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Foreword

The theory of special relativity holds a distinctive place within physics. Rather
than being a specific physical theory, it is (similar to thermodynamics or analytical
mechanics) a general theoretical framework within which various dynamical theo-
ries can be formulated. In this respect, a modern presentation of special relativity
must put forward its essential structures before illustrating them by concrete
applications to specific dynamical problems. Such is the challenge (so successfully
met!) of the beautiful book by Éric Gourgoulhon.

Contrary to most textbooks on special relativity, which mix the presentation
of this theory with that of its historical development and which sometimes write
the specific form of “Lorentz transformations” before indicating that they leave a
certain quadratic form invariant, the book by Éric Gourgoulhon is centred, from the
very beginning, on the essential structure of the theory, i.e. the chrono-geometric
structure of the four-dimensional Poincaré–Minkowski spacetime. The aim is to
train the reader to formulate any relativity question in terms of four-dimensional
geometry. The word geometry has here the meaning of “synthetic geometry” (à
la Euclid) in contrast with “analytic geometry” (à la Descartes). Under the expert
guidance of Éric Gourgoulhon, the reader will learn to set, and to solve, any problem
of relativity by drawing spacetime diagrams, made of curves, straight lines, planes,
hyperplanes, cones and vectors. He will get accustomed to visualizing the motion
of a particle as a line in spacetime, to think about the twin paradox as an application
of the “spacetime triangle inequality”, to express the local frame of an observer as
a four-dimensional generalization of the Serret–Frenet triad, to compute a spatial
distance as a geometric mean of time intervals (via the hyperbolic generalization of
the power of a point with respect to a circle) or to understand the Sagnac effect by
considering two helices in spacetime wound in opposite directions.

Besides the pedagogical characteristic of being centred on a geometric formu-
lation, the book by Éric Gourgoulhon is remarkable in many other ways. First
of all, it is fully up to date and very complete in its coverage of the notions and
results where special relativity plays an important role: from Thomas precession to
the foundations of general relativity, including tensor calculus, exterior differential
calculus, classical electrodynamics, the general notion of energy–momentum tensor
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viii Foreword

and a noteworthy chapter on relativistic hydrodynamics. In addition, this book is
sprinkled with enlightening historical notes, in which the author summarizes in
a condensed, albeit very informative way the (sometimes very recent) results by
historians of science. Finally, the book is richly laden with many examples of
applications of special relativity to concrete physical problems. The reader will
learn the role of special relativity in various domains of modern astrophysics
(supernova nebulae, relativistic jets, micro-quasars) in the description of the quark-
gluon plasma produced in heavy ion collisions, as well as in many high-technology
experiments: from laser gyrometers to the LHC, including modern replications of
the Michelson–Morley experiment, matter wave interferometers, synchrotrons and
their radiation, and the comparison of atomic clocks embarked on planes, satellites
or the International Space Station.

I am sure that the remarkably rich book by Éric Gourgoulhon will attract the keen
interest of many readers and will enable them to understand and master one of the
fundamental pillars (with general relativity and quantum theory) of modern physics.

Bures-sur-Yvette, France Thibault Damour



Preface

This book presents a geometrical introduction to special relativity. By geometrical,
it is meant that the adopted point of view is four dimensional from the very
beginning. The mathematical framework is indeed, from the first chapter, that of
Minkowski spacetime, and the basic objects are the vectors in this space (often called
4-vectors). Physical laws are translated in terms of geometrical operations (scalar
product, orthogonal projection, etc.) on objects of Minkowski spacetime (4-vectors,
worldlines, etc.).

Many relativity textbooks start rather by a three-dimensional approach, using
space + time decompositions based on inertial observers. Only in the second stage
they introduce 4-vectors and Minkowski spacetime. In this respect, they are faithful
to the historical development of relativity. A more axiomatic approach is adopted
here, setting from the very beginning the full mathematical framework as one of
the postulates of the theory. From this point of view, the chosen approach is similar
to that adopted in classical mechanics or quantum mechanics, where usually the
exposition does not follow the history of the theory. The history of relativity is
undoubtedly rich and fascinating, but the objective of this book is the learning of
special relativity within a consistent and operational setting, from the bases up to
advanced topics. The text is, however, enriched with historical notes, which include
references to the original works and to the studies by historians of science.

Usually, the geometric approach is reserved for general relativity, i.e. for the
incorporation of the gravitational field in relativity theory.1 We employ it here
for special relativity, taking into account a geometric structure much simpler than
that of general relativity: while the latter is based on the concept of differentiable
manifold, special relativity relies entirely on the concept of affine space, which can
be identified with the space R

4. Consequently, the mathematical prerequisites are
relatively limited; they are mostly linear algebra at the level of the first two years
of university. The mathematics used here is actually the same as those of a course

1Two notable exceptions are the monographs by Costa de Beauregard (1949) and Synge (1956).
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x Preface

of classical mechanics, provided one is ready to take into account two things: (i)
vectors do not belong to a linear space of dimension three, but four, and (ii) the scalar
product of two vectors is not the standard scalar product in Euclidean space but is
given by a privileged symmetric bilinear form, the so-called metric tensor. Once
this is accepted, physical results are obtained faster than by means of the “classic”
three-dimensional formulation, and a more profound understanding of relativity is
acquired. Moreover, learning general relativity is made much easier, starting from
such an approach.

In connection with the four-dimensional approach, another characteristic of this
monograph is to lay the discussion of physically measurable effects on the most
general type of observer, i.e. allowing for accelerated and rotating frames. On
the opposite, most of (all?) special relativity treatises are based on a privileged
class of observers: the inertial ones. Although it is true that for these observers
the perception of physical phenomena is the simplest one (for instance, for an
inertial observer, light in vacuum moves along a straight line and at a constant
speed), the real world is made of accelerated and rotating observers. Therefore, it
seems conceptually clearer to discuss first the measures performed by a generic
observer and to treat afterwards the particular case of inertial observers. Conversely,
if one restricts first to inertial observers, it becomes cumbersome to extend the
discussion to general observers. As a matter of fact, this is to a great extent the
source of the various “paradoxes” that appeared in the course of the development
of relativity. As mentioned above, the three-dimensional approach to relativity is
based on inertial observers, since one may associate with each observer of this kind
a global decomposition of spacetime in a “time” part and a “space” part.

One of the consequences of the “general observer” approach adopted here is the
least weight attributed to the famous Lorentz transformation between the frames of
two inertial observers. This transformation, which is usually introduced in the first
chapter of a relativity course, appears here only in Chap. 6. In particular, the physical
effects of time dilation or aberration of light are derived (geometrically) in Chaps. 2
and 4, without appealing explicitly to the Lorentz transformation. Similarly, the
principle of relativity, on which special relativity has been founded at the beginning
of the twentieth century (hence its name!), is mentioned here only in Chap. 9, at the
occasion of a historical note.

The plan of the book is as follows. The full mathematical framework (Minkowski
spacetime) is set in Chap. 1. The concepts of worldline and proper time are then
introduced (Chap. 2) and are illustrated by a detailed exposition of the famous
“twin paradox”. Chapter 3 is entirely devoted to the definition of an observer and
his (local) rest space. This is done in the most general way, taking into account
acceleration as well as rotation. The notion of observer being settled, we are
in position to address kinematics. This is performed in two steps: (i) by fixing
the observer in Chap. 4 (introduction of the Lorentz factor, as well as relative
velocity and relative acceleration) and (ii) by discussing all the effects induced
by a change of observer in Chap. 5 (laws of velocity composition and acceleration
composition, Doppler effect, aberration, image formation, “superluminal” motions
in astrophysics). The two chapters that follow are entirely devoted to the Lorentz
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group, exploring its algebraic structure (Chap. 6), with the introduction of boosts
and Thomas rotation, and its Lie group structure (Chap. 7). Chapter 8 focuses on the
privileged class of inertial observers, with the introduction of the Poincaré group and
its Lie algebra. The dynamics starts in Chap. 9, where the notion of 4-momentum
is presented, as well as the principle of its conservation for any isolated system.
On its side, Chap. 10 is devoted to the conservation of angular momentum and to
the concepts of centre of inertia and spin. Relativistic dynamics is subsequently
reformulated in Chap. 11 by means of a principle of least action. The conservation
laws appear then as consequences of Noether theorem. A Hamiltonian formulation
of the dynamics of relativistic particles is also presented in this chapter. Chapter 12
focuses on accelerated observers, discussing kinematical aspects (Rindler horizon,
clock synchronization, Thomas precession) as well as dynamical ones (spectral
shift, motion of free particles). A second type of non-inertial observers is studied
in Chap. 13: the rotating ones. This chapter ends with an extensive discussion of the
Sagnac effect and its application to laser gyrometers in inertial guidance systems on
board airplanes.

The second part of the book opens in Chap. 14, where the physical object
under focus is no longer a particle but a field. This part starts by three purely
mathematical chapters to introduce the notions of tensor (Chap. 14), tensor field
(Chap. 15) and integration over a subdomain of spacetime (Chap. 16). Among
other things, these chapters present the p-forms and exterior calculus, which are
very useful not only for electromagnetism but also for hydrodynamics. We felt
necessary to devote an entire chapter to integration in order to introduce with
enough details and examples the notions of submanifold of Minkowski spacetime,
area and volume element; integral of a scalar or vector field; and flux integral.
The chapter ends by the famous Stokes’ theorem and its applications. Equipped
with these mathematical tools, we proceed to electromagnetism in Chap. 17. Here
again, the emphasis is put on the four-dimensional aspect: the electromagnetic field
tensor F is introduced first, and the electric and magnetic field vectors

#»

E and
#»

B

appear in a second stage. The motion of charged particles and the various types
of particle accelerators are discussed in this chapter. Chapter 18 presents Maxwell
equations, here also in a four-dimensional form, which is intrinsically simpler than
the classical set of three-dimensional equations involving

#»

E and
#»

B. The Liénard–
Wiechert potentials are derived in this chapter, leading to the electromagnetic
field generated by a charged particle in arbitrary motion. Chapter 19 introduces
the concept of energy–momentum tensor, a fundamental tool for the dynamics of
continuous media in relativity. The principles of conservation of energy–momentum
and angular momentum are notably presented in a “continuous” version, as opposed
to the “discrete” version considered in Chaps. 9 and 10. The energy–momentum
of the electromagnetic field can then be discussed in depth in Chap. 20. In that
chapter, the energy and momentum radiated away by a moving charge are computed.
A particular case is constituted by synchrotron radiation, whose applications in
astrophysics and in synchrotron facilities are discussed. Chapter 21 introduces
relativistic hydrodynamics, first in a standard form and next making use of the
exterior calculus presented in Chaps. 14–16. The latter approach facilitates greatly
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the derivation of relativistic generalizations of the classical theorems of fluid
mechanics. Two particularly important and contemporary applications are explored
in this chapter: relativistic jets in astrophysics and the quark-gluon plasma produced
in heavy ion colliders. At last, the book ends by the problem of gravitation
(Chap. 22): after some discussion about the unsuccessful attempts to incorporate
gravitation in special relativity, the theory of general relativity is briefly introduced.
Let us point out that the study of accelerated observers performed in Chap. 12
allows one, via the equivalence principle, to treat easily some relativistic effects
of gravitation, such as the gravitational redshift or the bending of light rays.

The book contains six purely mathematical chapters (Chaps. 1, 6, 7, 14, 15
and 16). The aim is to introduce in a consistent and gradual way all the tools required
for special relativity, up to rather advanced topics. As a monograph devoted to a
theory whose foundations are more than a hundred years old, the book does not
contain any truly original result. One may, however, note the general expression of
the 4-acceleration of a particle in terms of its acceleration and velocity both relative
to a generic observer (i.e. accelerated or rotating) [Eq. (4.60)]; the composition
law of relative accelerations resulting from a change of observer and providing the
relativistic generalization of centripetal and Coriolis accelerations [Eq. (5.56)]; the
complete classification of restricted Lorentz transformations from a null eigenvector
(Sect. 6.4); the elementary and relatively short derivation of Thomas rotation in the
most general case (Sect. 6.7.2); the expressions of energy and momentum relative
to an observer, taking into account the acceleration and rotation of that observer
[Eqs. (9.12) and (9.13)]; the computation of the discrepancy between the rest space
of an observer and his simultaneity hypersurface (Sect. 12.3); the expression of
the 4-acceleration of an observer in terms of physically measurable quantities
[Eq. (12.73)]; the equation of motion of a free particle in Rindler coordinates
[Eqs. (12.75) and (12.82)]; and the demonstration that the nonrelativistic limit of
the canonical equation of fluid dynamics is the Crocco equation (Sect. 21.5.4).

One of the book’s limitations is the classical domain: no topic related to quantum
mechanics is treated. In particular, spinors and representations of the Poincaré
group are not discussed (see, e.g., Cartan (1966), Naber (2012), Penrose and
Rindler (1984), Naı̈mark (1962)). Although these notions are not quantum by
themselves, they are mostly used in relativistic quantum theory, notably to write
Dirac equation—which we do not address here.

Notes

Notations: In order to facilitate the reading, mathematical notations and symbols
introduced in the course of the text are collected in the notation index (p. 761).
Throughout the text, the abbreviation iff stands for if, and only if.

Web page: The page http://relativite.obspm.fr/sperel is devoted to the book. It
contains the errata, the clickable list of bibliographic references, all the links

http://relativite.obspm.fr/sperel
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listed in Appendix B, as well as various complements. The reader is invited to
use this page to report any error that he/she may find in the text.

This book has been first published in French language by EDP Sciences & CNRS
Editions in 2010 (Gourgoulhon 2010). The differences with respect to that version
are rather minor: they regard some improvements in the presentation and in the
figures, as well as some updates in the bibliography.

Meudon, France Éric Gourgoulhon
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Valentin, who gave a precious help in tracking errors and typos in the French edition.
Parts of the English version have been read by Michał Bejger, Isabel Cordero-
Carrión, Fabian Laudenbach, Luciano Rezzolla, Pierre Spagnou, Francisco Uiblein
and Jean-Bernard Zuber, who provided valuable remarks and corrections. I also
thank Piotr Chrusciel for his help and Ute Kraus and Daniel Weiskopf for their kind
permission to reproduce Figs. 5.12 and 5.15. I warmly thank Thibault Damour who
made me the honour of writing the foreword.

My gratitude goes also to the staff of the library of Observatoire de Paris
(Meudon campus) for their kindness and efficiency. Furthermore, I have the luck
to work in a laboratory with an administrative and technical staff who are both nice
and competent. Thanks then to Jean-Yves Giot, Virginie Hababou, David Lépine,
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Chapter 1
Minkowski Spacetime

1.1 Introduction

This first chapter is purely mathematical: there is no direct mention of physical
objects. The aim is to set the geometrical framework for special relativity, i.e. to
introduce Minkowski spacetime. Later on, when dealing with physics, the outcomes
of measurements will be modelled as mathematical operations in that space, such as
scalar products.

Let us point out that the mathematics required for the foundations of special
relativity are rather elementary. They involve linear algebra at the level of the first
two years of university. For the benefit of the reader, the definitions of the basic
algebraic structures are recalled in Appendix A.

1.2 The Four Dimensions

1.2.1 Spacetime as an Affine Space

Relativity has performed the fusion of space and time, two entirely distinct concepts
in Galilean mechanics. Four numbers are required to determine an event in the
“space-and-time continuum”: three for its spatial position (for instance its Cartesian
coordinates .x; y; z/ or the spherical ones .r; �; '/) and one for its date. The general
mathematical structure corresponding to such a four-dimensional continuum is a
manifold. Without entering into technical details,1 let us say that, given an integer
n � 1, a manifold of dimension n is a set that “locally resembles” Rn (in the present
case n D 4), but may differ from R

n at a global scale. Regarding the dimension

1The precise definition of a manifold will be given in Sect. 7.2.1.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Minkowski Spacetime

Fig. 1.1 Affine space E and the underlying vector space E (for graphical purposes, the dimension
of E is reduced to 2, whereas the actual dimension of spacetime is 4)

n D 2, standard examples of manifolds are the plane, the cylinder, the sphere and
the torus.

As far as special relativity is concerned, the chosen manifold is the simplest that
one could imagine, namely, an affine space of dimension 4. We are familiar with
the structure of affine space of dimension 3. It involves the notion of points that can
be joined two by two by vectors. More precisely (cf. Fig. 1.1 and Berger (1987a)),
an affine space of dimension n on R is a non-empty set E such that there exists a
vector space2 E of dimension n on R and a mapping3

V W E � E �! E

.A;B/ 7�! V .A;B/ DW #    »
AB

(1.1)

that obeys the following two properties:

• For any pointO 2 E , the function

VO W E �! E

M 7�! #      »
OM

(1.2)

is bijective.
• For any triplet .A;B; C / of elements of E , Chasles’ relation holds:

#    »
AB C #    »

BC D #    »
AC : (1.3)

The elements of E are called points and E is called the vector space underlying E .

2The definition and basic properties of a vector space are recalled in Appendix A.
3In all the text, we use the symbols WD and DW to denote a definition, the defined object standing
on the side of the ‘W’. In the present case, this means that

#    »

AB is defined as being V .A; B/.
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Example 1.1. An affine space of dimension 1 is a straight line and an affine space
of dimension 2 is a plane. Still in dimension 2, a counterexample is a sphere.

Choosing for spacetime a structure as simple as an affine space is sufficient to
treat electromagnetism, hydrodynamics and relativistic quantum field theory. On
the other side, it does not allow one to incorporate gravitation into relativity in a
satisfactory manner. We will see in Chap. 22 that relativistic gravity requires the
general notion of a manifold, not reduced to an affine space; this is the realm of
general relativity, which we shall not treat in this book (beside the brief presentation
in Sect. 22.4).

Accordingly, in what follows, we shall call spacetime, and denote by E , an
affine space of dimension 4 on R. We shall note E the underlying vector
space, which is isomorphic to R

4. The elements of E are called events and
those of E are called vectors, or four-vectors, abridged as 4-vectors.

Remark 1.1. The term four-vector or 4-vector introduced by the physicist stands
for nothing but a vector for the mathematician, that is to say the element of a
vector space (E in the present case). The prefix “4-” simply recalls that such
a vector belongs to a vector space of dimension 4 on R. These vectors are
hence distinguished from the vectors of three-dimensional vector spaces usually
manipulated by the non-relativist physicist. Since in this book the framework is
four-dimensional from the very beginning, we shall not use the word 4-vector and
shall refer to the elements of E simply as vectors.

1.2.2 A Few Notations

Vectors in E are denoted by boldface characters with an arrow above them, for
instance: #»u , #»v and #»e 0. The components of a vector with respect to a basis of E
are denoted with an index placed at the top right of the vector symbol, ranging from
0 to 3 (and not from 1 to 4). Hence if . #»e 0;

#»e 1;
#»e 2;

#»e 3/ is a vector basis of E , the
components of a vector #»v with respect to it are the four real numbers .v0; v1; v2; v3/
such that

#»v D v0 #»e 0 C v1 #»e 1 C v2 #»e 2 C v3 #»e 3 D
3X

˛D0
v˛ #»e ˛ (1.4)

Remark 1.2. The index of a vector component lies in the upper position (e.g. v0)
and not in the lower one (e.g. v0). This writing will be fully justified in Chap. 14.

Summations over an index ranging from 0 to 3, as in (1.4), are very frequent,
therefore justifying the use of an abridged notation, named Einstein summation
convention: the signs

P
are suppressed and each time an index appears twice in a
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formula, in an upper position and a lower one, the summation is implicit over all the
values taken by the index. Moreover, the index range is 0 to 3 if it is a letter from
the Greek alphabet (˛; ˇ; : : :) and 1 to 3 only if it is a letter from the Latin alphabet
.i; j; : : :/. Hence formula (1.4) will be written as

#»v D v˛ #»e ˛ D v0 #»e 0 C vi #»e i : (1.5)

Remark 1.3. As mentioned above, all implicit summations are to be taken over an
index that appears both in an upper and a lower position, as in (1.5). If, in some rare
cases, a summation must be performed over indices located at the same level, we
shall make it explicit by reintroducing the symbol

P
.

1.2.3 Affine Coordinate System

One defines an affine coordinate system on E , also called a affine frame of E , as the
set formed by a pointO 2 E and a basis . #»e 0;

#»e 1;
#»e 2;

#»e 3/ ofE . Each pointM 2 E
is then characterized by its affine coordinates .x0; x1; x2; x3/, which constitute the
unique 4-tuple of real numbers such that

#      »
OM D x˛ #»e ˛: (1.6)

The pointO is called the origin of the considered affine coordinate system.

Remark 1.4. Affine coordinates constitute an “identification tag” of points of E that
is purely mathematical. In Chap. 3, we shall introduce a physical coordinate system
based on the notion of observer.

1.2.4 Constant c

Considering E as a four-dimensional space describing both “space” and “time”
means implicitly that the same physical dimension is given to space and time,
otherwise summations like (1.6) would be meaningless, since they amount to adding
a duration to a length. By convention, we shall choose this common dimension to
be that of a length, the corresponding SI unit being the metre. To recover times with
the usual dimension, one shall introduce a conversion factor with the dimension of
a velocity: this is the constant4

c WD 2:99792458� 108 m s�1 : (1.7)

4Cf. footnote 3 p. 2.
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Fig. 1.2 Newtonian spacetime ENewt. Two dimensions have been suppressed, so that the affine
space ENewt is drawn as a plane. ENewt is foliated by the hyperplanes ˙t (reduced here to horizontal
straight lines but being actually three-dimensional) that represent the successive states of the
Newtonian absolute space

Taking the risk to kill the suspense, let us tell at once that this constant corresponds
to the speed of light in vacuum as measured by an inertial observer, as we shall see
explicitly in Sect. 4.6.2.

1.2.5 Newtonian Spacetime

While Newtonian physics has developed without this concept, one may perfectly
speak about spacetime regarding it. The Newtonian spacetime ENewt is then an affine
space of dimension 4, as the affine space E of special relativity discussed above.
The difference is that ENewt is equipped with a particular structure that implements
Newton’s concepts of absolute time and absolute space. This structure consists
in the foliation by a family .˙t /t2R of affine subspaces of dimension 3: each ˙t

is Newton’s absolute space at Newton’s absolute time t (cf. Fig. 1.2). An affine
subspace of dimension 3 of an affine space of dimension 4 is called a hyperplane.
The corresponding subspace of the vector space underlying the affine space is called
a vector hyperplane. Let us recall that more generally, the prefix hyper stands for a
subspace of dimension one unit less than the ambient space.

In pictorial terms (cf. Fig. 1.2), one may say that the Newtonian spacetime is the
pile of “portraits” of the absolute space at all the successive instants of absolute time:

ENewt D
[

t2R
˙t : (1.8)
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The foliation .˙t /t2R is the mathematical translation of the concept of Newtonian
simultaneity: the date t of a given event is the same for all observers, thereby
defining the Newtonian absolute time.

Remark 1.5. The concept of spacetime introduced above is not very fruitful in
Newtonian physics. One usually considers instead the evolution along the time t
of the three-dimensional space ˙t .

Historical note: The mention of time as a fourth dimension can be found in texts
dating back to the eighteenth century (Archibald 1914): it is present in the article
dimension of the famous Encyclopédie by D. Diderot and J. Le Rond d’Alembert
and in the Traité des fonctions analytiques by J.L. Lagrange (1797). One may
also mention the representation of train timetables as spacetime diagrams in the
nineteenth century (a reproduction of which can be found on p. 55 of Hartle’s
book (Hartle 2003)). But it is only after the advent of special relativity that a
truly four-dimensional formalism has been developed to recast Newtonian physics,
notably by Élie Cartan5 in 1923–1925 (Cartan 1923, 1924, 1925) and Edward
Milne6 in 1934 (Milne 1934).

1.3 Metric Tensor

The spacetime of special relativity, E , and the Newtonian spacetime, ENewt, are both
affine spaces of dimension 4 on R. The distinction between the two theories lies at
the level of the fundamental structures introduced on these two spaces. We have seen
in the preceding subsection that for ENewt, the fundamental structure is the foliation
by the subspaces ˙t representing the state of the Newtonian three-dimensional
space at the absolute time t . For the relativistic spacetime E , the fundamental
structure is rather different. It is provided by the metric tensor, which we shall now
introduce.

1.3.1 Scalar Product on Spacetime

In nonrelativistic classical physics, where the spacetime ENewt is generally not
considered, the basic framework is the Newtonian absolute space (denoted by ˙t

in Sect. 1.2.5). The latter is an affine space of dimension 3 on R. The basic objects

5Élie Cartan (1869–1951): French mathematician, founder of the calculus on differential forms
(the so-called exterior calculus, which we shall introduce in Sect. 15.5); Élie Cartan was very
interested in special and general relativity; he was the father of Henri Cartan, a founding member
of the Bourbaki group.
6Edward A. Milne (1896–1950): British astrophysicist, well known for having developed a model
of an expanding universe within Newtonian gravitation.
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are then the vectors7 #»v of the underlying vector space (isomorphic to R
3). On this

vector space, an important structure is the scalar product of two vectors:

#»u � #»v D u1v1 C u2v2 C u3v3; (1.9)

where the ui ’s and vi ’s are the components of vectors #»u and #»v in some orthonormal
basis. The scalar product is at the basis of all the geometry. It notably allows one to
define the norm of a vector, the angle between two vectors and the orthogonality
between two subspaces (for instance, between a straight line and a plane). The
scalar product (1.9), which involves only C signs between the ui vi terms, is called
Euclidean.

The geometry of relativistic physics differs from that of Newtonian physics in
two ways:

1. As discussed above, the base space is no longer of dimension 3, but of dimension
4 (it “includes time”!).

2. The employed scalar product is no longer Euclidean: there exists a vector basis
of E where it takes the form #»u � #»v D �u0v0 C u1v1 C u2v2 C u3v3, whereas a
Euclidean scalar product would contain onlyC signs, as in (1.9).

More precisely, the vector space E underlying the spacetime E is endowed with
a symmetric bilinear form g that is nondegenerate and of signature .�;C;C;C/.
Let us recall that:

• Bilinear form means that g is a function E � E �! R (i.e. it associates with
any pair of vectors . #»u ; #»v / the real number g. #»u ; #»v /) that is linear with respect
to each of its arguments: for any � 2 R and . #»u ; #»v ; #»w/ 2 E3,

g.� #»u ; #»v / D �g. #»u ; #»v /; g. #»u ; � #»v / D �g. #»u ; #»v /;

g. #»u C #»v ; #»w/ D g. #»u ; #»w/C g. #»v ; #»w/;

g. #»u ; #»v C #»w/ D g. #»u ; #»v /C g. #»u ; #»w/:

• Symmetric means that g. #»v ; #»u / D g. #»u ; #»v / for any pair . #»u ; #»v / 2 E2.
• Nondegenerate means that there does not exist any vector #»u but the zero vector

satisfying 8 #»v 2 E; g. #»u ; #»v / D 0.
• Of signature .�;C;C;C/ means that there exists a basis of the vector space E

such that g. #»u ; #»v / is expressed in terms of the components .u˛/ and .v˛/ of #»u
and #»v with respect to this basis as follows:

g. #»u ; #»v / D �u0v0 C u1v1 C u2v2 C u3v3: (1.10)

7The vectors belonging to spaces of dimension 3 are denoted by a non-boldface symbol to
distinguish them from vectors in E (the 4-vectors).
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Thanks to a classical result of linear algebra, Sylvester’s law of inertia (Berger
1987b; Deheuvels 1981), in any other basis where g. #»u ; #»v / has a diagonal
writing (i.e. without any cross term like u0v1), g. #»u ; #»v / is the algebraic sum
of four terms, one of which has a minus sign and the remaining three of them
have a plus sign, as in (1.10). This property is therefore independent of the basis
where g is diagonalized: it is intrinsic to g and actually sets all the properties
of g, hence the term signature.

The signature .�;C;C;C/ is qualified as Lorentzian, whereas the signature
.C;C;C;C/ would have been called Euclidean or Riemannian. The property of
being a nondegenerate symmetric bilinear form characterizes a scalar product.8

For instance, the scalar product (1.9) of the three-dimensional Euclidean space is
a nondegenerate symmetric bilinear form of signature .C;C;C/. g is thus a scalar
product on E , which justifies the following notation:

8 . #»u ; #»v / 2 E2; #»u � #»v WD g. #»u ; #»v / : (1.11)

We shall say that two vectors #»u and #»v are orthogonal (without mentioning with
respect to the scalar product g) iff9 #»u � #»v D 0.

The bilinear form g defined above is called the metric tensor of the spacetime
E . It is also called the metric of E . The metric tensor rules entirely the
geometry in spacetime: whenever we shall speak about orthogonal vectors
or about a subspace orthogonal to a given vector, it will always be meant
orthogonality with respect to g.

Remark 1.6. The justification for the word tensor in the name of g will be given
in Chap. 14. Note that, from a purely mathematical point of view, one should
qualify g as pseudo-metric rather than metric, for g does not provide E with the
structure of metric space: given two points A and B in E , the relation d.A;B/ WDq

g.
#    »
AB;

#    »
AB/ does not define a distance on E in the usual mathematical meaning.

Indeed for a genuine distance, d.A;B/ D 0 iff A and B coincide. Here, due the
signature of g, we may have d.A;B/ D 0 with A and B distinct; we may also have
d.A;B/ be an imaginary number: this occurs whenever g.

#    »
AB;

#    »
AB/ < 0, which is

allowed by the minus sign in (1.10).

Remark 1.7. In many textbooks, the signature .C;�;�;�/ is used for the metric
tensor instead of .�;C;C;C/ (cf. Appendix C). This reflects a mere change
of convention, which amounts to using g0 D �g instead of g. The resulting

8Usually one adds the condition of Euclidean signature; we shall not do it here.
9Throughout the text, we use the abbreviation iff for if, and only if.
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physics is identical. The attention of the reader is however drawn on the change
of sign that this implies in many formulas! Each convention has its advantages and
drawbacks, and of course its proponents and detractors! The reasons for which the
signature .�;C;C;C/ has been adopted here are the following ones:

1. From a pure mathematical point of view, it is obvious that three plus signs and a
single minus sign are simpler than the reverse, independently of the meaning of
these signs.

2. The convention .�;C;C;C/ is used in almost all general relativity books and
actually in all the recent ones, such as (Misner et al. 1973; Hartle 2003; Carroll
2004; Straumann 2013; Choquet-Bruhat 2009). Using it therefore facilitates the
learning of general relativity from the present text.

3. With the convention .�;C;C;C/, the scalar product induced by g on spacelike
hyperplanes (the three-dimensional “slices” of spacetime at t D const, where
t is timelike coordinate) is Euclidean; it therefore coincides with the “usual”
scalar product. This allows one to use without any ambiguity the notation (1.11),
i.e. #»u � #»v , without having to specify whether the dot stands for the scalar
product induced by g or whether it stands for the Euclidean scalar product
of the three-dimensional space to which #»u and #»v belong. In other words, the
convention .�;C;C;C/ allows one not to distinguish between “4-vectors” and
“3-vectors”. With the convention .C;�;�;�/, one would have had instead
g. #»u ; #»v / D � #»u � #»v , if the dot was standing for the Euclidean scalar product
of the three-dimensional space.

1.3.2 Matrix of the Metric Tensor

Given a vector basis . #»e 0;
#»e 1;

#»e 2;
#»e 3/ of E , the matrix of g with respect to this

basis is the matrix .g˛ˇ/ defined by

g˛ˇ WD g. #»e ˛;
#»e ˇ/ : (1.12)

The matrix .g˛ˇ/ is symmetric, since g is a symmetric bilinear form. It allows one to
express the scalar product of two vectors #»u and #»v in terms of their components .u˛/
and .v˛/ with respect to the basis . #»e ˛/ [cf. (1.4)]. Indeed, thanks to the bilinearity
of g,

#»u � #»v D g. #»u ; #»v / D g
�
u˛ #»e ˛; v

ˇ #»e ˇ

� D u˛vˇ g. #»e ˛;
#»e ˇ/„ ƒ‚ …

g˛ˇ

:

Hence

#»u � #»v D g˛ˇ u˛ vˇ : (1.13)
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Remark 1.8. In the above writing, Einstein summation convention, as introduced in
Sect. 1.2.2, applies to all repeated indices (˛ and ˇ), i.e. one should read

#»u � #»v D
3X

˛D0

3X

ˇD0
g˛ˇ u˛ vˇ:

Since the bilinear form g is nondegenerate, the matrix g WD .g˛ˇ/ is invertible.

Proof. Let .u˛/ 2 R
4 be an element of the kernel of g: g˛ˇuˇ D 0. Then 8.v˛/ 2

R
4, g˛ˇv˛uˇ D 0. But from (1.13), g˛ˇv˛uˇ D g. #»v ; #»u / where #»v (resp. #»u ) is

the vector of E whose components in the basis . #»e ˛/ are .v˛/ [resp. .u˛/]. The
nondegeneracy condition of g implies then that #»u D 0. Hence, u˛ D 0, and we
conclude that the kernel of the matrix g is reduced to f0g, which implies that g is
invertible. ut
By convention, the components of the inverse matrix g�1 are denoted by g˛ˇ , so that
the matrix product g�1g D I4, where I4 WD diag.1; 1; 1; 1/ is the identity matrix of
size 4, is equivalent to

g˛�g�ˇ D ı˛ˇ : (1.14)

In this formula, use has been made of Einstein summation convention on the
repeated index �, and the components of I4 have been noted by the Kronecker
symbol: ı˛ˇ WD 1 if ˛ D ˇ and ı˛ˇ WD 0 otherwise.

1.3.3 Orthonormal Bases

A basis . #»e 0;
#»e 1;

#»e 2;
#»e 3/ of the vector space E is said to be orthonormal (for the

metric g) iff

#»e 0 � #»e 0 D �1 (1.15a)
#»e i � #»e i D 1 for 1 � i � 3 (1.15b)
#»e ˛ � #»e ˇ D 0 for ˛ 6D ˇ: (1.15c)

Remark 1.9. There does not exist any basis of E for which #»e ˛ � #»e ˇ D ı˛ˇ for all
values of ˛ and ˇ between 0 and 3. One may have j #»e ˛ � #»e ˇj D ı˛ˇ , but the signature
.�;C;C;C/ of g imposes one of the scalar products to be negative (Sylvester’s law
of inertia mentioned in Sect. 1.3.1).

We read on (1.15) that the matrix of g with respect to an orthonormal basis is

g˛ˇ D g. #»e ˛;
#»e ˇ/ D �˛ˇ; (1.16)
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when .�˛ˇ/ stands for the following constant matrix

�˛ˇ WD

0
BB@

�1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ; (1.17)

that we shall call Minkowski matrix.
Thanks to (1.13), we deduce from (1.17) that, within an orthonormal basis, the

scalar product of two vectors #»u and #»v is expressed in terms of their components
.u˛/ and .v˛/ by

#»u � #»v D �˛ˇ u˛ vˇ D �u0v0 C u1v1 C u2v2 C u3v3:
orthon. basis

(1.18)

We recover formula (1.10). Thus, the orthonormal bases are those on which one can
read directly the signature .�;C;C;C/ of g.

1.3.4 Classification of Vectors with Respect to g

A fundamental property of the Euclidean scalar product (1.9) of the three-
dimensional Newtonian space is to be positive definite, i.e. #»v � #»v � 0 for any
vector #»v and #»v � #»v D 0 iff #»v D 0. In the present case, the signature .�;C;C;C/
prevents g to be positive definite. The scalar product of a vector #»v with itself
can take any sign and be null without #»v being zero. Accordingly, the vectors are
classified in three types (apart from the zero vector); a vector #»v 2 E is said:

• timelike iff g. #»v ; #»v / < 0

• spacelike iff g. #»v ; #»v / > 0

• null or lightlike iff #»v 6D 0 and g. #»v ; #»v / D 0
These definitions with a strong physical connotation will be justified in Chap. 2.

Remark 1.10. Despite their name, null vectors should not be confused with the zero
vector. In mathematical literature, null vectors are also called isotropic vectors.

1.3.5 Norm of a Vector

Given a vector #»v 2 E , its norm with respect to the metric tensor g is defined as
the positive or null real number
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k #»v kg WD
p
j #»v � #»v j D

p
jg. #»v ; #»v /j : (1.19)

Note that for a spacelike vector, k #»v kg D
p

#»v � #»v , whereas for a timelike one,

k #»v kg D
p� #»v � #»v . Besides, the following equivalence holds:

8 #»v 2 E n f0g; k #»v kg D 0 ” #»v is lightlike: (1.20)

Remark 1.11. The function k kg is not a norm on E in the usual meaning of the
word: a norm k k on a vector space must indeed obey the following properties
(Deheuvels 1981): (i) 8 #»v 2 E; k #»v k � 0, (ii) k #»v k D 0) #»v D 0, (iii) 8.�; #»v / 2
R � E; k� #»v k D j�jk #»v k and (iv) 8. #»u ; #»v / 2 E2; k #»u C #»v k � k #»uk C k #»v k. The
function k kg defined by (1.19) satisfies conditions (i) and (iii) (the latter thanks to
the bilinearity of g) but neither condition (ii) (k #»v kg D 0 whenever #»v is lightlike)
nor condition (iv) (it is easy to violate it by choosing for #»u and #»v two null vectors
such that #»u C #»v is not null). Hence the pair .E; k kg/ is not a normed vector space.

We shall say that a vector #»v 2 E is a unit vector iff k #»v kg D 1. There are
two classes of unit vectors: the timelike ones, for which g. #»v ; #»v / D � 1, and the
spacelike ones, for which g. #»v ; #»v / D 1. We shall discuss this point further in
Sect. 1.4.3.

1.3.6 Spacetime Diagrams

To draw figures representing spacetime, we shall suppress one or two dimensions,
to get, respectively, a three-dimensional view in perspective or a two-dimensional
plane view. A spacetime diagram is a two-dimensional plot with a timelike vector
drawn in the vertical direction and a spacelike vector drawn in the horizontal
direction, these two vectors being orthogonal with respect to the metric tensor g.
The two arrows representing them are perpendicular on the figure (they form an
angle of 90ı). But not all pairs of vectors orthogonal with respect to g can be drawn
in this way, because of the conflict between the Lorentzian signature of g and the
Euclidean signature of the “standard” metric used to draw the figure. This aspect of
spacetime diagrams is illustrated in Figs. 1.3 and 1.4, on which we call the attention
of the reader before proceeding further.

Let us first discuss Fig. 1.3. We consider an orthonormal basis . #»e ˛/ (with respect
to the metric g, as defined in Sect. 1.3.3). To get a two-dimensional figure, we draw
only the first two vectors of this basis: #»e 0 is by definition a unit timelike vector,
#»e 0 � #»e 0 D �1 [cf. (1.15a)]; #»e 1 is a unit spacelike vector, #»e 1 � #»e 1 D 1 [cf. (1.15b)];
and #»e 0 and #»e 1 are orthogonal to each other, #»e 0 � #»e 1 D 0 [cf. (1.15c)]. In Fig. 1.3,
one has arbitrarily chosen to represent #»e 0 and #»e 1 by two perpendicular arrows,
with #»e 0 vertical and #»e 1 horizontal. Besides, four other vectors have been drawn:
#»a 0,

#»a 1,
#»u and #»v , whose components in the basis . #»e ˛/ are



1.3 Metric Tensor 13

Fig. 1.3 Vectors of the vector space E underlying the spacetime E ; two dimensions have been
suppressed, so that the figure is plane. #»e 0 and #»e 1 are the first two vectors of an orthonormal basis:
#»e 0 � #»e 0 D �1, #»e 0 � #»e 1 D 0 and #»e 1 � #»e 1 D 1. The other vectors are #»a 0 D p

2 #»e 0 C #»e 1,
#»a 1 D #»e 0 C p

2 #»e 1,
#»u D #»e 0 C #»e 1 and #»v D #»e 0 � #»e 1

Fig. 1.4 Same vectors of E as in Fig. 1.3, but in a representation built onto the orthonormal basis
. #»a 0;

#»a 1/, instead of . #»e 0;
#»e 1/. Even if the figure looks pretty different from Fig. 1.3, it shows

exactly the same vectors. In particular, one can check that the vector equalities #»u D #»e 0 C #»e 1 and
#»v D #»e 0 � #»e 1 still hold. Besides, the null vectors, i.e. #»u and #»v , are drawn at an angle of ˙45ı

from the vertical, as in Fig. 1.3

a˛0 D .
p
2; 1; 0; 0/; a˛1 D .1;

p
2; 0; 0/; u˛ D .1; 1; 0; 0/; v˛ D .1;�1; 0; 0/:

(1.21)
Note that, despite the arrows representing them are not perpendicular in Fig. 1.3, the
vectors #»a 0 and #»a 1 are orthogonal with respect to g. It is easy to check it, using
the fact that in the orthonormal basis . #»e ˛/, the scalar product is expressed via the
Minkowski matrix according to formula (1.18):
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#»a 0 � #»a 1 D �˛ˇ a˛0 aˇ1 D �
p
2 � 1C 1 �p2C 0 � 0C 0 � 0 D 0:

Moreover, #»a 0 and #»a 1 are unit vectors, #»a 0 being timelike and #»a 1 spacelike:

#»a 0 � #»a 0 D �˛ˇ a˛0 aˇ0 D �
p
2 �p2C 1 � 1C 0 � 0C 0 � 0 D �1;

#»a 1 � #»a 1 D �˛ˇ a˛1 aˇ1 D �1 � 1C
p
2 �p2C 0 � 0C 0 � 0 D 1:

Hence the norm of #»a 1 with respect to g is the same as that of #»e 1, namely, 1, while
these two vectors are represented in Fig. 1.3 by arrows of different lengths.

On the opposite, the vectors #»u and #»v are drawn in Fig. 1.3 with perpendicular
arrows, although they are not orthogonal with respect to g:

#»u � #»v D �˛ˇ u˛ vˇ D �1 � 1C 1 � .�1/C 0 � 0C 0 � 0 D �2 6D 0:

Both are null vectors:

#»u � #»u D �˛ˇ u˛ uˇ D �1 � 1C 1 � 1C 0 � 0C 0 � 0 D 0;
#»v � #»v D �˛ˇ v˛ vˇ D �1 � 1C .�1/ � .�1/C 0 � 0C 0 � 0 D 0:

The vectors #»a 0 and #»a 1 being unit vectors and orthogonal, with #»a 0 � #»a 0 D �1
and #»a 1 � #»a 1 D 1, can be completed by two unit spacelike vectors properly
chosen, for instance, #»e 2 and #»e 3, to constitute a new orthonormal basis:
. #»a ˛/ WD . #»a 0;

#»a 1;
#»e 2;

#»e 3/. One can easily obtain the components of the vectors
#»e 0,

#»e 1,
#»u and #»v in the basis10 . #»a ˛/:

e0˛
0 D .

p
2;�1; 0; 0/; e0˛

1 D .�1;
p
2; 0; 0/; u0˛ D .p2 � 1;p2 � 1; 0; 0/;

v0˛ D .p2C 1;�p2 � 1; 0; 0/: (1.22)

We have stressed above that the representation of the vectors . #»e 0,
#»e 1/ by two

perpendicular arrows in Fig. 1.3 was an arbitrary choice. Let us then draw a new
figure by favouring the orthonormal basis . #»a 0;

#»a 1/ instead of . #»e 0,
#»e 1/: we obtain

Fig. 1.4, where #»a 0 and #»a 1 are drawn with two perpendicular arrows. The drawing
of vectors #»e 0,

#»e 1,
#»u and #»v is performed via the components (1.22). While Fig. 1.4

looks different from Fig. 1.3, both figures are equally valid representations of the
same vector space E . The drawn vectors are the same in the two figures, and none
of the orthonormal basis . #»e ˛/ and . #»a ˛/ is privileged with respect to the metric g.

There are two common features of Figs. 1.3 and 1.4 that are worth noticing:

10These components are denoted with a prime to distinguish them from the components in the
basis . #»e ˛/.
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1. Two vectors that are orthogonal with respect to g define directions that are
symmetric with respect to one of the main bisectors of the figure (i.e. one
of the two straight lines of slope˙45ı through the origin).

2. Null vectors are always drawn as arrows with a slope equal to ˙45ı.

These two properties are common to all spacetime diagrams.

Proof. Property 2 is actually a special case of Property 1, for a null vector is by
definition orthogonal to itself, so that the only way to be its own symmetric with
respect to one of the bisectors is to lie on that bisector. Let us then demonstrate
Property 1: if . #»e 0;

#»e 1/ is the orthonormal basis supporting the spacetime diagram
and #»u D u0 #»e 0 C u1 #»e 1 and #»v D v0 #»e 0 C v1 #»e 1 are generic vectors, (1.18) yields

#»u � #»v D 0 ” �u0v0 C u1v1 D 0 ” u0

u1
D v1

v0
:

The last equality establishes Property 1. ut
The fact that null vectors are always drawn at ˙45ı shows that spacetime

diagrams put forward the only directions that can be canonically associated with the
metric tensor g, namely, the null directions (vanishing scalar square with respect
to g). We shall discuss the latter in more details in the following section.

1.4 Null Cone and Time Arrow

1.4.1 Definitions

In the vector space E , the set I composed by the zero vector and all null vectors
is called the null cone11 of the metric g. Generically, the term cone means that if
#»v 2 I , then 8� 2 R; � #»v 2 I .

The null cone is depicted in Fig. 1.5. It separates the timelike vectors from the
spacelike ones: the former are located inside the cone, while the latter are outside it.
The null vectors are by definition located on I . The null cone is composed of the

11The name light cone is also used; in the present text, we reserve it for the affine counterpart of
I , i.e. for the subset of E formed by all straight lines through a given point and whose direction
lies along a vector of I , as we shall discuss in Sect. 2.5.2.
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Fig. 1.5 Null cone of the metric g (a spatial dimension has been suppressed)

zero vector (its apex) and two sheets (or nappes). Choosing a time arrow amounts to
selecting one of these two sheets and to call it the future null cone; we shall denote
it by I C. The other sheet is then called the past null cone and denoted by I �.
Timelike and null vectors can then classified in two types:

• Vectors located inside of, or onto, I C are said future-directed.
• Vectors located inside of, or onto, I � are said past-directed.

Remark 1.12. In Figs. 1.3 and 1.4 discussed in Sect. 1.3.6, the directions of the
vectors #»u and #»v mark the trace of the null cone onto the figure plane.

1.4.2 Two Useful Lemmas

We shall often make use of the following two lemmas:

1. Two timelike vectors, #»u and #»v say, are located inside the same sheet (I C or
I �) of g’s null cone iff #»u � #»v < 0.

2. Two null and noncollinear vectors, #»u and #»v say, are located on the same sheet
of g’s null cone iff #»u � #»v < 0.
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Proof (Lemma 1). Let us introduce an orthonormal basis . #»e ˛/ such that #»u D u0 #»e 0

with u0 > 0. It suffices to set #»e 0 WD k #»uk�1g
#»u and to complete the basis with

three vectors #»e i that are orthogonal to #»e 0. We may expand #»v onto this basis: #»v D
v0 #»e 0 C vi #»e i . The vectors #»u and #»v are then located inside the same sheet of I iff
v0 > 0. Now

#»u � #»v D .u0 #»e 0/ � .v0 #»e 0 C vi #»e i / D u0v0 #»e 0 � #»e 0„ ƒ‚ …
�1

C u0vi #»e 0 � #»e i„ ƒ‚ …
0

D �u0v0:

Since u0 > 0, we have the equivalence v0 > 0 ” #»u � #»v < 0. ut
Proof (Lemma 2). We notice that an orthonormal basis . #»e ˛/ can always be found
so that

#»u D u0. #»e 0 C #»e 1/ and #»v D v0. #»e 0 C cos' #»e 1 C sin ' #»e 2/;

with u0 2 R
�, v0 2 R

� and ' 2�0; 2�Œ (0 is excluded since #»u and #»v are not
collinear). Then

#»u � #»v D u0v0.�1C cos'/:
#»u and #»v belong to the same sheet of the null cone iff u0v0 > 0. The lemma results
then from cos' < 1 (since ' 6D 0). ut

1.4.3 Classification of Unit Vectors

In Sect. 1.3.5 we have defined unit vectors as the vectors whose norm with respect
to g is equal to 1. Let us denote by U the set of timelike unit vectors and by S that
of spacelike unit vectors:

U WD f #»v 2 E; #»v � #»v D �1g � E (1.23)

S WD f #»v 2 E; #»v � #»v D 1g � E : (1.24)

In addition, we shall denote U C (resp. U �) the subset of U constituted by future-
directed (resp. past-directed) vectors:

U C WD f #»v 2 E; #»v � #»v D �1 and #»v future-directedg � E (1.25)

U � WD f #»v 2 E; #»v � #»v D �1 and #»v past-directedg � E : (1.26)

We have obviously U D U C [U �.
Given a point O 2 E , let us call U C

O , U �
O and SO the sets of points of E that

can be connected to O by a vector belonging to, respectively, U C, U � and S :
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Fig. 1.6 Unit vectors in the plane Span. #»e 0;
#»e 1/ generated by vectors #»e 0 and #»e 1 and centred

around a pointO 2 E . Solid-line arrows represent timelike unit vectors ( #»v � #»v D �1), and dashed-
line arrows represent spacelike unit vectors ( #»v � #»v D 1). #»a 0 and #»a 1 are the same vectors as in
Figs. 1.3 and 1.4. The extremities of timelike unit vectors span the hyperbola .x0/2 � .x1/2 D 1,
whose branches are denoted by U C

O and U �

O . The extremities of spacelike unit vectors span the
hyperbola .x1/2 � .x0/2 D 1, denoted SO ; its focuses are located on the horizontal line x0 D 0.
The dotted lines, which are the asymptotes of these two hyperbolas, are also the trace of g’s
null cone

U C
O WD

n
M 2 E ;

#      »
OM 2 U C

o
� E (1.27)

U �
O WD

n
M 2 E ;

#      »
OM 2 U �

o
� E (1.28)

SO WD
n
M 2 E ;

#      »
OM 2 S

o
D
n
M 2 E ;

#      »
OM � #      »

OM D 1
o
� E :

(1.29)

We shall also define UO WD U C
O [ U �

O . The sets U C
O , U �

O and SO can be
considered as representations in the affine space E of the subsets U C, U � and
S of the vector space E (cf. Fig. 1.6); these representations are associated with the
pointO .

In a Euclidean space, the sets U C
O and U �

O would be empty, and SO would be
a sphere of unit radius centred on O . Things are different in the space .E ;g/. To
determine the sets U C

O , U �
O and SO , let us consider an orthonormal basis . #»e ˛/ of
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Fig. 1.7 Hyperboloids formed by the unit vectors arising from a given point O 2 E : (a) timelike
unit vectors (the hyperboloid has two sheets, U C

O and U �

O ); (b) spacelike unit vectors (the
hyperboloid has a single sheet, SO ). The dimension x3 has been suppressed for the drawing:
actually these hyperboloids are “surfaces” of dimension 3 and not 2

.E;g/. A point M 2 E belongs to UO or SO iff

#      »
OM � #      »

OM D ˙1; (1.30)

withC1 for SO and �1 for UO . Let .x0; x1; x2; x3/ be the coordinates ofM in the
affine frame defined byO and the basis . #»e ˛/ (cf. Sect. 1.2.3). From (1.6) and (1.18),
the condition (1.30) is equivalent to

� .x0/2 C .x1/2 C .x2/2 C .x3/2 D ˙1: (1.31)

Let us first consider the case of UO , i.e. the case where the right-hand side
of (1.31) is �1. We recognize then in (1.31) the equation of a three-dimensional
hyperboloid12 of two sheets, which are U C

O and U �
O . The trace of the hyperboloid

UO in the plane .x0; x1/ is a unit hyperbola shown in Fig. 1.6. A two-dimensional
view of the hyperboloid UO is provided in Fig. 1.7a; it can be obtained by rotating
the plane of Fig. 1.6 around the vertical axis x1 D 0. U C

O is the upper sheet and
U �
O the lower one. Let us notice that the future (resp. past) sheet of g’s null cone is

asymptotic to U C
O (resp. U �

O ).
Let us now consider SO . The right-hand side of (1.31) must then be set to C1.

We recognize the equation of a three-dimensional hyperboloid of one sheet. Its trace
in the plane .x0; x1/ is a unit hyperbola shown in Fig. 1.6. A two-dimensional view
of the hyperboloid SO is provided in Fig. 1.7b.

12This hyperboloid has one more dimension than a standard hyperboloid, which is a
two-dimensional surface.
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Remark 1.13. As for Fig. 1.3, one should not be deceived by the Euclidean (and
thus unphysical!) metric underlying Figs. 1.6 and 1.7. Indeed, one might think that
the hyperboloid UO defines privileged points with respect to O in the spacetime E ,
namely, the points where the distance between the sheets U C

O and U �
O is minimal

(points M such that
#      »
OM D ˙ #»e 0), which one could call the two “tops” of U0.

But one should keep in mind that the distance employed in this reasoning is not
physical: it is that provided by the Euclidean metric, not by g. For instance, if we
would redraw Fig. 1.6 by privileging the basis . #»a 0;

#»a 1/ rather than . #»e 0;
#»e 1/, as we

did in Fig. 1.4, then the tops of the hyperboloid UO would show up as the pointsM
such that

#      »
OM D ˙ #»a 0 and would therefore be different from the preceding tops.

There are actually as many pairs of UO ’s “tops” as there are unit timelike vectors.
In other words, all the points of UO are equivalent.

1.5 Spacetime Orientation

Orienting a two-dimensional space (a plane) amounts to defining the so-called
clockwise and anticlockwise directions. For a three-dimensional space, it amounts
to defining right-handed bases. This is performed by selecting a reference vector
basis and defining a basis to be right-handed iff its determinant with respect to
the reference basis is positive. We shall extend this notion to the four-dimensional
space E .

Let us recall that in dimension three, the determinant is nothing but an
antisymmetric trilinear form. Since we are in dimension four, let us consider the set
A4.E/ of antisymmetric four-linear forms on E , i.e. of mappings

A W E � E � E �E �! R

. #»u 1;
#»u 2;

#»u 3;
#»u 4/ 7�! A. #»u 1;

#»u 2;
#»u 3;

#»u 4/;
(1.32)

that are linear with respect to each of their arguments and that change sign in any
permutation of two arguments. The dimension of E being four, a classical result
from linear algebra states that A4.E/ is a vector space on R of dimension one.
Consequently all the antisymmetric four-linear forms on E are proportional to each
other. Invoking the metric tensor g allows one to single out certain elements of
A4.E/: those that result in ˙1 when applied to an orthonormal basis with respect
to g. Indeed, if . #»e ˛/ is an orthonormal basis of .E;g/ and if A 2 A4.E/ is such
that jA. #»e 0;

#»e 1;
#»e 2;

#»e 3/j D 1, then one can show13 that for any other orthonormal
basis of E , . #»e 0

0;
#»e 0
1;

#»e 0
2;

#»e 0
3/ say, jA. #»e 0

0;
#»e 0
1;

#»e 0
2;

#»e 0
3/j D 1.

Since the dimension of A4.E/ is one, there are only two antisymmetric
four-linear forms satisfying the above property. They are the opposite of each

13We will prove it in Sect. 14.4.4.
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other. Defining an orientation of E amounts to choosing one of these two forms
that we shall denote by � and call the Levi–Civita tensor14 associated with the
metric g. Then

. #»e ˛/ orthonormal basis H) �. #»e 0;
#»e 1;

#»e 2;
#»e 3/ D ˙1 : (1.33)

A basis (not necessarily orthonormal) . #»e ˛/ of E is qualified of right-handed iff
�. #»e 0;

#»e 1;
#»e 2;

#»e 3/ > 0 and left-handed iff �. #»e 0;
#»e 1;

#»e 2;
#»e 3/ < 0. When applied

to four vectors of E , � provides their determinant with respect to any right-handed
orthonormal basis. The Levi–Civita tensor generalizes thus the notion of mixed
product (also called scalar triple product) of the Euclidean three-dimensional space.
The antisymmetry of Levi–Civita tensor implies that for any permutation of four
elements, i.e. any member � of the symmetric group S4, and for any 4-tuple
. #»u 1;

#»u 2;
#»u 3;

#»u 4/ of vectors:

�. #»u �.1/;
#»u �.2/;

#»u �.3/;
#»u �.4// D .�1/k.�/�. #»u 1;

#»u 2;
#»u 3;

#»u 4/ ; (1.34)

where k.�/ is the number of transpositions (permutation that changes only two
elements) required to decompose � . The permutation � is called even (resp. odd) iff
k.�/ is even (resp. odd).

Remark 1.14. The reader who used to manipulate the three-dimensional
Levi–Civita tensor is warned that in dimension 4, a cyclic permutation is odd
and not even.

Since E is a vector space over the field R, whose characteristic is different from 2,
the property of antisymmetry of the Levi–Civita tensor � is equivalent to saying that
� is an alternating form, i.e. it results in zero whenever two of its arguments are
equal. For instance, �. #»u ; #»v ; #»u ; #»w/ D 0.

Remark 1.15. The Levi–Civita tensor does more than defining an orientation in E
(any four-linear form ˛� with ˛ > 0 would suffice in this role): it also provides a
volume element on spacetime, since it generalizes the mixed product and takes the
value ˙1 on orthonormal bases [property (1.33)]. We shall explore this aspect of �

in much details in Chap. 16, which is devoted to the integration in E .

14The term tensor will be justified in Chap. 14.
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1.6 Vector/Linear Form Duality

1.6.1 Linear Forms and Dual Space

A fundamental concept associated with a vector space, like E , is that of a linear
form, i.e. a function that maps vectors to real numbers:

! W E �! R

#»u 7�! !. #»u /;
(1.35)

in a linear way:

8� 2 R; 8. #»u ; #»v / 2 E2; !.� #»u C #»v / D �!. #»u /C!. #»v /: (1.36)

Linear forms are much used in physics and, more particularly, in relativity.
Like in quantum mechanics, we shall use the bra-ket notation to denote the action

of a linear form onto a vector:

h!; #»u i WD !. #»u / : (1.37)

The set of all linear forms on E is canonically equipped with the structure of a
vector space on R. It is called the dual vector space of E and denoted by E�. As a
vector space, E� has the same dimension as E , namely, four.

Given a basis . #»e ˛/ of E , there exists a unique 4-tuple of linear forms15 .e˛/ that
(i) constitutes a basis of E� and (ii) satisfies

he˛; #»e ˇi D ı˛ˇ; (1.38)

where ı˛ˇ is the Kronecker symbol defined in Sect. 1.3.2. .e˛/ is called the dual
basis of the basis . #»e ˛/ of E .

The components of a linear form ! in the basis .e˛/ are denoted by a lower
index:

! D !˛ e˛ : (1.39)

Then, for any vector #»u of components .u˛/ in the basis . #»e ˛/,

h!; #»u i D !˛he˛; #»u i D !˛he˛; uˇ #»e ˇi D !˛uˇ he˛; #»e ˇi„ ƒ‚ …
ı˛ˇ

D !˛u˛:

15Following a standard notation, we are using the same letter e for the linear form e˛ and the vector
#»e ˛: the distinction between the two is performed by the arrow and the position of the index ˛.
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Hence, in terms of components, the action of a linear form onto a vector is simply

h!; #»u i D !˛u˛ : (1.40)

1.6.2 Metric Duality

The metric tensor g allows one to establish an isomorphism (i.e. a bijective linear
map, cf. Appendix A) between E and its dual E�, as follows:

˚g W E �! E�
#»u 7�! u W E �! R

#»v 7�! g. #»u ; #»v /:

(1.41)

Hence ˚g is the mapping that sends a vector #»u to the linear form u, the action of
which consists in performing the scalar product of vectors with #»u .

Proof. Thanks to the bilinearity of g, ˚g is well defined (i.e. it takes its values in
E�) and is linear. Moreover, since g is nondegenerate (cf. Sect. 1.3.1), the kernel
of ˚g is reduced to the zero vector. The linear mapping ˚g is then necessarily
injective (cf. Appendix A). Since E andE� are two vector spaces of the same finite
dimension, we conclude that˚g is bijective: this is a vector space isomorphism. ut

Since ˚g is bijective, for any element ! ofE�, there exists a unique vector inE ,
which we shall denote by #»!, such that

! D ˚g.
#»!/: (1.42)

An explicit expression for #»! can be found as follows. Let . #»e ˛/ be a basis of E . For
any vector #»v D vˇ #»e ˇ , (1.40) gives h!; #»v i D !ˇvˇ . Let then #»! 2 E be the vector
whose components !˛ within the basis . #»e ˛/ are defined by

!˛ WD g˛ˇ!ˇ; (1.43)

where .g˛ˇ/ is the inverse of the matrix of g’s components in the basis . #»e ˛/

(cf. Sect. 1.3.2). Performing the matrix multiplication of (1.43) by .g˛ˇ/, we get
g˛ˇ!

˛ D !ˇ , so that the relation h!; #»v i D !ˇvˇ becomes

h!; #»v i D g˛ˇ!˛vˇ D g. #»!; #»v /:

This shows that ! is the image of #»! by ˚g . Hence we may write

˚�1
g W E� �! E

! 7�! #»! = 8 #»v 2 E; h!; #»v i D g. #»!; #»v /:
(1.44)
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The vector spaces E and E� being both of dimension 4 over R, they are
isomorphic (as well as being isomorphic to R

4). The specific isomorphism˚g

discussed above is the only one that can be associated naturally with the metric
tensor g. We shall call g-duality or metric duality the couple .˚g ; ˚

�1
g /, i.e.

(i) the association by ˚g of a linear form to any vector and (ii) the association
by ˚�1

g of a vector to any linear form.

Given a vector #»u 2 E , we shall denote by u the linear form image of #»u by
g-duality, as given explicitly by (1.41). Conversely, given a linear form !, we shall
denote by #»! the vector image of ! by g-duality, as given explicitly by (1.44).
Accordingly, the scalar product #»u � #»v of two vectors #»u and #»v can be considered as
the linear form u acting onto the vector #»v or, g being symmetric, as the linear form
v acting onto the vector #»u :

#»u � #»v D g. #»u ; #»v / D hu; #»v i D hv; #»u i : (1.45)

Similarly, the scalar h!; #»v i can be considered as the linear form ! acting onto the
vector #»v as well as the scalar product of the vectors #»! and #»v :

h!; #»v i D #»! � #»v D g. #»!; #»v / : (1.46)

Remark 1.16. We have seen in Sect. 1.6.1 that any basis . #»e ˛/ of E is associated
with a unique basis of E�: the so-called dual basis .e˛/. Besides, one can associate
with each basis vector #»e ˛ a linear form e˛ via the metric duality introduced above.
A legitimate question is then whether the 4-tuple .e˛/ coincide with the basis .e˛/.
The answer is no. Indeed, thanks to (1.38) and (1.12),

he˛; #»e ˇi D ı˛ˇ and he˛; #»e ˇi D g. #»e ˛;
#»e ˇ/ D g˛ˇ: (1.47)

Now, the matrix .g˛ˇ/ is necessarily different from .ı˛ˇ/ D diag.1; 1; 1; 1/ because
of the signature .�;C;C;C/ of g.

Remark 1.17. The mappings ˚g and ˚�1
g , which establish the metric duality, are

also called the musical isomorphisms, because a flat and a sharp symbols are
sometimes used instead of, respectively, the underbar and the arrow used here:

u[ D u and !] D #»!:
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1.7 Minkowski Spacetime

At this stage, we have introduced all the mathematical tools required for the
foundation of special relativity:

We shall call Minkowski spacetime the 4-tuple .E ;g;I C; �/ where:

• E is an affine space of dimension four over R, the underlying vector
space being denoted by E (E is of course isomorphic to R

4); E is called
spacetime and its elements are called events.

• g is a bilinear form on E that is symmetric, nondegenerate and has the
signature .�;C;C;C/; g is called the metric tensor.

• I C is one of the two sheets of g’s null cone, called the future null cone.
• � is a four-linear form on E that is antisymmetric and results in ˙1 when

applied to any basis that is orthonormal with respect to g; � is called the
Levi–Civita tensor associated with the metric g.

Note that once E and g have been set, there are only two possible choices for
I C and two possible choices for �. Choosing I C corresponds to choosing a time
arrow (Sect. 1.4), while choosing � makes E an oriented vector space (Sect. 1.5).
The Minkowski spacetime is thus a four-dimensional affine space, endowed with
a scalar product of signature .�;C;C;C/, a time arrow and an orientation. In
addition, the scalar product is employed to establish a duality between the vector
space E and the space E� of linear forms on E .

We depicted the Newtonian spacetime in Fig. 1.2, along with its fundamental
structure, namely, the foliation .˙t /t2R by three-dimensional spaces at fixed
absolute time. The fundamental structure of Minkowski spacetime, the metric tensor
g, cannot be depicted so simply, but one may represent it by drawing g’s null cone
at various points, thereby obtaining Fig. 1.8.

Having set the mathematical framework of special relativity, we shall proceed
with physics. More specifically, there remains (i) to define relations between
physical concepts like time, space, particle and photon and mathematical objects
of Minkowski spacetime and (ii) to express physical laws in terms of mathematical
operations in Minkowski spacetime.

Remark 1.18. The definitions and properties given in this chapter remain valid in
spaces of dimension n > 4, provided that these spaces are endowed with a metric
of signature .�;C; � � � ;C/ (1 minus sign and n � 1 plus signs). Such spaces are
encountered, for instance, in string theory (n D 10 or n D 11) (Penrose 2007).
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Fig. 1.8 Spacetime E of special relativity. Two dimensions have been suppressed, so that the affine
space E appears like a plane. The fundamental structure of special relativity, the metric tensor g,
is represented by its null cone drawn at various points. This figure is to be compared with Fig. 1.2
depicting Newtonian spacetime

Historical note: The concept of four-dimensional spacetime is not to be found in the
founding article of special relativity, written by Albert Einstein16 in 1905 (Einstein
1905b). It appeared first in a long article of Henri Poincaré,17 known as the
“Palermo memoir”, written in 1905 and published the year after (Poincaré 1906). In
this text, Poincaré introduces .it; x; y; z/, with i2 D �1, as the coordinates of a point
in a four-dimensional space and considers the quadratic form �t2 C x2 C y2 C z2

as giving the “distance” in that space. Poincaré also uses the associated bilinear
form, which we call today the metric tensor, to form scalar products. But it is only in
1908, with Hermann Minkowski,18 that the concept of four-dimensional spacetime
took all its extent (Minkowski 1908) (cf. also a preliminary version in (Minkowski
1907)). As a matter of fact, the title of a synthesis work by Minkowski published

16Albert Einstein (1879–1955): German theoretical physicist (he was granted the Swiss citizen-
ship in 1901 and the American one in 1940) who was the main founder of relativity, both special
and general, and the author of major advances in quantum theory and Brownian motion; he got the
1921 Nobel Prize in Physics for his explanation of the photoelectric effect and his contribution to
theoretical physics (without any explicit mention of relativity!).
17Henri Poincaré (1854–1912): French mathematician and theoretical physicist, considered as the
last universal scientist, mastering most of the mathematics and physics of his time. His work ranges
from algebraic topology to differential equations, going through celestial mechanics, the theory of
chaos and, of course, relativity.
18Hermann Minkowski (1864–1909): Mathematician born in the Russian Empire, who became a
German citizen at 8 years old. Specialist of number theory and geometry, he became interested in
mathematical physics and more specifically in electrodynamics and relativity, at the University of
Göttingen, under the influence of David Hilbert. He died prematurely, from appendicitis, at the age
of 44.



1.8 Before Going Further. . . 27

in 1909 is “Space and Time” (Minkowski 1909). It contains the famous sentence:
“space for itself, and time for itself shall completely reduce to a mere shadow, and
only some sort of union of the two shall preserve independence”. The spacetime E is
clearly defined in this text and called Welt (world or universe), with the traditional
parameters .t; x; y; z/ considered as coordinates of points in E . Minkowski also
defined the vectors (Vektor) on that space. The metric tensor g is not introduced
explicitly, but Minkowski defines nevertheless the orthogonality of two vectors by
the condition �c2t1t2 C x1x2 C y1y2 C z1z2 D 0, where .ct1; x1; y1; z1/ and
.ct2; x2; y2; z2/ are the components of the two vectors in a basis called orthonormal
in the present formulation. This fully justifies the name Minkowski matrix given
to (1.17). The appellations timelike vector and spacelike vector have been forged
by Minkowski. Moreover, Minkowski has introduced the two-dimensional spacetime
diagrams, as that of Fig. 1.6. For more details about Minkowski’s contribution, one
could read Miller (1998) (Sect. 7.4.6), Walter (1999a) and Damour (2008), the latter
putting the emphasis on the comparison with Poincaré. It is worth mentioning that
Arnold Sommerfeld19 contributed a lot to popularize Minkowski’s four-dimensional
approach, as early as 1909. In particular, Sommerfeld forged the term four-vector
(Sommerfeld 1910a,b).

The notation g for the metric tensor originates from the works of the Italian
mathematicians Gregorio Ricci (1853–1925) and Tullio Levi–Civita (1873–1941)
around 1900. They used it as the initial of geometry. Within the context of relativity,
it first appeared in an article by Einstein in 1913 (Einstein 1913a).

1.8 Before Going Further. . .

In this chapter, the following notions have been defined. By alphabetic order:

• Affine coordinate system
• Affine space
• Alternating form
• Bilinear form
• Dual basis
• Dual vector space
• Event
• Four-linear form
• Future-directed (resp. past-directed) null vector
• Future-directed (resp. past-directed) timelike vector
• Future null cone

19Arnold Sommerfeld (1868–1951) : German theoretical physicist, pioneer of quantum mechan-
ics. He authored many works in atomic physics and introduced the fine structure constant ˛ in
1915. Sommerfeld supervised many theses, including those of Werner Heisenberg and Wolfgang
Pauli (cf. p. 542), and wrote renowned physics textbooks.
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• g-duality
• Hyperplane
• Left-handed basis
• Levi–Civita tensor
• Linear form
• Lorentzian signature
• Matrix of the metric tensor with respect to a vector basis
• Minkowski matrix
• Minkowski spacetime
• Metric duality
• Metric tensor
• Nondegenerate symmetric bilinear form
• Norm of a vector with respect to the metric tensor
• Null cone
• Null vector
• Orientation of spacetime
• Orthogonal vectors
• Orthonormal vector basis
• Past null cone
• Positive definite symmetric bilinear form
• Right-handed basis
• Scalar product
• Signature of a symmetric bilinear form
• Spacelike vector
• Spacetime
• Time arrow
• Timelike vector
• Unit vector
• Vector on spacetime

The reader is invited to check whether he has assimilated each of these notions
before proceeding further.



Chapter 2
Worldlines and Proper Time

2.1 Introduction

Having introduced the mathematical framework of special relativity, we may move
to the basics of (non-quantum) physics, namely, the description of the motion of
a particle or a physical system idealized to a pointlike particle. We shall notably
see the interpretation of the metric tensor g as the operator giving the elapsed time
along the trajectory of a particle.

2.2 Worldline of a Particle

Special relativity being a non-quantum theory,1 particles are described as points, as
in classical mechanics. Actually, we shall use the word particle or point particle to
cover either an elementary particle or a physical system whose spatial extension
can be neglected at the scale of the phenomenon under study. A “particle at a
given instant” will be represented by a point in the spacetime E (an event), and
the “successive positions” of the particle will draw a one-dimensional curve in the
affine space E . Let us note that, at this stage, we cannot give some meaning to the
phrase “at a given instant” if we wish to preserve the mixed space/time character of
E and not to split it into some space part and some time part. Therefore, we shall
define a particle by its entirety in spacetime, namely, a curve of E , which we shall
call the worldline of the particle.

The link between physics and the mathematics introduced in Chap. 1 consists in
stating that the so-called massive particles do not follow any kind of worldline in
Minkowski spacetime, but only those that are timelike:

1Minkowski spacetime is however the arena for relativistic quantum field theory.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 2, © Springer-Verlag Berlin Heidelberg 2013

29



30 2 Worldlines and Proper Time

Any massive particle is represented by a piecewise twice continuously
differentiable curve L of Minkowski spacetime .E ;g/ such that any vector
tangent to L is timelike.

Let us recall that a vector #»v 2 E is timelike iff #»v � #»v D g. #»v ; #»v / < 0 (cf.
Sect. 1.3.4) and that a piecewise twice continuously differentiable curve means that
there exists some function

' W R �! E

� 7�! A D '.�/ (2.1)

that is (i) twice differentiable with a continuous second derivative (i.e. of class C2)
on each interval of a finite subdivision of R and (ii) such that L is the image set of
': L D '.R/. If ' is injective, it is called a parametrization of L .

Remark 2.1. Of course, for a given worldline L , there exists an infinite number of
parametrizations: if ' is one of them, any bijective function f W R ! R of class
C2 induces a new parametrization Q' WD ' ı f . A priori, a parametrization of L is
a purely mathematical operation. We shall introduce in Sect. 2.3 a parametrization
with physical grounds: that provided by the “elapsed time” (the so-called proper
time) along L .

Remark 2.2. We may consider the above statement as the formal definition of a
massive particle. The notion of mass will be introduced in Chap. 9, and we shall see
that indeed massive particles, as defined above, have a nonvanishing mass.

Remark 2.3. By demanding that the worldline be timelike, we exclude hypothetical
particles called tachyons (Bilaniuk et al. 1962; Feinberg 1967; Recami 1987;
Boratav and Kerner 1991; Fayngold 2002). These particles would on the contrary
move on spacelike worldlines. Note that there is no consistent relativistic theory that
allows a given worldline to change its type on some part of it: a worldline is either
always timelike (ordinary massive particles), null (photons, Sect. 2.5) or spacelike
(tachyons). We shall elaborate more on tachyons in Sect. 4.3.3.

A parametrization ' of L induces a one-parameter family of vectors of E—at
each point of L , we may consider the derivative vector of ' at this point:

8� 2 R; #»v .�/ WD lim
"!0

1

"

#                              »

A.�/A.�C "/; (2.2)

where we have used the notation A.�/ for '.�/ [generic point of L , cf. (2.1)]. #»v

is called the field of tangent vectors associated with the parametrization '. One
may give a more “physical” expression to #»v : denoting by d� the increase " of the
parameter � and by d #»x the infinitesimal vector joining the point A.�/ to the point
A.�C d�/ (cf. Fig. 2.1), we get
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Fig. 2.1 Worldline of a
massive particle, with the
tangent vector #»v associated
with the parametrization
'.�/. The null cone at point
A is shown. Since #»v is
timelike, it is located inside
the null cone

8� 2 R; #»v .�/ D d #»x

d�
: (2.3)

From the definition of a worldline, the vector #»v .�/ must be timelike for all values
of the parameter �: #»v .�/ � #»v .�/ < 0.

If .O I #»e ˛/ is an affine frame of E (cf. Sect. 1.2.3) and .x˛.�// the affine
coordinates of A D '.�/ in this frame, the components of the tangent vector
#»v .�/ with respect to the basis . #»e ˛/ are the derivatives of the functions x˛.�/:
v˛.�/ D dx˛=d�; hence,

#»v .�/ D dx˛

d�
#»e ˛: (2.4)

2.3 Proper Time

2.3.1 Definition

We have already noticed in Sect. 1.3.1 that the metric tensor g does not define a
metric on E in the strict mathematical sense and that it should be called instead
pseudo-metric tensor (cf. Remark 1.6 p. 8). As a consequence, the norm with respect
to g introduced in Sect. 1.3.5, k kg , is not a norm in the mathematical sense. In
particular, k #»v kg D 0 is not equivalent to #»v D 0. However, if the “norm” k kg
is taken only on timelike vectors (such as the tangent vectors to massive particle
worldlines), i.e. if one considers the mapping

Etimelike �! R
C

#»v 7�! k #»v kg D
p�g. #»v ; #»v /;

(2.5)
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then one gets a function that vanishes only for #»v D 0, as for any norm.2

Accordingly, one may use g to measure “lengths” along a given worldline. The
fundamental physical interpretation of the metric tensor g consists in stating that
these “lengths” correspond to the elapsed time along the worldline:

Let A and A0 be two infinitely close events on the worldline L of a given
massive particle (cf. Fig. 2.1). Let d #»x be the infinitesimal vector connectingA
and A0. The vector d #»x is tangent to L , and from the definition of a worldline,
it is timelike. We may then set

(
c d	 WD kd #»xkg D

p�g.d #»x ; d #»x/ if d #»x is future-directed
c d	 WD �kd #»xkg D �

p�g.d #»x ; d #»x/ if d #»x is past-directed
:

(2.6)

Let us recall that the future/past-directed properties have been defined in
Sect. 1.4. Thanks to the c factor (cf. Sect. 1.2.4), the dimension of d	 is
time, g having no dimension and d #»x having the dimension of length (cf.
the convention adopted in Sect. 1.2.4). d	 is called the proper time elapsed
between the events A and A0 on L .

If the displacement d #»x is represented by its components .dx˛/ in some orthonor-
mal basis of .E;g/, the scalar product g.d #»x ; d #»x / can be expressed according
to (1.18), so that (2.6) becomes

c d	 D ˙
p
.dx0/2 � .dx1/2 � .dx2/2 � .dx3/2;

orthonormal basis
(2.7)

where the sign˙ corresponds to the two cases considered in (2.6).
Given a parametrization '.�/ of L , one may express the proper time in terms

of the associated tangent vector field #»v . Let us suppose that #»v is future-directed.
Would this not be the case, the change of parameter � 7! �� would provide a
future-directed tangent vector. Then, we have

d #»x D #»v d�; (2.8)

where d� is the difference of parameter between A0 and A: AD'.�/,
A0 D '.�C d�/ (cf. Fig. 2.1). Thanks to g’s bilinearity, (2.6) can be written

c d	 D
p
�g. #»v ; #»v / d�: (2.9)

2It is however still not a norm in the mathematical meaning, for it does not satisfy the triangle
inequality k #»v C #»wk � k #»v k C k #»wk.
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Fig. 2.2 Proper time
between events A and B
along a worldline L

Remark 2.4. Choosing a parametrization such that #»v is future-directed ensures
that d	 has the correct sign, namely, is positive (resp. negative) if d #»x is future-
directed (resp. past-directed). Let us stress that, although Eq. (2.9) lets appear the
parametrization ' of L , the value of d	 is independent of that parametrization, as
it is clear on (2.6).

The definition of proper time can be extended to events with a finite separation
along a worldline, by integrating (2.6) between these two events. Hence if A and B
are two events of some worldline L (cf. Fig. 2.2) and if ' is a parametrization of
L such that A D '.�1/ and B D '.�2/, we set

	.A;B/ WD
Z B

A

d	 D 1

c

Z �2

�1

p�g. #»v .�/; #»v .�// d� ; (2.10)

where #»v .�/ is the tangent vector field associated with the parametrization '. As for
d	 , 	.A;B/ does not depend on the choice of the parametrization '. On the other
hand, it depends on the worldline connecting A to B .

2.3.2 Ideal Clock

Let us call clock any physical device that (i) can be reduced to a point particle (at the
scale of the phenomenon under study), (ii) follows a timelike worldline L and (iii)
provides a sequence of “signals”, i.e. a sequence of events : : : ; E�1; E0; E1;E2; : : :
sampling L (Fig. 2.3). Each Ek is called a tick.

An ideal clock is then defined as a clock for which the proper time 	.Ek;EkCN /
between two ticks Ek and EkCN is equal to a constant K times the number N of
elapsed ticks:

	.Ek;EkCN / D KN: (2.11)
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a bFig. 2.3 (a) Generic clock;
(b) ideal clock

Among all the clocks, ideal clocks are characterized by the fact that the
proportionality; factor K is the same at each point of their worldline (Fig. 2.3).
In other words, the time indicated by an ideal clock is the proper time along the
clock’s worldline.

Remark 2.5. Relativity has banished the concept of absolute time (cf. Sect. 1.2.5). It
however introduces along each worldline a privileged time: that given by the metric
tensor according to (2.6). An ideal clock is a clock that displays this time. Obviously
it varies from one worldline to the other, i.e. the quantity 	.A;B/ defined by (2.10)
depends upon the worldline connecting A and B . It is in that sense that relativity
has suppressed absolute time.

An ideal clock is a “theoretical” device that can be more or less well approxi-
mated by an actual device. To know whether a given experimental clock constitutes
a good approximation of an ideal clock, one may check if the laws of kinematics
and dynamics (which will be developed in the coming chapters and are expressed in
terms of the proper time) are satisfied when experiments are described with the time
given by this clock. For instance, a pendulum held fixed with respect to the Earth
constitutes a relatively good approximation (at the human scale!) of an ideal clock.
But this is no longer true in a strongly accelerated frame with respect to the Earth:
the pendulum motion looses any periodicity if the acceleration is not constant. An
atomic clock constitutes a much better approximation of an ideal clock, because
it provides a time that depends very weakly on its state of acceleration, at least
for accelerations smaller than the centripetal acceleration of an electron around the
atomic nucleus, which is about 1023 m s�2.

Remark 2.6. Since it is related to the fundamental object of relativity, namely, the
metric tensor g, the proper time is the only truly physical time, in the following
meaning. The definition of time along a given worldline is a priori arbitrary: one
can choose the time provided by any clock. The distinctive feature of proper time
is that the physical laws expressed in terms of it are simpler than if expressed in
terms of an arbitrary time, because the basic physical laws involve the metric tensor,
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to which proper time is directly related. Considering the example mentioned above,
the pendulum beats are periodic functions of the proper time in an inertial frame.
To paraphrase Poincaré (1898), we may say that it is for a matter of commodity that
one uses proper time and not an arbitrary time.

Remark 2.7. When considering a human being, the proper time is also the most
convenient one to describe her/his physiological evolution, given the physical nature
of physiological processes. Admitting that the physiological time is indeed the one
perceived by consciousness, one may think about the proper time along a worldline
as the time “felt” by a human observer moving along this worldline.

Remark 2.8. The fundamental concept that appears once the metric tensor and the
worldlines have been introduced is that of time and not of length. We shall discuss
this further below.

2.4 Four-Velocity and Four-Acceleration

2.4.1 Four-Velocity

We have seen in Sect. 2.2 that one may associate many tangent vector fields to a
given worldline L , namely, the tangent fields linked to all possible parametrizations
of L . The introduction of proper time in Sect. 2.3 allows us to select a tangent vector
field independent of any parametrization and thereby intrinsic to the worldline: the
four-velocity, or 4-velocity for short, of a massive particle evolving along a
worldline L is the vector of E defined at any point A 2 L by

#»u WD 1

c

d #»x

d	
; (2.12)

where d #»x is an infinitesimal vector tangent to L and future-directed (cf. Sect. 1.4)
and d	 is the proper time interval corresponding to d #»x via (2.6). If one wishes
to give a rigorous mathematical meaning to (2.12), it suffices to parametrize the
worldline L by c times its proper time: � D c	 . Such a parametrization is unique,
up to the choice of some origin. The vector #»u is then nothing but the derivative
of that parametrization, as defined in Sect. 2.2. As a derivative, it is of course
independent of the origin of proper time.

If #»v is a future-directed tangent vector field associated with some parametriza-
tion '.�/ of L , we may insert (2.8) and (2.9) into (2.12) and get

#»u D
#»vp�g. #»v ; #»v /

D
#»v

k #»v kg
: (2.13)
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Fig. 2.4 4-velocity #»u and
4-acceleration #»a at two
points A and B of a timelike
worldline L

This identity can be viewed as the definition of a unit tangent vector ( #»u ) from an
arbitrary tangent vector ( #»v ). It is actually trivial to check on (2.13) that3

#»u � #»u D �1 : (2.14)

We could even have introduced the 4-velocity #»u as the unique future-directed unit
vector tangent to L . The definition (2.12) has more the aspect of a “velocity”. Note
however that #»u is dimensionless, thanks to the factor 1=c in (2.12).

Remark 2.9. Many authors define the 4-velocity with the dimension of a veloc-
ity, by setting #»u WD d #»x=d	 instead of (2.12). Equation (2.14) becomes then
#»u � #»u D �c2. We follow here the convention of Landau and Lifshitz (1975), pre-
ferring a dimensionless 4-velocity, because many expressions are simplified when
#»u is a unit vector. Moreover, from a pedagogical point of view, the dimensionless
character of the 4-velocity is valuable in avoiding the confusion with an “ordinary”
velocity, which is a different concept (in particular, it is relative to some observer,
contrary to the 4-velocity, cf. Remark 2.10 below).

The property (2.14) implies that the 4-velocity belongs to the set U C introduced
in Sect. 1.4.3:

#»u 2 U C : (2.15)

Conversely, any element of U C can be considered as a 4-velocity. We conclude that
U C is nothing but the set of all possible 4-velocities.

The 4-velocity at two points A and B of a worldline is depicted in Fig. 2.4. The
null cone of g is also drawn at these two points (cf. Sect. 1.4): as a timelike future-
directed vector, #»u is located inside the future null cone I C.

3Let us recall that the notation #»u � #»u stands for g. #»u ; #»u /.
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Remark 2.10. The reader might have been surprised by the fact that, in the theory
of relativity, the 4-velocity has not been defined relatively to a frame or an observer.
On the contrary, it has been introduced as an absolute quantity, which depends only
on the considered worldline, the latter being obviously independent of any observer.
Actually, the 4-velocity is different from a velocity and is not a directly measurable
quantity. After having introduced the concept of observer in Chap. 3, we shall define
in Chap. 4 the “ordinary” velocity of a point particle with respect to an observer. It
will be a function of the 4-velocities of the particle and the observer, and will be a
measurable quantity, as the ratio of a length by a time.

2.4.2 Four-Acceleration

It is natural to define the four-acceleration, or 4-acceleration for short, as the vector
of E that measures the variation of the 4-velocity field #»u along the worldline L :

#»a WD 1

c

d #»u
d	

; (2.16)

where 	 stands for the proper time along L . The above expression takes a rigorous
mathematical meaning if L is parametrized by � D c	 : the vector #»a is then
nothing but the second derivative of this parametrization.

#»u being dimensionless and c	 having the dimension of a length [cf. Eq. (2.6)],
the dimension of the 4-acceleration is that of the inverse of a length and not that of
an acceleration.4

Two basic properties of the 4-acceleration follow easily from its definition:

• #»a is orthogonal to #»u (with respect to the metric g):

#»a � #»u D 0 : (2.17)

Proof. One has

#»a � #»u D 1

c

d #»u
d	
� #»u D 1

2c

d

d	
. #»u � #»u / D 1

2c

d

d	
.�1/ D 0: ut

• #»a is either the zero vector or a spacelike vector.

Proof. If #»a 6D 0, thanks to (2.17) and by means of the Gram–Schmidt
process (Deheuvels 1981), we may find an orthogonal basis of E of the type
. #»u ; #»a ; #»e 1;

#»e 2/. In this basis, taking into account (2.14), the matrix of g is

4As for the 4-velocity, which has not the dimension of a velocity, cf. Remark 2.9.
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g˛ˇ D

0

BB@

�1 0 0 0

0 #»a � #»a 0 0

0 0 #»e 1 � #»e 1 0

0 0 0 #»e 2 � #»e 2

1

CCA :

Since the signature of g is .�;C;C;C/, the diagonal terms but �1 are
necessarily strictly positive (Sylvester’s law of inertia, Sect. 1.3.1); hence, in
particular, #»a � #»a > 0, which proves that #»a is spacelike. ut

We conclude that

#»a � #»a � 0 ; (2.18)

with #»a � #»a D 0 iff #»a D 0.

It is worth to note that the above demonstration uses only the fact that #»a is
orthogonal to #»u ; we have therefore established a very useful property:

Any vector orthogonal to a timelike vector is necessarily spacelike or zero.

The 4-acceleration at two points of a worldline is depicted in Fig. 2.4. Being
spacelike, this vector is located outside the null cone, contrary to #»u . Note that
the orthogonality between #»a and #»u does not imply the orthogonality in the
usual (Euclidean) sense of the arrows representing #»a and #»u in Fig. 2.4 (cf. the
discussion about the graphical representation of vectors in Sect. 1.3.6). We shall
see in Sect. 2.7.3 a geometrical interpretation of the 4-acceleration involving the
curvature of the worldline.

Remark 2.11. As for the 4-velocity (cf. Remark 2.10), the 4-acceleration is an
absolute quantity, independent of any frame or observer.

Historical note: The concepts of worldline, 4-velocity and 4-acceleration have
been introduced by Hermann Minkowski (cf. p. 26). They appear in a publication of
1908 (Minkowski 1908) and play a central role in the famous article on spacetime
published the year after (Minkowski 1909) and discussed at the end of Chap. 1.
Note however that, as soon as 1905, in the “Palermo memoir” (Poincaré 1906),
Henri Poincaré (cf. p. 26) let appear a four-dimensional vector that was nothing but
the 4-velocity, although without any explicit mention of a worldline. The concept
of proper time, as exposed above, namely, the length given by the metric tensor
along a worldline, is also due to Minkowski: in the publications (Minkowski 1908)
and (Minkowski 1909), he wrote the relations (2.6) and (2.10) (making use of
the components (1.17) of g in an orthonormal basis). Besides, the relation (2.17)
expressing the orthogonality of the 4-acceleration and the 4-velocity appears clearly
in the 1909 text (Minkowski 1909).
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2.5 Photons

2.5.1 Null Geodesics

In Sect. 2.2, we have postulated that massive particles follow worldlines that are
timelike. We shall now define the worldlines of massless particles, the first of
them being photons. As for any point particle, a photon is represented by a one-
dimensional curve in Minkowski spacetime (its worldline). Whereas the worldlines
of massive particles show a great variety (all the curves with timelike tangent
vectors), photons are compelled to follow quite specific curves, straight lines, the
direction vector of which is null:

In vacuum, a massless particle, and in particular a photon, is represented by
a straight line of E whose direction vector is a null vector of the metric g,
i.e. a vector #»v obeying #»v � #»v D 0. Such a line is called a null geodesic of
spacetime. If the particle is a photon, it is also called a light ray.

This principle justifies the choice of qualifier lightlike given to null vectors of g

(cf. Sect. 1.3.4). When we shall treat electromagnetism (Chaps. 17–20), we shall
verify that the wave solutions to Maxwell equations in vacuum propagate along null
directions of the metric tensor.

Remark 2.12. A null geodesic is a special case of a null curve, i.e. a curve of E
whose tangent vectors are null vectors. There exists null curves that are not straight
lines and thus not null geodesics. An example is the helix defined by the parametric
equation x0.�/ D r�, x1.�/ D r cos�, x2.�/ D r sin�, x3.�/ D 0, with r > 0, in
some affine coordinate system .x˛/ associated with an orthonormal basis.

Remark 2.13. The notion of proper time introduced for massive particles cannot be
extended to photons, because (2.6) would result in d	 D 0 (for d #»x is null along a
null geodesic). This would mean that an ideal clock carried by a photon is frozen.
Consequently, the 4-velocity of a photon cannot be defined. In other words, there
does not exist any null vector that is a unit one (since by definition, the scalar square
of a null vector is zero).

2.5.2 Light Cone

Let us consider an event A in the spacetime E . The worldlines of all the photons
that encounter A (photon passing through A, or emitted at A or received at A) form
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a subset of E that is the image of the null cone of g in E (Sect. 1.4) under the
identification of the pair .E ; A/ (affine space E with A as an origin) with the vector
space E (cf. Fig. 2.4). More precisely, let #»u be the 4-velocity of a massive particle
passing through A and . #»e 1;

#»e 2;
#»e 3/ three vectors such that . #»u ; #»e 1;

#»e 2;
#»e 3/ is

an orthonormal basis of .E;g/. .AI #»u ; #»e 1;
#»e 2;

#»e 3/ is then an (orthogonal) affine
coordinate system of E (cf. Sect. 1.2.3). A point M 2 E of affine coordinates
.x0; x1; x2; x3/ belongs to the worldline of a photon that encounters A iff

#     »
AM is

a null vector: g.
#     »
AM;

#     »
AM/ D 0. From (1.6) and (1.18), this is equivalent to

�.x0/2 C .x1/2 C .x2/2 C .x3/2 D 0: (2.19)

Such an equation defines a three-dimensional cone of apex A in the affine space
E , which is called the light cone of event A. We shall denote it by I .A/, the
sheet corresponding to the future (resp. past) null cone being denoted I C.A/ (resp.
I �.A/). I C.A/ is called the future light cone of event A and I �.A/ the past
light cone of A.

The null cone of apex A separates the events that are related to A by a timelike
vector to those that are related to A by a spacelike vector. Figure 2.4 shows the light
cones of two points A and B on the worldline of a massive particle.

Remark 2.14. The light cone is entirely determined by the considered event and
does not depend upon the worldline passing through this event. Note also that the
light cones of different events can be deduced from each other by a mere translation
(see Fig. 2.4).

2.6 Langevin’s Traveller and Twin Paradox

Having introduced formally the proper time at Sect. 2.3, let us now study it in a
specific case, which puts forward its dependency with respect to the considered
worldline. The “experiment” to be described has been designed by Paul Langevin5

in 1911 (Langevin 1911). It is known as Langevin’s traveller and it illustrates the
so-called twin paradox. Beside proper time, it provides also a nice illustration of the
concepts of 4-velocity and 4-acceleration introduced in Sect. 2.4.

5Paul Langevin (1872–1946): French physicist, known for his work on the magnetic properties
of materials and Brownian motion. As a friend of Einstein since 1911, he contributed a lot in
the diffusion of relativity in France (Paty 1999a). He was also president of the French League of
Human Rights from 1944 to 1946.
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Fig. 2.5 Worldlines of the twins O and O0: that of O is the vertical line x D 0 and that of O0

is represented for different values of the parameter ˛. Between the events A (O0 departure) and B
(O0 return), the worldline of O0 is made of three arcs of hyperbola: AC1, C1C2 and C2B , defined
by (2.20) (the points C1, C2 and P have been drawn only for ˛ D 4). Long-dashed lines indicate
a null geodesic issued from A (segment ŒAD�) and a null geodesic arriving in B (segment ŒDB�);
ŒAD� [ ŒDB� is thus the worldline of a photon emitted at A and reflected at D in order to meet
observer O in B

2.6.1 Twins’ Worldlines

Let us consider two observers O and O 0 that we shall model as two particles on
timelike worldlines equipped with ideal clocks.6 We take for the worldline L of O
the simplest that one may think of: a straight line of E . The worldline L 0 of O 0 is
chosen to coincide with L until some event A; this is the very reason why O and
O 0 may be called twins. AtA, O 0 separates from O and travels until the eventP . He
then moves back and meets up with O at the event B , after which the worldlines L
and L 0 coincide again (cf. Fig. 2.5).

Since L is a straight line, the 4-velocity #»u of O is constant. This implies that the
4-acceleration of O vanishes. Let then . #»e ˛/ be an orthonormal basis of .E;g/ such

6We shall define more precisely the concept of observer in Chap. 3, the present version being
sufficient for the purpose of this section.
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that #»u is equal to the (constant) vector #»e 0. We consider the affine coordinate system
.x0 D ct; x1 D x; x2 D y; x3 D z/ defined by this basis and having A as origin (cf.
Sect. 1.2.3). The pointsM of L obey the relation

#     »
AM D ct #»e 0. Differentiating, we

get d
#     »
AM D c dt #»e 0, so that formula (2.6) along with the property g. #»e 0;

#»e 0/ D �1
shows that the coordinate t coincides with O’s proper time.

Let us now define precisely the worldline of O 0. For simplicity, we suppose
that O 0 travels always in the same direction, which we shall select to be that
of #»e 1. The spatial trajectory of O 0 as perceived by O is then a line segment,
travelled in one way and then in the reverse way. The corresponding worldline in
Minkowski spacetime is contained in the plane through A and generated by the
vectors . #»e 0;

#»e 1/, i.e. the plane .t; x/. The precise shape of L 0 depends on the
velocity of O 0 with respect to O . We shall choose L 0 between A and B to be made
of three arcs of hyperbola, AC1, C1C2 et C2B (cf. Fig. 2.5), defined in terms of
the affine coordinates .ct; x; y; z/ by the following equations:

for t 2
�
0;
T

4

�
W x.t/ D cT

˛

�q
1C ˛2 .t=T /2 � 1

�
(2.20a)

for t 2
�
T

4
;
3T

4

�
W x.t/ D cT

˛

"
�
q
1C ˛2 .t=T � 1=2/2 C 2

r
1C ˛2

16
� 1

#

(2.20b)

for t 2
�
3T

4
; T

�
W x.t/ D cT

˛

�q
1C ˛2 .t=T � 1/2 � 1

�
; (2.20c)

where T is O’s proper time elapsed between the events A and B , so that t.A/ D 0,

t.C1/ D T=4, t.C2/ D 3T=4 and t.B/ D T . The parameter ˛ 2 R is dimensionless
and allows us to consider a whole family of worldlines for O 0, as shown in Fig. 2.5.
If ˛ D 0, L 0 coincides with L and for ˛ 6D 0, Eq. (2.20a) leads to

�
˛
x

cT
C 1

�2 �
�
˛
t

T

	2
D 1; (2.21)

which is the equation of a hyperbola in the plane .t; x/, having the “horizontal”
line t D 0 as the foci axis. Similarly, (2.20b) defines a hyperbola of foci axis the
line t D T=2 and (2.20c) a hyperbola of foci axis the line t D T (cf. Fig. 2.5).
The choice of arcs of hyperbola will be justified in Sect. 2.6.4, where we shall see
that it implies a constant norm of the 4-acceleration. This constitutes a relativistic
generalization of the uniformly accelerated motion, as we shall discuss in Sect. 12.2.
We shall call the observer O 0 following the worldline defined above Langevin’s
traveller.

Let P be the mid-journey event (maximal distance from O , cf. Fig. 2.5). Its
position depends upon ˛ and is obtained by setting t D T=2 in (2.20b):
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x.P / D 2cT

˛

 r
1C ˛2

16
� 1

!
D ˛

8

cTp
1C ˛2=16C 1 : (2.22)

2.6.2 Proper Time of Each Twin

We have seen above that the proper time of O coincides with the coordinate t of the
affine system .ct; x; y; z/. To determine the proper time t 0 of O 0, let us parametrize
the worldline L 0 by � D t . An infinitesimal displacement d #»x 0 along L 0 has the
components dx0˛ D .c dt; dx; 0; 0/ in the orthonormal basis . #»e ˛/, where dx is
related to dt by differentiating (2.20):

dx D .�1/k ˛.t=T � k=2/
q
1C ˛2 .t=T � k=2/2

c dt; (2.23)

where the integer k takes the following values : k D 0 for 0 � t � T=4, k D 1 for
T=4 � t � 3T=4 and k D 2 for 3T=4 � t � T . The basis . #»e ˛/ being orthonormal,
the proper time t 0 along L 0 is given by formula (2.7):

dt 0 D 1

c

q
.dx00/2 � .dx01/2 � .dx02/2 � .dx03/2 D 1

c

p
c2dt2 � dx2: (2.24)

Substituting (2.23) for dx yields

dt 0 D dtq
1C ˛2 .t=T � k=2/2

: (2.25)

Thanks to the change of variable ˛.t=T � k=2/ D sinh u, this equation is easily
integrated into7

t 0 D T

˛
arsinh

�
˛

�
t

T
� k
2

	�
C k

2
T 0; (2.26)

where arsinh stands for the inverse hyperbolic sine (arsinhx D ln.x Cpx2 C 1/)
and

T 0 WD 4T

˛
arsinh

�˛
4

�
: (2.27)

7Let us recall that d.sinh u/ D cosh u du and
p
1C sinh2 u D cosh u.
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The integration constant kT 0=2, which appears in (2.26), has been chosen in each
of the domains k D 0 (t 2 Œ0; T=4�), k D 1 (t 2 ŒT=4; 3T=4�) and k D 2 (t 2
Œ3T=4; T �) in order to enforce the continuity of t 0, starting from t 0 D 0 at t D 0.
The relation (2.26) between the proper times t and t 0 is plotted in Fig. 2.6. At the
particular points A (k D 0, t D 0), C1 (k D 0, t D T=4), P (k D 1, t D T=2), C2
(k D 1, t D 3T=4) and B (k D 2, t D T ), it results in

t 0.A/ D 0; t 0.C1/ D T 0

4
; t 0.P / D T 0

2
; t 0.C2/ D 3T 0

4
; t 0.B/ D T 0:

(2.28)

We notice that the inequality t 0 � t always holds (cf. Fig. 2.6). In particular, when
O and O 0 meet again in B , the elapsed proper time from O 0 departure is t.B/ D T
for O , whereas the elapsed proper time for O 0, t 0.B/ D T 0, is given by (2.27).
Whenever ˛ 6D 0, we have T 0 6D T , and the ratio of the two elapsed proper times is

T 0

T
D t 0.B/ � t 0.A/

t.B/� t.A/ D
4

˛
arsinh

�˛
4

�
� 1 : (2.29)

The ratio T 0=T is plotted as a function of ˛ in Fig. 2.7. For the worldlines drawn in
Fig. 2.5, its value is 0:96 (˛ D 2), 0:88 (˛ D 4), 0:72 (˛ D 8) and 0:30 (˛ D 40).

2.6.3 The “Paradox”

The result (2.29) constitutes the so-called twin paradox. Actually, this is not a
paradox for this does not generate any contradiction in the theory of relativity, as
discussed below; this is simply a surprising result for a “nonrelativistic” physicist:
in Newtonian theory, the times given by the clocks of each twin would be the same
when they meet in B , provided that they have been synchronized in A.

The paradoxical aspect of Langevin’s traveller arises from a naive interpretation
of the principle of relativity: from the point of view of twin O , the twin O 0 is the
traveller and the above computation shows that when O 0 is back, he is younger
than O . But from the point of view of O 0, it is O who is travelling. When the
twins meet again, O should then be younger. Since both points of view should be
equally valid according to the principle of relativity, a paradox appears: at the event
B , O 0 cannot be both younger and older than O . Actually, this argument is false
because the two twins O and O 0 do not follow equivalent worldlines in Minkowski
spacetime. The worldline of O is a very peculiar curve: a straight line, which
implies that O’s 4-acceleration is vanishing. On the contrary, the 4-acceleration
of O 0 is nonzero, as we shall see below. Since the two twins are not equivalent,
the relativity principle cannot be invoked and the paradox disappears. For a more
detailed discussion, we refer the reader to Grandou and Rubin (2009).
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Fig. 2.6 Proper time t 0 of the twin O0 (Langevin’s traveller) as a function of the proper time t of
the twin O, for various values of the parameter ˛. Note that at the instants t D 0, t D T=2 and
t D T , where the two worldlines are parallel (cf. Fig. 2.5), the slope of the curve is 45ı, which
means that t 0 flows at the same rate as t . On the other side, at the instants t D T=4 and t D 3T=4,
where the inclination of L 0 differs the most from that of L , the slope of the curve is the smallest
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Fig. 2.7 Ratio between the proper time elapsed between A and B for O0 and that elapsed for O,
as a function of the parameter ˛ [cf. formula (2.29)]
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Remark 2.15. From the four-dimensional point of view adopted in this book, the
solution of the twin “paradox” appears rather trivial: the proper time has been
defined as the length given by the metric tensor g along a worldline, and it
seems obvious that the length between two points A and B depends upon the path
chosen between these two points. A sceptical mind could reply: “there is nothing
revolutionary in this with respect to the Newtonian time, because everything relies
on the definition of proper time as the length of worldlines with respect to g; this
is an arbitrary definition of “time”. It is therefore not surprising that it results in
a strange behaviour”. However, we have already mentioned in Sect. 2.3 that the
time defined from g is the actual physical time, in the sense that the equations of
dynamics take a simple form when expressed with it (we shall see it explicitly in
Chap. 9). We shall actually see in Sect. 2.6.6 some experimental realizations of the
twin paradox, showing that the time provided by atomic clocks between two events
A and B do depend on the worldline between these two events. It is therefore not a
mere semantic effect!

Remark 2.16. Since arsinhx D ln.x Cpx2 C 1/, we deduce from formula (2.29)
that when ˛ ! C1, the ratio T 0=T goes to 0, behaving as 4 ln˛=˛. This is
not surprising if one contemplates Fig. 2.5: when ˛ ! C1, the worldline L 0
approaches the worldline ŒAD� [ ŒDB� of a photon emitted in A and reflected back
to B in D. Each segment ŒAD� and ŒDB� is a piece of null geodesic and hence as
a vanishing metric length (cf. Remark 2.13 in p. 39). Therefore we understand why
T 0, which is nothing but the metric length of L 0 between A and B , converges to
zero when ˛ !C1.

Historical note: This is in fact Albert Einstein who, in the seminal 1905 article
(Einstein 1905b), already pointed out that two clocks initially synchronized and, at
the same position, would not show the same time if they are read at the same place
after having travelled on different paths. Einstein gave an approximate formula
(valid for small velocities) of the delay between t 0 and t . During a conference in
Zurich in 1911, he illustrated the effect by describing a round-trip journey of a
living organism locked in a moving box (cf. Damour (2006), p. 34). In order to
make the effect more spectacular, Paul Langevin (cf. p. 40) imagined in 1911 a
human being leaving the Earth aboard a “projectile”, travelling towards some star
at a velocity close to that of light and coming back on Earth after 2 years, whereas
200 years have been elapsed on our planet (Langevin 1911; Paty 1999a). Let us note
that in the 1911 text (Langevin 1911), Langevin did not speak explicitly of “twins”
but of a “traveller” and “the Earth”. Besides, he gave clearly the explanation
of the dissymmetry between the two by mentioning the acceleration felt by the
traveller.



2.6 Langevin’s Traveller and Twin Paradox 47

2.6.4 4-Velocity and 4-Acceleration

Let us compute the 4-velocity #»u 0 of Langevin’s traveller O 0 at each point of his
worldline. From the definition (2.12), we have

#»u 0 D 1

c

d #»x 0

dt 0
:

The components of #»u 0 in the orthonormal basis . #»e ˛/ are thus u0˛ D c�1dx0˛=dt 0.
Since dx0˛ D .c dt; dx; 0; 0/, we get u02 D 0, u03 D 0,

u00 D 1

c

dx00

dt 0
D dt

dt 0
and u01 D 1

c

dx01

dt 0
D 1

c

dx

dt 0
D 1

c

dx

dt

dt

dt 0
:

By means of (2.25) and (2.23), we obtain

u00 D
q
1C ˛2 .t=T � k=2/2 (2.30a)

u01 D .�1/k˛ .t=T � k=2/ : (2.30b)

Given the definition of the integer k, we note that if ˛ > 0, then for 0 � t � T=2,
u01 � 0 (O 0 is moving away from O in the direction of increasing x), whereas for
T=2 � t � T , u01 � 0 (O 0 is moving towards O). The vector #»u 0, as given by (2.30),
is drawn at some selected points of L 0 in Fig. 2.8.

Let us notice that, from (2.26),

˛

�
t

T
� k
2

	
D sinh

�
˛

T

�
t 0 � k

2
T 0
	�
; (2.31)

so that the components of #»u 0 can be expressed in terms of the proper time t 0
according to

u00 D cosh

�
˛

T

�
t 0 � k

2
T 0
	�

(2.32a)

u01 D .�1/k sinh

�
˛

T

�
t 0 � k

2
T 0
	�
: (2.32b)

Remark 2.17. Thanks to the identity cosh2 x � sinh2 x D 1, it is easily checked
on these formulas that #»u 0 � #»u 0 D �.u00/2 C .u01/2 D �1, as it should be for any
4-velocity [Eq. (2.14)].

Let us now compute the 4-acceleration #»a 0 of O 0. By definition [cf. Eq. (2.16)],

#»a 0 D 1

c

d #»u 0

dt 0
:
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Fig. 2.8 Worldline L 0 of Langevin’s traveller O0 with the 4-velocity #»u 0 and 4-acceleration #»a 0

at some selected points. This figure corresponds to the case ˛ D 4 (solid line in Fig. 2.5), i.e.
to the acceleration 
 D 4c=T . At the event A, the 4-acceleration changes sharply from 0 to
#»a 0 D 
c�2 #»e 1 (ignition of the rocket engine). Its norm stays then constant (equal to 
c�2), until
the return event B , where #»a 0 vanishes again (rocket engine stopped). The event C1 is the sudden
change of direction of acceleration by 180ı (thrust reversing). O0 is subsequently slowed down
until P and then sped up towards O, until C2. At this point, a new thrust reversing occurs, so that
O0 is slowed down until it reaches B

Accordingly, the components of #»a 0 in the orthonormal basis . #»e ˛/ are

a00 D 1

c

du00

dt 0
; a01 D 1

c

du01

dt 0
; a02 D 0 and a03 D 0:

Taking the derivative of (2.32) with respect to t 0, we get

a00 D ˛

cT
sinh

�
˛

T

�
t 0 � k

2
T 0
	�

(2.33a)

a01 D .�1/k ˛
cT

cosh

�
˛

T

�
t 0 � k

2
T 0
	�
: (2.33b)
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As a check, the orthogonality between the 4-acceleration and the 4-velocity
[Eq. (2.17)] is recovered from (2.32) and (2.33): #»a 0 � #»u 0 D �a00u00 C a01u01 D 0.
Thanks to (2.31), we can express the components of #»a 0 in terms of t instead of t 0:

a00 D ˛2

cT

�
t

T
� k
2

	
(2.34a)

a01 D .�1/k ˛
cT

s

1C ˛2
�
t

T
� k
2

	2
: (2.34b)

We notice that a01 has a sudden change of sign when k goes from 0 to 1, i.e. when
t D T=4, as well as when k goes from 1 to 2, i.e. when t D 3T=4. More precisely,
if ˛ > 0, formula (2.34b) yields

t 2
�
0;
T

4

�
H) a01 > 0; t 2

�
T

4
;
3T

4

�
H) a01 < 0;

t 2
�
3T

4
; T

�
H) a01 > 0: (2.35)

Physically, if we consider that O 0 is travelling in some spaceship, the sudden change
of sign of a01 corresponds to a thrust reversing operated on the rocket engine (events
C1 and C2 in Fig. 2.8).

Let us evaluate the scalar square of #»a 0. The basis . #»e ˛/ being orthonormal, we
have #»a 0 � #»a 0 D �.a00/2 C .a01/2. From (2.33) or (2.34), we get easily

#»a 0 � #»a 0 D ˛2

c2T 2
: (2.36)

The right-hand side being clearly positive, we recover the property (2.18), namely,
that #»a 0 is a spacelike vector. More remarkably, (2.36) shows that the norm of the
4-acceleration,

a0 WD 

 #»a 0


g
D
p

#»a 0 � #»a 0 D j˛j
cT
; (2.37)

does not depend upon t 0: it is therefore constant along the worldline L 0 between A
and B . This property is specific to the spacetime motion along an arc of hyperbola,
which we have chosen for O 0.

We have seen in Sect. 2.4.2 that the dimension of a0 is the inverse of a length,
in agreement with (2.37), ˛ being dimensionless. To let appear a quantity with the
dimension of an acceleration, it suffices to multiply a0 by c2. We thus introduce the
parameter


 WD ˛ c
T
; (2.38)
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instead of ˛. 
 has the dimension of an acceleration and is related to the norm of the
4-acceleration of O 0 by

a0 D j
 j
c2

: (2.39)

We shall see in Chap. 12 that 
 is actually the acceleration felt by the observer O 0 in
his local frame.

Remark 2.18. Note that 
 6D d2x=dt2, i.e. 
 is not the second derivative of the
function x.t/ defining the worldline of O 0. The latter is obtained by taking the
derivative of dx=dt as given by (2.23). One gets, after substituting 
=c for ˛=T ,

d2x

dt2
D .�1/k


"
1C 
2

c2

�
t � k

2
T

	2#�3=2
: (2.40)

We conclude that one has j
 j ' jd2x=dt2j only in the nonrelativistic limit
j
 jT 	 c.

Remark 2.19. In many textbooks,8 the twin paradox is exposed from a worldline
L 0 simpler than the three arcs of hyperbola considered here, namely, a straight line
segment from A to P as well as from P to B (see Fig. 2.9). The computations
are then simpler than those presented above, the equation of L 0 being x.t/ D V t

for t 2 Œ0; T=2� and x.t/ D V.T � t/ for t 2 ŒT=2; T �, with V WD 2x.P /=T .
We have then dx D ˙V dt , so that evaluating dt 0 according to formula (2.24), we
get dt 0 D p

1 � .V=c/2 dt , which is easily integrated and leads to the proper time
ratio

T 0

T
D
r
1 � V

2

c2
� 1: (2.41)

However, this configuration is not physical for it corresponds to an infinite accel-
eration of O 0 at A (the 4-velocity jumping suddenly from #»u 0.A�/ to #»u 0.AC/, cf.
Fig. 2.9) as well as in P and B . On the contrary, the “tri-hyperbolic” worldline
considered here involves always a finite acceleration. It admits thus a clear physical
interpretation in terms of a (rocket) engine of constant thrust, switched on at A,
inverted inC1 andC2 and switched off atB . This demonstrates that the twin paradox
is not an artefact resulting from an infinite acceleration.

8Two exceptions are the books by Møller (1952) and by Marder (1971).
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Fig. 2.9 Simplified
worldline for the Langevin’s
traveller O0: L 0 is reduced to
a line segment between A and
P , as well as between P and
B . The 4-acceleration of O0 is
then infinite at A, P and B ,
as indicated by the jumps of
the 4-velocity #»u 0 at these
points. On the opposite, the
“tri-hyperbolic” worldline
(dotted curve, the same as in
Figs. 2.5 and 2.8) yields
always a finite 4-acceleration

2.6.5 A Round Trip to the Galactic Centre

Let d WD x.P / be the maximal distance of O 0 with respect to O . We may reexpress
formulas (2.22) and (2.29) in terms of the acceleration 
 via (2.38):

d D 2c2
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The second relation allows one to express T in terms of T 0 as

T D T� sinh

�
T 0

T�

	
; with T� WD 4c



D 4

˛
T: (2.43)

T� is the timescale that can be built from c and the acceleration 
 ; in Newtonian
physics, this would be 4 times the time required to reach the light velocity, starting
from a zero velocity with the acceleration 
 . Substituting T by the above value in

the expression of d and noticing that
p
1C sinh2 x D coshx, we get
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d D cT�
2

�
cosh

�
T 0

T�

	
� 1

�
: (2.44)

When T 0 	 T�, the Taylor expansions of (2.43) and (2.44) lead to

T 0 	 T� H)
8
<

:

T ' T 0

d ' c

4T�
.T 0/2 D 2 � 1
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�
T 0

4

	2
:

(2.45)

If T 0 	 T�, O 0 has not the time to reach a relativistic velocity with respect to O
and (2.45) gives the Newtonian results, as it should be: no differential ageing and
the travelled distance d=2 at a constant acceleration 
 (phase ŒAC1� lasting T 0=4)
being equal to 
=2 times the square of travel time. This is indeed the expected result
for a vanishing initial velocity.

Conversely, if T 0 
 T�, the ultra-relativistic regime is reached and rela-
tions (2.43) and (2.44) lead to

T 0 
 T� H)

8
ˆ̂<

ˆ̂:

T ' T�
2

exp.T 0=T�/

d ' cT�
4

exp.T 0=T�/ D 1

2
cT:

(2.46)

Remark 2.20. Formula (2.43), which relates T to T 0, depends on a single parame-
ter: the acceleration 
 , via the time T� D 4c=
 . One should however not conclude
that the twin paradox is a phenomenon intrinsically linked to acceleration. It should
rather be perceived as the reflect of the dissymmetry of the worldlines between A
and B . It turns out that in Minkowski spacetime .E ;g/, the only way for L 0 to
depart from a straight line (worldline L ) is to have some episode of nonvanishing
4-acceleration. If E is given a topology different from that of an affine space, then it
is possible to have T 6D T 0 with L and L 0 both having a vanishing 4-acceleration.
It suffices that E has a non-simply connected topology,9 as shown is the study (Uzan
et al. 2002).

Let us apply the above formulas to the “concrete” case where O 0 is an astronaut in
some spaceship. To consider an acceleration bearable for a human being, let us take
the value of Earth’s gravity: 
 D 1 g D 9:81 m s�2. This has even the advantage
to create an artificial gravity aboard the spaceship that simulates the terrestrial
environment and makes the journey comfortable. The corresponding time parameter
defined by (2.43) is T� D 4c=
 D 1:22 � 108 s D 3:87 yr, and formulas (2.43)
and (2.44) lead to values of T and d as functions of T 0 listed in Table 2.1. We
observe that if O 0 is travelling for more than a year, then the difference between

9An example of such spaces is a torus or, more generally, any compact domain with periodic
boundary conditions.
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Table 2.1 Properties of various trips of Langevin’s traveller, when the
acceleration is fixed to 
 D 9:81m s�2: T 0 is the round-trip duration
measured by him, T is the duration of the same trip but measured by
the “sedentary” observer O and d is the maximal achieved distance
between O0 and O (1 light-year D 9:46 � 1015 m). One checks that if
T � T� D 3:87 yr, then d ' cT =2, in agreement with (2.46)

T 0 [yr] T [yr] d [light-year]

1 1.01 0.065
2 2.09 0.26
4 4.75 1.13
8 15.0 5.82
16 120 58
32 7:50 � 103 3:74� 103

39.5 5:20� 104 2:60� 104

56 3:68� 106 1:84� 106

64 2:90� 107 1:45� 107

80 1:81� 109 9:03� 108

90 2:39� 1010 1:19� 1010

100 3:15� 1011 1:58� 1011

the “onboard” proper time T 0 and the “harbour” proper time T is noticeable. With a
journey lasting for 8 years, O 0 can reach the closest stars from the Solar System. If he
is travelling for T 0 D 16 years, when he is back on Earth, T D 120 years will have
elapsed, implying that he will not be able to report his journey to his acquaintances
but to their children. Table 2.1 shows that the centre of the Galaxy, located a roughly
26;000 light-years, can be reached within a journey of round-trip duration of only
39:5 years. In this case, it is not guaranteed that there will be anybody interested
by the traveller’s account at the return, for 52;000 years will have elapsed on Earth!
Let us not speak about a round trip to Andromeda Galaxy, located at 2 million light-
years, because while it takes only 56 years for the astronaut, his return will take
place on an Earth aged by 3 million years and, at the very least, he will face some
language issue. . .

Of course, in the above description, we have limited ourselves to pure kinematic
considerations and have not taken into account the energetic cost of such travels:
maintaining an acceleration of 1 g during several years requires an enormous
amount of energy and forbids such travels with today technology. Nevertheless,
we shall keep in mind that relativity allows one, at least theoretically, to visit the
Galactic centre and even to reach the border of the observable universe within a
human lifetime (d � 12 billion light-years for a round trip of 90 year, cf. Table 2.1),
travelling at less than the speed of light! (O 0’s worldline is always located inside
the light cone, cf. Fig. 2.8). Hence it is not correct to say that it is not possible for
a person to travel further than a hundred light-year or so away from Earth because
relativity forbids to travel faster than light. On the contrary, the solution is offered
by relativity itself: it remains true that for any observer that he may encounter on
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his way, O 0 is travelling slower than light10; this implies that for people observing
him from the Earth, O 0 will take at least 26; 000 years to reach the Galactic centre.
On the contrary, for O 0, only 20 years will have elapsed when he will arrive at the
Galactic centre.

One lesson from the above example is that relativity allows for time travel to the
future: one may say that O 0 is travelling to O’s future, since when O 0 meets again O
at B , O is older than him. The numbers listed in Table 2.1 show even that this time
travel to the future can be of millions of years. On the other side, special relativity
does not allow for time travel to the past: even if we take the point of view of O ,
when O meets again O 0 at B , the latter is younger than him but still older than when
he left him at A.

Remark 2.21. It is Minkowski spacetime structure that forbids the time travel to
the past: all the light cones being parallel (cf. Figs. 1.8 and 2.8), one can show
that it is not possible for the worldline L 0 to meet L at a point B located in the
past of A while staying inside the light cone of any of its points. However, if a
gravitational field is present, the spacetime structure is no longer that of an affine
space, as we shall see in Chap. 22, but that of a “curved” space ruled by general
relativity. The light cones are then no longer parallel with respect to each other and
it is possible, under certain conditions (quite extreme though. . . ), to have L 0 such
that B is anterior to A. This is the time machine of science-fiction novels! We shall
not discuss this subject further and refer the interested reader (who would not be?)
to Lehoucq (2004), Davies (2002), Thorne (1994).

2.6.6 Experimental Verifications

Undoubtedly, the twin paradox puts forward an effect that is not part of everyday
life, namely, the dependency of time upon the motion of bodies. Actually the
velocities of people and objects around us are very small with respect to the velocity
of light, and we have seen that the time shift is sizeable only if T 0 is of the order
T�, which implies a velocity close to c [cf. (2.43) under the form V� WD 
T� � c].
Nevertheless, even if the effect is too small for our senses, it can be exhibited by a
sufficiently sensitive experiment. This turned out to be possible in the 1970s, thanks
to atomic clocks.

2.6.6.1 Hafele–Keating Experiment (1971)

The first experimental reproduction of the twin paradox has been performed in 1971
by J.C. Hafele of Washington University at Saint Louis (Missouri) and Richard E.
Keating of the US Naval Observatory (Hafele 1972b; Hafele and Keating 1972a,b)

10We shall make precise the notion of velocity in Chap. 4.
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(cf. also Hafele (1972a)). Four caesium atomic clocks have been loaded on airline
jets for a journey round the Earth; when back to their starting point, they have
been compared with atomic clocks stayed on the ground. Two journeys have taken
place. The first one has been performed eastward from 4 to 7 October 1971,
with 12 stopovers, 3 changes of plane (Boeing 747 and 707) and a total of 41 h
of flight. The second one has been performed westward from 13 to 17 October
1971, with 13 stopovers, 2 changes of plane (Boeing 707), totalizing 49 h of flight.
The corresponding worldlines are rather different from that of Langevin’s traveller
defined in Sect. 2.6.1: the motion around the Earth being circular and not linear, the
worldlines rather looks like helices. The precise trajectory of the clocks was pretty
complicated because of the different stopovers, the experiment being performed on
commercial airlines. Thanks to the flight data provided by the pilots, it has been
possible to reconstruct the worldline L 0 followed by the onboard clocks. Another
difference with Sect. 2.6.1 is that the worldline L of the reference clock staying on
the ground is not a straight line but also a helix, due to the Earth rotation. However,
even if the worldlines L and L 0 are more complicated than in Sect. 2.6.1, one could
similarly compute, by means of (2.10), the proper times T along L and T 0 along
L 0 between the plane departure (eventA) and its return (eventB). These theoretical
values have been then compared with the actual measurements given by the clocks.

In addition to the shape of the worldlines, another complication arises from the
fact that the clocks aboard the planes were travelling higher in the gravitational
potential of the Earth than the clocks stayed on the ground. A general relativistic
effect then takes place: the gravitational redshift, that we shall discuss in Chap. 22.
It results in a difference between the proper times T 0 and T , in the direction
of increasing T 0. This effect has a magnitude comparable to that of the special
relativistic effect that we are interested in here. The verification of the twin paradox
must thus take this into account.

In Chap. 13, we shall compute the value T 0 � T in the framework of special
relativity, by means of simplified airplane trajectories. The precise computation,
relying on the actual trajectories, results in T 0 D T � 184 ˙ 18 ns (nanoseconds)
for the eastward journey. The 18 ns error bar is related to the uncertainties in the
reconstruction of the airplane worldline (uncertainties in position and velocity).
Hence, the clocks that have travelled eastward must be younger by 184 ns than those
stayed on the ground. This value must be corrected from the general relativistic
effect mentioned above; the latter goes in the reverse direction: it increases T 0 by
144˙ 14 ns. Accordingly, the theoretical prediction is T 0 D T � 40˙ 32 ns. The
observed value, obtained by taking the average over the four clocks, in order to
reduce the experimental error, is T 0 D T � 59˙ 10 ns.

Regarding the westward journey (counterrotating with respect to the Earth), the
worldline L 0 (a helix at first approximation) deviates less from a straight line than
the worldline L . We are thus in the case where special relativity predicts T 0 > T , as
we shall see explicitly in Chap. 13. The computation leads to T 0 D T C 96˙ 10 ns,
to which the gravitational redshift effect must be added (always with the result of
increasing T 0), to arrive at T 0 D T C 275 ˙ 21 ns. The measured value is T 0 D
T C 273˙ 7 ns.
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Fig. 2.10 Airplane carrying the atomic clocks (observer O0) in Alley experiment (1975), parked
near the truck containing the reference atomic clocks (observer O), at the Naval Air Station
Patuxent River (Eastern coast of United States). This picture may be considered as a view of the
event A, where O and O0, who were following the same worldline, are on the verge to separate
[Credit: C.O. Alley (1983)]

Given the error bars, we conclude that Hafele–Keating experiment has confirmed
that the proper time elapsed between two events does depend on the worldline
related them. This may be seen as the experimental demonstration that the actual
time is not Newton’s absolute time, but relativity’s time.

2.6.6.2 Alley Experiment (1975)

A more precise experiment with atomic clocks in airplane has been performed in
1975 by Carroll O. Alley of the University of Maryland (USA) (Alley 1983). This
time, an aircraft entirely devoted to the experiment has been used instead of regular
airline planes. It was an antisubmarine aircraft Lockheed P-3C Orion, which has the
capability to fly non-stop for 16 h. On 22 November 1975 six atomic clocks (three
caesium ones and three rubidium ones) have been loaded for a 15-h flight turning
around Chesapeake Bay, on the Northeast coast of the United States (worldline L 0).
A set of identical atomic clocks was installed in a trailer on the base from which the
aircraft departed (worldline L ) (cf. Fig. 2.10). The average speed of the plane was
540 km h�1 D 150m s�1 D 5�10�7 c and the altitude was 7,600 m during the 5 first
hours, 9,100 m during the 5 next hours and 10,700 m during the 5 last hours. The
computation of the proper times along L 0 and L leads to the following theoretical
prediction:

T 0 D T � 5:7ns„ ƒ‚ …
SR

C 52:8ns„ ƒ‚ …
GR

D T C 47:1ns; (2.47)

where “SR” labels the contribution of special relativity (kinematic effect considered
in this chapter) and “GR” the contribution of general relativity (gravitational
redshift). The value measured at the return is in agreement with (2.47) within a
relative accuracy of 1:5%. Since the kinematic effect is a tenth of the total effect, we
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conclude that Alley experiment has confirmed the twin paradox with an accuracy of
the order of 15%.

Remark 2.22. Other tests about the dependency of proper time with respect to the
motion will be presented in Chaps. 4 and 5. They are much more precise than the
experiments described above. We have limited ourselves to the last ones because
they are directly interpretable in terms of the twin paradox.

2.7 Geometrical Properties of a Worldline

2.7.1 Timelike Geodesics

In the study of Langevin’s traveller, we have observed that T > T 0 as long as
the worldline L 0 departs from L (i.e. as long as ˛ 6D 0). Given the definition of
proper time, we may state in an equivalent manner that between eventsA andB , the
straight worldline L has a length (given by the metric tensor g) larger than that of
the curved worldline L 0. We shall show now that Langevin’s traveller reflects the
most general case: if two points of E can be joined by a timelike straight line, all
the other timelike curves joining them have a smaller metric length. This result is of
course the exact opposite of what holds in a Euclidean space, where the straight line
is always the shortest path between two points.

Let A and B be two points of E such that B is located inside the future light
cone of A. These two points can then be joined by timelike curves (i.e. worldlines
of massive particles). A particular worldline is the straight line L0 through A and
B . Let . #»e ˛/ be an orthonormal basis of .E;g/ such that #»e 0 coincides with the 4-
velocity of L0. We introduce the affine coordinate system .x0 D ct; x1 D x; x2 D
y; x3 D z/ associated with . #»e ˛/ and centred on A (cf. Fig. 2.11). Let L be a
timelike worldline connecting A and B . As L must stay inside the light cone of
each of its points, we can use the affine coordinate t as a regular parameter11 along
L . Let then X , Y and Z be three functions R ! R giving the position of L in
terms of the affine coordinates .x˛/, according to

x D X.t/; y D Y.t/; z D Z.t/: (2.48)

The components in the basis . #»e ˛/ of the elementary displacement vector d #»x along
L are then

dx˛ D .c dt; PXdt; PY dt; PZdt/; (2.49)

11If the timelike constraint was relaxed, then L could move “backward in time” and t would not
be a good parameter along it.
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Fig. 2.11 Comparing the
metric length (proper time) of
two worldlines joining two
events A and B: a straight
line and a curved line. Since
c2d	2 D c2dt 2 � dx2, the
curved line is, with respect to
the metric g, shorter than the
straight line

where the derivatives of the functions X , Y and Z are indicated with a dot.
The length of L (with respect to g) between the points A and B is given by
formula (2.10):

c 	.A;B/ D c
Z B

A

d	 D
Z B

A

p
�g.d #»x ; d #»x /: (2.50)

Now, since . #»e ˛/ is an orthonormal basis, �g.d #»x ; d #»x / D ��˛ˇdx˛dxˇ D c2dt2 �
. PX dt/2 � . PY dt/2 � . PZ dt/2. Hence

c 	.A;B/ D c
Z B

A

r
1 � 1

c2

�
. PX/2 C . PY /2 C . PZ/2� dt

� c
Z B

A

dt D cŒt.B/ � t.A/�: (2.51)

Since cŒt.B/ � t.A/� D c 	0.A;B/ is the length of the straight line L0 between A
and B , we conclude that L0 maximizes the metric length (proper time) between A
and B , among all the possible worldlines.

For this reason, one calls timelike geodesic any timelike straight line of E .
Note that the term geodesic must be understood as a curve of extremal length, not
necessarily minimal. To summarize, the null geodesics introduced in Sect. 2.5.1
correspond to minima of the metric length, whereas the timelike geodesics to
maxima.

Remark 2.23. The timelike geodesic between A and B providing the upper bound
on the metric length between these two points, one may ask about the lower
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bound on this length, taking into account that it must be positive or zero [cf. the
integral (2.50)]. The answer is given by the example of Langevin’s traveller: the
lower bound is zero. Indeed, when the parameter ˛ tends to infinity, the length of
the worldline L 0 betweenA andB shrinks to zero, as shown by formula (2.29) (see
also Remark 2.16 p. 46).

2.7.2 Vector Field Along a Worldline

Given a timelike worldline, L let us say, we have already encountered two kinds of
vector fields defined along it: (i) the tangent vector fields associated with the various
parametrizations of L , among which the 4-velocity and (ii) the 4-acceleration field
introduced in Sect. 2.4.2 (which is nowhere tangent to L ). More generally, let us
define a vector field along the worldline L as a mapping

#»v W L �! E

A 7�! #»v .A/:
(2.52)

Since the points A of L are often labelled with their proper time 	 , we shall also
write #»v .	/ for #»v .A.	//.

One says that the vector field #»v is differentiable at a point A.	/ 2 L iff the
limit

d #»v

d	
WD lim

"!0

1

"
Œ #»v .	 C "/� #»v .	/� (2.53)

exists. The vector d #»v=d	 is then called the derivative of #»v along L at point A.	/.
Given a basis . #»e ˛/ of E , we may write #»v .	/ D v˛.	/ #»e ˛ . It is then easy to see that
#»v is differentiable iff the components v˛.	/ are differentiable functions R ! R.
Moreover, the components of the derivative are nothing but the derivatives of the
components:

d #»v

d	
D dv˛

d	
#»e ˛ : (2.54)

2.7.3 Curvature and Torsions

This section can be skipped during a first reading.
Along any timelike worldline L , one may define, from a pure geometrical

viewpoint, an orthonormal basis, the Serret–Frenet tetrad . #»e 0;
#»e 1;

#»e 2;
#»e 3/, which

characterizes the curvature and torsion of the worldline. Usually, the Serret–Frenet



60 2 Worldlines and Proper Time

tetrad is constructed in a Euclidean space, from the arc-length parameter s along the
curve. In Minkowski spacetime, which is not Euclidean (cf. Sect. 1.3.1), the Serret–
Frenet tetrad is constructed instead from the metric length c	 , 	 being the proper
time along the curve.

The first vector of the Serret–Frenet tetrad is nothing but the 4-velocity #»u of L :
#»e 0 WD #»u . The vector #»e 0 is thus timelike, unit and tangent to L . Let us assume that
the 4-acceleration #»a of L is nonvanishing. If this is not the case, L is reduced to
a straight line and the Serret–Frenet approach is useless. The second vector of the
Serret–Frenet tetrad is defined by

#»e 1 WD 1

a
#»a D 1

ac

d #»e 0

d	
; where a WD k #»akg D

p
#»a � #»a : (2.55)

The second equality in a’s definition is meaningful for #»a is a spacelike vector [cf.
Eq. (2.18)]. The positive number a is called the curvature of the worldline L at
the considered point. From our conventions (cf. Sect. 2.4.2), the dimension of a is
the inverse of a length. The quantity a�1 is called the curvature radius of L at the
considered point. In a Euclidean space, a�1 would be the radius of the circle that
approximates the best the curve L at the considered point. However, Minkowski
spacetime being not a metric space, the notion of circle is not defined in the present
context. A second interpretation of the curvature radius is this time transposable
to Minkowski spacetime: a�1 is the distance to L at which two hyperplanes
orthogonal to #»u at two neighbouring points of L intersect. We shall show it at
Sect. 3.7.

Let us consider now the derivative of the vector #»e 1 along L , following the
definition (2.53). Since #»e 1 is a unit vector, d #»e 1=d	 is orthogonal to #»e 1; it is thus
expressible as a linear combination of #»e 0 and a unit vector #»e 2 orthogonal to both
#»e 0 and #»e 1:

1

c

d #»e 1

d	
D a #»e 0 C T1 #»e 2: (2.56)

The fact that the coefficient of #»e 0 in the above formula is a can be checked by
expanding the identity d=d	. #»e 0 � #»e 1/ D 0. If d #»e 1=d	 is not collinear to #»e 0,
relation (2.56) constitutes the definition of both the scalar T1 � 0 and the unit vector
#»e 2. T1 is called the first torsion of the worldline L . If T1 D 0, L is contained in
the plane generated by . #»e 0;

#»e 1/. In the general case, let O be a point of L and
let us set 	.O/ D 0. Given a point A.	/ 2 L close to O and of proper time 	 ,
we may perform a Taylor expansion of the vector

#   »
OA in terms of the dimensionless

parameter

" WD a0c	; (2.57)
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Fig. 2.12 Serret–Frenet
tetrad at some point O of the
worldline L (the vector #»e 3 is
not drawn)

where a0 is L ’s curvature at O . Expanding up to power 3 in ", we get

#   »
OA.	/ D "d

#   »
OA

d"
C "2

2

d2
#   »
OA

d"2
C "3

6

d3
#   »
OA

d"3
CO."4/; (2.58)

with dk
#   »
OA=d"k D .ca0/�k dk #   »

OA=d	k, and from Eqs. (2.12), (2.55) and (2.56),

1

c

d
#   »
OA

d	
D #»e 0 (2.59a)

1

c2
d2

#   »
OA

d	2
D a #»e 1 (2.59b)

1

c3
d3

#   »
OA

d	3
D a2 #»e 0 C 1

c

da

d	
#»e 1 C aT1 #»e 2: (2.59c)

Hence

#   »
OA.	/ D

�
1C .ac	/2

6

	
c	 #»e 0 C

�
aC da

d	

	

3

	
.c	/2

2
#»e 1

CaT1
6
.c	/3 #»e 2 CO..ac	/4/:

(2.60)

In this equality, the quantities a, da=d	 and T1, as well as the vectors #»e 0,
#»e 1 and

#»e 2, have to be taken at the point O .
The expansion (2.60) shows that, up to the order .ac	/2, the worldline stays in

the plane .O I #»e 0;
#»e 1/. This plane is called the osculating plane of L at O . The

first torsion T1, which appears at the order .ac	/3 in the expansion (2.60), measures
thus the departure of the worldline from its osculating plane (cf. Fig. 2.12).

Let us assume that T1 6D 0, i.e. that #»e 2 is well defined. Since the latter is a unit
vector ( #»e 2 � #»e 2 D 1), d #»e 2=d	 is orthogonal to #»e 2 and thus can be written as a linear
combination of #»e 0,

#»e 1 and a unit vector #»e 3 orthogonal to #»e 0,
#»e 1 and #»e 2:
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1

c

d #»e 2

d	
D ˛ #»e 0 C ˇ #»e 1 C T2 #»e 3:

The coefficients ˛ and ˇ are determined from the scalar products #»e 0 � #»e 2 D 0 and
#»e 1 � #»e 2 D 0; taking the derivative of the first one with respect to 	 , we get ˛ D 0,
whereas taking the derivative of the second one yields ˇ D �T1. Hence

1

c

d #»e 2

d	
D �T1 #»e 1 C T2 #»e 3: (2.61)

If d #»e 2=d	 is not collinear to #»e 1, this relation constitutes the definition of both
the scalar T2 � 0 and the unit vector #»e 3. T2 is called the second torsion of the
worldline L . If T2 D 0, L is contained in the affine subspace of E of dimension 3
(hyperplane) and generated by . #»e 0;

#»e 1;
#»e 2/. In the general case, (2.60) shows that

at the order .ac	/3, L is contained in the hyperplane .O I #»e 0;
#»e 1;

#»e 2/, that we shall
call the osculating hyperplane of the worldline at the point O . It is easy to see that
T2

#»e 3 is involved at the order .ac	/4 in the expansion of
#   »
OA.	/. The second torsion

measures thus the departure of L from its osculating hyperplane.
Let us suppose that T2 6D 0 and evaluate d #»e 3=d	 . Since #»e 3 is a unit vector,

d #»e 3=d	 is orthogonal to #»e 3. It is then necessarily a linear combination of the vectors
#»e 0,

#»e 1 and #»e 2:
1

c

d #»e 3

d	
D ˛ #»e 0 C ˇ #»e 1 C 
 #»e 2:

Taking the derivative with respect to 	 of the identities #»e 0 � #»e 3 D 0, #»e 1 � #»e 3 D 0

and #»e 2 � #»e 3 D 0, we get ˛ D 0, ˇ D 0 and 
 D �T2, so that we may write

1

c

d #»e 3

d	
D �T2 #»e 2: (2.62)

Altogether, (2.55), (2.56), (2.61) and (2.62) can be written as

c�1

0
BB@

d #»e 0=d	
d #»e 1=d	
d #»e 2=d	
d #»e 3=d	

1
CCA D

0
BB@

0 a 0 0

a 0 T1 0

0 �T1 0 T2
0 0 �T2 0

1
CCA

0
BB@

#»e 0
#»e 1
#»e 2
#»e 3

1
CCA : (2.63)

We shall see at Sect. 3.5.3 that the matrix appearing in the above formula can be
interpreted in terms of the 4-rotation of the Serret–Frenet tetrad.

Historical note: The interpretation of the norm of the 4-acceleration as the
curvature of the worldline appeared as early as 1908 in an article by Hermann
Minkowski (cf. p. 26) (1908) and subsequently in his famous text on spacetime
(Minkowski 1909).



Chapter 3
Observers

3.1 Introduction

The notion of affine coordinate system or affine frame introduced in Sect. 1.2.3
is purely mathematical. The aim of this chapter is to define and discuss physical
observers and frames in special relativity. With the material introduced at this stage,
the only physical measure that can be described is that of proper time along a
worldline by means of an ideal clock. To move to the full concept of observer,
one shall extend the spacetime domain where measures can be performed outside
the worldline. This raises the problem of simultaneity, from which we shall start the
discussion.

3.2 Simultaneity and Measure of Time

3.2.1 The Problem

Let us consider a particle O moving on a timelike worldline L0 (O is a massive
particle in the terminology introduced in Sect. 2.2). O is to be thought of not as an
elementary particle but rather as some device (or even a human being) whose size
is neglected (cf. the discussion in Sect. 2.2). Indeed, after having it equipped with a
“frame” in Sect. 3.4, we shall define O as an “observer”. We assume that O carries
an ideal clock (cf. Sect. 2.3.2) so that he can measure the proper time between any
two events on his worldline. He may then set a date to each event of L0 by choosing
an event of L0 as the origin of proper time (t D 0). But how can O set a date to
events that do not occur on his worldline?

A first answer consists in attributing the date tA to any event simultaneous with
the event A of proper time tA along O’s worldline. But such definition supposes
that the notion of simultaneity is given a priori. This is fine in Newton’s theory,
which stipulates the existence of an absolute time, independent of any observer (cf.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 3, © Springer-Verlag Berlin Heidelberg 2013
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a b

Fig. 3.1 Dating problem: (a) in Newtonian spacetime; (b) in Minkowski spacetime

Sect. 1.2.5 and Fig. 3.1a). But things are different for Minkowski spacetime, where
no temporal “split” is given a priori (cf. Sect. 1.7 and Fig. 3.1b). The only privileged
structures in Minkowski spacetime E are those related to the metric tensor, namely,
the light cones (cf. Fig. 1.8 and Sect. 2.5.2). Now the light cones do not induce
any slicing of E by spacelike hypersurfaces similar to the slicing of the Newtonian
spacetime shown in Figs. 1.2 and 3.1a.

3.2.2 Einstein–Poincaré Simultaneity

Let us suppose that observer O is equipped, in addition to his ideal clock, with a
device for emitting and receiving photons. Let A be an event of proper time t along
O’s worldline andM any event in E . We shall say thatM is simultaneous to A for
observer O iff

t D 1

2
.t1 C t2/ ; (3.1)

where t1 is the proper time (with respect to O) of the emission by O of a photon that
reaches the event M and is immediately reflected to reach again observer O at the
proper time t2 (cf. Fig. 3.2). The date of the event M with respect to observer O is
then defined as t .

The above definition is called Einstein–Poincaré criterion of simultaneity; it is
quite natural and can be interpreted naively by considering that the “time t � t1”
taken by light to travel from O to M is the same as the “time t2 � t” taken to travel
fromM to O . We are saying “naively” because the notion of “travel time” depends
on the adopted definition of date and therefore on the concept of simultaneity.

Remark 3.1. In Einstein’s view (Einstein 1905b), the definition of simultaneity
given above fits nicely with his postulate of constancy of the velocity of light.
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Fig. 3.2 Definition of
Einstein–Poincaré
simultaneity: A and M are
simultaneous with respect to
observer O iff A occurs at the
mid-travelling time of the
photon making a round trip
from O toM

In the more geometrical settings adopted here, this definition is very acceptable
for it relies on the light cones (via the photons’ trajectories, cf. Fig. 3.2), which are
the only canonical structures of Minkowski spacetime. Moreover, this definition is
operational, being based on a physical criterion (measure of the round-trip time of
an electromagnetic signal).

Remark 3.2. Hans Reichenbach has proposed in 1924 (Reichenbach 1924) a
definition of simultaneity based on the criterion

t D .1 � "/t1 C "t2; (3.2)

where " is a constant chosen in the interval �0; 1Œ. This criterion, called
"-simultaneity, reduces to the Einstein–Poincaré criterion (3.1) for " D 1=2.
There would be no logical inconsistency in choosing (3.2) with " 6D 1=2, but
this would result in an unnecessarily complicated formulation of special relativity
(cf. Friedman (1983) and Vallisneri (2000) for a discussion).

Historical note: Henri Poincaré (cf. p. 26) has been among the first ones to
question the obvious character of simultaneity, as early as 1898 (Poincaré 1898).
He pointed that we do not have the direct intuition of the simultaneity of two distant
events nor even of their order of occurrence. He has shown that these notions are
intimately linked to the definition of time itself. Poincaré concluded that simultaneity
has to result from some convention, which must be clearly stated. A criterion for
selecting between various conventions can be the simplicity in expressing the laws
of physics. In Sect. 2.3, the same criterion made us prefer the use of proper time
among all possible timescales along a given worldline. In 1900, Poincaré introduced
the idea of synchronizing the clocks of a moving frame by exchanging light signals
(Poincaré 1900). Albert Einstein used the same method in 1905 (Einstein 1905b)
to give the definition (3.1) of simultaneity of two events with respect to a given
observer. An important difference between Poincaré’s analysis and Einstein’s one is
that according to Poincaré, the time t given by formula (3.1) is just an “apparent
time” (Poincaré 1900), which differs from the “real time” when the observer is
moving with respect to aether. On the other hand, for Einstein, there is no aether,
and the time (3.1) of a “moving” observer is as legitimate as the time of an observer
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Fig. 3.3 Simultaneity hypersurface ˙u.A/ and local rest space Eu.A/ of an event A along the
worldline L0

“at rest”. For more details on the different perceptions of time between Poincaré
and Einstein, we refer to Damour (2006, 2007), Darrigol (2004, 2006), Galison
(2003), Reignier (2007), Rougé (2008) and Walter (2008). In particular, Darrigol’s
article (Darrigol 2004) is discussing in detail the influence of Poincaré on the
definition (3.1) of simultaneity, and Walter’s article (Walter 2008) provides a deep
analysis of Poincaré’s conception of spacetime.

3.2.3 Local Rest Space

The set of events that are simultaneous to an event A on O’s worldline is a surface1

of dimension 3 of the affine space E , which intersects L0 at A (see Fig. 3.3). Being
of dimension 3 in a space of dimension 4, one says that it is a hypersurface.2 We
shall call it the simultaneity hypersurface of A for O and denote it by ˙u.A/ or
˙u.t/,

#»u being the 4-velocity of observer O and t the proper time of A with respect
to O .

An important geometrical property of the simultaneity hypersurface is its
orthogonality (with respect to the metric tensor g) to the worldline of the considered
observer, as we are going to prove.

Let A be an event on L0 of proper time t and B an event not belonging to L0.
Let us consider the emission of a photon by O (eventA1 2 L0) that is reflected at B
to be received by O at the eventA2 (cf. Fig. 3.4). We assume that B is located close

1The proper technical word is submanifold, whose precise definition will be given in Chap. 16.
2A special type of hypersurface is of course a hyperplane, as encountered already in Sect. 1.2.5.
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Fig. 3.4 Event B in the
neighbourhood of the
worldline L0: a light signal
emitted from L0 in A1 is
instantaneously reflected in B
to reach again L0 at A2

to A, in the sense that the curvature of L0 can be neglected between A1 and A2. We
may then consider that the vectors

#      »
A1A and

#      »
A2A are collinear:

#      »
A1A D c.t � t1/ #»u .A/ and

#      »
A2A D c.t � t2/ #»u .A/; (3.3)

where t1 (resp. t2) is the proper time of O at A1 (resp. A2). The equalities (3.3)
result from the very definition of proper time and the unit character of #»u .A/. By
definition of A1, the vector

#      »
A1B is null:

#      »
A1B � #      »

A1B D 0. Using Chasles’ relation
#      »
A1B D #      »

A1AC #    »
AB , we get

#      »
A1A � #      »

A1AC 2 #      »
A1A � #    »

AB C #    »
AB � #    »

AB D 0:

Now, from (3.3) and #»u .A/ � #»u .A/ D �1, we have
#      »
A1A � #      »

A1A D �c2.t � t1/2 and
#      »
A1A � #    »

AB D c.t � t1/ #»u .A/ � #    »
AB . Hence,

� c2.t � t1/2 C 2c.t � t1/ #»u .A/ � #    »
AB C #    »

AB � #    »
AB D 0: (3.4)

Similarly, the lightlike character of
#      »
A2B leads to

� c2.t � t2/2 C 2c.t � t2/ #»u .A/ � #    »
AB C #    »

AB � #    »
AB D 0: (3.5)

If the proper times t , t1 and t2 are obtained from the reading of O’s ideal clock, (3.4)–
(3.5) constitute a linear system for two unknowns: the scalar products #»u .A/� #    »

AB and
#    »
AB � #    »

AB. The determinant of this system is 2c.t� t1/�2c.t� t2/ D 2c.t2� t1/ 6D 0
since B 62 L0. There is therefore a unique solution. The latter is easily obtained by
subtracting (3.5) from (3.4):

#»u .A/ � #    »
AB D c

�
t � 1

2
.t1 C t2/

�
(3.6)

#    »
AB � #    »

AB D c2.t � t1/.t2 � t/: (3.7)
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By comparing (3.6) to the Einstein–Poincaré simultaneity criterion (3.1), we deduce
immediately that

B is simultaneous to A for O ” #»u .A/ � #    »
AB D 0 : (3.8)

We have thus established the following important property:

In the neighbourhood of an eventA of the worldline of observer O , the events
simultaneous to A for O are those located in directions orthogonal—with
respect to the metric g—to O’s worldline.

In the above statement, neighbourhood means that the curvature of L0 can be
neglected (cf. Remark 3.3 below). The events simultaneous to A constitute thus
an affine subspace of E , namely, the affine subspace through A and orthogonal
to #»u .A/. Since the bilinear form g is nondegenerate (cf Sect. 1.3.1), this space
is of dimension 3; it is thus an hyperplane of E (cf. Sect. 1.2.5). Moreover, this
hyperplane is spacelike, which means that all vectors parallel to it are spacelike.
Indeed, we have seen in Sect. 2.4.2 that any nonzero vector orthogonal to a timelike
vector ( #»u .A/ in the present case) is necessarily spacelike. We shall denote this
hyperplane by Eu.A/ and call it the local rest space of observer O at A. If t is
the proper time of event A, we shall also denote Eu.A/ by Eu.t/.

Remark 3.3. In this definition, the qualifier local reminds us that the simultaneity
of events located in Eu.A/ and A has been established a priori only for events close
to A so that one can neglect the curvature of L0. The affine space Eu.A/ is actually
the space tangent in A to the simultaneity hypersurface ˙u.A/ (cf. Fig. 3.3). We
shall see in Sect. 12.3 that˙u.A/ and Eu.A/ coincide—i.e. Eu.A/ contains all events
simultaneous toA, even the far ones—when the 4-acceleration #»a of O vanishes (L0

is then a straight line of E , and O is an inertial observer) or when k #»a kg is constant
and the curve L0 has no torsion. For all the other motions, Eu.A/ constitutes some
approximation of the simultaneity hypersurface of A, the validity of which will be
discussed in terms of the distance to L0 in Sect. 12.3.

Remark 3.4. The "-simultaneity proposed by Reichenbach [Eq. (3.2)] would lead to
a local rest space that would not be orthogonal to the worldline whenever " 6D 1=2.
Consequently, the simultaneity thus defined would not have a direct connection with
the metric tensor g.

The vector subspace of E made of all the vectors orthogonal to #»u .A/ is denoted
Eu.A/, or Eu.t/, t being the proper time of event A. Eu.A/ is a vector space of
dimension 3 (because g is nondegenerate) whose vectors are all spacelike. It is the
vector space underlying the affine space Eu.A/. We shall call it by the same name,
i.e. the local rest space of observer O at A.
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Fig. 3.5 Geometrical construction of the local rest space Eu0 .O/ of the event O for observer O0:
the events A1 and A2 are symmetric with respect to O along the worldline of O0; the events M
and N , lying on the intersection of the future light cone I C.A1/ of A1 with the past light cone
I �.A2/ of A2, are simultaneous with O for O0. The construction can be repeated by varying
A1 and A2 in order to obtain new events in Eu0 .O/. The local rest space Eu0.O/ hence built is
reduced to a single dimension in the figure (dashed line through N , O and M ). It is orthogonal to
the 4-velocity #»u 0, despite not being drawn at 90ı from #»u 0 (cf. the discussion of Sect. 1.3.6 about
graphical representation in Minkowski spacetime)

3.2.4 Nonexistence of Absolute Time

The adopted definition of simultaneity allows any observer O to set a date to all
events in E , even to those lying outside his worldline. However, two different
observers will not attribute, in general, the same date to a given event. This is so
because the two observers will have different simultaneity hypersurfaces, as one
can see on Fig. 3.5. This figure represents two observers, O and O 0, of respective
4-velocity #»u and #»u 0 and whose worldlines intersect at the event O . Moreover all
the figure is drawn close enough to O so that the worldlines L and L 0 of O and
O 0 can be approximated by straight lines. Having chosen to draw L as a vertical
line, the local rest space of O at O , Eu.O/, which is orthogonal to L , appears as a
horizontal line (cf. the discussion in Sect. 1.3.6). Light rays being lines inclined at
˙45ı in this graphics, the construction of Fig. 3.5 shows that the local rest space of
O 0 at O , Eu0.O/, is inclined with respect to Eu.O/ with the same angle (in absolute
value) as L 0 with respect to L . We recover actually the property of symmetry with
respect to the main bisectors established in Sect. 1.3.6. Thus the two spaces do not
coincide. As a consequence:
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Fig. 3.6 Relativity of the
notion of simultaneity: events
A and B are simultaneous for
observer O, but not for
observer O0

Two events that are simultaneous for a given observer will not necessarily be
so for a second observer. In other words, there does not exist a unique time
associated with each event in E , but only times defined relatively to observers.

This important point is illustrated in Fig. 3.6: the events A and B are simulta-
neous for observer O , who attributes the same date tA D tB to them, but not for
observer O 0, who attributes to A a date posterior to that of B (t 0A > t 0B ).

3.2.5 Orthogonal Projector Onto the Local Rest Space

The introduction of the local rest space Eu.A/ at any event A of the worldline of an
observer O is naturally accompanied by the split of vectors of E into a part tangent
to Eu.A/, i.e. a part belonging to the vector subspace Eu.A/ and a part orthogonal
to it, i.e. a part collinear to #»u .A/ (cf. Fig. 3.7):

8 #»v 2 E; #»v D ?u
#»v C ˛ #»u ; with ?u

#»v 2 Eu.A/ and ˛ 2 R: (3.9)

In the above writing, one should read #»u D #»u .A/. The decomposition (3.9) is
unique: taking the scalar product with #»u , one gets indeed

#»u � #»v D #»u �?u
#»v„ ƒ‚ …

0

C˛ #»u � #»u„ƒ‚…
�1

;

which fully determines ˛ as ˛ D � #»u � #»v . We may then rewrite (3.9) as
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Fig. 3.7 Orthogonal decomposition of a vector #»v into a part ?u
#»v that is orthogonal to the

4-velocity #»u of some observer and a part collinear to #»u . Note that ?u
#»v 2 Eu.A/, where Eu.A/

is the observer’s local rest space at A

8 #»v 2 E; #»v D ?u
#»v � . #»u � #»v / #»u : (3.10)

The part ?u
#»v of this decomposition is called the orthogonal projection of #»v onto

Eu.A/. The mapping

?u W E �! Eu.A/
#»v 7�! ?u

#»v D #»v C . #»u � #»v / #»u
(3.11)

is an endomorphism of E (cf. Appendix A), called the orthogonal projector onto
the vector subspace Eu.A/. Since #»u � #»v D hu; #»v i (metric duality between vectors
and linear forms discussed in Sect. 1.6), we may write this endomorphism as

?u D IdC hu; :i #»u ; (3.12)

where Id stands for the identity operator.

Remark 3.5. In the Euclidean space R
3, the orthogonal projector onto the plane

orthogonal to some unit vector #»u is written as ?u D Id � hu; :i #»u . The change of
sign with respect to (3.12) is of course due to the signature .�;C;C;C/ of the
metric g and to the timelike character of vector #»u , whereas for the Euclidean scalar
product, the signature is .C;C;C/ and all vectors are spacelike.

Three properties follow immediately from the definition of the orthogonal projector:

?u
#»u D 0; (3.13)

8 #»v 2 Eu.A/; ?u
#»v D #»v (3.14)

?u ı?u D ?u: (3.15)
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The first two properties, along with that of linearity, would be sufficient to entirely
define ?u. The third property is called idempotence and is characteristic of a
projector.

In addition, the decomposition (3.10) of all vectors in E is accounted for by
stating that E is the direct sum of the vector subspaces Eu.A/ (hyperplane) and
Span. #»u .A// (vector line generated by #»u .A/):

E D Eu.A/
?˚ Span. #»u .A// : (3.16)

3.2.6 Euclidean Character of the Local Rest Space

We have seen in Sect. 3.2.3 that all vectors of Eu.A/ are spacelike. It follows that
the restriction of the metric tensor g toEu.A/ is a positive definite bilinear form (cf.
Sect. 1.3.4):

8 #»v 2 Eu.A/;
#»v � #»v WD g. #»v ; #»v / � 0 and g. #»v ; #»v / D 0 ” #»v D 0:

(3.17)

This means that the local rest space Eu.A/ equipped with the metric gjEu.A/
(g

restricted to Eu.A/) is a Euclidean space (cf. Sect. 1.3.1). Being three-dimensional,
it is therefore fully similar to the space R3 equipped with the “usual” scalar product.
In particular, the restriction to Eu.A/ of the function k kg introduced in Sect. 1.3.5

(k #»v kg D
p

#»v � #»v for #»v 2 Eu.A/) does define a norm in the standard mathematical
sense. This norm induces a distance d between points of Eu.A/, conferring to this
space the structure of a metric space:

8.M;N / 2 Eu.A/ � Eu.A/; d.M;N / WD



 #      »
MN





g
: (3.18)

The distance d obeys Pythagoras’ theorem. Moreover, one may define the angle �
between two vectors #»v and #»w of Eu.A/ by the standard formula:

cos � D
#»v � #»w

k #»v kg k #»wkg
D g. #»v ; #»w/p

g. #»v ; #»v /g. #»w; #»w/
: (3.19)

The above results may be summarized as follows:

In the local rest space Eu.A/, all of the vector calculus is identical to the
calculus in the usual Euclidean three-dimensional space.
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3.3 Measuring Spatial Distances

Having discussed the dating process by an observer, let us now focus on the measure
of spatial distances, i.e. the measure of length of spacelike vectors with respect to the
metric tensor g . We shall see that this type of measurement can be achieved solely
by means of clocks and a device for emitting and receiving null signals (photons)
(Sect. 3.3.1). In particular, there is no need for a “ruler”. On the contrary, the notion
of ruler is to be defined from pure temporal measurements (Sect. 3.3.2).

3.3.1 Synge Formula

Let us consider the situation depicted in Fig. 3.4, namely, some observer O , of
worldline L0 and 4-velocity #»u , along with an eventA 2 L0 and an eventB close to
A (in the sense that the length k #    »

ABkg is small with respect to the curvature radius
of L0). Let us assume further that B is such that

#    »
AB is spacelike (but we shall not

suppose that
#    »
AB is orthogonal to #»u , i.e. that B 2 Eu.A/). We would like to evaluate

the length of
#    »
AB , i.e. k #    »

ABkg . Since
#    »
AB is spacelike, the event A1 of emission

of a photon by O towards B is necessarily located before A on the worldline L0.
Similarly, the event A2 of reception by O of the photon reflected in B is necessarily
after A on L0 (cf. Fig. 3.4). In Sect. 3.2.3, we have computed the scalar square
#    »
AB � #    »

AB in terms of O’s proper times t , t1 and t2 of, respectively, A, A1 and A2,
obtaining formula (3.7), which we have not exploited yet. This formula yields




 #    »
AB





g
D c

p
.t � t1/.t2 � t/ : (3.20)

The equality (3.20) allows one to compute the spatial length k #    »
ABkg solely

from the measure of the proper times t , t1 and t2 along L0. We shall call it
Synge formula. In view of it, we may say that, in relativity, time is a primary
notion and length a derived one.

Let us notice that the current definition of the unit of length is in full agreement
with this: in 1983, the Conférence Générale des Poids et Mesures3 has defined the
metre as the fraction 1=299792458 of the distance travelled by light in vacuum
during one second.

Remark 3.6. Synge formula can be seen as the “Minkowskian equivalent” of a well-
known formula of Euclidean geometry: the formula expressing the power of a point

3General Conference on Weights and Measures.
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Fig. 3.8 Power of the point A with respect to the circle C of centre B in the Euclidean plane.
This figure is to be compared with Fig. 3.4 in Minkowski spacetime. In this last case, the radius of
C , measured with respect to g, is zero

with respect to a circle (Damour 2009). Indeed let us consider the circle C of centre
B and radius R in the Euclidean plane, as well as a straight line L0 intersecting C
in two points, A1 and A2 (cf. Fig. 3.8). Let A be a point of the line segment A1A2.
The power of A with respect to C is defined as P.A/ WD k #    »

ABk2 � R2. It satisfies
P.A/ D #      »

AA1 � #      »
AA2 independently of the choice of L0, hence

k #    »
ABk2 D #      »

AA1 � #      »
AA2 CR2:

The “Minkowskian version” of this relation is obtained by setting R D 0. Indeed,
R D k #     »

BA1k D k #     »
BA2k, and since B and A1, as well as B and A2, are linked by a

null geodesic, k #     »
BA1kg D k #     »

BA2kg D 0. Hence, we get




 #    »
AB





2

g
D #      »
AA1 � #      »

AA2:

Writing
#      »
AA1 D c.t1 � t/ #»u and

#      »
AA2 D c.t2 � t/ #»u and using #»u � #»u D �1, we

recover the square of Synge formula (3.20).

Historical note: It seems that formula (3.20) has been established first by Alfred
A. Robb4 in 1936 (Robb 1936). It has been emphasized in 1956 by John L. Synge5

4Alfred A. Robb (1873–1936): British physicist, known mainly for his work in special relativity,
for which he developed an axiomatic approach (Briginshaw 1979).
5John L. Synge (1897–1995): Irish mathematical physicist, who explored many domains: applied
mathematics, differential geometry, hydrodynamics, optics, elasticity and relativity. He has notably
written two famous relativity treatises: one on special relativity (Synge 1956), where the geometric
approach is privileged, and the other one on general relativity (Synge 1960).
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Fig. 3.9 Ruler in spacetime:
L0 and L1 are the worldlines
of the two extremities of the
ruler

in his treatise about special relativity (Synge 1956) [Eq. (70) in Chap. I; see also
Eq. (16) in Chap. III of (Synge 1960)]. We have named it in his honour.

3.3.2 Born’s Rigidity Criterion

An infinitesimal ruler equipping observer O is defined by a timelike worldline
L1 staying always in some infinitesimal neighbourhood of O’s worldline, L0

(cf. Fig. 3.9). By infinitesimal neighbourhood, it must be understood that the spatial
distance between L0 and L1, defined as d WD k #»s kg D

p
#»s � #»s where #»s is a

vector connecting L0 and L1 and orthogonal to #»u , can be neglected in front of
L0’s curvature radius. The points of the worldlines L0 and L1 constitute the two
extremities of the ruler.

Let us suppose that O sends a photon towards the ruler’s extremity L1 (event
A1, cf. Fig. 3.9) and that the photon is reflected once it reaches L1 (event B),
coming back to L0 (event A2). Let A be the orthogonal projection of B onto L0

(cf. Fig. 3.9). From what we have seen in Sect. 3.2.3, A and B are two simultaneous
events for O . In other words, B belongs to Eu.A/. From the definition of an
infinitesimal ruler given above, k #    »

ABkg is very small with respect to L0’s curvature
radius at A (cf. Sect. 2.7.3). We may then approximate the arc A1A2 of L0 by a line
segment and use Synge formula (3.20) to get the length of

#    »
AB . In the present case,

t2 � t D t � t1 since A and B are simultaneous for O . Synge formula reduces then
to k #    »

ABkg D c.t � t1/ D c.t2 � t/, which can be rewritten solely in terms of the
photon emission time (t1) and the reception time of the returned photon (t2):




 #    »
AB





g
D 1

2
c .t2 � t1/ : (3.21)



76 3 Observers

The left-hand side of this equality is the length, with respect to the metric tensor
g, of the spacelike vector

#    »
AB . This vector belongs to O’s local rest space at A.

Accordingly, we may call the quantity (3.21) the length of the infinitesimal ruler
with respect to O at the time t D .t1 C t2/=2.

One naturally defines a rigid ruler as a ruler whose length does not vary, i.e. a
ruler for which k #    »

ABkg does not depend upon the points A and B on the worldlines
L0 and L1, provided that

#    »
AB is orthogonal to #»u . The equality (3.21) provides a

physical criterion to check the rigidity of a ruler: it suffices to make sure that the
round-trip time of a photon between the two extremities of the ruler is constant.
This criterion is called Born’s rigidity criterion.

Remark 3.7. The notion of rigidity defined above is one-dimensional, in so far
as it concerns only pairs of point particles (the two extremities of the ruler). To
generalize it to the three-dimensional case, it would be natural to define an extended
object as rigid iff all the pairs of adjacent points constitute a rigid ruler. However,
one can show that such a definition is too restrictive—much beyond the Newtonian
equivalent—to be useful (cf. Chap. I of Synge’s textbook (Synge 1956) or (Giulini
2006, 2009) for more details). Hence there is no natural definition of a rigid solid in
relativity.

Historical note: The rigidity criterion presented above has been proposed in the
case of a three-dimensional solid by Max Born6 in 1909 (Born 1909).

3.4 Local Frame

The notion of frame is related to labelling the events in the spacetime E by a
4-tuple of real numbers, .t; x1; x2; x3/ where t is some “time” and .x1; x2; x3/ three
“spatial” coordinates. The difference with a coordinate system on E , like the affine
coordinate system introduced in Sect. 1.2.3, is that the labelling is performed by
some observer, via physical operations such as the reading of a clock or the emission
and reception of light signals.

3.4.1 Local Frame of an Observer

Let us consider an observer O of worldline L0 and 4-velocity #»u , the frame of which
is to be defined. We have seen in Sect. 3.2.2 how to attribute a time tag t at events
close to L0, via the slicing of E by O’s local rest spaces Eu.t/ (Fig. 3.10). There

6Max Born (1882–1970): German physicist, author of numerous studies in quantum mechanics,
optics and solid-state physics. He received the Nobel Prize in Physics in 1954 for having introduced
the probabilistic interpretation of the wave function in quantum mechanics in 1926.
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Fig. 3.10 Slicing of
spacetime by the local rest
spaces Eu of a given
worldline L0: the events in
the slice Eu.t / are given the
temporal coordinate t , which
is the proper time along L0

Fig. 3.11 Local frame of an
observer with worldline L0.
A dimension has been
suppressed, so that neither the
worldline L3 nor the vector
#»e 3 are represented

remains thus to attribute the three spatial coordinates .x1; x2; x3/. This is achieved
as follows.

We define a local frame along L0 as a 4-tuple of vectors . #»e ˛.t// D . #»e 0.t/;
#»e 1.t/;

#»e 2.t/;
#»e 3.t// defined at any point O.t/ of L0 and obeying the following

properties (cf. Fig. 3.11):

1. . #»e ˛.t// is a right-handed orthonormal basis of .E;g/ for all O.t/ 2 L0, i.e.

8t 2 R; g. #»e ˛.t/;
#»e ˇ.t// D �˛ˇ and �. #»e 0.t/;

#»e 1.t/;
#»e 2.t/;

#»e 3.t// D 1;
(3.22)

where .�˛ˇ/ is the Minkowski matrix (1.17) and � the Levi–Civita tensor (the
second equality expressing right handedness, cf. Sect. 1.5).

2. #»e 0 D #»u (the 4-velocity along L0).
3. For each ˛ 2 f0; 1; 2; 3g, the field #»e ˛.t/ is differentiable (cf. Sect. 2.7.2), which

means that when moving from an event O.t/ 2 L0 to a neighbouring event
O.t C dt/, the orthonormal basis . #»e ˛/ varies in an infinitesimal manner.

We may then define formally an observer O as the set formed by a timelike
worldline L0 and a local frame . #»e ˛/ along L0.

The property (3.22) implies that the three vectors . #»e 1.t/;
#»e 2.t/;

#»e 3.t// are
orthogonal to #»e 0.t/ D #»u .t/; they therefore belong to Eu.t/ WD Eu.O.t//.
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Physically, a local frame is realized as follows: one considers four point particles
infinitely close to each other. One of them is chosen as the “origin”, and the
three others are placed at the tops of a rectangular trihedron around this origin.
These point particles are represented by four timelike worldlines L0, L1, L2 and
L3(cf. Fig. 3.11). Each of the point particle is equipped with an ideal clock as well
as a device for emitting and sending light signals (photons). For i 2 f1; 2; 3g, let d

#»

` i

be the spacelike vector orthogonal to #»u and connecting L0 to Li (cf. Fig. 3.11). One
defines the three unit vectors #»e i by

d
#»

` i D d`i
#»e i ; (3.23)

where d`i WD kd #»
` ikg . The rigidity of each ruler .L0;Li / is controlled

via the method exposed in Sect. 3.3.2. On the other hand, the orthogonality of
each of the couples . #»e i ;

#»e j / .i 6D j / is checked by measuring the length of the
separation vector d

#»

` ij WD d
#»

` j � d
#»

` i by means of Synge formula (3.20)7 and by
checking that Pythagoras’ relation holds at any instant:

d
#»
` ij � d #»

` ij D d
#»
` i � d #»

` i C d
#»
` j � d #»

` j : (3.24)

This relation implies that d
#»
` i � d #»

` j D 0, and moreover, each quantity involved in
it is chronometrically measurable according to (3.20).

3.4.2 Coordinates with Respect to an Observer

We are now in position to define the four coordinates .t; x1; x2; x3/ of an event
M with respect to an observer O (cf. Fig. 3.12). We shall assume that M is located
“not too far” from O’s worldline L0, in the sense of being in the region of spacetime
where the slicing by O’s local rest spaces Eu.t/ is regular (i.e. the slices do not
intersect, as in Fig. 3.10); this will be made precise in Sect. 3.7. There exists then
a unique local rest space Eu.t/ of O containing M (cf. Fig. 3.12). The proper time
t labelling this local rest space is chosen as the first coordinate of M with respect
to observer O . Note that if M is close to L0, so that Eu.t/ can be identified to the
simultaneity hypersurface˙u.t/ aroundM , then t is nothing but the date ofM with
respect to O , as defined in Sect. 3.2. Let thenO.t/ be the event of L0 of proper time
t , i.e. the intersection of the hyperplane Eu.t/ with L0. Since both O.t/ and M
belong to Eu.t/, we may expand the vector

#             »

O.t/M onto the basis #»e i .t/ of Eu.t/

arising from the local frame of O at O.t/ (cf. Fig. 3.12):

#             »

O.t/M D xi #»e i .t/: (3.25)

7One must employ formula (3.20) and not (3.21), since a priori d
#»

` ij is neither orthogonal to Li

nor to Lj .
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Fig. 3.12 Coordinates .t; x1; x2; x3/ of an event M with respect to the local frame of an observer
of worldline L0

This defines the three spatial coordinates .xi / of M with respect to observer O and
completes the definition of the coordinates .t; x1; x2; x3/ of M with respect to O .

Historical note: The coordinates with respect to a generic observer (i.e. not
necessarily inertial) defined above have been introduced by Charles W. Misner,8

Kip S. Thorne9 and John A. Wheeler10 in their monumental textbook Gravitation
(Misner et al. 1973). They can be viewed as a generalization to the rotating case
(this last concept will be discussed in Sect. 3.5) of coordinates introduced previously
by John L. Synge (cf. p. 74) and called by him Fermi coordinates (Synge 1960).

3.4.3 Reference Space of an Observer

The local rest spaces Eu.t/ of an observer O form a family (parametrized by O’s
proper time t) of hyperplanes in Minkowski spacetime E , as illustrated in Fig. 3.10.
In this respect, they are abstract spaces. The introduction of the local frame and the
associated coordinates allows one to define a three-dimensional vector space that is
closer to the “usual” physical space “perceived” by an observer. Moreover this space
will be unique, contrary to the local rest spaces, which constitute a one-parameter
family.

8Charles W. Misner: American theoretical physicist born in 1932, expert of general relativity
and cosmology; co-author with K. S. Thorne and J. A. Wheeler of the most famous treatise about
general relativity: Gravitation (Misner et al. 1973) (1280 pages!), published in 1973 and 6 chapters
of which are devoted to special relativity.
9Kip S. Thorne : American theoretical physicist born in 1940, author of many advances in general
relativity and relativistic astrophysics. Beside the treatise Gravitation (Misner et al. 1973), he wrote
the excellent popular book (Thorne 1994).
10John A. Wheeler (1911–2008) : American theoretical physicist, well known for major contribu-
tions to particle physics, nuclear fission and general relativity. He was one of the latest collaborators
of Einstein in Princeton. In the late 1960s, he coined the word black hole.
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Fig. 3.13 Local frame . #»e ˛.t// and reference space RO of an observer O. L is the worldline of
a point particle fixed with respect to O

The construction is very natural, relying on the “cartography” that an observer
can make of his environment when representing an event M of spatial coordinates
.x1; x2; x3/ in his local frame by the point .x1; x2; x3/ in the space R

3. More
precisely, we shall call reference space of observer O a three-dimension Euclidean
vector space RO equipped with an orthonormal basis . #»e 1;

#»e 2;
#»e 3/ and a mapping

' W E �! RO

M.t; xi / 7�! #»x D xi #»e i
; (3.26)

where .t; xi / are the coordinates ofM with respect to O . Strictly speaking, ' is not
a mapping from E to RO , but only from the domain of E where the local frame
coordinates are well defined (domain to be discussed in Sect. 3.7) to RO .

It is worth noticing that ' induces an isomorphism N't between each local rest
space of O and RO , according to

N't W Eu.t/ �! RO
#»v D vi #»e i .t/ 7�! #»v D vi #»e i

: (3.27)

This isomorphism is sending the basis . #»e i .t// of the local frame at instant t to the
Euclidean basis . #»e i / of RO : N't. #»e i .t// D #»e i . Hence, we may say that the three
spacelike vectors of O’s local fame are held fixed in RO , whereas they evolve with
t in E (cf. Fig. 3.13). More generally, a vector field #»v D #»v .t/ along the worldline
L0 (cf. Sect. 2.7.2) is said fixed with respect to O iff

8t 2 R; #»v .t/ D v˛ #»e ˛.t/; (3.28)



3.5 Four-Rotation of a Local Frame 81

where the v˛’s are four constant numbers. According to this definition, a vector field
#»v along L0 obeying 8t 2 R; #»v .t/ 2 Eu.t/ is fixed with respect to O iff N't. #»v .t//

does not depend on t .
Similarly, a point particle is said fixed with respect to observer O iff the spatial

coordinates .xi / with respect to O are the same for all events on the particle’s
worldline. Such a particle is depicted in Fig. 3.13.

3.5 Four-Rotation of a Local Frame

Let us investigate the evolution of the local frame . #»e ˛.t// along the worldline of
observer O , as depicted in Fig. 3.13. In particular, we will show that the derivative
of the basis vector #»e ˛.t/ with respect to the proper time t involves only the
4-acceleration #»a of O and a vector of O’s local rest space called the 4-rotation
of the local frame.

3.5.1 Variation of the Local Frame Along the Worldline

We aim at evaluating the derivative with respect to t of a given vector #»e ˛ of the local
frame, as defined in Sect. 2.7.2. This derivative is itself a vector, and since . #»e ˛/ is a
basis ofE , there exists a unique 4-tuple of real functions of t , .˝ˇ

˛/0�ˇ�3, such that

d #»e ˛

dt
D ˝ˇ

˛
#»e ˇ: (3.29)

The order of indices ˛ and ˇ is chosen for future convenience.
More generally, let us express the temporal variation of a vector field #»v .t/

fixed with respect to O , in the sense defined in Sect. 3.4.3. We have, from (3.28)
and (3.29),

d #»v

dt
D v˛ d #»e ˛

dt
D ˝ˇ

˛ v
˛ #»e ˇ D .˝˛

ˇ v
ˇ/ #»e ˛;

hence

#»v fixed with respect to O H) d #»v

dt
D ˝. #»v / ; (3.30)

where ˝ is the endomorphism of E having .˝˛
ˇ/ as matrix in the basis . #»e ˛/. Note

that ˝ is a function of t since ˝˛
ˇ D ˝˛

ˇ.t/. In particular, applying (3.30) to
#»v D #»u and invoking the definition of the 4-acceleration #»a of O , we get

˝. #»u / D c #»a : (3.31)
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Thanks to the g-duality introduced in Sect. 1.6.2, we may associate with ˝ a unique
bilinear form ˝ on E . Indeed, for any vector #»w , ˝. #»w/ is a vector in E . If #»v is
another vector inE , #»v �˝. #»w/ is a scalar, which we shall define as the bilinear form
˝ acting on the pair . #»v ; #»w/:

˝. #»v ; #»w/ WD #»v �˝. #»w/: (3.32)

Remark 3.8. The attention of the reader is drawn on the order of the arguments of
˝ : the second one is that on which acts the endomorphism ˝ .

The matrix .˝˛ˇ/ of the bilinear form ˝ in the basis . #»e ˛/ is obtained by writing

˝˛ˇv
˛wˇ D ˝. #»v ; #»w/ D g. #»v ;˝. #»w// D g˛� v˛ ˝�

ˇ wˇ D .g˛� ˝�

ˇ/ v
˛ wˇ;

where .g˛ˇ/ is the matrix of g in the basis . #»e ˛/ (cf. Eq. (1.12)). We find thus

˝˛ˇ D g˛� ˝�

ˇ: (3.33)

The orthonormal character of the basis . #»e ˛/ implies that the bilinear form ˝ is
antisymmetric. Indeed, taking the time derivative of the identity #»e ˛ � #»e ˇ D �˛ˇ ,
where .�˛ˇ/ is Minkowski matrix (1.17), we get

d

dt
. #»e ˛ � #»e ˇ/ D 0 D d #»e ˛

dt
� #»e ˇ C #»e ˛ � d #»e ˇ

dt
;

which can be rewritten as ˝. #»e ˛/ � #»e ˇ D � #»e ˛ �˝. #»e ˇ/. The definition (3.32) of ˝

then leads to

˝. #»e ˇ;
#»e ˛/ D �˝. #»e ˛;

#»e ˇ/; (3.34)

displaying the antisymmetry of ˝ .

Remark 3.9. The result (3.34) is equivalent to ˝ˇ˛ D �˝˛ˇ, but does not imply

˝
ˇ
˛ D �˝˛

ˇ . Indeed, given the signature .�;C;C;C/ of g, it is easy to see,
via (3.33), that (3.34) is equivalent to

˝0
0 D 0; ˝i

0 D ˝0
i and ˝i

j D �˝j
i : (3.35)

(Let us recall that the Latin indices i; j take their values in f1; 2; 3g).
We shall decompose ˝ with respect to O’s 4-velocity #»u by means of a method

that can be applied to any antisymmetric bilinear form. This type of decomposition
will be useful at various occurrences in the book. We therefore devote a full section
to it.
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3.5.2 Orthogonal Decomposition of Antisymmetric Bilinear
Forms

Let A be an antisymmetric bilinear form on E:

8. #»v ; #»w/ 2 E2; A. #»v ; #»w/ D �A. #»w; #»v /: (3.36)

Given a unit timelike vector #»u (in practice, it will be the 4-velocity of some
observer), there exists a unique linear form q 2 E� and a unique vector

#»

b2E
such that

ADu˝ q � q ˝ uC �. #»u ;
#»

b ; :; :/ ; hq; #»u i D 0 and #»u � #»

b D 0 :

(3.37)

In (3.37), � is the Levi–Civita tensor introduced in Sect. 1.5, and ˝ is the tensor
product: given two linear forms q1 and q2 on E , the tensor product of q1 by q2 is
the bilinear form defined by

q1 ˝ q2 W E � E �! R

. #»v ; #»w/ 7�! hq1; #»v ihq2; #»wi ; (3.38)

where the right-hand side is nothing but the product of the two real numbers hq1; #»v i
and hq2; #»wi. Accordingly, formula (3.37) can be made explicit as

8. #»v ; #»w/ 2 E2; A. #»v ; #»w/ D hu; #»v ihq; #»wi � hq; #»v ihu; #»wi C �. #»u ;
#»

b ; #»v ; #»w/;
(3.39)

with, by definition of the linear form u, hu; #»v i D #»u � #»v [Eq. (1.45)].
Let us establish (3.37). First of all, we note that its right hand does define

an antisymmetric bilinear form, in particular thanks to the fully antisymmetric
character of the Levi–Civita tensor. Then, we set

q WD A.:; #»u / : (3.40)

q is thus the linear form defined by 8 #»v 2 E; hq; #»v i D A. #»v ; #»u /. Given the
antisymmetry of A, it is clear that hq; #»u i D 0. The second equation in (3.37) is
therefore fulfilled. Next, let us define

B WD A � u˝ q C q ˝ u: (3.41)
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B is clearly an antisymmetric bilinear form. It vanishes if one of its argument is #»u :

B.:; #»u / D A.:; #»u /„ ƒ‚ …
q

�u hq; #»u i„ƒ‚…
0

Cq hu; #»u i„ƒ‚…
�1
D 0:

Let us determine the action of B in the hyperplane Eu normal to #»u . As we have
seen in Sect. 3.2.6, .Eu;g/ is a Euclidean space. Let then . #»e i / D . #»e 1;

#»e 2;
#»e 3/ be

an orthonormal basis of .Eu;g/. If #»u is the 4-velocity of an observer, one may of
course select the #»e i ’s to be the three spatial vectors of the observer’s local frame.
Let us define the following three real numbers:

b1 WD B. #»e 2;
#»e 3/; b2 WD B. #»e 3;

#»e 1/; b3 WD B. #»e 1;
#»e 2/: (3.42)

and introduce the vector

#»

b WD bi #»e i 2 Eu: (3.43)

It is clear that
#»

b satisfies the third equation of (3.37): #»u � #»

b D 0. Moreover, for any
pair . #»v ; #»w/ of vectors of Eu, the antisymmetry of B yields

B. #»v ; #»w/ D B.vi #»e i ;w
j #»e j / D viwj B. #»e i ;

#»e j /

D v1w2b3 � v2w1b3 � v1w3b2 C v3w1b2 C v2w3b1 � v3w2b1

D
ˇ̌
ˇ̌
ˇ̌
b1 v1 w1

b2 v2 w2

b3 v3 w3

ˇ̌
ˇ̌
ˇ̌ : (3.44)

This shows that B. #»v ; #»w/ is the mixed product (scalar triple product) of vectors
.

#»
b ; #»v ; #»w/ in the Euclidean space .Eu;g/, provided that one has chosen an

orientation making . #»e i / be a right-handed basis. Let us recall that the choice of
an orientation of a vector space of dimension n amounts to the choice of a fully
antisymmetric n-linear form. We did so in Sect. 1.5 in the case n D 4 by selecting
the Levi–Civita tensor �. In the present context, n D 3 and it is natural to select the
antisymmetric trilinear form �u defined from � by

8 #»v 1;
#»v 2;

#»v 3 2 Eu; �u.
#»v 1;

#»v 2;
#»v 3/ WD �. #»u ; #»v 1;

#»v 2;
#»v 3/: (3.45)

Since � is an antisymmetric four-linear form, it is clear that �u is an antisymmetric
trilinear form onEu. In addition, it satisfies �u.

#»e 1;
#»e 2;

#»e 3/ D 1 if . #»u ; #»e 1;
#»e 2;

#»e 3/

is a right-handed orthonormal basis of .E;g; �/, which we shall assume from now
on. By metric duality, �u induces the cross product of two vectors of Eu by

8. #»v ; #»w/ 2 E2
u;

#»v �u
#»w WD #»� u.

#»v ; #»w; : / D #»� . #»u ; #»v ; #»w; : / ; (3.46)
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where the notation #»� u.
#»v ; #»w ; : / stands for the vector of Eu associated by

g-duality (cf. Sect. 1.6) to the linear formEu �! R, #»z 7�! �u.
#»v ; #»w; #»z /. Similarly

#»� . #»u ; #»v ; #»w ; : / stands for the vector in E that is g-dual of the linear formE �! R,
#»z 7�! �. #»u ; #»v ; #»w; #»z /. Hence, we may write the mixed product of three vectors
. #»v 1;

#»v 2;
#»v 3/ in Eu as

�u.
#»v 1;

#»v 2;
#»v 3/ D . #»v 1�u

#»v 2/ � #»v 3 D . #»v 2�u
#»v 3/ � #»v 1 D . #»v 3�u

#»v 1/ � #»v 2: (3.47)

Since �u.
#»e 1;

#»e 2;
#»e 3/ D 1, (3.44) can be rewritten as

8. #»v ; #»w/ 2 E2
u; B. #»v ; #»w/ D �u.

#»

b ; #»v ; #»w/ D �. #»u ;
#»

b ; #»v ; #»w/: (3.48)

Given the definition (3.41) of B, this establishes the decomposition (3.37) of A.
There remains to prove the uniqueness of the linear form q and of the vector

#»

b .
For q, this is easy: if the first two identities of (3.37) are fulfilled, then necessarily

8 #»v 2 E; A. #»v ; #»u / D hu; #»v i hq; #»u i„ƒ‚…
0

�hq; #»v i hu; #»u i„ƒ‚…
�1
C �. #»u ;

#»
b ; #»v ; #»u /„ ƒ‚ …
0

D hq; #»v i;

which shows that q D A.:; #»u /. The choice (3.40) was thus the only one possible.
Regarding

#»

b , we notice from (3.39) that if the action of A is restricted to Eu, we
get

8. #»v ; #»w/ 2 E2
u; A. #»v ; #»w/ D �. #»u ;

#»

b ; #»v ; #»w/ D �u.
#»

b ; #»v ; #»w/: (3.49)

If
#»

b 0 2 Eu is such that the decomposition (3.37) holds with
#»

b replaced by
#»

b 0, we
deduce from (3.49) that

8. #»v ; #»w/ 2 E2
u; �u.

#»
b 0 � #»

b ; #»v ; #»w/ D 0:
Since the trilinear form �u is nondegenerate on Eu, we conclude that

#»

b 0 � #»

b D 0,
which establishes the uniqueness of

#»

b and completes the demonstration of (3.37).
ut

Remark 3.10. The representation of an antisymmetric bilinear form by a linear form
and a vector, both orthogonal to #»u , is understandable by counting the degrees of
freedom: the matrix of A in the basis . #»e ˛/ is an antisymmetric 4 � 4 matrix;
it has therefore only 6 independent components. The linear form q, which must
satisfy hq; #»u i D 0, has 3 independent components. The same thing holds for
the vector

#»
b , which obeys the constraint #»u � #»

b D 0. We have thus 3 C 3 D 6,
as it should be.

Remark 3.11. The linear form q and the vector
#»
b are sometimes called, respec-

tively, the electric part and the magnetic part of the bilinear form A with respect to
#»u . We shall see in Chap. 17 that such denominations arise from the decomposition
of the electromagnetic field tensor, which is an antisymmetric bilinear form.
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Remark 3.12. In Chap. 14, we will perform a rewriting of the decomposition (3.37),
in terms of operations specific to antisymmetric multilinear forms (exterior product
and Hodge star); this will result in Eq. (14.80).

3.5.3 Application to the Variation of the Local Frame

Let us apply the decomposition (3.37) to the antisymmetric bilinear form ˝

introduced above. From (3.40), q D ˝.:; #»u /. Now, by means of (3.32) and (3.31),
we get

8 #»v 2 E; ˝. #»v ; #»u / D #»v �˝. #»u / D c #»a � #»v ;

which shows that ˝.:; #»u / D ca, hence q D ca. Regarding the vector
#»
b in the

decomposition (3.37), we shall rather consider � #»
b , which we shall denote by #»!.

The decomposition (3.37) is then written as

˝ D c u˝ a � c a˝ u � �. #»u ; #»!; :; :/ : (3.50)

Therefore, from (3.32), for any pair of vectors . #»v ; #»w/,

˝. #»v / � #»w D ˝. #»w; #»v /

D c . #»u � #»w/. #»a � #»v /� c . #»a � #»w/. #»u � #»v /��. #»u ; #»!; #»w ; #»v /„ ƒ‚ …
C�. #»u ; #»! ; #»v ; #»w /

:

By extending the definition (3.46) of the cross product �u to the entire E via
�. #»u ; #»!; #»v ; #»w/ DW . #»! �u

#»v / � #»w , we get the following expression for the
endomorphism ˝ :

8 #»v 2 E; ˝. #»v / D c. #»a � #»v / #»u � c. #»u � #»v / #»a C #»! �u
#»v : (3.51)

Rewriting this relation for each of the vectors #»e ˛ of O’s local frame, we get

d #»e ˛

dt
D c. #»a � #»e ˛/

#»u � c. #»u � #»e ˛/
#»a„ ƒ‚ …

Fermi–Walker part

C #»! �u
#»e ˛„ ƒ‚ …

spatial
rotation part

; (3.52)

where the denomination Fermi–Walker and spatial rotation will be justified here-
after.

Remark 3.13. Since #»e 0 D #»u , #»a � #»u D 0, #»u � #»u D �1 and #»! �u
#»u D

#»� . #»u ; #»!; #»u ; :/ D 0, we check that (3.52) gives d #»e 0=dt D d #»u=dt D c #»a .
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Fig. 3.14 Evolution of the
4-velocity along a worldline
L0: the vertical plane ˘FW.t /

is the plane defined by
. #»u .t /; #»a .t // (osculating
plane of L0), and the
hyperplane Eu.t / (graphically
reduced to 2 dimensions) is
the hyperplane orthogonal to
#»u .t /; it contains #»a .t /

Regarding the classic three-dimensional space, the time variation of a moving
frame of three orthogonal unit vectors . #»e i / is entirely due to the rotation of this
frame. In the present case, the moving frame contains a fourth vector, #»e 0 D #»u ,
which may vary even in the absence of any spatial rotation, when the observer is
accelerated (cf. Sect. 2.4). It is therefore natural to decompose ˝ in two parts:

˝ D ˝FW C˝ rot ; (3.53)

with

8 #»v 2 E; ˝FW.
#»v / WD c. #»a � #»v / #»u � c. #»u � #»v / #»a (3.54)

˝ rot.
#»v / WD #»! �u

#»v : (3.55)

˝FW is related solely to the 4-acceleration #»a of observer O , which makes #»e 0 D #»u
change its direction when t varies. ˝FW is named Fermi–Walker tensor. ˝FW is
acting only on the components of the vectors in the plane Span. #»u ; #»a /, which is the
osculating plane of O’s worldline, as we have seen in Sect. 2.7.3 (cf. Fig. 3.14).

The remaining part of ˝ , namely, ˝ rot, represents the spatial rotation of the triad
. #»e i /; it is called spatial rotation tensor. The vector #»! 2 Eu is named the four-
rotation, or 4-rotation for short, of the local frame . #»e ˛/ and, by extension, of
observer O . The physical dimension of ˝ rot can be read on (3.30): it is the inverse
of a time. Since #»u and � are dimensionless, we deduce that the dimension of #»!

is the inverse of a time as well, i.e. the dimension of an angular velocity. #»! is a
spacelike vector orthogonal to #»u (from the third property in (3.37) with

#»

b D � #»!):

#»u � #»! D 0 : (3.56)

Moreover, we have ˝ rot.
#»!/ D #»! �u

#»! D 0, which shows that ˝ rot acts only in
changing the basis . #»e ˛/ in the two-dimensional subspace ofEu orthogonal to #»!. In
other words, the action of ˝ rot consists in a rotation in the plane orthogonal to both
#»u and #»!.
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We shall say that O is an accelerated observer iff #»a 6D 0 and that O is a rotating
observer, iff #»! 6D 0. We shall see in Chaps. 12 and 13 that #»a and #»! are quantities
measurable by O , contrary to the 4-velocity #»u : by means of physical experiments,
O can determine his 4-acceleration (Sect. 12.4.5) and his 4-rotation (Sect. 13.2.2).

Example 3.1. The Serret–Frenet tetrad . #»e ˛/ introduced in Sect. 2.7.3 for the
geometrical description of a worldline obeys to the criteria defining a local frame,
as stated in Sect. 3.4.1. Given a worldline L0, one may, at least theoretically,
consider the observer (i) whose worldline is L0 and (ii) whose local frame in the
Serret–Frenet tetrad of L0. We shall not discuss here about the physical realization
of such an observer, i.e. about the physical processes by which an observer
ensures himself that his local frame coincides with the Serret–Frenet tetrad of his
worldline. The evolution of the Serret–Frenet tetrad along the worldline is given
by (2.63). The matrix appearing in this equation is nothing but the matrix˝ˇ

˛ (row
index: ˛; column index: ˇ) considered at Sect. 3.5.1 [Eq. (3.29)]. Incidentally,
we may check that the matrix (2.63) obeys the properties (3.35). By comparing
formulas (3.52) and (2.63), we obtain the Fermi–Walker tensor in terms of the
curvature a of the worldline:

˝FW D ca.e1 ˝ e0 � e0 ˝ e1/ (3.57)

as well as the 4-rotation of the Serret–Frenet tetrad in terms of the first and second
torsions, T1 and T2, of the worldline:

#»! D cT2 #»e 1 C cT1 #»e 3: (3.58)

Historical note: The denomination Fermi–Walker for the change in the tetrad . #»e ˛/

that is not related to any spatial rotation arises from the “nonrotating” coordinates
introduced in the vicinity of a worldline by Enrico Fermi11 in 1922 (Fermi 1922)
and Arthur G. Walker12 in 1932 (Walker 1932).

3.5.4 Inertial Observers

Among all observers, it is natural to distinguish the ones whose local frame is
constant along their worldline, i.e. satisfies

11Enrico Fermi (1901–1954): Italian physicist, author of fundamental works in quantum mechan-
ics, statistical physics and nuclear physics; he was awarded the 1938 Nobel Prize in Physics. He
wrote the article (Fermi 1922) about the coordinates at the vicinity of a worldline at the age of 21,
while he was still a student at the Scuola Normale Superiore in Pisa.
12Arthur G. Walker (1909–2001): British mathematician, expert in differential geometry and well
known for his work in cosmology; he was also a talented dancer.
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8˛ 2 f0; 1; 2; 3g; d #»e ˛

dt
D 0 : (3.59)

Such observers are called inertial observers.
In view of the evolution law (3.52), an observer whose 4-acceleration

#»a and 4-rotation #»! both vanish is an inertial observer. Conversely, if an
observer obeys (3.59), then, by definition of the 4-acceleration [Eq. (2.16)],
#»a D c�1d #»u=dt D c�1d #»e 0=dt D 0. For i 2 f1; 2; 3g, Eq. (3.52) reduces then
to d #»e i =dt D #»! �u

#»e i . Since d #»e i =dt D 0, this implies #»! D 0. We therefore
conclude that

An observer is inertial iff

8t 2 R; #»a .t/ D 0 and #»!.t/ D 0 ; (3.60)

where t , #»a and #»! are, respectively, the proper time, the 4-acceleration and
the 4-rotation of the observer.

Inertial observers are the simplest observers in Minkowski spacetime, and
historically, special relativity was first formulated only in terms of them. We shall
study these observers in detail in Chap. 8.

Remark 3.14. Inertial observers are sometimes called Galilean observers. We shall
not use such a terminology here, partly to avoid any confusion with pre-relativistic
mechanics.

3.6 Derivative of a Vector Field Along a Worldline

3.6.1 Absolute Derivative

Let #»v D #»v .t/ be a vector field along the worldline L0 of some observer O of proper
time t (cf. Sect. 2.7.2). The derivative of #»v along L0, d #»v=dt , has been defined in
Sect. 2.7.2 [Eq. (2.53)]. We shall call it absolute derivative of the field #»v along L0

to distinguish it from the other types of derivatives introduced hereafter.
Denoting by .v˛.t// the components of #»v .t/ in O’s local frame . #»e ˛.t//, we have

#»v .t/ D v˛.t/ #»e ˛.t/, so that

d #»v

dt
D dv˛

dt
#»e ˛ C v˛ d #»e ˛

dt
:
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Substituting expression (3.52) for d #»e ˛=dt , we get immediately

d #»v

dt
D dv˛

dt
#»e ˛ C c. #»a � #»v / #»u � c. #»u � #»v / #»a C #»! �u

#»v : (3.61)

3.6.2 Derivative with Respect to an Observer

Using the same notations as above, we call derivative of #»v with respect to observer
O the vector field defined along L0 by

DO
#»v WD dv˛

dt
#»e ˛ : (3.62)

Hence DO
#»v measures the variation of #»v along the worldline L0 that is solely due

to the variation of #»v ’s components in O’s local frame. In view of the definition of a
fixed vector field with respect to O given in Sect. 3.4.3, we have

#»v fixed w.r.t. O ” DO
#»v D 0 : (3.63)

In particular, the derivative of each of the vectors of O’s local frame is zero:

8˛ 2 f0; 1; 2; 3g; DO
#»e ˛ D 0: (3.64)

For ˛ D 0, one may of course replace #»e 0 by #»u :

DO
#»u D 0: (3.65)

An important property of DO is that the derivative of a vector lying in O’s local
rest space stays in this space:

8 #»v 2 Eu; DO
#»v 2 Eu: (3.66)

Indeed, if #»v 2 Eu, then #»v D vi #»e i and #»u �DO
#»v D .dvi=dt/ #»u � #»e i D 0, since

#»u � #»e i D 0.

Remark 3.15. The property (3.66) is not satisfied by the absolute derivative. Indeed,
if #»v 2 Eu, then #»u � d #»v=dt D �d #»u=dt � #»v D �c #»a � #»v 6D 0 in general, because
#»a and #»v are two vectors in the hyperplane Eu and have a priori no reason to be
orthogonal.

By means of (3.61), we may express the derivative with respect to an observer in
terms of the absolute derivative and the observer’s 4-acceleration and 4-rotation:



3.6 Derivative of a Vector Field Along a Worldline 91

DO
#»v D d #»v

dt
� c. #»a � #»v / #»u C c. #»u � #»v / #»a � #»! �u

#»v : (3.67)

In particular, if O is an inertial observer [ #»a D 0 and #»! D 0, cf. (3.60)], the two
derivatives coincide:

DO
#»v D d #»v

dt
.O inertial/: (3.68)

3.6.3 Fermi–Walker Derivative

The Fermi–Walker derivative of a vector field #»v along a worldline L0 is the vector
field along L0 defined by [cf. (3.54)]

DFW
u

#»v WD d #»v

dt
� ˝FW.

#»v / D d #»v

dt
� c. #»a � #»v / #»u C c. #»u � #»v / #»a : (3.69)

Comparing with (3.67), we notice that Fermi–Walker derivative is the derivative
with respect to a nonrotating observer ( #»! D 0) having L0 as worldline. For a
rotating observer, the two derivatives are related by

DO
#»v D DFW

u
#»v � #»! �u

#»v : (3.70)

One says that a vector field #»v is Fermi–Walker transported along the worldline
L0 iff DFW

u
#»v D 0. Then, the equivalence (3.63) means that for a nonrotating

observer, the notions of fixed vector field and Fermi–Walker transported vector field
are identical:

#»v fixed w.r.t. O ” #»v Fermi–Walker transported along L0: #»!D0 (3.71)

Remark 3.16. As it is clear on the definition (3.69), the concept of Fermi–Walker
derivative relies only on the worldline L0 and not on any observer that may have L0

as a worldline. Let us recall that there exists an infinite number of such observers:
they differ by their 4-rotation #»!.

Remark 3.17. We have already noticed that the Fermi–Walker derivative can be
considered as a particular case of the derivative with respect to an observer (a non-
rotating one). It therefore obeys properties (3.65) and (3.66) :

DFW
u

#»u D 0 and 8 #»v 2 Eu; DFW
u

#»v 2 Eu: (3.72)
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Remark 3.18. In some textbooks (Hawking and Ellis 1973; Straumann 2013), the
terms Fermi derivative and Fermi transport are used instead of Fermi–Walker
derivative and Fermi–Walker transport. The Fermi–Walker terminology employed
here is used, among others, in the textbooks (Ferraro 2007; Misner et al. 1973;
Synge 1960).

Let us assume that the vector #»v is orthogonal to the 4-velocity #»u at any point of
L0, i.e. that #»v 2 Eu. The last term in (3.69) then vanishes, yielding

DFW
u

#»v D d #»v

dt
� c. #»a � #»v / #»u D d #»v

dt
�
�

d #»u
dt
� #»v

	
#»u D d #»v

dt
C
�

#»u � d #»v

dt

	
#»u :

We recognize the orthogonal projection onto Eu [cf. (3.11)]:

8 #»v 2 Eu; DFW
u

#»v D ?u
d #»v

dt
: (3.73)

Hence, for the vectors in the local rest space Eu, the Fermi–Walker derivative
is nothing but the orthogonal projection onto Eu of the absolute derivative. In
particular, we recover the fact that the Fermi–Walker derivative of a vector in Eu

is a vector in Eu [Property (3.72)].

3.7 Locality of an Observer’s Frame

We investigate here by which extent the coordinates with respect to a given observer
O , as defined in Sect. 3.4.2, are local.

Let O be an event of proper t on the worldline L0 where the 4-acceleration of O
does not vanish: #»a 6D 0 (cf. Fig. 3.15). Let .x˛/ be the affine coordinate system on
E (cf. Sect. 1.2.3) defined by the pointO and the vectors . #»u .t/; #»" 1;

#»" 2;
#»" 3/, where

#»" 1 WD a�1 #»a .t/; a WD k #»a .t/kg D
p

#»a .t/ � #»a .t/ (3.74)

and #»" 2 and #»" 3 are two unit vectors orthogonal to each other, as well as to #»u and
#»" 1. In particular, #»" 1 is the second vector of the Serret–Frenet tetrad introduced
in Sect. 2.7.3. The basis . #»u .t/; #»" i / hence constructed is orthonormal. Each event
M 2 E is labelled by its affine coordinates .x˛/ so that [cf. (1.6)]

#      »
OM D x0 #»u C xi #»" i : (3.75)

The equation of the hyperplane Eu.t/ in terms of the affine coordinates .x˛/ is

Eu.t/ W x0 D 0: (3.76)
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Fig. 3.15 Non-globality of the frame of an accelerated observer: the local rest spaces Eu.t / and
Eu.t C dt / intersect in a plane ˘ located at the distance a�1 D . #»a � #»a /�1=2 from O . On this
two-dimensional figure, ˘ is reduced to a point and Eu.t / and Eu.t C dt / to lines

The equation of the neighbouring hyperplane Eu.t C dt/ is determined as follows.
The point O 0 WD O C c dt #»u belongs to Eu.t C dt/ (cf. Fig. 3.15). The normal to
Eu.t C dt/ being #»u .t C dt/, a point M 2 E belongs to Eu.t C dt/ iff #»u .t C dt/ �
#        »

O 0M D 0, i.e. iff #»u .t C dt/ � #      »
OM D #»u .t C dt/ � #      »

OO 0. Now, at first order in dt ,
#»u .t C dt/ � #      »

OO 0 D �c dt . Hence

M 2 Eu.t C dt/ ” #»u .t C dt/ � #      »
OM D �c dt:

By definition of the 4-acceleration, #»u .tCdt/ D #»u .t/Cc dt #»a D #»u .t/Cac dt #»" 1.
Using this relation as well as (3.75), we get

M 2 Eu.t C dt/ ” . #»u .t/C ac dt #»" 1/ � .x0 #»u C xi #»" i / D �c dt:

Expanding and using the orthogonality of the basis . #»u ; #»" i /, we obtain the equation
of the hyperplane Eu.t C dt/ within the affine coordinate system .x˛/:

Eu.t C dt/ W �x0 C ac dt x1 D �c dt: (3.77)

From (3.76) and (3.77), the equation of the intersection of the hyperplanes Eu.t/ and
Eu.t C dt/ is x0 D 0 and 0C ac dt x1 D �c dt , i.e.


x0 D 0
x1 D �a�1: (3.78)

We conclude that if #»a .t/ 6D 0, the two hyperplanes Eu.t/ and Eu.t C dt/ intersect
in a (two-dimensional) plane, ˘ , whose equation in the affine coordinates .x˛/
is (3.78) (cf. Fig. 3.15). This plane marks the limit of applicability of the local frame
of observer O . Indeed, let us consider an eventM 2 ˘ . The affine coordinates ofM
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are x˛ D .0;�a�1; x2; x3/. They are uniquely defined but are purely mathematical.
Regarding the physical coordinates with respect to observer O , as defined in
Sect. 3.4.2, the point M can be labelled twice. First of all, M belongs to the local
rest space Eu.t/. The observer O attributes then the coordinates .t; yi / toM , where,
according to (3.25), the .yi /’s are three real numbers such that

#      »
OM D yi #»e i .t/.

ButM also belongs to the local rest space Eu.tCdt/. Still from (3.25), the observer
O attributes to it the coordinates .t C dt; zi / where the zi ’s are three real numbers
such that

#        »

O 0M D zi #»e i .t C dt/. Therefore, there is not a unique set of coordinates
for points of˘ within the local frame of O . The same thing holds for events located
beyond˘ , i.e. events with x1 < �a�1.

We note that #»" 1 being a unit vector, jx1j is the distance with respect to the metric
tensor g between the point O and the plane ˘ . In conclusion, the local frame of
an observer with 4-acceleration #»a can be safely used to set coordinates to events
located at a distance r from the observer’s worldline such that

r 	 a�1 D k #»ak�1g D . #»a � #»a /�1=2 : (3.79)

We shall see in Chap. 4 that a D 
=c2, where 
 is the amplitude of the
acceleration of O measured by an inertial observer whose worldline is tangent to
that of O at O [Eq. (4.64)]. For modest accelerations, the criterion (3.79) is not
very constraining at a laboratory scale. Indeed, for 
 D 10 m s�2, a�1 D c2=
 '
9 � 1015m ' 1 light-year !



Chapter 4
Kinematics 1: Motion with Respect
to an Observer

4.1 Introduction

Having introduced the notion of observer in the preceding chapter, we are in position
to discuss kinematics, i.e. the description of the motion of a particle with respect to
a given observer. We shall distinguish the case of a massive particle (Sects. 4.2–4.5)
from that of a massless one (Sect. 4.6). The latter corresponds to a photon and is
thus relevant for describing the propagation of light with respect to an observer.

In the next chapter, we shall no longer consider a single observer but two of them
and shall derive the transformation laws of kinematic quantities when moving from
one observer to the other.

4.2 Lorentz Factor

4.2.1 Definition

Let us consider an observer O , of worldline L and 4-velocity #»u , as well as a
massive particle P , of worldline L 0 and 4-velocity #»u 0 (cf. Fig. 4.1). We assume that
L 0 is located in the vicinity of L , in the sense that L 0 can be described in O’s local
frame. From the analysis of Sect. 3.7, this means that the spatial distance between
L and L 0 is always smaller than k #»a k�1g , where #»a stands for O’s 4-acceleration.

At the instant t of O’s proper time, the position of P “perceived” by O is the
intersectionM.t/ of P’s worldline with O’s local rest space at t , Eu.t/ (cf. Fig. 4.1).
Given some infinitesimal increment dt of O’s proper time, let dt 0 be the elapsed
proper time of P when it moves from M.t/ to M.t C dt/ along its worldline.
Contrary to what Newtonian physics would state, dt 0 is a priori not equal to dt . The
ratio of these two increments of proper time (one for O: dt , the other one forP: dt 0)

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Motion of a massive
particle (worldline L 0 and
4-velocity #»u 0) with respect of
an observer O (worldline L ,
4-velocity #»u and local rest
space Eu.t /)

Fig. 4.2 Example 4.1:
uniform linear motion

is called the Lorentz factor of particle P with respect to observer O and is denoted
by � :

dt D � dt 0 : (4.1)

Example 4.1. The simplest example of motion that one may think of is that
represented in Fig. 4.2: both worldlines L and L 0 are straight lines of E . This
implies that O’s 4-velocity #»u is constant. We shall suppose that the three spacelike
vectors #»e i of O’s local frame . #»e ˛/ are constant as well, in addition to #»e 0 D #»u ;
O is then an inertial observer (cf. Sect. 3.5.4). Let us denote by .x0 D ct; x1 D x;

x2 D y; x3 D z/ the coordinates associated with O (cf. Sect. 3.4.2) and let us
consider the case where L 0 is the line of parametric equation

x.t/ D vt; y.t/ D 0; z.t/ D 0; (4.2)

where v is a constant such that jvj < c. P has a uniform linear motion with
respect to O of velocity v in the direction of the x-axis. The vector

#                                 »

M.t/M.t C dt/
along L 0 has the components dx˛ D .c dt; v dt; 0; 0/ in the basis . #»e ˛/. From
formula (2.7) with 	 D t 0, the corresponding increase dt 0 of P’s proper time is

dt 0 D 1

c

p
.c dt/2 � .v dt/2 D dt

p
1 � .v=c/2:
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Fig. 4.3 Example 4.2:
uniformly accelerated motion
(Langevin’s traveller between
events A and C1)

Comparing with (4.1), one deduces the value of the Lorentz factor of P with respect
to O :

� D
�
1 � v

2

c2

	�1=2
: (4.3)

Notice that � is constant, since v is.

Example 4.2. A second example is provided by Langevin’s traveller discussed in
Sect. 2.6 and whose worldline between events A (rocket engine ignition) and C1
(thrust reversing) is depicted in Fig. 4.3. The “sedentary” twin O is then an inertial
observer, as in Example 4.1. His proper time t coincides with the affine coordinate t
introduced in Sect. 2.6.1, and O’s local rest spaces are the hyperplanes Eu.t/ defined
by t D const. In these circumstances, the comparison of (2.25) with (4.1) leads to
the Lorentz factor of Langevin’s traveller O 0 with respect to O :

� D
s

1C 
2

c2

�
t � k

2
T

	2
(4.4)

(use has been made of (2.38) to let appear the acceleration 
 instead of the parameter
˛). We notice that � D 1 at A .t D 0; k D 0/, P .t D T=2; k D 1/ and B
.t D T; k D 2/ and that � takes its maximum value at C1 .t D T=4; k D 0/ and
C2 .t D 3T=4; k D 1/, which is

�max D
p
1C .T=T�/2; (4.5)

where T� WD 4c=
 is the time introduced in Sect. 2.6.5.

Example 4.3. As a last example, let us consider that P is a point particle in uniform
circular motion in the plane z D 0 of O’s reference space, O being still an inertial
observer. This means that P’s worldline obeys the following equations:

8
<

:

x.t/ D R cos˝t
y.t/ D R sin˝t
z.t/ D 0;

(4.6)
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Fig. 4.4 Example 4.3:
uniform circular motion

where R and ˝ are two positive constants such that R˝ < c. The worldline L 0
is a helix when represented in a spacetime diagram based on O’s coordinates, as
in Fig. 4.4. In particular, L 0 is not confined to a plane, contrary to Examples 4.1
and 4.2. Along L 0, the elementary displacement vector

#                                 »

M.t/M.t C dt/ has the
components dx˛ D .c dt;�R˝ sin˝t dt; R˝ cos˝t dt; 0/ in the basis . #»e ˛/.
From formula (2.7), the corresponding increase dt 0 of P’s proper time is

dt 0 D 1

c

p
.c dt/2 � .R˝ sin˝t dt/2 � .R˝ cos˝t dt/2 D dt

p
1 � .R˝=c/2:

Comparing with (4.1), we deduce the Lorentz factor of P with respect to O :

� D
"
1 �

�
R˝

c

	2#�1=2
: (4.7)

Notice that � is constant, since R and ˝ are.

4.2.2 Expression in Terms of the 4-Velocity
and the 4-Acceleration

Let O.t/ be the event of proper time t along the worldline of observer O . We
are going to see that the Lorentz factor � can be expressed in terms of #»u (O’s
4-velocity), #»u 0 (P’s 4-velocity), #»a (O’s 4-acceleration) and

#      »
OM (P’s position

vector in O’s local frame). Indeed, let us express thatM.tCdt/ belongs to the local
rest space Eu.t C dt/, i.e. that the vectors #»u and

#      »
OM are orthogonal at the proper

time t C dt [Eq. (3.8)]:

#»u .t C dt/ � #                                             »

O.t C dt/M.t C dt/ D 0: (4.8)
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Now, from the very definition of the 4-acceleration,

#»u .t C dt/ D #»u .t/C c dt #»a .t/

and, by Chasles’ relation,

#                                             »

O.t C dt/M.t C dt/ D #                               »

O.t C dt/O.t/C #                   »

O.t/M.t/C #                                 »

M.t/M.t C dt/:

In this last relation, the definition of the 4-velocity enables one to write
#                               »

O.t C dt/O.t/ D �c dt #»u .t/ and
#                                 »

M.t/M.t C dt/ D c dt 0 #»u 0.t/ (cf. Fig. 4.1).
Taking into account the above relations, (4.8) becomes

�c dt #»u .t/ � #»u .t/C #»u .t/ � #                   »

O.t/M.t/C c dt 0 #»u .t/ � #»u 0.t/ � c2 dt2 #»a .t/ � #»u .t/

Cc dt #»a .t/ � #                   »

O.t/M.t/C c2 dt dt 0 #»a .t/ � #»u 0.t/ D 0:

Now #»u .t/ � #»u .t/ D �1 [Eq. (2.14)], #»u .t/ � #                   »

O.t/M.t/ D 0 [M.t/ 2 Eu.t/; cf.
Sect. 3.2.3], #»a .t/ � #»u .t/ D 0 [property (2.17) of the 4-acceleration]. Moreover, the
term c2 dt dt 0 #»a .t/ � #»u 0.t/ is of second order in dt . At first order in dt , there remains
then

c dt C c dt 0 #»u � #»u 0 C c dt #»a � #      »
OM D 0:

In the above writing, all vectors have to be considered at time t so that the explicit
mention of t has been omitted. Substituting expression (4.1) for dt , we get finally

� D �
#»u � #»u 0

1C #»a � #      »
OM

: (4.9)

Notice that in the cases where (i) P intersects O’s worldline (
#      »
OM D 0) or (ii) O

has a vanishing 4-acceleration (for instance, O is an inertial observer), the above
expression reduces to

� D � #»u � #»u 0
M2L or #»a D0: (4.10)

Thus, from a geometrical point of view, the Lorentz factor between two observers
whose worldlines are crossing each other is nothing but minus the scalar product of
their 4-velocities.

Remark 4.1. The expression (4.10) of � is symmetric with respect to O and P ,
but not (4.9). In other words, if the worldlines of O and P intersect themselves, the
Lorentz factor of P with respect to O is the same as the Lorentz factor of O with
respect to P .

Example 4.4. Let us consider Example 4.2 again, namely, Langevin’s traveller.
Since O’s 4-acceleration vanishes, formula (4.10) holds. Moreover, the 4-velocity
#»u coincides with the vector #»e 0 of the orthonormal basis introduced in Sect. 2.6.
Formula (4.10) reduces then to � D � #»e 0 � #»u 0 D � #»e 0 � .u0˛ #»e ˛/ D �u0˛�0˛ D
�u00.�1/, i.e.



100 4 Kinematics 1: Motion with Respect to an Observer

� D u00: (4.11)

As a check, using expression (2.30a) of u00, we recover (4.4). Moreover (2.32a)
leads to an alternative expression of the Lorentz factor, in terms of O 0’s proper time:

� D cosh

�
4

T�

�
t 0 � k

2
T 0
	�
; (4.12)

where use has been made of (2.43). � reaches its maximal value at C1 .t 0 D
T 0=4; k D 0/ and C2 .t 0 D 3T 0=4; k D 1/, which is

�max D cosh.T 0=T�/: (4.13)

This perfectly agrees with the result (4.5), given the relations T=T� D sinh.T 0=T�/
[Eq. (2.43)] and coshx D

p
1C sinh2 x.

4.2.3 Time Dilation

A lower bound on the Lorentz factor can be easily inferred from relation (4.10).
Indeed, let us introduce the components of P’s 4-velocity with respect to O’s local
frame . #»e ˛/ D . #»e 0 D #»u ; #»e i / (cf. Sect. 3.4.1): #»u 0 D u00 #»u C u0i #»e i . Since . #»e ˛/ is
an orthonormal basis, (4.10) yields

� D � #»u � .u00 #»u C u0i #»e i / D �u00 #»u � #»u„ƒ‚…
�1
�u0i #»u � #»e i„ƒ‚…

0

D u00: (4.14)

On the other side, the constraint #»u 0 � #»u 0 D �1, which any 4-velocity must obey, can
be written (thanks to the orthonormality of . #»e ˛/):

#»u 0 � #»u 0 D �.u00/2 C
3X

iD1
.u0i /2 D �1:

Since u00 > 0 (for #»u and #»u 0 are both future-directed), we get

u00 D
vuut1C

3X

iD1
.u0i /2:

The right-hand side is manifestly larger than or equal to 1. Therefore (4.14) allows
one to conclude

� � 1
M2L or #»a D0; (4.15)

the equality being achieved iff u0i D 0, i.e. iff #»u 0 D #»u , i.e. iff P coincides with O .
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Given the definition (4.1) of the Lorentz factor as a ratio between two proper
times, the property � � 1 is named time dilation:

dt � dt 0

M2L or #»a D0
: (4.16)

In other words, when P’s worldline crosses that of O or when O has a
vanishing 4-acceleration, the proper time measured by O between the events
M.t/ and M.t C dt/ on P’s worldline is larger or equal to the proper time
measured by P himself between these two events.

We are facing again the relativity of time, already discussed in Chap. 2 with the
twin paradox. Note however a difference: in Chap. 2, only times of events occurring
along the worldline of an observer were involved. Here, thanks to the definition of
simultaneity (Chap. 3), we are dealing with time intervals between events away from
observer O’s worldline.

Remark 4.2. Contrary to what Fig. 4.1 might suggest, we do have dt � dt 0, and not
dt � dt 0. Indeed, one shall not forget that dt and dt 0 are the lengths O.t/O.t C
dt/ and M.t/M.t C dt/ with respect to the metric tensor; they therefore do not
correspond to the Euclidean lengths of the segments drawn in Fig. 4.1.

Example 4.5. The Lorentz factor of Example 4.1 (uniform linear motion) satisfies
clearly � � 1 [cf. Eq. (4.3)]. We have even � > 1 if v 6D 0.

Example 4.6. On each of the expressions (4.4) and (4.12) obtained above for the
Lorentz factor of Langevin’s traveller, it is obvious that � � 1, in full agreement
with (4.15). Moreover, it is worth noticing that formula (2.29) obtained in Sect. 2.6.2
implies T � T 0, which is an integrated form of (4.16).

Example 4.7. Similarly, in Example 4.3 (uniform circular motion), we have clearly
� � 1 [cf. Eq. (4.7)] and even � > 1 if R 6D 0 and˝ 6D 0.

4.3 Velocity Relative to an Observer

4.3.1 Definition

For each instant of O’s proper time t , the position of particle P is marked in
O’s local frame . #»e ˛.t// by three real numbers .x1.t/; x2.t/; x3.t// such that (cf.
Sect. 3.4.2)

#                   »

O.t/M.t/ D xi .t/ #»e i .t/: (4.17)
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The motion of P with respect to O is thus defined by the “position vector” #»x .t/ D
xi .t/ #»e i in O’s reference space RO (cf. Sect. 3.4.3). It is then natural to define the
velocity of particle P relative to observer O as the derivative of the vector #»x .t/

with respect to the proper time t :

#»
V WD d #»x

dt
; (4.18)

The vector
#»
V belongs to the reference space RO . Via the correspondence (3.27),

#»
V

can be identified to the following vector in the local rest space Eu.t/:

#»
V .t/ WD dxi

dt
#»e i .t/ : (4.19)

Given that the components of the vector
#                   »

O.t/M.t/ in O’s local frame are
.0; xi .t// [Eq. (4.17)], we may say that

#»

V .t/ is nothing but the derivative of
#                   »

O.t/M.t/ with respect to observer O , as defined in Sect. 3.6.2:

#»

V .t/ D DO
#                   »

O.t/M.t/ : (4.20)

Example 4.8. For Example 4.1, the equation of motion (4.2) leads immediately to

#»
V .t/ D v #»e 1; (4.21)

that is to say, to a constant velocity along the x-axis (cf. Fig. 4.2).

Example 4.9. Let us proceed with Langevin’s traveller (Example 4.2). The local
frame of the “sedentary” twin O coincides with the constant orthonormal basis
. #»e 0;

#»e 1;
#»e 2;

#»e 3/ introduced in Sect. 2.6.1. The motion of Langevin’s traveller is
governed by

#            »

OM.t/ D ct #»e 0 C x.t/ #»e 1;

whereO WD A and the function x.t/ is defined by (2.20). The definition (4.19) leads
then to the velocity

#»
V .t/ D dx=dt #»e 1, with dx=dt given by (2.23); hence,

#»
V .t/ D .�1/k 
 .t � kT=2/q

1C 
2 .t � kT=2/2 =c2
#»e 1: (4.22)

The velocity of O 0 relative to O is therefore collinear to #»e 1 (cf. Fig. 4.3), in
agreement with the unidirectional motion of Langevin’s traveller.

Example 4.10. In the case of Example 4.3, the equation of motion (4.6) yields

#»
V .t/ D �R˝ sin˝t #»e 1 CR˝ cos˝t #»e 2: (4.23)
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Note that in the general case
#»
V 6D d

#      »
OM=dt , where d

#      »
OM=dt is the derivative of

the vector field
#                   »

O.t/M.t/ along O’s worldline, in the sense defined in Sects. 2.7.2
and 3.6.1. Indeed,

#»
V is the derivative of

#      »
OM with respect to observer O [Eq. (4.20)],

and we have seen in Sect. 3.6.2 that the derivatives DO and d=dt are related
by (3.67). Since in the present case #»u � #      »

OM D 0, this formula leads to

#»

V D d
#      »
OM

dt
� c. #»a � #      »

OM/ #»u � #»! �u
#      »
OM : (4.24)

This expression can be rewritten to let appear the Fermi–Walker derivative of
#      »
OM

along O’s worldline (cf. Sect. 3.6.3 and Eq. (3.69) with #»u � #      »
OM D 0):

DFW
u

#      »
OM D #»

V C #»! �u
#      »
OM : (4.25)

4.3.2 4-Velocity and Lorentz Factor in Terms of the Velocity

Let us write

d
#      »
OM D #                                             »

O.t C dt/M.t C dt/ � #                   »

O.t/M.t/

D #                               »

O.t C dt/O.t/C #                   »

O.t/M.t/C #                                 »

M.t/M.t C dt/ � #                   »

O.t/M.t/

D #                               »

O.t C dt/O.t/C #                                 »

M.t/M.t C dt/: (4.26)

Since
#                               »

O.t C dt/O.t/ D �c dt #»u and
#                                 »

M.t/M.t C dt/ D c dt 0 #»u 0 D c� �1dt #»u 0,
we get

d
#      »
OM

dt
D c �� �1 #»u 0 � #»u

�
:

Combining this relation with (4.24), we obtain an expression of P’s 4-velocity #»u 0
in terms of quantities relative to O:

#»u 0 D �
�
.1C #»a � #      »

OM/ #»u C 1

c

�
#»

V C #»! �u
#      »
OM

��
: (4.27)

From a geometrical point of view, this relation constitutes the orthogonal decompo-
sition of the 4-velocity #»u 0 in a part along #»u [the term � .1C #»a � #      »

OM/ #»u ] and a part
in the vector hyperplaneEu normal to #»u [the term � =c .

#»

V C #»! �u
#      »
OM/].

Substituting (4.9) for � in (4.27), we get

#»u 0 D �. #»u � #»u 0/ #»u C �

c

�
#»
V C #»! �u

#      »
OM

�
:
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We deduce from this an expression of the relative velocity
#»
V in terms of the

4-velocity #»u 0, the Lorentz factor � and the 4-rotation #»! of observer O:

#»
V D c

�
?u

#»u 0 � #»! �u
#      »
OM ; (4.28)

where ?u stands for the orthogonal projector onto the vector hyperplaneEu normal
to #»u : ?u WD IdC hu; : i #»u (cf. Sect. 3.2.5).

Let us now insert expression (4.27) of #»u 0 into the 4-velocity normalization
relation #»u 0 � #»u 0 D �1. Expanding and using the orthogonality of vectors

#»
V and

#»! �u
#      »
OM with #»u , we get

�1 D � 2

�
�.1C #»a � #      »

OM/2 C 1

c2

�
#»
V C #»! �u

#      »
OM

�
�
�

#»
V C #»! �u

#      »
OM

��
;

(4.29)

hence

� D
�
.1C #»a � #      »

OM/2 � 1

c2

�
#»

V C #»! �u
#      »
OM

�
�
�

#»

V C #»! �u
#      »
OM

���1=2
:

(4.30)

Remark 4.3. Even if
#»
V D 0 (particle P fixed with respect to O), (4.30) shows

that one may have � 6D 1, provided that #»a 6D 0 (accelerated observer) or #»! 6D 0

(rotating observer). We shall elaborate on this point in Chaps. 12 and 13.

In the cases where (i) P intersects O’s worldline (
#      »
OM D 0) or (ii) O

is an inertial observer (which implies #»a D 0 and #»! D 0; cf. Sect. 3.5.4),
expressions (4.27), (4.28) and (4.30) reduce to

#»u 0 D �
�

#»u C 1

c

#»

V

	

M2L or O inertial

(4.31)

#»
V D c

�
?u

#»u 0
M2L or O inertial

(4.32)

� D
�
1� 1

c2
#»

V � #»

V

	�1=2
:

M2L or O inertial

(4.33)

The vectors #»u , #»u 0 and
#»

V are depicted in Fig. 4.5.

Remark 4.4. We recover on (4.33) that � � 1 [Eq. (4.15)], whatever the relative
velocity

#»
V , since

#»
V � #»

V � 0,
#»
V being spacelike.

Example 4.11. For the uniform linear motion of Example 4.1, (4.31) combined with
the expression (4.21) of the relative velocity leads to
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Fig. 4.5 Motion of particle
P (worldline L 0 and
4-velocity #»u 0) with respect to
observer O (worldline L and
4-velocity #»u ): case where the
two worldlines cross (event
O). U C

O is the hyperboloid
introduced in Sect. 1.4.3. The
velocity

#»

V of P relative to O
is, up to a Lorentz factor, the
orthogonal projection of #»u 0

onto O’s local rest space Eu :
#»

V D c� �1 ?u
#»u 0

#»u 0 D �
�

#»e 0 C v

c
#»e 1

�
; (4.34)

where � is the function of v given by (4.3). Since v is constant, the vector #»u 0 is
constant along L 0; it is depicted in Fig. 4.2.

Example 4.12. The 4-velocity of Langevin’s traveller considered in Sect. 2.6 is
given by (2.30) :

#»u 0 D
s

1C 
2

c2

�
t � k

2
T

	2
#»e 0 C .�1/k 


c

�
t � k

2
T

	
#»e 1: (4.35)

Since O’s 4-velocity is #»u D #»e 0, it follows that the orthogonal projection of #»u 0 onto
Eu is

?u
#»u 0 D .�1/k 


c

�
t � k

2
T

	
#»e 1:

In view of expressions (4.4) and (4.22) for, respectively, � and
#»
V , we observe

that ?u
#»u 0 D .� =c/

#»
V . In other words, (4.32) is fulfilled. Equation (4.35), once

combined with (4.4), gives then (4.31). We check similarly relation (4.33) from (4.4)
and (4.22).

Example 4.13. For the uniform circular motion considered in Example 4.3,
Eq. (4.31), combined with the expression (4.23) of the relative velocity, yields

#»u 0 D �
�

#»e 0 � R˝
c

sin˝t #»e 1 C R˝

c
cos˝t #»e 2

	
; (4.36)

where � is the function of R and ˝ given by (4.7). The vector #»u 0 is depicted
in Fig. 4.4.
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4.3.3 Maximum Relative Velocity

Let us consider one of the two cases mentioned above:

(i) The worldline of P crosses that of O at proper time t (
#      »
OM D 0).

(ii) O is an inertial observer ( #»a D 0 and #»! D 0).

Formula (4.29), which reflects the normalization of P’s 4-velocity #»u 0, reduces
then to

�1 D � 2

�
�1C 1

c2
#»

V � #»

V

	
:

One deduces immediately that �1C c�2 #»

V � #»

V < 0, i.e.





#»

V





g
< c ; (4.37)

where k #»
V kg WD

p
#»
V � #»

V is the norm of the velocity vector with respect to the metric
tensor g (cf. Sect. 1.3.5). We may thus state:

The constant c introduced in Sect. 1.2.4 is a strict upper bound for the relative
velocity of any massive particle observed locally (

#      »
OM D 0) by a given

observer. Moreover, for inertial observers, this result can be extended to
distant observations (

#      »
OM 6D 0).

Example 4.14. For the uniform linear motion of Example 4.1, (4.21) yields
k #»
V kg D v, so that (4.37) is fulfilled, in view of the assumption on the parameter v.

Example 4.15. Let us check (4.37) for the Langevin’s traveller. The norm of
#»

V can
be read directly on (4.22), since #»e 1 is a unit vector. k #»

V kg reaches its maximum at
the points of thrust reversing C1 (t D T=4, k D 0) and C2 (t D 3T=4, k D 1):

max





#»

V





g
D 
T=4
p
1C .
T=4c/2 D c

T=T�p
1C .T=T�/2

D c ˛=4
p
1C .˛=4/2 :

It is clear on that expression that max k #»

V kg < c and that

lim

T!1 max





#»

V





g
D lim

T=T�!1 max





#»

V





g
D lim

˛!1 max





#»

V





g
D c:

This last result is in agreement with Fig. 2.5, which shows that for ˛ ! 1, the
worldline of Langevin’s traveller approaches that of a photon.
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Example 4.16. For the uniform circular motion of Example 4.3, Eq. (4.23) results
in k #»

V kg D R˝ , so that (4.37) is fulfilled, given the assumptions on the parameters
R and ˝ .

Remark 4.5. For the hypothetical particles of the tachyon class, which move on
spacelike worldlines instead of timelike ones (cf. Remark 2.3 p. 30), we would find
k #»

V kg > c instead of (4.37). The velocity of light is thus the minimum velocity for
a tachyon with respect to an “ordinary” (i.e. timelike) observer. However, one can
show that tachyons cannot be used to transmit information faster than light between
two observers (Feinberg 1967; Recami 1987). Moreover, the presence of tachyons
is a source of instabilities in quantum field theory. Let us stress that, to date, there is
no experimental evidence of the existence of tachyons.

4.3.4 Component Expressions

. #»e ˛.t// being observer O’s local frame, as defined in Sect. 3.4.1, we have #»e 0 D #»u .
The components of #»u with respect to the basis . #»e ˛.t// are thus simply

u˛ D .1; 0; 0; 0/: (4.38)

The components of the velocity
#»

V of particle P relative to O in the same frame are
by definition [cf. Eq. (4.19)]

V ˛ D .0; V 1; V 2; V 3/ with V i D dxi

dt
; (4.39)

where xi D xi .t/ is the equation of P’s trajectory in O’s reference frame. Since the
basis . #»e ˛/ is orthonormal, we have

#»
V � #»

V D .V i #»e i / � .V j #»e j / D V iV j #»e i � #»e j D
V iV j �ij D V iV j ıij DP3

iD1.V i /2. In particular, the norm of
#»

V introduced above
can be expressed as




 #»
V





g
D
p
.V 1/2 C .V 2/2 C .V 3/2: (4.40)

Let us focus on one of the cases (i) or (ii) of Sect. 4.3.3, namely, the cases for
which (4.31)–(4.33) hold. The expression (4.33) for the Lorentz factor becomes
then

� D
"
1 � 1

c2

3X

iD1
.V i /2

#�1=2
:

M2L or O inertial

(4.41)

The components of P’s 4-velocity are immediately deduced from (4.31), (4.38)
and (4.39) :
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u0˛ D
�
�; �

V 1

c
; �

V 2

c
; �

V 3

c

	
:

M2L or O inertial

(4.42)

Example 4.17. For Langevin’s traveller (O is then inertial), the above formulas are
easy to check. Indeed, the components of #»u 0 are u0˛ D .u00; u01; 0; 0/, with u00
and u01 read on (4.35). The components of

#»

V are V i D .V 1; 0; 0/, with V 1 given
by (4.22). We have already observed that u00 D � [Eq. (4.11)], and we verify easily
that u01 D � V 1=c.

Historical note: The Lorentz factor, as given by (4.41) and appearing as a
proportionality factor between two times, has been introduced in 1904 by Hendrik
A. Lorentz1 (1904). This factor actually appears in many anterior works by Lorentz,
dating back to 1895 (Lorentz 1895), but only as the ratio between two lengths. Let
us stress that in Lorentz’s 1904 interpretation, the two times whose ratio is � do
not have the same status: one is the “real” time, and the other is named “local
time” by Lorentz. It is only with the 1905 breakthrough of Albert Einstein (cf. p. 26)
(Einstein 1905b) that the Lorentz factor has acquired its current signification, as the
ratio of two times, one as physical as the other. The phenomenon of time dilation
(Sect. 4.2.3) has been clearly described in Einstein’s article (Einstein 1905b) as an
effect truly measurable by means of clocks.

The fact that the velocity of light is a limit speed for material bodies has been
enounced by Henri Poincaré (cf. p. 26) in 1904 (Poincaré 1904), as a consequence
of the increase of the inertia of a body with its velocity (whereas the result obtained
in Sect. 4.3.3 is purely kinematical).

4.4 Experimental Verifications of Time Dilation

We present below a few key experiments that confirmed time dilation. For a much
more complete review, the reader is referred to Chap. 9 of Zhang’s book (Zhang
1997) or to Will’s review articles (Will 2006a,b).

4.4.1 Atmospheric Muons

The muon (symbol ��) is, with the electron and the tau, one of the three charged
particles in the lepton family—those particles that are not subject to the strong
interaction. The muon has the same electric charge as the electron but is 207 times

1Hendrik A. Lorentz (1853–1928): Dutch theoretical physicist, author of many works on
electromagnetism, the electron theory and relativity; he received the 1902 Nobel Prize in Physics
for the explanation of the Zeeman effect (cf. p. 146).
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more massive. Contrary to the electron, it is unstable, and its mean lifetime is
	0 D 2:2 � 10�6s. The muon decays into an electron (e�), a muon neutrino (��)
and an electron antineutrino ( N�e):

�� �! e� C �� C N�e:

Muons are constantly produced in the upper atmosphere by the interaction of cosmic
rays (cf. p. 277) with the nitrogen and oxygen atoms.2 They are created with a speed
close to c, for the cosmic rays are ultra-relativistic, as we shall see in Sect. 9.2.3. In
nonrelativistic physics, muons should not reach the ground because they travel only
the distance d D c	0 ' 660 m during their mean lifetime. However an appreciable
muon flux is detected on the ground. The explanation is that the actual travelled
distance is d D c	 , with 	 D � 	0, where � 
 1 is the Lorentz factor of muons
with respect to the terrestrial observer.

In 1941, Bruno Rossi3 and David B. Hall have compared the muon fluxes in
detectors located at two different points of Colorado State: Echo Lake (altitude
z1 D 3240m) and Denver (altitude z2 D 1616m) (Rossi and Hall 1941). The
flux at z D z2, corrected by the atmospheric absorption, turned out to be lower
than that measured at z D z1. Rossi and Hall deduced that muons are decaying
between z1 and z2 and have been able to estimate the muon mean lifetime (up to
10% of its modern value). Moreover, by selecting the muons in two distinct linear
momentum ranges, by means of lead plates of various thicknesses, Rossi and Hall
have noted that the muons of lowest momentum [and hence of lowest velocity;
cf. Eq. (9.17)] have, between z1 and z2, a larger decay rate than those of higher
momentum. This is in qualitative agreement with the relation 	 D � 	0, with �
being an increasing function of momentum (and thus of velocity). Unfortunately,
Rossi and Hall could not perform a quantitative test because they had no precise
measure of the momentum of the most rapid muons (only a lower bound).

The quantitative test was performed in 1963 by the American physicists David
H. Frisch (1918–1991) and James H. Smith (1963). They measured the muon flux
at the top of Mount Washington in the New Hampshire (altitude z1 D 1910m) and
at Cambridge in Massachusetts (altitude z2 D 3m), taking care of selecting muons
with a velocity4 in the range 0:9950 c � V � 0:9954 c at z D z1. The observed

2Incidentally, the muon has been discovered in this manner in 1937; cf. the historical note below.
3Bruno Rossi (1905–1993): Italian physicist, who moved to United States in 1939 to escape from
the fascist regime. Specialist of cosmic rays, he was also a pioneer of X-ray astronomy in the
1960s. The Rossi X-ray Timing Explorer (RXTE) satellite (1995–2012) was named after him.
4Actually, the muon selection has been performed from their penetration depth in iron plates, which
provides their energy E and, in a second stage, their velocity, by assuming the relation E D
mc2=

p
1� V 2=c2; cf. Eq. (9.16).
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decay time of muons was 	 D .8:8 ˙ 0:8/	0, which is in good agreement with
the Lorentz factor deduced from the velocity according to formula (4.33) : � D
.1 � V 2=c2/�1=2 D 8:4˙ 2:0.

Historical note: The first muons have been discovered in cosmic rays in
1937 by Carl D. Anderson5 and his student Seth H. Neddermeyer (1907–1988)
(Neddermeyer and Anderson 1937), as well as by Jabez C. Street (1906–1989) and
Edward C. Stevenson (1937). But at that time, the new particle was mistaken for
the meson predicted in 1935 by Hideki Yukawa,6 as the vector of the interaction
between protons and neutrons in the atomic nucleus. Ten years later, in 1947, three
Italian physicists, Marcello Conversi (1917–1988), Ettore Pancini (1915–1981) and
Oreste Piccioni (1915–2002) (Conversi et al. 1947), have shown that the particle
observed in 1937 could not be the meson, because it was interacting too weakly
with nuclei. The first true meson was discovered the same year, as a pi meson or
pion, by the Brazilian Cesare Lattes (1924–2005), the Italian Giuseppe Occhialini7

(1907–1993) and the British Cecil F. Powell (1903–1969) (Lattes et al. 1947).

4.4.2 Other Tests

Muons can be produced in particle accelerators by the decay of pions (�C or ��).
The pions, which are created by bombarding a target with high-energy protons,
have a mean lifetime of 2:6 � 10�8s. They decay into muons (or antimuons �C)
according to �� ! �� C N�� and �C ! �C C ��. The muons hence produced
are then directed to a storage ring (cf Sect. 17.5.5). By studying the muon decay in
such a ring at CERN, the time dilation corresponding to a Lorentz factor � D 29:3
(V D 0:9994 c) has been checked with a relative accuracy of 10�3 (Bailey et al.
1979).

Another famous experiment has been put forward as a test of time dilation: that of
Ives and Stilwell (1938). Since it relies on the Doppler effect, we shall rather discuss
it in Sect. 5.5. Finally, let us mention that the experiments by Hafele and Keating
(1971) and by Alley (1975) described in Sect. 2.6.6 provide some experimental
support to time dilation as well.

5Carl D. Anderson (1905–1991): American physicist working at Caltech, who discovered two
elementary particles: the positron (the electron antiparticle) in 1932 (Anderson 1932, 1933), for
which he received the Nobel Prize in Physics in 1936, and the muon in 1937.
6Hideki Yukawa (1907–1981): Japanese theoretical physicist, pioneer of particle physics; he was
awarded the Nobel Prize in Physics in 1949 (the first Japanese one!) for his prediction of the meson.
7The satellite BeppoSAX (1996–2003), dedicated to X-ray astronomy, has been named to honour
him, Beppo being the nickname of Giuseppe.
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4.5 Acceleration Relative to an Observer

4.5.1 Definition

In Sect. 4.3.1, we have defined the velocity of the point particle P relative to an
observer O as the first derivative of the position vector #»x .t/ of P in the reference
space RO . It is then natural to define the acceleration of P relative to O as the
second derivative of the position vector:

#»
 WD d2 #»x

dt2
: (4.43)

Let us recall that, in this expression, t is O’s proper time. Thanks to the correspon-
dence (3.27), #»
 is identified to the following vector of the local rest space Eu.t/:

#»� .t/ WD d2xi

dt2
#»e i .t/ : (4.44)

Example 4.18. Considering Example 4.1 of Sect. 4.2.1, the equation of motion (4.2)
leads immediately to #»� .t/ D 0, in agreement with the concept of uniform linear
motion.

Example 4.19. Regarding Example 4.2 (Langevin’s traveller), the acceleration of
the travelling twin relative to the “sedentary” twin O obeys #»� D d2x=dt2 #»e 1, with
d2x=dt2 given by (2.40); hence,

#»� .t/ D .�1/k

"
1C 
2

c2

�
t � k

2
T

	2#�3=2
#»e 1: (4.45)

Note that the norm of #»� is not equal to the parameter 
 appearing in the right-hand
side of the above formula, except for t D 0, T=2 or T (cf. Remark 2.18 p. 50).

Example 4.20. Regarding Example 4.3 of Sect. 4.2.1, the equation of motion (4.6)
leads to

#»� .t/ D �R˝2 cos˝t #»e 1 � R˝2 sin˝t #»e 2 D �˝2 #                   »

O.t/M.t/: (4.46)

This relative acceleration vector is thus purely centripetal.

4.5.2 Relation to the Secondw Derivative of the Position Vector

According to definitions (4.19) and (4.44), #»� is the derivative of the vector
#»

V with
respect to observer O (cf. Sect. 3.6.2):
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#»� D DO
#»
V D DODO

#      »
OM ; (4.47)

where use has been made of (4.20) to write the second equality, having abridged the
vector

#                   »

O.t/M.t/ to
#      »
OM . Hence the relative acceleration #»� is the second derivative

of the vector
#      »
OM with respect to observer O .

Let us now relate #»� to the absolute second derivative of the position vector, i.e.
d2

#      »
OM=dt2. To this aim, let us start to express #»� in terms of the Fermi–Walker

derivative of
#»

V , according to (3.70):

#»� D DFW
u

#»
V � #»! �u

#»
V : (4.48)

The vector
#»
V itself is related to the Fermi–Walker derivative of the position vector

via (4.25). Taking another derivative of this formula, we get

DFW
u DFW

u
#      »
OM D DFW

u
#»

V CDFW
u

�
#»! �u

#      »
OM

�
: (4.49)

Since #»! �u
#      »
OM is by definition a vector belonging to Eu, formula (3.73) holds:

DFW
u

�
#»! �u

#      »
OM

�
D ?u

�
d

dt

�
#»! �u

#      »
OM

��
D ?u

�
d

dt
#»� . #»u ; #»!;

#      »
OM; :/

�
;

(4.50)

where the second equality results from the definition (3.46) of the vector product.
Since � is a constant multilinear form, the derivative of #»� . #»u ; #»!;

#      »
OM; :/ is

computed via Leibniz rule:

d

dt
#»� . #»u ; #»!;

#      »
OM; :/ D #»�

�
d #»u
dt
; #»!;

#      »
OM; :

	
C #»�

�
#»u ;

d #»!

dt
;

#      »
OM; :

	

C #»�

 
#»u ; #»!;

d
#      »
OM

dt
; :

!

D c #»� . #»a ; #»!;
#      »
OM; :/C d #»!

dt
�u

#      »
OM C #»! �u

d
#      »
OM

dt

D c #»� . #»a ; #»!;
#      »
OM; :/C d #»!

dt
�u

#      »
OM

C #»! �u

�
#»
V C #»! �u

#      »
OM

�
; (4.51)

where, to get the last line, we have used (4.24) and the fact that #»! �u
#»u D 0. Let

us evaluate the components of the vector
#»
b WD #»� . #»a ; #»!;

#      »
OM; :/ onto the basis

. #»e ˛/. Since the latter is orthonormal, one has b0 D � #»e 0 � #»
b D � #»u � #»

b D
��. #»a ; #»!;

#      »
OM; #»u / D �. #»u ; #»!;

#      »
OM; #»a / D . #»! �u

#      »
OM/ � #»a . On the other side,

bi D #»e i � #»
b D �. #»a ; #»!;

#      »
OM; #»e i /. Now #»a , #»!,

#      »
OM and #»e i are four vectors
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in the vector space Eu, which is three-dimensional. They are thus not linearly
independent; � being a totally antisymmetric four-linear form, we get bi D 0. Hence
#»

b D b0 #»u D Œ #»a � . #»! �u
#      »
OM/� #»u , i.e.

#»� . #»a ; #»!;
#      »
OM; :/ D Œ #»a � . #»! �u

#      »
OM/� #»u : (4.52)

Substituting this expression in (4.51), we obtain the useful relation

d

dt

�
#»! �u

#      »
OM

�
D d #»!

dt
�u

#      »
OM C #»! �u

�
#»

V C #»! �u
#      »
OM

�
C cŒ #»a � . #»! �u

#      »
OM/� #»u :

(4.53)

To use this result in (4.50), it must be projected onto Eu. The last two terms, being
vector products �u, are already in Eu. The projection of the last term, which is
collinear to #»u , results in zero. We obtain thus

DFW
u

�
#»! �u

#      »
OM

�
D d #»!

dt
�u

#      »
OM C #»! �u

#»

V C #»! �u

�
#»! �u

#      »
OM

�
: (4.54)

Finally, the combination of (4.49), (4.48) and (4.54) yields

DFW
u DFW

u
#      »
OM D #»� C #»! �u

�
#»! �u

#      »
OM

�
C 2 #»! �u

#»
V C d #»!

dt
�u

#      »
OM : (4.55)

The term #»! �u

�
#»! �u

#      »
OM

�
is called the centripetal acceleration and the term

2 #»! �u
#»
V the Coriolis acceleration.

Let us relate now the Fermi–Walker second derivative DFW
u DFW

u
#      »
OM to the

absolute second derivative of the position vector along L , i.e. d2
#      »
OM=dt2. From

the definition (3.69) of Fermi–Walker derivative, we get (using #»u � #      »
OM D 0)

DFW
u

#      »
OM D d

#      »
OM

dt
� c. #»a � #      »

OM/ #»u

Using (3.69) once again, as well as the property DFW
u

#»u D 0 [Eq. (3.72)], we obtain

DFW
u DFW

u
#      »
OM D d2

#      »
OM

dt2
� c

 
#»a � d

#      »
OM

dt

!
#»u C c

 
#»u � d

#      »
OM

dt

!
#»a

�c
�

d

dt
. #»a � #      »

OM/

�
#»u :

Now, from (4.24),

#»a � d
#      »
OM

dt
D #»a �

�
#»

V C #»! �u
#      »
OM

�
and #»u � d

#      »
OM

dt
D �c. #»a � #      »

OM/;
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hence

DFW
u DFW

u
#      »
OM D d2

#      »
OM

dt2
� c

�
2 #»a �

�
#»
V C #»! �u

#      »
OM

�
C d #»a

dt
� #      »
OM

�
#»u

�c2. #»a � #      »
OM/ #»a :

Inserting this relation in (4.55), we get

d2
#      »
OM

dt2
D #»� C #»! �u

�
#»! �u

#      »
OM

�
C 2 #»! �u

#»

V C d #»!

dt
�u

#      »
OM

Cc2. #»a � #      »
OM/ #»a C c

�
2 #»a �

�
#»

V C #»! �u
#      »
OM

�
C d #»a

dt
� #      »
OM

�
#»u :

(4.56)

Remark 4.6. The terms in the first line, which involve the centripetal acceleration
and the Coriolis acceleration, are “Newtonian” (they remain at the nonrelativistic
limit), whereas those of the second line are relativistic. This can be seen by writing,
thanks to Eq. (4.64) below, #»a D #»� 0=c

2, where #»� 0 is the acceleration of O relative
to an inertial observer whose 4-velocity coincides momentarily with that of O . The
nonrelativistic limit is then obtained via #»� 0 � #      »

OM=c2 ! 0 and
#»

V =c ! 0.

4.5.3 Expression of the 4-Acceleration

Let us derive now the analogue of (4.27), namely, the expression of the
4-acceleration #»a 0 of particle P in terms of its acceleration #»� relative to observer
O and O’s 4-velocity #»u , 4-acceleration #»a and 4-rotation #»!. We have, from the
definition of 4-acceleration [Eq. (2.16)],

#»a 0 D 1

c

d #»u 0

dt 0
D 1

c

d #»u 0

dt

dt

dt 0
D �

c

d #»u 0

dt
;

where we have used the definition (4.1) of the Lorentz factor. Taking the derivative
with respect to t of expression (4.27) for #»u 0, we thus get

#»a 0 D �

c

(
d�

dt

�
.1C #»a � #      »

OM/ #»u C 1

c

�
#»

V C #»! �u
#      »
OM

��

C�
"

d

dt
. #»a � #      »

OM/ #»u C c.1C #»a � #      »
OM/ #»a C 1

c

d

dt

�
#»

V C #»! �u
#      »
OM

�#)
:

(4.57)
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Now, by means of (4.24),

d

dt
. #»a � #      »

OM/ D d #»a

dt
� #      »
OM C #»a �

�
#»
V C #»! �u

#      »
OM

�
: (4.58)

On the other side, from (3.69) and (4.48),

d
#»

V

dt
D DFW

u
#»
V C c. #»a � #»

V / #»u D #»� C #»! �u
#»
V C c. #»a � #»

V / #»u ;

so that combining with (4.53) leads to

d

dt

�
#»
V C #»! �u

#      »
OM

�
D #»� C #»! �u

�
#»! �u

#      »
OM

�
C 2 #»! �u

#»
V C d #»!

dt
�u

#      »
OM

Cc
h

#»a �
�

#»

V C #»! �u
#      »
OM

�i
#»u : (4.59)

Substituting (4.58) and (4.59) into (4.57), we find

#»a 0 D � 2

c2

(
#»� C #»! �u

�
#»! �u

#      »
OM

�
C 2 #»! �u

#»
V C d #»!

dt
�u

#      »
OM

Cc2.1C #»a � #      »
OM/ #»a C 1

�

d�

dt

�
#»

V C #»! �u
#      »
OM

�

Cc
"
2 #»a �

�
#»
V C #»! �u

#      »
OM

�
C d #»a

dt
� #      »
OM C 1

�

d�

dt
.1C #»a � #      »

OM/

#
#»u

)
:

(4.60)

The derivative d� =dt appearing in this formula can be evaluated from expression
(4.30); using (4.58) and (4.59), we get

1

�

d�

dt
D � 2

c2

(
.

#»

V C #»! �u
#      »
OM/ �

"
#»� C #»! �u .

#»! �u
#      »
OM/C 2 #»! �u

#»

V

Cd #»!

dt
�u

#      »
OM

#
� c2.1C #»a � #      »

OM/
h

#»a � . #»

V C #»! �u
#      »
OM/

Cd #»a

dt
� #      »
OM

i)
:

(4.61)

If O’s 4-rotation vanishes, the above expressions simplify somewhat. By means
of (4.30), we may write
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#»a 0 D � 2

c2

(
#»� C � 2

c2

�
#»� � #»

V � c2.1C #»a � #     »
OM/

�
#»a � #»

V C d#»a

dt
� #     »
OM

	�
#»
V

Cc2.1C #»a � #     »
OM/ #»a C � 2

c

"
.1C #»a � #     »

OM/ #»� � #»
V

� #»
V � #»

V

�
#»a � #»

V C d#»a

dt
� #     »
OM

	
C c2

� 2
#»a � #»

V

#
#»u

)
:

. #»!D0/
(4.62)

If, in addition to #»! D 0, one has #»a D 0, that is to say, if O is an inertial observer,
the simplification is even greater:

#»a 0 D � 2

c2

�
#»� C � 2

c2
. #»� � #»

V /
�

#»
V C c #»u

��
:

O inertial

(4.63)

Moreover, if at the considered instant t , P is momentarily at rest with respect to O:
#»
V D 0 (which implies #»u 0 D #»u and � D 1), the above formula reduces to

#»a 0 D 1

c2
#»� :

O inertial and
#»
V D0

(4.64)

We conclude that

The vector 4-acceleration of particle P can be interpreted (up to a factor c2)
as the acceleration relative to an inertial observer whose worldline is tangent
to that of P at the considered event.

Remark 4.7. In Newtonian physics, the acceleration #»� of a point particle relative to
an inertial observer is independent of that observer. Things are different in relativity:
formula (4.63) shows that #»� depends upon the velocity

#»
V relative to the inertial

observer. This last quantity being obviously not invariant by a change of inertial
observer, #»� , will vary in a change of observer, even if the 4-acceleration #»a 0 is held
fixed.

Example 4.21. For Example 4.1 of Sect. 4.2.1, we have seen above that #»� D 0

(Example 4.18), so that (4.63) yields #»a 0 D 0, in agreement with the worldline L 0
being a straight line of E .

Example 4.22. For Langevin’s traveller, relation (4.63), once combined with
expressions (4.4), (4.22) and (4.45) of, respectively, � ,

#»

V and #»� , yields
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#»a 0 D 


c2

2

4

c

�
t � k

2
T

	
#»e 0 C .�1/k

s

1C 
2

c2

�
t � k

2
T

	2
#»e 1

3

5 : (4.65)

This result is in full agreement with formulas (2.34a), (2.34b) and (2.38) obtained
in Chap. 2. We have already noticed in Chap. 2 that the norm of #»a 0 is constant
[cf. Eq. (2.39)]:



 #»a 0


g
D j
 j
c2
: (4.66)

On the other side, the norm of the relative acceleration #»� is not constant, as seen
on (4.45). The vector #»a 0 is depicted at two different events in Fig. 4.3.

Example 4.23. In the case of Example 4.3 introduced in Sect. 4.2.1, formulas (4.23)
and (4.46) show that #»� � #»

V D 0, so that (4.63) reduces to

#»a 0 D � 2

c2
#»� : (4.67)

The vectors 4-acceleration and acceleration relative to O are therefore collinear
(contrary, for instance, to the case of Example 4.22), as one can see in Fig. 4.4.
Evaluating the norm of #»a 0 from the above relation, (4.7) and (4.46), we get



 #»a 0


g
D 1

R

�
c2

R2˝2
� 1

	�1
: (4.68)

Hence the norm of the 4-acceleration is constant, as in Example 4.22.

A useful formula is that relating the norm of the 4-acceleration #»a 0 to the norm of
the relative acceleration #»� . Taking the scalar square of (4.63), we get

#»a 0 � #»a 0 D � 4

c4

"
#»� � #»� C 2�

2

c2
. #»� � #»

V /. #»� � #»
V C c #»� � #»u„ƒ‚…

0

/C � 4

c4
. #»� � #»

V /2
�

#»
V � #»

V � c2
�#

D � 4

c4

(
#»� � #»� C � 2

c2
. #»� � #»

V /2

"
2C � 2

� 1
c2

#»
V � #»

V � 1
�

„ ƒ‚ …
���2

#)
;

hence the relatively simple formula:

#»a 0 � #»a 0 D � 4

c4

�
#»� � #»� C � 2

c2

�
#»� � #»

V
�2�

:

O inertial

(4.69)

Thanks to the identity . #»� �u
#»

V /2 D 
2V 2 � . #»� � #»

V /2, we can write
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#»a 0 � #»a 0 D � 6

c4

�
#»� � #»� � 1

c2
. #»� �u

#»

V /2
�
:

O inertiel

(4.70)

Besides, in the case where
#»

V 6D 0, #»� can be split into a part along
#»

V and a part
orthogonal to

#»

V , according to #»� DW 
k #»n C #»� ?, with
#»

V D V #»n , #»n � #»n D 1 and
#»n � #»� ? D 0. Then #»� � #»� D 
2k C 
2? and . #»� � #»

V /2 D 
2kV
2, so that (4.69) can be

written as

#»a 0 � #»a 0 D � 4

c4

�
� 2
2k C 
2?

�
:

O inertial

(4.71)

It is easy to invert formula (4.63) to express #»� in terms of #»a 0. Indeed the scalar
product of (4.63) by

#»

V leads to

#»a 0 � #»
V D � 2

c2

�
#»� � #»

V C � 2

c2
. #»� � #»

V /.
#»
V � #»

V C 0/
�
D � 2

c2

 
1C � 2

c2
#»
V � #»

V
„ ƒ‚ …

� 2

!
#»� � #»

V

D � 4

c2
#»� � #»

V :

Substituting this relation for #»� � #»

V in (4.63), we get

#»� D � �2 hc2 #»a 0 � . #»a 0 � #»

V /
�

#»

V C c #»u
�i
:

O inertial

(4.72)

4.6 Photon Motion

Let us now turn to the description of the motion of photons (or more generally of
massless particles) with respect to a given observer. Let us recall that a characteristic
of these particles is to have worldlines that are straight lines of E and oriented along
null vectors (the so-called null geodesics; cf. Sect. 2.5.1).

4.6.1 Propagation Direction of a Photon

As in Sect. 4.2.1, let us consider some observer O of worldline L and 4-velocity
#»u . Let P be a photon moving on the null geodesic , in the vicinity of L (cf.
Fig. 4.6). Let M.t/ be the position of the photon at the proper time t (with respect
to O): M.t/ is the intersection of  with the local rest space Eu.t/ of O at proper
time t .
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Fig. 4.6 Motion of a photon
(null geodesic ) with
respect to an observer
(worldline L , 4-velocity #»u
and local rest space Eu.t /)

The main difference with the motion of a massive particle, as described in
Sect. 4.2.1, is the lack of a unit vector tangent to the photon’s worldline: vectors
tangent to  cannot be normalized because their scalar square vanishes (since they
are null vectors). All that one can do is to select a null vector adapted to observer
O as follows: at the point M.t/ 2 , let us define

#»
` .t/ as the unique null vector

parallel to  such that

#»

` .t/ � #»u .t/ D �1: (4.73)

This amounts to demanding that the orthogonal decomposition of
#»

` with respect to
#»u is

#»

` D ˛ #»u C ?u
#»

` , with ˛ D 1 [cf. Eq. (3.10)]. Let us set #»n WD ?u
#»

` , so that
(cf. Fig. 4.6)

#»
` D #»u C #»n with #»u � #»n D 0: (4.74)

By definition the vector #»n lies in O’s local rest space: #»n 2 Eu. Moreover, it is a
unit vector. Indeed, the property

#»

` � #»

` D 0 implies

#»u � #»u„ƒ‚…
�1
C2 #»u � #»n„ƒ‚…

0

C #»n � #»n D 0;

hence

#»n � #»n D 1 : (4.75)

We shall call the unit vector #»n the propagation direction of photon P with respect
to observer O .
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4.6.2 Velocity of Light

The velocity of the photon relative to observer O is defined in the same manner as
the velocity of a massive particle at Sect. 4.3.1, i.e. as the derivative of the position
vector of the photon with respect to O:

#»
V .t/ WD dxi

dt
#»e i .t/ ; (4.76)

where the #»e i .t/’s are the three spatial vectors of O’s local frame at time t and the
xi .t/’s are the coordinates of the pointM.t/ in that frame:

#                   »

O.t/M.t/ D xi .t/ #»e i .t/: (4.77)

The computation of
#»

V performed in Sect. 4.3.1 for a massive particle remains
valid in the present case, so that we get the same equation as (4.24). The difference
with Sect. 4.3 arises from the expression of d

#      »
OM=dt . To evaluate it, we may still

start from (4.26). There appears the infinitesimal vector
#                                 »

M.t/M.t C dt/. It is by
definition parallel to  and thus collinear to the vector

#»

` .t/ introduced above (cf.
Fig. 4.6). Moreover, this is a first-order quantity in dt , so that we can write

#                                 »

M.t/M.t C dt/ D � c dt
#»
` .t/;

where � 2 R. The value of � is found by expressing that the eventM.tCdt/ belongs
to the local rest space Eu.tCdt/, through the orthogonality of the vectors #»u .tCdt/
and

#                                             »

O.t C dt/M.t C dt/. We obtain successively

#»u .t C dt/ � #                                             »

O.t C dt/M.t C dt/ D 0;
Œ #»u .t/C c dt #»a .t/� �

h
#                               »

O.t C dt/O.t/C #                   »

O.t/M.t/C #                                 »

M.t/M.t C dt/
i
D 0;

Œ #»u .t/C c dt #»a .t/� �
h
�c dt #»u .t/C #                   »

O.t/M.t/C � c dt
#»

` .t/
i
D 0;

�c dt.�1/C 0C � c dt.�1/� c2 dt2 � 0C c dt #»a .t/ � #                   »

O.t/M.t/

Cc2dt2 � #»a .t/ � #»

` .t/ D 0;
c dt � � c dt C c dt #»a .t/ � #      »

OM.t/ D 0;
� D 1C #»a .t/ � #      »

OM.t/:

Note that we have used the property (4.73) and have neglected second-order terms
in dt . Hence
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#                                 »

M.t/M.t C dt/ D .1C #»a � #      »
OM/ c dt

#»

` :

Substituting this value for
#                                 »

M.t/M.t C dt/ in (4.26) and writing
#                               »

O.t C dt/O.t/ D
�c dt #»u , we get

d
#      »
OM

dt
D �c #»u C c.1C #»a � #      »

OM/
#»
` D c. #»a � #      »

OM/ #»u C c.1C #»a � #      »
OM/ #»n ;

where the second equality stems from the replacement of
#»

` by #»u C #»n [Eq. (4.74)].
There remains to insert this result into (4.24) to get the final expression of the photon
velocity with respect to observer O:

#»

V D c.1C #»a � #      »
OM/ #»n � #»! �u

#      »
OM : (4.78)

In the cases where (i) the photon’s worldline crosses the worldline L of O at the
proper time t (

#      »
OM D 0) or (ii) O is an inertial observer ( #»a D 0 and #»! D 0), the

above expression simplifies to

#»
V D c #»n

M2L or O inertial: (4.79)

Since #»n is a unit vector, we deduce immediately that the norm of
#»
V is equal to c:





#»

V





g
D c

M2L or O inertial:

(4.80)

Let us stress that this result is valid for any observer O as long as the photon crosses
his worldline (M 2 L ):

The velocity of light as measured by any observer at a point of his worldline
has a norm always equal to the constant c.

We recover thus one of the two historical postulates of Einstein (1905b), the
second one being the relativity principle, to be discussed in Sect. 9.3.4. Note
however that Einstein’s postulate regarded only inertial observers. The result
obtained here holds for any kind of observer, provided that the measurement is
performed at the observer’s position (

#      »
OM D 0). Would this be not the case, (4.78)

might lead to k #»
V kg 6D c, if O is not inertial, i.e. is accelerated ( #»a 6D 0) or rotating

( #»! 6D 0).

Remark 4.8. The constancy of the velocity of light, which is a postulate in
Einstein’s original formulation (Einstein 1905b), appears here as a derived result. It
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is actually a consequence of the principle stated in Sect. 2.5.1, namely, that photons
follow null geodesics. Thus this principle can be seen as a geometrical version of
Einstein’s postulate.

Historical note: The finiteness of the velocity of light was first shown by Jean-
Dominique Cassini8 and Ole C. Rømer.9 In August 1676, Cassini announced at
the French Academy of Sciences that light requires 10 to 11 minutes to cross the
radius of the Earth orbit (Bobis and Lequeux 2008). However, Cassini became
soon sceptical about this result and left Rømer to publish the discovery alone at
the end of 1676 (Rømer 1676). The measure of Cassini and Rømer was based
on observations of the eclipses of one of Jupiter’s satellites, Io. Indeed, due to
the variation of Jupiter–Earth distance and the finite time of propagation of light,
Io eclipses observed from Earth occur with a delay or an advance of up to 10
minutes with respect to mean ephemerides. The inferred value of the velocity of
light is c ' radius of the Earth orbit = 11min ' 2 � 108 m s�1 in modern units.
Even if the value of c obtained by Cassini and Rømer was only 2=3 of the correct
value, their measurement has established the finite character of c. A more precise
measure was performed in 1728 by James Bradley,10 from stellar aberration (to be
discussed in Sect. 5.6) (Bradley 1728). He obtained c D 10210 V˚, where V˚ is
the orbital velocity of Earth with respect to an inertial frame centred on the Sun,
and he concluded that light takes 8 min 12 s to travel the Sun–Earth distance (the
modern value is 8 min 19 s). Since at that time, the value of V˚ was poorly known,
Bradley has not expressed his measure in standard velocity units. The first precise
determination of c in metre per second has been achieved only in the nineteenth
century, by Hippolyte Fizeau.11 In 1849, he obtained c D 3:15 � 108 m s�1 with
a device based on rotating cogwheel (Fizeau 1849). This value will be refined to
c D 2:98 � 108 m s�1 by Léon Foucault12 in 1862 (Foucault 1862), with a device
involving a rotating mirror. Let us recall that since 1983, the value of c is fixed
by convention to 2:99792458� 108 m s�1 [Eq. (1.7)] and provides the definition of
the metre.

8Jean-Dominique Cassini (1625–1712): Italian–French astronomer, first director of the newly
built Paris Observatory in 1671, under the reign of Louis XIV. Apart from the study of Io’s eclipses,
he discovered four Saturn’s moons and the famous “Cassini division” in Saturn’s rings. He also
supervised the first measure of the size of the Solar System by means of the parallax of Mars.
9Ole C. Rømer (1644–1710): Danish astronomer who worked at Paris Observatory from 1672 to
1679, at the invitation of Jean Picard (cf. p. 157) and under the supervision of Cassini.
10James Bradley (1693–1762): British astronomer, famous for this explanation of stellar aberra-
tion (Sect. 5.6.3) and the discovery of Earth nutation.
11Hippolyte Fizeau (1819–1896): French physicist who authored many studies on light; in
addition to the measurement of c, he notably discovered the Doppler effect on light waves
(Sect. 5.5).
12Léon Foucault (1819–1868): French physicist and astronomer, famous for this works in optics
(measure of c, Foucault test for telescope mirrors), electromagnetism (Foucault currents) and
mechanics (Foucault pendulum).
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4.6.3 Experimental Tests of the Invariance of the Velocity
of Light

In all this section, O is an observer attached to the Earth, and we shall denote by
#»

V light the velocity of light relative to O , as defined by (4.76), and by Vlight its norm
(with respect to g). From (4.80), relativity predicts that, for any local measure,
Vlight D c, whatever the state of motion of observer O .

When one wants to check a prediction from a theory, such as the constancy of
the velocity of light (4.80), one should, strictly speaking, do it in the framework of
a test theory, i.e. a wider theory that contains free parameters and that reduces to
the theory to be checked for well-defined values of the parameters. The advantage
of such an approach is to quantify easily the possible violation of the theory by
the experimental determination of the free parameters. Usually one obtains upper
bounds on the absolute values of the parameters when the theory to be tested
corresponds to the value zero of the parameters. In the case of special relativity,
a test theory frequently used is that developed by Robertson (1949), Tourrenc et al.
(1996) and R. Mansouri and R.U. Sexl (1977); it contains three free parameters.
This is a kinematical test theory, for it concerns only relations between observers.
More recent works are based instead on a dynamical test theory, i.e. a theory based
on some generalization of the equations of motion; it consists in an extension of the
standard model of particle physics, introduced by D. Colladay and V.A. Kostelecký
in 1998 (Colladay and Kostelecký 1998; Kostelecký and Russel 2011) and called
SME (for Standard Model Extension). Such a test theory contains 19 C 48n free
parameters, n being the number of types of elementary particles involved in the
model. In the present book however, the experimental tests will be presented quite
succinctly and not within the framework of a test theory. For such a presentation, we
refer to the book by Zhang (1997) or to the review articles by Lämmerzahl (2006),
Wolf et al. (2006), Mattingly (2005) or Kostelecký and Russel (2011).

4.6.3.1 Arago Experiment (1810)

In 1810, François Arago13 showed that the light from stars is propagating, with
respect to a terrestrial observer, at the same velocity whatever the direction of the
star with respect to the direction of motion of the Earth around the Sun (Arago
1853).14 In view of the Galilean law of velocity composition, one would expect that
the velocity of light with respect to the terrestrial observer would be, in absolute

13François Arago (1786–1853): French astronomer, well known for his works in optics. He was
director of Paris Observatory and minister of the French Second Republic, where he acted for the
abolition of slavery in French colonies (1848).
14Arago’s results have been presented to the French Academy of Sciences in 1810, but the
corresponding article has been published only in 1853 because the original manuscript had been
lost.
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Fig. 4.7 Arago experiment
(1810): measure of the
velocity of light with respect
to the Earth, for the light
coming from various stars, by
means of the refraction
caused by a prism at the
telescope entry

value, Vlight D cˇ � V˚ when the star is located in the direction of the Earth motion
around the Sun and Vlight D cˇ C V˚ in the opposite direction. In these formulas,
V˚ D 30 km s�1 is the Earth velocity with respect to an inertial frame centred on
the Sun, and cˇ ' c is the velocity of light in that frame.

To perform his experiment, Arago has placed a prism in front of the objective
of a refracting telescope and has measured the deviation angle for stars located in
different directions (cf. Fig. 4.7). The underlying assumption is that this angle is
given by the Snell–Descartes law, n1 sin �1 D n2 sin �2, applied to each interface
of the prism. In this law, the refraction index n1 is inversely proportional to the
velocity of light in the medium. One should therefore find different deviation
angles according the direction of the star with respect to the direction of motion
of the Earth around the Sun. Given the refraction index of the prism and the value
V˚ D 30 km s�1, the amplitude of the differences should be 2800. The outcome
of the experiment clearly contradicts this: all the deviation angles are equal within
˙500, and the small discrepancies are not correlated with the direction of the star
with respect to the Earth motion. To confirm the result, Arago performed the
experiment with two different prisms and at two different epoch of the year (March
and October). The conclusion is thus that the velocity of light with respect to the
Earth is constant and depends neither from the source star nor from the motion of
the Earth with respect to that star.

Remark 4.9. Arago experiment constitutes the very first evidence of a relativistic
effect, almost a century before the formulation of special relativity! For a more
detailed discussion of this experiment, see Eisenstaedt (2007) and Ferraro and
Sforza (2005).

Historical note: The result of the experiment left Arago quite perplex. At this time,
he was a proponent of the corpuscular theory of light (soon after, he became in
favour of the wave theory). To explain the lack of deviation, he put forward the
following hypotheses: (i) a star emits “light rays” within a full range of velocities,
these velocities combining with the Earth’s one according to the Galilean law, and
(ii) the human eye is sensitive only to rays having a well-defined velocity, hence the
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Fig. 4.8 Sketch of a
Michelson interferometer : S
is the source, L the
semi-transparent mirror, M1

and M2 the two end mirrors
and D the detector

result. Hypothesis (i) fits well with the corpuscular theory of light (each corpuscle
may have a velocity different from the others) (Eisenstaedt 2007). On the other hand,
it accommodates badly with the wave theory of light (Young’s double-slit experiment
dates from 1801!), because in that theory, the velocity of light is constant with
respect to aether, which is the “medium” supporting the light waves. To reconcile
Arago’s result with the wave theory, Augustin Fresnel15 introduced the hypothesis
of partial aether dragging by transparent materials (Fresnel 1818) (cf. Sect. 2.6 of
the textbook (Ferraro 2007)).

4.6.3.2 Michelson–Morley Experiment (1887)

In 1887 Albert A. Michelson16 and Edward W. Morley17 performed a measurement
of the difference of velocity of light between two orthogonal directions (Michelson
and Morley 1887). The apparatus used by Michelson and Morley, known nowadays
as a Michelson interferometer, is depicted in Fig. 4.8: a source S emits a light beam
that is split by a semi-transparent mirror L. Each half-beam makes a round trip to
the mirrors M1 and M2. The two half-beams are then recombined at the level of
L, which generates interference fringes, recorded by the detectorD. Michelson and
Morley apparatus was installed on a marble table floating onto mercury, thereby
allowing for an easy rotation of the whole device.

Michelson and Morley have not observed any displacement of the interference
fringes after rotating the apparatus by 90ı. This implies that the velocity of light is
the same in the two directions. In particular, this result contradicts the prediction
based on the aether model and the Galilean addition of velocities: due to the motion

15Augustin Fresnel (1788–1827): French physicist, cofounder of the wave theory of light; he
invented the lens bearing his name and that equips lighthouses.
16Albert A. Michelson (1852–1931): American physicist who devoted his life to precision optics
and, in particular, to the measure of Vlight; he was awarded the Nobel Prize in Physics in 1907 (the
first American!).
17Edward W. Morley (1838–1923): American chemist, mostly known for his work with
Michelson.
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of Earth with respect to aether, the velocity of light with respect to the laboratory
would not be the same in two different directions.

Historical note: In order to explain the negative result of Michelson and Morley,
i.e. the lack of imprint of the Earth motion with respect to aether, George F.
FitzGerald18 forged in 1889 the hypothesis of length contraction of material bodies
in the direction of their motion with respect to aether (FitzGerald 1889). The
contraction factor proposed by FitzGerald is nothing but the Lorentz factor � D
.1 � V 2=c2/�1=2, where V is Earth’s velocity relative to aether. The contraction of
the interferometer arm in the direction of Earth motion explains then Michelson–
Morley result. Hendrik A. Lorentz (cf. p. 108) made the same remark three years
after (Lorentz 1892) and has shown that, in the aether theory, the contraction factor
� can be derived by considering that the cohesion forces of the interferometer arms
are of electromagnetic origin: the contraction results then from the modification of
the forces induced by the motion of Earth across aether.

4.6.3.3 Kennedy–Thorndike Experiment (1932)

The Michelson–Morley experiment is sensitive to the variation of Vlight in two
different directions. In other words, it tests the isotropy of

#»
V light. More precisely,

it shows that the velocity of light measured by an observer O does not depend
upon the direction of O’s motion with respect to a somewhat privileged frame (e.g.
aether). But this experiment does not prove that the velocity of light is independent
from the norm of the velocity of O with respect to aether. This last property has
been established in 1932 by Roy J. Kennedy and Edward M. Thorndike (1932),
on the basis of an experiment that differs from that of Michelson–Morley by three
aspects:

• The interferometer arms have different lengths, L1 and L2 say.
• The interferometer is held fixed in the laboratory (no rotation).
• The fringes are monitored over a long period: several months.

Due to the Earth revolution around the Sun, the norm of the observer velocity
with respect to aether should change in an appreciable manner during several
months. A simple computation shows that the resulting phase difference of the two
interferometer beams is proportional to L1 � L2 (cf. Sect. 5.4 de Giulini (2005) or
Sect. 3.IV.2 de Simon (2004)). But Kennedy and Thorndike did not observed any
displacement of the fringes. This demonstrates the invariance of Vlight with respect
of the amplitude of the observer velocity relative to some hypothetical aether.

18George F. FitzGerald (1851–1901): Irish physicist, who worked mostly on Maxwell theory and
electromagnetism.
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4.6.3.4 Independence with Respect to the Source Motion

One may wonder about the dependency of
#»

V light with respect to the motion of the
light source. Let us write

#»
V light D #»

V 0 C k #»
V s; (4.81)

where
#»
V s is the velocity of the light source relative to observer O ,

#»
V 0 is the velocity

of light if the source was at rest with respect to O and k is some constant. The
relativity prediction (4.79) amounts to k D 0.

A confirmation of this prediction has been provided by the observation of binary
stars. As noticed by de Sitter19 in 1913 (de Sitter 1913a,b,c), if the velocity of light
added with that of the source, this would imply some irregularity in the apparent
motion of binary stars. This is easily understood by considering a small star in
circular orbit around a massive companion and setting the observer in the orbital
plane. It is then a simple exercise to compute the travel time of light and to conclude
that the image of the star would take less time to complete the half-orbit on the
observer side than that on the opposite side. At de Sitter’s time, the observations led
to the upper bound jkj < 0:002 (de Sitter 1913b).

A weak point of de Sitter’s demonstration is that the light from stars is not
received directly by the observer but is scattered by the interstellar medium:
the photons are absorbed and reemitted many times before reaching the Earth.
Consequently, in (4.81),

#»
V s should rather be the mean velocity of the interstellar

medium with respect to the Earth. This mean velocity being constant, no effect
would be observed even if k 6D 0. Fortunately, the scattering by the interstellar
medium is important only for optical wavelengths or larger ones. It is almost
nonexistent for X-rays. By observing three X-ray pulsars, i.e. three binary systems
where one of the stars is a neutron star accreting matter from its companion, Kenneth
Brecher has shown in 1977 (Brecher 1977) that

jkj < 2 � 10�9; (4.82)

which constitutes an excellent test for relativity.
Another test of the independence of the velocity of light from the source

is provided by particle physics. In an experiment performed at CERN in 1964,
T. Alväger et al. (1964) determined the velocity of gamma photons emitted during
the decay of neutral pions. A �0 pion (cf. p. 110) has indeed a mean lifetime of
8� 10�17 s, and its main decay mode is a double photon creation (in the gamma ray
regime):

�0 �! 
 C 
:

19Willem de Sitter (1872–1934): Dutch physicist and astronomer, famous for having introduced a
cosmological model within general relativity, called de Sitter universe.
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The pions produced during collisions in the PS synchrotron at CERN being ultra-
relativistic (� � 45), we are in the case where k #»

V skg ' c in (4.81). The velocity of
the gamma photons was determined by measuring their time of flight between two
detectors separated by 31 m; this led to (Alväger et al. 1964)

k D .�3˙ 13/ � 10�5; (4.83)

which is a value fully compatible with the k D 0 of special relativity.

4.6.3.5 Modern Experiments

Modern experiments regarding the constancy of Vlight are based on the precise
determination of resonant frequencies of a microwave or optical cavity, either of
Fabry–Perot type or circular. Indeed the frequency of a cavity eigenmode is

� D NVlight

2nL
; (4.84)

whereL is the cavity length, n the index of the medium filling the cavity andN 2 N

the eigenmode number. If Vlight was varying, by some amount ıVlight, this formula
would imply that � would vary as well. In 1979, by means of a Fabry–Perot cavity
and a helium-neon laser of wavelength � D 3:39 �m, Alain Brillet and J.L. Hall
have obtained

jıVlightj
c

< 10�14

for a round trip in the cavity (Brillet and Hall 1979). Nowadays, circular cryogenic
cavities (Wolf et al. 2003, 2004, 2006; Müller et al. 2007) or a system of two
perpendicular optical cavities (Eisele et al. 2009; Herrmann et al. 2009) is used.
This has allowed to reach upper bounds of the order of 10�15 (Wolf et al. 2006,
2004) or even 10�17 (Eisele et al. 2009; Herrmann et al. 2009) on some parameters
of the theoretical framework SME mentioned above, those parameters being zero
for special relativity.

On another side, without performing any experiment but simply using public
data from the Global Positioning System (GPS, to be discussed in Sect. 22.3.3.5),
which involves atomic clocks in satellites and ground-based ones, Peter Wolf and
Gérard Petit have obtained jıVlightj=c < 5 � 10�9 for the one-way travel of an
electromagnetic signal (Wolf and Petit 1997).

Finally, some recent astrophysical observations have provided noticeable proofs
on the independence of Vlight from the energyE of the photons. In special relativity,
all photons, whatever their energy, must travel on null geodesics. So Vlight must
be independent of the photon energy. On 28 July 2006, astronomers using the
Cherenkov telescope HESS observed high-energy gamma photons (E � 800 GeV)
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from an explosion in the active galaxy PKS 2155-304 (Aharonian et al. 2008). They
compared the arrival time of photons in two energy bands and set an upper bound
on the difference. From the knowledge of the distance of the galaxy, they deduced
that

Vlight

c
D 1C ˛ E

1 GeV
C ˇ

�
E

1 GeV

	2
; with j˛j < 2� 10�18 and jˇj < 5� 10�19;

which is a pretty tight constraint on the dependence of Vlight on the photon energy.
For a more detailed review of experiments, we refer to Will (2006a), Wolf

et al. (2006), Ehlers and Lämmerzahl (2006) and Mattingly (2005). The historical
experiments of the nineteenth century and beginning of the twentieth century are
discussed, among others, in Darrigol (2000), Miller (1998) and Tonnelat (1959). It is
also worth reading the article (Ellis and Uzan 2005) devoted to the different aspects
of c (velocity of light, time/length conversion constant, velocity of propagation of
gravitation, etc.) and their relations with experiment.



Chapter 5
Kinematics 2: Change of Observer

5.1 Introduction

The preceding chapter was devoted to the motion of a particle as perceived by a
given observer and introduced the notions of velocity and acceleration. We move
now to the manner by which two distinct observers perceive the same particle. We
shall notably establish the various laws of transformation of relative quantities as
one moves from one observer to the other: transformation of lengths (FitzGerald–
Lorentz contraction, Sect. 5.2), velocities (Sect. 5.3), accelerations (Sect. 5.4), fre-
quencies (Doppler effect, Sect. 5.5), observation angles (aberration, Sect. 5.6) and
images (Sect. 5.7).

5.2 Relations Between Two Observers

In all this chapter, we consider two observers, O and O 0, of respective worldlines
L and L 0 and 4-velocities #»u and #»u 0.

5.2.1 Reciprocity of the Relative Velocity

Observer O 0 has a certain velocity relative to O , and similarly, O has a velocity
relative to O 0. How are these two velocities related to one another? In Galilean
physics, they would simply be the opposite of each other. We are going to see that
this is no longer the case in special relativity.

For simplicity, let us consider the case where the worldlines L and L 0 of the two
observers cross at the same eventO . One may then use the reduced formulas (4.31)–
(4.33). To put observers O and O 0 on the same footing, let us perform a slight change
of notation: we shall denote by

#»

U (and no longer by
#»

V ) the velocity of O 0 relative

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 5, © Springer-Verlag Berlin Heidelberg 2013

131



132 5 Kinematics 2: Change of Observer

Fig. 5.1 Relative velocities
of two observers: O
(4-velocity #»u and local rest
space Eu) and O0 (4-velocity
#»u 0 and local rest space Eu0 );
#»

U is the velocity of O0

relative to O and
#»

U 0 the
velocity of O relative to O0

to O . We shall then denote by
#»
U 0 the velocity of O relative to O 0. Accordingly,

formula (4.31) leads to the following relations between the 4-velocities of the two
observers (cf. Fig. 5.1):

#»u 0 D �0
�

#»u C 1

c

#»

U

	
with #»u � #»

U D 0; (5.1)

#»u D �0
�

#»u 0 C 1

c

#»

U 0
	

with #»u 0 � #»

U 0 D 0; (5.2)

where �0 D � #»u � #»u 0 is the Lorentz factor of O 0 with respect to O . It is the same
in (5.1) and (5.2), thanks to the symmetry of the scalar product #»u � #»u 0 (cf. Remark 4.1
p. 99). Formula (4.33) leads to the following relations:

�0 D
�
1 � 1

c2
#»

U � #»

U

	�1=2
D
�
1 � 1

c2
#»

U 0 � #»

U 0
	�1=2

: (5.3)

We deduce from them that the scalar squares of the relative velocities of the two
observers are identical:

#»

U � #»

U D #»

U 0 � #»

U 0; (5.4)

or, equivalently, that k #»

U kg D k #»

U 0kg . In Galilean physics, this property would be
immediate since the velocity of O relative to O 0 is the exact opposite of that of O 0
relative to O:

#»
U 0 D � #»

U (nonrelativistic): (5.5)

The relation (5.5) is not possible in the relativistic framework since the vectors
#»
U and

#»
U 0 belong to distinct vector spaces (except if O and O 0 coincide):

#»
U 2

Eu and
#»
U 0 2 Eu0 (cf. Fig. 5.1). The vector spaces Eu and Eu0 have a non-trivial

intersection,1 but
#»
U and

#»
U 0 do not belong to it. From (5.1) and (5.2), it is easy to

1It is the two-dimensional vector subspace (a vector plane) formed by all vectors orthogonal to
both #»u and #»u 0.
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establish the relation between
#»
U and

#»
U 0. Substituting (5.1) for #»u 0 in (5.2), we get

indeed

#»u D �0
�
�0

�
#»u C 1

c

#»
U

	
C 1

c

#»
U 0
�
:

Thanks to the identity 1 � � �2
0 D c�2 #»

U � #»
U [cf. (5.3)], this equation may be

rewritten as

#»
U 0 D ��0

�
#»
U C 1

c
.

#»
U � #»

U / #»u
�
: (5.6)

At the nonrelativistic limit, k #»

U kg=c ! 0, �0 ! 1 and we recover (5.5). Besides,
we check that (5.6) implies property (5.4), thanks to #»u � #»

U D 0, #»u � #»u D �1
and (5.3).

Equation (5.6) can be recast in a more geometrical form. Let us indeed compute
the orthogonal projection of

#»

U onto the hyperplaneEu0 normal to the 4-velocity of
O 0: from (3.12) and (5.1),

?u0

#»
U D #»

U C . #»u 0 � #»
U / #»u 0 D #»

U C
�
�0

�
#»u C 1

c

#»
U

	
� #»
U

�
�0

�
#»u C 1

c

#»
U

	

D #»

U C � 2
0

c2
.

#»

U � #»

U /
�
c #»u C #»

U
�
D � 2

0

�
#»

U C 1

c
.

#»

U � #»

U / #»u
�
;

where use has been made of the identity 1 C � 2
0 .

#»

U � #»

U /=c2 D � 2
0 , which can be

deduced from (5.3). By comparing the above expression with (5.6), we observe that,
up to some Lorentz factor,

#»

U 0 is nothing but minus the orthogonal projection of
#»

U

onto the local rest space Eu0 of observer O 0:

#»

U 0 D � 1
�0

?u0

#»

U : (5.7)

The Galilean limit is clear from this formula, because in this limit, all the local
rest spaces converge to a single affine subspace of E : the set of events of same
Newtonian absolute time, denoted˙t in Sect. 1.2.5. Therefore, at the Galilean limit,
?u0

#»
U D ?u

#»
U D #»

U . Since in addition, �0 ! 1, we deduce that
#»
U 0 D � #»

U , i.e. we
recover (5.5).

The symmetry O $ O 0 implies that, analogously to (5.6) and (5.7),

#»
U D ��0

�
#»
U 0 C 1

c
.

#»
U 0 � #»

U 0/ #»u 0
�
D � 1

�0
?u

#»
U 0 : (5.8)
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Fig. 5.2 4-velocities #»u and
#»u 0 of observers O and O0 and
the unit spacelike vectors #»e

and #»e 0

5.2.2 Length Contraction

Let us introduce the unit vector in the direction of the velocity of O 0 relative to O:

#»e WD 1

U

#»
U ; where U WD




 #»
U





g
: (5.9)

Let us recall that the norm with respect to g is defined by (1.19). #»e is a spacelike
unit vector: #»e � #»e D 1 ( #»e 2 S ; cf. Sect. 1.4.3). In addition, it belongs to O’s local
rest space: #»e 2 Eu (cf. Fig. 5.2). If

#»

U D 0, formula (5.9) cannot be used to define
#»e ; the latter can be then chosen to be any unit vector of Eu.

By combining (5.7) and (5.9), O’s velocity relative to O 0 can be written as
#»

U 0 D
�.U=�0/?u0

#»e , which can be recast as

#»

U 0 D U 0 #»e 0 ; with U 0 WD �U (5.10)

and

#»e 0 WD 1

�0
?u0

#»e : (5.11)

Thanks to the property
#»
U 0 � #»

U 0 D #»
U � #»

U D U 2 [Eq. (5.4)], (5.10) implies U 2 D
U 2 #»e 0 � #»e 0. It follows that #»e 0 must be a unit vector: #»e 0 � #»e 0 D 1 ( #»e 0 2 S ).
By definition #»e 0 2 Eu0 (cf. Fig. 5.2), and an explicit expression is obtained by
comparing the writings (5.6) (with

#»
U D U #»e ) and (5.10) of

#»
U 0:

#»e 0 D �0
�

#»e C U

c
#»u
	
: (5.12)

This formula can be easily inverted by switching the roles of O and O 0:

#»e D �0
�

#»e 0 C U 0

c
#»u 0
	
D �0

�
#»e 0 � U

c
#»u 0
	
: (5.13)



5.2 Relations Between Two Observers 135

Fig. 5.3 Motion of a ruler attached to observer O0: the ruler’s extremities follow the worldlines
L 0 and L 0

1 . The coloured domain is the part of spacetime covered by the ruler. U C

O (resp. SO ) is
the hyperboloid formed by unit timelike (resp. spacelike) vectors originating fromO (cf. Sect. 1.4.3
and Fig. 1.6). At the event O , the ruler perceived by O0 is the segment ŒOB 0� of the local rest space
Eu0 .O/. At the same event, observer O perceives the ruler as the segment ŒOB� of the local rest
space Eu.O/

The above relation between a unit vector from the local rest space of O 0, #»e 0,
and a unit vector from local rest space of O , #»e , is at the heart of the so-called
“length contraction” phenomenon. Indeed, let us suppose that O 0 is travelling with a
ruler aligned in the direction #»e 0 (cf. Sect. 3.3.2). The worldline of one of the ruler’s
extremities is then the worldline of O 0, i.e. L 0; let us denote by L 0

1 the worldline
of the second extremity (cf. Fig. 5.3). Let B 0 be the event of L 0

1 simultaneous, with
respect to O 0, of the eventO defined by the crossing of the worldlines of O and O 0:
B 0 D L 0

1 \ Eu0.O/. The ruler length `0 measured by O 0 is then the norm of the

vector
#     »

OB 0 with respect to g (cf. Sect. 3.3.2). Since #»e 0 is a unit vector and the ruler
is aligned along #»e 0, we have

#     »

OB 0 D `0 #»e 0: (5.14)

From the point of view of observer O , the ruler extremity at the instant of event
O is the point B of L 0

1 that is simultaneous to O with respect to O: B D L 0
1 \

Eu.O/ (cf. Fig. 5.3). The ruler length `measured by O is then the norm of
#    »
OB . This

vector is necessarily in the direction of the orthogonal projection of #»e 0 onto Eu;
this direction being parallel to #»e [cf. Eq. (5.12)], and #»e being a unit vector, we have

#    »
OB D ` #»e : (5.15)

Moreover, assuming that the ruler size is negligible with respect to the curvature
radius of L 0

1 , we have
#     »

BB 0 D ˛ #»u 0, with ˛ 2 R (cf. Fig. 5.3). Accordingly

#     »

OB 0 D #    »
OB C #     »

BB 0 D ` #»e C ˛ #»u 0:

On the other hand, by combining (5.14) and (5.13), we get
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#     »

OB 0 D `0

�0

#»e C U`0

c
#»u 0: (5.16)

Since the vectors #»e and #»u 0 are never collinear, the coefficients in front of them in
the above two expressions of

#     »

OB 0 must be equal. Hence

` D `0

�0
(5.17)

and ˛ D U`0=c.
The result (5.17) is known under the name length contraction, or FitzGerald–

Lorentz contraction.2 Since �0 � 1 [cf. Eq. (4.15)], (5.17) implies indeed that
` � `0. In other words, the ruler is shorter for the observer with respect to whom
it is moving.

It is worth noticing that the length contraction occurs only in the direction of
the motion of O 0 with respect to O . Indeed, in directions orthogonal to it, the
local rest spaces of O and O 0 coincide (cf. Fig. 5.2), which implies #»e D #»e 0 and
thus the equality of the lengths along these directions. Besides, we shall see in
Sect. 5.7 that the length contraction is not directly observable on physical images
of a moving object.

Remark 5.1. The derivation of (5.17) shows clearly that the phenomenon of length
contraction is a direct consequence of the relativity of simultaneity. If the local rest
spaces Eu.O/ and Eu0.O/ were coinciding, there would be no effect.

5.3 Law of Velocity Composition

5.3.1 General Form

Let us consider a massive particle P and two observers, O and O 0. We are looking
for a relation between the velocity of P relative to O ,

#»
V say, and that relative to O 0,

#»
V 0 say (cf. Table 5.1). We shall restrict ourselves to the case where the worldlines
of P , O and O 0 intersect at the same eventO (cf. Fig. 5.4). The formulas to be used
are then (4.31)–(4.33). Let us denote by #»v the 4-velocity of P , leaving #»u and #»u 0
for the 4-velocities of O and O 0, as in the previous section. Equation (4.31) results
in the following two decompositions of #»v :

2Cf. the historical note p. 126.
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Table 5.1 Notations used in this chapter; in Sects. 5.2 and 5.3, one has � 0

O D �O0 D �0

Lor. fact. Lor. fact. Velocity Velocity Acceler. Acceler.
4-velocity 4-accel. = O = O0 = O = O0 = O = O0

O #»u #»a O 1 � 0

O 0
#»

U 0 0 #»� 0

O

O0 #»u 0 #»a O0 �O0 1
#»

U 0 #»� O0 0

P #»v #»a P � � 0
#»

V
#»

V 0 #»� #»� 0

Fig. 5.4 Motion of particle P with respect to observers O and O0, at the same event O . L is
the worldline of P, #»v its 4-velocity,

#»

V its velocity relative to O and
#»

V 0 its velocity relative to
O0. #»u is the 4-velocity of O and

#»

U 0 his velocity relative to O0. #»u 0 is the 4-velocity of O0 and
#»

U

his velocity relative to O. Note that the vectors
#»

U and
#»

V belong to the local rest space of O, Eu,
whereas

#»

U 0 and
#»

V 0 belong to the local rest space of O0, Eu0 . The figure corresponds to the case
where #»u , #»u 0 and #»v are coplanar

#»v D �
�

#»u C 1

c

#»
V

	
D � 0

�
#»u 0 C 1

c

#»
V 0
	
; with #»u � #»V D #»u 0� #»V 0 D 0; (5.18)

where � (resp. � 0) is the Lorentz factor of P with respect to observer O (resp. O 0):
from (4.10) and (4.33),

� D � #»u � #»v D
�
1 � 1

c2
#»

V � #»

V

	�1=2
; (5.19)

� 0 D � #»u 0 � #»v D
�
1 � 1

c2
#»
V 0 � #»

V 0
	�1=2

: (5.20)

We deduce from (5.18) that

#»

V 0 D �

� 0
�
c #»u C #»

V
�
� c #»u 0: (5.21)
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Let us project this relation onto Eu0 , via the operator ?u0 (cf. Sect. 3.2.5); since
?u0

#»
V 0 D # »

V 0, ?u0
#»u D �0c�1 # »

U 0 [cf. Eq. (5.2)] and ?u0
#»u 0 D 0, we get

#»

V 0 D �

� 0
h
�0

# »

U 0 C?u0

#»

V
i
: (5.22)

To evaluate the term � =� 0, let us proceed as follows. The relative velocity
#»

V 0 is by
definition orthogonal to the 4-velocity of O 0: #»u 0 � #»

V 0 D 0. Substituting (5.21) for
#»

V 0 and expanding yields

�

� 0
�
c #»u 0 � #»u„ƒ‚…

��0
C #»u 0 � #»

V
� � c #»u 0 � #»u 0

„ƒ‚…
�1

D 0: (5.23)

Now, from (5.1) and the property #»u � #»
V D 0,

#»u 0 � #»

V D �0
�

#»u C 1

c

#»

U

	
� #»

V D �0

c

#»

U � #»

V : (5.24)

Substituting this value in (5.23), we obtain the expression of P’s Lorentz factor
with respect to O 0:

� 0 D � �0
�
1 � 1

c2
#»

U � #»

V

	
: (5.25)

Let us eliminate
#»
U from this formula: from (5.6) and #»u � #»V D 0, we get immediately

#»

U 0 � #»

V D ��0 #»

U � #»

V : (5.26)

Moreover, since
#»

U 0 2 Eu0 , one may write
#»

U 0 � #»

V D #»

U 0 �?u0

#»

V and recast (5.25) as

� 0 D �
�
�0 C 1

c2
#»

U 0 �?u0

#»

V

�
: (5.27)

Substituting this value in (5.22), we get

#»
V 0 D 1

�0 C 1
c2

#»

U 0 �?u0

#»

V

h
?u0

#»
V C �0 #»

U 0
i
; (5.28)

with, from (3.12), (5.24) and (5.26),

?u0

#»
V WD #»

V C . #»u 0 � #»
V / #»u 0 D #»

V C �0

c
.

#»
U � #»

V / #»u 0 D #»
V � 1

c
.

#»
U 0 � #»

V / #»u 0: (5.29)
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Formula (5.28) is the law of velocity composition that we sought for: it expresses
the velocity

#»

V 0 of P with respect to the “new” observer O 0, in terms of the velocity
#»

V of P with respect to the “old’ observer O and the velocity
#»

U 0 of O relative
to O 0. The quantity �0 must be seen as the function of

#»

U 0 given by (5.3). At the
nonrelativistic limit, U 0=c ! 0 and �0 ! 1, so that (5.29) leads to ?u0

#»

V ' #»

V

(cf. the discussion p. 133); formula (5.28) reduces then to the well-known velocity
addition law

#»

V 0 D #»

V C #»

U 0 (nonrelativistic): (5.30)

Remark 5.2. It is clear on (5.28) that the vectors
#»

V 0 and
#»

V do not belong to the same
hyperplane ofE (except if

#»

U 0 D 0; cf. Remark 5.3):
#»

V has first to be projected onto
Eu0 , via the operator ?u0 , before being added to observer O’s velocity

#»

U 0 (corrected
by the Lorentz factor �0).

Remark 5.3. If
#»

U 0 D 0, observers O and O 0 coincide in O , formula (5.29) reduces
to ?u0

#»

V D #»

V and the law (5.28) yields
#»

V 0 D #»

V , as it should.

5.3.2 Decomposition in Parallel and Transverse Parts

Observer O is measuring two velocities: the velocity
#»
V of particle P and the

velocity
#»
U of observer O 0. It is then instructive to decompose

#»
V into a part

parallel to
#»
U and a part transverse to

#»
U (more precisely orthogonal to

#»
U with respect

to g). Here we assume that
#»
U 6D 0. Otherwise observers O and O 0 coincide at O ,

and we are in the trivial situation where
#»
V 0 D #»

V .
The parallel and transverse parts of

#»
V with respect to

#»
U are defined by

#»

V DW Vk #»e C #»

V ?; with #»e � #»

V ? D 0; (5.31)

where #»e is the unit vector in the direction of
#»
U introduced in Sect. 5.2.2 [Eq. (5.9)].

It is worth noticing that
#»
V ? is both orthogonal to #»u and #»u 0:

#»

V ? 2 Eu \Eu0 : (5.32)

Proof.
#»
V ? 2 Eu since

#»
V 2 Eu and #»e 2 Eu. Moreover, thanks to (5.1),

#»u 0 � #»
V ? D �0

�
#»u C 1

c
U #»e

	
� #»
V ? D �0

�
#»u � #»

V ?„ ƒ‚ …
0

C1
c
U #»e � #»

V ?„ ƒ‚ …
0

	
D 0;

which shows that
#»

V ? 2 Eu0 . ut
Similarly, the parallel and transverse parts of

#»
V 0 with respect to

#»
U 0 are defined by

#»

V 0 DW V 0
k

#»e 0 C #»

V 0?; with #»e 0 � #»

V 0? D 0; (5.33)
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where #»e 0 is the unit vector in the direction of
#»
U 0 introduced in Sect. 5.2.2

[Eq. (5.10)]. As for
#»
V ?, we have

#»

V 0
? 2 Eu \Eu0 : (5.34)

Let us express the projection of
#»

V onto Eu0 , which appears in the velocity
composition law (5.28). The operator ?u0 being linear, we get

?u0

#»
V D ?u0 .Vk #»e C #»

V ?/ D Vk ?u0
#»e C?u0

#»
V ?:

Now, from (5.11), ?u0
#»e D �0 #»e 0 and from (5.32), ?u0

#»

V ? D #»

V ?. Hence

?u0

#»
V D �0Vk #»e 0 C #»

V ?: (5.35)

In particular,

#»
U 0 �?u0

#»
V D U 0�0Vk #»e 0 � #»e 0

„ ƒ‚ …
1

CU 0 #»e 0 � #»
V ?:

Now #»e 0 � #»
V ? D �0Œ #»e C .U=c/ #»u � � #»

V ? D �0Œ0C .U=c/ � 0� D 0; hence,

#»

U 0 �?u0

#»

V D �0U 0Vk: (5.36)

In view of (5.35) and (5.36), formula (5.28) can be recast as

#»

V 0 D 1

1C U 0Vk=c2

�
.Vk C U 0/ #»e 0 C 1

�0

#»

V ?
�
: (5.37)

Comparing with (5.33), we obtain

V 0
k D

Vk C U 0

1C U 0Vk=c2
(5.38a)

#»
V 0? D

1

�0
�
1C U 0Vk=c2

� #»
V ? : (5.38b)

Besides, from (5.36) and (5.27), we get the expression of the Lorentz factor of P
with respect to O 0:

� 0 D � �0
�
1C U 0Vk

c2

	
: (5.39)
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Since U 0 D �U [Eq. (5.10)], the above formulas are obviously equivalent to

V 0
k D

Vk � U
1 � UVk=c2

(5.40a)

#»
V 0? D

1

�0
�
1 � UVk=c2

� #»
V ? (5.40b)

� 0 D � �0
�
1 � UVk

c2

	
: (5.40c)

Remark 5.4. Many authors present a version of the law of velocity composition
in which all velocity vectors belong to the same three-dimensional vector space
(cf., for instance, the textbooks by Møller (1952), Fock (1955) or, at the limit of low
velocities, Landau and Lifshitz (1975)). This amounts to introducing the following
“representing” vector of

#»

V in the space Eu0 :

#»

V � WD Vk #»e 0 C #»

V ?: (5.41)

We have
#»

V � 2 Eu0 since #»e 0 2 Eu0 and
#»

V ? 2 Eu0 , so that the three vectors
#»

V �,
#»

V 0 and
#»

U 0 do belong to the same three-dimensional vector space, namely, Eu0 .
The identification

#»

V $ #»

V � amounts to considering an orthonormal basis . #»e i /

in the local rest space of O and an orthonormal basis . #»e 0
i / in the local rest space

of O 0, such that #»e 1 D #»e D U�1 #»

U [cf. Eq. (5.9)] and #»e 0
1 D #»e 0 D .U 0/�1 #»

U 0
[cf. Eq. (5.10)]. If .V i / denote the components of

#»

V within the basis . #»e i /, the vector
#»

V � is then defined by
#»

V � WD V i #»e 0
i . Comparing with (5.35) and (5.41), we get

� �1
0 ?u0

#»
V D #»

V � C .� �1
0 � 1/

#»
V ?:

In particular,

#»
U 0 � � �1

0 ?u0

#»
V D #»

U 0 � #»
V � C .� �1

0 � 1/
#»
U 0 � #»

V ?„ ƒ‚ …
0

D #»
U 0 � #»

V �:

The law of velocity composition (5.28) can be then written as

#»

V 0 D 1

1C 1
c2

#»
U 0 � #»

V �

h
#»

V � C .� �1
0 � 1/

#»

V ? C #»

U 0i : (5.42)

Now, from (5.41),
#»

V ? D #»

V ��Vk #»e 0 D #»

V ��. #»e 0 � #»V �/ #»e 0, which, thanks to (5.10),
can be recast as

#»

V ? D #»

V � � 1

U 02 .
#»

U 0 � #»

V �/
#»

U 0:
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Substituting this value in (5.42) and using the identity .� �1
0 � 1/=U 02 D

�c�2�0=.1C�0/, which is easily deduced from �0 D .1�U 02=c2/�1=2 [Eq. (5.3)],
we obtain

#»
V 0 D 1

1C 1
c2

#»

U 0 � #»

V �


#»
V � C #»

U 0 C �0

c2.1C �0/
h
.

#»
U 0 � #»

V �/
#»
U 0 � . #»

U 0 � #»
U 0/ #»

V �
i�
:

It is this relation between
#»
V 0, #»

V � and
# »

U 0 [ �0 being the function of
# »

U 0 given
by (5.3)] that is sometimes presented as the law of velocity composition.3 The
more complicated structure of this equation, as compared with (5.28), shows clearly
the advantage of adopting a four-dimensional point of view, instead of a three-
dimensional one.

5.3.3 Collinear Velocities

When the velocities
#»

V and
#»

U of, respectively, P and O 0 relative to O are collinear,
the above formulas simplify significantly. Let us first note that in this particular case,
the three 4-velocities #»u , #»u 0 and #»v are coplanar and the relative velocities

#»

V and
#»

V 0
have a vanishing transverse part:

#»
V ? D 0 and

#»
V 0? D 0: (5.43)

This is the case depicted in Fig. 5.4. Setting V WD Vk and V 0 WD V 0
k , we can write

#»

V D V #»e and
#»

V 0 D V 0 #»e 0: (5.44)

The law of velocity composition (5.38a) yields immediately

V 0 D V C U 0

1C U 0V=c2
: (5.45)

whereas (5.38b) is reduced to 0 D 0. Moreover, the law (5.39) for the transformation
of the Lorentz factor becomes, in the present case,

� 0 D � �0
�
1C U 0V

c2

	
: (5.46)

3Cf., for instance, Eqs. (55’) in Chap. II of Møller (1952), (16.08) in Fock (1955), (4) in Takahashi
(1982), (4) in Ungar (1991) and (25) in Costella et al. (2001).
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Fig. 5.5 Velocity V 0 of particle P relative to O0, as a function of the velocity V of P relative to
O and of the velocity U 0 of O relative to O0, as given by (5.45) (case of collinear velocities)

Remark 5.5. Since U 0 D �U [Eq. (5.10)], the above formulas can also be
written as

V 0 D V � U
1 � UV=c2 and � 0 D � �0

�
1� UV

c2

	
: (5.47)

The norm of the relative velocity
#»
V is k #»

V kg WD
p

#»
V � #»

V D jV j and that of
#»
V 0

is k #»

V 0kg WD
p

#»

V 0 � #»

V 0 D jV 0j. We have seen in Sect. 4.3.3 that one has always
k #»

V kg < c. Formula (5.45) ensures that k #»

V 0kg < c for any value of U 0 such that
jU 0j < c, as it can be seen in Fig. 5.5. This would of course not be the case for the
Galilean formula V 0 D V C U 0.

5.3.4 Alternative Formula

We can derive a formula for
#»
V 0 that generalizes the nonrelativistic law

#»

V 0 D #»

V � #»

U (nonrelativistic); (5.48)

#»

U being the velocity of O 0 relative to O . Formula (5.48) is of course equivalent
to (5.30) since in the nonrelativistic case,

#»

U 0 D � #»

U .
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The starting point is (5.21). Using (5.25) to express � =� 0 and (5.1) to replace
#»u 0, we get

#»

V 0 D �0

1 � 1
c2

#»
U � #»

V

��
� �2
0 � 1C

1

c2
#»

U � #»

V

	
c #»u C � �2

0

#»

V �
�
1 � 1

c2
#»

U � #»

V

	
#»

U

�
:

Now, from (5.3), � �2
0 D 1 � c�2 #»

U � #»

U . Hence

#»

V 0 D �0

1 � 1
c2

#»
U � #»

V

(
#»

V � #»

U C 1

c2

h
.

#»

U � #»

V /
#»

U � . #»

U � #»

U /
#»

V
i

C1
c

h
#»
U � . #»

V � #»
U /
i

#»u

)
:

(5.49)

This formula expresses the velocity
#»
V 0 of particle P relative to the “new” observer

O 0, in terms of the velocity
#»
V of P relative to the “old” observer O and the velocity

#»
U of O 0 relative to O (in contrast with (5.28), which involves the velocity

#»
U 0 of O

relative to O 0). At the nonrelativistic limit, k #»
U kg=c ! 0, �0 ! 1, and (5.49)

reduces to the law (5.48).

Remark 5.6. The vectors
#»

V ,
#»

U and
#»

V 0 do not belong to the same vector subspace
of E:

#»

V 2 Eu,
#»

U 2 Eu and
#»

V 0 2 Eu0 (cf. Fig. 5.4). In formula (5.49), the non-
relativistic term

#»

V � #»

U , as well as the relativistic term c�2Œ. #»

U � #»

V /
#»

U � . #»

U � #»

U /
#»

V �,
are in Eu. It is the last term, namely, the one along #»u , that makes the result leave
the space Eu and send it to Eu0 .

Historical note: The law of velocity composition, in a form equivalent to (5.38),
has been obtained in 1905 by Albert Einstein (cf. p. 26) (1905b) and Henri Poincaré
(cf. p. 26) (1906).

5.3.5 Experimental Verification: Fizeau Experiment

In 1850, Hippolyte Fizeau (cf. p. 122) has performed an experiment that is
interpreted today as a test of the law of velocity composition (5.45) (Fizeau 1851).
The experimental setup is depicted in Fig. 5.6: the light emitted by a source S
reaches a beam splitter L. Each subsequent beam crosses a U-shaped tube in which
water is circulating. The upper beam in Fig. 5.6, which we shall call number 1 (full
arrow), moves in the sense opposite to water, before reaching the mirror M and
propagating in the lower branch of the tube, still in countermotion with respect to
water. On the contrary, the beam number 2, which starts in the lower branch (empty
arrow in Fig. 5.6), is always travelling in the same sense as water. Thanks to the
lens l1, the two beams are recombined and interfere at the level of the detector D.
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Fig. 5.6 Fizeau experiment

The phase difference reflects the dissymmetry between the two beams, which is
interpreted as a difference of propagation speed.

With respect to water, the velocity of light in each beam is c=n, where n ' 1:33
is the refraction index of water. The velocities of beams 1 and 2 with respect to the
laboratory are then

c1 D c

n
� ˛V and c2 D c

n
C ˛V; (5.50)

where V is the velocity of water with respect to the laboratory and ˛ is a coefficient
that takes the value 1 for the Galilean law of velocity addition. For the relativistic
law, ˛ is determined from (5.47):

c1 D c=n� V
1 � .c=n/V=c2 '

c

n
�
�
1 � 1

n2

	
V;

where, in the second equality, only first-order terms in V=c have been kept. By
comparing with (5.50), we get the relativity prediction:

˛ D 1� 1

n2
: (5.51)

The first-order expansion of c2 would lead to the same result. If ` is the length of one
branch of the U-shaped tube, the difference of travel time between the two beams
is t D 2`=c2 � 2`=c1. It results in the phase shift � D 2�t=T , T being the
radiation period, related to the wavelength by T D �=c. From (5.50) and still at the
first order in V=c, we obtain

� D 8�n2 `
�

V

c
˛: (5.52)

The measure of this phase shift, via the position of the interference fringes,
provides ˛. The obtained value is in agreement with the prediction (5.51) arising
from the relativistic law of velocity composition. In particular, the value ˛ D 1 of
the Galilean law is not recovered.

Historical note: The experiment has been performed by Fizeau more than half a
century before the advent of special relativity! At that time, Fizeau interpreted it
as the confirmation of the hypothesis of partial aether dragging by moving bodies.
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This hypothesis had been emitted by Augustin Fresnel (cf. p. 125) in 1818 to explain
the result of Arago experiment (cf. historical note p. 124). Within Fresnel hypothesis,
˛ is the coefficient of aether dragging and takes the value 1�1=n2, as the relativistic
result (5.51). Fizeau experiment has been repeated with an enhanced precision by
Michelson (cf. p. 125) and Morley (cf. p. 125) in (1886), and in the years 1914–1919
by Pieter Zeeman,4 who substituted water by solid bodies (glass or quartz), in order
to increase the refraction index n. On the theoretical ground, the prediction (5.51) of
special relativity has been established by Max Laue5 in (1907). For Albert Einstein,
Fizeau experiment constituted one of the main supports of special relativity, at the
same level, if not higher, than Michelson–Morley experiment described in Sect. 4.6.3
(Einstein 1956). It must however be noticed that none of these two experiments is
mentioned in Einstein’s famous 1905 article (Einstein 1905b).

5.4 Law of Acceleration Composition

After the velocities, let us focus now on the composition of the relative accelerations
introduced in Sect. 4.5. We would like to express the acceleration #»� 0 of particle P
relative to observer O 0 in terms of the acceleration #»� of P relative to observer O
and, among others, the acceleration #»� 0

O of O relative to O 0 (cf. Table 5.1 for the
notations). Contrary to what we did for velocities, we shall no longer suppose that
O , O 0 and P meet at the same eventO . However, in order to simplify the problem,
we shall suppose that O 0 is an inertial observer: his 4-acceleration and 4-rotation
then vanish.

The 4-acceleration of P , #»a P , is related to the acceleration #»� and velocity
#»

V of
P relative to O by formula (4.60) (cf. Table 5.1 for some change in notations):

#»a P D � 2

c2

(
#»� C #»! �u

�
#»! �u

#      »
OM

�
C 2 #»! �u

#»

V C d #»!

dt
�u

#      »
OM

Cc2.1C #»a O � #      »
OM/ #»a O C 1

�

d�

dt

�
#»
V C #»! �u

#      »
OM

�
C c

"
d #»a O

dt
� #      »
OM

C2 #»a O �
�

#»
V C #»! �u

#      »
OM

�
C 1

�

d�

dt
.1C #»a O � #      »

OM/

#
#»u

)
: (5.53)

4Pieter Zeeman (1865–1943): Dutch physicist, former assistant of Lorentz, he discovered that a
spectral line splits in several lines in presence of a magnetic field (the so-called Zeeman effect, for
which he received the 1902 Nobel Prize in Physics).
5Max Laue (1879–1960): German physicist, who got the 1914 Nobel Prize in Physics for the
discovery of the diffraction of X-rays in crystals. Former student and assistant of Planck (cf.
p. 279), he contributed significantly to the development of special relativity, of which he wrote
the very first textbook in 1911 (Laue 1911c). His father having been ennobled in 1913, he changed
his name to Max von Laue.
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In this formula, #»! is the 4-rotation of observer O and the time derivative of the
Lorentz factor � is given by (4.61), with #»a replaced by #»a O . If, on the other side,
the same 4-acceleration #»a P is expressed in terms of quantities relative to O 0, and no
longer O , we may use the simplified formula (4.63), since O 0 is an inertial observer.
Adapting it to the notations defined in Table 5.1, we get

#»a P D � 02

c2

"
#»� 0 C � 02

c2
. #»� 0 � #»

V 0/
�

#»
V 0 C c #»u 0�

#
: (5.54)

Similarly, applying (4.63) to O’s 4-acceleration, we get (still with Table 5.1
notations)

#»a O D � 0
O
2

c2

"
#»� 0

O C
� 0

O
2

c2
. #»� 0

O �
#»
U 0/

�
#»
U 0 C c #»u 0

�#
: (5.55)

From (5.54), we deduce that

#»� 0 C � 02

c2
. #»� 0 � #»

V 0/ #»

V 0 D c2

� 02?u0

#»a P ;

where ?u0 stands for the orthogonal projector onto the vector space Eu0

(cf. Sect. 3.2.5). Let us substitute (5.53) for #»a P in the right-hand side of this
expression. Using ?u0

#»u D .� 0
O=c/

#»

U 0 [Eq. (4.32)] and the following relation
deduced from (5.55),

?u0

#»a O D � 0
O
2

c2

"
#»� 0

O C
� 0

O
2

c2
. #»� 0

O �
#»

U 0/ #»

U 0
#
;

we obtain

#»� 0 C � 02
c2
. #»� 0 � #»

V 0/ #»
V 0 D � 2

� 02

(
?u0

"
#»� C #»! �u

�
#»! �u

#     »
OM

�
C 2#»! �u

#»
V

Cd#»!

dt
�u

#     »
OM

#
C � 0

O
2
.1C #»a O � #     »

OM/

"
#»� 0

O C
� 0

O
2

c2
. #»� 0

O �
#»
U 0/ #»

U 0
#

C 1
�

d�

dt
?u0

�
#»
V C #»! �u

#     »
OM

�
C � 0

O

"
2#»a O �

�
#»
V C #»! �u

#     »
OM

�

Cd#»a O

dt
� #     »
OM C 1

�

d�

dt
.1C #»a O � #     »

OM/

#
#»
U 0
)
:

(5.56)

At the Galilean limit, k #»

V 0kg=c ! 0, k #»

U 0kg=c ! 0, all the local rest spaces
coincide, which implies ?u0 D Id and �u D �. In addition, � D � 0 D � 0

O D 1
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and, from (5.55), all the terms with #»a O have a c�2 factor, hence converge to zero.
From (4.61), the same thing holds for d� =dt . Finally, (5.56) reduces to

#»� 0 D #»� C #»� 0
O C #»! �

�
#»! � #      »

OM
�
C 2 #»! � #»

V C d #»!

dt
� #      »
OM (nonrelativistic):

(5.57)

We recognize the Galilean law of acceleration composition, with the centripetal
term, #»! � . #»! � #      »

OM/ (causing the centrifugal force) and the Coriolis term 2 #»! � #»

V .

5.5 Doppler Effect

The Doppler effect consists in the change of frequency of a periodic phenomenon
induced by the motion of the emitter with respect to the receiver. The effect is well
known for acoustic waves: from everyday experience, a sound emitted by a car is
more acute when the car is approaching than when it is receding. We shall study
here the Doppler effect within the framework of relativity and apply it mostly to
electromagnetic waves.

5.5.1 Derivation

Let us consider an observer O 0 emitting light signals at regular intervals t 0em of
his proper time t 0. The signals are received by a second observer, O , who found
them separated by the interval trec of his proper time t . Let us search for the link
betweentrec andt 0em, by supposing that (i) O and O 0 are sufficiently close so that
the curvatures of their worldlines can be neglected or (ii) O is an inertial observer.
In both cases, O’s worldline can be treated as a straight line (Fig. 5.7).

Let P1 and P2 be the events of emission of two successive light signals by O 0 and
M1 and M2 the events of reception of these signals by O (cf. Fig. 5.7). The proper
time of O 0 elapsed between P1 and P2 is then t 0em and that of O between M1

and M2 is trec. Let us denote by t rec
1 , t rec

2 , t em
1 and t em

2 the dates, all relative to
observer O , of the events P1, P2, M1 and M2, respectively. They are related by

t rec
1 D t em

1 C
r1

c
and t rec

2 D t em
2 C

r2

c
;

where r1 (resp. r2) is the distance between O 0 and O at the date t em
1 (resp. t em

2 ),
distance measured in O’s local rest space. In other words, r1 D k #        »

O1P1kg and r2 D
k #        »
O2P2kg ,O1 (resp.O2) being the event of O’s worldline that is simultaneous to P1

(resp. P2) (cf. Fig. 5.7). We deduce from the above relations the expression of the
intervaltrec WD t rec

2 � t rec
1 :

trec D tem C 1

c
.r2 � r1/; (5.58)
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Fig. 5.7 Doppler effect: the
period trec measured by O
of light signals emitted by O0

is different from the period
t 0em measured by the
emitter. In the figure
#»n � #»

V > 0, so that
trec < t

0

em. A second
receiver, O�, has the same
4-velocity as O, but is such
that #»n � #»

V < 0, so that
t�rec > t

0

em

where tem WD t em
2 � t em

1 is the emission period in terms of O’s proper time. To
evaluate r2 � r1, we note that, from the very definition of the velocity

#»
V of O 0

relative to O ,
#        »
O2P2 D #        »

O1P1 Ctem
#»
V :

Let #»n be the unit vector in O’s local rest space at time t em
1 that is directed from P1

to O1. We have
#        »
O1P1 D �r1 #»n , and the scalar square of the above relation yields

r22 D
#        »
O2P2 � #        »

O2P2 D r21 � 2r1tem
#»n � #»

V C .tem/
2V 2;

hence

r2 � r1 D r22 � r21
r2 C r1 D �tem

2

1C r2=r1
�

#»n � #»

V � temV
2

2r1

	
:

Substituting this formula in (5.58), we get

trec D tem

"
1 � 2

1C r2=r1

 
#»n � #»

V

c
� temV

2

2cr1

!#
: (5.59)

Let us now suppose that the emission periodtem is very small, in the sense that
Vtem=r1 	 1. We may then neglect the last term in the above expression and write
r2=r1 ' 1, so that

trec '
 
1 �

#»n � #»
V

c

!
tem: (5.60)

Besides, tem is related to the proper emission period t 0em by the Lorentz factor
between O and O 0, � D .1 � V 2=c2/�1=2, according to (4.1):tem D �t 0em. We
thus obtain

trec D �
 
1�

#»n � #»

V

c

!
t 0em : (5.61)
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If one considers a whole series of signals, as illustrated in Fig. 5.7, and if the
period between two signals is constant, it is natural to introduce the emission fre-
quency f 0

em D .t 0em/
�1 and the reception one: frec D .trec/

�1. Relation (5.61)
becomes then

frec D f 0
em

� .1 � #»n � #»
V =c/

: (5.62)

The fact that frec 6D f 0
em (except if

#»
V D 0) constitutes the Doppler effect (also

called sometimes Doppler–Fizeau effect). The proportionality coefficient Œ� .1 �
#»n � #»

V =c/��1 between f 0
em and frec is called the Doppler factor.

At the nonrelativistic limit k #»
V kg 	 c, (5.62) reduces to

frec D
 
1C

#»n � #»
V

c

!
f 0

em (nonrelativistic): (5.63)

The frequency change given by this formula is called the first-order Doppler effect,
for it is first order in V=c. At this order, the Doppler effect vanishes if the emitter
velocity is orthogonal to the direction of observation ( #»n � #»

V D 0). At the second
order in V=c, the so-called transverse Doppler effect appears. It remains even if
#»n � #»

V D 0 because of the Lorentz factor in (5.62).
If the emitter velocity

#»

V relative to the receiver is the direction of observation #»n ,
we can write

#»

V D V #»n , with V D ˙k #»

V kg (C sign if O 0 is moving towards O , �
sign otherwise). Then #»n � #»

V D V and � D .1� V 2=c2/�1=2, so that formula (5.62)
becomes

frec D
s
1C V=c
1 � V=c f

0
em:

#»
V DV #»n

(5.64)

Historical note: The Doppler effect has been predicted by Christian Doppler6 in
1842 (Doppler 1842), both for sound waves and light, on the basis of propagation
within aether. Doppler gave the specific example of binary stars, where the effect
could be detected, arising from the motion of each star around the centre of mass
of the system. The effect has also been predicted independently by Hippolyte Fizeau
(cf. p. 122) in 1848. The first observational evidence was obtained on stars in 1868
by the English astronomer William Huggins (1824–1910). The first observation
in laboratory dates from 1895. Doppler and Fizeau obtained the nonrelativistic
formula (5.63). It is Albert Einstein who, in the seminal 1905 article (Einstein
1905b), derived the relativistic formula (5.62) (actually an equivalent form). In
1907, he suggested to search for the effect by observing atomic spectral lines
(Einstein 1907), which was achieved by Ives and by Stilwell in 1938 (see below).

6Christian A. Doppler (1804–1853): Austrian mathematician and physicist, mostly known for the
prediction of the effect bearing his name.
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5.5.2 Experimental Verifications

The observations of the Doppler effect mentioned above were checking only the
first-order effect [Eq. (5.63)]. The measure of the transverse Doppler effect, which
is specific to special relativity, is much more delicate, because the effect scales as
V 2=c2 and is thereby much smaller than the first-order effect, which scales as V=c.

5.5.2.1 Ives–Stilwell Experiment

The first detection of the transverse Doppler effect has been performed in 1938, by
Herbert Ives7 and G.R. Stilwell (1938). To get rid of the first-order Doppler effect,
Ives and Stilwell measured the radiation emitted by atoms moving in two opposite
directions and aligned with the observer. For atoms moving towards the observer,
the measured frequency, f1, is given by (5.64). For those moving in the opposite
direction, the frequency f2 is obtained by replacing V by �V . The arithmetic mean
is then

f1 C f2
2

D 1

2

 s
1C V=c
1 � V=c C

s
1 � V=c
1C V=c

!
f0; i.e.

f1 C f2
2

D �f0; (5.65)

where f0 is the emission frequency of the atoms at rest [f0 D f 0
em with

notations of Eq. (5.64)]. A nonrelativistic theory, based on (5.63), would predict
.f1 C f2/=2 D f0. The presence of the Lorentz factor � in (5.65) is thus the thing
to test. Ives and Stilwell used hydrogen atoms. To get sizeable velocities, of the order
of V � 4 � 10�3c, HC

2 and HC
3 ions were produced by means of an electric arc in

a hydrogen tube and accelerated in an electric potential difference of � 104 volts.
These ions decomposed then into hydrogen atoms, keeping their initial velocity.
The hydrogen atoms are formed in an excited state and decay by emitting lines
in the Balmer series. Using a grating spectrograph, the second line of this series,
the Hˇ line at the wavelength �0 D 486 nm, could be detected. Ives and Stilwell
measured a shift by a few picometres of the mean line .f1 C f2/=2 with respect
to f0, in agreement with formula (5.65) (with � expanded at first order in V 2=c2),
with an accuracy of the order of 1%.

Remark 5.7. In the computation of Sect. 5.5.1, the factor � in (5.65) appears as
a time-dilation term when passing from (5.60) to (5.61). We may thus consider
that Ives–Stilwell experiment constitutes an experimental verification of the time
dilation discussed in Chap. 4. Historically speaking, this is even the first one, since

7Herbert E. Ives (1882–1953): American physicist and engineer, pioneer of television and fax.
Amazingly, he was an opponent to the theory of relativity during his entire life! He notably
interpreted the result of his famous experiment with Stilwell as an evidence in favour of the
electromagnetic theory of Larmor and Lorentz, which was based on the aether.
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it has been performed three years before the measurement on atmospheric muons
presented in Sect. 4.4.1.

5.5.2.2 Modern Experiments

A very precise test of the relativistic Doppler effect has been performed in 2007 by
a team of the Max Planck Institute in Heidelberg (Reinhardt et al. 2007). As in the
Ives–Stilwell experiment, two groups of emitting particles are set up to propagate in
opposite directions with the same velocity modulus V . The idea is now to measure
not the mean frequency as in (5.65) but the product of frequencies:

f1f2 D
s
1C V=c
1� V=c

s
1 � V=c
1C V=c f

2
0 ; i.e. f1f2 D f 2

0 : (5.66)

The product is thus independent of the particle velocity V . This is interesting
because it is difficult to measure V with a high precision. It should be noted that
a nonrelativistic theory, based on (5.63), would predict f1f2 D .1�V 2/f 2

0 , instead
of (5.66). By observing the lines emitted by 7LiC ions accelerated at V D 0:03c and
V D 0:064c in a storage ring (cf. Sect. 17.5.5), the Heidelberg team has confirmed
formula (5.66), and thereby special relativity, with a relative deviation smaller than
10�9 (Reinhardt et al. 2007).

5.6 Aberration

Aberration is the difference between the incidence angles of a same light ray
perceived by two observers in relative motion. As for the Doppler effect, it is not a
purely relativistic effect, for it reflects essentially the finiteness of the propagation
velocity of the signal. For instance, aberration is well known to the pedestrian
walking in the rain: although the rain drops are falling vertically with respect to
the ground, the pedestrian must incline his umbrella in order not to be wet.

5.6.1 Theoretical Expression

The aberration phenomenon appears when relating the velocity
#»

V of a photon
relative to some observer O to the velocity

#»

V 0 of the same photon relative to a
second observer O 0. Let us suppose that the worldlines of the photon and the two
observers cross at the same eventO . Then, from (4.79),

#»
V D c #»n and

#»
V 0 D c #»n 0; (5.67)
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Fig. 5.8 Motion of a photon
(null geodesic ) with respect
to two observers, O and O0,
of respective 4-velocities #»u
and #»u 0. The unit vector
#»n 2 Eu (resp. #»n 0 2 Eu0 )
gives the propagation
direction of the photon with
respect to O (resp. O0)

where the propagation direction vectors #»n and #»n 0 with respect to O and O 0 are
defined by

#»

` D #»u C #»n ;
#»

` k ; #»u � #»n D 0; (5.68)
#»

` 0 D #»u 0 C #»n 0; #»

` 0 k ; #»u 0 � #»n 0 D 0; (5.69)

 being the photon’s null geodesic and #»u (resp. #»u 0) the 4-velocity of observer O
(resp. O 0) (cf. Fig. 5.8). The vector

#»

` (resp.
#»

` 0) is the null vector tangent to 
and adapted to observer O (resp. O 0) [cf. (4.74)]. These two vectors are of course
collinear:

#»
` D � #»

` 0; (5.70)

where � is a strictly positive number, to be determined.
As in Sect. 5.3, let us denote by �0 the Lorentz factor relating O and O 0 and by

#»
U

(resp.
#»
U 0) the velocity of O 0 (resp. O) relative to O (resp. O 0). All these quantities

obey (5.1)–(5.3). Let us introduce the same unit vectors #»e 2 Eu and #»e 0 2 Eu0 as
in Sect. 5.3.2 (cf. Fig. 5.2):

#»

U D U #»e and
#»

U 0 D U 0 #»e 0; with U 0 D �U: (5.71)

Let � 2 Œ0; �� be the incidence angle of the photon with respect to the direction of
motion of O 0, as measured by O: � is the supplement of the angle between vectors
#»e and #»n [cf. Fig. 5.9 and Eq. (3.19)]; hence,

#»e � #»n D � cos �: (5.72)

The parallel/transverse decomposition of #»n is thus

#»n DW � cos � #»eC #»n ?; with #»e � #»n ? D 0 and #»n ? � #»n ? D sin2 �: (5.73)

On the other side, combining (5.2) and (5.71) leads to #»u D �0Œ
#»u 0 � .U=c/ #»e 0�.

Thanks to this identity, as well as (5.73) and (5.13), the relation
#»

` D #»u C #»n

[Eq. (5.68)] becomes
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Fig. 5.9 Aberration phenomenon. Left: photon trajectory in the reference space of observer O.
Right: trajectory of the same photon in the reference space of observer O0. The vector

#»

U D U #»e

(resp.
#  »

U 0 D �U #»e 0) is the velocity of O0 with respect to O (resp. O with respect to O0). The
angles � and � 0 are related by formula (5.77) or (5.79)

#»
` D �0

�
#»u 0 � U

c
#»e 0
	
� cos � �0

�
#»e 0 � U

c
#»u 0
	
C #»n ?;

which can be written as

#»

` D �0
�
1C U

c
cos �

	"
#»u 0 � cos � C U

c

1C U
c

cos �
#»e 0 C 1

�0
�
1C U

c
cos �

� #»n ?

#
:

(5.74)

By comparing with (5.69) and (5.70), one can infer the proportionality coefficient �
between

#»
` and

#»
` 0: � D �0Œ1C .U=c/ cos ��, as well as the propagation direction

vector with respect to O 0:

#»n 0 D � cos � C U
c

1C U
c

cos �
#»e 0 C 1

�0
�
1C U

c
cos �

� #»n ? : (5.75)

The photon’s incident angle � 0 measured by O 0 with respect to the direction #»e 0
is given by (cf. Fig. 5.9 and compare with (5.72))

cos � 0 D � #»e 0 � #»n 0: (5.76)

Since #»e 0 � #»n ? D 0 (for #»n ? 2 Eu \ Eu0 ), (5.75) yields

cos � 0 D cos � C U
c

1C U
c

cos �
: (5.77)

The transverse part of #»n 0 being defined by a formula similar to (5.73): #»n 0 DW
� cos � 0 #»e 0 C #»n 0?, with #»e 0 � #»n 0? D 0, we deduce form (5.75) that
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#»n 0? D
1

�0
�
1C U

c
cos �

� #»n ? : (5.78)

Remark 5.8. Since the photon’s velocity relative to O is
#»
V D c #»n [Eq. (4.79)],

and that relative to O 0 is
#»
V 0 D c #»n 0, we note, after setting Vk D �c cos �

[cf. Eq. (5.72)] and V 0
k D �c cos � 0, that (5.77) and (5.78) are in full agreement

with formulas (5.40a)–(5.40b) established for a massive particle.

Thanks to the trigonometric identity tan2.�=2/ D .1 � cos �/=.1 C cos �/,
Eq. (5.77) can be written as

tan
� 0

2
D
s
1 � U

c

1C U
c

tan
�

2
: (5.79)

This formula admits a simple geometrical interpretation, which we shall discuss in
Sect. 5.7.3.

The fact that the angle � 0 is different from � is called aberration (or aberration
of light). We observe from (5.79) that the following inequality always holds:

� 0 � � : (5.80)

Two particular cases are worth mentioning:

• If the photon and O 0 are moving in the same direction (� D �) [resp. in opposite
directions (� D 0)] for O , (5.77) leads to cos � 0 D �1 (resp. cos � D 1), i.e.
� 0 D � (resp. � 0 D 0): there is no aberration effect.

• If the direction of light propagation with respect to O is perpendicular to the
velocity of O 0, � D �=2 and #»n D #»n ? (this is the classical case of the “pedestrian
in the rain”), then (5.77) reduces to

cos � 0 D U

c
; (5.81)

which implies � 0 < �=2 for U > 0: observer O 0 does not perceive the light in the
direction perpendicular to O’s motion (the pedestrian must incline his umbrella).

Historical note: The aberration formula (5.77) has been obtained as early as 1905
by Albert Einstein in the famous article (Einstein 1905b).

5.6.2 Distortion of the Celestial Sphere

The aberration phenomenon is easily visualized by considering a uniform grid on
the celestial sphere of observer O . By celestial sphere, it is meant the sphere S in
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Fig. 5.10 Images perceived by observer O0 of the spherical coordinate grid set on the celestial
sphere of observer O. The axis of each view is the direction of the motion of O0 with respect to O,
with an opening angle of 90ı. The four views correspond to different values of the velocity U of
O0 relative to O: (a) U D 0, (b) U D 0:3 c, (c) U D 0:6 c and (d) U D 0:9 c. These images have
been computed by Alain Riazuelo (2009), by means of the aberration formula (5.79)

O’s reference frame centred on O (the position of O) and of unit radius, the latter
choice being arbitrary. Each light ray that arrives toO cuts S in a unique point. One
may thus identify S to the set of directions centred on O and establish a bijective
map between S and the set of null geodesics that constitute the past light cone
I �.O.t//, O.t/ being the spacetime position of O at the instant t of his proper
time. An alternative definition of S is being the intersection of I �.O.t// with the
hyperplane Eu.t0/ for some t0 < t (cf. Fig. 6.1 in the next chapter).

Let us mark the points of S by their spherical coordinates .#; '/ based on the
triad . #»e i / of O’s local frame: # 2 Œ0; �� is the colatitude, with # D 0 along the
axis #»e 3, and ' 2 Œ0; 2�Œ is the azimuth in the plane . #»e 1;

#»e 2/, with ' D 0 along
the axis #»e 1. Figure 5.10a shows a part of the spherical coordinate grid, view from
the position of O with an opening angle of 90ı in the direction of the motion of
O 0. Each square of the draughtboard corresponds to an increment of 5ı in # and '.
The aberration effect is visualized by drawing the same draughtboard, but viewed
by observer O 0, with the same opening angle (90ı) in the direction of this motion,
for different values of the velocities of O 0 relative to O (Fig. 5.10). This amounts
to drawing the spherical coordinate grid of O onto the celestial sphere of O 0. For
U D 0, the view is of course identical to that of O (Fig. 5.10a). For U > 0, due to
the property � 0 � � [Eq. (5.80)], directions that were outside the field of view of O
are appearing in the field of view of O 0. Remarkably, for U D 0:9c, the two poles
of the spherical coordinates .#; '/ are part of the field of view of O 0 (Fig. 5.10d)!
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5.6.3 Experimental Verifications

The main experimental verification of aberration is provided by the observation of
stars. O 0 is then an observer on Earth. As a first approximation, one may consider
that the Earth follows a circular orbit around the Sun, at the velocity

#»
U with respect

to an inertial observer O at rest with respect to the Sun. The orbital plane is called the
ecliptic plane and the perpendicular direction the ecliptic pole axis. The light from
a star located in the direction of one of the ecliptic poles is perceived by a terrestrial
observer with an aberration angle given by formula (5.81). The angle with respect
to the axis of Earth orbit is ˛ D �=2 � � 0 (cf. Fig. 5.9, where the ecliptic pole axis
would appear as the vertical direction), so that (5.81) yields

sin ˛ D U

c
: (5.82)

In the case of the Earth, U D 30 km s�1, which results in ˛ D 10�4 rad D 2000. If
the Earth would have a uniform linear motion, this angle would not be detectable,
but thanks to the orbital motion, the direction of motion of the Earth is changing
perpetually. Consequently, the image of a star located at the ecliptic North pole
(� D �=2) draws within one year a circle of radius 2000 around the pole. For a star
located at an arbitrary ecliptic latitude, the figure is an ellipse.

One should mention a second effect due to the orbital motion of the Earth:
parallax, which is the variation of the viewing angle of a star located at a finite
distance when the Earth runs on its orbit. The aberration can be distinguished from
parallax by two properties:

• A much larger amplitude: the parallax is at most 0:7700, a value achieved by the
closest star (Proxima Centauri), and decays with the distance to the star, whereas
the aberration angle is the same for all stars, taking the fixed value of 2000.

• The phase in the ellipse drawn in the sky is not the same function of the position
of the Earth on its orbit for the two effects (cf. Sect. 2.3 of Ferraro (2007) for
details).

Since the eighteenth century, aberration is routinely measured in astronomy.

Historical note: The stellar aberration has been observed for the first time in 1680
by Jean Picard,8 on the Northern Star, by means of one of the first telescope with
reticle (Picard 1680) (Article VIII). Picard was, however, not capable to interpret
his observations, neither were his successors, among them John Flamsteed,9 during
almost half a century (cf. Liebscher and Brosche 1998). This explains the name

8Jean Picard (1620–1682): French astronomer, who performed the first precise measurement of
the Earth radius, by determining the length of one degree of latitude by triangulation. He made the
observations leading to the discovery of aberration at Uraniborg—Tycho Brahe’s observatory.
9John Flamsteed (1646–1719): first British Royal Astronomer, founder of Greenwich Observatory
and author of a catalogue of about 3,000 stars.
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aberration given to this phenomenon. Only in 1728 James Bradley (cf. p. 122) pro-
vided the correct explanation (Bradley 1728) (within a nonrelativistic framework,
of course!). He measured by himself the aberration of the star 
 Draconis, getting
the correct value of 2000. According to formula (5.82), he obtained incidentally the
value of c, in units of U (orbital Earth velocity), as we have already mentioned in
the historical note p. 122.

5.7 Images of Moving Objects

5.7.1 Image and Instantaneous Position

In view of the length contraction discussed in Sect. 5.2.2, one may naively think that
the image of an object in fast motion is deduced from its image at rest by a mere
FitzGerald–Lorentz contraction in the direction of motion. A spherical object would
therefore appear as an axisymmetric ellipsoid with the small axis in the direction of
motion. We are going to see that this is not the case. Indeed, one should not confuse
the position of an object at some fixed instant t of an observer’s proper time and the
image perceived by the observer at the instant t .

More precisely, let us consider an event O of proper time t on the worldline of
an observer O . A three-dimensional object describes a worldtube in E , which is
the domain of E filled by the worldlines of all the particles constituting the object
(cf. Fig. 5.11). For observer O , the position of the object at the instant t is the
intersection T1 between the worldtube and O’s local rest space at the instant t ,
Eu.O/. On the other hand, the image or photography of the object perceived by O
at the instant t is generated by all the photons that arrive at O , having been emitted
by the object. Geometrically, this means that the image of the object is determined
by the intersection T2 of the worldtube with the past light cone of vertexO , I �.O/
(cf. Fig. 5.11). T1 is the set of events of the worldtube that are simultaneous to
O with respect to O , whereas the events in T2 are not simultaneous with respect
to O . Since T1 6D T2, it is then conceivable that the relation between the image
and the instantaneous position of an object can be complicated. In particular, the
FitzGerald–Lorentz contraction described in Sect. 5.2.2 regards only the position
of the object and not its image. This last one can actually be elongated rather
than shortened, as shown in Fig. 5.12: a ruler moving towards the observer appears
elongated (upper figure), whereas when moving perpendicularly to the observer, it
appears shortened (lower figure).

5.7.2 Apparent Rotation

An important effect regarding the visual aspect of moving objects is some apparent
rotation. It is easy to evaluate this effect in the special case of a cube moving
perpendicularly to the line of sight of an inertial observer O . This observer
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Fig. 5.11 Difference between the position T1 of an object at a given instant in the local rest space
Eu.O/ of an observer and its image perceived by that observer

Fig. 5.12 Moving rulers. Upper figure: motion in the direction of the observer—the left rulers
is approaching at the velocity 0:7 c, the middle one is at rest and the right one is receding at the
velocity 0:7 c. Lower figure: motion perpendicular to the line of sight—the background ruler moves
leftward at the velocity 0:7 c, the middle one is at rest and the foreground one moves rightward at
the velocity 0:7 c [Image computed by Ute Kraus (2005) and reproduced with permission]

perceives, in addition to the face of the cube oriented towards him, the face opposite
to the direction of motion, as if the cube was rotated by some angle � 6D 0

(cf. Fig. 5.13). Let us suppose that O is far away from the cube, so that the light rays
arriving to him can be considered as parallel. Let a be the proper length (i.e. the
length measured by an observer at rest with respect to the cube) of a cube’s edge;
let

#»

V D V #»e x be the cube’s velocity relative to O and � D .1 � V 2=c2/�1=2 the
corresponding Lorentz factor. In O’s local rest space, the cube is contracted in the
direction of motion by the factor� (FitzGerald–Lorentz contraction; cf. Sect. 5.2.2).
Let us consider a photon emitted at the instant t D 0 of O’s proper time from the
edge of the back face with respect to the direction of motion and opposite to the line
of sight (cf. Fig. 5.13). At O’s proper time t D a=c, this photon is at the same level
as those just emitted by the cube’s face in front of the observer. All these photons
will therefore reach the observer at the same time, resulting in the image shown in
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Fig. 5.13 Image of a cube moving perpendicularly to the direction of observation

the box of Fig. 5.13. On this image, the width of the back face is `1 D Va=c, whereas
that of the face oriented towards the observer is `2 D a=� D a

p
1 � V 2=c2. Setting

� WD arcsin.V=c/; (5.83)

we have then `1 D a sin � and `2 D a cos � . We conclude that the image is identical
to that of a cube that would be at rest with respect to O and would have been rotated
by the angle � given by (5.83) (cf. Fig. 5.13).

Remark 5.9. The phenomenon of apparent rotation is not intrinsically relativistic
but reflects mostly the finite time of propagation of light. However, relativity enters
via the FitzGerald–Lorentz contraction of the face oriented towards the observer. If
there would be no contraction, the image of the cube would be more elongated and
would not be similar to that resulting from a pure rotation, since one would have
`2 D a 6D a cos � .

Remark 5.10. The apparent rotation is visible on the images of the moving rulers
in the lower panel of Fig. 5.12.

5.7.3 Image of a Sphere

After the image of a cube, let us now determine that of a sphere. The result is
somewhat surprising:

The image of a moving sphere is a perfect disk, as if the sphere were at rest.
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Fig. 5.14 Celestial sphere
and stereographic projection

In particular, there is no visible contraction in the direction of motion. We are
going to demonstrate this from the aberration formula established in Sect. 5.6.1.

Let us consider indeed two observers O and O 0 whose worldlines intersect at
some event O . Let S be the celestial sphere of O (cf. Sect. 5.6.2). Each light ray
that arrives at O corresponds to a unique point of S (cf. Fig. 5.14). Let Q be the
point of S located in the direction of the motion of O 0 with respect to O , i.e. such
that10 #     »

OQ D #»e , the velocity
#»

U of O 0 relative to O being
#»

U D U #»e . Let ˘ be the
plane tangent to S at Q and P the point of S opposite to Q. The stereographic
projection from the pole P maps every pointA 2 S n fP g to a point of˘ , defined
as the intersection B of the line PA with ˘ (cf. Fig 5.14). Except for those passing
through P , each light ray arriving at O can be labelled by the polar coordinates
.�; '/ of the point B in the plane ˘ , choosing Q as the origin: � is the distance
from Q to B , and ' is the rotation angle about the axis PQ. It is easy to see that if
the light ray forms the angle � with the direction PQ, then11

� D 2 tan
�

2
: (5.84)

The aberration formula (5.79) can be then interpreted as the contraction by the
constant factor

p
.1 � U=c/=.1C U=c/ when moving from the plane of stereo-

graphic projection of observer O to those of O 0. Now the stereographic projection
has the property to transform any circle on the celestial sphere S not containing P
into a circle of˘ (see, e.g. Berger 1987b). A circle through P is transformed into a
straight line of ˘ . The converse is true: any circle of ˘ is transformed into a circle
on S by the inverse stereographic projection. We deduce from this that if an object
looks spherical to observer O , it also looks spherical for O 0. Indeed, if the object’s
contour is a circle (not through P ) on the celestial sphere of O , its stereographic
projection is a circle of˘ . The transformation (5.79), along with ' 0 D ', maps this

10Let us recall that, by convention, S has a unit radius.
11Proof. The triangle POA being isosceles, the angle OPA is necessarily equal to �=2; QB is the
opposite edge to this angle in the right triangle PQB with PQ D 2, hence (5.84) ut

.
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Fig. 5.15 Images of a
moving sphere. The bottom
image is obtained in Galilean
theory, i.e. by taking into
account only the finiteness of
the velocity of light [Images
computed by Daniel
Weiskopf (2002) and
reproduced with permission]

circle into a circle of the stereographic plane ˘ 0 associated with O 0. By the inverse
stereographic projection, one obtains a circle on the celestial sphere S 0 of O 0. The
only thing that may change is the angular size of the circle.

Remark 5.11. If one would take into account only the finiteness of the velocity of
light in a nonrelativistic theory (Galilean theory), a moving sphere would appear
elongated in the direction of motion, as illustrated in Fig. 5.15. Thanks to the
FitzGerald–Lorentz contraction, it appears exactly spherical. It is also clear on
Fig. 5.15 that the moving sphere seems to have been rotated, showing a part of its
face opposite to the direction of motion. This is of course the apparent rotation
discussed in Sect. 5.7.2.

Historical note: It seems that the first person to wonder about the image of
an object in relativistic motion was Anton Lampa12 in 1924 (Lampa 1924). He
computed explicitly the aspect of a moving ruler. But his work has been ignored,
most authors supposing more or less implicitly that the image of a moving object
is simply distorted by the FitzGerald–Lorentz contraction in the direction of
motion. For instance, the illustrations of the popular book by George Gamow,13

Mr Tompkins in Wonderland, published in 1939 (Gamow 1939), show the wheels
of a “relativistic bicycle” as ellipses flattened in the direction of motion, whereas
the exact shape is more complicated, as one can check p. 30 of the book (Nollert
and Ruder 2008). It is only in 1959 that Roger Penrose14 (1959) demonstrated

12Anton Lampa (1868–1938): Austrian physicist; interested very early by relativity, he helped
Einstein to get a professor position at Prague University in 1911.
13George Gamow (1904–1968): Russian physicist (naturalized American in 1940), friend of
Landau (cf. p. 445) with whom he studied in Leningrad; he is one of the fathers of the Big Bang
model.
14Roger Penrose : British mathematician born in 1931, who performed major advances in general
relativity and invented non-periodic tilings of the plane; he also devised an impossible triangular
figure, known as Penrose triangle.



5.7 Images of Moving Objects 163

Fig. 5.16 Images from the
Hubble Space Telescope of
knots in the jet of the galaxy
M87, over several years.
These images involve only
the central part of the jet; a
global view of the latter
provided in Fig. 21.4 [Source:
Biretta et al. (1999)]

that a sphere appears exactly circular to any observer, whatever his state of motion
with respect to it. The same year, the American physicist James Terrell conducted
a systematic study of the appearance of moving objects (Terrel 1959), putting
forward the rotation effect described in Sect. 5.7.2. After the outcome of computers,
numerous images and movies of objects or landscapes in relativistic motion have
been produced; see, for instance, Nollert and Ruder (2008), Kraus (2005), Kraus
et al. (2002), Müller and Weiskopf (2011) and [W4] to [W7] (Appendix B).

5.7.4 Superluminal Motions

The preceding examples of relativistic images are academic ones: nobody has ever
seen a ruler, a cube or a sphere moving with a velocity close to c in a laboratory.
On the other hand, macroscopic relativistic motions are frequently observed in
astrophysics, notably in the form of jets. We shall discuss astrophysical jets in more
details in Sect. 21.7.1; here we focus on a remarkable kinematical property of certain
relativistic jets: they show an apparent velocity larger than c! Such a motion is called
superluminal. An example is provided in Fig. 5.16, which shows the progression
over several years of features (knots) in the jet emitted by the nucleus of the galaxy
M87. On the plane of the sky, the corresponding angular velocity is ! D 0:02400
per year. Knowing the distance of M87 to the Earth, D D 52 million light-years,
one deduces the jet velocity: Vapp D D! ' 6c! There is, however, no contradiction
with the result of Sect. 4.3.3, according to which the velocity of any material body
relative to an inertial observer must be lower than c. Indeed Vapp is not the velocity
relative to an observer, as we have defined it in Sect. 4.3.1. This last one is obtained
from the position of the object in the observer’s local frame at two successive
instants of the observer’s proper time. On the contrary, the apparent velocity Vapp is
determined from two successive images of the object. We recover here the difference
between image and instantaneous position underlined in Sect. 5.7.1.
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Fig. 5.17 Apparent
superluminal motion. Figure
in the reference space of
observer O. t WD t em

2 � t em
1

It is easy to see that Vapp can be larger than c by means of the following simple
model, illustrated by Fig. 5.17. Let us consider a source that emits some blob of
matter (knot) at the constant velocity

#»

V relative to the inertial observer O , who is
supposed to be far away (astronomical situation). At the instant t em

1 (of O’s proper
time), the knot emits some luminous signal, which reaches O at t rec

1 D t em
1 C d1=c,

where d1 is the distance between the emission point and O in the reference space of
the latter. At the instant t em

2 > t em
1 , the knot emits a second luminous signal, which

reaches O at t rec
2 D t em

2 C d2=c, with (cf. Fig. 5.17),

d2 D d1 � V.t em
2 � t em

1 / cos �;

where V WD k #»

V kg and � is the angle between
#»

V and the line of sight. The
distance perpendicular to the line of sight and travelled between the two emissions
is (cf. Fig. 5.17)

a D V.t em
2 � t em

1 / sin �:

The apparent velocity is nothing but this distance divided by the elapsed time
between the receptions of the two signals:

Vapp D a

t rec
2 � t rec

1

D V.t em
2 � t em

1 / sin �

t em
2 C 1

c

�
d1 � V.t em

2 � t em
1 / cos �

� � t em
1 � 1

c
d1
;

hence

Vapp D V sin �

1 � V
c

cos �
: (5.85)

It is clear that if V is sufficiently large (but still lower than c!) and � is sufficiently
small, the quantityVapp can be arbitrarily large. The apparent superluminal velocities
are thus generated by relativistic motions along a direction close to the line of sight.
In the case of the jet of M87 shown in Fig. 5.16, V � 0:986 c (which corresponds
to a Lorentz factor � � 6) and � � 19ı.
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Historical note: Apparent superluminal motions in astrophysical sources have
been predicted in 1966 by Martin Rees15 (1966). The first observations of this
phenomenon occurred in 1970 on the quasar 3C 279, from radio images at high
angular resolution (obtained via very long baseline interferometry) (Whitney et al.
1971) (cf. Suzy Collin-Zahn’s book (Collin-Zahn 2009) for more details). Since then,
superluminal motions are frequently observed in quasars and active galactic nuclei,
as, for instance, M87 (Fig. 5.16). In 1994, a superluminal motion has been observed
in our galaxy, in the micro-quasar GRS 1915C 105 (a black hole accreting matter
from a companion star; cf. Sect. 21.7.1) (Mirabel and Rodrı́guez 1994, 1999); the
apparent velocity is Vapp D 1:25 c, which corresponds to some matter ejection at
the velocity V D 0:92 c and with the angle � ' 70ı.

15Martin Rees: British astrophysicist born in 1942, author of numerous works in cosmology and
in the physics of galaxies and quasars



Chapter 6
Lorentz Group

6.1 Introduction

As we have introduced it in Chap. 3, an observer is characterized by his worldline L
and his local frame . #»e ˛.t//. The latter constitutes, at any point of L , an orthonor-
mal basis of .E;g/. The study of the transition from one observer to the other is
thus equivalent to the study of the transformations of E that map an orthonormal
basis to another one. These mappings are the famous Lorentz transformations, to
which this chapter is devoted. Like Chap. 1, this is a purely mathematical chapter.
The definitions of basic algebraic concepts used here are recalled in Appendix A.

6.2 Lorentz Transformations

6.2.1 Definition and Characterization

One calls Lorentz transformation any linear map

� W E �! E
#»v 7�! �. #»v /

(6.1)

such that1

8. #»v ; #»w/ 2 E � E; g.�. #»v /;�. #»w// D g. #»v ; #»w/ : (6.2)

1We have made explicit the metric tensor g in the expression of the scalar product, but we could
of course have written 8. #»v ; #»w/ 2 E �E; �. #»v / � �. #»w/ D #»v � #»w instead of (6.2).

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 6, © Springer-Verlag Berlin Heidelberg 2013
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168 6 Lorentz Group

� being a linear map from the vector spaceE to itself, it is called an endomorphism
of E (cf. Appendix A). The property (6.2) is often expressed by stating that �

preserves the scalar product g. In particular, the scalar square of a vector is
preserved by �, which implies that the norm with respect to g, as introduced in
Sect. 1.3.5, is conserved:

8 #»v 2 E; k�. #»v /kg D k #»v kg : (6.3)

For this reason, one says that a Lorentz transformation is an isometry of the space
.E;g/.

An endomorphism of E is entirely characterized by its matrix in a given basis.
One therefore calls Lorentz matrix any real 4 � 4 matrix that represents a Lorentz
transformation in an orthonormal basis of .E;g/, i.e. any matrix � D .�˛

ˇ/ such
that there exists a Lorentz transformation � and an orthonormal basis . #»e ˛/ obeying

�. #»e ˇ/ D �˛
ˇ

#»e ˛ : (6.4)

Remark 6.1. The first index, ˛, labels the rows of the matrix �; it is in upper
position and gives the components of the vector �. #»e ˇ/ onto the basis . #»e ˛/. The
second index,ˇ, labels the columns of the matrix�; it is in lower position and refers
to the basis vector whose image is taken by �. The matrix � is hence formed by
writing, column by column, the images of the vectors of the basis . #»e ˛/.

Thanks to this convention, the components .w˛/ of the image #»wD�. #»v / are
expressed in terms of the components .v˛/ of #»v according to

w˛ D �˛
ˇ v

ˇ : (6.5)

Proof. Using the linearity of � and formula (6.4), one has #»w D w˛ #»e ˛ D �. #»v / D
�.vˇ #»e ˇ/ D vˇ�. #»e ˇ/ D vˇ�˛

ˇ
#»e ˛ . ut

The Lorentz transformations can be characterized as follows:

An endomorphism of E is a Lorentz transformation iff it maps any orthonor-
mal basis of .E;g/ into another such basis.

Proof. Let � be a Lorentz transformation and . #»e ˛/ an orthonormal basis of .E;g/.
By definition #»e ˛ � #»e ˇ D �˛ˇ , where � is the Minkowski matrix (1.17). Since
� preserves the scalar product, we have �. #»e ˛/ � �. #»e ˇ/ D �˛ˇ , i.e. .�. #»e ˛//

is an orthonormal basis of .E;g/. The converse is easy to establish: let � be an
endomorphism ofE that maps any orthonormal basis into an orthonormal basis. Let
us consider two vectors #»v and #»w in E and expand them onto an orthonormal basis
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. #»e ˛/:
#»v D v˛ #»e ˛ and #»w D w˛ #»e ˛ . We have then, by linearity of �, �. #»v /��. #»w/ D

v˛wˇ�. #»e ˛/ � �. #»e ˇ/. But since � maps an orthonormal basis into another one,
�. #»e ˛/ ��. #»e ˇ/ D �˛ˇ D #»e ˛ � #»e ˇ , so that �. #»v / ��. #»w/ D v˛wˇ #»e ˛ � #»e ˇ D #»v � #»w ,
which shows that � is a Lorentz transformation. ut
Remark 6.2. Let us recall that the order of vectors is important in the definition of
an orthonormal basis (cf. Sect. 1.3.3): if . #»e ˛/ is an orthonormal basis of .E;g/,
then #»e 0 is the vector of scalar square �1 and #»e 1,

#»e 2 and #»e 3 are those of scalar
square C1. Consequently, an endomorphism � that transforms an orthonormal
basis . #»e 0;

#»e 1;
#»e 2;

#»e 3/ in such a way that .�. #»e 1/;�.
#»e 0/;�.

#»e 2/;�.
#»e 3// is an

orthonormal basis is not a Lorentz transformation.

6.2.2 Lorentz Group

The set of all Lorentz transformations, equipped with the composition law
ı, constitutes a group. It is called Lorentz group and denoted by the symbol
O.3; 1/.

Proof. All the axioms defining a group (cf. Appendix A) are satisfied:

• The law ı is an internal law: if �1 and �2 are two Lorentz transformations, then
for any pair . #»v ; #»w/ of vectors of E ,

.�1 ı�2/.
#»v / � .�1 ı�2/.

#»w/ D �1.�2.
#»v // ��1.�2.

#»w//

D �2.
#»v / ��2.

#»w/ D #»v � #»w;

which shows that the composite function �1 ı�2 is a Lorentz transformation.
• The law ı is obviously associative: �1 ı .�2 ı�3/ D .�1 ı�2/ ı�3; it is so for

any function E ! E and thus, in particular, for Lorentz transformations.
• There exists an identity element: the identity function Id W E ! E; #»v 7! #»v ,

which is obviously a Lorentz transformation.
• Any element has an inverse: let � be a Lorentz transformation and . #»e ˛/ an

orthonormal basis of .E;g/. Then, by virtue of (6.2), .�. #»e ˛// is an orthonormal
basis. � is thus an invertible endomorphism. One has to show that its inverse,
��1, is also a Lorentz transformation: since � ı��1 D Id, we have 8. #»v ; #»w/ 2
E � E; Œ� ı ��1. #»v /� � Œ� ı ��1. #»w/� D #»v � #»w . On the other side, since
� is a Lorentz transformation, we have Œ� ı ��1. #»v /� � Œ� ı ��1. #»w/� D
��1. #»v / ���1. #»w/. Hence ��1. #»v / ���1. #»w/ D #»v � #»w , which shows that ��1 is
a Lorentz transformation. ut
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O.3; 1/ is actually a subgroup of the general linear group of E , GL.E/, which is
the group of all the automorphisms of E . Let us recall that automorphism means
invertible endomorphism, i.e. a bijective linear map from the vector space E to
itself (cf. Appendix A). In the vocabulary of linear algebra, the Lorentz group is the
orthogonal group associated with the scalar product g. This explains the notation
O.3; 1/: O stands for “orthogonal”, and .3; 1/ refers to the signature .�;C;C;C/
of g (threeC and one �).

Remark 6.3. The notation O.3; 1/ constitutes an extension of the well-known
notations O.2/ and O.3/ for the isometry groups of, respectively, the Euclidean
plane and Euclidean three-dimensional space. Indeed, the signature of the Euclidean
scalar product is .C;C/ (plane) or .C;C;C/ (3-space), so that the corresponding
orthogonal groups are O.2; 0/ and O.3; 0/, which is abridged in O.2/ and O.3/.

An immediate corollary of the group structure of O.3; 1/ is that the set of all
Lorentz matrices, equipped with the law of matrix multiplication, constitutes a
subgroup of the group of 4 � 4 invertible real matrices.

6.2.3 Properties of Lorentz Transformations

Given � 2 O.3; 1/ and a subset F of E , one says that F is invariant under �, or
stable under �, iff

8 #»v 2 F; �. #»v / 2 F: (6.6)

This property is equivalent to �.F / � F . Moreover, one says that F is strictly
invariant under � iff � restricted to F is the identity map:

8 #»v 2 F; �. #»v / D #»v : (6.7)

If F is strictly invariant under �, it is of course stable under �.
An immediate property of Lorentz transformations is to leave invariant the null

cone of g, I (cf. Sect. 1.4):

8� 2 O.3; 1/; �.I / D I : (6.8)

Proof. One has

8 #»v 2 E; #»v 2 I ” #»v � #»v D 0 ” �. #»v / ��. #»v / D 0 ” �. #»v / 2 I ;

where the part( of the second equivalence is justified by the fact that if � is a
Lorentz transformation, its inverse is also a Lorentz transformation. Thus we have
�.I / � I . Now every vector #»v 2 I has an inverse image in I by �, namely, the
vector ��1. #»v /. Therefore the� sign can be replaced by anD sign, leading to (6.8).

ut
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Another important property of Lorentz transformations is to have a determinant
equal to C1 or �1:

8� 2 O.3; 1/; det � D ˙1 : (6.9)

Let us recall that the determinant of an endomorphism is the determinant of the
matrix of this endomorphism in any vector basis of E ,  being independent of the
choice of the basis. Using notations of (6.4), we have thus det � D det.�˛

ˇ/. To
show the property (6.9), let us consider an orthonormal basis . #»e ˛/ of .E;g/ and let
us denote by � the matrix of � in this basis. In terms of components relative to the
basis . #»e ˛/, the defining property (6.2) of Lorentz transformations is written as

8. #»v ; #»w/ 2 E � E; �˛ˇ Œ�.
#»v /�˛Œ�. #»w/�ˇ D ��� v�w�;

where we have taken into account the orthonormal feature of . #»e ˛/ by replacing the
components g˛ˇ of g by the components �˛ˇ of Minkowski matrix (1.17): �˛ˇ D
diag.�1; 1; 1; 1/. By means of (6.5), we get

8. #»v ; #»w/ 2 E � E; �˛ˇ �
˛
� v

� �ˇ
� w�

„ ƒ‚ …
�˛ˇ �˛� �

ˇ
� v�w�

D ��� v�w�:

This identity being valid for any couple . #»v ; #»w/ of vectors in E , we deduce that

�˛ˇ �
˛
� �

ˇ
� D ��� : (6.10)

Let us express this formula in terms of matrix products. We recognize in �˛ˇ �
ˇ
�

the matrix product ��. On the other hand, for �˛ˇ �˛
� D �˛

� �˛ˇ , the summation
index ˛ is ill placed to read directly a matrix product; one shall in fact consider the
transpose of �, i.e. the matrix t� defined by

.t�/ ˇ
˛ WD �ˇ

˛ : (6.11)

Then,�˛
� �˛ˇ D .t�/ ˛

� �˛ˇ D .t��/�ˇ . Thus (6.10) is equivalent to

t��� D � : (6.12)

Since the determinant of a matrix product is the product of the determinants, we
obtain immediately

.det t�/.det �/.det�/ D det�:

det� being nonvanishing (det� D �1), one may simplify this expression and use
the identity det t� D det� to get .det�/2 D 1. This demonstrates (6.9).
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6.3 Subgroups of O(3,1)

6.3.1 Proper Lorentz Group SO(3,1)

In view of (6.9), Lorentz transformations can be classified in two categories:
those of determinant C1 and those of determinant �1. A Lorentz transformation
of determinant C1 is called a proper Lorentz transformation. If instead its
determinant is �1, it is called an improper Lorentz transformation. A proper
Lorentz transformation preserves the orientation of the vector bases of E: if . #»e ˛/

is a right-handed basis, as defined in Sect. 1.5, then .�. #»e ˛// is a right-handed basis
too. This property follows from the following formula:

".�. #»e 0/;�.
#»e 1/;�.

#»e 2/;�.
#»e 3// D .det �/ ". #»e 0;

#»e 1;
#»e 2;

#»e 3/; (6.13)

where " is the Levi–Civita tensor introduced in Sect. 1.5 to define the orientation of
E . Actually, formula (6.13) is very general: it is valid for any endomorphism � and
any antisymmetric 4-linear form ". It could even be considered as the definition of
the determinant of an endomorphism.

The identity is clearly a proper Lorentz transformation. Moreover, the standard
formula det.�1ı�2/ D .det �1/.det �2/ implies that the composition of two proper
Lorentz transformations is still a proper Lorentz transformation. It also implies
that the inverse of a proper Lorentz transformation is proper (take �2D��1

1 and
use det Id D 1). We conclude that the set of all proper Lorentz transformations
constitutes a subgroup of the Lorentz group O.3; 1/. This subgroup is called the
proper Lorentz group and is denoted by SO.3; 1/.

Remark 6.4. Here again, the notation SO.3; 1/ constitutes a generalization of the
notations SO.2/ and SO.3/ for the rotation groups of, respectively, the Euclidean
plane and the Euclidean three-dimensional space. Let us recall that rotations are
nothing but the isometries of the Euclidean space whose determinant isC1.

Remark 6.5. The set of all improper Lorentz transformations is not a group, for the
identity does not belong to it. Moreover, the composition of two improper Lorentz
transformations is a proper Lorentz transformation.

We get immediately from (6.13) that if � is a proper Lorentz transformation, then
".�. #»e 0/;�.

#»e 1/;�.
#»e 2/;�.

#»e 3// D ". #»e 0;
#»e 1;

#»e 2;
#»e 3/. Thanks to the 4-linearity

of ", we conclude that

8� 2 SO.3; 1/; 8. #»v 1;
#»v 2;

#»v 3;
#»v 4/ 2 E4;

".�. #»v 1/;�.
#»v 2/;�.

#»v 3/;�.
#»v 4// D ". #»v 1;

#»v 2;
#»v 3;

#»v 4/ : (6.14)
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6.3.2 Orthochronous Lorentz Group

Let #»u be a future-directed timelike vector and � 2 O.3; 1/; then �. #»u / is also
timelike. Let #»v be another future-directed timelike vector. By virtue of Lemma 1 of
Sect. 1.4.2, we have #»u � #»v < 0. Since �. #»u / � �. #»v / D #»u � #»v (for � is a Lorentz
transformation), we get �. #»u / ��. #»u / < 0. Invoking again Lemma 1 of Sect. 1.4.2,
we conclude that the vectors �. #»u / and �. #»v / are either both future-directed or
both past-directed. Consequently, we may classify Lorentz transformations in two
distinct categories:

1. Those that map any future-directed timelike vector into a future-directed timelike
vector; they are called orthochronous Lorentz transformations.

2. Those that map any future-directed timelike vector into a past-directed timelike
vector; they are called antichronous Lorentz transformations.

Thanks to Lemma 1 of Sect. 1.4.2, � is orthochronous iff

8 #»u 2 E; #»u timelike H) �. #»u / � #»u < 0: (6.15)

It is clear that (i) the identity is orthochronous, (ii) the composition of two
orthochronous Lorentz transformations is still orthochronous and (iii) the inverse of
an orthochronous Lorentz transformations is orthochronous. We conclude that the
set of all orthochronous Lorentz transformations is thus a subgroup of the Lorentz
group, called the orthochronous Lorentz group; we shall denote it by Oo.3; 1/.

Remark 6.6. The set of antichronous Lorentz transformations is not a group, for the
identity does not belong to it.

The orthochronous condition is easily expressed in terms of the matrix � of the
Lorentz transformation � in an orthonormal basis . #»e ˛/. Indeed, from (6.4),

�. #»e 0/ � #»e 0 D �˛
0

#»e ˛ � #»e 0„ ƒ‚ …
�ı0˛

D ��0
0: (6.16)

Equation (6.15) shows that � is orthochronous iff �. #»e 0/ � #»e 0 < 0. This last
condition is thus equivalent to �0

0 > 0. Actually, in this case, one has necessarily
�0

0 � 1. Indeed, picking � D 0 and � D 0 in (6.10), we get successively

�˛
0 �˛ˇ �

ˇ
0 D �00 D �1;

�.�0
0/
2 C

3X

iD1
.�i

0/
2 D �1;

.�0
0/
2 D 1C

3X

iD1
.�i

0/
2:
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We have thus .�0
0/
2 � 1, so that �0

0 > 0 (resp. �0
0 < 0) is actually equivalent to

�0
0 � 1 (resp.�0

0 � �1). We conclude that a Lorentz transformation is orthochro-
nous iff its matrix� in some orthonormal basis obeys

�0
0 � 1 : (6.17)

In the opposite case, one has necessarily�0
0 � �1.

6.3.3 Restricted Lorentz Group

A Lorentz transformation that is both proper and orthochronous is called a restricted
Lorentz transformation. In terms of its matrix � in a given orthonormal basis of
.E;g/, a restricted Lorentz transformation is characterized by

det� D 1 and �0
0 � 1: (6.18)

The local frame . #»e ˛/ of an observer being a right-handed basis ofE with #»e 0 future-
directed (being a 4-velocity!), we note that the restricted Lorentz transformations are
those that relate the local frames of two observers, hence their importance.

It is clear that the set of all restricted Lorentz transformations constitutes a
subgroup of both SO.3; 1/ and Oo.3; 1/. It is naturally called the restricted Lorentz
group and denoted by SOo.3; 1/.

6.3.4 Reduction of the Lorentz Group to SOo.3; 1/

Summarizing the preceding results, one may write the Lorentz group as the union
of four nonintersecting components:

O.3; 1/ D SOo.3; 1/ [ SOa.3; 1/„ ƒ‚ …
SO.3; 1/

[ O�
o .3; 1/ [ O�

a .3; 1/; (6.19)

where SOa.3; 1/ stands for the set of antichronous proper Lorentz transformations,
O�

o .3; 1/ for the set of orthochronous improper Lorentz transformations and
O�

a .3; 1/ for the set of antichronous improper Lorentz transformations. Note that
among the above four components, only SOo.3; 1/ is a group.

It is easy to reduce a generic Lorentz transformation to a restricted one (i.e. to
an element of SOo.3; 1/). Indeed let us define the spacetime inversion operator as
the opposite of the identity operator on E: I WD � Id. Moreover, given a right-
handed orthonormal basis of .E;g/, . #»e ˛/ say, let us introduce the following
endomorphismsE ! E:
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8 #»v D v˛ #»e ˛ 2 E; T . #»v / WD �v0 #»e 0Cvi #»e i ; P. #»v / WD v0 #»e 0�vi #»e i : (6.20)

We shall call T the time reversal operator associated with the basis . #»e ˛/ and P

the space inversion operator associated with the basis . #»e ˛/. P is also called the
parity inversion operator associated with the basis . #»e ˛/ (hence the letter P ). The
matrices of each of these operators with respect to the basis . #»e ˛/ are

I ˛ˇ D diag.�1;�1;�1;�1/;
T ˛ˇ D diag.�1; 1; 1; 1/ and P˛

ˇ D diag.1;�1;�1;�1/:
As they map an orthonormal basis to an orthonormal basis, these three operators
are Lorentz transformations. More precisely, since det I D 1, I. #»e 0/ D � #»e 0,
det T D �1, T . #»e 0/ D � #»e 0, det P D �1 and P. #»e 0/ D #»e 0, we have

I 2 SOa.3; 1/; T 2 O�
a .3; 1/; P 2 O�

o .3; 1/: (6.21)

In addition, each of these operators is an involution: I�1 D I , T �1 D T and
P�1 D P . Let us consider now a Lorentz transformation � that is not a restricted
one. There are three possibilities:

1. � 2 SOa.3; 1/: then I ı� 2 SOo.3; 1/, because det.I ı�/ D .C1/.C1/ D C1
and I ı� is orthochronous, for both I and � are antichronous. Since I is its own
inverse, we get

� D I ı�0; with �0 2 SOo.3; 1/: (6.22)

2. � 2 O�
o .3; 1/: then P ı� 2 SOo.3; 1/, because det.P ı�/ D .�1/.�1/ D C1

and P ı� is orthochronous, for both P and � are orthochronous. Since P is its
own inverse, we get

� D P ı�0; with �0 2 SOo.3; 1/: (6.23)

3. � 2 O�
a .3; 1/: then T ı� 2 SOo.3; 1/, because det.T ı�/ D .�1/.�1/ D C1

and T ı � is orthochronous, for both T and � are antichronous. Since T is its
own inverse, we get

� D T ı�0; with �0 2 SOo.3; 1/: (6.24)

The results (6.22), (6.23) and (6.24) show that thanks to the inversion operators I ,
P and T , one can reduce any Lorentz transformation to a restricted one.

Remark 6.7. The set of the four operators fId; I ;T ;Pg, equipped with the com-
position law ı, is a finite subgroup of the Lorentz group O.3; 1/. Indeed, we have
I ı T D P , I ı P D T , etc. fId; I ;T ;Pg is thus stable with respect to the law ı.
Moreover, the identity belongs to this set, and each element is its own inverse. This
4-element group is isomorphic to the Klein group Z=2Z�Z=2Z. Let us recall that,
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up to some isomorphism, there exists only two groups of order 4: the Klein group
and the cyclic group Z=4Z; they are both abelian.

Remark 6.8. Reasoning as above on the determinants and the images of #»e 0, it is
easy to see that

8�0 2 SOo.3; 1/; 8� 2 O.3; 1/; � ı�0 ı��1 2 SOo.3; 1/: (6.25)

This property means that SOo.3; 1/ is a normal subgroup of O.3; 1/ [cf. Eq. (A.3)
in Appendix A]. One can then consider the quotient group O.3; 1/=SOo.3; 1/. It is
isomorphic to the group fId; I ;T ;Pg considered above:

O.3; 1/=SOo.3; 1/ ' fId; I ;T ;Pg ' Z=2Z � Z=2Z: (6.26)

6.4 Classification of Restricted Lorentz Transformations

In view of the result of Sect. 6.3.4, we shall restrict ourselves from now on to the
study of SOo.3; 1/, i.e. to restricted Lorentz transformations. We shall exhibit their
general form and classify them in different types.

6.4.1 Invariant Null Direction

Let us call null direction any vector line  � E formed by null vectors:  D
Span.

#»

` /, with
#»

` � #»

` D 0. The straight lines of the affine space E corresponding
to null directions are nothing but the null geodesics defined in Sect. 2.5.1 (photon
worldlines).

The starting point of our study is the following property2:

Any restricted Lorentz transformation admits at least one invariant null
direction.

In other words, given � 2 SOo.3; 1/, there exists a null direction D Span.
#»

` /

such that3 �./ D . Equivalently, there exists a nonvanishing null vector
#»

` such

2Cf. Sect. 6.2.3 for the definition of invariance under a Lorentz transformation.
3A priori, the definition of invariance stipulates only that �./ 	 , but every vector #»v 2  has
an inverse image in by �, namely, the vector ��1. #»v /. Therefore the 	 sign can be replaced by
an D sign.
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Fig. 6.1 Sphere S , intersection of the past light cone of O , I �.O/, with a spacelike hyper-
plane ˙ . For the drawing, one dimension has been suppressed, so that S appears as a circle

that �.
#»
` / D � #»

` , with � 2 R n f0g. #»
` is then a null eigenvector of �. If � D 1, the

null direction is strictly invariant under �.

Proof. We shall demonstrate the above property by an algebraic method in
Sect. 7.5.5. Here we provide instead a demonstration based on a topological
argument. Let us consider the intersection of the past light cone of some event
O 2 E , I �.O/, with some spacelike hyperplane ˙ , i.e. some three-dimensional
affine subspace of E such that any vector parallel to it is spacelike (cf. Sect. 3.2.3).
S WD I �.O/ \ ˙ has the topology of a sphere (cf. Fig. 6.1). It can be seen as
the celestial sphere of an observer that would have ˙ as a local rest space (cf.
Sect. 5.6.2 and Fig. 5.11). Each null direction can be identified with a point of S :
this “point” defines, up to a scaling factor, a direction vector of. The property (6.8)
of invariance of the null cone I under � means that � maps each null direction in
another null direction. This implies that � induces a mapping from the sphere S to
itself. This mapping S ! S is continuous, because � is so (as any linear map).
Moreover, it preserves the orientation since � is a restricted Lorentz transformation.
We may then invoke a topology theorem4 which stipulates that any continuous and
orientation-preserving mapping from the sphere to itself has a fixed point. There
exists thus a “point” of S such that �./ D . ut

4Cf., for instance, corollary 18.2.5.6 in Berger’s book (Berger 1987b), according to which any
continuous mapping S ! S of degree different from �1 admits at least a fixed point; this
applies to an orientation-preserving mapping for its degree is positive (by the very definition of the
degree). One can also obtain this theorem as a consequence of a more general result: the so-called
Lefschetz fixed-point theorem.
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Fig. 6.2 Definition of vectors #»e 0 and #»e 1 from two null vectors
#»

` and
#»

k , the former being an
eigenvector of �. The plane ˘0 D Span.

#»

` ;
#»

k/ D Span. #»e 0;
#»e 1/ is timelike. For the drawing, its

orthogonal complementary, ˘1, has been reduced to a single dimension

6.4.2 Decomposition with Respect to an Invariant Null
Direction

The above property greatly simplifies the study of Lorentz transformations: it
guarantees the existence of a null eigenvector

#»

` for any � 2 SOo.3; 1/. We shall
start from this eigenvector to decompose �. Let us choose

#»

` to be future-directed
and let us denote by � the associated eigenvalue: �.

#»

` / D �
#»

` . Since � is an
automorphism of E , we have � 6D 0. Moreover, � being orthochronous, we have
� > 0. We are thus allowed to set  WD ln� and to write

�.
#»

` / D e 
#»

` ;  2 R: (6.27)

The second stage in the decomposition consists in picking a future-directed null
vector,

#»
k , that is not collinear to

#»
` . By virtue of Lemma 2 of Sect. 1.4.2, we have

#»
` � #»

k < 0. At the price of rescaling it by a positive factor, we can always choose
#»
k

so that

#»
` � #»

k D �2: (6.28)

Let us then define

#»e 0 WD 1

2
.

#»

` C #»

k/ and #»e 1 WD 1

2
.

#»

` � #»

k/: (6.29)

These formulas can be inverted in (cf. Fig. 6.2):

#»

` D #»e 0 C #»e 1 and
#»

k D #»e 0 � #»e 1 : (6.30)
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Taking into account that
#»
` � #»

` D 0,
#»
k � #»

k D 0 and
#»
` � #»

k D �2, we observe that
#»e 0 � #»e 0 D �1, #»e 1 � #»e 1 D 1 and #»e 0 � #»e 1 D 0. . #»e 0;

#»e 1/ is thus an orthonormal basis
of the vector plane

˘0 WD Span. #»e 0;
#»e 1/ D Span.

#»

` ;
#»

k/: (6.31)

A plane such as ˘0, i.e. spanned by a timelike vector ( #»e 0) and a spacelike one
( #»e 1), is called a timelike plane. The metric induced by g in ˘0 is Lorentzian:
sign gj˘0 D .�;C/. The orthogonal complementary (with respect to g) of ˘0,
˘?
0 , is a plane too, which we shall denote by ˘1. We have the decomposition

E D ˘0

?˚ ˘1: (6.32)

This means that every vector of E can be written in a unique way as the sum of two
orthogonal vectors, one in ˘0 and the other in ˘1. The signature of the restriction
of g to ˘0 being .�;C/, one must have sign gj˘1 D .C;C/ to recover the global
signature .�;C;C;C/ of g. Consequently all the vectors of ˘1 are spacelike. ˘1

is accordingly called a spacelike plane.

Remark 6.9. The orthogonal decomposition (6.32) can be qualified of 2C2 decom-
position ofE (since the vector subspaces˘0 and˘1 are both two-dimensional). On
the other hand, the orthogonal decomposition (3.16) encountered in Chap. 3 is a
3C 1 decomposition.

Remark 6.10. The signature of the restriction of the metric g to ˘0 is .�;C/,
whereas that of the restriction of g to ˘1 is .C;C/. One says that .˘1;g/ is a
Euclidean plane and .˘0;g/ a Minkowskian plane. The latter is a two-dimensional
analogue of the vector space .E;g/ underlying Minkowski spacetime. In particular,
it has a null cone, made of two vector lines, Span.

#»
` / and Span.

#»
k/, which constitute

the intersection of the null cone of .E;g/ with ˘0 (cf. Fig. 6.2). A Minkowskian
plane is sometimes called an Artinian plane (Berger 1987b).

Thanks to (6.32), �.
#»
k/ can be orthogonally split into a part in ˘0, a

#»
` C b #»

k

say, and a part (possibly zero) in ˘1,
#»m say: �.

#»
k/ D a

#»
` C b #»

k C #»m. Now, since
� is a Lorentz transformation and

#»
` � #»

k D �2, we must have [cf. (6.2)]

�.
#»

` /„ƒ‚…
e 

#»
`

� �.
#»

k/„ƒ‚…
a

#»
` Cb #»

k C #»m

D �2:

Given that
#»
` � #»

` D 0,
#»
` � #»

k D �2 and
#»
` � #»m D 0 (for #»m 2 ˘1 D ˘?

0 ), we get
e b.�2/ D �2, i.e. b D e� . On the other hand, still invoking the fact that � is a
Lorentz transformation, the property

#»
k � #»

k D 0 implies �.
#»
k/ ��. #»

k/ D 0, i.e.

.a
#»

` C e� #»

k C #»m/ � .a #»

` C e� #»

k C #»m/ D 0:
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Expanding and simplifying, we get

#»m � #»m D 4e� a:

Now, as a vector in ˘1,
#»m is either zero or spacelike, so that #»m � #»m � 0, which

implies a � 0. We may then introduce ˛ WD pae =2=2, so that the above equation
is equivalent to k #»mkg D 4˛e� . If ˛ 6D 0, k #»mkg 6D 0 and we may define the unit
vector #»e 2 WD k #»mk�1g

#»m D e =.4˛/ #»m in ˘1. If ˛ D 0, we consider whatever unit
vector #»e 2 2 ˘1. Gathering all the above results, we write

�.
#»
k/ D e� 

�
4˛2

#»
` C #»

k C 4˛ #»e 2

�
: (6.33)

Let us associate with #»e 2 a unit vector #»e 3 2 ˘1 in order to form an orthonormal
basis of .˘1;g/, in such a way that . #»e 0;

#»e 1;
#»e 2;

#»e 3/ is a right-handed orthonormal
basis of .E;g/. Since

#»
` and

#»
k are two noncollinear vectors in ˘0, another basis

of E is

. #»e �̨/ WD . #»

` ;
#»

k ; #»e 2;
#»e 3/: (6.34)

Of course, this is not an orthonormal basis. Let us expand �. #»e 2/ onto that basis:

�. #»e 2/ D u
#»
` C v #»

k C x #»e 2 C y #»e 3:

The coefficients .u; v; x; y/ are determined from �’s property of preserving scalar
products. For instance, the condition �.

#»

` / ��. #»e 2/ D #»

` � #»e 2 D 0, along with (6.27)
and (6.28), leads to�2e v D 0; hence, v D 0. Next, the condition �. #»e 2/��. #»e 2/ D
#»e 2 � #»e 2 D 1 leads to x2 C y2 D 1, which allows us to introduce ' 2 Œ0; 2�Œ so that
x D cos' and y D sin'. Finally, the condition �.

#»

k/ ��. #»e 2/ D #»

k � #»e 2 D 0, along
with (6.33), gives

e� 
�
4˛2

#»

` C #»

k C 4˛ #»e 2

�
�
�

u
#»

` C cos' #»e 2 C sin ' #»e 3

�
D 0:

Expanding, we obtain �2uC 4˛ cos' D 0; hence, u D 2˛ cos' and finally

�. #»e 2/ D 2˛ cos'
#»
` C cos' #»e 2 C sin ' #»e 3 : (6.35)

Similarly let us expand �. #»e 3/ onto the basis . #»e �̨/:

�. #»e 3/ D u0 #»
` C v0 #»

k C x0 #»e 2 C y0 #»e 3:

The conservation by � of the scalar products
#»

` � #»e 3 D 0,
#»

k � #»e 3 D 0, #»e 2 � #»e 3 D 0
and #»e 3 � #»e 3D 1 leads to u0D �2˛ sin ', v0D 0, x0D �sin ' and y0D cos'. Hence

�. #»e 3/ D �2˛ sin '
#»

` � sin ' #»e 2 C cos' #»e 3 : (6.36)
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Let us collect the results (6.27), (6.33), (6.35) and (6.36) by writing the matrix of �

in the basis . #»e �̨/ WD . #»

` ;
#»

k ; #»e 2;
#»e 3/:

.��/˛ˇ D

0

BB@

e 4˛2e� 2˛ cos' �2˛ sin '
0 e� 0 0

0 4˛e� cos' � sin'
0 0 sin ' cos'

1

CCA : (6.37)

Thanks to (6.29), it is easy to deduce the matrix of � in the orthonormal basis
. #»e ˛/ WD . #»e 0;

#»e 1;
#»e 2;

#»e 3/:

�˛
ˇ D

0
BB@

cosh C 2˛2e� sinh � 2˛2e� 2˛ cos' �2˛ sin '
sinh C 2˛2e� cosh � 2˛2e� 2˛ cos' �2˛ sin '

2˛e� �2˛e� cos' � sin '
0 0 sin ' cos'

1
CCA ; (6.38)

where use has been made of the identities e C e� D 2 cosh and e � e� D
2 sinh . The matrix of � in any of the bases . #»e �̨/ and . #»e ˛/ depends on three
parameters:  2 R, ˛ 2 R

C and ' 2 Œ0; 2�Œ. Formulas (6.37) and (6.38) constitute
the most general expression of a restricted Lorentz transformation. Let us now
investigate special cases, where some of the parameters  , ˛ and ' vanish.

6.4.3 Spatial Rotations

If  D 0 and ˛ D 0, the matrix of � in the orthonormal basis . #»e ˛/ is identical to
that in the basis . #»e �̨/ and takes the form

�˛
ˇ D .��/˛ˇ D

0
BB@

1 0 0 0

0 1 0 0

0 0 cos' � sin '
0 0 sin ' cos'

1
CCA : (6.39)

We observe that the plane ˘0 D Span. #»e 0;
#»e 1/ D Span.

#»
` ;

#»
k/ is strictly invariant

under such a transformation and that the action of � in the plane ˘1 D ˘?
0 D

Span. #»e 2;
#»e 3/, where the metric g is Euclidean, is nothing but an “ordinary”

rotation of angle '. This justifies the following definition:

One calls spatial rotation any restricted Lorentz transformation that leaves a
timelike plane strictly invariant. The orthogonal complementary of that plane
is called the plane of the spatial rotation. It is spacelike and stable under the
spatial rotation.
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Fig. 6.3 Two representations of a spatial rotation of plane ˘1 and angle '. Left: the dimension
along #»e 1 has been suppressed, so that ˘?

1 D Span. #»e 0;
#»e 1/ D ˘0 is drawn as a line, whereas it

is actually a vector plane. Moreover, ˘1 seems to coincide with the hyperplane Ee0 , whereas it is
only a two-dimensional subspace of Ee0 . Right: the dimension along #»e 3 has been suppressed, so
that the rotation plane ˘1 D Span. #»e 2;

#»e 3/ is now drawn as a line. For the spatial rotation, all the
orthonormal bases of ˘?

1 , such as . #»e 0;
#»e 1/ and .

#»Qe 0;
#»Qe 1/ shown here, are equivalent and lead to

the matrix (6.39)

It is clear that � defined by (6.39) is a spatial rotation, of plane ˘1 (cf. Fig. 6.3).
Conversely, if � 2 SOo.3; 1/ leaves a timelike plane ˘0 strictly invariant, it is
easy to see, by repeating the reasoning of Sect. 6.4.2 with  D 0 and ˛ D 0, that
its matrix in a right-handed orthonormal basis having the first two vectors in ˘0

is necessarily of the form (6.39). The parameter ' 2 Œ0; 2�Œ appearing in (6.39) is
then called the spatial rotation angle. A spatial rotation is thus entirely defined by its
plane and its angle. The angle cosine is related to the trace of the transformation by

cos' D 1

2
tr� � 1 : (6.40)

This formula follows immediately from the matrix (6.39) (let us recall that the trace
of an endomorphism is independent of the basis of E chosen for expressing its
matrix).

Remark 6.11. In the three-dimensional Euclidean space, a rotation is defined by
an angle ' and one direction named the rotation axis. This axis is the orthogonal
complementary of the plane ˘ in which the rotation acts. In the four-dimensional
case considered here, the notion of rotation axis has no longer any meaning since the
orthogonal complementary to ˘ is not a line but a plane, as illustrated in Fig. 6.3.

The action of a spatial rotation on a vector #»v D v˛ #»e ˛ 2 E is deduced from the
matrix (6.39) via (6.5):

�. #»v / D �˛
ˇv

ˇ #»e ˛ D v0 #»e 0 C v1 #»e 1 C .v2 cos' � v3 sin'/ #»e 2

C.v2 sin' C v3 cos'/ #»e 3:

Setting #»n WD #»e 1 for denoting the unit vector of the rotation axis in the Euclidean
hyperplaneEe0 (cf. the above remark), we may rewrite this formula as
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�. #»v / D v0„ƒ‚…
� #»e 0� #»v

#»e 0 C v1„ƒ‚…
#»n � #»v

#»n C cos'.v2 #»e 2 C v3 #»e 3„ ƒ‚ …
#»v �v0 #»e 0�v1 #»n

/C sin'.v2 #»e 3 � v3 #»e 2„ ƒ‚ …
#»n �e0

#»v

/:

We thus obtain Rodrigues formula5:

�. #»v / D cos' #»v C sin' #»n �e0

#»v C .1 � cos'/ Œ. #»n � #»v / #»n � . #»e 0 � #»v / #»e 0� :

(6.41)

This formula expresses the spatial rotation � in terms of its angle ' and an
orthonormal basis . #»e 0;

#»n / of the plane ˘0 that is left strictly invariant by �.

6.4.4 Lorentz Boosts

If ˛ D 0 and ' D 0, the matrix (6.37) of � in the basis . #»e �̨/ reduces to

.��/˛ˇ D

0

BB@

e 0 0 0

0 e� 0 0
0 0 1 0

0 0 0 1

1

CCA ; (6.42)

whereas the matrix (6.38) in the orthonormal basis . #»e ˛/ becomes

�˛
ˇ D

0

BB@

cosh sinh 0 0

sinh cosh 0 0

0 0 1 0

0 0 0 1

1

CCA : (6.43)

We notice that � leaves the plane ˘1 D Span. #»e 2;
#»e 3/ strictly invariant and that

this plane is spacelike, contrary to a spatial rotation, for which the strictly invariant
plane is timelike. One introduces then the following definition:

One calls Lorentz boost, or simply boost, any restricted Lorentz trans-
formation that leaves a spacelike plane strictly invariant. The orthogonal
complementary of this plane is called the plane of the Lorentz boost. It is
timelike and stable under the Lorentz boost.

5Olinde Rodrigues (1795–1851): French mathematician, disciple of the utopian philosopher
Saint-Simon. He derived formula (6.41) in 1840 (without the #»e 0 term since he considered only
a three-dimensional space) and used it to study the composition of two rotations.
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Fig. 6.4 Lorentz boost
of plane ˘0, with
#»e 0

0 WD �. #»e 0/

and #»e 0

1 WD �. #»e 1/

It is clear that the transformation � defined by (6.42) or (6.43) is a boost of
plane ˘0 (cf. Fig. 6.4). Conversely, if � 2 SOo.3; 1/ leaves a spacelike plane ˘1

strictly invariant, one may introduce a right-handed orthonormal basis, . #»e ˛/, such
that˘1 D Span. #»e 2;

#»e 3/ and˘?
1 D Span. #»e 0;

#»e 1/. Let us then expand �. #»e 0/ and
�. #»e 1/ on this basis:

�. #»e 0/ D a˛ #»e ˛ and �. #»e 1/ D b˛ #»e ˛:

The properties �. #»e 0/ ��. #»e 2/ D #»e 0 � #»e 2 D 0 and �. #»e 2/ D #»e 2 imply a2 D 0. One
shows similarly that a3 D 0, b2 D 0 and b3 D 0; hence, �. #»e 0/ D a0 #»e 0 C a1 #»e 1

and �. #»e 1/ D b0 #»e 0 C b1 #»e 1. Since � preserves the scalar products, we have then

�. #»e 0/ ��. #»e 0/ D �1 D �.a0/2 C .a1/2 (6.44a)

�. #»e 0/ ��. #»e 1/ D 0 D �a0b0 C a1b1 (6.44b)

�. #»e 1/ ��. #»e 1/ D 1 D �.b0/2 C .b1/2: (6.44c)

Moreover, the orthochronous character of � implies #»e 0 � �. #»e 0/ D �a0 < 0 [cf.
Eq. (6.15)], i.e. a0 > 0. Equation (6.44a) shows then that a0 � 1. One may therefore
introduce  2 R such that a0 DW cosh and solve (6.44a) by a1 D sinh . On
its side, Eq. (6.44c) implies jb1j � 1. The case b1 < 0 is excluded for it would
lead to a change of orientation between the bases . #»e 0;

#»e 1/ and .�. #»e 0/;�.
#»e 1// in

˘?
1 . Now, as a restricted Lorentz transformation, � must preserve the orientation

of the basis . #»e ˛/, which amounts to preserving the orientation of . #»e 0;
#»e 1/, since

�. #»e 2/ D #»e 2 and �. #»e 3/ D #»e 3. We may thus set b1 DW cosh 0 with  0 2 R and
solve (6.44c) by b0 D sinh 0. Equation (6.44b) becomes then

� cosh sinh 0 C sinh cosh 0 D 0;

i.e. sinh. �  0/ D 0. We deduce immediately  0 D  , which shows that the
matrix of � is indeed of the form (6.43).

From the matrix (6.43), one can relate the parameter  to the trace of �:

cosh D 1

2
tr� � 1 : (6.45)
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Since the trace of an endomorphism is independent of the basis chosen to express its
matrix, we conclude that  is independent of the choice of the basis . #»e ˛/ adapted
to the plane of � (in the sense that ˘0 D Span. #»e 0;

#»e 1/). The parameter  2 R

is thus intrinsic to � and is called the rapidity of the boost �. Moreover, the above
demonstration has shown that

A boost is entirely determined by its plane and its rapidity.

Remark 6.12. Formula (6.45) is similar to (6.40), with the cosine replaced by the
hyperbolic cosine. Moreover, (6.45) can be obtained from (6.42) as well as (6.43),
thereby illustrating the independence of the trace from the basis used to express the
matrix of �.

An alternative parametrization of Lorentz boosts makes use of the quantity

V WD c tanh (6.46)

instead of  . Thanks to the c factor, V has the dimension of a velocity. From the
properties of a hyperbolic tangent, jV j < c. We therefore shall call V the velocity
parameter of the boost �. The identity 1 � tanh2  D cosh�2  yields

cosh D
�
1� V

2

c2

	�1=2
DW � : (6.47)

The parameter � is called the Lorentz factor of the boost �. Given the definitions
of V and � , we can rewrite the matrix (6.43) as

�˛
ˇ D

0
BB@

� � V=c 0 0

� V=c � 0 0

0 0 1 0

0 0 0 1

1
CCA : (6.48)

We shall discuss about the kinematical interpretation of � and V as the Lorentz
factor and the relative velocity between two observers in Sect. 6.6.1.

6.4.5 Null Rotations

The last case where only one of the parameters . ; ˛; '/ defined in Sect. 6.4.2 is
nonvanishing is the case  D 0 and ' D 0. The matrix (6.37) of � in the basis
. #»e �̨/ reduces then to
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Fig. 6.5 Null plane ˘3 D Span.
#»

` ; #»e 3/. The dimension along #»e 2 has been suppressed, so that
the plane orthogonal to˘3, ˘?

3 D Span.
#»

` ; #»e 2/, is reduced to the line along
#»

`

.��/˛ˇ D

0

BB@

1 4˛2 2˛ 0

0 1 0 0

0 4˛ 1 0

0 0 0 1

1

CCA ; (6.49)

whereas the matrix (6.38) in the orthonormal basis . #»e ˛/ becomes

�˛
ˇ D

0

BB@

1C 2˛2 �2˛2 2˛ 0

2˛2 1 � 2˛2 2˛ 0
2˛ �2˛ 1 0

0 0 0 1

1

CCA : (6.50)

We observe on (6.49) that � leaves the vectors #»e �
0 D

#»

` and #»e �
3 D #»e 3 invariant.

We deduce then that the vector plane

˘3 WD Span.
#»
` ; #»e 3/ (6.51)

is strictly invariant by � (cf. Fig. 6.5). Contrary to the planes˘0 and˘1 considered
above, ˘3 is neither timelike nor spacelike. Indeed, the metric induced by g in
˘3 is degenerate6: the nonzero vector

#»

` belongs to ˘3 and is orthogonal to all
vectors in˘3. Indeed

#»

` is by construction orthogonal to #»e 3 and, being null, is also
orthogonal to itself. On the contrary, the metric induced in a timelike or spacelike
plane is never degenerate. One says that˘3 is a null plane.

Remark 6.13. The degeneracy of g in ˘3 is usually expressed by the following
signature statement: sign gj˘3 D .0;C/.
All vectors of ˘3 are either collinear to

#»
` (and thus null) or spacelike.

Proof. If #»v 2 ˘3, then #»v D a #»

` C b #»e 3 and the properties
#»

` � #»

` D 0,
#»

` � #»e 3 D 0
and #»e 3 � #»e 3 D 1 lead to #»v � #»v D b2 � 0. The equality holds iff b D 0, i.e. if #»v is
collinear to

#»

` , otherwise, #»v � #»v > 0 and #»v is spacelike. ut

6Cf. the definition of nondegeneracy given in Sect. 1.3.1.
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All null planes share this property, namely, they contain only one null direction, the
others being spacelike.

Proof. Let us suppose that a plane ˘ contains two distinct null directions,
#»

` and
#»

k say. Then ˘ D Span.
#»

` ;
#»

k/, and we are back to the situation considered in
Sect. 6.4.2 for ˘0: the plane ˘ is necessarily timelike [cf. (6.31)]. A null plane can
therefore have only one null direction. Now, by virtue of the property established in
Sect. 2.4.2, a timelike vector cannot be orthogonal to a null vector. All the non-null
vectors of ˘ are therefore necessarily spacelike. ut

Since Span.
#»

` / is the only null direction contained in ˘3, the intersection of
˘3 with the null cone of g, I , is reduced to that direction. Consequently, a null
plane is tangent to the null cone, as shown in Fig. 6.5. On the opposite, a timelike
plane intersects I in two distinct null directions (cf. Fig. 6.2) and a spacelike plane
intersects I only in f0g.

A property that characterizes a null plane is that one cannot decompose the vector
space E as a direct sum of ˘3 and˘?

3 , as in (6.32). Indeed, in the present case,

˘?
3 D Span.

#»
` ; #»e 2/ (6.52)

and˘3\˘?
3 D Span.

#»
` / 6D f0g. Moreover,˘3[˘?

3 is not generatingE but only
the hyperplane Span.

#»

` ; #»e 2;
#»e 3/.

Remark 6.14. ˘?
3 is itself a null plane, #»e 2 playing the role of #»e 3.

In view of what precedes:

One calls null rotation any restricted Lorentz transformation that leaves a null
plane strictly invariant. This plane is called the plane of the null rotation.

Remark 6.15. The reader may notice a certain dissymmetry in our definitions of the
planes of the various transformations: the plane of a spatial rotation or a boost is the
plane where the transformation acts. It is therefore not strictly invariant, contrary to
the plane of a null rotation.

The map � whose matrix is (6.49) is clearly a null rotation of plane ˘3.
Conversely, if � 2 SOo.3; 1/ leaves a null plane ˘3 strictly invariant, let us
denote by

#»
` a generator of the null direction in ˘3 and by #»e 3 a (spacelike) unit

vector in ˘3. One can complete #»e 3 to form an orthonormal basis . #»e ˛/ such that
#»
` D #»e 0 C #»e 1. Setting

#»
k WD #»e 0 � #»e 1, we may then follow the reasoning of

Sect. 6.4.2 with the supplementary conditions �.
#»
` / D #»

` and �. #»e 3/ D #»e 3, which
implies  D 0 and ' D 0 [cf. Eqs. (6.27) and (6.36)]. We arrive then necessarily
to the matrix (6.49). We conclude that a null rotation � is entirely determined by
its plane and a parameter ˛ 2 R

C, the latter being related to �’s matrix by (6.49)
or (6.50), depending on the considered basis.
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Remark 6.16. Null rotations are sometimes called lightlike rotations (Sexl and
Urbantke 2001), singular Lorentz transformations (Synge 1956; Parizet 2008) or
parabolic Lorentz transformations. A web page dedicated to null rotations is [W20].

6.4.6 Four-Screws

Given a timelike vector plane ˘ � E , one calls four-screw, or 4-screw for short,
of plane ˘ any restricted Lorentz transformation that is the composition of a boost
of plane ˘ and a spatial rotation of plane ˘?. A 4-screw corresponds to the case
˛ D 0 is the decomposition presented in Sect. 6.4.2. Its matrix in the basis . #»e �̨/ is

.��/˛ˇ D

0

BB@

e 0 0 0

0 e� 0 0

0 0 cos' � sin '
0 0 sin ' cos'

1

CCA : (6.53)

whereas its matrix in the orthonormal basis . #»e ˛/ is

�˛
ˇ D

0
BB@

cosh sinh 0 0

sinh cosh 0 0

0 0 cos' � sin '
0 0 sin ' cos'

1
CCA : (6.54)

It is then clear that
� D S ıR D R ı S ; (6.55)

where S is the boost of plane ˘0 D Span.
#»

` ;
#»

k/ D Span. #»e 0;
#»e 1/ and rapidity  

and R is the spatial rotation of plane ˘?
0 D ˘1 D Span. #»e 2;

#»e 3/ and angle '. Let
us stress that the decomposition (6.55) is commutative. This follows directly from
the bloc structure of matrices (6.53) and (6.54).

Remark 6.17. The 4-screws are sometimes called loxodromic Lorentz transforma-
tions (Sexl and Urbantke 2001). Besides, it is clear that boosts and spatial rotations
are special cases of 4-screws (corresponding, respectively, to ' D 0 and  D 0).

One has the following characterization:

A restricted Lorentz transformation is a 4-screw iff it leaves invariant two
distinct null directions.
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Proof. It is clear on (6.53) that a 4-screw has such a property,
#»
` and

#»
k being two

null eigenvectors of �. Conversely, if � 2 SOo.3; 1/ leaves invariant two distinct
null directions, one may choose a vector

#»
` along the first one, a vector

#»
k along the

second one and impose
#»
` � #»k D �2. We may then repeat the argument of Sect. 6.4.2,

with the additional property that
#»
k is an eigenvector of �. From (6.33), this implies

˛ D 0, showing that � is a 4-screw. ut

6.4.7 Eigenvectors of a Restricted Lorentz Transformation

An advantage of the general decomposition (6.37) of a restricted Lorentz trans-
formation � is to make possible an easy computation of its eigenvalues and
eigenvectors. Indeed, the characteristic polynomial P.�/ WD det.�� � �I4/ of the
matrix (6.37) is easily computable:

P.�/ D .� � e /.� � e� /.�2 � 2� cos' C 1/:

If ' 6D 0 and ' 6D � , the polynomial �2 � 2� cos' C 1 has no real root. In this
case, � has only two real eigenvalues: �1 D e and �2 D e� . If ' D 0 (resp. �),
the eigenvalue �3 D 1 (resp. �3 D �1) must be added, with a multiplicity 2. The
corresponding eigenvectors are

�1 D e W #»v 1 D #»

` (6.56a)

�2 D e� W #»v 2 D ˛2e� #»

` C 1
2
.cosh � cos'/

#»

k

C˛.e� � cos'/ #»e 2 C ˛ sin ' #»e 3

(6.56b)

�3 D 1 (case ' D 0) W #»v 3 D #»e 3 and #»v 0
3 D �2˛

#»
` C .e � 1/ #»e 2 (6.56c)

�3 D �1 (case ' D �) W #»v 3 D #»e 3 and #»v 0
3 D 2˛

#»
` C .e C 1/ #»e 2: (6.56d)

Proof. The eigenvector #»v 1 follows from (6.27). Using (6.37), it is easy to see that
�. #»v 2/ D e� #»v 2, �. #»v 0

3/ D #»v 0
3 for ' D 0 and �. #»v 0

3/ D � #»v 0
3 for ' D � . ut

The eigenvectors #»v 1 and #»v 2 are always null. This is obvious for #»v 1, and the direct
computation of #»v 2� #»v 2 shows it for #»v 2. Note that if � is a 4-screw (˛ D 0), #»v 2 / #»

k .
If � is a null rotation ( D ' D 0), then �1 D �2 D 1 and #»v 2 / #»

` . In the case
' D 0 or � , #»v 3 is always spacelike. Regarding #»v 0

3, we have #»v 0
3 � #»v 0

3 D .e ˙ 1/2
with� for ' D 0 andC for ' D � . We conclude that #»v 0

3 is spacelike, except if ' D
0 and  D 0 (� is then a null rotation), in which case #»v 0

3 is null and collinear to
#»
` .
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6.4.8 Summary

We have seen above that a restricted Lorentz transformation � admits one or two
invariant null directions: those generated by the null eigenvectors7 #»v 1 and #»v 2. These
two null directions coincide iff #»v 2 is collinear to #»v 1 D #»

` . Now, from (6.56b),

#»v 2 / #»

` ”
8
<

:

cosh � cos' D 0
˛.e� � cos'/ D 0
˛ sin ' D 0

”

 D 0
' D 0:

Thus � admits a unique invariant null direction iff � is a null rotation. We have seen
in Sect. 6.4.6 that if � admits two distinct invariant null directions, it is necessarily
a 4-screw.

Collecting the previous results, we may state:

Any element � of the restricted Lorentz group SOo.3; 1/ leaves invariant at
least one null direction; moreover:

• If such a direction is unique, � is a null rotation (with ˛ 6D 0/.
• If there exist exactly two invariant null directions, � is a 4-screw of

nonvanishing rapidity or nonvanishing rotation angle.
• If there exist three or more invariant null directions, � is the identity.

In particular,

There does not exist any other restricted Lorentz transformation than null
rotations and 4-screws (the identity being considered as the case ˛ D 0 of
a null rotation or the case . ; '/ D .0; 0/ of a 4-screw).

In other words, given � 2 SOo.3; 1/, there exists necessarily a basis . #»e �̨/ D
.

#»

` ;
#»

k ; #»e 2;
#»e 3/ of E such that

#»

` and
#»

k are timelike, #»e 2 and #»e 3 are unit and
spacelike, the planes ˘0 D Span.

#»

` ;
#»

k/ and ˘1 D Span. #»e 2;
#»e 3/ are orthogonal

and the matrix of � in this basis is either (6.49) (null rotation) or (6.53) (4-screw).

7If ' D 0 and  D 0, #»v 0

3 is also a null eigenvector, but there is no need to distinguish this case
since #»v 0

3 is then collinear to #»v 1.
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Historical note: Lorentz boosts have actually been discovered quite early, in
1887, by Woldemar Voigt8 (1887), as changes of coordinates9 .ct; x; y; z/ 7!
.ct 0; x0; y;0 ; z0/ that leave invariant the wave equation�c�2@2˚=@t2C @2˚=@x2C
@2˚=@y2 C @2˚=@z2 D 0. Lorentz boosts have been subsequently rediscovered by
Joseph Larmor10 in 1900 (Larmor 1900) and by Hendrik A. Lorentz (cf. p. 108) in
1904 (Lorentz 1904), as changes of coordinates that leave invariant the equations
of Maxwell electrodynamics. The name Lorentz transformations was given to them
in 1905 by Henri Poincaré (cf. p. 26) (1905b). The fact that boosts sharing the
same plane form a group11 has been established independently by Einstein (1905b)
and Poincaré (1906) in 1905. This is Poincaré (1906) who added spatial rotations
to form the Lorentz group, in the sense defined here (more precisely, Poincaré
considered only the restricted Lorentz group SOo.3; 1/). The appellation Lorentz
group is moreover due to him (Poincaré 1906).

6.5 Polar Decomposition

In Sect. 6.4, we have performed a decomposition of restricted Lorentz transforma-
tions from a null eigenvector. Here we present another useful decomposition, based
on a unit timelike vector.

6.5.1 Statement and Demonstration

Given a unit timelike vector #»e 0 2 E , any restricted Lorentz transformation
� 2 SOo.3; 1/ can be written in a unique way as the product

� D S ıR ; (6.57)

8Woldemar Voigt (1850–1919): German physicist who studied crystals, thermodynamics and
electro-optics. He notably discovered some birefringence in gas induced by a magnetic field (the
so-called Voigt effect).
9In our language, we should say change of affine coordinates on E that are associated with an
orthonormal basis of E . In addition, the transformation found by Voigt was actually � �1�, where
� is a boost and � its Lorentz factor.
10Joseph Larmor (1857–1942): British physicist from Northern Ireland, who worked in electro-
magnetism and thermodynamics; he authored a treatise on “Aether and Matter” (Larmor 1900)
and left his name to Larmor precession (precession of a body carrying a magnetic moment in an
external magnetic field).
11This is trivial from the definition of boosts given in Sect. 6.4.4, but this was not for Einstein and
Poincaré, who were defining boosts from expression (6.48).
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where S is a boost whose plane contains #»e 0 and R is a spatial rotation whose
plane is orthogonal to #»e 0. The writing (6.57) is called polar decomposition
of � relative to #»e 0.

Remark 6.18. The right-hand side of (6.57), although looking similar to (6.55), is
not necessarily a 4-screw, since a priori the planes of S and R are not orthogonal.
Indeed, we shall see in Sect. 6.5.2 that if � is null rotation, the planes of S and R

are not orthogonal.

Proof. Let us set #»e 0
0 WD �. #»e 0/ and distinguish two cases: #»e 0

0 D #»e 0 and #»e 0
0 6D

#»e 0. In the first case, � is acting only in the hyperplane normal to #»e 0, Ee0 . Indeed,
from the very definition of a Lorentz transformation [Eq. (6.2)],

8 #»v 2 Ee0 ;
#»e 0 ��. #»v / D �. #»e 0/ ��. #»v / D #»e 0 � #»v D 0:

This shows that �. #»v / 2 Ee0 for any #»v 2 Ee0 . The hyperplane Ee0 is thus
invariant under �. Since .Ee0 ;g/ is a Euclidean three-dimensional space, we
deduce that � is necessarily a spatial rotation, as defined in Sect. 6.4.3. We have
thus established (6.57) with S D Id and R D �.

Let us now consider the case where #»e 0
0 6D #»e 0. The vector #»e 0

0 is then necessarily
not collinear to #»e 0. Indeed, since #»e 0 and #»e 0

0 are two unit vectors, the only possi-
bility of collinearity compatible with #»e 0

0 6D #»e 0 would be #»e 0
0 D � #»e 0. But then

#»e 0 and #»e 0
0 would not have the same time orientation, which is impossible since �

is orthochronous. Therefore, the subspace ˘ WD Span. #»e 0;
#»e 0
0/ is two-dimensional

(vector plane). Moreover, ˘ is a timelike plane, as defined in Sect. 6.4.2, for it
contains timelike directions (those of #»e 0 and #»e 0

0). Let then S be the boost of plane
˘ and Lorentz factor � WD � #»e 0 � #»e 0

0. These two conditions define entirely S

(as shown in Sect. 6.4.4, a boost is fully characterized by its plane and its rapidity
 D arcosh� ). By construction, S maps #»e 0 to #»e 0

0:

S . #»e 0/ D #»e 0
0:

Let us define

R WD S �1 ı�: (6.58)

As the composition of two such transformations, R is a restricted Lorentz transfor-
mation. Moreover it satisfies

R. #»e 0/ D S �1.�. #»e 0// D S �1. #»e 0
0/ D #»e 0:

The above discussion of the case
#»
�. #»e 0/ D #»e 0, once applied to R, shows that R is

a spatial rotation whose plane is orthogonal to #»e 0. We deduce then from (6.58) that
� is indeed expressible as (6.57).
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Fig. 6.6 Polar decomposition of a restricted Lorentz transformation �; the transformation is fully
defined by its action on the orthonormal basis . #»e ˛/:

#»e 0

˛ D �. #»e ˛/. � is decomposed into a
rotation R within the hyperplane Ee0 , leading to #»a i WD R. #»e i /, followed by a boost S of plane
˘ D Span. #»e 0;

#»e 0

0/

To show the uniqueness of the decomposition (6.57), let us suppose that � D
S 0 ı R0 with S 0 and R0 having the same properties with respect to #»e 0 as S and
R. We have then S 0 D S ı R ı R0�1, so that S 0. #»e 0/ D S ı R ı R0�1. #»e 0/.
Now #»e 0 is invariant under the rotations R0�1 and R; hence, S 0. #»e 0/ D S . #»e 0/. We
conclude that the boosts S and S 0 have the same plane and same Lorentz factor
� D � #»e 0 � S . #»e 0/ D � #»e 0 � S 0. #»e 0/. They thus coincide (cf. Sect. 6.4.4): S 0 D S .
It follows immediately that R0 D R. ut
Remark 6.19. The polar decomposition (6.57) is a particular case of a theorem of
linear algebra called the polar decomposition theorem. This theorem stipulates that
any invertible real matrix � is expressible in a unique way as the product of a
positive definite symmetric matrix12 S and an orthogonal matrix13 R: � D SR

(cf., for instance, Mneimné and Testard (1986)). This theorem can be applied to
the present case, because the matrix of a spatial rotation is orthogonal [cf. (6.39)]
and that of a boost is symmetric (we have seen it with (6.43), which is valid in an
adapted basis and shall see it in a general basis in Sect. 6.6.2) and positive definite:
from the results of Sect. 6.4.7, the eigenvalues of S are e , e� and 1 ( being S ’s
rapidity) and are all strictly positive.

The polar decomposition is illustrated in Fig. 6.6, where � is represented by
its action on an orthonormal basis . #»e ˛/, by drawing the two bases . #»e ˛/ and
. #»e 0̨ / WD �. #»e ˛/.

12That is to say a symmetric matrix whose eigenvalues are all strictly positive.
13Here orthogonal is used in the usual sense, i.e. to qualify a matrix whose transpose is its inverse:
tRR D I4, and not to mark any orthogonality with respect to the metric tensor g.
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6.5.2 Explicit Forms

We have seen in Sect. 6.4.8 that a restricted Lorentz transformation � is either a
4-screw or a null rotation. In the case of 4-screw, the polar decomposition with
respect to a vector #»e 0 belonging to the plane of � is immediate: it is given by (6.55).
Moreover, in this case, the planes of S and R are orthogonal and the product S ıR

commutes.
In the case where � is a null rotation of parameter ˛ (cf. Sect. 6.4.5), one reads

on (6.50) that

#»e 0
0 D �. #»e 0/ D .1C 2˛2/ #»e 0 C 2˛2 #»e 1 C 2˛ #»e 2:

The boost S of the polar decomposition is the boost of plane ˘ WD Span. #»e 0;
#»e 0
0/

and Lorentz factor � D � #»e 0 � #»e 0
0. In the present case,

� D 1C 2˛2: (6.59)

It is easily checked that an orthonormal basis of˘ is . #»e 0;
#»" 1/, where #»" 1 is the unit

spacelike vector defined by

#»" 1 D 1p
1C ˛2 .˛

#»e 1 C #»e 2/ : (6.60)

In addition, one may choose an orthonormal basis . #»" 2;
#»" 3/ of ˘? as follows:

#»" 2 WD � 1p
1C ˛2 .

#»e 1 � ˛ #»e 2/ and #»" 3 WD #»e 3:

. #»e 0;
#»" 1;

#»" 2;
#»" 3/ is then an orthonormal basis of .E;g/. The explicit form of R is

obtained from (6.58), which, in terms of matrices in the basis . #»e ˛/, gives

R D S�1 �:

The matrix S is obtained from (i) the matrix of S in the basis . #»e 0;
#»" 1;

#»" 2;
#»" 3/,

which is of the type (6.48), and (ii) the change of basis matrix, from
. #»e 0;

#»" 1;
#»" 2;

#»" 3/ to . #»e ˛/. It is then a simple exercise to get

R˛ˇ D

0

BBBB@

1 0 0 0

0 1�˛2
1C˛2

2˛
1C˛2 0

0 � 2˛
1C˛2

1�˛2
1C˛2 0

0 0 0 1

1

CCCCA
:
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By comparing with (6.39), we deduce that R is a spatial rotation of plane ˘R D
Span. #»e 1;

#»e 2/ and angle ' given by

cos' D 1 � ˛2
1C ˛2 and sin ' D � 2˛

1C ˛2 : (6.61)

Remark 6.20. If ˛ D 0, formulas (6.59) and (6.61) lead to � D 1 and ' D 0, i.e.
S D Id and R D Id, as it should be.

Remark 6.21. Since the plane of S is ˘ D Span. #»e 0;
#»" 1/, with #»" 1 linked to #»e 1

and #»e 2 by (6.60), and the plane of R is ˘R D Span. #»e 1;
#»e 2/, we notice that, for

a null rotation, the factors S and R of the polar decomposition are not acting in
orthogonal planes, contrary to what happens for a 4-screw.

6.6 Properties of Lorentz Boosts

Lorentz boosts have been introduced in Sect. 6.4.4. We detail here some of their
properties.

6.6.1 Kinematical Interpretation

Let us consider a Lorentz boost � of plane ˘ . A right-handed orthonormal basis
. #»e ˛/ of .E;g/ is said to be adapted to � iff #»e 0 is future-directed and (cf. Fig. 6.4)

˘ D Span. #»e 0;
#»e 1/ and ˘? D Span. #»e 2;

#»e 3/: (6.62)

An example of adapted basis is that considered in Sect. 6.4.4. It follows that
the matrix of a boost in an adapted basis is of the type (6.43) when expressed in
terms of the rapidity  or (6.48) when expressed in terms of � WD cosh and
V WD c tanh .

Remark 6.22. Values V < 0 are allowed: they correspond to  < 0 and simply
mean that the vector #»e 1 is in the direction opposite to the orthogonal projection of
�. #»e 0/ on the hyperplaneEe0 .

We set

#»e 0
0 WD �. #»e 0/; (6.63)

and observe on (6.48) that

� D � #»e 0 � #»e 0
0 : (6.64)
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Since � is orthochronous, we have � � 1 [cf. Eqs. (6.16) and (6.17)]. Physically
� can be interpreted as the Lorentz factor between two observers whose worldlines
cross at the same event [cf. Eq. (4.10)]. Indeed, #»e 0 and #»e 0

0 are future-directed unit
timelike vectors and are thereby eligible for being 4-velocities. Let then O be an
observer whose 4-velocity #»u at some eventO 2 E obeys

#»u .O/ D #»e 0 (6.65)

and whose local frame at O coincides with . #»e ˛/. Let O 0 be an observer at the
same eventO , whose 4-velocity satisfies #»u 0.O/ D #»e 0

0 and whose local frame at O
coincides with . #»e 0

0;
#»e 0
1 WD �. #»e 1/;

#»e 2;
#»e 3/. The orthogonal decomposition of #»e 0

0

with respect to O is given by (4.31) where we make #»u 0 D #»e 0
0 and #»u D #»e 0 (cf.

Fig. 6.4):
#»e 0
0 D �

�
#»e 0 C 1

c

#»
V

	
: (6.66)

In this formula,
#»

V 2 Ee0 is the velocity of observer O 0 relative to O at O . Besides,
from the matrix (6.48), #»e 0

0 D � Œ #»e 0 C .V=c/ #»e 1�. Comparing with (6.66) yields

#»

V D V #»e 1: (6.67)

The relation (6.47) between � and V appears thus as the standard expression (4.33)
of the Lorentz factor in terms of the relative velocity.

Let us now investigate the action of the boost � on a generic vector #»v 2 E .
Denoting by .v˛/ the components of #»v in the basis . #»e ˛/ adapted to �, we have
#»v D v˛ #»e ˛ and, given the matrix (6.48) of � in this basis,

�. #»v / D �
�
v0 C V

c
v1
	

#»e 0 C �
�
V

c
v0 C v1

	
#»e 1 C v2 #»e 2 C v3 #»e 3:

Let us express the term v2 #»e 2 C v3 #»e 3 in terms of the orthogonal projection ?e0
#»v

of #»v onto the hyperplaneEe0 (cf. Sect. 3.2.5); we have ?e0
#»v D vi #»e i ; Hence

v2 #»e 2 C v3 #»e 3 D ?e0
#»v � v1 #»e 1

and

�. #»v / D � v0 #»e 0 C � V
c

�
v1 #»e 0 C v0 #»e 1

�C?e0
#»v C .� � 1/v1 #»e 1:

Now, since . #»e ˛/ is an orthonormal basis, v0 D � #»e 0 � #»v and v1 D #»e 1 � #»v .
Using (6.67) as #»e 1 D V �1 #»

V and substituting #»u .O/ for #»e 0 [Eq. (6.65)], we get
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�. #»v / D �� . #»u � #»v / #»u C �

c

h
.

#»

V � #»v / #»u � . #»u � #»v /
#»

V
i
C?u

#»v C � � 1
V 2

.
#»

V � #»v /
#»

V ;

(6.68)

where the 4-velocity #»u and the relative velocity
#»
V are to be taken at the event O .

From (6.47), one has � � 1 D .� 2 � 1/=.1C � / D � 2V 2=Œc2.1C � /�, so that an
expression equivalent to (6.68) is

�. #»v / D �� . #»u � #»v / #»u C �

c

h
.

#»
V � #»v / #»u � . #»u � #»v /

#»
V
i
C?u

#»v C � 2

c2.1C � /.
#»
V � #»v /

#»
V :

(6.69)

The relation (6.68) or (6.69) shows that a Lorentz boost of plane˘ can be expressed
entirely in terms of a unit timelike vector #»u (a 4-velocity) belonging to ˘ and a
spacelike vector

#»

V obeying (i)
#»

V is in the plane ˘ , (ii)
#»

V is orthogonal to #»u and
(iii)

#»

V � #»

V < c2. The factor � that appears in (6.68) and (6.69) is fully determined
by

#»

V via � D .1� #»

V � #»

V =c2/�1=2. We shall call
#»

V the velocity of the boost � with
respect to #»u .

Remark 6.23. Formula (6.68) [or (6.69)] is analogous to Rodrigues formula (6.41)
for spatial rotations.

Remark 6.24. For a given boost, the velocity parameter V , defined by (6.46), is
unique, but the vector

#»
V depends on the choice of the 4-velocity #»u 2 ˘ . However

one has always k #»
V kg D jV j.

Collecting the above results, we may state:

Given two observers O and O 0 and two values #»u .A/ and #»u 0.A0/ of their 4-
velocities at two points A and A0 of their respective worldlines, there exists a
unique Lorentz boost � such that

�. #»u .A// D #»u 0.A0/:

If #»u .A/ D #»u 0.A0/, � is the identity. If #»u .A/ 6D #»u 0.A0/, � is the boost
of plane Span. #»u .A/; #»u 0.A0// and Lorentz factor � D � #»u .A/ � #»u 0.A0/.
Moreover, ifA D A0 (the worldlines cross each other), the vector

#»

V appearing
in expressions (6.68) or (6.69) of � is nothing but the velocity of O 0 relative
to O at A.
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6.6.2 Expression in a General Basis

Given a Lorentz boost � of plane ˘ , let us consider a right-handed orthonormal
basis . #»e ˛/ such that

#»e 0 2 ˘: (6.70)

This condition is weaker than (6.62), which defines an adapted basis, since it is
no longer demanded that #»e 1 2 ˘ . We shall call a basis satisfying (6.70) a basis
semi-adapted to �.

Let
#»

V be the velocity of � with respect to #»e 0 [cf. Eq. (6.68) with #»u D #»e 0].
Since

#»

V 2 Ee0 , we can write
#»

V D V i #»e i . In particular

8 #»v 2 E; #»

V � #»v D �˛ˇV ˛vˇ D ıij V ivj D
3X

iD1
V ivi :

On the other hand,

8 #»v 2 E; #»u � #»v D #»e 0 � #»v D �v0 and ?u
#»v D ?e0

#»v D vi #»e i D ıij vj #»e i :

In view of these relations, one reads directly on (6.68) the expression of the matrix
of � with respect to the semi-adapted basis . #»e ˛/:

�˛
ˇ D

0

@
�0

0 �
0
j

�i
0 �

i
j

1

A D

0

BBB@

� �
V j

c

�
V i

c
ıi j C

� � 1
V 2

V iV j

1

CCCA : (6.71)

Using instead (6.69) leads to the alternative expression

�˛
ˇ D

0

@
�0

0 �
0
j

�i
0 �

i
j

1

A D

0
BBB@

� �
V j

c

�
V i

c
ıi j C

� 2

c2.1C � / V
iV j

1
CCCA : (6.72)

We check that in the particular case .V 1; V 2; V 3/ D .V; 0; 0/, (6.71) reduces
to (6.48).

An interesting property appears immediately on expressions (6.71) and (6.72):
the matrix of a Lorentz boost in a semi-adapted basis is symmetric:

�˛
ˇ D �ˇ

˛ : (6.73)
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Fig. 6.7 Rapidity  and Lorentz factor � as functions of the velocity V of a Lorentz boost

6.6.3 Rapidity

The rapidity  of a Lorentz boost � has been defined in Sect. 6.4.4. It is related to
the velocity V of � by formula (6.46), V D c tanh , and to the Lorentz factor �
of � by formula (6.47): � D cosh . These two formulas can be inverted, yielding,
respectively, to

 D artanh
V

c
D 1

2
ln

�
1C V=c
1� V=c

	
; (6.74)

 D arcosh� D ln.� C
p
� 2 � 1/ : (6.75)

In these equations, the second equality stems from the standard logarithmic
expressions of inverse hyperbolic functions. Note that at the nonrelativistic limit,
V 	 c, Eq. (6.74) reduces to

 ' V

c
.V 	 c/: (6.76)

In this limit, the rapidity coincides thus with the velocity normalized by c. In the
general case, the rapidity is plotted as a function of V in Fig. 6.7. The rapidity admits
a nice geometrical interpretation, as the area (with respect to the Euclidean metric)
of the grey surface in Fig. 6.8. We leave the demonstration as an exercise for the
reader.
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Fig. 6.8 Graphical interpretation of the rapidity  of a Lorentz boost �. . #»e 0;
#»e 1/ is an

orthonormal basis of �’s plane, #»e 0

0 WD �. #»e 0/ and #»e 0

1 WD �. #»e 1/. Denoting by .x0; x1/ the affine
coordinates associated with . #»e 0;

#»e 1/, the curve U C is a branch of the hyperbola .x0/2�.x1/2 D 1

and the curve S a branch of the hyperbola .x1/2 � .x0/2 D 1. They are the same as in Fig. 1.6.
The rapidity  is nothing but the total area of the grey surfaces. In this figure,  D ln 3 ' 1:0986,
which corresponds to � D cosh D 5=3, sinh D 4=3 and V D 4c=5

Let us recall that the matrix of a Lorentz boost in an adapted basis is expressed
in terms of the rapidity according to (6.43).

Remark 6.25. Expression (6.43) resembles the matrix of a rotation in which the
sines and cosines would have been replaced by their hyperbolic versions. We can
indeed compare (6.43) to the matrix (6.39) of a spatial rotation of angle ' in the
plane Span. #»e 2;

#»e 3/. Note that the sign � in factor of sin ' in the third row of (6.39)
does not appear in (6.43). To deepen this analogy, let us associate with the rapidity
 of a Lorentz boost the complex imaginary “angle”

'� WD i : (6.77)

Then, by Euler formula,

cosh D e C e� 

2
D e�i'� C ei'�

2
D cos'�;

sinh D e � e� 

2
D e�i'� � ei'�

2
D �i sin '�:

In addition, let us introduce the complex imaginary “vector” #»e �
0 WD i #»e 0. This

amounts to considering complex values for the first component of any vector #»v 2 E ,
since we can write #»v D v˛ #»e ˛ D v0� #»e �

0 C vi #»e i , with

v0 D iv0�:
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Such a procedure is called a Wick rotation, the multiplication by i being equivalent
to a rotation of �=2 in the complex plane. Wick rotation is widely used in quantum
field theory (cf., e.g. Maggiore (2005)). From (6.43), we get

�. #»e �
0 / D i �. #»e 0/ D i .cosh #»e 0 C sinh #»e 1/ D i

�
cos'� #»e 0 � i sin '� #»e 1

�

D cos'� #»e �
0 C sin'� #»e 1

�. #»e 1/ D sinh #»e 0 C cosh #»e 1 D �i sin '� #»e 0 C cos'� #»e 1

D � sin '� #»e �
0 C cos'� #»e 1;

so that the matrix of � in the complex “basis” . #»e �
0 ;

#»e 1;
#»e 2;

#»e 3/ is

��˛
ˇ D

0

BB@

cos'� � sin '� 0 0
sin'� cos'� 0 0

0 0 1 0

0 0 0 1

1

CCA :

Comparing with (6.39), we recognize the matrix of the rotation of angle '� in the
plane ˘ D Span. #»e �

0 ;
#»e 1/. The fact that introducing complex numbers makes

a Lorentz boost of plane ˘ resemble a rotation in this plan is not surprising
if one expresses the components of the metric tensor in the complex “basis”
. #»e �

0 ;
#»e 1;

#»e 2;
#»e 3/; since #»e �

0 � #»e �
0 D i2 #»e 0 � #»e 0 D .�1/.�1/ D 1, these components

are indeed

g�̨̌ D diag.1; 1; 1; 1/:

Hence g appears as a “Euclidean” metric (cf. Sect. 1.3.1). This is the virtue of
Wick rotation: to transform a Minkowskian problem into a Euclidean one. Lorentz
transformations being defined as the transformations that preserve g, they can then
be seen as the isometries of a four-dimensional Euclidean space. Consequently, all
restricted Lorentz can be decomposed into rotations in vector planes. If the plane˘
of the rotation is spacelike, the transformation is a spatial rotation, if ˘ is timelike,
the transformation is a boost and if ˘ is null, it is a null rotation (cf. Sect. 6.4.5).

Historical note: Rapidity has been introduced in 1908 (Minkowski 1908) by
Hermann Minkowski (cf. p. 26), who preferred to handle i rather than (cf. (6.77)
and the discussion in Walter (1999b)). Rapidity has also been employed under this
form by Arnold Sommerfeld (cf. p. 27) in 1909 (Sommerfeld 1909) to reduce the
calculus on boosts to ordinary trigonometry, via some imaginary angles. The word
“rapidity” has been coined by Alfred A. Robb (cf. p. 74) in 1911 (Robb 1911).
However, as early as 1905 (Poincaré 1906), Henri Poincaré (cf. p. 26) showed that
boosts can be considered as “complex rotations” in spacetime (cf. Remark 6.25
p. 200). Wick rotation owes its name to the Italian theoretical physicist Gian-Carlo
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Wick (1909–1992). From what precedes, it would be more appropriate to call it
Poincaré–Wick rotation.

6.6.4 Eigenvalues

We have seen in Sect. 6.4 that any Lorentz boost � is diagonalizable [cf. Eq. (6.42)]
and that its eigenvalues and eigenvectors are14

�C D e W #»

` C D #»e 0 C #»e 1 (6.78a)

�� D e� W #»
` � D #»e 0 � #»e 1 (6.78b)

�0 D 1 W #»e 2 and #»e 3; (6.78c)

where  is �’s rapidity and . #»e ˛/ an orthonormal basis adapted to �. The
eigenvectors

#»
` C and

#»
` � are null. They are depicted in Fig. 6.9. Thanks to (6.74),

one can reexpress the eigenvalues �C and �� in terms of �’s velocity parameter V :

�C D
s
1C V=c
1 � V=c and �� D

s
1 � V=c
1C V=c : (6.79)

The variation of �C and �� with V is represented in Fig. 6.10.

Remark 6.26. One can recover that a Lorentz boost has two null eigenvectors
without appealing to the results of Sect. 6.4. It suffices to note that � leaves invariant
both its plane ˘ and the null cone I [cf. (6.8)]. The image of a vector in I \˘ ,
such as

#»
` C or

#»
` �, is thus both in I and in ˘ , hence in I \˘ . This set is made

of only two vector lines (those drawn with dashed lines in Fig. 6.9), we deduce that
�.

#»
` C/ must be collinear either to

#»
` C or to

#»
` �. But the latter case is excluded by

continuity (limit V ! 0, where � reduces to the identity).

6.7 Composition of Boosts and Thomas Rotation

Let �1 and �2 be two Lorentz boosts, of respective planes ˘1 and ˘2 and Lorentz
factors �1 and �2. We would like to determine the composed transformation

14This is immediate on the diagonal matrix (6.42); this can also be found by setting ˛ D 0 and
' D 0 in (6.56), with the change of notion

#»

` ! #»

` C and
#»

k ! #»

` �.
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Fig. 6.9 Eigenvectors
#»

` C and
#»

` � of a Lorentz boost �, corresponding, respectively, to the
eigenvalues �C D e and �� D e� . Since

#»

` C D #»e 0 C #»e 1 and
#»

` � D #»e 0 � #»e 1, one
has �.

#»

` C/ D �C

#»

` C D #»e 0

0 C #»e 0

1 and �.
#»

` �/ D ��

#»

` � D #»e 0

0 � #»e 0

1, with #»e 0

0 WD �. #»e 0/

and #»e 0

1 WD �. #»e 1/. It is clear on the figure that �C 
 1 and �� � 1
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Fig. 6.10 Eigenvalues different from 1 of a Lorentz boost, as functions of the velocity parameter V

� WD �2 ı�1: (6.80)

We know already that it is a restricted Lorentz transformation, for SOo.3; 1/ is a
group. But is it a boost or a more general transformation, such as the product of a
boost by a spatial rotation, as shown in Sect. 6.5? We are going to investigate first
the simplest case, where the planes˘1 and˘2 coincide (Sect. 6.7.1), before moving
to the general case (Sect. 6.7.2), which will lead us to Thomas rotation.
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6.7.1 Coplanar Boosts

We assume here that ˘1 D ˘2. In this case, � D �2 ı �1 is a Lorentz boost of
plane

˘ WD ˘1 D ˘2: (6.81)

Proof. ˘ being a timelike plane,˘? is a spacelike plane, which is moreover strictly
invariant under � D �2 ı �1, since it is strictly invariant under both �1 and �2.
From the very definition of a Lorentz boost given in Sect. 6.4.4, it is then clear that
� is a Lorentz boost of plane ˘ . ut

Since ˘1D˘2, any basis adapted to �1 is also adapted to �2 [cf. condi-
tion (6.62)]. Let then . #»e ˛/ be such a basis. The matrices of �1 and �2 in this
basis are given by (6.48) in which .�; V /must be replaced by, respectively, .�1; V1/
and .�2; V2/, with

�1 WD
�
1 � V 2

1 =c
2
��1=2

and �2 WD
�
1 � V 2

2 =c
2
��1=2

:

The matrix of � WD �2 ı �1 in the basis . #»e ˛/ is obtained as the product of the
matrices of �2 and �1:

�˛
ˇ D

0
BB@

�1�2.1C V1V2=c2/ �1�2.V1 C V2/=c 0 0

�1�2.V1 C V2/=c �1�2.1C V1V2=c2/ 0 0
0 0 1 0

0 0 0 1

1
CCA : (6.82)

Comparing with (6.48), we conclude that �2 ı�1 is a Lorentz boost of plane˘ and
of Lorentz factor � and velocity V given by

� D �1�2
�
1C V1V2

c2

	
and V D V1 C V2

1C V1V2=c2 : (6.83)

We recognize in (6.83) the law of velocity composition established in Chap. 4 in
the case of collinear velocities [formula (5.45)]. Indeed the following kinematical
interpretation holds (cf. Fig. 6.11): let O 0 be an observer of 4-velocity #»u 0 D #»e 0, O
an observer of 4-velocity #»u D �1.

#»e 0/ and P a point particle of 4-velocity #»v D
�2 ı�1.

#»e 0/. The composite function �2 ı�1 is then the Lorentz transformation to
move from O 0 to P , so that the velocity obtained in (6.83) is the velocity denoted
by V 0 in Sect. 5.3.3. More generally, the correspondence with the notations used
in Chap. 4 is given in Table 6.1. We are indeed in the case treated in Sect. 5.3.3,
namely, that where the 4-velocities #»u , #»u 0 and #»v are coplanar (they all belong to the
plane˘ D ˘1 D ˘2; cf. Fig. 6.11). The velocities

#»

U D �V1 #»e 0
1 ( #»e 0

1 WD �1.
#»e 1/)

and
#»

V D V2
#»e 0
1 of, respectively, O 0 and P relative to O are then collinear and
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Fig. 6.11 Composition of
two boosts, �1 and �2,
having the same plane ˘ .
Observers O0 and O, of
respective 4-velocities
#»u 0 D #»e 0 and
#»u D #»e 0

0 WD �1.
#»e 0/, as well

as the point particle P, of
4-velocity
#»v D #»e 00

0 WD �2 ı �1.
#»e 0/,

are the same than those
considered in Chap. 4

Table 6.1 Kinematical interpretation of the composition of two boosts. This table makes the link
between notations of Sect. 5.3 (left-hand side of the equalities) and those of this chapter (right-hand
side of the equalities). . #»e ˛/ is an orthonormal basis adapted to �1 and whose first vector coincides
with the 4-velocity of O0. Note that #»e 0

1 WD �1.
#»e 1/ and #»" is the unit vector of ˘2 \ Eu that

coincides with #»e 0

1 for coplanar boosts

Observer O0 H) O �! P

4-velocity #»u 0 D #»e 0
#»u D �1.

#»e 0/
#»v D �2 ı �1.

#»e 0/

Boost �1 �2

Lorentz fact. �0 D �1 � D �2
Velocity=O0

#»

U 0 D V1
#»e 1

Velocity=O � #»

U D # »

V1

#»

V D #»

V 2

D V1
#»e 0

1 D V2
#»"

�2 ı �1

� 0 D �
#»

V 0 D #»

V

formula (5.45) holds. Taking into account the notation changes listed in Table 6.1,
this formula is exactly Eq. (6.83) obtained here. Similarly, one can check that
Eq. (6.83), which gives the Lorentz factor of �2 ı �1 coincides with Eq. (5.46),
obtained in Chap. 4.

The symmetry of formulas (6.83) in .�1; V1/ $ .�2; V2/ shows that the
composition of boosts sharing the same plane is commutative:

�2 ı�1 D �1 ı�2: (6.84)

Let us now express �2 ı�1 in terms of the rapidities  1 and  2 of �1 and �2.
In view of (6.47) and (6.46), the rapidity  of �2 ı �1 can be inferred from the
result (6.83):

cosh D cosh 1 cosh 2 C sinh 1 sinh 2:

We recognize in the right-hand side the hyperbolic cosine of the sum 1C 2. Hence
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 D  1 C  2 : (6.85)

The composition of coplanar Lorentz boosts is thus very simple in terms of rapidity:
the rapidity of the result is nothing but the sum of the rapidities of the two
components.

Remark 6.27. If, following Remark 6.25 (p. 200), one considers boosts as
“rotations” of imaginary angle '�D i , the result (6.85) simply means that the
composite of two rotations having the same plane is a rotation whose angle is the
sum of the individual angles of each rotation. Moreover, we shall see in Chap. 7
a deeper interpretation of this result: there exists necessarily a parametrization of
coplanar boosts such that the composition law is reduced to the addition of the
parameters (cf. Sect. 7.2.3). It turns out that rapidity is the parameter that makes this
actual.

6.7.2 Thomas Rotation

Let us now investigate the case where the planes˘1 and˘2 of the boosts �1 and �2

are different. We shall treat only the case that corresponds physically to a change
of observer, namely, we shall assume that the intersection between ˘1 and ˘2 is
timelike. We can then introduce the 4-velocity #»u D #»e 0

0 of the “intermediate”
observer O (cf. Fig. 6.12):

˘1 \˘2 D Span. #»e 0
0/;

#»e 0
0 � #»e 0

0 D �1:

The 4-velocity of the first observer15, O 0, is then

#»e 0 WD ��1
1 .

#»e 0
0/ 2 ˘1 (6.86)

and that of the point particle P is

#»e 00
0 WD �2.

#»e 0
0/ D �2 ı�1.

#»e 0/ 2 ˘2: (6.87)

Two vectors that naturally appear in the problem are the following unit vectors
(cf. Fig. 6.12):

#»e 1 2 ˘1 \ Ee0 ;
#»e 1 � #»e 1 D 1 (6.88)

#»" 2 ˘2 \ Ee0
0
; #»" � #»" D 1: (6.89)

15As in Sect. 6.7.1, we are using the notations of Table 6.1 to make the link with Chap. 4.
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Fig. 6.12 Composition of two Lorentz boosts, �1 and �2, of different planes ˘1 and ˘2. The
orthonormal basis . #»e ˛/ is adapted to �1 and such that #»e 3 2 ˘?

1 \˘?

2 . The figure is a view of
the three-dimensional space orthogonal to #»e 3. We have noted #»e 0

0 WD �1.
#»e 0/,

#»e 0

1 WD �1.
#»e 1/

and #»e 00

0 WD �2 ı �1.
#»e 0/. The unit vector #»" 2 ˘2 \Ee0

0
is such that #»" D cos � #»e 0

1 C sin � #»e 2

Conditions (6.88) and (6.89) define #»e 1 and #»" up to some sign; we shall choose this
sign to ensure that #»e 1 has the same direction as the orthogonal projection of #»e 0

0

onto the hyperplane Ee0 and #»" has the same direction as the orthogonal projection
of #»e 00

0 onto the hyperplaneEe0
0
. We define

#»e 0
1 WD �1.

#»e 1/ 2 ˘1 \Ee0
0
: (6.90)

#»e 0
1 and #»" are two vectors of Ee0

0
related to the velocities

#»

V 1 and
#»

V 2 of
transformations �1 and �2 with respect to #»e 0

0 via

#»

V 1 D V1 #»e 0
1 and

#»

V 2 D V2 #»" : (6.91)

Note that
#»
V 1 and

#»
V 2 can be interpreted as physical velocities: � #»

V 1 is the velocity
of O 0 relative to O and

#»
V 2 is the velocity of P relative to O (cf. Fig. 6.12 and

Table 6.1).
The fundamental parameter in the problem is the angle � between the velocities

#»
V 1 and

#»
V 2, i.e. the angle � defined by

cos � WD #»e 0
1 � #»" ; � 2 Œ0; ��: (6.92)

If � D 0 or � D � , the planes ˘1 and ˘2 coincide and we are back to the case
treated in Sect. 6.7.1.

Let us consider the two vector planes ˘?
1 and ˘?

2 . They are both entirely
contained in the spacelike hyperplane Ee0

0
(cf. Fig. 6.12). If ˘1 and ˘2 do not

coincide, ˘?
1 and ˘?

2 do not coincide either and their intersection is necessarily
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a vector line16 of Ee0
0
. Let us then introduce the unit vector #»e 3 2 Ee0

0
such that

˘?
1 \˘?

2 D Span. #»e 3/;
#»e 3 � #»e 3 D 1: (6.93)

This requirement defines #»e 3 up to some sign. The vector #»e 3 plays an important role
because it defines a direction invariant by the composite transformation �2 ı �1.
Indeed, since #»e 3 2 ˘?

1 , �1.
#»e 3/ D #»e 3 and since #»e 3 2 ˘?

2 , �2.
#»e 3/ D #»e 3.

Given that #»e 0
1 2 ˘1 [cf. (6.90)], #»e 0

1 and #»e 3 are two orthogonal unit vectors of
Ee0

0
. Let then #»e 2 be the unique vector of Ee0

0
such that . #»e 0

1;
#»e 2;

#»e 3/ is a right-
handed orthonormal basis of Ee0

0
. We have thus

˘?
1 D Span. #»e 2;

#»e 3/:

Since˘1 D Span. #»e 0;
#»e 1/, the 4-tuple . #»e ˛/ D . #»e 0;

#»e 1;
#»e 2;

#»e 3/ is an orthonormal
basis ofE D ˘1˚˘?

1 . Moreover, it is adapted to �1. Let us compute the matrix of
�2 ı�1 in this basis. We start by writing the action of �1 on the basis . #»e ˛/. Since
the latter is an adapted basis, it suffices to use the matrix (6.43):

�1.
#»e 0/ D #»e 0

0 D c1 #»e 0 C s1 #»e 1 (6.94a)

�1.
#»e 1/ D #»e 0

1 D s1 #»e 0 C c1 #»e 1 (6.94b)

�1.
#»e 2/ D #»e 2; �1.

#»e 3/ D #»e 3; (6.94c)

with the following abbreviations:

c1 WD cosh 1 D �1 and s1 WD sinh 1 D �1V1=c: (6.95)

To evaluate the action of �2, we remark first that the image of . #»e ˛/ by �1,
namely, . #»e 0

0;
#»e 0
1;

#»e 2;
#»e 3/, is a semi-adapted basis to �2, since #»e 0

0 2 ˘2 (cf.
Sect. 6.6.2). In the hyperplane normal to #»e 0

0, Ee0
0
, the direction of the boost �2

is that of #»" . Let us expand this vector on the basis . #»e 0
1;

#»e 2;
#»e 3/ of Ee0

0
. Since

#»" 2 ˘2 and #»e 3 2 ˘?
2 , #»" has no component along #»e 3 and we may write, in view

of (6.92), #»" D cos � #»e 0
1 ˙ sin � #»e 2. We are free to choose #»e 2 in order to have a

C sign in front of sin � , i.e. to ensure that the component of #»" along #»e 2 is positive
(because sin � � 0, since � 2 Œ0; ��/. Indeed we have seen above that #»e 3 is defined
up to some sign, and we take this opportunity to choose . #»e 2;

#»e 3/ to fulfil the two
conditions: (i) . #»e 0

1;
#»e 2;

#»e 3/ is a right-handed orthonormal basis of .Ee0
0
;g/, and

(ii) #»e 2 � #»" � 0. We have then

#»" D cos � #»e 0
1 C sin � #»e 2: (6.96)

16This line is reduced to a point in Fig. 6.12.
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The components of the velocity
#»
V 2 D V2

#»" [Eq. (6.91)] of �2 with respect to #»e 0
0

are then V i
2 D .V2 cos �; V2 sin �; 0/. The generic expression (6.71) of a boost in a

semi-adapted basis yields then

�2.
#»e 0
0/ D c2 #»e 0

0 C s2 cos � #»e 0
1 C s2 sin � #»e 2 (6.97a)

�2.
#»e 0
1/ D s2 cos � #»e 0

0 C
�
1C .c2 � 1/ cos2 �

�
#»e 0
1 C .c2 � 1/ sin � cos � #»e 2

(6.97b)

�2.
#»e 2/ D s2 sin � #»e 0

0 C .c2 � 1/ sin � cos � #»e 0
1 C

�
1C .c2 � 1/ sin2 �

�
#»e 2

(6.97c)

�2.
#»e 3/ D #»e 3; (6.97d)

with abbreviations analogous to (6.95):

c2 WD cosh 2 D �2 and s2 WD sinh 2 D �2V2=c: (6.98)

Substituting (6.94a) and (6.94b) for, respectively, #»e 0
0 and #»e 0

1 in the system (6.97),
we get

�2 ı�1.
#»e 0/ D .c1c2 C s1s2 cos �/ #»e 0 C .s1c2 C c1s2 cos �/ #»e 1

Cs2 sin � #»e 2 (6.99a)

�2 ı�1.
#»e 1/ D

�
s1 C c1s2 cos � C s1.c2 � 1/ cos2 �

�
#»e 0

C �c1 C s1s2 cos � C c1.c2 � 1/ cos2 �
�

#»e 1

C.c2 � 1/ sin � cos � #»e 2 (6.99b)

�2 ı�1.
#»e 2/ D sin � Œc1s2 C s1.c2 � 1/ cos �� #»e 0

C sin � Œs1s2 C c1.c2 � 1/ cos �� #»e 1

C �1C .c2 � 1/ sin2 �
�

#»e 2 (6.99c)

�2 ı�1.
#»e 3/ D #»e 3: (6.99d)

As previously noticed, the vector #»e 3 is invariant under �2 ı�1. The matrix�˛
ˇ of

� D �2 ı�1 in the basis . #»e ˛/ is obtained by storing the four vectors (6.99) in four
columns. Let us first observe that if � D 0, this matrix reduces to (6.82), as it should
(case of coplanar boosts). If � 6D 0 and � 6D � , we notice that the matrix�˛

ˇ is not
symmetric. Therefore it cannot be the matrix of a Lorentz boost in a semi-adapted
basis (cf. Sect. 6.6.2). According to the polar decomposition theorem (Sect. 6.5), �

can be written as the product of a spatial rotation R by a boost S [Eq. (6.57)]:

� D �2 ı�1 D S ıR ; (6.100)
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with the plane of R contained in Ee0 and the plane of S containing #»e 0. The couple
.S ;R/ is unique and is determined as follows.

Since the plane of the spatial rotation R is orthogonal to #»e 0, we have necessarily
R. #»e 0/ D #»e 0, so that the image of #»e 0 by S is �2 ı �1.

#»e 0/. It is given directly
by (6.99a):

#»e 00
0 D S . #»e 0/ D .c1c2 C s1s2 cos �/ #»e 0 C .s1c2 C c1s2 cos �/ #»e 1 C s2 sin � #»e 2:

(6.101)

The plane˘ of the Lorentz boost S is entirely determined by #»e 0 and #»e 00
0 :

˘ D Span. #»e 0;
#»e 00
0/:

The Lorentz factor of S is � D � #»e 0 � #»e 00
0 [cf. Eq. (6.64)]. Using (6.101), we get

� D c1c2 C s1s2 cos �; (6.102)

that is, in view of (6.95) and (6.98),

� D �1�2
�
1C V1V2

c2
cos �

	
: (6.103)

As a check, if � D 0, we recover (6.83). The velocity
#»

V of S with respect to #»e 0

is given by (6.66), � =c
#»

V being the orthogonal projection of S . #»e 0/ onto Ee0 . We
read on (6.101) that

�

c

#»

V D .s1c2 C c1s2 cos �/ #»e 1 C s2 sin � #»e 2: (6.104)

Substituting (6.103) for � , we get

#»
V D 1

1C V1V2 cos �
c2

�
.V1 C V2 cos �/ #»e 1 C V2

�1
sin � #»e 2

�
: (6.105)

If � D 0, we obtain
#»

V D V #»e 1 with V D .V1 C V2/=.1 C V1V2=c
2/; i.e. we

recover (6.83). Besides, recalling that S describes the transition from observer O 0
to the point particle P (cf. Table 6.1),

#»

V is nothing but the velocity of P relative
to O 0, denoted by

# »

V 0 in Chap. 4. Similarly � #»
V 1 is the velocity of O 0 relative to O ,

denoted by
#»
U in Chap. 4, and

#»
V 2 the velocity of P relative to O , denoted by

#»
V

in Chap. 4. Moreover, � #»e 1 is the vector denoted by #»e 0 in Sect. 5.3.2, and � #»e 0
1

the vector denoted by #»e , so that U 0 D V1 and the decomposition (5.31) becomes
#»
V 2 D �Vk #»e 0

1 C
#»
V ? with, from (6.91) and (6.96), Vk D �V2 cos � and

#»
V ? D

�V2 sin � #»e 2. On its side, the decomposition (5.33) is written
#»

V 0 D �V 0
k

#»e 1C #»

V 0?.
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Equation (6.105) is then in perfect agreement with formulas (5.40a)–(5.40b). Of
course (6.103) agrees with (5.40c).

In view of (6.72) and (6.104), we are in position to write the matrix of the boost
S in the basis . #»e ˛/:

S˛ˇ D

0

BBBBB@

c1c2 C s1s2 cos � s1c2 C c1s2 cos � s2 sin � 0

s1c2 C c1s2 cos � 1C .s1c2Cc1s2 cos �/2

1C�
s2 sin �.s1c2Cc1s2 cos �/

1C� 0

s2 sin � s2 sin �.s1c2Cc1s2 cos �/
1C� 1C s22 sin2 �

1C� 0

0 0 0 1

1

CCCCCA
: (6.106)

Let us determine now the second element of the polar decomposition (6.100) of
�2 ı �1, namely, the spatial rotation R. Since �2 ı �1.

#»e 3/ D #»e 3 and S . #»e 3/ D
#»e 3, we have R. #»e 3/ D S �1 ı �2 ı �1.

#»e 3/ D #»e 3. In addition R. #»e 0/ D #»e 0.
Accordingly, the plane of the spatial rotation R is (cf. Sect. 6.4.3)

˘R D Span. #»e 1;
#»e 2/ (6.107)

and the matrix of R in the basis . #»e ˛/ is of the type (6.39), with the permutation
. #»e 1;

#»e 2;
#»e 3/! . #»e 3;

#»e 1;
#»e 2/:

R˛ˇ D

0
BB@

1 0 0 0

0 cos'T � sin 'T 0

0 sin 'T cos'T 0

0 0 0 1

1
CCA ; (6.108)

with 'T 2 Œ0; 2�Œ. The spatial rotation R is called Thomas rotation.

Remark 6.28. Thomas rotation is sometimes called Wigner rotation (see, e.g.
Ferraro (2007)) or Thomas–Wigner rotation (see, e.g. Rhodes and Semon (2004)).
'T is sometimes called Wigner angle (Aravind 1997). Thomas rotation is at the root
of Thomas precession, which we shall study in Sect. 12.5.

Remark 6.29. We have not encountered Thomas rotation in Chap. 5 because we
were in fine relating the 4-velocity of particle P , #»v D �2 ı �1.

#»e 0/, to the 4-
velocity of observer O 0, #»u 0 D #»e 0 (cf. Table 6.1), and the relation between the two
4-velocities is entirely described by the Lorentz boost S , as for any two 4-velocities
(cf. the grey box at the end of Sect. 6.6.1). The supplementary rotation that appears
here is due to the fact that we are actually considering the transformation of entire
orthonormal bases and not only of the first element of these bases (the 4-velocity).
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6.7.3 Thomas Rotation Angle

We read on (6.108) that

cos'T D R. #»e 1/ � #»e 1 D ŒS �1 ı�2 ı�1.
#»e 1/� � #»e 1 D Œ�2 ı�1.

#»e 1/� � S . #»e 1/;

where the last equality stems from the fact that S is a Lorentz transformation.
Substituting (6.99) for �2 ı�1.

#»e 1/ and reading S . #»e 1/ on (6.106), we get

cos'T D �
�
s1 C c1s2 cos � C s1.c2 � 1/ cos2 �

�
.s1c2 C c1s2 cos �/

C �c1 C s1s2 cos � C c1.c2 � 1/ cos2 �
� �
1C .s1c2 C c1s2 cos �/2

1C �
�

C.c2 � 1/ sin � cos �
s2 sin �.s1c2 C c1s2 cos �/

1C � :

Expanding and taking into account simplifications due to the identities c21 � s21 D 1,
c22 � s22 D 1 and sin2 � D 1 � cos2 � , we obtain

cos'T D 1

1C �
�
c1 C c2 C s1s2 cos � C .c1 � 1/.c2 � 1/ cos2 �

�
:

Thanks to (6.102), we may rewrite this expression as

cos'T D 1 � .c1 � 1/.c2 � 1/
1C � sin2 �: (6.109)

Similarly, we read on (6.108) that

sin'T D R. #»e 1/ � #»e 2 D ŒS �1 ı�2 ı�1.
#»e 1/� � #»e 2 D Œ�2 ı�1.

#»e 1/� � S . #»e 2/:

Substituting (6.99) for �2 ı�1.
#»e 1/ and reading S . #»e 2/ on (6.106), we get

sin'T D �
�
s1 C c1s2 cos � C s1.c2 � 1/ cos2 �

�
s2 sin �

C �c1 C s1s2 cos � C c1.c2 � 1/ cos2 �
� s2 sin �.s1c2 C c1s2 cos �/

1C �

C.c2 � 1/ sin � cos �

 
1C s22 sin2 �

1C �

!
:

After some expansion and simplifications, we obtain

sin 'T D � sin �

1C � Œs1s2 C .c1 � 1/.c2 � 1/ cos�� : (6.110)
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Let us reexpress the results (6.109) and (6.110) by making explicit c1, s1, c2 and s2
via (6.95) and (6.98):

cos'T D 1 � .�1 � 1/.�2 � 1/
1C � sin2 � (6.111a)

sin'T D � sin �
�1�2

1C �
V1V2

c2

�
1C �1

1C �1
�2

1C �2
V1V2

c2
cos �

	
: (6.111b)

A few comments are appropriate. First of all, if � D 0, (6.111) leads to 'T D 0,
which implies R D Id. �2 ı�1 is then a pure Lorentz boost, in agreement with the
analysis of Sect. 6.7.1. Next, we notice that the property sin � � 0 (arising from the
definition of � as lying in the interval Œ0; ��) implies sin'T � 0, hence

�� � 'T � 0 : (6.112)

Thomas rotation is thus taking place in the clockwise direction in the plane ˘R D
Span. #»e 1;

#»e 2/. Let us recall that the vector #»e 2 has been chosen so that #»e 0
1 �e0

0

#»e 2

has the same direction as
#»
V 1 �e0

0

#»
V 2.

In the particular case where � D �=2 (˘1 and˘2 are orthogonal planes), (6.103)
reduces to � D �1�2 and formulas (6.111) simplify to

cos'T D �1 C �2
1C �1�2

�
� D �

2

�
(6.113a)

sin 'T D � �1�2

1C �1�2
V1V2

c2

�
� D �

2

�
: (6.113b)

By means of (6.103), we can eliminate the angle � from formula (6.111a).
Indeed (6.103) leads to

sin2 � D 1� cos2 � D 1 � c4 .� � �1�2/2
.�1V1/2.�2V2/2

D 1� .� � �1�2/2
.� 2

1 � 1/.� 2
2 � 1/

: (6.114)

Substituting this expression for sin2 � in (6.111a), we get

cos'T D 1 � 1

1C �
�
.�1 � 1/.�2 � 1/� .� � �1�2/2

.�1 C 1/.�2 C 1/
�
;

or equivalently,

cos'T D .1C � C �1 C �2/2
.1C � /.1C �1/.1C �2/ � 1: (6.115)
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This formula is remarkably symmetric with respect to the three Lorentz factors. In
view of the identity cos'T D 2 cos2.'T=2/� 1, we can rewrite it as

cos
'T

2
D 1C � C �1 C �2p

2.1C � /.1C �1/.1C �2/
: (6.116)

Moreover, we may let appear the rapidities  ,  1 and  2 of the boosts S , �1 and
�2, which are related to the Lorentz factors via � D cosh . Thanks to the identity
1C cosh D cosh2. =2/, (6.116) becomes then Macfarlane formula:

cos
'T

2
D 1C cosh C cosh 1 C cosh 2
4 cosh. =2/ cosh. 1=2/ cosh. 2=2/

: (6.117)

Similarly, we can rewrite formula (6.111b) for sin'T by expressing V1V2 cos � in
terms of � , �1 and �2, thanks to (6.103). We obtain in this way Stapp formula:

sin 'T D � sin � �1�2
V1V2

c2
1C � C �1 C �2

.1C � /.1C �1/.1C �2/ : (6.118)

In view of the identity sin 'T D 2 sin.'T=2/ cos.'T=2/ and of (6.116), we get then

sin
'T

2
D � sin �

�1�2 V1V2=c
2

p
2.1C � /.1C �1/.1C �2/

: (6.119)

We can also use the identity �1V1 D c

q
� 2
1 � 1 to let appear only Lorentz factors

in this formula and obtain the simple expression:

sin
'T

2
D � sin �

s
.�1 � 1/.�2 � 1/

2.1C � / : (6.120)

Taking into account the identities cosh 1 � 1 D 2 sinh2. 1=2/ and cosh C 1 D
2 cosh2. =2/, (6.120) can be rewritten as

sin
'T

2
D � sin �

sinh. 1=2/ sinh. 2=2/

cosh. =2/
: (6.121)

Remark 6.30. If necessary, we may eliminate sin � from the above formulas and let
appear only the Lorentz factors � , �1 and �2. It suffices to use (6.114) in the form
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sin � D
�
1C 2� �1�2 � � 2 � � 2

1 � � 2
1

.� 2
1 � 1/.� 2

2 � 1/
�1=2

: (6.122)

Historical note: The problem of the composition of two noncoplanar Lorentz
boosts has been investigated by Arnold Sommerfeld (cf. p. 27) in 1909 (Sommerfeld
1909) and by Émile Borel17 in 1913 (Borel 1913, 1914). These two authors have
notably obtained formula (6.103), giving the Lorentz factor of the boost S . Let us
note that they have first written formula (6.102) involving rapidities and hyperbolic
trigonometry.

Regarding Thomas rotation per se, it seems that it has been mentioned first by
Émile Borel in 1913 (Borel 1913). In the particular case � D �=2, it had been
noticed as early as 1909 by Arnold Sommerfeld (1909) (cf. the discussion in Belloni
and Reina (1986)). Still in this case, formula (6.113b) has been obtained by Paul
Langevin (cf. p. 40) in 1926 (Langevin 1926). The expression of the rotation angle
has been obtained by Llewellyn Thomas18 in 1926 in the particular case where the
velocity V2 is infinitely small (Thomas 1926, 1927). This is the case that intervenes
in the study of Thomas precession, to be discussed in Sect. 12.5. In a series of
works started in 1939 (Wigner 1939, 1957), Eugene P. Wigner19 investigated Lorentz
transformations that leave invariant the 4-momentum vector #»p of a particle (this
vector will be defined in Chap. 9; it is parallel to the 4-velocity of the particle).
Wigner stressed that the product of three Lorentz boosts of different planes that
leaves #»p invariant is not the identity but a spatial rotation in the hyperplane
normal to #»p: this is Thomas rotation, as one can easily see by rewriting (6.100) as
S �1 ı�2 ı�1 D R. Since R. #»e 0/ D #»e 0, it is then clear that the combination of the
three boosts S �1, �2 and �1 leaves #»e 0 invariant (one may always consider #»e 0 as
being related to the 4-momentum of a particle by #»e 0 D #»p=k #»pkg). It seems that the
name Wigner rotation was given to R by the French physicist Amitabha Chakrabarti
in 1964 (Chakrabarti 1964). Let us note that Wigner has not given the expression
of the angle 'T in any of his works, except in the particular case � D �=2 (Wigner
1957), where he recovered Langevin formula (6.113b) (Langevin 1926). It is only
in 1956, i.e. 30 years after Thomas’ study, that an explicit and general formula was
given for 'T. It has been obtained by the American physicist Henry P. Stapp (1956),
in the form (6.118). The same formula has also been derived by the Russian physicist
Vladimir Ivanovich Ritus in 1961 (Ritus 1961). Formula (6.117), which involves
cos'T, has been obtained by Alan J. Macfarlane in 1962 (Macfarlane 1962).

17Émile Borel (1871–1956): French mathematician, pioneer of measure theory and of the study of
probabilities, founder of the Henri Poincaré Institute in Paris and cofounder of CNRS.
18Llewellyn H. Thomas (1903–1992): British physicist, who moved to the USA in 1929; known
for his works in atomic physics.
19Eugene P. Wigner (1902–1995): Hungarian mathematician and theoretical physicist, naturalized
American in 1937; he performed fundamentals studies on symmetries in quantum mechanics, as
well as in nuclear physics and particle physics; he received the Nobel Prize in Physics in 1963.
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6.7.4 Conclusion

Lorentz boosts sharing the same plane form a subgroup of the restricted Lorentz
group SOo.3; 1/. Moreover, this subgroup is abelian (i.e. commutative; cf. (6.84)).
On the other hand, the set of all Lorentz boosts does not constitute a subgroup
of SOo.3; 1/, since the composition of two boosts of different planes does not
yield a boost, but the product of a boost by a spatial rotation, the latter being
known as Thomas rotation. As a consequence, the polar decomposition (6.57) does
not generate a “factorization” of the restricted Lorentz group SOo.3; 1/ in two
groups. One can even show that such a factorization does not exist, in the sense
that SOo.3; 1/ is a simple group (cf. Appendix A). We shall not establish here
the simplicity of SOo.3; 1/. The demonstration can be found p. 146 of Sexl and
Urbantke (2001).

Historical note: The simplicity of the restricted Lorentz group SOo.3; 1/ has been
shown by Eugene P. Wigner (cf. p. 215) in 1939 (Wigner 1939).



Chapter 7
Lorentz Group as a Lie Group

7.1 Introduction

As the preceding one, this chapter is purely mathematical. Moreover, it can be
skipped during a first lecture. It contains mathematics (in particular topology) of
a level slightly higher than those involved up to now, which were mostly linear
algebra. However, no a priori knowledge about Lie groups is required; all the
necessary notions are introduced in the text, on the specific example of the Lorentz
group. As for Chap. 6, the definitions of basic algebraic concepts used in this chapter
are recalled in Appendix A.

7.2 Lie Group Structure

7.2.1 Definitions

The Lorentz group O.3; 1/ is a “continuous” group, in the sense that its elements
depend on continuous parameters (for instance, rapidity or rotation angle). More
precisely, O.3; 1/ is a Lie group (Choquet-Bruhat et al. 1977; Godement 2004;
Eschrig 2011):

• It is a group (for the composition law ı).
• It is also a differentiable manifold.
• The operations .�1;�2/ 7! �1 ı�2 and � 7! ��1 are continuous.1

1One can show that they are then necessarily differentiable.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 7, © Springer-Verlag Berlin Heidelberg 2013
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In this definition, there appears the notion of differentiable manifold. A (real)
manifold is a Hausdorff2 second countable3 topological space M such that each
point has a neighbourhood homeomorphic4 to an open set of R

n. The integer n,
which must be the same for all the neighbourhoods, is called the dimension of the
manifold. Broadly speaking, a manifold is a set M such that on any part that is not
too large, one can label the points by n real numbers and consider that M locally
“resembles” R

n. On a larger part of M , the resemblance might be lost; typical
examples are the sphere and the torus: both locally resemble R

2, but obviously not
globally.

Given an open subset U � M , a coordinate system or chart on U is a
homeomorphism:

˚ W U �M �! ˚.U / � R
n

p 7�! .x1; : : : ; xn/:

Usually, one needs more than one coordinate system to cover M . An atlas on
M is a finite set of pairs .Uk; ˚k/1�k�K , where K is a nonzero integer, Uk an
open set of M and ˚k a chart on Uk , such that the union of all Uk covers M .
A differentiable manifold (as considered in the above definition of a Lie group) is
a manifold equipped with an atlas such that when two charts overlap, the mapping
converting the coordinates of one chart to those of the other chart is a differentiable
function R

n ! R
n.

In the case of a Lie group, the dimension n of the group considered as a manifold
is called the dimension of the Lie group, and the coordinates are rather called the
parameters of the group.

Example 7.1. The group of rotations in the Euclidean plane, SO.2/, is a Lie
group of dimension 1, since it has only one parameter: the rotation angle. In the
three-dimensional Euclidean space, the group of rotations, SO.3/, is a Lie group
of dimension 3, the 3 parameters being, for instance, the 3 Euler angles defining a
rotation [cf. (7.79) below] or the 3 angles .�; �; '/, where .�; �/ give the direction
of the rotation axis and ' is the rotation angle.

2 Hausdorff means separated: any two distinct points admit disjoint open neighbourhoods.
3A topological space is second-countable iff there exists a countable family .Uk/k2N of open
sets such that any open set of can be written as the union (possibly infinite) of some members
of this family. This property excludes “unreasonably large” manifolds. In particular, it allows for
a differentiable manifold of dimension n to be embedded smoothly in the Euclidean space R

2n

(Whitney theorem).
4A homeomorphism between two topological spaces is a bijective continuous map, whose inverse
is continuous as well.
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7.2.2 Dimension of the Lorentz group

The Lorentz group O.3; 1/ is a Lie group of dimension 6.

Proof. Given an orthonormal basis . #»e ˛/ of .E;g/, each element � of O.3; 1/ can
be uniquely represented by its matrix � D .�˛

ˇ/ with respect to . #»e ˛/. The set
of all real-valued 4 � 4 matrices is obviously a manifold of dimension 16. The
necessary and sufficient condition for � to belong to O.3; 1/ is that its matrix
obeys (6.12): t��� D �. We observe that this relation is an equality between
symmetric matrices, whatever the value of�: this is obvious for the right-hand side,
which is Minkowski matrix � D diag.�1; 1; 1; 1/. For the left-hand side, it suffices
to consider the transpose:

t �t���
� D t� t�„ƒ‚…

�

t �t�
�

„ƒ‚…
�

D t���;

which shows that it is indeed symmetric. Equation (6.12) is thus a set of 10
independent conditions—the 10 independent components of a symmetric 4 � 4
matrix. From the initial 16 degrees of freedom of a real 4 � 4 matrix, there remains
then 16 � 10 D 6 of them. Hence Lorentz matrices can be parametrized by 6 real
numbers. Consequently the dimension of the Lie group O.3; 1/ is 6. ut
It is instructive to give a second proof, by means of the polar decomposition
established in Sect. 6.5:

Proof. The polar decomposition theorem states that given a unit timelike vector
#»e 0, any element � of the restricted Lorentz group SOo.3; 1/ can be written in a
unique way as the product of a spatial rotation R whose plane is normal to #»e 0

by a Lorentz boost S whose plane contains #»e 0 [cf. (6.57)]. Three parameters are
required to specify R since it is a rotation in the three-dimensional Euclidean space
.Ee0 ;g/ (cf. Example 7.1). In addition, we have seen in Sect. 6.6.1 that the boost
S is entirely defined by a vector

#»
V in Ee0 , called the velocity of S with respect

to #»e 0. Since
#»

V has 3 independent components, we deduce that 3 parameters are
necessary to represent S . Therefore, from the polar decomposition, we see that
3C3 D 6 real parameters are involved to represent �. In other words, the dimension
of the Lie group SOo.3; 1/ is 6. Moreover, we have seen in Sect. 6.3.4 that the
full Lorentz group O.3; 1/ has four components [cf. (6.19)], one of which being
SOo.3; 1/ and the three others being deduced from SOo.3; 1/ by the product with
one of the inversion operators I , P and T . We conclude that O.3; 1/ has the same
dimension than SOo.3; 1/, namely, 6. ut
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The subgroup formed by the Lorentz boosts having the same plane
(cf. Sect. 6.7.1) is a Lie group of dimension 1, the only parameter being the Lorentz
factor � , or equivalently the rapidity  .

O.3; 1/ is actually a subgroup of the Lie group GL.E/ formed by all invertible
endomorphisms of E (cf. Appendix A). The dimension of GL.E/ is 16. Similarly,
SO.3; 1/ and SOo.3; 1/ are subgroups of the Lie group SL.E/ formed by all the
endomorphisms of E whose determinant is 1. The dimension of SL.E/ is 15.

7.2.3 Topology of the Lorentz Group

According to the polar decomposition with respect to a unit timelike vector #»e 0

(cf. Sect. 6.5), any element of the restricted Lorentz group SOo.3; 1/ can be written
in a unique way � D S ı R, where R is a spatial rotation whose plane is normal
to #»e 0 and S is a boost whose plane contains #»e 0. We deduce immediately that the
parameters of the restricted Lorentz group SOo.3; 1/ can be chosen as follows:

.�1; �1; '; �2; �2;  / 2 Œ0; �� � Œ0; 2�Œ�Œ0; �� � Œ0; �� � Œ0; 2�Œ�Œ0;1Œ; (7.1)

where .�1; �1/ define the axis of the rotation R in Ee0 (�1 2 Œ0; �� being the
colatitude and �1 2 Œ0; 2�Œ the azimuth), ' is the angle of R: ' 2 Œ0; �� since a
rotation of angle ' 2��; 2�Œ is equal to a rotation of angle 2� � ' in the opposite
direction .� � �1; 2� � �1/. Moreover, if ' D � , the points of parameters .�1; �1/
and .� � �1; 2� � '1/ must be identified, for they correspond to the same rotation.
Besides, .�2; �2/ define the axis of the boost S (intersection of its plane with Ee0 ,
�2 2 Œ0; �� being the colatitude �2 2 Œ0; 2�Œ the azimuth) and  2 Œ0;1Œ is the
rapidity of S . Since  2 Œ0;1Œ, we deduce from the parametrization (7.1) that
SOo.3; 1/ is not compact, which implies that O.3; 1/ is not compact as well:

The Lorentz group O.3; 1/ and the restricted Lorentz group SOo.3; 1/ are
non-compact spaces.

Remark 7.1. The conclusion would of course have been the same if we had chosen
as parameter the Lorentz factor � 2 Œ1;1Œ instead of  , or the velocity V 2 Œ0; cŒ,
the interval Œ0; cŒ being non-compact for it is not closed. On the opposite, the rotation
group of the three-dimensional Euclidean space, SO.3/, is a compact space.

Remark 7.2. We have seen in Sect. 6.7.1 that the set of all boosts having the
same plane is a subgroup of SOo.3; 1/. It is a Lie group of dimension one and
non-compact, since it can be parametrized by the rapidity  2 Œ0;C1Œ. Now a
theorem about Lie groups stipulates that any non-compact Lie group of dimension
one admits a parametrization that makes it diffeomorphic to .R;C/ (group formed
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by the set of real numbers equipped with the addition) (Lévy-Leblond and Provost
1979). In the present case, the parametrization that exhibits this diffeomorphism is
rapidity, thanks to the addition law (6.85).

Beside the non-compactness, another consequence of (7.1) is

The restricted Lorentz group SOo.3; 1/ is connected.

This follows immediately from the connectedness of the space Œ0; �� �
Œ0; 2�Œ�Œ0; ���Œ0; ���Œ0; 2�Œ�Œ0;1Œ. On the other hand, O.3; 1/ is not connected:
along with (6.26), the decomposition (6.19) shows that

The Lorentz group O.3; 1/ has four connected components:

SOo.3; 1/; I SOo.3; 1/ D SOa.3; 1/;

T SOo.3; 1/ D O�
a .3; 1/ and P SOo.3; 1/ D O�

o .3; 1/;

where the notations are those of Sect. 6.3.4. Note that only SOo.3; 1/ is a Lie
subgroup. Furthermore, SOo.3; 1/ is the connected component that contains
the identity.

7.3 Generators and Lie Algebra

7.3.1 Infinitesimal Lorentz Transformations

Let us focus on infinitesimal Lorentz transformations, i.e. transformations infinitely
close to the identity. They are necessary in the connected component of O.3; 1/
that contains the identity, namely, SOo.3; 1/. They are thus restricted Lorentz
transformations. Let us write such a transformation as

� D IdC "L ; (7.2)

where " 2 R is a small parameter and L 2 L .E/, L .E/ being the vector space of
all endomorphisms on E (i.e. linear maps E ! E). From the definition (6.2) of a
Lorentz transformation, one has the successive equivalences:
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� 2 O.3; 1/ ” 8. #»u ; #»v / 2 E2; �. #»u / ��. #»v / D #»u � #»v

” 8. #»u ; #»v / 2 E2; Œ #»u C "L. #»u /� � Œ #»v C "L. #»v /� D #»u � #»v

” 8. #»u ; #»v / 2 E2; #»u � #»v C "Œ #»u �L. #»v /C #»v �L. #»u /� D #»u � #»v

� 2 O.3; 1/ ” 8. #»u ; #»v / 2 E2; #»u �L. #»v / D � #»v �L. #»u /; (7.3)

where to get the last but one line, we have to drop the second-order term in ".
Introducing the set

so.3; 1/ WD
n
L 2 L .E/ = 8. #»u ; #»v / 2 E2; #»u �L. #»v / D � #»v �L. #»u /

o
; (7.4)

we conclude that for any infinitesimal ",

IdC "L 2 O.3; 1/ ” L 2 so.3; 1/ : (7.5)

Note the lower-case letters in the symbol so.3; 1/, not to be confused with SO.3; 1/
(the proper Lorentz group introduced in Sect. 6.3.1). By virtue of (7.5), one may
associate with any element of so.3; 1/ an infinitesimal Lorentz transformation. We
shall see below that one can even associate a finite Lorentz transformation, via the
so-called exponential map.

7.3.2 Structure of Lie Algebra

It is clear that so.3; 1/ is a vector subspace of L .E/. Indeed, if L1 and L2

both satisfy (7.3), then for any ˛ 2 R, ˛L1 C L2 satisfies (7.3) too. Let us
determine the dimension of this vector space. The dimension of L .E/ is 16 (for
one can identify each element of L .E/ by its matrix in a given basis and the
dimension of the vector space formed by all real 4 � 4 matrices is 16). Let us
express the condition L 2 so.3; 1/ in terms of the matrix L D .L˛ˇ/ of L with
respect to an orthonormal basis . #»e ˛/. The matrix of g in . #»e ˛/ being Minkowski
matrix � D .�˛ˇ/, the condition (7.3) becomes �˛ˇu˛Lˇ
v
 D ��˛ˇv˛Lˇ
u
 , i.e.

�˛ˇL
ˇ

u˛v
 D ��
ˇLˇ˛u˛v
 ; hence, �˛ˇL

ˇ

 D ��
ˇLˇ˛ . We recognize in �˛ˇL

ˇ



the matrix product of � by L; the condition L 2 so.3; 1/ is thus equivalent to

�L D �t.�L/ : (7.6)

In other words, L 2 so.3; 1/ iff the matrix �L is antisymmetric. This gives 10
constraints on the components of �L, and thus 10 constraints on the components of
L D � .�L/ (recall that ��1 D �). We conclude that the dimension of the vector
space so.3; 1/ is 16� 10 D 6.
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Besides, we know that the vector space L .E/ equipped with the composition
law ı is an algebra over R (cf. Appendix A). It is then natural to ask whether so.3; 1/
is a subalgebra of .L .E/; ı/, in addition of being a vector subspace of L .E/. The
answer is no, for so.3; 1/ is not stable under ı: if L1 2 so.3; 1/ and L2 2 so.3; 1/,
in general L1 ı L2 62 so.3; 1/. Indeed, applying the property (7.3) to successively
L1 and L2, we get

8. #»u ; #»v / 2 E2; #»u �L1 ıL2.
#»v / D �L2.

#»v / �L1.
#»u / D #»v �L2 ıL1.

#»u /; (7.7)

which shows that a priori L1ıL2 does not satisfy (7.3). On the other hand, switching
the roles of L1 and L2 in (7.7) and subtracting the result from (7.7), we get

8. #»u ; #»v / 2 E2; #»u � ŒL1;L2�.
#»v / D � #»v � ŒL1;L2�.

#»u /; (7.8)

where we have introduced the commutator of L1 and L2:

ŒL1;L2� WD L1 ıL2 �L2 ıL1 : (7.9)

ŒL1;L2� is an endomorphism of E and (7.8) shows that

8.L1;L2/ 2 so.3; 1/ � so.3; 1/; ŒL1;L2� 2 so.3; 1/: (7.10)

so.3; 1/ is thus stable under the commutator. Moreover, the commutator obeys the
following three properties, where L1, L2 and L3 are generic elements of so.3; 1/
and ˛ 2 R:

• Œ; � is antisymmetric:
ŒL1;L2� D �ŒL2;L1�I (7.11)

• Œ; � is bilinear, i.e. linear with respect to each of its arguments:

Œ˛L1 CL2;L3� D ˛ŒL1;L3�C ŒL2;L3�: (7.12)

• Œ; � satisfies Jacobi identity:

ŒL1; ŒL2;L3��C ŒL2; ŒL3;L1��C ŒL3; ŒL1;L2�� D 0: (7.13)

This last identity can be checked easily from the definition (7.9) of the
commutator.

Any vector space endowed with an internal composition law Œ; � that satisfies
properties (7.11), (7.12) and (7.13) is called a Lie algebra. The internal
composition law Œ; � is called Lie bracket. The space so.3; 1/, endowed with
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Œ; � as defined by (7.9), is thus a Lie algebra. It is called the Lie algebra of
the Lorentz group, or simply Lorentz algebra. Note that the dimension of
so.3; 1/, as a vector space over R, is the same as that of the Lorentz group
O.3; 1/, as a manifold over R, namely, 6. Actually this property holds for any
Lie algebra associated with a Lie group.

Remark 7.3. Thanks to the bilinearity of the Lie bracket, a Lie algebra is an algebra
over R for the “product” Œ; � (cf. Appendix A), but this algebra is not associative; for
in general, ŒL1; ŒL2;L3�� 6D ŒŒL1;L2�;L3�.

Remark 7.4. The reader familiar with differentiable manifolds will have noticed
that so.3; 1/ is the tangent space of the manifold O.3; 1/ at the point Id [cf.
Eq. (7.2)]. It is thus not surprising that the dimension of so.3; 1/ is the same as
that of the basis manifold.

Remark 7.5. In group theory, the commutator of two elements a and b is the
element aba�1b�1. It is equal to the identity element iff a and b commute. In the
group .SOo.3; 1/; ı/, the commutator of two Lorentz transformations �1 and �2 is
thus �1 ı �2 ı ��1

1 ı ��1
2 . If �1 and �2 are two infinitesimal transformations of

the type (7.2), �1 D IdC "L1, �2 D IdC "L2, the commutator of �1 and �2, in
the group-theoretical sense, is related to the commutator of L1 and L2, in the Lie
algebra sense [i.e. defined by (7.9)], by

�1 ı�2 ı��1
1 ı��1

2 D IdC "2ŒL1;L2�CO."3/: (7.14)

To show it, it suffices to observe that at the second order in ", ��1
1 D Id � "L1 C

"2L1 ıL1 (idem for ��1
2 ) and to compute �1 ı�2 ı��1

1 ı��1
2 , still at the second

order in ". In particular, if �1 and �2 commute, ŒL1;L2� D 0.

7.3.3 Generators

Let us look for a basis of the vector space so.3; 1/. To this aim, let us employ a
matrix representation of the elements of so.3; 1/. Let . #»e ˛/ be an orthonormal basis
of .E;g/. We have seen above that an endomorphism L belongs to so.3; 1/ iff its
matrix L D .L˛ˇ/ with respect to . #»e ˛/ is such that �L is an antisymmetric matrix
[Eq. (7.6)], i.e. iff there exist 6 real numbers k1, k2, k3, j1, j2 and j3 such that

.�L/˛ˇ D

0

BB@

0 �k1 �k2 �k3
k1 0 �j3 j2
k2 j3 0 �j1
k3 �j2 j1 0

1

CCA :
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The matrixL is then obtained viaLD ��1 .�L/. Since ��1D � D diag.�1; 1; 1; 1/,
we get

L˛ˇ D

0

BB@

0 k1 k2 k3

k1 0 �j3 j2
k2 j3 0 �j1
k3 �j2 j1 0

1

CCA : (7.15)

Note the change in the signs of the ki terms in the first row with respect to �L; as
a result, the matrix L is neither antisymmetric nor symmetric. In view of (7.15), a
basis of so.3; 1/ is formed by the 6 endomorphisms K 1, K 2, K 3, J 1, J 2 and J 3

whose matrices in the orthonormal basis . #»e ˛/ are

.K1/
˛
ˇ D

0
BB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCA ; .K2/

˛
ˇ D

0
BB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCA ; (7.16a)

.K3/
˛
ˇ D

0

BB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCA ; .J1/
˛
ˇ D

0

BB@

0 0 0 0

0 0 0 0

0 0 0 �1
0 0 1 0

1

CCA ; (7.16b)

.J2/
˛
ˇ D

0

BB@

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

1

CCA ; .J3/
˛
ˇ D

0

BB@

0 0 0 0

0 0 �1 0
0 1 0 0

0 0 0 0

1

CCA : (7.16c)

Accordingly, any element L of so.3; 1/ can be written in a unique way as

L D k1K 1 C k2K 2 C k3K 3 C j1J 1 C j2J 2 C j3J 3; (7.17)

with .k1; k2; k3; j1; j2; j3/ 2 R
6. The endomorphisms K 1, K 2, K 3, J 1, J 2 and J 3

are called the generators of the Lorentz group associated with the orthonormal
basis . #»e ˛/. Note that the matrices of the K i ’s are symmetric and those of the J i ’s
are antisymmetric. Moreover, the action of J i is nothing but the cross product by
#»e i in Ee0 . Indeed, from the definition (3.46) of the cross product, one has, for any
vector #»v D v˛ #»e ˛ 2 E ,

#»e 1 �e0

#»v D #»� . #»e 0;
#»e 1;

#»v ; : /D v˛ #»� . #»e 0;
#»e 1;

#»e ˛; : /

D v2 #»� . #»e 0;
#»e 1;

#»e 2; : /Cv3 #»� . #»e 0;
#»e 1;

#»e 3; : /D v2 #»e 3� v3 #»e 2DJ 1.
#»v /:



226 7 Lorentz Group as a Lie Group

We establish analogous formulas for J 2 and J 3, so that we can conclude

8 #»v 2 E; J i .
#»v / D #»e i �e0

#»v ; 1 � i � 3: (7.18)

A condensed writing of the generators is obtained by introducing the 6
endomorphisms defined by

J ˛ˇ WD he˛; �i #»e ˇ � heˇ; �i #»e ˛ ; ˛; ˇ 2 f0; 1; 2; 3g = ˛ < ˇ: (7.19)

Let us recall that e˛ is the linear form associated with the vector #»e ˛ by metric
duality (cf. Sect. 1.6) and the above notation means that for any vector #»v 2 E ,
J ˛ˇ.

#»v / is the vector of E defined by J ˛ˇ.
#»v / D he˛; #»v i #»e ˇ � heˇ; #»v i #»e ˛ D

. #»e ˛ � #»v / #»e ˇ�. #»e ˇ � #»v / #»e ˛ . Since he0; #»e 0i D �1, he0; #»e i i D 0 and hei ; #»e j i D ıij ,
one checks easily that

K i D �J 0i ; J 1 DJ 23; J 2 D �J 13; J 3 DJ 12: (7.20)

Let us pick as infinitesimal Lorentz transformation a spatial rotation R of angle
ı' 	 1 and axis #»n D ni #»e i in Ee0 . Expanding Rodrigues formula (6.41) at first
order in ı', we get, for any #»v 2 E ,

R. #»v / D #»v C ı' ni #»e i �e0

#»v :

Now (7.18) gives #»e i �e0

#»v D J i .
#»v /; hence,

R D IdC ı' ni J i : (7.21)

This expression is of the type (7.2), ı' playing the role of the small parameter ".
We conclude thus that

For i 2 f1; 2; 3g, J i is the generator of spatial rotations in the plane
orthogonal to #»e 0 and #»e i .

Let us now choose as infinitesimal Lorentz transformation a boost S of rapidity
ı 	 1 and plane Span. #»e 0;

#»n /, with #»n D ni #»e i being a unit vector. Its matrix is
given by (6.72), with � D cosh.ı /, V i D Vni , V D c tanh ı . At first order in
ı , we get

S˛ˇ D
0

@
1 ı nj

ı ni ıi j

1

A :
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Comparing with the matrices K1, K2 andK3 given by (7.16), we conclude that

S D IdC ı niK i : (7.22)

This expression is of the type (7.2), ı playing the role of the small parameter ".
Hence

For i 2 f1; 2; 3g, K i is the generator of Lorentz boosts of plane Span. #»e 0;
#»e i /.

Finally, let us consider the null rotation of plane Span. #»e 0 C #»e 1;
#»e 3/ and

infinitesimal parameter ı˛ (jı˛j 	 1). Its matrix is given by (6.50); at first order in
ı˛, it reduces to

�˛
ˇ D

0

BB@

1 0 2ı˛ 0

0 1 2ı˛ 0

2ı˛ �2ı˛ 1 0

0 0 0 1

1

CCA :

Comparing with matrices (7.16), we obtain

� D IdC 2ı˛.K 2 � J 3/ : (7.23)

Remark 7.6. We may check that the null vector
#»
` WD #»e 0 C #»e 1 is invariant under

the transformation (7.23), as it should:

�.
#»

` / D #»

` C 2ı˛ŒK 2.
#»

` /� J 3.
#»

` /�

D #»

` C 2ı˛�K 2.
#»e 0/„ ƒ‚ …

#»e 2

CK 2.
#»e 1/„ ƒ‚ …
0

�J 3.
#»e 0/„ ƒ‚ …
0

�J 3.
#»e 1/„ ƒ‚ …

#»e 2

� D #»

` :

7.3.4 Link with the Variation of a Local Frame

It is instructive to make the link between what precedes and the law established
in Chap. 3 for the variation of the local frame . #»e ˛/ of an observer O . Let dt be
an infinitesimal increment of O’s proper time t . The transition from . #»e ˛.t// to
. #»e ˛.tCdt// along O’s worldline is a change of orthonormal basis (cf. Fig. 3.13). It
corresponds thus to a unique Lorentz transformation; moreover, this transformation
is infinitesimal. From the results of Sect. 7.3.1, we may write

#»e ˛.t C dt/ D ŒIdC dt L� #»e ˛.t/; (7.24)
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with L 2 so.3; 1/ and dt playing the role of the small parameter ". Note that a priori
L depends upon t . We deduce immediately from (7.24) that L. #»e ˛.t// is nothing but
the derivative of #»e ˛.t/ with respect to t : L . #»e ˛.t// D d #»e ˛=dt . The endomorphism
L is thus fully determined by formula (3.52). Substituting #»e 0 for #»u in it yields

L . #»e ˛/ D c. #»a � #»e ˛/
#»e 0 � c. #»e 0 � #»e ˛/

#»a C #»! �e0

#»e ˛; (7.25)

where #»a and #»! are, respectively, the 4-acceleration and the 4-rotation of observer
O . Let us check that the operator L defined by (7.25) has the required form for a
member of the Lie algebra so.3; 1/, namely, can be expanded onto the basis .K i ;J i /

according to (7.17). Since the vectors #»a and #»! are both orthogonal to #»e 0, we can
expand them as5 #»a D ai #»e i and #»! D !i #»e i . In view of (7.18) and (7.19), we may
rewrite (7.25) as

L. #»e ˛/ D �cai J 0i .
#»e ˛/C !iJ i .

#»e ˛/:

Now, from (7.20), �J 0i D K i . Hence

L D caiK i C !iJ i : (7.26)

We conclude that L does take the form (7.17), as it should. Combining (7.26)
and (7.24), we obtain

#»e ˛.t C dt/ D �IdC dt
�
caiK i C !iJ i

��
#»e ˛.t/ : (7.27)

We may then reinterpret the 4-acceleration and 4-rotation of observer O as follows:
the components .ai / of the 4-acceleration (multiplied by c dt) are the coefficients
of the three generators K i of Lorentz boosts in the transition from . #»e ˛.t// to
. #»e ˛.t C dt//, and the components .!i / of the 4-rotation (multiplied by dt) are
the coefficients of the three generators J i of spatial rotations in the same transition.

7.4 Reduction of O(3,1) to Its Lie Algebra

7.4.1 Exponential Map

On the space L .E/ of all the endomorphisms of E , one defines the exponential as
the map that associates with any A 2 L .E/ an invertible endomorphism exp A 2
GL.E/, according to6

5Let us recall that the index i ranges from 1 to 3.
6Let us recall that GL.E/ stands for the general linear group of E , formed by all the invertible
endomorphisms (automorphisms) of E (cf. p. 170).
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exp W L .E/ �! GL.E/

A 7�! exp A WD IdCA C 1

2
A ıA C 1

6
A ıA ıA C � � �

D
1X

nD0

1

nŠ
An;

(7.28)

where the notation An WD A ı � � � ıA (n times) has been used, with the convention
A0 D Id. The fact that the target space in (7.28) is GL.E/ results from the following
property (see, e.g. Mneimné and Testard (1986)):

8A 2 L .E/; det.exp A/ D etr A: (7.29)

We have then necessarily det.exp A/ 6D 0, so that exp A is always invertible.
The definition of the exponential can be extended to matrices of endomorphisms

by replacing in (7.28) the composition operator ı by the matrix multiplication. In
other words, the exponential of any real 4 � 4 matrix A is the matrix

expA WD I4 C AC 1

2
AAC 1

6
AAAC � � � D

1X

nD0

1

nŠ
An; (7.30)

withAn WD A � � � A (n times) andA0 D I4 (identity matrix of size 4). One can show
easily that the series (7.30) is convergent for any standard matrix norm. Incidentally,
this shows the convergence of the series (7.28) for endomorphisms. IfA is the matrix
of an endomorphism A in some basis ofE , expA is the matrix of exp A in the same
basis. In particular, expA obeys the change-of-basis formula:

exp.PAP�1/ D P .expA/P�1; (7.31)

where P is any invertible matrix (thus, representing a change of basis).
Formula (7.31) follows from the trivial identity .PAP�1/n D PAnP�1 and the
definition (7.30). Another useful property of the matrix exponentiation is that it
commutes with transposition:

exp.tA/ D t.expA/: (7.32)

Again, this results from the trivial identity .tA/n D t.An/ and the definition (7.30).
Moreover, if two matrices commute, the exponential of their sum is the product of
their exponentials:

AB D BA H) exp.AC B/ D expA expB: (7.33)

Indeed, if the matrices commute, they behave formally like real numbers with
respect to the addition and multiplication laws, so that one can expand the terms
.ACB/n in the series (7.30) defining exp.ACB/ according to the binomial theorem.
We obtain then the same properties as for the exponential of real numbers, namely,
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exp.ACB/ D expA expB . An immediate consequence of (7.33) with B D �A is
that for any matrix A,

.expA/�1 D exp.�A/: (7.34)

The major interest of the exponential map for our purpose is to establish a
connection between the Lie algebra of the Lorentz group and the restricted Lorentz
group:

exp W so.3; 1/ �! SOo.3; 1/

L 7�! exp L
: (7.35)

Proof. We have to show that for any L 2 so.3; 1/, exp L 2 SOo.3; 1/. From (7.6),
the matrix L of L in an orthonormal basis satisfies �L D �t.�L/ D �tL t� D
�tL�, for the Minkowski matrix � is symmetric. Since it is moreover its own
inverse, we get �L� D �tL. Taking the exponential, there comes exp.�L�/ D
exp.�tL/. By expressing the left-hand side via (7.31) (for ��1 D �) and the
right-hand side via (7.34), we get � .expL/ � D .exp tL/�1; hence,

.exp tL/ � .expL/ D ��1:

Using ��1 D � and (7.32), we obtain finally

t.expL/ � expL D �:
We recognize the criterion (6.12) for belonging to the Lorentz group; hence,
exp L 2 O.3; 1/. Besides, formula (7.29) leads to det.exp L/ D 1, for tr L D 0

for any L 2 so.3; 1/ [cf. Eq. (7.15)]. We have thus exp L 2 SO.3; 1/. Now SO.3; 1/
has two connected components: SOo.3; 1/ and SOa.3; 1/ (cf. Sect. 7.2.3). But as
so.3; 1/ is connected (it is a vector space over R) and exp is a continuous map, the
image of so.3; 1/ by exp must be connected and thus entirely contained in one of the
connected components of SO.3; 1/. Since exp.0/ D Id 2 SOo.3; 1/, it is necessarily
the component SOo.3; 1/. We have thus

8L 2 so.3; 1/; exp L 2 SOo.3; 1/; (7.36)

which proves that the mapping (7.35) is well defined. ut
Remark 7.7. Formula (7.2) appears as a particular case of (7.35), namely, that for
which the expansion of exp."L/ is limited to the first order in ", resulting in an
infinitesimal Lorentz transformation.

One can show, but it is difficult (cf. Gallier (2011)), that

The exponential map (7.35) is surjective: any restricted Lorentz transforma-
tion is the exponential of some element of the Lie algebra of the Lorentz
group.
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Remark 7.8. The surjectivity of the exponential map is well known for connected
compact Lie groups, as, for instance, SO.3/. The difficulty here arises from the
non-compactness of SOo.3; 1/ (cf. Sect. 7.2.3). For non-compact Lie groups, a
classical result is that the group elements can be written as products of a finite
number of exponentials. The remarkable fact is that for SOo.3; 1/, this number can
be reduced to one. On the other hand, the exponential map (7.35) is not injective, as
we shall see below.

The different algebraic and topological structures introduced up to now are
depicted in Fig. 7.1.

7.4.2 Generation of Lorentz Boosts

Let us consider a Lorentz boost � of rapidity  and plane ˘ . Let . #»e ˛/ be an
orthonormal basis semi-adapted to �: #»e 0 2 ˘ (cf. Sect. 6.6.2). The velocity of �

with respect to #»e 0 is
#»
V D V #»n D c tanh #»n , where #»n D ni #»e i is a unit vector in

Ee0 . Let N 2 N n f0g. Since the composition of two boosts having the same plane
˘ leads to a boost of plane ˘ and of rapidity the sum of the individual rapidities
(cf. Sect. 6.7.1), we can write

� D
NY

pD1
�.ı /; (7.37)

where ı WD  =N and �.ı / is the boost of plane ˘ and rapidity ı . When
N !C1, �.ı / is an infinitesimal boost; it is therefore of the type (7.22):

�.ı / D IdC ı niK i D exp.ı niK i /:

The second equality, involving the exponential, is valid to the first order in ı .
Equation (7.37) becomes then

� D
NY

pD1
exp.ı niK i /:

Now, since the ı niK i commutes with itself, one can apply formula (7.33)
and write the product of exponentials as the exponential of the sum. Given thatPN

pD1 ı niK i D Nı niK i D  niK i , we obtain thus

� D exp. niK i / : (7.38)
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Fig. 7.1 Lorentz group O.3; 1/ and its Lie algebra so.3; 1/, as subsets of L .E/, the space
of all the endomorphisms of the vector space E underlying Minkowski spacetime E . For each
set, the algebraic structure relative to the composition laws C (addition), : (multiplication by a
real number), ı (composition) and Œ; � (commutator) is indicated. GL.E/ is the general linear
group of E , formed by all invertible endomorphisms. GLC.E/ is the subgroup of GL.E/
formed by endomorphisms of positive determinant, and GL�.E/ is the part of GL.E/ formed
by endomorphisms of negative determinant. SL.E/ is the special linear group of E , i.e. the
subgroup of GLC.E/ formed by all the endomorphisms whose determinant is one. O.3; 1/ is
the Lorentz group and SOo.3; 1/ the restricted Lorentz group, formed by proper orthochronous
Lorentz transformations; SOo.3; 1/ is a subgroup of SL.E/. SOa.3; 1/ is the part of O.3; 1/
formed by antichronous proper Lorentz transformations, O�

o .3; 1/ that formed by orthochronous
improper Lorentz transformations and O�

a .3; 1/ that formed by antichronous improper Lorentz
transformations. so.3; 1/ is the Lie algebra of the Lorentz group; it is a vector subspace of L .E/,
whose image by the exponential map is SOo.3; 1/. As a vector space, so.3; 1/ contains the element
0 (vanishing linear map), while as a group for ı, SOo.3; 1/ contains the element Id (identity map).
The latter is actually the image of 0 by the exponential map. Regarding topology, the figure respects
connectedness: GL.E/ appears with its two connected components: GLC.E/ and GL�.E/, and
O.3; 1/ appears with its four connected components: SOo.3; 1/, SOa.3; 1/, O�

o .3; 1/ and O�

a .3; 1/.
On the other hand, compactness is not respected: none of the above spaces is compact, despite
being depicted with compact figures (ellipses and rectangles). Similarly, the dimensions are not
respected: L .E/ and so.3; 1/ are vector spaces of dimension 16 and 6, respectively (hard to
depict!); GL.E/, SL.E/, O.3; 1/ and SOo.3; 1/ are Lie groups of dimension 16, 15, 6 and 6,
respectively

The equality shows that the endomorphisms K i of so.3; 1/ generate not only
the infinitesimal boosts, as we have seen in Sect. 7.3.3, but also, thanks to the
exponential map, all Lorentz boosts. They thus deserve the name of generator of
the Lorentz group (without any mention of infinitesimal character) given to them in
Sect. 7.3.3.
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Remark 7.9. If #»n coincides with one of the vectors #»e i , for instance, #»n D #»e 1,
relation (7.38) can be established by a direct computation of the exponential of
the matrix  K1, following the definition (7.30), without invoking infinitesimal
transformations. It suffices to observe that, for n > 0, .K1/

n D .K1/
2 if n is even

and .K1/
n D K1 if n is odd, with .K1/

2 D diag.1; 1; 0; 0/. This simplifies greatly
the series (7.30), which becomes

exp. K1/ D I4 C
1X

pD0

�
 2pC1

.2p C 1/ŠK1 C  2pC2

.2p C 2/Š .K1/
2

�

D

0
BBBBBBBBB@

1X

pD0
 2p

.2p/Š

1X

pD0
 2pC1

.2pC1/Š 0 0

1X

pD0
 2pC1

.2pC1/Š
1X

pD0
 2p

.2p/Š
0 0

0 0 1 0

0 0 0 1

1
CCCCCCCCCA

:

We recognize in this expression the Taylor expansions of the functions cosh and
sinh . Comparing with (6.43), we conclude that exp. K 1/ is the Lorentz boost
of rapidity  and plane ˘ D Span. #»e 0;

#»e 1/, thereby demonstrating (7.38) in the
particular case .ni / D .1; 0; 0/.

7.4.3 Generation of Spatial Rotations

Let us consider now a spatial rotation R such that R. #»e 0/ D #»e 0. Let ' 2 Œ0; 2�Œ be
R’s angle and #»n the unit vector defining R’s axis in Ee0 . The composition of two
rotations that leave #»e 0 invariant and have the same axis #»n being a rotation of the
same type, we may write, for any N 2 N n f0g,

R D
NY

pD1
R.ı'/;

where ı' WD '=N and R.ı'/ is the rotation of angle ı' around #»n in Ee0 . The
argument is then similar to that of Sect. 7.4.2, starting from expression (7.21) of an
infinitesimal rotation. We thus obtain

R D exp.' niJ i / : (7.39)

Hence, the endomorphisms J i of so.3; 1/ generate not only the infinitesimal
rotations, as we have seen in Sect. 7.3.3, but also, thanks to the exponential map,
all the spatial rotations. They thus deserve the name of generator of the Lorentz
group (without any mention of infinitesimal character) given to them in Sect. 7.3.3.
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Remark 7.10. The writing (7.39), which can be made explicit as

R D exp.'1J 1 C '2J 2 C '3J 3/;

with 'i WD 'ni , does not mean that R can be decomposed into a rotation of angle
'3 in the plane Span. #»e 1;

#»e 2/, followed by a rotation of angle '2 in the plane
Span. #»e 3;

#»e 1/ and a rotation of angle '1 in the plane Span. #»e 2;
#»e 3/. Indeed, in

general

exp.'1J 1 C '2J 2 C '3J 3/ 6D exp.'1J 1/ ı exp.'2J 2/ ı exp.'3J 3/;

for the endomorphisms J 1, J 2 and J 3 do not commute, so that formula (7.33) is
not applicable.

Remark 7.11. As in Sect. 7.4.2 (cf. Remark 7.9), one can establish (7.39) directly
from the definition (7.30) of the exponential map, in the particular case where, for
instance, #»n D #»e 1. It suffices to observe that .J1/2 D �.J1/4 and .J1/3 D �J1, with
.J1/

4 D diag.0; 0; 1; 1/. We obtain then in the expression of the matrix exp.'J1/
the Taylor expansions of cos' and sin '. Comparing with (6.39) leads to (7.39).

7.4.4 Structure Constants

We have mentioned in Sect. 7.4.1 that the restricted Lorentz group SOo.3; 1/ is
entirely generated by the Lie algebra so.3; 1/, via the exponential map. We have
proved it explicitly for Lorentz boosts (Sect. 7.4.2) and spatial rotations (Sect. 7.4.3).
What about the group law of SOo.3; 1/? In other words, does there exist any
simple connection between the composition of two elements �1 of �2 of SOo.3; 1/

and some operation in the Lie algebra so.3; 1/? Thanks to the surjectivity of the
exponential map (7.35), it is always possible to find two elements L1 and L2 in
so.3; 1/ such that �1 D exp L1 and �2 D exp L2. If L1 and L2 commute, the
answer to the above question is simple: from (7.33) we have

ŒL1;L2� D 0 H) �1 ı�2 D exp.L1 CL2/: (7.40)

Thus in this case, the composition law ı corresponds to a mere addition in the Lie
algebra so.3; 1/.

In the general case, the answer is provided by Baker–Campbell–Hausdorff
formula:

�1 ı�2 D exp
�

L1 CL2 C 1

2
ŒL1;L2�C 1

12
ŒL1; ŒL1;L2�� � 1

12
ŒL2; ŒL1;L2��C � � �

	
:

(7.41)

The following terms are complicated but are all formed by nested commutators, of
the type ŒLa; ŒLb; : : : ŒL1;L2� : : :�� (a; b D 1; 2). The demonstration of this formula
can be found in the textbooks Godement (2004) and Mneimné and Testard (1986).
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Baker–Campbell–Hausdorff formula shows that the product of two elements
of the restricted Lorentz group SOo.3; 1/ can be expressed entirely by means
of the commutator and the addition law in the Lie algebra so.3; 1/. In other
words, all the information on the group law of SOo.3; 1/ is encoded in the Lie
algebra so.3; 1/, whose structure (vector space + Lie bracket) is simpler than
that of the non-abelian group SOo.3; 1/.

Remark 7.12. We have already noticed in Sect. 7.3.2 (Remark 7.5) that for infinites-
imal Lorentz transformations, the commutator of two elements of the group
SOo.3; 1/ was entirely defined by the commutator of the Lie algebra so.3; 1/
[Eq. (7.14)].

Let us consider the generators of the Lorentz group associated with an orthonor-
mal basis . #»e ˛/ of .E;g/ (cf. Sect. 7.3.3), and let us denote them by G a with
a 2 f1; 2; 3; 4; 5; 6g, according to

G 1 WD K 1; G 2 WD K 2; G 3 WD K 3; G 4 WD J 1; G 5 WD J 2; G 6 WD J 3:

(7.42)

The 6-tuple .G a/ constitutes then a basis of the vector space so.3; 1/, and thanks
to the bilinearity of the Lie bracket, the computation of ŒL1;L2� is reduced to the
computation of the Lie brackets of the generators, namely, ŒG a;G b�. The latter can
be expanded on the basis .G a/, thereby defining 63 D 216 real coefficients C c

ab :

ŒG a;G b� D
6X

cD1
C c
ab G c: (7.43)

The coefficientsC c
ab are called structure constants of the Lorentz group. Thanks to

the Baker–Campbell–Hausdorff formula (7.41), all the information about the group
law SOo.3; 1/ is contained in these numbers, hence their name.

By means of the explicit forms (7.16) of the generators, one obtains the following
values for the Lie brackets of the generators of the Lorentz group:

ŒK i ;K j � D �
3X

kD1
�ijk J k

ŒK i ;J j � D �
3X

kD1
�ijk K k

ŒJ i ;J j � D
3X

kD1
�ijk J k;

(7.44)
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where �ijk stands for the fully antisymmetric symbol of 3 indices: �ijk D 0 if any
two of the indices i , j and k are equal, �ijk D 1 if .i; j; k/ is an even permutation
of .1; 2; 3/ and �ijk D �1 otherwise. We read on (7.44) that the structure constants
of the Lorentz group are very simple: C c

ab D 0, 1 or �1.

Remark 7.13. While the right-hand sides of (7.44) are written as sums over the
index k, they are actually limited to a single term, thanks to the antisymmetry of
�ijk . Explicitly

ŒK 1;K 2� D �J 3; ŒK 2;K 3� D �J 1; ŒK 3;K 1� D �J 2;

ŒK 1;J 2� D �K 3; ŒK 2;J 3� D �K 1; ŒK 3;J 1� D �K 2;

ŒJ 1;K 2� D �K 3; ŒJ 2;K 3� D �K 1; ŒJ 3;K 1� D �K 2;

ŒJ 1;J 2� D J 3; ŒJ 2;J 3� D J 1; ŒJ 3;J 1� D J 2:

(7.45)

The first equation of (7.44) shows that the Lie bracket of two generators of
Lorentz boosts is a generator of spatial rotations. This feature is intimately related
to Thomas rotation, discussed in Sect. 6.7. Indeed, let us consider two boosts �1

and �2, of rapidities  1 and  2. If �1 and �2 have the same plane, for instance,
Span. #»e 0;

#»e 1/, (7.38) leads to �1 D exp. 1K 1/ and �2 D exp. 2K 1/. Since
obviously ŒK 1;K 1� D 0, formula (7.40) is applicable and we conclude that
�1ı�2 D exp.. 1C 2/K 1/. Hence �1ı�2 is a boost, of the same plane as �1 and
�2 and of rapidity  1 C  2. We recover the result of Sect. 6.7.1. On the contrary,
if �1 and �2 do not have the same plane, for instance, if �1 D exp. 1K 1/ and
�2 D exp. 2K 2/, one must use the Baker–Campbell–Hausdorff formula (7.41)
to evaluate the product �1 ı �2, setting L1 WD  1K 1 and L2 WD  2K 2. Since
from (7.45), ŒK 1;K 2� D �J 3, ŒK 1; ŒK 1;K 2�� D �ŒK 1;J 3� D �K 2 and
ŒK 2; ŒK 1;K 2�� D �ŒK 2;J 3� D K 1, (7.41) leads to

�1 ı�2D exp

�
 1K 1C 2K 2 � 1

2
 1 2J 3 � 1

12
 21 2K 2 � 1

12
 1 

2
2K 1 C � � �

	
:

(7.46)

The appearance of J 3 in this expression means that the product �1 ı�2 contains a
spatial rotation: this is Thomas rotation.

Historical note: It is Sophus Lie7 who showed how to reduce the study of
continuous groups of transformations (today called Lie groups) to that of their

7Sophus Lie (1842–1899): Norwegian mathematician, essentially known for the foundation of
the theory of Lie groups. As an adolescent, he contemplated some military career, but his strong
myopia forced him to choose an academic career instead! During a stay in Paris in 1870, at the
contact of Camille Jordan, he started the study of continuous groups of transformations. After the
declaration of war of France to Prussia in July 1870, he was arrested near Paris, being suspected to
be a German spy: his mathematical notes had been mistaken for coded messages! He was released
thanks to the intervention of the mathematician Gaston Darboux.
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Lie algebras. In the case of the Lorentz group, the generators have been exhibited
in 1905 by Henri Poincaré (cf. p. 26), in the famous “Palermo memoir” (Poincaré
1906).

7.5 Relations Between the Lorentz Group and SL(2,C)

There exists an intimate link between the restricted Lorentz group SOo.3; 1/ and the
special linear group SL.2;C/, the latter being the set of all 2� 2 complex matrices
of unit determinant, equipped with the law of matrix multiplication8:

SL.2;C/ WD fA 2 Mat.2;C/; detA D 1g :

It is clear that SL.2;C/ is a group for matrix multiplication. Moreover, it is a
Lie group, of the same dimension on R as the Lorentz group, namely, 6. Indeed
Mat.2;C/ is a manifold of dimension 8 on R (4 complex numbers are required to
form a 2� 2 matrix, and each complex number is composed of 2 real numbers) and
the condition detA D 1, which is an equality between two complex numbers, fixes
2 real degrees of freedom. The link between SL.2;C/ and SOo.3; 1/ is performed
by the spinor map, which we introduce below.

7.5.1 Spinor Map

In order to construct the spinor map, let us consider the set of all 2 � 2 complex
matrices that are Hermitian (one also says self-adjoint):

Herm.2;C/ WD fH 2 Mat.2;C/; H� D H g; (7.47)

where H� WD t NH , i.e. the transpose of the matrix obtained by taking the complex
conjugate (denoted here by an overbar) of each coefficient of H . Expressing H in
terms of its coefficients,H D .Hab/1�a;b�2, it is easy to see that

H D
�
H11 H12

H21 H22

	
2 Herm.2;C/ ”


H11 2 R; H22 2 R

H21 D NH12:
(7.48)

8Mat.2;C/ stands for the set of 2� 2 matrices with complex coefficients.
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It follows immediately that for any � 2 R and any pair .H;H 0/ of Hermitian
matrices, �H C H 0 2 Herm.2;C/. Herm.2;C/ is thus a vector space over9

R.
Its dimension is 4: (7.48) provides 4 independent constraints on the 8 real numbers
required to describe a 2 � 2 complex matrix. More precisely, in view of (7.48),
one can represent an element H of Herm.2;C/ in a unique way by a 4-tuple
.v0; v1; v2; v3/ 2 R

4 defined by v0 WD .H11 C H22/=2, v1 WD ReH12 D ReH21,
v2 WD �ImH12 D ImH21 and v3 WD .H11 �H22/=2. Accordingly

H D
�
v0 C v3 v1 � iv2

v1 C iv2 v0 � v3
	
; .v0; v1; v2; v3/ 2 R

4: (7.49)

This writing is equivalent to

H D v0�0 C v1�1 C v2�2 C v3�3; (7.50)

with10

�0 WD I2; �1 WD
�
0 1

1 0

	
; �2 WD

�
0 �i
i 0

	
; �3 WD

�
1 0

0 �1
	
; (7.51)

�1, �2 and �3 are called Pauli matrices (cf. p. 542). The expansion (7.50) shows
that .�0; �1; �2; �3/ is a basis of the four-dimensional vector space Herm.2;C/.
Moreover,

For a given orthonormal basis of .E;g/, . #»e ˛/, the mapping

H W E �! Herm.2;C/
#»v D v˛ #»e ˛ 7�! H D v˛�˛: (7.52)

is an isomorphism between the vector space E underlying Minkowski
spacetime and Herm.2;C/. In addition,

8 #»v 2 E; det H . #»v / D � #»v � #»v : (7.53)

9But not over C, since multiplying H11 by � D i would lead to a violation of the first condition
in (7.48).
10
I2 WD diag.1; 1/ is the 2� 2 identity matrix.
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Proof. Since . #»e ˛/ is a basis of E and .�˛/ a basis of Herm.2;C/, it is clear that
H is an isomorphism between the vector spaces E and Herm.2;C/. From (7.49),
detH D .v0/2�.v1/2�.v2/2�.v3/2. On the other hand, #»v � #»v D �.v0/2C.v1/2C
.v2/2 C .v3/2, since the basis . #»e ˛/ is orthonormal. Hence (7.53) holds. ut

The group SL.2;C/ acts onto the vector space Herm.2;C/ via the operation

8A 2 SL.2;C/; ˚A W Herm.2;C/ �! Herm.2;C/
H 7�! AH A�:

(7.54)

For each A 2 SL.2;C/, the mapping ˚A is well defined, i.e. it takes its values in
Herm.2;C/. Indeed, thanks to the property .AB/� D B� A�,

.AH A�/� D .H A�/� A� D . A��„ƒ‚…
A

H�

„ƒ‚…
H

/A� D AH A�:

Besides, for any A 2 SL.2;C/, ˚A is an automorphism (i.e. a bijective linear map)
of the vector space Herm.2;C/: ˚A is clearly linear and it is bijective:

8.H;H 0/ 2 Herm.2;C/2; AH A� D H 0 ” H D A�1 H 0 .A�/�1:

Thanks to the isomorphism H between the vector spaces E and Herm.2;C/
defined by (7.52), one may associate with each ˚A an automorphism �A ofE . This
amounts to setting

�A WDH �1 ı ˚A ıH : (7.55)

Explicitly, if #»v 2 E and H WD H . #»v /, �A.
#»v / is the vector of E such that H 0 WD

H .�A.
#»v // D AH A�. We have then

detH 0 D . detA„ƒ‚…
1

/.detH/.detA�„ƒ‚…
1

/ D detH:

From the property (7.53), we deduce that �A.
#»v /��A.

#»v / D #»v � #»v , which shows that
�A is a Lorentz transformation. Let us show that it is actually a restricted Lorentz
transformation, i.e. that it is proper and orthochronous [cf. (6.18)]. To this aim, let
us express the matrix of �A in terms of the coefficients of the matrix A:

A D
�
˛ ˇ


 ı

	
; with .˛; ˇ; 
; ı/ 2 C

4 and ˛ı � ˇ
 D 1; (7.56)

the last condition reflecting the fact that A belongs to SL.2;C/: detA D 1. By
virtue of the isomorphism H , the matrix .�A/

˛
ˇ of �A in the basis . #»e ˛/ of E is

identical to the matrix of ˚A in the basis .�˛/ of Herm.2;C/. The latter matrix is
obtained by performing the two matrix multiplications that appear in (7.54), using
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expressions (7.49) for H and (7.56) for A. Using again (7.49) to determine the
components .v0˛/ of the result in the basis .�˛/, we get

.�A/
˛
ˇ D

1

2

0

BB@

˛ N̨Cˇ ŇC
 N
Cı Nı ˛ ŇC N̨ˇC
 NıC N
ı i. N̨ˇ�˛ ŇC N
ı�
 Nı/ ˛ N̨�ˇ ŇC
 N
�ı Nı
˛ N
C N̨
Cˇ NıC Ňı ˛ NıC N̨ıCˇ N
C Ň
 i.ˇ N
� Ň
�˛ NıC N̨ı/ ˛ N
C N̨
�ˇ Nı� Ňı
i.˛ N
�N̨
Cˇ Nı� Ňı/ i.ˇ N
� Ň
C˛ Nı�N̨ı/ ˛ NıC N̨ı�ˇ N
� Ň
 i.˛ N
�N̨
C Ňı�ˇ Nı/
˛ N̨Cˇ Ň�
 N
�ı Nı ˛ ŇC N̨ˇ�
 Nı� N
ı i. N̨ˇ�˛ Ň� N
ıC
 Nı/ ˛ N̨�ˇ Ň�
 N
Cı Nı

1

CCA :

(7.57)

We can check that for any pair .˛; ˇ/, .�A/
˛
ˇ 2 R, as it should. For instance,

.�A/
0
1 D Re.˛ Ň C 
 Nı/ and .�A/

0
2 D Im.˛ Ň C 
 Nı/. Moreover, we have

.�A/
0
0 D

1

2

�
˛ N̨ C ˇ Ň C 
 N
 C ı Nı� D 1

2

�j˛j2 C jˇj2 C j
 j2 C jıj2� > 0;

which shows that �A is an orthochronous Lorentz transformation (cf. Sect. 6.3.2).
There remains to show that �A is a proper Lorentz transformation, i.e. that det �A D
1. We could compute directly the determinant of matrix .�A/

˛
ˇ displayed in (7.57),

but this is not so tempting: : : Another way consists in rewriting (7.49) as h D T v,
where h D .H11;H12;H21;H22/, v D .v0; v1; v2; v3/ and T is the matrix

T ˛ˇ D .�ˇ/ab D

0
BB@

1 0 0 1

0 1 �i 0

0 1 i 0

1 0 0 �1

1
CCA ; (7.58)

where .a; b/ D .1; 1/, .1; 2/, .2; 1/ and .2; 2/ for, respectively, ˛ D 0, 1, 2 and 3.
Writing H D v��� and H 0 D v0��� D .�A/

�
�v
��� in the relation H 0 D AH A�

and identifying the coefficients of v˛ , one obtains four 2 � 2 matrix identities:

.�A/
�
˛�� D A�˛ A�; 0 � ˛ � 3:

Thanks to (7.58) and A� D t NA, these four identities are easily transformed into a
unique 4 � 4 matrix relation:

T �A D .A˝ NA/ T; (7.59)

where A ˝ NA stands for the Kronecker product of the matrix A by the matrix NA,
i.e. the 4 � 4 matrix whose writing in terms of 2 � 2 blocs is

A˝ NA WD
 
A11 NA A12 NA
A21 NA A22 NA

!
D
 
˛ NA ˇ NA

 NA ı NA

!
: (7.60)

Equation (7.59) leads to the following expression for the matrix of �A:

�A D T �1 .A˝ NA/ T : (7.61)
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Using the property det.A˝B/ D .detA/2.detB/2, valid for any Kronecker product
of 2 � 2 matrices, we obtain the desired result:

det�A D .detT /�1 det.A˝ NA/ detT D det.A˝ NA/ D . detA„ƒ‚…
1

/2. det NA„ƒ‚…
1

/2 D 1:

�A is thus a proper Lorentz transformation.

Remark 7.14. From the matrices T and A given by (7.58) and (7.56), it is an easy
exercise to show that the matrix product (7.61) results in (7.57).

Having shown that for any A 2 SL.2;C/, �A is a restricted Lorentz
transformation, i.e. an element of SOo.3; 1/, we call spinor map and denote
by S the map from SL.2;C/ to SOo.3; 1/ that associates �A to A:

S W SL.2;C/ �! SOo.3; 1/

A 7�! �A W E �! E
#»v 7�! #»v 0 = H . #»v 0/ D AH . #»v / A�;

(7.62)

where H is the isomorphism (7.52) between the vector spaces E and
Herm.2;C/. The explicit form of the spinor map, in terms of the matrix A
and the matrix of �A in the basis . #»e ˛/ of E , is provided by (7.56)–(7.57) or,
alternatively, by (7.61).

Example 7.2. Let us consider the matrix

A D
�

cos.'=2/ �i sin.'=2/
�i sin.'=2/ cos.'=2/

	
; ' 2 Œ0; 2�Œ:

It satisfies detA D cos2.'=2/� .�1/ sin2.'=2/ D 1 and thus belongs to SL.2;C/.
Plugging the coefficients of A into (7.57) and using standard trigonometric
identities, we obtain that �A is identical to the matrix (6.39); S .A/ is thus the
spatial rotation of plane Span. #»e 2;

#»e 3/ and angle '.

Example 7.3. The matrix

A D
�

cosh. =2/ sinh. =2/
sinh. =2/ cosh. =2/

	
;  2 R
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clearly belongs to SL.2;C/: detA D cosh2. =2/ � sinh2. =2/ D 1. Plugging the
coefficients of A into (7.57), we realize that the matrix �A coincides with (6.43);
S .A/ is thus the Lorentz boost of plane Span. #»e 0;

#»e 1/ and rapidity  .

Example 7.4. The matrix

A D
�
1C i˛ �i˛

i˛ 1 � i˛

	
; ˛ 2 R

is in SL.2;C/: detA D 1C ˛2 � ˛2 D 1. Plugging its coefficients into (7.57) leads
to the matrix (6.50): S .A/ is thus the null rotation of plane Span. #»e 0C #»e 1;

#»e 3/ and
parameter ˛.

Remark 7.15. We have proved that the spinor map takes its values in SOo.3; 1/

by an algebraic method, namely, by computations showing that .�A/
0
0 > 0 and

det�A D 1. An alternative proof relies on a topological argument: the Lie group
SL.2;C/ is connected (proof below) and the map S is continuous [it is clear
on (7.57) or on (7.61)]. The image S .SL.2;C// must therefore be connected.
Moreover, it must contain the identity, since S .I2/ D Id. Now, the identity
is contained in the connected component SOo.3; 1/ of O.3; 1/ (cf. Fig. 7.1); we
conclude that S .SL.2;C// � SOo.3; 1/. The starting point of this demonstration,
i.e. the connectedness of SL.2;C/, is easy to obtain: given an elementA 2 SL.2;C/,
let us construct a path from I2 to A within Mat.2;C/ by setting

B W Œ0; 1� �! Mat.2;C/
t 7�! B.t/ WD Œ1 � �.t/� I2 C �.t/ A;

where t 7! �.t/ is a path in C such that �.0/ D 0 and �.1/ D 1. We have then
B.0/ D I2 and B.1/ D A. By making A explicit as in (7.56), we observe that
detB.t/ is a second-order polynomial in �.t/. It has thus at most two zeros in C and
we can always choose a path �.t/ that does not encounter these two zeros. Let then
�.t/ 2 C n f0g be one of the two square roots of detB.t/: �.t/2 D detB.t/. The
mapping t 7! QA.t/ WD �.t/�1B.t/ defines a path from I2 to A within SL.2;C/,
since by construction det QA.t/ D 1. We conclude that SL.2;C/ is path-connected
and thus connected.

The starting and the arrival sets of S being groups, it is natural to ask whether
S is a group homomorphism, i.e. a map that preserves the group structure (cf.
Appendix A). The answer is positive:

The spinor map S is a homomorphism between the special linear group
SL.2;C/ and the restricted Lorentz group SOo.3; 1/.
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Proof. If .A;B/ 2 SL.2;C/2 and H 2 Herm.2;C/, then

˚A ı ˚B.H/ D A.B H B�/A� D AB H B�A� D AB H .AB/� D ˚AB.H/;

which shows that ˚A ı ˚B D ˚AB and, via (7.55), that �A ı�B D �AB . ut

7.5.2 The Spinor Map from SU(2) to SO(3)

A particular subgroup of SL.2;C/ is the special unitary group SU.2/, defined by

SU.2/ WD fA 2 SL.2;C/; A�1 D A�g: (7.63)

It is clear that it is a subgroup of SL.2;C/. If the coefficients of A are denoted by
.˛; ˇ; 
; ı/ as in (7.56), then, thanks to the property detA D 1,

A�1 D
�

ı �ˇ
�
 ˛

	
:

We deduce immediately that

A D
�
˛ ˇ


 ı

	
2 SU.2/ ”

8
<

:


 D � Ň
ı D N̨
j˛j2 C jˇj2 D 1:

(7.64)

Example 7.5. The identity matrix and the three Pauli matrices (7.51) multiplied by
i are all elements of SU.2/:

�0 D I2; i�1 D
�
0 i
i 0

	
; i�2 D

�
0 1

�1 0
	
; i�3 D

�
i 0

0 �i

	
: (7.65)

Similarly, the matrix A of Example 7.2 p. 241 is in SU.2/.

Using 
 D � Ň, ı D N̨ and setting ˛ DW x1 C ix2 and ˇ DW x3 C ix4, with
.x1; x2; x3; x4/ 2 R

4, we get j˛j2 D x21 C x22 and jˇj2 D x23 C x24 , so that (7.64) can
be expressed as

A 2 SU.2/ ” x21 C x22 C x23 C x24 D 1: (7.66)

The right-hand side being the equation of the hypersphere S3 in the Euclidean space
R
4, we deduce that, as a manifold over R, SU.2/ can be identified to S

3:

SU.2/ � S
3 : (7.67)
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Since S
3 is a connected compact manifold, we conclude that SU.2/ is a connected

compact Lie group, of dimension 3 on R. For A 2 SU.2/, the image of the
vector #»e 0 by �A is given by the first column of the matrix (7.57); thanks to the
properties (7.64), we note that .�A/

˛
0 D ı˛0; hence,

�A.
#»e 0/ D #»e 0:

This shows that �A is a spatial rotation, in the hyperplane Ee0 . By identifying
the set of all spatial rotations in .Ee0 ;g/ with the group of rotations in the
three-dimensional Euclidean space, SO.3/, we may state that the spinor map sends
SU.2/ to SO.3/:

S W SU.2/ �! SO.3/: (7.68)

Remark 7.16. Via the isomorphism H defined by (7.52), the hyperplane Ee0

corresponds to the vector space of traceless 2 � 2 Hermitian matrices [it suffices
to set v0 D 0 in (7.49)].

From (7.66), it is clear that jx1j � 1. Let us then introduce ' 2 Œ0; 2�� such
that x1 DW cos.'=2/. Similarly, let us introduce .n1; n2; n3/ 2 R

3 such that x2 DW
�n3 sin.'=2/, x3 DW �n2 sin.'=2/ and x4 DW �n1 sin.'=2/. Then any element of
SU.2/ can be written as

A D
0

@
cos '

2
� in3 sin '

2
� sin '

2
.n2 C in1/

sin '

2
.n2 � in1/ cos '

2
C in3 sin '

2

1

A ; (7.69)

with .n1/2 C .n2/2 C .n3/2 D 1: (7.70)

One can rewrite this relation in terms of the matrices (7.65) as

A D cos
'

2
I2 � sin

'

2

�
n1 i�1 C n2 i�2 C n3 i�3

�
: (7.71)

We read on (7.69) that ˛ D cos.'=2/� in3 sin.'=2/ and ˇ D � sin.'=2/.n2 �
in1/. Inserting these values, as well as 
 D � Ň and ı D N̨ into the matrix (7.57),
we get the expression of the image of a generic element of SU.2/ by the spinor map:

.�A/
˛
ˇ D

0
BB@

1 0 0 0

0 cos'C.n1/2 .1�cos'/ n1n2.1�cos'/�n3 sin' n1n3.1�cos'/Cn2 sin'

0 n1n2.1�cos'/Cn3 sin' cos 'C.n2/2 .1�cos'/ n2n3.1�cos'/�n1 sin'

0 n1n3.1�cos'/�n2 sin ' n2n3.1�cos'/Cn1 sin' cos'C.n3/2 .1�cos'/

1
CCA :

By comparing with Rodrigues formula (6.41), we note that this is the matrix of a
rotation in Ee0 , of angle ' and whose axis is defined by the vector #»n WD ni #»e i .
Condition (7.70) ensures that #»n is a unit vector. ' and #»n being arbitrary, we have
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shown that any rotation in Ee0 is the image of an element of SU.2/ by the spinor
map. In other words, the mapping S W SU.2/ �! SO.3/ is surjective. On the other
side, S is not injective; for instance, the identity of SO.3/ has two inverse images:
I2 [set ' D 0 in (7.69)] and �I2 [set ' D 2� in (7.69)]. We shall elaborate more on
this below.

Remark 7.17. The field of quaternions H can be defined as the subalgebra of
Mat.2;C/, considered as an algebra over R (cf. Appendix A), generated by the
matrices (7.65):

H WD Span
R
.1; i ; j ;k/; (7.72)

where
1 WD I2; i WD �i�1; j WD �i�2; and k WD �i�3 (7.73)

and the index R on Span reminds one that only linear combinations with real
coefficients of matrices 1, i , j and k are allowed. H is an algebra of dimension
4 over R, such that any nonzero element admits an inverse for the multiplication.
It is therefore a (noncommutative) field, which extends the field of real numbers
(dimension 1 over R) and the field of complex numbers (dimension 2 over R). The
matrices (7.73) obey Hamilton relations11

i 2 D j 2 D k2 D ijk D �1; (7.74)

as it can easily be checked from (7.65). The conjugate and the norm of a quaternion
q D t1 C ui C vj C wk are defined by, respectively, q� WD t1 � ui � vj � wk

and kqk WD pq q� D pt2 C u2 C v2 C w2. In view of (7.73), the writing (7.71) of
a generic element of SU.2/ becomes

A D cos
'

2
1C sin

'

2

�
n1 i C n2 j C n3 k

�
: (7.75)

Given the constraint (7.70), SU.2/ appears then as the set of quaternions of unit
norm:

SU.2/ D fq 2 H; kqk D 1g: (7.76)

Since (i) the spinor map S is a group homomorphism and (ii) every rotation in
SO.3/ admits an inverse image by S , the composition of two rotations is reduced to
a multiplication in H. Accordingly, quaternions are used today to compute products
of rotations in computer graphics, cybernetics and celestial mechanics (satellite
motions).

11William R. Hamilton (1805–1865): Irish mathematician and physicist. In 1927, he founded
what is called today the Hamiltonian mechanics (cf. Chap. 11). He introduced the quaternions in
1843 and imagined the relations (7.74) while walking on a Dublin bridge on 16 October of that
year.
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Remark 7.18. The surjectivity of the spinor map SU.2/ �! SO.3/ can also be
established by considering the parametrization of SO.3/ by the three Euler angles
. O'; O�; O /, instead of ' and #»n . Let us recall that the Euler angles of a spatial
rotation R are defined as the three angles linking the basis . #»e i / of Ee0 to its image
. #»" i / WD .R. #»e i // as follows. In Ee0 , one calls line of nodes the intersection
of planes Span. #»e 1;

#»e 2/ and Span. #»" 1;
#»" 2/. The Euler angle O' is then the angle

between #»e 1 and the line of nodes, O� is the angle between #»e 3 and #»" 3 and O is the
angle between the line of nodes and #»" 1. It results from these definitions that R can
be written as the product of three rotations:

R D R3 ıR2 ıR1: (7.77)

R1 is the rotation of plane Span. #»e 1;
#»e 2/ and angle O'; it maps #»e 1 onto the line of

nodes. Setting #»e 0̨ WD R1.
#»e ˛/, R2 is the rotation of plane Span. #»e 0

2;
#»e 0
3/ and angle

O� ; it maps #»e 0
3 D #»e 3 to #»" 3. Setting #»e 00̨ WD R2.

#»e 0̨ /, R3 is the rotation of plane
Span. #»e 00

1 ;
#»e 00
2/ and angle O ; it maps #»e 00

1 and #»e 00
2 to, respectively, #»" 1 and #»" 2.

Denoting by R1 the matrix of R1 in the basis . #»e ˛/, by R0
2 that of R2 in the basis

. #»e 0̨ / and by R00
3 that of R3 in the basis . #»e 00̨/, it is easy to show that the matrix of

R in the basis . #»e ˛/ is
R D R1 R0

2 R
00
3 : (7.78)

The matrices in the right-hand side having a very simple form, of the type (6.39),
the matrix R is easily computed:

R˛ˇ D

0
BB@

1 0 0 0

0 cos O' cos O �cos O� sin O' sin O � cos O' sin O �cos O� sin O' cos O sin O� sin O'
0 sin O' cos O Ccos O� cos O' sin O � sin O' sin O Ccos O� cos O' cos O � sin O� cos O'
0 sin O� sin O sin O� cos O cos O�

1
CCA : (7.79)

Incidentally, note that the relation (7.78) is a matrix product in the reverse order with
respect of the product R D R3 R2 R1 that one would infer from the composition
law (7.77). But in this last case, the Ri ’s would be the matrices of the Ri ’s all taken
in the same basis . #»e ˛/, contrary to R0

2 and R00
3 , which are relative to the bases . #»e 0̨ /

and . #»e 00̨/ and have a simpler form.
One calls Cayley–Klein parameters of the rotation R the two complex numbers

defined by 8
ˆ̂<

ˆ̂:

˛ WD � cos
O�
2

e�i. O'C O /=2

ˇ WD i sin
O�
2

ei. O � O'/=2:
(7.80)

They satisfy j˛j2 C jˇj2 D 1. As a result, the matrix A constructed from ˛ and ˇ
according to (7.64) belongs to SU.2/. By plugging these values of ˛ and ˇ, as well
as 
 D � Ň and ı D N̨ in (7.57), we obtain the matrix (7.79). We conclude that
R D S .A/ and that the map S W SU.2/ �! SO.3/ is surjective.
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7.5.3 The Spinor Map and Lorentz Boosts

Let us consider an element of SL.2;C/ that is Hermitian: A 2 SL.2;C/ \
Herm.2;C/. A can be written as in (7.50): A D v� �� D H .v� #»e �/, with
.v�/ 2 R

4. In view of (7.53), the condition detA D 1 (belonging to SL.2;C/)
is then equivalent to

.v0/2 � .v1/2 � .v2/2 � .v3/2 D 1: (7.81)

This implies v0 � 1 or v0 � �1. Let us consider the first case. We can then introduce
 2 R so that v0 DW cosh. =2/ and define ni WD vi= sinh. =2/ if  6D 0 and
ni WD .1; 0; 0/ if  D 0. The condition (7.81) reduces then to

.n1/2 C .n2/3 C .n3/2 D 1:

We conclude that any Hermitian matrix of SL.2;C/ can be written as

˙A D cosh
 

2
I2 C sinh

 

2

�
n1�1 C n2�2 C n3�3

�
; (7.82)

where .ni / are the components of a unit vector of .Ee0 ;g/ and the signC (resp. �)
corresponds to the case v0 � 1 (resp. v0 � �1). This expression is the “hyperbolic”
counterpart of (7.71).

The components .˛; ˇ; 
; ı/ of A, as defined by (7.56), are

˛ D cosh
 

2
Cn3 sinh

 

2
; ˇ D N
 D sinh

 

2
.n1�in2/; ı D cosh

 

2
�n3 sinh

 

2
:

Plugging these values in (7.57), we obtain the matrix of the image ofA by the spinor
map:

.�A/
˛
ˇ D

0
BB@

cosh n1 sinh n2 sinh n3 sinh 

n1 sinh 1C.cosh �1/.n1/2 .cosh �1/n1n2 .cosh �1/n1n3
n2 sinh .cosh �1/n1n2 1C.cosh �1/.n2/2 .cosh �1/n2n3
n3 sinh .cosh �1/n1n3 .cosh �1/n2n3 1C.cosh �1/.n3/2

1
CCA : (7.83)

By comparing with (6.71), we recognize, via (6.46) and (6.47), the matrix of the
Lorentz boost of rapidity  and plane ˘ D Span. #»e 0;

#»n / with #»n D ni #»e i . We
have thus shown that any Lorentz boost whose plane contains #»e 0 admits an inverse
image by the spinor map S .

Example 7.6. For ni D .1; 0; 0/, we recognize in (7.82) the matrix A of
Example 7.3 p. 241 and (7.83) reduces to the matrix (6.43) of a Lorentz boost
in an adapted basis.
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7.5.4 Covering of the Restricted Lorentz Group by SL(2,C)

We have shown in Sect. 7.5.2 that any rotation whose plane is normal to #»e 0 admits
an inverse image by S . In Sect. 7.5.3, we have shown that the same property
holds for any Lorentz boost whose plane contains #»e 0. Since (i) any element of the
restricted Lorentz group SOo.3; 1/ results from the composition of a spatial rotation
and a Lorentz boost, both having the above properties with respect to #»e 0 [polar
decomposition (6.57)] and (ii) S is a homomorphism between the groups SL.2;C/
and SOo.3; 1/, we conclude that any element of SOo.3; 1/ has an inverse image by
S . In other words, the spinor map (7.62) is surjective.

We have noticed above that S is not injective. Let us show that actually any
element of SOo.3; 1/ has exactly two inverse images by S . Let A and B be two
elements of SL.2;C/ such that S .A/ D S .B/. This relation is equivalent to �A ı
��1
B D Id. Now, since S W A 7! �A is a homomorphism, ��1

B D �B�1 and
�A ı�B�1 D �AB�1 . Hence,

S .A/ D S .B/ ” S .AB�1/ D Id: (7.84)

The problem is then reduced to determine the inverse images of the identity.
From (7.61),

S .A/ D Id ” T �1 .A˝ NA/ T D I4 ” .A˝ NA/ T D T ” A˝ NA D I4:

Expressing A in terms of its coefficients, according to (7.56), and using the
definition (7.60) of the Kronecker product, the relation A˝ NA D I4 is equivalent to

˛ N̨ D ˛ Nı D ı N̨ D ı Nı D 1 and ˇ D 
 D 0:

If one adds the condition detA D 1 [A belongs to SL.2;C/], one obtains moreover
˛ı � ˇ
 D 1. There are then only two solutions: .˛; ı/ D .1; 1/ or .˛; ı/ D
.�1;�1/. This shows that the only inverse images of the identity by S are the
matrices I2 and �I2. The equivalence (7.84) becomes then

8.A;B/ 2 SL.2;C/2; S .A/ D S .B/ ” .A D B or A D �B/ :

Hence, each element of SOo.3; 1/ has exactly two inverse images by the spinor
map, which are opposite from each other. Since fI2;�I2g is a normal subgroup of
SL.2;C/ (cf. Appendix A), we may summarize the preceding results as follows:

The restricted Lorentz group SOo.3; 1/ is isomorphic to the quotient of the
special linear group SL.2;C/ by fI2;�I2g:
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SOo.3; 1/ ' SL.2;C/=fI2;�I2g : (7.85)

The subgroup of SOo.3; 1/ formed by the rotations in a fixed spacelike
hyperplane is isomorphic to the quotient of the special unitary group of index
2 by fI2;�I2g:

SO.3/ ' SU.2/=fI2;�I2g : (7.86)

Note that SU.2/ is a subgroup of SL.2;C/. The above isomorphisms are
implemented by the spinor map S defined by (7.62). The result (7.85) is
expressed by stating that SL.2;C/ is a double covering group of SOo.3; 1/.

Remark 7.19. In the language of Lie group theory, SL.2;C/ is the universal
covering group of SOo.3; 1/ (Bacry 1967; Deheuvels 1981; Gallier 2011; Godement
2004; Mneimné and Testard 1986). Any connected Lie group admits indeed a
universal covering group, the latter being simply connected. It is easy to see that
SOo.3; 1/ is not simply connected. For instance, a path in SOo.3; 1/made of spatial
rotations of fixed plane and whose angles vary from 0 to 2� starts from the identity
and ends on it. It is thus a loop. This loop cannot by continuously transformed into
a point (the identity). Hence, SOo.3; 1/ is not simply connected. On the contrary,
it can be shown that SL.2;C/ is simply connected (cf., e.g. Sect. 2.7 of Godement
(2004)).

7.5.5 Existence of Null Eigenvectors

An interesting application of the covering of SOo.3; 1/ by SL.2;C/ is the following
result, which we have used as starting point for the classification of Lorentz
transformations in Sect. 6.4:

Any restricted Lorentz transformation admits a null eigenvector or, equiva-
lently, an invariant null direction. Moreover, the corresponding eigenvalue is
strictly positive.

Proof. Let us consider � 2 SOo.3; 1/. From the surjectivity of the spinor map,
there exists A 2 SL.2;C/ such that � D S .A/. Since A is a matrix over C, its
characteristic polynomial admits at least one (complex) zero, which means that A
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admits at least one eigenvalue � 2 C. One has necessarily � 6D 0 since detA D
1 6D 0. Let U D .u; v/ 2 C

2 be the corresponding eigenvector:

AU D �U:

From the components of U , let us construct the matrix

H WD
� Nuu Nvu
Nuv Nvv

	
: (7.87)

We notice that H 2 Herm.2;C/ [cf. Eq. (7.48)]. By the isomorphism (7.52), there
exists then a vector #»v 2 E such that H D H . #»v /. Note that #»v 6D 0 since
H 6D 0. From the definition (7.62) of the spinor map, �. #»v / is the image of the
matrix AH A� by H �1. Now, denoting the coefficients of A as in (7.56), we have

AH D
� Nu.˛uC ˇv/ Nv.˛uC ˇv/
Nu.
uC ıv/ Nv.
uC ıv/

	
:

Since .˛uCˇv; 
uCıv/ D AU and U is an eigenvector ofA, we have ˛uCˇv D
�u and 
uC ıv D �v, so that the above equation becomes

AH D
� Nu�u Nv�u
Nu�v Nv�v

	
D �H:

We deduce immediately that (recall that H� D H )

AH A� D �H A� D �.AH�/� D �.AH/� D �.�H/� D � N�H D j�j2H:

This result is equivalent to
�. #»v / D j�j2 #»v :

#»v is thus an eigenvector of �, of eigenvalue j�j2 > 0. Moreover, we read on (7.87)
that detH D 0, which, given (7.53), implies #»v � #»v D 0. The vector #»v is thus null.

ut

7.5.6 Lie Algebra of SL(2,C)

Let us determine the Lie algebra of the group SL.2;C/, as we did for the Lorentz
group in Sect. 7.3, namely, by studying infinitesimal transformations. An element of
SL.2;C/ close to the identity can be written as

A D I2 C "B; (7.88)
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where " 2 R is a small parameter and B 2 Mat.2;C/. At first order in ", we have

detA D 1C " trB: (7.89)

Proof. The general formula governing the variation of the determinant of an
invertible matrix is

ı ln detA D tr
�
A�1 ıA

�
; (7.90)

where ı stands for any variation that obeys Leibniz rule and tr is the trace operator.
Applying this formula to ı D d=d", we get (7.89). ut
The condition A 2 SL.2;C/, i.e. detA D 1, is thus equivalent to trB D 0. We
conclude that the Lie algebra of SL.2;C/ is formed by the 2 � 2 complex matrices
of vanishing trace12:

sl.2;C/ D fB 2 Mat.2;C/; trB D 0g : (7.91)

It is clear that sl.2;C/ is a vector space. Its dimension over R is 8 � 2 D 6 (the
constraint trB D 0 in C being equivalent to 2 equalities in R); this is the same
dimension as SL.2;C/ as a Lie group over R, as it should be. The Lie bracket
associated with sl.2;C/ is nothing but the commutator of matrices:

ŒB1; B2� WD B1 B2 � B2 B1:

This operator is internal to sl.2;C/ for it preserves the vanishing of the trace:
tr ŒB1; B2� D tr.B1 B2/� tr.B2 B1/ D 0, thanks to the general property tr .B1 B2/ D
tr .B2 B1/. Moreover, the commutator satisfies the three properties (7.11)–(7.13).

A basis of the vector space sl.2;C/ is formed by the Pauli matrices (7.51),
augmented by their products by i:

sl.2;C/ D Span
R
.�1; �2; �3; i�1; i�2; i�3/ : (7.92)

Let us compute the image under the spinor map of an element A 2 SL.2;C/
close to the identity. Let #»v 2 E and H WD H . #»v / 2 Herm.2;C/. Setting H 0 WD
˚A.H/ D AH A� and substituting (7.88) for A, we get, at first order in ",

H 0 D .I2 C "B/H .I2 C "B/�„ ƒ‚ …
I2C"B�

' H C ".B H CH B�/:

We deduce that
S .A/ D �A D IdC "L;

12As for that of the Lorentz group, the Lie algebra of SL.2;C/ is denoted by the same letters than
the group but in lower case.
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where L is the endomorphism of E that corresponds, via H , to the following
endomorphism of Herm.2;C/:

˚ 0
B W Herm.2;C/ �! Herm.2;C/

H 7�! B H CH B�:

(7.93)

The map ˚ 0
B is well defined because if H 0 WD ˚ 0

B.H/, then H 0� D .B H/� C
.H B�/� D H B� C B H D H 0, which shows that H 0 2 Herm.2;C/. Since �A 2
SOo.3; 1/, L is necessarily in the Lie algebra of the Lorentz group [cf. Eq. (7.2)].
Thus, the spinor map induces a mapping13 between the Lie algebra of SL.2;C/
(where B takes its values) to the Lie algebra of SOo.3; 1/:

S 0 W sl.2;C/ �! so.3; 1/
B 7�! L W E �! E

#»v 7�! #»v 0=H . #»v 0/ D BH . #»v /CH . #»v /B�:

(7.94)

In a manner analogous to (7.55), we can write

S 0.B/ WDH �1 ı˚ 0
B ıH : (7.95)

It is clear that S 0 is a linear map between the vector spaces sl.2;C/ and so.3; 1/.
Moreover, S 0 preserves the Lie bracket:

8.B1; B2/ 2 sl.2;C/2; S 0.ŒB1; B2�/ D ŒS 0.B1/;S 0.B2/�: (7.96)

Proof. If L1 WD S 0.B1/ and L2 WD S 0.B2/, we have, from (7.9), ŒL1;L2� D
L1 ıL2 �L2 ıL1, so that, via H DH . #»v / and H 0 DH .ŒL1;L2�.

#»v //,

H 0 D ˚ 0
B1
ı ˚ 0

B2
.H/ �˚ 0

B2
ı ˚ 0

B1
.H/

D B1.B2 H CH B
�
2 /C .B2 H CH B

�
2 /B

�
1 � B2.B1 H CH B

�
1 /

�.B1 H CH B
�
1 /B

�
2

D .B1 B2 � B2 B1/H CH.B1 B2 � B2 B1/� D ˚ 0
ŒB1;B2�

.H/:

This shows that ŒL1;L2� D S 0.ŒB1; B2�/ and establishes (7.96). ut
Since it preserves the Lie bracket, the map S 0 is called a Lie algebra morphism.

13 Considering SL.2;C/ and SOo.3; 1/ as differentiable manifolds (of dimension 6) over R, this
mapping is actually the differential of the spinor map taken at the point I2; accordingly, it goes from
the vector space tangent to SL.2;C/ at I2, i.e. sl.2;C/, to the vector space tangent to SOo.3; 1/ at
S .I2/ D Id, i.e. so.3; 1/ (cf. Remark 7.4 p. 224).
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Let us compute the image by S 0 of the first element of the basis (7.92), namely,
the Pauli matrix �1. Let #»v D v˛ #»e ˛ 2 E and #»v 0 D v0˛ #»e ˛ be the image of #»v

by S 0.�1/. The matrix representing #»v (resp. #»v 0) in Herm.2;C/ being H D v˛�˛

(resp.H 0 D v0˛�˛), we have, since ��1 D �1,

H 0 D �1 H CH �1 D v˛.�1 �˛ C �˛ �1/:

Now, as one can check easily on (7.51),

�1 �0 D �0 �1 D �1; �1 �1 D �0; �1 �2 D ��2 �1 D i�3; �1 �3 D ��3 �1 D �i�2:

We deduce that H 0 D 2v1�0 C 2v0�1 and thus that

v00 D 2v1; v01 D 2v0; v02 D 0 and v03 D 0:

Comparing with the matrix (7.16a) of the endomorphism K 1 in the basis . #»e ˛/, we
deduce immediately that #»v 0 D 2K 1.

#»v /; hence,

S 0.�1/ D 2K 1: (7.97)

One shows similarly that

S 0.�2/ D 2K2; S 0.�3/ D 2K 3 (7.98a)

S 0.i�1/ D �2J 1; S 0.i�2/ D �2J 2; S 0.i�3/ D �2J 3: (7.98b)

We observe that the image of the basis (7.92) of sl.2;C/ is

.2K 1; 2K 2; 2K 3; �2J 1; �2J 2 � 2J 3/;

which is a basis of so.3; 1/ (cf. Sect. 7.3.3). This implies that the linear map S 0 is a
vector space isomorphism. Having already shown that it is a Lie algebra morphism,
we thus conclude:

The Lie algebras so.3; 1/ and sl.2;C/ are isomorphic:

so.3; 1/ ' sl.2;C/ : (7.99)

A realization of this isomorphism is provided by the map S 0 defined
by (7.94).
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Remark 7.20. Despite their Lie algebras are isomorphic, the Lie groups SOo.3; 1/

and SL.2;C/ are not isomorphic, SL.2;C/ being “twice as large as” SOo.3; 1/ [cf.
Eq. (7.85)].

7.5.7 Exponential Map on sl(2,C)

As for the Lie algebra of the Lorentz group, one can define the exponential map
from the Lie algebra sl.2;C/ to the group SL.2;C/. The definition is identical
to that given by the series (7.30). A general result from Lie group theory (cf.,
e.g. Sect. 6.2 of Godement’s book (Godement 2004)) states that since S is a Lie
group homomorphism and S 0 is its differential at the point I2 (cf. footnote 13), the
following diagram is commutative:

S 0

sl.2;C/ �! so.3; 1/
j j

exp j j exp
# S #

SL.2;C/ �! SOo.3; 1/

This means that

8B 2 sl.2;C/; S .expB/ D exp.S 0.B// : (7.100)

Remark 7.21. We have already mentioned in Sect. 7.4.1 that the exponential map
from so.3; 1/ to SOo.3; 1/ is surjective. On the other side, it is not surjective from
sl.2;C/ to SL.2;C/: the elements of SL.2;C/ of the type A D �I2 C N with
N 6D 0 and nilpotent (N2 D 0) do not have any inverse image by exp (cf., e.g.
Gallier (2011)). In all cases, either A or �A has an inverse image by exp, which, in
view of (7.85), explains why exp W so.3; 1/! SOo.3; 1/ is surjective.

It is instructive to study the inverse images by the exponential of the elements
of the subgroup SU.2/ of SL.2;C/. We have seen in Sect. 7.5.2 that any element
A 2 SU.2/ can be written as (7.71) with ' 2 Œ0; 2�� and .n1; n2; n3/ 2 R

3 withP3
iD1.ni /2 D 1, which can be interpreted as the components of a unit vector inEe0 .

Let us then set B WD �.'=2/nj i�j and evaluate

expB D
1X

nD0

1

nŠ

�
�'
2

�n �
nj i�j

�n
:

We check easily from (7.51) and (7.70) that

�
nj i�j

�2 D �.nj �j /2 D �
�
.n1/2 C .n2/2 C .n3/2� I2 D �I2:
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Consequently, the above series is simplified to

expB D
� 1X

pD0

1

.2p/Š

�'
2

�2p
.�1/p

„ ƒ‚ …
cos.'=2/

�
I2 C

� 1X

pD0

1

.2p C 1/Š .�1/
�'
2

�2pC1
.�1/p

„ ƒ‚ …
� sin.'=2/

�
nj i�j :

We recognize the expression (7.71) of A. We conclude that any element of SU.2/
can be written as an exponential, according to the simple formula

A D cos
'

2
I2 � sin

'

2
nj i�j D exp

�
�'
2
nj i�j

�
: (7.101)

An application of this formula and of the general result (7.100) consists in
recovering the exponential expression (7.39) of a given spatial rotation. Indeed, if R

is a rotation of angle ' and axis #»n D nj #»e j in Ee0 , then R D S .A/ with A of the
form (7.71). The above result gives R D S .expB/. The property (7.100) allows
one to write R D exp.S 0.B//. Now, by linearity of S 0 and using (7.98b),

S 0.B/ D �'
2
nj S 0.i�j /„ ƒ‚ …

�2J j

D ' njJ j :

We have thus R D exp.' njJ j /, which is nothing but the result (7.39).
Similarly, we can express the Hermitian elements of SL.2;C/ considered in

Sect. 7.5.3 by taking the exponential of B WD  =2 nj�j for  2 R. A computation
similar to the above one leads to

A D cosh
 

2
I2 C sinh

 

2
nj �j D exp

�
 

2
nj �j

	
: (7.102)

By combining with (7.100) and (7.97)–(7.98a), we get the exponential expression
� D exp. nj K j / for any Lorentz boost �, i.e. we recover (7.38).

Historical note: The link between the Lorentz group and SL.2;C/ was known to
Felix Klein14 in 1910 (Klein 1910) and to Élie Cartan (cf. p. 6) in 1914 (Cartan
1914).

14Felix Klein (1849–1925): German mathematician, who authored numerous works in group
theory and non-Euclidean geometry; in 1872, he proposed the famous Erlangen programme, whose
aim was to classify the various geometries in terms of their symmetry groups and their invariants.
He founded the mathematical centre at Göttingen. The Klein group mentioned in Sect. 6.3.4 is
named after him.



Chapter 8
Inertial Observers and Poincaré Group

8.1 Introduction

In Chaps. 3–5, we dealt with any kind of observers. Here we focus on the simplest
observers in Minkowski spacetime: the inertial ones. On historical grounds, it should
be noticed that special relativity has been forged only in terms of this kind of
observers. Special relativity is still presented in this way in many textbooks. As
advocated in the Preface, the present exposition of special relativity takes a different
route. Inertial observers are then simply considered as a special class among all
possible observers in Minkowski spacetime.

8.2 Characterization of Inertial Observers

8.2.1 Definition

An inertial observer has been defined in Sect. 3.5.4 as an observer O whose local
frame . #»e ˛.t// (t being O’s proper time) fulfils

d #»e ˛

dt
D 0 ; (8.1)

i.e. each vector #»e ˛ is constant along O’s worldline (cf. Fig. 8.1). We have seen
that this condition is equivalent to vanishing 4-acceleration and 4-rotation along the
worldline [Eq. (3.60)]:

8t 2 R; #»a .t/ D 0 and #»!.t/ D 0 : (8.2)

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Worldline and local
frame of an inertial observer
(left) Worldline and local
frame of an observer without
any 4-acceleration but with a
nonvanishing 4-rotation
(right). The local frame of the
inertial observer obeys (8.1)

Let us recall that the 4-acceleration #»a and the 4-rotation #»! have been introduced
in Sects. 2.4.2 and 3.5.3, respectively. These two quantities can be defined as the
vectors orthogonal to O’s 4-velocity #»u that rule the evolution of the local frame
according to (3.52):

d #»e ˛

dt
D c. #»a � #»e ˛/

#»u � c. #»u � #»e ˛/
#»a C #»! �u

#»e ˛:

As we have already noticed in Chap. 3 (cf. (3.68)), an immediate consequence of
(8.2) is that the derivative of a vector field with respect to observer O (cf. Sect. 3.6.2)
coincides with the absolute derivative : DO

#»v D d #»v=dt .

8.2.2 Worldline

Since the vector #»e 0 of O’s local frame is nothing but the 4-velocity #»u , an immediate
consequence of (8.1) is

#»u .t/ D const: (8.3)

In other words, #»u .t/ is the same vector of E at any point of the worldline L of O .
Let then .O I #»" 0;

#»" 1;
#»" 2;

#»" 3/ be an affine frame1 of E and x˛ D x˛.t/ the equation
of the worldline L in this frame. Since #»u is the derivative vector associated with
the parametrization of L by ct , we have #»u D c�1.dx˛=dt/ #»" ˛; hence

dx˛

dt
D cu˛0 ; (8.4)

1The vectors of the affine frame, as defined in Sect. 1.2.3, are denoted by #»" ˛ to distinguish them
from those of O’s local frame.



8.2 Characterization of Inertial Observers 259

where the u˛0 ’s are the four components of #»u in the basis . #»" ˛/, which are constant
according to (8.3). Equation (8.4) is then readily integrated, yielding

x˛.t/ D cu˛0 t C x˛0 ; (8.5)

the quantities .u˛0 ; x
˛
0 / being eight constants. We recognize the equation of a straight

line, parametrized by t , so that we conclude:

The worldline of any inertial observer is a straight line of Minkowski
spacetime E .

Remark 8.1. The converse is not true: an observer whose worldline is a straight line
is only an observer with a vanishing 4-acceleration. To be an inertial observer, he
must in addition have a vanishing 4-rotation (cf. Fig. 8.1).

8.2.3 Globality of the Local Rest Space

In Sect. 3.2.3, we have made the distinction between the simultaneity hypersurface
˙u.t/ of an observer O and his local rest space Eu.t/: ˙u.t/ is defined as the set
of events in E that are simultaneous2 to the event of proper time t on the worldline
L of O , namely, O.t/, whereas Eu.t/ is defined in a pure geometric way as the
hyperplane of E orthogonal to L at O.t/. It is tangent to ˙u.t/ at O.t/ and we
have seen in Sect. 3.2.3 that the difference between the two subspaces is induced by
the curvature of L . If the latter is a straight line, this difference disappears. Thus
the equalities (3.3), which are the starting points of the computation yielding to
B 2 Eu.t/, are valid for any point B 2 ˙u.t/, even if it is very far from L . We
conclude that, for an inertial observer, the simultaneity hypersurface and the local
rest space coincide:

8t 2 R; ˙u.t/ D Eu.t/ : (8.6)

Moreover, since #»u .t/ D const [property (8.3)], the hyperplanes Eu.t/ are parallel
(cf. Fig. 8.2); thus, they never intersect, contrary to those of an accelerated observer,
as discussed in Sect. 3.7 (see Fig. 3.15). Hence, there is no obstruction to the
labelling of all events of E by the coordinates .ct; x1; x2; x3/ with respect to
observer O (as defined in Sect. 3.4.2). In addition, we have

#              »

O.0/M D #                   »

O.0/O.t/C
#             »

O.t/M D ct #»u C #             »

O.t/M , so that (3.25) leads to

2In the Einstein–Poincaré sense, cf. Sect. 3.2.2.
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Fig. 8.2 Worldline and local rest spaces of an inertial observer

#              »

O.0/M D ct #»u C xi #»e i : (8.7)

Comparing with (1.6), we notice that the coordinates .ct; x1; x2; x3/ with respect to
the observer O form an affine coordinate system of E centred in O.0/. We shall call
inertial coordinates any affine coordinates of this type. Since such a coordinate
system is clearly global, we shall drop the qualifier local in the denomination of
. #»e ˛/ and Eu.t/, calling them respectively the frame and the rest space of the
inertial observer O .

Remark 8.2. Inertial coordinates are sometimes called Minkowskian coordinates
or Galilean coordinates.

8.2.4 Rigid Array of Inertial Observers

Let O be an inertial observer of worldline L , 4-velocity #»u , rest space Eu.t/ and
frame . #»e 0 D #»u ; #»e 1;

#»e 2;
#»e 3/. Let us consider an observer O 0 fixed with respect to

O , i.e. an observer whose coordinates .x1; x2; x3/ with respect to O are constant
(cf. Sect. 3.4.3). The worldline L 0 of O 0 is a straight line of E parallel to L .

Proof. If O.t/ WD Eu.t/ \L and O 0.t/ WD Eu.t/ \L 0, then

#                   »

O.0/O.t/ D ct #»u and
#                     »

O.0/O 0.t/ D ct #»u C xi #»e i :

The first equation gives the spacetime position of the generic point O.t/ of L and
the second one the spacetime position of the generic point O 0.t/ of L 0. Since the
xi ’s are constant (for O 0 is fixed with respect to O) and the vectors #»e i ’s are constant
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Fig. 8.3 Rigid array of inertial observers

(for O is an inertial observer), the vector xi #»e i is constant. We deduce that the
worldline L 0 is a line parallel to L . ut
It follows that the proper time of O 0 coincides (up to the choice of some origin) with
the proper time t of O and that the 4-velocity #»u 0 of O 0 is equal to that of O . We can
then equip O 0 with the same spatial basis . #»e i / as O to make it an inertial observer.
The rest spaces of O 0 are then the same as those of O:

Eu0.t/ D Eu.t/: (8.8)

This construction can obviously be extended to any set of observers fixed
with respect to O (cf. Fig. 8.3), leading to what we shall call a rigid array of
inertial observers. By choosing the same origin for all the proper times, the ideal
clocks carried by each observer indicate the same value: one says that they are
synchronized.

8.3 Poincaré Group

8.3.1 Change of Inertial Coordinates

Let us consider two inertial observers, O and O 0, of respective frames . #»e ˛/ and
. #»e 0̨ /. The coordinates .x˛/ and .x0˛/ of an eventM 2 E with respect to O and O 0
are defined by (8.7):

#      »
OM D x˛ #»e ˛ and

#        »

O 0M D x0˛ #»e 0̨ ; (8.9)
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where O (resp. O 0) is the event of the worldline of O (resp. O 0) of proper time
t D x0=c D 0 (resp. t 0 D x00=c D 0). From Chasles’ relation,

#        »

O 0M D #      »

O 0O C #      »
OM D x0˛

0
#»e 0̨ C x˛ #»e ˛; (8.10)

where .x0˛
0 / are the coordinates of O with respect to O 0. The orthonormal bases

. #»e ˛/ and . #»e 0̨ / are related by a unique restricted Lorentz transformation, �,
such that

#»e ˛ D �. #»e 0̨ / D �ˇ
˛

#»e 0̌ ; (8.11)

where �ˇ
˛ stands for the matrix of � in the basis . #»e 0̨ / [cf. Eq. (6.5)]. Equations

(8.9) and (8.10) lead then to

#        »

O 0M D x0˛ #»e 0̨ D x0˛
0

#»e 0̨ C x˛�ˇ
˛

#»e 0̌ D x0˛
0

#»e 0̨ C xˇ�˛
ˇ

#»e 0̨ ;

hence the relation between the two coordinate systems:

x0˛ D �˛
ˇx

ˇ C x0˛
0 : (8.12)

One calls passive Poincaré transformation any change of coordinates of this type,
i.e. any map of the form

f W R4 �! R
4

.x˛/ 7�!
�
�˛

ˇx
ˇ C x0˛

0

�
;

(8.13)

where�˛
ˇ is a Lorentz matrix (cf. Sect. 6.2.1) and x0˛

0 are four real numbers.

Example 8.1. A particularly important example (historically the first one!) is that
where the axes of observers O and O 0 are quasiparallel, i.e. obey #»e 0

2 D #»e 2,
#»e 0
3 D

#»e 3, the velocity
#»
V of O 0 relative to O being along #»e 1:

#»
V D V #»e 1, and the velocity

#»
V 0 of O relative to O 0 being along #»e 0

1:
#»
V 0 D V 0 #»e 0

1. We have then necessarily
V 0 D �V [cf. Eqs. (5.9) and (5.10)]. In this case, � is a Lorentz boost, whose
matrix is given by (6.48), where V is replaced by V 0 D �V . Using this matrix
in (8.12) and denoting by .ct; x; y; z/ (resp. .ct 0; x0; y0; z0/) the inertial coordinates
.x˛/ (resp. .x0˛/), we get

8
ˆ̂<

ˆ̂:

ct 0 D � �ct � V
c
x
�

x0 D � .x � V t/
y0 D y
z0 D z:

(8.14)
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Note that the constants x0˛
0 have been set to zero, which amounts to considering that

the worldlines of O and O 0 intersect at t D 0 and t 0 D 0. The above transformation
can be inverted by replacing V by �V :

8
ˆ̂<

ˆ̂:

ct D � �ct 0 C V
c
x0�

x D � .x0 C V t 0/
y D y0
z D z0;

(8.15)

Remark 8.3. We do not limit the definition (8.13) to restricted Lorentz matrices,
but it is only in this case that a Poincaré transformation describes the change of
coordinates induced by a change of inertial observer.

8.3.2 Active Poincaré Transformations

One calls Poincaré transformation any function

f W E �! E

M 7�! f .M/
(8.16)

for which there exists a Lorentz transformation � W E ! E such that

8.M;N / 2 E 2;
#                        »

f .M/f .N / D �.
#      »
MN/: (8.17)

It is clear that the Lorentz transformation � is unique. Since � is a linear map,
f is, by definition, an affine map. In particular, f is entirely defined by (i) the
Lorentz transformation � and (ii) the image of a single point of E , O , say. Indeed
one deduces from (8.17) that

8M 2 E ;
#              »

Of.M/ D �.
#      »
OM/C #             »

Of.O/ : (8.18)

Remark 8.4. A Poincaré transformation, as defined above, sends a point of E to
another point of E ; this is an active transformation, by contrast with the passive
transformation considered in Sect. 8.3.1. We shall omit the qualifier active and use
simply the term Poincaré transformation for these transformations. On the other
hand, we shall use explicitly the qualifier passive for passive transformations.

Let O be an inertial observer, of frame . #»e ˛/, and let .x˛/ be the associated
system of inertial coordinates.O being the origin of the latter, let us denote by .x0˛

0 /

the coordinates of the point f .O/ and by .x0˛/ the coordinates of the image of a
generic pointM , of coordinates .x˛/. Equation (8.18) leads then to
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x0˛ D �˛
ˇx

ˇ C x0˛
0 ; (8.19)

where �˛
ˇ is the matrix of � in the basis . #»e ˛/, defined according to (6.4). This

relation has the same structure as (8.12), the difference being that here x0˛ stands
for the coordinates of the image of a point by f in the coordinate system .x˛/,
whereas in (8.12), .x0˛/ and .x˛/ are two different coordinate systems.

One calls translation any Poincaré transformation f whose associated Lorentz
transformation is the identity. The vector

#             »

Of.O/ is then independent of the point
O . Indeed, relation (8.17) with � D Id leads to

#              »

f .O/O C #      »

OO 0C #                 »

O 0f .O 0/ D #                        »

f .O/f .O 0/ D #      »

OO 0; hence
#                 »

O 0f .O 0/ D #             »

Of.O/:

The vector #»v D #             »

Of.O/ is called the translation vector. A translation is entirely
defined by a given point and its image.

For any O 2 E , one calls Lorentz transformation pointed at O any Poincaré
transformation f such that f .O/ D O . We have then the following decomposition:

Given a point O 2 E , any Poincaré transformation f can be uniquely
decomposed into a Lorentz transformation pointed at O , �O , say, followed
by a translation T , of vector #»v D #             »

Of.O/:

f D T ı�O : (8.20)

We shall write f D . #»v ;�/ where #»v is the vector of the translation T and �

the Lorentz transformation associated with �O (or equivalently with f ).

Proof. It suffices to write (8.18) in the form

8M 2 E ;
#              »

Of.M/ D �.
#      »
OM/C #»v (8.21)

and to define�O as the map such that
#                   »

O�O.M/ D �.
#      »
OM/. ut

8.3.3 Group Structure

The set of all Lorentz transformations being a group, it is easy to check that the
same property holds for the set of all Poincaré transformations. In particular, if f1
and f2 are two Poincaré transformations, of associated Lorentz transformations �1

and �2, then the repeated application of (8.21) yields
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8M 2 E ;
#                           »

Of1 ı f2.M/ D �1Œ
#                »

Of2.M/�C #»v 1

D �1Œ�2.
#      »
OM/C #»v 2�C #»v 1

D �1 ı�2.
#      »
OM/C�1.

#»v 2/C #»v 1:

Comparing with (8.21), we deduce that f1 ı f2 is a Poincaré transformation, of
associated Lorentz transformation �1 ı �2. Moreover, the translation associated
with f1 ı f2 in the decomposition (8.20) with respect to O is the translation of
vector

#»v D #»v 1 C�1.
#»v 2/: (8.22)

The group formed by the set of all Poincaré transformations is naturally called
Poincaré group and is denoted by IO.3; 1/.

Remark 8.5. The Poincaré group is sometimes called the inhomogeneous Lorentz
group, which explains the notation IO.3; 1/.

For any O 2 E , the set of all Lorentz transformations pointed at O constitutes a
subgroup of IO.3; 1/. Moreover, this subgroup is isomorphic to the Lorentz group
O.3; 1/. Besides, the set of all translations constitutes also a subgroup of IO.3; 1/.
This subgroup is isomorphic to .E;C/ or to .R4;C/.

The decomposition (8.20) might let one think that the Poincaré group is
isomorphic to the group product R4 �O.3; 1/. This would be the case if the relation
#»v D #»v 1 C #»v 2 held instead of (8.22). Indeed, let us recall that the group product
(or group direct product) of two groups, .G1;�1/ and .G2;�2/, is the Cartesian
product G1 � G2 endowed with the internal law � defined by .a1; a2/ � .b1; b2/ D
.a1�1b1; a2�2b2/. In the present case, .G1;�1/ D .R4;C/, .G2;�2/ D .O.3; 1/; ı/,
� D ı and one should have . #»v 1;�1/ ı . #»v 2;�2/ D . #»v 1C #»v 2; �1 ı�2/. The result
(8.22) shows that we have instead

. #»v 1;�1/ ı . #»v 2;�2/ D . #»v 1 C�1.
#»v 2/; �1 ı�2/ : (8.23)

One then says that the Poincaré group is the semidirect product of the translation
group and the Lorentz group, and this operation is denoted by the symbol Ì:

IO.3; 1/ ' R
4 Ì O.3; 1/ ; (8.24)

the symbol' standing for “isomorphic to” (cf. Appendix A).
The set of all Poincaré transformations whose associated Lorentz transformation

� is restricted (� 2 SOo.3; 1/) constitutes a subgroup of IO.3; 1/, naturally
called the restricted Poincaré group and denoted by ISOo.3; 1/. The elements of
ISOo.3; 1/ are those that govern the changes of inertial observers. We have of course
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ISOo.3; 1/ ' R
4 Ì SOo.3; 1/ : (8.25)

A consequence of the semidirect product structure (8.25) is that the translation
group .R4;C/ is a normal subgroup (cf. Annexe A) of the restricted Poincaré
group ISOo.3; 1/. It is indeed easy to check that the condition (A.3) is fulfilled
by the product (8.23). Consequently, ISOo.3; 1/ is not a simple group, contrary to
SOo.3; 1/ (cf. Sect. 6.7.4).

Historical note: The name Poincaré group is due to Eugene P. Wigner (cf. p. 215)
and appears for the first time in an article issued in 1952 (Inönü and Wigner 1952)
(cf. Rougé (2008), p. 152). As we have seen in Chap. 6 (cf. the historical note
p. 191), Henri Poincaré has defined the Lorentz group, rather than the group bearing
his name.

8.3.4 The Poincaré Group as a Lie Group

Since .R4;C/ is a Lie group of dimension 4 and O.3; 1/ a Lie group of dimension
6 (cf. Chap. 7), we deduce immediately from (8.24) that

The Poincaré group IO.3; 1/ is a Lie group of dimension 10.

Let us determine the generators of IO.3; 1/. An infinitesimal Poincaré transfor-
mation f must take the form (8.21) with � an infinitesimal Lorentz transformation
and #»v an infinitesimal vector. By (7.2), � is of the type � D Id C "L, with
L 2 so.3; 1/—the Lie algebra of SOo.3; 1/. Writing the infinitesimal translation
vector as " #»v , we then obtain

8M 2 E ;
#              »

Of.M/ D #      »
OM C "

h
#»v CL.

#      »
OM/

i
: (8.26)

The term in factor of " spans the set

iso.3; 1/ WD E � so.3; 1/ : (8.27)

This set, endowed with the addition law defined by

8. #»v 1;L1/ 2 iso.3; 1/; 8. #»v 2;L2/ 2 iso.3; 1/;

. #»v 1;L1/C . #»v 2;L2/ WD . #»v 1 C #»v 2;L1 CL2/; (8.28)

is a vector space over R (recall that so.3; 1/ is a vector space over R, so that the
addition L1CL2 is well defined; cf. Sect. 7.3.2). Since so.3; 1/ is a vector space of
dimension 6, iso.3; 1/ is a vector space of dimension 10.
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Contrary to what was done for the Lie algebra of the Lorentz group, so.3; 1/, one
cannot define the Lie bracket in iso.3; 1/ from the commutator because one has not a
priori any composition law ı in iso.3; 1/. In the case of so.3; 1/, the law ı stemmed
from so.3; 1/ being a subset of the algebra L .E/ of endomorphisms on E , and
this allowed us to define the Lie bracket via (7.9). We shall define the Lie bracket
in iso.3; 1/ from the law (8.23) ruling the composition of Poincaré transformations.
Indeed let us consider two infinitesimal Poincaré transformations,f1 and f2. Thanks
to (8.26), we can write their decompositions in terms of translation vectors and
Lorentz transformations as

f1 D ." #»v 1; IdC "L1/ and f2 D ." #»v 2; IdC "L2/; (8.29)

where #»v 1 2 E , #»v 2 2 E , L1 2 so.3; 1/, L2 2 so.3; 1/ and the same parameter "
has been chosen for f1 and f2 (this is possible via a redefinition of #»v 2 and L2). By
the composition law (8.23), we have

f1 ı f2 D
�
". #»v 1 C #»v 2/C "2L1.

#»v 2/; IdC ".L1 CL2/C "2 L1 ıL2

�
:

Switching the indices 1 and 2 and subtracting, we get

f1 ı f2 � f2 ı f1 D "2 .L1.
#»v 2/ �L2.

#»v 1/; L1 ıL2 �L2 ıL1/ :

We deduce that if f1 and f2 commute, we must have L1.
#»v 2/ D L2.

#»v 1/ and L1 ı
L2 D L2 ıL1. This suggests to define the Lie bracket in iso.3; 1/ by

8. #»v 1;L1/ 2 iso.3; 1/; 8. #»v 2;L2/ 2 iso.3; 1/;

Œ. #»v 1;L1/; .
#»v 2;L2/� WD .L1.

#»v 2/ �L2.
#»v 1/; ŒL1;L2�/ : (8.30)

In this formula, ŒL1;L2� stands of course for the Lie bracket in so.3; 1/: ŒL1;L2� WD
L1 ı L2 �L2 ı L1. The function Œ; � defined by (8.30) is internal to iso.3; 1/ since
L1.

#»v 2/ � L2.
#»v 1/ 2 E and ŒL1;L2� 2 so.3; 1/. Moreover, it is clearly bilinear

and antisymmetric. It can be shown that it obeys Jacobi identity [cf. (7.13)]. It thus
satisfies all the properties defining a Lie bracket (cf. Sect. 7.3.2). We conclude that
iso.3; 1/, endowed with the internal law Œ; � defined by (8.30), is a Lie algebra. It is
called the Lie algebra of the Poincaré group or simply Poincaré algebra.

Remark 8.6. The definition (8.30) of the Lie bracket in iso.3; 1/ has been intro-
duced above as a measure of the noncommutativity of two infinitesimal Poincaré
transformations. There exists actually a fully general procedure to construct a unique
Lie algebra from a given Lie group (cf., e.g. Godement (2004)). It can be shown that,
once applied to the Poincaré group, this procedure results in the Lie bracket (8.30).

Given an orthonormal basis . #»e ˛/ of .E;g/ and the associated generators of the
Lorentz group, K 1, K 2, K 3, J 1, J 2 and J 3 (cf. Sect. 7.3.3), the ten following
elements of iso.3; 1/
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P˛ WD . #»e ˛; 0/ ; ˛ 2 f0; 1; 2; 3g (8.31)

Ki WD .0;K i / ; i 2 f1; 2; 3g (8.32)

Ji WD .0;J i / ; i 2 f1; 2; 3g (8.33)

constitute a vector basis of iso.3; 1/. We shall call them generators of the Poincaré
group associated with the orthonormal basis . #»e ˛/. P˛ is obviously the generator
of translations along the vector #»e ˛ , Ki the generator of Poincaré transformations
associated with Lorentz boosts of plane Vect. #»e 0;

#»e i / and Ji the generator of spatial
rotations of plane Vect. #»e 0;

#»e i /
?.

Let us evaluate the structure constants of the Poincaré group, by computing the
Lie bracket of the various generators (cf. Sect. 7.4.4). From formula (8.30), we get

ŒP˛; Pˇ� D
�
. #»e ˛; 0/; .

#»e ˇ; 0/
� D .0� 0; Œ0; 0�/ D 0: (8.34)

Similarly,

ŒKi ; P˛� D Œ.0;K i /; .
#»e ˛; 0/� D .K i .

#»e ˛/ � 0; ŒK i ; 0�/ D .K i .
#»e ˛/; 0/ :

Now we read on the matrices (7.16) that

K i .
#»e 0/ D #»e i and K i .

#»e j / D ıij #»e 0:

We get then

ŒKi ; P0� D . #»e i ; 0/ D Pi and ŒKi ; Pj � D .ıij #»e 0; 0/ D ıij P0: (8.35)

Besides, still from (8.30),

ŒJi ; P˛� D Œ.0;J i /; .
#»e ˛; 0/� D .J i .

#»e ˛/� 0; ŒJ i ; 0�/ D .J i .
#»e ˛/; 0/ ;

with, in view of the matrices (7.16),

J i .
#»e 0/ D 0 and J i .

#»e j / D
3X

kD1
�ijk

#»e k:

We deduce that

ŒJi ; P0� D 0 and ŒJi ; Pj � D
 

3X

kD1
�ijk

#»e k; 0

!
D

3X

kD1
�ijkPk: (8.36)
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Finally, we check easily that

ŒKi ;Kj � D .0; ŒK i ;K j �/; ŒKi ; Jj � D .0; ŒK i ;J j �/ and ŒJi ; Jj � D .0; ŒJ i ;J j �/:

(8.37)

Collecting formulas (8.34), (8.35), (8.36), (8.37) and (7.44), we obtain the structure
constants of the Poincaré group:

ŒP˛; Pˇ� D 0
ŒKi ; P0� D Pi
ŒKi ; Pj � D ıij P0
ŒJi ; P0� D 0
ŒJi ; Pj � D

3X

kD1
�ijkPk

ŒKi ;Kj � D �
3X

kD1
�ijk Jk

ŒKi ; Jj � D �
3X

kD1
�ijk Kk

ŒJi ; Jj � D
3X

kD1
�ijk Jk:

(8.38)

Remark 8.7. As already noticed when discussing the structure constants of the
Lorentz group (Sect. 7.4.4), the sums over the index k in the above formulas are
actually limited to a single term, thanks to the antisymmetry of �ijk .



Chapter 9
Energy and Momentum

9.1 Introduction

After chapters devoted to the mathematical framework of special relativity and
to relativistic kinematics, we address here relativistic dynamics. After introducing
the concepts of four-momentum, mass, energy and linear momentum of a single
particle (Sect. 9.2), we shall extend the definitions to particle systems in Sect. 9.3,
in order to state with full generality the first of the two fundamental principles of
relativistic dynamics: the conservation of four-momentum. The second principle,
the conservation of angular momentum, will be discussed in the next chapter.
Various applications of four-momentum conservation are presented in Sects. 9.3.7
and 9.4: the Doppler effect, collisions of particles and the Compton effect. Finally,
Sect. 9.5 deals with non-isolated particles and introduces the concept of four-force.

9.2 Four-Momentum, Mass and Energy

9.2.1 Four-Momentum and Mass of a Particle

Let us consider a particle P of worldline L in Minkowski spacetime E . This
particle can either be massive, in which case L is a timelike curve (cf. Sect. 2.2),
or be massless (for instance, a photon), in which case L is a null geodesic (cf.
Sect. 2.5). If P has no internal structure, its dynamics is entirely described by a field
of linear forms p defined along L and such that at any point M 2 L , the vector1

#»p.M/ is tangent to L and future-directed (cf. Fig. 9.1). Moreover, it is demanded
that p has the dimension of a linear momentum, i.e. a mass times a velocity.

1Let us recall that #»p.M/ is the vector associated with the linear form p.M/ by metric duality; cf.
Sect. 1.6 and Eq. (1.46).

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 9, © Springer-Verlag Berlin Heidelberg 2013
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a b

Fig. 9.1 Four-momentum vector #»p at various points of the worldline L of a particle: (a) case of
a massive particle; (b) case of a massless particle (photon)

The vector #»p has the same dimension since g is dimensionless [cf. Eq. (1.46)].
The linear form p.M/ is called four-momentum, or 4-momentum for short,
of P at M . The metric dual #»p.M/ is then called four-momentum vector, or
4-momentum vector, of P at M .

We shall call simple particle the model of particle whose 4-momentum obeys
to the above property and rules entirely the dynamics, in order to distinguish it
from more sophisticated models, such as a particle with spin (to be discussed in
Sect. 10.7). In some versions of these models, the 4-momentum vector #»p is not
necessarily tangent to the worldline (Corben 1968).

Remark 9.1. In many textbooks, the 4-momentum is presented as a vector of
E (a “4-vector”), on the same footing as, e.g. the 4-velocity. However, as we shall
see below and in Chap. 11, the 4-momentum is fundamentally a linear form and not
a vector. The vector #»p is thus a secondary quantity, deduced from the linear form p

by metric duality.

The norm of #»p (as defined in Sect. 1.3.5) divided by c,

m WD 1

c
k #»pkg D

1

c

p
�hp; #»pi ; (9.1)

is called the mass of particle P . The sign � in (9.1) takes into account the fact that
#»p � #»p � 0, #»p being either a timelike vector (P D massive particle, Fig. 9.1a) or a
null one (P D massless particle, Fig. 9.1b). For a massive particle,m > 0, whereas
for a massless one m D 0. This justifies a posteriori the denomination massless
particle introduced in Chap. 2 for particles whose worldlines are null geodesics.
A writing equivalent to (9.1) is

#»p � #»p D �m2c2 : (9.2)
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Remark 9.2. The quantity m defined by (9.1) or (9.2) is sometimes called the rest
mass or proper mass of particle P; we shall not use this terminology here and shall
designm simply by mass.

Remark 9.3. We have not assumed that m is constant along L . This will occur if
P is an elementary particle (e.g. an electron). But if P is a composite particle (e.g.
an atomic nucleus or an atom), m contains some binding energy and can vary. For
instance, an atom in an excited state that returns to its fundamental state (by emitting
a photon) has a mass that decreases slightly.

In the case where P is a massive particle, a second field of vectors tangent to the
worldline L has been introduced in Chap. 2: the 4-velocity #»u . At each point of L ,
the vectors #»p and #»u are thus collinear: #»p D ˛ #»u , with ˛ 2 R. Since #»p and #»u are
both future-directed, one must have ˛ � 0. Furthermore, #»u being unitary and the
norm of #»p beingmc [Eq. (9.1)], we have necessarily ˛ D mc, whence #»p D mc #»u .
Introducing the linear form u associated with #»u by metric duality (cf. Sect. 1.6), this
relation can be rewritten as

p D mc u : (9.3)

Historical note: The notion of 4-momentum has been introduced in 1909 by
Hermann Minkowski (cf. p. 26), in his famous text on spacetime (Minkowski 1909).

9.2.2 Energy and Momentum Relative to an Observer

Given an observer O , of worldline L0, 4-velocity #»u 0 and proper time t , one calls
energy of the particle measured by O at the instant t the quantity

E WD �c hp; #»u 0i ; (9.4)

where #»u 0 D #»u 0.t/ is the 4-velocity of O at the instant t and p D p.M.t// the
4-momentum of P at the point M.t/ where the worldline L intersects O’s local
rest space at time t , Eu0 .t/ (cf. Fig. 9.2).

Remark 9.4. The linear form character of the 4-momentum appears clearly in the
definition (9.4): p is the linear form that maps the 4-velocity #»u 0 of any observer
O to the real number E quantifying the particle energy measured by O . It is true
that the equality (9.4) can be written in terms of the vector #»p , via a scalar product
with #»u 0:

E D �c #»p � #»u 0 D �c g. #»p ; #»u 0/:

However, this writing is conceptually more complicated than (9.4), for it involves
three objects in Minkowski spacetime: the vectors #»p and #»u 0, and the metric tensor
g, whereas (9.4) involves only two objects: the linear form p and the vector #»u 0.
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Fig. 9.2 Energy E and
linear-momentum vector

#»

P of
a particle with respect to an
observer. L is the particle’s
worldline and #»p its
4-momentum vector. L0 is
the observer’s worldline, #»u 0

its 4-velocity and Eu0 .t / its
local rest space

The energy represents one component of the 4-momentum with respect to O .
The other component is the linear momentum of the particle measured by O at the
instant t , defined by

P WD p ı?u0 ; (9.5)

where ?u0 stands for the orthogonal projector on the vector hyperplaneEu0 .t/, local
rest space of O (cf. Sect. 3.2.5). As in (9.4), the 4-momentum p in (9.5) is to be taken
at the point M.t/ where L intersects Eu0 .t/. Let us make explicit the action of the
linear form (9.5): P W E �! R, #»v 7! hp;?u0

#»v i. Again, we should have written
P.M.t//, p.M.t// and ?u0.t/. The vector

#»

P associated with the linear form P by
metric duality is such that (cf. Sect. 1.6)

8 #»v 2 E; #»

P � #»v D hP; #»v i D hp;?u0
#»v i D #»p �?u0

#»v D ?u0
#»p �?u0

#»v D ?u0
#»p � #»v :

We conclude that

#»
P D ?u0

#»p : (9.6)

Hence the linear-momentum vector measured by O is nothing but the orthogonal
projection of the 4-momentum vector onto O’s local rest space.

By means of the explicit form (3.11) of ?u0 , we can write (9.6) as
#»

P D #»p C
. #»u 0 � #»p/ #»u 0. Via (9.4), there comes then

#»p D E

c
#»u 0 C #»

P with #»u 0 � #»
P D 0: (9.7)

Hence, P’s energy and linear momentum measured by O appear as the components
of the orthogonal decomposition with respect to O of P’s 4-momentum vector (cf.
Fig. 9.2).
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Remark 9.5. For this reason, some authors call #»p the energy–momentum 4-vector.
Edwin F. Taylor and John A. Wheeler (cf. p. 79) have even coined the term
momenergy for it, contraction of momentum and energy (Taylor and Wheeler 1992).

By metric duality, (9.7) is equivalent to

p D E

c
u0 CP with hP; #»u 0i D 0: (9.8)

The scalar square (with respect to the metric tensor g) of (9.7) leads to

#»p � #»p D E2

c2
#»u 0 � #»u 0„ ƒ‚ …

�1
C2E

c
#»u 0 � #»

P„ƒ‚…
0

C #»

P � #»

P

Since according to (9.2), #»p � #»p D �m2c2, we get the Einstein relation:

E2 D m2c4 C #»

P � #»

P c2 : (9.9)

In the case of a photon (or more generally a massless particle), this relation
simplifies to

E D k #»
Pkg c

mD0: (9.10)

Remark 9.6. It is clear from the preceding definitions that the 4-momentum and
the mass of a particle are “absolute” quantities, i.e. they depend only on the state of
the considered particle; they are thus on the same footing as the 4-velocity and the
4-acceleration. On the opposite, the particle’s energy and linear momentum are
defined relatively to an observer, similarly to the velocity and the acceleration
introduced in Chap. 4.

In the SI system, the unit of energy is the joule: 1 J D 1 kg m2 s�2. In particle
physics, it is more convenient to use the electronvolt (symbol: eV), which is the
energy acquired by an electron when crossing an electric potential difference of one
volt. As we shall see in Chap. 17,

1 eV D 1:602 176 487.40/� 10�19 J: (9.11)

Multiples of the electronvolt are often used: 1 keV D 103 eV, 1 MeV D 106 eV,
1 GeV D 109 eV, 1 TeV D 1012 eV, 1 PeV D 1015 eV (petaelectronvolt)
and 1 EeV D 1018 eV (exaelectronvolt). Similarly, the unit of linear momentum
used in particle physics is the electronvolt divided by c [cf. (9.10)]: 1 eV=c D
5:344285502� 10�28 kg m s�1.
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9.2.3 Case of a Massive Particle

If P is a massive particle, formula (9.3) relates its 4-momentum vector to its
4-velocity #»u . The latter is expressible in terms of P’s velocity

#»
V relative to O

and P’s Lorentz factor � with respect to O , via (4.27):

#»u D �
�
.1C #»a 0 � #      »

OM/ #»u 0 C 1

c

�
#»
V C #»! �u0

#      »
OM

��
;

where #»a 0 and #»! are, respectively, the 4-acceleration and the 4-rotation of observer
O . Inserting this relation into (9.3), we get

#»p D � mc.1C #»a 0 � #      »
OM/ #»u 0 C � m

�
#»
V C #»! �u0

#      »
OM

�
:

The comparison with (9.7) leads to

E D � .1C #»a 0 � #      »
OM/mc2 ; (9.12)

and

#»

P D � m
�

#»

V C #»! �u0

#      »
OM

�
: (9.13)

Note that the Lorentz factor that appears in these formulas is given by (4.30).
Let us call quantity of motion of particle P with respect to observer O

the linear form

q WD � mV ; (9.14)

where V is the linear form associated with the velocity vector
#»

V by metric duality
(cf. Sect. 1.6). The vector #»q , metric dual of q, belongs to O’s local rest space.
Equation (9.13) leads to the following relation between the linear momentum and
the quantity of motion (both relative to O):

#»

P D #»q C � m #»! �u0

#      »
OM: (9.15)

Two important particular cases are the following: (i) O is an inertial observer
( #»a 0 D 0 and #»! D 0) and (ii) the worldlines of the particle and the observer cross
each other (M.t/ 2 L0). The above formulas and (4.30) simplify then to

E D � mc2
M2L0 or O inertial (9.16)

#»

P D #»q D � m #»

V
M2L0 or O inertial

(9.17)
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� D
�
1 � 1

c2
#»

V � #»

V

	�1=2
.M 2 L0 or O inertial/: (9.18)

Equation (9.16) is probably the best-known equation in whole physics!
When O is inertial, one calls kinetic energy of P with respect to observer O the

quantity

Ekin WD .� � 1/mc2 : (9.19)

Formula (9.16) becomes then

E D mc2 C Ekin: (9.20)

The quantity mc2 is called mass energy of particle P . At the nonrelativistic limit,
k #»
V kg 	 c and the expansion of � in (9.18) shows that (9.17) and (9.19) reduce to

#»
P ' m #»

V and Ekin ' 1

2
m

#»
V � #»

V (nonrelativistic): (9.21)

We recognize the standard expressions for linear momentum and kinetic energy.

Example 9.1. For an electron mc2 D 511 keV, whereas for a proton, mc2 D
0:938 GeV. The former accelerator LEP of CERN (cf. Sect. 17.5.4 and Table 17.1)
brought electrons up to the energy E D 104 GeV, which, according to (9.16),
corresponds to the Lorentz factor � D 2 � 105. The LHC, to be presented in
Sect. 17.5.4, accelerates protons up toE D 7 TeV, which corresponds to the Lorentz
factor � D 7:5 � 103.

Example 9.2. The Earth is continuously hit by high-energy particles from the
universe, called cosmic rays (Crozon 2005). They are mostly protons and their
energy distribution is plotted in Fig. 9.3. One notes the existence of very high-energy
particles, up to E � 1020 eV. They are called ultrahigh-energy cosmic rays. The
record is E D 3 � 1020 eV, measured in 1993 (Bird et al. 1993). Expressed in
joules, this energy is E D 52 J, which equals the kinetic energy of a tennis ball
launched at 150 km=h! The precise nature of the particle is not known. If it is a
proton, its Lorentz factor, deduced from (9.16), is � D 3 � 1011. This implies a
velocity extremely close to c: V D .1�5�10�24/c. It is the fastest massive particle
(with respect to a terrestrial observer) observed to date. Such a particle is however
not directly detected: as soon as it enters into the Earth atmosphere, it interacts
with atomic nuclei and gives birth to thousands of secondary particles, forming
a so-called cosmic air shower, illustrated in Fig. 9.4. The energy of the primary
particle is inferred from the secondary particles detected on the ground. The largest
detector for ultrahigh-energy cosmic rays is the Pierre Auger Observatory, which
started operations in 2008; it is shown in Fig. 9.4.

With (9.19), we have formally defined the kinetic energy as .� �1/mc2, where�
is the function (9.18) of the particle velocity. In addition to the correct nonrelativistic
limit (9.21), a justification of this definition is that it corresponds to the energy



278 9 Energy and Momentum

Fig. 9.3 Distribution of cosmic rays arriving on Earth as a function of their energy: the abscissa is
the energy E of cosmic rays with respect to a terrestrial observer, while the ordinate is the number
F of cosmic rays per unit surface, per unit solid angle and per unit time within an energy band
of 1 GeV. The dashed line corresponds to a distribution obeying the power law F / E�2:8. Up
to � 1010 eV, most cosmic rays are coming from the Sun. Between � 1010 eV and � 1015 eV,
they originate from sources located within our galaxy, whereas above � 1015 eV, they have an
extragalactic origin [Source: Cronin, Gaisser and Swordy (1997)]

Fig. 9.4 Numerical simulation of a cosmic air shower created during the atmospheric entry of
a proton of energy 1019 eV. The small dots on the ground are the 1,600 tanks (each filled with
12,000 L of water) of the Pierre Auger Observatory, covering an area of 3; 000 km2 in Argentina.
The particles propagating along a straight line and reaching the ground are muons. The other
particles are mostly photons, electrons and positrons [Source: R. Landsberg, D. Surendran &
M. SubbaRao (Cosmus group, Univ. Chicago)]
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Fig. 9.5 Kinetic energy Ekin as a function of the norm V the velocity: the solid curve corresponds
to the relativistic formula (9.19), the dashed curve to the Newtonian formula 1

2
mV 2 [Eq. (9.21)]

and the dots are the experimental results obtained by W. Bertozzi in 1964 (Bertozzi 1964)

deposited as heat when relativistic particles are absorbed in matter. This has been
checked experimentally by William Bertozzi in 1964 (Bertozzi 1964): he measured
by calorimetry the energy laid by relativistic electrons into an aluminium disk. He
also determined directly the velocity V of the electrons by measuring the time to
cover the 8:4 m separating the output of the electrostatic accelerator (the electron
source) to the aluminium disk. Bertozzi measurements are depicted in Fig. 9.5:
they agree well with the relativistic definition (9.19) of kinetic energy and disagree
strongly with the Newtonian counterpart (9.21).

Historical note: The equivalence between mass and energy, expressed here by
(9.16), has been established by Albert Einstein (cf. p. 26) in 1905 (Einstein 1905c),
a few months after having published the article funding special relativity (Einstein
1905b). Let us stress that the concept of 4-momentum vector did not exist at this
time (cf. historical note in Sect. 9.2.1), so that Einstein’s reasoning was very different
from that presented here. Regarding the relation

#»
P D � m #»

V [Eq. (9.17)], it appears
in the specific case of a electromagnetic model for the electron in an article by
Hendrik Lorentz (cf. p. 108) published in 1904 (Lorentz 1904) (cf. Darrigol (2006)).
In the case of special relativity, it seems that it has been written for the first time by
Max Planck2 in 1906 (Planck 1906).

2Max Planck (1858–1947): German physicist, 1918 Nobel Prize in Physics, famous for having
introduced the concept of energy quantum, via the constant bearing his name [cf. Eq. (9.25)],
which was the prelude to quantum mechanics. Planck supported Albert Einstein as soon as 1905,
recognizing immediately the importance of relativity and contributing to its diffusion in Germany.
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9.2.4 Energy and Momentum of a Photon

Let us assume that the particle P is a photon. In Sect. 4.6, we have introduced its
propagation direction with respect to the observer O as the unit vector #»n belonging
to O’s local rest space Eu0 such that the null vector

#»
` WD #»u 0 C #»n is tangent to

P’s worldline and future-directed [cf. Eq. (4.74)].
#»

` and the 4-momentum #»p are
then two tangent vectors to P’s worldline; they must be collinear: #»p D ˛

#»

` D
˛ . #»u 0 C #»n /, with ˛ 2 R. Comparing with expression (9.7) for #»p , we deduce that
˛ D E=c,

#»p D E

c
. #»u 0 C #»n / (9.22)

and

#»

P D E

c
#»n : (9.23)

As a check, the scalar square of (9.23) yields (9.10), since #»n � #»n D 1.
The photon’s frequency relative to observer O , f , is related to its energyE with

respect to O , as defined in Sect. 9.2.2, by the Planck–Einstein formula

E D hf ; (9.24)

where h is Planck constant:

h D 6:6260693.11/� 10�34 J s: (9.25)

Substituting (9.24) for E in (9.23), we get

#»

P D h

�
#»n with � WD c

f
: (9.26)

The quantity � is called wavelength of the photon measured by observer O .

Remark 9.7. The frequency and the wavelength of a photon are quantities that
are relative to an observer (since they are related to the photon energy measured
by the observer). In particular, one can always find an observer with respect to
which the frequency of a given photon is arbitrary small or arbitrary large. The only
dynamical quantity intrinsic to a photon3 is its 4-momentum p.

3If quantum effects are to be taken into account, a second intrinsic dynamical quantity must be
considered: the photon’s spin (cf. Sect. 10.7).
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9.2.5 Relation Between P , E and the Relative Velocity

For any particle P , massive or not, the linear momentum
#»
P , energyE and velocity

#»
V , all the three relative to observer O , are linked by the equation

#»

P D E

c2.1C #»a 0 � #      »
OM/

�
#»

V C #»! �u0

#      »
OM

�
; (9.27)

where #»a 0 is the 4-acceleration of O and #»! his 4-rotation.

Proof. If P is a massive particle, we can get rid of � m in (9.13) by means of (9.12);
this yields exactly (9.27). If P is a massless particle, we may extract #»n from (4.78)
and insert the result in (9.23); this leads to (9.27). ut

If O is an inertial observer or if particle P encounters O (
#      »
OM D 0), (9.27)

simplifies to

#»

P D E

c2
#»

V :
M2L0 or O inertial

(9.28)

9.2.6 Components of the 4-Momentum

The components .p˛/ of P’s 4-momentum with respect to the local frame . #»e ˛/ of
observer O are

p˛ WD hp; #»e ˛i: (9.29)

Of course, the dependency in t is implicit in this equation: with all rigour, one should
write p˛.t/ WD hp.M.t//; #»e ˛.t/i [cf. Fig. 9.2]. Thanks to the linearity of p, (9.29)
leads to

8 #»v 2 E; hp; #»v i D p˛ v˛ ; (9.30)

where the v˛’s are the components of #»v in the basis . #»e ˛/:
#»v D v˛ #»e ˛ .

Since #»e 0 D #»u 0, relation (9.8) allows one to express the 4-momentum’s
components in terms of P’s energy measured by O and the components Pi of P’s
linear momentum measured by O:

p˛v
˛ D E

c
hu0; #»v i C hP; #»v i D E

c
v˛hu0; #»e ˛i C v˛hP; #»e ˛i

D E

c
v0 hu0; #»u 0i„ ƒ‚ …

�1
Cvi hP; #»e i i„ ƒ‚ …

Pi

D �E
c
v0 C Pivi :
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Hence,

p˛ D
�
�E
c
; P1; P2; P3

	
: (9.31)

The components .p˛/ of the 4-momentum vector #»p D p˛ #»e ˛ are deduced directly
from (9.7):

p˛ D
�
E

c
; P 1; P 2; P 3

	
; (9.32)

where the P i ’s are the components of the
#»
P in the basis . #»e i / of Eu0 . Since this

basis is orthonormal, we have P i D Pi . More generally, the components of #»p

and p are related by (1.43): p˛ D g˛ˇpˇ. Since for an orthonormal basis g˛ˇ D
�˛ˇ D diag.�1; 1; 1; 1/, we have p0 D �p0 and pi D pi , which we observe on
(9.31)–(9.32).

If O is an inertial observer or if M.t/ 2 L0, the relations (9.16) and (9.17) for a
massive particle lead to

p˛ D � m.�c; V1; V2; V3/ and p˛ D � m.c; V 1; V 2; V 3/; (9.33)

m being the mass of P and the V i ’s the components of P’s velocity relative to O ,
with Vi D V i .

9.3 Conservation of 4-Momentum

Relativistic dynamics is based on two principles: conservation of 4-momentum and
conservation of angular momentum. We present here the former, the latter being the
topic of the next chapter. Before stating the principle, one must first define the total
4-momentum of a system of particles.

9.3.1 4-Momentum of a Particle System

Let us consider a system formed by a finite number of particles:

S D fP1;P2; : : : ;PN g:

For each particle Pa (a 2 f1; : : : ; N g), the 4-momentum pa has been defined in
Sect. 9.2.1 as a field of linear forms along the particle’s worldline La. To define
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Fig. 9.6 Total 4-momentum vector #»pj˙ of a particle system defined as the vectorial sum of
the 4-momenta of each particles at the intersection point Ma of their worldlines with an oriented
hypersurface ˙

the total 4-momentum of the system, it is a priori not trivial to “add” the individual
4-momenta pa, because they are defined along different worldlines. To perform the
addition, one should select an event Ma on each worldline La and consider the
linear form pa.Ma/, which is an element of the vector space E� (the dual of E; cf.
Sect. 1.6.1). Then one can form the sum

PN
aD1 pa.Ma/, which is well defined within

E�. Now, there does not exist in Minkowski spacetime any canonical structure
that would yield a natural choice for the points Ma. In particular, contrary to the
Newtonian case, there does not exist any absolute time, which would have enabled
us to defineMa as the event of La for a prescribed value of this time. If an observer
O is given, in addition to the system S , a solution to the above problem appears
quite naturally: the eventsMa can be selected as those of fixed time t with respect to
O , i.e. as the intersections of the worldlines La with O’s local rest space at proper
time t , Eu0 .t/. More generally, it suffices to provide a hypersurface4 of E , ˙ , that
cuts all the worldlines La and such that no worldline is tangent to ˙ (cf. Fig. 9.6).
The case of an observer appears then as the particular case where˙ is the observer’s
local rest space at some given instant. We shall assume that˙ is orientable, i.e. that
it is possible to split the normal vectors to˙ in two categories (positive and negative
orientations) and this in a continuous way. After an orientation is chosen, one says
that ˙ is an oriented hypersurface.

Example 9.3. The local rest space of an observer at a given proper time t ,
Eu0 .t/, is an oriented hypersurface, the positive orientation being naturally that of
future-directed normal vectors. A counterexample (in a three-dimensional space) is
provided by the Moebius strip, which is a non-orientable surface: moving a normal
vector continuously along a path parallel to a strip’s edge results in a vector of
opposite direction after returning to the initial position.

4Let us recall that hypersurface stands for a surface of dimension 4 � 1 D 3. It is actually a
three-dimensional volume; hypersurfaces will be discussed in details in Chap. 16.
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Remark 9.8. The above notion of orientation is different from that defined in
Sect. 1.5: the latter can be named internal orientation, whereas the former is an
external orientation since it makes sense only because ˙ is embedded in a larger
space, namely, E .

Given an oriented hypersurface ˙ , one defines the total 4-momentum of the
system S on ˙ as the linear form on E resulting from the sum of the individual
4-momenta taken at the points of intersection of ˙ with the different worldlines
(cf. Fig. 9.6):

pj˙ WD
NX

aD1

X

M2La\˙
" pa.M/ ; (9.34)

where pa.M/ is 4-momentum of particle no. a at point M and " D C1 if the 4-
momentum vector #»pa.M/ associated with pa.M/ has the direction given by the
positive orientation of˙ and " D �1 otherwise. The vector associated with pj˙ by
metric duality is of course denoted by #»p j˙ .

Remark 9.9. In Fig. 9.6, the intersection La \ ˙ is limited to a single point, but
this is not necessarily so in general, hence the second summation sign of (9.34).
An example is provided by Fig. 9.8 below.

If˙ is the local rest space of an observer O at the proper time t ,˙ D Eu0 .t/, we
shall call pj˙ the total 4-momentum of the system S at the instant t of observer
O . In this case, the natural orientation of ˙ is set by the time arrow of Minkowski
spacetime (cf. Sect 1.4), and since all the vectors #»pa are future-directed (by the
very definition of 4-momentum; cf. Sect. 9.2.1), one has always " D 1 in (9.34).
Moreover, Eu0 .t/ being a spacelike hyperplane, its intersection with a worldline La

(which either timelike or null) is necessarily reduced to a single point, Ma, say.
Equation (9.34) then becomes

pjEu0 .t/
WD

NX

aD1
pa.Ma/ with fMag WD La \ Eu0 .t/: (9.35)

Historical note: The definition (9.34) for the total 4-momentum of a system on a
hypersurface has been introduced in 1935 by John L. Synge (cf. p. 74) (1935).

9.3.2 Isolated System and Particle Collisions

One says that a particle system is isolated iff it is not subject to any external
interaction. There may be some interaction between the particles. We shall assume
them to be pointlike, i.e. to occur in a domain of negligible extension with respect
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Fig. 9.7 Collision of two
particles (worldlines L1 and
L2) giving birth to four
particles (worldlines L3, L4,
L5 and L6). In this example,
L3 corresponds to a photon,
whereas the other worldlines
are those of massive particles

to the problem under consideration. One calls them localized interactions or
collisions. If the particles are elementary ones, the detailed description of a collision
involves quantum mechanics, as well as the treatment of the weak, strong and
electromagnetic interactions. It is therefore out of the scope of the present book.
During a collision, some particles may disappear or be created. The number of
worldlines is thus not necessarily constant, as illustrated in Fig. 9.7.

9.3.3 Principle of 4-Momentum Conservation

We are now in position to state the first fundamental principle of relativistic
dynamics:

If a particle system is isolated, its total 4-momentum on any closed hypersur-
face ˙ vanishes:

S isolated and ˙ closed H) pj˙ D 0 : (9.36)

Let us recall that closed means compact and without boundary.

Various comments are relevant:

• A closed hypersurface separates the spacetime E in two distinct domains: the
interior and the exterior (cf. Fig. 9.8). This provides a natural orientation, and
in the summation (9.34), one can choose " D C1 if #»pa is directed towards the
interior of˙ and " D �1 otherwise.



286 9 Energy and Momentum

Fig. 9.8 Total 4-momentum
of a particle system on a
closed hypersurface:
pj˙ D p1.A/� p1.D/C
p2.B/C p3.C /� p4.E/�
p5.F /� p6.G/

• Collisions between particles may occur inside ˙ , as illustrated in Fig. 9.8. The
number of ingoing 4-momenta is therefore not necessarily equal to the number
of outgoing ones.

• The property (9.36) is genuinely a conservation law in so far as it means that
“nothing is going out of ˙ but things that entered in it”. We shall detail this in
what follows and shall show that (9.36) implies the conservation of energy and
linear momentum of the system with respect to any inertial observer.

• The property (9.36) could be used, not as a principle, but as the definition of an
isolated system.

• For a full description of the dynamics a system of relativistic particles, the above
principle must be completed by the principle of angular momentum conservation,
to be stated in Chap. 10.

• In the present formulation, the conservation of 4-momentum appears as a first
principle (an axiom). We shall see in Chap. 11 that it is no longer the case
in a Lagrangian formulation of relativistic dynamics: the conservation of 4-
momentum results from the symmetries of the system, via the Noether theorem.

9.3.4 Application to an Isolated Particle: Law of Inertia

Applied to a system reduced to a single particle, the principle (9.36) implies that the
4-momentum of an isolated particle P is a field of constant linear forms along P’s
worldline L :

8M 2 L ; p.M/ D const: (9.37)
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Fig. 9.9 Application of the
principle of 4-momentum
conservation to an isolated
particle: #»p.A/ D #»p.B/

Proof. If we choose a closed hypersurface ˙ that cuts L in two points A and B
(cf. Fig. 9.9), then (9.36) reduces to p.A/ � p.B/ D 0, i.e. p.A/ D p.B/. By
varying˙ and hence the points A and B , we get (9.37). ut

Equation (9.37) means that the vector #»p.M/ associated with p.M/ by metric
duality is constant along the worldline L . Since this vector must be tangent to L
at any point, we deduce from (9.37) that L has to be a straight line. Moreover, the
mass m of the particle P being nothing but the metric norm of #»p [Eq. (9.1)], we
also deduce from (9.37) thatm is constant. If P is a massive particle, its 4-velocity,
#»u D .mc/�1 #»p , is also a constant vector along L . For any inertial observer O ,
the velocity

#»

V of P relative to O is then constant:
#»

V is given by (4.31):
#»

V D
c
�
� �1 #»u � #»u 0

�
, where #»u 0 is O’s 4-velocity and � D � #»u � #»u 0 [Eq. (4.10)]. Since

O is an inertial observer, #»u 0 is constant [Eq. (8.3)], and the above expression shows
indeed that

#»

V D const. If P is massless, formula (4.79) applies:
#»

V D c #»n with #»n

related to #»p and #»u 0 by (9.22), which implies that #»n is constant. To summarize:

If a particle is isolated:

• Its worldline is a straight line in Minkowski spacetime.
• Its 4-momentum is constant.
• Its mass is constant.
• Its velocity relative to any inertial observer is constant.

The last result is known as the law of inertia: with respect to any inertial observer,
an isolated particle has a uniform rectilinear motion.
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Fig. 9.10 Conservation of
the 4-momentum of an
isolated system:
#»p j˙ 0 D #»p j˙ with #»pj˙ 0 WD
#»p 0

1 C #»p 0

2 C #»p 0

3 C #»p 0

4 and
#»p j˙ D #»p1 C #»p2 C #»p3

Historical note: The law of inertia is one of the many facets of the relativity
principle, which stipulates that the laws of physics are the same for all inertial
observers. This principle has been formulated for the laws of mechanics by Galileo
in 1632 (cf. Paty (1999b) for a detailed discussion). It was Henri Poincaré (cf.
p. 26) who, in 1904, extended the principle to electromagnetism and erected it as a
fundamental principle for all the laws of physics and named it relativity principle
(Poincaré 1904, Paty 1996). In the 1905 historical article (Einstein 1905b), Albert
Einstein (cf. p. 26) has elaborated special relativity from two postulates: (i) the
relativity principle and (ii) the principle of constancy of the velocity of light in
vacuum. We have already stressed in Sect. 4.6.2 that in the present formulation of
special relativity, the postulate (ii) is no longer a first principle and results from
the Minkowski spacetime structure (cf. Remark 4.8 p. 121). The law of inertia that
we have just derived shows that the relativity principle has the same status in the
present formulation.

9.3.5 4-Momentum of an Isolated System

Let us consider an isolated system of particles S and two compact spacelike
hypersurfaces ˙ and ˙ 0. By spacelike hypersurface it is meant that any vector
tangent to˙ or˙ 0 must be spacelike. Examples of such hypersurfaces are of course
the hyperplanes formed by the local rest spaces of an observer. Moreover, we assume
that˙ and˙ 0 have no intersection. We may then consider that˙ 0 is located entirely
in the future of ˙ (cf. Fig. 9.10). We shall also assume that ˙ and ˙ 0 are such that
if they are completed by a third hypersurface˙ 00 to form a closed hypersurface (cf.
Fig. 9.10), then no worldline of a particle in S crosses ˙ 00. Note that ˙ 00 is not
spacelike, contrary to ˙ and ˙ 0.
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˙ and˙ 0 being spacelike hypersurfaces, their natural orientation is provided by
the time arrow of Minkowski spacetime (cf. Sect 1.4). The 4-momenta of the system
are then given by formula (9.34) with " D C1:

pj˙ D
NX

aD1

X

M2La\˙
pa.M/ and pj˙ 0 D

N 0X

aD1

X

M2La\˙ 0

pa.M/: (9.38)

Note that N 0 6D N is allowed in these formulas, in order to take into account the
disintegration and the creation of particles between ˙ and ˙ 0, as illustrated in
Fig. 9.10. Besides, the hypersurfaces ˙ and ˙ 0 being spacelike, it is not possible
that a given worldline has more than one intersection with them. Indeed, if M 2
La\˙ , the worldline La is entirely contained within the light cone at M , whereas
˙ is necessarily at the exterior of this light cone: if ˙ crossed the interior of the
light cone, it would “bend” and have portions with timelike tangents, which is not
permitted for a spacelike hypersurface. We have thus La\˙ D fM g. Consequently
(9.38) simplifies into

pj˙ D
NX

aD1
pa.Ma/ and pj˙ 0 D

N 0X

aD1
pa.M

0
a/;

with fMag WD La \˙ and fM 0
ag WD La \˙ 0.

Let us then apply the principle of 4-momentum conservation (9.36) to the closed
hypersurface˙ [˙ 0 [˙ 00 and the isolated system S :

pj˙ � pj˙ 0 C pj˙ 00„ƒ‚…
0

D 0;

where (i) the sign � in front of pj˙ 0 arises from the change of orientation between
the hypersurface ˙ 0 (positive orientation towards the future) and the hypersurface
˙ [ ˙ 0 [ ˙ 00 (positive orientation towards its interior) and (ii) the property
pj˙ 00 D 0 stems from the fact that no worldline crosses ˙ 00. We have thus

pj˙ 0 D pj˙ : (9.39)

This means that

The 4-momentum of an isolated system is independent of the choice of the
spacelike hypersurface ˙ , in so far as the latter crosses all the worldlines of
the particles in the system. We can thus omit the index˙ and denote
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p WD
NX

aD1
pa.Ma/ with fMag WD La \˙: (9.40)

The linear form p 2 E� is called the 4-momentum of the isolated system S .

Remark 9.10. In order to define the total 4-momentum of a particle system,
we had to introduce an auxiliary hypersurface as a “slice of time” across the
particle worldlines. For an isolated system, the above result shows that the total
4-momentum hence defined is independent of the choice of the hypersurface. It is
therefore a quantity intrinsic to the system, on the same footing as the 4-momentum
of a single particle. But one should keep in mind that this is valid a priori only for
an isolated system.

The 4-momentum of an isolated system is similar to that of a single particle
regarding the following property:

The 4-momentum vector #»p of an isolated system is either a future-directed
timelike vector or a future-directed null vector, the latter case occurring only
for a system made of massless particles whose 4-momenta are all collinear.

Proof. In view of (9.40), #»p is the sum of timelike or null vectors, all future-directed.
It suffices then to show that the sum #»p D #»p 1 C #»p 2 of two such vectors is a future-
directed vector, either timelike or null, the latter case occurring only if #»p1 and #»p2

are both null and collinear. We have

#»p � #»p D #»p 1 � #»p1„ ƒ‚ …
�0

C2 #»p 1 � #»p2 C #»p2 � #»p 2„ ƒ‚ …
�0

:

Now, from Lemmas 1 and 2 of Sect. 1.4.2, #»p1 � #»p 2 < 0 if #»p 1 and #»p2 are both
timelike or are both null and noncollinear. By continuity, we also have #»p1 � #»p2 < 0

if #»p 1 is timelike and #»p 2 is null. In all these cases, we have thus #»p � #»p < 0, from
which we conclude that #»p is timelike. In the remaining case, namely, when #»p 1 and
#»p2 are null and collinear, we have #»p1 � #»p2 D 0, which yields #»p � #»p D 0, i.e. #»p null.
Finally, it is obvious that #»p is future-directed, for #»p 1 and #»p2 are. ut
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As for an individual particle, we define the mass of the isolated system S as the
metric norm of the vector #»p (up to a c factor):

m WD 1

c
k #»pkg D

1

c

p
�hp; #»pi : (9.41)

This formula is well defined since #»p is timelike or null.

Remark 9.11. The total mass of an isolated system is not equal to the sum of the
masses of the particles making the system. For example, for a system made by two
particles of massesm1 > 0 andm2 > 0, and 4-velocities #»u 1 and #»u 2, formulas (9.3)
and (9.41) yield to

m2 D �.m1
#»u 1 Cm2

#»u 2/ � .m1
#»u 1 Cm2

#»u 2/ D m2
1 � 2m1m2

#»u 1 � #»u 2 Cm2
2

D .m1 Cm2/
2 C 2.� � 1/m1m2;

with � WD � #»u 1 � #»u 2. If the 4-velocities #»u 1 and #»u 2 are not collinear, � > 1 and
m > m1 Cm2.

If m 6D 0 (i.e. if S is not made solely of massless particles with collinear
4-momenta), the vector

#»u WD 1

mc
#»p (9.42)

is a future-directed timelike unit vector. By analogy with (9.3), we shall call it
4-velocity of the isolated system S . As for #»p , #»u is a constant vector in E . We
shall then call comoving inertial observer with the isolated system S any inertial
observer whose 4-velocity is equal to #»u .

9.3.6 Energy and Linear Momentum of a System

Given a particle system S and an observer O , of proper time t , one calls,
respectively, energy of the system S measured by O at time t and linear
momentum of the system S measured by O at time t the quantities

E WD �c hpjEu0 .t/
; #»u 0.t/i ; (9.43)

P WD pjEu0 .t/
ı?u0 ; (9.44)

where #»u 0.t/ is the 4-velocity of O at time t and pjEu0 .t/
the 4-momentum of S at

the instant t of observer O , as given by (9.35).
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We have of course formulas analogous to (9.6) and (9.7):

#»
P D ?u0

#»p jEu0 .t/
; (9.45)

#»p jEu0 .t/
D E

c
#»u 0 C #»

P with #»u 0 � #»
P D 0; (9.46)

as well as the analogue of Einstein relation (9.9):

E2 D m2c4 C #»
P � #»

P c2 : (9.47)

Substituting pjEu0 .t/
by expression (9.35) in (9.43) and (9.44) and comparing

with (9.4) and (9.5), we deduce that

E D
NX

aD1
Ea and P D

NX

aD1
Pa ; (9.48)

where Ea and Pa are, respectively, the energy and linear momentum of particle a,
both measured by O at time t .

Example 9.4. Let us suppose that the system S is isolated and choose for O a
comoving observer. Equation (9.42) leads then to #»p D mc #»u 0. Comparing with
(9.46), we get E D mc2 and P D 0. Hence, the linear momentum of a system
measured by a comoving observer is vanishing.

If the system S is isolated, we have seen in Sect. 9.3.5 that its 4-momentum is
constant: pjEu0 .t/

D p. Besides, if O is inertial, the 4-velocity #»u 0 is a constant
vector. We deduce then from (9.43) and (9.44) the following properties:

The energy and linear momentum of an isolated system measured by an
inertial observer are constant:

dE

dt
D 0 and

dP

dt
D 0 : (9.49)
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9.3.7 Application: Doppler Effect

Let us consider the emission of a photon P of 4-momentum p by an observer
O 0 (4-velocity #»u 0) and its reception by an inertial observer O (4-velocity #»u ).
The 4-momentum p is expressible in terms of P’s energy measured by O ,
Erec, and P’s propagation direction with respect to O , #»n , according to (9.22):
p D .Erec=c/.u C n/. Moreover, the 4-velocity of O 0 is expressible in terms
of his velocity

#»
V and his Lorentz factor � relative to O according to (4.31):

#»u 0 D � . #»u C #»
V =c/. If the photon is not submitted to any interaction between

O 0 and O , its 4-momentum p at the reception is the same as that at the emission
[cf. (9.37)]. We may then express the photon’s energy relative to the emitter O 0
according to (9.4):

E 0
em D �c hp; #»u 0i D �c

�
Erec

c
.uC n/; �

�
#»u C 1

c

#»
V

	�

D �
 
1 �

#»n � #»
V

c

!
Erec;

where the properties hu; #»u i D �1, hu; #»
V i D 0 and hn; #»u i D 0 have

been used. The energy of a photon being proportional to its frequency,
via the Planck–Einstein relation (9.24), E D h f , we get the follow-
ing relation between the frequency at the reception event measured by
O , frec, say, and the frequency at the emission event measured by O 0,
f 0

em, say:

frec D f 0
em

�
�
1 � #»n � #»

V =c
� : (9.50)

We thus recover the formula for the Doppler effect obtained in Sect. 5.5
[Eq. (5.62)].

Remark 9.12. In Sect. 5.5, the Doppler formula relating frec and f 0
em has been

established by reasoning on the measure of time intervals related to periodic
signals, whereas it has been obtained here from energetic considerations based
on the photon’s 4-momentum. The fact that the two results coincide may be seen as
a validation of the proportionality relationE D h f postulated by Einstein between
the energy of a photon and the frequency of the corresponding electromagnetic
wave.
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9.4 Particle Collisions

9.4.1 Localized Interactions

The general form of a localized interaction5 between some particles is

P1 CP2 C � � � �!P 0
1 CP 0

2 C � � � ;

where P1, P2, etc. stand for the particles before the interaction and P 0
1, P 0

2, etc.
for those after the interaction. Various subcases can be distinguished:

• Deexcitation: P1 �! P1 CP 0
2; a typical example is the deexcitation of an

atom P1 by the emission of a photon P 0
2.

• Decay or disintegration: P1 �!P 0
1 CP 0

2 C � � � with P 0
a 6D P1. an example

is the neutron decay (beta decay), n �! p C e� C N�e; another example is the
muon decay considered in Sect. 4.4.1, �� �! e� C �� C N�e.

• Elastic collision: P1 CP2 �! P1 CP2, where the masses m1 and m2 of
particles P1 and P2 are kept constant (m2 D 0 if P2 is a photon); an example
is the Compton scattering, to be discussed in Sect. 9.4.4;

• Inelastic collision: P1CP2 �!P 0
1CP 0

2C� � � , with P 0
1 6DP1 or P 0

2 6DP2,
or P 0

1 DP1 and P 0
2 DP2 but m0

1 6D m1 orm0
2 6D m2

• Annihilation: P1C NP1 �!P 0
1CP 0

2C� � � , where NP1 stands for the antiparticle
of P1; the annihilation is a particular case of an inelastic collision; often, P 0

1

and P 0
2 are photons, as, for example, in the electron-positron annihilation: e� C

eC �! 
 C 
 .

Remark 9.13. From the above definition, a collision is elastic iff both the nature
and the masses of the particles are unchanged. Let us recall that if a particle is
not elementary, its mass may vary, after some reorganization of its constituents
(variation of internal energy, cf. Remark 9.3 p. 273).

9.4.2 Collision Between Two Particles

Let us consider a localized interaction between two particles, P1 and P2, whose
output is also two particles, P 0

1 and P 0
2, say, with possibly P 0

1 DP1 or P 0
2 DP2:

P1 CP2 �!P 0
1 CP 0

2:

5Cf. Sect. 9.3.2.
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The principle of 4-momentum conservation, in the form (9.39), yields

#»p 1 C #»p2 D #»p 0
1 C #»p 0

2 ; (9.51)

where #»pa (resp. #»p 0
a) is the 4-momentum vector of Pa (resp. P 0

a).
It is customary to introduce Mandelstam variables6 as the following scalar

squares:

s WD �. #»p 1 C #»p2/ � . #»p1 C #»p 2/ D �. #»p 0
1 C #»p 0

2/ � . #»p 0
1 C #»p 0

2/ (9.52a)

t WD �. #»p 1 � #»p 0
1/ � . #»p 1 � #»p 0

1/ D �. #»p 2 � #»p 0
2/ � . #»p2 � #»p 0

2/ (9.52b)

u WD �. #»p 1 � #»p 0
2/ � . #»p 1 � #»p 0

2/ D �. #»p 2 � #»p 0
1/ � . #»p2 � #»p 0

1/: (9.52c)

In each equation, the second equality results from (9.51). Since they are defined
from the 4-momenta, Mandelstam variables are independent of any observer.
According to the definition (9.41), s is related to the total mass m of the system by

s D m2c2: (9.53)

Besides, the sum of the three Mandelstam variables is related to the particles’
individual masses by

s C t C u D .m2
1 Cm2

2 Cm0
1
2 Cm0

2
2
/c2: (9.54)

Proof. Expanding the scalar products (9.52), we get

sCtCu D � #»p 1 � #»p1� #»p 2 � #»p2� #»p 0
1 � #»p 0

1� #»p 0
2 � #»p 0

2�2 #»p1 �. #»p1 C #»p 2 � #»p 0
1 � #»p 0

2„ ƒ‚ …
0

/;

where the vanishing of the term inside the parenthesis results from (9.51). The
definition (9.2) of the mass of each particle leads then immediately to (9.54). ut

9.4.3 Elastic Collision

For an elastic collision, P 0
1 D P1 and P 0

2 D P2. Moreover, m0
1 D m1 and

m0
2 D m2. Expanding (9.52a) and using (9.2) to let appear the particle masses,

we get

6Stanley Mandelstam: Theoretician physicist born in South Africa in 1928; he made his career in
Birmingham (United Kingdom) and then of the University of California in Berkeley. He introduced
the variables bearing his name in 1958 (Mandelstam 1958), in order to study the interaction of pions
with atomic nuclei.
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s D m2
1c
2 Cm2

2c
2 � 2 #»p1 � #»p2: (9.55)

Similarly, by expanding the last term in (9.52a), we get s D m0
1
2
c2Cm0

2
2
c2�2 #»p 0

1 �
#»p 0
2. Since m0

1 D m1 and m0
2 D m2, we obtain

#»p 0
1 � #»p 0

2 D #»p1 � #»p2 : (9.56)

In the case of two massive particles, the 4-momenta are related to the 4-velocities
by (9.3), so that the above relation is equivalent to

#»u 0
1 � #»u 0

2 D #»u 1 � #»u 2: (9.57)

Now, from (4.10), the scalar product � #»u 1 � #»u 2 is nothing but the Lorentz factor
between P1 and P2. Since the latter is related to the norm of the velocity

#»

V 12

of P1 relative to P2 via (4.33) (there is the same relation for the velocity
#»

V 21 of
P2 relative to P1), we deduce that for an elastic collision, the norm of the relative
velocity between the two particles is constant:




 #»
V 0
12





g
D



 #»
V 12





g
: (9.58)

A custom problem in particle physics is that of an elastic collision on a fixed
target. This means that the collision is studied from the point of view of an inertial
observer O (the “laboratory observer”) for whom one of the particles, P2, say, is at
rest before the collision. The 4-velocity of P2 before the collision is then equal to
that of O , #»u 0; this impliesm2 6D 0 and #»p2 D m2c

#»u 0. The linear momentum P2 of
P2 measured by O is zero before the collision. Regarding the linear momentum P1

of P1 measured by O , we shall assume that it is such that the vector
#»

P1 is collinear
to the vector #»e 1 DW #»e x of O’s frame:

#»

P1 D P1 #»e x . The input data of the problem
are then the masses m1 and m2 of the two particles (with of course m1 D 0 if P1

is a photon) and the energy E1 of P1 measured by O . P1 is then deduced from E1
andm1 by means of the Einstein relation (9.9): P2

1 D E2
1=c

2 �m2
1c
2. The particles’

4-momenta before the collision are related to these data by

p1 D
E1

c
u0 C P1 #»e x and p2 D m2c u0: (9.59)

The law of linear-momentum conservation (9.49) implies
#»
P1 D #»

P 0
1 C

#»
P 0
2.

Consequently the three vectors
#»

P1,
#»

P 0
1 and

#»

P 0
2 are coplanar. With the collision

point, they define a plane in O’s rest space, called the collision plane. After the
collision, the particles P1 and P2 move in directions defined by the angles �1 and
�2 with #»e x (cf. Fig. 9.11a).
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a b

Fig. 9.11 Elastic collision: (a) seen in the reference space of observer O with respect to which
the particle P2 is initially at rest; (b) seen in the reference space of an observer O� comoving with
the system

The problem is actually simpler when considered from the point of view of an
observer comoving with the system fP1;P2g (cf. Sect. 9.3.5), i.e. an observer O�
whose 4-velocity is given by (9.42) : #»u D .mc/�1 #»p , #»p D #»p 1 C #»p2 being the
4-momentum vector of the system and m WD c�1k #»pkg the mass of the system,7

which is related to Mandelstam variable s by (9.53). Substituting (9.59) for #»p1 and
#»p2 in m D c�1k #»p 1 C #»p 2kg , we obtainm in terms of the data of the problem:

m D
s�

m2 C E1

c2

	2
� P

2
1

c2
D
r
m2
1 Cm2

2 C 2m2

E1

c2
: (9.60)

Let us denote by
#»

V the velocity of O� relative to O and by � the corresponding
Lorentz factor:

#»u D �
�

#»u 0 C 1

c

#»
V

	
with � D

�
1 � #»

V � #»
V =c2

��1=2
:

Since #»p D mc #»u , the decomposition (9.46) shows that the energy and the linear
momentum of the system measured by O are E D � mc2 and

#»

P D � m
#»

V . In
addition, E D E1 C E2 D E1 C m2c

2 and
#»

P D #»

P1 C #»

P2 D P1
#»e x. We deduce

then that
#»

V D V #»e x with

V D P1

m2 C E1=c2 (9.61)

and, by forming � D E=.mc2/,

7In Chap. 10, we will introduce a particular comoving observer: the barycentric observer or centre-
of-mass observer. However, in the present problem, a generic comoving observer is sufficient.
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� D m2 CE1=c2q
m2
1 Cm2

2 C 2m2E1=c2
: (9.62)

For O�, the linear momentum of P2 before the collision is
#»
P2� D �2�m2

#»
V 2�. Now

the particle P2 being at rest with respect to O , the reciprocity of the relative velocity
between the observers O and O� leads to �2� D � and

#»
V 2� D �V�. #»e x/ where �

is the Lorentz boost from O to O� [cf. Sect. 5.2.1 and Eqs. (5.10)–(5.11)]. We have
then, using the notation #»e �

x WD �. #»e x/,

#»

P2� D �� m2V
#»e �
x :

Since O� is a comoving observer, the total linear momentum measured by him
vanishes:

#»
P� D 0 (cf. Sect. 9.3.6). We get then

#»

P1� D � #»

P2� D � m2V
#»e �
x :

Similarly, after the collision,
#»
P 0� D 0 leads to

#»
P 0
1� D �

#»
P 0
2�. Hence, in O�’s

reference space, the linear momenta of the two particles are the opposite of each
other. Before the collision,

#»
P1� and

#»
P2� are along #»e �

x . After the collision, the
common direction of

#»
P 0
1� and

#»
P 0
2� does not in general coincide with #»e �

x (cf.
Fig. 9.11b). Let us then call � the angle between #»e �

x and
#»

P 0
1�. The actual value

of � depends on the microscopic detail of the collision, which we shall not describe
here. It is a supplementary parameter of the problem.

Besides, the equation of energy conservation (9.49) with respect to the inertial
observer O�, namely, E1� C E2� D E 0

1� C E 0
2�, is written, given Einstein relation

(9.9), k #»

P2�kg D k #»

P1�kg and k #»

P 0
2�kg D k

#»

P 0
1�kg :

s

m2
1c
2C





#»

P1�




2

g
C
s

m2
2c
2C





#»

P1�




2

g
D
s

m2
1c
2C





#»

P 0
1�




2

g
C
s

m2
2c
2C





#»

P 0
1�




2

g
:

Note that the hypothesis of elastic collision has been used under the formm0
1 D m1

and m0
2 D m2. We deduce from the above relation that k #»

P 0
1�kg D k

#»

P1�kg . The
norms of the linear momenta with respect to O� are thus all equal:




 #»
P1�





g
D



 #»
P2�





g
D



 #»
P 0
1�





g
D



 #»
P 0
2�





g
D � m2V: (9.63)

The Einstein relation (9.9) can be then used once again to show that the energy of
each particle with respect to O� is conserved:

E 0
1� D E1� D

q
m2
1c
4 C .� m2Vc/2 D ˛� m2c

2 (9.64a)

E 0
2� D E2� D � m2c

2; (9.64b)
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where the expression of E2� follows directly from �2� D � and we have set

˛ WD
s

1

� 2

�
m1

m2

	2
C V 2

c2
D .m1=m2/

2 C E1=.m2c
2/

1C E1=.m2c2/
: (9.65)

Note that if m1 D m2, ˛ D 1 and m1 < m2 ” ˛ < 1 (in particular, if m1 D 0,
˛ D V=c). Hence,

In an elastic collision, for a comoving observer, the energy and the norm of the
linear momentum of each particle is conserved. Moreover, the linear momenta
of the two particles are always the opposite of each other.

The 4-momentum vectors of P1 and P2 after the collision are #»p 0
a D

.E 0
a�=c/

#»u C #»
P 0
a� (a D 1; 2), i.e. from the definition of � and Eqs. (9.63)–(9.64b),

#»p 0
1 D � m2

h
˛c #»u C V

�
cos� #»e �

x C sin� #»e �
y

�i

#»p 0
2 D � m2

h
c #»u � V

�
cos� #»e �

x C sin� #»e �
y

�i
;

These equations give the components p0�˛
a of each 4-momentum vector #»p 0

a in O�’s
frame . #»e �̨/ D . #»u ; #»e �

x ;
#»e �
y ;

#»e �
z /. Since the latter is deduced from O’s frame

. #»e ˛/ D . #»u 0;
#»e x;

#»e y;
#»e z/ by the Lorentz boost �, we have #»p 0

a D p0�ˇ
a

#»e �̌ D
p0�ˇ
a �. #»e ˇ/ D p0�ˇ

a �˛
ˇ

#»e ˛ [cf. Eq. (6.4)]. We deduce that the components of #»p 0
a

in O’s frame are p0˛
a D �˛

ˇp
0�ˇ
a . The matrix �˛

ˇ having the form (6.48), we get

.p0
1/
˛ D � m2

�
� c

�
˛ C V 2

c2
cos�

	
; � V .˛ C cos�/ ; V sin�; 0

	
(9.66)

.p0
2/
˛ D � m2

�
� c

�
1 � V

2

c2
cos�

	
; � V .1 � cos�/ ; �V sin�; 0

	
: (9.67)

By virtue of the relation #»p 0
a D .E 0

a=c/
#»u 0 C #»

P 0
a, the first component gives the

particle’s energy measured by O after the collision and the last three components
the linear momentum measured by O:

E 0
1 D � 2m2c

2

�
˛ C V 2

c2
cos�

	
and E 0

2 D � 2m2c
2

�
1 � V

2

c2
cos�

	
; (9.68)
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#»
P 0
1 D � m2V

�
� .˛ C cos�/ #»e x C sin� #»e y

�
; (9.69)

#»

P 0
2 D � m2V

�
� .1 � cos�/ #»e x � sin� #»e y

�
: (9.70)

Remark 9.14. We have .P 0
2/
x � 0: after the collision, the target particle moves

always towards the right in Fig. 9.11a. On the other hand, ifm1 < m2, we have seen
above that ˛ < 1. For �1 � cos� < �˛, we have then .P 0

1/
x < 0, so that the

incident particle moves towards the left: it “bounces” onto the target particle.

We deduce from (9.68) (and from E2 D m2c
2) that the energy received by P2

during the collision is

E2 WD E 0
2 �E2 D � 2m2V

2 .1 � cos�/ ;

where the relation � 2 � 1 D � 2V 2=c2 has been used. Replacing � and V by the
expressions (9.62) and (9.61), we obtain E2 in terms of the data of the problem:

E2 D m2P
2
1

m2
1 Cm2

2 C 2m2E1=c2
.1 � cos�/ : (9.71)

We notice that E2 � 0: an elastic collision always increases the energy of the
target particle. The observer O being inertial, the law of energy conservation (9.49)
implies that the incident particle must lose some energy:E1 D �E2.

The angles �1 and �2 formed by the momenta P1 and P2 with the axis #»e x after
the collision are such that tan �a D .P 0

a/
y=.P 0

a/
x ; from (9.69) and (9.70), we get

tan �1 D sin�

� .˛ C cos�/
and tan �2 D � sin�

� .1 � cos�/
:

Using (9.62) and (9.65), we obtain

tan �1 D
sin�

q
m2
1 Cm2

2 C 2m2E1=c2

m2
1=m2 C E1=c2 C .m2 C E1=c2/ cos�

(9.72a)

tan �2 D �
sin�

q
m2
1 Cm2

2 C 2m2E1=c2

.m2 C E1=c2/ .1 � cos�/
: (9.72b)
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Case of Identical Particles

If P1 and P2 are two identical particles, m1 D m2 and the above formulas
simplify to

E2 D �1 � 1
2

m1c
2.1 � cos�/

m1Dm2
; (9.73)

tan �1 D
s

2

1C �1 tan
�

2
m1Dm2

; tan �2 D �
s

2

1C �1
1

tan �

2
m1Dm2

; (9.74)

where �1 D E1=.m1c
2/ is the Lorentz factor of P1 with respect to O before the

collision. We notice that the product of tan �1 and tan �2 is independent of �:

tan �1 tan �2 D � 2

1C �1
m1Dm2

: (9.75)

The angle between the trajectories of P1 and P2 after the collision is � D �1 � �2.
Thanks to the formula tan.�1 � �2/ D .tan �1 � tan �2/=.1C tan �1 tan �2/, we get

tan � D 2
p
2.�1 C 1/

.�1 � 1/ sin�
m1Dm2

: (9.76)

In the nonrelativistic limit, �1 D 1 and we get tan � D C1, which implies � D
�=2. We recover here a well-known result regarding elastic shocks in Newtonian
mechanics: a billiard player knows well that after the hit, the two balls leave each
other at right angle (at least in the absence of any other effect on the balls). In the
relativistic case, �1 > 1 and the above formula shows that tan � > 0, which implies
� < �=2: the two particles recede from each other by making an acute angle (cf.
Fig. 9.11a).

9.4.4 Compton Effect

The Compton scattering is the interaction of a photon (P1 D 
 ) with an electron
(P2 D e�), the latter being at rest with respect to observer O:


 C e� �! 
 C e�: (9.77)
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Since (at the classical level) particles are conserved and m0
1 D m1 .D 0/ and m0

2 D
m2 .D me/, it is an elastic collision. We may then apply the results of the preceding
section. Setting m1 D 0 in (9.71) and (9.72a), we get

E1 D � E2
1

E2 C 2E1 .1 � cos�/ and tan �1 D
sin�

q
E2
2 C 2E1E2

E1 C .E1 C E2/ cos�
; (9.78)

where we have used E1 D �E2, P1 D E1=c and E2 D m2c
2. Thanks to the

formula cos2 �1 D 1=.1C tan2 �1/, we obtain

cos �1 D E1 C .E1 CE2/ cos�

E1 C E2 CE1 cos�
: (9.79)

Remark 9.15. In the present case, the velocity of the comoving observer O� relative
to O is V D c E1=.E1CE2/ [set P1 D E1=c in (9.61)]. Hence, formula (9.79) can
be written as

cos �1 D cos�C V=c
1C .V=c/ cos�

:

We recognize the aberration formula derived in Sect. 5.6, namely, Eq. (5.77), in
which U is replaced by �V , � by � � � and � 0 by � � �1. This is not surprising
since � is the angle formed by the photon’s trajectory with #»e �

x in O�’s reference
space, �1 is the angle formed by the photon’s trajectory with #»e x in O’s reference
space (cf. Fig. 9.11) and �V #»e �

x is the velocity of O relative to O�.

The photon’s energy after the collision is E 0
1 D E1CE1. The expression of 1=E 0

1

in terms of cos �1 is particularly simple: from (9.78), we get

1

E 0
1

� 1

E1
D 1� cos�

E2 C E1.1C cos�/
;

i.e. by means of (9.79),

1

E 0
1

� 1

E1
D 1

E2
.1 � cos �1/ : (9.80)

It is then natural to let the photon’s wavelength appear, since it is proportional to
the inverse of the energy: E 0

1 D hc=�0 and E1 D hc=� [cf. Eqs. (9.24) and (9.26)].
Replacing E2 by m2c

2 D mec
2, we thus obtain

�0 � � D h

mec
.1 � cos �1/ : (9.81)
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The quantity h=.mec/ is called the electron Compton wavelength. Its numerical
value is

�C WD h

mec
D 2:4263102� 10�12 m: (9.82)

The decrease of the energy of the photon after its encounter with the electron is
called the Compton effect. It is noticeable only for � of the order of, or smaller than,
�C. The corresponding energy is EC WD hc=�C D mec

2 ' 511 keV. Hence, the
Compton effect concerns essentially X-ray and gamma-ray photons. We note that
the effect vanishes in the direction of the incident photon (�1 D 0) and is maximal
in the opposite direction (�1 D �).

Direct Derivation

Formula (9.81) giving the Compton effect can be derived directly from the principle
of 4-momentum conservation (9.51), without relying on the results of Sect. 9.4.3.
Indeed, let us rewrite (9.51) as #»p1 C #»p2 � #»p 0

1 D #»p 0
2 and take the scalar square of

it. Since #»p1 � #»p 1 D 0, #»p 0
1 � #»p 0

1 D 0 and #»p2 � #»p 2 D #»p 0
2 � #»p 0

2 D �m2
ec
2, we obtain

#»p2 � . #»p1 � #»p 0
1/ D #»p1 � #»p 0

1: (9.83)

Let us then consider the orthogonal decompositions with respect to observer O:
#»p2 D m2c

#»u 0 D .E2=c/ #»u 0,

#»p1 D E1

c
. #»u 0 C #»n / and #»p 0

1 D
E 0
1

c
. #»u 0 C #»n 0/; (9.84)

where, according to (9.22), #»n and #»n 0 are the propagation directions of the photon
with respect to O before and after the collision, respectively. By hypothesis, #»n D
#»e x . Equation (9.83) becomes then

E2
#»u 0 �

�
E1.

#»u 0 C #»e x/� E 0
1.

#»u 0 C #»n 0/
� D E1E 0

1.
#»u 0 C #»e x/ � . #»u 0 C #»n 0/:

Since #»u 0 � #»u 0 D �1, #»u 0 � #»e x D 0, #»u 0 � #»n 0 D 0 and #»e x � #»n 0 D cos �1 (from the very
definition of �1), expanding and dividing by E1E 0

1E2, we obtain (9.80) and, from
there, the Compton effect equation (9.81).

Historical note: At the beginning of the 1920s, various experiments had shown that
X-rays scattered by matter had a smaller energy than the incident X-rays. Arthur H.
Compton8 measured then the angular dependence of the effect by sending X-rays

8Arthur H. Compton (1892–1962): American physicist, 1927 Nobel Prize in Physics for the
discovery of the effect bearing his name. During the Second World War, he was responsible of the
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resulting from the K˛ transition of molybdenum (� D 70:8 pm) onto graphite. He
obtained the law (9.81) and, in a paper published in 1923 (Compton 1923), he gave
its theoretical derivation from the conservation of energy and linear momentum in
relativistic dynamics. The Compton effect provided the final proof of the corpuscular
nature of light, convincing those who had been sceptical after the introduction of
light quanta by Albert Einstein to explain the photoelectric effect in 1905 (Einstein
1905a).

9.4.5 Inverse Compton Scattering

Let us consider now the case where the electron is no longer initially at rest with
respect to observer O , but has a constant velocity

#»

V 2 DW Ve
#»e , where #»e is a unit

vector. The electron’s 4-momentum before the collision is then

#»p2 D E2

c

�
#»u 0 C Ve

c
#»e

	
: (9.85)

The photon’s 4-momentum, before and after the collision, is still given by (9.84).
Equation (9.83), which does not depend on the state of motion of the electron with
respect to O , is still valid. In view of (9.84) and (9.85), it becomes

E2

�
#»u 0 C Ve

c
#»e

	
� �E1. #»u 0 C #»n / �E 0

1.
#»u 0 C #»n 0/

� D E1E 0
1.

#»u 0C #»n / � . #»u 0C #»n 0/:

Now #»u 0 � #»u 0 D �1, #»u 0 � #»n D 0, #»u 0 � #»n 0 D 0, #»u 0 � #»e D 0 and

#»e � #»n D cos'; #»e � #»n 0 D cos' 0 and #»n � #»n 0 D cos �1;

where ' (resp. ' 0) is the angle between the direction of the electron and that of the
photon before (resp. after) the collision and �1 is the photon deviation angle. Thus,
we obtain

E 0
1

E1
D 1 � .Ve=c/ cos'

1 � .Ve=c/ cos' 0 C .E1=E2/.1 � cos �1/
: (9.86)

If Ve D 0, this formula reduces to (9.80), as it should. We have then E 0
1=E1 � 1:

the photon loses some energy during the collision: this is the Compton effect. On
the other hand, if Ve 6D 0, one may have E 0

1=E1 > 1, i.e. the photon is gaining some
energy. One names this the inverse Compton effect and calls the collision an inverse

“Metallurgical Laboratory” in Chicago—the cover name for facilities producing the uranium and
the plutonium of the first atomic bombs.



9.4 Particle Collisions 305

Compton scattering. In particular, when the electron is much more energetic than
the photon,E1=E2 	 1 and (9.86) simplifies in

E 0
1

E1
' 1 � .Ve=c/ cos'

1 � .Ve=c/ cos' 0 :

We observe that the photon energy increase is maximum when ' D � and ' 0 D 0,
i.e. when the photon propagates initially in the direction opposite to that of the
electron and is scattered in the same direction as the electron motion. One has then

max
E 0
1

E1
D 1C .Ve=c/

1 � .Ve=c/
:

If the electron is relativistic, i.e. if its Lorentz factor �e with respect to O is large,
the Taylor expansion of formula Ve=c D

p
1 � � �2

e yields Ve=c ' 1� 1=.2� 2
e /, so

that the above formula becomes

max
E 0
1

E1
' 4� 2

e
�e�1

: (9.87)

The inverse Compton scattering on relativistic electrons is thus a way for consider-
ably increasing the energy of photons.

Remark 9.16. From the point of view of a comoving observer (cf. Fig. 9.11b),
the Compton scattering and the inverse Compton scattering are exactly the same
process.

The inverse Compton scattering plays an important role in astrophysics. It is
notably involved in the cosmic microwave background (CMB), i.e. the famous
thermal radiation at 3 K that fills the universe. The CMB has been emitted during
the formation of the first atoms, � 3 � 105 years after the Big Bang, when the
universe became transparent to radiation; it appears today as an almost perfect black-
body radiation at the temperature T D 2:725 K. However the CMB photons are
submitted to inverse Compton scattering when moving through a galaxy cluster.
Indeed galaxy clusters are filled with a very dilute but very hot hydrogen plasma.
The electrons of this plasma are very energetic, and by the inverse Compton effect,
they increase the energy of the CMB photons, which results in some distortion
with respect to the black-body radiation. This is called the Sunyaev–Zel’dovich
effect (Peter and Uzan 2009; Bernardeau 2007), from the names of the two Soviet
astrophysicists who predicted it in 1969 (Zeldovich and Sunyaev 1969). The first
observations of this effect have been performed in 1983, and the Planck satellite
launched in 2009 is creating a catalogue of galaxy clusters through this effect
(Aghanim et al. 2012).
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Fig. 9.12 Energy spectrum of the active galactic nucleus RGB J0152+017. The abscissa marks
the frequency � of the photons, and the ordinate the flux spectral density F� multiplied by � (F� d�
is the energy received on Earth by unit area and unit time in the frequency bandwidth Œ�; � C d��)
[Adapted from Aharonian et al. (2008)]

Another astrophysical context where inverse Compton scattering occurs is the
generation of high-energy gamma photons, in the TeV regime (1 TeV D 1012 eV),
in active galactic nuclei.9 This is illustrated in Fig. 9.12, which shows the energy
distribution of photons emitted by the blazar RGB J0152+017, ranging from radio
waves (detected by the Nançay radio telescope, France) up to high-energy gamma
rays (detected by the Cherenkov telescope HESS in Namibia). A blazar is an active
galactic nuclei whose jet points towards the Earth. On Fig. 9.12, crosses correspond
to observations (down arrows mark upper limits), and the continuous or dashed
lines are the results of an emission computation performed in 2008 by researchers
from the HESS collaboration (Aharonian et al. 2008), by assuming synchrotron
emission10 by the electrons in the jet (the whole jet in the radio domain and a
more dense blob in the optical, UV and X-ray domains) and some inverse Compton
emission. The latter results from the encounter of the relatively low-energy photons
of the synchrotron radiation with the relativistic electrons of the jet, the very same
that generate the synchrotron radiation.

9One says that a galaxy has an active nucleus when it harbours in its core a supermassive black
hole in the vicinity of which a relativistic jet is emitted, as we shall discuss in more details in
Sect. 21.7.1.
10Synchrotron radiation will be studied in Sect. 20.4.
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9.4.6 Inelastic Collisions

Let us move to the study of inelastic collisions (cf. Sect. 9.4.1) of the type

P1 CP2 �!P 0
1 C � � � CP 0

N ; (9.88)

where N � 1 is the total number of produced particles. We aim at determining the
minimal energy of the system fP1;P2g with respect to a given observer O so that
the reaction (9.88) is possible. Such an energy is called the threshold energy of the
reaction with respect to O . We shall take here a pure dynamical point of view, i.e. we
shall determine whether (9.88) is possible under the sole condition of 4-momentum
conservation, which from (9.39) and (9.40) is expressed as

#»p 1 C #»p2 D #»p 0
1 C � � � C #»p 0

N : (9.89)

conservation of electric charge (Sect. 18.4) or conservation of baryon number
(Sect. 21.3.2), for instance.

The system formed by fP1;P2g before the collision and by fP 0
1; : : : ;P

0
N g

after it is supposed to be isolated. It is simpler to study the constraint (9.89) from
the point of view of an observer O� comoving with the system because it reduces
to a single component: that of energy, since by definition of a comoving observer,
the total linear momentum of the system with respect to O� vanishes. The energy
of the system measured by O� is E� D mc2 D c

p
s, where m is the total mass of

the system and s the Mandelstam variable defined by (9.52a). We have, by (9.48),
E� D E 0

1� C � � � C E 0
N�, where E 0

a� is the energy of the particle P 0
a measured by

O�. We have E 0
a� � m0

ac
2, so that

E� �
NX

aD1
m0
ac
2: (9.90)

The threshold energy with respect to O� corresponds to the equality in this formula:
all the produced particles are then at rest with respect to O�. They have thus the
same motion with respect to observer O . In other words, no energy is “spoiled” into
proper motions with respect to the comoving observer. Since m D E�=c2, the mass
of the system is then the smallest possible and we can rewrite (9.90) as

m � mthres WD
NX

aD1
m0
a : (9.91)

This is the necessary and sufficient condition for the reaction (9.88) to be dynami-
cally possible.
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Let us expressm in terms of quantities relative to observer O before the collision.
Since m D c�1k #»p 1 C #»p2kg [Eq. (9.41)] and #»pa � #»pa D �m2

ac
2 (a D 1; 2), we get

m D
q
m2
1 Cm2

2 � 2c�2 #»p1 � #»p2:

Now #»pa D .Ea=c/ #»u 0 C #»

Pa (a D 1; 2), Ea and
#»

Pa Being, respectively, the energy
and the linear-momentum vector of Pa with respect to O , whose 4-velocity is #»u 0.
We deduce that

m D
r
m2
1 Cm2

2 C
2

c4

�
E1E2 � #»

P1 � #»

P2 c2
�
: (9.92)

Remark 9.17. In the case where P2 is at rest with respect to O , E2 D m2c
2,

#»

P2 D 0 and we recover (9.60), as it should.

Substituting (9.92) for m in (9.91), we obtain a criterion involving only quantities
measured by observer O: the reaction (9.88) is possible iff

E1E2 � #»
P1 � #»

P2 c
2 � c4

2

�
m2

thres �m2
1 �m2

2

�
: (9.93)

For a fixed target, E2 D m2c
2 and

#»

P2 D 0, this criterion becomes

E1 � c2

2m2

�
m2

thres �m2
1 �m2

2

�
:

P2 fixed

(9.94)

Example 9.5. The antiparticle of the electron, the positron eC, whose existence has
been predicted by P.A.M. Dirac (cf. p. 372) in 1928, has been discovered during the
study of cosmic rays by C. D. Anderson (cf. p. 110) in 1932 (Anderson 1932, 1933)
(cf. also Crozon (2005)). The positron is indeed created in the Earth atmosphere via
pair production:


 C p �! pC e� C eC; (9.95)

where 
 D P1 is a cosmic gamma photon and p D P2 a proton in a hydrogen
atom of an atmospheric water molecule, which we may assume to be at rest with
respect to the terrestrial observer O . We have then m1 D 0 and m2 D mp. Besides,
from (9.91),mthres D mpC 2me, the positron having the same mass as the electron.
The criterion (9.94) becomes then

E1 � c2

2mp

h
.mp C 2me/

2 �m2
p

i
D 2mec

2

�
1C me

mp

	
' 2mec

2:
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Thus, a photon whose energy is larger than 2mec
2 ' 1:02 MeV (gamma range) can

produce electron-positron pairs in the atmosphere.

Remark 9.18. The proton in the reaction (9.95) is mandatory to ensure the conser-
vation of 4-momentum. Indeed the reaction 
 ! e� C eC is not possible, for #»p1 is
a null vector and #»p 0

1 C #»p 0
2 a timelike one (as the sum of future-directed timelike

vectors, cf. Sect. 9.3.5).

Example 9.6. One calls photoproduction of pions the reaction


 C p �! �0 C p; (9.96)

where �0 is the neutral pi meson, also called the neutral pion (cf. p. 110). Its mass is
m�0 D 134:9766 MeV=c2. If the proton is at rest with respect to O , then, as in the
preceding example, m1 D 0 and m2 D mp. On the other side, mthres D mp Cm�0 ,
so that the criterion (9.94) becomes

E1 � m�0c
2

�
1C m�0

2mp

	
' 144 MeV: (9.97)

Very energetic gamma photons are then required for the photoproduction of pions
on protons at rest.

If, in addition of having P2 at rest, one hasm1 D m2 (case where P2 is a particle
of the same family than P1 or is P1’s antiparticle), formula (9.94) becomes

E1 � m1c
2

"
1

2

�
mthres

m1

	2
� 1

#
:

P2 fixed; m1Dm2
(9.98)

Example 9.7. A standard reaction for producing antiprotons is

pC p �! pC pC pC Np: (9.99)

We have then m1 D m2 D mp and mthres D 4mp (the antiproton having the same
mass as the proton), so that (9.98) yields E1 � 7mpc

2 ' 6:57 GeV.

Remark 9.19. The reactions pC p �! Np and pC p �! pC pC Np, a priori simpler
than (9.99), are forbidden by the law of electric-charge conservation (Sect. 18.4),
as well as by the law of baryon number conservation (cf. Sect. 21.3.2), the baryon
number of the proton beingC1 and that of the antiproton �1.

Historical note: At the beginning of the 1950s, the Bevatron11 has been constructed
in Berkeley (California). It was a synchrotron (to be discussed in Sect. 17.5) capable
of accelerating protons up to a kinetic energy of 6:2 GeV, leading to the total energy

11The name Bevatron stems from the abbreviation BeV for billion of electronvolts; today BeV has
been replaced by the international abbreviation GeV.
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7:1 GeV, in order to produce antiprotons via the reaction (9.99). This is actually the
way by which the antiproton has been discovered in 1955 by the American physicist
Owen Chamberlain (1920–2006) and the Italian one Emilio Segrè (1905–1989)
(Chamberlain et al. 1955). They have been awarded the Nobel Prize in Physics
in 1959 for this discovery.

Example 9.8. Let us consider again the photoproduction of pions (9.96), but this
time with a high-velocity proton interacting with a low-energy photon. Since P2 D
p is no longer at rest, we must use the general formula (9.93). We still have m1 D 0
andm2 D mp, but this time

#»

P2 6D 0. The most favourable case occurs when
#»

P1 and
#»
P2 are anti-aligned: we have then � #»

P1 � #»
P2c

2 D P1P2c2 with P1c D E1 (photon)

and P2c D
q
E2
2 �m2

pc
4. We obtain thus

E1

�
E2 C

q
E2
2 �m2

pc
4

	
� m�0mpc

4

�
1C m�0

2mp

	
:

Let us fix the energyE1 of the photon and determine the proton energyE2 required
for the reaction to take place. Let us assume moreover that E1 	 m�0c

2 '
135 MeV. The above equation shows then that the proton must be ultra-relativistic:

E2 
 mpc
2. Accordingly

q
E2
2 �m2

pc
4 ' E2 and the criterion becomes

E2 � m�0mpc
4

2E1

�
1C m�0

2mp

	
: (9.100)

Let us apply it to the CMB photons (cosmic microwave background; cf. p. 305)—
since the latter is a black-body radiation at T D 2:725 K, the emission is peaked
around the wavelength given by Wien’s displacement law: � D 1:1 mm (microwave
radiation). The corresponding photon energy is E1 D 1:2 � 10�3 eV. This is an
energy much smaller than that given by (9.97). The proton must therefore have a
very high velocity for the reaction to take place. Plugging E1 in (9.100), we obtain
indeed

E2 � 5:8 � 1019 eV:

This energy is enormous: several joules in a single proton! We have seen above that
such particles are observed in cosmic rays (cf. Fig. 9.3). This shows that a proton
of energy E2 larger than Ecrit � 6 � 1019 eV may interact with CMB photons to
produce pions, thereby losing some of its energy. Given the density of photons in
the CMB, it follows that cosmic rays should not contain protons of energy larger
than Ecrit originating from sources more distant than � 100 Mpc. This is called the
GZK cut-off , from the names of the three physicists who predicted it in 1966 : the
American Kenneth Greisen (1966) and the Russians Georgiy Zatsepin and Vadim
Kuzmin (1966). In 2008, two experiments devoted to ultrahigh-energy cosmic rays
have announced to have observed the GZK cut-off: HiRes (Abbasi et al. 2008) and
the Pierre Auger Observatory (Abraham et al. 2008) (Fig. 9.4).
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Energy in the “Centre-of-Mass Frame”

From the point of view of a comoving observer O� (often referred to as the “centre-
of-mass frame”; cf. footnote p. 297), the threshold energy is easier to compute, since
E1 C E2 D mc2. One has simply

E1 C E2 � mthresc
2 (comoving observ.): (9.101)

We can even express E2 in terms of E1, m1 and m2, starting from Einstein relation

E2 D
q
P2
2 c

2 Cm2
2c
4 and using the fact that for the comoving observer

#»

P2 D � #»

P1,

so that P2
2 c

2 D P2
1 c

2 D E2
1 �m2

1c
4 and E2 D

q
E2
1 C .m2

2 �m2
1/c

4. The criterion
(9.101) thus becomes

E1 C
q
E2
1 C .m2

2 �m2
1/c

4 � mthresc
2:

comoving observ.
(9.102)

If m1 D m2, this formula reduces to

E1 � 1

2
mthresc

2;
comoving observ.; m1Dm2

(9.103)

which is natural since in this case E2 D E1 [cf. (9.101)].
Comparing (9.94) and (9.102) or (9.98) and (9.103) ifm1 D m2, we observe that

for a collision with a fixed target, the required energy E1 increases as the square
of mthres—the sum of the masses of the reaction products, whereas for a collision
in the “centre-of-mass frame”, E1 increases linearly with mthres (at least if E1 

c2
q
jm2

2 �m2
1j, which is achieved ifm1 D m2). This fact motivates the construction

of colliders, i.e. particle accelerators in which the “centre-of-mass frame” is the
laboratory frame (in our language, this means that the laboratory observer is
comoving with the particle system). To achieve this, a collider accelerates two
beams of particles towards each other, with equal magnitude but opposite linear
momenta.

Example 9.9. In the Large Hadron Collider (LHC) at CERN, two proton beams are
accelerated towards each other at the energy E1 D E2 D 7 TeV (cf. Table 17.1).
The energy released during the collision is then mthresc

2 D 14 TeV. To get
such an energy with a fixed target, according to formula (9.98) with m1c

2 D
mpc

2 ' 9:4 � 10�4 TeV, one should instead accelerate protons up to the energy
9:4� 10�4Œ.14=.9:4� 10�4//2=2� 1� ' 105 TeV! This shows clearly the benefit of
the collider concept.

Example 9.10. The energy of protons in cosmic rays can reach E1 D 1020 eV with
respect to the Earth (cf. Example 9.2 p. 277). If such a proton hits some terrestrial
proton, the energy in the “centre-of-mass frame” is given by (9.92) with m1 D m2,
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#»
P2 D 0 and E2 D m2c

2 (target proton at rest):

E� D mc2 D m1c
2

s

2

�
1C E1

m1c2

	
:

Setting m1c
2 D mpc

2 D 0:938 GeV and E1 D 1020 eV in this formula, we get
E� D 4:3�1014 eV D 430 TeV. This is 30 times the energyE� D 14 TeV achieved
at LHC and refutes the questions raised before the start of the LHC regarding the
creation of particles potentially dangerous for the whole Earth (strangelets or micro
black holes; cf. Ellis et al. (2008)). Given the flux of cosmic rays shown in Fig. 9.3,
one may say that for 4.5 billion years, the Earth has been hit by � 1022 cosmic rays
of energy in the “centre-of-mass frame” larger than that delivered by the LHC (Ellis
et al. 2008) . . . and the Earth still exists!

9.5 Four-Force

9.5.1 Definition

Let us consider a particle P , of mass m > 0, worldline L , 4-velocity #»u and
proper time 	 . We have seen in Sect. 9.3.4 that if P is isolated, its 4-momentum
p D p.	/ is a constant field of linear forms along L . If, on the contrary, P is
not isolated, one calls four-force, or 4-force for short, acting on P the derivative
of p along L :

f WD dp

d	
: (9.104)

The quantity dp=d	 is the linear form metric dual of the derivative vector d #»p=d	 ,
the latter having been defined in Sect. 2.7.2. It is clear that if P is isolated, f D 0.

We read on (9.104) that the dimension of a 4-force is the same as that of an
“ordinary” force, namely, mass � length = (time)2. In the SI system, the unit of
4-force is thus the newton: 1 N WD 1 kg m s�2.

In view of the relation (9.3) between 4-momentum and 4-velocity, we have
dp=d	 D mc du=d	 C c.dm=d	/ u. Now c�1d #»u=d	 is the 4-acceleration #»a of
particle P [cf. Eq. (2.16)]. Equation (9.104) can be then written as

f D mc2 aC c dm

d	
u : (9.105)

Since the 4-acceleration is always orthogonal to the 4-velocity [Eq. (2.17)] and
hu; #»u i D �1, we deduce immediately from (9.105) that
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hf ; #»u i D �c dm

d	
: (9.106)

One calls pure 4-force, or sometimes Minkowski force, any 4-force that is
orthogonal to the 4-velocity of the particle, in the sense of

hf ; #»u i D 0: (9.107)

Equation (9.106) then shows that a pure 4-force preserves the particle’s mass.

Example 9.11. An important example of a pure 4-force is the Lorentz 4-force that
is exerted on a charged particle in some electromagnetic field. As we shall discuss
in Chap. 17, this 4-force is written f D q F .:; #»u /, where q is the particle’s electric
charge and F the antisymmetric bilinear form representing the electromagnetic
field. Thanks to the antisymmetry of F , we check that hf ; #»u i D qF . #»u ; #»u / D 0.

Remark 9.20. In the above exposition, Eqs. (9.104) and (9.105) do not, strictly
speaking, constitute relativistic generalizations of Newton’s second law of
mechanics, for they are empty of any physical content: they provide only the
definition of the 4-force f . It is only when the form of f is specified that a physical
content is really given to these relations. In other words, from our point of view,
the physical postulate to add to the principles already stated is not f D dp=d	 but
f D � � � with the dots replaced by an expression arising from the interaction under
study. For instance, we shall see in Chap. 17 that, in the case of the electromagnetic
interaction, the postulate consists in stating that f is the Lorentz 4-force (cf. the
above example).

9.5.2 Orthogonal Decomposition of the 4-Force

Let us consider an observer O of worldline L0, 4-velocity #»u 0 and proper time t .
Equation (9.104) can be transformed into

f D dp

d	
D dp

dt

dt

d	
D � dp

dt
; (9.108)

where � WD dt=d	 is the Lorentz factor of P relative to O [Eq. (4.1)]. Introducing
the orthogonal decomposition (9.8) of P’s 4-momentum with respect to O , (9.108)
becomes

f D �
�
1

c

dE

dt
u0 C E a0 C

dP

dt

	
; (9.109)

where E and P are, respectively, P’s energy and P’s linear momentum, both
measured by O , and a0 is the linear form metric dual of the 4-acceleration #»a 0
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of observer O: #»a 0 WD c�1 d #»u 0=dt . Expression (9.109) does not constitute an
orthogonal decomposition of the 4-force with respect to O , for a priori the vector
d

#»
P=dt is not orthogonal to #»u 0, despite

#»
P is. But the Fermi–Walker derivative of

#»
P along L0 is, on its side, orthogonal to #»u 0, according to (3.72). This derivative is
related to d

#»
P=dt by (3.69):

d
#»
P

dt
D DFW

u0

#»

P C c. #»a 0 � #»

P/ #»u 0:

Defining DFW
u0 P as the linear form metric dual to the vector DFW

u0

#»

P , we can then
rewrite (9.109) as

f D �
��
1

c

dE

dt
C chP ; #»a 0i

	
u0 CDFW

u0 P C E a0

�
: (9.110)

This constitutes the orthogonal decomposition of f with respect to O . Equa-
tion (9.110) is equivalent to the system

dE

dt
D � c

�
hf ; #»u 0i � c2hP; #»a 0i (9.111a)

DFW
u0 P D 1

�
f ı?u0 � E a0 : (9.111b)

The particle P is isolated iff the 4-force f acting upon it vanishes. From the
above equations, we have then the equivalence

P isolated ”
8
<

:

dE

dt
D �c2hP; #»a 0i

DFW
u0 P D �Ea0:

(9.112)

If O is an inertial observer, #»a 0 D 0, DFW
u0 P D dP=dt and we recover the result

(9.49): for an isolated particle, dE=dt D 0 and dP=dt D 0.

9.5.3 Force Measured by an Observer

We have introduced in Sect. 9.2.3 the quantity of motion q of a particle with respect
to an observer. It is then natural to define the force acting on P and measured by
observer O as the derivative of the quantity of motion with respect to O:

F WD DO q : (9.113)
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The derivative DO has been defined for a vector in Sect. 3.6.2. The extension to
linear forms, as in DO q, is straightforward by metric duality (cf. Sect. 1.6): DO q

is the linear form whose metric dual is the vector DO
#»q . Note that if O is inertial,

DO q D dq=dt .

Remark 9.21. Equation (9.113), which we consider as the definition of the force,
is identical to the fundamental law of Newtonian dynamics (Newton’s second law)
expressed in terms of the quantity of motion. But if one expresses it in terms of the
particle’s acceleration, then the relativistic and Newtonian versions diverge, as we
shall see below.

Since #»q 2 Eu0 and the derivative DO preserves the orthogonality with respect
to #»u 0 [property (3.66)], we have

#»
F 2 Eu0 , i.e.

hF ; #»u 0i D 0: (9.114)

Let us relate DO
#»q to the Fermi–Walker derivative of P introduced above,

DFW
u0 P . Equation (9.15) leads to

DFW
u0

#»q D DFW
u0

#»
P � � mDFW

u0

�
#»! �u0

#      »
OM

�
�md�

dt

�
#»! �u0

#      »
OM

�
;

with DFW
u0

�
#»! �u0

#      »
OM

�
given by (4.54) and DFW

u0
#»q related to DO

#»q by (3.70).

We thus get

DO
#»q D DFW

u0

#»

P �md�

dt

�
#»! �u0

#      »
OM

�

�� m
"
2 #»! �u0

#»
V C #»! �u0

�
#»! �u0

#      »
OM

�
C d #»!

dt
�u0

#      »
OM

#
:

Let us replace DO
#»q by

#»

F and DFW
u0

#»

P by (9.111b), to get the value of the (total)
force acting on P and measured by O:

#»

F D #»

F ext �E a0 � � m
�

#»! �u0

�
#»! �u0

#      »
OM

�
C d #»!

dt
�u0

#      »
OM

�

�2� m #»! �u0

#»

V �md�

dt

�
#»! �u0

#      »
OM

�
;

(9.115)

where

#»
F ext WD � �1?u0

#»
f (9.116)
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is the contribution of the 4-force f acting on the particle (“external” force). The
other terms are called inertial forces and account for the non-inertial character

of observer O . More specifically, the term �� m #»! �u0

�
#»! �u0

#      »
OM

�
is called

centrifugal force and the term �2� m #»! �u0

#»
V is called Coriolis force. These terms

are generalizations of the well-known inertial forces of Newtonian mechanics.
If O is an inertial observer, (9.115) reduces to

#»

F D #»

F ext D � �1?u0
#»

f .O inertial/: (9.117)

Remark 9.22. Each vector appearing in (9.115) is a vector of O’s local rest space,
Eu0 .

Taking into account (9.116), expression (9.111b) for the Fermi–Walker of the
linear momentum simplifies to

DFW
u0 P D F ext �E a0 : (9.118)

The orthogonal decomposition of the 4-force (9.110) is then

f D �
��
1

c

dE

dt
C chP ; #»a 0i

	
u0 C F ext

�
: (9.119)

9.5.4 Relativistic Version of Newton’s Second Law

From the relations #»q D � m #»
V [Eq. (9.14)] and

#»
F D DO

#»q [Eq. (9.113)], we get

#»
F D � mDO

#»
V C d

dt
.� m/

#»
V :

Now DO
#»
V is nothing but the acceleration #»� of particle P relative to observer O

[cf. Eq. (4.47)]. Consequently,

� m #»� C d

dt
.� m/

#»
V D #»

F ; (9.120)

where
#»

F is given by (9.115) and d� =dt is expressible in terms of
#»

V and #»�

via (4.61), by substituting #»u 0 for #»u and #»a 0 for #»a . We recognize in (9.120) the
relativistic generalization of Newton’s second law of motion expressed in terms of
the acceleration.
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If O is an inertial observer, then #»! D 0 and #»a 0 D 0, (4.61) simplifies to
d� =dt D � 3 #»� � #»

V =c2 and (9.120) becomes

� m

�
#»� C � 2

c2
. #»� � #»

V /
#»

V

�
D #»

F � � dm

dt
#»

V .O inertial/: (9.121)

Let us recall that if the 4-force is a pure one, then dm=dt D 0, which simplifies
the right-hand side of this equation. The Newtonian limit of (9.121) is obtained by
setting � ! 1, c !C1 and dm=dt D 0. It is of course Newton’s second law:

m #»� D #»

F (nonrelativistic): (9.122)

Except for the replacement of m by � m and the possibility of a time-depending
mass, the major difference between (9.121) and (9.122) is that in the relativistic
case, the acceleration is no longer collinear to the force exerted onto the particle.

9.5.5 Evolution of Energy

We are going to deduce from (9.106), namely, hf ; #»u i D �c dm=d	 , a relation
between the variation of the particle’s energy, dE=dt , and the “work” of the force
acting upon it. Let us start by writing the orthogonal decomposition of #»u with
respect to #»u 0; it is given by (4.27) (adapting the notations: #»u 0 ! #»u , #»u ! #»u 0

and #»a ! #»a 0). Combining with (9.13), we get

#»u D � .1C #»a 0 � #      »
OM/ #»u 0 C 1

mc

#»

P :

Equation (9.106) is then equivalent to

� .1C #»a 0 � #      »
OM/hf ; #»u 0i C 1

mc
hf ; #»

Pi D �c dm

d	
:

Since
#»
P 2 Eu0 , we can write hf ; #»

Pi D hf ı ?u0 ;
#»
Pi, i.e. by (9.116), hf ; #»

Pi D
� hF ext;

#»

Pi. Using (9.111a) to replace hf ; #»u 0i and to let dE=dt appear, as well as
(9.13) to express

#»

P , we get then

dE

dt
D 1

1C #»a 0 � #      »
OM

�
hF ext;

#»

V C #»! �u0

#      »
OM i C c2

�

dm

dt

	
� c2hP; #»a 0i :

(9.123)
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In the case where O is an inertial observer, this formula simplifies to

dE

dt
D hF ; #»

V i C c2

�

dm

dt
.O inertial/: (9.124)

For a pure 4-force, dm=dt D 0, and thanks to (9.20), one can replace E by the
kinetic energy Ekin in the left-hand side. If so, then (9.124) is identical to the
equation of Newtonian mechanics relating the variation of a particle’s kinetic energy
to the power of the force exerted on that particle. The power is usually expressed by
the scalar product

#»
F � #»

V , which is nothing but hF ; #»
V i.

Remark 9.23. The linear form aspect of a force, as opposed to the vector one,
clearly appears in (9.124): F is the linear form that, once applied to the velocity
vector

#»
V , yields a number: the energy provided to the particle by unit time.

9.5.6 Expression of the 4-Force

Inserting (9.123) in the orthogonal decomposition (9.119) of the 4-force, we obtain
an expression of f in terms of the non-inertial part F ext of the force acting on P
and measured by observer O:

f D �
"
hF ext;

#»
V C #»! �u0

#      »
OM i C c2=� dm=dt

c.1C #»a 0 � #      »
OM/

u0 C F ext

#
: (9.125)

If O is inertial, this formula simplifies notably:

f D �
" 
hF ; #»

V i
c
C c

�

dm

dt

!
u0 C F

#
.O inertial/: (9.126)

Remark 9.24. In the case of a pure 4-force (dm=dt D 0), the above formula shows
that the 4-force f depends entirely of the force F , which has only 3 degrees of
freedom (it is a vector of O’s rest space). This reflects the constraint (9.107) :
hf ; #»u i D 0, which restricts f ’s degrees of freedom from 4 to 3.

Historical note: The concept of 4-force appeared as early as 1905 in Henri
Poincaré’s “Palermo memoir” (Poincaré 1906) (cf. p. 26), under the form of
the four components of (9.126) (with dm=dt D 0). Poincaré showed that these
components transform as the components of a four-dimensional vector under
Lorentz transformations. The definition of the 4-force in the form f D mc2 a

[Eq. (9.105) with dm=d	 D 0] is due to Hermann Minkowski (cf. p. 26) in his
1908 article (Minkowski 1908); it has been repeated in his famous text on spacetime
(Minkowski 1909).



Chapter 10
Angular Momentum

10.1 Introduction

The preceding chapter being devoted to the conservation of 4-momentum, we turn
now to the second principle that rules relativistic dynamics: that of conservation
of angular momentum. After having defined the angular momentum for a particle
(Sect. 10.2) and for a system (Sect. 10.3), we shall state the principle of its
conservation (Sect. 10.4). We will then investigate the concepts of centre of inertia
and spin (Sect. 10.5) and consider the evolution of angular momentum under a
four-torque (Sect. 10.6). Finally, we shall discuss the concept of particle with spin
and the notion of free gyroscope (Sect. 10.7).

10.2 Angular Momentum of a Particle

10.2.1 Definition

Let us consider a particle P , either massive or massless, of worldline L and
4-momentum p. Given an event C 2 E , one calls angular momentum 2-form
of P with respect to C , or simply angular momentum of P with respect to C , the
field of bilinear forms defined along L by

8M 2 L ; JC .M/ WD CM ^ p.M/ ; (10.1)

where CM is the linear form associated with the vector
#     »
CM by metric duality

(cf. Sect. 1.6) and ^ stands for the exterior product operator, which transforms
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any couple of linear forms .a;b/ 2 E� � E� into an antisymmetric bilinear form
according to1

a ^ b WD a˝ b � b˝ a : (10.2)

In view of the definitions (10.2) and (3.38), the explicit action of the bilinear form
JC .M/ onto pairs of vectors is

8. #»v ; #»w/ 2 E2; JC .M/. #»v ; #»w/ D . #     »
CM � #»v / hp.M/; #»wi�hp.M/; #»v i . #     »

CM � #»w/:

JC .M/ is clearly an antisymmetric bilinear form:

8. #»v ; #»w/ 2 E2; J C .M/. #»v ; #»w/ D �JC .M/. #»w; #»v /: (10.3)

For this reason, JC is named a 2-form. More generally, a p-form is a multilinear
form of p arguments (p vectors in E) that is fully antisymmetric. We shall study
p-forms in detail in Chap. 14 and shall generalize the exterior product to them.

Remark 10.1. The reader familiar with Newtonian mechanics could have been
surprised by the definition of the angular momentum as a bilinear form, whereas
in nonrelativistic mechanics, it is defined as a vector. The transition from 3 to 4
dimensions seems not sufficient to account for the “transformation” of a vector into
a bilinear form. We shall see below that the angular momentum 2-form JC actually
combines the angular momentum vector #»� C with the mass-energy dipole moment
#»
D. Let us stress that #»� C and

#»
D are quantities relative to an observer, while JC is

intrinsic to the particle P (and to the point C ), as the 4-momentum p.

Remark 10.2. By analogy with 4-momentum, it would have been preferable to
name JC angular 4-momentum, in order to leave the appellation angular momentum
to the vector #»� C relative to an observer. Nevertheless, we follow the standard usage
that amounts to calling JC angular momentum, or angular momentum 2-form.

10.2.2 Angular Momentum Vector Relative to an Observer

Let us consider an observer O of worldline L0 and 4-velocity #»u 0. Let M.t/ 2
E be the event intersection of particle P’s worldline with O’s local rest space at
proper time t , Eu0 .t/ (cf. Fig. 10.1). Let O.t/ D L0 \ Eu0 .t/ be the position of O
at the instant t and C�.t/ the orthogonal projection of C onto Eu0 .t/. The following
orthogonal decomposition then holds:

#     »
CM.t/ D h.t/ #»u 0.t/C #»

X.t/ (10.4)

1Let us recall that the tensor product ˝ has been defined in Sect. 3.5.2.
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Fig. 10.1 Decomposition of
the angular momentum of a
particle (worldline L ) with
respect to an observer
(worldline L0)

with

h.t/ WD � #»u 0.t/ � #     »
CM.t/ D � #»u 0 � #    »

CO.t/ and
#»
X.t/ WD #                     »

C�.t/M.t/ 2 Eu0 .t/:

(10.5)

Note that if O is an inertial observer, then

h.t/ D ct C h0 .O inertial/; (10.6)

where h0 is some constant.
The orthogonal decomposition of the second linear form involved in the angular

momentum definition (10.1), namely, the 4-momentum p, is provided by (9.8): p D
.E=c/ u0 C P , E and P being, respectively, the energy and the linear momentum
of P measured by O . Introducing the decompositions (10.4) and (9.8) into (10.1),
we get (we shall omit the mention of dependence in t or M.t/, except for h.t/)

JC D X ^P C
�
E

c
X � h.t/P

�
^ u0: (10.7)

Moreover, as an antisymmetric bilinear form, JC can be decomposed
with respect to #»u 0 according to the general rule established in Sect. 3.5.2
[Eq. (3.37)]. The linear form q involved in this decomposition is, from (3.40)
and (10.7), q D JC .:;

#»u 0/ D �.E=c/X C h.t/P . It follows that there
exists a unique vector #»� C 2 Eu0 (the vector denoted by

#»
b in Sect. 3.5.2) such that

J C D �. #»u 0;
#»� C ; :; :/C

�
E

c
X � h.t/P

�
^ u0 : (10.8)

The vector #»� C , which belongs to the hyperplaneEu0 .t/, is called angular momen-
tum vector of P with respect to the point C and measured by observer O at the
time t .

Comparing expressions (10.7) and (10.8), we get

�. #»u 0;
#»� C ; :; :/ D X ^P ; (10.9)
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By definition, the three vectors #»� C ,
#»
P and

#»
X belong to the hyperplane Eu0 . They

can therefore be expressed in terms of the spatial vectors of O’s local frame . #»e ˛/:
#»� C D �iC #»e i ,

#»
P D P i #»e i and

#»
X D Xi #»e i . Let us apply (10.9), which is an equality

between two bilinear forms, to a couple of vectors . #»e i ;
#»e j / of O’s local frame; we

get successively

�. #»u 0; �
k
C

#»e k;
#»e i ;

#»e j / D hX ; #»e i ihP; #»e j i � hP; #»e i ihX ; #»e j i
D . #»

X � #»e i /.
#»

P � #»e j / � . #»

P � #»e i /.
#»

X � #»e j /

�kC �. #»u 0;
#»e k;

#»e i ;
#»e j / D XiP j � P iXj : (10.10)

The second line is obtained by metric duality and the third one by the multi-
linearity of Levi–Civita tensor and the fact that . #»e i / is an orthonormal basis
of Eu0 . Now, since . #»e ˛/ is a direct orthonormal basis of E (with #»e 0D #»u 0), the
definition of the Levi–Civita tensor (cf. Sect. 1.5) yields �. #»u 0;

#»e k;
#»e i ;

#»e j /D 1
(resp. �1) if . #»e k;

#»e i ;
#»e j / is an even (resp. odd) permutation of . #»e 1;

#»e 2;
#»e 3/, and

�. #»u 0;
#»e k;

#»e i ;
#»e j / D 0 otherwise. We deduce then from (10.10) that the vector

#»� C is nothing but the cross product of the vectors
#»

X and
#»

P induced by � on Eu0 ,
according to (3.46): #»� C D #»

X �u0

#»

P . Since #»u 0 �u0

#»

P D #»� . #»u 0;
#»u 0;

#»

P; : / D 0,
#»

X

can be replaced by
#     »
CM in this formula. Hence,

#»� C D #»

X �u0

#»

P D #     »
CM �u0

#»

P : (10.11)

Thus, we recover the classical expression of the angular momentum vector with
respect to the point C and measured by a given observer.

10.2.3 Components of the Angular Momentum

The matrix .J˛ˇ/ of the bilinear form J C with respect to the orthonormal basis . #»e ˛/

(O’s local frame) is defined by2

J˛ˇ WD JC .
#»e ˛;

#»e ˇ/: (10.12)

We have then

8. #»v ; #»w/ 2 E2; JC .
#»v ; #»w/ D J˛ˇ v˛wˇ; (10.13)

where the .v˛/ (resp. .w˛/) are the components of the vector #»v (resp. #»w) in the basis
. #»e ˛/:

#»v D v˛ #»e ˛ and #»w D w˛ #»e ˛ . Given that #»e 0 D #»u 0, we deduce from (10.12)
and (10.8) that

2Compare with (1.12).
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J˛ˇ D

0
BBBBB@

0 E
c
X1 � h.t/P 1 E

c
X2 � h.t/P 2 E

c
X3 � h.t/P 3

�E
c
X1 C h.t/P 1 0 �3C ��2C

�E
c
X2 C h.t/P 2 ��3C 0 �1C

�E
c
X3 C h.t/P 3 �2C ��1C 0

1
CCCCCA
:

(10.14)

with, according to (10.11),

�1C D X2P 3 � X3P 2; �2C D X3P 1 � X1P 3; �3C D X1P 2 �X2P 1:

(10.15)

10.3 Angular Momentum of a System

10.3.1 Definition

Given a system S of particles of worldlines La and 4-momenta pa, an oriented
hypersurface ˙ � E and a point C 2 E , we define the angular momentum of
system S with respect to C on ˙ in a manner analogous to what we did for the
total 4-momentum in Chap. 9 [cf. Eq. (9.34)]:

JC j˙ WD
NX

aD1

X

M2La\˙
" CM ^ pa.M/; (10.16)

where we have expressed the angular momentum of each particle according to (10.1)
and where, as in (9.34), " D C1 (resp. " D �1) if the 4-momentum vector #»pa.M/

has the direction (resp. the opposite direction) set by the positive orientation of ˙ .
As a sum of antisymmetric bilinear forms, J C j˙ is itself an antisymmetric bilinear
form, i.e. a 2-form.

If some observer O is prescribed, a natural choice for the hypersurface˙ is the
local rest space of O at some instant t of his proper time: ˙ D Eu0 .t/ ( #»u 0 stands
for O’s 4-velocity). We shall then call JC jEu0 .t/

the total angular momentum of
the system S with respect to C at the instant t of observer O . In this case, one
has always " D 1. More, since Eu0 .t/ is a spacelike hypersurface, the intersection
La\Eu0 .t/ is necessarily limited to a single point (cf. Sect. 9.3.5). Equation (10.16)
becomes then

JC jEu0 .t/
WD

NX

aD1
CMa ^ pa.Ma/ ; (10.17)
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whereMa D Ma.t/ WD La \ Eu0 .t/. We can also write

JC jEu0 .t/
D

NX

aD1
J a
C .Ma.t// ; (10.18)

where J a
C is the angular momentum 2-form of particle a with respect to the pointC .

Historical note: As for the total 4-momentum (cf. Sect. 9.3.1), the definition (10.16)
of the total angular momentum of a system on a hypersurface has been introduced
in 1935 by John L. Synge (cf. p. 74) (1935).

10.3.2 Change of Origin

If the point C 2 E in (10.16) is changed to another point C 0 2 E , we may write,
thanks to Chasles’ relation

#        »

C 0M D #      »

C 0C C #     »
CM ,

JC 0 j˙ D
NX

aD1

X

M2La\˙
" .C 0C C CM/ ^ pa.M/

D C 0C ^
0

@
NX

aD1

X

M2La\˙
"pa.M/

1

AC JC j˙ :

In view of (9.34), the term inside the parentheses is the total 4-momentum of S on
the hypersurface˙ . Hence, we get the change-of-origin formula:

JC 0 j˙ D J C j˙ C C 0C ^ pj˙ : (10.19)

10.3.3 Angular Momentum Vector and Mass-Energy
Dipole Moment

Let us consider an observer O of worldline L0 and 4-velocity #»u 0. Let us denote
by O.t/ the position of O on L0 at the proper time t . By combining (10.18) and
(10.8), we can write the angular momentum of the system S with respect to C at
the instant t of O as

J C jEu0 .t/
D

NX

aD1


�. #»u 0;

#»� a
C ; :; :/C

�
Ea

c
Xa � h.t/Pa

�
^ u0

�
; (10.20)
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where #»� a
C is the angular momentum vector of particle a with respect to C and

measured by O; Ea and Pa are, respectively, the energy and linear momentum of
the particle a, both measured by O;

#»
Xa is the vector

#                        »

C�.t/Ma.t/, C�.t/ being the
orthogonal projection of C onto Eu0 .t/; and h.t/ D � #»u 0 � #    »

CO.t/ [cf. Eq. (10.5)] is
independent of the particle a. Thanks to the multilinearity of the Levi–Civita tensor
�, we can rewrite (10.20) as

JC jEu0 .t/
D �. #»u 0;

#»� C ; :; :/C
"

NX

aD1

Ea

c
Xa � h.t/P

#
^ u0; (10.21)

where P D PN
aD1 Pa is the linear momentum of the system S measured by O at

the instant t [cf. Eq. (9.48)] and

#»� C WD
NX

aD1
#»� a
C .Ma/ (10.22)

is, by definition, the total angular momentum vector of the system S with respect
to the point C and measured by O at the instant t . Note that #»� C 2 Eu0 .t/.

Let us define the mass-energy dipole moment of the system S relative to
observer O at the instant t as the following vector of the local rest space Eu0 .t/:

#»
D WD 1

c2

NX

aD1
Ea

#                      »

O.t/Ma.t/ : (10.23)

We have then

NX

aD1

Ea

c

#»
Xa D

NX

aD1

Ea

c

#                        »

C�.t/Ma.t/ D
NX

aD1

Ea

c

h
#                    »

C�.t/O.t/C #                      »

O.t/Ma.t/
i

D E

c

#                    »

C�.t/O.t/C c #»
D;

where E D PN
aD1 Ea is the total energy of the system measured by O [cf.

Eq. (9.48)]. Equation (10.21) can then be written as

J C jEu0 .t/
D �. #»u 0;

#»� C ; :; :/C
�
cD C E

c
C�O � h.t/P

�
^ u0 : (10.24)

Remark 10.3. Since
#    »
CO D #      »

CC� C #       »
C�O D h.t/ #»u 0 C #       »

C�O, we have CO ^ u0 D
C�O ^ u0 so that we can replace C� by C in the above expression.
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Remark 10.4. The expression (10.24) is the orthogonal decomposition of the
antisymmetric bilinear form JC jEu0 .t/

with respect to #»u 0, as established in
Sect. 3.5.2.

Remark 10.5. Whereas the 4-momentum combines energy and linear momentum
in a same object (cf. Remark 9.5 p. 275), expression (10.24) shows that the
angular momentum 2-form combines the angular momentum vector #»� C with the
mass-energy dipole moment

#»

D.

10.4 Conservation of Angular Momentum

10.4.1 Principle of Angular Momentum Conservation

In addition to that of 4-momentum conservation (Sect. 9.3.3), the second
fundamental principle of the dynamics of relativistic particles is:

If a particle system is isolated, its angular momentum with respect to any point
C 2 E and on any closed hypersurface vanishes:

S isolated and ˙ closed H) JC j˙ D 0 : (10.25)

The same comments as those made in Sect. 9.3.3 regarding the principle
conservation of 4-momentum could be repeated mutatis mutandis here.

As for the 4-momentum in Sect. 9.3.4, the principle (10.25) applied to a system
reduced to a single particle implies that the angular momentum of an isolated
particle with respect to a fixed point C 2 E is a constant field of bilinear forms
along the particle’s worldline L :

8M 2 L ; JC .M/ D const: (10.26)

Remark 10.6. For an isolated massive particle, the property (10.26) can also be
obtained as a consequence of the law of inertia (9.37) and therefore of the principle
of 4-momentum conservation. Indeed, using (10.1) and denoting by 	 the proper
time along L , the derivative of JC .M/ along the worldline L is

d

d	
JC .M.	// D dCM

d	
˝ p C CM ˝ dp

d	
� dp

d	
˝ CM � p ˝ dCM

d	
:

(10.27)
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Now, from the definition of 4-velocity, dCM=d	 D c u. Since u D .mc/�1p
[Eq. (9.3)], there comes dCM=d	˝p�p˝dCM=d	 D m�1.p˝p�p˝p/ D 0,
so that (10.27) reduces to

d

d	
JC .M.	// D CM ^ dp

d	
:

The law of inertia (9.37) implies dp=d	 D 0 and thus dJC .M.	//=d	 D 0. ut
Remark 10.7. In Newtonian mechanics, the conservation of the angular momentum
of an isolated system is deduced from the action-reaction principle (Newton’s third
law) in its strong version, i.e. not only the force exerted by particle A onto particle
B is the exact opposite of the force exerted by B ontoA, but this force is in addition
aligned with the vector connecting A and B (cf., e.g. Deruelle and Uzan (2006)).
In the relativistic case, there is no principle of the type “action-reaction”. The
conservation of angular momentum of a system comprising at least two particles
(cf. the above remark for a single particle) appears then as a first principle, at the
same level as the conservation of 4-momentum.

Remark 10.8. As for the 4-momentum (cf. Sect. 9.3.3), the conservation of angular
momentum appears, in a Lagrangian formulation, as a consequence of Noether
theorem, and not a first principle. We shall see it explicitly in Chap. 11.

10.4.2 Angular Momentum of an Isolated System

As a consequence of the conservation law (10.25), the following property holds:

If the particle system S is isolated, its angular momentum JC j˙ does not
depend on the choice of the hypersurface ˙ , provided the latter is spacelike
and intersects all the worldlines of S ’s particles. One can therefore define

JC WD
NX

aD1
CMa ^ pa.Ma/ ; (10.28)

where Ma stands for the unique intersection of the worldline La with ˙ . JC

is called the total angular momentum of the isolated system S with respect
to the point C .
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The proof is identical to that given in Sect. 9.3.5 for the 4-momentum.
In particular, the total angular momentum at the instant t of an observer [cf.

Eq. (10.17)] is independent of t and of the observer:

JC jEu0 .t/
D JC jEu0

0
.t 0/ D JC : (10.29)

10.4.3 Conservation of the Angular Momentum Vector
Relative to an Inertial Observer

Let us consider an isolated system S . If O is an inertial observer, its 4-velocity #»u 0

is constant, as well as the hyperplaneEu0 . Let then #»v and #»w be two generic vectors
in Eu0 . We have, thanks to (10.24),

JC .
#»v ; #»w/ D �. #»u 0;

#»� C ;
#»v ; #»w/:

Since the system S is isolated, we get

d

dt
ŒJC .

#»v ; #»w/� D 0 D �

�
#»u 0;

d

dt
#»� C ;

#»v ; #»w
	
;

where we have used the multilinearity of the Levi–Civita tensor and the constant
character of the vectors #»u 0,

#»v and #»w . The above equality being valid for any pair of
vectors . #»v ; #»w/, we deduce that d #»� C =dt is necessarily collinear to #»u 0. Now since
#»� C 2 Eu0 and Eu0 is independent of t , we have d #»� C =dt 2 Eu0 . The collinearity
with #»u 0 implies then d #»� C =dt D 0:

The angular momentum vector of an isolated system with respect to any point
C and measured by any inertial observer is constant:

d

dt
#»� C D 0 : (10.30)

This conservation law is of course similar to the laws (9.49) obtained in Chap. 9
for the energy and the linear momentum of the system.



10.5 Centre of Inertia and Spin 329

10.5 Centre of Inertia and Spin

10.5.1 Centroid of a System

Let us consider a particle system S and an observer O of worldline L0 and
4-velocity #»u 0. As in Sect. 10.3.3, let us denote by O.t/ 2 L0 the position of O
on its worldline at the proper time t . One calls centroid of the system S relative to
observer O the pointGO.t/ of O’s local rest space Eu0 .t/ such that

#                      »

O.t/GO.t/ WD 1

E

NX

aD1
Ea

#                      »

O.t/Ma.t/ D c2

E

#»
D ; (10.31)

where (i) Ma.t/ is the position of particle a at time t with respect to O , i.e. the
intersection of the worldline La of particle a with the hyperplane Eu0 .t/; (ii) Ea
and E are, respectively, the energy of particle a and the total energy of the system,
both measured by O; and (iii)

#»

D is the mass-energy dipole moment of S relative to
O , as defined by (10.23). Since E D PN

aD1 Ea [Eq. (9.48)], GO.t/ is the weighted
mean of the positions of the particles with respect to observer O , the weights being
the energies of the particles relative to O .

Remark 10.9. At the nonrelativistic limit, E ! mc2, Ea ! mac
2, and we recover

the definition of the centre of mass of the system. In the relativistic case, it must be
noticed that the definition of the centroid depends upon the observer O and this is
in two manners: via the local rest space Eu0 .t/, which defines the points O.t/ and
Ma.t/, and via the energies Ea and E , which are both relative to O .

Although the centroid depends upon the choice of the observer, it is easy to see that
two inertial observers, O and O 0 say, sharing the same 4-velocity, #»u 0 say, will agree
on the centroid. Indeed, the worldlines of the two observers are in this case parallel
straight lines in E , and their rest spaces coincide (cf. Fig. 8.3). Up to some choice
of proper time origin, we can then write t 0 D t . Denoting by GO0 the centroid of
system S with respect to O 0 at some instant t , we have

#           »

O 0GO0 WD 1

E 0
NX

aD1
E 0
a

#          »

O 0Ma D 1

E 0
NX

aD1
E 0
a

�
#      »

O 0O C #        »
OMa

�

D 1

E 0

 
NX

aD1
E 0
a

!

„ ƒ‚ …
1

#      »

O 0O C 1

E

NX

aD1
Ea

#        »
OMa

„ ƒ‚ …
#      »
OGO

#           »

O 0GO0 D #          »

O 0GO ; (10.32)
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where we have used E 0
a D Ea et E 0 D E (this follows from the fact that O

and O 0 have the same 4-velocity #»u 0: E 0
a D �c hpa;

#»u 0i D Ea and E 0 D �c
hp; #»u 0i D E). The result (10.32) allows us to conclude that GO0 D GO . Hence,
we have shown:

The centroid of a system is the same for all inertial observers having the same
4-velocity, i.e. for all observers who belong to the same rigid array of inertial
observers, as defined in Sect. 8.2.4.

10.5.2 Centre of Inertia of an Isolated System

In all what follows, we suppose that (i) the system S is isolated and (ii) the observer
O is inertial. From the relation (4.24) with #»a D 0 and #»! D 0 (since O is inertial),
the derivative vector

#»

V GO WD
d

dt

#                      »

O.t/GO.t/ (10.33)

is the velocity of the centroid GO relative to observer O . To evaluate it, one must
thus derive (10.31) with respect to t . According to the result of Sect. 9.3.6 and to the
assumptions (i) and (ii) here above,E is constant, so that we get

#»
V GO D

c2

E

d

dt
#»
D: (10.34)

To compute the time derivative of
#»
D, it suffices to recall that

#»
D is involved in the

decomposition (10.24) of the angular momentum and to invoke the conservation
of the latter, since S is an isolated system. Given a point C 2E , let us consider
the angular momentum JC of S with respect to C . Using O’s 4-velocity as
the first argument of bilinear form JC , one defines the linear form JC .

#»u 0; :/.
Its expression follows from (10.24), using the antisymmetry of � as well as the
properties

#»
D � #»u 0D 0,

#       »
C�O � #»u 0 D 0, hP; #»u 0i D 0 and #»u 0 � #»u 0 D �1:

JC .
#»u 0; :/ D cD C E

c
C�O � h.t/P : (10.35)

Since J C does not depend on t (S isolated) nor #»u 0 does (O inertial), the above
relation yields

d

dt
J C .

#»u 0; :/ D 0 D c d

dt
D C E

c

dC�O
dt
� dh

dt
P : (10.36)
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Note that we have used the properties dE=dt D 0 and dP=dt D 0 [Eq. (9.49)].
Now, since O is inertial [cf. in particular (10.6)],

#       »
C�O D #                    »

C�.t/O.t/ D #             »

C�.t/C C #          »

CO.t/ D �h.t/ #»u 0C #          »

CO.t/ D �.ct C h0/ #»u 0C #          »

CO.t/;

which leads to
d

#       »
C�O
dt

D �c #»u 0 C d
#           »

CO.t/

dt„ ƒ‚ …
c #»u 0

D 0:

By metric duality and taking into account dg=dt D 0, we deduce that the second
term in the right-hand side of (10.36) vanishes. Since from (10.6), dh=dt D c, we
conclude that

d

dt
D D P : (10.37)

Plugging this result into (10.34), we obtain the velocity of the centroid of system S
relative to O :

#»
V GO D

c2

E

#»
P : (10.38)

The vector
#»
P being constant, this means that GO has a constant-velocity motion

relative to O . But there is more: in Sect. 9.3.5, we have introduced the notion of
4-velocity #»u for an isolated system whose total mass m is nonvanishing—case we
shall consider henceforth. By combining (9.42), (9.43) and (9.45), we get E D
� mc2 and

#»
P D mc?u0

#»u , with � WD � #»u 0 � #»u , so that we can rewrite (10.38) as

#»

V GO D
c

�
?u0

#»u : (10.39)

Comparing with (4.32), we observe that the velocity
#»
V GO is nothing but the velocity

relative to O of a point particle that would have the constant vector #»u as 4-velocity.
We therefore conclude:

The centroid with respect to an inertial observer of an isolated system S
of nonvanishing total mass follows a timelike straight line in Minkowski
spacetime E . This line is parallel to the 4-velocity #»u of the system. Since
#»u is independent of any observer, the centroids of S with respect to various
inertial observers follow parallel lines in E .
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We have seen in Sect. 10.5.1 that the centroid of a system is the same for
all inertial observers who share a given 4-velocity. If one chooses this common
4-velocity to be the 4-velocity of the system, #»u (comoving observers; cf.
Sect. 9.3.5), then the corresponding centroid is intrinsic to the system. We shall
call it centre of inertia of the isolated system S and will denote it by G,
without any index. The alternative names centre of mass and barycentre are
also used. G follows a worldline LG that is a straight line of E with tangent
vector #»u . We shall call barycentric observer of the system S any inertial
observer having LG as a worldline. The frame . #»e ˛/ of such an observer
is then called centre-of-inertia frame or sometimes centre-of-mass frame or
centre-of-momentum frame. Barycentric observers differ only by a fixed rotation
of their spatial frame . #»e i /. A barycentric observer is of course a particular case of
an observer comoving with the system, in the sense defined in Sect. 9.3.5, i.e. an
inertial observer of 4-velocity #»u .

Remark 10.10. The centre of inertia has been defined only for an isolated system.
For a general system, we have only the notion of centroid, which depends upon the
choice of the observer.

Remark 10.11. In the above demonstration, we have used the principle of angular
momentum conservation (Sect. 10.4.1) to establish the constancy of the velocity of
system S ’s centroid relative to the inertial observer O . Actually, we have used only
the constancy of the part J C .

#»u 0; :/ of the angular momentum [cf. Eq. (10.36)].
We have seen in Sect. 10.4.3 that the constancy of the part fully orthogonal to #»u 0

[i.e. the part �. #»u 0;
#»� C ; :; :/ in the decomposition (10.24)] leads to the conservation

of the angular momentum vector relative to O , #»� C [Eq. (10.30)]. To summarize,
the angular momentum 2-form of an isolated system, JC , has 6 independent
components (its matrix J˛ˇ with respect to O is a 4 � 4 antisymmetric matrix), and
the law of angular momentum conservation yields the conservation of the angular
momentum vector #»� C (3 components) and the conservation of the velocity of
the centroid of the system

#»

V GO (3 components), these two vectors being relative
to the inertial observer O .

Since O.t/ D G.t/ for a barycentric observer, we deduce, respectively, from
(10.31) and (10.33) that

NX

aD1
Ea

#                     »

G.t/Ma.t/ D 0 and
#»
V G D 0; (10.40)

where Ea is the energy of particle a measured by the barycentric observer. The
first of these two relations implies that the mass-energy dipole moment of S with
respect to any barycentric observer vanishes:

#»

D D 0 .O barycentric/: (10.41)
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Via (10.37), we deduce that the total linear momentum of S measured by any
barycentric observer also vanishes:

P D 0 .O barycentric/: (10.42)

The Einstein relation (9.47) shows then that the total energy measured by a
barycentric observer reduces to the total mass of S :

E D mc2 .O barycentric/: (10.43)

The property (10.39), namely, that all the centroids of an isolated system have
the 4-velocity #»u of the system can be recast as follows: the centroid of an isolated
system with respect to a given inertial observer is fixed with respect to a barycentric
observer, in the sense defined in Sect. 3.4.3.

10.5.3 Spin of an Isolated System

Let us consider an isolated system S . Its angular momentum with respect to a point
C 2 E , JC , is then independent of any observer. Let us decompose it relatively to
a barycentric observer, according to formula (10.24). In the present case, #»u 0 D #»u ,
O.t/ D G.t/, D D 0 [Eq. (10.41)] and P D 0 [Eq. (10.42)]. We get therefore

J C D �. #»u ; #»� C ; :; :/C c mCG ^ u;

where we have used (10.43) and replaced C� by C , following Remark 10.3 p. 325.
Thanks to (9.42), we can replace c m u by the total 4-momentum of the system, p.
We obtain then

JC D �. #»u ; #»� C ; :; :/C CG ^ p: (10.44)

If one considers the angular momentum of S with respect to a second point
C 0 2 E , it follows from (10.44) and the multilinearity of � that

JC 0 D JC C �
�

#»u ; #»� C 0 � #»� C ; : ; :
�
C C 0C ^ p:

By comparing with the general law for a change of origin, namely, formula (10.19),
we obtain immediately the vanishing of the bilinear form �. #»u ; #»� C 0 � #»� C ; :; :/:

�
�

#»u ; #»� C 0 � #»� C ; : ; :
�
D 0:

This is possible only if the vector #»� C 0 � #»� C is itself zero; hence,

#»� C 0 D #»� C : (10.45)
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We obtain thus a result well known in Newtonian mechanics:

For an isolated system, the angular momentum vector relative to a barycentric
observer does not depend on the point C with respect to which it is defined.
We shall call #»� C (independent of C ) the spin vector of the system S and
denote it by #»� .

From (10.44), the angular momentum of S with respect to its centre of
inertia G is

JG D S ; (10.46)

where the 2-form S is defined by

S WD �. #»u ; #»� ; :; :/ (10.47)

and is called the spin of the system S .

10.5.4 König Theorem

In view of (10.47) and the independence of #»� C from C , we may rewrite (10.44) as

JC D S„ƒ‚…
spin

C CG ^ p„ ƒ‚ …
orbital angular

momentum

: (10.48)

The term named orbital angular momentum encompasses all the dependence in C .
Comparing with (10.1), we observe that it is identical to the angular momentum of a
particle that would have the same worldline as the centre of inertia G and the same
4-momentum as the system. The decomposition (10.48) is the relativistic version of
the famous König theorem.

Since the total 4-momentum vector of the system S , #»p , is collinear to the
4-velocity #»u [by the very definition of the latter, cf. Eq. (9.42)], the alternate
character of the Levi–Civita tensor leads to �. #»u ; #»� ; #»p ; :/ D 0, i.e. by virtue of
(10.47),

S . #»p ; :/ D 0 : (10.49)

From (10.46), this relation is equivalent to

JG.
#»p ; :/ D 0 : (10.50)
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Remark 10.12. The centre of inertiaG of an isolated system S has been defined as
the centroid of the system with respect to the observers whose 4-velocity coincides
with that of the system ( #»u ). One can alternatively define the centre of inertia without
invoking the notion of centroid by starting from (10.50): the worldline of the centre
of inertia is formed by all the pointsG 2 E such that the equality (10.50) is fulfilled.
To show it, let us consider an inertial observer O comoving with S , i.e. of 4-velocity
#»u . Let O.t/ 2 E be the position of that observer at the instant t of his proper time.
From the change-of-origin formula (10.19), we have

JO.t/ D JG CO.t/G ^ p;

so that property (10.50) is equivalent to

JO.t/.
#»p ; :/ D Œ #           »

O.t/G � #»p �p � hp; #»piO.t/G:

Writing #»p D mc #»u , we get

JO.t/.
#»u ; :/ D mc

h
. #»u � #           »

O.t/G/ uCO.t/G
i
: (10.51)

Now from the very definition of S ’s angular momentum,

JO.t/ D
NX

aD1
O.t/Ma.t/ ^ pa.t/;

so that

JO.t/.
#»u ; :/ D

NX

aD1
Œ

#                      »

O.t/Ma.t/ � #»u„ ƒ‚ …
0

�pa.t/ � hpa.t/;
#»u i„ ƒ‚ …

�Ea=c
O.t/Ma.t/

D 1

c

NX

aD1
Ea O.t/Ma.t/:

Substituting in (10.51), we get, by metric duality

1

mc2

NX

aD1
Ea

#                      »

O.t/Ma.t/ D ?u
#           »

O.t/G; (10.52)

where the expression (3.11) of the orthogonal projector ?u onto Eu has been used.
The total energy of the system measured by O being E D mc2, we recognize
in the left-hand side of the above equality the position vector of the system’s
centroid, GO.t/, in Eu.t/ [cf. Eq. (10.31)]. But since O is comoving, the centroid
coincides with the centre of inertia of the system. Equation (10.52) shows that the
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point G is necessarily on the straight line going through GO.t/ and orthogonal to
the hyperplane Eu.t/. This line being the worldline of the centre of inertia, this
completes the demonstration that any point G satisfying (10.50) is the centre of
inertia of the system at some instant.

10.5.5 Minimal Size of a System with Spin

Let S be an isolated system and LG the worldline of its centre of inertia (LG

is necessarily a straight line of E ). Let #»u be the 4-velocity of S , as defined by
(9.42), assuming that the total mass of S is nonvanishing. Let us denote by OG a
barycentric observer: his worldline is LG , and his 4-velocity is #»u . Let us consider
as well an inertial observer O of 4-velocity #»u 0, proper time t , and position O.t/.
LetG.t/ be the position with respect to O of the centre of inertia of S at the instant
t , i.e. G.t/ WD LG \ Eu0 .t/. Let GO.t/ be the centroid of the system S with
respect to O . Let us consider the linear form S . #»u 0; :/, obtained by selecting O’s
4-velocity as the first argument of the bilinear form S , spin of the system S . Given
the expression (10.47) of S in terms of the spin vector #»� of S , we have

S . #»u 0; :/ D �. #»u ; #»� ; #»u 0; :/: (10.53)

Let
#»

V O be the velocity of O relative to OG :
#»

V O appears in the orthogonal
decomposition of #»u 0 with respect to #»u according to (4.31):

#»u 0 D �
�

#»u C 1

c

#»

V O

	
; with � D

�
1 � 1

c2
#»

V O � #»

V O

	�1=2
: (10.54)

Plugging this expression into (10.53) and taking into account the alternate character
of �, we get

S . #»u 0; :/ D �

c
�. #»u ; #»� ;

#»

V O ; :/ D �

c
g. #»� �u

#»

V O ; :/: (10.55)

An alternative expression for S . #»u 0; :/ can be derived from (10.46): for any
value of t , S D JG.t/. We deduce that S . #»u 0; :/ D JG.t/.

#»u 0; :/. Let us express
JG.t/.

#»u 0; :/ via formula (10.35) with C D G.t/ :

S . #»u 0; :/ D JG.t/.
#»u 0; :/ D cD.t/C E

c
G.t/O.t/ � h.t/P ; (10.56)

where D.t/, E and P are, respectively, the mass-energy dipole moment of S ,
the total energy of S and the total linear momentum of S , these three quantities
being relative to O . h.t/ is the component of the vector

#                  »

G.t/O.t/ along #»u 0

[cf. Eq. (10.5)]: h.t/ WD � #»u 0 � #                  »

G.t/O.t/. In the present case,
#                  »

G.t/O.t/ 2 Eu0 .t/,
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so that h.t/ D 0. Besides,
#»
D is related to the centroid GO.t/ by (10.31):

#                      »

O.t/GO.t/ D .c2=E/ #»
D. We have thus

S . #»u 0; :/ D E

c
G.t/GO.t/: (10.57)

Equating (10.55) and (10.57), we get
#                     »

G.t/GO.t/ D .� =E/ #»� �u
#»

V O . Now, given
the relationsE D �c #»p � #»u 0 [Eq. (9.43)], #»p D mc #»u [Eq. (9.42)] and � D � #»u � #»u 0

[Eq. (10.54)], we have E D � mc2, where m is the total mass of the system S , as
defined in Sect. 9.3.5. Hence, we can write

#                     »

G.t/GO.t/ D 1

mc2
#»� �u

#»

V O : (10.58)

Remark 10.13. The vector
#                     »

G.t/GO.t/ belongs to O’s rest space,Eu0 , and the vector
#»� �u

#»
V O to the rest space of the barycentric observer OG , Eu. But since #»� �u

#»
V O

is orthogonal to
#»
V O (by definition of �u) and

#»
V O is O’s velocity relative to OG , we

have actually #»� �u
#»
V O 2 Eu \ Eu0 , so that the equality (10.58) is possible.

A first interesting property can be drawn from (10.58):

The centroids of an isolated system with respect to all possible observers
coincide with the system’s centre of inertia iff the spin of the system vanishes.

Proof. If GO D G for any observer O , then (10.58) implies #»� D 0, which, via
(10.47), leads to S D 0. The converse is straightforward. ut

A second consequence of (10.58) regards the size of the system. Denoting by �
the angle between vectors #»� and

#»

V O inEu (cf. Sect. 3.2.6), formula (10.58) leads to





#                     »

G.t/GO.t/





g
D 1

mc2
k #»� kg





#»

V O





g
j sin � j:

Since the barycentric observer is inertial, one has always k #»

V Okg < c, so that





#                     »

G.t/GO.t/





g
< R0; with R0 WD 1

mc
k #»� kg : (10.59)

Let us assume that #»� 6D 0 and consider, in the rest space of the barycentric observer,
the disk D , centred on the centre of inertia, of radius R0 and perpendicular to #»� :

D.tG/ WD

A 2 Eu.tG/;

#»� � #             »

G.tG/A D 0 and





#             »

G.tG/A





g
< R0

�
;
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where tG stands for the proper time of the barycentric observer, withG.tG/ D G.t/.
From (10.58), it is clear that any centroid is located in that disk. Conversely, if
A 2 D.tG/, there exists a unique vector

#»
V ? 2 Eu \ Span. #»� /? such that

#             »

G.tG/A D 1

mc2
#»� �u

#»

V ?: (10.60)

Moreover, since A 2 D.tG/, we have k #»

V ?kg < c. Then for any Vk 2 R obeying
V 2

k < c
2 � #»

V ? � #»
V ?, the vector

#»

V D Vk #»� C #»

V ? (10.61)

constitutes the velocity vector
#»

V O of an observer O relative to OG . The centroid of
the system S for this observer satisfies then

#                     »

G.t/GO.t/ D .mc2/�1 #»� �u
#»

V O D
.mc2/�1 #»� �u

#»

V ? D #          »

G.t/A, henceA D GO.t/. In other words, any point of the disk
D.tG/ corresponds to the centroid of the system for an infinite number of inertial
observers (who differ only by the value of Vk).

When tG varies, D.tG/ spans a cylinder in Minkowski spacetime, centred on the
line LG . We shall call this cylinder the tube of centroids of system S .

Let us suppose that for the barycentric observer OG , all the particles forming the
system S are, at each instant of the proper time tG , contained within a ball BR.tG/

of Eu.tG/ centred on G.tG/ and of rayon R, independent of tG . When tG varies,
this ball spans a worldtube T of axis LG . This is a four-dimensional tube, contrary
to the tube of centroids, which is three-dimensional. Let us show that the disk of
centroids, D.tG/, is totally included in the ball BR.tG/. LetGO be a point of D.tG/
and O an inertial observer such that the centroid of S with respect to O is GO .
At some instant t of O’s proper time, let us consider the volume of O’s rest space
Eu0 .t/ occupied by the system: QB.t/ WD T \ Eu0 .t/. The positions Ma.t/ of the
system particles at the instant t (i.e. the intersections of their worldlines with Eu0 .t/)
are all contained in QB.t/. Now the centroid GO.t/ is, by definition, the barycentre
of the positions Ma.t/ weighted by the energies Ea of particles with respect to O
[cf. (10.31)]. Since O is inertial, these energies are all positive (Ea D �amac

2),
so that the centroid is located inside the system, i.e. inside QB.t/. The worldline of
the centroid being a straight having #»u as a direction vector, as the axis of the tube
T , we obtain that at each instant of the proper time tG , GO.tG/ is within the ball
BR.tG/. We have thus shown that D.tG/ � BR.tG/. The radius of the disk D.tG/
beingR0, we conclude that the radiusR of the ball BR.tG/ that gives the size of the
system for the barycentric observer must satisfy R � R0, i.e. given (10.59),

R � 1

mc
k #»� kg : (10.62)

Hence, the norm of the spin vector provides a lower bound of the size of a particle
system. In other words, a system with spin cannot have an arbitrary small size.
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Remark 10.14. This results can be understood intuitively by observing that if one
would like to maintain a finite angular momentum with respect to the centre of
inertia (i.e. a finite spin) while reducing the system size, the particles have to “rotate”
at larger and larger velocities. The speed of light being an upper bound on the
particle velocities, we realize that the system size cannot be arbitrarily reduced.

Historical note: The definition (10.31) of the centroid of a system, as well as that
of the centre of inertia, has been introduced in 1929 by Adriaan D. Fokker3 (1929a)
(cf. also Pryce (1948)), who used the term invariant centre of mass for what we
call centre of inertia. The alternative definition of the centre of inertia, based on
the identity JG.

#»p ; :/ D 0 [Eq. (10.50)], has been given in 1935 by John L. Synge
(cf. p. 74) (1935). The result (10.62), regarding the minimal size of a system with
spin, is due to Christian Møller4 (1949a; 1949b).

10.6 Angular Momentum Evolution

10.6.1 Four-Torque

As in Sect. 9.5, let us consider a particle P of massm > 0, worldline L , 4-velocity
#»u and proper time 	 . We have seen in Sect. 10.4 that, if P is isolated, its angular
momentum J C with respect to any point C 2 E is a constant field of bilinear forms
along L . If P is not isolated, we shall define the derivative of JC along L as
the four-torque, or 4-torque for short, with respect to the point C and acting on
particle P:

N C WD dJC

d	
: (10.63)

As JC , NC is a field of antisymmetric bilinear forms (2-forms) defined along L .
Replacing JC by its expression (10.1), we get

N C D dCM

d	
^ p C CM ^ dp

d	
:

3Adriaan D. Fokker (1887–1972): Dutch physicist and musician, cousin of the aircraft manufac-
turer Anthony Fokker. He is mostly known for the Fokker–Planck equation, which is involved in
the study of Brownian motion. Fokker has also designed a new type of organ, known today as the
Fokker organ.
4Christian Møller (1904–1980): Danish physicist, who contributed to relativity and particle
physics; he authored in 1952 a textbook about special and general relativity (Møller 1952), which
remained famous for many years.
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Now, by definition of P’s 4-velocity and of the 4-force f acting of P [Eq. (9.104)],

dCM

d	
D c u and

dp

d	
D f :

On the other side, p D mc u [Eq. (9.3)], so that u ^ p D 0. Hence,

NC D CM ^ f : (10.64)

10.6.2 Evolution of the Angular Momentum Vector

Let us derive an evolution law for the angular momentum vector #»� C of particle P
with respect to a point C and measured by to an observer O . We denote by t the
proper time of O and by #»u 0 his 4-velocity. Let us recall that #»� C D #»� C .t/ 2 Eu0 .t/,
where Eu0 .t/ is O’s local rest space at the proper time t . We would like to evaluate
d #»� C =dt . Two cases can be distinguished: (i) C is a fixed point in spacetime E and
(ii) C evolves with t ; we shall suppose then that C.t/ follows a timelike worldline
in E . In practice, the latter is the most interesting case; this is the one usually
considered in Newtonian mechanics. One deals often with the particular case where
C.t/ is fixed with respect to O (i.e. has constant coordinates in O’s reference space;
cf. Sect. 3.4.3), with, as a subcase, C.t/ D O.t/, origin of O’s local coordinates. We
shall focus on the case (ii). The computation starting point is relation (10.11), which
expresses #»� C as the moment of the particle’s linear momentum

#»
P.t/ measured by

O with respect to the point C :

#»� C D #     »
CM �u0

#»

P D #»�
�

#»u 0.t/;
#                   »

C.t/M.t/;
#»

P.t/; :
�
:

Using the multilinearity of Levi–Civita tensor, we obtain

d #»� C

dt
D #»�

�
d #»u 0

dt
;

#     »
CM;

#»

P ; :

	
C #»�

 
#»u 0;

d
#     »
CM

dt
;

#»

P; :

!
C #»�

 
#»u 0;

#     »
CM;

d
#»
P

dt
; :

!
:

(10.65)

Let us evaluate separately each of the three terms. For the first one, the definition of
O’s 4-acceleration #»a 0 enables us to write

#»�

�
d #»u 0
dt

;
#     »
CM;

#»

P ; :

	
D c #»�

�
#»a 0;

#     »
CM;

#»

P ; :
�
:

#»a 0,
#     »
CM and

#»

P being three vectors ofEu0 .t/, the same computation as that yielding
(4.52) in Chap. 4 leads to
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#»�

�
d #»u 0

dt
;

#     »
CM;

#»

P ; :

	
D c

h
#»a 0 �

�
#     »
CM �u0

#»

P
�i

#»u 0 D c . #»a 0 � #»� C /
#»u 0: (10.66)

In order to evaluate the second term in the right-hand side of (10.65), let us write

d
#     »
CM

dt
D d

#    »
CO

dt
C d

#      »
OM

dt
D �d

#     »
OC

dt
C d

#      »
OM

dt

and use relation (4.24) for the pointsM.t/ (particle P) andC.t/ (point with respect
to which the angular momentum is considered):

d
#     »
CM

dt
D � #»

V C � #»! �u0

#     »
OC �c. #»a 0 � #     »

OC/ #»u 0C #»

V C #»! �u0

#      »
OM Cc. #»a 0 � #      »

OM/ #»u 0;

where
#»

V (resp.
#»

V C ) is the velocity of P (resp. of point C.t/) relative to observer
O and #»! is O’s 4-rotation. We have thus

#»�

 
#»u 0;

d
#    »
CM

dt
;

#»
P ; :

!
D #»� . #»u 0;

#»
V C #»!�u0

#    »
OM;

#»
P ; :/� #»� . #»u 0;

#»
V CC #»!�u0

#   »
OC;

#»
P ; :/:

Now, from (9.27), the vectors
#»

V C #»! �u0

#      »
OM and

#»

P are collinear. The first term
of the right-hand side of the above equation thus vanishes (antisymmetry of �), and
there remains only the second one, which can be written as a cross product:

#»�

 
#»u 0;

d
#     »
CM

dt
;

#»
P ; :

!
D #»

P �u0

�
#»
V C C #»! �u0

#     »
OC

�
: (10.67)

Regarding the third term in the right-hand side of (10.65), let us write
d

#»

P=dt D DFW
u0

#»

P C c. #»a 0 � #»

P/ #»u 0 and use expression (9.118) of DFW
u0

#»

P to get

#»�

 
#»u 0;

#     »
CM;

d
#»

P

dt
; :

!
D #»�

�
#»u 0;

#     »
CM;

#»
F ext � E #»a 0 C chP ; #»a 0i #»u 0; :

�

D #»�
�

#»u 0;
#     »
CM;

#»

F ext � E #»a 0; :
�

D #     »
CM �u0

.
#»

F ext � E #»a 0/: (10.68)

By plugging (10.66), (10.67) and (10.68) into (10.65), we obtain the expression
of the time derivative of the angular momentum vector:

d #»� C

dt
D c . #»a 0 � #»� C /

#»u 0 C #»

P �u0

�
#»

V C C #»! �u0

#     »
OC

�
C #     »
CM �u0

.
#»

F ext � E #»a 0/:
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We recognize in d #»� C =dt � c . #»a 0 � #»� C /
#»u 0 the Fermi–Walker derivative of #»� C

along the worldline of observer O [cf. Eq. (3.69) with #»u 0 � #»� C D 0], so that the
above expression can be recast as

DFW
u0

#»� C D #     »
CM �u0

.
#»

F ext �E #»a 0/C #»

P �u0

�
#»

V C C #»! �u0

#     »
OC

�
: (10.69)

The term
#     »
CM �u0

.
#»
F ext � E #»a 0/ is called torque exerted on the particle P with

respect to the point C and with respect to observer O .

Remark 10.15. The right-hand side of (10.69) is clearly a vector orthogonal to #»u 0;
in the left-hand side, contrary to d=dt , the Fermi–Walker derivative ensures that #»� C

will remain orthogonal to #»u 0.

Remark 10.16. If O is an inertial observer [DFW
u0 D d=dt , #»a 0 D 0 #»! D 0 and

#»
F D #»

F ext; cf. Eq. (9.117) ] and, moreover, if C is fixed with respect to O (
#»
V C D 0),

formula (10.69) reduces to

d

dt
#»� C D #     »

CM �u0

#»
F :

O inertial and C fixed

(10.70)

In particular, in the absence of any force (
#»
F D 0), we recover the conservation law

(10.30).

Remark 10.17. If we had considered the point C as fixed in spacetime [case (i)
discussed at the beginning of this section], we would have obtained the formula

DFW
u0

#»� C D #     »
CM �u0

.
#»

F ext � E #»a 0/C c h.t/ #»

P �u0

#»a 0; (10.71)

instead of (10.69).

10.7 Particle with Spin

10.7.1 Definition

The concept of a particle with spin is fundamentally a quantum notion (Le Bellac
2006; Penrose 2007). We have defined the spin S of an isolated system as the
angular momentum with respect to its centre of inertia [cf. Eq. (10.46)]. However, if
the system is reduced to a single particle, the comparison of Eq. (10.1) withM D G
and Eq. (10.48) leads to S D 0. Another argument against the concept of “classical”
(i.e. non-quantum) spin relies on the existence of a minimal size for any system with
nonvanishing spin, as we have seen in Sect. 10.5.5: one can therefore not reduce the
size of the system to zero to take the “particle limit”.
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Nevertheless, one can extend the concept of particle beyond the simple particle
model introduced in Chap. 9 to include the spin. We define formally a particle with
spin as the following data:

1. A worldline L � E , either timelike or null
2. A field of linear forms p defined along L such that the vector #»p.M/ is tangent

to L at any point M 2 L
3. A field of antisymmetric bilinear forms (2-forms) S defined along L such that

S . #»p ; :/ D 0 (10.72)

The 2-form S is called spin of the particle. Items 1 and 2 are those already
considered in the definition of a simple particle in Sect. 9.2.1. The extension is
thus constituted by item 3. The relation (10.72) is motivated by the result (10.49)
obtained for a system of particles.

Remark 10.18. This model of particle with spin is that considered by John L. Synge
(cf. p. 74) in 1956 (Synge 1956). There exist other models, where the 4-momentum
vector is not supposed to be tangent to the worldline (Corben 1968).

In the case where P is a particle with spin of nonzero mass, it is natural to
introduce its 4-velocity #»u and to decompose the 2-form S with respect to #»u
following (3.37) :

S D �. #»u ; #»s ; :; :/C u ^ q; (10.73)

where #»s is a vector orthogonal to #»u : #»s 2 Eu and q is a linear form such that
hq; #»u i D 0. In the present case, the constraint (10.72) implies q D 0. Indeed, the
vector #»p is collinear to #»u ( #»p D mc #»u ), so that (10.73) and the alternate character
of the Levi–Civita tensor lead to

S . #»p ; :/ D mc �. #»u ; #»s ; #»u ; :/„ ƒ‚ …
0

Cmc #»u � #»u„ƒ‚…
�1

q �mc hq; #»u i„ƒ‚…
0

u D �mc q:

The condition (10.72) implies then immediately q D 0. Consequently, the
decomposition (10.73) reduces to

S D �. #»u ; #»s ; :; :/ with #»u � #»s D 0 : (10.74)

The vector #»s 2 Eu, which is unique for a given 2-form S , is called the spin vector
of particle P . The relation (10.74) shows that #»s fully determines the spin 2-form S .
In other words, we could have replaced item 3 in the above definition of a particle
with spin by “a vector field #»s defined along L and orthogonal to #»p” (cf. Fig. 10.2).
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Fig. 10.2 Particle with spin:
the spin vector #»s is
orthogonal to the
4-momentum vector #»p at any
point of the particle’s
worldline. In particular, #»s is
a spacelike vector

The angular momentum of a particle with spin with respect to a point C 2 E
is defined by

8M 2 L ; JC .M/ WD S .M/C CM ^ p.M/ : (10.75)

This formula generalizes (10.1) and has exactly the same structure as the
decomposition of the angular momentum of a system provided by König theorem
[Eq. (10.48)].

Historical note: The notion of a (classical) particle with spin has been introduced
by Yacov I. Frenkel5 in 1926 (Frenkel 1926). Frenkel considered the 2-form S . On
the other hand, the spin 4-vector #»s has been introduced by Igor I. Tamm6 in 1929
(Tamm 1929). An important contribution has been provided by Myron Mathisson7

who obtained in 1937 (Mathisson 1937) the equations of motion of a particle with
spin from the multipole expansion of an extended body.

5Yacov Ilich Frenkel (1894–1952): Soviet physicist, who worked in solid-state physics (Frenkel
defects in crystals), physics of liquid and semiconductors.
6Igor Yevgenyevich Tamm (1895–1971): Soviet physicist, 1958 Nobel Prize in Physics for the
discovery and interpretation of the Cherenkov effect; coinventor of the tokamak for the controlled
thermonuclear fusion.
7Myron Mathisson (1897–1940): Polish theoretical physicist, who made important contributions
to the problem of motion in general relativity; he was corresponding (in French) with Albert
Einstein. His career was brief, for he died from tuberculosis at 43 years old. He impressed so
much the mathematician Jacques Hadamard that the latter published an article to his memory in
1942.
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10.7.2 Spin Evolution

The derivative of the angular momentum JC with respect to the proper time 	 of
particle P defines the 4-couple NC acting on P [cf. Eq. (10.63)]. By deriving
(10.75), we get thus

dS

d	
C CM ^ f D NC ; (10.76)

where f D dp=d	 is the 4-force acting on the particle, and we have used
dCM=d	 D c u and p D mc u to write dCM=d	 ^ p D 0. In view of (10.76), it
is natural to split N C in two parts: NC D N spin CN orb

C , such that

dS

d	
D N spin and N orb

C D CM ^ f : (10.77)

We shall call N spin the four-torque on the spin and N orb
C the orbital four-torque.

Note that N spin is independent of the point C .
Let us derive from (10.77) an evolution law for the spin vector #»s . Using (10.74)

and the multilinearity of the Levi–Civita tensor, we get

dS

d	
D �

�
d #»u
d	
; #»s ; :; :

	
C �

�
#»u ;

d #»s

d	
; :; :

	
D c � . #»a ; #»s ; :; :/C �

�
#»u ;

d #»s

d	
; :; :

	
;

where #»a D c�1d #»u=d	 is the particle’s 4-acceleration. The first of equations (10.77)
becomes thus

c � . #»a ; #»s ; :; :/C �

�
#»u ;

d #»s

d	
; :; :

	
D N spin: (10.78)

Now, #»a and #»s being two vectors de Eu, the following property holds, equivalent to
the identity (4.52) in Chap. 4:

8 #»v 2 Eu; �. #»a ; #»s ; #»v ; :/ D Œ #»a �. #»s �u
#»v /�u D Œ #»v �. #»a �u

#»s /�u D h #»a �u
#»s ; #»v i u:

By antisymmetry, we deduce that �. #»a ; #»s ; :; :/ D . #»a �u
#»s / ^ u, so that (10.78)

becomes

�

�
#»u ;

d #»s

d	
; :; :

	
C c . #»a �u

#»s / ^ u D N spin: (10.79)

As for any 2-form, N spin can be decomposed with respect to #»u via (3.37):

N spin D �. #»u ;
#»

C ; :; :/C u ^B; (10.80)
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where
#»
C 2 Eu and B is a linear form obeying hB; #»u i D 0. The vector

#»
C is called

the torque on the spin. By combining (10.79) and (10.80), we get

�

�
#»u ;

d #»s

d	
; :; :

	
D �. #»u ;

#»

C ; :; :/ and B D �c #»a �u
#»s :

The first of these two equations implies

d #»s

d	
D #»

C C � #»u ; (10.81)

with � a scalar field defined along L . � is determined by taking the derivative of
the condition #»u � #»s D 0 [Eq. (10.74)]:

0 D d

d	
. #»u � #»s / D d #»u

d	
� #»s C #»u � d #»s

d	
D c #»a � #»s C #»u � #»

C„ƒ‚…
0

C� #»u � #»u„ƒ‚…
�1

;

hence � D c #»a � #»s and (10.81) becomes

d #»s

d	
D #»

C C c . #»a � #»s / #»u : (10.82)

By comparing with the definition (3.69) and taking into account #»u � #»s D 0, we
recognize in d #»s =d	 � c . #»a � #»s / #»u the Fermi–Walker derivative of #»s along P’s
worldline. We get thus a very simple formula:

DFW
u

#»s D #»
C with #»u � #»

C D 0 (10.83)

We shall now treat two particular cases of this evolution law.

10.7.3 Free Gyroscope

We shall say that the particle constitutes a free gyroscope if its spin is not subject to
any torque:

#»
C D 0. Equation (10.83) reduces then to

DFW
u

#»s D 0 : (10.84)

In other words, the spin vector #»s is Fermi–Walker transported along P’s worldline
L (cf. Sect. 3.6.3). A nice property is that the norm of the vector is constant
along L :

k #»s kg D const : (10.85)

Proof. k #»s kg WD
p

#»s � #»s and d. #»s � #»s /=d	 D 2 #»s � d #»s =d	 D 2 #»s � ŒDFW
u

#»s C c. #»a �
#»s / #»u � D 0C 0 D 0 since #»s � #»u D 0. ut



10.7 Particle with Spin 347

In a general manner, the motion of a vector #»s along a worldline such that the
norm of #»s is preserved is called precession. The spin of a free gyroscope is thus
precessing.

10.7.4 BMT Equation

As a second example of the evolution law (10.83), let us consider a charged particle
with spin P moving in some electromagnetic field. The torque on the spin is then

#»

C D gq

2mc
?u

#»

F .:; #»s /; (10.86)

where F is the electromagnetic field 2-form to be introduced in Chap. 17,
#»
F .:; #»s /

is the vector metric dual of the linear form E ! R, #»v 7! F . #»v ; #»s /, ?u is the
orthogonal projector ontoEu,m is the mass of particle P , q its electric charge and g
some dimensionless constant called the Landé factor of the particle. The coefficient
gq=.2m/ is called the gyromagnetic ratio of particle P . For an electron,8 g D 2.
Inserting (10.86) into (10.83), we obtain the following evolution law for #»s :

DFW
u

#»s D gq

2mc
?u

#»

F .:; #»s / : (10.87)

It is interesting to express the Fermi–Walker derivative in terms of the derivative
with respect to P’s proper time 	 , according to (3.69):

DFW
u

#»s D d #»s

d	
� c. #»a � #»s / #»u ; (10.88)

and to express the 4-acceleration #»a in terms of the 4-force
#»
f acting on P

via (9.105): a D .mc2/�1f . The linear form f is the Lorentz 4-force already
encountered in Example 9.11 p. 313 and that we shall discuss extensively in
Chap. 17:

f D qF .:; #»u /: (10.89)

It satisfies hf ; #»u i D 0, thanks to the antisymmetry of F , which guarantees the
vanishing of the term dm=d	 in (9.105) [cf. (9.106)]. Hence, given that #»a � #»s D
ha; #»s i D m�1c�2hf ; #»s i, (10.88) becomes

DFW
u

#»s D d #»s

d	
� q

mc
F . #»s ; #»u / #»u :

8Actually, quantum electrodynamics corrections make g being not exactly equal to 2: for the
electron g � 2 ' 2:3� 10�3 .
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Copying this expression into (10.87) and expressing the orthogonal projector ?u via
(3.12), we get

d #»s

d	
D q

mc

hg
2

#»

F .:; #»s /C
�g
2
� 1

�
F . #»u ; #»s / #»u

i
: (10.90)

This relation is called BMT equation, in reference to a study by V. Bargmann,
L. Michel and V.L. Telegdi published in 1959 (Bargmann et al. 1959). The BMT
equation guarantees that the norm of the spin vector is preserved:

k #»s kg D const : (10.91)

Proof. We have

d

d	
. #»s � #»s / D 2 #»s � d #»s

d	
D 2q

mc

hg
2

F . #»s ; #»s /„ ƒ‚ …
0

C
�g
2
� 1

�
F . #»u ; #»s / #»s � #»u„ƒ‚…

0

i
D 0;

where the antisymmetry of F has been used. ut
#»s has therefore a precession motion, as the spin vector of a free gyroscope
(Sect. 10.7.3).

For an electron, the BMT equation simplifies considerably since g D 2:

d #»s

d	
D q

mc

#»

F .:; #»s /
gD2

: (10.92)

Historical note: The BMT equation has been actually derived for the first time by
Llewellyn H. Thomas (cf. p. 215) in 1927 (Thomas 1927), explicitly for the case
g D 2 [Eq. (10.92)] and under the form of an equation equivalent to (10.90) in the
general case.



Chapter 11
Principle of Least Action

11.1 Introduction

Most of the modern physical theories are based on a principle of least action, also
called variational principle. Such an approach leads naturally to the determination
of conserved quantities from the symmetries of the system under study. Moreover,
it is usually a first step to the quantum version of a classical theory. Here we
reformulate in this framework the dynamics of relativistic particles developed in
the two preceding chapters.

11.2 Principle of Least Action for a Particle

11.2.1 Reminder of Nonrelativistic Lagrangian Mechanics

In pre-relativistic Lagrangian mechanics, also named analytical mechanics, a
system with N degrees of freedom is entirely described by a scalar function having
the dimension of an energy:

L D L.q1; : : : ; qN ; Pq1; : : : ; PqN ; t/; (11.1)

where t stands for the Newtonian absolute time, .qa/1�a�N for the N generalized
coordinates of the system and . Pqa/1�a�N the N generalized velocities, i.e. the time
derivatives of the generalized coordinates: Pqa D dqa=dt . The configuration of the
system at some instant t is defined by the N functions qa.t/, which span a part of
R
N called the configuration space. The function L, whose precise form defines the

physical problem to be studied, is called the Lagrangian of the system. For a system
made of M particles and for which the force exerted on each particle arises from a
potential V , we haveN D 3M , and a standard choice of Lagrangian is L D T �V ,
where T is the total kinetic energy of the system.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 11, © Springer-Verlag Berlin Heidelberg 2013
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The principle of least action , also called Hamilton principle (cf. p. 245), states
that the evolution of the system between two fixed configurations .qa.t1// and
.qa.t2// is such that the action, defined by

S WD
Z t2

t1

L.q1; : : : ; qN ; Pq1; : : : ; PqN ; t/ dt; (11.2)

takes the smallest value among all the trajectories connecting .qa.t1// and .qa.t2//
in the configuration space. If the N generalized coordinates qa are independent, the
principle of least action leads to the Euler–Lagrange equations:

@L

@qa
� d

dt

�
@L

@ Pqa
	
D 0; a 2 f1; : : : ; N g: (11.3)

Conversely, if the Euler–Lagrange equations are satisfied, then for fixed initial and
final states, the action S is extremal on the path actually taken by the system in the
configuration space.

For a detailed exposition of nonrelativistic Lagrangian mechanics and examples,
the reader is referred to the textbooks by Basdevant (2007), Deruelle and Uzan
(2006), Goldstein, Safko and Poole (2002), and Hakim (1995) (to mention only
recent books).

11.2.2 Relativistic Generalization

The generalization of the principle of least action to a relativistic system faces a
conceptual difficulty from the very beginning: there does not exist any absolute
time t in relativity. This raises the issue of defining the generalized velocities by
Pqa WD dqa=dt , as well as the action S by an integral over t , as in (11.2). For
particles, one might think about using the proper time, but there is no uniqueness
of the latter as soon as there is more than one particle. Even for a system reduced
to a single particle, this choice is not directly applicable. Indeed, if one picks for
generalized coordinates the coordinates .x˛/ of the particle in some affine frame
of E , then the generalized velocities Px˛ WD dx˛=dt , with t the particle’s proper
time, are nothing but (up to a c factor) the components of the particle’s 4-velocity #»u
in the basis associated with the affine frame [cf. Eq. (2.12)]. They are thus submitted
to the constraint g˛ˇ Px˛ Pxˇ D �c2, arising from #»u � #»u D �1. This constraint restricts
the possible variations in the principle of least action. It is possible to take it into
account by the Lagrange multipliers technique,1 but this is not the most widespread
method, and we shall not employ it here.

1Cf. p. 65 of Barut’s book (Barut 1964) for some example.



11.2 Principle of Least Action for a Particle 351

11.2.3 Lagrangian and Action for a Particle

Let us consider a system reduced to a single particle P . The solution to the problem
mentioned above consists in replacing the Newtonian absolute time by some
parameter � that increases along P’s worldline L . This amounts to introducing
a parametrization of L , as defined in Sect. 2.2. Note that any parametrization is a
priori valid and has not to coincide with the proper time. Given an affine coordinate
system .x˛/ of E , P’s worldline is determined by the equations

L W x˛ D x˛.�/; � 2 R; ˛ 2 f0; 1; 2; 3g; (11.4)

where the x˛’s are four functions2 (at least twice differentiable)R! R. Let us then
set Px˛ WD dx˛=d�. The . Px˛/ are nothing but the components in the considered affine
frame of the vector tangent to L associated with the parameter � [cf. Eq. (2.4)]:

#»v D dx˛

d�
#»e ˛ D Px˛ #»e ˛; (11.5)

where . #»e ˛/ is the basis of E associated with the affine coordinates .x˛/.
One calls Lagrangian of particle P any differentiable function L W R

8 !
R such that between any two events A1 and A2 of P’s worldline (of respective
parameters �1 and �2), the integral

S WD
Z �2

�1

L.x˛.�/; Px˛.�// d� (11.6)

has the following properties:

(i) S has the dimension of an energy multiplied by a time.
(ii) S is independent of the parametrization �.

The quantity S is called action of the particle between the events A1 and A2. The
explicit form of L will define the physical settings (for instance, a free particle or a
charged particle in an electromagnetic field).

The independence of the value of S with respect to the parametrization of
L induces a constraint on the function L. Indeed, let us consider a second
parametrization Q� of L :

L W x˛ D Qx˛. Q�/; Q� 2 R; ˛ 2 f0; 1; 2; 3g; (11.7)

2The same symbol x˛ is employed to denote the affine coordinates on E and the functions of
� defining P’s worldline. This constitutes a slight abuse of notation, quite common in physics.
Rigorously, one should write something like x˛ D X˛.�/ rather than (11.4).
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where the Qx˛’s are four functions R! R a priori different from the functions x˛’s
introduced in (11.4). From the definition of a parametrization (cf. Sect. 2.2), there
exists an invertible map f W R! R such that � D f . Q�/. By combining (11.4) and
(11.7), we get

Qx˛. Q�/ D x˛.�/I (11.8)

hence,

PQx˛ WD d Qx˛
d Q� D

dx˛

d�

d�

d Q� D
d�

d Q� Px
˛; (11.9)

with d�=d Q� D f 0. Q�/. The invariance of the action (11.6) with respect to the
parametrization is equivalent to

L. Qx˛; PQx˛/ d Q� D L.x˛; Px˛/ d�:

By means of (11.8) and (11.9), we obtain

L

�
x˛.�/;

d�

d Q� Px
˛

	
D d�

d Q� L.x
˛; Px˛/:

Since this relation must be fulfilled for any value of d�=d Q�, we conclude that L is
a positive homogeneous function of degree 1 with respect to each of its four last
arguments:

8� > 0; 8.x˛; Px˛/ 2 R
8; L.x˛; � Px˛/ D �L.x˛; Px˛/ : (11.10)

The Euler theorem about homogeneous functions implies then that the Lagrangian
L must obey

Px˛ @L
@ Px˛ D L : (11.11)

11.2.4 Principle of Least Action

The principle of least action states:

If the Lagrangian L describes the dynamics of particle P correctly, the
worldline followed by P between the events A1 and A2 is that for which
the action S is minimal.
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More precisely, let us consider a variation of P’s worldline, keeping the events
A1 and A2 fixed. This amounts to consider a worldline L 0 close to L , whose
equation within the affine coordinates .x˛/ is

L 0 W x˛ D x˛.�/C ıx˛.�/; ˛ 2 f0; 1; 2; 3g; (11.12)

with ıx˛.�/ infinitely small and such that

ıx˛.�1/ D 0 and ıx˛.�2/ D 0; (11.13)

so that A1 and A2 are held fixed. The corresponding variation of the action is

ıS D
Z �2

�1

�
@L

@x˛
ıx˛ C @L

@ Px˛ ı Px
˛

�
d�: (11.14)

ı Px˛ being obtained by taking the derivative of (11.12) with respect to �, we have
ı Px˛ D d.ıx˛/=d�. The second term of (11.14) can be then integrated by parts,
yielding

ıS D
Z �2

�1

�
@L

@x˛
ıx˛ � d

d�

�
@L

@ Px˛
	
ıx˛

�
d�C

�
@L

@ Px˛ ıx
˛

��2

�1

:

Given (11.13), the last term in the above equation vanishes, and there remains

ıS D
Z �2

�1

�
@L

@x˛
� d

d�

�
@L

@ Px˛
	�
ıx˛ d�: (11.15)

The principle of least action stipulates that S reaches a minimum on the worldline
actually followed by the particle, which implies

ıS D 0 (11.16)

whatever the variation ıx˛ around L . In view of (11.15), we conclude that

@L

@x˛
� d

d�

�
@L

@ Px˛
	
D 0 ; ˛ 2 f0; 1; 2; 3g: (11.17)

In other words, the Lagrangian L must fulfil Euler–Lagrange equations identical
to equations (11.3), except that the Newtonian time has been replaced by a generic
parameter along the particle’s worldline.

Remark 11.1. There are four Euler–Lagrange equations (11.17), whereas there are
only three of them in Newtonian mechanics [Eqs. (11.3) with a 2 f1; 2; 3g]. One
should of course not conclude that relativity adds a degree of freedom to a system
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made of a single particle! The four equations (11.17) are indeed not indepen-
dent, because of the identity (11.11), which must be fulfilled by the relativistic
Lagrangian. To make this explicit, let us evaluate the following expression, without
assuming that (11.17) holds:

Px˛
�
@L

@x˛
� d

d�

�
@L

@ Px˛
	�
D Px˛ @L

@x˛
� d

d�

�
Px˛ @L
@ Px˛

	
C d Px˛

d�

@L

@ Px˛

D dL

d�
� d

d�

�
Px˛ @L
@ Px˛

	
D d

d�

�
L � Px˛ @L

@ Px˛
	
:

The identity (11.11) gives then

Px˛
�
@L

@x˛
� d

d�

�
@L

@ Px˛
	�
D 0: (11.18)

This identity reduces the number of independent Euler–Lagrange equations (11.17)
from four to three.

11.2.5 Action of a Free Particle

The principle of least action must of course be completed by some specific choice
of the Lagrangian function. The simplest case is that of a free (i.e. isolated)
massive particle P . We already know that P’s worldline is a straight line of E
(Sect. 9.3.4). Moreover, we have noticed in Sect. 2.7.1 that the timelike straight lines
are timelike geodesics of Minkowski spacetime: they achieve a maximum proper
time between two given events. It is then natural to consider for the action of a free
particle a quantity proportional to the proper time elapsed along the worldline. The
proportionality constant ˛ must be negative to turn the maximum of proper time
into a minimum of the action. In addition, ˛ must have the dimension of an energy
in order for S to have the dimension of an action. There is then only one (simple)
possible choice from the sole particle data: ˛ D �mc2, where m is the mass of
P , assumed to be constant along L (this is indeed the case for a free particle; cf.
Sect. 9.3.4). Consequently, the action of a free massive particle between two events
A1 and A2 of its worldline is

S D �mc2
Z 	2

	1

d	 D �mc2.	2 � 	1/ ; (11.19)

where 	1 (resp. 	2) is the proper time of P at A1 (resp. A2) and d	 is the increment
of proper time along L . Let us express the latter in terms of the increment of the
parameter � according to (2.9):
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d	 D 1

c

p
�g. #»v ; #»v / d�;

#»v being the vector tangent to L associated with the parameter �. Thanks to (11.5),
this relation can be written as

d	 D 1

c

q
�g˛ˇ Px˛ Pxˇ d�; (11.20)

where the g˛ˇ’s are the components of the metric tensor with respect to the basis
. #»e ˛/. Inserting (11.20) into the expression (11.19) of the action and comparing with
the definition (11.6), we obtain the expression of the Lagrangian of a free particle:

L.x˛; Px˛/ D �mc
q
�g˛ˇ Px˛ Pxˇ : (11.21)

We check that this Lagrangian is a positive homogeneous function of degree 1 with
respect to Px˛ , i.e. that it obeys property (11.10).

Let us also check that the Euler–Lagrange equations derived from (11.21) lead to
worldlines that are straight lines of E . We have

@L

@ Px˛ D
mc

2
p�g�� Px� Px�

g��

 
@ Px�
@ Px˛„ƒ‚…
ı
�
˛

Px� C Px� @ Px�
@ Px˛„ƒ‚…
ı�˛

!
D mc
p�g�� Px� Px�

g˛ˇ Pxˇ:

Now, from (11.5) and (2.13),

Px˛p�g�� Px� Px�
D u˛; (11.22)

where the u˛’s are the components of the particle’s 4-velocity #»u in the basis . #»e ˛/.
The expression of @L=@ Px˛ can thus be recast as

@L

@ Px˛ D mcu˛ ; (11.23)

where u˛ D g˛ˇuˇ D #»u � #»e ˛ are the components within the basis dual to . #»e ˛/

of the linear form u associated with #»u by metric duality. In view of (11.23) and
@L=@x˛ D 0, the Euler–Lagrange equation (11.17) reduces to

du˛
d�
D 0:

Multiplying by the matrix .g˛ˇ/—the inverse of .g˛ˇ/ (cf. �. 1.3.2)—we get
duˇ=d� D 0, which implies that #»u is constant along L . We conclude that the
worldline L is a straight line of E .
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Example 11.1. Let us choose for .x˛/ the coordinates with respect to some inertial
observer O: .x˛/ D .ct; x; y; z/, where t is O’s proper time. The basis . #»e ˛/ is
then orthonormal, and the matrix .g˛ˇ/ is the Minkowski matrix .�˛ˇ/, as given by
(1.17). Moreover, let us choose the proper time of observer O as parameter along
the worldline L : � D t . Then

Px0 D dx0

d�
D d.ct/

dt
D c and Pxi D dxi

d�
D dxi

dt
D V i ; (11.24)

where the V i ’s are the components in the basis . #»e i / of P’s velocity relative to
O ,

#»

V . The Lagrangian (11.21) becomes thus

L D �mc
q
��˛ˇ Px˛ Pxˇ D �mc

q
c2 � ıij V iV j ; (11.25)

i.e.

L D �mc2
s

1 �
#»

V � #»

V

c2
: (11.26)

Remark 11.2. The Lagrangian (11.26), which refers to an inertial observer, is that
generally considered in introductory textbooks, as those of Landau and Lifshitz
(1975), Feynman (2011), Basdevant (2007) or Pérez (2005).

Remark 11.3. If one chooses as a parameter, instead of the proper time t of an
inertial observer, the proper time of the particle itself, the numerical value of the
Lagrangian is constant, since, in this case, Px˛ D dx˛=d	 D cu˛ and the relation

g˛ˇu˛uˇ D �1 (11.27)

reduces (11.21) to L D �mc2. A constant Lagrangian leads obviously to Euler–
Lagrange equations without any content of the type “0 D 0”. We recover hence
the problem underlined in Sect. 11.2.2. The parameter � from which the Lagrangian
(11.21) is formed must not be constrained. One may use the particle’s proper time
but without assuming that (11.27) with u˛ D Px˛=c is fulfilled a priori. It is only
a posteriori, i.e. after the Euler–Lagrange equations have been written and solved,
that (11.27) must be enforced.

Historical note: It is Henri Poincaré (cf. p. 26) who, in 1905, wrote the Lagrangian
of a free relativistic particle in the famous “Palermo memoir” (Poincaré 1906). He
obtained a form equivalent to (11.26) by postulating the invariance of the action
under the Lorentz group (cf. Bracco and Provost (2009) for a detailed discussion).
In 1906, Max Planck (cf. p. 279) (1906) also obtained the Lagrangian (11.26) but
with an additive constant—which prevented the action from being invariant under
the Lorentz group. He suppressed the constant the year after (Planck 1907).
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11.2.6 Particle in a Vector Field

We shall say that a particle P is submitted to a vector field, or equivalently to a
vectorial interaction with an external field, if there exists a real constant q and a
field of linear forms on Minkowski spacetime, A W E ! E�, such that P obeys the
principle of least action with the Lagrangian

L.x˛; Px˛/ D �mc
q
�g˛ˇ Px˛ Pxˇ C q

c
Aˇ.x

˛/ Pxˇ ; (11.28)

whereAˇ.x˛/ D Aˇ.x0; x1; x2; x3/ stands for the ˇth component of the linear form
A.M/ in the basis dual to . #»e ˛/, M 2 E being the point of affine coordinates
.x0; x1; x2; x3/: Aˇ.x˛/ D hA.M/; #»e ˇi. The constant q is called charge of the
particle in the vector field and A the potential 1-form of the field. An important
example of a vector field is the electromagnetic field, which we shall study in
Chap. 17. Thanks to (11.5), we can reexpress the Lagrangian (11.28) with vectorial
notations:

L D �mc
p
� #»v � #»v C q

c
hA; #»v i: (11.29)

Note that the function (11.28) is eligible for a Lagrangian since it is a homogeneous
function of degree 1 with respect to Px˛ , in agreement with (11.10).

Remark 11.4. The first term in (11.28) is nothing but the Lagrangian of a free
particle, as given by (11.21). The second term is the simplest construction of a
homogeneous function of degree 1 with respect to Pxˇ from the components .Aˇ/
of the linear form A.

Deriving (11.28) and using the already computed expression for the derivative
with respect to Px˛ of the free-particle term in L [Eq. (11.23)], we get

@L

@x˛
D q

c

@Aˇ

@x˛
Pxˇ and

@L

@ Px˛ D mc u˛ C q

c
A˛: (11.30)

Plugging these two expressions into the Euler–Lagrange equations (11.17) and using
dA˛=d� D d=d�ŒA˛.xˇ/� D .@A˛=@xˇ/ Pxˇ , we obtain

q

c

�
@Aˇ

@x˛
� @A˛
@xˇ

	
Pxˇ �mc du˛

d�
D 0: (11.31)

Let us express the derivative du˛=d� in terms of the derivative with respect to P’s
proper time, 	 , via the relation (11.20) between d	 and d�:

du˛
d�
D du˛

d	

d	

d�
D 1

c

p�g�� Px� Px� du˛
d	
Dp�g�� Px� Px� a˛; (11.32)
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where the a˛’s are the components in the basis dual to . #»e ˛/ of the linear
form a associated with P’s 4-acceleration by metric duality: a D c�1 du=d	
[cf. Eq. (2.16)]. Equation (11.31) becomes then

q

c

�
@Aˇ

@x˛
� @A˛
@xˇ

	
Pxˇ �mcp�g�� Px� Px� a˛ D 0:

Dividing by
p�g�� Px� Px� and using (11.22), this equation can be rewritten as

mc2 a˛ D q F˛ˇuˇ; (11.33)

with

F˛ˇ WD @Aˇ

@x˛
� @A˛
@xˇ

: (11.34)

Since clearly F˛ˇ D �Fˇ˛ , the quantities .F˛ˇ/ constitute the matrix within the
basis . #»e ˛/ of an antisymmetric bilinear form F . We can then write (11.33) as

f D q F .:; #»u / ; (11.35)

where we have let the 4-force f D mc2 a appear [Eq. (9.105) with m D const].
The principle of least action applied to the Lagrangian (11.28) rules thus the motion
of a particle submitted to a 4-force of the type (11.35). This is a pure 4-force (cf.
Sect. 9.5) for hf ; #»u i D q F . #»u ; #»u / D 0 by the antisymmetry of F . If the field
under consideration is an electromagnetic one, q can be interpreted as the electric
charge, and we recover the Lorentz 4-force encountered in Example 9.11 p. 313 and
in Sect. 10.7.4 [Eq. (10.89)]. We shall discuss it in more details in Chap. 17.

11.2.7 Other Examples of Lagrangians

Example 11.2. Particle in a scalar field. We shall say that a particle P is
submitted to a scalar field if its Lagrangian takes the form

L.x˛; Px˛/ D �
h
mc C q

c
˚.x˛/

iq
�g˛ˇ Px˛ Pxˇ; (11.36)

where ˚ W E ! R is a scalar field on Minkowski spacetime and q is a constant
that represents the scalar charge of the particle: if q D 0, P is not sensitive to the
scalar field. The dimensions of q and ˚ must be such that the product q˚ has the
dimension of an energy, so that the sum mc C q˚=c appearing in (11.36) is well
defined.
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Remark 11.5. The Lagrangian (11.36) can be split in two parts: L D Lfree CLinter,
with Lfree D �mc

p�g˛ˇ Px˛ Pxˇ [Lagrangian (11.21) for a free particle] and

Linter D �q
c
˚.x˛/

q
�g˛ˇ Px˛ Pxˇ: (11.37)

Linter describes the interaction with the scalar field. It is the simplest one yielding a
homogeneous function of degree 1 with respect to Px˛ from the scalar field ˚ .

In the present case,

@L

@x˛
D �q

c

p�g�� Px� Px� @˚
@x˛

and
@L

@ Px˛ D
�
mc C q

c
˚
�

u˛;

where use has been made of the computation leading to (11.23) to get the second
equation. Consequently, the Euler–Lagrange equations (11.17) yield

�q
c

p�g�� Px� Px� @˚
@x˛
� q
c

d˚

d�
u˛ �

�
mc C q

c
˚
� du˛

d�
D 0:

Writing d˚=d� D @˚=@xˇ Pxˇ and using (11.32) and (11.22), we get

�
mc2 C q˚� a˛ D �q @˚

@xˇ

�
ıˇ˛ C uˇu˛

�
: (11.38)

We recognize in ıˇ˛ C uˇu˛ the orthogonal projector ?u onto the particle’s local
rest space. We conclude that the particle is subjected to the 4-force

f D �qr˚ ı?u � q˚ a; (11.39)

where r˚ stands for the gradient3 of the scalar field ˚ , i.e. the linear formE ! R,
#»v 7! v˛@˚=@x˛ .

Remark 11.6. The 4-force (11.39) is a pure one : hf ; #»u i D 0 [Eq. (9.107)] for
?u

#»u D 0 and ha; #»u i D #»a � #»u D 0. Besides, let us note that this 4-force involves
the 4-acceleration.

Example 11.3. Particle in a tensor field. An example of interaction of a particle
with a tensor field of rank 2 is provided by the Lagrangian

L.x˛; Px˛/ D �mc
r
�
h
g˛ˇ C q

m
h˛ˇ.x�/

i
Px˛ Pxˇ; (11.40)

3The gradient will be studied in detail in Chap. 15.
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where the h˛ˇ’s are the components with respect to the coordinates .x˛/ of a field h

of symmetric bilinear forms on E and q is the charge of the particle with respect to
the field (q has the dimension of a mass). An alternative Lagrangian is

L.x˛; Px˛/ D �mc
q
�g˛ˇ Px˛ Pxˇ C 1

2
qc
h˛ˇ.x

�/ Px˛ Pxˇ
p�g�� Px� Px�

: (11.41)

The above two Lagrangians are homogeneous functions of degree 1 in Px˛ , as they
should; they appear in attempts to treat gravitation in Minkowski spacetime, which
will be discussed in Chap. 22 (then q D m).

Remark 11.7. The Lagrangian (11.41) is a first-order series expansion of the
Lagrangian (11.40) when jh˛ˇj 	 jg˛ˇj.

11.3 Noether Theorem

The Noether theorem is one of the pillars of theoretical physics. It relates quantities
conserved during the motion to the symmetries of the Lagrangian. We shall establish
it for a relativistic particle and apply it to the case of a free particle.

11.3.1 Noether Theorem for a Particle

Let us consider an infinitesimal change of the affine coordinates on E :

x0˛ D x˛ C "G˛.xˇ/; (11.42)

with " infinitely small. The functions G˛.xˇ/ are called generators of the coordi-
nate change. The equation of the worldline of particle P in these new coordinates is

L W x0˛ D x0˛.�/ D x˛.�/C "G˛.�/; � 2 R; ˛ 2 f0; 1; 2; 3g;
(11.43)

with the notation G˛.�/ WD G˛.xˇ.�//.
Let us suppose that the Lagrangian is invariant under the coordinate change

(11.42), i.e. that

8� 2 R; L.x0˛.�/; Px0˛.�// D L.x˛.�/; Px˛.�// : (11.44)

Taking into account (11.43), this hypothesis becomes

L.x˛ C "G˛; Px˛ C " PG˛/ D L.x˛; Px˛/:
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Let us expand to first order in ", subtract L.x˛; Px˛/ from both sides and divide by
"; we are left with

@L

@x˛
G˛ C @L

@ Px˛
dG˛

d�
D 0:

Using the Euler–Lagrange equations (11.17) to replace @L=@x˛ , we get

d

d�

�
@L

@ Px˛ G
˛

	
D 0:

Hence, the quantity .@L=@ Px˛/G˛ is constant along the particle’s worldline. This is
Noether theorem for a relativistic particle. We shall state it as

L.x˛ C "G˛; Px˛ C " PG˛/ D L.x˛; Px˛/ H) @L

@ Px˛ G
˛ D const :

(11.45)

Historical note: The above result is actually a particular case of the theorem
established in 1918 by Emmy Noether4 (1918) (cf. Byers (1999)). She was con-
sidering very general variational principles, based on multidimensional integrals,
while the action (11.6) considered here is unidimensional (� 2 R). The actions
involving multidimensional integrals (notably four-dimensional) are those used in
field theory (we shall see an example in Sect. 18.7). The work of Emmy Noether was
motivated by the variational formulation of general relativity developed in 1915
by David Hilbert.5 Emmy Noether joined him in Göttingen the same year. Let us
stress that the particular case (but fundamental for relativity!) where the coordinate
changes are Poincaré transformations has been treated as soon as 1911 by Gustav
Herglotz6 (1911). Regarding Newtonian mechanics, the German mathematician

4Emmy Noether (1882–1935): German mathematician, known for her works in algebra and
topology and for her famous theorem in mathematical physics. Banned from the University of
Göttingen by the Nazis, she emigrated to the United States in 1934, where she died one year after.
5David Hilbert (1862–1943): one of the greatest mathematicians of all times; founder of the
Göttingen school, which was in the beginning of the twentieth century the world centre of
mathematics. Notably, he hired Hermann Minkowski and Emmy Noether.
6Gustav Herglotz (1881–1953): German mathematician and astronomer; student of Ludwig
Boltzmann, he applied elaborated mathematics to solve astronomical and geophysical problems.
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Carl Jacobi (1804–1851) had already shown, in a lecture given in 1842–1843 and
published in 1866 (Jacobi 1866), that the conservations of linear momentum and
angular momentum result from the invariance by spatial translation and by rotation,
respectively.

11.3.2 Application to a Free Particle

In what follows, we suppose that the affine coordinates .x˛/ are inertial coordinates.
The basis . #»e ˛/ is then orthonormal, and the matrix of the metric tensor is
Minkowski matrix: g˛ˇ D �˛ˇ [Eq. (1.17)]. The Lagrangian of a free particle, as
given by (11.21), becomes then

L D �mc
q
��˛ˇ Px˛ Pxˇ: (11.46)

An infinitesimal change of inertial coordinates .x˛/ 7! .x0˛/ is by definition an
infinitesimal Poincaré transformation [cf. Eq. (8.12)]:

x0˛ D x˛ C "G˛.xˇ/ D �˛
ˇx

ˇ C c˛; (11.47)

where �˛
ˇ is a (infinitesimal) Lorentz matrix and the c˛’s are four (infinitesimal)

constants. We deduce that Px0˛.�/ D �˛
ˇ Pxˇ.�/. Consequently, using the property

(6.10) of Lorentz matrices,

�˛ˇ Px0˛ Px0ˇ D �˛ˇ�˛
��

ˇ
� Px� Px� D ��� Px� Px�: (11.48)

This identity shows clearly that the Lagrangian (11.46) is invariant under any
Poincaré transformation. The Noether theorem yields then the following conserved
quantity:

@L

@ Px˛ G
˛ D mc u˛G

˛ D const; (11.49)

the first equality resulting from expression (11.23) for @L=@ Px˛ .
Since (11.47) is an infinitesimal Poincaré transformation, the generators G D

.G˛/ of the coordinate change are members of the Lie algebra of the Poincaré group
studied in Sect. 8.3.4. This algebra being of dimension 10, the Noether theorem
provides 10 independent conserved quantities. Let us exhibit each of them when G
equals successively the 10 generators of the Poincaré group listed in Sect. 8.3.4:

• G D P˛0 , ˛0 2 f0; 1; 2; 3g : generator of translations along the vector #»e ˛0 of
the basis associated with the inertial coordinates .x˛/. In this case, �˛

ˇ D ı˛ˇ
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and c˛ D "ı˛˛0 , so that G˛.xˇ/ D ı˛˛0 . The conserved quantity (11.49) is then
(writing ˛ instead of ˛0)

mc u˛ D const ; ˛ 2 f0; 1; 2; 3g: (11.50)

• G D Ki , i 2 f1; 2; 3g : generator of Poincaré transformations associated with
Lorentz boosts of plane Span. #»e 0;

#»e i /. In this case, G˛.xˇ/ D .Ki/
˛
ˇx

ˇ , where
the matrix .Ki /

˛
ˇ is given by (7.16a)–(7.16b). The conserved quantity (11.49) is

then mc .Ki/
˛
ˇx

ˇu˛, i.e.

mc.u0x
i C ui x

0/ D const ; i 2 f1; 2; 3g: (11.51)

• G D Ji , i 2 f1; 2; 3g : generator of spatial rotations in the plane Span. #»e 0;
#»e i /

?.
In this case, G˛.xˇ/ D .Ji /

˛
ˇx

ˇ , where the matrix .Ji /˛ˇ is given by (7.16b)–

(7.16c). The conserved quantity (11.49) is then mc .Ji /˛ˇx
ˇu˛, i.e.

mc.u3x
2 � u2x

3/ D const .i D 1/ (11.52a)

mc.u1x
3 � u3x

1/ D const .i D 2/ (11.52b)

mc.u2x
1 � u1x

2/ D const .i D 3/: (11.52c)

Let us interpret the 10 conserved quantities (11.50)–(11.52) in view of the results
of Chaps. 9 and 10. We recognize in (11.50) the components of the 4-momentum
p of particle P [cf. Eq. (9.3)], so that (11.50) expresses nothing but the conservation
of the 4-momentum of an isolated particle. We recover thus the result (9.37). Note
in passing that the components p˛ D mc u˛ that are involved in (11.50) are related
by (9.31) to the energyE and to the componentsPi of P’s linear momentum, both
measured by the inertial observer O whose coordinates are .x˛/ :

mc u0 D �E
c

and mc ui D Pi : (11.53)

We can rewrite the four conservation laws (11.50) as

E D const and Pi D const; i 2 f1; 2; 3g: (11.54)

Let us now focus on the three conservation laws (11.51). Given (11.53) and the
relation x0 D ct between the coordinate x0 and the proper time t of the inertial
observer, these laws are written as

�E
c
xi C Pi ct D const; i 2 f1; 2; 3g: (11.55)
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Comparing with (10.14), with h.t/ D ct (for O is inertial), we observe that the
above equation is nothing but

Ji0 D const; i 2 f1; 2; 3g; (11.56)

J˛ˇ standing for the components of P’s angular momentum JO with respect to the
originO of the coordinate system .x˛/.

Remark 11.8. Since E is constant [Eq. (11.54)], one can divide (11.55) by �E=c
and use relation (9.28) between P , E and P’s velocity

#»
V D V i #»e i with respect to

O to obtain

xi � V i t D const; (11.57)

which does correspond to the uniform rectilinear motion of an isolated particle.

Finally, the three conservation laws (11.52) can be rewritten, thanks to (11.53) as
x2P3�x3P2 D const, x3P1�x1P3 D const and x1P2�x2P1 D const. Comparing
with (10.14) and (10.15) and taking into account that P i D Pi , we conclude that
they are equivalent to

Jij D const; i; j 2 f1; 2; 3g; j > i; (11.58)

or to

�iO D const; i 2 f1; 2; 3g; (11.59)

the �iO ’s being the components of P’s angular momentum vector #»� O with respect
to the point O and measured by observer O . We thus recover the law (10.30) of
conservation of the angular momentum vector for an isolated particle and an inertial
observer.

11.3.2.1 Summary

The invariance of the Lagrangian of a free particle under the Poincaré group
leads, via the Noether theorem, to the conservation of the 4-momentum linear
form p (invariance under translations) and of the angular momentum 2-form
JO (invariance under the Lorentz boosts and spatial rotations).

Remark 11.9. For a system reduced to a single particle, we have seen in Chap. 10
that these two conservation laws are not independent, the conservation of p leading
that of JO (cf. Remark 10.6 p. 326).
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11.4 Hamiltonian Formulation

The Hamiltonian formulation of any classical7 theory is worth investigating, since
it is the starting point for the canonical quantization of the theory. After a few
reminders about the Hamiltonian formulation of nonrelativistic mechanics, we shall
examine the case of a relativistic particle. Systems of particles will be discussed in
Sect. 11.5.2.

11.4.1 Reminder of Nonrelativistic Hamiltonian Mechanics

Let us extend the reminder of nonrelativistic mechanics of Sect. 11.2.1 from the
Lagrangian formulation to the Hamiltonian one. From the Lagrangian (11.1), one
defines the N generalized momenta, also called conjugate momenta, by

pa WD @L

@ Pqa ; a 2 f1; : : : ; N g: (11.60)

Each pa is a function of t . Denoting Ppa WD dpa=dt , the Euler–Lagrange equations
(11.3) become

Ppa D @L

@qa
; a 2 f1; : : : ; N g: (11.61)

One then introduces the Hamiltonian of the system by

H WD
NX

aD1
pa Pqa � L: (11.62)

In the right-hand side, the variables Pqa’s are assumed to be functions of the qa’s
and the pa’s, i.e. one assumes that (11.60) can be inverted to get Pqa D Pqa.qb; pb/.
Equation (11.62) is named a Legendre transformation, and one considers that H
is a function of the generalized coordinates and generalized momenta (as well as of
time if L depends explicitly on t):

H D H.q1; : : : ; qN ; p1; : : : ; pN ; t/:

Taking the differential of H and taking into account (11.60) and (11.61) (i.e. the
equations of motion resulting from the principle of least action), we obtain the
canonical equations of Hamilton:

7That is to say, non-quantum.
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Pqa D @H

@pa
; Ppa D �@H

@qa
; a 2 f1; : : : ; N g (11.63)

as well as the relation @H=@t D �@L=@t . The 2N first-order equations (11.63)
are equivalent to the N second-order Euler–Lagrange equations (11.3). Note that
Eqs. (11.63) imply

dH

dt
D �@L

@t
: (11.64)

Hence, if L is not an explicit function of time, H is a constant of motion.
The Lagrangian formalism is based on the variables .qa.t//, which span an N -

dimensional space (the configuration space). On the other hand, the Hamiltonian
formalism is based on the variables .qa.t/; pa.t//, which span a 2N -dimensional
space (a part of R2N or more generally a manifold (cf. Sect. 7.2.1) of dimension
2N ) called the phase space and denoted by P. For any couple .f; g/ of functions
P! R, one defines the Poisson bracket of f and g by

ff; gg WD
NX

aD1

�
@f

@qa

@g

@pa
� @f

@pa

@g

@qa

	
: (11.65)

Hence, ff; gg is a map P ! R, as are f and g. The Poisson bracket is clearly
antisymmetric and bilinear. Moreover, it is easy to show that it satisfies the Jacobi
identity:

ff; fg; hgg C fg; fh; f gg C fh; ff; ggg D 0: (11.66)

The Poisson bracket fulfils then the three axioms of the definition of a Lie bracket
given in Sect. 7.3.2: it is a Lie bracket on the (infinite-dimensional) vector space
formed by scalar functions on P. Consequently, the Poisson bracket provides this
vector space with a Lie algebra structure.

From the definition (11.65), it is immediate to check that

fqa; qbg D 0; fqa; pbg D ıab; and fpa; pbg D 0: (11.67)

The canonical equations of Hamilton (11.63) become then

Pqa D fqa;H g and Ppa D fpa;H g: (11.68)

Note that contrary to (11.63), this writing is symmetric in qa and pa. We deduce
from this fact that for any function f W P ! R, .qa; pa/ 7! f .qa; pa/, the
following relation holds:
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df

dt
WD d

dt
f .qa.t/; pa.t// D ff;H g: (11.69)

One calls canonical transformation any coordinate change in phase space,
.qa; pa/ 7! .q0

a; p
0
a/, that preserves the canonical equations of Hamilton, i.e. any

coordinate change such that if H.qa; pa/ satisfies (11.63), there exists a function
H 0.q0

a; p
0
a/ so that

Pq0
a D

@H 0

@p0
a

; Pp0
a D �

@H 0

@q0
a

; a 2 f1; : : : ; N g: (11.70)

It can be shown that any canonical transformation is entirely defined by a function
F W P! R, called generating function of the canonical transformation, such that

H 0.q0
a; p

0
a/ D H.qa; pa/C

NX

aD1
p0
a Pq0
a �

NX

aD1
pa Pqa C dF

dt
: (11.71)

By means of (11.62), this relation takes a simpler form in terms of Lagrangians:

L0.q0
a; Pq0

a; t/ D L.qa; Pqa; t/ �
dF

dt
: (11.72)

For example, if F D F1.qa; q0
a; t/, then necessarily

pa D @F1

@qa
.qa; q

0
a; t/ and p0

a D �
@F1

@q0
a

.qa; q
0
a; t/; (11.73)

H 0.q0
a; p

0
a/ D H.qa; pa/C

@F1

@t
.qa; q

0
a; t/: (11.74)

If F1 is given, the first of the relations (11.73) must be inverted to get q0
a D

q0
a.qb; pb/. Inserting the obtained value in the second relation (11.73), one obtains
p0
a D p0

a.qb; pb/, which shows that the choice of F1 fully determines the canonical
transformation .qa; pa/ 7! .q0

a; p
0
a/, hence the name generating function.

Another possible choice is F D F2.qa; p0
a; t/ �

PN
aD1 q0

ap
0
a. We have then

pa D @F2

@qa
.qa; p

0
a; t/ and q0

a D
@F2

@p0
a

.qa; p
0
a; t/; (11.75)

H 0.q0
a; p

0
a/ D H.qa; pa/C

@F2

@t
.qa; p

0
a; t/: (11.76)
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Remark 11.10. The Euler–Lagrange equations (11.3) are invariant by any coordi-
nate change .qa/ 7! .q0

a/ in the configuration space, provided that one considers
as new Lagrangian L0.q0

a; Pq0
a; t/ WD L.qa; Pqa; t/ with qa D qa.q

0
b/ and Pqa DPN

bD1.@qa=@q0
b/ Pq0

b . The canonical transformations are more general than the trans-
formations .qa/ 7! .q0

a/ since they “mix” the q’s and the p’s. The coordinate
changes .qa/ 7! .q0

a/ are actually particular canonical transformations of the type

q0
a D q0

a.qb/ and p0
a D

NX

bD1
pb
@qb

@q0
a

: (11.77)

They are generated by the function F2.qa; p0
a; t/ D

PN
aD1 q0

a.qb/p
0
a. An example of

a canonical transformation that is not a coordinate change in the configuration space
is q0

a D pa; p
0
a D �qa. This transformation is generated by the function F1 DPN

aD1 qaq0
a and amounts to swapping the generalized coordinates and generalized

momenta, these two quantities being on the same footing in the Hamiltonian
formalism.

We have the fundamental theorem:

A change of variables in phase space, .qa; pa/ 7! .q0
a; p

0
a/, is a canonical

transformation iff it preserves the Poisson bracket. This last property means
that for any couple .f; g/ of functions defined on the phase space,

NX

aD1

�
@f

@qa

@g

@pa
� @f

@pa

@g

@qa

	
D

NX

aD1

�
@f

@q0
a

@g

@p0
a

� @f

@p0
a

@g

@q0
a

	
:

It is easy to see that it is equivalent to demand that the variables .q0
a; p

0
a/ obey

the same relations as .qa; pa/, namely, (11.67):

fq0
a; q

0
bg D 0; fq0

a; p
0
bg D ıab; and fp0

a; p
0
bg D 0: (11.78)

An infinitesimal canonical transformation is generated by a function F2 of
the type

F2.qa; p
0
a; t/ D

NX

aD1
qap

0
a C "G.qa; p0

a; t/; (11.79)

where " 2 R is some infinitesimal parameter and G is any function R
2NC1 ! R.

Indeed, from (11.75), this choice leads to
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q0
a D qa C "

@G

@p0
a

.qa; p
0
a; t/ and p0

a D pa � "
@G

@qa
.qa; p

0
a; t/; (11.80)

which does correspond to an infinitesimal transformation .qa; pa/ 7! .q0
a; p

0
a/. The

function G is called generator of the infinitesimal canonical transformation. We
can express (11.80) in terms of the Poisson bracket with G:

q0
a D qa C "fqa;Gg and p0

a D pa C "fpa;Gg: (11.81)

The relation between the Hamiltonian in the new coordinates, H 0.q0
a; p

0
a/, and that

in the old ones,H.qa; pa/, is given by (11.76). By means of (11.79) and (11.80), as
well as the equations of motion (11.63), we obtain

H 0.q0
a; p

0
a/ D H.q0

a; p
0
a/C "

dG

dt
: (11.82)

We conclude that G is a constant of motion (dG=dt D 0) iff the Hamilto-
nian is invariant under the infinitesimal canonical transformation generated by G
(H 0.q0

a; p
0
a/ D H.q0

a; p
0
a/). This result, which relates conserved quantities to the

symmetries of the system, is a “Hamiltonian version” of the Noether theorem
discussed in Sect. 11.3.

11.4.2 Generalized Four-Momentum of a Relativistic Particle

Let us consider the description of a relativistic particle by means of a Lagrangian,
as performed in Sect. 11.2.3. One defines the generalized four-momentum, or
generalized 4-momentum for short, of particle P as the field of linear forms p

along L whose components p˛ D hp; #»e ˛i in the basis dual8 to . #»e ˛/ are given at
any point by

p˛ WD @L

@ Px˛ : (11.83)

This formula is the exact analogue of (11.60). Let us show that the quantity
p hence defined is independent of the parametrization of L , i.e. depends only
on the considered point of L . This is not obvious a priori since, at any point
M 2 L of parameter �, the definition (11.83) can be written explicitly as p˛ D
@L=@ Px˛ .x�.�/; Px�.�// and if the numerical value of x�.�/ at M is independent of
� (this is some coordinate ofM in the considered affine frame), things are different

8Cf. Sect. 1.6.1.
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for Px�.�/. The independence of p˛ from � results actually from the homogeneous
character of the Lagrangian function with respect to the generalized velocities, i.e.
from the independence of the action with respect to the worldline parametrization
(cf. Sect. 11.2.3). Indeed, by deriving (11.10) with respect to Px˛ , one gets

8� > 0; 8.xˇ; Pxˇ/ 2 R
8;

@L

@ Px˛ .x
ˇ; � Pxˇ/ D @L

@ Px˛ .x
ˇ; Pxˇ/: (11.84)

In other words, @L=@ Px˛ is a homogeneous function of degree 0 with respect to the
variables . Px˛/. If one performs a change of parametrization, � 7! Q�, (11.8), (11.9)
and (11.84) lead to

@L

@ Px˛
�
Qxˇ. Q�/; PQxˇ. Q�/

�
D @L

@ Px˛
�
xˇ.�/; Pxˇ.�/� ;

which proves the independence of p˛ with respect to �. ut
The generalized 4-momentum takes its value from the Noether theorem (11.45),

since the latter can be recast as

L.x˛ C "G˛; Px˛ C " PG˛/ D L.x˛; Px˛/ H) p˛G
˛ D const : (11.85)

In particular, if the Lagrangian is invariant under translations,Gˇ.x�/ D ıˇ˛ and the
generalized 4-momentum is constant along the worldline of the particle.

The generalized 4-momentum of a free particle is given by (11.23):

p D mc u (free particle): (11.86)

We note that it coincides with the “ordinary” 4-momentum defined in Chap. 9 [cf.
Eq. (9.3)]. In particular, it obeys (9.2):

hp; #»pi D g˛ˇp˛pˇ D �m2c2: (11.87)

For a particle in a vector field, Eq. (11.30) gives immediately

p D mc uC q

c
A (particle in a vector field): (11.88)

Thus, in this case, the generalized 4-momentum differs from the 4-momentum
defined in Chap. 9 by a term proportional to the potential 1-form A. The 4-velocity
normalization yields

D
p � q

c
A; #»p � q

c

#»
A
E
D �m2c2: (11.89)
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Remark 11.11. In Chap. 9, we have stressed that the 4-momentum is fundamentally
a linear form and not a vector. The Noether theorem, under the form (11.85),
is one of the main justifications for this feature: the G˛’s are fundamentally the
components of a vector,

#»

G , that connects the point #»x to the point #»x 0 D #»x C � #»

G

[an active viewpoint is adopted here regarding the coordinate change (11.42)], and
the conserved quantity provided by (11.85) is simply the linear form p applied to
the vector

#»

G : p˛G˛ D hp; #»

G i. Another justification is the equality (11.88), where
A is fundamentally a linear form: those from which the antisymmetric bilinear
form “electromagnetic field” F is deduced via (11.34). The latter identity involves
the exterior derivative operator, which is well defined for linear forms, but not for
vectors, as we shall see in Chap. 15.

11.4.3 Hamiltonian of a Relativistic Particle

Once the generalized 4-momentum is introduced, it would seem natural to define
the Hamiltonian of a relativistic particle by a formula analogous to (11.62): H WD
p˛ Px˛ � L. There are however two problems with this formula, both related to
the homogeneity of L with respect to Px˛ . The first one is that substituting p˛ by
its definition (11.83) results in an identically vanishing Hamiltonian, by virtue of
Euler theorem (11.11):H D .@L=@ Px˛/ Px˛ � L D 0. Secondly, in the Hamiltonian
formalism, the variables are .x˛; p˛/, and the relation (11.83) must be invertible to
express the Px˛’s as functions of .x˛; p˛/; this is necessary in order to replace them
in L at the right-hand side ofH WD p˛ Px˛ � L to obtainH D H.x˛; p˛/. Now, the
Jacobian matrix .@p˛=@ Pxˇ/ deduced from (11.83) is

@p˛

@ Pxˇ D
@2L

@ Px˛@ Pxˇ :

But taking the derivative of (11.11) with respect to Pxˇ leads to

Px˛ @2L

@ Px˛@ Pxˇ D 0:

This shows that . Px˛/ is a nonvanishing vector in the kernel of the Jacobian matrix
.@p˛=@ Pxˇ/. This matrix is thus not invertible. By virtue of the local inversion
theorem, we conclude that, at fixed .x˛/, the map . Px˛/ 7! .p˛/ is not invertible.
This is not surprising: a priori, the x˛.�/’s are 4 independent functions, whereas the
p˛.�/’s are linked by (11.87) (free particle), (11.89) (particle in a vector field) or a
similar relation (other cases).
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Remark 11.12. The fact that only 3 of the 4 components of the generalized
4-momentum are independent reflects the 3 degrees of freedom of a particle. The
independence of the 4 functions .x˛.�// does not yield 4 physical degrees of
freedom, because of the freedom in choosing the parameter �.

Relations of the type (11.87) or (11.89) are called primary constraints on the
considered system; this means that they do not depend upon the equations of
motion. The standard procedure, developed by Dirac9 (1964), consists in choosing
an Hamiltonian proportional to the constraint.10 In the case of a particle in a vector
field, one defines the Hamiltonian by

H.x˛; p˛/ D 1

2m
g˛ˇ

h
p˛ � q

c
A˛.x

�/
i h
pˇ � q

c
Aˇ.x

�/
i
: (11.90)

The Hamiltonian of a free particle is deduced from the above formula by setting
q D 0. Note that H has the dimension of an energy. By virtue of the primary
constraint (11.89), the value of H is constant: H D � 1

2
mc2. Nevertheless, what

matters for the canonical equations of motion is the functional dependency of the
Hamiltonian with respect to .x˛; p˛/ and not its numerical value.

The canonical equations of Hamilton are

Px˛ D @H

@p˛
; Pp˛ D � @H

@x˛
; ˛ 2 f0; 1; 2; 3g: (11.91)

Let us check that they yield the usual equations of motion. We have, from (11.90),

@H

@x˛
D � q

mc
g��

@A�

@x˛

�
p� � q

c
A�

�
and

@H

@p˛
D 1

m
g˛�

�
p� � q

c
A�

�
;

so that the canonical equations (11.91) become

Px˛ D 1

m
g˛�

�
p� � q

c
A�

�
and Pp˛ D q

mc
g��

@A�

@x˛

�
p� � q

c
A�

�
:

Multiplying the first equation by the matrix .g˛ˇ/, this system can be rewritten as

m Px˛ D p˛ � q
c
A˛ and Pp˛ D q

c

@Aˇ

@x˛
Pxˇ;

9Paul A. M. Dirac (1902–1984): British theoretical physicist, well known for his contributions to
quantum mechanics and quantum electrodynamics; notably, he has proposed the equation ruling
the dynamics of relativistic electrons in quantum mechanics and has predicted the existence of
antimatter; he was awarded the 1933 Nobel Prize in Physics.
10Cf., e.g. Chap. 8 of the treatise by Sudarshan and Mukunda (1974).
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with Px˛ WD g˛ˇ Pxˇ . The derivative of the first equation with respect to � leads to
Pp˛ D m Rx˛ C q

c
@A˛=@x

ˇ Pxˇ , so that we can rewrite the second equation in terms of
Rx˛ and obtain the system

m Px˛ D p˛ � q
c
A˛ (11.92a)

m Rx˛ D q

c
F˛ˇ Pxˇ; (11.92b)

where F˛ˇ is defined by (11.34). Equation (11.92b) greatly resembles the equation
of motion (11.33) deduced from the Euler–Lagrange equations. To have a complete
identity, Rx˛ should be related to the 4-acceleration of the particle and Px˛ to its
4-velocity. We are going to see that is necessarily the case. Indeed, multiplying
(11.92b) by Px˛ and summing on ˛, we get

m Rx˛ Px˛ D q

c
F˛ˇ Px˛ Pxˇ D 0

thanks to the antisymmetry of F˛ˇ . Using Rx˛ D g˛ˇ Rxˇ , we obtain

g˛ˇ Px˛ Rxˇ D 1

2

d

d�

�
g˛ˇ Px˛ Pxˇ

� D 0;

where the first equality results from the symmetry of g˛ˇ . This means that v2 WD
� #»v � #»v D �g˛ˇ Px˛ Pxˇ is constant along the particle’s worldline. The relation (11.20)
between the parameter � and the particle’s proper time 	 is thus d� D .c=v/d	 with
.c=v/ D const. This shows that � is essentially the proper time:

� D ˛	 C �0; ˛ D const and �0 D const: (11.93)

For simplicity, let us choose ˛ D 1 and �0 D 0, so that

� D 	 : (11.94)

We have then Px˛ D dx˛=d	 D cu˛ and Rx˛ D d2x˛=d	2 D c2a˛ . Consequently,
(11.92a) gives the relation (11.88) between the 4-velocity and the generalized 4-
momentum and (11.92b) gives the equation of motion (11.33), obtained within the
Lagrangian formalism. Let us conclude:

The canonical equations (11.91) applied to the Hamiltonian (11.90) lead to
(i) the identification of the parameter � with the particle’s proper time and
(ii) to the motion under the action of the Lorentz 4-force (11.35).
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Remark 11.13. If the Lagrangian had not been a homogeneous function of degree
1 of the Px˛’s, we could have applied the standard procedure of building the
Hamiltonian via the Legendre transformation: H WD p˛ Px˛ � L. Now, as we
have seen in Sect. 11.2.3, the homogeneity of the Lagrangian is the consequence
of the independence of the action S from the parametrization of the worldline.
An alternative is to consider an action that is not independent of the worldline
parametrization, arguing that what matters after all is that the principle of least
action leads to the correct equations of motion. This is notably the point of view
adopted in the textbooks by Goldstein et al. (2002) and Gruber and Benoit (1998)
(cf. also the discussion in Leubner (1986)). For instance, one may consider the
following Lagrangian to describe a particle in a vector field:

L D 1

2
mg˛ˇ Px˛ Pxˇ C q

c
Aˇ.x

˛/ Pxˇ: (11.95)

It differs from the Lagrangian (11.28) solely by the “free particle” part:
1=2mg˛ˇ Px˛ Pxˇ instead of�mcp�g˛ˇ Px˛ Pxˇ . This Lagrangian is not homogeneous
in the Px˛’s. The four Euler–Lagrange equations are then independent, contrary to
the case where L is a homogeneous function of degree 1 (cf. Remark 11.1 p. 353).
They lead to the four equations of motions (11.92b): m Rx˛ D .q=c/ F˛ˇ Pxˇ . We
have shown above that these equations imply that the parameter � coincides with
the proper time 	 , up to some constant factors [Eq. (11.93)]. The three remaining
degrees of freedom give the motion under the action of a Lorentz force. The
generalized 4-momentum deduced from the Lagrangian (11.95) via the definition
(11.83) is

p˛ D m Px˛ C q

c
A˛: (11.96)

The Hamiltonian formed from L via the Legendre transformationH WD p˛ Px˛ � L
is then

H D 1

2
mg˛ˇ Px˛ Pxˇ: (11.97)

Taking into account (11.96), we observe that it coincides with the Hamiltonian
(11.90).

11.5 Systems of Particles

Up to now, we have only considered systems reduced to a single particle, evolving
in a given (scalar, vector or tensor) field. Here we briefly discuss the extension to
systems of many particles.
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11.5.1 Principle of Least Action

As we have underlined in Sect. 11.2.2, the principle of least action of the pre-
relativistic analytical mechanics is not directly transposable to a system of
relativistic particles, for there is no uniqueness of the time t . A principle of least
action can nevertheless be formulated by considering as many time integration
parameters as the number N of particles. More precisely, if the equation of the
worldline La of particle no. a in an affine frame .x˛/ of E is written as11

La W x˛ D x˛a .�a/; �a 2 R; ˛ 2 f0; 1; 2; 3g; (11.98)

a rather general form of the action is

S D �
NX

aD1
mac

Z �
C

a

��

a

q
�g˛ˇ Px˛a Pxˇa d�a

C
NX

aD1

NX

bDaC1
qaqb

Z �
C

a

��

a

Z �
C

b

��

b

K.x˛a ; Px˛a ; x˛b ; Px˛b / d�a d�b; (11.99)

where x˛a D x˛a .�a/, Px˛a D Px˛a .�a/ WD dx˛a =d�a, ma and qa are constants and K is
a function R

4 ! R. We recognize in the first term of S the sum of the individual
actions of free particles [cf. Eq. (11.21)],ma being interpreted as the “free mass” of
particle a. The second term, involving the double integral, describes the interaction
between the particles, qa being the coupling constant, or interaction charge, of
particle a: if qa D 0, particle a does not interact with any other. The action (11.99)
is called Tetrode–Fokker action. The only dynamical variables that it contains are
the particle positions .x˛a .�a//. This means that the interaction between the particles
is described without appealing to the notion of field. One says that it is an action at
a distance.

We shall not derive here the equations of motion by applying the principle of
least action to the Tetrode–Fokker action (11.99), referring the interested reader
to the book by Barut (1964) (Chap. VI) or that by Sudarshan and Mukunda (1974)
(Chap. 22). Let us stress that the obtained equations are not second-order differential
equations but integro-differential equations. Finding a solution to these equations is
much more complicated than solving differential equations. In particular, integro-
differential equations cannot be formulated as a Cauchy problem, for which the
uniqueness of the solution would have been guaranteed, given some initial data on
positions and velocities.

11Contrary to Sect. 11.2.3, we must now use distinct notations for the affine coordinates on E , .x˛/,
and the functions defining the worldline, .x˛a /.
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Two specific examples of Tetrode–Fokker action are interesting:

11.5.1.1 Scalar Interaction at a Distance

One describes a scalar interaction propagating between the particles at the speed of
light when one chooses the following functionK in (11.99):

K.x˛a ; Px˛a ; x˛b ; Px˛b / WD
1

4�

q
�g˛ˇ Px˛a Pxˇa

q
�g˛ˇ Px˛b Pxˇb ı

�
g˛ˇ.x

˛
a � x˛b /.xˇa � xˇb /

	
;

(11.100)

where ı is the Dirac delta function. The qualifier scalar means that the dependency
of K with respect to the generalized 4-velocities of the particles, . Px˛a /, takes place
only via their norms. Incidentally, let us notice that the terms in Px˛a in K are the
simplest ones to guarantee the invariance of the action by a reparametrization of

the worldlines, since
q
�g˛ˇ Px˛a Pxˇa d�a is independent of the parameter �a (this is

the element of proper time along La). The ı term in K ensures that the interaction
propagates at the speed of light. Indeed, if an event A.�a/ 2 La is fixed, the ı term
will keep only the events that obey g˛ˇ.x˛a � x˛b /.xˇa � xˇb / D 0 in the integral on
�b , i.e. only the events belonging to the null cone ofA.�a/. Note that the two sheets
of the null cone, past and future, are concerned.

11.5.1.2 Wheeler–Feynman Electrodynamics

The case of a vectorial interaction is described by the function

K.x˛a ; Px˛a ; x˛b ; Px˛b / WD
1

4�
g˛ˇ Px˛a Pxˇb ı

�
g˛ˇ.x

˛
a � x˛b /.xˇa � xˇb /

	
: (11.101)

With respect to the scalar interaction (11.100), we observe that, this time,K depends
on the generalized 4-velocities via the scalar product g˛ˇ Px˛a Pxˇb of the generalized
4-velocity of particle a with that of particle b. The ı term is, on its side, identical to
that of (11.100); the interaction propagates thus at the speed of light.

The choice (11.101), inserted into the action (11.99), leads to a theory of electro-
magnetic interactions called Wheeler–Feynman electrodynamics, the constants qa
being then the electric charges of the particles. If one disregards the electromagnetic
radiation reaction, the Wheeler–Feynman electrodynamics is physically equivalent
to Maxwell electromagnetism: it leads to particle motions that are identical to
that resulting from the half-sum of retarded and advanced solutions of Maxwell
equations (the so-called Liénard–Wiechert potentials, which we shall discuss in
Chap. 18). It is necessary to take into account the advanced potentials to get the
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equivalence with Maxwell theory because of the ı term in (11.101), which is
symmetric with respect to the future and past sheets of the light cone.

Let us stress that Wheeler–Feynman electrodynamics does not use the notion of
field, contrary to Maxwell electromagnetism. It describes directly the interaction
between the particles via the action given by (11.99) and (11.101). In particular,
there is no electromagnetic radiation in this theory. However, one can take into
account what is usually called the reaction to electromagnetic radiation and
whose existence is shown by the experiment. To this aim, the electric charges of
the radiation detectors are added to the system; they are called absorbers and are
assumed to be distributed at the periphery of the system. The acceleration of the
absorbers can then be interpreted as the effect of electromagnetic radiation, and
the action at a distance of the absorbers onto the particles of the initial system can
be interpreted as the radiation reaction.

Remark 11.14. In Wheeler–Feynman theory, there is no issue of self-interaction
(action of a particle onto itself), along with the associated divergences, since b is
always different from a in the double sum (11.99).

Historical note: In 1903, i.e. two years before the advent of special relativity,
Karl Schwarzschild12 expressed the mutual action of two moving electrons as an
interaction at a distance (Schwarzschild 1903a,b). He was however not aiming at
founding all the electrodynamics on this principle. A general formulation of the
interaction at a distance within the relativistic framework has been obtained by
Hugo Tetrode13 in 1922 (Tetrode 1922) and Adriaan D. Fokker (cf. p. 339) in 1929
(Fokker 1929b). They introduced the action (11.99) with the expression (11.101)
for K . In 1949, John A. Wheeler (cf. p. 79) and Richard Feynman14 extended the
Tetrode–Fokker theory and showed notably that it does not violate causality, despite
the presence of the future null cone induced by the ı term in (11.101) (Wheeler
and Feynman 1949). The concept of absorber was introduced by Tetrode (1922)
and developed by Wheeler and Feynman (1945). The solution to the problem of two
electric charges in circular motion within Wheeler–Feynman electrodynamics was

12Karl Schwarzschild (1873–1916): German astrophysicist, known for having found in 1915 the
first (non-trivial) exact solution of the equations of general relativity—a solution which will be
recognized later on as describing a static black hole. He died from some disease the year after,
while serving as a soldier on the Russian front.
13Hugo Tetrode (1895–1931): Dutch physicist who authored works in quantum mechanics; he
died from tuberculosis at 35.
14Richard Feynman (1918–1988): American theoretical physicist, student of John Wheeler (cf.
p. 79); he invented the path integral in quantum mechanics, as well as the famous diagrams bearing
his name; he was awarded the 1965 Nobel Prize in Physics for his fundamental contribution to
quantum electrodynamics. He is also well known for his lectures on physics (Feynman et al. 2011).
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obtained by Alfred Schild15 in 1963 (Schild 1963). In 1973, Pierre Ramond16 gave
the most general form that the function K can take assuming that the action must
be invariant under a Poincaré transformation (Ramond 1973).

11.5.2 Hamiltonian Formulation

On general grounds, a relativistic Hamiltonian theory consist in (i) a phase space
P endowed with a Poisson bracket f; g and a Hamiltonian (the set of all canonical
transformations is then denoted by Canon.P/) and (ii) an action of the Poincaré
group on P via canonical transformations, i.e. a mapping

IO.3; 1/ �! Canon.P/
� 7�! f�;

such that the image of the identity is the identity and

8.�1;�2/ 2 IO.3; 1/2; f�1 ı f�2 D f�1ı�2: (11.102)

Condition (ii) guarantees the invariance of physical laws, expressed via the canon-
ical equations of Hamilton on P, under a change of inertial observer. Actually, it
suffices to ensure that the infinitesimal Poincaré transformations lead to (necessarily
infinitesimal) canonical transformations. The Poisson brackets of the generators of
infinitesimal canonical transformations [cf. Eq. (11.79)–(11.80)] must then obey the
same structure relations as the Lie brackets of the generators of Poincaré group, i.e.
(8.38).

To treat a system of particles in this framework, it would seem natural to use
as canonical coordinates on P the positions .x˛a / of each particle in a system of
inertial coordinates on E and the conjugate momenta .pa˛/. However, according to
a theorem established by D.G. Currie, J.T. Jordan and E.C.G. Sudarshan (1963), the
conditions

(i) Invariance of the Hamiltonian structure under the action of the Poincaré group
(cf. the above definition).

(ii) Using the spacetime coordinates of the particles as canonical coordinates.

are not compatible, except if there is no interaction between the particles. This result
has been called the no-interaction theorem.

15Alfred Schild (1921–1977): American physicist, mainly known for his studies in general
relativity; he also contributed to the development of the first atomic clocks.
16Pierre Ramond: American physicist of French origin, born in 1943; one of the founder of string
theory.
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A solution of this problem consists in abandoning condition (ii), i.e. to use
canonical coordinates in the phase space that are not the particles’ spacetime
coordinates. This approach called a priori Hamiltonian formalism has been
developed by P. Droz-Vincent (1970; 1975; 1977).

Historical note: The formal bases of relativistic Hamiltonian theories, as sketched
above, have been set by Paul A. M. Dirac (cf. p. 372) en 1949 (1949). A review of
results obtained by the beginning of the 1980s is the collective book (Llosa 1982).



Chapter 12
Accelerated Observers

12.1 Introduction

In this chapter and in the following one, we examine in detail non-inertial observers.
There are essentially two ways for an observer to be non-inertial: having a nonvan-
ishing 4-acceleration or a nonvanishing 4-rotation. In this chapter, we investigate the
first case, Chap. 13 being devoted to the second one. Let us recall that the concepts
of 4-acceleration and 4-rotation have been introduced in, respectively, Sect. 2.4.2
and Sect. 3.5.

12.2 Uniformly Accelerated Observer

12.2.1 Definition

The simplest configuration for an accelerated observer is that where:

1. His worldline lies in a plane˘ of spacetime E .
2. The metric norm of its 4-acceleration #»a is constant along his worldline1:

a WD k #»akg D const : (12.1)

3. His 4-rotation is identically zero:

#»! D 0: (12.2)

1Let us recall that a has the dimension of the inverse of a length and that, #»a being a spacelike
vector, k #»a kg D p

#»a � #»a [cf. Eq. (1.19)].

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
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Such an observer is said to be uniformly accelerated or in hyperbolic motion. The
name Rindler observer is also used. Note that ˘ is necessarily a timelike plane (cf.
Sect. 6.4.2).

Remark 12.1. Naively, one might think defining a uniformly accelerated observer
as an observer whose 4-acceleration vector is constant:

#»a D const; (12.3)

and not only its norm as in (12.1). Equation (2.16) defining the 4-acceleration,
d #»u=dt D c #»a , is then straightforwardly integrated in #»u .t/ D ct #»a C #»u 0, where t
is the observer’s proper time and #»u 0 a constant vector, which must be unit timelike,
since #»u 0 D #»u .0/. The scalar square of the 4-velocity is then

#»u .t/ � #»u .t/ D c2t2 #»a � #»a C 2ct #»u 0 � #»a„ƒ‚…
0

C #»u 0 � #»u 0„ ƒ‚ …
�1

D c2t2 #»a � #»a � 1;

where use has been made of the orthogonality of the 4-velocity and the
4-acceleration [Eq. (2.17)] to write #»u 0 � #»a D #»u .0/ � #»a .0/ D 0. The above equation
and the normalization #»u .t/ � #»u .t/ D �1 imply that for t 6D 0, #»a � #»a D 0. As #»a is
either zero or a spacelike vector, this results necessarily in #»a D 0. Hence, definition
(12.3) leads to a trivial situation (inertial observer). The definition (12.1) is less
restrictive and allows the 4-acceleration vector to vary, contrary to (12.3), in order
to always stay orthogonal to the 4-velocity.

Example 12.1. A concrete example of uniformly accelerated motion is that of a
charged particle in a uniform electric field. The norm of the 4-acceleration is then
a D jqjE=.mc2/, where q is the particle’s electric charge, m its mass and E
the (constant) norm of the electric field. This example will be treated in detail in
Chap. 17.

The reader would have recognized the origin of the word hyperbolic in the above
definition if she/he remembers that the Langevin’s traveller introduced in Chap. 2
and in the examples of Chap. 4 has a worldline formed by arcs of hyperbola and
that, on each of these arcs, the 4-acceleration has a constant norm [cf. Eq. (2.37)].
We are now going to show the converse, namely, that (12.1) and the hypothesis of
worldline restricted to a plane lead to a hyperbolic worldline.

12.2.2 Worldline

Let O be a uniformly accelerated observer, of worldline L0, 4-velocity #»u ,
4-acceleration #»a and proper time t . The event of proper time t on L0 will be
denoted by O.t/. By hypothesis, L0 is entirely contained in a plane˘ � E . Let us



12.2 Uniformly Accelerated Observer 383

use the same symbol ˘ to denote the underlying vector plane: ˘ � E . The vector
#»u being always tangent to L0, we have necessarily

8t 2 R; #»u .t/ 2 ˘ and #»a .t/ 2 ˘; (12.4)

the second property resulting from #»a D c�1d #»u=dt .
It is convenient to introduce an inertial observer O�, of frame . #»e �̨/ and proper

time t�, such that

˘ D Span . #»e �
0 ;

#»e �
1 /; (12.5)

and such that at the instant t� D 0, the worldlines of O and O� are tangent at the
pointO.0/, origin of O’s proper time t (cf. Fig. 12.1). The 4-velocities of O and O�
are then necessarily equal at O.0/:

#»u .0/ D #»e �
0 : (12.6)

Moreover, since #»a .0/ 2 ˘ is orthogonal to #»u .0/ and #»e �
1 is a unit vector, we have

#»a .0/ D a #»e �
1 : (12.7)

A priori, we should write #»a .0/ D ˙a #»e �
1 , but up to a change #»e �

1 7! � #»e �
1 , one

can always select theC sign.
Since . #»e �

0 ;
#»e �
1 / is a basis of ˘ [Eq. (12.5)] and #»u and #»a belong to that plane,

we can write

#»u .t/ D u0.t/ #»e �
0 C u1.t/ #»e �

1 and #»a .t/ D a0.t/ #»e �
0 C a1.t/ #»e �

1 : (12.8)

Given the orthonormality of the basis . #»e �̨/, the conditions #»u � #»u D �1 and #»a � #»a D
a2 are equivalent to

�Œu0.t/�2 C Œu1.t/�2 D �1 and � Œa0.t/�2 C Œa1.t/�2 D a2; (12.9)

hence,

a1.t/ D ˙
p
a2 C Œa0.t/�2:

In particular, ja1.t/j � a. By continuity, we deduce that a1.t/ cannot change its
sign when t varies. Since a1.0/ D a [Eq. (12.7)], we conclude that theC sign must
be selected in the above expression. Besides, by definition of the 4-acceleration [cf.
Eq. (2.16)],

a0.t/ D 1

c

du0

dt
and a1.t/ D 1

c

du1

dt
: (12.10)
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Fig. 12.1 Uniformly
accelerated observer O and
reference inertial observer
O�. O’s worldline is entirely
contained in the plane ˘

From (12.9), we get u0 D p1C .u1/2 (for u0 > 0), so that

a0.t/ D 1

c

u1p
1C .u1/2

du1

dt
:

Inserting this relation, as well as expression (12.10) for a1.t/, into (12.9), there
comes

1p
1C .u1/2

du1

dt
D ca;

where the property du1=dt D ca1 > 0 has been taken into account. Given the initial
condition u1.0/ D 0 [cf. Eq. (12.6)], the above equation is integrated into

u1.t/ D sinh.act/:

Since u0 D p
1C .u1/2 and 1 C sinh2 x D cosh2 x, we deduce that u0.t/ D

cosh.act/, hence the expression of O’s 4-velocity:

#»u .t/ D cosh.act/ #»e �
0 C sinh.act/ #»e �

1 : (12.11)

The 4-acceleration is deduced immediately from (12.10):

#»a .t/ D a �sinh.act/ #»e �
0 C cosh.act/ #»e �

1

�
: (12.12)

We check on these formulas that #»u .t/ � #»a .t/ D 0, #»u .t/ � #»u .t/ D �1 and #»a .t/ �
#»a .t/ D a2.
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Let us introduce the inertial coordinates .x˛�/ D .ct�; x�; y�; z�/ associated with
observer O�; let then

x˛� D X˛� .t/ (12.13)

be the equation of O’s worldline (L0) in these coordinates. Note that the chosen
parameter in the proper time t of O and that X2�.t/ D X3�.t/ D 0, since O’s motion
is confined to the plane ˘ . By definition of the 4-velocity, the components .u˛/ of
#»u within the basis . #»e �̨/ are related to X˛� .t/ by u˛ D c�1dX˛�=dt [cf. (2.12)]. By
virtue of (12.11), we have thus

dX0�
dt
D c cosh.act/ and

dX1�
dt
D c sinh.act/:

Given the initial conditions X0�.0/ D 0 and X1�.0/ D 0 (point O.0/ on Fig. 12.1),
these equations are easily integrated and lead to the following equation for the
worldline L0:

8
ˆ̂<

ˆ̂:

ct� D X0�.t/ D a�1 sinh.act/
x� D X1�.t/ D a�1 Œcosh.act/ � 1�
y� D X2�.t/ D 0
z� D X3�.t/ D 0;

(12.14)

where the proper time t spans R. Given the relation cosh2 x � sinh2 x D 1, we
observe that on L0, the coordinates t� and x� are related by

.ax� C 1/2 � .act�/2 D 1 : (12.15)

We recognize the equation of an equilateral hyperbola in the plane .ct�; x�/ of centre
.ct� D 0; x� D �a�1/ and having for asymptotes the lines

1 W ct� D x� C a�1; y� D 0; z� D 0 (12.16a)

2 W ct� D �x� � a�1; y� D 0; z� D 0: (12.16b)

L0 is depicted in Fig. 12.2.

Remark 12.2. We recover through (12.11), (12.12) and (12.15) the formulas of
Chap. 2: (2.32), (2.33) and (2.21) with k D 0, taking into account the changes of
notation #»u $ #»u 0, #»a $ #»a 0, a$ ˛=.cT/, t $ t 0, t� $ t and x� $ x.
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Fig. 12.2 Worldline L0 of
the uniformly accelerated
observer O, drawn in the
coordinates .ct�; x�/ of the
inertial observer O�: L0 is a
branch of hyperbola with
asymptotes 1 and 2. The
numbers ranging from �1:5
to 1:5 along L0 mark O’s
proper time t , in units of
.ac/�1. The proper time of
O� is t�

12.2.3 Change of the Reference Inertial Observer

The “top” O.0/ of the hyperbola depicted in Fig. 12.2 is not a peculiar point for the
worldline L0. It appears as a top solely because the figure has been drawn within
the coordinates .ct�; x�/ linked to the inertial observer tangent to L0 at O.0/. If
the figure is redrawn within the coordinates of an inertial observer tangent to L0 at
another point, the latter appears as the top of the hyperbola, as illustrated in Fig. 12.3.
The situation is perfectly similar to that of the hyperboloid UO considered in
Sect. 1.4.3: we had already noticed that the tops of UO depicted in Figs. 1.6 and 1.7
are actually linked to the inertial coordinates used for the graphical representation
and have no real physical meaning.

Let us show it by introducing a second inertial observer, O 0�, tangent to L0 at
O.t 0/ with t 0 6D 0. By transposing (12.6) and (12.7) from t D 0 to t D t 0, we
observe that the frame . #»e �0

˛ / of O 0� is such that

#»e �0

0 D #»u .t 0/; #»e �0

1 D a�1 #»a .t 0/; #»e �0

2 D #»e �
2 and #»e �0

3 D #»e �
3 ;

where the last two conditions are nothing but a convenient choice of basis in the
vector plane˘?. Taking into account (12.11) and (12.12), there comes then


#»e �0

0 D cosh.act 0/ #»e �
0 C sinh.act 0/ #»e �

1
#»e �0

1 D sinh.act 0/ #»e �
0 C cosh.act 0/ #»e �

1 ;
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Fig. 12.3 Invariance of the hyperbola representing O’s worldline L0 under a change of inertial
observer: the left panel is based on the coordinates .ct�; x�/ of the inertial observer O�, who is
tangent to O atO.0/ (same as Fig. 12.2), while the right panel is based on the coordinates .ct0

�
; x0

�
/

of the inertial observer O0

�
, who is tangent to O at O.t 0/ with t 0 WD .ac/�1. As in Fig. 12.2, the

numbers along L0 mark the proper time t in units of .ac/�1. The dashed lines show the rest
spaces of the inertial observers O� and O0

�
at the considered instants. The change of coordinates

.ct�; x�/ 7! .ct0
�
; x0

�
/ is given by the Poincaré transformation (12.17)

as well as #»e �0

2 D #»e �
2 and #»e �0

3 D #»e �
3 . We conclude that the frames of observers

O� and O 0� are related by a Lorentz boost of plane ˘ and rapidity  D act 0 [cf.
(6.43)]. By means of formulas (8.11) and (8.12) (with the inverse transformation),
we deduce that the inertial coordinates .ct0�; x0�; y0�; z0�/ relative to O 0� are related
to the inertial coordinates .ct�; x�; y�; z�/ relative to O� by the following Poincaré
transformation:


ct0� D cosh.act 0/ ct� � sinh.act 0/ x� � a�1 sinh.act 0/
x0� D � sinh.act 0/ ct� C cosh.act 0/ x� C a�1 cosh.act 0/� a�1 ; (12.17)

with y0� D y� and z0� D z�. The change of coordinates is illustrated in Fig. 12.3
in the particular case t 0 D .ac/�1. We note that in these new coordinates, L0 has
exactly the same shape as in the old ones. Moreover, the coordinates of the point
A where the two asymptotes intersect are invariant, as it can been seen by setting
.ct�; x�/ D .0;�a�1/ in (12.17):

.ct�; x�/ D .0;�a�1/ ” .ct0�; x0�/ D .0;�a�1/:

The invariance of the hyperbola representing O’s worldline under a change of
tangent inertial observer reflects the fact that all events along L0 are equivalent.
Indeed, from the point of view of observer O , nothing happens as time passes, since
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O’s 4-rotation vanishes and the norm of his 4-acceleration stays constant. One says
that O is a stationary observer. Another example of stationary observer is of course
an inertial observer.

12.2.4 Motion Perceived by the Inertial Observer

In the reference space of the inertial observer O� (cf. Sect. 3.4.3), the accelerated
observer O is moving along a straight line—the x�-axis, with a time dependence
deduced from (12.15):

x�.t�/ D a�1
hp
1C .act�/2 � 1

i
; t� 2 R: (12.18)

O arrives from x� D C1 (t� ! �1), reaches x� D 0 at t� D 0 and moves back
towards x� D C1 as t� ! C1 (cf. Fig. 12.2). The velocity of O relative to O� is
by definition [Eq. (4.19)]

#»

V D dx�
dt�

#»e �
1 D V #»e �

1 ; with V WD c act�p
1C .act�/2

: (12.19)

For jt�j 	 .ac/�1, this expression reduces to V ' 
0t�, with 
0 WD ac2 [cf.
(4.64)]. We recover the nonrelativistic value of the velocity as a function of time
for a constant acceleration 
0 and the initial condition V.0/ D 0. On the other side,
when jt�j is large, O’s velocity has the following behaviour:

lim
t�!�1V D �c and lim

t�!C1V D c:

The velocity of O relative to the inertial observer O� tends thus towards the velocity
of light when t� increases, which corresponds to the expected behaviour for a body
undergoing a “constant acceleration” (cf. however Remark 12.3 below).

The acceleration of O relative to O� is, by definition [Eq. (4.44)],

#»� D d2x�
dt2�

#»e �
1 D 
 #»e �

1 ; with 
 WD ac2

Œ1C .act�/2�3=2
: (12.20)

Thus,

lim
t�!�1 
 D 0; 
.t� D 0/ D ac2 and lim

t�!C1 
 D 0: (12.21)

The velocity V and the acceleration 
 , as given by (12.19) and (12.20), are plotted
in Fig. 12.4.
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Fig. 12.4 Velocity V and acceleration 
 of the uniformly accelerated observer O, both relative to
the inertial observer O� tangent to O at t� D 0, as functions of O�’s proper time t�. The dotted
line corresponds to the value of V at the nonrelativistic limit (
 is then constant and equal to ac2)

Remark 12.3. The norm k #»� kg D 
 of O’s acceleration relative to the inertial
observer O� is not constant, whereas O’s motion is qualified as uniformly accel-
erated. Actually, 
 cannot be constant in order for V to be always lower than c.
What remains constant is the norm a of O’s 4-acceleration, which is a quantity
independent of any observer, contrary to 
 , which depends upon O� (cf. Remark 4.7
p. 116).

12.2.5 Local Rest Spaces

Let M be a generic event in E , of inertial coordinates .ct�; x�; y�; z�/. M belongs
to the local rest space of O at proper time t , Eu.t/, iff2 #»u .t/ � #             »

O.t/M D 0. Using
(12.14) for the inertial coordinates of O.t/, we have

#            »

O.t/M D
h
ct� � a�1 sinh.act/

i
#»e �
0 C

h
x� � a�1 .cosh.act/ � 1/

i
#»e �
1 Cy� #»e �

2 Cz� #»e �
3 :

The components of #»u .t/ in the basis . #»e �̨/ being given by (12.11), the condition
#»u .t/ � #             »

O.t/M D 0 becomes then

2Let us recall that O.t/ stands for the position of O at the proper time t .
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Fig. 12.5 Local rest spaces Eu.t / of the uniformly accelerated observer O. The plane of this figure
is ˘ and each Eu.t / appears as a straight line through A of slope tanh.act/

� cosh.act/
�
ct� � a�1 sinh.act/

�C sinh.act/
�
x� � a�1 .cosh.act/ � 1/� D 0;

i.e. after simplification,

ct� D tanh.act/.x� C a�1/ : (12.22)

This is the equation of the hyperplane Eu.t/ in the inertial coordinates
.ct�; x�; y�; z�/. Eu.t/ is depicted in Fig. 12.5 for various values of t . We observe
that, when t varies, the hyperplanes Eu.t/ intersect at a common plane of E , of
equation ct� D 0 and x� D �a�1. The trace of this plane on Fig. 12.5 (plane ˘ ) is
the pointA, where the two asymptotes of hyperbola L0 intersect. That O’s local rest
spaces intersect should not be a surprise: this is a generic property of accelerated
observers discussed in Sect. 3.7. In that section, we estimated the length scale a�1:
for an acceleration 
 D c2a D 10 m s�2, a�1 ' 9 � 1015 m ' 1 light-year.
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12.2.6 Rindler Horizon

In the spacetime diagrams of Figs. 12.2, 12.3 and 12.5, which depict the plane ˘
with the inertial coordinates .ct�; x�/, the worldlines of photons are straight lines
inclined at˙45ı. It is then clear that photons that are emitted in the domain located
above the asymptote 1 will never reach L0 (cf. Fig. 12.6). This domain is thus
invisible for the observer O .

More generally, i.e. away from the plane ˘ , let us determine the conditions
under which an emitter M 2 E can be perceived by O (cf. Fig. 12.7). Without
any loss of generality, we may assume that M 2 Eu.0/, since all the events along
L0 are equivalent (cf. Sect. 12.2.3). This is the situation depicted in Fig. 12.7. Let
.ctem� ; xem� ; yem� ; zem� / be the inertial coordinates (relative to O�) of the emitter M .
We have t em� D 0, since t D 0 ” t� D 0 [cf. (12.14)]. A photon emitted from
M reaches O iff there exists a null geodesic connecting M to a point O.t/ 2 L0

(dotted segment in Fig. 12.7). By definition, the inertial coordinates of O.t/ are the
X˛� .t/’s given by (12.14), so that the vector

#            »

MO.t/ is

#            »

MO.t/ D a�1 sinh.act/ #»e �
0 CŒa�1 cosh.act/�a�1�xem� � #»e �

1 �yem�
#»e �
2 �zem�

#»e �
3 :

Taking the scalar square and simplifying, we obtain that
#            »

MO.t/ is a null vector iff

2.axem� C 1/ cosh.act/ D 1C a2 �.xem� C a�1/2 C .yem� /2 C .zem� /2
�
: (12.23)

At fixed .xem� ; yem� ; zem� /, this is an equation for t . Given that cosh.act/ � 1, two
cases are to be considered:

1. If xem� � �a�1, the term .axem� C 1/ is negative or zero and, since the right-hand
side of (12.23) is greater than 1, there is no solution to the equation: a light ray
emitted fromM never reaches O .

2. If xem� > �a�1, (12.23) can be recast as

cosh.act/ D 1C a2 .x
em� /2 C .yem� /2 C .zem� /2

2.axem� C 1/
:

Since the right-hand side is clearly greater than or equal to 1, there exists a unique
solution t � 0 to that equation: a light ray emitted from M reaches O at O’s
proper time t .

By reasoning on the intersection of the light cones with the hyperplane t� D
˛ 6D 0, one finds that when t em� 6D 0, the condition xem� > �a�1 is generalized
to xem� � ctem� > �a�1. Hence, the boundary between the domain of Minkowski
spacetime that can send photons to O and the domain that cannot is the hyperplane
H of equation

ct� D x� C a�1: (12.24)
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Fig. 12.6 Null geodesics (dotted lines) in the plane ˘ . Photons emitted in the hatched domain
will never reach the accelerated observer O

Fig. 12.7 Rindler horizon H of the uniformly accelerated observer (worldline L0, position O.t/
at proper time t )

H is called Rindler horizon of observer O . It is depicted in Fig. 12.7. H is a
null hyperplane in the sense that the metric induced by g onto H is degenerate
(this is the three-dimensional analogue of the null plane defined in Sect. 6.4.5).
Equivalently, any vector normal to H is also tangent to H . It is thus necessarily
null. In the present case, such a vector is collinear to #»e �

0 C #»e �
1 .

Remark 12.4. The term horizon naming H has been introduced by analogy with
the event horizon of a black hole (Rindler 1966). However, there is an important
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difference between the two concepts: the event horizon of a black hole is a structure
intrinsic to spacetime, i.e. independent of any observer, while the Rindler horizon
depends clearly upon the considered accelerated observer.

12.2.7 Local Frame of the Uniformly Accelerated Observer

We have not discussed yet the local frame . #»e ˛.t// of observer O , except for
demanding that its 4-rotation vanishes [condition (12.2)]. Let us choose this frame
in the following manner: #»e 0.t/ D #»u .t/ (by definition), #»e 1.t/ is collinear to O’s
4-acceleration:

#»e 1.t/ WD 1

a
#»a .t/ (12.25)

and #»e 2.t/ and #»e 3.t/ are constant vectors that coincide with the vectors #»e �
2 and #»e �

3

of the frame of the inertial observer O�:

#»e 2.t/ WD #»e �
2 and #»e 3.t/ WD #»e �

3 : (12.26)

The tetrad . #»e ˛/ defined above is an admissible local frame for O , i.e. (i) it is an
orthonormal basis of .E;g/ and (ii) its 4-rotation vanishes [condition (12.2)].

Proof. By construction, #»e 1 is a spacelike unit vector; moreover, it is orthogonal to
#»u (since #»a is). The plane ˘ of O’s worldline being generated by #»u .t/ and #»a .t/,
we have

8t 2 R; ˘ D Span. #»e 0.t/;
#»e 1.t//: (12.27)

In view of (12.5), the vectors #»e �
2 and #»e �

3 form an orthonormal basis of the plane
˘? (orthogonal complementary to ˘ ). The same thing holds thus for #»e 2 and #»e 3:

˘? D Span. #»e 2;
#»e 3/: (12.28)

Since E D ˘
?˚ ˘?, the properties (12.27) and (12.28) show that . #»e ˛.t// is

an orthonormal basis of .E;g/ for any t 2 R. Moreover, this basis varies along
worldline L0 according to

1

c

d #»e 0

dt
D a #»e 1;

1

c

d #»e 1

dt
D a #»e 0 and

1

c

d #»e 2

dt
D 1

c

d #»e 3

dt
D 0: (12.29)

The first equation is an immediate consequence of #»e 0 D #»u and a #»e 1 D #»a , the
second follows from (12.25): d #»e 1=dt D a�1d #»a=dt , with d #»a=dt computed by
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taking the derivative of (12.12). Comparing (12.29) to the general law (3.52) for
the evolution of a local frame, we conclude that #»! D 0 in the present case. ut
Any other local frame compatible with the definition of a uniformly accelerated
observer would be related to . #»e ˛/ by a constant rotation of the three spatial
vectors . #»e i /.

Remark 12.5. Since #»! D 0, one can say that the tetrad . #»e ˛.t// is Fermi–Walker
transported along L0 (cf. Sect. 3.6.3): DFW

u
#»e ˛ D 0.

The frames . #»e ˛.t// and . #»e �̨/, associated, respectively, to observers O and O�,
constitute two orthonormal bases of .E;g/. They are thus related by a Lorentz
transformation depending upon t : #»e ˛.t/ D �.t/. #»e �̨/. The explicit form of �.t/

follows from (12.11), (12.12), (12.25) and (12.26):

8
ˆ̂<

ˆ̂:

#»e 0.t/ D cosh.act/ #»e �
0 C sinh.act/ #»e �

1
#»e 1.t/ D sinh.act/ #»e �

0 C cosh.act/ #»e �
1

#»e 2.t/ D #»e �
2

#»e 3.t/ D #»e �
3 :

(12.30)

Comparing with (6.43), we conclude that �.t/ is a Lorentz boost, of rapidity
 D act .

The coordinates .x0 D ct; x1; x2; x3/ associated with O’s local frame
. #»e ˛.t// (cf. Sect. 3.4.2) are called Rindler coordinates. Let us denote them by
.ct; x; y; z/ WD .x0; x1; x2; x3/. By definition [cf. (3.25)], they are such that

8M.t; x; y; z/ 2 Eu.t/;
#             »

O.t/M D x #»e 1.t/C y #»e 2.t/C z #»e 3.t/: (12.31)

A some fixed instant t , the coordinates .x; y; z/ coincide with the coordinates
.x0�; y0�; z0�/ associated with an inertial observer O 0� of 4-velocity #»u .t/ and whose
worldline is tangent to L0 at O.t/. Given the invariance of L0 with respect to t (cf.
Sect. 12.2.3), we may apply the results of Sect. 12.2.6 (obtained for t D 0) and state
that the domain x D x0� � �a�1 is invisible for observer O , or equivalently, that
only the domain

x > �a�1 (12.32)

is perceivable by O via light signals. We shall thus limit the extension of Rindler
coordinates to that part of the hyperplane Eu.t/. This is the part represented in
Fig. 12.5 (the part “on the right of” A).

The inertial coordinates .ct�; x�; y�; z�/ of M are defined by

#              »

O.0/M D ct� #»e �
0 C x� #»e �

1 C y� #»e �
2 C z� #»e �

3 : (12.33)
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Besides, the vector
#              »

O.0/M can be written as

#              »

O.0/M D #                   »

O.0/O.t/C #             »

O.t/M

D X˛� .t/
#»e �̨ C x #»e 1.t/C y #»e 2.t/C z #»e 3.t/

D a�1 sinh.act/ #»e �
0 C a�1Œcosh.act/ � 1� #»e �

1

CxŒsinh.act/ #»e �
0 C cosh.act/ #»e �

1 �C y #»e �
2 C z #»e �

3

D .x C a�1/ sinh.act/ #»e �
0 C Œ.x C a�1/ cosh.act/ � a�1� #»e �

1

Cy #»e �
2 C z #»e �

3 ; (12.34)

where the X˛� .t/’s are the functions introduced in (12.13) to define the equation of
O’s worldline,O.t/ being a generic point of the latter. To get the third line, use has
been made of expression (12.14) for X˛� .t/ as well as (12.30). Comparing (12.33)
with (12.34), we obtain the relation between the inertial coordinates .ct�; x�; y�; z�/
and the Rindler coordinates .ct; x; y; z/:

8
ˆ̂<

ˆ̂:

ct� D .x C a�1/ sinh.act/
x� D .x C a�1/ cosh.act/ � a�1
y� D y
z� D z:

t 2 R

x > �a�1 (12.35)

The iso-coordinate lines x D const are depicted in Fig. 12.8. In terms of the inertial
coordinates .ct�; x�/, they are branches of equilateral hyperbolas of centre A and
asymptotes1 and 2 (as L0). Indeed, by combining the first two equations of the
system (12.35), we get

�
ax� C 1
ax C 1

	2
�
�
act�
ax C 1

	2
D 1:

It is clear from Fig. 12.8 that the spacetime domain covered by Rindler coordinates
is the domain located between the two hyperplanes of respective equations ct� D
x�C a�1 and ct� D �x� � a�1, the trace of which in Fig. 12.8 being formed by the
two straight lines 1 and 2.

Historical note: Albert Einstein presented the first discussion of an accelerated
observer in 1907 (Einstein 1907). After a correspondence with Max Planck (cf.
p. 279) about his article, he was brought to make precise the definition of a uniformly
accelerated observer (Einstein 1908). He pointed notably that the acceleration
#»� relative to an inertial observer depends on the latter (cf. Remark 4.7 p. 116),
contrary to what happens in nonrelativistic mechanics, where #»� is a Galilean
invariant. Einstein defined then the constant acceleration 
 as that measured by
a tangent inertial observer. From (4.64), O’s 4-acceleration is expressed in terms of
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Fig. 12.8 Rindler
coordinates .ct; x/ in the
plane ˘ containing the
worldline of the uniformly
accelerated observer O: the
curves t D const are straight
lines through A, whereas the
curves x D const (dashed
lines) are hyperbola branches,
the curve x D 0 coinciding
with O’s worldline and the
“curve” x D �a�1 with the
point A

the acceleration #»� with respect to the tangent inertial observer as #»a D c�2 #»� , and
we notice that Einstein’s definition 
 D const corresponds indeed to the definition
a D const given above for a uniformly accelerated observer. The spacetime point
of view, with the introduction of the 4-acceleration, appeared only in 1909, with the
famous article by Hermann Minkowski (cf. p. 26) (1909). Minkowski related notably
the 4-acceleration to the “osculating” hyperbola of the worldline at the considered
point, the inverse of the 4-acceleration norm being nothing but the distance between
a point of the worldline and the centre of the hyperbola. Later in the same year Max
Born (cf. p. 76) studied the uniformly accelerated motion and named it hyperbolic
motion (Born 1909). This work was followed the next year by a study of Arnold
Sommerfeld (cf. p. 27) (1910b). Rindler coordinates bear their name from a detailed
study of the uniformly accelerated observer performed by Wolfgang Rindler3 in
1966 (Rindler 1966) (cf. also Sect. 37 of his book (Rindler 1969)). In the same
article, he developed the analogy between the horizon H , called since then after
him, and the event horizon of a black hole. However, the Rindler coordinates were
known well before, in particular, by Einstein, who used them in 1935 (Einstein and

3Wolfgang Rindler: physicist born in 1924 in Austria, currently professor of physics at the
University of Texas at Dallas and author of many textbooks about relativity, among them (Rindler
1969) and (Rindler 1991) (entirely devoted to special relativity).
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Rosen 1935). Similarly, the existence of a horizon for any accelerated observer has
been noticed quite soon, at least as early as 1938 by Edward Milne (cf. p. 6) and
Gerald J. Whitrow4 (1938).

12.3 Difference Between the Local Rest Space
and the Simultaneity Hypersurface

We have seen in Sect. 3.2.3 that the set of all events simultaneous with respect to O
to a given eventO.t/ 2 L0 is a hypersurface of E , denoted by ˙u.t/ and called the
simultaneity hypersurface ofO.t/ for O . As an approximation to this hypersurface,
we have introduced the local rest space Eu.t/, which is the hyperplane tangent to
˙u.t/ at O.t/ (cf. Fig. 3.3). We are going to investigate here the extent to which
Eu.t/ D ˙u.t/, and, when the two differ, we shall evaluate the distance from L0

for which the hyperplane Eu.t/ constitutes a good approximation of ˙u.t/. In what
follows, we assume that the 4-acceleration of O does not vanish: #»a 6D 0. Otherwise,
L0 is the worldline of an inertial observer, and we know that Eu.t/ D ˙u.t/ in this
case. To simplify the writing, we shall designO.t/ simply by O .

12.3.1 Case of a Generic Observer

Let us abandon for a while the uniformly accelerated observer, to deal with a generic
observer, i.e. an observer O whose 4-acceleration norm is not necessarily constant
and whose worldline is not necessarily confined to a plane of E .

Let M be some point of ˙u.t/, i.e. an event simultaneous to O for O according
to Einstein–Poincaré criterion (3.1). Let then A1 2 L0 be the event of proper time
t1 corresponding to the emission of a photon towards M and A2 2 L0 the event
of proper time t2 corresponding to the reception by O of the photon immediately
reflected at M (cf. Fig. 12.9). From the simultaneity criterion (3.1), we can write
t1 D t � T and t2 D t C T , with T � 0. By construction,

#        »
A1M is a null vector; we

have thus
#        »
A1M � #        »

A1M D 0. Writing
#        »
A1M D #      »

A1O C #    »
OM, we deduce

#     »
OA1 � #     »

OA1 C 2 #      »
A1O � #    »

OM C #    »
OM � #    »

OM D 0:

Forming the same relation for A2 and subtracting, we get

2
#        »
A1A2 � #    »

OM D #     »
OA2 � #     »

OA2 � #     »
OA1 � #     »

OA1: (12.36)

4Gerald J. Whitrow (1912–2000): British cosmologist and historian of science.
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Fig. 12.9 Event M
simultaneous with the event
O of proper time t on the
worldline of observer O

The vectors
#     »
OA1 and

#     »
OA2 can be expressed in terms of T , thanks to the Taylor series

(2.60) obtained in Sect. 2.7.3. There comes

#     »
OA1 D �

�
1C a2s2

6

	
s #»e SF

0 C
�
a � Pa

3
s

	
s2

2
#»e SF
1 �

aT1

6
s3 #»e SF

2 CO..as/4/
(12.37)

#     »
OA2 D

�
1C a2s2

6

	
s #»e SF

0 C
�
aC Pa

3
s

	
s2

2
#»e SF
1 C

aT1

6
s3 #»e SF

2 CO..as/4/;
(12.38)

where

• s WD cT.
• a WD k #»a .t/kg D

p
#»a .t/ � #»a .t/ is the curvature of L0 atO and Pa WD c�1 da=dt .

• as D acT is the dimensionless small quantity measuring the remoteness of M
from L0.

• . #»e SF
˛ / is the Serret–Frenet tetrad of worldline L0 at O introduced in Sect. 2.7.3;

in particular,

#»e SF
0 D #»u .t/ and #»e SF

1 D a�1 #»a .t/: (12.39)

• T1 is the first torsion of L0 at O .

Remark 12.6. At first order in as, (12.37) and (12.38) reduce to
#     »
OA1 D �s #»u .t/

and
#     »
OA2 D s #»u .t/. We recover thus expressions (3.3) of Sect. 3.2.3.
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The vector
#        »
A1A2 that appears in (12.36) can be written

#        »
A1A2 D #      »

A1O C #     »
OA2 D

� #     »
OA1 C #     »

OA2, i.e. from (12.37) and (12.38),

#        »
A1A2 D 2

�
1C a2s2

6

	
s #»e SF

0 C
Pa
3
s3 #»e SF

1 C
aT1

3
s3 #»e SF

2 CO..as/4/: (12.40)

Besides, we infer from (12.37) to (12.38) and the orthonormality of the basis . #»e SF
˛ /

that

#     »
OA1 � #     »

OA1 D �s2
�
1C .as/2

12

�
CO..as/5/

#     »
OA2 � #     »

OA2 D �s2
�
1C .as/2

12

�
CO..as/5/:

We notice that

#     »
OA1 � #     »

OA1 D #     »
OA2 � #     »

OA2 CO..as/5/: (12.41)

Substituting (12.40) and (12.41) in (12.36), we get

2

�
1C a2s2

6

	
s #»e SF

0 � #    »
OM C Pa

3
s3 #»e SF

1 � #    »
OM C aT1

3
s3 #»e SF

2 � #    »
OM D O..as/4/:

Taking into account (12.39), we can rewrite this equation as

�
1C .as/

2

6

�
#»u .t/ � #    »

OM D � .as/
2

6

� Pa
a3

#»a .t/ � #    »
OMCT1

a
#»e SF
2 �

#    »
OM

�

CO..as/3/
: (12.42)

If M was belonging to the local rest space Eu.t/, one would have #»u .t/ � #    »
OM D 0.

The above relation thus shows that the discrepancy between the simultaneity
hypersurface ˙u.t/ and the hyperplane Eu.t/ starts only at the second order in as.
Moreover, if the variation of a and the first torsion are such that j Paj=a2 	 as and
jT1j=a	 as, then (12.42) reduces to

#»u .t/ � #    »
OM D O..as/3/:

max
�

jPaj

a2
;

jT1j

a

�
�as

(12.43)

This means that, at the second order in as, ˙u.t/ and Eu.t/ coincide.
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12.3.2 Case of a Uniformly Accelerated Observer

If O is uniformly accelerated, then Pa D 0 (a is constant) and T1 D 0 (worldline
confined in the plane˘ ), so that (12.43) holds: #»u .t/ � #    »

OM D O..as/3/. But there is
more: actually #»u .t/ � #    »

OM D 0 at any order in as. In other words,

For a uniformly accelerated observer, the simultaneity hypersurface ˙u.t/

coincides exactly with the local rest space Eu.t/:

8t 2 R; ˙u.t/ D Eu.t/ : (12.44)

Proof. The result follows from simple symmetry considerations. Indeed let us
choose O D O.0/. Within the inertial coordinates .ct�; x�; y�; z�/, the hyperbola
representing the worldline L0 is symmetric with respect to the hyperplane Eu.0/

(cf. Fig. 12.10). In the same coordinates, the null geodesics, which are used in the
Einstein–Poincaré simultaneity criterion, are straight lines with a slope of ˙45ı. It
is then clear that the points simultaneous toO are those of the hyperplane Eu.0/. We
have thus ˙u.0/ D Eu.0/. The point O.0/ being undistinguishable from the other
points of L0 (cf. Sect. 12.2.3), except from the convention fixing the origin of O’s
proper time, we get the result. ut

12.4 Physics in an Accelerated Frame

In all that follows, we consider for simplicity the uniformly accelerated observer
O introduced in Sect. 12.2. All the investigated physical effects hold for a generic
accelerated observer, possibly with more complicated explicit formulas.

12.4.1 Clock Synchronization

Let us consider a second observer, O 0, fixed with respect to O , in the sense defined
in Sect. 3.4.3—the coordinates .x; y; z/ of O 0 relative to O (Rindler coordinates in
the present case) are constant (cf. Fig. 12.11):

x D x0 D const; y D y0 D const and z D z0 D const: (12.45)
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One says also that O 0 is an observer comoving with O . The worldline L 0
0 of O 0 is

obtained from the system (12.35):

8
ˆ̂<

ˆ̂:

ct� D .x0 C a�1/ sinh.act/
x� D .x0 C a�1/ cosh.act/ � a�1
y� D y0
z� D z0;

(12.46)
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where t 2 R appears as a parametrization of L 0
0 . Equation (12.46) defines a branch

of hyperbola in the timelike plane .y� D y0; z� D z0/ of E . This implies that the
observer O 0 is himself a uniformly accelerated observer.

The physical interpretation of the parameter t along L 0
0 , as it appears in (12.46),

is that the event of L 0
0 corresponding to a given value of t is simultaneous for O to

the event of proper time t on O’s worldline. A priori, t is different from the proper
time of O 0, which we shall denote by t 0. Let us relate these two proper times. We
note O 0.t 0/ the intersection of L 0

0 with the rest space5 Eu.t/ of O at proper time t
(cf. Fig. 12.11). The 4-velocity #»u 0.t 0/ of O 0 at O 0.t 0/ obeys (4.27). Since #»! D 0 [O
is not rotating; cf. (12.2)] and

#»
V D 0 [O 0 is fixed with respect to O], this formula

reduces to

#»u 0.t 0/ D �
h
1C #»a .t/ � #                     »

O.t/O 0.t 0/
i

#»u .t/;

where � is the Lorentz factor of O 0 with respect to O . Now #»u 0.t 0/ and #»u .t/ are
two unit future-directed timelike vectors. If they are proportional, as above, the
proportionality factor must be equal to one. We have thus necessarily

#»u 0.t 0/ D #»u .t/ (12.47)

and

� D
h
1C #»a .t/ � #                     »

O.t/O 0.t 0/
i�1

: (12.48)

Note that (12.48) can also be deduced directly from (4.30), by setting #»! D 0 and
#»
V D 0. The rest space of an observer being, by definition, the hyperplane orthogonal
to his 4-velocity at the considered event, we deduce immediately from (12.47) that
the rest spaces of observers O 0 and O coincide:

Eu0.t 0/ D Eu.t/ : (12.49)

This common rest space is represented by the straight line through the points A,
O.t/ and O 0.t 0/ in Fig. 12.11.

Since #»a .t/ D a #»e 1.t/ [Eq. (12.25)] and
#                     »

O.t/O 0.t 0/ D x0
#»e 1.t/ C y0 #»e 2.t/ C

z0
#»e 3.t/ [Eq. (12.31)], we have #»a .t/ � #                     »

O.t/O 0.t 0/ D ax0, so that (12.48) reduces to

� D .1C ax0/�1 : (12.50)

5In view of the result (12.44), we may omit the qualifier local in the denomination of Eu.t /.
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By definition [Eq. (4.1)], � D dt=dt 0, so that we obtain the relation between the
proper times of O and O 0:

dt 0 D .1C ax0/ dt : (12.51)

Remark 12.7. It is instructive to get (12.51) without appealing to the results of
Chap. 4, as done above, but by starting from the equation of the worldline of O 0
[Eq. (12.46)] and from the definition (2.6) of proper time. According to the latter,
the increase in t 0 corresponding to a small displacement d #»x along L 0

0 in the future
direction is

c dt 0 D
p
�g.d #»x ; d #»x / D

q
c2dt2� � dx2� � dy2� � dz2�; (12.52)

where we have expressed d #»x in the frame of inertial observer O�: d #»x D c dt� #»e �
0 C

dx� #»e �
1 C dy� #»e �

2 C dz� #»e �
3 . Now, from (12.46), d #»x is generated by a small

increment dt of the parameter t according to

8
<

:

c dt� D .ax0 C 1/ cosh.act/ c dt
dx� D .ax0 C 1/ sinh.act/ c dt
dy� D dz� D 0:

Substituting these values in (12.52), we get

c dt 0 D c dt jax0 C 1j
q

cosh2.act/ � sinh2.act/ D jax0 C 1j c dt:

Given that 1C ax0 > 0 [cf. Eq. (12.32)], we recover (12.51).

Since x0 is constant along the worldline L 0
0 , (12.51) is integrated in

t 0 D .1C ax0/t ; (12.53)

where the integration constant has been chosen in order to ensure t 0 D 0 when
t D 0. This formula, which relates the proper time of O 0 to that of O , reveals a
major difference between an accelerated observer and an inertial one:

For an inertial observer, all the ideal clocks that are fixed with respect to him
and synchronized with his own clock at t D 0 remain synchronized for any
t > 0. On the contrary, for an accelerated observer, an ideal clock fixed with
respect to him and located at x0 6D 0 is desynchronized as soon as t > 0:
its proper time, t 0, does no longer coincide with the observer’s proper time t ,
even for simultaneous events.
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This can be clearly seen in Fig. 12.11: the events O.t/ and O 0.t 0/ are simulta-
neous, from the point of view of O as well as that of O 0, but O attributes the date
t D 0:5.ac/�1 to them and O 0 the date t 0 D 1:25.ac/�1, while the clocks of O and
O 0 having been synchronized at t D t 0 D 0.

Historical note: The relation (12.51) between the proper time of O and that of
an observer fixed with respect to him has been obtained by Albert Einstein in 1907
(Einstein 1907).

12.4.2 4-Acceleration of Comoving Observers

Substituting the value of t deduced from (12.53) in (12.46), we obtain the equation
of the worldline of O 0 parametrized by his proper time t 0:

8
ˆ̂<

ˆ̂:

ct� D a0�1 sinh.a0ct 0/
x0� D a0�1 Œcosh.a0ct 0/� 1�
y0� D 0
z0� D 0;

(12.54)

with

a0 WD a

1C ax0 (12.55)

and

x0� WD x� � x0; y0� WD y� � y0; z0� WD z� � z0: (12.56)

The system (12.54) has exactly the same structure as (12.14). Since .ct�; x0�; y0�; z0�/
are inertial coordinates, we conclude that O 0 is a uniformly accelerated observer,
whose 4-acceleration norm is a0. We note that

x0 � 0 ” a0 � a and lim
x0!�a�1

a0 D C1: (12.57)

The asymptotes to the hyperbola branch forming the worldline of O 0 are given by
formulas similar to (12.16):

0
1 W ct� D x0� C a0�1; y0� D 0; z0� D 0

0
2 W ct� D �x0� � a0�1; y0� D 0; z0� D 0:

In terms of the coordinates .x�; y�; z�/, these equations become
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0
1 W ct� D x� C a�1; y� D y0; z� D z0

0
2 W ct� D �x� � a�1; y0� D y0; z0� D z0:

Comparing with (12.16), we observe that if y0 D 0 and z0 D 0, then 0
1 D 1 and

0
2 D 2, which is not surprising since L0 and L 0

0 are then equilateral hyperbolas
sharing the same centre: the point A, of coordinates

.ct�; x�/ D .0;�a�1/ ” .ct�; x0�/ D .0;�a0�1/:

The Rindler horizon of the accelerated observer O 0 is given by (12.24), with the
coordinates .x�; y�; z�/ replaced .x0�; y0�; z0�/ and a replaced by a0: ct� D x0�Ca0�1.
Now, thanks to (12.55) and (12.56), x0�Ca0�1 D x�Ca�1. We obtain then the same
equation as (12.24). We thus conclude:

All observers fixed with respect to O have the same Rindler horizon H .

12.4.3 Rigid Ruler in Accelerated Motion

The above discussion can be used to treat the problem of an accelerated rigid
ruler in relativity. Let us recall that we have defined an infinitesimal rigid ruler in
Sect. 3.3.2, from Born’s rigidity criterion. In the present case (uniform acceleration),
we can extend this criterion to rulers of finite extent. Let us consider the ruler whose
extremities are the worldlines L0 and L 0

0 of the accelerated observers O and O 0
considered above. We assume that L0 and L 0

0 are coplanar, i.e. that y0 D z0 D 0.
Such a ruler is drawn in Fig. 12.12. It is accelerated along its length (x-axis of
observer O). For observer O as well as for observer O 0, who shares the same
rest space, the (metric) length of the ruler at a given instant of proper time t is
`0 D k #                     »

O.t/O 0.t 0/kg , where t 0is related to t by (12.53). The segment O.t/O 0.t 0/ is
depicted at various instants t by the dashed elongated rectangles in Fig. 12.12. Now,
from the definition of Rindler coordinates,

#                     »

O.t/O 0.t 0/ D x0 #»e 1.t/. We have thus

`0 D jx0j : (12.58)

Since x0 D const (from the very definition of O 0), we conclude that the length `0
of the ruler measured by a comoving observer is constant: this is the reason why the
ruler is qualified of rigid. The quantity `0 is called the rest length of the ruler.

On the other side, for the inertial observer O�, the ruler at some instant of his
proper time t� is perceived as aligned with the x�-axis (horizontal rectangles, drawn
with solid lines, in Fig. 12.12). The ruler’s length measured by O� is thus
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Fig. 12.12 Ruler in uniformly accelerated motion. The coloured zone is the spacetime domain
covered by the ruler. The horizontal rectangles (solid lines) represent the ruler as perceived by the
inertial observer O� at various instants t� of his proper time. The inclined rectangles (dashed lines)
represent the rule as perceived by an observer at rest with respect to it, as, for instance, the observer
O located at its left end or the observer O0 located at its right end

`.t�/ D jx�.O 0/ � x�.O/j;

where x�.O/ and x�.O 0/ are related to t� by, respectively, (12.15) and (12.46):

x�.O/ D a�1
p
1C .act�/2�a�1; x�.O

0/ D .x0Ca�1/

s

1C
�

act�

1C ax0

	2
�a�1:

We conclude that

`.t�/ D `0 2C ax0p
.1C ax0/2 C .act�/2 C

p
1C .act�/2

: (12.59)

It is clear that `.t�/ is not constant and that we have

`.0/ D `0; lim
t�!˙1 `.t�/ D 0 (12.60)

as well as

`.t�/ � `0 : (12.61)

This last result reflects the FitzGerald–Lorentz contraction discussed in Sect. 5.2.2.
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Remark 12.8. The motion of the accelerated ruler, as depicted in Fig. 12.12,
illustrates clearly the “phenomenon” of length contraction: the ruler at different
instants t� � 0 appears as horizontal segments of smaller and smaller length.
All these segments represent the ruler as perceived by the same inertial observer,
O�, so the noticed graphical contraction can be interpreted unambiguously as a
contraction of the metric length of the ruler. On the contrary, in Fig. 5.3, the two
depicted segments correspond to the ruler as perceived by two distinct inertial
observers. Given the Lorentzian nature of the metric g, one cannot convert directly
the Euclidean lengths of the segments drawn in Fig. 5.3 into metric lengths. Another
difference with the situation contemplated in Chap. 5 is that, in the present case, the
coefficient of length contraction is not a Lorentz factor, as in (5.17), for the different
points of the ruler do not have the same velocity relative to O� (the left end moves
faster than the right end). There is therefore not a unique Lorentz factor of the ruler
with respect to O�.

Remark 12.9. Although the ruler is qualified of rigid, it appears for O� more and
more compressed as t� increases from t� D 0. So the rigidity is effective only for a
comoving observer.

Let us compute the round-trip time of a photon between the two ends of the ruler,
as measured by observer O , which is “fixed” at the left end. Since O is a stationary
observer (cf. Sect. 12.2.3), we can, without any loss of generality, consider that the
photon is emitted by O at some instant t D �T with T > 0 (event A1), reflected
by O 0 (at the second end) at the instant t D 0 (event B) and received by O at the
instant t D T (eventA2). The three events A1, A2 and B are depicted in Fig. 12.12.
Setting t D �T in (12.14), we get the inertial coordinates of event A1: ct�.A1/ D
�a�1 sinh.acT /, x�.A1/ D a�1 cosh.acT / � a�1. Those of B being ct�.B/ D 0

and x�.B/ D x0, we obtain the components of vector
#      »
A1B in the orthonormal basis

. #»e �̨/ associated with the inertial observer O�:

#      »
A1B D a�1 sinh.acT / #»e �

0 C Œx0 C a�1 � a�1 cosh.acT /� #»e �
1 : (12.62)

Now, as being tangent to a photon worldline,
#      »
A1B is a null vector. Expressing

#      »
A1B �

#      »
A1B D 0 with (12.62), we get

cosh.acT / D 1

2

�
1C ax0 C 1

1C ax0
	
:

Setting 1Cax0 DW e� , we recognize cosh � in the right-hand side, hence acT D ˙�,
i.e.

T D ˙.ac/�1 ln.1C ax0/ ; (12.63)

where˙ D sgn.x0/ (sign of x0); one has thus always T � 0. The photon round-trip
time is 2T D t.A2/ � t.A1/. It depends only on the norm a of O’s 4-acceleration
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and on the position x0 (relatively to O) of the ruler’s second end. Since a and x0 are
constant along L0, we conclude that the time interval T is the same whatever the
emission point A1 on O’s worldline: Born’s rigidity criterion is thus fulfilled.

Formula (12.63) is easily inverted, yielding x0 in terms of T . Since the ruler’s
rest length is `0 D jx0j [Eq. (12.58)], we get

`0 D ˙a�1 �e˙acT � 1� ; (12.64)

still with ˙ D sgn.x0/. A second-order Taylor expansion with respect to acT
leads to

`0 ' cT
�
1˙ acT

2

	
: (12.65)

If acT 	 1, the above formula results in `0 ' cT , i.e. one recovers formula (3.21)
of Chap. 3. The latter had been obtained by neglecting the curvature of the worldline
of the ruler’s end, which amounts exactly to acT 	 1. Formula (12.65) shows that
the light round-trip distance cT provides an underestimate of the rest length of the
ruler when the observer who is sending and receiving the light signal is located at the
left end (x0 > 0) and an overestimate when he is located at the right end (x0 < 0),
the “left” and “right” being defined by the orientation of the 4-acceleration vector
#»a : given that #»a belongs to O’s rest space and is parallel to the ruler, O is said to
be at left of the ruler if #»a is oriented towards the other end and to be at right in the
opposite case.

Remark 12.10. We have seen in Sect. 12.3.2 that acceleration, provided that it stays
uniform, does not change anything to the geometrical criterion for simultaneity
introduced in Chap. 3, namely, the orthogonality to the worldline. On the other hand,
formula (12.65) reveals that the procedure of chronometrical measure of distances
introduced in Chap. 3 is no longer valid for length scales of the order of a�1 or
larger: the chronometrical measure cT differs from the actual metric length `0 by a
quantity proportional to acT .

12.4.4 Photon Trajectories

Let us investigate the null geodesics in the plane ˘ of the uniformly accelerated
observer O . They are the straight lines of ˘ whose equations within the inertial
coordinates .ct�; x�/ spanning˘ are

ct� D ˙.x� � b/; b 2 R;

with the sign C for photons moving rightward (increasing x�) and � for those
moving leftward (decreasing x�). The parameter b is the photon’s abscissa x� at
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t� D 0. Thanks to the transformation law (12.35) between the inertial coordinates
.ct�; x�; y�; z�/ and O’s coordinates .ct; x; y; z/, the above equation becomes

.x C a�1/ sinh.act/ D ˙ �.x C a�1/ cosh.act/ � a�1 � b� ;

hence, via formulas cosh u D .eu C e�u/=2 and sinh u D .eu � e�u/=2,

ct D ˙a�1 ln

�
1C ax
1C ab

	
: (12.66)

By means of this equation, a few null geodesics are plotted in Fig. 12.13, which
describes the plane ˘ in terms of the coordinates .ct; x/. Although being straight
lines of Minkowski spacetime, they appear curved when plotted in Rindler coordi-
nates. In the vicinity of O’s worldline (x D 0), we observe however that the null
geodesics can be approximated by straight lines inclined at ˙45ı, as if they were
drawn in inertial coordinates. Setting b D 0 and jxj 	 a�1 in (12.66), there comes
indeed

ct ' ˙x .jxj 	 a�1/:

We notice also on Fig. 12.13 that no geodesic arises from the Rindler horizon H and
that no geodesic reaches H within a finite time t . Let us also stress that Fig. 12.13 is
invariant under a translation in t : this reflects the stationary character of O discussed
in Sect. 12.2.3.

12.4.5 Spectral Shift

Let us consider the reception by O of a photon emitted by observer O 0, who is fixed
with respect to O and located in the plane˘ , at coordinates6 .x; y; z/ D .xem; 0; 0/.
Without any loss of generality, we may consider that the emission takes place at the
instant t D 0 (cf. Fig. 12.14). The instant trec of the photon’s reception by O is then
deduced from (12.66), setting x D 0 (O’s position) and b D xem:

ctrec D ˙a�1 ln.1C axem/; (12.67)

with the sign � if xem � 0 (rightward photon’s propagation) andC otherwise.
Let Eem be the photon’s energy measured by O 0 at the emission point. From

(9.22), the photon’s 4-momentum is

6In the previous sections, we have denoted by x0 the x-coordinate of observer O0; here we rather
use xem, which recalls that he is an emitter.
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Fig. 12.13 Null geodesics in
the plane ˘ in terms of the
coordinates .ct; x/ associated
with the uniformly
accelerated observer O
(worldline L0). H (at
ax D �1) is the Rindler
horizon

Fig. 12.14 Reception by O
of a photon emitted by
observer O0, fixed with
respect to O. #»p is the
photon’s 4-momentum vector

#»p D Eem

c

�
#»u 0.0/C #»n 0� ;

where #»u 0.0/ is the 4-velocity of O 0 and #»n 0 the unit vector giving the photon’s
propagation direction with respect to O 0. From (12.47), #»u 0.0/ D #»u .0/ D #»e �

0 . We
have then necessarily #»n 0 D ˙ #»e �

1 (since the photon is propagating in the plane ˘ ),
so that

#»p D Eem

c

�
#»e �
0 ˙ #»e �

1

�
; (12.68)

with theC sign if xem � 0 and the � sign if xem � 0 (case depicted in Fig. 12.14).
The photon’s energy measured by O at the reception point is given by (9.4):

Erec D �c #»p � #»u .trec/, where #»p is the same vector as in (12.68), by conservation
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of the photon’s 4-momentum [Eq. (9.37)] and #»u .trec/ is O’s 4-velocity at the proper
time trec. The latter is given by (12.11), with t D trec. Thus,

Erec D �Eem
�

#»e �
0 ˙ #»e �

1

� � �cosh.actrec/
#»e �
0 C sinh.actrec/

#»e �
1

�

D �Eem Œ� cosh.actrec/˙ sinh.actrec/� D Eeme˙actrec ;

with ˙ D sgn.xem/. Combining with (12.67), we obtain a formula that does no
longer depend on the sign of xem:

Erec D Eem.1C axem/: (12.69)

Moreover, this formula does not involve trec, in agreement with the stationary
character of O . By means of the Planck–Einstein formula (9.24), the above relation
can be expressed in terms of the photon’s frequency:

frec D fem.1C axem/ ; (12.70)

or, in terms of the radiation period T D 1=f :

Trec D Tem

1C axem
: (12.71)

The same relation holds for the wavelengths, since � D cT . The redshift factor is
defined by z WD �rec=�em � 1. In view of (12.71), we get

z D 1

1C axem
� 1 : (12.72)

Therefore, if the emitter is at the left of O (xem � 0), z � 0: the spectral shift is
towards the red, with z ! C1 when the emission point approaches the Rindler
horizon (xem ! �a�1). Conversely, for an emission at right of O , z � 0 and
we have a blueshift. We shall see in Chap. 22 that the result (12.72) leads to
a well-known effect in general relativity: the gravitational redshift. This follows
from the equivalence principle, to be discussed in Sect. 22.3, according to which a
gravitational field is locally equivalent to an accelerated frame.

Note that the measure of z allows observer O to determine axem. If, in addition,
O measures the round-trip time 2T of a photon between x D 0 and xem, formula
(12.63) (with x0 D xem), combined to (12.72), leads to an expression of a that
involves only quantities measured by O:

a D  ln.1C z/

cT
; (12.73)
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with  D �sgn.xem/, so that a is always positive. Equation (12.73) shows that the
amplitude of the 4-acceleration is a measurable quantity, as announced in Sect. 3.5.3.

Remark 12.11. We shall see in Sect. 13.2.2 that the 4-rotation of an observer is
also a measurable quantity. On the contrary, the 4-velocity is not measurable
(incidentally its norm is always 1).

12.4.6 Motion of Free Particles

Let us consider a free particle P . According to the law of inertia obtained in
Sect. 9.3.4, its worldline L is a straight line of E . Let us consider the case where
L is parallel to #»e �

0 , which means that P is at rest with respect to the inertial
observer O� and its 4-velocity is #»e �

0 . Moreover, we assume that L lies in the plane
˘ (cf. Fig. 12.15). The equation of L in the inertial coordinates associated with O�
is then

x� D b; y� D 0; z� D 0;
where the parameter b is chosen within � � a�1;C1Œ.

Let M.t/ be the intersection of L with the local rest space Eu.t/ of the
accelerated observer O , whose position at the proper time t is denoted by O.t/.
In view of equation (12.22) for Eu.t/, the inertial coordinates of M.t/ are ct� D
tanh.act/.b C a�1/ and x� D b. Those of O.t/ being given by (12.14), we deduce
the expression of the vector

#                   »

O.t/M.t/ in the basis . #»e �̨/:

#                   »

O.t/M.t/ D �
tanh.act/.b C a�1/� a�1 sinh.act/

�
#»e �
0

C �b � a�1 cosh.act/C a�1� #»e �
1

D
�
b C a�1

cosh.act/
� a�1

� �
sinh.act/ #»e �

0 C cosh.act/ #»e �
1

�
:

With the help of (12.30), we recognize in this expression the vector #»e 1.t/ of O’s
local frame; we may thus write

#                   »

O.t/M.t/ D x.t/ #»e 1.t/; (12.74)

with

x.t/ D b C a�1

cosh.act/
� a�1 : (12.75)

By definition, x.t/ is the Rindler coordinate x of the point M.t/. We check that
x.0/ D b, which is consistent with x D x� at t D 0. The curve x D x.t/

corresponding to (12.75) (P’s worldline) is depicted in the right panel of Fig. 12.15
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Fig. 12.15 Worldlines of the free particle P and of the uniformly accelerated observer O,
depicted in the inertial coordinates .ct�; x�/ (left panel) and in the Rindler coordinates .ct; x/
associated with O (right panel). H is O’s Rindler horizon

in the case b D a�1. The particle P encounters observer O iff x.t0/ D 0 for a
certain value t0 of t , i.e. iff

cosh.act0/ D 1C ab:

This equation admits two solutions:

t0 D ˙.ac/�1arcosh.1C ab/ (12.76)

iff b � 0. In the case b D a�1 depicted in Fig. 12.15, this corresponds to t0 '
˙1:317.ac/�1.

By definition, P’s velocity relative to observer O is
#»

V .t/ D .dx=dt/ #»e 1.t/.
We get

#»

V .t/ D V.t/ #»e 1.t/ with V.t/ D �c.1C ab/ sinh.act/

cosh2.act/
: (12.77)

The Lorentz factor of P relative to O is given by (4.9), with #»u � #»u 0 D #»u .t/� #»e �
0 D

� cosh.act/ and 1C #»a � #    »
OM D 1C ax.t/. Hence,

� D cosh2.act/

1C ab : (12.78)
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The 4-velocity of P is the constant vector #»u P D #»e �
0 . From (12.30), we can

express it in O’s local frame as #»u P D cosh.act/ #»u .t/ � sinh.act/ #»e 1.t/. P’s
4-momentum vector is #»p D mc #»u P [Eq. (9.3)],m being P’s mass. We have thus

#»p D mc Œcosh.act/ #»u .t/ � sinh.act/ #»e 1.t/� : (12.79)

By comparing with the orthogonal decomposition (9.7), we read the energy of
particle P measured by O:

E D mc2 cosh.act/ ; (12.80)

as well as the linear momentum of P measured by O:

#»
P D �mc sinh.act/ #»e 1.t/ : (12.81)

By means of (12.75), we can express the energy in terms of the position of the
particle:

E D mc2 1C ab
1C ax.t/ : (12.82)

Note that neither E nor
#»
P are constant, while the particle is free. This reflects the

fact that O is not an inertial observer.

Remark 12.12. By combining (12.77), (12.78) and (12.81), we check relation (9.13)
(with #»! D 0):

#»

P D � m #»

V .

At the limit of small accelerations, or of distances from O small in front of a�1,
i.e. jactj 	 1, jax.t/j 	 1 and jabj 	 1, Taylor expansions of formulas (12.75),
(12.77), (12.78), (12.80), (12.81) and (12.82) lead, respectively, to

x.t/ ' b � 

2
t2 (12.83)

V ' �
 t (12.84)

� ' 1C 1

2

V 2

c2
� 
b
c2

(12.85)

E ' mc2 C 1

2
mV 2 (12.86)

#»
P D mV #»e 1.t/ (12.87)

E ' mc2 �m
Œx.t/ � b�; (12.88)



12.5 Thomas Precession 415

where we have let appear the norm 
 WD c2a of O’s acceleration relative to the
tangent inertial observer O� at t D t� D 0 [cf. (12.20)]. We recognize in (12.83)
and (12.84) the equations of motion of Newtonian mechanics describing the free
fall of a particle in a uniform gravitational field of amplitude 
 oriented towards the
negative x’s. Moreover, (12.88) shows that the quantity

E 0 WD E CEpot; with Epot WD m
 x.t/; (12.89)

is a constant of motion (equal to mc2 C b). The expression of Epot is of course
reminiscent of the potential energy in a uniform gravitational field. We shall come
back to this fundamental point in Chap. 22, which is devoted to gravitation.

12.5 Thomas Precession

Thomas precession is a relativistic phenomenon that consists in the rotation of the
frame of a nonrotating accelerated observer (i.e. an observer whose 4-rotation #»!

vanishes) when this frame is compared to that of a given inertial observer. This
phenomenon has no equivalent in Newtonian mechanics. It also does not occur
when, with respect to the inertial observer, the acceleration is collinear to the
velocity, which is the case of the uniformly accelerated observer considered in
Sect. 12.2 and 12.4.

12.5.1 Derivation

Thomas precession is actually a manifestation of Thomas rotation studied in
Sect. 6.7.2, namely, of the fact that the product of two Lorentz boosts of different
planes is not a boost but the product of a boost by a spatial rotation.

Let us consider an accelerated observer O , of worldline L , proper time t ,
4-velocity #»u .t/, 4-acceleration #»a .t/ 6D 0 and vanishing 4-rotation: #»!.t/ D 0. Let
us denote by . #»e ˛.t// the local frame of O (cf. Fig. 12.16). In addition, let O� be an
inertial observer, of worldline L�, proper time t� and frame . #»e �̨/. Denoting by �
the Lorentz factor of O relative to O�, by

#»

V and #»� the velocity and acceleration of
O relative to O�, the following relations hold:

� D dt�=dt; (12.90)

� D
�
1 � 1

c2
#»
V � #»

V

	�1=2
; (12.91)

#»u D #»e 0 D �
�

#»e �
0 C

1

c

#»

V

	
; (12.92)

#»� D � �2
h
c2 #»a � . #»a � #»

V /
�

#»
V C c #»e �

0

�i
: (12.93)
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Fig. 12.16 Accelerated
observer O [local frame
. #»e ˛.t//] and inertial observer
O� [frame . #»e �

˛ /]. The
change from the tetrad
. #»e �

0 ;
#»" 1;

#»" 2;
#»" 3/ to the

tetrad . #»e ˛.t// is performed
via a Lorentz boost, whose
velocity parameter

#»

V is
nothing but the velocity of O
relative to O�

They are nothing but formulas (4.1), (4.33), (4.31) and (4.72) established in Chap. 4
and adapted to the present notations.

Let S be the unique Lorentz boost sending the 4-velocity of O� to that of O at
the instant t (cf. Sect. 6.6.1):

#»e 0.t/ D S . #»e �
0 /: (12.94)

Let us define

#»" ˛.t�/ WD S �1. #»e ˛.t//; (12.95)

noticing that, by construction, #»" 0.t�/ D #»e �
0 D const. Since S is a Lorentz

transformation, . #»" ˛.t�// is an orthonormal basis of .E;g/. It is such that the three
vectors . #»" i .t�// D . #»" 1.t�/; #»" 2.t�/; #»" 3.t�// form an orthonormal basis (depending
upon time) of O�’s rest space,Ee�

0
. The triad . #»" i .t�// can be seen as “representing”

the spatial frame . #»e i .t// of O with respect to O�: this is the triad of O�’s rest space,
Ee�

0
, that is the “most parallel” to . #»e i .t//: the two triads coincide if #»e 0.t/ D #»e �

0

(O momentarily at rest with respect to O� ” S D Id); if #»e 0.t/ 6D #»e �
0 ,

the two triads cannot be parallel (i.e. coincide) for they belong to different vector
hyperplanes (Ee�

0
and Eu.t/; cf. Fig. 12.16). However, if one of the vectors #»e i .t/,

for instance, #»e 1.t/, is in the plane of the boost S , then #»" 2.t�/ D #»e 2.t/ and
#»" 3.t�/ D #»e 3.t/, so that the triads . #»e i .t// and . #»" i .t�// are quasiparallel (cf.
Sect. 8.3.1).

Thomas precession concerns the evolution of the triad . #»" i .t�// during the motion
of O , i.e. when t (and thus t�) varies. The local frame of O evolves according to the
law (3.52) with #»! D 0 (since O is nonrotating). We shall use this law under the
form (7.27) obtained in Chap. 7:

#»e ˛.t C dt/ D �. #»e ˛.t//; (12.96)

� being the endomorphism of E defined by
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� WD IdC c dt aiK i ; (12.97)

where (i) the ai ’s are the components of #»a in the basis . #»e i / of Eu : #»a D ai #»e i (let
us remind that #»a 2 Eu) and (ii) the three endomorphisms K i are the generators of
Lorentz boosts introduced in Sect. 7.3.3. It is clear that � is an infinitesimal Lorentz
boost. At first order in dt , its Lorentz factor is � ' 1 and its velocity is7

# »

W D c2dt #»a : (12.98)

Let us look for the evolution of the triad #»" i .t�/ starting from (12.95), which
we transpose from .t�; t/ to .t� C dt�; t C dt/. Care must be taken that a priori S

depends on t . Let us thus denote by S tCdt the value of S at the instant t C dt .
Equation (12.94) becomes then #»e 0.t C dt/ D S tCdt .

#»e �
0 / and (12.95) leads to

#»" ˛.t� C dt�/ D S �1
tCdt .

#»e ˛.t C dt//

D S �1
tCdt ı�. #»e ˛.t//

D S �1
tCdt ı� ı S . #»" ˛.t�//; (12.99)

where use has been made of (12.96) to get the second line and (12.95) for the third
one. Since � and S are two Lorentz boosts whose planes intersect along #»e 0.t/ D
S . #»" 0.t�// D S . #»e �

0 /, we know, from the study performed in Sect. 6.7.2, that the
composite function � ı S is the product of a boost S 0 whose plane contains #»e �

0 by
a spatial rotation R, of plane orthogonal to #»e �

0 —Thomas rotation [cf. Eq. (6.100)]:

� ı S D S 0 ıR: (12.100)

Let us show that actually S 0 D S tCdt . Since R. #»e �
0 / D #»e �

0 , the identity (12.100)
leads to

S 0. #»e �
0 / D � ı S . #»e �

0 /„ ƒ‚ …
#»e 0.t/

D �. #»e 0.t// D #»e 0.t C dt/ D S tCdt .
#»e �
0 /;

where we have used successively (12.94), (12.96) and again (12.94) with t ! tCdt
and S ! S tCdt . The above result shows that S 0 and S tCdt are two boosts whose
planes contain #»e �

0 and that give the same image of #»e �
0 . They necessarily coincide,

so that (12.100) can be written � ı S D S tCdt ı R. By inserting this relation in
(12.99), there comes #»" ˛.t� C dt�/ D R. #»" ˛.t�//; hence, in particular,

#»" i .t� C dt�/ D R. #»" i .t�// : (12.101)

7To see it, it suffices to express � in terms of its rapidity ı according to (7.22), to compare with
(12.97) and to write the velocity of � as W D c tanh.ı / ' c ı .
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Thus, the evolution of the triad . #»" i .t�//, which represents the triad . #»e i .t// of O
with respect to O�, takes place via a rotation: the Thomas rotation R arising from
the composition of � by S .

Let us determine the parameters of R from the results of Sect. 6.7.2. The
notations used here are related to those of Sect. 6.7.2 in Table 12.1. The plane of
R is [cf. Eq. (6.107)]

˘R D Span. #»n ; #»m/ � Ee�

0
; (12.102)

where

• #»n 2 Ee�

0
is the unit vector in the direction of the velocity

#»
V :

#»
V DW V #»n ; with #»n � #»n D 1: (12.103)

• #»m 2 Ee�

0
is the unit vector in the plane orthogonal to

#»
V such that

#»a DW a Œcos � S . #»n /C sin � #»m� ; with #»m � #»m D 1 and #»n � #»m D 0:
(12.104)

#»n and #»m are, respectively, noted #»e 1 and #»e 2 in Sect. 6.7.2 (cf. Table 12.1). � is the
angle between the planes of the two Lorentz transformations S and �, as defined in
Sect. 6.7.2; this is also the angle between S .

#»

V / and
# »

W or between S .
#»

V / and #»a , all
these vectors belonging to Eu.t/. Besides, #»m being orthogonal to

#»

V , S . #»m/ D #»m.
We deduce from (12.103) and (12.104) that #»a � #»

V D � aV cos � . Substituting this
value in (12.93) and using again (12.103) and (12.104), we get

#»� D c2a

� 2

�
cos �

�
#»n C sin � #»m

	
: (12.105)

The relative velocity and acceleration vectors
#»

V and #»� both belong to the
hyperplane Ee�

0
. If they are not collinear, in other words if � 6D 0, (12.103) and

(12.105) show that they form a basis of the plane Span. #»n ; #»m/. We may thus rewrite
(12.102) as

˘R D Span.
#»

V ; #»� / : (12.106)

Having determined the plane of the Thomas rotation, let us turn to its angle 'T.
It is given by formula (6.111b) obtained in Chap. 6. In the present case, numerous
simplifications occur because �2 is an infinitesimal transformation, of velocityV2 D
W D ac2dt [cf. Eq. (12.98) and Table 12.1]. Remaining at first order in dt , we can
set �2 ' 1, �1�2=.1 C � / V1V2 ' �1=.1 C �1/ V1V2 and replace the term in
parentheses in (6.111b) by 1. Since �1 D � , V1 D V (cf. Table 12.1), formula
(6.111b) reduces then to
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sin'T D � sin �
�

1C � aV dt:

The angle 'T is clearly infinitesimal, of the same order as dt . Let us denote it rather
by d'T. We have of course sin d'T ' d'T, so that the above formula becomes

d'T D � �

1C � aV sin � dt: (12.107)

� is the angle between S .
#»
V / and #»a in the vector hyperplaneEu.t/ associated with

observer O . Let us express d'T rather in terms of the angle �� between
#»
V and #»�

in the vector hyperplane Ee�

0
associated with the inertial observer O�. We deduce

from (12.105) and (12.91) that the norm of #»� is


 WD k #»� kg D
p

#»� � #»� D c2a

� 2

p
1 � .V 2=c2/ cos2 �: (12.108)

Relation (12.105) is then rewritten as

#»� D 
 .cos �� #»n C sin �� #»m/ ; (12.109)

with

cos �� D cos �

�
p
1 � .V 2=c2/ cos2 �

and sin �� D sin �p
1 � .V 2=c2/ cos2 �

:

(12.110)

We deduce from (12.105) and (12.109) that

a sin � D � 2 


c2
sin ��: (12.111)

Substituting this value into (12.107) and substituting dt by � �1dt� [cf. Eq. (12.90)],
there comes

d'T

dt�
D � � 2

1C �

V

c2
sin �� : (12.112)
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Table 12.1 Correspondence between the notations used in this chapter and those used in
Sect. 6.7.2

Here S �0
#»e �

0 D #»" 0
#»e 0.t /

#»e 0.t C dt /
#»

V S .
#»

V /
# »

W

Sect. 6.7.2 �1 �2
#»e 0

#»e 0

0
#»e 00

0 V1
#»e 1

#»

V 1
#»

V 2

Here #»n #»m S . #»n / a�1 #»a V a c2 dt � 1CO.dt 2/
Sect. 6.7.2 #»e 1

#»e 2
#»e 0

1
#»" 1 V1 V2 �1 �2

We may conclude:

The triad . #»" i .t�//, which for the inertial observer O� “represents” the spatial
triad . #»e i .t// of the accelerated observer O (in the sense of being quasiparallel
to it), has a motion of rotation, of plane˘R D Span.

#»
V ; #»� / [Eq. (12.106)] and

angular velocity d'T=dt� given by (12.112), where
#»
V and #»� are O’s velocity

and acceleration relative to O�. This property is called Thomas precession.

Remark 12.13. For a Newtonian physicist, the surprising aspect of Thomas preces-
sion arises from the fact that the accelerated observer O is nonrotating: his local
frame does not rotate, since #»! D 0. In particular, O does not feel any Coriolis or
centrifugal force, as they appear in (9.120). Nevertheless, the spatial triad formed by
the vectors #»" i , which are quasiparallel to the vectors of O’s spatial frame, undergoes
some rotation with respect to the inertial observer O�. That this is a pure relativistic
effect is clear on (12.112): d'T=dt� ! 0 if 
V=c2 ! 0.

Remark 12.14. The rotation plane, ˘R, varies with time, since it is determined by
vectors

#»

V and #»� , which are a priori functions of t�.

Remark 12.15. If the relative acceleration #»� is collinear to the velocity
#»
V , as

it occurs, for instance, for the Langevin’s traveller treated in Sect. 2.6 or for the
uniformly accelerated observer considered in Sects. 12.2 and 12.4, then �� D 0 and
(12.112) leads to d'T=dt� D 0. There is thus no Thomas precession in this case.

Relation (12.101) leads to the following expression of the time derivative of the
triad . #»" i .t�//:

d #»" i

dt�
D #»!T �e�

0

#»" i ; (12.113)

where #»!T 2 Ee�

0
is the vector orthogonal to the rotation plane ˘R and whose norm

is the absolute value of the angular velocity d'T=dt� given by (12.112). Because of
the � sign in (12.112), #»!T has an orientation opposite to that of the cross product
#»
V �e�

0

#»� . Since the norm of the latter is 
V sin ��, formula (12.112) allows one to
write #»!T in terms of the cross product of acceleration by velocity:
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#»!T D � 2

c2.1C � /
#»� �e�

0

#»

V : (12.114)

For small velocities, we can set � ' 1 and obtain

#»!T ' 1

2c2
#»� �e�

0

#»
V .jV j 	 c/: (12.115)

Remark 12.16. From (12.91), it is easy to derive the identity � 2=.1 C � / D
.� � 1/c2=V 2, so that some authors present the result (12.114) as

#»!T D � � 1
V 2

#»� �e�

0

#»

V : (12.116)

12.5.2 Application to a Gyroscope

Let us consider a free gyroscope, as defined in Sect. 10.7.3, carried by the acceler-
ated observer O . The gyroscope’s spin vector obeys the law (10.84): DFW

u
#»s D 0

( #»s is Fermi–Walker transported along L ). Since O is nonrotating, this implies that
#»s is fixed with respect to O [cf. Eq. (3.71)], i.e. that the components .si / of #»s in
O’s local frame are constant:

#»s .t/ D si #»e i .t/; with si D const: (12.117)

Since #»e i .t/ D S . #»" i .t�// [Eq. (12.95)], we deduce that

#»s .t/ D S . #»s �.t�// ; with #»s �.t�/ WD si #»" i .t�/: (12.118)

The vector #»s �.t�/ hence defined belongs to the rest space of the inertial observer:
#»s �.t�/ 2 Ee�

0
. As the coefficients si are constant, we deduce immediately from

(12.113) that #»s �.t�/ obeys the following evolution law:

d #»s �
dt�
D #»!T �e�

0

#»s � : (12.119)

Hence, #»s �.t�/ is submitted to Thomas precession, at the angular velocity #»!T given
by (12.114).

Remark 12.17. The vector #»s � belongs to the rest space of the inertial observer; it
is therefore distinct from the spin vector #»s , which belongs to the local rest space of
the accelerated observer. However, the vectors #»s � and #»s have the same components
.si /, one with respect to the basis . #»" i .t�// and the other one with respect to . #»e i .t//,
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these two basis being related by the Lorentz boost S . In particular, #»s � and #»s have
the same norm. Authors who use a three-dimensional point of view, such as Jackson
(1998), implicitly identify #»s � and #»s . The vector #»s �, as defined by (12.118), is
employed by Rowe (1984; 1996) (who calls it “representative of the spin”), by
Jantzen, Carini and Bini (1992) (who call it “boosted spin vector”) and by Jonsson
(2006; 2007) (who calls it “stopped spin vector”).

Remark 12.18. Some authors, as, for instance, Misner, Thorne and Wheeler (1973)
(cf. p. 79), do not derive the equation of motion for #»s �, but those for the orthogonal
projection of the spin onto the rest space of the inertial observer O�, namely, the
vector ?e�

0

#»s . The two vectors are related by

?e�

0

#»s D #»s � C � 2

c2.1C � /.
#»
V � #»s �/

#»
V : (12.120)

The equation of motion for ?e�

0

#»s is more complicated than that for #»s � and does
not reduce to a mere (Thomas) precession (cf. Eq. (6.27) in Misner et al. (1973)).

12.5.3 Gyroscope in Circular Orbit

Let us examine the particular case of a free gyroscope in a circular uniform motion
in the plane .x�; y�/, where .x˛�/ D .ct�; x�; y�; z�/ are the inertial coordinates
associated with observer O�. Such a motion corresponds to Example 4.3 studied in
Chap. 4. The worldline of observer O carrying the gyroscope (cf. Fig. 4.4) obeys
(4.6), where t has to be replaced by t� : x�.t�/ D R cos˝t� and y�.t�/ D
R sin˝t�, the constants R and ˝ being positive and such that R˝ < c. The
gyroscope’s velocity and acceleration relative to the inertial observer are given by
(4.23) and (4.46):

#»
V D R˝ �� sin˝t� #»e �

1 C cos˝t� #»e �
2

�

#»� D �R˝2
�
cos˝t� #»e �

1 C sin˝t� #»e �
2

�
:

Inserting these formulas into (12.116) and using #»e �
1 �e�

0

#»e �
2 D #»e �

3 and V 2 D
R2˝2, we get

#»!T D �.� � 1/˝ #»e �
3 : (12.121)

Thus, the frequency of Thomas precession is nothing by the rotation frequency
multiplied by � �1. We recover that Thomas precession is a pure relativistic effect,
since � � 1 D 0 at the nonrelativistic limit. The � sign in (12.121) means that
Thomas precession occurs in the sense opposite to the gyroscope’s rotational motion
(cf. Fig. 12.17).
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Fig. 12.17 Thomas
precession of the vector #»s �

associated with the spin of a
free gyroscope in uniform
circular motion

The Lorentz factor that appears in (12.121) is given by (4.7). In the limit of a
small rotation velocity, R˝ 	 c, we can write � � 1 ' 1=2 .R˝=c/2, so that
(12.121) becomes

#»!T ' �1
2

�
R˝

c

	2
˝ #»e �

3 .R˝ 	 c/: (12.122)

12.5.4 Thomas Equation

Let us consider now the case where the spin is submitted to some torque
#»

C . We have
seen in Chap. 10 that the spin evolves then according to the law (10.82):

d #»s

dt
D #»

C C c . #»a � #»s / #»u ; (12.123)

where #»u , #»a and t are the 4-velocity, 4-acceleration and proper time of the
accelerated observer that we consider from now on as a particle with spin (cf.
Sect. 10.7). We are going to deduce from (12.123) an evolution law for the vector #»s �
defined by (12.118); we should recover (12.119) as the particular case

#»
C D 0. Let

us start by making explicit the relation between #»s and #»s �, starting from (12.118):
#»s � D S �1. #»s /. Since S �1 is a Lorentz boost of velocity � #»

V with respect to #»e �
0 , it

can be expressed according to formula (6.69) (making #»u ! #»e �
0 and

#»

V ! � #»

V ):

#»s � D S �1. #»s / D �� . #»e �
0 � #»s / #»e �

0 C
�

c

h
�. #»

V � #»s / #»e �
0 C . #»e �

0 � #»s /
#»
V
i

C #»s C . #»e �
0 � #»s / #»e �

0 C
� 2

c2.1C � /.
#»

V � #»s /
#»

V : (12.124)
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Given the property #»u � #»s D 0 [Eq. (10.74)] and the decomposition (12.92) of #»u , we
deduce immediately that

#»e �
0 � #»s D �1

c

#»
V � #»s : (12.125)

Inserting this expression into (12.124), we get, after simplification,

#»s � D #»s � 1
c
.

#»

V � #»s /

�
#»e �
0 C

�

c.1C � /
#»

V

�
: (12.126)

This implies

d #»s �
dt�
D d #»s

dt�
� 1
c

 
d

#»

V

dt�
� #»s C #»

V � d #»s

dt�

!�
#»e �
0 C

�

c.1C � /
#»
V

�

� 1
c2
.

#»
V � #»s /

"
d

dt�

�
�

1C �
	

#»
V C �

1C �
d

#»
V

dt�

#
: (12.127)

Now, from (12.90) and (12.123),

d #»s

dt�
D 1

�

d #»s

dt
D 1

�

h
#»

C C c . #»a � #»s / #»u
i
;

with

#»a � #»s D � 2

c2

h
#»� � #»s C � 2

c2
. #»� � #»

V /.
#»

V � #»s C c #»e �
0 � #»s„ ƒ‚ …

0

/
i
D � 2

c2
#»� � #»s :

To get the last relation, we have used expression (4.63) of the 4-acceleration in terms
of the acceleration #»� relative to the inertial observer as well as property (12.125).
Given (12.92), we have thus

d #»s

dt�
D 1

�

#»

C C � 2

c
. #»� � #»s /

�
#»e �
0 C

1

c

#»

V

	
: (12.128)

In particular,

d
#»

V

dt�
� #»s C #»

V � d #»s

dt�
D #»� � #»s C 1

�
.

#»

V � #»

C /C � 2

c2
. #»� � #»s /.

#»

V � #»

V / D 1

�
.

#»

V � #»

C /C � 2. #»� � #»s /;

(12.129)

where we have used
#»

V � #»e �
0 D 0, d

#»

V =dt� D #»� (for O� is inertial) and (12.91).
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In addition, (12.91) leads to

d

dt�

�
�

1C �
	
D 1

.1C � /2
d�

dt�
D � 3

c2.1C � /2
#»� � #»

V : (12.130)

Inserting (12.128), (12.129) and (12.130) in (12.127) and using d
#»
V =dt� D #»� , there

comes, after simplification,

d #»s �
dt�
D 1

�

"
#»

C � .
#»

V � #»

C /

c

�
#»e �
0 C

�

c.1C � /
#»

V

	#
C � 2

c2.1C � /

(
. #»� � #»s /

#»

V

�. #»

V � #»s /

�
�

c2.1C � /.
#»

V � #»� /
#»

V C 1

�
#»�

� )
: (12.131)

The vector
#»

C sharing with #»s the property of being orthogonal to #»u , the expression
of S �1. #»

C / is the same as that of S �1. #»s /, with #»s replaced by
#»

C . Comparing with
S �1. #»s / D #»s � as given by (12.126), we recognize then S �1. #»

C / in the first term of
(12.131):

#»

C � .
#»

V � #»

C /

c

�
#»e �
0 C

�

c.1C � /
#»

V

	
D S �1. #»

C /: (12.132)

Besides, the scalar product of (12.126) by
#»

V leads to

#»

V � #»s � D #»

V � #»s � 1
c
.

#»

V � #»s /
�

c.1C � /
#»

V � #»

V D #»

V � #»s
�
1 � �

c2.1C � /
#»

V � #»

V

„ ƒ‚ …
1=�

�
;

hence,

#»

V � #»s D � #»

V � #»s �: (12.133)

Similarly, (12.126) leads to

#»� � #»s D #»� � #»s � C � 2

c2.1C � /.
#»� � #»

V /.
#»

V � #»s �/: (12.134)

Inserting (12.132), (12.133) and (12.134) in (12.131), we get

d #»s �
dt�
D 1

�
S �1. #»

C /C � 2

c2.1C � /
h
. #»� � #»s �/

#»

V � . #»

V � #»s �/ #»�
i
: (12.135)
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One can write . #»� � #»s �/
#»
V � . #»

V � #»s �/ #»� as a double cross product:

. #»� � #»s �/
#»

V � . #»

V � #»s �/ #»� D #»s � �e�

0
.

#»

V �e�

0

#»� / D . #»� �e�

0

#»

V / �e�

0

#»s �:

We recognize then in the right-hand side of (12.135) the Thomas rotation vector #»!T,
as given by (12.114), so that we obtain finally Thomas equation:

d #»s �
dt�
D 1

�
S �1. #»

C /C #»!T �e�

0

#»s � : (12.136)

If
#»

C D 0 (free gyroscope), we recover the precession law (12.119).

Remark 12.19. Contrary to the computation of Sect. 12.5.1, which led to (12.119),
we have not used in the above derivation the Thomas rotation obtained in Chap. 6. In
other words, we have obtained Thomas equation by a direct computation, from the
“Fermi–Walker” evolution law (12.123), without appealing explicitly to the product
of two Lorentz boosts.

Historical note: Equation (12.136) has been derived in 1926 at the lowest order
in V=c by Llewellyn H. Thomas (cf. p. 215) (1926), in the case where

#»
C is the

torque exerted on the spin of an electron moving in a uniform electric field. It should
be noticed that Thomas did make the distinction between the vectors #»s � and #»s ,
without however formalizing it as in (12.118), when he wrote “the precession which
an observer at rest with respect to the nucleus8 would observe, and which should
be summed to give the secular precession, is that precession which would turn the
direction of the spin axis at time t in (2) into its direction at time tCdt in (3) if both
directions were regarded as direction in (1)9” (Thomas 1926). In a more detailed
article published in 1927 (Thomas 1927), Thomas obtained the exact form (12.136),
still in the case where

#»
C is the torque exerted on the spin of an electron moving in

a uniform electric field. The equation written by Thomas (Eq. (4.121) in Thomas
(1927)) is actually (12.136) multiplied by � , i.e. the equation for d #»s �=dt and not
for d #»s �=dt�.

8The inertial observer O� in our language.
9Underlined by us.



Chapter 13
Rotating Observers

13.1 Introduction

After the accelerated observers, let us now examine the rotating ones, i.e. the
observers whose 4-rotation is nonzero. We start by the physical interpretation of
the 4-rotation vector (Sect. 13.2) and the treatment of the rotating disk (Sect. 13.3).
We shall then discuss the issue of synchronizing clocks in a rotating frame, a
concrete application being the definition of a timescale at the surface of the
Earth (International Atomic Time) (Sect. 13.4). Next, we shall discuss the famous
Ehrenfest paradox regarding the rotating disk, not so much for its historical
importance but rather because it provides a very instructive example (Sect. 13.5).
Finally, we shall investigate the principal relativistic effect induced by rotation: the
Sagnac effect, which is used today in high-precision gyrometers for air and space
navigation (Sect. 13.6).

13.2 Rotation Velocity

We have defined the 4-rotation of an observer in Sect. 3.5 as the vector #»! that
is involved in the law (3.52) ruling the evolution of the observer’s local frame
. #»e ˛/. Here we show that this quantity is directly measurable, by comparison with a
nonrotating observer. Let us start by discussing the latter.

13.2.1 Physical Realization of a Nonrotating Observer

Let us consider an observer O , of worldline L0, proper time t , 4-velocity #»u and
4-acceleration #»a . Let . #»e ˛.t// be the local frame of O; we have thus #»e 0 D #»u .

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 13, © Springer-Verlag Berlin Heidelberg 2013
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By definition, the derivative of each of the vectors #»e i (i 2 f1; 2; 3g) with respect
to observer O is zero [Eq. (3.64)]. Combining with (3.70), we can then write

DFW
u

#»e i D #»! �u
#»e i ; (13.1)

where DFW
u stands for the Fermi–Walker derivative along L0 and #»! for O’s

4-rotation. We have thus

#»! D 0 ” 8i 2 f1; 2; 3g; DFW
u

#»e i D 0: (13.2)

Hence, an observer is nonrotating iff the spatial vectors of his local frame are
Fermi–Walker transported along his worldline.

Now, we have seen in Sect. 10.7.3 that the spin vector of a free gyroscope is
Fermi–Walker transported along a worldline [Eq. (10.84)]. This provides us with
the following physical criterion:

To set up a nonrotating observer, one must equip it with three free gyroscopes
in three orthogonal directions (the orthogonality being checked by the proce-
dure described in Sect. 3.4.1) and orient each of the three basis vectors . #»e i /

in the direction of the spin vector of one of the gyroscopes (cf. Fig. 13.1).

13.2.2 Measurement of the Rotation Velocity

The preceding construction also leads to a way of measuring the 4-rotation #»!

of a given observer. Indeed, any observer can, by means of gyroscopes, define a
nonrotating spatial frame . #»e 0

i /, in addition to his own spatial frame . #»e i /. Formally,
this amounts to considering two observers, O and O 0, whose local frames are,
respectively, . #»e ˛/ D . #»u ; #»e 1;

#»e 2;
#»e 3/ and . #»e 0̨ / D . #»u ; #»e 0

1;
#»e 0
2;

#»e 0
3/. Observers

O and O 0 share the same worldline L0. Consequently, they have the same 4-velocity
( #»u ) and the same 4-acceleration. They differ only by their 4-rotations: #»! for O and
zero for O 0. The derivative of #»e i with respect to observer O 0 is expressed according
to (3.70):

DO0

#»e i D DFW
u

#»e i � #»!0
„ƒ‚…

0

�u
#»e i D DFW

u
#»e i :

Substituting (13.1) for the Fermi–Walker derivative of #»e i , we get

DO0

#»e i D #»! �u
#»e i : (13.3)
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Fig. 13.1 Spatial frame . #»e i /

of a nonrotating observer,
elaborated by aligning the
vectors #»e i along the spin
vectors of three free
gyroscopes

Hence,

The 4-rotation vector of O appears as the rotation vector of his spatial frame
with respect to the nonrotating observer O 0 who follows the same worldline
as him.

Conversely, if O carries a free gyroscope along his worldline, the gyroscope’s
spin vector #»s obeys (3.70) with DFW

u
#»s D 0 [Eq. (10.84)]. We have thus

DO
#»s D � #»! �u

#»s : (13.4)

The 4-rotation vector #»! is thus the opposite of the rotation velocity of a free
gyroscope as measured by observer O . However, a single free gyroscope is not
sufficient to measure #»! because (13.4) does not constrain the part of #»! that is
parallel to #»s .

13.3 Rotating Disk

We examine here the simplest case of a rotating observer: that of a constant
4-rotation. This case is related to the problem of the rotating disk, which generated
a lot of discussions during the development of relativity (see, e.g. Grøn (2004)).

13.3.1 Uniformly Rotating Observer

An observer O is said to be uniformly rotating iff:

1. Its 4-acceleration vanishes: #»a D 0.
2. Its 4-rotation is constant: #»! D const.
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The first property implies that O’s 4-velocity, #»u , is constant and that O’s worldline,
L0, is a straight line of E . In particular, the vector hyperplane Eu underlying O’s
local rest frame Eu.t/ is independent of t , the proper time of O .

O’s local frame . #»e ˛.t// obeys the evolution law (3.52) without any
Fermi–Walker part since #»a D 0. For the index ˛ D 0, this equation reduces to
0 D 0, because #»e 0 D #»u is constant and #»! �u

#»u D 0. For the other indices, it
reduces to

d #»e i

dt
D #»! �u

#»e i : (13.5)

Let us introduce an inertial observer O� whose 4-velocity and worldline coincide
with those of O (cf. Fig. 13.2). Its proper time t� is then the same as that of O as
well as his rest spaces. O� can always be chosen so that the last vector of his frame
. #»e �̨/ is collinear to the constant vector #»! and oriented in the same direction:

#»! D ! #»e �
3 with ! WD k #»!kg � 0: (13.6)

Let . #»" i .t// be the orthonormal basis of Eu defined by

#»" 1.t/ D cos!t #»e �
1 C sin!t #»e �

2

#»" 2.t/ D � sin!t #»e �
1 C cos!t #»e �

2

#»" 3.t/ D #»e �
3 :

It is easy to see that the basis . #»" i / obeys the relation

d #»" i

dt
D #»! �u

#»" i : (13.7)

Given that . #»e i .t// and . #»" i .t// are two right-handed orthonormal bases of .Eu;g/,
there exists necessarily a spatial rotation R D R.t/ such that

#»e i D R. #»" i / D Rji #»" j :

We have then, by means of (13.7),

d #»e i

dt
D dRji

dt
#»" j CRji

d #»" j

dt„ƒ‚…
#»!�u

#»" j

D dRji
dt

#»" j C #»! �u
#»e i ;

which, via (13.5), implies dRji=dt D 0. In other words, the bases . #»e i .t// and
. #»" i .t// are linked by a constant rotation. Without any loss of generality, we may
then assume that #»e i .t/ D #»" i .t/, i.e. that the spatial frame of the uniformly rotating
observer is given by
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Fig. 13.2 Uniformly rotating
observer O [frame . #»e ˛.t//]
and inertial observer O�

sharing the same worldline as
O [frame . #»e �

˛ /]. The
dimension in the direction of
the rotation vector #»! has
been suppressed

#»e 1.t/ D cos!t #»e �
1 C sin!t #»e �

2 (13.8a)
#»e 2.t/ D � sin!t #»e �

1 C cos!t #»e �
2 (13.8b)

#»e 3.t/ D #»e �
3 D !�1 #»!: (13.8c)

This relation between the frames . #»e ˛.t// and . #»e �̨/ is illustrated in Fig. 13.2. Let
us denote by .x˛/ D .ct; x; y; z/ the coordinates of observer O and by .x˛�/ D
.ct; x�; y�; z�/ those of observer O�. The point O.t/ being the position of O at the
instant t on L0, any event M in Eu.t/ fulfils

#             »

O.t/M D xi #»e i .t/ D xi�
#»e �
i . We

deduce then from (13.8) the following relation between the two coordinate systems:

8
<

:

x D x� cos!t C y� sin!t
y D �x� sin!t C y� cos!t
z D z�:

”
8
<

:

x� D x cos!t � y sin!t
y� D x sin!t C y cos!t
z� D z:

(13.9)

13.3.2 Corotating Observers

Let us define a corotating observer with respect to the uniformly rotating observer
O as an observer O 0 such that:

1. O 0 is fixed with respect to O , in the sense defined in Sect. 3.4.3, i.e. its spatial
coordinates .x; y; z/ relative to O are constant.
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2. Each vector #»e 0̨ of the local frame of O 0 is fixed with respect to O , still in the
sense of Sect. 3.4.3: at any intersection point between the worldline of O 0 and the
local rest space Eu.t/ of O , #»e 0̨ D e0ˇ

˛
#»e ˇ.t/, where the e0ˇ

˛’s are independent
of t .

Remark 13.1. Using the vocabulary of Sect. 12.4.1, we could have named O 0 a
comoving observer (with respect to O). However, the term corotating seems more
appropriate here.

The first condition in the above definition regards the worldline of O 0. We shall
only consider corotating observers having z D 0. It is natural to introduce cylindrical
coordinates .r; '/ to write the coordinates .x; y; z/ of O 0 with respect to O as

x D r cos' and y D r sin ': (13.10)

As for x and y, the coordinates r and ' are constant along the worldline of O 0.

Remark 13.2. One shall not attribute any direct physical meaning to the coordinates
.r; '/, but rather conceive .r; '/ as a mere label to identify each corotating observer.
In Sect. 13.5, we shall discuss the physical measure of the disk radius by corotating
observers and shall see that it is indeed equal to r . On the other side, we shall see
that the element of disk circumference is not equal to r d'.

By combining (13.9) and (13.10) and using the trigonometric identities cos.!tC
'/ D cos!t cos'� sin!t sin ' and sin.!t C'/ D cos!t sin'C sin!t cos', we
obtain the expression of the inertial coordinates of the corotating observer O 0:

8
<

:

x�.t/ D r cos.!t C '/
y�.t/ D r sin.!t C '/
z�.t/ D 0:

(13.11)

r and ' being constant, we recognize, up to some azimuthal shift, Example 4.3
of Chap. 4 (uniform circular motion). More precisely, Chap. 4 dealt with the case
' D 0. The case ' 6D 0 is deduced from it by a mere rotation of constant angle '
in the plane .x�; y�/. When drawn with respect to the inertial coordinates .x˛�/, the
worldline L 0 of O 0 is then a helix (cf. Fig. 4.4). It is depicted in Fig. 13.3.

The velocity
#»

V of the corotating observer relative to the inertial observer O� is
obtained by taking the derivative of (13.11) with respect to1 t [see also (4.23)]:

#»

V D r! �� sin.!t C '/ #»e �
1 C cos.!t C '/ #»e �

2

�
:

Thanks to (13.8a)–(13.8b), this velocity can be reexpressed as

#»
V D r! #»n ; with #»n WD � sin ' #»e 1 C cos' #»e 2: (13.12)

1Let us recall that t , the proper time of O, is also the proper time of O�.
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Fig. 13.3 Worldline of the
corotating observer O0

#»n D #»n .t/ is by construction a spacelike unit vector and the condition kV kg < c

[Eq. (4.37)] implies an upper bound on the coordinate r of the corotating observer:

r <
c

!
: (13.13)

Actually for r > c=!, we deduce from (13.11) that the worldline of O 0 would be
spacelike, which is of course not admissible for an observer worldline. For r D c=!,
(13.11) leads to a null curve, i.e. a curve with a null tangent vector at any point
(cf. Remark 2.12 p. 39).

For a fixed R 2�0; c=!Œ, we shall call rotating disk of radius R the set of all
corotating observers satisfying r 2 Œ0; R� and z D 0.

13.3.3 4-Acceleration and 4-Rotation of the Corotating
Observer

Let us examine now the local frame . #»e 0̨ / of O 0. We have of course #»e 0
0 D #»u 0

(4-velocity of O 0). Regarding the spatial vectors . #»e 0
i /, they must be fixed with

respect to O , according to the definition of a corotating observer. One can always
introduce a constant spatial rotation to achieve the following configuration:

1. The vector #»e 0
1 lies in the plane Span. #»u ; #»u 0/ (cf. Fig. 13.4).

2. The vector #»e 0
3 equals the vector #»e 3 of O’s local frame, which is itself equal to

the vector #»e �
3 of the frame of the inertial observer O�:

#»e 0
3 D #»e 3 D #»e �

3 : (13.14)
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Fig. 13.4 Frame . #»e 0

˛/ D . #»u 0; #»e 0

1;
#»e 0

2;
#»e 0

3/ of the corotating observer O0. The dimension along
#»e 0

3 D #»e 3 has been suppressed. #»a 0 is the 4-acceleration of O0 and
#»

V his velocity relative to the
inertial observer O�, whose worldline coincides with that of O

The vector #»e 0
2 is then necessarily such that (cf. Fig. 13.4)

#                     »

O 0.t 0/O.t/ D r #»e 0
2; (13.15)

where O.t/ is the position of O at the instant t of his proper time and O 0.t 0/ is the
position of O 0 at the instant t 0 of his proper time where he encounters Eu.t/. From
the point of view of O , O 0.t 0/ is the event of worldline L 0 that is simultaneous to
O.t/.

Let us denote by � the Lorentz boost that relates the 4-velocities of observers O
(or O�) and O 0:

#»u 0 D �. #»u / D �
�

#»u C 1

c

#»
V

	
D �

�
#»u C r!

c
#»n
�
; (13.16)

where use has been made of expression (13.12) for
#»
V . In the above formula, � is

the Lorentz factor of O 0 relative to O (or O�) [cf. Eq. (4.7)]:

� D
�
1 � r

2!2

c2

	�1=2
: (13.17)

Since #»e 0
1 2 Span. #»u ; #»u 0/, we have necessarily (cf. Fig. 13.4)

#»e 0
1 D �. #»n / D �

� r!
c

#»u C #»n
�
D �

�r!
c

#»u � sin ' #»e 1 C cos' #»e 2

�
: (13.18)

Besides, along with
#                     »

O.t/O 0.t 0/ D x #»e 1 C y #»e 2 D r cos' #»e 1 C r sin ' #»e 2,
Eq. (13.15) leads to

#»e 0
2 D � cos' #»e 1 � sin' #»e 2: (13.19)

Equations (13.16), (13.18), (13.19) and (13.14) fully specify the local frame of O 0
in terms of that of O .
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The 4-acceleration #»a 0 of the corotating observer O 0 is given by (4.67)–(4.46):

#»a 0 D � 2

c2
r!2 #»e 0

2 : (13.20)

Let us determine now the 4-rotation of O 0. To this aim, we evaluate the variation of
#»e 0
1 along L 0, via the relation dt D � dt 0 between the proper times of O and O 0

[Eq. (4.1)]:

d #»e 0
1

dt 0
D d #»e 0

1

dt

dt

dt 0
D � d #»e 0

1

dt
;

Thanks to (13.18) and given the constant character of � , r , !, #»u and ', there comes

d #»e 0
1

dt 0
D � 2

�
� sin '

d #»e 1

dt
C cos'

d #»e 2

dt

	

D � 2 .� sin ' #»! �u
#»e 1 C cos' #»! �u

#»e 2/

D � 2 #»! �u
#»n D � 2 #»� . #»u ; #»!; #»n ; :/; (13.21)

where we have used (13.5) and (13.12) to write, respectively, the second and third
lines. Finally, the last equality, which involves the Levi–Civita tensor �, results
from the very definition of the cross product [Eq. (3.46)]. Now, from (13.18),
#»n D � �1 #»e 0

1 � .r!=c/ #»u . The alternate character of � gives then �. #»u ; #»!; #»n ; :/ D
� �1�. #»u ; #»!; #»e 0

1; :/. Moreover,

#»u D ��1. #»u 0/ D �
�

#»u 0 � r!
c

#»e 0
1

�
;

so that �. #»u ; #»!; #»e 0
1; :/ D � �. #»u 0; #»!; #»e 0

1; :/. We conclude thus that �. #»u ; #»!; #»n ; :/ D
�. #»u 0; #»!; #»e 0

1; :/. Inserting this result into (13.21), we get

d #»e 0
1

dt 0
D � 2 #»� . #»u 0; #»!; #»e 0

1; :/ D � 2 #»! �u0
#»e 0
1: (13.22)

Computing similarly d #»e 0
2=dt 0 (cf. Remark 13.3 below) and comparing with the

general law (3.52) ruling the evolution of a local frame vector (with #»a 0 � #»e 0
1 D 0

from (13.20) and #»u 0 � #»e 0
1 D 0), we read the value of the 4-rotation of observer O 0:

#»!0 D � 2 #»! : (13.23)

Thus, while it is qualified as “corotating”, the observer O 0 has not exactly the
same 4-rotation as the central observer, except at the nonrelativistic limit, where
the Lorentz factor � tends to 1. Note that, as for #»!, the 4-rotation #»!0 is constant
along the worldline of O 0.
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Remark 13.3. As an exercise, we may check, by taking the derivative of (13.19)
with respect to t 0, that

d #»e 0
2

dt 0
D � 2

c
r!2 #»u 0 C #»!0 �u0

#»e 0
2;

in full agreement with the general law (3.52), taking into account that #»a 0 � #»e 0
2 D

� 2r!2=c2 [Eq. (13.20)].

13.3.4 Simultaneity for a Corotating Observer

The proper time t 0 of the corotating observer O 0 is of course different from that of
O (denoted t) for r 6D 0. Both times are related by the Lorentz factor determined in
Sect. 4.2.1: between the hyperplanes Eu.t/ and Eu.t C dt/, the elapsed proper time
along L 0 is dt 0 D � �1 dt , with � D Œ1 � .r!=c/2��1=2 [Eq. (13.17)]. Since � is
constant, we can write (choosing the same origin of the proper times for the two
observers)

t 0 D � �1 t D t
p
1 � .r!=c/2 : (13.24)

This relation is however valid only along the worldline of O 0. As soon as one
moves away from it, t 0 is determined by the Einstein–Poincaré simultaneity criterion
introduced in Sect. 3.2.2. Let us then determine the simultaneity hypersurfaces
with respect to O 0, denoted by˙u0 .t 0/ according to the convention defined in
Sect. 3.2.3.

Without any loss of generality, we can set ' D 0 and t 0 D t D 0. Let M 2 E
be an event simultaneous to O 0.0/ from the point of view of O 0: this means that O 0
could emit an electromagnetic signal at the proper time t 01 D �T 0, with T 0 > 0,
(event A1) and that this signal has been reflected by M to come back to O 0 at the
proper time t 02 D T 0 (eventA2) (cf. Fig. 13.5). According to (3.1), the date attributed
to M by O 0 is t 0 D .t 01 C t 02/=2 D 0, so that M is simultaneous to O 0.0/ from the
point of view of O 0. In view of (13.24), the time coordinates of the events A1 and
A2 with respect to O are, respectively, t1 D �T and t2 D T , with T WD � T 0. The
inertial coordinates of A1 and A2 are then given by (13.11) with ' D 0:

A1

8
ˆ̂<

ˆ̂:

t� D �T D �� T 0
x� D r cos.!T /
y� D �r sin.!T /
z� D 0;

A2

8
ˆ̂<

ˆ̂:

t� D T D � T 0
x� D r cos.!T /
y� D r sin.!T /
z� D 0:

(13.25)

For a fixed T 0, let us consider the set ˙T 0 formed by the events M that are
simultaneous toO 0.0/ for O 0 and have the same half-time T 0 between the departure
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Fig. 13.5 Set ˙T 0 formed by the events M simultaneous to O 0 D O 0.0/ for O0 and of
elapsed time 2T 0 between the departure A1 (t 0 D �T 0) and the return A2 (t 0 D CT 0) of the
electromagnetic signal used to establish the simultaneity. ˙T 0 is the intersection of the future light
cone of A1, I C.A1/, with the past light cone of A2, I �.A2/; it is a sphere in the hyperplane
EQu.0/ orthogonal to

#        »

A1A2

A1 and the return A2 of the photon. ˙T 0 is the intersection of the future light cone
of A1 with the past light cone of A2 (cf. Fig. 13.5):

˙T 0 D I C.A1/ \I �.A2/: (13.26)

To study˙T 0 , it is appropriate to introduce the inertial observer QO whose worldline
is the line A1A2. Let us first check that this is always possible, i.e. that the vector
#        »
A1A2 is always timelike. In view of (13.25), we have

#        »
A1A2 D 2cT #»e �

0 C 2r sin.!T / #»e �
2 ;

so that

#        »
A1A2 � #        »

A1A2 D �4c2T 2 C 4r2 sin2.!T / D �4c2T 2
 
1 �
QV 2

c2

!
; (13.27)

with

QV WD r

T
sin.!T /: (13.28)

#        »
A1A2 is timelike iff j QV j=c < 1. Now, since r < c=! [Eq. (13.13)],

j QV j
c
D r

cT
j sin.!T /j <

ˇ̌
ˇ̌ sin.!T /

!T

ˇ̌
ˇ̌ < 1 if T 6D 0:

Hence,
#        »
A1A2 is indeed timelike, and we may introduce the 4-velocity
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Fig. 13.6 Intersection ˙T 0 of the light cones I C.A1/ and I �.A2/, as in Fig. 13.5, but with a
representation based on the coordinates of the inertial observer QO whose worldline goes through
the events A1 and A2

#»Qu WD



 #        »
A1A2





�1
g

#        »
A1A2 D Q�

 
#»e �
0 C

QV
c

#»e �
2

!
; Q� WD

 
1 �
QV 2

c2

!�1=2
:

(13.29)

#»Qu is the 4-velocity of the inertial observer QO , whose worldline is the line A1A2, and
QV #»e �

2 is nothing but QO’s velocity relative to the inertial observer O�.

Remark 13.4. We have

lim
T!0

QV D lim
T!0

r!
sin.!T /

!T
D r!:

Thus, if T ! 0, QV tends towards the velocity of the corotating observer O 0 relative
to O�, as it should since A1A2 tends then to the tangent to the worldline of O 0.

In a spacetime diagram based on QO , the light cones I C.A1/ and I �.A2/ are
aligned (cf. Fig. 13.6), and it is clear that ˙T 0 is a sphere in the rest space of QO ,
EQu.Qt0/ (for a certain value Qt0 of QO’s proper time Qt ). By symmetry, EQu.Qt0/ contains
both O.0/ and O 0.0/. We can then choose the origin of Qt to ensure Qt0 D 0. The
equation of the hyperplane EQu.0/, in terms of the inertial coordinates .x˛�/, is given
by the condition

#»Qu � #              »

O.0/M D 0. Using (13.29), we get � Q� ct� C Q� . QV =c/y� D 0,
i.e. ct� D . QV =c/y�, or, given (13.28),

EQu.0/ W ct� D r sin.!T /

cT
y�: (13.30)

The centre C of the sphere ˙T 0 is the middle of the segment A1A2. Its coordinates
are directly deduced from (13.25):

C W .ct� D 0; x� D r cos.!T /; y� D 0; z� D 0/: (13.31)
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Fig. 13.7 Simultaneity
hypersurface ˙u0 .0/ of the
corotating observer O0 at time
t 0 D 0. Each ellipse
represents the sphere ˙T 0 for
a different time T 0 (figure
adapted from Pauri and
Vallisneri (2000))

The radius of˙T 0 is equal to half the norm of
#        »
A1A2 (cf. Fig. 13.6); thanks to (13.27),

R D
q
c2T 2 � r2 sin2.!T /: (13.32)

The simultaneity hypersurface of the event O 0.0/ with respect to observer O 0 is
obtained by varying T 0:

˙u0.0/ D
[

T 02RC

˙T 0 : (13.33)

For each value of T 0, ˙T 0 belongs to a different hyperplane [cf. Eq. (13.30) with
T D � T 0]. Each hyperplane is aligned with Eu.0/ in the directions x� and z�;
but in the direction y�, it is inclined with respect to Eu.0/ with an oscillating slope
(which tends to zero when T 0 ! C1), given by (13.30). Accordingly, if ˙u0.0/ is
drawn with respect to the inertial coordinates .x˛�/, it takes an “undulate” aspect (cf.
Fig. 13.7). In particular,˙u0 .0/ does not coincide with the simultaneity hypersurface
Eu.0/ of observer O .

13.4 Clock Desynchronization

13.4.1 Introduction

The relation (13.24) between the proper times t and t 0 shows that, for r 6D 0, it
is not possible to synchronize a clock carried by a corotating observer with that
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of the central uniformly rotating observer. We recover the same situation as that
encountered in Sect. 12.4.1 for accelerated observers: the fact that O 0 is fixed with
respect to O does not suffice to guarantee the synchronization of clocks.

Remark 13.5. An important difference with the case of the uniformly accelerated
motion treated in Chap. 12 is that, for the latter, O and O 0 share the same
simultaneity hypersurfaces (which incidentally coincide with their local rest spaces)
[cf. Eqs. (12.44) and (12.49)]. Here, we have just seen (Sect. 13.3.4) that the
simultaneity hypersurfaces of O 0 (which are “undulate”; cf. Fig. 13.7) are different
from those of O (which are hyperplanes).

Let us investigate the clock synchronization within a continuous 1-parameter
family of corotating observers. The parameter � will span Œ0; 1� and the observers
in the family will be denoted by O 0

.�/. For instance, if all observers have the same
coordinate r , one can choose � D '=.2�/. In this case, all observers O 0

.�/ have
the same Lorentz factor � with respect to the central observer O [� is given by
(13.17)]. We could then hope to synchronize their clocks. We are going to see that
this is possible locally, but not globally.

13.4.2 Local Synchronization

Let us start by examining the local synchronization. To this aim, let us consider two
infinitely close observers in the family: O 0

.�/ and O 0
.�Cd�/. Let A.�/ be an event on

the worldline of O 0
.�/ and let us denote by A.�Cd�/ the event on the worldline of

O 0
.�Cd�/ that is simultaneous to A.�/ from the point of view of O 0

.�/ (cf. Fig. 13.8).

Let xi.�/ D .x.�/; y.�/; z.�// be the (fixed) coordinates of O 0
.�/ with respect to the

central observer O , and t be the date of eventA.�/ with respect to O and t C dt that
of A.�Cd�/. We have then, from the very definition of the coordinates xi.�/,

#                 »

O.t/A.�/ D xi.�/ #»e i .t/ and
#                                      »

O.t C dt/A.�Cd�/ D xi.�Cd�/
#»e i .t C dt/;

(13.34)

where O.t/ stands for the position of observer O at the instant t of his proper time.
The condition of simultaneity of A.�Cd�/ and A.�/ from the point of view of O 0

.�/ is

equivalent to the orthogonality of the vector
#                       »
A.�/A.�Cd�/ and the 4-velocity #»u 0

.�/ of
O 0
.�/ [cf. Eq. (3.8)]:

#»u 0
.�/ �

#                       »
A.�/A.�Cd�/ D 0: (13.35)

Now, from (13.34),
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Fig. 13.8 Neighbouring
observers O0

.�/ and O0

.�Cd�/ in
a family of corotating
observers. The event A.�Cd�/

of the worldline of O0

.�Cd�/ is
simultaneous to the event
A.�/ from the point of view of
observer O0

.�/

#                       »
A.�/A.�Cd�/ D #                 »

A.�/O.t/C #                               »

O.t/O.t C dt/C #                                      »

O.t C dt/A.�Cd�/

D �xi.�/ #»e i .t/C c dt #»u C xi.�Cd�/
#»e i .t C dt/

D �xi.�/ #»e i .t/C c dt #»u C xi.�Cd�/ Œ
#»e i .t/C dt #»! �u

#»e i �

D c dt #»u C dxi #»e i .t/C dt xi.�/
#»! �u

#»e i ; (13.36)

where use has been made of (13.5) to write the third line and the notation dxi WD
xi.�Cd�/�xi.�/ has been introduced for the difference of coordinates betweenA.�Cd�/

and A.�/. Note that, in the second line, we have neglected a term in dt dxi , as being
of second order. Since #»! D ! #»e 3 [Eq. (13.8c)], we have

xi.�/
#»! �u

#»e i D !
h
x1.�/

#»e 2 � x2.�/ #»e 1

i
D #»

V ;

where
#»

V (we shall write
#»

V .�/) is the velocity of O 0
.�/ relative to the inertial observer

O�, as given by (13.12). Let us introduce the separation vector between O 0
.�/ and

O 0
.�Cd�/ from the point of view of O:

d
#»

` WD dxi #»e i .t/ D
dxi.�/
d�

#»e i .t/ d� : (13.37)

We can then write (13.36) as

d
#»

` 0 WD #                       »
A.�/A.�Cd�/ D c dt #»u C d

#»

` C dt
#»

V : (13.38)

The events A.�/ and A.�Cd�/ being simultaneous for O 0
.�/, we can say that d

#»
` 0 is

the proper separation vector between the two corotating observers. Besides, from
(13.16), #»u 0

.�/ D � . #»u C c�1 #»
V /. The simultaneity condition (13.35) becomes then
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�
#»u C 1

c

#»

V

	
�
�
c dt #»u C d

#»

` C dt
#»

V
�
D 0:

Expanding and taking into account #»u � #»u D �1, #»u � d #»

` D 0, #»u � #»

V D 0 and
1 � #»

V � #»

V =c2 D � �2, we get

dt D � 2

#»
V � d #»

`

c2
: (13.39)

Hence, the event A.�Cd�/ of date t C dt with respect to O is simultaneous to A.�/
from the point of view of O 0

.�/ provided that dt obeys (13.39). A natural question is
then: isA.�/ simultaneous to A.�Cd�/ from the point of view of O 0

.�Cd�/? The answer
is yes, because observers O 0

.�/ and O 0
.�Cd�/ have close 4-velocities: they differ only

by terms of the order dxi , so that the scalar product #»u 0
.�Cd�/ �

#                       »
A.�/A.�Cd�/ contains

only second-order terms in dxi if (13.35) is fulfilled. Hence, at first order in dxi ,

#»u 0
.�Cd�/ �

#                       »
A.�/A.�Cd�/ D 0:

This shows that A.�/ is simultaneous to A.�Cd�/ from the point of view of O 0
.�Cd�/.

The events A.�/ and A.�Cd�/ are thus simultaneous, from the point of view of O 0
.�/

as well as from that of O 0
.�Cd�/. Consequently, observers O 0

.�/ and O 0
.�Cd�/ can

synchronize their clocks and define their respective proper times t 0.�/ and t 0.�Cd�/

such that t 0.�/ D 0 at A.�/ and t 0.�Cd�/ D 0 at A.�Cd�/.

13.4.3 Impossibility of a Global Synchronization

We can extend the above synchronization procedure from point to point and define
a curve of simultaneity t 0.�/ D 0 for all the corotating observers of the family
parametrized by �. We shall denote by S this curve in the spacetime E :

S WD ˚A.�/; � 2 Œ0; 1�� : (13.40)

The problem of global synchronization arises when we consider a closed family,
i.e. a family of corotating observers such that the final observer is the same as the
first one: O 0

.1/ D O 0
.0/. We can represent such a family by a closed curve C in the

reference space of observer O , RO (cf. Sect. 3.4.3): each point of C corresponds to
an observer O.�/ (cf. Fig. 13.9). InRO , the equation of C is the parametric equation

C W xi D xi.�/; � 2 Œ0; 1�: (13.41)

The variationt of the coordinate t along the simultaneity curve S is evaluated
by integrating (13.39) from � D 0 to � D 1:
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Fig. 13.9 Curve C representing all the corotating observers of a closed family in the reference
space of the uniformly rotating observer O

t D 1

c2

I

C

� 2 #»
V � d #»

` : (13.42)

This represents the increase of coordinate t between the events A.0/ and A.1/ on the
worldline of O 0

.0/. From (13.24), the corresponding change of O 0
.0/’s proper time is

obtained by dividing by the Lorentz factor �.0/ of O 0
.0/ with respect to O�:

t 0desync D
1

c2�.0/

I

C

� 2 #»
V � d #»

` ; (13.43)

where the index “desync” stands for desynchronization. The fact that t 0desync 6D 0

shows indeed that

It is not possible to synchronize clocks along a closed loop on the rotating
disk. This can be achieved locally, as shown in Sect. 13.4.2, but not globally:
the events A.0/ and A.1/, despite belonging to the simultaneity curve S of
corotating observers, have dates with respect to O 0

.0/ which are separated by
t 0desync (cf. Fig. 13.10).

Remark 13.6. In formula (13.43),
#»

V and d
#»

` are two vectors of O’s local rest
space, Eu [cf. (13.12) and (13.37)]. We can thus identify them with two vectors
of O’s reference space, RO [via the isomorphism (3.27)]. Moreover, C is a curve
defined in RO , and, as seen easily from (13.37) and (13.41), d

#»

` is tangent to C (cf.
Fig. 13.9). The integral in (13.43) is thus nothing but the circulation of the vector
� 2 #»

V along C .
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Fig. 13.10 Simultaneity curve S , marking t 0 D 0 for the corotating observers having a fixed
value of r

Remark 13.7. Since
#»

V D r! #»n [Eq. (13.12)] and � D .1 � r2!2=c2/�1=2
[Eq. (13.17)], (13.43) can be written as

t 0desync D
!

c2

q
1 � r2.0/!2=c2

I

C

r

1 � r2!2=c2
#»n � d #»

` ; (13.44)

where r.0/ stands for the coordinate r of O.0/.

Two particular cases are interesting. Let us first consider a family of observers
at constant radius, i.e. having the same coordinate r . We can then choose � D
˙'=.2�/, with C for � varying in the same sense as ' and � otherwise. We have
then � D const D �.0/ and d

#»

` D ˙rd' #»n , which yields
#»

V �d #»

` D ˙r2!d'. Since
� , r and ! are constant, formula (13.43) is easily integrated in

t 0desync D ˙2��
r2!

c2
:
rDconst

(13.45)

It is also easy to integrate (13.39) to get the simultaneity curve S : in terms of the
inertial coordinates .ct; x�; y�; z�/, the equation of S is found to be

S W

8
ˆ̂̂
<

ˆ̂̂
:

ct D ˙r
2!

c
� 2'

x� D r cos
�
� 2'

�

y� D r sin
�
� 2'

�
:

(13.46)

We recognize the equation of a helix, parametrized by � 2'. This helix is depicted
in Fig. 13.10.
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The second particular case is that of small velocities: k #»
V kg D r! 	 c. We can

then set �.0/ ' 1 and � ' 1 in (13.43), which reduces to

t 0desync '
1

c2

I

C

#»
V � d #»

` D 1

c2

Z

S

curl
#»
V � d # »� : (13.47)

The second equality follows from Stokes theorem [cf. Eq. (16.55)]: S is the surface
ofRO inside the contour C (cf. Fig. 13.9) and d

# »� the element of area of S oriented
according to the sense of variation of � along C . In the present case (rigid rotation),
curl

#»
V D 2 #»!. Since #»! is constant, there comes

t 0desync '
2

c2
#»! � # »�

r!�c

; (13.48)

where
# »� is the area vector of the surface S , oriented according to the sense of

variation of � along C . In other words, #»! � # »� � 0 if d
#»
` is in the direction of

rotation (as in Fig. 13.9) and #»! � # »� � 0 otherwise.

Remark 13.8. The result (13.48) does not constitute a Newtonian limit of the
desynchronization time but rather an approximation at small velocities of a proper
relativistic feature. Indeed, in Newtonian theory, we would have t 0desync D 0,
since all observers, corotating or not, measure the same time, namely, the absolute
Newtonian time. To strengthen this, we notice that if formula (13.48) would be a
real Newtonian limit, it would not involve any c factor.

Historical note: The expression (13.42) for t is present in the second volume
of the famous treatise on theoretical physics by Lev D. Landau2 and Evgeny
M. Lifshitz3 (Landau and Lifshitz 1975, Sect. 89), whose first edition dates from
the 1950s (it was derived by a method different from that presented here). The
approximate formula (13.48) is also found there. The synchronization helix S ,
which allows to visualizet 0desync in Minkowski spacetime, as in Fig. 13.10, has been

introduced by Theodor Kaluza4 in 1910 (Kaluza 1910); Kaluza certainly knew an
expression equivalent to (13.42), but he did not write it down. The synchronization

2Lev D. Landau (1908–1968): Soviet theoretical physicist, 1962 Nobel Prize in Physics for
the explanation of superfluidity; Landau contributed to many fields of physics, among which
relativistic hydrodynamics. He wrote with Evgeny Lifshitz a course covering all theoretical physics
of the twentieth century (Landau and Lifshitz 1975).
3Evgeny M. Lifshitz (1915–1985): Soviet theoretical physicist, former student of Landau,
specialist of solid state physics and general relativity.
4Theodor Kaluza (1885–1954): German mathematician, mostly known for his work in theoretical
physics, especially for the so-called Kaluza–Klein theory (1921)—an attempt to unify gravitation
and electromagnetism (the only known interactions at that time) in a five-dimensional space.
Polyglot, Kaluza was speaking not less than 17 languages!
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helix has been discussed in detail by Vittorio Cantoni in 1968 (Cantoni 1968) (cf.
also Anandan (1981), Rizzi and Tartaglia (1998) and Rizzi and Serafini (2004)).

13.4.4 Clock Transport on the Rotating Disk

The synchronization procedure described above is based on the orthogonality to
the worldline [Eq. (13.35)], which is the geometrical translation of the Einstein–
Poincaré simultaneity criterion discussed in Sect. 3.2.2. The physical realization
of the latter involves measuring round-trip times of light signals. One may think
about a second synchronization procedure: that of slow clock transport. The various
corotating observers are actually at rest with respect to each other and one can
propagate time by carrying from observer to observer the same clock at very
low velocity, to minimize the time dilation effect. For a rigid array of inertial
observers (cf. Sect. 8.2.4), such a process is equivalent to the Einstein–Poincaré
synchronization. What happens for an array of corotating observers?

To answer, let us consider an observer O 00 who travels by meeting successively
all the members O 0

.�/ of a closed family of corotating observers. The trajectory of
O 00 in the reference space of O is thus the curve C defined above (cf. Fig. 13.9). Let
#»v be the velocity of O 00 relative to each observer O 0

.�/ that he encounters. We set
v WD k #»v kg . Eventually, O 00 will be the observer carrying the synchronization clock,
and v will be assumed to be small, to achieve the slow transport. But at present, we
shall not make any hypothesis on the value of v. Even, we shall use v ! c in
Sect. 13.6.1. By definition, observer O 00 quits the corotating observer O 0

.0/ at event
A, encounters successively each O 0

.�/ at the event M.�/ say and is back to observer
O 0
.0/ at event B (cf. Fig. 13.11). We have then M.0/ D A and M.1/ D B .
When O 00 moves from M.�/ to M.�Cd�/, the proper time measured by O 0

.�/ is, by
definition of the velocity #»v ,

dt 0 D d`0

v
; (13.49)

where d`0 WD kd #»

` 0kg , d
#»

` 0 being the proper separation vector (13.38) between
O 0
.�/ and O 0

.�Cd�/ (cf. Fig. 13.12). Combining (13.38) and (13.39) yields a relation

between d
#»
` 0 and d

#»
` :

d
#»

` 0 D d
#»

` C � 2

c
.

#»

V � d #»

` /

�
#»u C 1

c

#»

V

	
:

Taking the scalar square of this relation and using #»u � d #»
` D 0, #»u � d #»

V D 0 and
1 � V 2=c2 D � �2, we get
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Fig. 13.11 Worldline of the synchronization clock (observer O00) slowly transported among the
corotating observers, in the case where they are located at the same coordinate r . Note that this
spacetime diagram is drawn in the coordinates .ct; x; y; z/ of the uniformly rotating observer
O, contrary to the diagrams of Figs. 13.3 and 13.10, which are based on the inertial coordinates
.ct; x�; y�; z�/. Accordingly, the worldline of the corotating observer O0

.0/ appears as a vertical
straight line, whereas in Figs. 13.3 and 13.10, it was a helix

Fig. 13.12 Observer O00 moving from a corotating observer O0

.�/ to the neighbouring observer
O0

.�Cd�/

d`02 D d`2 C � 2

c2
.

#»
V � d #»

` /2: (13.50)

Let us denote by � the angle between vectors d
#»
` and

#»
V D r! #»n inEu:

#»
V �d #»

` D
r!d` cos � . Equation (13.50) can then be recast as
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d`0 D �
r
1� r

2!2

c2
sin2 � d` (13.51)

and (13.49) becomes

dt 0 D �

v

r
1 � r

2!2

c2
sin2 � d`: (13.52)

The proper time dt 00 measured by O 00 betweenM.�/ andM.�Cd�/ is deduced from
dt 0 via the Lorentz factor corresponding to the velocity #»v :

dt 00 D
r
1 � v

2

c2
dt 0 D �

v

s�
1 � v

2

c2

	�
1 � r

2!2

c2
sin2 �

	
d`: (13.53)

If v ! 0, dt 00 D dt 0, which shows that the synchronization of the corotating
observers’ clocks by means of the clock transported by O 00 coincides with the
Einstein–Poincaré synchronization if O 00 moves infinitely slowly.

With respect to the inertial observer O�, dt 0 corresponds to a time lapse � dt 0
[cf. (13.24)]. The total elapsed time measured by O� between the events M.�/ and
M.�Cd�/ is then

dt D � dt 0 C dtsync; (13.54)

where dtsync is the increase (13.39) of the coordinate t between two events that are
simultaneous from the point of view of corotating observers (cf. Fig. 13.12). Using
(13.52) and (13.39), we have thus

dt D � 2

 r
1 � r

2!2

c2
sin2 �

d`

v
C

#»

V � d #»

`

c2

!
: (13.55)

For the three observers O�, O 0
.0/ and O 00, let us set to zero the date of the event A

where O 00 leaves O 0
.0/:

tA D t 0A D t 00A D 0: (13.56)

The elapsed time for the journey of O 00 fromA to B , as measured by O�, is obtained
by integrating (13.55) between � D 0 and � D 1, i.e. by integrating over the
contour C :

tB D
I

C
� 2

 r
1 � r

2!2

c2
sin2 �

d`

v
C

#»

V � d #»

`

c2

!
: (13.57)
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By virtue of (13.24), the elapsed time for O 0
.0/ follows by dividing by the Lorentz

factor �.0/. Using (13.43), we get

t 0B D
1

�.0/

I

C

� 2

v

r
1 � r

2!2

c2
sin2 � d`Ct 0desync: (13.58)

On the other side, the time measured by O 00 between A and B is obtained by
integrating (13.53):

t 00B D
I

C

�

v

s�
1 � v

2

c2

	�
1 � r

2!2

c2
sin2 �

	
d`: (13.59)

The difference between the travel time measured by O 0
.0/ and that measured by O 00 is

t 0B � t 00B D
I

C

�

v

r
1 � r

2!2

c2
sin2 �

 
�

�.0/
�
r
1 � v

2

c2

!
d`Ct 0desync :

(13.60)

In all what follows, we shall assume that the norm v of the velocity of O 00 relative
to each corotating observer is constant.

It is worth expressing (13.60) in the particular case where the corotating
observers are all located at the same r-coordinate, which implies that the trajectory
of O 00 is a circle of radius r with respect to O (or O�). We have then � D 0,
� D �.0/ D const andt 0desync is given by (13.45). Since both � and v are constant,
all the terms can be extracted from the integral, which reduces to

H
d` D 2�r . Using

the identity 1 �p1 � x2 D x2=Œ1Cp1 � x2�, there comes then

t 0B � t 00B D �
2�r

c2
v

1Cp1 � v2=c2 Ct
0
desync:

rDconst

(13.61)

If O 00 is moving slowly from a corotating observer to the other one, then v ! 0 and
the above formula reduces to

t 0B � t 00B D t 0desync;
rDconst; v!0

(13.62)

with t 0desync given by (13.45). Thus, when it is back to O.0/, the clock transported
by O 00 does not show the same time as a clock that stayed with O.0/, the two clocks
having been synchronized at the departure of O 00 [t 0A D t 00A D 0, Eq. (13.56)].
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We conclude that the synchronization of corotating observers with a slowly
transported clock faces the same problem as the synchronization by exchange
of light signals: after a complete turn, the clocks are desynchronized by the
quantityt 0desync given by (13.45).

Remark 13.9. The result (13.62) might appear surprising at first glance, since it
has been obtained by taking the limit v ! 0, and observers O 00 and O 0

.0/ coincide
if v D 0, so that one could have expected t 00B D t 0B in this limit. Actually, when
v ! 0, the travel time of O 00 between A and B becomes infinitely large, as seen on
(13.59). We have thus t 00B ! C1 and t 0B ! C1, the difference between the two
approaching the finite number t 0desync. Moreover, let us stress that if v was strictly
zero, the event B would be ill defined.

13.4.5 Experimental Measures of the Desynchronization

13.4.5.1 Hafele–Keating Experiment

Let us reconsider the Hafele–Keating experiment (1971) described in Sect. 2.6.6,
namely, the comparison of an atomic clock after a flight around the Earth with an
atomic clock stayed on the ground (Hafele 1972b; Hafele and Keating 1972a,b). In
this experiment, the rotating system is of course the Earth. O 0 is then the ground
observer and O 00 the observer travelling in the plane. To simplify the computation,
we shall assume that a single plane is employed and that it follows an exactly
circular trajectory, i.e. it performs the trip all around the Earth by staying at the same
latitude and keeping a constant velocity with respect to the ground (the parameter v).
In this case, the formula giving the difference in proper time between the ground
clock and the onboard clock is (13.61):

tground � tplane D �rv

c2
Ct 0desync; (13.63)

where we have set5 tground WD t 0B and tplane D t 00B and have of course taken the limit
of small velocities: � D 1 and 1 Cp1 � v2=c2 D 2. t 0desync is given by (13.45)
(still with � D 1):

t 0desync D ˙2�
r2!

c2
; (13.64)

5tground and tplane were noted, respectively, T and T 0 in Sect. 2.6.6.
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with the C sign for a journey in the same sense as Earth rotation, i.e. eastward,
and the � sign otherwise. In formulas (13.63) and (13.64), r D R cos�, where
R D 6:37�106 m is the Earth radius and � is the latitude of the plane trajectory:� D
30ı (the altitude of the plane is neglected in front of R). In (13.63), v is the plane
velocity relative to the ground. For the airline jets employed by Hafele and Keating
v D 830 km h�1 D 230 m s�1. Finally, ! is the angular velocity of the Earth with
respect to an inertial frame: ! D !˚ D 2�=.23 h 56 min/ D 7:29 � 10�5 rad s�1.
With the above numerical values, we get

t 0desync D 155 ns (east) and t 0desync D �155 ns (west); (13.65)

tground � tplane D 199 ns (east) and tground � tplane D �111 ns (west): (13.66)

Given the simplifications on the plane trajectories, we recover the values mentioned
in Sect. 2.6.66: tground � tplane D 184 ˙ 18 ns for the eastward journey and
tground � tplane D �96 ˙ 10 ns for the westward one. The latter values, which take
into account the actual trajectories of the planes (hence the error bars), are in very
good agreement with (13.66).

As we have already discussed in Sect. 2.6.6, to get the time shift actually
measured by Hafele and Keating, one must add to (13.63) a term arising from
general relativity, reflecting the fact that the plane is higher is the Earth gravitational
potential than the ground station: the gravitational-redshift term, which will be
discussed in Chap. 22. The full formula is then

tground � tplane D �rv

c2
Ct 0desync Ctgrav (13.67)

with

tgrav D �GM
c2R

h

R
tground; (13.68)

whereG D 6:67�10�11 m3 kg�1 s�2 is the gravitation constant,M D 6:0�1024 kg
is the Earth mass and h is the plane altitude. Taking h D 9 km and tground D 2�r=v,
the amplitude of the gravitational-redshift term is

tgrav D �148 ns: (13.69)

Finally,

tground � tplane D 51 ns (east) and tground � tplane D �259 ns (west); (13.70)

to be compared with the experimental values:

6In Sect. 2.6.6, the considered quantity was T 0 � T D tplane � tground, rather than tground � tplane.
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tground � tplane D 59˙ 10 ns (east) and tground � tplane D �273˙ 7 ns (west):
(13.71)

Given the approximation on the trajectories, there is a good agreement between the
predicted values and the measured ones. Since the three terms in (13.67) are of the
same order of magnitude, we conclude that Hafele–Keating experiment constitutes
an experimental confirmation of the synchronization defect t 0desync caused by the
rotation of a system of observers.

13.4.5.2 Synchronization of Atomic Clocks on the Earth

The modern timescale used on Earth is based on the International Atomic Time
(TAI, from the French temps atomique international), which combines data from
a few hundred atomic clocks around the world. Each atomic clock is at rest at the
surface of the Earth; it therefore gives the proper time of an observer O 0 rotating at
the angular velocity !˚ D 7:29 � 10�5 rad s�1 with respect to an inertial observer.
When comparing the atomic clocks among themselves to define the TAI, one
faces the synchronization problem of corotating observers. The solution amounts
to correcting the output of each clock to bring it to the time t of the central
inertial observer O�. In this context, t is called Geocentric Coordinate Time (TCG,
from the French temps-coordonnée géocentrique) and O� the Geocentric Celestial
Reference System (GCRS). The advantage of t , with respect to the measured atomic
time t 0, is that it allows one to bypass the synchronization problem on the rotating
Earth. The fundamental equation to make the transfer from the atomic clock time
t 0 to the coordinate time t is (13.54). The correction to apply7 to the output t 0 of
an atomic clock is thus to multiply by the Lorentz factor � and to add the integral
of dtsync. This last correction has to be applied any time one wants to combine the
outputs of clocks at different locations on the Earth surface. The necessity of this
term has been shown experimentally in the synchronization of two atomic clocks
(i) by the transport of a third atomic clock between the two clocks by Neil Ashby
and David W. Allan in 1979 (Ashby and Allan 1979) and (ii) by means of the
analysis of the electromagnetic signals from the satellites of the Global Positioning
System (GPS) by David W. Allan, Marc A. Weiss and Neil Ashby in 1985 (Allan
et al. 1985). For more details on this topic, the reader is invited to consult (Ashby
2003, 2004; Blanchet et al. 2001; Petit and Wolf 2005).

7Additionally, one must correct from the general relativistic redshift mentioned above, because O0

is higher in the Earth gravitational potential than O�, who is located at the Earth centre.
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13.5 Ehrenfest Paradox

13.5.1 Circumference of the Rotating Disk

We have defined in Sect. 13.3.2 the rotating disk as the set of all corotating observers
O 0 whose r coordinate ranges from 0 (central observer O) and some upper bound
R < c=!, called the disk radius. The set of corotating observers of coordinate
r D R constitutes the disk circumference. This is a closed family, of parameter
� D '=.2�/. Relation (13.37) becomes then

d
#»
` D Rd' #»n : (13.72)

The distance d`0 between two neighbouring corotating observers on the disk
circumference, O 0

.�/ and O 0
.�Cd�/, as measured by O 0

.�/ [i.e. the norm of the vector
#                       »
A.�/A.�Cd�/; cf. (13.38)] is given by (13.51). Now, in the present case, � D 0 (

#»

V

and d
#»

` are aligned) and, using (13.72), d` D R d'. Thus, (13.51) reduces to

d`0 D �R d': (13.73)

From the point of view of corotating observers, the circumference of the rotating
disk is then

L0 D
Z 'D2�

'D0
d`0 D

Z 2�

0

�R d':

Since � D .1 �R2!2=c2/�1=2 is independent of ', there comes immediately

L0 D � 2�R : (13.74)

13.5.2 Disk Radius

To define the disk radius measured by the corotating observers, let us consider a
family of observers sharing the same ' coordinate with respect to O (cf. Fig. 13.13).
The parameter of this family is then � D r=R. Equation (13.37) becomes

d
#»

` D �dr #»e 0
2: (13.75)

The distance d`0 between O 0
.�/ and O 0

.�Cd�/, as measured by O 0
.�/, is still given by

(13.51), with this time � D �=2 (
#»
V and d

#»
` are orthogonal) and, from (13.75), d` D

dr . Thus, d`0 D �
p
1 � r2!2=c2 dr D dr . From the point of view of corotating

observers, the length of the radius of the rotating disk is thus
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Fig. 13.13 Worldlines of the
corotating observers O0

.r/ and
O0

.rCdr/ having the same '
coordinate and infinitely
close r coordinates

R0 D
Z rDR

rD0
d`0 D

Z R

0

dr;

hence,

R0 D R : (13.76)

Comparing with (13.74), we conclude that the circumference L0 and the radius R0
of the disk, both measured by corotating observers, are linked by

L0 D � 2�R0 D 2�R0
p
1 � .R0!=c/2

: (13.77)

For ! 6D 0, this relation differs from the standard formula L0 D 2�R0. Conse-
quently, the corotating observers “perceive” a non-Euclidean spatial geometry.

13.5.3 The “Paradox”

In 1909, Paul Ehrenfest8 (1909) noticed that if one considers a disk9 initially at rest
with respect to an inertial observer O�, its circumference is related to its radius by

L0 D 2�R0: (13.78)

8Paul Ehrenfest (1880–1933): Austrian physicist (naturalized Dutch in 1922), known for his work
in quantum mechanics and famous for the clarity of his physics lecture at the University of Leiden.
He got depressed and committed suicide, as his thesis advisor, Ludwig Boltzmann, did 27 years
before.
9Actually, Ehrenfest considered a cylinder, rather than a disk; but this changes nothing to the
present discussion, since the height of the cylinder plays no role.



13.5 Ehrenfest Paradox 455

If the disk is set to rotation, then the circumference and radius measured by the
inertial observer still satisfy L D 2�R with R D R0. Because of the length
contraction (cf. Sect. 5.2.2), the circumference L0 measured by observers at rest
on the disk must obey L < L0 for the velocity is tangent to the circumference. On
the other hand, there is no length contraction in the radial direction, the latter being
orthogonal to the disk velocity with respect to O�. The radius measured by the disk
observers is thus R0 D R D R0. One infers from L D 2�R and L < L0 that

L0 > 2�R0: (13.79)

This relation is of course in agreement with the result (13.77), which stipulates
that the factor between L0 and 2�R0 D 2�R0 is � > 1. The paradox appears if
one assumes that the disk remained rigid during all the stage of rotation increase,
from zero to the final value of !. Indeed, according to Born’s rigidity criterion
(cf. Sect. 3.3.2), the distance between any two elements of the disk must remain
constant. This amounts to considering the worldlines of the adjacent observers O 0

.�/

and O 0
.�Cd�/ on the disk circumference as the extremities of a ruler and to asking

that this ruler is rigid in the sense defined in Sect. 3.3.2. Then L0 D L0 holds and
Eqs. (13.78) and (13.79) are contradictory. This is the so-called Ehrenfest paradox.

The solution of this “paradox” relies on the relaxation of the rigidity hypothesis,
i.e. on the equality L0 D L0. Indeed, as detailed hereafter, it turns out that the disk
cannot remain rigid during the set up of rotation.

13.5.4 Setting the Disk into Rotation

Let us consider a disk in the plane z� D 0 of the inertial observer O�. The disk
is assumed to be at rest with respect to O� for t < t0. At the instant t D t0, each
point of the disk is submitted to the same angular acceleration10 d2'�=dt2 6D 0. The
value of d2'�=dt2 is kept constant until the desired angular velocity ! D d'�=dt
is reached at t D t1. The whole process is represented in the spacetime diagram
of Fig. 13.14. A rigid ruler (in Born sense) carried by the corotating observer O 0

A

is depicted in this figure. At t D t0, O 0
A is at the end A0 of the ruler, and the

other end marks the position B0 of a neighbouring corotating observer, O 0
B say.

At the end of the angular acceleration phase (t D t1), O 0
A is in A1 and O 0

B in B1.
In the local rest space of O 0

A, the second end of the ruler, B 0
1 say, is located along

the vector #»e 0
1. Since the ruler is supposed rigid, its proper length is always equal to

`0 WD k #        »
A0B0kg . The point B 0

1 is thus determined by

#        »

A1B
0
1 D `0 #»e 0

1: (13.80)

10'� stands for the azimuthal coordinates related to the inertial coordinates .x�; y�/ by x� D
r cos'�, y� D r sin'� and r WD p

x2
�

C y2
�

.
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Fig. 13.14 Setting the disk
into rotation: the disk is at rest
(with respect to O�) for t <
t0, it accelerates uniformly
for t0 � t < t1 and has
a uniformly circular motion at
the velocity ! for t 
 t1. Each
solid line is the worldline
of a corotating observer.
A rigid ruler between
two adjacent corotating
observers is depicted
(extremities A and B)

The angular acceleration having been the same (from the point of view of O�) for
all the points of the disk, we have k #        »

A1B1kg D k #        »
A0B0kg D `0. We deduce that the

point B 0
1 is located on the hyperboloid H through B1 that defines the extremities

of the vectors arising from A1 and having a norm equal to `0 (this hyperboloid is
homothetic to the hyperboloid of one sheet SA1 introduced in Sect. 1.4.3). The trace
of H in the plane tangent to the spacetime cylinder formed by the rotating disk is
the branch of hyperbola depicted by a dashed line in Fig. 13.14. We see clearly
that B 0

1 is not located on the worldline of O 0
B . In other words, the ruler has lost

the contact with O 0
B . Since the ruler is rigid (i.e. has a constant metric length), this

implies that the distance between observers O 0
A and O 0

B has increased during the
acceleration phase: the disk has not obeyed Born rigidity. We recover actually the
result (13.73), which leads to the increase of the disk circumference, by the Lorentz
factor � : L0 D � 2�R.

Another illustration of the circumference increase measured by the corotating
observers is given in Fig. 13.15. The latter represents the rotating disk as perceived
by the inertial observer O� at the instants t0 and t1. This is nothing but the drawing
of the plane sections defined by Eu.t0/ and Eu.t1/ in Fig. 13.14. Three types of rigid
rulers have been depicted:

• Rulers R� located slightly outside the disk and fixed with respect to O�.
• Rulers R 0

1 located at the disk periphery and following the disk in its motion,
in the following sense: (i) an extremity of the ruler is attached to the disk, i.e.
follows the worldline of a corotating observer (this is the extremity marked by
a dot in Fig. 13.15), and (ii) the ruler is always tangent to the periphery of the
disk.
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Fig. 13.15 Disk at rest with
respect to the inertial
observer O� (t D t0) and in
uniform rotation (t D t1).
The dots mark the fixations of
the rulers to the disk. The
points A0, B0, A1 and B1 are
the same as in Fig. 13.14

• Rulers R 0
2 located along a diameter of the disk and at rest with respect to it in

the following sense: (i) an extremity of the ruler is attached to the disk (extremity
marked by a dot in Fig. 13.15) and (ii) the ruler is always aligned along a diameter
of the disk.

All these rulers are supposed to be identical, i.e. have the same length (in the
frame where they are at rest). The rulers R� are of course at the same position in
the two panels of Fig. 13.15. At t D t0, when the disk is still at rest, the rulers
R 0
1 coincide (except for a slight radial shift) with the rulers R�. On the other

hand, at t D t1, when the disk is in stationary rotation, the rulers R 0
1 as perceived

by O� are affected by the FitzGerald–Lorentz contraction, since they are aligned
in the direction of motion. Each ruler has then lost contact with its neighbours.
More rulers would be thus required to close the circumference. This shows clearly
that the circumference length for corotating observers, namely, L0, is larger than
the length L measured by O�. On the other side, the rulers R 0

2, which at each
instant are perpendicular to the direction of motion, do not suffer the FitzGerald–
Lorentz contraction and keep contact with each other. This means that the radius R0
measured by corotating observers is unchanged and illustrates the non-Euclidean
relation (13.77):L0 > 2�R0.

If the rotating disk is a solid body, then the stretch (in the direction parallel to
the circumference) caused by setting the disk into rotation induces some elastic
constraints (tensions) in the material. These constraints could lead to the breakup of
the disk if the rotation velocity was too high.

Historical note: Since its formulation in 1909 (Ehrenfest 1909), the Ehrenfest
paradox has generated an important literature, with many debates. The non-
Euclidean character of the geometry perceived by the corotating observers has
been established by Theodor Kaluza (cf. p. 445) in 1910 (Kaluza 1910), as well
as by Albert Einstein in 1916 (Einstein 1916, 1919), and developed, among others,
by Paul Langevin (cf. p. 40) in 1935 (Langevin 1935), Carlton W. Berenda11 in
1942 (Berenda 1942) and Nathan Rosen12 in 1947 (Rosen 1947). Let us point

11Carlton W. Berenda (1911–1980): American physicist and philosopher of sciences.
12Nathan Rosen (1909–1995): American–Israeli physicist, assistant of Einstein at Princeton; he
is the “R” of the famous EPR paradox in quantum mechanics; he is also known for the Einstein–
Rosen bridge in general relativity.
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Fig. 13.16 Principle of a
Sagnac experiment

out that the problem of the rotating disk seems to have played an important role
in Albert Einstein’s thoughts towards general relativity (Stachel 1980), notably
regarding the difference between mathematical coordinates and measured lengths
and times. This distinction was not done in the first articles about special relativity,
which were restricted to inertial observers. But, as stressed above, for corotating
observers, the coordinates .r; '/ do not correspond directly to physical measures.
For instance, relation (13.73) between the physical length d`0 and rd' is not
simple, because of the � factor. The impossibility to set the disk into rotation while
preserving Born rigidity has been underlined as early as 1909 by Gustav Herglotz
(cf. p. 361) (1909). For more details about the history and the solution to Ehrenfest
paradox, some useful references are Grøn (2004), Rizzi and Ruggiero (2002) and
Walter (1996).

13.6 Sagnac Effect

The most interesting aspect of rotating observers is certainly the Sagnac effect. It
has been put forward in 1913 by Georges Sagnac13 (1913a; 1913b) as a phase shift
proportional to the angular velocity in an optical interferometer attached to a rotating
table. The effect is however not limited to electromagnetic waves; actually it results
from the difference between the instants of return of two signals emitted at some
location of a rotating disk and making one turn of the disk in opposite directions
(cf. Fig. 13.16). The nature of the signals is not important (electromagnetic waves,
electrons, neutrons, atoms, etc.), provided that the norms of the propagation speed
of the two signals are the same with respect to corotating observers.

13Georges Sagnac (1869–1928): French physicist, one of the pioneers of X-ray studies in France
(he notably discovered X-ray fluorescence); he got interested in the optics of moving bodies, in the
framework of the aether theory, of which he was a proponent. He was a friend of Paul Langevin
(cf. p. 40), Émile Borel (cf. p. 215) and Pierre and Marie Curie.
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Fig. 13.17 Circular signals
emitted in A by the corotating
observer O0, in the sense of
rotation (worldline LC) and
in the reverse one (worldline
L�). The first signal reaches
O0 at BC and the second one
at B�

13.6.1 Sagnac Delay

Let us consider a corotating observer O 0 who emits at the same eventA two “pulses”
or “signals”, SC and S�. These two signals travel on the same path on the disk, but
in opposite directions: in the same sense than the disk rotation for SC (prograde
signal) and in the opposite sense for S� (retrograde signal). After one turn, the
two signals encounter again observer O 0, at events BC and B�, respectively. We
shall model these signals as two particles of respective worldlines LC and L� (cf.
Fig. 13.17). LC and L� can be timelike curves (signal carried by massive particles)
or null ones (electromagnetic signal). In both cases, the rotating disk is equipped
with “mirrors” to make the trajectory a closed loop.

Since they are coming back to their departure point, each of the signals obeys
the equations established for observer O 00 in Sect. 13.4.4. The quantity v is then
the norm of the signal velocity relative to corotating observers. Stating that the two
signals travel the same path, but in opposite directions, amounts to considering that
their trajectories in O’s reference space is the same closed curve C (cf. Fig. 13.9). If
the signals are lightlike, O 00 D SC or S� is no longer strictly speaking an observer,
but the kinematical formulas of Sect. 13.4.4 still hold with v D c. We have then
t 00B D 0.

Let us set the origin of the proper time of O 0 at event A : t 0A D 0. The duration
t 0C (resp. t 0�) measured by O 0 between the departure of the signal SC (resp. S�) at
A and its return in BC (resp. B�) is given by (13.58):

t 0̇ D 1

�.0/

I

C

� 2

v˙

r
1 � r

2!2

c2
sin2 � d`Ct 0˙desync; (13.81)
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where vC (resp. v�) if the norm of the velocity of SC (resp. S�) relative to
each corotating observer O 0

.�/ encountered by the signal and where t 0˙desync obeys
(13.43):

t 0˙desync D
1

c2�.0/

I

C
� 2 #»

V � d #»

` ˙; (13.82)

d
#»

` C (resp. d
#»

` �) being the element of the contour C oriented in the sense of
propagation of SC (resp. S�). At any point of C , d

#»

` � D �d
#»

` C, so that

t 0�desync D �t 0Cdesync: (13.83)

Let us assume now that, from the point of view of the corotating observer O 0, the
velocities of the two signal are identical:

vC D v� DW v : (13.84)

In particular, if the signals are electromagnetic ones, v D c. Indeed, we have seen in
Sect. 4.6.2 that the light velocity measured locally by an observer is always c, even
if the observer is accelerated or rotating, which is the case for O 0. We deduce from
(13.81), (13.83) and (13.84) that the difference between the arrival times of signals
SC and S� is

t 0 WD t 0C � t 0� D 2t 0Cdesync: (13.85)

Makingt 0Cdesync explicit via (13.82), we get

t 0 D 2

c2�.0/

I

C

� 2 #»
V � d #»

` ; (13.86)

where we have noted d
#»

` D d
#»

` C (length element of the path C oriented in the
sense of rotation, so that

#»

V � d #»

` � 0) .

The fact that t 0 6D 0, i.e. that the signal emitted in the sense of rotation does
not come back to O 0 at the same instant than the signal emitted in the opposite
sense, constitutes the Sagnac effect. The quantityt 0 is called Sagnac delay.
It is always positive since

#»

V � d #»

` D #»

V � d #»

` C � 0. Hence, the signal in
the sense of rotation arrives always after that propagating in the reverse sense
(cf. Fig. 13.17). Formula (13.85) shows that the Sagnac effect is related to the
impossibility of a global synchronization of corotating observers discussed in
Sect. 13.4.
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Remark 13.10. At the nonrelativistic limit, kV kg=c D r!=c ! 0 and (13.86)
reduces to

t 0 D 0 (nonrelativistic): (13.87)

Thus, there is no Sagnac effect in Newtonian theory, which is expected since the
signals have to travel the same distance to come back to their starting point and they
have the same velocity vC D v� relative to the rotating disk.

Remark 13.11. The Sagnac delayt 0 is independent of the velocity v of the signals
relative to the corotating observer O 0. It will therefore be the same for photons and
massive particles. In particular, the c factor that appears (squared) in (13.86) does
not arise from the signal propagation speed but from the metric of Minkowski
spacetime.

The two particular cases treated in Sect. 13.4.3 lead to simplified formulas for
the Sagnac delay: for a circular signal trajectory, at fixed radius r , Eqs. (13.45) and
(13.85) lead to

t 0 D 4�� r
2!

c2
:
rDconst

; (13.88)

whereas for small rotation velocities, Eqs. (13.48) and (13.85) lead to

t 0 ' 4

c2
#»! � # »�

r!�c

; (13.89)

where
# »� is the area vector of the surface delimited by the trajectory C of the

signals, oriented in the sense of rotation, i.e. such that #»! � # »� � 0.

Remark 13.12. For circular signals, k # »� kg D �r2, so that at small rotation velocity
(� ! 1), (13.88) reduces to (13.89), as it should.

13.6.2 Alternative Derivation

In the particular case of purely circular signals (propagation at constant r), it is
instructive to recover the Sagnac delay (13.88) by a method that does not rely on the
desynchronization timet 0desync computed in Sect. 13.4. Indeed, formula (13.88) can
be obtained directly from the equations of the signals’ worldlines, which are simple
in the present case, and the relativistic law of velocity composition.

The worldlines of the signals SC and S�, once expressed in terms of the inertial
coordinates .ct; x�; y�; z�/, are helices of equations
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LC W

x� D r cos˝Ct
y� D r sin˝Ct

and L� W

x� D r cos˝�t
y� D r sin˝�t

; (13.90)

where r is the radial coordinate of O 0 and˝C > 0 and˝� < 0 are two constants (cf.
Fig. 13.17). The equation of O 0 in the same coordinates being given by (13.11) (we
choose ' D 0), we deduce that the worldline LC encounters again the worldline of
O 0 at the event BC where t D tBC

is such that ˝CtBC
D !tBC

C 2� , i.e.

tBC
D 2�

˝C � ! : (13.91)

Similarly, the coordinate t D tB�
of the event B� where L� encounters again

the worldline of O 0 fulfils ˝�tB�
D !tB�

� 2� (the � sign taking count of the
retrograde motion of S�); hence,

tB�
D 2�

! �˝�
: (13.92)

For O 0, the proper time interval between the events B� and BC is, from (13.24),
t 0 D � �1.tBC

� tB�
/; hence,

t 0 D 2�

�

�
1

˝C � ! C
1

˝� � !
	
: (13.93)

With respect to the inertial observer O�, the velocities of O 0, of the prograde
signal and the retrograde one, at the emission at A, are, respectively,

#»

V D r! #»n ;
#»

V C D r˝C #»n and
#»

V � D r˝� #»n : (13.94)

Rather than
#»
V C and

#»
V �, let us introduce the velocities of the two signals with

respect to observer O 0, still at the instant of emission at A 14:

#»v C D vC #»e 0
1 and #»v � D �v� #»e 0

1: (13.95)

Hence, vC D k #»v Ckg and v� D k #»v �kg . The velocities #»v C and #»v � are related to
#»

V C and
#»

V � by the law of velocity composition specified to the case of collinear
velocities [the involved velocities relative to O� are all along #»n ; cf. (13.94)]. The
formula to apply is then (5.45) with V 0 D VC D r˝C, V D vC and U 0 D V D r!:

r˝C D vC C r!
1C r!vC=c2

: (13.96)

14Let us recall that the unit vectors #»n and #»e 0

1 have been defined in Sect. 13.3.3.
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Let us recall that this formula still holds if vC D c (case of electromagnetic signals).
It leads then to r˝C D c. Using the relation 1 � r2!2=c2 D � �2, we deduce from
(13.96) that

˝C � ! D � �2 �1C r!vC
c2

��1 vC
r
: (13.97)

Similarly, we obtain, when replacing vC by �v�,

˝� � ! D �� �2
�
1 � r!v�

c2

��1 v�
r
: (13.98)

Substituting (13.97) and (13.98) in (13.93), we get

t 0 D 2�� r
�
2r!

c2
C 1

vC
� 1

v�

	
: (13.99)

By virtue of hypothesis (13.84), namely, the equality of the propagation velocities
vC and v� relative to corotating observers, it is clear that (13.99) yields the Sagnac
delay (13.88).

13.6.3 Proper Travelling Time for Each Signal

The proper times TC and T� elapsed for each signal between A and B˙ are given
by formula (13.59), in which the terms in v can be extracted from the integral, since
they are constant:

T˙ D 1

v

r
1 � v

2

c2

I

C
�

r
1 � r

2!2

c2
sin2 � d`: (13.100)

Given that the propagation velocity v has the same value for both signals, v D vC D
v� [cf. Eq. (13.84)], and that the integral on C is independent of the sense of the
course, we obtain

TC D T� : (13.101)

Thus, although from the point of view of the emitter and receiver of the signals
(O 0), the arrival times t 0C and t 0� of the two signals are different —separated
by the Sagnac delay (13.86)—the proper travelling times are equal.
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Remark 13.13. If v ! c in (13.100), then TC D T� D 0, as it should be for light
signals.

Remark 13.14. In the case of circular signals, � D 0, � D const and (13.100) can
be recast as

TC D T� D 1

Q�
L0

v
; (13.102)

where L0 D � 2�r is the length travelled by the two signals from the point of view
of corotating observers [cf. (13.77) and (13.76)] and where Q� WD 1=

p
1 � .v=c/2

is the Lorentz factor between SC and O 0 (or equivalently between S� and O 0).
v being the propagation speed of the signals with respect to O 0, we observe that
(13.102) is identical to the formula giving the proper travelling time of an inertial
observer between events A and B , in terms of the time L0=v between A and B
measured by a second inertial observer and the Lorentz factor Q� between the two
observers.

13.6.4 Optical Sagnac Interferometer

An optical Sagnac interferometer is a device that exhibits the Sagnac effect by
means of light interferences. All the elements of the interferometer are attached
to a rotating table (cf. Fig. 13.18). A source of monochromatic light sends a beam
onto a semi-transparent mirror, which splits the beams in two parts: the first one
propagates in the sense of rotation and the second one in the reserve sense. Thanks
to various mirrors, the two beams make a complete turn before being recombined on
the semi-transparent mirror. Provided that the light is sufficiently monochromatic,
there appears interference fringes which are recorded on a detector. With respect
to the situation where the interferometer does not rotate (with respect to the lab
frame, which is assumed to be inertial), one observes a shift of the fringes that is
proportional to the rotation velocity. This expresses the phase shift between the two
signals resulting from the Sagnac effect.

To understand this, let us consider a component E of the electric field of the
electromagnetic wave at the level of the semi-transparent mirror, the latter being
identified with the corotating observer O 0 of Sect. 13.6.1. We assume that the wave
in monochromatic, at the frequency f with respect to O 0:

E.t 0/ D sin.2�f t 0/:

The “worldlines” of the nodes of the component E , i.e. the spacetime locations
where E vanishes, are depicted in the spacetime diagram of Fig. 13.19. When they
are back at the semi-transparent mirror, the signals are
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Fig. 13.18 Simplified
scheme of a Sagnac
interferometer: S is a
monochromatic light source;
L a semi-transparent mirror;
M1, M2 and M3 three
mirrors; and D a detector
monitoring the interference
fringes. This scheme involves
three mirrors, but their
number can be arbitrary (at
least larger or equal to two)

Fig. 13.19 Spacetime
diagram of a Sagnac
interferometer: the two
signals, which have the same
phase at the emission point A,
present a phase shift when
they are combined after one
turn, because of the Sagnac
delay

EC.t 0/ D sin
�
2�f .t 0 � t 0C/

�
(13.103a)

E�.t 0/ D sin
�
2�f .t 0 � t 0�/

�
; (13.103b)

where t 0C and t 0� are the dates attributed by O 0 to the events BC and B�, which
are the return of the node emitted at A for, respectively, the prograde signal and
the retrograde one. The fact that the frequency f in (13.103) is the same than that
at the emission is due to the stationary character of observer O 0. Indeed, as shown
explicitly by (13.20) and (13.23), the norms of the 4-acceleration and the 4-rotation
of O 0 are constant along his worldline, which implies that O 0 is a stationary observer
(cf. Sect. 12.2.3). The worldlines of successive nodes in Fig. 13.19 can then be
deduced one from each other by a constant time translation: the period of the nodes
at the arrival is thus the same as at departure, hence the equality of the frequencies.

The phase shift between EC.t 0/ andE�.t 0/ read on (13.103) is� D 2�f .t 0C�
t 0�/ D 2�ft 0, wheret 0 is the Sagnac delay given by (13.86). We obtain thus
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� D 4�f

c2�.0/

I

C
� 2 #»

V � d #»

` : (13.104)

In actual experiments, the rotation velocities are small and formula (13.89) can be
used fort 0; it involves the area

# »

A delimited by the interferometer branches. There
comes then

� D 8�f

c2
#»! � # »� :

r!�c

(13.105)

In the experiment performed by Sagnac in 1913 (Sagnac 1913a,b), the light
wavelength was � D c=f D 436 nm, the rotation frequency was !=.2�/ D 2 Hz
and the area was A D 0:0866 m2. Formula (13.105) yields then � ' 0:21 rad.
This value has been measured by Sagnac with a relative accuracy of 4 %.

It is worth noticing that it is not necessary to install the interferometer onto a table
rotating with respect to the laboratory to exhibit the Sagnac effect: the quantity ! in
(13.105) can very well be the angular velocity of the Earth with respect to an inertial
frame: ! D !˚ ' 7:29�10�5 rad s�1. This velocity is of course much smaller than
that of the Sagnac experiment, but this can be compensated by increasing the size of
the interferometer, represented by the term

# »� in (13.105). This was done by Albert
A. Michelson (cf. p. 125), Henry G. Gale15 and Fred Pearson in 1925 (Michelson
et al. 1925), who built in Illinois a rectangular interferometer of 613 m by 339 m,
yielding A D 2:08 � 105 m2. The Sagnac shift due to the Earth rotation in such
an instrument is � D 1:44 rad (� D c=f D 570 nm). The value measured by
Michelson, Gale and Pearson agrees with it within 3%.

Remark 13.15. Formula (13.105) for the Sagnac shift is often presented with the
radiation frequency f expressed in terms of the wavelength: f D c=�; one obtains
then

� D 8�

c�
#»! � # »� : (13.106)

This formula is obviously correct for an interferometer using optical beams
propagating in vacuum, but it hides somewhat the relativistic origin of the Sagnac
effect: the c factor in (13.106) does not stand for the propagation velocity of the
waves in the interferometer. For an interferometer using other waves than light ones
in vacuum, it would not be correct to replace (13.106) by � D 8� #»! � # »� =.v�/,
where v is the phase velocity of the waves. Setting f D v=� in (13.105), we see
that the correct formula is actually

15Henry G. Gale (1874–1942): American astrophysicist, editor of the Astrophysical Journal from
1912 to 1940.
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� D 8�v

c2�
#»! � # »� : (13.107)

Formula (13.105), which involves only the wave frequency, and not both their
wavelength and phase velocity, is therefore more didactic.

Historical note: The Sagnac effect for light waves has been predicted before the
advent of relativity, on the basis of the aether theory. We have stressed in Sect. 13.6.1
that the Sagnac effect does not exist in Newtonian theory [Eq. (13.87)]. But this
result relies on the hypothesis (13.84), namely, the equality of the propagation
velocities of the two beams relative to the rotating emitter. Now in the theory of
electromagnetism based on the aether, the velocities of the beams relative to the
aether, and not to the emitter, must be identical, each of them being equal to c:
using the notations of Sect. 13.6.2, we must have in this framework

r˝C D �r˝� D c (aether):

The Galilean law of composition of velocities yields then

vC D c � r! and v� D �c � r! (aether);

instead of (13.84). Substituting these relations into the nonrelativistic limit (� ! 1,
r!=c ! 0) of the general formula (13.99), one obtains

t 0 D 4�r2!

c2
(aether): (13.108)

Thus, one ends with the same formula as the relativistic prediction (13.89) with
A D �r2. The aether-based prediction (13.108) has been established by Oliver
J. Lodge16 in 1893 for an interferometer dragged along by the Earth rotation
(Lodge 1893) and four years later for an interferometer on a rotating table (Lodge
1897) (cf. Anderson et al. (1994)). The prediction has also performed by Albert A.
Michelson (cf. p. 125) in 1904 (Michelson 1904) and by Georges Sagnac (cf. p. 458)
in 1911 (Sagnac 1911), still in the framework of the aether theory.

The Sagnac effect has been first observed in 1911 by a young German scientist,
Franz Harress, while working for his thesis (Harress 1912). He was trying
to measure the dispersion properties of various types of glass by means of a
rotating annular interferometer. Actually, Harress could not explain the observed
displacement of the fringes for he was explicitly supposing that the Sagnac effect
was not existing (cf. Post (1967)). This is thus Georges Sagnac who, in 1913 (Sagnac
1913a,b), both measured the effect and interpreted it in view of formula (13.108).

16Oliver J. Lodge (1851–1940): British physicist and writer, who performed important studies in
electromagnetism, notably on wireless telegraphy; he also invented a type of spark ignition for
internal combustion engines (the so-called Lodge Igniter).
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The experiment has been described succinctly above. Note that Sagnac presented his
result as a demonstration of the existence of aether! In 1914, Paul Harzer17 (1914)
rediscussed the results from Harress experiment and showed that they stemmed
from the Sagnac effect, with an accuracy even better than that obtained by Sagnac
himself. Even if the optical Sagnac effect can be derived within the theory of aether
[cf. Eq. (13.108)], it was of course logically incorrect to conclude, as Sagnac did,
that the effect demonstrates the existence of aether. Before the first observations,
Max Laue (cf. p. 146) had shown in 1911 (Laue 1911a) that relativity also predicts
the Sagnac effect. The demonstration of the Sagnac effect in relativity has been
reformulated by Laue himself in 1920 (von Laue 1920) (at first order in v=c only)
and by Paul Langevin (cf. p. 40) in 1921 (Langevin 1921) and 1937 (Langevin
1937). For more details about the history of Sagnac effect, the reader is referred
to Anderson et al. (1994), Malykin (2000) and Post (1967).

13.6.5 Matter-Wave Sagnac Interferometer

We have already underlined that the Sagnac effect is independent of the nature of
the signal and in particular of its velocity of propagation. Sagnac experiments can
thus be realized by interferometers involving matter waves, instead of light waves.
By matter waves, it is meant de Broglie waves, i.e. waves arising from the quantum
nature of massive particles, via the de Broglie wavelength. The frequency f that
appears in (13.104) is then related to the energy of the particles with respect to
observer O 0 by the Planck–Einstein formula E D hf , where h is Planck constant
[Eq. (9.24)]. The energy being expressed in terms of the mass m of the particles
and their Lorentz factor �p relative to O 0 according to E D �pmc

2 [Eq. (9.16)],
(13.104) yields

� D 2 �p

�.0/

m

„
I

C
� 2 #»

V � d #»

` ; (13.109)

where „ WD h=.2�/ is the reduced Planck constant [cf. (9.25)]. In practice, the
rotation velocities are small and (13.105) leads to

� D 4�p
m

„
#»! � # »� :

r!�c

(13.110)

Of course, a rigorous derivation of (13.109) or (13.110) requires a quantum
mechanical computation, based on the Schrödinger equation (nonrelativistic case)

17Paul Harzer (1857–1932): German astronomer working at Kiel Observatory.
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or the Dirac equation (relativistic case). We refer the reader to Bordé (1991); Bordé
et al. (2000).

Remark 13.16. In practice, the matter-wave interferometers are often of the Bordé-
Ramsey type, with a geometry equivalent to a Mach–Zehnder optical interferometer
(cf. Le Bellac (2006)): the two signals are recombined after a half turn, instead of
a complete one. Consequently, the phase shift is the half of that given by (13.110):
� D 2�p.m=„/ #»! � # »� .

Let us compare the Sagnac shifts between a matter-wave interferometer and an
optical one, in laboratory conditions, i.e. for nonrelativistic rotation velocities. The
ratio of formulas (13.110) and (13.105) yields, for the same rotation velocity ! and
the same interferometer area A ,

�mat

�opt
D �p

mc2

hf
� 4 � 108; (13.111)

where the numerical value has been evaluated for a proton (mc2 � 0:9 GeV)
with �p � 1 and visible radiation (hf � 2 eV). This result shows that to
exhibit the Sagnac effect, it is a priori much more favourable to use a matter-
wave interferometer than an optical one. However, it must be mentioned that it is
easier to construct an optical interferometer of large size and the signal-to-noise
ratio of an optical interferometer is usually much larger than that of a matter-wave
interferometer.

The first measure of the Sagnac effect by a matter-wave interferometer was
obtained in 1965 by James E. Zimmerman (1923–1999) and James E. Mercereau
(1965) with superconducting electrons. Since then, numerous experiments using
electrons, neutrons or atoms have been performed. The principal of them are listed
in Table 13.1. Note that five of them have measured the Sagnac effect due to the
Earth rotation. They can therefore be considered as matter-wave equivalents to the
experiment of Michelson, Gale and Pearson mentioned in Sect. 13.6.4.

Historical note: It is Fernand Prunier who underlined in 1935 (Prunier 1935) that
the Sagnac effect could be obtained with material particles (he gave the example of
electrons), rather than with light, and that in this case, this would be a confirmation
of relativity, since the aether theory predicts no effect for particles other than
photons.

13.6.6 Application: Gyrometers

The Sagnac effect is a relativistic feature that has a great practical value since
it allows one to devise high-precision gyrometers, i.e. devices for measuring the
angular velocity. With the accelerometer, the gyrometer is the key element of a
inertial navigation system, notably for aircraft navigation.
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Table 13.1 Measure of the Sagnac effect with matter-wave interferometers. !˚ stands for the
angular velocity of the Earth with respect to an inertial frame: !˚ D 7:29 � 10�5 rad s�1

Relative difference with
Experiment Type of matter ! Œrad s�1� the theoretical �

Zimmerman and Mercereau Superconducting 10 5%
(1965) electrons

Hasselbach and Nicklaus (1993) Free electrons 3 30%
Atwood et al. (1984) Neutrons 7� 10�4 0:4%
Werner et al. (1979) Neutrons !˚ 0:4%
Riehle et al. (1991) Ca atoms 0:1 20%
Lenef et al. (1997) Na atoms !˚ 1%
Gustavson et al. (1997) Cs atoms !˚ 2%
Gustavson et al. (2000) Cs atoms !˚ 1%
Canuel et al. (2007; 2006) Cold Cs atoms !˚ 1%

Fig. 13.20 Helium-neon gyrolaser elaborated by Thales Aerospace [Source: Sylvain Schwartz
(2006) and Thales Aerospace]

Modern gyrometers are no longer based on mechanical gyroscopes (spinning
tops) but on optical Sagnac interferometers. The latter ones have indeed the
advantages of not involving moving mechanical pieces (hence have no friction) and
of being light and compact. The matter-wave Sagnac interferometers are not in the
industrial stage yet because those based on neutrons require a particle accelerator
and those based on atoms require very low temperatures.

There exists two types of gyrometers based on the optical Sagnac effect:

• Optical-fibre gyrometer: the effective area of the interferometer is substantially
increased by propagating the light beam in an optical fibre that is wound many
times (the total length of the fibre can reach a few kilometres!). The phase
shift (13.105) is then multiplied by the number N of loops of the optical fibre,
which makes the measure of ! much easier (cf. Arditty and Lefevre (1981) or
Appendix D of Holleville (2001) for more details).
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• Ring-laser gyrometer, also called gyrolaser: it is based on an annular laser cavity
(cf. Fig. 13.20), involving usually a helium-neon laser. The Sagnac shift (13.105)
induces a difference of the frequencies of the cavity proper modes, and it is this
frequency difference that is measured (cf. Chow et al. (1985) and Stedman (1997)
for more details).



Chapter 14
Tensors and Alternate Forms

14.1 Introduction

After Chaps. 1, 6 and 7, here is again a purely mathematical chapter. Up to now, the
mathematical objects introduced on Minkowski spacetime are:

• Vectors (for example, the 4-velocity of a particle)
• Linear forms (for example, the 4-momentum of a particle)
• Bilinear forms, either symmetric (the metric tensor g) or antisymmetric (the

angular momentum of a particle)
• Trilinear forms (the mixed product "u acting on three vectors in the local rest

space of an observer)
• A four-linear form: the Levi–Civita tensor "

• Linear maps E ! E (endomorphisms) (for example, Lorentz transformations)

All these objects belong actually to the same family: that of tensors. We shall
describe them in detail (Sect. 14.2), as well as operations on them (Sect. 14.3). Then
we shall focus on a subfamily that is very important for physics: the subfamily of
fully antisymmetric forms, also called alternate forms (Sect. 14.4); we shall present
an operation specific to these forms: the Hodge star (Sect. 14.5), which will turn to
be useful in the next chapters.

14.2 Tensors: Definition and Examples

14.2.1 Definition

Let us first recall that E� stands for the set of all linear forms on the vector space
E underlying Minkowski spacetime; E� is the dual space of E (cf. Sect. 1.6); in
particular,E� is a four-dimensional vector space on R (as E).

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 14, © Springer-Verlag Berlin Heidelberg 2013
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For .k; `/ 2 N
2 and .k; `/ 6D .0; 0/, a tensor of type .k; `/ is a map

T W E� � � � � � E�
„ ƒ‚ …

k times

�E � � � � � E„ ƒ‚ …
` times

�! R

.!1; : : : ;!k;
#»v 1; : : : ;

#»v `/ 7�! T .!1; : : : ;!k;
#»v 1; : : : ;

#»v `/

(14.1)

that is linear with respect to each of its arguments; for � 2 R, m 2 f0; : : : ; kg
and n 2 f0; : : : ; `g, the following identities hold:

T .!1; : : : ; �!m C !0

m; : : : ;!k;
#»v 1; : : : ;

#»v `/ D �T .!1; : : : ;!m; : : : ;!k;
#»v 1; : : : ;

#»v `/

CT .!1; : : : ;!
0

m; : : : ;!k;
#»v 1; : : : ;

#»v `/

T .!1; : : : ;!k;
#»v 1; : : : ; �

#»v n C #»v 0

n; : : : ;
#»v `/ D �T .!1; : : : ;!k;

#»v 1; : : : ;
#»v n; : : : ;

#»v `/

CT .!1; : : : ;!k;
#»v 1; : : : ;

#»v 0

n; : : : ;
#»v `/:

The integer kC` is called valence, or order, or even rank, of the tensor. One
says also that T is a tensor k times contravariant and ` times covariant.

We shall denote by T.k;`/.E/ the set of all tensors of type .k; `/ on E . This is
a vector space over R, for any linear combination of two tensors of type .k; `/ is a
tensor of the same type. The dimension of T.k;`/.E/ is 4kC`.

By convention, we shall denote by T.0;0/.E/ the base field of the vector spaceE ,
namely, R:

T.0;0/.E/ D R: (14.2)

This convention allows one to extend the validity of certain formulas involving
T.k;`/.E/ to the case .k; `/ D .0; 0/.

14.2.2 Tensors Already Met

According to the above definition, a linear form is a tensor of type .0; 1/ and a
bilinear form is a tensor of type .0; 2/. In particular, the metric tensor g is a tensor
of type .0; 2/. On its side, the Levi–Civita tensor " introduced in Sect. 1.5 is a tensor
of type .0; 4/.
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Since E� is a vector space, we may consider its dual space, E��. The latter is
canonically identified with E: indeed any vector of E can be considered as a linear
form on E�, according to

#»v W E� �! R

! 7�! h!; #»v i: (14.3)

Comparing (14.3) with (14.1), we may say that a vector is a tensor of type .1; 0/.
Besides, we can identify any endomorphism L W E ! E with a tensor of type

.1; 1/, according to

L W E� � E �! R

.!; #»v / 7�! h!;L. #»v /i: (14.4)

Since L is linear, the above map does define a tensor. The starting space being
E� � E , it is a tensor of type .1; 1/. We shall use the same symbol (here L) to
denote the endomorphism or the tensor associated via (14.4).

In particular, Lorentz transformations (Chap. 6) or the members of the Lie
algebra of the Lorentz group (Chap. 7) are tensors of type .1; 1/.

The above identifications allow one to write

T.0;1/.E/ D E�; T.1;0/.E/ D E and T.1;1/.E/ D L .E/; (14.5)

where L .E/ stands for the space of endomorphisms on E (cf. Sect. 7.3.1).

14.3 Operations on Tensors

14.3.1 Tensor Product

Given a tensor A of type .k; `/ and a tensor B of type .m; n/, one calls tensor prod-
uct of A by B, the tensor of type .kCm; `C n/ denoted by A˝B and defined by

E� � � � � � E�
„ ƒ‚ …

kCm times

�E � � � � �E„ ƒ‚ …
`Cn times

�! R

.!1; : : : ;!kCm; #»v 1; : : : ;
#»v `Cn/ 7�! A.!1; : : : ;!k;

#»v 1; : : : ;
#»v `/

�B.!kC1; : : : ;!kCm; #»v `C1; : : : ; #»v `Cn/;

(14.6)

where � stands for the multiplication within R. This definition generalizes that
introduced in Sect. 3.5.2 for the tensor product of two linear forms !1 and !2:
!1 ˝!2 is a tensor of type .0; 2/ (hence a bilinear form) defined by
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8. #»v ; #»w/ 2 E2; !1 ˝!2 .
#»v ; #»w/ D h!1;

#»v i h!2;
#»wi: (14.7)

It is clear that the tensor product is associative:

A ˝ .B ˝ C / D .A ˝B/˝ C : (14.8)

14.3.2 Components in a Vector Basis

Let . #»e ˛/ be a basis of E (not necessarily orthonormal). We have seen in Sect. 1.6.1
that there exists a unique basis of E� canonically associated with . #»e ˛/: the dual
basis .e˛/, which satisfies

he˛; #»e ˇi D ı˛ˇ: (14.9)

From definition (14.6), the tensor product #»e ˛1˝ : : :˝ #»e ˛k ˝eˇ1˝ : : :˝eˇ` is then
the tensor of type .k; `/ by which the image of .!1; : : : ;!k;

#»v 1; : : : ;
#»v `/ is the real

number:

kY

pD1
h!p;

#»e ˛p i �
Ỳ

qD1
heˇq ; #»v qi:

One can expand any tensor T of type .k; `/ according to

T D T ˛1:::˛k ˇ1:::ˇ` #»e ˛1 ˝ � � � ˝ #»e ˛k ˝ eˇ1 ˝ � � � ˝ eˇ` : (14.10)

The 4kC` real numbers T ˛1:::˛k ˇ1:::ˇ` are called the components of the tensor T in
the basis . #»e ˛/. An index of the type ˛p is qualified as contravariant and an index
of the type ˇq is qualified as covariant.

Example 14.1. For a vector #»v 2 E [tensor of type .1; 0/], (14.10) gives the standard
definition of the components in a basis:

#»v D v˛ #»e ˛: (14.11)

Example 14.2. For a linear form ! 2 E� [tensor of type .0; 1/], we also recover
the definition (1.39) of the components:

! D !˛ e˛: (14.12)

By virtue of (14.9) and the multilinearity of T , the components can be expressed
in terms of the basis vectors . #»e ˛/ and the dual-basis forms .e˛/ according to
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T
˛1:::˛k

ˇ1:::ˇ`
D T .e˛1 ; : : : ; e˛k ; #»e ˇ1 ; : : : ;

#»e ˇ`/ : (14.13)

Example 14.3. For a linear form, (14.13) reduces to

!˛ D h!; #»e ˛i: (14.14)

Remark 14.1. In view of (14.11) and (14.12), the index labelling the components
of a vector is contravariant and that labelling the components of a linear form is
covariant.

The combination of (14.11), (14.12) and (14.9) shows that the action of the linear
form ! on the vector #»v takes a simple expression in terms of the components:

h!; #»v i D !˛v˛ : (14.15)

We thus recover Eq. (1.40) of Chap. 1. More generally, for a tensor of type .k; `/,
we have

T .!1; : : : ;!k;
#»v 1; : : : ;

#»v `/ D T ˛1:::˛k ˇ1:::ˇ` .!1/˛1 : : : .!k/˛k v
ˇ1
1 : : : v

ˇ`
` ;

(14.16)

where the .!p/˛’s are the components of the linear form !p (1 � p � k) and the

v
ˇ
q ’s the components of the vector #»v q (1 � q � `).

For the metric tensor g [tensor of type .0; 2/], the components g˛ˇ are nothing
but the elements of the matrix of g with respect to the basis . #»e ˛/ as defined in
Sect. 1.3.2. Indeed, for g, the expansion (14.10) is

g D g˛ˇ e˛ ˝ eˇ ; (14.17)

with, according to (14.13), g˛ˇ D g. #»e ˛;
#»e ˇ/. We recover thus relation (1.12)

defining g˛ˇ . Moreover, formula (14.16) for T D g coincides with (1.13):
g. #»u ; #»v / D g˛ˇ u˛ vˇ .

14.3.3 Change of Basis

Let us examine the transformation of the components of a tensor under a change of
basis. Let . #»e ˛/ and . #»e 0̨ / be two bases of E and P be the change-of-basis matrix,
i.e. the matrix defined by

#»e 0̨ D Pˇ
˛

#»e ˇ : (14.18)
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Example 14.4. If . #»e ˛/ and . #»e 0̨ / are the frames of two inertial observers, P is
the matrix of a restricted Lorentz transformation. Using the notations of Sect. 8.3.1,
P D ��1 [cf. Eq. (8.11)].

It is easy to see that the change-of-basis matrix between the dual bases .e˛/ and
.e0˛/ is nothing but the transpose of the inverse of P :

e0˛ D .P�1/˛ˇ eˇ : (14.19)

Proof. Let us consider (14.19) as the definition of e0˛ and compute the action of
this linear form on the vector #»e 0̌ , by means of (14.18):

he0˛; #»e 0̌ iD h.P�1/˛� e�; P �
ˇ

#»e �iD .P�1/˛�P �
ˇ he�; #»e �i„ ƒ‚ …

ı
�
�

D .P�1/˛�P
�

ˇD ı˛ˇ:

This shows that .e0˛/ is indeed the dual basis of . #»e 0̨ /. ut
The components T 0:::

::: of a tensor T of type .k; `/ in the basis . #»e 0̨ / are given by
(14.13):

T 0˛1:::˛k
ˇ1:::ˇ`

D T .e 0˛1 ; : : : ; e0˛k ; #»e 0̌
1
; : : : ; #»e 0̌

`
/:

Replacing each e0˛p by (14.19) and each #»e 0̌
q

by (14.18), using the multilinearity
of T , and then (14.13), we find the relation between the two sets of components:

T 0˛1:::˛k
ˇ1:::ˇ`

D .P�1/˛1�1 : : : .P
�1/˛k�kP

�1
ˇ1
: : : P

�`
ˇ`
T �1:::�k �1:::�` : (14.20)

Remark 14.2. In rather old books, a tensor is not defined as a multilinear map of the
kind (14.1), but as an “array of numbers” T ˛1:::˛k ˇ1:::ˇ` that transforms according to
the law (14.20) under a change of basis.

Remark 14.3. The notation T
˛0

1:::˛
0

k

ˇ0

1:::ˇ
0

`

is often used instead of T 0˛1:::˛k
ˇ1:::ˇ`

, i.e.

the prime is put of the indices rather than on the letter denoting the tensor. We shall
not use such a notation here.

Example 14.5. For a vector #»v D v˛ #»e ˛ D v0˛ #»e 0̨ , (14.20) reduces to

v0˛ D .P�1/˛ˇvˇ: (14.21)

Example 14.6. For a linear form ! D !˛ e˛ D !0
˛ e0˛ , (14.20) reduces to

!0
˛ D Pˇ

˛!ˇ: (14.22)

Example 14.7. For a bilinear form T D T˛ˇ e˛ ˝ eˇ D T 0
˛ˇ e 0˛ ˝ e0ˇ, (14.20)

gives
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T 0
˛ˇ D P�

˛P
�
ˇT�� D P�

˛T��P
�
ˇ; (14.23)

which can be written in matrix form as

T 0 D tP T P: (14.24)

We recognize the standard change-of-basis law for the matrix of a bilinear form.

Example 14.8. For a tensor of type .1; 1/, T D T ˛ˇ
#»e ˛ ˝ eˇ D T 0˛

ˇ
#»e 0̨ ˝ e0ˇ ,

(14.20) gives

T 0˛
ˇ D .P�1/˛�P �

ˇT
�
� D .P�1/˛�T ��P �

ˇ; (14.25)

which can be written in matrix form as

T 0 D P�1 T P: (14.26)

We recognize the standard change-of-basis law for the matrix of an endomorphism.

14.3.4 Components and Metric Duality

As we have seen in Sect. 1.6.2, the metric duality consists in associating with any
vector #»v 2 E a unique linear form v 2 E� via 8 #»w 2 E; hv; #»wi D g. #»v ; #»w/. Let
us denote by .v˛/ the components of v in a basis . #»e ˛/ [cf. (14.12)] and .v˛/ those
of #»v :

v D v˛ e˛ and #»v D v˛ #»e ˛: (14.27)

We have then

8 #»w 2 E; hv; #»wi D g. #»v ; #»w/ D g˛ˇ v˛wˇ D .g˛ˇ vˇ/w˛:

Comparing with (14.15), we get

v˛ D g˛ˇ vˇ : (14.28)

Conversely, let #»! 2 E be the vector associated with the linear form ! 2 E� by
metric duality. The components .!˛/ of #»! in the basis . #»e ˛/ are given by (1.43):

!˛ D g˛ˇ !ˇ ; (14.29)

where .g˛ˇ/ is the inverse matrix of .g˛ˇ/ (cf. Sect. 1.3.2).
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Remark 14.4. The g˛ˇ’s can be considered as the components of a tensor of type
.2; 0/:

g�1 WD g˛ˇ #»e ˛ ˝ #»e ˇ: (14.30)

g�1 is called the inverse metric.

In view of (14.28) and (14.29), the metric duality is often expressed by saying
that indices are lowered by means of g˛ˇ and raised by means of g˛ˇ .

14.3.5 Contraction

The operation of contraction is a linear map T.k;`/.E/! T.k�1;`�1/.E/ defined as
follows. Given a tensor T of type .k; `/ with k � 1 and ` � 1, and two integers
p 2 f1; : : : ; kg and q 2 f1; : : : ; `g, the contraction of T on the indices of rank p
and q is the tensor Cp

q T of type .k � 1; `� 1/ defined by

8.!1; : : : ;!k�1; #»v 1; : : : ;
#»v `�1/ 2 .E�/k�1 � E`�1;

C p
q T .!1; : : : ;!k�1; #»v 1; : : : ;

#»v `�1/

WD T .!1; : : : ; e
˛; : : : ;!k�1; #»v 1; : : : ;

#»e ˛; : : : ;
#»v `�1/; (14.31)

where . #»e ˛/ stands for a basis of E , .e˛/ for its dual basis, e˛ is located at
the pth position among the linear-form arguments of T , #»e ˛ is located at the qth

position among the vector arguments and the summation is taking place on the
index ˛. Because of (14.18)-(14.19) and the linearity of T with respect to each of
its arguments, it is clear that the above definition does not depend upon the choice
of the basis . #»e ˛/.

The components of Cp
q T are deduced from those of T via the formula

.C p
q T /

˛1:::˛k�1

ˇ1:::ˇ`�1
D T ˛1:::

p
#

� :::˛k�1

ˇ1::: �
"

q

:::ˇ`�1
; (14.32)

where the arrows indicate the position of the summation index �.

Example 14.9. For a tensor T of type .1; 1/, there is only one possible contraction:
p D q D 1; C1

1T is then a tensor of type .0; 0/, i.e. a real number, according to the
convention (14.2):

C1
1 T D T ��: (14.33)
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If T is considered as an endomorphism ofE [cf. (14.5)], we note that the contraction
yields nothing but the trace of T . A particular case of tensor of type .1; 1/ is the
tensor product of a vector by a linear form: T D #»v ˝ !. We have then, according
to (14.33) and (14.15),

C1
1 .

#»v ˝!/ D v�!� D h!; #»v i: (14.34)

14.4 Alternate Forms

14.4.1 Definition and Examples

A particular class of tensors is constituted by the multilinear forms that are fully
antisymmetric, i.e. by the tensors of type .0; p/ that change their sign whenever any
two of their arguments are switched:

p D 2 W A. #»v 1;
#»v 2/ D �A. #»v 2;

#»v 1/

p D 3 W A. #»v 1;
#»v 2;

#»v 3/ D �A. #»v 2;
#»v 1;

#»v 3/ D �A. #»v 3;
#»v 2;

#»v 1/; etc.

p D 4 W A. #»v 1;
#»v 2;

#»v 3;
#»v 4/ D �A. #»v 2;

#»v 1;
#»v 3;

#»v 4/; etc.

These multilinear forms are called alternate forms because they vanish if any two
of their arguments are equal. For any integer p � 2, one calls p-form any alternate
form of valence p. One denotes by Ap.E/ the set of all p-forms. We have of course

Ap.E/ � T.0;p/.E/: (14.35)

Moreover, any linear combination of p-forms being a p-form, Ap.E/ is clearly a
vector subspace of T.0;p/.E/.

The concept of antisymmetry is a priori meaningless for a form of valence 1
(linear form), but we shall extend the definition of p-forms to the case p D 1 by
setting

A1.E/ WD T.0;1/.E/ D E�: (14.36)

Moreover, we shall define A0.E/ as the base field of the vector spaceE , namely, R:

A0.E/ WD R: (14.37)

Remark 14.5. With the above convention, any linear form is a 1-form. On the other
side, note that not all bilinear forms are 2-forms: they must be antisymmetric for
this.
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Example 14.10. Examples of alternate forms encountered up to now are:

• The Levi–Civita tensor (Chap. 1): " 2 A4.E/.
• The mixed product in the local rest space of an observer (Chap. 3): "u 2 A3.E/.
• The bilinear form associated with the variation of the local frame of an observer

(Chap. 3) : ˝ 2 A2.E/.
• The angular momentum of a particle with respect to a point C (Chap. 10): JC 2

A2.E/.
• The spin of an isolated particle system (Chap. 10): S 2 A2.E/.
• The 4-torque with respect to a point C and acting on a particle (Chap. 10): NC 2

A2.E/.
• The bilinear form describing the electromagnetic field (Chaps. 10 and 11, as well

as Chap. 17): F 2 A2.E/.

A p-form being a tensor of type .0; p/, its expansion with respect to a basis . #»e ˛/

of E takes the form

A D A˛1:::˛p e˛1 ˝ � � � ˝ e˛p : (14.38)

It is immediate to see that, for p � 2, A is a p-form iff the components A˛1:::˛p are
antisymmetric under any index permutation.

The dimension of E being 4, there cannot exist any alternate form but the zero
one whenever p > 4:

Ap.E/ D f0g if p > 4: (14.39)

Proof. The components of an alternate form A in a basis . #»e ˛/ are given by (14.13):
A˛1:::˛p D A. #»e ˛1 ; : : : ;

#»e ˛p /. The right-hand side cannot involve more than 4
different vectors #»e ˛i ; it is thus necessarily zero if p > 4. ut

For p � 4, the components .A˛1:::˛p / vanish if two of the indices ˛i are equal.
The number of nonvanishing components is thus at most 4 � 3 � : : : � .5 � p/. In
addition, thanks to the antisymmetry of A, the components that are related to a same
p-tuple .˛1; : : : ; ˛p/ by a permutation are equal, up to the sign. We conclude that

the number of independent components is 4 � 3 � : : : � .5 � p/=pŠ D
�
4
p

�
. The

dimension of the vector space Ap.E/ is equal to this number. Explicitly, taking into
account (14.37),

dim A0.E/ D 1; dim A1.E/ D 4; dim A2.E/ D 6;
dim A3.E/ D 4; dim A4.E/ D 1: (14.40)

Remark 14.6. The dimensions of A0.E/ and A1.E/ are immediate since A0.E/ D
R and A1.E/ D E�. Regarding the dimension de A2.E/, it is easily recovered
by considerations on components: a 2-form is represented in a basis of E by a
4 � 4 antisymmetric matrix: (A D A˛ˇ e˛ ˝ eˇ). Now such a matrix has only 6
independent components.
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Remark 14.7. We have already underlined in Sect. 1.5 that dim A4.E/ D 1 : all the
4-forms are proportional to the Levi–Civita tensor:8A 2 A4.E/; 9� 2 R; A D �".

14.4.2 Exterior Product

The tensor product of two alternate forms does not yield an alternate form. But it
can be antisymmetrized to achieve this. One defines thus the exterior product, also
called wedge product, as the mapping

^ W Ap.E/ �Aq.E/ �! ApCq.E/
.A;B/ 7�! A ^B

(14.41)

such that

A ^B. #»v 1; : : : ;
#»v pCq/ WD 1

pŠqŠ

X

�2SpCq

.�1/k.�/ A. #»v �.1/; : : : ;
#»v �.p//

�B. #»v �.pC1/; : : : ; #»v �.pCq//
;

(14.42)

where . #»v 1; : : : ;
#»v pCq/ 2 EpCq , SpCq stands for the group of permutations of pCq

elements and k.�/ is the number of transpositions (permutations of two elements)
in product of which � can be decomposed. In the above formula, it is obvious that
A ^ B is an alternate form of valence p C q, so that the mapping (14.41) is well
defined.

Let us specify formula (14.42) for some particular cases. First of all, if p D 0,
then A D � 2 R [cf. (14.37)] and (14.42) reduces to

A ^B. #»v 1; : : : ;
#»v q/ D �

qŠ

X

�2Sq

.�1/k.�/ B. #»v �.1/; : : : ;
#»v �.q//„ ƒ‚ …

.�1/k.�/B. #»v 1;:::;
#»v q/

D �B. #»v 1; : : : ;
#»v q/;

since the cardinal of Sq is qŠ. Hence, for p D 0, the exterior product reduces to the
mere multiplication of an element of the vector space Aq.E/ by a scalar.

In the case p D 1 and q D 1, A and B are two linear forms and according to
(14.42), A ^B is the antisymmetric bilinear form defined by

8. #»v 1;
#»v 2/ 2 E2; A ^B. #»v 1;

#»v 2/ D hA; #»v 1ihB; #»v 2i � hA; #»v 2ihB; #»v 1i:

By definition of the tensor product, this formula can be rewritten as

8.A;B/ 2 A1.E/
2; A ^B D A ˝B �B ˝A : (14.43)
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We recover the definition of the exterior product given in Chap. 10 for 1-forms
[Eq. (10.2)].

In the case p D 1 and q D 2, (14.42) leads to

A^B. #»v 1;
#»v 2;

#»v 3/DhA; #»v 1iB. #»v 2;
#»v 3/ChA; #»v 2iB. #»v 3;

#»v 1/ChA; #»v 3iB. #»v 1;
#»v 2/

(14.44)

for any 3-tuple . #»v 1;
#»v 2;

#»v 3/ of vectors of E .

Remark 14.8. The exterior product owes its name from the fact that if A and B are
two elements of the vector space Ap.E/, A ^B is not an element of Ap.E/ but of
another vector space: A2p.E/.

Note that, from (14.43) and (14.44), B ^ A D �A ^ B if p D q D 1 and
B ^A D A ^B if p D 1 and q D 2. More generally, we have

8.A;B/ 2 Ap.E/ �Aq.E/; B ^A D .�1/pqA ^B : (14.45)

Another property of the exterior product is to be associative: for any alternate forms
A, B and C ,

A ^ .B ^ C / D .A ^B/ ^ C : (14.46)

14.4.3 Basis of the Space of p-Forms

The exterior product allows one to construct a basis of the vector space Ap.E/

from the linear forms .e˛/ of the dual basis of some basis of E . Let us consider
indeed a 2-form A and its components .A˛ˇ/ in the basis e˛ ˝ eˇ of T.0;2/.E/ [cf.
(14.10) with k D 0 and ` D 2]: A D A˛ˇ e˛ ˝ eˇ . We have then, since .A˛ˇ/ is
antisymmetric,

A D A˛ˇ e˛ ˝ eˇ D 1

2

�
A˛ˇ e˛ ˝ eˇ C Aˇ˛ eˇ ˝ e˛

�

D 1

2
A˛ˇ

�
e˛ ˝ eˇ � eˇ ˝ e˛

� D 1

2
A˛ˇ e˛ ^ eˇ:

Since A˛˛ D 0, the double sum on ˛ and ˇ can be split in two parts:

A D 1

2

X

˛<ˇ

A˛ˇe˛ ^ eˇ C 1

2

X

ˇ<˛

A˛ˇ„ƒ‚…
�Aˇ˛

e˛ ^ eˇ„ ƒ‚ …
�eˇ^e˛

D
X

˛<ˇ

A˛ˇe˛ ^ eˇ:
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We have thus shown that

A D A˛ˇ e˛ ˝ eˇ D 1

2
A˛ˇ e˛ ^ eˇ D

X

˛<ˇ

A˛ˇe˛ ^ eˇ: (14.47)

More generally, for a p-form,

A D A˛1:::˛p e˛1 ˝ : : :˝ e˛p D 1

pŠ
A˛1:::˛p e˛1 ^ : : : ^ e˛p

D
X

˛1<:::<˛p

A˛1:::˛p e˛1 ^ : : : ^ e˛p :
(14.48)

We conclude that .e˛1 ^ : : : ^ e˛p /˛1<:::<˛p is a basis of the vector space Ap.E/.
Moreover, the components of an element of Ap.E/ in this basis are identical to
its components as an element of T.0;p/.E/. Explicitly, the bases are the following
ones:

• A1.E/ : .e0; e1; e2; e3/
• A2.E/ : .e0 ^ e1; e0 ^ e2; e0 ^ e3; e1 ^ e2; e1 ^ e3; e2 ^ e3/

• A3.E/ : .e0 ^ e1 ^ e2; e0 ^ e1 ^ e3; e0 ^ e2 ^ e3; e1 ^ e2 ^ e3/

• A4.E/ : .e0 ^ e1 ^ e2 ^ e3/

The sizes of the bases are of course in agreement with the dimensions (14.40).

14.4.4 Components of the Levi–Civita Tensor

The Levi–Civita tensor " introduced in Sect. 1.5 is a 4-form. Its components ."˛ˇ
ı/
in a basis . #»e ˛/ of E (not necessarily orthonormal) obey (14.48) with the sum on
˛ < ˇ < 
 < ı necessarily limited to a single term: .˛; ˇ; 
; ı/ D .0; 1; 2; 3/.
Hence,

" D "˛ˇ
ı e˛ ˝ eˇ ˝ e
 ˝ eı D "0123 e0 ^ e1 ^ e2 ^ e3: (14.49)

Besides, for the Levi–Civita tensor, formula (14.16) becomes

8. #»u ; #»v ; #»w; #»z / 2 E4; ". #»u ; #»v ; #»w; #»z / D "˛ˇ
ı u˛ vˇ w
 zı: (14.50)

If . #»e ˛/ is a right-handed orthonormal basis, the definition (1.33) of " results in
the following components: "˛ˇ
ı D Œ˛; ˇ; 
; ı�, where the symbol Œ˛; ˇ; 
; ı� means

8
<

:

0 if any two of the indices .˛; ˇ; 
; ı/ are equal
1 if .˛; ˇ; 
; ı/ is deduced from .0; 1; 2; 3/ by an even permutation
�1 if .˛; ˇ; 
; ı/ is deduced from .0; 1; 2; 3/ by an odd permutation.
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More generally, in any basis,

"˛ˇ
ı D ˙
p� detg Œ˛; ˇ; 
; ı� : (14.51)

where (i) detg is the determinant of the matrix .g˛ˇ/ of g’s components in
the basis . #»e ˛/ and (ii) the˙ sign must beC (resp.�) for a right-handed basis
(resp. left-handed).

Proof. Formula (14.51) is equivalent to

". #»e 0;
#»e 1;

#»e 2;
#»e 3/ D ˙

p� detg: (14.52)

Let us then introduce a right-handed orthonormal basis . #»e �̨/, i.e. an orthonormal
basis such that

". #»e �
0 ;

#»e �
1 ;

#»e �
2 ;

#»e �
3 / D 1: (14.53)

Let us reconsider the definition of the Levi–Civita tensor: in Sect. 1.5, we have
admitted that if a 4-form " takes the value 1 on an orthonormal basis of .E;g/,
then it takes necessarily the value ˙1 on any other orthonormal basis. We shall
prove it here by taking (14.53) as a starting point, without assuming anything of the
value of " on any other orthonormal basis. Let P�

˛ be the change-of-basis matrix
from . #»e �̨/ to . #»e ˛/:

#»e ˛ D P�
˛

#»e �
�. The 4-linearity of " yields then

". #»e 0;
#»e 1;

#»e 2;
#»e 3/ D P�

0 P
�
1 P

�
2 P

�
3 ". #»e �

�;
#»e �
� ;

#»e �
� ;

#»e �
�/: (14.54)

Now (14.53) implies ". #»e �
�;

#»e �
� ;

#»e �
� ;

#»e �
�/ D Œ�; �; �; ��, so that (14.54) becomes

". #»e 0;
#»e 1;

#»e 2;
#»e 3/ D

X

�2S4

.�1/k.�/ P �.0/
0 P

�.1/
1 P

�.2/
2 P

�.3/
3 : (14.55)

We recognize in the right-hand side the determinant of the matrix P ; hence,

". #»e 0;
#»e 1;

#»e 2;
#»e 3/ D detP: (14.56)

If . #»e ˛/ is an orthonormal basis, then P is necessarily a Lorentz matrix, which
implies detP D ˙1 [property (6.9)], and we get ". #»e 0;

#»e 1;
#»e 2;

#»e 3/ D ˙1. We
have thus demonstrated the property (1.33). Let us consider again a general (i.e.
not necessarily orthonormal) basis . #»e ˛/. The components of the metric tensor with
respect to . #»e ˛/ are



14.5 Hodge Duality 487

g˛ˇ D #»e ˛ � #»e ˇ D .P �
˛

#»e �
�/ � .P �

ˇ
#»e �
� / D P�

˛ P
�
ˇ

#»e �
� � #»e �

� D P�
˛ ���P

�
ˇ;

(14.57)

where we have used #»e �
� � #»e �

� D ��� since . #»e �̨/ is an orthonormal basis. The above
formula can be rewritten in terms of matrix products:

g D tP �P: (14.58)

This implies

detg D det tP det� detP D �.detP/2; (14.59)

since det tP D detP and det � D �1 [cf. Eq. (1.17)]. Equations (14.56) and (14.59)
establish (14.52) and thus (14.51). ut
Remark 14.9. Since .detP/2 > 0, an immediate consequence of (14.59) is that the
determinant of the components of the metric tensor with respect to any basis of E
is always negative:

detg < 0: (14.60)

Accordingly, formula (14.51), which involves
p� detg, is well posed.

Remark 14.10. As a tensor of valence 4, " has a priori 44 D 256 components. The
second equality in (14.49) shows that it has actually only one independent compo-
nent: "0123. This reflects the fact that the vector space A4.E/ is one-dimensional.
From (14.51), this unique component equals

p� detg if the considered basis is
right-handed and �p� detg otherwise.

14.5 Hodge Duality

For a fixed p 2 f0; 1; 2; 3; 4g, Hodge duality performs a correspondence between
the p-forms and the .4�p/-forms, by means of an isomorphism between the vector
spaces Ap.E/ and A4�p.E/, which, as already seen, have the same dimension
[Eq. (14.40)]. Hodge duality is based on the Levi–Civita tensor and on tensors that
can be associated with it by metric duality. We start therefore by introducing these
tensors.

14.5.1 Tensors Associated with the Levi–Civita Tensor

From the Levi–Civita tensor " and the metric tensor g, one may define four tensors
of valence 4 according to
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1" W E� �E � E � E �! R

.!; #»v 1;
#»v 2;

#»v 3/ 7�! ". #»!; #»v 1;
#»v 2;

#»v 3/
(14.61a)

2" W E� �E� � E � E �! R

.!1;!2;
#»v 1;

#»v 2/ 7�! ". #»!1;
#»!2;

#»v 1;
#»v 2/

(14.61b)

3" W E� �E� � E� � E �! R

.!1;!2;!3;
#»v / 7�! ". #»!1;

#»!2;
#»!3;

#»v /
(14.61c)

4" W E� �E� � E� � E� �! R

.!1;!2;!3;!4/ 7�! ". #»!1;
#»!2;

#»!3;
#»!4/;

(14.61d)

where, following the notation introduced in Sect. 1.6.2, #»! stands for the vector
associated with the linear form ! by metric duality. 1" is a tensor of type .1; 3/,
2" a tensor of type .2; 2/, 3" a tensor of type .3; 1/ and 4" a tensor of type .4; 0/.
Moreover each tensor p" (p 2 f1; 2; 3; 4g) is antisymmetric with respect to all its
vector arguments, as well as with respect to all its linear-form arguments.

The components of the tensors p" in a basis . #»e ˛/ of E are easily deduced from
those of " via expression (14.29) for the metric duality:

1" W "˛ˇ
ı D g˛� "�ˇ
ı (14.62a)

2" W "˛ˇ 
ı D g˛�gˇ� "��
ı (14.62b)

3" W "˛ˇ
ı D g˛�gˇ�g
� "���ı (14.62c)

4" W "˛ˇ
ı D g˛�gˇ�g
�gı� "���� : (14.62d)

Note that the prefix p D 1; 2; 3; 4 has been suppressed in the writing of the
components of p", since the position of the indices allows one to distinguish without
any ambiguity the four tensors.

4" is a tensor of type .4; 0/which is fully antisymmetric with respect to its 4 argu-
ments. The set of all such tensors is a one-dimensional vector subspace of T.4;0/.E/,
as A4.E/ is a one-dimensional vector subspace of T.0;4/.E/. Accordingly, all the
components of 4" can be deduced from a single one, which we choose to be "0123,
via the formula "˛ˇ
ı D "0123Œ˛; ˇ; 
; ı�. Combining (14.62d) and (14.51), there
comes

"0123 D ˙g0�g1�g2�g3�p� detg Œ�; �; �; ��;

which can be written as

"0123 D ˙p� detg
X

�2S4

.�1/k.�/g0�.0/g1�.1/g2�.2/g3�.3/:
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We recognize in the above sum the expression of the determinant of the matrix
g�1 D .g˛ˇ/. The latter being the inverse of g D .g˛ˇ/, its determinant is 1= detg.
We have thus, since detg < 0, "0123 D 1=p� detg. Consequently,

"˛ˇ
ı D  1p� detg
Œ˛; ˇ; 
; ı� ; (14.63)

with the � sign if . #»e ˛/ is a right-handed basis and theC sign otherwise.
Let us consider the tensor product 4" ˝ ". It is a tensor of type .4; 4/, fully

antisymmetric in its first four arguments, as well as in its last four arguments. The
expression of 4"˝ " is relatively simple:

8.!1;!2;!3;!4;
#»v 1;

#»v 2;
#»v 3;

#»v 4/ 2 .E�/4 � E4;

4"˝ " .!1;!2;!3;!4;
#»v 1;

#»v 2;
#»v 3;

#»v 4/ D
�
X

�2S4

.�1/k.�/h!�.1/;
#»v 1ih!�.2/;

#»v 2ih!�.3/;
#»v 3ih!�.4/;

#»v 4i: (14.64)

Proof. The right-hand side of (14.64) defines clearly a tensor of type .4; 4/, fully
antisymmetric in its first four arguments and in its last four ones, as 4" ˝ ". The
set of all such tensors is a one-dimensional vector space because the subspaces of
T.4;0/.E/ and T.0;4/.E/ formed by the fully antisymmetric tensors are each one-
dimensional vector spaces. We deduce that 4"˝ " is necessarily proportional to the
tensor appearing in the right-hand side of (14.64). To get the proportionality factor,
it suffices to evaluate each tensor on the same 8-tuple, for instance, .e˛; #»e ˇ/ where
. #»e ˛/ is a right-handed basis of .E;g/ and .e˛/ its dual basis. By definition of a
tensor product, we have

4"˝ " .e0; e1; e2; e3; #»e 0;
#»e 1;

#»e 2;
#»e 3/ D 4".e0; e1; e2; e3/„ ƒ‚ …

�1

". #»e 0;
#»e 1;

#»e 2;
#»e 3/„ ƒ‚ …

1

D �1;

(14.65)
where 4".e0; e1; e2; e3/ D �1 follows from

4".e0; e1; e2; e3/ D ". #»e 0; #»e 1; #»e 2; #»e 3/ D ".� #»e 0;
#»e 1;

#»e 2;
#»e 3/;

each #»e ˛ being the vector associated with the linear form e0 by metric duality, so
that #»e 0 D � #»e 0 and #»e i D #»e i (1 � i � 3). On the other hand,

X

�2S4

.�1/k.�/ he�.0/; #»e 0i„ ƒ‚ …
ı
�.0/

0

: : : he�.3/; #»e 3i„ ƒ‚ …
ı
�.3/

3

D he0; #»e 0i„ ƒ‚ …
1

: : : he3; #»e 3i„ ƒ‚ …
1

D 1: (14.66)

In view of (14.65) and (14.66), we deduce that the proportionality factor in front the
summation sign in (14.64) is �1. ut
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In terms of components, (14.64) is expressed as

"˛1 ˛2 ˛3 ˛4 "ˇ1 ˇ2 ˇ3 ˇ4 D �
X

�2S4

.�1/k.�/ ı˛�.1/ˇ1 ı
˛�.2/

ˇ2
ı
˛�.3/

ˇ3
ı
˛�.4/

ˇ4
: (14.67)

Contracting successively on the indices ˛1 and ˇ1, we obtain a series of useful
formulas:

"�˛1 ˛2 ˛3 "�ˇ1 ˇ2 ˇ3 D �
X

�2S3

.�1/k.�/ ı˛�.1/ˇ1 ı
˛�.2/

ˇ2
ı
˛�.3/

ˇ3
: (14.68)

"�� ˛1 ˛2 "�� ˇ1 ˇ2 D �2
�
ı
˛1
ˇ1
ı
˛2
ˇ2
� ı˛2ˇ1 ı˛1ˇ2

�
: (14.69)

"���˛ "���ˇ D �6 ı˛ˇ: (14.70)

"���� "���� D �24: (14.71)

Identities (14.67)-(14.71) can be re-expressed in a single writing, valid for p 2
f0; 1; 2; 3; 4g :

"�1:::�4�p˛1:::˛p "�1:::�4�pˇ1:::ˇp D �.4 � p/Š
X

�2Sp

.�1/k.�/ ı˛�.1/ˇ1 : : : ı
˛�.p/

ˇp
:

(14.72)

14.5.2 Hodge Star

For p 2 f0; 1; 2; 3; 4g, the Hodge star is the mapping

? W Ap.E/ �! A4�p.E/
A 7�! ?A

(14.73)

defined by

?A˛1:::˛4�p WD
1

pŠ
"�1:::�p˛1:::˛4�p g

�1�1 : : : g�p�p A�1:::�p : (14.74)

Explicitly,

p D 0 W ?A˛ˇ
ı WD A"˛ˇ
ı (14.75a)

p D 1 W ?A˛ˇ
 WD "�˛ˇ
 g�� A� D A�"�˛ˇ
 (14.75b)

p D 2 W ?A˛ˇ WD 1

2
"��˛ˇ g

��g�� A�� D 1

2
A��"

��

˛ˇ (14.75c)
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p D 3 W ?A˛ WD 1

6
"���˛ g

��g��g�	 A��	 D 1

6
A��� "

���
˛ (14.75d)

p D 4 W ?A WD 1

24
"���� g

��g��g�	g�� A��	� D 1

24
A���� "

���� : (14.75e)

The second equalities on each line let appear the tensors p" according to (14.62).
We observe that if A is a p-form, ?A is a .4 � p/-form, so the mapping (14.73) is
well defined. Moreover, ? is clearly a linear mapping.

For any p-form A, ??A is again a p-form. Let us evaluate it by applying (14.74)
twice:

? ?A˛1:::˛p D
1

.4 � p/Š "�1:::�4�p˛1:::˛p g
�1�1 : : : g�4�p�4�p ?A�1:::�4�p

D 1

.4 � p/Š
1

pŠ
"�1:::�4�p˛1:::˛p g

�1�1 : : : g�4�p�4�p �

�"�1:::�p�1:::�4�p g�1�1 : : : g�p�p A�1:::�p
D 1

pŠ.4 � p/Š "�1:::�4�p˛1:::˛p "�1:::�p�1:::�4�p„ ƒ‚ …
.�1/p"�1:::�4�p�1:::�p

A�1:::�p

D .�1/p
pŠ.4 � p/Š "

�1:::�4�p�1:::�p "�1:::�4�p˛1:::˛p A�1:::�p :

Using (14.72), there comes

??A˛1:::˛p D
.�1/pC1

pŠ

X

�2Sp

.�1/k.�/ ı��.1/˛1 : : : ı��.p/˛p A�1:::�p :

Now, since A is fully antisymmetric, for any permutation � 2 Sp

.�1/k.�/ ı��.1/˛1 : : : ı��.p/˛p A�1:::�p D ı�1˛1 : : : ı
�p
˛p A�1:::�p D A˛1:::˛p :

The cardinal of Sp being pŠ, we deduce that

??A˛1:::˛p D .�1/pC1A˛1:::˛p : (14.76)

In other words,

8A 2 Ap.E/; ??A D .�1/pC1A : (14.77)
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This relation shows that the Hodge star is an invertible mapping, its inverse
being itself, up to a factor .�1/pC1. We conclude that, for a given p 2
f0; 1; 2; 3; 4g, the Hodge star is an isomorphism between the vector spaces
Ap.E/ and A4�p.E/. This isomorphism implements the Hodge duality
between the p-forms and the .4 � p/-forms. One says that the .4 � p/-form
?A is the Hodge dual of the p-form A.

Remark 14.11. For p D 2, 4 � p D 2, so that the Hodge star is an isomorphism of
A2.E/ into itself, i.e. an automorphism.

Remark 14.12. We have encountered three types of duality that should not be
confused:

• The canonical duality between the vector spacesE andE��, according to which
any vector in E can be considered as a linear form on E� [cf. (14.3)]

• The metric duality, which, by means of the metric tensor, establishes a bijective
correspondence between vectors in E and linear forms on E (cf. Sect. 1.6.2)

• The Hodge duality, which, by means of the Levi–Civita tensor and the metric
tensor, establishes a bijective correspondence between p-forms and .4�p/-forms

Note that the first duality is independent of any structure on E (such as the metric
tensor), hence the qualifier canonical.

14.5.3 Hodge Star and Exterior Product

Given two linear forms a and b, the exterior product a ^ b is a 2-form. Its Hodge
dual, ?.a^ b/, is a 2-form as well. Let us express its components in a basis . #»e ˛/ of
E , via the successive use of (14.75c), (14.43) and (14.29):

?.a ^ b/˛ˇ D 1

2
"��˛ˇ g

��g�� .a ^ b/�� D 1

2
"��˛ˇ g

��g�� .a�b� � a�b�/

D 1

2
"��˛ˇ.a

�b� � a�b�/
D "��˛ˇa�b�; (14.78)

where we have used the antisymmetry of " to get the last line. We conclude thus
that

8.a;b/ 2 A1.E/
2; ?.a ^ b/ D ". #»a ;

#»
b ; :; :/ : (14.79)
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14.5.4 Orthogonal Decomposition of 2-Forms

An interesting application of (14.79) regards the orthogonal decomposition of 2-
forms established in Sect. 3.5.2: given a 2-form A and a unit timelike vector #»u ,
there exists a unique linear form q 2 E� and a unique vector

#»
b 2 E such that

A can be written as (3.37). We recognize in the first term of the right-hand side
of (3.37) the exterior product of the linear forms u and q. According to (14.79), the
second term is nothing but the Hodge dual of the exterior product of the linear forms
u and b. We can thus rewrite the decomposition (3.37) in the compact form

A D u ^ q C ?.u ^ b/ ; hq; #»u i D 0 and #»u � #»

b D 0 : (14.80)

The Hodge star will allow us to express the vector
#»

b in terms of A and #»u , as we
have already expressed q in terms of A and #»u [Eq. (3.40)]. Indeed, let us take the
Hodge star of (14.80); using (14.79) and (14.77) with p D 2, we get

?A D ?.u ^ q/C ??.u ^ b/ D ". #»u ; #»q ; :; :/ � u ^ b:

Setting the first argument of this 2-form to #»u , we obtain a linear form:

?A. #»u ; :/ D ". #»u ; #»q ; #»u ; :/„ ƒ‚ …
0

� hu; #»u i„ƒ‚…
�1

bC hb; #»u i„ƒ‚…
#»
b � #»u D0

u D b:

We have thus

b D ?A. #»u ; :/ : (14.81)

It is instructive to compare this relation with formula (3.40) expressing q:

q WD A.:; #»u / : (14.82)

Hence, in the decomposition (14.80), the linear form q is obtained directly from A,
whereas the vector

#»

b is obtained from the Hodge dual of A.
In terms of components, (14.81) can be written, via (14.75c), as b˛ D

A�� "
��
�˛ u�=2. This can be rearranged as

b˛ D �1
2
"˛��� A�� u� : (14.83)

Example 14.11. The angular momentum vector #»� C of a particle with respect to a
point C and measured by an observer, as defined by (10.8), can be expressed in
terms of the angular momentum 2-form JC according to
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�C D ?J C .
#»u 0; :/ ” �˛C D �

1

2
"˛��� .JC /�� u�0; (14.84)

where #»u 0 is the observer’s 4-velocity.

Example 14.12. The spin vector #»s of a particle, as defined by (10.74), can be
expressed in terms of the spin 2-form S according to

s D ?S . #»u ; :/ ” s˛ D �1
2
"˛��� S�� u�; (14.85)

where #»u is the particle’s 4-velocity.



Chapter 15
Fields on Spacetime

15.1 Introduction

The preceding chapter having introduced tensors on the vector space E underlying
Minkowski spacetime E , we move now to the notion of tensor field, i.e. to the
prescription of a tensor at each point of the affine space E . This chapter and the
following one, dealing with the integration of tensor fields, are purely mathematical.
They introduce the basic tools for the subsequent physical chapters devoted to
electromagnetism, hydrodynamics and gravitation.

15.2 Arbitrary Coordinates on Spacetime

15.2.1 Coordinate System

Up to now, we have considered as coordinates on the whole spacetime E only
affine coordinates (Sect. 1.2.3).1 If the associated vector basis is orthonormal, affine
coordinates are coordinates of some inertial observer and are then called inertial
coordinates (Sect. 8.2.3). At the local level, in the vicinity of a worldline, we
have defined the coordinates with respect to an observer (Sect. 3.4.2). From a
pure mathematical point of view, one can however introduce on E any type of
coordinates, i.e. general curvilinear coordinates, not necessarily related to some
observer. More precisely, one calls coordinate system on E any mapping

˚ W E �! R
4

M 7�! .x0; x1; x2; x3/
(15.1)

1In Chap. 12, we have introduced, on a part of E , Rindler coordinates, which differ from affine
coordinates.

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 15, © Springer-Verlag Berlin Heidelberg 2013
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496 15 Fields on Spacetime

that is injective (˚ is then bijective between E and ˚.E /) and such that both ˚ and
˚�1 are differentiable (one says that ˚ is a diffeomorphism between E and ˚.E /).

Example 15.1. Any affine coordinate system on E , as defined in Sect. 1.2.3, is of
course a coordinate system in the above sense.

Example 15.2. Given a system of inertial coordinates on E , .x˛�/ D .ct; x; y; z/, one
defines the associated spherical coordinates .x˛/ D .ct; r; �; '/ by x0 D x0� D ct
and

8
<

:

x D r sin � cos'
y D r sin � sin '
z D r cos �:

(15.2)

We have then r 2 Œ0;C1Œ, � 2 Œ0; �� and ' 2 Œ0; 2�Œ. Note that these coordinates
are singular in the (timelike) plane of E defined by x D y D 0.

15.2.2 Coordinate Basis

Let .x˛/ be a coordinate system on E . At any point M 2 E and for any ˛ 2
f0; 1; 2; 3g, one defines a vector #»e ˛.M/ 2 E that describes the increase of the
coordinate x˛ in the vicinity of M as follows: if .x0; x1; x2; x3/ are the coordinates
ofM and ifM0 is the point of coordinates .x0Cdx0; x1; x2; x3/ with dx0 infinitely
small, then

#         »
MM0 D dx0 #»e 0.M/: (15.3)

Similarly, if M1, M2 and M3 are the points of respective coordinates .x0; x1 C
dx1; x2; x3/, .x0; x1; x2 C dx2; x3/ and .x0; x1; x2; x3 C dx3/, then

#         »
MM1 D dx1 #»e 1.M/;

#         »
MM2 D dx2 #»e 2.M/;

#         »
MM3 D dx3 #»e 3.M/:

(15.4)

More generally, if M 0 is any point close to M of coordinates .x˛ C dx˛/, we have

#         »

MM 0 D dx˛ #»e ˛.M/ : (15.5)

Example 15.3. If .x˛/ is a system of affine coordinates of E of origin O , then
#      »
OM D x˛ #»" ˛, where . #»" ˛/ is the vector basis of E associated with the affine
coordinates .x˛/; it is clear that

#         »

MM 0 D dx˛ #»" ˛ . We conclude that the vectors
#»e ˛.M/ defined by (15.3)–(15.4) are constant and equal to the basis vectors of the
affine frame: #»e ˛.M/ D #»" ˛.
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For any coordinate system .x˛/, the vectors . #»e ˛.M// defined by (15.3)–
(15.4) constitute a basis of the vector space E at any point M 2 E .
This basis is called the coordinate basis, or natural basis, associated with
coordinates .x˛/.

Moreover, if .x0˛/ is another coordinate system on E , its coordinate basis
. #»e 0̨ / is related to that of .x˛/ by

#»e ˛.M/ D @x0ˇ

@x˛
#»e 0̌ .M/ : (15.6)

Proof. For a fixed ˛ 2 f0; 1; 2; 3g, let M˛ be the point deduced from M by an
infinitesimal change " of the coordinate x˛ . We have, from (15.3)–(15.4),

#         »
MM˛ D " #»e ˛.M/: (15.7)

In the second system, if .x0ˇ/ are the coordinates ofM , those ofM˛ are .x0ˇCdx0ˇ/
with dx0ˇ D @x0ˇ=@x˛ ". Formula (15.5) yields then

#         »
MM˛ D dx0ˇ #»e 0̌ .M/ D @x0ˇ

@x˛
" #»e 0̌ .M/:

Comparing with (15.7), we get (15.6). If one picks for .x0˛/ a system of affine
coordinates, then . #»e 0̌ .M// is a vector basis of E (cf. Example 15.3). Moreover,
provided that the coordinate system .x˛/ is regular around M , the Jacobian matrix
.@x0ˇ=@x˛/ is invertible. We deduce then from (15.6) that . #»e ˛.M// is a vector basis
of E . ut
Example 15.4. Let us consider again the spherical coordinated introduced in
Example 15.2. The Jacobian matrix .@xˇ�=@x˛/ is easily computed from (15.2),
and (15.6) (with x0ˇ D xˇ� ) leads to

8
ˆ̂<

ˆ̂:

#»e 0.M/ D #»e ct
#»e r .M/ D sin � cos' #»e x C sin � sin ' #»e y C cos � #»e z
#»e � .M/ D r cos � cos' #»e x C r cos � sin' #»e y � r sin � #»e z
#»e '.M/ D �r sin � sin ' #»e x C r sin � cos' #»e y;

(15.8)

with the notations #»e r WD #»e 1,
#»e � WD #»e 2,

#»e ' WD #»e 3,
#»e ct D #»e �

0 , #»e x WD #»e �
1 ,

#»e y WD #»e �
2 and #»e z WD #»e �

3 . The vectors #»e r and #»e ' are depicted in Fig. 15.1. We
notice that the coordinate basis . #»e ˛/ is not orthonormal (albeit orthogonal).
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Fig. 15.1 Vectors #»e r and
#»e ' of the coordinate basis
associated with spherical
coordinates at three points
M1, M2 and M3 of the plane
.t D 0; � D �=2/

Remark 15.1. In differential geometry, the vectors of the coordinate basis associ-
ated with .x˛/ are denoted by @=@x˛ . This notation stems from the definition of a
vector on a manifold as a differential operator on scalar fields. We had not to use this
definition in the present case because the concept of vector has been provided from
the very beginning by the structure of affine space for E . Note however that, by the
chain rule, the operators @=@x˛ and @=@x0ˇ obey the same relation as that between
the vectors #»e ˛ and #»e 0̌ [Eq. (15.6)]:

@

@x˛
D @x0ˇ

@x˛
@

@x0ˇ ;

which is fully compatible with the identification #»e ˛ D @=@x˛ .

15.2.3 Components of the Metric Tensor

Let .x˛/ and .x0˛/ be two coordinate systems on E and . #»e ˛/ and . #»e 0̨ / the
associated coordinate bases. At each point M 2 E , the components g˛ˇ.M/ of
the metric tensor g in the basis . #»e ˛.M// are given by (1.12). Substituting #»e ˛.M/

by (15.6) in this formula, we get

g˛ˇ.M/ D #»e ˛.M/ � #»e ˇ.M/ D @x0�

@x˛
@x0�

@xˇ
#»e 0
�.M/ � #»e 0

�.M/
„ ƒ‚ …

g0

��.M/

:

Hence, the relation between the components of g in the bases associated with the
two coordinate systems:

g˛ˇ.M/ D @x0�

@x˛
@x0�

@xˇ
g0
��.M/ : (15.9)
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Example 15.5 (Spherical coordinates). For the spherical coordinates .x˛/ D
.ct; r; �; '/ introduced in Example 15.2 p. 496, the direct computation of
g˛ˇ D #»e ˛ � #»e ˇ from (15.8) [using the orthonormality of the basis . #»e �̨/] results in

g˛ˇ.M/ D

0

BB@

�1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 �

1

CCA ; (15.10)

where r and � are the coordinates x1 and x2 of M . That g˛ˇ.M/ 6D �˛ˇ indicates
that the coordinate basis . #»e 0;

#»e r ;
#»e � ;

#»e '/ associated with spherical coordinates is
not orthonormal, which had already been noticed on Fig. 15.1.

Example 15.6 (Null coordinates). From the spherical coordinates .ct; r; �; '/ of the
previous example, denoted hereafter by .x0˛/, one defines the null coordinates
.x˛/ D .u; v; �; '/ by


u WD ct � r
v WD ctC r ”


ct D .uC v/=2
r D .v � u/=2

(15.11)

These coordinates are depicted in Fig. 15.2. We observe that the hypersurfaces
obtained by fixing u and letting .v; �; '/ vary (resp. by fixing v and letting .u; �; '
vary)) are the future (resp. past) light cones centred on r D 0, hence the name given
to these coordinates. The Jacobian matrix of the coordinate change (15.11) is

@x0ˇ

@x˛
D

0

BB@

ˇ!
˛ 1=2 �1=2 0 0

# 1=2 1=2 0 0

0 0 1 0

0 0 0 1

1

CCA:

We deduce then from (15.6) the first two vectors #»e u WD #»e 0 and #»e v WD #»e 1 of the
coordinate basis:

#»e u.M/ D 1

2
Œ #»e ct � #»e r .M/� and #»e v.M/ D 1

2
Œ #»e ct C #»e r .M/� ; (15.12)

the last two vectors being nothing but #»e � and #»e ' . Vectors #»e u and #»e v are depicted
in Fig. 15.2. The components of the metric tensor in the null coordinates are easily
obtained from the formula g˛ˇ D #»e ˛ � #»e ˇ:

g˛ˇ.M/ D

0
BB@

0 �1=2 0 0

�1=2 0 0 0

0 0 r2 0

0 0 0 r2 sin2 �

1
CCA : (15.13)
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Fig. 15.2 Null coordinates
.u; v/ in a plane
.� D const; ' D const/

That the diagonal of the above matrix starts by two zeros means that #»e u and #»e v are
null vectors. Null coordinates are much used in quantum chromodynamics (cf., e.g.
Brodsky et al. (1998)).

Remark 15.2. The basis . #»e u;
#»e v;

#»e � ;
#»e '/ is not made of one timelike vector and

three spacelike vectors, as all the bases encountered up to now. In particular, it is not
obvious when reading (15.13) that the signature of g is .�;C;C;C/.
Example 15.7 (Rindler coordinates). Rindler coordinates have been introduced in
Sect. 12.2.7 as the coordinates with respect to a uniformly accelerated observer O .
They are depicted in Fig. 12.8. Here, we shall denote them by .x˛/ D .c Qt ; Qx; Qy; Qz/ in
order to keep the notation .ct; x; y; z/ for the inertial coordinates .x0˛/. The relation
between the two coordinate systems is given by (12.35):

8
ˆ̂<

ˆ̂:

ct D . Qx C a�1/ sinh.ac Qt /
x D . Qx C a�1/ cosh.ac Qt / � a�1
y D Qy
z D Qz;

Qt 2 R

Qx > �a�1

where the constant a is the metric norm of the 4-acceleration of observer O . The
Jacobian matrix describing the transition from Rindler coordinates .x˛/ to inertial
coordinates .x0ˇ/ is then

@x0ˇ

@x˛
D

0
BB@

ˇ !
˛ .1C a Qx/ cosh.ac Qt / .1C a Qx/ sinh.ac Qt / 0 0

# sinh.ac Qt / cosh.ac Qt / 0 0

0 0 1 0

0 0 0 1

1
CCA:

Formula (15.6) provides the first two vectors #»e cQt WD #»e 0 and #»e Qx WD #»e 1 of the
coordinate basis associated with Rindler coordinates:
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#»e cQt .M / D .1C a Qx/ �cosh.ac Qt / #»e ct C sinh.ac Qt / #»e x

�
(15.14)

#»e Qx.M/ D sinh.ac Qt / #»e ct C cosh.ac Qt / #»e x; (15.15)

the last two vectors being equal to #»e y and #»e z. Comparing with (12.30), we can
relate #»e cQt and #»e Qx to the first two vectors of the local frame of observer O , #»e obs

0

and #»e obs
1 , taken at the same instant Qt asM :

#»e cQt .M / D .1C a Qx/ #»e obs
0 .Qt / and #»e Qx.M/ D #»e obs

1 .Qt /: (15.16)

If Qx 6D 0, i.e. if M is not located on O’s worldline, we observe that #»e cQt .M / 6D
#»e obs
0 .Qt/. Since #»e Qy.M/ D #»e y D #»e obs

2 .Qt/, #»e Qz.M/ D #»e z D #»e obs
3 .Qt/ and . #»e obs

˛ .Qt //
is an orthonormal basis, we deduce immediately from (15.16) the components of
the metric tensor in the Rindler coordinate basis:

g˛ˇ.M/ D

0
BB@

�.1C a Qx/2 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

1
CCA : (15.17)

Note that this coordinate basis is not orthonormal as soon as the point M is not on
the worldline of the accelerated observer ( Qx 6D 0).

Example 15.8 (Rotating coordinates). From the coordinates .ct; x; y; z/ with
respect to a uniformly rotating observer introduced in Sect. 13.3.1 [cf. Eq. (13.9)],
we can construct a spherical coordinate system .x˛/ D .ct; r; �; '/ by the standard
formulas (15.2). It is then easy to see that these coordinates are related to the
spherical coordinates .x0˛/ D .ct0; r 0; � 0; ' 0/ associated with an inertial observer
(cf. Example 15.5) by t 0 D t , r 0 D r , � 0 D � and

' 0 D ' C !t;

where ! is the norm of the 4-rotation of the rotating observer. The Jacobian matrix
linking the two spherical coordinate systems is then

@x0ˇ

@x˛
D

0
BB@

ˇ !
˛ 1 0 0 !

# 0 1 0 0

0 0 1 0

0 0 0 1

1
CCA:

The components .g0
˛ˇ/ of the metric tensor with respect to the inertial spherical

coordinates being given by (15.10), the law (15.9) of change of coordinate basis
leads to
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g˛ˇ.M/ D

0

BB@

�1C !2r2 sin2 � 0 0 !r2 sin2 �
0 1 0 0

0 0 r2 0

!r2 sin2 � 0 0 r2 sin2 �

1

CCA : (15.18)

These components are sometimes called Langevin metric, referring to studies
of Paul Langevin (cf. p. 40) (1921; 1935). This name is somewhat misleading,
for (15.18) does not represent a new metric but the metric g of Minkowski spacetime
expressed in rotating coordinates.

Historical note: The description of Minkowski spacetime by means of arbitrary
coordinates has been developed in 1955 by Vladimir A. Fock2 in his famous treatise
on relativity (Fock 1955). In this respect, it is worth mentioning that Fock, who was
professor at Leningrad University, greatly contributed to the spreading of relativity
in USSR.

15.3 Tensor Fields

15.3.1 Definitions

Let us recall that for .k; `/ 2 N
2, T.k;`/.E/ stands for the set of all tensors of type

.k; `/ on the vector space E , with the convention T.0;0/.E/ D R (cf. Sect. 14.2).
One calls tensor field of type .k; `/ on E any mapping

T W E �! T.k;`/.E/

M 7�! T .M/:
(15.19)

Unless explicitly mentioned, we shall always assume that this mapping is smooth
(infinitely differentiable). If .k; `/ D .0; 0/, the arrival set of (15.19) is R and
T is called a scalar field. If .k; `/ D .1; 0/, T is called a vector field, since
T.1;0/.E/ D E.

Example 15.9. If .x˛/ is a coordinate system on E , the mapping that assigns to each
point M 2 E the vector #»e 0.M/ of the coordinate basis associated with .x˛/ is a
vector field on E (the same property holds for #»e 1.M/, #»e 2.M/ and #»e 3.M/).

Remark 15.3. Except for the coordinate bases introduced in Sect. 15.2.2, we have
encountered up to now only tensor fields defined along the worldline L of some

2Vladimir A. Fock (1898–1974) : Soviet theoretical physicist, known for his work in quantum
mechanics (Fock space, Hartree–Fock approximation); he contributed also to geophysics and
general relativity.
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particle, i.e. mappings L �! T.k;`/: vector fields (cf. Sect. 2.7.2) (4-velocity,
4-acceleration, spin vector), fields of linear forms (4-momentum, 4-force) and fields
of 2-forms (angular momentum with respect to a point, spin).

One calls field of bases, or moving frame, any set of four vector fields on E ,
. #»e ˛/, such that at every pointM , . #»e ˛.M// is a basis ofE . To avoid any confusion,
we shall sometimes use the expression fixed basis for a basis of E that is not
considered as the value at some point of a moving frame. A field of orthonormal
bases is called a tetrad.

Example 15.10. Any coordinate basis constitutes a field of bases, but the converse
is not true: there exists fields of bases that cannot be associated with a coordinate
system on E . For example, from the vectors . #»e 0;

#»e r ;
#»e � ;

#»e '/ of the spherical
coordinate basis [cf. Eq. (15.8)], one may construct a new basis by setting #»e 0

0 WD
#»e 0,

#»e 0
1 WD #»e r ,

#»e 0
2 WD r�1 #»e � and #»e 0

3 WD .r sin �/�1 #»e ' . Contrary to
. #»e 0;

#»e r ;
#»e � ;

#»e '/, the basis . #»e 0̨ / is orthonormal [this is immediate from (15.10)].
It is the orthonormal basis associated usually to spherical coordinates.3 It can be
shown that . #»e 0̨ / is not a coordinate basis: there does not exist any coordinate system
on E whose infinitesimal coordinate changes are described by the vectors . #»e 0̨ /.

15.3.2 Scalar Field and Gradient

The simplest example of a tensor field is of course a scalar field: f W E �! R. If
f is differentiable, one can associate with it a field of linear forms

rf W E �! T.0;1/.E/

defined as follows. Between two infinitely close points of E , M and M 0, the
variation df .M/ WD f .M 0/ � f .M/ of f is a linear function of the separation
between M and M 0, which is represented by the vector

#         »

MM 0. One defines thus
rf .M/ as the linear form that, applied to the vector

#         »

MM 0, gives the variation
of f :

df .M/ D hrf .M/;
#         »

MM 0i:

As often in physics, we shall omit the argument M of the functions. Denoting by
d #»x the infinitesimal vector

#         »

MM 0, we can then rewrite the above formula as

df D hrf; d #»x i : (15.20)

3In many textbooks, the vectors of this basis are denoted by . #»e r ;
#»e � ;

#»e '/, while we reserve here
this notation for the vectors of the coordinate basis.
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The field of linear forms rf defined in this way is called the gradient of f . The
symbol r is named nabla.

Remark 15.4. It is clear on the definition (15.20) that the gradient of a scalar field is
fundamentally a linear form and not a vector. If, as often done in nonrelativistic
physics, one defines the gradient as a vector by writing df D #»rf � d #»x , one
considers implicitly an additional structure on space (spacetime): the scalar product.
On the contrary, the definition (15.20) is independent of any scalar product and thus
of the metric tensor g): it relies only on the primitive notion of vector. Of course,
from the gradient linear form rf , one may always construct the vector

#»rf by
metric duality, according to the procedure described in Sect. 1.6.2.

15.3.3 Gradients of Coordinates

Let .x˛/ be a coordinate system on E . For a fixed ˛, we may consider x˛ as a scalar
field on E . The variation of x˛ induced by a small displacement d #»x around a point
M is then given by (15.20):

dx˛ D hrx˛; d #»x i: (15.21)

On the other side, the vector d #»x can be expanded on the coordinate basis
. #»e ˛/ associated with .x˛/ according to (15.5): d #»x D dxˇ #»e ˇ. Substituting this
expression into (15.21), we get dx˛ D hrx˛; #»e ˇi dxˇ. We deduce that

hrx˛; #»e ˇi D ı˛ˇ : (15.22)

In other words, at each pointM 2 E , the 4-tuple of linear forms .rx˛/ constitutes
the dual basis of the coordinate basis associated with the coordinates .x˛/: according
to the notation introduced in Sect. 1.6.1,

e˛ D rx˛ : (15.23)

Let f be a scalar field on E . Let us determine the components r˛f WD .rf /˛
of the gradient of f in the coordinate basis . #»e ˛/. By the definition of tensor
components [Eq. (14.10) with .k; `/ D .0; 1/],

rf D r˛f e˛ D r˛f rx˛: (15.24)

For any infinitesimal displacement d #»x D dx˛ #»e ˛ , the variation of f given
by (15.20) is df D hrf; d #»x i. Now, with respect to the basis . #»e ˛/, the components
of rf are r˛f , and those of d #»x are dx˛ . Formula (14.15) leads then to

df D hrf; d #»x i D r˛f dx˛:
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Besides, we have obviously df D .@f =@x˛/ dx˛ . Identifying the two formulas,
we get

r˛f D @f

@x˛
: (15.25)

Hence, the components of the gradient in a coordinate basis are nothing by the
partial derivatives with respect to the coordinates.

15.4 Covariant Derivative

15.4.1 Covariant Derivative of a Vector

Let #»v be a vector field on E . The variation of #»v between two infinitely close points
of E , M and M 0 is

d #»v WD #»v .M 0/� #»v .M/:

At first order, this variation must be linear in the separation vector d #»x WD #         »

MM 0.
There exists thus an endomorphism of E that we shall denote by r #»v , such that
d #»v D r #»v .d #»x /. It is customary to write the argument of this endomorphism as an
index: rd #»x

#»v WD r #»v .d #»x /. There comes then

d #»v D r d #»x
#»v : (15.26)

As discussed in Sect. 14.2.2, the endomorphisms of E are identified to type .1; 1/
tensors. One thus calls covariant derivative of #»v the tensor field of type .1; 1/ r #»v

that at any point M 2 E gives the variation of #»v resulting from an infinitesimal
displacement d #»x according to formula (15.26).

Example 15.11. Let . #»e ˛/ be a fixed basis of E and .v˛/ the components of the
vector field #»v in this basis:

8M 2 E ; #»v .M/ D v˛.M/ #»e ˛:

This expression gives immediately d #»v D dv˛ #»e ˛. Since dv˛ D .@v˛=@xˇ/ dxˇ ,
we deduce the components, denoted by rˇv˛ , of the covariant derivative r #»v in the
basis . #»e ˛/ :

rˇv˛ D @v˛

@xˇ
(fixed basis): (15.27)
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Let us stress that this formula is valid only because the basis . #»e ˛/ is fixed (cf.
Sect. 15.3.1). For a field of bases (moving frame), a corrective term must be added,
as we shall see below.

A vector field #»v on E induces naturally a vector field along any worldline
L � E , in the sense specified in Sect. 2.7.2. We may then consider the derivative
d #»v =dt of #»v along L , as defined by (2.53) (L is assumed to be timelike, and its
proper time is denoted by t). d #»v =dt has been also called the absolute derivative
of #»v along L in Sect. 3.6.1 to distinguish it from the derivative with respect to
an observer. It is easy to relate d #»v =dt to the covariant derivative of the field #»v .
Indeed, let A.t/ and A.t C dt/ be two infinitely close points of L and d #»x the
vector connecting these two points. From the definition (2.53), d #»v =dt is the limit
taken for dt ! 0 of the variation of #»v between A.t/ and A.t C dt/ divided by dt .
Using (15.26) for d #»v , we get

d #»v

dt
D r d #»x

#»v

dt
D r d #»x

dt

#»v ;

where the second equality stems from the linearity of the endomorphism r #»v . Now,
by the very definition of a 4-velocity, d #»x=dt is c times the 4-velocity of the particle
having L as worldline: d #»x=dt D c #»u [Eq. (2.12)]. We can thus rewrite the above
formula as

d #»v

dt
D c r #»u

#»v : (15.28)

15.4.2 Generalization to All Tensors

The definition of the covariant derivative can be generalized to any kind of tensor
field:

If T is a tensor field of type .k; `/, its covariant derivative rT is a tensor
field of type .k; ` C 1/ such that the variation of T between two infinitely
close pointsM and M 0 is given by

dT WD T .M 0/ � T .M/ D rd #»x T ; where d #»x WD #         »

MM 0: (15.29)
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The notation rd #»x T means that the vector d #»x is the last argument of the
tensor rT :

8 #»v 2 E; r #»v T WD rT .:; : : : ; :; #»v / : (15.30)

One says that r #»v T is the covariant derivative of T along the vector #»v .

Remark 15.5. If #»v is a vector field on E , r #»v T is a tensor field of the same type
.k; `/ as T .

Example 15.12. For a scalar field, the comparison of (15.29) with (15.20) shows
that the covariant derivative coincides with the gradient. This explains why the same
symbol nabla has been used for the two operators.

The components of the covariant derivative in a basis . #»e ˛/ are not denoted by
.rT /˛1:::˛k ˇ1:::ˇ`C1

but rather by rˇ`C1
T
˛1:::˛k

ˇ1:::ˇ`
:

rT D rˇ`C1
T
˛1:::˛k

ˇ1:::ˇ`
e˛1 ˝ : : :˝ e˛k ˝ eˇ1 ˝ : : :˝ eˇ` ˝ eˇ`C1 :

(15.31)

With this convention and (15.30), the components of the covariant derivative along
a vector can be written as

.r #»v T /
˛1:::˛k

ˇ1:::ˇ`
D v�r�T ˛1:::˛k ˇ1:::ˇ` : (15.32)

By the definitions (14.31) and (15.29), it is clear that the covariant derivative
commutes with the contraction:

r.C p
q T / D Cp

q .rT /: (15.33)

The covariant derivative along a vector obeys the Leibniz rule with respect to the
tensor product˝: for any vector #»v and any pair of tensor fields .A;B/:

r #»v .A ˝B/ D r #»v A ˝B CA ˝ r #»v B : (15.34)

This property follows easily from the definition (14.6) of the tensor product and the
Leibniz rule regarding the multiplication in R. In the particular case where A is a
scalar field, A D f , the above formula becomes

r #»v .f B/ D .r #»v f /B C f r #»v B: (15.35)
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Remark 15.6. In differential geometry, where the affine space E appears as a special
case of manifold (cf. Sect. 7.2.1), the covariant derivative is called a connection.
In the present case, the metric tensor g is a fixed tensor, of type .0; 2/, on E . If
considered as tensor field on E , it is then a constant field, and we have trivially

rg D 0: (15.36)

On general grounds, any connection r that satisfies (15.36), as well as the property
r˛rˇf D rˇr˛f for any scalar field f (the so-called torsion-free condition), is
called a Levi–Civita connection or Riemannian connection on the manifold. If the
metric g is nondegenerate, such a connection is unique.

15.4.3 Connection Coefficients

Given a field of bases . #»e ˛/ on E , the covariant derivative of a basis vector along
another such vector, r #»e ˇ

#»e ˛, is a vector field on E . It can therefore be expanded at
each pointM 2 E on the basis . #»e ˛.M//:

r #»e ˇ

#»e ˛ DW � �

˛ˇ
#»e � : (15.37)

The coefficients � �

˛ˇ are called the connection coefficients relative to the moving
frame . #»e ˛/. They are functions of the considered spacetime point. In other words,
the � �

˛ˇ’s constitute 43 D 64 scalar fields on E .
Writing the action of the 1-form e˛ on the vector #»e 
 as the contraction of the

tensor product #»e 
 ˝ e˛ [Eq. (14.34)] and using the commutation property (15.33)
as well as the Leibniz rule (15.34), we get

r #»e ˇ
he˛; #»e 
 i D hr #»e ˇ

e˛; #»e 
 i C he˛;r #»e ˇ

#»e 
 i:

Now, by definition of a dual basis, he˛; #»e 
 i is the constant field ı˛
 , so that
r #»e ˇ

he˛; #»e 
 i D 0. Moreover, from (15.37), r #»e ˇ

#»e 
 D �
�


ˇ
#»e �. We obtain thus

hr #»e ˇ
e˛; #»e 
 i D �� ˛


ˇ , from which

r #»e ˇ
e˛ D �� ˛

�ˇ e� : (15.38)

From (15.37) and (15.38), we obtain4 the following formula for the components
of the covariant derivative of a tensor field of type .k; `/ (we use the notation
� D ˇ`C1):

4It suffices to take the covariant derivative of the expansion (14.10) of a tensor in terms of its
components, to apply the Leibniz rule, to use (15.37) and (15.38) and to compare the result
with (15.31).
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r� T ˛1:::˛k ˇ1:::ˇ` D hrT
˛1:::˛k

ˇ1:::ˇ`
; #»e �i C

kX

pD1
�
˛p
��T

˛1:::

p
#

� :::˛k�1

ˇ1:::ˇ`

�
X̀

qD1
�
�

ˇq�
T
˛1:::˛k

ˇ1::: �
"

q

:::ˇ`�1

;

(15.39)

where rT ˛1:::˛k ˇ1:::ˇ` is the gradient of the component T ˛1:::˛k ˇ1:::ˇ` , considered as a
scalar field on E . Note that if . #»e ˛/ is a coordinate basis, (15.25) allows one to write
the first term of the right-hand side of (15.39) as

hrT ˛1:::˛k ˇ1:::ˇ` ; #»e �i D @

@x�
T
˛1:::˛k

ˇ1:::ˇ`
(coordinate basis): (15.40)

Formula (15.39) shows that the covariant derivative of any tensor field can be
computed from the connection coefficients � 


˛ˇ .

Example 15.13. In the case of a vector field, (15.39) simplifies to

r�v˛ D hrv˛; #»e �i C � ˛
��v

�; (15.41)

whereas for a field of linear forms, it reduces to

r�!˛ D hr!˛; #»e �i � � �
˛�!�: (15.42)

In view of (15.40), (15.41) and (15.42), we shall retain

rˇv˛ D @v˛

@xˇ
C � ˛

�ˇv
� and rˇ!˛ D @!˛

@xˇ
� � �

˛ˇ!� (coordinate basis):

(15.43)

In the case where . #»e ˛/ is a basis of E associated with affine coordinates of E
(for instance, inertial coordinates, cf. Sect. 8.2.3), then . #»e ˛/ is a fixed basis, and
r #»e ˛ D 0. The definition (15.37) of the connection coefficients leads to � �

˛ˇ D
0. Equations (15.39) and (15.40) then show that the components of the covariant
derivative of a tensor are nothing but the partial derivatives of the components:

r� T ˛1:::˛k ˇ1:::ˇ` D
@

@x�
T
˛1:::˛k

ˇ1:::ˇ`
(affine coordinates): (15.44)

This relation generalizes that obtained above for a vector [Eq. (15.27)].
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15.4.4 Christoffel Symbols

Let us compute the value of the connection coefficients in terms of the components
.g˛ˇ/ of the metric tensor in the case where . #»e ˛/ is a basis associated with some
coordinates .x˛/.

Let us first show that, in this case, the coefficients � 


˛ˇ are symmetric in the
indices ˛ and ˇ. From (15.37), it is equivalent to show that

r #»e ˇ

#»e ˛ D r #»e ˛

#»e ˇ: (15.45)

Let us show it for two specific values of ˛ and ˇ: ˛ D 0 and ˇ D 1. Let M 2 E ,
M0 2 E and M1 2 E such that

#         »
MM0 D " #»e 0 and

#         »
MM1 D " #»e 1 with " infinitely

small. From the definition of a covariant derivative,

r " #»e 1

#»e 0 D #»e 0.M1/� #»e 0.M/ and r " #»e 0

#»e 1 D #»e 1.M0/ � #»e 1.M/I

hence,

" .r #»e 1

#»e 0 � r #»e 0

#»e 1/ D #»e 1.M/C #»e 0.M1/� #»e 0.M/� #»e 1.M0/: (15.46)

Now, by definition of a natural basis, "Œ #»e 1.M/C #»e 0.M1/� is the vector connecting
M to the point of coordinates .x0 C "; x1 C "; x2; x3/, .x0; x1; x2; x3/ being the
coordinates ofM . Similarly, "Œ #»e 0.M/C #»e 1.M0/� is the vector connectingM to the
point of coordinates .x0C"; x1C"; x2; x3/. This is actually the same point as above,
so that the vectors "Œ #»e 1.M/C #»e 0.M1/� and "Œ #»e 0.M/C #»e 1.M0/�must coincide. We
conclude that the right-hand side of (15.46) vanishes, which establishes (15.45) for
˛ D 0 and ˇ D 1 and more generally for any pair .˛; ˇ/ with ˛ 6D ˇ. We have thus
shown the symmetry of the connection coefficients relative to a coordinate basis:

�



˛ˇ D � 


ˇ˛ (coordinate basis): (15.47)

Let us now move to the explicit computation of � 


˛ˇ from the components g˛ˇ
of the metric tensor g. If one considers the latter as a tensor field on E , it is a
constant one and we have rg D 0 [Eq. (15.36)]. On the other side, in general, the
components .g˛ˇ/ are not constant over E , as shown by the various examples of
Sect. 15.2.3: @g˛ˇ=@x
 6D 0. From (15.39) and the fact that g is a tensor of type
.0; 2/, the property rg D 0 implies

r
g˛ˇ D 0 D @g˛ˇ

@x

� � �

˛
g�ˇ � � �

ˇ
g˛�:

Multiplying by the matrix .g˛ˇ/—the inverse of .g˛ˇ/ —and changing the names
of indices, we obtain
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g
�
@g�ˇ

@x˛
D � �

�˛g�ˇg

� C � �

ˇ˛ g��g

�

„ ƒ‚ …
ı


�

D � �
�˛g�ˇg


� C � 


ˇ˛;

g
�
@g˛ˇ

@x�
D � �

˛�g�ˇg

� C � �

ˇ�g˛�g

�;

hence

g
�
�
@g�ˇ

@x˛
C @g�˛

@xˇ
� @g˛ˇ
@x�

	
D � 


ˇ˛ C � 


˛ˇ:

The symmetry property (15.47) allows us then to conclude

�



˛ˇ D
1

2
g
�

�
@g�ˇ

@x˛
C @g˛�

@xˇ
� @g˛ˇ
@x�

	
(coordinate basis): (15.48)

The connection coefficients given by this formula are called Christoffel symbols.
Formula (15.48) enables one to compute the � 


˛ˇ’s from the sole data of the
components of the metric tensor. Let us stress that it is valid only for the components
in a coordinate basis.

Example 15.14. For the spherical coordinates .x˛/ D .ct; r; �; '/ considered in
Example 15.5 p. 499, expression (15.10) for the components of g leads to

� r
�� D �r � r

'' D �r sin2 � (15.49a)

� �
r� D � �

�r D
1

r
� �

'' D � cos � sin � (15.49b)

� '
r' D � '

'r D
1

r
�
'

�' D � '

'� D
1

tan �
; (15.49c)

all the other Christoffel symbols being zero. Let us consider the vector field
#»v WD #»e r (second vector of the coordinate basis). The components v˛ D .0; 1; 0; 0/
are constant, so that @v˛=@xˇ D 0. On the contrary, rˇv˛ 6D 0. We check indeed
with the help of (15.43) and the above Christoffel symbols that r�v� D 1=r and
r'v' D 1=r . We have thus r #»v 6D 0, in perfect agreement with the fact that the
field #»v D #»e r is not constant on E , as clearly seen on Fig. 15.1.

Example 15.15. Still within spherical coordinates, let us consider now the vector
field #»w WD #»e x. From (15.8), we obtain the following components in the basis
associated with spherical coordinates:

w˛ D
�
0; sin � cos';

cos � cos'

r
; � sin '

r sin �

	
: (15.50)



512 15 Fields on Spacetime

We have thus clearly @w˛=@xˇ 6D 0. However, we check that (15.43) and (15.49)
lead to rˇw˛ D 0, as it should since #»w D #»e x is a constant vector field on E .

15.4.5 Divergence of a Vector Field

Given a vector field #»v on E , its covariant derivative r #»v is a tensor field of type
.1; 1/. The contraction of the latter, as defined in Sect. 14.3.5, yields a scalar field
[cf. Eq. (14.33)], called divergence of #»v and denoted by r � #»v :

r � #»v WD r�v� : (15.51)

In terms of components with respect to a coordinate system .x˛/, we get,
from (15.43),

r � #»v D @v�

@x�
C � �

��v
�: (15.52)

Now, if one performs the contraction of (15.48) on the indices 
 and ˇ, one gets

� �
�� D

1

2
g��

@g��

@x�
D 1

2
tr

�
g�1 @

@x�
g

	
D 1

2

@

@x�
ln j detgj

D 1p� detg

@

@x�

p� detg; (15.53)

where (7.90) has been used to express the derivative of the determinant of the matrix
g of the components of g with respect to the coordinates .x˛/. We deduce then
from (15.52) that the divergence of a vector field can be expressed solely in terms
of partial derivatives and the determinant of the components of the metric tensor:

r � #»v D 1p� detg

@

@x�

�p� detg v�
�
: (15.54)

Example 15.16. For the spherical coordinates considered in Example 15.5 p. 499,
the value (15.10) of the matrix g leads to detg D �r4 sin2 � , so that (15.54)
becomes

r � #»v D 1

c

@v0

@t
C 1

r2
@

@r

�
r2 vr

�C 1

sin �

@

@�

�
sin � v�

�C @v'

@'
: (15.55)

Applying this formula to the vector #»v D #»e r considered in Example 15.14, there
comes r � #»v D r�2@=@r.r2/ D 2=r . On the other side, for the vector #»w D #»e x of
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Example 15.15, we deduce from components (15.50) that r � #»w D 0, in agreement
with the fact that #»e x is a constant field on E .

15.4.6 Divergence of a Tensor Field

The divergence operator can be generalized to any tensor field T of type .k; `/ with
k � 1 by defining the divergence of T as the contraction on the last contravariant
index and the derivation index (covariant index of rank ` C 1) of the covariant
derivative of T :

r � T WD Ck
`C1rT : (15.56)

In terms of components, we obtain the following formula, which general-
izes (15.51):

.r � T /˛1:::˛k�1

ˇ1:::ˇ`
D r�T

˛1:::˛k�1�

ˇ1:::ˇ`
: (15.57)

In the case where T is an antisymmetric tensor of type .2; 0/, one can express the
divergence by a formula similar to (15.54), which has been established for a vector.
Indeed, in the present case, Eqs. (15.39)–(15.40) lead to

r�T ˛� D @T ˛�

@x�
C � ˛

��T
�� C � �

��T
˛�;

where .x˛/ is a coordinate system on E and � 


˛ˇ the corresponding Christoffel
symbols. Now, since T is antisymmetric and � ˛

�� is symmetric with respect to the
indices � and � [Eq. (15.47)], � ˛

��T
�� D 0. Since, in addition, � �

�� is expressible
in terms of detg via (15.53), we obtain

r�T ˛� D 1
p� detg

@

@x�

�p� detg T ˛�
�

(T antisymmetric): (15.58)

15.5 Differential Forms

15.5.1 Definition

For p 2 N, one calls differential p-form any smooth field of p-forms, i.e. any
smooth field of alternate forms of valence p, as defined in Sect. 14.4. Hence,
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a differential 0-form is a scalar field [cf. (14.37)], and a differential 1-form is a field
of linear forms [cf. (14.36)]. Differential forms play a fundamental role to define
integrals on parts of E , as we shall see in Chap. 16.

15.5.2 Exterior Derivative

A differential p-form A being a tensor field of type .0; p/, its covariant derivative
rA is a tensor field of type .0; p C 1/, i.e. a field of multilinear forms of valence
pC1. But, in general, rA is not fully antisymmetric; it is therefore not a differential
.p C 1/-form. To get a differential .p C 1/-form, it suffices to antisymmetrize it.
Thus one defines,5 for any .p C 1/-tuple of vectors . #»v 1; : : : ;

#»v pC1/,

dA. #»v 1; : : : ;
#»v pC1/ WD 1

pŠ

X

�2SpC1

.�1/k.�/ r #»v �.1/
A. #»v �.2/; : : : ;

#»v �.pC1// :

(15.59)

By construction, dA is a differential .pC1/-form; it is called the exterior derivative
of the differential p-form A. Explicitly:

• If A D f is a 0-form (scalar field), its exterior derivative is nothing but its
gradient:

df D rf (scalar field): (15.60)

• If A is a 1-form, the definition (15.59) reduces to

dA. #»v 1;
#»v 2/ D hr #»v 1A;

#»v 2i � hr #»v 2A;
#»v 1i: (15.61)

The components of dA in a basis . #»e ˛/ of E are then

.dA/˛ˇ D r˛Aˇ � rˇA˛: (15.62)

• If A is a 2-form, the definition (15.59) yields

dA. #»v 1;
#»v 2;

#»v 3/ D r #»v 1
A. #»v 2;

#»v 3/C r #»v 2
A. #»v 3;

#»v 1/C r #»v 3
A. #»v 1;

#»v 2/;

(15.63)

where we have used the fact that, for any vector #»v , r #»v A is antisymmetric:
r #»v 1A.

#»v 2;
#»v 3/ D �r #»v 1A.

#»v 3;
#»v 2/, etc. This property follows from the very

definition of a covariant derivative [Eq. (15.29)], since the difference between

5Cf. Sect. 14.4 for the notations.
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two antisymmetric forms is antisymmetric. In terms of components, (15.63) can
be written as

.dA/˛ˇ
 D r˛Aˇ
 CrˇA
˛ Cr
A˛ˇ: (15.64)

• If A is a 3-form, one shows similarly that

.dA/˛ˇ
ı D r˛Aˇ
ı � rˇA
ı˛ Cr
Aı˛ˇ � rıA˛ˇ
 : (15.65)

If the basis . #»e ˛/ is a coordinate basis associated with some coordinate sys-
tem .x˛/, the components of the covariant derivatives can be expressed via (15.39)
and (15.40). Given the symmetry of Christoffel symbols [property (15.47)], we
observe that all the terms involving them vanish. For instance, (15.62) becomes
[cf. (15.43)]

.dA/˛ˇ D @Aˇ

@x˛
� � �

ˇ˛A� �
�
@A˛

@xˇ
� � �

˛ˇA�

	

D @Aˇ

@x˛
� @A˛
@xˇ
C �� �

˛ˇ � � �

ˇ˛„ ƒ‚ …
0

�
A�:

One can thus replace the nabla symbols in (15.62)–(15.65) by partial derivatives:

.df /˛ D @f

@x˛
(scalar field) (15.66)

.dA/˛ˇ D @Aˇ

@x˛
� @A˛
@xˇ

(1-form) (15.67)

.dA/˛ˇ
 D @Aˇ


@x˛
C @A
˛

@xˇ
C @A˛ˇ

@x

(2-form) (15.68)

.dA/˛ˇ
ı D @Aˇ
ı

@x˛
� @A
ı˛

@xˇ
C @Aı˛ˇ

@x

� @A˛ˇ


@xı
(3-form): (15.69)

Remark 15.7. Formulas (15.66)–(15.69) show that the notion of exterior derivative
is independent of that of covariant derivative. Indeed these formulas involve only the
partial derivative with respect to the coordinates. In the more general framework of
the theory of manifolds, a metric tensor must be provided to define the (Levi–Civita)
covariant derivative r (cf. Remark 15.6 p. 508), whereas the exterior derivative d
does not depend on any structure but that of manifold. On the other side, d applies
only to differential forms, while r applies to all tensor fields.

Example 15.17. In Chap. 11, we have seen that the 4-force exerted on a particle
in a vector field results from the action of a 2-form F on the particle’s 4-velocity
[cf. Eq. (11.35)]. The comparison of (11.34) and (15.67) shows that F is nothing
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but the exterior derivative of the potential 1-form A that is involved in the
Lagrangian (11.28): F D dA.

Example 15.18 (Link between the exterior derivative of a 1-form and the curl of a
vector). Formula (15.67) reminds that expressing the curl of a vector in the three-
dimensional Euclidean space. Let us make this relation concrete. Let #»v be a vector
field on a spacelike affine hyperplane˙ � E . A differential 1-form v is associated
with #»v by metric duality, and we can take its exterior derivative to get a 2-form, dv.
Let us consider the Hodge dual of dv, ?dv (cf. Sect. 14.5). This is also a 2-form.
Let us set as the first argument of this 2-form the future-directed unit normal˙ , #»u ;
we obtain then a 1-form: w WD ?dv. #»u ; :/. Its metric dual, #»w , is a vector tangent to
˙ , since by construction, #»w � #»u D hw; #»u i D ?dv. #»u ; #»u / D 0. We shall define this
vector as the curl of #»v and will denote it by r�u

#»v :

r�u
#»v WD #»w ; w WD ?dv. #»u ; :/: (15.70)

To show that this definition gives indeed the usual curl, let us express the
components of #»w with respect to a coordinate system .x˛/ one E . From (14.75c)
and (15.67), the components of ?dv are

.?dv/˛ˇ D 1

2
�
��

˛ˇ

�
@v�

@x�
� @v�
@x�

	
D ��� ˛ˇ

@v�

@x�
:

The components of #»w are then

w˛ D g˛ˇ ��� �ˇ
@v�

@x�
u� D ����˛ @v�

@x�
u�:

In other words,

w˛ D .r�u
#»v /˛ D u� �

�˛�� @v�

@x�
D u� �

�˛�� r�v�: (15.71)

The third equality, where the partial derivative has been replaced by a covariant
derivative, results from the symmetry of the Christoffel symbols [Eq. (15.47)] and
the antisymmetry of the Levi–Civita tensor.

Let us assume now that .x˛/ are inertial coordinates such that the equation of
˙ is x0 D 0. The coordinate basis . #»e ˛/ associated with these coordinates is an
orthonormal basis and satisfies #»e 0 D #»u . We will moreover assume that . #»e ˛/ is
right-handed, which is always possible, thanks to some coordinate permutation.
. #»e i / is then an orthonormal basis of the Euclidean vector space of vectors tangent
to ˙ . In particular, #»v D vi #»e i . Since u� D g��u� D ���u� D ��0 D �ı0�, (15.71)
leads to w0 D 0 and

wi D ��0ijk @vk

@xj
: (15.72)
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Now, since the basis . #»e ˛/ is orthonormal, vk D vk , and from (14.63), �0ijk D
�Œi; j; k�. We have thus

wi D Œi; j; k� @v
k

@xj
: (15.73)

We recognize the standard expression of the components of a curl in Cartesian
coordinates.

We shall retain from the above example that the curl of a vector field is one of the
components of the Hodge dual of the exterior derivative of the 1-form associated
with the vector field by metric duality. The exterior derivative can thus be perceived
as some generalization of the concept of curl.

15.5.3 Properties of the Exterior Derivative

If f is a scalar field, we have, by combining (15.66) and (15.67),

.d df /˛ˇ D @2f

@x˛@xˇ
� @2f

@xˇ@x˛
D 0;

for the partial derivatives commute. More generally, it is easy to see that for any
differential p-form A,

d dA D 0 : (15.74)

In other words, the exterior derivative is nilpotent: d2 D 0.
A differential p-form A is said closed iff dA D 0. It is said exact iff there exists

a differential .p � 1/-form B such that A D dB. The property (15.74) implies that
any exact p-form is closed. The converse is true, provided that A is defined on the
whole E or on a star-shaped subdomain of E :

dA D 0 H) 9 B; A D dB : (15.75)

This property is known as Poincaré lemma.
The exterior derivative of an exterior product (cf. Sect. 14.4.2) obeys

d.A ^B/ D dA ^B C .�1/pA ^ dB; (15.76)

where p is the valence of the differential form A [Exercise: show (15.76)]. We
observe that the exterior derivative obeys the Leibniz rule with respect to the exterior
product only if p is even.
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15.5.4 Expansion with Respect to a Coordinate System

Let .x˛/ be a coordinate system on E and . #»e ˛/ the associated coordinate basis. We
have seen in Sect. 15.3.3 that the dual basis, .e˛/, is made of the gradients of the
coordinates [Eq. (15.23)]. Given (15.60), the dual basis can be written as

e˛ D dx˛ : (15.77)

Remark 15.8. One should not confuse dx˛ , the infinitesimal increase of the coor-
dinate x˛ , with dx˛ , the exterior derivative of the coordinate x˛ considered as
a scalar field on E . Thanks to the equality between the exterior derivative and
the gradient for a scalar field [Eq. (15.60)], the link between the two quantities is
dx˛ D hdx˛; #         »

MM 0i, whereM 0 is the point that differs fromM by the increase dx˛

of the coordinate x˛ .

The expansion (14.48) of alternate forms implies the following expansion of
differential forms:

For any differential p-form A,

A D A˛1:::˛p dx˛1 ˝ : : :˝ dx˛p D
X

˛1<:::<˛p

A˛1:::˛p dx˛1 ^ : : : ^ dx˛p :

(15.78)

Explicitly:

A D A0 dx0 C A1 dx1 CA2 dx2 CA3 dx3 (1-form); (15.79)

A D A01 dx0 ^ dx1 C A02 dx0 ^ dx2 C A03 dx0 ^ dx3 CA12 dx1 ^ dx2

CA13 dx1 ^ dx3 CA23 dx2 ^ dx3 (2-form); (15.80)

A D A012 dx0 ^ dx1 ^ dx2 CA013 dx0 ^ dx1 ^ dx3 CA023 dx0 ^ dx2 ^ dx3

CA123 dx1 ^ dx2 ^ dx3 (3-form); (15.81)

A D A0123 dx0 ^ dx1 ^ dx2 ^ dx3 (4-form): (15.82)

Applying (15.82) to the Levi–Civita tensor, we get, taking (14.51) into account,

� D ˙p� detg dx0 ^ dx1 ^ dx2 ^ dx3 ; (15.83)
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where detg stands for the determinant of the matrix g D .g˛ˇ/ of the metric tensor
components in the coordinates .x˛/ and where ˙ is C if the coordinate basis is
right-handed (in which case, the coordinates .x˛/ are said to be right-handed) and�
otherwise (in which case, the coordinates .x˛/ are said to be left-handed).

Remark 15.9. In the above formula, one considers � as a tensor field on E . It is
then a constant field, as g. In particular, r� D 0. On the other side, the unique
component ˙p� detg of � in the basis dx0 ^ dx1 ^ dx2 ^ dx3 is not constant
in general (except if .x˛/ are inertial coordinates). The property r� D 0 can be
recovered by computing the components r��˛ˇ
ı from (15.39) and the Christoffel
symbols (15.48).

15.5.5 Exterior Derivative of a 3-Form and Divergence
of a Vector Field

If A is a differential 3-form on E , its exterior derivative is a differential 4-form
whose components with respect to a field of bases are given by (15.65). Let us
evaluate the Hodge dual of this 4-form by means of (14.75e). We obtain the scalar
field

?dA D 1

24
�˛ˇ
ı .dA/˛ˇ
ı

D 1

24
�˛ˇ
ı

�r˛Aˇ
ı � rˇA
ı˛ Cr
Aı˛ˇ � rıA˛ˇ

�
: (15.84)

Let us consider the first term of this expression; since � is a constant field on E (cf.
Remark 15.9), we have r˛�˛ˇ
ı D 0, hence

�˛ˇ
ır˛Aˇ
ı D r˛
�
�˛ˇ
ıAˇ
ı

�
:

Writing �˛ˇ
ıAˇ
ı D ��ˇ
ı˛Aˇ
ı D �Aˇ
ı�ˇ
ı� g�˛ D �6.?A/� g�˛ , we let
appear the Hodge dual of the 3-form A [cf. Eq. (14.75d)], so that the above equation
becomes

�˛ˇ
ır˛Aˇ
ı D �6r˛.?A/˛ D �6r � �!?A;

where .?A/˛ D .?A/� g�˛ stands for the components of the vector
�!
?A associated

with the 1-form ?A by metric duality. The last equality, which involves the

divergence of
�!
?A, results from (15.54). Similarly, the three other terms in (15.84)

are each equal to �6r � �!?A. We end thus with the simple formula:

?dA D �r � �!?A : (15.85)



520 15 Fields on Spacetime

The Hodge dual of this relation [cf. Eq. (14.77) with p D 4] leads to dA D ?r��!?A.
Using (14.75a), we obtain thus the following formula for the exterior derivative of
any differential 3-form:

dA D
h
r � .�!?A/

i
� (3-form): (15.86)

Remark 15.10. Since the exterior derivative of a 3-form is a 4-form and the
space of 4-forms is of dimension one [cf. (14.40)], it was expected that dA is
proportional to the Levi–Civita tensor �. The non-trivial content of (15.86) is thus

the proportionality factor being the divergence of the vector field
�!
?A.

Let us consider now a vector field #»v on E . The Hodge dual of the 1-form v

associated with #»v by metric duality is the 3-form defined by (14.75b): ?v˛ˇ
 WD
��˛ˇ
v

�. In other words,

?v WD �. #»v ; :; :; :/ : (15.87)

Let us then apply formula (15.85) to this 3-form: if A WD ?v, then via Eq. (14.77)

with p D 1, ?A D ?? v D v and
�!
?A D #»v . Equation (15.85) leads then to the

following expression of the divergence of #»v :

r � #»v D � ?d ?v : (15.88)

Remark 15.11. More generally, the operator � ? d? acting on a p-form, for any
value of p, is called codifferential. Contrary to the exterior derivative, which maps
a p-form to a .p C 1/-form, the codifferential maps a p-form to a .p � 1/-form [in
the above case, a 1-form to a 0-form].

The identity (15.86) can also be reexpressed is terms of #»v :

d ? v D .r � #»v / � : (15.89)

This formula will turn to be very useful in the next chapters.

Historical note: The general concepts of differentialp-form and exterior derivative
have been introduced in 1899 by Élie Cartan (cf. p. 6) (1899; 1945). They constitute
one of the bases of what is known as Cartan calculus.



Chapter 16
Integration in Spacetime

16.1 Introduction

This chapter is entirely devoted to the integration of tensor fields over parts of
spacetime. The aim is to prepare, among others, the discussion of conservation
laws in chapters about electromagnetism and hydrodynamics. This is the last purely
mathematical chapter of the book.

16.2 Integration Over a Four-Dimensional Volume

16.2.1 Volume Element

In the three-dimensional Euclidean space, the volume of an elementary parallele-
piped constructed upon three infinitesimal vectors d

#»

` 1, d
#»

` 2 and d
#»

` 3 (cf. Fig. 16.1)
is given by the mixed product of these vectors:

dV D d
#»

` 1 � .d #»

` 2 ^ d
#»

` 3/: (16.1)

In particular, if d
#»

` 1 D dx1 #»e 1, d
#»

` 2 D dx2 #»e 2, d
#»

` 3 D dx3 #»e 3 and . #»e 1;
#»e 2;

#»e 3/

is an orthonormal basis, then dV D dx1 dx2 dx3.
In spacetime E , we may consider a four-dimensional elementary parallelepiped,

which we shall call an hyperparallelepiped, constructed upon four infinitesimal
vectors .d

#»
` ˛/0�˛�3. We have already noticed in Sect. 1.5 that within E the role

of the mixed product is played by the Levi–Civita tensor �. We shall then define the
four-volume, or 4-volume for short, of the elementary hyperparallelepiped by

dU WD �.d
#»
` 0; d

#»
` 1; d

#»
` 2; d

#»
` 3/ : (16.2)
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Fig. 16.1 Elementary
parallelepiped constructed
upon three infinitesimal
vectors d

#»

` 1, d
#»

` 2 and d
#»

` 3

If the vector d
#»

` ˛ corresponds to the infinitesimal increase dx˛ of the coordinate x˛

of some coordinate system on E , i.e. if

d
#»
` 0 D dx0 #»e 0; d

#»
` 1 D dx1 #»e 1; d

#»
` 2 D dx2 #»e 2; d

#»
` 3 D dx3 #»e 3; (16.3)

where . #»e ˛/ is the coordinate basis associated with .x˛/, then (16.2) gives, thanks
to the multilinearity of �, dU D dx0dx1dx2dx3�. #»e 0;

#»e 1;
#»e 2;

#»e 3/. Substitut-
ing (14.52) and assuming that .x˛/ are right-handed coordinates (so that the basis
. #»e ˛/ is right-handed; cf. Sect. 15.5.4), there comes

dU Dp� detg dx0dx1dx2dx3 : (16.4)

In particular, if .x˛/ D .ct; x; y; z/ are inertial coordinates, dU D c dt dx dy dz—a
formula that generalizes the expression of the three-dimensional volume element:
dV D dx dy dz.

16.2.2 Four-Volume of a Part of Spacetime

Let V be a compact four-dimensional domain of spacetime E . In view of (16.4),
one defines naturally the four-volume of V , or 4-volume for short, by

vol V WD
Z

V

p� detg dx0dx1dx2dx3 ; (16.5)

where the coordinates .x˛/ are assumed to be right-handed and the integral is limited
to the coordinate ranges that cover V and is a Lebesgue integral1 over R4,

p� detg
being considered as a function of .x0; x1; x2; x3/.

The key point is that the definition of vol V is independent of the choice of
the coordinates .x˛/ or, equivalently, is independent of the system of elementary
hyperparallelepipeds .d

#»

` ˛/ used to decompose V .

1Or a Riemann–Darboux integral: since we shall consider only piecewise continuous functions, we
shall not make any distinction.
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Proof. Let us perform a change of coordinates .x˛/ 7! .x0˛/. The well-known
formula ruling the change of variable in a Lebesgue integral allows then to
rewrite (16.5) as

vol V D
Z

V

p� detg jJ j dx00dx01dx02dx03; (16.6)

where J is the Jacobian of the coordinate change: J D det
�
@xˇ=@x0˛�. In addition,

according to the law (15.9) for the change g 7! g0 of the matrix of the metric tensor
components, we have g0 D tP g P withPˇ

˛ WD @xˇ=@x0˛. We note that J D detP ,
so that detg0 D .detP/2 detg D J 2 detg. Hence,

p� detg0 D jJ jp� detg: (16.7)

In view of (16.7), we conclude that (16.6) has the same form as (16.5), with each
dx˛ replaced by dx0˛ and g replaced by g0, which shows the independence of (16.5)
with respect to the coordinate system. ut

16.2.3 Integral of a Differential 4-Form

From (16.2), we can write

vol V D
Z

V

�.d
#»
` 0; d

#»
` 1; d

#»
` 2; d

#»
` 3/; (16.8)

with the infinitesimal vectors d
#»

` ˛ given by (16.3). This formula can be seen as
defining the integral of the 4-form � over V , the result being independent of the
choice of the d

#»

` ˛’s.
More generally, for any differential 4-form A on E , we define the integral of A

over V by

Z

V
A WD

Z

V
A.d

#»

` 0; d
#»

` 1; d
#»

` 2; d
#»

` 3/ D
Z

V
A0123 dx0dx1dx2dx3 ; (16.9)

where .x˛/ is a right-handed coordinate system on the part of E containing V
and .d

#»

` ˛/ are the associated “elementary hyperparallelepiped” vectors defined
by (16.3). In the second equality, A0123 D A. #»e 0;

#»e 1;
#»e 2;

#»e 3/ is the component
of A with respect to the coordinates .x˛/ [cf. (15.82)] and the integral of the right-
hand side is a Lebesgue integral over R4.

As for (16.8), the definition (16.9) does not depend upon the choice of the right-
handed coordinate system .x˛/.



524 16 Integration in Spacetime

Proof. The space A4.E/ of valence-4 alternate forms being of dimension one
[Eq. (14.40)], there exists necessarily a scalar field ˛ W E ! R such that A D ˛ �.
Combining (15.82) and (15.83) (with the C sign since the coordinates .x˛/ are
right-handed), there comes

A0123 dx0dx1dx2dx3 D ˛p� detg dx0dx1dx2dx3:

The argument is then identical to that of Sect. 16.2.2: since ˛ is invariant under
a coordinate change, the identity (16.7) leads to the independence of the defini-
tion (16.9) with respect to the coordinates .x˛/. ut
Remark 16.1. The notion of integral of a differential 4-form over a part of E does
not depend upon the metric tensor g, since the right-hand side of (16.9) does not
involve g. In particular, there is no need to rely on the Levi–Civita tensor � (which
does depend upon g) in the demonstration of the invariance of the integral by a
change of coordinates. We did it here in order not to repeat the demonstration of
Sect. 16.2.2.

As shown by (16.8), the definition (16.9) applied to the 4-form � yields

vol V D
Z

V

�: (16.10)

Remark 16.2. Because of this identity, the Levi–Civita tensor is often called the
volume element of Minkowski spacetime.

16.3 Submanifolds of E

The integration can also be defined on parts of E of dimension lower than 4: curves,
surfaces and hypersurfaces. Technically, these parts are called submanifolds2 of E .
Let us start by defining them in full generality.

16.3.1 Definition of a Submanifold

A part V of E is called a submanifold of E of dimension p 2 f1; 2; 3g iff in the
vicinity of any point of V , there exists a coordinate system of E , .x˛/, such that V
is defined by the 4 � p equations

V W xA D const; A 2 f0; : : : ; 3 � pg: (16.11)

2Let us recall that the concept of manifold has been defined in Sect. 7.2.1.
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The coordinate system .x˛/ is then said to be adapted to V . The three possible cases
are

• p D 1: V is a curve of E (e.g. a worldline); it obeys x0 D const, x1 D const and
x2 D const, and the coordinate x3 can be chosen as a parameter along V .

• p D 2: V is a surface of E ; it obeys x0 D const and x1 D const, and the
coordinates .x2; x3/ are those labelling the points of V .

• p D 3: V is a hypersurface of E ; it is defined by x0 D const, and .x1; x2; x3/
can be chosen as coordinates internal to V .

Remark 16.3. More than one adapted coordinate system can be required, covering
different parts, to define a submanifold of E .

For the remaining of this chapter, we adopt the following convention to name
coordinates adapted to V : an upper-case Latin letter from the beginning of alphabet,
A, B , etc. is used for the indices of the coordinates that are constant on V , as
in (16.11), and a lower-case Latin letter, still from the beginning of alphabet, a,
b, etc., for the indices of the remaining coordinates (coordinates “internal” to V ).
Hence,

• If p D 1, A 2 f0; 1; 2g and a D 3.
• If p D 2, A 2 f0; 1g and a 2 f2; 3g.
• If p D 3, A D 0 and a 2 f1; 2; 3g.
Example 16.1. Let us consider the spherical coordinates .x˛/ D .ct; r; �; '/

introduced in Example 15.2 p. 496.Then the conditions ct D 0 and r D R > 0

determine a sphere S of radiusR. It is a submanifold of E of dimension p D 2. In
this case .xA/ D .ct; r/ and .xa/ D .�; '/.
Example 16.2. Still with the same spherical coordinates, the condition ct D 0

defines an hyperplane of E : it is the rest space of the inertial observer from which
the spherical coordinates are defined. In this case, .xA/ D .ct/ and .xa/ D .r; �; '/.
Example 16.3. Let us consider now the null coordinates introduced in Exam-
ple 15.6 p. 499: .x˛/ D .u; v; �; '/. The condition u D 0 defines a hypersurface
of E , which is nothing but the future light cone of the event defined by r D 0 and
t D 0. In this case, .xA/ D .u/ and .xa/ D .v; �; '/.

Let us determine the condition that change of coordinates on E , .x˛/ 7! .x0˛/,
must fulfil in order for the new coordinates to be adapted to V if the old coordinates
are. Let us start from the general formula dx0˛ D .@x0˛=@xˇ/dxˇ . On V , by
definition, dxˇ D 0 for ˇ 2 f0; : : : ; 3�pg. The summation over ˇ is thus restricted
to coordinates that vary on V :

dx0˛ ˇ̌
V
D @x0˛

@xa

ˇ̌
ˇ̌
V

dxa:
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The new coordinates are adapted to V iff x0AjV D const, i.e. dx0AjV D 0. From
the above expression, this condition is equivalent to

@x0A

@xa

ˇ̌
ˇ̌
ˇ
V

dxa D 0:

This relation must be satisfied whatever the infinitesimal variations dxa of the
coordinates .xa/ on V . We deduce the necessary and sufficient condition for the
new coordinates to be adapted to V :

@x0A

@xa

ˇ̌
ˇ̌
ˇ
V

D 0; 0 � A � 3 � p; 4 � p � a � 3: (16.12)

16.3.2 Submanifold with Boundary

As submanifolds have been defined, via (16.11), they cannot admit a boundary. For
example, a disk does not obey this definition, contrary to a sphere. One defines
then a submanifold with boundary V by adding to (16.11) the condition that the
first internal coordinate, i.e. x4�p , can take only values lower than a given constant
K 2 R:

V W xA D const; A 2 f0; : : : ; 3 � pg and x4�p � K: (16.13)

Moreover, p D 4 is authorized in this definition; it reduces then to x0 � K and
allows one to encompass the four-dimensional volumes considered in Sects. 16.2.2
and 16.2.3.

The boundary of V is the part of V for which the coordinate x4�p reaches the
valueK; it is denoted by @V . SinceK is a constant, we observe that the equation of
@V is

@V W xA D const; A 2 f0; : : : ; 4 � pg: (16.14)

In view of (16.11), this means that @V is a submanifold (without boundary) of E of
dimensionp�1. Note that on @V , the vector #»e 4�p of the coordinate basis associated
with .x˛/ is directed towards the exterior of V .

Example 16.4. Let us consider the spherical coordinates .x˛/ D .ct; r; �; '/

introduced in Example 15.2 p. 496. For any constant R > 0, the conditions

t D 0 and r � R

define a ball in the hyperplane t D 0. By the definition (16.13), this a manifold with
boundary of dimension p D 3. The boundary of this manifold obeys the equations
t D 0 and r D R; it is a sphere of radius R.
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16.3.3 Orientation of a Submanifold

To define properly the integration on a submanifold V , an orientation of V must
be first prescribed. As we did for the whole spacetime by the choice of the 4-form
�, defining an orientation on V amounts to selecting a differential p-form � (p
being V ’s dimension) that never vanishes for any p-tuple of linearly independent
vectors tangent to V . If it is possible to choose � in a continuous manner over V ,
one says that V is orientable and that the p-form � constitutes an orientation of
V . The pair .V ;�/ is then called an oriented submanifold.3 One says that a p-
tuple . #»v 1; : : : ;

#»v p/ of vectors tangents to V is right-handed (resp. left-handed) iff
�. #»v 1; : : : ;

#»v p/ > 0 (resp. �. #»v 1; : : : ;
#»v p/ < 0).

Example 16.5. Every curve (p D 1) is orientable. The plane or the sphere is ori-
entable surfaces. More generally, any simply connected submanifold is orientable.
A standard example of non-orientable surface is Moebius strip.

Given a coordinate system .x˛/ adapted to V , the last p vectors . #»e a/4�p�a�3 of
the associated coordinate basis are tangent to V . This is clear on the very definition
of the coordinate basis . #»e ˛/ (cf. Sect. 15.2.2). If V is oriented, we shall say that
the coordinates .x˛/ are right-handed with respect to V iff the vectors . #»e a/ are
right-handed in the oriented manifold V .

If a manifold with boundary V is endowed with an orientation �, the latter
induces an orientation of the boundary @V , as follows. Given a coordinate system
.x˛/ adapted to V and to its boundary, i.e. a coordinate system obeying (16.13), the
vector #»e 4�p of the associated coordinate basis is tangent to V , but not to @V and is
directed towards the exterior of V . The .p � 1/-form defined at any point of @V by

�. #»e 4�p; :; : : : ; :/ W Ep�1 �! R

. #»v 1; : : : ;
#»v p�1/ 7�! �. #»e 4�p; #»v 1; : : : ;

#»v p�1/
(16.15)

is then an orientation of @V , called induced orientation.

16.4 Integration on a Submanifold of E

16.4.1 Integral of Any Differential Form

Let V be a submanifold of E (with or without boundary), of dimension p 2
f1; 2; 3; 4g and oriented. Given a coordinate system .x˛/ adapted to V and right-
handed with respect to V , the p infinitesimal vectors .d

#»

` 4�p; : : : ; d
#»

` 3/ associated

3In practice, the explicit mention of � is often skipped, and one speaks about the “oriented
submanifold V ”.
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Fig. 16.2 Mesh of a
submanifold V of E induced
by the infinitesimal vectors
.d

#»

` 4�p; : : : ; d
#»

` 3/ associated
with coordinates .x˛/ adapted
to V (in this figure, p D 2)

with the coordinates by (16.3) provide a mesh of V . In particular, at each point,
these vectors are tangent to V and are linearly independent (cf. Fig. 16.2). We may
then generalize the definition (16.9), which holds only for the case p D 4, by
defining the integral of a differential p-form A over V as the integral of the value
of A taken on the p vectors of the mesh4

Z

V
A WD

Z

V
A.d

#»

` 4�p; : : : ; d
#»

` 3/ D
Z

V
A4�p���3 dx4�p : : : dx3 ; (16.16)

where A4�p���3 D A. #»e 4�p; : : : ; #»e 3/ is the component of indices .4 � p; : : : ; 3/ of
A with respect to the coordinates .x˛/ and the integral of A4�p���3 is the Lebesgue
integral in R

p . Indeed, the coordinates .x0; : : : ; x3�p/ being constant on V , we
may consider that the component A4�p���3 is a function of only the p coordinates
.x4�p; : : : ; x3/ and take its Lebesgue integral over the domain of Rp covering V .
Explicitly, the definition (16.16) is

Z

V
A WD

Z

V
hA; d #»

` 3i D
Z

V
A3 dx3 .p D 1/; (16.17a)

Z

V
A WD

Z

V
A.d

#»

` 2; d
#»

` 3/ D
Z

V
A23 dx2 dx3 .p D 2/; (16.17b)

Z

V
A WD

Z

V
A.d

#»

` 1; d
#»

` 2; d
#»

` 3/ D
Z

V
A123 dx1 dx2 dx3 .p D 3/: (16.17c)

For p D 4, (16.16) coincides with the definition (16.9).
In order for the definition (16.16) to be well posed, it must not depend upon the

choice of the adapted coordinates .x˛/ or, equivalently, it must not depend upon
the mesh .d

#»

` 4�p; : : : ; d
#»

` 3/ of V . Let us show it explicitly in the case p D 2,

4This definition assumes that V is entirely covered by a single adapted coordinate system. Now,
for certain submanifolds, various coordinate systems can be required. The integral must then be
decomposed in a sum via a process called partition of unity. We shall not enter in these technical
considerations here; cf. e.g. Berger and Gostiaux (1988).
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the cases p D 1 and p D 3 being similar and the case p D 4 having been
treated in Sect. 16.2.3. If .x0˛/ is a second coordinate system adapted to V and
right-handed with respect to V , the standard formula of change of variable in the
Lebesgue integral leads to

Z

V
A23 dx2 dx3 D

Z

V
A23 J dx02 dx03; (16.18)

where J D det.@xa=@x0b/ is the Jacobian of the change of coordinates on V :

J D @x2

@x02
@x3

@x03 �
@x3

@x02
@x2

@x03 : (16.19)

Note that a priori the absolute value of J should appear in (16.18), but since both
coordinate systems .xa/ and .x0a/ are right-handed with respect to V , one has J >
0. Besides, the componentA0

23 of A with respect to the new coordinates is deduced
from the componentsA˛ˇ with respect to the old ones via formula (14.23), in which
the change-of-basis matrix is given by (15.6):

A0
23 D A˛ˇ

@x˛

@x02
@xˇ

@x03 D Aab
@xa

@x02
@xb

@x03 D A23
@x2

@x02
@x3

@x03 C A32
@x3

@x02
@x2

@x03 ;

where, to get the second equality, we have used property (16.12) [in which we
permute the roles of .x˛/ and .x0˛/], which allows us to limit the summations on ˛
and ˇ to the values 2 and 3 of the indices. Since A is antisymmetric, A32 D �A23
and we recognize in the above expression the Jacobian J given by (16.19). There
comes thus A0

23 D A23 J . Equation (16.18) becomes then

Z

V

A23 dx2 dx3 D
Z

V

A0
23 dx02 dx03: (16.20)

We conclude that the definition (16.17b) is independent of the choice of the
coordinates adapted to V . ut
Remark 16.4. The differential p-forms are really the mathematical objects for
which one can define the integral over a p-dimensional submanifold in an intrinsic
manner, i.e. independently of any coordinate system or any other structure on E (as,
for instance, the metric tensor). In particular, if A was a generic (i.e. not necessarily
antisymmetric) tensor field of type .0; p/, the argument that led to A0

23 D A23 J

in the above demonstration would not hold, so that the integral defined by (16.17b)
would depend upon the choice of the coordinates .x˛/.

Remark 16.5. The definitions (16.17) involve only one component of A: A3, A23
or A123 according to the value of p. This is actually the only component that plays a
role when A is applied to vectors tangent to V . Indeed, any vector #»v tangent to V
can be written as #»v D va #»e a where . #»e ˛/ is the basis associated with the coordinates
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adapted to V and a 2 f4� p; : : : ; 3g. We deduce that the first 4� p linear forms of
the dual basis .e˛/ vanish on #»v :

heA; #»v i D vaheA; #»e ai D vaıAa D 0:

Consequently, (14.48) leads to the following expression for the action of A on
vectors #»v , #»w and #»z tangent to V :

hA; #»v i D A3v
3 .p D 1/

A. #»v ; #»w/ D A23.v
2w3 � v3w2/ .p D 2/

A. #»v ; #»w; #»z / D A123
�
v1.w2z3 � w3z2/C w1.z2v3 � z3v2/

Cz1.v2w3 � v3w2/� .p D 3/;

which demonstrates the above statement.

16.4.2 Volume Element of a Hypersurface

Let us consider a hypersurface V of E (submanifold of dimension p D 3). In an
adapted coordinate system .x˛/, V obeys5 x0 D const [Eq. (16.11) with p D 3].
This implies that the gradient of the coordinate x0 (considered as a scalar field on
E ) vanishes for any vector #»v tangent to V : hrx0; #»v i D 0. Introducing the vector
m associated with the linear form rx0 by metric duality, this property becomes

8 #»v 2 E; #»v tangent to V ” #»m � #»v D 0: (16.21)

One says that the vector #»m is normal to the hypersurface V . Three cases can
occur:

• If #»m is timelike, all vectors tangent to V are necessarily spacelike; one says that
V is spacelike hypersurface.6

• If #»m is spacelike, vectors tangent to V can be timelike, spacelike or null; one
says that V is a timelike hypersurface.

• If #»m is null, vectors tangents to V are either spacelike or null; one says that V is
a null hypersurface. The vector #»m is then both normal and tangent to V , since it
fulfils criterion (16.21) : #»m � #»m D 0.

5Let us recall that, in the present context, x0 stands for the first coordinate of a system adapted to
V ; it is thus not necessarily a time coordinate.
6We have already encountered this type of hypersurface in Sect. 9.3.5.
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Fig. 16.3
Hyperparallelepiped
constructed from the
elementary parallelepiped
.d

#»

` 1; d
#»

` 2; d
#»

` 3/ of an
hypersurface V and the unit
normal #»n to V

Let us assume that V is either spacelike or timelike. Then #»m � #»m 6D 0, and we
can introduce the vector

#»n WD
#»m

k #»mkg
: (16.22)

#»n is a unit vector normal to V . It is unique up to a sign. If V is spacelike, we shall
assume that #»n is future-directed, unless otherwise stated. Let us consider an ele-
mentary parallelepiped in V defined by three infinitesimal vectors .d

#»

` 1; d
#»

` 2; d
#»

` 3/

according to (16.3), and let us erect a hyperparallelepiped by adding the vector #»n

to .d
#»

` 1; d
#»

` 2; d
#»

` 3/ (cf. Fig. 16.3). The 4-volume of this hyperparallelepiped is
dU D �. #»n ; d

#»

` 1; d
#»

` 2; d
#»

` 3/. Since #»n is a unit vector, we may consider that dU
is the numerical value of the volume of the base parallelepiped .d

#»

` 1; d
#»

` 2; d
#»

` 3/.
We shall then define the volume element 3-form of the hypersurface V as

�V WD �. #»n ; :; :; :/ .p D 3/: (16.23)

�V is a field of 3-forms on V . If V is the rest space of an observer ( #»n = observer’s
4-velocity #»u ), �V is nothing but the 3-form �u introduced in Chap. 3 [cf. Eq. (3.45)]
and used to define the cross product �u. The volume of the elementary parallelepiped
.d

#»
` 1; d

#»
` 2; d

#»
` 3/ in V is then

dV D �V .d
#»

` 1; d
#»

` 2; d
#»

` 3/: (16.24)

If .x˛/ is a coordinate system adapted to V and the d
#»

` i ’s are vectors related to the
infinitesimal coordinate increases dxi by (16.3), then

dV D �. #»n ; dx1 #»e 1; dx2
#»e 2; dx3

#»e 3/ D ��123 n� dx1dx2dx3 D �0123 n0 dx1dx2dx3:

Using the components (14.51) of the Levi–Civita tensor, we get

dV D n0p� detg dx1dx2dx3 : (16.25)

Example 16.6. Let us take for V the ball considered in Example 16.4 p. 526. Within
the spherical coordinates .x˛/ D .ct; r; �; '/ adapted to V , we have

p� detg D
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r2 sin � [cf. (15.10)] and #»n D #»e 0; hence, n0 D 1, so that (16.25) yields the standard
volume element

dV D r2 sin � dr d� d':

By the definition (16.23), the components of the volume element 3-form in a
generic basis (not necessarily adapted to V ) are

.�V /˛ˇ
 D n���˛ˇ
 : (16.26)

Comparing with (14.75b), we observe that �V is the Hodge dual of the 1-form n:

�V D ?n : (16.27)

16.4.3 Area Element of a Surface

Let us consider now the case where V is a two-dimensional surface, which we shall
assume to be spacelike, in the sense that all vectors tangent to V are spacelike.
At each point M 2 V , the vector space E is decomposed in the direct sum E D
˘ ˚ ˘? where ˘ is the vector plane generated by vectors tangent to V and ˘?
the vector plane generated by vectors orthogonal to V at M . One can always find
an orthonormal basis of .E;g/ with two vectors within ˘ . The two other vectors
are then necessarily within ˘?. Since V is a spacelike surface, the two vectors in
˘ are spacelike. By virtue of the signature of g, one of the two remaining vectors,
which we shall call #»n , must be timelike and the other vector, which we shall call
#»s , must be spacelike. The pair . #»n ; #»s / is then an orthonormal basis of .˘?;g/:
#»n � #»n D �1, #»s � #»s D 1, #»n � #»s D 0. Let us consider an elementary parallelogram of
V constructed upon two vectors .d

#»
` 2; d

#»
` 3/, and let us erect a hyperparallelepiped

by adding the vectors #»n and #»s . The 4-volume of this hyperparallelepiped is

dU D �. #»n ; #»s ; d
#»

` 2; d
#»

` 3/: (16.28)

The vectors #»n and #»s being unitary, we shall define the area dS of the elementary
parallelogram .d

#»
` 2; d

#»
` 3/ as dS D dU . This justifies the introduction of the area-

element 2-form of the surface V by

�V WD �. #»n ; #»s ; :; :/ .p D 2/: (16.29)

�V if a field of 2-forms on V . The area of the elementary parallelogram of V
constructed upon the vectors d

#»

` 2 and d
#»

` 3 is then

dS D �V .d
#»
` 2; d

#»
` 3/ : (16.30)
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By construction, we have dS D dU , dU being given by (16.28). If .x˛/ is a
coordinate system adapted to V and the vectors d

#»
` a are related to the infinitesimal

coordinate increases dxa by (16.3), then

dU D �. #»n ; #»s ; dx2 #»e 2; dx3
#»e 3/D ���23 n�s� dx2dx3D �0123 .n0s1 � n1s0/ dx2dx3:

Using the components (14.51) of the Levi–Civita tensor, we get

dS D .n0s1 � n1s0/p� detg dx2dx3 : (16.31)

Example 16.7. Let us choose for V the sphere considered in Example 16.1 p. 525.
Within the spherical coordinates .x˛/ D .ct; r; �; '/ adapted to V , we have the
following components: n˛ D .1; 0; 0; 0/ and s˛ D .0; 1; 0; 0/; hence, n0s1�n1s0 D
1. Since, on the other side,

p� detg D r2 sin � D R2 sin � [cf. (15.10)], we recover
from (16.31) the standard area element for a sphere of radius R:

dS D R2 sin � d� d':

Contrary to the case of a hypersurface, for which the unit future-directed normal
vector #»n is unique, the pair . #»n ; #»s / of unit vectors normal to a surface V is not
unique in the four-dimensional space E . Indeed, at any point M 2 V , the only
characteristic feature of . #»n ; #»s / is to be an orthonormal basis of the plane ˘?
orthogonal to V at M , and there exists an infinite number of such bases. The key
point is that the definition of �V does not depend upon the choice of the orthonormal
basis of ˘?, provided that it has the same orientation as . #»n ; #»s /.

Proof. Let us consider a second orthonormal basis of ˘?, . #»n 0; #»s 0/ say. It can be
deduced from . #»n ; #»s / by a Lorentz transformation acting in the plane ˘?. If the
orientation of the bases is preserved, this must be a Lorentz boost, since ˘? is a
timelike plane (cf. Sect. 6.4.4). Denoting by  the rapidity of this boost, we have
then, by (6.43), 

#»n 0 D cosh #»n C sinh #»s
#»s 0 D sinh #»n C cosh #»s :

Thanks to the antisymmetry of the Levi–Civita tensor, we get

�. #»n 0; #»s 0; :; :/ D cosh2  �. #»n ; #»s ; :; :/C sinh2  �. #»s ; #»n ; :; :/

D .cosh2  � sinh2  „ ƒ‚ …
1

/ �. #»n ; #»s ; :; :/ D �. #»n ; #»s ; :; :/: ut

By the definition (16.29), the components of the area element 2-form in a general
basis are

.�V /˛ˇ D n�s����˛ˇ: (16.32)
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Besides, let us apply the Hodge star to the 2-form resulting from the exterior
product of the 1-forms n and s, metric duals of the vectors #»n and #»s . From (14.75c)
and (14.43), we get

? .n ^ s/˛ˇ D 1

2
���˛ˇ g

��g�� .n ^ s/�� D 1

2
���˛ˇ g

��g�� .n�s� � s�n� /

D 1

2
���˛ˇ .n

�s� � s�n�/ D ���˛ˇ n�s�:

Comparing with (16.32), we conclude that the area-element 2-form is nothing but
the Hodge dual of the exterior product of n by s:

�V D ?.n ^ s/ : (16.33)

16.4.4 Length-Element of a Curve

Let V be an oriented submanifold of E of dimension p D 1, i.e. a curve in E .
At any point M 2 V , we shall assume that V is either timelike or spacelike,
but neither null. We can then find an orthonormal basis of E containing a vector,
#»u say, that is tangent to V and shares the orientation of V . Let #»n 1,

#»n 2 and #»n 3

be the remaining three vectors of the orthonormal basis. If V is timelike at M ,
#»u is a timelike unit vector: #»u � #»u D �1. It can then be interpreted as the 4-
velocity of the particle that would have V for worldline (hence the notation #»u ).
The other vectors can be ordered so that the orthonormal basis . #»u ; #»n 1;

#»n 3;
#»n 2/ is

right-handed (take care about the order of #»n 3 and #»n 2, which is chosen to ensure
that . #»n 1;

#»n 2;
#»n 3;

#»u / is right-handed). If, on the other side, V is spacelike at M ,
then #»u is a spacelike unit vector: #»u � #»u D 1. There exists then among the #»n i ’s a
timelike vector, which we will choose to be #»n 1. The other vectors can be ordered so
that the orthonormal basis . #»n 1;

#»n 2;
#»n 3;

#»u / is right-handed. By the same reasoning
on the erected hyperparallelepiped as that leading to (16.23) and (16.29), we are led
to define the length element 1-form of the curve V by

�V WD �. #»n 1;
#»n 2;

#»n 3; :/ .p D 1/: (16.34)

�V is a field of 1-forms along V . Since either . #»u ; #»n 1;
#»n 3;

#»n 2/ or . #»n 1;
#»n 2;

#»n 3;
#»u /

is a right-handed orthonormal basis, we have �. #»n 1;
#»n 2;

#»n 3;
#»u / D 1; hence,

h�V ;
#»u i D 1: (16.35)

Besides, by definition of #»u :
hu; #»u i D ˙1; (16.36)
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with the C (resp. �) sign if #»u is spacelike (resp. timelike). �V and u being two
linear forms that vanish on all the vectors orthogonal to #»u , we deduce from (16.35)
and (16.36) that

�V D ˙u ; (16.37)

with the same sign convention as above.
Let d

#»

` be an infinitesimal displacement vector along the curve V , oriented in
the sense of #»u ; the length corresponding to d

#»

` is

d` D h�V ; d
#»

` i D



d

#»

`





g
; (16.38)

where kd #»

` kg is the norm of the vector d
#»

` as defined by (1.19). The second equality
follows from d

#»

` D kd #»

` kg #»u and (16.35). It shows that the notion of length induced
by the Levi–Civita tensor on a curve V coincides with that defined by the metric
tensor.

16.4.5 Integral of a Scalar Field on a Submanifold

Having defined for each submanifold V of dimension p 2 f1; 2; 3; 4g the volume
element p-form �V (for p D 4, we set �V WD �, cf. Sect. 16.2.2), we are in position
to define the integral of a scalar field f over V by

intV .f / WD
Z

V
f �V : (16.39)

This formula is meaningful: �V being a p-form, so is the product f �V , and (16.39)
is the integral of a p-form over a submanifold of dimension p, as defined in
Sect. 16.4.1. Explicitly, in terms of coordinates adapted to V and Lebesgue integrals
over Rp, formulas (16.4), (16.25), (16.31) and (16.38) lead to

p D 4 W intV .f / D
Z

V

f dU D
Z

V

f
p� detg dx0dx1dx2dx3 (16.40a)

p D 3 W intV .f / D
Z

V
f dV D

Z

V
f n0

p� detg dx1dx2dx3 (16.40b)

p D 2 W intV .f / D
Z

V

f dS D
Z

V

f .n0s1 � n1s0/p� detg dx2dx3

(16.40c)

p D 1 W intV .f / D
Z

V
f d`: (16.40d)
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If V is compact, the choice f D 1 gives, respectively, the 4-volume, the volume,
the area and the length of V .

16.4.6 Integral of a Tensor Field

To define the integral of a tensor field T of type .k; `/ over a submanifold V � E ,
we introduce a fixed basis of E (in the sense specified in Sect. 15.3.1), . #»e ˛/. The
components T ˛1:::˛k ˇ1:::ˇ` of T within this basis are given by the expansion (14.10).
We define then the integral of T over V as the tensor of type .k; `/ whose
components within the basis . #»e ˛/ are the integrals of the components of T :

Z

V
T dV WD

�Z

V
T
˛1:::˛k

ˇ1:::ˇ`
dV

	
#»e ˛1 ˝ : : :˝ #»e ˛k ˝ eˇ1 ˝ : : :˝ eˇ` ; (16.41)

where dV is the element of 4-volume/volume/area or length of V and the integral
of the right-hand side is that of T ˛1:::˛k ˇ1:::ˇ` considered as a scalar field on E ,
according to the definition (16.39). It is obvious that this definition does not depend
upon the choice of the basis . #»e ˛/ of E .

Remark 16.6. If T is a differentialp-form and V a submanifold of dimensionp, we
have at disposal two definitions of the integral of T over V : that provided by (16.16)
and the above one. One shall take care to distinguish these two definitions: the first
one is independent of the metric tensor and yields a real number, whereas the second
one depends upon the metric tensor (via the volume element dV ) and yields a
p-form on E .

16.4.7 Flux Integrals

Let V � E be an oriented three-dimensional submanifold (hypersurface), either
spacelike or timelike. Let #»n be the field of unit vectors normal to V , such that
�V WD �. #»n ; :; :; :/ is compatible with the orientation of V . For any vector field #»v

on E , one defines the flux of #»v through V by

˚V .
#»v / WD ˙

Z

V

#»v � #»n dV ; (16.42)

where the volume element dV is given by (16.25) and the sign ˙ must be C (resp.
�) if #»n is spacelike (resp. timelike). According to (16.40b), ˚V .

#»v / is nothing but
the integral of the scalar field˙ #»v � #»n over V .

Remark 16.7. If #»v is tangent to V at all points, ˚V .
#»v / D 0.
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Let .x˛/ be a coordinate system adapted to V and . #»e ˛/ the associated coordinate
basis. At every point of V , . #»n ; #»e 1;

#»e 2;
#»e 3/ is then a basis of E , with #»n normal to

V and the #»e i ’s tangent to V . Let us expand #»v onto this basis:

#»v D v0 #»n C vi #»e i with v0 D ˙ #»n � #»v ; (16.43)

the meaning of ˙ being the same as in (16.42). Introducing d
#»
` i D dxi #»e i

[Eq. (16.3)], the integrand of (16.42) can be recast as

#»v � #»n dV D #»v � #»n„ƒ‚…
˙v0

�V .d
#»

` 1; d
#»

` 2; d
#»

` 3/ D ˙dx1 dx2 dx3 �.v0 #»n ; #»e 1;
#»e 2;

#»e 3/:

Substituting #»v � vi #»e i for v0 #»n in this formula [cf. (16.43)] and using the alternate
character of the Levi–Civita tensor, we get

˙ #»v � #»n dV D dx1 dx2 dx3 �. #»v ; #»e 1;
#»e 2;

#»e 3/ D �. #»v ; d
#»

` 1; d
#»

` 2; d
#»

` 3/

D ?v.d
#»

` 1; d
#»

` 2; d
#»

` 3/;

where we have let appear the Hodge dual of the 1-form v, according to (15.87).
Substituting this identity in (16.42), we conclude that the flux of the vector #»v

through the hypersurface V is the integral of the 3-form ?v over V :

˚V .
#»v / D

Z

V
?v : (16.44)

Remark 16.8. From the very definition of the flux [Eq. (16.42)], the volume of the
hypersurface V can be seen as the flux of the unit normal vector #»n . As a check, we
recover this result from (16.44) combined with the identity (16.27).

If, instead of being three-dimensional, V is a spacelike two-dimensional surface,
the flux of a vector can no longer be defined by an equation of the type (16.42) for the
normal vector is not unique: in Minkowski spacetime, the set of all vectors normal
at a point to a spacelike surface is a two-dimensional vector space (cf. Sect. 16.4.3).
On the other side, one can start from expression (16.44) and define the flux of a
2-form A through V by an analogous formula:

˚V .A/ WD
Z

V
?A : (16.45)

Indeed, the Hodge dual of A is itself a 2-form, and its integral over the surface V is
well defined.
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16.5 Stokes’ Theorem

The fundamental theorem of the theory of integration is Stokes’ theorem. As we
shall see in the next chapters, it forms the roots of the local expression of many
conservation laws in physics.

16.5.1 Statement and Examples

Let V be a submanifold with boundary of E , of dimension p, oriented and
compact. Its boundary @V is then a submanifold of dimension p�1. If A is a
differential .p� 1/-form, it may be integrated over @V . Its exterior derivative
dA is, on its side, a differential p-form and may be integrated over V . Stokes’
theorem states that the two integrals are equal:

Z

V
dA D

Z

@V
A ; (16.46)

where @V is endowed with the orientation induced by that of V (cf.
Sect. 16.3.3).

Proof. See, e.g. Berger and Gostiaux’s book (Berger and Gostiaux 1988).

Example 16.8. Let us set p D 1 and choose for V the segment of a straight line;
there exists an inertial coordinate system of E , .x˛/ D .ct; x; y; z/, so that V
is defined by t D 0, x D 0, y D 0 and a � z � b. The boundary of V is
then constituted by the two points A.0; 0; 0; a/ and B.0; 0; 0; b/. This constitutes a
submanifold of dimension 0. Let then A D f be a scalar field on E . Let us assume
that the orientation of V is given by the increase of z. Given the definition (16.17a)
of the integral over a one-dimensional submanifold and expression (15.66) of the
components of the gradient of f , we have

Z

V
df D

Z b

a

.df /z dz D
Z b

a

@f

@z
dz: (16.47)

Besides, the integral of f over @V D fA;Bg endowed with the induced orientation
is reduced to Z

@V
f D f .B/ � f .A/: (16.48)
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Stokes’ theorem yields thus

Z b

a

@f

@z
dz D f .B/ � f .A/; (16.49)

which is nothing but the fundamental theorem of calculus.

Example 16.9. Let us set p D 2 and choose for V a compact submanifold with
boundary of the plane defined by .t D 0; z D 0/ within the inertial coordinates
.x˛/ D .ct; z; x; y/, taking care about the coordinate order: x1 DW z, x2 DW x and
x3 DW y. .ct; z; x; y/ constitutes a coordinate system adapted to V ; we may choose
the orientation of V such that the coordinates .x; y/ are right-handed. Let A be the
1-form defined by

A D P.x; y/ dx CQ.x; y/ dy; (16.50)

where P.x; y/ and Q.x; y/ are arbitrary functions. By (16.17b) and (15.67), the
integral of the 2-form dA over V can be expressed as

Z

V
dA D

Z

V

�
@A3

@x2
� @A2
@x3

	
dx2 dx3 D

Z

V

�
@Q

@x
� @P
@y

	
dx dy:

Stokes’ theorem (16.46) leads then to

Z

V

�
@Q

@x
� @P
@y

	
dx dy D

Z

@V
P.x; y/ dx CQ.x; y/ dy: (16.51)

We recognize Green–Riemann formula.

Example 16.10. Still in the case p D 2, let us choose for V an arbitrary surface
with boundary in a spacelike hyperplane ˙ � E . A is still a 1-form. By (16.17b)
and (15.67), the integral of the 2-form dA over V can be expressed in a coordinate
system adapted to V as

Z

V
dA D

Z

V

�
@A3

@x2
� @A2
@x3

	
dx2 dx3: (16.52)

In the neighbourhood of any point M 2 V , one can always choose adapted coor-
dinates of Cartesian type: .x˛/D .ct; x; y; z/. .x2; x3/D .y; z/ are then Cartesian
coordinates in the plane tangent to V at M . We recognize in @A3=@x2 � @A2=@x3
the x-component of curl

#»

A, the curl of the metric dual of A in the Euclidean space
.˙;g/ (cf. Example 15.18 p. 516). Besides dx2 dx3 D dy dz is the area element
of V around M . Introducing in .˙;g/ the area-element vector normal to V by
d

#»

S WD dy dz #»e x , we may write

�
@A3

@x2
� @A2
@x3

	
dx2 dx3 D curl

#»
A � d #»

S : (16.53)
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On another side, by (16.17a),

Z

@V
A D

Z

@V
A3 dx3 D

Z

@V

#»
A � d #»

` ; (16.54)

where d
#»
` D dz #»e z (locally) is the length-element vector along the boundary of V .

In view of (16.52), (16.53) and (16.54), Stokes’s theorem (16.46) gives

Z

V

curl
#»
A � d #»

S D
Z

@V

#»
A � d #»

` : (16.55)

We recognize the “elementary” two-dimensional form of Stokes’ theorem, known
as Kelvin–Stokes theorem.

16.5.2 Applications

In addition to the above examples, let us investigate two applications of Stokes’
theorem that are particularly important.

16.5.2.1 Three-Dimensional Gauss–Ostrogradsky Theorem

Let V be a three-dimensional compact submanifold with boundary entirely con-
tained in a spacelike hyperplane ˙ . Let us choose inertial coordinates .x˛/ D
.ct; x; y; z/ so that ˙ is defined by t D 0. Let #»v be a vector field tangent to ˙ .
Let us consider the differential 2-form

A WD �. #»e 0;
#»v ; :; :/; (16.56)

where #»e 0 is the first vector of the coordinate basis . #»e ˛/ associated with .x˛/.
Since .x˛/ are inertial coordinates, . #»e ˛/ is an orthonormal basis of .E;g/. The
components of A in this basis are A˛ˇ D ���˛ˇı

�
0v
� D �0�˛ˇv

� . Given the
value (14.51) of the components of �, with detg D �1 (orthonormal basis), we
deduce that

A0˛ D 0 and Aij D Œ0; k; i; j � vk D Œi; j; k� vk ; (16.57)

where Œi; j; k� D 1 (resp. �1) if .i; j; k/ is an even (resp. odd) permutation of
.1; 2; 3/ and Œi; j; k� D 0 otherwise. .x˛/ being a coordinate system adapted to V ,
formulas (16.17c) and (15.68) yield

Z

V
dA D

Z

V
.dA/123 dx1 dx2 dx3 D

Z

V

�
@A23

@x1
C @A31

@x2
C @A12

@x3

	
dx1 dx2 dx3:
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Now, by (16.57), A23 D v1, A31 D v2 and A12 D v3, so that we can write

Z

V

dA D
Z

V

r � #»v dV; (16.58)

where r� #»v D @v�=@x� D @vi=@xi D @vx=@xC@vy=@yC@vz=@z is the divergence
of the vector field #»v (cf. Sect. 15.4.5) and dV D dx1 dx2 dx3 D dx dy dz is the
volume element within the Euclidean hyperplane .˙;g/. Let us introduce now a
coordinate system .x0˛/ D .ct;w; u; v/ adapted to the boundary of V , i.e. such that
@V is the surface defined by t D 0 and w D 0, w < 0 corresponding to the interior
of V . We can use the definition (16.17b) of the integral of a 2-form over a surface:

Z

@V
A D

Z

@V
A0

uv du dv: (16.59)

The component A0
uv of A within coordinates .x0˛/ is related to the components

A˛ˇ within coordinates .x˛/ via (14.23), with the change-of-basis matrix P˛
ˇ D

@x˛=@x0ˇ:

A0
uv D A˛ˇ

@x˛

@u

@xˇ

@v
:

Given the value (16.57) of A˛ˇ , we get

A0
uv D vx

�
@y

@u

@z

@v
� @z

@u

@y

@v

	
C vy

�
@z

@u

@x

@v
� @x
@u

@z

@v

	
C vz

�
@x

@u

@y

@v
� @y
@u

@x

@v

	
:

(16.60)

Besides, the area-element vector normal to @V within the Euclidean space .˙;g/
is

d
#»

S D d
#»

` u � d
#»

` v D .du #»e 0
u/ � .dv #»e 0

v/;

with by (15.6),

#»e 0
u D

@x

@u
#»e x C @y

@u
#»e y C @z

@u
#»e z and #»e 0

v D
@x

@v
#»e x C @y

@v
#»e y C @z

@v
#»e z:

Forming the cross product #»e 0
u � #»e 0

v , we let appear the vector whose components
are between the parentheses in (16.60), so that we can write

A0
uv du dv D vxdSx C vydSy C vzdS z D #»v � d #»

S : (16.61)

Taking into account (16.58), (16.59) and (16.61), Stokes’ theorem (16.46) leads to

Z

V
r � #»v dV D

Z

@V

#»v � d #»

S : (16.62)
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We recognize Gauss–Ostrogradsky theorem, relating the flux of a vector through
a closed surface to the integral of the divergence of the vector over the volume
bounded by the surface.

16.5.2.2 Four-Dimensional Gauss–Ostrogradsky Theorem

Let us consider now the case where V is a four-dimensional compact submanifold
of E , bounded by @V . The latter is a three-dimensional submanifold of E , and
we can consider the flux of a vector field #»v through @V (cf. Sect. 16.4.7).
Expression (16.44) for the flux, combined with Stokes’s theorem (16.46), leads to

˚@V .
#»v / D

Z

@V
?v D

Z

V
d ? v: (16.63)

Now, d?v is related to the divergence of #»v by (15.89): d?v D .r� #»v / �, so that the
above integral is nothing but the integral of the scalar field r � #»v over V . We obtain
thus the four-dimensional Gauss–Ostrogradsky theorem:

˚@V .
#»v / D

Z

V

r � #»v dU : (16.64)

Remark 16.9. Stokes’ theorem, in its general form (16.46), is independent of the
metric tensor g, since it relates the integral of a differential p-form (dA) over a
submanifold of dimension p (V ) to the integral of a differential .p � 1/-form (A)
over a submanifold of dimension p � 1 (@V ), these two integrals being defined
independently of g. On the other side, the Gauss–Ostrogradsky theorem depends
on the metric g in various aspects: (i) the definition of the divergence, (ii) the
integration of a scalar field over V and (iii) the flux integrals.

Historical note: In a famous encyclopedia article published in 1921 (Pauli 1921),
2-forms were called surface tensors by Wolfgang Pauli,7 thereby underlying their
role in the theory of integration over surfaces. Stokes’ theorem owes its name
to George G. Stokes,8 who was asking the demonstration of the two-dimensional
version (16.55) as an exam for getting some prizes at the University of Cambridge.

7Wolfgang Pauli (1900–1958): Austrian theoretical physicist, who authored fundamental works
in quantum mechanics and received the Nobel Prize in Physics in 1945 for the discovery of the
exclusion principle. His contribution to relativity is mostly the large encyclopedia article (Pauli
1921), which he wrote at the age of 21, at the request of his thesis advisor Arnold Sommerfeld (cf.
p. 27). He also got interested in the relativistic treatment of gravitation (cf. Sect. 22.2.4).
8George G. Stokes (1819–1903): British physicist and mathematician, of Irish origin, known for
his works in fluid dynamics (Navier–Stokes equation) and optics.
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It seems that the first demonstration of the theorem is due to William Thomson (the
future Lord Kelvin) (1824–1907), as indicated by a letter that he wrote to Stokes
in 1850. For this reason, Roger Penrose (cf. p. 162) even suggested to suppress
any reference to Stokes in the naming of the theorem and to call it the fundamental
theorem of exterior calculus (Penrose 2007).



Chapter 17
Electromagnetic Field

17.1 Introduction

Without any doubt, special relativity originates from investigations about the
electromagnetic field. Conversely, Minkowski spacetime is the ideal framework
to express the classical (Maxwell) theory of electromagnetism but also quantum
electrodynamics. Notably, as we shall see in the next chapter, once expressed in
terms of tensor fields on Minkowski spacetime, Maxwell equations take a much
simpler form than the group of four equations on

#»
E and

#»
B presented in elementary

courses of electromagnetism. Before this, this chapter is devoted to the definition of
the electromagnetic field (Sect. 17.2), to the transformation laws of its components
under a change of observer (Sect. 17.3) and to the motion of a charged particle in a
given field (Sect. 17.4), with some applications to particle accelerators (Sect. 17.5).

17.2 Electromagnetic Field Tensor

17.2.1 Electromagnetic Field and Lorentz 4-Force

Historically, the concept of electromagnetic field has appeared progressively, after
many experiments and theoretical constructions,1 which have lead to the relatively
elaborated notions of electric field vector

#»
E and magnetic field vector

#»
B . In the

present case, namely, that of Minkowski spacetime .E ;g/, the definition of the
electromagnetic field is simpler. It is provided by the four-dimensional description
of the action of the electromagnetic field onto a charged particle, P say. The basic
hypothesis is that the electromagnetic interaction is a vector interaction. This means

1For details about the history of electromagnetism, the reader is referred to the books by O. Darrigol
(2000; 2005).

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 17, © Springer-Verlag Berlin Heidelberg 2013
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that the force exerted onto P must depend on a direction associated with P and
not only on a number (like its mass) characterizing it, as it would be the case of
a scalar interaction. In Minkowski spacetime, the force is described independently
of any observer by the 4-force linear form f , introduced in Sect. 9.5, and the only
“direction” vector that is intrinsic to the particle P is its 4-velocity #»u , which is
tangent to its worldline. The simplest assumption that we may make is that the 4-
force exerted onto P is linear in #»u . There is then only one possible relation to
describe the electromagnetic interaction: there must exist a field of bilinear forms
F , which we shall call the electromagnetic field tensor, or simply electromagnetic
field, such that at any point of P’s worldline,2

f D q F .:; #»u / ; (17.1)

where the coefficient q is a constant that characterizes the particle and is called
electric charge. If q D 0, the particle P does not feel the electromagnetic field; one
says that it is electrically neutral. If q 6D 0, P is said to be electrically charged.3

The 4-force (17.1) is called Lorentz 4-force. In terms of components in some
basis of E , (17.1) takes the form

f˛ D q F˛ˇuˇ: (17.2)

Remark 17.1. The electromagnetic field tensor F is sometimes named Faraday
tensor (Misner et al. 1973), field-strength tensor (Jackson 1998) or Maxwell field
tensor (Penrose 2007).

Remark 17.2. We have already encountered the concept of vector interaction in
the framework of the Lagrangian formalism, in Sect. 11.2.6. Since the Lagrangian
L of a particle is a scalar (and not a linear form as the 4-force), the vector
interaction involves a linear form A, rather than a bilinear form, that acts on #»u ,
or more precisely on a vector collinear to #»u : the tangent vector #»v associated with
some parametrization of the worldline. This leads to the term q=c hA; #»v i in the
Lagrangian [cf. Eq. (11.28)]. This concept of vector interaction is fully compatible
with that considered above: Eq. (11.34) makes the link between A and F explicit:
F D dA (cf. Example 15.17 p. 515). We shall see in Chap. 18 that the converse is
true for Maxwell electromagnetism: the electromagnetic field tensor can always be
expressed (at least locally) as the exterior derivative of a differential 1-form.

In the International System of Units (SI), the electric charge has a dimension and
its unit is the coulomb (symbol: C). It equals one ampere times one second, the
ampere (symbol: A) being a base unit of the SI system: 1 C D 1 A s. The coulomb
is actually a macroscopic unit. At the level of particles, the elementary charge is that

2Let us recall that the notation F .:; #»u / means that 8 #»v 2 E; hf ; #»v i D q F . #»v ; #»u /.
3The qualifier electrically is often omitted, and one speaks simply about a neutral particle and a
charged particle.
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of the electron, denoted by �e, with (Yao et al. 2006)

e D 1:602 176 487.40/� 10�19 C: (17.3)

By virtue of (17.1) and the dimensionless character of the 4-velocity #»u , the
dimension of the electromagnetic field tensor F is that of a force per unit charge.
Its SI unit is thus the newton per coulomb: 1 N C�1 D 1 kg m s�3 A�1. Defining the
unit volt (symbol: V) as a watt per ampere: 1 V D 1 W A�1 D 1 kg m2 s

�3
A�1, we

note that the SI unit of F is the volt per metre (V m�1).

17.2.2 The Electromagnetic Field as a 2-Form

In addition to being of the form (17.1), the Lorentz 4-force is postulated to be a pure
4-force, in the sense defined in Sect. 9.5.1: hf ; #»u i D 0 [Eq. (9.107)]. Given (17.1),
this implies q F . #»u ; #»u / D 0, i.e. if q 6D 0, F . #»u ; #»u / D 0. This relation having to
be fulfilled for any 4-velocity #»u , we conclude that the bilinear form F is alternate,
8 #»v 2 E; F . #»v ; #»v / D 0 or, equivalently, that it is antisymmetric,

8. #»u ; #»v / 2 E2; F . #»u ; #»v / D �F . #»v ; #»u / : (17.4)

The electromagnetic field tensor is thus a differential 2-form on E , as studied in
Sect. 15.5.

17.2.3 Electric and Magnetic Fields

Let O be an observer of worldline L0, 4-velocity #»u 0 and proper time t . Let M be
some event in the local rest space Eu0 .t/ of O (t is then the date set by O to M )
(cf. Fig. 17.1). Let us consider the value of the field F at M . It is a 2-form, which
can be orthogonally decomposed with respect to #»u 0.t/ via formula (3.37): there
exists a unique linear form E 2 E� and a unique vector

#»
B 2 E such that

F D u0 ˝E �E ˝ u0 C �. #»u 0; c
#»

B; :; :/ ; (17.5a)

hE ; #»u 0i D 0 ; #»u 0 � #»
B D 0 ; (17.5b)

where F D F .M/ and #»u 0 D #»u 0.t/. As we have noticed in Sect. 14.5.4, this
decomposition can be expressed in terms of exterior products and the Hodge star
[cf. (14.80)]:

F D u0 ^E C ?.u0 ^ cB/ : (17.6)
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Fig. 17.1 Electric field
vector

#»

E and magnetic field
vector

#»

B at some point M of
the local rest space of
observer O at proper time t .
#»

E is the metric dual to the
linear form E

The linear form E is called the electric field relative to observer O and the vector
#»

B the magnetic field relative to observer O . The name field reminds one that E and
#»

B are functions of t and of the point M in Eu0 .t/. These fields are thus defined in
all the spacetime domain where O’s local rest spaces constitute a regular slicing of
E . If O is inertial, this is the whole E ; otherwise, the size of this domain is limited
by the inverse of the norm of O’s 4-acceleration (cf. Sect. 3.7).

E and
#»

B are expressed in terms of the electromagnetic field tensor and O’s 4-
velocity via (14.81)–(14.82) :

E D F .:; #»u 0/ (17.7)

cB D ?F . #»u 0; :/ : (17.8)

This last equation enables one to link the components of the vector
#»

B to those of
the 2-form F via the tensor 3� introduced in Sect. 14.5.1 [cf. Eq. (14.83)]:

B˛ D � 1
2c
�˛��� F�� u�0: (17.9)

In view of (17.7)–(17.8) and of the dimensionless character of the 4-velocity #»u 0

and the Levi–Civita tensor, the electric field E has the same dimension as F and
the magnetic field

#»

B has the dimension of an electric field divided by a velocity. In
the SI system, the unit for E is thus the volt per metre (V m�1) and that for

#»

B the
V m�2 s, which is called tesla (symbol: T): 1 T D 1 V m�2 s D 1 kg s�2 A�1.

Remark 17.3. The electric field E and the magnetic field
#»

B are relative quantities,
since they depend on the observer O [Eqs. (17.7)–(17.8)]. In particular, they are
orthogonal to O’s 4-velocity. The only absolute quantity (i.e. independent of any
observer) that characterizes the electromagnetic field is the tensor F .

Let us express the components of F within O’s local frame . #»e ˛.t// in terms of
the components of E and

#»
B. Equation (17.5a) leads to
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F˛ˇ D .u0/˛Eˇ �E˛.u0/ˇ C c ���˛ˇu�0 B
�: (17.10)

Now, by definition of the local frame, #»u 0 D #»e 0, so that u˛0 D .1; 0; 0; 0/. The basis
. #»e ˛/ being orthonormal, we deduce that .u0/˛ D .�1; 0; 0; 0/. The orthogonality
conditions (17.5b) are then expressed via E0 D 0 and B0 D 0; hence,

E˛ D .0; E1;E2;E3/ and B˛ D .0; B1; B3; B3/: (17.11)

Besides, since . #»e ˛/ is a right-handed orthonormal basis, ���˛ˇ D Œ�; �; ˛; ˇ�

[cf. (14.51) with detg D �1]. Equation (17.10) becomes then F˛ˇ D �ı0˛Eˇ C
E˛ı

0
ˇ C cŒ0; k; ˛; ˇ�Bk or, in matrix form:

F˛ˇ D

0

BB@

0 �E1 �E2 �E3
E1 0 cB3 �cB2

E2 �cB3 0 cB1

E3 cB2 �cB1 0

1

CCA : (17.12)

Historical note: The tensor F has been introduced explicitly in 1907 by Hermann
Minkowski (cf. p. 26) (Minkowski 1907, 1908). It seems, however, that the tensorial
aspect of .E ;

#»
B/ gathered as in (17.12) was known to Henri Poincaré (cf. p. 26) in

1905 (Poincaré 1906) (cf. the discussion in Damour (2008)).

17.2.4 Lorentz Force Relative to an Observer

Substituting the decomposition (17.5) into (17.1), we can express the 4-force exerted
onto a particle P of charge q and 4-velocity #»u as

f D q
h
hE ; #»u i u0 � hu0; #»u iE C �. #»u 0;

#»u ; c
#»
B; :/

i
; (17.13)

where use has been made of the identity �. #»u 0; c
#»
B; :; #»u / D �. #»u 0;

#»u ; c
#»
B; :/ (even

permutation of the arguments of �). Let us express P’s 4-velocity in terms of P’s
Lorentz factor � with respect to O and P’s velocity

#»
V relative to O , according

to (4.27):

#»u D �
�
.1C #»a 0 � #      »

OM/ #»u 0 C 1

c

�
#»

V C #»! �u0

#      »
OM

��
;

where #»a 0 and #»! are, respectively, the 4-acceleration and 4-rotation of observer O ,
M the position of P on its worldline andO the event of O’s worldline simultaneous
to M from O’s point of view. Inserting this relation into (17.13), we get, thanks
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to (17.5b) and the alternate character of �:

f D � q
h1
c
hE ; #»

V C #»! �u0

#      »
OM i u0

C.1C #»a 0 � #      »
OM/E C �. #»u 0;

#»

V C #»! �u0

#      »
OM;

#»

B; :/
i
:

Let us then introduce the mixed product 3-form within Eu0 , �u0 WD �. #»u 0; :; :; :/

[cf. Eq. (3.45)] and compare with the orthogonal decomposition (9.119) of the 4-
force. We obtain

dE

dt
C c2hP; #»a 0i D qhE ; #»

V C #»! �u0

#      »
OM i (17.14a)

F D q
h
.1C #»a 0 � #      »

OM/E C �u0 .
#»
V C #»! �u0

#      »
OM;

#»
B; :/

i
; (17.14b)

where we have set E WD E and F WD F ext to keep the symbols E and F for,
respectively, the electric field and the electromagnetic field tensor. In these relations,
E and P are, respectively, the energy and linear momentum of particle P , both
measured by observer O , and F is the force of non-inertial origin (in the present case
electromagnetic origin) acting on P and measured by O . If O is inertial ( #»a 0 D 0

and #»! D 0), the above formulas simplify to

dE

dt
D qhE ; #»

V i .O inertial/ (17.15a)

F D q
h
E C �u0 .

#»
V ;

#»
B; :/

i
.O inertial/: (17.15b)

The force (17.15b) is called Lorentz force relative to observer O . We recover
the classical expression of this force. In particular, the vector version of (17.15b)
obtained by metric duality is

#»

F D q
�

#»
E C #»

V �u0

#»
B
�
: (17.16)

17.2.5 Metric Dual and Hodge Dual

By, respectively, metric duality and Hodge duality, one associates with the electro-
magnetic field tensor F two tensors of the same valence: F ] and ?F .

Whereas F is a tensor of type .0; 2/, F ] is the tensor of type .2; 0/ defined by

F ] W E� � E� �! R

.!1;!2/ 7�! F . #»!1;
#»!2/;

(17.17)
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where #»!1;2 stands for the dual metric vector of the linear form !1;2. We may thus
consider F ] as the “double metric dual” of F . In a given basis ofE , the components
of #»! are related to those of ! via (1.43): !˛ D g˛�!�. We deduce that the
components of F ] are

F ] W F ˛ˇ D g˛�gˇ�F�� : (17.18)

Remark 17.4. The symbol ] is omitted on the components of F ] since the position
of the indices (both contravariant) is sufficient to distinguish from the components
of F (covariant indices).

If the basis of E is chosen to be the local frame of some inertial observer O , then
g˛ˇ D �˛ˇ , and one deduces from (17.18) and (17.12) the following components of
F ] :

F ˛ˇ D

0

BB@

0 E1 E2 E3

�E1 0 cB3 �cB2

�E2 �cB3 0 cB1

�E3 cB2 �cB1 0

1

CCA : (17.19)

Since F is a 2-form, another valence-2 tensor can be associated with it, beside
F ]: its Hodge dual ?F (cf. Sect. 14.5). It is defined by (14.75c), which can be recast
in terms of the components of F ] via (17.18) and �˛ˇ�� D ���˛ˇ :

?F˛ˇ D 1

2
�˛ˇ��F

�� : (17.20)

Given some observer O and the resulting split of F into an electric field E and
a magnetic field

#»

B, let us express ?F by taking the Hodge star of (17.6). Since
u0^ cB is a 2-form, the property (14.77) yields ?? .u0^ cB/ D �u0^ cB, so that
we get

?F D �u0 ^ cB C ?.u0 ^E/ : (17.21)

Comparing with (17.6), we observe that ?F is deduced from F by substituting�cB
for E and E for cB . Consequently, the components of ?F in O’s local frame are
easily deduced from (17.12):

?F˛ˇ D

0
BB@

0 cB1 cB2 cB3

�cB1 0 E3 �E2
�cB2 �E3 0 E1

�cB3 E2 �E1 0

1
CCA : (17.22)
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17.3 Change of Observer

As we have already stressed, for a given electromagnetic field F , the electric field
E and the magnetic field

#»
B depend on the considered observer. Let us then examine

the way E and
#»
B transform when the observer is changed.

17.3.1 Transformation Law of the Electric and Magnetic Fields

Let us consider two observers, O and O 0, of respective 4-velocities #»u and #»u 0. We
shall restrict ourselves to the case where the worldlines of O and O 0 intersect at some
event O . We shall then use the same notations as in Sect. 5.2:

#»

U is the velocity of
O 0 relative to O and

#»

U 0 that of O relative to O 0. We shall however denote � , and
not �0, the Lorentz factor between O and O 0: � D � #»u � #»u 0. Let us also introduce
the unit vectors #»e 2 Eu and #»e 0 2 Eu0 in the direction of

#»

U and
#»

U 0, respectively,
(cf. Fig. 5.2). We may then decompose the electric and magnetic fields relative to O
into a part parallel to

#»

U and a part orthogonal to
#»

U , according to (cf. Fig. 17.2)

E D Ek e CE? and
#»
B D Bk #»e C #»

B?; (17.23)

with hE?; #»e i D 0 and
#»

B? � #»e D 0. Expressing the unit vector #»e in terms of #»e 0
and #»u 0 according to (5.13), we may write

E D �Ek
�

e0 � U
c

u0
	
CE? and

#»
B D �Bk

�
#»e 0 � U

c
#»u 0
	
C #»

B?: (17.24)

Note that the vectors
#»
E ? and

#»
B? are orthogonal to #»u , #»e , #»u 0 and #»e 0 (cf. Fig. 17.2).

We can also express the 4-velocity #»u in terms of #»u 0 and #»e 0, via (5.2) and (5.10):

#»u D �
�

#»u 0 � U
c

#»e 0
	
: (17.25)

Let us then consider the decomposition (17.5) of the electromagnetic field tensor
with respect to O : F D u ^ E C �. #»u ; c

#»
B; :; :/. Substituting expressions (17.24)

and (17.25) for E ,
#»
B and #»u , and expanding, taking into account the identities u0 ^

u0 D 0, e0 ^ e0 D 0 and � 2.1 � U 2=c2/ D 1, we get

F D Ek u0 ^ e0 C � u0 ^E? � � U
c

e0 ^E ? C cBk �. #»u 0; #»e 0; :; :/

Cc� �. #»u 0; #»

B?; :; :/ � � U �. #»e 0; #»

B?; :; :/: (17.26)

Let us decompose the 2-form e0 ^ E? with respect to the unit vector #»u 0 according
to (14.80). Since both #»e 0 and E? are orthogonal to #»u 0, the “electric” part of this
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Fig. 17.2 Decomposition of
the magnetic field

#»

B relative
to observer O (4-velocity #»u )
into a part Bk

#»e collinear to
the velocity

#»

U of O0 relative
to O and a part

#»

B?

orthogonal to
#»

U

decomposition vanishes: q D 0. There remains thus only the “magnetic” part
#»

b ,
which is evaluated via (14.81): b D ?.e 0 ^E?/ . #»u 0; :/. Using the property (14.79),
we get b D �. #»e 0; #»

E?; #»u 0; :/ D �. #»u 0; #»e 0; #»

E?; :/ D �. #»u ; #»e ;
#»

E ?; :/, the last
equality resulting from expressions (5.1) and (5.12) for #»u 0 and #»e 0 and the identity
� 2.1 � U 2=c2/ D 1. We have thus

#»

b D #»e �u
#»

E?; hence,

e0 ^E? D �. #»u 0; #»e �u
#»

E ?; :; :/: (17.27)

Similarly, let us decompose with respect to #»u 0 the 2-form �. #»e 0; #»
B?; :; :/ that

appears in (17.26). This time, the “magnetic” part vanishes, since for any pair
. #»v ; #»w/ of vectors orthogonal to #»u 0, �. #»e 0; #»

B?; #»v ; #»w/ D 0. Indeed the four-
vectors #»e 0, #»

B?, #»v and #»w belong to the three-dimensional vector space Eu0 and
therefore cannot be linearly independent. The “electric” part is obtained by means
of (14.82): q D �. #»e 0; #»

B?; :; #»u 0/ D �. #»u 0; #»
B?; #»e 0; :/ D �. #»u ;

#»
B?; #»e ; :/ (cf. the

above computation of b). Hence,

�. #»e 0; #»

B?; :; :/ D u0 ^ �. #»u ;
#»

B?; #»e ; :/: (17.28)

Substituting (17.27) and (17.28) in (17.26), we get

F D u0 ^
h
Ek e0 C �

�
E? � U �. #»u ;

#»
B?; #»e ; :/

�i

C�

�
#»u 0; cBk #»e 0 C c�

�
#»

B? � U
c2

#»e �u
#»

E?
	
; : ; :

	
: (17.29)

Now, by definition of the electric field E 0 and the magnetic field
#»

B 0 relative to O 0,

F D u0 ^E 0 C �
�

#»u 0; c #»

B 0; :; :
�
: (17.30)

Since the 1-form that appears in the exterior product with u0 in (17.29) vanishes
on #»u 0 and the vector second argument of � in (17.29) is orthogonal to #»u 0,
the comparison of (17.29) with (17.30) shows that these 1-form and vector are,
respectively, equal to E 0 and

#»
B 0. Hence, the transformation law of the fields under
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a change of observer:

E 0 D Ek e0 C �
�
E? C �. #»u ;

#»

U ;
#»

B?; :/
�

(17.31a)

#»

B 0 D Bk #»e 0 C �
�

#»

B? � 1

c2
#»

U �u
#»

E ?
	

(17.31b)

(let us recall that
#»
U D U #»e ). We observe that the obtained equations provide the

decomposition of E 0 and
#»
B 0 into parts parallel and orthogonal to #»e 0, so that the

transformation law of the fields can be recast as

E 0
k D Ek E 0? D �

�
E? C �. #»u ;

#»
U ;

#»
B?; :/

�
(17.32a)

B 0
k D Bk

#»

B 0
? D �

�
#»

B? � 1

c2
#»

U �u
#»

E?
	
: (17.32b)

Remark 17.5. The transformation law (17.32) can be obtained by an alternative
method, based on the transformation law of the components F˛ˇ of the tensor F

from the local frame of O , . #»e ˛/, to the local frame of O 0, . #»e 0̨ /. More precisely,
let us choose the local frames so that the velocities

#»

U and
#»

U 0 are collinear to #»e 1

and #»e 0
1, respectively. We have then #»e 1 D #»e , #»e 0

1 D #»e 0, and the transition from
. #»e ˛/ to . #»e 0̨ / is performed by a boost of Lorentz factor � : #»e 0̨ D �. #»e ˛/, with the
matrix of � given by (6.48) (with V replaced by U ). The components of F in the
basis . #»e 0̨ / are then obtained via the law (14.23):

F 0
˛ˇ D ��

˛F���
�
ˇ: (17.33)

Using the form (17.12) of F�� and the form (6.48) of ��
˛ and writing the

components of F 0
˛ˇ as (17.12) withEi andBi substituted byE 0

i and B 0i , we obtain

E 0
1 D E1; E 0

2 D � .E2 � UB3/; E 0
3 D � .E3 C UB2/

B 01 D B1; B 02 D � .B2 C UE3=c2/; B 03 D � .B3 � UE2=c2/:
(17.34)

Since with our choice of local frame, Ek D E1, E? D E2e
2 C E3e

3, Bk D
B1,

#»
B? D B2 #»e 2 C B3 #»e 3, E 0k D E 0

1, E 0? D E 0
2e
2 C E 0

3e
3, B 0k D B 01 and

#»

B 0
? D B 02 #»e 2 C B 03 #»e 3, and since � 0̨

ˇ
ı D Œ˛; ˇ; 
; ı� (for . #»e 0̨ / is a right-handed
orthonormal basis), we do recover (17.32).

Remark 17.6. As already noticed in Sect. 5.3 when discussing the law of velocity
composition, many authors consider that spacelike vectors such as #»e , #»e 0, #»

U ,
#»

U 0,
#»

E ,
#»

E 0, #»

B and
#»

B 0 all belong to the same “abstract” three-dimensional vector space.
This is clearly not our point of view here, since (i) #»e ,

#»

U ,
#»

E and
#»

B belong to
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the local rest space of O , Eu; (ii) #»e 0, #»
U 0, #»

E 0 and
#»
B 0 belong to that of O 0, Eu0 ;

and (iii) Eu and Eu0 are two distincts hyperplanes as soon as O 0 moves with
respect to O (cf. Fig. 17.2). As underlined in Remark 5.4 p. 141, the “unique vector
space” point of view amounts to identifying the vectors #»e and #»e 0 (cf. Fig. 17.2).
Equation (17.31) leads then to Eq. (7.106) of Boratav and Kerner (1991), Eq. (6.5)
of Rougé (2004), Eq. (10–26) of Simon (2004) or the equation on p. 223 of Pérez
(2005), to mention only a few recent books.

The transformation law (17.32) shows that if an electromagnetic field is “purely
electric” for observer O , i.e. if

#»

B D 0, then it is not necessarily so for an observer
O 0 moving with a velocity

#»

U relative to O not collinear to
#»

E . Similarly the concept
of “purely magnetic” electromagnetic field (E D 0) depends upon the considered
observer.

At the nonrelativistic limit, jU j 	 c, � ' 1, #»e 0 ' #»e and (17.31) reduces to4

#»

E 0 D #»

E C #»

U � #»

B and
#»

B 0 D #»

B (nonrelativistic): (17.35)

This is the so-called classical law of transformation of the electric and magnetic
fields.

17.3.2 Electromagnetic Field Invariants

From F and the associated tensors F ] and ?F introduced in Sect. 17.2.5, one can
define the following scalar fields on E :

I1 WD 1

2
F��F

�� and I2 WD 1

4
?F��F

�� : (17.36)

Given the antisymmetry of F�� , F�� and ?F�� , the double summations that appear
in the above definitions actually contain only 6 terms:

I1 D F01F 01 C F02F 02 C F03F 03 C F12F 12 C F13F 13 C F23F 23;

I2 D 1

2

�
?F01F

01 C ?F02F 02 C ?F03F 03 C ?F12F 12 C ?F13F 13 C ?F23F 23
�
:

Using the components of F , F ] and ?F in the local frame of some observer O ,
as given, respectively, by (17.12), (17.19) and (17.22), we relate I1 and I2 to the
electric and magnetic fields relative to O:

I1 D c2 #»

B � #»

B � #»

E � #»

E and I2 D c hE ; #»

Bi : (17.37)

4For the electric field, the metric dual version is presented.
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The scalar fields I1 and I2 are called electromagnetic field invariants. This name
is somewhat historical, reflecting the fact that I1 and I2 are combinations of E

and
#»

B that are observer-independent, while taken individually, E and
#»

B are not.
However it is obvious from the definition (17.36) that I1 and I2 are independent of
any observer.

Remark 17.7. As an exercise, the reader may check, by means of the transformation
law (17.32), that expressions (17.37) are invariant under a change of observer.

By means of the formulas on the exterior product and Hodge star given in
Sects. 14.4 and 14.5, one can derive the following expressions of the electromagnetic
field invariants:

I1 D ?.F ^ ?F / and I2 D 1

2
? .F ^ F /: (17.38)

We shall not give the details here but simply remark that F and ?F being 2-forms,
the exterior products F ^?F and F ^F are 4-forms. Their Hodge duals ?.F ^?F /

and ?.F ^ F / are then 0-forms, i.e. scalar fields, so that the writing (17.38) is
admissible.

We have underlined above that the notion of “purely electric” or “purely
magnetic” field is observer-dependent. On the other side, thanks to the invariant
I1, one may define various kinds of electromagnetic fields, independently of any
observer:

• If I1 > 0, the electromagnetic field is said to be mostly magnetic, since for any
observer ck #»

Bkg > k #»

Ekg .
• If I1 < 0, the electromagnetic field is said to be mostly electric, since for any

observer k #»

Ekg > ck #»

Bkg .
• If I1 D 0, the amplitude of

#»

E is equal to that of c
#»

B for all observers.

If I2 D 0, the vectors
#»

E and
#»

B are orthogonal for all observers. In particular, if
one of the fields

#»

E or
#»

B vanishes for some observer, then I2 D 0 and
#»

E and
#»

B will
be orthogonal for all observers.

If both I1 D 0 and I2 D 0, the electromagnetic field is called null. The vectors
#»

E and c
#»

B have then the same amplitude and are orthogonal, whatever the observer.
We shall see in Chap. 18 that the radiative part of the electromagnetic field generated
by an accelerated charge is of this kind.

Remark 17.8. Some authors, like A. Lichnerowicz (1955), rather qualify an elec-
tromagnetic field with I1 D I2 D 0 as singular. The term null is preferred here
for the field F does not exhibit any physical singularity (it does not diverge at any
point).

Historical note: The transformation law of the fields E and
#»
B, written as (17.34),

has been obtained by Joseph Larmor (cf. p. 191) in 1900 (Larmor 1900) and
Hendrik A. Lorentz (cf. p. 108) in 1904 (Lorentz 1904). In 1905, Henri Poincaré
(cf. p. 26) noticed that the combinations c2

#»
B � #»

B� #»
E � #»

E and c hE ; #»
Bi are invariant

under a Lorentz transformation (Poincaré 1906).
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17.3.3 Reduction to Parallel Electric and Magnetic Fields

A property that simplifies the study of the electromagnetic field is

If the electromagnetic field F is not null at some point O 2 E , it is always
possible to find an observer throughO for which the electric and the magnetic
fields at O are parallel.

Proof. Let us suppose that for some observer O through O ,
#»
E and

#»
B are not

parallel. We can then construct the unit vector normal to the plane generated by
#»
E and

#»
B:

#»e WD .EB sin �/�1 #»
E �u

#»
B; (17.39)

where #»u is O’s 4-velocity, E WD k #»
Ekg , B WD k #»

Bkg and � 2�0; �Œ is the angle
between

#»
E and

#»
B in Eu. Let us then consider a second observer, O 0, whose

worldline also contains the event O and whose velocity
#»
U relative to O is along

#»e :
#»
U D U #»e . By definition, #»e � #»

E D 0 and #»e � #»
B D 0, so that in the

orthogonal decomposition (17.23), Ek D 0, Bk D 0, E? D E and
#»
B? D #»

B.
The transformation law (17.31) reduces then to

#»

E 0 D � .
#»

E C U #»e �u
#»

B/ and
#»

B 0 D � . #»

B � c�2 U #»e �u
#»

E /. Accordingly5

#»

E 0 �u
#»

B0 D � 2


#»

E �u
#»

B C U

c2

h
U #»e � . #»

E �u
#»

B/ �E2 � c2B2
i

#»e

�
;

where the double cross products have been expanded and the orthogonality of
#»

E

(resp.
#»

B) and #»e has been used. Substituting EB sin � #»e for
#»

E �u
#»

B [Eq. (17.39)],
we get

#»
E 0 �u

#»
B 0 D � 2

�
EB sin �

�
1C U 2

c2

	
� U
c2
.E2 C c2B2/

�
#»e :

The fields
#»

E 0 and
#»

B0 relative to O 0 are parallel iff
#»

E 0 �u
#»

B 0 D 0. From the above
equation, this is equivalent to the condition

x2 � E
2 C c2B2

cEB sin �
x C 1 D 0; (17.40)

5In the present case (Ek D 0 and Bk D 0), the vectors
#»

E 0 and
#»

B0 belong to Eu (actually to
the intersection of Eu and Eu0 —cf. Fig. 17.2), so that it is legitimate to form the cross product
#»

E 0 �u
#»

B0.
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where x WD U=c. This second-order equation in x has for discriminant

 D
�
E2 C c2B2

cEB sin �

	2
� 4 D I 21 C 4I 22

.cEB sin �/2
;

where we have let appear the invariants I1 D c2B2 � E2 and I2 D cEB cos �
[cf. (17.37)]. It is clear that  � 0, so that (17.40) admits real roots. Given the
coefficients of (17.40), the sum of these roots is positive and their product is equal
to 1. The two roots are thus positive and the inverse of each other. Only the root
x < 1 is physically acceptable (for U < c). It always exist, except if (17.40) admits
a double root, which is then x D 1. This occurs for  D 0, i.e. I1 D I2 D 0, or in
other words, if F is a null electromagnetic field. ut
Remark 17.9. Observer O 0 is by no means unique, since from the transformation
law (17.32), any observer O 00 whose velocity relative to O 0 is along the common
direction of

#»

E 0 and
#»

B 0 measures fields
#»

E 00 and
#»

B 00 that are parallel (and of same
norms as

#»

E 0 and
#»

B 0).

Remark 17.10. If the local frame . #»e 0̨ / of observer O 0 is such that the common
direction of

#»
E 0 and

#»
B 0 is #»e 0

3:
#»
E 0 D E 0 #»e 0

3 and
#»
B 0 D B 0 #»e 0

3, then the matrix of F

in this frame takes the following antidiagonal form, obtained by setting E 0
1 D E 0

2 D
0 and B 01 D B 02 D 0 in (17.12):

F 0
˛ˇ D

0

BB@

0 0 0 �E 0
0 0 cB 0 0

0 �cB 0 0 0

E 0 0 0 0

1

CCA : (17.41)

Particular Case I2 D 0

If I2 D 0 (
#»
E and

#»
B are orthogonal), then

#»
E 0 and

#»
B 0 must be orthogonal, in addition

of being parallel. Since .Eu0 ;g/ is a Euclidean space, we deduce that one of these
two vector is necessarily zero. In other words, if I1 6D 0, the condition I2 D 0

is necessary and sufficient for the existence of an observer with respect to which
the electromagnetic field is purely magnetic (case I1 > 0) or purely electric (case
I1 < 0).

The condition I2 D 0 implies sin � D 1. The root of (17.40) that is lower than
1 is then x D .E2 C c2B2 � jI1j/=.2cEB/. Since I1 D c2B2 � E2, we obtain the
explicit value of the amplitude of the velocity of observer O 0:

U D E

B
if I1 > 0 and U D c2 B

E
if I1 < 0: (17.42)
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Fig. 17.3 Electric charge in
uniform translation at the
velocity

#»

U along the x-axis
of some inertial observer

Since
#»
U D U #»e D .U=EB/ #»

E �u
#»
B [Eq. (17.39) with � D �=2], the velocity vector

is

#»
U D B�2 #»

E �u
#»
B if I1 > 0 and

#»
U D .c2=E2/

#»
E �u

#»
B if I1 < 0:

(17.43)
Substituting these values in the transformation law (17.32) leads to

#»

E 0 D 0 and
#»

B 0 D � �1 #»

B .I1 > 0/ (17.44)
#»

E 0 D � �1 #»

E and
#»

B 0 D 0 .I1 < 0/: (17.45)

We therefore get the explicit vanishing of the electric or magnetic field (according
to the sign of I1).

17.3.4 Field Created by a Charge in Translation

An interesting application of the transformation law of the electric and magnetic
fields [Eq. (17.32)] is the determination of the electromagnetic field created by
a charged particle in uniform rectilinear motion with respect to some inertial
observer O .

Let .x˛/ D .ct; x; y; z/ be the inertial coordinates associated with O . The frame
of O is accordingly denoted by . #»u ; #»e x;

#»e y;
#»e z/. Let us consider a particle P of

electric charge q moving along the x-axis with the constant velocity
#»
U D U #»e x

relative to O (cf. Fig. 17.3).
#»
U being constant, we may associate with P an inertial

observer O 0, whose frame . #»u 0; #»e 0
x;

#»e 0
y;

#»e 0
z/ is quasiparallel to that of O: #»e 0

y D
#»e y and #»e 0

z D #»e z. Let .x0˛/ D .ct 0; x0; y0; z0/ be the inertial coordinates associated
with O 0. In the rest space of O 0, the particle P is at rest at the coordinate origin
.x0; y0; z0/ D .0; 0; 0/. It generates then a vanishing magnetic field

#»

B 0 and an electric
field

#»

E 0 obeying Coulomb’s law:

#»

E 0 D q

4�"0 r 03 .x
0 #»e 0

x C y0 #»e 0
y C z0 #»e 0

z/ and
#»

B 0 D 0; (17.46)
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where "0 is some constant (vacuum permittivity), to be discussed in more details
in Chap. 18, and r 0 WD p

x02 C y02 C z02. We shall provisionally admit Coulomb’s
law (17.46); it will be established as a consequence of Maxwell equations in
Chap. 18 [cf. Eq. (18.113)].

The electric field
#»

E and magnetic field
#»

B measured by O are related to
#»

E 0 and
#»

B 0
by the law (17.32). Since

#»

B 0 D 0, we get immediately from (17.32b) that Bk D 0

and
#»

B D #»

B? D c�2 #»

U �u
#»

E ?. Thanks to the cross product with
#»

U ,
#»

E ? can be
replaced by

#»

E in the latter expression, yielding

#»

B D 1

c2
#»

U �u
#»

E : (17.47)

Remark 17.11. That
#»
B is orthogonal to

#»
E was expected since the invariant I2 D

c
#»
E � #»

B is identically zero, because of
#»
B 0 D 0.

We deduce from the transformation law (17.32a) that

Ek D E 0
k D

q

4�"0

x0

r 03 (17.48)

and
#»

E 0? D � .
#»

E? C #»

U �u
#»

B/. Substituting (17.47) for
#»

B, we get

#»

E 0
? D �

h
#»

E ? C c�2 #»

U �u .
#»

U �u
#»

E?/
i
D �

"
#»

E?C c�2�. #»

U � #»

E?„ ƒ‚ …
0

/
#»

U �U 2 #»

E?
�
#
;

i.e.
#»

E 0? D � .1� U 2=c2/
#»

E? D � �1 #»

E?, hence

#»

E? D � #»

E 0? D
� q

4�"0 r 03 .y
0 #»e y C z0 #»e z/: (17.49)

In the above expression, we have used the fact that
#»

E 0? is given by the part along #»e 0
y

and #»e 0
z of (17.46), with furthermore #»e 0

y D #»e y and #»e 0
z D #»e z. Combining (17.48)

and (17.49), we get

#»

E D q

4�"0 r 03
�
x0 #»e x C � .y0 #»e y C z0 #»e z/

�
: (17.50)

The relation between the coordinate systems .ct; x; y; z/ and .ct 0; x0; y0; z0/ being
given by the Poincaré transformation (8.14) (with V D U ), we obtain the expression
of the electric field measured by O in terms of the inertial coordinates associated
with O:

#»

E D � q

4�"0 Œ� 2.x � Ut/2 C y2 C z2�3=2
�
.x � Ut/ #»e x C y #»e y C z #»e z

�
: (17.51)
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Let us reexpress this result in terms of the spatial coordinates centred on the

charged particle P: x0 WD x �Ut , R WD
q
x20 C y2 C z2. The quantity involved in

the denominator of (17.51) can be recast as

� 2x20 C y2 C z2 D � 2R2
�
1 � U

2

c2
sin2 �

	
;

where � is the angle between the velocity
#»
U and the radius vector centred on P

(cf. Fig. 17.3): y2 C z2 D R2 sin2 � . Using the unit vector connecting the charge P
to the generic point M (cf. Fig. 17.3),

#»n WD x0

R
#»e x C y

R
#»e y C z

R
#»e z; (17.52)

the result (17.51) becomes

#»

E D q

4�"0 � 2R2
�
1 � .U=c/2 sin2 �

�3=2
#»n : (17.53)

The magnetic field is then obtained via (17.47):

#»

B D �0

4�

qU

� 2R2
�
1 � .U=c/2 sin2 �

�3=2
#»e x �u

#»n ; (17.54)

where we have introduced the vacuum permeability, �0 D 1=."0c
2/, which will be

discussed in more details in Chap. 18. In the above formulas, R, � and #»n are func-
tions of the coordinates .ct; x; y; z/ of the point M where

#»

E and
#»

B are evaluated:
R Dp.x � Ut/2 C y2 C z2, sin2 � D .y2 C z2/=R2 and #»n is given by (17.52).

It is clear on (17.53) that the electric field at a point M stands in the radial
direction with respect to the position of the charge at the considered instant t (vector
#»n ), as for the Coulombian field (17.46). The difference with the latter lies in the
amplitude of

#»

E , which depends upon the direction � with respect to the charge’s
velocity. This is illustrated in Fig. 17.4, where the electric field seems to be subject
to the “FitzGerald–Lorentz contraction” in the direction of the charge’s motion.
Actually, with respect to a Coulombian field,

#»

E is smaller by a factor � 2 in the
direction of motion (sin � D 0) and larger by a factor � in the perpendicular
direction (sin � D 1).

Remark 17.12. It was not obvious from the transformation law (17.32a) of the
electric field that the latter stays in the radial direction centred onto the electric
charge. This results actually from the fact that the transverse and parallel parts of

#»
E

let appear the same factor � : the transverse part via the transformation law of the
electric field and the parallel part via the Lorentz transformation from x0 to x, which
allowed us to factorize by � to move from (17.50) to (17.51).



562 17 Electromagnetic Field

Fig. 17.4 Electric field
#»

E created by a charged particle in uniform translation with respect to some
inertial observer, at the velocity

#»

U D U #»e x . The three panels correspond to different values of U ;
from the left to the right: U D 0 (Coulombian field), U D 0:5 c and U D 0:9 c. On each panel,
the charged particle is located at .x; y/ D .0; 0/, and the field

#»

E is not represented in the central
area

Because of the cross product in (17.54), the magnetic field
#»
B is tangent to the

circle throughM and whose axis is the x-axis (cf. Fig. 17.3).

Remark 17.13. In the nonrelativistic limit (� ' 1, U=c ' 0), Eq. (17.54)
reduces to

#»

B ' �0

4�

qU

R2
#»e x �u

#»n (nonrelativistic): (17.55)

We recognize the Biot–Savart law.

17.4 Particle in an Electromagnetic Field

Let us investigate now the motion of a particle P of mass m > 0 and electric
charge q in a given electromagnetic field F . The equation of motion is obtained by
specifying the 4-force in (9.104) as the Lorentz 4-force (17.1). There comes then
dp=d	 D q F .:; #»u /, where p is the particle’s 4-momentum, 	 its proper time and
#»u its 4-velocity. The 4-momentum being related to the 4-velocity and the mass by
p D mcu [Eq. (9.3)], this relation can be rewritten as

du
d	
D q

mc
F .:; #»u /: (17.56)

The simplest case, and of a great practical value, is that of a uniform field, i.e.
F constant on the whole spacetime E .6 We shall limit ourselves to this case in what
follows.

6The qualifier uniform is thus employed with a spacetime perspective; from a nonrelativistic (i.e.
three-dimensional) point of view, this field would be qualified as uniform and static.
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Fig. 17.5 Vectors
. #»e 1;

#»e 2;
#»e 3/ of observer O’s

frame adapted to the fields
#»

E

and
#»

B , as well as to the initial
particle’s velocity

#»

V 0

17.4.1 Uniform Electromagnetic Field: Non-Null Case

Let us consider a uniform electromagnetic field F . Let O be some inertial observer.
Its 4-velocity #»u 0 is constant over E , as for F ; accordingly, the electric and magnetic
fields measured by O are also constant over E [Eqs. (17.7)–(17.8)]. Let us assume
that F is not null (I1 6D 0 or I2 6D 0); the null case will be treated in Sect. 17.4.2.2.
As we have seen in Sect. 17.3.3, it is always possible to find an observer for which

#»

E

and
#»

B parallel. We shall consider the case where O is such an observer, the general
case being deduced from that one by a Poincaré transformation.7 Note also that the
cases

#»

E D 0 and
#»

B D 0 are particular cases of
#»

E and
#»

B parallel.
Let us choose O’s frame . #»e ˛/ so that the common direction of

#»

E and
#»

B is along
#»e 3:

#»

E D E #»e 3 and
#»

B D B #»e 3: (17.57)

In addition, let us choose #»e 2 and #»e 3 so that particle P’s velocity relative to O at
the instant 	 D 0 is in the plane Span. #»e 1;

#»e 3/ (cf. Fig. 17.5):

#»

V 0 D V0 sin � #»e 1 C V0 cos � #»e 3: (17.58)

The matrix of F in this frame takes the antidiagonal form (17.41). The components
of Eq. (17.56) are then

8
ˆ̂<

ˆ̂:

du0

d	
D qE

mc
u3

du3

d	
D qE

mc
u0

(17.59a)

8
ˆ̂<

ˆ̂:

du1

d	
D qB

m
u2

du2

d	
D �qB

m
u1
; (17.59b)

7We shall see it on a concrete example in Sect. 17.4.2.1.
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where we have used the relations u0 D �u0, u1 D u1, u2 D u2 and u3 D u3 between
the components u˛ of u and the components u˛ of #»u in the orthonormal basis . #»e ˛/.
The two subsystems (17.59a) and (17.59b) are decoupled. The general solution of
each of them is


u0.	/ D k1eqE	=mc C k2e�qE	=mc
u3.	/ D k1eqE	=mc � k2e�qE	=mc (17.60a)


u1.	/ D k3eiqB	=m C k4e�iqB	=m

u2.	/ D ik3eiqB	=m � ik4e�iqB	=m;
(17.60b)

where k1, k2, k3 and k4 are four constant determined by the initial conditions. By
virtue of (17.58), these conditions are

u˛.0/ D
�
�0; �0

V0

c
sin �; 0; �0

V0

c
cos �

	
; (17.61)

with �0 WD .1 � V 2
0 =c

2/�1=2. We obtain k1 D �0.1 C V0=c cos �/=2, k2 D
�0.1 � V0=c cos �/=2 and k3 D k4 D �0V0 sin �=.2c/. Then, we can rearrange the
exponentials to let appear cosines and sines [hyperbolic ones for (17.60a)], yielding

u0.	/ D �0
�

cosh

�
qE

mc
	

	
C V0

c
cos � sinh

�
qE

mc
	

	�
(17.62a)

u3.	/ D �0
�

sinh

�
qE

mc
	

	
C V0

c
cos � cosh

�
qE

mc
	

	�
(17.62b)

u1.	/ D �0 V0
c

sin � cos

�
qB

m
	

	
(17.62c)

u2.	/ D ��0 V0
c

sin � sin

�
qB

m
	

	
: (17.62d)

Two cases have to be distinguished.

17.4.1.1 Purely Magnetic Case (E D 0)

If E D 0, (17.62a) and (17.62b) reduce to

u0.	/ D �0 and u3.	/ D �0 V0
c

cos �; (17.63)

i.e. u0 and u3 keep their initial values. Denoting by .ct; x; y; z/ the inertial
coordinates associated with observer O , we have u0 D dt=d	 , u1 D c�1dx=d	 ,
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u2 D c�1dy=d	 and u3 D c�1dz=d	 . Starting from the initial conditions
.ct; x; y; z/ D .0; 0; 0; 0/ at 	 D 0, the integration of Eqs. (17.63), (17.62)
and (17.62d) leads then to t D �0	 and

8
ˆ̂<

ˆ̂:

x D R sin
�
� �1
0 !Bt

�

y D R �cos
�
� �1
0 !Bt

� � 1� ;
z D V0 t cos �

(17.64)

where we have introduced

!B WD qB

m
and R WD �0V0

!B
sin � : (17.65)

!B is called8 cyclotron frequency. It is a quantity that depends on the intensity B
of the magnetic field and on the ratio of the electric charge by the particle’s mass.
Its values for an electron (q D �e [Eq. (17.3)] andm D 9:10938� 10�31 kg) and a
proton (q D e and m D 1:67262� 10�27 kg) are

!electron
B D �1:75882 � 1011

�
B

1 T

	
rad s�1; (17.66)

!
proton
B D 9:57883� 107

�
B

1 T

	
rad s�1: (17.67)

Remark 17.14. By convention, !B and R are algebraic quantities: !B < 0 and
R < 0 if the particle’s charge is negative.

The frequency involved in (17.64) is actually

! WD !B=�0 : (17.68)

It is called synchrotron frequency or gyration frequency. Contrary to !B , it
depends on the velocity of the particle relative to O , except at the nonrelativistic
limit, since then �0 ' 1.
R is called Larmor radius, or gyration radius. Its numerical value is

jRelectronj D 1:7045� 10�3 sin � �0

�
V0

c

	�
1 T

B

	
m; (17.69)

Rproton D 3:12974 sin � �0

�
V0

c

	�
1 T

B

	
m: (17.70)

8Strictly speaking, one should say cyclotron pulsation, instead of cyclotron frequency.
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Fig. 17.6 Trajectory of a charged particle in a uniform magnetic field with respect to some inertial
observer O (

#»

B 6D 0,
#»

E D 0).
#»

V 0 is the particle’s velocity relative to O at .x; y; z/ D .0; 0; 0/, and
! WD !B=�0 is the gyration frequency. The left panel corresponds to the angle � D 80ı between
#»

V 0 and
#»

B and the right panel to � D 45ı

The worldline obeying (17.64) is a helix of axis z (aligned with
#»

B) and of radius
jRj (cf. Fig. 17.6). The sign of q, which determines that of R, gives the handedness
of the helix. The angle formed by the helix with the xy-plane is constant and equal
to �=2 � � . In the particular case � D �=2, i.e.

#»

V 0 orthogonal to
#»

B, the trajectory
is reduced to a circle in the plane z D 0. The sign of q gives the orientation of the
motion on the circle.

Since O is inertial, P’s velocity relative to O is
#»

V D .dxi=dt/ #»e i , i.e.

#»
V D V0 sin � cos.� �1

0 !Bt/
#»e 1 � V0 sin � sin.� �1

0 !Bt/
#»e 2 C V0 cos � #»e 3:

(17.71)

Note that the norm of
#»
V is constant: k #»

V kg D V0. The linear momentum of P

relative to O being
#»

P D � m
#»

V , we deduce that P WD k #»

Pkg is constant and takes
the value P D �0mV0. Relation (17.65) shows then that the radius R is expressible
in terms of the component of

#»

P that is transverse to
#»

B, according to

R D P sin �

qB
: (17.72)

This formula shows that, knowing the charge q and the amplitude of the
magnetic fieldB , the measure ofR and � provides the normP of the particle’s
linear momentum.
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17.4.1.2 Case E 6D 0

If E 6D 0, we can set (since jV0=c cos � j < 1)

	0 WD �mc
qE

artanh

�
V0

c
cos �

	
D � mc

2qE
ln

�
1C .V0=c/ cos �

1 � .V0=c/ cos �

	
; (17.73)

which allows us to rewrite (17.62a)–(17.62b) as

u0.	/ D �0
s

1 � V
2
0

c2
cos2 � cosh

�
qE

mc
.	 � 	0/

�
(17.74a)

u3.	/ D �0
s

1 � V
2
0

c2
cos2 � sinh

�
qE

mc
.	 � 	0/

�
: (17.74b)

The integration of these equations, along with that of (17.62)–(17.62d), leads to

8
ˆ̂<

ˆ̂:

t D . Qac/�1 fsinh Œac.	 � 	0/�C sinh.ac	0/g
x D R sin.!B	/
y D RŒcos.!B	/ � 1�
z D Qa�1 fcosh Œac.	 � 	0/� � cosh.ac	0/g ;

(17.75)

where R and !B are defined by (17.65),

a WD qE

mc2
and Qa WD a

s
1 � V 2

0 =c
2

1 � V 2
0 cos2 �=c2

: (17.76)

As for the case E D 0, the integration constants have been chosen to ensure
.ct; x; y; z/ D .0; 0; 0; 0/ at 	 D 0. The trajectory corresponding to (17.75) is
depicted in Fig. 17.7. It is a helix whose pitch is increasing with time, due to the
acceleration induced by the electric field. The latter appears clearly at the limit
B D 0 (purely electric case).

17.4.1.3 Purely Electric Case (B D 0)

If B ! 0, !B ! 0 and R sin.!B	/ ' �0V0 sin �=!B � .!B	/ D �0V0 sin � 	 .
SimilarlyRŒcos.!B	/�1� ' �0V0 sin �=!B�.�!2B	2=2/! 0. The system (17.75)
reduces then to

8
ˆ̂<

ˆ̂:

t D . Qac/�1 fsinh Œac.	 � 	0/�C sinh.ac	0/g
x D �0V0 sin � 	
y D 0

z D Qa�1 fcosh Œac.	 � 	0/� � cosh.ac	0/g ;
(17.77)
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Fig. 17.7 Same as Fig. 17.6
but with a nonvanishing
electric field parallel to the
magnetic one and with the
following parameters:
V0 D c=2, � D 85ı et
E D 0:026 cB

In the case where the initial velocity vanishes (V0 D 0) or is aligned with
#»

E (� D 0),
one has Qa D a and the above system becomes

8
<

:

t D .ac/�1 fsinh Œac.	 � 	0/�C sinh.ac	0/g
z D a�1 fcosh Œac.	 � 	0/� � cosh.ac	0/g
x D y D 0;

(17.78)

with 	0 D 0 if V0 D 0 [cf. Eq. (17.73)]. We recognize a uniformly accelerated
motion along the z-direction, with a 4-acceleration of norm a: up to some choice
of origin of proper time 	 and to the permutation x $ z, these equations
are identical to those obtained in Chap. 12 while studying uniformly accelerated
motions [cf. Eqs. (12.14)].

17.4.2 Orthogonal Electric and Magnetic Fields

Let us examine the case of a uniform electromagnetic field whose invariant I2
vanishes. The fields

#»
E and

#»
B measured by any inertial observer O are then

orthogonal. If I1 6D 0, we have seen in Sect. 17.3.3 that by a proper change of
observer, we arrive at the cases

#»
E D 0 (I1 > 0) or

#»
B D 0 (I1 < 0) treated

above. However, we shall suppose here a generic inertial observer O , which will
allow to encompass the case I1 D 0. Let us determine the motion of a charged
particle P whose initial velocity relative to O ,

#»
V 0, is normal to the plane generated

by
#»
E and

#»
B. Without any loss of generality, we may assume that the frame

. #»e ˛/ D . #»e 0;
#»e x;

#»e y;
#»e z/ of O is such that (cf. Fig. 17.8)

#»
E D E #»e y;

#»
B D B #»e z;

#»
V 0 D V0 #»e x; (17.79)
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Fig. 17.8 Trajectory of a positively charged particle in an electromagnetic field with a vanishing
invariant I2 (orthogonal

#»

E and
#»

B), in the case where the particle’s initial velocity
#»

V 0 is orthogonal
to the plane defined by

#»

E and
#»

B . For this figure, E D 0:3 cB , which corresponds toU D E=B D
0:3 c. Each axis is labelled in units of c=!B , where !B is the cyclotron frequency corresponding
to the magnetic field B and to the particle’s ratio q=m

with E � 0 and B � 0. Let us set

ˇ WD E

cB
: (17.80)

The matrix of the field F in the frame . #»e ˛/ is given by (17.12) with .E1;E2;E3/ D
.0; ˇcB; 0/ and .B1; B2; B3/ D .0; 0; B/, so that the components of the equation of
motion (17.56) are

du0=d	 D ˇ!B u2 (17.81a)

du1=d	 D !B u2 (17.81b)

du2=d	 D !B .ˇu0 � u1/ (17.81c)

du3=d	 D 0; (17.81d)

where !B WD qB=m [definition (17.65)]. Since
#»

V 0 D V0
#»e x , the initial conditions

for the integration of the differential system (17.81) are

u0.0/ D �0; u1.0/ D �0V0=c; u2.0/ D 0; u3.0/ D 0; (17.82)

with �0 WD .1 � V 2
0 =c

2/�1=2. In addition, as before, we shall suppose that at 	 D 0,
the particle is located at .ct; x; y; z/ D 0.

Given the initial condition u3.0/ D 0, Eq. (17.81d) is immediately integrated into
u3 D 0. Since u3 D c�1dz=d	 and z D 0 at 	 D 0, we deduce that P’s motion is
confined to the plane z D 0.
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Deriving Eq. (17.81c) with respect to 	 and substituting Eqs. (17.81a)
and (17.81b) in the right-hand side, we get a differential equation that involves
only u2.	/:

d2u2

d	2
C .1 � ˇ2/!2B u2 D 0: (17.83)

Three cases must then be distinguished: 1 � ˇ2 > 0, 1 � ˇ2 D 0 and 1 � ˇ2 < 0.
Since I1 D c2B2 �E2 D c2B2.1� ˇ2/, these three cases correspond, respectively,
to I1 > 0, I1 D 0 and I1 < 0. Let us examine them successively.

17.4.2.1 Case I2 D 0 and I1 > 0 (Wien Filter)

If I1 > 0, then ˇ < 1 and we may set

U WD cˇ D E

B
and � WD .1 � ˇ2/�1=2 D cBp

I1
: (17.84)

U is the velocity relative to O of an observer O 0 for whom the electric field
identically vanishes [cf. Eq. (17.42)]. The factor .1�ˇ2/!2B D !2B=� 2 in (17.83) is
strictly positive: we obtain the equation of a harmonic oscillator. The solution that
fulfils the initial condition u2.0/ D 0 [Eq. (17.82)] is

u2.	/ D A sin
�
� �1!B	

�
; (17.85)

where A is some amplitude to be determined. Substituting the above value for
u2.	/ in (17.81a) and (17.81b) and integrating with the initial conditions (17.82),
we obtain, respectively,

u0.	/ D �0 C Aˇ�
h
1 � cos

�!B
�
	
�i

and

u1.	/ D �0V0

c
C A�

h
1 � cos

�!B
�
	
�i
:

Substituting these values, as well as (17.85) for u2.	/, in (17.81c), we get the
constant A: A D �0� .ˇ � V0=c/. Finally, we have

u0.	/ D �0� 2

�
1� ˇV0

c
� ˇ

�
ˇ � V0

c

	
cos

�!B
�
	
��

(17.86a)

u1.	/ D �0� 2

�
ˇ

�
1 � ˇV0

c

	
�
�
ˇ � V0

c

	
cos

�!B
�
	
��

(17.86b)

u2.	/ D �0�
�
ˇ � V0

c

	
sin
�!B
�
	
�
: (17.86c)
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The equation of the trajectory, under the form .t.	/; x.	/; y.	//, is obtained by
integrating the relations dt=d	 D u0.	/, dx=d	 D cu1.	/ and dy=d	 D cu2.	/.
Given ˇ D U=c and the initial conditions .ct; x; y; z/ D .0; 0; 0; 0/, there comes

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

t D �0� 2

��
1 � UV0

c2

	
	 � � U.U � V0/

!Bc2
sin
�!B
�
	
��

x D �0� 2

�
U

�
1 � UV0

c2

	
	 � � .U � V0/

!B
sin
�!B
�
	
��

y D �0�
2

!B
.U � V0/

h
1 � cos

�!B
�
	
�i
:

(17.87)

Along with the relation z D 0 obtained previously, these relations provide the
equation of P’s trajectory parametrized by its proper time 	 . The trajectory is
depicted in Fig. 17.8 for U D E=B D 0:3 c and different values of V0. Various
special cases are interesting:

• Case U D 0, i.e. E D 0: then � D 1 and the system (17.87) reduces to

8
<

:

t D �0	

x D .�0V0=!B/ sin.!B	/
y D .�0V0=!B/ Œcos.!B	/ � 1� :

(17.88)

We recover the circular motion in a constant magnetic field obtained in
Sect. 17.4.1: the above equations are identical to (17.64) with � D �=2 (

#»

V 0

orthogonal to
#»

B).
• Case V0 D 0: then �0 D 1 and the system (17.87) reduces to

8
<

:

t D � 3=!B
�
� � U 2=c2 sin�

�

x D .� 3U=!B/ .�� sin�/
y D .� 2U=!B/ .1 � cos�/ ;

(17.89)

with � WD � �1!B	 . We recognize the equation of a cycloid, stretched by a factor
� in the x-direction. This trajectory is depicted in Fig. 17.8 (thick solid line in
the domain y � 0).

• Case V0 D U : then �0 D � and the system (17.87) reduces to

8
<

:

t D � 	

x D � U	

y D 0:

(17.90)

The corresponding trajectory is very simple: it is the straight line .y; z/ D .0; 0/.
It is depicted as a dashed line in Fig. 17.8. Moreover the motion is uniform, at
velocity V0.
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In the general case, P’s trajectory is a periodic curve confined to the plane z D 0

of the trochoid kind. Various examples are shown in Fig. 17.8.

Remark 17.15. The shape of the trajectories depicted in Fig. 17.8 is easily under-

stood from the Lorentz force relative to observer O:
#»

F D q
�

#»

E C #»

V �u0

#»

B
�

[Eq. (17.16)]. If
#»

V D #»

U D B�2 #»

E �u
#»

B [Eq. (17.43)], we get, thanks to
#»

E � #»

B D 0,
#»

F D 0. The particle does not feel any force and its trajectory is a straight line
(case V0 D 0:3 c in Fig. 17.8). If k #»

V kg < U , the electric term q
#»

E dominates over
the magnetic term q

#»
V �u0

#»
B in the Lorentz force and the particle is deflected in

the direction of
#»
E (if q > 0), hence towards the top of Fig. 17.8 (cases V0 D 0

and V0 D 0:2 c). As the particle’s velocity increases, due to the acceleration by the
electric field, the magnetic term increases and finally curves the trajectory towards
the bottom. Conversely, if initially k #»

V kg > U , the magnetic term dominates over
the electric one and the particle starts to move downwards (case V0 � 0:4 c in
Fig. 17.8). It suffers then some deceleration from the electric field, until the vertical
motion is reversed, giving rise to a loop.

Remark 17.16. If q is changed into�q in the trajectory equation (17.87), the sign of
!B is changed [cf. Eq. (17.65)] and we notice that x is unchanged while y is turned
to �y. The trajectory is thus obtained by a symmetry with respect to the line y D 0.

Remark 17.17. The result (17.87) can be recovered from that obtained in
Sect. 17.4.1 for a pure magnetic field. Indeed, since I1 6D 0, there exists an inertial
observer O 0 for which

#»

E 0 D 0. His velocity
#»

U relative to O is given by (17.43); we
have thus

#»

U D U #»e x with U D E=B . For O 0, the electric field vanishes and the
magnetic field is

#»

B 0 D � �1 #»

B with � WD .1 � U 2=c2/�1=2. The particle’s initial
velocity relative to O 0 is deduced from the law of velocity composition (5.47),

#»

V 0

and
#»

U being collinear:
#»

V 0
0 D V 0

0
#»e x0 with

V 0
0 D

V0 � U
1 � UV0=c2 : (17.91)

The Lorentz factor of P relative to O 0, � 0
0 , is expressed according to (5.25) (with

the appropriate changes of notation): � 0
0 D �0� .1 � UV0=c2/; hence,

� 0
0V

0
0 D �0� .V0 � U /: (17.92)

For O 0, P’s trajectory is a circle since
#»
V 0
0 is orthogonal to

#»
B 0. Its equation is given

by (17.64) with � D �=2:

8
ˆ̂<

ˆ̂:

t 0 D � 0
0 	

x0 D .� 0
0V

0
0 /=.!B0/ sin.!B0	/

y0 D .� 0
0V

0
0 /=.!B0/ Œcos.!B0	/ � 1�

z0 D 0;
(17.93)
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with !B0 D qB 0=m D � �1!B , since B 0 D � �1B [Eq. (17.44)]. The motion of P
with respect to O is obtained by applying the transformation from the coordinates
of O 0 to those of O: this is a Poincaré transformation corresponding to a boost of
plane Span. #»e x;

#»e x0/ and velocity parameter�U : it is given by (8.15) with V D U .
Taking into account (17.92), we obtain exactly (17.87).

The fact that the particle is not deflected when its initial velocity is equal
to U D E=B (curve V0 D 0:3 c in Fig. 17.8) can be used to set up a
velocity selector by adjusting the ratio E=B to the desired velocity. This is
the principle of the Wien filter: a uniform electromagnetic field is created in
a cavity 0 � x � L with

#»

E and
#»

B orthogonal and, thanks to a small aperture
at .x; y; z/ D .L; 0; 0/, only particles with the desired velocity come out from
the cavity.

17.4.2.2 Case I2 D 0 and I1 D 0 (Null Electromagnetic Field)

If I1 D 0, as we already assumed I2 D 0, the electromagnetic field is null. Note
that I1 D 0 is equivalent to ˇ D 1 and E D cB . In this case, the differential
equation (17.83) reduces to d2u2=d	2 D 0. Given the initial condition u2.0/ D 0,
it is readily integrated in u2.	/ D ˛	 , where ˛ is a constant to be determined.
Equations (17.81a) and (17.81b), along with the initial conditions (17.82), yield
then

u0.	/ D �0 C ˛!B
2
	2 and u1.	/ D �0V0

c
C ˛!B

2
	2:

˛ is determined by inserting these relations into (17.81c). There comes ˛ D �0.1�
V0=c/!B , hence

8
ˆ̂<

ˆ̂:

u0.	/ D �0
�
1C .1 � V0=c/.!B	/2=2

�

u1.	/ D �0
�
V0=c C .1 � V0=c/.!B	/2=2

�

u2.	/ D �0.1 � V0=c/!B	:
(17.94)

Integrating with respect to 	 , we get

8
ˆ̂<

ˆ̂:

t D �0
�
	 C .1 � V0=c/.!2B=6/ 	3

�

x D �0
�
V0	 C .c � V0/.!2B=6/ 	3

�

y D �0.c � V0/.!B=2/ 	2:
(17.95)

Expressing 	 from the equation for y and replacing it in the equation for x, we
obtain the equation of P’s trajectory in the plane z D 0:
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Fig. 17.9 Same as Fig. 17.8, but for values of E=cB in the vicinity of 1, encompassing the case
of a null electromagnetic field (E=cB D 1). For comparison, the dotted line corresponds to E D
0:3 cB and is the cycloid labelled V0 D 0 in Fig. 17.8

x D
�
V0 C !By

3�0

	s
2�0y

.c � V0/!B : (17.96)

This is the equation of a cubic elliptic curve. It is depicted in Fig. 17.9 for V0 D 0

and V0 D 0:5c (solid lines).

Remark 17.18. Let us recall that !B < 0 for q < 0. Formula (17.96) implies then
y � 0 (for the square root to be well defined). On the other side, one has always
x � 0, whatever the sign of P’s charge.

Remark 17.19. The system (17.95) can be obtained as some limit of the sys-
tem (17.87) derived for I1 > 0. It suffices to make U ! c and � ! C1, since the
case I1 D 0 corresponds to U D E=B D c. Indeed the following Taylor expansions
hold for � ! C1:

sin
�!B
�
	
�
' !B

�
	 � 1

6

�!B
�
	
�3
; cos

�!B
�
	
�
' 1 � 1

2

�!B
�
	
�2
:

Using these expressions in (17.87), we obtain (17.95). That the case I1 D 0 can be
derived as the limit I1 ! 0 of the case I1 > 0 can also be seen in Fig. 17.9, by
comparing the curves E=cB D 0:9 and E=cB D 1.
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17.4.2.3 Case I2 D 0 and I1 < 0 (Mostly Electric Field)

If I1 < 0, then ˇ > 1 and we may set

U WD c

ˇ
D c2 B

E
and � WD .1 � U 2=c2/�1=2 D EpjI1j

: (17.97)

U is the velocity relative to O of an observer O 0 for whom the magnetic field
vanishes identically [cf. Eq. (17.42)]. The factor .1 � ˇ2/!2B in the differential
equation (17.83) is now strictly negative. Let us rewrite it in terms of the 4-
acceleration a defined by (17.76):

.1 � ˇ2/!2B D �
�ac
�

�2
: (17.98)

The solution of (17.83) that satisfies the initial condition u2.0/ D 0 is then
u2.	/ D A sinh .ac	=� /. We can then repeat the reasoning of the case I1 > 0

by replacing the sines/cosines by hyperbolic sines/cosines. Taking care about signs
in the derivatives, we obtain the equation of P’s trajectory parametrized by P’s
proper time 	 :

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

t D �0� 2

�
U

c2
.V0 � U /	 C �

ac

�
1 � UV0

c2

	
sinh

�ac
�
	
��

x D �0� 2

�
.V0 � U /	 C � U

ac

�
1 � UV0

c2

	
sinh

�ac
�
	
��

y D �0�
2

a

�
1� UV0

c2

	h
cosh

�ac
�
	
�
� 1

i
:

(17.99)

This trajectory is depicted in Fig. 17.9 for E=cB D 1:1 ” U D 0:909 c and
two values of V0 (0 and c=2). As for I1 > 0, let us focus on three special cases:

• Case U D 0, i.e. B D 0: then � D 1 and the system (17.99) reduces to

8
ˆ̂<

ˆ̂:

t D �0=.ac/ sinh.ac	/

x D �0V0 	

y D �0=a Œcosh.ac	/ � 1� :
(17.100)

As a check, we recover the equation of motion in a pure electric field obtained
above, namely, Eq. (17.77). If one sets � D �=2 in the latter, then Qa D a=�0
and 	0 D 0, which, up to the permutation z $ y, yields the above equation. If
V0 D 0, the trajectory is the straight line x D 0: this is a uniformly accelerated
motion in the y-direction (direction of

#»

E ). If V0 6D 0, we may get rid of 	 and
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obtain the explicit equation of P’s trajectory in the plane z D 0:

y D �0

a

�
cosh

�
ac

�0V0
x

	
� 1

�
: (17.101)

We recognize the equation of a catenary having for axis the line y D 0.
• Case V0 D 0: then �0 D 1 and the system (17.99) reduces to

8
<

:

t D � 3=.ac/ .sinh�� U 2=c2 �/

x D � 3U=.ac/ .sinh� � �/
y D � 3=a .cosh� � 1/;

(17.102)

where � WD ac	=� . By analogy with (17.89), such a curve could be called a
“hyperbolic cycloid”.

• Case V0 D U : then �0 D � and the system (17.99) reduces to

8
<

:

t D � 2=.ac/ sinh.ac	=� /
x D Ut
y D � =a Œcosh.ac	=� /� 1� :

(17.103)

If U D 0, the trajectory is the straight line x D 0 (case already considered

above). If U 6D 0, we may get rid of 	 via the identity cosh u D
p
1C sinh2 u

and obtain the explicit equation of the trajectory:

y D �

a

"r
1C

� ac

� 2U
x
�2 � 1

#
: (17.104)

We recognize a branch of hyperbola having for axis the line y D 0.

Remark 17.20. Contrary to the case I1 > 0, P’s trajectory is never the straight line
y D 0, even if V0 D U . This means that the Wien filter can work only with a mostly
magnetic field.

Remark 17.21. As in the case I1 < 0, we can recover the motion in a null
electromagnetic field (I1 D 0) by taking the limit U ! c in (17.99). Since
� ! C1, the expansion of the hyperbolic sines and cosines in the neighbourhood
of 0 leads to (17.95).

17.5 Application: Particle Accelerators

17.5.1 Acceleration by an Electric Field

Let us consider a cavity at rest with respect to some inertial observer O and that
harbours some uniform electromagnetic field. Let P be a charged particle that
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enters into the cavity with a vanishing velocity relative to O: V0 D 0. At each
instant, the kinetic energy of P with respect to O is given by (9.19):

Ekin D .�P � 1/mc2: (17.105)

We are using the notation Ekin instead of Ekin (Chap. 9) to avoid any confusion with
the amplitude of the electric field. We have also denoted by �P the Lorentz factor of
P relative to O , to distinguish it from the Lorentz factor � introduced in Sect. 17.4.
By definition, �P D dt=d	 D u0, where t is O’s proper time, 	 that of P and u0 is
the first component of P’s 4-velocity in O’s frame.

If the electromagnetic field in the cavity is purely magnetic from the point of
view of O , u0 D �P is given by (17.63): u0.	/ D �0 D 1 (since V0 D 0). We
have thus in this case Ekin D 0. In other words, a magnetic field does not provide
some kinetic energy to a charged particle. To do so, a nonvanishing electric field E

is required. If
#»
B D 0 or

#»
B is parallel to

#»
E , the Lorentz factor �P D u0 is given

by (17.62a), which, for V0 D 0, reduces to u0 D coshŒqE	=.mc/�, so that

Ekin D
�

cosh

�
qE

mc
	

	
� 1

�
mc2: (17.106)

The travelled distance z along the electric field is on its side given by (17.75) with
Qa D a and 	0 D 0 since V0 D 0. We observe that az D coshŒqE	=.mc/��1, so that
Ekin has a simple expression in terms of z: Ekin D azmc2. Substituting qE=.mc2/
for a [Eq. (17.76)], we get then

Ekin D qEz : (17.107)

Remark 17.22. According to (17.75), z has the same sign as qE , so that Ekin is
always positive.

Remark 17.23. Expression (17.107) is identical to that obtained in nonrelativistic
mechanics. On the other side, the expression of z in terms of t differs.

17.5.2 Linear Accelerators

The simplest way to accelerate charged particles by means of an electric field
consists in creating some electrical potential difference9 (electric tension) between
two plates: this is the principle of the so-called electrostatic accelerator. For-
mula (17.107) shows that the gain in kinetic energy is simply the product of the

9The notion of electrical potential will be introduced formally in Chap. 18; here it suffices to know
that for a uniform electric field, Ez D V .0/� V .z/.
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particle’s electric charge by the electrical potential differenceV :

Ekin D qV: (17.108)

In practice, one cannot have jV j much more larger than 107 V because of electric
discharges, either by electrical breakdown (sparks) or resulting from some imperfect
electric insulation.

Formula (17.108) with q D �e, combined with (17.3), leads to the value (9.11)
for the electronvolt as a unit of energy, given in Sect. 9.2.2. For V D 106 V, the
kinetic energy acquired by an electron or a proton is Ekin D 10MeV. Via (17.105),
this corresponds to the Lorentz factor �P D 20:5 ( ” V D 0:998 c) for
an electron and �P D 1:01 ( ” V D 0:14 c) for a proton. Hence, for this
kind of accelerator, electrons easily reach relativistic velocities, but not protons.
Some examples of electrostatic accelerators are (i) the cathode ray tubes (CRT)
(Ekin � 10 keV), which were used for TV and computer screens before the advent of
LCD and plasma screens, and (ii) the electron guns in electron microscopes (Ekin �
100 keV).

To go beyond a few tens of MeV, a number of cavities must be added. The
technique is then to use a variable electric field at high frequency (radio frequency).
By synchronizing the frequency of E on the passages of the particles between the
different cavities, important accelerations can be achieved. This type of device is
called linac for linear particle accelerator. The most powerful linac to date is
located at the Stanford Linear Accelerator Center (SLAC) at Stanford University
in California. With a length of 3.2 km, it is capable of accelerating electrons and
positrons up to Ekin � 50 GeV, which corresponds to Lorentz factors �P � 105.

17.5.3 Cyclotrons

To overcome the limitations of electrostatic accelerators, an alternative to the linac
consists in making the particles cross many times the cavity hosting the accelerating
electric field. To this purpose, the particle trajectories must be curved outside the
cavity, thanks to some magnetic field, to make them return to the cavity: this is the
principle of the so-called cyclotron. A cyclotron is composed of two “D”-shaped
cavities in which a uniform vertical magnetic field is created (cf. Fig. 17.10). An
oscillating electric field is set between the cavities, at a well-chosen frequency, as
we are going to see.

Let us indeed consider a particle P with positive charge at the point A of
Fig. 17.10 with an initial velocity

#»

V directed from A to B . Let us assume that the
electric field has the same orientation. The particle will then be accelerated between
A and B . Between B and C , it is submitted to the action of the vertical magnetic
field. As we have seen in Sect. 17.4.1, since

#»

V is orthogonal to
#»

B, the trajectory
of P is an arc of circle whose radius is proportional to the norm of P’s velocity,
which stays constant between B and C (there is no electric field in the cavity). If
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Fig. 17.10 Sketch of a
cyclotron. Top panel, view
from above; bottom panel,
side view. The electric field is
drawn in solid lines at the
instant where the particles are
emerging from the left cavity
(points A, E , etc.) and in
dashed lines half a period
later

P’s velocity is small in front of c, the angular velocity between B and C is the
cyclotron pulsation !B D qB=m [Eq. (17.65)]. The basic principle of the cyclotron
is then to adjust the frequency of the electric field

#»

E to the cyclotron frequency
!B , the latter being constant for a fixed magnetic field and a given type of particle.
Accordingly, half a period being elapsed betweenB and C , the particle is submitted
along the path CD to an electric field of opposite sense than that it had between A
and B . It has then the same sense as P’s velocity at C and P is accelerated again.
When it enters into the magnetic cavity at D, its velocity is larger than at B , so that
the radius of its half-circle trajectory will be larger. On the other side, the angular
velocity remains the same (cyclotron pulsation). Therefore, when P arrives at E , it
feels again an accelerating electric field and a new iteration starts. The radius of the
trajectory increasing at each half turn, the particle eventually reaches the apparatus’
periphery, from which it is extracted.

From its very principle, the cyclotron is limited to the acceleration of particles up
to velocities small in front of c. Indeed, as we have seen in Sect. 17.4.1, the angular
velocity on the half-circle path in the magnetic cavities is not exactly the cyclotron
pulsation !B , but rather the gyration pulsation ! D � �1!B [cf. Eq. (17.68)]. It
depends therefore upon the particle’s velocity at the cavity entry, via the Lorentz
factor � . If one creates an electric field of constant frequency, one can adjust the
latter to the gyration frequency only for � ' 1. This explains why in practice,
cyclotrons are used to accelerate protons or ions (cf. Fig. 17.11) and not electrons.
For the latter, electrostatic accelerators are sufficient to reach relativistic velocities,
as we have noticed in Sect. 17.5.2. For a proton, if one set the nonrelativistic limit
to �P � 1:02, then via (17.105), we note that the kinetic energy provided by a
cyclotron cannot exceed� 20 MeV.

An important field of application of cyclotrons is medicine, either via proton
therapy (the patient is exposed to the energetic protons produced by the cyclotron) or
nuclear medicine, i.e. the making of radioactive compounds ingested by the patient
and that will localize to the tumour to be treated (cf. Fig. 17.12).
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Fig. 17.11 The two cyclotrons CSS1 and CSS2 of GANIL (Grand Accélérateur National d’Ions
Lourds, Caen, France). Of a radius of 3 m each, they are connected in series. The intensity of the
magnetic field is 0:4 to 0:95 T and the electric-field frequency is 7–14 MHz. The maximum kinetic
energy at the output of CSS2 is 95 MeV par nucleon [Source: CNRS/IN2P3]

Fig. 17.12 Cyclotron Arronax installed at the Regional Center for Research in Cancerology in
Nantes (France). This cyclotron accelerates protons, deuterons (2H nuclei) and alpha particles (He
nuclei) up to an energy of 70 MeV in order to produce radioisotopes for nuclear medicine [Source:
Ion Beam Application]

17.5.4 Synchrotrons

To accelerate particles up to relativistic velocities, the first solution consists in
modifying the cyclotron to lower the frequency of the electric field as the particles
increase their velocity, according to the law (17.68): ! D !B=� . This is the
principle of the synchrocyclotron. Protons can thus be accelerated up to a few
hundred MeV. Above that, the radius increasing as � V [cf. Eq. (17.65)], the size
of the magnets becomes prohibitive.

The concept of synchrotron allows to get rid of this limit: the idea is to apply
some magnetic field not on all the volume of “D”-shaped cavities, but only around a
domain of fixed radius R (cf. Fig. 17.13). To maintain the radius constant, the value
of B must be increased as the momentum P of the particles increases, according to
formula (17.72) (with � D �=2):

B D P

qR
: (17.109)
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Fig. 17.13 Sketch of a synchrotron

Fig. 17.14 CERN accelerator complex, at the French–Swiss border, near Geneva. It comprises
several synchrotrons: LHC (in a tunnel having a circumference of 27 km, previously used for the
LEP), SPS, PS, Booster, as well as various linacs [Source: CERN]

The acceleration is performed in cavities equipped with a radio frequency electric
field. A synchrotron is thus essentially a succession of accelerating cavities (field
#»
E ) and deflecting cavities (field

#»
B). Four cavities of each type are depicted in

Fig. 17.13, but there may be much more.
The largest synchrotron operating in the world is the LHC (Large Hadron

Collider) at CERN, across the French–Swiss border, near Geneva (cf. Fig. 17.14
and Table 17.1). It has a circumference of 27 km and is aimed to accelerate
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Table 17.1 A sample of particle accelerators. LHC D Large Hadron Collider, CERN D Conseil
Européen pour la Recherche Nucléaire, LEP D Large Electron–Positron Collider, SLC D Stanford
Linear Collider, SLAC D Stanford Linear Accelerator Center, ILC D International Linear
Collider, GANIL D Grand Accélérateur National d’Ions Lourds, RHIC D Relativistic Heavy Ion
Collider, ESRF D European Synchrotron Radiation Facility

Name Date Type Particles Energy Lorentz factor

LHC 2010– Synchrotron p 7 TeV 7:5 � 103

CERN, Geneva R D 4:3 km Pb 2:8 TeV/nucl. 2:9� 103

Tevatron 2001– Synchrotron p, Np 0:98 TeV 1:0� 103

Fermilab, Chicago R D 1:0 km

LEP 1989–2000 Synchrotron e�, eC 104 GeV 2� 105

CERN, Geneva R D 4:3 km

SLC 1989–1998 Linac e�, eC 50 GeV 9:8� 104

SLAC, Stanford L D 3:2 km

ILC Proposal Linac e�, eC 250 GeV 5� 105

L D 31 km

GANIL 1983– Cyclotron C,. . . , U 95 MeV/nucl. 1:1

Caen R D 3 m

RHIC 2000– Storage ring p 250 GeV 2:7� 102

Brookhaven R D 0:6 km Au, Cu 100 GeV/nucl. 102

ESRF 1994– Storage ring e� 6 GeV 1:2� 104

Grenoble R D 134 m

SOLEIL 2006– Storage ring e� 2:75 GeV 5:4� 103

Saclay R D 57 m

protons up to the energy10 Ekin ' 7 TeV. The magnetic field required to
maintain protons on the 27 km circumference is given by formula (17.109) with
R D 27=.2�/ D 4:3 km, q D e and P ' Ekin=c, since the protons are ultra-
relativistic (Ekin 
 mpc

2 D 938MeV). One obtains B D 5:4 T. The particle
trajectory in the LHC being not exactly a circle (it comprises some segments
of straight lines; cf. Fig. 17.13), the required magnetic field is actually slightly
larger: B D 8:3 T. This remarkably large magnetic field is produced by means of
superconducting magnets, cooled down to 1:9 K.

10At the time of writing of this book (2012), 4 TeV have been achieved; the full 7 TeV are expected
for 2015.



17.5 Application: Particle Accelerators 583

17.5.5 Storage Rings

A storage ring is an annular tube within a magnetic field that maintains the particles
on a circular trajectory, as in a synchrotron. The difference with the latter is that the
particles are not accelerated in the ring itself, but before entering in it, generally by
a linac in series with a synchrotron. Storage rings are used either to store particles
before making them collide or to exploit the electromagnetic radiation emitted by
particles in circular motion (synchrotron radiation, to be studied in Sect. 20.4). In
Table 17.1, RHIC is a ring of the first kind, while SOLEIL and ESRF are rings of
the second kind.

Historical note: The first accelerator used in particle physics has been constructed
in 1932 by the English physicist John D. Cockcroft (1897–1967) and the Irish
one Ernest Walton (1903–1995). It was an electrostatic accelerator capable of
accelerating protons up to Ekin D 0:7 MeV. These protons have been used to
break apart lithium nuclei, thereby demonstrating the nuclear fission by particle
bombardment. For this achievement, Cockcroft and Walton have been awarded the
1951 Nobel Prize in Physics. Electrostatic accelerators have been subsequently
constructed upon the model conceived in 1931 by the American physicist Robert
Van de Graaff (1901–1967). This allowed to reach Ekin � 10 MeV. The cyclotron
has been invented in 1929 by the American physicist Ernest Lawrence (1901–1958),
for which he received the Nobel Prize in Physics in 1939. On the first synchrotrons
was the Bevatron, built in 1954 at the Lawrence Berkeley National Laboratory
in California. It permitted to accelerate protons beyond the GeV, leading to the
discovery of the antiproton, as we have seen in Sect. 9.4.6.



Chapter 18
Maxwell Equations

18.1 Introduction

Having introduced the electromagnetic field F in the preceding chapter, we move
now to the equations ruling it, namely, the famous Maxwell equations. They specify
how F is generated by all the electric charges moving in Minkowski spacetime. We
shall treat only the fundamental (microscopic) Maxwell equations and not Maxwell
equations in matter. The latter are deduced from the former via microscopic models
and averaging processes; this is out of the scope of the present text and rather
pertains to a proper electromagnetism course.

This chapter starts by introducing the electric four-current vector, which
describes globally the moving electric charges (Sect. 18.2). One is then in position to
state Maxwell equations (Sect. 18.3), the four-current acting as a source. Sticking to
our four-dimensional point of view, we first state Maxwell equations in terms of the
tensor F . The equations for the fields

#»

E and
#»

B, presented in elementary expositions
of electromagnetism, are deduced in a second stage, after an arbitrary inertial
observer is introduced. In Sect. 18.4, we shall see that Maxwell equations imply the
conservation of electric charge. We shall deal with the solving of Maxwell equations
in Sect. 18.5 via the introduction of the four-potential 1-form and the associated
concept of gauge choice. Sect. 18.6 is devoted to the specific case where the source
is a single charged particle in arbitrary motion (Liénard–Wiechert solution). At
the end of this chapter, it is shown that Maxwell equations can be derived from a
principle of least action (Sect. 18.7).

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 18, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 18.1 Total electric
charge of a three-dimensional
domain V in the local rest
space Eu0 .t / of some observer
O, defined as a flux
through V

18.2 Electric Four-Current

18.2.1 Electric Four-Current Vector

Let us consider a finite set of charged particles, .Pa/1�a�N . Each Pa follows a
worldline La of proper time 	a and 4-velocity #»u a.	a/. In Chap. 17, we have defined
the electric charge qa of particle Pa as the coefficient involved in the expression
of the Lorentz 4-force acting on Pa. Let us now define the total electric charge Q
of a three-dimensional compact domain (hypersurface) V in the rest space of some
inertial observer O . It is natural to introduceQ as the algebraic sum of the charges
qa of particles “contained” in V , noticing that a particle Pa contributes to Q only
if its worldline crosses V (cf. Fig. 18.1). This suggests to defineQ as a flux through
V . More precisely, since V is a three-dimensional submanifold of E , we may use
the notion of flux of a vector field through V introduced in Sect. 16.4.7 and write,
following (16.42),

Q D ˚V .
#»

j / WD �
Z

V

#»

j � #»u 0 dV ; (18.1)

where
#»

j is a vector field to be determined; #»u 0 is the unit normal to V , which is
nothing but the 4-velocity of observer O; and dV is the volume element on V :
dV D �. #»u 0; d

#»

` 1; d
#»

` 2; d
#»

` 3/ [cf. Eqs. (16.23) and (16.24)]. Since #»u 0 is timelike,
we have selected the sign� in the definition (16.42). Note that, according to (16.44),
the charge Q can be written as the integral over the 3-volume V of the 3-form ?j ,

Hodge dual of the 1-form j , itself metric dual of
#»
j :

Q D
Z

V
?j : (18.2)
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It is clear that
#»
j cannot be a continuous field over E : if the boundary of V varies

so that one of the worldlines La enters V or leave it, then Q suddenly changes by
the amount˙qa. Actually, to define

#»
j , one must introduce a function “peaked” on

the particle worldlines. This is achieved by means of the Dirac measure on .E ;g/
centred at a point A 2 E , ıA. The latter satisfies

8M 2 E nfAg; ıA.M/ D 0 and
Z

E
ıAf � D f .A/ (18.3)

for any scalar field f W E ! R. The above integral is the integral of the product ıAf
considered as a scalar field on E —integral defined by (16.39) [cf. also (16.40a)]. ıA
can also be introduced as the limit of a sequence of continuous functions more
and more “peaked” on A, but in all rigour, ıA is a distribution1 and not a scalar
field on E . For this reason, it is also called Dirac distribution on .E ;g/ centred at
A 2 E . It is easy to see that, given a system of inertial coordinates .x˛/ on E , ıA is
expressible as

ıA.x
0; x1; x2; x3/ D ı.x0 � x0A/ ı.x1 � x1A/ ı.x2 � x2A/ ı.x3 � x3A/; (18.4)

where ı is the “ordinary” Dirac distribution on R.

Equipped with the tool ıA, let us define the vector field
#»
j as

8M 2 E ;
#»

j .M/ WD
NX

aD1
qa

Z C1

�1
ıAa.	/.M/ #»u a.	/ c d	 ; (18.5)

where, in each integral, 	 stands for the proper time of particle Pa, #»u a.	/

for Pa’s 4-velocity and Aa.	/ for Pa’s position in E at the instant 	 . The
vector field

#»
j is called electric four-current, or electric 4-current for short.

From (18.5) and the dimension (length)�4 of Dirac measure on .E ;g/, as
well as the dimensionless character of a 4-velocity, the dimension of

#»
j is

that of a volume density of electric charge. In the SI system, its unit is thus
C m�3 D A s m�3.

1From this point of view, denoting the action of ıA on f by an integral as in (18.3) is an abuse of
notation often used in physics.
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The vector field defined by (18.5) has the wished property. Indeed, the flux of
#»
j

through V is

˚V .
#»
j / D �

Z

V

#»
j � #»u 0 dV D �

NX

aD1
qa

Z

V

Z C1

�1
ıAa.	/.M/ #»u a.	/ � #»u 0 c d	 dV

D �
NX

aD1
qa

Z

V

Z C1

�1
ı.ct0 � x0a.	// ı.x1 � x1a.	// ı.x2 � x2a.	// �

�ı.x3 � x3a.	// #»u a.	/ � #»u 0 c d	 dx1 dx2 dx3;

where t0 is O’s proper time corresponding to the rest space Eu0 .t0/ in which V lies;
.x˛/ is the coordinate system associated with O , with x0 D ct ; and x˛a .	/ are the
coordinates in this system of the point Aa.	/ on the worldline La. Now, from the
relation (4.10),� #»u a.	/ � #»u 0 D �a—the Lorentz factor of Pa with respect to O . By
definition [Eq. (4.1)], �a D dt=d	 , so that we can write � #»u a.	/ � #»u 0 c d	 D c dt .
Using t rather than 	 as a parameter along La, there comes then

˚V .
#»

j / D
NX

aD1
qa

Z

V

Z C1

�1
ı.ct0 � ct/ ı.x1 � x1a.t// ı.x2 � x2a.t// �

�ı.x3 � x3a.t// c dt dx1 dx2 dx3:

D
NX

aD1
qa

Z

V
ı.x1 � x1a.t0// ı.x2 � x2a.t0//ı.x3 � x3a.t0// dx1 dx2 dx3

D
X

a =Aa.t0/2V

qa: (18.6)

Hence the flux ˚V .
#»
j / is the sum of the electric charges carried by the particles

whose worldlines intersect V , which justifies the writing (18.1).

Historical note: The expression (18.5) for the electric 4-current generated by a
discrete distribution of charges is due to Paul A.M. Dirac (cf. p. 372), who used it
(for a single particle) in a work published in 1938 (Dirac 1938, 1939).

18.2.2 Electric Intensity

Let us consider an oriented (two-dimensional) surface S linked to the inertial
observer O: at each instant t , S .t/ is a surface in the rest space Eu0 .t/ at a fixed
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Fig. 18.2 Definition of the
electric intensity from the
spacetime 3-volume W swept
by a surface S .t / in the rest
space Eu0 .t / of observer O.
For the drawing, one
dimension has been
suppressed, so that S .t /

appears as a segment and W
as a surface

position in the spatial coordinates of O , .xi /. One calls electric intensity through
S and denotes by I.S /, the total electric charge that crosses S (in the sense of
its orientation) per unit time. In the SI system, the unit of electric intensity is the
ampere (symbol: A), with 1 A D 1 C s�1.

Let us show that between two instants t D t0 and t D t0Ct , the electric charge
crossing S is equal to the flux of the 4-current

#»

j through the spacetime 3-volume
W swept by S between t0 and t0Ct : W D [t0CttDt0 S .t/ (cf. Fig. 18.2). Denoting
by #»s 2 Eu0 the unit (spacelike) vector normal to S in .Eu0 .t/;g/, compatible with
S .t/’s orientation, we get

˚W .
#»

j / D
Z

W

#»

j � #»s dV D
NX

aD1
qa

Z

W

Z 	DC1

	D�1
ıAa.	/.M/ #»u a.	/ � #»s c d	 dV

D
NX

aD1
qa

Z

W

Z 	DC1

	D�1
ıAa.	/.M/ #»s � #»

V a �a d	 dV;

D
NX

aD1
qa

Z

W

Z t 0DC1

t 0D�1
ıAa.t 0/.M/ #»s � #»

V a dt 0 dV; (18.7)

where the second line results from the decomposition (4.31) of Pa’s 4-velocity:
#»u a D �a.

#»u 0 C c�1 #»

V a/,
#»

V a being Pa’s velocity relative to O . Since #»u 0 � #»s D 0,
we have indeed #»u a � #»s D �a #»s � #»

V a=c. The last line has been obtained by means of
the change of variable 	 7! t 0, where t 0 is O’s proper time,2 with �a d	 D dt 0.

For simplicity, let us assume that S .t/ is a planar surface contained in the plane
x1 D x1S D const and oriented so that #»s D #»e 1 (. #»e ˛/ standing for O’s frame).

2It is denoted by t 0 to keep t for the coordinate orthogonal to S in W .
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The coordinates internal to S .t/ are then .x2; x3/, and the volume element of W is
dV D c dt dx2 dx3. Moreover #»s � #»

V a D V 1
a , so that (18.7) becomes

˚W .
#»
j / D

NX

aD1
qa

Z

S

Z tDt0Ct

tDt0

Z t 0DC1

t 0D�1
ı.ct � ct 0/ ı.x1S � x1a.t 0// ı.x2 � x2a.t 0// �

�ı.x3 � x3a.t 0// V 1a dt 0 c dt dx2 dx3

D
NX

aD1
qa

Z

S

Z tDt0Ct

tDt0
ı.x1S � x1a.t// ı.x2 � x2a.t// ı.x3 � x3a.t// �

�V 1a dt dx2 dx3:

Now V 1
a D dx1a=dt . If V 1

a D 0, the integral corresponding to Pa vanishes and
therefore does not contribute to ˚W .

#»
j /. If V 1

a 6D 0, we can perform the change of
variable t 7! x1a , with V 1

a dt D dx1a, and write

˚W .
#»
j / D

X

a = V 1a 6D0
qa

Z

S

Z x1a.t0Ct/

x1a.t0/
ı.x1S �x1a/ ı.x2�x2a.t// ı.x3�x3a.t// dx1a dx2 dx3;

where t D t.x1a/. It is clear that the triple integral in the right-hand side takes the
value 1 if there exists x1a 2 Œx1a.t0/; x1a.t0 Ct/� such that

.x1a; x
2
a.t/; x

3
a.t// D .x1S ; x2; x3/ with .x2; x3/ coord. of a point of S

and the value 0 otherwise. The above condition being nothing but the crossing of W
by the worldline La, we conclude that

˚W .
#»

j / D
X

a =La\W 6D¿
qa: (18.8)

In other words, ˚W .
#»
j / is the sum of the electric charges that cross the surface S

between t0 and t0 C t . In view of the definition of the intensity I.S /, we may
thus write

I.S /t D ˚W .
#»
j / D

Z

W

#»
j � #»s dV D

Z

S

Z tDt0Ct

tDt0
#»
j � #»s c dt dS; (18.9)
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where dS is the area element of S [cf. (16.31)]. Setting t ! 0, we deduce the
following formula for the electric intensity:

I.S / D c
Z

S

#»

j � #»s dS : (18.10)

18.2.3 Charge Density and Current Density

Given an observer O of 4-velocity #»u 0, let us perform the orthogonal decomposition
of the 4-current vector

#»

j with respect to #»u 0:

#»

j DW � #»u 0 C 1

c

#»

J with #»u 0 � #»

J D 0: (18.11)

We have then

� D � #»u 0 � #»
j : (18.12)

In view of (18.1), we note that � is the quantity involved in the expression of the
electric chargeQ of a three-dimensional domain in the rest space of O:

Q D
Z

V
� dV : (18.13)

For this reason, we shall call � the electric charge density measured by O . Its unit
in the SI system is C m�3 D A s m�3 (the same as for

#»

j ).
From (18.11), the vector

#»

J is, up to some c factor, nothing but the orthogonal
projection of the electric 4-current in O’s rest space:

#»

J D c?u0
#»

j D c
h

#»

j C . #»u 0 � #»

j / #»u 0

i
: (18.14)

In view of (18.10) and #»s 2 Eu0 , we observe that
#»

J is the part of
#»

j providing
the intensity:

I.S / D
Z

S

#»

J � #»s dS : (18.15)

Hence the electric intensity through a surface is the flux of
#»

J through this surface.
#»

J

is called the electric current density measured by O . From (18.11), the dimension
of

#»

J differs from that of
#»

j by a velocity. Its SI unit is thus C m�2s�1 D A m�2.

Remark 18.1. In many textbooks, one introduces first the quantities � and
#»
J relative

to a given observer before combining them as in (18.11) to form the 4-vector
#»
j .
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Faithful to our four-dimensional point of view, we have first constructed
#»
j , which

is independent of any observer, and have deduced the observer-dependent quantities
� and

#»
J in a second stage.

18.2.4 Four-Current of a Continuous Media

We have defined the electric 4-current
#»

j by adopting a microscopic point of view,
i.e. by summing over all charged particles [Eq. (18.5)]. Now, if one considers a
macroscopic region, the number N of particles is huge, and it is natural to take
the continuous limit.

#»

j appears then as a continuous vector field on E . In practice,
it is even differentiable.

18.3 Maxwell Equations

18.3.1 Statement

Having introduced the electric 4-current
#»

j , we are in position to state the famous
Maxwell equations. They are expressed in terms of the exterior derivatives dF and
d?F of the electromagnetic field 2-form F and its Hodge dual3 ?F :

The electromagnetic field is governed by Maxwell equations:

dF D 0 (18.16a)

d?F D "�1
0 ?j ; (18.16b)

where "0 is a universal constant, called vacuum permittivity, and ?j is

the 3-form associated with the electric 4-current
#»

j by Hodge duality.
More precisely, ?j is the Hodge dual of the 1-form j associated with the

3Let us recall that the exterior derivative has been introduced in Sect. 15.5, the Hodge dual in
Sect. 14.5 and specifically for F in Sect. 17.2.5.
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vector
#»

j by metric duality. From (14.75b) [cf. also (15.87)],

?j WD �.
#»

j ; :; :; :/: (18.17)

As we have seen in Sect. 18.2.1, ?j is the 3-form whose integration over a
3-volume yields the total electric charge contained in this volume [Eq. (18.2)].

The numerical value of the constant "0 is

"0 D 1

�0c2
' 8:854 187 817� 10�12 F m�1; (18.18)

where the constant �0 is the vacuum permeability and has a well-defined value in
SI units:

�0 D 4� 10�7 N A�2: (18.19)

Remark 18.2. The Maxwell equations (18.16) are independent of any observer,
since F and

#»
j are fields on E that do not make reference to any observer.

At this stage, we consider Maxwell equations (18.16) as a postulate at the
foundation of the classical theory of electrodynamics. We shall see in Sect. 18.7
that they can actually be derived from a principle of least action.

18.3.2 Alternative Forms

The Maxwell equation (18.16b) can be recast in a form involving the divergence
of the tensor F rather than the exterior derivative of ?F . To this aim, one shall
apply the Hodge star to (18.16b). Since from (14.77), ??j D j , there comes

?d ?F D "�1
0 j : (18.20)

d?F being a 3-form, its Hodge dual, ?d?F , is a 1-form. Let us consider the

metric dual vector,
����!
?d ?F , and evaluate its components by combining (14.75d)

and (15.64):

.?d?F /˛ D 1

6
����˛.d?F /���

D 1

6
����˛

�r�?F�� Cr�?F�� Cr�?F��
�
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D 1

6

�r�
�
����˛?F��

�Cr�
�
����˛?F��

�Cr�
�
����˛?F��

��

D 1

6

�r�.����˛?F��„ ƒ‚ …
2 .??F /�˛

/Cr�.����˛?F��„ ƒ‚ …
2 .??F /�˛

/Cr�.����˛?F��„ ƒ‚ …
2 .??F /�˛

/
�

D r�.??F /�˛ D �r�F �˛ D r�F ˛�;

where to get the third line, we have used r�����˛ D 0 since � is a constant
field on E (cf. Remark 15.9 p. 519) and for the fourth and fifth lines, we have
used the definition (14.75c) of the Hodge dual of ?F , i.e. ??F , as well as
property (14.77): ??F D �F and the antisymmetry of F . We recognize in r�F ˛�

the components of the divergence r �F ] of the tensor F ] introduced in Sect. 17.2.5
(cf. Sect. 15.4.6); hence,

����!
?d ?F D r � F ]: (18.21)

Using this relation in (18.20), there comes r � F ] D "�1
0

#»
j , so that the Maxwell

equations (18.16) can be expressed in terms of F and F ] as

dF D 0 (18.22a)

r � F ] D "�1
0

#»

j : (18.22b)

The components of these equations with respect to some coordinate system .x˛/ on
E are deduced from formulas (15.68) and (15.58) (the latter being applicable for F ]

is antisymmetric):

@Fˇ


@x˛
C @F
˛

@xˇ
C @F˛ˇ

@x

D 0 (18.23a)

1p� detg

@

@x�

�p� detg F ˛�
�
D "�1

0 j ˛ : (18.23b)

Let us take now the Hodge star of the Maxwell equation (18.16a). Since ??F D
�F , we have ?dF D � ? d ? .?F /. Now, by applying formula (18.21), which is
valid for any 2-form, to ?F rather than F , there comes ?d ? .?F / D r � ?F ].
We conclude that the Maxwell equations (18.16) can be recast solely in terms of the
Hodge dual of F as

r � ?F ] D 0 (18.24a)

d?F D "�1
0 ?j : (18.24b)
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Finally, gathering (18.24a) and (18.22b), we write Maxwell equations as

r � ?F ] D 0 (18.25a)

r � F ] D "�1
0

#»
j : (18.25b)

Remark 18.3. These last two equations, which are equalities between vectors, are
the Hodge duals of the original Maxwell equations (18.16), which were equalities
between 3-forms.

Remark 18.4. In the form (18.16), as well as (18.25), we note some asymmetry
between the two Maxwell equations: one has a source (?j or

#»

j ) and the other
has not (vanishing right-hand side). This asymmetry reflects the nonexistence of
magnetic charge, also called magnetic monopole. Would magnetic monopoles

exist, they would be described by a “magnetic 4-current” vector,
#»
h say, analogous to

the electric 4-current
#»
j describing electric charges, and Maxwell equations would

take the symmetric form

(
dF D "�1

0 ?h

d?F D "�1
0 ?j

”
 r � ?F ] D "�1

0

#»

h

r � F ] D "�1
0

#»

j :
(18.26)

Some theories, like Grand Unified Theories or string theory, predict the existence of
magnetic monopoles (see, e.g. Penrose (2007)) but none has been detected to date.

18.3.3 Expression in Terms of Electric and Magnetic Fields

We have noticed above that Maxwell equations are observer-independent. If how-
ever some observer is given, they can be written in terms of the couple .E ;

#»

B/

resulting from the decomposition of F with respect to the observer. More precisely,
let us consider a rigid array of inertial observers as defined in Sect. 8.2.4. Each
observer of the array has the same constant 4-velocity #»u and measures at each point
of his worldline an electric field E and a magnetic field

#»

B, the total electromagnetic
field F being reconstructible via (17.6). Let us start from the Maxwell equations
under the form (18.25). The components of the tensor F ] are deduced from (17.10)
and (17.18):

F ˛ˇ D u˛Eˇ �E˛uˇ C c ���˛ˇu�B�: (18.27)

Given that #»u and 4� are constant tensor fields on E , the divergence of F ] is

r�F ˛� D u˛r�E� � u�r�E˛ C c ���˛�u�r�B�: (18.28)
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As we have noticed in Sect. 17.2.5, ?F is deduced from F by substituting �cB for
E and E for cB. We obtain thus easily from (18.28) the components of r � ?F ] :

r�.?F /˛� D �cu˛r�B� C cu�r�B˛ C ���˛�u�r�E�: (18.29)

Let us split the Maxwell equation (18.25a) in two parts: one collinear to the
4-velocity #»u and the other one orthogonal to #»u . The first part is obtained by the
scalar product of (18.25a) with #»u . From the expression (18.29), we get

�c u˛u˛„ƒ‚…
�1
r�B� C cu�r�Œu˛B˛

„ƒ‚…
0

�C ���˛�u�u˛„ ƒ‚ …
0

r�E� D 0;

i.e.

r � #»

B D 0 : (18.30)

The part of (18.25a) orthogonal to #»u is obtained by means of the orthogonal
projector ?u:

.ı˛ˇ C u˛uˇ/
��cuˇr�B� C cu�r�Bˇ C ���ˇ�u�r�E�

� D 0
H) cu�r�B˛ C ���˛�u�r�E� D 0:

Now ���˛�u�r�E� D ��˛��u�r�E� , and by comparing with (15.71), we recognize
the curl of the field

#»

E . We have thus

cr #»u
#»
B C r�u

#»
E D 0:

But from (15.28), at any fixed point M 2 E , cr #»u
#»

B is nothing but the derivative
of the field

#»

B along the worldline of the inertial observer of the considered array
going through this point. We shall denote it by a partial derivative with respect to
the proper time t rather than by a full derivative as in (15.28), where there was only
one worldline. We obtain thus

r�u
#»

E D �@
#»
B

@t
: (18.31)

This is the so-called Maxwell–Faraday equation.
Let us now consider the orthogonal decomposition of the Maxwell equa-

tion (18.25b) with respect to #»u . Taking into account (18.28) and (18.12), the scalar
product of (18.25b) with #»u leads to

u˛u˛„ƒ‚…
�1
r�E� � u�r�Œu˛E˛

„ƒ‚…
0

�C c ���˛�u�u˛„ ƒ‚ …
0

r�B� D "�1
0 u˛j

˛

„ƒ‚…
��

;
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i.e.

r � #»

E D �

"0
: (18.32)

This is the so-called Maxwell–Gauss equation. The part of (18.25b) that is
orthogonal to #»u is [cf. (18.14)]

�u�r�E˛ C c ���˛�u�r�B� D "�1
0 .ı˛ˇ C u˛uˇ/j

ˇ

„ ƒ‚ …
c�1J ˛

:

Now, similarly to what we get for
#»
B, cr #»u

#»
E D @

#»
E=@t . Using 1=."0c2/ D �0

[Eq. (18.18)], we obtain then

r�u
#»
B D �0 #»

J C 1

c2
@

#»

E

@t
: (18.33)

This is the so-called Maxwell–Ampère equation.
We conclude that the two Maxwell equations expressed in terms of F and

#»
j

are equivalent to the system of four equations (18.30), (18.31), (18.32) and (18.33)
involving the fields E ,

#»
B, � and

#»
J relative to a rigid array of inertial observers.

Remark 18.5. The number of components of the two systems of equations are of
course the same: the original Maxwell equations, either in the form of identities
between 3-forms [version (18.16)] or in the form of identities between vectors
[version (18.25)], have 4 C 4 D 8 components.4 The Maxwell equations in terms
of .E ;

#»
B/ are identities between scalars [Eqs. (18.30) and (18.32)] or vectors in

the three-dimensional space Eu [Eqs. (18.31) and (18.33)]. They comprise thus
1C 1C 3C 3 D 8 components.

Remark 18.6. In connection with Remark 18.4 p. 595, if there existed magnetic
monopoles, represented by a 4-current

#»

h , the right-hand side of (18.30) would
contain �m WD � #»u 0 � #»

h and that of (18.31)
#»

J m WD c?u0
#»

h , making the Maxwell
equations symmetric in

#»

E and
#»

B.

Historical note: The equations ruling the dynamics of the electromagnetic field
have been published between 1861 and 1865 by James Clerk Maxwell5 (1861;
1865). They were formulated in a preferred frame, that of aether, comprised

4Let us recall that the space of 3-forms is four-dimensional; cf. (14.40).
5James Clerk Maxwell (1831–1879): Scottish theoretical physicist, famous for having unified
electricity, magnetism and optics.
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20 components and gave a privileged role to the magnetic potential6
# »

A . The modern
three-dimensional form of Maxwell equations, namely, Eqs. (18.30)–(18.33), which
do not involve any potential, but only the vectors

#»
E and

#»
B, is due to Oliver

Heaviside7 in 1885 (Heaviside 1885) and to Heinrich Hertz8 in 1890 (Hertz 1890)
(cf. (Darrigol 2005)). The four-dimensional formulation of Maxwell equations, in
the form of the two equations (18.25), which involve the divergence of the tensor F ]

and its Hodge dual, dates from 1908: it is the work of Hermann Minkowski (cf. p. 26)
(1908) in the framework of special relativity and no longer of the theory of aether.

Also, let us stress that we have obtained the four equations (18.30)–(18.33) ruling
#»
E and

#»
B for an arbitrary inertial observer. The fact that their shape is independent

of the choice of this observer is a manifestation of the relativity principle discussed
in the historical note p. 288. This confirms that the latter is not a first principle in
the present exposition of special relativity but is deduced within the framework set at
the beginning (Minkowski spacetime) and the four-dimensional Maxwell equations,
based on the electromagnetic field tensor F .

18.4 Electric Charge Conservation

18.4.1 Derivation from Maxwell equations

Maxwell equation (18.16b) is an identity between two 3-forms. Applying the
exterior derivative operator to each side and using dd?F D 0 [nilpotent character
of the exterior derivative; cf. (15.74)], there comes immediately

d?j D 0: (18.34)

In other words, the 3-form ?j is closed. An important consequence is9

For any closed hypersurface˙ � E , the flux of the electric 4-current through
˙ vanishes:

6The magnetic potential will be introduced in Sect. 18.5.2.
7Oliver Heaviside (1850–1925): English physicist and mathematician; self-taught, he contributed
to many domains of electromagnetism and mathematics (vector analysis, differential equations).
8Heinrich Hertz (1857–1894): German physicist, author of many works in electromagnetism and
famous for having experimentally shown the existence of electromagnetic waves.
9Let us recall that for a hypersurface, closed means compact and without boundary.
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˙ closed H) ˚˙.
#»

j / D
Z

˙

?j D 0 ; (18.35)

where (16.44) has been used to identify the flux of
#»
j with the integral of the

3-form ?j .

Proof. If ˙ is closed, it can be considered as the boundary of a four-dimensional
domain U , and Stokes theorem (16.46) gives

Z

˙

?j D
Z

U
d?j D 0;

the last equality resulting from (18.34). ut
The property (18.35) is similar to that stated in Sect. 9.3.3 for the conservation

of the 4-momentum of an isolated system [Eq. (9.36)] and expresses the electric
charge conservation. Indeed, let us consider two three-dimensional domains V and
V 0 as the extremities of a four-dimensional domain U (cf. Fig. 18.3), such that V
lies in the rest space Eu0 .t/ of some inertial observer O and V 0 in the rest space
Eu0

0
.t 0/ of some inertial observer O 0. O and O 0 can be the same observer, but then

the instants t and t 0 must be different. The boundary˙ WD @U of U is the union of
V , V 0 and a third hypersurface W (the “vertical wall” of the “tube”, cf. Fig. 18.3).
˙ is a closed hypersurface, so that the result (18.35) implies

˚˙.
#»
j / D ˚V .

#»
j /C˚V 0.

#»
j /C ˚W .

#»
j / D 0: (18.36)

Now Q0 D ˚V 0.
#»

j / is nothing but the total electric charge of the domain V 0
[cf. Eq. (18.1)]. For V , it is the same thing up to a sign, for the orientation of V
as a boundary of U provides it with a past-directed normal (cf. Fig. 18.3), and the
electric charge is obtained from the future-directed normal [4-velocity #»u 0 in (18.1)].
We have thusQ D �˚V .

#»

j /. Let us assume that the tube U is electrically isolated,
in the sense that no charged particle crosses the boundary W , then ˚W .

#»

j / D 0

and (18.36) reduces to �QCQ0 D 0, i.e.

Q0 D Q : (18.37)
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Fig. 18.3 Electric charge
conservation between two
three-dimensional domains V
and V 0

This result can be interpreted in two ways:

• Conservation law for a given observer: if O 0 coincides with observer O , the
domain V 0 can be seen as resulting from the evolution of domain V from t

to t 0, and (18.37) means that the electric charge stays constant. The insulation
condition ˚W .

#»
j / D 0 can be then interpreted as the absence of any charged

particle crossing the boundary of the volume V between t and t 0.
• Invariance under a change of observer: if O and O 0 are two different observers,

the result (18.37) expresses the invariance of the electric charge when moving
from one observer to the other.

Remark 18.7. We have just shown that the law of conservation (or invariance) of the
electric charge is a consequence of Maxwell equations; there is therefore no need to
postulate it separately.

Remark 18.8. The above demonstration does not require the conservation of the
number of particles between V and V 0: some reactions between particles can occur,
as illustrated in Fig. 18.3. The number of charged particles may then vary, but the
total charge stays constant.

In view of (15.88), the divergence of the vector field
#»

j is the opposite of the
Hodge dual of the 4-form d?j : r� #»

j D �?d?j . The property (18.34) from which
the conservation of the electric charge has been deduced is thus equivalent to

r � #»

j D 0 : (18.38)

The electric 4-current is thus a divergence-free vector field.

Remark 18.9. An alternative way to obtain this result is to start from the expression
of r � #»

j in terms of the components j ˛ of
#»
j in a coordinate system .x˛/, as given

by (15.54):
p� detg r � #»

j D @=@x�.p� detg j�/. Replacing j� via the Maxwell
equation (18.23b), we get

p� detg r � #»

j D "0 @2

@x�@x�

�p� detgF ��
�
:
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F being antisymmetric, we have F�� D �F ��. Since, on the contrary, @2=@x�@x�

is symmetric, we deduce that the above expression vanishes, recovering (18.38).

Remark 18.10. The electric charge conservation in the form (18.35), namely,
˚˙.

#»
j / D 0 for any closed hypersurface˙ , can be deduced from r � #»

j D 0, thanks
to the four-dimensional Gauss–Ostrogradsky theorem established in Sect. 16.5.2.
Indeed, considering that ˙ is the boundary of a four-dimensional domain U , the
Gauss–Ostrogradsky theorem (16.64) yields

˚˙.
#»
j / D

Z

U
r � #»

j dU;

so that (18.38) does imply ˚˙.
#»

j / D 0.

18.4.2 Expression in Terms of Charge and Current Densities

Let us decompose the 4-current
#»
j into the charge density � and the current

density
#»
J both relative to some inertial observer O , according to (18.11). The

components of
#»
j in O’s frame are then j ˛ D .�; J i=c/. Accordingly (18.38)

becomes (using (15.54) for expressing the divergence in terms of the coordinates
.x˛/ associated with O):

@�

@x0
C @

@xi

�
J i

c

	
D 0;

where we have set detg D �1 since the coordinates .x˛/ are inertial. Writing x0 D
ct and noticing that @J i =@xi D r � #»

J for J 0 D � #»u 0 � #»
J D 0, there comes

@�

@t
C r � #»

J D 0 : (18.39)

We recover here a familiar equation in physics: that expressing the conservation of a
quantity (electric charge, mass, baryon number, etc.) in terms of the volume density
of that quantity (�) and the corresponding current density (

#»
J ).

18.4.3 Gauss Theorem

Let S be a closed10 2-surface delimiting a three-dimensional domain V � E : S D
@V . S and V can lie in the rest space of some observer, but this is not necessary.
The electric charge Q contained in V is expressed via (18.2) as the integral over

10Compact and without boundary, as, for instance, a sphere.



602 18 Maxwell Equations

V of the 3-form ?j . Since by the Maxwell equation (18.16b), ?j D "0d ? F , we
can write

Q D "0
Z

V

d?F D "0
Z

S

?F ;

where the second equality results from Stokes theorem (16.46). Hence the integral
of the 2-form ?F over the 2-surface S is (up to some "0 factor) the electric charge
contained inside S :

Z

S
?F D Q

"0
: (18.40)

This result is known as Gauss theorem.
If we consider an inertial observer O and S in the rest space of O , we can express

?F in terms of the electric and magnetic fields .E ;
#»
B/ measured by O via (17.21).

There comes then
Z

S

?F D �
Z

S

u0 ^ cB
„ ƒ‚ …

0

C
Z

S

?.u0 ^E/ D
Z

S

�. #»u 0;
#»
E ; :; :/; (18.41)

where the vanishing of the first integral results from the fact that #»u 0 is orthogonal
to S , so that for any elementary vector d

#»
` tangent to S , hu0; d

#»
` i D 0

[cf. the definition (16.17b) of an integral over a 2-surface]. The second equality
in (18.41) arises from the expression (14.79) of the Hodge star applied to some
exterior product. For any couple .d

#»
` 2; d

#»
` 3/ of elementary vectors tangent to

S , �. #»u 0;
#»
E ; d

#»
` 2; d

#»
` 3/ involves only the part of

#»
E that is orthogonal to S ,

i.e. the vector . #»s � #»
E/ #»s , where #»s is the unit normal to S within .Eu0 ;g/,

oriented towards the exterior of S . We have thus �. #»u 0;
#»

E ; d
#»

` 2; d
#»

` 3/ D
. #»s � #»

E/ �. #»u 0;
#»s ; d

#»

` 2; d
#»

` 3/. Now, on S , �. #»u 0;
#»s ; :; :/ is nothing but the area

element 2-form [cf. Eq. (16.29)]. We conclude that
Z

S
?F D

Z

S

#»

E � #»s dS; (18.42)

so that the Gauss theorem (18.40) can be expressed in terms of the flux of the vector
#»

E through the surface S [within the three-dimensional space .Eu0 ;g/]:

Z

S

#»

E � #»s dS D Q

"0
: (18.43)

Remark 18.11. This result can also be obtained from the Maxwell–Gauss equa-
tion (18.32), using the three-dimensional Gauss–Ostrogradsky theorem (16.62) and
expression (18.13) of Q:

Z

S

#»

E � #»s dS D
Z

V
r � #»

E dV D 1

�0

Z

V
� dV D Q

�0
:
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Note also that the same Gauss–Ostrogradsky theorem applied to the three-
dimensional Maxwell equation (18.30), r � #»

B D 0, leads to the vanishing of
the flux of

#»

B through any closed surface S .

18.5 Solving Maxwell Equations

18.5.1 Four-Potential

The Maxwell equation dF D 0 [Eq. (18.16a)] means that the 2-form F is closed.
From Poincaré lemma (cf. Sect. 15.5.3), there exists (at least locally) a 1-form A

such that F is the exterior derivative of A:

F D dA : (18.44)

A is called electromagnetic four-potential, or electromagnetic 4-potential for
short. Given a coordinate system .x˛/ on E , the components of A are related to
that of F via (15.62) and (15.67):

F˛ˇ D r˛Aˇ � rˇA˛ D @Aˇ

@x˛
� @A˛
@xˇ

: (18.45)

The advantage to work with A, rather than with F , is that the first of the two
Maxwell equations (18.22) is automatically satisfied since ddA D 0 (nilpotent
character of the exterior derivative; cf. Sect. 15.5.3). The second Maxwell equa-
tion (18.22b) is expressed in terms of F ], whose components are related to that
of A via (17.18) and (18.45):

F ˛ˇ D g˛�gˇ� �r�A� � r�A�
� D r˛Aˇ � rˇA˛; (18.46)

where A˛ D g˛�A� are the components of the vector
#»
A, metric dual of the 1-form

A, and

r˛ WD g˛�r� : (18.47)

Extending the arrow notation introduced in Sect. 1.6, we shall write
#»r for the

operator whose components arer˛ . While the covariant derivative operator r maps
a tensor field of type .k; `/ to a tensor field of type .k; `C 1/, the operator

#»r maps
it to a tensor field of type .k C 1; `/. In particular, for any scalar field f ,

#»rf is the
vector field that is metric dual to the gradient of f [cf. Eq. (15.60)]:

#»rf D �!df ” r˛f D g˛� @f
@x�

: (18.48)
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Inserting (18.46) into the Maxwell equation (18.22b), we get

r�r˛A� � r�r�A˛ D "�1
0 j ˛: (18.49)

In this equation, there appears the d’Alembertian operator

� WD r�r� : (18.50)

If .x˛/ are inertial coordinates, r� D @=@x� and r� D ���@=@x� , so that r� D
.�@=@x0; @=@x1; @=@x2; @=@x3/. Hence, setting .x˛/ D .ct; x; y; z/,

� D ��� @

@x�
@

@x�
D � 1

c2
@2

@t2
C @2

@x2
C @2

@y2
C @2

@z2
(inertial coord.): (18.51)

Remark 18.12. Contrary to the operators covariant derivative or divergence, the
d’Alembertian maps a tensor field of type .k; `/ to a tensor field of the same type.

Taking into account r�r˛A� D r˛r�A�, we can write the Maxwell equa-
tion (18.49) as

� #»
A � #»r .r � #»

A/ D �"�1
0

#»
j : (18.52)

18.5.2 Electric and Magnetic Potentials

Given an inertial observer O , we may decompose the 1-form A orthogonally with
respect to O’s 4-velocity #»u 0, according to

A DW V u0 C c� with h� ; #»u 0i D 0: (18.53)

The scalar field V thus introduced is called electric potential relative to O , while
the vector field

# »

A metric dual to the 1-form� is called magnetic potential relative
to O . The components of A and

#»
A in O’s frame . #»e ˛/ are

A˛ D .�V; cA1; cA2; cA3/ and A˛ D .V; cA 1; cA 2; cA 3/; (18.54)

with A i D Ai since . #»e ˛/ is an orthonormal basis.
Inserting (18.53) into (18.44) leads to the expression of the electromagnetic field

in terms of the potentials V and� :

F D dV ^ u0 C c d� : (18.55)
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Note that use has been made of (15.76) in the form d.V u0/ D d.V ^ u0/ D dV ^
u0 C V ^ du0 D dV ^ u0, since du0 D 0, u0 being a constant field on E (for O
is inertial).

The electric field measured by O is E D F .:; #»u 0/ [Eq. (17.7)], so that (18.55)
yields

E D �dV � hdV; #»u 0i u0 C c d� .:; #»u 0/: (18.56)

The first two terms let appear the orthogonal projection of dV onto Eu [cf.
Eq. (3.12)]: dV ChdV; #»u 0i u0 D dV ı?u. Regarding the last term, its components
in the inertial coordinates .x˛/ associated with O are .d� .:; #»u 0//˛ D .r˛Aˇ �
rˇA˛/u

ˇ
0 D �uˇ0rˇA˛ , taking into account Aˇuˇ0 D 0 and r˛uˇ0 D 0. Thus we

obtain

E D �dV ı?u � c r #»u 0� : (18.57)

Let us introduce the notation

r?uV WD dV ı?u: (18.58)

r?u is the “purely spatial” gradient operator (with respect to O): it contains only
the components of the gradient of V in directions tangent to O’s rest space. While
the components of dV are .dV /˛ D @V=@x˛ , those of r?uV are

.r?uV /˛ D
�
0;

@V

@x1
;
@V

@x2
;
@V

@x3

	
: (18.59)

Denoting the operator c r #»u 0 by a partial derivative with respect to the coordinate
t WD x0=c, as in Sect. 18.3.3, Eq. (18.57) becomes

E D �r?uV �
@�
@t

; (18.60)

whose components are

E0 D 0 and Ei D � @V
@xi
� @Ai

@t
: (18.61)

In a stationary regime, @=@t D 0 and E D �r?uV , which justifies the qualifier
electric given to the potential V .

On its side, the magnetic field
#»
B measured by O is obtained by substitut-

ing (18.55) for F in (17.8), with, according to (14.79),

?.dV ^ u0 C c d� / D �.
#»rV; #»u 0; :; :/C c ? d� :

Since �.
#»rV; #»u 0;

#»u 0; :/ D 0, we get

B D ?d� . #»u 0; :/: (18.62)
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Now, from (15.70), the right-hand side is nothing but the 1-form metric dual of the
curl of

# »� . We may thus write

#»

B D r�u0

# »� : (18.63)

This formula justifies the qualifier magnetic given to the potential
# »� .

18.5.3 Gauge Choice

From its very definition, the 1-form A is not unique: for a given electromagnetic
field F , A is determined up to the gradient of a scalar field: if A fulfils dA D F ,
then for any scalar field � , we have also dA0 D F with

A0 WD A C d� : (18.64)

This results from the nilpotence of the exterior derivative: dd� D 0. The possibility
to choose freely � in (18.64) is named gauge freedom, a specific choice of A being
named a gauge choice. Let us stress that different gauge choices lead to the same
physical solution, since the latter is entirely described by the field F . In particular,
A is not a measurable quantity.11 We may take advantage of the gauge freedom to
simplify the only non-trivial Maxwell equation in terms of A, namely, Eq. (18.52).
Indeed, we can set to zero the divergence of

#»

A which appears in the second term of
this equation: the change of gauge relation (18.64) leads to12

r � #»
A0 D r � #»

A C r � #»r� D r � #»
A C��: (18.65)

If r � #»

A 6D 0, it suffices to solve the scalar d’Alembert equation �� D �r � #»

A to
warrant r � #»

A0 D 0. The gauge choice

r � #»
A D 0 (18.66)

is called Lorenz gauge.

Remark 18.13. The gauge name is Lorenz (and not Lorentz), from the Danish
physicist Ludvig Valentin Lorenz (1829–1891). The name Lorentz, omnipresent up
to here, stands for the Dutch physicist Hendrik A. Lorentz (cf. p. 108), who gave

11This is true at least in classical electrodynamics; things are different in the quantum regime,
where A, or more precisely its integral, is directly involved in the measure of a phenomenon called
the Aharonov–Bohm effect (cf., e.g. Sect. 12.3.3 of Le Bellac (2006)).
12Cf. (18.48) and Remark 15.4 p. 504.
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his name to the Lorentz transformation, the Lorentz group, the Lorentz factor and
the Lorentz force, but not to the gauge. The latter has been introduced in 1867 by
L.V. Lorenz (see, e.g. Jackson and Okun (2001)). Many textbooks are incorrect on
this point, among which the famous books by Landau and Lifshitz (1975), Feynman
(2011) and the first two editions of Jackson’s treatise but not the third one (Jackson
1998).

One must stress that the choice of Lorenz gauge does not fully determine the
4-potential A. Indeed, Eq. (18.65) shows that if A fulfils Lorenz gauge, any other
4-potential A0 related to A by (18.64) with � such that �� D 0 obeys Lorenz
gauge too.

Within Lorenz gauge, the Maxwell equation (18.52) reduces to a d’Alembert
equation for the vector

#»

A:

� #»
A D �"�1

0

#»
j (Lorenz gauge): (18.67)

18.5.4 Electromagnetic Waves

Expressing the exterior derivative in the relation F D dA in terms of the covariant
derivative [cf. (15.62)] and using the fact that � and r commute (this is readily seen
in inertial coordinates), we can write �F˛ˇ D �.r˛Aˇ � rˇAˇ/ D r˛.�Aˇ/ �
rˇ.�A˛/, i.e., invoking (18.67),

�F D �"�1
0 dj : (18.68)

In other words, the electromagnetic field tensor obeys a d’Alembert equation with
the exterior derivative of j as a source.

Remark 18.14. We have used the Lorenz gauge, in the form (18.67), to get (18.68),
but the result is independent of any gauge choice, since it regards only the physical
fields F and

#»

j . It is by the way easy to derive (18.68) directly from the Maxwell
equations dF D 0 and r � F ] D "�1

0

#»

j [Eq. (18.22)].

In vacuum,
#»
j D 0, and (18.68) reduces to

�F D 0 (vacuum): (18.69)

This is a wave equation for F . For this reason, electromagnetic fields in regions free
of electric charges are called electromagnetic waves. The velocity of propagation
of these waves with respect to an inertial observer is the velocity that appears
in expression (18.51) of the d’Alembertian operator: it is the constant c, velocity
of light.

Example 18.1. In the case of a field F that is constant in 2-planes ft D const; x D
constg of a given inertial observer O , the general solution of (18.69) is
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F .ct; x; y; z/ D F 1.x � ct/C F 2.x C ct/; (18.70)

where F 1.x�ct/ stands for a field of 2-forms on E whose components .F1/˛ˇ with
respect to O depend only on the variable x�ct (idem for F 2.xCct/). This solution
is called plane wave. If F 2 D 0, the wave propagates at the velocity dx=dt D c in
the direction of increasing x, whereas if F 1 D 0, it propagates at the velocity c in
the direction of decreasing x.

18.5.5 Solution for the 4-Potential in Lorenz Gauge

Within Lorenz gauge, the problem of solving Maxwell equations is reduced to
finding a solution to the d’Alembert equation (18.67) for the 4-potential A. The stan-
dard technique consists in introducing some Green function of the d’Alembertian
operator, i.e. some function G W E � E ! R such that for any point N 2 E , the
scalar fieldG.:;N / W E ! R,M 7! G.M;N/ is a solution of d’Alembert equation
having as source the Dirac distribution on .E ;g/ centred on N (cf. Sect. 18.2.1):

�G.:;N / D ıN : (18.71)

The advantage of Green functions is that the general solution of the scalar
d’Alembert equation with a given source S ,

�˚ D S; (18.72)

is expressed as

˚.M/ D ˚0.M/C
Z

E
S.N /G.M;N/ dU; (18.73)

where ˚0 is a solution of the wave equation: �˚0 D 0. In (18.73),N stands for the
generic point in the integration over E , and dU is the 4-volume element around N
[cf. (16.2) and (16.4)]. The general solution (18.73) stems readily from the linearity
of the operator � and from the property (18.3) of Dirac distribution.

For a given operator, the Green function is not unique. The difference between
two Green functions is a solution of the homogeneous equation (i.e. the equation
with S D 0). In the case of the d’Alembertian operator, two standard Green
functions are

Gret.M;N / D � 1

2�
ı
�

#      »
NM � #      »

NM
�
� .� #»u 0 � #      »

NM/ (18.74a)

Gadv.M;N / D � 1

2�
ı
�

#      »
NM � #      »

NM
�
� . #»u 0 � #      »

NM/ ; (18.74b)
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where ı is the Dirac distribution over R, � the Heaviside step function: � W R!
R, x 7! 0 if x < 0 and 1 if x � 0, and #»u 0 is the 4-velocity of some inertial observer
O . The Green functions (18.74) are independent of the choice of that observer, the
Heaviside step function involving only the sign of the scalar product #»u 0 � #      »

NM : since
the function ı is nonzero only for

#      »
NM � #      »

NM D 0, i.e. for
#      »
NM null, it is easy to

see that for any other observer of 4-velocity #»u 0
0,

#»u 0
0 �

#      »
NM has the same sign as

#»u 0 � #      »
NM . For a fixed N , the Green function Gret.:; N / is zero everywhere except

on the future light cone of N , where it shows a singularity of the Dirac distribution
kind; Gret is called the retarded Green function. Conversely, the Green function
Gadv.:; N / vanishes everywhere except on the past light cone of N ; it is called the
advanced Green function. The retarded Green function is causal: the source at N ,
S.N /, will contribute to ˚.M/ via the integral (18.73) only if � #»u 0 � #      »

NM � 0, i.e.
if M is located on the future light cone of N .

Given a system of inertial coordinates x˛ D .ct; x1; x2; x3/ on E , expres-
sions (18.74) can be recast as

Gret.M;N / D � 1

4�rNM
ı.ctM � ctN � rNM / (18.75a)

Gadv.M;N / D � 1

4�rNM
ı.ctM � ctN C rNM /; (18.75b)

where r2NM WD
P3

iD1.xiM �xiN /2. We shall not demonstrate here expression (18.74)

or (18.75) for the Green functions of the d’Alembertian (cf., e.g. Jackson (1998)).
Let us go back to the problem of solving d’Alembert equation (18.67) for the

4-potential
#»
A. If a system of inertial coordinates .x˛/ is given on E , this equation is

reduced to four scalar d’Alembert equations [i.e. of the type (18.72)]: one for each
componentA˛ of

#»
A: �A˛ D �"�1

0 j
˛ , ˛ 2 f0; 1; 2; 3g.

Remark 18.15. This would not be true if the coordinates .x˛/ were not inertial.
The components of the operator � D r�r� would then let appear the Christoffel
symbols, which would make the four equations a coupled system (cf. the examples
of Sect. 15.4.4 based on spherical coordinates).

We may then write the solution in the form (18.73) with ˚ D A˛ and S D �"�1
0 j

˛ .
Using the retarded Green function (18.74a), there comes

A˛.M/ D A˛0.M/� 1

"0

Z

E
j ˛.N /Gret.M;N / dU; (18.76)

where A˛0 stands for the components of a general solution of the homogeneous
d’Alembert equation (wave equation): � #»

A0 D 0. The retarded Green function has
been chosen to get a causal solution, but mathematically speaking, the solution with
the advanced Green function would have been as much valid. The part

#»

A0 of the
solution allows one to impose physical properties to the problem under study (initial
or boundary conditions). In general, the system is assumed to be isolated, with no
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incoming wave:
#»
A0 D 0. We shall limit ourselves to this case. Making Gret explicit

via (18.74a), we obtain then

A˛.M/ D 1

2�"0

Z

E
j ˛.N / ı

�
#      »
NM � #      »

NM
�
� .� #»u 0 � #      »

NM/ dU : (18.77)

Denoting by .x˛/ the coordinates ofM in the employed coordinate system, by .x0˛/
those of N , and using for #»u 0 the first vector of the corresponding coordinate basis,
we get

A˛.x0; x1; x2; x3/ D 1

2�"0

Z

E
j ˛.x00; x01; x02; x03/ ı

�
���.x

� � x0�/.x� � x0�/
�

�� .x0 � x00/ dx00dx01dx02dx03: (18.78)

In order for (18.77) to be a solution of Maxwell equations, there remains to check
that it obeys Lorenz gauge (18.66); if not, the d’Alembert equation (18.67) that it
fulfils would not be equivalent to the Maxwell equation (18.52). We shall not check
it here, except for the Liénard–Wiechert solution (cf. Remark 18.18 below), but this
is actually the case (see, e.g. Barut (1964), p. 162).

By virtue of the relations A˛ D .V; cA 1; cA 2; cA 3/ [Eq. (18.54)] and j ˛ D
.�; J 1=c; J 2=c; J 3=c/ [Eq. (18.11)], the solution (18.76) (with A˛0 D 0) leads to the
following expression of the electric and magnetic potentials:

V D 1

4�"0

Z

E

�.x00; x01; x02; x03/
r.xi ; x0i /

ı
�
x0 � x00 � r.xi ; x0 i /

�
dx00dx01dx02dx03

A i D �0

4�

Z

E

J i .x00; x01; x02; x03/
r.xi ; x0i /

ı
�
x0 � x00 � r.xi ; x0i /

�
dx00dx01dx02dx03

where V and A i are evaluated at the point of coordinates .x0; x1; x2; x3/,

r.xi ; x0i / WD
qP3

iD1.xi � x0i /2 and use has been made of the form (18.75a)

of Gret rather than (18.74a) as in (18.78). Integrating on x00, there comes, given the
definition of Dirac distribution,

V.ct; x1; x2; x3/ D 1

4�"0

Z

R3

�
�
ct � r.xi ; x0i /; x01; x02; x03�

r.xi ; x0i /
dx01dx02dx03 (18.79)

A i .ct; x1; x2; x3/ D �0

4�

Z

R3

J i
�
ct � r.xi ; x0i /; x01; x02; x03�

r.xi ; x0i /
dx01dx02dx03 :

(18.80)

The fields V and
# »

A given by the above formulas are called retarded potentials.
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Remark 18.16. The integrals (18.79)–(18.80) are integrals on the past light cone of
the pointM where the potential is evaluated, each point on the cone being specified
by the coordinates .x01; x02; x03/ of its orthogonal projection onto the hyperplane
t D 0.

18.6 Field Created by a Moving Charge

Let us apply the results of the above section to the computation of the electro-
magnetic field created by a particle P of charge q and arbitrary worldline L (in
particular, P can be accelerated).

18.6.1 Liénard–Wiechert 4-Potential

The electric 4-current corresponding to particle P is given by formula (18.5) with
N D 1:

8M 2 E ;
#»
j .M/ D q

Z C1

�1
ıX.	/.M/ #»u .	/ c d	; (18.81)

where 	 is P’s proper time, #»u .	/ its 4-velocity and X.	/ 2 L its position on the
worldline at the instant 	 . Let us substitute this value for

#»

j in the expression (18.77)
of the 4-potential in Lorenz gauge:

A˛.M/ D q

2�"0

Z

E

Z C1

�1
ıX.	/.N / u˛.	/ ı

�
#      »
NM � #      »

NM
�
� .� #»u 0 � #      »

NM/ c d	 dU:

Performing the integration over E (generic pointN and volume element dU ) yields,
taking into account the term ıX.	/.N /,

A˛.M/ D q

2�"0

Z C1

�1
u˛.	/ ı

�
#             »

X.	/M � #             »

X.	/M
�
� .� #»u 0 � #             »

X.	/M/ c d	:

To evaluate this integral, let us appeal to a well-known property of Dirac distribution
on R: for any couple of functions .f; g/, such that g has m zeros, .	a/1�a�m, and
g0.	a/ 6D 0 for all of them,

Z 1

�1
f .	/ ı.g.	// d	 D

mX

aD1

f .	a/

jg0.	a/j : (18.82)

In the present case, f .	/ WD c u˛.	/ � .� #»u 0 � #             »

X.	/M/ and g.	/ WD #             »

X.	/M �
#             »

X.	/M . M being fixed, the function g.	/ has only two zeros: the proper times
	P and 	Q of the intersections P and Q of the light cone of M , I .M/, with the
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Fig. 18.4 Intersections P
and Q of the light cone of M
with the worldline L of the
charged particle

worldline L . L being a timelike curve, it is easy to see that the intersection of
I .M/ with L is formed by exactly two points (except if M 2 L ): P 2 I �.M/

(past light cone) andQ 2 I C.M/ (future light cone) (cf. Fig. 18.4). The derivative
of g is

g0.	/ D 2 #             »

X.	/M � d

d	

#             »

X.	/M D �2c #             »

X.	/M � #»u .	/;

where we have used the fact that M is fixed to let appear P’s 4-velocity according
to (2.12). Formula (18.82) leads then to

A˛.M/ D q

4�"0

"
u˛.	P /� .� #»u 0 � #     »

PM/

j #»u .	P / � #     »
PM j C u˛.	Q/� .� #»u 0 � #      »

QM/

j #»u .	Q/ � #      »
QM j

#
: (18.83)

Now, Q being in the future of M , � .� #»u 0 � #      »
QM/ D 0, whereas for P , � .� #»u 0 �

#     »
PM/ D 1. Besides, j #»u .	P / � #     »

PM j D � #»u .	P / � #     »
PM . We obtain thus a very simple

formula for the 4-potential created at M by the charge P13:

A.M/ D � q

4�"0

u.	P /
#»u .	P / � #     »

PM
with fP g D L \I �.M/: (18.84)

The electromagnetic 4-potential given by (18.84) is called Liénard–Wiechert
4-potential. The denominator in (18.84),

R WD � #»u .	P / � #     »
PM; (18.85)

13Note that we have taken the metric dual to get the 1-form A instead of the vector
#»

A.
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Fig. 18.5 Interpretation of
R D � #»u .	P / � #     »

PM as the
distance between P and the
point M 0 that, for observer
OP , is (i) simultaneous to P
and (ii) at the same spatial
position as M

can be interpreted as follows (cf. Fig. 18.5). SinceM lies in the future ofP , we have
R � 0. Let us then consider the inertial observer OP whose worldline is tangent to
that of P at P . His 4-velocity is then #»u .	P /, and R appears as the spatial distance
between P and the point M 0 that is simultaneous to P for OP and has the same
spatial coordinates as M with respect to OP . In particular, we can write

#     »
PM D R Œ #»u .	P /C #»m� ; with #»u .	P / � #»m D 0 and #»m � #»m D 1; (18.86)

the last condition ensuring
#     »
PM � #     »

PM D 0, since
#     »
PM � #     »

PM D R.�1C #»m � #»m/.
Let us now introduce an arbitrary inertial observer O (proper time t , 4-velocity

#»u 0, coordinates .x˛/ D .ct; xi /) and express from (18.84) the electric and magnetic
potentials, V and

# »

A , relative to O . To this aim, we perform the orthogonal
decomposition of

#     »
PM with respect to O and not with respect to OP as in (18.86):

#     »
PM DW r . #»u 0 C #»n / ; with #»u � #»n D 0 and #»n � #»n D 1: (18.87)

As for #»m in (18.86), the unit character of #»n results from the fact that
#     »
PM is null.

Similarly, r is positive and can be interpreted as the distance between the events
P 0 and M in O’s rest space at time t , Eu0 .t/, P

0 being the position that particle
P would have at time t if it was at rest with respect to O (cf. Fig. 18.6). In other
words, the coordinates .xi / of P 0 are identical to the coordinates .xi / ofP . We have
#      »

PP 0 D r #»u 0, hence

r D c.t � tP / ” tP D t � r
c
: (18.88)

Let us express the 4-velocity of P in terms of its velocity
#»
V relative to O via (4.31):

#»u D � . #»u 0Cc�1 #»
V /, where� D .1� #»

V � #»V =c2/�1=2. Equation (18.85) becomes then

R D r � .	P /
"
1 �

#»n � #»

V .	P /

c

#
; (18.89)
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Fig. 18.6 Orthogonal
decomposition of the null
vector

#     »

PM with respect to
the inertial observer O:
#     »

PM D r . #»u 0 C #»n / with #»n

being a unit vector and
r D c.t � tP /, t and tP being
the time coordinates of,
respectively, M and P
relative to O

so that (18.84) can be written as

A.M/ D 1

4�"0

q

r
h
1 � #»n � #»

V .	P /

c

i
�

u0 C
1

c
V .	P /

�
: (18.90)

Comparing with (18.53), we obtain immediately

V.M/ D 1

4�"0

q

r
h
1 � #»n � #»

V .	P /

c

i ; (18.91)

# »

A .M/ D �0

4�

q

r
h
1 � #»n � #»

V .	P /

c

i #»
V .	P / : (18.92)

The potentials V and
# »

A given by the above formulas are called Liénard–Wiechert
potentials.

Remark 18.17. We have written
#»

V as a function of 	P , but it can as well be
considered as a function of the time coordinate t of the event P with respect to
O , i.e. tP . The latter is related to the coordinate t of M by (18.88) (retarded time).

Historical note: Formulas (18.91) and (18.92) have been derived in 1898 by
Alfred-Marie Liénard14 (1898). They have been reobtained independently by Emil
Wiechert15 in 1900 (Wiechert 1900). The four-dimensional version, i.e. expres-
sion (18.84) for the 4-potential A, has been given by Arnold Sommerfeld (p. 27)
in 1910 (Sommerfeld 1910b).

14Alfred-Marie Liénard (1869–1958): French physicist and engineer; director of École des Mines
in Paris from 1929 to 1936.
15Emil Wiechert (1861–1928): German geophysicist; he knew quite well Hilbert (p. 361),
Minkowski (p. 26) and Sommerfeld (p. 27), because the four of them made their studies at the
University of Königsberg and later on were professors at the University of Göttingen.
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18.6.2 Electromagnetic Field

The electromagnetic field F is obtained as the exterior derivative of A. To evaluate
it, let us write from (18.84) and (18.85) the components of A in a system of inertial
coordinates .x˛/:

A˛ D q

4�"0

u˛.	P /

R
: (18.93)

We have then

@A˛

@xˇ
D q

4�"0

�
1

R

du˛
d	

@	P

@xˇ
� u˛
R2

@R

@xˇ

	
: (18.94)

Now, up to a c factor, du˛=d	 is nothing but the component a˛ of the 4-acceleration
#»a of particle P . Regarding @	P =@xˇ , it is evaluated from

#     »
PM � #     »

PM D 0. Indeed,
this relation can be written as

���.x
� � X�.	P //.x

� � X�.	P // D 0; (18.95)

where the X�.	/ are the coordinates of P along its worldline. We have
@X�=@xˇ.	P / D dX�=d	 � @	P =@xˇ D cu� @	P =@xˇ , so that by deriving (18.95)
with respect to xˇ , we get

���.x
� � X�.	P //

�
ı�ˇ � cu�

@	P

@xˇ

	
D 0; hence

@	P

@xˇ
D � 1

cR
.PM/ˇ:

(18.96)
Finally, we compute from (18.85),

@R

@xˇ
D � @

@xˇ

˚
u�.	P /Œx

� �X�.	P /�
�

D �du�
d	

@	P

@xˇ
Œx� � X�.	P /� � u�

�
ı
�

ˇ � cu�.	P /
@	P

@xˇ

�

D �uˇ.	P /� c
�
1C a�.	P /.PM/�

� @	P
@xˇ

: (18.97)

Inserting (18.96) and (18.97) in (18.94), we get

@A˛

@xˇ
D q

4�"0 R2


u˛uˇ �

�
a˛ C 1C a�.PM/�

R
u˛

�
.PM/ˇ

�
: (18.98)

Note that the explicit dependence of u˛ and a˛ in 	P has been omitted.

Remark 18.18. We may use this expression of @A˛=@xˇ to check that the Liénard–
Wiechert 4-potential (18.84) does obey Lorenz gauge. Since the coordinates .x˛/
are inertial, we have indeed

r � #»
A D �˛ˇ @A˛

@xˇ
/ u˛u˛„ƒ‚…

�1
�a˛.PM/˛ � 1C a�.PM/�

R
u˛.PM/˛„ ƒ‚ …

�R
D 0:
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We are now in position to compute the electromagnetic field via (18.45); the term
u˛uˇ disappears in the antisymmetrization, leaving only

F˛ˇ D q

4�"0 R2

( �
a˛ C 1C a�.PM/�

R
u˛

�
.PM/ˇ

�
�
aˇ C 1C a�.PM/�

R
uˇ

�
.PM/˛

)
; (18.99)

i.e., given the definition (14.43) of the exterior product of two 1-forms:

F .M/ D q

4�"0 R2

"
a.	P /C 1C #»a .	P / � #     »

PM

R
u.	P /

#
^PM : (18.100)

This formula gives the electromagnetic field created at a point M 2 E by a particle
of charge q following an arbitrary worldline. We note that F .M/ depends only from
the characteristics of the particle (4-velocity #»u and 4-acceleration #»a ) at the event
P , intersection of the past light cone ofM with the particle’s worldline. P is thus a
function of M , as well as the quantities 	P and R D � #»u .	P / � #     »

PM .
Given the expression (14.79) of the Hodge dual of an exterior product, we deduce

readily from (18.100) the value of ?F :

?F .M/ D q

4�"0 R2
�

 
#»a .	P /C 1C #»a .	P / � #     »

PM

R
#»u .	P /;

#     »
PM; : ; :

!
:

(18.101)

The structure of the electromagnetic field created by a moving charge is
remarkable: the 2-form F is the exterior product of two 1-forms: (18.100) shows
that F D p ^ q with p WD q=.4�"0R

2/Œa C .1C #»a � #     »
PM/=R u� and q WD PM .

An immediate consequence is the vanishing of the invariant I2 (cf. Sect. 17.3.2). We
have indeed F �� D p�q� � p�q� and, by (14.79), ?F�� D �����p

�q� , so that the
definition (17.36) of I2 leads to

I2 D 1

4
?F��F

�� D 1

4
����� p

�q� .p�q� � p�q�/ D 1

2
����� p

�q�p�q� D 0:

We have thus

I2 D 0 : (18.102)

On its side, the invariant I1 is

I1 D 1

2
F��F

�� D 1

2
.p�q� � p�q�/.p

�q� � p�q�/ D p�p
� q�q

�

„ƒ‚…
0

�.p�q�/2 D �.p�q�/2:
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Now, given the values of p and q and the definition (18.85) of R, p�q� D
�q=.4�"0R2/. We have thus

I1 D � q2

.4�"0/2R4
: (18.103)

In addition, a remarkable property of the dual field, which we read directly
on (18.101), is to be transverse, in the sense that

?F .
#     »
PM; :/ D 0: (18.104)

18.6.3 Electric and Magnetic Fields

The electric field E measured by an inertial observer O , of 4-velocity #»u 0, is deduced
from (18.100) via E D F .:; #»u 0/ [Eq. (17.7)]; hence

E D q

4�"0 R2

"
.

#     »
PM � #»u 0/

 
aC 1C #»a � #     »

PM

R
u

!

�
 

#»a � #»u 0 C 1C #»a � #     »
PM

R
#»u � #»u 0

!
PM

#
: (18.105)

Now, using the same notations as in the end of Sect. 18.6.1,
#     »
PM � #»u 0 D �r

[Eq. (18.87)], #»u � #»u 0 D �� and R is related to r by (18.89). Besides, the
4-acceleration #»a of particle P is expressed in terms of its acceleration #»� and its
velocity

#»

V , both relative to O , according to (4.63):

#»a D � 2

c2

�
#»� C � 2

c2
. #»� � #»

V /
�

#»
V C c #»u 0

��
:

Inserting all these relations in the above expression of E , there comes, after
simplification,16

#»

E D q

4�"0

�
1 � #»n � #»

V
c

�3
r

(
1

� 2 r

 
#»n �

#»

V

c

!
C 1

c2
#»n �u0

" 
#»n �

#»

V

c

!
�u0

#»�

#)
:

(18.106)

16Notably via the identity #»n �u0
Œ. #»n � #»

V =c/�u0

#»� � D . #»n � #»� /. #»n � #»

V =c/� .1� #»n � #»

V =c/ #»� .
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In this formula, all the quantities relative to particle P , namely, the velocity
#»
V ,

the acceleration #»� and the Lorentz factor � , are to be taken at the proper time 	P ,
or equivalently, at the retarded time tP given by (18.88). More precisely, in terms of
the coordinates associated with O , if .ct; x1; x2; x3/ are the coordinates of the point
M where

#»
E is evaluated and .ctP ; x1P ; x

2
P ; x

3
P / are those of P , then

r D
vuut

3X

iD1
.xi � xiP /2; ni D xi � xiP

r
and tP D t � r

c
: (18.107)

The magnetic field measured by observer O is computed according to (17.8):
B D c�1 ? F . #»u 0; :/, with ?F given by (18.101):

B D q

4�"0c R2
�

 
#»u 0;

#»a C 1C #»a � #     »
PM

R
#»u ;

#     »
PM; :

!
: (18.108)

Now, from (18.105) and
#     »
PM D r. #»u 0 C #»n /,

�. #»u 0;
#»n ;

#»
E ; :/ D 1

r
�. #»u 0;

#     »
PM;

#»
E ; :/

D q.
#     »
PM � #»u 0/

4�"0 R2r
�

 
#»u 0;

#     »
PM; #»a C 1C #»a � #     »

PM

R
#»u ; :

!
:

Since
#     »
PM � #»u 0 D �r , we note, by comparing with (18.108), that �. #»u 0;

#»n ;
#»

E ; :/ D
cB, i.e.

#»
B D 1

c
#»n �u0

#»
E : (18.109)

In particular,
#»

B is orthogonal to
#»

E . This result is not surprising since we have
already seen that the electromagnetic field invariant I2 is vanishing [Eq. (18.102)]
[remember that I2 D c #»

E � #»

B, Eq. (17.37)].

Remark 18.19. Note also that
#»

B is transverse, i.e. is orthogonal to #»n . This appears
as an immediate consequence of the transverse character of ?F [Eq. (18.104)], for
we deduce from (17.8) that

#»

B � #»n D c�1 ?F . #»u 0;
#»n / D .cr/�1 ?F . #»u 0;

#     »
PM/.

18.6.4 Charge in Inertial Motion

If the motion of the charged particle P is inertial, its worldline is a straight
line of E , its 4-velocity #»u is constant and its 4-acceleration #»a vanishes. The
expression (18.100) of F simplifies then drastically:

F .M/ D q

4�"0 R3
u ^PM . #»a D 0/: (18.110)
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Remark 18.20. u being constant, it is no longer necessary to specify u D u.	P / as
in the general expression (18.100).

Since #»a D 0, the acceleration #»� relative to the inertial observer O vanishes
[cf. Eq. (4.72)]. Expression (18.106) for the electric field reduces then to

#»
E D q

4�"0� 2
�
1 � #»n � #»

V
c

�3
r2

 
#»n �

#»
V

c

!
. #»� D 0/: (18.111)

The magnetic field is deduced via (18.109):

#»

B D �0

4�

q

� 2

�
1 � #»n � #»

V
c

�3
r2

#»

V �u0

#»n . #»� D 0/: (18.112)

In the particular case where P is fixed with respect to O ,
#»

V D 0 and � D 1, so
that the above formula reduces to

#»

E D q

4�"0 r2
#»n and

#»

B D 0 .
#»

V D 0; #»� D 0/: (18.113)

This is the famous Coulomb’s law, which gives the electric field created by a charge
at rest with respect to an inertial observer.

When
#»
V 6D 0, formulas (18.111)–(18.112) must yield the results that we

have already obtained in Sect. 17.3.4 by admitting Coulomb’s law and using the
transformation laws of the electric and magnetic fields. This seems however not
obvious when comparing directly (17.53)–(17.54) with (18.111)–(18.112). But it
should be noticed that in Sect. 17.3.4, #»n does not stand for the same vector as here.
In O’s reference space (cf. Sect. 3.4.3), the vector #»n hereabove is the unit vector
from the position P 0 of charge P at the retarded time tP D t � r=c to the pointM
where

#»
E and

#»
B are evaluated, whereas in Sect. 17.3.4, #»n stands for the unit vector

from the position of P at the instant t , i.e. P� (cf. Fig. 18.6), to the point M . To
avoid the confusion, let us denote by #»n � this last vector (cf. Fig. 18.7). By definition
of P’s velocity relative to O , we have

#        »

P 0P� D .t � tP / #»

V D .r=c/
#»

V , the last
equality resulting from (18.88). Chasles’ relation

#        »

P 0M D #        »

P 0P�C #        »
P�M leads then

to r #»n D .r=c/ #»

V CR� #»n �, hence

r

 
#»n �

#»

V

c

!
D R� #»n �: (18.114)

Besides, Pythagoras’ theorem applied to the right triangle P�AM (cf. Fig. 18.7)
yields R2� D .V=c r sin �/2 C r2.1 � #»n � #»

V =c/2. Taking into account r sin � D
R� sin ��, this relation can be rewritten as
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Fig. 18.7 Positions of the
charged particle P in the
reference space of the inertial
observer O at instants t (point
P�) and tP D t � r=c (point
P 0), as well as the unit
vectors #»n and #»n �

r

 
1 �

#»n � #»

V

c

!
D R�

r
1 � V

2

c2
sin2 ��: (18.115)

Inserting (18.114) and (18.115) in (18.111), we get

#»

E D q

4�"0� 2R2�
�
1� .V=c/2 sin2 ��

�3=2
#»n �; (18.116)

which, given the changes of notation #»n � ! #»n , R� ! R, �� ! � and V ! U , is
identical to Eq. (17.53) obtained in Sect. 17.3.4. Similarly, expression (18.112) for
the magnetic field is equivalent to the result (17.53) obtained in Sect. 17.3.4.

18.6.5 Radiative Part

In view of formulas (18.100) and (18.110), it is natural to split the electromagnetic
field in two parts:

F D F Coul C F rad ; (18.117)

with

F Coul.M/ WD q

4�"0 R3
u.	P / ^PM ; (18.118)

F rad.M/ WD q

4�"0 R2

"
a.	P /C

#»a .	P / � #     »
PM

R
u.	P /

#
^PM : (18.119)

F Coul and F rad are, respectively, called Coulombian part and radiative part of the
electromagnetic field. Provided that q 6D 0, the Coulombian part never vanishes.
On the other side, the radiative part is nonzero only if the particle is accelerated
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( #»a 6D 0). In this case, if M where is far from the charged particle P , in the sense
j #»a .	P / � #     »

PM j 
 1, F Coul is negligible in front of F rad:

F ' F rad if j #»a .	P / � #     »
PM j 
 1: (18.120)

The form (18.119) of the 2-form F rad is remarkable: not only it is the exterior
product of two 1-forms, as F itself (cf. Sect. 18.6.2), but moreover these two
1-forms are orthogonal to each other. Indeed, we can write F rad D p ^ q with
p WD q=.4�"0 R

2/ Œa C #»a � #     »
PM=R u�, q WD PM and hp; #»q i D q=.4�"0 R

2/Œ #»a �
#     »
PM C . #»a � #     »

PM=R/ #»u � #     »
PM� D 0, given that R D � #»u � #     »

PM [Eq. (18.85)]. This
property yields the cancellation of the invariant I1 associated with F rad, since by the
definition (17.36),

I1 D 1

2
.Frad/��F

��
rad D

1

2
.p�q� � p�q�/.p�q� � p�q�/ D p�p� q�q

�

„ƒ‚…
0

�.p�q�„ƒ‚…
0

/2 D 0;

the property q�q� D 0 being nothing but the expression of the null character of
vector

#     »
PM . As we had already I2 D 0, thanks to the fact that F rad is an exterior

product (cf. Sect. 18.6.2), we conclude that

F rad W I1 D 0 and I2 D 0 : (18.121)

In other words, the radiative part of the electromagnetic field is null, in the sense
defined in Sect. 17.3.2. Moreover, F rad is transverse, as ?F [cf. (18.104)]:

F rad.
#     »
PM; :/ D 0: (18.122)

This is an immediate consequence of the property hp; #»q i D 0mentioned above and
of

#     »
PM � #     »

PM D 0.
In terms of the electric and magnetic fields measured by an observer O , the

Coulombian part is given by (18.111)–(18.112), while the radiative part is the part
involving #»� in (18.106) and (18.109):

#»

E rad D q

4�"0c2
�
1 � #»n � #»

V
c

�3
r

#»n �u0

" 
#»n �

#»
V

c

!
�u0

#»�

#
(18.123)

#»
B rad D 1

c
#»n �u0

#»
E rad ; (18.124)
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where the quantities
#»
V and #»� are to be taken at the retarded time tP D t � r=c and

the unit vector #»n gives the direction from the particle’s position P 0 at the retarded
time to the point M where the field is evaluated. It is clear on (18.111)–(18.112)
and (18.123)–(18.124) that the Coulombian part of .

#»
E ;

#»
B/ decays as 1=r2 far from

the charge, whereas the radiative part decays only as 1=r . It is thus the latter that
dominates at large distance, as mentioned above.

Remark 18.21. We observe on (18.123) that
#»

E rad is orthogonal to #»n . Equa-
tion (18.124) implies then that c

#»

B rad has the same amplitude than
#»

E rad (in addition
to be orthogonal to it). Since I1 D c2k #»

B radk2g � k
#»

E radk2g [Eq. (17.37)], we recover
I1 D 0 and hence the null character of F rad [Eq. (18.121)].

In the nonrelativistic limit, kV kg 	 c, formulas (18.123)–(18.124) reduce to

#»
E rad ' q

4�"0c2 r
#»n �u0

. #»n �u0

#»� / (nonrelativistic) (18.125)

#»

B rad ' q

4�"0c3 r
#»� �u0

#»n (nonrelativistic): (18.126)

18.7 Maxwell Equations from a Principle of Least Action

In Sect. 18.3.1, we have presented Maxwell equations as a postulate on which the
theory of classical electrodynamics is constructed. Another point of view consists
in deriving them from another postulate, namely, a principle of least action (also
called variational principle). Before describing this approach, let us first introduce
the principle of least action on general grounds, i.e. for any classical field theory.

18.7.1 Principle of Least Action in a Classical Field Theory

We have already encountered the principle of least action in Chap. 11 for the
dynamics of a relativistic particle in a given field. Here we aim to formulate
a principle of least action for the dynamics of the field itself. This implies the
transition from a finite number of degrees of freedom (the particle’s coordinates
and generalized velocities) to an infinite number (the field values at each spacetime
point). For simplicity, let us assume that the theory under study involves only one
tensor field ' of valence n: ' can be a scalar field (n D 0), a vector field or a
differential 1-form (n D 1) or a tensor field of higher valence.

Let us set an inertial coordinate system .x˛/ on spacetime E and denote by 'A
the components of ' in it; A is then some “multi-index”: if n D 0, A D ¿, and if '

is a tensor of type .k; `/ (k C ` D n � 1), 'A D '˛1:::˛k ˇ1:::ˇ` . Given a function of

class C1

L W R5�4n �! R;
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one calls Lagrangian density of the field '17 the scalar field

L W E �! R

M 7�! L .M/ WD L.'A.M/;r'B.M//;
(18.127)

where the abridged notation L.'A.M/;r'B.M//means that the 4n first arguments
of L are filled by the components of ' at M and the remaining 4nC1 arguments
by the components of the covariant derivative of ' at M . Note that the latter are
equal to the partial derivatives @'A=@x˛ , for the coordinates .x˛/ are inertial. Two
important particular cases are:

• ' D scalar field (n D 0):

L .M/ D L
�
'.M/;

@'

@x0
.M/;

@'

@x1
.M/;

@'

@x2
.M/;

@'

@x3
.M/

	
I

• ' D 1-form (n D 1):

L .M/ D L
�
'0.M/; : : : ; '3.M/;

@'0

@x0
.M/;

@'0

@x1
.M/; : : : ;

@'3

@x3
.M/

	
:

All functions L W R
5�4n �! R are not acceptable, for one does not want the

field theory for ' to depend on the choice of the inertial coordinates .x˛/. It is then
demanded that the value of L .M/ at each point M 2 E is independent of the
coordinates .x˛/. In other words, if .x0˛/ is a second system of inertial coordinates
on E ,

L.' 0
A;r' 0

B/ D L.'A;r'B/; (18.128)

' 0
A and r' 0

B being the components of ' and r' in the coordinates .x0˛/. Since
.x0˛/ and .x˛/ are related by a Poincaré transformation, x˛ D �˛

ˇx
0ˇ C x˛0

[Eq. (8.12)], the components are related by some matrix products with � or ��1,
and the condition (18.128) is explicitly written as follows:

• For a scalar field,

L

�
'; �

�
0

@'

@x�
; : : :

	
D L

�
';
@'

@x0
; : : :

	
I (18.129)

• For a 1-form,

L

�
�
�
0 '�; : : : ; �

�
0�

�
0

@'�

@x�
; : : :

	
D L

�
'0; : : : ;

@'0

@x0
; : : :

	
: (18.130)

17One often says simply Lagrangian, instead of Lagrangian density.
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Because of the properties (18.129) or (18.130), one says that the considered field
theory is invariant under the action of Poincaré group, or Poincaré invariant for
short. To fulfil this invariance, it suffices that L is a scalar function obtained by
purely tensorial operations on ' and r' (contractions or scalar products via the
metric tensor g).

Example 18.2. A theory of the Klein–Gordon18 type is based on a scalar field '
and the following Lagrangian density

L D �1
2

�
hr'; #»r'i C `�2'2

�
D �1

2

�
���

@'

@x�
@'

@x�
C `�2'2

	
; (18.131)

where ` is some constant having the dimension of a length; in quantum field theory,
` is related to the mass m of the scalar field by ` D „=.mc/. The function L W
R
5 ! R corresponding to (18.131) is L.y1; y2; y3; y4; y5/ D �1=2 .�y22 C y23 C

y24 C y25 C y21=`2/.
Given a compact four-dimensional domain with boundary U � E , one calls

action of the field ' on U the real number

S WD
Z

U
L � D

Z

U
L dx0dx1dx2dx3 : (18.132)

The above integral is that of the scalar field L (Lagrangian density) over U , as
defined in Sect. 16.4.5. Note that in the present case,

p� detg D 1, since the
coordinates .x˛/ are inertial. Moreover, as L and the volume element of U do
not depend on the choice of the inertial coordinates .x˛/, the same property holds
for S .

The principle of least action amounts to postulating that, among all the
configurations of the field ', the physical one is the one that minimizes the action
S in any variation of ' that does not change the field values on the boundary of U .
Let us show that this principle leads to a system of partial differential equations for
the field '. An infinitesimal field variation ı' implies the following variation of the
action

ıS D
Z

U
ıL �: (18.133)

Now, from (18.127) and the fact that the components of r' are nothing but the
partial derivatives of the components of ',

ıL D @L

@'A
ı'A C @L

@.@˛'A/
ı
@'A

@x˛
;

18Klein stands for the Swedish physicist Oskar Klein (1894–1977) and not for the German
mathematician Felix Klein mentioned in Chap. 7 (cf. p. 255).
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where the partial derivatives of the functionL have been denoted by @L=@'A for the
4n first arguments and by @L=@.@˛'A/ for the remaining 4nC1 arguments. Moreover,
in the above writing, the Einstein summation convention has been extended to
the multi-index A, in addition to the index ˛ 2 f0; 1; 2; 3g. It is obvious that
ı@'A=@x

˛ D @ı'A=@x˛ , so that the second term can be integrated by parts, yielding

ıL D @L

@'A
ı'A � @

@x˛

�
@L

@.@˛'A/

	
ı'A C @

@x˛

�
@L

@.@˛'A/
ı'A

	
:

Inserting this relation in (18.133), we get

ıS D
Z

U

�
@L

@'A
� @

@x˛

�
@L

@.@˛'A/

	�
ı'A � C

Z

U
r � #»

V �;

where
#»

V stands for the vector field whose components are V ˛ D @L=@.@˛'A/ ı'A
and we have used the identity @V ˛=@x˛ D r � #»

V [Eq. (15.54) with detg D �1
since the coordinates .x˛/ are inertial]. Thanks to the four-dimensional Gauss–
Ostrogradsky theorem (16.64), we observe that the last term in the above equation is
equal to the flux of

#»

V through the boundary of U . Since the value of ' is kept fixed
on @U , we have ı' D 0 and hence

#»

V D 0 on @U , so that the flux of
#»

V vanishes.
There remains thus

ıS D
Z

U

�
@L

@'A
� @

@x˛

�
@L

@.@˛'A/

	�
ı'A �: (18.134)

The principle of least action implies that ıS D 0 for any variation ı' around
the physical solution, whatever the domain U . Consequently, (18.134) leads to the
following 4n equations:

@L

@'A
� @

@x˛

�
@L

@.@˛'A/

	
D 0 : (18.135)

These equations are called field equations. They are the analogue of the Euler–
Lagrange equations (11.17) obtained in Chap. 11 by applying the principle of least
action to a particle, the particle’s degrees of freedom .x˛/ being replaced by the
components .'A/ of the field and the evolution parameter � by the four spacetime
coordinates .x˛/.

Example 18.3. Let us consider the Klein–Gordon scalar field introduced in Exam-
ple 18.2 p. 624. The Lagrangian density being (18.131), we have @L=@' D �`�2',
@L=@.@0'/ D @'=@x0 and @L=@.@i'/ D �@'=@xi . The field equation (18.135),
which has only one component in this case, becomes

�' � `�2' D 0; (18.136)
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where we have let appear the d’Alembertian operator according to (18.51). Equa-
tion (18.136) is called Klein–Gordon equation. Note that it is a linear equation in '.

18.7.2 Case of the Electromagnetic Field

For the variational formulation of electromagnetism, the field ' is the 4-potential
1-form A introduced in Sect. 18.5.1 and related to the electromagnetic field tensor
F by F D dA [Eq. (18.44)]. One postulates then that the Lagrangian density of the
electromagnetic field generated by some electric 4-current

#»

j is

L D �"0
4
F��F

�� C A�j� ; (18.137)

where F�� and F�� are considered as the functions of A given by (18.45)
and (18.46). The explicit form of the Lagrangian density is thus

L D L
�
A˛;

@Aˇ

@x˛

	
D �"0

4
������

�
@A�

@x�
� @A�
@x�

	�
@A�

@x�
� @A�
@x�

	
C A�j�:

(18.138)

Remark 18.22. The quantity involved in the Lagrangian density (18.137) is nothing
but the invariant I1 D F��F ��=2, introduced in Sect. 17.3.2. In particular, this fully
satisfies the demand of invariance under the action of the Poincaré group discussed
above.

The field equations (18.135) become

@L

@Aˇ
� @

@x˛

�
@L

@.@˛Aˇ/

	
D 0: (18.139)

The partial derivative of the Lagrangian density with respect to Aˇ is simple:

@L

@Aˇ
D j ˇ:

The partial derivative with respect to @˛Aˇ D @Aˇ=@x
˛ is more complicated but

does represent any major difficulty. Expanding (18.138) and deriving, there comes

� 4

"0

@L

@.@˛Aˇ/
D �˛��ˇ�

@A�

@x�
C ��˛��ˇ @A�

@x�
� �˛��ˇ� @A�

@x�
� ��ˇ��˛ @A�

@x�

��ˇ��˛� @A�
@x�
� ��˛��ˇ @A�

@x�
C �ˇ��˛� @A�

@x�
C ��ˇ��˛ @A�

@x�

D 4�˛��ˇ�
�
@A�

@x�
� @A�
@x�

	
D 4F ˛ˇ D �4F ˇ˛:
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Inserting this result, as well as the expression of @L=@Aˇ, in (18.139), we get

@F ˇ˛

@x˛
D "�1

0 j ˇ: (18.140)

We obtain thus the Maxwell equation (18.23b).19 Hence

The Maxwell equation “with source” r � F ] D "�1
0

#»
j [Eq. (18.22b)]

can be derived from a principle of least action, based on the Lagrangian
density (18.137). The remaining Maxwell equation, dF D 0 [Eq. (18.22a)], is
automatically satisfied in this approach since it is assumed from the beginning
that F is the exterior derivative of the 1-form A.

Remark 18.23. The term A�j
� in the Lagrangian density (18.137) expresses the

interaction between the electromagnetic field and the system of charged particles.
In the case of a system reduced to a single particle, if we replace

#»

j by (18.5) (with
N D 1) and we integrate over the hypersurface x0 D const, we recover exactly
the term .q=c/A� Px� that appears in the expression (11.28) of the Lagrangian of a
particle in a vector field.

19Let us recall that in the present case, det g D �1 since we are using inertial coordinates.



Chapter 19
Energy–Momentum Tensor

19.1 Introduction

While Chaps. 9, 10 and 11 were devoted to the dynamics of a particle system
(microscopic point of view), we tackle here the case where the number of particles is
so large that it is natural to treat matter as a continuous medium (macroscopic point
of view). The basic tool to describe the relativistic dynamics of such a medium is the
energy–momentum tensor, which we introduce in Sect. 19.2. We shall then state the
principle of conservation of energy–momentum for continuous media (Sect. 19.3).
Finally, we shall discuss the concept of angular momentum of a continuous medium
and its conservation (Sect. 19.4).

This chapter is a preparatory one for those devoted to the energy–momentum
of the electromagnetic field (Chap. 20), relativistic hydrodynamics (Chap. 21) and
relativistic gravitation (Chap. 22).

19.2 Energy–Momentum Tensor

19.2.1 Definition

Let us consider a system ofN massive particles .Pa/1�a�N , having in mindN very
large, of the order of Avogadro’s number (� 6 � 1023). Let La be the worldline of
particle Pa, 	a its proper time, #»u a D #»u a.	a/ its 4-velocity and pa D pa.	a/ its
4-momentum. Given an oriented three-dimensional domain (hypersurface) V � E ,
we have defined in Chap. 9 the total 4-momentum of the system on V by formula
(9.34) (cf. Fig. 9.6):

pjV WD
NX

aD1

X

A2La\V

" pa.A/; (19.1)

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 19, © Springer-Verlag Berlin Heidelberg 2013
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where " D C1 (resp. " D �1) if the 4-momentum vector #»pa.A/ associated with
pa.A/ has the direction (resp. the opposite direction) corresponding to the positive
orientation of V .

As for the electric charge in Sect. 18.2.1, the transition to the continuous limit is
obtained by interpreting pjV as a flux through V . To define a flux, we shall assume
in all what follows that V is a timelike or spacelike hypersurface (cf. Sect. 16.4.7).
V can comprise spacelike parts and timelike ones, but no null parts. We may then
introduce the unit normal1 #»n that is compatible with V ’s orientation, in the sense
that �V WD �. #»n ; :; :; :/.

A difference with the case of the electric charge is that the flux introduced in
Sect. 18.2.1 is that of a vector field (the electric 4-current

#»
j ) and the result is a

scalar—the electric charge. In the present case, the result must be a linear form
(the 4-momentum pjV ); accordingly, the flux cannot be that of a vector field. It
is actually the flux of a field of bilinear forms, T , which is called the energy–
momentum tensor of the considered system. More precisely, we shall write

pjV D ˙
1

c

Z

V
T .:; #»n / dV ; (19.2)

where the sign ˙ is C if #»n is spacelike and � if it is timelike [cf. (16.42)]. If V
comprises regions of different kinds, formula (19.2) must be replaced by a sum of
integrals with the proper sign for each region. The integral in (19.2) is that of the
tensor field of type .0; 1/ (differential 1-form) T .:; #»n /, the integral of a tensor field
having been defined in Sect. 16.4.6.

For the considered particle system, the energy–momentum tensor field is
given by

8M 2 E ; T .M/ WD
NX

aD1

Z C1

�1
ıAa.	/.M/ pa.	/˝ ua.	/ c

2 d	 ;

(19.3)
where 	 stands for Pa’s proper time and ıAa.	/ the Dirac distribution on
.E ;g/ centred on the point Aa.	/ of the worldline La (cf. Sect. 18.2.1).

Proof. We have to show that substituting (19.3) for T in (19.2), we recover (19.1).
By definition of the tensor product ˝, the 1-form ! WD T .:; #»n / to be integrated
over V is expressible as

1If V was null, the unit normal could not be defined.
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8M 2 E ; !.M/ D
NX

aD1

Z C1

�1
ıAa.	/.M/ . #»u a.	/ � #»n /pa.	/ c

2 d	;

so that there comes

Z

V
T .:; #»n / dV D

NX

aD1

Z

V

Z C1

�1
ıAa.	/.M/ . #»u a.	/ � #»n /pa.	/ c

2 d	 dV:

Let us introduce on E a coordinate system .x˛/ adapted to V (cf. Sect. 16.3):
x0 D const on V . In terms of the components in these coordinates, #»u a.	/ � #»n D
u˛a.	/n˛ D u0a.	/n0 for n˛ D .n0; 0; 0; 0/, since the normal #»n to V is collinear
to

#»rx0 (cf. Sect. 16.4.2). Moreover, from (16.25), dV D n0
p�g dx1dx2dx3. We

have thus in the above integral,

. #»u a.	/ � #»n /dV D u0a.	/n0n
0p�g dx1dx2dx3 D ˙u0a.	/

p�g dx1dx2dx3

for n0n0 D n˛n˛ D ˙1, #»n being a unit vector. Hence

Z

V
T .:; #»n / dV D ˙

NX

aD1

Z

V

Z C1

�1
ıAa.	/.M/pa.	/

p�g u0a.	/ c
2 d	 dx1dx2dx3:

We assume that the worldline La is never tangent to V . Then, in the neighbourhood
of an intersection A of La with V , La can be parametrized by x0, the first
coordinate of the system adapted to V . x0 is constant on V and we may choose
its value to be 0. Let us then perform the change of variable 	 7! x0 in the above
integral. One should notice that, thanks to the term ıAa.	/.M/ with M 2 V , the
integral in x0 can be limited to a finite interval Œ�˛; ˛� around x0 D 0 (the value
on V ). Moreover, by definition of Pa’s 4-velocity, u0a.	/ c d	 D dx0. If x0 is
a decaying function of 	 , i.e. if #»pa does not cross V in the sense given by its
orientation, one must change the sign in the integral, represented by the parameter
" D �1. In view of these considerations, there comes

Z

V
T .:; #»n / dV D ˙c

NX

aD1

X

A2La\V

"

Z

V

Z C˛

�˛
ıAa.x0/.M/pa.x

0/
p�g dx0dx1dx2dx3:

Since
p�g dx0dx1dx2dx3 is exactly the element of 4-volume on .E ;g/, we deduce

from the definition of ıA that

Z

V
T .:; #»n / dV D ˙c

NX

aD1

X

A2La\V

"pa.A/:

The comparison with (19.1) completes the proof. ut
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Formula (19.2) shows that the dimension of the energy–momentum tensor is that
of a momentum density multiplied by a velocity; it has thus the dimension of an
energy density (SI unit: J m�3).

19.2.2 Interpretation

Let us consider some observer O of 4-velocity #»u 0 and let us choose for V some
elementary volume of O’s local rest space at some fixed instant t of O’s proper time.
Let dV be the volume of V ; the 4-momentum dp in V is given by the infinitesimal
version of (19.2):

dp D �1
c

T .:; #»u 0/ dV: (19.4)

The � sign has been selected for the unit normal to V is #»u 0, which is timelike.
By virtue of (9.43), the energy dE of the matter in V measured by O is
dE D �c hdp; #»u 0i, i.e.

dE D T . #»u 0;
#»u 0/ dV:

We deduce immediately that the energy density " WD dE=dV measured by O in
V is

" D T . #»u 0;
#»u 0/ : (19.5)

Hence the energy density measured by an observer is obtained by setting the two
arguments of the bilinear form T to the 4-velocity of that observer.

On the other side, according to (9.44), the linear-momentum dP measured by O
in V is dP D dp ı?u0 , i.e., given (19.4),

dP D �1
c

T .?u0 ;
#»u 0/ dV:

The linear-momentum density $ WD dP=dV measured by O is thus the 1-form

$ D �1
c

T .?u0 ;
#»u 0/ : (19.6)

If . #»e ˛/ is O’s local frame (in particular, #»e 0 D #»u 0) and .e˛/ the associated dual
basis, we can write

$ D �T . #»e i ;
#»u 0/

c
e i : (19.7)
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Fig. 19.1 3-volume V swept by an elementary 2-surface S during the infinitesimal increase dt
of observer O’s proper time. The surface S is fixed with respect to O. The 4-momentum dp in V
is orthogonally split as dp D .dE=c/u0 C dP ; dE=dt is then the energy crossing S per unit time
and dP=dt is the force exerted on S

Since hei ; #»u 0i D 0, it is clear that h$ ; #»u 0i D 0 (this can also be seen directly on
(19.6), because ?u0

#»u 0 D 0).
Let us consider now some elementary 2-surface S fixed in the reference space

of observer O . To be specific, we choose S to be normal to one of the three
spacelike vectors of O’s local frame, #»e j say (j D 1 in Fig. 19.1). During some
small increase dt of O’s proper time, S sweeps an elementary 3-volume V in
spacetime (cf. Fig. 19.1). V is a timelike hypersurface and its unit normal is #»e j ,
which also sets V ’s orientation. The 4-momentum in V is given by the infinitesimal
version of (19.2) with the spacelike normal #»n D #»e j :

dp D 1

c
T .:; #»e j / dV D T .:; #»e j / dS dt; (19.8)

where the second equality results from the decomposition dV D dS � c dt of
V ’s volume, dS being the area of S . For observer O , the energy of the matter
“contained” in V —i.e. that crosses the surface S during the time lapse dt—is
dE D �c hdp; #»u 0i [Eq. (9.43)], i.e.

dE D �c T . #»u 0;
#»e j / dS dt:

The energy flux, i.e. the energy per unit time and per unit area that crosses S , is
thus 'j WD dE=.dt dS/ D �c T . #»u 0;

#»e j /. The linear form ' WD 'j ej , i.e.

' D �c T . #»u 0;
#»e j / ej ; (19.9)

is then the energy-flux 1-form: it gives the energy per unit time (power) that crosses
a surface of normal #»n according to

dE

dt
D h'; #»n i dS: (19.10)
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Finally, the linear momentum “contained” in V and measured by O —i.e. that
crosses the surface S during the time lapse dt—is, by (9.44), dP D dp ı?u0 , i.e.
from (19.8),

dP D T .?u0 ;
#»e j / dS dt D T . #»e i ;

#»e j / ei dS dt:

The linear momentum per unit time, dP=dt , that crosses S is the force dF j exerted
on the surface S (relatively to O). We have thus

dF j D Sij e i dS; (19.11)

with

Sij WD T . #»e i ;
#»e j / : (19.12)

The Sij’s are actually the components of the tensor S D Sij ei ˝ ej , which is the
orthogonal projection of the energy–momentum tensor onto O’s local rest space:

S WD T .?u0 ;?u0 /: (19.13)

S is called the stress tensor relative to observer O . It gives the force exerted on an
elementary surface normal to #»e j via formula (19.11). More generally, on a surface
of normal #»n D nj #»e j , the force is dF D Sijn

j dS ei , i.e.

dF D S .:; #»n / dS : (19.14)

To summarize, the components T˛ˇ D T . #»e ˛;
#»e ˇ/ of the energy–momentum

tensor in the local frame of observer O are

T˛ˇ D

0
BB@

" �'1=c �'2=c �'3=c
�c$1 S11 S12 S13
�c$2 S21 S22 S23

�c$3 S31 S32 S33

1
CCA ; (19.15)

where " is the energy density, the $i ’s are the components of the linear-
momentum density, the 'i ’s those of the energy-flux 1-form and the Sij’s those
of the stress tensor. All these quantities are relative to observer O .
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19.2.3 Symmetry of the Energy–Momentum Tensor

For a system made of simple particles, in the sense defined in Sect. 9.2.1, the
individual 4-momenta pa are collinear to the 4-velocities: pa D mac ua, ma

being the mass of particle Pa. The energy–momentum tensor (19.3) takes then the
following shape:

8M 2 E ; T .M/ D
NX

aD1
mac

2

Z C1

�1
ıAa.	/.M/ ua.	/˝ ua.	/ c d	: (19.16)

The bilinear form ua.	/˝ ua.	/ being obviously symmetric, we conclude that the
same property holds for T :

8. #»u ; #»v / 2 E2; T . #»u ; #»v / D T . #»v ; #»u / : (19.17)

We shall see in Sect. 19.4.2 that, as a consequence of the principle of angular
momentum conservation, this property is fully general:

The energy–momentum tensor T of any physical system is a field of
symmetric bilinear forms.

Remark 19.1. The energy–momentum tensor is thus sharing with the metric tensor
g the property of being a symmetric bilinear form. However, the similitude does not
go further: T can be a degenerate bilinear form (in particular, in vacuum, T D 0),
whereas g is never degenerate. Accordingly, T cannot be used to define a scalar
product on E .

A consequence of the symmetry of T is that, with respect to an observer O ,
T . #»u 0;

#»e i / D T . #»e i ;
#»u 0/, which, from (19.7) and (19.9), implies the equality, up to

a factor c2, of the energy-flux 1-form and the linear-momentum density:

' D c2$ : (19.18)

Remark 19.2. This result can be seen as a consequence of the equivalence between
mass and energy in relativity. Let us indeed express this equivalence as the relation
(9.28) between the linear momentum P and the energyE of a particle:E

#»

V D c2 #»

P ,
where

#»

V is the velocity of the particle relative to the considered observer (note that
relation holds also for massless particles). If we consider a set of particles having
the same velocity

#»

V and divide by the volume of a matter element to let appear the
energy density " and the linear-momentum density #»$ , there comes
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"
#»
V D c2 #»$ :

"
#»

V being nothing but the energy-flux vector, we recover (19.18).

Thanks to the symmetry of T , the components (19.15) can be rewritten as

T˛ˇ D

0
BB@

" �c$1 �c$2 �c$3

�c$1 S11 S12 S13

�c$2 S12 S22 S23
�c$3 S13 S23 S33

1
CCA : (19.19)

From the very definition of the components of a bilinear form, T D T˛ˇe˛ ˝ eˇ

[Eq. (14.10)], and given the relations e0 D �u0, $ D $i e i , S D Sij ei ˝ ej , we
can write

T D " u0 ˝ u0 C c$ ˝ u0 C c u0 ˝$ C S : (19.20)

Remark 19.3. This decomposition can be qualified as orthogonal since
h$; #»u 0i D 0 and S . #»u 0; :/ D S .:; #»u 0/ D 0. It is very general and applies
to any symmetric bilinear form, provided that " is defined as T . #»u 0;

#»u 0/, $ as
�c�1T .?u0 ;

#»u 0/ and S as T .?u0 ;?u0 /. This is the symmetric analogue of the
orthogonal decomposition (3.37) of antisymmetric bilinear forms.

Historical note: The concept of energy–momentum tensor has been introduced
in 1908 by Hermann Minkowski (cf. p. 26) (1908). He however applied it only to
the electromagnetic field.2 It seems that the general use of the energy–momentum
tensor to describe the dynamics of any type of matter or field is due to Max Laue
(cf. p. 146). He gave the general decomposition (19.15) in 1911 (Laue 1911b). The
property (19.18) expressing the equality (up to a factor c2) of the energy flux and the
linear-momentum density has been stated by Max Planck (cf. p. 279) in 1908 (Planck
1908). In the particular case of the electromagnetic field, it had been established in
1900 by Henri Poincaré (1900) (cf. the historical note p. 649).

19.3 Energy–Momentum Conservation

In Chap. 9, we have stated the principle of 4-momentum conservation for any
discrete system of particles. We shall now extend this principle to any continuous
system described by an energy–momentum tensor.

2We shall discuss specifically the energy–momentum tensor of the electromagnetic field in
Chap. 20.
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19.3.1 Statement

As in Sect. 9.3.3, the principle of energy–momentum conservation is expressed by
means of closed hypersurfaces:

If a physical system S described by an energy–momentum tensor T is
isolated, its 4-momentum pjV on any closed hypersurface V � E vanishes:

S isolated and V closed H) pjV D 0 : (19.21)

Let us recall that pjV is related to T by (19.2). The same comments as in
Sect. 9.3.3 are relevant. In particular, one may change the point of view and consider
the above statement not as a principle but as the definition of a an isolated system.

19.3.2 Local Version

Let us apply the linear form pjV to a generic vector #»v 2 E , using (19.2) :

hpjV ; #»v i D ˙1
c

Z

V
T . #»v ; #»n / dV D ˙1

c

Z

V

#»w � #»n dV D 1

c
˚V .

#»w/; (19.22)

where #»w is the vector field metric dual of the 1-form T . #»v ; :/; its components are
w˛ D g˛�T��v

�. The last equality in (19.22) involves the flux of #»w through V (cf.
Sect. 16.4.7). Let us choose for the hypersurface V the boundary of a compact four-
dimensional domain U � E : V D @U . We may then apply Gauss–Ostrogradsky
theorem (16.64) and write

hpjV ; #»v i D 1

c

Z

U

r � #»w dU: (19.23)

Now

r � #»w D r�w� D r�w� D r�.T��v�/ D r�T�� v� C T�� r�v�„ƒ‚…
0

; (19.24)

the vanishing of the last term resulting from the constant character of #»v . In the
last but one term, there appears the divergence of the energy–momentum tensor.
In Sect. 15.4.6, we have defined the divergence of a tensor field that is at list one
time contravariant. Here, the divergence of T , which is zero time contravariant
and twice covariant, is defined as the 1-form metric dual of the divergence of T ].
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The latter is the metric dual of T , namely, the analogue for T of the tensor F ]

introduced in Sect. 17.2.5 for F . The divergence r�T ] as defined in Sect. 15.4.6 has
for componentsr�T ˛�. Its metric dual, that we shall define as the divergence of T

and denote by
#»r � T , has the following components:

.
#»r � T /˛ D r�T˛� D g��r�T˛� : (19.25)

In view of (19.23) and (19.24), we can thus write

hpjV ; #»v i D 1

c

Z

U
h #»r � T ; #»v i dU:

This identity being valid for any vector #»v 2 E , we deduce that

pjV D
1

c

Z

U

#»r � T dU : (19.26)

As the boundary of U , V is necessarily a closed hypersurface. If the system S
is isolated, the principle of energy–momentum conservation leads to the vanishing
of the above integral. This result being valid whatever U , we may conclude:

For an isolated system,

#»r � T D 0
S isolated: (19.27)

This is the local expression of the principle of energy–momentum
conservation.

19.3.3 Four-Force Density

If the system S is not isolated, we set

#»r � T DW F : (19.28)

The 1-form F is called four-force density, or 4-force density for short.
In order to interpret F , let us consider some inertial observer O of proper time

t and 4-velocity #»u 0. Let S D S .t/ be a closed surface in O’s rest space Eu0 .t/
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Fig. 19.2 Worldtube swept
by the volume V .t /,
delimited by the surface S .t /

in the local rest space of
observer O, between t and
t C dt

and let V D V .t/ be the volume delimited by S (cf. Fig. 19.2). S and V are
assumed to be at rest with respect to O . Let us define the system’s 4-momentum in
V at the instant t as pV .t/ WD pjV .t/, the orientation of V .t/ being given by the
normal #»u 0. For an infinitesimal increment dt of t , let us consider the worldtube U
swept by V .t/ during dt . Its boundary is the union of V .t C dt/, V .t/ and W , the
hypercylinder swept by S between t and t C dt (cf. Fig. 19.2). Using (19.26) with
#»r � T replaced by F , there comes

pV .t C dt/ � pV .t/C pjW D
1

c

Z

U
F dU D 1

c
� c dt

Z

V
F dV; (19.29)

the � sign in front of pV .t/ resulting from the change of orientation of V .t/ when
considered as a part of U ’s boundary. Let us evaluate pjW : the normal #»n to W
[and to S within .Eu0 ;g/] being spacelike, formula (19.2) leads to

pjW D
1

c

Z

W
T .:; #»n / dV D dt

Z

S
T .:; #»n / dS D dt

Z

S

�
ch$ ; #»niu0 C S .:; #»n /

�
dS;

where we have used the decomposition (19.20) of T with respect to observer O .
Inserting this result in (19.29) and dividing by dt , we get

dpV

dt
D
Z

V
F dV � c

Z

S
h$; #»n i dS u0 �

Z

S
S .:; #»n / dS : (19.30)

The two integrals over S are, respectively, the energy flux through S and the
surface force exerted on S [cf. Eq. (19.11)]. Identity (19.30) justifies the name
four-force density given to F : at a sufficiently small scale, so that the volume V
can be considered as a particle, the worldline of this “particle” is parallel to that
of O; therefore, its proper time is t . According to the definition (9.104), dpV =dt
appears then as the 4-force exerted on the particle. If no energy is entering into the
volume V and no force is exerted at its surface, F is actually the 4-force volume
density.

For a discrete system made of N particles, .Pa/1�a�N , the 4-force density is of
the type
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8M 2 E ; F .M/ D
NX

aD1

Z C1

�1
ıAa.	/.M/ f a.	/ c d	 ; (19.31)

where f a.	/ is the 4-force exerted on particle Pa at the instant 	 of its proper time.

Proof. Let us integrate (19.31) over a volume V associated with some inertial
observer O and sufficiently large to encompass all the particles of the system:

Z

V
F dV D

NX

aD1

Z

V

Z C1

�1
ıAa.	/.M/ f a.	/ c d	 dV

D
NX

aD1

Z

V

Z C1

�1
ıAa.t/.M/f a.t/

c dt

�a
dV D

NX

aD1

1

�a
f a: (19.32)

The computation leading to the last equality is very similar to that leading to (18.6),
and we shall not repeat it here. Besides, we have, from (19.1),

pV .t/ D
NX

aD1
pa.	a.t//;

	a.t/ being the proper time of particle Pa when its worldline encounters O’s rest
space at the instant t , Eu0 .t/. Deriving with respect to t , we get

dpV

dt
D

NX

aD1

dpa

d	a„ƒ‚…
f a

d	a
dt„ƒ‚…
��1
a

D
NX

aD1

1

�a
f a;

where �a D �a.	a/ is the Lorentz factor of Pa with respect to O . Comparing with
(19.32), we recover (19.30), with the surface terms set to zero. This establishes that
the 4-force density of a particle system is given by (19.31). ut

19.3.4 Conservation of Energy and Momentum with Respect
to an Observer

Let us consider an inertial observer O and a physical system S described by
some energy–momentum tensor T . Let us substitute the orthogonal decomposition
(19.20) for T in the equation

#»r � T D F [Eq. (19.28)]. Since #»u 0 is constant
(O inertial), we obtain
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.r #»u 0
"/u0 C cr #»u 0

$ C c. #»r �$/ u0 C
#»r � S D F : (19.33)

Projecting this relation on #»u 0 (i.e. applying the linear form appearing at each side
to the vector #»u 0), there comes

�r #»u 0 "C cr #»u 0 h$; #»u 0i„ ƒ‚ …
0

�c #»r �$ C #»r � S . #»u 0; :/„ ƒ‚ …
0

D hF ; #»u 0i:

Since r #»u 0 " D c�1@"=@t [cf. (15.28)], we get

@"

@t
C c2 #»r �$ D �chF ; #»u 0i : (19.34)

This is the equation expressing the energy conservation with respect to observer O:
it relates the time derivative of the energy density " to the divergence of the energy
flux c2$ [cf. (19.18)] and to the power per unit volume provided to the system,
�chF ; #»u 0i [cf. (9.111a) with #»a 0 D 0].

On the other side, if we project (19.33) on O’s rest space Eu0 (i.e. if we compose
the linear form on each side of (19.33) with the orthogonal projector ?u0), we get,
taking into account that u0 ı?u0 D 0, $ ı?u0 D $ , S ı?u0 D S and r #»u 0 $ D
c�1@$=@t ,

@$

@t
C #»r � S D F ı?u0 : (19.35)

This is the equation expressing the linear-momentum conservation with respect
to observer O: it relates the time derivative of the linear-momentum density $ to
the divergence of the stress tensor S and to the volume density of external forces
exerted on the system, F ı?u0 .

19.4 Angular Momentum

19.4.1 Definition

Given a physical system S of energy–momentum tensor T , a point C 2 E and an
oriented hypersurface V � E that is not null, one calls angular momentum of S
with respect to C on V the following antisymmetric bilinear form (2-form):

JC jV WD ˙
1

c

Z

V
CM ^ T .:; #»n / dV ; (19.36)
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where M is the generic point of V , over which the integration is performed; #»n D
#»n .M/ is the unit normal to V compatible with V ’s orientation; and the sign ˙
is a shorthand writing to indicate that the integral must be split into various parts
depending on the kind of V , with aC sign where V is timelike ( #»n is then spacelike)
and a � sign where V is spacelike ( #»n is then timelike). Let us recall that CM ^
T .:; #»n / stands for the exterior product of the 1-form CM by the 1-form T .:; #»n /,
according to the definition (14.43): CM ^ T .:; #»n / WD CM ˝ T .:; #»n /� T .:; #»n /˝
CM . As for (19.2), the above integral is the integral of a tensor field on E (here a
tensor field of type .0; 2/), as defined in Sect. 16.4.6.

For a discrete system made of N particles, .Pa/1�a�N , the energy–momentum
tensor takes the form (19.3). Inserting it in (19.36), we obtain

JC jV D ˙
NX

aD1

Z

V

Z C1

�1
ŒCM ^ pa.	/� ıAa.	/.M/ . #»u a.	/ � #»n / c d	 dV:

We can then introduce a coordinate system .x˛/ adapted to V , and by a computation
similar to that performed in Sect. 19.2.1, we obtain

JC jV D
NX

aD1

X

A2La\V

" CA ^ pa.A/; (19.37)

where " D C1 (resp. " D �1) if the 4-momentum vector #»pa.A/ associated
with pa.A/ has the sense (resp. the opposite sense) given by the orientation of V .
Comparing with (10.16), we recover the definition of the angular momentum of a
particle system given in Chap. 10. This fully justifies the definition (19.36).

19.4.2 Angular Momentum Conservation

In a manner similar to the principle of energy–momentum conservation
(Sect. 19.3.1), we shall state the principle of angular momentum conservation as
follows:

If a physical system S is isolated, its angular momentum JC jV with respect
to any point C 2 E and on any closed hypersurface V � E vanishes:

S isolated and V closed H) JC jV D 0 : (19.38)

This principle is of course a generalization of that seen in Sect. 10.4.
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Let us show that, in conjunction with the principle of energy–momentum con-
servation, the principle of angular momentum conservation leads to the symmetry
of the energy–momentum tensor stated in Sect. 19.2.3. We start by applying the
definition (19.36) to a couple . #»v ; #»w/ of (constant) vectors in E:

c J C jV . #»v ; #»w/ D ˙
Z

V

h
.

#     »
CM � #»v /T . #»w; #»n /� . #     »

CM � #»w/T . #»v ; #»n /
i

dV

D ˙
Z

V

#»a � #»n dV 
Z

V

#»

b � #»n dV D ˚V .
#»a / �˚V .

#»

b /;

where the vectors #»a and
#»

b are the metric duals of the following 1-forms:

a WD . #     »
CM � #»v /T . #»w; :/ and b WD . #     »

CM � #»w/T . #»v ; :/:

If V is the boundary of a compact four-dimensional domain of E , V D @U , Gauss–
Ostrogradsky theorem (16.64) yields

c JC jV . #»v ; #»w/ D
Z

U

�
r � #»a � r � #»

b
�

dU:

Now, #»v and #»w being constant vectors, we have

r � #»a D r� a� D r�
�
.CM/�v�T��w

�g��
�

D r�.CM/�
„ ƒ‚ …

ı��

v�T��w
�g�� C .CM/�v�r�T��w�g��

D g��v�T��w� C .CM/�v�r�T��w� D T��w�v� C .CM/�v�r�T��w�:

If the system is isolated, the energy–momentum conservation gives r�T�� D 0, so
that only the first term remains: r � #»a D T . #»w; #»v /. Similarly, r � #»

b D T . #»v ; #»w/.
Thus,

c JC jV . #»v ; #»w/ D
Z

U
ŒT . #»w ; #»v /� T . #»v ; #»w/� dU:

Since V is a closed hypersurface, the principle of angular momentum conservation
(19.38) leads then to the vanishing of the integral in the right-hand side. The domain
U being arbitrary, we conclude that T . #»w; #»v /� T . #»v ; #»w/ D 0. This establishes the
symmetry of the energy–momentum tensor stated in Sect. 19.2.3.

Remark 19.4. To establish the symmetry of T from the principle of angular
momentum conservation, we have used only the property

#»r � T D 0. The latter
has been established in Sect. 19.3.2 without appealing to the symmetry of T ; there
is thus no loophole in the above demonstration.



Chapter 20
Energy–Momentum of the Electromagnetic
Field

20.1 Introduction

The study of the electromagnetic field, started in Chaps. 17 and 18, is completed in
this chapter, which focuses on the energetic aspects. We shall see in Sect. 20.2 that
some energy–momentum can be associated with the electromagnetic field and that it
can be described by an energy–momentum tensor. We shall treat in detail the case of
the field created by an accelerated electric charge (Sect. 20.3), computing the total
radiated power as well as the radiation pattern. A particular case of an accelerated
charge is that of a particle moving on a helical trajectory in a magnetic field, as
studied in Chap. 17. It gives birth to synchrotron radiation, which we shall discuss
in Sect. 20.4. This type of radiation plays an important role in astrophysics and has
many applications on Earth.

20.2 Energy–Momentum Tensor of the Electromagnetic
Field

20.2.1 Introduction

Let us consider a set ofN charged particles .Pa; qa/1�a�N in some electromagnetic
field F . Each particle is submitted to the Lorentz 4-force f a D qaF .:;

#»u a/

[Eq. (17.1)] ( #»u a being Pa’s 4-velocity). From (19.31), the 4-force density exerted
by the electromagnetic field on the particle system is then

F .M/ D
NX

aD1
qa

Z C1

�1
ıAa.	/.M/ F .:; #»u a.	// c d	

D F

 
: ;

NX

aD1
qa

Z C1

�1
ıAa.	/.M/ #»u a.	/ c d	

!
;

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6 20, © Springer-Verlag Berlin Heidelberg 2013

645



646 20 Energy–Momentum of the Electromagnetic Field

the second equality resulting from the bilinearity of F . We recognize in the second
argument of F the electric 4-current

#»

j of the particle system, as given by (18.5).
The electromagnetic 4-force density takes therefore a very simple form:

F D F .:;
#»
j / : (20.1)

If the electromagnetic field is entirely created by the considered charge
distribution, then F and

#»
j are related by the Maxwell equation (18.22b):

#»
j D "0r � F ], and (20.1) becomes, once written in terms of components in
some basis . #»e ˛/,

F˛ D F˛�j
� D "0F˛�rˇF �ˇ D �"0F�˛rˇF �ˇ

D �"0
�rˇ.F�˛F �ˇ/ � F �ˇrˇF�˛

�
: (20.2)

Let us rewrite the last term via the Maxwell equation dF D 0 [Eq. (18.16a)].
Expressing the exterior derivative by means of the covariant derivative according
to (15.64), Eq. (18.16a) becomes rˇF�˛ Cr�F˛ˇ Cr˛Fˇ� D 0; hence,

F �ˇrˇF�˛ C F�ˇr�F˛ˇ C F �ˇr˛Fˇ� D 0;
F �ˇrˇF�˛ C F ˇ�r�Fˇ˛„ ƒ‚ …

2F �ˇrˇF�˛

� F�ˇr˛F�ˇ„ ƒ‚ …
1=2r˛.F �ˇF�ˇ/

D 0;

H) F �ˇrˇF�˛ D 1

4
r˛.F��F ��/:

Thanks to this formula, (20.2) can be recast as

F˛ D �"0
�
rˇ.F�˛F �ˇ/ � 1

4
r˛.F��F ��/

�

D �"0
�
rˇ.F�˛F �

ˇ/�
1

4
g˛ˇrˇ.F��F ��/

�
:

Consequently, by defining

T em
˛ˇ WD "0

�
F�˛F

�

ˇ �
1

4
F��F

�� g˛ˇ

	
; (20.3)

we can write

F˛ D �rˇT em
˛ˇ : (20.4)

Hence the 4-force density exerted on the particle system by the electromagnetic
field appears as minus the divergence of the tensor T em, whose components are
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given by (20.3). Let us denote by T mat the energy–momentum tensor of the
particle system, i.e. the tensor given by (19.3), ‘mat’ standing for ‘matter’. The
energy–momentum conservation equation (19.28) is then

#»r � T mat D F , i.e., in
view of (20.4),

#»r � �T mat C T em� D 0 : (20.5)

Since the system of charged particles is not isolated, but submitted to the
electromagnetic field, it is not surprising that its energy–momentum is not
conserved:

#»r � T mat D F 6D 0. However, the result (20.5) shows that the sum
T mat C T em is a tensor with vanishing divergence; it leads then, by integration
over a hypersurface, to a conserved quantity, as discussed in Sect. 19.3. This
fully justifies to attribute some energy–momentum to the electromagnetic field
and to consider T em as the energy–momentum tensor of the electromagnetic field.
Equation (20.5) expresses then the conservation of the total energy–momentum of
the system formed by the charged particles and the electromagnetic field. Moreover,
it is clear on (20.3) that T em is a symmetric bilinear form, as it should be for a valid
energy–momentum tensor (cf. Sect. 19.2.3).

Remark 20.1. The quantity F��F ��=4, which appears in the expression (20.3) of
T em, is nothing but half the electromagnetic field invariant I1 [cf. Eq. (17.36)].

Example 20.1. Let us consider the electromagnetic field created by a charged
particle P in inertial motion (Coulombian field), as studied in Sect. 18.6.4. We are
using the same notations as in that section: #»u for the constant 4-velocity of P and
P for the intersection of P’s worldline with the past light cone of the point M
where the field is evaluated. Given expression (18.110) for F , we have

F�˛F
�

ˇ D
�

q

4�"0 R3

	2
Œu�.PM/˛ � u˛.PM/��Œu

�.PM/ˇ � uˇ.PM/��

D
�

q

4�"0 R3

	2 ˚
RŒu˛.PM/ˇ C uˇ.PM/˛� � .PM/˛.PM/ˇ

�
;

where we have used u�.PM/� D �R [Eq. (18.85)] and .PM/�.PM/� D 0

(P is located on the light cone of M ). Substituting this value in (20.3) and using
expression (18.103) for F��F ��=2, we get

T em
˛ˇ .M/ D q2

16�2"0R4

�
u˛.PM/ˇ C uˇ.PM/˛

R
� .PM/˛.PM/ˇ

R2
C 1

2
g˛ˇ

�
;

i.e.

T em.M/ D q2

16�2"0R4

�
1

R
.u˝ PM C PM ˝ u/ � 1

R2
PM ˝ PM C 1

2
g

�
:

(20.6)
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20.2.2 Quantities Relative to an Observer

Let O be an observer of 4-velocity #»u 0 and local frame . #»e ˛/ D . #»u 0;
#»e i /. The

electromagnetic energy density measured by O is, according to (19.5), �em D
T em. #»u 0;

#»u 0/. Substituting (20.3) for T em, we get

�em D T em
˛ˇ u˛0uˇ0 D "0

�
F�˛u˛0„ƒ‚…
E�

F
�

ˇuˇ0„ƒ‚…
E�

�1
4
F��F

�� g˛ˇu˛0uˇ0„ ƒ‚ …
�1

	
;

where we have let appear the electric field E D F .:; #»u 0/ measured by O
[cf. (17.7)]. Moreover, F��F ��=2 is the invariant I1 [cf. (17.36)], which can be
expressed in terms of E and of the magnetic field

#»

B measured by O according to
(17.37): I1 D c2 #»

B � #»

B � #»

E � #»

E . Hence

�em D "0

2

�
#»

E � #»

E C c2 #»

B � #»

B
�
: (20.7)

The electromagnetic linear-momentum density measured by O is given by
(19.7) : $em D $ em

i e i , with

$ em
i D �

1

c
T em. #»e i ;

#»u 0/ D �"0
c

�
F�˛e

˛
i F

�

ˇuˇ0„ƒ‚…
E�

�1
4
F��F

�� g˛ˇe
˛
i uˇ0„ ƒ‚ …
0

	
:

Now, from the decomposition (17.5a) of F , F�˛e˛i E
� D F .

#»
E ; #»e i / D

�. #»u 0; c
#»

B;
#»

E ; #»e i /. We have thus$ em
i D "0�. #»u 0;

#»

E ;
#»

B; #»e i /; hence

$em D "0 �. #»u 0;
#»
E ;

#»
B; :/ : (20.8)

The electromagnetic energy-flux 1-form is related to the linear-momentum
density by (19.18): 'em D c2$em. Given that "0c2 D ��1

0 , we get 'em D
��1
0 �. #»u 0;

#»

E ;
#»

B; :/. The vector associated with 'em by metric duality is then, from
the definition (3.46) of the cross product,

#»' em D 1

�0

#»
E �u0

#»
B : (20.9)

This energy-flux vector is called the Poynting vector.
Finally, the electromagnetic stress tensor is given by (19.12):

S em
ij D T em. #»e i ;

#»e j / D "0
�
g��F�˛e

˛
i F�ˇe

ˇ
j �

1

4
F��F

��

„ ƒ‚ …
2.c2

#»
B � #»

B � #»
E � #»

E /

g˛ˇe
˛
i e

ˇ
j„ ƒ‚ …

ıij

	
:
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To compute the first term, let us consider the components in O’s local frame
. #»e ˛/. We have then g�� D ��� and F�˛ given by (17.12), so that F�˛e˛i D
.�Ei ;W1;W2;W3/ with

# »

W WD c #»e i �u0

#»

B. We deduce that g��F�˛e˛i F�ˇe
ˇ
j D

�EiEj C c2. #»e i �u0

#»

B/ � . #»e j �u0

#»

B/ D �EiEj � c2BiBj C c2BkBkıij ; hence

S em
ij D "0

�
1

2

�
#»

E � #»

E C c2 #»

B � #»

B
�
ıij �EiEj � c2BiBj

�
; (20.10)

which can be written in tensor form as

S em D �em.g C u0 ˝ u0/� "0
�
E ˝E C c2B ˝B

�
; (20.11)

with �em given by (20.7). S em is called the Maxwell stress tensor.

Historical note: The energy–momentum tensor of the electromagnetic field has
been introduced in 1908 by Hermann Minkowski (cf. p. 26) (1908). Before that,
expression (20.8) of the linear-momentum density of the electromagnetic field had
been established by Henri Poincaré (cf. p. 26) in 1900 (Poincaré 1900), from
considerations about momentum conservation. Poincaré stressed the identity of the
linear-momentum density vector and the Poynting vector (up to some factor c2),
thereby establishing property (19.18) in the particular case of the electromagnetic
field.

20.3 Radiation by an Accelerated Charge

20.3.1 Electromagnetic Energy–Momentum Tensor

In Sect. 18.6, we have seen that the electromagnetic field created by a particle P
of electric charge q can be split into a Coulombian part and a radiative part [cf.
Eq. (18.117)], the former being negligible in front of the latter at large distance
whenever the 4-acceleration #»a of P is not vanishing. We shall focus on this
case and thus will only consider the energy–momentum tensor associated with the
radiative field F rad, which is given by (18.119):

F rad D q

4�"0 R2
Q ^ PM with Q WD aC

#»a � #     »
PM

R
u; (20.12)

where M is the point where the field is evaluated, P the intersection of P’s
worldline with the past light cone of M , #»u and #»a are, respectively, the 4-velocity
and the 4-acceleration of P at the point P and R WD � #»u � #     »

PM is the distance
to the particle defined by the orthogonal decomposition of

#     »
PM with respect to #»u
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[cf. (18.85)-(18.86) and Fig. 18.5]. For the radiative field, I1 D 0 [Eq. (18.121)],
so that the electromagnetic energy–momentum tensor formed via (20.3) does not
contain any term proportional to g:

T em
˛ˇ D "0.Frad/�˛.Frad/

�

ˇ

D q2

16�2"0 R4

�
Q�.PM/˛ �Q˛.PM/�

� �
Q�.PM/ˇ �Qˇ.PM/�

�
:

Taking into account Q�.PM/� D 0 (cf. the above definitions of Q and R),
.PM/�.PM/� D 0 (null character of

#     »
PM ) andQ� �Q� D #»a � #»a � . #»a � #     »

PM=R/2,
there comes

T em D q2

16�2"0 R4

�
#»a � #»a � . #»a � #»m/2

�
PM ˝ PM ; (20.13)

where we have introduced the unit spacelike vector #»m according to the orthogonal
decomposition (18.86) of

#     »
PM :

#     »
PM D RŒ #»u .	P / C #»m�. Let us stress that in this

equation, #»a D #»a .	P /.

20.3.2 Radiated Energy

Given T em, we may estimate the total energy–momentum radiated by particle P
as follows. Let P be a point of P’s worldline L and d	 some infinitesimal
increment of P’s proper time, from P D A.	/ to Q D A.	 C d	/, A denoting the
generic point of L . Given the structure of the electromagnetic field generated by
P (retarded potentials), one may consider that all the energy–momentum radiated
between P and Q is localized between I C.P / and I C.Q/, the future light cones
of, respectively, P and Q (cf. Fig. 20.1). Let us then introduce the inertial observer
OP whose wordline is the tangent to L at P (cf. Figs. 18.5 and 20.1). Let S be the
sphere formed by the intersection of the light cone I C.P / with OP ’s rest space at
some instant sufficiently posterior toP so that the electromagnetic field on S can be
assumed to be entirely radiative. We consider next the hypercylinder V of basis S ,
having OP ’s worldline for axis and connecting I C.P / to I C.Q/ (cf. Fig. 20.1).
The height of this hypercylinder is d	 . The electromagnetic 4-momentum crossing
S during the time d	 is, from (19.2),

dprad D 1

c

Z

V
T em.:; #»m/ dV;

where we have used the fact that the unit normal to V is #»m and is spacelike.
Substituting (20.13) for T em and using dV D c d	 dS (dS D S ’s area element),
we get
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Fig. 20.1 Electromagnetic
4-momentum emitted by an
accelerated particle between
two events P and Q of its
worldline L and radiated
through the sphere S . The
latter is fixed with respect to
the inertial observer OP

whose worldline is tangent to
L at P

dprad D q2 d	

16�2"0 R4

Z

S

�
#»a � #»a � . #»a � #»m/2

� hPM; #»miPM dS:

Now,PM D RŒu.	P /Cm� [Eq. (18.86)] and hPM; #»mi D R. Introducing spherical
coordinates .�; '/ on S such that the polar axis is along #»a D #»a .	P /, we have
#»a � #»m D a cos � with a WD p #»a � #»a , so that #»a � #»a � . #»a � #»m/2 D a2.1 � cos2 �/ D
a2 sin2 � . Since dS D R2 sin � d� d', we get

dprad D q2 a2 d	

16�2"0

Z

S

Œu.	P /Cm� sin3 � d� d':

Now, using the Cartesian components of m (m D sin � cos' ex C sin � sin ' ey C
cos � ez), it is easy to see that the integral of m sin3 � vanishes. There remains
thus only the integral of u.	P / sin3 � , which is actually the integral of sin3 � on
the sphere, since u.	P / is constant. Given that

R �
0

R 2�
0

sin3 � d� d' D 8�=3, we
finally obtain

dprad D q2 #»a .	P / � #»a .	P / d	

6�"0
u.	P / : (20.14)

It is remarkable that this 4-momentum is independent from the radius R of S ,
i.e. actually from the proper time instant 	 of observer OP at which it is evaluated
(provided that 	 is sufficiently in the future of 	P for the approximation of purely
radiative field to be valid).

For the inertial observer OP , the energy crossing the sphere S is given by (9.4):
dE D �chdprad; #»u .	P /i. Using (20.14) and hu.	P /; #»u .	P /i D �1, we find the
energy radiated per unit time (power) P D dE=d	 :

P D c q2 #»a � #»a

6�"0
: (20.15)

We may express the 4-acceleration #»a D #»a .	P / in terms of the acceleration #»�

relative to the inertial observer OP . Since P’s velocity with respect to OP is, by
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definition of the latter, zero at the instant 	P , the formula to apply is (4.64): #»a D
c�2 #»� ; hence,

P D q2
2

6�"0c3
; (20.16)

with 
2 WD #»� � #»� , the acceleration #»� being taken at the instant 	P . Equation (20.16),
which gives the power radiated by an accelerated particle through a sphere
surrounding it, is named Larmor formula.

20.3.3 Radiated 4-Momentum

We have stressed that expression (20.14) for the 4-momentum dprad radiated by a
charged particle P between 	 and 	 C d	 does not depend upon the radius of the
sphere S through which the inertial observer OP measures it. But there is much
more: this 4-momentum does not depend upon observer OP ! We are indeed going
to see that if one considers a sphere S 0 in the rest space of an arbitrary inertial
observer O 0, then the radiated 4-momentum through S 0 when P moves from P

to Q is exactly given by (20.14), even if at P , P has a nonvanishing velocity with
respect to O 0.

Given O 0, the sphere S 0 is defined by the intersection of the light cone I C.P /
with the rest space of O 0 at a certain instant t 0 of his proper time. We shall
assume that t 0 is sufficiently large so that S 0 is located outside S on I C.P /
(cf. Fig. 20.2). Let V 0 be the hypercylinder of basis S 0, having its axis along
the 4-velocity of O 0 and connecting I C.P / to I C.Q/, V still standing for the
hypercylinder of basis S defined in Sect. 20.3.1. Finally, let CP be the part of
the light cone I C.P / located between S and S 0 and CQ that of the light cone
I C.Q/ located between the upper extremities of V and V 0 (cf. Fig. 20.2). Let us
then consider the four-dimensional volume U delimited by V , V 0, CP and CQ:
@U D V [ V 0 [ CP [ CQ. For any vector #»v 2 E , we define

I WD
Z

U
h #»r � T em; #»v i � D

Z

U
.r � #»w/ � D

Z

U
d ? w; (20.17)

where #»w is the metric dual of the 1-form w WD T em. #»v ; :/; the second equality stems
from (19.24) and the third one from the identity (15.89). Let us then apply Stokes
theorem (16.46):

I D
Z

@U

?w D
Z

V

?w �
Z

V 0

?w �
Z

CP

?w C
Z

CQ

?w

D ˚V .
#»w/� ˚V 0. #»w/�

Z

CP

?w C
Z

CQ

?w;
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Fig. 20.2 Four-momentum radiated by an accelerated particle (worldline L ) through the sphere
S for observer OP and through the sphere S 0 for observer O0. The dashed lines mark the rest
spaces of each observer

where the � signs result from the changes of orientation when V and CP are
considered as parts of U ’s boundary. Moreover, use has been made of identity
(16.44) to let appear the fluxes through V and V 0. Using formulas (19.22) and
(15.87), there comes

I D c hdprad
ˇ̌
V
; #»v i � chdprad

ˇ̌
V 0
; #»v i �

Z

CP

�. #»w; :; :; :/ C
Z

CQ

�. #»w; :; :; :/;

where dprad
ˇ̌
V

is the 4-momentum (20.14) radiated through S during d	 and
dprad

ˇ̌
V 0

is the 4-momentum radiated through S 0, during the same proper time
lapse d	 of the charge at P . Now, according to the form (20.13) of T em, one has,
on CP ,

#»w D �������!T em. #»v ; :/ D q2

16�2"0 R4

�
#»a � #»a � . #»a � #»m/2

�
.

#     »
PM � #»v /

#     »
PM:

#»w is thus collinear to
#     »
PM , which implies that #»w is tangent to I C.P / and therefore

to CP . It follows that the 3-form �. #»w ; :; :; :/ is identically zero on CP : it is not
possible to find three vectors . #»e 1;

#»e 2;
#»e 3/ tangent to CP such that . #»w; #»e 1;

#»e 2;
#»e 3/

is a system of linearly independent vectors. Consequently,

I D c hdprad
ˇ̌
V
; #»v i � chdprad

ˇ̌
V 0
; #»v i: (20.18)
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Let us now come back to the definition (20.17) of I : since the domain U is free from
matter (it does not contain P’s worldline), the energy–momentum conservation
(20.5) with T mat D 0 leads to

#»r � T em D 0 on U . Consequently I D 0. The
identity (20.18), which must be fulfilled for any vector #»v 2 E , yields then

dprad
ˇ̌
V 0
D dprad

ˇ̌
V
: (20.19)

Hence the radiated 4-momentum is always given by formula (20.14).
The radiated energy measured by an arbitrary inertial observer O , of 4-velocity

#»u 0, is, according to (9.4), dE D �chdprad; #»u 0i, with dprad given by (20.14) from
the above result. Hence

dE D � c q
2 #»a � #»a d	

6�"0

where #»a D #»a .	P / and � D � .	P / D � #»u 0 � #»u .	P / is the Lorentz factor of P
with respect to O , at the instant 	P . Relatively to O , the radiated power is P D
dE=dt , where dt is the increment of O’s proper time. Since dt D � d	 , the factor
� disappears and we obtain the same expression as (20.15):

P D c q2 #»a � #»a

6�"0
: (20.20)

We may express the scalar square of the 4-acceleration in terms of the acceleration
#»� and the velocity

#»

V of P relative to O , via formula (4.69). We obtain in this way

P D q2

6�"0 c3
� 4

�
#»� � #»� C � 2

c2

�
#»� � #»

V
�2�

: (20.21)

The relation is called Liénard formula. It generalizes Larmor formula (20.16) to the
case

#»
V 6D 0. Using the alternative expressions (4.70) and (4.71) of #»a � #»a , Liénard

formula can be recast as

P D q2

6�"0 c3
� 6

�
#»� � #»� � 1

c2
. #»� �u

#»

V /2
�
D q2

6�"0 c3
� 4

�
� 2
2k C 
2?

�
:

(20.22)

Remark 20.2. At the nonrelativistic limit, Liénard formula reduces obviously to
Larmor formula (20.16). Furthermore, if

#»

V is orthogonal to #»� , both formulas differ
only by a factor � 4, which becomes very large for relativistic particles.

Historical note: Formula (20.16), which gives the electromagnetic power radiated
by an accelerated charge in terms of the acceleration relative to an observer with
respect to which the charge is momentarily at rest, has been obtained in 1897 by
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Joseph Larmor (cf. p. 191) (Larmor 1897). Its generalization to the case
#»
V 6D 0

[Eq. (20.21)] has been given the year after by Alfred-Marie Liénard (cf. p. 614)
(Liénard 1898).

20.3.4 Angular Distribution of Radiation

Liénard formula (20.21) provides the total power radiated by an accelerated charge,
i.e. the power integrated over a sphere surrounding the particle. To get the power
radiated in a given direction, one must evaluate the Poynting vector #»' em. We
consider an arbitrary inertial observer O , with respect to whom the charge P moves
with the velocity

#»

V D #»

V .t/ and the acceleration #»� D #»� .t/, t standing for O’s
proper time. The Poynting vector is expressed in terms of the electric and magnetic
fields relative to O ,

#»

E and
#»

B, according to (20.9). Since
#»

B is related to
#»

E by
(18.109):

#»

B D c�1 #»n �u0

#»

E , we get

#»' em D 1

�0

#»

E �u0

#»

B D 1

�0c

#»

E �u0
. #»n �u0

#»

E/ D 1

�0c

h
.

#»

E � #»

E/ #»n � . #»n � #»

E/
#»

E
i
;

where #»u 0 is the 4-velocity of O and #»n is the unit vector along the direction
connecting the position P 0 of P at the retarded time tP D t � r=c to the point
M where the field is evaluated (cf. Figs. 18.6 and 18.7). Now for the radiative field
emitted by a particle, #»n � #»

E D 0, as it follows from (18.123). We have then

#»' em D
#»

E � #»

E

�0c
#»n : (20.23)

The vector
#»
E being given by (18.123), we have to evaluate the scalar square of the

vector #»n �u0
Œ. #»n � #»

V =c/ �u0

#»� �. Starting from the identity

#»n �u0

" 
#»n �

#»
V

c

!
�u0

#»�

#
D . #»n � #»� /

 
#»n �

#»
V

c

!
�
 
1 �

#»n � #»
V

c

!
#»� ;

we get, after simplification,

#»' em D q2

16�2"0c3


2 C
#»n � #»�

1 � #»n � #»
V
c

"
2

c

#»

V � #»� �
#»n � #»�

1 � #»n � #»
V
c

�
1 � V

2

c2

	#

r2

 
1 �

#»n � #»
V

c

!4
#»n :

(20.24)

We have set 
 WD k #»� kg and V WD k #»

V kg . In this formula, the velocity
#»

V and the
acceleration #»� of P are to be taken at the retarded time tP D t � r=c.
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V = 0
V = 0.2 c
V = 0.9 c ( / 1500)

γ V

n

θ

Fig. 20.3 Radiation pattern of an accelerated charge when the velocity
#»

V is collinear to the
acceleration #»� . The diagram for V D 0:9 c has been reduced by a factor 1500 with respect to
those for V D 0 and V D 0:2 c

Remark 20.3. If #»� D 0, then #»' em D 0, as it should, since F rad D 0 for a
non-accelerated particle.

Various subcases of formula (20.24) are worth discussing:

20.3.4.1 Case V.tP/ D 0

If, at the retarded time tP , the particle has a vanishing velocity with respect to O
(but a nonzero acceleration), formula (20.24) simplifies considerably the numerator
of the second fraction reducing to 
2 � . #»n � #»� /2 D 
2.1 � cos2 �/ D 
2 sin2 � ,
where � is the angle between #»� and the unit vector #»n . We obtain thus

#»' em D q2 
2 sin2 �

16�2"0c3 r2
#»n

#»
V .tP /D0

#»n � #»� DW 
 cos �: (20.25)

The corresponding radiation pattern, i.e. k #»' emkg plotted as a function of � , is
depicted in Fig. 20.3 (solid line). We recognize a characteristic dipole shape.

Computing the flux of #»' em through a sphere of radius r in O’s rest space yields
Larmor formula (20.16), which is not surprising since the observer OP considered
in Sect. 20.3.1 is by definition an observer for which

#»
V .tP / D 0.

20.3.4.2 Case V.tP/ Collinear to �.tP/

If
#»
V is collinear to #»� at t D tP , let us denote by � the angle between

#»
V and #»n . This

is also the angle between #»� and #»n , up to a factor � if #»� � #»
V < 0. We have then
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Fig. 20.4 Radio wave image of the quasar 3C 175 at the redshift z D 0:768 (resulting from
the expansion of the universe), obtained by the American radio telescope VLA at the wavelength
� D 6 cm. 3C 175 is an active galactic nucleus that emits a relativistic jet. The jet is emitted in
two opposite directions, but due to Doppler boosting, only the part of the jet coming towards us
appears on the image. On the other side, the lobes at each extremity of the jet have a nonrelativistic
velocity, so that they both appear with the same intensity [Source: Alan Bridle (NRAO)]

#»n � #»
V D V cos � , #»n � #»� D ˙
 cos � and

#»
V � #»� D ˙
V , with, in these last two

relations, aC sign if #»� has the same sense as
#»
V and a � sign otherwise. Expression

(20.24) for the Poynting vector reduces then to

#»' em D q2 
2 sin2 �

16�2"0c3 r2
�
1� V

c
cos �

�6
#»n

#»
V .tP /k #»� .tP /

#»n � #»
V DW V cos �:

(20.26)

Because of the factor .1 � V=c cos �/6, the difference with the case
#»

V D 0 lies in
some “focusing” of the radiation around the directions

�˙ D ˙ arccos

 
6V=c

1Cp1C 24V 2=c2

!
; (20.27)

which correspond to the maxima of the function � 7! sin2 �=Œ1 � .V=c/ cos �/�6.
The corresponding radiation pattern is depicted in Fig. 20.3 for V D 0:2 c and V D
0:9 c. At the ultra-relativistic limit, V=c ! 1 and �˙ ! 0. More precisely, the
Taylor expansion of (20.27) leads to

�˙ ' ˙ 1p
5�

(ultra-relativistic); (20.28)

where � WD .1 � V 2=c2/�1=2 is the Lorentz factor of P with respect to O .
At the ultra-relativistic limit (� ! C1), we observe that most of the radiation

is contained in a narrow cone around the direction defined by the particle’s velocity.
Moreover, the radiation amplitude becomes very large in this direction (in Fig. 20.3,
the diagram for V D 0:9c had to be reduced by a factor 1500 to fit on the plot!). This
phenomenon is named Doppler boosting. It is observed frequently in relativistic jets
emitted by active galactic nuclei, as illustrated in Fig. 20.4.
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Fig. 20.5 Definition of the angles .�; �/ setting the direction of observation #»n when
#»

V and #»�

are orthogonal

V = 0.01 c
V = 0.2 c
V = 0.4 c
V = 0.9 c  ( / 1000)

γ

V

n

θ

Fig. 20.6 Radiation pattern of an accelerated charge when (i) the velocity
#»

V is orthogonal to the
acceleration #»� and (ii) the azimuthal angle of the observing direction #»n is � D 0. The diagram
for V D 0:9 c has been rescaled by a factor 1=1000 to fit in the figure

20.3.4.3 Case V.tP/ Orthogonal to �.tP/

If
#»
V is orthogonal to #»� , we still denote by � the angle between

#»
V and #»n and

introduce the azimuthal angle � between the vector #»n and the plane Span.
#»
V ; #»� /

(cf. Fig. 20.5). We have then #»n � #»
V D V cos � , #»n � #»� D 
 sin � cos� and

#»
V � #»� D 0,

so that (20.24) leads to

#»' em D q2 
2

16�2"0c3 r2
�
1 � V

c cos �
�4

2

641 �
�
1 � V 2

c2

�
sin2 � cos2 �

�
1 � V

c cos �
�2

3

75 #»n :

#»
V .tP /? #»� .tP /

(20.29)

At the ultra-relativistic limit, because of the term .1�V=c cos �/�4, the emission
takes place mostly for � close to 0, i.e. in a narrow cone around the velocity direction
(cf. Fig. 20.6), as in the case

#»
V collinear to #»� . More precisely, for V large and

� small, V=c ' 1 � 1=.2� 2/ and cos � ' 1 � �2=2, so that 1 � V=c cos � '
.1C � 2�2/=.2� 2/ and the Poynting vector (20.29) becomes
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Fig. 20.7 Graph of the function f .� �/ D .1 � 2� 2�2 cos 2� C � 4�4/=.1 C � 2�2/6 ruling
the angular dependence of the Poynting vector for an ultra-relativistic particle with an acceleration
orthogonal to its velocity [Eq. (20.30)]

#»' em D q2 
2

�2"0c3 r2
� 8

.1C � 2�2/6

�
1 � 2� 2�2 cos 2� C � 4�4

�
#»n

(� ! C1 and j� j 	 1): (20.30)

We note that the �-dependency of #»' em occurs via the product � � . The plot of
the corresponding function is shown in Fig. 20.7. This function differs significantly
from zero only for j� � j � 1. We conclude that the opening angle of the radiation
cone is � � � �1. We note also the phenomenon of Doppler boosting (cf. Fig. 20.6),
as in the case

#»

V collinear to #»� .

20.4 Synchrotron Radiation

20.4.1 Introduction

An important example of electromagnetic radiation by an accelerated charge is that
of a particle moving in a magnetic field (or more precisely in a mostly magnetic
electromagnetic field; cf. Sect. 17.3.2). Assuming that the magnetic field is uniform
for some inertial observer O , we have shown in Sect. 17.4.1 that the particle’s
trajectory is a helix whose axis is parallel to the direction of the magnetic field
(cf. Fig. 17.6). If O is an inertial observer with respect to which the electromagnetic
field is reduced to a magnetic field

#»

B parallel to the vector #»e 3 of his frame . #»e ˛/,
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the particle’s velocity with respect to O and at the retarded time tP D t � r=c is
given by (17.71):

#»
V D V

n
sin ˛ cos

h!B
�

�
t � r

c

�i
#»e 1 � sin˛ sin

h!B
�

�
t � r

c

�i
#»e 2 C cos˛ #»e 3

o
;

(20.31)

where V WD k #»

V kg is constant, as well as � D .1 � V 2=c2/�1=2, ˛ is the angle
between

#»

V and
#»

B (denoted by � in Sect. 17.4.1) and !B is the cyclotron frequency:
!B WD qB=m [Eq. (17.65)]. The particle’s acceleration with respect to O is found
by deriving (17.71) with respect to t ; its value at the retarded time is

#»� D �!B
�
V sin ˛

n
sin
h!B
�

�
t � r

c

�i
#»e 1 C cos

h!B
�

�
t � r

c

�i
#»e 2

o
: (20.32)

We note that #»� � #»

V D 0, i.e. we are in the configuration
#»

V orthogonal to #»�

considered in Sect. 20.3.4.3. The electromagnetic field radiated by P is given
by formulas (18.123)–(18.124) in which

#»

V and #»� have to be replaced by the
above expressions. This electromagnetic field is called synchrotron radiation, for
it appeared experimentally in synchrotrons (cf. Sect. 17.5.4). At the nonrelativistic
limit (in terms of the particle’s velocity), it is named cyclotron radiation. Formula
(18.126) leads then to the following explicit form of the radiated magnetic field:

#»

B rad D q!BV sin ˛

4�"0c3 r

n
sin
h
!B

�
t � r

c

�i
#»n �u0

#»e 1 C cos
h
!B

�
t � r

c

�i
#»n �u0

#»e 2

o
:

(20.33)

We note that this is a monochromatic radiation at the cyclotron frequency !B .
The total radiated power of synchrotron radiation is given by Liénard formula

(20.21), with #»� � #»� D !2BV 2 sin2 ˛=� 2 and #»� � #»

V D 0. Accordingly

P D q4B2� 2V 2 sin2 ˛

6�"0c3m2
: (20.34)

This radiated power results in a loss of energy in particle accelerators of the
cyclotron or synchrotron kind (cf. Sect. 17.5). For these accelerators, ˛ D �=2

(
#»
V is orthogonal to

#»
B). The duration of one revolution in the accelerator being

T D 2�=.j!B j=� /, the energy lost by the particle via synchrotron radiation during
one revolution is E DP � 2�� =j!B j, i.e.

E D jqj
3B� 3V 2

3"0c3m
D q2

3"0 R

�
V

c

	3 � E

mc2

	4
: (20.35)
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In the second equality, we have let appear the trajectory radius via (17.72):
R D � mV=.jqjB/, as well as the particle’s energy E via � D E=.mc2/. For
ultra-relativistic particles (V=c ' 1), of charge q D ˙e, the numerical values are

Eelectron D 8:85 � 10�8
�
1 km

R

	�
E

1 GeV

	4
GeV (20.36)

Eproton D 7:78 � 10�21
�
1 km

R

	�
E

1 GeV

	4
GeV: (20.37)

Therefore, for the electrons of the former LEP synchrotron at CERN (R D 4:3 km
and E D 104 GeV; cf. Table 17.1), E D 2:4 GeV D 0:023E, while for protons
in the LHC (R D 4:3 km and E D 7 TeV; cf. Table 17.1), E D 4:3 keV D
6�10�10 E. We conclude that the energy loss by synchrotron radiation is negligible
for current proton synchrotrons, such as the LHC, but constitutes a limiting factor
for electron synchrotrons. Future projects of electron or positron accelerators are
therefore based on linear accelerators (linacs, cf. Sect. 17.5.2). This is notably
the case of the ILC (International Linear Collider, cf. Table 17.1), which should
accelerate electrons up to 250 GeV, to make them collide with positrons of the same
energy (Barish et al. 2008).

20.4.2 Spectrum of Synchrotron Radiation

We have seen above that at the nonrelativistic limit, synchrotron radiation, then
called cyclotron radiation, is emitted at a single frequency: the cyclotron frequency
!B [cf. Eq. (20.33)]. How does this result change when the emitting particle moves
with a relativistic velocity? In view of (20.31)–(20.32), a naive answer would be that
the signal frequency is simply decreased by a factor � to become the synchrotron
frequency !B=� [cf. (17.68)]. But considering the Doppler factor .1 � #»n � #»

V /�3,
as well as the cross product

#»

V �u0

#»� , in the expression (18.123) of the radiated
electric field, we realize that the signal can no longer be monochromatic, even if

#»

V

and #»� are periodic functions of t . Without going into the details of the computation
(see, e.g. Rybicki and Lightman (1985)), let us show that the spectrum is extended,
much beyond the frequency !B , as a consequence of the focusing effect described
in Sect. 20.3.4.

Since most of the emission takes place in the direction of motion of the particle
within a cone of opening angle 2� ' 2=� (cf. Sect. 20.3.4.3), the distant observer
perceives only the radiation emitted on a fraction A1A2 of the trajectory, of length
d ' QR � 2� ' 2 QR=� , where QR is the trajectory’s curvature radius (cf. Fig. 20.8).
The trajectory being a helix of radius R D � V sin ˛=!B [Eq. (17.65)] and angle ˛
with respect to its axis, it is easy to see that the curvature radius is QR D R= sin2 ˛.
We have thus
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Fig. 20.8 Visibility window of synchrotron radiation by a distant observer. The opening half-
angle of the emission cone is � ' 1=� , where � is the ultra-relativistic particle’s Lorentz factor
with respect to the observer

d ' 2R

� sin2 ˛
D 2V

!B sin˛
:

For the distant observer, the duration of the signal emitted between the points A1
and A2, is

T D tA2C
r2

c
�
�
tA1 C

r1

c

�
D tA2 � tA1„ ƒ‚ …

d=V

C r1 � r2
c„ ƒ‚ …

�d=c

D d

V

�
1 � V

c

	
D 2.1� V=c/

!B sin ˛
:

At the ultra-relativistic limit under consideration, 1 � V=c D .1 � V 2=c2/=.1 C
V=c/ ' .1 � V 2=c2/=2 ' 1=.2� 2/, so that

T ' 1

� 2!B sin ˛
: (20.38)

This duration is much shorter, by a factor of order � 2, than the cyclotron period
2�=!B . The corresponding frequency is fc D 1=T , i.e.

fc D � 2!B sin ˛ D � 2 qB

m
sin ˛ D � 3 c

R
sin2 ˛ ; (20.39)

where we have used the relation (17.65) between !B and .R; V / with V ' c.
fc is the characteristic frequency of the upper bound of the synchrotron spectrum,
the lower bound being the synchrotron frequency fs D !B=.2�� /. Note that
fc=fs D 2�� 3 sin ˛ 
 1. The spectrum of synchrotron radiation emitted by
relativistic particles is therefore very wide.
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Fig. 20.9 Synchrotron
facility SOLEIL, in Saclay,
near Paris. The circular
building houses the electron
acceleration chain (a linac C
a synchrotron), the storage
ring of radius 57 m and the
various beamlines for the use
of synchrotron radiation
[Source: SOLEIL]

20.4.3 Applications

20.4.3.1 Use in Research and Industry

We have stressed above that synchrotron radiation is a drawback regarding circular
accelerators for high-energy electrons. On the other side, synchrotron radiation
presents unique features, leading to numerous applications: this is an intense source
of photons with a broad energy spectrum, from microwaves up to X-rays, thanks
to the factor � 3 in (20.39). Some facilities have thus been constructed, comprising
an accelerator (usually a linac in series with a synchrotron) and a storage ring (cf.
Sect. 17.5.5), with the only aim to exploit synchrotron radiation. The accelerated
particles are electrons, and it is relatively easy to impart large Lorentz factor to
them, above one thousand (cf. Table 17.1). For a storage ring, ˛ D �=2 and (20.39)
yield the following characteristic energy:

"c D hfc D 12:4
�
�

1000

	3 �
100 m

R

	
eV: (20.40)

One of the most efficient synchrotron facilities is SOLEIL, installed in Paris area
and operating since 2006 (cf. Fig. 20.9). Substituting SOLEIL’s parameters (R D
57 m and � D 5:4 � 103; cf. Table 17.1) in (20.40), we get "c D 3:4 keV, i.e.
X-ray photons. Actually, the energies reached in SOLEIL are � 20 keV. Formula
(20.40) corresponds indeed to the emission by electrons submitted to the centripetal
acceleration of a purely circular trajectory. However some magnetic devices, named
undulators, have been inserted all along the ring, to make the electrons oscillate and
thereby provide them with a supplementary acceleration, which allows one to extend
the energy range to 20 keV. The low-energy part of SOLEIL synchrotron radiation
is also exploited, with a beamline entirely devoted to the infrared radiation.

Synchrotron facilities, like SOLEIL or the European Synchrotron Radiation
Facility (ESRF) in Grenoble, France (cf. Table 17.1), cover a wide field
of applications: physics, chemistry, biology, materials science, geophysics,
astrophysics and archaeology. Scientists from various horizons, as well as engineers
specialized in the conception of materials, electronic compounds or pharmaceutical
drugs, are using synchrotron radiation.
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Fig. 20.10 Radio image of Jupiter, at the wavelength � D 13 cm. The planet’s disk appears
via its thermal emission, while the belt surrounding it results from the synchrotron emission from
relativistic electrons in the planet’s magnetosphere. [Source: Y. Leblanc et al. (1997)]

One of the first applications is crystallography, using essentially the diffraction
by a rather hard (10–20 keV) monochromatic radiation, to probe the structure
of matter, at scales ranging from the angstrom to the micrometre. The structure
of proteins is thus resolved, which is a major goal for biology and medicine.
Other specific experiments take advantage of the unique features of synchrotron
radiation. The extended spectrum allows one to measure the variations of the X-ray
absorption by matter as a function of the wavelength near the absorption thresholds.
The high brightness of synchrotron radiation allows for time-resolved kinematic
studies (investigation of reaction mechanisms) or for studying materials under
extreme conditions (pressure of a few tens of gigapascals, typical from the Earth’s
mantle). Finally, new X-ray imaging techniques are under development, using a
synchrotron-radiation beam.

20.4.3.2 Synchrotron Radiation in Astrophysics

Synchrotron radiation plays an important role in astrophysics, due to the omnipres-
ence of the magnetic field and the numerous situations where electrons are
accelerated up to relativistic velocities. For instance, electrons trapped in Jupiter
magnetosphere are producing an intense synchrotron emission in radio waves (cf.
Fig. 20.10).

Another example is provided by the Crab Nebula, which is the remnant of
the supernova observed in the year 1054. It harbours a neutron star, formed by
the gravitational collapse of the core of the progenitor massive star during the
supernova phenomenon. Being highly magnetized (B � 108 T) and rapidly rotating
(30 rotations per second—thereby making the neutron star a pulsar), this star is a
source of ultra-relativistic electrons. In the mean magnetic field of the nebula (B �
10�8 T), the electrons generate an intense synchrotron radiation (cf. Fig. 20.11). The
spectrum is very wide, from radio frequencies to X-rays. The maximum is around
1016 Hz, which is in the ultraviolet range and gives the bluish colour in Fig. 20.11.
Setting fc D 1016 Hz in (20.39), as well as B D 10�8 T, we find an estimate of the
Lorentz factor of the electrons: � � 106. They are thus highly relativistic.
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Fig. 20.11 Crab Nebula, remnant of the supernova that appeared in 1054. This picture has been
taken by the Very Large Telescope (VLT) of the European Southern Observatory, in northern
Chile. The intense diffuse emission near the centre (bluish on the colour image) is the synchrotron
radiation by ultra-relativistic electrons moving in the nebula’s magnetic field [Source: European
Southern Observatory]

Finally, let us close this brief survey by mentioning the synchrotron emission of
the jets emanating from active galactic nuclei, a nice example of which has been
encountered in Sect. 9.4.5 (cf. Fig. 9.12). Another example is provided by Fig. 21.4
in the next chapter.



Chapter 21
Relativistic Hydrodynamics

21.1 Introduction

Within the framework of Minkowski spacetime, relativistic hydrodynamics can be
defined as the study of fluids whose velocity relative to a reference observer is a
non-negligible fraction of c or whose internal energy density and pressure are non-
negligible with respect to the mass-energy density, the latter point meaning that
the particles constituting the fluid have relativistic velocities. There are currently
two growing application fields: (i) astrophysics, with the relativistic jets emitted
by micro-quasars, active galactic nuclei or gamma-ray-burst sources, and (ii) heavy
ion collisions in accelerators, which seem to generate a quark-gluon plasma for
which a hydrodynamic description is appropriate. Of course, relativistic fluids are
also present in neutron stars, in accretion disks around black holes, as well as in
cosmology. Even if the complete study of these fluids requires general relativity (cf.
Sect. 22.4), many results exposed in the present chapter are applicable to them.

We shall limit ourselves to perfect fluids, which are defined from their energy–
momentum tensor in Sect. 21.2. We present then the equations of conservation of
baryon number (Sect. 21.3) and of energy–momentum (Sect. 21.4), the latter leading
notably to the relativistic generalization of the Euler equation. In Sect. 21.5, we
provide an alternative formulation of relativistic fluid dynamics, which is based on
exterior calculus and which gives an important role to a certain differential form:
the vorticity 2-form. This approach has the advantage to lead simply to classical
conservation laws (Bernoulli’s theorem and Kelvin’s circulation theorem), as we
shall see in Sect. 21.6. Irrotational flows are discussed in the same section. Finally,
in Sect. 21.7, we shall describe the applications mentioned above: astrophysical jets
and quark-gluon plasma.
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21.2 The Perfect Fluid Model

21.2.1 Energy–Momentum Tensor

A perfect fluid can be defined formally as a medium whose energy–
momentum tensor (cf. Chap. 19) takes the form

T D ."C p/ u˝ uC p g ; (21.1)

where

• u a field of linear forms on E , metric dual of a vector field #»u that is
timelike, future-directed and unit ( #»u � #»u D �1).

• " and p are two scalar fields on E .

At each point of E , the field #»u has all the properties of a 4-velocity. We may consider
it as the 4-velocity of a so-called fluid particle. The field lines of #»u are then the
worldlines of the fluid particles (cf. Fig. 21.1). We shall call them fluid lines. At
the microscopic level, each fluid particle comprises a large number of elementary
particles, and #»u is the mean 4-velocity of these particles. The set of all fluid lines
forms a so-called congruence. This means that through each pointM 2 E , there is
one, and only one, line: that whose tangent vector is #»u .M/.

Remark 21.1. The fluid lines defined above as curves in spacetime (worldlines)
should not be confused with the streamlines, which are the field lines of the fluid
velocity vector

#»
V in the rest space of a given observer at some fixed instant.

In order to interpret the scalar fields " and p, let us consider an observer O linked
to the fluid, i.e. an observer whose worldline is one of the fluid lines. We shall call
such an observer a fluid-comoving observer, or comoving observer for short. His
4-velocity is then #»u . The fluid energy density measured by O is given by (19.5):

"O D T . #»u ; #»u / D ."C p/ hu; #»u i„ƒ‚…
�1
hu; #»u i„ƒ‚…

�1
Cp g. #»u ; #»u /„ ƒ‚ …

�1
D ":

Hence " is nothing but the energy density measured by a comoving observer. It is
therefore called proper energy density of the fluid.

Furthermore, the density of linear momentum measured by O is (19.6):

$ D �1
c

T .?u;
#»u / D �1

c

�
."C p/. #»u �?u„ ƒ‚ …

0

/. #»u � #»u /C p g.?u;
#»u /„ ƒ‚ …

0

�
D 0:
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Fig. 21.1 Congruence
formed by the worldlines of
the fluid particles

It is not surprising to find zero for the fluid is at rest with respect to O . Finally, the
stress tensor relative to O is found through (19.13): S D T .?u;?u/. Substituting
(21.1) for T and applying the outcome to a couple . #»v ; #»w/ of arbitrary vectors in E ,
we get

S . #»v ; #»w/ D ."C p/ #»u �?u
#»v„ ƒ‚ …

0

#»u �?u
#»w„ ƒ‚ …

0

Cp g.?u
#»v ;?u

#»w/

D p Œ #»v C . #»u � #»v / #»u � � Œ #»w C . #»u � #»w/ #»u � D p Œ #»v � #»w C . #»u � #»v /. #»u � #»w/�:

We conclude that

S D p .g C u˝ u/ : (21.2)

After plugging this expression into relation (19.14), which gives the force dF

exerted onto a surface element of area dS and normal #»n 2 Eu in O’s local rest
space, we obtain

dF D S .:; #»n / dS D pŒg.:; #»n /„ ƒ‚ …
n

C. #»u � #»n„ƒ‚…
0

/u� dS;

i.e.

dF D p n dS : (21.3)

Therefore, the force exerted by the fluid on some surface element is directed along
the normal to the surface, and p appears as the amplitude of the force per unit area:
since #»n is a unit vector, one has indeed p D kd #»

F kg=dS . The scalar field p is
called pressure of the fluid. p being a function solely of the pointM 2 E where the
elementary surface is considered (p is a scalar field!), and not of the direction normal
to the surface, relation (21.3) is often expressed by stating that the stress tensor is
isotropic. This is the major characteristic of a perfect fluid. The components of S

in O’s local frame . #»e ˛/ are Sij D S . #»e i ;
#»e j / (the components S0˛ are zero by
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definition of S ). Thanks to formula (21.2), there comes Sij D pŒ #»e i � #»e j C . #»u �
#»e i /.

#»u � #»e j /�. Now #»e i � #»e j D ıij and #»u � #»e i D 0. We have thus

Sij D p ıij : (21.4)

This expression clearly shows the isotropy of the stress tensor.

Remark 21.2. In view of (21.2), the energy–momentum tensor (21.1) can be
rewritten as

T D " u˝ uC S : (21.5)

Comparing with the general orthogonal decomposition (19.20) of an energy–
momentum tensor with respect to an observer, we recover that $ D 0.

21.2.2 Quantities Relative to an Arbitrary Observer

Let us now consider an arbitrary (i.e. not necessarily comoving) observer O , of 4-
velocity #»u 0. We may express the fluid characteristics as perceived by that observer
via formulas of Sect. 19.2.2. First of all, the fluid energy density relative to O is
given by (19.5):E D T . #»u 0;

#»u 0/. Substituting (21.1) for T yieldsE D ."Cp/. #»u �
#»u 0/

2 C p.�1/. Now � #»u � #»u 0 D �—the fluid Lorentz factor with respect to O
[cf. (4.10)]. We have thus

E D � 2."C p/ � p : (21.6)

If O is a comoving observer, � D 1 and we recoverE D ".
Remark 21.3. In view of Einstein formula E D � mc2 [Eq. (9.16)], one could be
surprised by the factor � 2, instead of � , in (21.6). But it should be reminded that
in the present section, E is an energy per unit volume, so that an extra � factor
arises from the length contraction in the direction of the fluid motion with respect to
observer O (cf. Sect. 5.2.2).

The linear-momentum density of the fluid measured by O is found via (19.6):

$ D �1
c

T .?u0 ;
#»u 0/ D �1

c

�
."C p/. #»u �?u0 /.

#»u � #»u 0„ƒ‚…
��

/C p g.?u0 ;
#»u 0/„ ƒ‚ …

0

�
:

It is appropriate to let appear the fluid velocity
#»

V with respect to O , via the
orthogonal decomposition (4.31) of #»u :
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#»u D �
�

#»u 0 C 1

c

#»

V

	
: (21.7)

We have then #»u �?u0 D .� =c/
#»

V �?u0 D .� =c/
#»

V � Id D .� =c/V , since
#»

V 2 Eu0 .
Accordingly,

$ D � 2 "C p
c2

V D E C p
c2

V : (21.8)

If O is a comoving observer,
#»
V D 0 and we recover $ D 0.

Finally, the components in O’s local frame . #»e ˛/ of the stress tensor relative to
O are deduced from (19.12):

Sij D T . #»e i ;
#»e j / D ."C p/. #»u � #»e i /.

#»u � #»e j /C p #»e i � #»e j„ ƒ‚ …
ıij

:

Now, from (21.7), #»u � #»e i D .� =c/ #»
V � #»e i D .� =c/Vi . Hence

Sij D p ıij C � 2 "C p
c2

ViVj D p ıij C E C p
c2

ViVj : (21.9)

Noticing that ıij ei ˝ ej D g C u0 ˝ u0 and Vi ei D V , we can write

S D p �g C u0 ˝ u0
�C E C p

c2
V ˝ V : (21.10)

If O is a comoving observer, u0 D u, V D 0 and we recover (21.2).

21.2.3 Pressureless Fluid (Dust)

If the pressure field p is identically zero, the perfect-fluid energy–momentum tensor
(21.1) reduces to

T D " u˝ u: (21.11)

This form can be recovered from the expression of the energy–momentum tensor
derived in Chap. 19 for a system of particles [Eq. (19.3)]; by assuming that at a
given event M 2 E , all particles have the same 4-velocity— that given by the
vector field #»u :

#»u a.	/ D #»u .Aa.	//; (21.12)
#»u a.	/ being the 4-velocity of particle no. a, 	 its proper time and Aa.	/ the event
of its worldline at the instant 	 . Assuming in addition that the particles are simple
(cf. Sect. 9.2.1), so that pa D mc ua, expression (19.3) for the energy–momentum
tensor becomes
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8M 2 E ; T .M/ D
NX

aD1
mac

2

Z C1

�1
ıAa.	/.M/ u.Aa.	//˝ u.Aa.	// c d	:

Thanks to the Dirac distribution ıAa.	/.M/, each u.Aa.	// can be replaced by u.M/.
The term u.M/˝ u.M/ can be then extracted from the integral and even from the
sum over a, since it is independent of a, leading to

8M 2 E ; T .M/ D �c2 u.M/˝ u.M/; (21.13)

with

� WD
NX

aD1
ma

Z C1

�1
ıAa.	/.M/ c d	: (21.14)

The tensor (21.13) being of the form (21.11) (with " D �c2), we have thus justified
the expression (21.1) for the energy–momentum tensor of a perfect fluid in the
particular case of a system of noninteracting simple particles whose 4-velocities
are identical at each spacetime event. In this case, one has necessarily p D 0. This
model of pressureless fluid is called dust.

Remark 21.4. It is natural to obtain p D 0 for a model where all the particles
have the same 4-velocity, for within the framework of kinetic theory, the pressure
corresponds to momentum transfer between two adjacent fluid particles by exchange
of particles. If all the particles have the same 4-velocity, their worldlines are parallel
to those of the fluid particles and there is no particle exchange.

21.2.4 Equation of State and Thermodynamic Relations

At the microscopic level, the fluid is made of different species of particles (for
instance, electrons, protons, and nuclei). Let N be the total number of species1 and
na, 1 � a � N , be the number density (i.e. number of particles per unit volume) of
particles from species no. a evaluated by a comoving observer. We shall say that na
is the proper particle density of species a. A fluid particle contains a large number
of particles from each species, and we shall assume that the local thermodynamic
equilibrium is achieved. This means that the mean free path of the particles is small
compared to the size of the fluid particles. One may then use a thermodynamic
description of the system and define the entropy and the temperature of each fluid
particle. In particular, we shall use the proper entropy density s, i.e. the entropy per
unit volume with respect to an comoving observer. Under the assumption of local
thermodynamic equilibrium, the proper energy density is a function of the proper
entropy density and the proper particle densities:

1Note that in Sect. 21.2.3, N stood rather for the total number of particles.
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" D ".s; n1; : : : ; nN / : (21.15)

This relation is called equation of state of the fluid. Its precise form depends on the
model of matter. One defines the fluid’s internal energy density "int as the quantity
to add to the sum of all the mass-energy densities to get the total energy density ":

" D
NX

aD1
namac

2 C "int; (21.16)

ma being the mass of a particle of species a. To consider nonrelativistic limits, it is
convenient to introduce the mass density � WDPN

aD1 nama and to write (21.16) as

" D �c2 C "int : (21.17)

The temperature T of the fluid and the chemical potential �a of particles from
species a are defined as the partial derivatives of the equation of state (21.15):

T WD
�
@"

@s

	

na

and �a WD
�
@"

@na

	

s;nb 6Da

: (21.18)

We have then

d" D T ds C
NX

aD1
�a dna : (21.19)

Remark 21.5. In view of (21.16), we rewrite the second equation in (21.18) as

�a D mac
2 C

�
@"int

@na

	

s;nb 6Da

: (21.20)

It is then clear that the chemical potential �a comprises the single-particle mass
energymac

2 in addition to the term �int
a WD .@"int=@na/s;nb 6Da

. At the nonrelativistic

limit, it is �int
a , and not �a, that coincides with the “classical” chemical potential.

Let us consider a three-dimensional domain V that is (i) comoving with the fluid
and (ii) sufficiently small so that the densities s and na can be considered as uniform
over V . Denoting by V the volume of V (as measured by a comoving observer),
V contains then the entropy S D sV and Na D naV particles from species a. The
total fluid energy contained in V is U D "V . Taking the differential of this relation
and using (21.19) yields
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dU D d."V / D V d"C " dV D V
"
T ds C

NX

aD1
�a dna

#
C " dV

D V
"
T d

�
S

V

	
C

NX

aD1
�a d

�
Na

V

	#
C " dV

dU D T dS C
"
" � T s �

NX

aD1
�ana

#
dV C

NX

aD1
�a dNa: (21.21)

Now the first law of thermodynamics states that

dU D T dS � p dV C
NX

aD1
�a dNa: (21.22)

Comparing with (21.21), we obtain the following expression of the fluid pressure:

p D �"C T s C
NX

aD1
�ana : (21.23)

We recover here a familiar thermodynamic identity: that identifying the free
enthalpy (or Gibbs free energy) G WD U C PV � TS to the sum

PN
aD1 �a Na.

Indeed, (21.23) is nothing but the relation G D PN
aD1 �a Na divided by V .

Equation (21.23) shows that the pressure p involved in the energy–momentum
tensor (21.1) of a perfect fluid is a function of .s; n1; : : : ; nN / fully determined by
the equation of state ".s; n1; : : : ; nN /. Let us recall that T and �a are nothing but
the partial derivatives of ".s; n1; : : : ; nN / [Eq. (21.18)]. Note also that the quantity
"C p involved in the energy–momentum tensor (21.1) as well as in the expressions
derived in Sect. 21.2.2 is the proper enthalpy density and that (21.23) provides the
following expression for it:

"C p D T s C
NX

aD1
�ana: (21.24)

21.2.5 Simple Fluids

In “ordinary” matter, most of the mass is contained in protons and neutrons, which
belong to the family of baryons, i.e. of subatomic particles made of three quarks. To
each proton or neutron is assigned a baryon number ofC1. We call proper baryon
density and denote by n (without any index) the baryon number per unit volume
measured by a comoving observer. We shall define a simple fluid as a perfect fluid
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whose equation of state depends only on the proper entropy density and on the
proper baryon density:

" D ".s; n/: (21.25)

This model is valid in two opposite cases:

• The (chemical or nuclear) reactions between the various components are so fast
with respect to the timescale of the studied problem that one may assume a
complete chemical or nuclear equilibrium between the various species. Then the
densities of each species are fully specified by n and s only: na D Y

eq
a .s; n/ n,

with some well-defined functions Y eq
a . Accordingly, (21.15) takes the form

(21.25).
• The characteristic timescales of the (chemical or nuclear) reactions between

the various components are very large in comparison with the timescale of the
studied problem, so that one may consider that the fluid composition is “frozen”;
the densities of each species are then deduced from the baryon density according
to na D Yan, with fixed particle to baryon ratios Ya. The general equation of
state (21.15) is then reduced to (21.25).

Remark 21.6. Actually, the simple fluid model holds even if n is not the density
of baryons but of other (conserved) particles, the essential feature being that the
equation of state (21.25) remains a function of two variables.

A particular case of simple fluid is that of a barotropic fluid—the equation of
state is then a function of the proper baryon density only:

" D ".n/: (21.26)

This is notably the case of cold dense matter (i.e. having a temperature below the
Fermi temperature), which constitutes the interior of white dwarfs and neutron stars.
For a barotropic fluid, T D 0 [given the definition (21.18)] and (21.24) takes a very
simple form:

"C p D �n (barotropic): (21.27)

In this case, the baryon chemical potential� is thus equal to the enthalpy per baryon
."C p/=n.

Example 21.1. An example of a barotropic fluid is a polytrope. The corresponding
equation of state is defined from three constants: �, 
 (the so-called adiabatic index)
and the mean baryon massmb ' 1:66 � 10�27 kg, according to

".n/ D mbc
2 nC �


 � 1 n

 : (21.28)

Equation (21.27) along with � D d"=dn shows then that the pressure is

p.n/ D � n
 : (21.29)
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A concrete example of polytrope is provided by matter composed of atomic nuclei
and electrons, the latter being degenerate, forming an ideal Fermi gas and providing
most of the pressure. This is notably the matter constituting stars of the white dwarf
type. When the electrons are not relativistic (low density), the equation of state
is polytropic with � D .3�2/2=3„2=.5me/Y

5=3
e and 
 D 5=3, where me is the

electron mass and Ye WD ne=n the number of electrons per baryon (in a white
dwarf, Ye ' 0:5). At the opposite, when the electrons are ultra-relativistic (high
density), the equation of state is still polytropic, but with � D .3�2/1=3„cY 4=3e =4

and 
 D 4=3. Between these two extreme regimes, the equation of state is not
polytropic and exhibits a more complicated dependency in n (Diu et al. 1989).

21.3 Baryon Number Conservation

21.3.1 Baryon Four-Current

Given the proper baryon density n and the fluid 4-velocity #»u , one defines the baryon
four-current, or baryon 4-current for short, as the vector field

#»

j b WD n #»u : (21.30)

The flux of
#»
j b through any three-dimensional domain V in the rest space of an

observer O gives the total number N of baryons contained in this domain (baryon
number of V ):

N D ˚V .
#»
j b/ D �

Z

V

#»
j b � #»u 0 dV D

Z

V
?j

b
; (21.31)

where (i) #»u 0 is the 4-velocity of O , which is also the unit normal to the domain V ,
(ii) the � sign results from the timelike character of #»u 0 and (iii) the last equality
follows from formula (16.44), which allows one to write the flux of

#»
j b as the

integral over the 3-volume V of the 3-form ?j
b
, the Hodge dual of the 1-form

j
b

associated with
#»

j b by metric duality.

Remark 21.7. The baryon 4-current
#»
j b is the analogue regarding baryon number of

the electric 4-current
#»
j regarding electric charge. In particular, (21.31) has exactly

the same form as (18.1) and (18.2), which provide the total electric charge of the
domain V .

To be convinced that the quantity N defined by (21.31) does correspond to the
number of baryons contained in V , it suffices to replace

#»

j b by n #»u and to notice
that � #»u � #»u 0 D � , the fluid Lorentz factor with respect to O . Formula (21.31)
becomes then
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N D
Z

V
� n dV:

Now, it is easy to see that

N WD � n D � #»u 0 � #»

j b (21.32)

is nothing but the baryon density measured by observer O , the factor � taking
into account the FitzGerald–Lorentz contraction [Eq. (5.17)] in the direction of
the fluid motion with respect to O [compare (21.32) with the expression (18.12)
of the electric-charge density]. As the integral of N over V , we conclude that N is
the total number of baryons in V .

21.3.2 Principle of Baryon Number Conservation

In the standard model of particle physics, the baryon number is conserved2 by the
electromagnetic and strong interactions as well as by all the processes involving the
weak interaction except for non-perturbative processes connected to the so-called
Adler–Bell–Jackiw anomaly. Except in the primordial universe, the conditions of
this anomaly are never fulfilled. We shall then postulate the conservation of the
baryon number and state it in the same form as that of electric charge in Chap. 18 or
that of energy–momentum in Chap. 19, namely:

If a fluid is isolated, the flux of the baryon 4-current through any closed
hypersurface˙ vanishes:

isolated fluid and ˙ closed H) ˚˙.
#»
j b/ D

Z

˙

?j
b
D 0 : (21.33)

We can have exactly the same reasoning as in Sect. 18.4.1 and conclude that
the principle (21.33) leads to a conservation law between two instants for a given
observer as well as to the invariance of the baryon number under a change of
observer.

2Some theories beyond the standard model, such as Grand Unified Theories, induce a violation of
the baryon number conservation, leading to the proton decay; such a decay has however not been
observed to date, the experimental lower bound on the proton life time being 1033 years.
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Fig. 21.2 Transport of a volume element V .	/ by the fluid

By virtue of Stokes’ theorem (16.46), (21.33) implies that the 4-form d ?j
b

is

identically zero. By Hodge duality, it follows that the 0-form (scalar field) r � #»

j b

vanishes as well [cf. Eq. (15.88)]. In other words, the local version of the principle
of baryon number conservation is

r � .n #»u / D 0 : (21.34)

Remark 21.8. Again, this equation is fully similar to (18.38), the local expression
of electric-charge conservation.

It is instructive to establish (21.34) by another mean, based on the evolution of
a fluid element. Let us consider a 3-volume V .	/ transported by the fluid (	 being
the fluid proper time) which is sufficiently small so that the densities na are constant
over it. By volume transported by the fluid, it is understood that V .	/ � Eu.	/ and
that the worldlines of the boundary of V .	/ are tangent to #»u (i.e. they are fluid
lines) (cf. Fig. 21.2). Let d	 be some infinitesimal increment of the fluid proper time
and U the four-dimensional domain bounded by V .	/, V .	Cd	/ and the set W of
the fluid lines connecting V .	/ to V .	 C d	/ (cf. Fig. 21.2). The four-dimensional
Gauss–Ostrogradsky theorem (16.64) applied to the vector field #»u in U leads to

Z

U
r � #»u dU D ˚V .	/.

#»u /C ˚W .
#»u /C˚V .	Cd	/.

#»u /;

where the hypersurfaces V .	/, W and V .	 C d	/ are oriented as parts of U ’s
boundary. Taking into account that V .	/ and V .	 C d	/ are spacelike and W is
timelike, the above fluxes are
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˚V .	/.
#»u / D �

Z

V .	/

#»u � .� #»u / dV D �
Z

V .	/

dV D �V.	/

˚W .
#»u / D

Z

W

#»u � #»n„ƒ‚…
0

dV D 0

˚V .	Cd	/.
#»u / D �

Z

V .	Cd	/

#»u � .C #»u / dV D
Z

V .	Cd	/
dV D V.	 C d	/;

where V.	/ stands for the volume of V .	/. We have thus
Z

U
r � #»u dU D V.	 C d	/� V.	/:

Now, d	 being an infinitesimal quantity and V .	/ a volume sufficiently small so
that r � #»u is uniform in it, we may write
Z

U
r � #»u dU D

Z

U
r � #»u cd	dV D cd	

Z

V .	/

r � #»u dV D cd	 .r � #»u /V .	/:

Finally, we get cd	 .r � #»u /V .	/ D V.	 C d	/� V.	/, i.e.

c r � #»u D 1

V

dV

d	
: (21.35)

The divergence of the fluid 4-velocity corresponds thus to the relative time variation
of a volume element dragged by the fluid. We can then easily evaluate the time
variation of the number N D nV of baryons contained in V .	/:

dN

d	
D d

d	
.nV / D dn

d	„ƒ‚…
c #»u � #»r n

V C n dV

d	„ƒ‚…
Vcr � #»u

D cV r � .n #»u /;

hence,
1

V

dN

d	
D c r � .n #»u /: (21.36)

The baryon number conservation expressed as dN =d	 D 0 is therefore equivalent
to r � .n #»u / D 0 [Eq. (21.34)].

21.3.3 Expression with Respect to an Inertial Observer

Given an inertial observer O , of 4-velocity #»u 0, let us substitute the decomposition
(21.7) for the fluid 4-velocity in the expression (21.34) of the baryon number
conservation:
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r �
�
n�„ƒ‚…
N

�
#»u 0 C 1

c

#»

V

	�
D #»u 0 � #»rN C 1

c
r � .N #»

V / D 0;

where we have let appear the baryon density with respect to O , N , according
to (21.32). Since c #»u 0 � #»rN D @N=@t , t being O’s proper time, there comes

@N

@t
C r � .N #»

V / D 0 : (21.37)

This relation can be expressed in terms of the components with respect to the inertial
coordinates .x˛/ D .ct; xi / associated with O as (note that V 0 D 0)

@N

@t
C @

@xi
.NV i / D 0: (21.38)

Remark 21.9. Equation (21.37), which links the time variation of the baryon density
N to the divergence of the baryon flux, N

#»

V —these two quantities being defined
relatively to observer O—is identical to an equation of conservation in Newtonian
physics: it does not involve any purely relativistic term, such as a Lorentz factor or
a factor c�1.

21.4 Energy–Momentum Conservation

21.4.1 Introduction

The general form of the equation expressing the energy–momentum conservation
has been given in Sect. 19.3.3: it relates the divergence of the energy–momentum
tensor to the external 4-force density F ext exerted onto the medium [Eq. (19.28)]:

#»r � T D F ext: (21.39)

In what follows, we shall decompose this equation in various ways.
First of all, substituting the perfect fluid expression (21.1) for T in (21.39) and

expanding, we obtain

Œr #»u ."C p/C ."C p/r � #»u �uC ."C p/ aC rp D F ext; (21.40)

where a is the 1-form metric dual of the vector #»a WD r #»u
#»u . The latter is nothing

but the 4-acceleration of a fluid-comoving observer, as it appears when comparing
the identities (2.16) and (15.28).
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21.4.2 Projection onto the Fluid 4-Velocity

Equation (21.40) is an equality between two 1-forms. Applying it to the vector #»u
yields, given that hu; #»u i D �1, ha; #»u i D #»a � #»u D 0 and hrp; #»u i D r #»u p,

r #»u "C ."C p/r � #»u D �hF ext;
#»u i: (21.41)

Now from (21.19),

r #»u " D Tr #»u s C
NX

aD1
�ar #»u na

D T Œr � .s #»u /� sr � #»u �C
NX

aD1
�a Œr � .na #»u /� nar � #»u � :

Inserting this expression into (21.41) and using the identity (21.23) to set to zero the
term in factor of r � #»u , we get

Tr � .s #»u / D �hF ext;
#»u i � 1

c

NX

aD1
�aRa ; (21.42)

where

Ra WD cr � .na #»u / (21.43)

is the volume creation rate of particles from species a, i.e. the number of particles
from species a created per unit time and per unit volume relatively to the comoving
observer. Indeed

Ra D cr � .na #»u / D cr #»u na C nacr � #»u D dna
d	
C na

V

dV

d	
;

where the last equality stems from (21.35). We have thus

Ra D 1

V

d.naV /

d	
; (21.44)

which proves the above assertion. Similarly, the term r � .s #»u /, which appears in the
left-hand side of (21.42), is c�1 times the volume creation rate of entropy.
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Case of a Simple Fluid

For a simple fluid (cf. Sect. 21.2.5), the summation over a in (21.42) is limited to
a single item: the baryons. Moreover, the volume creation rate of baryons is zero
by virtue of the principle of baryon number conservation (21.34). Equation (21.42)
reduces thus to

r � .s #»u / D � 1
T
hF ext;

#»u i:
simple fluid

(21.45)

In particular, if the simple fluid is isolated (F ext D 0), its entropy is conserved:

r � .s #»u / D 0:
isolated simple fluid

(21.46)

This equation is fully similar to that expressing the conservation of baryon number
[Eq. (21.34)]. An immediate consequence of (21.46) and (21.34) is that the entropy
per baryon,

S WD s

n
; (21.47)

stays constant along the fluid lines:

r #»u S D 0: isolated simple fluid
(21.48)

Indeed,

r #»u S D r #»u

� s
n

�
D 1

n

h
r #»u s � s

n
r #»u n

i

D 1

n

�
r � .s #»u /„ ƒ‚ …

0

�sr � #»u � s
n

r � .n #»u /„ ƒ‚ …
0

Csr � #»u
�
D 0:

One translates the law of entropy conservation (21.46) or (21.48), by saying that the
flow of an isolated simple fluid is adiabatic: there is no diffusion of heat between
the various fluid elements.

21.4.3 Part Orthogonal to the Fluid 4-Velocity

Equation (21.42) can be seen as one of the four components of (21.40). The
three remaining components are found by combining each side of (21.40) with the
orthogonal projector ?u. Since u ı ?u D #»u � ?u D 0, and a ı ?u D a (for #»a is
orthogonal to #»u ), there comes
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."C p/a D F ext ı?u � rp ı?u:

Using ?u D IdC hu; :i #»u [Eq. (3.12)], we can write

."C p/a D �rp � .r #»u p/uCF ext C hF ext;
#»u i u : (21.49)

This equation is clearly of the type “ma D F ”. It is therefore sometimes called the
relativistic Euler equation (cf., for instance, Misner et al. (1973) or Choquet-Bruhat
(2009)), but we reserve this name to the equation involving the fluid velocity relative
to some inertial observer [Eq. (21.55) below] and not involving the 4-velocity as in
(21.49). Accordingly, we shall call (21.49) the four-dimensional Euler equation.

Historical note: Equations (21.41) and (21.49), which rule the dynamics of a rela-
tivistic perfect fluid, seem to have been first written in 1924 by Luther P. Eisenhart3

(1924) (in the case F ext D 0). They are found in the first synthetical article devoted
to relativistic hydrodynamics written in 1937 by John L. Synge (cf. p. 74) (1937).
The law of entropy conservation for an isolated simple fluid [Eq. (21.48)] has been
obtained in 1954 by Abraham H. Taub4 (1954).

21.4.4 Evolution of the Fluid Energy Relative to Some
Observer

Let us now perform the orthogonal decomposition of the energy–momentum
conservation equation (21.39) with respect to an arbitrary inertial observer O ,
of 4-velocity #»u 0. The right-hand side of (21.39), the external 4-force density, is
orthogonally decomposed into the external power densityPext and the external force
density F ext according to

F ext D Pext

c
u0 C F ext with hF ext;

#»u 0i D 0: (21.50)

We have seen in Sect. 19.3.4 that the orthogonal projection onto #»u 0 of the
equation

#»r � T D F ext leads to the following evolution equation for the energy
density E measured by O [Eq. (19.34)]:

@E

@t
C c2 #»r �$ D Pext: (21.51)

3Luther P. Eisenhart (1876–1965): American mathematician, known for his work in differential
geometry.
4Abraham H. Taub (1911–1999): American mathematician and physicist, author of many works
in relativity (more particularly in relativistic hydrodynamics) and in differential geometry.
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For a perfect fluid, the linear-momentum density $ is expressed according to (21.8):
$ D c�2.E C p/V , where

#»

V stands for the fluid velocity relative to O . We
obtain thus

@E

@t
C r � Œ.E C p/ #»

V � D Pext : (21.52)

Once rewritten in terms of the components with respect to the inertial coordinates
.x˛/ D .ct; xi / associated with O , this relation becomes

@E

@t
C @

@xi
Œ.E C p/V i � D Pext: (21.53)

Remark 21.10. Like the equation of baryon number conservation [Eq. (21.37)],
(21.52) does not involve any explicit relativistic term (Lorentz factor, etc.) and
is identical to the corresponding equation of Newtonian hydrodynamics (see, e.g.
Guyon et al. (2001); Rieutord (1997)).

21.4.5 Relativistic Euler Equation

The orthogonal projection of the equation
#»r � T D F ext onto O’s rest space leads

to (19.35), which expresses the conservation of linear momentum:

@$

@t
C #»r � S D F ext: (21.54)

Substituting the perfect fluid values (21.8) and (21.10) for, respectively, $ and S ,
we get

1

c2
@

@t
Œ.E C p/V �C #»r � �p �g C u0 ˝ u0

�C c�2.E C p/V ˝ V
� D F ext:

Let us expand this expression, taking into account that rg D 0 and ru0 D 0 (O
is inertial) and using (21.52) to replace @E=@t C #»r � Œ.E C p/V �. We obtain then
(considering the metric dual)

@
#»
V

@t
C r #»

V

#»
V D � c2

.E C p/
�

#»r ?u0
p C 1

c2

�
@p

@t
C Pext

	
#»
V

�
C c2

E C p
#»
F ext ;

(21.55)

where
#»r ?u0

stands for the purely spatial gradient operator with respect to O
introduced in Sect. 18.5.2 [Eq. (18.58)]. The component ˛ D 0 of (21.55) in O’s
frame is identically zero (thanks to V 0 D 0, F 0

ext D 0 and expression (18.59) for the
components of

#»r ?u0
). On the other hand, the three space components are
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@V i

@t
CV j @V

i

@xj
D � c2

.E C p/
�
@p

@xi
C 1

c2

�
@p

@t
C Pext

	
V i

�
C c2F i

ext

E C p : (21.56)

Equation (21.55) is the relativistic version of the Euler equation, which rules the
dynamics of perfect fluids. Let us indeed consider the nonrelativistic limit of (21.55).
To this aim, in addition to the usual � ! 1 and

#»
V =c ! 0, the following hypothesis

have to be made:

j"intj
c2
	 �

nonrelativistic
and

p

c2
	 �

nonrelativistic
; (21.57)

where � is the mass density and "int the internal energy density, both introduced in
Sect. 21.2.4. These properties express among others that, at the microscopic level,
particles do not have relativistic velocities.

Example 21.2. For water at the atmospheric pressure, p D 1 atm ' 105 Pa, so
that p=c2 ' 10�12 kg m�3, which is fully negligible in front of the mass density
� D 103 kg m�3.

The nonrelativistic limit (21.57), along with (21.6) and (21.17), leads to

c2

E C p D
c2

� 2."C p/ D
1

� 2

�
�C "intCp

c2

� ' 1

�
; (21.58)

so that the nonrelativistic limit of (21.56) is

@V i

@t
C V j @V

i

@xj
D �1

�

@p

@xi
C F i

ext

�
: (21.59)

We recognize the classical Euler equation (cf., e.g. Guyon et al. (2001) or Rieutord
(1997)).

21.4.6 Speed of Sound

The equations derived above allow one to easily find the speed of sound in a
relativistic fluid. Let us consider indeed an isolated homogeneous fluid, i.e. a fluid
such that ", p and #»u are constant fields on E (or at least on the part of E occupied
by the fluid). Since #»u is constant, we may choose the inertial observer O to be a
comoving observer. The fluid is then at rest with respect to O , and we have E D ",
� D 1 and

#»

V D 0. Let us suppose that at the instant t D 0 of O’s proper time, the
fluid is submitted to a small perturbation n! nC ın,

#»

V D 0! ı
#»

V , etc. We shall
assume that the perturbation is adiabatic, so that ıS D 0. Expanding (21.52) and
(21.55) to the first order in the perturbations leads to the system
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@ı"

@t
C ."C p/@ıV

i

@xi
D 0 (21.60a)

."C p/@ıV
i

@t
D �c2 @ıp

@xi
: (21.60b)

Assuming that the equation of state is given in the form p D p."; S/, we may write

ıp D
�
@p

@"

	

S

ı"C
�
@p

@S

	

"

ıS„ƒ‚…
0

D
�
@p

@"

	

S

ı": (21.61)

Then (21.60b) becomes

."C p/@ıV
i

@t
D �c2s

@ı"

@xi
; (21.62)

with

cs WD c
s�

@p

@"

	

S

: (21.63)

Taking the time derivative of (21.60a) and the divergence of (21.62), and invoking
the constant character of " and p, we forge an equation that contains only ı":

� 1

c2s

@2ı"

@t2
C

3X

iD1

@2ı"

@xi
2
D 0: (21.64)

We recognize a wave equation, with cs as the propagation velocity [compare with
(18.69) and (18.51)]. From (21.61), the overpressure ıp is propagating at the same
velocity as ı". For this reason, cs is called speed of sound. At the nonrelativistic
limit, " ' �c2 [cf. (21.17) and (21.57)], and (21.63) results in the classical
expression (cf., e.g. Sect. 5.2 of Rieutord (1997))

cs D
s�

@p

@�

	

S

(nonrelativistic): (21.65)

21.4.7 Relativistic Hydrodynamics as a System
of Conservation Laws

In this section, we consider an isolated fluid: F ext D 0. Gathering the equations of
conservation of baryon number, energy and linear momentum written with respect
to some inertial observer O , i.e. equations (21.37), (21.52) and (21.54) (with (21.10)
substituted for S ), we obtain the system
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8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

@N

@t
C @

@xj
.NV j / D 0

@E

@t
C @

@xj
Œ.E C p/V j � D 0

@$i

@t
C @

@xj

�
pı

j
i C$iV

j
�
D 0:

(21.66)

This is a system of conservation laws, which can be recast in the following
condensed form:

@UA

@t
C @

@xj
F
j
A D 0 ; (21.67)

where A 2 f1; 2; 3; 4; 5g. The UA are the components of a state vector in R
5:

UA D .N;E;$1;$2;$3/ and the flux functions F j
A are F j

A D .NV j ; .E C
p/V j ; pı

j
1C$1V

j ; pı
j
2C$2V

j ; pı
j
3C$3V

j /. The system is closed thanks
to the relations

V i D c2$i

E C p ; � D .1 � ıij V
iV j /�1=2; " D � �2.E C p/� p; n D � �1N;

(21.68a)

p D p.n; "/: (21.68b)

Equations (21.68a) are deduced from (21.8), (21.6) and (21.32). Regarding (21.68b),
we assume that the fluid is simple and that the equation of state (21.25) can be
inverted in order to express s as a function of n and ", so that p can be written as a
function of .n; "/.

The system (21.67) has the same structure as that of nonrelativistic hydrodynam-
ics [the difference actually lies in (21.68a)]. It can be shown that if the equation
of state is causal, i.e. if the speed of sound is smaller than c, the system (21.67)
is hyperbolic (Anile 1989; Martı́ and Müller 2003), that is to say each of the three
Jacobian matrices J jAB WD @F

j
A =@UB (1 � j � 3) has only real eigenvalues and is

diagonalizable. Standard methods can then be applied to compute a solution to the
system, the most efficient ones being the high-resolution shock-capturing methods
(Martı́ et al. 1991; Font et al. 1994).

21.5 Formulation Based on Exterior Calculus

We are going to expose a formulation of relativistic hydrodynamics alternative to
that presented above. It is based on the differential forms introduced in Sect. 15.5,
for which we have already stressed the great usefulness in integral calculus
(Chap. 16) and electromagnetism (Chap. 18). This approach has the advantage to
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lead in a simple way to the relativistic generalization of the standard conservation
laws of the type of Bernoulli’s theorem or Kelvin’s circulation theorem.

In all this section, we shall assume that the fluid is isolated: F ext D 0.

21.5.1 Equation of Motion

The starting point is the four-dimensional Euler equation (21.49), in which we set
F ext D 0:

."C p/a D �rp � .r #»u p/u: (21.69)

We need the Gibbs–Duhem relation, which is easily found by taking the differential
of the thermodynamic identity (21.23) and substituting (21.19) for d":

dp D s dT C
NX

aD1
nad�a : (21.70)

We may thus express rp in terms of rT and r�a. Using (21.23) to replace "C p,
we can rewrite (21.69) as

 
T s C

NX

aD1
�ana

!
a D �srT �

NX

aD1
nar�a �

 
sr #»u T C

NX

aD1
nar #»u �a

!
u:

Let us write a D r #»u u and gather the various terms to obtain

s Œr #»u .T u/C rT �C
NX

aD1
na Œr #»u .�au/C r�a� D 0: (21.71)

Now the 1-form r #»u .T u/C rT can be written as d.T u/. #»u ; :/, namely, the 2-form
d.T u/, exterior derivative of T u, having the vector #»u as first argument. Indeed, the
component of the latter are, from (15.62),

Œd.T u/. #»u ; :/�˛ D Œr�.T u˛/� r˛.T u�/�u
�

D u�r�.T u˛/ � r˛.T u�u�
„ƒ‚…

�1
/C T u�r˛u�

„ ƒ‚ …
0

D u�r�.T u˛/Cr˛T;

where u�r˛u� D 0 results from the gradient of u�u� D �1. We have thus

r #»u .T u/C rT D d.T u/. #»u ; :/;
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as well as a similar relation for the term with �a:

r #»u .�au/C r�a D d.�au/. #»u ; :/;

In view of these two relations, (21.71) becomes

"
NX

aD1
na d.�au/C s d.T u/

#
. #»u ; :/ D 0 : (21.72)

This equation is equivalent to the four-dimensional Euler equation (21.69).

21.5.2 Vorticity of a Simple Fluid

In all what follows, we shall limit ourselves to a simple fluid (cf. Sect. 21.2.5). The
summation over a in (21.72) reduces then to a single term (the baryons), so that
(21.72) becomes

Œd.�u/C S d.T u/�. #»u ; :/ D 0; (21.73)

where n is the proper baryon density,� the baryon chemical potential and S D s=n
the entropy per baryon [cf. Eq. (21.47)]. In view of (21.73), let us introduce the
1-form � and the 2-form ˝ defined by

� WD .�C TS/u and ˝ WD d� : (21.74)

� is called the fluid momentum 1-form and ˝ the fluid vorticity 2-form. Thanks to
the thermodynamic relation (21.24), we have

�C TS D "C p
n
DW h ; (21.75)

where h is the enthalpy per baryon. We may thus write

� D h u and ˝ D d.h u/ : (21.76)

The components of � and ˝ are, respectively, �˛ D hu˛ and [cf. Eqs. (15.62) and
(15.67)]

˝˛ˇ D r˛.huˇ/� rˇ.hu˛/ D @

@x˛
.huˇ/� @

@xˇ
.hu˛/: (21.77)

The name vorticity arises from the link between ˝ and the kinematic vorticity
vector #»! defined as the curl of #»u in the fluid’s local rest space [cf. (15.70)] (see
e.g. Ehlers 1961):
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#»! WD r�u
#»u ; ! WD ?du. #»u ; :/: (21.78)

The link between the vorticity 2-form ˝ and the vector #»! relies on Hodge duality.
Indeed, expanding (21.76) yields ˝ D hduC dh ^ u, whose Hodge dual is [use is
made of the identity (14.79)]:

?˝ D h ? duC ?.dh ^ u/ D h ? duC �.
#»rh; #»u ; :; :/:

Since ?du. #»u ; :/ D ! and �.
#»rh; #»u ; #»u ; :/ D 0, we find

! D 1

h
?˝. #»u ; :/ : (21.79)

Comparing this expression with (14.81), we conclude that the orthogonal decompo-
sition of the vorticity 2-form with respect to #»u , as given by (14.80), is

˝ D u ^ q C h �. #»u ; #»!; :; :/; (21.80)

where q is a 1-form obeying hq; #»u i D 0 and that will be determined below from
the equation of motion.

21.5.3 Canonical Form of the Equation of Motion

Let us apply the derivation rule for an exterior product (15.76) to the product of the
0-form S by the 1-form T u; we obtain

d.ST u/ D d.S ^ T u/ D dS ^ .T u/C S d.T u/;

hence the expression of the 2-form involved in (21.73) [cf. (21.74)]:

d.�u/C S d.T u/ D d.�u/C d.ST u/ � dS ^ .T u/

D d Œ.�C ST /u� � T dS ^ u D ˝ � T dS ^ u:

The equation of motion (21.73) can thus be recast as

˝. #»u ; :/ � T dS ^ u. #»u ; :/ D 0: (21.81)

By definition of an exterior product, the term in factor of T is

dS ^ u. #»u ; :/ D hdS; #»u i u� hu; #»u i dS D .r #»u S/uC dS:

But we have seen that for an isolated simple fluid, r #»u S D 0 [Eq. (21.48)]. We have
thus dS ^ u. #»u ; :/ D dS , so that (21.81) reduces to
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˝. #»u ; :/ D T dS : (21.82)

Following B. Carter (1979; 1989) (cf. the historical note below), we call this relation
the canonical equation of relativistic fluid dynamics. It can be expressed in a single
sentence:

The 1-form obtained by setting the first argument of the vorticity 2-form to the
fluid 4-velocity is equal to the temperature times the gradient of the entropy
per baryon.

In terms of the components with respect to an arbitrary coordinate system .x˛/

on E , the canonical equation is expressed as [cf. (21.77)]

u�
�
@

@x�
.hu˛/ � @

@x˛
.hu�/

�
D T @S

@x˛
: (21.83)

Remark 21.11. We have derived the canonical equation (21.82) from the equation
of motion (21.69), which is the part orthogonal to #»u of the energy–momentum
conservation equation r�T D 0, using the principle of baryon number conservation
and the equation r #»u S D 0 [Eq. (21.48)]. The latter results from the part collinear
to #»u of the equation r � T D 0 (cf. Sect. 21.4.2). Now we recover r #»u S D 0 by
applying (21.82) to the vector #»u , since ˝. #»u ; #»u / D 0 by definition of a 2-form and
T hdS; #»u i D Tr #»u S . To summarize, we have the equivalence

 r � .n #»u / D 0
r � T D 0 ”

 r � .n #»u / D 0
˝. #»u ; :/ D T dS

(21.84)

Remark 21.12. The canonical equation (21.82) does not involve the covariant
derivative r , but only the exterior derivative d, via the gradient of S and the
definition of the vorticity 2-form: ˝ D d.hu/. On the opposite, the form (21.69)
of the equation of motion relies on r (via a D r #»u u). We shall see in Sect. 21.6
that the canonical equation has the advantage over (21.69) to lead easily to standard
conservation laws.

From (14.82), the 1-form q that appears in the orthogonal decomposition (21.80)
is q D ˝.:; #»u / D �˝. #»u ; :/. The canonical equation of motion (21.82) shows then
that q D �T dS , so that we may rewrite (21.80) in the final form

˝ D T dS ^ uC h �. #»u ; #»!; :; :/ : (21.85)

For a barotropic fluid, T D 0 (cf. Sect. 21.2.5) and the canonical equation (21.82)
takes a very simple form:
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˝. #»u ; :/ D 0:
barotropic

(21.86)

We obtain also the same form for an isentropic flow, i.e. a flow for which the entropy
per baryon is uniform over all the fluid, in addition to stay constant along each fluid
line, since then dS D 0.

Historical note: The canonical equation (21.82) has been first written in 1937
by John L. Synge (cf. p. 74) (1937) in the barotropic case, i.e. under the form
(21.86). It has been reexpressed by André Lichnerowicz5 in the language of
differential form (Cartan’s exterior calculus) in 1941 (Lichnerowicz 1941), stressing
the independence with respect to the covariant derivative. The vorticity 2-form
˝ has been put forward in Lichnerowicz’s relativity treatise published in 1955
(Lichnerowicz 1955). The general form (21.82) of the canonical equation has been
obtained in 1959 by Abraham H. Taub (cf. p. 683) (1959) and is much employed
in the relativistic hydrodynamics book by André Lichnerowicz (1967). In 1979,
Brandon Carter6 has shown that (21.82) can be considered as a canonical equation
of Hamilton, of the type “ P� D �rH” [cf. Eq. (11.91)], by taking H.x˛; �˛/ D
1=.2T / .g˛ˇ�˛�ˇ=h C h/ � S as a Hamiltonian (Carter 1979), � being the fluid
momentum 1-form defined by (21.74). The numerical value of the Hamiltonian is
H D �S since #»� � #»� D �h2. In the case of multi-component fluid, the equation of
motion (21.72) has been derived by Carter in 1989 (Carter 1989) and called by him
standard formulation of the dynamics of relativistic perfect fluids.

21.5.4 Nonrelativistic Limit: Crocco Equation

In order to take the nonrelativistic limit of the canonical equation (21.82), let us
introduce the specific internal enthalpy

H WD "int C p
mbn

; (21.87)

wheremb is the baryon mass:mb D 1:66�10�27 kg.H differs from the enthalpy per
baryon h for (i) it does not take into account the mass energy and (ii) this is quantity
per unit mass (hence, the qualifier specific) and not per baryon. The relation between
H and h is found by combining (21.75) with (21.16):

5André Lichnerowicz (1915–1998): French mathematician, author of important works in general
relativity and in relativistic hydrodynamics and magnetohydrodynamics.
6Brandon Carter: British theoretical physicist born in 1942 and working at Paris Observatory;
author of major contributions in black hole theory and cosmology, he is also known for having
formulated the anthropic principle.
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h D mbc
2

�
1C H

c2

	
: (21.88)

From (21.57), the nonrelativistic limit corresponds toH=c2 	 1. Let us consider an
inertial observer O and denote by .x0/ D .ct; x1; x2; x3/ the associated coordinates.
The components of the fluid 4-velocity are u˛ D .�; � V i=c/, where � and the V i ’s
are, respectively, the Lorentz factor and the components of the fluid velocity relative
to O . At the limit of low velocities,

u˛ '
�
1C V 2

2c2
;
V i

c

	
and u˛ '

�
�1 � V 2

2c2
;
V i

c

	
: (21.89)

Let us substitute (21.88) for h and (21.89) for u˛ and u˛ in the canonical equation
(21.83). The component ˛ D i becomes, after division by mb,

u0

1

c

@

@t

�
.c2 CH/V

i

c

�
� @

@xi

�
�.c2 CH/

�
1C V 2

2c2

	��

CV
j

c


@

@xj

�
.c2 CH/V

i

c

�
� @

@xi

�
.c2 CH/V

j

c

��
D T

mb

@S

@xi
:

At the nonrelativistic limit, we may set u0 ' 1 and neglect the terms inH=c2 in this
equation. There comes then

@V i

@t
C @

@xi

�
H C V 2

2

	
C V j

�
@V i

@xj
� @V

j

@xi

	
D T @

NS
@xi

; (21.90)

where we have introduced the specific entropy NS WD S=mb. We recognize in the last
term of the left-hand side the components of the cross product of the curl of

#»

V by
#»

V [cf. Eq. (15.70)]

V j

�
@V i

@xj
� @V

j

@xi

	
D
h
.r�u0

#»

V / �u0

#»

V
i

i
:

Equation (21.90) can be thus written

@
#»

V

@t
C #»r

�
H C V 2

2

	
C .r�u0

#»

V / �u0

#»

V D T #»r NS: (21.91)

This relation, which constitutes the nonrelativistic limit of the canonical equation of
relativistic fluid dynamics, is known in Newtonian hydrodynamics as the Crocco
equation, or Crocco theorem (Rieutord 1997), from the Italian engineer Luigi
Crocco (1909–1986). The Crocco equation is of course nothing but a rewriting of
the classical Euler equation [Eq. (21.59) with F i

ext D 0].
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21.6 Conservation Laws

We exploit here the power of the formulation presented in Sect. 21.5 to derive
conservation laws that generalize to relativity some well-known laws of classical
hydrodynamics. In all this part, we shall consider only simple fluids, in the sense
defined in Sect. 21.2.5, namely, fluids whose equation of state depends only on the
proper entropy and baryon densities: " D ".s; n/. The canonical equation (21.82)
then holds and, along with the conservation laws (21.34) and (21.46) for baryon
number and entropy, it fully rules the fluid motion.

21.6.1 Bernoulli’s Theorem

A flow is said to be stationary with respect to some inertial observer O iff all the
fluid quantities measured by O are independent of O’s proper time t .

If the second argument of the vorticity 2-form ˝ is set to O’s 4-velocity #»u 0, we
get a 1-form: ˝.:; #»u 0/. Let us evaluate its components with respect to the inertial
coordinates .x˛/ D .ct; x1; x2; x3/ associated with O . Since ˝ is the exterior
derivative of the fluid momentum 1-form �, there comes

Œ˝.:; #»u 0/�˛ D
�
@��

@x˛
� @�˛
@x�

	
u�0 D

@

@x˛
.��u�0 /� ��

@u�0
@x˛
� u�0

@�˛

@x�
:

Now by definition of the coordinates .x˛/, u�0 D .1; 0; 0; 0/. Hence,

Œ˝.:; #»u 0/�˛ D @

@x˛
.��u�0 / �

@�˛

@x0
:

If the flow is assumed to be stationary, @�˛=@x0 D c�1@�˛=@t D 0 and the above
relation results in

˝.:; #»u 0/ D r h�; #»u 0i: (21.92)

In particular, ˝. #»u ; #»u 0/ D r #»u h�; #»u 0i. The canonical equation (21.82) gives then

T hdS; #»u 0i D r #»u h�; #»u 0i:

But for a stationary flow,

hdS; #»u 0i D r #»u 0S D u�0
@S

@x�
D 1

c

@S

@t
D 0:

Finally we obtain
r #»u h�; #»u 0i D 0 : (21.93)
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This equation constitutes the

Relativistic Bernoulli’s theorem: Within a flow that is stationary with
respect to an inertial observer O of 4-velocity #»u 0, the scalar h�; #»u 0i is
constant along each fluid line. It is expressible as

h�; #»u 0i D h #»u � #»u 0 D �� h; (21.94)

where h is the enthalpy per baryon defined by (21.75) and � D � #»u � #»u 0 is
the fluid Lorentz factor with respect to O .

Let us show that this is the relativistic generalization of the classical Bernoulli’s
theorem. Given (21.94) and the decomposition (21.7) of #»u in terms of � and of the
fluid velocity

#»

V relative to O , (21.93) is recast as

r #»u 0 .� h/„ ƒ‚ …
0

C1
c

r #»
V .� h/ D 0;

the vanishing of the first term resulting from the stationarity hypothesis. Introducing
the specific internal enthalpyH via (21.88) and writing � ' 1CV 2=2, we find the
nonrelativistic limit of (21.93):

#»

V � #»r
�
H C V 2

2

	
D 0: (21.95)

We recognize the classical Bernoulli’s theorem: the sum of the enthalpy and the
kinetic energy, both per unit mass, is constant along the streamlines (cf., e.g.
Rieutord (1997)).

Remark 21.13. The relativistic Bernoulli’s theorem is actually a particular case of
the following general result—any symmetry of the flow gives birth to a conserved
quantity along each fluid line, namely, the scalar h�; #»

G i:

r #»u h�; #»

G i D 0; (21.96)

the vector field
#»
G being the symmetry generator (cf. Sect. 11.3.1). In the case of

Bernoulli’s theorem,
#»
G D #»u 0, the symmetry being a time translation with respect to

the inertial observer O . Another example would be
#»
G being the generator of spatial

rotations about some axis (axisymmetric flow). The property (21.96) is similar to
the Noether theorem discussed in Sect. 11.3 for a relativistic particle. In particular,
it is worth noticing the analogy between h�; #»

G i and the conserved quantity (11.49):
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hmc u;
#»
G i, given thatmc u is the particle’s 4-momentum, whose role is played here

by the fluid momentum 1-form � . To establish (21.96), the simplest calculation
involves a kind of derivative along the field lines of

#»
G called the Lie derivative. We

shall not do it here, referring the reader to, e.g. Gourgoulhon (2006).

Historical note: The relativistic Bernoulli’s theorem (21.93) has been derived in
1937 by John L. Synge (cf. p. 74) (1937), from the “Eulerian” equation of motion
(21.69), and by André Lichnerowicz (cf. p. 692) in 1940, from the canonical equation
(21.82) (Lichnerowicz 1940). These two studies were limited to the barotropic case;
the extension to an arbitrary simple fluid has been performed by Abraham H. Taub
(cf. p. 683) in 1959 (Taub 1959).

21.6.2 Irrotational Flow

A perfect fluid is said to be in irrotational flow iff the vorticity 2-form is identically
zero:

˝ D 0 : (21.97)

This implies the vanishing of the kinematic vorticity vector #»! defined by (21.78).
More precisely, from the decomposition (21.85) of ˝ , we have the equivalence

(irrotational flow) ” . #»! D 0 and T dS D 0 /: (21.98)

The relation T dS D 0 means that T D 0 (barotropic fluid) or that the entropy per
baryon S is constant in all the fluid (isentropic fluid).

The property ˝ D 0 is equivalent to d� D 0, i.e. the 1-form � is closed. From
Poincaré lemma (cf. Sect. 15.5.3), we deduce that there exists (at least locally) some
scalar field � such that � D d� , i.e. such that

h u D d� : (21.99)

The field � is called potential of the flow.

Remark 21.14. The relativistic generalization of an irrotational flow is thus not
u D d� , as one may naively infer from the relation V D d� , which characterizes
a Newtonian irrotational flow. It is indeed � D h u that is a gradient and not u.
Of course, at the nonrelativistic limit, h ! mbc

2 D const:, and we recover the
Newtonian definition of irrotationality.

With T D 0 or S being constant, the canonical equation of relativistic fluid
dynamics (21.82) is automatically satisfied by an irrotational flow. The only non-
trivial equation is then the equation of baryon number conservation (21.34): r �
.n #»u / D 0. Substituting h�1 #»r� for #»u [cf. (21.99)], we turn it into an equation for
the potential � :
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�� C #»r ln
�n
h

�
� #»r� D 0; (21.100)

where � is the d’Alembertian operator defined by (18.51). In the general case, this
equation is not linear in � , for h is linked to � by the equation

h D
�
� #»r� � #»r�

�1=2
; (21.101)

which is deduced from (21.99) and the 4-velocity normalization ( #»u � #»u D �1).
Moreover, n is related to � via h and the equation of state. There exists however a
case in which (21.100) is a linear equation, as shown by the following example.

Example 21.3. In the particular case h D ˛n with ˛ constant, (21.100) reduces to
a wave equation for � :

�� D 0: (21.102)

If the equation of state is barotropic, " D ".n/ [Eq. (21.26)], then the enthalpy
per baryon is equal to the chemical potential: h D � D d"=dn [Eq. (21.75) with
T D @"=@s D 0] and the condition h D ˛n implies

" D ˛

2
n2;

where the integration constant has been set to 0 to ensure ".0/ D 0. The pressure is
then deduced from (21.75):p D nh�", which results in p D .˛=2/ n2. We observe
that

p D ":
From (21.63), this implies cs D c, i.e. the speed of sound equals the speed of
light. The equation of state is thus the “hardest” one compatible with the causality
constraint.

If, in addition to be irrotational, the flow is stationary with respect to an inertial
observer O of 4-velocity #»u 0, Eq. (21.92) holds. Since ˝ D 0, it reduces to
rh�; #»u 0i D 0, which implies that the scalar field h�; #»u 0i is constant:

h�; #»u 0i D const : (21.103)

Hence, for an irrotational and stationary flow, the quantity h�; #»u 0i D �� h [cf.
Eq. (21.94)], which is constant along each fluid line by virtue of Bernoulli’s theorem
(21.93), is actually uniform over the fluid lines.

Historical note: The concept of irrotational relativistic fluid has been introduced
in 1937 by John L. Synge (cf. p. 74) (Synge 1937) under the kinematical form
#»! D 0. The dynamical definition ˝ D 0 [Eq. (21.97)] has been given by André
Lichnerowicz (cf. p. 692) in 1941 (Lichnerowicz 1941). For the barotropic case
considered by Synge, the kinematical definition coincides with that of Lichnerowicz,
given the equivalence (21.98) with T D 0. The mathematical properties of the equa-
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tion (21.100) for the flow potential have been studied by Yvonne Choquet-Bruhat7

in 1958 (Fourès-Bruhat 1958) (cf. also Chap. 9 of her textbook Choquet-Bruhat
(2009)). The reduction of (21.100) to a wave equation for the equation of state
p D " (Example 21.3) has been put forward by Vincent Moncrief in 1980 (Moncrief
1980).

21.6.3 Kelvin’s Circulation Theorem

Given a closed oriented curve C � E , one defines the fluid circulation along C as
the integral

C.C / WD
I

C
� : (21.104)

Since C is one-dimensional submanifold of E and � a 1-form, the above integral is
well defined (cf. Sect. 16.4.1). In particular, it can be reexpressed via (16.17a) as

C.C / D
I

C
h #»u � d #»

` ; (21.105)

where d
#»

` is an infinitesimal vector tangent to C and use has been made of
the identity h�; d #»

` i D hh u; d
#»

` i D h #»u � d #»

` . If the curve C is chosen to lie in
the rest space of some inertial O , we may also express the circulation in terms of the
fluid velocity

#»

V relative to O and the specific internal enthalpy H by substituting
(21.7) and (21.88) for, respectively, #»u and h in (21.105):

C.C / D mbc

I

C
�

�
1C H

c2

	
#»

V � d #»

` : (21.106)

At the nonrelativistic limit, � ! 1, jH j=c2 	 1 and we recover (up to some factor
mbc) the classical expression for the fluid circulation.

Thanks to Stokes’ theorem (16.46) and to the definition ˝ D d� of the vorticity
2-form, the circulation can be rewritten as the integral of ˝ over any surface S that
admits C as boundary:

C.C / D
Z

S
˝ : (21.107)

7Yvonne Choquet-Bruhat: French mathematician born in 1923; many of her works are applied
to relativity; she has notably proved a famous existence and uniqueness theorem for the solution
of the Einstein equation, which rules relativistic gravitation [Eq. (22.32) in the next chapter].
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a bFig. 21.3 (a) Transport of a
curve C by the fluid.
(b) Closed contour K
defining the surface S onto
the fluid tube

We deduced immediately that, in an irrotational flow, the fluid circulation is always
zero [cf. (21.97)].

Let us assume that the curve C is not tangent at any point to the fluid 4-velocity
#»u . For instance, it suffices that C lies in the rest space of some observer, which is
a spacelike domain, while #»u is always timelike. C can then be transported along
the fluid lines, by an arbitrary distance along each line (but varying smoothly from
one line to the next one), yielding to a new closed curve C 0 (cf. Fig. 21.3a). Such an
operation is named transport of the curve C along the fluid lines. Let us investigate
the behaviour of the fluid circulation along C during this transport. The set of the
fluid lines segments between C and C 0 forms a 2-surface of E , which we shall call a
fluid tube and denote by T . Let us consider two points A and B infinitely close on
C , with the vector

#    »
AB in the direction set by C ’s orientation. Let A0 and B 0 denote

their respective images on C 0 by the transport along the fluid lines (cf. Fig. 21.3b).
Let us introduce the closed oriented curve

K WD LA!A0 [ C 0
A0!B0 [LB0!B [ CB!A;

where LA!A0 is the portion of the fluid line connectingA toA0, C 0
A0!B0 the portion

of C 0 connecting A0 to B 0 by covering the major part of C 0, LB0!B the portion of
the fluid line connecting B 0 to B and CB!A the portion of C connecting B to A by
covering the major part of C (cf. Fig. 21.3b). Let S be the part of the fluid tube T
delimited by K ; S is a 2-surface, which, when A tends towards B , tends to cover
the totality of T . Since K is the boundary of S , (21.107) leads to

I

K
� D

Z

S
˝ D

Z

S
˝.d

#»

` 2; d
#»

` 3/;

the second equality being nothing but the definition (16.17b) of the integral of a
2-form over a 2-surface. Now since S is a part of the fluid tube and the latter is
tangent at every point to the 4-velocity #»u , the infinitesimal vector d

#»

` 2 can always
be chosen to be collinear to #»u . We can even find a coordinate system .x˛/ adapted
to S , in the sense that .x2; x3/ span S (cf. Sect. 16.3.1), so that the vector #»e 2 of
the coordinate basis . #»e ˛/ is exactly #»u : the coordinate x2 is then the proper time
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along the fluid lines and we have d
#»
` 2 D dx2 #»u in addition to d

#»
` 3 D dx3 #»e 3 (cf.

Fig. 21.3b). Consequently, we may invoke the canonical equation of relativistic fluid
dynamics [Eq. (21.82)] to write the above integral as

I

K
� D

Z

S
˝. #»u ; #»e 3/ dx2 dx3 D

Z

S
T hdS; #»e 3i dx2 dx3 D

Z

S
Tr #»e 3S dx2 dx3:

(21.108)
Now, by definition of K ,

I

K
� D

Z

LA!A0

� C
Z

C 0

A0
!B0

� C
Z

LB0
!B

� C
Z

CB!A

�:

WhenA tends towardsB , the sum of the integrals over LA!A0 and LB0!B vanishes
(the two integrals have the same amplitude but opposite signs), while the integral
over CB!A tends towards the circulation C.C / and that over C 0

A0!B0 towards
�C.C 0/. In addition, in (21.108), the integration surface S tends towards the whole
fluid tube T . Therefore, the limit A! B yields

C.C 0/ D C.C / �
Z

T

Tr #»e 3
S dx2 dx3 : (21.109)

In view of this result, we may state the

Relativistic Kelvin’s circulation theorem: The fluid circulation defined by
(21.104) is conserved by transport along the fluid lines, that is to say C.C 0/ D
C.C /, if T D 0 (barotropic fluid) or if the entropy per baryon S is constant
on the initial contour C .

The last assertion results from the conservation law (21.48) of the entropy per
baryon: if S D S0 D const on C , then S D S0 on all the tube T , since the latter
is generated from C via the fluid lines. Then r #»e 3

S D 0 holds on T , which yields
the vanishing of the integral in the right-hand side of (21.109).

At the nonrelativistic limit, the classical Kelvin’s circulation theorem (cf., e.g.
Guyon et al. (2001), Rieutord (1997)) is easily recovered, since we have already
noticed that (21.106) reduces to the nonrelativistic circulation in that limit. It suffices
then to choose C in the rest space of some inertial observer at some instant t and C 0
in the rest space of the same observer at a subsequent instant t 0.

Remark 21.15. The relativistic Kelvin’s circulation theorem can be related to a local
conservation law, that of the potential vorticity, which is the scalar field defined by

e WD h

n
r #»! S; (21.110)
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where #»! is the kinematic vorticity vector introduced in Sect. 21.5.2. From the Hodge
dual of the canonical equation (21.82), it can be shown that r #»u e D 0, i.e. that the
potential vorticity is constant along the fluid lines. This result, obtained by Joseph
Katz (1984), implies Kelvin’s theorem, as it can be shown by taking the derivative
of the circulation along the fluid line. We shall not go into details here and refer the
reader to the article (Katz 1984).

Historical note: For a barotropic fluid, Kelvin’s circulation theorem has been
proved in 1937 by John L. Synge (cf. p. 74) (1937). The case of an arbitrary simple
fluid has been treated by Abraham H. Taub (cf. p. 683) in 1959 (Taub 1959).

21.7 Applications

21.7.1 Astrophysics: Jets and Gamma-Ray Bursts

Astrophysics is obviously an important field of application for relativistic hydrody-
namics. Numerous situations (cosmology, neutron stars, black hole environments)
require hydrodynamics within general relativity, due to the amplitude of the
gravitational field (cf. Sect. 22.4). There exist however some phenomena where
the hydrodynamics within special relativity, as treated here, is fully sufficient. This
regards the jets emitted by active galactic nuclei and micro-quasars as well as the
“fireball” of gamma-ray bursts.

Relativistic astrophysical jets are made of matter ejected from the close surround-
ings of a black hole, which can be either a massive black hole at the centre of
a galaxy, a so-called active galactic nucleus, or a stellar black hole, a so-called
micro-quasar (Mirabel and Rodrı́guez 1999). The mechanism of formation and
acceleration of the jet in the vicinity of the black hole is not completely elucidated,
but almost certainly relies on the electromagnetic field and the rotation of the black
hole (cf. Sauty et al. (2002) for a review). On the other hand, sufficiently far from
the black hole, the jet, which is very weakly self-gravitating, is very well described
by special relativistic hydrodynamics. The jet is composed of protons, electrons and
positrons. The Lorentz factor � of the flow ranges from 3 to 10. An example of
observation of such a jet is given in Fig. 21.4 (cf. also Fig. 20.4 in the preceding
chapter as well as the spectrum of a jet displayed in Fig. 9.12).

Numerous numerical simulations of astrophysical jets have been performed by
integrating the system of conservation laws (21.67) by means of high-resolution
shock-capturing schemes (Martı́ and Müller 2003). An example is shown in
Fig. 21.5. The result of the computed radio wave emission is to be compared with
the observed data, as the image depicted in Fig. 20.4. It can also be compared with
the image in Fig. 21.4, but it must be kept in mind that the latter has been obtained
in the optical domain and not in the radio one.
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Fig. 21.4 Relativistic jet emanating from the nucleus of the galaxy M87, with the Lorentz factor
� � 6. The size of the jet visible on this picture taken by the Hubble Space Telescope is 5000 light-
years. The optical emission of the jet is due to synchrotron radiation by electrons (cf. Sect. 20.4).
The zone delimited by the small rectangle corresponds to Fig. 5.16. The jet emitted in the opposite
direction is not seen because of the Doppler boosting effect discussed in Sect. 20.3.4 (cf. Fig. 20.4)
[Source: NASA/HST]

Fig. 21.5 Numerical simulation of the propagation of a relativistic jet in some external medium
(atmosphere), according to the model “OP-L-AM” of Petar Mimica et al. (2009). The atmosphere
(in black on the figures) is much more dense than the jet, the baryon density ratio being njet=natm D
10�3 at the jet’s basis. On the other hand, the pressure is larger in the jet: pjet=patm D 1:5. Upper
figure: fluid Lorentz factor � in the jet (it varies between 2 and 12; cf. the right scale). Lower
figure: radio wave emission computed from a model of synchrotron emission (cf. Sect. 20.4). The
horizontal axis corresponds to the distance z to the jet’s basis in units of the jet’s radiusRb at z D 0.
NB: the scale is not the same in the two figures [Source: M.A. Aloy, J.M. Ibáñez and P. Mimica
(2009)]
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Fig. 21.6 Collision of two gold nuclei (symbol Au), in the rest space of the centre-of-mass
observer O0, at the instant t1 � �3 � 10�24 s (before the collision) at the instant t2 � C10�23 s
(after the collision). The nuclei appear very flattened due to the length contraction in the direction
of motion. Given the amplitude of their Lorentz factor (� � 100), they should even be drawn as
thin vertical line segments in a more realistic picture

21.7.2 Quark-Gluon Plasma at RHIC and at LHC

In 2005, the four research teams of the Relativistic Heavy Ion Collider (RHIC) at the
Brookhaven National Laboratory (cf. Table 17.1) have announced to have created
a nearly “perfect liquid”, i.e. a liquid of very low viscosity (Adams et al. 2005;
Adcox et al. 2005; Arsene et al. 2005; Back et al. 2005). This liquid is made of
deconfined8 quarks and gluons—a so-called quark-gluon plasma—and is formed
during the collision of gold atomic nuclei accelerated to Lorentz factors of the order
100, which corresponds to an energy per nucleon of about 100 GeV. The collision
can be described as an “interpenetration” of the nuclei since they do not lose
their individuality (cf. Fig. 21.6) and generates thousands of particles. The particles
interact among each other mostly via the strong interaction, and it is believed that
these interactions are sufficient to reach a local thermodynamic equilibrium (cf.
Sect. 21.2.4) roughly 1 fm=c D 3 � 10�24 s after the collision. From this moment,
the evolution of the system can be described by relativistic hydrodynamics as treated
in this chapter. The fluid undergoes an ultrafast expansion, and after � 3 � 10�23 s,
the system becomes too diluted for the hydrodynamic approximation to hold. One
has then a system of free particles evolving without almost no interaction. It is these
particles that are detected in the various RHIC detectors.

In the collisions performed at RHIC, the temperature at the beginning of the
hydrodynamic phase is T � 4 � 1012 K ( ” kT � 340 MeV) and the energy
density is " � 30 GeV fm�3. In these conditions, a quark-gluon plasma must be
created, the deconfinement temperature predicted by quantum chromodynamics
being T � 2:0 � 2:2 � 1012 K ( ” kT � 170 � 190 MeV) (Braun-
Munzinger and Stachel 2007). The quark-gluon plasma obtained at RHIC is pretty
well described by a perfect fluid of ultra-relativistic particles, whose equation of
state is (Ollitrault 2008)

8Let us recall that in ordinary matter, quarks are confined three by three in protons and neutrons
and that a free quark has never been observed.
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n D 0 (21.111)

" D ".s/ D 3�2=3

4.4g/1=3
„c
� s
k

�4=3
; (21.112)

where k WD 1:3806505 � 10�23 J K�1 is the Boltzmann constant and g is the
number of degrees of freedom of each particle (number of states for a fixed energy,
resulting from different spins, colours or flavours): g ' 40. The property (21.111),
namely, the vanishing of the baryon density, means that the thousands of particles
created during the collision are equally spread between positive and negative baryon
number.9 The temperature is deduced from (21.112) via the definition (21.18):
T D @"=@s; there comes

T D „c
�
�2s

4gk4

	1=3
: (21.113)

The pressure is computed from (21.23), which in the present case .n D 0/ is
reduced to p D �"C T s. Thus,

p D "

3
: (21.114)

This relation is standard for a gas of noninteracting ultra-relativistic particles.

Remark 21.16. The fact that at very high energy density, quarks have no interaction
is called asymptotic freedom. At lower temperature or higher energy density, it is
necessary to take into account the strong interaction between the quarks. At first
approximation, this can be done via a simple phenomenological approach called the
bag model. The equation of state is then

p D 1

3
." � 4B/; (21.115)

whereB is a constant, of the order of 60 MeV fm�3, named the bag constant. When
"
 B , we do recover (21.114).

For exactly head-on collisions, the worldlines of the centres of mass of the two
nuclei are contained in a same plane ˘ � E , which we shall name the collision
plane, and intersect each other at an event O (the “collision”; cf. Fig. 21.7). Let us
call O0 the inertial observer linked to the centre of mass of the system (barycentric
observer). If the two nuclei beams are symmetric, we may consider that O0 is
the “lab observer”. His worldline is contained in ˘ and goes through O . Let
. #»e 0;

#»e x;
#»e y;

#»e z/ denote O0’s frame and .ct; x; y; z/ the associated coordinates,
assuming that the collision takes place along the x-axis (cf. Fig. 21.6).

9Let us recall that the baryon number can be non-integer: it is 1=3 for a quark and �1=3 for an
antiquark.
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Fig. 21.7 Spacetime diagram
(in the collision plane ˘ ) of
the head-on collision of two
gold nuclei. The two nuclei
having ultra-relativistic
velocities (� � 100), their
worldlines are very close to
the light cone of O in this
diagram. The two instants t1
and t2 are those considered in
Fig. 21.6

As perceived by O0, the collision is symmetric. A simplifying hypothesis has
been introduced by James D. Bjorken10 in 1983 (Bjorken J.D. 1983). It consists
in stating that the collision also appears symmetric and leads to the same relative
evolution to all inertial observers that are “close” to O0, in the sense that:

(i) Their worldlines go throughO and are contained in the collision plane˘ .
(ii) For these observers, the two emerging nuclei recede from the collision point at

velocities close to c.

Condition (ii) is obviously not fulfilled by an observer comoving with one of the
nuclei, but it is for observers whose velocity jU j relative to O0 is not too large.
Bjorken’s hypothesis is supported by experimental data. The worldlines of observers
satisfying (i) are depicted in Fig. 21.7. They are labelled by their rapidity � with
respect to O0 rather than by U . Let us recall that � is related to U by formula (6.74):

� D artanh
U

c
D 1

2
ln

�
1C U=c
1� U=c

	
: (21.116)

The domain of ˘ covered by the above observers whose rapidity is not too large,
let us say �2 � � � 2, is called central rapidity region. Accordingly the observers
satisfying hypothesis (i) and (ii) are called central rapidity observers. Let O be such
an observer; his worldline goes through O , which implies that at each event on the
worldline,

uxO
u0O
D x

ct
;

where u0O and uxO are the components of O’s 4-velocity in O0’s frame, . #»e ˛/. Since
u0O D � and uxO D � U=c, we deduce

10James D. Bjorken: American theoretical physicist born in 1934; specialist of particle physics at
Stanford University.
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U D x

t
: (21.117)

The proper time spent since O for observer O is related to the coordinates .ct; x/
by 	 D t=� D tp1 � U 2=c2. Given the above expression for U , we get, for t � 0,

	 D
r
t2 � x

2

c2
: (21.118)

Remark 21.17. The pair .	; �/ forms a coordinate system of the central rapidity
region, related to the inertial coordinates .t; x/ by (21.116)–(21.118). The coordi-
nate � is named spacetime rapidity by particle physicists. The “grid” defined by the
system .	; �/ is depicted in Fig. 21.7: the lines 	 D const are hyperbola branches of
vertical axis and the lines � D const are straight lines throughO . These coordinates
are analogous to the Rindler coordinates introduced in Sect. 12.2.7; each coordinate
system can be deduced from the other by symmetry with respect to the first diagonal
(x D ct), as it can be seen by comparing Figs. 21.7 and 12.8.

According to Bjorken’s hypothesis, particles produced by the collision reach the
local thermodynamic equilibrium after the same elapsed time 	0 for all the central
rapidity observers. The start of the hydrodynamical phase is therefore marked by
the hypersurface parallel to #»e y and #»e z and whose intersection with the plane ˘ is
the curve of all events that are distant fromO by the same proper time 	0 along the
worldlines of the central rapidity observers. From (21.118), this is the hyperbola of
equation c2t2 � x2 D c2	20 (cf. Fig. 21.7).

As a first approximation, we may consider that the fluid motion takes place only
in the collision plane ˘ and that it depends weakly on the transverse coordinates
.y; z/ (within the transverse extension of the nuclei of course). Such a motion is
called longitudinal. The fluid 4-velocity #»u is then parallel to the plane ˘ . At each
event on O0’s worldline, #»u is equal to O0’s 4-velocity #»e 0. In other words, the fluid
velocity relative to O0, V.t; x/, vanishes for x D 0. This was expected from the
symmetry of the problem (cf. Fig. 21.6). According to Bjorken’s hypothesis, the
same property must hold for any central rapidity observer O—at each point of O’s
worldline LO , the fluid 4-velocity must be equal to that of O:

8M 2 LO ;
#»u .M/ D #»u O : (21.119)

We deduce immediately that the fluid lines are the central rapidity observers’
wordlines, namely, segments of straight lines through O and contained in ˘ (the
lines labelled by � in Fig. 21.7). It follows also that the coordinate 	 coincides with
the fluid proper time and that the fluid velocity V relative to O0 is equal to O’s
velocity U relative to O0. We have thus, from (21.117),

V.t; x/ D x

t
: (21.120)
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The components of the fluid velocity field relative to O0 are then

u˛ D
�
�; �

x

ct
; 0; 0

�
D 1

	

�
t;
x

c
; 0; 0

�
; (21.121)

where the second equality results from (21.118). Still according to Bjorken’s
hypothesis, at each point, the proper energy density ", the proper entropy density
s, the pressure p and the temperature T depend only on 	 , for a dependency in �
would imply a dependency with respect to the central rapidity observer. We have
then

" D ".	/; s D s.	/; p D p.	/; T D T .	/: (21.122)

Let us now combine Bjorken’s hypothesis with the equations of relativistic
hydrodynamics. In the present case, the most convenient form is the entropy
conservation law (21.46) and the four-dimensional Euler equation (21.49) [with
F ext D 0, i.e. actually Eq. (21.69)]. Let us rewrite (21.46) as

r #»u s C s r � #»u D 0: (21.123)

Now, since 	 coincide with the fluid proper time and that s D s.	/, we have

r #»u s D 1

c

ds

d	
: (21.124)

Besides, from (21.121) and the inertial character of coordinates .x˛/ D .ct; x; y; z/,

r � #»u D @u˛

@x˛
D 1

c

@

@t

�
t

	

	
C @

@x

� x
c	

�
:

Now, given expression (21.118) for 	 as a function of .t; x/,

@	

@x˛
D
�
1

c

@	

@t
;
@	

@x
; 0; 0

	
D
�
t

c	
;� x

c2	
; 0; 0

	
; (21.125)

so that there comes

r � #»u D 1

c	
: (21.126)

Thanks to (21.124) and (21.126), (21.123) becomes

ds

d	
C s

	
D 0: (21.127)

This differential equation is easily integrated into

s D s0 	0
	
; (21.128)
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where s0 is the proper entropy density at the beginning of the hydrodynamical
phase (	 D 	0). The proper energy density " is deduced from the equation of state
(21.112):

" D "0
�	0
	

�4=3
; (21.129)

where " � 30 GeV fm�3 is the proper energy density at 	 D 	0. Similarly, the time
evolution of pressure and temperature are found from (21.114) and (21.113):

p D "0

3

�	0
	

�4=3
and T D T0

�	0
	

�1=3
: (21.130)

Let us now consider the four-dimensional Euler equation (21.49). In the present
case, a D 0 for the fluid lines are straight line segments. The equation reduces
then to

rp C .r #»u p/u D 0:
Since p depends solely of 	 , we have rp D .dp=d	/r	 and r #»u p D c�1 dp=d	 ,
so that the above equation becomes

r	 C 1

c
u D 0: (21.131)

The components r˛	 of r	 are given by (21.125) and those of u are deduced from
(21.121) via Minkowski matrix: u˛ D �˛� u� D .�t=	; x=.c	/; 0; 0/. We note
then that (21.131) is fulfilled. The four-dimensional Euler equation (21.49) is thus
satisfied.

Finally, formulas (21.121), (21.128), (21.129) and (21.130) define a solution of
the equation

#»r �T D 0 ruling relativistic hydrodynamics. This solution corresponds
to a quark-gluon plasma formed during the collision of two heavy ions, provided
that the component of the motion transverse to the collision axis is neglected
and that the invariance with respect to the central rapidity observers is satisfied
(Bjorken’s hypothesis). More complex solutions, relaxing the above hypotheses
(notably describing non-head-on collisions), are presented in the review articles
(Gelis 2008; Hirano et al. 2010; Huovinen and Ruuskanen 2006) and (Ollitrault
2008).

The study of the quark-gluon plasma is just beginning. The 2005 RHIC results
have been confirmed in 2010, and in 2012 CERN scientists from the ALICE
experiment have announced the creation of a quark-gluon plasma by collisions
of lead nuclei in the LHC (CERN 2012) (cf. Table 17.1 and Fig. 17.14). Let us
stress that the understanding of the quark-gluon plasma is of great importance
for cosmology: this must have been the state of matter in the first microseconds
after the Big Bang. It is only when the universe temperature decreased below
kT � 170MeV that the nucleons (protons and neutrons) could form.
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Historical note: It is Lev D. Landau (cf. p. 445) who, in 1953, had the idea to
apply relativistic hydrodynamics to the study of particle collisions (Landau 1953).
In Landau’s model, the incident nuclei are stopped at the collision point with respect
to the centre-of-mass observer O0. The initial conditions at 	 D 	0 (start of the
hydrodynamical phase) are then not invariant with respect to the central rapidity
observers, contrary to those of Bjorken’s model described above: the initial velocity
vanishes only for observer O0 (cf. Bialas et al. (2007) for a comparison of Landau
and Bjorken models). After having been forgotten for some time, Landau’s model
was renewed in the beginning of the seventies to explain the proton-proton collisions
observed at CERN, notably under the impulse of the American theoretical physicist
Peter A. Carruthers (1935–1997). On the experimental side, clues regarding the
creation of a quark-gluon plasma have been announced by CERN in 2000 (Heinz
and Jacob 2000; Braun-Munzinger and Stachel 2007), from the analysis of lead
nuclei collisions in the SPS synchrotron (cf. Fig. 17.14), at energies 10 times lower
than at RHIC. The same year, RHIC started to operate, leading to the results
described above.

21.8 To Go Further. . .

In this chapter, we have not treated shock waves in relativistic fluids. Such a topic
is discussed in Chap. 15 of Landau and Lifshitz textbook (Landau and Lifshitz
1987), and the exact solution to the relativistic Riemann shock tube problem is
presented in the review article by J. M. Martı́ and E. Müller (2003). Besides, we
have limited ourselves to perfect fluids. The relativistic treatment of dissipative (i.e.
viscous or thermally conducting) fluids is delicate. The “naive” generalization of the
Navier–Stokes equations, as presented, for instance, by Landau and Lifshitz (1987),
leads to elliptic or parabolic equations, i.e. to an infinite velocity of information, and
violates thereby relativistic causality. A discussion of causal theories for dissipative
fluid is given in the review article by N. Andersson and G. L. Comer (2007). More
generally, all the above topics are covered in the recent treatise about relativistic
hydrodynamics written by L. Rezzolla and O. Zanotti (2013).



Chapter 22
What About Relativistic Gravitation?

22.1 Introduction

Among the four known fundamental interactions (electromagnetism, weak
interaction, strong interaction and gravitation), only electromagnetism and
gravitation are long-range ones and eligible for a non-quantum description.
Electromagnetism fitting nicely into special relativity (Chaps. 17–20), it is natural
to wonder about gravitation. In this chapter, we present some attempts to include
it in Minkowski spacetime (Sect. 22.2), discussing successively theories where
gravitation is described by a scalar, a vector or a valence-2 tensor field. We shall see
in Sect. 22.3 that such an incorporation of gravitation in Minkowski spacetime is
hardly bearable, because of the fundamental property that singularizes gravitation
among all interactions, namely, the equality between inertial mass and gravitational
mass. The (very!) good relativistic theory of gravitation turns out to be general
relativity, which lies outside of the scope of this book, but about which we shall say
a few words in Sect. 22.4.

22.2 Gravitation in Minkowski Spacetime

The Newtonian theory of gravitation is based on Poisson equation:

˚ D 4�G �; (22.1)

where ˚ is the gravitational potential, � the mass density, G D 6:6743 � 10�11 m3

kg�1 s�2 the gravitational constant and  the Laplace operator:  WD @2=@x2 C
@2=@y2 C @2=@z2 in Cartesian coordinates .x; y; z/. The motion #»r D #»r .t/ of a
massive particle in the gravitational field is ruled by Newton’s second law:

d2 #»r

dt2
D � #»r˚: (22.2)

É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
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Any relativistic theory of gravitation must provide some generalization of (22.1)–
(22.2). In what follows, we discuss various (unfruitful!) attempts to construct such
generalizations in the framework of Minkowski spacetime .E ;g/, investigating
successively scalar, vector and valence-2 tensor theories.

22.2.1 Nordström’s Scalar Theory

It is clear that in Newtonian theory, gravitation is fully described by a scalar field:
the potential ˚ . As a first attempt, it is then natural to look for a scalar field ˚ on
Minkowski spacetime as a relativistic generalization. One has to find an equation for
˚ , the nonrelativistic limit of which must be (22.1). The Laplace operator in the left-
hand side of (22.1) is not an intrinsic differential operator on Minkowski spacetime
.E ;g/: it depends on the inertial observer whose spatial coordinates .xi / D .x; y; z/
are used to define the second-order partial derivatives. On the other hand, an operator
intrinsic to .E ;g/ is the d’Alembertian defined by (18.51):

� D r�r� D ��� @

@x�
@

@x�
D � 1

c2
@2

@t2
C @2

@x2
C @2

@y2
C @2

@z2
; (22.3)

where the expression in terms of the inertial coordinates .ct; x; y; z/ is independent
of the choice of these coordinates. Moreover, �˚ reduces to ˚ when the speed
of variation of ˚ is small, in the sense that

ˇ̌
ˇ̌@
2˚

@t2

ˇ̌
ˇ̌	 c2

ˇ̌
ˇ̌@
2˚

@x2
C @2˚

@y2
C @2˚

@z2

ˇ̌
ˇ̌ : (22.4)

It is thus natural to propose as a relativistic extension of Poisson equation (22.1) the
d’Alembert equation

�˚ D 4�GS ; (22.5)

where S is a source that “generalizes” the mass density � and that remains to
determine. Invoking the mass-energy equivalence, a first idea would be S D "=c2

where " is the total (i.e. including the mass) energy density of matter. However " is
not an invariant quantity: it depends on the observer measuring it, in two ways: as
an energy and as a quantity per unit volume.

To determine a satisfactory S , let us appeal to a principle of least action.1

In general, using such a principle is often the way to get a well-posed physical

1In this way, we do not follow Nordström’s original approach (cf. historical note p. 718) but rather
Einstein’s reformulation of it (Einstein 1913b); see also D. Giulini (2008) or N. Deruelle (2011)
for modern versions.
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theory, though it does not guarantee it. In particular, we have seen in Sect. 18.7
that the equations for the electromagnetic field, namely, Maxwell equations, are
deductible from a principle of least action. In the present case, the advantage of
the principle of least action is not only to determine S but also to lead to the
relativistic generalization of (22.2) for the motion of a particle in the gravitational
field. To be specific, let us consider a system of N simple2 particles, .Pa/1�a�N .
Let ma denote the mass of particle Pa and #»u a its 4-velocity. Let us assume that
the gravitational field is entirely generated by these N particles and that the motion
of each particle is solely ruled by the gravitational field. The considered problem is
then the relativistic generalization of theN -body problem of Newtonian gravitation.
Under these conditions, the total action of the system gravitational fieldC particles
can be written

S D Sfield C Sinter C Sfree part: ; (22.6)

where Sfield is the action of the free gravitational field, i.e. the action that would rule
the dynamics of the gravitational field if there was no particle, and Sfree part: is the
action for the free particles, i.e. the action governing the particles in the absence of
gravitational field. Sinter is then the part of the action that describes the interaction
between the particles and the gravitational field. Let us discuss these three terms
separately:

• For Sfield, we shall chose the simplest action for a scalar field, namely, the
Klein–Gordon action introduced in Sect. 18.7.1, with a zero mass. Indeed, if we
set to zero the parameter `�2 in the Klein–Gordon equation (18.136), the latter
reduces to �˚ D 0, which is exactly the equation that we are looking for in the
absence of particle. We shall thus postulate

Sfield D � 1

8�Gc

Z

U
hr˚; #»r˚i � D � 1

8�Gc

Z

U
g��

@˚

@x�
@˚

@x�
dU; (22.7)

where U is a four-dimensional domain of E and .x˛/ a coordinate system on U .
The difference with the action based on the Klein–Gordon Lagrangian (18.131)
is, besides `�2 D 0, the constant factor 4�Gc. The latter plays the role of a
coupling constant between the gravitational field and the particles.

• Regarding Sfree part:, it is naturally the sum of the actions of free particles, as given
by (11.6) and (11.21) [cf. also (11.99) with K D 0]:

Sfree part: D �
NX

aD1
mac

Z �2

�1

q
�g˛ˇ Px˛a Pxˇa d�; (22.8)

2The concept of simple particle has been defined in Sect. 9.2.1.
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where � is some parameter along the worldline La of particle Pa and
the functions x˛a .�/ define the parametric equation of La in the coordinate
system .x˛/.

• Finally, for Sinter, we shall choose the interaction with a scalar field already
encountered in Sect. 11.2.7, namely, that given by the Lagrangian (11.37).
For each particle, we set the scalar charge to be equal to the mass: qa D ma.
This implements the equality between the gravitational mass (qa) and the inertial
mass (ma). We shall discuss this point with more details in Sect. 22.3. We
have thus

Sinter D �
NX

aD1

ma

c

Z �2

�1

˚.x˛a .�//

q
�g˛ˇ Px˛a Pxˇa d�: (22.9)

In view of (22.6)–(22.9), the total action S is a functional of˚ and of the x˛a .�/’s.
Let us apply the principle of least action to the variations with respect to .x˛a /
for a given value of a. This implies only the part Sfree part: C Sinter of S and more
particularly the term no. a in this sum. This is actually the action corresponding to
the Lagrangian (11.36) presented in Example 11.2 p. 358. The equations of motion
are thus given by (11.38) with q D m:

�
c2 C ˚�aa D �r˚ ı?ua ; (22.10)

where #»a a stands for the 4-acceleration of particle Pa and ?ua for the orthogonal
projector onto its local rest space. In terms of components with respect to the inertial
coordinates .x˛/, this equation becomes

�
1C ˚

c2

	
d2x˛a
d	2a

D �
 
g˛ˇ C 1

c2
dx˛a
d	a

dxˇa
d	a

!
@˚

@xˇ
; (22.11)

where 	a is the proper time of particle Pa. For the field ˚ , the nonrelativistic limit
is defined by

j˚ j
c2
	 1

nonrelativistic
: (22.12)

Moreover, at the nonrelativistic limit, 	a ! t and jdxia=d	aj 	 c. The
nonrelativistic limit for the components ˛ D i 2 f1; 2; 3g of (22.11) is thus the
Newtonian equation of motion (22.2), as desired.

Remark 22.1. For the gravitational field at the Earth surface, ˚ ' �GM˚=R˚
and j˚ j=c2 � 10�10, so that the condition (22.12) is well satisfied. The same
property holds for the gravitational field in the Solar System, where j˚ j=c2 reaches
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its maximum, of the order of 10�6, in the vicinity of the Sun. On the other hand, for
a neutron star, j˚ j=c2 � 0:2, which shows that such a star is a relativistic object.

Let us move now to the minimization of the action S with respect to variations of
the field ˚ . This regards only the term SfieldCSinter for Sfree part: does not involve˚ .
To apply the field equations obtained in Sect. 18.7.1, the action Sinter has first to
be expressed as the integral of a Lagrangian density Linter over a four-dimensional
domain of E , whereas (22.9) provides it as a sum of one-dimensional integrals. Let
us start by rewriting (22.9) by selecting the worldline parameter to be the proper
time 	 of the considered particle: � D c	 ; we get

Sinter D �
NX

aD1
ma

Z 	2

	1

˚.Aa.	// d	; (22.13)

where Aa.	/ is the generic point of worldline La, i.e. the point of coordinates
.x˛a .	//. It is then easy to let appear a four-dimensional integral, thanks to the Dirac
measure introduced in Sect. 18.2.1 [Eq. (18.3)]:

Sinter D
Z

U
Linter dU; (22.14)

with

Linter.M/ D ˚.M/

"
�

NX

aD1
ma

Z 	2

	1

ıAa.	/.M/ d	

#
: (22.15)

We recognize in the term in square brackets the trace of the energy–momentum
tensor T of the particle system, up to some factor c3. Indeed, T is given by (19.3).
Using the simple particle relation pa D mac ua [Eq. (9.3)] and taking the trace with
respect to the metric tensor g [i.e. performing the C1

1 contraction of the tensor
#»

T ,
cf. (14.33)], there comes, since u�a .ua/� D �1,

T WD T �� D g��T�� D �
NX

aD1
mac

3

Z C1

�1
ıAa.	/.M/ d	: (22.16)

The difference with (22.15) regards the boundaries on the integral over 	 , but this
does not matter for what follows, because the limits 	1 ! �1 and 	2 ! C1 can
be taken in (22.15) without changing the content of the principle of least action. We
have thus

Linter D 1

c3
˚T : (22.17)
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The total Lagrangian density for the gravitational field is thus, in view of (22.7)
and (22.17),

Lfield CLinter D � 1

8�Gc
g��

@˚

@x�
@˚

@x�
C 1

c3
˚T: (22.18)

It is then easy to write the field equation (18.135) expressing the minimization of
S with respect to the variations of ˚ . We have seen in Sect. 18.7.1 that the term
Lfield yields the contribution .4�Gc/�1�˚ [cf. Eq. (18.136) with `�2 D 0]. As
for the term Linter, it yields the contribution @=@˚.˚T=c3/ D T=c3. The field
equation (18.135) is thus

�˚ D �4�G
c2

T : (22.19)

We do obtain an equation of the type (22.5) with S WD �T=c2. Contrary to the
energy density, the quantity T is independent of any observer. Moreover, at the
nonrelativistic limit, (22.19) gives the Poisson equation (22.1). Indeed, at this limit,
	 ! t and (22.16) yields [cf. (18.4)]

T .t; x; y; z/ D �
NX

aD1
mac

2

Z C1

�1
ı.ct � ct 0/ ı.x � xa.t 0// ı.y � ya.t 0//

�ı.z � za.t
0// c dt 0

D �c2
NX

aD1
maı.x � xa.t// ı.y � ya.t// ı.z � za.t//:

We recognize in the last term the Newtonian expression of the mass density � of the
particle system, so that T=c2 D ��. The nonrelativistic limit implies also a slowly
varying field [Eq. (22.4)], so that �˚ ! ˚ . It is then clear that (22.19) reduces
to (22.1).

We have derived Eq. (22.19) for the scalar gravitational field in the specific case
of a system of N simple particles, by making simple choices for the various parts
of the action [Eqs. (22.7)-(22.9)]. Noticing that the final equation does not depend
explicitly on this matter model, we may extend the theory to any type of matter by
postulating the

Principle of universal coupling to gravitation: any kind of matter (for
instance, a fluid) or any kind of non-gravitational field (for instance, the
electromagnetic field) generates a gravitational field ˚ according to Equa-
tion (22.19), where T is the trace of the energy–momentum tensor of the
considered matter or field.
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This principle is intimately related to the mass-energy equivalence and to the
equality between gravitational and inertial masses. Thanks to it, we obtain a full
scalar theory of gravitation in Minkowski spacetime.

Example 22.1. If the source of the gravitational field is a perfect fluid, the form
(21.1) of the energy–momentum tensor leads to

T D T �� D ."C p/ u�u�„ƒ‚…
�1
Cp g��g��„ ƒ‚ …

4

D 3p � ";

so that the decomposition (21.17) of " into a mass-energy density �c2 and an internal
energy density "int leads to

� T
c2
D �C "int � 3p

c2
:

The nonrelativistic limit (21.57) gives then �T=c2 ' �, and the field
equation (22.19) reduces to Poisson equation (22.1), as it should.

Remark 22.2. It can be shown (cf., e.g. Bergmann (1956); Giulini (2008)) that in
the theory presented above, the conserved energy–momentum tensor, i.e. the tensor
obeying

#»r � T tot D 0 [Eq. (19.27)], is

T tot D T mat C T grav; (22.20)

with

T mat WD
�
1C ˚

c2

	
T ; (22.21)

T being the “ordinary” energy–momentum tensor of matter, i.e. the tensor given by
(19.3) for a particle system or by (21.1) for a perfect fluid, and

T grav WD 1

4�G

�
r˚ ˝ r˚ � 1

2
hr˚; #»r˚ig

�
: (22.22)

This last tensor is interpreted as the energy–momentum tensor of the gravitational
field. We deduce from (22.21) the following relation between the traces of the
tensors T and T mat: T D .1 C ˚=c2/�1Tmat, so that we can rewrite the field
equation (22.19) as

�
1C ˚

c2

	
�˚ D �4�G

c2
Tmat: (22.23)

Written is this way, the gravitational field equation appears non-linear. This is
actually the equation obtained in 1913 by G. Nordström (1913) (cf. the historical
note below).
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Remark 22.3. The gravitation theory described above is not the only possible scalar
theory. For instance, in Exercise 7.1 of their textbook (Misner et al. 1973) (cf.
Shapiro and Teukolsky (1993) for the solution), C.W. Misner, K.S. Thorne and
J.A. Wheeler (cf. p. 79) propose a theory derived from a principle of least action
as well but using

Sfree part: C Sinter D �
NX

aD1
mac

Z �2

�1

e˚.x
˛
a .�//=c

2

q
�g˛ˇ Px˛a Pxˇa d�; (22.24)

instead of the sum of (22.8) and (22.9), which amounts to replace .1 C ˚=c2/ by
e˚=c

2
in the total action.

Historical note: In the “Palermo memoir”, published in 1906 (Poincaré 1906) and
mentioned at many occasions in the previous chapters, Henri Poincaré (cf. p. 26)
presented some attempts of relativistic extensions of Newton’s 1=r2 gravitational
force, focusing on the invariance with respect to the Lorentz group (cf. Walter
(2007)). The treatment of gravitation as a scalar field on Minkowski spacetime has
been developed between 1911 and 1913 by Max Abraham,3 Gustav Mie,4 Albert
Einstein (cf. p. 26) and Gunnar Nordström5 (cf. Norton (1992) and Pais (1982)
for a detailed historical account). It is Max Laue (cf. p. 146) who suggested to
Einstein that the source term in a scalar equation for the gravitational field must
be the trace of the energy–momentum tensor. Accordingly, Einstein was calling T
“Laue’s scalar”. The most achieved theory was that of Nordström, notably in the
version published in 1913 (Nordström 1913). It is equivalent to the theory exposed
above, except that Nordström did not derive it from a variational principle: he
postulated the field equation to be of the form �˚ D �4�Gg.˚/Tmat=c

2, and, via
an argument based on the equality between inertial mass and gravitational mass,
he determined the function g.˚/ as g.˚/ D .1C˚=c2/�1, thereby getting (22.23).
In 1914, Albert Einstein and Adriaan Fokker (cf. p. 339) showed that Nordström’s
theory could be recast in a purely metric form, i.e. in a form such that the scalar
field˚ does no longer appear but only the metric Qg WD .1C˚=c2/2 g (Einstein and
Fokker 1914). One says that Qg is conformal to the metric g. The physical metric
on E , in the sense of the metric providing the proper time along worldlines, is
then Qg and no longer the Minkowski metric g. In this approach, the concept of
gravitational 4-force disappears and the particle trajectories in the gravitational

3Max Abraham (1875–1922): German physicist, student of Max Planck (cf. p. 279), supporter of
the aether theory; he developed a model of the electron by considering it as a uniformly charged
rigid sphere whose mass is entirely due to the electromagnetic energy.
4Gustav Mie (1869–1957): German physicist, known for his studies of the scattering of
electromagnetic waves by spherical particles (Mie scattering).
5Gunnar Nordström (1881–1923): Finish physicist, known for his scalar theory of gravitation
and for a solution of Einstein equation [Eq. (22.32) below] corresponding to an electrically charged
spherical source.
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C

Fig. 22.1 Mercury
perihelion advance. On this
figure, both the eccentricity
and the perihelion advance
have been exaggerated

field are simply the geodesics of Qg. Note that the metrics Qg and g have the same
light cones: Qg. #»v ; #»v / D 0 ” g. #»v ; #»v / D 0. Within Einstein–Fokker approach,
Nordström’s theory became thus the first purely metric theory of gravitation, just
before the advent of general relativity.

22.2.2 Incompatibility with Observations

The scalar theory exposed above is well posed and generalizes Newtonian
gravitation. But it suffers from a severe defect: it is not compatible with
observations! Indeed, once applied to the motion of the planets around the Sun,
it predicts a perihelion retardation, while the observations, notably of Mercury,
show a perihelion advance, moreover with an amplitude larger by a factor 6.

The perihelion advance of Mercury is indeed a crucial test for any relativistic
theory of gravitation. In Newtonian gravity, if the Sun is assumed to be perfectly
spherical and the actions of the other planets are neglected, Mercury’s orbit must be
a perfect ellipse, as a solution to the Kepler problem. Any perturbation of the 1=r2

gravitational field (Sun flattening, gravitational field of the other planets, inclusion
of relativistic effects) makes the orbit deviate from an ellipse. In particular, the
orbit is no longer a closed curve and the perihelion (point of minimal distance
to the Sun) is slightly displaced from one orbit to the other (cf. Fig. 22.1). This
point moves on a circle (denoted by C in Fig. 22.1) with an angular velocity called
perihelion advance. The measured value is 57400 per century. In 1859 the French
astronomer Urbain Le Verrier (1811–1877) discovered that the Newtonian theory,
including the perturbations from the other planets (the Sun flattening turning out
to be negligible), does not account for the totality of this advance, leaving 4300 per
century unexplained.6

6This is the modern value, the value found by Le Verrier in 1859 being 3800 per century.
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Fig. 22.2 Light deflection: discrepancy ı� between the apparent position of a star and the position
that it would have if the light ray would not have travelled in the gravitational field of a massive
body (the Sun)

By predicting a perihelion advance of �700 per century (cf., e.g. Giulini (2008)
for the detailed computation), Nordström’s scalar theory clearly disagrees with the
observations, by both the sign and the amplitude of the effect.

Remark 22.4. The perihelion advance of Mercury is small (4300 per century!), but
there exist astrophysical systems with a much greater advance, thanks to a more
intense gravitational field: the neutron-star binaries (Will 2006b). For instance, for
the system called double pulsar PSR J0737-3039, the periastron advance reaches
17ı per year !

Another source of disagreement with observations is the phenomenon of light
deflection (Hakim 1999), i.e. the change of apparent direction of stars in the sky
when the Sun moves in front of them (cf. Fig. 22.2). At optical wavelengths,
this effect is observable only during a solar eclipse, but in radio waves it can be
observed at any time. The deflection is all the more large as the light ray comes
close to the Sun. For a ray grazing the Sun, the deflection reaches ı� D 1:7500. This
effect has been measured for the first time during the 1919 solar eclipse. Since then,
it has been confirmed to a great accuracy on compact radio sources like quasars
(Shapiro et al. 2004).

However, Nordström’s scalar theory does not predict any light deflection because
the electromagnetic field does not interact with the gravitational field in this theory.
This can be seen on the interaction Lagrangian (22.17), according to which the
coupling with the gravitational field ˚ occurs only via the trace T of the energy–
momentum tensor. But a remarkable feature of the electromagnetic field is to
possess a traceless energy–momentum tensor, as it is clear from expression (20.3)
for T em:

T em D g˛ˇ T em
˛ˇ D "0

�
F�˛ g

˛ˇF
�

ˇ„ ƒ‚ …
F�˛

�1
4
F��F

�� g˛ˇg˛ˇ„ ƒ‚ …
4

�
D 0:

Hence, for the electromagnetic field, the interaction Lagrangian (22.17) identically
vanishes.

22.2.3 Vector Theory

The scalar theory of gravitation was the simplest relativistic extension of Newton’s
theory. As it must be rejected for disagreeing with experiment, it is natural to wonder
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about a vector theory, all the more that we know a very successful theory of this type
in Minkowski spacetime: electromagnetism! It actually constitutes the prototype of
vector theories (cf. Sects. 11.2.6 and 18.7.2). But there is a fundamental difference
between electromagnetism and gravitation: in the former, two identical charges repel
each other, while in the latter, two identical masses attract each other. This shows
up via the change of sign in the constants: to obtain a formulation of gravitation
analogous to electromagnetism, one must perform the substitution

"0  ! � 1

4�G
: (22.25)

The first component of Maxwell equation (18.67) yields then Poisson equation
(22.1) for a slowly varying field (�! ).

The change of sign in (22.25), which might seem minor, has actually disastrous
consequences for the theory. Let us consider, for instance, an accelerated particle
P of mass m > 0. It emits some gravitational radiation, as an accelerated charged
particle emits electromagnetic radiation (cf. Sect. 20.3). Let us assume that P
is oscillating along some axis with respect to an inertial observer O , so that its
acceleration #»� is always collinear to its velocity

#»

V (both being relative to O).
The radiation energy-flux vector (“gravitational Poynting vector”) is then given by
formula (20.26), with the substitution (22.25), along with q ! m:

#»' D � Gm2 
2 sin2 �

4�c3 r2
�
1 � V

c
cos �

�6
#»n ; (22.26)

#»n being the unit vector connecting P’s position with respect to O at the retarded
instant t � r=c to the observation point where #»' is evaluated (cf. Fig. 18.6). We
note that #»' is collinear to #»n but oriented in the opposite direction. This means that
the energy is radiated towards the particle and not away from it! In other words,
the system gravitational field + particle gains some energy during the particle’s
oscillations. This feature leads to an instability and is not physically acceptable.
Therefore, gravitation cannot be described by a vector theory, contrary to Maxwell
electromagnetism.

Remark 22.5. The scalar theory of gravitation had to be rejected because it was not
agreeing with observations. Here, it is worse: vector gravitation is even not viable
on theoretical grounds.

Historical note: As soon as 1865, James Clerk Maxwell (cf. p. 597) noticed that
a theory of gravitation built on the model of electromagnetism would lead to a
negative energy density of the gravitational field (Sect. 82 of Maxwell (1865)).
Indeed, performing the substitution (22.25) in formula (20.7), which gives the field
energy density with respect to an observer, yields

�grav D � 1

8�G

�
#»

E � #»

E C c2 #»

B � #»

B
�
; (22.27)
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where
#»
E and

#»
B are the gravitational “electric” and “magnetic” field vectors. The

negative energy density looked dubious to Maxwell, who concluded that it was not
worth exploring further such a theory of gravitation.

22.2.4 Tensor Theory

Let us continue our search for a theory of gravitation in Minkowski spacetime
by considering a tensor field of valence 2, after the unsuccessful attempts with a
scalar field (valence 0) and a vector field (valence 1). Without going into details
(cf. Sect. 8.10 of Anderson (1967), Box. 7.1 of Misner et al. (1973) and Sect. 1.2
of Straumann (2013)), let us simply mention that the main idea is to introduce on E
a tensor field h of type .0; 2/ that is symmetric. The coupling to matter and to the
non-gravitational fields is then naturally performed by contracting h with the total
energy–momentum tensor T of the matter and the non-gravitational fields, to form
the interaction Lagrangian

Linter D 1

2c
h��T

��: (22.28)

This formula is to be compared with that of the scalar case [Eq. (22.17)]
and implements the principle of universal coupling to gravitation enounced in
Sect. 22.2.1. In the case of a single particle, T takes the form (19.3) with N D 1

and (22.28) leads to the Lagrangian (11.41) with q D m.
Regarding the Lagrangian of the free field, Lfield, there is a natural way to write it,

presented in 1939 by the Swiss physicist Markus Fierz (1912–2006) and Wolfgang
Pauli (cf. p. 542) (1939). In the vocabulary of field theory, this is the Lagrangian
of a so-called massless spin-2 field. However, the theory obtained in this way is
such that matter does not feel gravity! More precisely, in this theory, the matter
energy–momentum tensor T obeys by itself the conservation equation

#»r � T D 0

(cf. Box. 7.1 of Misner et al. (1973) and Sect. 1.2 of Straumann (2013)). This implies
that the density of gravitational 4-force is zero [cf. Eq. (19.28)]. To construct a more
satisfactory theory, where matter is sensitive to gravitation, terms of order higher
than that of (22.28) must be added to Lfield. This leads to a complicated theory,
which is actually equivalent to general relativity (Deser 1970): the initial Minkowski
metric g loses any physical signification, for the benefit of the metric

g� D g C h: (22.29)

It is then simpler to use the framework of general relativity (Sect. 22.4) and not that
of a field theory in Minkowski spacetime.

Historical note: The approach, equivalent to general relativity, that treats
gravitation as a valence-2 tensor field on a “background” Minkowski spacetime has
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been developed notably by the Greek physicist Achilles Papapetrou (1907–1997)
(Papapetrou 1948), the Indian-American physicist Suraj N. Gupta (1954), Richard
Feynman (cf. p. 377) (1995), Stanley Deser7 (1970), Steven Weinberg8 (1972) and
the Russian physicist Leonid Grishchuk (1984; 1999).

22.3 Equivalence Principle

22.3.1 The Principle

The fact that, in an acceptable relativistic theory of gravitation, Minkowski metric is
stepping aside in favour of a more “physical” metric [Eq. (22.29)] is the geometrical
counterpart of the so-called equivalence principle. The latter stems from the feature
that singularizes out gravitation among all fundamental interactions: the equality
between inertial and gravitational mass. It follows that the motion of a particle in
a given gravitational field is independent of the nature of that particle. Things are
different for the electromagnetic field: the motion depends upon the ratio of the
particle’s electric charge to its inertial mass. From an experimental point of view,
the equality between inertial mass and gravitational mass has been checked to a very
high accuracy: first at the level of 10�8 (in relative value) by the Hungarian physicist
Loránd Eötvös (1848–1919) in 1909 (cf., e.g. Chap. 7 of Hakim (1999)) to 3�10�13
today (Will 2006b). The Microscope satellite, to be launched in 2014 by the French
Space Agency (CNES), should improve the accuracy to 10�15 (cf. Fig. 22.3).

Because of the equality between the inertial and gravitational mass, a uniform
gravitational force in a Galilean frame behaves exactly as the inertial force in a
uniformly accelerated frame. This property allows one to generalize the principle of
equality inertial mass-gravitational mass to relativity. One postulates the

Equivalence principle: as far as physical measurements are concerned, an
inertial observer in a uniform gravitational field is equivalent to a uniformly
accelerated observer in the absence of any gravitation field.

7Stanley Deser : American theoretical physicist born in 1931, known for his works in general
relativity and quantum gravity. He notably developed, with Richard Arnowitt and Charles
W. Misner (cf. p. 79), a Hamiltonian formulation of general relativity, famous under the name
ADM.
8Steven Weinberg : American theoretical physicist born in 1933 and who received the 1979 Nobel
Prize in Physics for the unification of electromagnetism and weak interaction; he authored a famous
textbook about general relativity (Weinberg 1972).
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Fig. 22.3 The Microscope satellite will be placed on a polar orbit at the altitude of 700 km.
Equipped with two differential accelerometers, it will test the equivalence principle by comparing
the motion of two different test bodies, one made of titanium and the other of platinum, in the Earth
gravitational field [W14] (Source: CNES, drawing by D. Ducros)

A word of caution is necessary: by inertial observer, it is meant an observer
whose worldline is a straight line of Minkowski spacetime and whose 4-rotation is
zero, according to the definition of Chap. 8. This is therefore not an inertial observer
in the standard meaning of general relativity (i.e. an observer in free fall).

The equivalence principle is often illustrated by the following image: an observer
located in a cabin without any window cannot determine, by any local experiment,
whether the cabin is at rest at the surface of the Earth or travelling far from any
gravitational influence, carried by a rocket imparting an acceleration equal to the
Earth’s gravity (
 D 9:8 m s�2).

22.3.2 Gravitational Redshift and Incompatibility
with the Minkowski Metric

Thanks to the results on accelerated observers obtained in Chap. 12, it is easy to
see that the equivalence principle leads to abandon the Minkowski metric in any
relativistic theory of gravitation, without having to go into the details of the theory.
We shall indeed show that the equivalence principle implies a physical effect, the
gravitational redshift, which cannot be accounted for by Minkowski metric.

Let us consider two inertial observers at rest with respect to each other in some
uniform gravitational field, so that at the Newtonian limit, the gravitation field
vector would be along the vector #»e x of O’s frame and in the opposite direction:
#»g D �
 #»e x, with 
 > 0 (cf. Fig. 22.4). The x-coordinate of O’s coordinate system
measures then the “altitude” in the gravitational field. Let us assume that O 0 emits
periodic light signals, of period t 0 (in terms of this proper time). These signals
are received by O with a period t (in terms of this proper time). According to
the equivalence principle, things must be the same as if O and O 0 were uniformly
accelerated observers in the absence of gravitational field, the 4-acceleration of O
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Fig. 22.4 Left panel: Inertial observers O and O0 mutually at rest in a uniform gravitational field,
O0 emitting a periodic signal towards O. Right panel: Corresponding situation according to the
equivalence principle: O and O0 are uniformly accelerated observers similar to those of Fig. 12.14

being #»a D .
=c2/ #»e x [cf. (4.64)]. The situation is analogous to that depicted in
Fig. 12.14, which is reproduced in the right panel of Fig. 22.4. The relation between
t andt 0 is then given by (12.71) with a D 
=c2:

t D t 0

1C 
xem=c2
; (22.30)

where xem is the abscissa of O 0 in the frame of O . It is clear on (22.30) that a
nonvanishing gravitational field (
 6D 0) induces t 6D t 0. This phenomenon
is called gravitational redshift. If xem > 0 (the situation considered in Fig. 22.4),
t < t 0 and the corresponding frequency shift is actually a blueshift.

The gravitational redshift, which has been verified by many experiments as
detailed below, leads to abandon the Minkowski metric when dealing with a
gravitational field. Indeed, if the gravitational field is assumed to be stationary, the
worldline of a given light signal (emitted at A0 and received at A) differs from that
of the next signal (emitted at B 0 and received at B) by a mere translation in the
direction #»e t (cf. Fig. 22.4). Consequently, the Minkowski-metric distance between
eventsA andB must be the same as that between eventsA0 andB 0. But if the proper
time is given by Minkowski metric, as assumed up to now (cf. Chap 2), the first
distance is ct and the second one ct 0. We have thus t D t 0, in contradiction
with the relation (22.30) resulting from the equivalence principle. We conclude that

If gravitation obeys the equivalence principle, then the proper time can no
longer be given by Minkowski metric.

Note that this conclusion does not depend upon the detail of the photons’
worldlines between O 0 and O . For example, in Fig. 22.4, these worldlines are not
assumed to be straight lines of E , as they should be in the absence of gravitational
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field. Actually their shape has been copied from Fig. 12.13, which represents the
null geodesics in terms of the coordinates .ct; x/ associated with the accelerated
observer O (Rindler coordinates).

Historical note: The equivalence principle has been enounced by Albert Einstein
in 1907 (Einstein 1907). It was the lead that conducted him to formulate general
relativity eight years later. Einstein called it the “happiest thought” of his life (cf.
Chap. 9 of Pais (1982)). The argument presented above regarding the necessity to
abandon Minkowski metric is due to Alfred Schild (cf. p. 378), who wrote it in 1960
(Schild 1960).

22.3.3 Experimental Verifications of the Gravitational Redshift

The gravitational redshift is the major prediction of any relativistic theory of
gravitation based on the equivalence principle. It has been confirmed by various
experiments, which are briefly described here.

22.3.3.1 Pound–Rebka Experiment (1960)

In the gravitational field of the Earth, the gravitational redshift is very small: setting

 D g D 9:8 m s�2 in (22.30) yields


xem

c2
D 1:1 � 10�16 � xem

1 m

�
: (22.31)

The corresponding tiny time shift can be observed by measuring the frequencies of
nuclear emission lines. Hence the first experimental test of the gravitational redshift,
due to the American physicists Robert V. Pound and Glen A. Rebka in 1960 (Pound
and Rebka 1960), consisted in comparing the frequencies of the gamma line (E D
14 keV, � D 0:09 nm) resulting from the decay of 57Fe nuclei (an unstable isotope
of iron, of life time 10�7 s) between the bottom and the top of a tower at Harvard
University. The spectral shift is of the order of 10�15 [xem D 22 m in (22.31)] and
could be measured, thanks to the Mössbauer effect, which reduces considerably the
Doppler broadening of the line. The found value turned out to agree with the general
relativity prediction with an accuracy of around 10%. The experiment was redone in
1965 by R.V. Pound and J.L. Snider (1965), leading to a agreement at the 1% level
with general relativity.

22.3.3.2 Atomic Clocks Aboard Aircrafts

The Hafele–Keating experiment (1971) and the Alley experiment (1975) described
in Sect. 2.6.6 have verified the gravitational redshift with an accuracy of the order
10% for the former and 1% for the latter.
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22.3.3.3 Vessot–Levine Experiment (1976)

To reach a better precision, it was necessary to increase the magnitude of the effect
and thus xem, i.e. the difference of altitude between the emitter and the receiver. The
idea was then to launch a rocket carrying a clock and to compare its frequency with
that of an identical clock on the ground. The experiment, called Gravity Probe A,
has been performed in 1976 under the supervision of Robert Vessot and Martin
Levine, with a hydrogen-maser atomic clock (� D 21 cm) loaded on a Scout
D rocket (Vessot et al. 1980). In this case, the maximum altitude is 104 km and
the gravitational redshift reaches 4 � 10�10. The formula is not (22.30), for the
gravitational field is not uniform at the scale of the rocket trajectory. Although it is
considerably larger than that of Pound–Rebka experiment, this spectral shift is 105

times smaller than the Doppler shift due to the rocket motion (cf. Sect. 5.5)! The
measure has been possible, thanks to the use of a transponder on the rocket that,
receiving a signal from the ground, sends it back at exactly the same frequency.
The frequency of the returned signal measured on the ground is twice shifted by the
first-order Doppler effect: on the outward trip to the rocket and on the return trip.
In both cases, the emitter and receiver are receding from each other, resulting in a
redshift. On the contrary, the signal that comes back to the ground station is affected
neither by the transverse Doppler effect nor by the gravitational redshift. Indeed the
return trip cancels both shifts of this kind. Having measured the first-order Doppler
effect by this way, one finds the rocket velocity. The transverse Doppler effect can
then be computed. Both Doppler effects being known, they can be subtracted to the
one-way signal, leaving only the gravitational redshift. The results of Vessot–Levine
experiment have been sufficiently accurate to conclude that the relative discrepancy
with the prediction resulting from the equivalence principle is at most of 7 � 10�5.

22.3.3.4 Atomic Clock Ensemble in Space

The ESA experiment ACES (Atomic Clock Ensemble in Space) [W13] consists
in a set of two atomic clocks to be installed onboard the International Space
Station in 2013. It comprises the cold-caesium-atom clock PHARAO, developed at
LNE-SYRTE (Observatoire de Paris) and at the Laboratoire Kastler Brossel (École
Normale Supérieure, Paris), under the auspice of CNES (Reynaud et al. 2009) and
the hydrogen-maser clock SHM developed by Swiss laboratories. The comparison
by radio links with the best atomic clocks on the ground will allow to reach the level
of 2�10�6 in the test of gravitational redshift, which represents an improvement by
a factor 35 with respect to Vessot–Levine experiment.

22.3.3.5 Global Navigation Satellite Systems

The gravitational redshift plays a crucial role in the global navigation satellite
systems (GNSS), among which the current American Global Positioning System
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(GPS) and Russian GLONASS, as well as the future European Galileo. If the
gravitational redshift was not taken into account, these navigation systems would
be totally inoperative! (Ashby 2003). The principle is indeed the following one:
an observer who is receiving the signal from at least four satellites of a GNSS
constellation can compute its position .t; #»r / in an inertial frame centred on the
Earth9 by solving the system of four equations :

k #»r � #»r ik � c.t � ti / D 0; i 2 f1; 2; 3; 4g;

where .ti ;
#»r i / is the emission date and position encoded in the signal from the

satellite no. i , the date ti being provided by the onboard atomic clock. The four
unknowns are the three components of the position vector #»r and their date t of the
simultaneous reception of the four signals. To achieve a precision of the order of a
metre on #»r , the precision on the dates ti must be

ıt � 1 m

c
� 3 ns:

Now, two relativistic effects lead to a variation ıt much larger than the above
value:

• The time dilation (cf. Sect. 4.2.3): the satellites are moving with respect to the
Earth-centred inertial frame, on circular orbits of radius rsat D 2:65 � 104 km.
Their orbital velocity is v DpGM˚=rsat ' 3:87 km s�1 (M˚ D 5:97�1024 kg
being the Earth mass), which yields v=c ' 1:3 � 10�5 and the Lorentz factor
� D 1C8:3�10�11. Thanks to (4.1), there comes ıt=t D � �1 ' 8:3�10�11.
If no correction was applied, ıt D 3 ns would be reached within t � half a
minute!

• The gravitational redshift: the satellites are roughly four times higher in the Earth
gravitational field than ground observers. The proper times arising from their
clocks, once transmitted to the ground, are thus shifted with respect to ground
clocks, by a value estimated10 by setting xem D rsat�R˚ ' 2�104 km in (22.31):
ıt=t � 10�9. The exact value is ıt=t ' 5:3 � 10�10. This effect is larger than
the time dilation one. If no correction was applied, ıt D 3 ns would be reached
within 6 seconds! After one day, the time shift would reach ıt D 46 �s, which
would result in a positioning error of 14 km!

The GNSS’s constitute thus an application useful in everyday life (the only one to
date!) for which the relativistic character of the gravitational field must be taken into
account.

9In practice, one would like to know the position in an Earth-fixed frame, i.e. a frame rotating with
respect to inertial frame. A rotation has then to be applied to get the final output (Ashby 2004).
10This is not the exact value, because the gravity acceleration 
 is not constant between the observer
and the satellite.
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22.3.4 Light Deflection

Besides the gravitational redshift, another consequence of the equivalence principle
is the light deflection or gravitational lensing, i.e. the fact that photons do
not propagate along straight lines in the presence of a gravitational field (cf.
Sect. 22.2.2). We have seen indeed in Chap. 12 that, from the point of view of an
accelerated observer, photons follow curved lines (cf. Fig. 12.13). The value of the
curvature is given by (12.66). This formula is valid only at small scales, within
a region where the gravitational field can be considered as homogeneous. It is
therefore not sufficient to interpret the observations of light deflection in the Sun’s
vicinity mentioned in Sect. 22.2.2.

22.4 General Relativity

We have concluded in Sect. 22.3.2 that Minkowski metric cannot account for the
gravitational redshift. We have also stressed in Sect. 22.2.4 that any consistent
tensor theory of relativistic gravitation leads necessarily to the introduction of a
“physical” metric, putting Minkowski metric in the background. All this means
that the mathematical structure introduced in Chap. 1, namely, the affine space
E and the metric tensor g on the underlying vector space E , is not adapted to
gravitation. Special relativity must then be abandoned in favour of general relativity.
This theory, elaborated by Albert Einstein in 1915 (Einstein 1915, 1916), is the
simplest theory of relativistic gravitation that has passed all the observational and
experimental tests to date (Will 2006b, 2010).

The mathematical framework of general relativity differs from that of special
relativity by the following features:

• The base space E is not necessarily an affine space but a more general structure:
a differentiable manifold, as defined in Sect. 7.2.1.

• The manifold structure implies that there is no longer a unique four-dimensional
vector space E underlying E but an infinity of such spaces: one at each point
A 2 E , with EA 6D EB if A 6D B; EA is called the tangent space to E at A (cf.
Fig. 22.5).

• The metric tensor g is a field on E : at each point A 2 E , g.A/ is a bilinear form
on EA that is symmetric, nondegenerate and of signature .�;C;C;C/.

• In general, there does not exist any inertial coordinate system .x˛/ over E , i.e. a
coordinate system where, at each point of E , the components of g are given by
the Minkowski matrix: g˛ˇ D �˛ˇ D diag.�1; 1; 1; 1/.
General relativity implements the equality between inertial mass and

gravitational mass—and thus the equivalence principle—by stipulating that the
worldlines of particles submitted to a gravitational field are independent of
the nature of the particles: they are well-defined lines of spacetime, namely, the
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Fig. 22.5 Spacetime manifold E of general relativity, with the tangent spaces EA and EB at two
points A and B (for graphical needs, the dimension of E has been reduced from 4 to 2). This figure
is to be compared with Fig. 1.1, which describes the affine space of special relativity

geodesics of the metric g. Massive particles follow timelike geodesics, while
massless ones (photons) follow null geodesics.

Locally, gravitation cannot be distinguished from an acceleration (equivalence
principle), but on a larger scale, the gravitational field is characterized by the
variation of the (metric) distance between two nearby geodesics that were initially
parallel. This property is called curvature in differential geometry, which explains
why one often says that gravitation is described by the curvature of spacetime. In
the case of Minkowski spacetime, two initially parallel geodesics always stay at the
same distance since geodesics are straight lines of the affine space E (cf. Sect. 2.7.1).
This means that the curvature vanishes (one says that Minkowski spacetime is flat)
and thus that there is no gravitational field in Minkowski spacetime.

The fundamental equation of general relativity is the Einstein equation:

R � 1
2
R g D 8�G

c4
T : (22.32)

This is an equality between two fields of symmetric bilinear forms on E : T is
the energy–momentum tensor of matter and all non-gravitational fields, R is a
symmetric type-.0; 2/ tensor that describes a part of the spacetime curvature and R
is the trace of R with respect to g: R WD g��R�� . R is called the Ricci tensor and
R the scalar curvature. At the Newtonian limit, one of the ten components of the
Einstein equation reduces to the Poisson equation (22.1) and the nine others to the
trivial “0 D 0”. For a weakly relativistic gravitational field, i.e. for g D Ng C h

with Ng being Minkowski metric and h some “small perturbation”, the Einstein
equation linearized at first order in h yields the dynamical equation of the tensor
theory considered in Sect. 22.2.4 [Fierz–Pauli Lagrangian + interaction Lagrangian
(22.28)].

Remark 22.6. Within Nordström’s scalar theory studied in Sect. 22.2.1, particles
follow geodesics of the metric g D .1C˚=c2/2 Ng, as shown by Einstein and Fokker
(cf. historical note p. 718). The field equation (22.19) can then be recast as
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R D 24�G

c4
T; (22.33)

where T is the trace of the energy–momentum tensor T with respect to g: T D
g��T�� D .1 C ˚=c2/�2 NT , NT being the trace of T with respect to Minkowski
metric ( NT is denoted by T in Sect. 22.2.1). Equation (22.33), which involves
the scalar curvature R in its left-hand side, is to be compared with the Einstein
equation (22.32).

We stop at this point this small overview of general relativity, referring the reader
to various books devoted to it: (Boratav and Kerner 1991; Hakim 1999; Heyvaerts
2006; Ludvigsen 1999; Tourrenc 1997; Choquet-Bruhat 2009; Carroll 2004; Hartle
2003) and (Straumann 2013).



Appendix A
Basic Algebra

A.1 Basic Structures

A.1.1 Group

A group is a set G endowed with a binary operation �, i.e. a map G � G ! G,
.g1; g2/ 7! g1 � g2, such that

• � is associative: 8.g1; g2; g3/ 2 G3; g1 � .g2 � g3/ D .g1 � g2/ � g3.
• � has an identity element e 2 G : 8g 2 G; e � g D g � e D g.
• Each element has an inverse: 8g 2 G; 9g�1 2 G; g�1 � g D g � g�1 D e.

If the operation � is commutative, i.e. if 8.g1; g2/ 2 G2; g1 � g2 D g2 � g1, the
group .G;�/ is called abelian.

Example A.1. In this book, we have considered the Lorentz group O.3; 1/
(Sect. 6.2.2), the restricted Lorentz group SOo.3; 1/ (Sect. 6.3.3), the Poincaré group
IO.3; 1/ (Sect. 8.3.3), the general linear group of E , GL.E/ (Sect. 6.2.2), the group
of rotations in the three-dimensional Euclidean space SO.3/ (Sect. 7.5.2), the special
linear group SL.2;C/ (Sect. 7.5), the special unitary group SU.2/ (Sect. 7.5.2), the
Klein group Z=2Z � Z=2Z (Sect. 6.3.4) and the symmetric group Sn (Sects. 1.5
and 14.4.2).

Given two groups .G;�/ and .F; ?/, a function f W G ! F is a group
homomorphism iff it preserves the group structure, i.e. iff

8.g1; g2/ 2 G2; f .g1 � g2/ D f .g1/ ? f .g2/: (A.1)

If moreover f is bijective, one says that f is a group isomorphism and that the
groupsG and F are isomorphic, which is denoted by the symbol':

G ' F: (A.2)
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An isomorphismG ! G is called a group automorphism.
If .G;�/ is a group, one calls subgroup ofG any subsetH � G such that .H;�/

is a group. Moreover,H is said to be a normal subgroup iff

8.g; h/ 2 G �H; g � h � g�1 2 H: (A.3)

If G is abelian, all subgroups are obviously normal. The importance of normal
subgroups is to allow one to “divide” a given group to get a simpler group. Indeed,
if H is a normal subgroup of G, an equivalence relation � can be defined on G by

8.g1; g2/ 2 G2; g1 � g2 ” 9h 2 H; g2 D g1 � h: (A.4)

The equivalence class of an element g 2 G for this relation is the set of elements of
G that differ from g only by the product with an element ofH ; it is denoted by gH :

gH WD fg � h; h 2 H g: (A.5)

The quotient group G=H is the set of all equivalence classes endowed with the
binary operation N� defined by

.g1H/ N� .g2H/ WD .g1 � g2/H: (A.6)

If it is easy to see that this operation is well defined becauseH is a normal subgroup:
the class .g1 � g2/H is then independent of the choice of the elements g1 and g2 in
the classes g1H and g2H .

A group G is called simple iff it has no normal subgroups except itself and feg.
There is then no non-trivial quotient of G. On the contrary, if G is not a simple
group andH is a normal subgroup of G, one can form the quotient groupG=H and
reduce the study of G to that of the “smaller” groupsG=H andH .

Example A.2. The cyclic groups Z=pZ with p prime are simple groups. On the
other hand, the Klein group fId; I ;T ;Pg ' Z=2Z�Z=2Z considered in Sect. 6.3.4
is not a simple group: it admits fId; Ig, fId;T g and fId;Pg as normal subgroups.

A.1.2 Fields

A field is a set K endowed with two binary operations,C and :, say, such that

• .K;C/ is an abelian group.
• .Knf0g; :/, where 0 stands for the identity element of .K;C/, is a group.
• The operation : is distributive overC:

8.a; b; c/ 2 K3; a:.b C c/ D a:b C a:c and .b C c/:a D b:aC c:a:
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If .Knf0g; :/ is an abelian group, one says that K is a commutative field.

Example A.3. Standard examples are the field of real numbers R, the field of
complex numbers C and the field of quaternions H (cf. Remark 7.17 p. 245), the
latter being noncommutative, contrary to R and C.

A.2 Linear Algebra

A.2.1 Vector Space

A vector space over a commutative field K is a set F endowed with a binary
operation C and an external operation of K over F , i.e. a function K � F ! F ,
.�; x/ 7! �x, such that

• .F;C/ is an abelian group.
• The external operation satisfies

8.�; �/ 2 K2; 8.x; y/ 2 F 2; .��/x D �.�x/ (A.7a)

.�C �/x D �x C �x (A.7b)

�.x C y/ D �x C �y (A.7c)

1x D x; (A.7d)

where 1 stands for the identity element regarding multiplication in the field K .

A basis of F is a set .ei /i2I of elements F , indexed by some set I , such that any
element x 2 F is expressed in a unique way as a finite linear combination of some
of the ei ’s: x D P

i2I �i ei , where the summation involves only a finite number of
nonzero terms. It can be shown that if .ei /i2I and .e0

j /j2I 0 are two bases, the sets
I and I 0 are in bijection. One calls then the dimension of the vector space F and
denotes by dimF the common cardinality of I and I 0. F is thus of finite dimension
iff I is a finite set.

Example A.4. A few examples of vector spaces considered in this book are the
space E underlying Minkowski spacetime E (E is a four-dimensional vector space
over R, Sect. 1.2.1), the local rest space of an observerEu (three-dimensional vector
space over R, Sect. 3.2.3), the set Herm.2;C/ of Hermitian 2 � 2 matrices (four-
dimensional vector space over R, Sect. 7.5.1), the set T.k;`/.E/ of tensors of type
.k; `/ on E (vector space of dimension 4kC` over R, Sect. 14.2.1), the set Ap.E/ of

linear p-forms on E (vector space of dimension
�
4
p

�
over R, Sect. 14.4.1) and the

set of all tensor fields of type .k; `/ on E (vector space of infinite dimension over
R, Sect. 15.3.1).
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A part of F that is itself a vector space overK for the same operations as for F is
naturally called a vector subspace of F . If F has a finite dimension, a hyperplane of
F is a vector subspaceH satisfying dimH D dimF �1. One calls vector subspace
generated by a family .x1; : : : ; xn/ of n elements of F the smallest subspace of F
that contains x1; : : : ; xn; it is denoted by Span.x1; : : : ; xn/.

Given two vector spaces F and G over the same field K , one calls linear map
from F to G any function f W F ! G such that

8� 2 K; 8.x; y/ 2 F 2; f .�x C y/ D �f .x/C f .y/: (A.8)

The kernel of f is the inverse image of 0 by f : Kerf WD fx 2 F; f .x/ D 0g and
the image of f is the set of all elements of G that are the output of some element
of F by f : Imf WD ff .x/; x 2 F g. Kerf is a vector subspace of F and Imf is a
vector subspace of G. The linear map f is injective iff Kerf D f0g.

One calls isomorphism any linear map f W F ! G that is bijective. If F and G
have a finite dimension, then necessarily dimF D dimG.

A linear map of F to itself is called an endomorphism of F . If it is moreover
bijective (i.e. if it is an isomorphism of F to itself), it is called an automorphism.
The set of all automorphisms of a given vector space F , endowed with the composi-
tion law ı, is a group, called the general linear group of F and denoted by GL.F /.

A.2.2 Algebra

An algebra over a commutative fieldK is a vector space F overK endowed with a
binary operation � satisfying

8� 2 K; 8.x; y; z/ 2 F 3; .�x/ � y D x � .�y/ D �.x � y/ (A.9a)

x � .y C z/ D x � y C x � z (A.9b)

.y C z/ � x D y � x C z � x: (A.9c)

One says that F is an associative algebra iff the operation � is associative: x � .y �
z/ D .x � y/ � z.

Example A.5. Examples of algebras considered in this book are the set L .E/ of
all endomorphisms of E (associative algebra over R for � D ı, Sect. 7.3.1), the Lie
algebra of the Lorentz group, so.3; 1/, and that of the Poincaré group, iso.3; 1/ (non-
associative algebras over R for � D Œ; �, Sects. 7.3.2 and 8.3.4), the set SL.2;C/ of
2 � 2 complex matrices (associative algebra over C for � = matrix multiplication,
Sect. 7.5), the field of quaternions H (associative algebra over R, Sect. 7.5.2), the
Lie algebra sl.2;C/ (non-associative algebra of dimension 3 over C and dimension
6 over R for � D Œ; �, Sect. 7.5.6) and the set of all tensors on E (associative algebra
of infinite dimension over R for � D ˝ (tensor product), Sect. 14.3.1).
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Web Pages

There are many web pages devoted to special relativity. A small selection is
presented here, as well as on the book web page: http://relativite.obspm.fr/sperel

General

[W1] Wikipedia: http://en.wikipedia.org/wiki/Special relativity
[W2] Usenet Physics FAQ (D. Kock & J. Baez): http://math.ucr.edu/home/baez/

physics/
[W3] Einstein Online (Albert Einstein Institute): http://www.einstein-online.info/

Visualization

[W4] Space Time Travel (U. Kraus & C. Zahn, Universität Hildesheim): http://
www.spacetimetravel.org/

[W5] Seeing Relativity (A. Searle, Australian National University): http://www.
anu.edu.au/Physics/Searle/

[W6] Guide to Special Relativistic Flight Simulators (A.J.S. Hamilton, University
of Colorado): http://casa.colorado.edu/%7Eajsh/sr/srfs.html

[W7] Visualizing Relativity (D. Weiskopf, Universität Stuttgart): http://www.vis.
uni-stuttgart.de/relativity/
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Experiments

[W8] What is the experimental basis of Special Relativity? (T. Roberts &
S. Schleif, Fermilab): http://math.ucr.edu/home/baez/physics/Relativity/
SR/experiments.html

[W9] Modern searches for Lorentz violation: http://en.wikipedia.org/wiki/
Modern searches for Lorentz violation

[W10] Data Tables for Lorentz and CPT Violation: http://arxiv.org/abs/0801.0287
[W11] SYRTE, Observatoire de Paris (atomic clocks, time metrology): http://

syrte.obspm.fr
[W12] Ring Laser Group (Univ. Canterbury) (Sagnac effect): http://www.

ringlaser.org.nz/
[W13] ACES: Atomic Clock Ensemble in Space: http://www.esa.int/SPECIALS/

HSF Research/SEMJSK0YDUF 0.html
[W14] Microscope: exploring the limits of the equivalence principle: http://www.

cnes.fr/web/CNES-en/2847-microscope.php
[W15] Synchrotron light source facilities: http://www.lightsources.org/

Historical Sources

[W16] The Albert Einstein Archives: http://www.albert-einstein.org/
[W17] Einstein’s articles in Annalen der Physik: http://www.physik.uni-

augsburg.de/annalen/history/Einstein-in-AdP.htm
[W18] Archives Henri Poincaré: http://poincare.univ-nancy2.fr/
[W19] Minkowski’s papers on relativity: http://www.minkowskiinstitute.org/

mip/books/minkowski.html

Miscellaneous

[W20] Null rotations (Greg Egan): http://www.gregegan.net/SCIENCE/
GR2plus1/NullRotations.html

http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html
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Appendix C
Special Relativity Books

There are numerous textbooks about special relativity. A small selection is presented
here, indicating for each book the adopted signature of the metric tensor (cf.
Remark 1.7 on p. 8). Let us stress that many general relativity textbooks have some
chapters entirely devoted to special relativity: for instance, Hakim (1999), Hartle
(2003), Misner et al. (1973) and Tourrenc (1997).

Geometrical Approach

• O. Costa de Beauregard (1949): La théorie de la relativité restreinte; .C;C;C;�/
• J.L. Synge (1956, 1965): Relativity: the Special Theory; .C;C;C;�/
• W.G. Dixon (1978): Special relativity. The foundation of macroscopic physics;

.C;C;C;�/
• G.L. Naber (1992, 2012): The Geometry of Minkowski Spacetime; .C;C;C;�/
• A. Das (1993): The Special Theory of Relativity—A Mathematical Exposition;

.C;C;C;�/
• E.G.P. Rowe (2001): Geometrical Physics in Minkowski Spacetime; .�;C;C;C/
• J. Parizet (2008): La géométrie de la relativité restreinte; .C;�;�;�/
• N. Dragon (2012): The Geometry of Special Relativity – a Concise Course;

.C;�;�;�/

“Classical” Approach

Only books published after 1990 are listed:

• M. Boratav and R. Kerner (1991): Relativité; .C;C;C;�/
• W. Rindler (1991): Introduction to Special Relativity; .C;�;�;�/
• E.F. Taylor and J.A. Wheeler (1992): Spacetime physics—introduction to special

relativity; .C;�;�;�/
• M. Hulin, N. Hulin and L. Mousselin (1998): Relativité restreinte; .C;C;C;�/
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• M. Fayngold (2002): Special Relativity and Motions Faster than Light; .C;�;�;�/
• Y. Simon (2004): Relativité restreinte; .C;C;C;�/
• A. Rougé (2004): Introduction à la relativité; .C;�;�;�/
• J.-P. Pérez (2005): Relativité et invariance; .C;�;�;�/
• C. Semay and B. Silvestre-Brac B. (2005, 2010): Relativité restreinte: bases et

applications; .C;�;�;�/
• D. Giulini (2005): Special Relativity, a first encounter; .C;�;�;�/
• R. Ferraro (2007): Einstein’s Spacetime; .C;�;�;�/
• M. Fayngold (2008): Special Relativity and How it Works; .C;�;�;�/
• M. Tsamparlis (2010): Special Relativity; .�;C;C;C/

Advanced Textbooks

• A.O. Barut (1964): Electrodynamics and classical theory of fields and particles;
.C;�;�;�/

• J.L. Anderson (1967): Principles of Relativistic Physics; .C;�;�;�/
• H. Bacry (1967): Leçons sur la théorie des groupes et les symétries des particules

élémentaires; .C;�;�;�/
• A. Lichnerowicz (1967): Relativistic hydrodynamics and magnetohydrodynam-

ics; .C;�;�;�/
• H.C. Corben (1968): Classical and Quantum Theories of Spinning Particles;

.C;C;C;�/
• A.M. Anile (1989): Relativistic Fluids and Magnetofluids; .�;C;C;C/
• Y.Z. Zhang (1997): Special Relativity and Its Experimental Foundation; .C;�;�;�/
• R.U. Sexl and H.K. Urbantke (2001): Relativity, Groups, Particles: Special

Relativity and Relativistic Symmetry in Field and Particle Physics; .C;�;�;�/
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Seminar 2005), Birkhäuser Verlag (Basel).
Darrigol O., 2000, Electrodynamics from Ampère to Einstein, Oxford University Press (Oxford).
Darrigol O., 2004, The Mystery of the Einstein-Poincaré Connection, Isis 95, 614; http://www.
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absoluten Differentialkalküls, Annalen der Physik 44, 321; http://gallica.bnf.fr/ark:/12148/
bpt6k15347v.image.f347

Einstein A. & Rosen N., 1935, The Particle Problem in the General Theory of Relativity, Phys.
Rev. 48, 73.

Eisele C., Nevsky A.Y. & Schiller S., 2009, Laboratory Test of the Isotropy of Light Propagation
at the 10�17 Level, Phys. Rev. Lett. 103, 090401.

Eisenhart L.P., 1924, Spacetime Continua of Perfect Fluids in General Relativity, Transactions of
the American Mathematical Society, 26, 205.

Eisenstaedt J., 2007, From Newton to Einstein: A forgotten relativistic optics of moving bodies,
Amer. J. Phys. 75, 741.

Ellis G.F.R. & Uzan J.-P., 2005, c is the speed of light, isn’t it?, Amer. J. Phys. 73, 240.
Ellis J., Giudice G., Mangano M., Tkachev I. & Wiedemann U., 2008, Review of the safety of LHC

collisions, Journal of Physics G 35, 115004.
Engel A. (translator) & Schucking E. (consultant), 1997, The Collected Papers of Albert Einstein,

Vol. 6: The Berlin Years: Writings, 1914–1917. (English translation supplement), Princeton
University Press (Princeton).

Eschrig H., 2011, Topology and Geometry for Physics, Springer (Berlin).
Fayngold M., 2002, Special Relativity and Motions Faster than Light, Wiley-VCH (Weinheim).
Fayngold M., 2008, Special Relativity and How it Works, Wiley-VCH (Weinheim).
Feinberg G., 1967, Possibility of Faster-Than-Light Particles, Phys. Rev. 159, 1089.
Fermi E., 1922, Sopra i fenomeni che avvengono in vicinanza di una linea oraria, Atti della Reale

Accademia dei Lincei Rend. Cl. Sci. Fis. Mat. Nat 31, 21; French tr. in Delva (2007), p. 145.
Ferraro R., 2007, Einstein’s Spacetime, Springer (New York).
Ferraro R. & Sforza D.M., 2005, Arago (1810): the first experimental result against the ether,

European Journal of Physics 26, 195.
Feynman R.P., Leighton R.B & Sands M., 2011, Feynman Lectures on Physics, Vol. II – The New

Millennium Edition: Mainly Electromagnetism and Matter, Basic Books (New York).
Feynman R.P., Morinigo F.B. & Wagner W.G., 1995, Feynman Lectures on Gravitation, edited by

B. Hatfield, Addison-Wesley (Reading).
Fierz M. & Pauli W., 1939, On relativistic wawe equations for particles of arbitrary spin in an

electromagnetic field, Proc. Royal Soc. London Ser. A 173, 211.
FitzGerald G.F., 1889, The Ether and the Earth’s Atmosphere, Science 13, 390.
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http://gallica.bnf.fr/ark:/12148/bpt6k15350r.image.f951
http://gallica.bnf.fr/ark:/12148/bpt6k15350r.image.f951
http://resolver.sub.uni-goettingen.de/purl?GDZPPN00250152X
http://en.wikisource.org/wiki/The_Fundamental_Equations_for_Electromagnetic_Processes_in_Moving_Bodies
http://en.wikisource.org/wiki/The_Fundamental_Equations_for_Electromagnetic_Processes_in_Moving_Bodies
http://de.wikisource.org/wiki/Raum_und_Zeit_%28Minkowski%29
http://de.wikisource.org/wiki/Raum_und_Zeit_%28Minkowski%29
http://en.wikisource.org/wiki/Space_and_Time
http://www.numdam.org/item?id=AIHP_1949__11_5_251_0
http://www.archive.org/details/theoryofrelativi029229mbp
http://www.archive.org/details/theoryofrelativi029229mbp
http://resolver.sub.uni-goettingen.de/purl?GDZPPN00250510X
http://resolver.sub.uni-goettingen.de/purl?GDZPPN00250510X
http://arxiv.org/abs/physics/0503066
http://arxiv.org/abs/physics/0503066
http://gallica.bnf.fr/ark:/12148/bpt6k153455.image.f545
http://www.pitt.edu/~jdnorton/jdnorton.html
http://www.pitt.edu/~jdnorton/jdnorton.html


754 References
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Française de Physique 119, 15; http://halshs.archives-ouvertes.fr/halshs-00181587

Paty M., 1999b, Les trois stades du principe de relativité, Revue des questions scientifiques 2, 103;
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as Chapter II of Poincaré (1905a). http://www.univ-nancy2.fr/poincare/bhp/pdf/hp1898rm.pdf
Eng. tr.: http://en.wikisource.org/wiki/The Measure of Time
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Voigt W., 1887, Über das Doppler’sche Princip, Nachrichten von der Königlichen
Gesellschaft der Wissenschaften zu Göttingen 2, 41; http://resolver.sub.uni-goettingen.de/purl?
GDZPPN002522942 reprinted (with additional comments by the author) in Physikalische
Zeitschrift 16, 381 (1915); Eng. tr.: http://en.wikisource.org/wiki/On the Principle of Doppler

Walker A.G., 1932, Relative coordinates, Proc. Roy. Soc. Edinburgh 52, 345.
Walter S., 1996, Hermann Minkowski et la mathématisation de la théorie de la relativité restreinte
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Accretion disk, 667
ACES, 727, 738
Action, 350, 713

at a distance, 375
in a field theory, 624
of a free particle, 354, 713
group, 378
of a particle, 351
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É. Gourgoulhon, Special Relativity in General Frames, Graduate Texts in Physics,
DOI 10.1007/978-3-642-37276-6, © Springer-Verlag Berlin Heidelberg 2013

765



766 Index

2-form, 319, 482
of an isolated system, 327
orbital, 334
of a particle with spin, 344
of a system, 323, 325
vector, 321

Annihilation, 294
Antichronous Lorentz transformation, 173
Antimuon, 110
Antiparticle, 294
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Hodge, 492
vector space, 22, 473

Duality
canonical, 492
Hodge, 492
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Landè, 347
Lorentz, 96

Faraday tensor, 546
Fermi

coordinates, 79
derivative, 92
gas, 676
transport, 92

Fermi, E., 88
Fermi–Walker

derivative, 91
tensor, 87
transport, 91, 394, 428
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Four-velocity, 35
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Kinematic vorticity vector, 689

Kinetic energy, 277, 318, 349, 577
Klein, F., 255
Klein, O., 624
Klein–Gordon

equation, 626, 713
Lagrangian density, 624, 713
theory, 624

Klein group, 175, 734
König theorem, 334
Kostelecký, V.A., 123
Kronecker

product, 240
symbol, 10, 22

Lagrange, J.L., 6
Lagrangian, 349

density, 623
Klein-Gordon, 624, 713
mechanics, 349
for Nordström gravity, 716
of a particle, 351

Lampa, A., 162
Landau, L.D., 162, 445, 709
Landè factor, 347
Langevin

metric, 502
traveller, 40, 42, 382

Langevin, P., 40, 46, 215, 457, 468, 502
Laplace operator, 711
Larmor

formula, 652
radius, 565

Larmor, J., 191, 556, 655
Laser-ring gyrometer, 471
Lattes, C., 110
Laue, M., 146, 468, 636, 718
Law

Biot–Savart, 562
conservation, 687
Coulomb’s, 559, 619
first of thermodynamics, 674
of inertia, 287

Lawrence, E., 583
Le Verrier, U., 719
Least action principle, 350, 712

for the electromagnetic field, 622
for a field, 624
for a particle, 352

Lefschetz fixed-point theorem, 177
Left-handed, 527

basis, 21
coordinates, 519
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Legendre transformation, 365
Leibniz rule, 507
Length, 536

contraction, 126, 136, 407, 455, 457, 670,
703

element 1-form, 534
rest, 405
of a ruler, 76

LEP, 277, 582, 661
Lepton, 108
Levi–Civita, T., 27
Levi–Civita

connection, 508
tensor, 21, 77, 83, 482, 485, 487

Levine, M., 727
LHC, 277, 311, 581, 582, 661
Lichnerowicz, A., 556, 692, 696, 697
Lie

algebra, 223, 366
morphism, 252
of Lorentz group, 224
of Poincaré group, 267
of SL(2,C), 251

bracket, 223, 267, 366
derivative, 696
group, 217

Lie, S., 236
Liénard, A.-M., 614, 655
Liénard formula, 654
Liénard–Wiechert

4-potential, 376, 612
potential, 614

Lifshitz, E.M., 445
Light

cone, 40, 719
corpuscular theory of, 125
deflection, 720, 729
ray, 39
velocity, 4
wave theory of, 125

Lightlike
rotation, 188
vector, 11

Linac, 578, 661
Line

fluid, 668
of nodes, 246

Linear
accelerator, 577
form, 22, 473
map, 736
momentum

conservation, 641
density, 632

of a particle, 274
of a system, 291

Local
frame, 77
rest space, 68, 397
thermodynamic equilibrium, 672, 703

Localized interaction, 285
Lodge, O.J., 467
Longitudinal motion, 706
Lorentz

algebra, 224
boost, 183, 195
factor, of a boost, 96
force, 550
4-force, 313, 347, 546
group, 169

inhomogeneous, 265
orthochronous, 173
proper, 172
restricted, 174

matrix, 168
transformation, 167

antichronous, 173
improper, 172
infinitesimal, 221
loxodromic, 188
orthochronous, 173
parabolic, 188
pointed, 264
proper, 172
restricted, 174
singular, 188

Lorentz, H.A., 108, 126, 191, 279, 556, 606
Lorentzian signature, 8
Lorenz gauge, 606
Lorenz, L.V., 606
Lowering indices, 480
Loxodromic, 188

Macfarlane, A.J., 215
Macfarlane formula, 214
Mach-Zehnder interferometer, 469
Magnetic

charge, 595
field, 548
monopole, 595
part, 85
potential, 604

Mandelstam, S., 295
Mandelstam variables, 295
Manifold, 1, 218, 366, 508, 515, 524

differentiable, 218, 729
Mansouri, R., 123
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Mass
energy, 277
gravitational, 711, 714, 718, 723, 729
inertial, 711, 714, 718, 723, 729
of an isolated system, 291
of a particle, 272
proper, 273
rest, 273
of a scalar field, 624

Mass-energy
dipole moment, 325
equivalence, 279, 635, 717

Massive particle, 30, 730
Massless particle, 39, 118, 730
Mathisson, M., 344
Matrix

change-of-basis, 477
Hermitian, 237
identity, 10
Lorentz, 168
of the metric tensor, 9
Minkowski, 11
Pauli, 238
self-adjoint, 237

Matter wave, 468
Maxwell

electromagnetism, 376, 585
equations, 191, 592
stress tensor, 649

Maxwell, J.C., 597, 721
Maxwell-Ampère equation, 597
Maxwell-Faraday equation, 596
Maxwell-Gauss equation, 597
Measure, 63

Dirac, 587
of distance, 73
of time, 34, 63

Measurement, 1
Medium

continuous, 629
interstellar, 127

Mercereau, J.E., 469
Mesh, 528
Meson, 110, 309
Metric, 8

conformal, 718
duality, 24, 492
inverse, 480
Langevin, 502
space, 8, 72
tensor, 8

MeV, 275
M87 (galaxy), 163, 702
Michel, L., 348

Michelson, A.A., 125, 146, 466, 467
Michelson interferometer, 125
Michelson-Morley experiment, 125
Micro-quasar, 165, 701
Microscope satellite, 723, 738
Mie, G., 718
Milne, E.A., 6, 397
Minkowski

force, 313
matrix, 11
spacetime, 25, 64

Minkowski, H., 26, 38, 62, 201, 273, 318, 396,
549, 598, 636, 649

Minkowskian
coordinates, 260
plane, 179

Misner, C.W., 79, 422, 718
Mixed product, 21, 85, 482
Moebius strip, 283, 527
Møller, C., 339
4-momentum, 272

conservation, 285
generalized, 369
of an isolated system, 290
of a system, 284
vector, 272

Momentum
conjugate, 365
density, 632
1-form (fluid), 689
generalized, 365
linear, 274
of a system, 291

Moncrief, V., 698
Monopole (magnetic), 595
Morley, E.W., 125, 146
Morphism (Lie algebra), 252
Mostly

electric, 556
magnetic, 556

Motion
hyperbolic, 382
quantity of, 276
uniform circular, 97
uniform linear, 96

Moving frame, 87, 503
Muon, 108, 294
Musical isomorphism, 24

Nabla, 504, 507
Nançay radiotelescope, 306
Natural basis, 497
N-body problem, 713
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Neddermeyer, S.H., 110
Neutral (electrically), 546
Neutron

decay, 294
star, 127, 664, 667, 675, 701, 715

binary, 720
Newton, 312
Newtonian

absolute time, 6
simultaneity, 6
spacetime, 5, 64

Noether, E., 361
Noether theorem, 286, 327, 360, 361
No-interaction theorem, 378
Non-Euclidean geometry, 454
Nondegenerate, 7
Nordström, G., 718
Norm

on a vector space, 12, 72
w.r.t. the metric tensor, 11

Normal
subgroup, 176, 734
vector (to a hypersurface), 530

Nuclear medicine, 579
Nucleus

active galactic, 163, 165, 306, 665, 667,
701

atomic, 34, 110, 277, 703
Null

cone, 15
coordinates, 499
curve, 39, 433
direction, 176
electromagnetic field, 556
geodesic, 39
hyperplane, 392
hypersurface, 530
plane, 186
rotation, 187, 738
vector, 11

Observer, 77
accelerated, 88, 381
barycentric, 332
central rapidity, 705
comoving, 291, 668
corotating, 431
fluid-comoving, 668
Galilean, 89
inertial, 89, 257
Rindler, 382
rotating, 88, 427
stationary, 388, 465

uniformly accelerated, 382
uniformly rotating, 429, 501

Occhialini, G., 110
Odd permutation, 21
Optical

fibre gyrometer, 470
Sagnac interferometer, 464

Orbital
angular momentum, 334
four-torque, 345

Order of a tensor, 474
Orientable

hypersurface, 283
submanifold, 527

Orientation
external, 284
induced, 527
internal, 284
of spacetime, 21
of a submanifold, 527
of a vector space, 84

Oriented
hypersurface, 283
submanifold, 527

Origin of affine coordinates, 4
Orthochronous Lorentz

group, 173
transformation, 173

Orthogonal
of an antisymmetric bilinear form,

83, 493
decomposition

group, 170
matrix, 193
projector(ion), 71
of a symmetric bilinear form, 636
vectors, 8, 70

Orthonormal basis, 10
Osculating

hyperplane, 62
plane, 61

Pair production, 308
Pancini, E., 110
Papapetrou, A., 723
Parabolic Lorentz transformation, 188
Paradox

Ehrenfest, 455
twin, 40, 44

Parallax, 157
Parametrization, 30
Parity inversion operator, 175
Particle, 29, 271
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density
proper, 672

elementary, 29
fixed, 81
fluid, 668
massive, 30, 730
massless, 39, 118, 730
in a scalar field, 358, 714
simple, 272
with spin, 343, 423
in a tensor field, 359
in a vector field, 357, 515

Passive Poincaré transformation, 262
Past

directed, 16
light cone, 40
null cone, 16

Pattern (radiation), 656
Pauli, W., 542, 722
Pauli matrix, 238, 243
Pearson, F., 466
Penrose, R., 162, 543
Perfect fluid, 668
Perihelion, advance, 719
Permeability of vacuum, 593
Permittivity of vacuum, 592
Petaelectronvolt, 275
Petit, G., 128
PeV, 275
P-form, 320, 481

differential, 513
PHARAO, 727
Phase space, 366
Photoelectric effect, 304
Photography, 158
Photon, 39
Photoproduction of pion, 309
Pi meson, 110, 309
Picard, J., 157
Pierre Auger Observatory, 277
Pion, 110, 127, 309
PKS 2155-304, 129
Planck

constant, 280
reduced, 468
satellite, 305

Planck, M., 279, 395, 636
Planck-Einstein formula, 280, 411, 468
Plane

Artinian, 179
collision, 704
Euclidean, 179
of a Lorentz boost, 183
Minkowskian, 179

null, 186
of a null rotation, 187
osculating, 61
of a spatial rotation, 181
spacelike, 179
timelike, 179
wave, 608

Poincaré
algebra, 267
group, 265
action, 378
restricted, 265
invariance, 624
lemma, 517
transformation, 263, 361
passive, 262

Poincaré, H., 26, 35, 65, 108, 144, 191, 288,
318, 356, 549, 556, 636, 649, 718

Poincarè, H., 237
Point, particle, 2, 29
Poisson

bracket, 366
equation, 711

Polar
decomposition, 192
of a matrix, 193
theorem, 193

Polytrope, 675
Position, 158
Positive definite

matrix, 193
scalar product, 11

Positron, 110, 294, 308
Potential

chemical, 673
electric, 604
of a flow, 696
1-form, 357, 516
gravitational, 711
Liénard-Wiechert, 614
magnetic, 604
retarded, 610
vorticity, 700

4-potential, 603
Liénard-Wiechert, 376, 612

Pound, R., 726
Pound-Rebka experiment, 726
Powell, C.F., 110
Power, 633

of a point w.r.t a circle, 74
radiated, 651, 660

Poynting vector, 648, 721
Precession, 347

Thomas, 415, 420
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Pressure, 669
Pressureless fluid, 672
Primary constraint, 372
Principle

of angular momentum conservation,
326, 642

of baryon number conservation,
677

of energy–momentum conservation,
637

equivalence, 411, 723, 729
Hamilton, 350
of 4-momentum conservation, 285
of least action, 350, 712

for a field, 624
for a particle, 352
for the electromagnetic field,

622
of relativity, 121, 288, 598
of universal coupling, 716, 722
variational, 718

Product
cross, 84
exterior, 319, 483
group, 265
Kronecker, 240
mixed, 21, 85, 482
scalar, 7, 8
tensor, 475
wedge, 483

Prograde signal, 459
Projector(ion)

orthogonal, 71
stereographic, 161

Propagation direction, 119
Proper

baryon density, 674
energy density, 668
enthalpy density, 674
entropy density, 672
Lorentz

group, 172
transformation, 172

mass, 273
particle density, 672
separation vector, 441
time, 32

Proton therapy, 579
Prunier, F., 469
Pulsar

double, 720
X-ray, 127

Pure 4-force, 313
Pythagoras’ theorem, 72

Quantity of motion, 276
Quark, 674
Quark-gluon plasma, 703
Quasar, 3C, 165, 279, 720
Quasiparallel

frames, 262
triads, 416

Quaternion, 245, 735, 736
Quotient group, 176, 248, 734

Radiation
black-body, 305
cyclotron, 660
gravitational, 721
pattern, 656
synchrotron, 660

Radiative part, 620
Radioactivity (beta), 294
Radius

gyration, 565
Larmor, 565
of a rotating disk, 433

Raising indices, 480
Ramond, P., 378
Rank of a tensor, 474
Rapidity, 185, 705

central, 705
spacetime, 706

Ray
cosmic, 277
light, 39

Rebka, G., 726
Redshift

factor, 411
gravitational, 55, 411, 451, 725, 728

Reduced Planck constant, 468
Rees, M., 165
Reference space, 80
Reichenbach, H., 65
Relativistic

Hamiltonian theory, 378
jet, 163

Relativity
general, 729
principle, 121, 288, 598
special, 25, 288

Rest
length, 405
mass, 273
space, local, 68, 260, 397

Restricted
Lorentz

group, 174
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transformation, 174
Poincaré group, 265

Retarded
Green function, 609
potential, 610
time, 614

Retrograde signal, 459
RHIC, 582, 583, 703
Ricci, G., 27
Ricci tensor, 730
Riemannian

connection, 508
signature, 8

Right-handed, 527
basis, 21
coordinates w.r.t. a submanifold,

519, 527
Rigid

array of inertial obs., 261, 446, 595
ruler, 76, 405
solid, 76

Rigidity (Born’s criterion), 76, 408, 455
Rindler

coordinates, 394, 495, 500, 706, 726
horizon, 392, 409
observer, 382

Rindler, W., 396
Ring (storage), 583, 663
Ritus, V.I., 215
Robb, A.A., 74, 201
Rodrigues formula, 183
Rodrigues, O., 183
Rømer, O.C., 122
Rosen, N., 457
Rossi, B., 109
4-rotation, 87
Rotation(ing)

axis, 182
coordinates, 501
disk, 433, 453
lightlike, 188
null, 187
observer, 88, 427
spatial, 181
Thomas, 211
uniform, 429
Wick, 201
Wigner, 211, 215

Ruler
accelerated, 405
infinitesimal, 75
moving, 158
rigid, 76, 405

RXTE, 109

Sagnac
delay, 460
effect, 458, 460
experiment, 464
interferometer

matter-wave, 468
optical, 464

Sagnac, G., 458, 467
Satellite

BeppoSAX, 110
GNSS, 728
Planck, 305
RXTE, 109

Scalar
charge, 358, 714
curvature, 730
field, 358, 502

Klein-Gordon, 624, 713
interaction, 376, 546
product, Euclidean, 7, 8, 170

Scattering
Compton, 301
inverse Compton, 305

Schild, A., 378, 726
Schwarzschild, K., 377
4-screw, 188
Second-countable topological space, 218
Second torsion, 62
Segrè, E., 310
Self-adjoint, 237
Self-interaction, 377
Semi-adapted basis, 198
Semidirect product, 265
Separation vector, 441
Serret-Frenet tetrad, 59, 88, 398
Sexl, R.U., 123
SHM, 727
Shock-capturing method, 687, 701
Shower (cosmic air), 277
Signal

prograde, 459
retrograde, 459

Signature
of a bilinear form, 7, 500
Euclidean, 8
Lorentzian, 8
Riemannian, 8

Simple(ly)
connected, 249
fluid, 674
group, 216, 734
particle, 272

Simultaneity, 63, 136
Einstein-Poincaré, 64
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hypersurface, 66, 397
Newtonian, 6, 63

Simultaneous, 64
Singular Lorentz transformation, 188
SLAC, 582
SLC, 582
Slow clock transport, 446
SME, 123, 128
Smith, J.H., 109
Snell-Descartes law, 124
SOLEIL, 582, 583, 663
Solid, 76
Sommerfeld, A., 27, 201, 215, 396, 614
Sound (speed of), 686
Space

absolute, 5
affine, 2
configuration, 366
inversion operator, 175
metric, 72
phase, 366
reference, 80
tangent, 729
time, 3

diagram, 12
flat, 730
inversion operator, 174
Minkowski, 25, 64
Newtonian, 5, 64
rapidity, 706

vector, 735
Spacelike

hyperplane, 68, 177
hypersurface, 288, 530
plane, 179
surface, 532
vector, 11

Spatial, rotation, 181
angle, 182
tensor, 87

Special
linear group, 232, 237
relativity, 25, 288
unitary group, 243

Spectral shift, 409
Speed

of light, 4, 121
of sound, 686

Sphere, 177
celestial, 155, 161, 177

Spherical coordinates, 496
Spin

2-form, 334, 482
of a particle, 343

vector, 334, 343
Spin-2 field, 722
Spinor map, 241
Stable subset, 170
Standard model, 677

Extension, 123
Stapp formula, 214
Stapp, H.P., 215
Star

Hodge, 490
neutron, 664, 667, 675, 701, 715, 720
white dwarf, 675, 676

State (equation of), 673
Stationary

flow, 694
observer, 388, 465

Step function (Heaviside), 609
Stereographic projection, 161
Stevenson, E.C., 110
Stilwell, G.R., 110, 151
Stokes, G.G., 542
Stokes’ theorem, 538, 599
Storage ring, 110, 583, 663
Street, J.C., 110
Stress tensor, 634

Maxwell, 649
Strictly invariant, 170
String theory, 25, 595
Strong interaction, 108, 677, 703, 711
Structure constant, 235, 269
Subgroup, normal, 734
Submanifold, 66, 524

with boundary, 526
oriented, 527

Subspace, generated by a family, 736
Sudarshan, E.C.G, 378
Summation (Einstein–convention), 3, 625
Sunyaev-Zel’dovich effect, 305
Superluminal, 163
Supernova, 664
Surface, spacelike, 525, 532
Sylvester’s law of inertia, 8
Symmetry(ic), 360

bilinear form, 7
generator, 695
group, 21

Synchrocyclotron, 580
Synchronization, 400

global, 442
local, 440

Synchronized, 261
Synchrotron, 128, 580

frequency, 565
radiation, 660
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Synge formula, 73
Synge, J.L., 74, 79, 284, 324, 339, 343, 683,

692, 696, 697, 701

Tachyon, 30, 107
TAI, 452
Tamm, I.I., 344
Tangent

space, 224, 729
vector, 30

Target (fixed), 296
Taub, A.H., 683, 692, 696, 701
TCG, 452
Telegdi, V.L., 348
Temperature, 673
Tensor, 474

component, 476
contraction, 480
electromagnetic field, 546
energy-momentum, 630
Faraday, 546
field, 359, 502
LeviCivita, 21, 77, 83, 482, 485, 487
metric, 8
product, 83, 475
Ricci, 730
stress, 634

Terrell, J., 163
Tesla, 548
Test theory, 123

dynamical, 123
kinematical, 123
SME, 123

Tetrad, 503
Serret-Frenet, 59, 88, 398

Tetrode, H., 377
Tetrode-Fokker action, 375
TeV, 275
Tevatron, 582
Theorem

Bernoulli’s, 695
Crocco, 693
4-dimensional Gauss-Ostrogradsky,

542
Euler, 352
Gauss, 602
Gauss-Ostrogradsky, 542
König, 334
Kelvin’s, 700
Kelvin-Stokes, 540
Noether, 286, 327, 360, 361
no-interaction, 378

Stokes, 538, 599
Theory, of light

corpuscular, 125
wave, 125
relativistic Hamiltonian, 378
string, 25

Thermodynamic(s)
equilibrium (local), 672, 703
first law of, 674
relations, 672

Thomas
equation, 426
precession, 415, 420
rotation, 211, 236

Thomas, L.H., 215, 348, 426
Thomson, W., 543
Thorne, K.S., 79, 422, 718
Threshold energy, 307
Tick, 33
Time

absolute, 5, 69, 445
arrow, 16
atomic, 452
coordinate, 78
dilation, 101, 728
geocentric coordinate, 452
machine, 54
physical, 34
physiological, 35
proper, 32
reversal operator, 175
travel

to the future, 54
to the past, 54

Timelike
geodesic, 58
hypersurface, 530
plane, 179
vector, 11

Topological space, 218
Torque

on a particle, 342
on the spin, 346, 423

4-torque, 339, 482
on the spin, 345
orbital, 345

Torsion, 398
first, 60
second, 62

Trace, 251, 481
Transformation

canonical, 367
Lorentz, 167
Poincaré, 263, 361
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Translation, 264
vector, 264

Transport
along the fluid lines, 699
clock, 446
Fermi-Walker, 91, 394, 428

Transpose, 171
Transverse, 617

Doppler effect, 150, 727
Travel (time), 54
Traveller (Langevin’s), 42, 382
Trochoid, 572
Tube

of centroids, 338
fluid, 699

Twin paradox, 40, 44
Type of a tensor, 474

Ultra-high energy, 277
Undulator, 663
Uniform

circular motion, 97, 432
electromagnetic field, 562
linear motion, 96

Uniformly
accelerated observer, 382
rotating observer, 429, 501

Unit vector, 12
Unitary group (special), 243
Universal

coupling, 716, 722
covering group, 249

Vacuum
permeability, 593
permittivity, 592

Valence, 474
Van de Graaff, R., 583
Variational principle, 718
Vector, 3, 473

field, 357, 502
along a worldline, 59
fixed, 80

hyperplane, 5
interaction, 545
isotropic, 11
normal, 530
null, 11
Poynting, 648, 721
space, 2, 735

dual, 22, 473

underlying an affine space, 2
spacelike, 11
subspace, 736
tangent to a curve, 30
timelike, 11
unit, 12

4-vector, 3
Vectorial interaction, 357, 376
Velocity

of a boost, 197
generalized, 349
of light, 4, 120
parameter of a boost, 185
of a photon, 120
relative to an observer, 102

4-velocity, 35
of an isolated system, 291

Vessot, R., 727
Vessot-Levine experiment, 727
Voigt, W., 191
Volt, 547
Volume, 531, 536

creation rate, 681
element, 3-form, 524, 531

4-volume, 521, 536
Von Laue, M., 146, 468, 636, 718
Vorticity

2-form, 689
kinematic, 689
potential, 700
vector, 689

Walker, A.G., 88
Walton, E., 583
Wave

de Broglie, 468
electromagnetic, 607
equation, 607, 686
matter, 468
plane, 608
theory of light, 125

Wavelength, 280
Compton, 303
de Broglie, 468

Weak interaction, 677, 711
Wedge product, 483
Weinberg, S., 723
Wheeler-Feynman electrodynamics,

376
Wheeler, J.A., 79, 377, 422, 718
White dwarf, 675, 676
Whitrow, G.J., 397
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Wick, G.C., 202
Wick rotation, 201
Wiechert, E., 614
Wien filter, 573
Wigner

angle, 211
rotation, 211, 215

Wigner, E.P., 215, 216, 266
Wolf, P., 128

Worldline, 29
Worldtube, 158

Yukawa, H., 110

Zeeman, P., 146
Zimmerman, J.E., 469
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