in spacetime

Before moving on to general relativity and curved spacetimes, we return briefly to the
description of point particles in Minkowski spacetime. Our goal here is to incorporate the
point particle within the fluid language developed in the preceding sections.

A point particle can be viewed as a singular distribution of fluid, with non-vanishing
mass m (and possibly charge q) but infinite mass density ρ (and possibly infinite charge
density ρe). A point particle has no internal degrees of freedom, and therefore no internal
energy density ε and no pressure p. In Newtonian mechanics the particle would move on
a trajectory described by x = r(t). In spacetime it moves on a world line xα = rα(τ ), and
its velocity vector is uα = drα/dτ .

In a frame S′ that is momentarily comoving with the particle, the proper mass density ρ

can be written as mδ3(x′ − r ′(t ′)), in terms of a three-dimensional delta function evaluated
on the world line. This expression, however, is not Lorentz invariant, because the delta
function, like the volume element d3x ′, is affected by a Lorentz transformation.

In an effort to replace the three-dimensional delta function with an invariant quantity, we
examine the four-dimensional version

δ
(
xμ − rμ(τ )

)
:= δ

(
ct − r0(τ )

)
δ3
(
x − r(τ )

)
, (4.75)

which is a spacetime invariant. Its defining property is that the integral∫
f (xα) δ(xμ − rμ) d4x

returns f (rα) if the four-dimensional domain of integration includes the event rα , and
zero if the domain excludes it; here f (xα) is an arbitrary test function of the spacetime
coordinates. The spacetime volume element d4x = d(ct)d3x is a Lorentz invariant, and
this ensures that the delta function itself is a Lorentz invariant.

The four-dimensional delta function is a good starting point to define a proper mass
density ρ, but the definition cannot simply be mδ(xμ − rμ). This is wrong for two reasons.
First, the delta function has a dimension of inverse length raised to the fourth power, and
this would not give rise to the expected dimension of (mass)/(volume) for the mass density.
Second, the delta function is “on” for a single moment of time only, when t = r0(τ )/c;
we would expect instead the mass density to be “on” at all times. The way out of these
difficulties is to integrate the four-dimensional delta function with respect to proper time
τ , and to define the particle’s proper mass density as

ρ(xα) = mc

∫
δ
(
xμ − rμ(τ )

)
dτ. (4.76)

We shall see presently that this is indeed a well-motivated definition. For now we may
observe that ρ is dimensionally correct, and that it is constructed entirely from scalar quan-
tities (the rest-mass m, the delta function, and proper time) and operations (the integration
over proper time).
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To see what Eq. (4.76) implies, it is useful to change the variable of integration from τ

to r0(τ ) and to rewrite the integral as

ρ = mc

∫
δ(x0 − r0)

u0
δ3(x − r) dr0, (4.77)

where u0 = dr0/dτ . Integration is immediate, and we find

ρ(t, x) = mc

u0
δ3
(
x − r(t)

)
, (4.78)

where the time t is in principle determined by t = r0(τ )/c. This expression for the mass
density is valid in any Lorentz frame. In the comoving frame S′ of the particle we have
that u′0 = c, and ρ reduces to mδ3(x′ − r ′), the expected expression. In another frame
S, the factor u0/c = γ accounts for the Lorentz contraction of three-dimensional volume
elements. We conclude that Eq. (4.76) is indeed a sensible, Lorentz-invariant definition of
the proper mass density of a point particle.

The mass current jα of a point particle is ρuα , and this can be written either as
(mcuα/u0)δ3(x − r), or more elegantly as

jα = mc

∫
uα δ

(
xμ − rμ(τ )

)
dτ, (4.79)

in which the vector uα(τ ) was inserted within the integral. Similarly, the energy-momentum
tensor of a point particle can be shown to be given by

T αβ = mc

∫
uαuβ δ

(
xμ − rμ(τ )

)
dτ, (4.80)

in which two factors of the velocity vector are inserted within the integral.
A charged particle possesses also a proper charge density ρe and a charge current

jα
e = ρeuα . These can be expressed as

ρe = qc

∫
δ
(
xμ − rμ(τ )

)
dτ (4.81)

and

jα
e = qc

∫
uα δ

(
xμ − rμ(τ )

)
dτ, (4.82)

where q is the particle’s electric charge.
To explore the consequences of these results we rely on the distributional identity

uα∂αδ
(
xμ − rμ(τ )

) = − d

dτ
δ
(
xμ − rμ(τ )

)
, (4.83)

which can be established by acting separately on the delta function with the differential
operators uα∂α and d/dτ , and comparing the results. Using this identity, we find that the
conservation statements ∂α jα = 0 = ∂α jα

e follow automatically. For example,

∂α jα = mc

∫
uα∂αδ(xμ − rμ) dτ = −mc

∫
d

dτ
δ(xμ − rμ) dτ = 0. (4.84)
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On the other hand, we have

∂β T αβ = mc

∫
uαuβ∂βδ(xμ − rμ) dτ

= −mc

∫
uα d

dτ
δ(xμ − rμ) dτ, (4.85)

and this becomes

∂β T αβ = mc

∫
duα

dτ
δ(xμ − rμ) dτ (4.86)

after an integration by parts. The energy and momentum of a point particle are conserved
when no forces are acting upon it; under these circumstances ∂β T αβ = 0 and Eq. (4.86)
implies that duα/dτ = 0. In general, however, the energy and momentum are not conserved,
∂β T αβ 	= 0, and the particle is accelerated.

As an example of a non-trivial dynamics, consider a situation in which a point particle
carries a charge q and interacts with an electromagnetic field Fαβ . The total system is
isolated, and in this case we have

∂β

(
T αβ

particle + T αβ

field

) = 0. (4.87)

We have seen in Eq. (4.72) that ∂β T αβ

field = −Fα
β jβ

e , which can be written as

∂β T αβ

field = −qc

∫
Fα

β(τ )uβδ(xμ − rμ) dτ (4.88)

if we make use of Eq. (4.82); here the field tensor Fα
β was inserted within the integral,

where it is evaluated at xα = rα(τ ). Combining this result with Eq. (4.86), we arrive at

m
duα

dτ
= q Fα

βuβ. (4.89)

This is the relativistic expression of the Lorentz-force law. Equation (4.89) becomes
md(γ v)/dτ = qγ (E + v × B) when expressed in a frame S; the factor of γ converts the
proper-time derivative to a coordinate-time derivative, and we recover the usual statement
of the Lorentz-force equation.

The equations of motion of Eq. (4.89) can also be derived on the basis of an action
principle. The action functional of a free particle can be generalized to include an interaction
with an electromagnetic field. It is given by

S = −mc2
∫ 2

1
dτ + q

∫ 2

1
Aαdxα, (4.90)

and it is easy to show – refer to Exercise 4.10 – that the Euler–Lagrange equations derived
from S reproduce Eq. (4.89).
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4.5 Bibliographical notes

Our survey of special relativity and Minkowski spacetime is based on standard presentations
found in a number of textbooks, including French (1968) and Rindler (1991), and the
introductory texts on general relativity listed in the bibliographical notes of Chapter 5.

The experimental tests of special relativity reviewed in Box 4.1 are described in the
following papers. The X-ray tests of the frame-independence of the speed of light are
published in Brecher (1977), and the pion experiments were carried out by Alväger et al.
(1964). The time-dilation experiments involving the motion of H2 and H3 molecules are
described in Ives and Stilwell (1938), and the lifetime of muons was measured by Rossi
and Hall (1941) and Farley et al. (1966). For a survey of classic and modern tests of special
relativity and Lorentz invariance, see Will’s (2006a) review, written on the occasion of the
centenary of special relativity.

4.6 Exercises

4.1 The Lorentz transformation for an arbitrary velocity whose components in S are v j

is given by

x ′α = �α
β xβ ,

where the components of �α
β are given by

�0
0 = γ ,

�0
j = −γ v j /c ,

�
j
0 = −γ v j /c ,

�
j
k = δ

j
k + (γ − 1)n j nk,

where n j = v j /|v|.
(a) Show that this reduces to Eq. (4.1) when v is aligned with the x-direction.
(b) By considering the invariance of the interval ds2, show that the Minkowski metric

in S′ is related to the Minkowski metric in S by

ηαβ = η′
γ δ�

γ
α�δ

β .

(c) Verify using the general Lorentz transformation that ηαβ has the same diagonal
form with entries (−1, 1, 1, 1) as it had in S′. You can do this using matrix mul-
tiplication by recognizing that the transformation of the metric can be expressed
as the matrix equation η = �Tη′�.

4.2 Show that the composition of two Lorentz transformations �α
1 β�

β

2 γ is also a Lorentz
transformation, (a) by verifying that the Minkowski metric ηαβ is unchanged under
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the combined transformation, and (b) by calculating the combined transformation
explicitly for boosts in the x-direction with velocity v1 and v2 respectively.

4.3 Consider the three events in spacetime described in the inertial frame S by

A : (1, 1, 0, 0) , B : (2, 3, 0, 0) , C : (3, 2, 0, 0) ,

where the notation is (ct, x, y, z), all in some arbitrary units of length. For each
pair of events AB, AC , and BC , determine if the interval is timelike, spacelike, or
null. Find the proper distance or time between the events, as appropriate, and find
the velocity of a moving frame S′ in which the two events are simultaneous or at the
same location, as appropriate.

4.4 Given a particle with momentum pα and an observer with velocity uα
obs, define the

vector

V α
obs = c

P α
obs β

pβ

Eobs
,

where Eobs = −pαuα
obs and P α

obs β
= δα

β + uα
obsuobsβ/c2.

(a) Show that V α
obs is a genuine four-dimensional vector, and that it represents the

three-dimensional velocity vector v of the particle as measured by the observer.
(b) Calculate the invariant quantity ηαβ V α

obsV
β

obs, and use it to show that for an observer
and particle moving in the x-direction with velocities v1 and v2, respectively,

| �Vobs| = v2 − v1

1 − v1v2/c2
.

This is the standard formula for the addition of velocities in special relativity.

4.5 Show that

ηαβ = −eα
(0)e

β

(0) + eα
(1)e

β

(1) + eα
(2)e

β

(2) + eα
(3)e

β

(3)

by checking its components (a) in a frame where the basis vectors are attached to a
particle at rest, and (b) in a frame where the vectors are attached to a particle moving
in the x-direction with velocity v.

4.6 A particle emits radiation isotropically in its own rest frame. As seen from a frame
S′ in which the particle moves with a speed v ≈ c such that γ � 1, show that the
forward hemisphere of radiation in its rest frame is seen in S′ to be beamed into a
forward cone of opening angle θ ≈ 1/γ .

4.7 Three spaceships take off simultaneously from planet Earth, and head for the planet
Romulus. An important meeting to discuss the borders of the Neutral Zone is sched-
uled to begin in exactly 15 years, Earth time. The planets are 12 light years apart. The
ships travel according to precise flight plans issued by the dreaded Romulans:
• Ship #1, the USS Enterprise, captained by Jean-Luc Picard, travels on a straight

line with a uniform speed 0.8 c for the entire trip.
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• Ship #2, the USS Voyager, captained by Kathryn Janeway, travels in a straight line,
but with a varying speed, half the time (Earth time) at speed 0.7 c, and the other
half of the time at speed 0.9 c.

• Ship #3, captained by the evil Romulan General Maldor, travels at constant speed
0.9 c, arriving early at Romulus, where the General hatches devious plots with his
advisors while awaiting the start of the meeting.

Calculate the proper time elapsed between take-off and the start of the meeting
according to the clocks carried by each of the three travelers, and point out the
significance of the traveller with the largest elapsed proper time. What is the minimum
possible proper time between take-off and the start of the meeting?

4.8 Using the general Lorentz transformation of Exercise 4.1, show that the electric and
magnetic fields transform according to

E′ = γ E + (1 − γ )n(n · E) + γ v × B ,

B′ = γ B + (1 − γ )n(n · B) − γ
v

c2
× E .

4.9 Using the fact that a coordinate transformation induces a change in the volume
element d4x given by d4x ′ = J (x ′, x)d4x , where J := det(∂x ′α/∂xβ) is the Jacobian
of the transformation, show that d(ct)d3x is a Lorentz invariant.

4.10 Verify that the Euler–Lagrange equations derived from the action

S = −mc

∫ 2

1
dτ + q

∫ 2

1
Aαdxα ,

yield the relativistic form of the Lorentz-force law.
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The relativistic formulation of the laws of physics developed in Chapter 4 excluded gravita-
tion, and our task in this chapter is to complete the story by incorporating this all-important
interaction (our personal favorite!). In Sec. 5.1 we explain why relativistic gravitation must
be thought of as a theory of curved spacetime. In Sec. 5.2 we develop the elementary
aspects of differential geometry that are required in a study of curved spacetime, and in
Sec. 5.3 we show how the special-relativistic form of the laws of physics can be generalized
to incorporate gravitation in a curved-spacetime formulation. We describe the Einstein field
equations in Sec. 5.4, and in Sec. 5.5 we show how to solve them in the restricted context
of small deviations from flat spacetime. We conclude in Sec. 5.6 with a description of
spherical bodies in hydrostatic equilibrium, featuring the most famous (and historically the
first) exact solution to the Einstein field equations; this is the Schwarzschild metric, which
describes the vacuum exterior of any spherical distribution of matter (including a black
hole).

5.1 Gravitation as curved spacetime

5.1.1 Principle of equivalence

Relativistic gravity

The relativistic Euler equation (4.59), unlike its Newtonian version of Eq. (1.23), does
not contain a term that describes a gravitational force acting on the fluid. To insert such
a term requires an understanding of how the Newtonian theory of gravitation can be
generalized to a relativistic setting. It is tempting to attempt such a generalization by simply
replacing the Poisson equation ∇2U = −4πGρ with a Lorentz-invariant generalization
such as �U = 4πGT μ

μ/c2 = −4πG(ρ + ε/c2 − 3p/c2), and replacing the term ∂ jU in
the Newtonian Euler equation by something like Pαβ∂βU . This attempt, however, would be
unsuccessful. It would lead to inconsistencies – why, for example, is the gravitational piece
of the stress tensor, Tjk = (∂ jU∂kU − 1

2 δ jk∇U · ∇U )/(4πG), absent from the right-hand
side of the wave equation? And historically, such attempts have led to incorrect empirical
consequences, such as no bending of light, or the wrong value for the perihelion advance of
Mercury. Similar attempts to formulate a relativistic theory of gravitation based on a vector
potential Aα have also failed.

217
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What about a tensor theory? Our experience with Minkowski spacetime has revealed the
important role of a tensor – the Minkowski metric ηαβ . In Minkowski spacetime, however,
ηαβ is a rather inert, somewhat boring object, merely providing the fixed arena in which
special relativistic dynamics takes place. But if we open our minds to the possibility that
ηαβ could be an approximation to something more general – a spacetime metric gαβ – that
could itself participate in the dynamics, then the possibility of a tensor theory of gravity
emerges. We will therefore follow Einstein and argue in favor of a connection between
gravitation and the curvature of spacetime.

Principles of equivalence

The key observation that leads to this connection is known as the principle of equivalence,
which we state as:

If a test body is placed at an initial event in spacetime and given an initial velocity there,
and if the body subsequently moves freely, then its world line will be independent of its
mass, internal structure, and composition.

Here, a “test body” is one that does not modify the gravitational field created by other
(non-test) bodies, and a “freely-moving” body is one on which no forces are acting, except
for the gravitational force; the test body, for example, is not allowed to possess an electric
charge when an electromagnetic field is present. The principle of equivalence states that
all test bodies move with the same acceleration in a gravitational field, irrespective of
their mass or internal composition. This statement is known more precisely as the “weak
equivalence principle,” and in Newtonian theory it holds as a consequence of the equality
between inertial mass and passive gravitational mass. This property is only accidental in
Newtonian theory; it is a foundational axiom of relativistic gravitation. As we discussed
in Box 1.1, there is ample, high-precision experimental support for the weak equivalence
principle.

A stronger formulation of the principle of equivalence, known as “Einstein’s equivalence
principle,” states that the weak version holds, and that, in addition:

The outcome of any local, non-gravitational test experiment performed by a freely-moving
apparatus is independent of the velocity of the apparatus and independent of when and
where the experiment is carried out.

Here, a “local, non-gravitational test experiment” is any measurement that does not probe
gravitational effects directly; this could be, for example, a measurement of the fine-structure
constant, or a measurement of the critical temperature in a phase transition to a Bose–
Einstein condensate. The measuring apparatus is assumed to be moving freely, in the sense
provided previously: no forces other than gravity are acting on the apparatus.

An even stronger statement of the principle of equivalence, known as the “strong equiv-
alence principle,” states that the weak version holds even when the body is self-gravitating,
and that the Einstein version holds even when local test experiments are allowed to probe
gravitational effects. As we shall see, the Einstein equivalence principle implies that grav-
itation must be a manifestation of the curvature of spacetime, and that relativistic gravity
must be formulated as a metric theory. The strong equivalence principle, however, is not
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valid for all metric theories of gravitation, but it is satisfied in Einstein’s theory. We will see
the strong equivalence principle in action in later chapters, particularly in Chapter 9, and
will witness its failure when we turn to alternative theories of gravity in Chapter 13.

An important aspect of the principles of equivalence, which we have not yet stated, is
that the spatial dimensions of the test body and the spatial dimensions of the freely-moving
apparatus must be small compared with the length scale over which the gravitational field
varies. The test body and the apparatus must not be allowed to probe the inhomogeneities of
the gravitational field. Thus, all statements made with regard to the principles of equivalence
are local in nature. With this important restriction in place, a succinct summary of the
Einstein equivalence principle is:

No measurement carried out in a suitably small laboratory moving freely in a gravitational
field can reveal the existence of gravity locally, within the confines of the laboratory.

If all objects within the laboratory fall with the same acceleration, then all local measure-
ments reveal a vanishing acceleration relative to a standard, freely-moving object, and no
local measurement can reveal the presence of a gravitational field. In other words, all local
aspects of gravity can be turned off by doing physics in a freely-moving frame of reference.

This statement is powerful. It implies, in particular, that the special-relativistic formula-
tion of the laws of physics continues to hold locally in the freely-moving frames; gravity is
not present in these frames, and there is no need to modify the laws of physics to account
for it. And it follows that the inertial frames of special relativity must be identified with the
freely-moving frames of observers in a gravitational field. In the old Newtonian language
we would say that a freely-moving observer is accelerated (relative, say, to an observer at
rest on the surface of the Earth), and that his reference frame is not inertial. In the new
relativistic language we say instead that it is the freely-moving observer who is inertial,
while the observer at rest on Earth is not; the freely-moving observer is not accelerated,
while the observer at rest on the ground is. In everyday life we tend not to think in this way,
but consider the following comparison: A person stands still in a long line for two hours
waiting for admission to a rock concert, while an astronaut on the International Space Sta-
tion works for two hours installing some equipment; which person ends up with sore feet?
In relativistic gravitation, acceleration measures a departure from free motion produced
by non-gravitational forces. A freely-moving observer is unaccelerated, and his reference
frame is inertial.

The tale of Cliff and Eric

As we can now appreciate, all local aspects of gravitation are purely relative, and they can
be turned off by adopting a freely-moving frame of reference. But as we shall now discuss,
aspects of gravitation that probe inhomogeneities of the gravitational field are absolute;
these can never be turned off.

Consider two remote observers in outer space, falling freely toward Earth. The first
observer – let’s call him Cliff – performs local measurements in his spacecraft, and infers
the complete absence of gravity in his immediate vicinity. The second observer – Eric –
also infers, on the basis of local measurements, the local absence of gravity. Cliff and Eric
are both inertial observers (in the relativistic sense described previously). Their reference
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frames are distinct, however, and they are in fact accelerated with respect to each other. This
relative acceleration is revealed by the fact that as Cliff and Eric both fall toward Earth, their
spacecraft are slowly converging toward each other. The relative acceleration is caused by
inhomogeneities in the gravitational field: the gravitational force is pulling the spacecraft
in different directions. Cliff and Eric must agree that while gravity is absent locally, an
interaction must be responsible for the relative acceleration of their inertial frames. This is
gravity; absolute gravity is inhomogeneous gravity.

It is instructive to provide a mathematical description of the tale of Cliff and Eric. Cliff ’s
trajectory toward Earth is described by rC(t), and this is a solution to

d2rC

dt2
= g(rC), (5.1)

in which the (Newtonian, as opposed to relativistic) gravitational acceleration g = ∇U
is evaluated at Cliff ’s position. Assuming that the spacecraft is sufficiently small that
variations in g(x) are negligible within it, all objects in Cliff ’s spacecraft move with this
acceleration. Suppose that a selected object is at a position rC + ξC within the spacecraft,
where ξC is the object’s position relative to Cliff. Then ξC(t) is a solution to d2ξC/dt2 =
g(rC + ξC) − g(rC) � 0. Relative to Cliff, the object moves on a straight line with a
uniform velocity, and Cliff sees no local manifestation of gravity.

On the other hand, Eric’s trajectory toward Earth is described by rE(t), a solution to

d2rE

dt2
= g(rE), (5.2)

in which g is now evaluated at Eric’s position. Assuming that Eric’s spacecraft is sufficiently
small, all objects within it move with this acceleration, and a selected object at a relative
position ξE moves on a straight line with a constant relative velocity dξE/dt . Eric also sees
no local manifestation of gravity.

Let now ξEC(t) := rE(t) − rC(t) be Eric’s position relative to Cliff. This is a solution to

d2ξEC

dt2
= g(rE) − g(rC), (5.3)

and because the displacement is now large, the right-hand side of this equation can no longer
be approximated by zero. The gravitational accelerations at Eric’s and Cliff ’s positions are
different, and we can express this difference by means of a Taylor expansion:

g j (rE) = g j (rC + ξEC) = g j (rC) + ξ k
EC∂k g j (rC) + · · · (5.4)

Combining this with g j = ∂ jU , we arrive at

d2ξ
j

EC

dt2
= (

∂ jkU
)
ξ k

EC, (5.5)

where the Newtonian potential U (x) is evaluated at x = rC(t) after differentiation, and
where we have neglected quadratic and higher-order terms in the Taylor expansion of
g j . The left-hand side of the equation gives the relative acceleration between Cliff and
Eric, and the right-hand side measures the inhomogeneities of the gravitational field, the
failure of g to be a constant vector field. It is this failure that gives rise to the relative
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acceleration, and it is the homogeneities in g that produce an absolute manifestation of the
gravitational interaction. The tidal distortions of the Earth by the Moon and the Sun are
caused by precisely these relative accelerations, and so one frequently hears the statement
that absolute gravity is tidal gravity.

We should be more honest and point out that even within Cliff ’s frame or Eric’s frame,
an object does not move precisely on a straight line. Had we expanded the acceleration of
the object, g(rC + ξC) to higher order in ξC, we would have discovered that its acceleration
relative to Cliff is actually given by

d2ξ
j

C

dt2
= (

∂ jkU
)
ξ k

C. (5.6)

So the inhomogeneity of the gravitational field can manifest itself even within Cliff ’s or
Eric’s freely-moving frame. This is why we insist that the frame be local in order to apply
the Einstein equivalence principle: It must be small enough that the effects of the relative
acceleration described by Eq. (5.6) are negligible.

Box 5.1 Uniform gravitational fields

The principles of equivalence enunciated above are not what Einstein first named the principle of equiva-
lence. Einstein’s original formulation stated that physics in a static and uniform gravitational field is equivalent
to physicswithout gravity in a uniformly accelerated frame of reference. This formulation played an essential role
in guiding him toward general relativity. By considering the propagation of a light ray in an accelerating frame,
and equating that to its behavior in a uniform gravitational field, hewas led to the gravitational redshift effect
in 1907 (his “happiest thought,” as he later recounted) and to the deflection of light in 1911. These insights
then led him to consider gravity as being linked to the geometry of curved spacetime, which was the critical
step he needed to develop the full theory.
But his formulation is deeply flawed when taken literally. First, a uniform gravitational field does not exist

in nature; in Newtonian gravity it would require as a source an infinite plane of matter in an otherwise empty
universe. Second, static fields do not exist in the real world: stars rotate, planets orbit, supernovae explode,
the universe expands. Third, the strict adoption of his principle has led to a pointless literature of apparent
paradoxes, debates, and conundra.
The bottom line is that a uniform gravitational field is not a gravitational field at all. It is the “field”

experienced by an observer undergoing constant acceleration in Minkowski spacetime, and nothing else.
(See Misner, Thorne, and Wheeler’s (1973) Gravitation or other books for a mathematical discussion of the
accelerating frame, sometimes called a Rindler spacetime after Wolfgang Rindler, who elucidated many of its
properties. See also Exercise 5.1). From our point of view, it is not a gravitational field precisely because it is
uniform. It possesses no inhomogeneities, and therefore is not gravity. Einstein’s original formulation is not an
equivalence, but a tautology.
It is possible, however, to restore respectability to Einstein’s original version of the equivalence principle:

simply insert the adjective “local” in suitable places. Any gravitational field is approximately uniform in a local
region, and therefore Einstein’s insights work equally well in a locally uniform field. But the use of “local” now
permits the gravitational field to be a truly physical, inhomogeneous field on larger scales.
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5.1.2 Metric theory of gravitation

As we have seen in the preceding subsection, the adoption of Einstein’s equivalence principle
produces a number of powerful statements. These include:

• gravity couples universally to matter, in a manner that is independent of mass, structure,
and composition of small bodies;

• all local aspects of gravity are eliminated in freely-moving frames;
• freely-moving frames are inertial frames, and all special-relativistic formulations of the

laws of physics continue to hold in freely-moving frames;
• freely-moving frames are unaccelerated; acceleration measures departures from free

motion produced by non-gravitational forces;
• freely-moving frames extend over small regions only, and inhomogeneities in the gravi-

tational field prevent their extension beyond these small regions;
• absolute aspects of gravity are revealed in the field inhomogeneities, which forbid a

smooth meshing of inertial frames that are widely separated.

The first four statements imply that there must exist a tensor field in spacetime that couples
universally to all forms of matter and reduces, in each local inertial frame attached to a
freely-moving observer, to the Minkowski metric ημν of special relativity. This tensor field
is denoted gαβ and named the metric tensor of the (now curved) spacetime. A relativistic
theory of gravity shall be a theory of a dynamical metric tensor in spacetime. The last
two statements imply that while the spacetime metric gαβ can be reduced locally to the
Minkowski metric ημν , it must differ from it in its global aspects.

Suppose that ξμ is a local Lorentzian coordinate system that covers a small inertial frame
S attached to a freely-moving observer in a gravitational field. In these coordinates, the
spacetime interval between two neighboring events within S is given by ds2 = ημνdξμdξν .
The local coordinates ξμ are related to a global coordinate system xα that covers a por-
tion of spacetime that is much larger than the small neighborhood of the inertial observer.
These global coordinates are a priori arbitrary, merely providing labels to spacetime events,
and they will not be Lorentzian in the presence of field inhomogeneities. The relation
can be expressed as ξμ = f μ(xα), where f μ are functions of the global coordinates. By
differentiation we have dξμ = (∂α f μ) dxα , and the spacetime interval can be expressed
as ds2 = (ημν∂α f μ∂β f ν)dxαdxβ in terms of the global coordinates. The quantity within
brackets converts a coordinate increment dxα to the spacetime interval ds2, which is abso-
lute, independent of the choice of reference frame and coordinate system. This conversion
is precisely the role of a metric tensor, and we conclude that the spacetime interval is given
by

ds2 = gαβ dxαdxβ (5.7)

in the global coordinate system. This defines gαβ , and the association gαβ = ημν∂α f μ∂β f ν

is the statement that locally, the spacetime metric can be obtained from the Minkowski
metric by a transformation from local coordinates ξμ attached to an inertial frame to
the global coordinates xα . As we shall see in Sec. 5.2.5, the reverse statement is also
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true: It is always possible to reduce the global metric gαβ to a local Minkowski form by
implementing a coordinate transformation xα = Fα(ξμ) from the global coordinates xα to
the local Lorentzian coordinates ξμ.

5.1.3 Newtonian gravity as warped time

The connection between gravitation and curved spacetime can be revealed vividly through
the following argument, which is limited in scope to Newtonian situations – weak fields
and slow motions. We begin with a thought experiment.

Suppose that a particle of mass m is initially at rest at a position x0 in a gravitational field.
Its total energy is initially equal to mc2. The particle is released, and it falls freely toward
a new position x. In the course of its motion the particle acquires a kinetic energy 1

2 mv2,
which is equal to the difference between the gravitational potential energies at the initial and
final positions: 1

2 mv2 = mU (x) − mU (x0). Its total energy becomes mc2[1 + U (x)/c2 −
U (x0)/c2]. In this Newtonian context, v is small compared with c, and U/c2 � 1.

At this stage of the experiment, all of the particle’s energy is converted into a photon of
energy h̄ω(x) = mc2[1 + U (x)/c2 − U (x0)/c2]. The photon climbs back toward x0, and
it arrives there with an energy h̄ω(x0). In the final step of the experiment, the photon is
converted into a particle that will remain at rest at x0; its mass m ′ is such that m ′c2 = h̄ω(x0).

Energy conservation demands that m ′ = m; a different outcome would imply that energy
has been created or lost in a cyclic process that could be repeated any number of times. The
photon must therefore lose energy to the gravitational field as it makes its way from x to
x0, and we set h̄ω(x0) = mc2. These results imply that

ω(x)

ω(x0)
= 1 + U (x)/c2 − U (x0)/c2. (5.8)

This simplifies when x0 is taken to be at infinity, where U (x0) = 0. We have then Einstein’s
redshift formula,

ω(x)

ω∞
= 1 + U (x)/c2. (5.9)

As a photon climbs out of a gravitational field, it loses energy, and its frequency decreases,
so that ω∞/ω(x) ≈ 1 − U (x)/c2 < 1. The photon’s wavelength increases, and its color is
shifted toward the red end of the spectrum.

We next turn this thought experiment, and the redshift formula, into a conclusion about
the very structure of spacetime in the presence of gravitation. We take the bold point of
view that the frequency shift described by Eq. (5.9) is a manifestation of the fact that time
flows at a rate that depends on position within a gravitational field. And we describe this
phenomenon mathematically by the equation

dt(x)

dt∞
= 1 − U (x)/c2, (5.10)

which is obtained from the redshift formula by letting ω(x)/ω∞ ≡ dt∞/dt(x). Here dt(x) is
the increment of time between a given number of oscillations of the photon’s electromagnetic
wave, as measured by a static observer at position x in the gravitational field (this observer
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is not moving freely, and therefore not inertial), while dt∞ is the increment of time between
the same number of oscillations as measured by a static observer at infinity (because there
is no gravity there, this observer is inertial). The fact that dt(x) 	= dt∞ implies that the
spacetime metric at position x cannot be equal to the Minkowski metric. If it were, then
ds2 = −d(ct)2 + dx2 + dy2 + dz2 and a measurement of proper time by a static observer
at x would be equal to

√−ds2/c = dt ≡ dt∞, in contradiction with Eq. (5.10). We must
have, instead,

ds2 = g00 d(ct)2 + dx2 + dy2 + dz2, (5.11)

so that a measurement of proper time now gives
√−g00 dt . If we identify this with dt(x)

and use Eq. (5.10), we conclude that
√−g00 = 1 − U (x)/c2.

The metric associated with a Newtonian gravitational field is therefore given approxi-
mately by

ds2 = −[
1 − 2U (x)/c2

]
d(ct)2 + dx2 + dy2 + dz2. (5.12)

This assignment encodes the fact that time flows at a rate that depends on position within a
gravitational field, a postulated physical phenomenon that naturally explains the redshift of
photons. We call attention to the fact that in Eq. (5.12), dt ≡ dt∞ represents the increment
of time as measured by an observer at rest at infinity, where U = 0.

The metric of Eq. (5.12) does more than just explain the gravitational redshift of light. It
also produces all phenomena associated with Newtonian gravity. To prove this point it will
suffice to examine the motion of a test body in a spacetime with this metric.

As we saw back in Chapter 4, the free motion of a test body in Minkowski spacetime is
determined by the vanishing of its acceleration, aα = 0, or equivalently by the extremum
of its action S := −mc2

∫
dτ = ∫

L dt , with associated Lagrangian

L = −mc

√
−ηαβ

drα

dt

drβ

dt
. (5.13)

But if we now use the metric of Eq. (5.12) instead of the Minkowski metric, we find that
the Lagrangian becomes

L = −mc2
√

1 − 2U/c2 − v2/c2, (5.14)

with v2 := v · v and v = d r/dt . Expanding this to first order in the small quantities (v/c)2

and U/c2, the Lagrangian simplifies to

L = −mc2 + 1

2
mv2 + mU. (5.15)

The first term is an irrelevant constant, the second term is the body’s kinetic energy, and
the third term is the gravitational potential energy. Substitution of this Lagrangian into
the Euler–Lagrange equations gives rise to the familiar equations of motion of Newtonian
gravity: d2r/dt2 = ∇U , in which U is evaluated at x = r(t) after differentiation. Newto-
nian gravity, therefore, is a manifestation of the fact that time flows at a rate that depends
on position within a gravitational field.
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5.2 Mathematics of curved spacetime

5.2.1 Metric

The lesson of the Einstein equivalence principle is that we must move from flat spacetime
to curved spacetime to incorporate gravity into the laws of relativistic physics. Accordingly
we must replace the Minkowski metric ηαβ with a more general metric tensor gαβ . This
tensor is still symmetric under an exchange of its indices, but it is no longer diagonal; in
general it possesses ten independent components, which are all functions of the spacetime
coordinates xα . The metric plays the same role as in Minkowski spacetime: it converts
coordinate displacements dxα , which evidently depend on the choice of coordinates, to an
invariant spacetime interval ds2. The formula is

ds2 = gαβ dxαdxβ. (5.16)

The metric therefore achieves two purposes: it encodes geometrical information about the
coordinate system, and it encodes physical information about the gravitational field. It is
usually not easy to distinguish between these different aspects of the metric.

Under a change of coordinates described by xα = f α(x ′μ), where f α are functions of
the new coordinates x ′μ, the coordinate displacements change according to

dxα = ∂ f α

∂x ′μ dx ′μ (5.17)

and the spacetime interval becomes

ds2 = gαβ

∂ f α

∂x ′μ
∂ f β

∂x ′ν dx ′μdx ′ν . (5.18)

This expression shows that the metric is replaced by

g′
μν = gαβ

∂ f α

∂x ′μ
∂ f β

∂x ′ν (5.19)

in the new coordinate system, so that ds2 = g′
μν dx ′μdx ′ν . The coordinate displacements

change, and the metric also changes, but ds2 remains the same during a coordinate
transformation.

The coordinate systems considered here are completely general, and the transformations
between them are not limited to linear transformations, as they were for Lorentz transforma-
tions. It would not do to restrict our attention to Lorentzian coordinates, because although
these can always be installed locally in an inertial frame attached to a freely-moving ob-
server, in general they cannot be extended globally to cover a large portion of the spacetime;
and a system of locally Lorentzian coordinates installed in one inertial frame would not
mesh smoothly with another system installed in another inertial frame. In this new setting,
therefore, vectors (such as dxα) and tensors (such as gαβ) must be allowed to transform
under a completely general class of coordinate transformations.

The metric gαβ is still used to define the inner product between two vectors. If Aα and
Bα are vectors in a curved spacetime (so that they transform like dxα under a general
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coordinate transformation), then their inner product is defined to be gαβ Aα Bβ . It is easy
to show that the inner product is invariant under a general coordinate transformation; the
changes in the vectors are compensated for by the changes in the metric tensor.

We still use the metric to lower indices on vectors. Given a vector Aα , we define its dual
Aα by

Aα := gαβ Aβ. (5.20)

It is important to appreciate that in curved spacetime, this operation involves more than
a mere change of sign; in general the functions Aα will be very different from Aα . The
raising operation can also be defined, if we first introduce the inverse metric gαβ . This is the
inverse to the matrix formed by all the components of the metric gαβ ; its defining relation
is

gαγ gγβ = δα
β, (5.21)

which is equivalent to the matrix equation g−1g = 1. If Aα is a dual vector, then

Aα := gαβ Aβ (5.22)

is its associated vector.

5.2.2 Tensor calculus

Vectors and components

In flat spacetime the preferred coordinate systems are Lorentzian, and those are charac-
terized by straight coordinate lines. The basis vectors associated with these coordinate
systems are constant, and under these conditions there is no need to distinguish between
the derivative of a vector and the derivative of its components. In a curved spacetime the
situation is very different: the coordinate lines are no longer straight, the basis vectors
change in length and direction from place to place, and these changes produce an important
distinction between the derivative of a vector and that of its components. (This situation is
not limited to curved spacetimes. It is familiar also in three-dimensional flat space, when
we choose to work in curvilinear coordinates instead of Cartesian coordinates.)

As we develop this idea we shall have to distinguish carefully between a geometric vector
�A and its components Aα in a selected coordinate system xα . While the components change

under a coordinate transformation, the geometric vector (which would be represented as an
arrow in familiar vector calculus) does not. A geometric vector is related to its components
via a set of basis vectors �eα that also depend on the coordinate system. These are defined so
that the vector d �x that describes an infinitesimal displacement from one event in spacetime
to another is given by

d �x = �eα dxα, (5.23)

in terms of the basis vectors and the coordinate displacements. An equivalent way of stating
this is that �eα = ∂ �x/∂xα . An arbitrary vector �A can then be expressed as

�A = Aα�eα (5.24)

in terms of the basis vectors and its components Aα .
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The inner product between d �x and itself is the spacetime invariant ds2. We have ds2 =
d �x · d �x = (�eα · �eβ) dxαdxβ , and comparing this with Eq. (5.16) reveals that

gαβ = �eα · �eβ ; (5.25)

the metric can be obtained by computing the inner products between all pairs of basis
vectors. From this it follows that if �A = Aα�eα and �B = Bβ �eβ are vectors, then their inner
product is �A · �B = Aα Bβ(�eα · �eβ) = gαβ Aα Bβ , as expected.

Covariant differentiation of vectors

Suppose now that �A is a vector field in spacetime. Its derivative with respect to coordinate
xβ is

∂β
�A = (∂β Aα)�eα + Aα(∂β �eα), (5.26)

in which the first term accounts for the variation of the components, while the second
accounts for the variation of the basis vectors. We write

∂β �eα = �
μ
αβ �eμ, (5.27)

which states the obvious fact that a change in basis vector induced by a coordinate dis-
placement is itself a vector that can be decomposed in terms of basis vectors. Equation
(5.27) provides a definition for the quantities �

μ
αβ , which are known as Christoffel symbols.

Because ∂β �eα = ∂2 �x/∂xα∂xβ = ∂α�eβ , we have that

�
μ
βα = �

μ
αβ ; (5.28)

the Christoffel symbols are symmetric in their lower indices.
With Eq. (5.27) our previous expression for ∂β

�A becomes ∂β
�A = (∇β Aμ)�eμ, where

∇β Aμ := ∂β Aμ + �
μ
αβ Aα (5.29)

is known as the covariant derivative of the vector components Aμ. The covariant derivative
accounts for the changes in the components as well as the changes in the basis vectors as the
vector field is moved from one event in spacetime to the next. Note the distinction between
the covariant derivative of a component, symbolized by ∇β , and the partial derivative,
symbolized by ∂β .

The Christoffel symbols can be expressed neatly in terms of the metric. To produce
this expression we differentiate the relation gαβ = �eα · �eβ with respect to xγ and substitute
Eq. (5.27); this yields

∂γ gαβ = gαμ�
μ
βγ + gβμ�μ

αγ . (5.30)

By permuting the indices we can produce two alternative versions of this equation,

∂αgγβ = gγ μ�
μ
βα + gβμ�μ

γ α (5.31)

and

∂β gγ α = gγ μ�
μ
αβ + gαμ�

μ
γβ. (5.32)
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We next add the last two equations, subtract the first, and make use of Eq. (5.28). We arrive
at

∂αgγβ + ∂β gγ α − ∂γ gαβ = 2gγ μ�
μ
αβ, (5.33)

and solve for �
μ
αβ by multiplying both sides of this equation by the inverse metric gγ ν . The

end result is

�
μ
αβ = 1

2
gμν

(
∂αgνβ + ∂β gνα − ∂νgαβ

)
. (5.34)

This formula gives rise to a practical method to compute the Christoffel symbols, starting
from the metric tensor gαβ .

Box 5.2 Vector calculus in polar coordinates

As a simple illustration of the formalism developed so far, we consider a two-dimensional flat plane charted
by polar coordinates (r, φ). These are defined in terms of the original Cartesian coordinates (x, y) by x =
r cos φ and y = r sin φ.
The position vector of a point in the plane is given by �x = (r cos φ)�ex + (r sin φ)�ey , where the

Cartesian basis vectors �ex and �ey are constant. The polar basis �er and �eφ is given by

�er = ∂ �x
∂r

= cos φ �ex + sin φ �ey,

�eφ = ∂ �x
∂φ

= −r sin φ �ex + r cos φ �ey .

The metric on the plane is calculated either by substituting the relationsdx = cos φ dr − r sin φ dφ,
dy = sin φ dr + r cos φ dφ intods2 = dx2 + dy2, or by computing the inner products between
the basis vectors �er and �eφ . In both cases we get the non-vanishing components grr = 1 and gφφ = r2,
so that

ds2 = dr2 + r2 dφ2.

The Christoffel symbols are calculated either by differentiating the basis vectors, or by employing Eq. (5.34).
In both cases we get the non-vanishing components�r

φφ = −r and�
φ
rφ = �

φ
φr = r−1.

Covariant differentiation of tensors

The action of the covariant-derivative operator ∇β can be extended to tensors. We postulate
that: (i) when ∇β acts on a scalar field, it produces the same result as the partial-derivative
operator ∂β ; and (ii) the covariant-derivative operator obeys the product rule of differential
calculus, ∇β(AB) = (∇β A)B + A(∇β B), in which A and B are any tensorial quantities
(with indices suppressed).
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The action of ∇β on a tensor Aμν can be determined if we examine the special case
Aμν = Aμ Bν . By invoking the product rule we quickly arrive at ∇β(Aμ Bν) = ∂β(Aμ Bν) +
�

μ
αβ(Aα Bν) + �ν

αβ(Aμ Bα). The generalization to arbitrary tensors is immediate:

∇β Aμν = ∂β Aμν + �
μ
αβ Aαν + �ν

αβ Aμα. (5.35)

This rule can easily be extended to tensors with an arbitrary number of indices; there is one
Christoffel symbol per tensorial index.

To determine the action of ∇β on a dual vector Aμ we examine ∇β(Aμ Bμ), in
which Bμ is an arbitrary vector. Here the covariant derivative acts on a scalar quantity,
and ∇β(Aμ Bμ) = ∂β(Aμ Bμ) = (∂β Aμ)Bμ + Aμ(∂β Bμ). On the other hand, the product
rule implies ∇β(Aμ Bμ) = (∇β Aμ)Bμ + Aμ(∇β Bμ). If we equate these results and use
Eq. (5.29) to express ∇β Bμ in terms of partial derivatives and Christoffel symbols, we get
(∇β Aμ)Bμ = (∂β Aμ − �α

μβ Aα)Bμ. Since Bμ is arbitrary, we must have

∇β Aμ = ∂β Aμ − �α
μβ Aα. (5.36)

From this we easily obtain the action of ∇β on a tensor Aμν ,

∇β Aμν = ∂β Aμν − �α
μβ Aαν − �α

νβ Aμα, (5.37)

and the extension of this rule to tensors of arbitrary ranks is immediate.
Comparison of Eqs. (5.30) with (5.37) reveals that

∇γ gαβ = 0. (5.38)

The metric tensor is covariantly constant, and this important fact is often described by
the statement that the covariant-derivative operator ∇β is compatible with the metric.
Equation (5.38) implies that the covariant derivative of the inverse metric vanishes also:
∇γ gαβ = 0. These results imply that the operations of index raising and lowering, and
covariant differentiation, commute with each other. For example, ∇β Aμ = ∇β(gμν Aν) =
gμν∇β Aν . This observation is very powerful and produces helpful simplifications in long
calculations.

Metric determinant and volume elements

We conclude this subsection with some results involving the metric determinant g :=
det[gαβ]. First we mention the identity

�
μ
μβ = 1

2
gμν∂β gμν = 1√−g

∂β

√−g, (5.39)

which involves the contraction of the Christoffel symbol over two of its indices. This is
established by calculating the change in g that is induced by a change in each component
of the metric tensor. It gives rise to a convenient expression for the covariant divergence of
a vector field Aα:

∇α Aα = 1√−g
∂α

(√−g Aα
)
; (5.40)

this result follows by direct computation.
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Our final observation is that in a curved spacetime, the invariant four-dimensional volume
element is

dV = √−g d4x, (5.41)

where d4x = dx0dx1dx2dx3 is the element of coordinate volume. This result is a conse-
quence of two facts. The first is that the metric determinant changes according to g′ = g J 2

under a coordinate transformation xα = f α(x ′μ), where J := det[∂ f α/∂x ′μ] is the Jacobian
of the transformation; this property follows directly from Eq. (5.19). The second is that d4x
changes also, but in a subtle way because it is not simply an algebraic string of differen-
tials, but an oriented string. In fact, its proper definition is d4x := dx0 ∧ dx1 ∧ dx2 ∧ dx3,
where the wedge operation indicates that interchanging any pair of differentials produces a
minus sign. The volume element becomes

d4x = ∂ f 0

∂x ′μ
∂ f 1

∂x ′ν
∂ f 2

∂x ′ρ
∂ f 3

∂x ′ω dx ′μ ∧ dx ′ν ∧ dx ′ρ ∧ dx ′ω (5.42)

under a coordinate transformation. The indices μ, ν, ρ and ω must all be different, and
in the sum over all repeated indices, there will be a plus or minus sign depending on
the number of permutations required to get the wedge product into the canonical order
(0, 1, 2, 3) corresponding to d4x ′. This yields

d4x = J d4x ′. (5.43)

Combining these facts, we find that
√−g d4x = √−g′ d4x ′, and we verify the statement

of Eq. (5.41).
An elementary example of Eq. (5.41) involves the polar coordinates (r, φ) introduced

in Box 5.2. Here we are talking about an element of two-dimensional surface area, and
d2x = drdφ. The metric determinant is positive and given by g = r2. The surface element
is therefore

√
g d2x = rdrdφ, the familiar result from elementary calculus.

5.2.3 Parallel transport and geodesic equation

Covariant differentiation on a world line

We examine a timelike world line xα = rα(τ ) in a curved spacetime, parameterized by
proper time τ , the time measured by a clock moving on this world line; as before this
is defined by dτ = √−ds2/c. The world line’s tangent vector is uα = drα/dτ , and this
satisfies the normalization condition

gαβuαuβ = −c2, (5.44)

which replaces Eq. (4.11). On this world line there exists a vector field �A(τ ), and we wish
to evaluate the derivative of this vector with respect to τ .

We proceed much as in the preceding subsection. We decompose �A in terms of basis
vectors �eα and we differentiate:

d �A
dτ

= d Aα

dτ
�eα + Aα d�eα

dτ
. (5.45)
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Because d�eα/dτ = (∂β �eα)(drβ/dτ ) = uβ�
μ
αβ �eμ, this is

d �A
dτ

=
(

d Aμ

dτ
+ �

μ
αβ Aαuβ

)
�eμ. (5.46)

The quantity within brackets is the covariant derivative of Aμ along the world line. We
denote this

D Aμ

dτ
:= d Aμ

dτ
+ �

μ
αβ Aαuβ, (5.47)

so that d �A/dτ = (D Aμ/dτ )�eμ. When the vector field �A is defined also in the neighborhood
of the world line (and not just directly on the world line), it becomes a function of all the
spacetime coordinates xα (instead of just proper time τ ); then d Aμ/dτ = uβ∂β Aμ and the
covariant derivative can expressed as D Aμ/dτ = uβ∇β Aμ.

Parallel transport and geodesics

The vector �A is parallel-transported along the world line when it stays constant in both
direction and magnitude. The mathematical statement of this is d �A/dτ = 0, or

D Aμ

dτ
= 0 (parallel transport). (5.48)

A timelike world line rα(τ ) is a geodesic of the curved spacetime when its own tangent
vector �u is parallel-transported along the world line. A geodesic, defined in this way, is
everywhere locally straight. The mathematical statement of the geodesic equation is

Duμ

dτ
= 0, (5.49)

or

duμ

dτ
+ �

μ
αβuαuβ = 0, (5.50)

or else

d2rμ

dτ 2
+ �

μ
αβ

drα

dτ

drβ

dτ
= 0. (5.51)

This last form is a system of second-order differential equations for the functions rμ(τ ).
These equations admit a unique solution given initial conditions rμ(0) and uμ(0) at some
initial time τ = 0.

The definition of a geodesic – a world line that parallel transports its own tangent vector
– is very fundamental and nicely geometrical. It applies just as well to spacelike and null
geodesics. It applies to many kinds of spaces or manifolds. It applies to the two-dimensional
surface of a sphere, where the geodesics are known as “great circles.” It also applies to very
abstract spaces, such as the space defined by the operations of the rotation group.

To illustrate the physical meaning of the geodesic equation we return to the Newto-
nian metric of Eq. (5.12) and calculate its geodesics. It is a simple exercise to show that
for this spacetime, the non-vanishing Christoffel symbols are �0

0 j = �
j
00 = −∂ j (U/c2).

It follows that in Newtonian situations, the spatial components of Eq. (5.51) reduce to
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d2r/dt2 − ∇U = 0. These are the Newtonian equations of motion, and this result provides
a suggestion that a freely moving body in curved spacetime moves on a geodesic.

This connection between the geodesic equation and the dynamics of a freely-moving
body is confirmed when we recognize that Eq. (5.49) looks a lot like the vanishing of the
acceleration of a free particle in Minkowski space. Indeed, in a local inertial frame in which
the Christoffel symbols vanish (whose existence will be justified in Sec. 5.2.5), the equation
is precisely duμ/dτ = aμ = 0. There is therefore a direct link between the straight-line
motion of a free particle in a local inertial frame and geodesic motion.

Another way to see the connection is to observe that the geodesic equation (5.51) can be
obtained on the basis of a variational principle, in which the action functional is the elapsed
proper time

∫ 2
1 dτ along a parameterized curve rα(τ ) linking the fixed events 1 and 2. If, as

we proposed in Sec. 5.1.3, the particle action introduced back in Sec. 4.1.8 is generalized
to

S = −mc2
∫ 2

1
dτ = −mc

∫ 2

1

√
−gαβ

drα

dt

drβ

dt
dt (5.52)

in curved spacetime, then its extremization with respect to world-line variations returns
the geodesic equation. (You will be asked to prove this statement in Exercise 5.8. These
considerations, therefore, strongly point to the geodesic equation as a description of free
particle motion in curved spacetime.

Another useful statement of the geodesic equation is

duμ

dτ
= 1

2
uαuβ∂μgαβ, (5.53)

which can be obtained by lowering the index on Eq. (5.50) and simplifying the result. This
form of the geodesic equation reveals immediately that when the metric does not depend on
one (or more) of its coordinates xμ, then the corresponding component uμ of the velocity
(dual) vector is a constant of the motion.

Null geodesics

Our considerations thus far have been limited to timelike world lines. As we shall see
below in Box 5.6, photons also move on geodesics of a curved spacetime. These geodesics,
however, are such that ds2 = 0, and these cannot be parameterized by proper time τ .
A lightlike geodesic is instead parameterized by λ = lim(τ/m), and its tangent vector
is identified with the photon’s momentum vector pμ, which satisfies the null condition
gμν pμ pν = 0. We have that pμ = drμ/dλ, and this satisfies the geodesic equation

dpμ

dλ
+ �

μ
αβ pα pβ = 0. (5.54)

A variant of Eq. (5.53) is also valid: dpμ/dλ = 1
2 pα pβ∂μgαβ , so that pμ is a constant of

the motion when the metric does not depend on coordinate xμ. The geodesic equation for
photons can also be derived from a variational principle, but with a twist. One uses the
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action

S =
∫ 2

1

(
gαβ

drα

dλ

drβ

dλ

)
dλ, (5.55)

where we have dropped the mass (which is zero), some minus signs and factors of c (which
are now irrelevant), and the square root, which has the desirable effect of avoiding the
presence of zeros in the denominator when applying the Euler–Lagrange equations. We
observe that the photon action is identically zero when the action is evaluated on a null
geodesic. But it deviates from zero when evaluated on displaced paths, and its extremization
is a well-defined procedure. It is interesting to note that the extremum giving a null geodesic
between events 1 and 2 is neither a maximum nor a minimum, but a saddle point.

5.2.4 Curvature tensors

Riemann tensor

The symmetry of the Christoffel symbols in the lower indices implies that the action of two
covariant derivatives on a scalar field f is independent of their order:

∇α∇β f − ∇β∇α f = 0. (5.56)

The same is not true, however, when the covariant derivatives act on a vector field Aμ; in
this case

∇α∇β Aμ − ∇β∇α Aμ = Rμ
ναβ Aν, (5.57)

and the operations do not commute. This equation defines the Riemann curvature tensor
Rμ

ναβ . A lengthy evaluation of the left-hand side of Eq. (5.57) shows that the Riemann
tensor is given explicitly by

Rα
βγ δ = ∂γ �α

βδ − ∂δ�
α
βγ + �α

μγ �
μ
βδ − �α

μδ�
μ
βγ . (5.58)

The Riemann tensor is evidently antisymmetric in its last two indices. It also possesses
additional symmetries that are not immediately revealed by Eqs. (5.57) and (5.58). These
are

Rαβδγ = −Rαβγ δ, (5.59a)

Rβαγ δ = −Rαβγ δ, (5.59b)

Rγ δαβ = +Rαβγ δ, (5.59c)

Rμαβγ + Rμγ αβ + Rμβγ α = 0. (5.59d)

By virtue of these symmetries, the Riemann tensor possesses 20 independent components
in a four-dimensional spacetime.

Another important set of identities satisfied by the Riemann tensor is

∇α Rμνβγ + ∇γ Rμναβ + ∇β Rμνγ α = 0. (5.60)

These are known as the Bianchi identities, and as we shall see, they play a fundamental role
in Einstein’s general relativity.
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μ 
= c

on
sta

nt

ξα

τ = constant

uα

Fig. 5.1 Congruence of timelike geodesics. The vector uα is tangent to each geodesicμ = constant. The deviation vector ξα

is tangent to each curve τ = constant, and points from geodesic to geodesic.

Geodesic deviation

The geometrical meaning of the Riemann tensor is revealed most vividly by the equation
of geodesic deviation, which governs the behavior of neighboring geodesics. We consider
a continuous sequence of timelike geodesics parameterized by proper time τ , with each
geodesic labelled by a parameter μ (refer to Fig. 5.1). This is sometimes called a congru-
ence of timelike geodesics, and the entire congruence can be described by the parametric
equations xα = rα(τ, μ). When μ is kept fixed and τ varied in these equations, the displace-
ment is along a selected geodesic within the congruence, and the geodesic’s tangent vector
is uα = ∂rα/∂τ . When, on the other hand, τ is kept fixed and μ varied, the displacement
is across geodesics, and the vector ξα := ∂rα/∂μ is a deviation vector that points from
geodesic to geodesic. We wish to derive an evolution equation for this deviation vector.

To begin we note that since uα is defined as a vector field within the entire congruence,
the geodesic equation can be expressed as uβ∇βuα = 0. We note also that the definitions
of uα and ξα imply

ξβ∂βuα − uβ∂βξα = ∂

∂μ

(
∂rα

∂τ

)
− ∂

∂τ

(
∂rα

∂μ

)
= 0, (5.61)

and the equation can be re-expressed in covariant form as

ξβ∇βuα = uβ∇βξα (5.62)

by exploiting the symmetries of the Christoffel symbols. We next invoke Eq. (5.57) and
write

ξγ uδ
(∇γ ∇δuα − ∇δ∇γ uα

) = Rα
βγ δuβξγ uδ. (5.63)

We rewrite the first term on the left-hand side as

ξγ uδ∇γ ∇δuα = ξγ ∇γ

(
uδ∇δuα

) − ξγ
(∇γ uδ

)(∇δuα
)
, (5.64)
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and note that the first term on the right-hand side vanishes by virtue of the geodesic equation.
Similarly, we rewrite the second term as

ξγ uδ∇δ∇γ uα = uδ∇δ

(
ξγ ∇γ uα

) − uδ
(∇δξ

γ
)(∇γ uα

)
, (5.65)

and make use of Eq. (5.62) in the first term on the right-hand side. All of this produces

− Rα
βγ δuβξγ uδ = uδ∇δ

(
uγ ∇γ ξα

) − (
uδ∇δξ

γ − ξ δ∇δuγ
)(∇γ uα

)
, (5.66)

and we see that the second term vanishes when we invoke Eq. (5.62) once more. The first
term is recognized as D2ξα/dτ 2, the second covariant derivative of the deviation vector
along each geodesic within the congruence.

We have obtained the equation of geodesic deviation,

D2ξα

dτ 2
= −Rα

βγ δuβξγ uδ, (5.67)

which states that there is a relative acceleration between geodesics whenever the spacetime
is curved, that is, whenever the Riemann curvature tensor is non-zero. To reflect on this
we examine the situation in flat spacetime. Here the geodesics must be straight lines, and
while these can diverge away from each other when they are not parallel, the rate at which
they do so is necessarily constant. In this case the relative acceleration is zero, and this is
compatible with Eq. (5.67) because the Riemann tensor vanishes in Minkowski spacetime.
In a curved spacetime the situation is different: geodesics that start parallel to each other
will eventually converge or diverge (think of two great circles on the surface of a sphere,
starting parallel at the equator but converging together at both poles), and this effect is
associated with a non-zero relative acceleration D2ξα/dτ 2. Equation (5.67) then implies
that the Riemann tensor cannot vanish when neighboring geodesics behave in this manner.
We conclude that it is the Riemann tensor that measures the curvature of a four-dimensional
spacetime.

Equation (5.67) is the precise statement of Eq. (5.6). The approximate version can be
recovered by inserting uα � (c, 0), and ξα � (0, ξ ) into Eq. (5.67), thus putting us in Cliff ’s
momentary rest frame, and by using the Newtonian metric of Eq. (5.12) to show that
R0 j0k � −∂ jk(U/c2). The spatial components of Eq. (5.67) reduce to

d2ξ j

dt2
� −c2 R j

0k0ξ
k � (∂ jkU )ξ k, (5.68)

and this equation describes the action of tidal gravitational forces in Cliff ’s laboratory.
The equation of geodesic deviation, in its exact formulation, carries the same interpre-

tation: it describes the effects of tidal forces on neighboring observers that move freely
in a gravitational field. The observers move on neighboring geodesics, their separation is
described by the vector ξα , the tidal forces produce a relative acceleration D2ξα/dτ 2, and
since the tidal forces are caused by inhomogeneities in the gravitational field, we conclude
that these are measured by the Riemann tensor. Note that a non-zero Riemann tensor un-
ambiguously reveals the existence of a gravitational field; a non-trivial metric tensor does
not, because the complexity of the metric could come entirely from the coordinates used
to chart a flat spacetime. The Riemann tensor, therefore, is of fundamental importance in
general relativity.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-05 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:30

236 Curved spacetime

Ricci and Einstein tensors

Other curvature tensors can be obtained from the Riemann tensor. By contracting the first
and third indices of the Riemann tensor we obtain the Ricci tensor

Rαβ := Rμ
αμβ. (5.69)

The symmetries of the Riemann tensor imply that Rβα = Rαβ , and the Ricci tensor possesses
ten independent components. By contracting its indices we obtain the Ricci scalar

R := Rμ
μ = gαβ Rαβ. (5.70)

Closely related to the Ricci tensor is the Einstein tensor

Gαβ := Rαβ − 1

2
gαβ R, (5.71)

which is also symmetric in its indices: Gβα = Gαβ . The Einstein tensor possesses ten
independent components, and its trace is given by G := gαβ Gαβ = −R, because gαβ gαβ =
δα

α = 4.
The Bianchi identities of Eq. (5.60) give rise to

∇β Gαβ = 0 (5.72)

after two contractions of their indices. Equation (5.72) is known as the contracted Bianchi
identities, and as we shall see, it plays a fundamental role in general relativity.

5.2.5 Curvature and the local inertial frame

Back in Sec. 5.1.2 we asserted that it is always possible to find a coordinate transformation
xα = Fα(ξμ) that puts the metric gαβ into a local Minkowski form. We return to this issue
here, and explicitly construct the coordinates that achieve this important goal. In fact,
we shall construct two such coordinate systems. The first system, the Riemann normal
coordinates ζ μ, is such that at a selected event O in spacetime, the metric is equal to the
Minkowski metric ημν and the Christoffel symbols �

μ
νλ vanish. The second system, the

Fermi normal coordinates ξμ, is such that everywhere on a timelike geodesic γ , the metric
is equal to the Minkowski form and the Christoffel symbols vanish. The Fermi coordinates
are the mathematical embodiment of a local inertial frame in general relativity.

Riemann normal coordinates

We begin with the Riemann normal coordinates. The strategy we adopt to construct this
coordinate system is very similar to what we might do in three-dimensional flat space to
construct Cartesian coordinates. One way to proceed would involve the following steps.
First, we select an origin O. Second, we erect at O a set of three unit vectors e( j) that
point in mutually orthogonal directions; here the bracketed index serves to label each basis
vector. Third, we select a point P and draw the straight line segment that links it to O;
the segment points in the direction of the unit vector n, and P is at a distance r from the
origin. Fourth, we decompose the vector n into the vector basis and express it as n = n j e( j).
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β

eα
(0)

eα
(2)

eα
(1)

nα

O

P

Fig. 5.2 Riemann normal coordinates about an eventO in spacetime. The construction involves a geodesic segmentβ to
which nα is tangent.

And fifth, we assign to P the coordinates x j = rn j and show that in these coordinates, the
metric of three-dimensional flat space is given by δ jk . The key features of this construction
are that the coordinates are anchored to straight lines emanating from O, and that they are
defined directly in terms of the direction of each line and the distance measured along it.
The generalization to curved spacetime suggests itself: use geodesics instead of straight
lines, and define the coordinates in exactly the same way.

So let us now consider a curved spacetime with a metric gαβ initially expressed in an
arbitrary coordinate system xα . We select an event O in this spacetime, and at O we erect a
set of four unit vectors eα

(μ) that point in mutually orthogonal directions (refer to Fig. 5.2);
here the index α is the usual vector index that refers to the coordinates xα , while the
bracketed index (μ) is a label that allows us to distinguish each vector. The vector eα

(0) is
timelike, while the remaining vectors eα

( j) are spacelike; the orthonormality condition can
be compactly expressed by

gαβeα
(μ)e

β

(ν) = ημν, (5.73)

in which ημν := diag(−1, 1, 1, 1) is the Minkowski metric of flat spacetime.
We now select another event P in spacetime, and draw the geodesic segment β that

links P to O; this geodesic is assumed to be unique, and this usually requires P to be in a
sufficiently close neighborhood of O. The geodesic is parameterized by proper distance s
if it is spacelike, so that s = 0 at O and s = sP at P , and by (rescaled) proper time cτ if it
is timelike (with similar assignments at O and P). Its tangent vector is the unit vector nα ,
and at O this can be decomposed in the basis eα

(μ); we write

nα(O) = nμeα
(μ), (5.74)

in which nμ is a set of four coefficients that specify the direction of β relative to the vector
basis. The Riemann normal coordinates of P are defined to be ζ μ := sPnμ when β is
spacelike, and ζ μ := (cτP )nμ when β is timelike. As we show in Box 5.3, the construction
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implies that the spacetime metric near O becomes

gμν = ημν − 1

3
Rμλνρ(O)ζ λζ ρ + O(ζ 3), (5.75)

when expressed in Riemann normal coordinates. Because ζ μ = 0 at O, we see that
gμν(O) = ημν so that as promised, the metric assumes the Minkowski form at the event O.
But we have more: because the expansion of the metric in powers of ζ μ does not include
linear terms, we find that ∂λgμν(O) = 0, which implies that all Christoffel symbols vanish at
O. This is an important property of the Riemann normal coordinates, and we have obtained
a constructive proof that it is always possible to find coordinates that enforce the properties

gμν(O) = ημν, �
μ
νλ(O) = 0, (5.76)

at a selected event O in spacetime. The construction also shows that it is not possible to set
the second derivatives of the metric tensor to zero at O unless the Riemann tensor vanishes
there; a second-order deviation of the metric relative to the Minkowski values therefore
signals the presence of curvature.

Box 5.3 Riemann normal coordinates

Wewish to show that the construction of Riemann normal coordinates (RNC) detailed in the text leads to the
metric of Eq. (5.75). The construction implies that the geodesicβ that linksP toO is described by

ζ μ = snμ (1)

in RNC, and that nμ = dζ μ/ds is a constant tangent vector onβ . (To simplify the language we takeβ to
be a spacelike geodesic.) When we vary the directions nμ in these equations, we obtain other geodesics that
also originate fromO, and

η
μ

(ν) := ∂ζ μ

∂nν
= sδμ

ν (2)

is a set of deviation vectors (one for each direction nν ) that point fromβ to the displaced geodesics.
To showthatgμν = ημν atOweuse the fact thatnμ is a unit vector. InRNC themathematical statement

of this is gμνnμnν = 1, which is valid everywhere on β . In the original coordinates xα we have instead
gαβnαnβ = 1, in which we may insert Eqs. (5.73) and (5.74) to obtain ημνnμnν = 1 atO. Because
themetric gμν atOmust be independent of the directionsnμ, and because these are arbitrary, we conclude
that gμν(O) = ημν .
To show that the Christoffel symbols vanish atOwe insert Eq. (1) within the geodesic equation and obtain

�
μ
νλnνnλ = 0, which is valid everywhere on β . But because the Christoffel symbols atO must be inde-

pendent of the directionsnμ, and because these are arbitrary, we conclude that�μ
νλ(O) = 0. This, in turn,

implies that ∂λgμν(O) = 0.
To relate the secondderivatives of themetric atO to the Riemann tensorwe apply the equation of geodesic

deviation, Eq. (5.67), to each one of the deviation vectors of Eq. (2). Because the Christoffel symbols vanish at
O, we have that�μ

νλ = ∂ρ�
μ
νλ(O)ζ ρ + · · · , and the covariant derivative of the deviation vectors along
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β is given by

Dη
μ

(ν)

ds
= δμ

ν + s2∂ρ�
μ
νλ(O)nλnρ + O(s3).

The second covariant derivative is
D2η

μ

(ν)

ds2
= 3s ∂ρ�

μ
νλ(O)nλnρ + O(s2),

and the equation of geodesic deviation becomes[
3∂ρ�

μ
νλ(O) + Rμ

λνρ(O)

]
nλnρ + O(s) = 0.

Evaluating this atO, and appealing once more to the arbitrariness of the directions nμ, we arrive at

∂λ�μ
νρ + ∂ρ�

μ
νλ = −1

3

(
Rμ

λνρ + Rμ
ρνλ

)
after properly symmetrizing the expression with respect to the indicesλ andρ . By permuting the indices we
produce two alternative versions of this equation, which we add to and subtract from the original equation –
refer to Eq. (5.30) for similarmanipulations. This allowsus to solve for the derivatives of the Christoffel symbols,

∂ρ�
μ
νλ(O) = −1

3

(
Rμ

νλρ + Rμ
λνρ

)
,

in which the Riemann tensor is evaluated atO. From this and Eq. (5.30) it is a simple matter to obtain

∂λρgμν(O) = −1

3

(
Rμλνρ + Rμρνλ

)
.

The metric of Eq. (5.75) is finally recovered by expanding gμν in powers of ζ μ and inserting the expressions
obtained here for the partial derivatives.

Fermi normal coordinates

We next turn to the Fermi normal coordinates. Instead of a single event O we now select
an entire timelike geodesic γ in spacetime. The geodesic is parameterized by proper time
τ , and everywhere on γ we erect a vector basis eα

(μ) that satisfies Eq. (5.73). We take eα
(0) to

be aligned with γ ’s tangent vector, and we assume that all vectors are parallel-transported
along γ .

We next select an event P in spacetime, away from γ , and draw a spacelike geodesic β

that passes through P and intersects γ orthogonally at Q (see Fig. 5.3); the requirement of
orthogonality ensures that β is unique. The geodesic is parameterized by proper distance
s, so that s = 0 at Q and s = sP at P , and its tangent vector is the unit vector nα . At Q the
vector can be decomposed as

nα(Q) = n j eα
( j), (5.77)

where eα
( j) are the spatial members of the vector basis; the temporal member eα

(0) is not
involved because β is orthogonal to γ . The Fermi normal coordinates of P are defined to
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β

γ

eα
(0)

eα
(1)

eα
(2) nα

P

Q

Fig. 5.3 Fermi normal coordinates about a timelike geodesic γ in spacetime. The construction involves a spacelike geodesic
segmentβ which is orthogonal to γ , and to which nα is tangent.

be ξ 0 := cτQ and ξ j := sPn j . As we show in Box 5.4, the construction implies that the
spacetime metric near γ becomes

g00 = −1 − R0p0q (γ )ξ pξ q + O(ξ 3), (5.78a)

g0 j = 2

3
R jpq0(γ )ξ pξ q + O(ξ 3), (5.78b)

g jk = δ jk − 1

3
R jpkq (γ )ξ pξ q + O(ξ 3), (5.78c)

when expressed in Fermi normal coordinates; here the Riemann tensor is evaluated on
γ and expressed as a function of τ := ξ 0/c. Because ξ j = 0 everywhere on γ , we see
that gμν(γ ) = ημν , so that the metric assumes the Minkowski form on the entire timelike
geodesic. Because the metric is constant on γ , and because its expansion away from γ does
not include terms linear in ξ j , we find that all first derivatives of the metric vanish on γ ,
which implies that the Christoffel symbols also vanish on γ . This amounts to a constructive
proof that it is always possible to find coordinates that enforce the properties

gμν(γ ) = ημν, �
μ
νλ(γ ) = 0, (5.79)

everywhere along a selected timelike geodesic γ in spacetime. The Fermi normal coordi-
nates provide the best mathematical realization of our notion of a freely-moving frame, in
which gravity can be removed locally, up to effects associated with field inhomogeneities
described by the Riemann tensor.
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The significance of the Riemann tensor in Eq. (5.78) is clearly revealed when we work
out the expression of the geodesic equation in Fermi normal coordinates. We examine a free
particle moving on a world line ξ j = r j (t) in a neighborhood of the reference geodesic γ ;
we adopt t := ξ 0/c as the world-line parameter, and use the symbol t to emphasize the fact
that while t is proper time on γ , it is not proper time on the particle’s world line. The easiest
way to obtain the geodesic equation is to insert the metric within L = −mc

√−gμν ṙμṙ ν ,
the Lagrangian of Eq. (5.52). When we work consistently to second order in the spatial
displacements r j and velocities ṙ j := dr j/dt , we find that the Lagrangian simplifies to

L = −mc2 + 1

2
mv2 − 1

2
mc2 R0 j0kr jr k + O(r3), (5.80)

where v2 := δ jk ṙ j ṙ k . Substitution within the Euler–Lagrange equations produces

d2r j

dt2
= −c2 R0 j0kr k, (5.81)

the statement of the geodesic equation in Fermi normal coordinates. Because r j (t) describes
the displacement of the particle’s world line relative to γ , it is not surprising that this
takes the form of the equation of geodesic deviation, in the approximate version that was
first displayed in Eq. (5.68). And this, of course, tells us once more that the Riemann
tensor measures the inhomogeneities of the gravitational field, which prevent the metric
of Eq. (5.78) from being constant beyond first order in the displacements ξ j , and which
prevent the particle’s relative acceleration from vanishing in γ ’s inertial frame.

Box 5.4 Fermi normal coordinates

We wish to show that the construction of Fermi normal coordinates (FNC) detailed in the text leads to the
metric of Eq. (5.78). We employ the Riemann normal coordinates (RNC), and rely on the metric of Eq. (5.75).
Our strategy is to work out the transformation between the coordinate systems, and then to calculate how the
metric changes under this transformation.
We suppose that the timelike geodesicγ passes through the originO of the RNC, and that the basis vector

eα
(0) atO is aligned with γ ’s tangent vector. The vector basis at any other event on γ is then obtained by
parallel transport, and our first task is to solve the equations of parallel transport for all four basis vectors.
Setting τ = 0 atO, we expand the basis vectors in powers of τ ,

eμ

(ν)(τ ) = eμ

(ν)(0) + τ ėμ

(ν)(0) + 1

2
τ 2 ëμ

(ν)(0) + O(τ 3),

in which an overdot indicates differentiation with respect to τ . We invoke the definition of the RNC to set
eμ

(ν)(0) = δμ
ν , insert the expansions within the equation of parallel transport,

deμ

(ν)

dτ
+ �

μ
λρeλ

(ν)

dζ ρ

dτ
= 0,

and solve order-by-order in τ . Because γ is described by ζ 0 = cτ and ζ j = 0 in RNC, and because the
Christoffel symbols are given by�μ

νλ = − 1
3 (Rμ

νλρ + Rμ
λνρ)ζ ρ + O(ζ 2), we find that ėμ

(ν)(0) = 0
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and ëμ

(ν)(0) = 1
3 c2 Rμ

0ν0, so that

eμ

(ν)(τ ) = δμ
ν + 1

6
(cτ )2 Rμ

0ν0 + O(τ 3).

This equation allows us to obtain the basis vectors atQ.
Our next task is to launch a geodesicβ that passes through the eventP and intersects γ orthogonally at

Q. This geodesic is described by relations ζ μ(s) that can be obtained by integrating the geodesic equation,

d2ζ μ

ds2
+ �

μ
νλ

dζ ν

ds

dζ λ

ds
= 0.

Once more we express the solution as a Taylor expansion,

ζ μ(s) = ζ μ(0) + s ζ̇ μ(0) + 1

2
s2 ζ̈ μ(0) + 1

6
s3 ζ̈ μ(0) + O(s3),

and determine the various coefficients by inserting the expansion within the geodesic equation and solving
order-by-order in s . The first two coefficients, actually, are determined by the boundary conditions atQ: we
must have that ζ 0(0) = cτQ and ζ j (0) = 0, and ζ̇ μ(0) ≡ nμ(Q) is given by Eq. (5.77) in terms of
the direction coefficients n j and the basis vectors eμ

( j) obtained previously.
After some algebra we find that the solution to the geodesic equation can be expressed as

ζ 0(s) = (cτQ) + 1

3
(cτQ)R0p0q (sn p)(snq ) + · · · ,

ζ j (s) = (sn j ) + 1

6
(cτQ)2 R j

0p0(sn p) + 1

3
(cτQ)R j

pq0(sn p)(snq ) + · · ·
This, without further ado, gives us the coordinate transformation, because the FNC of an event onβ are given
by ξ 0 = cτQ and ξ j = sn j . We have

ζ 0 = ξ 0 + 1

3
ξ 0 R0p0qξ pξ q + · · · ,

ζ j = ξ j + 1

6
(ξ 0)2 R j

0p0ξ
p + 1

3
ξ 0 R j

pq0ξ
pξ q + · · · ,

and the metric of Eq. (5.78) is obtained by inserting these expressions within

gμν(FNC) = gλρ(RNC)
∂ζ λ

∂ξμ

∂ζ ρ

∂ξν
,

the standard transformation law for the components of the metric tensor. The manipulations that lead to
Eq. (5.78) are slightly tedious, but perfectly straightforward. A point of subtlety concerns the components
of the Riemann tensor, which are evaluated atO in both the coordinate transformation and the RNC form of
the metric. It is easy to see, however, that a displacement toQ does not change the metric components to
second order in ζ μ, nor the coordinate transformation to third order in ξμ. The Riemann tensor, therefore,
can be safely evaluated atQ instead ofO, and becauseQ is an arbitrary event on γ , we conclude that the
Riemann tensor is in fact a function of τ := ξ 0/c on the world line.
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5.3 Physics in curved spacetime

5.3.1 From flat to curved spacetime

The rules to modify the laws of physics from their flat-spacetime formulation so that they
hold in curved spacetime are exceedingly simple: start from a tensorial equation valid in
any Lorentz frame, replace all occurrences of the Minkowski metric by gαβ , and replace
all partial derivatives by covariant derivatives; the result is a tensorial law valid in curved
spacetime. The key to these rules is the important fact that according to the Einstein
equivalence principle, the special-relativistic formulation of any law of physics is valid
locally in any inertial frame attached to a freely-moving observer. All the hard work goes
into rewriting this law in a form that is valid in any other reference frame, and in any
coordinate system. And as we just saw, this work is really not that hard.

We prepare the way for this reformulation by recalling some useful mathematics from
the preceding section. As we have seen, in the local (Fermi) coordinates ξμ, the metric on
a timelike geodesic γ is equal to the Minkowski metric ημν and the Christoffel symbols
�λ

μν vanish. There exists a transformation between the local coordinates ξμ and any system
of global coordinates xα; we write it as ξμ = f μ(xα), and these relations imply dξμ =
(∂ f μ/∂xα) dxα . The inverse transformation is xα = Fα(ξμ), and these relations imply
dxα = (∂ Fα/∂ξμ) dξμ. It is easy to verify that

∂ Fα

∂ξμ

∂ f μ

∂xβ
= δα

β,
∂ f μ

∂xα

∂ Fα

∂ξν
= δμ

ν, (5.82)

follows from the preceding equations.
Up to terms involving the Riemann tensor, the spacetime interval in γ ’s immediate

vicinity is given by ds2 = ημν dξμdξν in the local coordinates. In the global coordinates it
is ds2 = gαβ dxαdxβ , where

gαβ = ημν

∂ f μ

∂xα

∂ f ν

∂xβ
(5.83)

is an expression for the metric tensor. It is easy to verify that

gαβ = ημν ∂ Fα

∂ξμ

∂ Fβ

∂ξν
(5.84)

is an appropriate expression for the inverse metric. We can compute the Christoffel symbols
�α

βγ by differentiating gαβ and inserting the result into Eq. (5.34). After simplification we
obtain

�α
βγ = ∂ Fα

∂ξμ

∂2 f μ

∂xβ∂xγ
. (5.85)

To motivate the rules listed at the beginning of this section we examine the simple case
of a particle moving freely in a curved spacetime. We already know the final outcome: this
particle will move on a geodesic of the spacetime. We shall deduce this on the basis that
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in flat spacetime, a particle moving freely does so on a straight path. In special relativity,
therefore, the particle’s velocity vector uμ satisfies duμ/dτ = 0.

To generalize this law to curved spacetime we invoke the principle of equivalence and
affirm that duμ/dτ = 0 continues to apply locally in an inertial frame attached to any freely-
moving observer. (This observer may or may not be moving together with the particle; we
merely require that particle and observer come together at least once, at some selected event
in spacetime.) In this frame uμ = dξμ/dτ , and proper time τ continues to be defined in
terms of the spacetime interval ds2: dτ = √−ds2/c. We next carry out a transformation
to the global coordinates xα . We have that

uμ = ∂ f μ

∂xα
uα, (5.86)

where uα = dxα/dτ are the components of the velocity vector in the global coordinates.
Differentiation with respect to τ gives

duμ

dτ
= ∂ f μ

∂xα

duα

dτ
+ ∂2 f μ

∂xβ∂xγ
uβuγ

= ∂ f μ

∂xα

(
duα

dτ
+ ∂ Fα

∂ξν

∂2 f ν

∂xβ∂xγ
uβuγ

)
, (5.87)

where we used Eq. (5.82) in the second step. Invoking now Eq. (5.85), we recognize

duα

dτ
+ �α

βγ uβuγ = Duα

dτ
(5.88)

within the brackets, and we conclude that duμ/dτ = 0 in the local coordinates becomes
Duα/dτ = 0 in the global coordinates. As expected, the particle moves on a geodesic of
the curved spacetime.

The generalization of any other law of physics from flat to curved spacetime can always
be accomplished by systematically running through the steps outlined in the preceding
paragraph. The outcome is always the set of rules listed at the beginning of the section:

ημν → gαβ, ∂μ → ∇α. (5.89)

One can, in fact, obtain the rules without calculation. Instead of the route adopted previously,
we could have started from the statement that duμ/dτ = 0 holds in the local coordinates
ξμ when the particle encounters the observer on the reference geodesic γ . We could
have modified this immediately to Duμ/dτ = 0, observing that the two forms differ by
Christoffel symbols that vanish on γ . But this equation is in proper tensorial form in curved
spacetime, and a transformation to any other coordinates system xα will preserve its form;
the equation becomes Duα/dτ = 0 in the new coordinates, and once more we recover the
geodesic equation.

As another application of the rules we may generalize Eq. (4.16) from flat to curved
spacetime. The result is immediate, and we obtain the statement that

Eobs = −gαβ pαuβ

obs (5.90)

is the energy of a particle with momentum pα as measured by an observer moving with
velocity uα

obs. This equation applies to massive particles as well as photons. In the case of
a massive particle, the momentum vector is defined as in flat spacetime, pα = muα , where
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m is the particle’s rest-mass and uα is its own velocity vector. In the case of a photon,
Eq. (5.90) generalizes Eq. (4.26).

It should be noted that the rule ∂μ → ∇α always works when one generalizes a law of
physics that involves first derivatives only. When second derivatives are involved, however,
the rule can lead to ambiguities. This is because covariant derivatives do not commute when
they act on vectors and tensors. Different orderings of ∂μν will therefore lead to different
prescriptions that differ from each other by terms involving the Riemann tensor. Such
ambiguities can usually be resolved by retreating to a more fundamental, first-order formu-
lation of the law under consideration. When such a formulation does not exist, however,
the ambiguity must be resolved differently, and this may require experimental input.

5.3.2 Hydrodynamics in curved spacetime

The curved-spacetime formulation of the laws of fluid mechanics involves the same vari-
ables as in flat spacetime, and most of these are defined in precisely the same way. Going
through the list, we have the velocity field uα , proper mass density ρ, proper density of
internal (thermodynamic) energy ε, proper density of total energy μ = ρc2 + ε, pressure
p, and mass current jα = ρuα . The densities are all measured in an inertial frame that is
momentarily comoving with a selected fluid element; this frame is attached to an observer
moving freely in the gravitational field. We also have the fluid’s energy-momentum tensor
T αβ , but its relation to the other fluid variables must be modified from Eq. (4.50) according
to the rules of Eq. (5.89). We now have

T αβ = (μ + p)uαuβ/c2 + pgαβ, (5.91)

which features the spacetime metric gαβ instead of ημν .
The statement of mass conservation now takes the form

∇α jα = 0, (5.92)

the curved-spacetime generalization of Eq. (4.47). Using Eq. (5.40) this can also be
expressed as

∂α

(√−g jα
) = 0, (5.93)

and the factor of
√−g accounts for the dependence of volume elements on the metric

determinant. Substitution of jα = ρuα into Eq. (5.92) yields

dρ

dτ
+ ρ∇αuα = 0, (5.94)

which is the generalization of Eq. (4.53). Here, dρ/dτ = uα∇αρ is the (Lagrangian) deriva-
tive of the mass density along the world line of a selected fluid element.

The equation of energy-momentum conservation becomes

∇β T αβ = 0, (5.95)

the generalization of the flat-spacetime version of Eq. (4.49). Insertion of Eq. (5.91)
produces

dμ

dτ
+ (μ + p)∇βuβ = 0 (5.96)
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and

(μ + p)
Duα

dτ
+ c2

(
gαβ + uαuβ/c2

)∇β p = 0. (5.97)

The first equation gives rise to

ρ
dε

dτ
− (ε + p)

dρ

dτ
= 0 (5.98)

if we make use of Eq. (5.92), and we recognize this from Eq. (4.57) as a statement of
the first law of thermodynamics for isentropic flows. The second equation is the curved-
spacetime version of Euler’s equation. In the first term we recognize Duα/dτ = uβ∇βuα

as the covariant acceleration of a selected fluid element, which would be zero if the fluid
element were moving on a geodesic of the curved spacetime. This, however, is prevented
by the pressure forces acting within the fluid; the fluid element is not moving freely in the
gravitational field.

Box 5.5 Hydrostatic equilibrium

As a simple application of the laws of fluidmechanics in curved spacetime,we examine a static fluid configura-
tion in a static spacetime. This fluid is in hydrostatic equilibrium, andwewish to find the relationship between
the fluid’s variables and the gravitational potential.
The metric of a static spacetime can always be put in the form

ds2 = −e−2�/c2
d(ct)2 + g jk dx j dxk,

in terms of a gravitational potential�(x j ) and a spatial metric g jk that also depends on the spatial coordi-
nates x j . The metric, and all the fluid variables, do not depend on the time coordinate t . In a weak-field we
would have�/c2 � 1, and we would approximate g00 by−1 + 2�/c2 + · · · ; if we set� = U
and g jk = δ jk we recover the Newtonian metric of Eq. (5.12).
In a static configuration the fluid elements do not move in the spatial directions, and the only non-

vanishing component of the fluid’s velocity field is u0. The normalization condition gαβuαuβ = −c2

implies that u0 = ce�/c2
. This velocity field is not geodesic. It is easy to verify that the covariant accel-

eration is given by Duα/dτ = c2e2�/c2
�α

00, and a computation of the Christoffel symbols shows that
�

j
00 = −c−2e−2�/c2

g jk∂k� are the relevant, non-vanishing components. From this we obtain

Du j

dτ
= −g jk∂k�

for the spatial components of the covariant acceleration.
The fluid elements are accelerated because they are are notmoving freely in the gravitational field. Instead

they are kept in place by the pressure forces actingwithin the fluid, which support it against gravity. The equa-
tion of hydrostatic equilibrium follows as a direct consequence of Euler’s equation (5.97), which reduces, in our
case, to−(μ + p)g jk∂k� + c2g jk∂k p = 0. After lowering the j index, we arrive at

(ρ + p/c2 + ε/c2)∂ j� = ∂ j p.
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This is the (exact) relativistic statement of hydrostatic equilibrium. In Newtonian situations we may identify
�with the Newtonian potentialU and neglect the p/c2 and ε/c2 terms on the left-hand side; this gives
rise to the familiarρ∇U = ∇ p.

5.3.3 Electrodynamics in curved spacetime

The curved-spacetime formulation of Maxwell’s theory involves an electromagnetic field
tensor Fαβ and a charge-current vector jα

e . The statement of local charge conservation is
∇α jα

e = 0, and Maxwell’s equations take the form

∇β Fαβ = μ0 jα
e , ∇α Fβγ + ∇γ Fαβ + ∇β Fγ α = 0. (5.99)

The field tensor can be expressed in terms of a vector potential Aα . The relation is

Fαβ = ∇α Aβ − ∇β Aα, (5.100)

and this assignment ensures that the homogeneous Maxwell equations are automatically
satisfied. The field tensor is left invariant under a gauge transformation of the form Aα →
Aα + ∇αχ , where χ is any scalar function of the spacetime coordinates xα .

We may turn the inhomogeneous Maxwell equations into a set of wave equations for
the vector potential. To achieve this we adopt the curved-spacetime version of the Lorenz
gauge, in which the potential is required to satisfy the condition

∇α Aα = 0. (5.101)

We first insert Eq. (5.100) into the first of Eqs. (5.99) and get

∇β∇α Aβ − ∇β∇β Aα = μ0 jα
e . (5.102)

The second term on the left-hand side involves the differential operator ∇β∇β = gβγ ∇β∇γ ,
which reduces to ημν∂μ∂ν = −c−2∂2/∂t2 + ∇2 in flat spacetime; this is the curved-
spacetime version of the wave operator, which we denote�g . The first term can be simplified
if we switch the order of the covariant derivatives, using the Riemann-tensor identity of
Eq. (5.57). We have ∇β∇α Aβ = ∇α∇β Aβ + Rβ

νβα Aν , and the first term can be eliminated
by virtue of the Lorenz-gauge condition. The second term involves the contraction of
the Riemann tensor, which gives rise to the Ricci tensor Rνα = Rαν . All in all we have
obtained

�g Aα − Rα
β Aβ = −μ0 jα

e , (5.103)

which is the desired set of (coupled) wave equations for Aα . We recall that �g := gβγ ∇β∇γ

is the covariant wave operator in curved spacetime.
We observe that Eq. (5.103) cannot be obtained directly from Eq. (4.67) by applying

the rules of Eq. (5.89). The reason for this was already stated: the wave equation is a
second-order differential equation, and the rules are ambiguous for such equations; different
orderings of the derivatives lead to equations that differ from each other by Riemann-tensor
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terms. In the present case the ambiguity was resolved because the path leading to Eq. (5.103)
originated from the first-order formulation of Maxwell’s equations.

The energy-momentum tensor of the electromagnetic field is now

T αβ = 1

μ0

(
Fαμ Fβ

μ − 1

4
gαβ Fμν Fμν

)
, (5.104)

and the exchange of energy and momentum between the field and the charge distribution
is described by

∇β T αβ = −Fα
β jβ

e . (5.105)

This equation follows as a consequence of Maxwell’s equations; the term on the right-hand
side is (minus) the force density exerted on the charged fluid by the field.

Box 5.6 Geometric optics

Maxwell’s equations imply that photons move on geodesics of a curved spacetime. In this context the term
“photon” is employed in a classical sense, and designates a fictitious particle that follows the path of light
rays. This is the domain of the geometric-optics approximation to Maxwell’s theory, which is applicable when
the characteristic wavelength associated with a field configuration is much smaller than any other scale of
relevance, including the curvature scale set by the Riemann tensor. In our analysis we take these external
scales to be of order unity, while the wavelength is taken to be much smaller than this.
The geometric-optics approximation is built into the following ansatz for the vector potential:

Aα = [
aα + iεbα + O(ε2)

]
ei S/ε.

The prefactor within square brackets is a slowly-varying, complex amplitude, while the exponential factor
contains a rapidly-varying, real phase S/ε. The constant ε is a book-keeping parameter that we take to be
small during our manipulations; at the end of our calculations we reset it to ε = 1, so that S becomes the
actual phase function. The amplitudesaα andbα , and the phase S, all depend on the spacetime coordinates
xα . It is understood that only the real part of Aα is physically significant.
In a local inertial frame attached to a freely-moving observer, the electromagnetic wave represented by

Aα looks like a planewave, and the phase function can be locally approximated by S = −(ω/c)ξ 0 + k ·
ξ = kμξμ, wherekμ = (ω/c, k) = pμ/ h̄ is thewave vector, related to the photon’smomentum pμ

by a factor of h̄. The wave vector may be defined by kμ = ∂μS in the local coordinates, and in the global
coordinates xα we shall have

kα = ∂α S.

The vector kα is tangent to light rays, and we wish to show that it satisfies the null condition kαkα = 0 as
well as the geodesic equation kβ∇βkα = 0.
Differentiation of the vector potential gives

∇β Aα =
[

i

ε
kβaα − kβbα + ∇βaα + O(ε)

]
ei S/ε.
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At orderε−1 the Lorenz-gauge condition of Eq. (5.101) implies thatkαaα = 0, and at orderε0 wefind that
kαbα = ∇αaα ; the potential is orthogonal to the wave vector at leading-order only. A second differentia-
tion reveals that

�g Aα =
{
− 1

ε2
(kβkβ)aα + i

ε

[
(kβkβ)bα + 2kβ∇βaα + (∇βkβ)aα

]
+ O(ε0)

}
ei S/ε.

On theother hand, Rα
β Aβ = O(ε0), andMaxwell’s equations in the absenceof charges imply that�g Aα

must vanish at orders ε−2 and ε−1. At order ε−2 we obtain our null condition

kαkα = 0,

and at order ε−1 we get a differential equation for the amplitude aα : kβ∇βaα = − 1
2 (∇βkβ)aα .

The geodesic equation follows immediately from the definition of kα and the null condition. Differentia-
tion of the null condition yields 0 = ∇β(kαkα) = 2kα∇βkα = 2kα∇β∇α S. We next use the fact
that two covariant derivatives commute when they act on a scalar function S, and rewrite our result as
0 = 2kα∇α∇β S = 2kα∇αkβ . This is

kα∇αkβ = 0,

the statement of the geodesic equation for light rays.

5.3.4 Point particles in curved spacetime

Very little needs to be changed when we generalize the description of point particles from
Minkowski spacetime to curved spacetime. In the global coordinates xα a particle moves
on a world line rα(τ ) parameterized by proper time τ , its velocity vector is uα = drα/dτ ,
and its mass density ρ continues to be represented by a Dirac delta function. This, however,
must now come with an additional factor of

√−g, to ensure that integrals such as∫
f (xα)

δ(xμ − rμ)√−g
dV

involve the correct, invariant volume element dV := √−g d4x . The integral, we recall,
returns f (rα) if the event rμ is contained within the domain of integration, and zero
otherwise.

The mass density of a point particle of mass m is therefore given by

ρ(xα) = mc

∫
δ
(
xμ − rμ(τ )

)
√−g

dτ, (5.106)

its mass current by

jα = mc

∫
uα

δ
(
xμ − rμ(τ )

)
√−g

dτ, (5.107)
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and its energy-momentum tensor by

T αβ = mc

∫
uαuβ

δ
(
xμ − rμ(τ )

)
√−g

dτ. (5.108)

The delta function satisfies the distributional identity

uα∂αδ
(
xμ − rμ(τ )

) = − d

dτ
δ
(
xμ − rμ(τ )

)
, (5.109)

which was first established in Sec. 4.4.
With simple manipulations we can verify that the mass current has a vanishing divergence:

∇α jα = 1√−g
∂α

(√−g jα
)

= mc√−g

∫
uα∂αδ(xμ − rμ) dτ

= − mc√−g

∫
d

dτ
δ(xμ − rμ) dτ

= 0. (5.110)

For the divergence of the energy-momentum tensor we get

∇β T αβ = ∂β T αβ + �
β

γβ T αγ + �α
γβ T γβ

= 1√−g
∂β

(√−gT αβ
) + �α

βγ T βγ

= mc√−g

∫
uαuβ∂βδ(xμ − rμ) dτ + mc

∫
�α

βγ uβuγ δ(xμ − rμ)√−g
dτ ;

this becomes

∇β T αβ = mc

∫ (
duα

dτ
+ �α

βγ uβuγ

)
δ(xμ − rμ)√−g

dτ (5.111)

when we use the distributional identity within the first integral and integrate by parts. We
recognize Duα/dτ within the integral, and deduce that Duα/dτ = 0 when the particle
does not exchange energy and momentum with an external agent (through the action of a
force). In other words, the statement ∇β T αβ = 0 implies that the particle is moving freely,
and under these circumstances we recover the fact that the particle moves on a geodesic of
the curved spacetime.

5.4 Einstein field equations

The Einstein field equations relate the curvature of spacetime to the distribution of matter
within spacetime. They read

Gαβ = 8πG

c4
T αβ, (5.112)
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with the Einstein curvature tensor, Eq. (5.71), on the left-hand side, and the total energy-
momentum tensor of all forms of matter (and fields) on the right-hand side. Taking into
account the symmetries of the Einstein and energy-momentum tensors, the Einstein field
equations are a set of ten second-order, partial differential equations for the metric tensor
gαβ . The equations are all coupled, and they are highly non-linear in the metric and its first
derivatives; they are, however, linear in the second derivatives of the metric tensor.

A naive counting of the number of equations might suggest that, given suitable ini-
tial and boundary conditions for the metric, the solution to the Einstein field equations
should be unique. This suggestion, however, is false, as the freedom to perform coordinate
transformations must be retained; two metrics gαβ and g′

μν related to each other by a coor-
dinate transformation should both be valid solutions to the field equations. This freedom is
guaranteed by the contracted Bianchi identities,

∇β Gαβ = 0, (5.113)

which reveal that of the ten field equations, only six are truly independent from each other.
The Bianchi identities, together with the field equations, imply that

∇β T αβ = 0; (5.114)

the energy-momentum tensor must have a vanishing divergence. This is a local statement
of energy-momentum conservation for the matter (and field) distribution. This equation is
of fundamental importance, because it determines (partially, if not fully) the equations of
motion for the matter variables that make up the energy-momentum tensor. We witnessed
this connection in the specific context of fluid mechanics in Sec. 5.3: we saw that the
relativistic Euler equation (5.97) follows directly from Eq. (5.114).

The Einstein field equations have a fascinating structure. In the famous words of John
Wheeler, the field equations (5.112) tell spacetime how to curve, given a description of
the matter distribution through its energy-momentum tensor. At the same time, Eq. (5.114)
tells matter how to move in a specified spacetime. But these equations are not independent,
for they are intimately connected through the contracted Bianchi identities. Matter has no
latitude: it must move in accordance to the spacetime that it produces.

This structure is unique to general relativity. In Maxwell’s electrodynamics, for example,
one can prescribe the motion of charges and determine the electromagnetic field that
corresponds to this assumed distribution; no equations are violated when the charges do
not respond to the field in a self-consistent manner, because external agents can always be
introduced with the specific purpose of keeping the charges on their prescribed trajectories.
In general relativity the motion of masses cannot be prescribed; it is necessarily dictated
by the Einstein field equations. Any attempt to keep the masses on prescribed trajectories
would involve external agents that are themselves a significant source of mass and energy;
their contribution to the total T αβ would necessarily modify the spacetime in which the
masses are moving.

In Einstein’s theory the local statement of energy-momentum conservation, Eq. (5.114),
is a consequence of the field equations, and the behavior of matter is intimately tied to
the spacetime that the matter generates. Equation (5.114), however, should be expected to
hold also in alternative theories of gravitation, in which the relationship between matter
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and curvature might involve additional mediators (such as a scalar field, in the case of
scalar-tensor theories). The reason for this, as we shall elaborate below, resides in the
fact that Eq. (5.114) is a direct consequence of the invariance of the matter action under
general coordinate transformations. Because this principle of general covariance is a central
aspect of any metric theory of gravitation (not just Einstein’s), ∇β T αβ = 0 is a fundamental
equation that transcends its connection to the Einstein field equations and the Bianchi
identities.

The equations of general relativity can be derived from an action principle. The total
action S involves a gravitational piece given by the Hilbert action

Sgrav = c3

16πG

∫
R dV, (5.115)

where R is the Ricci scalar and dV = √−g d4x is the invariant volume element, as well
as a matter piece given by

Smatter =
∫

L dV, (5.116)

where L is the Lagrangian density for all matter (and field) variables. The Einstein tensor
results from the functional variation of the gravitational action:

δSgrav

δgαβ

= − c3

16πG
Gαβ. (5.117)

The energy-momentum tensor, on the other hand, is defined by

δSmatter

δgαβ

= 1

2c
T αβ. (5.118)

The Einstein field equations then follow from the requirement that δ(Sgrav + Smatter) = 0
under an arbitrary variation of the metric tensor. However, when we consider a specific
variation δgαβ induced by a coordinate transformation, δSgrav = 0 must follow as a matter
of identity; it can be shown that the invariance of Sgrav under such a variation gives rise
to the Bianchi identities ∇β Gαβ = 0. And similarly, the invariance of Smatter under such
a variation gives rise to Eq. (5.114). This result is the source of our earlier claim that
∇β T αβ = 0 must hold in any metric theory of gravitation; it is a direct consequence of the
principle of general covariance.

5.5 Linearized theory

The field equations of general relativity are exceedingly complicated, and it is a genuine
miracle that so many exact solutions have been found over the years; but it is perhaps not
a surprise that so few of these solutions possess an immediate physical significance. In the
next section we shall explore the most famous of these exact solutions, the Schwarzschild
metric, which describes the vacuum exterior to any spherical mass distribution. In this
section we examine an approximate version of Einstein’s theory, which applies when gravity
is everywhere weak. As we shall see, there is more to weak-field gravity than was uncovered
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by Newton, and this exploration of the linearized theory will help us gain insight into the
dynamical structure of general relativity. We warn the reader that our emphasis here is
on conceptual matters; in the next chapters we develop more efficient ways of solving the
Einstein field equations in weak-field situations, and we revisit topics introduced here with
more depth and precision.

5.5.1 Metric and coordinate freedom

We consider a spacetime with a metric that can be expressed in the form

gαβ = ηαβ + pαβ, (5.119)

where ηαβ is the Minkowski metric, and where pαβ is a collection of ten independent fields
that are each assumed to be small compared with unity. To keep track of the order of
smallness we introduce the parameter ε � 1, and we write pαβ = O(ε). Equation (5.119)
states that the spacetime metric deviates only slightly from the Minkowski metric, and
this serves as our definition of a weakly-curved spacetime. This spacetime contains weak
gravitational fields, and everywhere in this section we shall be working consistently to
first order in ε, neglecting all terms of order ε2 and higher. We shall refer to ηαβ as the
“background metric,” and to pαβ as the “metric perturbation.”

Equation (5.119) imposes a severe restriction on the coordinate freedom that is normally
unlimited in the exact formulation of general relativity. We must restrict the coordinate
transformations x ′μ = Fμ(xα) to those that preserve the decomposition of the metric into
a dominant Minkowski piece and a small perturbation. The remaining coordinate freedom
includes Lorentz transformations, which leave ηαβ unchanged but alter pαβ as if it were a
tensor field in flat spacetime, and small coordinate deformations of the form

x ′α = xα + ζ α(xβ ), (5.120)

where ζ α is a vector field of order ε. Large coordinate transformations are excluded from
our considerations.

To first order in ε the inverse to Eq. (5.120) is xα = x ′α − ζ α(x ′β ), because the difference
between ζ α(x ′β) and ζ α(xβ ) is approximately ζ β∂βζ α , which is of order ε2. This implies that
dxα = (δα

β − ∂βζ α)dx ′β , and substitution into ds2 = gαβ dxαdxβ reveals that the metric is
given by

g′
αβ = ηαβ + pαβ − ∂α

(
ηβμζ μ

) − ∂β

(
ηαμζ ν

) + O(ε2) (5.121)

in the primed coordinates. This shows that the decomposition of Eq. (5.119) is indeed
preserved, and that the perturbation becomes

p′
αβ = pαβ − ∂αζβ − ∂βζα, ζα := ηαμζ μ, (5.122)

in the new coordinates. Here we allow ourselves to lower the index on ζ μ with the Minkowski
metric ηαμ instead of the full metric gαμ, because the difference is of order ε2; we shall
make repeated use of this convention in what follows.

It is noteworthy that Eq. (5.122) looks like a natural tensorial generalization of Aα →
A′

α = Aα − ∂αχ , which is a gauge transformation of a vector potential Aα generated by a
scalar field χ . For this reason the transformation of the metric perturbation under a small
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coordinate deformation is often referred to as a gauge transformation generated by the
vector field ζα . We shall adopt this attractive terminology, but it is important to understand
that the gauge freedom of the linearized theory is not a new symmetry of general relativity;
it is simply the general covariance of the full theory restricted to the small coordinate
deformations of Eq. (5.120).

5.5.2 Curvature and field equations

We next calculate the Christoffel symbols and curvature tensors associated with the metric
of Eq. (5.119), working consistently to first order in ε. It is useful here to recall our previous
convention that when an index is lowered on a quantity of order ε, the lowering can be
accomplished with the Minkowski metric ηαβ ; the same is true of index raising, which can
be accomplished with ηαβ . This convention allows us to introduce

pαβ := ηαμηβν pμν, p := ηαβ pαβ, (5.123)

as convenient notations.
It is easy to verify that the inverse metric must be given by

gαβ = ηαβ − pαβ, (5.124)

if gαβ is to respect its defining relation gαμgμβ = δα
β up to terms of order ε2. The Christoffel

symbols are

�α
βγ = 1

2

(
∂β pα

γ + ∂γ pα
β − ∂α pβγ

)
, (5.125)

and the Riemann tensor is

Rαβγ δ = 1

2

(
∂βγ pαδ − ∂βδ pαγ − ∂αγ pβδ + ∂αδ pβγ

)
. (5.126)

Under a gauge transformation we find that �α
βγ changes by terms that depend on second

derivatives of ζα , but the Riemann tensor is invariant:

R′
αβγ δ = Rαβγ δ. (5.127)

This result illustrates the important fact that while the metric simultaneously encodes
information about gravity and the adopted coordinate system, the Riemann tensor is all
about gravitation.

From Eq. (5.126) we may form the Ricci tensor, Ricci scalar, and Einstein tensor, which
are all gauge-invariant quantities. We obtain

Rαβ = −1

2

(
�pαβ + ∂αβ p − ∂αμ pμ

β − ∂βμ pμ
α

)
, (5.128)

R = −�p + ∂μν pμν, (5.129)

and

Gαβ = −1

2

(
�pαβ + ∂αβ p − ∂αμ pμ

β − ∂βμ pμ
α

) + 1

2
ηαβ

(
�p − ∂μν pμν

)
. (5.130)

Here we let � := ηαβ∂αβ denote the flat-spacetime wave operator.
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The form of the Einstein tensor can be simplified slightly if, instead of pαβ , we express
it in terms of the trace-reversed perturbation

p̄αβ := pαβ − 1

2
ηαβ p. (5.131)

The expression “trace-reversed” follows from the property that p̄ = −p, so that pαβ =
p̄αβ − 1

2 ηαβ p̄. Making the substitution yields

Gαβ = −1

2

(
� p̄αβ − ∂αμ p̄μ

β − ∂βμ p̄μ
α + ηαβ∂μν p̄μν

)
. (5.132)

The Einstein field equations are

Gαβ = 8πG

c4
T αβ, (5.133)

in which T αβ , like pαβ and Gαβ , is imagined to be of order ε. The appropriate statement of
the contracted Bianchi identities, to order ε, is

∂β Gαβ = 0, (5.134)

and it is easy to verify that this does indeed follow automatically from Eqs. (5.130) or
(5.132). Also to order ε, the appropriate statement of energy-momentum conservation is

∂β T αβ = 0. (5.135)

Physically, this equation implies that the matter fields that produce T αβ are allowed to
exchange energy and momentum between themselves, but not with the gravitational field;
such an exchange would be described by the exact equation ∇β T αβ = 0, which differs from
Eq. (5.135) by terms of order ε2. Thus, in the linearized theory the dynamics of the matter
fields cannot include gravity, and the theory cannot be applied to systems (like stars) that
are bound together by gravitational forces. The dynamics must instead be dominated by
non-gravitational forces. This is an important, and often unappreciated, limitation of the
approximation.

5.5.3 Lorenz gauge

A substantial simplification of the Einstein tensor results when we exploit the coordinate
freedom of Eq. (5.122) and impose the conditions

∂β p̄αβ = 0 (5.136)

on the (trace-reversed) metric perturbation. This equation is a natural tensorial general-
ization of the Lorenz-gauge condition of electrodynamics, as expressed in Eq. (4.66); we
therefore refer to Eq. (5.136) as the Lorenz-gauge condition for the gravitational poten-
tials pαβ . This choice of gauge can always be enforced. If we are presented with a p̄old

αβ

that does not satisfy the Lorenz-gauge conditions, a gauge transformation will produce
p̄new

αβ = p̄old
αβ − ∂αζβ − ∂βζα + ηαβ∂μζ μ, and this will satisfy the gauge conditions when

0 = ∂β p̄new
αβ = ∂β p̄old

αβ − �ζα . We see that the generator of the gauge transformation must
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satisfy the wave equation

�ζα = ∂β p̄old
αβ , (5.137)

and solutions to this equation can always be found. The solution, in fact, is not unique; to
any solution ζα one can add the vector ζ hom

α provided that this satisfies the homogeneous
version of the wave equation, �ζ hom

α = 0. So while the Lorenz-gauge conditions can always
be enforced, they do not completely specify the coordinate system. The conditions of
Eq. (5.136) imply that of the ten original fields pαβ , only six are independent.

With Eq. (5.136) the Einstein tensor becomes Gαβ = − 1
2� p̄αβ , and the field equations

take the form of a wave equation for the trace-reversed potentials:

� p̄αβ = −16πG

c4
Tαβ. (5.138)

Solutions to this equation are easily obtained (the relevant techniques will be introduced in
Chapter 6), and the metric is easily reconstructed from the potentials: gαβ = ηαβ + p̄αβ −
1
2 ηαβ p̄.

Because of its simplicity, Eq. (5.138) is an excellent starting point to an investigation of
the nature of gravity in weak-field situations. In fact, in Chapter 6 we will recover the wave
equation in an improved formulation of the theory, which involves a systematic expansion
of the Einstein and energy-momentum tensors in powers of ε. So there is a lot that is good
about Eq. (5.138), but one aspect that requires scrutiny is the suggested notion that all
six independent degrees of freedom contained in pαβ are radiative degrees of freedom.
If weak-field gravity is at all analogous to electrodynamics, we would expect instead that
some degrees of freedom are non-radiative, and bound to the distribution of mass-energy
(just as the Coulomb piece of the electric field is directly tied to the distribution of charge).
A deeper analysis of the field equations will reveal that such is indeed the case: Of the six
degrees of freedom, only two are radiative, while the remaining four are bound to the matter
distribution. The suggestion from Eq. (5.138) that all degrees of freedom are radiative is
merely an (convenient, but misleading) artifact of the choice of gauge.

5.5.4 Decomposition of the metric into irreducible pieces

We require a sophisticated decomposition of the metric perturbation pαβ that allows a clear
identification of the degrees of freedom. To accomplish this we shall follow a nice treatment
of the linearized theory that we learned from our friends Éanna Flanagan and Scott Hughes
in their 2005 publication.

We first recall that under a Lorentz transformation, pαβ transforms as a tensor field in
Minkowski spacetime. The general transformation includes a boost, in which the new frame
moves with speed v relative to the old frame, and a rotation, in which the new spatial axes
are rotated relative to the old frame. Here we are not interested in the boosts, and shall
instead restrict our attention to pure rotations. The important observation for our purposes
is that under a rotation of the spatial axes, p00 transforms as a scalar, p0 j transforms as a
(Cartesian) vector, and p jk transforms as a (Cartesian) tensor. We shall use this observation
to decompose these quantities into their irreducible pieces (Box 5.7). Thus, p0 j will be
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decomposed into longitudinal and transverse pieces, while p jk will be decomposed into
trace, longitudinal-tracefree, longitudinal-transverse, and transverse-tracefree pieces. As
we shall see, this decomposition clearly delineates the degrees of freedom contained in
each component of pαβ .

Box 5.7 Decomposition of vectors and tensors into irreducible pieces

We aim to show that a Cartesian vector field A j can always be decomposed as

A j = ∂ j A + A j
T, ∂ j A j

T = 0, (1)

in terms of a longitudinal piece ∂ j A and a transverse piece A j
T. Under some conditions that will be stated

in a moment, this decomposition is unique. The origin of the terms “longitudinal” and “transverse” in this
context will be clarified below. The longitudinal piece of A j contains one independent component (the scalar
A), and the transverse piece, by virtue of the condition ∂ j A j

T = 0, contains two independent components;
these sum up to three independent components, the appropriate number for a vector field.
We shall show also that a symmetric tensor field B jk can always be decomposed as

B jk = 1

3
δ jk B +

(
∂ jk − 1

3
δ jk∇2

)
C + ∂ j Ck

T + ∂kC j
T + C jk

TT, (2)

with the conditions

∂ j C
j
T = 0, ∂kC jk

TT = 0 = δ jkC jk
TT. (3)

The decomposition involves a trace piece 1
3δ jk B , a longitudinal-tracefree piece (∂ jk − 1

3δ jk∇2)C , a
longitudinal-transverse piece ∂ j Ck

T + ∂kC j
T , and a transverse-tracefree pieceC jk

TT. The six independent
components of B jk are contained in B := δ jk B jk (one component), C (one component), C j

T (two
components, by virtue of the divergence-free condition), andC jk

TT (two components, by virtue of the three
divergence-free conditions and the additional tracefree condition).
Theuniqueness of the vector decomposition is establishedbynoting that∂ j A j = ∇2 A. This is a Poisson

equation for A, and the solution is unique, given A j , provided that A goes to zero at infinity; this requires
A j to fall off sufficiently rapidly when r := |x| → ∞. Once A is found, Eq. (1) immediately gives A j

T.
The uniqueness of the tensor decomposition follows from similar considerations. We note first that B =

δ jk B jk is obviously unique. Next we derive the equations ∂k B jk = 1
3∂ j B + 2

3∇2∂ j C + ∇2C j
T

and ∂ jk B jk = 1
3∇2 B + 2

3∇4C . With B determined, the second equation is a Poisson equation for
∇2C , and the solution is unique provided that∇2C → 0when r → ∞. With∇2C known,C can be
determined, and once more the solution is unique provided thatC → 0 when r → ∞. Finally, the first
equation is a Poisson equation forC j

T, and the solution is unique provided thatC
j
T → 0when r → ∞.

With B ,C , andC j
T determined, Eq. (2) givesC jk

TT.
To explain where Eqs. (1)–(3) and the associated terminology come from, we appeal to the Fourier trans-

form. A vector field that is sufficiently well-behaved at infinity can always be decomposed as

A j (x) =
∫

Ã j (k)ei k·x d3k,
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in terms of plane waves ei k·x with amplitudes Ã j (k). For each value of k in the domain of integration we
can write Ã j = i Ãk j + Ã j

T, thereby decomposing the vector into a piece aligned with k j – the longi-
tudinal piece – and another piece orthogonal to k j – the transverse piece; we demand that ik j Ã j

T = 0.
Substitution into the Fourier integral gives

A j =
∫

ik j Ãei k·x d3k +
∫

Ã j
Tei k·x d3k

= ∂ j A + A j
T,

where A(x) = ∫
Ã(k)ei k·x d3k . Note that the condition ik j Ã j

T = 0 becomes ∂ j A j
T = 0 after

evaluation of the Fourier integral. We have obtained the decomposition of Eq. (1) and clarified themeaning of
the terms “longitudinal” and “transverse.”
For a symmetric tensor field we begin with

B jk(x) =
∫

B̃ jk(k)ei k·x d3k

and first decompose B̃ jk into trace and tracefree pieces:

B̃ jk = 1

3
δ jk B̃ + C̃ jk,

where δ jkC̃ jk = 0. We next write C̃ jk = −k j kkC̃ + ik j C̃k
T + ikkC̃ j

T + C̃ jk
T and impose the

conditions ik j C̃
j
T = 0 and ikkC̃ jk

T = 0; this provides a decomposition of C̃ jk into a longitudinal
piece−k j kkC̃ , a longitudinal-transverse piece ik j C̃k

T + ikkC̃ j
T, and a transverse piece C̃ jk

T . This last
tensor can still be decomposed into trace and tracefree pieces; we have C̃ jk

T = 1
3δ jkC̃T + C̃ jk

TT, with
δ jkC̃ jk

TT = 0. Because C̃ jk must itself be tracefree, we find that C̃T = k2C̃ , where k2 = k · k. All in
all this gives us

C̃ jk = −
(

k j kk − 1

3
δ jkk2

)
C̃ + ik j C̃k

T + ikkC̃ j
T + C̃ jk

TT

for the tracefree piece of B̃ jk . Evaluating the Fourier integrals returns Eq. (2) for B jk and the conditions of
Eq. (3) forC j

T andC jk
TT.

Following the rules of Box 5.7, the decomposition of the metric perturbation is accom-
plished by

p00 = 2U/c2, (5.139a)

p0 j = −4U j /c3 − ∂ j A/c, (5.139b)

p jk = 2δ jk V/c2 +
(
∂ jk − 1

3
δ jk∇2

)
B + (

∂ j Bk + ∂k B j

)
/c2 + hTT

jk , (5.139c)

along with the conditions

∂ jU
j = 0, ∂ j B j = 0, ∂kh jk

TT = 0 = δ jkh jk
TT. (5.140)
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The ten independent components of pαβ are contained in the potentials U (one component),
U j (two components), A (one component), V (one component), B (one component), B j

(two components), and hTT
jk (two components). The various factors of 2, −4, and c that

appear in Eq. (5.139) were inserted for later convenience.
We next figure out how the ten gravitational potentials that are contained in pαβ change

under a gauge transformation. To achieve this we first decompose the generator ζα of the
transformation into its own irreducible pieces. We write

ζ0 = α/c, (5.141a)

ζ j = 4β j /c2 + ∂ j γ, ∂ jβ j = 0, (5.141b)

again inserting factors of c for convenience. Substitution of Eqs. (5.139) and (5.141) into
Eq. (5.122) eventually returns

U ′ = U − ∂tα, (5.142a)

U ′
j = U j + ∂tβ j , (5.142b)

V ′ = V − 1

3
c2∇2γ, (5.142c)

h′TT
jk = hTT

jk , (5.142d)

A′ = A + α + ∂tγ, (5.142e)

B ′ = B − 2γ, (5.142f)

B ′
j = B j − 4β j . (5.142g)

We recall that t := x0/c, and note that unlike all other gravitational potentials, the
transverse-tracefree piece hTT

jk is gauge-invariant.

5.5.5 Coulomb gauge and gauge-invariant potentials

Inspection of Eqs. (5.142) reveals that the variables

� := U + ∂t A + 1

2
∂t t B, (5.143a)

� j := U j + 1

4
∂t B j , (5.143b)

# := V − 1

6
c2∇2 B, (5.143c)

as well as hTT
jk , are all gauge-invariant. As such these potentials encode information that

concerns the gravitational field only, and this information does not depend at all on the choice
of coordinate system. The gauge-invariant potentials, therefore, represent the true degrees of
freedom of the gravitational field. We have two scalar potentials � and #, a vector potential
� j that contains two independent components (by virtue of the transverse condition ∂ j � j =
0), and a tensor potential hTT

jk that also contains two independent components; the total
number of degrees of freedom is six, and we have eliminated the four components of pαβ

that encode coordinate information.
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There exists a choice of gauge for which

A = B = B j = 0 (Coulomb gauge), (5.144)

so that

p00 = 2U/c2, p0 j = −4U j /c3, p jk = 2δ jk V/c2 + hTT
jk (Coulomb gauge).

(5.145)

The potentials are constrained by the transverse condition ∂ jU j = 0 and the transverse-
tracefree conditions on hTT

jk . The condition ∂ jU j = 0 is analogous to the choice of
gauge defined by ∇ · A = 0 in electrodynamics, and for this reason we call the con-
ditions of Eq. (5.144) the Coulomb-gauge conditions. We note the important property
that in the Coulomb gauge, the gravitational potentials are equal to the gauge-invariant
potentials:

� = U, � j = U j , # = V (Coulomb gauge). (5.146)

This property makes the Coulomb gauge especially meaningful and convenient.
It is easy to see that the conditions of Eq. (5.144) can always be enforced. Suppose that we

are presented with a pold
αβ , decomposed as in Eqs. (5.139), that does not satisfy the Coulomb-

gauge conditions. A gauge transformation, decomposed as in Eqs. (5.141), produces a new
perturbation pnew

αβ , and the complete listing of changes is given by Eqs. (5.142). We have,
in particular, Bnew

j = Bold
j − 4β j , and β j can be chosen so as to set Bnew

j = 0. Similarly,
Bnew = Bold − 2γ , and γ can be chosen so that Bnew = 0. Finally, Anew = Aold + α + ∂tγ ,
and the condition Anew = 0 determines α. We see that the Coulomb gauge can indeed be
imposed, and moreover, we see that it completely specifies the coordinate system: ζα is
completely determined by the gauge conditions.

5.5.6 Curvature and field equations (revisited)

It is a straightforward matter to insert Eqs. (5.145) into Eq. (5.126) and calculate the
components of the Riemann tensor in the Coulomb gauge. But since the Riemann tensor
is gauge-invariant, and the Coulomb-gauge potentials are equal to their gauge-invariant
counterparts, one may simply make the substitutions U → �, U j → � j , and V → # at
the end of the calculation to obtain the general expression for the Riemann tensor, valid in
any choice of gauge. This procedure yields

R0 j0k = − 1

c2
∂ jk� − 1

c4
δ jk∂t t# − 2

c4

(
∂t j �k + ∂tk� j

) − 1

2c2
∂t t h

TT
jk , (5.147a)

R0 jkm = 1

c3

(
δ jk∂tm# − δ jm∂tk#

) − 2

c3

(
∂ jk�m − ∂ jm�k

)
− 1

2c

(
∂tkhTT

jm − ∂tmhTT
jk

)
, (5.147b)

R jkmn = 1

c2

(
δkm∂ jn# − δkn∂ jm# − δ jm∂kn# + δ jn∂km#

)
+ 1

2

(
∂kmhTT

jn − ∂knhTT
jm − ∂ jmhTT

kn + ∂ jnhTT
km

)
. (5.147c)
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From this we next obtain the Einstein tensor, which is given by

G00 = − 2

c2
∇2#, (5.148a)

G0 j = − 2

c3
∂t j # + 2

c3
∇2� j , (5.148b)

G jk = − 2

3c2
δ jk∇2(� − #) − 2

c4
δ jk∂t t# + 1

c2

(
∂ jk − 1

3
δ jk∇2

)
(� − #)

+ 2

c4

(
∂t j �k + ∂tk� j

) − 1

2
�hTT

jk . (5.148c)

We recall that � := ηαβ∂αβ is the wave operator in flat spacetime. We recognize in
Eq. (5.148) that the Einstein tensor is fully decomposed into its irreducible pieces, with
G0 j containing longitudinal and transverse pieces, and G jk containing trace, longitudinal-
tracefree, longitudinal-transverse, and transverse-tracefree pieces.

Before we write down the Einstein field equations we should also decompose the energy-
momentum tensor Tαβ into its own irreducible pieces. We write

T 00 = �c2, (5.149a)

T 0 j = (s j + ∂ j s)c, (5.149b)

T jk = τδ jk +
(
∂ jk − 1

3
δ jk∇2

)
σ + ∂ j σ k + ∂kσ j + σ jk, (5.149c)

and impose the conditions

∂ j s
j = 0, ∂ jσ

j = 0, ∂kσ
jk = 0 = δ jkσ

jk . (5.150)

Here � is the mass density of the matter distribution as measured by an observer at rest
relative to the coordinate frame xα; this should not be confused with ρ, the proper mass
density of a perfect fluid. The vector s j + ∂ j s is the momentum density of the matter
distribution, and T jk is its stress tensor.

The decomposition of T αβ involves ten irreducible variables, but these cannot all be inde-
pendent. A simple calculation reveals that ∂β T αβ = 0, the statement of energy-momentum
conservation in the linearized theory, gives rise to the relations

∇2s = −∂t�, ∇2σ j = −∂t s
j , ∇2σ = −3

2
(∂t s + τ ). (5.151)

These imply that only �, s j , τ , and σ jk – six independent variables in all – can be specified
freely; the other four (s, σ j , and σ ) are determined by them.

Each irreducible piece of the Einstein tensor can be set equal to each irreducible piece
of the energy-momentum tensor (multiplied by 8πG/c4). The independent pieces of the
Einstein field equations are thus revealed to be

∇2# = −4πG�, (5.152a)

∇2(� − #) = −12πG

c2
(∂t s + τ ), (5.152b)

∇2� j = −4πGs j , (5.152c)

�hTT
jk = −16πG

c4
σ jk . (5.152d)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-05 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:30

262 Curved spacetime

We also find the additional equations ∂t# = 4πGs, � − # = 8πGσ/c2, and ∂t� j =
4πGσ j , which are redundant by virtue of Eqs. (5.151).

Equations (5.152) are the culminating point of our considerations. They carry important
insights into the nature of relativistic gravity. We note first that of the six degrees of freedom
of the gravitational field, the four represented by �, � j , and # obey Poisson equations.
Solutions for these potentials at a time t depend on the state of the matter variables at
precisely the same time; the potentials march in step with the matter, much in the same way
that the Newtonian potential U depends on the instantaneous profile of the mass density
ρ. The remaining degrees of freedom, those represented by hTT

jk , behave very differently.
These potentials obey wave equations, and their value at a time t depends on the state of the
matter variables at an earlier time t ′; the delay allows for the propagation of a light signal
from the source point x′ to the field point x. The main message is this: of the six degrees
of freedom of the gravitational field, only two are radiative; the remaining four are not, and
are directly tied to the matter distribution.

The gauge-invariant formulation of the linearized field equations is conceptually powerful
because it cleanly separates the radiative from the non-radiative degrees of freedom. It does
not, however, give rise to a practical method to integrate the field equations. Two difficulties
arise. The first is that even if Eqs. (5.152) could be integrated explicitly for the gauge-
invariant potentials �, � j , #, and hTT

jk , the problem would not be completely solved until
all the gravitational potentials – U , U j , V , hTT

jk , A, B, and B j – are determined; this requires
a choice of gauge and the integration of Eqs. (5.143). This first difficulty can be simply
dealt with by adopting the Coulomb gauge and invoking Eqs. (5.146). The second difficulty
is much more serious: to integrate Eqs. (5.152) one must first determine �, s j , τ , and σ jk ,
the relevant irreducible pieces of the energy-momentum tensor. While this can always be
done in principle, in most applications it is difficult and impractical. For this reason, the
Lorenz-gauge formulation of the Einstein field equations, summarized by Eq. (5.138) on
page 256, provides a much more user-friendly method of finding solutions.

5.5.7 Newtonian limit

The linearized theory developed in the preceding subsections possesses a rich dynamical
structure. The theory features two scalar potentials � and #, one transverse vector potential
� j , and a transverse-tracefree tensor potential hTT

jk . This is quite a bit more than in Newton’s
theory, and in this subsection we show how the Newtonian description (with its single scalar
potential) emerges in an appropriate limit.

The Newtonian limit of linearized theory is defined by the statement that any speed v

that characterizes the matter distribution must be small compared with the speed of light:
v/c � 1. This inequality implies the existence of a hierarchy in the components of the
energy-momentum tensor. We recall that T 00 is a mass density multiplied by c2, that T 0 j is
a mass flux multiplied by c, and that T jk describes the stresses within the matter distribution.
We expect the ratio T 0 j /T 00 to be of order v/c, and T jk/T 00 to be of order (v/c)2. We
therefore have T jk � T 0 j � T 00, and in the Newtonian limit we ignore T 0 j and T jk while
we retain the services of T 00 = �c2.
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We formally define the Newtonian limit by setting s j = s = τ = σ = σ j = σ jk = 0.
The field equations of Eqs. (5.152) imply that # = � and � j = 0. The remaining field
equations are

∇2� = −4πG� (5.153)

and �hTT
jk = 0. We recognize the first equation as Poisson’s equation of Newton’s theory,

with � playing the role of the Newtonian potential U . The second equation describes the
propagation of a free gravitational wave; this can be turned off by adopting a zero-wave
initial condition.

If we next adopt the Coulomb gauge, then U = V = �, and according to Eq. (5.145),
the metric takes the form of

ds2 = −(1 − 2U/c2) d(ct)2 + (1 + 2U/c2)(dx2 + dy2 + dz2), (5.154)

with a potential U that satisfies ∇2U = −4πG�. This is the Newtonian limit of general
relativity.

We encountered a slightly different metric, given by ds2 = −(1 − 2U/c2)d(ct2) + dx2 +
dy2 + dz2, back in Eq. (5.12). In the earlier context of Sec. 5.1, this metric was arrived
at on the basis of a thought experiment involving a photon climbing up a Newtonian
gravitational field. The argument was based entirely on the principle of equivalence, and
did not refer at all to the Einstein field equations. As a result, the argument produced the
correct expression for g00, but it did not produce the corrections to the spatial portion of the
metric. Nevertheless, the metric of Eq. (5.12) was seen to give rise to the correct equations
of motion for a test body moving in a Newtonian gravitational field. Do the spatial terms
in Eq. (5.154) spoil this earlier, successful result?

The answer is no. To see this, we construct the Lagrangian that governs geodesic motion
in our improved version of the Newtonian metric. This is L = −mc

√−gαβ ṙαṙβ with
ṙα := drα/dt , which evaluates to

L = −mc2
√

1 − 2U/c2 − (1 + 2U/c2)(v2/c2)

= −mc2
√

1 − 2U/c2 − v2/c2 + O(Uv2/c4)

= −mc2 + 1

2
mv2 + mU + O(mUv2/c2), (5.155)

where v2 := δ jk ṙ j ṙ k . This computation reveals that the spatial terms in the metric are
multiplied by (v/c)2 in the Lagrangian, producing a contribution that is smaller than the
Newtonian terms by a factor of (v/c)2. This relativistic correction must be neglected in the
Newtonian limit, and we conclude that the timelike geodesics of a spacetime with the metric
of Eq. (5.154) are described by a = ∇U . These, of course, are the Newtonian equations of
motion.

The spatial terms in Eq. (5.154) do have a significant effect on the motion of light,
because in this case a correction of order (v/c)2 is actually a correction of order unity. We
explore the relativistic deflection of light and its observable implications in Chapter 10.
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5.6 Spherical bodies and Schwarzschild spacetime

We conclude this chapter with an exploration of spherical bodies in exact general relativity.
While the internal description of such a body is necessarily complicated and requires de-
tailed information about the matter content, the external description is exceptionally simple
and provided by the most famous metric of all, the one associated with Karl Schwarzschild’s
name. The Schwarzschild metric is an exact solution to the Einstein field equations that
describes the vacuum region exterior to any spherical distribution of matter. The matter
distribution can be static (in the case, for example, of a star in hydrostatic equilibrium) or
time-dependent (in the case, for example, of a star undergoing gravitational collapse). As
long as the configuration is spherically symmetric, the external, vacuum gravitational field
is static and described by the Schwarzschild metric. (There is actually a second solution
discovered by Schwarzschild, which describes the gravitational field inside a spherical body
in hydrostatic equilibrium, under the assumption that its mass density is constant.)

In the case of a complete gravitational collapse, there is no stellar interior, the vacuum
region extends everywhere, and the vacuum Schwarzschild solution describes a non-rotating
black hole. By virtue of Israel’s uniqueness theorem, an isolated, stationary, non-rotating
black hole must be spherical (regardless of the shape of its progenitor), and its metric must
be the Schwarzschild vacuum metric.

Schwarzschild discovered his solutions in 1915, a few months before the formal publica-
tion by Einstein of the final form of the field equations. At the time Einstein had been able
to obtain approximate solutions to his equations in weak-field situations, and it came as a
surprise to him that an exact solution could be found, and that it could be expressed in such
a simple form. Schwarzschild was a well-known German astronomer, and he was working
at the Potsdam Observatory when World War I broke out. He carried out his famous work
on general relativity while in hospital being treated for a rare auto-immune skin disease,
which he had contracted while stationed at the Russian front; he died a few months later at
the age of 42.

In this section we derive the Einstein field equations for a spherically-symmetric space-
time, and apply them to the vacuum exterior of any body, and to the interior of a static
star. We will describe the exterior metric in a number of coordinate systems, work out the
motion of a test mass, and consider the trajectory of a photon. We shall not be concerned
here with the black-hole aspects of the spacetime, which are treated in detail in numerous
textbooks.

5.6.1 Spherically symmetric spacetimes

Spherical symmetry encourages use of spherical polar coordinates (r, θ, φ), in terms of
which the metric of flat spacetime takes the form of ds2 = −d(ct)2 + dr2 + r2(dθ2 +
sin2 θ dφ2). Generalizing to curved spacetime, we assert that the metric of any spherically-
symmetric spacetime can always be written in the form

ds2 = −e−2�/c2
d(ct)2 + e2�/c2

dr2 + r2(dθ2 + sin2 θ dφ2), (5.156)
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in which �(t, r ) and �(t, r ) are arbitrary functions of the coordinates t and r . While this
may seem like a natural assumption, there are a number of subtle issues that must be
addressed to justify it.

First, the assumed spherical symmetry implies that there exists in the spacetime a con-
tinuous sequence of concentric spheres, with the property that the spatial geometry on each
sphere is the same everywhere. (By “sphere” we mean the two-dimensional surface of a
sphere, not the three-dimensional interior.) The coordinate r is nothing but a label of each
sphere, with the property that it increases monotonically outwards. On each sphere we lay
down a standard grid based on polar coordinates θ and φ, in such a way that the proper dis-
tance between two neighboring points on the sphere is given by d�2 = r2(dθ2 + sin2 θ dφ2).
The line element informs us that r possesses two additional properties: 2πr is the circumfer-
ence of a great circle on the sphere (take θ = π

2 so that d� = r dφ), and 4πr2 is the sphere’s
surface area (the surface element on the sphere is d S = √

g dθdφ = r2 sin θ dθdφ).
Second, the absence of drdθ and drdφ terms in Eq. (5.156) results from the fact that

spherical symmetry allows us to orient successive spheres so that the radial direction –
the direction connecting points with the same value of θ and φ on successive spheres – is
everywhere orthogonal to the θ and φ directions. It also allows us to orient a sphere at one
instant of time with the same sphere at a later instant of time, so that the time direction
also is orthogonal to the θ and φ directions; this property explains the absence of dtdθ

and dtdφ terms. A term that cannot be removed by appealing to spherical symmetry is
the d(ct)dr term, which is nevertheless absent from Eq. (5.156). This reflects a choice of
time coordinate: one can always transform from a generic coordinate t ′ to a new coordinate
t = t(t ′, r ) so as to eliminate an offending metric component g′

0r . The remaining metric
components are g00 and grr , and for these we employ the functions �(t, r ) and �(t, r ) as
suitable substitutes (the exponential forms are chosen for convenience).

We assume that we are dealing with a single isolated body, so that the spacetime becomes
asymptotically flat in the limit r → ∞. This leads to the requirements that

lim
r→∞ �(t, r ) = 0, lim

r→∞ �(t, r ) = 0, (5.157)

and these boundary conditions ensure that the metric reduces to the Minkowski metric
when r → ∞. With these conditions we now recognize from Eq. (5.156) that the time
coordinate t is proper time as measured by an observer at rest at infinity; for an observer
at rest at position r in the gravitational field, proper time τ is related to coordinate time
t by τ = ∫

e−�(t,r )/c2
dt . The metric allows us to make another observation: while 2πr

measures the circumference of great circles and 4πr2 measures the area of spheres, we see
that r is not a measure of proper distance away from a center at r = 0; this is given instead
by

∫ r
0 e�(t,r ′)/c2

dr ′.
In place of �(t, r ) it is helpful to employ instead a relativistic mass-energy function

m(t, r ) defined by

e−2�/c2
:= f (t, r ) := 1 − 2Gm(t, r )

c2r
. (5.158)

As we shall see, this bizarre substitution produces a substantial simplification of the field
equations, and the name “mass-energy function” will be motivated shortly. Notice the
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minus sign within the exponential: the mass function is related to grr by 1 − 2Gm/(c2r ) =
(grr )−1 = grr .

It is straightforward, though tedious, to calculate the Christoffel symbols, Riemann tensor,
Ricci tensor, and Einstein tensor for the metric of Eq. (5.156). (We cheat: we use computers
to perform such computations.) The results for the relevant components of the Einstein
tensor are

G0
0 = − 2G

c2r2
∂r m, (5.159a)

G0
r = − 2G

c3r2
e2�/c2

f −1∂t m, (5.159b)

Gr
r = − 2

c2r
f ∂r � − 2Gm

c2r3
. (5.159c)

The remaining non-vanishing components of the Einstein tensor, Gθ
θ and Gφ

φ , will not be
required. They are in fact redundant, because they are related to those of Eq. (5.159) by the
Bianchi identities ∇β Gαβ = 0.

The Einstein field equations Gα
β = (8πG/c4)T α

β take the explicit form

∂r m = 4πr2(−T 0
0/c2), (5.160a)

∂t m = 4πr2e−2�/c2
f (−T 0

r /c), (5.160b)

∂r � = − G

r2
f −1

[
m + 4πr3(T r

r /c2)
]
, (5.160c)

for a spherically-symmetric spacetime. The first two equations are first-order, partial dif-
ferential equations for the mass function m(t, r ). The first equation bears a striking resem-
blance to Eq. (2.14), which determines the mass function in Newtonian gravity; it is this
resemblance that motivates us to attach the name “mass” to this function. One difference,
however, is that −T 0

0 must be interpreted as the total energy density of the matter distribu-
tion, with the factor of c−2 converting it into a mass density; the relativistic mass function,
therefore, accounts for all forms of energy (including rest-mass energy, kinetic energy, and
thermodynamic internal energy) within the spacetime. With this interpretation in place, the
second equation also takes a suggestive form: ∂t (mc2) is equal, up to relativistic corrections
involving � and f , to the flux of energy crossing a sphere of constant r . The third member
of Eq. (5.160) is an equation for the potential � involving the radial pressure T r

r ; note that
there is no equation for ∂t�.

5.6.2 The vacuum Schwarzschild metric

Solution

In vacuum the energy-momentum tensor T α
β vanishes, and the equations for the mass

function immediately give

m(t, r ) = M = constant. (5.161)
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With this assignment the equation for � integrates to � = − 1
2 c2 ln[1 − 2G M/(c2r )] +

h(t), in which h(t) is an arbitrary function of integration. The boundary conditions of
Eq. (5.157) require that h(t) = 0, and we arrive at

e−2�/c2 = 1 − 2G M

c2r
. (5.162)

The resulting metric,

ds2 = −
(

1 − R

r

)
d(ct)2 +

(
1 − R

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2), (5.163)

with

R := 2G M

c2
, (5.164)

is Schwarzschild’s external metric, expressed in terms of the body’s Schwarzschild radius
R. So we discover, after a very short calculation, that a spherically-symmetric solution to
Einstein’s equations in vacuum is necessarily static, and given by the Schwarzschild metric;
this statement is known as Birkhoff’s theorem.

Box 5.8 Birkhoff’s theorem in Newtonian gravity

There is an analogous statement of Birkhoff’s theorem in Newtonian theory. For spherical symmetry, and in
vacuum, Laplace’s equation for the Newtonian potential is

1

r2

∂

∂r

(
r2 ∂U (t, r )

∂r

)
= 0.

This can be easily integrated to giveU (t, r ) = G M/r + h(t), whereG M is an integration constant,
and h(t) an arbitrary function of time. But since all physical manifestations of the potential depend on
gradients, h(t) is irrelevant, and the field is static.

As we have emphasized elsewhere, coordinates are merely labels of spacetime events;
they have no physical significance whatever, and any coordinate system can be used to
describe the geometry of spacetime, with equivalent physical results. Nevertheless, the
choice of coordinates can have a significant impact on the ease of calculations. We remarked
earlier that the Coulomb gauge of linearized theory is useful for illuminating certain aspects
of the theory, but not for calculations that go beyond linearized theory (as will be seen
abundantly in later portions of this book); for this the Lorenz gauge is far more useful.

Here too, our choice of coordinates was arbitrary – in this instance they are known
as the Schwarzschild coordinates. Their main advantage is that they provide the simplest
route to a solution of Einstein’s equations and the simplest expression for the metric. One
disadvantage is that a transformation from the polar coordinates (r, θ, φ) to quasi-Cartesian
coordinates (x, y, z) produces a complicated metric with many off-diagonal terms.

Another disadvantage, which is shared by the isotropic and harmonic coordinates intro-
duced below, is that the Schwarzschild coordinates are badly behaved at r = R. This, in the
pure vacuum case – vacuum everywhere – marks the boundary of the black hole, known
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as the event horizon. Because we are not concerned here with the black-hole aspects of the
spacetime, and because this infamous coordinate difficulty is resolved in all textbooks on
general relativity, we shall have very little to say on this issue.

To illustrate further the arbitrariness of coordinates, we express the Schwarzschild
metric in a number of alternative coordinate systems, each with its own advantages and
disadvantages.

Isotropic coordinates

The transformation

r = riso

(
1 + R

4riso

)2

(5.165)

brings the Schwarzschild metric to the new form

ds2 = −
(

1 − R/4riso

1 + R/4riso

)2

d(ct)2 +
(

1 + R

4riso

)4 [
dr2

iso + r2
iso(dθ2 + sin2 θ dφ2)

]
,

(5.166)

in which the spatial metric is proportional to the flat-space expression dr2
iso + r2

iso(dθ2 +
sin2 θ dφ2). The coordinates t , θ , and φ are unchanged, and therefore they carry the same
meaning as they do in Schwarzschild coordinates. The new radial coordinate riso, however,
does not possess a recognizable geometrical meaning: it does not measure the proper
circumference of great circles, and it does not measure proper radial distance. A curious
property of the isotropic coordinates is that the metric keeps its form under the inversion
riso → R2/(4riso); this isometry is largely unphysical, but it has played a very useful role in
the construction of initial-data sets for the numerical simulation of black-hole mergers.

The main advantage of this coordinate system is that the additional transformation
x = riso sin θ cos φ, y = riso sin θ sin φ, z = riso cos θ produces a simple expression for the
metric in Cartesian-like coordinates, with the components

g00 = −
(

1 − R/4riso

1 + R/4riso

)2

, (5.167a)

g jk = δ jk

(
1 + R

4riso

)4

. (5.167b)

When riso is large compared with the Schwarzschild radius R, these expressions become

g00 = −1 + R/riso − 1

2
(R/riso)2 + · · · (5.168a)

g jk = δ jk

(
1 + R/riso + 3

8
(R/riso)2 + · · ·

)
, (5.168b)

and they can be compared with the Newtonian metric of Eq. (5.154). In spherical symmetry,
and in a vacuum exterior, the Newtonian potential is U = G M/riso, so that 2U/c2 =
R/riso. The Newtonian metric has g00 = −1 + 2U/c2 = −1 + R/riso and g jk = δ jk(1 +
2U/c2) = δ jk(1 + R/riso). We see that the Schwarzschild metric, when it is expressed
in isotropic coordinates, differs from this by terms of order (R/riso)2 and higher; these
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corrections cannot be obtained in the linearized approximation that led to the Newtonian
metric. The fact that the Schwarzschild metric with R = 2G M/c2 reduces to the Newtonian
metric when riso is large confirms the identification of M with the body’s total mass.

Like the Schwarzschild coordinates, the isotropic coordinates become ill-behaved at the
black-hole horizon, which is now situated at riso = 1

4 R.

Harmonic coordinates

Another popular coordinate system for the Schwarzschild spacetime is obtained by the
transformation

r = rh + 1
2 R. (5.169)

For reasons that will be identified below, the new system is called harmonic, and in it the
metric takes the form

ds2 = −
(

1 − R/2rh

1 + R/2rh

)
d(ct)2 +

(
1 + R/2rh

1 − R/2rh

)
dr2

h + (rh + 1
2 R)2(dθ2 + sin2 θ dφ2).

(5.170)
As before we find that t , θ , and φ carry the same geometrical meaning, but that rh is linked
neither to a proper circumference nor to a proper radial displacement. And the harmonic
coordinates also are ill-behaved at the event horizon, which is now situated at rh = 1

2 R.
The additional transformation x = rh sin θ cos φ, y = rh sin θ sin φ, z = rh cos θ pro-

duces a complicated metric, but we find it worthwhile to display it here:

g00 = −1 − R/2rh

1 + R/2rh
, (5.171a)

g jk =
(

1 + R/2rh

1 − R/2rh

)
n j nk + (

1 + R/2rh
)2(

δ jk − n j nk

)
, (5.171b)

where n j := x j /rh is a radial unit vector, whose index is lowered with the Euclidean
metric δ jk , so that n j := δ jknk . We note that in this Euclidean sense, the two terms in the
spatial metric are orthogonal to each other, because (δ jk − n j nk)nk = 0. This observation
simplifies the computation of the inverse metric, which is given by

g00 = −1 + R/2rh

1 − R/2rh
, (5.172a)

g jk =
(

1 − R/2rh

1 + R/2rh

)
n j nk + (

1 + R/2rh
)−2(

δ jk − n j nk
)
. (5.172b)

For future reference we also record the expression
√−g = (

1 + R/2rh
)2

(5.173)

for the metric determinant.
When rh is large compared with R the metric becomes

g00 = −1 + R/rh − 1

2
(R/rh)2 + · · · , (5.174a)

g jk = (
1 + R/rh

)
δ jk + 1

4
(R/rh)2

(
δ jk + n j nk

) + · · · (5.174b)
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Here also we find that this agrees with the Newtonian metric of Eq. (5.154) to order R/rh,
with deviations occurring at order (R/rh)2 and higher.

To explain the meaning of the phrase “harmonic coordinates” we examine the set of
four scalar fields X (0) := ct , X (1) := (r − 1

2 R) sin θ cos φ, X (2) := (r − 1
2 R) sin θ sin φ, and

X (3) := (r − 1
2 R) cos θ in the Schwarzschild spacetime. We collectively denote the mem-

bers of the set by X (μ), and observe that while we have defined the scalar fields in terms of the
original Schwarzschild coordinates (t, r, θ, φ), we have the simpler expressions X (μ) = xμ

in the Cartesian version (t, x, y, z) of the harmonic coordinates.
It is a matter of simple computation to show that each one of the four scalar fields satisfies

the wave equation

�g X (μ) = 0 (5.175)

in Schwarzschild spacetime. Here �g := gαβ∇α∇β is the curved-spacetime wave operator,
and we note the important fact that Eq. (5.175) is covariant and can therefore be expressed
in any coordinate system; the equation is easiest to verify if we adopt the Schwarzschild
coordinates (t, r, θ, φ). The term “harmonic” refers to solutions to Eq. (5.175), which
is a generalization from three-dimensional Euclidean space to four-dimensional curved
spacetime of Laplace’s equation ∇2 X = 0; it has been a long tradition that solutions to
Laplace’s equation are called harmonic functions.

We can re-express Eq. (5.175) as ∇α X (μ)α = 0, where the vector fields X (μ)α are defined
by X (μ)

α = ∇α X (μ). With the divergence identity of Eq. (5.40), this is

1√−g
∂α

(√−ggαβ∂β X (μ)
)

= 0, (5.176)

and the wave equation continues to be covariant. We now, however, specialize the coordinate
system to (t, x, y, z), the Cartesian version of our harmonic coordinates. We have already
noted that X (μ) = xμ in this coordinate system, and it follows that ∂β X (μ) = δ

μ
β . Making

the substitution reveals that the harmonic condition becomes

∂β

(√−ggαβ
) = 0 (5.177)

when it is expressed in the harmonic coordinates (t, x, y, z). An alternative statement of
this is

gμν�α
μν = 0. (5.178)

It can be verified that these equations are indeed satisfied by the Cartesian-like metric of
Eqs. (5.171); the computation relies on the results displayed in Eqs. (5.172) and (5.173). But
they are not satisfied by the metric of Eqs. (5.170) expressed in spherical polar coordinates.
Despite our use of covariant language in our discussion of Eq. (5.175), we are making a
very specific coordinate choice in Eqs. (5.177) and (5.178), which are clearly not covariant
equations. Another way of looking at this is to recognize that the four Eqs. (5.175) are four
constraints on the coordinates xμ ≡ X (μ).

Harmonic coordinates play a powerful role in our development of weak-field gravity
in subsequent chapters, and our digression here serves mostly as a motivation for the
coordinate conditions of Eq. (5.177). These, naturally enough, are known as the harmonic
coordinate conditions.
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Painlevé–Gullstrand coordinates

The problems of the preceding coordinate systems at the event horizon can be traced to the
bad behavior of the time coordinate t , which becomes frozen at the event horizon. As we
shall see in a moment, the coordinate time required for an observer to cross the horizon
is always infinite, in spite of the fact that the required proper time τ is perfectly finite. To
explore the features of the Schwarzschild spacetime near the horizon, it is necessary to
define a new time coordinate T that is smoothly related to proper time as measured by an
observer falling into the black hole.

A simple candidate for such a new time coordinate (though not the only one) is the one
defined by

d(cT ) := d(ct) + (1 − R/r )−1
√

R/r dr ; (5.179)

the motivation behind this choice will be revealed shortly. Integration yields

cT = ct + 2R

(√
r/R + 1

2
ln

√
r/R − 1√
r/R + 1

)
, (5.180)

and admitting for the moment that T is well-behaved across r = R, we see that t must
diverge logarithmically as the horizon is approached. It is this behavior that signals the
pathology of the Schwarzschild time coordinate.

Making the substitution of Eq. (5.179) into Eq. (5.163) brings the metric to the new form

ds2 = −d(cT )2 + [
dr +

√
R/r d(cT )

]2 + r2(dθ2 + sin2 θ dφ2), (5.181)

and the coordinates (T, r, θ, φ) are known as the Painlevé–Gullstrand coordinates. The
meaning of the time coordinate must still be elucidated, but the spatial coordinates (r, θ, φ)
are the same as in the original system of Schwarzschild coordinates. The new coordinates
possess the intriguing property that the three-dimensional surfaces T = constant are intrin-
sically flat. This statement follows by inserting dT = 0 into Eq. (5.181) and observing that
the spacetime interval becomes ds2 = dr2 + r2(dθ2 + sin2 θ dφ2); this is the flat-space
metric expressed in spherical polar coordinates.

To identify the meaning of the Painlevé–Gullstrand time T we consider an observer –
let’s call her Meirong – moving radially in the Schwarzschild spacetime with constant
angular coordinates (θ, φ); for such an observer the spacetime interval reduces to ds2 =
−d(cT )2 + [dr + √

R/r d(cT )]2. If, in addition, Meirong moves on a world line described
by the differential equation

dr

dT
= −c

√
R/r , (5.182)

then the spacetime interval simplifies further to ds2 = −d(cT )2. This shows that T is
proper time for our observer, and Eq. (5.182) informs us that Meirong falls radially toward
the black hole, having started from rest at r = ∞. Integration of Eq. (5.182) is immediate,
and we find that

T = T0 − 2R

3c
(r/R)3/2, (5.183)

where the constant of integration T0 is the time at which Meirong reaches the black-hole
singularity at r = 0; this expression confirms our expectation that T (r ) is perfectly well
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behaved at r = R. Finally, it is not hard to show that Meirong’s world line, described by
Eq. (5.183), is a timelike geodesic of the Schwarzschild spacetime; our observer is therefore
falling freely toward the black hole.

5.6.3 Motion of a test mass

We examine the motion of a test mass in the equatorial plane (θ = π
2 ) of the Schwarzschild

spacetime. The particle is moving freely on a timelike geodesic of the spacetime, and our
restriction to equatorial motion does not represent a loss of generality: It can be shown
that in a spherically-symmetric spacetime, geodesic motion always proceeds within a fixed
spatial plane, and this plane can always be chosen to be equatorial. For concreteness we
assume that the particle follows a bounded trajectory, and moves between an innermost
radius r− (the pericenter) and an outermost radius r+ (the apocenter); this does represent a
loss of generality, because unbounded motion is also possible.

We begin with the form of the geodesic equation given by Eq. (5.53). This equation
reveals that when the metric does not depend explicitly on one of its coordinates xμ, the
associated component uμ of the velocity vector is a constant of the motion. Here we have
two conserved quantities, u0 and uφ , and we express them as

u0 =: −c
√

1 + 2ε/c2, uφ =: h, (5.184)

thereby defining the constants ε and h. Raising the index on the velocity vector gives us
two equations of motion,

ṫ =
√

1 + 2ε/c2

1 − R/r
(5.185)

and

φ̇ = h

r2
. (5.186)

We use an overdot to indicate differentiation with respect to proper time τ . Equation (5.186)
informs us that h has the interpretation of a conserved angular momentum per unit mass;
ε will presently be identified as a conserved orbital energy per unit mass.

The equation of motion for r (τ ) can be obtained from the normalization condition
gαβuαuβ = −c2 for the velocity vector. A short calculation yields

1

2
ṙ2 + ν(r ) = ε, (5.187)

where

ν(r ) = −G M

r
+ h2

2r2

(
1 − R

r

)
(5.188)

is an effective potential for the radial component of the motion. Equation (5.187) takes the
form of an energy equation, and it is this equation that reveals ε as an orbital energy per
unit mass. A graph of ν(r ) can be used to display the regions where motion is possible,
given values for h and ε, and the energy diagram goes a long way toward a qualitative
understanding of the possible motions (see Fig. 5.4). It is remarkable that Eqs. (5.186) and
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Fig. 5.4 Effective potential ν(r) for radial motion in the Schwarzschild spacetime, in units of GM/R. The angular-momentum
parameter h is chosen to be larger than

√
6GMR, and set to such a value that a circular orbit occurs at r = 6R. The

horizontal line is a curve of constant ε, and in this case the motion takes place between two turning points at
r− = 3.8R and r+ = 11.4R. The inset displays an orbit with parameters p = 5.7R and e = 0.5.

(5.187) are so very similar to the Newtonian equations of motion in a central potential U =
G M/r . There are two major points of departure: the overdot in the differential equations
refers to proper time τ instead of coordinate time t , and the effective potential ν(r ) contains
a relativistic correction −R/r in the centrifugal term. These differences are negligible
when r � R, but they are very important when r is comparable to R; in particular, it is
noteworthy that the centrifugal barrier is no longer infinite in the relativistic description,
but instead goes to zero as r → R.

As stated previously, we examine the bound motion of a particle between the turning
points r±; this situation requires that h >

√
6G M R. It is useful to introduce the orbital

elements p and e, which are defined by

r− =:
p

1 + e
, r+ =:

p

1 − e
. (5.189)

These are reminiscent of the definitions in Newtonian celestial mechanics; here p is a
relativistic semi-latus rectum, while e is a relativistic eccentricity. The orbit is circular
when e = 0.

The orbital elements are related to the constants of the motion h and ε, and the relationship
can be worked out by factorizing ε − ν(r ) as

k

(
1

r
− 1

r0

)(
1

r
− 1

r−

)(
1

r
− 1

r+

)
,

where k is a constant and r0 is a third root of the equation ε − ν(r ) = 0. Comparing this
form with Eq. (5.188) reveals the following relations: k = 1

2 h2 R, r0 = R/(1 − 2R/p),
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and

h2 = G Mp

1 − 1
2 (3 + e2)R/p

, (5.190a)

ε = −G M

2p
(1 − e2)

1 − 2R/p

1 − 1
2 (3 + e2)R/p

. (5.190b)

In the limit R/p → 0, that is, when p is much larger than the Schwarzschild radius R,
Eqs. (5.190a) and (5.190b) reduce to the Newtonian expressions for the orbital angular
momentum and energy, respectively. To ensure that r0 < r− we demand that p > (3 + e)R.

As the particle moves around the mass M , its radial coordinate proceeds from r =
r− = p/(1 + e) to r = r+ = p/(1 − e) and back again. This radial motion is conveniently
described by the parametric equation

r (χ ) = p

1 + e cos χ
, (5.191)

where χ is an orbital parameter that runs from 0 to 2π during a complete radial cycle.
The particle is at pericenter p/(1 + e) when χ = 0, at apocenter p/(1 − e) when χ = π ,
and back at pericenter when χ = 2π . Equation (5.191) is very similar to the description
of elliptical motion in Newtonian gravity, r = p/(1 + e cos φ), but it actually serves as a
definition for χ , which is not equal to the azimuthal angle φ.

When Eqs. (5.190a), (5.190b), and (5.191) are inserted into Eq. (5.188), we obtain

ε − ν(r ) = G M

2p
e2 sin2 χ

1 − (3 + e cos χ )R/p

1 − 1
2 (3 + e2)R/p

, (5.192)

and Eq. (5.187) can be turned into an equation of motion for χ . The end result is an
expression for χ̇ , whose reciprocal is

dτ

dχ
=
√

p3

G M
(1 + e cos χ )−2 [1 − 1

2 (3 + e2)R/p]1/2

[1 − (3 + e cos χ )R/p]1/2
. (5.193)

This equation can be integrated to get proper time τ as a function of the orbital param-
eter χ . The azimuthal angle is obtained by integrating dφ/dχ = φ̇(dτ/dχ ); combining
Eqs. (5.186), (5.190a), and (5.191) gives

dφ

dχ
= 1√

1 − (3 + e cos χ )R/p
. (5.194)

This equation shows that φ becomes equal to χ in the Newtonian limit R/p → 0. Finally,
similar manipulations produce

dt

dχ
=
√

p3

G M
(1 + e cos χ )−2 [1 − (1 + e)R/p]1/2[1 − (1 − e)R/p]1/2

[1 − (3 + e cos χ )R/p]1/2[1 − (1 + e cos χ )R/p]
,

(5.195)

an equation that can be integrated to obtain t(χ ).
Equations (5.193), (5.194), and (5.195), along with Eq. (5.191), form a complete set of

orbital equations for the bounded motion of a test mass in the Schwarzschild spacetime.
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Except for Eq. (5.194), which can be solved in terms of an elliptic function, the equations
must be integrated numerically, and the formulation developed here is especially convenient
for this purpose. The equations make the reduction to the Newtonian limit very easy to
accomplish, and corrections of order R/p, (R/p)2, and so on can be systematically worked
out.

The orbital equations become especially simple when e = 0 and the orbit is circular.
Then r (χ ) = p and we find that the equations integrate to

φ = 1√
1 − 3R/p

χ, (5.196a)

t =
√

p3

G M

1√
1 − 3R/p

χ, (5.196b)

τ =
√

p3

G M

√
1 − 3R/2p√
1 − 3R/p

χ. (5.196c)

These equations imply the simple relation φ = 
t , where 
 :=
√

p3/(G M) is the orbital
angular velocity as measured by an observer at rest at infinity; the proper angular velocity
differs from this by a factor of (1 − 3R/2p)−1/2. In this circular case χ loses its usefulness
as an orbital parameter, and it is appropriate to replace it by φ.

Returning to the general case e 	= 0, we observe that in the course of a complete radial
cycle, the orbital parameter χ increases by 2π , the azimuthal angle increases by �φ, the
time coordinate increases by the orbital period P , and the particle’s proper time increases
by the proper period P . These quantities are defined by

�φ =
∫ 2π

0

dφ

dχ
dχ, P =

∫ 2π

0

dt

dχ
dχ, P =

∫ 2π

0

dτ

dχ
dχ. (5.197)

The integrals can be evaluated numerically for each pair of orbital elements p and e, and
analytical expressions can be obtained when R/p is small. We find

�φ = 2π + 6π

(
G M

c2 p

)
+ 3π

2
(18 + e2)

(
G M

c2 p

)2

+ · · · , (5.198)

P = 2π

√
a3

G M

[
1 + 3(1 − e2)

(
G M

c2 p

)

+ 3

2
(1 − e2)

(
4 + 5

√
1 − e2

)(G M

c2 p

)2

+ · · ·
]

, (5.199)

P = 2π

√
a3

G M

[
1 + 3

2
(1 − e2)

(
G M

c2 p

)

+ 3

8
(1 − e2)

(
17 − e2 + 4

√
1 − e2

)(G M

c2 p

)2

+ · · ·
]

, (5.200)
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where a := p/(1 − e2) is the relativistic semi-major axis. To arrive at Eqs. (5.199) and
(5.200) it is helpful to change the variable of integration from χ to u, defined by

tan
χ

2
=
√

1 + e

1 − e
tan

u

2
; (5.201)

in Newtonian celestial mechanics u is known as the eccentric anomaly, refer to Eq. (3.32),
and its range during a complete radial cycle is also from u = 0 to u = 2π .

The fact that �φ > 2π implies that the orbit is not closed; for small values of R/p the
orbit is approximately elliptical, but its major axis rotates by an angle �φ − 2π in the
course of each orbit. This is the pericenter advance of relativistic motion, an effect that
was famously measured for Mercury and a number of binary pulsars. To first order in R/p
we have that the advance is equal to 6π (G M/c2 p) per orbit. For Mercury this amounts
to a tiny, but measurable 42.98 seconds of arc per century (refer to Table 3.1). For binary
pulsars the effect is measured in degrees per year.

It is important to note that Eqs. (5.198), (5.199), and (5.200) do not apply when e = 0,
because as we have seen, χ loses its meaning as orbital parameter in the circular case. The
limit e → 0 is therefore singular, and in this case we have the exact results

�φ = 2π, P = 2π

√
p3

G M
, P = 2π

√
p3

G M

√
1 − 3R

2p
. (5.202)

Equations (5.198), (5.199), and (5.200) are instances of post-Newtonian expansions, in
which a quantity of interest is expressed as an expansion in powers of a post-Newtonian
parameter ε ∼ (v/c)2 ∼ U/c2; here the adopted expansion parameter is ε := G M/(c2 p).
The leading term in these equations is the Newtonian answer, and this is labeled a 0pn term.
The term of order ε is the first post-Newtonian correction, and it is labeled a 1pn term. And
finally, the term of order ε2 is a second post-Newtonian correction, or 2pn term. This kind
of approximation to general relativity will be a central theme in the remainder of this book.

5.6.4 Motion of light

We next examine the motion of a photon in the equatorial plane of a Schwarzschild
spacetime. The vector tangent to the photon’s world line is pα , and this satisfies the geodesic
equation (5.54). A consequence of this equation is that both p0 and pφ are constants of the
motion, and by a constant rescaling of the parameter λ on the world line, we can set p0 = −c
and pφ = h. (This rescaling implies that pα is not quite the photon’s momentum vector; the
unit of momentum has been changed by a factor prescaled

0 /pconventional
0 = c2/(h̄ω∞), where

ω∞ is the photon’s frequency as measured by an observer at rest at infinity. In these units,
the parameter h represents the photon’s angular momentum multiplied by c2 and divided
by h̄ω∞.)

We have already obtained two equations of motion,

ṫ = 1

1 − R/r
(5.203)
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Fig. 5.5 Effective potentialμ(r) for photon motion in the Schwarzschild spacetime, in units of c2. The angular-momentum
parameter h is chosen to be larger than hc . The horizontal line marks the constant c2, and in this case the photon
meets a turning point at r = p > 3

2 R. The inset displays a photon orbit with p = 2.5R.

and

φ̇ = h

r2
, (5.204)

and the third follows as a consequence of the null condition gαβ pα pβ = 0. We get

ṙ2 + μ(r ) = c2, (5.205)

where

μ(r ) = h2

r2

(
1 − R

r

)
(5.206)

is an effective potential for the radial component of the photon’s motion. In these equations
an overdot indicates differentiation with respect to the (rescaled) world-line parameter λ.

The effective potential of Eq. (5.206) contains only a centrifugal term – compare with
Eq. (5.188) – and it represents a barrier. The potential is maximum at r = 3

2 R = 3G M/c2,
and a photon with h = hc := (3

√
3/2)Rc can move on a circular orbit at this radius,

although the orbit is unstable (see Fig. 5.5). A photon with h < hc either moves in from
r = ∞, or moves out to r = ∞, and this photon does not encounter a turning point of
its radial motion. On the other hand, a photon with h > hc encounters a turning point
at a radius r = p > 3

2 R. It moves in from r = ∞, turns around at r = p, and moves
out to r = ∞; this type of behavior corresponds to the deflection of light by a massive
body.

We consider this case in more detail, and examine the deflected motion of a photon with
h > hc. As we have seen, the motion has a radial turning point at r = p, and Eqs. (5.205)
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and (5.206) imply the relationship

h2 = p2c2

1 − R/p
(5.207)

between the angular-momentum parameter h and the orbital element p. We describe the
motion in terms of an orbital parameter η, and write

r (η) = p

sin η
(5.208)

to represent a photon that starts at r = ∞ (when η = 0), moves in to r = p (when η = π
2 ),

and returns to r = ∞ (when η = π ). This representation is analogous to the one adopted in
Eq. (5.191), and in flat spacetime the orbital parameter η would be equal to the azimuthal
angle φ; in the Schwarzschild spacetime these quantities are distinct.

When Eqs. (5.207) and (5.208) are inserted into Eq. (5.206) we obtain

c2 − μ(r ) = c2 cos2 η

1 − R/p

(
1 − 1 + sin η + sin2 η

1 + sin η

R

p

)
, (5.209)

and Eq. (5.205) can be turned into an equation of motion for η(λ). We get

η̇ = c sin2 η

p
√

1 − R/p

(
1 − 1 + sin η + sin2 η

1 + sin η

R

p

)1/2

. (5.210)

With this and Eq. (5.203) we obtain

dt

dη
= p

√
1 − R/p

c[1 − (sin η)R/p] sin2 η

(
1 − 1 + sin η + sin2 η

1 + sin η

R

p

)−1/2

, (5.211)

which allows computation of the time coordinate along the photon’s world line. Then
Eq. (5.204) yields

dφ

dη
=
(

1 − 1 + sin η + sin2 η

1 + sin η

R

p

)−1/2

, (5.212)

which determines φ. Equations (5.208), (5.211), and (5.212) form a complete set of or-
bital equations for the motion of a deflected photon. These equations must be integrated
numerically, and the formulation provided here is convenient for this purpose.

In the course of a complete orbit (from η = 0 to η = π ) the azimuthal angle increases by
an amount �φ given by the integral of Eq. (5.212). The integration cannot be accomplished
analytically in general, but an expansion in powers of R/p gives

�φ = π + 4

(
G M

c2 p

)
+
(

15π

4
− 4

)(
G M

c2 p

)2

+ · · · (5.213)

In flat spacetime the answer would be the obvious �φ = π , and the difference between �φ

and π is the photon’s deflection angle α. Equation (5.213) reveals that to leading order in
a post-Newtonian expansion, α = 4G M/(c2 p). This is the famous deflection of light, to



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-05 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:30

279 5.6 Spherical bodies and Schwarzschild spacetime

α

p/R

5

4

3

2

1

0
1 2 3 4 5 6

exact
approximate

7 8 9 10

Fig. 5.6 Deflection of a photon in Schwarzschild spacetime. The deflection angleα := �φ − π is plotted as a function of
the orbital parameter p/R. The higher curve is the exact result, computed by integrating Eq. (5.212) numerically. The
lower curve is the approximate expression of Eq. (5.213). We observe that the curves coincide when p/R� 1. When
p/R= 3/2, so that p = 3GM/c2, the exact deflection angle is infinite: this is the photon’s circular orbit.

which we will return in Chapter 10 in the context of post-Newtonian theory. The exact and
approximate versions of the deflection angle are plotted in Fig. 5.6.

5.6.5 Spherical bodies in hydrostatic equilibrium

The previous subsections have dealt with the external Schwarzschild metric, which is a
solution to the Einstein field equations in vacuum. We next turn to a description of the
interior, assuming that the body is in hydrostatic equilibrium; this implies that the interior
metric is time-independent. This discussion of stellar structure extends to general relativity
the material that was developed in Sec. 2.2 in the context of Newton’s theory.

Equations of stellar structure

We take the body to consist of a perfect fluid, and we adopt the form of Eq. (5.91) for its
energy-momentum tensor:

T α
β = (μ + p)uαuβ/c2 + p δα

β. (5.214)

Here μ is the fluid’s proper energy density, p is the pressure, and uα is the velocity field. The
energy density is decomposed as μ = ρc2 + ε, in terms of a proper rest-mass density ρ and
a proper density ε of internal (thermodynamic) energy. The first law of thermodynamics
implies that these variables are related by ρ dε = (ε + p) dρ.
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In a static situation the fluid’s velocity vector has u0 as its only non-vanishing component,
and this can be determined by the normalization condition gαβuαuβ = −c2, in which we
insert the metric of Eq. (5.156). We find that u0 = ce�/c2

and u0 = −ce−�/c2
, and the

relevant components of the energy-momentum tensor are −T 0
0/c2 = μ/c2 = ρ + ε/c2,

−T 0
r /c = 0, and T r

r = p. Inserting these within the field equations of Eq. (5.160), we
obtain

dm

dr
= 4πr2(ρ + ε/c2), (5.215)

and

d�

dr
= − G

r2 f

(
m + 4πr3 p/c2

)
, (5.216)

in which f := 1 − 2Gm/(c2r ). These equations can be compared with their Newtonian
counterparts, Eqs. (2.13) and (2.14); recall that the potential � reduces to U in the Newto-
nian limit.

The field equations must be supplemented with the equation of hydrostatic equilibrium.
This is obtained by working out the radial component of the conservation equation ∇β T αβ =
0. Part of the work was already carried out in Sec. 5.3.2, and a good starting point for this
task is Eq. (5.97), the curved-spacetime formulation of Euler’s equation. An even better
starting point is found in Box 5.5, which works out the condition of hydrostatic equilibrium
for any static spacetime. Adapting this to the specific metric of Eq. (5.156), we find that the
pressure of a spherical body in hydrostatic equilibrium is determined by

dp

dr
= (

ρ + ε/c2 + p/c2
)d�

dr
. (5.217)

This equation can be compared with Eq. (2.13). Combining this with Eq. (5.216), we obtain

dp

dr
= − G

r2 f

(
ρ + ε/c2 + p/c2

)(
m + 4πr3 p/c2

)
, (5.218)

an equation known as the Tolman–Oppenheimer–Volkoff (TOV) equation, after Richard C.
Tolman (1881–1948), J. Robert Oppenheimer (1904–1967), and George Volkoff (1914–
2000), who were among the first to study the structure of spherical bodies in general
relativity.

The equations of relativistic stellar structure involve the fluid variables ρ, ε, p, and
the metric variables m and �. There is one more variable (ε) than in the Newtonian the-
ory, and the equations must be supplemented by the first law ρ dε = (ε + p) dρ and an
equation of state p = p(ρ). The equations are integrated outward from r = 0 with the
boundary conditions ρ(0) = ρc, ε(0) = εc, p(0) = pc, m(0) = 0, and �(0) = �c. Integra-
tion proceeds until the pressure vanishes at the boundary r = R0, and M := m(r = R0) is
the body’s total mass. The constant �c can be adjusted so that e−2�/c2

matches the value
1 − 2G M/(c2 R0) at the boundary, and this ensures that the interior metric joins smoothly
with the Schwarzschild exterior metric at r = R0.
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Incompressible fluid

The equations of relativistic stellar structure must typically be integrated numerically. There
is, however, a simple situation that permits an analytical integration, the rather unphysical
case of an incompressible fluid with ρ = ρ0 = constant and ε = 0. This situation was the
one considered by Karl Schwarzschild in 1915, and the resulting solution is known as
the interior Schwarzschild solution. The corresponding Newtonian situation was examined
back in Sec. 2.2.2.

The mass function of an incompressible fluid is obtained directly from Eq. (5.215), and
is given by

m(r ) = 4π

3
ρ0r3 = M(r/R0)3, (5.219)

in which M is the total mass and R0 the stellar radius. With a little work it can then be
shown that Eq. (5.218) integrates to

p = ρ0c2

√
1 − Rr2/R3

0 − √
1 − R/R0

3
√

1 − R/R0 −
√

1 − Rr2/R3
0

, (5.220)

in which R := 2G M/c2 < R0 is the body’s Schwarzschild radius. The pressure properly
vanishes at r = R0, and at r = 0 it is given by

pc = ρ0c2 1 − √
1 − R/R0

3
√

1 − R/R0 − 1
. (5.221)

This equation reveals that for a fixed density, the central pressure increases as the ratio
R0/R decreases, that is, as the body becomes increasingly compact. This is the expected
behavior: more pressure is required to support a more compact body against its own weight.
But the central pressure becomes infinite when R0 reaches a critical value given by

R0,crit = 9

8
R = 9

4

G M

c2
, (5.222)

or when the mass reaches a critical value given by

Mcrit =
(

3

4π

)1/2(4c2

9G

)3/2

ρ
−1/2
0 = 5.69M�

(
4 × 1017 kg/m3

ρ0

)1/2

; (5.223)

the fiducial value adopted for ρ0 is typical of densities found in neutron stars. We have
found that the total mass of an incompressible body in general relativity cannot exceed
Mcrit if the body is to remain in hydrostatic equilibrium. This limiting mass is a purely
relativistic phenomenon; there is no such limit in Newtonian gravity.

Relativistic polytropes

A maximum mass is a generic feature of relativistic stellar models, and the phenomenon is
also witnessed in relativistic polytropes, the extension to general relativity of the Newtonian
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polytropes examined in Sec. 2.2.3. We consider a fluid with an equation of state

p = Kρ1+1/n, ε = np, (5.224)

directly imported from Sec. 2.2.3. As in the Newtonian discussion, we introduce the scales
ρc (central density), pc = Kρ

1+1/n
c (central pressure), m0 = 4πρcr3

0 (mass scale), r2
0 =

(n + 1)pc/(4πGρ2
c ) (squared length scale), and work with scale-free variables θ , μ, and ξ ,

such that ρ = ρcθ
n , p = pcθ

n+1, m = m0μ, and r = r0ξ . We introduce also a relativistic
parameter

b := pc

ρcc2
= Kρ

1/n
c

c2
, (5.225)

which is a dimensionless measure of how relativistic the central conditions are; when b � 1
the body is non-relativistic, and it is highly relativistic when b > 1.

It is a simple matter to convert Eqs. (5.215) and (5.218) to dimensionless forms involving
the scale-free variables. We obtain

dμ

dξ
= ξ 2θn(1 + nbθ ) (5.226)

and

dθ

dξ
= −

(
μ

ξ 2
+ bξθn+1

)
1 + (n + 1)bθ

1 − 2(n + 1)bμ/ξ
, (5.227)

and these are relativistic versions of the Lane–Emden equations of Newtonian stellar
structure; we see that they reduce to Eqs. (2.49) when b → 0. The equations are integrated
outward from ξ = 0 with the boundary conditions θ (0) = 1 and μ(0) = 0. Integration
proceeds until θ = 0 at ξ = ξ1, which marks the body’s boundary, where both the pressure
and density vanish. The body’s total mass is then M = m0μ1 with μ1 := μ(ξ = ξ1), while
the body’s radius is R0 = r0ξ1.

For a selected equation of state, that is, for each choice of parameters K and n, inte-
gration of Eqs. (5.226) and (5.227) gives rise to a continuous sequence of stellar models
parameterized by the central density ρc. Alternatively, because the central density is related
to the relativistic parameter b by Eq. (5.225), it is convenient to adopt b as a parameter on
the sequence. Because m0 and r0 depend on the central density (and therefore on b), it is
necessary to rescale the mass and length units so as to eliminate this dependence before we
produce plots of the mass M and radius R0 as functions of b on the sequence. We therefore
set

M = m̄0b(3−n)/2μ1, R0 = r̄0b(1−n)/2ξ1, (5.228)

in which

m̄0 := m0b−(3−n)/2 = (n + 1)3/2 K n/2c3−n

(4π )1/2G3/2
, (5.229a)

r̄0 := r0b−(1−n)/2 = (n + 1)1/2 K n/2c1−n

(4π )1/2G1/2
, (5.229b)
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Fig. 5.7 Mass of a relativistic polytrope, in units of m̄0, as a function of the relativistic parameter b, for selected values of the
polytropic index n. Models with b � 1 are non-relativistic, while models with b close to one are relativistic. In each
case the mass reaches a maximum value at a critical value of b. A larger nmeans a stiffer equation of state, and a
higher maximummass.

are the rescaled mass and length units, respectively, which are independent of b and therefore
constant on the sequence. Plots of M/m̄0 as a function of b for selected values of the
polytropic index n are presented in Fig. 5.7.

Box 5.9 Neutron stars

Except for blackholes, neutron stars are themostdenseobjects in theuniverse, and their gravitational fields are
so strong that their descriptionmust be based upon general relativity. A typical neutron star has amass around
1.4 M�, a radius of the order of10 km, a density comparable to6.6 × 1017 kg/m3, and the strength of
its gravitational field is measured by G M/(c2 R) � 0.21. Most neutron stars harbour intense magnetic
fields, ranging from 108 T to perhaps 1011 T, and many are active pulsars, emitting sharp pulses of radio
waves or X-rays at very regular time intervals. Neutron stars are formed in supernovae events, during which
the outer layers of a normal star at the end stage of its stellar evolution are ejected in a violent explosion, and
the core undergoes gravitational collapse. The neutron-star state is one of the three possible forms of stellar
death, along with the white-dwarf state for less massive stars (up to approximately 5 solar masses) and the
black-hole state for more massive stars (from approximately 30 solar masses).
The internal composition of neutron stars is governed by the physics of nuclear matter at densities that

far exceed those of ordinary nuclei. While this nuclear physics is fairly well understood at the relatively low
densities found near the surface, it becomes less certain as the density increases toward the center. The outer
layer of aneutron star is believed tobemadeof ordinaryheavynuclei, but this familiar formofmatter givesway
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to a distribution of superfluid neutrons deeper inside the star. Deeper still the neutrons arrange themselves
in lattice structures, and eventually the density becomes sufficiently large to accommodate exotic forms of
matter such as pion, kaon, and hyperon condensates, and perhaps even strange quark matter.
The structure of a neutron star is determined by the equations of stellar structure reviewed in the text, and

by the equation of state p = p(ρ) of nuclear matter, which depends on the details of the strong nuclear
interactions at the high densities involved. Because the equation of state is highly uncertain beyond normal
nuclear densities, the structure of neutron stars is still poorly understood. In practice various models of the
relevant nuclear physics are encoded in model equations of state, and the equations of stellar structure are
integrated for each equation of state, giving rise to a sequence of stellar models parameterized by the central
densityρc ; each sequence features a maximummass beyond which the models are dynamically unstable.
Models of neutron stars are constrained by measurements of their mass and radii. A measurement of the

mass can be made when the neutron star is an active pulsar and a member of a binary system. In such
cases it is found that most masses are clustered between 1.3 M� and 1.6 M�, but a mass as high as
2.4 ± 0.4 M� was deduced for the “black-widow pulsar,” a 1.6 ms pulsar in orbit around a low-mass
star, which has transferred a large fraction of its originalmass to the neutron star. Another large-mass neutron
star is PSR J1614-2230, a3.15 ms pulsar in orbit around a0.5 M� white dwarf; its mass was measured in
2010 to be 1.97 ± 0.04 M� by exploiting the Shapiro time delay, a relativistic effect to be introduced in
Sec. 10.2.5. These measurements imply that the maximum mass of a neutron star must exceed 2 M�, and
this observation rules out a number of model equations of state, including some associated with more exotic
forms of matter.
The radius of a neutron star is much harder to estimate, but substantial progress has been achieved in the

last few years by exploiting themeasured light curves of X-ray bursters displaying photospheric radius expan-
sion, and of transient low-mass X-ray binaries. These measurements permit the simultaneous estimation of
both the mass and radius of a small sample of neutron stars (with fairly large uncertainties), and these es-
timates can be used to constrain the equation of state of nuclear matter. These studies reveal that a typical
neutron star of1.4 M� should have a radius between11 km and12 km, and confirm that the maximum
mass should be larger than 2 M�.

5.7 Bibliographical notes

Our survey of curved spacetime and general relativity is very incomplete, and the reader
is invited to pursue an advanced education by consulting some of the excellent textbooks
devoted to this subject. Among our favorites are the introductory texts by Schutz (2003 and
2009) and Hartle (2003), the venerable classics by Weinberg (1972) and Misner, Thorne,
and Wheeler (1973), and the more modern treatments by Wald (1984) and Carroll (2003).

Our presentation of the linearized theory in Sec. 5.5 is modelled on Flanagan and
Hughes (2005). Schwarzschild’s original paper can be found in an English translation at
arXiv.org/abs/physics/9905030. (Warning: the translators of the paper claim
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incorrectly that it proves the “science fiction” of black holes; Schwarzschild’s solution uses
slightly unusual coordinates, but it’s still the spacetime of a black hole.) The Painlevé–
Gullstrand coordinates to describe the Schwarzschild metric (Sec. 5.6.2) were discovered
independently by Painlevé (1921) and Gullstrand (1922); their properties are described in
more depth in Martel and Poisson (2001). Relativistic polytropes (Sec. 5.6.5) were first
investigated by Tooper (1965).

The physics of neutron stars, summarized so briefly in Box 5.9, is reviewed much
more thoroughly in Shapiro and Teukolsky (1983), Glendenning (2000), and Friedman and
Stergioulas (2013). A survey of equations of state for nuclear matter is provided by Lattimer
and Prakash (2001 and 2007), and Steiner et al. (2010) describe the state-of-the-art in mass
and radius determinations. The recent discovery of a two solar-mass pulsar is reported in
Demorest et al. (2010).

5.8 Exercises

5.1 (a) Transform the metric of Minkowski spacetime from the usual (ct, x, y, z) co-
ordinates of an inertial frame, to new coordinates (ct ′, x ′, y′, z′) related by the
coordinate transformation

ct = α−1(1 + αx ′) sinh(αct ′),

x = α−1(1 + αx ′) cosh(αct ′),

y = y′,

z = z′,

where α := g/c2, with g a constant with the dimensions of an acceleration.
(b) For αct ′ � 1, show that the origin of the new frame (x ′ = 0) is uniformly accel-

erated, in the Newtonian sense.
(c) Show that a clock at rest at x ′ = h runs fast compared to a clock at rest at x ′ = 0

by a factor (1 + gh/c2). How does this relate to the principle of equivalence?
(d) For an observer at the spatial origin of the new frame, calculate the components

of the spacetime velocity �u and acceleration �a vectors. Verify that �u · �u = −c2,
�u · �a = 0, and that �a · �a = g2.

This is the Rindler spacetime of a uniformly accelerated observer.

5.2 In electrodynamics, a charge that accelerates relative to an inertial frame radiates
electromagnetic radiation. A charge that is at rest or in uniform motion in an inertial
frame does not radiate. Consider the following situations:
(a) a charge is at rest near the surface of the Earth;
(b) a charge is in free fall near the surface of the Earth.
Assume for simplicity that the Earth itself is at rest in an inertial frame. In which case
does the charge radiate electromagnetic waves to infinity? Does this conflict with the
Einstein equivalence principle? Why or why not?
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5.3 Prove the following useful relations:
(a) ∇γ gαβ = 0;

(b) gαμ∂γ gμβ = −gμβ∂γ gαμ;

(c) ∂γ gαβ = −�α
μγ gμβ − �β

μγ gμα;

(d) �α
αγ = ∂γ ln(

√−g), where g = det(gμν);

(e)
√−ggμν�α

μν = −∂β(
√−ggαβ).

5.4 Prove the following results:
(a) Divergence of a vector:

∇α Aα = 1√−g
∂α

(√−g Aα
)
;

(b) Divergence of a second-rank tensor:

∇β A β
α = 1√−g

∂β

(√−g A β
α

) − �γ
αμ A μ

γ ,

∇β Aαβ = 1√−g
∂β

(√−g Aαβ
) + �α

μν Aμν ;

(c) D’Alembertian of a scalar field:

�gφ := gμν∇μ∇νφ = 1√−g
∂μ

(√−ggμν∂νφ
)
.

5.5 Show explicitly that if a vector �A is parallel-transported along a world line, then �A · �A
is constant along the world line.

5.6 (a) By transforming from x-y coordinates to r -φ coordinates, write down the metric
of two-dimensional Euclidean space in polar coordinates, and calculate all the
Christoffel symbols.

(b) Write down the geodesic equation, d2x j /ds2 + �
j
nk(dxk/ds)(dxn/ds) = 0, for

the two coordinates x1 = r and x2 = φ, where s is proper distance along the
geodesic.

(c) Solve the geodesic equations explicitly for r (s) and φ(s), and show that they
are equivalent to the usual equations for straight-line motion, x = As + B, y =
Cs + D, where A, B, C , and D are constants.

5.7 (a) Write down the metric of a two-dimensional sphere of unit radius, in standard θ–
φ coordinates. Calculate the Christoffel symbols, and find the geodesic equations
for θ (s) and φ(s).

(b) Show that the curve φ = constant, θ = As + B is a geodesic, and describe the
curve in words.

(c) Show that the curve θ = constant, φ = Cs + D is a geodesic for only one specific
value of θ . Find that value and describe the curve in words.
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5.8 As we saw in the text, a timelike geodesic between events 1 and 2 in spacetime is a
curve that maximizes the proper-time functional

τ = 1

c

∫ 2

1
L(rα, ṙα) dλ, L(rα, ṙα) :=

√
−gαβ ṙαṙβ,

where rα(λ) is an arbitrary world line that links events 1 and 2, λ is an arbitrary
parameter that ranges between λ1 and λ2, and ṙα = dxα/dλ.
(a) Prove that the functional is invariant under a general reparameterization of the

form λ → λ′ = f (λ), where f is any monotonic function of its argument.
(b) Prove that the geodesic is described by a generalized form of the geodesic

equation, r̈α + �α
βγ ṙβ ṙγ = κ ṙα . Express κ(λ) in terms of L .

(c) Show that the geodesic equation assumes its usual form (with a zero right-hand
side) when proper time τ is adopted as the parameter λ. (This can be done only
after the variation has been performed.)

(d) Prove that the usual form of the geodesic equation is invariant under a reparame-
terization of the form τ → τ ′ = aτ + b, where a and b are constants; this defines
the class of affine parameters.

(e) Show that the usual form of the geodesic equation can be derived on the basis of
the alternative Lagrangian L ′(rα, ṙα) = gαβ ṙαṙβ , where ṙα = dxα/dτ .

5.9 (a) Show that the condition Rα[βγ δ] = 0 is equivalent to the cyclic condition of
Eq. (5.59d).

(b) By counting components, show that the antisymmetry conditions Rαβ(γ δ) = 0
and R(αβ)γ δ = 0, together with the cyclic condition Rα[βγ δ] = 0, are sufficient to
leave 20 independent components of the Riemann tensor.

(c) Show that the antisymmetry conditions together with the symmetry Rγ δαβ =
Rαβγ δ are not sufficient, but must be supplemented by one additional constraint,
given by Rα[βγ δ] = 0 with all four indices distinct.

5.10 (a) Verify that

Rα
βγ δ = ∂γ �α

βδ − ∂δ�
α
βγ + �α

μγ �
μ
βδ − �α

μδ�
μ
βγ

by carrying out the explicit calculations of Eq. (5.57).
(b) Prove the Bianchi identity,

∇α Rμνβγ + ∇γ Rμναβ + ∇β Rμνγ α = 0.

Hint: Because it is a tensorial equation, the identity can be verified in any
coordinate system. Choose a local inertial frame, in which the Christoffel symbols
vanish (but not their derivatives!).

(c) Verify the contracted Bianchi identity, ∇β Gαβ = 0.

5.11 Show that the metric

ds2 = −d(ct)2 + (ct/a)2

[
dr2

1 + r2/a2
+ r2

(
dθ2 + sin2 θ dφ2

)]
,
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where a is a constant with units of distance, is that of flat spacetime: (a) by finding
a coordinate transformation that brings the line element to the Minkowski form
everywhere in spacetime; and (b) by calculating at least five non-trivial components
of its Riemann tensor.

5.12 (a) Calculate the Riemann curvature tensor for the metric of a two-dimensional
sphere of unit radius.

(b) Repeat for an infinitely long, two-dimensional cylinder of unit radius. What do
you make of your answer for the Riemann tensor?

5.13 (a) For a perfect fluid, show that the relativistic Euler equation can be written in the
form

(μ + p)

(
duα

dτ
− 1

2
uβuγ ∂αgβγ

)
= −c2∂α p − uα

dp

dτ
,

in which τ is proper time along the world line of a fluid element.
(b) If the fluid undergoes a stationary flow (pressure, density independent of t) in a

stationary spacetime (gμν independent of t), prove that (μ + p)u0V = constant
along the flow lines. This is the relativistic version of Bernoulli’s equation.

5.14 Show that the mass density of a point particle can be written in the form

ρ(xα) = mc

u0
√−g

δ3
(
x − r(t)

)
.

5.15 By exploiting only spherical symmetry, we can always write the metric of a
spherically-symmetric spacetime in the form

ds2 = −e−2�/c2
d(ct)2 − 2h d(ct)dr + e2�/c2

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

in which �, �, and h are arbitrary functions of t and r . Show that it is always possible
to find a transformation t = F(T, r ) so that the metric in (T, r, θ, φ) coordinates
has no off-diagonal d(ct)dr term.

5.16 (a) Show that the isotropic coordinates

X (μ) := {
t, xiso = riso sin θ cos φ, yiso = riso sin θ sin φ, ziso = riso cos θ

}
do not satisfy the harmonic coordinate condition, Eq. (5.175).

(b) Show that the spherical polar harmonic coordinates (t, rh, θ, φ) do not satisfy the
harmonic coordinate condition.

5.17 If gαβ := ηαβ + pαβ , show that to first order in pαβ , the harmonic coordinate condition
(5.177) is equivalent to the Lorenz-gauge condition of linearized theory, ∂β p̄αβ = 0,
where p̄αβ is the trace-reversed perturbation, and indices are raised and lowered using
ηαβ .
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5.18 In the course of your study of general relativity you come across a vacuum solution
to the Einstein field equations given by

ds2 = −d(ct)2 +
(

4αctx j

r (r2 − α2)

)
d(ct)dx j

+
[

(r + α)4

r4
δ jk − 4α2c2t2x j xk

r2(r2 − α2)2

]
dx j dxk,

in which α is a constant and r2 := δ jk x j xk . You take it upon yourself to study the
significance of this spacetime.
(a) Transform the metric from the Cartesian coordinates x j to the standard spher-

ical polar coordinates (r, θ, φ), and show that the metric is, in fact, spherically
symmetric. Hint: What are δ jkdx j dxk and (x j /r )dx j in spherical coordinates?

(b) Calculate the acceleration of a body at rest at very large r , and use your result to
relate the parameter α to the total mass M in the spacetime.

(c) Find a coordinate transformation that puts the metric in a static form, and confirm
your result in part (b) by reading off the mass directly from the metric.

(d) Can you name this spacetime?

5.19 Calculate the potential �(r ) for a spherical body of uniform density. Make sure to
impose the proper boundary conditions at the boundary r = R0.

5.20 Suppose that a free-falling observer moves radially inward in the Schwarzschild
spacetime, having started from rest at infinity; denote the observer’s four-velocity uα .
Furthermore, suppose that a photon is also moving radially inward, and that it is just
about to catch up with the observer; denote the photon’s four-momentum pα and its
energy-at-infinity h̄ω∞. On the basis of the general formula

h̄ω = −gαβ pαuβ,

calculate the photon’s frequency ω as measured by the observer when the photon
catches up with her. Express your result in terms ω∞ and r0, the radius at which
the photon and observer meet. Is this a redshift or a blueshift? Does the expression
become singular at the event horizon? Should it?
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6 Post-Minkowskian theory: Formulation

In this chapter we embark on a general program to specialize the formulation of general
relativity to a description of weak gravitational fields. We will go from the exact theory,
which governs the behavior of arbitrarily strong fields, such as those of neutron stars and
black holes, to a useful approximation that applies to weak fields, such as those of planets,
main-sequence stars, and white dwarfs. This approximation will reproduce the predictions
of Newtonian theory, but we will formulate a method that can be pushed systematically
to higher and higher order to produce an increasingly accurate description of a weak
gravitational field. We shall find that the method is so successful that it can actually handle
fields that are not so weak. For example, it provides a perfectly adequate description of
gravity at a safe distance from a neutron star, and it can be used as a foundation to study
the motion of a binary black-hole system, provided that the mutual gravity between bodies
is weak.

The foundation for these methods is “post-Minkowskian theory,” the topic of this chapter
and the next. In post-Minkowskian theory the strength of the gravitational field is measured
by the gravitational constant G, and the Einstein field equations are formally expanded
in powers of G. At zeroth post-Minkowskian order there is no field, and one deals with
Minkowski spacetime. At first post-Minkowskian order the gravitational field appears as
a correction of order G to the Minkowski metric, and the (linearized) field equations are
integrated to obtain this correction. The correction is refined by terms of order G2 in the
second post-Minkowskian approximation, and the process is continued until the desired
degree of accuracy is achieved.

The formulation of the Einstein field equations that is best suited to this post-
Minkowskian expansion was put forward by Landau and Lifshitz, and this framework
is introduced in Sec. 6.1. In Sec. 6.2 we refine the Landau–Lifshitz formulation by impos-
ing the harmonic coordinate conditions, and we show that the exact field equations can be
expressed as a set of ten wave equations in Minkowski spacetime, with complicated and
highly non-linear source terms. We explain how the metric can be systematically expanded
in powers of the gravitational constant G and inserted within the wave equations; these are
iterated a number of times, and each iteration increases the accuracy of the solution by one
power of G.

In Sec. 6.3 we develop mathematical techniques to integrate the wave equation in flat
spacetime. We begin by introducing the retarded Green’s function for the wave equation,
and we explain how the solution can be expressed as an integral over the past light cone
of the spacetime point at which it is evaluated. Our methods involve a partition of three-
dimensional space into near-zone and wave-zone regions, and we describe how the light-
cone integral, decomposed into near-zone and wave-zone contributions, can be evaluated.

290
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In Chapter 7 we implement the techniques developed here and construct the second
post-Minkowskian approximation to the metric of a weakly curved spacetime. The post-
Minkowskian approximation does not rely on an assumption that the matter distribution
moves slowly. While this may be the typical context – in a gravitationally bound system,
weak gravitational fields induce slow motions – we shall nevertheless divorce the weak-
field assumption from a logically distinct slow-motion assumption, which is not required
for the developments of this chapter. We shall eventually return to slow motions, however,
and formulate an approximation method that incorporates both weak-field and slow-motion
aspects. This is the domain of post-Newtonian theory, an approximation to general rela-
tivity that combines an expansion in powers of G (to measure the strength of the field)
with an expansion in powers of c−2 (to measure the velocity of the matter distribution).
Post-Newtonian theory is informally introduced in Chapter 7, but it is developed more
systematically in Chapters 8, 9, and 10. The other main applications of post-Minkowskian
theory, gravitational waves and radiation reaction, are the subject of Chapters 11 and 12.

6.1 Landau–Lifshitz formulation of general relativity

6.1.1 New formulation of the field equations

The post-Minkowskian approach to integrate the Einstein field equations is based on the
Landau and Lifshitz formulation of these equations. In this framework the main variables
are not the components of the metric tensor gαβ but those of the “gothic inverse metric”

gαβ := √−ggαβ, (6.1)

where gαβ is the inverse metric and g the metric determinant. The factor of
√−g implies

that gαβ is not a tensor; such objects, which differ from tensors by factors of the metric
determinant, are known as tensor densities. Knowledge of the gothic metric is sufficient to
determine the metric itself: note first that det[gαβ] = g, so that g can be directly obtained
from the gothic metric; then Eq. (6.1) gives gαβ , which can be inverted to obtain gαβ .

In the Landau–Lifshitz formulation, the left-hand side of the field equations is built
from

Hαμβν := gαβgμν − gανgβμ. (6.2)

This tensor density is readily seen to possess the same symmetries as the Riemann tensor,

Hμαβν = −Hαμβν, Hαμνβ = −Hαμβν, Hβναμ = Hαμβν. (6.3)

It also satisfies the remarkable identity

∂μν Hαμβν = 2(−g)Gαβ + 16πG

c4
(−g)tαβ

LL , (6.4)
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in which Gαβ is the Einstein tensor, and

(−g)tαβ

LL := c4

16πG

{
∂λg

αβ∂μg
λμ − ∂λg

αλ∂μg
βμ + 1

2
gαβ gλμ∂ρg

λν∂νg
μρ

− gαλgμν∂ρg
βν∂λg

μρ − gβλgμν∂ρg
αν∂λg

μρ + gλμgνρ∂νg
αλ∂ρg

βμ

+ 1

8

(
2gαλgβμ − gαβ gλμ

)(
2gνρgστ − gρσ gντ

)
∂λg

ντ ∂μg
ρσ

}
(6.5)

is the Landau–Lifshitz pseudotensor, so named because it does not transform as a tensor
under a general coordinate transformation; the quantity ∂μν Hαμβν is also a pseudotensor,
and (−g)Gαβ is a tensor density. Equation (6.4) is valid for any spacetime, whether or not
its metric is a solution to the Einstein field equations.

The identity of Eq. (6.4) implies that the Einstein field equations, Gαβ = (8πG/c4)T αβ ,
can be expressed in the alternative, non-tensorial form

∂μν Hαμβν = 16πG

c4
(−g)

(
T αβ + tαβ

LL

)
. (6.6)

As promised, the left-hand side involves Hαμβν , and the right-hand side is built from T αβ ,
the energy-momentum tensor of the matter distribution, and tαβ

LL . This form of the field
equations provides the Landau–Lifshitz pseudotensor with a loose physical interpretation:
it represents the distribution of gravitational-field energy in spacetime, which is added to
the matter contribution on the right-hand side of the field equations.

By virtue of the antisymmetry of Hαμβν in the last pair of indices, we have that the
equation

∂βμν Hαμβν = 0 (6.7)

holds as an identity. This, together with Eq. (6.6), implies that

∂β

[
(−g)

(
T αβ + tαβ

LL

)] = 0. (6.8)

These are conservation equations for the total energy-momentum pseudotensor, expressed in
terms of a partial-derivative operator. These equations are equivalent to the usual expression
of energy-momentum conservation, ∇β T αβ = 0, which involves only the matter’s energy-
momentum tensor and a covariant-derivative operator.

As we have seen, Eqs. (6.6) and (6.8) suggest that tαβ

LL can be interpreted as an energy-
momentum (pseudo)tensor for the gravitational field, and this interpretation is supported
by the fact that the Landau–Lifshitz pseudotensor is quadratic in ∂μg

αβ , just as the energy-
momentum tensor of the electromagnetic field is quadratic in ∂μ Aα . This interpretation,
however, is not to be taken literally. It is, after all, based on a very specific reformulation of
the Einstein field equations, and other reformulations would give rise to other candidates
for the energy-momentum pseudotensor. And it is based on a non-tensorial quantity whose
numerical value can change arbitrarily by performing a coordinate transformation; indeed,
tαβ

LL can be made to vanish at any selected event in spacetime by adopting Riemann normal
coordinates in the neighborhood of this event (refer to Sec. 5.2.5). The literature abounds
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with attempts to introduce the energy-momentum tensor for the gravitational field. Such an
object does not exist; do not fall prey to false prophets.

Box 6.1 Two versions of energy-momentum conservation

We state in the text that the two versions of energy-momentum conservation, ∇β T αβ = 0 and
∂β[(−g)(T αβ + tαβ

LL)] = 0, are equivalent. In fact, there is an important conceptual difference between
these statements. The first equation is a direct consequence of the local conservation of energy-momentum,
as observed in a local inertial frame; as such it is valid whether or not Einstein’s equations are satisfied, or in-
deed, whether or not general relativity is the correct theory of gravity. The fact that it is compatible with the
Bianchi identity,∇βGαβ = 0, is an added feature specific to Einstein’s theory. There are alternative theories
that lack this consistency, and yet∇β T αβ is still zero.
By contrast, the second conservation equation follows only after using Einstein’s equations to derive

Eq. (6.6). Furthermore, the tedious calculations required to establish that the two versions are equivalent
involve inserting the field equations (6.6) at various critical steps along the way.
The bottom line is that the conservation equation ∇β T αβ = 0 is fundamental; the equation

∂β[(−g)(T αβ + tαβ

LL)] = 0 is a consequence of Einstein’s equations. If Einstein’s equations are satisfied,
then either equation may be adopted to express energy-momentum conservation, and the statements are
equivalent in this sense.

Equations (6.1)–(6.8) form the core of the Landau–Lifshitz framework. It is out of the
question to provide a derivation of these equations (the calculations are straightforward
but extremely lengthy), but the following considerations, borrowed from Landau and Lif-
shitz in their influential book The classical theory of fields, will provide at least a partial
understanding of where they come from.

Let us write down the Einstein field equations, in their usual tensorial form

Gαβ = 8πG

c4
T αβ, (6.9)

at an event P in spacetime, in a local coordinate system such that ∂γ gαβ(P)
∗= 0. (We do

not demand that gαβ
∗= ηαβ at P; the special equality sign

∗= means “equals in the selected
coordinate system.”) In these coordinates the Riemann tensor at P involves only the metric
and its second derivatives, and a short computation reveals that the Einstein tensor is given
by

Gαβ ∗= 1

2

(
gαλgβμgνρ + gβλgαμgνρ − gαλgβρgμν − gαμgβνgλρ

− gαβ gμλgνρ + gαβ gμνgλρ
)
∂μνgλρ. (6.10)

If we now compute ∂μν Hαμβν , at the same point P and in the same coordinate system, we
find after straightforward manipulations that it is given by

∂μν Hαμβν ∗= (−g)
(
gαλgβμgνρ + gβλgαμgνρ − gαλgβρgμν − gαμgβνgλρ

− gαβ gμλgνρ + gαβ gμνgλρ
)
∂μνgλρ. (6.11)
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To arrive at this result we had to differentiate (−g) using the rule ∂μ(−g) = (−g)gαβ∂μgαβ ,

which leads to ∂μν(−g)
∗= (−g)gαβ∂μνgαβ . We also had to relate derivatives of the inverse

metric to derivatives of the metric itself; here we have used the rule ∂μgαβ = −gαλgβρ∂μgλρ ,
which leads to ∂μνgαβ ∗= −gαλgβρ∂μνgλρ .

Our results imply that

∂μν Hαμβν ∗= 2(−g)Gαβ . (6.12)

This is the same as Eq. (6.4), because (−g)tαβ

LL
∗= 0 at P by virtue of the fact that each

term in the Landau–Lifshitz pseudotensor is quadratic in ∂μg
αβ , which vanishes at P in the

selected coordinate system. It is therefore plausible that at any other event in spacetime,
and in an arbitrary coordinate system, the identity (6.4) should hold, with a pseudotensor
(−g)tαβ

LL that restores all first-derivative terms that were made to vanish at P in the special
coordinate system. To show that this pseudotensor takes the specific form of Eq. (6.5)
requires a long computation.

6.1.2 Coordinate freedom

The Landau–Lifshitz formulation of general relativity is an exact reformulation of the
standard form of the theory. No approximations are involved, and no restrictions are placed
on the choice of coordinates. It has to be acknowledged, however, that the usefulness of
the formalism is largely limited to situations in which (i) the coordinates xα = (ct, x j )
are modest deformations of the Lorentzian coordinates of flat spacetime, and (ii) gαβ

deviates only moderately from the Minkowski metric ηαβ . For these situations, which form
the context of this book, the formalism is an excellent starting point for a systematic
approximation method.

In other contexts the Landau–Lifshitz formulation can be a terrible approach. Even
a simple problem such as finding the static, spherically symmetric, vacuum solution to
the Einstein field equations, the Schwarzschild metric, which took us about six lines of
mathematics back in Sec. 5.6, turns out to be a horrible undertaking in the Landau–Lifshitz
approach. The lesson is that while the Landau–Lifshitz formulation of the field equations
is mathematically equivalent to the tensorial formulation, it is not equivalent when it comes
to the ease of performing calculations. In the post-Minkowskian context it is the preferred
formulation; in other contexts it decidedly is not.

Given the practical restriction on the coordinate system, it is useful to observe that the
Landau–Lifshitz formulation is manifestly invariant under Lorentz transformations, which
we express in the general form

xμ′ = �μ′
α xα, (6.13)

in which the transformation matrix �μ′
α is constant and possesses a unit determinant. (In

fact, the formalism is invariant under all transformations that are linear in the coordinates,
so long as the transformation matrix possesses a unit determinant; this ensures that g is not
changed during the transformation. The transformation can also be generalized to include
uniform translations, xμ → xμ + cμ, where cμ is a constant vector.) It is easy to show
that gαβ and its partial derivatives transform as tensors under this class of transformations,
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and from this observation it follows immediately that all equations of the formalism are
invariant under the transformation of Eq. (6.13).

6.1.3 Integral conservation identities

Because they involve a partial-derivative operator, the differential identities of Eq. (6.8)
can immediately be turned into integral identities. We consider a three-dimensional region
V , a fixed (time-independent) domain of the spatial coordinates x j , bounded by a two-
dimensional surface S. We assume that V contains at least some of the matter (so that T αβ

is non-zero somewhere within V ), but that S does not intersect any of the matter (so that
T αβ = 0 everywhere on S).

Total momentum and angular momentum: Volume integrals

We formally define a total momentum four-vector Pα[V ] associated with the region V by
the three-dimensional integral

Pα[V ] := 1

c

∫
V

(−g)
(
T α0 + tα0

LL

)
d3x . (6.14)

This total momentum includes a contribution from the matter’s momentum density c−1T α0,
and a contribution from the gravitational field represented by c−1tα0

LL; the factor of (−g) is
inserted so that we can take advantage of the conservation identities of Eq. (6.8). In flat
spacetime and in Lorentzian coordinates, Pα[V ] would have a firm interpretation as a total
momentum vector associated with the energy-momentum tensor T αβ . In curved spacetime,
and in a coordinate system that cannot be assumed to be Lorentzian, the quantity defined by
Eq. (6.14) does not have any direct physical meaning. It is, nevertheless, a useful quantity
to introduce, as we shall have occasion to recognize.

The momentum four-vector can be decomposed into a time component P0[V ] and a
spatial three-vector P j [V ]. The time component can be used to define an energy E[V ] :=
cP0[V ] associated with the region V . Alternatively, we can define a total mass

M[V ] := 1

c2

∫
V

(−g)
(
T 00 + t00

LL

)
d3x . (6.15)

The three-momentum is given by

P j [V ] := 1

c

∫
V

(−g)
(
T j0 + t j0

LL

)
d3x . (6.16)

In a similar way we introduce a total angular-momentum tensor J αβ[V ] associated with
the region V . This is defined by

J αβ[V ] := 1

c

∫
V

[
xα (−g)

(
T β0 + tβ0

LL

) − xβ (−g)
(
T α0 + tα0

LL

)]
d3x, (6.17)

and we note that the tensor is antisymmetric in its indices. The interpretation of J αβ [V ] is
easier to identify once it is decomposed into time and spatial components. The antisymmetry
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of the tensor implies that J 00[V ] = 0. The time-space components can be expressed in the
form

c−1 J 0 j [V ] = P j [V ]t − M[V ]R j [V ], (6.18)

where

R j [V ] := 1

M[V ]c2

∫
V

(−g)
(
T 00 + t00

LL

)
x j d3x (6.19)

represents the position of the center-of-mass of the region V . Equation (6.18) reveals that
when c−1 J 0 j [V ] is a constant, it fixes the position of the center-of-mass at t = 0; when it
is not a constant it measures the extent by which the center-of-mass fails to move with a
total momentum P j [V ]. The spatial components of the angular-momentum tensor are

J jk[V ] = 1

c

∫
V

[
x j (−g)

(
T k0 + t k0

LL

) − xk (−g)
(
T j0 + t j0

LL

)]
d3x, (6.20)

and this is best recognized in its equivalent vectorial form

J j [V ] := 1

2
ε j

pq J pq [V ] = 1

c

∫
V

ε j
pq x p (−g)

(
T q0 + tq0

LL

)
d3x, (6.21)

where ε j pq is the completely antisymmetric permutation symbol. The integrand is the cross
product between the position vector x p and the momentum density c−1(−g)(T q0 + tq0

LL)
within V , and it is natural to interpret the integral as the total angular momentum contained
in this region.

Total momentum and angular momentum: Surface integrals

The total momentum Pα[V ] and angular momentum J αβ[V ] were defined previously in
terms of integrals over the three-dimensional region V . It is possible to provide alternative
definitions in terms of surface integrals over the two-dimensional surface S that surrounds
this region. This is advantageous when the volume integrals of Eq. (6.14) and (6.17) are
ill-defined or difficult to compute.

Substituting Eq. (6.6) into Eq. (6.14) gives

Pα[V ] = c3

16πG

∫
V

∂μν Hαμ0ν d3x .

Summation over ν must exclude ν = 0, because Hαμ00 = 0. We therefore have

Pα[V ] = c3

16πG

∫
V

∂k

(
∂μ Hαμ0k

)
d3x,

and this can be written as a surface integral by invoking Gauss’s theorem. We have

Pα[V ] := c3

16πG

∮
S
∂μ Hαμ0k d Sk, (6.22)

where d Sk is an outward-directed surface element on the two-dimensional surface S.
Equation (6.22) can be adopted as an alternative definition for the total momentum enclosed
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by S; Hαμ0k must then be constructed from a solution to Einstein’s equations for the given
distribution of matter.

As before the momentum four-vector can be decomposed into time and spatial compo-
nents. We have that the total mass M[V ] can be expressed as

M[V ] := c2

16πG

∮
S
∂ j H 0 j0k d Sk, (6.23)

and the total three-momentum is

P j [V ] := c3

16πG

∮
S
∂n H jn0k d Sk − c2

16πG

d

dt

∮
S

H 0 j0k d Sk . (6.24)

With similar manipulations we arrive at a surface-integral definition for the total angular
momentum. One of the two terms that occur within the volume integral when we substitute
Eq. (6.6) into Eq. (6.17) is xα∂kμ Hβμ0k , which can be expressed as ∂k(xα∂μ Hβμ0k) +
∂μ Hμβ0α . The first term gives rise to a surface integral, and the second term can be expanded
as ∂0 H 0β0α + ∂k H kβ0α; in this, the first term can be ignored because it is symmetric in α

and β, and the second term gives rise to another surface integral. Collecting results, we
arrive at

J αβ[V ] := c3

16πG

∮
S

(
xα∂μ Hβμ0k − xβ∂μ Hαμ0k + H 0αkβ − H 0βkα

)
d Sk, (6.25)

and this can be adopted as an alternative definition for the total angular momentum enclosed
by S.

The decomposition of J αβ[V ] into time and spatial components first returns Eq. (6.18)
together with the alternative expression

M[V ]R j [V ] := c2

16πG

∮
S

(
x j ∂n H 0n0k − H 0 j0k

)
d Sk (6.26)

for the position of the center-of-mass. It also returns

J jk[V ] := c3

16πG

∮
S

(
x j ∂m H km0n − xk∂m H jm0n + H 0 jnk − H 0knj

)
d Sn

− c2

16πG

d

dt

∮
S

(
x j H 0k0n − xk H 0 j0n

)
d Sn (6.27)

as an alternative definition for the angular-momentum tensor.

Conservation statements

To obtain the conservation statements satisfied by Pα[V ] and J αβ[V ], we differentiate their
defining expressions (in terms of volume integrals) with respect to x0 and use the local
conservation identity of Eq. (6.8). Starting with Eq. (6.14), we get

d

dx0
Pα[V ] = 1

c

∫
V

∂0

[
(−g)

(
T α0 + tα0

LL

)]
d3x

= −1

c

∫
V

∂k

[
(−g)

(
T αk + tαk

LL

)]
d3x . (6.28)
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Converting this to a surface integral, and recalling our previous assumption that S does not
intersect the matter distribution, so that T αβ = 0 on S, we arrive at

Ṗα[V ] = −
∮

S
(−g)tαk

LL d Sk, (6.29)

in which an overdot indicates differentiation with respect to t := x0/c. The rate of change
of Pα[V ] is therefore expressed as a flux integral over S, and the flux is measured by the
Landau–Lifshitz pseudotensor (recall the definitions of fluxes provided back in Sec. 4.2).
Equation (6.29) gives rise to the individual statements

Ṁ[V ] = −1

c

∮
S
(−g)t0k

LL d Sk (6.30)

and

Ṗ j [V ] = −
∮

S
(−g)t jk

LL d Sk (6.31)

for the fluxes of mass and momentum three-vector across S.
Proceeding along similar lines for the angular-momentum tensor, we arrive at

J̇ αβ[V ] = −
∮

S

[
xα(−g)tβk

LL − xβ(−g)tαk
LL

]
d Sk . (6.32)

The symmetry of tαβ

LL was essential in obtaining this result. When decomposed into time
and spatial components, the statement becomes

c−1 J̇ 0 j [V ] = Ṗ j [V ]t + 1

c

∮
S

x j (−g)t0k
LL d Sk (6.33)

and

J̇ jk[V ] = −
∮

S

[
x j (−g)t kn

LL − xk(−g)t jn
LL

]
d Sn . (6.34)

Equation (6.33), when combined with Eq. (6.18), implies that

d

dt

(
M[V ]R j [V ]

) = P j [V ] − 1

c

∮
S

x j (−g)t0k
LL d Sk . (6.35)

6.1.4 Total mass, momentum, and angular momentum

The limit in which V is taken to include all of three-dimensional space is particularly
interesting. In this limit Pα[V ] is known to coincide with the Arnowitt–Deser–Misner
four-momentum of an asymptotically-flat spacetime, and its physical interpretation as a
measure of total momentum is robust. This statement is true whenever the coordinates xα
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coincide with a Lorentzian system at infinity; the coordinates do not have to be Lorentzian
(and indeed, they could not be) at finite spatial distances.

Recalling the definitions of Eqs. (6.15) and (6.23), we define the total mass of the
spacetime as

M := 1

c2

∫
all space

(−g)
(
T 00 + t00

LL

)
d3x (6.36a)

:= c2

16πG

∮
∞

∂ j H 0 j0k d Sk . (6.36b)

Recalling the definitions of Eqs. (6.16) and (6.24), we define the total three-momentum of
the spacetime as

P j := 1

c

∫
all space

(−g)
(
T j0 + t j0

LL

)
d3x (6.37a)

:= c3

16πG

∮
∞

∂n H jn0k d Sk − c2

16πG

d

dt

∮
∞

H 0 j0k d Sk . (6.37b)

Recalling the definitions of Eqs. (6.20) and (6.27), we define the total angular-momentum
three-tensor of the spacetime as

J jk := 1

c

∫
all space

[
x j (−g)

(
T k0 + t k0

LL

) − xk (−g)
(
T j0 + t j0

LL

)]
d3x (6.38a)

:= c3

16πG

∮
∞

(
x j ∂m H km0n − xk∂m H jm0n + H 0 jnk − H 0knj

)
d Sn

− c2

16πG

d

dt

∮
∞

(
x j H 0k0n − xk H 0 j0n

)
d Sn. (6.38b)

And finally, recalling Eqs. (6.19) and (6.26), we define

R j := 1

Mc2

∫
all space

(
T 00 + t00

LL

)
x j d3x (6.39a)

:= c2

16πG M

∮
∞

(
x j ∂n H 0n0k − H 0 j0k

)
d Sk (6.39b)

as the position of the center-of-mass for the entire spacetime. The mass, momentum, angular
momentum, and center-of-mass position of a spacetime can be defined either in terms of
volume integrals over all space, or in terms of surface integrals at infinity. The surface
integrals are especially powerful because they allow us to determine these quantities directly
from the asymptotic behavior of the metric at large distances; an intimate knowledge of
the material source is not required. This is reminiscent of the situation in electrodynamics:
the total electric charge can be determined by integrating the normal component of the
electric field over a surface enclosing the charge, and nothing need be known of the detailed
distribution of charge within the surface.

Equations (6.30), (6.31), and (6.34) imply that the total mass M , total momentum P j ,
and total angular momentum J jk are constant in time whenever the surface integrals vanish
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in the limit S → ∞. Under these circumstances, we have the conservation statements

M = constant, P j = constant, J jk = constant. (6.40)

Furthermore, it can be shown that whenever the surface integrals vanish, the volume
integrals of Eqs. (6.14) and (6.17) can be evaluated on any spacelike hypersurface and
produce the same result. In particular, the momentum four-vector can be evaluated on a
surface of simultaneity t ′ = constant that is obtained from the original surface t = constant
by a Lorentz transformation; this observation can be used to show that Pα transforms as a
four-vector under the transformation of Eq. (6.13).

In a similar way, Eq. (6.35) implies that M Ṙ j = P j whenever its surface integral van-
ishes, and whenever M itself is a constant. Assuming that P also is constant, we have

M R(t) = M R(0) + P t, (6.41)

where R(0) is the position of the center-of-mass at t = 0. This equation states that the
center-of-mass moves uniformly with a velocity P/M (recall that M = P0/c) .

When Eq. (6.40) holds it is natural to adopt a reference frame in which P vanishes. This
can always be achieved by performing a Lorentz transformation described by Eq. (6.13)
and directing the boost in the direction of the momentum; the boost parameter must be set
equal to v = |P |/M . Once this is accomplished, it is also natural to place the origin of the
spatial coordinates at the center-of-mass R. This can always be achieved by translating the
coordinates according to x → x − c, with c denoting a constant vector. It is easy to see
that the translation changes the position of the center-of-mass according to R → R − c,
and choosing c = R places the center-of-mass at the origin of the spatial coordinates.

These choices define the center-of-mass frame of the spacetime:

center-of-mass frame: P j = 0, R j = 0. (6.42)

As we have seen, this choice can be made whenever P is a constant vector, and whenever
M Ṙ = P . These conditions are fulfilled whenever the surface integrals of Eqs. (6.31) and
(6.35) vanish when S → ∞. This always happens when the spacetime is stationary. In
the context of a radiating spacetime, however, the surface integrals cannot be assumed to
vanish; in fact, the mass, momentum, and angular momentum of the spacetime are typically
seen to change with time because the radiation transports energy, momentum, and angular
momentum away from the source. Fortunately this effect can often be neglected in the
context of approximate calculations.

We conclude this discussion with an illustration: we use the surface integrals to calculate
the mass, momentum, and angular momentum of the Schwarzschild spacetime, first en-
countered back in Sec. 5.6. Expressing the metric of Eq. (5.163) in Cartesian coordinates,
we find that

g00 = −
(

1 − R

r

)
, (6.43a)

g jk = δ jk +
(

1 − R

r

)−1 R

r
n j nk , (6.43b)
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where R := 2G M/c2 and n j := x j /r . It is then simple to show that g = −1 and

g00 = −
(

1 − R

r

)−1

, (6.44a)

g jk = δ jk − R

r
n j nk . (6.44b)

We next compute Hαμ0 j by substituting Eqs. (6.44) into Eq. (6.2), and insert the result within
Eq. (6.22) to calculate Pα[r ], the momentum vector associated with a surface S of constant
r . The computations involve the surface element d Sj = r2n j d
 (where d
 := sin θ dθdφ

is an element of solid angle), and they lead to P j [r ] = 0 and

M[r ] = M
r

r − 2G M/c2
. (6.45)

The spatial momentum vanishes (as expected, since the coordinates are centered on the
black hole), and in the limit r → ∞ our previous result reduces to

M[∞] = M. (6.46)

The total energy is cP0[∞] = Mc2, and M is recognized as the total gravitational mass
of the Schwarzschild spacetime. A similar calculation reveals that the center-of-mass is
situated at R j = 0 and that the angular momentum vanishes.

6.2 Relaxed Einstein equations

6.2.1 Harmonic coordinates and a wave equation

It is advantageous at this stage to impose the four conditions

∂βg
αβ = 0 (6.47)

on the gothic inverse metric. These are known as the harmonic coordinate conditions,
and they were first encountered back in Sec. 5.6, see Eq. (5.177), in the context of the
Schwarzschild solution. It is also useful to introduce the potentials

hαβ := ηαβ − gαβ, (6.48)

where ηαβ := diag(−1, 1, 1, 1) is the Minkowski metric expressed in Lorentzian coordi-
nates (x0 := ct, x j ). In terms of these potentials the harmonic coordinate conditions read

∂βhαβ = 0, (6.49)

and in this context they are usually referred to as the harmonic gauge conditions. We
observe that the harmonic conditions are preserved under the Lorentz transformations of
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Eq. (6.13), and that the potentials hαβ transform as a tensor under this restricted class of
coordinate transformations.

Box 6.2 Existence of harmonic coordinates

It seems plausible that the four harmonic coordinate conditions of Eq. (6.47) can always be imposed, given
the four degrees of coordinate freedom inherent to general relativity, but it is worthwhile to see this explicitly.
Given an initial coordinate system in which ∂βg

αβ 	= 0, we make a coordinate transformation to x ′μ =
f μ(xα). It is then straightforward to show that in the new coordinates,

∂ν ′gμ′ν ′ =
√

−g′ �g f μ(xα) ,

where�g := gμν∇μ∇ν is the curved spacetime d’Alembertian operator acting on each one of the four
functions f μ, treated as a scalar function of xα . Choosing each function to be harmonic, that is, a solution to
�g f μ = 0, ensures that the harmonic coordinate conditions will hold in the new coordinates.

The introduction of the potentials hαβ and the imposition of the harmonic gauge condi-
tions simplify the appearance of the Einstein field equations. It is easy to verify that the
left-hand side becomes

∂μν Hαμβν = −�hαβ + hμν∂μνhαβ − ∂μhαν∂νhβμ, (6.50)

where � := ημν∂μν is the flat-spacetime wave operator. The right-hand side of the field
equations stays essentially unchanged, but the harmonic conditions do slightly simplify the
form of the Landau–Lifshitz pseudotensor; as can be seen from Eq. (6.5), the first two terms
of (−g)tαβ

LL vanish in harmonic coordinates. Isolating the wave operator on the left-hand
side, and putting everything else on the right-hand side, gives us the formal wave equation

�hαβ = −16πG

c4
ταβ (6.51)

for the potentials hαβ , where

ταβ := (−g)
(
T αβ[m, g] + tαβ

LL [h] + tαβ

H [h]
)

(6.52)

is the effective energy-momentum pseudotensor for the wave equation. We have introduced

(−g)tαβ

H := c4

16πG

(
∂μhαν∂νhβμ − hμν∂μνhαβ

)
(6.53)

as an additional (harmonic-gauge) contribution to the effective energy-momentum pseu-
dotensor.

In our expression for ταβ we have indicated that the energy-momentum tensor T αβ is
a functional of matter variables m, in addition to being a functional of the metric tensor
gαβ (which is obtained from the gravitational potentials). As an example, when the matter
consists of a perfect fluid, m collectively denotes variables such as the mass density ρ,
pressure p, and velocity field uα . We have also indicated that the Landau–Lifshitz and
harmonic pseudotensors are functionals of hαβ . As we shall see below, imposition of the
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gauge conditions (6.49) is equivalent to enforcing the conservation equations

∂βταβ = 0, (6.54)

which can be compared with Eq. (6.8). It is easy to verify that (−g)tαβ

H is separately
conserved, in that it satisfies ∂β[(−g)tαβ

H ] = 0 as an identity.
The wave equation of Eq. (6.51) is the main starting point of post-Minkowskian theory.

It is worth emphasizing the fact that this equation, together with Eq. (6.49) or (6.54), is an
exact formulation of the Einstein field equations; no approximations have been introduced
at this stage.

For a metric gαβ to satisfy the complete set of Einstein field equations, it is necessary for
the potentials hαβ to satisfy both the wave equation and the gauge condition/conservation
statement; it is the union of Eq. (6.51) and (6.49) or (6.54) that is equivalent to the original
form of the Einstein field equations, Gαβ = (8πG/c4)T αβ . The two sets of equations play
different roles. The wave equation (6.51) determines the gravitational potentials hαβ[m]
(and therefore the metric) as functions of the harmonic coordinates xα , in terms of the matter
variables m; these, however, remain undetermined until we also involve the conservation
equation (6.54). It is this equation that determines the behavior of the matter variables
in a curved spacetime whose metric is built from hαβ[m]. Solving both sets of equations
therefore determines both the metric and the matter variables. This reminds us of John
Wheeler’s famous words: matter tells spacetime how to curve, and spacetime tells matter
how to move; the decomposition of the field equations into a wave equation and a gauge
condition/conservation statement provides a mathematical representation of this maxim.

We have just seen that when the complete set of Einstein field equations is integrated,
one cannot solve for the metric independently of the matter variables, and one cannot solve
for the matter variables independently of the metric. It is useful to observe, however, that
when the equations are decomposed into the subsets [wave equation] and [gauge condition/
conservation statement], one is entirely free to solve the wave equation (6.51) without also
enforcing the gauge condition of Eq. (6.49) or the conservation statement of Eq. (6.54).
Solving the wave equation independently of the gauge condition/conservation statement
amounts to integrating only a subset of the Einstein field equations, and the procedure
returns ten gravitational potentials hαβ[m] expressed as functionals of undetermined matter
variables m. The metric obtained from these potentials is also a functional of m, and it
is not yet a solution to the Einstein field equations; it becomes a solution only when the
gauge condition/conservation statement is imposed as an additional condition on the matter
variables. The wave equation (6.51), taken by itself independently of Eqs. (6.49) or (6.54),
is known as the relaxed Einstein field equation.

Box 6.3 Wave equation in flat and curved spacetimes

Because it involves second derivatives of the potentials, the term hμν∂μνhαβ on the right-hand side of the
field equationsmight have beenmore appropriately placed on the left-hand side, and joined togetherwith the
wave-operator term. In fact, there is a way of combining all second-order derivatives into a curved-spacetime
wave operator. For this purpose we treat hαβ as a collection of ten scalar fields instead of as a tensor field.
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The scalar wave operator associated with the metric gαβ (which is to be constructed from the potentials) is
denoted�g , and it has the following action on each of the ten potentials:

�ghαβ = 1√−g
∂μ

(√−ggμν∂νhαβ
)

= 1√−g
∂μ

[(
ημν − hμν

)
∂νhαβ

]
= 1√−g

[
�hαβ − hμν∂μνhαβ

]
, (6.55)

where we have used the harmonic gauge conditions in the last step. This expression does indeed involve all
second-derivative terms that appear in Eq. (6.51). The field equations could then be formulated in terms of
�g , and this was, in fact, the approach adopted by Kovacs and Thorne in their series of papers on the gen-
eration of gravitational waves. This approach, while conceptually compelling, is not as immediately useful for
post-Minkowskian theory as the approach adopted here, which is based on theMinkowski wave operator. It is
indeed much simpler to solve the wave equation in flat spacetime than it is to solve it in a curved spacetime
with a complicated (and as yet unknown) metric.

6.2.2 Formal solution to the wave equation

The wave equation of Eq. (6.51) admits the formal solution

hαβ(x) = 4G

c4

∫
G(x, x ′)ταβ(x ′) d4x ′, (6.56)

where x = (ct, x) is a field point and x ′ = (ct ′, x′) a source point. The two-point function
G(x, x ′) is the retarded Green’s function of the Minkowski wave operator, which satisfies

�G(x, x ′) = −4πδ(x − x ′), (6.57)

and which is known to be a function of x − x ′ only. (An explicit expression will be presented
in Sec. 6.3.) This property is sufficient to prove that if the effective energy-momentum
pseudotensor ταβ satisfies the conservation identities of Eq. (6.54), then the potentials
hαβ will satisfy the harmonic gauge conditions of Eq. (6.49). The converse property, that
∂βταβ = 0 when ∂βhαβ = 0, follows immediately from the wave equation (6.51).

To prove that ∂βhαβ = 0 when ∂βταβ = 0, we begin by differentiating Eq. (6.56) with
respect to xβ :

∂βhαβ = 4G

c4

∫
∂β G(x, x ′)ταβ(x ′) d4x ′. (6.58)

Using the previously mentioned property that G(x, x ′) depends on x − x ′ only, we may
write this as

∂βhαβ = 4G

c4

∫ [−∂β ′ G(x, x ′)
]
ταβ(x ′) d4x ′, (6.59)
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in which the Green’s function is now differentiated with respect to x ′β . Integrating by parts,
we arrive at

∂βhαβ = 4G

c4

∫
G(x, x ′)∂β ′ταβ(x ′) d4x ′. (6.60)

This equation reveals directly that hαβ satisfies the harmonic gauge conditions when ταβ is
conserved.

6.2.3 Iteration of the relaxed field equations

The question that concerns us now is this: given the complexity of Eqs. (6.51)–(6.54), how
can we construct solutions for a particular choice of matter variablesm? Our answer will be:
by successive approximations. We shall not attempt to find exact solutions to our equations;
instead, we shall retreat to an approximate context in which our spacetime deviates only
moderately from Minkowski spacetime. To construct the metric of this spacetime we
consider a formal expansion of the form

hαβ = Gkαβ

1 + G2kαβ

2 + G3kαβ

3 + · · · (6.61)

for the gravitational potentials. Such an expansion in powers of G is known as a post-
Minkowskian expansion, and our hope is that the expansion – an asymptotic expansion
that is not expected to converge – will give rise to an acceptable approximation to the
true metric, at least in a useful portion of the spacetime. In the mathematical language of
asymptotic expansions, our hope is that gαβ(x) − gn

αβ(x) = O(Gn+1) when x is within a
wide domain U of the spacetime manifold; here gn

αβ is the metric obtained from Eq. (6.61)
after truncating the asymptotic series to order Gn . Equation (6.61) gives rise to the suc-
cessive approximations hαβ

0 = 0, hαβ

1 = Gkαβ

1 , hαβ

2 = Gkαβ

1 + G2kαβ

2 , and so on, for the
gravitational potentials.

Box 6.4 The expansion parameterG

This development in powers of G is a formal device only. Because G has dimensions, its numerical value
depends on the units in which it is evaluated, and it seems ridiculous to let it play the role of a “small” expan-
sion parameter. For example, we were raised in geometrized units in which G = 1, and this does not look
like a small quantity. The actual expansion parameter in a typical situation involving a characteristic massmc

confined to a regionof characteristic sizerc isGmc/(c2rc),which is small in situations involvingweakgrav-
itational fields. Because the proper specification of the expansion parameter requires additional information
that is specific to each situation considered, it is economical to stick withG as a formal expansion parameter,
and let each physical situation dictate the translation to a meaningful, dimensionless parameter. The absence
of a unique, dimensionless expansion parameter for the Einstein field equations is part of the reason why the
expansions of post-Minkowskian and post-Newtonian theory are believed to be asymptotic sequences that
may not converge.
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In principle we might begin the process of solving the Einstein field equations by
substituting Eq. (6.61) into Eq. (6.51) and plucking out terms that share the same power
of G. In practice, however, it is more convenient to proceed by iterations, as we now
explain.

In the zeroth iteration of the relaxed field equations we set hαβ

0 = 0 and immediately
get g0

αβ = ηαβ , the metric of Minkowski spacetime. From this we construct T αβ[m, g] =
T αβ[m, η], tαβ

LL [h] = tαβ

LL [h0] = 0, and tαβ

H [h] = tαβ

H [h0] = 0. From all this we obtain τ
αβ

0 =
T αβ[m, η]; this is the energy-momentum tensor of the matter variables m, and in the zeroth
iteration these live in Minkowski spacetime.

In the first iteration of the relaxed field equations we solve the wave equation
�hαβ = −(16πG/c4)ταβ

0 for hαβ

1 = Gkαβ

1 . Because the source τ
αβ

0 is known from the
zeroth iteration, the wave equation can be integrated without difficulty (at least in prin-
ciple), and this returns the potentials hαβ

1 as functionals of the matter variables m,
which have yet to be determined. From the potentials we form the metric g1

αβ and con-
struct τ

αβ

1 , an improved version of the effective energy-momentum pseudotensor. This
involves the material contribution T αβ[m, g1], as well as the field contributions tαβ

LL [h1] and
tαβ

H [h1].
In the second iteration of the relaxed field equations we solve the wave equation

�hαβ = −(16πG/c4)ταβ

1 for hαβ

2 = Gkαβ

1 + G2kαβ

2 , an improved version of the gravita-
tional potentials. Because the source τ

αβ

1 is known from the first iteration, the wave equa-
tion can once more be integrated, and hαβ

2 are again functionals of the undetermined matter
variables m. From the new potentials we form the metric g2

αβ and construct τ
αβ

2 , the latest
version of the effective energy-momentum pseudotensor. The stage is ready for the next
iteration.

After n iterations we obtain the potentials hαβ
n = Gkαβ

1 + G2kαβ

2 + · · · + Gnkαβ
n , the

nth post-Minkowskian approximation to the true potentials hαβ . These functions of the
harmonic coordinates xα are functionals of the matter variables m, which must now be
determined. This is accomplished in the very last step of the procedure, the implementation
of the gauge condition/conservation statement, which has not yet been invoked. We thus
impose ∂βhαβ

n = 0 on our iterated solution to the relaxed field equations; this determines
m and returns gn

αβ(x) as a proper tensor field in spacetime. Equivalently, we may enforce
the conservation equation ∂βτ

αβ

n−1 = 0, which (as we have seen) is formally equivalent to
∂βhαβ

n = 0. It is important to observe that while the gauge condition involves hαβ
n , the

conservation statement involves τ
αβ

n−1; these quantities are linked by the iteration procedure
described previously.

Let us illustrate the foregoing discussion by choosing the matter content of the spacetime
to consist of N point masses labeled by an index A = (1, 2, . . . , N ). In this case the
collective matter variables m denote the set of vectors r A(t), which give the position of
each body in the harmonic system of coordinates. After n iterations of the relaxed field
equations we obtain gravitational potentials of the form hαβ

n (xα; r A); these are functions of
the spacetime coordinates xα and functionals of the trajectories r A(t). At this stage of the
procedure the trajectories are not determined; the functions r A(t) are completely arbitrary. In
the final step we enforce the conservation equation ∂βτ

αβ

n−1 = 0, and this produces equations
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of motion of the form

d2r A

dt2
= O(G) + O(G2) + · · · + O(Gn−1) . (6.62)

These are used to determine r A(t), and the task is completed: we have the metric and the
motion of the individual bodies. These considerations indicate that two iterations of the
relaxed field equations are required to obtain the Newtonian equations of motion – the
O(G) term on the right-hand side of Eq. (6.62).

It is important to understand that the iterations must be performed on the relaxed equa-
tions only, and not on the full set of Einstein field equations. In other words, one iterates the
wave equation only, and leaves the gauge condition/conservation statement alone, until the
final iteration is carried out; the gauge condition/conservation statement is enforced in the
very last step of the procedure. It would indeed be misguided to enforce it at every iterative
step. To see why, imagine that we choose to enforce ∂βταβ = 0 immediately at the zeroth
iteration. Because τ

αβ

0 = T αβ[m, η], this is the conservation equation for matter fields in
Minkowski spacetime, and it implies that the matter cannot be subjected to gravitational
interactions. (In the illustrative case of point masses examined previously, the bodies would
have to move on straight lines.) The next iteration would produce hαβ

1 as sourced by this
matter field, and the next version of the conservation statement, ∂βτ

αβ

1 = 0, would imply
that the matter is, after all, subjected to a gravitational interaction. (In our example, the
point masses would now be allowed to move according to the Newtonian equations of
motion, in a gravitational field determined as if the masses were moving on straight lines.)
We have a contradiction, and this tension is best avoided by delaying the implementa-
tion of the gauge condition/conservation statement until the very last step of the iterative
procedure.

As a small technical point, we might mention that the procedure does retain a limited
amount of latitude. As described above, the penultimate step in the iterative procedure is to
solve the wave equation �hαβ = −(16πG/c4)ταβ

n−1 for hαβ
n , given the known source τ

αβ

n−1.

The last step is to impose the additional conditions ∂βτ
αβ

n−1 = 0. These steps can be switched:

once τ
αβ

n−1 is constructed from hαβ

n−1 in the (n − 1)th iteration, one can immediately enforce

the conservation equation ∂βτ
αβ

n−1 = 0. The final step is then to obtain hαβ
n by integrating the

wave equation, and the gauge condition ∂βhαβ
n = 0 will automatically be satisfied by the

solution.
We can be even more flexible. If we are interested only in the equations of motion that

arise from the (n − 1)th iteration, and not in the spacetime metric that is generated by that
motion, then we do not actually have to complete the iterations to obtain hαβ

n . The solutions
hαβ

n−1 are sufficient to insert into the conservation equations ∂βτ
αβ

n−1 = 0, from which the
motion of the system can be determined consistently to order Gn−1.

The iterative, post-Minkowskian method described in this section is technically demand-
ing to carry out, and in the next chapter we shall develop a number of helpful techniques
that permit its successful implementation. Before we start, however, we must learn how to
solve a wave equation in flat spacetime. This is the topic of the following section.
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6.3 Integration of the wave equation

At first sight the wave equation (6.51) appears to be highly non-linear, with the potentials
hαβ present on both sides of the equation. In Sec. 6.2.3 we outlined an iterative procedure
that ensures that in the course of each iteration, the wave equation is actually linear in
hαβ and involves a known source term ταβ . The task of solving the relaxed field equations
therefore appears to be straightforward, and in this section we introduce a number of
powerful techniques to integrate the wave equation.

For simplicity we shall eliminate all unnecessary tensorial indices on the wave equation,
which we now write as

�ψ = −4πμ. (6.63)

The scalar potential ψ(x) plays the role of hαβ , and the source function μ(x) plays the role of
(4G/c4)ταβ ; the remaining factor of 4π is retained for later convenience. Here x = (ct, x)
labels a spacetime event, and we recall that

� := ηαβ∂αβ = − 1

c2

∂2

∂t2
+ ∇2 (6.64)

is the wave operator of Minkowski spacetime. The source function μ(x) is assumed to
be known, but unlike the typical situations encountered in electrodynamics, for example,
it cannot be assumed to be confined to a bounded region of three-dimensional space; it
is instead taken to be distributed over all space. The reason originates from the post-
Minkowskian context: as we have seen, during each iteration of the relaxed field equations,
ταβ is built in part from T αβ , which normally has compact support, and in part from tαβ

LL

and tαβ

H , which do not because they are constructed from hαβ , which extends over all space.
Our source term in Eq. (6.63) will therefore extend over all space, but μ is assumed to
fall off sufficiently rapidly to ensure that ψ decays at least as fast as r−1 (where r := |x|).
Occasionally we shall find it useful to decompose μ into a piece μc with compact support
(analogous to T αβ) and a piece μnc with non-compact support.

A summary of our main results in this section is contained in Box 6.7.

6.3.1 Retarded Green’s function

The central tool to integrate Eq. (6.63) is the retarded Green’s function G(x, x ′), a solution
to

�G(x, x ′) = −4πδ(x − x ′) = −4πδ(ct − ct ′)δ(x − x′) , (6.65)

with the property that G(x, x ′) vanishes when x is in the past of x ′. As we show in Box 6.5,
the Green’s function is given explicitly by

G(x, x ′) = δ(ct − ct ′ − |x − x′|)
|x − x′| , (6.66)
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where

|x − x′| :=
√

(x − x ′)2 + (y − y′)2 + (z − z′)2 (6.67)

is the Euclidean distance between the field point x and the source point x′. Alternatively,
the Green’s function can be expressed as

G(x, x ′) = 2�(ct − ct ′) δ
[
(ct − ct ′)2 − |x − x′|2], (6.68)

in terms of the flat spacetime interval �s2 between x and x ′; here �(ct − ct ′) is the
Heaviside step function, which is equal to one when ct > ct ′ and zero when ct < ct ′.

Box 6.5 Green’s function for the wave equation

To construct a solution to Eq. (6.65) we write the Green’s function as the Fourier transform

G(x, x ′) = 1

2π

∫
G̃(k; x, x′)e−ik(ct−ct ′) dk, (1)

and we represent the time delta function as

δ(ct − ct ′) = 1

2π

∫
e−ik(ct−ct ′) dk.

Substituting these expressions into Green’s equation yields(∇2 + k2
)
G̃(k; x, x′) = −4πδ(x − x′). (2)

When k = 0 this equation reduces to Green’s equation for the Poisson equation, and from this comparison
we learn that G̃(0; x, x′) = |x − x′|−1.
We can anticipate that for k 	= 0, G̃ will be of the form

G̃(k; x, x′) = g(k, |x − x′|)
|x − x′| , (3)

with g representing a function that stays non-singular when the second argument, R := |x − x′|, ap-
proaches zero. That G̃ should depend on the spatial variables through R only can be justified on the grounds
that three-dimensional space is both homogeneous (so that G̃ can depend only on the vector R := x −
x′) and isotropic (so that only the length of the vector matters, and not its direction). That G̃ should behave
as 1/R when R is small is justified by the following discussion.
We take Eq. (2) and integrate both sides over a sphere of small radius ε centered at x′. Since∇2G̃ =

∇ · ∇G̃ , we can use Gauss’s theorem to get∮
R=ε

∇G̃ · d S + k2
∫

R<ε

G̃ d3x = −4π,

where d S is the surface element on the sphere. In this equation, the volume integral is of order G̃ε3 and it
contributes nothing in the limit ε → 0, unless G̃ happens to be as singular as 1/ε3. The surface integral,
on the other hand, is equal to

4πε2 dG̃

d R

∣∣∣∣
R=ε

.
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If G̃ were to behave as 1/ε3, then dG̃/d R would be of order 1/ε4, the surface integral would con-
tribute a term of order1/ε2, and the left-hand side could never give rise to the required−4π . We conclude
that G̃ cannot be so singular, and that the left-hand side is dominated by the surface integral. This implies
that G̃ must be of order 1/ε, as was anticipated in Eq. (3). Setting G̃ = g/R returns−4πg(k, ε) +
O(ε) for the surface integral, and this gives us the condition g(k, 0) = 1. We also recall that
g(0, R) = 1.
We may now safely take R 	= 0 and substitute Eq. (3) into Eq. (2), taking its right-hand side to be zero.

Since G̃ depends on x only through R, the Laplacian operator becomes

∇2 → 1

R2

d

d R
R2 d

d R
.

Acting with this on G̃ = g/R yields g′′/R and Eq. (2) becomes

g′′ + k2g = 0,

with a prime indicating differentiation with respect to R. With the boundary condition at R = 0 specified
previously, two linearly independent solutions to this equation are

g±(k, R) = e±ik R.

Substituting this into Eq. (3), and that into Eq. (1), we obtain

G±(x, x ′) = 1

2π

∫
e±ik R

R
e−ik(ct−ct ′) dk = 1

2π R

∫
e−ik(ct−ct ′∓R) dk,

or

G±(x, x ′) = δ
(
ct − ct ′ ∓ |x − x′|)

|x − x′| . (4)

The function G+(x, x ′), which is non-zero when ct − ct ′ = +R, is known as the retarded Green’s
function; the function G−(x, x ′), which is non-zero when ct − ct ′ = −R, is known as the
advanced Green’s function.
The retarded Green’s function can be expressed in the alternative form

G+(x, x ′) = 2�(ct − ct ′)δ
[
(ct − ct ′)2 − |x − x′|2]. (5)

The new argument of the delta function factorizes as (ct − ct ′ − R)(ct − ct ′ + R), and when
c(t − t ′) > 0 only the first factor may go through zero; the second factor is then equal to 2R, and the
delta function is distributionally equal to δ(ct − ct ′ − R)/(2R). At this stage the step function be-
comes redundant, because the delta function is active only when c(t − t ′) > 0, and we have reproduced
Eq. (4).
Similarly, the advanced Green’s function can be expressed as

G−(x, x ′) = 2�(ct ′ − ct)δ
[
(ct − ct ′)2 − |x − x′|2].
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In terms of the retarded Green’s function G(x, x ′), the solution to Eq. (6.63) is

ψ(x) =
∫

G(x, x ′)μ(x ′) d4x ′, (6.69)

where d4x ′ = d(ct ′)d3x ′. After substitution of Eq. (6.66) and integration over d(ct ′), this
becomes

ψ(t, x) =
∫

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′. (6.70)

This is the retarded solution to the wave equation, and the domain of integration extends
over C (x), the past light cone of the field point x = (ct, x).

6.3.2 Near zone and wave zone: slow-motion condition

In the following subsection the domain C (x) will be partitioned into a near-zone domain
N and a wave-zone domain W . Our task in this subsection is to introduce the important
notions of near and wave zones in the general context of the wave equation (6.63).

To do so we introduce the following scaling quantities:

tc := characteristic time scale of the source, (6.71a)

ωc := 2π

tc
= characteristic frequency of the source, (6.71b)

λc := 2πc

ωc
= ctc = characteristic wavelength of the radiation. (6.71c)

The characteristic time scale tc is the time required for noticeable changes to occur within
the source; it is defined such that ∂tμ is typically of order μ/tc over the support of the
source function. The characteristic frequency ωc and wavelength λc are derived directly
from tc. If, for example, μ oscillates with a frequency ω, then tc ∼ 2π/ω, ωc ∼ ω, and
λc ∼ 2πc/ω.

The near zone and the wave zone are defined as

near zone: r � λc = 2πc

ωc
= ctc, (6.72a)

wave zone: r � λc = 2πc

ωc
= ctc. (6.72b)

Thus, the near zone is the region of three-dimensional space in which r := |x| is small
compared with a characteristic wavelength λc, while the wave zone is the region in which
r is large compared with this length scale. As we can see from the example of Box 6.6, the
potential behaves very differently in the two zones: in the near zone the difference between
τ := t − r/c and t is small (the field retardation is unimportant), and time derivatives
are small compared with spatial derivatives; in the wave zone the difference between
τ = t − r/c and t is large, and time derivatives are comparable to spatial derivatives. These
properties are shared by all generic solutions to the wave equation.
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Another important feature of the near zone concerns the quantity (r/c)∂tμ. This is of
order (r/c)(μ/tc), or (r/λc)μ, which is much smaller than μ. In the near zone, therefore,

r

c

∂μ

∂t
= O

( r

λc
μ
)

� μ. (6.73)

This states, simply, that the source retardation is unimportant within the near zone.
Thus far our considerations have been general, and our definitions of near and wave zones

apply whether the source function μ is extended over all space or confined to a bounded
region V . In addition, our definitions apply independently of the existence of a slow-motion
condition, to which we turn next.

When the source function μ has a piece μc with compact support, we can introduce the
additional scaling quantities

rc := characteristic length scale of the compact-support source, (6.74a)

vc := rc

tc
= characteristic velocity within the source. (6.74b)

The characteristic radius rc is defined such that μc vanishes outside a sphere of radius rc;
this part of μ has support only within this sphere. The characteristic velocity vc is defined
in terms of the scales rc and tc; it represents the speed with which changes in the source
propagate across the region of space occupied by the source. In the case of a fluid, for
example, vc would be associated with the speed of sound within the fluid. In a binary-star
system, vc would be associated with the orbital velocities of the stars.

A slow-motion condition is in effect when the characteristic velocity vc is small compared
with the speed of light:

vc � c (slow-motion condition). (6.75)

It then follows from Eq. (6.75) that

rc � λc (slow-motion condition); (6.76)

this equation states that μc is necessarily situated deep within the near zone when a slow-
motion condition is in effect.

Box 6.6 Dipole solution to the wave equation

We examine the solution to a specific version of Eq. (6.63),

ψ = ( p · n)

[
cos ω(t − r/c)

r2
− ω

c

sin ω(t − r/c)

r

]
,

which corresponds toμ = − p · ∇δ(x) cos ωt . Here p is a constant vector, r := |x|, n := x/r is
the unit radial vector, andω is an angular frequency. Physically speaking, this solution represents the scalar
potential of a dipole of constant direction p, oscillating in strength with a frequency f = ω/(2π); the
wavelength of the radiation produced by the oscillating dipole isλ = c/ f = 2πc/ω.
Our first observation is thatψ behaves very differently depending onwhetherr is small or large compared

with λ. When r � λ = 2πc/ω, the trigonometric functions can be expanded in powers ofωr/c, and
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the result is

ψ = ( p · n)
cos ωt

r2

[
1 + O

(
ω2r2

c2

)]
(near zone),

with a correction term that is quadratic in r/λ � 1. We observe also that in the near zone – the region
r � λ – the derivatives ofψ are related by

∂tψ

c|∇ψ | = O
(ωr

c

)
(near zone).

In the near zone, therefore, a time derivative is smaller than a spatial derivative (multiplied by c) by a factor
of order r/λ � 1.
When, on the other hand, r � λ = 2πc/ω, it is no longer appropriate to expand the trigonometric

functions, and the potential must be expressed as

ψ = −( p · n)
ω

c

sin ωτ

r

[
1 + O

(
c

ωr

)]
(wave zone),

in terms of the retarded-time variable τ := t − r/c; here the difference between τ and t is large, and the
correction term is linear in λ/r � 1. We observe also that in the wave zone – the region r � λ – the
derivatives ofψ are related by

∂tψ

c|∇ψ | = O(1) (wave zone).

To obtain this result we have used the fact that the spatial dependence contained in n and r−1 produces a
spatial derivative of fractional order λ/r , while the spatial dependence contained in τ = t − r/c pro-
duces a spatial derivative of order unity. In the wave zone, therefore, a time derivative has the same order of
magnitude as a spatial derivative (multiplied by c).

6.3.3 Integration domains

The integral of Eq. (6.70) extends over the past light cone C (x) of the field point x . To
evaluate the integral we partition C (x) into two pieces, the near-zone domain N (x) and
the wave-zone domain W (x). We place the boundary of the near and wave zones at an
arbitrarily selected radius R, with R imagined to be of the same order of magnitude as λc,
the characteristic wavelength of the radiation emitted by μ. The near zone is then imagined
as a three-dimensional ball of radius R that traces out a world tube D in spacetime. We let
N (x) be the part of C (x) where r ′ := |x′| < R, and we let W (x) be the part of C (x) where
r ′ > R. The near-zone and wave-zone domains join together to form the complete light
cone of the field point x : N (x) + W (x) = C (x). The domains are illustrated in Fig. 6.1.

We write Eq. (6.70) as

ψ(x) = ψN (x) + ψW (x), (6.77)
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x

(x)

(x)

(x)

Fig. 6.1 Integration domains for the retarded solution of the wave equation:C (x) is the past light cone of the field point x;D
is the world tube traced by a three-dimensional ball of radiusR, which contains the near-zone region of spacetime;
N (x) is the intersection ofC (x) with the near zone; andW (x) is the remaining piece of the light cone.

where

ψN (x) =
∫

N
G(x, x ′)μ(x ′) d4x ′ (6.78)

is the near-zone portion of the light-cone integral, while

ψW (x) =
∫

W
G(x, x ′)μ(x ′) d4x ′ (6.79)

is the wave-zone portion. Methods to evaluate ψN and ψW will be developed in the follow-
ing two subsections. It is an important fact that while ψN and ψW will individually depend
on the cutoff parameterR, their sum ψ = ψN + ψW will necessarily be independent ofR.
The R-dependence of ψN and ψW is therefore unimportant, and it can freely be ignored.
This observation will serve as a helpful simplifying tool in many subsequent computations.

6.3.4 Integration over the near zone

In this subsection we develop methods to evaluate

ψN (x) =
∫

N

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′, (6.80)

the near-zone contribution to the complete solution ψ = ψN + ψW to the wave equation.
We recall that the domain of integration N is the intersection between C (x), the past light
cone of the field point x , and the near zone r ′ < R.
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Wave-zone field point

We first evaluate Eq. (6.80) when x is situated in the wave zone, that is, when r > R. For
this purpose we introduce a modified integrand,

μ(t − |x − x′|/c, x′)
|x − x′| =

∫
μ(t − |x − x′|/c, y)

|x − x′| δ( y − x′) d3 y

=:
∫

g(x, x′, y)δ( y − x′) d3 y , (6.81)

in which we can treat x′ and y as independent variables. Knowing that x′ lies within the
near zone, we treat it as a small vector, and express g as a Taylor expansion about x′ = 0.
Keeping just a few terms in this expansion, we have

g(x, x′, y) = g(x, 0, y) + ∂g

∂x ′ j
x ′ j + 1

2

∂2g

∂x ′ j x ′k x ′ j x ′k + · · · , (6.82)

in which all derivatives are evaluated at x′ = 0. But ∂g/∂x ′ j = −∂g/∂x j because g depends
on x′ only through the combination |x − x′|, and our Taylor expansion can be expressed as

g(x, x′, y) = g(x, 0, y) − ∂g

∂x j
x ′ j + 1

2

∂2g

∂x j xk
x ′ j x ′k + · · · (6.83)

The derivatives of g are still evaluated at x′ = 0, but because the differentiation is now
carried out with respect to x, we can set x′ = 0 in g before taking the derivatives. Observing
that g then becomes a function of |x| = r only, we have

g(x, x′, y) = g(r, 0, y) − ∂g(r, 0, y)

∂x j
x ′ j + 1

2

∂2g(r, 0, y)

∂x j xk
x ′ j x ′k + · · · (6.84)

Keeping all terms of the Taylor expansion, this is

g(x, x′, y) =
∞∑

�=0

(−1)�

�!
x ′L∂L g(r, 0, y), (6.85)

where L := j1 j2 · · · j� is a multi-index of the sort introduced back in Sec. 1.5.3. More
explicitly, we have established the identity

μ(t − |x − x′|/c, y)

|x − x′| =
∞∑

�=0

(−1)�

�!
x ′L∂L

μ(t − r/c, y)

r
. (6.86)

The dependence of μ/r on the variables x j is contained entirely within r .
Inserting this within Eq. (6.81) to restore y = x′, and substituting the result into

Eq. (6.80), we arrive at

ψN (t, x) =
∞∑

�=0

(−1)�

�!
∂L

[
1

r

∫
M

μ(τ, x′)x ′L d3x ′
]
, (6.87)

where

τ := t − r/c (6.88)
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x

Fig. 6.2 Near-zone integration, wave-zone field point. The domainM is a surface of constant time bounded externally by the
sphere r′ = R.

is a retarded-time variable. Note that the temporal dependence of the source function no
longer involves x′, the variable of integration. The domain of integration has therefore
become a surface of constant time (the constant being equal to τ ) bounded externally by
the sphere r ′ = R. This domain is denoted M in Eq. (6.87), and is illustrated in Fig. 6.2.

Equation (6.87) is valid everywhere within the wave zone. It simplifies when r → ∞,
that is, when ψN is evaluated in the far-away wave zone. In this limit we retain only the
dominant, r−1 term in ψN , and we approximate Eq. (6.87) by

ψN = 1

r

∞∑
�=0

(−1)�

�!

∫
M

∂Lμ(τ, x′)x ′L d3x ′ + O(r−2). (6.89)

The dependence of μ on x j is contained in τ , so that ∂ j μ = −c−1μ(1)∂ j r = −c−1μ(1)n j ,
in which μ(1) denotes the first derivative of μ with respect to τ . We used the fact that

∂ j r = n j , (6.90)

where n j = x j /r is the unit radial vector. Invoking this result once more, we find that
∂ jkμ = c−2μ(2)n j nk + O(r−1), and continuing along these lines reveals that in general,
∂Lμ = (−1)�c−�μ(�)nL + O(r−1). Inserting this into our previous expression for ψN , we
find that Eq. (6.87) becomes

ψN (t, x) = 1

r

∞∑
�=0

1

�!c�
nL

(
d

dτ

)� ∫
M

μ(τ, x′)x ′L d3x ′ + O(r−2) (6.91)
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x

Fig. 6.3 Near-zone integration, near-zone field point.

in the far-away wave zone. This is a multipole expansion for the potential ψN , in which
each �-pole moment

∫
M μx L d3x is differentiated �-times with respect to τ . Note that

nL x ′L = n j1 n j2 · · · n j� x ′ j1 x ′ j2 · · · x ′ j� = (n · x′)�.

Near-zone field point

We next evaluate Eq. (6.80) when x is situated in the near zone, that is, when r = |x| < R.
In this situation, both x and x′ lie within the near zone, and |x − x′| can be treated as a
small quantity. To evaluate the integral we simply Taylor-expand the time-dependence of
the source function,

μ(t − |x − x′|/c) = μ(t) − 1

c

∂μ

∂t
|x − x′| + 1

2c2

∂2μ

∂t2
|x − x′|2 + · · · ,

in which all derivatives are evaluated at time t . Substituting this expansion into Eq. (6.80)
produces

ψN (t, x) =
∞∑

�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

μ(t, x′)|x − x′|�−1 d3x ′, (6.92)

which is valid everywhere within the near zone. Note that once more the domain of
integration is M , a surface of constant time bounded externally by the sphere r ′ = R; here,
however, the integral is evaluated at time t instead of at the retarded time τ . The geometry
is illustrated in Fig. 6.3.
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6.3.5 Integration over the wave zone

In this subsection we develop a method to evaluate

ψW (x) =
∫

W

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′, (6.93)

the wave-zone portion of the complete solution ψ = ψN + ψW to the wave equation. We
recall that the domain of integration W is the intersection between C (x), the past light cone
of the field point x , and the wave zone r ′ > R.

Before we proceed with the work, we pause and ask whether ψW (x) could be dispensed
with by taking the limit R → ∞, thereby achieving ψN → ψ and ψW → 0. The answer
is no: we cannot take R beyond its original value of order λc, and we cannot dispense with
ψW . The reason can be gleaned from Figs. 6.2 and 6.3: The difference between the domain
M and the light cone C (x) becomes increasingly large as R increases, and the Taylor
expansion for μ(t − |x − x′|/c) becomes increasingly inaccurate; the resulting expression
for ψN would then become increasingly unreliable as R increases beyond λc. This lesson
was hard learned. Early attempts to integrate the wave equation of post-Minkowskian theory
were indeed based on the limit R → ∞, with the expectation that ψN would make a good
approximation to ψ . Such attempts led to a host of divergent integrals that had to be argued
away or swept under the rug. While these methods could sometimes be teased to give correct
physical results, their mathematical justification left a lot to be desired. The decomposition
of ψ into near-zone and wave-zone pieces nicely overcomes all these difficulties.

Our method to integrate over W must reflect the nature of the integrand there, and the
fact that we are integrating over a null cone instead of a surface of constant time. For the
slow-motion systems that we will generally encounter, the compact-support piece of μ lies
deep within the near zone, and therefore vanishes on W . The extended piece survives, and it
is built from potentials that are themselves solutions to the wave equation. This implies that
for a given integration point (ct ′, x′) on W , μnc is predominantly a function of t ′ − r ′/c.
Integration over the light cone is therefore facilitated by adopting retarded time as a variable
of integration. The strategy is therefore this: express the integral of Eq. (6.93) in terms of
the spherical coordinates (r ′, θ ′, φ′), and then switch variables from r ′ to u′ := ct ′ − r ′ in
order to perform the integration.

The strategy lends itself to a nice geometrical representation (see Fig. 6.4). A surface
u′ = constant is a future-directed null cone F that emanates from r ′ = 0. It intersects
C (x) on a two-dimensional surface S (u′) parameterized by the angular variables θ ′ and
φ′. Integration on C (x) can therefore be achieved by integrating over S (u′) and adding the
contributions from each relevant F . Integrating on S (u′) amounts to varying θ ′ and φ′

over their allowed range, and the integration over C (x) is completed by varying u′, which
ranges from u′ = −∞ to u′ = u := ct − r ; the final value of u′ corresponds to a future null
cone that is tangent to C (x), emanating from the spacetime event at which r ′ = 0 crosses
C (x).

To make these ideas explicit, we first provide a mathematical expression for S (u′).
Because ct ′ = ct − |x − x′| on C (x) and ct ′ = u′ + r ′ on F , we find that it is described
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x

S (u′)

r′ = 0

F

C (x)

Fig. 6.4 Geometrical representation of the wave-zone integrations.C (x) is the past light cone of the field point x.F is the
future light cone u′ = ct′ − r′ = constant with apex at r′ = 0.S (u′) is the two-dimensional surface of
intersection between the past and future light cones.

by

u′ = ct − r ′ − |x − x′| , (6.94)

in which u′ and t are constant. The equation can be solved for r ′ expressed as a function of
θ ′ and φ′:

r ′(u′, θ ′, φ′) = (ct − u′)2 − r2

2(ct − u′ − n′ · x)
, (6.95)

where n′ := x′/r ′. We next return to Eq. (6.93) and change variables from r ′ to u′, using

∂u′

∂r ′ = n′ · ∇′u′ = u′ − ct + n′ · x

|x − x′| . (6.96)

This yields

ψW =
∫ u

−∞
du′

∮
S (u′)

μ((u′ + r ′)/c, x′)
ct − u′ − n′ · x

r ′(u′, θ ′, φ′)2 d
′ , (6.97)

our new starting expression to calculate the wave-zone contribution to the potential ψ(x).
To proceed it will be necessary to restrict our attention to source functions of the form

μ(x ′) = 1

4π

f (τ ′)
r ′n n′〈L〉, (6.98)
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where f is an arbitrary function of τ ′ = t ′ − r ′/c, n is an arbitrary integer, and n′〈L〉 is an
STF product of � radial vectors n′ j = x ′ j /r ′; these angular tensors were introduced back in
Sec. 1.5.3, and we recall that they are closely related to the spherical-harmonic functions
Ylm(θ ′, φ′). Fortunately, the restriction imposed here is not too severe from a practical point
of view: All source functions to be inserted in wave-zone integrals in this book will be
superpositions of the irreducible forms displayed in Eq. (6.98).

Substituting Eq. (6.98) into Eq. (6.97), we obtain

ψW = 1

4π

∫ u

−∞
du′ f (u′/c)

∮
S (u′)

n′〈L〉

r ′(u′, θ ′, φ′)n−2

d
′

ct − u′ − n′ · x
. (6.99)

The angular integration can be simplified by orienting the coordinate axes so that the
selected field point x is aligned with the z-direction, so that n = ez ; this specific choice
will be undone at the end of our computation. We make use of Eq. (1.164),

n′〈L〉 = N�

�∑
m=−�

Y 〈L〉
�m Y�m(θ ′, φ′), (6.100)

where N� := 4π�!/(2� + 1)!!, integrate over dφ′, and observe that since the rest of the
integrand is independent of φ′, the only surviving term in the sum is m = 0. Insert-
ing now Y�0 = [(2� + 1)/4π ]1/2 P�(cos θ ′) and Y 〈L〉

�0 = [4π/(2� + 1)]1/2 N−1
� e〈L〉

z within the
integral, we obtain

ψW = 1

2
n〈L〉

∫ u

−∞
du′ f (u′/c)

∫
S (u′)

P�(ξ )

r ′(u′, ξ )n−2(ct − u′ − rξ )
dξ , (6.101)

in which ξ := cos θ ′ and

r ′(u′, ξ ) := r ′(u′, θ ′, 0) = (ct − u′)2 − r2

2(ct − u′ − rξ )
. (6.102)

Switching integration variables from ξ back to r ′, using the fact that ∂ξ/∂r ′ = (ct − u′ −
rξ )/rr ′, we recast ψW in the elegant form

ψW = n〈L〉

2r

∫ u

−∞
du′ f (u′/c)

∫
S (u′)

P�(ξ )

r ′(n−1)
dr ′ , (6.103)

in which ξ is now the function of r ′ determined by Eq. (6.102); an explicit expression will
be provided below. We observe that the angular dependence of ψW is contained in the factor
n〈L〉, with n previously chosen to be aligned with the z-direction. But since the remaining
integral is now independent of all angles, the orientation of the coordinate axes has become
irrelevant, and the special choice n = ez immaterial; we may now take n to the point in
the arbitrary direction specified by the polar angles θ and φ. The potential ψW has thus
become a function of (t, r, θ, φ), with the dependence on t contained within u = ct − r .

To complete the wave-zone integration we must now give an explicit description of the
closed surface S (u′), and specify the limits of the integral over dr ′ so as to exclude the
near zone from the domain of integration. The specific limits depend on whether the field
point is in the near zone or in the wave zone.
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x

S (u′)

x

S (u′)A′

B′

x

S (u′)
A B

Fig. 6.5 Integration over the domainW (x), for a field point x in the wave zone, is carried out over each intersection surface
S (u′) in a sequence of future null cones u′ = constant. The left panel corresponds to u′ < u − 2R; the
integration runs from ξ = −1 (pointA) to ξ = 1 (pointB). The center panel corresponds to u′ > u − 2R; the
intersectionS (u′) terminates atA′, the boundary of the near zoneN . The right panel corresponds to u′ = u; the
cones are tangent, andS (u′) runs from the edge of the near zone to x.

Wave-zone field point

To begin we assume that the field point x is situated in the wave zone, so that r > R.
We recall that S (u′) is the intersection between the past null cone C (x) and the future
null cone u′ = constant. From Fig. 6.5 we see that when u′ < u − 2R, S (u′) does not
encounter the boundary of the near zone, and in this case ξ ranges from ξ = −1, at which
r ′ = 1

2 (ct − u′ − r ) = 1
2 (u − u′), to ξ = 1, at which r ′ = 1

2 (ct − u′ + r ) = 1
2 (u − u′) + r ;

these limits correspond to the events A and B in the left panel of Fig. 6.5. When u − 2R ≤
u′ ≤ u we see that S (u′) runs into the boundary of the near zone, and in this case the
lower bound on r ′ must be r ′ = R, with the corresponding value of ξ > −1 obtained from
Eq. (6.102); the upper bound on r ′ is still 1

2 (u − u′) + r , and these limits correspond to
events A′ and B′ in the center panel of Fig. 6.5. The integration terminates when u′ = u,
as depicted on the right panel.

Defining s := 1
2 (u − u′) and the functions

A(s, r ) :=
∫ r+s

R

P�(ξ )

r ′(n−1)
dr ′ , (6.104a)

B(s, r ) :=
∫ r+s

s

P�(ξ )

r ′(n−1)
dr ′ , (6.104b)

we obtain the final expression

ψW (t, r, θ, φ) = n〈L〉

r

{∫ R

0
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
(6.105)

for the wave-zone contribution to the potential ψ(x), when x is situated in the wave zone.
The quantity ξ that appears in A and B is determined by Eq. (6.102), in which we insert
the definitions u = ct − r and s = 1

2 (u − u′); this yields

ξ = r + 2s

r
− 2s(r + s)

rr ′ , (6.106)

with ξ = 1 when r ′ = r + s and ξ = −1 when r ′ = s.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-06 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:40

322 Post-Minkowskian theory: Formulation

x

S (u′)

x

S (u′)
B′

A′

B″
x

BA

Fig. 6.6 Integration over the domainW (x), for a field point x in the near zone. The left panel corresponds to u′ < u − 2R;
the integration runs from ξ = −1 (pointA) to ξ = 1 (pointB). The center panel corresponds to u′ > u − 2R;
the intersectionS (u′) terminates atA′, the boundary of the near zoneN . The right panel corresponds to
u′ = u − 2R + 2r; the future cone intersects the past cone at ξ = 1 (pointB′′) at the edge of the near zone.

Near-zone field point

We next take the field point x to be situated in the near zone, so that r < R. In this case we
find again that when u′ < u − 2R, S (u′) does not encounter the near zone and ξ ranges
from −1 to +1 (represented by the points A and B in the left panel of Fig. 6.6). When
u′ > u − 2R, the integration runs from point A′ in the center panel of Fig. 6.6, at which
r ′ = R, to point B ′, at which ξ = 1. But there is now a maximum value of u′ at which
the future null cone intersects C (x) at ξ = 1 (point B′′ in the right panel), corresponding
to u′ = u − 2R + 2r ; here the integration terminates. In this case, the minimum value of
s := 1

2 (u − u′) is R − r , and we obtain the expression

ψW (t, r, θ, φ) = n〈L〉

r

{∫ R

R−r
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
(6.107)

for the wave-zone contribution to the potential ψ(x), when x is situated in the near zone.
The functions A(s, r ) and B(s, r ) are again given by Eq. (6.104), and ξ is still given by
Eq. (6.106).

Equation (6.105) is a concrete expression for the ψW (x) of Eq. (6.93) when the field
point x is in the wave zone, and Eq. (6.107) is the corresponding expression when x is in the
near zone. In both cases the source function μ(x ′) takes the form displayed in Eq. (6.98),
with f (τ ′) describing its temporal behavior, r ′−n describing its radial profile, and n′〈L〉

describing its angular profile. Note that ψW (x) depends on the entire past history of the
system, because f must be evaluated at retarded times τ − 2s/c all the way back to −∞.
This is a direct consequence of the fact that the source μ is not bounded by the near zone,
and is generated by retarded fields that are themselves solutions to the wave equation. In
post-Minkowskian theory, this feature is a consequence of the non-linearity of the Einstein
field equations, which imply that the gravitational field itself generates gravity. While it
may seem like a daunting task to evaluate the integrals of Eqs. (6.105) and (6.107), we
shall find that they can be evaluated relatively easily for many interesting situations, with
physically reasonable assumptions about the past behavior to ensure convergence.
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Estimates

It is instructive to give crude estimates to the integrals of Eqs. (6.105) and (6.107). Suppose
first that we wish to evaluate Eq. (6.105) in the far-away wave zone, and keep only its
dominant, r−1 part. Taking P�(ξ ) to be of order unity, we approximate the functions defined
by Eqs. (6.104) as A ∼ ∫∞

R p−(n−1) dp ∼ R−(n−2) and B ∼ ∫∞
s p−(n−1) dp ∼ s−(n−2); we

ignore all numerical factors and exclude the special case n = 2. Inserting A into the first
integral of Eq. (6.105) yields R−(n−2)

∫ R
0 f (τ − 2s/c) ds. Taking R to be small, we Taylor-

expand f (τ − 2s/c) about s = 0 and integrate term by term. A typical term in the expansion
is

Rq+1

cqRn−2
f (q)(τ ),

where the superscript (q) indicates the number of derivatives with respect to τ . As was
motivated in the paragraph that follows Eq. (6.79), we are interested in the R-independent
part of ψW . In order to extract this from our previous expansion, we retain the term q =
n − 3 and discard all others. An estimate for the first integral is therefore c−(n−3) f (n−3)(τ ).
We next substitute B into the second integral of Eq. (6.105) and obtain

∫∞
R s−(n−2) f (τ −

2s/c) ds. Assuming that f and all its derivatives vanish in the infinite past, repeated
integration by parts returns an expression of the form

f (τ − 2R/c)

Rn−3
+ f (1)(τ − 2R/c)

cRn−4
+ f (2)(τ − 2R/c)

c2Rn−5
+ · · ·

The R-independent part of this is easily seen to be of the form c−(n−3) f (n−3)(τ ), as we had
for the first integral. We conclude that a crude estimate for Eq. (6.105) is

ψW ∼ 1

cn−3

n〈L〉

r
f (n−3)(τ ) (far-away wave zone). (6.108)

The estimate ignores numerical factors, R-dependent terms, and terms that decay faster
than r−1.

This estimate leads us to expect that the contribution from the wave-zone integral will
be a small correction at any given iteration order of post-Minkowskian theory. First, the
source function f is built from the pseudotensors tαβ

LL and tαβ

H , which are quadratic in
hαβ and therefore much smaller than the potentials themselves. Second, depending on n,
the power with which the source falls off with r−1, there will be additional time deriva-
tives acting on f , generating additional powers of vc/c. Accordingly, in many cases we
will be able to ignore the contributions of the wave-zone integrals. But even when we
are required to calculate those contributions, we will be able to do so using only the
leading-order contributions to f . We will see a specific example of such a calculation in
Sec. 7.4.
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Suppose next that we wish to evaluate Eq. (6.107) deep within the near zone, for r � R.
Here the first integral of Eq. (6.107) is approximated as

∫ R
R−r ds f (τ − 2s/c)A(s, r ) ∼

r f (τ − 2R/c)A(R, r ), with A(R, r ) ∼ ∫ r+R
R p−(n−1) dp ∼ rR−(n−1). This produces the

estimate

r2

Rn−1
f (τ − 2R/c)

for the first integral, and the R-independent part of this is c−(n−1)r2 f (n−1)(τ ). The second
integral of Eq. (6.107) involves the domain of integration R < s < ∞. Because s is large
compared with r , we have the estimate B ∼ ∫ r+s

s p−(n−1) dp ∼ rs−(n−1). Inserting this
inside the integral gives r

∫∞
R s−(n−1) f (τ − 2s/c) ds, and repeated integration by parts

returns an expression of the form

r f (τ − 2R/c)

Rn−2
+ r f (1)(τ − 2R/c)

cRn−3
+ r f (2)(τ − 2R/c)

c2Rn−4
+ · · ·

The R-independent part of this is of the form c−(n−2)r f (n−2)(τ ). Collecting results, we
conclude that a crude estimate for Eq. (6.107) is

ψW ∼ 1

cn−2
n〈L〉

[
f (n−2)(τ ) + cr f (n−1)(τ )

]
(near zone). (6.109)

The estimate ignores numerical factors and all R-dependent terms. In Sec. 7.3.4 we will
learn that these contributions can be completely ignored for all our purposes in this book.

The case n = 2, for which μ falls off as r−2, is special because the functions A and B
are now logarithmic in R and s, and thus cannot be handled by our simple power-counting
methods. We shall see that such terms are important in post-Minkowskian theory, and
generate what are known as gravitational-wave “tails.” We perform these computations,
and describe these effects, in Chapter 11.

Box 6.7 Solution to the wave equation

The solution to the wave equation�ψ = −4πμ can be decomposed as

ψ = ψN + ψW ,

whereψN is the near-zone portion of the integral over the past light-coneC (x) of the field-point x , while
ψW is the wave-zone portion. The boundary between the near and wave zones is placed at r ′ = R =
O(λc), whereλc is a characteristic wavelength of the radiation.
When the field point x = (ct, x) is in the wave zone,

ψN (x) =
∞∑

�=0

(−1)�

�!
∂L

[
1

r

∫
M

μ(τ, x′)x ′L d3x ′
]

,

ψW (x) = n〈L〉

r

{∫ R

0
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
.
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And when x is in the near zone,

ψN (x) =
∞∑

�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

μ(t, x′)|x − x′|�−1 d3x ′,

ψW (x) = n〈L〉

r

{∫ R

R−r
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
.

Here τ := t − r/c is retarded time,M is a surface of constant time bounded externally by the sphere
r ′ = R, and L is a multi-index that contains a number � of individual spatial indices. For ψW we have
assumed that the source functionμ is of the specific form

μ(x) = 1

4π

f (τ )

rn
n〈L〉,

in which n = x/r , and we have defined

A(s, r ) :=
∫ r+s

R

P�(ξ )

r ′(n−1)
dr ′ , B(s, r ) :=

∫ r+s

s

P�(ξ )

r ′(n−1)
dr ′ ,

where ξ = (r + 2s)/r − 2s(r + s)/(rr ′).

6.4 Bibliographical notes

The formulation of the Einstein field equations detailed in Sec. 6.1 was first proposed by
Landau and Lifshitz in their classic textbook The Classical Theory of Fields, now available
in a fourth English edition (2000). Rigorous definitions for the total mass, momentum, and
angular momentum of an asymptotically-flat spacetime were provided in a sequence of
papers by Arnowitt, Deser, and Misner; their work is based on Hamiltonian methods, and
is conveniently summarized in their 1962 review article.

The relaxation of the Einstein field equations described in Sec. 6.2 has become a standard
tool of the field. The idea originated in Havas and Goldberg (1962), and it is beautifully
summarized in Ehlers et al. (1976); another useful reference is Walker and Will (1980). The
curved-spacetime formulation of the relaxed field equations in Box 6.3 was first proposed
by Thorne and Kovacs (1975).

The mathematical methods introduced in Sec. 6.3 to integrate the wave equation when the
source is extended over all space were first devised by Wiseman and Will (1991). They form
the core of the DIRE approach (Direct Integration of the Relaxed Einstein equations) to post-
Minkowskian theory, initiated by Will and Wiseman (1996) and developed systematically
by Pati and Will (2000 and 2001). An alternative approach, based on a formal multipolar
expansion of the potential outside the source, was pursued by Blanchet, Damour, Iyer, and
their collaborators; this work is nicely summarized in Blanchet’s Living Reviews article
(2006).
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6.5 Exercises

6.1 Show that gαβ = √−g gαβ , where gαβ is the matrix inverse to gαβ , and g = det[gαβ] =
g. If we define gαβ := ηαβ − hαβ , and hαβ is of order G, show that

(−g) = 1 − h + 1

2
h2 − 1

2
hμνhμν + O(G3) ,

gαβ = ηαβ + hαβ − 1

2
hηαβ + hαμhμ

β − 1

2
hhαβ

+
(

1

8
h2 − 1

4
hμνhμν

)
ηαβ + O(G3) ,

where indices on hαβ are lowered and contracted with the Minkowski metric.

6.2 Show that under the coordinate transformation x ′μ = f μ(xα),

gμ′ν ′ = J−1∂α f μ∂β f νgαβ ,

∂ν ′gμ′ν ′ =
√

−g′ �g f μ(xα) ,

where J := det[∂ f μ/∂xα] is the Jacobian of the transformation, and where for any
scalar function f , �g f = (−g)−1/2∂β(gαβ∂α f ).

6.3 Consider the Schwarzschild metric in harmonic coordinates, given by Eqs. (5.171).
Show explicitly that

g00 = − (1 + R/2r )3

1 − R/2r
,

g jk = δ jk −
(

R

2r

)2

n j nk ,

where R := 2G M/c2, and verify that the harmonic gauge condition ∂βg
αβ = 0 is

satisfied.

6.4 Consider the potentials hαβ for a stationary source (∂0hαβ = 0), in harmonic gauge.
Show that the conserved quantities for the spacetime can be written in terms of the
following surface integrals at infinity:

M = − c2

16πG

∮
∞

r2 ∂h00

∂r
d
 ,

P j = − c3

16πG

∮
∞

r2 ∂h0 j

∂r
d
 ,

J jk = − c3

16πG

∮
∞

r2 ∂

∂r

(
x j h0k − xkh0 j

)
d
 ,

R j = − c2

16πG M

∮
∞

r4 ∂

∂r

(
x j h00

r2

)
d
 ,

where d
 = sin θ dθdφ is the element of solid angle.
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6.5 Consider the stationary metric given by

ds2 = −
(

1 − R

r

)
d(ct)2 − 4GS

c2r
sin2 θ dφdt

+
(

1 + R

r

) (
dr2 + r2 dθ2 + r2 sin2 θ dφ2

)
,

which is accurate to first order in G in a post-Minkowskian expansion; here R =
2G M/c2 and S is a constant.
(a) Working to first order in G, find gαβ and verify that it is in the harmonic gauge.
(b) Using the surface integral formulation, find the mass, momentum, and angular

momentum for this spacetime.

6.6 Using surface integrals, find the center-of-mass position of a spacetime for which

h00 = 4G M

c2|x − a| ,

where a is a constant vector.

6.7 Verify that the harmonic energy-momentum pseudotensor is conserved, so that
∂β[(−g)tαβ

H ] = 0.

6.8 Using the techniques of Sec. 6.3, find the solution to the wave equation �ψ = −4πμ

when μ = − p · ∇δ(x) cos ωt , with p a constant vector. First take x to be in the wave
zone, and find the solution there; then take x to be in the near zone. For the wave-zone
expression, show that the sum over � truncates. For the near-zone expression, show
that the sum does not truncate. Compare your results with those of Box 6.6. Can you
reconcile your results with the exact solution?

6.9 Using the techniques of Sec. 6.3, find the solution to the wave equation �ψ = −4πμ

when μ is equal to μ0(r/r0)4 for r < r0, and to μ0(r0/r )4 for r > r0. You may take
r0 to be smaller than R. You should find that

ψ = 4πμ0r2
0

[
2

3
− 1

42

( r

r0

)6
]

for r < r0, and

ψ = 4πμ0
r3

0

r

(
8

7
− r0

2r

)
when r > r0. Observe that while ψN and ψW both depend on R, the final outcome
for ψ is independent of R.
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7 Post-Minkowskian theory: Implementation

The theory was formulated in Chapter 6, and now we must get our hands dirty with its
implementation. In this chapter we construct the second post-Minkowskian approximation
to the metric of a curved spacetime produced by a bounded distribution of matter. For
concreteness we choose the matter to consist of a perfect fluid. Our treatment allows the
fluid to be of one piece (in the case of a single body), or broken down into a number of
disconnected components (in the case of an N -body system).

Although the post-Minkowskian approximation does not require slow motion, we shall
nevertheless assume that the fluid is subjected to a slow-motion condition of the sort de-
scribed in Sec. 6.3.2: if vc is a characteristic velocity within the fluid, we insist that vc/c � 1.
This amounts to incorporating a post-Newtonian expansion within the post-Minkowskian
approximation. We do this for two reasons. First, our ultimate goal is to describe situa-
tions of astrophysical interest, and the virial theorem implies that U ∼ v2 for any gravi-
tationally bound system; weak fields are naturally accompanied by slow motion. Second,
any attempt to keep the velocities arbitrary in the post-Minkowskian expansion quickly
leads to calculations that are unmanageable, and we prefer to avoid these complications
here.

We begin in Sec. 7.1 by assembling the required tools and exploring the general structure
of the gravitational potentials in the near and wave zones. In Sec. 7.2 we perform the first
iteration of the relaxed field equations, and the outcome of this calculation is used as input
in the second iteration, carried out in Sec. 7.3 for the near zone, and in Sec. 7.4 for the wave
zone. Our main results are summarized in Boxes 7.5 and 7.7.

Before we proceed it is perhaps useful to recall the main results of the preceding
chapter. We saw that in the Landau–Lifshitz formulation of general relativity, the Ein-
stein field equations take the form of a wave equation for the gravitational potentials
hαβ := ηαβ − √−ggαβ , together with the harmonic-gauge condition ∂βhαβ = 0; this is
formally equivalent to the conservation equation ∂βταβ = 0 for the effective energy-
momentum pseudotensor, which acts as the source term in the wave equation. Each post-
Minkowskian iteration of the wave equation gives rise to a new expression for the source,
which is inserted back into the wave equation for the next iteration. After each iteration
hαβ is expressed as an integral of the source over the past light cone of the field point
(t, x). Because the support of ταβ is not limited to the matter distribution, the domain of
integration covers the entire light cone, and it is decomposed into a near-zone domain N

and a wave-zone domain W ; the gravitational potentials are expressed as hαβ = hαβ

N + hαβ

W .
The boundary between the near and wave zones is placed at an arbitrary radius r = R,
with R chosen to be of the same order of magnitude as a characteristic wavelength of the

328



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

329 7.1 Assembling the tools

gravitational radiation; while hαβ

N and hαβ

W individually depend onR, their sum is guaranteed
to be independent of the cutoff radius, and this dependence can therefore be ignored.

And now onward with an explicit implementation of these ideas.

7.1 Assembling the tools

We begin by gathering the various tools, formulae, and assumptions that are required in
implementation of the post-Minkowskian expansion. Our discussion here will set the stage
for the various applications to come, to post-Newtonian theory (Chapters 8 to 10), to
gravitational waves (Chapter 11), and to gravitational radiation reaction (Chapter 12).

7.1.1 Fluid variables

A description of the laws of fluid mechanics in curved spacetime was presented in Sec. 5.3.
There we saw that the matter variables m that are relevant to a perfect fluid are the proper
mass density ρ, the proper internal energy density ε, the pressure p, and the velocity field
uα . The energy-momentum tensor of a perfect fluid is

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ . (7.1)

The fluid dynamics is subjected to two conservation statements, a conservation of rest-
mass expressed by ∇α(ρuα) = 0, and a conservation of energy-momentum expressed by
∇β T αβ = 0.

For our purposes it is convenient to employ a slightly different set of matter variables.
Noting that the components of uα are not all independent (because of the normalization
condition gαβuαuβ = −c2), we express the four-velocity field as

uα = γ (c, v) , (7.2)

in terms of a three-velocity field v and a factor γ := u0/c that can be determined in terms
of v by the normalization condition. Making the substitution within the equation of mass
conservation, we find that it can be expressed in the form

∂tρ
∗ + ∂ j (ρ

∗v j ) = 0 , (7.3)

in terms of a rescaled mass density defined by

ρ∗ := √−gγρ = √−g ρ u0/c . (7.4)

To arrive at Eq. (7.3) we made use of the divergence identity of Eq. (5.40). Finally, we shall
use � := ε/ρ instead of ε; this is the fluid’s internal energy per unit mass. Our final set of
matter variables is therefore

m := {ρ∗, p, �, v} , (7.5)

and all other fluid variables can be determined in terms of this set.
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The continuity equation (7.3) plays an important role in the description of a perfect
fluid. We observe that unlike ∇β T αβ = 0, which constrains the dynamics of the fluid, the
statement of mass conservation is entirely kinematical in nature. Equation (7.3) states
that the rest-mass of a fluid element does not change as we follow its motion within the
fluid; this is tantamount to defining what one means by the phrase “fluid element,” and the
statement is indeed a piece of the kinematical description of the fluid. This is quite distinct,
for example, from the statement of the first law of thermodynamics, d� − (p/ρ2) dρ = 0
(refer to Sec. 1.4.2), which is dynamical in nature.

We assume that the fluid is subjected to a slow-motion condition. Recalling the scaling
quantities introduced in Sec. 6.3.2, we have that rc is the radius of a sphere that surrounds
the matter distribution, tc is a characteristic time scale associated with the fluid motions,
vc = rc/tc is a characteristic velocity within the fluid, λc = ctc is a characteristic wavelength
of the gravitational radiation produced by the moving fluid, and mc is the characteristic mass
of the matter distribution. We demand that vc/c � 1, which implies that the fluid is situated
deep within the near zone: rc � λc.

The slow-motion condition gives rise to a hierarchy between the components of the
energy-momentum tensor. From Eq. (7.1) we have the approximate relations T 00 � ρ∗c2,
T 0 j � ρ∗v j c, and T jk � ρ∗v j vk + p δ jk , and these imply

T 0 j /T 00 ∼ vc/c , T jk/T 00 ∼ (vc/c)2 . (7.6)

A glance at Eq. (6.51) then reveals that this hierarchy is inherited by the gravitational
potentials:

h0 j /h00 ∼ vc/c , h jk/h00 ∼ (vc/c)2 . (7.7)

It is useful to express these relations more directly as

T 00 = O(c2) , T 0 j = O(c) , T jk = O(1) , (7.8)

and (taking into account the factor c−4 in the field equations)

h00 = O(c−2), h0 j = O(c−3), h jk = O(c−4), (7.9)

thereby introducing c−2 as a post-Newtonian expansion parameter. This notation serves as
a powerful mnemonic to judge the importance of various terms in a post-Newtonian expan-
sion. But it is a notational shortcut that must be used with care; it should be remembered, for
example, that a relation such as T jk = O(1) really stands for something more meaningful,
such as T jk/T 00 ∼ (vc/c)2.

7.1.2 General structure of the potentials: Near zone

Having introduced the matter variables, the slow-motion condition, and the post-Newtonian
hierarchy, we turn next to an examination of the general structure of the gravitational
potentials hαβ . These are determined by the relaxed field equations

�hαβ = −16πG

c4
ταβ, (7.10)
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in which

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
(7.11)

is the effective energy-momentum pseudotensor of Eq. (6.52). We decompose the potentials
as hαβ = hαβ

N + hαβ

W , and first examine them when the field point x is in the near zone,
where r := |x| < R.

Consulting Box 6.7, we see that hαβ

N can be expressed as the expansion

hαβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

ταβ(t, x′)|x − x′|�−1 d3x ′ , (7.12)

in which M is a surface of constant time bounded externally by r ′ := |x′| = R. The first
few terms are

hαβ

N (t, x) = 4G

c4

[∫
M

ταβ(t, x′)
|x − x′| d3x ′ − 1

c

d

dt

∫
M

ταβ(t, x′) d3x ′

+ 1

2c2

∂2

∂t2

∫
M

ταβ(t, x′)|x − x′| d3x ′

− 1

6c3

∂3

∂t3

∫
M

ταβ(t, x′)(r2 − 2x · x′ + r ′2) d3x ′ + · · ·
]

, (7.13)

and we see that each successive term comes with an additional factor of c−1, signifying that
it is smaller than the previous term by a factor of order vc/c � 1. This is our first encounter
with a post-Newtonian expansion in powers of c−2, with fractional orders assigned to odd
powers of c−1.

The expansion of Eq. (7.13) is a direct consequence of the relaxed field equations. It
simplifies when we take into account the conservation statement ∂βταβ = 0 for the energy-
momentum pseudotensor. When we examine the expansion for h00

N , for example, we note
that the second term is given by − ∫

M ∂0τ
00 d3x ′. The conservation statement allows us

to make the substitution ∂0τ
00 = −∂ j τ

0 j inside the integral, which can then, by Gauss’s
theorem, be converted to a surface integral over ∂M , the boundary of the region M ; this
is the surface r ′ = R. The surface integral would vanish if τ 0 j were confined to the near
zone, and in this case the expansion for h00

N would skip the term at order c−1. In general,
however, τ 0 j extends beyond the near zone, and the surface integral does not vanish. But
since τ 0 j is constructed from the potentials, the surface integral can be estimated and shown
to be of a very high order in the post-Newtonian expansion, well beyond any order that we
will encounter in this book. In practice, therefore, we can appeal to energy conservation
and eliminate the second term in the expansion for h00

N .
In fact, the conservation equations ∂βταβ = 0 can be put to good use to simplify and

organize many terms in the expansion of hαβ

N . Particularly useful are a number of identities
that follow from the conservation equations, namely,

τ 0 j = ∂0
(
τ 00x j

) + ∂k

(
τ 0k x j

)
, (7.14a)

τ jk = 1

2
∂00

(
τ 00x j xk

) + 1

2
∂p

(
2τ p( j xk) − ∂qτ pq x j xk

)
, (7.14b)

(continued overleaf)
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τ 0 j xk = 1

2
∂0
(
τ 00x j xk

) + τ 0[ j xk] + 1

2
∂p

(
τ 0px j xk

)
, (7.14c)

τ jk xn = 1

2
∂0
(
2τ 0( j xk)xn − τ 0n x j xk

)
+ 1

2
∂p

(
2τ p( j xk)xn − τ npx j xk

)
, (7.14d)

in which round and square brackets surrounding indices denote symmetrized and anti-
symmetrized combinations, respectively. Exploiting these identities, we find after some
manipulations that the various components of the gravitational potentials are now given by

h00
N = 4G

c2

{∫
M

c−2τ 00

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−2τ 00|x − x′| d3x ′

− 1

6c3

(3)

Ikk(t) + 1

24c4

∂4

∂t4

∫
M

c−2τ 00|x − x′|3 d3x ′

− 1

120c5

[
(4xk xl + 2r2δkl)

(5)

Ikl(t) − 4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
]

+ O(c−6)

}
+ h00[∂M ] , (7.15a)

h0 j
N = 4G

c3

{∫
M

c−1τ 0 j

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−1τ 0 j |x − x′| d3x ′

+ 1

18c3

[
3xk

(4)

I jk(t) −
(4)

I jkk(t) + 2εmjk
(3)

J mk(t)
]

+ O(c−4)

}
+ h0 j [∂M ] , (7.15b)

h jk
N = 4G

c4

{∫
M

τ jk

|x − x′| d3x ′ − 1

2c

(3)

I jk(t) + 1

2c2

∂2

∂t2

∫
M

τ jk |x − x′| d3x ′

− 1

36c3

[
3r2

(5)

I jk(t) − 2xm
(5)

I jkm(t) − 8xn εmn( j
(4)

J m|k)(t) + 6
(3)

M jkmm(t)
]

+ O(c−4)

}
+ h jk[∂M ] , (7.15c)

in which ταβ is expressed as a function of t and x′ inside the integrals, a number within
brackets placed above a symbol such as I jk indicates the number of differentiations with
respect to time, and hαβ[∂M ] denotes the collected surface terms generated during our ma-
nipulations of the integrals (the details will not be displayed here). We have also introduced
the following notation for the multipole moments of the source ταβ :

IL (t) :=
∫

M
c−2τ 00(t, x)x L d3x , (7.16a)

J j L (t) := ε jab

∫
M

c−1τ 0b(t, x)xaL d3x , (7.16b)

M jkL :=
∫

M
τ jk(t, x)x L d3x , (7.16c)
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in which L is a multi-index containing a number � of individual indices, so that AL :=
A j1 j2... j� and x L := x j1 x j2 . . . x j� .

There is a lot to take in with the expansions of Eq. (7.15), and we shall now take the time
to describe the structure of h00

N in some detail. We begin with the first term on the right-hand
side of Eq. (7.15a), and observe that it leads off at order c−2 with a Newtonian-like potential
associated with the mass density c−2τ 00 ∼ ρ∗. Embedded within this term are corrections
of order (vc/c)2 and higher that enter the detailed expression for τ 00, as well as corrections
of order G and higher that arise in previous iterations of the relaxed field equations. But
the leading contribution gives rise to Newtonian gravity.

The integral that appears in the second term in h00
N is known as a superpotential, because

the factor |x − x′| appears in the numerator instead of the denominator; as we shall see, a
superpotential is a potential sourced by another potential. Because of the time derivatives,
this term leads off at order c−2 relative to the Newtonian term, or at overall order c−4 in h00

N ;
it is a “first post-Newtonian correction,” or 1pn correction, to the gravitational potential. It
also contains higher-order corrections coming from higher-order terms in c−2τ 00, just as
we saw previously for the leading-order, Newtonian term. It is instructive to note that the
superpotential itself is of order mcr , but since each time derivative produces a factor of
t−1
c = vc/rc, its contribution to h00

N is a factor of order (vc/c)2 smaller than the Newtonian
potential when r is comparable to rc.

The third term in h00
N involves three time derivatives of Ikk(t), the trace of the mass

quadrupole moment. The factor of c−3 in front indicates that this term is a factor of or-
der (vc/c)3 smaller than the leading, Newtonian term, and therefore represents a 1.5pn

contribution to the gravitational potential. We will show below that since this term de-
pends on t only, it can always be absorbed into a redefinition of the time coordinate, and
therefore be removed by a coordinate transformation. This observation suggests that the
1.5pn term does not play a physical role, and we shall have occasion to show that such is
indeed the case. The expression for the 1.5pn term displayed in Eq. (7.15a) is derived in
Box 7.1.

The integral that appears in the fourth term in h00
N is sometimes called a superduper-

potential because of the presence of |x − x′|3 in the numerator; a superduperpotential is a
potential sourced by a superpotential. Because of the time derivatives, this term leads off at
order c−4 relative to the Newtonian term, and therefore represents a 2pn correction to the
gravitational potential.

We now examine the fifth set of terms. The first member of the set involves the mass
quadrupole moment differentiated five times with respect to time, and it scales as

r2
c

c5

1

t5
c

mcr
2
c = (vc/c)5 mc

rc
, (7.17)

which is a correction of order (vc/c)5 relative to the Newtonian term. The other members
have the same scaling, and this group of terms give rise to a 2.5pn correction to the
gravitational potential. Unlike the 1.5pn term, this group depends on the spatial coordinates
in addition to time, and it cannot be removed by a coordinate transformation. It gives rise
to real, physical effects on the system. The nature of these effects can be anticipated
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from the fact that the 2.5pn terms involve an odd number of time derivatives, and are
therefore antisymmetric under a time reflection t → −t ; this is in contrast with the 1pn

and 2pn terms, which are symmetric under the time reflection. This property is associated
with dissipative processes taking place within the system, representing a radiative loss
of energy to gravitational waves. The 2.5pn contributions to the gravitational potentials
are known as radiation-reaction potentials, and their effects will be explored in detail in
Chapter 12.

Turning next to the other components of the gravitational potentials, we observe that they
have a very similar structure. The component h0 j

N leads off at order c−3 with a Newtonian-
like potential sourced by the mass-current density c−1τ 0 j ∼ ρ∗v j . Comparing this with the
leading term in h00

N , we see that it is smaller by a factor of order vc/c, and it would be
tempting to assign a 0.5pn label to this term. As we shall see below, however, all effects
arising from h0 j

N will be the result of a coupling with other quantities that also scale as
vc/c; the result is a 1pn correction to the leading, Newtonian effect. Keeping this context in
mind, it is appropriate to reset the post-Newtonian counter and to declare that the leading
term in h0 j

N makes a 1pn contribution to the gravitational potentials. The expansion of h0 j
N

continues with a superpotential term at order c−5 which is assigned a 2pn label, and this is
followed by 2.5pn contributions. The absence of a term at order c−4 is a consequence of
momentum conservation; the manipulations that led to the disappearance of the c−3 term
in h00

N lead to the same conclusion here, and in both cases we see that these terms are
absorbed in the surface integrals hαβ[∂M ].

And finally, the components h jk
N lead off at order c−4 with a Newtonian-like potential

sourced by τ jk ∼ ρ∗v j vk ; this is smaller than the leading term in h00
N by a factor of order

(vc/c)2 and represents a 1pn contribution to the gravitational potentials. The next term,
involving a single time derivative, does not vanish; use of Eqs. (7.14c) and (7.14d) converts
it to three time derivatives of the mass quadrupole moment. This term represents a 1.5pn

contribution, and it is followed by a superpotential term at 2pn order, and a set of 2.5pn

contributions.
The potentials hαβ

N provide the near-zone portion of the light-cone integral giving hαβ

in terms of ταβ , and we have yet to examine the wave-zone portion hαβ

W . We recall from
Box. 6.7 that this can be expressed as

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

R−r
ds f αβ(τ − 2s/c)A(s, r )

+
∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
, (7.18)

when ταβ can be put in the specific form

ταβ = 1

4π

f αβ(τ )

rn
n〈L〉. (7.19)

Here τ = t − r/c is retarded time, n〈L〉 is an angular STF tensor of the sort introduced back
in Sec. 1.5.3, and the functions A(s, r ) and B(s, r ) are defined by Eq. (6.104). Although
restrictive, the expression of Eq. (7.18) is nevertheless useful because the wave-zone sources
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ταβ encountered below will always be decomposed in the elementary forms displayed in
Eq. (7.19); the complete hαβ

W can then be obtained by summing over these elementary
contributions.

Little more can be said about the general structure of hαβ

W in the near zone. The sources
f αβ vanish in the first iteration of the relaxed field equations, because we are instructed
to set hαβ = 0 in ταβ and the material source is confined to the near zone. In the second
and higher iterations, hαβ is no longer zero, and ταβ now extends into the wave zone; in
these cases we have no choice but to plow through the detailed calculations to see what
contribution hαβ

W might make. We encounter some of these calculations later in this chapter,
and then again in Chapter 11.

Box 7.1 Radiation-reaction terms in the potentials

To illustrate how the various radiation-reaction terms arise in the potentials, we examine the contribution

− 1

6c3

(
∂

∂t

)3 ∫
M

τ 00(t, x′)(r2 − 2x · x′ + r ′2) d3x ′

to h00
N ; this is the third line in Eq. (7.13). In the first term, r2 can be brought outside the inte-

gral, giving − 1
6 c−2r2∂2

t

∫
M ∂0τ

00 d3x ′ = 1
6 c−2r2∂2

t

∫
M ∂ jτ

0 j d3x ′, which becomes a sur-
face term, reflecting the fact that energy is conserved apart from a tiny flux of gravitational radiation.
In the second term, x can be brought outside the integral, giving 1

3 c−2x j∂2
t

∫
M ∂0τ

00x ′ j d3x ′ =
1
3 c−2x j∂2

t

∫
M τ 0 j d3x ′ plus a surface term. This yields− 1

3 c−1x j∂t

∫
M ∂kτ

k j d3x ′, which gives
another surface term. The elimination of this term reflects the conservation of momentum. The third term
survives, giving− 1

6 c−3
...
I kk as shown in Eq. (7.15a).

The next term in h00
N involving an odd number of time derivatives is

− 1

120c5

(
∂

∂t

)5 ∫
M

τ 00(t, x′)
[

r4 − 4r2x · x′ + 4(x · x′)2 + 2r2r ′2

− 4r ′2x · x′ + r ′4
]

d3x ′ .

The first two terms can be shown to become surface integrals by appealing to the conservation identities of
Eqs. (7.14), and the remaining four terms are displayed in Eq. (7.15a). Similar manipulations, albeit becoming
progressively more complicated, yield the corresponding terms displayed in Eqs. (7.15) for h0 j

N and h jk
N .

7.1.3 Near-zone metric

We will need to construct the spacetime metric gαβ from the gravitational potentials hαβ .
The link is provided by the gothic inverse metric gαβ = ηαβ − hαβ , which is related to the
inverse metric gαβ by gαβ = √−ggαβ . The inverse relation is gαβ = √−g gαβ , in which
gαβ is the matrix inverse to gαβ , and g := det[gαβ]. Given that hαβ is of order G, we can
solve these equations and obtain the metric and its inverse as post-Minkowskian expansions
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in powers of G, and express the results in terms of the potentials hαβ . We find

gαβ = ηαβ + hαβ − 1

2
hηαβ + hαμhμ

β − 1

2
hhαβ

+
(

1

8
h2 − 1

4
hμνhμν

)
ηαβ + O(G3), (7.20a)

gαβ = ηαβ − hαβ + 1

2
hηαβ − 1

2
hhαβ

+
(

1

8
h2 + 1

4
hμνhμν

)
ηαβ + O(G3), (7.20b)

(−g) = 1 − h + 1

2
h2 − 1

2
hμνhμν + O(G3), (7.20c)

√−g = 1 − 1

2
h + 1

8
h2 − 1

4
hμνhμν + O(G3). (7.20d)

It is understood that here, indices on hαβ are lowered with the Minkowski metric, so that
hαβ := ηαμηβνhμν and h := ημνhμν .

In practice, the construction of the metric from the potentials depends on the context,
which dictates the degree of accuracy required of each metric component. Suppose that we
are specifically interested in determining the geodesic motion of a slowly-moving particle
in the near zone of a weakly-curved spacetime. As we saw back in Sec. 5.2.3, the motion is
governed by a Lagrangian L given by

L = −mc

√
−gαβ

drα

dt

drβ

dt

= −mc2
√

−g00 − 2g0 j v j /c − g jkv j vk/c2, (7.21)

where rα = (ct, r) describes the particle’s position in spacetime, and v j = dr j /dt is its
three-dimensional velocity vector. Newtonian gravity is reproduced by inserting the approx-
imations g00 = −1 + 2U/c2 + O(c−4), g0 j = O(c−3), and g jk = δ jk + O(c−2) within the
Lagrangian, and expanding the square root to order c−2; this yields

L = −mc2 + 1

2
mv2 + mU + O(c−2), (7.22)

in which U is the Newtonian potential. The first term is an irrelevant constant, and we
indeed recognize 1

2 mv2 + mU as the Lagrangian of Newtonian gravity; the remaining
terms of order c−2 are 1pn corrections. This simple exercise teaches us that a contribution
of order c−2 to g00 is a Newtonian term, but that a term of order c−2 in g jk is actually a
post-Newtonian correction.

If we now want the post-Newtonian corrections to the motion, we must evaluate the
Lagrangian to order c−2, and this requires calculation of the metric to the following orders
of approximation:

O(c−4) for g00 ,

O(c−3) for g0 j ,

O(c−2) for g jk .
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In this case, a term of order c−4 in g00 gives rise to a post-Newtonian correction to the
Lagrangian. The same is true of a term of order c−3 in g0 j , because it multiplies v j /c in
the Lagrangian, making the combination a term of order c−4. And the same is also true of
a term of order c−2 in g jk , because it multiplies v j vk/c2 in the Lagrangian. Generalizing
the argument, we find that determination of the motion to npn order requires calculation of
the metric to the orders

O(c−2n−2) for g00 ,

O(c−2n−1) for g0 j ,

O(c−2n) for g jk ;

as usual the orders in c−1 descend because of the additional factors of v j /c in the Lagrangian.
Suppose next that we wish to determine the motion of a test body to 2.5pn order. The

previous discussion indicates that we need g00 to order c−7, g0 j to order c−6, and g jk to
order c−5. The metric is obtained from the potentials hαβ , and recalling from Eqs. (7.15)
that h00 leads off at order c−2, h0 j at order c−3, and h jk at order c−4, we find from Eq. (7.20)
that the appropriate expression is

g00 = −1 + 1

2
h00 − 3

8

(
h00

)2 + 5

16

(
h00

)3 + 1

2
hkk

(
1 − 1

2
h00

)
+ 1

2
h0 j h0 j

+ O(c−8) , (7.23a)

g0 j = −h0 j

(
1 − 1

2
h00

)
+ O(c−7) , (7.23b)

g jk = δ jk

[
1 + 1

2
h00 − 1

8

(
h00

)2
]

+ h jk − 1

2
δ jkhmm + O(c−6) , (7.23c)

(−g) = 1 + h00 − hkk + O(c−6) . (7.23d)

To arrive at these results we actually had to carry the expansion of Eq. (7.20) to the third
order in G, in order to capture the (h00)3 term in g00; this term is of order c−6, and it is
required for a complete expansion accurate through 2.5pn order.

Examining Eqs. (7.23), we begin to see how different orders in the post-Newtonian
expansion of hαβ contribute to the metric. Beginning with g00, we see from Eq. (7.15) that
h00 contributes at all orders, from Newtonian order (c−2) through 2.5pn order (c−7), that
h0 j contributes at 2pn order (c−6) only, and that h jk contributes at all orders beyond the
Newtonian order (c−4, c−5, c−6, and c−7). With g0 j we find that h00 contributes at 2pn order
(c−5) only, while h0 j contributes at 1pn, 2pn, and 2.5pn orders (c−3, c−5, and c−6). And
finally, with g jk we see that h00 contributes at 1pn, 2pn, and 2.5pn orders (c−2, c−4, and
c−5), while h jk contributes at 2pn and 2.5pn orders (c−4 and c−5).

We observe that each power of c−2 assigned to a contribution to gαβ translates to a
specific post-Newtonian order. The translation, however, depends on the context. When
the metric is examined in isolation, a term of order c−2 in g jk could be declared to be
of the same post-Newtonian order as a term of order c−2 in g00. But when the metric is
examined in the context of determining the motion of a slowly-moving particle, the c−2

term in g jk is appropriately declared to be a 1pn term, while the c−2 term in g00 is labeled
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as a Newtonian contribution. The translation is again different when the motion is highly
relativistic, with velocities v j approaching the speed of light. In this case the coupling of
the metric with powers of v j /c � 1 does not alter the post-Newtonian order, and a c−2 term
in g jk would again be declared to be a Newtonian contribution. Context is everything, and
it must be specified before a meaningful post-Newtonian order can be assigned to a given
expression.

Our considerations in this chapter, and the three chapters that follow, will be limited to
post-Newtonian gravity, in which corrections of 2pn order and higher are neglected. In this
1pn context our expansion for the metric can be truncated to

g00 = −1 + 1

2
h00 − 3

8

(
h00

)2 + 1

2
hkk + O(c−6) , (7.24a)

g0 j = −h0 j + O(c−5) , (7.24b)

g jk = δ j k

(
1 + 1

2
h00

)
+ O(c−4) , (7.24c)

(−g) = 1 + h00 + O(c−4) . (7.24d)

We return to the higher-order corrections in Chapter 12, when we study the effects of
gravitational reaction in the near zone. There we shall be interested in all 2.5pn terms in
the metric, those that scale as c−7 in g00, as c−6 in g0 j , and as c−5 in g jk . We shall see that
with suitable care, we can study these radiative effects independently of the 1pn or 2pn

influences.

7.1.4 General structure of the potentials: Wave zone

We proceed with an examination of the general structure of the gravitational potentials
when the field point x is in the wave zone, where r := |x| > R. Consulting Box 6.7 once
more, we see that we can express hαβ

N as the multipole expansion

hαβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�!
∂L

[
1

r

∫
M

ταβ(τ, x′)x ′L d3x ′
]

, (7.25)

in which τ := t − r/c is retarded time.
We first consider h00

N , and observe that the integral in Eq. (7.25) is just c2IL (τ ) as defined
by Eqs. (7.16); the multipole moments are now evaluated at retarded time τ instead of time
t . The first term (� = 0) in the series involves the monopole moment

M0 := I(τ ) =
∫

M
c−2τ 00(τ, x) d3x , (7.26)

and this represents the total mass contained within the near zone. Because of the conser-
vation equations, we know that its time derivative can be converted to a surface integral on
∂M , which can be shown to be small; the near-zone mass M0 is therefore constant to a
large degree of accuracy. The second term in the series involves

M0 R j
0 := I j (τ ) =

∫
M

c−2τ 00(τ, x)x j d3x , (7.27)
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where R j
0 is the center-of-mass position associated with the domain M . Its rate of change

is related to the near-zone momentum

P j
0 :=

∫
M

c−1τ 0 j (τ, x) d3x (7.28)

by the conservation statement

d

dτ

(
M0 R j

0

) = P j
0 + surface integral , (7.29)

and the momentum itself can be shown to satisfy

d P j
0

dτ
= 0 + surface integral . (7.30)

Because in each case the surface integral can be shown to be small, the total momentum
is conserved to a large degree of accuracy, and the center-of-mass moves according to
d(M0 R j

0 )/dτ = P j
0 . We may set P j

0 = 0 by working in the rest frame of the system, and set
R j

0 = 0 by placing the center-of-mass at the spatial origin of the harmonic coordinates; the
conservation equations ensure that R j

0 remains zero up to very small effects associated with
the radiation of linear momentum. Thus, h00

N consists of a static monopole piece plus time-
dependent terms involving the quadrupole moment I jk(τ ) and higher multipole moments.

Turning to h0 j
N , and making use of the conservation identities of Eqs. (7.14a) and

(7.14c), we can show that the � = 0 contribution to h0 j
N is of the form (4G/c3)r−1İ j

modulo surface terms; but since İ j = P j
0 + surface integral, we find that this vanishes by

virtue of our choice of reference frame. The � = 1 contribution involves
∫
M τ 0 j xk d3x ,

which according to Eq. (7.14c) can be converted to 1
2 (İ jk − εmjk J m

0 ), where

J m
0 := εmjk

∫
M

x j c−1τ 0k(τ, x) d3x (7.31)

is the angular momentum contained within the near zone. The conservation identities can
again be used to show that d J m

0 /dτ vanishes up to a surface integral, so that J0 is constant
except for a small radiative loss of angular momentum. Finally, looking at the � = 0 term in
h jk

N and using the identity of Eq. (7.14b), we find that we may convert it to (2G/c4)r−1Ï jk

modulo surface terms.
With these simplifications we obtain our final expression for hαβ

N in the wave zone:

h00
N = 4G M0

c2r
+ 4G

c2

∞∑
�=2

(−1)�

�!
∂L

[IL (τ )

r

]
, (7.32a)

h0 j
N = −2G

c3

(n × J0) j

r2
− 2G

c3
∂k

[ İ jk(τ )

r

]

+ 4G

c4

∞∑
�=2

(−1)�

�!
∂L

[
1

r

∫
M

τ 0 j (τ, x′)x ′L d3x ′
]

, (7.32b)

h jk
N = 2G

c4

Ï jk(τ )

r
+ 4G

c4

∞∑
�=1

(−1)�

�!
∂L

[
1

r

∫
M

τ jk(τ, x′)x ′L d3x ′
]

, (7.32c)

in which overdots indicate differentiation with respect to τ = t − r/c.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

340 Post-Minkowskian theory: Implementation

Still according to Box 6.7, we see that the wave-zone contribution hαβ

W to the gravitational
potentials is given by

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

0
ds f αβ(τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
,

(7.33)

when ταβ can be put in the specific form displayed in Eq. (7.19); the functions A(s, r ) and
B(s, r ) are defined by Eq. (6.104). We shall learn how to evaluate these contributions below
in Sec. 7.4, and then again in Chapter 11.

Box 7.2 Multipole structure of the wave-zonemetric

By using extensions of the conservation identities (7.14), the wave-zone forms of the potentials hαβ

N can be
expressed elegantly in terms of a sequence of multipole moments. The general expressions are

hαβ

N = 4G

c4

∞∑
�=0

(−1)�

�!
∂L

[
1

r
MαβL (τ )

]
,

where

M00L = c2IL ,

M0 j L = c

2(� + 1)

(
İ j L − �εmja1J ma2···a�

)
(sym a : L)

+ 1

(� + 1)

∮
∂M

τ 0m x j Ld Sm ,

M jkL = 1

(� + 1)(� + 2)
Ï jkL + 2

(� + 2)
εma1( j J̇ m|k)a2···a� (sym a : L)

+ 8(� − 1)

(� + 1)
P jk(a1a2···a�)

+ 1

(� + 1)(� + 2)

∮
∂M

[
τ mn∂n(x jkL ) + ∂τ τ 0m x jkL

]
d Sm

− 2

(� + 2)

∮
∂M

[
τ n[a1 x j]ka2···a� + ( j � k)

]
d Sn (sym a : L),

whereIL andJ j L are defined in Eqs. (7.16), and

P jkabL :=
∫

M
x [aτ j][k xb]L d3x .

The notation (sym a : L)means symmetrize on all � a-indices.
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7.1.5 Toward two iterations of the field equations

As we pointed out back in Sec. 6.2.3, to achieve the second post-Minkowskian approxima-
tion to the gravitational potentials hαβ , we must carry out two iterations of the relaxed field
equations and then impose the gauge condition/conservation statement. In other words, we
must solve the wave equation �hαβ = −(16πG/c4)ταβ

1 for the potentials hαβ

2 and then im-
pose the gauge condition ∂βhαβ

2 = 0 or the conservation equation ∂βτ
αβ

1 = 0. The starting
point of these computations is construction of the effective energy-momentum pseudotensor
τ

αβ

1 , which depends on the fluid’s energy-momentum tensor T αβ and the potentials gener-
ated during the first iteration of the relaxed field equations. Our very first task, therefore, is
to perform the first iteration and obtain τ

αβ

1 .

7.2 First iteration

In this section we complete the first iteration of the relaxed field equations to obtain the
gravitational potentials hαβ

1 . Our goal is to perform the computation to a degree of accuracy
that is sufficient for the preparation of the second iteration, to be carried out in Secs. 7.3
and 7.4.

7.2.1 Energy-momentum tensor

In the first iteration of the field equations we replace gαβ by ηαβ in the energy-momentum
tensor of Eq. (7.1), and in the normalization condition for the velocity four-vector. Similarly,
we set

√−g = 1 in Eq. (7.4). We find that γ = (1 − v2/c2)−1/2 = 1 + 1
2 (v/c)2 + O(c−4),

and Eq. (7.4) becomes

ρ =
[

1 − 1

2
(v/c)2 + O(c−4)

]
ρ∗. (7.34)

The components of the energy-momentum tensor are then

c−2T 00
0 = ρ∗

[
1 + 1

c2

(
1

2
v2 + �

)
+ O(c−4)

]
, (7.35a)

c−1T 0 j
0 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + � + p/ρ∗

)
+ O(c−4)

]
, (7.35b)

T jk
0 = ρ∗v j vk + p δ jk + O(c−2). (7.35c)

They are written as post-Newtonian expansions in flat spacetime, and these include both
Newtonian and post-Newtonian contributions; terms occurring at 2pn order are neglected.
Because they do not yet include 1pn terms involving the gravitational potentials, which will
appear during the second iteration of the field equations, these post-Newtonian expansions
are incomplete.
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7.2.2 Near zone

We first take the field point x to be in the near zone, so that r < R. To achieve the first
iteration of the relaxed field equations, we set ταβ = T αβ

0 and make the substitution within
Eqs. (7.13). Because the energy-momentum tensor is confined to the near zone, there is no
need to truncate the integrals to the near-zone domain M ; they are naturally truncated to
the volume occupied by the matter distribution. And because T αβ

0 does not extend to the
wave zone, the potentials hαβ

W vanish, and hαβ = hαβ

N .
As we shall see below in Sec. 7.3, for the purposes of preparing the second iteration of the

field equations it is sufficient to compute h00
1 to order c−2, h0 j

1 to order c−3, and to neglect
h jk

1 because it is of order c−4. This requirement implies that we can truncate Eqs. (7.35) to

c−2T 00
0 = ρ∗ + O(c−2), (7.36a)

c−1T 0 j
0 = ρ∗v j + O(c−2), (7.36b)

T jk = O(1). (7.36c)

Making the substitution within Eq. (7.13) reveals that the potentials are given by

h00
1 = 4

c2
U + O(c−4), (7.37a)

h0 j
1 = 4

c3
U j + O(c−4), (7.37b)

h jk
1 = O(c−4), (7.37c)

in which U is a Newtonian potential defined by

U (t, x) = G

∫
ρ∗(t, x′)
|x − x′| d3x ′ , ∇2U = −4πGρ∗, (7.38)

in terms of the rescaled mass density ρ∗, and U j is a vector potential defined by

U j (t, x) = G

∫
ρ∗v j (t, x′)
|x − x′| d3x ′ , ∇2U j = −4πGρ∗v j , (7.39)

in terms of the mass-current density ρ∗v j . It is useful to note that by virtue of the continuity
equation (7.3), the potentials satisfy

∂tU + ∂ jU
j = 0 (7.40)

as a matter of identity.
Note that in Eq. (7.37), the corrections to h00

1 first occur at order c−4. The expansion of
Eq. (7.13), however, contains a term at order c−3 proportional to

d

dt

∫
ρ∗ d3x .

This vanishes because m := ∫
ρ∗ d3x , the total rest-mass within the fluid is conserved by

virtue of Eq. (7.3). As was pointed out back in Sec. 7.1.1, the conservation of rest-mass is
a basic kinematical requirement, quite divorced from any dynamical requirement based on
energy-momentum conservation. This is an important point, because we recall that we are
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not at liberty to impose the conservation equations ∂βταβ = 0 during the first iteration of
the relaxed field equations; for this we must await the second iteration. With this in mind,
you will notice that the corrections to h0 j

1 first occur at order c−4; this represents a term
proportional to

d

dt

∫
ρ∗v j d3x

in the expansion of Eq. (7.13). The integral is the total momentum at Newtonian order, and
it is tempting to declare that this term should vanish by virtue of momentum conservation.
This temptation, however, must be resisted during the first iteration.

The gravitational potentials may be inserted within Eqs. (7.24) to obtain the near-zone
metric. We obtain

g1
00 = −1 + 2

c2
U + O(c−4) , (7.41a)

g1
0 j = − 4

c3
U j + O(c−4) , (7.41b)

g1
jk =

(
1 + 2

c2
U
)
δ jk + O(c−4) , (7.41c)

and the metric determinant is (−g1) = 1 + 4U/c2 + O(c−4). Recalling our discussion in
Sec. 7.1.3, we see that this metric is not sufficiently accurate to obtain the motion of a
test particle at post-Newtonian order, because it lacks the O(c−4) contributions to g00. It is
sufficiently accurate, however, to serve as input in the second iteration of the relaxed field
equations.

7.2.3 Wave zone

We next take the field point x to be in the wave zone, so that r > R. To achieve the first
iteration of the relaxed field equations, we could in principle set ταβ = T αβ

0 , make the
substitution within Eqs. (7.25), and evaluate the multipole moments explicitly. There is,
however, no immediate need to proceed in this way. We can instead keep things simple by
making direct use of Eqs. (7.25) and keeping the multipole moments unevaluated until we
have completed the second iteration. An aspect of ταβ that we can incorporate is that it does
not extend beyond the near zone; this implies that hαβ

W vanishes, so that hαβ = hαβ

N .
As we shall see below in Sec. 7.4, only h00

1 is required in the preparation of the second
iteration. It is given by

h00
1 = 4G

c2

{I(τ )

r
− ∂ j

[I j (τ )

r

]
+ 1

2
∂ jk

[I jk(τ )

r

]
+ · · ·

}
, (7.42)

in whichIL (τ ) := ∫
M c−2τ 00(τ, x)x L d3x are the multipole moments of the density c−2τ 00,

expressed as functions of retarded time τ = t − r/c. Note that we keep the dipole-moment
term in the expansion, in spite of the fact that I j will eventually be set equal to zero by
a coordinate choice, as we indicated back in Sec. 7.1.4. The reason is that the ability to
set I j = 0 relies on the conservation equation ∂βταβ = 0, which we are not at liberty to
impose during the first iteration.
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Counting post-Newtonian orders is more subtle in the wave zone than it is in the near zone.
The monopole term on the right-hand side of Eq. (7.42) is evidently of order Gmc/(c2r ),
and we naturally assign a 0pn order to this term. To see about the dipole term, we perform
the differentiation and express it as

− 4G

c2
∂ j

[I j (τ )

r

]
= 4G

c2

( İ j

cr
+ I j

r2

)
n j , (7.43)

in which n j := x j /r . Noting that I j scales as mcrc, this term is of order

G

c2
mcrc

(
1

ctcr
+ 1

r2

)
= Gmc

c2r

rc

ctc

(
1 + ctc

r

)
. (7.44)

This is smaller than Gmc/(c2r ) by a factor of order (vc/c)(1 + λc/r ). The second factor is
of order unity in the wave zone, and we conclude that the dipole term is smaller than the
monopole term by a factor of order vc/c. To this term we therefore assign a 0.5pn order.
We do this in spite of the fact that the second term on the right of Eq. (7.43) is formally of
Newtonian order. In the near zone, but outside the distribution of matter, this term would
give the standard dipole contribution to the Newtonian potential, which normally would be
set equal to zero by a suitable choice of coordinates. But because it falls off as r−2 and
we are looking in the wave zone at distances r > λc = rc(c/vc), it has decreased in size to
such an extent that it is now comparable to (or even smaller than) the 0.5pn term produced
by the time derivative of I j .

A simple extension of this argument reveals that the quadrupole term in h00
1 must be

assigned a 1pn order. The octupole term, which would occur next in Eq. (7.42), gives a
contribution at 1.5pn order, and the post-Newtonian counting becomes clear: an �-pole
term contributes at (�/2)pn order to the gravitational potential.

7.3 Second iteration: Near zone

In this section we face the challenging task of completing the second iteration of the relaxed
field equations. Here we take the field point x to be in the near zone, so that r < R. The
wave zone will be considered next, in Sec. 7.4.

7.3.1 Effective energy momentum pseudotensor

Our first order of business is to use the potentials obtained in the first iteration to construct
the effective energy-momentum pseudotensor of Eq. (6.52),

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
, (7.45)

with the Landau–Lifshitz contribution defined by Eq. (6.5), and the harmonic contribution
defined by Eq. (6.53).

We begin by updating our expression for T αβ , the fluid’s energy-momentum tensor,
which was given an incomplete post-Newtonian expansion back in Eq. (7.35). We return
to Eq. (7.1) and substitute the near-zone metric displayed in Eq. (7.41). We also involve
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this metric in the normalization condition for uα , and update our expression for γ to 1 +
1
2 (v/c)2 + U/c2 + O(c−4), which now incorporates the Newtonian potential U . Equation
(7.34) becomes

ρ =
[

1 − 1

c2

(
1

2
v2 + 3U

)
+ O(c−4)

]
ρ∗, (7.46)

and the components of the energy-momentum tensor are now

c−2(−g)T 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 + 3U + �

)
+ O(c−4)

]
, (7.47a)

c−1(−g)T 0 j
1 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + � + p/ρ∗

)
+ O(c−4)

]
, (7.47b)

(−g)T jk
1 = ρ∗v j vk + p δ jk + O(c−2). (7.47c)

We have multiplied T αβ

1 by (−g) because this is the combination that appears in ταβ .
The hardest piece of the calculation by far (and this is always true) is the computation of

(−g)tαβ

LL to the appropriate degree of accuracy. To match the accuracy achieved in Eqs. (7.47)
we need c−2(−g)t00

LL to orders O(1) and O(c−2), c−1(−g)t0 j
LL to order O(1) and O(c−2), and

(−g)t jk
LL to order O(1). To pluck out of Eq. (6.5) the terms of relevant orders, we use the

facts recorded in Eq. (7.9), that the potentials scale as h00 = O(c−2), h0 j = O(c−3), and
h jk = O(c−4). In addition, we use the property that ∂0h00 is of order c−1 relative to ∂ j h00.
The dominant piece of (−g)tαβ

LL will therefore come from ∂ j h00 = 4∂ jU/c2.
Armed with these observations, the reduction of (−g)tαβ

LL to something manageable is
well within reach. Let us, for example, examine the term

1

4

(
2gαλgβμ − gαβ gλμ

)
gνρgστ ∂λhντ ∂μhρσ

on the right-hand side of Eq. (6.5), in which we have replaced gαβ by ηαβ − hαβ . A first
source of simplification arises from the fact that each occurrence of gαβ can be replaced by
ηαβ ; this comes about because each factor of hαβ contributes a power of G, and we need to
compute (−g)tαβ

LL to order G2 in the second post-Minkowskian approximation. A second
source of simplification comes from the fact that at leading order, we can retain terms that
involve ∂ j h00 only. At this stage the previous expression becomes

1

4

(
2ηα j ηβk − ηαβδ jk

)
∂ j h

00∂kh00,

and it gives rise to a contribution 1
4 ∂ j h00∂ j h00 to (−g)t00

LL, and a contribution 1
2 ∂ j h00∂kh00 −

1
4 δ jk∂nh00∂nh00 to (−g)t jk

LL; there is no contribution to (−g)t0 j
LL.

Keeping track of all terms that make up (−g)tαβ

LL , we eventually arrive at the expressions

16πG

c4
(−g)t00

LL = −7

8
∂ j h

00∂ j h00 + O(c−6), (7.48a)

16πG

c4
(−g)t0 j

LL = 3

4
∂ j h00∂0h00 + (

∂ j h0k − ∂kh0 j
)
∂kh00 + O(c−7), (7.48b)

16πG

c4
(−g)t jk

LL = 1

4
∂ j h00∂kh00 − 1

8
δ jk∂nh00∂nh00 + O(c−6). (7.48c)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

346 Post-Minkowskian theory: Implementation

These results are sufficiently accurate for our immediate purposes. At a later stage, however,
we shall need additional accuracy in our expression for (−g)t jk

LL, and we record this improved
expression here:

16πG

c4
(−g)t jk

LL = 1

4

(
1 − 2h00

)
∂ j h00∂kh00 − 1

8
δ jk

(
1 − 2h00

)
∂nh00∂nh00

− ∂ j h0n∂kh0
n + ∂ j h0n∂nh0k + ∂kh0n∂nh0 j − ∂nh0 j ∂nh0k

+ ∂ j h00∂0h0k + ∂kh00∂0h0 j + 1

4
∂ j h00∂khn

n + 1

4
∂kh00∂ j hn

n

+ δ jk

[
−3

8

(
∂0h00

)2 − ∂nh00∂0h0n − 1

4
∂nh00∂nh p

p

+ 1

2
∂nh0

p

(
∂nh0p − ∂ ph0n

)] + O(c−8). (7.49)

It should be noted that this incorporates corrections of order c−2 relative to the leading-order
expression of Eq. (7.48), and that to be consistent, we have terms such as h00∂ j h00∂kh00

that contain an additional power of the gravitational constant G.
With the substitutions of Eqs. (7.37), the Landau–Lifshitz pseudotensor becomes

c−2(−g)t00
LL = − 1

4πGc2

(
7

2
∂ jU∂ jU

)
+ O(c−4), (7.50a)

c−1(−g)t0 j
LL = 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4), (7.50b)

(−g)t jk
LL = 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
+ O(c−2). (7.50c)

To better understand the importance of these contributions to ταβ , we estimate the order
of magnitude of c−2(−g)t00

LL relative to ρ∗, the dominant contribution to c−2τ 00. We re-
introduce the scaling quantities mc, rc, and vc, and estimate the pseudotensor within the
matter distribution. We have that ρ∗ ∼ mc/r3

c and U ∼ Gmc/rc. After differentiation we
get ∂ jU ∼ Gmc/r2

c , and all this produces

(−g)t00
LL

ρ∗c2
∼ Gmc

c2rc
. (7.51)

Since motion within the fluid is governed by gravity, we can rely on the virial theorem and
claim that Gmc/rc ∼ v2

c . The end result is that c−2(−g)t00
LL is a quantity of order (vc/c)2

relative to ρ∗; it is comparable to the other 1pn terms that are displayed in Eq. (7.47).
The easiest piece of the calculation by far (and this is always true) is the computation

of (−g)tαβ

H to the required degree of accuracy. Using the information gathered previously,
Eq. (6.53) returns

16πG

c4
(−g)t00

H = O(c−6), (7.52a)

16πG

c4
(−g)t0 j

H = O(c−7), (7.52b)

16πG

c4
(−g)t jk

H = O(c−6). (7.52c)
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These expressions should be compared with Eqs. (7.48); they imply that the harmonic
pseudotensor makes no relevant contribution to ταβ . For later reference we record the
improved expression

16πG

c4
(−g)t jk

H = −h00∂00h jk + O(c−8) (7.53)

for the spatial components of the pseudotensor.
Collecting results, we have obtained

c−2τ 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 + 3U + �

)]
− 1

4πGc2

(
7

2
∂ jU∂ jU

)
+ O(c−4), (7.54a)

c−1τ
0 j
1 = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + � + p/ρ∗

)]

+ 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4), (7.54b)

τ
jk

1 = ρ∗v j vk + p δ jk + 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
+ O(c−2), (7.54c)

for the effective energy-momentum pseudotensor.

7.3.2 Energy-momentum conservation

At this stage of our development of the second post-Minkowskian approximation, we may
impose the conservation equations

c−2∂tτ
00
1 + c−1∂ jτ

0 j
1 = 0, c−1∂tτ

0 j
1 + ∂kτ

jk
1 = 0, (7.55)

before calculating the second-iterated potentials hαβ

2 . At leading order the energy equation
reproduces Eq. (7.3); not surprisingly, a statement of rest-mass conservation is included in
the statement of energy conservation. The equation brings additional information at order
c−2, a statement of energy conservation for all relevant forms of fluid energy: kinetic,
internal, and gravitational. We shall return to this theme below.

The momentum equation is equally informative. Using Eqs. (7.54), we have

c−1∂tτ
0 j
1 = (∂tρ

∗)v j + ρ∗∂tv
j + O(c−2)

= −v j ∂k(ρ∗vk) + ρ∗ dv j

dt
− ρ∗vk∂kv

j + O(c−2), (7.56)

where we have involved Eq. (7.3) and the definition of the total time derivative: dv j /dt =
∂tv

j + vk∂kv
j . We also have

∂kτ
jk

1 = v j ∂k(ρ∗vk) + ρ∗vk∂kv
j + ∂ j p + 1

4πG
(∂ jU )∇2U + O(c−2). (7.57)

Making the substitutions into Eq. (7.55), and replacing ∇2U by −4πGρ∗, we arrive at

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2). (7.58)

This is Euler’s equation, which governs the dynamics of our perfect fluid at leading order
in a post-Newtonian expansion. It was first obtained on the basis of Newtonian theory in
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Chapter 1, and indeed, the foregoing computations have already been presented (in reverse
order) in Sec. 1.4.4.

Recalling our discussion of the iteration procedure in Sec. 6.2.3, we observe that
Euler’s equation (i.e. Newtonian gravity) is the consequence of ∂βτ

αβ

1 = 0, the conser-
vation equation that goes along with the second iteration of the relaxed field equations.
Performing a single iteration is not sufficient to produce this dynamics, because the equa-
tions of motion that are compatible with the first iteration, derived from the conservation
equation ∂βτ

αβ

0 = 0, do not contain gravitational interactions. This observation was also
made in the context of the linearized approximation to general relativity, back in Sec. 5.5.
So formally, a second iteration of the relaxed field equations is required to obtain the Newto-
nian equations of motion. Similarly, a third iteration is required to find the post-Newtonian
equations of motion, and so on. But as we also discussed back in Sec. 6.2.3, the conservation
equation compatible with the nth iteration requires ingredients that are collected during the
(n − 1)th iteration, and it can be formulated before completing the nth iteration to obtain
the gravitational potentials. In practice, therefore, we may obtain the Newtonian equations
of motion on the basis of the first-iterated potentials; the post-Newtonian equations on the
basis of the second-iterated potentials, and so on.

As we saw back in Sec. 6.1.4, the local conservation equations (7.55) imply the existence
of globally conserved quantities. From Eq. (6.36) we have the total mass

M := 1

c2

∫
(−g)

(
T 00 + t00

LL

)
d3x, (7.59)

and from Eq. (6.37) we have the total momentum

P j := 1

c

∫
(−g)

(
T 0 j + t0 j

LL

)
d3x . (7.60)

In addition, it is useful to re-introduce the vector

R j := 1

Mc2

∫
(−g)

(
T 00 + t00

LL

)
x j d3x, (7.61)

which denotes the position of the center-of-mass; this was first defined by Eq. (6.39). We
recall that R j is related to the total momentum by the equation Md R j /dt = P j , and that by
adopting the center-of-mass frame of the spacetime, we can set both P j and R j to zero. It
is worth pointing out that since (−g)tαβ

H makes no relevant contribution to τ
αβ

1 at this order,
as we saw back in Eq. (7.52), the conserved quantities associated with (−g)(T αβ + tαβ

LL ) are
the same as those associated with ταβ .

The global quantities M , P j , and R j are defined in terms of integrals that extend over
all space. We may still, however, evaluate them with the near-zone information available to
us now, because their expressions turn out to be insensitive to the wave-zone aspects of the
integrals. To evaluate M we insert our previous expression for c−2τ 00

1 within Eq. (7.59),
which we truncate to the near-zone domain M. The term involving U is handled as follows.
We write

∂ jU∂ jU = ∂ j

(
U∂ jU

) − U∇2U = ∂ j

(
U∂ jU

) + 4πGρ∗U (7.62)
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and observe that the first term gives rise to a surface integral that must be evaluated at
r = R; it makes an R-dependent contribution to M that cancels out when the wave-zone
portion of the integral is added to the near-zone portion. Collecting results, we arrive at

M =
∫

ρ∗
[

1 + 1

c2

(
1

2
v2 − 1

2
U + �

)]
d3x + O(c−4) (7.63)

for the total mass. The integral of ρ∗ is m, the total rest-mass of the fluid, which is separately
conserved. The integral of 1

2 ρ∗v2 isT , the fluid’s total kinetic energy. The integral of − 1
2 ρ∗U

is 
, the gravitational potential energy. And finally, the integral of ρ∗� = ε + O(c−2) is
Eint, the total internal energy stored within the fluid. The sum of T , 
, and Eint is the
total energy E , and this was shown to be constant (by virtue of Euler’s equation and the
first law of thermodynamics) back in Sec. 1.4.3. The total mass can therefore be expressed
as M = m + E/c2 + O(c−4), and this equation possesses a clear interpretation: The total
mass of the spacetime is a measure of all forms of energy, including rest-mass, kinetic,
gravitational, and internal energies.

Similar manipulations reveal that R j can be expressed as

R j = 1

M

∫
ρ∗x j

[
1 + 1

c2

(
1

2
v2 − 1

2
U + �

)]
d3x + O(c−4), (7.64)

and Eq. (7.60) becomes

P j =
∫

ρ∗v j

[
1 + 1

c2

(
1

2
v2 − 1

2
U + � + p/ρ∗

)]
d3x

− 1

2c2

∫
ρ∗x j

(
∂tU − vk∂kU

)
d3x + O(c−4). (7.65)

The leading-order piece of the total momentum was shown to be constant (by virtue
of Euler’s equation) back in Sec. 1.4.3 of Chapter 1; with this improved expression the
momentum is conserved to order c−2.

It is instructive to examine the relationship between the total mass M , which is known
to correspond to the ADM mass of the spacetime, and the near-zone mass M0, defined by
Eq. (7.26),

M0 =
∫

M
c−2τ 00 d3x, (7.66)

which appears in the expression of Eq. (7.32) for h00 in the wave zone. It is easy to see that

M0 = M + O(c−4) . (7.67)

This follows because the integrands for M and M0 differ by (−g)t00
H , which makes no

contribution at 1pn order, and because the wave-zone portion of the integral defining M
makes no R-independent contribution to the mass. Examining the relationship at higher
post-Newtonian orders, we find that subtle differences between M0 and M appear at order
c−5; these are explored in Exercise 7.8.

Similar manipulations reveal that

R j
0 = R j + O(c−4) (7.68)
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and

P j
0 = P j + O(c−4), (7.69)

in which R j
0 is the position of the near-zone center-of-mass introduced in Eq. (7.27), and

P j
0 is the near-zone momentum introduced in Eq. (7.28). These equalities imply that at 1pn

order, a coordinate choice that enforces R j = 0 = P j also enforces R j
0 = 0 = P j

0 .

7.3.3 Near-zone contribution to potentials

Armed with Eq. (7.54) for τ
αβ

1 , we are now ready to solve the relaxed field equations for
the second-iterated potentials hαβ = hαβ

N + hαβ

W . In this section we focus on the near-zone
contribution hαβ

N , insert τ
αβ

1 within Eqs. (7.15), and express the results in a convenient form.
The spatial components h jk require special care, because as we have observed in Sec. 7.1.3,
the spatial trace hkk contributes to the spacetime metric at 1pn order, while the remaining
components contribute only at 2pn order. With this in mind, it is helpful to decompose the
potentials into a “scalar class” comprising h00 and hkk , a “vector class” comprising h0 j ,
and a “tensor class” comprising h jk .

Scalar class

We begin with the computation of h00 and hkk . Examining Eqs. (7.54), we observe that both
τ 00

1 and τ kk
1 contain a contribution proportional to ∂ jU∂ jU , which does not have compact

support. It is useful to re-express these terms by exploiting the identity

∇2U 2 = 2∂ jU∂ jU + 2U∇2U, (7.70)

in which we may insert Poisson’s equation ∇2U = −4πGρ∗. In this way we obtain

c−2τ 00
1 = ρ∗

[
1 + 1

c2

(
1

2
v2 − 1

2
U + �

)]
− 7

16πGc2
∇2U 2 + O(c−4) (7.71)

and

τ kk
1 = ρ∗

(
v2 − 1

2
U

)
+ 3p − 1

16πG
∇2U 2 + O(c−2) (7.72)

for the relevant components of the energy-momentum pseudotensor.
Consulting Eq. (7.15), we see that the leading terms in both h00

N and hkk
N are Poisson

integrals constructed from c−2τ 00 and τ kk . To evaluate these we must distinguish between
the pieces of the source functions that have compact support (those that are tied to the fluid
variables), and those that depend on the Newtonian potential and extend beyond the matter
distribution. To handle the compact-support pieces we introduce the potentials

ψ(t, x) := G

∫
ρ∗′( 3

2 v′2 − U ′ + �′) + 3p′

|x − x′| d3x ′ , (7.73a)

V (t, x) := G

∫
ρ∗′(v′2 − 1

2U ′) + 3p′

|x − x′| d3x ′ , (7.73b)
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in which primed quantities such as ρ∗′ indicate that the fluid variables are expressed as
functions of t and x′. These satisfy the Poisson equations

∇2ψ = −4πGρ∗
(

3

2
v2 − U + � + 3p/ρ∗

)
, (7.74a)

∇2V = −4πGρ∗
(

v2 − 1

2
U + 3p/ρ∗

)
. (7.74b)

With this notation we see that at leading order, the compact-support piece of h00
N is given

by 4U/c2 + 4(ψ − V )/c4, while the compact-support piece of hkk
N is 4V/c4; this choice of

notation is motivated by the fact that once the potentials are inserted within the near-zone
metric of Eq. (7.24), the leading-order, compact-support piece of g00 will involve only U
and ψ .

Turning next to the Poisson integral involving ∇2U 2, we evaluate it by making repeated
use of integration by parts:

1

4π

∫
M

∇′2U ′2

|x − x′| d3x ′ = 1

4π

∮
∂M

∂ ′ jU ′2

|x − x′| d S′
j − 1

4π

∫
M

∂ ′ jU ′2∂ ′
j

1

|x − x′| d3x ′

= 1

4π

∮
∂M

(
∂ ′ jU ′2

|x − x′| − U ′2∂ ′
j

1

|x − x′|
)

d S′
j

+ 1

4π

∫
M

U ′2∇′2 1

|x − x′| d3x ′

= −U 2 + 1

4π

∮
∂M

(
∂ ′ jU ′2

|x − x′| − U ′2∂ ′
j

1

|x − x′|
)

d S′
j . (7.75)

The surface term is evaluated at r ′ = R, and because U ′ falls off as (r ′)−1 at large distances
from the matter distribution, it makes a contribution that scales as R−2. As with all R-
dependent terms in the potentials hαβ

N , we may discard it because it will eventually be
cancelled by an equal and opposite term in hαβ

W .
It is interesting to note that if the Poisson integral of ∇2U 2 were extended to infinity

instead of being truncated to the domain M , it would be exactly equal to −U 2. This may
seem like a trivial observation, but we wish to call attention to the fact that the solution
to the differential equation ∇2 f = ∇2g is not necessarily the obvious f = g. The actual
solution may also include a solution to Laplace’s equation ∇2 f = 0, and the correct mixture
of particular and homogeneous solutions depends on the boundary conditions captured by
the surface integral in Eq. (7.75). When the boundary conditions are such that the surface
integral vanishes except for R-dependent terms, the particular solution f = g is justified.
When, however, the surface integral returns contributions that are independent of R, the
relevant solution is no longer the simple f = g.

We have now taken care of the leading-order, Poisson-integral terms in Eq. (7.15).
Proceeding to the next order in h00

N , we examine the superpotential term, in which we
may insert the leading-order expression c−2τ 00

1 = ρ∗ + O(c−2), because the correction at
order c−2 would contribute to h00

N at order c−6. This gives rise to the post-Newtonian
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superpotential

X (t, x) := G

∫
ρ∗(t, x′)|x − x′| d3x ′ , (7.76)

in which the integral over M is naturally truncated to the volume occupied by the matter
distribution. With this notation we observe that the superpotential term in h00

N is propor-
tional to ∂2

t X . Since ∇2|x − x′| = 2|x − x′|−1 when x 	= x′, we see that the superpotential
satisfies the Poisson equation

∇2 X = 2U , (7.77)

and X is therefore sourced by the Newtonian potential. The connection between Eqs. (7.76)
and (7.77) is further explored in Box 7.3.

Collecting results, we have obtained the following expressions for the scalar potentials
h00

N and hkk
N :

h00
2N = 4

c2
U + 1

c4

(
7U 2 + 4ψ − 4V + 2

∂2 X

∂t2

)
− 2G

3c5

...
I kk(t) + O(c−6) , (7.78a)

hkk
2N = 1

c4

(
U 2 + 4V

)
− 2

G

c5

...
I kk(t) + O(c−6) . (7.78b)

These expressions are accurate up to order c−6, and they incorporate Newtonian, 1pn, and
1.5pn terms. Once we have obtained the spacetime metric from the potentials, the terms
of order c−5 will be shown to represent coordinate artifacts that can be removed by a
coordinate transformation.

Box 7.3 Definition of the superpotential

Thepost-Newtonian superpotential X is definedbyEq. (7.76), and this leads to thePoissonequationdisplayed
in Eq. (7.77). Here we ask whether defining the superpotential through

∇2 X = 2U

necessarily leads back to the integral representation of Eq. (7.76). We shall see that the answer to this ques-
tion is subtle, and provides further illustration of the fact that boundary conditions and solutions to Laplace’s
equation sometimes play an important role in solving Poisson’s equation.
The general solution to Poisson’s equation for the superpotential is

X (t, x) = − 1

2π

∫
U (t, x′)
|x − x′| d3x ′ + X0(t, x),

inwhich X0 is a solution to∇2 X0 = 0. But the integral is ill defined; becauseU falls off as (r ′)−1 at large
distances, the integrand behaves as (r ′)−2, and since it ismultiplied by the integrationmeasurer ′2 dr ′, the
integral is linearly divergent. To provide a well-defined prescription for the Poisson integral, we truncate the
domain of integration toM . This amounts tomodifying thePoisson equation to∇2 X = 2U�(R − r ),
in which� is the Heaviside step function; the modification produces no noticeable changes in the near zone.
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Inserting the standard expression of Eq. (7.38) for the Newtonian potential, we find that the superpotential
can be expressed as

X (t, x) = G

∫
ρ∗(t, y)K (x; y) d3 y + X0(t, x),

in which the two-point function K (x; y) is defined by

K (x; y) := − 1

2π

∫
M

d3x ′

|x − x′||x′ − y| .

To evaluate this we exploit the observation that K can depend on x and y only through the combination
x − y, and thereby set y = 0 to simplify the integral. Making use of the addition theorem for spherical
harmonics, we find that K (x; 0) = −2

∫ R
0 (r>)−1r ′ dr ′, in which r> is the greater of r and r ′. This

returns r − 2R, and we conclude that the two-point function is given by

K (x; y) = |x − y| − 2R.

Inserting this within the integral for the superpotential, we obtain

X (t, x) = G

∫
ρ∗(t, x′)|x − x′| d3x ′ − 2mR + X0(t, x),

with m := ∫
ρ∗(t, x′) d3x ′ denoting the total rest-mass of the matter distribution. Choosing X0 =

2mR, we reproduce the original definition of the superpotential.
It is interesting to note that since it is ∂2

t X that appears in the gravitational potentials, the addition of
−2mR + X0 to the integral is immaterial, so long as X0 does not depend on time. The superpoten-
tial, therefore, is sufficiently robust to withstand the ambiguities associated with the choice of solution to
∇2 X = 2U .

Vector class

For our purposes it is necessary to evaluate the potential h0 j
N to order c−3 only. Our

expression for c−1τ
0 j
1 in Eq. (7.54b) is more accurate than we need, and we may truncate it

to its leading term ρ∗v j + O(c−2). Consulting Eq. (7.15b), we see that the leading term in
the potential is given by a Poisson integral constructed from c−1τ

0 j
1 , and we obtain

h0 j
2N = 4

c3
U j + O(c−5) , (7.79)

where U j is the vector potential defined by Eq. (7.39). In principle we have enough
information to calculate the correction terms at order c−5, but these will not be needed in
our future developments.

Tensor class

The computation of h jk
N is more involved, because its source term contains a field con-

tribution that is not as easy to deal with as it was with the scalar potentials. Returning
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to Eq. (7.54) and exploiting once more the identity of Eq. (7.70), we express τ
jk

1 in the
form

τ
jk

1 = ρ∗
(

v j vk − 1

2
Uδ jk

)
+ p δ jk − 1

16πG
δ jk∇2U 2 + 1

4πG
∂ jU∂kU + O(c−2) .

(7.80)

Consulting Eq. (7.15c), we see that the leading term in the potential is a Poisson integral
constructed from τ

jk
1 . The first three terms have compact support, and they give rise to the

tensorial potential

W jk(t, x) := G

∫
ρ∗′(v′ j v′k − 1

2U ′δ jk
) + p′δ jk

|x − x′| d3x ′ , (7.81)

which satisfies the Poisson equation

∇2W jk = −4πG

(
ρ∗v j vk − 1

2
ρ∗Uδ jk + p δ jk

)
. (7.82)

The fourth term involves ∇2U 2, which we know how to handle, and which produces a
contribution proportional to δ jkU 2 to h jk

N . The fifth and final term is the hard one. To
account for it we introduce another tensorial potential defined by

χ jk(t, x) := 1

4π

∫
M

∂ j ′
U ′∂k ′

U ′

|x − x′| d3x ′ , (7.83)

which satisfies the Poisson equation

∇2χ jk = −∂ jU∂kU . (7.84)

Because the Poisson integral in Eq. (7.83) is truncated at r ′ = R, the source term on the
right-hand side of the Poisson equation should be multiplied by �(R − r ), as was discussed
in Box 7.3. But since the truncation produces no noticeable changes within the near zone,
we have kept it implicit in Eq. (7.84).

Armed with these tensorial potentials, we find that the gravitational potentials can be
expressed as

h jk
2N = 1

c4

(
4W jk + U 2δ jk + 4χ jk

)
− 2

G

c5

...
I jk(t) + O(c−6) , (7.85)

where we have included the O(c−5) term for completeness.

Computation ofχ jk

We must now face the computation of χ jk , as defined by Eq. (7.83). Returning to the
standard expression of Eq. (7.38) for the Newtonian potential, we differentiate it and obtain

∂ j ′U ′ = G

∫
d3 y1 ρ∗

1

∂

∂x ′ j

1

|x′ − y1|
= −G

∫
d3 y1 ρ∗

1

∂

∂y j
1

1

|x′ − y1| , (7.86)
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in which y1 is an integration variable, and ρ∗
1 := ρ∗(t, y1). Expressing ∂k ′U ′ in a similar

way, in terms of an independent integration variable y2, and inserting these expressions in
the Poisson integral for χ jk , we arrive at

χ jk = G2
∫

d3 y1d3 y2 ρ∗
1 ρ∗

2

∂2

∂y j
1 ∂yk

2

K (x; y1, y2) , (7.87)

where

K (x; y1, y2) := 1

4π

∫
M

d3x ′

|x − x′||x′ − y1||x′ − y2| (7.88)

is a three-point function that must now be evaluated. This computation is presented in
Box 7.4, and the end result is

K (x; y1, y2) = 1 − ln
S

2R , (7.89)

where

S := r1 + r2 + r12 , (7.90)

with the notations

r1 := |x − y1| , r2 := |x − y2| , r12 := | y1 − y2| . (7.91)

We also introduce the corresponding separation vectors

r1 := x − y1 , r2 := x − y2 , r12 := y1 − y2 , (7.92)

and the unit vectors

n1 := r1

r1
, n2 := r2

r2
, n12 := r12

r12
. (7.93)

The dependence of K on R comes from the fact that the domain of integration is truncated
at r ′ = R. This dependence plays no role, however, because K is differentiated as soon as
it is inserted within Eq. (7.87). These derivatives are straightforward to compute, and we
obtain

∂2 K

∂y j
1 ∂yk

2

=
(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

− n j
12nk

12 − δ jk

Sr12
. (7.94)

We then arrive at

χ jk = G2
∫

ρ∗
1 ρ∗

2

(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

d3 y1d3 y2

− G2
∫

ρ∗
1 ρ∗

2

(
n j

12nk
12 − δ jk

)
Sr12

d3 y1d3 y2 . (7.95)

It is easy to check that each integral is symmetric in the jk indices; this property is evident
in the second integral, and to establish it for the first it is necessary to swap the variables of
integration, y1 ↔ y2, keeping in mind that n12 → n21 = −n12 under this operation.
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Note that the trace χ := δ jkχ
jk is given by the Poisson potential of 1

2 ∂ jU∂ jU . Using the
identity of Eq. (7.70), it is easy to see that χ can be expressed as

χ = −1

2
U 2 + G

∫
M

ρ ′∗U ′

|x − x′|d3x ′ . (7.96)

By inserting the Poisson integral for U , we can express this in the form

χ = −1

2
G2

∫
ρ∗

1 ρ∗
2 d3 y1d3 y2

|x − y1||x − y2| + G2
∫

ρ∗
1 ρ∗

2 d3 y1d3 y2

|x − y1|| y1 − y2| . (7.97)

The second integral can be written in the symmetric form

1

2

∫
ρ∗

1 ρ∗
2 d3 y1d3 y2

|x − y1|| y1 − y2| + 1

2

∫
ρ∗

1 ρ∗
2 d3 y1d3 y2

|x − y2|| y1 − y2| ,

and this gives

χ = 1

2
G2

∫
ρ∗

1 ρ∗
2

(
− 1

r1r2
+ 1

r1r12
+ 1

r2r12

)
d3 y1d3 y2 . (7.98)

Our final expression is

χ = 1

2
G2

∫
ρ∗

1 ρ∗
2

r1 + r2 − r12

r1r2r12
d3 y1d3 y2 , (7.99)

and we may check that the trace of Eq. (7.95) reproduces this. The calculation is aided by
the identities

n1 · n2 = r2
1 + r2

2 − r2
12

2r1r2
, (7.100a)

n1 · n12 = r2
2 − r2

1 − r2
12

2r1r12
, (7.100b)

n2 · n12 = r2
2 − r2

1 + r2
12

2r2r12
, (7.100c)

involving the unit vectors defined by Eq. (7.93).

Box 7.4 Three-point function K (x; y1, y2)

The computation of the three-point function defined by Eq. (7.88) follows some of the same steps that were
used to calculate the two-point function K (x; y) in Box 7.3.
We note first that K (x; y1, y2) satisfies

∇2 K (x; y1, y2) = − 1

|x − y1||x − y2| , (1)

and verify that Kp = − ln S is a particular solution. The relation implies that

∇2 Kp = − 1

S2
(S∇2S − ∂ j S∂ j S),
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and the various derivatives can be computed from the definition of S provided in Eq. (7.90). We have, for
example, ∂ j S = n j

1 + n j
2 , from which it follows that

∂ jk S = −n j
1nk

1 − δ jk

r1
− n j

2nk
2 − δ jk

r2
.

From this, and the helpful identities of Eqs. (7.100), we obtain

∇2S = 2
r1 + r2

r1r2
, ∂ j S∂ j S = (r1 + r2 − r12)S

r1r2
.

Collecting results, we confirm that Kp is a solution to∇2 K = −1/(r1r2).
To this wemust add a suitable solution Kh to Laplace’s equation. The solution to the homogeneous equa-

tion must be non-singular in all three variables x, y1, and y2, because the singularity structure required
by Eq. (1) is already contained in Kp. Furthermore, Kh must be dimensionless, and the only possibility is to
make it equal to a constant. We are therefore looking for a solution of the form

K = K0 − ln(r1 + r2 + r12),

where K0 is a dimensionless constant. To determine this we carry out an independent computation of
the special value K (x; 0, 0), and compare our result to K0 − ln(2r ), which follows from the general
expression.
From Eq. (7.88) we have

K (x; 0, 0) = 1

4π

∫
M

d3x ′

|x − x′||x′|2 = 1

4π

∫ R

0

dr ′d
′

|x − x′| .

Invoking the addition theorem for spherical harmonics, this is simply
∫ R

0 (r>)−1 dr ′, and evaluating
the integral gives K (x; 0, 0) = 1 + ln(R/r ). This allows us to conclude that K0 = 1 + ln(2R).
Collecting results, we obtain the expression displayed in Eq. (7.89).

7.3.4 Wave-zone contribution to potentials

In this subsection we estimate hαβ

W , the wave-zone contribution to the second-iterated
potentials, still assuming that the field point x is within the near zone. Techniques to
carry out such a computation were described back in Sec. 6.3.5, and crude estimates were
obtained toward the end of that section. These ignore numerical factors and terms that
depend explicitly on R, but they are sufficient to allow us to conclude that

h00
W = O(c−8) , h0 j

W = O(c−8) , h jk
W = O(c−8) . (7.101)

This is far beyond the 1pn accuracy of our calculations in this section, and we shall therefore
ignore the wave-zone contribution to hαβ

2 .
To reach this conclusion we refer to Eq. (6.105), which applies to source terms of the

form displayed in Eq. (6.98). In our current application, τ
αβ

1 is built entirely from (−g)tαβ

LL
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as displayed in Eqs. (7.48), by inserting the wave-zone potentials h00
1 and h0 j

1 given by
Eqs. (7.32). Focusing our attention on τ 00

1 for concreteness, and ignoring all numerical and
angle-dependent factors, we find that it has a structure given schematically by

G2

c4

[
M2

0

r4
+ M0I jk

r6
+ M0İ jk

cr5
+ M0Ï jk

c2r4
+ M0

...
I jk

c3r3
+ · · ·

]
, (7.102)

in which the ellipsis designates terms of higher post-Newtonian order. Each term is of the
form f (τ )/rn required for the integration techniques of Sec. 6.3.5. Ignoring the overall
factor of G2/c4, we see, for example, that for n = 3 we have f = M0

...
I jk

/c3, and that for
n = 4 we have f = M2

0 + M0Ï jk/c2. According to Eq. (6.109), an estimate of h00
W for each

contributing n is c−(n−2) f (n−2) + c−(n−1)r f (n−1). The dominant term in a post-Newtonian
expansion is c−(n−2) f (n−2), and restoring the factor of G2/c4, we find that for each n, h00

W

is estimated as

G2 M0

c8

d4I jk

dτ 4
. (7.103)

This is of order c−8, and contributes to h00
2 at 3pn order. A similar result follows for the

other components of hαβ

W , and we arrive at the statement of Eq. (7.101).
In fact, a detailed computation shows that these contributions are actually gauge artifacts

that can be removed by a suitable coordinate transformation. The first instance in which hαβ

W

makes a non-trivial contribution to the near-zone potentials turns out to be at 4pn order. In
any event, we see that hαβ

W is far too small to contribute to our 1pn potentials, and for this
reason we do not need to calculate it in detail.

7.3.5 Near-zone potentials: Final answer

We are now ready to collect our results and display the final expression for the second-
iterated potentials hαβ

2 in the near zone. Our results are summarized in Box 7.5.

Box 7.5 Near-zone potentials

Combining Eqs. (7.78), (7.79), (7.85), and (7.101),wefind that thenear-zonegravitational potentials are given
by

h00
2 = 4

c2
U + 1

c4

(
7U 2 + 4ψ − 4V + 2

∂2 X

∂t2

)
− 2G

3c5

...
I kk(t) + O(c−6) ,

h0 j
2 = 4

c3
U j + O(c−5) ,

h jk
2 = 1

c4

(
4W jk + U 2δ jk + 4χ jk

)
− 2

G

c5

...
I jk(t) + O(c−6) ,

hkk
2 = 1

c4

(
U 2 + 4V

)
− 2G

c5

...
I kk(t) + O(c−6) .
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The potentials that make up hαβ satisfy the Poisson equations

∇2U = −4πGρ∗ ,

∇2ψ = −4πGρ∗
(

3

2
v2 − U + � + 3p/ρ∗

)
,

∇2V = −4πGρ∗
(

v2 − 1

2
U + 3p/ρ∗

)
,

∇2 X = 2U ,

∇2U j = −4πGρ∗v j ,

∇2W jk = −4πG

(
ρ∗v jvk − 1

2
ρ∗Uδ jk + pδ jk

)
,

∇2χ jk = −∂ jU∂kU .

The solutions are

U = G

∫
ρ∗′

|x − x′| d3x ′ ,

ψ = G

∫
ρ∗′( 3

2v′2 − U ′ + �′) + 3p′

|x − x′| d3x ′ ,

V = G

∫
ρ∗′(v′2 − 1

2U ′) + 3p′

|x − x′| d3x ′ ,

X = G

∫
ρ∗′|x − x′| d3x ′ ,

U j = G

∫
ρ∗′v′ j

|x − x′| d3x ′ ,

W jk = G

∫
ρ∗′(v′ jv′k − 1

2U ′δ jk
) + p′δ jk

|x − x′| d3x ′ ,

χ jk = G2
∫

ρ∗
1 ρ∗

2

(
n j

1 − n j
12

)(
nk

2 + nk
12

)
S2

d3 y1d3 y2

− G2
∫

ρ∗
1 ρ∗

2

(
n j

12nk
12 − δ jk

)
Sr12

d3 y1d3 y2 .

The potentials are evaluated at time t and position x; the sources are evaluated at the same time but at po-
sition x′. We use the notation r1 := x − y1, r1 := |r1|, n1 := r1/r1 (and similarly for r2, r2, and
n2), as well as r12 := y1 − y2, r12 := |r12|, and n12 := r12/r12, in which y1 and y2 are inte-
gration variables. We also have S := r1 + r2 + r12, and the trace ofχ jk is given by

χ = −1

2
U 2 + G

∫
M

ρ∗′U ′

|x − x′|d3x ′ .
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From Eq. (7.23) we find that the potentials give rise to the spacetime metric

g00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2 + 1

2

∂2 X

∂t2

)
− 4G

3c5

...
I kk(t) + O(c−6) , (7.104a)

g0 j = − 4

c3
U j + O(c−5) , (7.104b)

g jk = δ jk

[
1 + 2

c2
U + 2

c4

(
ψ + U 2 − 2V + 1

2

∂2 X

∂t2

)]

+ 4

c4

(
W jk + χ jk

)
− 2

G

c5

...
I 〈 jk〉(t) + O(c−6) . (7.104c)

This metric is too accurate for most of our purposes. As we indicated back in Sec. 7.1.3,
in order to describe the slow motion of a weakly gravitating system accurately through 1pn

order, we require g00 to order c−4, g0 j to order c−3, and g jk to order c−2. For this application
our previous expressions can therefore be truncated to

g00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2 + 1

2

∂2 X

∂t2

)
+ O(c−5) , (7.105a)

g0 j = − 4

c3
U j + O(c−5) , (7.105b)

g jk = δ jk

(
1 + 2

c2
U

)
+ O(c−4). (7.105c)

This metric forms the basis of what is known as post-Newtonian theory. Chapters 8 through
10 will be devoted to the details and many applications of this approximation to general
relativity.

We have previously indicated that the c−5 term in g00 is a coordinate artifact that has no
impact on the physics of our gravitating system. Because it depends only on time, this term
may in fact be removed by a transformation of the time coordinate given by

t = t ′ − 2G

3c5
Ïkk(t ′) + O(c−7) . (7.106)

It is a simple exercise to show that the time-time component of the transformed metric,
expressed in terms of the new time t ′, no longer contains a term at order c−5; the other
components of the metric are not affected by the transformation. It should be noted that the
transformed coordinates are no longer harmonic; the c−5 term must stay if we insist on using
harmonic coordinates. A more careful calculation reveals that the transformation generates
non-trivial terms in g00 at order c−7, or at 2.5pn order; these must then be combined with
other 2.5pn terms in order to give a correct description of radiation-reaction effects. We
return to this theme in Chapter 12.

Box 7.6 Post-Minkowskian theory and the slow-motion approximation

The advantages of incorporating a slow-motion condition within post-Minkowskian theory should be pretty
clear by now, quite apart from the physical relevance of slowmotion within a weak-field context. Had we not
expanded the various retarded potentials in powers of c−1 right from the start, we would have been faced
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with the need to evaluate fully retarded potentials such as∫
ρ∗(t − |x − x′|, x′)

|x − x′| d3x ′ ,∫
ρ∗(t − |x − x′|, x′)

|x − x′|
ρ∗(t − |x − x′| − |x′ − x′′|, x′′)

|x′ − x′′| d3x ′d3x ′′ ,∫
M

1

|x − x′|∂
′
j

ρ∗(t − |x − x′| − |x′ − x′′|, x′′)
|x′ − x′′|

× ∂ ′
k

ρ∗(t − |x − x′| − |x′ − x′′′|, x′′′)
|x′ − x′′′| d3x ′d3x ′′d3x ′′′ ;

these expressions are the fully retarded analogues ofU ,
∫

ρ ′∗U ′|x − x′|−1d3x ′, andχ jk , respectively.
Such potentials lead to hopeless complications. Even a relatively simple potential, such as thefirst one listed

above, leads todifficult computationsbecauseof theneed toaccount for the retardation condition. Examples of
such complexities are known in Maxwell’s theory, in which the evaluation of the retarded potential is difficult
even for the simple case of a single point charge (remember the Liénard–Wiechert potentials?). The non-
linear potentials are even more challenging, as they involve nested retardation conditions; such potentials do
not occur in electromagnetism, because of the linearity of Maxwell’s equations.
In the early 1960s, PeterHavas and JoshuaGoldberg, togetherwith their students and collaborators,worked

on post-Minkowskian theory in order to study gravitational radiation, but they chose not to incorporate the
slow-motion condition. Very quickly they ran into the difficulties noted above, and as a result, they were
unable to go beyond the first iteration of the relaxed field equations. And even for the first-iterated po-
tentials, they were able to evaluate quantities like the retarded Newtonian potential only for specific mo-
tions, such as circular orbits, where mathematical techniques from electrodynamics were available. In the
1970s, Havas’s student Arnold Rosenblum worked on obtaining the second iteration, but progress was ex-
tremely slow, andhis untimely death in 1991 essentially brought this program to an endwithout any definitive
conclusion.

7.4 Second iteration: Wave zone

Our final task in this chapter is to obtain expressions for the second-iterated potentials when
the field point x is in the wave zone, where r := |x| > R.

7.4.1 Near-zone contribution to potentials

Equations (7.32) give us formal expressions for the potentials hαβ

N evaluated in the wave
zone. Recalling our discussion of Sec. 7.2.3, in which we observed that each successive
multipole moment brings an additional factor of vc/c to the post-Newtonian ordering,
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we have that

h00
N = 4G M

c2r︸ ︷︷ ︸
0+1pn

+ 2G

c2
∂ jk

[I jk(τ )

r

]
︸ ︷︷ ︸

1pn

− 2G

3c2
∂ jkn

[I jkn(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107a)

h0 j
N = − 2G

c3

(n × J) j

r2︸ ︷︷ ︸
1pn

− 2G

c3
∂k

[
İ jk(τ )

r

]
︸ ︷︷ ︸

1pn

− G

3c3
∂kn

[
İ jkn(τ ) − 2εmjkJ mn(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107b)

h jk
N = 2G

c4

Ï jk(τ )

r︸ ︷︷ ︸
1pn

− 2G

3c4
∂n

[
Ï jkn(τ ) + 4εmn( j J̇ m|k)(τ )

r

]
︸ ︷︷ ︸

1.5pn

+ · · · , (7.107c)

is a post-Newtonian expansion of the potentials that is accurate through 1.5pn order.
Recalling Eq. (7.67), we have replaced the monopole moment I = M0 – the near-zone
mass – that originally appeared in Eq. (7.32) with the total mass M , since they agree to
order c−4. We recall that M is given by Eq. (7.63), so that it contains both a 0pn rest-
mass contribution and 1pn corrections provided by the system’s total energy. We have also
replaced the near-zone angular momentum J0 by the total angular momentum J , since
these quantities agree to order c−2.

The multipole moments that appear in Eqs. (7.107) are all functions of retarded time
τ = t − r/c. Formally they must be evaluated using the first-iterated forms τ

αβ

1 for the
energy-momentum pseudotensor, but since the multipole moments occur at 1pn and 1.5pn

orders in the potentials, we may truncate τ
αβ

1 to its leading-order expression c−2τ 00 =
ρ∗ + O(c−2) and c−1τ 0 j = ρ∗v j + O(c−2). The multipole moments then take the explicit
forms

I jk(τ ) =
∫

ρ∗x j xk d3x + O(c−2) , (7.108a)

I jkn(τ ) =
∫

ρ∗x j xk xn d3x + O(c−2) , (7.108b)

J jk(τ ) = ε jab

∫
ρ∗va xbxk d3x + O(c−2) . (7.108c)

With these, our expressions for hαβ

N are complete.

7.4.2 Wave-zone contribution to potentials

We turn next to the computation of hαβ

W in the wave zone. To carry this out we in-
sert the first-iterated potentials obtained in Sec. 7.2.3 within τ

αβ

1 , and solve the re-
laxed field equations for the second-iterated potentials. By virtue of Eq. (7.52), only the



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

363 7.4 Second iteration: Wave zone

Landau–Lifshitz pseudotensor of Eq. (7.48) makes a contribution to τ
αβ

1 . And by virtue of
our requirement of 1.5pn overall accuracy for the potentials, we find that the only relevant
piece of the first-iterated potentials is the Newtonian term in h00

W , given by

h00
W = 4G M

c2r
+ O(c−4) . (7.109)

Inserting this within Eq. (7.48), we find that the components of the energy-momentum
pseudotensor are

τ 00
1 = −7G M2

8πr4
+ O(c−2) , (7.110a)

τ
0 j
1 = O(c−3) , (7.110b)

τ
jk

1 = G M2

4πr4

(
n j nk − 1

2
δ jk

)
, (7.110c)

in which n j := x j /r .
To obtain hαβ

W we rely on the methods of Sec. 6.3.5, which work for source terms of the
form displayed in Eq. (6.98). Our first task is to decompose the effective stress tensor of
Eq. (7.110c) in terms of STF angular tensors, refer to Sec. 1.5.3. We invoke the identity
n j nk = n〈 jk〉 + 1

3 δ jk and rewrite Eq. (7.110c) as

τ
jk

1 = G

4π

M2

r4

(
n〈 jk〉 − 1

6
δ jk

)
. (7.111)

This and Eq. (7.110a) are now of the form of Eq. (7.19), and we identify f 00
�=0 with − 7

2 G M2,

f jk
�=2 with G M2, and f jk

�=0 with − 1
6 G M2δ jk . In each case we have that n = 4.

The contribution to hαβ

W from each value of � is given by Eq. (6.105), which we copy
here as

hαβ

W (t, x) = 4G

c4

n〈L〉

r

{∫ R

0
ds f αβ(τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f αβ(τ − 2s/c)B(s, r )

}
,

(7.112)

in which A(s, r ) = ∫ r+s
R P�(ξ )p−(n−1) dp, B(s, r ) = ∫ r+s

s P�(ξ )p−(n−1) dp, and ξ = (r +
2s)/r − 2s(r + s)/(r p). Because f αβ is a constant, it can be taken outside of each integral,
and the remaining computations are simple. For � = 0 we get

h00
W = 7

(
G M

c2r

)2(
1 − 2

r

R

)
, (7.113a)

h jk
W = 1

3

(
G M

c2r

)2

δ jk

(
1 − 2

r

R

)
, (7.113b)

and for � = 2

h jk
W =

(
G M

c2r

)2

n〈 jk〉
(

1 − 4R
5r

)
. (7.114)
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Discarding all terms involving R, as we are free to do, and adding the results, we arrive at

h00
W = 7

(
G M

c2r

)2

, (7.115a)

h jk
W =

(
G M

c2r

)2

n j nk . (7.115b)

The post-Newtonian order of these contributions to h00 and h jk is 1.5pn. To see this, we
divide each of these expressions by h00 ∼ G M/(c2r ) to obtain something proportional to
G M/(c2r ). We next incorporate the fact that the Newtonian acceleration G M/r2

c is of order
rc/t2

c , which makes G M of order r3
c /t2

c . Setting r ∼ λc = ctc, we finally get hαβ

W /h00 ∼
r3

c /(c3t3
c ) = (vc/c)3, and conclude that Eqs. (7.115) do indeed make contributions of 1.5pn

order to the gravitational potentials.
We pull everything together and summarize our results in Box 7.7. It is instructive to note

that in the limit of a static, spherically symmetric body, the results correspond precisely to
the post-Newtonian expansion of the Schwarzschild metric. This statement is established
in Exercise 7.7.

Box 7.7 Wave-zone fields

Combining Eqs. (7.107) and (7.115), we find that the wave-zone gravitational potentials are given by

h00 = 4G

c2

[
M

r
+ 1

2
∂ jk

(I jk

r

)
− 1

6
∂ jkn

(I jkn

r

)
+ 7

4

G M2

c2r2
+ · · ·

]
,

h0 j = 4G

c3

[
−1

2

(n × J) j

r2
− 1

2
∂k

( İ jk

r

)
− 1

12
∂kn

( İ jkn − 2εmjkJ mn

r

)
+ · · ·

]
,

h jk = 4G

c4

[
1

2

Ï jk

r
− 1

6
∂n

( Ï jkn + 2εmnj J̇ mk + 2εmnkJ̇ mj

r

)
+ G M2

4r2
n j nk + · · ·

]
.

The potentials are expressed in terms of n j = x j/r , and in terms of multipole moments that depend on
retarded time τ = t − r/c; overdots indicate differentiation with respect to τ . In h00 the mass term con-
tains 0pn and 1pn contributions, the quadrupole term is a 1pn contribution, and the octupole and M2

terms are 1.5pn contributions. The first two terms in h0 j are 1pn contributions, while the rest are 1.5pn.
And finally, the quadrupole term in h jk is a 1pn contribution, while the remaining terms are all 1.5pn

contributions.
We have the total gravitational mass

M =
∫

ρ∗
[

1 + 1

c2

(
1

2
v2 − 1

2
U + �

)]
d3x + O(c−4),

the total angular momentum

J =
∫

ρ∗x × v d3x + O(c−2) ,
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and the mass and current multipole moments

I jk(τ ) =
∫

ρ∗x j xk d3x + O(c−2) ,

I jkn(τ ) =
∫

ρ∗x j xk xn d3x + O(c−2) ,

J jk(τ ) = ε jab
∫

ρ∗xavbxk d3x + O(c−2) .

We recall that M and J are conserved quantities. The gravitational potentials are evaluated in the center-of-
mass frame, in which the total momentum P and center-of-mass position R are set equal to zero.
The multipole moments must be differentiated a number of times before they are inserted within the

gravitational potentials. These operations are aided by the identity

Ḟ =
∫

ρ∗ d f

dt
d3x ,

where F(t) := ∫
ρ∗(t, x) f (t, x) d3x and d f/dt = ∂t f + v j∂ j f ; this is established on the

basis of the continuity equation ∂tρ
∗ + ∂ j (ρ∗v j ) = 0, as shown back in Sec. 1.4.3. The terms involving

dv/dt are handled by invoking Euler’s equationρ∗(dv j/dt) = ρ∗∂ jU − ∂ j p + O(c−2), which
was shown in Sec. 7.3.2 to be a consequence of energy-momentum conservation.
In the far-away wave zone, where r � λc , the gravitational potentials reduce to

h00 = 4G

c2r

[
M + 1

2c2
Ï jkn j nk + 1

6c3

...
I jknn j nknn + · · ·

]
,

h0 j = 4G

c3r

[
1

2c
Ï jknk + 1

12c3

(
...
I jkn − 2εmjkJ̈ mn

)
nknn + · · ·

]
,

h jk = 4G

c4r

[
1

2
Ï jk + 1

6c

(...
I jkn + 2εmnj J̈ mk + 2εmnkJ̈ mj

)
nn + · · ·

]
.

The time-dependent piece of hαβ is dominated by the quadrupole moment of the mass distribution.

7.5 Bibliographical notes

The implementation of post-Minkowskian theory presented in this chapter is based on the
DIRE approach (Direct Integration of the Relaxed Einstein equations) of Will and Wiseman
(1996) and Pati and Will (2000 and 2001).

The fast-motion implementation of the theory reviewed in Box. 7.6 was attempted
by Goldberg, Havas, Rosenblum, and coworkers. Representative papers are Havas and
Goldberg (1962), Smith and Havas (1965), and Rosenblum (1978).



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-07 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:51

366 Post-Minkowskian theory: Implementation

7.6 Exercises

7.1 Show that in Eq. (7.13), the second term in the retarded expansion of h00
N is given by

the surface integral

δh00
N = 4G

c4

∮
∂M

τ 0 j d S j .

Using the first term of Eq. (7.48b) to estimate τ 0 j in the wave zone, and taking the
monopole and quadrupole contributions to h00 from Box 7.7, show that

δh00
N ∼ G2

c10

...
I jk ...

I jk

after discarding terms that depend on the cutoff radius R. Show that this makes a
contribution to h00 at 4pn order.

7.2 Verify the identities of Eqs. (7.14). Using these, verify that the odd-order terms in
Eq. (7.12) take the forms displayed in Eqs. (7.15), modulo surface terms.

7.3 In this problem we prove that at first post-Newtonian order, the integral of Eq. (7.59)
defining the total mass M is insensitive to the wave-zone aspects of the integrand. To
show this, decompose the integral into a near-zone portion r < R and a wave zone
portion r > R. Show that the ∂ j (U∂ jU ) term in the energy-momentum pseudotensor
makes a contribution

�Mnear = 7G

2c2

M2

R
to the near-zone integral. Next, use the expression of Eq. (7.110) to show that the
wave-zone contribution to the mass is given by

�Mwave = − 7G

2c2

M2

R .

Conclude that these contributions cancel out, and that the wave-zone portion of the
integral makes no essential contribution to the mass.

7.4 As we saw in Sec. 7.3.3, the Poisson equation ∇2 f = ∇2g has the solution

f = g − 1

4π

∮
∂M

(
∂ ′ j g′

|x − x′| − g′∂ ′
j

1

|x − x′|
)

d S′
j .

Show that the surface term satisfies Laplace’s equation for any point x within the
near zone.

7.5 Consider the superduperpotential of ρ∗, defined by

Y (t, x) := G

∫
ρ∗(t, x′)|x − x′|3 d3x ′ .

(a) Show that ∇2Y = 12X , where X is the superpotential.
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(b) Following the method of Box 7.3, show that the solution to ∇2Y = 12X can be
expressed as

Y (t, x) = G

∫
ρ∗(t, y)K (x; y) d3 y + Y0(t, x),

in terms of a two-point function K that satisfies ∇2 K = 12|x − y|; Y0 is a
solution to Laplace’s equation.

(c) Calculate the two-point function, and determine Y0 so that your answer for Y
agrees with its starting definition.

7.6 Show that the quadrupole-moment piece of the wave-zone potential h00 in Box 7.7 is
given explicitly by

2G

c2

(
1

c2r
Ï jk + 3

cr2
İ〈 jk〉 + 3

r3
I〈 jk〉

)
n j nk .

7.7 For a static, spherically-symmetric source, show that the wave-zone potentials given
in Box 7.7 reduce to

h00 = 4G M

c2r
+ 7

(
G M

c2r

)2

+ · · · ,

h0 j = 0 ,

h jk =
(

G M

c2r

)2

n j nk + · · ·

Verify that this corresponds to the post-Newtonian expansion of the Schwarzschild
metric in harmonic coordinates.

7.8 The total mass of a gravitating system is defined by the integral

M = 1

c2

∫
(−g)

(
T 00 + t00

LL

)
d3x .

But the mass parameter that appears in the leading-order contribution to h00 in the
wave zone is

M0 = 1

c2

∫
M

(−g)
(
T 00 + t00

LL + t00
H

)
d3x .

Both masses satisfy a conservation law, because ∂β[(−g)tαβ

H ] = 0 identically. This
problem explores whether (−g)t00

H makes a contribution to the value of the mass.
(a) Defining t̃αβ

H := (16πG/c4)(−g)tαβ

H = ∂μhαν∂νhβμ − hμν∂μνhαβ , and using the
harmonic gauge condition ∂βhαβ = 0, show that

t̃αβ

H = 2∂0hα0∂0hβ0 + 2h0(α∂2
0 hβ)0 − h00∂2

0 hαβ

− 2∂0h00∂0hαβ − hαβ∂2
0 h00 + ∂ j f jαβ ,
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where

f jαβ := 2h0(α∂0hβ) j + hk(α∂khβ) j + h j(α∂0hβ)0

− 2h0 j ∂0hαβ − h jk∂khαβ − ∂0h0 j hαβ .

(b) Using this expression, show that the contribution of the harmonic energy-
momentum pseudotensor to a near-zone momentum

Pα
0 := 1

c

∫
M

τα0 d3x

and a near-zone angular momentum

J αβ

0 := 2

c

∫
M

x [ατβ]0 d3x

comes from integrals over the surface bounding the domain of integration.
(c) Show that f j00 = ∂k(h0 j h0k − h00h jk).
(d) Using the wave-zone form of the potentials from Box 7.7, and keeping only terms

that are independent of the cutoff radius R, show that M and M0 are related by

M = M0 − 2

3

G M0

c5

...
I kk(τ ) + O(c−7) .

Show that the second term is a correction of order (vc/c)5 relative to the first
term.

7.9 This problem explores how to solve the Landau–Lifshitz formulation of the Einstein
field equations for the Schwarzschild geometry.
(a) Assuming static spherical symmetry, show that the general form of the gothic

inverse metric in Cartesian coordinates can be written in the form

g00 = N (r ) ,

g0 j = 0 ,

g jk = α(r )P jk + β(r )n j nk ,

where N , α and β are arbitrary functions of r , n j is a radial unit vector, and
P jk := δ jk − n j nk .

(b) Show that gαβ is given by g00 = N−1, g jk = α−1 P jk + β−1n j nk , and that g :=
det[gαβ] = Nα2β.

(c) Show that the imposition of the harmonic gauge condition leads to the constraint

β ′ = 2

r
(α − β) ,

where a prime indicates differentiation with respect to r . Recall that ∂ j F(r ) =
F ′(r )n j , and ∂ j nk = r−1 P jk .
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(d) Show that the three field equations that arise from the vacuum wave equation
�gαβ = (16πG/c4)ταβ in harmonic coordinates have the form

X ′ + XY + 1

r
(2X − Y ) = Q ,

XY + 1

r
(2X + Y ) = −Q ,

Z ′ + Y Z + 2

r
Z = Q ,

where

X := α′

α
, Y := β ′

β
, Z := N ′

N
,

and

Q := 1

8

(
3Y 2 − Z2 + 2Y Z + 4X Z − 4XY

)
.

Hint: One equation comes from the 00 component of the field equations, the
other two come from splitting the jk components into a piece proportional to
n j nk and another piece proportional to P jk . Use the gauge condition to simplify
your expressions.

(e) By combining the first two field equations, obtain the solutions

X = 0 or r4β2 X = c ,

where c 	= 0 is a constant.
(f) Choosing the solution X = 0, show that the solutions for α and β that satisfy

appropriate asymptotic conditions at r = ∞ are

α = 1 , β = 1 − a

r2
,

where a is an arbitrary constant. Find the solution for N , determine a, and verify
that the result is the Schwarzschild metric in harmonic coordinates.

(g) What is your interpretation of the second class of solutions, represented by a non-
zero value of c? Show that by combining the equation r4β2 X = c with the gauge
condition, you can eliminate α and obtain the following differential equation for
β:

W ′′ − W ′

r
= c

W ′

W 2
,

where W := r2β. Spend some time (but not too much!) trying to find a closed
form solution to this non-linear equation. (If you find one, please send it to us!)

7.10 Consider the harmonic gauge condition of Eq. (5.175), �g X (μ) = 0, which is a
scalar wave equation for the four scalar fields T , X , Y and Z . Using the metric in
Schwarzschild coordinates to calculate the operator �g , and defining T := t , X :=
rh(r ) sin θ cos φ, Y := rh(r ) sin θ sin φ, and Z := rh(r ) cos θ , show that the harmonic
condition reduces to a single differential equation for rh(r ), a Legendre equation
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of degree � = 1. Show that the solution that satisfies the condition that rh → r as
r → ∞ is given by

rh = r − 1

2
R + b

[(
r − 1

2
R
)

ln
(

1 − R

r

)
+ R

]
,

where R = 2G M/c2 and b is an arbitrary constant. What do you conclude about the
uniqueness of harmonic coordinates? (We encounter this question again in Sec. 11.1.5,
in the context of gravitational waves.) Is there a link between this and the second
class of solutions in part (g) of the previous problem?
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8 Post-Newtonian theory: Fundamentals

Post-Newtonian theory is the theory of weak-field gravity within the near zone, and of
the slowly moving systems that generate it and respond to it. It was first encountered in
Chapter 7, where it was embedded within the post-Minkowskian approximation; the idea
relies on the slow-motion condition introduced in Sec. 6.3.2. But while post-Minkowskian
theory deals with both the near and wave zone, here we focus exclusively on the near zone.
In this chapter we develop the post-Newtonian theory systematically.

We begin in Sec. 8.1 by collecting the main ingredients obtained in Chapter 7, including
the near-zone metric to 1pn order and the matter’s energy-momentum tensor T αβ . In Sec. 8.2
we present an alternative derivation of the post-Newtonian metric, based on the Einstein
equations in their standard form; this is the “classic approach” to post-Newtonian theory,
adopted by Einstein, Infeld, and Hoffmann in the 1930s, and by Fock, Chandrasekhar,
and others in the 1960s. Although it produces the same results, we will see that the
classic approach presents us with a number of ambiguities that are not present in the post-
Minkowskian approach. In Sec. 8.3 we explore the coordinate freedom of post-Newtonian
theory, and construct the most general transformation that preserves the post-Newtonian
expansion of the metric. And in Sec. 8.4 we derive the laws of fluid dynamics in post-
Newtonian theory; these will be applied to the motion of an N -body system in Chapter 9.

8.1 Equations of post-Newtonian theory

8.1.1 Post-Newtonian metric

We restrict our attention to a matter distribution that is subjected to a slow-motion condition
of the sort first considered in Sec. 6.3.2. The distribution is characterized by a length scale
rc and a time scale tc, and these give us the characteristic velocity vc := rc/tc. We assume
that this is much smaller than the speed of light,

vc/c � 1, (8.1)

and this defines what we mean by the slow-motion condition: all speeds within the matter
distribution (such as the speed of sound within a body, or the speed of the body as a whole)
shall be small compared with the speed of light. If λc := ctc is a characteristic wavelength
of the gravitational radiation produced by the matter distribution, then Eq. (8.1) states that
rc � λc. The region of space occupied by the matter is therefore small compared with

371
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the characteristic wavelength; the matter is situated deep within the near-zone region of
spacetime, defined by r := |x| � λc.

Incorporating these assumptions, focusing on field points within the near zone, and
carrying out two iterations of the relaxed field equations, we obtained the spacetime metric
of a post-Newtonian system back in Sec. 7.3. The metric is displayed in Eq. (7.105), and
we reproduce it here:

g00 = −1 + 2

c2
U + 2

c4

(
# − U 2

) + O(c−6) , (8.2a)

g0 j = − 4

c3
U j + O(c−5) , (8.2b)

g jk = δ jk

(
1 + 2

c2
U

)
+ O(c−4) , (8.2c)

where

# := ψ + 1

2
∂t t X . (8.3)

The potentials that appear in the metric are defined by

U (t, x) := G

∫
ρ∗′

|x − x′| d3x ′ , (8.4a)

ψ(t, x) := G

∫
ρ∗′( 3

2 v′2 − U ′ + �′ + 3p′/ρ∗′)
|x − x′| d3x ′ , (8.4b)

X (t, x) := G

∫
ρ∗′|x − x′| d3x ′ , (8.4c)

U j (t, x) := G

∫
ρ∗′v′ j

|x − x′| d3x ′ , (8.4d)

in which the primed fluid variables are evaluated at time t and position x′; these are
determined by the equations of fluid dynamics to be derived in Sec. 8.4. As in the Newtonian
theory, the dynamics of the fluid and the dynamics of the gravitational field are intimately
coupled to each other. It should be noted that the potentials of Eqs. (8.4) are all instantaneous
potentials: their profile at time t depends on the state of the system at the same time. The
metric, however, does incorporate retardation effects that arise from solving the wave
equation for the gravitational potentials hαβ ; these are captured by the superpotential term
∂t t X in g00, which appears when h00 is expanded in powers of c−2 within the near zone.

The post-Newtonian metric makes a good approximation to the true spacetime metric
in the near zone only; the approximation is not valid beyond r = λc. The reason for this
limitation has already been invoked in Box 6.6. It has to do with the fact that while the
behavior of the metric in the near zone is directly tied to the behavior of the matter, so that
the metric varies slowly when the matter moves slowly, this is not so in the wave zone,
where the radiative behavior of the metric asserts itself. Mathematically, the slow behavior
of the metric in the near zone is expressed by the equation

∂0gαβ ∼ vc

c
∂ j gαβ, (8.5)
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which states that derivatives with respect to x0 := ct are smaller than spatial derivatives by
a factor of order vc/c � 1. If we imagine, for example, a matter distribution that consists
of N isolated bodies with positions r A(t), then the metric will depend on time through the
N position vectors, and temporal derivatives will be generated by spatial differentiation
followed by differentiation of r A(t) with respect to time; and we see that these operations
do indeed bring out the additional factors of vc/c. The situation is very different in the wave
zone, because of the radiative nature of the metric when r > λc. Here the characteristic
velocity of the field becomes the speed of light, and it is no longer related to the matter’s
velocity scale. As a result, ∂0gαβ is of the same order of magnitude as the spatial derivatives,
and the slow-motion condition no longer has the same effect on the behavior of the metric.

8.1.2 Energy-momentum tensor

The metric of Eq. (8.2) was constructed from potentials hαβ

2 obtained after two iterations
of the relaxed Einstein equations. These potentials can then be involved in a computation
of τ

αβ

2 , the effective energy-momentum pseudotensor, which can be substituted into the
conservation statement ∂βτ

αβ

2 = 0 to obtain the system’s equations of motion. But since
this conservation statement is formally equivalent to the covariant expression of energy-
momentum conservation, ∇β T αβ = 0, an alternative method to obtain the equations of
motion is to compute T αβ to the required degree of accuracy, and to insert it within the
covariant equation. This alternative method turns out to be simpler to implement than the
original one involving τ

αβ

2 .
This program will be implemented in Sec. 8.4. In preparation for this discussion, we now

compute T αβ to the required post-Newtonian order. We recall that

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ , (8.6)

that ρ = ρ∗(1 − v2/2c2 − 3U/c2) + O(c−4) and that uα = γ (c, v), with γ := u0/c = 1 +
v2/2c2 + U/c2 + O(c−4). These relations give us

c−2T 00 = ρ∗
[

1 + 1

c2

(1

2
v2 − U + �

)]
+ O(c−4) , (8.7a)

c−1T 0 j = ρ∗v j

[
1 + 1

c2

(1

2
v2 − U + � + p/ρ∗

)]
+ O(c−4) , (8.7b)

T jk = ρ∗v j vk

[
1 + 1

c2

(1

2
v2 − U + � + p/ρ∗

)]
+ p

(
1 − 2

c2
U

)
δ jk

+ O(c−4) , (8.7c)

where � := ε/ρ∗. Note that T 00 is expanded to order c0, T 0 j to order c−1, and T jk to order
c−2. The metric, on the other hand, is expanded to order c−4 for g00, c−3 for g0 j , and c−2 for
g jk . As expressed here, the components of the energy-momentum tensor follow a reversed
hierarchy of post-Newtonian orders compared to the components of the metric. The reason
for this is that each component of the energy-momentum tensor must contain a leading-
order piece and a post-Newtonian correction if it is to yield useful information at 1pn order.
This is because the components will be inserted within the conservation equations, which
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take the schematic form c−1∂t T α0 ≈ −∂k T αk ; while the leading-order pieces will deliver
the system’s Newtonian dynamics, it is the post-Newtonian corrections that will deliver the
post-Newtonian dynamics.

8.1.3 Auxiliary potentials

For future reference we list here a number of post-Newtonian potentials that can also be
associated with a perfect fluid; some appear in the potential ψ , while others will be used
later in this chapter:

�1 := G

∫
ρ∗′v′2

|x − x′| d3x ′ , (8.8a)

�2 := G

∫
ρ∗′U ′

|x − x′| d3x ′ , (8.8b)

�3 := G

∫
ρ∗′�′

|x − x′| d3x ′ , (8.8c)

�4 := G

∫
p′

|x − x′| d3x ′ , (8.8d)

�5 := G

∫
ρ∗′∂ j ′U ′ (x − x ′) j

|x − x′| d3x ′ , (8.8e)

�6 := G

∫
ρ∗′v′

jv
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ , (8.8f)

� j := G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ . (8.8g)

Again a primed variable such as ρ∗′ stands for ρ∗(t, x′), and ∂ j ′U ′ stands for the partial
derivative of U (t, x′) with respect to x ′ j .

Referring to Eq. (8.4b), we see immediately that

ψ = 3

2
�1 − �2 + �3 + 3�4 . (8.9)

In Sec. 8.4.4 we shall have occasion to prove that

∂t j X = � j − U j , (8.10a)

∂t t X = �1 + 2�4 − �5 − �6 . (8.10b)

Another useful identity is

∂ jk X = δ jkU − G

∫
ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ . (8.11)

This equation follows directly from the definition of the superpotential, and taking its trace
confirms that ∇2 X = 2U . Combining Eqs. (8.3), (8.9), and (8.10b), we arrive at

# = 2�1 − �2 + �3 + 4�4 − 1

2
�5 − 1

2
�6, (8.12)

a useful decomposition of the post-Newtonian potential # in terms of the auxiliary
potentials.
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8.1.4 Geodesic equations

To conclude this section we derive the form of the geodesic equation that governs the
motion of a test particle in the post-Newtonian spacetime. We examine both the case of
a test body that moves slowly (v/c � 1), and the case of a massless particle (such as a
photon) that moves rapidly (v/c � 1).

In either case the geodesic equation is

d2rα

dλ2
+ �α

βγ

drβ

dλ

drγ

dλ
= 0, (8.13)

in which rα(λ) describes the particle’s world line in spacetime; the parameter λ is proper
time τ in the case of a massive body, and an arbitrary affine parameter in the case of a
photon. For our purposes it is useful to alter the parameterization of the world line and adopt
the time coordinate t := x0/c instead of λ. There is a practical reason for this change: the
motion of a planet or spacecraft, or the trajectory of a light ray in space, is generally tracked
by an external observer who employs a clock that measures external time t instead of the
planet’s proper time λ; a description of the motion in terms of t is therefore much more
useful to this observer. (We shall return to this theme in Chapter 10, and give a more precise
description of the relation between t and the observer’s clock time.) A straightforward
application of the chain rule reveals that the geodesic equation becomes

dvα

dt
= −

(
�α

βγ − vα

c
�0

βγ

)
vβvγ (8.14)

when the world line is parameterized by t ; here vα := drα/dt = (c, v). The time component
of Eq. (8.14) returns 0 = 0, and the motion of the particle is completely determined by the
spatial components.

The Christoffel symbols required for the geodesic equation are obtained from Eq. (8.2),
which we insert into Eq. (5.34). We get

�0
00 = − 1

c3
∂tU + O(c−5) , (8.15a)

�0
0 j = − 1

c2
∂ jU + O(c−4) , (8.15b)

�0
jk = 2

c3

(
∂ jUk + ∂kU j

) + 1

c3
δ jk∂tU + O(c−5) , (8.15c)

�
j
00 = − 1

c2
∂ jU − 1

c4

(
4∂tU j + ∂ j # − 4U∂ jU

) + O(c−6) , (8.15d)

�
j
0k = 1

c3
δ jk∂tU − 2

c3

(
∂kU j − ∂ jUk

) + O(c−5) , (8.15e)

�
j
kn = 1

c2

(
δ jn∂kU + δ jk∂nU − δkn∂ jU

) + O(c−4) , (8.15f)

and making the substitution within Eq. (8.14), we obtain

dv j

dt
= ∂ jU + 1

c2

[
(v2 − 4U )∂ jU − (

4vk∂kU + 3∂tU
)
v j

− 4vk
(
∂ jUk − ∂kU j

) + 4∂tU j + ∂ j#

]
+ O(c−4) (8.16)
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when the particle is a massive body that moves slowly, so that v/c � 1. In the first term
we recognize the Newtonian acceleration field ∂ jU , and the remaining terms are post-
Newtonian corrections. The 1pn terms are suppressed by factors of order (v/c)2, vvc/c2,
or (vc/c)2, where v is the magnitude of the particle’s velocity, while vc is the characteristic
velocity scale of the matter distribution. For example ∂tU is of order vc relative to ∂ jU ,
and this is multiplied by v j /c2 in the equations of motion; the contribution is therefore of
order vvc/c2.

In the case of a photon we cannot take v to be much smaller than c, and the geodesic
equation permits an expansion in powers of vc/c only. The magnitude of v can be determined
from the lightlike condition gαβvαvβ = 0. To leading order in the post-Newtonian expansion
we find that (v/c)2 = 1 − 4U/c2, and this relation neglects terms of order vcU/c3. This
implies that v can be expressed as

v = c
(

1 − 2

c2
U
)

n + O(c−3), (8.17)

in terms of a unit vector n. This equation reveals that the coordinate velocity of a photon
deviates from c in curved spacetime. If we take v/c to be of order unity but continue to
treat vc/c as a small quantity, Eq. (8.14) produces

dv j

dt
=
(

1 + v2

c2

)
∂ jU − 4

c2
v j vk∂kU + O(c−3). (8.18)

The geodesic equation becomes

dn j

dt
= 2

c

(
δ jk − n j nk

)
∂kU + O(c−2) (8.19)

after making the substitution of Eq. (8.17). We note that the right-hand side of Eq. (8.19) is
orthogonal to n j ; this is as it should be, because n j dn j /dt = 1

2 d(n j n j )/dt = 0.

Box 8.1 Maxwell-like formulation of post-Newtonian theory

The main equations of post-Newtonian theory can be written in a form that displays a remarkable parallel
with the equations of electrodynamics. These consist of Maxwell’s equations,

∇ · E = 1

ε0
ρe,

∇ · B = 0,

∇ × E = −∂t B,

∇ × B = 1

c2

(
1

ε0
j e + ∂t E

)
,

which govern the behavior of the electric field E and magnetic field B in terms of the charge densityρe =
c−1 j0

e and the current density j e , and the Lorentz-force law

m
d(γ v)

dt
= q

(
E + v × B

)
,
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with γ = dt/dτ , which governs the behavior of a particle of mass m , charge q , and velocity v in the
electromagnetic field.
From the post-Newtonian metric (8.2), we first define a gravito-electric potential �g := − 1

2 c2(1 +
g00) = −U − c−2(� − U 2) + O(c−4) and a gravito-magnetic potential Ag with compo-
nents cg0 j = −4c−2U j + O(c−4). We next define a gravito-electric field Eg := −∇�g −
∂t Ag = ∇U + c−2(∇# − ∇U 2 + 4∂t U) and a gravito-magnetic field Bg := ∇ × Ag =
−4c−2∇ × U ; the relations between potentials and fields are the same as in electrodynamics. It is then
a simple matter to show that the field equations of post-Newtonian theory can be put in the Maxwell-like
form

∇̃ · Eg = −4πGρ∗
[

1 + 1

c2

(
3

2
v2 − 3U + � + 3p/ρ∗

)]
− 3

c2
∂t tU + O(c−4) ,

∇ · Bg = O(c−4) ,

∇ × Eg = −∂t Bg,

∇ × Bg = 4

c2

(
−4πGρ∗v + ∂t Eg

)
+ O(c−4) ,

where ∇̃ · Eg denotes a “curved-space” divergence (−g)−1/2∇[(−g)1/2 Eg], where −g = 1 +
2U/c2 + O(c−4) is the determinant of the post-Newtonian metric. It is also simple to show that the
geodesic equation acquires a Lorentz-like form

d(gsγ v)

dt
= γ

(
Eg + v × Bg + v2∇gs

)
+ O(c−4) , (1)

where gs := 1 + 2U/c2 is the coefficient of the spatial part of the pn metric, and γ := dt/dτ =
1 + c−2( 1

2v2 + U ) + O(c−4). This can be expressed in the more explicit form

d

dt

{[
1 + 1

c2

(1

2
v2 + 3U

)]
v

}
=
[

1 + 1

c2

(3

2
v2 − U

)]
Eg + v × Bg + O(c−4).

Apart from additional post-Newtonian terms, the equations are indeed remarkably similar to those of the
Maxwell–Lorentz theory, withρ∗ playing the role of the charge density,ρ∗v that of the current density, and
−4πG playing the role of the coupling constant 1/ε0.
There are, however, clear indications that gravity is different from electrodynamics. Apart from the addi-

tional post-Newtonian terms, themost important differences are seen in the sign of the coupling constant and
the factor of 4 in the∇ × Bg equation. The gravitational coupling constant−4πG is negative instead of
positive, reflecting the fact that in gravity, like charges attract instead of repel. The factor of 4 reminds us that
the gravitational potentials�g and Ag originate from a tensor (the metric) instead of a vector; in quantum
parlance we say that the graviton is a spin-2 particle, while the photon is a spin-1 particle. The Lorentz-like
equation would be identical to that of electrodynamics through O(c−2) were it not for the appearance of
the spatial part of themetric, represented by the factor gs and the extra factor ofγ on the right-hand-side of
Eq. (1), reflecting its true origin in the geodesic equation.
Nevertheless, the Maxwell-like formulation of the post-Newtonian approximation to Einstein’s equations

and the geodesic equation can be very useful in specific situations, particularly when some of the additional
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post-Newtonian terms can be neglected. This occurs, for example, when the fields are stationary, when non-
linear contributions (proportional to ρ∗U ) can be ignored, or when the velocity field inside the source is
particularly small. In such cases, solutions to the post-Newtonian equations can be imported with minimal
modifications fromelectrodynamics, alongwith theattached intuition. TheMaxwell-like formulationhasbeen
used to study everything from laboratory and space experiments to test general relativity to the behavior of
matter around rotating black holes.

8.2 Classic approach to post-Newtonian theory

Before we proceed with our exploration of post-Newtonian theory, it is instructive to provide
an alternative derivation of the metric based on the standard formulation of the Einstein
field equations instead of the Landau–Lifshitz formulation reviewed in Chapter 6. We refer
to this derivation as the classic approach to post-Newtonian theory, and our quick survey
will reveal some of the ambiguities and conceptual difficulties associated with it. The
modern approach to post-Newtonian theory, based on its post-Minkowskian foundation, is
completely free of such ambiguities and conceptual difficulties.

We begin by postulating a form of the metric to 1pn order:

g00 = −1 + 2

c2
U + 2

c4

(
# − U 2

) + O(c−6), (8.20a)

g0 j = − 4

c3
U j + O(c−5), (8.20b)

g jk =
(

1 + 2

c2
U

)
δ jk + O(c−4), (8.20c)

where U , U j , and # are gravitational potentials to be determined. The term of order c−2 in
g00 is a Newtonian term. The terms of order c−4 in g00, c−3 in g0 j , and c−2 in g jk are post-
Newtonian terms. The insertion of U 2 within g00 simplifies the form of the field equations.
A blind post-Newtonian expansion of g jk would introduce a general tensorial potential U jk

instead of the specific expression Uδ jk that involves the same potential U as in g00. To keep
the algebra simple, we anticipate the result of an integration of the Einstein field equations
at lowest order, which reveals that indeed, U jk must be equal to Uδ jk . (In fact, we have
reached this conclusion already in Sec. 5.5, when we studied the linearized approximation of
general relativity.) We impose a harmonic coordinate condition, as displayed in Eq. (6.47);
this reduces to

∂tU + ∂ jU
j = 0 (8.21)

at the required post-Newtonian order. Again we state that at the outset, U , U j , and # are
unknown functions to be determined by the field equations; apart from our assumption
regarding the tensorial potential, there is no loss of generality in Eq. (8.20).
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The standard formulation of the Einstein field equations is Gαβ = (8πG/c4)Tαβ , and
recalling the definition of the Einstein tensor from Eq. (5.71), this is

Rαβ − 1

2
Rgαβ = 8πG

c4
Tαβ, (8.22)

in which Rαβ is the Ricci tensor and R := gαβ Rαβ the Ricci scalar. Taking the trace yields
R = −(8πG/c4)T , in which T := gαβ Rαβ , and making the substitution back in the field
equations produces

Rαβ = 8πG

c4
T̄αβ, (8.23)

in which T̄αβ := Tαβ − 1
2 T gαβ is the “trace-reversed” energy-momentum tensor. This form

of the field equations is our starting point for the determination of the potentials U , U j ,
and #. It is advantageous because the computation of the Ricci tensor from the metric
of Eq. (8.20) is relatively straightforward. The computation of the Einstein tensor would
require additional steps and make the entire task more tedious.

A straightforward calculation using the Christoffel symbols of Eqs. (8.15) reveals that
the components of the Ricci tensor are

R00 = − 1

c2
∇2U + 1

c4

(
∂t tU + 4U∇2U − ∇2#

) + O(c−6) , (8.24a)

R0 j = 2

c3
∇2U j + O(c−5) , (8.24b)

R jk = − 1

c2
∇2Uδ jk + O(c−4) . (8.24c)

We have used Eq. (8.21) to eliminate terms involving ∂ jU j in favor of terms involving ∂tU .
Importing the components of the energy-momentum tensor from Eq. (8.7), we have that

T00 = ρ∗c2

[
1 + 1

c2

(1

2
v2 − 5U + �

)]
+ O(c−2) , (8.25a)

T0 j = −ρ∗v j c + O(c−1) , (8.25b)

Tjk = ρ∗v j vk + p δ jk + O(c−2), (8.25c)

to the required post-Newtonian order. To leading order this produces T̄00 = 1
2 ρ∗c2 + O(1),

and the c−2 piece of the 00 component of the field equations yields

∇2U = −4πGρ∗ . (8.26)

We conclude that as expected, U is the standard Newtonian potential defined by Eq. (8.4).
Also to leading order, T̄ jk = 1

2 δ jkρ
∗c2 + O(1), and we see that the c−2 piece of the jk

components of the field equations is automatically satisfied; this validates our assumed
form for the spatial part of the metric. The c−3 piece of the 0 j components of the field
equations yields

∇2U j = −4πGρ∗v j , (8.27)
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and U j is the standard vector potential as defined by Eq. (8.4). Finally, the c−4 piece of the
00 component of the field equations yields

∂t tU + 4U∇2U − ∇2# = 4πGρ∗
(

3

2
v2 − 5U + � + 3p

ρ∗

)
. (8.28)

This is a Poisson equation for #, and after substituting ∇2U = −4πGρ∗ on the left-hand
side and rearranging, we see that # is given by

# = ψ + 1

2
∂t t F , (8.29)

with ψ and F required to satisfy

∇2ψ = −4πGρ∗
(

3

2
v2 − U + � + 3p

ρ∗

)
, (8.30)

and

∇2 F = 2U . (8.31)

The solution to Eq. (8.30) is evidently the potential defined by Eq. (8.4b).
To identify the solution to Eq. (8.31) requires a more careful discussion, because the

source term 2U is not limited to the region occupied by the matter distribution; it is
distributed over all space. This discussion has already been provided in Box. 7.3, where it
was shown that the general solution is given by

F = X − 2mR + F0, (8.32)

in which X (t, x) is the standard superpotential as displayed in Eq. (8.4), m := ∫
ρ∗ d3x is

the total rest-mass of the fluid system, R is a constant length, and F0(t, x) is a solution to
Laplace’s equation. Demanding that F0 does not depend on time implies that ∂t t F = ∂t t X ,
so that # = ψ + ∂t t X as required by Eq. (8.3). Choosing F0 = 2mR returns the stronger
equality F = X , yielding the same expression for #.

The preceding discussion indicates that when appropriate choices are made, the solution
to Eq. (8.31) returns the correct expression for #, as given by Eq. (8.3). The main question
that arises is: which guiding principle can be invoked to justify the choices made to specify
this solution? The answer is simply that no such principle exists within the strict context
of the classic approach to post-Newtonian theory; the ambiguities associated with F can
only be resolved with ad hoc choices. For a more satisfying resolution, one must turn to the
modern approach and its post-Minkowskian foundation.

In the classic approach, the superpotential arises as a particular solution to ∇2 F =
2U , and the choice of solution is ambiguous because U extends over all space. (The
potentials U , U j , and ψ do not share this ambiguity, because their source terms are
tied to the matter distribution.) In the modern approach, the superpotential arises in an
expansion of h00 in powers of c−1 in the near zone, and it is fundamentally defined as the
integral

∫
ρ∗′|x − x′| d3x ′; the Poisson equation follows as a consequence of this definition.

The advantages of the modern approach should be clear. First, the post-Minkowskian
foundation provides a clear restriction of the post-Newtonian metric to the near zone,
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while no such restriction is immediately apparent in the classic approach. Second, while the
classic approach features Poisson equations with ambiguous solutions, the modern approach
defines all potentials in terms of near-zone integrals that are devoid of ambiguities.

A third advantage is concerned with the incorporation of retardation effects in the post-
Newtonian metric. Our experience with post-Minkowskian theory allows us to locate the
retardation in the ∂t t X term, but we would be hard pressed to provide this understanding
if we were only familiar with the classic approach. Indeed, because the classic approach
defines each potential in terms of a Poisson equation, each potential will necessarily be
instantaneous, and the retardation effects will be implicit and hidden from view. There is
actually a deeper problem that is revealed at higher post-Newtonian orders. A systematic
development of the classic approach to higher orders would continue to introduce potentials
that satisfy Poisson equations, and the ambiguities would pile up. In particular, it would
quickly become unclear how to impose a condition that the metric should describe outgoing
gravitational waves at infinity. Because the post-Newtonian expansion is necessarily limited
to the near-zone region of space, the wave zone is inaccessible, and the boundary conditions
cannot be formulated in a clean way. In the modern approach, the post-Minkowskian
formulation of the problem is based on wave equations instead of Poisson equations, and
the selection of retarded solutions ensures that the waves are properly outgoing in the
wave zone. It is this specific choice of solution that provides the retardation and makes the
near-zone metric completely unambiguous.

In his sequence of papers on post-Newtonian hydrodynamics written between 1964 and
1969, Chandrasekhar employed the classic approach outlined in this section to derive the
metric and the equations of motion. Working with his student Yavuz Nutku, he continued
to employ this method to obtain the 2pn equations of hydrodynamics. But when it came
time in 1970 to move on to the 2.5pn equations of motion, an order at which the selection
of outgoing-wave boundary conditions is essential, Chandra and his student Paul Esposito
finally recognized the limitations described here. They converted to the modern approach.

8.3 Coordinate transformations

8.3.1 Introduction

In this section we explore the freedom that post-Newtonian theory possesses to perform
coordinate transformations that preserve the post-Newtonian ordering of the metric. We
wish to find the most general class of transformations

t = t(t̄, x̄ j ), x j = x j (t̄, x̄ j ), (8.33)

that keeps the metric expressed as an expansion in powers of c−2. We call these post-
Newtonian transformations, and construct them step-by-step in Secs. 8.3.2 and 8.3.3.

We shall find that in general, the post-Newtonian transformations do not preserve the
harmonic coordinate condition of Eq. (8.21). In Sec. 8.3.4 we specialize them to a class that
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keeps the coordinates harmonic; we call this restricted class the harmonic transformations
of post-Newtonian theory. We describe a simple application of this formalism in Sec. 8.3.5,
in which we examine the Newtonian potential of a moving body in its own (non-inertial)
reference frame.

The post-Newtonian and harmonic transformations typically produce gravitational po-
tentials that contain spatially-growing terms, even when the original potentials vanish in
the formal limit r → ∞. In Sec. 8.3.6 we specialize them further by demanding that the
transformed potentials continue to vanish in the limit r̄ → ∞; this property defines what
is known as the post-Galilean transformations of post-Newtonian theory.

Within the post-Newtonian class of transformations there exists an interesting subclass
that corresponds very closely to the ordinary gauge transformations of electrodynamics. We
examine these in Sec. 8.3.7, and introduce the so-called standard gauge of post-Newtonian
theory. This was the gauge that was adopted by Chandrasekhar in his pioneering work on
the subject, and much of the older post-Newtonian literature is framed in this gauge. The
standard gauge, however, has become less popular of late, and the more recent literature is
uniformly cast in the harmonic gauge. We adhere to this choice in most of the book, but the
standard post-Newtonian gauge is featured in Chapter 13, in which we examine alternative
theories of gravity.

In this section we follow closely the treatment of post-Newtonian coordinate transfor-
mations developed by our friends Étienne Racine and Éanna Flanagan (2005). We recall
that under the transformation of Eq. (8.33), the components of the metric tensor change
according to

ḡ00 =
(

∂t

∂ t̄

)2

g00 + 2

c

∂t

∂ t̄

∂x j

∂ t̄
g0 j + 1

c2

∂x j

∂ t̄

∂xk

∂ t̄
g jk, (8.34a)

ḡ0 j = c
∂t

∂ t̄

∂t

∂ x̄ j
g00 +

(
∂t

∂ t̄

∂xk

∂ x̄ j
+ ∂xk

∂ t̄

∂t

∂ x̄ j

)
g0k + 1

c

∂xk

∂ t̄

∂xn

∂ x̄ j
gkn, (8.34b)

ḡ jk = c2 ∂t

∂ x̄ j

∂t

∂ x̄ k
g00 + c

(
∂t

∂ x̄ j

∂xn

∂ x̄ k
+ ∂xn

∂ x̄ j

∂t

∂ x̄ k

)
g0n + ∂xn

∂ x̄ j

∂x p

∂ x̄ k
gnp. (8.34c)

Our most important results are summarized in Box 8.2. The reader is invited to peruse the
summary before getting started with the details, so as to benefit from an overview of what
is to come.

Box 8.2 Post-Newtonian transformations

Themost general coordinate transformation that preserves the post-Newtonian ordering of themetric is given
by

t = t̄ + 1

c2
α(t̄, x̄ j ) + 1

c4
β(t̄, x̄ j ) + O(c−6),

x j = x̄ j + r j (t̄) + 1

c2
h j (t̄, x̄ j ) + O(c−4),
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where

α = A(t̄) + v j x̄
j ,

h j = H j (t̄) + H j
k(t̄)x̄ k + 1

2
H j

kn(t̄)x̄ k x̄ n,

with

Hjk = ε jkn Rn(t̄) + 1

2
v jvk − δ jk

(
Ȧ − 1

2
v2
)
,

Hjkn = −δ jkan − δ jnak + δkna j .

The functions A, r j , H j , and R j are freely specifiable functions of time t̄ , while β is a free function of
all the coordinates. The transformation is therefore characterized by ten arbitrary functions of time, and one
arbitrary function of all the coordinates. An overdot indicates differentiation with respect to t̄ , and we have
introduced v j := ṙ j and a j := v̇ j = r̈ j . In addition, we let v2 = δ jkv

jvk .
The transformation preserves the post-Newtonian ordering of the metric, but it does not necessarily keep

the coordinates harmonic. To preserve this also we must set

β = 1

6
Äδ jk x̄ j x̄ k + 1

30

(
δ jk ȧn + δ jnȧk + δknȧ j

)
x̄ j x̄ k x̄ n + γ (t̄, x̄ j ),

and γ is required to satisfy Laplace’s equation: ∇̄2γ = 0, with ∇̄2 denoting the Laplacian operator in the
coordinates x̄ j . The arbitrary functionβ has therefore been replaced by an arbitrary harmonic function γ .
Under a harmonic coordinate transformation the potentials become

Ū (t̄, x̄ j ) = Û − Ȧ + 1

2
v2 − a j x̄

j ,

Ū j (t̄, x̄ j ) = Û j − v j Û + 1

4

(
V j + V j

k x̄k + 1

2
V j

kn x̄k x̄n + ∂j̄ γ

)
,

#̄(t̄, x̄ j ) = #̂ − 4v j Û j + 2v2Û + (
A + vk x̄ k

)
∂t̄ Û

+
(

F j + F j
k x̄k + 1

2
F j

kn x̄k x̄n
)
∂j̄ Û

+ G + G j x̄
j + 1

2
G jk x̄ j x̄ k + 1

6
G jkn x̄ j x̄ k x̄n − ∂t̄γ,

where

V j = (2 Ȧ − v2)v j − Ḣ j + ε j
pqv p Rq ,

V j
k = 3

2
v j ak + 1

2
a jvk + δ

j
k

(4

3
Ä − 2vnan

)
− ε

j
kp Ṙ p,

V j
kn = 6

5

(
δ

j
k ȧn + δ j

nȧk

) − 4

5
δknȧ j ,

(continued overleaf)
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F j = H j − Av j ,

F j
k = −δ

j
k

(
Ȧ − 1

2
v2
)

− 1

2
v jvk + ε

j
kp R p,

F j
kn = −(

δ
j
kan + δ j

nak

) + δkna j ,

G = 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ jv j ,

G j =
(

Ȧ − 1

2
v2
)

a j −
(

Ä − 3

2
vkak

)
v j − ε j pqv p Ṙq ,

G jk = a j ak − v j ȧk − ȧ jvk + δ jk(vnȧn) − 1

3
δ jk Ä,

G jkn = −1

5

(
δ jk än + δ jnäk + δknä j

)
.

The “hatted” potentials are equal to the original potentials evaluated at time t = t̄ and position x j =
x̄ j + r j (t̄). For example,

Û (t̄, x̄ j ) := U
(
t = t̄, x j = x̄ j + r j (t̄)

)
.

BecauseU now possesses, in addition to its original explicit time dependence, an implicit time dependence
contained in r j (t̄), some care must be exercised when taking time derivatives. We have

∂Û

∂ t̄
= ∂U

∂t
+ v j ∂U

∂x j
,

∂Û

∂ x̄ j
= ∂U

∂x j
,

in which the right-hand-sides are evaluated at t = t̄ and x j = x̄ j + r j (t̄).

8.3.2 Newtonian transformations

We begin with a search for a coordinate transformation that preserves the form of the metric
at Newtonian order:

g00 = −1 + 2

c2
U + O(c−4), g0 j = O(c−3), g jk = δ jk + O(c−2). (8.35)

Specifically, we demand that the new metric takes the form

ḡ00 = −1 + 2

c2
Ū + O(c−4), ḡ0 j = O(c−3), ḡ jk = δ jk + O(c−2), (8.36)

with a new Newtonian potential Ū whose relation with the old one will be determined by
the transformation.

Inspecting Eq. (8.34a) first, we note that the leading term in ḡ00 will have the correct
value of −1 if and only if ∂t/∂ t̄ = 1 + O(c−2). Moving next to Eq. (8.34c), we see that ḡ jk

will contain unwanted terms of order c2 unless ∂t/∂ x̄ j = O(c−2). And the terms of order
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c0 will have the correct form if and only if

δ jk = ∂x p

∂ x̄ j

∂xq

∂ x̄ k
δpq + O(c−2). (8.37)

The Newtonian transformation must preserve the form of the spatial metric, and this means
that it must be the combination of a translation of the spatial origin with a rotation of the
coordinate axes: x j = r j + R j

k x̄k + O(c−2). Here r j (t̄) are arbitrary functions of time, and
R j

k(t̄) are the components of a rotation matrix that satisfies δpq R p
j Rq

k = δ jk . At this stage
of our considerations we conclude that the transformation must take the form

t = t̄ + 1

c2
α(t̄, x̄ j ) + O(c−4), x j = r j (t̄) + R j

k(t̄)x̄ k + O(c−2), (8.38)

where α is (for now) an arbitrary function of the new coordinates, and r j , R j
k are arbitrary

functions of time.
We next examine Eq. (8.34b), in which we make the substitutions of Eq. (8.38). After

simplification we notice that ḡ0 j will contain unwanted terms at order c−1 unless

∂j̄α = (
vk + Ṙk

n x̄n
)
Rk j ; (8.39)

an overdot indicates differentiation with respect to t̄ , and we introduced the notation
v j := ṙ j . The previously stated condition on the rotation matrix implies that Ṙk

n Rk j is
antisymmetric on n and j , and can therefore be expressed as Ṙk

n Rk j = εnjmωm(t) for some
vector ωm . The equation for α is now

∂j̄α = vk Rk j + ε jmnωm x̄n , (8.40)

and we see that the final term cannot be written as the gradient of any function. To eliminate
the unwanted c−1 term in ḡ0 j we must therefore set ωm = 0, so that R j

k describes a
time-independent rotation of the coordinate axes. We choose to discard this uninteresting
coordinate freedom by setting

R jk = δ jk . (8.41)

The general solution for α is then

α = A(t̄) + v j (t̄)x̄
j , (8.42)

in which A is an arbitrary function of time t̄ . The Newtonian transformation of Eq. (8.38)
is now fully characterized.

Box 8.3 Rotating coordinates

By forcing ḡ0 j to vanish at order c−1, we are consciously excluding rotating coordinate systems from the
allowed class of post-Newtonian coordinates. To describe a purely rotating coordinate system, we would use
the transformation

t = t̄ + O(c−4), x j = R j
k(t̄)x̄ k + O(c−2) ,
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which leads to a metric of the form

ḡ00 = −1 + 2

c2
Ū + 1

c2

[
ω2 − (ω · n̄)2

]
r̄2 + O(c−4),

ḡ0 j = 1

c
(ω × x̄) j + O(c−3),

ḡ jk = δ jk + O(c−2),

where ω j (t) := 1
2ε jlm Ṙk

l Rkm and n̄ = x̄/r̄ . From a relativistic point of view, this metric presents a
number of problems. One of these is that it does not reduce to theMinkowskimetric when r̄ → ∞. An even
worse problem is that g00 vanishes whenωr̄ sin θ = c(1 − U/c2), where θ is the angle betweenω

and n̄. This “light cylinder” is a placewhere the speed of a particle at rest in the rotating frame equals the local
speed of light asmeasured in the global, non-rotating frame; particles at rest outside the light cylinder exceed
the local speed of light.
Other issues connected with the rotating frame include the inability to synchronize clocks consistently

around a circle at rest in this frame (the Sagnac effect, reviewed in Sec. 10.3.4), and the common miscon-
ception that the circumference of a rotating disk is shortened compared to 2π times its radius. These issues
have generated so much misunderstanding that in the general relativity textbook by H.P. Robertson and T.W.
Noonan (1968), there is a paragraph on this topic headed “That darned* rotating disk,” with the asterisk
indicating that the actual word selected by Robertson in his original lecture notes was much stronger!
As indicated in the text, we wish to preserve the post-Newtonian expansion of the metric, and therefore

exclude rotating coordinate systems from our considerations. This doesn’t mean, however, that rotating coor-
dinates are never appropriate. They can indeed be very useful, provided that one stays well within the light
cylinder. For example, a coordinate system that rotates with the Earth is an extremely powerful tool to de-
scribe post-Newtonian gravity in and around the Earth, including its effects on geocentric satellites, atomic
timekeeping, and the Global Positioning System. These applications are discussed in detail in Chapter 10.

To determine how the Newtonian potential changes under the transformation, we return to
Eq. (8.34a) and examine the terms of order c−2 after making the substitutions of Eq. (8.38).
After simplification we find that the right-hand side is given by −1 + 2c−2(U − ∂t̄α +
1
2 v2) + O(c−4), where v2 := δ jkv

j vk . The new potential must therefore be Ū = U − ∂t̄α +
1
2 v2. Here Ū is expressed in terms of the new coordinates (t̄, x̄ j ), but U is still written in
terms of the old coordinates (t, x j ). To make the equation more useful we should express
U as a function of the new coordinates. To achieve this we write

U (t, x j ) = U (t̄ + c−2α + · · · , x̄ j + r j + · · · ) (8.43)

and perform a Taylor expansion of the right-hand side about the point (t̄, x̄ j + r j ). This
gives U (t, x j ) = U (t̄, x̄ j + r j ) + O(c−2), and we find that the terms of order c−2 play no
role in the transformation of the Newtonian potential. (They do, however, appear in the
post-Newtonian transformation of the following subsection.)
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To distinguish clearly between the sets of arguments (t̄, x̄ j ), (t̄, x̄ j + r j ), and (t, x j ) we
introduce the “hatted” potential

Û (t̄, x̄ j ) := U (t̄, x̄ j + r j ). (8.44)

This is the original potential U evaluated at time t = t̄ and position x j = x̄ j + r j (t̄). In
terms of this we have

U (t, x j ) = Û (t̄, x̄ j ) + O(c−2) (8.45)

and the transformed potential is Ū = Û − ∂t̄α + 1
2 v2. Using Eq. (8.42), this is

Ū = Û − Ȧ + 1

2
v2 − a j x̄

j , (8.46)

where a j := v̇ j = r̈ j . All members of this equation are functions of the new coordinates
(t̄, x̄ j ).

When it is expressed in terms of U as in Eq. (8.44), the hatted potential Û possesses both
an explicit and an implicit dependence upon the time coordinate t̄ . The explicit dependence
is contained in U ’s temporal argument, while the implicit dependence appears via r j (t̄)
in the spatial arguments. Some care must therefore be exercised when computing partial
derivatives. We have, for example,

∂Û

∂ t̄
=
(

∂U

∂t
+ v j ∂U

∂x j

)
t=t̄, x=x̄+r

, (8.47)

in which the substitutions t = t̄ , x j = x̄ j + r j (t̄) are made after differentiating U with
respect to its original variables t and x j . Spatial derivatives, on the other hand, are given
simply by

∂Û

∂ x̄ j
=
(

∂U

∂x j

)
t=t̄, x=x̄+r

. (8.48)

8.3.3 Post-Newtonian transformations

To proceed to the next order we write the coordinate transformation as

t = t̄ + 1

c2
α(t̄, x̄ j ) + 1

c4
β(t̄, x̄ j ) + O(c−6), (8.49a)

x j = x̄ j + r j (t̄) + 1

c2
h j (t̄, x̄ j ) + O(c−4), (8.49b)

where α is given by Eq. (8.42), while β and h j represent the additional coordinate freedom
that appears at 1pn order.

The function β will remain arbitrary. To constrain h j we examine the O(c−2) terms on
the right-hand-side of Eq. (8.34c) and demand that, in accordance with Eq. (8.20), they be
equal to 2Ūδ jk . With Eqs. (8.45) and (8.46), we find after simplification that h j must be a
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solution to the differential equation

∂j̄ hk + ∂k̄h j = −2δ jk

(
Ȧ − 1

2
v2 + an x̄n

)
+ v j vk . (8.50)

The general solution to this equation is the sum of a particular solution and the general
solution to the homogeneous equation ∂j̄ hk + ∂k̄h j = 0. (The expert will recognize this as
Killing’s equation in a flat, three-dimensional space.)

The form of the homogeneous equation reveals that h j
hom must be linear in the coordi-

nates: h j
hom = H j + A j

k x̄k , where H j and A j
k are functions of t̄ . Substitution within the

differential equation reveals that H j (t̄) is arbitrary, but that A jk must be an antisymmetric
tensor. Such a tensor contains three independent components, and we can always express it
as A jk = ε jkn Rn , in terms of a vector Rn that also contains three independent components.
We have obtained h j

hom = H j (t̄) + ε
j
kn x̄ k Rn(t̄). The first term represents a translational

component to the coordinate transformation, which combines with the Newtonian transla-
tion to form the total translation r j + c−2 H j . The second term represents a rotation of the
coordinate axes, and the rotation matrix is R j

k = c−2ε
j
kn Rn .

The form of the inhomogeneous equation reveals that a particular solution h j
part will

be quadratic in the coordinates. We adopt B jk x̄k + 1
2 B jkn x̄k x̄n as a trial solution, and

observe that B jkn can be chosen to be symmetric in the last pair of indices. Substitution
within the differential equation shows that B jk is constrained by B jk + Bk j = −2δ jk( Ȧ −
1
2 v2) + v j vk , while B jkn is constrained by B jkn + Bk jn = −2δ jkan . The solutions are readily
identified as B jk = −δ jk( Ȧ − 1

2 v2) + 1
2 v j vk and B jkn = −δ jkan − δ jnak + δkna j .

Collecting results, we write our final expression for h j = h j
hom + h j

part as

h j = H j (t̄) + H j
k(t̄)x̄ k + 1

2
H j

kn(t̄)x̄ k x̄n, (8.51)

with

Hjk = ε jkn Rn(t̄) + 1

2
v j vk − δ jk

(
Ȧ − 1

2
v2
)
, (8.52a)

Hjkn = −δ jkan − δ jnak + δkna j . (8.52b)

This piece of the coordinate transformation involves the six arbitrary functions of time that
are contained in H j (t̄) and R j (t̄).

To determine how the vector potential U j transforms under the post-Newtonian transfor-
mation of Eqs. (8.49), we make the substitutions in Eq. (8.34) and demand that g0 j keeps its
post-Newtonian form of −4c−3U j + O(c−5). A careful evaluation of Eq. (8.34b) reveals
that the new vector potential Ū j is given by

4Ū j = 4(Û j − v j Û ) + ∂j̄β + v j∂t̄α − vk∂j̄ hk − ∂t̄ h j , (8.53)

in which Û j is defined by analogy with Eq. (8.44). Taking into account Eqs. (8.42) and
(8.51), we finally arrive at

Ū j = Û j − v j Û + 1

4

(
Vj + Vjk x̄k + 1

2
Vjkn x̄k x̄n + ∂j̄β

)
, (8.54)
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with

Vj = (2 Ȧ − v2)v j − Ḣ j + ε j pqv p Rq , (8.55a)

Vjk = 3

2
v j ak + 1

2
vka j + δ jk

(
Ä − 2vnan

) − ε jkp Ṙ p, (8.55b)

Vjkn = δ jk ȧn + δ jn ȧk − δknȧ j . (8.55c)

We are now ready to derive the transformation equation for the post-Newtonian potential
#. We proceed along the same lines as for the vector potential, but before we begin we must
recover the O(c−2) terms that were discarded back in Eq. (8.45); these were not needed
previously, but they appear in the transformed version of g00 at order c−4. If we write
U (t, x j ) as U (t̄ + c−2α + · · · , x̄ j + r j + c−2h j + · · · ) and expand to first order in c−2,
we obtain

U (t, x j ) = Û + 1

c2
α
(
∂t̄ Û − v j ∂j̄ Û

)
+ 1

c2
h j∂j̄ Û + O(c−4); (8.56)

the right-hand side is expressed as a function of (t̄, x̄ j ), and we have used Eqs. (8.47) and
(8.48) to relate the partial derivatives of U to those of Û . After substitution of Eq. (8.49)
into Eq. (8.34a) we find that the new post-Newtonian potential must be given by

#̄ = #̂ + 2v2Û + α∂t̄ Û + (h j − αv j )∂j̄ Û − 4v j Û
j

+ 1

2
(∂t̄α)2 − v2∂t̄α + 1

4
v4 − ∂t̄β + v j ∂t̄ h

j . (8.57)

After taking into account Eqs. (8.42) and (8.51), we finally arrive at

#̄ = #̂ − 4v j Û
j + 2v2Û + (

A + vk x̄ k
)
∂t̄ Û +

(
F j + F j

k x̄k + 1

2
F j

kn x̄k x̄n
)
∂j̄ Û

+ G + G j x̄
j + 1

2
G jk x̄ j x̄ k − ∂t̄β, (8.58)

with

F j = H j − Av j , (8.59a)

F j
k = −δ

j
k

(
Ȧ − 1

2
v2
)

− 1

2
v j vk + ε

j
kp R p, (8.59b)

F j
kn = −(

δ
j
kan + δ j

nak

) + δkna j , (8.59c)

G = 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ jv j , (8.59d)

G j =
(

Ȧ − 1

2
v2
)

a j −
(

Ä − 3

2
vkak

)
v j − ε j pqv p Ṙq , (8.59e)

G jk = a j ak − v j ȧk − ȧ j vk + δ jk(vnȧn). (8.59f)

The hatted potential #̂ is defined by analogy with Eq. (8.44).
Our task of constructing the most general coordinate transformation that preserves the

post-Newtonian form of the metric is now complete. At Newtonian order the transformation
is characterized by an arbitrary translation r j (t̄) and a shift α = A(t̄) + v j (t̄)x̄ j of the time
coordinate at order c−2. At post-Newtonian order the transformation involves an additional
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component H j (t̄) to the translation, as well as a rotation governed by the vector R j (t̄). In
addition, the transformation involves an arbitrary shift β(t̄, x̄ j ) of the time coordinate at
order c−4. All in all we have ten arbitrary functions of time, and one free function β of all
the coordinates. The transformed potentials Ū , Ū j , and #̄ are obtained from the old ones
by employing Eqs. (8.46), (8.54), and (8.58), respectively.

8.3.4 Harmonic transformations

The general transformation of the preceding subsection does not, in general, preserve the
harmonic condition of Eq. (8.21). It is possible, however, to specialize β(t̄, x̄ j ) so that we
also have

∂t̄ Ū + ∂j̄ Ū j = 0 (8.60)

in the new coordinates. This restriction of the coordinate freedom defines what we shall
call the class of harmonic coordinate transformations.

In view of Eq. (8.47) we find that the harmonic condition is

∂t̄ Û − v j ∂j̄ Û + ∂j̄ Û j = 0 (8.61)

when it is expressed in terms of the hatted potentials. If we substitute Eqs. (8.46) and (8.54)
into Eq. (8.60) and make use of Eq. (8.61), we find that the harmonic condition is preserved
when β satisfies the Poisson equation

∇̄2β = Ä + ȧ j x̄
j . (8.62)

Here ∇̄2 is the Laplacian operator in the coordinates x̄ j . The general solution to this
equation is the sum of a particular solution and the general solution to Laplace’s equa-
tion. The particular solution must be cubic in the coordinates, and we construct it
with the help of the ansatz 1

2 C jk x̄ j x̄ k + 1
6 C jkn x̄ j x̄ k x̄n , in which C jk and C jkm de-

pend on t̄ and are completely symmetric tensors. This property and the differen-
tial equation imply that C jk = 1

3 δ jk Ä and C jkn = 1
5 (δ jk ȧn + δ jn ȧk + δknȧ j ). We have

obtained

β = 1

6
Äδ jk x̄ j x̄ k + 1

30

(
δ jk ȧn + δ jn ȧk + δknȧ j

)
x̄ j x̄ k x̄n + γ (t̄, x̄ j ), (8.63)

where γ is any harmonic function that satisfies ∇̄2γ = 0.
Making the substitution in Eqs. (8.46), (8.54), and (8.58), we obtain the results listed in

Box 8.2. [Note that the expressions for Vjk , Vjkn , G jk , and G jkn that appear in the Box
are different from those given by Eqs. (8.55) and (8.59). The differences are accounted for
by the terms generated by ∂j̄β and ∂t̄β.] The transformation is still characterized by the
ten arbitrary functions of time that are contained in A(t̄), r j (t̄), H j (t̄), and R j (t̄), but the
remaining freedom is now restricted to a harmonic function γ (t̄, x̄ j ).
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8.3.5 Comoving frame of a moving body

The general post-Newtonian transformations, and the restricted class of harmonic trans-
formations, contain an enormous amount of freedom, and the transformations introduce
spatially-growing terms in the potentials. For example, the transformation of the Newtonian
potential is

Ū = Û − Ȧ + 1

2
v2 − a j x̄

j , (8.64)

and the last term grows linearly with r̄ . Similarly, Ū j contains terms that grow like r̄2, and
in the harmonic case, #̄ grows like r̄3. In view of this situation, a natural question to ponder
is: what purpose is there in all this coordinate freedom?

We shall have occasion to give a more complete answer to this question in Sec. 9.4, but
here we consider a simple application of the formalism that should illustrate its usefulness.
We consider a spherical body of mass m whose center-of-mass it situated at x j = r j (t) in
an inertial frame of reference. The body creates a gravitational potential Ubody, and it is
surrounded by an external matter distribution that creates a potential Uext. The total potential
is U = Ubody + Uext, and we wish to examine its form in the non-inertial frame attached to
the moving body. The coordinate transformation is given by t = t̄ + c−2α + O(c−4) and
x j = x̄ j + r j (t̄) + O(c−2), with α = A(t̄) + v j x̄ j .

In the original (inertial) coordinates we have that the potential outside the body is given
by

Ubody = Gm

|x − r(t)| . (8.65)

To simplify its expression we expand the external potential in a Taylor series about x j =
r j (t):

Uext = U (t, r j ) + (x − r ) j∂ jUext(t, r j ) + 1

2
(x − r ) j (x − r )k∂ jkUext(t, r j ) + · · · (8.66)

The hatted potentials are

Ûbody = Gm

r̄
(8.67)

and

Ûext = Uext(t̄, r j ) + x̄ j ∂ jUext(t̄, r j ) + 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.68)

We see that the total potential Û = Ûbody + Ûext naturally contains growing terms that are
associated with the external matter, in addition to the decaying term that is associated with
the reference body. Note that after each differentiation, the external potential is evaluated
at t = t̄ and x j = r j (t̄).

The transformed potential in the comoving frame of the body is Ū = Ūbody + Ūext, with

Ūbody = Gm

r̄
(8.69)
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and

Ūext =
[

Uext(t̄, r j ) − Ȧ + 1

2
v2

]
+ x̄ j

[
a j − ∂ jUext(t̄, r j )

]
+ 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.70)

We simplify this by first exploiting the coordinate freedom, which allows us to set

Ȧ = 1

2
v2 + Uext(t̄, r j ); (8.71)

this is a differential equation that determines A(t̄) up to an uninteresting constant of
integration. We also make use of the fact that our body moves according to the Newtonian
equations of motion, so that

a j = ∂ jUext(t̄, r j ). (8.72)

We recall that a j stands for d2r j/dt̄2.
Our end result for the comoving-frame gravitational potential is

Ū = Gm

r̄
+ Ūtidal, (8.73)

where

Ūtidal = 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.74)

is what remains of the external potential. As its label indicates, it is this potential that
is responsible for the tidal interaction between the moving body and the external matter
distribution. The Newtonian physics of tidally deformed bodies was explored in some detail
in Sec. 2.5.

The coordinate transformation that takes us from the inertial frame to the moving frame
is

t = t̄ + 1

c2

∫ [1

2
v2 + Uext(t̄, r j )

]
dt̄ + 1

c2
v j (t̄)x̄

j + O(c−4) (8.75)

and

x j = x̄ j + r j (t̄) + O(c−2). (8.76)

The transformation can of course be generalized to post-Newtonian order, and we go
through this exercise in Sec. 9.4.

8.3.6 Post-Galilean transformations

As we have seen, it can prove useful to exploit the full freedom contained in the general
post-Newtonian transformations, or the restricted class of harmonic transformations, when
one considers a bounded domain of spacetime such as the neighborhood of a moving body.
When the considerations are global, however, the general freedom is too vast, and one
would like to constrain it so as to eliminate the spatially-growing terms in the potentials. In
this section we assume that the original potentials U , U j , and # vanish in the formal limit



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-08 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:57

393 8.3 Coordinate transformations

r → ∞, and we specialize the post-Newtonian transformations so that the new potentials Ū ,
Ū j , and #̄ share this property. This restricted class of coordinate transformations is known
as the post-Galilean transformations of post-Newtonian theory. The name was coined by
Chandrasekhar and Contopoulos in their classic 1967 paper.

Construction

Inspection of Eq. (8.46) reveals that the Newtonian potential will grow linearly with r̄ unless
a j = 0. Discarding an uninteresting constant translation of the coordinates, this means that
r j (t̄) must be of the form

r j = V j t̄, (8.77)

with V j a constant vector. To eliminate the spatially-constant term in Ū we must also set
Ȧ = 1

2 V 2, so that

A = 1

2
V 2 t̄ . (8.78)

Here V 2 := δ jk V j V k , and we again discard an uninteresting integration constant. These
results imply that the post-Galilean transformation leaves the Newtonian potential invariant:

Ū = Û , (8.79)

where Û = U (t̄, x̄ j + V j t̄).
Our results can be used to simplify the general expression for Ū j , as it appears in

Eq. (8.54). To keep Ū j from growing we must set Ṙ j = 0. The rotation of the coordinate
axes described by R j (t̄) must therefore be constant in time, and we choose to eliminate this
uninteresting freedom by setting

R j = 0. (8.80)

To eliminate the spatially-constant term in Ū j we set ∂j̄β = Ḣ j , which integrates to
β = β0(t̄) + Ḣ j x̄ j , where β0 and H j are arbitrary functions of time. We observe that β is a
harmonic function, and that its expression is compatible with Eq. (8.63); the transformation
is therefore within the class of harmonic transformations. With this result we find that the
vector potential transforms as

Ū j = Û j − V jÛ (8.81)

under a post-Galilean transformation.
Moving on to #̄, as it appears in Eq. (8.58), we find that the removal of the growing term

requires Ḧ j = 0, so that Ḣ j must be a constant vector. This vector is in principle arbitrary,
but we choose to restrict the coordinate freedom by making it proportional to V j . We write
it as Ḣ j = 1

2 V 2V j , inserting an arbitrary numerical coefficient of 1
2 for reasons that will

be made clear below, and the factor of V 2 for proper dimensionality. Our choice for H j (t̄)
is therefore

H j = 1

2
V 2V j t̄ . (8.82)
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To eliminate the spatially-constant term in #̄ we must set β̇0 = − 1
8 V 4 + Ḣ j V j . With our

previous choice for H j this is β̇0 = 3
8 V 4, and our final expression for β is

β = 3

8
V 4 t̄ + 1

2
V 2Vj x̄

j . (8.83)

With all this we find that the post-Newtonian potential transforms as

#̄ = #̂ − 4VjÛ
j + 2V 2Û +

(
1

2
V 2 t̄ + Vj x̄

j

)
∂t̄ Û −

(
1

2
V j Vk x̄k

)
∂j̄ Û (8.84)

under a post-Galilean transformation. We note that the terms involving ∂t̄ Û and ∂j̄ Û
are multiplied by quantities that grow linearly with r̄ . Because Û decays as r̄−1, and its
derivatives as r̄−2, we see that #̄ properly vanishes in the formal limit r̄ → ∞.

Collecting results, we find that the post-Galilean transformation is a three-parameter
family described by

t =
(

1 + 1

2

V 2

c2
+ 3

8

V 4

c4

)
t̄ + 1

c2

(
1 + 1

2

V 2

c2

)
Vj x̄

j + O(c−6), (8.85a)

x j =
(

δ
j
k + 1

2

V j Vk

c2

)
x̄ k +

(
1 + 1

2

V 2

c2

)
V j t̄ + O(c−4); (8.85b)

the parameters are the three components of the vector V j . This is nothing but a Lorentz
transformation expanded in powers of (V/c)2. The coordinates (t̄, x̄ j ) define a frame S̄ that
is boosted with respect to the original frame S; the boost takes place in the direction of the
velocity vector V j .

Boosted potentials

In the foregoing discussion the boosted potentials Ū , Ū j , and #̄ were expressed in terms of
the “hatted potentials” Û , Û j , and #̂; these, we recall, are the original potentials evaluated at
time t = t̄ and position x j = x̄ j + V j t̄ . This representation of the transformed potentials
was optimal in the context of the general theory of post-Newtonian transformations, as
developed in the previous sections. It is not optimal in the restricted context of post-Galilean
transformations, because of the schizophrenic nature of the hatted potentials, which live
partly in the frame S and partly in the frame S̄. An indication that the representation is
indeed not optimal comes from our previous expression for #̄, which displays a curious
and unwanted explicit dependence upon t̄ and x̄ j .

We therefore proceed differently. We shall (i) postulate plausible expressions for the
transformed potentials Ū , Ū j , and #̄; (ii) relate these to the original potentials U , U j , and
#; and (iii) show that under the transformation of Eqs. (8.85), the transformed metric ḡαβ

keeps the standard post-Newtonian form of Eq. (8.20), with the understanding that the new
metric is expressed in terms of the new potentials.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-08 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:57

395 8.3 Coordinate transformations

Our proposed expressions for the transformed potentials are

Ū (t̄, x̄) = G

∫
ρ̄∗(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86a)

Ū j (t̄, x̄) = G

∫
ρ̄∗v̄ j (t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86b)

ψ̄(t̄, x̄) = G

∫
ρ̄∗( 3

2 v̄2 − Ū + �̄ + 3 p̄/ρ̄∗)(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86c)

X̄ (t̄, x̄) = G

∫
ρ∗(t̄, x̄′)|x̄ − x̄′| d3 x̄ ′, (8.86d)

and the transformed post-Newtonian potential is #̄ = ψ̄ + 1
2 ∂t̄ t̄ X̄ . These expressions are

natural: the new potentials are defined just as the old potentials in terms of the boosted
coordinates and the fluid variables ρ̄∗, p̄, �̄, and v̄ that would be measured in the frame
S̄ instead of the original frame S. It is useful to introduce transformed versions of the
auxiliary potentials listed in Eqs. (8.8); in terms of these we have #̄ = 2�̄1 − �̄2 + �̄3 +
4�̄4 − 1

2 �̄5 − 1
2 �̄6.

Our first task is to express the old Newtonian potential U (t, x) in terms of the new
potentials. This is not entirely straightforward. A major source of subtlety is the important
fact that in Eqs. (8.86), the integration variables x̄′ describe the position of a fluid element
at time t̄ , the same time at which the potentials are being evaluated. The spacetime events
P and P ′, respectively labeled by the coordinates (t̄, x̄) and (t̄, x̄′), are simultaneous in
the frame S̄. But they are not simultaneous in the original frame S, and we must take this
property carefully into account.

We examine the situation in the original frame S (see Fig. 8.1). The figure shows a
spacetime diagram in which we display the field point P as well as the world line of a
selected fluid element. Two events are shown on this world line: the source point Q′ is
simultaneous with P in the frame S, while P ′ is simultaneous with P in the frame S̄.
In the frame S the coordinates of P are (t, x), the coordinates of Q′ are (t, x′), and the
coordinates of P ′ are (τ, ξ ). In the frame S̄ the coordinates of P are (t̄, x̄), the coordinates
of Q′ are (τ̄ , ξ̄ ), and the coordinates of P ′ are (t̄, x̄′). Note that the coordinates (τ, ξ ) and
(τ̄ , ξ̄ ) refer to different events in spacetime. In the frame S the world line is described by
the time-dependent position vector r; we have that x′ := r(t) and ξ := r(τ ). In the frame
S̄ the world line is described by r̄ , and we have that x̄′ := r̄(t̄) and ξ̄ := r̄(τ̄ ). In the frame
S the velocity of the fluid element at Q′ is v′ := ṙ(t), while in S̄ the velocity of the fluid
element at P ′ is v̄′ := ˙̄r(t̄); the overdots indicate differentiation with respect to the relevant
time variable.

The coordinates of the field point P transform as in Eq. (8.85). The coordinates of the
source point Q′ transform as

t =
(

1 + 1

2

V 2

c2
+ 3

8

V 4

c4

)
τ̄ + 1

c2

(
1 + 1

2

V 2

c2

)
Vj ξ̄

j + O(c−6), (8.87a)

x ′ j =
(

δ
j
k + 1

2

V j Vk

c2

)
ξ̄ k +

(
1 + 1

2

V 2

c2

)
V j τ̄ + O(c−4). (8.87b)
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P

P′

ct

x

y

Q′

Fig. 8.1 World line of a selected fluid element viewed in the frame S. The grey plane is a hypersurface t = constant, and the
white plane is a hypersurface t̄ = constant. The field point P is simultaneous with Q′ in S, but it is simultaneous with
P′ in the frame S̄.

We want to express x′ in terms of t̄ , x̄, and x̄′, and this requires elimination of τ̄ and ξ̄

from Eqs. (8.87b). To achieve this we equate the t of Eqs. (8.85) with the t of Eqs. (8.87)
and deduce that τ̄ = t̄ + c−2Vj (x̄ − ξ̄ ) j + O(c−4). We substitute this into the world-line
equation ξ̄ = r̄(τ̄ ) and get ξ̄ j = x̄ ′ j + c−2v̄′ j Vk(x̄ − ξ̄ )k + O(c−4). Collecting results, we
have obtained

τ̄ = t̄ + Vk

c2
(x̄ − x̄ ′)k + O(c−4), (8.88a)

ξ̄ j = x̄ ′ j + v′ j Vk

c2
(x̄ − x̄ ′)k + O(c−4). (8.88b)

These are the coordinates of Q′ in the frame S̄, expressed in terms of the coordinates of
both P and P ′. Making the substitution in Eq. (8.87b), we arrive at

x ′ j = x̄ ′ j + V j t̄ + 1

c2

(
v̄′ j + V j

)
Vk(x̄ − x̄ ′)k + V j

2c2

(
V 2 t̄ + Vk x̄ ′k) + O(c−4), (8.89)

the desired relation between x′ and the coordinates of P and P ′ in the frame S̄. To this
equation we can adjoin

v′ j = v̄′ j + V j + O(c−2), (8.90)
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the law of composition of velocities (truncated to the leading, Newtonian order). It follows
from Eqs. (8.85) and (8.89) that

1

|x − x′| = 1

|x̄ − x̄′| + 1

c2

(
v̄′

j Vk + 1

2
Vj Vk

) (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 + O(c−4), (8.91)

and this is an important ingredient that enters the transformation of the Newtonian
potential.

Another important ingredient is the statement that ρ∗d3x is invariant under the post-
Galilean transformation. We express this as

ρ∗(t, x′) d3x ′ = ρ̄∗(t̄, x̄′) d3 x̄ ′. (8.92)

The invariance of dm := ρ∗d3x reflects the simple fact that dm is the conserved rest-mass
of a fluid element. Because this cannot be altered by a coordinate transformation, we have
that dm(Q′) = dm̄(Q′), or dm(t, x′) = dm̄(τ̄ , ξ̄ ). And because dm̄ does not change as we
follow the motion of the fluid element, we also have that dm̄(Q′) = dm̄(P ′), or dm̄(τ̄ , ξ̄ ) =
dm̄(t̄, x̄′). We therefore arrive at Eq. (8.92), which is just the combined statement that
dm(Q′) = dm̄(P ′).

More formally, dm(Q′) = dm̄(Q′) is a consequence of the facts that (i) the proper mass
density ρ is a scalar quantity; (ii) the spacetime volume element

√−gdtd3x is invariant
under a coordinate transformation; and (iii) the element of proper time dλ along the
world line also is an invariant. From all this it follows that ρ

√−g(dt/dλ)d3x =: ρ∗ d3x
is invariant under the transformation. On the other hand, that dm̄(Q′) = dm̄(P ′) follows
formally from an application of the continuity equation, Eq. (7.3), to a single fluid element.
The formal route also gives rise to the statement of Eq. (8.92).

When we substitute Eqs. (8.91) and (8.92) into the integral definition of the old Newtonian
potential U (t, x), we find that it can be expressed in terms of the new potentials as

U =
(

1 + V 2

2c2

)
Ū + V j

c2
�̄ j − V j V k

2c2
∂ j̄ k̄ X̄ + O(c−4). (8.93)

Here �̄ j is the transformed version of the auxiliary potential defined by Eq. (8.8), and we
make use of the identity of Eq. (8.11).

The remaining potentials transform in an analogous way. In fact, their transformation
properties are much easier to identify, because here we do not need to calculate the correction
terms of order c−2; these impact the metric beyond the first post-Newtonian order. Taking
into account Eq. (8.90) and the fact that p and � transform as scalar quantities, we quickly
obtain

U j = Ū j + V jŪ + O(c−2), (8.94)
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as well as

�1 = �̄1 + 2V jŪ j + V 2Ū + O(c−2), (8.95a)

�2 = �̄2 + O(c−2), (8.95b)

�3 = �̄3 + O(c−2), (8.95c)

�4 = �̄4 + O(c−2), (8.95d)

�5 = �̄5 + O(c−2), (8.95e)

�6 = �̄6 + 2V j �̄ j + V 2Ū − V j V k∂ j̄ k̄ X̄ + O(c−2). (8.95f)

These equations imply that the post-Newtonian potential transforms as

# = #̄ + V j
(
4Ū j − �̄ j

) + 3

2
V 2Ū + 1

2
V j V k∂ j̄ k̄ X̄ + O(c−2) (8.96)

under a post-Galilean transformation.
Our final task is to verify that the transformed metric ḡαβ takes the standard post-

Newtonian form of Eq. (8.20) when it is expressed in terms of the transformed potentials
Ū , Ū j , and #̄. This is straightforward. We first specialize the general transformation
equations (8.34) to the post-Galilean case of Eqs. (8.85) and get the components ḡ00 =
−1 + 2c−2U + 2c−4(# − U 2 − 4V jU j + 2V 2U ) + O(c−6), ḡ0 j = −4c−3(U j − VjU ) +
O(c−5), and ḡ jk = δ jk(1 + 2c−2U ) + O(c−4) for the new metric tensor. This is still ex-
pressed in terms of the old potentials, and we complete the calculation by involving
Eqs. (8.93), (8.94), and (8.96). Our final result is

ḡ00 = −1 + 2

c2
Ū + 2

c4

(
#̄ − Ū 2

) + O(c−6), (8.97a)

ḡ0 j = − 4

c3
Ū j + O(c−5), (8.97b)

ḡ jk =
(

1 + 2

c2
Ū

)
δ jk + O(c−4), (8.97c)

the statement that the transformed metric does indeed take the standard post-Newtonian
form in terms of the proposed new potentials of Eqs. (8.86).

This completes our discussion of post-Galilean transformations. To sum up, we have
established that a post-Galilean transformation describes a boost from a frame S to a new
frame S̄ that moves relative to S with a constant velocity V . In this new frame the metric
keeps its standard post-Newtonian form, but the potentials are now defined by Eqs. (8.86);
they refer to the fluid variables ρ̄∗, p̄, �̄, and v̄ that are measured in the new frame.

8.3.7 Pure-gauge transformations

Another interesting subclass of post-Newtonian transformations is obtained by setting

A = r j = H j = R j = 0 (8.98)
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and retaining only the freedom contained in β. This class of transformations is described
by

t = t̄ + 1

c4
β(t̄, x̄ j ) + O(c−6), (8.99a)

x j = x̄ j + O(c−4), (8.99b)

and the potentials change according to

Ū = U, (8.100a)

Ū j = U j + 1

4
∂j̄β, (8.100b)

#̄ = # − ∂t̄β. (8.100c)

In this case we no longer need to distinguish between the hatted potentials and their
original expressions. Equations (8.100) take the appearance of an electromagnetic-type
gauge transformation that links the potentials U j and #. We refer to this subclass of
transformations as the pure-gauge transformations of post-Newtonian theory. When β is
a harmonic function, the gauge transformation converts a set of harmonic coordinates to
another set of harmonic coordinates.

The transformation may be exploited to remove the superpotential term from g00 and
put it instead in g0 j . We refer to the decomposition of Eq. (8.2), and to eliminate the term
1
2 ∂t t X from g00 we choose

β = 1

2
∂t̄ X. (8.101)

Note that this is not a harmonic function (because ∇2 X = 2U ), so that the transformation
does not preserve the harmonic coordinate condition. With this expression for β we find
that the new metric is given by

ḡ00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2

) + O(c−6), (8.102a)

ḡ0 j = − 4

c3
U j − 1

2c3
∂t̄ j̄ X + O(c−5), (8.102b)

ḡ jk =
(

1 + 2

c2
U

)
δ jk + O(c−4). (8.102c)

This choice of coordinate system defines the so-called standard gauge of post-Newtonian
theory. As we have pointed out in the introductory section, this choice of gauge was
popularized by Chandrasekhar, and it was once widely utilized by researchers in the post-
Newtonian community. Like most current workers in the field, however, we prefer to use the
harmonic gauge, and we have made this choice consistently throughout the book, except
in Chapter 13 where we examine alternative theories of gravity. To be sure, the choice of
gauge is mostly a matter of taste and convenience. But there are, nevertheless, important
advantages in using the harmonic coordinates: it is in this gauge that post-Newtonian theory
can naturally be embedded within the wider context of post-Minkowskian theory. And as



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-08 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:57

400 Post-Newtonian theory: Fundamentals

we explained back in Sec. 8.2, it is by doing this that the foundations of post-Newtonian
theory can be made secure.

8.4 Post-Newtonian hydrodynamics

8.4.1 Introduction

The dynamics of perfect fluids has been a recurring topic in this book. We examined this
first in the context of Newtonian physics in Sec. 1.4, we gave the theory a special-relativistic
formulation in Sec. 4.2, and we promoted this to curved spacetime in Sec. 5.3. In Sec. 7.1.1
we introduced the variables {ρ∗, p, �, v} and incorporated slowly-moving fluids within the
post-Minkowskian approximation.

In Sec. 7.1.1 we saw that the behavior of a perfect fluid is governed by the continuity
equation

∂tρ
∗ + ∂ j (ρ

∗v j ) = 0, (8.103)

and in Sec. 7.3.2 we got re-acquainted with the Euler equation of Chapter 1,

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2). (8.104)

We recall that ρ∗ := √−gγρ, with γ := u0/c, is the conserved mass density, and at
Newtonian order there is no distinction between this and the proper density ρ; v j is the
fluid’s velocity field, defined with respect to the time coordinate t , p is the pressure, and
d/dt = ∂t + vk∂k is the Lagrangian time derivative. We recall also that the exact statement
of the first law of thermodynamics for perfect fluids is d� = (p/ρ2) dρ, which we write as

d�

dt
= p

ρ∗2

dρ∗

dt
+ O(c−2). (8.105)

Here � is the internal energy of a fluid element divided by its mass.
In this section we calculate the post-Newtonian corrections to Euler’s equation

(8.104). In addition, we derive expressions for the fluid’s conserved mass-energy
M , its total momentum P j , and its center-of-mass position R j . We shall not alter
Eq. (8.103), which is exact, and we shall not need the O(c−2) corrections to Eq. (8.105). In
Chapter 9 we apply these results to situations in which the fluid breaks up into a number of
separated components; this defines the post-Newtonian N -body problem.

8.4.2 Energy-momentum conservation

The components of the energy-momentum tensor of a perfect fluid were listed back in
Eq. (8.7). The equation of energy-momentum conservation is

0 = ∇β T αβ = ∂β T αβ + �α
μβ T μβ + �

β

μβ T αμ , (8.106)
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and this can be simplified if we recall from Sec. 5.2 that �
β

μβ = (−g)−1/2∂β(−g)1/2. We
therefore have

0 = ∂β

(√−gT αβ
) + �α

βγ

(√−gT βγ
)
, (8.107)

and this form of the conservation equation is optimal for the following computations. We
recall that the square root of the metric determinant is given by

√−g = 1 + 2c−2U +
O(c−4).

The zeroth component of Eq. (8.107) gives rise to a statement of energy conservation.
When fully expanded the equation is

0 = 1

c
∂t

(√−gT 00
) + ∂ j

(√−gT 0 j
)

+ �0
00

(√−gT 00
) + 2�0

0 j

(√−gT 0 j
) + �0

jk

(√−gT jk
)
, (8.108)

and this becomes

0 = c
[
∂tρ

∗ + ∂ j (ρ
∗v j )

]
+ 1

c

{
∂t

[
ρ∗
(1

2
v2 + U + �

)]
+ ∂ j

[
ρ∗v j

(1

2
v2 + U + �

)]

+ ∂ j (pv j ) − ρ∗∂tU − 2ρ∗v j ∂ jU

}
+ O(c−3), (8.109)

after inserting the components of T αβ and the Christoffel symbols of Eq. (8.15). At order
c we recover the continuity equation (8.103), and at order c−1 we get

0 = ρ∗∂t

(1

2
v2 + �

)
+ ρ∗v j ∂ j

(1

2
v2 + �

)
+ ∂ j (pv j ) − ρ∗v j ∂ jU (8.110)

after simplification. This is the equation that expresses the local conservation of energy
within the fluid.

The spatial components of Eq. (8.107) provide a statement of momentum conservation.
We write the equation in fully expanded form as

0 = 1

c
∂t

(√−gT 0 j
) + ∂k

(√−gT jk
)

+ �
j
00

(√−gT 00
) + 2�

j
0k

(√−gT 0k
) + �

j
kn

(√−gT kn
)
, (8.111)

and we eventually arrive at

0 = ∂t (μρ∗v j ) + ∂k(μρ∗v j vk) + ∂ j p − ρ∗∂ jU − ρ∗

c2

(
3

2
v2 − 3U + � + p/ρ∗

)
∂ jU

+ ρ∗

c2

[
2v j (∂tU + vk∂kU ) − 4∂tU j − 4vk(∂kU j − ∂ jUk) − ∂ j #

]
+ O(c−4)

(8.112)
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after some algebra and simplification. We have introduced

μ := 1 + 1

c2

(1

2
v2 + U + � + p/ρ∗

)
+ O(c−4) , (8.113)

and Eq. (8.112) expresses the local conservation of momentum within the fluid.

8.4.3 Post-Newtonian Euler equation

We next work on Eq. (8.112) and bring it to the form of a relativistic generalization of
Eq. (8.104). We begin with the observation that the first two terms on the right-hand side
of Eq. (8.112) can be expressed as

∂t (μρ∗v j ) + ∂k(μρ∗v j vk) = μρ∗ dv j

dt
+ ρ∗v j dμ

dt
(8.114)

after making use of the continuity equation (8.103). If we make the substitution in
Eq. (8.112) and truncate the result at Newtonian order, we recover

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2) , (8.115)

the correct expression of Euler’s equation. We are therefore on the right track, and we may
now retrieve the neglected terms of order c−2.

Differentiation of Eq. (8.113) yields

dμ

dt
= 1

c2

(
v j

dv j

dt
+ dU

dt
+ d�

dt
+ 1

ρ∗
dp

dt
− p

ρ∗2

dρ∗

dt

)
+ O(c−4), (8.116)

and this becomes

dμ

dt
= 1

c2

(
∂tU + 2vk∂kU + 1

ρ∗ ∂t p

)
+ O(c−4) (8.117)

after insertion of Euler’s equation and Eq. (8.105).
Substitution of Eqs. (8.114) and (8.117) into Eq. (8.112) produces

μρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU − 1

c2
v j ∂t p + 1

c2
ρ∗
(

3

2
v2 − 3U + � + p

ρ∗

)
∂ jU

− 1

c2
ρ∗
[
v j
(
3∂tU + 4vk∂kU

) − 4∂tU j − 4vk
(
∂kU j − ∂ jUk

)−∂ j #
]
+O(c−4),

(8.118)
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and this becomes

ρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU

+ 1

c2

[(
1

2
v2 + U + � + p

ρ∗

)
∂ j p − v j ∂t p

]

+ 1

c2
ρ∗
[
(v2 − 4U )∂ jU − v j

(
3∂tU + 4vk∂kU

)
+ 4∂tU j + 4vk

(
∂kU j − ∂ jUk

) + ∂ j #
]

+ O(c−4) (8.119)

after multiplication of each side by μ−1. Equation (8.119) is the post-Newtonian version
of Euler’s equation. This equation, together with the continuity equation (8.103) and an
equation of state relating the pressure, density, and internal energy, completely determines
the behavior of a slowly-moving fluid in a weak gravitational field.

8.4.4 Interlude: Integral identities

We now interrupt the main development and establish a number of identities that will be
required in the following discussion. We first derive the results displayed back in Eqs. (8.10),
and next we shall prove the integral identities∫

ρ∗∂ jU d3x = 0 , (8.120a)∫
ρ∗U j d3x =

∫
ρ∗Uv j d3x , (8.120b)∫

ρ∗∂ j ψ d3x = −
∫

ρ∗( 3
2 v2 − U + � + 3p/ρ∗)∂ jU d3x , (8.120c)∫

ρ∗v j ∂ jU d3x = 1

2

d

dt

∫
ρ∗U d3x , (8.120d)∫

ρ∗vk∂ jUk d3x = 0 , (8.120e)∫
ρ∗vk∂ j �k d3x = 0 , (8.120f)∫
ρ∗x j

(
∂tU − vk∂kU

)
d3x =

∫
ρ∗� j d3x . (8.120g)

The potentials U , U j , ψ , and X are expressed in terms of the fluid variables in Eqs. (8.4);
the auxiliary potential � j was introduced in Eq. (8.8).

As a consequence of Eqs. (8.10) and (8.120b) we also find that∫
ρ∗(Uv j + ∂t j X

)
d3x =

∫
ρ∗� j d3x . (8.121)
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And combining Eqs. (8.10), (8.120e), and (8.120f) yields∫
ρ∗vk∂t jk X d3x = 0 , (8.122)

another useful integral identity.

Box 8.4 Integration and time differentiation

The integral tricks reviewed here were first introduced back in Sec. 1.4.3. We recall that

d

dt

∫
ρ∗ f (t, x) d3x =

∫
ρ∗ d f

dt
d3x (1)

comes as an immediate consequence of the continuity equation (8.103); here ρ∗ is a function of t and
x, f is an arbitrary function of its arguments, and d f/dt = ∂t f + vk∂k f is its total time deriva-
tive. We generalize this identity by allowing f to be a function of x′ also, and we define F(t, x) :=∫

ρ∗′ f (t, x, x′) d3x ′, withρ∗′ standing forρ∗(t, x′). If we keep x fixed in this equation, Eq. (1) tells
us that

∂t F =
∫

ρ∗′(∂t f + v′k∂k ′ f
)

d3x ′ , (2)

wherev′k is the velocity field expressed as a function of t and x′, and∂k ′ indicates partial differentiationwith
respect to theprimed coordinates. The total timederivative ofF is∂t F + vk∂k F , and this canbeexpressed
as d F/dt = ∫

ρ∗′(∂t f + vk∂k f + v′k∂k ′ f ) d3x ′. The quantity within brackets is recognized as
the total time derivative of the function f (t, x, x′), and we write our identity as

d F

dt
=
∫

ρ∗′ d f

dt
d3x ′ , (3)

with d f/dt = ∂t f + vk∂k f + v′k∂k ′ f . Finally, we define the function F(t) :=∫
ρ∗F(t, x) d3x = ∫

ρ∗ρ∗′ f (t, x, x′) d3x ′d3x and insert F in place of f within Eq. (1).
After also using Eq. (3) we obtain

dF
dt

=
∫

ρ∗ρ∗′ d f

dt
d3x ′d3x , (4)

with d f/dt defined as in Eq. (3).

To establish these results we rely on the integral tricks reviewed in Box 8.4. To obtain
Eqs. (8.10) we first differentiate X = G

∫
ρ∗′|x − x′| d3x ′ with respect to time. Using

Eq. (2) of Box 8.4, we find ∂t X = G
∫

ρ∗′v′k∂k ′ |x − x′| d3x ′, or

∂t X = −G

∫
ρ∗′v′

k

(x − x ′)k

|x − x′| d3x ′ . (8.123)

We next differentiate this with respect to x j and get

∂t j X = −G

∫
ρ∗′v′

k∂ j
(x − x ′)k

|x − x′| d3x ′ , (8.124)
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which becomes

∂t j X = −G

∫
ρ∗′v′

j

|x − x′| d3x ′ + G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 (8.125)

after evaluation of the partial derivative. In view of the definitions for U j and � j , this is
just the first of Eqs. (8.10). If we differentiate instead with respect to time, we get

∂t t X = −G

∫
ρ∗′

[
dv′

k

dt

(x − x ′)k

|x − x′| + v′
kv

′ j ∂ j ′
(x − x ′)k

|x − x′|
]

d3x ′ .

The second term within the integral is handled as before, but to evaluate the first we
need an expression for ρ∗′dv′

k/dt . This was obtained back in Eq. (8.119), in the form
of the post-Newtonian Euler equation, and we may substitute this here. But since X is a
post-Newtonian potential that always appears with an accompanying factor of c−2, it is
appropriate to truncate the Euler equation to its Newtonian form, and we therefore use
ρ∗′dv′

k/dt = −∂k ′ p′ + ρ∗′∂k ′U ′ + O(c−2). Our expression for ∂t t X becomes

∂t t X = G

∫
∂k ′ p′ (x − x ′)k

|x − x′| d3x ′ − G

∫
ρ∗′∂k ′U ′ (x − x ′)k

|x − x′| d3x ′

+ G

∫
ρ∗′v′2

|x − x′| d3x ′ − G

∫
ρ∗′v′

j v
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ , (8.126)

and the first term can be changed to 2G
∫

p′|x − x′|−1 d3x ′ by integration by parts. Taking
into account the definitions of Eqs. (8.8), we see that this is just the second of Eqs. (8.10).

Moving on to the integral identities of Eqs. (8.120), we first differentiate U = ∫
ρ∗′|x −

x′|−1 d3x ′ with respect to x j , multiply by ρ∗, and integrate. This gives∫
ρ∗∂ jU d3x = G

∫
ρ∗ρ∗′ (x − x ′) j

|x − x′|3 d3x ′d3x,

and by switching the identities of the integration variables (x ↔ x′), we may also express
the right-hand side as G

∫
ρ∗′ρ∗(x ′ − x) j |x′ − x|−3 d3xd3x ′. This is equal and opposite

to the original integral, and we conclude that the integral vanishes; Eq. (8.120a) is thus
established. (We frequently exploit the “switch trick” in the following manipulations.)

With U j = G
∫

ρ∗′v′ j |x − x′|−1 d3x ′ we find that the integral of ρ∗U j is given by

∫
ρ∗U j d3x = G

∫
ρ∗ρ∗′v′ j

|x − x′| d3x ′d3x . (8.127)

Applying the switch trick, we write the right-hand side as G
∫

ρ∗′ρ∗v j |x − x′|−1 d3xd3x ′,
which we recognize as the integral of ρ∗Uv j with respect to d3x . Equation (8.120b) is thus
established, and Eq. (8.120c) is obtained with very similar manipulations.

Moving on to Eq. (8.120d), we write∫
ρ∗v j ∂ jU d3x = G

∫
ρ∗ρ∗′v j ∂ j |x − x′|−1 d3x ′d3x, (8.128)
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and note that we can re-express the right-hand side as G
∫

ρ∗′ρ∗v′ j ∂ j ′ |x − x′|−1 d3xd3x ′.
Adding the expressions and multiplying by 1

2 , we have

1

2
G

∫
ρ∗ρ∗′(v j ∂ j + v′ j ∂ j ′

)|x − x′|−1 d3x ′d3x,

and according to Eq. (4) of Box 8.4, this is

1

2
G

d

dt

∫
ρ∗ρ∗′|x − x′|−1 d3x ′d3x .

We recognize this as the time derivative of 1
2

∫
ρ∗U d3x , and we have established

Eq. (8.120d).
The identities of Eqs. (8.120e) and (8.120f) are obtained almost immediately by writing

out the integrals and exploiting the switch trick. For Eq. (8.120g) we differentiate the
Newtonian potential and construct the integrals that appear on the left-hand side. We have∫

ρ∗x j ∂tU d3x = G

∫
ρ∗ρ∗′v′

k x j (x − x ′)k

|x − x′|3 d3x ′d3x (8.129)

and ∫
ρ∗x j vk∂kU d3x = −G

∫
ρ∗ρ∗′vk x j (x − x ′)k

|x − x′|3 d3x ′d3x

= G

∫
ρ∗′ρ∗v′

k x ′ j (x − x ′)k

|x − x′|3 d3xd3x ′, (8.130)

and combining the results produces∫
ρ∗x j (∂tU − vk∂kU ) d3x = G

∫
ρ∗ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x . (8.131)

In view of the definition of � j provided by Eq. (8.8), this is just Eq. (8.120g).

8.4.5 Conservation of mass-energy

We now resume our development of post-Newtonian hydrodynamics. In this and the fol-
lowing sections we obtain expressions for the total mass-energy M and momentum P j of a
fluid system, as well as an expression for the position R j of the center-of-mass, defined in
such a way that M Ṙ j = P j . Our strategy is to manipulate the local conservation statements
of Eqs. (8.110) and (8.112) to obtain integral statements; the conserved integrals are then
identified with M and P j .

The total material mass of the fluid system is

m :=
∫

ρ∗ d3x, (8.132)

and this is conserved by virtue of Eq. (1) of Box 8.4: substituting f = 1 gives dm/dt = 0
immediately.

To derive an expression for the total energy E we write Eq. (8.110) as

0 = ρ∗ d

dt

(1

2
v2 + �

)
− ρ∗v j ∂ jU + ∂ j (pv j ) + O(c−2). (8.133)
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Integrating this over the volume occupied by the fluid, we find that the first term gives
rise to

d

dt

∫
ρ∗
(1

2
v2 + �

)
d3x

after taking the total time derivative outside the integral. By virtue of Eq. (8.120d) we find
that the second term contributes

d

dt

∫
ρ∗
(
−1

2
U
)

d3x,

and the third term vanishes (by Gauss’s theorem) after integration. Writing

E = T + 
 + Eint + O(c−2) (8.134)

with

T := 1

2

∫
ρ∗v2 d3x, (8.135a)


 := −1

2

∫
ρ∗U d3x, (8.135b)

Eint :=
∫

ρ∗� d3x, (8.135c)

we have shown that d E/dt = 0. We recognize in T the total kinetic energy of the fluid, 


is the total gravitational potential energy, and Eint is the total internal energy; these add up
to the conserved energy E .

The total mass-energy M of the fluid system is defined by M := m + E/c2. Combining
Eqs. (8.132) and (8.134), this is

M :=
∫

ρ∗
[

1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4), (8.136)

and we have that d M/dt = 0. We have encountered the expression of Eq. (8.136) before,
back in Sec. 7.3.2, in the context of the post-Minkowskian approximation. In Chapter 7 the
total mass-energy was defined by M := c−2

∫
(−g)(T 00 + t00

LL) d3x , in terms of the fluid’s
energy-momentum tensor and the Landau–Lifshitz pseudotensor. In the present context,
our expression for M was obtained by manipulating the fluid equations, and it is reassuring
that we have complete consistency between the two approaches.

8.4.6 Conservation of momentum

More work is required to identify the total momentum P j and show that d P j /dt = 0. We
return to Eq. (8.112) and examine the second group of post-Newtonian terms. We see that
the terms involving the Newtonian potential can be grouped into

2ρ∗v j
dU

dt
= 2ρ∗ d

dt
(Uv j ) − 2ρ∗U

dv j

dt
, (8.137)

or

2ρ∗v j
dU

dt
= 2ρ∗ d

dt
(Uv j ) + 2U∂ j p − 2ρ∗U∂ jU + O(c−2) (8.138)
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after inserting the Newtonian version of Euler’s equation. The terms involving the vector
potential can similarly be expressed as −4ρ∗(dU j /dt − vk∂ jUk), and we find that the local
statement of momentum conservation becomes

0 = ∂t (μρ∗v j ) + ∂k(μρ∗v j vk) + ∂ j p − ρ∗∂ jU + 2

c2
U∂ j p

− 1

c2
ρ∗
(

3

2
v2 − U + � + p/ρ∗

)
∂ jU + 2

c2
ρ∗ d

dt

(
Uv j − 2U j

)
+ 4

c2
ρ∗vk∂ jUk − 1

c2
ρ∗∂ j # + O(c−4), (8.139)

with μ defined by Eq. (8.113).
We next integrate this equation over the volume occupied by the fluid. Examining each

term in turn, we find that the integral of the first term contributes

d

dt

∫
μρ∗v j d3x,

but that the integrals of the second, third, and fourth terms vanish by virtue of Gauss’s
theorem and the identity of Eq. (8.120a). For the fifth term we get −2c−2

∫
p∂ jU d3x

after integration by parts. Leaving the sixth term alone for the time being, we note that the
seventh term becomes

2

c2

d

dt

∫
ρ∗(Uv j − 2U j ) d3x = − 2

c2

d

dt

∫
ρ∗Uv j d3x (8.140)

after involvement of Eq. (8.120b). And finally, we obtain

0 = d

dt

∫
μρ∗v j d3x − 2

c2

d

dt

∫
ρ∗Uv j d3x

− 1

c2

∫
ρ∗
(

3

2
v2 − U + � + 3p/ρ∗

)
∂ jU d3x + 4

c2

∫
ρ∗vk∂ jUk d3x

− 1

c2

∫
ρ∗∂ j ψ d3x − 1

2c2

∫
ρ∗∂t t j X d3x + O(c−4) (8.141)

after inserting # = ψ + 1
2 ∂t t X within the last term. This simplifies to

0 = d

dt

∫
μρ∗v j d3x − 2

c2

d

dt

∫
ρ∗Uv j d3x − 1

2c2

∫
ρ∗∂t t j X d3x + O(c−4) (8.142)

when we invoke the identities of Eqs. (8.120c) and (8.120e).
We must now work on the term involving the superpotential. We write

ρ∗∂t t j X = ρ∗ d

dt

(
∂t j X

) − ρ∗vk∂t jk X (8.143)

and integrate. We obtain∫
ρ∗∂t t j X d3x = − d

dt

∫
ρ∗U j d3x + d

dt

∫
ρ∗� j d3x (8.144)

after using Eqs. (8.10) and (8.122), and we note that by virtue of Eq. (8.120b), the first
integral on the right-hand side can also be expressed as

∫
ρ∗Uv j d3x .
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Collecting results, we have obtained the conservation statement d P j /dt = 0, with the
total momentum P j identified as

P j :=
∫

ρ∗v j

[
1 + 1

c2

(1

2
v2 − 1

2
U + � + p/ρ∗

)]
d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4).

(8.145)
We recall that the potential � j was defined by Eq. (8.8). In Chapter 7 the total momentum
was defined as P j := c−1

∫
(−g)(T 0 j + t0 j

LL) d3x , and this led to the expression displayed
in Eq. (7.65). A glance at Eq. (8.120g) confirms that the two expressions are equivalent.

The total momentum of a post-Newtonian spacetime can always be made to vanish
by performing a post-Galilean transformation of the type described in Sec. 8.3.6. The
transformation is characterized by the velocity vector V j = P j /M .

8.4.7 Center-of-mass

Inspection of Eq. (8.132) suggests that a plausible expression for the position of the center-
of-mass might be

R j := 1

M

∫
ρ∗x j

[
1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4). (8.146)

This matches the result obtained back in Sec. 7.3.2 on the basis of the post-Minkowskian
definition R j := (Mc2)−1

∫
(−g)(T 00 + t00

LL)x j d3x . We confirm this result by proving that
with Eq. (8.146), we can produce the expected center-of-mass relation

M Ṙ j = P j + O(c−4). (8.147)

Once P j has been set equal to zero by performing a post-Galilean transformation, the
position of the center-of-mass is fixed in space, and a constant translation of the spatial
coordinates allows us to set R j = 0. The conditions P j = 0 and R j = 0 define the center-
of-mass frame of the fluid system.

We express Eq. (8.146) as M R j = ∫
νρ∗x j d3x + O(c−4), with ν = 1 + c−2( 1

2 v2 −
1
2U + �). Differentiation with respect to time produces

M Ṙ j =
∫

νρ∗v j d3x +
∫

ρ∗x j dν

dt
d3x, (8.148)

and this can be written in the form

M Ṙ j = P j − 1

c2

∫
pv j d3x + 1

2c2

∫
ρ∗� j d3x +

∫
ρ∗x j dν

dt
d3x (8.149)

after incorporating Eq. (8.145). The derivative of ν can be evaluated with the help of Euler’s
equation (8.104) and the first law of thermodynamics, Eq. (8.105). We obtain

ρ∗x j dν

dt
= − 1

c2
x j ∂k(pvk) − 1

2c2
ρ∗x j

(
∂tU − vk∂kU

) + O(c−4), (8.150)
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and integration yields∫
ρ∗x j dν

dt
d3x = 1

c2

∫
pv j d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4); (8.151)

we integrated the first term by parts and made use of Eq. (8.120g) for the second term.
Making the substitution into Eq. (8.149), we see that Eq. (8.147) is indeed satisfied.

8.5 Bibliographical remarks

The Maxwell-like formulation of the equations of post-Newtonian theory, as reviewed
in Box 8.1, has received a number of presentations in the literature. One of the earliest
incarnations was provided by Braginskii, Caves, and Thorne (1977).

The classic approach to post-Newtonian theory can be traced to the earliest days of
general relativity. Representative works are Lorentz and Droste (1917), Eddington and
Clark (1938), Einstein, Infeld, and Hoffmann (1938), and the treatise by Fock (1959).
The work was invigorated by Chandrasekhar in the nineteen sixties, through a series of
papers written with students and collaborators: Chandrasekhar and Contopoulos (1967),
Chandrasekhar (1965 and 1969), Chandrasekhar and Nutku (1969), and Chandrasekhar and
Esposito (1970).

The theory of post-Newtonian coordinate transformations developed in Sec. 8.3 was
first initiated by Damour, Soffel, and Xu (1991); our treatment follows Racine and Flana-
gan (2005). The post-Galilean subclass of transformations was first investigated in Chan-
drasekhar and Contopoulos (1967). The rotating coordinates of Sec. 8.3 and the darned
disk are described in some detail in Robertson and Noonan (1968).

The post-Newtonian theory of fluid dynamics was first developed in Chandrasekhar
(1965 and 1969). Our treatment in Sec. 8.4 follows the master’s work quite closely.

8.6 Exercises

8.1 Show that the inverse to the metric of Eqs. (8.20) is given by

g00 = −1 − 2

c2
U − 2

c4

(
# + U 2

) + O(c−6) ,

g0 j = − 4

c3
U j + O(c−5) ,

g jk =
(

1 − 2

c2
U

)
δ jk + O(c−4) ,

where U j := δ jkUk . Show that the metric determinant is
√−g = 1 + 2U/c2 +

O(c−4). Verify Eqs. (8.15) for the Christoffel symbols.
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8.2 Show that the post-Newtonian version of the geodesic equation Duα/dτ = 0 can be
presented in the form

d(gsγ v)

dt
= γ

(
Eg + v × Bg + v2∇gs

)
+ O(c−4) ,

where Eg and Bg are the gravitational fields defined in Box 8.1, γ := dt/dτ , and
gs = 1 + 2c−2U is the coefficient of the spatial part of the metric.

8.3 (a) Show that the coordinate transformation

t = t̄ , x j = x̄ j + λ

c2
∂j̄ X̄ ,

in which λ is a constant, produces a new post-Newtonian metric given by

ḡ00 = g00 − 2λ

c4
(Ū 2 − �̄2 + �̄W ) ,

ḡ0 j = g0 j + λ

c3
∂t̄ j̄ X̄ ,

ḡ jk = g jk + 2λ

c2
∂j̄ k̄ X̄ ,

where gαβ denotes the original post-Newtonian metric, with all potentials defined
in terms of x̄α , and where �̄W is an auxiliary potential (known as the Whitehead
potential) defined by

�̄W := G2
∫

ρ̄∗′ρ̄∗′′ (x̄ − x̄ ′) j

|x̄ − x̄′|3
[

(x̄ ′ − x̄ ′′) j

|x̄ − x̄′′| − (x̄ − x̄ ′′) j

|x̄′ − x̄′′|
]

d3 x̄ ′d3 x̄ ′′ .

(b) Consider a static system with a “point mass” at the origin. This assumption allows
us to ignore the potentials ψ̄ , �̄2, and �̄W , and to set all time derivatives to zero.
Find the value of λ for which the metric is linear in Ū to post-Newtonian order.
Show that the line element in spherical polar coordinates can be expressed to
post-Newtonian order as

ds2 = −(1 − R/r̄ ) (cdt̄)2 + (1 − R/r̄ )−1 dr̄2 + r̄2
(
d θ̄2 + sin2 θ̄dφ̄2

)
,

where R = (2G/c2)
∫

ρ∗ d3x = 2Gm/c2. What is this metric?

8.4 (a) Using the expressions for the Landau–Lifshitz pseudotensor given in Eqs. (7.48)
and (7.49), together with the post-Newtonian expression for the potentials hαβ

2

from Box 7.5, show that the components of the effective energy-momentum
pseudotensor τ 0 j and τ jk are given to post-Newtonian order by

c−1τ 0 j = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + � + p/ρ∗

)]

+ 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4) ,
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and

τ jk = ρ∗v j vk

[
1 + 1

c2

(1

2
v2 + 3U + � + p/ρ∗

)]
+ p

(
1 + 2

c2
U

)
δ jk

+ 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
1

4πGc2

{
2∂ ( jU∂k)# − 16∂ [ jU n]∂ [kU n] + 8∂ ( jU∂tU

k)

− δ jk
[
∂nU∂n# − 4∂ [mU n]∂ [mU n] + 4∂nU∂tU

n + 3

2
(∂tU )2

]}
+ O(c−4) ,

where # = ψ + 1
2 ∂t t X .

(b) Show that the conservation statement ∂βτ jβ = 0 yields the post-Newtonian ver-
sion of Euler’s equation, as displayed in Eq. (8.119). You may make use of the
continuity equation for ρ∗, the first law of thermodynamics, and the Poisson
equations satisfied by the various potentials.

8.5 In this problem we consider the equilibrium structure of a spherical body in post-
Newtonian theory, thereby generalizing the Newtonian discussion of Sec. 2.2. We
assume that the matter distribution is static and spherically-symmetric, so that all
variables depend on r only. Show that under these conditions, the gravitational po-
tentials are determined by the set of equations

dU

dr
= −Gm

r2
,

dm

dr
= 4πr2ρ∗,

d#

dr
= −Gn

r2
,

dn

dr
= 4πr2ρ∗(−U + � + 3p/ρ∗),

where n is a post-Newtonian auxiliary variable analogous to the Newtonian mass
function m. Show also that the equation of hydrostatic equilibrium becomes

dp

dr
= −Gρ∗

r2

{
m + 1

c2

[
(−3U + � + p/ρ∗)m + n

]}
+ O(c−4).

These equations are to be supplemented by an equation of state p = p(ρ∗) and the
first law of thermodynamics, d� = (p/ρ∗2) dρ∗ + O(c−2).

8.6 The equations derived in the preceding problem should agree with the exact formu-
lation of the structure equations, as presented in Sec. 5.6.5, when these are expressed
as a post-Newtonian expansion. The comparison, however, is not entirely straightfor-
ward, because the formulations use different variables and coordinates.
(a) By comparing the metric of Eq. (5.156) with the post-Newtonian metric of

Eq. (8.2), relate the radial coordinate r̄ of Sec. 5.6.5 (perversely denoted r there)
to the harmonic radial coordinate r employed in this chapter.

(b) Show that the metric functions are related by � = U + #/c2 + O(c−4) and
m̄ = m + O(c−2), where m̄ is the mass function defined by Eq. (5.158) (and
denoted m there).
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(c) Prove that when Eqs. (5.215), (5.216), and (5.218) are expanded through order
c−2 in a post-Newtonian expansion, they agree with the equations derived in the
preceding problem.

(d) Show that the comparison relies on the identification

m̄ = m + 1

c2

(
n + mU − Gm2/r − 4πr3 p

) + O(c−4)

for the relativistic mass function.

8.7 Using the Newtonian Euler equation and the first law of thermodynamics, verify the
energy conservation equation Eq. (8.110).

8.8 Show that the conserved angular momentum tensor for an isolated system is given to
post-Newtonian order by

J jk = 2
∫

ρ∗x [ j

{
vk] + vk]

c2

(
1

2
v2 + 3U + � + p/ρ∗

)

− 1

c2

(
4U k] − 1

2
∂

k]
t X

)}
d3x .

8.9 Verify the integral identities of Eqs. (8.120e) and (8.120f).
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9 Post-Newtonian theory: System of isolated bodies

In this chapter we apply the results of Chapter 8 to situations in which a fluid distribution
breaks up into a collection of separated bodies. Our aim is to go from a fine-grained descrip-
tion involving the fluid variables {ρ∗, p, �, v} to a coarse-grained description involving
a small number of center-of-mass variables for each body. We accomplish this reduction
in Sec. 9.1, and in Sec. 9.2 we apply it to a calculation of the spacetime metric in the
empty region between bodies; the metric is thus expressed in terms of the mass-energy
MA, position r A(t), and velocity vA(t) of each body. In Sec. 9.3 we derive post-Newtonian
equations of motion for the center-of-mass positions, and in Sec. 9.4 we show that the
same equations apply to compact bodies with strong internal gravity. In Sec. 9.5 we al-
low the bodies to rotate, and we calculate the influence of the spins on the metric and
equations of motion; we also derive evolution equations for the spin vectors. We con-
clude in Sec. 9.6 with a discussion of how point particles can be usefully incorporated
within post-Newtonian theory, in spite of their infinite densities and diverging gravitational
potentials.

9.1 From fluid configurations to isolated bodies

We consider a situation in which a distribution of perfect fluid breaks up into a number N
of separated components. We call each component a “body,” and label each body with the
index A = 1, 2, . . . , N . Mathematically, this means that we can express the fluid density as

ρ∗ =
∑

A

ρ∗
A; (9.1)

the sum extends over each body, and ρ∗
A is zero everywhere except within the volume

occupied by body A. In this situation we forbid the presence of matter between the bodies;
for example, there is no mass transfer between any members of the N -body system.

9.1.1 Center-of-mass variables

The material mass of body A is

m A :=
∫

A
ρ∗ d3x . (9.2)

414
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The domain of integration VA is a time-independent region of three-dimensional space
that extends beyond the volume occupied by the body. It is sufficiently large that in a time
interval dt , the body will not cross the domain’s boundary SA; but it is sufficiently small that
VA does not include nor intersect another body within the system. We could have inserted
ρ∗

A in place of ρ∗ inside the integral, but since ρ∗ = ρ∗
A within VA, this distinction is not

necessary. By virtue of Eq. (1) in Box 8.4, we have that dm A/dt = 0.
We define the position of the center-of-mass of body A by

r A(t) := 1

m A

∫
A

ρ∗ x d3x . (9.3)

This definition is largely arbitrary (as we have observed before in Box 1.7), but it proves
convenient for our purposes: It produces simple expressions for the gravitational potentials,
and the equations of motion for each body take a simple form when expressed in terms of
r A. We next introduce

vA(t) := d r A

dt
= 1

m A

∫
A

ρ∗ v d3x (9.4)

as the velocity of the body taken as a whole, and the body’s acceleration is

aA(t) := dvA

dt
= 1

m A

∫
A

ρ∗ dv

dt
d3x . (9.5)

We evaluate this in Sec. 9.3 by inserting the post-Newtonian Euler equation within the
integral.

9.1.2 Relative variables; reflection symmetry

To carry out the integrations over the domain VA it is convenient to introduce the relative
variables

x̄ := x − r A(t), v̄ := v − vA(t); (9.6)

the vector x̄ gives the position of a fluid element relative to the center-of-mass r A(t), while
v̄ measures the velocity of this fluid element relative to the body velocity vA(t). Under this
transformation the domain VA is translated by −r A(t) and becomes a neighborhood of the
origin, and the volume element becomes d3 x̄ = d3x .

For technical reasons it will be useful to assume that each body is reflection-symmetric
about its center-of-mass. Mathematically, this means that we shall impose the property

ρ∗(t, r A − x̄) = ρ∗(t, r A + x̄), (9.7)

and subject the fluid pressure p and the specific internal energy density � to the same
symmetry. There is nothing particularly deep about this assumption, which is far less
restrictive, for example, than demanding that each body be spherically symmetric. A generic
body will not satisfy this symmetry requirement, but computations carried out for this
generic body will involve a lot of additional details that can be avoided if we impose
Eq. (9.7). In particular, the symmetry implies that any body integral that involves the
product of an odd number of internal vectors, such as x̄ or v̄, will vanish identically.
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For example, the integral
∫

A ρ∗(r A + x̄)x̄ j x̄ k v̄n d3 x̄ becomes − ∫
A ρ∗(r A − x̄)x̄ j x̄ k v̄n d3 x̄

under a reflection across the center-of-mass, and Eq. (9.7) implies that the integral must
vanish. In the following we frequently exploit this observation and eliminate many such odd
integrals; and this is, ultimately, the sole reason for introducing the symmetry requirement
of Eq. (9.7). In the course of our development we will accumulate a lot of evidence
to support the claim that the gravitational field outside the bodies, and the motion of
these bodies, are largely insensitive to details of internal structure. We might as well,
therefore, impose the reflection symmetry and benefit from its great convenience, feeling
sure that the longer computations required for a generic body would lead to the same
answers.

9.1.3 Structure integrals; equilibrium conditions

As we shall see, the internal structure of each body is characterized by a number of structure
integrals, which we introduce here. We first have the scalar quantities

TA := 1

2

∫
A

ρ∗v̄2 d3 x̄, (9.8a)


A := −1

2
G

∫
A

ρ∗ρ∗′

|x̄ − x̄′| d3 x̄ ′d3 x̄, (9.8b)

PA :=
∫

A
p d3 x̄ , (9.8c)

E int
A :=

∫
A

ρ∗� d3 x̄, (9.8d)

HA := G

∫
A

ρ∗ρ∗′ v̄
′
j (x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.8e)

which are all functions of time t . Here ρ∗, p, �, and v̄ are all expressed as functions of
t and position r A(t) + x̄, and ρ∗′ stands for ρ∗(t, r A + x̄′). We have encountered some of
these quantities before: TA is recognized as the total kinetic energy of body A (as measured
in A’s comoving frame), 
A is the total gravitational potential energy, PA is the integrated
pressure, and E int

A is the total internal energy; HA is a new quantity.
We also have the tensorial quantities

I jk
A :=

∫
A

ρ∗ x̄ j x̄ k d3 x̄, (9.9a)

S jk
A :=

∫
A

ρ∗(x̄ j v̄k − x̄ k v̄ j
)

d3 x̄, (9.9b)

T jk
A := 1

2

∫
A

ρ∗v̄ j v̄k d3 x̄, (9.9c)

L jk
A :=

∫
A

v̄ j ∂k p d3 x̄, (9.9d)



jk
A := −1

2
G

∫
A

ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.9e)

(continued overleaf)
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H jk
A := G

∫
A

ρ∗ρ∗′ v̄
′ j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.9f)

K jk
A := G

∫
A

ρ∗ρ∗′ v̄
′
n(x̄ − x̄ ′)n(x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|5 d3 x̄ ′d3 x̄, (9.9g)

where v̄′ j is the relative velocity field at position r A + x̄′. Some of these structure integrals,
like the quadrupole moment I jk

A , the angular-momentum tensor S jk
A , the kinetic-energy

tensor T jk
A , and the potential-energy tensor 


jk
A , have been encountered before; note that

TA = δ jkT jk
A and 
A = δ jk


jk
A . The others, H jk

A , K jk
A , and L jk

A , are new; note that HA =
δ jk H jk

A .
As an additional assumption concerning the bodies, we shall take them to be in dynamical

equilibrium. By this we mean that each body has had time, under its own internal dynamics,
to relax to a steady state in which its structure properties do not depend on time. This means,
in particular, that the structure integrals listed in Eqs. (9.8) and (9.9) can all be taken to
be time-independent. And as we show below in Sec. 9.1.7, the assumption also implies the
validity of the equilibrium conditions

2T jk
A + 


jk
A + δ jk PA = O(c−2) (9.10)

and

4H ( jk)
A − 3K jk

A + δ jk ṖA − 2L ( jk)
A = O(c−2). (9.11)

We also record the trace of Eq. (9.10),

2TA + 
A + 3PA = O(c−2). (9.12)

It is important to understand that the equilibrium conditions are valid only approximately.
We have insisted that each body should reach an equilibrium state under its own internal
dynamics, which involves hydrodynamical processes and the body’s own gravitational field.
Each body, however, is also subjected to the gravitational influence of the remaining bodies,
and this external dynamics comes in two different guises. The first effect, and by far the most
important one, is the motion of the body’s center-of-mass in the field of the external bodies;
this will be considered in Sec. 9.3, and the key point here is that the motion of the body as
a whole does not prevent it from reaching an internal equilibrium state. The second effect,
however, produces a small deviation from equilibrium; this is the tidal interaction between
the body and its companions, produced by inhomogeneities in the external gravitational
field across the volume occupied by the body. This effect, however, is small when the bodies
are widely separated (we shall quantify this in the following subsection), and we shall ignore
it in this and the following sections. Our conclusion is that while the equilibrium conditions
are approximate, they hold to a large degree of accuracy, and this degree is quite sufficient
for our purposes.

9.1.4 Multipole structure

In principle the mass distribution of each body is characterized by an infinite number of
mass multipole moments I L

A (t), and the fluid motions within each body are characterized
by an infinite number of current multipole moments J j L

A (t); here L := k1k2 · · · k� is a
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multi-index that contains a number l of individual indices. The most important moments
have already been introduced: we have the mass monopole moment m A, the quadrupole
moment I jk

A , and the angular-momentum tensor S jk
A . We shall first simplify this description

by demanding that the bodies be well separated.
This condition can be formulated as follows. Let RA be a length scale associated with the

volume occupied by body A, and let sA := |x − r A| be the distance from A’s center-of-mass.
We assume that in most applications that will interest us,

RA � sA. (9.13)

This implies that when, for example, we evaluate the gravitational potentials outside each
body, we are allowed to ignore all terms generated by the quadrupole moment I jk

A and
its higher-order analogues. To see this, recall that relative to the monopole term in the
Newtonian potential, the quadrupole term scales as I jk

A /(m As2
A), or (RA/sA)2, which is

small by virtue of Eq. (9.13). The suppression is even more dramatic when the body is
intrinsically spherical, and deformed ever so slightly by its tidal coupling with the other
bodies; in this case I jk

A scales as m A R5
A/r3

AB instead of m A R2
A, where rAB := |r A − r B | is

the inter-body distance, and the quadrupole term is smaller than the monopole term by a
factor of order R5

A/(r3
ABs2

A) � 1. On the other hand, the condition of Eq. (9.13) is obviously
invalid when we examine the internal structure of each body.

In our initial treatment of the N -body system, we shall also simplify the multipole
description by taking each body to be non-rotating. We shall therefore set

S jk
A = 0, (9.14)

and maintain this assumption until Sec. 9.5, in which we finally incorporate the spinning
motion of each body into the metric and equations of motion.

9.1.5 Internal and external potentials

In the following computations we shall have to distinguish between the gravitational po-
tentials produced by body A and those produced by the remaining bodies in the system. To
accomplish this we proceed as in Sec. 1.6.3 and introduce a decomposition of each potential
into internal and external pieces. For example, the Newtonian potential U is decomposed
as

U = UA + U¬A, (9.15)

with

UA(t, x) = G

∫
A

ρ∗(t, x′)
|x − x′| d3x ′ (9.16)

denoting the internal piece, and

U¬A(t, x) =
∑
B 	=A

G

∫
B

ρ∗(t, x′)
|x − x′| d3x ′ (9.17)

denoting the external piece.
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419 9.1 From fluid configurations to isolated bodies

As another example we examine the auxiliary potential �2 introduced in Eq. (8.8). Its
decomposition is

�2 = �2,A + �2,¬A, (9.18)

with

�2,A = G

∫
A

ρ∗′U ′

|x − x′| d3x ′ (9.19)

and

�2,¬A =
∑
B 	=A

G

∫
B

ρ∗′U ′

|x − x′| d3x ′. (9.20)

But these expressions involve the Newtonian potential, and this should also be decomposed
into internal and external pieces. For �2,A we express U ′ as in Eq. (9.15) and get

�2,A = G

∫
A

ρ∗′U ′
A

|x − x′| d3x ′ + G

∫
A

ρ∗′U ′
¬A

|x − x′| d3x ′. (9.21)

For �2,ext we must be more careful, because the internal-external decomposition should
now refer to each body B instead of body A. In fact, to be fully clear we should refine
our decomposition and write U ′ = U ′

A + U ′
B + U ′

¬AB , with U ′
¬AB := ∑

C 	=A,B

∫
C ρ∗′′|x′ −

x′′|−1 d3x ′′ now excluding bodies A and B. Then Eq. (9.20) becomes

�2,¬A =
∑
B 	=A

{
G

∫
B

ρ∗′U ′
A

|x − x′| d3x ′ + G

∫
B

ρ∗′U ′
B

|x − x′| d3x ′ + G

∫
B

ρ∗′U ′
¬AB

|x − x′| d3x ′
}

.

(9.22)
Subtleties like these arise also in the decomposition of the potential �5; they are, of course,
a consequence of the non-linear nature of the field equations.

9.1.6 Total mass-energy

The total mass-energy of body A is MA := m A + (TA + 
A + E int
A )/c2 + O(c−4), or

MA :=
∫

A
ρ∗
[

1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4) (9.23)

in view of Eqs. (9.8) and (9.16). In Sec. 8.4.5 we learned that the total mass-energy M of
the entire fluid system is a conserved quantity, d M/dt = 0. The manipulations that led to
this conclusion involved the integration of the fluid equations over the volume occupied
by the entire fluid. The integrations, however, can be limited to the volume occupied by
body A, and it is easy to see that the same manipulations would now reveal that each MA

is separately conserved:

d MA

dt
= 0. (9.24)

The relation between M and the sum
∑

A MA is elucidated below in Sec. 9.3.6; the grav-
itational interaction between bodies prevents these quantities from being equal to each
other.
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We shall see below that it is only the combination MA that appears in the metric of an N -
body system; the components m A, TA, 
A, or E int

A do not make individual appearances. We
shall see also that only MA appears in the equations of motion. The spacetime of an N -body
system therefore depends only on the total mass-energy of each body, and the decomposition
of this mass-energy into material mass, kinetic energy, gravitational potential energy, and
internal energy is of no consequence; two bodies with vastly different internal compositions
but the same mass-energy will produce the same spacetime and move in identical manners.
This is a statement of the strong equivalence principle in post-Newtonian theory. (Refer
to Sec. 5.1 for a discussion of the weak, strong, and Einstein versions of the principle of
equivalence.)

The important physical role of the total mass-energy MA suggests that we might refine
our notion of center-of-mass and adopt

RA := 1

MA

∫
A

ρ∗x

[
1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4) (9.25)

instead of Eq. (9.3) as a proper definition of center-of-mass position. Fortunately, the
definitions are equivalent under the symmetry assumption of Eq. (9.7):

RA = r A + O(c−4). (9.26)

To prove this we insert x = r A + x̄ inside the integral, and see immediately that RA differs
from r A by the integral

1

MAc2

∫
A

ρ∗ x̄

(
1

2
v̄2 − 1

2
UA + �

)
d3 x̄ .

The first and third terms vanish after integration, because the integrals involve an odd
number of internal vectors. The second term also leads to a vanishing integral, because∫

A
ρ∗ x̄UA d3 x̄ = G

∫
A

ρ∗ρ∗′ x̄

|x̄ − x̄′| d3 x̄ ′d3 x̄ (9.27)

is odd under a reflection across the center-of-mass. The integral vanishes, and we have
established the equality of RA and r A. There is no need to modify our definition for the
center-of-mass position.

9.1.7 Virial identities

In this subsection we derive the virial identities that give rise to the equilibrium conditions
of Eqs. (9.10) and (9.11). They are

1

2
İ jk

A = 1

2
S jk

A +
∫

A
ρ∗v̄ j x̄ k d3 x̄, (9.28a)

1

2
Ï jk

A = 2T jk
A + 


jk
A + δ jk PA +

∫
A

ρ∗ x̄ ( j ∂k)U¬A d3 x̄ + O(c−2), (9.28b)

1

2

...
I

jk
A = 4H ( jk)

A − 3K jk
A + δ jk ṖA − 2L ( jk)

A +
∫

A
ρ∗ x̄ ( j d

dt
∂k)U¬A d3 x̄

+ 3
∫

A
ρ∗v̄( j ∂k)U¬A d3 x̄ + O(c−2). (9.28c)
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The identities are generated by repeated differentiation of I jk
A = ∫

A ρ∗ x̄ j x̄ k d3 x̄ with respect
to time. Equation (9.28a) follows easily from a first differentiation and the definition of the
angular-momentum tensor; when the body is non-spinning and in dynamical equilibrium,
the identity reveals that ∫

A
ρ∗v̄ j x̄ k d3 x̄ = 0. (9.29)

Equation (9.28b) features an integral involving the external Newtonian potential in addition
to the structure integrals introduced in Eq. (9.9); under the condition of Eq. (9.13) the
external term is suppressed by a factor of order (RA/rAB)2 � 1 with respect to 


jk
A , and

it can be neglected. At equilibrium the identity gives rise to Eq. (9.10). And similarly, the
external terms can be neglected in Eq. (9.28c), and we recover Eq. (9.11) when the body is
in dynamical equilibrium.

We now proceed with the derivation of Eq. (9.28b). Taking two derivatives of the
quadrupole-moment tensor produces

1

2
Ï jk

A =
∫

A
ρ∗ x̄ ( j āk) d3 x̄ +

∫
A

ρ∗v̄ j v̄k d3 x̄, (9.30)

where āk = dvk/dt − a j
A is the acceleration of a fluid element relative to a j

A := dv
j
A/dt ,

the acceleration of the center-of-mass. The second integral is 2T jk
A , and to evaluate the first

we substitute the Newtonian version of Euler’s equation, ρ∗dvk/dt = −∂k p + ρ∗∂kU +
O(c−2). We obtain

1

2
Ï jk

A = 2T jk
A −

∫
A

x̄ ( j ∂k) p d3 x̄ +
∫

A
ρ∗ x̄ ( j ∂k)U d3 x̄ + O(c−2) (9.31)

after noting that the terms involving aA vanish identically. We next integrate the pressure
term by parts and decompose the potential term into internal and external pieces; this yields

1

2
Ï jk

A = 2T jk
A + δ jk PA +

∫
A

ρ∗ x̄ ( j ∂k)UA d3 x̄ +
∫

A
ρ∗ x̄ ( j ∂k)U¬A d3 x̄ + O(c−2). (9.32)

The integral involving UA is

−G

∫
A

ρ∗ρ∗′ x̄ ( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.33)

and by switching the identity of the integration variables we can also write it as

+G

∫
A

ρ∗′ρ∗ x̄ ′( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.34)

or as

−1

2
G

∫
A

ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.35)

which we recognize as 

jk
A . Making the substitution in Eq. (9.32) gives us Eq. (9.28b).
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Moving on to Eq. (9.28c), we return to Eq. (9.32) and differentiate it with respect to time.
We get

1

2

...
I

jk
A = 2Ṫ jk

A + δ jk ṖA +
∫

A
ρ∗ x̄ ( j d

dt
∂k)UA d3 x̄ +

∫
A

ρ∗v̄( j ∂k)UA d3 x̄

+
∫

A
ρ∗ x̄ ( j d

dt
∂k)U¬A d3 x̄ +

∫
A

ρ∗v̄( j ∂k)U¬A d3 x̄ + O(c−2). (9.36)

The derivative of the kinetic-energy tensor is Ṫ jk
A = ∫

A ρ∗v̄( j āk) d3 x̄ , and this becomes

Ṫ jk
A = −

∫
A

v̄( j ∂k) p d3 x̄ +
∫

A
ρ∗v̄( j ∂k)UA d3 x̄ +

∫
A

ρ∗v̄( j ∂k)U¬A d3 x̄ + O(c−2) (9.37)

after invoking Euler’s equation and decomposing U into internal and external pieces.
The pressure integral is L ( jk)

A , and we note that the integral involving UA also appears in
Eq. (9.36); it is given by

−G

∫
A

ρ∗ρ∗′ v̄
( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ = +G

∫
A

ρ∗′ρ∗ v̄′( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.38)

which is recognized as H ( jk)
A . We therefore have

Ṫ jk
A = H ( jk)

A − L ( jk)
A +

∫
A

ρ∗v̄( j ∂k)U¬A d3 x̄ + O(c−2), (9.39)

and this can be inserted within Eq. (9.36).
We next work on the integral involving d(∂kUA)/dt in Eq. (9.36). We have

d

dt
∂kUA = ∂t∂

kUA + vn∂n∂kUA

= −G

∫
A

ρ∗′v′n∂n′
(x − x ′)k

|x − x′|3 d3x ′ − G

∫
A

ρ∗′vn∂n
(x − x ′)k

|x − x′|3 d3x ′, (9.40)

and evaluation of the partial derivatives yields

d

dt
∂kUA = −G

∫
A

ρ∗′ (v − v′)k

|x − x′|3 d3x ′ + 3G

∫
A

ρ∗′ (v − v′)n(x − x ′)n(x − x ′)k

|x − x′|5 d3x ′.

(9.41)
Now∫

A
ρ∗ x̄ j d

dt
∂kUA d3 x̄ = −G

∫
A

ρ∗ρ∗′ x̄ j (v̄ − v̄′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

+ 3G

∫
A

ρ∗ρ∗′ (v̄ − v̄′)n(x̄ − x̄ ′)n x̄ j (x̄ − x̄ ′)k

|x̄ − x̄′|5 d3 x̄ ′d3 x̄, (9.42)

and we see that by playing with the identities of the integration variables – our old “switch
trick” x̄ ↔ x̄′ – we can bring the first integral to the form of H k j

A , while the second integral
is recognized as −K jk

A . Our final expression is therefore∫
A

ρ∗ x̄ ( j d

dt
∂k)UA d3 x̄ = H ( jk)

A − 3K jk
A . (9.43)
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423 9.2 Inter-body metric

Collecting the results displayed in Eqs. (9.36), (9.39), and (9.43), we finally obtain the virial
identity of Eq. (9.28c).

9.2 Inter-bodymetric

9.2.1 Introduction

The post-Newtonian metric was first written down in Eq. (8.2); it is

g00 = −1 + 2

c2
U + 2

c4

(
# − U 2

) + O(c−6), (9.44a)

g0 j = − 4

c3
U j + O(c−5), (9.44b)

g jk =
(

1 + 2

c2
U

)
δ jk + O(c−4), (9.44c)

and the gravitational potentials were expressed in terms of fluid variables in Eqs. (8.4). The
Newtonian and vector potentials are

U = G

∫
ρ∗′

|x − x′| d3x ′, (9.45a)

U j = G

∫
ρ∗′v′ j

|x − x′| d3x ′, (9.45b)

in which ρ∗′ and v′ j are respectively the density and velocity field expressed as functions
of time t and position x′. The post-Newtonian potential can be written as

# = 2�1 − �2 + �3 + 4�4 − 1

2
�5 − 1

2
�6, (9.46)

in terms of the auxiliary potentials introduced in Eq. (8.8):

�1 = G

∫
ρ∗′v′2

|x − x′| d3x ′, (9.47a)

�2 = G

∫
ρ∗′U ′

|x − x′| d3x ′, (9.47b)

�3 = G

∫
ρ∗′�′

|x − x′| d3x ′, (9.47c)

�4 = G

∫
p′

|x − x′| d3x ′, (9.47d)

�5 = G

∫
ρ∗′∂ j ′U ′ (x − x ′) j

|x − x′| d3x ′, (9.47e)

�6 = G

∫
ρ∗′v′

j v
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′. (9.47f)
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Our task in this section is to coarse-grain this fluid description and evaluate the potentials
for a system of N separated bodies. We shall do this at a fair distance from each body, and
exploit the condition sA � RA of Eq. (9.13); here sA is the distance to A’s center-of-mass,
and RA is the body radius, a length scale associated with the volume occupied by body A.

In the course of our calculations we will use all the tricks reviewed in Sec. 9.1, and
our results will be expressed in terms of the structure integrals of Eqs. (9.8) and (9.9). To
simplify the notation it is convenient to introduce

sA := x − r A(t), sA := |x − r A(t)|, nA := sA

sA
, (9.48)

as well as

r AB := r A(t) − r B(t), rAB := |r A(t) − r B(t)|, nAB := r AB

rAB
. (9.49)

We also need the identities

∂ j sA = n j
A, (9.50a)

∂ jksA = 1

sA

(
δ jk − n j

Ank
A

)
, (9.50b)

∂ jknsA = − 1

s2
A

(
δ jknn

A + δ jnnk
A + δknn j

A − 3n j
Ank

Ann
A

)
, (9.50c)

which are established by straightforward computations.

9.2.2 Potentials

Newtonian potentialU

To evaluate the Newtonian potential we begin with Eq. (9.45a), introduce the sum over
bodies, and change the integration variables to the relative position x̄′ := x′ − r A. This
gives

U (t, x) =
∑

A

G

∫
A

ρ∗(t, r A + x̄′)
|sA − x̄′| d3 x̄ ′, (9.51)

where sA := x − r A was introduced in Eq. (9.48). In the next step we invoke the condition
RA � sA and express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j ,

1

|sA − x̄′| = 1

sA
− x̄ ′ j ∂ j

1

sA
+ 1

2
x̄ ′ j x̄ ′k∂ jk

1

sA
+ · · · (9.52)

Substitution within each integral produces∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A

ρ∗′ d3 x̄ ′ −
(
∂ j

1

sA

) ∫
A

ρ∗′ x̄ ′ j d3 x̄ ′

+ 1

2

(
∂ jk

1

sA

) ∫
A

ρ∗′ x̄ ′ j x̄ ′ j d3 x̄ ′ + · · · (9.53)

The first integral gives m A, the material mass of body A. The second integral vanishes by
virtue of the definition of r A given by Eq. (9.3). The third integral gives I jk

A , the quadrupole
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moment of the mass distribution. Our expression for U is therefore

U =
∑

A

(
Gm A

sA
+ 1

2
I jk

A ∂ jk
1

sA
+ · · ·

)
, (9.54)

and we shall truncate this to

U =
∑

A

Gm A

sA
+ · · · , (9.55)

noting that the quadrupole term is smaller than the monopole term by a factor of order
(RA/sA)2 � 1. This degree of accuracy is maintained in all following calculations.

Vector potentialU j

The steps involved in evaluation of the vector potential are very similar. We begin with
Eq. (9.45b), introduce the sum over bodies, and make the substitutions x′ = r A + x̄′ and
v′ = vA + v̄′ within the integrals. We get

U j =
∑

A

(
v

j
AG

∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ + G

∫
A

ρ∗′v̄′ j

|sA − x̄′| d3 x̄ ′
)

. (9.56)

The Taylor expansion of |sA − x̄′|−1 gives rise to Gm Av
j
A/sA + · · · for the first integral,

where we again neglect the quadrupole term. For the second integral we have∫
A

ρ∗′v̄′ j

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A

ρ∗′v̄′ j d3 x̄ ′ −
(
∂k

1

sA

) ∫
A

ρ∗′v̄′ j x̄ ′k d3 x̄ ′

+ 1

2

(
∂kn

1

sA

) ∫
A

ρ∗′v̄′ j x̄ ′k x̄ ′n d3 x̄ ′ + · · · (9.57)

The first integral vanishes by virtue of the definition of vA given by Eq. (9.4). The second
integral is the same one that appears in Eq. (9.29), and it vanishes for non-spinning bodies in
equilibrium. And the third integral vanishes for bodies that are reflection-symmetric about
the center-of-mass, as was discussed in Sec. 9.1.2. The neglected terms are suppressed by
a factor of order (RA/sA)3 relative to the leading term, and we conclude that

U j =
∑

A

Gm Av
j
A

sA
+ · · · , (9.58)

up to neglected terms of fractional order (RA/sA)2.

Auxiliary potential�1

Following the same steps we obtain

�1 =
∑

A

(
v2

AG

∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ + 2v
j
AG

∫
A

ρ∗′v̄′
j

|sA − x̄′| d3 x̄ ′

+ G

∫
A

ρ∗′v̄′2

|sA − x̄′| d3 x̄ ′
)

(9.59)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-09 CUUK2552-Poisson 978 1 107 03286 6 December 14, 2013 13:43

426 Post-Newtonian theory: System of isolated bodies

from Eq. (9.47a). The first two terms are handled just as before, and the third integral is∫
A

ρ∗′v̄′2

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A

ρ∗′v̄′2 d3 x̄ ′ −
(
∂ j

1

sA

) ∫
A

ρ∗′v̄′2 x̄ ′ j d3 x̄ ′

+ 1

2

(
∂ jk

1

sA

) ∫
A

ρ∗′v̄′2 x̄ ′ j x̄ ′k d3 x̄ ′ + · · · (9.60)

The first integral is 2TA, the second vanishes for reflection-symmetric bodies, and the third
term is suppressed by a factor of order (RA/sA)2 relative to the first. Collecting results, we
have obtained

�1 = 2
∑

A

GTA

sA
+
∑

A

Gm Av2
A

sA
+ · · · (9.61)

Auxiliary potential�2

This computation requires a little more care, because the Newtonian potential U ′ appears
inside the Poisson integral that defines �2. Decomposing this as U ′

A + U ′
¬A, Eq. (9.47b)

becomes

�2 =
∑

A

G

∫
A

ρ∗′U ′
A

|x − x′| d3x ′ +
∑

A

G

∫
A

ρ∗′U ′
¬A

|x − x′| d3x ′. (9.62)

In the first group of terms in Eq. (9.62) we insert U ′
A = G

∫
A ρ∗′′|x′ − x′′|−1 d3x ′′, as well

as x′ = r A + x̄′ and x′′ = r A + x̄′′. We obtain a sum of terms of the form

G2
∫

A

ρ∗′ρ∗′′

|x̄′ − x̄′′||sA − x̄′| d3 x̄ ′′d3 x̄ ′. (9.63)

We next express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j . The leading term gives
rise to the contribution

G2

sA

∫
A

∫
A

ρ∗′ρ∗′′

|x̄′ − x̄′′| d3 x̄ ′′d3 x̄ ′, (9.64)

and we recognize this as −2G
A/sA. The linear term produces an odd integral that vanishes,
and the quadratic term gives rise to a negligible contribution of fractional order (RA/sA)2.
We therefore obtain −2

∑
A G
A/sA for the first group of terms in Eq. (9.62).

In the second group of terms we insert U ′
¬A = ∑

B 	=A G
∫

B ρ∗′′|x′ − x′′|−1 d3x ′′, as well
as x′ = r A + x̄′ and x′′ = r B + x̄′′. We obtain a double sum over bodies A and B of terms
of the form

G2
∫

A

∫
B

ρ∗′ρ∗′′

|r AB + x̄′ − x̄′′||sA − x̄′| d3 x̄ ′′d3 x̄ ′. (9.65)

To evaluate this we express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j , and we
simultaneously expand |r AB + x̄′ − x̄′′|−1 in powers of (x̄ ′ − x̄ ′′) j . Making the substitution,
we find that as before, the integral is dominated by the leading term in the expansion, that
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the linear terms do not contribute at all, and that the quadratic terms can be neglected.
We arrive at the expression

∑
A

∑
B 	=A G2m Am B/(rABsA) for the second group of terms in

Eq. (9.62).
Collecting results, we find that our final expression for �2 is

�2 = −2
∑

A

G
A

sA
+
∑

A

∑
B 	=A

G2m Am B

rABsA
+ · · · (9.66)

Auxiliary potentials�3,�4, and�5

The potentials �3 and �4 are computed exactly as the Newtonian potential U . We imme-
diately obtain

�3 =
∑

A

G E int
A

sA
+ · · · (9.67)

and

�4 =
∑

A

G PA

sA
+ · · · (9.68)

The computation of �5 resembles that of �2. We write Eq. (9.47e) in the form

�5 =
∑

A

G

∫
A

ρ∗′∂ j ′U ′
A

(x − x ′) j

|x − x′| d3x ′ +
∑

A

G

∫
A

ρ∗′∂ j ′U ′
¬A

(x − x ′) j

|x − x′| d3x ′, (9.69)

and work on each group of terms separately.
The first group is a sum of terms of the form

− G2
∫

A
ρ∗′ρ∗′′ (x̄

′ − x̄ ′′) j (sA − x̄ ′) j

|x̄′ − x̄′′|3|sA − x̄′| d3 x̄ ′′d3 x̄ ′, (9.70)

and to evaluate this we expand (sA − x̄ ′) j/|sA − x̄′| = ∂ j |sA − x′| in powers of x̄ ′k . We
obtain∫

A
ρ∗′∂ j ′U ′

A

(x − x ′) j

|x − x′| d3x ′ = −G
(
∂ j sA

) ∫
A

ρ∗′ρ∗′′ (x̄ ′ − x̄ ′′) j

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

+ G
(
∂ jksA

) ∫
A

ρ∗′ρ∗′′ (x̄
′ − x̄ ′′) j x̄ ′k

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

− G
(
∂ jknsA

) ∫
A

ρ∗′ρ∗′′ (x̄
′ − x̄ ′′) j x̄ ′k x̄ ′n

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

+ · · · (9.71)

The first and third integrals are odd in the number of internal vectors and therefore vanish.
The second integral can be written as

1

2

∫
A

ρ∗′ρ∗′′ (x̄
′ − x̄ ′′) j (x̄ ′ − x̄ ′′)k

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′, (9.72)
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which we recognize as −

jk
A /G. The neglected terms are of fractional order (RA/sA)2, and

we conclude that the first group of terms in Eq. (9.69) equals −∑
A G


jk
A ∂ jksA.

The second group is a double sum of terms

− G2
∫

A

∫
B

ρ∗′ρ∗′′ (rAB + x̄ ′ − x̄ ′′) j (sA − x̄ ′) j

|r AB + x̄′ − x̄′′|3|sA − x̄′| d3 x̄ ′′d3 x̄ ′, (9.73)

and the integrals can be evaluated by expanding the factor multiplying ρ∗′ρ∗′′ in a double
Taylor series in powers of (x̄ ′ − x̄ ′′)k and x̄ ′n . Once more the dominant contribution comes
from the zeroth-order term, and we find that the second group of terms in Eq. (9.69) can be
approximated by −∑

A

∑
B 	=A G2m Am B(r AB · sA)/(r3

ABsA).
Collecting results, we have that �5 is given by

�5 = −
∑

A

G

jk
A ∂ jksA −

∑
A

∑
B 	=A

G2m Am B
r AB · sA

r3
ABsA

+ · · · , (9.74)

or

�5 = −
∑

A

G
A

sA
+
∑

A

G

jk
A

n Aj n Ak

sA
−
∑

A

∑
B 	=A

G2m Am B
nAB · nA

r2
AB

+ · · · (9.75)

after using Eq. (9.50) to evaluate ∂ jksA.

Auxiliary potential�6

Equation (9.47f) becomes

�6 =
∑

A

G

[
v

j
Avk

A

∫
A

ρ∗′ (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′

+ 2v
j
A

∫
A

ρ∗′v̄′k (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′

+
∫

A
ρ∗′v̄′ j v̄′k (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′
]

(9.76)

after making the substitutions x′ = r A + x̄′ and v′ = vA + v̄′. In each integral we perform
the usual trick of expanding (sA − x̄ ′) j (sA − x̄ ′)k |sA − x̄′|−3 in powers of x̄ ′n . For the first
integral we find that the zeroth-order term gives the dominant contribution, that the linear
terms give rise to a vanishing integral, and that the quadratic terms can be neglected. For
the second integral we find that the zeroth-order term vanishes (because the integral is
odd in the number of internal vectors), that the first-order term vanishes by virtue of the
non-spinning condition of Eq. (9.29), and that the second-order term also vanishes (another
odd integral). And finally, the third integral is evaluated just as the first, and we retain only
the zeroth-order contribution.

The end result is

�6 = 2
∑

A

GT jk
A

n Aj n Ak

sA
+
∑

A

Gm A
(nA · vA)2

sA
+ · · · (9.77)
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Post-Newtonian potential#

Combining Eqs. (9.46), (9.61), (9.66), (9.67), (9.68), (9.75), and (9.77) we arrive at the
following expression for the post-Newtonian potential:

# =
∑

A

G

sA

(
4TA + 5

2

A + E int

A + 9

2
PA

)

− 1

2

∑
A

G

sA

(
2T jk

A + 

jk
A + δ jk PA

)
n Aj n Ak

+
∑

A

Gm A

sA

[
2v2

A − 1

2
(nA · vA)2

]

−
∑

A

∑
B 	=A

G2m Am B

rABsA

(
1 − nAB · sA

2rAB

)
. (9.78)

This can be simplified. We note first that the second group of terms, involving the structure
tensors T jk

A , 

jk
A , and δ jk PA, vanishes by virtue of the equilibrium condition of Eq. (9.10).

On the other hand, according to Eq. (9.12) the first group of terms can be altered at will by
the insertion of any multiple of 2TA + 
A + 3PA = 0; we exploit this freedom to eliminate
the PA term in the first sum. And finally, we use the identity

nAB · sA = s2
B − s2

A − r2
AB

2rAB
(9.79)

to alter the appearance of the double sum.
After implementing these changes, our final expression for # is

# =
∑

A

G

sA

(
TA + 
A + E int

A

)
+
∑

A

Gm A

sA

[
2v2

A − 1

2
(nA · vA)2

]

−
∑

A

∑
B 	=A

G2m Am B

rABsA

5r2
AB + s2

A − s2
B

4r2
AB

. (9.80)

Note that the first sum, which features the only remaining terms that involve the structure
integrals, depends on the combination E A := TA + 
A + E int

A ; this is the total energy of
body A, the sum of kinetic, gravitational, and internal energies.

9.2.3 At long last, the metric

We insert Eq. (9.55), (9.58), and (9.80) within the post-Newtonian metric of Eqs. (9.44).
The first group of terms in the post-Newtonian potential # combines with the Newtonian
potential U , and the combination gives rise to a contribution

2

c2

∑
A

G(m A + E A/c2)

sA
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to g00. This result implies that the Newtonian piece of the metric is naturally expressed in
terms of MA := m A + E A/c2, the total mass-energy of each body, as defined by Eq. (9.23).
Furthermore, the post-Newtonian terms also can be expressed in terms of MA, because
the difference between this and m A is of order c−2 and can be transferred to the (ne-
glected) 2pn terms. The conclusion is that the metric involves MA only, and is completely
insensitive to its decomposition in terms of material mass m A, kinetic energy TA, gravi-
tational potential energy 
A, and internal energy E int

A . This conclusion was anticipated in
Sec. 9.1.6: the 1pn metric does indeed satisfy the strong formulation of the principle of
equivalence.

Our final expression for the metric is

g00 = −1 + 2

c2

∑
A

G MA

sA
+ 1

c4

∑
A

G MA

sA

[
4v2

A − (nA · vA)2 − 2
G MA

sA

]

− 1

c4

∑
A

∑
B 	=A

G2 MA MB

sA

(
2

sB
+ 5

2rAB
+ s2

A − s2
B

2r3
AB

)
+ O(c−6), (9.81a)

g0 j = − 4

c3

∑
A

G MAv
j
A

sA
+ O(c−5), (9.81b)

g jk =
(

1 + 2

c2

∑
A

G MA

sA

)
δ jk + O(c−4). (9.81c)

We recall the notation

sA := x − r A(t), sA := |x − r A(t)|, nA := sA

sA
, (9.82)

as well as

rAB := |r A(t) − r B(t)|. (9.83)

And we recall that the mass-energy parameter MA was introduced in Eq. (9.23):

MA :=
∫

A
ρ∗
[

1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4), (9.84)

where v̄ := v − vA is the velocity field in the comoving frame of body A, and UA is the
internal gravitational potential. The mass-energy MA is a constant of the post-Newtonian
motion.

The metric of Eqs. (9.81) is valid outside each body, at a distance sA that is much larger
than each body radius RA. Only the leading terms are displayed, and our expressions leave
out terms that are suppressed by factors of order (RA/sA)2 � 1. They also leave out terms
that are contributed by the spin of each body, which was assumed to vanish; these will be
incorporated in Sec. 9.5. The metric is expressed in terms of the center-of-mass position
r A(t) and velocity vA(t) = d r A/dt of each body. These have not yet been determined, and
this shall be our task in the following section.
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9.3 Motion of isolated bodies

9.3.1 Strategy

To find equations of motion for the center-of-mass positions r A(t), we return to Eq. (9.5),
which we copy as

m AaA =
∫

A
ρ∗ dv

dt
d3x . (9.85)

Here m A := ∫
A ρ∗ d3x is the material mass of body A, aA := d2r A/dt2 is the coordinate

acceleration of its center-of-mass, and v is the fluid’s velocity field. The domain of inte-
gration VA is a time-independent region of three-dimensional space that extends beyond
the volume occupied by the body. As stated previously, it is sufficiently large that in a time
interval dt , the body will not cross the domain’s boundary SA; but it is sufficiently small
that VA does not include nor intersect another body within the system.

In this equation we insert the post-Newtonian Euler equation (8.119), which is derived
in Sec. 8.4.3. Taking into account Eq. (8.12), this gives rise to

m Aa j
A = F j

0 +
18∑

n=1

F j
n + O(c−4), (9.86)

where

F j
0 :=

∫
A

(−∂ j p + ρ∗∂ jU
)

d3x (9.87)

is the Newtonian contribution to the force acting on body A, while the eighteen terms that
make up the post-Newtonian contribution are

F j
1 := 1

2c2

∫
A

v2∂ j p d3x, (9.88a)

F j
2 := 1

c2

∫
A

U∂ j p d3x, (9.88b)

F j
3 := 1

c2

∫
A

�∂ j p d3x, (9.88c)

F j
4 := 1

c2

∫
A

p

ρ∗ ∂ j p d3x, (9.88d)

F j
5 := − 1

c2

∫
A

v j ∂t p d3x, (9.88e)

F j
6 := 1

c2

∫
A

ρ∗v2∂ jU d3x, (9.88f)

F j
7 := − 4

c2

∫
A

ρ∗U∂ jU d3x, (9.88g)

F j
8 := − 3

c2

∫
A

ρ∗v j ∂tU d3x, (9.88h)

(continued overleaf)
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F j
9 := − 4

c2

∫
A

ρ∗v j vk∂kU d3x, (9.88i)

F j
10 := 4

c2

∫
A

ρ∗∂tU
j d3x, (9.88j)

F j
11 := 4

c2

∫
A

ρ∗vk∂kU j d3x, (9.88k)

F j
12 := − 4

c2

∫
A

ρ∗vk∂ jUk d3x, (9.88l)

F j
13 := 2

c2

∫
A

ρ∗∂ j �1 d3x, (9.88m)

F j
14 := − 1

c2

∫
A

ρ∗∂ j �2 d3x, (9.88n)

F j
15 := 1

c2

∫
A

ρ∗∂ j �3 d3x, (9.88o)

F j
16 := 4

c2

∫
A

ρ∗∂ j �4 d3x, (9.88p)

F j
17 := − 1

2c2

∫
A

ρ∗∂ j �5 d3x, (9.88q)

F j
18 := − 1

2c2

∫
A

ρ∗∂ j �6 d3x . (9.88r)

The auxiliary potentials �n were introduced in Eqs. (8.8).
To evaluate the force integrals we rely on the techniques introduced in Sec. 9.1. We

assume that each body is reflection-symmetric about the center-of-mass (Sec. 9.1.2), so
that each variable (such as ρ∗, p, and �) that specifies its internal structure can be taken
to be invariant under the reflection x̄ → −x̄, where x̄ := x − r A(t) is the position of a
fluid element relative to the center-of-mass; this property allows us to eliminate all body
integrals that contain an odd number of internal vectors (such as x̄, v̄ := v − vA, or ∇ p).
We express our results in terms of the structure integrals introduced in Sec. 9.1.3, and
assume that the bodies are in dynamical equilibrium, so that Eqs. (9.10), (9.11), and (9.12)
are satisfied. We continue to assume that each body is non-spinning (Sec. 9.1.4), so that its
angular-momentum tensor S jk

A vanishes. We rely on the decomposition of all gravitational
potentials into internal and external pieces, as explained in Sec. 9.1.5. And finally, we
assume that the bodies are well separated (Sec. 9.1.4) and allow ourselves to neglect terms
that are suppressed by a factor of order (RA/rAB)2 relative to the leading-order contribution
to each force integral; here RA is the typical body radius and rAB := |r A − r B | the typical
inter-body distance.

We can exploit the condition RA � rAB to simplify expressions involving the external
potentials. The wide separation between bodies implies that when (say) the external potential
U¬A is evaluated within body A, it can be usefully expressed as the Taylor expansion

U¬A(t, x) = U¬A(t, r A) + x̄ j ∂ jU¬A(t, r A) + 1

2
x̄ j x̄ k∂ jkU¬A(t, r A) + · · · , (9.89)
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where x̄ := x − r A. With respect to the leading term U¬A(t, r A), the linear term in
Eq. (9.89) is suppressed by a factor of order RA/rAB , while the quadratic term is smaller
by a factor of order (RA/rAB)2; according to the rules spelled out previously, this last term
can be discarded.

9.3.2 Results and sample computations

It would be exhausting (both for the reader and the authors) to present a detailed calculation
of each one of the nineteen force integrals F j

n . We shall instead state the results, and present
a small (but representative) sample of the calculations that are required to obtain these
results.

The individual contributions to the gravitational force are

F j
0 = m A∂ jU¬A(t, r A) (9.90)

and

c2 F j
1 = Lk j

A vk
A, (9.91a)

c2 F j
2 = −PA∂ jU¬A, (9.91b)

c2 F j
3 = 0, (9.91c)

c2 F j
4 = 0, (9.91d)

c2 F j
5 = −ṖAv

j
A + L jk

A vk
A, (9.91e)

c2 F j
6 = 2H k j

A vk
A + 2TA∂ jU¬A + m Av2

A∂ jU¬A, (9.91f)

c2 F j
7 = −4


jk
A ∂kU¬A + 8
A∂ jU¬A − 4m AU¬A∂ jU¬A, (9.91g)

c2 F j
8 = 3H jk

A vk
A − 3HAv

j
A − 3m Av

j
A∂tU¬A, (9.91h)

c2 F j
9 = −4H jk

A vk
A − 4HAv

j
A − 8T jk

A ∂kU¬A − 4m Av
j
Avk

A∂kU¬A, (9.91i)

c2 F j
10 = 4H jk

A vk
A + 4HAv

j
A − 8
A∂ jU¬A + 4m A∂tU

j
¬A, (9.91j)

c2 F j
11 = −4H jk

A vk
A + 4HAv

j
A + 4m Avk

A∂kU j
¬A, (9.91k)

c2 F j
12 = −4m Avk

A∂ jU
k
¬A, (9.91l)

c2 F j
13 = −4H k j

A vk
A + 2m A∂ j �1,¬A, (9.91m)

c2 F j
14 = 


jk
A ∂kU¬A − m A∂ j�2,¬A, (9.91n)

c2 F j
15 = m A∂ j�3,¬A, (9.91o)

c2 F j
16 = 4m A∂ j �4,¬A, (9.91p)

c2 F j
17 = −


jk
A ∂kU¬A + 
A∂ jU¬A − 1

2
m A∂ j �5,¬A, (9.91q)

c2 F j
18 = −H jk

A vk
A − HAv

j
A + 3K jk

A vk
A − 1

2
m A∂ j �6,¬A. (9.91r)
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Here U¬A is a short-hand notation for U¬A(t, x = r A), with the rule extending to all other
external potentials. These are differentiated with respect to t and x j before being evaluated
at x = r A.

To illustrate the method of derivation we begin with the simplest case, the result of
Eq. (9.90), which is obtained from Eq. (9.87); these calculations were also presented back
in Sec. 1.6. The integral of ∂ j p over the three-dimensional domain VA can be expressed
as the surface integral

∮
SA

p d Sj , and this vanishes because the boundary surface SA lies
outside of body A. The integral of ∂ jU is handled by decomposing the Newtonian potential
as U = UA + U¬A. The first contribution to F j

0 is the self-interaction term
∫

A ρ∗∂ jUA d3x ,
which vanishes; this is the statement of Eq. (8.120a), adapted to the current situation in
which the integration extends over the volume occupied by body A. The sole contribution
to the Newtonian force is therefore F j

0 = ∫
A ρ∗∂ jU¬A d3x . In this we insert the Taylor

expansion of Eq. (9.89). The first term gives rise to Eq. (9.90). The second term vanishes,
because

∫
A ρ∗ x̄ j d3x = 0 by virtue of the definition of the center-of-mass position r A. The

third term gives rise to a contribution 1
2 I kn

A ∂ jknU¬A(t, r A) to the Newtonian force, and this
is smaller than the leading term by a factor of order (RA/rAB)2; we discard this as well as
all higher-order terms. Our final result is Eq. (9.90).

We next examine a more complicated example, the computation of F j
6 . Here again we

write U = UA + U¬A, and in addition we express the velocity field v as vA + v̄. This gives
rise to a sum of six terms,

c2 F j
6 = v2

A

∫
A

ρ∗∂ jUA d3x + 2vk
A

∫
A

ρ∗v̄k∂ jUA d3x +
∫

A
ρ∗v̄2∂ jUA d3x

+ v2
A

∫
A

ρ∗∂ jU¬A d3x + 2vk
A

∫
A

ρ∗v̄k∂ jU¬A d3x +
∫

A
ρ∗v̄2∂ jU¬A d3x .

(9.92)

The first integral vanishes, as was observed previously. In the second integral we insert
UA = G

∫
A ρ∗′|x − x′|−1 d3x ′ which we differentiate with respect to x j . The result is

−G

∫
A

ρ∗ρ∗′v̄k
(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

after changing the variables of integration from x and x′ to x̄ := x − r A and x̄′ := x′ − r A.
This can be written as

+G

∫
A

ρ∗′ρ∗v̄′
k

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄d3 x̄ ′

by switching the identities of the integration variables (the old “switch trick”). This is
recognized as the structure integral H k j

A , and the second contribution to c2 F j
A is 2H k j

A vk
A.

The third integral vanishes, because it contains an odd number of internal vectors x̄, x̄′, and
v̄. In the fourth integral we insert the Taylor expansion of the external potential and retain
the leading term only; the fourth contribution to c2 F j

6 is m Av2
A∂ jU¬A(t, r A), plus terms

that are smaller than this by a factor of order (RA/rAB)2. In the fifth integral the Taylor
expansion gives rise to a leading term proportional to

∫
A ρ∗v̄k d3 x̄ , which vanishes by virtue
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of Eq. (9.4). The second term is proportional to
∫

A ρ∗v̄k x̄n d3 x̄ , which vanishes by virtue

of Eq. (9.29). We neglect the third term and conclude that the fifth contribution to c2 F j
6 is

negligible. And finally, the sixth integral produces the final contribution 2TA∂ jU¬A(t, r A)
to c2 F j

6 . Collecting results, we obtain the expression displayed in Eq. (9.91f).
As our final example we go through the computations that lead to Eq. (9.91n). After

decomposing �2 into internal and external pieces, we have that

c2 F j
14 = −

∫
A

ρ∗∂ j �2,A d3x −
∫

A
ρ∗∂ j�2,¬A d3x . (9.93)

In the second integral we substitute the Taylor expansion for �2,¬A, and this gives rise to
a contribution −m A∂ j �2,¬A(t, r A) to c2 F j

14. Working now on the first integral, we invoke
the definition of �2 from Eqs. (8.8) on page 374, decompose U ′ into internal and external
pieces, and write

∂ j�2,A = −G

∫
A

ρ∗′U ′
A

(x − x ′) j

|x − x′|3 d3x ′ − G

∫
A

ρ∗′U ′
¬A

(x − x ′) j

|x − x′|3 d3x ′. (9.94)

Making the substitution, we find that the first term produces a contribution

G

∫
A

ρ∗ρ∗′U ′
A

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ (9.95)

to c2 F j
14; this integral vanishes because it contains an odd number of internal vectors. The

second term produces

G

∫
A

ρ∗ρ∗′U ′
¬A

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.96)

and in this we substitute the Taylor expansion for the external Newtonian potential. The
leading term gives rise to an odd integral, and the next term produces a contribution

∂kU¬A(t, r A) G

∫
A

ρ∗ρ∗′ x̄ ′k(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ (9.97)

to c2 F j
14. By making use of the switch trick we re-express this as

−∂kU¬A(t, r A) G

∫
A

ρ∗′ρ∗ x̄ k(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.98)

and averaging the results produces the final expression

−1

2
∂kU¬A(t, r A) G

∫
A

ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ ; (9.99)

this is equal to 

jk
A ∂kU¬A(t, r A). The higher-order terms in the Taylor expansion can be

neglected, and collecting results, we have established Eq. (9.91n).
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9.3.3 Equations of motion (in terms of external potentials)

Substitution of Eqs. (9.90) and (9.91) into Eq. (9.86) returns

a j
A = 1

m Ac2

[(
2L ( jk)

A − 4H ( jk)
A + 3K jk

A − δ jk ṖA

)
vk

A

− 4
(
2T jk

A + 

jk
A + δ jk PA

)
∂kU¬A + (

2TA + 
A + 3PA

)
∂ jU¬A

]

+ ∂ jU¬A + 1

c2

[(
v2

A − 4U¬A

)
∂ jU¬A − v

j
A

(
4vk

A∂kU¬A + 3∂tU¬A

)
− 4vk

A

(
∂ jU

k
¬A − ∂kU j

¬A

) + 4∂tU
j
¬A + ∂ j #¬A

]
+ O(c−4)

(9.100)

after some algebra and simplification. The self-interaction terms can all be eliminated by
taking into account the equilibrium conditions of Eqs. (9.10), (9.11), and (9.12), as well as
setting ṖA = 0. The equations of motion for body A reduce to

a j
A = ∂ jU¬A + 1

c2

[(
v2

A − 4U¬A

)
∂ jU¬A − v

j
A

(
4vk

A∂kU¬A + 3∂tU¬A

)
− 4vk

A

(
∂ jU

k
¬A − ∂kU j

¬A

) + 4∂tU
j
¬A + ∂ j#¬A

]
+ O(c−4).

(9.101)

The acceleration vector is currently expressed in terms of the external piece of the New-
tonian potential U , the vector potential U j , and the post-Newtonian potential #; these are
evaluated at x = r A(t) after differentiation. The external post-Newtonian potential is given
by

#¬A = 2�1,¬A − �2,¬A + �3,¬A + 4�4,¬A − 1

2
�5,¬A − 1

2
�6,¬A (9.102)

in terms of the auxiliary external potentials �n,¬A. Our next task is to evaluate the external
potentials, and find their expressions as explicit functions of the positions r A and velocities
vA.

Before we proceed it is interesting to compare Eq. (9.101), which governs the motion of
body A among a system of N gravitating bodies, with the geodesic equation (8.16), which
determines the motion of a test mass in a pre-determined spacetime with gravitational
potentials U , U j , and #. The equations are formally identical, and this allows us to
conclude that body A moves as if it were on a geodesic in a spacetime with gravitational
potentials U¬A, U j

¬A, and #¬A. This conclusion rests on our assumptions that each body
is non-spinning and well separated from any other body, so that the effects of the higher-
order multipole moments (such as the quadrupole moment I jk

A and the angular-momentum
tensor S jk

A ) can be neglected in the equations of motion; inclusion of these effects would
produce deviations from geodesic motion. The conclusion must also be formulated with
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care, because the external potentials are not truly independent of body A; as we shall see,
the non-linear nature of the field equations implies that ∂tU

j
¬A and ∂ j �2,¬A depend on m A

in addition to all other, external masses.

9.3.4 Evaluation of the external potentials

Once again we shall state our results and go through the details of only a small subset
of computations. After evaluation at x = r A(t) we find that the derivatives of the external
potentials are given by

∂ jU¬A = −
∑
B 	=A

Gm Bn j
AB

r2
AB

, (9.103a)

∂tU¬A =
∑
B 	=A

Gm B(nAB · vB)

r2
AB

, (9.103b)

∂kU j
¬A = −

∑
B 	=A

Gm Bv
j
Bnk

AB

r2
AB

, (9.103c)

∂tU
j
¬A =

∑
B 	=A

G
(
2T jk

B + 

jk
B + δ jk PA

)nk
AB

r2
AB

+
∑
B 	=A

Gm B(nAB · vB)v j
B

r2
AB

+
∑
B 	=A

G2m Am Bn j
AB

r3
AB

−
∑
B 	=A

∑
C 	=A,B

G2m BmC n j
BC

rABr2
BC

, (9.103d)

∂ j �1,¬A = −
∑
B 	=A

2GTBn j
AB

r2
AB

−
∑
B 	=A

Gm Bv2
Bn j

AB

r2
AB

, (9.103e)

∂ j �2,¬A =
∑
B 	=A

2G
Bn j
AB

r2
AB

−
∑
B 	=A

G2m Am Bn j
AB

r3
AB

−
∑
B 	=A

∑
C 	=A,B

G2m BmC n j
AB

r2
ABrBC

, (9.103f)

∂ j �3,¬A = −
∑
B 	=A

G E int
B n j

AB

r2
AB

, (9.103g)

∂ j �4,¬A = −
∑
B 	=A

G PBn j
AB

r2
AB

, (9.103h)

∂ j �5,¬A = −
∑
B 	=A

G
kn
B ∂ jknrAB

−
∑
B 	=A

∑
C 	=A,B

G2m BmC

rABr2
BC

[
n j

BC − (nAB · nBC )n j
AB

]
, (9.103i)

(continued overleaf)
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∂ j �6,¬A = −
∑
B 	=A

2GT kn
B ∂ jknrAB −

∑
B 	=A

2GTBn j
AB

r2
AB

+
∑
B 	=A

Gm B(nAB · vB)

r2
AB

[
2v

j
B − 3(nAB · vB)n j

AB

]
. (9.103j)

Once more we have assumed that the bodies are well separated, and terms that are sup-
pressed by factors of order (RA/rAB)2 relative to the leading contributions have been freely
discarded. We make use of the notation introduced in Eq. (9.49),

r AB := r A − r B, rAB := |r A − r B |, nAB := r AB

rAB
, (9.104)

and ∂ jknrAB stands for the third derivative of the inter-body distance rAB with respect to
the vector r AB .

To illustrate how these results are obtained we begin with the simplest case, the evaluation
of ∂ jU¬A. Introducing the notation s := |x − x′|, we recall first that the Newtonian potential
is given by U = G

∫
ρ∗′s−1 d3x ′, so that ∂ jU = G

∫
ρ∗′∂ j s−1 d3x ′; the external piece of

this is

∂ jU¬A =
∑
B 	=A

G

∫
B

ρ∗′∂ j s
−1 d3x ′. (9.105)

In this we substitute x′ = r B(t) + x̄′, so that s becomes s = |x − r B − x̄′|. We next expand
∂ j s−1 in powers of x̄ ′k :

∂ j s
−1 = ∂ j s

−1
B − x̄ ′k∂ jks−1

B + 1

2
x̄ ′k x̄ ′n∂ jkns−1

B + · · · , (9.106)

where sB := |x − r B |. Making the substitution in ∂ jU¬A, we find that it becomes

∂ jU¬A =
∑
B 	=A

(
Gm B∂ j s

−1
B + 1

2
G I kn

B ∂ jkns−1
B + · · ·

)
. (9.107)

The term involving ∂ jks−1
B vanishes, because

∫
B ρ∗′ x̄ ′k d3x ′ = 0 by virtue of the definition

of the center-of-mass position rk
B . The term involving the quadrupole moment tensor is

smaller than the leading term by a factor of order (RB/sB)2, and we discard it. After
evaluation of ∂ j s

−1
B using Eqs. (9.50), we set x = r A(t) and arrive at Eq. (9.103a).

We next tackle a more complicated case, the evaluation of ∂tU
j
¬A. The vector potential is

U j = G
∫

ρ∗′v′ j s−1 d3x ′, and using the rules spelled out in Box 8.4, we find that its time
derivative is given by ∂tU j = G

∫
ρ∗′(dv′ j /dt + v′ j v′k∂k ′)s−1 d3x ′. In this we substitute

the Newtonian version of Euler’s equation, Eq. (8.104), and obtain

∂tU
j = −G

∫
(∂ j ′ p′)s−1 d3x ′ + G

∫
ρ∗′(∂ j ′U ′)s−1 d3x ′ − G

∫
ρ∗′v′ j v′k∂ks−1 d3x ′;

(9.108)
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in the last term we have made use of the identity ∂k ′s−1 = −∂ks−1, and our expression for
∂tU j is accurate up to terms of order c−2. The external piece of this is

∂tU
j
¬A = −

∑
B 	=A

G

∫
B

(∂ j ′ p′)s−1 d3x ′ +
∑
B 	=A

G

∫
B

ρ∗′(∂ j ′U ′)s−1 d3x ′

−
∑
B 	=A

G

∫
B

ρ∗′v′ j v′k∂ks−1 d3x ′. (9.109)

We initially examine the first group of terms. We substitute x′ = r B(t) + x̄′ inside the
integral and expand s−1 in powers of x̄ ′k ; it becomes

s−1
B

∫
B

∂ j ′ p′ d3 x̄ ′ − ∂ks−1
B

∫
B

x̄ ′k∂ j ′ p′ d3 x̄ ′ + 1

2
∂kns−1

B

∫
B

x̄ ′k x̄ ′n∂ j ′ p′ d3 x̄ ′ + · · · (9.110)

The first integral vanishes automatically, the third vanishes because it contains an odd
number of internal vectors, and after integration by parts the second integral returns −δ jk PB .
The first group of terms in Eq. (9.109) is therefore

−
∑
B 	=A

G

∫
B

(∂ j ′ p′)s−1 d3x ′ =
∑
B 	=A

G PB∂ j s
−1
B , (9.111)

after discarding contributions that are smaller by a factor of order (RB/sB)2.
We turn next to the second group of terms in Eq. (9.109), in which we insert ∂ j ′U ′ =

∂ j ′U ′
A + ∂ j ′U ′

B + ∑
C 	=A,B ∂ j ′U ′

C . The integral that involves ∂ j ′U ′
A = G

∫
A ρ∗′′∂ j ′s ′−1 d3x ′′

is

G

∫
B

∫
A

ρ∗′ρ∗′′s−1∂ j ′s ′−1 d3x ′′d3x ′, (9.112)

where s ′ := |x′ − x′′|. In this we substitute x′ = r B + x̄′, x′′ = r A + x̄′′ and express
s−1∂ j ′s ′−1 as a double Taylor expansion in powers of x̄ ′k and x̄ ′′n . Only the leading term is
required, and we arrive at

G

∫
B

ρ∗′(∂ j ′U ′
A)s−1 d3x ′ = G2m Am Bs−1

B ∂ j ′r−1
AB, (9.113)

in which ∂ j ′ is interpreted as a partial derivative with respect to r j
B . The integral that involves

∂ j ′U ′
C is evaluated in the same way, and we get

G

∫
B

ρ∗′(∂ j ′U ′
C )s−1 d3x ′ = G2m BmC s−1

B ∂ j ′r−1
BC . (9.114)

The integral that involves ∂ j ′U ′
B is

− G

∫
B

ρ∗′ρ∗′′s−1 (x ′ − x ′′) j

|x′ − x′′|3 d3x ′′d3x ′, (9.115)

and in this we substitute x′ = r B + x̄′ and x′′ = r B + x̄′′. We expand s = |x − r B − x̄′|
in powers of x̄ ′k , eliminate all odd integrals, and get

G∂ks−1
B

∫
B

ρ∗′ρ∗′′ x̄ ′k(x̄ ′ − x̄ ′′) j

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′. (9.116)
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After symmetrization in the primed and double-primed variables, we arrive at

G

∫
B

ρ∗′(∂ j ′U ′
B)s−1 d3x ′ = −G


jk
B ∂ks−1

B . (9.117)

Collecting results, we find that the second group of terms in Eq. (9.109) is∑
B 	=A

G

∫
B

ρ∗′(∂ j ′U ′)s−1 d3x ′ = −
∑
B 	=A

G

jk
B ∂ks−1

B +
∑
B 	=A

G2m Am Bs−1
B ∂ j ′r−1

AB

+
∑
B 	=A

∑
C 	=A,B

G2m BmC s−1
B ∂ j ′r−1

BC . (9.118)

We recall that in the second and third sums, ∂ j ′ is interpreted as a partial derivative with
respect to r j

B .
We finally examine the third group of terms in Eq. (9.109). Here the manipulations

are simple: we insert x′ = r B + x̄′, v′ = vB + v̄′ and expand ∂ks−1 in powers of x̄ ′n . We
quickly arrive at

−
∑
B 	=A

G

∫
B

ρ∗′v′ j v′k∂ks−1 d3x ′ = −
∑
B 	=A

2GT jk
B ∂ks−1

B −
∑
B 	=A

Gm Bv
j
Bvk

B∂ks−1
B . (9.119)

Substitution of Eqs. (9.111), (9.118), and (9.119) into Eq. (9.109) returns Eq. (9.103d),
after computation of the derivatives of sB , rAB , and rBC and evaluation of all expressions
at x = r A(t).

9.3.5 Equations of motion (final form)

When Eqs. (9.103) are inserted within Eqs. (9.101) and (9.102), we finally obtain an explicit
expression for a j

A, the coordinate acceleration of body A. It can be decomposed as

aA = aA[0pn] + aA[1pn] + aA[str] + O(c−4), (9.120)

where

aA[0pn] = −
∑
B 	=A

Gm B

r2
AB

nAB (9.121)

is the Newtonian acceleration, while

c2aA[1pn] = −
∑
B 	=A

Gm B

r2
AB

[
v2

A − 4(vA · vB) + 2v2
B − 3

2
(nAB · vB)2

− 5Gm A

rAB
− 4Gm B

rAB

]
nAB

+
∑
B 	=A

Gm B

r2
AB

[
nAB · (4vA − 3vB)

]
(vA − vB)

+
∑
B 	=A

∑
C 	=A,B

G2m BmC

r2
AB

[
4

rAC
+ 1

rBC
− rAB

2r2
BC

(nAB · nBC )

]
nAB

− 7

2

∑
B 	=A

∑
C 	=A,B

G2m BmC

rABr2
BC

nBC (9.122a)

is the post-Newtonian piece of the acceleration vector.
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The third contribution aA[str] is generated by the structure-integral terms that are
scattered throughout Eqs. (9.103); it is given by

c2a j
A[str] =

∑
B 	=A

[
4G

(
2T jk

B + 

jk
B + δ jk PB

)nk
AB

r2
AB

+ 1

2
G
(
2T kn

B + 
kn
B + δkn PB

)
∂ jknrAB

− G
(
2TB + 
B + 3PB

)n j
AB

r2
AB

− G EB

r2
AB

n j
AB

]
, (9.123)

where EB := TB + 
B + E int
B is the total energy contained in body B, the sum of kinetic,

gravitational, and internal energies. To obtain this expression we added 1
2 Gδkn PB∂ jknrAB to

the second group of terms and subtracted the same thing, 1
2 G PB∂ jkkrAB = −PBn j

AB/r2
AB

from the third group. Most of a j
A[str] vanishes after imposing the equilibrium conditions

of Eqs. (9.10) and (9.12); what survives is

aA[str] = −
∑
B 	=A

G(EB/c2)

r2
AB

nAB, (9.124)

and this makes a contribution to the acceleration at 1pn order.
We observe that a[0pn] and a[str] combine nicely to give

a[0pn] + a[str] = −
∑
B 	=A

G MB

r2
AB

nAB, (9.125)

where

MB := m B + EB/c2 + O(c−4) (9.126)

is the total mass-energy of body B. And we observe that the substitution m B = MB +
O(c−2) can be made in aA[1pn] without altering the form of the equations of motion
at 1pn order. Our conclusion is that the equations of motion, like the inter-body metric
of Eqs. (9.81), depend on the total mass-energy parameters MB only, and not on their
decomposition in terms of material mass m B , kinetic energy TB , gravitational potential
energy 
B , and internal energy E int

B . The equations of motion, like the inter-body metric,
are compatible with the strong formulation of the principle of equivalence.

Our final expression for the equations of motion is

aA = −
∑
B 	=A

G MB

r2
AB

nAB

+ 1

c2

⎧⎪⎪⎪⎩−
∑
B 	=A

G MB

r2
AB

[
v2

A − 4(vA · vB) + 2v2
B − 3

2
(nAB · vB)2

− 5G MA

rAB
− 4G MB

rAB

]
nAB

(continued overleaf)
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+
∑
B 	=A

G MB

r2
AB

[
nAB · (4vA − 3vB)

]
(vA − vB)

+
∑
B 	=A

∑
C 	=A,B

G2 MB MC

r2
AB

[
4

rAC
+ 1

rBC
− rAB

2r2
BC

(nAB · nBC )

]
nAB

− 7

2

∑
B 	=A

∑
C 	=A,B

G2 MB MC

rABr2
BC

nBC

⎫⎪⎪⎪⎭ + O(c−4). (9.127)

We recall our notation: r A(t) is the position of body A in harmonic coordinates, vA(t) :=
d r A/dt is its velocity, and aA := dvA/dt is the coordinate acceleration. The vector r AB :=
r A − r B points from body B to body A; its length rAB := |r A − r B | is the inter-body
distance, and nAB := r AB/rAB .

The equations of motion (9.127) apply to each body A within the N -body system. The
bodies are assumed to be non-spinning and sufficiently well separated that the effects of
higher-order multipole moments can be ignored. These equations have a rich history that
was well summarized by Peter Havas in a 1989 essay. The equations were first formulated
in 1917 by Lorentz and Droste, who published their results in Dutch in a communication
to the Dutch Academy; their breakthrough remained unnoticed by the few researchers
involved in the early development of general relativity. The equations of motion were also
obtained at about the same time by de Sitter, who made use of the post-Newtonian metric
previously derived by Droste, and postulated that the bodies should move on geodesics of
the external metric; because of a calculational error, de Sitter’s equations differed from the
correct post-Newtonian equations by one term, and led to the wrong prediction that the
system’s barycenter should undergo a secular acceleration. The error was discovered and
corrected in 1938 by Eddington and Clark (the twenty-year delay indicating the low level
of activity in general relativity at the time), and in the same year a new derivation of the
equations of motion was produced by Einstein, Infeld, and Hoffmann. In spite of the much
earlier work of Lorentz and Droste, which eventually came to light thanks to an English
translation published in 1937, the equations became known as the EIH equations of motion.

9.3.6 Conserved quantities

In Secs. 8.4.5, 8.4.6, and 8.4.7 we established the existence of conserved quantities associ-
ated with the dynamics of a perfect fluid in a post-Newtonian spacetime. We identified

M :=
∫

ρ∗
[

1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4) (9.128)

as the total mass-energy of the fluid system,

P j :=
∫

ρ∗v j

[
1 + 1

c2

(1

2
v2 − 1

2
U + � + p/ρ∗

)]
d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4)

(9.129)
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as the total momentum, with � j defined by

� j := G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′, (9.130)

and

R j := 1

M

∫
ρ∗x j

[
1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4) (9.131)

as the position of the center-of-mass for the entire fluid system. The total mass-energy and
momentum are constants of the fluid’s motion; the position of the center-of-mass satisfies
M Ṙ j = P j .

The conserved quantities keep their usefulness when the fluid distribution is broken up
into a collection of N separated bodies. In this case the integrals of Eqs. (9.128), (9.129),
and (9.131) become a sum of N individual integrals, and the conserved quantities become

M =
∑

A

MA + 1

c2

∑
A

1

2
MAv2

A − 1

c2

∑
A

∑
B 	=A

G MA MB

2rAB
+ O(c−4), (9.132a)

P =
∑

A

MAvA + 1

c2

∑
A

1

2
MAv2

AvA

− 1

c2

∑
A

∑
B 	=A

G MA MB

2rAB

[
vA + (nAB · vA)nAB

]
+ O(c−4), (9.132b)

M R =
∑

A

MA r A + 1

c2

∑
A

1

2
MAv2

A r A − 1

c2

∑
A

∑
B 	=A

G MA MB

2rAB
r A + O(c−4). (9.132c)

As usual the expressions of Eqs. (9.132) apply to bodies that are well separated; terms
of fractional order (RA/rAB)2 have been neglected. It is straightforward (though tedious)
to show directly that d M/dt = 0, d P/dt = 0, and Md R/dt = P by virtue of the post-
Newtonian equations of motion. The expression for M reveals that the total mass-energy
of the N -body system consists of a sum of mass-energies from each body, plus the total
kinetic energy of the system (divided by c2), plus the total gravitational potential energy of
the system (also divided by c2).

To derive these results we rely on the techniques introduced in the preceding subsections.
Starting from Eq. (9.128) we find that the total mass-energy is given by

M =
∑

A

(∫
A

ρ∗ d3x + 1

2c2

∫
A

ρ∗v2 d3x − 1

2c2

∫
A

ρ∗U d3x + 1

c2

∫
A

ρ∗� d3x

)

+ O(c−4). (9.133)

The ρ∗ integral gives m A, the ρ∗v2 integral produces m Av2
A + 2TA after expressing v as

vA + v̄, and the ρ∗� integral gives E int
A . In the ρ∗U integral we write U = UA + U¬A and

observe that the first term produces −2
A, while the second term gives m AU¬A(t, r A)
after substitution of the Taylor expansion for the external potential; it is here that
terms of fractional order (RA/rAB)2 are discarded. Collecting results, and noting that
m A + (TA + 
A + E int

A )/c2 = MA, we arrive at Eq. (9.132a) after making the substitution
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m A = MA + O(c−2) in the post-Newtonian terms. The derivation of Eq. (9.132c) proceeds
in exactly the same way, and there is no need to go through the details here.

Equation (9.129) implies that the total momentum of the N -body system is given by

P j =
∑

A

(∫
A

ρ∗v j d3x + 1

2c2

∫
A

ρ∗v2v j d3x − 1

2c2

∫
A

ρ∗Uv j d3x

+ 1

c2

∫
A

ρ∗�v j d3x + 1

c2

∫
A

pv j d3x − 1

2c2

∫
A

ρ∗� j d3x

)
+ O(c−4). (9.134)

The first four integrals are evaluated as we did previously, and the fifth integral produces
PAv

j
A. In the sixth and final integral we decompose � j as �

j
A + �

j
¬A. The internal piece

produces −2

jk
A vk

A, and the external piece gives m A�
j
¬A(t, r A) after Taylor expansion of

the external potential. From Eq. (9.130) we get

�
j
¬A :=

∑
B 	=A

G

∫
B

ρ∗′v′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′, (9.135)

and in this we substitute x′ = r B + x̄′ and v′ = vB + v̄′. To leading order in an expansion
in powers of x̄ ′ j , we find that �

j
¬A(t, r A) = ∑

B 	=A Gm B(nAB · vB)n j
AB/rAB . Collecting

results, we have that

P j =
∑

A

[
m A + 1

c2

(
TA + 
A + E int

A

)]
v

j
A + 1

c2

∑
A

(
2T jk

A + 

jk
A + δ jk PA

)
vk

A

+ 1

c2

∑
A

1

2
m Av2

Av
j
A − 1

c2

∑
A

∑
B 	=A

Gm Am B

2rAB

[
v

j
A + (nAB · vB)n j

AB

]
+ O(c−4). (9.136)

In the first group of terms we recognize m A + E A/c2 = MA, and we eliminate the second
group by invoking the equilibrium condition of Eq. (9.10). In the remaining groups we
insert m A = MA + O(c−2), and in the last step we rearrange the double sum that gives rise
to the last group: We switch the identities of bodies A and B and re-express the sums as∑

B

∑
A 	=B

G MB MA

2rB A
(nB A · vA)n j

B A; (9.137)

because nB A = −nAB and rB A = rAB , this is∑
A

∑
B 	=A

G MA MB

2rAB
(nAB · vA)n j

AB, (9.138)

and we have arrived at Eq. (9.132b).

9.3.7 Binary systems

The equations obtained in the preceding subsections apply to any number of well-separated
bodies. To conclude this section we examine the special case N = 2, that is, the case of a
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binary system. In the Newtonian context reviewed in Sec. 1.6.7, we saw that the description
of the motion simplified when the origin of the coordinate system was attached to the
barycenter R, and that the position of each body could be determined in terms of the
separation vector. The same simplification occurs in the post-Newtonian context.

The binary system consists of a first body of mass-energy M1, position r1, and velocity
v1, and a second body of mass-energy M2, position r2, and velocity v2. To simplify the
notation we introduce the mass parameters

m := M1 + M2, η := M1 M2

(M1 + M2)2
, � := M1 − M2

M1 + M2
, (9.139)

so that m is a kind of total mass, η a symmetric mass ratio, and � a dimensionless
measure of the mass difference; it should be noted that m differs from the total mass-energy
M introduced in Eq. (9.132) by terms of order c−2. We introduce also the separation r :=
r1 − r2, the relative velocity v := v1 − v2, and we shall set r := |r| = r12, n := r/r = n12,
and v := |v|.

According to Eq. (9.132), the position of the system’s barycenter is given by

M R = M1

[
1 + 1

2c2

(
v2

1 − G M2

r

)]
r1 + M2

[
1 + 1

2c2

(
v2

2 − G M1

r

)]
r2, (9.140)

and we wish to impose the condition R = 0. This allows us to solve for r1 and r2 in terms
of r , and the result is

r1 = M2

m
r + η�

2c2

(
v2 − Gm

r

)
r, (9.141a)

r2 = − M1

m
r + η�

2c2

(
v2 − Gm

r

)
r. (9.141b)

These equations imply that v1 = (M2/m)v + O(c−2) and v2 = −(M1/m)v + O(c−2).
An equation of motion for r can be obtained by computing the relative acceleration

a := a1 − a2 from Eq. (9.127). Taking into account that n21 = −n12 = −n, the final result
after simplification is

a = −Gm

r2
n − Gm

c2r2

{[
(1 + 3η)v2 − 3

2
η(n · v)2 − 2(2 + η)

Gm

r

]
n

− 2(2 − η)(n · v)v

}
+ O(c−4). (9.142)

This is a second-order differential equation for r(t), and its solution provides, through r1

and r2, complete information regarding the motion of the binary system.

9.4 Motion of compact bodies

The post-Newtonian equations of motion (9.127) apply to fluid bodies that are well separated
from one another, so that their mutual gravitational interaction is weak. The method of



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-09 CUUK2552-Poisson 978 1 107 03286 6 December 14, 2013 13:43

446 Post-Newtonian theory: System of isolated bodies

derivation relied on the post-Newtonian fluid equations, and these rest on an assumption
that the self-gravity of each body is also weak. In this context, therefore, the gravitational
field is assumed to be weak everywhere. In this section we examine a different context in
which we retain the weakness of the mutual gravity between bodies, but allow each body
to be strongly self-gravitating. We demonstrate that Eq. (9.127) continues to apply in these
situations.

In the new context the bodies can be arbitrarily compact, and can possess an arbitrarily
strong internal gravitational field. The bodies are not necessarily built from a perfect fluid,
and indeed, we shall have no interest in their internal constitution. The only assumption
concerning them shall be that they are spherically symmetric – a restrictive assumption that
was not made in the fluid case. Each body may thus be a neutron star, a black hole, or any
other object with strong internal gravity; it may still be, of course, a diffuse perfect-fluid
body with weak internal gravity. We maintain, however, the requirement that the bodies
be well separated, so that gravity is allowed to be weak between the bodies; it is in these
inter-body regions that the post-Newtonian metric provides a good approximation to the
true gravitational field.

We shall focus our attention on the vacuum region external to one of the compact bodies,
and our new derivation of its equations of motion will be based entirely on solving the
Einstein field equations in this region. Matter variables never enter this discussion. Our
strategy is based instead on the transformation between the inertial frame of the post-
Newtonian spacetime and the moving frame of the compact body. To describe this we rely
on the theory of post-Newtonian coordinate transformations that was developed back in
Sec. 8.3; please refer to the summary provided in Box 8.2. We follow the treatment provided
in the 2008 article by Taylor and Poisson; the paper offers additional details that are not
covered in this briefer treatment.

9.4.1 Zones andmatching strategy

We select one of the compact bodies as our reference body, and we henceforth refer to
it as “the body.” We introduce three distinct zones in spacetime (see Fig. 9.1). The first
is the body zone, the body’s immediate neighborhood; in the body zone the gravitational
field is dominated by the body’s own field, and the contribution from external bodies is
small. If r̄ is the distance from the body’s center-of-mass, then the body zone is defined by
r̄ < rmax, with rmax � rAB marking the zone’s boundary; rAB is the inter-body distance, and
the condition r̄ � rAB ensures that the external gravity is indeed small. The second zone
is the post-Newtonian zone, in which gravity is weak everywhere. The outer boundary of
the post-Newtonian zone coincides with the boundary of the near zone, as was discussed in
Sec. 8.1. The inner boundary is a sphere of radius r̄ = rmin, within which the body’s gravity
becomes strong; we demand that rmin � G M/c2, where M is the body mass. When the
bodies are well separated we have that G M/c2 � rAB , and we can ensure that rmin < rmax.
The region rmin < r̄ < rmax is the overlap zone, the intersection between the body and
post-Newtonian zones.

Our strategy behind the new derivation of the equations of motion is based on the
following key idea: We construct independently two solutions to the vacuum field equations
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r̄ = rmax

r̄ = rmin

Fig. 9.1 Body, post-Newtonian, and overlap zones. The compact body is shown in black. The body zone is shown in wavy
texture, and is restricted by r̄ < rmax � r AB, where r̄ is the distance to the body. The post-Newtonian zone is tinted,
and is restricted by r̄ > rmin � GM/c2. The overlap zone is shown in both wavy texture and tint, and is restricted by
rmin < r̄ < rmax.

in two overlapping regions of spacetime, and we match these solutions in the overlap; the
equations of motion follow as an outcome of the matching procedure. The first solution is
constructed in the body zone, in the body’s comoving frame, and the metric is presented in
harmonic coordinates (ct̄, x̄ j ) that are attached to the body’s center-of-mass. The second
solution is constructed in the post-Newtonian zone, in the global inertial frame, and the
metric is presented in a different set of harmonic coordinates (ct, x j ) that are attached to the
center-of-mass of the entire N -body system. To match the solutions in the overlap zone we
must first reconcile the coordinate systems, and we therefore transform the post-Newtonian
metric from the global coordinates (ct, x j ) to the body coordinates (ct̄, x̄ j ). We next
compare the post-Newtonian metric to the body metric, and demand that they agree. The
matching procedure determines (i) unknown functions within each metric, (ii) unknown
functions within the coordinate transformation, and finally, (iii) the body’s equations of
motion.

9.4.2 Body metric

We wish to find the metric of a spherical body placed in the presence of remote external
bodies. The metric will be presented in harmonic coordinates (ct̄, x̄ j ), in the body’s own
moving frame, and it will be valid in the body zone, in which r̄ � rAB . We do not need the
metric inside the body, and indeed, the details of internal structure are entirely irrelevant for
our purposes. If the body were in complete isolation, its external metric would be given by
the Schwarzschild solution of Eq. (5.171) – refer to Sec. 5.6. What we need here, however, is
a perturbed version of this metric that accounts for the weak gravity created by the external
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bodies. We state without proof that the time-time component of this perturbed metric is
given by

g0̄0̄ = −1 − R/2r̄

1 + R/2r̄
− 1

c2
(1 − R/2r̄ )2E jk x̄ j x̄ k, (9.143)

where R := 2G M/c2 is the Schwarzschild radius associated with the body mass M , and
E jk(t̄) is an arbitrary STF tensor that cannot be determined by solving the vacuum field
equations in the body zone only. This metric is valid in the interval Rbody < r̄ < rmax, where
Rbody is the body’s radius.

The perturbation terms in Eq. (9.143) have a quadrupolar structure, and they grow as
r̄2 when r̄ � R; this is precisely the behavior that we expect from a tidal field. This can
be seen most easily by evaluating the metric in the overlap zone (G M/c2 � r̄ � rAB), in
which it can be expanded in powers of c−2. The Newtonian piece of the body metric is
given by

Ū = G M

r̄
− 1

2
E jk x̄ j x̄ k, (9.144)

and we may compare this with Eq. (2.261) or with Eq. (8.73). The comparison reveals that
E jk(t̄) = −∂ jkUext(t̄, r), with r(t̄) denoting the body’s position, and that the second term
in Eq. (9.144) is the leading term in an expansion of the external potential in powers of
x̄ j . The tensor E jk(t̄) therefore characterizes the body’s tidal environment, and Eq. (9.143)
neglects higher-order terms in the expansion of the tidal potential.

The metric neglects other terms as well. A spherical body subjected to tidal forces
normally suffers a deformation, but this effect was not included in Eq. (9.143). As we
learned back in Sec. 2.5.1, the deformation is measured by the quadrupole-moment tensor
I〈 jk〉, and dimensional analysis requires a relationship of the form G I〈 jk〉 = − 2

3 k2 R5
bodyE jk ,

in which k2 is the body’s gravitational Love number, which depends on the details of its
internal structure. The quadrupole-moment term in Ū would decay as r̄−3, and would be
of fractional order (Rbody/r̄ )5 relative to the tidal term; we choose to neglect it in Ū , and
choose to neglect it in g0̄0̄ also, recalling that our accuracy requirements were more modest
in the preceding sections.

We shall not be interested in tidal effects in the following considerations, and for our
purposes it is sufficient to know that in the overlap zone, the Newtonian piece of the body
metric is given by Ū = G M/r̄ + O(r̄2). Similarly, we need to know that the post-Newtonian
piece obtained from Eq. (9.143) is given by #̄ − Ū 2 = −G2 M2/r̄2 + O(r̄2), so that

#̄ = O(r̄2). (9.145)

We shall not require the time–space components of the metric, apart from the knowledge
that they contain tidal terms only; from this we infer that

Ū j = O(r̄2). (9.146)

And we shall not need the space–space components of the metric; for our purposes they
provide only redundant information.
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Our derivation of the equations of motion relies on the expression of Eq. (9.143) for
the body metric, and we present it here without a derivation. The result is based on a
straightforward application of gravitational perturbation theory applied to spherical bodies,
but to go through the details of its construction would take us too far afield. Some key
points, however, are worth a mention. The unperturbed metric is given by the Schwarzschild
solution, and its spherical symmetry guarantees that once a (linear) perturbation field is
decomposed into spherical harmonics, each mode decouples from any other mode. The
metric perturbation of Eq. (9.143) is a pure quadrupole field (� = 2), as can be seen from
the fact that it is generated by a second-rank STF tensor E jk(t̄). It can be shown that there
is no non-trivial monopole field (� = 0) in vacuum (a trivial field would correspond to a
meaningless shift in the mass parameter), and the statement that the dipole field (� = 1)
vanishes amounts to making a specific choice of center-of-mass position for the body. It is
therefore the quadrupole field that describes the leading-order tidal effects, and higher-order
multipole fields correspond to higher-order terms in the Taylor expansion of the external
Newtonian potential; we neglect these additional terms.

We make a final remark before moving on: the Newtonian potential of Eq. (9.144) is
expressed in terms of M , the mass parameter of the Schwarzschild metric. This is the
body’s total mass-energy, which in principle could be expressed in exact relativistic form in
terms of the material mass and all relevant forms of energy. Our current convention for the
Newtonian potential is therefore different from our previous usage, in which U accounted
for the material mass m only, while # accounted for the body’s energy E . Here we let the
Newtonian potential account for the body’s total mass-energy, and as a result, the expected
energy terms do not appear within the post-Newtonian potential of Eq. (9.145).

9.4.3 Post-Newtonian metric

Gravity is weak everywhere in the post-Newtonian zone, and here we may express the
metric as the post-Newtonian expansion

g00 = −1 + 2

c2
U + 2

c4
(# − U 2) + O(c−4). (9.147)

The metric is presented in the global inertial frame, in harmonic coordinates (ct, x j )
attached to the center-of-mass of the entire N -body system. The post-Newtonian zone
coincides with the near zone, but it excludes a sphere of radius r̄ = rmin centered on the
body; rmin is chosen to be much larger than G M/c2 to ensure that gravity does not get too
strong as we approach the body.

In the overlap zone (G M/c2 � rmin < r̄ < rmax � rAB) the post-Newtonian metric must
satisfy the vacuum field equations. According to Eqs. (8.24), the gravitational potentials
must be solutions to ∇2U = 0, ∇2U j = 0, ∇2ψ = 0, and ∇2 X = 2U ; the post-Newtonian
potential is # = ψ + 1

2 ∂t t X . The solutions must contain the information that a compact
body is situated at x = r(t), and that external bodies are to be found outside the overlap
zone. We model the body as a post-Newtonian monopole (an assumption that is justified
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by the matching procedure to be carried out later), and we write

U = G M

s
+ Uext, (9.148a)

U j = G Mv j

s
+ U j

ext, (9.148b)

ψ = G Mμ

s
+ ψext, (9.148c)

X = G Ms + Xext, (9.148d)

where s := |x − r(t)| is the length of the vector s := x − r(t). We have introduced
v(t) := d r/dt as the body’s velocity, and its presence in the vector potential is required
by the harmonic gauge condition, ∂tU + ∂ jU j = 0. The quantity μ(t) is a post-Newtonian
correction to the mass parameter M , and this cannot be determined by solving the field
equations in the post-Newtonian zone only. The external potentials separately satisfy the
vacuum field equations. From Eq. (9.148) we get

# = G M

s

[
μ + 1

2
v2 − 1

2
(n · v)2

]
− 1

2
G Mn · a + #ext, (9.149)

where n := s/s and #ext = ψext − 1
2 ∂t t Xext. We have also introduced a(t) := dv/dt as the

body’s acceleration, and this is the quantity that we wish to determine.
Notice that the body potentials are all singular at x = r(t); this is to be expected from a

monopole field. The singularity, however, is not physical – the body is not a point mass, but
a fully extended object. The singularity is also only apparent, because the point x = r(t)
lies outside the post-Newtonian zone; the potentials are valid for s � G M/c2 only.

9.4.4 Transformation to the comoving frame

The coordinate transformation from the inertial system (ct, x j ) to the comoving system
(ct̄, x̄ j ) is described in Box 8.2. It is characterized by a number of free functions that
must be determined in the course of the matching procedure. The most important piece of
information is the vector r(t̄), which determines the position of the body. The transformation
also involves A(t̄), H j (t̄), R j (t̄), and the harmonic function γ (t̄, x̄ j ).

The first step is to construct the “hatted potentials,” the original gravitational potentials
evaluated at time t = t̄ and position x = x̄ + r(t̄). From Eqs. (9.148) and (9.149) we get

Û = G M

r̄
+ Ûext, (9.150a)

Û j = G Mv j

r̄
+ Û j

ext, (9.150b)

#̂ = G M

r̄

[
μ + 1

2
v2 − 1

2
(n̄ · v)2

]
− 1

2
G M n̄ · a + #̂ext, (9.150c)

where v, μ, and a are now functions of t̄ , and n̄ := x̄/r̄ .
The transformed potentials Ū , Ū j , and #̄ will contain terms that are singular in the

formal limit r̄ → 0, and terms that are well-behaved in this limit. The external potentials
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contribute non-singular terms, and as usual it is convenient to express them as Taylor
expansions in powers of x̄ j . We write, for example,

Ûext(t̄, x̄) = Ûext(t̄, 0) + x̄ j ∂ j Ûext(t̄, 0) + 1

2
x̄ j x̄ k∂ jkÛext(t̄, 0) + · · · (9.151)

The harmonic function γ also contributes non-singular terms, and we also express it as a
Taylor expansion:

γ (t̄, x̄) = C(t̄) + γ j (t̄)x̄
j + 1

2
γ jk(t̄)x̄ j x̄ k + · · · ; (9.152)

here C(t̄) and γ j (t̄) are arbitrary functions of time t̄ , and γ jk(t̄) is an arbitrary STF tensor
(so that γ can be a solution to Laplace’s equation).

For our purposes here it is useful to refine the notation of Box 8.2 and decompose the
acceleration vector a(t̄) into Newtonian and post-Newtonian pieces. We write

a = a[0pn] + a[1pn] + O(c−4), a[1pn] =: c−2α, (9.153)

and re-express the transformation of the Newtonian potential as

Ū = Û − Ȧ + 1

2
v2 − a j [0pn]x̄ j . (9.154)

The missing piece involving a[1pn] is transferred to the post-Newtonian potential #̄. This
has the effect of altering the expression of G j by an additional term −α j .

A lengthy computation reveals that the transformed potentials are given by

Ū = G M

r̄
+ 0U + 1U j x̄ j + · · · , (9.155a)

Ū j = 0U
j + 1U

j
k x̄k + · · · , (9.155b)

#̄ = −G M

r̄3

(
Hj − Av j

)
x̄ j + G M

r̄

(
μ + Ȧ − 2v2

) + 0# + 1# j x̄ j + · · · , (9.155c)

with

0U = 1

2
v2 − Ȧ + Ûext, (9.156a)

1U j = −a j [0pn] + ∂j̄ Ûext, (9.156b)

0U
j = Û j

ext − v j Ûext + 1

4
(2 Ȧ − v2)v j − 1

4
Ḣ j + 1

4
ε j

pqv p Rq + 1

4
γ j , (9.156c)

1U
j
k = ∂k̄Û j

ext − v j ∂k̄Ûext + 3

8
v j ak[0pn] + 1

8
a j [0pn]vk

+ 1

4
δ

j
k

(4

3
Ä − 2vnan[0pn]

)
− 1

4
ε

j
kp Ṙ p + 1

4
γ

j
k, (9.156d)

0# = #̂ext − 4v j Û
j

ext + 2v2Ûext + A∂t̄ Ûext + (H j − Av j )∂j̄ Ûext

+ 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ j v j − Ċ, (9.156e)

(continued overleaf)
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1# j = ∂j̄ #̂ext − 4vk∂j̄ Û k
ext +

(5

2
v2 − Ȧ

)
∂j̄ Ûext − 1

2
v jv

k∂k̄Ûext + v j∂t̄ Ûext

+ A∂t̄ j̄ Ûext + (H k − Avk)∂j̄ k̄Ûext − α j +
(

Ȧ − 1

2
v2
)

a j [0pn]

−
(

Ä − 3

2
vnan[0pn]

)
v j − ε j pq

(
∂ p̄Ûext R

q + v p Ṙq
) − γ̇ j . (9.156f)

It is understood that in these expressions, the external potentials are all evaluated at x̄ = 0
after differentiation.

For later convenience it is useful to decompose 1U jk into its trace, symmetric-tracefree,
and antisymmetric parts. We have

1U jk = 1

3
δ jk 1U + 1U 〈 jk〉 + 1U [ jk] (9.157)

with

1U = Ä − ∂t̄ Ûext − v j a j [0pn], (9.158a)

1U 〈 jk〉 = ∂〈j̄ Û ext
k〉 − v〈 j ∂k̄〉Ûext + 1

2
v〈 j ak〉[0pn] + 1

4
γ jk, (9.158b)

1U [ jk] = −∂[j̄ Û ext
k] − v[ j ∂k̄]Ûext + 1

4
v[ j ak][0pn] − 1

4
ε jkp Ṙ p. (9.158c)

9.4.5 Matching

Comparison of Eqs. (9.144), (9.145), and (9.146) with Eqs. (9.155) reveals that agreement
is achieved if and only if the matching conditions

0U = 1U j = 0U
j = 1U jk = 0# = 1# j = 0, (9.159)

and

H j = Av j , μ = 2v2 − Ȧ, (9.160)

are satisfied. By virtue of Eq. (9.157), the condition 1U jk = 0 implies the independent
conditions 1U = 1U 〈 jk〉 = 1U [ jk] = 0. We now proceed to extract the information contained
in these equations.

The condition 0U = 0 implies that Ȧ = 1
2 v2 + Ûext. This, together with Eq. (9.160), tells

us that the metric function μ is given by

μ = 3

2
v2 − Ûext(t̄, 0). (9.161)

The condition 1U j = 0 implies that

a j [0pn] = ∂j̄ Ûext(t̄, 0), (9.162)

and we have established the fact that to leading order in a post-Newtonian expansion of the
mutual gravitational interaction, the compact body moves just as any Newtonian body.

The condition 0U j = 0 reveals that γ j = −4Û ext
j + ( 1

2 v2 + 3Ûext)v j + A∂j̄ Ûext −
ε j pqv p Rq . The condition 1U = 0 is automatically satisfied, and 1U 〈 jk〉 = 0 determines γ jk ,
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but this quantity is not required in the derivation of the equations of motion. The condition

1U [ jk] = 0 reveals that ε jkp Ṙ p = −4∂[j̄ Û ext
k] − 3v[ j ∂k̄]Ûext, and this equation determines

the vector R j . The condition 0# = 0 determines Ċ , but this quantity also is not required.
And finally, 1# j = 0 determines the post-Newtonian piece of the acceleration vector; after
some algebra and simplification, we arrive at

α j = (
v2 − 4Ûext

)
∂j̄ Ûext − v j

(
vk∂kÛext + 3∂t̄ Ûext

)
− 4vk∂j̄ Û k

ext + 4∂t̄ Û
j

ext + ∂j̄ #̂ext. (9.163)

As before it is understood that the external potentials are evaluated at x̄ = 0 after differen-
tiation.

The matching conditions have determined the unknown pieces of the coordinate trans-
formation, the functions A, H j , R j , C , γ j , γ jk , and the all-important vector r(t̄), which is
recovered by solving the equations of motion r̈ = a[0pn] + c−2α + O(c−4). In addition, the
matching conditions have determined the unknown metric function μ, and further analysis
would also produce the tidal moments E jk . The problem, therefore, is solved completely:
we have the metric, the coordinate transformation, and the equations of motion.

9.4.6 Equations of motion

The final form of the equations of motion is obtained by inserting Eqs. (9.162) and (9.163)
within Eq. (9.153). We evaluate each quantity at time t̄ = t and replace the hatted potentials
by their original version in Eqs. (9.148) and (9.149). After paying careful attention to the
rules of partial differentiation, which are spelled out at the end of Box 8.2, we arrive at

a j = ∂ jUext + 1

c2

[(
v2 − 4Uext

)
∂ jUext − v j

(
4vk∂kUext + 3∂tUext

)
− 4vk

(
∂ jU

k
ext − ∂kU j

ext

) + 4∂tU
j

ext + ∂ j #ext

]
+ O(c−4). (9.164)

The acceleration vector a now stands for d2r/dt2, and the equations of motion are expressed
in the global inertial frame. These should be compared with Eq. (9.101), which determines
the motion of a fluid body. The equations are identical, and we have established the important
statement that the compact body moves in exactly the same way as a weakly self-gravitating
body. This is a nice confirmation of the fact that general relativity is compatible with the
strong formulation of the principle of equivalence.

In principle the calculation should be completed with the determination of the external
potentials and the conversion of Eq. (9.164) to an explicit system of differential equations
for the position vectors r A(t). There is no need to go through these details here; it is clear
that the computation would lead back to Eq. (9.127).

A few comments, however, may be helpful. The decompositions of Eqs. (9.148) and
(9.149) distinguish between “the body” and the external objects. To recover the expressions
of Eqs. (9.55), (9.58), and (9.80), we must adapt our notation and assign the label A = 1
(say) to our reference body. The internal term G M/s in U then becomes G M1/s1. Because
the Newtonian potential satisfies a linear field equation (∇2U = 0), the external piece can
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be written as a sum of similar terms, so that Uext = ∑
A 	=1 G MA/sA. This reproduces the

expression of Eq. (9.55), and the same procedure also gives rise to Eq. (9.58).
The procedure works also for #, which also satisfies a linear field equation. In the new

notation, and with μ1 given by Eq. (9.161), the internal piece of # is

#1 = G M1

s1

[
2v2

1 − 1

2
(n1 · v1)2 − Uext

]
− 1

2
G M1n1 · a1. (9.165)

With Uext = ∑
B 	=1 G MB/r1B and a1 = ∇Uext + O(c−2), this is

#1 = G M1

s1

[
2v2

1 − 1

2
(n1 · v1)2

]
−
∑
B 	=1

G2 M1 MB

r1Bs1

(
1 − n1B · s1

2r1B

)
. (9.166)

Taking #ext to be a sum of similar terms, we have reproduced Eq. (9.80), except for a
noticeable difference: the sum

∑
A G E A/sA is present in the original expression, but it is

absent here. The reason for this discrepancy was explained at the end of Sec. 9.4.2: here the
energy terms have been incorporated within the Newtonian potential, which is expressed
in terms of MA instead of m A; they must therefore be removed from the post-Newtonian
potential.

9.5 Motion of spinning bodies

Back in Sec. 9.1.4 we imposed the important restriction that each body should have a
vanishing angular-momentum tensor, and subsequent developments relied heavily on this
assumption. But rotation is everywhere, and it is crucially important to incorporate it
in a description of the motion of an N -body system. In fact, non-rotating bodies are
about as rare as a relativist at a biophysics convention, and failure to account for rotation
would be a significant shortcoming. In atomic, nuclear, and particle physics, the effects of
quantum-mechanical spin are known to be of central importance. In gravitational physics,
it is becoming increasingly clear that spin effects play a similarly central role in such
phenomena as binary black-hole inspirals, gravitational collapse, accretion onto compact
objects, and the emission of gravitational radiation. In addition, several key experimental
tests of general relativity have involved the effects of spin. By spin, of course, we now mean
the macroscopic rotation of an extended body, and not the quantum-mechanical spin of an
elementary particle. We will use the term “spin” to describe the intrinsic (as opposed to
orbital) angular momentum of a rotating body, and will refer to spin–orbit and spin–spin
effects in the orbital motion of an N -body system; these effects are purely classical, but
they have direct analogues in quantum physics.

In this section we compute the inter-body metric of a system of spinning bodies, obtain
the equations of motion for the center-of-mass positions of each body, derive evolution
equations for the intrinsic angular momentum of each body, and examine issues associated
with the choice of center-of-mass.
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9.5.1 Definitions of spin

The intrinsic angular-momentum tensor (or spin tensor) of a rotating body was defined back
in Eq. (9.9b),

S jk
A :=

∫
A

ρ∗(x̄ j v̄k − x̄ k v̄ j
)

d3 x̄, (9.167)

in which x̄ := x − r A is the position of a fluid element relative to the body’s center-of-mass,
and v̄ := v − vA is its relative velocity. We may also introduce a vectorial version of the
spin angular momentum, defined by

SA :=
∫

A
ρ∗ x̄ × v̄ d3 x̄ . (9.168)

It is easy to show that the tensor and vector are related by

S j
A = 1

2
ε j pq S pq

A , S jk
A = ε jkp S p

A. (9.169)

In the rest of the section we frequently go back and forth between the vectorial and tensorial
notions of intrinsic angular momentum.

We continue to assume that our bodies are in dynamical equilibrium, and the virial
identity of Eq. (9.28a) implies that the spin tensor can also be expressed as

S jk
A = 2

∫
A

ρ∗ x̄ j v̄k d3 x̄ . (9.170)

It is important to understand that this relation holds in dynamical equilibrium only; the
definition of Eq. (9.167) is completely general.

We shall have occasion, below, to refine the definition of the spin vector by the inclusion
of post-Newtonian terms at order c−2. Our final definition of the spin vector is

S̄ j
A = S j

A + �intS
j
A + �extS

j
A, (9.171)

in which

�intS
j
A := 1

c2
ε j pq

[∫
A

ρ∗ x̄ pv̄q

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄

−
∫

A
ρ∗ x̄ p

(
4U q

A + 1

2
∂tq X A

)
d3 x̄

]
(9.172)

is a post-Newtonian correction that originates from the body’s internal motion and gravita-
tional potentials, and

�extS
j
A := 1

c2

[(
v2

A + 3U¬A

)
S j

A − 1

2
(vA · SA)v j

A

]
(9.173)

is another correction that originates from the orbital motion and external Newtonian po-
tential. We shall motivate these post-Newtonian additions below, but for the time being we
proceed with the original definition of Eqs. (9.167) and (9.168).
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9.5.2 Equilibrium conditions

To prepare the way for our subsequent computations, we revisit the equilibrium conditions
of Sec. 9.1.3 to see how they must be amended to account for spin. It is easy to see that the
only affected condition is Eq. (9.11), which becomes

4H ( jk)
A − 3K jk

A + δ jk ṖA − 2L ( jk)
A + S p( j

A ∂k)
pU¬A(r A) = O(c−2) (9.174)

in the presence of spin.
To establish this generalized form of the equilibrium condition, we return to the virial

identity of Eq. (9.28c), which is exact and requires no modification to account for spin. In
the no-spin context of Sec. 9.1.3, the terms involving the external Newtonian potential U¬A

could be neglected, as they give rise to contributions of fractional order (RA/rAB)2 � 1
to the equilibrium condition. In our current context, however, these terms contain spin
contributions that must be identified and included in the equilibrium condition.

The first term to examine is

A jk :=
∫

A
ρ∗ x̄ j d

dt
∂kU¬A d3 x̄ . (9.175)

We follow the familiar method of expressing the external potential as a Taylor expansion
about x = r A, inserting the expansion inside the integral, evaluating the result, and dis-
carding terms that are suppressed by a factor of order (RA/rAB)2. In the current case we
have

d

dt
∂kU¬A(x) = d

dt
∂kU¬A(r A) + v̄ p∂pkU¬A(r A) + x̄ p d

dt
∂pkU¬A(r A) + · · · , (9.176)

in which d/dt on the right-hand side is to be interpreted as ∂t + v
q
A∂q , and the spatial

derivatives act on the variables r A. Only the second term contributes to A jk , and making
use of Eq. (9.170), we find that

A jk = −1

2
S pj

A ∂pkU¬A(r A). (9.177)

The second term to examine is

B jk := 3
∫

A
v̄ j ∂kU¬A d3 x̄, (9.178)

and its evaluation proceeds along similar lines. In this case we find

B jk = 3

2
S pj

A ∂pkU¬A(r A), (9.179)

and inclusion of these terms in Eq. (9.28c) gives rise to the modified equilibrium condition
of Eq. (9.174).

9.5.3 Inter-body metric of spinning bodies

Our first task is to re-calculate the inter-body metric of an N -body system to account for
the spin of the bodies. We follow the general methods introduced in Sec. 9.2, but now
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retain the terms that used to vanish under the no-spin condition. The idea is to expand the
gravitational potentials about the center-of-mass of each body, and to find the terms that
combine an x̄ j with a v̄k so as to give rise to a spin tensor S jk

A under Eq. (9.170). Terms of
higher order in x̄ j , such as v̄ j x̄ k x̄m x̄n or v̄ j v̄k x̄m x̄n , are discarded, because they give rise
to negligible contributions of fractional order (RA/sA)2 � 1 to the potentials. In this spirit,
we also neglect terms in the potentials that are quadratic in the body spins.

Going over the computations of Sec. 9.2, we see that spin terms will appear in the post-
Newtonian potentials U j , �1, and �6, but that the remaining potentials are not affected.
Straightforward computations reveal that the additional spin terms are given by

�U j = −1

2

∑
A

GS jk
A nk

A

s2
A

, (9.180a)

��1 = −
∑

A

Gv
j
A S jk

A nk
A

s2
A

, (9.180b)

��6 = −
∑

A

Gv
j
A S jk

A nk
A

s2
A

, (9.180c)

in which sA := x − r A, sA := |sA|, and nA := sA/sA. These results imply that the main
post-Newtonian potential # is changed by

�# = −3

2

∑
A

Gv
j
A S jk

A nk
A

s2
A

. (9.181)

These results are expressed in terms of the spin tensor. Transforming to the spin vector, we
have that S jk

A nk
A = (nA × SA) j and v

j
A S jk

A nk
A = −(nA × vA) · SA.

Inserting the potentials within the metric of Eq. (9.44), we find that the changes to the
inter-body metric are given by

�g00 = 3

c4

∑
A

G(nA × vA) · SA

s2
A

+ O(c−6), (9.182a)

�g0 j = 2

c3

∑
A

G(nA × SA) j

s2
A

+ O(c−5), (9.182b)

�g jk = 0(c−4). (9.182c)

These additional terms affect the motion of test masses around each body, and we shall
see that spin effects also modify the center-of-mass motion of each body within the
system.

To illustrate the gravitational influence of spin on a test mass, we specialize the metric
to a single body. We place the body at r A = 0, set vA = 0, and import the additional terms



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-09 CUUK2552-Poisson 978 1 107 03286 6 December 14, 2013 13:43

458 Post-Newtonian theory: System of isolated bodies

from Eq. (9.81). The metric becomes

g00 = −1 + 2

c2

G M

r
− 2

c4

(
G M

r

)2

+ O(c−6), (9.183a)

g0 j = 2

c3

G(x × S) j

r3
+ O(c−5), (9.183b)

g jk =
(

1 + 2

c2

G M

r

)
δ jk + O(c−4), (9.183c)

in which M is the body’s mass, S its spin vector, and r := |x|. We examine the geodesic
motion of a test particle in this spacetime. We describe the motion in terms of the position
vector r(t), and we recall from Sec. 5.2.3, see Eq. (5.52), that the motion follows from the
Lagrangian L = −mc

√−gαβvαvβ , in which m is the particle’s mass and vα = (c, v) with
v = d r/dt . Making the substitutions, and keeping only the Newtonian and spin terms in
the Lagrangian, we find that it is given approximately by

L = −mc2 + 1

2
mv2 + Gm M

r
− 2Gm(x × v) · S

c2r3
. (9.184)

Aligning the spin direction with the z-axis, and expressing the Lagrangian in spherical
polar coordinates, we obtain our final expression

L = −mc2 + 1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

) + Gm M

r
− 2GmS sin2 θ φ̇

c2r
, (9.185)

in which an overdot indicates differentiation with respect to t .
The Lagrangian implies the existence of a conserved angular momentum,

h := 1

m

∂L

∂φ̇
= r2 sin2 θ

(
φ̇ − 2GS

c2r3

)
, (9.186)

and this equation captures the essential features of motion around a spinning body. Consider
a particle released from rest at infinity. The particle has no angular momentum, h = 0, but
when it reaches a position r , it has nevertheless acquired an angular velocity 2GS/(c2r3). A
particle with no angular momentum is therefore compelled to rotate in the same direction as
the spinning body, as if it were dragged along by the rotational motion of the central body.
Conversely, a test particle with a vanishing angular velocity at a position r has a negative
angular momentum, h = −2GS sin2 θ/(c2r ), as if it were counter-rotating relative to the
local spacetime. In the spacetime of a rotating body, therefore, zero angular momentum
does not imply zero angular velocity, and zero angular velocity does not imply zero angular
momentum. The phrase dragging of inertial frames is often attached to these phenomena.
We return to the observable consequences of frame dragging in Chapter 10.

9.5.4 Spin–orbit and spin–spin accelerations

We next turn to the task of calculating the center-of-mass acceleration aA of a spinning
body. Our strategy here is identical to the one adopted in Sec. 9.3. First, we insert the
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post-Newtonian Euler equation within the definition

m AaA =
∫

A
ρ∗ dv

dt
d3x (9.187)

and evaluate the resulting integrals, as listed in Eqs. (9.88). Second, we invoke the equilib-
rium conditions of Secs. 9.1.3 and 9.5.2 to eliminate all terms that depend on the body’s
internal structure. And third, we evaluate the external potentials and their derivatives at the
position of each body. As we shall show below, the final result of this computation is the
expression

aA = aA[0pn] + aA[1pn] + aA[so] + aA[ss] + O(c−4), (9.188)

in which the Newtonian and post-Newtonian terms are given by Eq. (9.127),

a j
A[so] = 3

2c2

∑
B 	=A

G MB

r3
AB

{
n〈 jk〉

AB

[
v

p
A

(
3Ŝkp

A + 4Ŝkp
B

) − v
p
B

(
3Ŝkp

B + 4Ŝkp
A

)]

+ n〈kp〉
AB (vA − vB)p

(
3Ŝ jk

A + 4Ŝ jk
B

)}
(9.189)

is the spin-orbit acceleration, which is linear in each spin tensor, and

a j
A[ss] = −15

c2

∑
B 	=A

G MB

r4
AB

Ŝkp
A Ŝkq

B n〈 j pq〉
AB (9.190)

is the spin–spin acceleration, bilinear in the spins. We recall the symbols r AB := r A − r B ,
rAB := |r AB |, nAB := r AB/rAB , that angular brackets such as 〈 j pq〉 indicate a symmetric-
tracefree combination, and we have introduced

Ŝ jk
A := 1

MA
S jk

A (9.191)

to denote the spin tensor divided by the body’s total mass-energy MA.
To arrive at Eq. (9.188) we return to the listing of partial forces in Eqs. (9.88) and identify

the ones that produce a dependence upon spin. It is easy to see that F j
6 , F j

8 , F j
9 , F j

11, and
F j

12 all contain terms proportional to S jk
A , and that F j

10, F j
11, F j

12, F j
13, and F j

18 contain terms
proportional to S jk

B contributed by the external potentials U j
¬A, �1,¬A, and �6,¬A.

Making use of the calculational tools developed in Sec. 9.3.2, we find that the first group
of terms evaluates to

c2�F j
6 = −vk

A Skp
A ∂pjU¬A, (9.192a)

c2�F j
8 = 3

2
S jp

A ∂tpU¬A, (9.192b)

c2�F j
9 = 2vk

A S jp
A ∂kpU¬A, (9.192c)

c2�F j
11 = 0, (9.192d)

c2�F j
12 = 2Skp

A ∂ j pU k
¬A, (9.192e)
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in which the external potentials are evaluated at r A after differentiation. The second group
of terms is

c2�F j
10 = 4m A�∂tU

j
¬A, (9.193a)

c2�F j
11 = 4m Avk

A�∂kU j
¬A, (9.193b)

c2�F j
12 = −4m Avk

A�∂ jU
k
¬A, (9.193c)

c2�F j
13 = 2m A�∂ j �1,¬A, (9.193d)

c2�F j
18 = −1

2
m A�∂ j �6,¬A, (9.193e)

in which, for example, �∂kU j
¬A denotes the spin-dependent terms in the gradient of the

external vector potential. In addition to these contributions we must also account for the
spin-dependent term in the equilibrium condition of Eq. (9.174), which, according to
Eq. (9.100), gives rise to the shift

c2�F j = �
(
2L ( jk)

A − 4H ( jk)
A + 3K jk

A − δ jk ṖA

)
vk

A = vk
A S p(k

A ∂ j)
pU¬A. (9.194)

In the next step we employ the methods described in Sec. 9.3.4 to evaluate the derivatives
of external potentials that occur in Eqs. (9.192), (9.193), and (9.194). We have

∂ jkU¬A = 3
∑
B 	=A

Gm Bn〈 jk〉
AB

r3
AB

, (9.195a)

∂tkU¬A = −3
∑
B 	=A

Gm Bn〈kp〉
AB v

p
B

r3
AB

, (9.195b)

∂ j pU k
¬A =

∑
B 	=A

(
3

Gm Bn〈 j p〉
AB vk

B

r3
AB

− 15

2

GSkq
B n〈 j pq〉

AB

r4
AB

)
, (9.195c)

�∂ jU
k
¬A = 3

2

∑
B 	=A

GSkp
B n〈 j p〉

AB

r3
AB

, (9.195d)

�∂tU
j
¬A = −3

2

∑
B 	=A

GS jp
B vk

Bn〈kp〉
AB

r3
AB

, (9.195e)

�∂ j �1,¬A = 3
∑
B 	=A

GSkp
B vk

Bn〈 j p〉
AB

r3
AB

, (9.195f)

�∂ j �6,¬A = 3
∑
B 	=A

GSkp
B vk

Bn〈 j p〉
AB

r3
AB

. (9.195g)

Making the substitutions and adding up the partial forces, we finally obtain the spin–orbit
and spin–spin accelerations of Eqs. (9.189) and (9.190). In the last step we make the
replacement m A → MA + O(c−2) in the accelerations, so as to express them in terms of
the total mass-energy MA instead of the material mass m A.
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9.5.5 Conserved quantities

The conserved quantities of Sec. 9.3.6 also acquire spin-dependent terms. While it is easy
to see that the total mass-energy M is spin-independent, a close examination of Eqs. (9.129)
and (9.131) reveals that the center-of-mass position R and total momentum P contain spin
terms. In the case of the center-of-mass position, these contributions originate from the term
1
2 ρ∗x j v2 inside the integral. In the case of the total momentum, they arise from ρ∗v jU and
ρ∗� j .

We calculate the spin-dependent terms by following the approach detailed in Sec. 9.3.6,
and obtain

�(M R j ) = 1

2c2

∑
A

S jk
A vk

A = 1

2c2

∑
A

(
vA × SA

) j
(9.196)

for the change in the barycenter position, and

�P j = − 1

2c2

∑
A

∑
B 	=A

G MB

r2
AB

S jk
A nk

AB = − 1

2c2

∑
A

∑
B 	=A

G MB

r2
AB

(
nAB × SA

) j
(9.197)

for the change in the total momentum. It is easy to show that d�(M R)/dt = �P + O(c−4)
and d�P/dt = O(c−4) provided that d S jk

A /dt = O(c−2).

9.5.6 Spin precession

Our next task in this survey of spinning bodies is to derive an evolution equation for each
spin vector SA. This question was first considered back in Sec. 1.6.8 in the context of
Newtonian gravity, where we showed that SA changes as a result of a coupling between
the body’s multipole moments I L

A and inhomogeneities in the external Newtonian potential
U¬A. We have so far neglected all effects associated with multipole moments, and we
shall continue to do so in our treatment of spin evolution. As a result, we shall find that
the changes in SA occur at post-Newtonian order, and result from a coupling between the
body’s spin and gradients of the external potentials.

Our final expression of the spin evolution equation involves the refined spin vector of
Eq. (9.171). It takes the form of the precession equation

d S̄A

dt
= �A × S̄A + O(c−4), (9.198)

in which the precessional angular velocity is given by

�A = �A[so] + �A[ss], (9.199)

with

�A[so] = 1

2c2

∑
B 	=A

G MB

r2
AB

nAB × (
3vA − 4vB

)
, (9.200a)

�A[ss] = 1

c2

∑
B 	=A

G

r3
AB

[
3
(
S̄B · nAB

)
nAB − S̄B

]
. (9.200b)
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The first term describes a spin–orbit interaction, and the second a spin–spin interaction.
Equation (9.198) implies that the magnitude |S̄A| of the spin vector is a constant of the
motion; the equation describes a precession of the spin around the time-dependent angular-
velocity vector �A.

The spin-precession equation involves the refined spin vector S̄A instead of the original
vector SA, but the inter-body metric and equations of motion were previously written in
terms of the original spin. There is no obstacle, however, in expressing all previous results
in terms of the refined spin. Because SA = S̄A + O(c−2), and because all spin terms occur
at post-Newtonian order in the metric and equations of motion, the substitution affects only
the neglected terms at 2pn order. The final expression of our results, therefore, involves
only the refined spin vector.

Partial torques

The derivation of Eq. (9.198) begins with

d S j
A

dt
= ε j pq

∫
A

ρ∗ x̄ p dvq

dt
d3 x̄, (9.201)

which is obtained by straightforward differentiation of Eq. (9.168); the integral initially
features d v̄ p/dt = dv p/dt − a j

A, but the center-of-mass condition
∫

A ρ∗ x̄ p d3 x̄ = 0 im-
plies that the second term leads to a vanishing contribution to the torque. In this we insert
the post-Newtonian version of Euler’s equation and end up with a sum of terms that bears
a close resemblance to Eq. (9.86). For our purposes here it is helpful to write the Euler
equation – refer to Eq. (8.119) – in the alternative form

ρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU + 1

c2

{(
1

2
v2 + U + � + p

ρ∗

)
∂ j p − v j ∂t p

+ ρ∗
[

(v2 − 4U )∂ jU − 3v j dU

dt
− v j vk∂kU + 4

dU j

dt
− 4vk∂ jU

k + ∂ j #

]}
+ O(c−4), (9.202)

in which # = ψ + 1
2 ∂t t X and ψ = 3

2 �1 − �2 + �3 + 3�4 – refer to Eq. (8.3) and
Eq. (8.9). Inserting this within Eq. (9.201), we have that

d S j
A

dt
= 1

c2
ε j pq

9∑
n=1

G pq
n + O(c−4), (9.203)

where

G jk
1 :=

∫
A

x̄ j

(
1

2
v2 + U + � + p

ρ∗

)
∂k p d3 x̄, (9.204a)

G jk
2 := −

∫
A

x̄ j vk∂t p d3 x̄, (9.204b)

G jk
3 :=

∫
A

ρ∗ x̄ j (v2 − 4U )∂kU d3 x̄, (9.204c)

(continued overleaf)
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G jk
4 := −3

∫
A

ρ∗ x̄ j vk dU

dt
d3 x̄, (9.204d)

G jk
5 := −

∫
A

ρ∗ x̄ j vkv p∂pU d3 x̄, (9.204e)

G jk
6 := 4

∫
A

ρ∗ x̄ j dU k

dt
d3 x̄, (9.204f)

G jk
7 := −4

∫
A

ρ∗ x̄ j v p∂kU p d3 x̄, (9.204g)

G jk
8 :=

∫
A

ρ∗ x̄ j ∂kψ d3 x̄, (9.204h)

G jk
9 := 1

2

∫
A

ρ∗ x̄ j ∂t tk X d3 x̄, (9.204i)

are the partial torques. As motivated previously, we have discarded the Newtonian terms in
Eq. (9.203), and factorized the overall factor of c−2.

The remaining computations are lengthy, but they proceed along the same lines as the
evaluation of the partial forces in Sec. 9.3.2. For example, the velocity vector is decom-
posed as v = vA + v̄, the potentials are decomposed into internal and external pieces, the
external potentials are expressed as Taylor expansions about r A, integrals featuring an odd
number of internal vectors are set to zero, and terms of fractional order (RA/rAB)2 � 1
are neglected. In addition, double volume integrals are symmetrized with respect to the
integration variables x̄ and x̄′, and all terms in G jk

n that are symmetric in jk are discarded,
because they do not survive the antisymmetrization operation contained in Eq. (9.203).
Skipping over these computational details, we obtain

G jk
1 =

∫
A

x̄ j

(
1

2
v̄2 + UA + � + p

ρ∗

)
∂k p d3 x̄, (9.205a)

G jk
2 = −

∫
A

x̄ j v̄k∂t p d3 x̄, (9.205b)

G jk
3 =

∫
A

ρ∗ x̄ j (v̄2 − 4UA)∂kUA d3 x̄ + S jp
A v

p
A∂kU¬A, (9.205c)

G jk
4 = −3

∫
A

ρ∗ x̄ j v̄k dUA

dt
d3 x̄ − 3

2
vk

A S jp
A ∂pU¬A − 3

2
S jk

A

dU¬A

dt
, (9.205d)

G jk
5 = −vk

A

j p
A v

p
A −

∫
A

ρ∗ x̄ j v̄k v̄ p∂pUA d3 x̄ − 1

2

(
vk

A S jp
A + v

p
A S jk

A

)
∂pU¬A, (9.205e)

G jk
6 = 4

d

dt

∫
A

ρ∗ x̄ jU k
A d3 x̄ + 2S jp

A ∂pU k
¬A, (9.205f)

G jk
7 = −2S jp

A ∂kU p
¬A, (9.205g)

G jk
8 = G

∫
A

ρ∗ρ∗′ x̄ j

(
−3

2
v̄′2 + U ′

A − �′ − 3
p′

ρ∗′

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.205h)

G jk
9 = 1

2

d

dt

∫
A

ρ∗ x̄ j ∂tk X A d3 x̄ + vk
A


jk
A v

p
A, (9.205i)
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in which the external potentials are evaluated at r A after differentiation. The partial torques
involve some external pieces that depend on the spin tensor S jk

A , and some internal integrals
that are not directly featured in the final result displayed in Eq. (9.198). Many of these
integrals actually cancel out, as can be seen for the terms involving the potential energy
tensor 


jk
A .

Other cancellations are produced once we express G jk
1 in a different form. We eliminate

∂k p from the integral by making use of the Newtonian version of Euler’s equation, which
we write in the approximate form ρ∗d v̄k/dt = −∂k p + ρ∗∂kUA, having equated dvk

A/dt
with ∂kU¬A(r A). The partial torque becomes

G jk
1 = −

∫
A

ρ∗ x̄ j

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d v̄k

dt
d3 x̄ + 2

∫
A

ρ∗ x̄ jUA
d v̄k

dt
d3 x̄

+
∫

A
ρ∗ x̄ j

(
1

2
v̄2 + UA + � + p

ρ∗

)
∂kUA d3 x̄ . (9.206)

The integrand of the first term is ρ∗ x̄ j Ad v̄k/dt with A := 1
2 v̄2 + 3UA + � + p/ρ∗, and

we express it as

ρ∗ d

dt

(
x̄ j v̄k A

) − ρ∗v̄ j v̄k A − ρ∗ x̄ j v̄k d A

dt
,

with d A/dt = (∂t p + vn
A∂n p)/ρ∗ + v̄n∂nUA + 3dUA/dt ; to arrive at this result we have

invoked Euler’s equation once more, and made use of d�/dt = (p/ρ∗2)dρ∗/dt , the state-
ment of the first law of thermodynamics. We make the substitutions within the first integral
in G jk

A , and for the second integral we make use of Euler’s equation and express x̄ jUA∂k p
as

∂k

(
x̄ j p UA

) − δ jk p UA − x̄ j p ∂kUA,

with the first term producing a vanishing surface integral. Collecting results, we obtain

G jk
1 = − d

dt

∫
A

ρ∗ x̄ j v̄k

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄ +

∫
A

x̄ j v̄k∂t p d3 x̄

+
∫

A
ρ∗ x̄ j v̄k v̄ p∂pUA d3 x̄ + 3

∫
A

ρ∗ x̄ j v̄k dUA

dt
d3 x̄

+
∫

A
ρ∗ x̄ j

(
1

2
v̄2 + 3UA + � + 3

p

ρ∗

)
∂kUA d3 x̄, (9.207)

and recognize some of the internal integrals that were encountered previously.

Internal and external torques

Summing over the partial torques, we find that the internal pieces collect themselves into

G jk
int = − d

dt

[∫
A

ρ∗ x̄ j v̄k

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄

−
∫

A
ρ∗ x̄ j

(
4U k

A + 1

2
∂tk X A

)
d3 x̄

]
(continued overleaf)
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− G

∫
A

ρ∗ρ∗′ x̄ j

(
3

2
v̄2 − UA + � + 3

p

ρ∗

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

− G

∫
A

ρ∗ρ∗′ x̄ j

(
3

2
v̄′2 − U ′

A + �′ + 3
p′

ρ∗′

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ . (9.208)

The last term can be re-expressed as

+G

∫
A

ρ∗ρ∗′ x̄ ′ j

(
3

2
v̄2 − UA + � + 3

p

ρ∗

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

and combined with the previous integral to give something symmetric in jk. Discarding
this, we find that the internal pieces give rise to a total time derivative that can be moved to
the left-hand side of Eq. (9.203) and absorbed into a re-definition of the spin vector. This is
the origin of the term �intS

j
A in Eq. (9.171).

With the redefinition S̄ j
A := S j

A + �intS
j
A, which for the moment excludes the external

shift also present in Eq. (9.171), we find that the spin-evolution equation becomes

d S̄ j
A

dt
= 1

c2
ε j pq G pq

ext + O(c−4) (9.209)

with

G jk
ext := S̄ jp

A v
p
A∂kU¬A − 2S̄ jp

A vk
A∂pU¬A − 1

2
S̄ jk

A v
p
A∂pU¬A − 3

2
S̄ jk

A

dU¬A

dt

+ 2S̄ jp
A

(
∂pU k

¬A − ∂kU p
¬A

)
, (9.210)

in which the original spin tensor S jk
A have been replaced by its refinement S̄ jk

A = S jk
A +

O(c−2). Our expression for G jk
ext is not unique, because we may again collect some of its

terms in a total time derivative that can be moved to the left-hand side of the spin-evolution
equation. We can use this freedom judiciously to ensure that the resulting equation takes
the form of a precession equation, as we have it in Eq. (9.198). In these manipulations
we use the fact that d S̄ jk

A /dt = O(c−2), as well as the Newtonian equations of motion
dv

j
A/dt = ∂ jU¬A(r A) + O(c−2). For example, the v

p
A∂pU¬A factor in the third term of

Eq. (9.210) can be written as

v
p
A∂pU¬A = v

p
A

dv
p
A

dt
= 1

2

d

dt

(
v2

A

)
, (9.211)

and this term can indeed be expressed as a total time derivative. As another example, we
have

vk
A∂pU¬A = d

dt

(
vk

Av
p
A

) − v
p
A∂kU¬A, (9.212)

and the substitution can be made in the second term of Eq. (9.210). After simplification we
find that our new expression for G jk

ext becomes

G jk
ext = − d

dt

(
1

2
S̄ jp

A vk
Av

p
A + 1

4
S̄ jk

A v2
A + 3

2
S̄ jk

A U¬A

)

+ 3

2
S̄ jp

A

(
v

p
A∂kU¬A − vk

A∂pU¬A

) − 2S̄ jp
A

(
∂kU p

¬A − ∂pU k
¬A

)
. (9.213)
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Moving the time derivative to the left-hand side of Eq. (9.203), we see that the extra terms
give rise to the additional shift �extS

j
A in Eq. (9.171); we have arrived at our final version

of the spin vector, S̄ j
A = S j

A + �intS
j
A + �extS

j
A = S j

A + O(c−2).
In the final step we evaluate the derivatives of the external potentials, taking into account

the spin terms in the vector potential – refer to Eq. (9.195d) – and make the substitutions
in Eq. (9.213). Excluding now the total time derivative, we have that

G jk
ext = G jk[so] + G jk[ss], (9.214)

with

G jk[so] = −1

2
S̄ jp

A

∑
B 	=A

Gm B

r2
AB

[
(3vA − 4vB)pnk

AB − (3vA − 4vB)kn p
AB

]
(9.215)

and

G jk[ss] = S̄ jp
A

∑
B 	=A

G

r3
AB

[
3n p

AB S̄kq
B nq

AB − 3nk
AB S̄ pq

B nq
AB + 2S̄ pk

B

]
. (9.216)

Inserting this within Eq. (9.203), expressing the spin tensor in terms of the spin vector S̄ j
A,

and simplifying, we finally arrive at the spin-precession equation of Eq. (9.198).

9.5.7 Comoving frame and proper spin

The partial redefinition SA → SA + �int SA of the spin vector was performed to eliminate
the total time derivative from the right-hand side of Eq. (9.208), and this operation was
unique. The further shift of the spin vector by �ext SA was introduced specifically to cast the
spin evolution equation in the form of a precession equation, and this operation reflected a
choice on our part; the equation could have been left in its original form, or manipulated
into yet a different form, in spite of the fact that these alternative versions would have been
less compelling than Eq. (9.198). In this section we provide additional motivation for the
external shift. We shall show that

S̄A := SA + �ext SA = SA + 1

c2

[(
v2

A + 3U¬A

)
SA − 1

2
(vA · SA)vA

]
(9.217)

is the spin vector as measured in a non-inertial frame that is at all times moving with the
body; we call it the proper spin, or comoving spin. Our considerations here exclude the
internal shift contributed by the internal motions and potentials.

The transformation from the original, inertial frame (t, x j ) to the non-inertial, comoving
frame (t̄, x̄ j ) is described by the class of post-Newtonian transformations presented in
Sec. 8.3 – refer to Box 8.2. The transformation is given by

t = t̄ + c−2α(t̄, x̄ j ) + O(c−4), (9.218a)

x j = x̄ j + r j (t) + c−2h j (t̄, x̄ j ) + O(c−4), (9.218b)
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in which

α = A(t̄) + ṙ p x̄ p, (9.219a)

h j = H j (t̄) + H j
p(t̄)x̄ p + 1

2
H j

pq (t̄)x̄ p x̄q , (9.219b)

with

Hjp = 1

2
ṙ j ṙ p − δ j p

(
Ȧ − 1

2
ṙ2

)
, (9.220a)

Hjpq = −δ j pr̈q − δ jq r̈ p + δpq r̈ j ; (9.220b)

the functions r j (t̄), A(t̄), and H j (t̄) are for now arbitrary, overdots indicate differentiation
with respect to t̄ , and ṙ2 := δpq ṙ pṙ q . The terms of order c−4 in the time transformation
are not required here, and the functions R j (t̄) that would normally appear in Hjp were set
equal to zero.

The starting point of our discussion of proper spin is the selection of a representative
world line zA(t) within body A, which is meant to track the motion of its “center-of-mass.”
An issue that we shall have to address is the precise meaning of this phrase. In our previous
considerations, the center-of-mass was always defined in the inertial frame, but here we have
the option of defining the center-of-mass in the body’s comoving frame; these definitions
are not equivalent when the body is spinning, and we shall have to decide which center-
of-mass the representative world line is supposed to track. We leave it arbitrary for the
time being, and think of it as the world line of an arbitrarily-selected fluid element within
the body. The frame (t̄, x̄ j ) is attached to the representative world line, so that x̄ j = 0 on
the representative world line.

Our spin vector shall now be defined with respect to the representative world line. We
have

SA :=
∫

A
ρ∗(x − zA) × (v − wA) d3x (9.221)

in the inertial frame, in which wA := d zA/dt and the integral is evaluated on a surface
t = constant in spacetime (so that all the sampled points x are simultaneous with zA in the
inertial frame), and

S̄A :=
∫

A
ρ̄∗ x̄ × v̄ d3 x̄ (9.222)

in the comoving frame, in which the integral is evaluated on a surface t̄ = constant (all the
sampled points x̄ are simultaneous in the comoving frame). We wish to express SA in terms
of S̄A, and for this we must relate x − zA to x̄, and v − wA to v̄, and take into account the
fact that dm := ρ∗ d3x = ρ̄∗ d3 x̄ is an invariant – recall the discussion around Eq. (8.92).

To achieve this we examine the world line of an arbitrary fluid element that passes
through a spacetime point P within the body, to which we assign the coordinates (t, x j ) in
the inertial frame, and the coordinates (t̄, x̄ j ) in the comoving frame; the transformation is
given by Eq. (9.218). Together with this world line we consider the body’s representative
world line, and on it we select the spacetime point Q that is simultaneous with P in the
inertial frame; its coordinates are (t, z j

A) in the inertial frame, (t̄A, 0) in the comoving frame,
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and the transformation is given by

t = t̄A + c−2 A(t̄A) + O(c−4), z j
A = r j (t̄A) + c−2 H j (t̄A) + O(c−4). (9.223)

From Eqs. (9.218) and (9.223) we find that

t̄ = t̄A − c−2ṙ p(t̄A)x̄ p + O(c−4) (9.224)

and (x − z A) j = x̄ j + r j (t̄) − r j (t̄A) + c−2[h j (t̄, x̄ j ) − H j (t̄A)] + O(c−4). The last equa-
tion appears to give us what we need, but it requires additional work because the various
terms on the right-hand side refer to different times; what we want instead is for all the
terms to be simultaneous in the comoving frame. In particular, x̄ j refers to P , which is not
simultaneous, and we wish to express this in terms of the coordinates of the point P ′ on
the fluid element’s world line that is simultaneous with Q. If the functions x̄ j (t̄) describe
the world line in the comoving frame, then x̄ j (t̄) refers to P , while x̄ j (t̄A) refers to P ′,
and the relation x̄ j = x̄ j (t̄A) − c−2v̄ j ṙ p x̄ p + O(c−4) follows by simple Taylor expansion;
v̄ j is the fluid’s velocity field in the comoving frame. Proceeding similarly with r j (t̄), we
find that

(x − z A) j = x̄ j + c−2

[(
H j

p − ṙ j ṙ p − v̄ j ṙ p

)
x̄ p + 1

2
H j

pq x̄ p x̄q

]
+ O(c−4), (9.225)

in which all terms on the right-hand side refer to P ′ and are evaluated at comoving time t̄A.
The left-hand side of Eq. (9.225) can be differentiated with respect to t , the right-hand

side can be differentiated with respect to t̄A, and Eq. (9.223) can be used to relate the time
differentials. The end result is

(v − wA) j = v̄ j + c−2

[(
Ḣ j

p − ṙ j r̈ p − v̄ j r̈ p − r̈ j ṙ p − ā j ṙ p

)
x̄ p − Ȧv̄ j

+ (
H j

p − ṙ j ṙ p − v̄ j ṙ p

)
v̄ p + 1

2
Ḣ j

pq x̄ p x̄q + H j
pq x̄ pv̄q

]
, (9.226)

in which all terms on the right-hand side continue to be evaluated at comoving time t̄A.
We next insert Eqs. (9.225) and (9.226) within Eq. (9.221) and evaluate the integral.

We implement our usual simplification rules by discarding all terms that involve an odd
number of internal vectors, and neglecting all terms that scale as R2

A . We insert the previously
displayed expression for Hjk , simplify the result, and arrive at

SA = S̄A + 1

c2

[(
1

2
ṙ2 − 3 Ȧ

)
S̄A + 1

2
(ṙ · S̄A)ṙ

]
+ O(c−4), (9.227)

which can be inverted to give

S̄A = SA + 1

c2

[(
3 Ȧ − 1

2
ṙ2

)
SA − 1

2
(ṙ · SA)ṙ

]
+ O(c−4). (9.228)

This equation looks vaguely like Eq. (9.217), but we must justify the identification ṙ = vA

and determine the arbitrary function A(t̄).
In fact, our discussion thus far has left many quantities undetermined. We have yet

to specify the functions r j (t̄), A(t̄), and H j (t̄), and we have yet to make a choice of
representative world line. We first tackle the determination of r j and H j , and to achieve
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this we return to Eq. (9.223), which we write as t̄A = t − c−2 A(t̄A) + O(c−4) and

z j
A(t) = r j (t̄A) + c−2 H j (t̄A) + O(c−4). (9.229)

If we express the functions on the right-hand side in terms of t , we have that

z j
A(t) = r j (t) + c−2

[
H j (t) − A(t)ṙ j (t)

] + O(c−4). (9.230)

This equation becomes z j
A = r j + O(c−4) when we set H j = Aṙ j , and we may then identify

r j (t̄) with the position z j
A of the representative world line evaluated at the time t = t̄ . In

this manner we identity r with zA, and ṙ with wA.
We next tackle determination of the representative world line. As a guide, we insert

Eq. (9.225) within
∫

A ρ∗(x − z A) j d3x , evaluate the integral, and get

(rA − z A) j =
[

1 − 1

c2

(
Ȧ − 1

2
w2

A

)]
r̄ j

A − 1

2c2
(wA · r̄ A)w j

A

+ 1

2m Ac2
S̄ jk

A wk
A + O(c−4), (9.231)

in which

r A := 1

m A

∫
A

ρ∗x d3x (9.232)

is the center-of-mass position in the inertial frame,

r̄ A := 1

m A

∫
A

ρ̄∗ x̄ d3 x̄ (9.233)

is the center-of-mass position in the comoving frame, and

S̄ jk
A :=

∫
A

ρ̄∗(x̄ j v̄k − x̄ k v̄ j
)

d3 x̄ (9.234)

is the comoving spin tensor.
There are two obvious ways of selecting a representative world line. The first is to declare

that it will track the body’s center-of-mass as defined in the inertial frame. To effect this
choice we set zA = r A, and Eq. (9.231) informs us that the position of the comoving
center-of-mass is given by

r̄ j
A = − 1

2m Ac2
S̄ jk

A vk
A + O(c−4). (9.235)

With this choice of representative world line, we find that the spatial origin of the comoving
frame (t̄, x̄ j ) does not coincide with the comoving center-of-mass, which is offset by the
vector r̄ A. This situation invites us to make a distinction between the comoving spin S̄A,
defined relative to the origin of the comoving frame, and a proper spin defined relative to
the comoving center-of-mass. The proper spin would be defined by∫

A
ρ̄∗(x̄ − r̄ A) × (v̄ − v̄A) d3 x̄,

but it is easy to show that since r̄ A = O(c−2) and v̄A = O(c−2), this is equal to the
comoving spin S̄A up to terms of order c−4. So while the distinction is important as a
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matter of principle, it has no practical implications at the level of accuracy maintained in
our discussion of spinning bodies.

The second way of selecting a representative world line is to declare that it will track the
body’s center-of-mass as defined in the comoving frame. In this case we set r̄A = 0, and
Eq. (9.231) implies that

z j
A = r j

A − 1

2m Ac2
S jk

A vk
A + O(c−4). (9.236)

This equation states that the representative world line is offset from the inertial-frame
center-of-mass by the vector S jk

A vk
A/(2m Ac2). In this case there is no distinction to be made

between comoving spin and proper spin, and the distinction between the inertial spin of
Eq. (9.221) and the usual spin vector

∫
A ρ∗(x − r A) × (v − vA) d3x occurs only at order

c−4 and is therefore unimportant.
Either way of selecting the representative world line leads to the identifications r = zA =

r A + O(c−2) and ṙ = wA = vA + O(c−2), and Eq. (9.228) becomes

S̄A = SA + 1

c2

[(
3 Ȧ − 1

2
v2

A

)
SA − 1

2
(vA · SA)vA

]
+ O(c−4). (9.237)

Our only remaining task is to determine the function A(t̄) that appears in the transformation
between the internal and comoving frames. Here we take our guidance from Sec. 8.3.5,
in which we first examined the post-Newtonian transformation between a global, inertial
frame to a local, comoving frame. There it was shown that in order to account for the
special-relativistic and gravitational effects of time dilation, the function A(t̄) must be a
solution to

Ȧ = 1

2
v2

A + U¬A, (9.238)

in which the external potential is evaluated on the representative world line. Making the
substitution in Eq. (9.237), we arrive at Eq. (9.217), and our justification of the external
shift �ext SA is complete.

9.5.8 Choice of representative world line

The discussion of the previous subsection revealed an ambiguity in the choice of repre-
sentative world line when the body is spinning. We considered two canonical choices, one
in which the representative world line tracks the body’s center-of-mass as defined in the
global, inertial frame, and another in which it tracks the center-of-mass as defined in the
local, comoving frame. While these choices lead to the same notion of proper spin, they
lead to different representations of the center-of-mass motion.

To explore the impact of this ambiguity on the equations of motion, we enlarge our free-
dom of choice and examine a one-parameter family of representative world lines described
by

r̃ j
A = r j

A − λ

2m Ac2
S jk

A vk
A + O(c−4), (9.239)
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in which r A is the center-of-mass position in the inertial frame, S jk
A is the spin tensor of

Eq. (9.167), and λ is a dimensionless parameter. (In this subsection we prefer to use the
notation r̃ A for the representative world line, instead of zA as we did in the preceding
subsection.) The assignment λ = 0 makes the representative world line track the inertial
center-of-mass, λ = 1 makes it track the comoving center-of-mass, and it is easy to show
that Eq. (9.239) gives rise to the comoving spin vector of Eq. (9.217) for any choice of λ.

Because the difference between r̃ A and r A is of order c−2, the transformation has no
impact on the spin-precession equations (9.198). It also has no direct impact on the post-
Newtonian terms in the center-of-mass accelerations of Eq. (9.188). There is, however, an
indirect impact, because the Newtonian acceleration will undergo a change of order c−2, and
this change can be transferred to the post-Newtonian terms; because the transformation is
linear in the spin, the transfer affects the form of the spin–orbit acceleration. In addition, we
can see that the transformation will have no direct impact on the post-Newtonian potentials
within the metric, but that the Newtonian potential will be changed by a term of order c−2

that can be transferred to the post-Newtonian potentials.
We begin with a computation of the transformed Newtonian potential, which is given

by U = ∑
A Gm A/sA with sA := |x − r A| when it is evaluated far away from each body.

This expression refers to the inertial center-of-mass of each body, and our goal here is
to shift the reference to the representative world line. We write r A = r̃ A + δr A, with δr A

given by (minus) the second term in Eq. (9.239), and we express sA as |s̃A − δr A|, with
s̃A := x − r̃ A denoting the separation between the field point x and the representative world
line. Performing a Taylor expansion in powers of δr A, we quickly arrive at

U = Ũ + λ

2c2

∑
A

G(ñA × ṽA) · SA

s̃2
A

+ O(c−4), (9.240)

in which Ũ := ∑
A Gm A/s̃A is the shifted potential, s̃A := |s̃A|, ñA := s̃A/s̃A, and ṽA :=

d r̃ A/dt is the velocity of the representative world line. The transformation of the Newtonian
potential creates a spin contribution to g00 that must be added to the one already listed in
Eq. (9.182). We find that

�g00 = 3 + λ

c4

∑
A

G(ñA × ṽA) · SA

s̃2
A

+ O(c−6) (9.241)

is the spin term under the new description of the body’s motion. There are no additional
changes to g0 j and g jk .

We next consider the changes in the equations of motion. The first source of change is the
difference implied by Eq. (9.239) between the acceleration ãA of the representative world
line and the acceleration aA of the inertial center-of-mass. To calculate this difference we
first differentiate Eq. (9.239) with respect to time and obtain ṽA in terms of vA. The term
involving d S jk

A /dt = O(c−2) can be neglected, and the term involving ak
A can be written in

terms of the Newtonian acceleration. The end result is

ṽ
j
A = v

j
A + λ

2m Ac2

∑
B 	=A

G MB

r2
AB

S jk
A nk

AB . (9.242)
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Another differentiation with respect to t produces

ã j
A = a j

A − 3λ

2c2

∑
B 	=A

G MB

r3
AB

n〈kp〉
AB (vA − vB)p Ŝ jk

A , (9.243)

in which Ŝ jk
A := S jk

A /m A = S jk
A /MA + O(c−2).

The second source of change is the shift of the Newtonian acceleration aA[0pn] that
occurs when the acceleration is made to refer to the representative world line instead of
the inertial center-of-mass. This shift is analogous to the one calculated previously for the
Newtonian potential, and indeed, it can be computed in the same way, by expanding the
acceleration in powers of δr A. The outcome of this computation is

a j
A[0pn] = −

∑
B 	=A

G MB

r̃2
AB

ñ j
AB + 3λ

2c2

∑
B 	=A

G MB

r̃3
AB

ñ〈 jk〉
AB

(
Ŝkp

A ṽ
p
A − Ŝkp

B ṽ
p
B

)
, (9.244)

in which r̃ AB := r̃ A − r̃ B , r̃AB := |r̃ AB |, and ñAB := r̃ AB/r̃AB .
Collecting results, we find that the changes to the acceleration are all linear in the spin

tensors, and that they contribute to a shift in the spin-orbit acceleration of Eq. (9.189). The
shifted expression is

ã j
A[so] := 3

2c2

∑
B 	=A

G MB

r̃3
AB

{
ñ〈 jk〉

AB

[
ṽ

p
A

(
(3 + λ)Ŝkp

A + 4Ŝkp
B

)
− ṽ

p
B

(
(3 + λ)Ŝkp

B + 4Ŝkp
A

)]

+ ñ〈kp〉
AB (ṽA − ṽB)p

(
(3 − λ)Ŝ jk

A + 4Ŝ jk
B

)}
, (9.245)

and there are no additional changes to the post-Newtonian and spin–spin accelerations.
Ambiguities tend to make one feel uncomfortable. Things ought to be well defined, one

feels, and there ought to be a “correct” value of λ. There is no such thing, however, and one
must learn to accept the freedom associated with the choice of representative world line. In
a way, the freedom to shift the world line is analogous to the inherent freedom in general
relativity to shift the coordinate system. The coordinate freedom is complete, and one knows
that a coordinate transformation will produce a change in the metric, and a change in the
equations of motion. One learns to live with this freedom, and to eliminate the coordinate
ambiguity by formulating well-posed questions that have coordinate-independent answers.
The situation is similar in the case of the representative world line. Here also the freedom is
complete (even though we have restricted it to a one-parameter family in this discussion),
and here also a shift in world line produces a change in the metric and the equations
of motion. One must learn to live with the freedom, and to eliminate the ambiguity by
formulating meaningful questions with precise answers.

In the literature the spin–orbit acceleration has traditionally been presented in two canon-
ical forms corresponding to λ = 0 and λ = 1, respectively, and the choice of λ is often
described as “imposing a spin supplementary condition;” for example, the choice λ = 1 is
described as the “covariant spin supplementary condition,” for reasons that we won’t care
to go into here. Each form is acceptable, but one must be sure to implement the choice of λ

consistently in the equations of motion, the metric, and any other quantity computed from
these ingredients.
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9.5.9 Binary systems

To conclude our discussion of spinning bodies, we specialize our results to the case of
a binary system involving a first body of mass-energy M1, position r1, velocity v1, and
spin S1, and a second body of mass-energy M2, position r2, velocity v2, and spin S2. We
adopt the one-parameter family of representative world lines introduced in the preceding
subsection, but omit the tildes on the position and velocity vectors to keep the notation
uncluttered.

Returning to the discussion of Sec. 9.3.7 but incorporating the changes coming from the
spins, we find that the system’s barycenter is now situated at

M R = M1

[
1 + 1

2c2

(
v2

1 − G M2

r

)]
r1 + M2

[
1 + 1

2c2

(
v2

2 − G M1

r

)]
r2

+ 1 + λ

2c2

(
v1 × S1 + v2 × S2

)
+ O(c−4). (9.246)

Imposing the barycentric condition R = 0 allows us to express r1 and r2 in terms of the
separation r := r1 − r2 and relative velocity v := v1 − v2. We find that r1 = (M2/m)r +
�r and r2 = −(M1/m)r + �r , with

�r := η�

2c2

(
v2 − Gm

r

)
r − 1 + λ

2mc2
v × (

M2 S1 − M1 S2
) + O(c−4), (9.247)

in which m := M1 + M2, η := M1 M2/(M1 + M2)2, and � := (M1 − M2)/(M1 + M2).
These equations imply that v1 = (M2/m)v + O(c−2) and v2 = −(M1/m)v + O(c−2).

The relative acceleration a := a1 − a2 can be expressed as

a = a[0pn] + a[1pn] + a[so] + a[ss] + O(c−4), (9.248)

with a[0pn] and a[1pn] given by Eq. (9.142), and the spin–orbit and spin–spin accelerations
given by

a j [so] = 3G

2c2r3

{
n〈 jk〉v p

[
(3 + λ)σ kp + 4Skp

] + n〈kp〉v p
[
(3 − λ)σ jk + 4S jk

]}
(9.249)

and

a j [ss] = −15Gm

c2r4
Ŝkp

1 Ŝkq
2 n〈 jqp〉, (9.250)

respectively, in which r := |r|, n := r/r , and

σ jk := M2

M1
S jk

1 + M1

M2
S jk

2 , S jk := S jk
1 + S jk

2 . (9.251)

These become

a[so] = G

c2r3

{
3

2
(n × v) · [(3 + λ)σ + 4S

]
n + 3

2
(n · v)n × [

(3 − λ)σ + 4S
]

− v × (3σ + 4S)

}
(9.252)
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and

a[ss] = −3Gm

c2r4

[
(Ŝ1 · Ŝ2)n − 5(Ŝ1 · n)(Ŝ2 · n)n + (Ŝ1 · n)Ŝ2 + (Ŝ2 · n)Ŝ1

]
, (9.253)

when we express the accelerations in terms of the spin vectors; here we have that σ :=
(M2/M1)S1 + (M1/M2)S2, S := S1 + S2, Ŝ1 := S1/M1, and Ŝ2 := S2/M2.

The spin-precession equations become

d S̄1

dt
= �1 × S̄1, (9.254)

in which S̄1 is the proper spin of the first body, and

�1 = �1[so] + �1[ss], (9.255)

with

�1[so] = 2ηGm

c2r2

(
1 + 3M2

4M1

)
n × v, (9.256a)

�1[ss] = G

c2r3

[
3(S̄2 · n)n − S̄2

]
, (9.256b)

is the precessional angular velocity. The equations for the second body are obtained by a
simple exchange of labels 1 ↔ 2.

9.6 Point particles

The calculations that led to the inter-body metric of Eq. (9.81) were laborious, and most of
this labor was spent on the computation of terms that depend on the internal structure of
each body. These terms, however, all cancel out after invoking the equilibrium conditions,
and they do not appear in the final expression for the metric. This effort is not entirely
wasted, because it generates considerable evidence that general relativity satisfies the strong
formulation of the principle of equivalence, but one wonders whether a shortcut to the final
result might not exist.

In this final section of Chapter 9 we examine the shortcut that results when the bodies
are modeled as point particles. We show that the road to the metric is made much shorter
indeed, but that this efficiency comes at a high price: the need to regularize divergent
integrals. The origin of the problem is easy to identify: a point particle possesses an infinite
mass density ρ∗ and produces a Newtonian potential U that diverges at the particle’s
position; because the product ρ∗U acts as a source for the post-Newtonian potential #,
the mathematical existence of this object becomes questionable. We shall show, however,
that a simple and well-motivated regularization prescription allows us to make sense of the
divergent integrals, and the method reproduces the results displayed in Eq. (9.81).

We use the shortcut extensively in Chapter 11, when we calculate the gravitational waves
produced by the motion of an N -body system. Throughout this section we take the bodies
to have no spin, so that S jk

A = 0.
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9.6.1 Energy-momentum tensor

The description of a point particle moving in a curved spacetime was developed in Sec. 5.3.4.
The particle has a mass m, it moves on a world line described by the parametric relations
rα(τ ), and its velocity four-vector is uα = drα/dτ ; τ is proper time on the particle’s world
line. Its energy-momentum tensor was displayed in Eq. (5.108); it is

T αβ = mc

∫
uαuβ

δ
(
xμ − rμ(τ )

)
√−g

dτ. (9.257)

This expression can be simplified if we change the variable of integration from τ to r0(τ ).
This permits an integration over the delta function δ(x0 − r0), and we obtain

T αβ = muαuβ

γ
√−g

δ
(
x − r(t)

)
, (9.258)

where γ := u0/c. The particle’s world line is now described by the relations r(t) with
t := x0/c, and the velocity four-vector is decomposed as uα = γ (c, v) with v := d r/dt .

Equation (9.258) can be compared with Eq. (5.91), which gives the energy-momentum
tensor of a perfect fluid. The comparison reveals that the point particle is a limiting case of
a perfect fluid, with a proper energy density given by μ = mc2γ −1(−g)−1/2δ(x − r), and a
vanishing pressure p. Since μ = ρc2 + ε, where ρ is the proper mass density and ε is the
proper density of internal energy, we see that we can effectively set ε = 0, or equivalently
set the internal energy per unit mass � to zero. The conserved mass density is

ρ∗ = mδ
(
x − r(t)

)
. (9.259)

The fluid’s velocity field, in this case, reduces to the particle’s velocity v(t).
The preceding description applies to a single particle. For a system of N particles we

add the contributions from each particle, and the conserved mass density becomes

ρ∗ =
∑

A

m Aδ
(
x − r A(t)

)
, (9.260)

with m A denoting the mass of each particle, and r A(t) the individual trajectories. For the
system we still have

� = p = 0, (9.261)

and the velocity field reduces to the individual velocities vA(t).

9.6.2 Regularization

Equation (9.261) implies that each “body” can be assigned a zero integrated pressure
PA and a zero internal energy E int

A . The internal kinetic energy TA vanishes also, and the
equilibrium condition of Eq. (9.12) indicates that the gravitational potential energy 
A must
also be assigned a value of zero. This sensible conclusion, however, creates a mathematical
inconsistency.
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Going back to the definition of Eq. (9.8), the potential-energy integral is


A = −1

2
G

∫
A

ρ∗ρ∗′

|x − x′| d3x ′d3x, (9.262)

where ρ∗ stands for ρ∗(t, x), while ρ∗′ stands for ρ∗(t, x′). The integral involves a product of
delta functions, and its value is mathematically ill-defined. It is not clear, therefore, that 
A

can be set equal to zero. To explore this we substitute m Aδ(x − r A) for ρ∗, m Aδ(x′ − r A)
for ρ∗′, and we integrate with respect to d3x ′; the result is


A = −1

2
Gm2

A

∫
A

δ(x − r A)

|x − r A| d3x, (9.263)

and we see why the integral is ill-defined: the quantity δ(x − r A)/|x − r A| is not defined
as a distribution, and a blind evaluation would return 1/0. This mathematical difficulty
illustrates rather well the spectacular failure of the point particle to provide a sensible
model for an extended body in general relativity; the non-linearity of the field equations
simply won’t allow it.

All is not lost, however. We can reconcile the diverging values for 
A if we introduce
the seemingly nonsensical regularization prescription

δ(x − r A)

|x − r A| ≡ 0. (9.264)

With this rule the integral becomes well-defined, and we arrive at the desired result, 
A = 0.
As we shall see, the regularization prescription is the only additional rule that is required to
make sense of all the ill-defined integrals that we shall encounter; and with this prescription
we shall be able to recover the metric of Eq. (9.81) on the basis of the point-particle model.

The regularization prescription of Eq. (9.264) is a special case of a more powerful method
known as Hadamard regularization, which was used to great benefit by our friends Luc
Blanchet and Thibault Damour in their work (along with their collaborators) on high-order
post-Newtonian theory. The method works as follows.

Let F(x; r) be a function of x that diverges when x approaches the point r . Specifically,
assume that its behavior near x = r is given by the Laurent series

F(x; r) =
nmax∑
n=0

s−n fn(n; r) + O(s), (9.265)

where s := x − r , s := |x − r|, and n := s/s. The function therefore diverges as s−nmax

when x → r , and it clearly does not have a well-defined value at x = r . We regularize it
by extracting its partie finie at the singular point x = r . This is defined by

�F�(r) := 1

4π

∫
f0(n; r) d
(n), (9.266)

in which d
(n) is an element of solid angle in the direction of the unit vector n. Thus, the
partie finie of F is the angular average of the zeroth term f0(n; r) in its Laurent series. The
partie finie can be used to make sense of the product of F with the delta function δ(x − r):
We declare that

F(x; r)δ(x − r) ≡ �F�(r) δ(x − r). (9.267)

It follows immediately from this rule that
∫

F(x; r)δ(x − r) d3x = �F�(r).
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We now see that Eq. (9.264) is indeed a special case of Hadamard regularization. In this
case F = |x − r|−1, and its partie finie vanishes; Eq. (9.267) then implies δ(x − r)/|x −
r| ≡ 0. Hadamard regularization even allows us to generalize the rule to δ(x − r)/|x −
r|n ≡ 0 for any positive integer n.

9.6.3 Potentials

The gravitational potentials are computed by substituting Eqs. (9.260) and (9.261) into the
Poisson integrals of Eqs. (8.4). We immediately obtain

U =
∑

A

G MA

sA
, (9.268a)

U j =
∑

A

G MAv
j
A

sA
, (9.268b)

X =
∑

A

G MAsA, (9.268c)

where sA is the length of the vector sA := x − r A(t), and we have used the fact that since
TA = 
A = E int

A = 0, the total mass-energy MA of a point particle is equal to its material
mass m A.

The potential ψ requires more work. The starting point is

ψ = G

∫
ρ∗′( 3

2 v′2 − U ′)
|x − x′| d3x ′, (9.269)

and we decompose the Newtonian potential as U ′ = U ′
A + U ′

¬A, where U ′
A = G MA/s ′

A and
U ′

¬A = ∑
B 	=A G MB/s ′

B , with s ′
A := |x′ − r A(t)|. The integral involving U ′

A is

−
∑

A

G2 M2
A

∫
δ(x′ − r A)

|x′ − r A|
1

|x − x′| d3x ′,

and this is ill-defined. The regularization prescription of Eq. (9.264), however, dictates that
the integral vanishes. The remaining piece of ψ is

∑
A

G MA

sA

[
3

2
v2

A − U¬A(r A)

]
,

and we arrive at

ψ = 3

2

∑
A

G MAv2
A

sA
−
∑

A

∑
B 	=A

G MA MB

sArAB
, (9.270)

where rAB is the length of the vector r AB := r A(t) − r B(t).
According to Eq. (8.3), the post-Newtonian potential is # = ψ + 1

2 ∂t t X . Differentiation
of the superpotential yields

∂t t X =
∑

A

G MA

sA

[
v2

A − (nA · vA)2
]

−
∑

A

G MAnA · aA, (9.271)
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where nA := sA/sA. To evaluate this fully we need an expression for aA, the acceler-
ation of particle A. For our purposes here it suffices to use the Newtonian expression
−∑

B 	=A G MB nAB/r2
AB , where nAB := r AB/rAB . This yields

∂t t X =
∑

A

G MA

sA

[
v2

A − (nA · vA)2
]

+
∑

A

∑
B 	=A

G2 MA MB(nAB · nA)

r2
AB

. (9.272)

Collecting results, the post-Newtonian potential is

# =
∑

A

G MA

sA

[
2v2

A − 1

2
(nA · vA)2

]
−
∑

A

∑
B 	=A

G2 MA MB

rABsA

(
1 − nAB · sA

2rAB

)
. (9.273)

Our expressions for U , U j , and # agree with Eqs. (9.55), (9.58), and (9.80), respec-
tively, and we recover the inter-body metric of Eqs. (9.81). It should be evident that the
computations carried out here were far less tedious than those presented in Sec. 9.2. The
point-particle model, in spite of its mathematical difficulties and the need to regularize
divergent integrals, has clear merits.

9.7 Bibliographical notes

The post-Newtonian equations of motion derived in Sec. 9.3 were first obtained by Lorentz
and Droste (1917). A version of the equations, containing an error, was obtained indepen-
dently by de Sitter (1916); the mistake was eventually corrected by Eddington and Clark
(1938). A definitive treatment of the problem of motion was provided by Einstein, Infeld,
and Hoffmann (1938), and the history of this fascinating episode in the development of
general relativity is related in Havas (1989). Another fine survey of the “problem of mo-
tion” in Einstein’s theory is Damour (1987). The method of derivation adopted in Sec. 9.3
is adapted from Will (1993).

The alternative method employed in Sec. 9.4 to derive equations of motion for com-
pact bodies originates in the work of Demianski and Grishchuk (1974), D’Eath (1975),
and Damour (1983). The method was developed systematically in Damour, Soffel, and
Xu (1992), and generalized to bodies of arbitrary shape and composition by Racine
and Flanagan (2005). The particular approach adopted in Sec. 9.4 is adapted from Taylor
and Poisson (2008).

The motion of spinning bodies in curved spacetime has a long history, which is also
summarized in Havas (1989). The equations of motion were first derived on the basis of
point-particle models by Mathisson (1937) and Papapetrou (1951), and the importance of
imposing a “spin supplementary condition” was stressed by Barker and O’Connell (1974).
Derivations making use of extended bodies were provided later, and our methods in Sec. 9.5
are based on Kidder (1995) and Will (2005). An elegant alternative method was devised by
Damour, Soffel, and Xu (1993).

The mathematical theory of Hadamard regularization, touched upon very briefly in
Sec. 9.6, is developed fully in Sellier (1994) and Blanchet and Faye (2000).
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9.8 Exercises

9.1 Verify all the results listed in Eqs. (9.91).

9.2 Verify all the results listed in Eqs. (9.103).

9.3 Show that the post-Newtonian equations of motion for a system of N bodies can be
derived from the Lagrangian

L = −
∑

A

MAc2

[
1 − 1

2
(vA/c)2 − 1

8
(vA/c)4

]
+ 1

2

∑
A,B 	=A

G MA MB

rAB

×
{

1 + 1

c2

[
3v2

A − 7

2
vA · vB − 1

2
(nAB · vA)(nAB · vB) −

∑
C 	=A

G MC

rAC

]}
.

Find the canonical momentum P A for this Lagrangian, and show that
∑

A P A equals
the conserved total momentum of Eq. (9.132b).

9.4 Verify Eq. (9.141).

9.5 Verify all the results listed in Eqs. (9.205).

9.6 To conclude the exploration of the one-parameter family of representative world lines
in Sec. 9.5.8, calculate the changes in the barycenter position R and total momentum
P induced by the transformation of Eq. (9.239).

9.7 We saw in Sec. 9.6 that the gravitational potentials of a spinless body can be computed
efficiently by modeling the body as a point mass with density m Aδ(x − r A). Here we
wish to show that the body’s spin can be accommodated by making the substitution

v j → v
j
A + 1

2m A
S jk

A ∂k

in the potentials. Here the derivative operator attached to the spin tensor is meant
to act on the delta function supplied by the density. The prescription is valid to first
order in the spin tensor, and terms quadratic in the spin must be neglected. Use the
prescription to compute the potentials U j , �1, and �6, and compare your results to
those displayed in Sec. 9.5.3.
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astrometry and navigation

In November 1915, Einstein completed a calculation whose result so agitated him that he
worried that he might be having a heart attack. He later wrote to a friend that “for several days
I was beside myself in joyous excitement.” What Einstein calculated was the contribution
to the advance of the perihelion of Mercury from the first post-Newtonian corrections to
Newtonian gravity provided by his newly completed theory of general relativity. This had
been a notorious and unsolved problem in astronomy, ever since Le Verrier pointed out in
1859 that there was a discrepancy of approximately 43 arcseconds per century in the rate
of advance between what was observed and what could be accounted for in Newtonian
theory from planetary perturbations, refer to Secs. 3.1 and 3.4. Many earlier attempts to
devise relativistic theories of gravity, including Einstein’s own “Entwurf” (outline) theory
of 1913 with Marcel Grossmann, had failed to give the correct answer. Now armed with
the correct field equations, Einstein found an approximate vacuum solution that could be
applied to the geodesic motion of Mercury around the Sun. He found that the orbit was
almost Keplerian, but with a periastron that advances at a rate that matched Le Verrier’s
observations.

For Einstein, this success with Mercury was the first concrete evidence that his theory,
over which he had struggled so mightily for the past four years, might actually be correct.
His prediction for the deflection of light by the Sun, completed that same month, and which
doubled the value that he had derived in 1907 using just the principle of equivalence, would
not be confirmed until 1919.

For the next 60 years, until the discovery of the first binary pulsar by Hulse and Taylor, the
main testing-ground for general relativity would be the solar system, where gravitational
fields are weak and motions are slow, so that the conditions for the post-Newtonian approxi-
mation are valid. In this chapter we take the formal development of post-Newtonian theory,
presented in Chapters 8 and 9, and apply it to the real world of solar-system dynamics,
solar-system experiments, and the dynamics of binary star (and binary black-hole) systems.
We will encounter some of the famous experimental tests of general relativity, and will see
how the precision of modern tools such as atomic clocks, satellite navigation systems, radio
interferometry, and laser ranging make it necessary to take relativistic effects into account
in a number of practical applications.

We begin in Sec. 10.1 with a description of the post-Newtonian motion of two self-
gravitating bodies; it is in this section that we emulate Einstein with his calculation of the
perihelion advance of Mercury. In Section 10.2 we examine the motion of light in weak
gravitational fields, and describe such phenomena as the deflection of a light ray by a
massive body, gravitational lenses, and the Shapiro time delay. The practically important

480
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481 10.1 Post-Newtonian two-body problem

issue of clock synchronization in the presence of gravitation is the topic of Sec. 10.3. We
conclude the chapter in Sec. 10.4 with a discussion of the motion of a binary system of
spinning bodies.

10.1 Post-Newtonian two-body problem

We begin our exploration of post-Newtonian dynamics with an examination of the two-
body problem, the relativistic generalization of the Kepler problem reviewed in Sec. 3.2.
The foundations of the post-Newtonian problem were presented in Chapter 9, and the
equations that govern the motion of binary systems were derived in Sec. 9.3.7. While
the method of derivation employed in most of Chapter 9 was restricted to bodies with
weak internal gravity, we saw back in Sec. 9.4 that in fact the equations of motion apply
just as well to compact bodies such as neutron stars and black holes; the internal gravity
of each body can be arbitrarily strong, but if the mutual gravity is weak, the equations
apply.

The equations of motion can be applied to any binary-star system, but they can also be
applied to the solar system, in spite of the fact that the number of bodies exceeds two.
The reason is that the Sun dominates the mass of the solar system by a factor of 1000, so
that from the point of view of relativistic effects, which scale as G M/(c2r ), the Sun is the
elephant in the room, making the other planets largely irrelevant. Consider, for example,
the perihelion advance of Mercury, which is produced in part by relativistic effects, and in
part by perturbations generated by other planets (mostly Jupiter). As we shall see below,
the relativistic part of the advance per orbit is of order G M�/(c2a) ∼ 3 × 10−8 radians,
where a is Mercury’s semi-major axis. On the other hand, we recall from Sec. 3.4.1, refer
to Eq. (3.83), that the advance produced by a perturbing planet scales as (m p/M�)(a/R)3,
where m p and R are the mass and semi-major axis of the perturbing planet; this is of
order 4 × 10−7 radians per orbit when Jupiter is the perturbing planet, and is therefore
comparable to the relativistic contribution. We can expect the post-Newtonian corrections
to Newtonian third-body perturbations, as well as third-body contributions to the post-
Newtonian perturbation, to be of the same order of magnitude as the product of these two
small factors, and thus to be unmeasurably small. It follows that for most solar-system
applications, we can safely calculate post-Newtonian two-body effects and Newtonian N -
body effects separately, and simply add them together. The conclusion of this discussion
is that the relativistic two-body problem provides an adequate foundation to describe most
relativistic effects in the solar system.

An important exception to this rule occurs in the Earth–Moon system, for which there
is a measurable post-Newtonian three-body effect produced by the Sun, a contribution to
the precession of the lunar orbital plane. This effect is often called de Sitter precession,
because it was predicted in 1916 by the Dutch astronomer Willem de Sitter, on the basis of
his post-Newtonian equations of motion. We shall conclude this section with a description
of the de Sitter precession.
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10.1.1 Equations of motion

The equations that govern the motion of a two-body system were obtained back in Sec. 9.3.7,
where they were cast in the form of an effective one-body problem. We work in terms
of the separation r := r1 − r2, relative velocity v := v1 − v2, relative acceleration a :=
a1 − a2, and involve the mass parameters m := M1 + M2, η := M1 M2/(M1 + M2)2, and
� := (M1 − M2)/(M1 + M2). The relative acceleration is given by Eq. (9.142),

a = −Gm

r2
n − Gm

c2r2

{[
(1 + 3η)v2 − 3

2
ηṙ2 − 2(2 + η)

Gm

r

]
n

− 2(2 − η)ṙv

}
+ O(c−4), (10.1)

where r := |r| is the inter-body distance, n := r/r a unit vector that points from body 2
to body 1, and ṙ := v · n the radial component of the velocity vector. Equation (10.1) is a
second-order differential equation for r(t), and its solution determines the position of each
body. This information is provided by Eq. (9.141),

r1 = M2

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4), (10.2a)

r2 = − M1

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4). (10.2b)

These equations imply that v1 = (M2/m)v + O(c−2) and v2 = −(M1/m)v + O(c−2).
We saw back in Sec. 3.2 that the Newtonian two-body problem admits constants of the

motion, the orbital energy E = με and the orbital angular momentum L = μh, in which
μ := M1 M2/(M1 + M2) = ηm is the system’s reduced mass. The post-Newtonian problem
also admits a conserved energy and a conserved angular-momentum vector, and it is not
difficult to deduce their expressions. We know that at the Newtonian level, the conserved
energy is given by ε = 1

2 v2 − Gm/r , and we also know that post-Newtonian corrections
come with a multiplicative factor of c−2. Possible contributions must then be proportional
to v4, ṙ2v2, ṙ4, v2Gm/r , ṙ2Gm/r , and (Gm/r )2, and the correct combination of such terms
can be identified by including them all (with unknown coefficients) in a trial expression for
ε, and demanding that dε/dt = 0 by virtue of the post-Newtonian dynamics of Eq. (10.1).
The end result of this simple exercise is the expression

ε := 1

2
v2 − Gm

r
+ 1

c2

{
3

8
(1 − 3η)v4 + Gm

2r

[
(3 + η)v2 + ηṙ2 + Gm

r

]}
+ O(c−4)

(10.3)
for the post-Newtonian energy of the two-body system. In a similar way we can show that

h :=
{

1 + 1

c2

[
1

2
(1 − 3η)v2 + (3 + η)

Gm

r

]}
(r × v) + O(c−4) (10.4)

is the post-Newtonian angular momentum.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-10 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 6:49

483 10.1 Post-Newtonian two-body problem

Box 10.1 Ambiguities in energy and angular momentum

The expressions of Eqs. (10.3) and (10.4) are actually not unique. For example, six arbitrary coefficients are
neededwhen constructing a post-Newtonian trial expression forε, and six conditions are foundwhendε/dt
is required to vanish after involving the post-Newtonian equations of motion. Two of the conditions, however,
turn out to be redundant, and as a result, one coefficient cannot be determined. It is easy to show that the free
coefficient represents the freedom to add to the expression for ε an arbitrary amount of a post-Newtonian
contribution c−2(v2 − 2Gm/r )2. This is constant by virtue of the Newtonian equations of motion, and
so the constancy of ε through O(c−2) still holds. This freedom reflects the fact that the zero of energy is not
fixed in classical mechanics. To arrive at Eq. (10.3) we fixed the free coefficient so that the v4 term in ε has
the factor shown.With this choice, the limitGm/r → 0 ofεmatches the Newtonian and post-Newtonian
terms in the expansion of the special relativistic energy of two bodies, given byγ1m1c2 + γ2m2c2, where
γA = (1 − v2

A/c2)−1/2. Similar considerations apply to the conserved angular momentum h.

It is interesting to note that although h is conserved in the post-Newtonian dynamics,
the vector r × v is not; this is a point of departure from the Newtonian situation. But
while r × v is no longer constant in magnitude, it is still constant in direction, and this is
sufficient to establish that the orbital motion proceeds within a fixed orbital plane, just as
in the Newtonian situation. As in Sec. 3.2, we may simplify the mathematical description
of the post-Newtonian motion by taking the orbital plane to coincide with the x-y plane
of the coordinate system, and by introducing the vectorial basis n := [cos φ, sin φ, 0],
λ := [− sin φ, cos φ, 0], and ez := [0, 0, 1], in which φ is the orbital angle. In terms of the
orbital basis we have r = r n, v = ṙ n + r φ̇ λ,

a = (
r̈ − r φ̇2

)
n + 1

r

d

dt

(
r2φ̇

)
λ, (10.5)

and r × v = (r2φ̇) ez . The equations of motion become

r̈ = r φ̇2− Gm

r2
+ Gm

c2r2

[
1

2
(6 − 7η)ṙ2 − (1 + 3η)(r φ̇)2 + 2(2 + η)

Gm

r

]
+O(c−4),

(10.6a)
d

dt

(
r2φ̇

) = 2(2 − η)
Gm

c2
ṙ φ̇ + O(c−4), (10.6b)

when they are expressed in terms of the dynamical variables r (t) and φ(t).
The integration of Eqs. (10.6) is greatly facilitated by the existence of ε and h := |h| as

constants of the motion. In fact, the conserved quantities can be used to express ṙ2 and φ̇

as simple polynomials in 1/r . A simple computation reveals that

ṙ2 = 2ε

[
1 − 3

2
(1 − 3η)

ε

c2

]
+ 2

Gm

r

[
1 − (6 − 7η)

ε

c2

]
− h2

r2

[
1 − 2(1 − 3η)

ε

c2

]

− 5(2 − η)
(Gm)2

c2r2
+ (8 − 3η)

Gmh2

c2r3
+ O(c−4) (10.7)
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and

φ̇ = h

r2

[
1 − (1 − 3η)

ε

c2

]
− 2(2 − η)

Gmh

c2r3
. (10.8)

These equations can be compared with their Keplerian version displayed in Eqs. (3.10) and
(3.13).

10.1.2 Circular orbits

Our next task is integration of the post-Newtonian equations of motion. We begin with
the simple case of a circular orbit of radius r . Setting ṙ = 0 in Eq. (10.6b) reveals that
the orbital angular velocity φ̇ is a constant that we denote 
. Setting r̈ = 0 in Eq. (10.6a)
allows us to relate 
 to r , and we obtain


2 = Gm

r3

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
, (10.9)

the relativistic version of the familiar Keplerian relation 
2 = Gm/r3. The orbital velocity
is then given by

v2 = (r
)2 = Gm

r

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
, (10.10)

and the constants of the motion reduce to

ε = −Gm

2r

[
1 − 1

4
(7 − η)

Gm

c2r
+ O(c−4)

]
(10.11)

and

h =
√

Gmr

[
1 + 2

Gm

c2r
+ O(c−4)

]
. (10.12)

10.1.3 Perturbed Keplerian orbits

A possible way of integrating the equations of motion is to treat the post-Newtonian
terms in Eq. (10.1) as a perturbing force f in the perturbed Kepler problem described in
Sec. 3.3. (Recall our admonition from Chapter 3, that even though f is an acceleration,
we nevertheless use the conventional term “force” to describe it.) We exploit the method
of osculating orbital elements, in which the perturbed motion is represented by a Keplerian
orbit with time-dependent orbital elements, which vary in response to the perturbing force.
The components of the perturbing force in the orbital basis (n, λ, ez) are

R = Gm

c2r2

[
−(1 + 3η)v2 + 1

2
(8 − η)ṙ2 + 2(2 + η)

Gm

r

]
, (10.13a)

S = Gm

c2r2

[
2(2 − η)ṙ(r φ̇)

]
, (10.13b)

W = 0 , (10.13c)
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in which we insert the Keplerian relations r = p/(1 + e cos f ), ṙ = √
Gm/p e sin f , r φ̇ =√

Gm/p (1 + e cos f ), where p is the Keplerian semi-latus rectum, e is the Keplerian
eccentricity, and f := φ − ω is the true anomaly, with ω denoting the Keplerian longitude
of pericenter. Substituting the force components within Eqs. (3.69) produces

dp

d f
= 4(2 − η)

Gm

c2
e sin f, (10.14a)

de

d f
= Gm

c2 p

{[
3 − η + 1

8
(56 − 47η)e2

]
sin f + (5 − 4η)e sin 2 f − 3

8
ηe2 sin 3 f

}
,

(10.14b)

dω

d f
= 1

e

Gm

c2 p

{
3e −

[
3 − η − 1

8
(8 + 21η)e2

]
cos f − (5 − 4η)e cos 2 f + 3

8
ηe2 cos 3 f

}
.

(10.14c)

The vanishing ofW := f · ez implies that the inclination angle ι and longitude of ascending
node 
 are not affected by the perturbing force; this is a consequence of the fact that the
post-Newtonian motion proceeds in a fixed orbital plane.

The perturbing force f is of first post-Newtonian order, and working consistently at this
order, it is appropriate to integrate Eqs. (10.14) while keeping the orbital elements constant
on the right-hand side of the equations. In this way we obtain

p( f ) = p0

[
1 + 4(2 − η)

Gm

c2 p0
(1 − cos f )

]
(10.15)

and more complicated expressions for e( f ) and ω( f ); here p0 := p( f = 0). These expres-
sions can then be inserted within the original Keplerian relations to obtain the complete
solutions for r( f ) and v( f ). The post-Newtonian motion is thus parameterized by the true
anomaly f , and its description in terms of time t can be obtained by integrating Eq. (3.70).

10.1.4 Pericenter advance

The description of the post-Newtonian motion in terms of osculating Keplerian orbits is
perfectly adequate from a mathematical point of view, but it is fairly awkward to use and not
well suited to practical implementations. An illustration of this is the curious fact that the
circular orbit of radius r examined in Sec. 10.1.2 is one with Keplerian orbital parameters
e = (3 − η)Gm/(c2r ) and p = r [1 − (3 − η)Gm/(c2r )], and also this orbit has a constant
true anomaly given by f = π , so that the pericenter advances at the same rate as the body
itself. We shall give the motion a much better description in the next subsection, but let’s
not give up just yet on the osculating formulation.

In the applications of the method of osculating orbital elements examined in Sec. 3.4,
we saw that the method’s most powerful insights are delivered when it is asked to reveal
the secular changes in the orbital elements, and allowed to discard any information about
the periodic changes that average out after each orbital cycle. We shall adopt this wisdom
here, and calculate the secular changes in p, e, and ω produced by the post-Newtonian
perturbation of Eqs. (10.13). They are obtained by integrating Eqs. (10.14) over a complete
orbital period (from f = 0 to f = 2π ), and the equations produce �p = 0, �e = 0, as
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well as

�ω = 6π
Gm

c2 p
. (10.16)

The fact that p undergoes no secular change is a consequence of angular-momentum
conservation, and the absence of a secular change in e (and therefore in the Keplerian semi-
major axis a) is a consequence of energy conservation. The only parameter that undergoes
a secular evolution is the longitude of periastron ω, and Eq. (10.16) describes the pericenter
advance that was so famously calculated by Einstein.

Einstein’s method of derivation was very different. He did not have access to the post-
Newtonian metric of an N -body system, and he did not have access to the N -body equations
of motion. What he did was to obtain the post-Newtonian metric of a single body (the Sun),
and to calculate the motion of a second body (Mercury) under the assumption that it is a
test mass that moves on a geodesic of the spacetime. This is a sensible assumption, given
that the Mercury–Sun mass ratio is approximately one to 6 million. Einstein obtained the
result of Eq. (10.16), but with the total mass m := M1 + M2 well approximated by M1,
the mass of the Sun. Our result is more general, and it applies to a much broader range of
situations.

The advance per orbit can be converted to a rate of advance by dividing by the orbital
period. We can also eliminate the semi-major axis appearing in p = a(1 − e2) by using
Kepler’s third law, a = (G M)1/3(P/2π )2/3, where P is the orbital period; in principle
the relation should be modified by a post-Newtonian correction, but the modification is
irrelevant because �ω is already of first post-Newtonian order. The result is(

dω

dt

)
sec

= 3

1 − e2

(G M/c3)2/3

(P/2π )5/3

= 716.25
1

1 − e2

(
M

M�

)2/3( P

1 day

)−5/3

as/yr. (10.17)

Substituting the values for Mercury, e = 0.2056 and P = 87.97 days, we obtain 42.98
arcseconds per century. As we saw back in Table 3.1, the modern difference between the
measured advance and the one predicted by Newtonian N -body perturbations is 42.98 ±
0.04 arcseconds per century, in 0.1% agreement with the relativistic prediction.

The discovery of binary-pulsar systems with total masses of 2 to 3 solar masses, and
with orbital periods as small as fractions of a day, resulted in the observation of peri-
astron advances of several degrees per year. The relativistic periastron advance plays an
interesting role in these systems. In the solar system, G M for the Sun is known to high
precision from the measured orbital period and orbital radius of the Earth, combined with
Kepler’s third law. By contrast, the masses of the neutron stars are not known, apart from
the general expectation that they should be around the Chandrasekhar limit of 1.4 M�,
based on models of how such systems might have formed. In the famous Hulse–Taylor
binary pulsar, the first such system to be discovered, it was possible to measure the orbital
eccentricity, the orbital period, and the pericenter advance very accurately; the current val-
ues are e = 0.6171338(4), P = 0.322997448930(4) day, and ω̇ = 4.226595(5) deg/yr, in
which the number in parentheses denotes the error in the final digit. Assuming that there
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is no other source of periastron advance, we can turn Eq. (10.17) around and use it to
measure the total mass of the system. The result is M = 2.828296(5) M�. The recently
discovered double pulsar J0737-3039A/B, in which both stars are observed as pulsars, has
e = 0.0877775(9), P = 0.10225156248(5) day, and ω̇ = 16.8995(7) deg/yr, giving a total
mass of 2.5871(2) M�. These are remarkably accurate measurements of an astrophysical
quantity, and as we can see, general relativity plays a central role in the analysis.

10.1.5 Integration of the equations of motion

To integrate the post-Newtonian equations of motion listed in Sec. 10.1.1, we adopt the
approach followed by Damour and Deruelle in their seminal 1985 paper. Our starting point
is the observation that the transformation

r = r̄ − 1

2
(8 − 3η)

Gm

c2
+ O(c−4) (10.18)

turns Eq. (10.7) into the simpler polynomial

˙̄r2 = 2εK + 2
GmK

r̄
− h2

K

r̄2
, (10.19)

in which

εK := ε

[
1 − 3

2
(1 − 3η)

ε

c2
+ O(c−4)

]
, (10.20a)

mK := m

[
1 − (6 − 7η)

ε

c2
+ O(c−4)

]
, (10.20b)

h2
K := h2

[
1 − 2(1 − 3η)

ε

c2
+ 2(1 − η)

(Gm)2

c2h2
+ O(c−4)

]
. (10.20c)

The radial equation is an exact replica of the Keplerian equation displayed in Eq. (3.13),
and it therefore admits the same solution. We adopt a representation in terms of an eccentric
anomaly u, according to which r̄ = ā(1 − ē cos u) and t − T =

√
ā3/(GmK)(u − ē sin u),

in which ā is a post-Newtonian semi-major axis and ē a post-Newtonian eccentricity, defined
in the same way as in the Keplerian problem: εK = −GmK/(2ā) and h2

K = GmKā(1 − ē2).
With the solution for r̄ thus obtained, we apply the transformation of Eq. (10.18) to

express the motion directly in terms of r . Simple manipulations produce

r = a(1 − e cos u), (10.21)

in which a := ā[1 − 1
2 (8 − 3η)Gm/(c2ā)] and e = ē[1 + 1

2 (8 − 3η)Gm/(c2ā)] are new
post-Newtonian orbital elements. Adopting these as the primary elements, it is a simple
matter to express the conserved energy ε and conserved angular momentum h in terms of
a and e; we obtain

ε = −Gm

2a

[
1 − 1

4
(7 − η)

Gm

c2a
+ O(c−4)

]
(10.22)
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and

h2 = Gma(1 − e2)

[
1 + 4 + (2 − η)e2

1 − e2

Gm

c2a
+ O(c−4)

]
. (10.23)

The time function can then be expressed as

t − T = P

2π

(
u − et sin u

)
, (10.24)

in which

et := e

[
1 − 1

2
(8 − 3η)

Gm

c2a
+ O(c−4)

]
(10.25)

is a second eccentricity parameter (which differs from e by a post-Newtonian correction),
and

P := 2π

√
a3

Gm

[
1 + 1

2
(9 − η)

Gm

c2a
+ O(c−4)

]
(10.26)

is the post-Newtonian period.
To obtain φ as a function of u we begin with the transformation

r = r̃ − (2 − η)
Gm

c2
+ O(c−4), (10.27)

which turns Eq. (10.8) into

φ̇ = h̃

r̃2
, (10.28)

where

h̃ :=
√

Gma(1 − e2)

[
1 + 3(1 − η) + (1 + 2η)e2

2(1 − e2)

Gm

c2a
+ O(c−4)

]
. (10.29)

We next use Eq. (10.21) to write r̃ = ã(1 − ẽ cos u), in which ã = a[1 + (2 − η)Gm/(c2a)]
and ẽ = e[1 − (2 − η)Gm/(c2a)], and Eq. (10.24) to obtain

dφ

du
= P

2π

h̃

ã2

1 − et cos u

(1 − ẽ cos u)2
+ O(c−4), (10.30)

which can be integrated to yield the orbital angle φ in terms of eccentric anomaly u. This
equation can be compared with the Keplerian version of Eq. (3.33), and here we see a
substantial difference in the form of the equations. In addition to the multiplicative factor
that appears on the right-hand side, we see that the post-Newtonian expression involves
(1 − et cos u)/(1 − ẽ cos u)2 while the Keplerian version features the simpler factor of
(1 − e cos u)−1. The forms, however, can be reconciled with a simple trick. We first observe
that et differs from ẽ by a post-Newtonian correction that we denote ε. We next define a
third eccentricity parameter by eφ := ẽ − ε, and factorize (1 − ẽ cos u)2 as

(1 − ẽ cos u)2 = [
1 − (ẽ + ε) cos u

][
1 − (ẽ − ε) cos u

] + O(c−4)

= (1 − et cos u)(1 − eφ cos u) + O(c−4). (10.31)
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This allows us to re-express dφ/du as

dφ

du
= (1 + k)

(1 − e2
φ)1/2

1 − eφ cos u
+ O(c−4), (10.32)

which now looks identical to Eq. (3.33), except for the factor 1 + k := (P/2π )(h̃/ã2)(1 −
e2

φ)−1/2.
The solution to this equation can be expressed as in Eqs. (3.30) and (3.32). We have that

cos

(
φ

1 + k

)
= cos u − eφ

1 − eφ cos u
, sin

(
φ

1 + k

)
= (1 − e2

φ)1/2 sin u

1 − eφ cos u
, (10.33)

or that

tan

[
φ

2(1 + k)

]
=
√

1 + eφ

1 − eφ

tan
u

2
. (10.34)

Simple algebra confirms that

eφ = e

[
1 + 1

2
η

Gm

c2a
+ O(c−4)

]
(10.35)

and

k = 3

1 − e2

Gm

c2a
+ O(c−4). (10.36)

The meaning of this last quantity is easy to extract from Eqs. (10.33) and (10.34). These
relations inform us that in the course of a complete radial cycle, as u runs from 0 to 2π , the
orbital angle φ runs from 0 to 2π (1 + k). The excess angle,

2πk = 6π
Gm

c2a(1 − e2)
+ O(c−4), (10.37)

is the pericenter advance of Eq. (10.16).
It is a remarkable fact that the two-body equations of motion of post-Newtonian theory

can be integrated in the same manner as the Keplerian equations, with only the small
cost of introducing two additional eccentricity parameters (et and eφ , which differ from e
by post-Newtonian corrections), and a pericenter-advance parameter k := �ω/(2π ). This
implies that the post-Newtonian motion can be computed with great ease, by exploiting the
tried and true methods of celestial mechanics.

The individual motion of each body can be obtained from Eq. (10.2). It is easy to show
that

r1 := |r1| = a1(1 − e1 cos u), (10.38)

in which a1 := (M2/m)a is the semi-major axis of the first body, while

e1 = e

[
1 − M1(M1 − M2)

2m2

Gm

c2a

]
(10.39)

is its eccentricity. The corresponding results for the second body are obtained by a suitable
exchange of labels.
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10.1.6 de Sitter precession

The de Sitter precession of the lunar orbit is a relativistic three-body effect that involves the
Moon, the Earth, and the Sun; it is a secular advance of the line of nodes of the lunar orbital
plane. You will recall from our discussion in Chapter 3 that the motion of the Moon is a
notoriously difficult problem in Newtonian gravity, mainly because the strong perturbations
caused by the Sun lead to a poorly convergent sequence of corrections. Special formulations
of the perturbation theory, such as the Hill–Brown theory, were required for high precision,
and today the equations of motion are solved directly using computers. With the motion
of the Moon in Newtonian gravity now under control, discrepancies between the predicted
and observed motions can be attributed to relativistic effects.

Relativistic three-body effects can be investigated on the basis of the N -body equations
listed in Sec. 9.3.5 – refer to Eq. (9.127). As in Sec. 3.4.1, in which we considered third-body
effects in Newtonian theory, we focus our attention on a two-body system (the Earth and the
Moon) and examine the perturbations produced by a third body (the Sun). We let the Moon
be the first body (mass M1, position r1), the Earth be the second body (mass M2, position r2),
and the Sun be the third body (mass M3, position r3). We let r := r1 − r2 be the separation
between the Moon and the Earth, and R := r2 − r3 be the separation between the Earth
and the Sun. Similarly, we let v := v1 − v2 be the Moon’s velocity relative to Earth’s, and
V := v2 − v3 be the Earth’s velocity relative to the Sun. For simplicity we imagine that the
Sun is at rest at the spatial origin of the coordinate system, so that r3 = 0 = v3.

The relativistic three-body equations lead to effects of various sizes on the two-body
system. We wish to focus our attention on the dominant effects, and to allow ourselves to
neglect the smaller ones, or to ignore relativistic effects that would be masked by much
larger Newtonian effects. To seek guidance in the identification of which terms must be
kept in the equations of motion, and which terms can be neglected, we first examine the
various scales of the problem.

Our first observation is that M1, the mass of the Moon, is much smaller than both
M2 and M3, and we shall therefore neglect all terms in the equations of motion that
involve M1. Our second observation is that the acceleration of the Earth–Moon system
toward the Sun is approximately twice the acceleration of the Moon toward the Earth,
G M3/R2 ∼ 2G M2/r2; this comes about because r/R ∼ 2 × 10−3, which counteracts the
large value of M3/M2. Our third observation is that the post-Newtonian corrections scale
as G M3/(c2 R) ∼ 10−8 for the Earth–Moon system moving around the Sun, so that V/c ∼
10−4, and as G M2/(c2r ) ∼ 10−11 for the Moon moving around the Earth, so that v/c ∼
3 × 10−6; the motion around the Sun is more relativistic than the motion around the Earth.
We rely on this observation to neglect G M2/(c2r ) compared to G M3/(c2 R) in the equations
of motion, and to neglect (v/c)2 compared to (V/c)2. Another source of simplification is
the previously noted smallness of r/R, which allows us to ignore the inhomogeneity of
the Sun’s gravitational field across the Earth–Moon orbit; this means that r13 = R + r can
be safely approximated by R in the equations of motion.

With these simplifications, it is a straightforward exercise to apply Eq. (9.127) to the
Earth–Moon system perturbed by the Sun. We find that the post-Newtonian term in the
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Moon’s acceleration reduces to

a1[pn] = G M2

c2r2

[
V 2 + 2V · v + 3

2
(n · V )2 + 5G M3

R

]
n + G M2

c2r2
(n · V )v

− G M3

c2 R2

[
V 2 + 2V · v − 4G M3

R

]
N

+ 4G M3

c2 R2

[
(N · V )V + (N · V )v + (N · v)V

]
, (10.40)

in which n := r/r and N := R/R, and that the Earth’s post-Newtonian acceleration
becomes

a2[pn] = −G M3

c2 R2

(
V 2 − 4G M3

R

)
N + 4G M3

c2 R2
(N · V )V . (10.41)

The relative acceleration a[pn] := a1[pn] − a2[pn] is then

a[pn] = G M2

c2r2

[
V 2 + 3

2
(n · V )2 + 5G M3

R

]
n

+ 2G M3

c2 R2

[
2(N · V )v + 2(N · v)V − (V · v)N

]
, (10.42)

in which we have neglected 2V · v compared to V 2 in the first group of terms. This can
be treated as a perturbing force f on the Keplerian system formed by the Earth and the
Moon, and it can be used in a perturbative evolution of the orbital elements along the lines
developed in Sec. 3.4.

The motion of the Moon around the Earth is described by an osculating Keplerian orbit
of elements (p, e, ω, ι, 
) perturbed by the external force of Eq. (10.42). To simplify the
description of the evolution of the orbital elements, we follow the approach of Sec. 3.4.1
and place the Earth on a circular orbit of radius R, angular velocity 
orb, and orbital
phase F = 
orbt around the Sun; the orbit is situated in the fundamental X -Y plane. It
is then a straightforward task to calculate the components (R,S,W) of the perturbing
force, to insert these into the osculating equations (3.69), to obtain the total changes
(�p, �e, �ω, �ι, �
) over a complete lunar orbit, and finally, to average these over the
motion of the Earth around the Sun. Our final results are that 〈�p〉 = 〈�e〉 = 〈�ι〉 =
〈�ω〉 = 0, but that

〈�
〉 = 3πG

c2

M3/2
� p3/2

M1/2
⊕ R5/2(1 − e2)3/2

, (10.43)

in which we have substituted the standard symbols M� and M⊕ for the mass of the Sun and
the Earth, respectively. Thus, the only long-term impact of relativistic three-body effects
on the lunar orbit is a precession of the line of nodes, whose longitude 
 advances at the
averaged rate (

d


dt

)
sec

= 3

2

√
G M�

R3

G M�
c2 R

, (10.44)

obtained by dividing 〈�
〉 by the Moon’s orbital period.
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According to Eq. (10.44), the line of nodes of the lunar orbit advances at an averaged
rate of 19.1 arcseconds per century. The effect was first predicted in 1916 by de Sitter, but
at the time it was far too small to be detected on top of the 19.3 degrees of advance per year
produced by the Sun’s Newtonian perturbations. It is a remarkable feat of modern precision
instrumentation that thanks to lunar laser ranging (a technique described in some detail in
Box 13.2), the de Sitter precession has been measured to a precision of better than one
percent.

10.2 Motion of light in post-Newtonian gravity

Most of the information about astrophysical objects comes in the form of electromagnetic
signals, and confrontation between theory and observations must account for the curved
path of a light ray in a gravitational field. Indeed, electromagnetic waves are deflected and
delayed by a massive body, and these measurable effects must be taken into account in
high-accuracy astronomical observations.

10.2.1 Motion of a photon

In the geometric-optics approximation of electromagnetism (refer to Box 5.6), light rays
behave as massless particles – photons – that move on null geodesics of a curved spacetime;
the geodesic equation for a photon in a post-Newtonian spacetime was obtained in Sec. 8.1.4.
The particle moves on a trajectory r(t) with a velocity v = d r/dt that can be expressed as

v = c

(
1 − 2

c2
U

)
n + (c−3), (10.45)

in terms of a unit vector n that specifies the direction of propagation. This satisfies the
differential equation

dn j

dt
= 2

c

(
δ jk − n j nk

)
∂kU + O(c−3), (10.46)

in which U is the Newtonian potential evaluated at x = r(t). It should be noted that in
this section, r(t) stands for the photon’s trajectory and not the interbody separation of a
two-body system, and n denotes the direction of propagation and not the vector r/r .

The leading-order solution to Eq. (10.46) is n = k + O(c−2), in which k is a constant
vector. At this order, the photon’s trajectory is described by the straight path

r(t) = re + ck(t − te) + O(c−2), (10.47)

in which re = r(t = te) is the position of the source, and te is the emission time. At the
next order we have

n = k + α + O(c−4), (10.48)
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in which the deflection vector α satisfies

dα j

dt
= 2

c

(
δ jk − k j kk

)
∂kU, (10.49)

with ∂kU evaluated at x = r(t), as given by Eq. (10.47). We integrate Eq. (10.49) with the
initial conditions

α(t = te) = 0, (10.50)

so that n(t = te), the initial direction of propagation, coincides with the vector k.
Inserting Eq. (10.48) within Eq. (10.45), we find that

v = c

(
1 − 2

c2
U

)
k + cα + O(c−3). (10.51)

Note that α is necessarily orthogonal to k, so that the second term in Eq. (10.51) describes
a transverse deflection of the photon; the longitudinal aspects of the correction are captured
by the first term.

To integrate Eq. (10.49) we substitute ∂kU = −G
∫

ρ ′s−3sk d3x ′ on the right-hand side,
where ρ ′ := ρ(t, x′) is the mass density of the matter distribution, s := r(t) − x′, and
s := |s|. This gives

dα

dt
= −2G

c

∫
ρ ′ b

s3
d3x ′, (10.52)

in which

b := se − (se · k) k, se := re − x′; (10.53)

the vector b points from x′ to the point of closest approach reached by a photon emitted
from a position re in a direction k. We next invoke the easily established identity

1

c

d

dt

(
s · k

s

)
= b2

s3
(10.54)

to express dα/dt as

dα

dt
= −2G

c2

∫
ρ ′ b

b2

d

dt

(
s · k

s

)
d3x ′ = −2G

c2

d

dt

∫
ρ ′ b

b2

s · k

s
d3x ′. (10.55)

Integration of this equation is immediate.
Taking into account Eq. (10.50), we find that the deflection vector is given by

α(t) = −2G

c2

∫
ρ(t, x′)

b

b2

(
s · k

s
− se · k

se

)
d3x ′ (10.56)

for any matter distribution. Further progress on evaluating the deflection vector requires
specification of the mass density.

With the photon’s velocity v given by Eqs. (10.51) and (10.56), we may now determine
the photon’s trajectory r(t). We express the solution to d r/dt = v as

r(t) = re + ck(t − te) + k δr‖(t) + δr⊥(t) + O(c−4), (10.57)
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in which δr‖(t) is the longitudinal displacement determined by d(δr‖)/dt = −2U/c, and
δr⊥(t) is the transverse displacement determined by d(δr⊥)/dt = cα. The longitudinal
term in Eq. (10.57) does not alter the path of the photon with respect to its unperturbed
description, but it affects the relationship between position and time. The transverse term
represents a deviation from the path, in response to the deflection vector α.

To calculate the longitudinal displacement we insert the usual expression for the Newto-
nian potential and get d(δr‖)/dt = −(2G/c)

∫
ρ ′s−1 d3x ′. The identity

1

c

d

dt
ln(s + s · k) = 1

s
(10.58)

permits an immediate integration, and we obtain

δr‖(t) = −2G

c2

∫
ρ(t, x′) ln

(
s + s · k

se + se · k

)
d3x ′, (10.59)

which reflects the initial condition δr‖(t = 0) = 0. The factorization b2 = (se − se · k)(se +
se · k) allows us to write this in the alternative form

δr‖(t) = −2G

c2

∫
ρ(t, x′) ln

[
(s + s · k)(se − se · k)

b2

]
d3x ′ (10.60)

involving the vector b.
To obtain the transverse displacement we invoke Eq. (10.56) and get

d

dt
δr⊥ = −2G

c

∫
ρ(t, x′)

b

b2

(
s · k

s
− se · k

se

)
d3x ′. (10.61)

Once more integration is immediate thanks to the identity c−1ds/dt = s · k/s and the fact
that the second term within brackets is constant in time. We arrive at

δr⊥(t) = −2G

c2

∫
ρ(t, x′)

b

b2

(
s − s · se

se

)
d3x ′, (10.62)

which also reflects the initial condition δr⊥(t = 0) = 0. The motion of the photon in the
post-Newtonian spacetime is now completely determined.

10.2.2 Deflection by a spherical body

The simplest application of light deflection involves a single spherically-symmetric body of
mass M , which we place at the spatial origin of the coordinate system. Because the photon
must travel outside the body to be observable, the gravitational potential U can be equated
to its external expression G M/|x|, and Eq. (10.49) can be integrated for this special case.
Alternatively, and more simply, we can insert ρ(x′) = Mδ(x′) within Eq. (10.56) and get

α(t) = −2G M

c2

b

b2

[
r(t) · k

r (t)
− re · k

re

]
, (10.63)

in which r(t) := re + ck(t − te) + O(c−2), and

b := re − (re · k)k (10.64)
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Φ(t)
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Fig. 10.1 Deflection of light by a spherical body.

is now a constant vector that points from the body’s center-of-mass to the photon’s point of
closest approach (see Fig. 10.1); b := |b| is the impact parameter. Note that the deflection
vector always points in the direction of −b, corresponding to a deflection toward the massive
body, and varies in magnitude in response to the change in the photon’s position.

The deflection vector can also be expressed as

α(t) = −2G M

c2

b

b2

[
cos �(t) +

√
1 − (b/re)2

]
, (10.65)

in which cos �(t) := (r · k)/r , so that �(t) is the angle between the photon’s current
position r(t) and its initial direction k (see Fig. 10.1), and the square root is an alternative
expression for −(re · k)/re. If we specialize to a situation in which the distance of closest
approach b is very much smaller than the distance to the source re, then the deflection
vector simplifies to

α(t) = −4G M

c2

b

b2

1 + cos �(t)

2
. (10.66)

Evaluating this as t → ∞, long after the photon has passed the point of closest approach,
we find that r(t) becomes increasingly aligned with k, so that cos �(t → ∞) → 1 and

α(t → ∞) = −4G M

c2

b

b2
. (10.67)

From Fig. 10.1 it is easy to see that the photon’s total angle of deflection α is given by
α � tan α = |n · b/b|/(n · k), in which n = k + α + O(c−4) is evaluated at late times. This
gives α = |α · b|/b = |α|, and we find that

α = 4G M

c2b
. (10.68)

This is the famous deflection angle of a light ray passing near a spherical body, as first
calculated by Einstein in 1915.

10.2.3 Measurement of light deflection

The preceding results indicate that light is indeed deflected by a massive body, but they
do not yet offer a means to put the prediction to a test. The reason is that while the final
direction of propagation k + α of a photon can easily be measured by a telescope, the initial
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direction k is unknown, and the extraction of α from the observations is impossible. To
perform a test it is necessary to manipulate the equations to produce a relationship between
quantities that can be measured directly. The way to proceed is to involve two sources of
light, the first a reference source and the second a target source, which represents the emitter
of interest. The angle θ between the two light rays, when they are received simultaneously
at a telescope or a radio interferometer, is a measurable quantity. It can be given a precise
mathematical expression independent of any coordinate system, and it is this relationship
that can be tested by observations.

In the following we assume that all measurements are carried out by an observer at rest
in the post-Newtonian spacetime. In reality, of course, observations would be performed
by an astronomer on the moving Earth, and her motion would have to be incorporated in
the analysis of the measurement; we ignore such effects here. The observer has a spacetime
velocity vector uα , and her reference frame is spanned by the spatial unit vectors eα

( j)

first introduced in Sec. 4.1.5; the label ( j) runs from (1) to (3). The vectors are mutually
orthogonal, they are also orthogonal to uα , and they satisfy the identity

Pαβ := gαβ + uαuβ/c2 = eα
(1)e

β

(1) + eα
(2)e

β

(2) + eα
(3)e

β

(3). (10.69)

The tensor Pα
β projects any vector Aβ in the directions orthogonal to uα , which define

the observer’s reference frame; it was first introduced in Sec. 4.1.5 in the context of flat
spacetime, and this is its incarnation in a curved spacetime with metric gαβ .

Let the target source emit a photon with velocity vector vα = (c, v), as given by
Eq. (10.51), and let the reference source emit another photon with velocity vector
v′α = (c, v′). With no loss of generality we orient the vectorial basis eα

( j) in such a way
that both photons move in the x-y plane of the observer’s reference frame. As shown back
in Sec. 4.1.6, see Eq. (4.28), the angle φ made by the target photon with respect to the
observer’s x-axis is determined by

cos φ = c
vαeα

(1)

−vβuβ
, sin φ = c

vαeα
(2)

−vβuβ
. (10.70)

Similarly, the angle φ′ made by the reference photon is given by

cos φ′ = c
v′

αeα
(1)

−v′
βuβ

, sin φ′ = c
v′

αeα
(2)

−v′
βuβ

. (10.71)

The angle between the two photons is θ := φ − φ′, and this is given by

cos θ = cos φ cos φ′ + sin φ sin φ′ = vαv′
β

(
eα

(1)e
β

(1) + eα
(2)e

β

(2)

)
vμv′

ν(uμuν/c2)
. (10.72)

Because vαeα
(3) = 0 = v′

αeα
(3), the quantity within brackets can be replaced by the projector

of Eq. (10.69), and we arrive at

cos θ = 1 + gαβvαv′β

vμv′ν(uμuν/c2)
, (10.73)
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Fig. 10.2 Geometry of light deflection measurements.

our final expression for the relative angle. Note that the right-hand side of Eq. (10.73) is a
spacetime invariant that can be evaluated in any coordinate system; this guarantees that θ

is a precisely defined, observable quantity.
Our next task is to evaluate Eq. (10.73) for our situation, which involves the

post-Newtonian spacetime, the observer at rest, and the target and reference pho-
tons. The relevant components of the metric tensor are g00 = −(1 − 2U/c2) + O(c−4),
g jk = (1 + 2U/c2)δ jk + O(c−4), the only non-vanishing component of the observer’s
velocity vector is u0 = c(1 + U/c2) + O(c−3), and the photon’s velocities are given by
v = c(1 − 2U/c2)k + cα + O(c−3) and v′ = c(1 − 2U/c2)k′ + cα′ + O(c−3). Inserting
all this within Eq. (10.73) gives

cos θ = k · k′ + k′ · α + k · α′ + O(c−4). (10.74)

The relative angle is thus given a simple expression in terms of k and α, the initial direction
and deflection of the target photon, as well as k′ and α′, the initial direction and deflection
of the reference photon.

We next insert Eq. (10.66) within Eq. (10.74) and obtain

cos θ = cos θ0 − 4MG

c2

k′ · be

b2
e

1 + cos �e

2
− 4MG

c2

k · br

b2
r

1 + cos �r

2
, (10.75)

in which cos θ0 := k · k′, so that θ0 is the relative angle in the absence of deflection,
cos �e := robs · k/robs, so that �e is the angle between the observer’s position robs and
the direction k of the target photon, and cos �r := robs · k′/robs, so that �r is the angle
between the observer’s position and the direction of the reference photon (see Fig. 10.2);
we also have be := re − (re · k)k, where re is the position of the target source (the emitter),
and br := rr − (rr · k′)k′, where rr is the position of the reference source.

Our expression for cos θ can be cleaned up if we express k′ · be and k · br in terms of
the angles �e, �r , and θ0. To accomplish this we note that since the vector robs − re is
directed along k (apart from the small correction from α), we can write be = robs − (robs ·
k)k; similarly we have that br = robs − (robs · k′)k′. These expressions imply k′ · be =
robs(cos �r − cos �e cos θ0) and k · br = robs(cos �e − cos �r cos θ0). Noting in addition
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that sin �e = be/robs and sin �r = br /robs, as can be gleaned from Fig. 10.2, we arrive at

cos θ = cos θ0 − 4MG

c2be

(
cos �r − cos �e cos θ0

sin �e

)
1 + cos �e

2

− 4MG

c2br

(
cos �e − cos �r cos θ0

sin �r

)
1 + cos �r

2
. (10.76)

The difference between the unperturbed angle θ0 and the measured angle θ is denoted δθ ,
and since cos θ = cos(θ0 + δθ ) = cos θ0 − sin θ0δθ , we find that

δθ = 4MG

c2be

(
cos �r − cos �e cos θ0

sin �e sin θ0

)
1 + cos �e

2

+ 4MG

c2br

(
cos �e − cos �r cos θ0

sin �r sin θ0

)
1 + cos �r

2
. (10.77)

We recall that θ0 is the angle subtended by the target and reference sources, that �e

is the angle subtended by the target source and the deflecting body, and that �r is the
angle subtended by the reference source and the deflecting body. In our discussion so far,
these angles have been defined by the unperturbed, straight motion of the light rays in flat
spacetime, as depicted in Fig. 10.2. But since the angles occur within a post-Newtonian
expression, and the difference between the perturbed and unperturbed angles is itself of
post-Newtonian order, we can actually interpret θ0, �e, and �r in Eq. (10.77) as if they were
the observed angles on the sky; the difference manifests itself at second post-Newtonian
order only, and is negligible.

Box 10.2 Spherical trigonometry

Angular measurements in astronomy are performed on the celestial sphere, a fictitious sphere of large radius
centered at the position of the observer, on which all astronomical bodies are imagined to be situated. Rela-
tionships between angles are then clarified with the rules of spherical trigonometry.
For the angles shown in Fig. 10.3, we have the relations

cos θ0 = cos �r cos �e + sin �r sin �e cos χ,

cos �r = cos θ0 cos �e + sin θ0 sin �e cos B,

cos �e = cos θ0 cos �r + sin θ0 sin �r cos A,

and
sin �e

sin A
= sin �r

sin B
= sin θ0

sin χ
.

With these we find that Eq. (10.77) simplifies to

δθ = 4MG

c2be
cos B

1 + cos �e

2
+ 4MG

c2br
cos A

1 + cos �r

2
.
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ΦeΦr

reference target
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θ0

Fig. 10.3 Angles of sources on the celestial sphere as seen from the Earth. When the Sun is behind the Earth, the point labelled
“Sun” becomes the extension of the Sun–Earth line into the sky, and the angles�r and�e becomeπ − �r and
π − �e, respectively.

This equation states that the change in angular separation between the target and reference sources is just
the sum of the apparent displacement of each image away from the deflecting body, projected along the line
joining the reference and target sources.

Equation (10.77) is what we need to put the prediction of light deflection to a test, except
for the fact that while we can always measure θ for the target and reference sources, we
still do not have access to θ0, its unperturbed value. To get around this, all measurements
of the light deflection are carried out differentially. In this method, the angle between the
target and reference stars is measured at different times, first when the Sun is nowhere in
the vicinity of the stars, and again when the light from the target star passes near the Sun. The
first measurement yields the unperturbed angle, which does not change with time unless the
stars have significant proper motion. The second measurement yields the deflected angle θ ,
and a measurement of δθ = θ − θ0 can finally be compared with Eq. (10.77).

Equation (10.77) simplifies a little when the target source is very close to the Sun as seen
from Earth, so that �e � 1. An expansion of cos θ0 = cos �r cos �e + sin �r sin �e cos χ ,
see Box 10.2, in powers of �e reveals that

θ0 = �r − cos χ �e + cos �r sin2 χ

2 sin �r
�2

e + O(�3
e), (10.78)

and substitution within Eq. (10.77) produces

δθ = 4G M

c3be

[
− cos χ + 1 + (1 + 2 sin2 χ ) cos θ0

2 sin θ0
�e + O(�2

e)

]
, (10.79)

in which χ is the angle subtended by the reference and target sources as seen from the Sun
(as shown in Fig. 10.3). This expression reveals clearly how the angular separation between
the target and reference sources changes with time as the Sun moves across the sky, causing
χ and �e to vary with time. Inserting be = robs sin �e = robs�e + O(�3

e) reveals also that
the theoretical prediction can be expressed entirely in terms of observable quantities.
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The first successful measurement of the bending of light by the Sun was carried out
by British astronomer Arthur Stanley Eddington and his colleagues during the total solar
eclipse of May 29, 1919. Two expeditions were sent out to measure the eclipse, one to
Brazil, the other to the small island of Principe, off the west coast of Africa. In both cases
it was a differential measurement: Photographs of the stars near the Sun taken during the
eclipse were compared with photographs of the same stars taken at night from the same
locations later in the year, and the changes in angles between pairs of stars were carefully
measured. Eddington’s announcement in November 1919 that the bending measurements
were in agreement with general relativity helped make Einstein an international celebrity.
The observations, however, had an accuracy of approximately 30 percent, and succeeding
eclipse measurements were not much better. The results were scattered between one half
and twice the Einstein prediction, but in spite of such limited success, Einstein was declared
victorious.

The subsequent development of long-baseline radio interferometry greatly improved the
measurement of the light deflection. These techniques now have the capability of measuring
angular separations and changes in angles to accuracies of tens of micro-arcseconds. Early
measurements took advantage of the fact that a few quasistellar radio sources – quasars –
pass very close to the Sun as seen from the Earth. As the Earth moves in its orbit, changing
the lines of sight of the quasars relative to the Sun, the angular separation δθ between pairs
of quasars varies. The time evolution of χ and �e in Eq. (10.79) is determined using an
accurate ephemeris for the Earth and initial directions for the quasars, and the resulting
prediction for δθ as a function of time is compared with the measured values. A number
of measurements of this kind over the period 1969–1975 yielded results in agreement with
general relativity to a few parts in 103. In recent years, transcontinental and intercontinental
VLBI observations of quasars and radio galaxies have been made primarily to monitor
the Earth’s rotation and to establish a highly accurate reference frame for astronomy and
navigation. These measurements are sensitive to the deflection of light over almost the
entire celestial sphere. For example, the deflection of a ray approaching the Earth from a
direction 90◦ away from the Sun is 4 milli-arcseconds, easily measurable by modern VLBI
techniques. A 2004 analysis of nearly 2 million VLBI observations of 541 radio sources,
made by 87 VLBI sites over a 20-year period, verified Einstein’s prediction to a few parts
in 104. Analysis of observations made by the Hipparcos optical astrometry satellite yielded
a test at the level of 0.3 percent, and a future orbiting observatory named GAIA will have
the capability of testing the deflection to parts per million.

Box 10.3 The “Newtonian” deflection of light

At the time of Eddington’s attempt to measure the deflection of light, people envisioned three possible out-
comes for the experiment: no deflection, the Einsteinian deflection, or one half of Einstein’s prediction, com-
monly called the “Newtonian” deflection. The Newtonian deflection can be derived in a variety of ways. One
way is to assume that light behaves as a particle, to recall that the trajectory of a particle is independent of
its mass (weak equivalence principle), and to calculate the deflection of its trajectory in the limit in which the
particle’s speed approaches the speed of light. Such an approach would have made sense in Newton’s day,
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when light was really viewed as a “corpuscle,” and indeed, Newton himself speculated on the possible effect
of gravity on light.
The English physicist Henry Cavendish may have been the first person to calculate the bending explicitly,

possibly as early as 1784, although evidence for this was not discovered until around 1914, during an effort
to compile and publish his entire body of work – publication never being high on Cavendish’s list of priori-
ties. In fact, all that was found was a scrap of paper in Cavendish’s handwriting stating that he had done the
calculation, and giving the answer.
Independently of Cavendish, the Bavarian astronomer Johann von Soldner did publish in 1803 a detailed

calculation of the Newtonian bending in a German astronomical journal. Strangely, von Soldner’s calculation
was largely forgotten until it was resurrected in 1921 by Phillip Lenard as part of a campaign to discredit the
“Jewish” relativity of Einstein by publicizing the earlier work of the “Aryan” von Soldner. Apparently, Lenard
was not deterred by the fact that the 1919 observations actually favored general relativity over the Newtonian
deflection.
Unaware of the earlier work, Einstein himself derived the “Newtonian” deflection in 1911. He argued, as

we have back in Sec. 5.1.3, that gravity requires replacement of the Minkowski metric of flat spacetime by the
Newtonian metric of Eq. (5.12),

ds2 = −(1 − 2U/c2) d(ct)2 + dx2 + dy2 + dz2.

Geodesic motion for a test particle in this spacetime reproduces Newtonian gravity, and geodesic motion for
a photon gives the Newtonian deflection. Another derivation using only the equivalence principle imagines a
sequence of freely falling frames through which a light ray passes as it travels near a gravitating body. Each
frame ismomentarily at rest at themoment the light ray enters it. Although the path of the ray is a straight line
within each frame, the frame picks up a downward velocity during the ray’s traversal, because of the body’s
gravitational attraction.When the adjacent frame receives the light ray, it is deflected toward thebodybecause
the downward motion of the previous frame induces aberration on the received ray. By adding up all the tiny
aberrations over a sequence of frames, one arrives at the Newtonian deflection.
But the full theory of general relativity doubles the deflection, because the spatial part of the metric now

comeswith themultiplying factor (1 + 2U/c2). This represents spatial curvature,which could not be taken
into account either by Newtonian gravity or by the principle of equivalence. So the total deflection can be
viewed as a sum of a Newtonian deflection relative to locally straight lines, plus the bending of locally straight
lines relative to straight lines at infinity; each effect contributes exactly half the total deflection.

10.2.4 Gravitational lenses

The deflection of light has become a cornerstone of the empirical edifice that supports
general relativity. But in 1979 the phenomenon became much more than that. That year,
astronomers Dennis Walsh, Robert Carswell and Ray Weymann discovered the “double
quasar” Q0957+561, which consisted of two quasar images about 6 arcseconds apart,
with almost the same redshift (z = 1.41) and very similar spectra. Given that quasars are
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thought to be among the most distant objects in the universe, the probability of finding two
so close together was low. It was soon realized that there was in fact just one quasar, but
that intervening matter in the form of a galaxy or a cluster of galaxies was bending the light
from the quasar and producing two separate images.

Since then, over 60 lensed quasars have been discovered. But more importantly, gravi-
tational lensing has become a major tool in efforts to map the distribution of mass around
galaxies and clusters, and in searches for dark matter, dark energy, compact objects, and
extrasolar planets. Many subtopics of gravitational lensing have been developed to cover
different astronomical realms: microlensing for the search for dim compact objects and
extra-solar planets, the use of luminous arcs to map the distribution of mass and dark
matter, and weak lensing to measure the properties of dark energy. Lensing has to be taken
into account in interpreting certain aspects of the cosmic microwave background radiation,
and in extracting information from gravitational waves emitted by sources at cosmological
distances. These topics are beyond the scope of this book, but we can extend our discussion
of the deflection of light to provide many of the basic concepts and results.

Deflection vector

We consider light rays emitted by a remote source like a quasar to be observed by an
astronomer on Earth. The rays pass through a distribution of matter – the gravitational
lens – on their way to the observer, and undergo a deflection described by the vector
α of Eq. (10.56). In this situation the source is almost directly behind the lens, so that
se · k/se � −1, the observer is almost directly in front of the lens, so that sobs · k/sobs � 1,
and the deflection vector can be simplified to

α = −4G

c2

∫
ρ(x′)

b

b2
d3x ′, (10.80)

in which b := se − (se · k)k, where se := re − x′; here re is the position of the source
relative to the center-of-mass of the matter distribution, and k is the ray’s initial direction; its
final direction as measured by the observer is k + α. We have assumed that the distribution
of matter is time independent, so that ρ depends on the spatial variables x′ only.

To express the deflection vector in a more convenient form we introduce the vectors

ξ := re − (re · k)k, ξ ′ := x′ − (x′ · k)k, (10.81)

so that ξ is the projection of the source’s position re in the lens plane, defined as the plane
perpendicular to the direction of propagation k (ξ is also the photon’s point of closest
approach to the center-of-mass of the matter distribution), and similarly, ξ ′ is the projection
of x′ in the lens plane. In terms of these vectors we have that b = ξ − ξ ′, and the deflection
vector becomes

α = −4G

c2

∫
ρ(x′)

ξ − ξ ′

|ξ − ξ ′|2 d3x ′. (10.82)

To simplify this further we implement a coordinate transformation from the old system
x′ to a new system (ξ ′, �′), in which �′ := x′ · k is the distance along the line of sight,
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perpendicular to the lens plane. Integration over d�′ involves ρ(ξ ′, �′) only, and it gives
rise to

"(ξ ′) :=
∫

ρ(ξ ′, �′) d�′, (10.83)

the projected, two-dimensional mass density (per unit area) of the matter distribution. Our
final expression for the deflection vector is

α(ξ ) = −4G

c2

∫
"(ξ ′)

ξ − ξ ′

|ξ − ξ ′|2 d2ξ ′; (10.84)

it reveals that α is a function of ξ only, and that it lies within the lens plane. Alternative
expressions for the deflection vector are formulated in Exercise 10.5.

The deflection vector acquires a particularly simple form when the matter distribution is
axially symmetric, so that the surface density " depends only on the magnitude ξ ′ of the
vector ξ ′. In this case we can adopt a system of polar coordinates (ξ ′, φ′) in the lens plane,
and carry our the integration over the angle φ′. The result is

α(ξ ) = −4G

c2

m(ξ )

ξ 2
ξ , (10.85)

in which

m(ξ ) := 2π

∫ ξ

0
"(ξ ′)ξ ′ dξ ′ (10.86)

is the mass inside a circle of radius ξ in the lens plane. In this case the deflection vector
necessarily points in the direction opposite to ξ .

Lens equation

We now consider the situation depicted in Fig. 10.4. We have a source at a distance DS from
the observer, and a lens between the source and observer, at a distance DL from the observer;
DLS := DS − DL is the distance between the lens and the source. The figure displays the
lens plane, which is perpendicular to the initial direction of propagation of the light rays,
and a source plane that contains the source, which is parallel to the lens plane. The figure
also shows the optical axis, which passes through the observer and the center-of-mass of the
lens; the optical axis is not necessarily perpendicular to the planes. The vector η gives the
position of the source in the source plane, relative to the optical axis, and ζ is the position of
the image relative to the source; as usual ξ is the point of closest approach in the lens plane.
We introduce the vector β := η/DS, whose magnitude β is the angle between the source
and the optical axis. We introduce also the vector θ := (η + ζ )/DS, whose magnitude θ is
the angle between the image and the optical axis.

Our main goal is to determine θ for a given β, and the key step is to recognize from
Fig. 10.4 that the deflection vector ζ can be expressed as −αDLS, where the negative sign
accounts for the fact that α points in the direction opposite to ξ . The definition of θ then
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Fig. 10.4 Geometry of a gravitational lens. The observer is labeled O, the source S, and the image I.

implies θ = (DSβ − DLSα)/DS, or

θ + DLS

DS
α = β. (10.87)

This lens equation can be solved for θ once we insert the deflection vector of Eq. (10.84), in
which we substitute ξ = DLθ , another relation that can be inferred from Fig. 10.4. Because
the deflection vector is a non-linear function of its argument, the lens equation typically
admits more than one solution for a given source position β. To obtain these solutions it is
necessary to know α(ξ ), and this requires an evaluation of the integral in Eq. (10.84). This
can be accomplished when the density profile of the lens is known, but this information
is usually not available in an astronomical context. The power of gravitational lensing in
astronomy resides in the fact that the lens equation can be turned around: the measured
positions of the multiple images of a given source can be used, through the deflection vector
α, to deduce some features of the mass distribution.

Schwarzschild lens

The simplest instance of a gravitational lens is one created by a single, spherically-
symmetric body of mass M . In this case the deflection vector is given by Eq. (10.67),
or is obtained by letting m(ξ ) = M in Eq. (10.85). We have

α(ξ ) = −4G M

c2

ξ

ξ 2
, (10.88)

and substitution within Eq. (10.87) gives rise to

θ − θ2
E

θ
= β, (10.89)
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in which

θ2
E := 4G M

c2

DLS

DS DL
. (10.90)

In this case the lens equation reduces to a scalar equation, because by virtue of the axial
symmetry of the lens (which follows from its spherical symmetry), all vectors point in the
same direction. The parameter θE is known as the Einstein angle, and the corresponding
length scale

ξE := DLθE =
√

4G M

c2

DLS DL

DS
(10.91)

is the Einstein radius. The Einstein angle gives the characteristic scale of the deflection.
For lenses of galactic scales with M ∼ 1012 M�, θE � 1.8 as, while for solar-mass lenses,
θE � 0.5 mas. The lens equation is consistent whenever ξ � 4G M/c2, so that higher post-
Newtonian corrections are not required, and this condition implies that θ must be much
larger than (DS/DLS)θ2

E.
The solutions to the lens equations are

θ± = 1

2

(
β ±

√
β2 + 4θ2

E

)
, (10.92)

and we see that the lens produces two images of the source. For large angles β � θE

the solutions reduce to θ+ = β + θ2
E/β + · · · and θ− = −θ2

E/β + · · · , which indicates that
one image is displaced beyond the source, while the second image occurs below the
optical axis and is closer to the lens than is the source itself. When β increases beyond
unity, the second solution becomes smaller than θ2

E and enters a regime in which the
lens equation is no longer consistent, because for this solution ξ = DLθ = −DLθ2

E/β ∼
(4G M/c2)(DLS/DS)/β, which violates the condition ξ � 4G M/c2. For small angles β �
θE the solutions reduce to θ+ = θE + 1

2 β + · · · and θ− = −θE + 1
2 β + · · · , which indicates

that the images are at an angle approximately equal to θE above and below the optical axis.
When β = 0, that is, when the source is directly behind the lens, the deflection angle is
precisely equal to ±θE, and the axial symmetry of the situation forces the image to take the
shape of a ring – known as an Einstein ring – around the optical axis.

When the source has a non-zero angular size, the lens continues to displace its images, but
there is also a distortion of its shape. Points on opposite sides of the source perpendicular to
the optical axis are displaced by an angle θ , and are therefore stretched by a corresponding
factor, while points on either side parallel to the optical axis are stretched only by the
difference in θ . When the source is circular, and in the limit where its angular size δβ is
small compared to β, the image is an ellipse with an axis ratio a/b = β/

√
β2 + 4θ2

E, with a
denoting the semi-axis in the direction of the lens, and b the semi-axis in the perpendicular
direction. For sources of larger angular size, the image can actually be distorted into an arc
with a convex side; this occurs when

δβ < β and θE ≥ β − δβ

2δβ

√
β2 − δβ2. (10.93)
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The orientation and shapes of such luminous arcs have been used to deduce the mass dis-
tribution of the galaxies or clusters that act as lenses, a procedure sometimes dubbed
gravitational tomography. Even when the lens produces elliptical distortions that are
too small to be measured individually, there is a systematic effect, averaged over
large collections of images, that is sensitive to the evolution of the universe over an
epoch when dark energy began to be important; this is the realm of weak gravitational
lensing.

Because the number of photons emitted per unit area and unit time is constant for a
steady source, the brightness of the image is proportional to its observed area, which for
small angles is proportional to

∫
θ dθdφ. And because the intrinsic area of the source is

proportional to
∫

β dβdφ, we find that each image is magnified by a factor

μ± = θ±dθ±
βdβ

= ±1

4

(
β√

β2 + 4θ2
E

+
√

β2 + 4θ2
E

β
± 2

)
. (10.94)

The term in parentheses is always greater than zero, and we see that μ+ is positive, while
μ− is negative, indicating that the image is inverted relative to the source. In addition, we
see that μ+ is always greater than unity, but that |μ−| is smaller than unity, indicating that
the second image is actually demagnified by the lens.

In microlensing situations the images are too close together to be resolved individually
by the observer, and in such cases the total magnification is measured by

|μ+| + |μ−| = 1

2

(
β√

β2 + 4θ2
E

+
√

β2 + 4θ2
E

β

)
, (10.95)

which is always greater than unity. The technique of monitoring the variable brightness
of lensing images was used in a series of experiments to search for “massive compact
halo objects” (MACHOs) in our galaxy. If the galaxy contained a population of dark
objects (black holes, neutron stars, brown dwarf stars, or other exotic objects) with masses
comparable to M�, then the brightness of a star transiting behind such an object should
behave in a way consistent with Eq. (10.95). This effect can be distinguished from the star’s
own variability, or from the absorption of starlight by intervening matter, because these
tend to depend on wavelength, while the lensing is independent of wavelength. Searches for
dark objects passing in front of the dense field of stars in the Large Magellanic Cloud and
in the galactic center were carried out between 1993 and 2007, placing a stringent upper
limit on the amount of halo mass that could be made up of such objects. This strengthened
the conclusion that the vast majority of the halo mass must be made of non-baryonic dark
matter.

In 2003, an extra-solar planetary system was discovered by microlensing. The combined
lensing of a distant source by a Jupiter-scale companion and its host star was measured and
could be deconvolved to determine the mass ratio and the approximate distance between
the planet and the star. Additional systems were discovered subsequently, and gravitational
lensing is proving to be a key tool in the search for exoplanets.
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10.2.5 Shapiro time delay

Our discussion of the motion of light in a gravitational field has so far emphasized the
transverse aspects of the motion – the deflection of a light ray with respect to its unperturbed,
straight path. The longitudinal aspects – the changed relationship between position and
time – are also important, and we conclude this section with an examination of the delay
suffered by a photon as it travels across a gravitational potential well. We consider a light
source situated at re relative to the center-of-mass of a spherical body of mass M , and an
observer situated at robs. We imagine that the body is situated between the source and the
observer, near the line of sight, and that the photon is at a distance b from the body when
it reaches its point of closest approach. We wish to calculate the light-travel time between
the source and observer.

The information is contained in Eq. (10.57),

r(t) = re + ck(t − te) + k δr‖(t) + δr⊥(t) + O(c−4), (10.96)

in which we may insert Eq. (10.60) for the longitudinal displacement δr‖, and Eq. (10.62)
for the transverse displacement δr⊥. The equation is evaluated at t = tobs so that r(t =
tobs) = robs, and the displacements must be specialized to the case at hand, for which the
mass density can be expressed as ρ(t, x′) = Mδ(x′). We do not need an explicit expression
for δr⊥, but we find that the longitudinal displacement becomes

δr‖ = −2G M

c2
ln

[
(robs + robs · k)(re − re · k)

b2

]
. (10.97)

The travel time tobs − te is computed by squaring Eq. (10.96), which yields

|robs − re|2 = c2(tobs − te)2 + 2c(tobs − te)δr‖ + O(c−4), (10.98)

or

c(tobs − te) = |robs − re| − δr‖ + O(c−4). (10.99)

Inserting our expression for δr‖, we arrive at

tobs − te = 1

c
|robs − re| + 2G M

c3
ln

[
(robs + robs · k)(re − re · k)

b2

]
+ O(c−5). (10.100)

The first term is obviously the time required to travel a distance |robs − re| in the absence of
gravity, while the second term is the delay produced by the massive body. With the source
assumed to be at a large distance behind the body, and the observer at a large distance
in front of the body, we have that re · k/re � −1 and robs · k/robs � 1, and Eq. (10.100)
simplifies to

tobs − te = 1

c
|robs − re| + 2G M

c3
ln

4robsre

b2
+ O(c−5). (10.101)

This will be our final expression for the light-travel time.
The situation examined thus far does not yet give rise to a means to measure the time

delay, because the time of emission te is typically not known. A slight variation on the
theme, however, gives us what we need. Imagine that the light source at re is replaced by a
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reflector, and that the observer at robs sends a pulse of light to the reflector at a time t0, to
receive it back at a later time t1. The light-travel time during the return trip is twice what
was calculated previously, and we find that

t1 − t0 = 2

c
|robs − re| + 4G M

c3
ln

4robsre

b2
+ O(c−5). (10.102)

The last term is the famous Shapiro time delay. For solar-system situations it can be
expressed as

�tShapiro = M

M�

{
240 − 20 ln

[(
b

R�

)2( au2

robsre

)]}
μs, (10.103)

in which robs and re are measured in astronomical units, the distance between the Earth and
the Sun; the Shapiro time delay is measured in hundreds of microseconds.

While we are now closer to a measurement protocol, we are not there yet. For one thing,
our expression for the time delay, Eq. (10.102), is given in terms of coordinate time and
distances, and it should be converted to an expression that involves observable quantities
only. For another, we do not have access to the unperturbed, Euclidean distance |robs − re|
in order to separate out the relativistic effect. Just as in the case of the deflection of light
reviewed in Sec. 10.2.3, it is essential to do a differential measurement of the variations in
round-trip travel times during many repetitions of the experiment. Particularly important
are “superior conjunction” configurations in which the reflector transits behind the Sun as
viewed from Earth, leading to a strong modulation of the travel times by the logarithmic
term in Eq. (10.102) as b changes with time. In order to do this accurately, however, one
must take into account the variations in travel times that are due to the orbital motion of
the reflector. This is done by accumulating radar-ranging data on the reflector when it is far
from superior conjunction (so that the time-delay term is negligible) to determine its orbit,
using the computed orbit to predict its coordinate trajectory re(t) near superior conjunction,
and then combining this with the trajectory of the Earth r⊕(t) to determine the Newtonian
round-trip time and the logarithmic term in Eq. (10.102). The prediction made on this basis
can then be compared with the actual measurements obtained during superior conjunction.

It was radio astronomer Irwin I. Shapiro who first discovered, in 1964, that the time delay
was a prediction of general relativity. (It was independently discovered by Jet Propulsion
Laboratory scientists Duane Muhleman and Paul Reichley.) He called it the “fourth” test
of general relativity, after the three classical tests – the periastron advance of Mercury, the
light deflection, and the redshift of light as it climbs up a gravitational field. Shapiro and his
colleagues carried out the first measurement of the time delay in 1967, by bouncing radar
signals off the surface of Mercury. Later experiments involved radar echos from Venus and
the tracking of the Mars exploration spacecraft, Mariners 6, 7 and 9, as well as the 1976
Viking landers and orbiters.

The most recent measurement of the Shapiro time delay exploited the Cassini spacecraft
while it was on its way to Saturn. Several circumstances made this mission particularly
favorable. One was the ability to do tracking measurements using both X-band (7175 MHz)
and Ka-band (34316 MHz) radar, thereby significantly reducing the dispersive effects of the
solar corona. Another was that the distance of closest approach of the radar signals to the
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Sun was only 1.6 R� during Cassini’s 2002 superior conjunction, when the spacecraft was
at 8.43 au from the Sun. Because the tracking involved Doppler measurements only, and
not time delays, it was the rate of change of the Shapiro delay that was actually measured.
The result was in agreement with general relativity to two parts in 105.

The Shapiro delay now figures in a wide range of astrophysical phenomena. In its one-way
incarnation, it has been measured in a number of binary-pulsar systems, most notably in the
double pulsar J0737-3039A/B, where the orbit is seen almost edge-on, and the pulsed radio
signals from each pulsar pass close to the other pulsar once per orbit. It is also relevant in
analyses of the spectra and time variations of X-ray emissions from accretion disks around
black holes; in this case the modeling must be performed in full general relativity, because
the post-Newtonian approximation breaks down near black holes.

10.3 Post-Newtonian gravity in timekeeping and navigation

In our development of the foundations of special and general relativity, we have emphasized
that only physically measurable quantities are relevant, and that the selection of coordinates
is completely arbitrary, devoid of physical meaning. On the other hand, to calculate such
things as equations of motion or the Shapiro time delay, it is essential to have a suitable
coordinate system. No one should consider doing such calculations using a proper time
variable or using physically-measured lengths, because this would introduce unnecessary
complications into the calculations. In this section we explore the relationship between the
coordinates employed to chart a spacetime and the physical measurements carried out by
observers moving in the spacetime.

10.3.1 “A brief history of time”

[The title of this section is obviously borrowed from Stephen Hawking’s bestseller. We
could not resist.]

Most of the calculations presented in this book employ a coordinate system xα defined
so that, far from any gravitating system, the coordinate x0/c := t represents proper time
as measured by an inertial observer at rest with respect to the coordinate system, and
x j represent spatial coordinates whose scale is measured by rigid rulers also at rest. But
we rarely have access to those ideal observers, and we make our measurements using
instruments that reside in the gravitational field of the Earth, which is itself moving in the
gravitational environment of the solar system.

Most measurements involve time. We determine the orbit of a planet by measuring the
time at which it passes in front of a star or transits across the Sun. We determine the orbit of
a spacecraft by measuring either the round-trip travel time of a radar signal (radar ranging)
or the change in frequency of the return signal compared to the emitted signal (Doppler
tracking). We determine the position of a quasar by measuring the difference in arrival
time of a given radio wave front at two radio telescopes separated by a known baseline. We
navigate around the countryside by measuring the times of arrival of coded signals from



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-10 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 6:49

510 Post-Newtonian celestial mechanics, astrometry and navigation

four or more GPS satellites orbiting the Earth. So a question is: what is the relationship
between time as measured on Earth and the coordinate time t that we use to calculate the
motion of planets and satellites or the trajectories of light rays?

Before about 1950, this question did not have much practical importance. Time was
determined initially by the regular rotation of the Earth, so that the second was defined
to be 1/86 400 of a day. But as measurements of the orbits of the Earth and planets
improved, it was realized that the length of the day fluctuates seasonally because of large-
scale atmospheric motions, and it increases with time because of tidal dissipation, making
it ill suited as a standard of time for precision measurements. The standard of time was
then replaced by ephemeris time, for which the second is defined to be a fraction of
the period of the Earth’s orbit around the Sun. But even the Earth’s orbital period is not
precisely constant, because of planetary perturbations, and a better time standard had to be
identified.

The development of atomic clocks during the period 1949–1955 made it possible to
envision a standard of time based on fundamental physics instead of astronomy, with a
potential for unprecedented accuracy. Today the second is defined to be the time elapsed
during 9192 631 770 cycles of the hyperfine transition in the ground state of cesium-133.
In addition, the speed of light has now been defined to be exactly equal to 299 792 458 m/s,
so that the meter is now defined in terms of the second, and is no longer tied to the length
of a certain platinum rod in Paris.

During the 1960s and early 1970s, two developments signaled that general relativity
would have to be incorporated into the practical definition of time. One was the development
of numerical methods to integrate the equations of motion for bodies in the solar system,
which replaced the largely analytic perturbative methods reviewed in Chapter 3. These
techniques made it straightforward to include post-Newtonian corrections in the equations
of motion, so that ephemeris time could be regarded as akin to the coordinate time t
that appears in the post-Newtonian metric. The second development was the ongoing
improvement in the accuracy and stability of atomic clocks, in particular those based on
cesium-133, rubidium-87, and the 21-cm hyperfine transition of hydrogen. With stabilities
better than a few parts in 1013, these new standards were sensitive to the effects of gravity
on time. For example, two clocks on the surface of the Earth differ in their rates by one
part in 1013 for every kilometer in height difference, and this effect is easily measured by
the latest clocks. The rate difference between the surface of the Earth and interplanetary
space is a few parts in 1010, so that the effect of gravity on time is very important in the
determination of planetary orbits.

As a result, in 1976 the International Astronomical Union, one of whose functions is
to establish the world-wide agreements and conventions for the establishment and dis-
semination of precise time, resolved to establish atomic time as the primary international
standard, known as Temps Atomique International (tai), for which the second is defined
by a cesium-133 clock at rest on the Earth’s geoid (see below). They also established the
relationship between tai and the time coordinate t involved in the post-Newtonian metric
and in calculations of orbital motion. In 1991 the IAU endeavored to make these definitions
as rigorous as possible from a relativistic point of view, and established working groups to
monitor the definitions and their accuracy in the face of improving technology and more
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exacting requirements by users. This is a great example of the practical importance of
general relativity.

The resolutions of the IAU are framed in the context of the post-Newtonian metric and
equations of motion, and it has not yet proved necessary to extend these considerations to
second post-Newtonian order. This is because the maximum size of the 2pn corrections
is of order (U/c2)2 ∼ 10−16, which is just below the accuracy of the best current clocks
(here the gravitational potential is dominated by the Sun, and it is evaluated at the Earth’s
orbit). One can well imagine, however, that the next generation of atomic clocks, based on
phenomena like cold atom fountains, Bose-Einstein condensates, or atom interferometers,
will be so accurate that 2pn corrections will be needed.

10.3.2 Reference frames

We begin our exploration of the measurement of time on, or near, a moving and rotating
Earth with the specification of three reference frames. The first is the barycentric frame
(tbary, xbary), which is attached to the barycenter of the entire solar system; this is the
frame in which the motion of planets would be calculated. The second is the non-rotating
geocentric frame (t̄, x̄), which is attached to the moving Earth, but is non-rotating with
respect to the barycentric frame; this is the frame in which the motion of satellites around
the Earth would be calculated, and the behavior of their clocks analyzed. And the third is
the rotating geocentric frame (t, x), which is also attached to the moving Earth, but rotating
rigidly with Earth’s angular velocity; this is the frame in which the behavior of clocks on
the surface of the Earth would be analyzed.

The transformation between the barycentric and non-rotating geocentric frames is a
special case of the class of post-Newtonian transformations developed in Sec. 8.3. This
case was examined in Sec. 8.3.5, where it was shown that

tbary = t̄ + 1

c2
(A + v⊕ · x̄) + O(c−4), (10.104a)

xbary = x̄ + r⊕ + O(c−2), (10.104b)

in which r⊕(t̄) is the Earth’s position in the barycentric frame, expressed as a function of
geocentric time t̄ , v⊕(t̄) its velocity, and A(t̄) is determined by

d A

dt̄
= 1

2
v2

⊕ + Uext, (10.105)

with Uext(t̄, r⊕) denoting the piece of the Newtonian potential produced by the bodies
external to the Earth, including the Moon, Sun, and other solar-system bodies, evaluated at
the Earth’s position.

The discussion of Sec. 8.3.5 implies that in the non-rotating geocentric frame, the metric
is given by

ds2 = −
[

1 − 2

c2
U + O(c−4)

]
d(ct̄)2 +

[
1 + O(c−2)

](
dx̄2 + d ȳ2 + dz̄2

)
, (10.106)

in which U (which should be properly denoted Ū ) is the Earth’s gravitational potential
augmented by the tidal potential produced by the external bodies. For reasons that will be
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clarified shortly, we have neglected the post-Newtonian terms in the metric, and retained
only the Newtonian term in ḡ00.

We wish to use the metric of Eq. (10.106) to calculate the interval of proper time dτ

measured by a clock moving with a velocity v̄ in the non-rotating geocentric frame. Because
dτ is related to ds2 by c2dτ 2 = −ds2, and because d x̄ = v̄ dt̄ as we follow the clock’s
world line, we find that

dτ =
[

1 − 1

c2

(
1

2
v̄2 + U

)
+ O(c−4)

]
dt̄ . (10.107)

This is a key equation that allows us to relate dτ , a quantity measured by an actual clock, to
dt̄ , an interval of coordinate time that is measured by no one, but could be employed in many
calculations. The relation involves the clock’s speed v̄ – a special relativistic effect – and
the gravitational potential U – a general relativistic effect. The neglect of post-Newtonian
terms in the metric can now be justified: they would lead to corrections of order c−4 in
dτ , which are negligible in the present context. We shall also neglect the tidal terms in U ,
because Utidal/c2 ∼ 10−17 is too small to be of practical significance, at least for today’s
technological state of the art.

The transformation between the rotating and non-rotating geocentric frames involves
a rigid rotation of the coordinates around the Earth’s rotation axis (which we choose
to align with the z-direction), at the Earth’s angular velocity ω. The transformation is
described in great detail in Sec. 2.3.1, where we show that the velocities transform as
vā = �ā

j (v
j + ε

j
knωk xn), in which v̄ is the clock’s velocity in the non-rotating frame, v

its velocity in the rotating frame, ω = [0, 0, ω] is the angular-velocity vector, and � is the
transformation matrix. The relation implies

v̄2 = v2 + 2v · (ω × x) + ω2(x2 + y2), (10.108)

and substitution within Eq. (10.107) returns

dτ =
[

1 − 1

c2

(
1

2
v2 + v · (ω × x) + �

)
+ O(c−4)

]
dt, (10.109)

in which

� = U + �C (10.110)

is the Newtonian potential augmented by the centrifugal potential �C := 1
2 ω2(x2 + y2). It

should be noted that the time coordinate employed in the rotating frame is the same as in
the non-rotating frame: t := t̄ . We can rely on Eq. (10.109) to relate a clock time interval
dτ to the coordinate time interval dt .

10.3.3 Geoid

We now focus our attention on a clock situated on Earth’s surface, or at a low elevation
above the surface; the clock may be at rest or moving with a velocity v. We shall perform our
calculations in the rotating geocentric frame (t, x), and therefore work with Eq. (10.109).
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Our first item of business is to specify a reference surface from which all elevations
will be measured. Because of the important role that the generalized potential � plays in
Eq. (10.109), it is wise to choose a surface � = constant as our reference, which is then
known as the geoid. From Sec. 2.3.1 we know that surfaces of constant ρ, p, and � all
coincide for a fluid body, and since the body’s boundary is situated at p = 0, the reference
surface can be made to coincide with the boundary. The Earth is not quite a fluid body, but
most of its surface is covered by oceans which do behave as perfect fluids. For the Earth,
therefore, the geoid is chosen to coincide with the mean ocean surface extended through
the continents.

To model the gravitational field of the Earth we take into account its rotational deforma-
tion, but neglect all other deformations produced by inhomogeneities in its mass density;
this is a gross oversimplification of the actual situation. We assume that the deformation is
axially symmetric, and express the gravitational potential as in Eq. (1.144),

U (r, θ ) = G M

r

[
1 − J2

(
R

r

)2

P2(cos θ )

]
, (10.111)

in which the multipole expansion was truncated to � = 2; here M is the mass of the Earth, R
its equatorial radius, and J2 its dimensionless quadrupole moment. The centrifugal potential
is

�C = 1

2
ω2r2 sin2 θ, (10.112)

and according to our discussion in Sec. 2.4.5, J2 = k2ζ , in which k2 is the Earth’s gravita-
tional Love number, and

ζ := 2ω2 R3

3G M
(10.113)

provides the fractional scale of the rotational deformation. We shall assume that ζ � 1.
Constructing � = U + �C, it is easy to show that the geoid �(r, θ ) = �geoid = constant

is situated on the surface r = Rgeoid(θ ), where

Rgeoid(θ ) = R(1 − f cos2 θ ) (10.114)

with

f = 3

2
J2 + ω2 R3

2G M
= 3

4
(1 + 2k2)ζ. (10.115)

The expression implies that f = 1 − R(0)/R( π
2 ), and the condition ζ � 1 implies that f

is small.
Another description of the geoid is given by the Cartesian form x2 + y2 + (1 +

2 f )z2 = R2, and the unit normal n to the geoid is easily shown to have the com-
ponents nx = (1 − 2 f cos2 θ ) sin θ cos φ, ny = (1 − 2 f cos2 θ ) sin θ sin φ, and nz = (1 +
2 f sin2 θ ) cos θ . The geographical latitude ψ of a point on the geoid is the angle between
n and the equatorial plane, so that sin ψ = nz . The relation implies

cos θ = (1 − 2 f cos2 ψ) sin ψ. (10.116)

In terms of the geographical latitude we have that Rgeoid = R(1 − f sin2 ψ).
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For future reference we wish to find an approximate expression for the potential � for
a point x at a height h � R just above (or below) the geoid; the displacement is in the
direction of the normal vector n, at a constant geographical latitude ψ . Expressing � in
terms of r and ψ , setting r = Rgeoid + h, and expanding in powers of h, we find that

� = �geoid − hg(ψ) + O(h2), (10.117)

where g(ψ) := −∂�/∂r , given by

g(ψ) = G M

R2

[
1 + 3

2
J2 − ω2 R3

G M
+
(

2ω2 R3

G M
− 3

2
J2

)
sin2 ψ

]

= G M

R2

[
1 − 3

2
(1 − k2)ζ + 3

2
(2 − k2)ζ sin2 ψ

]
, (10.118)

is the local acceleration of gravity. For the Earth this evaluates to g = (9.7803 +
0.0519 sin2 ψ) m/s2.

10.3.4 Temps Atomique International

By definition, tai is the time measured by an atomic clock at rest on the geoid. By virtue
of Eq. (10.109), in which we insert v = 0, we have that the relationship between tai and
coordinate time t is given by

d(tai) = (1 − �geoid/c2) dt, (10.119)

and constancy of � on the geoid guarantees that clocks at rest on the geoid mark time at
exactly the same rate.

Actual atomic clocks are typically not situated on the geoid. Instead they tend to be
housed in more convenient places at a range of altitudes above sea level, such as Boulder,
Colorado (NIST), Washington, DC (USNO), Paris, France (BIPM), and so on. These clocks,
therefore, do not keep time at the rate specified by tai, and a correction must be introduced
to account for their different placement in the Earth’s potential. To calculate this we return
to Eq. (10.109), insert Eq. (10.117), and get

dτ = [
1 − �geoid/c2 + hg(ψ)/c2

]
dt (10.120)

for the time τ measured by a clock at rest at a geographical latitude ψ and elevation h above
the geoid. Combining this with Eq. (10.119) produces

d(tai) = [
1 − hg(ψ)/c2

]
dτ, (10.121)

an equation that relates the measured time τ to the time standard tai. The correction
evaluates to g/c2 = (1.0882 + 0.00577 sin2 ψ) × 10−16 m−1. Thus, any atomic clock at
rest on Earth can have its rate linked directly to tai by a simple correction factor. In
practice, tai is defined by an average measurement over an ensemble of the best atomic
clocks at different locations around the world, suitably corrected via Eq. (10.121).

The establishment of tai as a precise time standard relies on measurements made by
atomic clocks at multiple locations. How are these clocks synchronized? We shall not delve
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into the practical aspects of this matter, but wish to raise an important question of principle:
How can clocks be synchronized in a rotating reference frame?

Suppose that we have a clock at position B that we wish to synchronize with another clock
at position A. For simplicity we ignore effects associated with elevation, and assume that
both locations are on the geoid. Each clock marks time at the rate indicated by Eq. (10.119),
and integration yields τ [A] = (1 − �geoid/c2)t and τ [B] = (1 − �geoid/c2)t + �τ , in
which �τ is an integration constant. The synchronization procedure is meant to achieve
�τ = 0, so that τ [B] = τ [A].

A possible way of establishing synchronization would be to rely on a portable clock that
is transported slowly from A to B. This clock is initially synchronized with the A-clock,
and during its trip to B it marks time at a rate dτ ∗ given by Eq. (10.109),

dτ ∗ =
[

1 − 1

c2

(
v · (ω × r) + �geoid

)]
dt, (10.122)

in which r(t) is the path of the portable clock; we have neglected the 1
2 v2 term under the

assumption that the transport is slow. Integrating this for the whole trip, which begins at
time t1 and ends at time t2, we find that

τ ∗
2 − τ ∗

1 = [
1 − �geoid/c2

]
(t2 − t1) − 1

c2

∫ B

A
(ω × r) · d r. (10.123)

Because the clock is synchronized with the A-clock at the beginning of the trip, we have
that τ ∗

1 = τ1[A] = (1 − �geoid/c2)t1, in which τ1[A] is the time recorded by the A-clock at
departure. Expressing t2 in terms of τ2[B], the time recorded by the B-clock at the arrival
of the portable clock, and solving for τ ∗

2 , we find that

τ ∗
2 = τ2[B] − �τ − 1

c2

∫ B

A
(ω × r) · d r. (10.124)

We see that the path integral prevents us from achieving synchronization (�τ = 0) by
doing the obvious, setting the B-clock so that τ2[B] = τ ∗

2 . Instead, we must synchronize
the B-clock by setting

τ2[B] = τ ∗
2 + 1

c2

∫ B

A
(ω × r) · d r; (10.125)

a correction must be applied to reflect the transport of the clock in the rotating frame of the
Earth. Note that the path integral is independent of v; the effect survives even in the limit
of a quasi-static transport.

This failure of simple-minded synchronization, known as the Sagnac effect after the
French physicist Georges Sagnac (1869–1926), is a consequence of the Earth’s rotation.
For a path r confined to the geoid, is it is easy to show that

1

c2

∫ B

A
(ω × r) · d r = ωR2

c2

∫ B

A
sin2 θ dφ, (10.126)

and the integral (multiplied by R2) is twice the area swept out by a line joining the center of
the Earth to a projection of the path onto the equatorial plane. For a closed path around the
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equator, the Sagnac term amounts to 207 ns, and the effect is very noticeable. Note that the
Sagnac effect disappears when the clock is transported along a meridian, so that dφ = 0.

Clock synchronization on a rotating Earth can nevertheless be achieved provided that one
applies the Sagnac correction, which requires one to keep careful track of the path taken by
the portable clock. As a result, all clocks on the geoid can be consistently synchronized to
a single master clock, which could be situated in Washington DC, Greenwich UK, Beijing
China, or at the North Pole (the latter being the most politically neutral). This method now
forms the basis for all terrestrial timekeeping.

10.3.5 Orbiting clocks

Atomic clocks orbiting the Earth have become an important part of our lives thanks to
the Global Positioning System (GPS; see Box 10.4), which would fail utterly if it did not
account for relativistic effects in timekeeping. To analyze the behavior of orbiting clocks
we put ourselves in the non-rotating geocentric frame (t̄, x̄) and use Eq. (10.107),

dτ [orbit] =
[

1 − 1

c2

(
1

2
v̄2 + U

)]
dt̄, (10.127)

to relate the clock’s proper time τ [orbit] to the coordinate time t̄ ; here v̄ is the satellite’s
orbital velocity and U is the Earth’s gravitational potential. In this case we may ignore the
multipolar deformations, which are small at the high altitudes considered here (r � 4R⊕
for GPS satellites), and set U = G M/r .

Each satellite moves on a Keplerian orbit around the Earth, and we may rely on the
orbital equations derived in Sec. 3.2.4 to integrate Eq. (10.127). It is convenient to employ a
representation of the motion in terms of the eccentric anomaly u, as displayed in Eqs. (3.34)
and (3.35). We have that r̄ = a(1 − e cos u) and v̄2 = (G M/a)(1 + e cos u)/(1 − e cos u),
where a and e are the semi-major axis and eccentricity, respectively, and the eccentric
anomaly is related to t̄ by Kepler’s equation

t̄ − T =
√

a3

G M
(u − e sin u), (10.128)

in which T is the time of perigee passage. It follows that

1

2
v̄2 + G M

r
= 3

2

G M

a
+ 2G M

a

e cos u

1 − e cos u
, (10.129)

and substitution within Eq. (10.127) yields

τ [orbit] =
(

1 − 3

2

G M

c2a

)
t̄ − 2G M

c2a

√
a3

G M
e sin u + τ0, (10.130)

where τ0 is a constant of integration set by synchronization of the orbiting clock.
The time marked by the orbiting clock is expressed in terms of the coordinate time t̄ .

To complete the description we should relate it to the time measured by a clock at rest (or
moving slowly inside a car) at a geographical latitude ψ and elevation h on the surface of
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the Earth. The translation is provided by Eq. (10.120), which integrates to

τ [ground] = [
1 − �geoid/c2 + hg(ψ)/c2

]
t̄ + τ1, (10.131)

with τ1 another constant of integration. Making the substitution in Eq. (10.130), we find
that

τ [orbit] =
{

1 − 1

c2

[
3

2

G M

a
− �geoid + hg(ψ)

]}
τ [ground]

− 2G M

c2a

√
a3

G M
e sin u + τ2, (10.132)

in which u is now expressed implicitly as a function of τ [ground].
Equation (10.132) relates the time measured by a clock on board a satellite to the time

measured by a clock on the ground. The first group of terms describes a constant difference
between the clock rates. The first correction term −3G M/(2c2a) comes with a negative
sign, and represents a time-dilation effect produced by the orbital motion. The second term
+�geoid/c2 comes with a positive sign, and represents a gravitational blueshift associated
with the transfer of the time signal from high to low altitude. The third term −hg(ψ)/c2 is
an elevation-dependent correction, and its sign depends on the sign of h. The second group
of terms is a time-dependent modulation of τ [orbit] associated with the orbital eccentricity;
this effect is usually very small, because the GPS satellites are in highly circular orbits
(e ∼ 0.01). A typical orbit has a period of 12 hours, corresponding to a = 26, 630 km, or
about 4.2R⊕, and this implies that the geoid term dominates the orbital term in the constant
rate factor. This means that the gravitational blueshift dominates time dilation, so that GPS
clocks tick faster than clocks on the geoid by a factor of 4.467 × 10−10, or by about 38.6
microseconds per day. Note that the geoid and satellite terms cancel each other at an orbital
radius of about 1.5R⊕, and that time dilation would dominate for a lower orbit.

Box 10.4 Global Positioning System

The Global Positioning System (GPS) has become a ubiquitous fixture of our daily lives, being found in many
smartphones and helping us navigate our cars in unfamiliar neighborhoods. The GPS consists of 24 satellites
orbiting the Earth, with groups of four satellites on six distinct orbital planes oriented at 55 degrees relative
to Earth’s equatorial plane. The system operates in such a way that at least four satellites are visible above the
horizon at any given time. Each satellite harbours a very accurate atomic clock; the accumulated time lapse of a
given clock over a full day ismeasured innanoseconds. The system is operatedby theUnited StatesDepartment
of Defense; it was deployed for military purposes before it was made available to civilians.
Each GPS satellite emits a sequence of radio pulses that contain information about the satellite’s position

and the time of emission. This information is used by a receiving unit on Earth to determine its own position.
The receiver acquires the position r A and time of emission tA from each of the four visible satellites. Ignoring
the relativistic effects described in the main text, the receiver determines its own position r and time t by
solving the system of equations

c2(t − tA)2 = |r − r A|2;
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solving for t is necessary because the clock inside the receiver is not nearly as accurate as the atomic clocks, and
because this clock has not been synchronizedwith sufficient precision. In this way the receiving unit can deter-
mine its position on Earthwith an accuracy of a fewmeters and local timewith an accuracy of 30 nanoseconds.
As explained in the main text, relativistic effects such as time dilation and gravitational blueshift must be

taken into account for the successful operation of the GPS. For example, according to Eq. (10.132), the size of
the constant rate difference between τ [orbit] and τ [ground] is given by

3

2

G M

c2a
− �geoid

c2
= −4.4647 × 10−10.

This may seem like a small number, but in the course of a full day it builds up to a time difference of38.6 μs.
This ismuch, much larger than the intrinsic accuracy of the atomic clocks, and translates (after multiplication
by c) to a distance error of 12 km. Think of Einstein the next time your GPS saves you from an unfortunate
detour in downtown Los Angeles.

10.3.6 Timing of binary pulsars

As a final application of timekeeping in general relativity, we examine binary pulsars, those
important astrophysical systems that have been so fruitful in delivering tests of our favorite
theory. A binary pulsar is a two-body system, of which at least one is an active pulsar
that emits radio pulses at very regular intervals. The pulses are received on Earth by a
radio telescope, and a careful timing allows the astronomer to extract detailed information
about the orbital motion of the binary pulsar, including its post-Newtonian aspects. The
companion star is generally assumed to be a compact object as well, either a neutron star
or a white dwarf (both types of system have been observed) or a black hole (no evidence
so far).

We wish to relate the proper time of emission τe of a radio pulse, as measured by a
clock attached to the pulsar, to its arrival time ta , as measured by a remote observer. Our
timing model will include all the relevant relativistic effects, but for simplicity we shall
neglect a number of effects that are also important to the radio astronomer. These include
the motion of the observer relative to the barycenter of the binary system, the aberration
associated with the rotational motion of the pulsar, and the dispersion of the radio pulses
in the interstellar medium.

We consider a binary system consisting of a pulsar of mass M1 and position r1, and
a companion of mass M2 and position r2. The motion of the binary is described in the
system’s barycentric frame, and the observer is situated at a remote position robs relative
to the barycenter; the observer is imagined to be at rest at that position, and her clock
measures coordinate time t . As usual we let r := r1 − r2 denote the orbital separation, and
r := |r|.

Our first task is to relate the pulsar’s proper time τ to the coordinate time t . Working to
the leading, Newtonian order, the relation is provided by Eq. (10.107), which we evaluate
at the position of the pulsar. Removing the overbars, which are no longer required, we have
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that

dτ =
[

1 − 1

c2

(
1

2
v2

1 + U

)
+ O(c−4)

]
dt, (10.133)

in which v1 is the pulsar’s velocity and U is the binary’s gravitational potential, consisting of
the pulsar’s own constant potential U1 and the companion’s potential G M2/r . To integrate
this we once again make use of the Keplerian relations obtained in Sec. 3.2.4. After some
algebra we find that

1

2
v2

1 + G M2

r
= G M2

a

(
2M1 + 3M2

2m
+ M1 + 2M2

m

e cos u

1 − e cos u

)
, (10.134)

in which m := M1 + M2 is the total mass, a is the binary’s semi-major axis, e its eccentricity,
and u is the eccentric anomaly, which is related to t by Kepler’s equation. Making the
substitution and integrating, we find that

τ =
(

1 − 2M1 + 3M2

2m

G M2

c2a
− U1

c2

)
t − M1 + 2M2

m

√
a3

Gm

G M2

c2a
e sin u + τ0, (10.135)

in which τ0 is a constant of integration. In practical applications τ0 is unobservable, and
so is the constant factor in front of t , which can be absorbed into a re-definition of the
pulsar’s intrinsic frequency, which is unknown; the key information is contained in the
time-dependent term, which is proportional to the binary’s eccentricity.

Equation (10.135) allows us to relate the proper time of emission τe to the coordinate
time te. We must now obtain the relation between te and the time of arrival ta , by calculating
the time required by an electromagnetic signal to travel from the pulsar at r1 to the observer
at robs. The work was already carried out in Sec. 10.2.5, and Eq. (10.100) informs us that

c(ta − te) = |robs − r1| + 2G M2

c2
ln

[ |robs − r2| + (robs − r2) · k

r + r · k

]
+ O(c−4), (10.136)

where

k := robs − r1

|robs − r1| (10.137)

is the direction of propagation. Some work was required to go from Eq. (10.100) to
Eq. (10.136). First, the version here accounts for the fact that the delay is produced by the
companion at r2 instead of a body situated at the spatial origin of the coordinate system.
And second, the factor b2 in Eq. (10.100) was factorized as b2 = (r − r · k)(r + r · k),
a relation that follows directly from the definition b := r − (r · k)k. Our result can be
simplified if we recognize that the observer is situated at a large distance from the binary
system. With robs/r1 � 1 and robs/r2 � 1, we find that Eq. (10.136) reduces to

c(ta − te) = robs − nobs · r1 − 2G M2

c2
ln

[
(1 + nobs · n)r

2robs

]
+ O(c−4), (10.138)

in which n := r/r and nobs := robs/robs. It is understood that r and r1 are evaluated at time
t = te.

We now wish to put Eq. (10.138) in a more concrete form. We adopt the point of view of
the astronomer, who looks up at the binary system and assigns to it the orbital parameters
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(a, e, ι, 
, ω), in which ι is the orbital inclination, 
 the longitude of the ascending node,
and ω the longitude of pericenter. She erects a fundamental (X, Y, Z ) frame and aligns it in
such a way that the Z -axis points toward the binary. In this description we have that nobs =
−eZ , and n is given by Eq. (3.42); with this it follows that nobs · n = − sin ι sin(ω + f ), in
which f is the orbit’s true anomaly.

In the term nobs · r1 on the right-hand side of Eq. (10.138) we insert the post-Newtonian
description of the orbital motion given by Eq. (10.21). In the logarithmic term we may
insert the usual Keplerian relations. Making the substitutions, we arrive at

c(ta − te) = robs + sin ι sin(ω + fe)a1(1 − e1 cos ue)

− 2G M2

c2
ln
{[

1 − sin ι sin(ω + fe)
]
(1 − e cos ue)

}
+ O(c−4), (10.139)

in which a1 and e1 are the pulsar’s post-Newtonian orbital parameters, as defined in
Eq. (10.38), fe is the true anomaly at the time of emission, and ue is the eccentric anomaly.
The relation between fe and ue is given by Eq. (10.34), and the relation between ue and te
is expressed by Eq. (10.24).

Our task is completed. With Eq. (10.135) we relate the proper time of emission τe of a
radio pulse to the coordinate time te, and with Eq. (10.139) we relate te to the arrival time ta .
Combining these expressions, we obtain the desired relation between ta and τe. The relation
is provided in a rather implicit form, but the building blocks are all sufficiently simple that
it can easily be turned into a practical timing tool.

In Sec. 10.1.4 we pointed out that the measurement of the pericenter advance in a binary-
pulsar system yields a very accurate determination of the system’s total mass. The timing
formulae of Eqs. (10.135) and (10.139) provide additional information. The time-dependent
term in Eq. (10.135) involves a different combination of M1 and M2, and combining this
measurement with a pericenter-advance measurement returns values for each mass. When
the Shapiro delay is significant (which requires a nearly edge-on orbit), the amplitude of
the delay reveals the companion mass M2 straight away, while its detailed shape depends
on sin ι. Such independent measurements of the masses in many binary pulsars turn out to
give consistent results to high precision, affirming the correctness of the general relativistic
description of the physics. In Chapter 12 we uncover yet another way to measure the masses,
via the effect of gravitational radiation damping.

10.4 Spinning bodies

As relativistic effects go, those associated with a body’s spin tend to be suppressed compared
to the effects reviewed in Sec. 10.1. For example, in the spin–orbit contributions to the
equations of motion, Eqs. (9.189) or Eq. (9.245), a relativistic factor v2

A/c2 has been
replaced by SAvA/(MAc2rAB), which is smaller by a factor of order (VA/vA)(RA/rAB),
where VA is the equatorial rotation velocity of the spinning body and RA is its radius. The
rotation velocity for a body is limited by the Keplerian velocity (G MA/RA)1/2, at which
matter on the equator is no longer bound to the body, and the orbital velocity is itself
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comparable to (G MA/rAB)1/2, so that one would expect a spin–orbit effect to be smaller
than an orbital post-Newtonian effect by a factor of order (RA/rAB)1/2. In the context of
the theory of motion developed in Chapter 9, in which each body was assumed to be small
compared with the inter-body separation, this is necessarily a small number. Furthermore,
most bodies do not rotate at anything close to the Keplerian limit. For example, the Earth’s
equatorial rotational velocity is approximately 0.5 km/s, which is 16 times smaller than the
Keplerian limit. Even the most rapidly spinning pulsar rotates at less than half its Keplerian
limit. The sole exception to this rule is a rapidly rotating black hole, for which the effective
VA can be comparable to the speed of light.

So it would seem that to detect the effects of spin in the solar system would be hopeless,
unless we could relax the constraint that RA � rAB , which means putting one body close
to the surface of the rotating body. We can do this and retain the validity of the equations
of motion obtained in Chapter 9 by demanding that the first body have a negligible mass.
This is the context of Gravity Probe B, in which gyroscopes are placed on a low Earth orbit
with rAB = RA + 650 km, and of the LAGEOS experiment, which tracked satellites on
near-Earth orbits with rAB ≈ 2RA. On the other hand, by virtue of the remarkable accuracy
afforded by pulsar timing, relativistic spin–orbit effects have been measured in a number
of binary pulsar systems.

10.4.1 Frame dragging and Gravity Probe B

Gravity Probe B will very likely go down in the history of science as one of the most
ambitious, difficult, expensive, and controversial relativity experiments ever performed.1

In fact, the list of superlatives associated with the project is formidable: it fabricated the
world’s most perfect spheres, it achieved the lowest magnetic fields, it built the best drag-
free control, and so on. All these achievements and more were essential to the successful
measurement of the minute precession of a spinning body as it orbits the Earth.

Precession of a gyroscope

We consider a binary system that consists of the Earth, with mass M⊕ and spin S⊕, and
a gyroscope of negligible mass and spin S. The gyroscope orbits the Earth, and its spin
precesses. The relevant equation was listed in Sec. 9.5.6. According to Eq. (9.198), we
have that d S/dt = � × S, where � = �[so] + �[ss] is the precessional angular velocity
decomposed in spin–orbit and spin–spin contributions, with

�[so] = 3

2

G M⊕
c2r2

n × v , (10.140a)

�[ss] = G

c2r3

[
3(S⊕ · n)n − S⊕

]
, (10.140b)

in which r = rn is the gyroscope’s orbital position, and v its orbital velocity.

1 Full disclosure: one of us (CMW) served as Chair of an external NASA Science Advisory Committee for
Gravity Probe B from 1998 to 2010.
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We describe the orbital motion in the fundamental (X, Y, Z ) frame introduced in
Sec. 3.2.5. The frame is oriented in such a way that the X -Y plane coincides with the
Earth’s equatorial plane, and S⊕ points in the Z -direction. We place the gyroscope on a
circular orbit of radius a, inclination ι, and longitude of ascending node 
. The direction
to the gyroscope is given by Eq. (3.42),

n = [
cos 
 cos(ω + f ) − cos ι sin 
 sin(ω + f )

]
eX

+ [
sin 
 cos(ω + f ) + cos ι cos 
 sin(ω + f )

]
eY

+ sin ι sin(ω + f ) eZ , (10.141)

in which f = 2π t/P is the orbital phase; P = 2πa3/2(G M⊕)−1/2 is the orbital period.
It is convenient to introduce a vectorial basis (ep, eq , ez) adapted to the gyroscope’s

orbital plane. The normal to the plane is given by Eq. (3.45),

ez = sin ι sin 
 eX − sin ι cos 
 eY + cos ι eZ . (10.142)

As a second basis vector we select

ep = cos 
 eX + sin 
 eY , (10.143)

which lies in the plane and points toward the ascending node. And as a third vector,
orthogonal to the first two, we get

eq = − cos ι sin 
 eX + cos ι cos 
 eY + sin ι eZ . (10.144)

In terms of the orbital basis we have that n = cos f ep + sin f eq , eZ = sin ι eq + cos ι ez ,
and n × v = √

G M⊕/a ez .
We insert the foregoing relations within the precessional angular velocities, obtaining

�[so] = 3

2c2a

(
G M⊕

a

)3/2

ez, (10.145a)

�[ss] = GS⊕
c2a3

[
3

2
sin ι sin 2 f ep + 1

2
sin ι(1 − 3 cos 2 f ) eq − cos ι ez

]
, (10.145b)

and substitute these into the precession equation. Because the changes in the gyroscope
spin S are small, we may insert its initial value S0 on the right-hand side of the equation.
And because we are interested only in the secular evolution of the spin, we average the
precession equation over a complete cycle of the orbital motion. We arrive at

〈
d S

dt

〉
so

= 3

2c2a

(
G M⊕

a

)3/2

ez × S0, (10.146a)〈
d S

dt

〉
ss

= GS⊕
c2a3

(
1

2
sin ι eq − cos ι ez

)
× S0. (10.146b)
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Inserting the appropriate numerical values for the Earth, the equations reveal that the
precessional angular velocities are given by

〈
[so]〉 = 3

2c2a

(
G M⊕

a

)3/2

= 8.43

(
R⊕
a

)5/2

as/yr, (10.147a)

〈
[ss]〉 = GS⊕
c2a3

= 0.109

(
R⊕
a

)3

as/yr; (10.147b)

we see that the spin–orbit precession amounts to in a few arcseconds per year, while the
spin–spin precession is smaller by almost two orders of magnitude.

Geodetic precession; Schiff precession

The spin–orbit precession is frequently called the “geodetic precession” of a spin vector. Its
underlying origin is the fact that spacetime is curved in the vicinity of the Earth, and that
parallel transport of a vector around a closed path returns a vector that points in a direction
that differs from the initial direction. The change is given by the product of components of the
curvature tensor with the vector itself, multiplied by the area enclosed by the orbit. In order
of magnitude we have that δS ∼ (Riemann)(area)S0, and with Riemann ∼ G M⊕/(c2a3),
area ∼ a2, P ∼

√
a3/(G M⊕), we find that〈

d S

dt

〉
so

∼ δS

P
∼ 1

c2a

(
G M⊕

a

)3/2

S0, (10.148)

in agreement with the more detailed calculation. The geodetic precession is independent of
the orientation of the orbit, but is maximized when the spin S0 lies within the orbital plane;
it vanishes when the spin is parallel to ez .

The spin–spin precession is also called the “Schiff precession” of a spin vector. In 1960,
Leonard Schiff calculated the spin–orbit and spin–spin precessions of a gyroscope and
suggested the possibility of measuring them. Unbeknownst to Schiff, a researcher at the
US Pentagon named George Pugh had performed the same calculations a few months
earlier. Pugh was working for the Weapons Systems Evaluation Group, assessing the use
of high-performance gyroscopes in missile and aircraft guidance. He wondered how large
the relativistic effects would be, and what it would take of a space experiment to measure
them. Pugh’s classified work could not be published in the open literature, and so Schiff was
initially given credit for the idea; only later was Pugh’s work discovered and recognized. It
is worth noting that all this occurred in the very early days of space exploration, only two
years after the launch of Sputnik.

The phrases “frame dragging” and “Lense–Thirring effects” are sometimes attached to
the spin–spin precession of a spin vector. Lense and Thirring were the first, in 1918, to
examine the metric of a rotating body in the weak-field limit, and to work out the effects
of rotation on the orbits of bodies, a topic to which we return in the next subsection. They
did not consider the motion of gyroscopes explicitly, but the basic phenomenon of frame
dragging applies to them just as well: an inertial frame with axes defined by an array of
perpendicularly oriented gyroscopes will precess about the axis defined by �[ss] relative to
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an inertial frame at infinity. This phenomenon is directly linked to the dragging of a particle
moving on a geodesic near a rotating body, as discussed back in Sec. 9.5.3.

The Maxwell-like formulation of post-Newtonian theory summarized in Box. 8.1 pro-
vides additional insight into the phenomenon of spin–spin precession. We recall that a
rotating body produces a gravitomagnetic field Bg = ∇ × Ag , in which Ag = −4U/c2 is
a rescaled version of the post-Newtonian vector potential. For a spinning Earth at the spatial
origin of the coordinate system, we have that

Ag = 2G

c2

x × S⊕
|x|3 , (10.149)

and this produces a dipolar gravitomagnetic field given by

Bg = − 2G

c2|x|3
[

3(S⊕ · x)x

|x|2 − S⊕

]
. (10.150)

Comparing this with Eq. (10.140), we see that �[ss] = − 1
2 Bg(x = r). In electrodynamics,

the torque exerted by a magnetic field on a magnetic dipole moment m is τ = m × B. In
gravity we would expect that the torque exerted by a gravitomagnetic field on a gravito-
magnetic dipole moment mg := 1

2 S is given by

τ = mg × Bg =
(

1

2
S

)
×
(
−2�[ss]

)
= �[ss] × S, (10.151)

in agreement with the precession equation.

Gravity Probe B

We now return to the description of the Gravity Probe B experiment. In order to maximize
the spin–orbit precession, we align the gyroscope so that it points in the orbital plane. We
write

S0 = S0
(
cos ψ ep + sin ψ eq

)
, (10.152)

with ψ denoting the angle between S0 and the line of nodes. It is then easy to show that〈
d S

dt

〉
ss

∝
(

1

2
sin ι eq − cos ι ez

)
× S0

∝ cos ι sin ψ ep − cos ι cos ψ eq − 1

2
sin ι cos ψ ez, (10.153)

and that the length of this vector is proportional to [1 − sin2 ι(1 − 1
4 cos2 ψ)]1/2. It becomes

clear that the effect is maximized by setting ι = 0 and therefore placing the orbit in the
Earth’s equatorial plane. This, however, is not the optimal choice for the operations of
Gravity Probe B, because in this case 〈d S/dt〉so and 〈d S/dt〉ss are both aligned in the
direction of ez × S0. In this orientation the spin–spin precession would be very difficult to
distinguish from the dominant spin–orbit precession, and the configuration does not permit
a clean measurement of each effect separately. A much better strategy is to select an orbit
that produces spin–orbit and spin–spin precessions that are perpendicular to each other. It
is easy to show that the inner product between 〈d S/dt〉so and 〈d S/dt〉ss is proportional to
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cos ι, and setting ι = π
2 forces this to be zero. The optimal orbit, therefore, is a polar orbit.

With these specifications the spin-precession equations become

〈
d S

dt

〉
so

= 3

2c2a

(
G M⊕

a

)3/2(
− sin ψ ep + cos ψ eq

)
, (10.154a)〈

d S

dt

〉
ss

= − GS⊕
2c2a3

cos ψ ez . (10.154b)

In this geometry the spin–orbit precession is in the orbital plane, and the spin–spin preces-
sion is normal to the plane.

The Gravity Probe B spacecraft was launched into an almost perfectly circular polar orbit
at an altitude of 642 km, with the orbital plane parallel to the direction of a guide star known
as IM Pegasi. The spacecraft contained four spheres made of fuzed quartz, all spinning
about the same axis (two were spun in the opposite direction), which was oriented to be in
the orbital plane, pointing toward the guide star. An onboard telescope pointed continuously
at the guide star, and the direction of each spin was compared with the direction to the
star, which was at a declination of 16◦ relative to the Earth’s equatorial plane. With ψ

chosen such that the angle between eq (now parallel to the Earth’s rotation axis) and the
spins is equal to 74◦, we obtain a value of 6630 mas/yr for the spin–orbit precession, and
of 38 mas/yr for the spin–spin precession, the first in the orbital plane (in the north-south
direction) and the second perpendicular to it (in the east-west direction).

In order to reduce the non-relativistic torques on the rotors to an acceptable level, the
rotors were fabricated to be both spherical and homogenous to better than a few parts in
10 million. Each rotor was coated with a thin film of niobium, and the experiment was
conducted at cryogenic temperatures inside a dewar containing 2200 litres of superfluid
liquid helium. As the niobium film becomes a superconductor, each rotor develops a
magnetic moment parallel to its spin axis. Variations in the direction of the magnetic
moment relative to the spacecraft were then measured using current loops surrounding
each rotor. As the spacecraft orbits the Earth, the aberration of light from the guide star
causes an artificial but predictable change in direction between the rotors and the on-
board telescope; this was an essential tool for calibrating the conversion between the
voltages read by the current loops and the actual angle between the rotors and the guide
star.

The spacecraft was launched on April 20, 2004, and the mission ended in September
2005, as scheduled, when the remaining liquid helium boiled off. Although all subsystems
of the spacecraft and the apparatus performed extremely well, they were not perfect. Cal-
ibration measurements carried out during the mission, both before and after the science
phase, revealed unexpectedly large torques on the rotors, believed to be caused by electro-
static interactions between surface imperfections on the niobium films and the spherical
housings surrounding each rotor. These effects and other anomalies greatly contaminated
the data and complicated its analysis, but finally, in October 2010, the Gravity Probe B
team announced that the experiment had successfully measured both the geodetic and
frame-dragging precessions. The outcome was in agreement with general relativity, with a
precision of 0.3% for the spin–orbit precession, and 20% for the spin–spin precession.
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10.4.2 Frame dragging and LAGEOS satellites

We next consider the influence of the Earth’s spin on the orbital motion of a satellite, which
we take to have a negligible mass and spin. The spin–orbit contribution to the relative
acceleration between the satellite and the Earth is given by Eq. (9.252), and with our
assumptions we find that it becomes

a[so] = 2G

c2r3

[
3(n × v) · S⊕ n + 3(n · v)n × S⊕ − 2v × S⊕

]
, (10.155)

in which r is the satellite’s position relative to Earth, v its velocity, and as usual n := r/r .
Recalling that h := r × v = hez is the conserved angular momentum (per unit reduced
mass) of the Keplerian motion, and writing S⊕ = S⊕eZ , the spin–orbit acceleration becomes

a[so] = −2GS⊕
c2r3

[
2v × eZ − 3ṙ n × eZ − 3h

r
(ez · eZ )n

]
, (10.156)

with ṙ := n · v denoting the radial component of the velocity vector.
We take the spin–orbit acceleration as a perturbing force f to be inserted in the formalism

of osculating Keplerian orbits reviewed in Sec. 3.3.2. A short computation using v =
ṙ n + (h/r ) λ reveals that the components of f in the orbital basis (n, λ, ez) introduced in
Sec. 3.2.2 are

R = 2GS⊕
c2r3

h

r
ez · eZ , (10.157a)

S = −2GS⊕
c2r3

ṙ ez · eZ , (10.157b)

W = 2GS⊕
c2r3

(
ṙ λ · eZ + 2h

r
n · eZ

)
. (10.157c)

In this we insert the Keplerian relations h = √
Gmp, r = p/(1 + e cos f ), ṙ =√

Gm/p e sin f , in which m � M⊕ is the total mass, p the semi-latus rectum, e the eccen-
tricity, and f is the true anomaly. We also insert the vectorial relations listed in Sec. 3.2.5,
according to which ez · eZ = cos ι, λ · eZ = sin ι cos(ω + f ), and n · eZ = sin ι sin(ω + f ),
in which ι is the orbit’s inclination relative to Earth’s equatorial plane, and ω is the longi-
tude of perigee. Finally, we insert the components of the perturbing force in the osculating
equations listed in Sec. 3.3.2, refer to Eqs. (3.69), and integrate over a complete orbital
cycle to obtain the secular changes in the Keplerian orbital elements.

The final outcome of this sequence of steps is the statement that �p = �e = �ι = 0,
but that

�ω = −12π
GS⊕√

G M⊕ p3c2
cos ι, (10.158a)

�
 = 4π
GS⊕√

G M⊕ p3c2
. (10.158b)

These results can be combined to give

�ω + cos ι �
 = −8π
GS⊕√

G M⊕ p3c2
cos ι, (10.159)
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Table 10.1 Orbital elements of laser-ranged satellites.

Semi-major Orbital Inclination Mass
Satellite axis (km) period (min) Eccentricity to equator (◦) (kg)

LAGEOS I 12,257 225 0.0045 109.84 407
LAGEOS II 12,168 223 0.0135 52.64 405
LARES 7,821 115 0.0007 69.5 387

which describes the secular advance of the perigee relative to a fixed reference direction –
the X -axis – in the fundamental plane. The nodal advance �
 over a complete orbit can
be converted to an averaged rate of advance by dividing by the orbital period, and inserting
numerical values appropriate for an Earth-orbiting satellite, we obtain(

d


dt

)
sec

= 0.2188

(
R⊕
a

)3

(1 − e2)−3/2 as/yr. (10.160)

This very small effect on the satellite’s motion, measured in fractions of arcseconds per
year, is not beyond the reach of modern spacecraft tracking using lasers. In particular, a
pair of “Laser Geodynamics Satellites” (LAGEOS) are ideal for this purpose. Launched in
1976 and 1992, the satellites are massive spheres, 60 cm in diameter and weighing about
400 kg, placed in nearly circular orbits with semi-major axes approximately equal to 2R⊕
(the precise orbital elements are listed in Table 10.1). The spheres are covered with laser
retroreflectors, conical mirrors designed to reflect a laser beam back to the same direction
from which it came. Because of their large mass-to-area ratio, the spheres are less affected
by atmospheric drag than other satellites at similar altitudes. This, combined with the high
precision of laser ranging (which routinely achieves millimeter-level precision), means that
their orbits can be determined extremely precisely. The LAGEOS satellites were launched
primarily to carry out studies in geodesy and geodynamics, but it was soon recognized that
they were potentially capable of measuring the relativistic nodal advance, which under the
stated conditions amounts to approximately 32 mas/yr.

A significant challenge in performing the experiment comes from the fact that the
deformed figure of the Earth produces a huge contribution to the nodal advance. The effect
of oblateness on orbital motion was examined back in Sec. 3.4.3, and an application of
these results to the LAGEOS orbits reveals that the Newtonian perturbation produces an
advance of approximately 120 degrees per year, more than 10 million times larger than the
relativistic advance. To measure the relativistic contribution to 10% accuracy requires a
very precise subtraction of the Newtonian effect, which requires knowledge of the Earth’s
quadrupole moment (J2 ∼ 10−3) to better than a part in 105. The higher multipole moments
J4, J6, and so on, also contribute substantially to the nodal advance. The Earth’s multipole
moments were not known sufficiently well at the time of the launch of the first LAGEOS
satellite to permit a clean measurement of the relativistic contribution.

After the launch of LAGEOS I in 1976, it was recognized by Italian physicist Ignazio
Ciufolini and others, building on an earlier idea by Stanford physicists Richard van Patten
and Francis Everitt, that the Newtonian and relativistic contributions to �
 could actually
be distinguished from one another. The key observation is that the Newtonian contribution
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is proportional to cos ι, while the relativistic contribution is independent of inclination. If
a second LAGEOS satellite were to have an inclination supplementary to that of LAGEOS
I, so that ι2 = 180◦ − ι1, then the Newtonian advance would be equal and opposite for
the two satellites. (This turns out to be true for the contributions of all even-� multipole
moments; see Exercise 3.5.) This means that if one measured the nodal advance of both
satellites simultaneously and added them together, the large Newtonian effect would cancel
out exactly, leaving the relativistic effect in full view.

Ciufolini and other relativists campaigned vigorously to have LAGEOS II launched with
ι2 = 70.16◦, but other considerations prevailed in the end. LAGEOS II was launched with
ι2 = 52.64◦, mainly to optimize coverage by the world’s network of laser tracking stations,
which was important for geophysics and geodynamics research. The fall-back option was
then to combine the data from the two satellites as they were. One could still eliminate
the largest Newtonian contribution coming from J2 with a suitable linear combination of
the two measured nodal advances, thereby revealing the relativistic contribution and those
coming from higher-order multipole moments, whose uncertainties would contribute to the
error made in measuring the relativistic effect. For a time, Ciufolini and collaborators tried
to include a third piece of data, the perigee advance of LAGEOS II (which has a small
eccentricity), as a way to also eliminate J4, but this turned out to be plagued with systematic
errors that were large and hard to control.

But then along came CHAMP and GRACE. Europe’s CHAMP (Challenging Minisatel-
lite Payload) and NASA’s GRACE (Gravity Recovery and Climate Experiment) missions,
launched in 2000 and 2002, respectively, use precision tracking of spacecraft to measure
variations in the Earth’s gravity on scales as small as several hundred kilometers, with
unprecedented accuracies. GRACE consists of a pair of satellites flying in close formation
(200 kilometers apart) on polar orbits. Each satellite carries an on-board accelerometer
to measure non-gravitational perturbations, a satellite to satellite K-band radar to measure
variations in the Earth’s gravity gradient on short scales, and a GPS tracking unit to measure
larger scale variations. With the dramatic improvements on J� obtained by CHAMP and
GRACE, Ciufolini and his colleagues could now treat J4 and higher multipole moments
as known, and use the two LAGEOS nodal advances to determine J2 and the relativis-
tic contribution. The final outcome was a successful test of the relativistic prediction at
the level of 10% accuracy, which was later confirmed by independent analyses of the
LAGEOS/GRACE/CHAMP data.

On February 13, 2012, a third laser-ranged satellite, known as LARES (Laser Relativity
Satellite) was launched by the Italian Space Agency. Its inclination was 69.5◦, very close
to the required supplementary angle relative to LAGEOS I, and its eccentricity was very
nearly zero (see Table 10.1). Combining data from all three satellites with continually
improving Earth data from GRACE, the LARES team led by Ciufolini hopes to achieve a
test of frame-dragging at the 1% level.

10.4.3 Binary systems of spinning bodies

In our final exploration of the influence of spin in post-Newtonian gravity, we examine the
motion of a binary system of spinning bodies.
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Equations of motion and conserved quantities

The equations of motion for the relative orbit and spin vectors of a binary system were
derived back in Sec. 9.5.9. The relative acceleration a := a1 − a2 is expressed as a =
a[0pn] + a[1pn] + a[so] + a[ss] + O(c−4), with the two first terms given by Eq. (10.1),
the spin–orbit contribution given by

a[so] = G

c2r3

{
3

2
(n × v) · (3σ + 4S) n + 3

2
(n · v) n × (3σ + 4S)

− v × (3σ + 4S) + 3λ

2

[
n(n × v) · σ − (n · v) n × σ

]}
, (10.161)

and the spin–spin contribution given by

a[ss] = − 3G

μc2r4

[
(S1 · S2)n − 5(S1 · n)(S2 · n)n + (S1 · n)S2 + (S2 · n)S1

]
. (10.162)

The accelerations are expressed in terms of the combinations σ := (M2/M1)S1 +
(M1/M2)S2 and S := S1 + S2 of the spin vectors, and the arbitrary parameter λ was intro-
duced back in Sec. 9.5.8 to characterize the choice of representative world line within each
body; m := M1 + M2 and μ := M1 M2/(M1 + M2) are respectively the total and reduced
masses of the binary system.

The spin-precession equation for the first body is d S1/dt = �1 × S1 with �1 =
�1[so] + �1[ss], where

�1[so] = 2Gμ

c2r2

(
1 + 3M2

4M1

)
n × v, (10.163a)

�1[ss] = G

c2r3

[
3(S2 · n)n − S2

]
, (10.163b)

are the precessional angular velocities. The equations for the second body are obtained by
a simple exchange of labels 1 ↔ 2.

Back in Sec. 10.1.1 we established that the equations of motion a = a[0pn] + a[1pn] +
O(c−4) admit a conserved energy E = με given by Eq. (10.3), and a conserved angular
momentum L = μh given by Eq. (10.4). It is possible to extend these results and show
that the equations of motion with spin–orbit and spin–spin terms included also admit a
conserved energy and a conserved angular momentum. The modified energy (per unit
reduced mass) takes the form of ε = ε[0pn] + ε[1pn] + ε[so] + ε[ss] + O(c−4), with the
first two terms as listed previously, the spin–orbit term given by

ε[so] = λ
G

c2r2
(n × v) · σ , (10.164)

and the spin–spin term given by

ε[ss] = − G

μc2r3

[
S1 · S2 − 3(n · S1)(n · S2)

]
. (10.165)

Note that the spin–orbit contribution to the conserved energy vanishes when λ = 0, that
is, when the representative world line is chosen to track the body’s center-of-mass in the
barycentric frame (as opposed to the moving frame of each body). The modified total
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angular momentum takes the form

J = L + S + O(c−4) (10.166)

with L = L[0pn] + L[1pn] + L[so], where the Newtonian and post-Newtonian terms were
given by Eq. (10.4), and the spin–orbit term is given by

L[so] = Gμ

2c2r
n × [

n × (3σ + 4S)
]

− λ

2c2

[
Gμ

r
n × (n × σ ) + μ

m
v × (v × σ )

]
; (10.167)

there is no spin–spin contribution to the total angular momentum. The facts that dε/dt = 0
and d J/dt = 0 by virtue of the post-Newtonian dynamics can be verified with a straight-
forward computation involving the complete set of equations of motion; for this purpose it
is convenient to also make use of the evolution equation

d S

dt
= Gμ

2c2r2
(n × v) × (3σ + 4S) + 3G

c2r3

[
(S1 · n)n × S2 + (S2 · n)n × S1

]
(10.168)

for the total spin vector.

Simple precession

To explore the effects produced by the spin–orbit coupling in the equations of motion of
a binary system, we examine first the case in which only one of the bodies has spin; this
is sometimes called the “simple precession” case. Taking the first body to have spin, and
setting S2 = 0, the precession equation for S = S1 can be expressed as

d S

dt
= 2G

c2r3

(
1 + 3M2

4M1

)
L[0pn] × S, (10.169)

where L[0pn] = μr × v is the Newtonian expression for the orbital angular momentum.
Expressing 1 + 3M2/(4M1) as 1

4 (1 + 3m/M1), and L[0pn] as J − S + O(c−2), we find
that the equation becomes

d S

dt
= G

2c2r3

(
1 + 3m

M1

)
J × S, (10.170)

in which corrections of order c−4 are neglected. Because J = L + S is conserved, this
equation implies that d L/dt = −d S/dt and is therefore proportional to J × S. Replacing
S by J − L in this expression, we arrive at

d L

dt
= G

2c2r3

(
1 + 3m

M1

)
J × L (10.171)

for the rate of change of the orbital angular momentum. These equations reveal that both S
and L precess about a fixed J at a common angular frequency


prec = G J

2c2r3

(
1 + 3m

M1

)
; (10.172)
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θL

θS

J

L

S

Fig. 10.5 Simple precession of L and S about a fixed total angular momentum J.

the precession preserves the angle θL between L and J , and the angle θS between S and J
(see Fig. 10.5). The precession of L about J implies that the binary’s orbital plane no longer
has a fixed orientation in space, as it does in the Newtonian and spinless post-Newtonian
dynamics. The normal to the orbital plane is aligned with L[0pn] = μr × v, and because
this deviates from L by terms of order c−2, we see that the orbital plane does not quite follow
the precessional motion; there is an extra wobble produced by the spin–orbit contribution
to the orbital angular momentum. On average, however, the motion of the orbital plane
is described by a steady precession, and this phenomenon has already been encountered
in our discussion of the LAGEOS satellites. It is easy to show that the precession angle
integrated over a complete orbit corresponds precisely to the nodal advance given by
Eq. (10.158).

Simple precession can also occur when both bodies are spinning, but in this case the
orbital angular momentum is required to be much larger than the spin angular momenta,
and the masses are required to be equal. The demand for a large L is to ensure that the
spin–spin coupling continues to be negligible compared to the spin–orbit coupling, and the
demand for equal masses is to ensure equality of the precessional angular velocities, which
are proportional to (1 + 3m/M1) and (1 + 3m/M2), respectively. In such circumstances
the precession equations become

d S1

dt
� 7G

2c2r3
L[0pn] × S1,

d S2

dt
� 7G

2c2r3
L[0pn] × S2. (10.173)

These equations can be combined to give a precession equation for the total spin S = S1 +
S2, and the L[0pn] factor on the right-hand side can again be expressed as J − S + O(c−2).
The result can then be used to derive a precession equation for L, and we arrive at

d S

dt
� 7G

2c2r3
J × S,

d L

dt
� 7G

2c2r3
J × L. (10.174)

These equations imply that S and L both precess around J with a common angular velocity

prec = 7G J/(2c2r3).
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S2

J

L

S1

Fig. 10.6 Precession of L about a fixed J for two bodies with M1 = 2M2, with spins of equal magnitudes whose projections
perpendicular to J are initially at right angles.

The precessions remain reasonably simple even when the masses are unequal, provided
that we maintain the condition that L is much larger than both S1 and S2. In this case
the factor L[0pn] × S1 in d S1/dt can be expressed as [ J − S1 − S2 + O(c−2)] × S1, and
since J is dominated by orbital angular momentum, this can be approximated by J × S1.
The resulting equations are

d S1

dt
� G

2c2r3

(
1 + 3m

M1

)
J × S1, (10.175a)

d S2

dt
� G

2c2r3

(
1 + 3m

M2

)
J × S2, (10.175b)

and the spins precess with different angular velocities. The motion of L = J − S1 −
S2 incorporates both precessions, and this leads to a complicated trajectory of the type
displayed in Fig. 10.6.

Spin–spin coupling

Thus far we have considered situations in which the spin–spin aspects of the orbital dynamics
could be neglected. To conclude our survey of the dynamics of a binary system of spinning
bodies, we examine the conditions under which the spin–spin aspects of the dynamics can
become important.

The importance of the spin–spin coupling on body 1 (say) can be measured by the ratio

ss

so
:= 
1[ss]


1[so]
, (10.176)

in which 
1[ss] is the magnitude of the spin–spin precessional angular velocity vector, and

1[so] the magnitude of the spin–orbit angular velocity. In order of magnitude we have
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that 
1[so] = GL(1 + 3m/M1)/(2c2r3) and 
1[ss] = 2GS2/(c2r3), so that

ss

so
= 4

1 + 3m/M1

S2

L
. (10.177)

To estimate this we take body 2 to have a radius R2 and a rotational frequency ω2, so that
S2 ∼ M2 R2

2 ω2. We also let L ∼ μr2
K, in which 
K =
√

Gm/r3 is the Keplerian angular
velocity of the orbital motion. Making the substitutions, we obtain

ss

so
= 4m

3m + M1

(
R2

r

)2
ω2


K
. (10.178)

A useful bound on this is obtained by recalling that ω2 is limited by the Keplerian angular

velocity at the body’s surface, so that ω2 <

√
G M2/R3

2. This gives

ss

so
<

4m

3m + M1

(
M2

m

)1/2( R2

r

)1/2

. (10.179)

This bound, together with our usual requirement that R2 � r , implies that ss/so � 1, and
that the spin–spin aspects of the dynamics are typically small.

An exception to this rule arises when body 1 is very small (in both size and mass), so
that it can approach body 2 without suffering from tidal disruption. In such circumstances
Eq. (10.178) simplifies to ss/so � (4/3)(ω2/
K), which can be large whenever ω2 is
comparable to 
K. This is precisely the situation for Gravity Probe B: plugging in the
angular velocities for the Earth and for a low Earth orbit, we find that ss/so is comparable
to the ratio identified in Sec. 10.4.1 between the 43 mas frame-dragging precession and
the 6600 mas geodetic precession.

Another exception to the general rule arises in the case of a compact object, a neutron star
or a black hole, for which the rotational velocity can approach the speed of light, producing
a very large spin. The spin of a compact object scales as

S2 = χ
G M2

2

c
, (10.180)

in which χ is a dimensionless parameter that ranges between 0 and approximately 0.6 for
a neutron star, and between 0 and 1 for a Kerr black hole. Inserting this and L ∼ μ

√
Gmr

within Eq. (10.177), we find that

ss

so
= 4M2

4M1 + 3M2
χ

√
Gm

c2r
(10.181)

for a binary system involving compact objects. For a very tight binary at the natural endpoint
of its orbital evolution under gravitational radiation reaction (refer to Chapter 12 below), the
spin–spin aspects of the dynamics become important when r drops below approximately
10Gm/c2. This is especially true when one of the spins becomes aligned with L so that
the spin–orbit term passes through zero. The system then loses its gyroscopic bearing,
and L, S1, and S2 can all precess wildly. The orbital angular momentum can even change
sign, so that an initially clockwise orbit flips over and becomes counter-clockwise. These
strange gyrations, however, occur in a strong-field regime where post-Newtonian theory is
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gradually breaking down, and it is only with the advent of numerical relativity that the rich
dynamical behavior of spinning binaries could be explored to the fullest extent.

10.5 Bibliographical notes

Post-Newtonian celestial mechanics provides a vast field of study that we have sampled
only sparsely in this chapter. For a more comprehensive survey the reader is invited to
consult the treatises by Soffel (1989) and Brumberg (1991).

The methods introduced in Sec. 10.1.5 to integrate the post-Newtonian equations of
motion of a two-body system originate from Damour and Deruelle (1985). The relativistic
precession of the line of nodes of the lunar orbit, reviewed in Sec. 10.1.6, was first predicted
by de Sitter (1916), and the effect was first measured by Shapiro et al. (1988).

The story of the 1919 eclipse expedition to measure the relativistic deflection of light,
mentioned in Sec. 10.2.3, is engagingly told in the book Einstein’s Jury by Jeffrey Crelinsten
(2006), and in Daniel Kennefick’s Physics Today article from 2009. The official report on
the expedition is published as Dyson, Eddington, and Davidson (1920). The results of light-
deflection measurements carried out by the VLBI between 1979 and 1999 are compiled in
Shapiro et al. (2004), and the Hipparcos measurements are reported in Froeschlé, Mignard,
and Arenou (1997). The “Newtonian” calculation described in Box 10.3, which originates
in the independent work of Cavendish and von Soldner, is described in more detail in Will
(1988).

The theory of gravitational lenses, touched upon in Sec. 10.2.4, is developed systemati-
cally in the excellent monograph by Schneider, Ehlers, and Falco (1992). The discovery of
the first lens, in the form of the double quasar Q0957+561, was reported by Walsh, Car-
swell, and Weymann (1979). Results of the MACHO experiment are recorded in Alcock
et al. (2000), and the first discovery of an exoplanet via gravitational lensing is described
in Bond et al. (2004).

The calculation of the Shapiro time delay (Sec. 10.2.5) was first published in Shapiro
(1964), and the results of the first measurement were reported in Shapiro et al. (1968). The
improved experiment involving the Cassini spacecraft is described in Bertotti, Iess, and
Tortora (2003).

The relativistic aspects of the Global Positioning System, described in Sec. 10.3.5 and
Box 10.4, are treated systematically in Neil Ashby’s excellent Living Reviews article from
2003. Our discussion of the timing of binary pulsars in Sec. 10.3.6 borrows heavily from
Blandford and Teukolsky (1976) and Damour and Deruelle (1986).

The final results of the Gravity Probe B experiment, described in Sec. 10.4.1, were
reported in Everitt et al. (2011). The dragging of inertial frames was first studied by Thirring
and Lense (1918), and the calculation of the spin–spin precession was first presented in the
open literature in Schiff (1960). The independent classified calculation by Pugh (1959) was
later reprinted in 2003. The successful measurement, of the dragging of inertial frames on
the orbital motion of the LAGEOS satellites, as described in Sec. 10.4.2, were reported in
Ciufolini and Pavlis (2004).
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10.6 Exercises

10.1 Show that the post-Newtonian energy of Eq. (10.3) and the post-Newtonian angular
momentum of Eq. (10.4) are conserved under the two-body dynamics reviewed in
Sec. 10.1.1.

10.2 In the formulation of the post-Newtonian two-body problem in Sec. 10.1.3, express
the post-Newtonian energy ε and post-Newtonian angular momentum h explicitly
in terms of the osculating orbital elements. Using Eq. (10.14), show that ε and h are
constant at 1pn order.

10.3 Consider the osculating equations (10.14) in the limit of small eccentricity. Show
that a circular orbit (an orbit with r constant) does not correspond to e = 0. Find
a solution for p, e, and ω that corresponds to a circular post-Newtonian orbit, and
give an interpretation of the orbit in the language of osculating Keplerian orbits.

10.4 Calculate the “Newtonian deflection of light” according to the prescription
of Box 10.3. Show that the result is half the deflection predicted by general
relativity.

10.5 In this problem we formulate alternative expressions for the deflection vector of a
gravitational lens.
(a) Show that α(ξ ) = ∇ξψ , in which ∇ξ is the gradient operator associated with

the vector ξ , and

ψ(ξ ) = −4G

c2

∫
"(ξ ′) ln |ξ − ξ ′| d2ξ ′

is a deflection potential.
(b) Show that the deflection angle can also be expressed as

α(ξ ) = 2

c2

∫
∇ξU d�,

in which U is the Newtonian potential expressed in terms of the coordinates
(ξ , �) introduced in Sec. 10.2.4.

10.6 Show that the magnification of the images of a Schwarzschild gravitational lens can
be written in the form

μ± = 1

1 − (θE/θ±)4
,

in which θE is the Einstein angle and θ± are the two solutions to the lens equation.

10.7 Consider a Schwarzschild gravitational lens, and a circularly symmetric source
whose center is at an undeflected angle β0 from the lens in the x direction. Assume
that the source has an angular diameter 2χ , with χ < β0, and model any point on
the edge of the source as being on a circle described by β(φ) = (β0 + χ cos φ)ex +
χ sin φ ey , with φ ranging from 0 to 2π .
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(a) In the limit χ � β0, show that the image is distorted into an ellipse, with a
minor axis parallel to the direction of the image displacement, and with the ratio

of minor to major axes given by β0/

√
β2

0 + 4θ2
E.

(b) As χ increases for fixed β0, show that the ellipse becomes concave, i.e. becomes
an arc, when

χ

(β0 − χ )
√

β2
0 − χ2

≥ 1

2θE
.

10.8 The Schwarzschild lens is a rather poor model of a gravitational lens produced by a
galaxy, and a better approximation of a galactic mass distribution is provided by the
Plummer expression

m(ξ ) = M
(ξ/ξc)2

1 + (ξ/ξc)2
,

in which M is the total mass of the galaxy, and ξc is a “core radius” inside which
most of the mass density resides.
(a) Calculate the mass density "(ξ ) and plot it as a function of ξ/ξc.
(b) Show that the lens equation for a Plummer lens is given by

θ −
(

θE

θc

)2
θ

1 + (θ/θc)2
= β,

in which θE is the Einstein angle of Eq. (10.90), and θc := ξc/DL.
(c) The lens equation is now a cubic equation for θ , and the number of solutions

will depend on the sign of the discriminant �: the lens produces three images
when � > 0, and a single image when � < 0. Show that the discriminant is
given by

� = −4β4 − (
8 + 20θ2

E − θ4
E

)
β2 + 4

(
θ2

E − 1
)3

,

in which β and θE are now expressed in units of θc.
(d) Show that the sign of � is dictated by the parameter β∗ defined by

β2
∗ = −1 − 5

2
θ2

E + 1

8
θ4

E + 1

8
θE
(
θ2

E + 8
)3/2

,

so that � > 0 when β < β∗, while � < 0 when β > β∗.
The Plummer lens therefore produces three images when β is smaller than the critical
value β∗. It is known that the production of an odd number of images is typical in
axially symmetric lenses with an extended distribution of mass.

10.9 A rocket is launched from the surface of a body of mass M and radius R on a radial
orbit, reaching a maximum distance rmax before returning to the planet. The rocket
carries an atomic clock, while an identical clock remains on the body’s surface.
During the flight, the clock on the ground emits a signal with a frequency f0, and
this signal is received by the rocket with a frequency f ′ as measured onboard the
rocket. A signal of that same frequency is then generated and returned to the ground
(the device that achieves this is called a transponder); there it is measured to have a
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frequency f1. This is the method used for Doppler tracking. At the same moment as
the tracking signal is transponded back, the rocket emits its own signal of frequency
f0 as measured onboard. This signal is received on the ground, and the frequency is
measured to be f2.
(a) Show that

f1

f0
= 1 − ṙ/c

1 + ṙ/c
+ O(c−3) ,

f2

f0
= 1 − ṙ

c
+ G M

c2

(
1

R
− 1

rmax

)
+ O(c−3) ,

where ṙ is the radial velocity of the rocket.
(b) Define the combination of frequency ratios � := ( f2/ f0) − ( f1/2 f0) − 1/2.

Show that this combination eliminates the first-order Doppler effect and is
given by

� = G M

c2

(
1

R
− 2

r
+ 1

rmax

)
+ O(c−3) . (10.182)

Discuss the qualitative behavior of the frequency shift during the experiment.
(c) For the Earth, and for a rocket reaching a maximum altitude of 10 000 km, deter-

mine the maximum value of �. This was the basis for the 1976 Gravity Probe A
experiment of Robert Vessot and colleagues, using hydrogen maser clocks and
a Scout rocket launched from Wallops Island, Virginia. The experiment verified
the prediction for � to about 70 parts per million.

10.10 Using the recipe concocted in Sec. 10.3.6, write a computer code that calculates ta ,
the time of arrival of a radio pulse emitted by a binary pulsar, as a function of τe,
the proper time of emission. The code should have the pulsar’s intrinsic frequency
ω, the masses M1 and M2, the post-Newtonian orbital elements a and e, and the
positional elements ι and ω as input parameters. You have complete latitude over the
design and implementation of the algorithm. Be clever!

10.11 This exercise approaches the de Sitter precession of the lunar orbit from a different
viewpoint.
(a) Treat the Earth–Moon system as a giant gyroscope with spin S = μr × v,

where μ is the reduced mass. Imagine that this gyroscope is on a circular orbit
around the Sun. Show that the spin–orbit precession of S produces the de Sitter
precession as given by Eq. (10.44).

(b) Using Eq. (10.42), show that the rate of change of the Moon’s angular-
momentum vector h = r × v can be expressed as

dh

dt
= 3

2

G M3

c2 R2
(N × V ) × h , (10.183)

where M3 is the mass of the Sun, R the Earth–Sun distance, N a unit vector
pointing from the Sun to the Earth, and V the Earth’s velocity. Assume that the
orbit of the Earth around the Sun is circular. Compare this result with your simple
model in the first part of this exercise. Hint: Any post-Newtonian expression
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that can be converted to total time derivatives can be absorbed into the definition
of h; be careful to stay within the approximations used to construct Eq. (10.42),
which amount to keeping only terms linear in v, the Moon’s velocity relative to
Earth.

10.12 The gravitomagnetic viewpoint elaborated in Box 8.1 provides useful insights into a
number of post-Newtonian effects, most notably the behavior of a gyroscope around
a rotating body. Review this material and then provide qualitative answers to the
following questions, using only “right-hand-rule” techniques and lessons learned
from electromagnetism. To keep everything simple, model both the Earth and a
gyroscope as loops of matter rotating about an axis perpendicular to the plane of the
loop.
(a) Show that the gravitomagnetic field of the Earth has the same dipole form as

the magnetic field of a loop of positive charge rotating in the same direction,
but with the field lines emanating from the south pole and returning to the north
pole.

(b) A gyroscope (loop) sits in a gravitomagnetic field that is perpendicular to the
plane of the loop. Show that the torque on the gyroscope vanishes.

(c) A gyroscope sits in a gravitomagnetic field that lies in the plane of the loop.
Show that the torque d S/dt on the gyroscope is in the direction of S × Bg ,
where S is the spin vector of the gyroscope.

(d) Show that a gyroscope at the Earth’s equator, with its spin axis parallel to the
equator, precesses in a direction opposite to the Earth’s rotation. Show that a
similar gyroscope at the pole precesses in the same direction as the Earth’s
rotation. How do these qualitative conclusions compare with the corresponding
precessions derived from Eq. (10.140b)?

10.13 In the formulation of the dynamics of spinning binaries provided in Sec. 10.4.3,
show that the energy per unit reduced mass ε and the total angular momentum J are
conserved quantities.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

11 Gravitational waves

In the preceding three chapters we stayed safely in the near zone and ignored all radiative
aspects of the motion of bodies subjected to a mutual gravitational interaction. In this
chapter we move to the wave zone and determine the gravitational waves produced by the
moving bodies. To achieve this goal we must return to the post-Minkowskian approximation
developed in Chapters 6 and 7, because the post-Newtonian techniques of Chapter 8 are
necessarily restricted to the near zone.

We begin in Sec. 11.1 by reviewing the notion of far-away wave zone, in which the
gravitational-wave field can be extracted from the (larger set of) gravitational potentials hαβ ;
we explain how to perform this extraction and obtain the gravitational-wave polarizations
h+ and h×. In Sec. 11.2 we derive the famous quadrupole formula, the leading term
in an expansion of the gravitational-wave field in powers of vc/c (with vc denoting a
characteristic velocity of the moving bodies); we flesh out this discussion by examining
a number of applications of the formula. Section 11.3 is a very long excursion into a
computation of the gravitational-wave field beyond the quadrupole formula, in which
we add corrections of fractional order (vc/c), (vc/c)2, and (vc/c)3 to the leading-order
expression. The calculations are carried out for a system of N bodies, and they reveal a
very interesting physical phenomenon: the fact that the waves propagate not in the fictitious
flat spacetime of post-Minkowskian theory, but in a physical spacetime which is curved
by the total mass-energy contained in the N -body system. The true waves are delayed
with respect to the fictitious waves because they climb out of a gravitational potential well
as they travel from the near zone to the wave zone. In Sec. 11.4 we convert the general
formalism of the preceding section into concrete expressions for h+ and h× by restricting
the number of bodies to two; we first derive general expressions for arbitrary (eccentric)
motion, and next specialize our results to circular orbits. We conclude the chapter with
Sec. 11.5, where we show how to relate the polarizations h+ and h× to the output channel
of a laser interferometric gravitational-wave detector.

The radiative themes explored in this chapter are developed further in Chapter 12, in
which we determine the effects of radiative losses on the motion of an N -body system. This
is the phenomenon of radiation reaction, which reveals a direct link between the near zone
and the wave zone.

539



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

540 Gravitational waves

11.1 Gravitational-wave field and polarizations

11.1.1 Far-away wave zone

The notion of wave zone was first introduced back in Sec. 6.3.2; this is the region of
three-dimensional space in which R := |x| is larger than λc, the characteristic wavelength
of the gravitational-wave field. (In previous chapters the length of the position vector was
denoted r instead of R; for our purposes in this chapter we adapt the notation and keep r
available for a later assignment.) By far-away wave zone we mean the farthest reaches of
the wave zone, a neighborhood of spatial infinity in which the R−1 part of the gravitational
potentials hαβ dominates over the parts that fall off as R−2 and faster.

To illustrate these notions, and the distinctions between behavior in the near zone and
behavior in the wave zone, we return to the scalar dipole field of Box 6.6,

ψ(t, x) = ( p · N)

(
cos ωτ

R2
− ω

c

sin ωτ

R

)
, (11.1)

which is an exact solution to the wave equation �ψ = 0 outside a region of radius rc that
contains the source. The potential has the dimension of an inverse length, and p is a constant
vector of order rc; ω is the frequency of oscillation of the dipole, and the characteristic
wavelength is λc = 2πc/ω. We have re-introduced the retarded-time variable

τ := t − R/c (11.2)

and the unit vector

N := x/R , (11.3)

which points in the direction of the field point x. (In previous chapters the unit vector
was denoted n instead of N; here we change the notation and keep n available for a later
assignment.) We assume that the dipole is subjected to a slow-motion condition (refer
to Sec. 6.3.2), so that rc � λc. With tc = ω−1 denoting a characteristic time scale and
vc = rc/tc a characteristic velocity, we have that rc/λc ∼ vc/c � 1.

The near zone is defined to be the region of space where R < λc = 2πc/ω. In the near
zone the potential behaves as

ψ = ( p · N)
cos ωt

R2

[
1 + 1

2

(
ωR

c

)2

+ · · ·
]
, (11.4)

and we see that when R ∼ rc, the leading term is corrected by an expression of fractional
order (rc/λc)2 ∼ (vc/c)2. We may say that the correction is of 1pn order, and this is the same
near-zone behavior that was identified for the gravitational potentials of post-Newtonian
theory.

The wave zone is defined to be the region of space where R > λc = 2πc/ω. In the wave
zone the potential behaves as

ψ = − ω

cR
( p · N)

(
sin ωτ − c

ωR
cos ωτ

)
, (11.5)
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and we see that the leading term is corrected by an expression of fractional order λc/R. This
correction becomes increasingly irrelevant as R increases beyond λc, and it is completely
negligible in the far-away wave zone, our adopted vantage point in this chapter.

The gravitational-wave field is obtained by evaluating the gravitational potentials hαβ in
the far-away wave zone, where we neglect corrections of order λc/R � 1. How good is
this approximation? For a source of gravitational waves with a frequency of 100 Hz (λc ∼
3000 km) at a distance of 100 Mpc (3 × 1021 km), the neglected terms are of order 10−18,
making this an excellent approximation indeed. Only a subset of the potentials is actually
involved: as we shall see below, the gravitational-wave field is the transverse-tracefree (TT)
piece of the complete set of potentials, and this is what we aim to calculate in this chapter.
We assume that the source of the gravitational field is a bounded distribution of matter
subjected to a slow-motion condition, so that it lies well within the near zone.

11.1.2 Gravitational potentials in the far-away wave zone

In Chapter 7 we obtained expressions for the gravitational potentials hαβ that are applica-
ble in the wave zone. These expressions were accurate in the second post-Minkowskian
approximation of general relativity. From the summary provided in Box 7.7, we gather that
their behavior in the far-away wave zone is given by

h00 = 4G M

c2 R
+ G

c4 R
C(τ, N) , (11.6a)

h0 j = G

c4 R
D j (τ, N) , (11.6b)

h jk = G

c4 R
A jk(τ, N) . (11.6c)

Here, M is the total gravitational mass, as defined by Eq. (7.63) in the case of a fluid
system, or by Eq. (9.132) in the case of an N -body system. The functions C , D j , and
A jk depend on the retarded-time variable τ := t − R/c and the unit vector N := x/R.
We shall not need their precise forms just yet. In fact, the validity of Eqs. (11.6) extends
beyond the post-Minkowskian domain of Sec. 7.1.4. It is easy to show that these equations
provide solutions to the wave equations �hαβ = 16πGταβ/c4 provided only that ταβ , the
effective energy-momentum pseudotensor, falls off at least as fast as R−2. The impact of
the harmonic gauge conditions ∂βhαβ = 0 on the solutions is examined below.

Before we proceed we introduce a useful differentiation rule that applies in the far-away
far zone:

∂ j h
αβ = −1

c
N j ∂τ hαβ . (11.7)

The rule follows from the fact that the potentials depend on the spatial coordinates x j

through the overall factor of R−1, and through the dependence of the functions C , D j , and
A jk on τ and N . Because ∂ j R−1 = O(R−2) and ∂ j Nk = O(R−1), the only dependence
that matters is in τ , and we have that ∂ jτ = −c−1∂ j R = −c−1 N j . This, finally, leads to
Eq. (11.7), in which a correction term of order R−2 is omitted.
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11.1.3 Decomposition into irreducible components

Before we examine the impact of the gauge conditions ∂βhαβ = 0 on the gravitational
potentials, it is useful to decompose the vector D j and the tensor A jk into longitudinal and
transverse components. The longitudinal direction is identified with N , and the machinery
to achieve the decomposition was developed back in Sec. 5.5; it is summarized in Box 5.7.
The decomposition is simplified by the differential rule of Eq. (11.7).

We write

D j = DN j + D j
T , (11.8)

with DN j representing the longitudinal part of D j , and D j
T its transverse part; the latter is

required to satisfy

N j D j
T = 0 . (11.9)

The three components of D j are therefore partitioned into one longitudinal component D,
and two transverse components contained in D j

T; these are functions of τ and N . Similarly,
we write

A jk = 1

3
δ jk A +

(
N j N k − 1

3
δ jk

)
B + N j Ak

T + N k A j
T + A jk

TT , (11.10)

which is a decomposition of A jk into a trace part 1
3 δ jk A, a longitudinal-tracefree part

(N j N k − 1
3 δ jk)B, a longitudinal-transverse part N j Ak

T + N k A j
T, and a transverse-tracefree

part A jk
TT. We impose the constraints

N j A j
T = 0 (11.11)

and

N j A jk
TT = 0 = δ jk A jk

TT , (11.12)

so that the six independent components of A jk are contained in two scalars A and B, two
components of a transverse vector A j

T, and two components of a transverse-tracefree tensor
A jk

TT. The last term in Eq. (11.10) is called the transverse-tracefree part, or TT part, of A jk .
As we shall see, the radiative parts of the gravitational potentials are contained entirely
within A jk

TT.

11.1.4 Harmonic gauge conditions

The harmonic gauge conditions are c−1∂τ h00 + ∂kh0k = 0 and c−1∂τ h0 j + ∂kh jk = 0. In
the far-away wave zone they simplify to

∂τ

(
h00 − h0k Nk

) = 0 , ∂τ

(
h0 j − h jk Nk

) = 0, (11.13)

thanks to the differentiation rule of Eq. (11.7). After substituting Eqs. (11.8) and (11.10)
into Eqs. (11.6), and these into Eqs. (11.13), we find that the harmonic gauge conditions
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imply

C = D , (11.14a)

D = 1

3
A + 2

3
B , (11.14b)

D j
T = A j

T . (11.14c)

We have set the constants of integration to zero, because an eventual τ -independent term
in C would correspond to an unphysical shift in the total gravitational mass M , while a
τ -independent term in D j would be incompatible with the fact that the time-independent
part of h0 j is associated with the total angular momentum, and must fall off as R−2 instead
of R−1.

Incorporating these constraints, the gravitational potentials become

h00 = 4G M

c2 R
+ G

c4 R

1

3

(
A + 2B

)
, (11.15a)

h0 j = G

c4 R

[
1

3
(A + 2B)N j + A j

T

]
, (11.15b)

h jk = G

c4 R

[
1

3
δ jk A +

(
N j N k − 1

3
δ jk

)
B + N j Ak

T + N k A j
T + A jk

TT

]
, (11.15c)

in which A, B, A j
T, and A jk

TT are functions of τ and N . We now have a total of six independent
quantities: one in A, another in B, two in A j

T, and two more in A jk
TT. The gauge conditions

have eliminated four redundant quantities.

11.1.5 Transformation to the TT gauge

It is possible, in the far-away wave zone, to specialize the harmonic gauge even further, and
to eliminate four additional redundant quantities. We wish to implement a gauge transfor-
mation generated by a four-vector field ζ α(xβ) chosen so as to preserve the harmonic-gauge
conditions, ∂βhαβ = 0. We first figure out how such a transformation affects the gravita-
tional potentials hαβ .

We saw back in Sec. 5.5 that when the spacetime metric is expressed as gαβ = ηαβ + pαβ ,
where ηαβ is the Minkowski metric and pαβ is a perturbation, a gauge transformation
produces the change

pαβ → pαβ − ∂αζβ − ∂βζα (11.16)

to first order in the small quantities pαβ and ∂αζβ , where ζα := ηαβζ β ; this is Eq. (5.122).
To relate pαβ to the gravitational potentials we appeal to Eqs. (7.20), which states that

gαβ = ηαβ + hαβ − 1

2
h ηαβ + O(h2) , (11.17)
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where hαβ = ηαμηβνhμν and h = ημνhμν ; in the far-away wave zone we can neglect the
terms quadratic in hαβ , because they fall off as R−2. We find that

hαβ = pαβ − 1

2
p ηαβ , (11.18)

where p = ημν pμν . It follows that the gauge transformation produces the change

hαβ → hαβ − ∂αζ β − ∂βζ α + (
∂μζ μ

)
ηαβ (11.19)

in the gravitational potentials. We next find that ∂βhαβ → ∂βhαβ − �ζ α and conclude that
the harmonic gauge conditions will be preserved whenever the vector field satisfies the
wave equation

�ζ α = 0 . (11.20)

We wish to preserve the harmonic gauge, and we construct a solution to the wave equation
by writing

ξ 0 = G

c3 R
α(τ, N) + O(R−2) , (11.21a)

ξ j = G

c3 R
β j (τ, N) + O(R−2) , (11.21b)

where α and β j are arbitrary functions of their arguments, and the factors of G/c3 were
inserted for convenience. As before we decompose the vector in terms of its irreducible
components,

β j = βN j + β
j

T , N j β
j

T = 0 . (11.22)

We differentiate ξ 0 and ξ j using the differentiation rule of Eq. (11.7), and insert the results
within Eq. (11.19). After also involving Eqs. (11.15), we eventually deduce that the gauge
transformation produces the changes

A → A + 3∂τ α − ∂τ β , (11.23a)

B → B + 2∂τ β , (11.23b)

A j
T → A j

T + ∂τ β
j

T , (11.23c)

A jk
TT → A jk

TT (11.23d)

in the irreducible pieces of the gravitational potentials.
We see that the transverse-tracefree part of A jk is invariant under the gauge transforma-

tion. We see also that α, β, and β
j

T can be chosen so as to set A, B, and A j
T all equal to

zero. Implementing this gauge transformation, we arrive at the simplest expression for the
gravitational potentials in the far-away wave zone:

h00 = 4G M

c2 R
, (11.24a)

h0 j = 0 , (11.24b)

h jk = G

c4 R
A jk

TT(τ, N) . (11.24c)
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By virtue of the conditions imposed in Eq. (11.12), N j A jk
TT = 0 = δ jk A jk

TT, the number
of time-dependent quantities has been reduced to two. The gravitational potentials of
Eqs. (11.24) are said to be in the transverse-tracefree gauge, or TT gauge, a specialization
of the harmonic gauge that can be achieved in the far-away wave zone. It is clear that
the radiative degrees of freedom of the gravitational field must be contained in the two
independent components of A jk

TT.

11.1.6 Geodesic deviation

This conclusion, that A jk
TT contains the radiative degrees of freedom, is reinforced by the

following argument. Suppose that a gravitational-wave detector consists of two test masses
that are moving freely in the far-away wave zone. The masses are separated by a spacetime
vector ξα , and they move with a four-velocity uα . Assuming that the distance between the
masses is small compared with the radiation’s characteristic wavelength (this defines a short
gravitational-wave detector such as the LIGO instrument), the behavior of the separation
vector is governed by the equation of geodesic deviation,

D2ξα

ds2
= −Rα

βγ δuβξγ uδ , (11.25)

in which D/ds indicates covariant differentiation in the direction of uα , and where Rα
βγ δ

is the Riemann tensor. This equation was first encountered back in Sec. 5.2, see Eq. (5.67).
Assuming in addition that the test masses are moving slowly, this equation reduces to the
approximate form of Eq. (5.68),

d2ξ j

dt2
= −c2 R0 j0kξ

k ; (11.26)

this involves ordinary differentiation with respect to t , as well as the spatial components of
the separation vector.

It is a straightforward exercise to compute the Riemann tensor associated with the metric
gαβ = ηαβ + hαβ − 1

2 hηαβ , even when the gravitational potentials are expressed in their
general form of Eqs. (11.15). Alternatively, one can proceed from Eqs. (11.24) and appeal
to the fact that the Riemann tensor is invariant under a gauge transformation (as was
established back in Sec. 5.5). In any event, the computation reveals that

c2 R0 j0k = − G

2c4 R
∂ττ A jk

TT , (11.27)

and the equation of geodesic deviation becomes

d2ξ j

dt2
= G

2c4 R

(
∂ττ A jk

TT

)
ξk = 1

2

(
∂ττ h jk

TT

)
ξk . (11.28)

This equation can be integrated immediately if we assume that h jk
TT is small. We have that

ξ j (t) = ξ j (0) + 1

2
h jk

TT(t − R/c)ξk(0) , (11.29)

and we see that changes in the displacement vector are driven by h jk
TT and proportional to

the initial separation ξ k(0).
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We conclude that our gravitational-wave detector is driven by the TT piece of the gravita-
tional potentials, which therefore captures the radiative degrees of freedom. The remaining
pieces contain no radiative information; the fact that they can be eliminated by a coordinate
transformation makes it clear that they contain only information about the coordinate sys-
tem. Henceforth we shall refer to h jk

TT specifically as the gravitational-wave field; we shall
continue to refer to h jk as the (spatial components of) the gravitational potentials.

11.1.7 Extraction of the TT part

Given gravitational potentials presented in the general form of Eq. (11.6),

h jk = G

c4 R
A jk(τ, N) , (11.30)

the radiative pieces can be extracted by isolating the transverse-tracefree part of A jk . This
can be done efficiently by introducing the TT projector (tt) jk

pq , and by writing

A jk
TT = (tt) jk

pq Apq . (11.31)

The TT projector is constructed as follows. We first introduce the transverse projector

P j
k := δ

j
k − N j Nk , (11.32)

which removes the longitudinal components of vectors and tensors. For example, for a vector
A j = AN j + A j

T with N j A j
T = 0, we have that P j

k Ak = A j
T. The transverse projector

satisfies

P j
k N k = 0 , P j

j = 2 , P j
p P p

k = P j
k . (11.33)

The TT projector is obtained by acting with the transverse projector twice and removing
the trace:

(tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq . (11.34)

It is easy to see that this possesses the required properties. First, (tt) jk
pq N q = 0; second,

(tt) jk
pqδ pq = 0; and third, (tt) jk

pq Apq
TT = A jk

TT if the tensor A jk
TT is already transverse and

tracefree. For a general symmetric tensor A jk decomposed as in Eq. (11.10), it is easy to
verify that

(tt) jk
pq Apq = A jk

TT . (11.35)

This equation informs us that the TT part of any symmetric tensor A jk can be extracted by
acting with the TT projector defined by Eq. (11.34).

To carry out these manipulations it is convenient to introduce a vectorial basis in the
transverse subspace. Having previously selected N as the longitudinal direction, we param-
eterize it with the polar angles ϑ and ϕ by writing

N := [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ] . (11.36)

We next introduce the unit vectors

ϑ := [cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ] (11.37)
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and

ϕ := [− sin ϕ, cos ϕ, 0] , (11.38)

which are orthogonal to N and to each other. The vector ϑ points in the direction of
increasing colatitude on the surface of a sphere, while ϕ points in the direction of increasing
longitude; they span the transverse subspace orthogonal to N , which is normal to the sphere.
The basis gives us the completeness relations

δ jk = N j N k + ϑ j ϑk + ϕ j ϕk , (11.39)

and it follows from Eq. (11.32) that the transverse projector is given by

P jk = ϑ jϑk + ϕ j ϕk . (11.40)

This can be inserted within Eq. (11.34) to form the TT projector.
The transverse basis formed by ϑ and ϕ is not unique. For any longitudinal direction

N we may rotate the unit vectors by an angle ψ around N and thereby obtain a new basis
(ϑ ′, ϕ′). The operation is described by

ϑ ′ = cos ψ ϑ + sin ψ ϕ, ϕ′ = − sin ψ ϑ + cos ψ ϕ . (11.41)

The equations (11.39) and (11.40) are invariant under such a rotation.
Any symmetric, transverse, and tracefree tensor A jk

TT can be decomposed in a tensorial
basis that is built entirely from the vectors ϑ and ϕ. Such a tensor has two independent
components, which we denote A+ and A× and call the polarizations of the tensor A jk

TT. We
write

A jk
TT = A+

(
ϑ j ϑk − ϕ j ϕk

) + A×
(
ϑ j ϕk + ϕ j ϑk

)
, (11.42)

so that A+ represents the ϑ-ϑ component of the tensor (and also minus the ϕ-ϕ component,
in order to satisfy the tracefree condition), while A× represents its ϑ-ϕ component. It is
easy to check that Eq. (11.42) implies

A+ = 1

2

(
ϑ j ϑk − ϕ j ϕk

)
A jk

TT , (11.43a)

A× = 1

2

(
ϑ j ϕk + ϕ j ϑk

)
A jk

TT . (11.43b)

Because the tensorial operators acting on A jk
TT are already transverse and tracefree, this can

also be written as

A+ = 1

2

(
ϑ j ϑk − ϕ j ϕk

)
A jk , (11.44a)

A× = 1

2

(
ϑ j ϕk + ϕ j ϑk

)
A jk , (11.44b)

in which the projection operators are acting on the original tensor A jk instead of its TT part
A jk

TT.
Under the rotation of Eq. (11.41) the polarizations of A jk

TT transform according to

A′
+ = cos 2ψ A+ + sin 2ψ A× , A′

× = − sin 2ψ A+ + cos 2ψ A× . (11.45)
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It is easy to verify that Eqs. (11.41) and (11.45) ensure that Eqs. (11.42), (11.43), and
(11.44) stay invariant under a rotation of the transverse basis.

Equations (11.44), together with the definitions of Eqs. (11.37) and (11.38), provide an
efficient way of extracting the polarizations A+ and A× from a general tensor A jk . The end
results are

A+ = −1

4
sin2 ϑ(Axx + Ayy) + 1

4
(1 + cos2 ϑ) cos 2ϕ (Axx − Ayy)

+ 1

2
(1 + cos2 ϑ) sin 2ϕ Axy − sin ϑ cos ϑ cos ϕ Axz − sin ϑ cos ϑ sin ϕ Ayz

+ 1

2
sin2 ϑ Azz , (11.46a)

A× = −1

2
cos ϑ sin 2ϕ (Axx − Ayy) + cos ϑ cos 2ϕ Axy + sin ϑ sin ϕ Axz

− sin ϑ cos ϕ Ayz . (11.46b)

With A+ and A× known, A jk
TT can be constructed with the help of Eq. (11.42); the complete

listing of components is

Axx
TT = −1

2

[
sin2 ϑ − (1 + cos2 ϑ) cos 2ϕ

]
A+ − cos ϑ sin 2ϕ A× , (11.47a)

Axy
TT = 1

2
(1 + cos2 ϑ) sin 2ϕ A+ + cos ϑ cos 2ϕ A× , (11.47b)

Axz
TT = − sin ϑ cos ϑ cos ϕ A+ + sin ϑ sin ϕ A× , (11.47c)

Ayy
TT = −1

2

[
sin2 ϑ + (1 + cos2 ϑ) cos 2ϕ

]
A+ + cos ϑ sin 2ϕ A× , (11.47d)

Ayz
TT = − sin ϑ cos ϑ sin ϕ A+ − sin ϑ cos ϕ A× , (11.47e)

Azz
TT = sin2 ϑ A+ . (11.47f)

For example, when the wave travels in the y-direction, so that ϑ = ϕ = π
2 , we have that

A+ = 1
2 (Azz − Axx ) and A× = Axz . We also have Azz

TT = −Axx
TT = A+ and Axz

TT = A× as
the only non-vanishing components of the transverse-tracefree tensor.

11.1.8 Distortion of a ring of particles by a gravitational wave

A useful way to visualize the gravitational-wave polarizations is to examine the geodesic
deviations that they generate. Consider an initially circular ring of freely moving particles
in an inertial frame. A gravitational wave travels in the z-direction past the ring, which
lies in the x-y plane. In this case ϑ = 0, and we can choose ϕ = 0. Equations (11.47)
reveal that Axx

TT = −Ayy
TT = A+ and Axy

TT = Ayx
TT = A×, and the other components vanish.

The components are conveniently displayed as a matrix,

A jk
TT =

⎛
⎝A+ A× 0

A× −A+ 0
0 0 0

⎞
⎠ . (11.48)
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+ polarization

× polarization

Fig. 11.1 Effect of the+ and× gravitational-wave polarizations on a circular ring of freely falling particles. The wave
propagates out of the page, and a complete wave cycle is shown from left to right.

The displacement of a given particle from the center of the ring is given by the solution
(11.29) to the geodesic deviation equation. We have

ξ j (t) = ξ j (0) + G

2c4 R
A jk

TT ξk(0) , (11.49)

or

x(t) = x0 + G

2c4 R

(
A+x0 + A×y0

)
, (11.50a)

y(t) = y0 + G

2c4 R

(
A×x0 − A+y0

)
, (11.50b)

z(t) = z0, (11.50c)

in terms of the (x, y, z) components of the deviation vector ξ .
Consider now a pure + mode. It is simple to show that a circle of particles of unit radius

will be distorted into an ellipse described by(
x

1 + η+

)2

+
(

y

1 − η+

)2

= 1 , (11.51)

where η+(t) = 1
2 (G/c4 R)A+(t) is assumed to be small. As η+(t) varies between its max-

imum and minimum value, the ellipse transforms between the shapes shown in the upper
panel of Fig. 11.1, passing through a circular shape when η+(t) = 0. Similarly, for a pure
× mode the circle will be distorted into an ellipse described by

1

2

(
x + y

1 + η×

)2

+ 1

2

(
x − y

1 − η×

)2

= 1 , (11.52)

where η×(t) = 1
2 (G/c4 R)A×(t). This is the same as the first ellipse, except that it is rotated

by 45 degrees. In both cases the area of the ellipse is constant to first order in η. The ring
is unaffected in the z-direction, a reminder that the waves are transverse.
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Box 11.1 Why 45 degrees?

It is evident from Fig. 11.1 that a rotation of 45 degrees takes a+mode into a×mode and vice versa. This
is also clear from Eq. (11.45). Alternatively, we can state that the two modes of polarization are related by a
rotation ofπ/4 about the direction of propagation. In electromagnetism, the two modes of polarization are
related by a rotation ofπ/2 (think of the electric field pointing along the x-axis versus the y-axis). Fundamen-
tally this is because electrodynamics is associated with a vector field, while gravity is associated with a tensor
field. There is a close connection between the rotation angle and the helicity or spin of the particle that one
might associate with the waves: it is given byπ/(2S), where S is the spin of the particle in units of h̄. Thus
for photons (S = 1), the angle is 90 degrees. For the putative graviton that is often associated with gravity
(although no fully quantized theory of gravity exists at present), S = 2, leading to the 45 degree angle. For
a spin- 1

2 particle like an electron, the rotation angle isπ , as is well known from the Dirac equation.

11.2 The quadrupole formula

In the preceding section we saw that the gravitational-wave field is described by the
transverse-tracefree piece of the potentials h jk = G A jk/(c4 R), and we developed methods
to extract these radiative pieces from a known tensor A jk . In this section we provide an
expression for A jk and examine some applications of the resulting formalism.

11.2.1 Formulation

The tensor A jk was, in fact, calculated back in Chapter 7, in the context of a post-
Minkowskian approximation to general relativity. The gravitational potentials were com-
puted for the specific case of a matter distribution consisting of a perfect fluid subjected
to a slow-motion condition. The results are summarized in Box 7.7. To leading-order in a
post-Newtonian expansion in powers of vc/c we have that A jk = 2Ï jk , where

I jk(τ ) :=
∫

M
c−2τ 00(τ, x′)x ′ j x ′k d3x ′

=
∫

M
ρ∗(τ, x′)x ′ j x ′k d3x ′ + O(c−2) (11.53)

is the mass quadrupole moment of the matter distribution. The quadrupole formula for the
gravitational-wave field is therefore h jk

TT = (2G/c4 R)Ï jk
TT, in which an overdot indicates

differentiation with respect to τ .
We remark that this result was derived after two iterations of the relaxed Einstein equa-

tions. Two iterations were required to ensure that the fluid’s equations of motion incorporate
gravity at the Newtonian level. But the quadrupole formula appears to be linear in G, and
one might be tempted to think that it could have been derived more simply using linearized
theory, as presented in Sec. 5.5. One would be wrong, because in linearized theory the
fluid does not respond to gravity, and the domain of validity of the result would be severely
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limited. The fact that the gravitational-wave field has such a “linearized” look is to some
degree coincidental; it has been the source of endless confusion in the literature.

Equation (11.53) displays the leading contribution to I jk in a post-Newtonian expansion.
In Sec. 11.3 we obtain higher-order corrections to this expression, but in this section we
stick to the lowest-order terms. With this in mind, we choose to reserve the notation I jk for
the formal, iterated expression for the quadrupole-moment tensor, and define a Newtonian
quadrupole moment by

I jk(τ ) :=
∫

ρ∗(τ, x′)x ′ j x ′k d3x ′ . (11.54)

The lowest order gravitational-wave field can then be written as

h jk
TT = 2G

c4 R
Ï jk
TT , (11.55)

in terms of the Newtonian moment. Note that we use ρ∗ as our main density variable instead
of the proper density ρ; since these differ by corrections of order c−2, we may ignore the
difference, but ρ∗ is a more convenient density to use in a relativistic context.

Equation (11.55) is easily turned into a robust order-of-magnitude estimate for the
gravitational-wave amplitude h0; this is defined in such a way that a typical component of
h jk

TT is of the order of h0. We imagine that the waves are produced by a matter distribution of
mass M confined to a volume of radius rc, and that changes in the matter distribution occur
over a time scale tc; the source’s characteristic velocity is then vc ∼ rc/tc. The quadrupole-
moment tensor scales as Mr2

c , and Ï jk is of order M(rc/tc)2 ∼ Mv2
c . Then Eq. (11.55)

gives

h0 ∼ G M

c2 R
(vc/c)2 , (11.56)

and we see that strong waves are produced when a large mass M is involved in a rapid
process with vc ∼ c. It is important to understand that vc characterizes only the part of
the motion that deviates from spherical symmetry; a spherical matter distribution would
have I jk ∝ δ jk , I jk

TT = 0, and would not emit gravitational waves. (This conclusion is not
limited to the quadrupole approximation. It is an exact consequence of general relativity
that a spherically-symmetric matter distribution does not emit gravitational waves. This
is the statement of Birkhoff’s theorem, first encountered in Sec. 5.6.2.) To estimate h0

numerically we imagine an astrophysical process that involves a mass M = 10 M� situated
at a distance R = 1 Mpc, which corresponds to the approximate size of the local group of
galaxies. Under these conditions Eq. (11.56) gives rise to the estimate

h0 ∼ 4.8 × 10−19

(
M

10 M�

)(
1 Mpc

R

)(
vc/c

)2
. (11.57)

This exercise reveals that even the most violent events in the universe produce tiny gravi-
tational waves.

To obtain a more precise expression for h jk
TT we must evaluate the time derivatives of the

quadrupole-moment tensor and carry out the transverse-tracefree projection. The second
operation is simple, and relies on the results displayed in Eqs. (11.44) and (11.46). The first
operation relies on a knowledge of the fluid dynamics, which is governed by the Newtonian
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limit of the equations of hydrodynamics, ρ∗dv j /dt = ρ∗∂ jU − ∂ j p, where v j is the fluid’s
velocity field, U the Newtonian gravitational potential, and p the pressure. This is the Euler
equation, first encountered in its Newtonian form back in Sec. 1.4, and then in relativistic
form in Sec. 7.3.2, refer to Eq. (7.58).

The second derivative of the quadrupole-moment tensor is provided by the virial
theorem,

1

2
Ï jk = 2T jk + 
 jk + Pδ jk, (11.58)

where

T jk = 1

2

∫
ρ∗v j vk d3x, (11.59a)


 jk = −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x, (11.59b)

P =
∫

p d3x . (11.59c)

The virial theorem is a direct consequence of the Euler equation; it was first derived in the
context of Newtonian mechanics back in Sec. 1.4.3, see Eq. (1.88). It is understood that
here, T jk , 
 jk , and P are all functions of retarded time τ ; inside the integrals ρ∗, v j , and
p are functions of τ and x, while ρ∗′ is a function of τ and x′.

When the virial theorem is inserted in Eq. (11.55), h jk is seen to contain terms that
are both linear and quadratic in G; the linear terms come from 2T jk and Pδ jk , while the
quadratic terms come from 
 jk . The virial theorem implies that in general, the contributions
from 2T jk , 
 jk , and Pδ jk are all comparable to each other, because the sum of terms must
vanish on the average. This indicates that the terms of order G2 in h jk are comparable to
the terms of order G, and that a proper derivation of the quadrupole formula must be based
on a second post-Minkowskian approximation to general relativity. A derivation based on
the linearized theory (first post-Minkowskian approximation) would omit the G2 terms and
give rise to the wrong answer for the gravitational-wave field. As we observed previously,
the additional factor of G does not show up when the field is expressed in terms of Ï jk ,
but in fact it is hidden within the time derivatives, which demand the use of the Newtonian
equations of motion.

An exception to this rule occurs when the fluid dynamics is dominated by pressure
gradients and gravity is relatively unimportant. In this case 2T jk and Pδ jk are both much
larger than 
 jk , and the terms of order G2 can be neglected in h jk . In this restricted context
the quadrupole formula can be reliably derived on the basis of the linearized theory or a
single iteration of the relaxed Einstein equations. One obtains Eq. (11.55), but with the
important restriction that the source dynamics cannot involve the gravitational field. Such
a derivation would be valid for gravitational waves emitted by a source with negligible
self-gravity, such as a rotating dumbbell.

In the formulation of the quadrupole formula given here, the fluid system can be of one
continuous piece, or it can be broken up into N separated components; this would represent
an N -body system of fluid bodies. When the internal structure of each body can be ignored,
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we may adopt the point-mass description developed in Sec. 9.6 and set

ρ∗ =
∑

A

MAδ(x − r A), (11.60)

where MA is the total mass-energy of the body identified by the label A, and r A is its
position vector evaluated at time τ . In this case the quadrupole moment tensor reduces to

I jk =
∑

A

MAr j
Ark

A, (11.61)

and the dynamics of the system is governed by Newton’s equations of motion. These
are aA = −∑

B 	=A G MB nAB/r2
AB , where r AB := r A − r B , rAB := |r A − r B |, and nAB :=

r AB/rAB . In this case the virial theorem becomes

1

2
Ï jk = −1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
AB +

∑
A

MAv
j
Avk

A, (11.62)

where vA := d r A/dτ is the velocity vector of body A. This can be obtained by differen-
tiating Eq. (11.61) and involving the equations of motion, or directly from Eq. (11.58) by
exploiting the regularization techniques developed in Sec. 9.6.

Box 11.2 The quadrupole-formula controversy

In a remarkable pair of papers published in 1916 and1918, Einstein calculated the gravitational-wavefield and
radiated energy of a time-dependent source, such as a rotating dumbbell, for which self-gravity is unimpor-
tant. He performed this computation in a slow-motion approximation, using the linearized Einstein equations,
and obtained the quadrupole formula (11.55). It is perhaps a slight exaggeration to say that it was all downhill
from there, at least until 1979.
It didn’t help that Einsteinmade a calculational error in his 1918paper, leading to awrong factor of two, dis-

covered later by Eddington. Nor did it help that Eddington, concerned about the gauge freedomavailable in the
description of gravitational waves, wondered in 1922 whether aspects of gravitational waves were physically
real or purely coordinate artifacts; as he put it, perhaps they “propagate with the speed of thought.” Although
Eddington understood that the gauge-invariant modes were physical and believed that gravitational waves
did exist, his remark, taken out of context, had the effect of making the entire subject seem dubious.
To make matters worse, in 1936 Einstein and his young colleague Nathan Rosen (of Einstein–Podolsky–

Rosen paradox fame) submitted a paper to The Physical Review with the provocative title “Do gravitational
waves exist?”. They thought they had found an exact solution of the field equations describing a plane gravita-
tionalwave, but because the solutionhad a singularity, it could not bephysically valid, and they concluded that
gravitational waves could not exist. The Physical Review sent the paper for review, and the report that came
back pointed out that the Einstein–Rosen solution in fact described a cylindrical wave, and that the singularity
wasmerely a harmless coordinate singularity associatedwith the axis. So the solutionwas perfectly valid, and
in fact it supported the existence of gravitational waves. Einstein was so angry that the journal had sent his
paper out to be refereed, a practice that was unfamiliar to him, that he withdrew the paper and never pub-
lished again in that journal. Shortly thereafter, however, Einstein was convinced by another of his assistants,
Leopold Infeld (who had been approached by the anonymous referee), that the referee had been perfectly cor-
rect. Einstein rewrote the paperwith the opposite conclusion and published it under the title “On gravitational
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radiation” (but not in The Physical Review). While there has been plenty of speculation as to the identity of the
anonymous referee, it wasn’t until 2005 that our friend Daniel Kennefick was allowed access to the records
of the journal and revealed conclusively that the referee was the well-known Princeton and Caltech relativist
H.P. Robertson (the co-discoverer of the Robertson–Walker metric for cosmology).
This episodedidnot end thedebateover theexistenceof gravitationalwaves. Even if oneaccepts the validity

of Einstein’s prediction that a rotating dumbbell will radiate gravitational waves, the argument was made
that a binary-star system would not radiate. After all, each body is moving on a geodesic, and is therefore
unaccelerated relative to a local freely falling frame. Without acceleration, the argument went, there should
be no radiation. Peter Havas was one of the proponents of this possibility.
Beginning in the late 1940s, numerous attempts were made to calculate the “back reaction” forces that

would alter themotion of a binary system in response to the radiation of energy and angularmomentum (this
is the primary subject of Chapter 12). Yet different workers got different answers.
By 1974, while most researchers in the field accepted the reality of gravitational waves and the valid-

ity of the quadrupole formula for slowly moving binary systems, a vocal minority remained skeptical. This
“quadrupole-formula controversy” came to a head with the September 1974 discovery of the first binary pul-
sar byRussell Hulse and JosephTaylor. Itwas immediately clear that itwouldbepossible to test thequadrupole
formula by exploiting the high-precision timing of the pulsar’s radio signals to measure the slow variation in
the orbit induced by the loss of orbital energy to radiation.
But in a letter published in the Astrophysical Journal in 1976, Jürgen Ehlers, Arnold Rosenblum, Joshua

Goldberg, andPeterHavas argued that thequadrupole formula couldnot be justifiedas a theoretical prediction
of general relativity. They presented a laundry list of theoretical problems that they claimed had been swept
under the rug by proponents of the quadrupole formula. Among them were these: people assumed energy
balance to infer the reaction of the source to the flux of radiation, but there was no proof that this was a
valid assumption; no reliable calculation of the equations of motion that included radiation reaction had (in
their opinion) ever been carried out; many “derivations” of the quadrupole formula relied on the linearized
theory, which was clearly wrong for binary systems; since higher-order corrections had not been calculated, it
was impossible to know if the quadrupole formula was even a good approximation; even worse, higher-order
terms were known to be rife with divergent integrals.
There was considerable annoyance among holders of the “establishment” viewpoint when this paper ap-

peared, mainly because it was realized that its criticisms had considerable merit. As a result many research
groups embarked on a program to return to the fundamentals and to develop approximation schemes for
equations ofmotion and gravitational radiation thatwould not be subject to the flaws that so disturbed Ehlers
et al. Among the noteworthy outcomes of thismajor effort was the fully developed post-Minkowskian formal-
ism that forms the heart of this book. Toward the end of his life, Jürgen Ehlers, one of the great relativists of
his time, admitted to one of us (after some prodding, to be sure, and only up to a point!) that the justification
of the quadrupole formula was in much better shape than it was in 1976.
Experimentally, the situation was not at all controversial. By 1979, Taylor and his colleagues hadmeasured

the damping of the binary pulsar’s orbit, in agreement with the quadrupole formula to about 10 percent;
by 2005, the agreement was at the 0.2 percent level. The formula has also been beautifully confirmed in a
number of other binary-pulsar systems.
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11.2.2 Application: Binary system

As a first application of the quadrupole formula, we examine the gravitational waves emitted
by a binary system of orbiting bodies. We rely on the Newtonian description of the orbital
motion reviewed in Sec. 3.2.

Orbital motion and gravitational-wave field

The position of the first body, of mass m1, is r1(t) relative to the system’s barycenter, and
its velocity is v1(t); similarly, the position of the second body, of mass m2, is r2(t) and its
velocity is v2(t). In terms of the separation vector r := r12 = r1 − r2 we have that

r1 = m2

m
r , r2 = −m1

m
r , (11.63)

where m := m1 + m2 is the total mass of the system. We also have

v1 = m2

m
v , v2 = −m1

m
v , (11.64)

where v := v1 − v2 is the relative velocity vector. For later purposes we introduce the
notations

r := |r| , n := r/r , (11.65)

together with

η := m1m2

(m1 + m2)2
; (11.66)

this quantity is known as the symmetric mass ratio of the binary system.
Making the substitutions in the quadrupole-moment tensor of Eq. (11.61) reveals that

I jk = ηmr jrk , and Eq. (11.62) becomes 1
2 Ï jk = ηm[v jvk − (Gm/r )n j nk]. We then obtain

h jk = 4Gηm

c4 R

(
v j vk − Gm

r
n j nk

)
(11.67)

for the gravitational potentials created by a binary system. To proceed further we need
expressions for r and v.

To describe the orbital motion we introduce first an “orbit-adapted” coordinate system
(x, y, z) that possesses the following properties. First, the origin of the coordinates coincides
with the system’s barycenter. Second, the orbital plane coincides with the x-y plane, and
the z-axis points in the direction of the angular-momentum vector. And third, the x-axis
is aligned with the orbit’s major axis, while the y-axis is aligned with the minor axis. The
relative orbit is described by the Keplerian equations

r = p

1 + e cos φ
, φ̇ =

√
Gm

p3
(1 + e cos φ)2, (11.68)

in which φ is the angle from the x-axis (also known as the true anomaly). In addition, p is
the orbit’s semi-latus rectum, and e is the eccentricity; these orbital elements are constants
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of the motion that can be related to the system’s total energy and angular momentum. In
the orbit-adapted coordinates (x, y, z) we have that the unit vectors

n = [cos φ, sin φ, 0], λ = [− sin φ, cos φ, 0], (11.69)

form a basis in the orbital plane. In terms of these

r = r n, v = ṙ n + r φ̇ λ, (11.70)

and the description of the motion is complete. Taking into account Eqs. (11.68) and (11.70),
Eq. (11.67) becomes

h jk = 4η

c4 R

(Gm)2

p

[
−(1 + e cos φ − e2 sin2 φ)n j nk

+ e sin φ(1 + e cos φ)
(
n j λk + λ j nk

) + (1 + e cos φ)2λ j λk
]
. (11.71)

The components of h jk in the orbit-adapted frame can then be obtained with the help of
Eq. (11.69).

Polarizations

In order to construct the gravitational-wave polarizations h+ and h×, it is helpful to intro-
duce, in addition to the original system (x, y, z), a “detector-adapted” coordinate system
(X, Y, Z ) that possesses the following properties. First, the origin of the coordinates coin-
cides with the origin of the system (x, y, z). Second, the Z -axis points in the direction of
the gravitational-wave detector, at which the polarizations are being measured. And third,
the X -Y plane is orthogonal to the Z -axis and coincides with the plane of the sky from
the detector’s point of view, and the X -axis is aligned with the line of nodes, the line at
which the orbital plane cuts the reference plane; by convention the X -axis points toward the
ascending node, the point at which the orbit cuts the plane from below. The construction
was detailed in Sec. 3.2, and we recall that in the original (x, y, z) coordinates, the new
coordinate directions are described by

eX = [cos ω, − sin ω, 0], (11.72a)

eY = [cos ι sin ω, cos ι cos ω, − sin ι], (11.72b)

eZ = [sin ι sin ω, sin ι cos ω, cos ι] = N. (11.72c)

When viewed in the detector-adapted frame (X, Y, Z ), the inclination angle ι measures
the inclination of the orbital plane with respect to the X -Y plane, while the longitude of
pericenter ω is the angle between the pericenter and the line of nodes, as measured in the
orbital plane. A third angle, the longitude of ascending node 
, was also introduced back
in Sec. 3.2, but it is not needed here; we have set 
 = 0 by convention. The vectors n and
λ are given by

n = [
cos(ω + φ), cos ι sin(ω + φ), sin ι sin(ω + φ)

]
(11.73)
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and

λ = [− sin(ω + φ), cos ι cos(ω + φ), sin ι cos(ω + φ)
]

(11.74)

when expressed in the detector-adapted coordinates (X, Y, Z ).
Because the gravitational waves propagate from the binary system to the detector along

the Z -axis, we may adopt eX and eY as a vectorial basis in the transverse subspace. And
having made this choice, the polarizations h+ and h× may be computed according to
Eq. (11.44); we have that

h+ = 1

2

(
e j

X ek
X − e j

Y ek
Y

)
h jk, (11.75a)

h× = 1

2

(
e j

X ek
Y + e j

Y ek
X

)
h jk . (11.75b)

Note that this choice of transverse basis differs only in notation from the description given
back in Eqs. (11.36), (11.37), and (11.38). In the old notation we have that N = eZ , ϑ = eY ,
and ϕ = −eX ; the old angles are related to the new ones by ϑ = ι and ϕ = π

2 − ω.
Inserting Eqs. (11.71), (11.73), (11.74) within Eq. (11.75) reveals that in the selected

transverse basis, the gravitational-wave polarizations are given by

h+ = h0 H+, h× = h0 H×, (11.76)

where

h0 = 2η

c4 R

(Gm)2

p
(11.77)

is the gravitational-wave amplitude, and

H+ = −(1 + cos2 ι)

[
cos(2φ + 2ω) + 5

4
e cos(φ + 2ω) + 1

4
e cos(3φ + 2ω)

+ 1

2
e2 cos 2ω

]
+ 1

2
e sin2 ι

(
cos φ + e

)
, (11.78a)

H× = −2 cos ι

[
sin(2φ + 2ω) + 5

4
e sin(φ + 2ω) + 1

4
e sin(3φ + 2ω)

+ 1

2
e2 sin 2ω

]
(11.78b)

are scale-free polarizations. Plots of H+ and H× are displayed in Fig. 11.2.

Circular motion

When e = 0 the orbit is circular, and φ increases linearly with time, at a uniform rate equal
to 
 :=

√
Gm/p3. In this case the polarizations simplify to

H+ = −(1 + cos2 ι) cos 2(
τ + ω), H× = −2 cos ι sin 2(
τ + ω), (11.79)

where τ := t − R/c is retarded time. We see that the waves oscillate at twice the orbital
frequency; this doubling of frequency is a consequence of the quadrupolar nature of the
wave.
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Fig. 11.2 The polarizations H+ and H× as functions of retarded time τ , in units of the orbital period P. The curves were
constructed from Eqs. (11.78), andφ is related to τ by integrating Eq. (11.68), which was done numerically. The curves
are displayed for an eccentricity e = 0.7, an inclination angle ι = 30◦, and a longitude of pericenterω = 45◦. We
see that most of the emission takes place near the pericenter, where the orbit is smallest and the motion fastest.

Numerical estimate

The gravitational-wave amplitude of Eq. (11.77) can also be expressed in terms of the
so-called chirp mass

M := η3/5m =
(

m3
1m3

2

m

)1/5

(11.80)

and the orbital period

P := 2π

√
a3

Gm
, (11.81)

where a := p/(1 − e2) is the orbit’s semi-major axis. The expression is

h0 = 2

c4 R
(GM)5/3

(
2π

P

)2/3 1

1 − e2
. (11.82)

We evaluate this for a binary system of black holes on a very tight orbit, moments before
they are about to plunge toward each other and merge into a single, final black hole.
We take m1 = 25 M� and m2 = 22 M�, so that M is approximately equal to 20 M�. We
imagine that the orbital period is of the order of 10 ms, and that the binary is situated at a
distance R = 100 Mpc, sufficiently far that the probability of occurrence of such an event
is reasonable. These numbers give rise to the estimate

h0 = 3.0 × 10−21

1 − e2

( M
20 M�

)5/3(10 ms

P

)2/3(100 Mpc

R

)
, (11.83)
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and this indicates that gravitational waves from realistic astrophysical events are exceedingly
weak. They are not, however, impossible to detect, and the search for such signals is on.

11.2.3 Application: Rotating neutron star

As a second application of the quadrupole formula we calculate the gravitational waves
emitted by a deformed body that rotates around one of its principal axes. We think of
this body as a rotating neutron star, but the calculation applies to any type of rigid body,
irrespective of its composition and internal structure.

General description

The simplest description of the body is given in a “body-adapted” frame (x ′, y′, z′) that
corotates with the body, and in which the quadrupole moment tensor I a′b′

is diagonal. The
coordinates are directed along the body’s principal axes, and we assume that I a′b′

does not
depend upon time t . We assume also that the body is rotating uniformly around the z′-axis,
with an angular velocity 
. The transformation to the non-rotating frame (x, y, z) is given
by

x = x ′ cos 
t − y′ sin 
t, (11.84a)

y = x ′ sin 
t + y′ cos 
t, (11.84b)

z = z′. (11.84c)

The components of the quadrupole-moment tensor in the non-rotating frame are given by

I jk = ∂x j

∂xa′
∂xk

∂xb′ I a′b′
, (11.85)

and the transformation implies that I jk , unlike I a′b′
, depends on time.

It is customary to encode the three independent components of I a′b′
into the principal

moments of inertia

I1 :=
∫

ρ(x′)
(
y′2 + z′2) d3x ′ = I y′ y′ + I z′z′

, (11.86a)

I2 :=
∫

ρ(x′)
(
x ′2 + z′2) d3x ′ = I x ′x ′ + I z′z′

, (11.86b)

I3 :=
∫

ρ(x′)
(
x ′2 + y′2) d3x ′ = I x ′x ′ + I y′ y′

. (11.86c)

A body with I1 = I2 = I3 is spherically symmetric, and such a body would not emit gravi-
tational waves. A body with I1 = I2 	= I3 is symmetric about the axis of rotation, and such
a body also would not emit gravitational waves. To produce waves the body must be suffi-
ciently deformed, and a convenient measure of the deformation is the ellipticity parameter

ε := I1 − I2

I3
. (11.87)

As we shall see, the gravitational-wave field is proportional to (I1 − I2) = ε I3.
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The components of the quadrupole-moment tensor in the corotating frame are I x ′x ′ =
1
2 (I2 + I3 − I1), I y′ y′ = 1

2 (I3 + I1 − I2), and I z′z′ = 1
2 (I1 + I2 − I3). As a consequence of

Eq. (11.85), we find that they are given by

I xx = 1

2
I3 − 1

2

(
I1 − I2

)
cos 2
t, (11.88a)

I xy = −1

2

(
I1 − I2

)
sin 2
t, (11.88b)

I yy = 1

2
I3 + 1

2

(
I1 − I2

)
cos 2
t, (11.88c)

I zz = 1

2

(
I1 + I2 − I3

)
, (11.88d)

in the non-rotating frame; the components I xz and I yz vanish. The non-vanishing compo-
nents of Ï jk are

Ï xx = 2ε I3

2 cos 2
t, (11.89a)

Ï xy = 2ε I3

2 sin 2
t, (11.89b)

Ï yy = −2ε I3

2 cos 2
t. (11.89c)

These expressions are ready to be inserted within Eq. (11.55) to obtain the gravitational-
wave field h jk

TT.
To extract the polarizations h+ and h× we adopt the same conventions as in Sec. 11.2.2.

We specify the direction of the gravitational-wave detector in the nonrotating frame (x, y, z)
by the polar angles (ι, ω), and use the vectors eX and eY of Eqs. (11.72) as a basis in the
transverse subspace. In this case, ι is the angle between the body’s rotation axis and the
direction to the detector, and ω is the angle, at t = 0, between the intersection of the body’s
equatorial plane with the plane of the sky and the direction of the body’s long axis. The
polarizations are defined as in Eqs. (11.75), and a quick calculation returns the expressions

h+ = 1

2
(1 + cos2 ι)h0 cos 2(
τ + ω), h× = cos ι h0 sin 2(
τ + ω), (11.90)

where τ := t − R/c is retarded time, and

h0 = 4G

c4 R
ε I3


2 (11.91)

is the gravitational-wave amplitude.

Mountain on a spherical star

A simple model of a deformed neutron star features a mountain on the surface of an
otherwise spherical body. The body has a mass M and radius a, and for simplicity we
take its density to be uniform. The mountain has a mass m � M and is situated on the
surface at a position determined by the polar angles (θ, φ) in the body-adapted frame
(x ′, y′, z′); we model it as a point mass with a mass density ρ = mδ(x′ − ξ ), with ξ :=
[a sin θ cos φ, a sin θ sin φ, a cos θ ] giving the position of the mountain in the corotating
frame.
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It is easy to calculate that the body’s contribution to the moments of inertia is given by

I body
1 = I body

2 = I body
3 = 2

5
Ma2. (11.92)

We see that as expected, the body makes no contribution to the ellipticity ε. The mountain,
on the other hand, gives rise to

I mountain
1 − I mountain

2 = −ma2 sin2 θ cos 2φ, (11.93)

as well as a contribution to I3 that is smaller than I body
3 by a factor of order m/M � 1.

Neglecting this, we find that the model produces

ε = −5

2

m

M
sin2 θ cos 2φ, I3 = 2

5
Ma2. (11.94)

These expressions can then be inserted within Eq. (11.91) to calculate the gravitational-wave
amplitude.

Ellipsoid of uniform density

Another model of a deformed neutron star puts it in the shape of an ellipsoid of principal
axes a, b, and c. The surface is thus described by the equation

x ′2

a2
+ y′2

b2
+ z′2

a2
= 1, (11.95)

and we take the body to have a uniform mass density ρ. To carry out the integrations
over the star’s interior, it is useful to adopt the ellipsoidal coordinates (r, θ, φ) which are
related to the original Cartesian coordinates by x ′ = ar sin θ cos φ, y′ = br sin θ sin φ, and
z′ = cr cos θ . The radial coordinate r is dimensionless and ranges from 0 to 1; the polar
angles (θ, φ) have their usual ranges. The volume element is d3x ′ = abc r2 sin θ drdθdφ

in the ellipsoidal coordinates.
The mass of the body is given by M = (4π/3)ρabc, and a straightforward calculation

reveals that the moments of inertia are

I1 = 1

5
M(b2 + c2), (11.96a)

I2 = 1

5
M(a2 + c2), (11.96b)

I3 = 1

5
M(a2 + b2). (11.96c)

This produces an ellipticity given by

ε = b2 − a2

b2 + a2
. (11.97)

These expressions can be inserted within Eq. (11.91) to obtain the gravitational-wave
amplitude.
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Realistic neutron stars

The degree of deformation of a realistic neutron star is largely unknown, as are the
exact mechanisms that would be involved in supporting a long-lived ellipticity ε. The
most popular models feature either a genuine mountain that might reach deep below
the crust, a deformation driven and sustained by accretion of matter from a companion, or a
deformation created by a large toroidal magnetic field. These models suggest that ε < 10−6

for conventional models of neutron stars (which involve a solid crust resting on a liquid
core), but larger values might be possible for more exotic objects such as quark stars.

A typical neutron star has a mass M = 1.4M� and radius a = 12 km, and this gives rise
to a moment of inertia of the order of I3 = 2

5 Ma2 = 1.6 × 1038 kg m2. A fast pulsar rotates
with a period P = 10 ms and might be situated at a distance R = 1 kpc. Using ε = 10−6

as a typical value for the ellipticity, Eq. (11.91) gives rise to the estimate

h0 � 6.8 × 10−25

(
ε

10−6

)(
I3

1.6 × 1038 kg m2

)(
10 ms

P

)2(1 kpc

R

)
. (11.98)

Gravitational waves produced by rotating neutron stars are exceedingly small, but coherent
integration of a signal of known frequency over a very long time builds up a signal-to-
noise ratio that may exceed the detection threshold of a gravitational-wave detector. (The
frequency can be measured in radio waves if the rotating neutron star is a known pulsar.)
The search is on!

11.2.4 Application: Tidally deformed star

As a third and final application of the quadrupole formula we calculate the gravitational
waves emitted during a tidal interaction between a fluid body and a nearby object. For
concreteness and simplicity we take the body to be non-rotating and to have a uniform
density, and we place the external object on a parabolic trajectory. We work in the moving
frame of the body, and ignore the gravitational waves produced by the center-of-mass
motion (these were considered previously, in the case of elliptical and circular motion);
as we shall see, the tidal gravitational waves are typically much weaker than the waves
produced by the orbital motion. The body’s tidal dynamics was studied in some detail back
in Sec. 2.5.3, and we begin our discussion with a recollection of the main results.

Tidal dynamics

The body is assumed to be spherical and in hydrostatic equilibrium in the absence of a tidal
interaction; in its unperturbed state it has a mass M , a radius a, and a uniform density ρ0.
The body is perturbed by an external object of mass M ′ at a position x j = rn j relative
to the body’s center-of-mass. This object produces a tidal potential Utidal = − 1

2E jk(t) x j xk

inside the body, with

E jk = G M ′

r3

(
δ jk − 3n j nk

)
, (11.99)
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denoting the tidal quadrupole moment. As we saw back in Sec. 2.5.3, the body’s deformation
in response to the perturbation is measured by its mass quadrupole moment I 〈 jk〉(t), which,
according to Eq. (2.289), is given by

I 〈 jk〉 = −2

5
Ma2F jk, (11.100)

where

F jk(t) := 1

ω2

∫ t

−∞
E jk(t ′) sin ω2(t − t ′) dt ′ (11.101)

is the body’s response function, with

ω2 :=
√

4

5

G M

a3
(11.102)

denoting the body’s f -mode frequency for a quadrupole deformation.

Gravitational waves

Differentiation of Eq. (11.100) gives

Ï 〈 jk〉 = −2

5
Ma2G jk, (11.103)

in which

G jk(t) := 1

ω2

∫ t

−∞
Ë jk(t ′) sin ω2(t − t ′) dt ′ (11.104)

is the response function associated with Ë jk instead of E jk ; two integrations by parts were
required to arrive at this result. Substituting this into the quadrupole formula of Eq. (11.55),
we find that the gravitational-wave field is given by

h jk
TT(t, x) = −4

5

G Ma2

c4 R
G jk

TT(τ ), (11.105)

in which R := |x| is the distance to the detector and τ := t − R/c is retarded time.
We can use Eq. (11.105) to estimate the magnitude of the gravitational waves produced

by a tidal interaction. For an external object of mass M ′ at a distance r , the tidal moment
scales as E jk ∼ G M ′/r3, and it changes over a time scale comparable to 
−1

c , in which

c :=

√
G(M + M ′)/r3 is a characteristic frequency of the orbital motion. This yields

Ë jk ∼ 
2
cE jk , and substitution within Eq. (11.104) returns the estimate G jk ∼ ω−2

2 Ë jk ∼
(
c/ω2)2E jk . Inserting this within Eq. (11.105), we arrive at

h ∼ G2(M + M ′)M ′

c4 R

a5

r6
. (11.106)

It is useful to compare this with Eq. (11.77), which provides an estimate for the gravitational
waves produced by the orbital motion. According to this, we find that the ratio of wave
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amplitudes is estimated as

htidal

horbital
∼ M ′

M + M ′

(
a

r

)5

. (11.107)

The five powers of the ratio of length scales imply that when r is even modestly larger
than a, the waves emitted during the tidal interaction are very weak compared with the
waves produced by the orbital motion. The waves can be comparable only for very close
encounters with r ∼ a.

Parabolic encounter

To give concreteness to these considerations, we examine the tidal interaction that results
when the external object is placed on a parabolic trajectory described by setting e = 1 in
Eq. (11.68). The motion of the external object is parameterized by p := 2rmin, in which
rmin is the distance of closest approach. It can also be parameterized by the frequency


 :=
√

G(M + M ′)
p3

, (11.108)

which is such that the angular velocity φ̇max at closest approach is equal to φ̇max = 4
. It is
useful to note that (

ω2




)2

= 32

5

M

M + M ′

(
rmin

a

)3

. (11.109)

It is straightforward to differentiate Eq. (11.99) twice with respect to time and to insert
the result within Eq. (11.104), which must then be evaluated numerically. We extract
the gravitational-wave polarizations h+ and h× from Eq. (11.105) by adopting the same
conventions as in Sec. 11.2.2. We obtain the expressions

h+,× = −h0 H+,×, (11.110)

where

h0 = 3
G2(M + M ′)M ′

c4 R

a5

p6
(11.111)

is the gravitational-wave amplitude, and the scale-free polarizations H+,× are extracted
from H jk := 1

3 [(M + M ′)/M ′](ω2/
2)2G jk . These are plotted in Fig. 11.3 for selected
values of ω2/
, and the caption describes their main properties.

11.3 Beyond the quadrupole formula: Waves at 1.5pn order

We now embark on a long journey to improve our description of gravitational waves by
going beyond the quadrupole formula of Eq. (11.55). This, we recall, is the leading term in
an expansion of the gravitational-wave field in powers of vc/c, where vc is a characteristic
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Fig. 11.3 The polarization H+ as a function of the dimensionless retarded time
τ , for selected values of the ratioω2/
. The
curves are displayed for an inclination angle ι = 30◦, and a longitude of pericenterω = 45◦. We see that most of
the emission takes place at and after the moment of closest approach (τ = 0). Whenω2 is comparable to
, the
parabolic encounter ignites a fluid mode of frequencyω2 which produces a gravitational wave of frequencyω2. The
effect is maximized when the resonant condition 2φ̇max = 8
 � ω2 is met, and the wave is heavily suppressed
whenω2 � 
. In a more realistic model of the tidal interaction, the wave would eventually be damped by
dissipative processes taking place inside the body; in our simplified model the fluid mode goes on forever.

velocity of the source. We shall call this leading term the Newtonian contribution to the
gravitational-wave field, and in this section we will compute corrections of order (vc/c),
(vc/c)2, and (vc/c)3 to the quadrupole formula; in other words, we shall calculate h jk

TT

through 1.5pn order in a post-Newtonian expansion.
We note that the post-Newtonian counting described here differs from the convention

adopted back in Sec. 7.4, see Box 7.7. In the original convention the quadrupole terms in
the gravitational potentials were given a 1pn label instead of the 0pn label assigned here.
The reason for this can be gathered from the following expression for h00,

h00 = 4G

c2 R

[
M + 1

2c2
Ï jk N j Nk + · · ·

]
, (11.112)

which holds in the far-away wave zone. The leading term in this expression is the mass
term, and in the old convention this was given a sensible 0pn label. The quadrupole term
is smaller than this by a factor of order (vc/c)2, and this was given a 1pn label. Our new
convention differs from this because our focus is now different: We are interested only
in the spatial components of the gravitational potentials, and these do not contain a mass
term. And since the leading term involves the Newtonian quadrupole moment I jk , it is
convenient to reset the post-Newtonian counter and call the right-hand side of Eq. (11.55)
the Newtonian contribution to h jk

TT. Additional terms are labeled 0.5pn, 1pn, and 1.5pn, and
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so on. The new convention has the merit of keeping the post-Newtonian orders of h jk in
step with those of the source, and those of the multipole moments.

For concreteness the calculations will be specialized to a system of N bodies that we
assume to be well separated; these are identified by a label A, and body A has a total
mass-energy MA, a position r A(t), and moves with a velocity vA(t). For simplicity we shall
take the bodies to be point masses, and rely on the description given in Sec. 9.6.

11.3.1 Requirements and strategy

Our purpose in this first subsection is to identify the tasks that lie ahead: we map the
terrain of our journey and plan the calculational strategy. The computations will be long
and tedious, and they will occupy us in the remaining nine subsections. The reader who
does not wish to follow the details can skip ahead to Box 11.4 and find a summary of our
results.

We wish to integrate the wave equation

�h jk = −16πG

c4
τ jk (11.113)

for the spatial components of the gravitational potentials, and evaluate the solution in
the far-away wave zone. Here, τ jk = (−g)(T jk + t jk

LL + t jk
H ) are the spatial components of

the effective energy-momentum pseudotensor first introduced in Sec. 6.2.1, decomposed
into a material contribution T jk , the Landau–Lifshitz pseudotensor t jk

LL, and the harmonic-
gauge contribution t jk

H . We wish to integrate the wave equation to a degree of accuracy
that surpasses what was achieved in Chapter 7; this amounts to constructing a third post-
Minkowskian approximation to the exact gravitational potentials. And we wish to extract
from h jk the transverse-tracefree pieces that truly represent the gravitational-wave field.

Techniques to integrate Eq. (11.113) were developed in Chapter 6 and summarized in
Box 6.7. In Sec. 6.3 we learned to express the solution as an integral over the past light
cone of the field point (t, x), which is decomposed as

h jk = h jk
N + h jk

W . (11.114)

The near-zone piece h jk
N comes from the portion of the light cone that lies within the near

zone (where |x′| < R), and the wave-zone piece h jk
W comes from the portion that lies in

the wave zone (where |x′| > R); the boundary between the zones is arbitrarily positioned
at the radius |x′| = R ∼ λc. In Sec. 6.3.4 we derived an expression for h jk

N that is valid in
the far-away wave zone; this is given by Eq. (6.91), which we copy as

h jk
N = 4G

c4 R

∞∑
�=0

1

�!c�
NL

(
d

dτ

)� ∫
M

τ jk(τ, x′)x ′L d3x ′, (11.115)

where N := x/R is a unit radial vector, L a multi-index that contains a number � of
individual indices, NL := N j1 N j2 · · · N j� , x ′L := x ′ j1 x ′ j2 · · · x ′ j� , and where the domain of
integration M is defined by |x′| < R.
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We consider h jk
W at a later stage. For the time being we focus our attention on h jk

N , and
write Eq. (11.115) in a form that showcases the first few terms:

h jk
N = 4G

c4 R

{∫
M

τ jk d3x ′ + 1

c
Na

d

dτ

∫
M

τ jk x ′a d3x ′

+ 1

2c2
Na Nb

d2

dτ 2

∫
M

τ jk x ′a x ′b d3x ′

+ 1

6c3
Na Nb Nc

d3

dτ 3

∫
M

τ jk x ′a x ′bx ′c d3x ′ + [� ≥ 4]

}
, (11.116)

where [� ≥ 4] stands for the remaining terms in the sum over �. In keeping with our previous
discussion, we say that the first term on the right-hand side of Eq. (11.116) makes a 0pn

contribution to h jk (together with a correction of 1pn order), the second term makes a
0.5pn contribution (together with a correction of 1.5pn order), the third term makes a 1pn

contribution, and the fourth term a 1.5pn contribution; the [� ≥ 4] terms contribute at 2pn

and higher orders, and we shall not keep them in the calculation.
To help with the first two integrals we invoke the conservation identities of Eqs. (7.14),

which we copy here as

τ jk = 1

2c2

∂2

∂τ 2

(
τ 00x j xk

) + 1

2
∂p

(
τ j pxk + τ kpx j − ∂qτ pq x j xk

)
, (11.117a)

τ jk xa = 1

2c

∂

∂τ

(
τ 0 j xk xa + τ 0k x j xa − τ 0a x j xk

)
+ 1

2
∂p

(
τ j pxk xa + τ kpx j xa − τ apx j xk

)
. (11.117b)

Making the substitutions and introducing some notation to simplify the writing, we find
that h jk

N can be expressed as

h jk
N = 2G

c4 R

∂2

∂τ 2

{
Q jk + Q jka Na + Q jkab Na Nb + 1

3
Q jkabc Na Nb Nc + [� ≥ 4]

}

+ 2G

c4 R

{
P jk + P jka Na

}
, (11.118)

in which the radiative multipole moments are defined by

Q jk :=
∫

M
c−2τ 00x ′ j x ′k d3x ′, (11.119a)

Q jka := 1

c

∫
M

(
c−1τ 0 j x ′k x ′a + c−1τ 0k x ′ j x ′a − c−1τ 0a x ′ j x ′k) d3x ′, (11.119b)

Q jkab := 1

c2

∫
M

τ jk x ′a x ′b d3x ′, (11.119c)

Q jkabc := 1

c3

d

dτ

∫
M

τ jk x ′a x ′bx ′c d3x ′, (11.119d)
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and where

P jk :=
∮

∂M

(
τ j px ′k + τ kpx ′ j − ∂ ′

qτ pq x ′ j x ′k) d Sp, (11.120a)

P jka := 1

c

d

dτ

∮
∂M

(
τ j px ′k x ′a + τ kpx ′ j x ′a − τ apx ′ j x ′k) d Sp, (11.120b)

are surface integrals that also contribute to h jk
N . In the radiative moments, τ jk is expressed

as a function of τ and x′. The same is true within the surface integrals, except for the
fact that x ′ j is now equal to RN j ; the surface element on ∂M is d Sj := R2 N j d
. The
multipole moments and surface integrals are functions of τ only.

In the following subsections we will endeavor to calculate the quantities that appear
within Eq. (11.118). As was stated previously, we wish to compute h jk accurately through
1.5pn order. In a schematic notation, what we want is

h jk = G

c4 R

(
c0 + c−1 + c−2 + c−3 + · · ·

)
, (11.121)

in which the leading, c0 term is the 0pn contribution, the correction of order c−1 a 0.5pn

term, and so on. To achieve this we need to calculate c−2τ 00 = c0 + c−2 + · · · to obtain
Q jk = c0 + c−2 + · · · , c−1τ 0 j = c0 + c−2 + · · · to obtain Q jka = c−1 + c−3 + · · · , and
τ jk = c0 + · · · to obtain Q jkab = c−2 + · · · and Q jkabc = c−3 + · · · . And on ∂M we
need to calculate τ jk = c0 + c−2 + · · · to obtain P jk = c0 + c−2 + · · · and P jka = c−1 +
c−3 + · · · All in all, this will give us the 1.5pn accuracy that we demand for h jk .

Our considerations have so far excluded h jk
W . We postpone a detailed discussion until

Sec. 11.3.7, where we compute this contribution to the gravitational potentials. For the time
being it suffices to say that h jk

W contributes at 1.5pn order. It is therefore needed to achieve
the required level of accuracy for h jk .

The calculations that follow are lengthy. They are simplified considerably by the obser-
vation that ultimately we wish to extract the transverse-tracefree part of h jk . It is therefore
superfluous to calculate any term that will not survive the TT projection introduced in
Sec. 11.1.7. For example, a term in h jk that is known to be proportional to δ jk , or to
N j , will not survive the projection, and does not need to be computed. There are many
such terms, and ignoring them is a substantial time saver. As another example, terms in
Q jkab that are proportional to δ ja , or δka , or δ jb, or δkb (but not δab!), can all be ignored
because they produce contributions to h jk that are proportional to N j or N k , and these will
not survive the TT projection. To indicate equality modulo terms that do not survive the
transverse-tracefree projection, we introduce the notation

tt=, so that

A jk tt= B jk (11.122)

whenever

(tt) jk
pq Apq = (tt) jk

pq B pq . (11.123)

In other words, A jk and B jk differ by a tensor C jk that contains no TT part: (tt)ab
pqC pq = 0.

An additional source of simplification – an important one – was exploited previously in
Sec. 7.4, with a justification provided in Sec. 6.3.3: we are free to ignore all R-dependent



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

569 11.3 Beyond the quadrupole formula: Waves at 1.5pn order

terms in h jk
N , and all R-dependent terms in h jk

W , because any dependence on the arbitrary
cutoff parameterR (the radius of the artificial boundary between the near zone and the wave
zone) is guaranteed to cancel out when h jk

N and h jk
W are added together to form the complete

potentials h jk . The freedom to discard all R-dependent terms is another substantial time
saver.

11.3.2 Integration techniques for field integrals

In the course of our calculations we shall encounter a number of field integrals, a represen-
tative example of which is

E jk := 1

4π

∫
M

U∂ jU xk d3x, (11.124)

where M is the domain of integration |x| < R, and where

U :=
∑

A

G MA

|x − r A| (11.125)

is the Newtonian potential for a system of point masses. In this subsection we introduce
techniques to evaluate such integrals. We will examine the specific case of Eq. (11.124), but
the techniques are quite general, and they apply just as well to many similar field integrals.

Explicit form of E jk ; change of integration variables

After evaluating ∂ jU we find that the field integral can be expressed in the more explicit
form

E jk = −
∑

A

G2 M2
A E jk

A −
∑

A

∑
B 	=A

G2 MA MB E jk
AB, (11.126)

where

E jk
A := 1

4π

∫
M

(x − rA) j xk

|x − r A|4 d3x, (11.127a)

E jk
AB := 1

4π

∫
M

(x − rB) j xk

|x − r A||x − r B |3 d3x . (11.127b)

To evaluate the first integral we make the substitution x = r A + y and integrate with respect
to the new variables y. This leads to

E jk
A = 1

4π

∫
M

y j yk

y4
d3 y + rk

A

4π

∫
M

y j

y4
d3 y, (11.128)

where y := | y|. To evaluate the second integral we use instead x = r B + y and integrate
with respect to y. This leads to

E jk
AB = 1

4π

∫
M

1

| y − r AB |
y j yk

y3
d3 y + rk

B

4π

∫
M

1

| y − r AB |
y j

y3
d3 y, (11.129)

where r AB := r A − r B .
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Translation of the domain of integration

Each one of the integrals that appears in Eqs. (11.128) and (11.129) is of the form∫
M

f ( y) d3 y,

where f is a function of the vector y, which is related to the original variables x by a
translation x = y + r , with r independent of x. The domain of integration M is defined
by |x| < R, or | y + r| < R, and it will be convenient to replace it by the simpler domain
My defined by y := | y| < R.

To effect this replacement we note that the cutoff radius R can be assumed to be large
compared with r := |r|. (Recall the discussion of Sec. 6.3.3, in which R is chosen to be
comparable to λc, the characteristic wavelength of the gravitational radiation. Recall also
the discussion of Sec. 6.3.2, in which λc is shown to be large compared with both |r A| and
|r AB |, because in a slow-motion situation the matter distribution is always situated deep
within the near zone. Conclude from these observations that r/R � 1, as claimed.) The
condition that defines M is y2 + 2r · y + r2 < R2, and this can be expressed more simply
as

y < R − r cos γ + O(r2/R), (11.130)

when r/R � 1; here γ is the angle between the vectors y and r .
Switching to spherical polar coordinates (y, θ, φ) associated with the vector y, the

integral is∫
M

f ( y) d3 y =
∫

d


∫ R−r cos γ +···

0
f (y, θ, φ) y2dy

=
∫

d


∫ R

0
f (y, θ, φ) y2dy +

∫
d


∫ R−r cos γ +···

R
f (y, θ, φ) y2dy,

(11.131)

where d
 = sin θ dθdφ is an element of solid angle. In the second line, the first integral is
over the domain My , while the second integral is∫

(−r cos γ )R2 f (R, θ, φ) d
 = −
∮

∂My

f ( y) r · d S (11.132)

to first order in r/R; here, d S j := R2 N j d
, with N := y/y, is the surface element on
∂My , the boundary of My described by the equation y = R.

We have obtained the useful approximation∫
M

f ( y) d3 y =
∫

My

f ( y) d3 y −
∮

∂My

f ( y) r · d S + · · · , (11.133)

in which the domain of integration My is defined by y := | y| < R, and ∂My is its boundary
at y = R. It is clear that the surface integral in Eq. (11.133) is smaller than the volume
integral by a factor of order r/R � 1; the neglected terms are smaller still.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

571 11.3 Beyond the quadrupole formula: Waves at 1.5pn order

Evaluation of E jk
A

We now return to the field integral of Eq. (11.128). We begin by working on the first term,
which we copy as

1

4π

∫
M

y j yk

y4
d3 y.

Inserting this within Eq. (11.133), we find that the volume integral is

1

4π

∫
My

y j yk

y4
d3 y = 1

4π

∫
My

N j N k dyd
 = 〈〈N j N k〉〉
∫ R

0
dy = 1

3
δ jkR, (11.134)

in which 〈〈 · · · 〉〉 := (4π )−1
∫

(· · · ) d
 denotes an angular average; the identity
〈〈N j N k〉〉 = 1

3 δ jk was established back in Sec. 1.5.3, along with other similar results. This
contribution to E jk

A can be discarded because it is proportional to R, and it was agreed
near the end of Sec. 11.3.1 that all R-dependent terms can indeed be ignored. With the
understanding that r stands for r A, the surface integral is

− 1

4π

∮
∂My

y j yk

y4
r · d S = − 1

4π

∫
N j N krp N p d
 = −rp〈〈N j N k N p〉〉 = 0. (11.135)

The neglected terms in Eq. (11.133) are of order R−1 and smaller, and because they depend
on R, they can be freely discarded. We conclude that the first term in Eq. (11.128) evaluates
to zero.

We next set to work on the second term, which involves the integral

1

4π

∫
M

y j

y4
d3 y.

Inserting this within Eq. (11.133), we find that the volume integral is

1

4π

∫
My

y j

y4
d3 y = 〈〈N j 〉〉

∫ R

0

dy

y
= 0. (11.136)

It is a fortunate outcome that the logarithmic divergence at y = 0 (which occurs because
the matter distribution is modeled as a collection of point masses) requires no explicit
regularization, because the angular integration vanishes identically. The surface integral is

− 1

4π

∮
My

y j

y4
r · d S = −rp

R 〈〈N j N p〉〉 = −1

3

r j

R , (11.137)

in which r stands for r A. The additional terms in Eq. (11.133) are smaller by additional
powers of r/R � 1, and because they all depend on R, they can be freely discarded. We
conclude that the second term in Eq. (11.128) evaluates to zero.

We have arrived at

E jk
A = 0, (11.138)

modulo R-dependent terms that can be freely discarded.
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Evaluation of E jk
AB

To evaluate the right-hand side of Eq. (11.129) we continue to use Eq. (11.133) to express
an integral over the domain M in terms of a volume integral over My and a surface integral
over ∂My . We also make use of the addition theorem for spherical harmonics,

1

| y − r AB | =
∞∑

�=0

�∑
m=−�

4π

2� + 1

r �
<

r �+1
>

Y ∗
�m(nAB)Y �m(N), (11.139)

in which r< := min(y, rAB), r> = max(y, rAB), N := y/y, and nAB := r AB/rAB . We insert
Eq. (11.139) within the first integral on the right-hand side of Eq. (11.129). Recalling
Eq. (11.133), we approximate this by

1

4π

∫
My

1

| y − r AB |
y j yk

y3
d3 y

= 1

4π

∫
My

1

| y − r AB | N j N k y dyd


=
∑

�

1

2� + 1

∫ R

0
dy y

r �
<

r �+1
>

∑
m

Y ∗
�m(nAB)

∫
Y �m(N)N j N k d
. (11.140)

To evaluate the angular integral we express N j N k as

N j N k = N 〈 jk〉 + 1

3
δ jk, (11.141)

where N 〈 jk〉 is an STF tensor of the sort introduced back in Sec. 1.5.3, and we invoke the
identity of Eq. (1.171),

�∑
m=−�

Y ∗
�m(nAB)

∫
Y�m(N)N 〈L ′〉 d
 = δ��′ n〈L〉

AB . (11.142)

This produces

1

4π

∫
My

1

| y − r AB |
y j yk

y3
d3 y = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk, (11.143)

where the radial integrals

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy (11.144)

are evaluated below. This expression must be corrected by the surface integral of
Eq. (11.133). We have

1

4π

∮
∂My

1

| y − r AB |
y j yk

y3
r · d S = Rrp

4π

∫
1

| y − r AB | N j N k N p d
, (11.145)

in which r stands for r B . Because the leading term of | y − r AB |−1 in an expansion in
powers of rAB/R � 1 is equal to R−1, the surface integral potentially gives rise to an R-
independent contribution to E jk

AB . But this leading term is proportional to 〈〈N j N k N p〉〉 = 0,
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and we find that the surface integral does not actually contribute. At this stage we have
obtained

1

4π

∫
M

1

| y − r AB |
y j yk

y3
d3 y = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk (11.146)

for the first integral on the right-hand side of Eq. (11.129).
We next set to work on the second integral, and we begin by evaluating

1

4π

∫
My

1

| y − r AB |
y j

y3
d3 y

= 1

4π

∫
My

1

| y − r AB | N j dyd


=
∑

�

1

2� + 1

∫ R

0
dy

r �
<

r �+1
>

∑
m

Y ∗
�m(nAB)

∫
Y �m(N)N j d
. (11.147)

Using Eqs. (11.142) and (11.144), this is

1

4π

∫
My

1

| y − r AB |
y j

y3
d3 y = 1

3
K (1, 0) n j

AB . (11.148)

This must be corrected by the surface integral of Eq. (11.133), and it is easy to show that in
this case also, the result scales as R−1 and does not contribute. We have therefore obtained
1
3 K (1, 0)n j

AB for the second integral on the right-hand side of Eq. (11.129).
Collecting results, we find that

E jk
AB = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk + 1

3
K (1, 0) n j

ABrk
B . (11.149)

Radial integrals

To complete the computation we must now evaluate the radial integrals defined by
Eq. (11.144),

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy, (11.150)

in which r< := min(y, r ) and r> = max(y, r ), with r standing for rAB .
Excluding the case n = �, which never occurs in practice, we have

K (�, n) = 1

r �+1

∫ r

0
y�+n dy + r �

∫ R

r
yn−�−1 dy

= rn

� + n + 1
− rn

n − �

[
1 − (r/R)�−n

]
. (11.151)

We discard the last term because it depends on the cutoff radius R, and we conclude that

K (�, n) = 2� + 1

(� − n)(� + n + 1)
|r AB |n, (� 	= n). (11.152)

In particular, K (2, 1) = 5
4rAB , K (0, 1) = − 1

2rAB , and K (1, 0) = 3
2 .
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Final answer

Substituting Eq. (11.152) into Eq. (11.149), we find that E jk
AB becomes

E jk
AB = 1

4
rABn〈 jk〉

AB − 1

6
rABδ jk + 1

2
n j

ABrk
B . (11.153)

This, together with Eq. (11.138) for E jk
A , can now be inserted within Eq. (11.126). We

arrive at

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk + 1

2
n j

ABrk
B

)
,

and this can also be expressed as

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk − 1

2
n j

ABrk
A

)

if we interchange the identities of bodies A and B and recall that nB A = −nAB . When we
add these expressions and divide by two, we obtain the symmetrized form

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk − 1

4
rABn j

ABnk
AB

)
.

This becomes

E jk = 1

4
δ jk

∑
A

∑
B 	=A

G2 MA MB |r A − r B | (11.154)

after simplification, and this is our final answer.

Box 11.3 Field integrals

Let us retrace the main steps that led us from the definition

E jk = 1

4π

∫
M

U∂ jU xk d3x,

to its evaluation

Eab = 1

4
δ jk

∑
A

∑
B 	=A

G2 MA MB |r A − r B |.

These steps will allow us to evaluate many similar field integrals.
After inserting the Newtonian potential and its derivative within the integral, we change the variables of

integration from x to y = x − r , in which r stands for either r A or r B , depending on the context. We
also translate the domain of integration fromM (defined by |x| < R) toMy (defined by | y| < R),
and we make use of the identity∫

M
f ( y) d3 y =

∫
My

f ( y) d3 y −
∮

∂My

f ( y) r · d S + · · · , (1)
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in which the surface integral is smaller than the volume integral by a factor of order |r|/R � 1 (and the
dotted terms are smaller still).
Next we invoke the addition theorem for spherical harmonics,

1

| y − r AB | =
∞∑

�=0

�∑
m=−�

4π

2� + 1

r �
<

r �+1
>

Y ∗
�m(nAB)Y �m(N), (2)

in which r AB = r A − r B , r< := min(y, rAB), r> = max(y, rAB), N := y/y, and nAB :=
r AB/rAB . After expressing all factors such as N L in terms of STF tensors, the angular integrations are
carried out with the help of the identity

�∑
m=−�

Y ∗
�m(nAB)

∫
Y�m(N)N 〈L ′〉 d
 = δ��′ n〈L〉

AB . (3)

We rely also on the following listing of angular averages:

〈〈N j 〉〉 = 0, (4a)

〈〈N j N k〉〉 = 1

3
δ jk, (4b)

〈〈N j N k N p〉〉 = 0, (4c)

〈〈N j N k N p N q〉〉 = 1

15

(
δ jkδ pq + δ j pδkq + δ jqδkp

)
, (4d)

where 〈〈 · · · 〉〉 := (4π)−1
∫

(· · · ) d
; these results were obtained back in Sec. 1.5.3.
This leaves us with a number of radial integrations to work out, and these are given by

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy = 2� + 1

(� − n)(� + n + 1)
|r AB |n, (5)

provided that � 	= n.
And at last, after simplification, we obtain our final expression for the field integral. All the while we are

justified to throw away any term that contains an explicit dependence on the arbitrary cutoff radiusR.

11.3.3 Radiative quadrupole moment

We launch our calculation of the gravitational-wave field with a computation of Q jk , the
radiative quadrupole moment. According to Eq. (11.119), this is defined by

Q jk(τ ) := 1

c2

∫
M

τ 00(τ, x)x j xk d3x, (11.155)

in which τ := t − R/c is retarded time, and where we suppress the primes on the integration
variables to simplify the notation. (It should be kept in mind that R is the distance to the
field point, which is distinct from the source point now identified by the vector x.) We show



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

576 Gravitational waves

below that the radiative quadrupole moment is given by

Q jk tt=
∑

A

MA

(
1 + 1

2

v2
A

c2
− 1

2

�U�A

c2

)
r j

Ark
A + O(c−4), (11.156)

where

�U�A :=
∑
B 	=A

G MB

rAB
(11.157)

is the partie finie of the Newtonian potential U (x) evaluated at x = r A. The expression
of Eq. (11.156) leaves out terms proportional to δ jk that would not survive the action of
the transverse-tracefree projector (tt) jk

pq , as well as R-dependent terms that can be freely
discarded. It is understood that the position vectors r A, and the velocity vectors vA, are
evaluated at the retarded time τ .

According to the discussion of Sec. 11.3.1, to calculate Q jk to the required degree of
accuracy, we need an expression for c−2τ 00 that includes terms of order c0 (Newtonian, or
0pn) and terms of order c−2 (1pn). Such an expression was obtained back in Sec. 7.3.1 in
the case of a matter distribution that consists of a perfect fluid. According to Eq. (7.54a),
we have that

c−2τ 00 = ρ∗
[

1 + 1

c2

(
1

2
v2 + 3U + �

)]
− 7

8πGc2
∂pU∂ pU + O(c−4) . (11.158)

For a system of point particles we have that ρ∗ = ∑
A MAδ(x − r A) and � = 0, and the

Newtonian potential reduces to U = ∑
B G MB |x − r B |−1.

This expression for c−2τ 00 is ill-defined for point particles, because the term B = A
in U gives rise to a term

∑
A G M2

A|x − r A|−1δ(x − r A) in ρ∗U . This is not defined as a
distribution, and such a term gives rise to an ambiguity in the evaluation of the radiative
quadrupole moment. We have, however, encountered a similar situation before, and learned
how to deal with it. Indeed, suitable regularization methods were developed back in Sec. 9.6,
where it was shown that ambiguous integrals can be made well-defined by adopting the
regularization prescription

δ(x − r A)

|x − r A| ≡ 0. (11.159)

The rule removes the offending term in ρ∗U , and the piece of the Newtonian potential that
survives multiplication by δ(x − r A) is the partie finie displayed in Eq. (11.157). With this
prescription, our expression for the effective mass density becomes

c−2τ 00 =
∑

A

MA

(
1 + v2

A

2c2
+ 3�U�A

c2

)
δ
(
x − r A

) − 14

16πGc2
∂pU∂ pU + O(c−4).

(11.160)
The radiative quadrupole moment can be decomposed as

Q jk = Q jk[M] + Q jk[F] + O(c−4). (11.161)

It contains a matter contribution that comes from the δ-functions in τ 00, and a field con-
tribution that comes from the term involving ∂pU∂ pU . The matter contribution can be
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calculated at once:

Q jk[M] =
∑

A

MA

(
1 + v2

A

2c2
+ 3�U�A

c2

)
r j

Ark
A. (11.162)

The field contribution is

Q jk[F] = − 14

16πGc2

∫
M

∂pU∂ pU x j xk d3x, (11.163)

and its computation requires a lot more work.
To evaluate the field integral of Eq. (11.163) we first express the integrand in the equiv-

alent form

∂pU∂ pU x j xk = ∂p

(
U∂ pU x j xk

) − 1

2
∂ j
(
U 2xk

) − 1

2
∂k
(
U 2x j

)
+ U 2δ jk − U (∇2U )x j xk, (11.164)

which allows us to integrate by parts. We may discard the term U 2δ jk on the grounds that
it will not survive the TT projection introduced in Sec. 11.1.7. We may also replace ∇2U
by −4πG

∑
A MAδ(x − r A), and write∫
M

∂pU∂ pU x j xk d3x
tt=
∮

∂M
U∂ pU x j xk d Sp −

∮
∂M

U 2x ( j d Sk)

+ 4πG
∑

A

MA�U�Ar j
Ark

A, (11.165)

where the notation
tt= was introduced near the end of Sec. 11.3.1, and where d S j =

R2 N j d
 is the surface element on ∂M . Note that we have once more made use of
the regularization prescription of Eq. (11.159). Making the substitution, we obtain

Q jk[F]
tt= − 7

2Gc2

(
R4〈〈U∂pU N j N k N p〉〉 − R3〈〈U 2 N j N k〉〉

)
− 7

2c2

∑
A

MA�U�Ar j
Ark

A, (11.166)

in which the angular brackets denote an average over the unit two-sphere.
We must now evaluate the surface integrals, on which x is set equal to RN . Recalling

that R is large compared with r A (refer to Sec. 11.3.2), it is appropriate to expand U in
inverse powers of r := |x| before we insert it within the integrals. We have

U = Gm

r
+ 1

2
G I jk∂ jkr−1 + O(r−3), (11.167)

where m := ∑
A MA is the total mass, and I jk := ∑

A MAr j
Ark

A is the Newtonian quadrupole
moment of the mass distribution. It is important to note that the Newtonian dipole moment,
I j := ∑

A MAr j
A, has been set equal to zero. This is allowed, because I = m R + O(c−2),

where R is the post-Newtonian barycenter (refer to Sec. 9.3.6), and we work in a coordinate
system for which R = 0. From the expansion of the Newtonian potential we also get

∂ jU = Gm∂ j r
−1 + 1

2
G I kp∂ jkpr−1 + O(r−4). (11.168)
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These results indicate that on ∂M , the potential and its gradient are given schemati-
cally by U = R−1 + R−3 + · · · and ∂ jU = R−2 + R−4 + · · · This implies, for example,
that R4U∂pU = R + R−1 + · · · and R3U 2 = R + R−1 + · · · This reveals, finally, that
the surface integrals produce no R-independent contributions to Q jk[F].

We have obtained

Q jk[F]
tt= − 7

2c2

∑
A

MA�U�Ar j
Ark

A, (11.169)

and combining this with Eq. (11.162), we conclude that the radiative quadrupole moment
of Eq. (11.161) is indeed given by Eq. (11.156).

11.3.4 Radiative octupole moment

We turn next to computation of Q jka , the radiative octupole moment. According to
Eq. (11.119), this is defined by

Q jka := A jka + Ak ja − Aajk, (11.170)

where

A jka(τ ) := 1

c2

∫
M

τ 0 j (τ, x)xk xa d3x . (11.171)

We show below that this is given by

A jka tt= 1

c

∑
A

MA

(
1 + v2

A

2c2

)
v

j
Ar k

Ara
A

− 1

2c3

∑
A

∑
B 	=A

G MA MB

rAB

[(
nAB · vA

)
n j

ABrk
Ara

A + v
j
Ar k

Ara
A

]

+ 1

2c3

∑
A

∑
B 	=A

G MA MB

[(
nAB · vA

)
n j

ABn(k
ABra)

A − 7n j
ABv

(k
A ra)

A

+ 7v
j
An(k

ABra)
A

]

− 1

6c3

∑
A

∑
B 	=A

G MA MBrAB

[(
nAB · vA

)
n j

ABnk
ABna

AB − 11n j
ABn(k

ABv
a)
A

+ 11v
j
Ank

ABna
AB

]
+ O(c−5). (11.172)

This expression leaves out terms that would not survive a transverse-tracefree projection,
as well as R-dependent terms that can be freely discarded. It is understood that the position
vectors r A and the velocity vectors vA are evaluated at retarded time τ .
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Matter and field contributions

According to the discussion of Sec. 11.3.1, to calculate Q jka to the required degree of
accuracy we need an expression for c−2τ 0 j that includes terms of order c−1 (0.5pn) and
terms of order c−3 (1.5pn). Such an expression was worked out in Sec. 7.3.1 in the case of
a matter distribution that consists of a perfect fluid. According to Eq. (7.54b), we have that

c−2τ 0 j = 1

c
ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + � + p/ρ∗

)]

+ 1

4πGc3

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−5) . (11.173)

For a system of point particles, U j = ∑
B G MBv

j
B/|x − r B |. Our expression for c−2τ 0 j

must be regularized with the help of Eq. (11.159), and the end result is

c−2τ 0 j = 1

c

∑
A

MAv
j
A

(
1 + v2

A

2c2
+ 3�U�A

c2

)
δ
(
x − r A

)
+ 1

16πGc3

[
12∂tU∂ jU + 16

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−5), (11.174)

where �U�A is the partie finie of the Newtonian potential evaluated at x = r A, as given by
Eq. (11.157).

The octupole moment contains a contribution Q jka[M] that comes directly from the
matter distribution, and another contribution Q jka[F] that comes from the gravitational field.
They are obtained from A jka = A jka[M] + A jka[F] + O(c−5), which is then substituted
into Eq. (11.170). We have introduced

A jka[M] := 1

c

∑
A

MAv
j
A

(
1 + v2

A

2c2
+ 3�U�A

c2

)
rk

Ara
A (11.175)

and

A jka[F] := 1

4πGc3

∫
M

[
3∂tU∂ jU + 4

(
∂ jU p − ∂ pU j

)
∂pU

]
xk xa d3x, (11.176)

and the remainder of this subsection is devoted to computation of A jka[F].

Computation of the field integral: Organization

To simplify our computations we invoke the identity of Eq. (7.40),

∂tU + ∂ jU
j = 0. (11.177)

We recall that this is a direct consequence of the statement of mass conservation, ∂tρ
∗ +

∂ j (ρ∗v j ) = 0. We use the identity to eliminate ∂tU from Eq. (11.176), which becomes

A jka[F] = 1

Gc3

(
−3B jka

1 + 4B jka
2 − 4B jka

3

)
, (11.178)
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where

B jka
1 := 1

4π

∫
M

∂ jU∂pU pxk xa d3x, (11.179a)

B jka
2 := 1

4π

∫
M

∂pU∂ jU pxk xa d3x, (11.179b)

B jka
3 := 1

4π

∫
M

∂pU∂ pU j xk xa d3x . (11.179c)

After integration by parts, which is designed to leave one factor of U undifferentiated, we
find that each field integral B jka breaks up into a volume integral B jka[M ] and a surface
integral B jka[∂M ]. A number of terms are found to be proportional to δ jk , or δ ja , or
δka . All such terms will not survive a transverse-tracefree projection, and according to our
discussion near the end of Sec. 11.3.1, they can all be discarded. If, for example, B jka

contains a term δ jk Ba , then its contribution to Q jka will be of the form 2δ jk Ba − δ ja Bk .
The first term is a pure trace, and the second term is longitudinal, because it becomes
proportional to N j after Q jka is multiplied by Na ; in each case the contribution does not
survive the TT projection.

After eliminating all such terms, we find that

B jka
1

tt= B jka
1 [M ] + B jka

1 [∂M ] , (11.180a)

B jka
1 [M ] := − 1

4π

∫
M

U∂ j
pU p xk xa d3x , (11.180b)

B jka
1 [∂M ] := 1

4π

∮
∂M

U∂pU p xk xa d S j , (11.180c)

that

B jka
2

tt= B jka
2 [M ] + B jka

2 [∂M ] , (11.181a)

B jka
2 [M ] := − 1

4π

∫
M

U
(
∂ j

pU p xk xa + ∂ jU k xa + ∂ jU a xk
)

d3x , (11.181b)

B jka
2 [∂M ] := 1

4π

∮
∂M

U∂ jU p xk xa d Sp , (11.181c)

and that

B jka
3

tt= B jka
3 [M ] + B jka

3 [∂M ] , (11.182a)

B jka
3 [M ] := − 1

4π

∫
M

U
(∇2U j xk xa + ∂kU j xa + ∂aU j xk

)
d3x , (11.182b)

B jka
3 [∂M ] := 1

4π

∮
∂M

U∂ pU j xk xa d Sp . (11.182c)

There are many volume integrals to evaluate, but they are all of the form

Cmnpab := − 1

4π

∫
M

U∂mnU p xa xb d3x (11.183)
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and

Dmna := − 1

4π

∫
M

U∂mU n xa d3x . (11.184)

Specifically,

B jka
1 [M ] = C j pka

p , (11.185a)

B jka
2 [M ] = C j pka

p + D jka + D jak , (11.185b)

B jka
3 [M ] = C p jka

p + Dk ja + Dajk . (11.185c)

Similarly, the surface integrals are of the form

Emnabp := 1

4π

∮
∂M

U∂mU n xa xb d S p , (11.186)

with

B jka
1 [∂M ] = E pkaj

p , B jka
2 [∂M ] = E jpka

p , B jka
3 [∂M ] = E pjka

p . (11.187)

The key is therefore the evaluation of the generic volume integrals of Eqs. (11.183) and
(11.184), as well as the surface integral of Eq. (11.186). Once these are in hand, the
computation of B jka

1 , B jka
2 , and B jka

3 is soon completed, and Eq. (11.178) gives us A jka[F].
Adding the A jka[M] of Eq. (11.175) produces A jka , and from Eq. (11.170) we get our final
answer for Q jka .

Computation ofCmnpab

We follow the general methods described in Sec. 11.3.2. We begin with differentiation of
the vector potential U p = ∑

B G MBv
p
B/|x − r B |, which returns

∂mnU p = −
∑

B

G MBv
p
B

[
−3

(x − rB)m(x − rB)n

|x − r B |5 + δmn

|x − r B |3

+ 4π

3
δmnδ(x − r B)

]
. (11.188)

The last term, involving the δ-function, does not appear in a straightforward computa-
tion of ∂mnU p, in which one implicitly assumes that x 	= r B . Without it, however, our
expression would be wrong, because it would give rise to ∇2U p = 0 instead of the cor-
rect ∇2U p = −4πG

∑
B MBv

p
Bδ(x − r B). The distributional term is therefore inserted

to produce the correct answer when x = r B , and to ensure that U p satisfies the appro-
priate Poisson equation. After insertion of U = ∑

A G MA/|x − r A| and some algebra,
Eq. (11.183) becomes

Cmnpab =
∑

A

G2 M2
Av

p
A

(
δmn Fab

A − 3Fmnab
A

)

+
∑

A

∑
B 	=A

G2 MA MBv
p
B

(
δmn Fab

AB − 3Fmnab
AB + 1

3
δmn ra

Brb
B

rAB

)
, (11.189)
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where

Fmnab
A := 1

4π

∫
M

(x − rA)m(x − rA)n

|x − r A|6 xa xb d3x , (11.190a)

Fmnab
AB := 1

4π

∫
M

1

|x − r A|
(x − rB)m(x − rB)n

|x − r B |5 xa xb d3x , (11.190b)

and where

Fab
A := δmn Fmnab

A , Fab
AB := δmn Fmnab

AB . (11.191)

The term involving ra
Brb

B/rAB in Eq. (11.189) originates from the distributional term in
∂mnU p; a similar term involving ra

Arb
A/rAA was set equal to zero by invoking the regular-

ization prescription of Eq. (11.159).
We first set to work on Fmnab

A . Following the general strategy summarized in Box 11.3,
we substitute x = y + r A inside the integral, and get

Fmnbc
A = 1

4π

∫
M

ym yn ya yb

y6
d3 y + ra

B

4π

∫
M

ym yn yb

y6
d3 y

+ rb
B

4π

∫
M

ym yn ya

y6
d3 y + ra

Brb
B

4π

∫
M

ym yn

y6
d3 y. (11.192)

According to Eq. (1) of Box 11.3, each integral over M can be expressed as a volume integral
over the simpler domain My defined by y := | y| < R, plus a correction of fractional order
|r B |/R given by a surface integral over ∂My .

The first integral produces

1

4π

∫
My

ym yn ya yb

y6
d3 y = 〈〈N m N n N a N b〉〉

∫ R

0
dy

= 1

15
R
(
δmnδab + δmaδnb + δmbδna

)
, (11.193)

where we involve Eq. (4d) of Box 11.3. Because it is proportional to R, this contribution to
Fmnab

A can be discarded. The surface integral that corrects this will potentially give rise to
an R-independent contribution, and it should be evaluated carefully. It turns out, however,
that it is proportional to r p

B〈〈N m N n N a N b Np〉〉, and it vanishes because the angular average
of a product of an odd number of vectors N is necessarily zero. The neglected terms in
Eq. (1) are of order R−1 and higher, and we conclude that the first integral in Fmnab

A makes
no contribution to Cmnpab.

The second and third integrals produce terms such as

1

4π

∫
My

ym yn yb

y6
d3 y = 〈〈N m N n N b〉〉

∫ R

0

dy

y
, (11.194)

and this vanishes by virtue of Eq. (4c) of Box 11.3; the logarithmic divergence of the
radial integration requires no explicit regularization. The surface integral that corrects this



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

583 11.3 Beyond the quadrupole formula: Waves at 1.5pn order

is easily shown to be of order R−1, and we conclude that the second and third integrals do
not contribute to Cmnpab.

The fourth integral produces

1

4π

∫
My

ym yn

y6
d3 y = 〈〈N m N n〉〉

∫ R

0

dy

y2
= 1

3
δmn

∫ R

0

dy

y2
, (11.195)

and this involves a radial integration that is formally divergent. Once more the surface
integral does not contribute, and we have obtained

Fmnab
A = 1

3
δmnra

Arb
A

∫ R

0

dy

y2
(11.196)

for the field integral of Eq. (11.190), moduloR-dependent terms that can be freely discarded.
It is disturbing to see that Fmnab

A is proportional to a diverging integral, but it is a fortunate
outcome that the combination δmn Fab

A − 3Fmnab
A that appears in Cmnpab happens to vanish

identically. The divergence does not require explicit regularization, and all in all we find
that Fmnab

A makes no contribution to Cmnpab.
We next set to work on Fmnab

AB . Once more we follow the general strategy summarized in
Box 11.3, and we substitute x = y + r B inside the integral. We get

Fmnbc
AB = 1

4π

∫
M

1

| y − r AB |
ym yn ya yb

y5
d3 y + ra

B

4π

∫
M

1

| y − r AB |
ym yn yb

y5
d3 y

+ rb
B

4π

∫
M

1

| y − r AB |
ym yn ya

y5
d3 y + ra

Brb
B

4π

∫
M

1

| y − r AB |
ym yn

y5
d3 y . (11.197)

We begin with the first integral, which produces

1

4π

∫
My

1

| y − r AB |
ym yn ya yb

y5
d3 y.

To evaluate this we involve Eq. (2) of Box 11.3, and we express N m N n N a N b as

N m N n N a N b = N 〈mnab〉 + 1

7

(
δmn N 〈ab〉 + δma N 〈nb〉 + δmb N 〈na〉 + δna N 〈mb〉

+ δnb N 〈ma〉 + δab N 〈mn〉
)

+ 1

15

(
δmnδab + δmaδnb + δmbδna

)
, (11.198)

in terms of the angular STF tensors N 〈mnab〉 and N 〈mn〉. We perform the angular integrations
with the help of Eq. (3) of Box 11.3, and the remaining radial integrals are in the form of
Eq. (5). After some algebra, we obtain the expression

1

9
K (4, 1)n〈mnab〉

AB + 1

35
K (2, 1)

(
δmnn〈ab〉

AB + permutations
)

+ 1

15
K (0, 1)

(
δmnδab + δmaδnb + δmbδna

)
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for the volume integral. The corresponding surface integral is easily seen to be of order
R−1, and we arrive at

1

4π

∫
M

1

| y − r AB |
ym yn ya yb

y5
d3 y = 1

18
rABn〈mnab〉

AB + 1

28
rAB

(
δmnn〈ab〉

AB + δman〈nb〉
AB

+ δmbn〈na〉
AB + δnan〈mb〉

AB + δnbn〈ma〉
AB + δabn〈mn〉

AB

)
− 1

30
rAB

(
δmnδab + δmaδnb + δmbδna

)
(11.199)

after using Eq. (5) of Box 11.3 to evaluate the radial integrals.
We next turn to the second and third integrals, which are both approximated by

1

4π

∫
My

1

| y − r AB |
ym yn ya

y5
d3 y.

To evaluate this we involve Eq. (2), and we express N m N n N a as

N m N n N a = N 〈mna〉 + 1

5

(
δmn N a + δma N n + δna N m

)
, (11.200)

in terms of the angular STF tensor N 〈mna〉. We carry out the angular integrations with the
help of Eq. (3), and the remaining radial integrals are in the form of Eq. (5). After some
algebra, we obtain the expression

1

7
K (3, 0)n〈mna〉

AB + 1

15
K (1, 0)

(
δmnna

AB + δmann
AB + δnanm

AB

)
for the volume integral. The corresponding surface integral is once more of order R−1, and
we arrive at

1

4π

∫
M

1

| y − r AB |
ym yn ya

y5
d3 y = 1

12
n〈mna〉

AB + 1

10

(
δmnna

AB + δmann
AB + δnanm

AB

)
(11.201)

after using Eq. (5) to evaluate the radial integrals.
The final step in the computation of Fmnab

AB is evaluation of the fourth integral, which is
approximated by

1

4π

∫
My

1

| y − r AB |
ym yn

y5
d3 y.

After following the same familiar steps, this becomes 1
5 K (2, −1)n〈mn〉

AB + 1
3 K (0, −1)δmn ,

and the corresponding surface integral is of order R−2. We arrive at

1

4π

∫
M

1

| y − r AB |
ym yn

y5
d3 y = 1

6rAB
n〈mn〉

AB + 1

3
K (0, −1)δmn, (11.202)

and we note that K (0, −1) is formally a divergent integral of the sort encountered in
Eq. (11.196). We shall see that this divergence requires no explicit regularization, because
(as happened before) it eventually drops out of the calculation.
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Collecting results, we have obtained

Fmnab
AB = 1

18
rABn〈mnab〉

AB

+ 1

28
rAB

(
δmnn〈ab〉

AB + δman〈nb〉
AB + δmbn〈na〉

AB + δnan〈mb〉
AB + δnbn〈ma〉

AB + δabn〈mn〉
AB

)
− 1

30
rAB

(
δmnδab + δmaδnb + δmbδna

)
+ 1

12
n〈mna〉

AB rb
B + 1

10

(
δmnna

AB + δmann
AB + δnanm

AB

)
rb

B

+ 1

12
n〈mnb〉

AB ra
B + 1

10

(
δmnnb

AB + δmbnn
AB + δnbnm

AB

)
ra

B

+ 1

6rAB
r 〈mn〉

AB ra
Brb

B + 1

3
K (0, −1)δmnra

Brb
B (11.203)

for the field integral of Eq. (11.190), moduloR-dependent terms that can be freely discarded.
The trace of this is

Fab
AB = 1

4
rABn〈ab〉

AB − 1

6
rABδab + 1

2
na

ABrb
B + 1

2
nb

ABra
B + K (0, −1)ra

Brb
B, (11.204)

and we see that, as claimed, the terms involving K (0, −1) cancel out in the combination
δmn Fab

AB − 3Fmnab
AB that appears in Eq. (11.189); these terms make no contribution to Cmnpab .

We may now substitute Eqs. (11.196), (11.203), and (11.204) into Eq. (11.189). After
simplification, our final result is

Cmnpab =
∑

A

∑
B 	=A

G2 MA MBv
p
B

[
−1

6
rABn〈mnab〉

AB

− 3

28
rAB

(
δman〈nb〉

AB + δmbn〈na〉
AB + δnan〈mb〉

AB + δnbn〈ma〉
AB + δabn〈mn〉

AB

)
+ rABδmn

(1

7
n〈ab〉

AB − 1

15
δab

)
+ 1

10
rAB

(
δmaδnb + δmbδna

)
− 1

4
n〈mna〉

AB rb
B − 1

4
n〈mnb〉

AB ra
B − 3

10

(
δmann

AB + δnanm
AB

)
rb

B

− 3

10

(
δmbnn

AB + δnbnm
AB

)
ra

B + 1

5
δmn

(
na

ABrb
B + nb

ABra
B

)
+ 1

rAB

(
−1

2
n〈mn〉

AB + 1

3
δmn

)
ra

Brb
B

]
. (11.205)

Computation of Dmna

After inserting the expressions for U and U n within Eq. (11.184), we obtain

Dmna =
∑

A

G2 M2
Avn

A Ema
A +

∑
A

∑
B 	=A

G2 MA MBvn
B Ema

AB, (11.206)
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where

Ema
A := 1

4π

∫
M

(x − rA)m xa

|x − r A|4 d3x, (11.207a)

Ema
AB := 1

4π

∫
M

(x − rB)m xa

|x − r A||x − r B |3 d3x, (11.207b)

were introduced back in Eqs. (11.127). These integrals were evaluated in Sec. 11.3.2, and
we obtained

Ema
A = 0, (11.208a)

Ema
AB = 1

4
rABn〈ma〉

AB − 1

6
rABδma + 1

2
nm

ABra
B ; (11.208b)

these are Eqs. (11.138) and (11.153), respectively. Making the substitutions, we arrive at

Dmna =
∑

A

∑
B 	=A

G2 MA MBvn
B

(
1

4
rABn〈ma〉

AB − 1

6
rABδma + 1

2
nm

ABra
B

)
. (11.209)

Computation of Emnabp

The surface integrals

Emnabp = 1

4π

∮
∂M

U∂mU n xa xb d S p (11.210)

are evaluated at |x| = R. On ∂M the Newtonian potential has the schematic form
U = R−1 + R−3 + · · · , and the vector potential can be similarly expressed as U n =
R−2 + R−3 + · · · This implies that ∂mU n = R−3 + R−4 + · · · We recall that U does
not include an R−2 term because the Newtonian dipole moment I := ∑

A MA r A can be set
equal to zero, and similarly, U n does not contain anR−1 term because İ j = ∑

A MAv
j
A = 0.

With x j = RN j and d S j = R2 N j d
, we find that the leading term in the surface inte-
gral is of order R0, and that it must be evaluated carefully. Further investigation re-
veals that at this order, ∂mU n involves an even number of angular vectors N , which
implies that the surface integral involves an odd number of such vectors. This guarantees
that

Emnabp = 0, (11.211)

modulo R-dependent terms that can be freely discarded.

Computation of A jka[F]

It is now a straightforward task to substitute Eq. (11.205) for Cmnpab, Eq. (11.209) for Dmna ,
and Eq. (11.211) for Emnabp into Eqs. (11.185) and (11.187). These results, in turn, can be
inserted within Eq. (11.180) for Babc

1 , Eq. (11.181) for Babc
2 , and Eq. (11.182) for Babc

3 .
The final step is to substitute these expressions into the right-hand side of Eq. (11.178).
The end result, after much simplification, and after discarding terms that will not survive
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the TT projection, is

A jka[F]
tt= 1

c3

∑
A

∑
B 	=A

G MA MB

{
rAB

[
−1

6

(
nAB · vB

)
n j

ABnk
ABna

AB

+ 11

12
n j

AB

(
nk

ABva
B + vk

Bna
AB

) − 11

6
v

j
Bnk

ABna
AB

]

− 1

4

(
nAB · vB

)
n j

AB

(
nk

ABra
B + rk

Bna
AB

) + 7

4
n j

AB

(
vk

Bra
B + rk

Bva
B

)
− 7

4
v

j
B

(
nk

ABra
B + rk

Bna
AB

) − 1

rAB

[
1

2

(
nAB · vB

)
n j

ABrk
Bra

B

+ 7

2
v

j
Br k

Bra
B

]}
. (11.212)

Final answer

Equation (11.212) for A jka[F] and Eq. (11.175) for A jka[M] can finally be combined to
form A jka , as defined by Eq. (11.171). After inserting

∑
B 	=A G MB/rAB for �U�A and

additional simplification, we obtain Eq. (11.172), as it appears in Section 11.3.4. To arrive
at this result we rearrange some of the sums in Eq. (11.212) and switch the identities of
bodies A and B; this permutation affects the signs of some terms, because nB A = −nAB .

11.3.5 Radiative 4-pole and 5-pole moments

Our next step is computation of Q jkab, the radiative 4-pole moment, and Q jkabc, the
radiative 5-pole moment. These are defined by Eq. (11.119),

Q jkab(τ ) := 1

c2

∫
M

τ jk(τ, x)xa xb d3x (11.213)

and

Q jkabc(τ ) := 1

c3

∂

∂τ

∫
M

τ jk(τ, x)xa xbxc d3x . (11.214)

We show below that these are given by

Q jkab tt= 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A

+ 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

)
+ O(c−4) (11.215)
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and

Q jkabc tt= 1

c3

∂

∂τ

[∑
A

MAv
j
Avk

Ara
Arb

Arc
A − 1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
Arc

A

+ 1

4

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

ABr (a
A

(
nb

ABnc)
AB − δbc)

)]

+ O(c−5). (11.216)

The index symmetrization in the last sum of Eq. (11.216) is over the trio of indices abc. We
leave the differentiation with respect to τ unevaluated for the time being; it is advantageous
to take care of this at a later stage.

According to the discussion of Sec. 11.3.1, to calculate Q jkab to the required degree of
accuracy we need an expression for τ jk that includes terms of order c0 only. According to
Eq. (7.54c), we have that

τ jk = ρ∗v j vk + p δ jk + 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂pU∂ pU

)
+ O(c−2), (11.217)

and this becomes

τ jk =
∑

A

MAv
j
Avk

Aδ
(
x − r A

) + 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂pU∂ pU

)
+ O(c−2) (11.218)

for a system of point particles. The matter contribution can be calculated at once:

Q jkab[M] = 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A. (11.219)

The field contribution is

Q jkab[F] = 1

4πGc2

∫
M

∂ jU∂kU xa xb d3x − 1

8πGc2
δ jk

∫
M

∂pU∂ pU xa xb d3x,

(11.220)

and the second term, because it comes with a factor δ jk in front of the integral, will not
survive a TT projection. The complete 4-pole moment is Q jkab = Q jkab[M] + Q jkab[F] +
O(c−4).

To evaluate the first integral we employ our usual strategy of integrating by parts so as to
leave one factor of U undifferentiated. We find that the integral splits into a volume integral
over the domain M and a surface integral over ∂M , and that Eq. (11.220) becomes

Q jkab[F]
tt= Q jkab[F, M ] + Q jkab[F, ∂M ], (11.221)

where

Q jkab[F, M ] := − 1

4πGc2

∫
M

U∂ jkU xa xb d3x, (11.222a)

Q jkab[F, ∂M ] := 1

4πGc2

∮
∂M

U∂kU xa xb d S j . (11.222b)

To arrive at Eq. (11.221) we have discarded additional terms that will not survive a TT pro-
jection. For example, a contribution to Q jkab of the form δ ja Akb would become N j Akb Nb
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after contraction with Na Nb, and this would make an irrelevant, longitudinal contribution
to h jk .

To evaluate the volume integral in Eqs. (11.222) we insert the familiar expression for U ,
as well as

∂ jkU = −
∑

A

G MA

[
−3

(x − rA) j (x − rA)k

|x − r A|5 + δ jk

|x − r A|3 + 4π

3
δ jkδ(x − r A)

]
.

(11.223)

Once more we ignore the terms in δ jk , and find that

Q jkcd [F, M ]
tt= − 3

c2

∑
A

G M2
A F jkab

A − 3

c2

∑
A

∑
B 	=A

G MA MB F jkab
B A , (11.224)

where the field integrals F jkab
A and F jkab

B A were introduced in Sec. 11.3.4; they are defined
by Eqs. (11.190), and evaluated in Eqs. (11.196) and (11.203). From these results we learn
that F jkab

A is proportional to δ jk and will not survive a TT projection, and that F jkab
B A can

be expressed as

F jkab
B A

tt= 1

36
rABn j

ABnk
AB

(
2na

ABnb
AB + δab

) − 1

6
n j

ABnk
ABn(a

ABrb)
A

+ 1

6rAB
n j

ABnk
ABra

Arb
A, (11.225)

after discarding terms that will be projected out and further simplification.
Inserting these expressions within Q jkab[F, M ], we arrive at

Q jkab[F, M ]
tt= − 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
2na

ABnb
AB + δab

)

+ 1

2c2

∑
A

∑
B 	=A

G MA MBn j
ABnk

ABn(a
ABrb)

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A. (11.226)

This expression can be simplified. We examine the second line, which we write as

1

4c2

∑
A

∑
B 	=A

G MA MBn j
ABnk

ABna
ABrb

A + (a ↔ b).

By rearranging the sums, we see that this is also

1

4c2

∑
A

∑
B>A

G MA MBn j
ABnk

AB

(
na

ABrb
A + na

B Arb
B

) + (a ↔ b),

or

1

4c2

∑
A

∑
B>A

G MA MBn j
ABnk

ABna
AB

(
rb

A − rb
B

) + (a ↔ b).
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The term within brackets is rABnb
AB , and we see that the second line in Q jkab[F, M ] can

be joined with the first. Our final expression is

Q jkab[F, M ]
tt= 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

)

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A + O(c−4). (11.227)

Moving on the surface integral of Eq. (11.222), we recall our previous work in
Sec. 11.3.3, in which U had the schematic structure U = R−1 + R−3 + · · · when evalu-
ated on ∂M , while its gradient is given by ∂kU = R−2 + R−4 + · · · With xa = RN a and
d S j = R2 N j d
, these statements imply that Q jkab[F, ∂M ] contains terms at orders R,
R−1, and so on, but that there is no R-independent contribution. For this reason, we may
set

Q jkab[F, ∂M ] = 0, (11.228)

modulo R-dependent terms that can be freely discarded.
Collecting results, we find that the radiative 4-pole moment is given by the expression

displayed back in Eq. (11.215). The computation of the radiative 5-pole moment is accom-
plished by following the same familiar steps. We shall not labor through the details here,
but simply state that the final answer is the expression displayed back in Eq. (11.216).

11.3.6 Surface integrals

At this stage we have computed all the radiative multipole moments that contribute to h jk
N

through 1.5pn order. The multipole expansion of Eq. (11.118), however, also involves a
pair of surface integrals, P jk and P jka , which are defined by Eqs. (11.120). Our task in this
subsection is to evaluate them. We shall find that they make no contributions to h jk

N .
We begin with

P jk :=
∮

∂M

(
τ j pxk + τ kpx j − ∂qτ pq x j xk

)
d Sp, (11.229)

in which τ jk is expressed as a function of τ and x, and where we suppress the primes on
the integration variables to simplify the notation. The effective stress tensor τ jk is given to
leading order by Eq. (11.218), and this reduces to

τ jk tt= 1

4πG
∂ jU∂kU + O(c−2) (11.230)

when it is evaluated on ∂M , where the matter contribution vanishes. This expression,
however, is not sufficient to achieve the required degree of accuracy for the surface integrals
(as specified back in Sec. 11.3.1); for this we must also incorporate terms of order c−2. An
improved expression can be obtained from Eqs. (7.49) and (7.52). In this we substitute the
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near-zone gravitational potentials of Box 7.5, and we obtain

τ jk tt= 1

4πG
∂ jU∂kU + 1

4πGc2

[
2∂ ( jU∂k)ψ + ∂ ( jU∂k)∂t t X + 8∂ ( jU∂tU

k)

− 4
(
∂ jUp − ∂pU j

)(
∂kU p − ∂ pU k

)] + O(c−4),

(11.231)

after discarding all terms proportional to δ jk , for the usual reason that they will not survive
a TT projection. This expression involves our old friends the Newtonian potential U and the
vector potential U j , but it involves also the post-Newtonian potentials ψ and X that were
first introduced in Sec. 7.3. These were evaluated for a system of point masses in Sec. 9.6;
refer to Eqs. (9.268), (9.270), and (9.272).

To calculate P jk we also need ∂qτ pq , which we express as −c−1∂tτ
0p by involving the

conservation identities ∂βταβ = 0. With Eq. (11.174), this is

∂qτ pq = 1

4πGc2

∂

∂τ

[
3∂qU q∂ pU − 4

(
∂ pU q − ∂qU p

)
∂qU

]
, (11.232)

in which we have inserted the identity ∂tU + ∂qU q = 0. The derivative operator can be
taken outside of the surface integral.

From the explicit expressions obtained in Sec. 9.6 for U , U j , ψ , and ∂t t X , we observe that
each one of these quantities has the schematic form |x|−1 + |x|−2 + · · · when expanded in
inverse powers of |x|. It follows that when ∂ jU , ∂ j ψ , ∂ j

t t X , ∂kU j , and ∂tU j are evaluated on
∂M , they each have the schematic formR−2 + R−3 + · · · This means that τ jk = O(R−4),
and it follows that a quantity such as τ j pxkd Sp must scale as R−1; this does not give rise
to an R-independent contribution to the surface integral. A similar argument reveals that
∂qτ pq = O(R−5), so that ∂qτ pq x j xkd Sp scales as R−1; this also makes no contribution.
We conclude that

P jk = 0, (11.233)

modulo R-dependent terms that can be freely discarded.
We next evaluate

P jka := 1

c

∂

∂τ

∮
∂M

(
τ j pxk xa + τ kpx j xa − τ apx j xk

)
d Sp, (11.234)

using the effective stress tensor displayed in Eq. (11.231). Relative to P jk , this surface
integral involves an additional power of x, and therefore an additional power of R; because
P jk was seen to be of order R−1, there is a chance that the surface integral might contain
an R-independent contribution. As we shall see presently, however, this does not happen,
and as a matter of fact,

P jka = 0, (11.235)

modulo R-dependent terms that can be freely discarded. This conclusion emerges as a
result of a closer examination of the terms that make up τ jk . It was stated previously that at
leading order, ∂ jU , ∂ jψ , ∂

j
t t X , ∂kU j , and ∂tU j all scale as R−2 when they are evaluated on
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∂M , so that τ jk = O(R−4). With the four powers of R that are contained in the position
vectors and the surface element, we find that the integral does indeed scale as R0. It can be
verified, however, that ∂ jU , ∂ jψ , ∂

j
t t X , ∂kU j , and ∂tU j are all proportional to a product

of an odd number of angular vectors N . This implies that τ jk involves an even number of
such vectors, and this, in turn, implies that the integrand in Eq. (11.234) contains an odd
number of angular vectors. Integration gives zero, and we have established the statement
of Eq. (11.235).

11.3.7 Tails: Wave-zone contribution to the gravitational waves

We departed on our long journey to calculate the gravitational-wave field back in Sec. 11.3.1,
and all the while we have focused our attention on the near-zone piece h jk

N . We have ignored
the wave-zone piece h jk

W , except to announce that it makes a relevant contribution at 1.5pn

order. In this subsection we make amends and calculate this final contribution to the
gravitational-wave field, which is generated entirely by field energy situated in the wave
zone. We shall show that it is given by the so-called tail integral

h jk
W

tt= 4G

c4 R

G M

c3

∫ ∞

0

(4)

I 〈 jk〉(τ − ζ )

(
ln

ζ

ζ + 2R/c
+ 11

12

)
dζ, (11.236)

which involves the entire past history of the system, from the infinite past at ζ = ∞ to
the current (retarded) time at ζ = 0. The wave-zone contribution depends on M , the total
gravitational mass of the system, as well as I jk , the Newtonian quadrupole moment of
the matter distribution; in Eq. (11.236) the quadrupole moment is made tracefree and
differentiated four times with respect to its argument. Recalling our discussion near the end
of Sec. 11.3.1, we see that h jk

W is a correction of order c−3 relative to the leading, quadrupole
term in h jk ; the wave-zone contribution to the gravitational-wave field is therefore a term of
1.5pn order. In the course of our calculations we shall discover that h jk

W comes about because
the gravitational waves propagate not in the fictitious flat spacetime of post-Minkowskian
theory, but in a physical spacetime that is curved by the presence of a mass M .

Wave-zone integrals

We begin our derivation of Eq. (11.236) by recalling that back in Sec. 6.3.5, we devised a
method to calculate h jk

W when τ jk can be expressed as a sum of terms of the form

τ jk[�, n] = 1

4π

f (τ )

Rn
N 〈L〉, (11.237)

in which f is an arbitrary function of τ , n is an arbitrary integer, and N 〈L〉 is an angular
STF tensor of degree � of the sort introduced back in Sec. 1.5.3. According to Eq. (6.105),
h jk

W is then a sum of terms of the form

h jk
W [�, n] = 4G

c4 R
N 〈L〉

{∫ R

0
ds f (τ − 2s/c)A(s, R) +

∫ ∞

R
ds f (τ − 2s/c)B(s, R)

}
,

(11.238)
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where

A(s, R) =
∫ R+s

R

P�(ξ )

pn−1
dp, B(s, R) =

∫ R+s

s

P�(ξ )

pn−1
dp, (11.239)

in which P� is a Legendre polynomial of argument ξ = (R + 2s)/R − 2s(R + s)/(Rp).
We shall rely on these results in the remainder of this subsection.

Construction of the source term

The wave-zone contribution to h jk is obtained by evaluating the integrals displayed in
Eq. (11.238), and this relies on a decomposition of τ jk into irreducible pieces of the form
of Eq. (11.237). Our first order of business, therefore, is to obtain an appropriate expression
for the effective stress tensor; this expression must be valid everywhere in the wave zone.

The source term is constructed from the gravitational potentials, and wave-zone expres-
sions for these were obtained in Sec. 7.4. According to the summary presented in Box 7.7,
we have

h00 = 4G

c2

[
M

R
+ 1

2
∂ jk

(I jk

R

)
+ · · ·

]
, (11.240a)

h0 j = 4G

c2

[
− 1

2c
J jk Nk

R2
− 1

2c
∂k

( İ jk

R

)
+ · · ·

]
, (11.240b)

h jk = 4G

c2

[
1

2c2

Ï jk

R
+ · · ·

]
. (11.240c)

The potentials are expressed in terms of R := |x|, N := x/R, and the multipole moments
that were introduced back in Sec. 7.1.2. For a system of N bodies, and to lowest pn order, we
have the total gravitational mass M = ∑

A MA + O(c−2), the angular-momentum tensor
J jk = ∑

A MA(v j
Ar k

A − r j
Avk

A) + O(c−2), and the quadrupole moment

I jk(τ ) =
∑

A

MAr j
Ark

A + O(c−2). (11.241)

These expressions are obtained from the equations listed in Box 7.7 by specializing them to
a system of point masses. The mass and angular momentum are conserved quantities, while
I jk depends on retarded time τ := t − R/c. For the rest of this discussion we replace the
formal post-Minkowskian moment I jk with its Newtonian expression I jk = ∑

A MAr j
Ark

A.
The post-Newtonian order of each term in Eqs. (11.240) was identified in Box 7.7:

relative to G M/(c2 R), each term involving I jk is of 1pn order, and the term involving the
angular-momentum tensor is also of 1pn order; the expressions are therefore truncated at
1pn order, and the neglected terms are of 1.5pn order. The rules to count post-Newtonian
orders in wave-zone potentials were derived back in Sec. 7.2.3. It is useful to recall that in the
wave zone, R is larger than λc, the characteristic wavelength of the gravitational radiation;
it follows that if rc is a characteristic length scale of the source, then rc/R ∼ rc/λc ∼ vc/c,
where vc is the source’s characteristic velocity.

In the wave zone, away from the matter distribution, the effective stress tensor τ jk is
made up of the Landau–Lifshitz pseudotensor (−g)t jk

LL and the harmonic-gauge contribution
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(−g)t jk
H . Sufficiently accurate expressions for these quantities were obtained in Sec. 7.3.1.

The leading term comes from the Landau–Lifshitz pseudotensor of Eq. (7.48); this is

c4

64πG
∂ j h00∂kh00,

where we ignore the term proportional to δ jk because, as we observed many times before,
it will not survive a TT projection. Using Eq. (11.240), we find that this is equal to

G

4π

[
M2

R4
N j N k − M

R2
N ( j∂k)

pq

(
I pq

R

)
+ · · ·

]
.

It is easy to show that relative to G M2/R4, the second term is of order (vc/c)2, and the
neglected terms are smaller by an additional power of vc/c. Take, for example, the term that
arises when R−1 is differentiated three times. This is of the schematic form (M/R2)(I/R4),
and relative to M2/R4 this is of order (rc/R)2 ∼ (rc/λc)2 ∼ (vc/c)2. As another example,
take the term that arises when I pq is differentiated three times. This is of the schematic form
(M/R2)(

...
I /c3 R), and relative to M2/R4 this is of order r2

c R/(ctc)3 ∼ (rc/λc)2 ∼ (vc/c)2.
We wish our expression for τ jk to be as accurate as what was displayed previously. In

particular, we want to be sure that our expression contains all occurrences of terms involving
a product of M with I jk or its derivatives; all such terms contribute at order (vc/c)2 relative
to G M2/R4, and they must all be included. A careful examination of Eq. (7.49) reveals
that the relevant terms are contained in

(−g)t jk
LL = c4

16πG

[
1

4
∂ j h00∂kh00 + ∂ j h00∂0h0k + ∂kh00∂0h0 j

+ 1

4
∂ j h00∂kh p

p + 1

4
∂kh00∂ j h p

p + · · ·
]
, (11.242)

and that the additional terms are smaller by additional powers of vc/c.
A careful examination of Eq. (7.53) reveals that

(−g)t jk
H = c4

16πG

[
−h00∂00h jk + · · ·

]
(11.243)

is also a relevant term. It is easy to see why: after writing ∂00 = c−2∂ττ , we find that this
contribution to τ jk is schematically

c2

G
h00∂ττ h jk ∼ G

c4

M
(4)

I jk

R2
, (11.244)

in which the label (4) indicates that the quadrupole moment tensor is differentiated four
times with respect to proper time τ . We have that d4 I jk/dτ 4 ∼ Mr2

c /t4
c , R > λc = ctc, and

all this implies that this term is of order (vc/c)2 relative to G M2/R4.
This is the first time that (−g)tαβ

H explicitly enters a computation. As we saw back in
Sec. 6.2.1, this contribution to ταβ comes from the difference between ∂μν Hαμβν and −�hαβ

on the left-hand side of the Landau–Lifshitz formulation of the Einstein field equations. It is
this term that informs us that the gravitational waves are propagating not in flat spacetime,
but in a curved spacetime whose metric gαβ must be obtained self-consistently from the
gravitational potentials (refer to Box 6.3). It is this contribution to ταβ , therefore, that
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reveals the differences between the light cones of the mathematical flat spacetime and those
of the physical curved spacetime. And as we shall see, it is this term that generates the tail
integral of Eq. (11.236).

Collecting results, we find that the appropriate starting expression for the source term is

τ jk = c4

16πG

[
1

4
∂ j h00∂kh00 + 1

c
∂ j h00∂τ h0k + 1

c
∂kh00∂τ h0 j

+ 1

4
∂ j h00∂kh p

p + 1

4
∂kh00∂ j h p

p − 1

c2
h00∂ττ h jk + · · ·

]
. (11.245)

We must now turn this into something more concrete, a set of expressions that are ready
for insertion within Eq. (11.238).

Evaluation of the source term

The first step is to insert Eqs. (11.240) within Eq. (11.245). We need

∂ j h00 = 4G

c2

[
− M

R2
N j + 1

2
∂ j

pq

(
I pq

R

)
+ · · ·

]
, (11.246a)

∂τ h0 j = 4G

c2

[
− 1

2c
∂p

(
Ï j p

R

)
+ · · ·

]
, (11.246b)

∂ j h p
p = 4G

c2

[
− 1

2c2

Ï

R2
N j + · · ·

]
, (11.246c)

∂ττ h jk = 4G

c2

[
1

2c2 R

(4)

I jk + · · ·
]

, (11.246d)

in which Ï := Ï pp. After some algebra, we obtain

τ jk = G M

4π R2

[
M

R2
N j N k − N ( j ∂k)

pq

(
I pq

R

)
+ 4

c2
N ( j ∂p

(
Ï k)p

R

)

+ 1

c2

(
Ï

R2
+ 1

c

...
I
R

)
N j N k − 2

c4

(4)

I jk + · · ·
]
. (11.247)

The next step is to evaluate the derivatives. We recall that ∂ j R = N j and ∂ j Nk =
R−1(δ jk − N j Nk). We recall also that I jk depends on the spatial coordinates through
τ = t − R/c, so that ∂p I jk = −c−1 İ jk Np. Using these rules, we find that

∂p

(
Ï jk

R

)
= −

(
Ï jk

R2
+ 1

c

...
I

jk

R

)
Np (11.248)

and

∂ j
pq

(
I pq

R

)
= −

(
15

I pq

R4
+ 15

c

İ pq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I

pq

R

)
N j Np Nq

+
(

3
I pq

R4
+ 3

c

İ pq

R3
+ 1

c2

Ï pq

R2

)(
N j δpq + δ j

p Nq + δ j
q Np

)
. (11.249)
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With these results, Eq. (11.247) becomes

τ jk = G M2

4π R4
N j N k + G M

4π R2

[(
15

I pq

R4
+ 15

c

İ pq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I

pq

R

)
N j N k Np Nq

−
(

3
I

R4
+ 3

c

İ

R3
− 1

c3

...
I
R

)
N j N k

−
(

3
I jp

R4
+ 3

c

İ jp

R3
+ 3

c2

Ï j p

R2
+ 2

c3

...
I

jp

r

)
N k Np

−
(

3
I kp

R4
+ 3

c

İ kp

R3
+ 3

c2

Ï kp

R2
+ 2

c3

...
I

kp

R

)
N j Np − 2

c4

(4)

I jk + · · ·
]
.

(11.250)

The final step is to express the angular dependence of τ jk in terms of STF tensors
N 〈L〉. We involve the definition of Eq. (1.155), and write N j N k N p N q in terms of N 〈 jkpq〉,
N j N k N p in terms of N 〈 jkp〉, and N j N k in terms of N 〈 jk〉. After discarding all terms
proportional to δ jk , our final expression for the effective stress tensor is

τ jk = G M2

4π R4
N 〈 jk〉 + G M

4π R2

[(
15

Ipq

R4
+ 15

c

İpq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I pq

R

)
N 〈 jkpq〉

+
(

−6

7

I

R4
− 6

7c

İ

R3
+ 6

7c2

Ï

R2
+ 8

7c3

...
I
R

)
N 〈 jk〉

+ 2

(
9

7

I ( j
p

R4
+ 9

7c

İ ( j
p

R3
− 9

7c2

Ï ( j
p

R2
− 12

7c3

...
I

( j
p

R

)
N 〈k)p〉

− 6

5c2

Ï 〈 jk〉

R2
− 6

5c3

...
I

〈 jk〉

R
− 2

c4

(4)

I 〈 jk〉 + · · ·
]

. (11.251)

This expression is a sum of terms that have the structure of Eq. (11.237). For example, the
first group of terms inside the square brackets has � = 4, and it consists of four terms with
n = 6, n = 5, n = 4, and n = 3; for each one of these contributions we can easily read off
the appropriate function f .

We shall keep in mind that it is the last term of Eq. (11.251), the one involving four
derivatives of I 〈 jk〉(τ ), that originated from (−g)t jk

H . It is this term that will reveal the
differences between the light cones of the mathematical flat spacetime and those of the
physical curved spacetime.

Evaluation of the wave-zone integrals

Each term τ jk[�, n] in Eq. (11.251) makes a contribution to the gravitational-wave field
h jk given by Eq. (11.238). To see how these integrals are evaluated, we shall work through
the representative case of � = 0 and n = 3.

We begin by extracting the relevant piece of τ jk from Eq. (11.251). Comparing with
Eq. (11.237), we find that in this case the function f is given by

f (τ ) = −6

5

G M

c3

...
I

〈 jk〉
. (11.252)
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We next evaluate the functions A and B. With � = 0 and n = 3, the computations are
elementary, and the results are

A(s, R) = 1

R − 1

R + s
, B(s, R) = 1

s
− 1

R + s
. (11.253)

We now set to work on the integrals that appear in Eq. (11.238). The first is

FA :=
∫ R

0
ds f (τ − 2s/c)A(s, R) =

∫ R

0
ds f (τ − 2s/c)

(
1

R − 1

R + s

)
, (11.254)

and we rewrite it as

FA = 1

R

∫ R

0
f (τ − 2s/c) ds −

∫ R

0
f (τ − 2s/c) d ln(R + s). (11.255)

After integrating the second term by parts, our final expression is

FA = − f (τ − 2R/c) ln(R + R) + f (τ ) ln R + 1

R

∫ R

0
f (τ − 2s/c) ds

− 2

c

∫ R

0
ḟ (τ − 2s/c) ln

R + s

s
ds − 2

c

∫ R

0
ḟ (τ − 2s/c) ln s ds. (11.256)

The second integral is

FB :=
∫ ∞

R
ds f (τ − 2s/c)B(s, R) =

∫ ∞

R
ds f (τ − 2s/c)

(
1

s
− 1

R + s

)
, (11.257)

and we rewrite it as

FB = −
∫ ∞

R
f (τ − 2s/c) d ln

R + s

s
. (11.258)

Integration by parts yields

FB = f (τ − 2R/c) ln
R + R
R − 2

c

∫ ∞

R
ḟ (τ − 2s/c) ln

R + s

s
ds, (11.259)

assuming that f (τ − 2s/c) goes to zero sufficiently rapidly as s → ∞ to ensure that there
is no boundary term at s = ∞. (Physically, this condition implies that the system is only
weakly dynamical in the infinite past.)

The sum of FA and FB is

F = − f (τ − 2R/c) lnR + f (τ ) ln R + 1

R

∫ R

0
f (τ − 2s/c) ds

− 2

c

∫ R

0
ḟ (τ − 2s/c) ln s ds − 2

c

∫ ∞

0
ḟ (τ − 2s/c) ln

R + s

s
ds. (11.260)

This result is exact, but to simplify it we exploit the fact that we may remove from this
all R-dependent pieces. As a formal tool to achieve this, we express f (τ − 2s/c) and its
derivative as an infinite Taylor series in powers of s, and we evaluate the two integrals from
s = 0 to s = R. We find that they combine to give f (τ ), plus terms that can be discarded
because they come with explicit factors of R. After also expanding f (τ − 2R/c) in powers
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of R, we find that

F = f (τ )
[
1 + ln(R/R)

]
− 2

c

∫ ∞

0
ḟ (τ − 2s/c) ln

R + s

s
ds, (11.261)

modulo R-dependent terms that can be freely discarded. This still contains a logarithmic
dependence on R, but it could be removed by writing ln(R/R) = ln(R/r0) + ln(r0/R) and
discarding the second term. This alternative expression would then contain a dependence
on an arbitrary constant r0, and it is perhaps preferable to stick with the original form, in
spite of the residual R-dependence.

The final answer is obtained by inserting our expressions for f (τ ) and F within
Eq. (11.238). We get

h jk
W [0, 3] = 4G M

c4 R

{
− 6G

5c3

[
1 + ln(R/R)

]...
I

〈 jk〉 + 12

5
K jk

}
, (11.262)

in which the tail integral

K jk(τ, R) := G

c4

∫ ∞

0

(4)

I 〈 jk〉(τ − 2s/c) ln
R + s

s
ds (11.263)

must be left unevaluated. Note that the tail integral involves the entire past history of the
system, from the infinite past (at s = ∞) to the current retarded time (at s = 0). We shall
see what fate awaits the logarithmic term ln(R/R) in h jk

W [0, 3], when this contribution to
h jk

W is combined with others.
The same techniques are employed to calculate all other contributions to h jk

W . We shall
not labor through the details here, but simply list the final results:

h jk
W [0, 2] = 4G M

c4 R

{
−2K jk

}
, (11.264a)

h jk
W [0, 3] = 4G M

c4 R

{
− 6G

5c3

[
1 + ln(R/R)

]
...
I

〈 jk〉 + 12

5
K jk

}
, (11.264b)

h jk
W [0, 4] = 4G M

c4 R

{
6G

5c3

[
3

2
+ ln(R/R)

]
...
I

〈 jk〉 − 12

5
K jk

}
, (11.264c)

h jk
W [2, 3] = 4G M

c4 R

{
− 2G

7c3

...
I

j
p

}
N 〈pk〉 + ( j ↔ k), (11.264d)

h jk
W [2, 4] = 4G M

c4 R

{
− 3G

28c3

...
I

j
p

}
N 〈pk〉 + ( j ↔ k), (11.264e)

h jk
W [2, 5] = 4G M

c4 R

{
G

c3

[
47

700
+ 3

35
ln(R/R)

]
...
I

j
p − 6

35
K j

p

}
N 〈pk〉 + ( j ↔ k),

(11.264f)

h jk
W [2, 6] = 4G M

c4 R

{
G

c3

[
− 97

700
− 3

35
ln(R/R)

]
...
I

j
p + 6

35
K j

p

}
N 〈pk〉 + ( j ↔ k),

(11.264g)

h jk
W [4, 3] = 4G M

c4 R

{
G

20c3

...
I pq

}
N 〈 jkpq〉, (11.264h)

(continued overleaf)
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h jk
W [4, 4] = 4G M

c4 R

{
G

30c3

...
I pq

}
N 〈 jkpq〉, (11.264i)

h jk
W [4, 5] = 4G M

c4 R

{
G

42c3

...
I pq

}
N 〈 jkpq〉, (11.264j)

h jk
W [4, 6] = 4G M

c4 R

{
G

56c3

...
I pq

}
N 〈 jkpq〉. (11.264k)

To arrive at these results we have freely discarded all R-dependent terms, except when the
dependence is logarithmic. In some cases we have also removed terms that fall off as R−2,
R−3, or faster, because these are negligible in the far-away wave zone.

From the preceding listing of results we find that the sums of contributions for � = 0,
� = 2, and � = 4 are

h jk
W [� = 0] = 4G M

c4 R

{
3G

5c3

...
I

〈 jk〉 − 2K jk

}
, (11.265a)

h jk
W [� = 2] = 4G M

c4 R

{
− 13G

28c3

...
I

j
p N 〈pk〉 + ( j ↔ k)

}
, (11.265b)

h jk
W [� = 4] = 4G M

c4 R

{
G

8c3

...
I pq N 〈 jkpq〉

}
. (11.265c)

Note that the logarithmic terms have all canceled out, and that the tail integral K jk appears
only within the � = 0 contribution. Tracing the origin of the tail integral, we see that
it comes from τ jk[0, 2], the term in τ jk that involves four derivatives of the Newtonian
quadrupole moment. This term, the last one in Eq. (11.250), originates from (−g)t jk

H , and
as we have observed previously, it reveals the differences between the light cones of the
mathematical flat spacetime and those of the physical curved spacetime. The tail integral,
therefore, informs us that the gravitational waves are propagating in a curved spacetime
instead of the fictitious flat spacetime of post-Minkowskian theory.

Final answer

Adding the contributions from � = 0, � = 2, and � = 4, we find that the wave-zone piece
of the gravitational-wave field is given by

h jk
W = 4G M

c4 R

{
3G

5c3

...
I

〈 jk〉 − 2K jk − 13G

28c3

(
...
I

j
p N 〈pk〉 + ...

I
k
p N 〈pj〉

)
+ G

8c3

...
I pq N 〈 jkpq〉

}
.

(11.266)
From this we may remove any term that will not survive a TT projection. For example, we
may use

...
I

j
p N 〈pk〉 = ...

I
j
p

(
N p N k − 1

3
δ pk

)
tt= −1

3

...
I

〈 jk〉 (11.267)

and

...
I pq N 〈 jkpq〉 tt= 2

35

...
I

〈 jk〉 (11.268)
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to simplify the expression, which becomes

h jk
W

tt= 4G M

c4 R

{
11G

12c3

...
I

〈 jk〉 − 2K jk

}
. (11.269)

To arrive at the final form of Eq. (11.236), we substitute Eq. (11.263) for the tail integral
and clean things up by setting s = 1

2 c ζ , thereby adopting ζ as a new integration variable.
This gives us

h jk
W

tt= 4G2 M

c7 R

{
11

12

...
I

〈 jk〉(τ ) +
∫ ∞

0

(4)

I 〈 jk〉(τ − ζ ) ln
ζ

ζ + 2R/c
dζ

}
, (11.270)

and it is easy to show that this is equivalent to Eq. (11.236).

11.3.8 Summary: Gravitational-wave field

Our computation of the gravitational-wave field generated by an N -body system is now
essentially complete. For easy reference we copy in Box 11.4 the main results obtained in
the preceding five subsections.

Box 11.4 Gravitational-wave field to 1.5pn order

The gravitational potentials h jk are decomposed according to

h jk = h jk
N + h jk

W , (1)

and the near-zone piece is expressed as the multipole expansion

h jk
N (t, x) = 2G

c4 R

∂2

∂τ 2

{
Q jk + Q jka Na + Q jkab Na Nb + 1

3
Q jkabc Na Nb Nc

}
, (2)

inwhich R := |x|, N := x/R, andτ := t − R/c is retarded time. The radiativemultipolemoments
are given by

Q jk tt=
∑

A

MA

(
1 + 1

2

v2
A

c2

)
r j

Ark
A − 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
r j

Ark
A + O(c−4),

Q jka = A jka + Akja − Aajk,

A jka tt= 1

c

∑
A

MA

(
1 + v2

A

2c2

)
v

j
Ar k

Ara
A

− 1

2c3

∑
A

∑
B 	=A

G MA MB

rAB

[(
nAB · vA

)
n j

ABrk
Ara

A + v
j
Ar k

Ara
A

]

+ 1

2c3

∑
A

∑
B 	=A

G MA MB

[(
nAB · vA

)
n j

ABn(k
ABra)

A −7n j
ABv

(k
A ra)

A +7v
j
An(k

ABra)
A

]
(continued overleaf)
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− 1

6c3

∑
A

∑
B 	=A

G MA MBrAB

[(
nAB · vA

)
n j

ABnk
ABna

AB − 11n j
ABn(k

ABv
a)
A

+ 11v
j
Ank

ABna
AB

]
+ O(c−5),

Q jkab tt= 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A

+ 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

) + O(c−4),

Q jkabc tt= 1

c3

∂

∂τ

[∑
A

MAv
j
Avk

Ara
Arb

Arc
A − 1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
Arc

A

+ 1

4

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

ABr (a
A

(
nb

ABnc)
AB −δbc)

)]
+O(c−5).

They are expressed in terms of the mass-energy MA of each body, its position r A , and velocity vA ; all po-
sition and velocity vectors are evaluated at the retarded time τ , and the radiative moments are functions
of τ only. We use rAB := |r A − r B | to denote the distance between bodies A and B , and nAB =
(r A − r B)/rAB is a unit vector that points from body B to body A. With this listing of radiative multi-
pole moments, the multipole expansion is accurate through 1.5pn order.
The wave-zone piece is given by the tail integral

h jk
W (t, x)

tt= 4G

c4 R

G M

c3

∫ ∞

0

(4)

I 〈 jk〉(τ − ζ )

(
ln

ζ

ζ + 2R/c
+ 11

12

)
dζ, (3)

which involves the entire past history of the system. It depends on the total gravitational mass of the system,
M = ∑

A MA + O(c−2), as well as the Newtonian quadrupole moment of the matter distribution,
I jk = ∑

A MAr j
Ark

A , which is made tracefree and differentiated four times with respect to its argument.
The wave-zone piece makes a contribution at 1.5pn order to the gravitational-wave field.

The computation is essentially complete, but much work remains to be done to turn these
expressions into something more concrete. First, the derivatives with respect to τ must
be evaluated, and this will require a large effort. Second, the projection to the transverse
subspace must be fully carried out, because our multipole moments still contain pieces that
can be removed by acting with (tt) jk

pq . The ultimate goal is to obtain the polarizations h+
and h× expressed entirely in terms of the positions r A and velocities vA. We shall proceed
toward this goal in the following section.
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11.4 Gravitational waves emitted by a two-body system

To simplify the task of producing concrete expressions for h+ and h×, we choose at this
stage to specialize our discussion to a binary system of orbiting bodies. The system will
therefore involve the masses M1 and M2, the positions r1 and r2, and the velocities v1 and
v2. The dynamics of the binary system is described by the post-Newtonian equations of
motion obtained back in Sec. 9.3.7.

11.4.1 Motion in the barycentric frame

We work in the post-Newtonian barycentric frame (R = 0), and according to Eqs. (9.141),
the position vector of each body is given by

r1 = M2

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4), (11.271a)

r2 = − M1

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4). (11.271b)

They are expressed in terms of the separation vector r := r12 := r1 − r2 and the relative
velocity v := v12 := v1 − v2; these have magnitudes r = |r| and v = |v|, respectively. We
have re-introduced the mass parameters

m := M1 + M2, (11.272a)

η := M1 M2

(M1 + M2)2
, (11.272b)

� := M1 − M2

M1 + M2
. (11.272c)

Differentiation of Eqs. (11.271) returns the velocity vector of each body:

v1 = M2

m
v + η�

2c2

[(
v2 − Gm

r

)
v − Gm

r
ṙn

]
+ O(c−4), (11.273a)

v2 = − M1

m
v + η�

2c2

[(
v2 − Gm

r

)
v − Gm

r
ṙn

]
+ O(c−4), (11.273b)

where ṙ := n · v is the radial component of the velocity vector, and n := r/r is a unit
vector that points from body 2 to body 1. To arrive at these expressions we have involved
the relative acceleration a := a1 − a2, which according to Eq. (9.142) is given by

a = −Gm

r2
n − Gm

c2r2

{[
(1 + 3η)v2 − 3

2
ηṙ2 − 2(2 + η)

Gm

r

]
n

− 2(2 − η)ṙ v

}
+ O(c−4). (11.274)
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11.4.2 Radiative multipole moments

We make the substitutions within the radiative multipole moments of Box 11.4 and simplify
the resulting expressions. The sums that appear in these equations must be specialized to
two bodies, and in these we set r12 = r21 = r and n12 = −n21 = n. In the course of these
(lengthy, but straightforward) computations we encounter various functions of M1 and M2

that can be rewritten in terms of the mass parameters of Eqs. (11.272). For example, it is
easy to show that

M2
1 + M2

2

(M1 + M2)2
= 1 − 2η, (11.275a)

M3
1 + M3

2

(M1 + M2)3
= 1 − 3η, (11.275b)

M4
1 − M4

2

(M1 + M2)4
= �(1 − 2η), (11.275c)

and we make many such substitutions while simplifying our expressions.
We obtain

Q jk = ηm

[
1 + 1

2
(1 − 3η)

v2

c2
− 1

2
(1 − 2η)

Gm

c2r
+ O(c−4)

]
r jr k, (11.276a)

Q jka = ηm�

c

{
r jr kva − (

v j r k + r jvk
)
ra

−
[

1

2
(1 − 5η)

v2

c2
+ 1

6
(7 + 12η)

Gm

c2r

](
v j r k + r jvk

)
ra

+
[

1

2
(1 − 5η)

v2

c2
+ 1

6
(17 + 12η)

Gm

c2r

]
r jr kva

+ 1

6
(1 − 6η)

Gm

c2r
ṙ n jr kra + O(c−4)

}
, (11.276b)

Q jkab = ηm

c2

{
(1 − 3η)v j vkrarb − 1

3
(1 − 3η)

Gm

r
n j nkrarb

− 1

6

Gm

r
r jr kδab + O(c−2)

}
, (11.276c)

Q jkabc = ηm�

c3

∂

∂τ

{
−(1 − 2η)v j vkrarbrc + 1

4
(1 − 2η)

Gm

r
n j nkrarbrc

+ 1

4

Gm

r
r jr kr (aδbc) + O(c−2)

}
. (11.276d)

We observe that in order to simplify the writing, we have replaced the qualified equality
sign

tt= (“equal after a TT projection”) by the usual equality sign.
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11.4.3 Computation of retarded-time derivatives

The near-zone contribution to h jk is given by Eq. (2) of Box 11.4, and in this we must insert
the radiative multipole moments displayed in the preceding subsection; the computation
involves taking two retarded-time derivatives of these moments. Similarly, the wave-zone
contribution to h jk is given by Eq. (3) of Box 11.4, and this involves taking four retarded-
time derivatives of I jk = ηmr jrk . Our immediate task in this subsection is to compute
these derivatives.

The general strategy is clear. The radiative multipole moments of Eqs. (11.276) are
expressed explicitly in terms of the position and velocity vectors, and these are functions of
the retarded time τ . Differentiating with respect to τ therefore involves taking derivatives
of the position and velocity vectors. Differentiating r gives v, and differentiating v gives a,
the post-Newtonian acceleration vector of Eq. (11.274). After making this substitution, the
result is once more expressed in terms of r and v, and is ready for further differentiation.

More concretely, consider the task of computing Q̈ jk . The quadrupole moment is a
function of r at order c0, and a function of r and v at order c−2. Taking a first derivative
with respect to τ produces terms in r and v at order c0, and terms in r , v, and a at
order c−2. In the post-Newtonian term we can substitute the Newtonian expression for the
acceleration vector, a = −Gmr/r3 + O(c−2), because the error incurred occurs at order
c−4 in Q̇ jk . The end result is a function of r and v at order c0, another function of r and
v at order c−2, and neglected terms at order c−4. Taking a second derivative introduces the
acceleration vector at orders c0 and c−2. In the Newtonian term we must now substitute the
post-Newtonian expression for the acceleration vector, because its pn term will influence
the c−2 piece of Q̈ jk ; but we are still allowed to insert the Newtonian acceleration within
the c−2 piece of the second derivative. The end result for Q̈ jk is a function of r and v at
order c0, and another function of r and v at order c−2.

Derivatives of other multipole moments are computed in a similar way. These computa-
tions are tedious and lengthy, but they are completely straightforward. They are aided by
the identities

vv̇ = −Gm

r2
ṙ + O(c−2), rr̈ = v2 − ṙ2 − Gm

r
+ O(c−2), (11.277)

which are consequences of the Newtonian expression for the acceleration vector.
We display the final results:

Q̈ jk = 2ηm

(
v j vk − Gm

r
n j nk

)

+ ηm

c2

⎧⎪⎪⎪⎩[−1

2
(7 + 2η)v2 + 3

2
(1 − 2η)ṙ2 + 19

2

Gm

r

]
Gm

r
n j nk

+
[

(1 − 3η)v2 − (1 − 2η)
Gm

r

]
v j vk + (3 + 2η)

Gm

r
ṙ
(
v j nk + n j vk

)⎫⎪⎪⎪⎭
+ O(c−4), (11.278a)

(continued overleaf)
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Q̈ jka = ηm�

c

⎧⎪⎪⎪⎩−3
Gm

r
ṙ n j nkna + 3

Gm

r

(
v j nk + n j vk

)
na + Gm

r
n j nkva − 2v j vkva

⎫⎪⎪⎪⎭
+ ηm�

c3

⎧⎪⎪⎪⎩[3

2
(2 − η)v2 + 9

2
(1 + η)ṙ2 − 1

3
(31 − 9η)

Gm

r

]
Gm

r

(
v j nk + n j vk

)
na

− (15 + 2η)
Gm

r
ṙ v j vkna

+
[
−3

2
(4 − 3η)v2 + 5

2
(1 − 3η)ṙ2 + 2

3
(29 − 3η)

Gm

r

]
Gm

r
ṙ n j nkna

+
[

1

2
(4 − η)v2 − 3

2
(1 − η)ṙ2 − 1

3
(25 − 3η)

Gm

r

]
Gm

r
n j nkva

− (3 + 2η)
Gm

r
ṙ
(
v j nk + n j vk

)
va

+
[
−(1 − 5η)v2 + (1 − 4η)

Gm

r

]
v j vkva

⎫⎪⎪⎪⎭ + O(c−5), (11.278b)

Q̈ jkab = ηm

c2

⎧⎪⎪⎪⎩5(1 − 3η)
Gm

r
ṙ
(
v j nk + n j vk

)
nanb

+ (1 − 3η)

(
v2 − 5ṙ2 + 7

3

Gm

r

)
Gm

r
n j nknanb

− 14

3
(1 − 3η)

Gm

r
v j vknanb

− 8

3
(1 − 3η)

Gm

r

(
v j nk + n j vk

)(
vanb + navb

)
+ 2(1 − 3η)v j vkvavb + 2(1 − 3η)

Gm

r
ṙ n j nk

(
vanb + navb

)
− 2

3
(1 − 3η)

Gm

r
n j nkvavb + 1

6

Gm

r

(
v2 − 3ṙ2 + Gm

r

)
n j nkδab

+ 1

3

Gm

r
ṙ
(
v j nk + n j vk

)
δab − 1

3

Gm

r
v j vkδab

⎫⎪⎪⎪⎭ + O(c−4), (11.278c)

Q̈ jkabc = ηm�

c3

⎧⎪⎪⎪⎩−1

4
(1 − 2η)

(
21v2 − 105ṙ2 + 44

Gm

r

)
Gm

r

(
v j nk + n j vk

)
nanbnc

+ 1

4
(1 − 2η)

(
45v2 − 105ṙ2 + 90

Gm

r

)
Gm

r
ṙ n j nknanbnc

− 51

2
(1 − 2η)

Gm

r
ṙ v j vknanbnc

− 27

2
(1 − 2η)

Gm

r
ṙ
(
v j nk + n j vk

)(
vanbnc + navbnc + nanbvc

)
− 1

4
(1−2η)

(
9v2−45ṙ2 + 28

Gm

r

)
Gm

r
n j nk

(
vanbnc + navbnc + nanbvc

)
(continued overleaf)
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+ 29

2
(1 − 2η)

Gm

r
v j vk

(
vanbnc + navbnc + nanbvc

)
+ 15

2
(1 − 2η)

Gm

r

(
v j nk + n j vk

)(
vavbnc + vanbvc + navbvc

)
− 6(1 − 2η)v j vkvavbvc − 9

2
(1 − 2η)

Gm

r
ṙ n j nk

(
vavbnc + vanbvc + navbvc

)
+ 3

2
(1 − 2η)

Gm

r
n j nkvavbvc + 1

4

(
9v2 − 15ṙ2 + 10

Gm

r

)
Gm

r
ṙ n j nkn(aδbc)

− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r

(
v j nk + n j vk

)
n(aδbc)

− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r
n j nkv(aδbc)

− 3

2

Gm

r
ṙ v j vkn(aδbc) − 3

2

Gm

r
ṙ
(
v j nk + n j vk

)
v(aδcd)

+ 3

2

Gm

r
ṙ v j vkv(aδbc)

⎫⎪⎪⎪⎭ + O(c−5). (11.278d)

In addition, we have that

(4)

I jk = 2ηm
Gm

r3

[(
3v2 − 15ṙ2 + Gm

r

)
n j nk + 9ṙ

(
v j nk + n j vk

) − 4v j vk

]
+ O(c−2). (11.279)

11.4.4 Gravitational-wave field

We may now substitute Eqs. (11.278) and (11.279) into Eqs. (2) and (3) of Box 11.4 and
obtain the gravitational-wave field. These computations are straightforward, and we express
the result as

h jk(t, x) = 2ηGm

c4 R

[
A jk[0pn] + A jk[0.5pn] + A jk[1pn]

+ A jk[1.5pn] + A jk[tail] + O(c−4)

]
, (11.280)

in which we group terms according to their post-Newtonian order (the last term, with the
label “tail,” is also of 1.5pn order). We have

A jk[0pn] = 2
⎧⎪⎩v j vk − Gm

r
n j nk

⎫⎪⎭ , (11.281a)

A jk[0.5pn] = �

c

⎧⎪⎩3
Gm

r
(n · N)

(
v j nk + n j vk − ṙ n j nk

)
+ (v · N)

(
−2v j vk + Gm

r
n j nk

)⎫⎪⎭ , (11.281b)

(continued overleaf)
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A jk[1pn] = 1

c2

⎧⎪⎪⎪⎩1

3

[
3(1 − 3η)v2 − 2(2 − 3η)

Gm

r

]
v j vk

+ 2

3
(5 + 3η)

Gm

r
ṙ
(
v j nk + n j vk

)
+ 1

3

Gm

r

[
−(10 + 3η)v2 + 3(1 − 3η)ṙ2 + 29

Gm

r

]
n j nk

+ 2

3
(1 − 3η)(v · N)2

(
3v j vk − Gm

r
n j nk

)

+ 4

3
(1 − 3η)(v · N)(n · N)

Gm

r

[
−4

(
v j nk + n j vk

) + 3ṙ n j nk

]

+ 1

3
(1 − 3η)(n · N)2 Gm

r

[
−14v j vk + 15ṙ

(
v j nk + n j vk

)
+
(

3v2 − 15ṙ2 + 7
Gm

r

)
n j nk

]⎫⎪⎪⎪⎭ , (11.281c)

A jk[1.5pn] = �

c3

⎧⎪⎪⎪⎩ 1

12
(v · N)

{
−6

[
2(1 − 5η)v2 − (3 − 8η)

Gm

r

]
v j vk

− 6(7 + 4η)
Gm

r
ṙ
(
v j nk + n j vk

)
+ Gm

r

[
3(7 − 2η)v2 − 9(1 − 2η)ṙ2 − 4(26 − 3η)

Gm

r

]
n j nk

}

+ 1

12
(n · N)

Gm

r

{
−6(31 + 4η)ṙ v j vk

+
[

3(11 − 6η)v2 + 9(7 + 6η)ṙ2 − 4(32 − 9η)
Gm

r

](
v j nk + n j vk

)
− ṙ

[
9(7 − 6η)v2 − 15(1 − 6η)ṙ2 − 2(121 − 12η)

Gm

r

]
n j nk

}

+ 1

2
(1 − 2η)(v · N)3

{
−4v j vk + Gm

r
n j nk

}

+ 3

2
(1 − 2η)(v · N)2(n · N)

Gm

r

{
5
(
v j nk + n j vk

) − 3ṙ n j nk
}

+ 1

4
(1 − 2η)(v · N)(n · N)2 Gm

r

{
58v j vk − 54ṙ

(
v j nk + n j vk

)
−
[

9v2 − 45ṙ2 + 28
Gm

r

]
n j nk

}

+ 1

12
(1 − 2η)(n · N)3 Gm

r

{
−102ṙ v j vk

−
[

21v2 − 105ṙ2 + 44
Gm

r

](
v j nk + n j vk

)
+ 15ṙ

[
3v2 − 7ṙ2 + 6

Gm

r

]
n j nk

}⎫⎪⎪⎪⎭ , (11.281d)

(continued overleaf)
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A jk[tail] = 4Gm

c3

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[(
3v2 − 15ṙ2 + Gm

r

)
n j nk + 9ṙ

(
v j nk + n j vk

)
− 4v j vk

]⎫⎪⎪⎪⎭
τ−ζ

[
ln

(
ζ

ζ + 2R/c

)
+ 11

12

]
dζ . (11.281e)

The gravitational-wave field is expressed in terms of the separation vector r = r1 − r2, the
relative velocity v = v1 − v2, the radial velocity ṙ = n · v, and the mass parameters m =
M1 + M2, η = M1 M2/m2, and � = (M1 − M2)/m. In addition, h jk depends on distance
R := |x|, retarded time τ = t − R/c, and on the angular vector N := x/R that specifies
the direction from the barycenter to the field point x. In the tail integral the terms within
the large round brackets are evaluated at τ − ζ instead of τ , and the integration from ζ = 0
to ζ = −∞ involves the entire past history of the two-body system.

11.4.5 Polarizations

Our final task is to carry out the projection to the transverse subspace, and extract the
gravitational-wave polarizations

h+,× = 2ηGm

c4 R

[
A+,×[0pn] + A+,×[0.5pn] + A+,×[1pn]

+ A+,×[1.5pn] + A+,×[tail] + O(c−4)

]
(11.282)

from Eq. (11.280). We adopt the same conventions as in Sec. 11.2.2. We re-introduce the
“orbit-adapted” coordinate system (x, y, z) and express n in terms of φ(τ ), the (retarded)
angular position of the relative orbit. The expression is n = [cos φ, sin φ, 0], and to this
we adjoin another basis vector λ = [− sin φ, cos φ, 0], which also lies in the fixed orbital
plane. We express the relative position and velocity vectors as

r = r n, v = ṙ n + r φ̇ λ, (11.283)

where r (τ ) is the (retarded) distance between the two bodies. And we re-introduce the
directions

eX = [cos ω, − sin ω, 0], (11.284a)

eY = [cos ι sin ω, cos ι cos ω, − sin ι], (11.284b)

eZ = [sin ι sin ω, sin ι cos ω, cos ι] = N, (11.284c)

which depend on the polar angles (ι, ω) that specify the direction of the detector relative to
the (x, y, z) system. We use eX and eY as a vectorial basis in the subspace transverse to the
direction of propagation, and let

h+ = 1

2

(
e j

X ek
X − e j

Y ek
Y

)
h jk, (11.285a)

h× = 1

2

(
e j

X ek
Y + e j

Y ek
X

)
h jk, (11.285b)
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denote the gravitational-wave polarizations. The construction extends to each A+ and A×
defined by Eq. (11.282).

The manipulations that return h+ and h× from Eqs. (11.280) and (11.281) are straight-
forward, but as usual they are long and tedious. The expressions that result from A jk[0pn]
are simple, and they can easily be displayed here:

A+[0pn] = 1

2

[
ṙ2 + (r φ̇)2 − (G M/r )

]
S2

+ 1

2

[
ṙ2 − (r φ̇)2 − (G M/r )

]
(1 + C2) cos 2ψ

− ṙ (r φ̇)(1 + C2) sin 2ψ, (11.286a)

A×[0pn] = [
ṙ2 − (r φ̇)2 − (G M/r )

]
C sin 2ψ + 2ṙ (r φ̇)C cos 2ψ, (11.286b)

where S := sin ι, C := cos ι, and ψ := φ(τ ) + ω. The polarizations associated with
A jk[tail] are also relatively simple:

A+[tail] = Gm

c3
S2

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 − (r φ̇)2 + (G M/r )

]⎫⎪⎪⎪⎭
τ−ζ

' dζ

+ Gm

c3
(1 + C2)

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 + 7(r φ̇)2 + (G M/r )

]
cos 2ψ

⎫⎪⎪⎪⎭
τ−ζ

' dζ

− 10
Gm

c3
(1 + C2)

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3
ṙ (r φ̇) sin 2ψ

⎫⎪⎪⎪⎭
τ−ζ

' dζ, (11.287a)

A×[tail] = 2
Gm

c3
C

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 + 7(r φ̇)2 + (G M/r )

]
sin 2ψ

⎫⎪⎪⎪⎭
τ−ζ

' dζ

+ 20
Gm

c3
C

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3
ṙ (r φ̇) cos 2ψ

⎫⎪⎪⎪⎭
τ−ζ

' dζ, (11.287b)

where

' := ln

(
ζ

ζ + 2R/c

)
+ 11

12
. (11.288)

The expressions for the remaining polarizations are much, much larger, and we shall not
display them here.

11.4.6 Specialization to circular orbits

Circular motion

In this subsection we make a further specialization to circular orbital motion. This is defined
by the condition

ṙ = 0, (11.289)

so that the two bodies move while maintaining a constant relative separation. This is
undoubtedly a restriction on all possible motions, but more than this, Eq. (11.289) is also
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an approximation, because as the system loses energy to gravitational radiation (an effect
examined in Chapter 12), the orbital separation slowly decreases, and ṙ should actually
be negative even for orbits that are otherwise circular. But because this radiation-reaction
effect appears at 2.5pn order in the equations of motion, we are justified to neglect it here.

The post-Newtonian motion of a binary system in circular orbit was described back in
Sec. 10.1.2. There we showed that the angular velocity 
 := φ̇ of an orbit of radius r is a
constant given by


2 = Gm

r3

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
. (11.290)

This is a post-Newtonian generalization of the usual Keplerian relation 
2 = Gm/r3.
(When radiation-reaction effects are included, r slowly decreases, and this causes 
 to
slowly increase.) It follows that the orbital velocity v = r
 is given by

v2 = Gm

r

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
. (11.291)

Post-Newtonian expansion parameter

The post-Newtonian expansion of the gravitational-wave field is formally an expansion in
powers of c−1, but physically it is an expansion in powers of a dimensionless quantity such
as v/c. There are many such quantities that could be adopted as an expansion parameter.
Equations (11.290) and (11.291) suggest, for example, that

√
Gm/(c2r ) could be selected,

and this would indeed be a valid substitute for v/c. Another choice is

β :=
(

Gm


c3

)1/3

, (11.292)

which has the important advantage of being defined in terms of the orbital frequency 
. As
we shall see below, 
 is intimately related to the frequency of the gravitational waves, and
it can therefore be measured directly. This is unlike v or r , which are coordinate-dependent
variables that cannot be measured. It is easy to show, using Eqs. (11.290) and (11.291), that

v/c = β

[
1 − 1

3
(3 − η)β2 + O(β4)

]
(11.293)

and

Gm

c2r
= β2

[
1 + 1

3
(3 − η)β2 + O(β4)

]
. (11.294)

We shall henceforth adopt β as a meaningful post-Newtonian parameter, and re-express the
gravitational-wave polarizations of Eq. (11.282) as expansions in powers of β.

Gravitational-wave polarizations

The polarizations produced by a binary system in circular orbit are obtained by following
the general recipe described in Sec. 11.4.5, making use of Eqs. (11.289), (11.293), and
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(11.294). After expanding in powers of β and evaluating the tail integrals (as detailed
below), we arrive at

h+,× = 2ηGm

c2 R

(
Gm


c3

)2/3

H+,×, (11.295a)

H+,× := H [0]
+,× + �β H [1/2]

+,× + β2 H [1]
+,× + �β3 H [3/2]

+,× + β3 H tail
+,× + O(β4), (11.295b)

where

H [0]
+ = −(1 + C2) cos 2#, (11.296a)

H [1/2]
+ = −1

8
S(5 + C2) cos # + 9

8
S(1 + C2) cos 3#, (11.296b)

H [1]
+ = 1

6

[
(19 + 9C2 − 2C4) − (19 − 11C2 − 6C4)η

]
cos 2#

− 4

3
(1 − 3η)S2(1 + C2) cos 4#, (11.296c)

H [3/2]
+ = 1

192
S
[
(57 + 60C2 − C4) − 2(49 − 12C2 − C4)η

]
cos #

− 9

128
S
[
(73 + 40C2 − 9C4) − 2(25 − 8C2 − 9C4)η

]
cos 3#

+ 625

384
(1 − 2η)S3(1 + C2) cos 5#, (11.296d)

H tail
+ = −4(1 + C2)

{
π

2
cos 2# + [

γ + ln(4
R/c)
]

sin 2#

}
, (11.296e)

and

H [0]
× = −2C sin 2#, (11.297a)

H [1/2]
× = −3

4
SC sin # + 9

4
SC sin 3#, (11.297b)

H [1]
× = 1

3
C
[
(17 − 4C2) − (13 − 12C2)η

]
sin 2#

− 8

3
(1 − 3η)S2C sin 4#, (11.297c)

H [3/2]
× = 1

96
SC

[
(63 − 5C2) − 2(23 − 5C2)η

]
sin #

− 9

64
SC

[
(67 − 15C2) − 2(19 − 15C2)η

]
sin 3#

+ 625

192
(1 − 2η)S3C sin 5#, (11.297d)

H tail
× = −8C

{
π

2
sin 2# − [

γ + ln(4
R/c)
]

cos 2#

}
, (11.297e)

where

# := φ + ω = 
(t − R/c) + ω. (11.298)
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H
+,

 ×

τ/P

1
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plus polarization
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Fig. 11.4 The polarizations H+ and H× as functions of retarded time τ , in units of the orbital period P. The curves are displayed
for a mass ratio M1/M2 = 10, a post-Newtonian parameterβ = 0.4, an inclination angle ι = 85◦, and a
longitude of pericenterω = 0◦.

We recall that m = M1 + M2, η = M1 M2/m2, � = (M1 − M2)/m, C := cos ι, and S :=
sin ι. Equations (11.296) and (11.297) imply that at leading order in a post-Newtonian ex-
pansion, the gravitational wave oscillates at twice the orbital frequency; the post-Newtonian
corrections contribute additional frequencies and the signal is therefore modulated. See
Fig. 11.4 for an illustration.

The tail terms listed in Eqs. (11.296) and (11.297) are interesting. They involve the math-
ematical constants π and γ � 0.5772 (Euler’s number), and they also involve a logarithmic
term that depends on 
R/c. The tail terms are best interpreted as giving rise to a correction
to #, the quantity that determines the phase of the gravitational wave. Indeed, it is a simple
matter to show that the Newtonian and tail contributions to h+ and h× can be combined
and expressed as

H [0]
+ + β3 H tail

+ = −(1 + C2)
(
1 + 2πβ3

)
cos 2#∗, (11.299a)

H [0]
× + β3 H tail

× = −2C
(
1 + 2πβ3

)
sin 2#∗. (11.299b)

These expressions involve an amplitude correction equal to 2πβ3, and a new phase function
given by

#∗ = # − 2β3
[
γ + ln(4
R/c)

] = 


(
t − R/c − 2Gm

c3
ln

4
R

c
+ constant

)
.

(11.300)

It is this shifted phase function that informs us, at long last, that the radiation propagates not
along the mathematical light cones of Minkowski spacetime, but along the true, physical
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light cones of a curved spacetime. Indeed, the logarithmic term in Eq. (11.300) represents
the familiar Shapiro time delay, the extra time required by a light wave, or a gravitational
wave, to climb up a gravitational potential well created by a distribution of matter with total
mass m. This effect was studied back in Sec. 10.2.5, and apart from irrelevant constant
factors, the term (2Gm/c3) ln R can be seen to originate from Eq. (10.100), in the special
case in which the wave travels in the radial direction, so that robs + robs · k = 2robs.

Evaluation of the tail integrals

We must still evaluate the tail integrals, and show that they lead to the results displayed in
Eqs. (11.296) and (11.297). We start with Eqs. (11.287), which we specialize to circular
orbits by involving Eqs. (11.289), (11.293), and (11.294). After conversion to the notation
of Eq. (11.295), we find that

H tail
+ = 8(1 + C2)


∫ ∞

0
cos(2# − 2
ζ )

[
ln

ζ

ζ + 2R/c
+ 11

12

]
dζ, (11.301a)

H tail
× = 16C


∫ ∞

0
sin(2# − 2
ζ )

[
ln

ζ

ζ + 2R/c
+ 11

12

]
dζ. (11.301b)

To evaluate this we change the variable of integration to y := 2
ζ and introduce k :=
4
R/c to simplify the notation. The tail integrals become

H tail
+ = 4(1 + C2)

∫ ∞

0
cos(2# − y)

[
ln

y

y + k
+ 11

12

]
dy, (11.302a)

H tail
× = 8C

∫ ∞

0
sin(2# − y)

[
ln

y

y + k
+ 11

12

]
dy. (11.302b)

Expanding the trigonometric functions, this is

H tail
+ = 4(1 + C2)

(
Jc cos 2# + Js sin 2#

)
, (11.303a)

H tail
× = 8C

(
Jc sin 2# − Js cos 2#

)
, (11.303b)

where

Jc :=
∫ ∞

0
cos(y)

[
ln

y

y + k
+ 11

12

]
dy, (11.304a)

Js :=
∫ ∞

0
sin(y)

[
ln

y

y + k
+ 11

12

]
dy. (11.304b)

These integrals are ill-defined, because the function within square brackets behaves as
11
12 − k/y for large y, and the constant term prevents the convergence of each integral.
This, however, is an artificial problem that comes as a consequence of our (unphysical)
approximation 
 = constant. In reality, the two-body system undergoes radiation reaction,
and 
 slowly decreases as ζ increases toward ∞. (Recall that r decreases as time increases,
which causes 
 to increase as time increases; but recall also that the tail term integrates
towards the past, so that 
 decreases as ζ increases.) This effect does not alter substantially
the logarithmic portion of the integral, but it is sufficient to ensure the convergence of the
constant term.
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The integrals can be defined properly by inserting a convergence factor within the inte-
grand. Alternatively, and this practice is consistent with what was done back in Sec. 11.3.7,
we can integrate by parts and simply discard an ambiguous (and unphysical) boundary term
at y = ∞. Proceeding along those lines, we find that our integrals are equivalent to

Jc = −
∫ ∞

0

k sin y

y(y + k)
dy, (11.305a)

Js =
∫ ∞

0

k(cos y − 1)

y(y + k)
dy, (11.305b)

which are well defined. They can even be evaluated in closed form:

Jc = −π

2
+ π

2
cos k + Ci(k) sin k − Si(k) cos k

= −π

2
+ O(k−1), (11.306a)

Js = −γ − ln k − π

2
sin k + Ci(k) cos k + Si(k) sin k

= −γ − ln k + O(k−2), (11.306b)

where γ is Euler’s constant, Ci(k) is the cosine integral, and Si(k) is the sine integral (defined,
for example, in Sec. 5.2 of Abramowitz and Stegun’s Handbook of mathematical functions
(1975)). The approximate forms neglect terms of order k−1 = (4
R/c)−1 ∼ (λc/R) and
smaller, and these are small by virtue of the fact that the gravitational-wave field is evaluated
in the far-away wave zone, where R � λc.

Collecting results, we find that

H tail
+ = −4(1 + C2)

{
π

2
cos 2# + [

γ + ln(4
R/c)
]

sin 2#

}
, (11.307a)

H tail
× = −8C

{
π

2
sin 2# − [

γ + ln(4
R/c)
]

cos 2#

}
, (11.307b)

and these expressions have already been presented in Eqs. (11.296) and (11.297).

11.4.7 Beyond 1.5pn order

The calculations of this section were long and arduous, but as it turns out, they were merely
child’s play. At the time of writing, the gravitational waves for binary systems in circular
motion have been calculated all the way out to 3.5pn order, and this is a much, much
larger challenge. At 2pn order, for example, one finds not only the expected “standard”
corrections of order β4, but also tail contributions generated by the 0.5pn order terms.
At 2.5pn order one finds tails generated by the 1pn terms, 1pn corrections to the 1.5pn

tail terms, as well as standard 2.5pn terms. At 3pn order there are, in addition to the
standard terms, tails generated by the normal 1.5pn terms, 1.5pn corrections to the 1.5pn

tail terms, and completely new “tails of tails” terms: tails generated by the 1.5pn tails. These
formidable calculations have been carried out by a number of groups around the world, at
an enormous cost of labor and sweat (perhaps even blood). There was a strong motivation
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behind this large effort: the measurement by laser interferometric detectors of gravitational
waves emitted by compact binary systems involving neutron stars or black holes relies in
an essential way on these very accurate theoretical predictions, which allow the extremely
weak signals to be distinguished from noise. Data analysis relies on a bank of templates
constructed from these waveforms, and cross-correlation of the detector output with the
templates can reveal a signal that would otherwise be lost in the noisy data stream. In this
way theorists, who build the templates, work hand in hand with experimentalists, who build
the detectors, toward the successful measurement of gravitational waves.

11.5 Gravitational waves and laser interferometers

Thus far, in this long chapter on gravitational waves, we have said very little about the
actual detection of these waves, and indeed we intend to leave it that way. The attempts to
detect gravitational waves, from the pioneering experiments carried out by Joseph Weber
in the 1960s and 1970s using suspended cylinders of aluminum, to the present international
effort involving laser interferometry, pulsar timing, and cosmic microwave background
observations, is a story rich in sociology, history, technological development, and big-
science politics. But it is not the main focus of this book. We refer readers who wish to
learn more about the detection aspects to a number of excellent resources, listed at the end
of this chapter.

Having come this far, however, and having produced the waveforms h+ and h× in a
ready-to-use form for various sources and in various approximations, our coverage would
seem incomplete if we did not make some attempt to connect them with the output of
a gravitational-wave detector. It therefore seems appropriate to conclude this chapter by
showing how h+ and h× can be measured in one of the leading approaches to gravitational-
wave detection, laser interferometry.

In its most schematic realization, a laser interferometric gravitational-wave detector
works just like the interferometer used by Michelson in the late 1800s to measure the
speed of light and search for evidence of an “aether.” The real-life interferometers at the
Earth-based LIGO, Virgo, Geo600, and KAGRA observatories, and the one envisioned for
a space-based detector (known in 2013 as eLISA), are much more sophisticated than this,
but this simple model is adequate and captures the essential physics.

A laser interferometer consists of a laser source, a beam splitter, and two end mirrors
mounted on test masses imagined to be freely moving in spacetime (although in reality
they can be suspended by thin wires). The arms of the interferometers are taken to be
perpendicular to each other, although as we shall see, this is not an essential feature of the
design. The laser beam is divided in two at the beam splitter, and each beam travels along
one arm of the interferometer, reflects off the test mass, and returns to the beam splitter to
be recombined with the other beam. The relative phase of the beams determines whether
they produce a bright or dark spot when the recombined beam is measured by a photon
detector. Since the initial phases at the beam splitter are identical, the phase difference ��
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depends on the difference in travel time along the two arms. We can write

�� = 2πν(2L1/c − 2L2/c) , (11.308)

where ν is the frequency of the laser light, L1 and L2 are the armlengths, and 2L1/c and
2L2/c are the travel times along each arm (forward and back).

With the origin of the coordinate system placed at the beam splitter, the test mass at
the end of the first arm is at a position ξ 1(t), and the test mass at the end of the second
arm is at ξ 2(t). In the absence of a gravitational wave, the arms would have equal lengths,
and we would have ξ 1 = L0e1 and ξ 2 = L0e2, in which L0 is the unperturbed length of
each arm, and e1, e2 are unit vectors pointing in the direction of each arm. In the presence
of a gravitational wave, the position of each test mass varies with time. Assuming that
the armlength L0 is much shorter than the wavelength λ of the gravitational wave, the
displacement is described by Eq. (11.29), and we have

ξ
j

1 = L0

(
e j

1 + 1

2
h jk

TTek
1

)
, (11.309a)

ξ
j

2 = L0

(
e j

2 + 1

2
h jk

TTek
2

)
. (11.309b)

The length of each arm is then given by

L1 = L0

(
1 + 1

2
h jk

TTe j
1ek

1

)
, (11.310a)

L2 = L0

(
1 + 1

2
h jk

TTe j
2ek

2

)
, (11.310b)

to first order in h jk
TT, and the phase difference at beam recombination is

�� = 4πνL0

c

1

2

(
e j

1ek
1 − e j

2ek
2

)
h jk

TT. (11.311)

If we express the gravitational-wave field as in Eq. (11.6), h jk = (G/c4 R)A jk , this is

�� = 4πνGL0

c5 R
S(t), (11.312)

in which

S(t) = 1

2

(
e j

1ek
1 − e j

2ek
2

)
A jk

TT(τ, N) (11.313)

is the detector’s response function. We recall that R is the distance to the source, that N is a
unit vector pointing from the source to the detector, and that τ := t − R/c is retarded time.

To calculate S(t) we decompose A jk
TT in a transverse basis formed by the unit vectors eX

and eY , which are perpendicular to the direction of propagation eZ = N . This decompo-
sition was detailed back in Sec. 11.1.7, and we use the notation introduced in Sec. 11.2.2.
We have that

A jk
TT = (

e j
X ek

X − e j
Y ek

Y

)
A+ + (

e j
X ek

Y + e j
Y ek

X

)
A×, (11.314)
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e1

e2

e3
e′1

e′2

e′3

eX

eY

θ

φ

ψ

e′1

e′2

Fig. 11.5 Relation between the detector basis (e1, e2) and the transverse basis (eX, eY ).

and substitution within Eq. (11.313) produces

S(t) = F+ A+(t − R/c) + F× A×(t − R/c), (11.315)

in which

F+ := 1

2

(
e j

1ek
1 − e j

2ek
2

)(
e j

X ek
X − e j

Y ek
Y

)
, (11.316a)

F× := 1

2

(
e j

1ek
1 − e j

2ek
2

)(
e j

X ek
Y + e j

Y ek
X

)
, (11.316b)

are the detector pattern functions of the laser interferometer, which describe the angular
response of the detector to each gravitational-wave polarization. Note that in general, the
detector measures a linear superposition of the gravitational-wave polarizations.

To calculate F+ and F× we must relate the detector basis e1 and e2 to the transverse
basis eX and eY . We imagine that when viewed from the detector’s vantage point, the
source of gravitational waves is situated in a direction −N = [sin θ cos φ, sin θ sin φ, cos θ ],
described by polar angles (θ, φ) defined relative to the detector basis. The vectors (e1, e2, e3)
can then be related to (eX , eY , eZ ) by a sequence of simple operations illustrated in Fig. 11.5.
From the detector basis we first form an intermediate basis (e′

1, e′
2, e′

3) by performing two
elementary rotations. The first is a rotation by an angle φ around the e3-axis, to align the
rotated e1-axis in the direction of −N projected down to the 1-2 plane. The second is a
rotation by an angle θ around the new e2-axis, to align the rotated e3-axis in the direction
of −N . It is easy to show that the detector basis is related to the intermediate basis by

e1 = cos θ cos φ e′
1 − sin φ e′

2 + sin θ cos φ e′
3, (11.317a)

e2 = cos θ sin φ e′
1 + cos φ e′

2 + sin θ sin φ e′
3, (11.317b)

e3 = − sin θ e′
1 + cos θ e′

3. (11.317c)

The vectors e′
1 and e′

2 are transverse to the direction of propagation N = −e′
3, but they

are not equal to the transverse vectors eX and eY . Indeed, these vectors will in general be
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related by a rotation of angle ψ around N – recall the discussion surrounding Eq. (11.41).
This rotation is described by

e′
1 = cos ψ eX + sin ψ eY , (11.318a)

e′
2 = sin ψ eX − cos ψ eY , (11.318b)

e′
3 = −eZ , (11.318c)

and we see that the transformation also includes a reflection across the transverse plane,
to bring the third axis in alignment with the direction of propagation. Since each vectorial
basis must be right-handed, we get an unusual orientation of the eY vector relative to e′

2.
The combined transformation is

e1 = (cos θ cos φ cos ψ − sin φ sin ψ) eX + (cos θ cos φ sin ψ + sin φ cos ψ) eY

− sin θ cos φ eZ , (11.319a)

e2 = (cos θ sin φ cos ψ + cos φ sin ψ) eX + (cos θ sin φ sin ψ − cos φ cos ψ) eY

− sin θ sin φ eZ , (11.319b)

e3 = − sin θ cos ψ eX − sin θ sin ψ eY − cos θ eZ , (11.319c)

and making the substitutions in Eq. (11.316) returns

F+ = 1

2
(1 + cos2 θ ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (11.320a)

F× = 1

2
(1 + cos2 θ ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ, (11.320b)

after simplification. We see that there are directions in the sky, for example θ = π
2 and

φ = π
4 , for which the laser interferometer is unable to detect any wave.

Measurement of gravitational waves with laser interferometry does not require the arms
to be perpendicular to each other, as we have taken them to be in this discussion. For the
proposed space-based eLISA interferometer, for example, the angle between the arms will
be 60o. In fact, it can be shown (see Exercise (11.8) that for an interferometer whose arms
make an angle χ , the response function S(t) is the same as in Eqs. (11.315) and (11.320),
but with the overall response reduced by a factor of sin χ . This simple result follows when
the arms are oriented symmetrically in the laboratory basis, so that each arm makes the
same angle π

4 − 1
2 χ with respect to the e1 and e2 axes.

11.6 Bibliographical notes

The physics of gravitational waves features a wealth of aspects that could not all be covered
in this book, even in such a long chapter. For a more comprehensive treatment the reader
is invited to consult the few books devoted entirely to this rich subject, including Saulson
(1994), Maggiore (2007), and Creighton and Anderson (2011).

The quadrupole-formula controversy described in Box 11.2 is related in much more
detail in Daniel Kennefick’s wonderful book Traveling at the Speed of Thought, published
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in 2007; the phrase is due to Eddington (1922), who was referring specifically to the
unphysical gauge modes contained in the theory. The Einstein–Rosen paper eventually
appeared in 1937 in the Journal of the Franklin Institute, a publication that specializes in
engineering and applied mathematics; the identity of the mysterious Physical Review referee
was finally revealed by Kennefick in his 2005 Physics Today article. Another reference cited
in Box 11.2 is Ehlers et al. (1976), and a useful summary of the controversy is presented in
Walker and Will (1980).

The gravitational-wave polarizations corresponding to a binary system in eccentric mo-
tion (Sec. 11.2.2) were first calculated by Wahlquist (1987). The elastic deformation of
a neutron star and its potential for gravitational-wave emissions (Sec. 11.2.3) has been
investigated by a number of researchers; representative papers are Ushomirsky, Cutler and
Bildsten (2000) and Owen (2005). Gravitational waves produced during tidal encounters
(Sec. 11.2.4) were first studied by Turner (1977) and Will (1983).

Wagoner and Will (1976) were the first to calculate the post-Newtonian corrections to
the gravitational-wave signal of a binary system, though with considerably less rigor than
displayed in Secs. 11.3 and 11.4. Our calculations are patterned after Will and Wiseman
(1996), who actually carry them out through second post-Newtonian order; the final results
for the polarizations h+ and h× (through 2pn order) are neatly presented in Blanchet
et al. (1996). Higher-order post-Newtonian calculations are reviewed in Blanchet (2006),
and at the time of writing, the most recent results on 3.5pn waveforms were obtained by Faye
et al. (2012).

The physics of gravitational-wave detectors, touched upon ever so briefly in Sec. 11.5, is
described much more thoroughly in Saulson (1994), Maggiore (2007), and Creighton and
Anderson (2011). A nice introduction to the workings of a laser interferometric detector is
provided by Black and Gutenkunst (2003).

11.7 Exercises

11.1 Consider a gravitational-wave field hαβ in the far-away wave zone, satisfying the
harmonic gauge condition. Prove by direct calculation that

R0 j0k = − 1

2c2
(tt) jk

pq∂ττ h pq .

11.2 We know that in the far-away wave zone, the effective energy-momentum pseudoten-
sor falls off at least as fast as R−2. Thus we can write the relaxed Einstein equation
in harmonic gauge in the form

�hαβ = O(R−2) .

Show that the general solution of this equation is given by

hαβ = Aαβ(τ, N)

R
+ O(R−2) ,
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where Aαβ is an arbitrary function of τ = t − R/c and the unit vector N . Show that
the harmonic gauge condition ∂βhαβ = 0 gives rise to the constraint

∂τ Aα0 − N j ∂τ Aα j = O(R−1) .

11.3 An alternative way to study the polarizations of gravitational waves in the far-away
wave zone is to focus on the Riemann tensor, and to exploit the fact that the waves,
to lowest order in post-Minkowskian theory, propagate along null directions with
respect to the background Minkowski spacetime. The idea, following Ted Newman
and Roger Penrose, is to express the components of Rαβγ δ on a basis of complex null
vectors, defined by

�α := (1, N) , nα := 1
2 (1, −N) ,

mα := 1√
2
(0, ϑ + iϕ) , m̄α := 1√

2
(0, ϑ − iϕ) .

Here �α is an outgoing null vector tangent to the gravitational waves, nα is an
ingoing null vector, and ϑ and ϕ are defined as in Eqs. (11.37) and (11.38). Complex
conjugation converts mα to m̄α and vice versa.
(a) Prove the following properties of the basis vectors:

�α = −c∂α(t − R/c) , nα = − c
2 ∂α(t + R/c) ,

�α�α = nαnα = mαmα = m̄αm̄α = 0 ,

�αnα = −1 , mαm̄α = 1 ,

ηαβ = −2�(αnβ) + 2m(αm̄β) .

(b) Assume that the Riemann tensor in the far-away wave zone can be expressed as
Rαβγ δ = Aαβγ δ/R + O(R−2), in which Aαβγ δ is an arbitrary function of retarded
time τ := t − R/c and the unit vector N . Show that

∂μ Rαβγ δ = −1

c
�μ∂τ Rαβγ δ + O(R−2) .

(c) Making use of this differentiation rule, use the linearized Bianchi identities

∂ε Rαβγ δ + ∂δ Rαβεγ + ∂γ Rαβδε = 0

to show that only the six components Rnpnq can be non-zero, where the indices
(p, q) run over the values �, m, and m̄. In this notation, for example, Rn�n� stands
for Rαβγ δnα�βnγ �δ . You may ignore any constant of integration that arises when
integrating with respect to retarded time.

(d) Calculate the Ricci tensor, and show that the vacuum Einstein field equations
give rise to the four additional constraints

Rn�n� = Rn�nm = Rn�nm̄ = Rnmnm̄ = 0 .

Show that there are only two unconstrained components, represented by Rnmnm

and its complex conjugate (or equivalently, by its real and imaginary parts). These
are the gravitational-wave modes, as represented by the Riemann tensor.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

621 11.7 Exercises

(e) Show that the link between the remaining components of the Riemann tensor and
the gravitational-wave polarizations is provided by

Rnmnm = − 1

2c2
∂ττ hmm = − 1

2c2
∂ττ (h+ + ih×) .

11.4 Consider the Landau–Lifshitz formulation of the Einstein field equations, as reviewed
in Sec. 6.1.1. Assuming that the Landau–Lifshitz pseudotensor falls off as R−2 in the
far-away wave zone, the vacuum field equations can be expressed as

∂μν Hαμβν = O(R−2) ,

where Hαμβν := gαβgμν − gαμgβν . We wish to formulate these equations in a gauge
that is not harmonic. Instead we choose to impose the gauge conditions

h0 j = 0 , ημνhμν = 0 ,

in which hαβ := ηαβ − gαβ .
(a) Write out the (00), (0 j) and ( jk) field equations explicitly, using the gauge

conditions to simplify the expressions. Keep the equations linear in hαβ , and set
the right-hand sides equal to zero; the O(R−2) residuals are not important for
this problem.

(b) Show that the field equations are invariant under a further gauge transformation
described by

hαβ → hαβ − ∂αζ β − ∂βζ α + (
∂μζ μ

)
ηαβ ,

in which ζ α is chosen to preserve the four conditions already adopted.
(c) Show that the residual gauge freedom can be exploited to express the gravitational

potentials in the TT gauge.
(d) Show that the field equations then reduce to wave equations for h jk

TT.

11.5 In this problem we examine the response of a free particle to a gravitational wave
propagating in the z-direction, in the reference frame of an observer. In the absence of
other forces, the particle’s motion relative to the observer is governed by Eq. (11.28).
Let the particle undergo a small displacement relative to an unperturbed location at a
distance L from the observer. This is described by ξ j (t) = (L + δξ )e j , in which δξ

depends on time, and the direction e j is expressed in terms of polar angles θ and φ.
(a) Show that

d

dt
δξ = 1

2
L sin2 θ

(
cos 2φ ∂τ h+ + sin 2φ ∂τ h×

)
,

where h+ and h× are the gravitational-wave polarizations as measured in the
observer’s reference frame.

(b) Letting h+ = A+ cos ωt and h× = A× sin ωt , calculate 1
2 m〈(dδξ/dt)2〉, the time-

averaged kinetic energy of the particle, as a function of A+, A×, ω, and direction.
(c) The “antenna pattern” of this gravitational-wave detector is defined to be the

averaged kinetic energy acquired by the particle for a given orientation relative
to the incident wave, divided by the maximum kinetic energy. Plot the antenna
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pattern as a function of θ and φ for each polarization. Present them as parametric
plots, either as 3D plots or as 2D plots in various planes. Discuss the properties
of the patterns.

11.6 Consider an array of particles that are able to move freely in the x-y plane. A gravita-
tional wave impinges on the plane in the z direction. It is described by polarizations
h+ and h× defined relative to the x-y-z basis.
(a) Calculate the acceleration field ξ̈ experienced by the particles. Draw the lines of

force in the x-y plane when the wave is a pure + polarization, and when it is
a pure × polarization. How does the pattern change when the wave is a linear
superposition of each polarization?

(b) Show that the local surface density of the particles is not affected by the gravi-
tational wave, to first order in h+ and h×. Hint: Evaluate the divergence of the
displacement velocity field, ∇ · ξ̇ .

(c) Show that the integral of the acceleration field around a closed path in the x-y
plane always vanishes. Conclude that the acceleration field can be expressed as
the gradient of a potential �GW,

ξ̈ = ∇�GW .

Determine �GW in terms of h+ and h×.

11.7 The gravitational analogue of electromagnetic bremsstrahlung is a process in which
a body of mass m1 passes by a body of mass m2 and is scattered by a small angle.
This is the limit in which v2 � Gm/b, where m is the total mass and b is the distance
of closest approach. We still assume that v � c, and in this problem we employ the
quadrupole formula to calculate the gravitational waves produced by the encounter.

The process corresponds to a Newtonian hyperbolic orbit with a very large
eccentricity e � 1. (For e > 1 the semimajor axis a is not defined, but the semi-
latus rectum p is related as always to h, the angular momentum per unit reduced
mass, by h2 = Gmp.) We introduce the velocity at infinity defined by v2

∞ := 2ε,
where ε is the conserved energy per unit reduced mass, and we define the impact
parameter b := p/e.
(a) Using the Keplerian orbit formulae derived in Chapter 3, establish the following

relations, assuming that the orbit is confined to the x-y plane, and that the orbit’s
pericenter is aligned with the x direction (so that ω = 0):

v∞ =
√

Gm

p
e

[
1 − 1

2
e−2 + O(e−4)

]
,

r = b

cos φ

[
1 − 1

e cos φ
+ O(e−2)

]
,

v = v∞
[−e−1 sin φ, 1 + e−1 cos φ, 0

] + O(e−2) .

(b) Integrate the orbital equation for φ to leading order in e−1, and show that

sin φ = v∞t

(b2 + v2∞t2)1/2
+ O(e−1) , cos φ = b

(b2 + v2∞t2)1/2
+ O(e−1) .
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(c) Using the quadrupole formula, and taking the waves to be propagating in
the direction of the vector N = [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ], show that the
gravitational-wave polarizations are given by

h+,× = 2η(Gm)2

c4bR
A+,× ,

in which η := m1m2/m2 and

A+ = −1

2
(1 + cos2 ϑ)

[
cos 2ϕ (C1 + 2C3) + 2 sin 2ϕ (S1 + S3)

]
− 1

2
sin2 ϑ C1 ,

A× = − cos ϑ
[
2 cos 2ϕ (S1 + S3) − sin 2ϕ (C1 + 2C3)

]
,

where Cn := cosn φ and Sn := sin φ cosn−1 φ. An unobservable constant contri-
bution to h+,× has been dropped.

(d) Plot A+ and A× as a function of time in units of t0 = b/v∞ for the following
sets of directions (in degrees): (ϑ, ϕ) = (0, 0), (45, 0), (90, 0), (90, 45), (90, 90),
(45, 90), and (60, 54.7), the last point corresponding to a direction in a plane
tilted 45 degrees relative to the orbital plane, and 45 degrees from the y-direction
in this plane. Running the plots from t = −10t0 to t = +10t0 will reveal the
salient features.

(e) Some of the waveforms have an unusual feature. What is it? Discuss whether it
might be observable to any practical gravitational wave detector.

11.8 Show that the angular pattern functions for an interferometer whose arms make an
angle χ with each other are the same as in Eqs. (11.320), but multiplied by sin χ .
Hint: Orient the arms in the 1-2 plane so that each one makes an angle π

4 − 1
2 χ with

respect to the e1 and e2 axes.
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12 Radiative losses and radiation reaction

In Chapters 8, 9, and 10 we examined gravitational phenomena that take place in the
near zone, the region of space which contains the source of the gravitational field, and
which is confined to a radius R that is much smaller than λc, the characteristic wavelength
of the emitted radiation. This near-zone physics excluded radiative phenomena, and the
dynamics of the system was entirely conservative. In Chapter 11 we moved to the wave
zone, situated at a distance R that is much larger than λc, and studied the gravitational
waves produced by processes taking place in the near zone; this wave-zone physics is all
about radiative phenomena. In the first part of this chapter we continue our exploration of
wave-zone physics by describing how gravitational waves transport energy, momentum, and
angular momentum away from their source. These radiative losses imply that the near-zone
physics cannot be strictly conservative, and in the second part of the chapter we identify the
radiation-reaction forces which produce the required dissipation within the system. This
chapter, therefore, is all about the linkage between the near and wave zones.

Radiative losses and radiation reaction are subtle topics in general relativity, and the
mathematical description of these phenomena is technically demanding. To ease our entry
into this subject, in Sec. 12.1 we first review the situation in the simpler context of flat-
spacetime electromagnetism. We return to gravity in Sec. 12.2, in which we develop a
general description of radiative losses in general relativity. This relies on two major pillars:
the Landau–Lifshitz formulation of the Einstein field equations, as reviewed in Chapter 6,
and a shortwave approximation, in which the gravitational potentials are expanded in
powers of λc/R � 1; this approximation is quite independent of the post-Newtonian and
post-Minkowskian expansions introduced in previous chapters. In Sec. 12.3 we apply
the general formalism to slowly-moving systems, thereby incorporating a post-Newtonian
expansion within the shortwave approximation. In this context the radiative losses can be
computed in terms of the mass and current multipole moments of the matter distribution; at
the leading order we obtain the famous quadrupole formula for the rate at which gravitational
waves remove energy from the system. In Sec. 12.4 we explore a number of astrophysical
implications of these radiative losses.

In Sec. 12.5 we return to the near zone and identify the gravitational potentials that
are involved in the dissipative dynamics of the system; these radiation-reaction terms are
seen to occur at 2.5pn order in a post-Newtonian expansion of the potentials. We apply
them to fluid dynamics in Sec. 12.6, and to the motion of an N -body system in Sec. 12.7.
In Sec. 12.8 we simplify the description of the radiation-reaction potentials and forces
by constructing transformations from the original (harmonic) spacetime coordinates to
alternative coordinates; as special cases we shall encounter the Burke–Thorne and Schäfer
radiation-reaction gauges. And finally, in Sec. 12.9 we analyze the equations that govern

624
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625 12.1 Radiation reaction in electromagnetism

the dissipative dynamics of a binary system of gravitating bodies, focusing on the secular
changes that occur in the orbital motion.

12.1 Radiation reaction in electromagnetism

Before we mount our direct attack on radiative losses and radiation reaction in gravitating
systems, we take a moment to explore these themes in the simpler context of electromag-
netism. To keep the discussion as simple as possible we ignore gravity entirely (so that
the spacetime is flat), and we assume that the motion of the charged bodies is slow. This
restricted situation is sufficient for our purposes: it features all of the essential physics that
we shall encounter in the gravitational case, and this physics can be explored without the
conceptual and technical difficulties that appear in the gravitational case. We shall describe
the major differences between the two cases at the end of this section.

12.1.1 System of charged bodies

As in Chapter 9 we examine a system of well-separated bodies moving under the influence of
their mutual interactions; each body consists of a perfect fluid described by its mass density
ρ, pressure p, and velocity field v. What is new here is that each body also possesses a
charge distribution described by a charge density ρe and a current density j e = ρev, and
that the interaction between bodies is mediated by electromagnetism instead of gravity.

Once more we work in terms of the center-of-mass variables that were first introduced
in Sec. 1.6.5. The mass of body A is m A := ∫

A ρ d3x , and its center-of-mass is situated
at r A := m−1

A

∫
A ρ x d3x . The velocity vector of body A is vA := m−1

A

∫
A ρ v d3x , and its

acceleration is given by

m AaA :=
∫

A
ρ

dv

dt
d3x . (12.1)

In addition to these quantities we introduce the body’s total charge

qA :=
∫

A
ρe d3x, (12.2)

which we take to be non-vanishing. Each body is assumed to be reflection-symmetric about
its center-of-mass, in the sense specified back in Sec. 9.1.2. And each body is assumed to
be moving slowly, in the sense that vA � c. This implies that the bodies are situated deep
within the near zone, as was first explained back in Sec. 6.3.2.

The total dipole moment of the charge distribution plays an important role in our discus-
sion. This vector is defined by

I e(t) :=
∫

ρe x d3x, (12.3)
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626 Radiative losses and radiation reaction

and the continuity equation ∂tρe + ∇ · j e = 0 ensures that its time derivative is given by

İ e =
∫

j e d3x . (12.4)

The total dipole moment can also be expressed as I e = ∑
A

∫
A ρe(r A + x̄) d3 x̄ , with x̄

denoting the position of a fluid element relative to the center-of-mass of each body. Inte-
gration of ρe x̄ produces zero when the charge distribution is reflection-symmetric about
the center-of-mass, and under these circumstances we obtain the simple expression

I e =
∑

A

qA r A (12.5)

for the total dipole moment.
The equations that govern the coupled dynamics of the bodies and their electromagnetic

field consist of Maxwell’s equations

∇ · E = 1

ε0
ρe, (12.6a)

∇ · B = 0, (12.6b)

∇ × E = −∂ B

∂t
, (12.6c)

∇ × B = μ0 j e + ε0μ0
∂ E

∂t
, (12.6d)

in which E is the electric field and B the magnetic field, and the generalization of Euler’s
equation given by

ρ
dv

dt
= −∇ p + ρe(E + v × B). (12.7)

The coupling constants ε0 and μ0 are related to the speed of light by ε0μ0 = c−2.
Substitution of Eq. (12.7) into Eq. (12.1) yields

m AaA =
∫

A
ρe E d3x +

∫
A

ρev × B d3x . (12.8)

Our first task in this section is to evaluate the right-hand side of Eq. (12.8) to leading order
in an expansion in powers of vA/c, which we shall refer to a “post-Coulombian expansion,”
in an obvious analogy with the post-Newtonian expansions of preceding chapters. The
answer, of course, is the well known Coulomb law, given by Eq. (12.18) below. We shall,
nevertheless, provide a fairly detailed derivation of this equation, because this allows us
to establish a number of results used in the derivation of the radiation-reaction force in
Sec. 12.1.4.

12.1.2 Motion of charged bodies

To obtain aA we must first compute the fields E and B, and this requires integration
of Maxwell’s equations. The homogeneous equations are solved automatically when we
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627 12.1 Radiation reaction in electromagnetism

express the fields as

E = −∂ A

∂t
− ∇�, B = ∇ × A, (12.9)

in terms of a vector potential A and a scalar potential �. The potentials can be freely
altered by a gauge transformation of the form � → � − ∂tχ , A → A + ∇χ , in which χ

is an arbitrary scalar function; the transformation leaves the fields unchanged. The gauge
freedom can be exploited to enforce the Lorenz gauge condition

∇ · A + 1

c2

∂�

∂t
= 0, (12.10)

and in this gauge the inhomogeneous Maxwell equations reduce to the wave equations

�� = −4πκ ρe, �A = −4πκ

c2
j e, (12.11)

for the potentials; here κ := (4πε0)−1.
The solutions to the wave equations are

�(t, x) = κ

∫
ρe(t − |x − x′|/c, x′)

|x − x′| d3x ′, (12.12a)

A(t, x) = κ

c2

∫
j e(t − |x − x′|/c, x′)

|x − x′| d3x ′, (12.12b)

in which the integration domains are limited to the volume occupied by the charge dis-
tribution. Techniques to evaluate such retarded integrals in the near zone were developed
in Sec. 6.3.4. The main strategy is to express the delayed time dependence of each source
function as a Taylor expansion about the current time t . For example, we express the charge
density ρe as

ρe(t − |x − x′|/c) = ρe − 1

c
|x − x′|∂ρe

∂t
+ 1

2c2
|x − x′|2 ∂2ρe

∂t2

− 1

6c3
|x − x′|3 ∂3ρe

∂t3
+ O(c−4), (12.13)

in which each term on the right-hand side is evaluated at time t ; the slow-motion condition
ensures that each term is smaller than the preceding one by a factor of order vA/c.

To leading order in a post-Coulombian expansion (0pc order), the scalar potential is
given by � = Ue + O(c−2), where

Ue(t, x) = κ

∫
ρe(t, x′)
|x − x′| d3x ′ (12.14)

is an instantaneous potential of a sort encountered before in the context of Newtonian and
post-Newtonian gravity. It is easy to show that the term of order c−1 in � vanishes by virtue
of charge conservation. The corresponding expression for the vector potential is of order
c−2 and makes no leading-order contribution to the equations of motion; it participates at
1pc order, along with the neglected terms of order c−2 in �.
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628 Radiative losses and radiation reaction

Substitution of the potentials into Eq. (12.9), and these fields into Eq. (12.8), produces

m Aa j
A = −

∫
A

ρe∂ jUe d3x ′ + O(c−2), (12.15)

an expression that is familiar from Newtonian gravity. As in Chapters 1 and 9 the potential
can be decomposed as Ue = Ue,A + Ue,¬A, in terms of a piece Ue,A sourced by body A and
an external piece Ue,¬A sourced by the remaining bodies. As before the body’s self-field
does not contribute to the force, and the external potential can be expressed as a Taylor
expansion about the center-of-mass r A – refer to Eq. (9.89). Our assumption that the bodies
are well separated allows us to retain only the leading term in this expansion, and we arrive
at

m Aa j
A = −qA∂ jUe,¬A(t, r A) + O(c−2). (12.16)

In addition to the post-Coulombian corrections of order c−2, this expression for the force
neglects terms that are smaller by a factor of order (RA/rAB)2 � 1, in which RA is the size
of body A while rAB is the typical inter-body distance.

The remaining steps are also familiar from Chapters 1 and 9. We differentiate the external
potential, evaluate the result at x = r A, and take the limit of well-separated bodies. We
arrive at

∂ jUe,¬A(t, r A) = −
∑
B 	=A

κqB
n j

AB

r2
AB

, (12.17)

where nAB := (r A − r B)/|r A − r B | is a unit vector that points from body B to body A,
and rAB := |r A − r B |. Our final expression for the force acting on body A is then

m AaA =
∑
B 	=A

κqAqB

r2
AB

nAB + O(c−2), (12.18)

a result that can be obtained directly from Newtonian gravity by making the replacements
G → κ , m A → −qA (on the right-hand side of the equation only), and m B → qB . Slow-
motion electromagnetism, like slow-motion gravity, is characterized by a force that is
inversely proportional to the squared distance. The main difference concerns the product
of charges: while m Am B is necessarily positive in gravity, qAqB can be of either sign in
electromagnetism; the force can be repulsive as well as attractive.

The (mechanical plus field) energy of the system of charged bodies is given by

E =
∑

A

1

2
m Av2

A +
∑

A

∑
B 	=A

κqAqB

2rAB
+ O(c−2), (12.19)

and it is easy to show that the motion keeps the energy constant: d E/dt = 0. The slow-
motion dynamics of charged bodies is conservative.

12.1.3 Radiative losses

The system, however, is known to emit electromagnetic waves, and the radiation takes
energy away from the system. The rate at which it does so, to leading order in a
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629 12.1 Radiation reaction in electromagnetism

post-Coulombian expansion of the radiation, is given by the electric dipole formula,

P = 2κ

3c3

∣∣ Ï e

∣∣2 + O(c−5), (12.20)

in which P is the total energy radiated per unit time, and Ï e is the electric dipole moment of
Eq. (12.5) differentiated twice with respect to time. The terms of order c−5 in Eq. (12.20) are
produced by changes in the magnetic dipole moment and electric quadrupole moment of the
charge distribution; higher-order terms are produced by changes in higher-order multipole
moments. For a system consisting of a single charged body moving on an accelerated
trajectory, we have Ï e = qa, where a is the acceleration, and this yields the well-known
Larmor formula P = (2κq2/3c2)|a|2.

The radiative losses described by the electric dipole formula are not accounted for in the
conservative dynamics described in the preceding subsection. We should expect, however,
that a more accurate treatment of the equations of motion would convert the statement
d E/dt = 0 into something like d E/dt = −P, which properly expresses conservation of
total (mechanical plus field plus radiation) energy in the presence of dissipation. This is our
second main task in this section: To identify the radiation-reaction terms in the equations
of motion, and to show that these produce (something like) the expected energy-balance
equation. The change in the system’s energy will correspond to the rate at which the
radiation-reaction forces do work on the bodies. This is expressed mathematically by

d E

dt
=
∑

A

F A[rr] · vA, (12.21)

in which F A[rr] is the radiation-reaction force acting on body A.

12.1.4 Radiation reaction

Because the radiated powerP scales as c−3 to leading order in a post-Coulombian expansion,
our improved treatment of the equations of motion must include terms of order c−3 in order
to account for radiation-reaction effects. A systematic post-Coulombian expansion of the
equations of motion would therefore commence with Eq. (12.18) at leading order, then
incorporate 1pc terms at order c−2, 1.5pc terms at order c−3, 2pc terms at order c−4, and
so on. Here we shall jump directly from 0pc order to 1.5pc order, and bypass the additional
conservative terms that appear at 1pc order; we shall not pursue the post-Coulombian
expansion beyond this point.

That radiation-reaction terms should appear in the equations of motion with an odd
power of c−1 reflects a deep fact about radiating systems, that they necessarily break the
time-reversal invariance of the underlying theory. Here the radiation is electromagnetic
in nature, and the theory is Maxwell’s electrodynamics. Later in the chapter the radiation
is gravitational in nature, and the theory is Einstein’s general relativity. In each case the
fundamental theory is time-reversal invariant, but the selected solutions specify a direction
for the arrow of time.

In the present context the choice of direction was made in Eqs. (12.12), when we selected
the retarded solutions to the wave equations satisfied by the potentials. This choice is
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physically well motivated: it produces fields that are causally related to the source (the field
now depends on the past behavior of the source), it produces waves that are propagating
outward, and it produces a transfer of energy away from the source. But to select the
retarded solutions is a choice nevertheless, and this choice is not dictated by the fundamental
equations of Maxwell’s theory. We could easily make a different choice and adopt instead
the advanced solutions to the wave equations. This would produce fields that are in an
anti-causal relation with the source (the field now would depend on the future behavior
of the source), radiation that is propagating inward, and a transfer of energy towards the
source. In terms of radiation reaction, the advanced solutions would give rise to an equation
of the form d E/dt = +P instead of the expected d E/dt = −P, and this would express
the (unphysical) fact that the incoming radiation brings energy to the system. And because
d E/dt is related to the radiation-reaction force by Eq. (12.21), we see that the switch from
retarded to advanced solutions changes the sign of Frr

A.
These considerations lead directly to the expectation that the radiation-reaction force

should involve odd powers of c−1 only, because an advanced solution to the wave equation
can be obtained from a retarded solution by making the substitution c → −c. Such a
change in the sign of c turns outgoing waves into incoming waves, turns the flow of energy
from outward to inward, and changes the sign of the radiation-reaction force. All terms
that come with odd powers of c−1 in the potentials � and A therefore contribute to the
radiation-reaction force; terms that come with even powers of c−1 do not change sign under
the substitution c → −c, and these give rise to the purely conservative part of the force.
To leading order in a post-Coulombian expansion, the radiation-reaction force comes from
terms that scale as c−3 in � and A.

To obtain the radiation-reaction piece of � we return to Eq. (12.13), pluck out the term
of order c−3, and insert it within Eq. (12.12). Proceeding similarly with A, we get

�rr = − κ

6c3

∂3

∂t3

∫
ρe(t, x′)|x − x′|2 d3x ′ + O(c−5), (12.22a)

Arr = − κ

c3

d

dt

∫
j e(t, x′) d3x ′ + O(c−5). (12.22b)

Further manipulations using Eqs. (12.3) and (12.4) reveal that the radiation-reaction poten-
tials are given by

�rr = κ

6c3

(
2x · ...

I e − ...
I

kk
e

)
+ O(c−5), (12.23a)

Arr = − κ

c3
Ï e + O(c−5), (12.23b)

where I kk
e := ∫

ρer2 d3x is the trace of the quadrupole-moment tensor of the charge dis-
tribution. In the scalar potential the electric dipole moment I e is differentiated three times
with respect to t ; in the vector potential it is differentiated twice.

The radiation-reaction fields are obtained by inserting the potentials within Eq. (12.9).
This yields

Err = 2κ

3c3

...
I e + O(c−5), Brr = O(c−5). (12.24)
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We see that the magnetic field vanishes at leading order, and that the electric field depends
on t only; it is uniform within the distribution of charge. Substitution of the fields into
Eq. (12.8) produces

F A[rr] = 2κ

3c3
qA

...
I e + O(c−5). (12.25)

This is the radiation-reaction force acting on body A.

12.1.5 Energy balance

The total energy of the system is given by Eq. (12.19), and differentiation of the right-hand
side with respect to t gives rise to Eq. (12.21), noting that the work done by the conservative
piece of the force accounts for the changes in the system’s potential energy. Substitution of
Eq. (12.25) produces

d E

dt
= 2κ

3c3

...
I e ·

∑
A

qAvA = 2κ

3c3

...
I e · İ e, (12.26)

where we have made use of Eq. (12.5). This can also be expressed as

d E

dt
= d

dt

(
2κ

3c3
Ï e · İ e

)
− 2κ

3c3

∣∣ Ï e

∣∣2 (12.27)

by transferring a time derivative from one dipole moment to the other. This, finally, we
write in the form

d E

dt
= −d E ′

dt
− P, (12.28)

where

E ′ := − 2κ

3c3
Ï e · İ e (12.29)

has the dimension of an energy, and P is the radiated power of Eq. (12.20).
Equation (12.28) is our statement of energy balance, the expression of conservation of

total (mechanical plus field plus radiation) energy. We see, however, that the statement is not
quite the expected d E/dt = −P; the additional term −d E ′/dt requires an interpretation.

The statement of Eq. (12.28) forces us to recognize that the exchange of energy between
the charged bodies and the electromagnetic field may take different forms. First, the kinetic
energy of the bodies may change, and so can the system’s potential energy, as defined by the
second term on the right-hand side of Eq. (12.19); these changes are accounted for by the
term d E/dt in Eq. (12.28). Second, part of the system’s energy is converted into radiation,
which propagates outward and irreversibly leaves the system; this is described by the term
−P in Eq. (12.28). But potential energy and radiation are not the only relevant forms of
field energy; there is also a form that stays bound to the system and is reversibly exchanged
between the electromagnetic field and the charged bodies. This is what is described by E ′,
as defined by Eq. (12.29). Equation (12.28) therefore describes an exchange between all
relevant forms of energy: kinetic, potential, radiation, and bound field energy.
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There are ways by which the statement of Eq. (12.28) can be simplified and turned into
the expected d E/dt = −P. One way is to assume that the conservative motion is periodic,
or that it begins and ends in a static state, and to average Eq. (12.28) over time. This
produces a coarse-grained statement of energy balance,

〈d E/dt〉 = −〈P〉. (12.30)

The contribution from d E ′/dt no longer appears, because its average is proportional to the
total change in E ′ over the time interval, and this vanishes at order c−3 under the stated
conditions. Another way is to modify the definition of the system’s total energy so that
it now includes the bound field energy E ′. The redefinition E → E + E ′ obviously turns
Eq. (12.28) into the simpler statement d E/dt = −P.

Box 12.1 Redefining the energy

The reader might feel that it is inappropriate to redefine the energy E for the sole purpose of obtaining a
desired statement of energy balance. We wish to reassure the reader: there was nothing sacred about the
initial definition of the system’s energy, and a redefinition can be entirely appropriate. It is helpful to recall
that the energy is not some rigid quantity defined a priori, but that its definition is provided by the dynamics
of themechanical system. For a conservative system, it is whatever function of the positions and velocities that
happens to be conserved. Because the zero point of energy is not fixed (at least at the non-quantum level),
the definition is not even unique.
Energy is not even conserved for radiative systems, and its definition is evenmore ambiguous. A good defi-

nition of energywould be one that is approximately constant when the radiation can be ignored, and one that
accurately reflects the long-term behavior of the system under the damping effects of the radiation leaving
the system. The short-term behavior reveals fluctuations caused by a reversible transfer of energy between
the system and the field, and an ambiguity arises because it is impossible to decompose the field energy into a
piece that is unambiguously associated with the reversible transfer, and another piece that is unambiguously
associated with the radiation. The ambiguity, however, is largely irrelevant when the fluctuations are small
compared with the dominant contribution to the energy, which is approximately conserved in the short term.
In the electromagnetic case examined here, the Coulombian energy E is of ordermv2 ∼ κq2/r , and

the field energy E ′ can be seen from Eq. (12.29) to be of order κ2q4v/(mc3r2) ∼ E(v/c)3. This is a
small correction that leads to a small ambiguity.
These remarks apply to any dissipative system. They keep their relevance when we turn to gravity, and

establish an equivalence between thework done by the radiation-reaction forces and the energy carried away
by gravitational waves.

12.1.6 Looking ahead: gravity

The remainder of this chapter is devoted to a discussion of radiative losses and radiation
reaction in the context of gravity. The conservative dynamics of fluids and bodies moving
under a mutual gravitational attraction was explored in Chapters 8, 9, and 10, where the
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equations of motion were obtained accurately through the first post-Newtonian order. The
gravitational waves emitted by these bodies were examined in Chapter 11, and our first
order of business in this chapter (Sec. 12.2) is to calculate the rates at which the waves
transport energy, linear momentum, and angular momentum away from the system. In
the case of radiated energy, we shall derive (Sec. 12.3) the famous quadrupole formula,
the gravitational analogue of Eq. (12.20); because there is no dipole radiation in general
relativity, the radiated power P must involve the quadrupole-moment tensor of the mass
distribution. Astrophysical consequences of radiative losses are explored in Sec. 12.4. We
then (Sec. 12.5) obtain the gravitational potentials – analogous to those of Eqs. (12.23) –
that give rise to the gravitational radiation-reaction force, which is computed and applied
in Secs. 12.6 through 12.9.

The treatment of the gravitational case involves computations that are much more chal-
lenging than those reviewed in this section. The reason for this is two-fold. First, general
relativity, even in its weak-field and slow-motion formulation, is intrinsically more com-
plicated than Maxwell’s electrodynamics. And second, the absence of dipole radiation
implies that the radiated power scales as c−5 instead of c−3, which was the scaling ob-
served in electromagnetism. This implies that the radiation-reaction terms in the equations
of motion will appear at order c−5 in a post-Newtonian expansion, an order that is far
removed from the c−2 order that was achieved back in Chapter 9. In terms of the usual
post-Newtonian counting, we are looking for terms of 2.5pn order in the equations of
motion, while the results obtained in Chapter 9 are accurate only through 1pn order. A
systematic treatment of the equations of motion to this order of accuracy would have to
provide conservative terms at 2pn order in addition to the desired terms at 2.5pn order. It
is a fortunate circumstance, however, that the derivation of the radiation-reaction terms at
2.5pn order is insensitive to the details that appear at 2pn order. We may, therefore, bypass
the 2pn terms entirely, and jump directly to the radiation-reaction terms that actually inter-
est us. This is analogous to what was observed in the electromagnetic case: the radiation-
reaction terms at order c−3 could be derived independently of the conservative corrections at
order c−2.

The difficulties associated with radiative losses and radiation reaction in gravity are
not just technical in nature. There are also conceptual issues that arise as a consequence
of the principle of equivalence. Consider a freely-moving observer in spacetime. As was
discussed at length in Chapter 5, such an observer moves without ever noticing a local
gravitational field, and would therefore assign a zero value to any proposed measure of
gravitational energy flux. This is quite unlike the value that he would assign to the Poynting
vector μ−1

0 E × B, which measures the flux of electromagnetic energy. Given, then, that the
principle of equivalence forbids the very existence of a “gravitational Poynting vector,” how
is one to calculate the total radiated power P? In electromagnetism one simply integrates
the normal component of the Poynting vector over a spherical surface situated in the wave
zone, and the result is the electric-dipole formula of Eq. (12.20). A corresponding recipe
is harder to identify in general relativity, and any proposed recipe must be handled with
care in light of the principle of equivalence. That systems of moving bodies governed by
gravitational interactions must lose energy to gravitational radiation is, however, very clear
on physical grounds.
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12.2 Radiative losses in gravitating systems

Our main task in this section is to establish the validity of balance equations for energy,
momentum, and angular momentum, and to find expressions for the rates at which gravi-
tational waves carry energy, momentum, and angular momentum away from their source.
We pursue a dual goal: to provide a sound foundation for a discussion of radiative losses,
and to develop a practical formalism to calculate these losses.

12.2.1 Balance equations

Our description of radiative losses in gravitating systems relies on the Landau–Lifshitz
formulation of the Einstein field equations reviewed in Sec. 6.1; in particular, it relies
on the conservation identities derived in Sec. 6.1.3. These consist of balance equations
involving the energy, linear momentum, and angular momentum of the gravitating system.
The energy-balance equation was first displayed in Eq. (6.30), which we copy here as

d E

dt
= −P, (12.31)

where E = Mc2 is the total energy contained in the system, as defined by Eq. (6.36), while

P := c

∮
∞

(−g)t0k
LL d Sk (12.32)

is the rate at which gravitational waves remove energy from the system. The momentum-
balance equation was first displayed in Eq. (6.31), which we copy as

d P j

dt
= −F j , (12.33)

where P j is the total momentum of the system, as defined by Eq. (6.37), while

F j :=
∮

∞
(−g)t jk

LL d Sk (12.34)

is the rate at which gravitational waves remove (linear) momentum from the system. And
finally, the statement of conservation of angular momentum is

d J jk

dt
= −T jk, (12.35)

where J jk is the total angular-momentum tensor, as defined by Eq. (6.38), while

T jk :=
∮

∞

[
x j (−g)t kn

LL − xk(−g)t jn
LL

]
d Sn (12.36)

is the rate at which gravitational waves remove angular momentum from the system;
Eq. (12.35) is a re-statement of Eq. (6.34). The angular-momentum vector is given by
J j = 1

2 ε
j
pq J pq , and we may define a “gravitational-wave torque vector” byT j := 1

2 ε
j
pqT

pq ,

so that d J j /dt = −T j . In these equations, tαβ

LL is the Landau–Lifshitz pseudotensor of
Eq. (6.5). The surface integrals are evaluated in the limit R → ∞, and d Sj = R2 N j d
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is an outward-directed surface element; we use the notation of Chapter 11, with R := |x|,
N := x/R, and d
 is an element of solid angle in the direction of the unit vector N .

The Landau–Lifshitz formulation of the Einstein field equations supplies a sound foun-
dation for a description of radiative losses because it achieves three essential goals: first, it
provides expressions for the radiative fluxes P, F j , and T jk ; second, it provides definitions
for the total energy E , total momentum P j , and total angular momentum J jk ; and third,
it establishes precise balance equations that describe how E , P j , and J jk change as a
result of gravitational-wave emissions. It should be pointed out that this formulation is not
unique: a different formulation of the Einstein field equations, based on other variables,
other coordinate systems, and a different choice of pseudotensors, may well produce dif-
ferent definitions for E , P j , and J jk , and different expressions for P, F j , and T jk . These
differences are of no concern, however, so long as the proposed definitions for E , P j , and
J jk are physically sensible. As we have seen previously in Secs. 7.3.2, 8.4.5, and 8.4.6,
the Landau–Lifshitz definitions, when implemented within post-Minkowskian theory or
post-Newtonian theory, are physically sensible.

12.2.2 The shortwave approximation

We begin by evaluating the gravitational-wave fluxes P, F j , and T jk . We wish to do so
in a framework that is broader than, but includes, the post-Minkowskian approximation
formulated in Chapters 6 and 7. The post-Minkowskian approximation is based on an
expansion of the gravitational potentials hαβ in powers of the gravitational constant G.
Our approach here is distinct, and our expressions will be accurate to all orders in G.
Our approach is based on a different type of approximation, which, following Misner,
Thorne, and Wheeler (1973), we term shortwave approximation. It relies on the fact that
we are interested in the gravitational potentials in the far-away wave zone, as introduced
in Sec. 11.1.1. In this region of spacetime R is much larger than λc, the characteristic
wavelength of the gravitational radiation, and we exploit this fact by using λc/R � 1 as an
expansion parameter. The shortwave approximation has already been invoked within the
context of post-Minkowskian theory in Chapter 7, refer to Box 7.7, and it has also been
invoked independently of the post-Minkowskian approximation back in Sec. 11.1. In this
subsection we develop it more systematically.

The shortwave approximation is based on an expansion of the gravitational potentials in
powers of λc/R, where R := |x| is the distance to the system’s center-of-mass. We write

hαβ = (λc/R) f αβ

1 + (λc/R)2 f αβ

2 + · · · , (12.37)

in which f αβ
n is assumed to be a function of retarded time τ := t − R/c and the angles

contained in the unit vector N := x/R. In Sec. 11.1 the shortwave expansion was truncated
at leading order; here we keep track of higher-order terms, because they are needed in our
computation of the angular-momentum flux T jk . As was pointed out previously, each f αβ

n

can be considered to be accurate to all orders in the gravitational constant G. A refined
formulation of the approximation would involve the insertion of ln R terms in Eq. (12.37) to
accommodate the presence of wave tails in the gravitational potentials, refer to Sec. 11.3.7.
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Our considerations below are not affected by these logarithmic terms, and for simplicity
we prefer to omit them from the expressions.

The assumed dependence of f αβ
n on retarded time τ := t − R/c is motivated by the fact

that according to Eq. (6.51), the gravitational potentials must satisfy a wave equation of the
form �hαβ = −(16πG/c4)ταβ , where ταβ is the effective energy-momentum pseudotensor
of Eq. (6.52). By virtue of the scaling of hαβ with λc/R, ταβ is guaranteed to be of
order (λc/R)2, and this implies that the time dependence of f αβ

1 must be contained in the
combination t − R/c. The same dependence is then fed into the remaining terms in the
expansion. These considerations rely on the fact that the gravitational potentials are taken
to satisfy the harmonic gauge condition of Eq. (6.49), ∂βhαβ = 0.

Differentiation of the potentials is facilitated by employing the identities ∂ j R = N j

and ∂ j Nk = Pjk/R, where Pjk := δ jk − N j Nk . Recalling that x0 = ct and using these
differentiation rules, we obtain

c∂0hαβ = (λc/R)∂τ f αβ

1 + (λc/R)2∂τ f αβ

2 + · · · , (12.38a)

c∂ j h
αβ = −(λc/R)N j ∂τ f αβ

1

− (λc/R)2

(
N j ∂τ f αβ

2 + c

λc
N j f αβ

1 − c

λc
P k

j

∂ f αβ

1

∂ N k

)
+ · · · (12.38b)

The expansion of c∂ j hαβ contains a number of contributions at second order. It is easy to see
that the term involving f αβ

2 is smaller than the leading term by a factor of order λc/R � 1.
The terms involving f αβ

1 are multiplied by c/λc = 1/tc, where tc is the characteristic time
scale associated with changes in the potentials, and (c/λc) f αβ

1 is comparable in size to
∂τ f αβ

1 ; these terms also are smaller than the leading term by a factor of order λc/R � 1.
To leading order in the shortwave approximation we can write that

∂μhαβ = −1

c
kμ∂τ hαβ + O(λ2

c/R2), (12.39)

in which kμ := (−1, N) is a spacetime vector that satisfies the null condition ημνkμkν = 0.
At this order the only spatial dependence that matters is contained in the overall factor of
R−1 and in the proper time τ ; the dependence contained in the vector N is subdominant,
and appears at the next order.

12.2.3 Energy andmomentum fluxes

To compute P and F j we insert Eq. (12.39) within the Landau–Lifshitz pseudotensor of
Eq. (6.5) and get, after much simplification,

(−g)tαβ

LL = c2

32πG

(
∂τ h jk

TT ∂τ hTT
jk

)
kαkβ, (12.40)

where kα = (1, N) and

h jk
TT = (tt) jk

pq h pq , (tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq , (12.41)

is the transverse-tracefree piece of the gravitational potentials, as defined back in Sec. 11.1.7.
This result is invariant under any gauge transformation (described in Sec. 11.1.5)
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that preserves the harmonic gauge conditions ∂βhαβ = 0. The easiest way to establish
Eq. (12.40) is therefore to refine the harmonic gauge to the TT gauge of Sec. 11.1.5,
in which h00 = O(λ2

c/R2), h0 j = O(λ2
c/R2), and h jk = h jk

TT + O(λ2
c/R2); the properties

N j h
jk
TT = 0 = δ jkh jk

TT simplify the calculations significantly.
The expression of Eq. (12.40) is valid to leading order in an expansion in powers of λc/R;

it is of second order, and it neglects terms of order (λc/R)3. This expression is sufficiently
accurate for substitution within Eqs. (12.32) and (12.34), and we immediately obtain

P = c3

32πG

∫
R2
(
∂τ h pq

TT ∂τ hTT
pq

)
d
 (12.42)

and

F j = c2

32πG

∫
R2 N j

(
∂τ h pq

TT ∂τ hTT
pq

)
d
. (12.43)

Because the integral is evaluated in the limit R → ∞, higher-order terms in the expansion
of (−g)tαβ

LL do not contribute to P and F j . The expressions of Eqs. (12.42) and (12.43) are
exact.

The energy and momentum fluxes can alternatively be expressed in terms of the
gravitational-wave polarizations h+ and h× introduced in Sec. 11.1.7. These are defined by
the decomposition

h jk
TT = h+

(
ϑ j ϑk − ϕ j ϕk

) + h×
(
ϑ j ϕk + ϕ j ϑk

)
(12.44)

of the TT field in terms of the transverse basis provided by the unit vectors ϑ :=
[cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ] and ϕ := [− sin ϕ, cos ϕ, 0]; these were introduced in
Eqs. (11.37) and (11.38) and they are orthogonal to N := [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ].
After inserting this decomposition within Eqs. (12.42) and (12.43) we obtain

P = c3

16πG

∫
R2
[(

∂τ h+
)2 + (

∂τ h×
)2
]

d
 (12.45)

and

F j = c3

16πG

∫
R2 N j

[(
∂τ h+

)2 + (
∂τ h×

)2
]

d
. (12.46)

These expressions, like Eqs. (12.42) and (12.43), are exact within the shortwave approxima-
tion. They are also accurate to all orders in a post-Minkowskian expansion of the potentials
in powers of G.

12.2.4 Angular-momentum flux

The leading-order expression of Eq. (12.40), unfortunately, is not sufficiently accurate
for insertion within Eq. (12.36). This can be seen from that fact that since (−g)t jk

LL is
proportional to N j N k , the integrand in Eq. (12.36) is proportional to (N j N k − N k N j )N n

and therefore vanishes. This is actually a fortunate circumstance, because the presence
of x j = RN j within the integral implies that T jk would otherwise diverge in the limit
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R → ∞. The computation of the angular-momentum flux, therefore, requires terms of
order (λc/R)3 in the expansion of the energy-momentum pseudotensor.

The result

It is wise to state the final answer before we present this long calculation:

T jk = c3

16πG

∫
R2

[
h jp

TT ∂τ hkp
TT − hkp

TT ∂τ h jp
TT − 1

2
∂τ h pq

TT

(
x j ∂k − xk∂ j

)
hTT

pq

]
d
 . (12.47)

Notice that when x j ∂k − xk∂ j acts on the spatial dependence contained in τ := t − R/c
within hTT

pq , or on the overall 1/R dependence, it produces x j N k − xk N j , which vanishes
identically; the operation is sensitive only to the angular dependence contained in N within
hTT

pq . In terms of the gravitational-wave polarizations we have

T jk = − c3

16πG

∫
R2q jk d
 (12.48)

with

q jk := (
∂τ h+

)[(
x j ∂k − xk∂ j

)
h+ − 2 cosec ϑ

(
e j

z ϕk − ϕ j ek
z

)
h×

]

+ (
∂τ h×

)[(
x j ∂k − xk∂ j

)
h× + 2 cosec ϑ

(
e j

z ϕk − ϕ j ek
z

)
h+

]
, (12.49)

where ez := [0, 0, 1] is a constant unit vector that points in the direction of the z axis, relative
to which the polar angles (ϑ, ϕ) are defined. To go from Eq. (12.47) to Eq. (12.48) we had
to account for the spatial dependence of the transverse basis vectors. If the polarizations
are expressed as functions of τ , ϑ , and ϕ, then the non-vanishing components of q jk are
given explicitly by

qxy = (
∂τ h+

)(
∂ϕh+

) + (
∂τ h×

)(
∂ϕh×

)
, (12.50a)

q yz = (
∂τ h+

)(− sin ϕ ∂ϑ h+ − cot ϑ cos ϕ ∂ϕh+ + 2 cosec ϑ cos ϕ h×
)

+ (
∂τ h×

)(− sin ϕ ∂ϑ h× − cot ϑ cos ϕ ∂ϕh× − 2 cosec ϑ cos ϕ h+
)
, (12.50b)

qzx = (
∂τ h+

)(
cos ϕ ∂ϑ h+ − cot ϑ sin ϕ ∂ϕh+ + 2 cosec ϑ sin ϕ h×

)
+ (

∂τ h×
)(

cos ϕ ∂ϑ h× − cot ϑ sin ϕ ∂ϕh× − 2 cosec ϑ sin ϕ h+
)
. (12.50c)

The expression of Eq. (12.47) was first obtained by Bryce DeWitt in 1971 while teaching a
course on general relativity at Stanford University; his lecture notes, published only recently
in 2011, contain very few details. The calculation was later repeated by Kip Thorne, who
simply stated the final result in his 1980 review article on multipole expansions. Pending
evidence to the contrary, the derivation presented below may well be the only one available
in the literature.
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Derivation

We now proceed with the derivation of Eq. (12.47). Terms that give rise to the subdominant,
(λc/R)3 piece of (−g)t jk

LL are displayed in Eq. (12.38); these are the second-order terms
in ∂μhαβ generated by ∂τ f αβ

2 , N j f αβ

1 , and derivatives of f αβ

1 with respect to the vector
N . In addition to these we have first-order terms in hαβ that enter in the metric gαβ ,
which also appears in the Landau–Lifshitz pseudotensor. A computation of (−g)t jk

LL that
includes all these contributions would be exceedingly tedious. A careful examination,
however, reveals that most do not appear in the final result for T jk , because they produce
terms proportional to N j that cancel out in the end. This analysis allows us to state that f αβ

2

makes no appearance in the final result, and that corrections of order λc/R to the Minkowski
metric ηαβ are similarly irrelevant. The computation, therefore, can be carried out safely
by setting hαβ = (λc/R) f αβ

1 and gαβ = ηαβ ; derivatives of hαβ , however, must be evaluated
accurately to second order in (λc/R), beyond the expression displayed in Eq. (12.39). As we
saw previously, the computation is simplified by adopting the TT gauge for the gravitational
potentials.

A suitable starting point for the computation is

(−g)t jk
LL = c4

16πG

(
−∂ j h pq ∂phkq − ∂kh pq ∂ph jq − ∂0h jp ∂0hkp

+ ∂ph jq ∂ phkq + 1

2
∂ j h pq ∂kh pq

)
, (12.51)

which is obtained from Eq. (6.5) and simplified by incorporating the observations made in
the preceding paragraph. In particular, h jk is taken to be in the TT gauge, so that N j h jk = 0
and δ jkh jk = 0. In addition, all terms proportional to δ jk were discarded, because they cancel
out when inserted within Eq. (12.36).

In Eq. (12.51), the operator ∂ j is understood in the usual way as holding t fixed while
differentiating with respect to x j . To proceed with the calculation, we express ∂ j acting on
a retarded function like h pq in the form

∂ j h
pq = −(N j /c)∂τ h pq + ð j h

pq , (12.52)

where the operator ð j bypasses the retarded-time dependence and operates only on the
remaining spatial dependence. When ð j acts on h pq , it generates a term of second order in
λc/R, while acting with ∂τ produces a first-order term. Keeping our expressions accurate
through order (λc/R)3, we find that Eq. (12.51) becomes

(−g)t jk
LL = c3

16πG

{
N j

(
∂τ h pq

)(
ðphkq − 1

2
ð

kh pq

)
+ N k

(
∂τ h pq

)(
ðph jq − 1

2
ð

j h pq

)
− N p

[(
∂τ h jq

)(
ðphkq

)+ (
∂τ hkq

)(
ðph jq

)]− 1

R

(
h jq∂τ hkq + hkq∂τ h jq

)}
(12.53)

when we discard terms proportional to N j N k that eventually cancel out, and exploit the
following properties of the TT gauge: N j ∂τ h jk = 0 and N j ðph jk = −h pk/R. Substitution
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of Eq. (12.53) into Eq. (12.36) produces

T jk = c3

16πG

∫
R3
(
∂τ h pq

)[
N j

ðphkq − N k
ðph jq − 1

2

(
N j

ð
k − N k

ð
j
)
h pq

]
d
.

(12.54)
To bring Eq. (12.54) to the standard form of Eq. (12.47), it is helpful to decompose

the differential operator ð j into longitudinal and transverse pieces according to ð j =
N j ðR + ðT

j , where ðR := N jð j is a partial derivative with respect to R, while ðT
j := P k

j ðk

is the transverse derivative (related to partial derivatives with respect to ϑ and ϕ). Because
Nph pq = 0, it is easy to see that ðR plays no role in the first two terms of Eq. (12.54). The
next step is to integrate these terms by parts. We write(

∂τ h pq
)
N j

ð
T
phkq = ð

T
p

(
∂τ h pq N j hkq

) − ∂τ

(
ð

T
ph pq

)
N j hkq − (

∂τ h pq
)(

ð
T
p N j

)
hkq ,

(12.55)

and observe that in the TT gauge, the harmonic condition ∂αhαq = 0 yields

∂ph pq = −Np∂τ h pq + NpðRh pq + ð
T
ph pq

= −Np R−1h pq + ð
T
ph pq

= ð
T
ph pq

= 0 . (12.56)

With ðT
p N j = P j

p/R we find that

(
∂τ h pq

)
N j

ð
T
phkq = ð

T
p

(
∂τ h pq N j hkq

) − 1

R

(
∂τ h jp

)
hkp, (12.57)

which we insert within Eq. (12.54). The total transverse derivative gives no contribution to
the integral (because the angular domain of integration has no boundary), and we finally
arrive at Eq. (12.47). At this stage the distinction between ð j and ∂ j is no longer important,
because of the antisymmetry of the second group of terms in Eq. (12.47).

To go from Eq. (12.47) to Eq. (12.48) we substitute Eq. (12.44) within the integral and
take into account the fact that the basis vectors ϑ and ϕ depend on position. A simple
calculation shows that their derivatives are given by

R ∂kϑ
j = −N j ϑk + cot ϑ ϕ j ϕk, (12.58a)

R ∂kϕ
j = −N j ϕk − cot ϑ ϑ j ϕk, (12.58b)

and ez appears in Eq. (12.49) by virtue of the identity ez = cos ϑ N − sin ϑ ϑ .
The manipulations that lead to Eq. (12.50) involve the relations x∂y − y∂x = ∂ϕ , y∂z −

z∂y = − sin ϕ ∂ϑ − cot ϑ cos ϕ ∂ϕ , and z∂x − x∂z = cos ϕ ∂ϑ − cot ϑ sin ϕ ∂ϕ , which are
well known from the theory of orbital angular momentum in quantum mechanics.

12.2.5 Isaacson’s effective energy-momentum tensor

In a series of two papers published in 1968, Richard Isaacson formulated and developed the
shortwave approximation of Sec. 12.2.2. His formulation was more general and ambitious
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than what was presented there. Instead of limiting his attention to the far-away wave zone of
an asymptotically-flat spacetime, Isaacson considered a high-frequency gravitational wave
in an arbitrary vacuum region of spacetime in which the radius of curvature R is large
compared to λc, and developed a systematic expansion of the field equations in powers of
λc/R. Writing the exact Einstein tensor as Gαβ = Gαβ

0 + Gαβ

1 + Gαβ

2 + · · · , where Gαβ

0

is the Einstein tensor of the background spacetime, Gαβ

1 the correction of order λc/R,
and Gαβ

2 the correction of order (λc/R)2, he showed that Gαβ

1 = 0 produces a linearized
propagation equation for the gravitational waves, while

Gαβ

0 = 8πG

c4
T αβ

eff := −Gαβ

2 + · · · (12.59)

determines how the energy-momentum in the waves affects the background spacetime.
After a suitable averaging procedure to eliminate terms that oscillate rapidly, the Isaacson
effective energy-momentum tensor T αβ

eff can be involved in equations such as Eqs. (12.32),
(12.34), and (12.36) to compute fluxes of energy, linear momentum, and angular momen-
tum. Computation of the effective energy-momentum tensor in the far-away wave zone of
an asymptotically-flat spacetime actually returns the right-hand side of Eq. (12.40), and
therefore leads to the same results as Eqs. (12.42) and (12.43).

There are two reasons why the Isaacson approach fails to provide a complete foundation
for the description of radiative losses in gravitating systems. First, while the Isaacson
approach correctly reproduces the expressions for P and F j that we obtained in Sec. 12.2.3,
it does not provide definitions for the system’s total energy E and total momentum P j .
In other words, Isaacson manages to supply the right-hand sides of the balance equations
(12.31) and (12.33), but fails to reveal the identity of the left-hand sides. Since the main
purpose of obtaining expressions for P and F j is to involve them in statements of energy
and momentum balance, the Isaacson approach falls short of providing a complete package.
The second failure of the Isaacson approach has to do with the angular-momentum flux
T jk . Isaacson’s effective energy-momentum tensor agrees with Eq. (12.40) in the far-away
wave zone of an asymptotically-flat spacetime, but we know from Sec. 12.2.4 that this
approximation is too crude to deliver the expression of Eq. (12.47); the flux of angular
momentum simply cannot be calculated in the Isaacson approach.

12.3 Radiative losses in slowly-moving systems

As was indicated in Sec. 12.2.2, the formalism developed in Sec. 12.2 rests on a shortwave
approximation which permits an expansion of the gravitational potentials in powers of
λc/R � 1. This approximation scheme is quite independent of the post-Minkowskian and
post-Newtonian approximations developed in preceding chapters, and the expressions for
P, F j , and T jk obtained in Secs. 12.2.3 and 12.2.4 have a wide domain of validity.

In this section we impose a slow-motion condition and calculate the gravitational-wave
fluxes for situations in which the gravitational-wave field can be expressed as a post-
Newtonian expansion. We shall derive ready-to-use expressions for P, F j , and T jk that
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involve multipole moments of the mass and current distribution, and recover the famous
quadrupole formula for the rate at which gravitational waves carry energy away from their
source. As an application of this slow-motion formalism, we shall examine the radiative
losses suffered by a two-body system in bound orbital motion.

12.3.1 Leading-order multipole radiation

The gravitational potentials that result from a post-Minkowskian approximation of the field
equations were calculated in Chapter 7, and expressions appropriate for the far-away wave
zone were listed in Box 7.7. According to these expressions, the potentials are expressed
as a multipole expansion,

h jk = 2G

c4 R

[
Ï jk + 1

3c

(...
I jkn + 2εmnj J̈ mk + 2εmnkJ̈ mj

)
Nn + O(c−2)

]
, (12.60)

automatically incorporating a post-Newtonian expansion in powers of vc/c � 1, with vc

denoting a characteristic velocity of the matter distribution. At the leading post-Newtonian
order, the formal moments I jk , I jkn , and J mj can be replaced by their Newtonian ex-
pressions defined in terms of the conserved density ρ∗; we have the mass quadrupole
moment

I jk(τ ) :=
∫

ρ∗x j xk d3x , (12.61)

the mass octupole moment

I jkn(τ ) :=
∫

ρ∗x j xk xn d3x , (12.62)

and the current quadrupole moment

J jk(τ ) := ε jab

∫
ρ∗xavbxk d3x . (12.63)

In these equations, the mass density ρ∗ and the velocity field v are given as functions
of retarded time τ := t − R/c and the spatial coordinates x. In Eq. (12.60) the term
involving the mass quadrupole moment is the leading-order, Newtonian contribution to the
gravitational-wave field, while the remaining terms are 0.5pn corrections that are smaller
by a factor of order vc/c � 1. Our expression for h jk neglects corrections of order (vc/c)2

and higher.
To properly represent the gravitational-wave field, the potentials of Eq. (12.60) must

be subjected to the transverse-tracefree projection introduced in Sec. 11.1.7. According to
Eqs. (11.31) and (11.34), we have that

h jk
TT = (tt) jk

pq h pq , (12.64)

where

(tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq , P j

k := δ
j
k − N j Nk . (12.65)
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To facilitate this projection it is helpful to decompose the multipole moments into their
irreducible components, according to

I jk = I 〈 jk〉 + 1

3
δ jk I pp, (12.66a)

I jkn = I 〈 jkn〉 + 1

5

(
δ jk I npp + δ jn I kpp + δkn I jpp

)
, (12.66b)

J jk = J 〈 jk〉 + J [ jk] , (12.66c)

in which the angular brackets indicate the symmetric-tracefree operation first introduced in
Sec. 1.5.3, and the square brackets indicate antisymmetrization.

In terms of the irreducible moments we have that the gravitational potentials of Eq. (12.60)
can be expressed as

h jk tt= 2G

c4 R

[
Ï 〈 jk〉 + 1

3c

(...
I

〈 jkn〉 + 2εmnj J̈ 〈mk〉 + 2εmnk J̈ 〈mj〉
)

Nn + O(c−2)

]
, (12.67)

where the equality sign
tt=, first introduced near the end of Sec. 11.3.1, indicates that terms

proportional to δ jk , N j , or N k have been discarded; these will not survive the TT projection
of Eq. (12.64). Note that the gravitational-wave field involves only the STF pieces of the
radiative multipole moments.

12.3.2 Leading-order fluxes

It is straightforward to insert Eq. (12.67) within the flux formulae of Eqs. (12.42), (12.43),
and (12.47), evaluate the angular integrals, and arrive at

P = G

5c5

...
I

〈pq〉 ...
I

〈pq〉
, (12.68a)

F j = G

c7

(
2

63

(4)

I 〈 j pq〉 ...I
〈pq〉 − 16

45
ε j

pq

...
J

〈pr〉 ...
I

〈qr〉
)

, (12.68b)

T jk = 2G

5c5

(
Ï 〈 j p〉 ...I

〈kp〉 − Ï 〈kp〉 ...I
〈 j p〉)

. (12.68c)

We shall sketch the steps leading to these results in a moment, but we first observe that
our result for P is the famous quadrupole formula which relates the energy radiated in
gravitational waves to the quadrupole-moment tensor of the matter distribution. (Refer to
Box 11.2 for a discussion of the historical controversy that has surrounded this formula.)
This scales as G/c5, and additional contributions from higher-order multipole moments
would appear at order G/c7 and higher. Our result for F j involves a coupling between
the mass quadrupole and octupole moments, as well as one between the mass and current
quadrupole moments; we see that F j scales as G/c7 instead of G/c5. Our result for the
angular-momentum flux can also be expressed in terms of the torque vectorT j := 1

2 ε
j
pqT

pq ,

T j = 2G

5c5
ε j

pq Ï 〈pr〉 ...I
〈qr〉; (12.69)

this involves the mass quadrupole moment only, and here also contributions from higher-
order moments would appear at order G/c7 and higher.
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To obtain Eq. (12.68a) for P we truncate Eq. (12.67) to its leading-order term, carry out
the TT projection of Eq. (12.64), and insert the result within Eq. (12.42). After simplification
we obtain

P = G

2c5

(
δpr δqs − 2δpr

〈〈
Nq Ns

〉〉 + 1

2

〈〈
Np Nq Nr Ns

〉〉)
f pq f rs, (12.70)

with f jk := ...
I

〈 jk〉 and 〈〈 · · · 〉〉 := (4π )−1
∫

(· · · ) d
 indicating an angular average. These
are easily evaluated with the help of the identities〈〈

N j Nk

〉〉 = 1

3
δ jk, (12.71a)

〈〈
N j Nk Np Nq

〉〉 = 1

15

(
δ jkδpq + δ j pδkq + δ jqδkp

)
, (12.71b)

〈〈
N j Nk Np Nq Nr Ns

〉〉 = 1

105

(
δ jkδpqδrs + distinct permutations

)
, (12.71c)

which were established back in Sec. 1.5.3. Making use of the STF properties of f jk , we
arrive at Eq. (12.68a).

To obtain Eq. (12.68b) from Eq. (12.43) we must include the subleading terms in
Eq. (12.67), because a leading-order calculation involves angular integrations of odd prod-
ucts of the radial vector N , which all vanish. After the TT projection we obtain

F j = G

3c7

(
δpr δqs

〈〈
N j Nn

〉〉 − 2δpr

〈〈
N j Nq Ns Nn

〉〉 + 1

2

〈〈
N j Np Nq Nr Ns Nn

〉〉)
f pq f rsn,

(12.72)

with f jk := ...
I

〈 jk〉 and f jkn := ....
I

〈 jkn〉 + 2εmnj
...
J

〈mk〉 + 2εmnk
...
J

〈mj〉. After evaluation of the
angular integrals and simplification (taking advantage of the STF properties of f jk and
f jkn), we obtain

F j = G

3c7

(
22

105
f pq f pq j − 4

35
f pq f jpq

)
, (12.73)

which leads directly to Eq. (12.68b).
The computations that lead to Eq. (12.68c) from Eq. (12.47) are similar. Here also we

truncate Eq. (12.67) to its leading-order term, and the gravitational-wave field must be
differentiated only after the TT projection has been accomplished. (This step is facilitated
by invoking the identity R∂ j Ppq = −Pjp Nq − Pjq Np.) The remaining manipulations are
straightforward, and we arrive at Eq. (12.68c).

12.3.3 Application: Newtonian binary system

As an application of the formalism developed in this section, we calculate the gravitational-
wave fluxes P, F j , and T jk for a binary system consisting of a body of mass m1 at position
r1(t) and a body of mass m2 at position r2(t); the positions are given in relation to the
system’s barycenter, chosen to be at the origin of the spatial coordinates. We describe
the mutual gravitational attraction at the leading-order, Newtonian level, and we employ
the formulae listed in Eqs. (12.68) and (12.69) to calculate the fluxes. The Keplerian
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orbital motion was first examined back in Sec. 3.2, and considered again in the context
of gravitational-wave emissions in Sec. 11.2.2; the required equations can be found at the
beginning of Sec. 11.2.2. The main orbital parameters are the semilatus rectum p and the
eccentricity e. The orbital period is

P = 2π

√
a3

Gm
, (12.74)

where a := p/(1 − e2) is the semi-major axis and m := m1 + m2. The orbital energy and
angular momentum are

E = −ηGm2

2a
, L = ηmh ez, (12.75)

where η := m1m2/m2, h := |r × v| = √
Gmp with r := r1 − r2 and v := v1 − v2, and

ez := [0, 0, 1] is a unit vector normal to the orbital plane. It is useful to note that the equations
of motion imply that vv̇ = −Gmṙ/r2 and rr̈ = (r φ̇)2 − Gm/r , in which r := |r|, v := |v|,
φ̇ = h/r2, and an overdot indicates differentiation with respect to time.

The multipole moments that appear in the flux formulae are

I jk = ηm r jrk, (12.76a)

I jkn = −�ηm r jrkrn, (12.76b)

J jk = −�ηmh e j
z r k , (12.76c)

where � := (m1 − m2)/m. These expressions follow directly from the definitions of
Eqs. (12.61), (12.62), and (12.63) when the mass density is given by ρ∗ = m1δ(x − r1) +
m2δ(x − r2) and the individual positions are expressed in terms of the separation r . The
result for J jk takes into account the fact that hez = r × v.

Differentiation of the multipole moments and involvement of the Keplerian equations
yields

Ï jk = 2ηm

(
v j vk − Gm

r3
r jr k

)
= 2ηm

[
(ṙ2 − Gm/r )n j nk + ṙ (r φ̇)

(
n j λk + λ j nk

) + (r φ̇)2λ jλk
]

= 2ηm
Gm

p

[
−(1 + e cos φ − e2 sin2 φ)n j nk

+ e sin φ (1 + e cos φ)
(
n j λk + λ j nk

) + (1 + e cos φ)2λ j λk
]
, (12.77a)

...
I

jk = −2ηm
Gm

r2

[
2

r

(
r jvk + v j r k

) − 3ṙ

r2
r jr k

]

= −2ηm
Gm

r2

[
ṙ n j nk + 2(r φ̇)

(
n j λk + λ j nk

)]
= −2ηm

(Gm)3/2

p5/2
(1 + e cos φ)2

[
e sin φ n j nk + 2(1 + e cos φ)

(
n j λk + λ j nk

)]
,

(12.77b)

(continued overleaf)
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(4)

I jkn = �ηm
Gm

r2

[
20

r

(
v j vkrn + v j r kvn + r jvkvn

)
− 30ṙ

r2

(
v j r krn + r jvkrn + r jr kvn

)− 3

r3
(3v2 − 15ṙ2 + 4Gm/r )r jr krn

]

= �ηm
Gm

r2

{
3
[
2ṙ2 − 3(r φ̇)2 − 4Gm/r

]
n j nknn

+ 10ṙ (r φ̇)
(
n j nkλn + n j λknn + λ j nknn

)
+ 20(r φ̇)2

(
n j λkλn + λ j nkλn + λ jλknn

)}
= �ηm

(Gm)2

p3
(1 + e cos φ)2

[
−3(7 + 10e cos φ + 5e2 cos2 φ − 2e2)n j nknn

+ 10e sin φ (1 + e cos φ)
(
n j nkλn + n j λknn + λ j nknn

)
+ 20(1 + e cos φ)2

(
n j λkλn + λ j nkλn + λ jλknn

)]
,

(12.77c)

...
J

jk = �ηmh
Gm

r3
e j

z

(
vk − 3ṙ

r
r k

)

= −�ηmh
Gm

r3
e j

z

[
2ṙ nk − (r φ̇)λk

]
= −�ηm

(Gm)2

p3
(1 + e cos φ)3e j

z

[
2e sin φ nk − (1 + e cos φ)λk

]
, (12.77d)

where n = [cos φ, sin φ, 0] and λ = [− sin φ, cos φ, 0] are basis vectors in the orbital plane.
After symmetrizing

...
J

jk , making all the moments tracefree, and inserting the results within
the flux formulae of Eqs. (12.68) and (12.69), we obtain

P = 32

5
η2 c5

G

(
Gm

c2 p

)5

(1 + e cos φ)4

[
1 + 2e cos φ + 1

12
e2(1 + 11 cos2 φ)

]
, (12.78a)

Fx = 464

105
�η2 c4

G

(
Gm

c2 p

)11/2

sin φ (1 + e cos φ)4

×
[

1 + 175

58
e cos φ + 2

29
e2(3 + 40 cos2 φ) + 5

58
e3 cos φ (2 + 9 cos2 φ)

]
,

(12.78b)

Fy = −464

105
�η2 c4

G

(
Gm

c2 p

)11/2

(1 + e cos φ)4

[
cos φ − 1

58
e(9 − 175 cos2 φ)

− 1

29
e2 cos φ (1 − 80 cos2 φ) + 1

58
e3(2 + 3 cos2 φ + 45 cos4 φ)

]
, (12.78c)

Txy = 32

5
η2mc2

(
Gm

c2 p

)7/2

(1 + e cos φ)3

[
1 + 3

2
e cos φ − 1

4
e2(1 − 3 cos2 φ)

]
,

(12.78d)
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Fig. 12.1 The energy fluxP, in units of (32/5)η2(c5/G)(Gm/c2p)5, as a function of retarded time τ , in units of the orbital
period P. The relation between τ and the orbital phaseφ is obtained by numerical integration of the Newtonian
equations of motion. The orbital eccentricity is set equal to e = 0.7, and the gravitational-wave polarizations
corresponding to this orbital configuration are displayed in Fig. 11.2. We see that most of the energy is emitted when
the orbit is near pericenter, where the motion is fastest.

while Fz = 0 and Tyz = Tzx = 0. Plots of P, Fx , and Fy as functions of time are presented
in Figs. 12.1 and 12.2; a plot of Txy would look very similar to P.

When the orbit is circular (so that e = 0) the fluxes simplify to

P = 32

5
η2 c5

G
(v/c)10, (12.79a)

Fx = 464

105
�η2 c4

G
(v/c)11 sin φ, (12.79b)

Fy = −464

105
�η2 c4

G
(v/c)11 cos φ, (12.79c)

Txy = 32

5
η2mc2(v/c)7, (12.79d)

where v := √
Gm/p is the orbital velocity. In this case the orbital phase is given by

φ = 
τ , with 
 :=
√

Gm/p3 denoting the orbital angular velocity. We note that in this
case of circular motion, the energy and angular-momentum fluxes are related byP = 
Txy .
We also see that the momentum flux is aligned with v when m1 < m2 (so that � < 0), and
that it is anti-aligned when m1 > m2; the momentum flux is therefore always in the direction
of motion of the lighter body.
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τ/P
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Fig. 12.2 The momentum fluxesFx andF y, in units of−�η2(c4/G)(Gm/c2p)11/2, as functions of retarded time τ , in units of
the orbital period P. A minus sign is inserted in the unit of momentum flux to reflect the fact that� < 0 when
m1 < m2. As in Fig. 12.1 the orbital eccentricity is set equal to e = 0.7. We see that most of the momentum is
emitted when the orbit is near pericenter. The emission in the x-direction cancels out over a complete orbital cycle, but
the emission in the y-direction builds up coherently.

Box 12.2 Momentum flux and gravitational-wave beaming

Our friend Alan Wiseman has proposed a useful electromagnetic analogy to understand why the momentum
flux is always in the direction of motion of the lighter body. Because the lighter body has a higher velocity,
the energy flux associated with its motion is beamed in the forward direction, just as the electromagnetic
radiation from a rapidly moving body is beamed by relativistic effects. Since energy carries momentum, there
is a preferential emission of momentum in the direction of motion of the lighter body. This is admittedly an
imperfect analogy, because the energy flux is predominantly quadrupolar, not dipolar, and thus it cannot have
a unique direction associated with it. On the other hand, the momentum flux arises from an interference be-
tween the quadrupolemoment I jk and the0.5pn corrections in Eq. (12.67), which depend on the octupole
and current quadrupole moments; although the latter are not vectors, they have an odd parity, and they can
therefore single out a preferred direction. Scaling the energy flux bymc2, the momentum flux bymc, and
taking the ratio gives (F j/mc)/(P/mc2) ∼ v/c, precisely the kind of v/c effect that gives rise to
relativistic beaming.

Returning to non-circular orbits, it is instructive to average the fluxes over a complete
orbital cycle. We define the orbital average of a quantity f by

〈 f 〉 := 1

P

∫ P

0
f (t) dt, (12.80)
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where P is the orbital period of Eq. (12.74). This can also be expressed as

〈 f 〉 = (1 − e2)3/2 1

2π

∫ 2π

0
(1 + e cos φ)−2 f (φ) dφ (12.81)

by switching integration variables from t to φ with the help of the Keplerian equations of
motion. Substitution of Eqs. (12.78) into Eq. (12.81) yields

〈P〉 = 32

5
η2 c5

G

(
Gm

c2 p

)5

(1 − e2)3/2

(
1 + 73

24
e2 + 37

96
e4

)
, (12.82a)

〈Fx 〉 = 0, (12.82b)

〈Fy〉 = −52

5
�η2 c4

G

(
Gm

c2 p

)11/2

e(1 − e2)3/2

(
1 + 19

13
e2 + 37

312
e4

)
, (12.82c)

〈Txy〉 = 32

5
η2mc2

(
Gm

c2 p

)7/2

(1 − e2)3/2

(
1 + 7

8
e2

)
. (12.82d)

That 〈Fx 〉 = 0 and 〈Fy〉 	= 0 reflects the fact that while the orbital motion is reflection-
symmetric across the x-axis, it is asymmetrical with respect to the y-axis: the motion
is faster when the orbit crosses the x-axis is at pericenter, and slower when it crosses
it at apocenter, moving in the opposite direction. Most of the gravitational waves are
emitted near pericenter, where the motion is fastest, and most of the momentum flux is
therefore generated near φ = 0. When � < 0, that is, when m1 < m2, we have that Fy > 0
at pericenter, and the averaged flux also is positive; this is the situation represented in
Fig. 12.2. On the other hand, when � > 0 and m1 > m2, we have that Fy < 0 at pericenter,
and the averaged flux also is negative. The momentum flux vanishes when the masses are
equal, and the averaged flux vanishes when e = 0.

Bodies in unbound orbits, with e ≥ 1, also radiate energy, momentum, and angular
momentum. In this case there is no orbital period and no useful notion of averaged fluxes,
but one can calculate the total energy, momentum, and angular momentum radiated during
the encounter. These losses raise the interesting possibility of a “gravitational-wave capture,”
whereby two bodies in an unbound orbit lose enough energy to end up in a bound orbit.
This possibility is explored in Exercise 12.8.

It is tempting to exploit the balance equations in averaged form,

d E

dt
= −〈P〉, d L

dt
= −〈Txy〉, (12.83)

to infer the rates at which the orbital elements a, p, and e must change in order to
reflect the loss of energy and angular momentum to gravitational waves. This crude and
tentative analysis is refined in Sec. 12.9, where we calculate how the orbital elements change
instantaneously as a result of the action of the gravitational radiation-reaction force.

The rate of change of a is obtained by inserting Eq. (12.75) into the first balance equation.
With Eq. (12.82) we obtain

da

dt
= −64

5
ηc

(
Gm

c2a

)3 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
. (12.84)
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Kepler’s third law, P ∝ a3/2, allows us to compute how the orbital period changes as a
result of the orbital evolution; we find that it decreases according to

d P

dt
= −192π

5

(
GM

c3

2π

P

)5/3 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
, (12.85)

where M := η3/5m is the chirp mass, as defined in Eq. (11.80). The rate of change of p is
obtained by inserting Eq. (12.75) into the second balance equation. Here we obtain

dp

dt
= −64

5
ηc

(
Gm

c2 p

)3

(1 − e2)3/2

(
1 + 7

8
e2

)
. (12.86)

The rate of change of e can then be inferred from the relation p/a = 1 − e2; we get

de

dt
= −304

15
ηc

e

a

(
Gm

c2a

)3 1 + 121
304 e2

(1 − e2)5/2
(12.87a)

= −304

15
ηc

e

p

(
Gm

c2 p

)3

(1 − e2)3/2

(
1 + 121

304
e2

)
. (12.87b)

We see that radiative losses tend to decrease both the size of the orbit and its eccentricity; in
the course of time the orbit shrinks and becomes increasingly circular. The orbital evolution
proceeds on a radiation-reaction time scale of the order of

Trr = 1

η

(
Gm

c2a

)−5/2 P

2π
; (12.88)

this is longer than the orbital period by a factor of order (vc/c)−5 � 1, where vc ∼ √
Gm/a

is the characteristic orbital velocity.
The evolution equations for a, p, and e can be integrated to give

a = a0(e/e0)12/19

(
1 − e2

0

1 − e2

)(
1 + 121

304 e2

1 + 121
304 e2

0

)870/2299

(12.89)

and

p = p0(e/e0)12/19

(
1 + 121

304 e2

1 + 121
304 e2

0

)870/2299

, (12.90)

which express a and p as functions of the eccentricity; here a0 and p0 are respectively the
values of a and p when e = e0. When the eccentricity is always small, so that both e and
e0 are much smaller than unity, these results can be approximated as a � a0(e/e0)12/19 or
e � e0(a/a0)19/12; in this approximation p � a.

12.4 Astrophysical implications of radiative losses

12.4.1 Binary pulsars

For many years, any discussion of losses due to gravitational-wave emissions, such as the
one presented in the previous section, was purely academic, because the effects are so
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Table 12.1 Orbital parameters of binary pulsars. The parameter a1 sin ι is the projection of the pulsar’s
semimajor axis along the line of sight. The parameter ω̇ is defined by Eq. (10.17). The parameter γ ′ is the
coefficient [(M1 + 2M2)/m](a3/Gm)1/2(GM2/c2a)e that appears in front of sin u in Eq. (10.135). The

period derivative Ṗ is given by Eq. (12.85). The parameter r is the coefficient GM2/c2 that appears in front of
the logarithmic term in Eq. (10.139), and s = sin ι appears within the logarithm. The numbers in

parentheses indicate the error in the last digit.

Parameter PSR 1913+16 J0737-3039A

Keplerian parameters
a1 sin ι/c (s) 2.341782(3) 1.415032(1)
Eccentricity, e 0.6171334(5) 0.0877775(9)
Orbital period, P (day) 0.322997448911(4) 0.10225156248(5)

Relativistic parameters
Pericenter advance, ω̇ (◦ yr−1) 4.226598(5) 16.8995(7)
Redshift/time dilation, γ ′ (ms) 4.2992(8) 0.386(3)
Period derivative, Ṗ (10−12) −2.423(1) −1.25(2)
Shapiro delay, r (μs) 6.2(3)
Shapiro delay, s 0.9997(4)

extremely small. The effects of radiative losses on the Earth–Sun or Earth–Moon orbits,
for example, are utterly undetectable, as you will discover in Exercise 12.4. The complete
absence of experimental evidence bearing on radiative losses was a key ingredient in
the persistence of the quadrupole-formula controversy, as reviewed in Box 11.2. All this
changed in the fall of 1974.

During the summer of 1974, radio astronomer Joseph H. Taylor and his graduate student
Russell Hulse were conducting a systematic search for new pulsars using the Arecibo radio
telescope in Puerto Rico. Pulsars are rotating neutron stars that emit a beam of radio waves
detectable as a pulse every time the beam crosses a radio receiver. Since the discovery
of the first pulsar in 1967, almost 100 had been found by 1974 (nearly 2000 are known
today). But this new pulsar, labeled PSR 1913+16 according to its position on the sky,
was different from all the others because its pulse period, nominally about 59 milliseconds,
varied by plus or minus 40 microseconds on a roughly eight-hour period. Hulse and Taylor
quickly concluded that the variation was a result of the Doppler shift of the period caused
by the pulsar’s orbit about an unseen companion. By December they had measured the key
orbital elements, the orbital period, the eccentricity, the semi-major axis projected along
the line of sight, as well as the relativistic pericenter advance (the current values are listed
in Table 12.1).

It was already clear from the first discovery announcement in late September that the
binary pulsar would provide an opportunity to test the quadrupole formula. Inserting
the measured period P and eccentricity e into Eq. (12.85), and scaling the chirp mass by the
solar mass, we find that the orbital period should decrease at a rate of 53.2 (M/M�)5/3

microseconds per year. Out of an orbital period of almost eight hours, this is a daunt-
ingly small effect, but one that could nevertheless be measured. This required a change
of data-analysis strategy, from measuring pulse periods to measuring pulse arrival times
(as described in Sec. 10.3.6), and improvements of the instrumentation at the Arecibo
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telescope, to better handle the effects of interstellar dispersion on the radio signals. After
collecting data for a few short years, Taylor and colleagues were able to report the first
measurement of the period decrease in December 1979.

The measurement of d P/dt can only be compared with the relativistic prediction when
the chirp mass M is known. Fortunately, the measured pericenter advance of 4.2 de-
grees per year gives the total mass – refer to Eq. (10.17) – and the arrival-time anal-
ysis also yields the combination of masses (M1 + 2M2)M2 via the periodic term in
Eq. (10.135). These data produced precise values for the pulsar and companion masses,
(1.4398 ± 0.0002)M� and (1.3886 ± 0.0002)M� respectively, and thus a precise pre-
diction of d P/dt = −(2.402531 ± 0.000014) × 10−12, in beautiful agreement with the
measurement.

While the value of d P/dt reported by Taylor in 1979 had measurement errors of
10 percent, the errors have steadily decreased over time, and they are now at the level
of about 0.05 percent. At this level of precision it is necessary to take into account the
relative acceleration between the binary pulsar and the solar system caused by the differ-
ential rotation of the galaxy. This causes all observed periods in the binary-pulsar system
to vary slowly with time. The best estimates of the galactic effect yield a small correc-
tion (d P/dt)gal = −(0.027 ± 0.005) × 10−12, so that the agreement between the observed
radiative loss and the prediction of the quadrupole formula can be expressed as

(d P/dt)obs

(d P/dt)GR
= 0.997 ± 0.002 . (12.91)

This has been widely hailed as definitive, albeit indirect, evidence for the existence of
gravitational radiation, and Taylor and Hulse were rewarded for this discovery with the
1993 Nobel Prize in Physics.

Interestingly, while continued observation of the system will provide more precise mea-
surements of d P/dt (the statistical errors on such drifting parameters tend to decrease as
T −3/2, where T is the observation time), they will not produce an improved test of the
quadrupole formula. This is because the measurement of d P/dt is now limited by our poor
understanding of the galaxy’s differential rotation, and the uncertainties associated with it
are unlikely to ever be reduced. In fact, the tables can be turned: the assumed validity of
the quadrupole formula combined with the observed d P/dt provides a better measure of
the relative acceleration than is likely to be obtained by standard astronomical techniques.

Many other binary pulsars have been found since Hulse and Taylor’s discovery, almost 100
to date and counting. One of the most remarkable is the “double pulsar” J0737-3039A&B,
discovered in 2003. Whereas a single active pulsar was detected in the Hulse–Taylor
system (the companion is believed to be a very old, essentially “dead” pulsar), here both
objects, denoted A and B, were detected as pulsars. The orbit is very relativistic, with
an orbital period of only a tenth of a day, and a pericenter advance of almost 17 degrees
per year (see Table 12.1). The orbit is observed almost edge on, so that in addition to the
three relativistic effects measured in the Hulse–Taylor binary pulsar (pericenter advance,
redshift-time dilation effect, and period decrease), it is also possible to measure the Shapiro
time delay of the signal from the stronger pulsar as it passes by the companion once per
orbit. This delivers a precise determination of the masses – MA = (1.3381 ± 0.0007)M�
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and MB = (1.2489 ± 0.0007)M� – and the period derivative has already been measured to
two-percent accuracy. Ultimately this system will yield a more precise test of the quadrupole
formula than did PSR 1913+16, partly because the main pulsar has a narrower pulse profile,
leading to a more precise timing of the pulse arrivals, but mainly because the system is
closer to the Earth and in a favorable location within the galaxy, so that the galactic
acceleration is essentially negligible (the acceleration is predominantly transverse to the
line of sight). Another remarkable feature of the double pulsar is that it is no longer double:
since its discovery the spin axis of the secondary pulsar has shifted in direction, thanks to
the relativistic geodetic precession reviewed in Sec. 10.4.3, and as a consequence the pulsar
beam is no longer intersecting the Earth. This is another example of a post-Newtonian
effect with practical consequences, at least for the radio astronomers who keep observing
the double pulsar.

12.4.2 Inspiralling compact binaries

In due course, radiative losses bring the two neutron stars of a binary-pulsar system into
such close proximity that their orbital periods are measured in fractions of a second rather
than hours. At this stage the gravitational waves emitted by the binary system enter the
frequency band of a ground-based laser interferometric detector such as LIGO and Virgo,
namely the band which lies between approximately 10 Hz and 1000 Hz. It is totally pointless
to wait around for this to happen, however, because the required time is extremely long.
In the limit of small eccentricities, it is straightforward to estimate the inspiral time by
integrating Eq. (12.84) from a’s present value to a final value of effectively zero. The
present value and the total mass m can be conveniently expressed in terms of the orbital
period P and the observed rate of pericenter advance ω̇. For the special case of almost
equal masses (η = 1/4), this calculation yields

T = 5

128

(
6π

ω̇

)5/2 ( 1

P

)3/2

≈ 1.9 × 108

(
5o/yr

ω̇

)5/2 (1 day

P

)3/2

yr , (12.92)

and we see that for a typical binary pulsar, the inspiral time is of the order of 200 million
years. A more eccentric orbit starting with the same a would give rise to a shorter time
scale, because of the excess radiative loss induced by the rapidly changing velocities near
pericenter (refer to Fig. 12.1).

The important point about this time scale, long as it may seem, is that it is still short
compared to the age of typical galaxies like the Milky Way. There is therefore a chance that a
binary pulsar born 200 million years ago in a nearby galaxy would be in its final death spiral
today, emitting a detectable burst of gravitational waves. Such systems, called “inspiralling
compact binaries” (they could also involve black holes), are a highly anticipated source of
gravitational waves for detection by the LIGO–Virgo class of interferometers. Based on the
small number of relativistic binary pulsars that have been observed to date, it is possible to
estimate that one such inspiral could occur once every million years (give or take an order or
magnitude) in a galaxy like ours. With detectors capable of measuring gravitational waves
in a volume that contains millions of galaxies, as will be the case with advanced versions
of the LIGO and Virgo instruments, the number of detectable events becomes interesting.
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Another important feature of radiative losses is the circularization of orbits. When the
gravitational waves from an inspiralling compact binary enter the frequency band of the
LIGO and Virgo instruments, the system’s semi-major axis a is of the order of 1000 km or
less, and is therefore much smaller than its initial value a0. Equation (12.89) then implies
that the orbital eccentricity will be vanishingly small, irrespective of its initial value. This
circumstance greatly simplifies the nature of the expected gravitational-wave signal, and
reduces the challenge of devising data-analysis strategies to measure the waves.

Because the interferometers are broad-band detectors, they effectively detect the grav-
itational wavetrain cycle by cycle, measuring not only the varying strength within each
cycle, but also the varying frequency as the inspiral proceeds. Studies of optimal detection
strategies have shown that these measurements, particularly of the varying wave frequency
or phase, can be very accurate, depending of course on the strength of the signal compared
to instrumental noise. To exploit these optimal strategies, one must be able to predict the
evolution of the phase to high accuracy, and this requires going beyond the quadrupole
formula by incorporating higher-order post-Newtonian corrections in calculations of the
gravitational-wave signal.

With this in mind, we now calculate the first post-Newtonian corrections to the fluxes
of energy, momentum, and angular momentum emitted by a binary system in circular
orbit, and infer the rate at which the orbital frequency changes with time. The gravitational
waves emitted by a post-Newtonian binary system in circular motion were calculated in
Sec. 11.4.6. There we introduced

β :=
(

Gm


c3

)1/3

(12.93)

as a meaningful post-Newtonian expansion parameter, defined directly in terms of the
total mass m and orbital frequency 
. The orbital velocity is then given by v/c = β[1 −
1
3 (3 − η)β2 + O(β4)], and the orbital radius is determined from Gm/(c2r ) = β2[1 + 1

3 (3 −
η)β2 + O(β4)]. The gravitational-wave polarizations are expressed as

h+,× = 2ηGm

c2 R
β2 H+,×, (12.94)

with H+,× expanded as

H+,× = H [0]
+,× + �β H [1/2]

+,× + β2 H [1]
+,× + �β3 H [3/2]

+,× + β3 H tail
+,× + O(β4), (12.95)

where � := (M1 − M2)/m is the dimensionless mass difference. Each contribution H [n]
+,×

is a function of the inclination angle ι and of the orbital phase # := 
τ + ω, where ω is a
second orientation angle. Explicit expressions appear in Eqs. (11.296) and (11.297).

The most efficient way to compute P, F j , and T jk is to proceed via Eqs. (12.45),
(12.46), and (12.48), which express the fluxes directly in terms of the gravitational-wave
polarizations. To reflect the choice of transverse basis made here (and inherited from
Sec. 11.2.2), we make the identifications ϑ = ι and ϕ = π

2 − ω. Because the time depen-
dence of each polarization is contained in the orbital phase #, derivatives with respect to τ

can be evaluated as ∂τ = 
∂# , and derivatives with respect to ϕ can similarly be expressed
as −∂# .



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

655 12.4 Astrophysical implications of radiative losses

Simple computations return

P = 32

5
η2 c5

G
β10

[
1 −

(1247

336
+ 35

12
η
)
β2 + 4π β3 + O(β4)

]
, (12.96a)

Fx = 464

105
�η2 c4

G
β11

[
1 −

(452

87
+ 1139

522
η
)
β2 + O(β3)

]
sin 
τ, (12.96b)

Fy = −464

105
�η2 c4

G
β11

[
1 −

(452

87
+ 1139

522
η
)
β2 + O(β3)

]
cos 
τ. (12.96c)

We also have that Fz = 0 = Tyz = Tzx , and Txy is related to P by P = 
Txy . We see that
these expressions reduce to Eqs. (12.79) when β � 1.

We observe that P contains no correction term at order β, in spite of the fact that the
gravitational-wave polarizations do possess such terms; a 0.5pn correction to the energy
flux would have to come from an interaction between the H [0] and H [1/2] terms within H ,
but because these signals are out of phase, the interaction produces no flux. We observe
also that P contains a term at order β3, and such a term has three possible origins. First,
it might have originated from an interaction between H [0] and H [3/2], but this produces
no flux because these signals also are out of phase. Second, it might have originated from
an interaction between H [1] and H [1/2], but this does not contribute for the same reason.
The only remaining possibility is an interaction between H [0] and H tail; these signals are
in phase, and their interaction does indeed contribute to the energy flux. The 4πβ3 term
within Eq. (12.96a) has its origin in the tail effect; it is a wave-propagation correction to
the leading-order expression that appears outside the large square brackets.

Taking inspiration from Sec. 12.3.3, we insert the energy flux of Eq. (12.96) within
the energy-balance equation d E/dt = −P to determine the orbital evolution of a post-
Newtonian binary system. From Eqs. (10.9) and (10.11) we know that the orbital energy of
the two-body system is given by

E = −1

2
ηmc2β2

[
1 − 1

12
(9 + η)β2 + O(β4)

]
, (12.97)

and d E/dt is therefore related to dβ/dt , the rate of change of the velocity parameter of
Eq. (12.93). Solving for this yields

dβ

dt
= 32

5
η

c3

Gm
β9

[
1 −

(
743

336
+ 11

4
η

)
β2 + 4πβ3 + O(β4)

]
, (12.98)

and integration produces 
 as a function of time.
We have computed the orbital evolution of a circular binary system through 1.5pn order

beyond the leading order, quadrupole-formula expression. This degree of accuracy is not
sufficient for the purpose of measuring gravitational waves with the advanced LIGO and
Virgo detectors. For this it is proving necessary to calculate the energy flux and the resulting
expression for dβ/dt through 3.5pn order beyond the quadrupole formula.
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12.4.3 “How black holes get their kicks”

[The title of this section is borrowed from a seminal paper on black-hole recoils by Marc
Favata, Scott Hughes, and Daniel Holz (2004). It inspired others to title their papers with
equally bad puns. Among the notable cases we find Getting a kick out of numerical relativity
by Baker et al. (2006), and Total recoil by Gonzalez et al. (2007).]

Another radiative loss with potentially important astrophysical consequences is the
radiation of linear momentum and the resulting recoil of the system. This is particularly
important for binary inspirals. Because momentum is radiated in the direction of motion of
the lighter body, the center-of-mass of the system must recoil in the opposite direction. But
this direction is continually changing as the bodies move on their orbits, and the center-of-
mass spirals outward from its initial position, with a growing radius and an ever increasing
speed as the radiation gains in intensity. Finally, after the bodies have merged and settled
down to a stationary state (frequently a rotating black hole), the center-of-mass moves off
with whatever velocity it had when the radiation terminated.

This so-called “kick velocity” can easily be estimated for an inspiralling circular orbit.
We appeal to Eqs. (12.79b) and (12.79c), which inform us that the center-of-mass must
recoil according to

d P

dt
= −F = 464

105
�η2 c4

G
(v/c)11λ , (12.99)

where λ = [−sin φ, cos φ, 0] is tangent to the orbit. As we observed back in Eqs. (12.82b)
and (12.82c), the averaged momentum flux vanishes when the orbital speed and frequency
are constant. During an inspiral, however, the speed and frequency increase with time
(over a very long radiation-reaction time scale), and the long-term average does not vanish.
Integrating Eq. (12.99) from t = −∞ to the present time using an adiabatic approximation,
we find that the final kick velocity is given by (see Exercise 12.7)

V kick = 464

105
�η2

(
Gm

c2a

)4

c n , (12.100)

modulo corrections of higher post-Newtonian order. Note that for a given final orbital
velocity v ∼ √

Gm/a, the kick velocity is independent of the total mass of the system. It is
directed along n = [cos φ, sin φ, 0], toward the more massive body. It vanishes in the limit
of equal masses (� = 0) by symmetry.

For a final separation of a = 10Gm/c2, the recoil speed is equal to 133�η2 km/s.
Because Eq. (12.100) is valid only for Gm/c2a � 1, it cannot be trusted for smaller sepa-
rations, but it should continue to give a reliable order-of-magnitude estimate of the recoil.
Numerical simulations of the final inspiral of two non-rotating black holes have produced
maximum kick velocities of around 175 km/s, for the mass ratio that maximizes the co-
efficient �η2. Such velocities are probably too small to be of astrophysical importance.
When the black holes are spinning rapidly, however, with spin axes misaligned relative
to each other and to the orbital angular momentum, the simulations have shown that the
combination of momentum flux and strong precessions of the orbital plane can result
in “superkicks” as high as several thousand kilometers per second. Such velocities are
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astrophysically relevant for supermassive black-hole binaries, leading possibly to the ejec-
tion of the final black hole from the galaxy that hosted the inspiralling progenitor, or at
least to a significant displacement of the final hole from the central core of the galaxy.
There is now preliminary evidence for situations in which an accreting massive black hole
is apparently displaced and moving away from the center of its host galaxy, with a velocity
characteristic of a superkick.

12.5 Radiation-reaction potentials

In this section and the following ones we return to the near zone and work on obtaining
expressions for the radiation-reaction force acting within a matter distribution. The anal-
ogous situation in electromagnetism was examined in Sec. 12.1.4, where we explained
that the radiation-reaction force arises from terms in the potentials that come with an odd
power of the expansion parameter c−1. In electromagnetism the leading-order term in the
radiation-reaction force scales as c−3, and represents a 1.5pc correction to the equations of
motion; the scaling reflects the fact that radiative losses are dominated by electric dipole
radiation. We recall that we were able to obtain the radiation-reaction force at 1.5pc order
without having to calculate conservative corrections to the equations of motion at 1pc order.

The situation is similar in gravitation. Here also the radiation-reaction force arises from
terms in the potentials that come with odd powers of c−1 in a post-Newtonian expansion. In
this case, however, we shall find that the force scales as c−5 to reflect the fact that radiative
losses are dominated by mass quadrupole radiation; the radiation-reaction force represents
a 2.5pn correction to the equations of motion. Conservative corrections at 1pn order were
obtained in Secs. 8.4 and 9.3, and we shall see that the computations at 2.5pn order are
insensitive to corrections at 2pn order; these are not required for our discussion, and they
will not be computed.

In this section we calculate the gravitational potentials that give rise to the radiation-
reaction force. Our final results are summarized in Box 12.3. In Sec. 12.6 we involve these
potentials in a calculation of the radiation-reaction force acting within a perfect fluid. In
Sec. 12.7 we specialize these results to a system of well-separated bodies. In Sec. 12.8
we examine alternative gauges that simplify the description of radiation reaction, and in
Sec. 12.9 we calculate the orbital evolution of a two-body system under radiation reaction.

12.5.1 Near-zone potentials

A large part of the work required to identify the potentials responsible for radiation reaction
has already been done back in Sec. 7.1.2. There we saw that the potentials are decomposed
as hαβ = hαβ

N + hαβ

W , into contributions from a near-zone domain N and a complementary
wave-zone domain W . The potentials hαβ

N were expanded in powers of c−1, up to and
including O(c−7) for h00

N , O(c−6) for h0 j
N , and O(c−5) for h jk

N ; judicious use was made of
the conservation equations ∂βταβ = 0 to convert some terms into surface integrals at the
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boundary of the near zone. In Eqs. (7.15) we obtained the expressions

h00
N = 4G

c2

{∫
M

c−2τ 00

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−2τ 00|x − x′| d3x ′

− 1

6c3

(3)

Ikk(t) + 1

24c4

∂4

∂t4

∫
M

c−2τ 00|x − x′|3 d3x ′

− 1

120c5

[
(4xk xl + 2r2δkl)

(5)

Ikl(t) − 4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
]

+ O(c−6)

}
+ h00[∂M ] , (12.101a)

h0 j
N = 4G

c3

{∫
M

c−1τ 0 j

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−1τ 0 j |x − x′| d3x ′

+ 1

18c3

[
3xk

(4)

I jk(t) −
(4)

I jkk(t) + 2εmjk
(3)

J mk(t)
]

+ O(c−4)

}
+ h0 j [∂M ] , (12.101b)

h jk
N = 4G

c4

{∫
M

τ jk

|x − x′| d3x ′ − 1

2c

(3)

I jk(t) + 1

2c2

∂2

∂t2

∫
M

τ jk |x − x′| d3x ′

− 1

36c3

[
3r2

(5)

I jk(t) − 2xm
(5)

I jkm(t) − 8xn εmn( j
(4)

J m|k)(t) + 6
(3)

M jkmm(t)
]

+ O(c−4)

}
+ h jk[∂M ] . (12.101c)

In each Poisson integral the components of the effective energy-momentum pseudotensor
ταβ are expressed as functions of t and x′, and the integration is over the near-zone domain
M defined by r ′ := |x′| < R, where R is the arbitrary cutoff radius between the near and
wave zones. As we explained back in Sec. 6.3.3, we are interested in the R-independent
pieces of each integral.

The various multipole moments that appear in the potentials were defined by Eqs. (7.16);
for convenience we list them explicitly here:

Ikl(t) :=
∫

M
c−2τ 00(t, x)xk xl d3x , (12.102a)

I jkm(t) :=
∫

M
c−2τ 00(t, x)x j xk xl d3x , (12.102b)

Ikll(t) :=
∫

M
c−2τ 00(t, x)xkr2 d3x , (12.102c)

Ikkll(t) :=
∫

M
c−2τ 00(t, x)r4 d3x , (12.102d)

J mk(t) := εmab

∫
M

c−1τ 0b(t, x)xa xk d3x , (12.102e)

M jkmm :=
∫

M
τ jk(t, x)r2 d3x . (12.102f)
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We explained in Box 7.1 how the multipole moments end up appearing in the expansions
of hαβ

N in powers of c−1, and how these manipulations give rise to additional boundary
terms hαβ[∂M ]. All such boundary terms must be carefully examined, and we assert that
at all post-Newtonian orders to be considered in this section, the boundary terms contain
no R-independent pieces, and they can therefore be safely discarded. We shall not prove
this assertion here, but you may be comforted with the assurance that each boundary term
in Eq. (12.101) was examined by us and shown to make no R-independent contribution to
the potentials.

It was established back in Sec. 7.3.4 that hαβ

W first makes a contribution at 3pn order in
the near zone, and because our considerations in this section are limited to 2.5pn order,
this can be ignored. The complete near-zone potentials hαβ can therefore be identified with
those of Eqs. (12.101).

12.5.2 Odd terms in the potentials

The terms that come with an odd power of c−1 within the curly brackets in Eqs. (12.101)
will be the focus of our attention; it is these that are responsible for the radiation reaction.
We have to keep in mind that while some factors of c−1 appear explicitly in these equations,
some are contained implicitly in the source functions ταβ . To identify the explicit and
implicit odd terms, it is useful to introduce the notation

h00 := 4

c2
V, h0 j := 4

c3
V j , h jk := 4

c4
W jk, (12.103)

for the potentials, and the notation

τ 00 := �c2, τ 0 j := s j c τ jk := τ jk, (12.104)

for the source functions. We next express the post-Newtonian expansion of the potentials
as

V = V [0] + c−2V [2] + c−4V [4] + O(c−6) + c−3V [3] + c−5V [5] + O(c−7),
(12.105a)

V j = V j [0] + c−2V j [2] + O(c−4) + c−3V j [3] + O(c−5), (12.105b)

W jk = W jk[0] + c−2W jk[2] + O(c−4) + c−1W jk[1] + c−3W jk[3] + O(c−5),
(12.105c)

where we have separated the odd-order terms from the even-order terms, and we express
the post-Newtonian expansion of the source functions as

� = �[0] + c−2�[2] + c−4�[4] + O(c−6) + c−5�[5] + O(c−7), (12.106a)

s j = s j [0] + c−2s j [2] + O(c−4) + c−5s j [5] + O(c−7), (12.106b)

τ jk = τ jk[0] + c−2τ jk[2] + O(c−4) + c−5τ jk[5] + O(c−7). (12.106c)
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The expansions of Eqs. (12.105) are directly imported from Eqs. (12.101). The expansions
of Eqs. (12.106), however, incorporate an assumption that the odd terms in the source
functions begin at order c−5; this assumption will be justified below.

When we substitute Eqs. (12.106) into Eqs. (12.101) and read off the various odd
potentials from Eqs. (12.105), we find that

V [3] = −1

6
G

(3)

Ikk[0], (12.107a)

V [5] = G

∫
M

�[5]

|x − x′| d3x ′ − 1

6
G

(3)

Ikk[2]

− 1

120
G
{

(4xk xl + 2r2δkl)
(5)

Ikl[0] − 4xk
(5)

Ikll[0] +
(5)

Ikkll[0]
}
, (12.107b)

V j [3] = 1

18
G
{

3xk
(4)

I jk[0] −
(4)

I jkk[0] + 2εmjk
(3)

J mk[0]
}
, (12.107c)

W jk[3] = −1

2
G

(3)

I jk[0], (12.107d)

W jk[5] = −1

2
G

(3)

I jk[2] − 1

36
G
{

3r2
(5)

I jk[0] − 2xm
(5)

I jkm[0]

− 8xn εmn( j
(4)

J m|k)[0] + 6
(3)

M jkmm[0]
}
. (12.107e)

The bracket notation was extended to the multipole moments; for example I jk[0] is the
quadrupole moment constructed from �[0], the 0pn piece of the effective mass density.
We can now appreciate what was meant by implicit and explicit odd terms: Examining the
expression for V [5], we see that the terms involving the multipole moments were listed
explicitly in Eqs. (12.101), but that the Poisson integral involving �[5] was present only
implicitly; it has now become fully explicit, thanks to the expansions of Eqs. (12.106). For
future reference we note that

W [1] := δ jk W jk[1] = 3V [3] = −1

2
G

(3)

Ikk[0] (12.108)

is an immediate consequence of Eqs. (12.107).

12.5.3 Odd terms in the effective energy-momentum tensor

To proceed we must justify the assumption made in Eqs. (12.106), that the odd terms in �,
s j , and τ jk begin at order c−5, and we must obtain an expression for �[5]. We recall that
the effective energy-momentum pseudotensor is defined by Eq. (6.52); it is given by

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
, (12.109)

in terms of a material contribution T αβ , the Landau–Lifshitz pseudotensor tαβ

LL of Eq. (6.5),
and the harmonic pseudotensor tαβ

H of Eq. (6.53).
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We begin with an examination of the material contribution. As usual we take the matter
distribution to consist of a perfect fluid, and we adopt the set of variablesm := {ρ∗, p, �, v}
that was first introduced in Sec. 7.1.1. Here ρ∗ := √−gγρ is the conserved mass density,
p is the pressure, � is the specific internal energy, and v is the velocity field; we also
have that ρ is the fluid’s proper mass density, g is the metric determinant, and γ := u0/c
is determined by the normalization condition gαβuαuβ = −c2 for the spacetime velocity
field uα := γ (c, v). We recall that ρ∗ satisfies the continuity equation ∂tρ

∗ + ∂ j (ρ∗v j ) = 0,
which expresses conservation of rest mass, and that the fluid’s energy-momentum tensor is
given by

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ, (12.110)

where ε = ρ� is the proper density of internal energy.
Because the metric enters explicitly in Eq. (12.110), the energy-momentum tensor pos-

sesses a dependence upon the gravitational potentials, and it therefore contains terms that
are odd in c−1. To find these we first calculate the metric, which can be obtained from
Eqs. (7.23); a short computation reveals that

g00 = −1 + (even) + 2

c5

(
V [3] + W [1]

) + O(c−7), (12.111a)

g jk = δ jk + (even) + O(c−5), (12.111b)

g00 = −1 + (even) − 2

c5

(
V [3] + W [1]

) + O(c−7), (12.111c)

g jk = δ jk + (even) + O(c−5), (12.111d)

√−g = 1 + (even) + 2

c5

(
V [3] − W [1]

) + O(c−7), (12.111e)

where (even) designates terms of order c−2, c−4, and so on. As a consequence of Eq. (12.101)
we find that the odd terms in g0 j first appear at order c−6 and can be neglected. (We are
aware that 6 is an even number; we stubbornly call it odd because g0 j is generated mostly
by h0 j = 4V j /c3, whose leading radiation-reaction piece comes from V j [3]. Recall that
g0 j couples to v j /c in the energy-momentum tensor, converting the c−6 into a genuinely
odd term of order c−7.) From these expressions for the metric we obtain

γ = 1 + (even) + 1

c5

(
V [3] + W [1]

) + O(c−7), (12.112)

and conclude that odd terms first appear at order c−5 in the energy-momentum tensor. For
example, the material contribution to �, given by c−2(−g)T 00, is

�matter = ρ∗
[

1 + (even) + 1

c5

(
3V [3] − W [1]

) + O(c−7)

]
. (12.113)

The relation of Eq. (12.108) implies that the O(c−5) term actually vanishes, and this means
that there is no matter contribution to �[5].
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We next examine the Landau–Lifshitz pseudotensor. Its definition is provided by Eq. (6.5),
and we express it in the schematic form

(−g)tαβ

LL = c4

16πG
(∂h∂h)αβ. (12.114)

The overall factor of c4 on the right-hand side implies that a term of order c−7 in (∂h∂h)00

makes a contribution to �[5], a term of order c−8 in (∂h∂h)0 j makes a contribution to s j [5],
and a term of order c−9 in (∂h∂h) jk makes a contribution to τ jk[5]. The various derivatives
of the potentials are given by

∂nh00 = 4

c2

{
∂n V [0] + O(c−2) + c−5∂n V [5] + O(c−7)

}
, (12.115a)

∂nh0 j = 4

c3

{
∂n V j [0] + O(c−2) + c−3∂n V j [3] + O(c−5)

}
, (12.115b)

∂nh jk = 4

c4

{
∂nW jk[0] + O(c−2) + c−3∂n W jk[3] + O(c−5)

}
, (12.115c)

∂0h00 = 4

c3

{
∂t V [0] + O(c−2) + c−3∂t V [3] + O(c−5)

}
, (12.115d)

∂0h0 j = 4

c4

{
∂t V

j [0] + O(c−2) + c−3∂t V
j [3] + O(c−5)

}
, (12.115e)

∂0h jk = 4

c5

{
∂t W

jk[0] + O(c−2) + c−1∂t W
jk[1] + O(c−3)

}
, (12.115f)

in which we have included only the required terms; note that V [3] and W jk[1] do not appear
in ∂nh00 and ∂nh jk , because they do not depend on the spatial coordinates.

Referring to Eq. (6.5), we observe that a typical term in (∂h∂h)αβ actually has the form of
gg∂h∂h. (There are also terms of the form gggg∂h∂h, but they need not be distinguished
for the purpose of this argument.) There are two ways of generating terms that contain an
odd power of c−1. The first is to let ∂h∂h be odd in c−1, and to keep the factor gg even; the
second is to let gg be odd, and to keep ∂h∂h even.

In the first scenario we need to multiply an even term in one of the factors ∂h by an odd
term in the remaining ∂h. Using the expansions of Eqs. (12.115), we find that the dominant
scaling of such products is c−8, and that it is produced by the set

S1 =
{
∂ph00∂q h0 j , ∂ph00∂0h00, ∂ph00∂q h jk

}
. (12.116)

We also find that the set of products

S2 =
{
∂ph00∂q h00, ∂ph00∂q h jk, ∂ph00∂0h0 j , ∂ph0 j∂q h0k,

∂ph0 j ∂0h00, ∂ph0 j ∂0hkn, ∂0h00∂0h00, ∂0h00∂0h jk
}

(12.117)

participates at order c−9.
In the second scenario we let the factors of g supply the odd terms, and we keep ∂h∂h

even. The leading odd terms in g come at order c−5 in g00, order c−6 in g0 j , and order
c−5 in g jk . The leading even term in ∂h∂h comes from ∂ph00∂q h00 at order c−4. After
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multiplication we find that the set

S3 =
{

h00∂ph00∂q h00, h jk∂ph00∂q h00
}

(12.118)

also participates at order c−9.
The next step is to decide how the various terms listed in S1, S2, and S3 enter in

the components of the Landau–Lifshitz pseudotensor. A careful examination of Eq. (6.5)
reveals that S1 appears only in (∂h∂h)0 j , whose dominant odd term therefore scales
as c−8; this produces a contribution to s j [5]. It reveals also that S2 and S3 appear in
(∂h∂h)00 and (∂h∂h) jk , whose dominant odd terms scale as c−9; this produces a contribution
to �[7] and τ jk[5]. We conclude from all this that the Landau–Lifshitz pseudotensor
makes contributions at the expected odd order to the source functions, but that there is no
contribution to �[5].

Finally we examine the harmonic pseudotensor (−g)tαβ

H . A similar sequence of steps
allows us to conclude that the leading odd terms make contributions to �[5], s j [5], and
τ jk[5]; the assumption contained in Eq. (12.106) is now fully justified. The contribution
to �[5]c2 is produced by −(c4/16πG)h jk∂ jkh00 on the right-hand side of Eq. (6.53), and
from Eqs. (12.105) and (12.107) we find that this is given by

�[5] = − 1

πG
W jk[1]∂ jk V [0] = 1

2π

...
I jk[0]∂ jk V [0]. (12.119)

To put this in its final form we recall that the [0] label refers to the Newtonian limit. The
quadrupole moment is therefore the Newtonian moment I jk , and V [0] is the Newtonian
potential, which was denoted U in previous chapters. What we have obtained, therefore, is

�[5] = 1

2π

...
I

jk
∂ jkU. (12.120)

We have also established that no other implicit, odd-order contribution to the effective
energy-momentum pseudotensor arises at 2.5pn order.

12.5.4 Radiation-reaction potentials: Final expressions

With �[5] in hand, we may now return to Eq. (12.107) and complete the computation of
V [5]. We need to evaluate the Poisson integral∫

M

�[5]

|x − x′| d3x ′,

in which �[5] is expressed as a function of t and x′. Making the substitution from
Eq. (12.120) gives ∫

M

�[5]

|x − x′| d3x ′ = 1

2π

...
I

jk
∫

M

∂ j ′k ′U (t, x′)
|x − x′| d3x ′, (12.121)

and to deal with this we appeal to integration by parts. We begin by writing

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

− ∂k ′U∂ j ′
1

|x − x′| . (12.122)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

664 Radiative losses and radiation reaction

Noting that ∂ j ′ |x − x′| = −∂ j |x − x′|, this is

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

+ ∂ j

(
∂k ′U

|x − x′|
)

. (12.123)

Applying this trick once more, we obtain

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

+ ∂ jk ′

(
U

|x − x′|
)

+ ∂ jk

(
U

|x − x′|
)

. (12.124)

Integration yields∫
M

∂ j ′k ′U

|x − x′| d3x ′ =
∮

∂M

∂k ′U

|x − x′| d Sj + ∂ j

∮
∂M

U

|x − x′| d Sk

+ ∂ jk

∫
M

U

|x − x′| d3x ′. (12.125)

Inspection of the surface integrals reveals that they scale as R−1 and do not give rise to
R-independent contributions to V [5]. The remaining volume integral is nothing but −2π X ,
up to an R-dependent constant, where X is the post-Newtonian superpotential defined in
Box 7.3. Our final expression for the integral is therefore −2π∂ jk X .

We have arrived at ∫
M

�[5]

|x − x′| d3x ′ = −...
I

jk
∂ jk X . (12.126)

This result might have been anticipated on the grounds that the left-hand side is a solution to
∇2(LHS) = −4π�[5] = −2

...
I

jk
∂ jkU = ∇2(−...

I
jk

∂ jk X ), since the superpotential is itself
a solution to ∇2 X = 2U . The discussion of Box 7.3, however, warns us that integration
of each side over a truncated domain M gives rise to boundary integrals that must be
examined closely. In this case we have the happy circumstance that all such integrals give
rise to R-dependent terms that can be ignored. In other circumstances the surface integrals
might have made important contributions, and the detailed calculation presented here would
have revealed them.

This computation completes the determination of the radiation-reaction potentials. Our
results are summarized in Box 12.3.

Box 12.3 Radiation-reaction potentials

The gravitational potentials in the near zone can be expanded as

h00 = 4

c2

{
U + O(c−2) + c−3V [3] + c−5V [5] + O(c−7)

}
,

h0 j = 4

c3

{
U j + O(c−2) + c−3V j [3] + O(c−5)

}
,

h jk = 4

c4

{
P jk + O(c−2) + c−1W jk[1] + c−3W jk[3] + O(c−5)

}
,
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in whichU := V [0],U j := V j [0], and P jk := W jk[0] are the leading-order, near-zone poten-
tials listed in Box 7.5. The terms that come with an odd power of c−1 are the radiation-reaction potentials,
and they are given by

V [3] = −1

6
G

...
I kk,

V [5] = G

[
−...

I
jk

∂ jk X − 1

6

...
I kk[2] − 1

60

(
r2δ jk + 2x j xk

) (5)

I jk

+ 1

30
x j

(5)

I jkk − 1

120

(5)

I j jkk

]
,

V j [3] = G

[
1

6
xk

(4)

I jk − 1

18

(4)

I jkk − 1

9

...
J

jkk
]
,

W jk[1] = −1

2
G

...
I

jk
,

W jk[3] = G

[
−1

2

...
I jk[2] − 1

12
r2

(5)

I jk + 1

18
x p

(5)

I jkp

+ 1

9
x p
( (4)

J jpk +
(4)

J kpj
) − 1

9

...
M

jkpp
]
.

They are expressed in terms of the Newtonian multipole moments

I jk :=
∫

ρ∗ x j xk d3x,

I jkn :=
∫

ρ∗ x j xk xn d3x,

I jknp :=
∫

ρ∗ x j xk xnx p d3x,

J jkn :=
∫

ρ∗(v j xk − vk x j
)
xn d3x,

M jknp :=
∫ (

ρ∗v jvk + p δ jk
)
xnx p d3x .

These are functions of t , and the number of overdots, or the number within an overlaid bracket, indicates the
number of differentiations with respect to t . The potentials also depend on c−2I jk[2], the post-Newtonian
correction to the quadrupole moment; an expression for this is not be required in subsequent calculations. In
addition, V [5] depends on the post-Newtonian superpotential X , defined by

X = G

∫
ρ∗|x − x′| d3x ′,

in which the mass densityρ∗ is expressed as a function of t and x′.
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12.6 Radiation reaction of fluid systems

Our main goal in this section is to calculate the radiation-reaction force density acting
within a fluid distribution of conserved mass density ρ∗, pressure p, and velocity field v.
We rely on the formulation of post-Newtonian fluid dynamics initiated in Sec. 8.4, and
work to obtain the terms of order c−5 that must be inserted within the post-Newtonian
generalization of Euler’s equation,

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + (even) + f j [rr]. (12.127)

The first two terms on the right-hand side govern the Newtonian dynamics of the fluid,
(even) designates the conservative corrections at 1pn and 2pn orders, and f j [rr] is the
radiation-reaction force density that we wish to obtain.

12.6.1 Metric, Christoffel symbols, andmatter variables

We first determine the pieces of the metric that are involved in the derivation of the radiation-
reaction force. These are obtained by inserting the potentials of Box 12.3 within Eqs. (7.20).
For our purposes here the non-linear terms are important, and after a straightforward
computation we obtain

g00 = −1 + 2c−2U + O(c−4) + 8c−5V [3] + O(c−6)

+ 2c−7
(
V [5] + W [3]

) − 24c−7V [3]U + O(c−8), (12.128a)

g0 j = O(c−3) + O(c−5) − 4c−6Vj [3] + O(c−7), (12.128b)

g jk = δ jk + O(c−2) + O(c−4) + 4c−5
(
W jk[1] − δ jk V [3]

) + O(c−6), (12.128c)

g00 = −1 − 2c−2U + O(c−4) − 8c−5V [3] + O(c−6)

− 2c−7
(
V [5] + W [3]

) − 8c−7V [3]U + O(c−8), (12.128d)

g0 j = O(c−3) + O(c−5) − 4c−6V j [3] + O(c−7), (12.128e)

g jk = δ jk + O(c−2) + O(c−4) − 4c−5
(
W jk[1] − δ jk V [3]

) + O(c−6), (12.128f)
√−g = 1 + O(c−2) + O(c−4) − 4c−5V [3] + O(c−6). (12.128g)

To arrive at these results we have taken into account the fact that W [1] = 3V [3].
The metric allows us to obtain the radiation-reaction terms in the relevant Christoffel

symbols, and another straightforward computation returns

c2�
j
00 = −∂ jU + O(c−2) + O(c−4) − c−5

×
(
∂ j V [5] + ∂ j W [3] + 4∂t V

j [3] − 4W jk[1]∂kU − 8V [3]∂ jU
)

+ O(c−6),

(12.129a)

c�
j
0k = O(c−2) + O(c−4) + 2c−5

(
∂ j Vk[3] − ∂k Vj [3] + ∂t W jk[1]

− δ jk∂t V [3]
)

+ O(c−6), (12.129b)

�
j
kn = O(c−2) + O(c−4) + O(c−6). (12.129c)
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We observe that since the c−5 term in g00 depends on time only, there is no contribution at
order c−3 in �

j
00. This is connected to the fact, discussed back in Sec. 7.3.5, that the c−5

term in g00 can be removed by the coordinate transformation

t = t ′ − 2G

3c5
Ï kk(t ′) + O(c−7) , (12.130)

so that it has no physical effect on the motion of matter. This removal works only at order
c−5; the transformation generates corrections at order c−7 that depend on

...
I

kk , as can be
expected from the presence of −8V [3]∂ jU in �

j
00. Similarly, because the c−5 term in g jk

depends on time only, there is no contribution at order c−5 in the purely spatial components
of the Christoffel symbols.

We next turn to the matter variables, which were introduced in Sec. 12.5.3. We re-express
Eq. (12.112) as

γ = 1 + O(c−2) + O(c−4) + 4c−5V [3] + O(c−6) (12.131)

and observe that the terms of order c−5 cancel out in

γ
√−g = 1 + O(c−2) + O(c−4) + O(c−6). (12.132)

From Eq. (12.110) we obtain

c−2√−gT 00 = γρ∗ + O(c−2) + O(c−4) + O(c−6), (12.133a)

c−1√−gT 0 j = γρ∗v j + O(c−2) + O(c−4) + O(c−6), (12.133b)
√−gT jk = γρ∗v j vk + p δ jk + O(c−2) + O(c−4)

− 4c−5W jk[1]p + O(c−6). (12.133c)

12.6.2 Radiation-reaction force density

The post-Newtonian generalization of Euler’s equation is obtained by invoking the local
statement of momentum conservation, as expressed by Eq. (8.111):

0 = c−1∂t

(√−gT 0 j
) + ∂k

(√−gT jk
)

+ �
j
00

(√−gT 00
) + 2�

j
0k

(√−gT 0k
) + �

j
kn

(√−gT kn
)
. (12.134)

After substitution of Eqs. (12.129) and (12.133) and simplification, we obtain

0 = ∂t

(
ρ∗v j

) + ∂k

(
ρ∗v j vk

) − ρ∗∂ jU + ∂ j p + O(c−2) + O(c−4)

− c−5 f j [5] + O(c−6), (12.135)

where

f j [5] := ρ∗∂ j

(
V [5] + W [3]

) + 4ρ∗∂t V
j [3] − 4ρ∗vk

(
∂ j Vk[3] − ∂k Vj [3] + ∂t W jk[1]

)
− 4ρ∗W jk[1]∂kU − 8ρ∗V [3]∂ jU + 4W jk[1]∂k p + 4V [3]∂ j p. (12.136)

We next involve the continuity equation ∂tρ
∗ + ∂k(ρ∗vk) = 0 and insert the radiation-

reaction potentials listed in Box 12.3. The end result is the Euler equation of Eq. (12.127),
with f j [rr] = c−5 f j [5] + O(c−7).
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Our final expression for the radiation-reaction force density is

f j [rr] = G

c5

(
−ρ∗ ...

I
pq

∂ j pq X + 2ρ∗ ...
I

jk
∂kU + 4

3
ρ∗ ...

I pp∂ jU − 2
...
I

jk
∂k p − 2

3

...
I

pp
∂ j p

+ 2ρ∗ (4)

I jkvk + 3

5
ρ∗ (5)

I jk xk − 1

5
ρ∗ (5)

I ppx j − 2

15
ρ∗ (5)

I jpp − 2

3
ρ∗ (4)

J jpp

)
+ O(c−7). (12.137)

The various multipole moments that appear in this expression are defined in Box 12.3.

12.6.3 Energy balance

Before we apply the radiation-reaction force of Eq. (12.137) to a system of well-separated
bodies, we verify that it leads to the expressions of energy, momentum, and angular-
momentum balance that were stated back in Sec. 12.2. We begin with energy balance.
According to Eq. (12.31), the total energy E of the fluid distribution should vary in time
according to

d E

dt
= −P = − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉 + O(c−7), (12.138)

where the expression for the energy flux P has been copied from Sec. 12.3.2.
For our purposes here it is sufficient to import an expression for the total energy E that

is accurate to the leading, Newtonian order, but it is still necessary to recognize that E
also contains terms at 1pn, 2pn, and 2.5pn orders. The Newtonian term was computed in
Sec. 8.4.5, and according to Eq. (8.134), we have that

E = T + 
 + Eint + O(c−2) + O(c−4) + c−5 E[5] + O(c−6), (12.139)

where T := 1
2

∫
ρ∗v2 d3x is the fluid’s total kinetic energy, 
 := − 1

2

∫
ρ∗U d3x its gravi-

tational potential energy, and Eint := ∫
ρ∗� d3x its total internal energy. The 1pn and 2pn

terms are not required in this discussion, but the 2.5pn term is important and its precise
identity will be revealed in due course.

We differentiate each term in Eq. (12.139) with respect to time. For the kinetic en-
ergy we get dT /dt = ∫

ρ∗v j (dv j /dt) d3x , in which we substitute the Euler equation
of Eq. (12.127); the contribution at order c−5 is

∫
v j f j [rr] d3x , the rate at which the

radiation-reaction force does work on the fluid. For the potential energy we get that d
/dt
is given exactly by Eq. (12.144d) below and gives no contribution at order c−5. For the
internal energy we have that d Eint/dt = ∫

ρ∗(d�/dt) d3x , in which we insert the exact
statement of the first law of thermodynamics, as stated back in Sec. 8.4; we have that
d�/dt = (p/ρ2)dρ/dt , where ρ is the fluid’s proper-mass density. Because ρ differs from
ρ∗ by a factor γ

√−g that contains no term of order c−5 – refer to Eq. (12.132) – we find
that d Eint/dt makes no contribution at 2.5pn order. Finally, observing that all c0, c−2, and
c−4 terms in E are conserved by virtue of the conservative dynamics at 2pn order, we are
left with ∫

v j f j [rr] d3x + d

dt

(
c−5 E[5]

)
= − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉 + O(c−7) (12.140)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

669 12.6 Radiation reaction of fluid systems

as a precise statement of energy balance. This equation states that up to an overall change
in total energy at 2.5pn order, the work done by the radiation-reaction force is equal to the
energy radiated by gravitational waves.

In situations in which the Newtonian dynamics of the system is periodic, or when the
evolution begins and ends in a static state, Eq. (12.140) can be averaged over time, and
the resulting coarse-grained statement of energy balance no longer involves E[5]. In this
formulation we would write〈∫

v j f j [rr] d3x
〉
= − G

5c5

〈...
I

〈 jk〉 ...
I 〈 jk〉

〉
+ O(c−7), (12.141)

with the angular brackets indicating the averaging procedure. In this coarse-grained state-
ment we recover the expected equality between work done and radiated energy. This
statement is obviously less general than the fine-grained statement of Eq. (12.140), and is
subjected to the assumption that the initial and final values of E[5] must be equal.

Before we proceed with the derivation of Eq. (12.140) and the determination of E[5],
we re-introduce the tensorial generalizations of T and 
,

T jk := 1

2

∫
ρ∗v j vk d3x, (12.142a)


 jk := −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x, (12.142b)

which were first encountered back in Sec. 1.4.3. In terms of these we have that T = δ jkT jk

and 
 = δ jk

jk . These quantities are involved in a number of helpful identities, including

the familiar virial theorem

1

2
Ï jk = 2T jk + 
 jk + Pδ jk, (12.143)

with P := ∫
p d3x denoting the integrated pressure. Other identities include

Ṫ jk =
∫

ρ∗v( j ∂k)U d3x −
∫

v( j ∂k) p d3x + O(c−2), (12.144a)


̇ jk − 
̇δ jk =
∫

ρ∗v p∂pjk X d3x, (12.144b)

Ṫ =
∫

ρ∗v j ∂ jU d3x −
∫

v j ∂ j p d3x + O(c−2), (12.144c)


̇ = −
∫

ρ∗v j ∂ jU d3x . (12.144d)

These identities are similar to those encountered previously in Sec. 8.4.4, and it is a simple
matter to establish them. For example, Eq. (12.144a) follows directly from the definition
of T jk and involvement of Euler’s equation. Equation (12.144c) is obtained by taking the
trace of Eq. (12.144a). The derivation of Eq. (12.144b) is more involved, but Eq. (12.144d)
follows by taking its trace.
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To establish Eq. (12.144b) we begin with the definition of the superpotential, X =
G
∫

ρ∗′|x − x′| d3x ′, from which we obtain∫
ρ∗v p∂pjk X d3x = G

∫
ρ∗ρ∗′v p∂pjk |x − x′| d3x ′d3x (12.145a)

= G

∫
ρ∗′ρ∗v′p∂p′ j ′k ′ |x′ − x| d3x d3x ′ (12.145b)

= −G

∫
ρ∗ρ∗′v′p∂pjk |x − x′| d3x ′d3x (12.145c)

= 1

2
G

∫
ρ∗ρ∗′(v − v′)p∂pjk |x − x′| d3x ′d3x (12.145d)

= 1

2
G

d

dt

∫
ρ∗ρ∗′∂ jk |x − x′| d3x ′d3x . (12.145e)

We swap the identities of the integration variables to go from the first to the second line,
and to go to the third line we observe that ∂ j ′ |x − x′| = −∂ j |x − x′|. We symmetrize the
expressions in the fourth line, and in the fifth line we invoke an integral identity derived in
Box 8.4. The final result of Eq. (12.144b) follows after evaluating the remaining derivatives.

Returning to Eq. (12.140), we insert the force density of Eq. (12.137) and involve the
identities of Eq. (12.144) to evaluate the integrals. We simplify our expressions by setting∫

ρ∗v j d3x + O(c−2) = P j = 0, and obtain

c5

G

∫
v j f j [rr] d3x = −...

I jk

(
2Ṫ jk + 
̇ jk

) + 1

3

...
I pp

(
2Ṫ + 
̇

)
+ 3

10

(5)

I jk İ jk − 1

10

(5)

I pp İ pp + 4
d

dt

(...
I

jkT jk
)

(12.146)

for the rate of work done. With the virial theorem of Eq. (12.143) we can express this as

c5

G

∫
v j f j [rr] d3x = −1

2

...
I

jk ...
I

jk + 1

6

...
I

pp ...
I

pp + 3

10

(5)

I jk İ jk − 1

10

(5)

I pp İ pp

+ 4
d

dt

(...
I

jkT jk
)
, (12.147)

and we simplify it further by distributing the time derivatives. We write, for example,

(5)

I jk İ jk = d

dt

( (4)

I jk İ jk − ...
I

jk Ï jk
)

+ ...
I

jk ...
I

jk
, (12.148)

and obtain the final expression

c5

G

∫
v j f j [rr] d3x = −1

5

...
I

jk ...
I

jk + 1

15

...
I

pp ...
I

pp + d

dt

(
4

...
I

jkT jk + 3

10

(4)

I jk İ jk − 1

10

(4)

I pp İ pp

− 3

10

...
I

jk Ï jk + 1

10

...
I

pp Ï pp

)
(12.149)

for the rate at which the radiation-reaction force does work on the fluid.
After simplification achieved by expressing I jk in terms of its trace and tracefree pieces,

we find that we do indeed recover the energy-balance statement of Eq. (12.140). The
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total-derivative term in Eq. (12.149) implies that

c−5 E[5] = − G

c5

(
4

...
I

jkT jk + 3

10

(4)

I 〈 jk〉 İ 〈 jk〉 − 3

10

...
I

〈 jk〉 Ï 〈 jk〉
)

(12.150)

is the 2.5pn contribution to the total energy.

12.6.4 Momentum balance

We next turn to momentum balance, and verify that the radiation-reaction force density of
Eq. (12.137) is compatible with the statement of Eq. (12.33),

d P j

dt
= −F j = O(c−7); (12.151)

the scaling of the momentum flux F j with c−7 was obtained in Sec. 12.3.2. The most
important observation here is that P j is conserved at 2.5pn order; radiation reaction acts
on the total momentum at 3.5pn order.

According to Eq. (8.145), the total momentum of the fluid distribution is given by

P j =
∫

ρ∗v j d3x + O(c−2) + O(c−4) + c−5 P j [5] + O(c−6), (12.152)

with c−5 P j [5] denoting the contribution at 2.5pn order. Differentiation with respect to t
and substitution of Eq. (12.127) gives rise to∫

f j [rr] d3x + d

dt

(
c−5 P j [5]

)
= O(c−7), (12.153)

which is our precise statement of momentum balance. We must verify that the integrated
radiation-reaction force is equal to a total time derivative, and the computation reveals the
identity of P j [5].

To evaluate the integral we require the identities∫
ρ∗∂ jU d3x = 0, (12.154a)∫

ρ∗∂ j pq X d3x = 0, (12.154b)∫
∂ j p d3x = 0. (12.154c)

The first is familiar; it was encountered back in Sec. 1.4.3 and then again in Sec. 8.4.4,
and its demonstration proceeds by inserting the Newtonian potential and noting that the
integrand is odd in the integration variables x and x′. The second identity is new, but it
follows after a similar sequence of steps. The third identity also is familiar, and it follows
by applying Gauss’s theorem and noting that p = 0 on any closed surface that bounds the
distribution of matter.

Integration of Eq. (12.137) yields∫
f j [rr] d3x = − 2

15

Gm

c5

( (5)

I jpp + 5
(4)

J jpp
)

+ O(c−7), (12.155)
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where m := ∫
ρ∗ d3x is the total material mass, and where the multipole moments I jkn

and Jjkn are defined in Box 12.3. To arrive at this expression we have used the fact that
since P j is conserved at 2.5pn order, we may work in the center-of-mass frame and set∫

ρ∗x j d3x = O(c−5) and
∫

ρ∗v j d3x = O(c−5). The integrated radiation-reaction force is
indeed a total time derivative, and from its expression we deduce that the 2.5pn contribution
to the total momentum is

c−5 P j [5] = 2

15

Gm

c5

( (4)

I jpp + 5
...
J

jpp
)
. (12.156)

We conclude that Eq. (12.137) is indeed compatible with the precise statement of momentum
balance.

12.6.5 Angular-momentum balance

Finally we examine the statement of angular-momentum balance, which is provided by
Eq. (12.35),

d J jk

dt
= −T jk = − 2G

5c5

(
Ï j p ...

I
kp − Ï kp ...

I
jp
)

+ O(c−7), (12.157)

where the expression for the angular-momentum flux T jk has been copied from Sec. 12.3.2;
it is easy to show that the result displayed here is equivalent to that of Eq. (12.68c), in spite
of the fact that our expression omits the STF projection of the quadrupole-moment tensor.

The total angular-momentum tensor of the fluid distribution is given by

J jk =
∫

ρ∗(x j vk − v j xk
)

d3x + O(c−2) + O(c−4) + c−5 J jk[5] + O(c−6), (12.158)

with c−5 J jk[5] denoting the contribution at 2.5pn order. The precise statement of angular-
momentum balance is∫ (

x j f k[rr] − xk f j [rr]
)

d3x + d

dt

(
c−5 J jk[5]

)
= − 2G

5c5

(
Ï j p ...

I
kp − Ï kp ...

I
jp
)

+ O(c−7),

(12.159)
and in this we must substitute Eq. (12.137).

To evaluate the integral on the left-hand side we require the identities∫
ρ∗x j ∂kU d3x = 
 jk, (12.160a)∫

ρ∗x j ∂kpq X d3x = 
 jkδpq + 
 j pδkq + 
 jqδkp − 3
 jkpq , (12.160b)∫
x j ∂k p d3x = −δ jk P, (12.160c)∫

ρ∗x j vk d3x = 1

2

(
İ jk + J jk

) + O(c−2), (12.160d)

in which 
 jk is the tensorial quantity defined by Eq. (12.142),


 jkpq := −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k(x − x ′)p(x − x ′)q

|x − x′|5 d3x ′d3x, (12.161)
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and P := ∫
p d3x is the integrated pressure. The first identity is familiar from the proof

of the virial theorem presented back in Sec. 1.4.3, and the second follows after a similar
sequence of steps. The third identity is an immediate consequence of integration by parts,
and the fourth follows directly from the definitions of I jk and J jk .

After substitution of Eq. (12.137) and involvement of the identities we obtain∫
x j f k[rr] d3x = G

c5

(
3

5
I jp

(5)

I kp + İ j p
(4)

I kp + J jp
(4)

I kp

)
, (12.162)

up to a number of terms that are symmetric in the pair of indices jk. This becomes∫
x j f k[rr] d3x = − 2G

5c5
Ï jk ...

I
kp + G

5c5

d

dt

(
3I jp

(4)

I kp + 2 İ j p ...
I

kp + 5J jp ...
I

kp
)

(12.163)

after distributing the time derivatives. Comparing with Eq. (12.159), we conclude that the
statement of angular-momentum balance is indeed satisfied, and deduce that the 2.5pn

contribution to the total angular-momentum tensor is

c−5 J jk[5] = − G

5c5

[
3
(
I jp

(4)

I kp − I kp
(4)

I jp
) + 2

(
İ j p ...

I
kp − İ kp ...

I
jp)

+ 5
(
J jp ...

I
kp − J kp ...

I
jp)]

. (12.164)

In this expression J jk stands for the Newtonian piece of the angular-momentum tensor,
obtained from Eq. (12.158) by ignoring all contributions at higher post-Newtonian orders.

12.7 Radiation reaction of N -body systems

We now specialize the results of the preceding section to a case in which the fluid distribution
consists of N well-separated bodies. We wish to calculate the radiation-reaction force
acting on the center-of-mass of each body, and in order to achieve this we shall exploit the
techniques developed back in Chapter 9.

12.7.1 N bodies

As in Sec. 9.1 we assign to each body a label A = 1, 2, . . . , N , and for each body we define
the center-of-mass variables

m A :=
∫

A
ρ∗ d3x, (12.165a)

r A := 1

m A

∫
A

ρ∗ x d3x, (12.165b)

vA := 1

m A

∫
A

ρ∗ v d3x, (12.165c)

aA := 1

m A

∫
A

ρ∗ dv

dt
d3x ; (12.165d)
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the domain of integration is the region of space occupied by body A. We calculate the
radiation-reaction force F A[rr] acting on body A by inserting Eq. (12.127) within aA; we
find

F A[rr] = m AaA[rr] =
∫

A
f [rr] d3x, (12.166)

in which f [rr] is the radiation-reaction force density of Eq. (12.137).
To evaluate this we proceed as in Sec. 9.1.5 and decompose the Newtonian potential U

and the post-Newtonian superpotential X into internal and external pieces. We have, for
example, U = UA + U¬A, with

UA = G

∫
A

ρ∗(t, x′)
|x − x′| d3x ′ (12.167)

denoting the internal piece of the Newtonian potential, and

U¬A =
∑
B 	=A

G

∫
B

ρ∗(t, x′)
|x − x′| d3x ′ (12.168)

denoting its external piece. As in Sec. 9.3 we exploit the assumption that the bodies are well
separated to express each external potential as a Taylor expansion about the center-of-mass
r A; we ignore the multipole structure of the body and retain only the leading term in the
expansion. The internal potentials require no approximation, and for these we invoke the
identities of Eq. (12.154), ∫

A
ρ∗∂ jUA d3x = 0, (12.169a)∫

A
ρ∗∂ j pq X A d3x = 0, (12.169b)∫

A
∂ j p d3x = 0, (12.169c)

which imply that the internal potentials and the pressure make no contribution to the
radiation-reaction force.

Following through with the computations, we quickly obtain

a j
A[rr] = G

c5

(
−...

I
pq

∂ j pq X¬A + 2
...
I

jk
∂kU¬A + 4

3

...
I

pp
∂ jU¬A + 2

(4)

I jkvk
A

+ 3

5

(5)

I jkr k
A − 1

5

(5)

I ppr j
A − 2

15

(5)

I jpp − 2

3

(4)

J jpp

)
+ O(c−7), (12.170)

in which it is understood that the external potentials are evaluated at x = r A after differ-
entiation. For a more concrete expression we must evaluate the external potentials. These
manipulations are familiar from Sec. 9.3.4, and we arrive at

∂ jU¬A = −
∑
B 	=A

G MB

r2
AB

n j
AB, (12.171a)

∂ j pq X¬A = −
∑
B 	=A

G MB

r2
AB

(
n j

ABδpq + n p
ABδ jq + nq

ABδ j p − 3n j
ABn p

ABnq
AB

)
, (12.171b)
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in which r AB := r A − r B , rAB := |r AB |, and nAB := r AB/rAB ; we take the liberty of
expressing the material mass m A in terms of the total mass-energy MA of Eq. (9.23), noting
that the difference is of order c−2 and therefore affects the radiation-reaction force at order
c−7 only.

Making the substitutions returns our final expression for the radiation-reaction force (per
unit mass) acting on body A:

a j
A[rr] = G

c5

(
−3

...
I

pq
∑
B 	=A

G MB

r2
AB

n j
ABn p

ABnq
AB − 1

3

...
I

pp
∑
B 	=A

G MB

r2
AB

n j
AB

+ 2
(4)

I jkvk
A + 3

5

(5)

I 〈 jk〉rk
A − 2

15

(5)

I jpp − 2

3

(4)

J jpp

)
+ O(c−7). (12.172)

To complete the evaluation of aA[rr] we should calculate the time derivatives of all the
multipole moments that occur in Eq. (12.172). Because the end result is long and unwieldy,
we postpone the pursuit of these details until we specialize our discussion to a two-body
system.

12.7.2 Two bodies

We next apply the general results of the preceding subsection to the case N = 2. Because
the total momentum P of the system is conserved at order c−5, we may set it equal
to zero and work in the barycentric frame in which r1 = (M2/m)r + O(c−2) and r2 =
−(M1/m)r + O(c−2), where m := M1 + M2 and r := r1 − r2. Equation (12.172) then
provides the radiation-reaction acceleration of the relative orbit, a[rr] := a1[rr] − a2[rr];
we get

a j [rr] = G

c5

[
−Gm

r2

(
3

...
I

pqn pnq + 1

3

...
I

pp
)

n j + 2
(4)

I jkvk + 3

5

(5)

I 〈 jk〉rk

]
+ O(c−7), (12.173)

where r := |r| and n := r/r . We observe that the multipole moments I jpp and Jjpp no
longer appear in this expression; as we saw back in Sec. 12.6.4, their role is limited to
providing a contribution to the total momentum at 2.5pn order.

The mass quadrupole moment is I jk = ηmr jrk , where η := M1 M2/m2 is the symmetric
mass ratio, and to evaluate its derivatives we rely on the Keplerian dynamics reviewed in
Sec. 3.2. From the Newtonian equation of motion a = −Gmn/r2 we deduce that vv̇ =
−Gmṙ/r2 and rr̈ = v2 − ṙ2 − Gm/r , up to corrections of order c−2, and a straightforward
computation reveals that

...
I

jk = −2ηm
Gm

r2

[
2
(
n j vk + v j nk

) − 3ṙ n j nk
]
, (12.174a)

(4)

I jk = −2ηm
Gm

r3

[
−9ṙ

(
n j vk + v j nk

) + 4v j vk

+ (
15ṙ2 − 3v2 − Gm/r

)
n j nk

]
, (12.174b)

(5)

I jk = −2ηm
Gm

r4

[
4
(
15ṙ2 − 3v2 + Gm/r

)(
n j vk + v j nk

)
− 30ṙ v j vk + 15ṙ

(
3v2 − 7ṙ2

)
n j nk

]
. (12.174c)
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Making the substitutions in Eq. (12.173), we eventually arrive at our final expression for
the radiation-reaction acceleration:

a[rr] = 8

5
η

(Gm)2

c5r3

[(
3v2 + 17

3

Gm

r

)
ṙ n −

(
v2 + 3

Gm

r

)
v

]
. (12.175)

We return to this expression in Sec. 12.9, when we examine the orbital motion of a binary
system under the action of the radiation-reaction force.

12.8 Radiation reaction in alternative gauges

The radiation-reaction force density of Eq. (12.137), and the body forces of Eqs. (12.172)
and (12.175), are expressed in a harmonic coordinate system in which the spacetime metric
takes the form of Eq. (12.128). The metric and the resulting expressions for the radiation-
reaction force appear to be more complicated than they need to be. For example, the metric
involves the multipole moments I jk[2], I jknp, and M jknp, but these make no appearance in
the radiation-reaction force. As another example, f j [rr] involves the multipole moments
I jpp and Jjpp, in spite of the fact that they produce no physical consequences; as we saw,
their role is limited to providing a contribution to the total momentum P at 2.5pn order. In
view of this unnecessary complexity, it is worthwhile to seek coordinate transformations
that could simplify the form of the metric and of the radiation-reaction force. To explore
this freedom is our purpose in this section. We shall identify two radiation-reaction gauges
that offer an optimum of simplicity: the famous Burke–Thorne gauge of Eq. (12.198) below,
and the Schäfer gauge of Eq. (12.199).

12.8.1 Coordinate transformation

We follow the general framework of Sec. 8.3 and consider a class of coordinate transfor-
mations described by

t = t̄ + c−5α(t̄, x̄ j ) + c−7β(t̄, x̄ j ) + O(c−9), (12.176a)

x j = x̄ j + c−5h j (t̄, x̄ k) + O(c−7), (12.176b)

in which (t̄, x̄ j ) are the new coordinates, (t, x j ) are the old harmonic coordinates, and α,
β, and h j are functions that will be determined in the course of our investigation. The
transformation impacts the metric in the way described by Eq. (8.34). When we insert the
metric of Eq. (12.128) and read off the terms of relevant orders in the post-Newtonian
expansion, we find that the radiation-reaction terms become

ḡ00[5] = 2
(−∂t̄α + 4V [3]

)
, (12.177a)

ḡ00[7] = 2
(−∂t̄β + V [5] + W [3] − �U [5]

) + 4U
(
∂t̄α − 6V [3]

)
, (12.177b)

ḡ0 j [4] = −∂j̄α, (12.177c)

ḡ0 j [6] = 2U∂j̄α − ∂j̄β + ∂t̄ h j − 4Vj [3], (12.177d)

ḡ jk[5] = ∂j̄ hk + ∂k̄h j + 4
(
W jk[1] − δ jk V [3]

)
. (12.177e)
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The original radiation-reaction potentials are listed in Box 12.3, and

c−5�U [5] := Ū − U (12.178)

is the difference between the Newtonian potential Ū expressed in terms of the new coordi-
nates (t̄, x̄ j ) and the original Newtonian potential U .

We see from Eqs. (12.177) that the transformation produces a new radiation-reaction
term in ḡ0 j , at order c−4. This term is undesirable, and we eliminate it by demanding that α

be independent of the spatial coordinates x̄ j . To complete the determination of α we also
choose to eliminate ḡ00[5], another undesirable term at 1.5pn order. This can be achieved
by setting ∂t̄α = 4V [3], or

α(t̄) = −2

3
G Ï pp. (12.179)

In this expression the mass quadrupole moment is expressed as a function of the new time
variable t̄ . The transformation t = t̄ − 2

3 (G/c5) Ï pp(t̄) + O(c−7) is the one displayed in
Eq. (12.130).

To calculate �U [5] we rely on the discussion of Sec. 8.3.6, in which a “boosted”
Newtonian potential Ū was obtained as a result of a post-Galilean transformation of the
coordinate system. The original Newtonian potential is

U (t, x) = G

∫
ρ∗(t, x′)
|x − x′| d3x ′, (12.180)

where it is understood that the source point x′ is simultaneous with the field point x in the
harmonic reference frame. The new potential is defined to be

Ū (t̄, x̄) = G

∫
ρ̄∗(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (12.181)

with x̄′ and x̄ simultaneous in the new reference frame. Because the relation between t and
t̄ is independent of the spatial coordinates at order c−5, simultaneity in one frame implies
simultaneity in the other frame, and we find that (x − x ′) j = (x̄ − x̄ ′) j + c−5�h j , where

�h j := h j (t̄, x̄) − h j (t̄, x̄′). (12.182)

Noting also that ρ∗ d3x ′ = ρ̄∗ d3 x̄ ′ – refer to Eq. (8.92) – we find that the original potential
can be expressed as

U = G

∫
ρ̄∗

|x̄ − x̄′|
(

1 − 1

c5

(x̄ − x̄ ′) j �h j

|x̄ − x̄′|2
)

d3 x̄ ′. (12.183)

In view of Eq. (12.178), this means that

�U [5] = G

∫
ρ̄∗(t̄, x̄′)

(x̄ − x̄ ′) j�h j

|x̄ − x̄′|3 d3 x̄ ′ (12.184)

is our final expression for the change in the Newtonian potential at order c−5.
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12.8.2 Two-parameter family of radiation-reaction gauges

To proceed with this exploration of coordinate transformations, we restrict our considera-
tions to radiation-reaction gauges in which

ḡ0 j [6] = 0, (12.185a)

ḡ jk[5] = 2a G
...
I

〈 jk〉 + 2b δ jk G
...
I

pp
, (12.185b)

where a and b are dimensionless parameters that can be chosen freely. As we shall see,
the choice of Eq. (12.185) does not fully exhaust the coordinate freedom, and additional
choices will be made to specify the form of ḡ00[7].

According to Eq. (12.177) and the potentials of Box 12.3, to achieve the required form
for ḡ jk[5] we need h j to be a solution to

∂j̄ hk + ∂k̄h j = 2(1 + a)G
...
I

〈 jk〉 + 2b δ jk G
...
I

pp
. (12.186)

A sufficiently general solution is

G−1h j = f j + [
(1 + a)

...
I

〈 jk〉 + b δ jk
...
I

pp]x̄ k, (12.187)

in which f j is an arbitrary function of t̄ that will be specified at a later stage. To achieve
the required form for ḡ0 j [6] we need β to be a solution to

G−1∂j̄β = ḟ j + 2

9

(4)

I jpp + 4

9

...
J

jpp +
[(

1

3
+ a

)
(4)

I 〈 jk〉 +
(

b − 2

9

)
δ jk

(4)

I pp

]
x̄ k, (12.188)

and in this case we find that

G−1β = γ +
(

ḟ j + 2

9

(4)

I jpp + 4

9

...
J

jpp
)

x̄ j

+ 1

2

[(
1

3
+ a

)
(4)

I 〈 jk〉 +
(

b − 2

9

)
δ jk

(4)

I pp

]
x̄ j x̄ k, (12.189)

in which γ is an arbitrary function of t̄ .
We next incorporate these results in a computation of ḡ00[7]. The first step is to insert

Eq. (12.187) within Eq. (12.184), which yields

�U [5] = (1 + a)G
...
I

〈 jk〉Ū jk + b G
...
I

ppŪ , (12.190)

where

Ū jk := G

∫
ρ̄∗ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′. (12.191)

We bring this to its final form of

�U [5] = −(1 + a)G
...
I

〈 jk〉
∂j̄ k̄ X̄ + b G

...
I

ppŪ (12.192)

by invoking the identity ∂ jk X = δ jkU − U jk ; here X̄ is the superpotential expressed in
terms of the new coordinates.
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Making the substitutions in Eq. (12.177), we find that ḡ00[7] contains a term independent
of the spatial coordinates that can be eliminated by choosing

γ = −2

3
Ï pp[2] − 1

120

(4)

I ppqq − 1

9
M̈ ppqq . (12.193)

It also contains a term linear in x̄ j that can be eliminated by choosing

f j = − 2

15

...
I

jpp − 2

3
J̈ j pp. (12.194)

At this stage the coordinate freedom is exhausted, and the resulting expression for ḡ00[7] is

ḡ00[7] = 2a G
...
I

〈 jk〉
∂j̄ k̄ X̄ − 2b G

...
I

ppŪ −
[(

2

5
+ a

)
G

(5)

I 〈 jk〉 + b δ jk G
(5)

I pp

]
x̄ j x̄ k .

(12.195)
The calculation of the metric in the new coordinate system is now complete.

To summarize, the two-parameter family of radiation-reaction gauges is described by the
metric

g00 = −1 + 2

c2

(
U + U

) + O(c−9), (12.196a)

g0 j = O(c−8), (12.196b)

g jk = δ jk + 2V jk + O(c−7), (12.196c)

with the radiation-reaction potentials

U = G

c5

{
a

...
I

〈 jk〉
∂ jk X − b

...
I

ppU − 1

2

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
x j xk

}
, (12.197a)

V jk = G

c5

(
a

...
I

〈 jk〉 + b δ jk
...
I

pp
)
. (12.197b)

This expression for the metric omits all terms of 1pn and 2pn orders that have nothing to
do with radiation reaction. To simplify the notation we have removed the (now redundant)
overbars on the coordinates and potentials.

Two special cases are especially interesting and simple. When we set a = b = 0 we find
that the radiation-reaction potentials become

U = − G

5c5

(5)

I 〈 jk〉x j xk,

V jk = 0; (12.198)

this choice defines the Burke–Thorne radiation-reaction gauge. This gauge is especially
attractive, because it encapsulates all radiation-reaction effects in a O(c−5) correction to
the Newtonian potential. On the other hand, when we set a = − 2

5 and b = 0 we find that
all terms involving the mass quadrupole moment differentiated five times disappear, and
we are left with

U = − 2G

5c5

...
I

〈 jk〉
∂ jk X,

V jk = − 2G

5c5

...
I

〈 jk〉; (12.199)

this choice defines the Schäfer radiation-reaction gauge.
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12.8.3 Radiation-reaction force

The computation of the radiation-reaction force density f j [rr] in the two-parameter family
of radiation-reaction gauges proceeds just as in Sec. 12.6. In this case we have that

√−g =
1 + V + O(c−7), γ = 1 + O(c−7), and the components of the energy-momentum tensor
are

c−2√−gT 00 = ρ∗ + O(c−7), (12.200a)

c−1√−gT 0 j = ρ∗v j + O(c−7), (12.200b)
√−gT jk = ρ∗v j vk + p δ jk − (

2V jk − δ jkV
)

p + O(c−7). (12.200c)

We use the notation V := δ jkV jk and continue to omit all terms of 1pn and 2pn orders that
have nothing to do with radiation reaction. The relevant Christoffel symbols are

c2�
j
00 = −∂ j

(
U + U

) + 2V jk∂kU + O(c−7), (12.201a)

c�
j
0k = ∂tV jk + O(c−7), (12.201b)

�
j
kn = O(c−7). (12.201c)

Making the substitutions in the momentum-conservation equation of Eq. (12.134), we arrive
at the post-Newtonian Euler equation of Eq. (12.127), with

f j [rr] = ρ∗∂ jU − 2ρ∗vk∂tV jk − 2V jk
(
ρ∗∂kU − ∂k p

) − V ∂ j p. (12.202)

When we next insert the radiation-reaction potentials of Eqs. (12.197), we obtain

f j [rr] = G

c5

{
a

...
I

〈pq〉
ρ∗∂ j pq X − 2a

...
I

〈 jk〉(
ρ∗∂kU − ∂k p

) − b
...
I

pp(3ρ∗∂ jU + ∂ j p
)

− 2ρ∗
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk − ρ∗

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
xk

}
(12.203)

as our final expression for the radiation-reaction force density.
The force simplifies considerably in the Burke–Thorne gauge:

f j [rr] = − 2G

5c5
ρ∗ (5)

I 〈 jk〉xk . (12.204)

While its expression is more complicated in the Shäfer gauge, it is nevertheless useful
because the number of time derivatives acting on the quadrupole-moment tensor goes down
from five to four. This can be a great advantage in numerical work, because the estimation
of derivatives on a finite grid generates numerical noise that can be minimized with a
smaller number of derivatives. In some applications the term involving four derivatives can
be small compared with terms containing three derivatives; this occurs, for example, when
the system undergoes small oscillations and v2 is small compared with U (contrary to what
might be expected from the virial theorem).
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We next calculate the radiation-reaction force acting on the center-of-mass of each body
A within an N -body system. The steps involved are virtually identical to those encountered
previously in Sec. 12.7, and we arrive at

a j
A[rr] = G

c5

{
a

...
I

〈pq〉
∂ j pq X¬A − 2a

...
I

〈 jk〉
∂kU¬A − 3b

...
I

pp
∂ jU¬A

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk

A −
[(

2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

A

}
, (12.205)

where U¬A and X¬A are the potentials produced by the bodies external to A, evaluated
at x = r A after differentiation. Taking care of these manipulations, we obtain our final
expression

a j
A[rr] = G

c5

{
3
∑
B 	=A

G MB

r2
AB

(
a

...
I

〈pq〉n p
ABnq

AB + b
...
I

pp
)

n j
AB

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk

A −
[(

2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

A

}
, (12.206)

in which r AB := r A − r B , rAB := |r AB |, and nAB := r AB/rAB .
The reduction to a two-body system produces

a j [rr] = G

c5

{
3

Gm

r2

(
a

...
I

〈pq〉n pnq + b
...
I

pp
)

n j

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk −

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

}
(12.207)

for the relative acceleration a[rr] := a1[rr] − a2[rr]. Completing the calculation with the
help of Eqs. (12.174), we finally arrive at

a[rr] = 8

5
η

(Gm)2

c5r3

{[(
18 + 15a − 45

4
b
)
v2 +

(2

3
− 10

3
a + 25

4
b
)Gm

r

−
(

25 + 25a − 75

4
b
)

ṙ2

]
ṙ n −

[(
6 + 35

6
a − 5

2
b
)
v2

−
(

2 + 35

6
a − 5

2
b
)Gm

r
−
(

15 + 35

2
a − 15

2
b
)

ṙ2

]
v

}
. (12.208)

In the Burke–Thorne gauge (a = b = 0) the relative acceleration reduces to

a[rr] = 8

5
η

(G M)2

c5r3

[(
18v2 + 2

3

G M

r
− 25ṙ2

)
ṙ n −

(
6v2 − 2

G M

r
− 15ṙ2

)
v

]
,

(12.209)
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while in the Schäfer gauge (a = −2/5, b = 0) we have

a[rr] = 8

5
η

(G M)2

c5r3

[(
12v2 + 2

G M

r
− 15ṙ2

)
ṙ n −

(
11

3
v2 + 1

3

G M

r
− 8ṙ2

)
v

]
.

(12.210)

In addition to these choices, it is interesting to note that the settings a = −2/3 and b = 4/9
produce

a[rr] = 8

5
η

(G M)2

c5r3

[(
3v2 + 17

3

G M

r

)
ṙ n −

(
v2 + 3

G M

r

)
v

]
, (12.211)

the same expression as in Eq. (12.175); the two-parameter family of radiation-reaction
gauges can therefore reproduce the original expression for the relative acceleration, which
was obtained in the harmonic gauge. It should be kept in mind that while the relative
accelerations do correspond when a = −2/3 and b = 4/9, the coordinate systems do not
coincide, and the radiation-reaction potentials are quite different in the two gauges. This
selection of parameters is often called the Damour–Deruelle gauge.

12.8.4 Balance equations

To finish our discussion of the two-parameter family of radiation-reaction gauges, we verify
that the radiation-reaction force density of Eq. (12.203) is compatible with the statements
of energy, momentum, and angular-momentum balance.

We begin with energy balance, and follow the developments of Sec. 12.6.3. Here the
precise statement of energy balance is more complicated than in Eq. (12.140), because
ρ 	= ρ∗ in the two-parameter family of radiation-reaction gauges. Instead we have that

ρ = (1 − V)ρ∗ + O(c−7), (12.212)

up to corrections of 1pn and 2pn orders, and the presence of V affects the statement of the
first law of thermodynamics. The exact formulation, we recall, is d�/dt = (p/ρ2)dρ/dt ,
and this implies that

ρ∗ d�

dt
= (1 + V)

p

ρ∗
dρ∗

dt
− p ∂tV + O(c−7), (12.213)

where we use the fact that V depends on time only. The continuity equation satisfied by ρ∗

allows us to replace dρ∗/dt with −ρ∗∂ j v
j , and integrating over the volume occupied by

the fluid, we obtain

d Eint

dt
= (1 + V)

∫
v j ∂ j p d3x − P ∂tV + O(c−7) (12.214)

for the rate of change of the fluid’s internal energy; here P := ∫
p d3x is the integrated

pressure. The terms in V contribute to the change in total energy at 2.5pn order, and instead
of Eq. (12.140) we find that∫

v j f j [rr] d3x+V

∫
v j ∂ j p d3x−P ∂tV + d

dt

(
c−5 E[5]

)
= − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉+O(c−7)

(12.215)
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is the precise statement of energy balance in the two-parameter family of radiation-reaction
gauges. The integrals can be evaluated in the same way as in Sec. 12.6.3, and after some
calculations we confirm that the radiation-reaction force density of Eq. (12.203) is in-
deed compatible with energy balance. In the course of this computation we also find
that

c−5 E[5] = G

c5

[
4a

...
I

〈 jk〉T jk + 1

2

(
2

5
+ a

)( (4)

I 〈 jk〉 İ 〈 jk〉 − ...
I

〈 jk〉 Ï 〈 jk〉
)

+ b
...
I

pp(4T + 3P
) + 1

2
b
( (4)

I pp İ qq − ...
I

pp Ï qq
)]

(12.216)

is the appropriate expression for the 2.5pn contribution to the total energy.
The statement of momentum balance requires no modification from Eq. (12.153), and

the computations carried out in Sec. 12.6.4 can easily be adapted to the two-parameter
family of radiation-reaction gauges. We confirm that the radiation-reaction force density of
Eq. (12.203) is indeed compatible with momentum balance, and that

c−5 P j [5] = 0 (12.217)

in these gauges; there is no contribution to the total momentum at 2.5pn order.
The same statements apply to the expression of angular-momentum balance. Here also

the precise statement of Eq. (12.159) requires no modification, and here also we find that
it is compatible with Eq. (12.203). The 2.5pn contribution to the total angular-momentum
tensor is given by

c−5 J jk[5] = G

c5

[(
2

5
+ a

)(
I jp

(4)

I kp − I kp
(4)

I jp
)

+ a
(

J jp ...
I

kp − J kp ...
I

jp
)

− 2

5

(
İ j p ...

I
kp − İ kp ...

I
jp
)]

(12.218)

in the two-parameter family of radiation-reaction gauges.

12.9 Orbital evolution under radiation reaction

In this last section of Chapter 12 we describe how the radiation-reaction force of Eq. (12.208)
affects the orbital motion of a two-body system. The system’s dynamics is dominated by
the Newtonian gravitational attraction between the two bodies, and the radiation-reaction
force creates a perturbation. We wish to determine the effect of this perturbing force over
a time scale that is much longer than the orbital period; we are primarily interested in the
secular effects of the radiation-reaction force. The Newtonian dynamics was investigated
in detail back in Sec. 3.2, and a formalism to describe perturbed Keplerian orbits, based on
osculating elliptical orbits and evolving orbital elements, was introduced in Sec. 3.3; our
analysis in this section employs this formalism as an essential foundation.
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12.9.1 Evolution of orbital elements

We return to Eq. (12.208) and substitute Keplerian expressions for r := r1 − r2 and
v := v1 − v2, which we decompose as r = r n and v = ṙ n + (r φ̇)λ, with φ̇ denoting
the orbital angular velocity. The unit vectors n and λ are tangent to the orbital plane
and mutually orthogonal; in Cartesian coordinates (x, y, z) oriented in such a way that
the orbital plane coincides with the surface z = 0, we have that n = [cos φ, sin φ, 0] and
λ = [− sin φ, cos φ, 0], where φ(t) is the angle between r and the x-axis. The Keplerian
relations are

r = p

1 + e cos f
, ṙ =

√
Gm

p
e sin f, r φ̇ =

√
Gm

p
(1 + e cos f ), (12.219)

where p is the semi-latus rectum, e the eccentricity, f := φ − ω the true anomaly, and ω

the longitude of pericenter. The orbital period is

P = 2π√
Gm

(
p

1 − e2

)3/2

, (12.220)

and p/(1 − e2) is the semi-major axis.
Making the substitutions in Eq. (12.208) returns

a[rr] = 8

5
η

(Gm)7/2

c5 p9/2
(1 + e cos f )3

[
(e sin f )A n − (1 + e cos f )B λ

]
, (12.221)

with

A := 44

3
+ 35

3
a − 5b + e

(
80

3
+ 125

6
a − 55

4
b

)
cos f

+ e2

[
2 + 5

3
a + 5

2
b +

(
10 + 15

2
a − 45

4
b

)
cos2 f

]
, (12.222a)

B := 4 + e

(
10 + 35

6
a − 5

2
b

)
cos f

− e2

[
9 + 35

3
a − 5b −

(
15 + 35

2
a − 15

2
b

)
cos2 f

]
. (12.222b)

We recall that a and b are parameters that specify the choice of radiation-reaction gauge. In
the Burke–Thorne gauge we set a = 0 and b = 0, in the Schäfer gauge we set a = − 2

5 and
b = 0, and the assignments a = −2/3 and b = 4/9 produce the harmonic-gauge expression
for the radiation-reaction force.

The effect of a perturbing force on the Keplerian orbital elements p, e, and ω was
described in detail back in Sec. 3.3. In this description, the orbital motion is described
at all times by the Keplerian relations of Eq. (12.219), but the orbital elements acquire a
time dependence from the perturbing force. This description is exact, and the method of
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osculating orbits is a powerful starting point for an approximate treatment of the orbital
evolution. The relevant equations are displayed in Eqs. (3.69); we have

dp

d f
= 2p3

Gm

1

(1 + ec)3
S, (12.223a)

de

d f
= p2

Gm

[
s

(1 + ec)2
R + e + 2c + ec2

(1 + ec)3
S
]
, (12.223b)

e
dω

d f
= p2

Gm

[
− c

(1 + ec)2
R + s(2 + ec)

(1 + ec)3
S
]
, (12.223c)

where c := cos f , s := sin f , R := n · a[rr] is the radial component of the perturbing
acceleration, and S := λ · a[rr] is the tangential component. These equations must be
supplemented with

dt

d f
=
√

p3

Gm

1

(1 + ec)2

{
1 − 1

e

p2

Gm

[
c

(1 + ec)2
R − 2 + ec

(1 + ec)3
sin f S

]}
, (12.224)

which describes how the orbit evolves in time; this equation can be integrated once the
system of Eqs. (12.223) has been solved.

To analyze the equations it is helpful to turn p into a dimensionless variable p := p/p∗

by dividing it by a representative scale p∗; this may, for example, be chosen as the initial
value p( f = 0). It is also helpful to introduce

ε := 8

5
η

(
Gm

c2 p∗

)5/2

(12.225)

as a dimensionless measure of the strength of the radiation-reaction force. Because the
orbital velocity v is comparable to

√
Gm/p∗ during the evolution, ε is of the same or-

der of magnitude as (v/c)5 and therefore quite small. Finally, it is helpful to make time
dimensionless by defining t := t/t∗, with t∗ :=

√
p∗3/(Gm).

In terms of these new variables the evolution equations are

dp
d f

= −2εp−3/2(1 + ec)B, (12.226a)

de

d f
= εp−5/2(1 + ec)

[
es2 A − (e + 2c + ec2)B

]
, (12.226b)

e
dω

d f
= −εp−5/2s(1 + ec)

[
ec A + (2 + ec)B

]
, (12.226c)

dt
d f

= p3/2

(1 + ec)2

{
1 − ε

(1 + ec)s

ep5/2

[
ec A + (2 + ec)B

]}
. (12.226d)
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Substitution of A and B returns expressions that are quite large. For our purposes below it
is sufficient to present their schematic structure, which is as follows:

dp
d f

= − ε

p3/2

[
8

(
1 + 7

8
e2

)
+ k p

1 cos f + k p
2 cos 2 f + k p

3 cos 3 f

]
, (12.227a)

de

d f
= − ε

p5/2

[
38

3
e

(
1 + 121

304
e2

)
+ ke

1 cos f + ke
2 cos 2 f + ke

3 cos 3 f

+ ke
4 cos 4 f + ke

5 cos 5 f

]
, (12.227b)

dω

d f
= − ε

ep5/2

[
kω

1 sin f + kω
2 sin 2 f + kω

3 sin 3 f + kω
4 sin 4 f + kω

5 sin 5 f

]
. (12.227c)

The various coefficients kn that come with the trigonometric functions depend on e as well
as the gauge parameters a and b. The schematic forms of Eq. (12.227) reveal that the
driving forces for p and e contain steady pieces that produce secular changes, in addition
to oscillatory pieces that average out after each orbital cycle. And as we can see, the
oscillatory pieces are gauge-dependent, while the secular pieces are independent of the
choice of gauge. The driving force for ω is entirely oscillatory.

12.9.2 Multi-scale analysis of orbital evolution

Apart from the post-Newtonian expansion that gave rise to the radiation-reaction force,
no approximations have entered the formulation of the orbital equations as displayed in
Eqs. (12.226). We now wish to integrate these equations, and we shall take advantage of the
fact that ε � 1 to find approximate solutions. We must, however, be cognizant of the fact
that changes in the orbital elements occur over two very distinct time scales. The first is
the orbital time scale P , which is short, and the second is the radiation-reaction time scale
Trr – refer to Eq. (12.88) – which is longer than P by a factor of order ε−1 � 1. In terms
of the true anomaly f , we have changes over the short angular scale of 2π , and changes
over the much longer scale ε−1. Our perturbative approach must allow us to probe these
widely separated scales; the method of choice is a multi-scale analysis, as presented in the
excellent book by our friend Carl Bender and his late colleague Steven Orszag (1978), and
summarized in Box 12.4.

Box 12.4 Multi-scale analysis

To introduce themethodwework through a simple example involving a damped harmonic oscillator. Wewish
to integrate the differential equation

ẍ + 2ε ẋ + x = 0

withboundary conditions x(0) = 1, ẋ(0) = 0, in a regime inwhichε � 1. Here all variables are dimen-
sionless, and an overdot indicates differentiationwith respect to t . The equation can be integrated exactly, and
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the solution is

x = e−εt
(

cos ωt + ε

ω
sin ωt

)
,

withω := √
1 − ε2. The solution reveals features that occur over widely separated time scales: there are

rapid oscillations over a time scale of order unity, and a slowdamping of the envelope over a time scale of order
ε−1 � 1. We would like to capture these features with a perturbative analysis of the differential equation.
A straightforward expansion of the solution in powers of ε would fail in this endeavor. Suppose that we

write x = x0(t) + εx1(t) + O(ε2), insert this within the differential equation, and equate terms of
like powers ofε to zero.Wewould obtain thedifferential equations ẍ0 + x0 = 0 and ẍ1 + x1 = −2ẋ0,
and these can be integrated in turn for x0(t) and x1(t). Keeping the boundary conditions in mind, we get
x0 = cos t and observe that the driving force for x1, equal to 2 sin t , oscillates at the same frequency
as the oscillator’s own natural frequency. This creates a resonant behavior that leads to unbounded growth,
as can be seen in the solution x1 = sin t − t cos t . The end result of this standard perturbative analysis
is an approximate solution

x = (1 − εt) cos t + ε sin t + O(ε2)

that becomes wholly inaccurate over times t � ε−1. This approximation, in particular, does not capture the
damping that occurs over the long time scale.
In a multi-scale treatment of this problem one introduces a slow-time variable t̃ := εt in addition to the

fast time t , and postulates a solution of the form x = x0(t̃, t) + εx1(t̃, t) + O(ε2), in which x0 and
x1 are assumed to be bounded functions. The original differential equation is generalized in such a way that
t̃ and t are treated as independent variables, and the total time derivative is interpreted as

d

dt
= ∂

∂t
+ ε

∂

∂ t̃
.

In our case we have that ẋ = ∂x0/∂t + ε∂x0/∂ t̃ + ε∂x1/∂t + O(ε2) and ẍ = ∂2x0/∂t2 +
2ε∂2x0/∂ t̃∂t + ε∂2x1/∂t2 + O(ε2), and the differential equation becomes the set of equations

∂2x0

∂t2
+ x0 = 0,

∂2x1

∂t2
+ x1 = −2

(
∂x0

∂t
+ ∂2x0

∂ t̃∂t

)
.

The solution to the first equation is x0 = A(t̃) cos t , in which the function A(t̃) plays the role of constant
of integration; this function cannot bedetermineduntilweproceed to thenext order.Weobserve that a second
solution to the differential equation, B(t̃) sin t , should in principle be added to the first; it will, however,
eventually be rejected by the boundary conditions.
At the next order we find that the driving force for x1 is now equal to2(A + A′) sin t , in which a prime

indicates differentiation with respect to t̃ . We recognize that such a resonant force would produce a growth
in t , and that this would violate our assumption that x1 should stay bounded. We eliminate this eventuality
by demanding that A(t̃) be a solution to A + A′ = 0, which implies that A = A0 exp(−t̃). Keeping
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the boundary conditions in mind, we find that the zeroth-order solution to the differential equation is

x = exp(−t̃) cos t + O(ε).

Aswe can see, this captures the essential aspects of the exact solution, including the damping that occurs over
the long time scale.
The zeroth-order solution can be refined by integrating what has become of the first-order differential

equation. We now have ∂2x1/∂t2 + x1 = 0, whose solution is x1 = C(t̃) sin t (up to the addition
of a second solution, which we discard by virtue of the boundary conditions). Once more we find that the
unknown functionC(t̃) cannot be determined until we proceed to the next order. It would, however, be de-
termined in the sameway, by ensuring that the driving force for x2 is free of a resonant term. Such an analysis
would reveal thatC = exp(−t̃), and the first-order solution to the differential equation is

x = exp(−t̃)
(
cos t + ε sin t

) + O(ε2).

This captures evenmore of the exact solution, but the central message of this exercise is that x0 by itself does
a very fine job of reproducing the essential behavior of the exact solution.

General theory of multi-scale orbital evolution

We now perform a multi-scale analysis of the evolution equations for the orbital elements p,
e, and ω. Before we return to the specific situation that concerns us in this section (orbital
evolution under radiation reaction), we develop a fairly general formulation that can be
applied to many different situations. This formulation was devised by our friend Adam
Pound in his PhD dissertation (2010). Similar (but less general) formulations can be found
in a 1990 article by Lincoln and Will, and a 2004 paper by Mora and Will.

We collect the orbital elements into the vector μa , and express their evolution equations
as

dμa

d f
= εFa( f, μb), (12.228)

in which ε is a small parameter, and each driving force Fa is assumed to be periodic in f ,
so that Fa( f + 2π, μb) = Fa( f, μb). These equations are supplemented with

dt

d f
= T0( f, μa) + εT1( f, μa), (12.229)

which governs the behavior of the time function; T0 and T1 are also assumed to be periodic
in f . The exact specifications of Fa , T0, and T1 for our particular problem can be obtained
from Eqs. (12.223) and (12.224), but our considerations here are more general.

In a multi-scale analysis of these differential equations we postulate the existence of
solutions of the form

μa = μa
0( f̃ , f ) + εμa

1( f̃ , f ) + ε2μa
2( f̃ , f ) + O(ε3) (12.230)
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and

t = ε−1t−1( f̃ , f ) + t0( f̃ , f ) + εt1( f̃ , f ) + O(ε2), (12.231)

in which f̃ := ε f is the slow variable. Each function μa
n and tn is assumed to be periodic in

f . The presence of ε−1t−1 in t is required because the time variable grows secularly even
in the absence of a perturbation; when f̃ is of order unity and f of order ε−1, t also is of
order ε−1.

To proceed with Eqs. (12.228) we treat f̃ and f as independent variables and interpret a
total derivative with respect to f as

d

d f
= ∂

∂ f
+ ε

∂

∂ f̃
. (12.232)

Inserting Eq. (12.230) within the differential equations and equating like powers of ε, we
obtain

∂μa
0

∂ f
= 0, (12.233a)

∂μa
0

∂ f̃
+ ∂μa

1

∂ f
= Fa( f, μb

0), (12.233b)

∂μa
1

∂ f̃
+ ∂μa

2

∂ f
= μc

1∂c Fa( f, μb
0); (12.233c)

in the last equation the driving force Fa is differentiated with respect to μc, and the repeated
index indicates a summation over all orbital elements.

The equations of the system (12.233) can be integrated in turn. Equation (12.233a)
implies that μa

0 is a function of the slow variable f̃ only. To integrate Eq. (12.233b) we first
average the equation over a complete cycle of the fast variable. We use the notation

〈q〉( f̃ ) := 1

2π

∫ 2π

0
q( f̃ , f ) d f (12.234)

to indicate such an average; since f̃ and f are independent variables the integral is evaluated
while keeping f̃ fixed. Because the first term of Eq. (12.233b) is independent of f , its
average returns dμa

0/d f̃ . The average of the second term vanishes, because of the assumed
periodicity of μa

1. We are left with

dμa
0

d f̃
= 〈Fa〉(μb

0), (12.235)

a system of equations that determine μa
0( f̃ ). Subtracting this from Eq. (12.233b), we next

obtain ∂μa
1/∂ f = Fa − 〈Fa〉, which integrates to

μa
1 = μa

1,osc( f̃ , f ) + μa
1,sec( f̃ ), (12.236)

where

μa
1,osc =

∫ [
Fa( f, μb

0) − 〈Fa〉(μb
0)
]

d f (12.237)
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is a periodic function of f , and μa
1,sec acts as a constant of integration. This is determined

at the next order, by averaging Eq. (12.233c). The first term gives rise to dμa
1,sec/d f̃ , the

second term contributes nothing, and we arrive at

dμa
1,sec

d f̃
= 〈

μc
1,osc∂c Fa( f, μb

0)
〉
. (12.238)

We note that only μc
1,osc appears on the right-hand side, instead of the complete expression

μc
1, because the average of the term involving μa

1,sec vanishes. At this stage we have all the
ingredients required in the construction of μa to first order in ε; to obtain the terms of order
ε2 in Eq. (12.230) we would proceed to the next order.

We follow the same recipe to integrate Eq. (12.229). Skipping over the details, we find
that t−1 is a function of f̃ only determined by

dt−1

d f̃
= 〈T0〉(μa

0), (12.239)

and that t0 can be expressed as

t0 = t0,osc( f̃ , f ) + t0,sec( f̃ ) (12.240)

with

t0,osc =
∫ [

T0( f, μa
0) − 〈T0〉(μa

0)
]

d f (12.241)

and

dt0,sec

d f̃
= 〈

μb
1,osc∂bT0( f, μa

0) + T1( f, μa
0)
〉
. (12.242)

These equations allow us to construct t to zeroth order in ε; to obtain the terms of order ε

in Eq. (12.231) we would proceed to the next order.
The most important pieces of the orbital elements μa are those that grow secularly and

depend on the slow variable f̃ . These are contained in μa
0 and μa

1,sec, and a useful secular
approximation to the orbital elements is given by

μa
sec = μ0( f̃ ) + εμa

1,sec( f̃ ) + O(ε2); (12.243)

this ignores the unimportant periodic oscillations contained in μa
1,osc, which average out

after each orbital cycle. Similarly, a useful secular approximation to the time function is
given by

tsec = ε−1t−1( f̃ ) + t0,sec( f̃ ) + O(ε). (12.244)

It is important to understand that while the oscillatory terms μa
1,osc do not appear in these

equations, they are nevertheless required in the construction of the secular terms μa
1,sec and

t0,sec. This can be seen from Eqs. (12.238) and (12.242), which reveal that oscillations in
μa

1 can combine with oscillations in ∂c Fa( f, μb
0) and ∂bT0( f, μa

0) to produce secular terms.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

691 12.9 Orbital evolution under radiation reaction

Radiation reaction

We now have all the required tools at our disposal, and we may return to the original
problem, the determination of the orbital evolution under radiation reaction. The orbital
elements are μa := (p, e, ω), and the driving forces Fa can be extracted from Eq. (12.227).
Their averages are easily computed, and Eq. (12.235) returns

dp0

d f̃
= −8p−3/2

0

(
1 + 7

8
e2

0

)
, (12.245a)

de0

d f̃
= −38

3
e0p

−5/2
0

(
1 + 121

304
e2

0

)
, (12.245b)

dω0

d f̃
= 0, (12.245c)

where μa
0 := (p0, e0, ω0) are the zeroth-order approximations to the orbital elements. From

Eq. (12.227) and (12.237) we also obtain the oscillatory first-order corrections,

p1,osc = − 1

p3/2
0

(
k p

1 sin f + 1

2
k p

2 sin 2 f + 1

3
k p

3 sin 3 f

)
, (12.246a)

e1,osc = − 1

p5/2
0

(
ke

1 sin f + 1

2
ke

2 sin 2 f + 1

3
ke

3 sin 3 f + 1

4
ke

4 sin 4 f + 1

5
ke

5 sin 5 f

)
,

(12.246b)

ω1,osc = 1

e0p
5/2
0

(
kω

1 cos f + 1

2
kω

2 cos 2 f + 1

3
kω

3 cos 3 f + 1

4
kω

4 cos 4 f + 1

5
kω

5 cos 5 f

)
.

(12.246c)

These are combined with derivatives of the driving forces to compute the right-hand side
of Eq. (12.238). We obtain

dp1,sec

d f̃
= de1,sec

d f̃
= 0, (12.247)

and conclude that there is no secular growth in p and e at first order in ε. The calculation
reveals also that dω1,sec/d f̃ 	= 0, but we shall not be concerned with this small amount of
secular growth in ω.

Proceeding with the time function, we insert Eq. (12.226) within Eq. (12.239) and get

dt−1

d f̃
=
(

p0

1 − e2
0

)3/2

. (12.248)

From Eq. (12.242) we next obtain

dt0,sec

d f̃
= 0, (12.249)

and observe the absence of secular growth at zeroth order in ε.
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Conclusion

The multi-scale analysis of the orbital evolution equations is now completed. We have found
that the secular changes in the orbital elements are governed by the system of differential
equations

dp
d f

∣∣∣∣
sec

= −ε
8

p3/2

(
1 + 7

8
e2

)
+ O(ε3), (12.250a)

de

d f

∣∣∣∣
sec

= −ε
38e

3p5/2

(
1 + 121

304
e2

)
+ O(ε3), (12.250b)

dt
d f

∣∣∣∣
sec

=
(

p
1 − e2

)3/2

+ O(ε2), (12.250c)

in which we have removed the now-redundant suffixes on p, e, and t.
To display the equations in their final form we re-introduce the scales p∗ and t∗, substitute

ε from Eq. (12.225), and eliminate f . This yields

dp

dt

∣∣∣∣
sec

= −64

5
ηc

(
G M

c2 p

)3

(1 − e2)3/2

(
1 + 7

8
e2

)
, (12.251a)

de

dt

∣∣∣∣
sec

= −304

15
ηc

e

p

(
G M

c2 p

)3

(1 − e2)3/2

(
1 + 121

304
e2

)
. (12.251b)

These are the same equations that were obtained in Sec. 12.3.3 on the basis of averaged
statements of energy and angular-momentum balance – refer to Eqs. (12.86) and (12.87).
The treatment given here, based on a multi-scale analysis of the evolution equations, is
much more satisfactory than the earlier work: We were able to prove that Eqs. (12.251) do
indeed capture the secular behavior of the orbital elements, and that the fractional error
incurred is of order ε2.

In Figs. 12.3 and 12.4 we compare the approximate evolution obtained on the basis
of Eqs. (12.250) to an exact numerical integration of Eqs. (12.226). We can see that the
agreement is excellent.

12.10 Bibliographical notes

Radiation-reaction effects in electromagnetism are discussed in many textbooks, including
Jackson’s Classical Electrodynamics (1998). The treatment is usually restricted to point
charges, and much space is devoted to the curious fact that the radiation-reaction force
depends on the rate of change of the particle’s acceleration. The literature has debated this
issue endlessly, and many misconceptions have taken hold — don’t get us started. For a
well-balanced overview, refer to Gralla, Harte, and Wald (2009).

The shortwave approximation of Sec. 12.2 was first formulated by Isaacson (1968a and
1968b). The angular-momentum flux of gravitational waves was first calculated by Bryce
DeWitt in the early nineteen seventies, and his results were eventually published in DeWitt
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Fig. 12.3 Evolution of the dimensionless semi-latus rectum p under radiation reaction. The evolution begins with p = 20 and
e = 0.7, and it proceeds for 100 orbital cycles with ε = 0.1. Time is expressed in units of the initial orbital period P.
The exact curve (solid) displays oscillations around the mean curve (dashed), and it was obtained by numerical
integration of Eqs. (12.226). These computations were carried out in the Burke–Thorne gauge, with a = b = 0. The
mean curve is obtained on the basis of the secular approximation of Eqs. (12.250).
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Fig. 12.4 Evolution of the eccentricity e under radiation reaction. The details are as in Fig. 12.3.

(2011); the final expression also appeared in Thorne (1980). An alternative approach to the
description of radiative losses in general relativity, widely considered to be more rigorous
and convincing than the Landau–Lifshitz approach adopted here, was formulated by Bondi
and his colleagues. Representative papers are Sachs (1961 and 1962) and Bondi, van der
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Burg, and Metzner (1962). Though different, the Bondi and Landau–Lifshitz approaches
yield identical results.

Radiative losses of slowly-moving systems (Sec. 12.3), including binary stars, were first
explored by Peters and Mathews (1963), Peters (1964), Bekenstein (1973), and Fitchett
(1983). Wiseman’s beaming argument, presented in Box. 12.2, was published in Wiseman
(1992).

The first binary pulsar (Sec. 12.4) was discovered by Hulse and Taylor in 1974; their
discovery paper was published as Hulse and Taylor (1975). The first measurement of the
orbital damping caused by radiative losses was reported in Taylor, Fowler, and McCulloch
(1979). The numbers for PSR 1913+16 displayed in Table 12.1 and the following discussion
are taken from Weisberg, Nice, and Taylor (2010). The numbers for the double pulsar J0737-
3039 are taken from Kramer et al. (2006). Calculations to high post-Newtonian order of
radiative losses for inspiralling compact binaries are reviewed in Blanchet (2006). The
papers alluded to at the beginning of Sec. 12.4.3 are Favata, Hughes, and Holz (2004),
Baker et al. (2006), and Gonzalez et al. (2007). A recent review of numerical simulations
of black-hole superkicks is provided by Zlochower, Campanelli, and Lousto (2011).

The approach adopted in Secs. 12.5–12.7 to calculate radiation-reaction potentials and
forces is patterned after Pati and Will (2000 and 2001). The Burke–Thorne gauge featured
in Sec. 12.8 was formulated in Thorne (1969), Burke (1971), and Misner, Thorne, and
Wheeler (1973); see, however, the criticisms expressed by Walker and Will (1980). The
Schäfer gauge was formulated in Schäfer (1983), and the Damour–Deruelle gauge refers
to Damour and Deruelle (1981).

The multi-scale analysis of the orbital evolution of a binary system under radiation
reaction, presented in Sec. 12.9, is patterned after Lincoln and Will (1990) and Mora
and Will (2004). The general method is introduced in the excellent text by Bender and
Orzag (1978), and the application to osculating orbital elements was developed in Pound
(2010).

12.11 Exercises

12.1 Verify Eq. (12.40).

12.2 Use Eqs. (12.68) and (12.69) to show that the fluxes of energy, linear momentum,
and angular momentum from a Newtonian binary system can be expressed in the
form

P = 8

15
η2 c3

G

(
Gm

c2r

)4 (
12v2 − 11ṙ2

)
,

F j = − 8

105
�η2 c

G

(
Gm

c2r

)4 [
v j

(
50v2 − 38ṙ2 + 8

Gm

r

)
− ṙn j

(
55v2 − 45ṙ2 + 12

Gm

r

)]
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
2v2 − 3ṙ2 + 2

Gm

r

)
.
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By incorporating a total time derivative into P j [5] and J j [5], show that the momen-
tum and angular-momentum fluxes can be written in the simpler forms

F j = − 4

15
�η2 c

G

(
Gm

c2r

)4

v j

(
13v2 − 15ṙ2

)
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
4v2 − 9ṙ2

)
,

and verify that the momentum flux is in the direction of motion of the lighter body.

12.3 Consider a Keplerian, circular orbit of radius a in the x-y plane. Show that when
averaged over a complete orbit, the power emitted in gravitational waves per unit
solid angle is given by

dP

d

= 1

2π
η2 c5

G

(
Gm

c2a

)5 (
1 + 6 cos2 θ + cos4 θ

)
,

where θ is the angle between the z-axis and N , the direction of emission. Verify that
the total power integrated over all solid angles agrees with Eq. (12.82a) when e = 0.

12.4 Consider a Keplerian orbit that is circular apart from the slow decrease in radius
a caused by the energy lost to gravitational radiation. As a function of η, m, and
the initial radius a0, calculate the lifetime of the binary system and the number
of completed orbits before the radiation reaction brings the radius to zero. Give
alternative expressions for the lifetime and number of orbits in terms of η, m, and
the initial orbital period P . Using these results, carry out the following estimates:
(a) the remaining lifetime of the Hulse–Taylor binary pulsar PSR 1913+16, with

M1 ≈ M2 ≈ 1.4M� and P = 7.75 hours (assume that the orbit is circular);
(b) the total time and number of cycles in the gravitational-wave signal from an

inspiralling binary system of two 1.4M� compact objects, from the time it
enters the LIGO–Virgo frequency band with a gravitational-wave frequency of
10 Hz to the end of the inspiral (when a = 0);

(c) the remaining lifetime of the Earth–Sun system.

12.5 The current eccentricity of the Hulse–Taylor binary pulsar orbit is e0 ≈ 0.6, and
its orbital period is 7.75 hours. Estimate the orbital eccentricity when gravitational
waves from the system first enter the LIGO–Virgo band at 10 Hz. You may treat the
eccentricity as if it were much smaller than unity when making your estimate.

12.6 Consider a binary pulsar of equal masses, for which the only orbital variables
measured initially are the orbital period P and the pericenter advance ω̇. Using the
approximation of small eccentricity, show that the lifetime of the system is given by

T = 5

128

(
6π

ω̇

)5/2 ( 1

P

)3/2

.

On the ω̇-P plane, plot the curve corresponding to T = 1 billion years. Plot the curve
from approximately 0.1 to 30 degrees per year for ω̇, and from approximately 1 to
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30 hours for P . How is the curve shifted when the initial orbit has a high eccentricity?
How does the curve change if the masses are not equal?

12.7 For an inspiralling circular orbit of two bodies, show that the accumulated velocity
of the center-of-mass as a result of radiative recoil is given by

V kick = 464

105
�η2

(
Gm

c2a

)4

c n .

Assume that the time scale for radiative losses is much longer than the orbital period,
so that d
/dt ∼ O(c−5/2)
2. Find the mass ratio that maximizes the recoil velocity.

12.8 Consider a two-body system on a Newtonian hyperbolic orbit described by

r = p

1 + e cos φ
,

dφ

dt
=
√

Gm

p3
(1 + e cos φ)2 ,

where m is the total mass, and p is the semi-latus rectum, related to the angular
momentum per unit reduced mass h by h2 = Gmp. The system’s energy is given by

E = η
Gm2

2p
(e2 − 1) .

Note that e > 1, E > 0, and the orbit comes in from infinity at φ = −arccos(−1/e),
reaching pericenter at φ = 0.
(a) Show that the total energy emitted in gravitational waves by the time the orbit

reaches pericenter is given by

�E = 32

5
η2 Gm2

p

(
Gm

c2 p

)5/2

f (e) ,

f (e) =
(

1 + 73

24
e2 + 37

96
e4

)
arccos

(
−1

e

)
+ 301

144

(
1 + 673

602
e2

)√
e2 − 1 .

(b) In the limit where e is close to unity, that is, when e = 1 + ε with ε � 1, show
that the energy loss will convert the hyperbolic orbit into a bound orbit before
pericenter when the following inequality is satisfied:

85πη

3ε

(
Gm

c2 p

)5/2

> 1 .

(c) Instead of the parameterization (p, ε) for the orbit, adopt (b, v∞), in which b is
an impact parameter and v∞ is the orbital velocity at infinite separation. These
quantities are defined by v2

∞ = (Gm/p)(e2 − 1) � 2(Gm/p)ε and h = bv∞.
Express the criterion of part (b) as an inequality for b.

(d) Show that the cross section σGW := πb2
capture for gravitational-wave capture is

given by

σGW = π

(
170π

3
η

)2/7 (Gm

c2

)2 ( c

v∞

)18/7

.

Such a process could play an important role in the evolution of dense star
clusters.
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12.9 Consider the radiation-reaction acceleration for a binary system. Given that it must
be a 2.5pn correction of the Newtonian acceleration, that it must vanish in the test-
body limit, and that it must be related to the mutual accelerations of the bodies, it is
possible to show, without doing any work, that it must be of the general form

a[rr] = 8η

5c3

Gm

r2

Gm

c2r

[(
a1v

2 + a2
Gm

r
+ a3ṙ2

)
ṙ n +

(
b1v

2 + b2
Gm

r
+ b3ṙ2

)
v

]
,

where m = M1 + M2, η = M1 M2/m, and an and bn are arbitrary parameters.
(a) Justify the form shown above.
(b) Calculate the energy and angular momentum losses, d E/dt and d J/dt , implied

by the proposed radiation-reaction acceleration.
(c) Using Newtonian theory, prove the following useful identity:

d

dt

(
v2s ṙ p

rq

)
= v2s−2ṙ p−1

rq+1

[
pv4 − pv2 Gm

r
− (p + q)v2ṙ2 − 2s

Gm

r
ṙ2

]
,

where p, q and s are integers.
(d) By considering the three cases (p, q, s) = (1, 2, 1), (3, 2, 0) and (1, 3, 0), use

the identity to show that the various numerical coefficients in the expressions for
d E/dt and d J/dt can be altered by absorbing total time derivatives into E[5]
and J[5]. Show that the freedom contained in these redefinitions is described
by a three-parameter family.

(e) Assume now that d E/dt and d J/dt , as calculated previously, and including the
three-parameter family of redefinitions, match the gravitational-wave fluxes of
energy and angular momentum, given by

P = 8

15
η2 c3

G

(
Gm

c2r

)4 (
12v2 − 11ṙ2

)
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
2v2 − 3ṙ2 + 2

Gm

r

)
,

where h = r × v. Obtain constraints on the coefficients an and bn in a[rr].
Show that an and bn can be determined up to two unknown parameters. Show
that this freedom corresponds precisely to the two-parameter gauge freedom
described in Eq. (12.185), and that one can recover the Burke–Thorne, Schäfer,
and Damour–Deruelle expressions for the radiation-reaction acceleration. This
approach to finding the radiation-reaction acceleration was taken by Iyer and
Will (1995).

12.10 The radiative losses of energy and angular momentum cause the eccentricity of
a binary system to decrease. This implies that in the past, the eccentricity must
always have been larger. From Eqs. (12.251), which describe the secular evo-
lution of the orbital elements, show that as t → −∞, the eccentricity tends to
unity and the semilatus rectum p tends to a constant p∞. Show that they evolve
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according to

1 − e = 85

72
ln(p∞/p)

[
1 + O(1 − e)

]
.

Using Eq. (12.224), show that f → −π in the limit t → −∞, and thus that the two
bodies were at an infinite separation on a parabolic orbit. A rigorous analysis taking
into account the periodic variations in the orbital elements reveals that a generic
orbit in the infinite past is actually hyperbolic (e > 1), and that the parabolic orbit is
a special case.
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13 Alternative theories of gravity

From Chapter 5 until now we have confined our attention to Einstein’s general theory of
relativity. But general relativity is not the only possible relativistic theory of gravity. Even
in the late 1800s, well before Einstein began his epochal work on special and general
relativity, there were attempts to devise theories of gravity that went beyond Newtonian
theory. Some attempts were modeled on Maxwell’s electrodynamics. Some replaced ∇2

with a wave operator in Poisson’s equation of Newtonian gravity, in an attempt to formulate
a theory that was invariant under Lorentz transformations. None of these attempts was
very successful; for example, most theories could not account for the anomalous perihelion
advance of Mercury. In 1913, before Einstein completed the general theory of relativity,
Nordström proposed a theory involving a curved spacetime; the metric was expressed as
gαβ = �ηαβ , with the scalar field � satisfying a Lorentz-invariant wave equation. But the
theory automatically predicts a zero deflection of light, and ultimately it failed the test of
experiment.

Alternative proposals appeared even after the publication of general relativity and the
empirical successes with Mercury and the deflection of light. The eminent mathematician
and philosopher Alfred North Whitehead formulated such an alternative theory in 1922.
Troubled by the fact that in general relativity the causal relationships in spacetime are not
known a priori, but only after the metric has been determined for a given distribution of
matter, he devised a theory with a background Minkowski metric in order to put causality
on a “firmer” ground. Initially, Whitehead’s theory was found to agree with the deflection
of light and Mercury’s perihelion advance, and so for many years it was considered a viable,
if not particularly attractive, alternative to general relativity. Indeed, it was not shown to be
in serious violation of experimental results until 1971.

The continuing weakness of experimental confirmations of general relativity left plenty of
openings for alternative proposals. Two influential papers from the early 1960s illustrate the
situation: A 1962 review of experiments in gravitation by Bruno Bertotti, Dieter Brill, and
Ronald Krotkov demonstrated just how thin was the evidence supporting general relativity,
and a review by Gerald Whitrow and Georg Morduch (1965) listed scores of nominally
viable alternative theories of gravity.

It was no coincidence that Bertotti, Brill, and Krotkov were working in Robert Dicke’s
research group at Princeton University at the time, for Dicke was seriously interested in
his own alternative theory of gravity, and he wanted to know exactly what the experimental
constraints were. He had published the theory in 1961 with his student Carl Brans. Although
it was based in part on earlier theories by Markus Fierz and Pascal Jordan, the theory
nevertheless became known as the Brans–Dicke theory, and it had a major impact on
the development of theoretical and experimental gravitational physics. It was the simplest

699
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modification of general relativity, retaining the concepts of curved spacetime and the
Einstein equivalence principle, but modifying the way matter generates curvature by the
added effect of a scalar field. As a mathematically consistent and well-motivated theory, it
made calculable predictions for experiments, and those were only slightly different from
the predictions of general relativity, in all cases within the experimental bounds that were
known in the early 1960s. The Brans–Dicke theory played a primary role in a flowering of
experimental gravity during the late 1960s and the 1970s. Ironically, this led to the demise
of the theory, as experiments continued to support general relativity, and the constraints
became too tight to leave much room for the alternative theory.

But recent years have witnessed a resurgence of alternative theories of gravity, or theories
that go “beyond” Einstein. Some of this interest comes from the direction of elementary
particle physics, especially the development of superstring theory, whose low-energy limit
is not general relativity but a variant of Brans–Dicke theory, with a scalar field related to
the dilaton and moduli fields that are central ingredients of string theory. Other alternative
theories have emerged from attempts to formulate laws of physics in spacetimes of higher
dimensionality. The observational evidence that as much as 25 percent of the Universe
is made up of dark matter has spawned alternative theories that attempt to account for
the anomalous rotation curves of galaxies by modifying gravity instead of introducing
a distribution of dark matter. The 1998 discovery that the expansion of the Universe is
accelerating has motivated the development of theories that modify general relativity on
the largest scales, while leaving intact its predictions for solar-system and stellar-scale
phenomena. Finally, the ongoing search for a quantum theory of gravity leaves open the
possibility that the classical limit may be a theory radically different from general relativity.

The subject of alternative theories is too large and too active at the time of writing to
do it justice in a single chapter. We merely touch on aspects of alternative theories and
their experimental tests for which the post-Newtonian methods developed in this book are
most useful. We begin in Sec. 13.1 with a general discussion of metric theories of gravity
and their relation to the strong equivalence principle. In Sec. 13.2 we introduce a very
general and powerful formalism, the parameterized post-Newtonian framework, to extract
the experimental consequences of a broad class of alternative theories and subject them
to empirical tests. We describe such tests in Sec. 13.3, and in Sec. 13.4 we explore the
physics of gravitational waves in a broad class of alternative theories. Finally, in Sec. 13.5
we examine the predictions of a class of theories known as scalar–tensor gravity, in which
the description of the gravitational field involves a scalar field in addition to the usual metric
tensor; the Brans–Dicke theory is a particular member of this class of theories.

13.1 Metric theories and the strong equivalence principle

We wish to consider alternatives to general relativity, but we shall limit the scope of this
generalization by insisting that each theory should satisfy the Einstein equivalence principle
and be subjected to the metric-theory principles listed in Sec. 5.1. This defines the class of
metric theories of gravitation, to which general relativity belongs.
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The central aspect of the Einstein equivalence principle is that matter should couple in
a universal manner to a single tensorial gravitational field, the metric gαβ . There could be
other gravitational fields present in spacetime, but these are prevented from interacting with
the matter, and only serve to mediate the manner in which matter generates the metric. The
additional fields could be scalars (as in the Brans–Dicke theory), vectors, tensors, or more
exotic mathematical objects. They could be dynamical agents, governed by their own field
equations, or they could be non-dynamical, fixed in some manner independently of the
behavior of matter and fields (as for the Minkowski metric of Whitehead’s theory). Some
theories have only the metric as the basic ingredient, as in general relativity, but propose
alternative field equations. One class of such theories postulates a gravitational Lagrangian
density that is a general function of the Ricci scalar, rather than the Ricci scalar itself; these
are called “ f (R) theories,” devised to alter the behavior of gravity on cosmological scales.
Another class of theories adds quadratic and higher-order curvature terms to the general
relativistic Lagrangian density; this alters the behavior of the metric on short scales, and the
higher-order terms are sometimes viewed as representing quantum corrections to classical
general relativity.

Thinking about alternative theories of gravity from this broad but circumscribed point of
view, we can draw some general conclusions about the nature of gravity in different metric
theories. Consider a local reference frame, moving freely in a spacetime described by a
given metric theory of gravity. Let this frame be sufficiently small that inhomogeneities
in the external gravitational fields are suitably small throughout its volume. On the other
hand, let the frame be sufficiently large that it can contain a system of gravitating matter
and its associated gravitational fields; the system could be a star, a black hole, the solar
system, or a Cavendish experiment set up to measure Newton’s constant G. This is the
kind of frame that was described at length back in Sec. 9.4; call it a “quasi-local Lorentz
frame.”

To determine the behavior of the system we must calculate the metric generated by the
material bodies and other fields. The computation proceeds in two stages. First, we deter-
mine the external behavior of the metric and other gravitational fields, thereby establishing
boundary values that must be imposed upon the fields generated by the local system, at
the boundary of the quasi-local frame far from the local system. Second, we solve for the
fields generated by the local system. Because the metric is coupled directly or indirectly
to the other fields of the theory, its structure and evolution inside the quasi-local frame are
influenced by the boundary values taken on by these fields. This is true even when we work
in a coordinate system in which the asymptotic form of gαβ in the boundary region between
the local system and the external world is that of the Minkowski metric, modulo tidal po-
tentials from the external bodies. The gravitational environment in which the local system
resides can therefore influence the metric generated by the local system via the boundary
values of the auxiliary fields. Consequently, the results of local gravitational experiments
may depend on the position and velocity of the quasi-local frame relative to the external
environment. (A non-gravitational experiment is unaffected, because the gravitational fields
it generates are negligible, and because the apparatus couples only to the metric, whose
form can always be made locally Minkowskian at a given event in spacetime.) A local
gravitational experiment might consist of a Cavendish-type experiment, a measurement of
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the acceleration of massive self-gravitating bodies, a study of the structure of stars and
planets, or an analysis of the periods of planetary orbits.

We can now make a number of statements regarding different kinds of metric theories.
First, a theory containing only the metric gαβ and no other fields yields a local gravitational
physics that is independent of the position and velocity of the local system. This follows
from the fact that the only field coupling the local system to the environment is gαβ , and it
is always possible to find a coordinate system in which gαβ takes the Minkowski form at the
boundary between the local system and the external environment, modulo tidal potentials.
The asymptotic values of gαβ are therefore constants independent of position, and they are
asymptotically Lorentz invariant, independent of the velocity of the quasi-local Lorentz
frame. General relativity is an example of such a theory.

Second, a theory containing the metric gαβ and a number of dynamical scalar fields φA

yields a local gravitational physics that may depend on the position of the frame but is
independent of its velocity. This follows from the asymptotic Lorentz invariance of the
Minkowski metric and the scalar fields, but now the asymptotic values of the scalar fields
may depend on the position of the frame. An example is Brans–Dicke theory, in which the
asymptotic scalar field determines the effective value of the gravitational constant, which
therefore varies as φ varies. The scalar field can vary in time because of cosmological
evolution, or it can vary in space because of the proximity of matter outside the quasi-local
frame.

Third, a theory containing the metric gαβ and additional dynamical or non-dynamical
vector or tensor fields yields a local gravitational physics that may have both position
and velocity-dependent effects. For example, a timelike vector field K α , whose value is
determined by the distribution of matter in the universe, will have only a time component K 0

in a reference frame in which the large-scale distribution of matter is isotropic, presumably
the rest-frame of the cosmic background radiation. But in a quasi-local Lorentz frame that
is moving relative to this frame with a velocity v, the asymptotic form of K α will have
spatial components K j ∝ K 0v j , and these velocity-dependent components can then feed
into the local form of the metric.

These ideas can be framed in the context of the strong equivalence principle:

If a test body is placed at an initial event in spacetime and given an initial velocity there,
and if the body subsequently moves freely, then its world line will be independent of its
mass, internal structure, and composition, whether it is self-gravitating or not.

The outcome of any local non-gravitational or gravitational test experiment performed by
a freely-moving apparatus is independent of the velocity of the apparatus and independent
of when and where it is carried out.

Compare this with the statement of the Einstein equivalence principle provided in Sec. 5.1.1.
The distinction between the strong and Einstein versions is the inclusion of bodies with self-
gravitational interactions (planets, stars) and of experiments involving gravitational forces
(Cavendish-type experiments, gravimeter measurements). Note that the strong principle
is indeed stronger than the Einstein principle, and contains it in the limit in which local
gravitational forces can be ignored. In fact, this principle is so strong that general relativity
is one of the very few metric theories that actually satisfy it. Another example is Nordström’s
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theory, which was described previously, and revealed not to be compatible with experimental
tests.

Our previous discussion of the coupling of auxiliary fields to local gravitating systems
suggests that alternative theories involving additional fields will tend to violate the strong
equivalence principle, because the results of gravitational experiments are expected to
depend on position and velocity. The discussion also suggests that when the strong equiv-
alence principle is strictly respected, the description of gravity should involve a single
universal field, the metric gαβ . The argument is only a suggestion, however, and no rigorous
proofs of these statements are available at present. Empirically it has been found that every
metric theory that introduces auxiliary fields, either dynamical or non-dynamical, predicts
violations of the strong equivalence principle at some level.

13.2 Parameterized post-Newtonian framework

13.2.1 A class of post-Newtonian theories

Metric theories of gravity demand that matter and non-gravitational fields respond only
to the metric, and that they be completely oblivious to other fields that the theory might
contain. The only gravitational field that can enter the matter’s equations of motion, derived
from the conservation equation ∇β T αβ = 0, is therefore the metric gαβ ; the other fields are
present only to help generate the metric. In this context the metric tensor and the equations
of motion for matter become the primary entities for calculating observable effects, and
all that distinguishes one metric theory from another is the particular form of the metric
generated by a given distribution of matter.

The situation becomes particularly simple when we consider systems involving slow
motions and weak gravitational fields. In this post-Newtonian limit, the spacetime metric
gαβ produced by nearly every metric theory of gravity has the same formal structure. It
can be written as an expansion in powers of c−2 about the Minkowski metric ηαβ , in terms
of the Newtonian potential U and many of the same post-Newtonian potentials that we
encountered back in Chapter 8. (New potentials are required for some theories.) The only
aspect that changes from one theory to the next is the numerical value of the various
coefficients that appear in front of the potentials.

This is a very fortunate circumstance, because the post-Newtonian limit is sufficient to
describe the gravitational physics of the solar system and the experimental tests one can
perform there. And to a limited degree, it can also describe the gravity of binary-pulsar
systems. If we therefore replace the numerical coefficients in front of all potentials in the
post-Newtonian metric of general relativity with arbitrary parameters, and add a few new
potentials with their own parameters, we obtain a framework that encompasses a broad
spectrum of alternative theories, and that can be used to calculate a wide range of testable
phenomena.

This framework is called the parameterized post-Newtonian (PPN) framework, and the
main idea originated with Eddington. In his classic 1922 textbook, The Mathematical
Theory of Relativity, he parameterized the post-Newtonian limit of the Schwarzschild
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metric (in isotropic coordinates) by expressing it in the form

ds2 = −
[

1 − 2α
G M

c2r
+ 2β

(
G M

c2r

)2
]

d(ct)2 +
[

1 + 2γ
G M

c2r

](
dx2 + dy2 + dz2

)
,

(13.1)

with α, β, and γ denoting free parameters. Eddington calculated the motion of planets and
the trajectories of light rays in this metric, and obtained predictions for various measurable
quantities, such as the perihelion advance of Mercury and the deflection of light. He
then interpreted the measurements as empirical constraints on the free parameters, with
α = β = γ = 1 confirming the predictions of general relativity. Eddington did not realize
at the time that α is actually a redundant parameter, because it can always be absorbed into
G M , which determines the Newtonian dynamics of the system and can be measured by
observing its Keplerian orbital motion.

The modern version of the PPN framework, involving a gravitating system of point
masses, was first developed by Kenneth Nordtvedt, Jr. in 1968. The framework was ex-
tended by one of us (CMW) to incorporate self-gravitating fluid systems. In 1972 the two
approaches were unified by Nordtvedt and Will, and this gave rise to the modern version of
the PPN framework, as it is used today.

13.2.2 Parameterized post-Newtonian metric

The metric and its potentials are displayed in Box 13.1. As we discussed previously, there is
no need to introduce a parameter α in front of the Newtonian potential in g00. Setting aside
�PF and �PF

j for the moment, we see that there are ten independent potentials in the post-
Newtonian part of the metric. In g00 we recognize U 2 and the six potentials in ψ , in g0 j we
find U j and ∂t j X , and in g jk there is U . There is a one-to-one correspondence with the ten
PPN parameters, although the assignment of parameters may appear a little strange at first.

Box 13.1 Parameterized post-Newtonianmetric

Parameters: γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4.
Metric:

g00 = −1 + 2

c2
U + 2

c4

(
ψ − βU 2

) + 1

c4
�PF + O(c−6),

g0 j = − 1

c3

[
2(1 + γ ) + 1

2
α1
]
U j − 1

2c3

[
1 + α2 − ζ1 + 2ξ

]
∂t j X

+ 1

c3
�PF

j + O(c−5) ,

g jk =
(

1 + 2

c2
γ U

)
δ jk + O(c−4) ;

(continued overleaf)
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ψ := 1

2
(2γ + 1 + α3 + ζ1 − 2ξ )�1 − (2β − 1 − ζ2 − ξ )�2 + (1 + ζ3)�3

+ (3γ + 3ζ4 − 2ξ )�4 − 1

2
(ζ1 − 2ξ )�6 − ξ�W .

Potentials:

U := G

∫
ρ∗′

|x − x′| d3x ′ ,

�1 := G

∫
ρ∗′v′2

|x − x′| d3x ′ ,

�2 := G

∫
ρ∗′U ′

|x − x′| d3x ′ ,

�3 := G

∫
ρ∗′�′

|x − x′| d3x ′ ,

�4 := G

∫
p′

|x − x′| d3x ′ ,

�6 := G

∫
ρ∗′v′

jv
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ ,

�W := G2
∫

ρ∗′ρ∗′′ (x − x ′) j

|x − x′|3
[

(x ′ − x ′′) j

|x − x′′| − (x − x ′′) j

|x′ − x′′|
]

d3x ′d3x ′′

= −U 2 − �2 − ∇U · ∇X + G∇ ·
∫

ρ∗′

|x − x′|∇
′ X ′d3x ′ ,

U j := G

∫
ρ∗v j (t, x′)
|x − x′| d3x ′ ,

X := G

∫
ρ∗(t, x′)|x − x′| d3x ′ .

Preferred-frame potentials:

�PF := (α3 − α1)w2U + α2w
jwk∂ jk X + (2α3 − α1)w jU j ,

�PF
j := −1

2
α1w jU + α2w

k∂ jk X .

The quantityw j is the velocity of the PPN coordinate frame relative to a universal preferred frame.
When β = γ = 1 and all other parameters vanish, the metric reduces to the familiar post-Newtonian

metric of general relativity, as constructed back in Sec. 8.1. The metric, however, does not quite reduce to
the form displayed in Eq. (8.2) – see also Eq. (8.9). The reason is that the coordinate system (ct, x j ) is not
harmonic. Indeed, the PPN metric is cast in a generalization of the standard post-Newtonian gauge described
back in Sec. 8.3.7. There is no deep reason behind this choice of coordinates, it merely reflects the historical
development of the PPN framework.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-13 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:17

706 Alternative theories of gravity

Table 13.1 PPN parameters and their physical significance. Note thatα3 is listed twice to indicate that it
is a measure of two separate effects.

What it measures Semi-conservative Fully-conservative
Parameter relative to GR GR value theories theories

γ How much spatial
curvature produced
by unit rest mass?

1 γ γ

β How much
“nonlinearity” in the
superposition of
gravity?

1 β β

ξ Preferred-location
effects?

0 ξ ξ

α1 Preferred-frame 0 α1 0
α2 effects? 0 α2 0
α3 0 0 0

α3 Is total 0 0 0
ζ1 momentum 0 0 0
ζ2 conserved? 0 0 0
ζ3 0 0 0
ζ4 0 0 0

The choice of parameters is made (with considerable hindsight, to be sure) to ensure that
their values are particularly simple in general relativity, but more importantly, to ensure
also that specific physical meanings can be attached to them. These heuristic meanings
are summarized in Table 13.1. The parameters β and γ are directly related to Eddington’s
original parameters. Roughly speaking, β measures how non-linear gravity is, in that
it multiplies the U 2 term in g00, and γ measures the spatial curvature generated by a
body relative to what general relativity would predict; specifically, a calculation of the
Riemann curvature tensor for the three-dimensional subspace defined by dt = 0 gives a
result proportional to γ G M/(c2r3). These meanings are not to be taken literally, because
they are very much tied to the choice of coordinates. In general relativity, for example,
the Schwarzschild metric expressed in the standard Schwarzschild coordinates has no term
quadratic in G M/(c2r ) in g00; the post-Newtonian limit of the metric takes the Eddington
form of Eq. (13.1) with β = γ = 1 only in isotropic coordinates. The lesson is that the
interpretation of the PPN parameters must be viewed as a rough heuristic.

The parameters αn are linked to violations of local Lorentz invariance in gravitational
physics, which is predicted by some theories. Suppose that all three parameters vanish. If we
perform a post-Galilean transformation of the PPN metric to a coordinate system moving
with respect to the first, as we did back in Sec. 8.3.6 for general relativity, we discover that
the metric is of the same form in the moving frame as it was in the original frame, with
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all variables (such as positions, velocities, and densities) referring to the new frame. In this
case, the physics of an isolated gravitating system does not depend on its velocity; we can
analyze it in a reference frame at rest with respect to the system’s center-of-mass, or in a
frame moving relative to it with an arbitrary velocity, and the results are the same.

Now suppose that one or more of the αn parameters is non-zero. In this case, a post-
Galilean transformation of the metric generates new terms, and these are precisely the PF
terms displayed in Box 13.1. This implies that the physics of a gravitating system depend
explicitly on the system’s velocity relative to our coordinate system. But what can this
possibly mean, given that our coordinate system was chosen arbitrarily? It must mean that
there is a preferred reference frame in the universe, a frame whose velocity w can be taken to
vanish. What is this frame? The answer must be provided by the underlying theory of gravity,
and it will differ from theory to theory. An example is a theory with a dynamical timelike
vector field K α in addition to the metric. If K α is determined by some field equations with
a source related to the distribution of matter, then in a homogeneous, isotropic universe
there exists a reference frame in which the vector has only a time component. By symmetry,
this must be the mean rest frame of the large-scale distribution of matter and radiation, or
equivalently, the rest frame of the cosmic microwave background radiation. The specifics
of how this circumstance arises may vary from theory to theory, but it is reasonable to
suppose that in general, the frame in which K j = 0 can be identified with the preferred
reference frame. Because w = 0 in the preferred frame, we would find that the potentials
�PF and �PF

j vanish in this frame. But performing a post-Galilean transformation to any
other frame automatically introduces the PF terms into the PPN metric, with a velocity w

given by the new frame’s velocity with respect to the cosmic background radiation. The
PF potentials have observable consequences, and in Sec. 13.3 we see how experiments
have placed very tight constraints on the αn parameters, all consistent with the validity of
post-Galilean invariance.

One might worry that the existence of a preferred frame violates the general covariance
that is presumably built into all such alternative theories. In fact, general covariance is not
broken: as long as the PF potentials are included in the metric, we can perform calculations
in any reference frame we like. For example, instead of adopting the solar system’s rest
frame to do planetary calculations, we could adopt the rest frame of the galaxy. In this case,
the w that appears in the metric would be the velocity of the galaxy relative to the cosmic
background radiation, and the velocities of all solar-system bodies would be defined with
respect to the galactic center. It turns out in the end that any measurable effect depends
only on the velocity of the relevant body relative to the preferred frame; the velocity of the
coordinate frame always drops out. The preferred frame comes about as a result of a physical
interaction, say between a vector field and the metric; it does not represent a violation of
general covariance. Fundamentally, this is no different from our ability to determine the
rest frame of the cosmic background radiation by interacting with its photons, except that
in alternative theories with preferred-frame effects, the physical mechanism behind the
existence of a preferred frame is more subtle and indirect.

The four parameters ζn , together with the parameter α3 (which plays a dual role), indicate
whether the theory admits a conservation law for the total momentum of an isolated
system. Energy is not included in this discussion, because in the present context of 1pn
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gravity, the relevant energy is rest-mass energy plus Newtonian total energy (the sum of
kinetic, gravitational, and internal energies), which is conserved by virtue of the Newtonian
dynamics.

Recall the Landau–Lifshitz formulation of the Einstein field equations, as presented back
in Sec. 6.1, and the conservation laws that followed from them. The basic idea was that the
equations of energy-momentum conservation could be expressed in the form ∂βταβ = 0,
where ταβ is a pseudotensor made up of the matter’s energy-momentum tensor T αβ and
a contribution from the gravitational field (the Landau–Lifshitz pseudotensor). It follows
from this that the quantity P j := c−1

∫
τ 0 j d3x is constant in time, apart from the small

effects associated with gravitational radiation. Total momentum is therefore conserved in
general relativity, and we wish to see if the conclusion extends to other theories.

In any metric theory the equation of energy-momentum conservation is given by
∇β T αβ = 0, and in the post-Newtonian limit the covariant derivatives can be computed
with the PPN metric displayed in Box 13.1; the metric also appears in appropriate places
within the energy-momentum tensor. It may then be asked whether one can define an ob-
ject �αβ such that the conservation equation can be expressed as ∂β�αβ = 0, with partial
derivatives replacing the covariant derivatives. Presumably, such an object would take a
form such as (1 − aU/c2)(T αβ + tαβ), with a a constant to be determined and tαβ a pseu-
dotensor constructed from the various gravitational potentials. If this object exists, then
it can be exploited to define a conserved total momentum P j := c−1

∫
�0 j d3x , and the

theory would indeed be compatible with momentum conservation. It turns out that �αβ

exists provided that ζ1 = ζ2 = ζ3 = ζ4 = α3 = 0. Theories of gravity with this property are
called “semi-conservative.” It can be shown that any metric theory whose field equations
can be derived from an invariant action principle automatically comes with a conserved
momentum.

The equation ∂β�αβ = 0 guarantees only that total momentum is conserved. If we further
demand that angular momentum should be conserved, and that the center-of-mass should
possess a uniform motion, we must also impose that �αβ be a symmetric pseudotensor. It
turns out that this requires α1 = α2 = 0 in addition to the other constraints. Theories with
this property are called “fully conservative,” and we note that it is possible for a theory
formulated in terms of an action principle (especially ones with vector or tensor fields in
addition to the metric) to fail to conserve angular momentum. A fully conservative theory
is therefore one with no preferred-frame effects (at least at post-Newtonian order). It may
seem odd that conservation of total angular momentum J αβ , including the center-of-mass
quantity J 0 j , should require post-Galilean invariance, but there is nothing surprising about
this: since J 0 j mixes the time and space components of a tensor, an expectation of its
conservation implicitly assumes invariance under boosts.

The final parameter ξ is tied to the potential �W , called the Whitehead potential because
it was first spotted in Whitehead’s theory of gravity, although it was later found to occur
in a broad class of similar theories. The potential looks particularly nasty, especially in its
integral form, but it can be understood as having a simple origin. We have assumed that
the spatial part of the PPN metric is diagonal, given by g jk = (1 + 2γ U/c2)δ jk . We could,
however, have included in g jk a perfectly acceptable term of the form 2λ∂ jk X/c2, where
λ is an arbitrary parameter. But this term can be removed by a coordinate transformation
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x j = x̄ j − λ∂ j X/c2, which changes the metric according to

ḡ00(x̄μ) = g00(x̄μ) + 2λ�
j
00∂ j X/c2 , (13.2a)

ḡ0 j (x̄
μ) = g0 j (x̄

μ) − λ∂t j X/c3 , (13.2b)

ḡ jk(x̄μ) = g jk(x̄μ) − 2λ∂ jk X/c2 . (13.2c)

The change in g0 j merely modifies the coefficient of the pre-existing term involving ∂t j X/c3,
but the change in g00 is more complicated. First, there is the term involving �

j
00. Second,

while the Newtonian potential in g00 is to be evaluated at x̄μ, it is still expressed as an
integral over the old coordinate x′, and we must transform the integration variables. The
quantity ρ∗d3x ′ is invariant, so ρ∗d3x ′ = ρ̄∗d3 x̄ ′, but we must write

1

|x̄ − x′| = 1

|x̄ − x̄′| + λ

c2
∇̄
(

1

|x̄ − x̄′|
)

· ∇̄′ X̄ ′ . (13.3)

Inserting this within the Newtonian potential, and �
j
00 = −∂ jU/c2 within ḡ00, we obtain

ḡ00(x̄μ) = g00(x̄μ) − 2

c4
λ∇̄Ū · ∇̄ X̄ + 2G

c4
λ∇̄ ·

∫
ρ̄∗′

|x̄ − x̄′| ∇̄
′ X̄ ′ d3 x̄ ′

= g00(x̄μ) + 2

c4
λ
(
�̄W + Ū 2 + �̄2

)
, (13.4)

where g00 is now expressed entirely in terms of the barred coordinates. So we see that far
from being an anomaly, the Whitehead potential can be linked to gauges in which the spatial
metric is not diagonal. This occurs even in general relativity: we would pick up a Whitehead
term in g00 if we were to transform the metric from the standard post-Newtonian gauge to
one in which g jk is not diagonal. In fact, there is a close analogy between this coordinate
transformation in post-Newtonian theory and the transformation between isotropic and
Schwarzschild coordinates for the Schwarzschild metric.

13.2.3 Equations of hydrodynamics

We develop the equations of hydrodynamics in the PPN framework just as we did in
Chapters 7 and 8 in the case of general relativity. As in Sec 7.1, we introduce a conserved
density [refer to Eq. (7.4)]

ρ∗ := √−gρu0/c , (13.5)

where ρ is the proper mass density. Using the normalization condition gαβuαuβ = −c2 and
the PPN metric, we find that the densities are related by

ρ =
[

1 − 1

c2

(
1

2
v2 + 3γ U

)
+ O(c−4)

]
ρ∗ , (13.6)
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which may be compared with Eq. (7.46). The components of the energy-momentum tensor
are given by

c−2T 00 = ρ∗
{

1 + 1

c2

[
1

2
v2 − (3γ − 2)U + �

]}
+ O(c−2) , (13.7a)

c−1T 0 j = ρ∗v j

{
1 + 1

c2

[
1

2
v2 − (3γ − 2)U + � + p/ρ∗

]}
+ O(c−3) , (13.7b)

T jk = ρ∗v j vk

{
1 + 1

c2

[
1

2
v2 − (3γ − 2)U + � + p/ρ∗

]}

+ p

(
1 − 2

c2
γ U

)
δ jk + O(c−4), (13.7c)

to the required post-Newtonian order; compare these with Eq. (8.7).
Calculating the Christoffel symbols �α

βγ from the PPN metric and inserting them into
the conservation equation ∇β T αβ = 0, we eventually obtain the PPN version of Euler’s
equation,

ρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU

+ 1

c2

{[
1

2
v2 + (2 − γ )U + � + p

ρ∗

]
∂ j p − v j ∂t p

}

+ 1

c2
ρ∗
{[

γ v2 − 2(γ + β)U

]
∂ jU

− v j

[
(2γ + 1)∂tU + 2(γ + 1)vk∂kU

]

+ 1

2
(4γ + 4 + α1)

[
∂tU j + vk

(
∂kU j − ∂ jUk

)] + ∂ j#

}

+ 1

c2
ρ∗
[

1

2
∂ j �

PF − ∂t�
PF
j − vk

(
∂k�

PF
j − ∂ j �

PF
k

)]
+ O(c−4) , (13.8)

where

# := ψ + 1

2
(1 + α2 − ζ1 + 2ξ )∂t t X , (13.9)

and where ψ , �PF, and �PF
j are displayed in Box 13.1. Recall that ∂t t X = �1 + 2�4 − �5 −

�6. Note that the PPN equation of hydrodynamics parallels closely the general relativistic
equation, displayed in Eq. (8.119). The main differences are in the numerical coefficients
in front of the post-Newtonian potentials, the inclusion of the Whitehead potential in ψ ,
and the addition of the “preferred-frame” terms.

13.2.4 Motion of isolated bodies

We now wish to obtain equations of motion for a system of isolated, non-rotating bodies, as
we did back in Chapter 9 for the post-Newtonian limit of general relativity. The foundation
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for this work is Eq. (13.8), which closely resembles its general-relativistic counterpart. This
implies that much of the machinery developed in Chapter 9 can be directly imported here.
Additional work is required to handle the Whitehead potential and the preferred-frame
terms.

The idea is to integrate Eq. (13.8) over body A to find the net force acting on its center-of-
mass. The force can be decomposed into “self-force” terms involving the variables of body
A only, and external forces produced by the other bodies. The 18 integrals of Eqs. (9.88),
as evaluated in Eqs. (9.91), make contributions to these forces, and the contribution from
the Whitehead potential is

F j
19 := − ξ

c2

∫
A

ρ∗∂ j �W d3x

= −G2ξ

c2

∑
B,C

∫
A

ρ∗∂ j

∫
B

ρ∗′
∫

C
ρ∗′′ (x − x ′)k

|x − x′|3
[

(x − x ′′)k

|x′ − x′′| − (x ′ − x ′′)k

|x − x′′|
]

× d3xd3x ′d3x ′′ , (13.10)

where the double sum over bodies B and C includes body A. When B and C both refer
to body A, it is straightforward to see that the integral vanishes because of the assumed
reflection symmetry of the density distribution (refer to Sec. 9.1.2). When B refers to body
A, while C refers to an external body, we expand x − x′′ and x′ − x′′ about the center-
of-mass of body A. The method is very similar to, though slightly more tedious than, the
method used to evaluate F j

14 in Sec. 9.3.2. We find that some of the double integrals over
x and x′ in body A vanish by symmetry, while others lead to terms involving 


jk
A and


A. Higher-order terms in the expansions can be neglected because of our assumption
that the bodies are well separated. Similar considerations apply when C refers to body A
and B refers to an external body, leading to terms involving 


jk
A and 
A, as well as a

term involving U¬A evaluated at body B. The final case, with both B and C referring to an
external body, involves external potentials only. We denote the collection of terms involving
external potentials by �W,¬A, and the final result for F j

19 is

c2 F j
19 = 6
A∂ jU¬A − 3


jk
A ∂kU¬A − 
kl

A ∂ jkl X¬A + m A∂ j�W,¬A . (13.11)

The contribution to the force that comes from the preferred-frame potentials is

F j
PF = 1

c2

∫
A

ρ∗
(

1

2
∂ j �

PF − ∂t�
PF
j − 2vk∂[ j �

PF
k]

)
d3x . (13.12)

This can be handled in much the same way, with the help of some results from Sec. 9.3. We
merely quote the final answer:

c2 F j
PF =

[
α1 HAδ jk − α2

(
2H ( jk)

A − 3K jk
A + HAδ jk

) − α3 H k j
A

]
wk

+ 1

2
(α3 − α1)m Aw2∂ jU¬A + 1

2
α2m Awkwl∂ jkl X¬A

+ 1

2
(2α3 − α1)m Awk∂ jUk,¬A + 1

2
α1m Aw j∂tU¬A

− α2m Awk∂t jk X¬A + α1m Avk
Aw[ j∂k]U¬A . (13.13)
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Collecting results, we find that the acceleration of body A is given by

a j
A = ∂ jU¬A + (a j

A)self + (a j
A)ext + (a j

A)PF + O(c−4) . (13.14)

The first term is of course the Newtonian acceleration created by the external bodies.
The second term contains all self-interaction effects, including those coming from the
preferred-frame potentials:

m Ac2(a j
A)self =

[
2L ( jk)

A − (2 + α2)H jk
A − (2 + α2 + α3)H k j

A + 3(1 + α2)K jk
A

+ (α1 − α2)δ jk HA − δ jk ṖA

]
vk

A

+
[
α1 HAδ jk − α2(2H ( jk)

A − 3K jk
A + HAδ jk) − α3 H k j

A

]
wk

+
[
2γTA + (4β − 3 − α1 + α2 − ζ1 − 4ξ )
A + 3γ PA

]
∂ jU¬A

−
[
4(γ + 1)T jk

A + (2γ + 2 + α2 − ζ1 + ζ2)
 jk
A

+ 2(γ + 1)δ jk PA

]
∂kU¬A + ξ
kl

A ∂ jkl X¬A . (13.15)

As we did back in Chapter 9, we invoke the conditions (9.10)–(9.12) satisfied by a body in
internal dynamical equilibrium,

2T jk
A + 


jk
A + δ jk PA = O(c−2) , (13.16a)

4H ( jk)
A − 3K jk

A − 2L ( jk)
A + δ jk ṖA = O(c−2) , (13.16b)

2TA + 
A + 3PA = O(c−2) . (13.16c)

We also invoke the additional steady-state conditions


̇
jk
A = 2H ( jk)

A − 3K jk
A = 0 , (13.17a)


̇A = −HA = 0, (13.17b)

and obtain the final expression

(a j
A)self = − α3

m Ac2
H k j

A (wk + vAk)

+ (4β − γ − 3 − 4ξ − α1 + α2 − ζ1)

A

m Ac2
∂ jU¬A

− (α2 − ζ1 + ζ2)



jk
A

m Ac2
∂kU¬A + ξ


kl
A

m Ac2
∂ jkl X¬A (13.18)

for the self-acceleration. The acceleration produced by the external post-Newtonian poten-
tials is given by

c2(a j
A)ext = [

γ v2
A − 2(γ + β)U¬A

]
∂ jU¬A

− v
j
A

[
2(γ + 1)vk

A∂kU¬A + (2γ + 1)∂tU¬A

]
+ 1

2
(4γ + 4 + α1)

[
∂tU

j
¬A + vk

A(∂kU j¬A − ∂ jUk¬A)
]

+ ∂ j #¬A , (13.19)
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where

#¬A = 1

2
(2γ + 2 + α2 + α3)�1,¬A − (2β − 1 − ζ2 − ξ )�2,¬A

+ (1 + ζ3)�3,¬A + (3γ + 1 + α2 + 3ζ4 − ζ1)�4,¬A

− 1

2
(1 + α2 − ζ1 + 2ξ )�5,¬A − 1

2
(1 + α2)�6,¬A − ξ�W,¬A , (13.20)

and the preferred-frame acceleration is

c2(a j
A)PF = +1

2
(α3 − α1)w2∂ jU¬A + 1

2
α2w

kwl∂ jkl X¬A

+ 1

2
(2α3 − α1)wk∂ jUk,¬A + 1

2
α1w

j ∂tU¬A

− α2w
k∂t jk X¬A + α1v

k
Aw[ j∂k]U¬A . (13.21)

We must now evaluate the derivatives of the external potentials. Again we find that most
of the hard work has already been carried out in Chapter 9, and the results of Eqs. (9.103)
can all be imported here. The only additional work required is to evaluate ∂ j �W,¬A. When
B and C refer to different external bodies, we can treat each body as a point mass and
calculate the gradient of the potential directly in terms of the masses and separations. But
when B and C both refer to the same external body B, we must expand x − x′ and x − x′′

about the center-of-mass of body B. This generates a structure-dependent term proportional
to 
B nAB/r2

AB . A similar term arises when B is in an external body and C refers to body
A. The final result is

∂ j �W,¬A = −
∑
B 	=A

2G
Bn j
AB

r2
AB

−
∑
B 	=A

G2m Am Bn j
AB

r3
AB

+
∑
B 	=A

∑
C 	=A,B

G2m BmC

r2
AB

{
δ jk − 3n j

ABnk
AB

rAB

[
rBC

rAC
nk

BC − rAC

rBC
nk

AC

]

− nk
AB

rAC

[
rAC

rBC
δ jk + rBC

rAC
n j

AC nk
BC

]}
. (13.22)

Collecting results, we obtain an explicit expression for the acceleration of body A. As we
did back in Sec. 9.3.5, we decompose it as

aA = aA[ext] + aA[str] + O(c−4) , (13.23a)

aA[ext] = aA[0pn] + aA[1pn] , (13.23b)

where aA[0pn] is the Newtonian acceleration, aA[1pn] groups all the post-Newtonian
corrections that do not depend on the internal structures of the bodies, and aA[str] contains
all the structure-dependent terms. As we also did back in Sec. 9.3.5, we pull out a term

aA[str]′ = −
∑
B 	=A

G(EB/c2)

r2
AB

nAB , (13.24)
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from aA[str], where EB = TB + 
B + E int
B is the total internal energy of body B, and

combine it with the 0pn term to obtain

aA[0pn] + aA[str]′ = −
∑
B 	=A

G MB

r2
AB

nAB , (13.25)

where MB := m B + EB/c2 + O(c−4) is the total gravitational mass of body B. We can
then insert m B = MB + O(c−2) in all post-Newtonian terms in the acceleration without
changing the equations of motion at 1pn order. In Chapter 9 this procedure eliminated all
structure-dependent terms from the equations of motion. Here, in contrast, the remaining
terms are given by

c2a j
A[str] = − α3

MA
H k j

A (wk + vAk)

+
∑
B 	=A

G MB

{(
4β − γ − 3 − 4ξ − α1 + α2 − ζ1

)
A

MA
∂ j (rAB)−1

− (
α2 − ζ1 + ζ2

)

jk
A

MA
∂k(rAB)−1 + ξ


kl
A

MA
∂ jklrAB

+
(

4β − γ − 3 − 4ξ − 1

2
α3 − 2ζ2

)
B

MB
∂ j (rAB)−1

+
(
ξ − 1

2
ζ1

)
kl
B

MB
∂ jklrAB − ζ3

E int
B

MB
∂ j (rAB)−1

+
(3

2
α3 − 3ζ4 + ζ1

) PB

MB
∂ j (rAB)−1

}
. (13.26)

These structure-dependent terms all vanish when the PPN parameters take their general
relativistic values. In general, however, the acceleration of a body in the field of other
bodies can depend on its internal structure (dependence on 
A), and can even contain a
component in a direction perpendicular to the direction of the other body (dependence on



jk
A ). Furthermore, the gravitational attraction produced by an external body can depend

on its own internal structure (dependence on 
B , E int
B , PB). These violations of the strong

equivalence principle can persist even in a fully conservative theory (αn = ζn = 0), depend-
ing on the values of γ , β, and ξ . We notice the remarkable fact that the term proportional
to α3 depends on the body’s net velocity w + vA relative to the preferred frame; as we have
observed before, general covariance implies that the equations of motion cannot depend on
the velocity of the PPN frame relative to the preferred frame.

The remaining terms in the post-Newtonian equations of motion are the N -body terms
analogous to those displayed in Eq. (9.127):

aA[ext] = −
∑
B 	=A

G MB

r2
AB

nAB

+ 1

c2

⎧⎪⎪⎪⎩−
∑
B 	=A

G MB

r2
AB

{
γ v2

A − (2γ + 2)(vA · vB) + (γ + 1)v2
B

(continued overleaf)
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− 3

2
(nAB · vB)2 + 1

2
(α2 + α3)(w + vB)2

− 1

2
α1(w + vA) · (w + vB) − 3

2
α2[nAB · (w + vB)]2

−
(

2γ + 2β + 1 + 1

2
α1 − ζ2

)G MA

rAB
− (2γ + 2β)

G MB

rAB

}
nAB

+
∑
B 	=A

G MB

r2
AB

{
nAB · [(2γ + 2)vA − (2γ + 1)vB

]}
(vA − vB)

−
∑
B 	=A

G MB

r2
AB

{
nAB · [α2(w + vB) + 1

2
α1(vA − vB)

]}
(w + vB)

+
∑
B 	=A

∑
C 	=A,B

G2 MB MC

r2
AB

[
(2γ + 2β − 2ξ )

1

rAC
+ (2β − 1 − 2ξ − ζ2)

1

rBC

− 1

2
(1 + 2ξ + α2 − ζ1)

rAB

r2
BC

(nAB · nBC ) − ξ
rBC

r2
AC

(nAC · nBC )

]
nAB

− 1

2
(4γ + 3 − 2ξ + α1 − α2 + ζ1)

∑
B 	=A

∑
C 	=A,B

G2 MB MC

rABr2
BC

nBC

− ξ
∑
B 	=A

∑
C 	=A,B

G2 MB MC

r3
AB

[
(nAC − nBC ) − 3nAB · (nAC − nBC )nAB

]⎫⎪⎪⎪⎭
+ O(c−4). (13.27)

Setting the PPN parameters equal to their general relativistic values allows us to recover
Eq. (9.127).

The appearance of structure-dependent terms in the equations of motion is a radical de-
parture from general relativity. We conclude this section with a discussion of this remarkable
phenomenon. In discussions of the equivalence principle in Newtonian gravitation, it can be
useful to identify three types of mass that characterize gravitating bodies: the inertial mass
MI , which relates momentum to velocity, or force to acceleration; the passive gravitational
mass MP , which relates gravitational force to the gradient of the potential; and the active
gravitational mass MA, which determines the potential of the gravitating body. With these
definitions, we write

F A = (MI )A
dvA

dt
= (MP )A∇

∑
B 	=A

(MA)B

rAB
, (13.28)

or

aA =
(

MP
MI

)
A

∑
B 	=A

∇ (MA)B

rAB
. (13.29)

So if the inertial and passive masses of body A are not equal, the motion of body A
will depend on its internal structure. From Eq. (13.26) we see not only that the masses
are not generally equal in PPN gravity, but that they are actually tensorial in nature. We
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also observe that the active mass of each body is tensorial and structure-dependent. When
each body is spherically symmetric we can use the fact that 


jk
A = 1

3 δ jk
A to simplify the
structure-dependent terms. In this case the active and passive masses reduce to

(MP )A

MA
= 1 +

(
4β − γ − 3 − 10

3
ξ − α1 + 2

3
α2 − 2

3
ζ1 − 1

3
ζ2

)

A

MAc2
, (13.30a)

(MA)B

MB
= 1 +

(
4β − γ − 3 − 10

3
ξ − 1

2
α3 − 1

3
ζ1 − 2ζ2

)

B

MBc2

+ ζ3
E int

B

MBc2
−
(

3

2
α3 + ζ1 − 3ζ4

)
PB

MBc2
. (13.30b)

We now observe that when we sum Eq. (13.28) over all bodies, we obtain∑
A

(MI )A
dvA

dt
=
∑

A

∑
B 	=A

(MP )A(MA)B
nAB

r2
AB

. (13.31)

The double sum vanishes when the product (MP )A(MA)B is symmetric under an exchange
of A and B; under such a circumstance the system’s total momentum is conserved, and the
center-of-mass moves uniformly with a constant speed. This occurs, for example, when the
active mass of each body is equal to its passive mass, and this is an expression of Newton’s
third law. When do we expect this to occur for PPN gravity? If we examine Eq. (13.26) and
impose the constraints of a fully conservative theory of gravity, αn = ζn = 0, we see that
the structure-dependent terms depend only on 
A, 
B and their associated tensors, and
that the contributions are then symmetric in A and B. Under such a circumstance we have
that the sum

∑
A MAa j

A[str] vanishes, and the same is true for
∑

A MAa j
A[ext]. There are

therefore theories that violate the strong equivalence principle (MP 	= MI ) but still satisfy
Newton’s third law (MP = MA).

13.2.5 Motion of light

To the post-Newtonian order required to describe the deflection of light and the Shapiro
time delay, we can approximate the PPN metric to

ds2 = −(1 − 2U/c2) d(ct)2 + (1 + 2γ U/c2)(dx2 + dy2 + dz2) . (13.32)

The null condition gαβvαvβ = 0 implies that (v/c)2 = 1 − 2(1 + γ )U/c2 + O(c−3), and v

can therefore be expressed as

v = c

[
1 − (1 + γ )

U

c2

]
n + O(c−3), (13.33)

in terms of a unit vector n. Calculating the Christoffel symbols to the appropriate order and
inserting them into the geodesic equation produces

dn j

dt
= 1 + γ

c

(
δ jk − n j nk

)
∂kU + O(c−2) (13.34)

after making use of Eq. (13.33). Comparing this with the general relativistic equations
displayed in Eqs. (8.17) and (8.19), we see that the factor 2 in each equation has been
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replaced by 1 + γ . Otherwise, the equations that describe the propagation of light in PPN
gravity are the same as in general relativity.

13.2.6 Metric near a moving body and local gravitational constant

Back in Sec. 9.4 we carried out a transformation of the general relativistic post-Newtonian
metric to a non-inertial frame that moved with one body in a system of isolated bodies.
With a suitable choice of transformation functions we could make the metric in the region
outside the selected body look precisely like the Schwarzschild metric (expanded to 1pn

order), plus correction terms proportional to r̄2 representing tidal potentials created by the
other bodies in the system (r̄ is the distance away from the selected body). To make this
work we had to set the acceleration of the moving frame to be precisely equal to the 1pn

acceleration of the selected body. Furthermore, the body’s internal structure played no role
in the analysis (although we did assume that it was spherically symmetric for simplicity);
we only used the fact that its exterior geometry could be described by the Schwarzschild
metric, apart from the tidal corrections. This exercise illustrated the notion that in general
relativity, the equations of motion of an isolated body can be obtained by exploiting only
the vacuum field equations, which apply between bodies, an idea that goes all the way
back to the famous 1938 paper by Einstein, Infeld and Hoffman. But it illustrated also the
validity of the strong equivalence principle in general relativity, because the motion of the
body was seen to be manifestly independent of its internal structure.

This exercise can be repeated using the PPN metric, but the results are very different, and
they lead to additional tests of gravitational theories. The calculation is long and tedious,
and we will not trouble the reader with it here. For simplicity we assume that the body does
not have a significant gravitational binding energy. As before we find that we must require
the non-inertial frame to move with an acceleration equal to the PPN acceleration, as given
by Eq. (13.27). The final form of the transformed metric to 1pn order is

g00 = −1 + 2
Geff M

c2r̄
− 2β

(
Geff M

c2r̄

)2

+ O(r̄2) + O(c−6) , (13.35a)

g0 j = −1

2
α1(w + v) j

Geff M

c2r̄
+ O(r̄2) + O(c−5) , (13.35b)

g jk =
(

1 + 2γ
Geff M

c2r̄

)
δ jk + O(r̄2) + O(c−4) , (13.35c)

where the effective gravitational “constant” Geff is given by

Geff := G

{
1 − 1

c2
(4β − γ − 3 − 4ξ − ζ2)Ûext − 1

c2
ξ n̄ j n̄k∂j̄ k̄ X̂ext

− 1

2c2
(α1 − α2 − α3)(w + v)2 − 1

2c2
α2
[
(w + v) · n̄

]2

− 1

2c2
(4β − γ − 3 − 4ξ + α2 − ζ1)x̄ k∂k̄Ûext

− 1

2c2
ξ r̄ n̄ j n̄k n̄l∂j̄ k̄l̄ X̂ext

}
, (13.36)
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where n̄ j = x̄ j /r̄ and the “hatted potentials” were introduced in Sec. 8.3; they denote the
original external potentials (the ones that appear in the inertial-frame metric) evaluated at
the center-of-mass position of the moving body.

There are several interesting observations to be made about this result. The first is that in
general relativity (β = γ = 1, all other parameters vanishing), the coordinate transforma-
tion eliminates all reference to the external universe, up to the expected tidal terms at order
r̄2, and returns the post-Newtonian limit of the Schwarzschild metric with Geff = G. This
reproduces what we found back in Sec. 9.4. But this is not so in a generic alternative theory:
external bodies and the existence of a preferred frame can influence the geometry of our
local frame. This is a clear example of a violation of the strong equivalence principle, as it
was introduced in Sec. 13.1. The violations can be encapsulated in an effective gravitational
parameter Geff , which is no longer constant, and an additional gravitomagnetic term in g0 j .

The second observation is that the metric and Geff depend on the combination w + v,
the body’s velocity relative to the preferred universal frame; the arbitrarily chosen velocity
w of the initial PPN frame is by itself irrelevant. The third observation is that Geff varies
with time as Ûext or v vary, and that it also varies with direction, as represented by the unit
vector n̄; we see this in the terms involving n̄ j n̄k∂j̄ k̄ X̂ext and [(w + v) · n̄]2. There is also a
variation with r̄ seen in the last two terms.

Our expression for Geff is not an artifact of the coordinate transformation from the
inertial frame to the body’s comoving frame. It can be obtained in an invariant manner with
an alternative calculation. The gravitational constant is a physically measurable quantity,
determined with a Cavendish-type experiment, in which the force between two known
masses at a determined separation is measured; Newton’s constant is then the measured
coefficient in the expression F = Gm1m2/r2. To be more precise, we imagine a situation
in which a body of mass M moves freely through spacetime, while a test body of negligible
mass is held at a fixed proper distance s from the source mass by a four-acceleration aμ;
the test body is assumed to be non-rotating relative to the source body. An invariant radial
unit vector eμ points from the test body to the source. The gravitational constant is then
defined by Newton’s law, which states that aμeμ = GL M/s2, where we use the notation
GL to indicate that this is the invariant, locally-measured gravitational constant. A detailed
calculation of GL using the PPN metric and equations of motion reveals that GL = Geff ,
as given by Eq. (13.36).

13.2.7 Spin dynamics

The methods that were exploited to derive the equations of motion of spinning bodies in
general relativity can be carried over to the PPN framework with only a few modifications,
which come from the new parameters and the addition of the Whitehead and preferred-frame
potentials.

We again define the spin tensor and vector of each body by Eqs. (9.167) and (9.168), and
expand all potentials about the center-of-mass of each body, as defined by Eq. (9.3). We
keep terms that involve products of v̄k with x̄ j , along with the usual “self-terms” involving
Hi j

A , 
A, and so on. But we discard terms that vanish in the limit in which the size of each
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body tends to zero. The integrals of Eqs. (9.192) and (9.193) carry over to this calculation,
with the caveat that some coefficients in the expressions must be replaced with their PPN
counterparts. We also have to calculate the spin contributions to the preferred-frame terms
in Eq. (13.12); these are given by

c2�F j
PF = −1

4
α1w

k Slk
A ∂ jlU¬A + 1

2
(2α3 − α1)MAwk∂kU j

¬A . (13.37)

The Whitehead potential makes no spin contribution to the equations of motion, because it
is independent of velocity.

Collecting results, we find that the PPN spin–orbit and spin–spin accelerations are given
by

a j
A[so] = 3

2c2

∑
B 	=A

G MB

r3
AB

{
n〈 jk〉

AB

[
v

p
A

(
(2γ + 1)Ŝkp

A + (2γ + 2)Ŝkp
B

)

− v
p
B

(
(2γ + 1)Ŝkp

B + (2γ + 2)Ŝkp
A

)]
+ n〈kp〉

AB (vA − vB)p
(

(2γ + 1)Ŝ jk
A + (2γ + 2)Ŝ jk

B

)
+ 1

2
α1n〈 jk〉

AB

[
(w + vA)p Ŝkp

B − (w + vB)p Ŝkp
A

]

+ 1

2
α1n〈kp〉

AB (vA − vB)p Ŝ jk
B − α3n〈 jl〉

AB (w + vB)p Ŝlk
B

}
, (13.38a)

a j
A[ss] = − 15

8c2
(4γ + 4 + α1)

∑
B 	=A

G MB

r4
AB

Ŝkp
A Ŝkq

B n〈 j pq〉
AB , (13.38b)

where Ŝ jk
A := S jk

A /MA and MA is the total mass-energy of body A. Comparing with
Eqs. (9.189) and (9.190), we see that the coefficients of 3 and 4 in the spin–orbit terms have
been replaced by (2γ + 1) and (2γ + 2), respectively, and that the spin–spin term is now
modulated by the factor 1

8 (4γ + 4 + α1). The terms involving the preferred-frame param-
eters α1 and α3 depend either on the combinations w + vA or w + vB , or on the difference
vA − vB , showing that all velocities are measured relative to the preferred universal frame
or to each other; once more we find that the arbitrary velocity of the PPN frame is irrelevant.

In the same manner we can derive the PPN equations for the evolution of each spin
vector. We begin with the general form of Eq. (9.203),

d S j
A

dt
= 1

c2
ε j pq

11∑
i=1

G pq
n + O(c−4) , (13.39)

and for n ranging from 1 to 9 we can import G pq
n directly from Eqs. (9.205), with the ap-

propriate insertion of PPN parameters. A tenth contribution, from the Whitehead potential,
is found most simply by adopting the second form displayed in Box 13.1,

�W = −U 2 − �2 − ∇U · ∇X + G∇ ·
∫

ρ∗′

|x − x′|∇
′ X ′ d3x ′ . (13.40)
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After some tedious calculations we arrive at

c2G jk
10 = ξ

d

dt

∫
A

ρ∗(x̄ j v̄l∂kl X̄ A + v̄ j ∂k X̄ A

)
d3 x̄ − 2ξ

∫
A

p x̄ j ∂kŪA d3 x̄

− ξ

∫
A

ρ∗(v̄ j ∂tk X̄ A + 2v̄ j v̄l∂kl X̄ A + x̄ j v̄l∂tkl X̄ A + x̄ j v̄l v̄m∂klm X̄ A

)
d3 x̄

+ 2ξ

jl
A ∂kl X¬A . (13.41)

The eleventh and final contribution comes from the preferred-frame terms in Eq. (13.8).
Collecting results, we find three classes of terms, those that involve integrals over the
variables of body A only, those that involve 
A and external variables such as vA, and
spin terms. Most, but not all, of the self-terms can be manipulated to obtain a total time
derivative, with the result(

d S j
A

dt

)
self

= −ε j pq 1

c2

d

dt

∫
A

ρ∗ x̄ p

[
v̄q

(
1

2
v̄2 + (2γ + 1)UA + � + p

ρ∗

)

− 1

2
(4γ + 4 + α1)U q

A − 1

2
(1 + α2)∂tq X A

]
d3 x̄

+ ε j pq 1

c2

∫
A

ρ∗ x̄ p

[
1

2
α3∂q�1A + ζ2∂q�2A + ζ3∂q�3A

+ (3ζ4 − ζ1)∂q�4A + 1

2
ζ1∂q�5A

]
d3 x̄ . (13.42)

As before, the total time derivative can be moved to the left-hand-side of the spin-evolution
equation and absorbed into an internal correction �intS

j
A of the spin vector. The remaining

terms are present only in non-conservative theories. For a body that is spherically symmetric
to a good approximation, the integrals will all be proportional to δ pq , which is killed by
the contraction with ε j pq . For a stationary axisymmetric body, the only quantities available
to construct a two-index tensor are δ pq and epeq , where e is a unit vector in the direction
of the symmetry axis, and these also are killed by a contraction with ε j pq . The strange
non-conservative precessions are therefore relevant only for rather oddly shaped bodies.

Other spin-evolution terms involve the body’s self-gravitational energy 
A; they are
given by(

d S j
A

dt

)

A

= ε j pq 1

c2



pn
A

[
α2(w + vA)q (w + vA)n − 2ξ

∑
B 	=A

m B

rAB
nqn

AB

]
. (13.43)

The first term depends on the velocity of body A relative to the preferred frame, and the
second term is the contribution from the Whitehead potential. For a spherically symmetric
body, both terms are killed by the contraction with ε j pq .

Finally, we collect the spin-evolution terms that depend only on the spins. By defining
the proper spin S̄A according to [compare with Eq. (9.217)]

S̄A := SA + �ext SA = SA + 1

c2

{[
v2

A + (2γ + 1)U¬A

]
SA − 1

2
(vA · SA)vA

}
, (13.44)
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we obtain the PPN equation of spin precession,

d S̄A

dt
= �A × S̄A + O(c−4) , (13.45)

where

�A = �A[so] + �A[ss] + �A[pf] , (13.46a)

�A[so] = 1

2c2

∑
B 	=A

G MB

r2
AB

nAB × [
(2γ + 1)vA − (2γ + 2)vB

]
, (13.46b)

�A[ss] = 4γ + 4 + α1

8c2

∑
B 	=A

G

r3
AB

[
3nAB(nAB · S̄B) − S̄B

]
, (13.46c)

�A[pf] = − α1

4c2

∑
B 	=A

G MB

r2
AB

nAB × (w + vB) . (13.46d)

The spin–orbit and spin–spin pieces of �A can be compared with Eqs. (9.199); the preferred-
frame piece is new.

Applying these equations to the Gravity Probe B experiment, we may choose to work
in a PPN frame at rest with respect to the Earth, and set vB = 0. Comparing Eqs. (13.46)
with Eqs. (9.199), we can see that the spin–orbit precession is proportional to the PPN
coefficient 1

3 (2γ + 1), while the spin–spin precession is proportional to 1
8 (4γ + 4 + α1).

The implications for an experiment like Gravity Probe B can be explored by reviewing
the discussion of Sec. 10.4.1. The preferred-frame precession produces a purely periodic
motion of the gyroscopes that is too small to be detected.

13.3 Experimental tests of gravitational theories

13.3.1 Two-body problem and pericenter advance

We now specialize the PPN equations of motion obtained in Sec. 13.2.4 to a system of two
bodies, such as the Sun–Mercury system or a binary-star system. To keep things simple
we drop the preferred-frame terms from the equations of motion; these can be studied
separately, as we shall do in Sec. 13.3.4. We include the structure dependence on the
passive and active gravitational masses, assuming the bodies to be spherically symmetric.
With these simplifications, the equations of motion for the first body become

a1 = −
(

MP
M

)
1

G(MA)2

r2
n

+ 1

c2

⎧⎪⎪⎪⎩−G M2

r2

[
γ v2

1 − 1

2
(4γ + 4 + α1)(v1 · v2)

(continued overleaf)
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+ 1

2
(2γ + 2 + α2 + α3)v2

2 − 3

2
(1 + α2)(n · v2)2

− (
2γ + 2β + 1 + 1

2
α1 − ζ2

)G M1

r
− (2γ + 2β)

G M2

r

]
n

+ G M2

r2

{
n · [(2γ + 2)v1 − (2γ + 1)v2

]}
v1

− 1

2

G M2

r2

{
n · [(4γ + 4 + α1)v1 − (4γ + 2 + α1 − 2α2)v2

]}
v2

⎫⎪⎪⎪⎭
+ O(c−4) , (13.47)

where r := r1 − r2, r := |r|, n := r/r , and MP , MA for each body are given by
Eqs. (13.30). The equations of motion for the second body are obtained by interchang-
ing the variables according to M1 ↔ M2, v1 ↔ v2, and n → −n.

We wish to convert the equations of motion into an effective one-body problem, as we
did back in Sec. 9.3.7. We have to be careful when we are not working with a conservative
theory of gravity, because the system’s barycenter will not necessarily be at rest or move
uniformly. But this failure occurs at post-Newtonian order, and since we need to relate
v1 and v2 to the relative velocity v in 1pn terms only, the non-conservative effects are
beyond our order of approximation. We can therefore choose our PPN coordinate system
so that the barycenter is approximately at rest – we set M1v1 + M2v2 = O(c−2). Defining
v := v1 − v2 and m := M1 + M2, we can to sufficient accuracy replace v1 and v2 in the
1pn terms by the relations

v1 = M2

m
v + O(c−2) , v2 = − M1

m
v + O(c−2), (13.48)

and obtain an expression for the relative acceleration a := a1 − a2. We find

a = −Gm∗

r2
n − Gm

r2c2

{[(
γ + 1

2
η[6 + α1 + α2 + α3]

)
v2

− 3

2
η(1 + α2)(n · v)2 − (

2γ + 2β + η[2 + α1 − 2ζ2]
)Gm

r

]
n

− (
2γ + 2 − η[2 − α1 − α2]

)
(n · v)v

}
+ O(c−4) , (13.49)

where η := M1 M2/m2 and

m∗ :=
(

MP
M

)
1

(MA)2 +
(

MP
M

)
2

(MA)1

= m + O(c−2) × [structure-dependent terms] . (13.50)

Note that it is m∗ that now plays the role of the Kepler-measured mass of the two-body
system; because it differs from m by 1pn corrections, we can replace m by m∗ in all
1pn terms. The bottom line is that the structure-dependent effects are unmeasurable in a
two-body system. We can therefore drop the distinction between m∗ and m, and express
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a entirely in terms of m. Equation (13.49) then has exactly the same form as Eq. (10.1),
except for the numerical coefficients in front of each term.

We next involve the acceleration of Eq. (13.49) in a calculation of the orbital motion.
We adopt the methods of Sec. 10.1.3: the post-Newtonian terms in the acceleration are
collected into a perturbing force f , and the motion is described using the formalism of
osculating orbital elements. We shall not go into the details here, but simply state that
over a complete orbital period, the only orbital element that undergoes a net change is the
longitude of pericenter ω. The PPN equations of motion imply that it advances by

�ω = 6πGm

pc2

[
1

3
(2 + 2γ − β) + 1

6
(2α1 − α2 + α3 + 2ζ2)η

]
(13.51)

in the course of each orbit. Because the perturbing force involves terms proportional to
either n or v, the orientation of the orbital plane is unaffected by the perturbation. The second
term in Eq. (13.51) vanishes in any fully conservative theory of gravity (αn = ζ2 = 0). It
is also negligible in the case of Mercury orbiting the Sun, because η � 2 × 10−7. The
predicted PPN perihelion advance of Mercury is therefore(

dω

dt

)
sec

= 42.98

[
1

3
(2 + 2γ − β)

]
as/century . (13.52)

As we saw back in Sec. 10.1.4, the advance of Mercury’s perihelion beyond what can be
explained by planetary perturbations is 42.98 arcseconds per century, accurate to about one
part in 103. Data from helioseismology have shown that the complicating effect of a solar
quadrupole moment is an order of magnitude smaller than the observational error (refer to
Sec. 3.4.3). Combining these data with the bound on γ obtained below in Sec. 13.3.2 – it
must be equal to unity at the level of parts in 105 – we see that β must be equal to unity to
about 3 parts in 103.

13.3.2 Light deflection and Shapiro time delay

As we saw back in Sec. 13.2.5, the propagation of light in the PPN framework is the same
as in general relativity, except that the overall magnitude of any post-Newtonian effect is
proportional to the factor 1

2 (1 + γ ). The deflection of a photon by a body of mass M is
therefore described by the vector

α(t) = −
(

1 + γ

2

)
4G M

c2

b

b2

1 + cos �(t)

2
, (13.53)

which is imported directly from Eq. (10.66). Here b is a vector that points from the body
to the photon’s point of closest approach, b := |b| is the impact parameter, and �(t) is the
angle between the photon’s current position and its initial direction (see Fig. 10.1. The total
deflection angle at t → ∞ is then

α =
(

1 + γ

2

)
4G M

c2b
, (13.54)
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and evaluating this for the Sun gives

α = 1.7504

(
1 + γ

2

)
R�
b

as . (13.55)

These results can be compared with Eq. (10.68).
The PPN expressions for the light deflection complement our discussion of the “Newto-

nian deflection” in Box 10.3. In the factor 1
2 (1 + γ ), the “1/2” piece comes from g00, the

Newtonian part of the metric, and this corresponds to the Newtonian deflection. The “γ /2”
piece comes from g jk , and this reflects the impact of spatial curvature, which bends locally
straight lines (spatial geodesics) near the Sun relative to locally straight lines far from the
Sun. The total deflection is the sum of these two effects. Only the part resulting from the
spatial curvature can vary from one metric theory to another. It is entirely coincidental that
the two parts happen to be equal in general relativity.

The expression for the Shapiro time delay is altered from Eq. (10.100) by the same
overall factor. The propagation time of a light signal between an emitter at position re and
an observer at position robs is therefore given by

tobs − te = 1

c
|robs − re| +

(
1 + γ

2

)
2G M

c3
ln

[
(robs + robs · k)(re − re · k)

b2

]
, (13.56)

where k is the initial direction of the light signal. We can use high-precision measurements
of the deflection of light and Shapiro time delay to place bounds on the parameter γ . These
experiments were described in Secs. 10.2.3 and 10.2.5. The best current limit, obtained
from Doppler tracking measurements of the Cassini spacecraft, is |γ − 1| < 4 × 10−5, in
excellent agreement with general relativity.

Gravitational lensing also scales by the 1
2 (1 + γ ) factor. Because of the large uncertainties

in the gravitational potential of the lensing galaxies and clusters, it is more useful to exploit
the high-precision bounds on γ from solar-system measurements to turn lensing into a
tool for mapping the gravitational potential, and thus for mapping the distribution of dark
matter in and around galaxies and clusters. One remarkable test of γ on galactic scales
was nevertheless reported in 2006. This interesting measurement used data on gravitational
lensing by 15 elliptical galaxies, collected by the Sloan Digital Sky Survey. The Newtonian
potential U of each lensing galaxy (including the contribution from dark matter) could be
determined using a Newtonian model derived from the observed velocity dispersion of stars
in the galaxy, essentially exploiting the virial theorem which relates v2 to U . Comparing the
observations with the lensing predicted by the models provided a 10 percent bound on γ ,
in agreement with general relativity. Unlike the much tighter bound described previously,
which was obtained on the scale of the solar system, this bound was obtained on a galactic
scale.

13.3.3 Tests of the strong equivalence principle: Nordtvedt effect

We have seen that the structure-dependent contributions to the active and passive masses
of a body are unobservable in a two-body system. They are, however, observable in a
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three-body system, and the corresponding effect, known as the Nordtvedt effect, has given
rise to an important test of general relativity.

Working at the level of Newtonian gravity, but allowing the inertial, passive, and active
masses of bodies to be different from each other, we write down the equations of motion
of a two-body system in the presence of a third body [refer to Eqs. (3.73) and (3.74) for a
strictly Newtonian formulation],

a1 = −
(

MP
M

)
1

[
G(MA)2

r12

r3
12

+ G(MA)3
r13

r3
13

]
,

a2 =
(

MP
M

)
2

[
G(MA)1

r12

r3
12

− G(MA)3
r23

r3
23

]
. (13.57)

We denote the barycentric position of the two-body system by

rc := M1

m
r1 + M2

m
r2 , (13.58)

where m := M1 + M2, and assuming that r12 � r23, we expand

r j
13

r3
13

= r j
c3

r3
c3

−
∞∑

�=1

1

�!
r L

1c∂
〈 j L〉

(
1

rc3

)
, (13.59)

where rc3 := rc − r3 and r1c := r1 − rc; we develop a similar expansion for r j
23/r3

23.
We define R := rc3 = |rc3|, N := rc3/rc3, r1c := |r1c|, n1c := r1c/r1c, r2c := |r2c|, n2c :=
r2c/r2c, and note that

r1c = (M2/m)r , r2c = −(M1/m)r , n1c = −n2c = n , (13.60)

where r := |r12| and n := r12/r12. With this notation we find that the relative acceleration
a := a1 − a2 is given by

a j = −Gm∗

r2
n j − G M3

R2
N j

[(
MP
M

)
1

−
(

MP
M

)
2

]

− G M3

R2

∞∑
�=1

(−1)�(2� + 1)!!

�!

( r

R

)�

nL N 〈 j L〉

×
[(

MP
M

)
1

(
M2

M

)�

− (−1)�

(
MP
M

)
2

(
M1

M

)�
]

, (13.61)

where m∗ is defined by Eq. (13.50), and we have dropped theA subscript on M3. Introducing
now

α := 1

2

[(
MP
M

)
1

+
(

MP
M

)
2

]
, (13.62a)

δ :=
[(

MP
M

)
1

−
(

MP
M

)
2

]
, (13.62b)
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and keeping terms only through � = 2 in Eq. (13.61), we obtain

a j = −Gm∗

r2
n j − δ

G M3

R2
N j + 3α

G M3r

R3
nk N 〈 jk〉 − 15

2
α�

G M3r2

R4
n pq N 〈 j pq〉

+ 3

2
δ�

G M3r

R3
nk N 〈 jk〉 − 15

4
δ(1 − 2η)

G M3r2

R4
n pq N 〈 j pq〉 , (13.63)

where � := (M1 − M2)/(M1 + M2) and η := M1 M2/(M1 + M2). The first term in
Eq. (13.63) is the standard Newtonian acceleration; as we saw previously, the fact that
m∗ incorporates structure-dependent corrections is irrelevant since it is m∗ that represents
the Kepler-measured mass of the two-body system. The second term is a relative accelera-
tion that stretches or shrinks the orbit along a line directed toward the third body. Whether
the stretching occurs when n is parallel or antiparallel to N depends on the sign of δ. From
Eq. (13.30a) we have that

δ =
(

4β − γ − 3 − 10

3
ξ − α1 + 2

3
α2 − 2

3
ζ1 − 1

3
ζ2

)(

1

M1c2
− 
2

M2c2

)
, (13.64)

from which we conclude that the sign of δ depends on the PPN parameters and the sign of
the difference between gravitational binding energies. The third and fourth terms originate
from the tidal interactions with the third body; note that α = 1 + O(
A/MAc2). The final
two terms are corrections to these tidal perturbations that result from a non-zero δ.

We apply the equations of motion to the Earth–Moon system, with the Sun making up
the third body. We set M1 = M⊕, M2 = M, M3 = M�, and we first estimate the size of
the various terms in the equations of motion. We recall that Gm∗/r3 ≈ M⊕/r3 ≈ ω2

⊕ and
G M�/R3 ≈ ω2

�, where ω⊕ is the angular velocity of the Moon around the Earth, and ω�
is the angular velocity of the Earth around the Sun, with ω⊕/ω� ≈ 13.4. We also have


⊕
M⊕c2

= −4.6 × 10−10 , (13.65a)




Mc2
= −0.2 × 10−10 , (13.65b)

and R/r ≈ 395. As a consequence of these numerical relations, we find that the second
term in Eq. (13.63) is smaller than the first by a factor of (ω�/ω⊕)2(R/r )δ ∼ 10−10. The
next two terms are smaller than the first by factors (ω�/ω⊕)2 ∼ (1/13.4)2 ∼ 5 × 10−3

and (ω�/ω⊕)2(r/R) ∼ 1.4 × 10−5. And the final two terms are smaller than these by an
additional factor of 10−10. Dropping these final terms and setting α = 1, the equations of
motion for the Earth–Moon system reduce to

a = −Gm∗

r2
n − δ

G M3

R2
N + G M3r

R3

[
3N(N · n) − n

]
− 3

2

G M3r2

R4
�
[
5N(N · n)2 − 2n(N · n) − N

]
. (13.66)

The second term, proportional to δ, is a structure-dependent contribution to the acceleration,
and it is this term that gives rise to the Nordtvedt effect. The remaining terms originate
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from the tidal interactions with the Sun, and they give rise to orbital perturbations that are
actually larger than the Nordtvedt effect.

To analyze the violation of the strong equivalence principle on the lunar orbit, we consider
a simplified situation in which the Moon–Earth and Earth–Sun orbits lie in the same plane
(their actual relative inclination is about 5 degrees), and are approximately circular (the
eccentricity of the Moon–Earth orbit is 0.055, and the eccentricity of the Earth–Sun orbit is
0.017). We calculate the first-order perturbations of the lunar orbit created by the last three
terms in Eq. (13.66). In the limit of small eccentricity, we can write dφ/dt = ω⊕ = constant,
so that

r = a(1 − e cos f ) + O(e2) , (13.67a)

f = φ − ω = ω⊕t − ω + O(e) , (13.67b)

n = eX cos(ω⊕t) + eY sin(ω⊕t) + O(e) , (13.67c)

λ = −eX sin(ω⊕t) + eY cos(ω⊕t) + O(e) , (13.67d)

N = eX cos(ω�t − �) + eY sin(ω�t − �) , (13.67e)

in which e is the eccentricity of the lunar orbit, and � is the initial phase of the Earth’s orbit
around the Sun, which we take to be perfectly circular. Note that

n · N = cos(�t + �) , (13.68a)

λ · N = − sin(�t + �) , (13.68b)

where � := ω⊕ − ω� is the synodic frequency, the angular frequency of the lunar orbit
relative to the Sun. This is to be distinguished from the sidereal frequency ω⊕, which refers
to the barycentric frame.

We wish to involve f := a + Gm∗n/r2 in a perturbative calculation of the orbital
motion, making use of the formalism of osculating orbital elements reviewed in Sec. 3.3.2.
The formalism must be applied with some care, because the orbital eccentricity is small,
and ω loses its meaning when e → 0. In such cases it is best to use the alternative variables
A := e cos ω and B := e sin ω, and to re-express the osculating equations in terms of A
and B. We therefore write

r = a
[
1 − A cos(ω⊕t) − B sin(ω⊕t)

] + O(e2) , (13.69)

and convert Eqs. (3.64) to the form

da

dt
= 2

ω⊕
S + O(e) , (13.70a)

d A

dt
= 1

ω⊕a

[
R sin(ω⊕t) + 2S cos(ω⊕t)

]
+ O(e) , (13.70b)

d B

dt
= 1

ω⊕a

[
−R cos(ω⊕t) + 2S sin(ω⊕t)

]
+ O(e) , (13.70c)
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where R and S are the radial and tangential components of the perturbing acceleration. To
lowest order in e they are given by

R = ω2
�a

{[
3 cos2(�t + �) − 1

] − 3

2
ζ cos(�t + �)

[
5 cos2(�t + �) − 3

]
− δ(R/a) cos(�t + �)

}
, (13.71a)

S = ω2
�a

{
−3 sin(�t + �) cos(�t + �) + 3

2
ζ sin(�t + �)

[
5 cos2(�t + �) − 1

]
+ δ(R/a) sin(�t + �)

}
, (13.71b)

where ζ := �(a/R). Because the orbital planes are taken to coincide, there are no pertur-
bations to the inclination ι or line of nodes 
.

Substituting Eqs. (13.71b) into Eqs. (13.70), integrating subject to the boundary con-
ditions a = a0, A = 0, B = 0 at t = 0, and inserting the results within Eq. (13.69), we
eventually obtain

δr (t) = a0

(
ω�
ω⊕

)2 {3

2

ω2
⊕(1 + ω⊕/�)

ω2⊕ − 4�2
cos 2(�t + �)

− ζ

[
3

8

ω2
⊕(3 + 2ω⊕/�)

ω2⊕ − �2
cos(�t + �)

+ 5

8

ω2
⊕(3 + 2ω⊕/�)

ω2⊕ − 9�2
cos 3(�t + �)

]

− δ
R

a0

ω2
⊕(1 + 2ω⊕/�)

ω2⊕ − �2
cos(�t + �)

}
(13.72)

for the perturbation in the Earth–Moon distance. Not surprisingly, because we have a
sinusoidal driving force acting on a sinusoidal oscillator, the perturbation takes the form of
a resonant response, with denominators of the form 1/(ω2

⊕ − N 2�2), with N representing
the harmonic degree. Note that if we had taken the Sun to be fixed in space, with ω� = 0,
then � = ω⊕ and the response of the fundamental harmonic would have produced a
linear growth in the semi-major axis. Here the response is strictly harmonic, but because
ω� = ω⊕/13.4, the response to the cos(�t + �) harmonic is enhanced by the resonant
factor ω2

⊕/(ω2
⊕ − �2) ≈ 7.0.

Inserting the relevant numbers for the Earth–Moon system, setting δ � 4.2 × 10−10 [refer
to Eq. (13.65)], and taking into account the fact that a0 ≈ 3.84 × 105 km, we see that the
two tidal perturbations and the Nordtvedt effect have approximate amplitudes of 2700 km,
73 km, and 8 meters, respectively. The leading tidal perturbation occurs at twice the synodic
frequency (2�), whereas the Nordtvedt effect occurs at the synodic frequency; the tidal
perturbation is much larger, but it can be cleanly separated from the Nordtvedt effect by
observing many lunar orbits. The subleading tidal perturbation, however, has contributions
at frequencies � and 3�, albeit at a much smaller amplitude of 73 km. Because this
perturbation depends on parameters (ω⊕, ω�, R, a0, �) that are very accurately measured



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-13 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:17

729 13.3 Experimental tests of gravitational theories

by other means, it can be predicted in advance to an accuracy well below the amplitude of
the Nordtvedt effect.

In fact, an accurate calculation of the relevant amplitudes would require us to go beyond
the first-order perturbation analysis carried out here. The perturbations induced by each
term affect the behavior of the other terms, and so it is necessary to go to higher order
in the orbital perturbation equations, and to include higher values of the multipole index
�. The problem is that the solar perturbation of the lunar orbit is so large, as seen by the
2700 km leading tidal amplitude, that one must employ more sophisticated techniques,
such as the Hill–Brown lunar theory, in order to find a sequence of perturbations that
converges in a reasonable way. The final conclusion of such calculations is that the effective
amplitude of the Nordtvedt term is increased from the amplitude shown in Eq. (13.72) by a
factor approximately equal to 1 + 2ω�/ω⊕ � 1.15, leading to an amplitude of 9.2 meters.
Similarly, the amplitude of the competing synodic term is increased from 75 km to 110 km,
but it can still be predicted accurately enough to be subtracted from the data.

Inserting the values for 
/(Mc2) for the Earth and Moon, the resulting prediction for
the Nordtvedt effect is

δr (t) � 9.2ηN cos(�t + �) m , (13.73)

where ηN is the Nordtvedt parameter

ηN := 4β − γ − 3 − 10

3
ξ − α1 + 2

3
α2 − 2

3
ζ1 − 1

3
ζ2 . (13.74)

As we explain in Box 13.2, long-term monitoring of the lunar orbit has revealed no sign of a
Nordtvedt effect, and ηN is currently constrained to be smaller than 4.4 × 10−4. This implies
that violations of the strong equivalence principle are very small in the Earth–Moon–Sun
system. And this, of course, is compatible with general relativity, which predicts ηN = 0.

Box 13.2 Lunar laser ranging and the Nordtvedt effect

Lunar laser ranging (LLR) illustrates the importance of new technology and broad theoretical frameworks in
the program to test general relativity.
Except for the de Sitter precession of the lunar orbit, described in Sec. 10.1.6, most general relativistic

effects on the lunar orbit are so small as to be virtually undetectable. But in the late 1950s, Robert Dicke was
thinking beyond Einstein, and he wondered whether one could measure a variation with time of Newton’s
constant G , a feature that he would soon incorporate into his own alternative theory of gravity. By the early
1960s, the development of pulsed ruby lasers and the rapid build-up of the lunar space program led him and
others to propose making very accurate measurements of the Earth–Moon distance by bouncing laser pulses
off specially designed reflectors, to be placed on the lunar surface by either unmanned or manned landers.
Suchmeasurements would provide tests of general relativity, but theywould also have other important scien-
tific benefits, such as improving our understanding of the Earth–Moon orbit, the librations of the Moon, and
even the motions of the Earth-bound laser sources resulting from continental drift.
The theoretical discovery of theNordtvedt effect added to the science case. The discovery required a broader

theoretical framework than general relativity; if the focus had never deviated from general relativity, there
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would have been no case. The Nordtvedt effect and the possibility thatG could vary with time provided spe-
cific experimental targets, even if the conventional expectation (though perhaps not Dicke’s) was for the an-
swers to be “zero” in both cases. (As Ken Nordtvedt was fond of saying, zero is as good as any other number.)
The first retroreflector was deployed on the Moon by US astronaut Neil Armstrong on July 21, 1969, and

within a month, the first successful acquisition was made of a reflected laser signal. Two other US and two
French-built reflectorswere subsequently placed on theMoonbyUS astronauts and Soviet unmanned landers.
Strangely, the French reflectors were never detected via laser bounces, until just recently.
Since that time a worldwide network of observatories has made regular measurements of the round-trip

travel time to the three US lunar retroreflectors, with accuracies that are routinely at the 50 ps (1 cm) level,
and that are approaching 5 ps (1 mm). These measurements are fitted using the method of least-squares to a
theoretical model for the lunar motion that takes into account perturbations created by the Sun and the other
planets, tidal interactions, and post-Newtonian gravitational effects. The predicted round-trip travel times
between retroreflector and telescope also take into account the librations of the Moon, the orientation of the
Earth, the location of the observatories, and atmospheric effects on the signal propagation. The Nordtvedt
parameter is then estimated in the least-squares fit, along with several other important parameters of the
model.
From the first published analyses of LLR data in 1976 to the present, there has been absolutely no evidence,

within experimental uncertainty, for the Nordtvedt effect. The best current bound on the Nordtvedt parameter
is

ηN = (4.4 ± 4.5) × 10−4 .

This is equivalent to an orbital perturbation δr (t) = (2.8 ± 4.1) mm cos(�t + �), and represents
a limit on a possible violation of the strong equivalence principle of about 2 parts in 1013.
At this level of precision, however, we cannot regard the results of LLR as a completely “clean” test of the

Nordtvedt effect untilwe consider thepossibility of a compensating violationof theweakequivalenceprinciple
for the Earth and Moon. This is because the chemical compositions of the Earth and Moon differ: the Earth is
richer in the iron group elements, while the Moon is richer in silicates. To address this issue, the Eöt-Wash
group at the University of Washington in Seattle (refer to Box 1.1) carried out a novel torsion-balance test of
the weak equivalence principle by fabricating laboratory bodies whose chemical compositions mimic that of
the Earth and Moon. They found that the mini-Earth and mini-Moon fell with the same acceleration to 1.4
parts in 1013. The uncertainty implied by this possible effect has been incorporated into the bound on ηN

quoted above.
The Apache Point Observatory for Lunar Laser ranging Operation (APOLLO) project, a joint effort by

researchers from the University of Washington, Seattle, and the University of California, San Diego, is using
enhanced laser and telescope technology, together with a good, high-altitude site in NewMexico, to improve
the LLR bound by as much as an order of magnitude.
Tests of the Nordtvedt effect for neutron stars have also been carried out using a class of systems known

as wide-orbit binary millisecond pulsars (WBMSP), which are pulsar–white-dwarf binary systems with small
orbital eccentricities. In the gravitational field of the galaxy, a non-zero Nordtvedt effect can induce an anoma-
lous eccentricity pointed toward the galactic center. This can be bounded using statistical methods, given a
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sufficient number of WBMSPs. Using data from 21 WBMSPs, including recently discovered highly circular sys-
tems, Ingrid Stairs and her colleagues obtained the bound |ηN (
/Mc2)NS| < 5.6 × 10−3. Because
(
/Mc2)NS ∼ 0.1 for typical neutron stars, this bound on ηN does not compete with the bound from
LLR; on the other hand, the presence of neutron stars implies that these systems test the strong equivalence
principle in the strong-field regime.
Lunar laser ranging also demonstrated thatG is not changing significantly; the bound is |Ġ/G| < 9 ×

10−13 yr−1, a limit 83 times smaller than the inverse age of the Universe.

13.3.4 Tests of the strong equivalence principle: Preferred-frame and
preferred-location effects

Back in Sec. 13.2.6 we saw that the metric near a body moving in the field of external bodies
can be expressed as in Eq. (13.35), with an effective gravitational parameter Geff that varies
with time and position. The various contributions to Geff , as displayed in Eq. (13.36), have
observable consequences. The most dramatic come from the anisotropies contained in the
terms involving n̄ j n̄k∂j̄ k̄ X̂ext and [(w + v) · n̄]2. For a body such as the Earth, these terms
make the gravitational forces holding the body together weaker in one direction than in
another, with the result that the Earth is distorted into an elliptical shape; this is quite
analogous to the effects of the luni-solar tides. A gravimeter will then measure a varying
acceleration g as the Earth rotates. Assuming that w is the velocity of the solar system
relative to the cosmic background radiation, with magnitude 375 km/s, then w2/c2 � 10−6.
From the point of view of the Earth, the dominant external body is actually the galaxy, with
Ûgal � 5 × 10−7 (only the anisotropic part of the potential is relevant, so the much more
massive dark matter halo that reportedly surrounds the galaxy can be ignored, as can the
mass distribution on larger cosmic scales).

The local g reading of a gravimeter will actually be affected by three factors. The first
is the raw variation in Geff . The second is the distortion of the Earth generated by the
variation in Geff , which displaces the gravimeter toward or away from the Earth’s center,
thus causing the local g to vary. The third is the redistribution of matter caused by the
distortion. The latter two effects are controlled by the Love numbers h and k – refer to
Sec. 2.4 – whose values depend on the detailed structure of the Earth. The overall factor
in gravimeter readings is approximately 1.16 times the raw variation in Geff . Of course,
the Sun and Moon generate similar effects via their tidal gravitational fields, called “solid
Earth tides” to distinguish them from the more complex oceanic tides. The effect of tides
on gravimeters is governed by the same Love numbers. But whereas the PPN variations are
oriented relative to the directions of w and the galactic center, which are fixed in inertial
space, the luni-solar tides are oriented toward the Sun and Moon, which revolve around the
Earth (as seen from the Earth’s point of view). The PPN effects therefore vary dominantly at
multiples of a sidereal day, while the luni-solar tides vary at multiples of the solar and lunar
day. One can in principle separate the PPN effects from the luni-solar tides by exploiting
their slightly different time dependences. In fact, because of the slight inclination of the
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lunar orbit relative to the ecliptic, and the small eccentricities of the lunar and terrestrial
orbits, there are smaller sidebands of the lunar-solar tides at the same sidereal frequencies
as the PPN tides. But tidal theory is sufficiently advanced that these Newtonian tides can
be predicted quite accurately.

The dominant luni-solar tides have amplitudes �g/g ∼ 2 × 10−8, and measurements
using arrays of superconducting gravimeters in the western USA during the middle 1970s
showed that there were no anomalous solid tides at the sidereal frequencies, down to the
�g/g ∼ 4 × 10−10 level. These experiments place upper bounds on the PPN parameters,
given by

|α2| < 4 × 10−4 , |ξ | < 10−3 . (13.75)

Another bound can be obtained by examining the cross-term w · v in Geff . As the Earth
orbits the Sun, this term varies annually with an amplitude of around 10−7. This variation
in the magnitude of Geff causes the Earth to “breathe” in and out; the resulting variations in
its moment of inertia cause its rotation rate to vary on an annual basis. Annual variations in
the Earth’s rotation rate are well measured, and are known to be related to seasonal changes
in atmospheric winds. Again measurements show no evidence of an anomaly, and an upper
limit on a combination of α1, α2, and α3 could be obtained at the level of about 0.02.

The term involving Ûext in Geff is intrinsically interesting, because it reveals that nearby
matter can affect the locally measured constant of gravitation. But it is not so interesting
observationally, because it is approximately constant in time, and of order 10−8 for the Sun;
because the absolute value of G is known to about one part in 105, such constant factors are
unmeasurable. Even the variation in Ûext at the level of 10−10, because of the eccentricity
of the Earth’s orbit, is too small to have any measurable consequences. The final two terms
in Eq. (13.36) are also too small, in the context of the Earth, to provide useful tests.

13.4 Gravitational radiation in alternative theories of gravity

Back in Sec. 11.1 we learned that in general relativity, the gravitational-wave field in the
far-away wave zone is characterized by two polarization modes, A+(τ ) and A×(τ ). For a
wave traveling in the z-direction, this means that the non-vanishing components of the wave
field are hxx = −hyy = G A+/(c4 R) and hxy = hyx = G A×/(c4 R); the wave is transverse
to the direction of propagation, and it satisfies a tracefree condition. Here R is the distance
to the source, and τ := t − R/c is retarded time.

We wish to generalize this discussion to a class of alternative metric theories of gravity,
and we will show that in this context, the most general gravitational wave is characterized
by six modes of polarization. The only assumptions we make are that we are examining
the spacetime metric in the far-away wave zone, that the field equations reduce to wave
equations in the far-away wave zone, and that the propagation speed of the waves is the
same as the speed of light. This last assumption is somewhat restrictive, because many
alternative theories of gravity predict that gravitational waves have a speed that differs from
c. Some predict a speed that varies with the wavelength λ, as if the hypothetical quantum
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particle associated with the waves – the graviton – possessed a non-zero mass; in such
a case the speed of gravitational waves would be given by vg/c =

√
1 − (λ/λc)2, where

λc = h/(mc) is the Compton wavelength of a particle of mass m. Some theories predict
that gravitational waves propagate along the null cones of a second metric, distinct from
the metric that couples to matter and light. Nevertheless, for simplicity we shall restrict
our attention to theories for which gravitational waves propagate at the speed of light. As
a matter of fact, our conclusions about the polarization modes do not depend much on the
speed of the waves, and similar conclusions would be reached in a more general setting.

13.4.1 Gravitational potentials in the far-away wave zone

We choose a reference frame in which the center-of-mass of the system is at rest, and we
first examine the metric of a stationary system in this frame. Inspecting Box 13.1, we see
that the leading contribution to the 1pn metric when R → ∞ is given by

g00 = −1 + 2G M

c2 R
+ G M

c4 R

[
(α2 + α3 − α1)w2 − α2(w · N)2

]
, (13.76a)

g0 j = G M

2c3 R
wk

[
(2α2 − α1)δ jk − 2α2 N j Nk

]
, (13.76b)

g jk =
(

1 + 2γ G M

c2 R

)
δ jk , (13.76c)

where M is the (active) gravitational mass of the stationary source, w is the velocity of the
chosen frame relative to the preferred universal frame, R := |x|, and N := x/R. From this
we can construct the gravitational potentials

hαβ := ηαβ − √−ggαβ , (13.77)

which formed the basis of our development of post-Minkowskian theory in Chapter 6,
and our discussion of gravitational radiation in Chapter 11. To order c−3 we find that the
potentials are given by

h00 = (3γ + 1)
G M

c2 R
+ O(c−4) , (13.78a)

h0 j = G M

2c3 R
wk

[
(2α2 − α1)δ jk − 2α2 N j Nk

]
+ O(c−5) , (13.78b)

h jk = (1 − γ )
G M

c2 R
δ jk + O(c−4) . (13.78c)

We see that there is a c−2 contribution to h jk whenever γ 	= 1; in general relativity this
term vanishes, and indeed, when γ = 1 and α1 = α2 = 0 we recover the stationary limit of
the expressions listed, for example in Eq. (11.6).

We next allow the source to be time-dependent, and to emit gravitational waves. We
assume that in such a situation, the stationary potentials in the far-away wave zone are
supplemented by

�hαβ = G

c4 R
Aαβ(τ, N) . (13.79)
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We assume specifically that the field equations of the alternative theory reduce in a suitable
way to wave equations in the far-away wave zone, and that the propagation speed is equal
to c; this accounts for the assumed dependence of the amplitudes Aαβ on retarded time
τ . (We could allow for a different speed vg and generalize the definition of retarded time
to t − R/vg , but this would have little impact on our discussion of polarization modes, as
observed previously.)

We wish to identify the physical meaning of the amplitudes Aαβ . When we performed
this exercise in Sec. 11.1 in the context of general relativity, we eliminated the redundant
components of Aαβ by appealing to the harmonic gauge condition ∂βhαβ = 0 and its further
refinement to the transverse-tracefree gauge; we ended up with two physical polarization
modes encoded in A jk

TT. The situation is more complicated in a generic metric theory of
gravity. In this case we cannot rely on the harmonic gauge condition, and the number of
polarization modes is larger. We can, nevertheless, simplify the description of these modes
by appealing to the standard freedom to transform the coordinates.

To effect this simplification we follow the approach described back in Sec. 11.1.3. We
decompose �hαβ into irreducible pieces according to

�h00 = G

c4 R
C(τ, N) , (13.80a)

�h0 j = G

c4 R
D j (τ, N) , (13.80b)

�h jk = G

c4 R
A jk(τ, N) , (13.80c)

and

D j = DN j + D j
T , (13.81a)

A jk = 1

3
δ jk A +

(
N j N k − 1

3
δ jk

)
B + 2N ( j Ak)

T + A jk
TT , (13.81b)

in which A j
T and D j

T are transverse vector fields satisfying N j A j
T = N j D j

T = 0, and A jk
TT

is a transverse-tracefree tensor field satisfying N j A jk
TT = δ jk A jk

TT = 0. The decomposition
involves ten independent functions of τ and N .

The freedom to transform the coordinates must be restricted by the requirement that in
the far-away wave-zone, hαβ must always be of the general form described by Eqs. (13.78)
and (13.79). This implies that the allowed transformations are small deformations described
by xα → x ′α = xα + ζ α(xβ), with a gauge vector ζ α restricted to be of the general form

ζ 0 = G

c3 R
α(τ, N) + O(R−2) , (13.82a)

ζ j = G

c3 R
β j (τ, N) + O(R−2) , (13.82b)

first introduced in Sec. 11.1.5. Note that the gauge vector field satisfies the wave equation
�ζ α = O(R−2). This does not occur because of a requirement to keep x ′α within the
class of harmonic coordinates, as was the case back in Sec. 11.1.5. Instead, this is an
automatic property of the assumed form for ζ α , which is designed to preserve the form of
the gravitational potentials.
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We decompose β j into longitudinal and transverse pieces, β j = N jβ + β
j

T, and per-
forming the gauge transformation on the potentials, we find that

�h′00 = G

c4 R
C ′(τ, N) , (13.83a)

�h′0 j = G

c4 R
D′ j (τ, N) , (13.83b)

�h′ jk = G

c4 R
A′ jk(τ, N) , (13.83c)

with

C ′ = C + ∂τ (α + β) , (13.84a)

D′ = D + ∂τ (α + β) , (13.84b)

D′ j
T = D j

T + ∂τ β
j

T , (13.84c)

A′ = A + ∂τ (3α − β) , (13.84d)

B ′ = B + 2∂τ β , (13.84e)

A′ j
T = A j

T + ∂τ β
j

T , (13.84f)

A′ jk
TT = A jk

TT . (13.84g)

With the freedom to specify the four functions α, β, and β
j

T, we could decide to make A′ jk

purely transverse and tracefree, but in this case we would find that C ′ and D′ j do not vanish.
Alternatively, we could decide to make D′ j vanish, but in this case C ′ cannot be set equal
to zero, and while the remaining freedom could be used to eliminate either A′ or B ′, we
cannot achieve both, and we cannot eliminate A′ j

T . The bottom line is that no matter what
choices are made, six independent degrees of freedom remain in the specification of A′αβ .

13.4.2 Polarizations

The physical meaning of these six degrees of freedom is best identified by examining how
a gravitational wave interacts with an actual detector. As we reviewed back in Sec. 11.1.6,
the interaction with a short detector is governed by the equation of geodesic deviation,

d2ξ j

dt2
= −c2 R0 j0kξ

k , (13.85)

in which the components R0 j0k of the linearized Riemann tensor are given by

R0 j0k = −1

2

(
∂00h jk − 1

2
∂00hδ jk + ∂ jkh00 + 1

2
∂ jkh + ∂0 j h

0k + ∂0kh0 j

)
, (13.86)

where h := ηαβhαβ = −h00 + hkk . In general relativity R0 j0k can be expressed entirely in
terms of h jk

TT, the transverse-tracefree piece of the gravitational potentials. In the current
context we have instead

c2 R0 j0k = − G

2c4 R

∂2

∂τ 2
S jk(τ, N) , (13.87)
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where

S jk := (
δ jk − N j N k

)
AS + N j N k AL + 2N ( j Ak)

V + A jk
TT , (13.88)

with

AS := −1

6
(A + 2B − 3C) , (13.89a)

AL := 1

3
(A + 2B + 3C − 6D) , (13.89b)

Ak
V := Ak

T − Dk
T . (13.89c)

To arrive at this result we have made use of the fact that for a function f of τ and N ,
∂ j f = −c−1 N j ∂τ f + O(R−2). It can be checked that AS, AL, A j

V, and A jk
TT are all invariant

under a gauge transformation described by Eq. (13.82). This is as it should be, because
the linearized Riemann tensor is necessarily gauge invariant, and the equation of geodesic
deviation describes physically measurable motions. In general relativity, the conditions
C = D, A + 2B = 3D, and Dk

T = Ak
T that arise from the harmonic-gauge condition –

refer to Eq. (11.14) – imply that AS, A j
V, and AL all vanish.

Integrating the equation of geodesic deviation to first order in the displacement yields

ξ j (t) = ξ j (0) + G

2c4 R
S jk(τ, N)ξ k(0) . (13.90)

We see that the detector’s response is governed by a number of gravitational-wave modes:
a scalar mode AS which is transverse to the direction of propagation (but not tracefree),
a longitudinal mode AL, two vector modes A j

V which are partly longitudinal and partly
transverse, and the familiar transverse-tracefree modes A jk

TT. In general relativity the absence
of scalar, longitudinal, and vector modes implies that the response is governed entirely by
the transverse-tracefree modes.

To describe the gravitational-wave modes in more concrete terms, we make use of the
vector basis (N, ϑ, ϕ) first introduced in Sec. 11.1.7. Employing the polar angles (ϑ, ϕ) to
describe the direction of propagation, we write

N := [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ] , (13.91a)

ϑ := [cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ] , (13.91b)

ϕ := [− sin ϕ, cos ϕ, 0] , (13.91c)

and we define the gravitational-wave polarizations

AV1 := ϑk Ak
V , (13.92a)

AV2 := ϕk Ak
V , (13.92b)

A+ := 1

2

(
ϑ j ϑk − ϕ j ϕk

)
A jk

TT , (13.92c)

A× := 1

2

(
ϑ j ϕk + ϕ j ϑk

)
A jk

TT . (13.92d)
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Making the substitutions in S jk , we obtain

S jk = AS
(
ϑ jϑk + ϕ j ϕk

) + AL N j N k

+ 2AV1 N ( j ϑk) + 2AV2 N ( j ϕk)

+ A+
(
ϑ j ϑk − ϕ j ϕk

) + A×
(
ϑ jϕk + ϕ j ϑk

)
. (13.93)

For a wave traveling in the z-direction, S jk can be displayed as the matrix

S jk =
⎛
⎝ AS + A+ A× AV1

A× AS − A+ AV2

AV1 AV2 AL

⎞
⎠ . (13.94)

Box 13.3 Distortion of a ring of particles by a gravitational wave

The discussion of Sec. 11.1.8 can be generalized to the case inwhich a gravitational wave includes all six polar-
izationmodes. For a gravitationalwave traveling in the z-directionpast an initially circular ring of particles, the
displacement of a given particle from the center of the ring is given by Eq. (13.90). In terms of the (x, y, z)
components of the vector ξ , we have

x(t) = x0 + G

2c4 R

[
(AS + A+)x0 + A×y0 + AV1z0

]
,

y(t) = y0 + G

2c4 R

[
A×x0 + (AS − A+)y0 + AV2z0

]
,

z(t) = z0 + G

2c4 R

[
AV1x0 + AV2 y0 + ALz0

]
,

withξ (0) = [x0, y0, z0]. For pure+ or×modes, the patterns are as previously displayed in Eqs. (11.50).
A pure S mode is also transverse, and causes a circle in the x -y plane to shrink and grow while remaining a
circle. A V1mode distorts a circle in the x -z plane into an ellipse rotated by 45 degrees, while a V2mode does
the same to a circle in the y-z plane. Finally, an L mode takes a circle in any plane parallel to the z axis and
stretches and shrinks it in the z-direction. These deformations are illustrated in Fig. 13.1.

13.4.3 Interaction with a laser interferometer

The interaction of a gravitational wave with a laser interferometer was described back in
Sec. 11.5 in the context of general relativity. This discussion can easily be generalized to
incorporate all six polarization modes allowed by a generic alternative theory. In Sec. 11.5
we found that the detector’s response, measured by the phase difference between the light
signals traveling in both arms of the interferometer, is given by �� = (4πνGL0/c5 R)S(t),
where ν is the frequency of the laser light, L0 is the length of the unperturbed interferometer
arm, R is the distance from the source, and S(t) is the detector’s response function. In general
relativity this was given by Eq. (11.313). In a generic alternative theory the response function
is given instead by

S(t) = 1

2

(
e j

1ek
1 − e j

2ek
2

)
S jk(τ, N) , (13.95)
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S polarization

L polarization

V polarization

Fig. 13.1 Effect of the S, L, and V gravitational-wave polarizations on a circular ring of freely moving particles. The wave travels
in the z-direction. The effect of the+ and× polarizations was displayed in Fig. 11.1. For the S mode, the wave
propagates into the page, and the ring is placed in the x-yplane. For the L mode, the wave propagates from left to
right (in the direction of the arrow), and the ring is placed either in the x-z plane or in the y-z plane. For the V modes,
the wave also propagates from left to right; in the case of the V1 mode, the ring is placed in the x-z plane, and in the
case of the V2 mode, the ring is placed in the y-z plane.

where e1 and e2 are unit vectors pointing in the direction of the interferometer arms, and
S jk is given by Eqs. (13.88) or (13.93).

Adopting the same vectorial basis as in Sec. 11.5, we write

S jk = (
e j

X ek
X + e j

Y ek
Y

)
AS + e j

Z ek
Z AL

+ (
e j

X ek
Z + e j

Z ek
X

)
AV1 + (

e j
Y ek

Z + e j
Z ek

Y

)
AV2

+ (
e j

X ek
X − e j

Y ek
Y

)
A+ + (

e j
X ek

Y + e j
Y ek

X

)
A× , (13.96)

and we insert the expressions for e1 and e2 displayed in Eq. (11.319). After some manipu-
lations we obtain

S(t) = FS AS + FL AL + FV1 AV1 + FV2 AV2 + F+S+ + F×S× , (13.97)

where the angular pattern functions FA(θ, φ, ψ) are given by

FS = −1

2
sin2 θ cos 2φ , (13.98a)

FL = 1

2
sin2 θ cos 2φ , (13.98b)

FV1 = − sin θ (cos θ cos 2φ cos ψ − sin 2φ sin ψ) , (13.98c)

FV2 = − sin θ (cos θ cos 2φ sin ψ + sin 2φ cos ψ) , (13.98d)

F+ = 1

2
(1 + cos2 θ ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ , (13.98e)

F× = 1

2
(1 + cos2 θ ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ . (13.98f)
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The clear detection of a scalar, longitudinal, or vector polarization in a gravitational-wave
interferometer would provide serious evidence against general relativity.

13.4.4 Multipolar structure of gravitational waves

In Chapter 11 we learned that in general relativity, the gravitational waves emitted by
a slowly-moving system are dominantly quadrupolar; the waves are generated mostly
by variations in the quadrupole-moment tensor of the mass distribution, and there is no
monopole or dipole radiation. As we discussed back in Sec. 7.1.4, this is because the field
equations of general relativity insist that the monopole moment of the gravitational field
in the wave zone be the total mass of the system, which is constant up to small changes
resulting from radiative losses. The field equations also demand that the time derivative
of the dipole moment be the total momentum of the system, which is also constant up
to radiative losses, and can be set to zero by a suitable choice of reference frame. It is
therefore the quadrupole moment that leads off in generating gravitational waves. As we
have also seen, in general relativity the gravitational waves are described by two modes
of polarizations, h+ and h×, and the radiative fluxes of energy, momentum, and angular
momentum can all be obtained from h+ and h×.

No such rules apply in alternative metric theories of gravity. There is no reason to
expect that a generic theory will predict the suppression of monopole and dipole radiation,
and as we have seen, there is every reason to expect that the gravitational waves will
display more than two polarization modes. In addition, the radiative fluxes can be a lot
more complicated, involving all polarization modes and the additional fields that might be
present in the theory. It is therefore difficult to make general statements about the generation
of gravitational waves in alternative theories of gravity, and one is forced to explore the
predictions of each theory separately. Studies carried out in the wake of the discovery
of the Hulse–Taylor binary pulsar in 1974 revealed the unusual fact that a number of
otherwise respectable theories actually predicted the emission of negative energy. Once the
orbital period of the binary pulsar’s orbit was shown to decrease (as opposed to increase)
in response to the emission of gravitational waves, these theories found themselves in the
gravitational dust-bin. But one class of alternative theories has stubbornly refused to die,
in spite of all the strong empirical evidence in support of general relativity. This is the class
of scalar–tensor theories, to which we turn next.

13.5 Scalar–tensor gravity

One of the simplest ways to formulate an alternative metric theory of gravity is to postulate
that the gravitational field is represented by a scalar φ in addition to the metric gαβ . As we
have emphasized previously in Sec. 13.1, the matter fields are still assumed to respond only
to the metric, and there is no direct interaction with the scalar field. But the field equations
relating the matter distribution to the gravitational field will involve this additional degree
of freedom. The first scalar–tensor theory of gravitation was formulated by Brans and
Dicke, building on previous work by Fierz and Jordan. The theory introduced here is a
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generalization of the original Brans–Dicke theory; it is in fact the most general theory
involving a scalar field in addition to the metric tensor. We shall study a few aspects of this
theory, including its predictions regarding weak-field and slow-motion situations, and the
generation of gravitational radiation.

13.5.1 Field equations

The field equations of scalar–tensor gravity are best obtained by formulating an action
principle, much as we did back in Sec. 5.4 in the case of general relativity. The complete
action functional for the gravitating system is

S = Sgrav + Smatter , (13.99)

with a gravitational action given by

Sgrav = c3

16πG0

∫ [
φR − ω(φ)

φ
gαβ∂αφ ∂βφ − U (φ)

]√−g d4x , (13.100)

where G0 is a “bare” gravitational constant that will later be related to the locally measured
constant G, and ω and U are arbitrary functions of the scalar field. Note that the coupling
between the scalar field and the metric appears in two guises. First, there is a factor of φ in
front of the Ricci scalar, and this can be thought of as a local redefinition of the gravitational
constant, G0 → G0/φ, which may now depend on position in spacetime. Second, the metric
appears in the kinetic-energy term for the scalar field, proportional to ∂αφ∂βφ. The matter
action is given by

Smatter =
∫

L (m, gαβ)
√−g d4x , (13.101)

in which L is a Lagrangian density involving the matter variables m and the metric gαβ .
Note that φ does not appear in the matter action; this is the statement that the scalar field
does not couple directly to the matter variables.

It is a straightforward exercise to vary S with respect to the field variables φ and gαβ

to obtain the field equations of scalar–tensor gravity. The resulting equations, however,
are rather complicated and not the most useful for practical calculations. For an optimal
formulation of the field equations we introduce an auxiliary metric g̃αβ related to the
physical metric gαβ by the conformal transformation

gαβ := (φ0/φ) g̃αβ , (13.102)

in which φ0 is an arbitrary constant that will be selected in later applications. The transfor-
mation to the new metric represents a rescaling of spatial and temporal intervals by a factor
(φ/φ0)1/2 that depends on position in spacetime, but we attach no physical significance
to g̃αβ ; it is merely a convenient auxiliary quantity that will be involved in computations,
before all final results are expressed in terms of the physical metric gαβ . The conformal
transformation implies that gαβ = (φ/φ0)g̃αβ and

√−g = (φ0/φ)2√−g̃, and it can be
shown that the Ricci scalar transforms according to

R = (φ/φ0)2
(
R̃ + 6∇̃α B̃α − 6B̃α B̃α

)
, (13.103)
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in which R̃ and ∇̃α are the Ricci scalar and covariant derivative defined in terms of g̃αβ ,
respectively, B̃α := 1

2 ∂α ln φ, and B̃α := g̃αβ B̃β .
The gravitational action becomes

Sgrav = c3

16π G̃

∫ [
R̃ − 2ω(φ) + 3

2φ2
g̃αβ∂αφ ∂βφ − V (φ)

]√
−g̃ d4x , (13.104)

in which G̃ := G0/φ0 and V (φ) := φ0U (φ)/φ2. To arrive at this result we have eliminated
the term 6∇̃α B̃α from the action, because by the four-dimensional version of Gauss’s
theorem, it can be expressed as an irrelevant surface integral. Note that φ no longer appears
in front of the Ricci scalar; this has the virtue of simplifying the field equations, and
the conformal transformation was introduced for this specific purpose. The matter action
becomes

Smatter =
∫

(φ0/φ)2L
(
m, φ, g̃αβ

)√−g̃ d4x . (13.105)

Note that the scalar field now makes an appearance in the matter action; but the coupling
between m and g̃αβ in L is still required to occur through the physical metric (φ0/φ)g̃αβ .

Variation of S with respect to the auxiliary metric g̃αβ gives rise to the tensorial field
equation

G̃αβ − 1

2
�̃αβ = 8π G̃

c4
T̃αβ , (13.106)

in which G̃αβ is the Einstein tensor associated with the auxiliary metric,

�̃αβ := 2ω + 3

φ2

(
∂αφ ∂βφ − 1

2
g̃αβ g̃μν∂μφ φνφ

)
− V (φ)g̃αβ , (13.107)

and T̃αβ := (φ0/φ)Tαβ is an auxiliary energy-momentum tensor obtained from the variation
of Smatter; Tαβ is the physical energy-momentum tensor. Variation of S with respect to the
scalar field φ yields the scalar field equation

g̃αβ∇̃α∇̃βφ + F̃ = 8π G̃

c4

φ

2ω + 3
T̃ , (13.108)

in which

F̃ := 1

2

d

dφ

[
ln

(
2ω + 3

φ2

)]
g̃αβ∂αφ ∂βφ − φ2

2ω + 3

dV

dφ
, (13.109)

and T̃ := g̃αβ T̃αβ . These are the field equations of scalar–tensor gravity.

13.5.2 Post-Minkowskian formulation

We wish to explore the consequences of scalar–tensor gravity in the post-Newtonian regime,
both in the near zone, where they will be related to the PPN framework of Sec. 13.2, and in
the far-away wave zone, where they will be related to the general discussion of gravitational
waves in Sec. 13.4. To perform the required calculations it is advantageous to rely on
techniques that proved so powerful in the context of general relativity. We shall therefore
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subject the field equations of scalar–tensor gravity to a post-Minkowskian reformulation,
relying on lessons learned in Chapter 6. We shall next carry out a post-Newtonian expansion
of these equations, relying on techniques introduced in Chapter 7.

We adapt the post-Minkowskian techniques of Chapter 6 to the current situation by
working in terms of the auxiliary metric g̃αβ instead of the physical metric gαβ . We introduce
the gothic inverse metric

g̃αβ :=
√

−g̃g̃αβ , (13.110)

the tensor density

H̃αμβν := g̃αβ g̃μν − g̃αν g̃βμ , (13.111)

and we rely on the identity of Eq. (6.4),

∂μν H̃αμβν = 2(−g̃)G̃αβ + 16π G̃

c4
(−g̃)t̃αβ

LL , (13.112)

in which t̃αβ

LL is a Landau–Lifshitz pseudotensor defined as in Eq. (6.5), but in terms of the
auxiliary metric. Making the substitutions in Eq. (13.106) produces

∂μν H̃αμβν = 16π G̃

c4
(−g̃)

(
T̃ αβ + t̃αβ

φ + t̃αβ

LL

)
, (13.113)

where

t̃αβ

φ := c4

16π G̃
(−g̃)�̃αβ . (13.114)

At this stage we introduce the potentials

h̃αβ := ηαβ − g̃αβ , (13.115)

impose the conformal harmonic gauge condition

∂β h̃αβ = 0 , (13.116)

and make use of the identity

∂μν H̃αμβν = −�h̃αβ − 16π G̃

c4
(−g̃)t̃αβ

H , (13.117)

where t̃αβ

H is a harmonic-gauge pseudotensor defined as in Eq. (6.53), but in terms of the
potentials h̃αβ . All this produces the wave equation

�h̃αβ = −16π G̃

c4
τ̃ αβ , (13.118)

in which

τ̃ αβ := (−g̃)
(

T̃ αβ + t̃αβ

φ + t̃αβ

LL + t̃αβ

H

)
(13.119)

plays the role of an effective energy-momentum pseudotensor. The wave equation can be
compared with Eq. (6.51); the only differences concern the definition of the potentials,
which involves the auxiliary metric instead of the physical metric, and the additional
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contribution to τ̃ αβ that comes from the scalar field. Note that as in Eq. (6.54), the effective
energy-momentum pseudotensor necessarily satisfies the conservation identity

∂β τ̃ αβ = 0 . (13.120)

This is equivalent to the conservation equation ∇β T αβ = 0 for the physical energy-
momentum tensor.

The scalar field equation (13.108) can also be expressed in the form of a wave equation
in flat spacetime. For this we rely on the identity

g̃αβ∇̃α∇̃βφ = 1√−g̃
∂α

(
g̃αβ∂βφ

) = 1√−g̃

(�φ − h̃αβ∂αβφ
)
, (13.121)

where we make use of Eq. (13.116) in the second step. Making the substitution in
Eq. (13.108), we arrive at

�φ = −8π G̃

c4
τs , (13.122)

in which

τs = −
√

−g̃
φ

2ω + 3
T̃ + c4

16π G̃

d

dφ

[
ln

(
2ω + 3

φ2

)](
ηαβ − h̃αβ

)
∂αφ ∂βφ

− c4

8π G̃

(
h̃αβ∂αβφ +

√
−g̃

φ2

2ω + 3

dV

dφ

)
(13.123)

is an effective source for the scalar field.

13.5.3 Slow-motion condition

To proceed with the integration of Eqs. (13.118) and (13.123), we set V (φ) = 0 for sim-
plicity, and assume that the matter distribution is subjected to a slow-motion condition,
so that vc � c, with vc denoting a characteristic velocity of the matter variables. As we
discussed back in Sec. 7.1, this assumption implies the existence of a hierarchy between
the components of the energy-momentum tensor, so that T 00 = O(c2), T 0 j = O(c), and
T jk = O(1). The hierarchy is inherited by the gravitational potentials, and to reflect this
we introduce the notation

h̃00 := 4

c2
Ṽ , (13.124a)

h̃0 j := 4

c3
Ṽ j , (13.124b)

h̃ jk := 4

c4
W̃ jk , (13.124c)

in which Ṽ , Ṽ j , and W̃ jk are assumed to scale as O(1). We also introduce the notation

φ = φ0

(
1 + 2

c2
f

)
(13.125)

for the scalar field, which reflects the expectation that variations in φ will scale as O(c−2).
Taking f to approach zero as r → ∞, the expression also assigns a meaning to the
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constant φ0 introduced in Eq. (13.102): it represents the asymptotic value φ(∞) of the
scalar field far away from the matter distribution. In principle this could depend on time,
because φ(∞) is determined by the conditions that prevail in the asymptotic regions of
the spacetime. For example, the asymptotic behavior of the scalar field could be tied to
the cosmological expansion, which would dictate that φ(∞) should indeed depend on time.
But this dependence can be ignored whenever its characteristic time scale is very long
compared with the dynamical time scale associated with the system itself. Under such
circumstances, we can safely take φ(∞) to be a constant, and associate it with φ0.

The relations displayed in Eq. (7.24) allow us to express the auxiliary metric in terms of
the potentials Ṽ , Ṽ j , and W̃ jk . We have

g̃00 = −1 + 2

c2
Ṽ + 2

c4

(
W̃ − 3Ṽ 2

) + O(c−6) , (13.126a)

g̃0 j = − 4

c3
Ṽ j + O(c−5) , (13.126b)

g̃ jk = δ jk

(
1 + 2

c2
Ṽ

)
+ O(c−4) , (13.126c)

(−g̃) = 1 + 4

c2
Ṽ + O(c−4) , (13.126d)

in which W̃ := δ jk W̃ jk . From Eqs. (13.102) and (13.125) we can then obtain the components
of the physical metric:

g00 = −1 + 2

c2

(
Ṽ + f

) + 2

c4

(
W̃ − 3Ṽ 2 − 2 f Ṽ − 2 f 2

) + O(c−6) , (13.127a)

g0 j = − 4

c3
Ṽ j + O(c−5) , (13.127b)

g jk = δ jk

[
1 + 2

c2

(
Ṽ − f

)] + O(c−4) . (13.127c)

The next order of business is to compute the effective energy-momentum pseudotensor
τ̃ αβ . We begin with an examination of the matter contribution, assuming that the matter
consists of a perfect fluid. The physical energy-momentum tensor T αβ is expressed as in
Sec. 7.1.1, in terms of the metric gαβ and the matter variables m = {ρ∗, p, �, v} – refer to
Eq. (7.1) and the following equations. The field equations, however, involve the auxiliary
energy-momentum tensor

T̃ αβ = (φ0/φ)3 T αβ . (13.128)

Using the techniques developed in Secs. 7.2.1 and 7.3.1, and incorporating the metric of
Eq. (13.127), we quickly obtain

c−2(−g̃)T̃ 00 = ρ∗
[

1 + 1

c2

(
1

2
v2 + 3Ṽ + � − f

)
+ O(c−4)

]
, (13.129a)

c−1(−g̃)T̃ 0 j = ρ∗v j + O(c−2) , (13.129b)

(−g̃)T̃ jk = ρ∗v j vk + p δ jk + O(c−2) , (13.129c)

for the components of the energy-momentum tensor, expressed to a sufficient degree of
accuracy as post-Newtonian expansions.
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The contribution from the scalar field can be obtained from Eqs. (13.107), (13.114),
(13.125), and (13.126). The calculation relies on an expansion of the arbitrary function
ω(φ) in powers of c−2, which can be expressed as

ω(φ) = ω0 + 2

c2
φ0ω

′
0 f + O(c−4) , (13.130)

in which

ω0 := ω(φ0) , ω′
0 := dω

dφ

∣∣∣∣
φ0

. (13.131)

A straightforward computation returns

c−2(−g̃)t00
φ = 2ω0 + 3

8π G̃c2
∂n f ∂n f + O(c−4) , (13.132a)

c−1(−g̃)t0 j
φ = O(c−2) , (13.132b)

(−g̃)t jk
φ = 2ω0 + 3

4π G̃c2

(
∂ j f ∂k f − 1

2
δ jk∂n f ∂n f

)
+ O(c−2) . (13.132c)

The Landau–Lifshitz contribution to the effective energy-momentum pseudotensor can
be obtained directly from Eq. (7.48b) and the listing of potentials provided in Eq. (13.124).
We get

c−2(−g̃)t00
LL = − 7

8π G̃c2
∂n Ṽ ∂n Ṽ + O(c−4) , (13.133a)

c−1(−g̃)t0 j
LL = O(c−2) , (13.133b)

(−g̃)t jk
LL = 1

4π G̃

(
∂ j Ṽ ∂k Ṽ − 1

2
δ jk∂n Ṽ ∂n Ṽ

)
+ O(c−2) . (13.133c)

Similarly, the harmonic-gauge contribution can be obtained directly from Eq. (7.52), and
we get

c−2(−g̃)t00
H = O(c−4) , (13.134a)

c−1(−g̃)t0 j
H = O(c−4) , (13.134b)

(−g̃)t jk
H = O(c−2) . (13.134c)

Collecting results, we arrive at complete expressions for the components of the effective
energy-momentum pseudotensor,

c−2τ̃ 00 = ρ∗
[

1 + 1

c2

(
1

2
v2 + 3Ṽ + � − f

)]

+ 1

4π G̃c2

[
−7

2
∂n Ṽ ∂n Ṽ + 1

2
(2ω0 + 3)∂n f ∂n f

]
+ O(c−4) , (13.135a)

c−1τ̃ 0 j = ρ∗v j + O(c−2) , (13.135b)

τ̃ jk = ρ∗v j vk + p δ jk + 1

4π G̃

[
∂ j Ṽ ∂k Ṽ − 1

2
δ jk∂n Ṽ ∂n Ṽ

+ (2ω0 + 3)
(
∂ j f ∂k f − 1

2
δ jk∂n f ∂n f

)]
+ O(c−2) .

(13.135c)
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The same expansion techniques can be used to compute the scalar source of Eq. (13.123).
Here we find that only the first two terms contribute at the required order, and we get

c−2τs = φ0 ρ∗

2ω0 + 3

[
1 − 1

c2

(
1

2
v2 + Ṽ − � + 3p/ρ∗

)
+ 1

c2

(
1 − 4φ0ω

′
0

2ω0 + 3

)
f

]

− φ0

2π G̃c2

(
1 − φ0ω

′
0

2ω0 + 3

)
∂n f ∂n f + O(c−4) . (13.136)

The source terms for the wave equations have now been computed to the required degree
of accuracy. The next task is integration of these equations.

13.5.4 Near-zone solution: PPNmetric

We employ the techniques developed in Sec. 6.3 to integrate the wave equations (13.118)
and (13.122). Each equation is of the form �ψ = −4πμ, and we recall that ψ(t, x) can
be expressed as an integral over the past light cone of the field point (t, x). The domain of
integration C is decomposed as C = N + W , into a near-zone domain N and a wave-
zone domain W , and ψ is similarly decomposed as ψ = ψN + ψW . With (t, x) situated
in the near zone, an expression for ψN was displayed in Eq. (6.92), and the discussion
of Sec. 7.3.4 indicates that ψW makes no contribution at 1pn order, the level of accuracy
maintained in our computations. With all this in mind, the near-zone solution to the wave
equation can be expressed as

ψ(t, x) =
∫

M

μ(t, x′)
|x − x′| d3x ′ − 1

c

d

dt

∫
M

μ(t, x′) d3x ′

+ 1

2c2

∂2

∂t2

∫
M

μ(t, x′)|x − x′| d3x ′ + O(c−3) , (13.137)

where the domain of integration M is described by |x′| < R, with R denoting the arbitrary
radius of the boundary between the near and wave zones. To evaluate the right-hand side of
Eq. (13.137) we require an expression for μ(t, x′) in the near zone, and such expressions
for τ̃ αβ and τs were obtained in the preceding subsection.

Before we proceed we introduce the notation

ζ := 1

2ω0 + 4
, λ := φ0ω

′
0

(2ω0 + 3)(2ω0 + 4)
. (13.138)

These new quantities act as substitutes for ω0 and ω′
0, as defined by Eq. (13.131). In terms

of ζ and λ we have that 2ω0 + 3 = (1 − ζ )/ζ and φ0ω
′
0 = λ(1 − ζ )/ζ 2.

Inspection of Eqs. (13.135) and (13.136) reveals that the source functions τ̃ αβ and τs

involve the variables Ṽ and f that appear on the left-hand side of the wave equations.
This situation is familiar from the post-Minkowskian formulation of general relativity
reviewed in Chapter 6, and to handle it we rely on the iterative strategy described in
Sec. 6.2.3. To obtain Ṽ and f to leading order in a post-Newtonian expansion we set
c−2τ̃ 00 = ρ∗ + O(c−2) and c−2τs = ζφ0ρ

∗/(1 − ζ ) + O(c−2), insert Eqs. (13.124) and
(13.125) within Eqs. (13.118) and (13.122), and get the solutions from Eq. (13.137). We
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find

Ṽ = G̃

∫
ρ∗(t, x′)
|x − x′| d3x ′ + O(c−2) , (13.139a)

f = ζ G̃

1 − ζ

∫
ρ∗(t, x′)
|x − x′| d3x ′ + O(c−2) , (13.139b)

and we note that Ṽ and f bear a striking resemblance to the Newtonian potential

U = G

∫
ρ∗(t, x′)
|x − x′| d3x ′ , (13.140)

which is defined in terms of the physically measured gravitational constant G. The
Newtonian potential is formally defined in terms of the physical metric by g00 =
−1 + 2U/c2 + O(c−4), and the precise relationship with Ṽ and f is given by Eq. (13.127),
which reveals that

U = Ṽ + f = G̃

1 − ζ

∫
ρ∗(t, x′)
|x − x′| d3x ′ . (13.141)

Comparison with Eq. (13.140) gives us

G = G̃

1 − ζ
= 2ω0 + 4

2ω0 + 3
G̃ , (13.142)

the relationship between the theoretical parameter G̃ = G0/φ0 and the physically measured
gravitational constant.

We next proceed with the second iteration of the wave equations. We insert G̃ = (1 −
ζ )G, Ṽ = (1 − ζ )U + O(c−2), and f = ζU + O(c−2) within Eqs. (13.135) and (13.136),
and obtain new expressions for the source functions:

c−2τ̃ 00 = ρ∗
{

1 + 1

c2

[
1

2
v2 + (3 − 4ζ )U + �

]}
− 7 − 8ζ

8πGc2
∂kU∂kU

+ O(c−4) , (13.143a)

c−1τ̃ 0 j = ρ∗v j + O(c−2) , (13.143b)

τ̃ kk = ρ∗v2 + 3p − 1

8πG
∂kU∂kU + O(c−2) , (13.143c)

c−2τs = ζφ0

1 − ζ

⎧⎪⎪⎪⎩ρ∗
{

1 − 1

c2

[
1

2
v2 + (1 − 2ζ + 4λ)U − � + 3p/ρ∗

]}

− ζ − λ

2πGc2
∂kU∂kU

⎫⎪⎪⎪⎭ + O(c−4) ; (13.143d)

we shall not need a complete expression for τ̃ jk , because our main goal is to obtain the
near-zone metric, which involves only W̃ := δ jk W̃ jk . The source functions can also be



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-13 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:17

748 Alternative theories of gravity

expressed as

c−2τ̃ 00 = ρ∗
{

1 + 1

c2

[
1

2
v2 − 1

2
U + �

]}
− 7 − 8ζ

16πGc2
∇2U 2 + O(c−4) , (13.144a)

c−1τ̃ 0 j = ρ∗v j + O(c−2) , (13.144b)

τ̃ kk = ρ∗
(

v2 − 1

2
U

)
+ 3p − 1

16πG
∇2U 2 + O(c−2) , (13.144c)

c−2τs = ζφ0

1 − ζ

⎧⎪⎪⎪⎩ρ∗
{

1 − 1

c2

[
1

2
v2 + (1 + 2λ)U − � + 3p/ρ∗

]}

− ζ − λ

4πGc2
∇2U 2

⎫⎪⎪⎪⎭ + O(c−4) , (13.144d)

by invoking the identity ∂kU∂kU = 1
2∇2U 2 + 4πGρ∗U first encountered in Eq. (7.70).

Integration of the wave equations is now straightforward. Once more we insert
Eqs. (13.124) and (13.125) within Eqs. (13.118) and (13.122), and get the solutions from
Eq. (13.137). Each Poisson integral involving the fluid variables gives rise to one of the
potentials listed in Box 13.1, and the Poisson integral involving ∇2U 2 is evaluated as in
Eq. (7.75). We arrive at

Ṽ = (1 − ζ )U + 1 − ζ

c2

[
1

2
�1 − 1

2
�2 + �3 + 1

4
(7 − 8ζ )U 2 + 1

2
∂t t X

]
+ O(c−3) , (13.145a)

Ṽ j = (1 − ζ )U j + O(c−2) , (13.145b)

W̃ = (1 − ζ )

[
�1 − 1

2
�2 + 3�4 + 1

4
U 2

]
+ O(c−1) , (13.145c)

f = ζU + ζ

c2

[
−1

2
�1 − (1 + 2λ)�2 + �3 − 3�4 + (ζ − λ)U 2 + 1

2
∂t t X

]
+ O(c−3) . (13.145d)

Making the substitutions within Eq. (13.127) produces

g00 = −1 + 2

c2
U + 2

c4

[
ψ − (1 + ζλ)U 2 + 1

2
∂t t X

]
+ O(c−5) , (13.146a)

g0 j = − 4

c3
(1 − ζ )U j + O(c−5) , (13.146b)

g jk = δ jk

[
1 + 2

c2
(1 − 2ζ )U

]
+ O(c−3) , (13.146c)

in which

ψ := 1

2
(3 − 4ζ )�1 − (1 + 2ζλ)�2 + �3 + 3(1 − 2ζ )�4 . (13.147)

The physical metric is presented in the conformal harmonic gauge introduced in
Eq. (13.116). To bring it to the standard post-Newtonian gauge of Box 13.1 we imple-
ment the coordinate transformation t = t̄ + 1

2 c−4∂t̄ X + O(c−6) and x j = x̄ j , which was
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first encountered in Sec. 8.3.7. When we transform the metric to the new coordinates (t̄, x̄ j )
and drop the overbars on the new variables, we obtain

g00 = −1 + 2

c2
U + 2

c4

[
ψ − (1 + ζλ)U 2

]
+ O(c−5) , (13.148a)

g0 j = − 4

c3
(1 − ζ )U j − 1

2c3
∂t j X + O(c−5) , (13.148b)

g jk = δ jk

[
1 + 2

c2
(1 − 2ζ )U

]
+ O(c−3) . (13.148c)

This is the near-zone metric produced by a generic scalar–tensor theory of gravity. It is
parameterized by two numbers, λ and ζ , which are related by Eqs. (13.131) and (13.138)
to the theory’s coupling function ω(φ).

The metric can be compared with the PPN metric displayed in Box 13.1. This reveals
that the PPN parameters of scalar–tensor gravity are given by

β = 1 + ζλ = 1 + φ0ω
′
0

(2ω0 + 3)(2ω0 + 4)2
(13.149)

and

γ = 1 − 2ζ = ω0 + 1

ω0 + 2
, (13.150)

together with ξ = αn = ζn = 0. The vanishing of the preferred-frame parameters αn should
not come as a surprise, because a scalar field is invariant under Lorentz transformations,
and there is no way for a preferred frame to be selected by the theory. The vanishing of ζn

is a consequence of the fact that scalar–tensor gravity is based on the action principle of
Eq. (13.100), which necessarily makes it a conservative theory. There is no fundamental
reason why the Whitehead parameter ξ should vanish in scalar–tensor gravity; this is
probably due to the simplicity of the theory. The best empirical constraint on the parameters
of scalar–tensor gravity comes from the experimental bound on γ provided by the Cassini
tracking measurement of the Shapiro time delay. From |γ − 1| = |2ζ | < 2.3 × 10−5 we
can conclude that ω0 > 40 000.

Box 13.4 Nordtvedt effect and the variation ofGeff

Two important features of the post-Newtonian limit of scalar–tensor gravity should be emphasized, both rep-
resenting violations of the strong equivalence principle. The first is that the theory predicts a non-vanishing
Nordtvedt effect; from Eq. (13.74) we see that the Nordtvedt parameter is given by

ηN = 2ζ (1 + 2λ) = 1

ω0 + 2

[
1 + φ0ω

′
0

(ω0 + 2)(2ω0 + 3)

]
.

The second is that the effective, or locallymeasured, gravitational constant depends on the presence of nearby
matter; from Eq. (13.36) we find that

Geff = G

(
1 − ηN

Ûext

c2

)
,

where we have ignored the small term linear in r̄ .
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The fact that the variation in Geff depends on the same parameter as the Nordtvedt effect is no co-
incidence. Soon after Nordtvedt informed Dicke (around 1967) that his theory predicted a violation of
the strong equivalence principle for self-gravitating bodies, Dicke overcame his initial skepticism by de-
vising an elegant energy-conservation argument that showed that it must be so. The argument goes as
follows.
Consider a collection of N particles, each of massm , on the surface of the Earth. Extract from a reservoir a

sufficient amount of energy,Nmgh, to raise theparticles to aheighth,whereg is the accelerationof gravity.
At this height, assemble the particles into a gravitationally bound body ofmass M = Nm − EB(h)/c2,
where EB(h) is the body’s binding energy, and convert the released binding energy into more particles. Let
these particles fall to the ground, convert their mass into energy, and add this together with the accumulated
kinetic energy to the reservoir, which thereby acquires an energy EB(h)(1 + gh/c2). Now let the self-
gravitating body fall to the ground, but to be open minded, let its acceleration be a instead of g. The kinetic
energy it has when it reaches the surface is given by Mah. Add this energy to the reservoir. Now extract
enough energy EB(0) from the reservoir to pull the body apart and return it to the N separate particles,
each of massm . We have returned the system to its initial state, and if energy is to be conserved (otherwise
we would have a perpetual motion machine and would make zillions of dollars), the reservoir must now be
empty. Doing the accounting, we see that

−Nmgh + EB(h)(1 + gh/c2) + Mah − EB(0) = 0 ,

and this implies that

a = g + EB(h) − EB(0)

Mh
.

But the binding energy depends on the local value of the gravitational constant. If we postulate thatGeff =
G(1 − ηN U⊕/c2) in the vicinity of the Earth, where ηN is an arbitrary parameter, and if we use the
properties that EB ∝ Geff and dU⊕/dh = g, then we can show that

a = g + 1

M

d EB

dh
= g + 1

M

d EB

dGeff

dGeff

dh
= g + 1

M

EB

G

(
−ηN g

c2

)
G

= g

(
1 − ηN

EB

Mc2

)
.

This is precisely a description of the Nordtvedt effect, and we see that it is indeed tied to the variation of
Geff .

13.5.5 Wave-zone solution: gravitational waves

We next move to the far-away wave zone and examine the predictions of scalar–tensor
gravity regarding generation of gravitational waves. We rely on the discussion of Sec. 7.1.4,
which reveals that when the field point (t, x) is in the far-away wave zone, the potentials
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h̃αβ can be expressed as the multipole expansion

h̃00 = 4G̃ M̃

c2 R
+ 2G̃

c4 R
¨̃I jk N j Nk + O(c−5) , (13.151a)

h̃0 j = 2G̃

c4 R
¨̃I jk Nk + O(c−5) , (13.151b)

h̃ jk = 2G̃

c4 R
¨̃I jk + O(c−5) , (13.151c)

in which R := |x|, N := x/R,

M̃ :=
∫

M
c−2τ̃ 00(τ, x) d3x , (13.152)

and

Ĩ jk(τ ) :=
∫

M
c−2τ̃ 00(τ, x)x j xk d3x , (13.153)

where τ := t − R/c. The multipole expansion incorporates the conservation equation
∂β τ̃ αβ = 0, which implies that M̃ is constant up to small radiation-reaction effects, and
that the dipole moment Ĩ j := ∫

M c−2τ̃ 00x j d3x can be set equal to zero (also up to small
radiation-reaction effects). The potentials h̃αβ are identified with the near-zone contribu-
tions h̃αβ

N because, as was discovered back in Sec. 7.4, the wave-zone contributions h̃αβ

W

produce terms that fall off as R−2 at the relevant post-Newtonian order; these can be ne-
glected in the far-away wave zone. The potentials of Eq. (13.151) can be compared with
the general relativistic expressions displayed in Box 7.7.

The “tensor mass” M̃ can be evaluated by inserting c−2τ̃ 00 from Eqs. (13.144) into
Eq. (13.152). The term involving ∇2U 2 produces a surface integral that scales as R−1 and
therefore makes no R-independent contribution to the potentials. Discarding this term, we
find that

M̃ = M + O(c−3) , (13.154)

in which M is the total mass-energy of the system, as defined in general relativity by
Eq. (7.63). We also find that to leading order in a post-Newtonian expansion,

Ĩ jk = I jk + O(c−2) , (13.155)

where I jk := ∫
ρ∗x j xk d3x is the Newtonian quadrupole-moment tensor.

Similarly, the solution to the scalar wave equation can be expressed as

φ = φ0 + 2G̃

c2 R

[
Is + 1

c
İ j

s N j + 1

2c2
Ï jk

s N j Nk + O(c−3)

]
, (13.156)

where

Is(τ ) :=
∫

M
τs(τ, x) d3x , (13.157a)

I j
s (τ ) :=

∫
M

τs(τ, x)x j d3x , (13.157b)

I jk
s (τ ) :=

∫
M

τs(τ, x)x j xk d3x , (13.157c)
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are the multipole moments of the scalar source τs. Because this does not satisfy any
conservation equation, the monopole moment Is cannot be expected to be constant, and
the dipole moment I j

s cannot be set equal to zero.
To evaluate these moments it is useful to introduce an effective energy density μ defined

by the relation

c−2τs = ζφ0

1 − ζ

[
c−2τ̃ 00 − 1

c2
μ + O(c−3)

]
. (13.158)

This expresses the fact, apparent from Eqs. (13.144), that τs and ζφ0τ̃
00/(1 − ζ ) are equal to

each other to leading order in a post-Newtonian expansion, and differ by a post-Newtonian
correction. We have

μ = ρ∗
[
v2 +

(1

2
+ 2λ

)
U

]
+ 3p − 1

4πGc2

(
7

4
− 3ζ + λ

)
∇2U 2 . (13.159)

We define multipole moments associated with μ,

E(τ ) :=
∫

M
μ(τ, x) d3x , (13.160a)

E j (τ ) :=
∫

M
μ(τ, x)x j d3x , (13.160b)

E jk(τ ) :=
∫

M
μ(τ, x)x j xk d3x , (13.160c)

and write

Is = ζφ0

1 − ζ

[
M̃ − 1

c2
E + O(c−3)

]
, (13.161a)

I j
s = ζφ0

1 − ζ

[
− 1

c2
E j + O(c−3)

]
, (13.161b)

I jk
s = ζφ0

1 − ζ

[
Ĩ jk − 1

c2
E jk + O(c−3)

]
. (13.161c)

From Eq. (13.159) we find that

E =
∫

ρ∗
[
v2 +

(1

2
+ 2λ

)
U + 3p/ρ∗

]
d3x , (13.162a)

E j =
∫

ρ∗
[
v2 +

(1

2
+ 2λ

)
U + 3p/ρ∗

]
x j d3x , (13.162b)

and we shall not need an explicit expression for E jk ; the term involving ∇2U 2 in μ makes
no R-independent contributions to the monopole and dipole moments.

Making the substitutions in Eq. (13.156) returns

φ/φ0 = 1 + 2ζ G

c2 R

[
M − 1

c2
A(τ, N) + O(c−3)

]
, (13.163)

where

A := E(τ ) + 1

c
Ė j (τ )N j − 1

2
Ï jk(τ )N j Nk (13.164)
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is the radiative piece of the scalar field. To arrive at this result we have incorporated the
information displayed in Eqs. (13.154) and (13.155). Note that the term involving the dipole
moment E j has been retained in the expression for A, in spite of the fact that it is formally
of order c−3 and therefore of the same order as the neglected terms in Eq. (13.163). The
reason for this revealed below.

We are now ready to convert these results into a description of gravitational waves in
scalar–tensor gravity. As was reviewed back in Secs. 13.4.1 and 13.4.2, the gravitational-
wave polarizations can be extracted from potentials hαβ defined in terms of the physical
metric gαβ by Eq. (13.77). The relation with h̃αβ is provided by Eqs. (13.102) and (13.115),
and we get

hαβ = (φ0/φ)h̃αβ + (1 − φ0/φ)ηαβ . (13.165)

Making the substitutions from Eqs. (13.151) and (13.163), we arrive at

h00 = 2(2 − 3ζ )
G M

c2 R
+ G

c4 R

[
2(1 − ζ ) Ï jk N j Nk + 2ζA + O(c−1)

]
, (13.166a)

h0 j = G

c4 R

[
2(1 − ζ ) Ï jk Nk + O(c−1)

]
, (13.166b)

h jk = 2ζ
G M

c2 R
δ jk + G

c4 R

[
2(1 − ζ ) Ï jk N j Nk − 2ζA δ jk + O(c−1)

]
. (13.166c)

The assignments of Eqs. (13.149) and (13.150) ensure that the stationary terms, involving
the total mass-energy M , agree with the general expression of Eq. (13.78). Comparison
with Eq. (13.80) then allows us to read off the radiative fields C , D j , and A jk , which are
decomposed into irreducible pieces as in Eqs. (13.81). We get

A = 2(1 − ζ ) Ï pp − 6ζA , (13.167a)

B = 3(1 − ζ ) Ï 〈 jk〉N j Nk , (13.167b)

C = 2(1 − ζ ) Ï 〈 jk〉N j Nk + 2

3
(1 − ζ ) Ï pp + 2ζA , (13.167c)

D = 2(1 − ζ ) Ï 〈 jk〉N j Nk + 2

3
(1 − ζ ) Ï pp , (13.167d)

A j
T = 2(1 − ζ )P j

p Ï 〈pk〉Nk , (13.167e)

D j
T = 2(1 − ζ )P j

p Ï 〈pk〉Nk , (13.167f)

A jk
TT = 2(1 − ζ ) Ï jk

TT , (13.167g)

in which Pjk := δ jk − N j Nk is the projector to the subspace transverse to N j . Finally,
Eq. (13.89) allows us to obtain the gauge-invariant gravitational-wave amplitudes,

AS = 2ζA , (13.168a)

AL = 0 , (13.168b)

A j
V = 0 , (13.168c)

A jk
TT = 2(1 − ζ ) Ï jk

TT . (13.168d)
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We see that in addition to the familiar transverse-tracefree polarizations involving the
quadrupole-moment tensor, scalar–tensor gravity gives rise to a scalar mode involving the
combination of monopole, dipole, and quadrupole moments contained in A.

The generation of monopole and dipole waves in scalar–tensor gravity is a major depar-
ture from general relativity, and we conclude this section with a discussion of these new
features. The monopole and dipole moments E and E j are defined by Eq. (13.162), and
for the purpose of this discussion we evaluate them for a system of well-separated bodies,
using techniques developed in Chapter 9 – refer to Sec. 9.3.6. We find that the monopole
moment evaluates to

E =
∑

A

[
2TA − (1 + 4λ)
A + 3PA + m Av2

A + 1

2
(1 + 4λ)m AU¬A

]
, (13.169)

in which TA is the total kinetic energy of body A, 
A its gravitational potential energy, PA

the integrated pressure, and U¬A the gravitational potential of the external bodies evaluated
at the position of body A. This becomes

E = −2(1 + 2λ)
∑

A


A +
∑

A

MAv2
A + (1 + 4λ)

∑
A

∑
B 	=A

G MA MB

2rAB
+ O(c−2) (13.170)

after we make use of the virial theorem of Eq. (13.16), insert the familiar expression for the
external potential, and make the replacements m A = MA + O(c−2). For a binary system
the monopole moment reduces to

E = −2(1 + 2λ)(
1 + 
2) + ηm

[
v2 + (1 + 4λ)

Gm

r

]
+ O(c−2) , (13.171)

in which m := M1 + M2, η := M1 M2/m2, r := |r1 − r2|, and v := |v1 − v2|. The
monopole moment contains a contribution from each body’s gravitational potential en-
ergy 
A, and neglecting tidal interactions between bodies, this is constant for bodies in
hydrodynamical equilibrium; these terms do not participate in the generation of gravita-
tional waves. The remaining terms, however, coming from the orbital motion of each body,
are time-dependent and do participate in the production of gravitational waves. It is easy to
see that the monopole term in A is of the same order of magnitude as the quadrupole term
1
2 Ï jk N j Nk .

After making use of the virial theorem, we find that the dipole moment is given by

E j = −2(1 + 2λ)
∑

A


Ar j
A +

∑
A

MAv2
Ar j

+ (1 + 4λ)
∑

A

∑
B 	=A

G MA MB

2rAB
r j

A + O(c−2) (13.172)

for a system of well-separated bodies. For a binary system this reduces to

E j = −2(1 + 2λ)ηmc2Sr j − η�m

[
v2 + (1 + 4λ)

Gm

2r

]
r j + O(c−2) , (13.173)
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where r := r1 − r2, � := (M1 − M2)/m, and

S := 
1

M1c2
− 
2

M2c2
. (13.174)

We find that the dipole moment also contains terms involving the gravitational potential
energies in addition to orbital terms. These terms come now with a time-dependent separa-
tion vector r , and they do participate in the production of gravitational waves. For weakly
bound bodies, 
A/(MAc2) is of the same order of magnitude as (vA/c)2 and G MB/(c2rAB),
and the dipole term in A can be seen to be a factor vc/c smaller than the monopole and
quadrupole terms (with vc denoting a characteristic orbital velocity). In this case the dipole
term should be lumped together with the error terms of order c−1 in Eq. (13.166).

The situation changes dramatically when the bodies are compact, as in the case of neutron
stars. In this situation 
A/(MAc2) ∼ 0.1, and the internal terms strongly dominate over the
orbital terms in the dipole moment. In this case we find that the dipole term in A is a factor
c/vc larger than the monopole and quadrupole terms. The orbital motion of compact bodies,
therefore, can in principle give rise to gravitational waves that are dominantly dipolar, thanks
to the dependence of the dipole moment on each body’s gravitational potential energy. In
practice, however, the effect can be strongly suppressed. For a binary system the dipolar
radiation is controlled by the difference in 
/(Mc2) between bodies, and it is suppressed
whenever the bodies are very similar. This occurs, for example, for most binary pulsars,
which involve neutron stars with masses that are tightly clustered around 1.4 M�, producing
very small values of S . Furthermore, A is multiplied by ζ in the gravitational-wave field,
and ζ is already constrained to be small by solar-system measurements of the Shapiro
time delay. As a result, binary neutron-star systems have yet to provide interesting tests of
scalar–tensor gravity, except for theories that come with anomalously large values of the
parameter λ. It is possible, however, to test scalar–tensor gravity with the few binary-pulsar
systems that are known to involve a white-dwarf companion. With 
A/(MAc2) ∼ 10−4 for
a white dwarf, S is numerically large, and the emission of dipole radiation can be important.
Data from one such system, known as J1738+0333, provides a bound on ζ that is beginning
to compete with constraints from the solar system.

13.6 Bibliographical notes

The literature on alternative theories of gravity and their experimental tests is far too vast
to attempt even a partial summary. At the risk of self-promotion, we refer the reader to the
book Theory and Experiment in Gravitational Physics by one of us (CMW) (1993), which
gives a lot more detail than we were able to provide in this chapter. In addition, Will’s Living
Reviews article (2006b) describes the experimental situation up to that time; it is scheduled
to be updated by 2014. Another useful resource is Will (2010), an annotated compilation
of almost 100 references on tests of gravitational theories.

Nordström’s relativistic theory of gravity, mentioned in the introduction to the chapter, is
published as Nordström (1913). Whitehead’s theory, involving a non-dynamical Minkowski
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metric in addition to a dynamical metric, was proposed in his 1922 book; its multiple deaths
are described in Gibbons and Will (2008). The experimental basis of general relativity and
alternative theories in the early nineteen sixties is reviewed in Bertotti, Brill, and Krotkov
(1962) and Whitrow and Morduch (1965). The Brans–Dicke theory originates in their 1961
article, which built upon previous work by Fierz (1956) and Jordan (1959).

The parameterized post-Newtonian framework, reviewed in Sec. 13.2, was first initiated
in Eddington (1922). It was developed systematically by Nordtvedt (1968a and 1968b) for
systems of point particles, and by Thorne and Will (1970) and Will (1971a, 1971b, and
1971c) for perfect-fluid systems. The two versions of the formalism were consolidated in
Will and Nordtvedt (1972a and 1972b).

The measurement of the PPN parameter γ on galactic scales using gravitational lensing,
described in Sec. 13.3.2, is reported in Bolton, Rappaport, and Burles (2006). The effect
on the lunar orbit of a failure of the strong equivalence principle (Sec. 13.3.3) was first
discovered by Nordtvedt (1968c), who also proposed a detection scheme based on laser
ranging. The state of the art on lunar laser ranging and the measurement of the Nordtvedt
effect (Box 13.2) is summarized in Nordtvedt (1999), Williams, Turyshev, and Boggs
(2009), and Merkowitz (2010). The Eöt-Wash test of the weak equivalence principle on
a mini-Moon and mini-Earth system was described in Baessler et al. (1999). Tests of the
Nordtvedt effect on pulsar–white dwarf systems were reported by Stairs et al. (2005).

The discussion of gravitational-wave polarizations in alternative theories of gravity,
provided in Sec. 13.4.2, is based on Eardley et al. (1973).

Our treatment of scalar–tensor gravity in Sec. 13.5 was inspired by the seminal 1992 paper
by Damour and Esposito-Farèse. Dicke’s argument of Box 13.4, connecting the variation
of Geff to the Nordtvedt effect, originated in Dicke (1970); an expanded version of the
argument is presented in the Appendix of Will (1971a). The proof that the stationary black
holes of scalar–tensor gravity are the same as those of general relativity (Exercise 13.5)
was formulated by Hawking (1972) in the case of Brans–Dicke theory, and by Sotiriou and
Faraoni (2012) in the general case.

13.7 Exercises

13.1 Consider a semi-conservative theory of gravity, with α3 = ζn = 0. Using the PPN
equation of hydrodynamics, Eq. (13.8), and making use of the method described in
Sec. 8.4.6, show that the total momentum defined by

P j :=
∫

ρ∗v j

[
1 + 1

c2

(1

2
v2 − 1

2
U + � + p/ρ∗

)]
d3x − 1

2c2

∫
ρ∗� j d3x

− 1

2c2
α1

∫
ρ∗(v j + w j )U d3x − 1

2c2
α2

∫
ρ∗(∂t j X − wk∂ jk X

)
d3x

+ O(c−4)

is conserved.
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13.2 Consider a semi-conservative theory of gravity, with α3 = ζn = 0. A single
gravitationally-bound body A in isolation moves with a velocity vA relative to the
PPN coordinate system, which itself moves with a velocity w relative to the preferred
universal frame. Using Eq. (13.26), show that to 1pn order, there exist a conserved
momentum and energy, given by

P j = (M jk
I )A(w + vA)k , E = 1

2
(M jk

I )A(w + vA) j (w + vA)k ,

where (M jk
I )A is an “inertial mass tensor” given by

(M jk
I )A = MAδ jk

[
1 + (α1 − α2)


A

MAc2

]
+ α2



jk
A

MAc2
.

13.3 Consider the structure-dependent term in Eq. (13.26),

c2a j
A[str] = − α3

MA
H k j

A (wk + vAk) ,

where H k j
A is given by Eq. (9.9f).

(a) Assuming that the body is rotating uniformly with an angular velocity ω, and that
it is approximately spherically symmetric, show that this acceleration is given by

c2aA[str] = −1

3
α3


A

MA
ω × (w + vA) ,

where 
A is the body’s gravitational potential energy.
(b) Show that the acceleration a of a pulsar leads to an observed rate of change of its

pulse period given by Ṗ = −(a · N)P , where N is a unit vector along the line of
sight.

(c) The isolated pulsar PSR 1937+21 has a rotation period of 1.56 milliseconds,
and an observed Ṗ of 10−19. Assuming a value |
A/MA| ∼ 0.1 for the pulsar, a
value of 300 km/s for the velocity of the pulsar relative to the preferred frame,
and optimum alignment for the preferred-frame effect, place a bound on the
parameter α3.

13.4 In this problem we generalize the Newman–Penrose description of gravitational
waves, introduced in Exercise 11.3, from general relativity to the more general frame-
work of Sec. 13.4. The component notation is explained in the previous exercise, and
it involves the vectors �α := (1, N), nα := 1

2 (1, −N), mα := 2−1/2(0, ϑ + iϕ), and
m̄α := 2−1/2(0, ϑ − iϕ), which are defined in the asymptotically flat spacetime of the
far-away wave zone.
(a) Show that the six non-zero components of Rαβγ δ in the far-away wave zone are

related to the polarization amplitudes of Sec. 13.4.2 by

Rn�n� = − G

2c4 R

∂2

∂τ 2
AL ,

Rn�nm = − G

2c4 R

∂2

∂τ 2
Am

V ,

(continued overleaf)
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Rnmnm̄ = − G

2c4 R

∂2

∂τ 2
AS ,

Rnmnm = − G

2c4 R

∂2

∂τ 2
Amm

TT .

(b) By relating the Ricci scalar R := gαβ Rαβ to the non-zero components of the
Riemann tensor, show that any theory of gravity for which the Ricci scalar
vanishes or falls off faster than 1/R in the far-away wave zone has a vanishing
longitudinal gravitational-wave mode AL.

13.5 In this problem we examine black-hole solutions in scalar–tensor gravity.
(a) Prove that when V (φ0) = V ′(φ0) = 0, a configuration (gαβ, φ0) is an exact vac-

uum solution to the scalar–tensor field equations, provided that gαβ is a solution
to the vacuum field equations in general relativity. This shows in particular that
with the stated assumptions on the potential, the Schwarzschild metric is an exact
solution of scalar–tensor gravity.

(b) We wish to see if other black-hole solutions might be possible. We consider a
deformation

gαβ = gSchw
αβ + δgαβ , φ = φ0 + δφ ,

of the previous configuration, in which the perturbations δgαβ and δφ are assumed
to depend on the radial coordinate r only. To first order in perturbation theory,
δφ satisfies a differential equation formulated in the background spacetime of
the Schwarzschild spacetime. Derive this differential equation, and show that the
solution is either singular at infinity, or singular at the event horizon. Conclude
that scalar–tensor gravity does not admit static black-hole solutions that deviate
slightly from the Schwarzschild solution.

A general proof that the stationary black holes of scalar–tensor gravity are the same
as those of general relativity was provided by Thomas Sotiriou and Valerio Faraoni in
2012. Their work generalizes a 1972 paper by Stephen Hawking, which was restricted
to the Brans–Dicke theory.

13.6 In many alternative theories of gravity, G becomes a function of time via the asymp-
totic boundary conditions on the auxiliary fields – scalar–tensor theory is a notable
example. Because of the expansion of the universe, G may thus vary on a Hubble
timescale. One way to model the effect of such a variation on solar-system dynamics
is to write the effective Newtonian equation of motion as follows:

a = −G(t)mx/r3 ,

where on solar-system time scales we approximate G(t) by

G(t) = G0 + Ġ0t + O(G0t2/t2
H ) ,

where tH is the Hubble time, and t is chosen to be zero at the beginning of a fiducial
orbit.
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759 13.7 Exercises

(a) Assuming that the osculating Keplerian orbit is governed by G0, write down the
components R, S , and W of the disturbing force.

(b) Find the change in the orbital elements a, e, ω, ι and 
 over one orbit. What is
the change in orbital angular momentum h = √

G0mp?
(c) By integrating the perturbed time equation (3.70) for dt/d f over 2π , show that

the change in orbital period over one orbit is given by �P/P = − 1
2 (Ġ0/G0)P .

(d) The Earth–Moon distance (semi-major axis) is known to be increasing at a rate
of about 3.8 cm/yr. Assuming that tidal dissipation accounts for this at a level
of 10 percent accuracy, what bound can you place on Ġ0/G0? How does this
compare with the inverse Hubble time?
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Poincaré Seminar 2005, edited by Damour, T., Darrigol, O., Duplantier, B. and Ri-
vasseau, V., 33–58. Birkhäuser Publishing.
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Einstein radius, see Gravitational lens: Einstein angle
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Einstein, A., 24, 139, 199, 221, 264, 371, 442, 480,
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Einstein–Infeld–Hoffmann equations, see Equations

of motion: N -body system
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Electromagnetism

covariant formulation in curved spacetime,
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covariant formulation in flat spacetime, 207–210
geometric-optics approximation, 248–249
Lorentz transformation of electric and magnetic

fields, 216
standard formulation, 376, 626

Energy, see Mass
conservation

general relativity, 634
Newtonian mechanics, 19–21
post-Newtonian mechanics, 406

expression
charged bodies, 628
fluid, 20
N -body system, 55
two-body system, 56, 57, 141, 482

loss to gravitational radiation, see Radiative losses:
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point particle, see Point particle
Energy-momentum pseudotensor

conservation, 292, 303, 347
effective, 302, 347, 363, 411, 595, 596
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Landau–Lifshitz, 292, 346, 594, 636

Energy-momentum tensor
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general definition, 205, 252
Isaacson’s, 640–641
perfect fluid, 206, 245

post-Newtonian expression, 345, 373
point particle, see Point particle
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Equation of state, 7, 14

degenerate fermions, 82–84
ideal gas, 14
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polytropic, 16
radiation, 15

Equations of motion
binary system

Newtonian, 56
post-Newtonian, 482

charged bodies, 628
compact bodies, 453
extended bodies, 51–52
geodesic equation, see Geodesic equation
N -body system

Newtonian, 52
post-Newtonian, 436, 441

PPN gravity, see Parameterized post-Newtonian
framework: motion of isolated bodies

radiation reaction, see Radiation reaction: force
solution to equations of motion, see Kepler’s

problem
spin–orbit and spin–spin interactions, 459, 472,

473, 529
three-body problem, 173–175

Equilibrium conditions for fluid bodies, see Fluid
bodies: equilibrium conditions

Equivalence principles
Einstein, 218
strong, 218, 702

failure in alternative theories, 702, 714, 718, 727,
730, 749

validity in post-Newtonian gravity, 420, 430,
441, 453

weak
Newtonian gravity, 3
relativistic gravity, 218
tests, 4–6, 730

Euler’s equation, see Fluid dynamics: Euler’s equation
Eulerian perturbation, see Fluid dynamics:

perturbations
Eulerian time derivative, see Fluid dynamics: time

derivative
Expansions

multipole, 30–37
post-Coulombian, 626
post-Minkowskian, 305
post-Newtonian, 330, 331, 362

counting orders in near zone, 336–338
counting orders in wave zone, 343

shortwave, 635–636
Experimental tests of gravitational theories, see

Parameterized post-Newtonian framework:
experimental tests

Far-away wave zone, see Zones: far-away wave
Favata, M., 656
Fermi normal coordinates, see Coordinate systems:

Fermi normal
Fermi temperature, 15, 81
Field equations, see Einstein field equations
First iteration of relaxed Einstein equations, see

Einstein field equations: relaxed formulation
and iteration
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First law of thermodynamics, see Fluid dynamics:
thermodynamics

Flanagan, E.E., 256, 382
Fluid bodies

center-of-mass variables
Newtonian gravity, 47–48
post-Newtonian gravity, 414–415

deformed, see Deformed bodies
equilibrium conditions, 417, 456
metric, see Metric: N -body system
motion, see Equations of motion: N -body system
reflection symmetry, 415
spinning bodies, see Spin dynamics
structure integrals, 416–417
virial identities, 420

Fluid dynamics
deformed bodies, see Deformed bodies
energy generation, 13, 67
energy-momentum tensor, see Energy-momentum

tensor: perfect fluid
Euler’s equation

general relativity, 246, 288
Newtonian gravity, 6, 11, 64, 95, 106
post-Newtonian gravity, 403, 462
PPN gravity, see Parameterized post-Newtonian

framework: fluid dynamics
special relativity, 207, 210

fluid element, 10
heat-flux vector, 13, 67
hydrostatic equilibrium

general relativity, 246–247, 280
Newtonian gravity, 66
post-Newtonian gravity, 412

mass current, 204
mass-momentum tensor, 25
perturbations, 108–110
radiation reaction, see Radiation reaction: force
rotating bodies, see Rotating bodies
thermodynamics, 12–16, 207, 400
time derivative

Eulerian (partial), 11
Lagrangian (convective), 6, 11
of volume integrals, 16–18, 404

Fluid element, see Fluid dynamics: fluid element
Frame dragging, see Spin dynamics: post-Newtonian

gravity; Equations of motion: spin–orbit and
spin–spin interactions

Frames, see Reference frames

Gauge
Burke–Thorne, see Radiation reaction:

two-parameter family of gauges
conformal harmonic, 742
Coulomb in linearized gravity, 260
Damour–Deruelle, see Radiation reaction:

two-parameter family of gauges

harmonic, see Coordinate systems: harmonic
Lorenz

electromagnetism, 209, 247, 627
linearized gravity, 255

Schäfer, see Radiation reaction: two-parameter
family of gauges

standard post-Newtonian, 399
transverse-tracefree (TT), 545

Gauge transformation
effect on gravitational potentials, 544
electromagnetism, 209, 247
linearized gravity, 253, 259

Geodesic deviation equation, 235, 241
Newtonian approximation, 220, 235
relation to gravitational waves, see Gravitational

waves: relation to geodesic deviation equation
Geodesic equation

massive particle
curved spacetime, 231, 232
post-Newtonian gravity, 375, 377
relation to post-Newtonian equations of motion,

436–437
Schwarzschild spacetime, see Schwarzschild

spacetime: motion of massive particle
massless particle

curved spacetime, 232
deflection of light, see Deflection of light
post-Newtonian gravity, 376, 492
PPN gravity, see Parameterized post-Newtonian

framework: motion of light
Schwarzschild spacetime, see Schwarzschild

spacetime: motion of massless particle
Geodetic precession, see Spin dynamics:

post-Newtonian gravity
Geoid, 512–514
Geometric-optics approximation, see

Electromagnetism: geometric-optics
approximation

Global Positioning System (GPS),
517–518

Goldberg, J.N., 361, 554
Gothic inverse metric, see Metric: gothic inverse
Gravitational constant, 3

in scalar–tensor gravity, see Scalar–tensor gravity:
gravitational constant

locally measured in PPN gravity, see Parameterized
post-Newtonian framework: locally measured
gravitational constant

Gravitational lens, 501–506
deflection vector, 502–503, 535
Einstein angle and radius, 505
Einstein ring, 505
lens equation, 504
magnification, 506, 535
Plummer lens, 536
Schwarzschild lens, 504–506

Gravitational potentials
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boosted by post-Galilean transformation,
397–398

decomposition in internal and external pieces, 49,
418–419

ellipsoid, 97
far-away wave zone, 365, 541, 544, 642
Newtonian, 8, 342
post-Minkowskian

second iteration in near zone, 358–360
second iteration in wave zone, 364–365
structure in near zone, 330–335
structure in wave zone, 338–340

post-Newtonian, 372
auxiliary potentials, 374
integral identities, 403–404

preferred-frame, 705
radiation reaction, see Radiation reaction: potentials
superduperpotential, 61, 366
superpotential, 61, 352

ambiguity of definition, 352–353
tidal, see Tides: tidal potential
Whitehead, 411, 705, 708

Gravitational radiation, see Gravitational waves
Gravitational redshift, see Warped time and

Newtonian gravity
Gravitational waves

at 0pn order (quadrupole formula), 550–553
bremsstrahlung, 622
rotating neutron star, 559–562
tidal encounter, 562–564
two-body system, 555–559

at 1.5pn order, 600–601
calculation of field integrals, 574–575
calculation of radiative moments,

575–590
calculation of tails, 592–600
two-body system (circular motion),

609–613
two-body system (general motion),

606–609
beyond 1.5pn order, 614–615
distortion of a ring of particles

alternative theories, 737
general relativity, 548–549

measurement by laser interferometry
alternative theories, 737–739
general relativity, 615–618

multipole structure in alternative theories,
739

polarizations
alternative theories, 735–737
general relativity, 547–548

relation to geodesic deviation equation
alternative theories, 735–736
general relativity, 545–546

speed of propagation in alternative theories,
732–733

Graviton, 185, 377, 550
Gravity Probe A, 537
Gravity Probe B, 521–525
Gravity Recovery and Climate Experiment (GRACE),

52, 528
Green’s function

Poisson’s equation, 8–9
reduced Poisson equation, 34
wave equation, 308–311

Gyroscope, see Spin dynamics

Hadamard regularization, see Point particle:
post-Newtonian gravity

Harmonic coordinates, see Coordinate systems:
harmonic

Harmonic gauge, see Coordinate systems: harmonic
Havas, P., 361, 442, 554
Hawking, S.W., 509, 758
Heat-flux vector, see Fluid dynamics: heat-flux vector
Hoffmann, B., 371, 442
Holz, D.E., 656
Hughes, S.A., 256, 656
Hulse, R.A., 554, 651
Hydrostatic equilibrium, see Fluid dynamics:

hydrostatic equilibrium

Inclination, see Orbital elements: Keplerian
Index algebra

summation convention, 24
symmetrization and antisymmetrization, 24

Inertial frame, see Reference frames: inertial
Inertial mass, see Mass: inertial
Infeld, L., 371, 442, 553
Inhomogeneities of the gravitational field, 219–221,

235
Inspiralling compact binaries, see Radiative losses:

astrophysical implications
Isaacson’s energy-momentum tensor, see

Energy-momentum tensor: Isaacson’s
Isaacson, R.A., 640
Isothermal sphere, 79–81
Isotropic coordinates, see Schwarzschild spacetime:

coordinate systems
Israel’s uniqueness theorem, 264
Iteration of the field equations, see Einstein field

equations: relaxed formulation and iteration

Jackson’s Classical Electrodynamics, 1, 37
Jacobi ellipsoid, 101–102
Jacobi variables, see Equations of motion: three-body

system
Janeway, K., 215

Kant, I., 120
Kennefick, D., 554
Kepler’s equation, 148–149
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Kepler’s problem, 139–154
anomalies

eccentric, 147, 276
mean, 149
true, 148

conserved quantities
angular momentum, 141
energy, 142
Runge–Lenz vector, 149

frames (fundamental and orbital), 150–154
motion

circular, 144
elliptical, 146
hyperbolic and parabolic, 146
in time, 147–149

orbital elements, see Orbital elements: Keplerian
perturbed, see Osculating orbital elements
post-Newtonian, 487–489

Kick velocity, see Radiative losses: astrophysical
implications

Kovacs, S.J., 304
Kozai mechanism, see Osculating orbital elements:

Kozai mechanism
Kozai, Y., 164

Lagrange points in restricted three-body problem,
177–178

Lagrangian, see Action principle
Lagrangian displacement vector, see Fluid dynamics:

perturbations
Lagrangian perturbation, see Fluid dynamics:

perturbations
Lagrangian time derivative, see Fluid dynamics: time

derivative
Landau, L., 88
Landau–Lifshitz pseudotensor, see

Energy-momentum pseudotensor:
Landau–Lifshitz

Lane–Emden equation, see Polytropes: Newtonian
gravity

Laser Geodynamics Satellites (LAGEOS), 525–528
Laser Relativity Satellite (LARES), 527, 528
Le Verrier, U., 139, 480
Lense–Thirring effect, see Spin dynamics:

post-Newtonian gravity; Equations of motion:
spin–orbit and spin–spin interactions

Leslie, 200
Lidov, M., 164
LIGO/Virgo, 615, 653, 695
Line of nodes, see Orbital elements: Keplerian
Linearized gravity, see Einstein field equations:

linearized gravity
LISA/eLISA, 188, 615, 618
Local Lorentz frame, see Coordinate systems: local

Lorentz
Local Lorentz invariance, 706

Local position invariance, 701, 731–732
Local test experiment, 218, 702
Longitude of ascending node, see Orbital elements:

Keplerian
Longitude of pericenter, see Orbital elements:

Keplerian
Lorentz transformations, see Coordinate

transformations: Lorentz
Lorentz, H.A., 209, 442
Lorenz gauge, see Gauge: Lorenz
Lorenz, L.V., 209
Love numbers, see Deformed bodies: Love numbers
Love, A.E.H., 115
Lunar Laser Ranging, 492, 729–731
Luni-solar precession of Earth, 172–173

Maclaurin spheroids, 102–105
Maldor, 216
Mass

active gravitational, 3, 715–716
conservation in general relativity, 298
continuity equation, 6, 12, 204, 206, 329
definition

surface integral in general relativity, 297,
299

volume integral in general relativity, 295, 299,
338, 367

expression in post-Newtonian gravity
fluid, 407
N -body system, 443

function in spherical symmetry
general relativity, 265
Newtonian gravity, 28, 66

inertial, 3, 4, 715
material, 406
passive gravitational, 3, 4, 715–716
relativistic versus rest, 196

Mass-energy, see Mass; Energy
Massive compact halo object (MACHO), 506
Matter variables m, 302–303, 329, 740
Maxwell’s equations, see Electromagnetism
Maxwell-like formulation of post-Newtonian theory,

see Einstein field equations: Maxwell-like
formulation

Mean anomaly, see Kepler’s problem: anomalies
Meirong, 271
Metric

curved spacetime, 225–226
determinant, 229–230
flat spacetime, 192–193
gothic inverse, 291
N -body system, 430
post-Minkowskian (near zone), 360
post-Newtonian, 372, 378
PPN, see Parameterized post-Newtonian

framework: metric and parameters
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Schwarzschild, see Schwarzschild spacetime
spinning bodies, 457

Metric theories of gravity, 222–223, 700
Momentarily comoving Lorentz frame, see Reference

frames: momentarily comoving Lorentz
(MCLF)

Moments of inertia, 38, 559
axisymmetric body, 93
Earth, 187
neutron star, 562

Momentum
conservation in general relativity, 298, 634
definition

Newtonian mechanics, 18, 26
surface integral in general relativity, 297, 299
volume integral in general relativity, 295, 299

expression in post-Newtonian gravity
fluids, 349, 409
N -body system, 443
spinning bodies, 461

failure to be conserved in alternative theories, see
Parameterized post-Newtonian framework:
semi-conservative theories

loss to gravitational radiation, see Radiative losses:
momentum

Motion of isolated bodies, see Equations of motion:
N -body system

Motion of light, see Deflection of light; Geodesic
equation: massless particle

Moulton, F.R., 97
Multi-scale analysis, see Radiation reaction: orbital

evolution of binary system
Multipole moments, 36, 39, 44, 47

axisymmetric bodies (J�), 37
Newtonian quadrupole moment, 22, 551
of effective energy-momentum pseudotensor, 332
radiative, 567, 600, 603

Near zone, see Zones: near and wave
Near-zone metric, see Metric: post-Newtonian;

post-Minkowskian (near zone)
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Neutrinos, 69–70
Neutron stars, 88, 283–284, 561–562
Newcomb, S., 139
Newman–Penrose formalism, 620, 757
Newton’s Principia, 3, 29
Newtonian limit of general relativity, 262–263
Nordtvedt effect, see Dicke, R.H.: argument relating

Nordtvedt effect to variation of G; Lunar
Laser Ranging; Parameterized post-Newtonian
framework: experimental tests

Nordtvedt Jr, K., 704, 730, 750

Oblateness of the Sun, 168–169
Orbital elements

Keplerian, 147, 150–152
osculating, see Osculating orbital elements
post-Newtonian, 487–489
Schwarzschild spacetime, 273

Orbiting clocks, see Global Positioning System (GPS)
Osculating orbital elements

de Sitter precession, see de Sitter precession
Kozai mechanism, 164–166
method, 156–158
oblateness, 166–169
osculating equations, 158–160
post-Newtonian corrections, 484–486
radiation reaction, see Radiation reaction: orbital

evolution of binary system
secular changes, 160
spin–orbit interaction, 525–527
third body, 161–164
tidal interactions, 169–172

Painlevé–Gullstrand coordinates, see Schwarzschild
spacetime: coordinate systems

Parallel transport, 231
Parameterized post-Newtonian framework, 703–721

experimental tests, 721–732
deflection and delay of light, 723–724
Nordtvedt effect, 724–731
pericenter advance, 723
Preferred-frame and preferred-location effects,

731–732
fluid dynamics, 709–710
fully conservative theories, 708
locally measured gravitational constant, 717
masses, see Mass: active gravitational; inertial;

passive gravitational
metric and parameters, 704–706
motion of isolated bodies, 710–716

structure dependence, 714, 715
motion of light, 716–717
preferred-frame potentials, see Gravitational

potentials: preferred-frame
semi-conservative theories, 708
spin dynamics, 718–721
total momentum, 756
Whitehead potential, see Gravitational potentials:

Whitehead
Particle rest frame, see Reference frames: particle rest

frame
Passive gravitational mass, see Mass: passive

gravitational
Perfect fluid, see Fluid dynamics
Pericenter, 146, 272
Pericenter advance

post-Newtonian gravity, see Osculating orbital
elements: post-Newtonian corrections

PPN gravity, see Parameterized post-Newtonian
framework: experimental tests
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Pericenter advance (cont.)
Schwarzschild spacetime, see Schwarzschild

spacetime: motion of massive particle
Perihelion advance of Mercury, 139, 168, 723
Philosophiae Naturalis Principia Mathematica, see

Newton’s Principia
Picard, J.L., 215
Point particle

general relativity, 249–250
energy, measured by observer, 244
energy-momentum tensor, 250
mass current, 249

post-Newtonian gravity, 474–478
regularization, 475–477

special relativity, 210–213
charge current, 212
energy, measured by observer, 196
energy-momentum tensor, 212
mass current, 212

Poisson’s equation
linearized gravity, 261
Newtonian gravity, 6, 28
post-Newtonian gravity, 342, 351, 352, 354, 359,

379–380
Polarizations, see Gravitational waves: polarizations
Polytropes

general relativity, 281–283
Newtonian gravity, 71–79

Post-Coulombian expansion, see Expansions:
post-Coulombian

Post-Galilean transformation, see Coordinate
transformations: post-Newtonian

Post-Minkowskian expansion, see Expansions:
post-Minkowskian

Post-Newtonian expansion, see Expansions:
post-Newtonian

Potentials, see Gravitational potentials
Pound, A., 688
Preferred-frame effects, see Parameterized

post-Newtonian framework: experimental tests
Proper distance, 191
Proper spin, see Spin dynamics: definitions of spin
Proper time, 191, 194
PSR 1913+16, see Binary pulsar: Hulse–Taylor
PSR J0737-3039, see Binary pulsar: double pulsar
Pugh, G.E., 523

Quadrupole formula
controversy, 553–555
for energy radiated, see Radiative losses: energy
for gravitational waves, see Gravitational waves: at

0pn order (quadrupole formula)
Quadrupole moment, see Multipole moments:

Newtonian quadrupole moment
Quasi-local Lorentz frame, see Reference frames:

quasi-local Lorentz

Racine, E., 382
Radau’s equation, see Deformed bodies:

Clairaut–Radau equation
Radau, R., 116
Radiation reaction

electromagnetism, 629–631
force

fluid, 668
N -body system, 675
two-body system, 676

metric, 666
orbital evolution of binary system, 683–692
potentials, 664–666
two-parameter family of gauges, 678–683

balance equations, 682–683
Burke–Thorne gauge, 679–681
Damour–Deruelle gauge, 682
Schäfer gauge, 679, 682

Radiative losses
angular momentum

balance at 2.5pn order, 672–673
flux at 2.5pn order, 643
flux at all orders, 638

astrophysical implications
binary pulsars, 650–653
black-hole kicks, 656–657
inspiralling compact binaries, 653–655

energy
balance at 2.5pn order, 668–671
electric dipole formula, 629
flux at 2.5pn order (quadrupole formula),

643
flux at all orders, 637

momentum
balance at 2.5pn order, 671–672
flux at 3.5pn order, 643
flux at all orders, 637

Newtonian binary system, 644–650
Radiative multipole moments, see Multipole

moments: radiative
Reference frames

accelerated, 221, 285
barycentric, 141, 511
center-of-mass, 19, 300
comoving, 64, 391–392
fundamental and orbital, see Kepler’s problem:

frames (fundamental and orbital)
geocentric (rotating and non-rotating), 511
inertial

general relativity (freely moving), 219
special relativity, 190

local Lorentz, see Coordinate systems: local
Lorentz

momentarily comoving Lorentz (MCLF),
194

particle rest-frame, 196–198
quasi-local Lorentz, 701
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rotating, see Coordinate transformations: rotating
frame

universe rest frame, 702, 707
Regularization, see Point particle: post-Newtonian

gravity
Relativistic mass, see Mass: relativistic versus rest
Relaxed Einstein field equations, see Einstein field

equations: relaxed formulation and iteration
Representative world line for spinning body, see Spin

dynamics: definitions of spin
Rest frame of the universe, see Reference frames:

universe rest frame
Restricted three-body problem, see Equations of

motion: three-body problem
Retarded time, 316, 540
Ricci scalar and tensor, see Curvature tensors: Ricci
Riemann normal coordinates, see Coordinate systems:

Riemann normal
Riemann tensor, see Curvature tensors: Riemann
Rindler, W., 221
Robertson, H.P., 386, 554
Rosen, N., 553
Rosenblum, A., 361, 554
Rotating bodies, 89–105, see Deformed bodies:

rotational deformation
Runge–Lenz vector, see Kepler’s problem: conserved

quantities

Sagnac effect, see Time: synchronization in a rotating
frame

Sagnac, G., 515
Scalar–tensor gravity

action principle, 740–741
black holes, 758
conformal transformation of metric, 740
field equations, 741
gravitational constant, 747
gravitational waves, 755

dipole waves, 754–755
monopole waves, 754

near-zone metric and PPN parameters, 748–749
post-Minkowskian formulation, 743
slow-motion condition, 743–746

Schäfer radiation-reaction gauge, see Radiation
reaction: two-parameter family of gauges

Schiff precession, see Spin dynamics: post-Newtonian
gravity

Schiff, L.I., 523
Schwarzschild interior solution, 280–281
Schwarzschild spacetime, 266–279

coordinate systems
harmonic, 269–270
isotropic, 268–269
Painlevé–Gullstand, 270–272
Schwarzschild, 267

derivation in Landau–Lifshitz formulation, 368

motion of massive particle, 272–276
motion of massless particle, 276–279

Schwarzschild, K., 264
Second iteration of relaxed Einstein equations, see

Einstein field equations: relaxed formulation
and iteration

Semi-latus rectum, see Orbital elements
Semi-major axis, see Orbital elements
Shapiro time delay, 507–509

alternative theories, see Parameterized
post-Newtonian framework: experimental tests

Shapiro, I.I., 508
Shortwave approximation, see Expansions: shortwave
Simple precession, see Spin dynamics:

post-Newtonian gravity
Slow-motion condition, 312, 360

hierarchy between tensor components, 330
Spherical bodies

field equations
general relativity, 280
Newtonian gravity, 28–30, 66–67

hydrostatic equilibrium, see Fluid dynamics:
hydrostatic equilibrium

incompressible fluid
general relativity, see Schwarzschild interior

solution
Newtonian gravity, 70–71

isothermal sphere, see Isothermal sphere
polytropes, see Polytropes

Spherical harmonics, 31–33
addition theorem, 36

Spherical trigonometry, 498–499
Spin dynamics

changes to center-of-mass, see Center-of-mass:
expression in post-Newtonian gravity

changes to metric, see Metric: spinning bodies
changes to momentum, see Momentum: expression

in post-Newtonian gravity
definitions of spin, 57, 454–455

choice of representative world line,
470–472

comoving or proper, 466
Newtonian gravity, 57–60
post-Newtonian gravity

precession equations, 461–462, 474, 521–523,
529

simple precession, 530–532
spin–orbit (geodetic) precession, 523
spin–spin (Schiff) precession, 523, 532–534

PPN gravity, see Parameterized post-Newtonian
framework: spin dynamics

tidal dissipation, see Tides: tidal dissipation (lag
and lead)

Spin supplementary condition, see Spin dynamics:
definitions of spin

Spin–orbit acceleration, see Equations of motion:
spin–orbit and spin–spin interactions
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Spin–spin acceleration, see Equations of motion:
spin–orbit and spin–spin interactions

Spinning bodies, see Equations of motion: spin–orbit
and spin–spin interactions; Rotating bodies;
Spin dynamics

Standard post-Newtonian gauge, see Gauge: standard
post-Newtonian

Stress-energy tensor, see Energy-momentum tensor
Strong equivalence principle, see Equivalence

principles: strong
Structure integrals for fluid bodies, see Fluid bodies:

structure integrals
Superduperpotential, see Gravitational potentials:

superduperpotential
Superpotential, see Gravitational potentials:

superpotential
Symmetric tracefree tensors, 38–45

identities, 41–43
relation with spherical harmonics, 43–44

Taylor, J.H., 554, 651
Tests of gravitation theories, see Parameterized

post-Newtonian framework: experimental tests
Tests of special relativity, 191–192
Thermodynamics, see Fluid dynamics:

thermodynamics
Thorne, K.S., 304, 638
Three-body problem, see Equations of motion:

three-body problem
Tides, 119–134

dynamical, 127–134
static, 120–123
tidal dissipation (lag and lead), 123–127
tidal potential, 121
tidal quadrupole moment for N -body system, 123

Time
brief history, 509–511
synchronization in a rotating frame, 515–516
Temps Atomique International, 514

Time delay of light, see Shapiro time delay
Time of pericenter passage, see Orbital elements:

Keplerian
Transverse tracefree gauge, see Gauge: transverse

tracefree (TT)

Transverse tracefree projection, 546–547
True anomaly, see Kepler’s problem: anomalies

Uniform gravitational field, 221

Very Long Baseline Radio Interferometry (VLBI), 2,
500

Virial identities, see Fluid bodies: virial identities
Virial theorem, 22–23, 180, 552, 669
von Soldner, J., 501

Warped time and Newtonian gravity, 223–224
Wave equation, see Einstein field equations: relaxed

formulation
curved spacetime, 247, 270, 303–304
decomposition of solution into near-zone and

wave-zone contributions, 313–314
dipole solution, 312–313
flat spacetime, 209, 302, 308
general solution, 324–325
Green’s function, see Green’s function: wave

equation
Wave zone, see Zones: near and wave
Weak equivalence principle, see Equivalence

principles: weak
Weber, J., 615
Wheeler, J.A. (and his maxim), 251, 303
White dwarfs, 81–89

equation of state, see Equation of state: degenerate
fermions

Landau’s argument, 88–89
maximum mass, see Chandrasekhar limit

Whitehead potential, see Gravitational potentials:
Whitehead

Whitehead, A.N., 699
Wiseman, A.G., 648
World line, 194–196

Zones
body, post-Newtonian, and overlap, 446
boundary between near and wave zones, 313
far-away wave, 316, 540–541
near and wave, 311
neutral, 215
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