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PREFACE TO 2ND EDITION 

In this second edition a new chapter has been added covering the buffeting theory in a 
finite element format. The motivation for this has been that a finite element format is 
becoming more and more dominant in all areas of structural mechanics. It is streamlined 
for computer programming, and it facilitates the use of general purpose routines that are 
applicable in several types of structural engineering problems. In this book the finite 
element formulation of the problem of dynamic response calculations follows the 
general principle of virtual work, a general principle which may be found in many other 
text books. While the buffeting wind load itself has with no trouble been included in a 
finite element format, the main challenge has been to obtain a consistent formulation that 
includes all the relevant motion induced forces. This has been important, because, while 
many structures (e.g. long-span suspension bridges) may suffer greatly and become 
unstable at high wind velocities, the same structures may also benefit from these effects 
at the design wind velocity. It is well known that motion induced forces will change the 
stiffness and damping properties of the combined structure and flow system. If 
calculations are performed for a suitably close set of increasing mean wind velocities 
and the changing mechanical properties (stiffness and damping) are updated from one 
velocity to the next, then the response of the system may be followed up to wind 
velocities close to the stability limit, i.e. up to response values that are perceived as 
unduly large. Finite element calculations may be performed in time domain, in frequency 
domain or converted into a modal format. All these options have been included. 
Pursuing a time domain solution strategy requires the use of the so-called indicial 
functions. The theory behind such a formulation is also covered, and the determination 
of these functions from aerodynamic derivatives has been included in a separate 
appendix. 

A comment regarding the use of aerodynamic derivatives obtained from aeroelastic 
wind tunnel experiments to predict structural response has been included. 

It goes without saying that typing errors and calculation errors in examples that I so far 
have come across in the first edition have been corrected. 

Trondheim, January 2010 Einar N. Strömmen 
einar.strommen@ntnu.no 



PREFACE TO 1ST EDITION 

This text book is intended for studies in wind engineering, with focus on the stochastic 
theory of wind induced dynamic response calculations for slender bridges or other 
line−like civil engineering type of structures. It contains the background assumptions 
and hypothesis as well as the development of the computational theory that is necessary 
for the prediction of wind induced fluctuating displacements and cross sectional forces. 
The simple cases of static and quasi-static structural response calculations are for the 
sake of completeness also included. 

The text is at an advanced level in the sense that it requires a fairly comprehensive 
knowledge of basic structural dynamics, particularly of solution procedures in a modal 
format. None of the theory related to the determination of eigen−values and the 
corresponding eigen−modes are included in this book, i.e. it is taken for granted that the 
reader is familiar with this part of the theory of structural dynamics. Otherwise, the 
reader will find the necessary subjects covered by e.g. Clough & Penzien [2] and 
Meirovitch [3]. It is also advantageous that the reader has some knowledge of the theory 
of statistical properties of stationary time series. However, while the theory of structural 
dynamics is covered in a good number of text books, the theory of time series is not, and 
therefore, the book contains most of the necessary treatment of stationary time series 
(chapter 2). 

The book does not cover special subjects such as rain-wind induced cable vibrations. 
Nor does it cover all the various available theories for the description of vortex shedding, 
as only one particular approach has been chosen. The same applies to the presentation of 
time domain simulation procedures. Also, the book does not contain a large data base for 
this particular field of engineering. For such a data base the reader should turn to e.g. 
Engineering Science Data Unit (ESDU) [7] as well as the relevant standards in wind and 
structural engineering. 

The writing of this book would not have been possible had I not had the fortune of 
working for nearly fifteen years together with Professor Erik Hjorth–Hansen on a 
considerable number of wind engineering projects. 

The drawings have been prepared by Anne Gaarden. Thanks to her and all others who 
have contributed to the writing of this book. 

Trondheim, August 2005 Einar N. Strömmen 
einar.strommen@ntnu.no 



CONTENTS

1 INTRODUCTION………………………………………………………………...1 
        1.1   General considerations………………………………………………………...1 
        1.2   Random variables and stochastic processes…………………………………...3 
        1.3   Basic flow and structural axis definitions……………………………..............6 
        1.4   Structural design quantities……………………………....................................9 

2 SOME BASIC STATISTICAL CONCEPTS IN WIND ENGINEERING.…..13 
        2.1   Parent probability distributions, mean value and variance……………….......13 
        2.2   Time domain and ensemble statistics………………………………………...15 
        2.3   Threshold crossing and peaks………………………………………………...27 
        2.4   Extreme values………………………………………………………………..29 
        2.5   Auto spectral density…………………………………………………………33 
        2.6   Cross-spectral density..……………………………………………………….38 
        2.7   The connection between spectra and covariance……………………………..40 
        2.8   Coherence function and normalized co-spectrum……………………………42 
        2.9   The spectral density of derivatives of processes……………………………...43 
        2.10 Spatial averaging in structural response calculations………………………...44 

3 STOCHASTIC DESCRIPTION OF TURBULENT WIND……………....…..53 
        3.1   Mean wind velocity………………..................................................................53 
        3.2   Single Point Statistics of Wind Turbulence…………………………………..58 
        3.3   The spatial properties of wind turbulence…………………………………….63 

4 BASIC THEORY OF STOCHASTIC DYNAMIC RESPONSE 
CALCULATIONS…………………………………………....……………....…..69 
4.1   Modal Analysis and Dynamic Equilibrium Equations……………………….69 
4.2   Single mode single component response calculations………………………..76 
4.3   Single mode three component response calculations………………………...80 
4.4   General multi-mode response calculations…………………………………...84 

5 WIND AND MOTION INDUCED LOADS………………...……………....…..91 
5.1   The buffeting theory………………………………………………………….91 
5.2   Aerodynamic derivatives……………………………………………………..97 
5.3   Vortex shedding……………………………………………………………..102 



                                            CONTENTS XII 

6 WIND INDUCED STATIC AND DYNAMIC RESPONSE  
CALCULATIONS………………………...………………...……………....…..109 

        6.1   Introduction………………………………………………………………….109 
        6.2   The mean value of the response……………………………………………..113 
        6.3   Buffeting response…………………………………………………………..116 
        6.4   Vortex shedding……………………………………………………………..142 

7 DETERMINATION OF CROSS SECTIONAL FORCES…………...……...157 
        7.1   Introduction………………………………………………………………….157 
        7.2   The mean value……………………………………………………………...163 
        7.3   The background quasi–static part…………………………………………...163 
        7.4   The resonant part……………………………………………………………182 

8 MOTION INDUCED INSTABILITIES…………………...…………...……...195 
        8.1   Introduction………………………………………………………………….195 
        8.2   Static divergence…………………………………………………………….199 
        8.3   Galloping……………………………………………………………………200 
        8.4   Dynamic stability limit in torsion…………………………………………...202 
        8.5   Flutter………………………………………………………………………..203 

9 THE BUFFETING THEORY IN A FINITE ELEMENT FORMAT…….....209 
        9.1   Introduction………………………………………………………………….209 
        9.2   The element mechanical properties…………………………………………212 
        9.3   The wind load……………………………………………………………….220 
        9.4   The global analysis………………………………………………………….230 
        9.5   The time invariant static solution……………………………………………234 
        9.6   The quasi-static solution…………………………………………………….234 
        9.7   Dynamic response calculations in frequency domain………………………238 
        9.8   Frequency domain response calculations in modal coordinates…………….246 
        9.9   Dynamic response calculations in time domain…………………………….251 

Appendix A:   TIME DOMAIN SIMULATIONS………………………………….263 
        A.1   Introduction…………………………………………………………………263 
        A.2   Simulation of single point time series………………………………………264 
        A.3   Simulation of spatially non–coherent time series…………………………..267 
        A.4   The Cholesky decomposition……………………………………………….275 

Appendix B:   DETERMINATION OF THE JOINT ACCEPTANCE  
                         FUNCTION…………………………………………………………..277
B.1 Closed form solutions……………………………………………………………..277 
B.2 Numerical solutions……………………………………………………………….278 

Appendix C:   AERODYNAMIC DERIVATIVES FROM SECTION MODEL 
                         DECAYS……………………………………………………………...281



                                                                                                      CONTENTS  XIII 

Appendix D:   DETERMINATION OF INDICIAL FUNCTIONS FROM  
                         AERODYNAMIC DERIVATIVES………………………………...289

REFERENCES………….…………………………………………………………………….297

INDEX………….………………………………………………………………………………299



NOTATION

Matrices and vectors: 

Matrices are in general bold upper case Latin or Greek letters, e.g. Q  or .

Vectors are in general bold lower case Latin or Greek letters, e.g. q  or .

[ ]diag ⋅  is a diagonal matrix whose content is written within the brackets. 

( )det ⋅  is the determinant of the matrix within the brackets. 

Statistics: 

[ ]E ⋅  is the average value of the variable within the brackets. 

[ ]Pr ⋅  is the probability of the event given within the bracket. 

( )P x  is the cumulative probability function, ( ) [ ]P x Pr X x= ≤ .

( )p x  is the probability density function of variable x.

( )Var ⋅  is the variance of the variable within the brackets. 

( )Cov ⋅  is the covariance of the variable within the brackets. 

( )Coh ⋅ is the coherence function of the content within the brackets. 

( )R ⋅  is the auto- or cross-correlation function. 

pR  is short for return period. 

( )ρ ⋅  is the covariance (or correlation) coefficient of content within brackets. 

 is a cross covariance or correlation matrix between a set of variables. 
2,σ σ is the standard deviation, variance. 

μ  is a quantified small probability. 

Imaginary quantities: 

i  is the imaginary unit (i.e. 1i = − ).

[ ]Re ⋅  is the real part of the variable within the brackets. 

[ ]Im ⋅  is the imaginary part of the variable within the brackets. 



 NOTATION XVI 

Superscripts and bars above symbols: 

Super-script T indicates the transposed of a vector or a matrix. 

Super-script * indicates the complex conjugate of a quantity. 

Dots above symbols (e.g. r , r ) indicates time derivatives, i.e. /d dt , 2 2/d dt .

A prime on a variable (e.g. LC′  or φ′ ) indicates its derivative with respect to a relevant 

variable (except t), e.g. L LC dC dα′ =  and d dxφ φ′ = . Two primes is then the second 

derivative (e.g. 2 2d dxφ φ′′ = ) and so on. 

Line ( − ) above a variable (e.g. DC ) indicates its average value. 

A tilde ( ∼ ) above a symbol (e.g. iM ) indicates a modal quantity. 

A hat ( ∧ ) above a symbol (e.g. B̂ ) indicates a normalised quantity. 

The use of indexes and superscript: 

Index ,x y  or z  refers to the corresponding structural axis. 

,f fx y  or fz  refers to the corresponding flow axis. 

,  or u v w  refer to flow components. 

i  and j  are mode shape numbers. 

m  refers to ,  or y z θ  directions, n  refers to ,  or u v w  flow components. 

p  and k  are in general used as node numbers. 

F  represents a cross sectional force component. 

, ,D L M  refer to drag, lift and moment. 

, ,tot B R  indicate total, background or resonant. 

ae  is short for aerodynamic, i.e. it indicates a flow induced quantity. 

cr  is short for critical. 

max,min  are short for maximum and minimum. 

int or ext are short for internal and external. 

pv  is short for peak value. 

r  is short for response. 

s  indicates quantities associated with vortex shedding. 

Abbreviations: 

CC and SC are short for cross-sectional neutral axis centre and shear centre. 

FFT is short for Fast Fourier Transform. Sym. is short for symmetry. 



NOTATION XVII 

expL

 means integration over the wind exposed part of the structure. 

L

 means integration over the entire length of the structure. 

Latin letters 

A  Area, cross sectional area 

nA  or pA  Wind spectrum coefficient (n or p=u, v or w)

mnA  Aerodynamic admittance functions (m = y, z or θ, n = u or w)
* *
1 6A A−  Aerodynamic derivatives associated with the motion in torsion 

, ,m nA A A  Connectivity matrix (associated with element m or n

a  Constant or Fourier coefficient, amplitude 

,r Ra a  Fourier coefficient vector associated with response or load 

, Rηa a  Fourier coefficient vector associated with modal response or load 

B  Cross sectional width 

qB , ˆ
qB  Buffeting dynamic load coefficient matrix at cross sectional level 

0
,Q Qn

B B  Buffeting dynamic load coefficient matrix at element level 

b  Constant, coefficient, band-width parameter 

qb , ˆ
qb  Mean wind load coefficient vector 

C , C  Damping coefficient or matrix containing damping coefficient 

aeC , aeC  Aerodynamic damping, aerodynamic damping matrix 

C  Force coefficients at mean angle of incidence 

C′  Slope of load coefficient curves at mean angle of incidence 

c  Constant, coefficient, Fourier amplitude 

0c  Damping matrix at a cross sectional level 

, aec c  Damping matrix at element level, aerodynamic damping matrix 

,Co Co  Co-spectral density, co-spectral density matrix 

rrCov  Matrix containing covariance of response quantities 

ˆ ˆvvCov  Matrix containing covariance of reduced wind velocity components 

D  Cross sectional depth 

d  Constant or coefficient 

d , kd  Element displacement vector, element end displacement (k=1, 2,…,12) 



 NOTATION XVIII 

E  Modulus of elasticity 
ˆ ˆ,E E  Impedance, impedance matrix 

e  Eccentricity, distance between shear centre and cetroid 

F , F  Element force vector, force at element level 

, if f  Frequency [Hz], eigen–frequency associated with mode i

( )f ⋅  Function of variable within brackets 

G  Modulus of elasticity in shear 

FG , FG  Influence function or matrix (F= Vy, Vz, Vx, Mx, My or Mx)

( )g ⋅  Function of variable within brackets 
* *
1 6H H−  Aerodynamic derivatives associated with the across-wind motion 

H , H , rH  Frequency response function, frequency response matrix 

,Hη ηH  Modal frequency response functions, modal frequency response matrix 

pI  Polar moment of inertia 

,t wI I  St Venant torsion and warping constants 

, ,u v wI I I  Turbulence intensity of flow components u, v or w

yI , zI  Moment of inertia with respect to y or z axis 

I  Identity matrix 

vI  Turbulence matrix ( [ ]v u wdiag I I=I  or [ ]v u v wdiag I I I=I )

i  The imaginary unit (i.e. 1i = − ) or index variable

J  Joint acceptance function 

j  Index variable 

K , K  Stiffness, stiffness matrix 

aeK , aeK  Aerodynamic stiffness, aerodynamicstiffness matrix 

k Index variable, node or sample number 

pk  Peak factor 

Tk  Terrain roughness coefficient 

, aek k  Stiffness matrix at element level, aerodynamic stiffness matrix 

exp,L L  Length, wind exposed length 
m

nL Integral length scales (m = y, z or θ, n = u,v or w)

,m uM M  Bending moment (m=x, y, z), ultimate bending moment strength 

m  Index variable 

m  or M  Mass or mass matrix 

im Modally equivalent and evenly distributed mass 



NOTATION XIX 

0m  Mass matrix at a cross sectional level 

m  Mass matrix at element level 

N  Number, number of nodes or number of elements in series 

N , ( )iN x  Shape function matrix, polynomial shape function ( 1,2, ,12i = )

N  Contains the first and second order derivatives of ( )iN x

n  Index variable 
* *

1 6P P− Aerodynamic derivatives associated with the along-wind motion 

p  Index variable, node or sample number 

Q , Q  Wind load or wind load vector at system level 

q , q Wind load or wind load vector at cross sectional level 

aeq , aeq Aerodynamic (motion induced) load at cross sectional level 

Uq , Vq  Velocity pressure, i.e. /Uq Uρ= 2 2 , /Vq Vρ= 2 2
R , , nR R  External load, external load vector at system level, at element level 

,R R  Modal load, Modal load vector 

Re  Reynolds number

pR  Return period. 

r , r  Cross sectional displacement or rotation, displacement vector 

elr , elr  Element cross sectional displacement, displacement vector 

pr  Polar radius 

St Strouhal number 

S , S  Auto or cross spectral density, cross-spectral density matrix 

rrS , RRS  Cross spectral density matrix associated with response or load 

ηηS , RRS  Cross spectral density matrix associated with modal response or load 

( )xS ω  Single side auto-spectral density of variable x

( )xS ω±  Double side auto-spectral density of variable x

xyS  Cross-spectral density between components x and y

s  Relative time ( s t τ= − )

s , ms  Stress vector, stress component ( , ,  or m x y z θ= )

,t T  Time, total length of time series 

nT  Turbulence time scales (n = u,v or w)

U  Instantaneous wind velocity in the main flow direction 

u  Fluctuating along-wind horizontal velocity component 

V , RV  Mean wind velocity, resonance mean wind velocity 



 NOTATION XX

v  Fluctuating across wind horizontal velocity component 

0, , nv v v Wind velocity vector containing fluctuating components 

extW , intW  External, internal work 

w  Fluctuating across wind vertical velocity component 

, , ,X Y x y  Arbitrary variables, e.g. functions of t

, ,X Y Z  Cartesian structural global axis 

, ,x y z  Cartesian structural element cross sectional main neutral axis 

                      (with origo in the shear centre, x in span-wise direction and z vertical) 

, ,f f fx y z  Cartesian flow axis ( fx  in main flow direction and fz  vertical) 

rx  Chosen span-wise position for response calculation 

0z  Terrain roughness length 

minz  Minimum height for the use of a logarithmic wind profile 

Greek letters 

α Coefficient, angle of incidence 

β Constant, coefficient 

 Matrix containing mode shape derivatives 

γ Coefficient, safety coefficient 

θγ  Shear strain associated with torsion 

δ  Incremental displacement operator 

, mε  Strain vector, strain component ( ,  or m x y z= )

0ε  Mean wind velocity band width parameter 

ζ  or  Damping ratio or damping ratio matrix 

η  or  Generalised coordinate or vector containing modN η  components 

θ  Index indicating cross sectional rotation (about shear centre) 

κ  Constant, statistic variable 

ae  Matrix containing aerodynamic modal stiffness contributions 

ν  Kinematic viscosity of air 

λ  Non–dimensional coherence length scale of vortices 

μ  A quantified small probability. 

nμ  Spectral moment 

ae  Matrix containing aerodynamic modal mass contributions 



NOTATION XXI 

ρ  Coefficient or density (e.g. of air) 

( )ρ ⋅  Covariance (or correlation) coefficient of content within brackets 

ppρ  Covariance associated with components ,  or p u v w=
 Cross covariance or correlation matrix between a set of variables 

2,σ σ  Standard deviation, variance 

τ  Time shift (lag) or dummy time variable 

mod3 N⋅  by modN  matrix containing all mode shapes i

r  3 by modN  matrix containing the content of  at rx x=

mnΦ  Indicial function ( ,  or ,   ,  or m D L M n y z θ= = )

3  by 1  mode shape vector containing components , ,y z θφ φ φ
, ,y zi i iθφ φ φ  Mode shape components in y , z and θ directions associated with mode 

shape i  (continuous functions of x  or N  by 1 vectors) 

xyϕ  Phase spectrum between components x  and y

ψ  Phase angle 

( )ψ ⋅  Function of the variable within the brackets 

0, ,n  Matrix containing element orientation properties 

ω  Circular frequency (rad/s) 

iω  Still air eigen-frequency associated with mode shape i

( )i Vω  Resonance frequency assoc. with mode i  at mean wind velocity V

Symbols with both Latin and Greek letters: 

Δ Δω,f  Frequency segment 

tΔ  Time step 

sΔ  Separation (s = x, y or z)

xΔ  Span–wise integration step 



Chapter 1 

INTRODUCTION 

1.1   General considerations 

This text book focuses exclusively on the prediction of wind induced static and dynamic 
response of slender line-like civil engineering structures. Throughout the main part of 
the book it is taken for granted that the structure is horizontal, i.e. a bridge, but the 
theory is generally applicable to any line–like type of structure, and thus, it is equally 
applicable to e.g. a vertical tower. It is a general assumption that structural behaviour is 
linear elastic and that any non-linear part of the relationship between load and structural 
displacement may be disregarded. It is also taken for granted that the main flow direction 
throughout the entire span of the structure is perpendicular to the axis in the direction of 
its span. The wind velocity vector is split into three fluctuating orthogonal components, 
U in the main flow along–wind direction, and v and w in the across wind horizontal and 
vertical directions. For a relevant structural design situation it is assumed that U may be 
split into a mean value V that only varies with height above ground level and a 
fluctuating part u, i.e. U V u= + . V is the commonly known mean wind velocity, and u, 
v and w are the zero mean turbulence components, created by friction between the terrain 
and the flow of the main weather system. It is taken for granted that the instantaneous 
wind velocity pressure is given by Bernoulli’s equation 

( ) ( ) 21
2Uq t U tρ ⎡ ⎤= ⎣ ⎦                                        (1.1) 

If an air flow is met by the obstacle of a more or less solid line−like body, the 
flow/structure interaction will give raise to forces acting on the body. Unless the body is 
extremely streamlined and the speed of the flow is very low and smooth, these forces 
will fluctuate. Firstly, the oncoming flow in which the body is submerged contains 
turbulence, i.e. it is itself fluctuating in time and space. Secondly, on the surface of the 
body additional flow turbulence and vortices are created due to friction, and if the body 
has sharp edges the flow will separate on these edges and the flow passing the body is 
unstable in the sense that a variable part of it will alternate from one side to the other, 
causing vortices to be shed in the wake of the body. And finally, if the body is 
flexiblethe fluctuating forces may cause the body to oscillate, and the alternating flow 
and the oscillating body may interact and generate further forces. 
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Thus, the nature of wind forces may stem from pressure fluctuations (turbulence) in 
the oncoming flow, vortices shed on the surface and into the wake of the body, and from 
the interaction between the flow and the oscillating body itself. The first of these effects 
is known as buffeting, the second as vortex shedding, and the third is usually labelled 
motion induced forces. In literature, the corresponding response calculations are usually 
treated separately. The reason for this is that for most civil engineering structures they 
occur at their strongest in fairly separate wind velocity regions, i.e. vortex shedding is at 
its strongest at fairly low wind velocities, buffeting occur at stronger wind velocities, 
while motion induced forces are primarily associated with the highest wind velocities. 
Surely, this is only for convenience as there are really no regions where they exclusively 
occur alone. The important question is to what extent they are adequately included in the 
mathematical description of the loading process. 

In structural engineering the wind induced fluctuating forces and corresponding 
response quantities are usually assumed stationary, and thus, response calculations may 
be split into a time invariant and a fluctuating part (static and dynamic response). An 
illustration of what can be expected is shown in Fig. 1.1. 

 

Fig. 1.1     Typical response behaviour of slender civil engineering structures 

For a mathematical description of the process from a fluctuating wind field to a 
corresponding load that causes a fluctuating load effect (e.g. displacements or cross 
sectional stress resultants) a solution strategy in time domain is possible but demanding. 
The reason for this is that the wind field is a complex process that is randomly distributed 
in time and space. A far more convenient mathematical model may be established in 
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frequency domain. This requires the establishment of a frequency domain description of 
the wind field as well as the structural properties, and it involves the establishment of 
frequency domain transfer functions, one from the wind field velocity pressure distribution 
to the corresponding load, and one from load to structural response. We shall see that this 
implies the perception of wind as a stochastic process, and a structural response calculation 
based on its modal frequency-response-properties. The important input parameters to this 
solution strategy are the statistical properties of the wind field in time and space, and the 
eigen-modes and corresponding eigen-frequencies of the structural system in question. The 
outcome is the statistical characteristics of the structural response. 

Thus, apart from the geometry and mass properties of the structural system, it is 
necessary to know its eigen−modes and corresponding eigen− frequencies. These are the 
results of eigen−value calculations. The theory of such calculations may be found in 
many classical text books, see e.g. Timoshenko, Young & Weaver [1], Clough & 
Penzien [2] and Meirovitch [3]. It has been considered unnecessary to include any of 
such theory in this book, except for a simple example shown in chapter 4.1. I.e., it will 
be taken for granted that sufficient information regarding the eigen−value solution has 
already been provided. Most often, such information has been obtained from a finite 
element calculation of a discretised structural system, and thus, the eigen−modes are 
given as more or less ample vectors representing eigen−mode displacements along the 
span. In the following it is tacitly assumed that such an eigen−value analysis has been 
performed in vacuum or in still air. 

It should be acknowledged that in the mathematical development of the basic theory 
in this book it is for convenience assumed that eigen−modes are continuous functions. 
This simplifies and helps on the comprehension of the various steps behind the theory. 
After the final expressions of response are developed, the vector-matrix operations 
involved in a purely numerical format of the solution strategy are presented wherever it 
is considered necessary. 

In structural dynamics where a modal solution procedure is adopted it is also 
necessary to quantify modal eigen−damping properties. This is another subject that will 
not be treated in this book. It is taken for granted that the modal damping ratio is known 
from elsewhere (e.g. standards or handbooks). 

1.2   Random variables and stochastic processes 

A physical process is called a stochastic process if its numerical outcome at any time or 
position in space is random and can only be predicted with a certain probability. A data 
set of observations of a stochastic process can only be regarded as one particular set of 
realisations of the process, none of which can with certainty be repeated even if the 
conditions are seemingly the same. In fact, the observed numerical outcome of all 
physical processes is more or less random. The outcome of a process is only 
deterministic in so far as it represents a mathematical simulation whose input parameters 
has all been predetermined and remains unchanged. 
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The physical characteristics of a stochastic process are described by its statistical 
properties. If it is the cause of another process, this will also be a stochastic process. I.e. 
if a physical event may mathematically be described by certain laws of nature, a 
stochastic input will provide a stochastic output. Thus, statistics constitute a 
mathematical description that provides the necessary parameters for numerical 
predictions of the random variables that are the cause and effects of physical events. The 
instantaneous wind velocity pressure (see Eq. 1.1) at a particular time and position in 
space is such a stochastic process. This implies that an attempt to predict its value at a 
certain position and time can only be performed in a statistical sense. An observed set of 
records can not precisely be repeated, but it will follow a certain pattern that may only be 
mathematically represented by statistics. 

Since wind in our built environment above ground level is omnipresent, it is 
necessary to distinguish between short and long term statistics, where the short term 
random outcome are time domain representatives for the conditions within a certain 
weather situation, e.g. the period of a low pressure passing, while the long term 
conditions are ensemble representatives extracted from a large set of individual short 
term conditions. For a meaningful use in structural engineering it is a requirement that 
the short term wind statistics are stationary and homogeneous. Thus, it represents a 
certain time–space–window that is short and small enough to render sufficiently constant 
statistical properties. The space window is usually no problem, as the weather conditions 
surrounding most civil engineering structures may be considered homogeneous enough, 
unless the terrain surrounding the structure has an unusually strong influence on the 
immediate wind environment that cannot be ignored in the calculations of wind load 
effects. The time window is often set at a period of T = 10 minutes. 

 

Fig. 1.2     Short term stationary random process 
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Such a typical stochastic process is illustrated in Fig. 1.2. It may for instance be a 
short term representation of the fluctuating along wind velocity, or the fluctuating 
structural displacement response at a certain point along its span. As can be seen, it is 
taken for granted that the process may be split into a constant mean and a stationary 
fluctuating part. There are two levels of randomness in this process. Firstly, it is random 
with respect to the instantaneous value within the short term period between 0 and T. 
I.e., regarding it as a set of successive individual events rather than a continuous 
function, the process observations are stored by two vectors, one containing time 
coordinates and another containing the instantaneous recorded values of the process. The 
stochastic properties of the process may then be revealed by performing statistical 
investigations to the sample vector of recorded values. For the fluctuating part, it is a 
general assumption herein that the sample vector of a stochastic process will render a 
Gaussian probability distribution as illustrated to the right in the figure. This type of 
investigation is in the following labelled time domain statistics. 

The second level of randomness pertains to the simple fact that the sample set of 
observations shown in Fig. 1.2 is only one particular realisation of the process. I.e. there 
is an infinite number of other possible representatives of the process. Each of these may 
look similar and have nearly the same statistical properties, but they are random in the 
sense that they are never precisely equal to the one singled out in Fig. 1.2. From each of 
a particular set of different realisations we may for instance only be interested in the 
mean value and the maximum value. Collecting a large number of different realisations 
will render a sample set of these values, and thus, statistics may also be performed on the 
mean value and the maximum value of the process. This is in the following labelled 
ensemble statistics. 

In wind engineering ( )k k kX x x t= +  may be a representative of the wind velocity 

fluctuations in the main flow direction. The time invariant part kx  is then the commonly 

known mean wind velocity, given at a certain reference height (e.g. at 10 m) and 
increasing with increasing height above the ground, but at this height assumed constant 

within a certain area covered by the weather system. The fluctuating part ( )kx t  

represents the turbulence component in the along wind direction. The mean wind 
velocity is a typical stochastic variable for which long term ensemble statistics are 
applicable, while the turbulence component is a stochastic variable whose statistical 
properties are primarily interesting only within a short term time domain window. 

Likewise, the relevant structural response quantities, such as displacements and cross 
sectional stress resultants, may be regarded as stochastic processes. In the following, it is 
to be taken for granted that the calculation of structural response, dynamic or non-
dynamic, are performed within a time window where the load effects are stationary [i.e. 
the static (mean) load effects are constant and the dynamic (fluctuating) load effects are 
Gaussian with a constant standard deviation]. 
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1.3   Basic flow and structural axis definitions 

The instantaneous wind velocity vector is described in a Cartesian coordinate system 

, ,f f fx y z⎡ ⎤⎣ ⎦ , where fx  is in the direction of the main flow and fz  is in the vertical 

direction as shown in Fig. 1.3.a. Accordingly, the wind velocity vector is divided into 
three components. 

 

a)   Definition of flow and structural axes, displacements and loads 

 

b)   Definition of cross sectional forces (stress resultants) 

Fig. 1.3     Basic definitions of flow and structural axes 
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As mentioned above, the relevant time window is of limited length such that the 
component in the main flow direction may be split into a time invariant mean value and 
a fluctuating part. Thus, the instantaneous wind velocity vector is defined by 

( ) ( ) ( )
( )
( )

, , , , , , , ,      

, , ,

, , ,

f f f f f f f f f

f f f

f f f

U x y z t V x y z u x y z t

v x y z t

w x y z t

⎫= +
⎪⎪
⎬
⎪
⎪⎭              

(1.2) 

where V is the mean value in the main flow direction, and u, v and w are the turbulence 
components whose time domain mean values are zero. Since the main flow direction is 
assumed perpendicular to the span of the structure, the velocity vector may be greatly 
simplified depending on structural orientation. Thus, Eq. 1.2 may be reduced to 

( ) ( )
( )

, ,      

,

f f

f

U y t V u y t

w y t

⎫= + ⎪
⎬
⎪⎭                                   

(1.3) 

for a line−like horizontal structure (e.g. a bridge), and into 

( ) ( ) ( )
( )

, ,      

,

f f f

f

U z t V z u z t

v z t

⎫= + ⎪
⎬
⎪⎭

                                   (1.4) 

for a vertical structure (e.g. a tower). As shown in Fig. 1.3 the structure is described in a 

Cartesian coordinate system [ ], ,x y z , with origo at the shear centre of the cross section, 

x is in the span direction and with y  and z  parallel to the main neutral structural axis 

(i.e. the neutral axis with respect to cross sectional bending). Correspondingly, the wind 
load drag, lift and pitching moment components (per unit length along the span) are all 
referred to the shear centre and split into a mean and a fluctuating part, i.e. 

( )
( )
( )

( )
( )
( )

,

,
,

y y

z z

q x q x t

q x q x t
q x q x tθ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+ = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

q q                                      (1.5) 

Similarly, the response displacements 

 

( )
( )
( )

( )
( )
( )

,

,
,

y y

z z

r x r x t

r x r x t
r x r x tθ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+ = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

r r

                                        

(1.6) 
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and cross sectional stress resultants 

( )
( )
( )

( )
( )
( )

,

,
,

y y

z z

x x

Q x Q x t

Q x Q x t
M x M x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦                                         

(1.7) 

are also referred to the shear centre, while bending moment and axial stress resultants 

( )
( )

( )

( )
( )

( )

,

,
,

y y

z z

M x M x t

M x M x t
N x N x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦                                        

(1.8) 

are referred to the centroid of the cross section (where, as shown above, the centriod is 
defined as the origo of main neutral structural axis). 

 

Fig. 1.4     Structural axes and displacement components 

Thus, it is assumed that structural response in general can be predicted as the sum of a 
mean value and a fluctuating part, as illustrated in Fig. 1.4. It is assumed that within the 
time window considered the mean values are constant as well as the statistical properties 
of the fluctuating parts. 
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As shown in Fig. 1.3, all flow and structural quantities are treated as vectors within 
the coordinate system they belong, except the quantities associated with torsion. Cross 
sectional rotation and the corresponding torsion moment are considered positive with the 
windward front face up, which is a long standing practice in wind engineering. However, 
it should be noted that such an inconsistency can not be accepted in a finite element 
format, and thus, in chapter 9 a strictly vector description has been adopted, see Fig. 9.2. 

1.4   Structural design quantities 

Design calculations are intended to cover a certain unfavourable loading condition, e.g. 
an extreme storm situation, that is characteristic to the particular place where the 
structure is located, and whose probability of occurrence is suitably small. In this 
situation it is the comparison of structural strength or capacity to the extreme value of 
some critical stress or stress resultant that is of interest. The situation is illustrated in Fig. 
1.5. Since structural behaviour is assumed linear elastic, these quantities may in general 
be obtained from the extreme values of the displacements 

( ) ( )
max

,k kr x r x t⎡ ⎤+ ⎣ ⎦      where   , ,k y z θ=                   (1.9) 

 

Fig. 1.5     Bending moment design quantities 
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However, the mean values in this situation are time invariants, and the response 
calculations have inevitably been based on predetermined values taken from standards or 
other design specifications. They have been established from authoritative sources to 
represent the characteristic values within a certain short term weather condition chosen 
for the special purpose of design safety considerations. Therefore, in a particular design 
situation time invariant quantities may be considered as deterministic quantities, and 
thus, the mean values of displacements or stress resultants may be obtained directly from 
simple linear static calculations. I.e., it is only the fluctuating part of the response 
quantities that requires treatment as stochastic processes. It may be shown (see chapter 
2.4) that if a zero mean stochastic process is stationary and Gaussian, then its extreme 
value is proportional to its standard deviation rk

σ , i.e. 

( )
max

,k p rk
r x t k σ⎡ ⎤ = ⋅⎣ ⎦                                    (1.10) 

where pk  is a time invariant peak factor between about 1.5 and 4.5, and thus 

( ) ( ) ( )max max
,k k k k p rk

r r x r x t r x k σ⎡ ⎤= + = + ⋅⎣ ⎦                   (1.11) 

Similarly, the extreme values of bending moment and shear force stress resultants may 
be expressed by 

maxk k p Mk
M M k σ= + ⋅  where , ,k x y z=                (1.12) 

Therefore, the main focus is in the following on the calculation of the standard deviation 
to fluctuating components, rk

σ  and Mk
σ , whether they contain dynamic amplification 

or not. However, in many design situations it is necessary to consider the combined 
effects of stresses or stress resultants, and therefore, it is not only the standard deviation 
of processes that are of interest in structural design considerations but also the 
covariance between fluctuating components. For instance, let a fluctuating (dynamic) 
displacement response at arbitrary position x  

( )
( )
( )

( )
( )
( )

,

,
,

y y y

z z z

r r x r x t

r r x r x t
r r x r x tθ θ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

= +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                   (1.13) 

be associated with corresponding cross sectional moment and shear force components 
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( )
( )
( )
( )
( )

( )
( )
( )
( )
( )

,

,
,
,

,

y yy

z zz

x xx

y yy

z zz

M M x tM x

M M x tM x
M M x tM x
Q Q x tQ x

Q Q x tQ x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                          (1.14) 

Then the normal stress and shear stress components at cross sectional position ( ),y z  are 

given by 

( )
( )

00 22

y yz z

y z y zx x x

yz yz yz y z xy z x

y z my z m

M MM M
z y z y

I I I Is s s t
s s s t Q Q MQ Q M

A A A tA A A t

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥+ ++ +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  

(1.15) 

where yI  and zI  are moments of inertia associated with bending about y  and z  axis, 

yA  and zA  are the cross sectional shear areas (rendering averaged values of shear 

stresses) and, for simplicity assuming that we are dealing with a closed box type of cross 
section, mA  is the sector area inscribed by the cross section and 0t  is the material 

thickness at position ( ),y z . The variance of the normal stress is then given by 

( )
2

2 2

2 2

2 2

2

2

y z
s xx

y z

y y z z

y y z z

M M M My y z z

y y z z

M M
E s t E z y

I I

M M M M
E z z y y

I I I I

Cov
z yz y

I I I I

σ

σ σ

⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤= = +⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎜ ⎟= + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

             (1.16) 

where 2 2
M yy

E Mσ ⎡ ⎤= ⎣ ⎦ , 2 2
M zz

E Mσ ⎡ ⎤= ⎣ ⎦  and M M y zy z
Cov E M M⎡ ⎤= ⎣ ⎦ , which may be 

further developed into 

2 2
2 2

M M M My y z z
s M Mx y z

y y z z

z z y y
I I I I

σ σ σ σ
σ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠         

(1.17) 
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where ( )M M M M M My z y z y z
Covρ σ σ=  is the covariance coefficient between yM  and 

zM  fluctuations. Similarly, the variance of the shear stress is given by 

( )
2

2 2

0

2 2 2

0 0 0

2 2

0

2

2 2 2
2 2 2

2

y z x
s yzyz

y z m

y y yz x z x z x

y z m y z y m z m

Q Q My z x

y z m

Q Q M
E s t E

A A A t

Q Q QQ M Q M Q M
E

A A A t A A A A t A A t

A A A t

σ

σ σ σ

⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤= = + +⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2

0 0

2 2 2

0

0 0

2 2 2
2 2

2

2 2 2
2 2

Q Q Q M Q My z y x z x

y z y m z m

Q Q My z x

y z m

Q Q Q M Q My z y x z x
Q Q Q M Q My z y x z x

y z y m z m

Cov Cov Cov

A A A A t A A t

A A A t

A A A A t A A t

σ σ σ

σ σ σ σ σ σ
ρ ρ ρ

⎞
+ + +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ + +

 

 (1.18) 

Where     

2 2

2 2

22

Qy y

Q zz

xMx

Q

E Q

M

σ

σ

σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

   

Q Qy z y z

Q M y xy x

z xQ Mz x

Cov Q Q

Cov E Q M

Q MCov

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

and    

( )
( )
( )

Q Q Q Qy z y zQ Qy z

Q M Q M Q My x y x y x

Q Mz x Q M Q Mz x z x

Cov

Cov

Cov

σ σρ

ρ σ σ

ρ σ σ

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Thus, the main focus is in the following on the calculation of the standard deviation and 
the covariance to fluctuating response components, whether they contain dynamic 
amplification or not. Simple linear static calculations are considered trivial. However, 
some mention of the calculation of time invariant mean values has been included for the 
sake of completeness. 



Chapter 2 

SOME BASIC STATISTICAL CONCEPTS 
IN WIND ENGINEERING 

2.1   Parent probability distributions, mean value and variance 

For a continuous random variable X, its probability density function ( )p x  is defined by 

[ ] ( ) ( ) ( ) ( )Pr
dP x

x X x dx P x dx P x dx p x dx
dx

≤ ≤ + = + − = =          (2.1) 

where ( )P x  is the cumulative probability function, from which it follows that 

[ ] ( ) ( )Pr
x

X x P x p x dx
−∞

≤ = = ∫                                   (2.2) 

and that ( )lim 1
x

P x
→∞

= . Similarly, for two random variables X and Y the joint probability 

density function is defined by 

( ) ( )2 ,
,

 

d P x y
p x y

dx dy
=                                                  (2.3) 

where ( ) [ ], Pr ,P x y X x Y y= ≤ ≤ . The mean value and variance of X are given by 

[ ] ( )

( ) ( ) ( ) ( )2 22         x

x E X x p x dx

Var X E X x x x p x dxσ

+∞

−∞
+∞

−∞

⎫
= = ⋅ ⎪

⎪
⎬
⎪⎡ ⎤= = − = − ⋅ ⎪⎢ ⎥⎣ ⎦ ⎭

∫

∫
         (2.4) 
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Equivalent definitions apply to a discrete random variable X . It is in the following 
assumed that each realisation kX  of X  has the same probability of occurrence, and 

thus, the mean value and variance of X  may be estimated from a large data set of N 
individual realisations: 

 

( ) ( )
1

22

1

1
lim

1
lim           

N

k
N k

N

x k
N k

x X
N

Var X X x
N

σ

→∞ =

→∞ =

⎫
= ⎪

⎪
⎬
⎪= = − ⎪⎭

∑

∑
          (2.5) 

The square root of the variance, xσ , is called the standard deviation. Recalling that 

[ ]E X x= , the expression for the variance may be further developed into 

( )22 2 2 2 22x E X x E X xX x E X xσ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − + = −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
             (2.6) 

There are three probability density distributions that are of primary importance in wind 
engineering. These are the Gaussian (normal), Weibull and Rayleigh distributions, each 
defined by the following expressions: 

( )

( )

( )

2

1

2

2

1 1
exp             

22

exp

1
exp

2

xx

x x
p x

x x
p x

x x
p x

ββ

β

σπσ

β
γγ

γγ

−

⎫⎡ ⎤⎛ ⎞− ⎪⎢ ⎥= − ⎜ ⎟ ⎪⎢ ⎥⎝ ⎠⎣ ⎦ ⎪
⎪⎡ ⎤⎛ ⎞ ⎪⎢ ⎥= − ⎬⎜ ⎟

⎢ ⎥⎝ ⎠ ⎪⎣ ⎦
⎪

⎡ ⎤ ⎪⎛ ⎞⎢ ⎥= − ⎪⎜ ⎟
⎢ ⎥⎝ ⎠ ⎪⎣ ⎦ ⎭

                         (2.7) 

They are graphically illustrated in Fig. 2.1. It is seen that a Rayleigh distribution is the 
Weibull distribution with β=2. 
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Fig. 2.1     Gauss (with 0x = ) and Weibull distributions 

2.2   Time domain and ensemble statistics 

As mentioned in Chapter 1 there are two types of statistics dealt with in wind 
engineering: time domain statistics and ensemble statistics. Illustrating time domain 
statistics, a typical realisation of the outcome of a stochastic process over a period T is 
illustrated in Fig. 2.2. This may for instance represent a short term recording of the wind 
velocity at some point in space, or it may equally well represent the displacement 
response somewhere along the span of the structure. Considering consecutive and for 
practical purposes equidistant points along the time series as individual random 
observations of the process, then time domain statistics may be performed on this 
realisation. 

It will in the following be assumed that any time domain statistics are based on a 
continuous or discrete time variable X , which theoretically may attain values between 
−∞  and +∞  and are applicable over a limited time range between 0 and T, within 
which the process is stationary and homogeneous (i.e. have constant statistical 
properties) such that 

( )X x x t= +                                                (2.8) 
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Its mean value and variance are then given by 

( )

0

22

0

1
lim

1
lim        

T

T

T

x
T

x Xdt
T

x t dt
T

σ

→∞

→∞

⎫
= ⎪

⎪
⎬
⎪⎡ ⎤= ⎪⎣ ⎦
⎭

∫

∫
                               (2.9) 

It will in the following also be assumed that the individual observations of the 

fluctuating part ( )x t  within the time window between 0 and T may with sufficient 

accuracy be fitted to a Gaussian probability distribution, as illustrated on the right hand 
side of Fig. 2.2. 

 

Fig. 2.2     Time domain statistics 

  
 

Example 2.1 
Given a zero mean variable ( ) ( )0cosx t a tω= ⋅ , where 0 02 Tω π= . Its variance is then given by 

( ) ( ) 22 2
0

0 0

1 1
lim lim cos

T T

x
T T

x t dt a t dt
T T

σ ω
→∞ →∞

⎡ ⎤= = ⎣ ⎦∫ ∫  

Substituting 0T n T= ⋅ , where n  is an integer, then 

20 2
2

0 00

1 2
lim cos

2

T

x
n

a
n a t dt

n T T
πσ

→∞

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ ⋅ =⎢ ⎥⎜ ⎟⎢ ⎥⋅ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
∫  
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Similarly, given a zero mean variable ( ) ( )0sinx t a tω= ⋅ , where 0 02 Tω π= . Its variance is 

then given by 

20 2
2

0 00

1 2
lim sin

2

T

x
n

a
n a t dt

n T T
πσ

→∞

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ ⋅ =⎢ ⎥⎜ ⎟⎢ ⎥⋅ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
∫  

Given a second zero mean variable comprising two cosine functions with different amplitudes and 
frequencies, i.e.: 

( ) ( ) ( )1 1 2 2cos cosx t a t a tω ω= ⋅ + ⋅  

where 1 12 Tω π=  and 2 22 Tω π= . It is easily seen that if 1 2 1T T =  then 

( ) ( ) ( )1 2 1cosx t a a tω= + ⋅  

and thus, the calculation of its variance is identical to the solution given above, i.e.: 

( )2
1 22

2x
a a

σ
+

=  

If 1 2 1T T ≠  then the variance of ( )x t  is given by 

( ) ( ) ( ) ( )2 2 2 2 2
1 1 1 2 1 2 2 2

0

1
lim cos 2 cos cos cos

T

x
T

a t a a t t a t dt
T

σ ω ω ω ω
→∞

⎡ ⎤= + +⎣ ⎦∫  

Substituting 1 1T n T= ⋅  into the integration of the first two terms and 2 2T n T= ⋅  into the third, 

where 1n  and 2n  are integers, then 

( ) ( ) ( )

( )

1 1
2 2 2

1 1 1 1 1 2 1 2
1 11 1 1 10 0

2
2 2

2 2 2
2 2 2 0

1 1
lim cos lim 2 cos cos

1
lim cos

T T

x
n n

T

n

n a t dt n a a t t dt
n T n T

n a t dt
n T

σ ω ω ω

ω

→∞ →∞

→∞

= ⋅ + ⋅

+ ⋅

∫ ∫

∫
 

It is seen that the first and the third integrals are identical to the integral of a single cosine squared 

shown above, and thus, they are equal to 2
1 2a  and 2

2 2a , respectively. The second integral, 

containing the product of two cosine functions, may most effectively be solved by the substitution 

( )1 1
ˆ 2t t T tω π= = , in which case it is given by 

 

( )
1 1

2
2 21 2 1 1 1 2

1 2 1 10

2 2

1

1 221 2

1 2

2 1

sin 2 1 sin 2 1
2 ˆ ˆ ˆcos cos

2
2 1 2 1

sin 2
0 if /  is an integer unequ

 which is 

T T
T Ta a T T a a

t t dt
T T T T

T T

T
T TTa a

T T
T T

π π π

π π

π

π

⎡ ⎤⎛ ⎞ ⎛ ⎞
− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎡ ⎤⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⋅ ⋅ = +⎜ ⎟ ⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥⎝ ⎠⎣ ⎦ ⎢ ⎥− +⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟ =⎝ ⎠=

−

∫

1 2

al to 1

0 if /  is not an integerT T
⎧⎪
⎨≠⎪⎩
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Thus, the variance of ( ) ( ) ( )1 1 2 2cos cosx t a t a tω ω= ⋅ + ⋅  is then given by 

( )

( )

2
1 2 2 1

2 2
2 1 2

2 1

2 2
2 11 1 2 2

2 1
2 1 1 2

2  if 1

  if  is an integer 1
2 2

sin 2
 if  is not an integer

2 / / 2

x

a a

a a

a a a a

ω ω

σ ω ω

π ω ω
ω ω

π ω ω ω ω

⎧
⎪ + =
⎪
⎪⎪= + ≠⎨
⎪
⎪

+ ⋅ +⎪
−⎪⎩

 

Similar results would have been obtained if the cosines had been replaced by sinus functions. 
Thus, if for instance ( ) ( ) ( )1 1 2 2cos cosx t a t a tω ω= ⋅ + ⋅  and 2 1ω ω  is an integer 1≠ , then the 

variance of 

( ) ( ) ( )1 1 1 2 2 2sin sin
dx

x t a t a t
dt

ω ω ω ω= = − ⋅ − ⋅  

is given by 

( ) ( )2 2 2 2
1 1 2 22 2 21 2

1 22 2 2 2x
a a a aω ω

σ ω ω
− −

= + = ⋅ + ⋅  

Likewise, the variance of the nth derivative of ( )x t , ( )
n

n n
d x

f t
dt

= , is given by 

2 2
2 2 21 2

1 22 2
n n

f
a aσ ω ω= ⋅ + ⋅  

  

 
Illustrating ensemble statistics, a situation where N different recordings of a stochastic 
process within a time window between 0 and T are shown in Fig. 2.3. These may for 
instance represent N simultaneous realisations of the along wind velocity in space, i.e. 
they represent the wind velocity variation taken simultaneously and at a certain distance 
(horizontal or vertical) between each of them. Extracting the recorded values at a given 

time from each of these realisations will render a set of data ( ) , 1,....,kX t k N= . On 

this data set ensemble statistics may be performed. This is the type of statistics that 
provides a stochastic description of the wind field distribution in space. 

Another example of ensemble statistics is illustrated in Fig. 2.4.a, where the situation is 
illustrated that N different observations of a stochastic process have been recorded, each 
taken within a certain time window but in this case not necessarily at the same time. Each 
of these time series is assumed to be stationary and Gaussian within the short term period 
that has been considered. In wind engineering this may be an illustration of the situation 
when a number of time series have been recorded of the wind velocity at a certain point in 
space, each taken during different weather conditions. In that case one may only be 
interested in performing statistics on the mean values and discard the rest of the recordings. 
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Fig. 2.3     Ensemble statistics of simultaneous events 

The statistical properties of the data set of extracted mean values will then represent 
an example of long term ensemble statistics. Typically, the probability density 
distribution of a data set of mean values may attain a shape that may be fitted to a 
Weibull or a Rayleigh distribution as illustrated in Fig. 2.4.b. 

Apart from fitting the data from a random variable to a suitable parent probability 
distribution and estimating its mean value and variance (see chapter 2.1 above), it is the 
properties of correlation and covariance that are of particular interest. These are both 
providing information about possible relationships in the time domain or ensemble data 
that have been extracted from the process. Correlation estimates are taken on the full 
value of the process variable, i.e. on ( ) ( )X t x x t= + , while covariance is estimated from 

zero mean variables ( )ix t . 

Given two realisations ( ) ( )1 1 1X t x x t= +  and ( ) ( )2 2 2X t x x t= + , either two of the 

same process at different time or location, or of two entirely different processes. Then 
the correlation and covariance between these two process variables are defined by 

 ( ) ( ) ( ) ( )1 2 1 21 2
0

1
lim

T

x x T
R E X t X t X t X t dt

T→∞
⎡ ⎤= ⋅ = ⋅⎣ ⎦ ∫           (2.10) 
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 ( ) ( ) ( ) ( )1 2 1 21 2
0

1
lim

T

x x T
Cov E x t x t x t x t dt

T→∞
⎡ ⎤= ⋅ = ⋅⎣ ⎦ ∫               (2.11) 

Similarly, given two data sets of N individual and equally probable realisations that have 
been extracted from two random variables, 1X  and 2X , then the ensemble correlation 

and covariance are defined by: 

[ ]1 2 1 21 2
1

1
lim

N

x x k kN k

R E X X X X
N→∞ =

= ⋅ = ⋅∑
                    

(2.12) 

( ) ( )

( ) ( )
1 1 2 21 2

1 1 2 2
1

1
lim

x x

N

k kN k

Cov E X x X x

X x X x
N→∞ =

⎡ ⎤= − ⋅ −⎣ ⎦

= − ⋅ −∑
                  

(2.13)

 

However, correlation and covariance estimates may also be taken on the process variable 
itself. Thus, defining an arbitrary time lag τ , the time domain auto correlation and auto 
covariance functions are defined by 

( ) ( ) ( ) ( ) ( )
0

1
lim

T

x T
R E X t X t X t X t dt

T
τ τ τ

→∞
⎡ ⎤= ⋅ + = ⋅ +⎣ ⎦ ∫               (2.14) 

( ) ( ) ( ) ( ) ( )
0

1
lim

T

x T
Cov E x t x t x t x t dt

T
τ τ τ

→∞
⎡ ⎤= ⋅ + = ⋅ +⎣ ⎦ ∫              (2.15) 

These are defined as functions because τ  is perceived as a continuous variable. As long 
as τ  is considerably smaller than T 

( ) ( )E X t E X t xτ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦                                
(2.16) 

and thus, the relationship between xR  and xCov  is the following 

( ) ( ){ } ( ){ } ( ) 2
x xCov E X t x X t x R xτ τ τ⎡ ⎤= − ⋅ + − = −⎣ ⎦       

(2.17) 
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a)     N independent short term realisations 

 

b)     The probability of mean values 

Fig. 2.4     Ensemble statistics of mean value recordings 

There is no reason why τ  may not attain negative as well as positive values, and 
since 

( ) ( ) ( ) ( ) ( ) ( )E x t x t E x t x t E x t x tτ τ τ τ τ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ − = − ⋅ = − ⋅ − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦   
(2.18) 

then 

( ) ( )x xCov Covτ τ= −                                (2.19) 

Thus, xCov  is symmetric with respect to its variation with τ . 
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Fig. 2.5     The auto covariance function 

As illustrated in Fig. 2.5 the auto covariance function is the mean value of the time 
series multiplied by itself at a time shift equal to τ . Theoretically τ  may vary between 

0 and T, but the practical significance of ( )xCov τ  seizes to exist long before τ  is in the 

vicinity of T. The reason is that while it in theoretical developments is convenient to 

consider ( )x t  as a continuous function, it will in practical calculations only occur as a 

discrete and finite vector of random values kx , usually taken at regular intervals tΔ . If 

T is large and tΔ  is small, then the number of elements in this vector is /N T t≈ Δ , in 
which case the continuous integral in Eq. 2.15 may be replaced by its discrete 
counterpart 
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( ) ( ) ( )
1

1 N j

x k j k
k

Cov j t E x t x t x x
N j

τ τ
−

+
=

⎡ ⎤= ⋅ Δ = ⋅ + = ⋅⎣ ⎦ − ∑
     

(2.20) 

from which it is seen that j must be considerably smaller than N for a meaningful 
outcome of the auto covariance estimate. The same is true for the auto correlation 
function in Eq. 2.14. 
 
  

 

Example 2.2 
Given a variable: ( ) ( )1 1sinx t a tω= ⋅ , 1 12 Tω π= . Using the substitutions 1T nT=  (where n  

is an integer) and ( )1
ˆ 2t T tπ= , then the auto covariance of x  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1 1 1 1 1
10 0

2 22 2
21 1

1 1 1
0 0

2 22
121

1
0 0

1 1
lim lim sin sin

ˆ ˆ ˆ ˆ ˆ ˆ ˆsin sin sin cos sin cos sin
2 2

sinˆ ˆ ˆ ˆcos sin sin 2
2 2

TT

x
T n

Cov x t x t dt n a t a t dt
T nT

a a
t t dt t t t dt

a
tdt tdt

π π

π π

τ τ ω ω ω τ

ω τ ω τ ω τ
π π

ω τ
ω τ

π

→∞ →∞

⎡ ⎤
⎢ ⎥= ⋅ + = ⋅ ⋅ +
⎢ ⎥⎣ ⎦

⎡ ⎤= ⋅ + = ⋅ + ⋅ ⋅⎣ ⎦

⎡
= +⎢

⎣

∫ ∫

∫ ∫

∫ ∫
⎤
⎥

⎢ ⎥⎦

 

The first of these integrals is equal to π , while the second is zero, and thus: 

( ) ( )
2
1

1cos
2x
a

Cov τ ω τ=  

Since the variance of ( )x t  is 2 2
1 2x aσ =  (see example 2.1), then the auto covariance coefficient 

is given by: 

( ) ( ) ( )12 cosx
x

x

Cov τ
ρ τ ω τ

σ
= =  

As can be seen: ( )0 1xρ τ = = . 

  
 
 

Similar to the definitions above, cross correlation and cross covariance functions may be 
defined between observations that have been obtained from two short term realisations 

( ) ( )1 1 1X t x x t= +  and ( ) ( )2 2 2X t x x t= +  of the same process or alternatively from 

realisations of two different processes: 

( ) ( ) ( ) ( ) ( )1 2 1 21 2
0

1
lim

T

X X T
R E X t X t X t X t dt

T
τ τ τ

→∞
⎡ ⎤= ⋅ + = ⋅ +⎣ ⎦ ∫

   

(2.21) 
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( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2

0

1
lim

T

x x T
Cov E x t x t x t x t dt

T
τ τ τ

→∞
⎡ ⎤= ⋅ + = ⋅ +⎣ ⎦ ∫       (2.22) 

A normalised version of the cross covariance between the fluctuating parts of the 
realisations is defined by the cross covariance coefficient 

( ) ( )
1 2

1 2
1 2

x x
x x

x x

Cov τ
ρ τ

σ σ
=                                   (2.23) 

where 
1xσ  and 

2xσ  are the standard deviations of the two zero mean time variables. 

 

Fig. 2.6     Cross covariance of time series at positions ( )1,2,....,ky k N=  

If such cross covariance estimates are taken from a set of simultaneous realisations of 
a process distributed in space, e.g. as illustrated in Fig. 2.6 where the N realisations of 
the process is assumed to be taken at arbitrary positions y  in the horizontal direction, 

then a cross covariance function between realisations at distance yΔ  may be defined: 
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( ) ( ) ( )

( ) ( )
0

, , ,

1
lim , ,

xx

T

T

Cov y E x y t x y y t

x y t x y y t dt
T

τ τ

τ
→∞

⎡ ⎤Δ = ⋅ + Δ +⎣ ⎦

= ⋅ + Δ +∫
                 

(2.24) 

Obviously, ( ) 20, 0xx xCov y τ σΔ = = = . In wind engineering such covariance estimates 

will in general be a decaying function with increasing τ  or spatial separation sΔ , 
,  or s x y z= , as illustrated in Fig. 2.7. The covariance function may attain negative 

values at large values of sΔ  or τ . 

 

Fig. 2.7     Typical spatial separation and time lag covariance function 

As previously indicated, the statistical properties defined above may also be applied 
to functions that are obtained from realisations of two different processes. Then, by 

simple arithmetic, the variance of the sum of two zero mean variables, ( )1x t  and 

( )2x t , is given by 

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 2

1 2 1 22

Var x x E x x x x

Var x Var x Cov x x

⎡ ⎤+ = + ⋅ +⎣ ⎦
= + + ⋅ ⋅

            (2.25) 

Similarly, the variance of the sum of N different variables, ( )ix t , is given by 

( ) ( )1 2 1 2
1

... ... ... ...
N

i i N j N
i

Var x E x x x x x x x x
=

⎛ ⎞ ⎡ ⎤= + + + + + ⋅ + + + + +⎜ ⎟ ⎣ ⎦⎝ ⎠
∑  
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( ) ( )
1 1 1 1 1

N N N N N

i i j i j i j
i i j i j

Var x Cov x x x xρ σ σ
= = = = =

⎛ ⎞
⇒ = ⋅ = ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑          (2.26) 

If ( )ix t  are independent (i.e. uncorrelated) then the variance of the sum of the processes 

is the sum of the variances of the individual processes, i.e. 

if ( )
2  when 

 
0 when 
xi

i j
i j

Cov x x
i j

σ⎧ =⎪⋅ = ⎨
≠⎪⎩

 then 2

1 1

N N

i xi
i i

Var x σ
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑  (2.27) 

 

  
 

Example 2.3 
Given an ensemble variable: ( )sinx a tω θ= ⋅ + , where the probability density distribution of θ  

is: ( )
1

for 0 2
2
0 elsewhere

p
θ π

θ π
⎧ ≤ ≤⎪= ⎨
⎪⎩

 

The ensemble covariance of kx  at a time lag τ  is then given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0
2

0
22

0

2 22
2

0 0

, , , ,

1
sin sin

2

sin sin cos cos sin
2

sin
cos sin sin2

2 2

xCov E x t x t p x t x t d

a t a t d

a
t t t d

a
t d t d

π

π

π

π π

τ θ τ θ θ θ τ θ θ

ω θ ω ωτ θ θ
π

ω θ ω θ ωτ ω θ ωτ θ
π

ωτ
ωτ ω θ θ ω θ θ

π

⎡ ⎤= ⋅ + = ⋅ ⋅ +⎣ ⎦

= ⋅ + ⋅ + +

⎡ ⎤= + ⋅ + ⋅ + + ⋅⎣ ⎦

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫

∫

∫ ∫

 

which, after the substitution ˆ tθ ω θ= + , renders 

 

( ) ( ) ( )2 22
2 sinˆ ˆ ˆ ˆcos sin sin 2

2 2

t t

x
t t

a
Cov d d

ω π ω π

ω ω

ωτ
τ ωτ θ θ θ θ

+ +

= +∫ ∫  

 

As shown in example 2.2, the first of these integrals is equal to π , while the second is zero, and 
thus: 

( ) ( )
2

cos
2x
a

Cov τ ωτ=  
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There are still other types of time domain and ensemble statistics that are of great 
importance in wind engineering and that have not yet been mentioned. These comprise 
the properties of threshold crossing, the distributions of peaks and extreme values, and 
finally, the auto and cross spectral densities, which are frequency domain properties of 
the process, i.e. they are frequency domain counterparts to the concepts of variance and 
covariance. These are dealt with below. 

2.3   Threshold crossing and peaks 

In Fig. 2.8 is illustrated a time series realisation ( )x t  of a Gaussian stationary and 

homogeneous process (for simplicity with zero mean value), taken over a period T. First 

we seek to develop an estimate of the average frequency ( )xf a  between the events that 

( )x t  is crossing the threshold a  in its upward direction. 

Let a single upward crossing take place in a time interval tΔ  that is small enough to 
justify the approximation 

( ) ( ) ( )x t t x t x t t+ Δ ≅ + ⋅ Δ                            (2.28) 

The probability of an up crossing event during tΔ  is then given by 

( ) ( ) ( ) ( ) and > xP x t a x t x t t a f a t⎡ ⎤≤ + ⋅ Δ = ⋅ Δ⎣ ⎦            
(2.29) 

from which it follows that 

( ) ( )
0

0

1
lim ,

a

x xxt
a x t

f a p x x dx dx
t

∞

Δ →
− ⋅Δ

⎡ ⎤
= ⎢ ⎥

Δ ⎢ ⎥⎣ ⎦
∫ ∫

                   
(2.30) 

where ( ),xxp x x  is the probability density function for the joint events ( )x t  and ( )x t . 

As 0tΔ →  the following approximation applies 

( ) ( ), ,
a

xx xx
a x t

p x x dx x t p a x
− ⋅Δ

≅ ⋅ Δ ⋅∫
                      

(2.31) 
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Fig. 2.8     Threshold crossing and peaks 

For the type of processes covered herein it is a reasonable assumption that the joint 
events of ( )x t  and ( )x t  are statistically independent, and thus, 

( ) ( ) ( ),xx x xp x x p x p x= ⋅ . The average up crossing event that ( )x t a=  is then given 

by 

( ) ( ) ( ) ( )
0 0

,x xx x xf a x p a x dx p a x p x dx
∞ ∞

= ⋅ = ⋅ ⋅∫ ∫
               

(2.32) 

For each threshold up-crossing there is a corresponding down-crossing event, i.e 
( ) ( )x xf a f a+ = − , although there may be several consecutive positive or negative peaks 

in the process. Assuming that both x  and x  are Gaussian, then 

      

( )
2 2

0

1 1 1 1
exp exp

2 22 2
x

x xx x

a x
f a x dx

σ σπσ πσ

∞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥= − ⋅ −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫
          

 

( ) ( )
2 2

1 1 1
exp 0 exp

2 2 2
x

x x
x x x

a a
f a f

σ
π σ σ σ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⇒ = ⋅ ⋅ − = ⋅ −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦           

(2.33) 

where :                  ( ) 1
0

2
x

x
x

f
σ

π σ
= ⋅                                                                           (2.34) 
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is the average zero up–crossing frequency of the process (see Eq. 2.95). If ( )x t  is also 

narrow banded, such that a zero up crossing and a peak px  (larger than zero) are 

simultaneous events (as shown for the process in Fig. 2.8), then the expected number of 

peaks p px a>  is ( )x pf a T⋅ , while the total number of peaks is ( )0xf T⋅ . Thus 

( ) ( )
( )Pr 1
0

x p
p p p

x

f a
x a P a

f
⎡ ⎤≤ = = −⎣ ⎦

                         
(2.35) 

from which it follows that the probability density distribution to pa  is given by 

( ) ( ) ( )
( ) ( )

( )1
1

0 0
x p x p

p p
p p x x p

f a df ad d
p a P a

da da f f da

⎡ ⎤
⎢ ⎥= = − = − ⋅
⎢ ⎥⎣ ⎦

 

( )
2

2

1
exp

2
p p

p
xx

a a
p a

σσ

⎡ ⎤⎛ ⎞⎢ ⎥⇒ = − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                                   (2.36) 

Thus, the probability density ( )pp a  of peaks to a narrow banded Gaussian process is a 

Rayleigh distribution (see Eq. 2.7). The distribution is illustrated on the right hand side 
of Fig. 2.8 (see also Fig. 2.1). 

2.4   Extreme values 

Fig. 2.9.a shows a collection of N short term time series, each a short term realisation of 

the fluctuating part ( )x t  of a stochastic variable ( ) ( )X t x x t= + . It is assumed that they 

are all stationary and ergodic, and for the validity of the development below it is a 
necessary requirement that they are fairly broad banded. From this ensemble of 
realisations it may be of particular interest to develop the statistical properties of extreme 
values, as illustrated in Fig. 2.9.b. Referring to Eq. 2.33 and Fig. 2.8, an extreme peak 
value maxpa x=  within each short term realisation occur when 

( ) 1
x pf a T

−
⎡ ⎤ →⎣ ⎦                                      (2.37) 
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a)     N short term independent realisations 

 

b)     The distribution of extremes 

Fig. 2.9     Distribution of extreme values 

Let therefore 

( )maxxf x Tκ = ⋅                                    (2.38) 

be an ensemble variable signifying the event that ( )0x t T≤ ≤  exceeds a given value 

maxx . The probability that κ  occurs only once within each realisation is an event that 

coincides with the occurrence of maxx , i.e. they are simultaneous events. They are rare 

events at the tail of the peak distribution given in Eq. 2.36, and for the statistics of such 
events it is a reasonable assumption that they will also comply to an exponential 
distribution, i.e. that 
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( ) ( ) ( )maxmax
1, expxP T P x Tκ κ= = −

                   
(2.39) 

Introducing Eqs. 2.33 (with maxa x= ) into 2.38 and solving for maxx , then the 

following is obtained 

 
( ){ }

( ) ( )

1
2

max 2 ln 0 2 ln

ln
2 ln 0 1

2 ln 0

x x

x x
x

x f T

f T
f T

σ κ

κσ

⎡ ⎤= ⋅ ⋅ − ⋅⎣ ⎦

⎧ ⎫⎪ ⎪⎡ ⎤≈ ⋅ ⋅ ⋅ −⎨ ⎬⎣ ⎦ ⎡ ⎤⋅ ⋅⎪ ⎪⎣ ⎦⎩ ⎭            

(2.40) 

where the approximation ( )1 1nx n x− ≈ − ⋅  has been applied, assuming that 

( )ln 0xf T⎡ ⎤⋅⎣ ⎦  is large as compared to lnκ . Thus, observing that max 0x =  corresponds 

to κ = ∞ , while maxx = ∞  corresponds to 0κ = , the mean value of maxx  may be 

estimated from 
 

 

( ) ( )

max max
max max max max max

max max0 0

0

max max
0

exp exp

x xdP dP d
x x dx x dx

dx d dx

x d x d

κ
κ

κ κ κ κ

∞ ∞

∞

∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎡ ⎤= ⋅ − − = ⋅ −⎣ ⎦

∫ ∫

∫ ∫
 

( ) ( )
( )

( )
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2 ln 0x x

x

d

x f T d
f T

κ κ κ
σ κ κ

∞

∞

⎡ ⎤
⋅ −⎢ ⎥

⎢ ⎥⎡ ⎤⇒ = ⋅ ⋅ ⋅ ⋅ − −⎣ ⎦ ⎢ ⎥⎡ ⎤⋅ ⋅⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

 

(2.41) 

Thus, the mean value of maxx  is given by 

( )
( )max 2 ln 0

2 ln 0
x x

x

x f T
f T

γσ
⎧ ⎫
⎪ ⎪⎡ ⎤= ⋅ ⋅ ⋅ +⎨ ⎬⎣ ⎦

⎡ ⎤⋅ ⋅⎪ ⎪⎣ ⎦⎩ ⎭

               (2.42) 

where ( )
0

ln exp 0.5772γ κ κ
∞

= − ⋅ − ≈∫  is the Euler constant. Similarly, it may be shown 

that the variance of maxx  is given by 

( )
2

2 2
max 12 ln 0x x

xf T
πσ σ= ⋅
⎡ ⎤⋅ ⋅⎣ ⎦                                 

(2.43) 
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Fig. 2.10     Plots of pk  and 
maxx xσ σ  

Given a stochastic variable ( ) ( )X t x x t= + , the expected value of its largest peak 

during a realisation with length T may then be estimated from 

max p xX x k σ= + ⋅                                         (2.44) 

where the peak factor pk  is given by 

( )
( )

2 ln 0
2 ln 0

p x
x

k f T
f T

γ
⎡ ⎤= ⋅ ⋅ +⎣ ⎦

⎡ ⎤⋅ ⋅⎣ ⎦
                       (2.45) 

For fairly broad banded processes this peak factor will render values between 2 and 5. 
Plots of pk  and 

maxx xσ σ  are shown in Fig. 2.10. It should be acknowledged that when 

( )x t  becomes ultra narrow banded then 2pk → , because for a single harmonic 

component 

( ) ( )cosx xx t c tω= ⋅ , 0 t T< <                                (2.46) 
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the variance 

 

( ) 22

0
2 2

0

1
lim cos

1 2
lim cos

2

T

x x x
T
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x

x
n x x

c t dt
T

c
n c t dt

n T T
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π

→∞

→∞

⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤⎛ ⎞
= ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟⋅ ⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫
               (2.47) 

and thus, for such a process max 2x xx c σ= = ⋅ . Therefore, Eq. 2.45 is only applicable 

for fairly broad banded processes. 

2.5   Auto spectral density 

The auto spectral density contains the frequency domain properties of the process, i.e. it 
is the frequency domain counterpart to the concept of variance. The various steps in the 
development of an auto spectral density function are illustrated in Fig. 2.11. 

Given a zero mean time variable ( )x t  with length T and performing a Fourier 

transformation of ( )x t  implies that it may be approximated by a sum of harmonic 

components ( ),k kX tω , i.e. 

( ) ( )
1

lim ,
N

k k
N k

x t X tω
→∞ =

= ∑  where 
2 /

k k
T

ω ω
ω π

= ⋅ Δ⎧
⎨Δ =⎩

                  (2.48) 

The harmonic components in Eq. 2.48 are given by 

( ) ( ), cosk k k k kX t c tω ω ϕ= ⋅ +                                 (2.49) 

where the amplitudes 2 2
k k kc a b= +  and phase angles ( )arc tan /k k kb aϕ = , and where 

the constants ka  and kb  are given by 

( )
0

cos2
sin

T
k k

k k

a t
x t dt

b tT

ω
ω

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫

                                

(2.50) 

As shown in Fig. 2.11 the auto-spectral density of ( )x t  is intended to represent its 

variance density distribution in the frequency domain. Hence, the definition of the 
single-sided auto-spectral density xS  associated with the frequency kω  is 
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( )
2 2
k Xk

x k

E X
S

σ
ω

ω ω

⎡ ⎤
⎣ ⎦= =
Δ Δ

                                      (2.51) 

which, when T becomes large, is given by 

( ) ( ) 2

0

1 1
lim cos

T

x k k k kT
S c t dt

T
ω ω ϕ

ω→∞
⎡ ⎤= ⋅ +⎣ ⎦Δ ∫

                    
(2.52) 

Introducing the period of the harmonic component, 2 /k kT π ω= , and replacing T  with 

kn T⋅ , n → ∞ , then the following is obtained 

( )
2 2

0

1 1 2
lim cos

2

Tk
k

x k k kn k k

c
S n c t dt

n T T
πω ϕ

ω ω→∞

⎡ ⎤⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ + =⎢ ⎥⎜ ⎟Δ ⋅ Δ⎢ ⎥⎝ ⎠⎣ ⎦

∫
        

(2.53) 

In Fig. 2.11, the arrival at ( )x kS ω  is shown via the amplitude spectrum (or the Fourier 

amplitude diagram) to ease the understanding of the concept of spectral density 
representations. It is seen from this illustration that it is not possible to retrieve the parent 
time domain variable from the spectral density function alone, because it does not 
contain the necessary phase information (unless a corresponding phase spectrum is also 
established). From its very definition the spectrum contains information about the 
variance distribution in frequency domain, and from Eqs. 2.51 and 2.53 it is seen that 

( )
2

2 2

1 1 1

lim lim lim
2

N N N
k

x X x kkN N Nk k k

c
Sσ σ ω ω

→∞ →∞ →∞= = =
= = = ⋅ Δ∑ ∑ ∑           (2.54) 

In a continuous format, i.e. in the limit of both N and T approaching infinity, the single-
sided auto-spectral density is defined by 

( )
( )2 ,

lim limx
T N

E X t
S

ω
ω

ω→∞ →∞

⎡ ⎤
⎣ ⎦=

Δ
                                 (2.55) 

where ( ),X tω  is an arbitrary Fourier component of ( )x t . In the limit dω ωΔ → , and 

thus, the variance of the process may be calculated from 

( )2

0
x xS dσ ω ω

∞

= ∫                                       (2.56) 



2.5   AUTO SPECTRAL DENSITY 35

 

 

Fig. 2.11     The definition of auto spectral density from a Fourier decomposition 

The development above may more conveniently be expressed in a complex format. 
Adopting a frequency axis spanning the entire range of both positive and (imaginary) 
negative values, introducing the Euler formulae 
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e i t
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ω

ω
ω
ω−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

                          (2.57) 

(where 1i = − ) and defining the complex Fourier amplitude 

( )1
2k k kd a i b= − ⋅                               (2.58) 

then:                        ( ) ( ) ( ), i tk
k k k kx t X t d e ωω ω

∞ ∞
⋅

−∞ −∞
= = ⋅∑ ∑

                                 
(2.59) 

Taking the variance of the complex Fourier components in Eq. 2.59 and dividing by 
ωΔ , 

( )( )** *

0

1
i t i tk kT k kk k k k

d e d eE X X d d
dt

T

ω ω

ω ω ω

−⎡ ⎤⋅⎣ ⎦ = =
Δ Δ Δ∫                 (2.60) 

which may be further developed into 

( ) ( )* 21
4 4

k k k k k k k
E X X a i b a i b c

ω ω ω

⎡ ⎤⋅ + ⋅ ⋅ − ⋅⎣ ⎦⇒ = =
Δ Δ Δ                   

(2.61) 

It is seen (see Eq. 2.53) that this is half the auto spectral value associated with ωk . Thus, 

a symmetric double-sided auto spectrum associated with ω− k  as well as ω+ k  may be 

defined with a value that is half the corresponding value of the single sided auto-
spectrum. Extending the frequency axis from minus infinity to plus infinity and using the 
complex Fourier components kX  given in Eq. 2.59 above, this double sided auto 

spectrum is then defined by 

( )
* * 2

4
k k k k k

x k

E X X d d c
S ω

ω ω ω

⎡ ⎤⋅⎣ ⎦± = = =
Δ Δ Δ               

          (2.62) 

which, in the limit of  and T N → ∞ , becomes the continuous function ( )xS ω± , and 

from which the variance of the process may be obtained by integration over the entire 
positive as well as negative (imaginary) frequency range 
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( )2
x xS dσ ω ω

+∞

−∞

= ±∫                                  (2.63) 

Thus, the connection between double- and single-sided spectra is simply that 

( ) ( )2x xS Sω ω= ⋅ ± . Assuming that the process is stationary and of infinite length, such 

that the position of the time axis for integration purposes is arbitrary, then it is in the 
literature of mathematics usually considered convenient to introduce a non-normalized 
amplitude (which may be encountered in connection with the theory of generalised 
Fourier series and identified as a Fourier constant) 

 ( ) ( )
0

T
i tk

k k ka x t e dt T dωω − ⋅= ⋅ = ⋅∫
                       

(2.64) 

in which case the double-sided auto-spectral density associated with kω±  is defined by 

( ) ( ) ( )**
*

/ / 1
2 / 2

k kk k
x k k k

a T a Td d
S a a

T T
ω

ω π π

⋅⋅
± = = = ⋅

Δ
               (2.65) 

In the limit of  and T N → ∞  this may be written on the following continuous form 

( ) ( ) ( )*1
lim lim

2x
T N

S a a
T

ω ω ω
π→∞ →∞

± = ⋅ ⋅                          (2.66) 

and accordingly, the single sided version is given by 

( ) ( ) ( )*1
limx
T

S a a
T

ω ω ω
π→∞
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(2.67) 

where it is taken for granted that N is sufficiently large. The auto-spectral density 

( )xS ω  is defined by use of circular frequency ω  as shown above. It may be replaced 

by a corresponding definition ( )xS f  using frequency f  (with unit 1Hz sek−= ). Since 

( )xS ω ω⋅ Δ  and ( )xS f f⋅ Δ  both represent the variance of the process at ω  and f , 

they must give the same contribution to the total variance of the process, and thus 

                       ( ) ( ) ( ) ( )2x x xS f f S S fω ω ω π⋅ Δ = ⋅ Δ = ⋅ ⋅ Δ  

( ) ( ) ( ) ( )*2
2 lim limx x

T N
S f S a f a f

T
π ω

→∞ →∞
⇒ = ⋅ = ⋅ ⋅

                 
(2.68) 
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2.6   Cross-spectral density 

The cross spectral density contains the frequency domain and coherence properties 
between processes, i.e. it is the frequency domain counterpart to the concept of 

covariance. Given two stationary time variable functions ( )x t  and ( )y t , both with 

length T  and zero mean value (i.e. ( ) ( ) 0E x t E y t⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ), and performing a Fourier 

transformation (adopting a double-sided complex format) implies that ( )x t  and ( )y t  

may be represented by sums of harmonic components ( ),k kX tω  and ( ),k kY tω , i.e. 
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(2.69) 

where: 
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∫  

and where k kω ω= ⋅ Δ  and 2 /Tω πΔ = . The definition of the double-sided cross-

spectral density xyS  associated with the frequency kω  is then 

( )
*

*1
2

k k
xy k X Yk k

E X Y
S a a

T
ω

ω π

⎡ ⎤⋅⎣ ⎦± = = ⋅
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(2.70) 

Since the Fourier components are orthogonal 

( ) ( ) ( ),  when 
, ,

0 when 
xy k

i i j j
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E X t Y t

i j

ω ω
ω ω

⎧ ⋅ Δ = =⎪⎡ ⎤⋅ = ⎨⎣ ⎦ ≠⎪⎩
             (2.71) 

it follows from Eqs. 2.69 and 2.70 that an estimate of the covariance between ( )x t  and 

( )y t  are given by 

( ) ( ) [ ]( )lim lim
N N N

xy i j k kN NN N N

Cov E x t y t E X Y E X Y
→∞ →∞− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎡ ⎤= ⋅ = ⋅ = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑

 

( )lim
N

xy xy k
N N

Cov S ω ω
→∞ −

⇒ = ± ⋅ Δ∑
                                              

(2.72) 
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In a continuous format, i.e. in the limit of both N and T approaching infinity, the double-
sided cross-spectral density is defined by 

( )
( ) ( )

( ) ( )

*

*

, ,
lim lim

1
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xy
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Δ
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(2.73) 

The single sided version is then simply 

( ) ( ) ( ) ( )*1
2 lim limxy xy X Y

T N
S S a a

T
ω ω ω ω

π→∞ →∞
= ⋅ ± = ⋅                  (2.74) 

while the corresponding single-sided version using frequency f  (Hz), is defined by 

( ) ( ) ( ) ( )*2
2 lim limxy xy x y

T N
S f S a f a f

T
π ω

→∞ →∞
= ⋅ = ⋅ ⋅

                  
(2.75) 

Thus, the covariance between the two processes may be calculated from 

( ) ( ) ( )
0 0

xy xy xy xyCov S d S d S f dfω ω ω ω
+∞ ∞ ∞

−∞

= ± = =∫ ∫ ∫                  (2.76) 

The cross-spectrum will in general be a complex quantity. With respect to the frequency 

argument, its real part is an even function labelled the co–spectral density ( )xyCo ω , 

while its imaginary part is an odd function labelled the quad–spectrum ( )xyQu ω , i.e. 

( ) ( ) ( )xy xy xyS Co i Quω ω ω= − ⋅
                            

(2.78) 

as illustrated in Fig. 2.12. Alternatively, ( )xyS ω  may be expressed by its modulus and 

phase, i.e. 

( ) ( ) ( )i xy
xy xyS S e

ϕ ωω ω ⋅= ⋅                                  (2.79) 

where the phase spectrum ( ) ( ) ( )arc tanxy xy xyQu Coϕ ω ω ω⎡ ⎤= ⎣ ⎦ . 
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Fig. 2.12     Cross spectrum decomposition into co-, quad-and phase spectra 

2.7   The connection between spectra and covariance 

Auto-spectra ( )xS ω  may also be calculated from the auto covariance function ( )xCov τ , 

see Eq. 2.15. Assuming that ( )x t  is a stationary and zero mean stochastic variable, the 

following applies: 
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Fig. 2.13     Substitution of variables and corresponding integration limits 

Replacing 2t  with 1t τ+ , and changing the integration limits accordingly, implies (as 

illustrated in Fig. 2.13) that 
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T T T T T
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and thus 
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Provided the integral under the auto covariance function is finite, it is then seen that in 
the limit of T → ∞ , the following is obtained 

( ) ( )1
2

i
x xS Cov e dωτω τ τ

π

+∞
−

−∞
= ⋅∫                                (2.83) 
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This shows that the auto spectral density is the Fourier transform of the auto 
covariance function. Vice versa, it follows that the auto covariance function, which is the 
Fourier constant to the spectral density, is given by 

( ) ( ) i
x xCov S e dωττ ω ω

+∞

−∞
= ⋅∫

                              
(2.84) 

Similarly, the cross covariance function together with the cross spectral density will also 
constitute a pair of Fourier transforms: 

( ) ( )1
2

i
xy xyS Cov e dωτω τ τ

π

+∞
−

−∞
= ⋅∫

  

and  ( ) ( ) i
xy xyCov S e dωττ ω ω

+∞

−∞
= ⋅∫  (2.85) 

2.8   Coherence function and normalized co-spectrum 

The coherence function is defined by 

( )
( )

( ) ( )

2
xy

xy
x y

S
Coh

S S

ω
ω

ω ω
=

⋅
                                      (2.86) 

If ( )x t  and ( )y t  are realisations of the same process, then ( ) ( )x yS Sω ω=  and the 

cross-spectrum ( ) ( )xy xxS Sω ω=  is given by 

( ) ( ) ( ) ( )i xx
xx x xxS S Coh e ϕ ωω ω ω= ⋅ ⋅

                           
(2.87) 

( )xxCoh ω  is called the root–coherence function and xxϕ  is the phase spectrum (see 

Eq. 2.79) . In the practical use of cross-spectra all imaginary parts will cancel out, and 
thus it is only the co-spectrum that is of interest. Therefore, a normalised co-spectrum is 
defined 

( )
( )

( ) ( )
Reˆ xy

xy
x y

S
Co

S S

ω
ω

ω ω
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⋅

                                    

(2.88) 
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Again, if ( )x t  and ( )y t  are realisations of the same stationary and ergodic process, 

then ( ) ( )x yS Sω ω=  and the real part of the cross-spectrum is given by 

( ) ( ) ( )ˆRe xy x xyS S Coω ω ω⎡ ⎤ = ⋅⎣ ⎦                              (2.89) 

2.9   The spectral density of derivatives of processes 

It may in some cases be of interest to calculate the spectral density of the time 
derivatives [e.g. ( )x t  and ( )x t ] of processes. In structural engineering this is 

particularly relevant if ( )x t  is a response displacement of such a character that it is 

necessary to evaluate as to whether or not it is acceptable with respect to human 
perception, in which case the design criteria most often will contain acceleration 
requirements. Since (see Eq. 2.59) 

( ) ( ) ( ), i tk
k k k k kx t X t i d e ωω ω ω

∞ ∞
⋅

−∞ −∞
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( ) ( ) ( ) ( )2, i tk
k k k k kx t X t i d e ωω ω ω

∞ ∞
⋅

−∞ −∞
= = ⋅ ⋅∑ ∑                    (2.91) 

and the double sided spectral density in general is given by the complex Fourier 
amplitude multiplied by its conjugated counterpart (see Eq. 2.62), then 
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2 2

*2 2
*

4 4

k k k k k k k k
k k k x k

k k k k k k
k k

k k k x k
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i d i d d d
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i d i d d d
S S

ω ω ω ω
ω ω ω ω

ω ω

ω ω ω ω
ω ω ω ω

ω ω

⎫⎡ ⎤ ⎡ ⎤⋅⎣ ⎦ ⎣ ⎦ ⎪± = = = ±
⎪Δ Δ ⎪
⎬

⎡ ⎤ ⎡ ⎤ ⎪⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪± = = = ±
⎪Δ Δ ⎭  

(2.92) 

Similarly, cross spectral densities between a fluctuating displacement and its 
corresponding velocity and acceleration are given by 

( ) ( ) ( ) ( )
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( ) ( ) ( )

( )

( )
( ) ( ) ( )
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* *

* 2
*
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*
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k k k k k
k k
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k k k k k k k k
k k k x k

xx

xx
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d i d d d
S i i S

d i d d d
S S

i d i d d d
S i i S

ω ω ω
ω ω ω ω

ω ω
ω ω ω

ω ω ω ω
ω ω

ω ω ω ω
ω ω ω ω

ω ω

⎫⎡ ⎤ ⎡ ⎤⋅⎣ ⎦ ⎣ ⎦ ⎪± = = = ±
⎪Δ Δ
⎪⎡ ⎤⎡ ⎤ ⋅ ⎪⎣ ⎦ ⎢ ⎥ ⎪⎣ ⎦± = = − = − ± ⎬Δ Δ ⎪
⎪⎡ ⎤⎡ ⎤ ⋅⎣ ⎦ ⎢ ⎥ ⎪⎣ ⎦± = = = ± ⎪Δ Δ ⎪⎭  

(2.93) 
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In the limit of  and T N → ∞  this may be written on the following continuous form 
 

( ) ( ) ( )
( ) ( )

( )
( )

2

2 3

4

1

. .

x xx xx

x xx x

x

iS S S
S S i S

sym S sym

ω ωω ω ω
ω ω ω ω ω

ω ω

⎡ ⎤−⎡ ⎤± ± ± ⎢ ⎥⎢ ⎥± ± = ⋅ ±⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥±⎣ ⎦ ⎢ ⎥⎣ ⎦       

(2.94) 

 
Because ( )xS ω±  is symmetric it is seen that for a stationary stochastic process 

 

( )3

0
0

xx
x

xx

iCov
S d

Cov i

ω
ω ω

ω

∞

−∞

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⋅ ± =⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
∫                           (2.95) 

Thus, the spectral density of time derivatives of processes may be obtained directly from 
the spectral density of the process itself. Since the single sided spectrum is simply twice 
the double sided, Eq. 2.94 will also hold if ( )xS ω± , ( )xS ω±  and ( )xS ω±  are replaced 

by ( )xS ω , ( )xS ω  and ( )xS ω . 

From ( )xS ω  and ( )xS ω  the average zero crossing frequency ( )0xf  of the process 

( )x t  may be found. Referring to Eq. 2.34, 2.56 and introducing ( ) ( )2
x xS Sω ω ω= , the 

following applies: 

( )
( )

( )

1 / 2

2

0 2

0

0

1 1 1
0

2 2 2x

x
x

x
x

S d

f

S d

ω ω ω
σ μ

π σ π π μ
ω ω

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ = ⋅ = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫
                (2.96) 

where for convenience the so–called thn  spectral moment ( )
0

n
n xS dμ ω ω ω

∞

= ⋅∫
 

has 

been introduced. 

2.10   Spatial averaging in structural response calculations 

A typical situation in structural engineering is illustrated in Fig. 2.14. A cantilevered 
tower–like beam is subject to a fluctuating short term (stationary) and distributed wind 
load. The problem at hand is to predict a load effect, e.g. the bending moment at the 
base. It is for simplicity assumed that the beam is so stiff that it is not necessary  
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to include any dynamic amplification. It is taken for granted that the wind load may be 
split into a mean and a fluctuating part, i.e. 

( ) ( ),y y ytot
q q x q x t= +

                               
(2.97) 

where ( )yq x  is a deterministic quantity and ( ),yq x t  is a stochastic variable. 

Correspondingly, the load effect is split into a mean and a fluctuating part 

( )totM M M t= +                                        (2.98) 

 

Fig. 2.14     Cantilevered tower type of beam subject to fluctuating wind 

Since M  may be obtained from ( )yq x  alone it is then also a deterministic quantity. 

Thus, the prediction of M  only involves the calculation of a simple static load effect, 
and it will not be pursued herein. The instantaneous value of ( )M t  involves the same 

simple static calculation, but ( )M t  is a stochastic variable, and it is only its statistical 

properties (i.e. its variance and auto spectral density) that can be predicted. From Fig. 
2.14 it is readily seen that 

( ) ( ) ( )
0

,
L

M yM t G x q x t dx= ⋅ ⋅∫                              (2.99) 

where L is the total (or flow exposed) length of the beam and ( )MG x  is the influence 

function for the bending moment at the base [in this case ( )MG x x= ]. The variance of 

( )M t  is then given by 
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( ) ( ) ( )
2

22

0 0 0

1 1
lim lim ,

T T L

M M yT T
M t dt G x q x t dx dt

T T
σ

→∞ →∞

⎡ ⎤
⎡ ⎤= = ⋅ ⋅⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∫ ∫ ∫

    

(2.100) 

It is desirable to perform statistics only on ( ),yq x t , as this is the only time domain 

variable on the right hand side of the equation. This may be obtained by splitting the 
squared integral into a product of two identical integrals, only made distinguishable by 
letting them contain different space variables, one labelled 1x  and the other 2x , Thus, 

the following is obtained 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1 2 2 2

0 0 0

1 2 1 2 1 2
0 0 0

1
lim , ,

1
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⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫
 

(2.101) 

Recalling that the cross covariance function of ( ),yq x t  is given by 

( ) ( ) ( )

( ) ( ) ( )

0

1 2
0

1
, 0 lim , ,

1
lim , ,

T

q q y yy y T

T

y y qyT

Cov x q x t q x x t dt
T

q x t q x t dt Cov x
T

τ
→∞

→∞

Δ = = ⋅ + Δ

= ⋅ = Δ

∫

∫
    (2.102) 

where the separation 2 1x x xΔ = − , and introducing the covariance coefficient 

( ) ( ) 2/q q qy y y
x Cov xρ σΔ = Δ , it is seen that Eq. 2.101 simplifies into 

( ) ( ) ( )2 2
1 2 1 2

0 0

L L

M q M M qy y
G x G x x dx dxσ σ ρ= ⋅ ⋅ ⋅ Δ∫ ∫

            
(2.103) 

The square root of the double integral 

( ) ( ) ( )
1 / 2

1 2 1 2
0 0

L L

M M M qy
J G x G x x dx dxρ

⎡ ⎤
= ⋅ ⋅ Δ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫

              
(2.104) 

is in wind engineering often called the joint acceptance function, because it contains the 
necessary statistical (i.e. variance) averaging in space. Thus, 
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M q My
Jσ σ= ⋅

                                         
(2.105) 

Similarly, the auto spectral density of ( )M t  may be obtained by taking the Fourier 

transform on either side of Eq. 2.99 

( ) ( ) ( )
0

,
L

M M qy
a G x a x dxω ω= ⋅ ⋅∫

                      

(2.106) 

and applying Eq. 2.67 
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( ) ( ) ( ) ( )1 2 1 2
0 0

,
L L

M M M qy
S G x G x S x dx dxω ω⇒ = ⋅ ⋅ Δ∫ ∫

             

(2.107) 

where ( ),qy
S x ωΔ  is the cross spectral density of the fluctuating part ( ),yq x t  of the 

distributed load, and 2 1x x xΔ = −  is spatial separation. Integrating over the entire 

frequency domain will then render the variance of ( )M t : 
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∫ ∫ ∫ ∫

∫ ∫ ∫
 

(2.108) 

where qy
σ  is defined above and ( )ˆ ,qy

S x ωΔ  is the normalised (but not non–

dimensional) version of ( ),qy
S x ωΔ , i.e. 

( ) ( ) 2ˆ , , /q q qy y y
S x S xω ω σΔ = Δ

                        
(2.109) 

Introducing ˆ /x x L=  and correspondingly 1 2ˆ ˆ ˆx x xΔ = − , then a normalised frequency 

domain version of the joint acceptance function may be defined by 
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( ) ( ) ( ) ( )
1 / 21 1

1 2 1 2
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆ,M M M qy
J G x G x S x dx dxω ω

⎡ ⎤
= ⋅ ⋅ Δ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫      (2.110) 

in which case the following is obtained: 

( )
1 / 2

2

0

ˆ
M q My

L J dσ σ ω ω
∞⎡ ⎤

= ⋅ ⋅ ⎢ ⎥
⎢ ⎥⎣ ⎦
∫                              (2.111) 

Under ideal conditions Eqs. 2.111 and 2.105 should render identical results. Obviously, 
Eq. 2.105 is the simpler choice, as 2.111 contains frequency domain integration as well 
as spatial averaging. 

The necessity of a transition from the product of two line integrals into a volume 
integral in Eq. 2.101 (and similarly in Eq. 2.107), is better understood if the integral is 
replaced by a summation, as illustrated in Fig. 2.15. 

I.e., the load is split into N concentrated loads 

( ) ( ),k y kQ t q x t x= ⋅ Δ                                      (2.112) 

 

Fig. 2.15     Calculation of base moment in cantilevered tower type of beam subject to 
fluctuating wind 
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(see Fig. 2.14 and Eq. 2.99, and assuming for simplicity that xΔ  is a constant), each 
rendering a base moment contribution 

( ) ( ) ( )k M k kM t G x Q t= ⋅                               (2.113) 

such that the total bending moment at the base is 

( ) ( )
1

N

k
k

M t M t
=

= ∑                                        (2.114) 

Its variance is then given by (see Eq. 2.100) 
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(2.115) 

As can be seen, the transition from a single summation to a double summation is 
necessary to capture all the cross products. Introducing Eqs. 2.112 and 2.113, the 
following is obtained: 
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σ ρ

= =
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∑ ∑            (2.116) 

where ( )qy
xρ Δ  is the covariance coefficient to the distributed load, and where 

m nx x xΔ = − . The expression in Eq. 2.116 is equivalent to that which was obtained in 

Eq. 2.103. 
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Example 2.4 
 

Considering the cantilevered beam shown in Fig. 2.15, then the reduced variance of the base 
moment fluctuations is given by: 

( ) ( ) ( )
2

2 2
1 1

1 ˆ ˆˆ ˆ ˆ
N N

M
M n M m qy

n mqy

G x G x x
L N

σ ρ
σ = =

⎛ ⎞
⎜ ⎟ = ⋅ ⋅ Δ
⎜ ⎟
⎝ ⎠

∑ ∑
 

where ( )ˆ ˆ ˆM MG x G L x L x= = = , m nx x xΔ = −  and x̂ x LΔ = Δ . Assuming that the 

covariance coefficient ( ) ( )exp z
q uy

x x Lρ Δ = − Δ  and setting for simplicity z
uL L= , then 

( ) ( )ˆexpqy
x xρ Δ = −Δ . Choosing a reduced integration increment 0.2x LΔ =  and 

corresponding position vector [ ]ˆ 0.1 0.3 0.5 0.7 0.9 Tx =  then the influence function 

multiplications ( ) ( )ˆ ˆˆ ˆM n M mG x G x⋅  are given by 

 
 

( )ˆ ˆM nG x  

0.1 0.3 0.5 0.7 0.9 

( ) ( )ˆ ˆˆ ˆM n M mG x G x⋅ : 

 
0.1 0.01 0.03 0.05 0.07 0.09 
0.3 0.03 0.09 0.15 0.21 0.27 
0.5 0.05 0.15 0.25 0.35 0.45 
0.7 0.07 0.21 0.35 0.49 0.63 

 
 

( )ˆ ˆM mG x

 0.9 0.09 0.27 0.45 0.63 0.81 
 
 

The covariance coefficient ( )ˆqy
xρ Δ  is given by: 

 
ˆnx  

0.1 0.3 0.5 0.7 0.9 

( )ˆqy
xρ Δ : 

 
0.1 1 0.82 0.67 0.55 0.45 
0.3 0.82 1 0.82 0.67 0.55 
0.5 0.67 0.82 1 0.82 0.67 
0.7 0.55 0.67 0.82 1 0.82 

 
 

ˆmx  

0.9 

 

0.45 0.55 0.67 0.82 1 
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The inner product ( ) ( ) ( )ˆ ˆˆ ˆ ˆM n M m qy
G x G x xρ⋅ ⋅ Δ  is then: 

 
 n 1 2 3 4 5 
   

m  ( ) ( ) ( )ˆ ˆˆ ˆ ˆM n M m qy
G x G x xρ⋅ ⋅ Δ  

1  0.01 0.025 0.034 0.039 0.041 
2  0.025 0.09 0.123 0.141 0.149 
3  0.034 0.123 0.25 0.287 0.302 
4  0.039 0.141 0.287 0.49 0.517 
5  0.041 0.149 0.302 0.517 0.81 

 

As can be seen, the inner product ( ) ( ) ( )ˆ ˆˆ ˆ ˆM n M m qy
G x G x xρ⋅ ⋅ Δ  is symmetric about the 

diagonal m n=  and increasing with increasing distance from the base of the beam. The reduced 
variance of the base moment fluctuations is given by: 

[ (

)

2

2 2
1

0.01 0.09 0.25 0.49 0.81 2 0.025 0.034 0.039 0.041
5

0.123 0.141 0.149 0.287 0.302 0.517 0.2

M

qy
L

σ
σ

⎛ ⎞
⎜ ⎟ = + + + + + ⋅ + + +
⎜ ⎟
⎝ ⎠

⎤+ + + + + + ≈⎦

 

Thus, the standard deviation of the base moment is given by 

20.45M qy
Lσ σ⇒ ≈ ⋅ ⋅  

(See further calculations in Chapter 7.3.) 
 

  
 



Chapter 3 

STOCHASTIC DESCRIPTION OF 
TURBULENT WIND 

The description of the wind field given below is only intended to provide the theoretical 
basis that is necessary for the ensuing calculations of structural response. More compre-
hensive descriptions have been presented by Simiu & Scanlan [4] and by Dyrbye & 
Hansen [5], where guidelines with respect to the choice of typical input parameters to the 
stochastic description of the wind field may be found. Such information has also been 
given by Solari & Piccardo [6]. The most comprehensive source of wind engineering 
data is provided by Engineering Science Data Unit [7]. Basic theory of turbulence may 
be found in many text books, see e.g. Batchelor [8] and Tennekes & Lumley [9]. As 
shown in Fig. 1.3.a the wind velocity vector at a certain point is described by its compo-

nents (see Eqs. 1.2 – 1.4) in the Cartesian coordinate system ( ), ,
f

x y z  with fx  in the 

main flow direction and fz  in the vertical direction. It is taken for granted that the wind 

field met by the structure is stationary and homogeneous within the time and space that 
is considered. A statistical description of the wind field comprises three levels: the long 
term variation of the mean wind velocity, the short term single point time domain varia-
tion of the turbulence components, and finally, the short term spatial distribution of the 
turbulence components. 

3.1   Mean wind velocity 

The statistical properties of the mean wind velocity ( )fV z  are required in order to estab-

lish a basis for the calculation of structural design load effects during the weather condi-
tions that have been deemed representative for the purpose of obtaining sufficient safety 
against structural failure. A design check with respect to ultimate structural strength will 
only require information regarding the wind field properties under a characteristic ex-
treme weather condition, but the properties under several representative weather  
conditions are required if vortex shedding may occur. If a fatigue design check is  
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relevant even further information is required with respect to the wind climate on the 
construction site. Thus, mean wind statistics must be based on data covering numerous 

meteorological observations over several years, as it is the values of ( )fV z  under a 

large variation of weather conditions that are of interest (or ideally under any possible 
weather condition at the site in question). Such statistics are usually performed on the 

mean wind velocity at 10 mfz =  and averaged over a period of 10 minT = . A typi-

cal instantaneous wind velocity profile in the main flow direction is illustrated on the left 

hand side of Fig. 3.1, together with the mean velocity and turbulence variation with fz . 

 

Fig. 3.1     The wind velocity and turbulence profiles 

A theoretical approach renders a natural logarithmic profile for the height variation of 
the mean wind velocity (first shown by Millikan [30]) 

( )
( )

min
10 0

10 min
min

0

ln  when 

10
ln  when 

f
T f

f

T f

z
k z z

V z z

V z
k z z

z

⎧ ⎛ ⎞
⋅ >⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ ⋅ ≤⎜ ⎟⎪
⎝ ⎠⎩

                       (3.1) 

where the index 10 has been added to V, indicating an averaging period of 10 minutes, 
while Tk , 0z  and minz  are parameters characteristic to the terrain in question. 

The height minz  has been introduced because such a velocity profile has a limited va-

lidity close to the ground, where turbulence and directional effects prevail.  
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0z  is usually called the roughness length. It coincides with the height at which the ve-

locity variation according to Eq. 3.1 is zero. Typical values of Tk  and 0z   

varies from about 0.15 and 0.01 for open sea and countryside without obstacles to about 
0.25 and 1.0 for built up urban areas. Corresponding values of minz  varies between 2 

and about 15 m. (Other profiles, e.g. the power law profile, may be found in the  
literature.) 

Any statistical properties related to the mean wind velocity is in the following associ-

ated with ( )10 refV z , where refz  is a chosen reference height. In general, 10 mrefz =  as 

mentioned above, but for a bridge whose main girder is located at a certain height above 

the sea or terrain, refz  will often be chosen at this height. To simplify notations 

( )10 refV z  is set equal to rV  or aV  for the remaining part of this chapter. The indexes r 

and a indicate whether the relevant statistical calculations have been performed on the 
parent population or on a reduced population of annual maxima. Data from a large popu-
lation of parent observations may usually be fitted to a Weibull distribution, i.e. the cu-
mulative and corresponding density distributions are given by 

( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

( )

( )1

, 1 exp

, exp

r r

r
r

V
P V V

dP V V
p V

dV

γ ϕ

γ ϕ γ ϕ

ϕ α ϕ
β ϕ

α ϕ γ ϕ
ϕ

β ϕ β ϕ β ϕ

−

⎫⎧ ⎫⎡ ⎤⎪ ⎪ ⎪≤ = − ⋅ − ⎢ ⎥⎨ ⎬ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭ ⎪
⎪
⎬
⎪⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎪⋅ ⎪ ⎪= = ⋅ ⋅ −⎢ ⎥ ⎢ ⎥⎨ ⎬⎪

⎢ ⎥ ⎢ ⎥⎪ ⎪⎪⎣ ⎦ ⎣ ⎦⎩ ⎭⎭  

(3.2) 

where ϕ  is the main flow direction and ( )α ϕ  and ( )β ϕ  are parameters to be fitted to 

the relevant data. If the directionality effect is omitted, i.e. for omni-directional wind, the 
data may usually be fitted to a Rayleigh density distribution 

( )
2

2

1
exp

2r
mm

V V
p V

VV

⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦                                  

(3.3) 

where mV  is the velocity at the apex of the distribution, as illustrated in Fig. 3.2. Thus, 

the probability μ  of exceeding a certain limiting value sV  (see Fig. 3.2) is given by 
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r r s r r s
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V
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μ

μ

⎡ ⎤⎛ ⎞⎢ ⎥= > = − ≤ = − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⇒ = −            

(3.4) 

Taken from the entire population of observations, independent of direction, sV  is then 

the velocity that has a probability μ  of being exceeded. 

 

Fig. 3.2     The probability density distribution of the mean wind velocity 

For a suitably small value of μ , sV  may be interpreted as what can be expected to be 

representative under severe weather conditions on the site. However, this is usually not 
considered the appropriate procedure for singling out a characteristic mean wind velocity 
for design checks against ultimate structural failure. For the purpose of structural design, 
the mean wind velocity that corresponds to an extreme weather condition with a certain 
small probability of occurrence is rather based on a limited data set of annual maxima, 

aV , as illustrated on the right hand side of Fig. 3.2. This data is usually dealt with in the 

form of the mean wind velocity pressure 2 / 2Vq Vρ=  and fitted to a Fischer – Tippet 

Type I distribution 

( ) exp exp V
a V Va

q
P q q

α
β

⎡ ⎤−⎛ ⎞≤ = − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                              (3.5) 
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where Vqα γ β= − ⋅  and ( )6 / qβ π σ= ⋅ , and where Vq  is the mean value of the 

velocity pressure recordings, qσ  is the corresponding standard deviation and 0.5772γ ≈  

is the Euler constant. α  and β  are parameters that are characteristic to the distribution 

of the recorded data. If the return period pR  is defined as the average number of years 

between rare Va
q  events, then a small probability μ  of exceeding a certain limiting 

design value Vd
q  

( ) ( ) 1
1a V V a V Va d a d

p

P q q P q q
R

μ = > = − ≤ ≈                      (3.6) 

and thus, the Vd
q  that corresponds to such a return period is given by 

( )
( ) ( )

1
1 exp exp       

ln ln 1 1/

Vd
a V Va d

p

V p pd

q
P q q

R

q R R

α
β

α β

⎫⎡ ⎤−⎛ ⎞
⎪− = ≤ = − −⎢ ⎥⎜ ⎟ ⎪⎜ ⎟⎢ ⎥⎝ ⎠ ⎬⎣ ⎦
⎪⎡ ⎤⇒ = − ⋅ − − ⎪⎣ ⎦ ⎭              

(3.7) 

It is the mean wind velocity dV  that corresponds to such a value of Vd
q  that is used as a 

representative basis for the design of structures. pR  is in general subject to standardisa-

tion, e.g. 50pR = years, in which case ( )50 3.9Vd
q α β≈ + ⋅ . The ratio / 0.2β α ≈  is 

frequently encountered in the literature. Since 2 / 2V dd
q Vρ= , then a change from 

50pR =  to another return period is given by 

( ) ( ) ( ) ( ){ } ( )/ 50 1 / ln ln 1 1/ / 1 3.9 /d p d pV R V Rβ α β α⎡ ⎤≈ − ⋅ − − + ⋅⎣ ⎦    
(3.8) 

While the above considerations are concerned with the statistical properties of annual 
maxima, it should be mentioned that within any short term (10 min.) stationary weather 
window at high wind velocities it is possible to estimate an extreme value of the velocity 

fluctuations. For instance, at any chosen characteristic design value ( )d pV R , the corre-

sponding extreme value may be obtained by a simple linearization and the broad band 
type of process considerations shown in chapter 2.4. Since the instantaneous velocity 
pressure 

( ) ( ) ( ) ( ) ( ){ }2 2 221 1 1
1 2 / /

2 2 2uq t U t V u t V u t V u t Vρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 
(3.9) 
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at low turbulence and high values of V can be approximated by 

( ) ( )21
1 2

2u
u t

q t V
V

ρ
⎡ ⎤

≈ +⎢ ⎥
⎣ ⎦

                                   (3.10) 

it is seen that the mean value of uq  is 2 2u Vq q Vρ= =  while the fluctuating part is 

( )Vu tρ . The standard deviation of the velocity pressure is then q uu
Vσ ρ σ= , where uσ  

is the standard deviation of the along wind turbulence component. Thus, an extreme 
value of uq  may be obtained by 

2
maxmax

1
2u u p qu

q V q kρ σ= = +
                               

(3.11) 

where pk  is a peak factor (see chapter 2.4, Eq. 2.45). The following is then  

obtained: 

2 2
max

1 1
2 2 p uV V k Vρ ρ ρ σ= +  max 1 2 p uV V k Vσ⇒ = +                (3.12) 

3.2   Single Point Statistics of Wind Turbulence 

While we in the previous chapter were dealing with long term statistics of ten minutes 
mean values, i.e. performing statistics on a data base covering many years of observa-
tions of V , we shall now return to short term statistics on the fluctuating flow compo-

nents ( )u t , ( )v t  and ( )w t . It is single point recordings of these variables within a sta-

tionary period of T=10 min that provide the source for determination of their time and 
frequency domain statistical properties. The sampling frequency within this period is in 
the following assumed to be large, rendering a sufficiently large data base for the extrac-
tion of reliable results. As shown in chapter 1.3, at a certain point ( ), ,

f
x y z , e.g. at 

fz m=10  or at a reference point relevant to the structure in question, it is assumed that 

( ) ( )U t V u t= + , and that the turbulence components ( )u t , ( )v t  and ( )w t  are stationary 

and have zero mean values. 
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For the along wind u  component the situation is illustrated in Fig. 3.3. It is taken for 
granted that statistics performed on time series recordings of each of the  
turbulence components will render three individual zero mean Gaussian probability 
density distributions with variances 

( )
( )
( )

2 2

2 2

02 2

1
u T

v

w

u t

v t dt
T

w t

σ
σ
σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫
                                 

(3.13) 

 

Fig. 3.3     The probability distribution of the along–wind turbulence component 

The corresponding turbulence intensities are defined by 

( ) ( )
( )

n f
n f

f

z
I z

V z

σ
=  where , ,n u v w=                    (3.14) 

A typical variation of the turbulence intensity for the along wind u  component is given 
by 

( ) ( )
( )

0 min

min 0 min

1/ ln /  when    

1/ ln /  when    
f f

u f
f

z z z z
I z

z z z z

⎧ >⎪≈ ⎨
≤⎪⎩

                    (3.15) 
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where 0z  and minz  are defined in Eq. 3.1. Under isotropic conditions (e.g. high above 

the ground) u v wI I I≈ ≈ . In homogeneous terrain up to a height of about 200 m and 

not unduly close to the ground 

3/ 4
1/ 2

v
u

w

I
I

I
⎡ ⎤ ⎡ ⎤≈ ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦                                         

(3.16) 

The auto covariance functions and corresponding auto covariance coefficients (see chap-
ter 2.2) are defined by 

( )
( )
( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )0

1u T

v

w

E u t u tCov u t u t
Cov E v t v t v t v t dt

T
Cov w t w tE w t w t

ττ τ
τ τ τ
τ ττ

⎡ ⎤⎡ ⎤⋅ +⎡ ⎤ ⎡ ⎤⋅ +⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤= ⋅ + = ⋅ +⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ +⎡ ⎤⋅ +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

∫           (3.17) 

( ) ( )
2

n
n

n

Cov τ
ρ τ

σ
=  where , ,n u v w=                    (3.18) 

where τ  is an arbitrary time lag that theoretically can take any value within T± . At 
0τ =  Eq. 3.17 becomes identical to 3.13, and thus 

 ( )0 1nρ τ = =  where , ,n u v w=                           (3.19) 

At increasing values of τ  the auto covariance of the turbulence components diminish, 
and at large values of τ  they asymptotically approach zero, i.e. 

 ( )lim 0nτ
ρ τ

→∞
=  where , ,n u v w=                       (3.20) 

As shown in Eq. 2.19, 

( ) ( )n nCov Covτ τ= −  where , ,n u v w=                      (3.21) 

implying that also ( )nρ τ  is symmetric. A principal variation of the covariance coeffi-

cient for the along wind turbulence component is shown in Fig. 3.4. The time scale 

 ( )
0

n nT dρ τ τ
∞

= ∫  where , ,n u v w=                  (3.22) 
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may be interpreted as the average duration of a u , v  or w  wind gust. Although the 
covariance coefficient in many practical cases may become negative at large values of τ  
it is a usual approximation to adopt 

( ) ( )exp /  n nTρ τ τ= −  where , ,n u v w=                   (3.23) 

In homogeneous terrain, at heights below 100 m, uT  is usually in the range between 5 

and 20 s, while vT  and wT  are in the ranges 2 – 5 and 0 – 2 s. 

 

Fig. 3.4     Auto covariance coefficient for the along–wind turbulence component 

Adopting Taylor’s hypothesis that turbulence convection in the main flow direction 
takes place with the mean wind velocity (i.e. that flow disturbances travel with the aver-
age velocity V ), then the average length scales of u , v  and w  in the fx  direction are 

given by 

( )
0

 xf
n n nL V T V dρ τ τ

∞

= ⋅ = ⋅ ∫  where , ,n u v w=               (3.24) 

These turbulence length scales may be interpreted as the average eddy size of the u , v  
and w  components in the direction of the main flow. 

While auto covariance functions (or coefficients) represent the time domain properties 
of the turbulence components, it is the spectral densities that describe their frequency 
domain properties. In the literature many different expressions have been suggested to fit 
data from a variety of full scale recordings. The following non–dimensional expression 
proposed by Kaimal et. al. [10] is often encountered in the literature: 
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{ }
( )2 5 / 3

ˆ

ˆ1 1.5

n n n

n n n

f S f A f

A fσ
⋅ ⋅

=
+ ⋅ ⋅

 where , ,n u v w=            (3.25) 

and where ˆ /xf
n nf f L V= ⋅ , and xf

nL  is the integral length scale of the relevant turbu-

lence component, as defined in Eq. 3.24 above. 
 

 

Fig. 3.5     Kaimal auto spectra of turbulence components 

Unless full scale recordings indicate otherwise, the following values of the parameter 

nA  may be adopted: 6.8 , 9.4u v wA A A= = = . With these parameters, Eq. 3.25 has 

been plotted in Fig. 3.5. Alternatively, the von Kármán [11] spectra 

{ }
( )2 5 / 62

ˆ4

ˆ1 70.8

u u

u u

f S f f

fσ
⋅ ⋅

=
+ ⋅

                                     (3.26) 
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(3.27) 

have the advantage that they contain only the length scales 
xf

nL  that require fitting to 

the relevant data. 

3.3   The spatial properties of wind turbulence 

The spatial properties of wind turbulence are obtained from simultaneous two point 
recordings of the u , v  and w  components. It is taken for granted that the flow is ho-
mogeneous in space as well as stationary in time. Defining two vectors 

( )
( )
( )

,
,
,

a

u s t
v s t
w s t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

υ       and       

( )
( )
( )

,
,
,

b

u s s t
v s s t
w s s t

τ
τ
τ

⎡ ⎤+ Δ +
⎢ ⎥= + Δ +⎢ ⎥
⎢ ⎥+ Δ +⎣ ⎦

υ                 (3.28) 

where ,f fs x y=  or fz , τ  is a time lag that theoretically can take any value within 

T± and sΔ  is an arbitrary separation (between the two recordings) in the fx , fy  or fz  

directions. Thus, the following three by three covariance matrix may be defined 

( ) ( )
0

1
,

uu uv uw T
T T

vu vv vw a b a b

wu wv ww

Cov Cov Cov
s Cov Cov Cov E dt

T
Cov Cov Cov

τ
⎡ ⎤
⎢ ⎥ ⎡ ⎤Δ = = ⋅ = ⋅⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

∫Cov υ υ υ υ   (3.29) 

where all the relevant covariance functions 

( ),mnCov s τΔ       
, , ,

, ,f f f

m n u v w
s x y z

=⎧⎪
⎨Δ = Δ Δ Δ⎪⎩

                       (3.30) 

may contain separation in an arbitrary direction ,f fs x y=  or fz . 
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Fig. 3.6     Cross covariance of along–wind u component 

The corresponding covariance coefficients are defined by 

( ) ( ),
,  mn

mn
m n

Cov s
s

τ
ρ τ

σ σ
Δ

Δ =
⋅

 
, , ,

, ,f f f

m n u v w
s x y z

=⎧⎪
⎨Δ = Δ Δ Δ⎪⎩

                    (3.31) 

(If the process is not ergodic, then mσ  should be taken at position s , while nσ  should 

be taken at s s+ Δ .) The situation is illustrated in Fig. 3.6 with m u=  and fs y= , 

which is most relevant for a horizontal structure where time series of the turbulence 
components have been recorded at various positions a and b along the span of the struc-
ture. As can be seen from Eq. 3.29 (and 3.30), there are 27 possible covariance func-
tions. However, it is a usual assumption that cross covariance between two different 
turbulence components may be neglected, at least beyond a certain distance above the 
ground. All off-diagonal terms in Eq. 3.29 will then become zero, and the number of 
possible covariance estimates is reduced to nine: 
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ ⋅ + Δ + ⋅ + Δ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫
 

(3.32) 



3.3   THE SPATIAL PROPERTIES OF WIND TURBULENCE 65

 

 
where ,f fs x y=  or fz . The corresponding covariance coefficients are defined by 

( ) ( )
2

,
,  nn

nn
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Cov s
s

τ
ρ τ

σ
Δ

Δ =  
, ,

, ,f f f

n u v w
s x y z
=⎧⎪

⎨Δ = Δ Δ Δ⎪⎩                     

(3.33) 

The covariance properties in the wind field are in general decaying with increasing sepa-
ration sΔ  and time lag τ . A typical decreasing curve at 0τ =  is illustrated in Fig. 3.7. 

 

Fig. 3.7     Spatial cross covariance properties of the wind field 

The situation at 0τ =  is particularly interesting because 

( ) ( )
0

, 0s
n nnL s d sρ τ

∞

= Δ = Δ∫  
, ,

, ,f f f

n u v w
s x y z
=⎧⎪

⎨Δ = Δ Δ Δ⎪⎩
                  (3.34) 

is a characteristic length scale that may be interpreted as the average eddy size of com-

ponent n  in the direction of s . For instance, the length scales ,x xf f
u vL L  and xf

wL  are 

quantities representing the average eddy size of the u , v  and w  components in the 
direction of the main flow. They have previously been presented in Eq. 3.24, and since 
they obviously can be extracted directly from two point data and Eq. 3.34, the use of 

Taylor’s hypothesis behind Eq. 3.24 is obsolete. The remaining six length scales s
nL  

with , ,n u v w=  and ,f fs y z=  are the corresponding quantities that represent the spatial 

properties in a plane perpendicular to the main flow direction. Typical decay curves for 
the u  component are shown in Fig. 3.8, illustrating the spatial interpretation of the inte-
gral length scales. 
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Fig. 3.8     Spatial illustration of the integral length scales 

The spatial properties of turbulence are strongly dependent of the fetch, i.e. the up–
wind terrain. In general, the determination of spatial properties of the turbulence compo-
nents should be based on full scale recordings on the site in question. However, for a 
first approximation and under homogeneous conditions not unduly close to the ground, 
the following may be adopted 

( ) ( ), 0 exp / s
nn ns s Lρ Δ τ Δ= ≈ −  

, ,
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s x y z

=⎧⎪
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                      (3.35) 
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(3.36) 

While cross covariance functions (or coefficients) represent the time and space domain 
properties of the turbulence components, it is the auto and cross spectral densities that 
describe the frequency-space domain properties. In text books on mathematics, the dou-
ble sided cross spectra are usually defined with ω  as the frequency variable, in which 
case (see chapter 2.6 – 2.8) 
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but in wind engineering the frequency f  (in Hz) is usually preferred, and then the dou-

ble sided cross spectra are defined by (see Eqs. 2.68 and 2.75) 

( ) ( ) 2, , f
nn nnS s f Cov s e dπ ττ τ

+∞
−

−∞

Δ = Δ ⋅∫  
, ,

, ,f f f

n u v w
s x y z
=⎧⎪

⎨Δ = Δ Δ Δ⎪⎩
 (3.38) 

The cross spectra are usually defined by the single point spectra, ( )nS f , the coherence 

function, ( ),nnCoh s fΔ  and the phase spectra, ( ),nn s fϕ Δ , as shown in Eq. 2.87, i.e. 

( ) ( ) ( ) [ ], , expnn n nnS s f S f Coh s f iϕΔ = ⋅ Δ ⋅   
, ,

, ,f f f

n u v w
s x y z
=⎧⎪

⎨Δ = Δ Δ Δ⎪⎩
     (3.39) 

Since the wind field is usually assumed homogeneous and perpendicular to the span of 
the (line-like) structure, phase spectra may be neglected. It should however be acknowl-
edged that in structural response calculations spatial averaging takes place along the span 
of the structure (see chapters 6.4 and 6.5), and then all imaginary parts cancel out and 
only a double set of real parts remain. Taking it for granted that the single point spec-
trum ( )nS f  is known, it is then rather the normalised co-spectrum 
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⎨Δ = Δ Δ Δ⎪⎩            

(3.40) 

that is necessary to give special attention to in wind engineering. Some general expres-
sions occur in the literature. For a first approximation and under homogeneous condi-
tions, the following may be adopted 
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where:                                
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                              (3.42) 
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Caution should be exercised as the variation in nsc  values is considerable (see Solari & 

Piccardo [6]). The simple expression in Eq. 3.41 has the obvious disadvantage that the 
normalised co–spectrum becomes unity at all sΔ  when 0f = , whereas a typical normal-

ised co–spectrum will decay at any value of f  as illustrated in Fig.3.9. It also has the 

disadvantage that it is positive in the entire range of sΔ . (It may be shown that this is in 
conflict with the definition of zero mean turbulence components.) Under the assumption 
of isotropic conditions, Krenk [12] has derived the following expression applicable for 
the along–wind u  component 

( ) ( )ˆ , 1 exp
2uu

s
Co s f s

κ ΔΔ κ Δ⋅⎛ ⎞= − ⋅ − ⋅⎜ ⎟
⎝ ⎠

                         (3.43) 

where                                
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Fig. 3.9     Typical reduced co–spectrum variation 



Chapter 4 

BASIC THEORY OF STOCHASTIC 
DYNAMIC RESPONSE 

CALCULATIONS 

The general finite element theory of wind induced dynamic response calculations for 
civil engineering line-like structures is presented in Chapter 9. In the chapter below the 
theory is presented in a continuous version tailored for the response and cross sectional 
force calculations in Chapter 6 and 7 where it is taken for granted that the necessary 
mode shapes are known and that they may be assembled in separate y , z  and θ  direc-

tion components. The reason for this choice is that it represents an effective solution 
focusing directly on the important wind load and displacement degrees of freedom. 

4.1   Modal Analysis and Dynamic Equilibrium Equations 

The relevant cross sectional displacements and forces are illustrated in Fig. 4.1. (See also 
Fig. 1.3.) It is assumed that displacements and loads (all referred to the  
 

 

Fig. 4.1     Cross sectional displacements and loads 
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shear centre of the cross section) may be split into the sum of a time invariant mean part 
and a fluctuating part 

( ) ( ) ( )
( ) ( ) ( )

, ,
, ,

tot

tot

x t x x t
x t x x t

⎫= + ⎪
⎬= + ⎪⎭

r r r

q q q
                                      (4.1) 

each containing three components (horizontal, vertical and torsion), i.e.: 

( )
T

y zx r r rθ⎡ ⎤= ⎣ ⎦r  ( ),
T

y zx t r r rθ⎡ ⎤= ⎣ ⎦r                      (4.2) 

( ) T
y zx q q qθ⎡ ⎤= ⎣ ⎦q  ( ),

T
y zx t q q qθ⎡ ⎤= ⎣ ⎦q              (4.3) 

In the following the mean values of the response are considered trivial. The entire focus 
is on the calculation of the variances of the fluctuating displacement components. The 
solution will be based on a modal frequency domain approach. Thus, it is assumed that a 
sufficiently accurate eigen–value solution is available, and that it contains the necessary 
number of eigen-frequencies and corresponding eigen-modes. That they are orthogonal 
goes without saying. Scaling of mode shapes is optional, but consistency is required such 
that the relative difference between cross sectional displacement and rotation compo-
nents is maintained. It is taken for granted that the eigen-value solution has been ob-
tained in vacuum or in still air conditions. Such a solution has usually been obtained 
from some finite element formulation (see Chapter 9), and for line-like beam type of 
elements the eigen-modes will then occur as vectors usually containing six components 
in each element node, three displacements and three rotations. In the development of the 
theory below the number of eigen–value components is reduced, focusing on the degrees 
of freedom associated with yr , zr  and rθ . Thus, the mode shape components associated 

with an arbitrary mode is the displacements yφ , zφ  and the cross sectional rotation θφ  

that has been extracted from a finite element type of solution. It should be noted that the 
mode components are formally treated as continuous functions, and therefore the two 
other rotation components may be retrieved from the first derivatives of yφ  and zφ . It is 

then only the x–axis displacement (i.e. the component in the direction of the main span) 
that is entirely discarded, but this is not considered important since it is not directly asso-
ciated with any flow induced load. 

 

  
 

Example 4.1 
Given a simply supported beam with a single symmetric channel type of cross section as shown in 
Fig. 4.2. The system contains three displacement components: y(x,t), z(x,t) and θ(x,t), all referred 
to the shear centre, which in this case does not coincide with the centroid. Disregarding any exter-
nal loading and damping contributions, the differential equilibrium conditions are given by (see 
Timoshenco, Young & Weaver [1], chapter 5.21): 
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( )
4 2

4 2

4 2
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θ

θ θ θ

∂ ∂+ − ⋅ =
∂ ∂
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∂ ∂
∂ ∂ ∂ ∂− + ⋅ − =
∂ ∂ ∂ ∂

 

where EIz and EIy are cross sectional stiffness with respect to bending in the y and z directions, GIt 
and EIw are the corresponding torsion stiffness associated with St.Venant’s torsion and warping, 
my and mz are translational mass (per unit length), mθ is rotational mass (with respect to the shear 
centre) and e is the vertical distance from the shear centre to the centroid. Obviously my=mz (for 

simplicity they are both set equal to m) and 2
pm I meθ ρ= +  

 

Fig. 4.2     Simply supported beam with channel type of cross section 

These equations are satisfied over the entire span for the following displacement  
functions 

( )
( )
( )

( )
,
, ,
,

y x t
z x t f x t

x tθ

⎡ ⎤
⎢ ⎥ = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

a  where 
( ) ( ), sin exp

T
y za a a

n x
f x t i t

L

θ

π ω

⎧ ⎡ ⎤= ⎣ ⎦⎪
⎨
⎪ = ⋅
⎩

a
 

and 1,2,.......,n N= . Introducing this into the differential equations above, the following eigen-

value type of problem is obtained: ( )2ω− ⋅ =K M a 0 , where: 

4

4

2 2 2
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n
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⎢ ⎥

⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞ +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

K   and  
0

0 0
0

m m e
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m e mθ

− ⋅⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− ⋅⎣ ⎦

M  
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There are two independent eigen–value solutions to this problem. First, there is one that only 
involves z(x,t) displacements, defined by 

4
2 0y z

n
EI m a

L
π ω

⎡ ⎤⎛ ⎞ − ⋅ =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

which will render n eigen–values and corresponding eigen–vectors 

( )2
1 4

y
n

EI
n

mL
ω π=  and ( )1

0
sin 1

0
n

n x
x

L
π

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

φ  

The second solution involves a combined motion of y(x,t) and θ(x,t) displacements. It is defined by 

4
2 2

2 2 2
2 2

2

z
y

w
t

n
EI m me

aL

an EIn
me GI m

L L
θ

θ

π ω ω

ππω ω

⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟ ⎡ ⎤⎝ ⎠⎢ ⎥
=⎢ ⎥⎢ ⎥⎛ ⎞ ⎢ ⎥⎛ ⎞ ⎣ ⎦⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

0  

and it will render two different eigen–values and corresponding eigen–vectors: 

1/2
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ω ωω
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π
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π
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where: 
4
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a e K
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It may be of some interest to develop the modal mass associated with these mode shapes. The 
cross sectional mass matrix is given by [ ]0 diag m m mθ=M , and thus 

2
1 1 0 1

0 0

sin / 2
L L

T
n n n

n x
M dx m dx mL

L
π= = =∫ ∫φ M φ  

( ) ( )2 2 2
2 2 0 2 2 2

0 0

ˆ ˆsin / 2
L L

T
n n n

n x
M dx m a m dx m a m L

Lθ θ θ θ
π= = + = +∫ ∫φ M φ  

3 3 0 3 2
0

L
T

n n n n
M dx M= =∫φ M φ  
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In this case mode shapes have been normalised with the displacement component, and therefore 
the rotation component in the mode shape vector has the unit m-1 while the modal mass has the 
unit kg. 
  

 
 
In a general structural eigen–value problem 

( )ω− ⋅ =2K M Φ 0
                                             

(4.4) 

the modes are usually defined M-orthonormal, i.e. such that 

 T ⋅ ⋅ =Φ M Φ I                                                (4.5) 

where I  is the (diagonal) identity matrix. It should be acknowledged that prior to any 
scaling of the modes their components have units meters or radians, and that after any 
scaling has taken place relative units must be maintained (as shown in the example 
above). It should also be noted that from a finite element solution the eigen-vectors will 
emerge in accordance with the chosen degrees of freedom in the system. Below, these 
original mode shape vectors have been rearranged into separate yφ , zφ  and θφ  compo-

nents, each associated with the yr , zr  and rθ  displacement components as illustrated in 

Fig. 4.3. The reason for this choice is that in Chapters 6 and 7 it will facilitate an effec-
tive solution strategy focusing directly on the important yq , zq  and θq  load components 

and corresponding displacement degrees of freedom. 
In the mathematical development of a frequency domain response calculation theory 

that follows below, the cross sectional displacement and load components are as men-
tioned above formally taken as continuous function. The motivation behind this choice is 
mainly convenience, but it is also for practical reasons as spatial load integration will 
most often require mode shape vectors in a considerably finer element mesh than what is 
considered sufficient for the eigen–value solution from which they have been obtained. 
After the theory has been developed the return to discrete vectors will be shown wher-
ever this is necessary for a convenient numerical solution. The basic assumption behind 
a modal approach is that the structural displacements ( ),x tr  may be represented by the 

sum of the products between natural eigen–modes 

( ) T
i y z i

x θφ φ φ⎡ ⎤= ⎣ ⎦φ                                        (4.6) 

and unknown exclusively time dependent functions ( )i tη , i.e. 
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( )
( )
( )
( )

( ) ( ) ( )
mod

1

 

,
yN

z i
i

i

x

x t x t x t
xθ

φ
φ η
φ=

⎡ ⎤
⎢ ⎥

= ⋅ = ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

∑r Φ η                         (4.7) 

where Nmod is the number of modes that has been deemed necessary for a sufficiently 
accurate or representative solution. 

 

Fig. 4.3     Mode shapes 

The mode shape matrix ( )xΦ  and the vector ( )tη  that contains the so-called gener-

alised coordinates are defined by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 mod

1 mod

... ...

..... .....

i N

T
i N

x x x x

t t t tη η η

⎫⎡ ⎤= ⎣ ⎦⎪
⎬

⎡ ⎤ ⎪= ⎣ ⎦ ⎭

Φ φ φ φ

η
                  (4.8) 

The introduction of Eq. 4.7 into the equilibrium equations, followed by consecutive 
weighing with each (orthogonal) mode shape and span-wise integration will then render 

modN  equivalent modal equilibrium conditions 

0 0 0 tot⋅ + ⋅ + ⋅ =M η C η K η Q                               (4.9) 
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where the zero index indicate that they contain structural properties in vacuum or in still 
air, and where the modal mass, damping and stiffness matrices are given by 

0

0

0

i

i

i

diag M

diag C

diag K

⎫⎡ ⎤= ⎣ ⎦⎪
⎪⎡ ⎤= ⎬⎣ ⎦
⎪

⎡ ⎤ ⎪= ⎣ ⎦ ⎭

M

C

K

 where 

( )0

2

2

T
i i i

L

i i i i

i i i

M dx

C M

K M

ω ζ

ω

⎧ = ⋅ ⋅
⎪
⎪⎪ =⎨
⎪

=⎪
⎪⎩

∫ φ M φ

              (4.10) 

The modal load vector in Eq. 4.9 is given by 

1 mod
... ...

T

tot i N tot
Q Q Q⎡ ⎤= ⎣ ⎦Q

                            
(4.11) 

where: 

( )
exp

T
i i tottot

L

Q dx= ⋅∫ φ q

                                  

(4.12) 

In Eq. 4.10 iω  are the eigen-frequencies and iζ  are the damping ratios, each associated 

with the corresponding eigen-mode. It is in the following assumed that the structural 
damping ratios iζ  are known quantities, chosen from experimental experience or an 

acknowledged code of practice, and that a pertinent mode shape variation has been 
adopted (e.g. a Rayleigh type of frequency dependency). The three by three mass matrix 

( ) ( ) ( )0 y zdiag m x m x m xθ⎡ ⎤= ⎣ ⎦M                              (4.13) 

contains the cross sectional mass properties associated with the y, z and θ degrees of 
freedom, all taken with respect to the shear centre. (It may often be more convenient to 

calculate modal mass matrix 0M  in Eq. 4.9 directly from the nodal mass lumping used in 

the preceding finite element eigen–value solution and the corresponding eigen-vectors, 
instead of the formal calculation procedures indicated above, as these already contain all 
the structural properties that are necessary for such a calculation.) 

The cross sectional load vector totq  contains the total drag, lift and moment loads per 

unit length (see Fig. 4.1) including flow induced as well as motion induces loads, i.e. 

θ⎡ ⎤= ⎣ ⎦
T

tot y z tot
q q qq

                                    
(4.14) 
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The symbolic integration limits L and Lexp indicate integration over the entire structure or 

over the wind exposed part of the structure. The modal matrices 0M , 0C  and 0K  on the 

left hand side of Eq. 4.9 are all diagonal due to the orthogonal properties of the eigen-
modes. However, we shall later see that motion induced parts of the load will be moved 
to the left hand side of the modal equilibrium equation, thus rendering non-diagonal 
mass, damping and stiffness matrices for the combined flow and structural system. For 
educational reasons the development of the necessary theory is divided into three parts, 
depending on the complexity of the problem. The first part of the presentation is dealing 
with the situation that the relevant eigen-frequencies are well separated and each mode 
only contains one component. The next is dealing with the same situation but now with 
each mode containing all three components. The final presentation is considering the 
situation that a full multi-mode investigation is required. 

4.2   Single mode single component response calculations 

In this first section it is assumed that the eigen-frequencies are well spaced out on the 
frequency axis. Furthermore, the cross sectional shear centre is assumed to coincide (or 
nearly coincide) with the centroid and there are no other significant sources of mechani-
cal or flow induced coupling between the three displacement components. These as-
sumptions imply that coupling between modes may be ignored, and that each mode 
shape only contains one component, i.e. any of the modN  mode shapes is purely horizon-

tal, vertical or torsion. The response covariance between modes will then be zero, and 
thus, the variance of the total dynamic horizontal, vertical or torsion displacement re-
sponse can be obtained as the sum of contributions from each mode, i.e. the variance of a 
displacement component is the sum of all variance contributions from excited modes 
containing displacement components exclusively in the y, z or θ direction (see Eq. 2.27). 

E.g. 2
yσ  is the sum of all variances associated with the relevant number of modes con-

taining only horizontal displacements, and so on. Thus, 

2
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2 2
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σ σ
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⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
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∑

∑

∑
                                            

(4.15) 

Given an arbitrary horizontal, vertical or torsion mode shape ( )i xφ  with eigen–

frequency iω  and damping ratio iζ , the time domain displacement response contribu-

tion of this mode is simply 
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( ) ( ) ( ),i i ir x t x tφ η= ⋅                                      (4.16) 

As mentioned above, it is assumed that the corresponding instantaneous cross sectional 
load contains the sum of flow induced and motion induced contributions. Thus, the total 
load per unit length (horizontal, vertical or torsion) is given by 

( ) ( ), , , , ,tot aeq q x t q x t r r r= +                                (4.17) 

where ( ),q x t  is the flow induced part and ( ), , , ,aeq x t r r r  is the additional load associ-

ated with interaction between flow and structural motion. The modal time domain equi-
librium equation for mode number i is then given by 

( ) ( ) ( ) ( ) ( ), , ,i i i i i i i ae i i ii
M t C t K t Q t Q tη η η η η η⋅ + ⋅ + ⋅ = +          (4.18) 

where 
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⎡ ⎤ ⎡ ⎤ ⎪⎢ ⎥ = ⋅ ⎢ ⎥ ⎪⎢ ⎥ ⎣ ⎦ ⎪⎣ ⎦ ⎭

∫

∫

                       (4.19) 

expL  is the flow exposed part of the structure and ( ), , ,ae i i ii
Q t η η η  is the modal motion 

induced load. It should be noted that structural mass ( )m x  in the equation above will 

either be translational or rotational (with respect to the shear centre), depending on 
whether the mode shape involves displacements in the y or z directions or if it involves 
pure torsion. Transition into the frequency domain is obtained by taking the Fourier 
transform on either side of Eq. 4.18. Thus, 

( ) ( ) ( ) ( )2 , , ,i i i i i iQ Qaei i i
M C i K a a aηω ω ω ω ω η η η− + + ⋅ = +            (4.20) 

where 
i

aη , Qi
a  and Qaei

a  are the Fourier amplitudes of ( )i tη , ( )iQ t  and ( )aei
Q t , 

respectively. (Index i is the mode shape number and the symbol i  is the imaginary unit 

1i = − .) It is now assumed that the Fourier amplitude of the  
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modal motion induced load contains three cross sectional terms aek , aec  and aem , pro-

portional to and in phase with structural displacement, velocity and acceleration, i.e. it is 
assumed that 

( )2
ae ae aeQae i i i ii

a M C i K aηω ω= − + + ⋅                           (4.21) 

where 

2

exp

aei ae

ae i aei
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⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

∫                                (4.22) 

and where aek , aec  and aem  are known constants. Introducing Qaei
a  from  

Eq. 4.21 (as well as 2i i i iC M ω ζ=  and 2
i i iK Mω=  from Eq. 4.10) into Eq. 4.20, gath-

ering all motion dependent terms on the left hand side and dividing throughout the equa-

tion by iK , the following is obtained 

( ) ( ) ( )
ˆ

i
Qi i

i

H
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Kη
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ω ω= ⋅                                    (4.23) 

where 
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ˆ 1 1 2
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(4.24) 

is the non-dimensional modal frequency-response-function. 

Introducing ae ae ii i
M Mμ = , 2

ae ae i ii i
K Mκ ω=  and ( )2ae ae i ii i

C Mζ ω= , then 

( ) ( ) ( )
12

ˆ 1 1 2i ae ae i aei i i
i i

H i
ω ωω κ μ ζ ζ
ω ω

−
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         (4.25) 

The single–sided spectrum of ( )i tη  is given by 

( ) ( ) ( ) ( )
2

* *
2

ˆ
1 1

lim lim
i

Q Qi i i i iT T
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H
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4.2   SINGLE MODE SINGLE COMPONENT RESPONSE CALCULATIONS 79

 

where it has been introduced that the single-sided spectrum of the modal loading is de-
fined by 

( ) ( )*1
limQ Q Qi i iT

S a a
T

ω
π→∞

= ⋅ ⋅                                 (4.28) 

This will render the displacement response at a position where ( ) 1i xφ = . The response 

at an arbitrary position rx  (e.g. where φ  has its maximum) may simply be obtained by 

recognizing that due to linearity the Fourier amplitude at rx  is given by 

( ) ( ) ( )i rri i
a x aηω φ ω= ⋅

                                       
(4.29) 

and thus, the response spectrum for the displacement response at rx x=  is given by 

( ) ( ) ( ) ( )
2 2

2
ˆ, i r

r i Qi
i

ri

x
S x H S

K

φ
ω ω ω= ⋅ ⋅                             (4.30) 

In structural engineering it has been customary to split the response calculations into a 
background and a resonant part as illustrated in Fig. 4.4. 

 

Fig. 4.4     Frequency domain spectra and transfer function 

The motivation behind this is that static and quasi-static load effects are more accu-
rately determined directly from time invariant equilibrium conditions. This is particu-
larly important for the determination of cross sectional force resultants (or stresses), as 
shown in chapter 7. The variance of the displacement response in Eq. 4.30 split into a 
background and a resonant part is given by 
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(4.31) 

It is in the following taken for granted that 

( ) 1ˆ 0 1 1i aei
H κ

−
⎡ ⎤= − =⎣ ⎦                                     

(4.32) 

i.e. that 0aei
K =  at 0ω = . (This is an obvious assumption as the structure is not in 

motion at 0ω = .) Introducing 

( )

( ) ( )

2

0

2

0

ˆ         
4 1

Q Qi i

i
i

ae toti i

S d

H d

ω ω σ

πωω ω
κ ζ

∞

∞

⎫
= ⎪

⎪⎪
⎬
⎪= ⎪− ⎪⎭

∫

∫
                        

(4.33) 

where tot i aei i
ζ ζ ζ= − , the following is obtained 

( ) ( )
( )

2
2 2 2 2

4 1

i iQi r i
r B R Qi i i i

i ae toti i

Sx

K

πω ωφ
σ σ σ σ

κ ζ

⎡ ⎤⎡ ⎤ ⎢ ⎥≈ + = ⋅ +⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦                     

(4.34) 

4.3   Single mode three component response calculations 

In this second approach it is assumed that the eigen-frequencies are still well spaced out 
on the frequency axis, but that each mode shape contain three components, i.e. the dis-
placements yφ  and zφ , and the rotation θφ , as illustrated in Fig. 4.5. Adopting the same 

assumptions regarding motion induced load effects as presented in chapter 4.2 above, the 
total cross sectional load is given by 

( ) ( ), , , , ,tot aex t x t= +q q q r r r                                   (4.36) 

where:                                 ( ),
T

y zx t q q qθ⎡ ⎤= ⎣ ⎦q                                     (4.37) 

is the flow induced part of the load, and 

( ), , , ,
T

ae y z ae
x t q q qθ⎡ ⎤= ⎣ ⎦q r r r

                              
(4.38) 

is the motion induced part. 
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Fig. 4.5     Single mode shape containing three components 

Adopting the same assumptions regarding motion induced load effects as presented in 
chapter 4.2 above, the total cross sectional load is given by 

( ) ( ), , , , ,tot aex t x t= +q q q r r r
                                

(4.36) 

where:                                  ( ),
T

y zx t q q qθ⎡ ⎤= ⎣ ⎦q
                                              

(4.37) 

is the flow induced part of the load, and 

( ), , , ,
T

ae y z ae
x t q q qθ⎡ ⎤= ⎣ ⎦q r r r                                (4.38) 

is the motion induced part. The time domain modal equilibrium condition given in  

Eq. 4.18 still holds, but for the expressions for M , C  and K  it is necessary to turn to 

Eq. 4.10, i.e. ( )0
T

i i iL
M dx= ⋅ ⋅∫ φ M φ , 2i i i iC M ω ζ=  and 2

i i iK Mω=  while the modal 

flow induced part of the load is given by (see Eq. 4.12) 

( ) ( ) ( )
exp

,T
i i

L

Q t x x t dx= ⋅∫ φ q

                              

(4.39) 
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The Fourier transform in Eq. 4.20 as well as the assumption regarding Qaei
a  in Eq. 4.21 

are also still valid, but again, modal motion induced mass, damping and stiffness are 
now given by 

exp

T
i ae iae
T

ae i ae i
L T

ae i ae ii

M

C dx

K

⎡ ⎤⎡ ⎤ ⋅ ⋅
⎢ ⎥⎢ ⎥

= ⋅ ⋅⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∫
φ M φ
φ C φ
φ K φ

                           (4.40) 

where aeM , aeC  and aeK  are three by three coefficient matrices associated with the 

motion induced part of the loading. To justify a mode by mode approach it is necessary 
to avoid the introduction of any motion induced coupling between modes, and therefore 

aeM , aeC  and aeK  must in this particular case be diagonal, i.e. 

      ae y z

ae y z

ae y z

ae

ae

ae

diag m m m

diag c c c

diag k k k

θ

θ

θ

⎫⎡ ⎤= ⎣ ⎦ ⎪
⎪⎡ ⎤= ⎬⎣ ⎦
⎪

⎡ ⎤= ⎪⎣ ⎦ ⎭

M

C

K
                         

(4.41) 

Thus, altogether nine frequency domain motion dependent coefficients are required. In 
wind engineering aeM  is most often negligible. 

Modally we are still dealing with a single-degree-of-freedom system, and thus, Eqs. 
4.24 – 4.27 are valid. Linearity implies that the Fourier amplitudes of the displacement 
components at an arbitrary position rx  are given by 

( )
( )
( )
( )

( ) ( ) ( )
 

,

ry y r

r r z r rz

rr

r ri i i

i

a x

x a x a x a
xa θθ

η η

φ
ω φ ω ω

φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= = ⋅ = ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

a φ           (4.42) 

The cross spectral density matrix of the three components is then 

( ) ( )*1
, lim T

i r
T

r ri i
x

T
ω

π→∞
= ⋅S a a

 

( ) ( ) ( )* *1 1
lim lim

T T

T Tr r r ri i i i i i i i
a a a a

T Tη η η ηπ π→∞ →∞

⎧ ⎫= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭
φ φ φ φ

   
(4.43) 
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from which the following is obtained: 

( ) ( ) ( ) ( ) ( )
 

, , T
i r nm r r rir ri i

i

x S x x S xηω ω ω
⎡ ⎤
⎢ ⎥= = ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

S φ φ

     

(4.44) 

where: , ,y z
n

r r r
m θ
⎫

=⎬
⎭

 and ( ) ( )*1
lim
Ti i i

S a a
Tη η ηω

π→∞
= ⋅  is given in Eqs. 4.26-4.27, i.e. 

( ) ( )
( )

( ) ( )
2

2

ˆ
,

i T
i r r r

i
r rQi ii

H
x x S x

K

ω
ω ω= ⋅ ⋅ ⋅S φ φ

                   

(4.45) 

The response covariance matrix is obtained by the frequency domain integration of 

( ),i rx ωS , and thus 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

0
2

 

,

r r r r r r r r ry y y z y

i r r r r r r r r r rz y z z z

r r r r r r r r ry z i

x Cov x Cov x

x d Cov x x Cov x

Cov x Cov x x

θ

θ

θ θ θ θ

σ

ω ω σ

σ

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫S          (4.46) 

However, the three components of each mode shape are fully correlated and therefore all 
cross-covariance coefficients that may be extracted from Eq. 4.46 are equal to unity. 
Thus, it is only the terms on the diagonal of Eq, 4.46 that are of any interest, and then the 
calculations simplify into 

( )
( )
( )
( )

( )
( )

2
2

2
2

2

ˆ
,

y rr ry y
i

i r r r z r Qz z i
i

rr r i i

xS
H

x S x S
K

xS θθ θ

φ
ω

ω φ ω
φ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥= = ⋅ ⋅⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

S             (4.47) 

and 

( ) ( )

2

2

02

,

r ry y

i r r r i rz z

r r
i

x x d

θ θ

σ

σ ω ω

σ

∞
⎡ ⎤
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫Var S                           (4.48) 

The total response may be obtained by adding up variance contributions from all modes, 
i.e. 

( )
( )
( )
( )

2

mod
2

1
2

r r ry y
N

r r r r iz z
i

r r r

x

x x

xθ θ

σ

σ

σ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑Var Var                            (4.49) 
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4.4   General multi-mode response calculations 

In the final section of this chapter it is assumed that a full multi-mode approach is re-
quired. The basic assumptions from chapter 4.1 are that 

( ) ( ) ( ),x t x t= ⋅r Φ η                                          (4.50) 

where                              

( )
( )

( )
1 mod

1 mod

      ,

      ... ...

      ... ...

T
y z

i N

T
i N

x t r r r

x

x

θ

η η η

⎧ ⎡ ⎤=⎪ ⎣ ⎦
⎪ ⎡ ⎤=⎨ ⎣ ⎦
⎪
⎪ ⎡ ⎤= ⎣ ⎦⎩

r

Φ φ φ φ

η

                      (4.51) 

( ) T
i y z i

x θφ φ φ⎡ ⎤= ⎣ ⎦φ  and where modN  is the number of modes chosen to be in-

cluded in the calculations. Still adopting the assumptions regarding motion induced load 
effects as presented in chapter 4.2, the cross sectional load is 

( ) ( ), , , , ,tot aex t x t= +q q q r r r
                                

(4.52) 

where                              
( )

( )

     ,

     , , , ,

T
y z

T
ae y z ae

x t q q q

x t q q q

θ

θ

⎧ ⎡ ⎤= ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤= ⎣ ⎦⎩

q

q r r r
                 (4.53) 

Thus, the time domain modal equilibrium equation is given by (see also Eq. 4.9) 

( ) ( ) ( ) ( ) ( )0 0 0 , , ,t t t t t η η η⋅ + ⋅ + ⋅ = +M η C η K η Q Q                  (4.54) 

where 0M , 0C  and 0K  are modN  by modN  diagonal matrices defined in  

Eq. 4.10, and the modal modN  by one flow induced load vector is given by 

( ) 1 mod
... ...

T
i Nt Q Q Q⎡ ⎤= ⎣ ⎦Q

                            
(4.55) 

Where                                      ( )
exp

T
i i

L

Q dx= ⋅∫ φ q

                                       

(4.56) 

Taking the Fourier transform on either side of Eq. 4.54 

( ) ( ) ( ) ( )2
0 0 0 , , ,Q Qae

i ηω ω ω ω ω η η η− + + ⋅ = +M C K a a a
                  

(4.57) 
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where:                            
1

1

    .... ....

    .... ....

T

i N

T

Q Q Q Qi N

a a a

a a a

η η η η
⎧ ⎡ ⎤=⎪ ⎣ ⎦
⎨

⎡ ⎤⎪ = ⎣ ⎦⎩

a

a
                                   

(4.58) 

Since the assumption of a modal frequency domain motion induced load proportional to 
and in phase with structural displacement, velocity and acceleration is adopted, then 

Qae
a  is given by 

( )2
ae ae aeQae i ηω ω= − + + ⋅a M C K a                             (4.59) 

where aeM , aeC  and aeK  are modN  by modN  matrices 

ae aeij
M

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

  

ae aeij
C

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C

  

ae aeij
K

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

  

(4.60) 

whose elements on row i  column j  are given by 

exp

T
ae i ae jij

T
ae i ae jij

L T
i ae jaeij

M

C dx

K

⎡ ⎤ ⎡ ⎤⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦⎢ ⎥⎣ ⎦

∫
φ M φ

φ C φ

φ K φ
                              

(4.61) 

where aeM , aeC  and aeK  are three by three motion dependent cross sectional load 

coefficient matrices 

ae nmm
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M   ae nmc
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C

  

ae nmk
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K    (4.62) 

and where:             , ,
n

y z
m

θ⎫
=⎬

⎭
. 
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Example 4.2 
 

The modal quantities given in Eq. 4.61 may be obtained from a fully expanded vector format given 
by: 

 

(

)

T T T T T T
ae y yy y z zy y y y y yz z z zz z z zij i j i j i j i j i j i j

T T T
y y z zi j i j i j

M m m m m m m

m m m x

θ θ θ θ

θ θ θ θ θ θθ θ

φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ

= + + + + +

+ + + ⋅ Δ
 

(

)

T T T T T T
ae y yy y z zy y y y y yz z z zz z z zij i j i j i j i j i j i j

T T T
y y z zi j i j i j

C c c c c c c

c c c x

θ θ θ θ

θ θ θ θ θ θθ θ

φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ

= + + + + +

+ + + ⋅ Δ
 

(

)

T T T T T T
ae y yy y z zy y y y y yz z z zz z z zij i j i j i j i j i j i j

T T T
y y z zi j i j i j

K k k k k k k

k k k x

θ θ θ θ

θ θ θ θ θ θθ θ

φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ

= + + + + +

+ + + ⋅ Δ
 

where xΔ  is the spanwise mesh separation (above assumed constant). If the coefficients vary 
along the span, their numerical values need to be given on the diagonal of an N by N matrix, where 
N is the number of nodes. 
  

 

 
Thus, for a full description of the motion induced load effects altogether twenty–

seven motion dependent load coefficients are required. First Eqs. 4.59 is introduced into 
4.57 and all terms associated with structural motion are gathered on the left hand side 

( ) ( ) ( ) ( ) ( )2
0 0 0ae ae ae Qi ηω ω ω ω⎡ ⎤− − + − + − ⋅ =⎣ ⎦M M C C K K a a

      
(4.63) 

and then the result is pre-multiplied with 1
0
−K , recalling that 

2
0

0 2

i i

i i i

diag M

diag M

ω

ω ζ

⎫⎡ ⎤= ⎪⎣ ⎦
⎬

⎡ ⎤= ⎪⎣ ⎦⎭

K

C
                                       

(4.64) 

It is convenient to introduce a reduced modal load vector 

( ) ( )
( ) ( )

exp1
0 2ˆ

,
TT

i q
L

i i
QQ

x x dx

M

ω

ω ω
ω

−

⎡ ⎤⋅
⎢ ⎥
⎢ ⎥= ⋅ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ φ a

a K a

  

(4.65) 

where ( ),
T

q q q qy z
x a a a θω ⎡ ⎤= ⎣ ⎦a . The following is then obtained 
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( ) ( ) ( )ˆ
ˆ

Qη ηω ω ω= ⋅a H a
                                    

(4.66) 

where 

( )
1

1 1 2 1
0 0 02

21ˆ i
ae ae ae

ii

diag diag iη
ζω ω ω

ωω

−

− − −
⎧ ⎫⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤⎪ ⎪⎜ ⎟= − − − + −⎜ ⎟⎢ ⎥⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎣ ⎦⎪ ⎪⎝ ⎠⎣ ⎦⎝ ⎠⎩ ⎭

H I K K K M K C

 
(4.67) 

is the non-dimensional frequency-response-matrix, and I  is the identity matrix  
( modN  by modN ). It is convenient to define the following modN  by modN   

matrices 

( )

( )

ω

ω

−

−

−

⎫⎡ ⎤= ⋅ ⋅ ⎪⎣ ⎦
⎪
⎪
⎪= ⋅ ⎬
⎪
⎪
⎪

= ⋅ ⋅ ⋅⎡ ⎤ ⎪⎣ ⎦ ⎭

2 1
0

1
0

1
0

1
2

ae i ae

ae ae

ae i ae

diag

diag

μ K M

κ K K

ζ K C
                            

(4.68) 

as well as introducing [ ]idiag ζ=ζ . The non-dimensional frequency-response-matrix 

is then given by 

( ) ( ) ( )
12

1 1ˆ 2ae ae ae
i i

diag i diagη ω ω ω
ω ω

−
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= − − ⋅ ⋅ − + ⋅ ⋅ −⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

H I κ I μ ζ ζ

 
 (4.69) 

By combination of Eqs. 4.60, 4.61 and 4.64, then the content of 

ae aeij
μ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

μ  ae aeij
κ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

κ

 

ae aeij
ζ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ζ

 

(4.70) 
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are given by 

( )
exp

T
i ae j

ae Lij
aeij

i i

dx
M

M M
μ = =

∫ φ M φ

                         

(4.71) 

( )
exp

2 2

T
i ae j

ae Lij
aeij

i i i i

dx
K

M M
κ

ω ω
= =

∫ φ K φ

                         (4.72) 

( )
exp

2 2

T
i ae j

ae Lij
aeij

i i i i

dx
C

M M
ζ

ω ω
= =

∫ φ C φ

                        (4.73) 

Returning to Eq. 4.66, the response spectral density matrix ( modN  by modN  and contain-

ing single-sided spectra) is obtained from the basic definition of spectra as expressed 
from the Fourier amplitudes, and thus, the following development applies: 

( ) ( ) ( ) ( )
( )

**
ˆ ˆ

* * *
ˆ ˆ ˆ

1 1 ˆ ˆlim lim

1ˆ ˆ ˆ ˆlim

TT
Q QT T

T T T
Q Q QT

T T

T

η η η η η

η η η η

ω
π π

π

→∞ →∞

→∞

⎡ ⎤= ⋅ = ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ ⋅ ⋅ = ⋅ ⋅⎢ ⎥⎣ ⎦

S a a H a H a

H a a H H S H
              (4.74) 

where 
Q̂

S  is an Nmod by Nmod normalised modal load matrix 

( ) ( )

*
ˆ1

**
ˆˆ ˆ ˆ ˆ ˆ ˆ1 mod

*
ˆ

mod

1 1
lim lim

Q

T
QQ Q Q Q Q Qi j NT T

QN

a

a a a a
T T

a

ω
π π→∞ →∞

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ⎡ ⎤⎜ ⎟⎢ ⎥= ⋅ = ⋅ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

S a a  

( ) ( )ˆ ˆ ˆQ Q Qi j
Sω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⇒ =
⎢ ⎥
⎢ ⎥⎣ ⎦

S                                            (4.75) 
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whose elements on row i  column j  are given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

*
ˆ ˆ ˆ ˆ

*

exp exp
2 2

*
1 1 2 2 1 2

exp
2 2

1

1
lim

, ,
1

lim

, ,
1

lim

Q Q Q Qi j i jT

TT T
i q j q

L L

T
i i j j

TT T
i q j q

L

T
i i j j

T
i

S a a
T

x x dx x x dx

T M M

x x x x dx dx

T M M

x

ω ω ω
π

ω ω

π ω ω

ω ω

π ω ω

→∞

→∞

→∞

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦
⎜ ⎟= ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎧ ⎫⎡ ⎤ ⎡ ⎤⋅⎪ ⎪⎣ ⎦ ⎣ ⎦
⎪ ⎪= ⎨ ⎬

⋅⎪ ⎪
⎪ ⎪
⎩ ⎭

⋅

=

∫ ∫

∫∫

φ a φ a

φ a φ a

φ ( ) ( ) ( )

( ) ( )

*
1 2 2 1 2

exp
2 2

1
lim , ,T

q q j
T

L

i i j j

x x x dx dx
T

M M

ω ω
π

ω ω

→∞
⎡ ⎤⋅ ⋅⎣ ⎦

⋅

∫∫ a a φ

 

(4.76) 

Thus, the elements of ( )Q̂
ωS  are given by 

( )
( ) ( ) ( )

( ) ( )
1 2 1 2

exp
ˆ ˆ 2 2

,T
i qq j

L

Q Qi j
i i j j

x x x dx dx

S
M M

ω

ω
ω ω

⋅ Δ ⋅

⇒ =
⋅

∫∫ φ S φ

               (4.77) 

where 1 2x x xΔ = − , and where ( ),qq x ωΔS  is the spectral density matrix of cross sec-

tional loads, i.e. ( ) ( ) ( ) ( )*
1 2, lim 1/ , ,T

qq q qT
x T x xω π ω ω

→∞
⎡ ⎤Δ = ⋅⎣ ⎦S a a  

( )

* * *

* * *

* * *

1
, lim

q q q q q qy y y z y q q q q q qy y y z y

qq q q q q q q q q q q q qz y z z z z y z z zT

q q q q q qy zq q q q q qy z

a a a a a a S S S

x a a a a a a S S S
T

S S Sa a a a a a

θ θ

θ θ

θ θ θ θθ θ θ θ

ω
π→∞

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒ Δ = ⋅ ⋅ ⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦

S (4.78) 

Extracting from the mode shape matrix [ ]1 ... ...i N=Φ φ φ φ  (see Eq. 4.8) a 

three by modN  matrix associated with a chosen span-wise position rx  
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( ) ( ) ( ) ( )
( )
( )
( )

( )
( )
( )

( )
( )
( )

1

1

.... ....

.... ....

r r r i r N r

y r y r y r

z r z r z r

r r r
i N

x x x x

x x x

x x x
x x xθ θ θ

φ φ φ
φ φ φ
φ φ φ

⎡ ⎤= ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

Φ φ φ φ

             

(4.79) 

then the three by three cross spectral density matrix of the unknown modal displace-
ments yr , zr  and rθ  at rx x=  

( ),

r r r r r ry y y z y

rr r r r r r r rz y z z z

r r r r r ry z

S S S

x S S S

S S S

θ

θ

θ θ θ θ

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S

                                 

(4.80) 

is given by 

( ) ( ) ( ) ( ), T
rr r r r r rx x xηω ω= ⋅ ⋅S Φ S Φ

                        
(4.81) 

where ( )η ωS  is given in Eq. 4.74, i.e.: 

( ) ( ) ( ) ( ) ( ) ( )*
ˆ

ˆ ˆ, T T
rr r r r r rQ

x x xη ηω ω ω ω⎡ ⎤= ⋅ ⋅ ⋅ ⋅⎣ ⎦S Φ H S H Φ            (4.82) 

This equation is applicable to any linear load on a line–like structure. If all mechanical 
properties of the structure are known, then an eigen–value analysis will provide the basic 

input to ˆ
ηH  and rΦ . What then remains is the set-up of 

Q̂
S  and the motion induced 

contributions to ηĤ . This is shown in chapters 5 and 6. 



Chapter 5 

WIND AND MOTION INDUCED LOADS 

5.1   The buffeting theory 

The buffeting wind load on structures includes the part of the total load that may be 
ascribed to the velocity fluctuations in the oncoming flow, 

( ) ( ) ( ), , , , , , , ,f f f f f f f f fU x y z t V x y z u x y z t= + , ( ), ,f fv x z t  and ( ), ,f fw x z t , as well as any 

motion induced contributions. The theory presented below was first developed by A.G. 
Davenport [13, 14]. In the following it is a line like horizontal bridge type of structure 
that is considered. It is taken for granted that its fz –position in the flow prior to any 

loading is constant along the entire span, that the wind field is stationary and 
homogeneous and that the main flow direction is perpendicular to the span-wise x -axis 

of the structure, in which case fx  is constant and fy  may be exchanged by x . It is then 

only the velocity fluctuations in the along wind and the across wind vertical directions 
expressed in structural axis that are of interest, i.e. the components ( ) ( ), ,U x t V u x t= +  

and ( ),w x t . The theory may readily be applied to a vertical (tower) type of structure, in 

which case any fz -variation needs to be included and the w component must be replaced 

by the v component (but maintaining all other notations shown in Fig. 5.1 below). The 
basic assumptions behind the buffeting theory are that the load may be calculated from 
the instantaneous velocity pressure and the appropriate load coefficients that have been 
obtained from static tests, and that linearization of any fluctuating parts will render 
results with sufficient accuracy. Thus, the load may be calculated from an interpretation 
of the instantaneous relative velocity vector and the corresponding flow incidence 
dependent drag, lift and moment coefficients that are usually applied to calculate mean 
static load effects. It is taken for granted that structural displacements and cross sectional 
rotations are small. Furthermore, it is a requirement for linearization of load components 
that ( ),u x t  and ( ),w x t  are small as compared to V. The situation is illustrated in  

Fig. 5.1. 
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Fig. 5.1     Instantaneous flow and displacement quantities 

As can be seen, the usual assumption that any fluctuating quantity can be split into a 
time invariant mean part and a zero mean fluctuating part is adopted (as previously 
mentioned in chapter 1.3). Thus, the cross section at an arbitrary position along the span 
is first given the displacements ( )yr x , ( )zr x  and ( )r xθ . In this position the wind 

velocity vector is ( ),V u x t+  in the along wind horizontal direction and ( ),w x t  in the 

vertical across wind direction. It is about this position that the structure oscillates. The 
cross section is then given the additional dynamic displacements ( ),yr x t , ( ),zr x t  and 

( ),r x tθ . In this position the instantaneous cross sectional drag, lift and moment forces in 

flow axes are by definition given by 
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M M

q x t D C
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⎢ ⎥⎢ ⎥ ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦                               

(5.1) 
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where relV  is the instantaneous relative wind velocity and α  is the corresponding angle 

of flow incidence. Transformation into structural axis is given by 

( )
cos sin 0

, sin cos 0
0 0 1

y D

tot z L

Mtot

q q
x t q q

q qθ

β β
β β

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

q                        (5.2) 

where: 

arctan z

y

w r
V u r

β
⎛ ⎞−

= ⎜ ⎟⎜ ⎟+ −⎝ ⎠                                           

 (5.3) 

The first linearization involves the assumption that the fluctuating flow components 

( ),u x t  and ( ),w x t  are small as compared to V, and that structural displacements (as 

well as cross sectional rotation) are also small. Then cos 1β ≈  and 

( ) ( ) ( )sin tan / /z y zw r V u r w r Vβ β β≈ ≈ ≈ − + − ≈ − , and thus 

( ) ( )2 22 2 2 2rel y z y

z

V V u r w r V Vu Vr

rw
r r r r

V Vθ θ θ θα β

⎫= + − + − ≈ + − ⎪
⎬
⎪= + + ≈ + + −
⎭               

(5.4) 

The second linearization involves the flow incidence dependent load coefficients. As 
illustrated in Fig. 5.2, the nonlinear variation of the load coefficient curves is replaced by 
the following linear approximation 

( )
( )
( )

( )
( )
( )

( )
( )
( )

D D D

L L f L

M M M

C C C
C C C
C C C

α α α
α α α α
α α α

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦                           

(5.5) 

where α  and fα  are the mean value and the fluctuating part of the angle of incidence, 

and where DC′ , LC′  and MC′  are the slopes of the load coefficient curves at α . 
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Fig. 5.2     Load coefficients obtained from static tests 

It follows from Eq. 5.4 that rθα =  and / /f zr w V r Vθα = + − . For simplicity the 

following notation is introduced 
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( )

D D

L L

M M

C C
C C
C C
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α
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⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
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( )
( )
( )

D D

L L

M M

C C
C C
C C

α
α
α

′ ′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦⎣ ⎦

                    (5.6) 

Combining Eqs. 5.2 – 5.6 

2 2
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r w rV w

q V u r BC r BC DC
V V V

q B C B C
θ
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ρ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤′ −
⎪ ⎪⎢ ⎥ ⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎛ ⎞⎛ ⎞ ′= + − + + − +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥′ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭  

(5.7) 

and discarding higher order terms (i.e. terms containing the product of quantities that 
have been assumed small) the following is obtained 
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( )
( )
( )

( )
( )
( )
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, ,
,

y y

tot z z q ae ae

q x q x t

x t q x q x t
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(5.8) 

where 

( ) [ ], Tx t u w=v
                                           

(5.9) 

( ),
T

y zx t r r rθ⎡ ⎤= ⎣ ⎦r
                                      

(5.10) 

( )
( )2 2/

ˆ
2 2

y D

z L q
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q D B C
V B V B

x q C
q BCθ

ρ ρ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

q b                 (5.11) 

( )
( ) ( )( )

( )( )
2 / /

ˆ2 /
2 2

2

D D L

q L L D q

M M

D B C D B C C
VB VB

x C C D B C

BC BC

ρ ρ
⎡ ⎤′ −
⎢ ⎥
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(5.12) 
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(5.13) 
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x C
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ρ
′⎡ ⎤
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K                             (5.14) 

It is seen that the total load vector comprises a time invariant mean (static) part 

( )
2

ˆ
2

y

z q

q
V B

x q
qθ

ρ
⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

q b

                                     

(5.15) 

and a fluctuating (dynamic) part 



96 5   WIND AND MOTION INDUCED LOADS 
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z q ae ae

q

x t q
qθ

⎡ ⎤
⎢ ⎥

= = ⋅ + ⋅ + ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

q B v C r K r                      (5.16) 

where q ⋅B v  is the dynamic loading associated with turbulence ( u  and w ) in the 

oncoming flow, while ae ⋅C r  and ae ⋅K r  are motion induced loads associated with 

structural velocity and displacement. It is seen that linearity has been obtained, and thus, 
the theory is applicable in time domain as well as in frequency domain. The frequency 
domain amplitudes of the dynamic load are obtained by taking the Fourier transform 
throughout Eq. 5.16. Thus, 

( )q q v ae ae riω= ⋅ + + ⋅a B a C K a
                           

(5.17) 

where: 
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a

a
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(5.18) 

and where i  is the imaginary unit. Taking it for granted that the theory will primarily be 
applied in a modal frequency domain approach it is favourable to introduce two major 
improvements. First, for the purpose of frequency domain calculations it has been 
suggested to include frequency dependent flow induced dynamic loads, i.e. to replace 

( )q xB  in Eq. 5.12 with 

( )
( ) ( )( )

( )( )
2 / /

, 2 /
2

2

D yu D L yw

q L zu L D zw

M u M w
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⎢ ⎥
⎢ ⎥′= +
⎢ ⎥
⎢ ⎥′
⎢ ⎥⎣ ⎦
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(5.19) 

where: 

( )mnA ω  
, ,
,

m y z
n u w

θ=⎧
⎨ =⎩                                  

(5.20) 
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are the so-called cross sectional admittance functions. They are frequency dependent 
functions characteristic to the cross section in question. 

In general, they may be determined from section model wind tunnel experiments, 
either directly from pressure tap measurements around the periphery of the cross section, 
or from time series of drag, lift and moment forces on the model that are otherwise used 
to determine mean load coefficients, in which case it is necessary to assume that the 
length scales of the fluctuating forces are identical to the appropriate length scales of the 
turbulent flow components. Cross sectional admittance functions have been theoretically 
developed for a thin airfoil by Sears [15], but since Sears solution is complex and 
contain cumbersome Bessel functions, approximate expressions, usually of the following 
type have been suggested (first by Liepmann [16]) 

( )
( )

1

1 /
mn bmn

mn

A
a B V

ω
ω

=
+

        

, ,
,

m y z
n u w

θ=⎧
⎨ =⎩                   

(5.21) 

where mna  and mnb  are cross sectional dependent constants. As can be seen, 

( )
( )

( )

1

0 1

lim 0       

mn

mn

mn

A

A

A
ω

ω

ω

ω
→∞

⎫≤ ⎪⎪= = ⎬
⎪= ⎪⎭                                     

(5.22) 

and thus, its main effect is to filter off load contributions at high frequencies. (Other 
expressions may be expected for complex cross sections.) The second major 
improvement to the frequency domain application of the buffeting theory is to replace 
the content of aeC  and aeK  with the so-called aerodynamic derivatives. That is dealt 

with in the next chapter. 

5.2   Aerodynamic derivatives 

As derived from the buffeting theory aeC  and aeK  are given in Eqs. 5.13  

and 5.14. They are three by three matrices containing all the eighteen coefficients that 
are required for a full frequency domain description of motion induced dynamic forces 
associated with structural velocity and displacement. The modal frequency domain 
counterparts to aeC  and aeK  are first fully presented in Eq. 4.62 in chapter 4.4.  

(Basic assumptions are given in Eq. 4.59. aeM  is in the following considered 

negligible.) The essential theory presented below was first developed in the  
field of aeronautics and later made applicable to bridges by Scanlan &  
Tomko [17]. Following their notations, rather than the more general use of  
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symbols shown in chapter 4.4, the frequency domain versions of aeC  and aeK  are given 

by 

1 5 2

5 1 2

5 1 2

ae

P P P
H H H
A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C  and 
4 6 3

6 4 3

6 4 3

ae

P P P
H H H
A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K           (5.23) 

The coefficients contained in aeC  and aeK  are then functions of the frequency of 

motion, the mean wind velocity and the type of cross section (and to some extent the 
initial or mean angle of incidence and the turbulence properties in the oncoming flow). 
Usually, they have been experimentally determined in wind tunnel aeroelastic section 
model tests, limited to vertical and torsion displacements. Since their main use lies in the 
detection of unstable motion at high wind velocities, the primary modal mass and 
stiffness properties of the section model will intentionally only contain the eigen-
frequencies associated with the most onerous modes with respect to unstable structural 
oscillations. For a plate-like bridge cross section this is usually the lowest mode in 
torsion together with the shape-wise similar and lowest vertical mode. (Shape-wise 
similarity is required because the effect of aerodynamic coupling between the two modes 
is often important.) Since the along wind motion is absent in the section model, all terms 
associated with this direction must either be disregarded or taken from the quasi static 
buffeting theory (see Eqs. 5.25 and 5.26). The tests may be performed in three 
alternative ways. The original procedure was to extract the motion induced forces from 
the changes in resonance frequency and damping properties in transient (i.e. decay) 
recordings at various wind velocities under the conditions of pure vertical motion, pure 
torsion and finally combined vertical and torsion (see appendix C). Another procedure is 
to perform ambient vibration tests, again at various wind velocities, and use the theory of 
system identification to extract the sought flow-structure interaction properties. The third 
procedure is to use a section model that undergoes forced oscillations at various 
frequencies, amplitudes and wind velocities. From such a steady-state situation cross 
sectional forces are measured by pressure tap recordings on the surface of the model 
hull. Subtraction of the forces at zero motion will then render net motion induced effects. 
The method of forced oscillations is demanding and generally not in use. Thus, the 
frequency at which the aerodynamic derivatives are determined will most often be 
associated with the mass and stiffness properties of the relevant section model, as well as 
the motion induced forces themselves at various mean wind velocities. I.e., the 
aerodynamic derivatives will be associated with the eigen-frequencies of the chosen set 
of section model mode shapes, and thus, they will be functions of the reduced velocity 

( )ˆ
iV V Bω= . For the purpose of full scale calculations the similarity requirements 

between model scale and full scale conditions must be fulfilled, and thus, the 

aerodynamic derivatives will have to be extracted as functions of ( )ˆ
iV V Bω= . 
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Furthermore, it has been considered convenient to normalise aeC  and aeK  with 
2 / 2iBρ ω  and 2 2 / 2iBρ ω , where iω  is the in-wind (mean wind velocity dependent) 

resonance frequency associated with the mode shape (number i ) from which they have 
been extracted. Thus, 

( )
2

ˆ
2ae i ae
B

V
ρ ω= ⋅ ⋅C C  and ( )

2 2 ˆ
2ae i ae
B

V
ρ ω⎡ ⎤= ⋅ ⋅⎣ ⎦K K

   
(5.24) 

where 
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⎢ ⎥
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K    (5.25) 

It is the non–dimensional coefficients * * *, , ,  1 6k k kP H A k = −  that are usually called 

aerodynamic derivatives. The values that emerge from the buffeting theory are obtained 
by comparison to Eqs. 5.13 and 5.14, rendering quasi-static aerodynamic derivartives 
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(5.26) 

As shown in Eq. 5.26, the aerodynamic derivatives will be functions of the reduced 

velocity ( )iV V Bω⎡ ⎤⎣ ⎦ . It should be noted that in the determination of the reduced 

velocity [or the non-dimensional resonance frequency ( )ˆ /i iB V Vω ω= ] the resonance 

frequency ( )i Vω  is a function of the mean wind velocity, V . To start off with, i.e. at 

0V = , ( )0i Vω =  is the eigen-frequency in still air conditions. It is then only dependent 

on the relevant structural properties. At 0V ≠  the aerodynamic derivatives contained in 

aeK  will have the effect of changing the total stiffness of the combined structure and 
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flow system. This implies that the resonance frequency at 0V ≠  is different from the 

initial value that was determined at 0V =  (or in vacuum). In general the consequence of 
this effect is that any response calculation involving the aerodynamic derivatives 
contained in aeK  will demand iterations. However, under normal circumstances the 

effects of aeK  will only be of significant importance in the velocity region at or 

immediately below an instability limit. At a characteristic mean wind velocity well 
below such an instability limit it is usually the aerodynamic derivatives contained in aeC  

that play the leading role, and the effects of the changes of iω  with increasing V  to the 

determination of the aerodynamic derivatives are most often only of minor importance, 
especially as compared to other uncertainties in the theory (see further discussion in 
chapters 6.3 and 8). On the other hand, at or in the vicinity of an instability limit the flow 
induced changes to the resonance frequency will in most cases be of great importance, 
and thus, for the determination of an instability limit this effect can usually not be 
ignored (see chapter 8). 

Aerodynamic derivatives for an ideal flat plate type of cross section were first 
developed by Theodorsen [28]. They are given by: 

( ) ( )
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(5.27) 

where ( )î iV V B Vω⎡ ⎤= ⎣ ⎦  is the reduced velocity, and 
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(5.28) 

are the real and imaginary parts of the so-called Theodorsen’s circulatory function. Their 
content ( )ˆ 2n iJ ω  and ( )ˆ 2n iY ω , 0 or 1n = , are first and second kinds of Bessel 

functions with order n , and ˆiω  is the non-dimensional resonance frequency, i.e. 

( ) 1ˆˆ /i iB V V Vω ω −= = . The flat plate aerodynamic derivatives given in Eq. 5.27 are 

plotted in Fig. 5.3. (The division of ω̂  with 2 in Eq. 5.28 stems from Theodorsen’s 

choice of frequency normalization with /B 2  rather than B  which is chosen herein.). 
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Fig. 5.3     Flat plate aerodynamic derivatives (broken lines are the quasi- static values) 
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The aerodynamic derivatives for a flat plate that emerge from the buffeting theory 
(i.e. quasi-static values) are obtained from Eq. 5.26 by the introduction of 

0 0
0 2
0 2

D D

L L

M M

C C
C C
C C

π
π

⎡ ⎤′ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ⎣ ⎦⎣ ⎦                                   

(5.29) 

Thus, for a flat plate the non-zero quasi-static aerodynamic derivatives are given by 
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i i
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(5.30) 

5.3   Vortex shedding 

 

Fig. 5.4     Relevant displacement components and vortex shedding forces 

When the air flow is met by a solid bridge or tower type of structure flow separation will 
occur on the surface of the structure causing vortices to be shed alternately on either side 
of the structure. 

Assuming that along wind load effects may be disregarded, these vortices give rise to 
fluctuating across wind forces zq  and cross sectional torsion moment qθ , accompanied 

by fluctuating displacements zr  or rθ , as shown in Fig. 5.4. Harmful vortex induced 

vibrations may particularly occur in cases of resonance. 
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Experimental investigations of the single point mq  process ( or m z θ= ) on stiff 

models where 0mr ≈  show that fluctuating loads are more or less narrow banded 

centred at a vortex shedding frequency sf , as illustrated in Fig. 5.5.a. The properties of 

the shedding frequency are characteristic to the cross section of the line-like structure. It 
is proportional to the mean wind velocity V and inversely proportional to the across wind 
width D. Thus, 

s
V

f St
D

= ⋅                                                    (5.31) 

where St  is the Strouhal number, which is available for a good number of typical 
structural cross sections in the literature. Two-dimensional investigations also show that 

mq  has a more or less random distribution in the span-wise direction, as illustrated on 

the right hand side of Fig. 5.4. and indicated by the decaying co-spectrum in Fig. 5.5.b. 
 

 

Fig. 5.5     Load characteristics associated with vortex shedding 

Turning to a flexible structure it is assumed that the properties of sf  are maintained, 

i.e. that Eq. 5.31 still holds. The situation is illustrated in Fig. 5.6. Assuming that V is 
slowly increasing (from zero), then sf  will increase accordingly, and resonance will first 

occur when sf  becomes equal to the lowest eigen-frequency with respect to vibrations in 

the across wind direction or torsion. Further increase of V will cause resonance to occur 
when sf  is equal to the next eigen-frequency, and so on. Theoretically, resonance will 

occur when sf  is equal to any eigen-frequency if . According to Eq. 5.31, the event that 

s if f=  will occur when the mean wind velocity has a value given by 
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/R ii
V f D St=                                               (5.32) 

Thus, there is a resonance velocity for every eigen-frequency associated with vibrations 
in the across wind direction or in torsion. Experiments show that when resonance occurs 
the flow and the oscillating structure will interact, and for a certain range of ensuing 
wind velocity settings sf  will deviate from Eq. 5.31 and stay equal or close to if , as 

shown on the upper right hand side of Fig. 5.6. This is what is usually called lock-in. 
Such vortex shedding induced interaction is accompanied by two important load effects. 
At lock-in the fluctuating load becomes better correlated in the span-wise direction, but 
what is more important is that a significant motion induced part is added. However, these 
effects are self-destructive in the sense that they diminish when fluctuating structural 
displacements become large. Thus, vortex shedding induced vibrations are self-limiting, 
as illustrated on the diagram on the lower right hand side in Fig. 5.6. 

 

 
 

Fig. 5.6     Response characteristics associated with vortex shedding 
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Fig. 5.7     Vortex shedding induced response characteristics at different levels of 
structural eigen-damping 

Experiments show that vortex induced vibrations are greatly affected by the damping 
properties of the structure, as shown on the left hand side diagram in Fig. 5.7. The 
motion induced self-limiting and damping dependent nature of vortex induced vibrations 
is further illustrated on the diagram to the right in Fig. 5.7. Thus, it has been customary 
to ascribe the motion induced part of the load to the structural displacements and the 
velocity, i.e. ( ), , ,m m m mq q x t r r= , where or m z θ= . 

Extensive research has been carried out on the investigation of vortex shedding 
induced vibrations. In the following it is the theory first developed by Vickery & Basu 
[18, 19] that will be presented. The motivation is convenience, as it is the only 
comprehensive stochastic frequency domain theory currently available, rendering a 
solution at any setting of the mean wind velocity. An alternative approach applicable at 
resonance has been presented by Ruscheweyh [20]. 

In the theory as developed by Vickery & Basu the description of the net motion–
independent cross sectional load spectra and corresponding co-spectra are shape-wise 
shown in Fig. 5.5. Mathematically they are given by 
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(5.33) 

and 
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where  or m z θ= , 2s sfω π= , ˆqm
σ  is the non-dimensional root mean square lift or 

torsion moment coefficient, mb  is a non-dimensional load spectrum band width 

parameter, mλ  is a non-dimensional coherence length scale and xΔ  is span–wise 

separation. [By substituting 
Δ α
λ

=x
D

, = 1 3a  and = 2 3b , and using the known integral 
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In general, ˆqz
σ  increases with increasing bluffness of the cross section, zb  attains 

values between 0.1 and 0.3, while zλ  is typically in the order of 2 to 5. Similar 

properties may be expected of qθ . 

For the description of the characteristic motion induced load effects at “lock-in” 
Vickery & Basu [18, 19]  have suggested that this may be accounted for by a negative 
motion dependent aerodynamic modal damping ratio, aei

ζ , such that the total modal 

damping ratio associated with mode i  is given by 

tot i aei i
ζ ζ ζ= −

                                               
(5.35) 

This is equivalent to the introduction of motion dependent aerodynamic derivatives as 
described in chapter 5.2 above. Adopting the notation given in Eqs. 5.24 and 5.25, it is 

the aerodynamic derivatives *
1H  and *

2A  that are responsible for aerodynamic damping 

exclusively effective in the across wind vertical (z) direction or in torsion (θ). Assuming 
that in the vicinity of a distinct vortex shedding type of response all other motion 
induced effects may be ignored, then 
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5.3   VORTEX SHEDDING 107

 

and where az
K  and aK θ  are the velocity dependent damping coefficients equivalent to 

those defined by Vickery & Basu [18, 19]. (However, if appropriate experimental 
evidence is available, there is no reason why aeC  and aeK  should not be full three by 

three matrices, also in the region of distinct vortex shedding excitation.) Assuming that 

( ) ( )i iV Vω ω≈ = 0 , then the aerodynamic damping term in Eq. 5.35 may be taken 

from Eq. 4.73, and thus, 
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where 

( )2 2 2
i i

i T
i i y z

L L

M M
m

dx dxθφ φ φ
= =

⋅ + +∫ ∫φ φ
                           

(5.39) 

are the evenly distributed and modally equivalent masses associated with mode i . am
K  

(  or m z θ= ) are the coefficients that account for the accelerating part of the motion 

induced load when V  is close to Ri
V . Apart from being cross sectional characteristics, 

they are functions of V  and the resonance frequency of the mode in question (see right 

hand side diagram in Fig. 5.5). za D  and aθ  are quantities associated with the self-

limiting nature of vortex shedding, i.e. they represent upper displacement or rotation 
limits at which the aerodynamic damping becomes insignificant. 

It should be noted that in Eq. 5.37 the damping coefficients are defined such that 
consistency is obtained with the general definition of aerodynamic derivatives in Eqs. 
5.24 and 5.25 rather than the definition adopted by Vickery & Basu [18, 19]. [Thus, the 

az
K  values given by Vickery & Basu in references [18, 19] are applicable in the 

expressions given above if they are multiplied by ( )24 D B . Vickery & Basu have not 

given any recommendations regarding the aK θ  coefficient.] 
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It should also be noted that vortex shedding effects are to some extent dependent on 

the Reynolds number ( Re /VD υ=  where 51.5 10υ −= ⋅  m2/s is the kinematic viscosity of 
air) and of the turbulence properties in the oncoming flow. Information about these 
effects is presented by Simui & Scanlan [4] and by Dyrbye & Hansen [5]. For a tubular 
cross section the Reynolds number effect is to change the point of flow separation, thus 
changing the Strouhal number as well as the load intensity. The main effect of 
turbulence is to broaden the band-width and disturb the size and coherence of the 
pressure fluctuations on the surface of the structure. Most structures are more prone to 
vortex induced oscillations in smooth flow. 

Above, only the effects in the across wind direction and torsion have been included. 
In general, vortex shedding will also generate more or less narrow–banded load 
fluctuations in the along wind direction, but at a frequency twice that which occurs in the 
across wind direction and for most bridges at an insignificant load intensity. 



Chapter 6 

WIND INDUCED STATIC AND DYNAMIC 
RESPONSE CALCULATIONS 

6.1   Introduction 

The wind induced dynamic response calculations dealt with in this chapter focus on 
structural displacements for a line-like type of bridge structure. The calculations of 
corresponding cross sectional forces are shown in chapter 7. The problem at hand is 
illustrated in Fig. 6.1. 

 

Fig. 6.1     Simple bridge structural system subject to fluctuating wind field 

As shown, the velocity components in a wind field vary in time and space. When a 
structure is subject to such a fluctuating wind field, the passing of the flow will generate 
fluctuating drag, lift and moment loads on the structure, which in turn will cause the 
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structure to oscillate. The time domain chain of events is illustrated in Fig. 6.2.a. From a 
design point of view the main focus is on quantifying the maximum value of the 
response that is most critical with respect to structural safety. 

The flow is in general assumed Gaussian, stationary and homogeneous over a certain 
short term period T (e.g. 10 min), i.e. the response calculations are performed for a 
chosen design weather condition that is stable in time and space. If the mathematical 
transfer from flow properties to forces is linear and the structure is linear elastic, then the 
assumption of Gaussian and stationary properties also holds for any structural response 
quantity. Thus, any response quantity (e.g. a displacement) may be described by its mean 
value and probability density distribution, as shown to the right in Fig. 6.2.a. Its 
maximum value at position rx  is then given by 

( ) ( ) ( )max r r p r rr x r x k xσ= + ⋅                                        (6.1) 

where ( )rr x  is the mean value, pk  is the peak factor that depends on the type of 

process (see chapter 2.4) and ( )r rxσ  is the standard deviation of the fluctuating part of 

the response. 

 

Fig. 6.2     Time and frequency domain representations 
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The mean value ( )rr x  may be obtained from simple static equilibrium conditions. 

The standard deviation of the fluctuating part of the response ( )r rxσ  may either be 

obtained from a time domain integration of the dynamic load effects from the fluctuating 
flow field and possible vortex shedding, or from a modal approach in frequency domain. 
The former alternative is computationally a demanding task, as it requires the time 
domain simulation of a wind field that is usually broad banded and spatially un-
correlated (such a simulation procedure is shown in appendix A). In the following it is 
the alternative of a modal frequency domain approach that is presented. As illustrated in 
Fig. 6.2.b, the main steps involve the transfer from a wind field cross-spectral density via 
a corresponding modal load spectrum to the final sought response spectrum. The area 
under the response spectrum is then the variance 2

rσ  of the response. 

As shown in Eq. 1.6 (and illustrated in Fig. 1.3.b) the cross sectional displacement at 
a position rx  that has been chosen for the relevant response calculation is in general a 

vector containing three components: yr  in the along wind horizontal direction, zr  in the 

across wind (for a bridge) vertical direction and the cross sectional rotation rθ . Since 

these describe a combined cross sectional displacement in a plane perpendicular to the 
span, the peak factor in Eq. 6.1 is equally applicable to each of the components, and thus 
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(6.2) 

As mentioned above (and further discussed in chapter 1), the wind induced response 
of a slender structure is assumed stationary, and then the total response may be split into 
a mean (static) and a fluctuating (dynamic) part. What can in general be expected in the 
case of a slender structure is illustrated in Fig. 6.3. The static part is proportional to the 
mean velocity pressure, i.e. to the mean wind velocity squared, until motion induced 
forces may reduce the total stiffness of the combined structure and flow system, after 
which the static response may approach an instability limit (torsion divergence). The 
dynamic part of the response may conveniently be separated into three mean wind 
velocity regions. Vortex shedding effects will usually occur at fairly low mean wind 
velocities, buffeting will usually be the dominant effect in an intermediate velocity 
region, while at high wind velocities motion induced load effects may entirely govern 
the response. Such a partition should not be taken literally, as there are no tight borders. 
E.g., important motion induced load effects may also occur in what seems like a typical 
vortex shedding or buffeting behaviour. In the vicinity of a certain limiting (critical) 
mean wind velocity the response curve may increase rapidly, i.e. the structure shows 
signs of unstable behaviour in the sense that a small increase of V  implies a large 

increase of static or dynamic response, indicating an upper stability limit ( crV ). 
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Fig. 6.3     Typical response variation with mean wind velocity 

Finally, a comment regarding the use of aerodynamic derivatives is appropriate. As 
discussed in chapter 5.2, motion induced forces may change the combined flow and 
structural stiffness (as well as damping), and thus, the current resonance frequencies are 
functions of the mean wind velocity. In the dynamic response calculations below this 
effect is fully included in the relevant frequency-response-functions. However, in the 
quantification of aerodynamic derivatives and their contribution to total stiffness and 
damping it is assumed that the effect of changing resonance frequencies may be ignored. 
For the response calculations in this chapter motion induced load effects may then be 
taken at a reduced velocity /( )iV Bω  where iω  is the predetermined resonance frequency 

based on structural properties alone and at 0V = . Otherwise, iterations are required. 
Thus, it is assumed that the response calculations are not taken in close vicinity to a 
motion induced instability limit. However, in the determination of an instability limit as 
shown in chapter 8, this effect can not be ignored, and iω  will be taken at the relevant 

critical wind velocity, crV . Thus, the determination of crV  in chapter 8 will demand 

iterations. 



6.2   THE MEAN VALUE OF THE RESPONSE 113

 

6.2   The mean value of the response 

The mean value of the response is the load effects of the mean flow induced load as 
defined in Eq. 5.11. It may readily be calculated according to standard static equilibrium 
type of procedures in structural mechanics. Such procedures are in general 
mathematically formulated within a finite element type of description where the solution 
strategy is based on the displacement method, i.e. for a chosen discrete model containing 
N  number of nodes the mean displacement vector r  is obtained from 

⋅ =K r R                                                              (6.3) 

where K  is the static stiffness matrix and R  is the mean load vector. A line like 
structure will in general be modelled by beam or beam-column type of elements, in 
which case there will usually be six degrees of freedom in each node (as illustrated in 
Fig. 6.4.a). Thus, r  and R  are 6 N⋅  by one vectors and K  is a 6 N⋅  by 6 N⋅  matrix. 
Herein, the establishment of K  and the ensuing strategy for the calculation of r  will not 
be further pursued. However, the establishment of R  is presented below. 

Let us consider a typical finite element type of modelling with six load components in 
each node. According to Eq. 5.11 the mean value of the evenly distributed load on an 
element is given by 

( )
2

2

y

z q

q
V

x q
qθ

ρ
⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

q b  where 
2

D

q L

M

DC
BC

B C

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

b

                  

(6.4) 

At an arbitrary node p  the load contribution from an adjoining element m  (see  
Fig. 6.4.b and c) is then 
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(6.5) 

 
where mL  is the element length, qm

b  is the qb  vector that contains the properties 

associated with element m , and where it has for simplicity been assumed that the nodal 
discretisation is such that q  may be taken constant within the length of the element 

(otherwise, 2mL  may be replaced by the result of a simple span-wise integration). 
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Fig. 6.4     Wind induced mean load components 
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Comparing the situation in Fig. 6.4.b and c to the general definition of external load 
components in Fig. 6.4.a, it is then seen that the contribution from pm

Q  to the load 

vector is 

[ ]1 2 3 4 5 6 0 0 0
TT

p y zpm pm m
R R R R R R Q Q Qθ⎡ ⎤= = −⎣ ⎦R

       
(6.6) 

if m  is horizontal, and 

[ ]1 2 3 4 5 6 0 0 0
TT

p z ypm pm m
R R R R R R Q Q Qθ⎡ ⎤= = − −⎣ ⎦R

    
(6.7) 

if m  is vertical. Thus, 
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(6.8) 
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θ  if m  is vertical. 

The six by one load vector pR  in node p  is then given by the sum of the contributions 

from all adjoining elements, i.e. 

[ ]1 2 3 4 5 6
T

p pp m
m

R R R R R R= = ∑R R                           (6.9) 

and the total 6 N⋅  by one load vector is given by: 1
T

p N⎡ ⎤= ⎣ ⎦R R R R . 
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6.3   Buffeting response 

As previously discussed in chapter 4, for practical reasons it is in the following 
distinguished between three cases. First a case of single mode single component 
response will be shown. This will render a suitable solution if eigen-frequencies are well 
separated and there is insignificant structural or flow induced coupling between 
horizontal, vertical and torsion displacement components. Second, a case of single mode 
three component response will be shown. This is a suitable solution strategy if there is 
significant structural or flow induced coupling between any of the three displacement 
components, and if eigen-frequencies are still well separated. Finally, a full multi mode 
approach is presented. 

The buffeting load is given in chapter 5.1. As shown in Eq. 5.8 (see also Eqs. 5.15 and 

5.16), it comprises a time invariant mean part ( )xq , previously dealt with in chapter 6.2 

above, and a fluctuating part 

( ), q ae aex t = ⋅ + ⋅ + ⋅q B v C r K r                                      (6.10) 

that contains a flow induced contribution q ⋅B v  and two motion induced parts ae ⋅C r  

and ae ⋅K r . The content of Eq. 6.10 is defined in Eqs. 5.9 – 5.14. It is applicable in time 

domain as well as in frequency domain. Improved frequency domain counterparts to qB , 

aeC  and aeK  are given in Eqs. 5.19, 5.24 and 5.25. As shown in chapter 4.2 – 4.4, in a 

modal frequency domain solution the flow induced part of the load (i.e. the modal 

versions of ae ⋅C r  and ae ⋅K r ) are moved to the left hand side of the equilibrium 

equation and included in the modal frequency-response-function. Thus, the development 

of a modal buffeting load needs only consideration of the flow induced part q ⋅B v , while 

the motion induced parts need consideration in the development of the modal frequency-
response-function. 

 
Single mode single component buffeting response calculations 

 
The response spectrum of an arbitrary displacement component at span–wise position 

rx  due to excitation in a corresponding mode shape number i  is given in Eqs. 4.28 – 

4.30. The variance of the displacement response at rx  is then obtained by frequency 

domain integration, i.e. 
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( ) ( ) ( ) ( ) ( )
2 22

2
0 0

ˆ, i r
r r i

i
r r Qi i i

x
x S x d H S d

K

φ
σ ω ω ω ω ω

∞ ∞

= = ⋅ ⋅∫ ∫                (6.11) 

where 

( ) ( )*1
lim
TQ Q Qi i i

S a a
T

ω
π→∞

= ⋅                                    (6.12) 

and Qi
a  is the Fourier amplitude of the appropriate flow induced modal loading 

component yq , zq  or qθ . The modal stiffness iK  and the modal frequency-response-

function ( )ˆ
iH ω  are defined in Eqs. 4.19 and 4.24. As shown in Eq. 4.24, any motion 

induced load effects are included in ( )ˆ
iH ω . 

Let us for simplicity consider the displacement response in the along wind horizontal 
direction yr  at rx , and develop its variance contribution from one of the predominantly 

y–modes, 0 0
T

i yφ⎡ ⎤≈ ⎣ ⎦φ , with corresponding eigen-frequency i yω ω=  (e.g. the 

contribution from the y-mode with lowest eigen-frequency). The flow induced modal 
load is then given by (see Eqs. 4.19 and 5.12) 

( ) ( ) ( )

( ) ( ) ( )

exp

exp

,

2 , ,
2

y y y
L

y D D L
L

Q t x q x t dx

VB D D
x C u x t C C w x t dx

B B

φ

ρ φ

= ⋅

⎡ ⎤⎛ ⎞′= ⋅ ⋅ ⋅ + − ⋅⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫

∫
        

(6.13) 

where expL  is the flow exposed part of the structure. Taking the Fourier transform on 

either side renders 

( ) ( ) ( )

( ) ( ) ( )

exp

exp

,

2 , ,
2

y qQ yy
L

y D u D L w
L

a x a x dx

VB D D
x C a x C C a x dx

B B

ω φ ω

ρ φ ω ω

= ⋅

⎡ ⎤⎛ ⎞′= ⋅ ⋅ ⋅ + − ⋅⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫

∫
         

(6.14) 

and thus, the modal load spectrum is given by 
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( )
2

* *

exp

exp

1
lim 2

2

2

y D u D L wQy T
L

y D u D L w
L

VB D D
S C a C C a dx

T B B

D D
C a C C a dx

B B

ρω φ
π

φ

→∞

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞′= + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞′⋅ + −⎨ ⎬⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

∫

∫

      (6.15) 

Acknowledging that 

( ) ( ) ( )*
1 2

1
, lim , ,mn m n

T
S x a x a x

T
Δ ω ω ω

π→∞
⎡ ⎤= ⋅⎣ ⎦     where    ,

m
u w

n
⎫

=⎬
⎭          

(6.16) 

and assuming that the cross spectra between flow components are negligible, i.e. that 

( ) ( ), , 0uw wuS x S xΔ ω Δ ω= ≈
                                      

(6.17) 

then 

( ) ( )
22

2 yQy

V B
S J

ρω ω
⎡ ⎤

= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦                                          

(6.18) 

where 

( ) ( ) ( ) ( )

( )

2
2

1 2 2
exp

2

1 22

,
2

,
       

uu
y y y D u

uL

ww
D L w

w

S xD
J x x C I

B

S xD
C C I dx dx

B

Δ ω
ω φ φ

σ

Δ ω
σ

⎧⎪⎛ ⎞= ⋅ ⋅ ⎨⎜ ⎟
⎝ ⎠⎪⎩

⎫⎡ ⎤ ⎪⎛ ⎞′+ − ⎬⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦ ⎪⎭

∫∫
                   (6.19) 

is the joint acceptance function containing the span-wise statistical averaging of variance 
contributions from the fluctuating u  and w  flow components. uI  and wI  are the 

corresponding turbulence intensities and 1 2x x xΔ = −  is the spatial (span-wise) 

separation. Combining Eqs. 6.11 and 6.18, using 2
y y yK Mω= , and introducing the 

modally equivalent and evenly distributed mass 

2 2 2
y y y y y y

L L L

m M dx m dx dxφ φ φ= =∫ ∫ ∫
                           

(6.20) 

then the following expression is obtained for the standard deviation of the dynamic 
response in the along wind y direction 
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( ) ( ) ( ) ( )
1 / 223 2 2

0

ˆ ˆ
2y r y r y y

y y

B V
x x H J d

m B
ρσ φ ω ω ω

ω

∞⎡ ⎤⎛ ⎞
= ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∫            (6.21) 

where 

( ) 2ˆ /y y y
L

J J dxω φ= ∫
                                             

(6.22) 

The non-dimensional frequency response function is given in Eq. 4.25. Neglecting any 
aerodynamic mass effects and introducing the notation given in Eqs. 5.24 and 5.25, it is 
then given by 

( ) ( )
12

ˆ 1 2y ae y aey y
y y

H i
ω ωω κ ζ ζ
ω ω

−
⎡ ⎤⎛ ⎞⎢ ⎥= − − + − ⋅⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                       (6.23) 

where 

2
2 * 2

4

exp
22 2 *2 2 4

exp
22

** 2
11

exp
2

2

1
2
1
422

2

y y
L

aey
yy y y

ae Ly y y L

ae y yy aey
y y L

Ly y

y y y
L

B
P dx

K
dxm dx PM B

m dxC B PP dx
M

m dx

ρ ω φ

φω φκ ω ρ
ζ φρ ω φ

ω
ω φ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⋅ ⋅ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫∫

∫∫

∫
    

(6.24) 

Similarly, the standard deviation of the dynamic response in the z direction and in 
torsion are given by 

( ) ( ) ( ) ( )
1 / 223 2 2

0

ˆ ˆ
2z r z r z z

z z

B V
x x H J d

m B
ρσ φ ω ω ω

ω

∞⎡ ⎤⎛ ⎞
= ⋅ ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦
∫

              

(6.25) 

( ) ( ) ( ) ( )
1 / 224 2 2

0

ˆ ˆ
2r r

B V
x x H J d

m Bθ θ θ θ
θ θ

ρσ φ ω ω ω
ω

∞⎡ ⎤⎛ ⎞
= ⋅ ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦
∫

              

(6.26) 

 
where: 
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2
2

2

2
2

/              

/            

z z
L

z z z
zL

L

L

L
L

m dx

m M dx
dx

m dx

m M dx
dx

θ θ

θ θ θ
θ

φ
φ

φ

φ
φ

φ

⎫
⎪

= = ⎪
⎪
⎪
⎬
⎪
⎪= = ⎪
⎪
⎭

∫
∫ ∫

∫
∫ ∫

                              

(6.27) 

and where the joint acceptance functions are given by 

( ) ( ) ( ) ( ) ( )

( )

2
1 2 2

exp

1 2
2

2
1 22

,ˆ 2

,

uu
z z z L u

uL

ww
L D w z

w L

S x
J x x C I

S xD
C C I dx dx dx

B

Δ ω
ω φ φ

σ

Δ ω
φ

σ

⎛ ⎧⎪⎜= ⋅ ⋅ ⎨⎜ ⎪⎩⎝

⎞⎫⎡ ⎤ ⎪⎛ ⎞ ⎟′+ + ⎬⎜ ⎟⎢ ⎥ ⎟⎝ ⎠⎣ ⎦ ⎪⎭ ⎠

∫∫

∫
         

(6.28) 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
1 2 2

exp

1 2
2 2

1 22

,ˆ 2

,

uu
M u
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ww
M w

w L

S x
J x x C I

S x
C I dx dx dx

θ θ θ

θ

Δ ω
ω φ φ

σ

Δ ω
φ

σ

⎛ ⎧⎪⎜= ⋅ ⋅ ⎨⎜ ⎪⎩⎝

⎞⎫⎪′+ ⎟⎬ ⎟⎪⎭ ⎠

∫∫

∫
                        

(6.29) 

The corresponding frequency response functions (see Eqs. 4.24, 4.68 and 4.69) are given 
by 

( ) ( )

( ) ( )

12

12

ˆ 1 2         

ˆ 1 2       

z ae z aez z
z z

ae ae

H i

H iθ θθ θ
θ θ

ω ωω κ ζ ζ
ω ω

ω ωω κ ζ ζ
ω ω

−

−

⎫⎡ ⎤⎛ ⎞ ⎪⎢ ⎥= − − + − ⋅⎜ ⎟ ⎪⎢ ⎥⎝ ⎠⎣ ⎦ ⎪
⎬
⎪⎡ ⎤⎛ ⎞ ⎪⎢ ⎥= − − + − ⋅⎜ ⎟ ⎪⎢ ⎥⎝ ⎠⎣ ⎦ ⎭

               (6.30) 

where: 
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⎢ ⎥ ⎪⎣ ⎦ ⎭

∫

∫

∫

∫
                             

(6.31) 

  
 

Example 6.1 
 

The volume integral in the joint acceptance functions above, e.g. as first defined in Eq. 6.19 or as 
normalised versions given in Eqs. 6.22, 6.28 and 6.29, may in general be expressed by 

( )
exp exp

2
1 2 1 2

0 0

,
L L

r r r rm n m n
J g x x dx dx= ∫ ∫  , ,

m
y z

n
θ⎫

=⎬
⎭

 

where:  ( ) ( ) ( ) ( )1 2 1 2,r r r r kkm n m n
g x x G x G x xψ Δ= ⋅ ⋅ , ,k u w= . It will in most cases demand 

a fine mesh, particularly in the region of small separation 1 2x x xΔ = − . The reason for this is 

that kkψ , is usually rather steep close to zero, and thus, ( )1 2,r rm n
g x x  will rapidly drop in the 

region close to a diagonal plane through 1 2x x= . This difficulty may readily be overcome by 

adopting Dyrbye & Hansen’s [21] following procedure for turning a volume integral back into two 
line integrals. The position coordinates 1x  and 2x  are interchangeable, and therefore 

( )1 2,r rm n
g x x  will be symmetric about the plane through 1 2x x= . Thus, 

( )
exp exp

2
1 1 1

0

2 ,
L L

r r r rm n m n
x

J g x x x dx d x
Δ

Δ Δ
⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∫ ∫  

Introducing the notation 1x x xΔ= +  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1,r r r r kk r r kkm n m n m n
g x x x G x G x x x G x x G x xΔ Δ ψ Δ Δ ψ Δ− = ⋅ − ⋅ = + ⋅ ⋅

 
then the following is obtained: 

( ) ( ) ( )
exp exp

2

0 0

2
L L x

r r r r kkm n m n
J G x x G x dx x d x

Δ

Δ ψ Δ Δ
−⎡ ⎤

⎢ ⎥= + ⋅ ⋅
⎢ ⎥
⎣ ⎦

∫ ∫
 

It is usually convenient to introduce the normalised coordinate expˆ /x x L=  and separation 

expˆ /x x LΔ Δ= . Thus, in a normalised format the joint acceptance function is given by 

( ) ( ) ( )
ˆ1 1

2 2
exp

0 0

ˆ ˆ ˆ ˆ ˆ ˆ2  
x

r r r r kkm n m n
J L G x x G x dx x d x

Δ
Δ ψ Δ Δ

−⎡ ⎤
= + ⋅ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

Let for instance ( )1 1 exp/rm
G x x L=  and ( )2 2 exp/rn

G x x L= , then 
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( ) ( ) ( ) ( )
ˆ1 1 1

32 2
exp

exp exp0 0 0

ˆ ˆ ˆ 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2  2 3

3

x

r r kk kkm n

x x x
J L dx x d x x x x d x

L L

Δ Δ ψ Δ Δ Δ Δ ψ Δ Δ
−⎡ ⎤+ ⎡ ⎤= ⋅ ⋅ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫ ∫
 

The solutions to a good number of cases have been shown by Dyrbye & Hansen [21] and by 
Davenport [14], who has also developed simple approximate expressions. 

The most common cases are graphically illustrated in appendix B. 
  

 

Example 6.2 
 

Let us consider a typical single mode single component situation, where the three modes , ,k m n  

0 0
T

k yφ⎡ ⎤= ⎣ ⎦φ
                

[ ]0 0 T
m zφ=φ

                
[ ]0 0 T

n θφ=φ  

with corresponding eigen-frequencies , ,y z θω ω ω  have been singled out for a response calculation. 

Since the main girder cross section of many bridges are close to a flat plate, the load coefficient 
properties 

0
D

L

M

C

C

C

⎫
⎪

′ ≠⎬
⎪′ ⎭

, 0
D

L

M

C

C

C

′ ⎫
⎪

≈⎬
⎪
⎭

 and D L
D

C C
B

′  

are frequently encountered in bridge engineering. In that case 

( ) ( ) ( ) ( )2
2

1 2 1 22
exp

,
2 uu

y D u y y
uL

S xD
J C I x x dx dx

B

Δ ω
ω φ φ

σ
⎛ ⎞= ⋅ ⋅⎜ ⎟
⎝ ⎠ ∫∫  

( ) ( ) ( ) ( ) ( )22
1 2 1 22

exp

,ww
z L w z z

wL

S x
J C I x x dx dx

Δ ω
ω φ φ

σ
′= ⋅ ⋅∫∫  

( ) ( ) ( ) ( ) ( )22
1 2 1 22

exp

,ww
M w

wL

S x
J C I x x dx dxθ θ θ

Δ ω
ω φ φ

σ
′= ⋅ ⋅∫∫  

Introducing: 

( ) ( ) ( )ˆ, ,uu u uuS x S Co xω ω ωΔ = ⋅ Δ ,                ( ) ( ) ( )ˆ, ,ww w wwS x S Co xω ω ωΔ = ⋅ Δ , 

2 2 2
n n n n n n

L

K M m dxω ω φ= ⋅ = ⋅ ∫ , ,   or n y z θ=  

and the non–dimensional  joint acceptance functions 

( ) ( ) ( ) ( )
1 2

2
1 2 1 2

exp

ˆˆ ,y y y uu y
L L

J x x Co x dx dx dxω φ φ Δ ω φ
⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠
∫∫ ∫  

( ) ( ) ( ) ( )
1 2

2
1 2 1 2

exp

ˆˆ ,z z z ww z
L L

J x x Co x dx dx dxω φ φ Δ ω φ
⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠
∫∫ ∫  
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( ) ( ) ( ) ( )
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J x x Co x dx dx dxθ θ θ θω φ φ Δ ω φ
⎛ ⎞
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⎜ ⎟
⎝ ⎠
∫∫ ∫  

then the yr , zr  and rθ  response spectra are given by (see Eq. 4.30, 6.18, 6.19, 6.28 and 6.29) 
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Integrating across the entire frequency domain, the following response standard deviations are 
obtained: 
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∫  

Let us focus exclusively on the response in the y (drag) direction, and consider a simply supported 
horizontal beam type of bridge with span 500L m=  that is elevated at a position 50fz m= . Let 

us for simplicity assume that the relevant mode shape ( ) ( )siny x x Lφ π=  and that 2rx L= , in 

which case ( ) 1y rxφ = . Let us also assume that the entire span is flow exposed, i.e. expL L= , 

and adopt the following wind field properties: 

1) the turbulence intensity 0.15u uI Vσ= =  (see Eq. 3.14) 

2) the integral length scale: ( )0.3
100 10 162xf

u fL z m= ⋅ =  (see Eq. 3.36), 

3) the auto spectral density: 
( )

( )2 5 3

1.08

1 1.62

xf
u u

xfu
u

S L V

L V

ω
σ ω

⋅
=

+ ⋅ ⋅
 (see Eq. 3.25) 

4) the normalised co-spectrum: ( ) ( )ˆ , expuu uxCo x C x Vω ωΔ = − ⋅ ⋅ Δ  (see Eq. 3.41) 

    where ( )9 / 2 1.4ux uyf
C C π= = ≈ . 
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Let us allot the following values to the remaining constants that are necessary for a numerical 
calculation of ( )2r ry

x Lσ = : 

ρ  
(kg/m3) 

DC  B  
(m) 

D  (m) ym  

(kg/m) 
yω  

(rad/s) 
yζ  

1.25 0.7 20 4 10000 0.4 0.005 

Since ym  is constant along the span, then the modally equivalent and evenly distributed mass 

y ym m= . Finally, let us adopt quasi–static values to the aerodynamic derivatives, in which case 

0aey
κ =  and the aerodynamic damping aey

ζ  is given by (see Eqs. 5.26 and 6.24) 

2 2
* 4

1 2 4.375 10
4 4 2

D
ae Dy

y y y y y

DC VB B D V
P C V

m m B B m
ρρ ρζ

ω ω
−⎛ ⎞

= = − = − ≈ − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 

The non-dimensional joint acceptance function ˆ
yJ  may readily be obtained by numerical 

calculations. However, as shown by Davenport [14], in many cases closed form solutions may be 

obtained. The situation that ( ) ( )siny x x Lφ π=  and ( )ˆ ,uuCo xω Δ  is a simple exponential 

function is such a case. Substituting 1x x= , 2x x x= + Δ , x̂ x Lπ= , x̂ x LΔ = Δ  and 

ˆ uxC L Vω ω= , then 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
2 2

1 2 1 2

exp

2exp exp
2

0 0 0

2exp exp
2

0 0 0

ˆˆ ,

ˆ2 ,

2 sin sin exp sin

y y y uu y
L L

L L x L

y y uu y

L L x L

ux

J x x Co x dx dx dx

x x x dx Co x d x dx

x x xdx C x V d x xdx
L L L

φ φ ω φ

φ φ ω φ

π π πω

−Δ

−Δ

⎛ ⎞
= ⋅ ⋅ Δ ⎜ ⎟⎜ ⎟

⎝ ⎠

⎡ ⎤ ⎛ ⎞
⎢ ⎥= + Δ ⋅ Δ Δ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

⎡ ⎤ ⎛ ⎞
⎢ ⎥= + Δ ⋅ ⋅ − Δ Δ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

∫∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

Using that sin 2 2sin cosα α α=  and that ( )sin sin cos cos sinα β α β α β+ = ⋅ + ⋅ , then this 

may be expanded into 

( )( )
( )

exp exp
2 2

2
0 0

ˆ ˆ1 11
2

0 0 0

8 1 2ˆ cos sin sin sin exp
2

8 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin sin sin 2 exp

2

L L x
ux

y

x x

C x
J x x x x dx d x

L L L L VL

x xdx x xdx x d x
L L

π π

ωπ π π π

π π ω
π

−Δ

−Δ −Δ

⎡ ⎤ Δ⎛ ⎞⎛ ⎞⎢ ⎥= Δ ⋅ + Δ ⋅ ⋅ − Δ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟= Δ + Δ ⋅ − Δ Δ
⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫ ∫

 

( ) ( ) ( )

( )

1
2

0

8 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 cos cos sin 2 1 sin cos2 1
2 4

1 ˆ ˆ ˆ ˆsin exp
4

yJ x x x x x x

x x d x

π π π π π π
π

π ω

⎧ ⎡ ⎤= − Δ Δ − Δ ⋅ − Δ − Δ ⋅ − Δ⎨ ⎣ ⎦⎩

⎫+ Δ − Δ Δ⎬
⎭

∫
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Using that ( )sin cos cos sin sinα β α β α β⋅ − ⋅ = −  and ( )sin 2 sinα π α− + = −  this simplifies 

into 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1
2

0 0

1 1

0 0

1

2 2
0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 1 cos sin exp 4 cos exp

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos exp sin exp

ˆ ˆ ˆ1 exp
ˆ ˆ ˆ4 cos sin

ˆ

exp

yJ x x x x d x x x d x

x x x d x x x d x

x x
x x

π π ω π ω
π

π ω π ω
π

ω
ω π π π

ω π

⎡⎡ ⎤= − Δ Δ + Δ − Δ Δ = Δ ⋅ − Δ Δ⎢⎢ ⎥⎣ ⎦ ⎢⎣
⎤

− Δ ⋅ Δ ⋅ − Δ Δ + Δ ⋅ − Δ Δ ⎥
⎥⎦

⎧⎡ ⎤− Δ − Δ⎪= ⋅ − Δ + Δ⎨⎢ ⎥
+⎣ ⎦⎪⎩

−
+

∫ ∫

∫ ∫

( )
( )

( )( )

( ) ( )

1

2 2
22 2

0

1

2 2
0

ˆ ˆ
ˆ ˆ ˆcos 2 sin

ˆ

ˆ ˆexp1
ˆ ˆ ˆsin cos

ˆ

x
x x

x
x x

ω
ω π π π π

ω π

ω
ω π π π

π ω π

⎡ ⎤
Δ⎢ ⎥− Δ − Δ⎢ ⎥

+⎢ ⎥⎣ ⎦

⎫⎡ ⎤− Δ ⎪− ⋅ Δ + Δ ⎬⎢ ⎥
+⎣ ⎦ ⎪⎭

 

Thus, the following is obtained: 

( ) ( )2ˆ ˆ ˆ4yJ ω ψ ω⇒ = ⋅  where ( ) ( )
( )

2
2 2 22 2

ˆ1 expˆ
ˆ 2

ˆ ˆ

ωωψ ω π
ω π ω π

⎡ ⎤
+ −⎢ ⎥= +⎢ ⎥+ +⎢ ⎥⎣ ⎦

 

The standard deviation of the dynamic response at 2rx L=  is then given by 

( ) ( ) ( ) ( )
1 2

24 2 2
2

0

ˆ ˆ ˆ2 3.28 10 u
r y yy

u

S
L V H J d

ω
σ ω ω ω

σ

∞
− ⎡ ⎤

= ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
∫  

where ( ) 2
u uS ω σ , ( )2ˆ ˆyJ ω  and ω̂  are defined above, and where 

( ) ( ) ( ) 12 4ˆ 1 0.4 2 0.005 4.375 10 0.4yH i Vω ω ω
−

−⎡ ⎤= − + + ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦  
The chosen single point spectral density and corresponding normalised co–spectrum of the 
turbulent u  component are shown on the top left and right hand side diagrams in Fig. 6.5. The 
non-dimensional frequency response function and the squared normalised joint acceptance 
functions are shown on the lower left and right hand side diagrams in Fig. 6.5. The response 
spectrum of the along wind yr  component at 2rx L=  and 40 /V m s=  is shown in Fig. 6.6. 

As can be seen, it contains a broad banded background part and a narrow banded resonant part at 
0.4 /rad sω = . The standard deviation of the dynamic response at 2rx L=  is plotted versus 

the mean wind velocity in Fig. 6.7. [It should be noted that the effect of aerodynamic damping is 
considerable (see Example 6.3), and that the validity of the quasi-static theory may be limited.] 
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Fig. 6.5    Top left and right: single point u  spectrum and corresponding normalised co-
spectrum, lower left and right: frequency response function and joint acceptance 
function 

 

Fig. 6.6     Response spectrum of yr  displacements at 2rx L=  and 45 /V m s=  
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Fig. 6.7    The standard deviation of the dynamic response at 2rx L=  versus the mean 
wind velocity 

 
Single mode three component buffeting response calculations 

 
The solution to this case is given in chapter 4.3, see Eqs. 4.47 and 4.48. What remains 
from the development in chapter 4.3 is to expand on the modal load spectrum Qi

S  using 

the results from chapter 5.1. As shown above (see Eq. 6.4 and ensuing discussion), the 
flow induced buffeting part of the fluctuating load is 

( )
( )
( )

( ) ( ) ( )
,

ˆ, , / 2
,

y

z q q

q x t

q x t x x t VB
q x tθ

ρ
⎡ ⎤
⎢ ⎥

= ⋅ = ⋅ ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

B v B v                   (6.32) 

where ˆ
qB  and v  are defined in Eqs. 5.9 and 5.12. Thus (see Eq. 4.39) 
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( ) ( )
exp

ˆ
2

T
i i q

L

VB
Q t dx

ρ= ⋅ ⋅∫ φ B v

                                     

(6.33) 

where ( )
 

T
i y z i

x θφ φ φ⎡ ⎤= ⎣ ⎦φ . The Fourier transform of Eq. 6.33 

( ) ( )
exp

ˆ
2

T
i q vQi

L

VB
a dx

ρω = ⋅ ⋅∫ φ B a

                                 

(6.34) 

where 

( ) [ ], T
v u wx a aω =a

                                           
(6.35) 

contains the Fourier amplitudes of the u and w components. This will then render the 
following modal load spectrum 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ){ } ( )

*

2
*

exp exp

2

1 1 2 2 1 2

exp

1
lim

1 ˆ ˆlim
2

ˆ ˆ,
2

Q Q Qi i iT

T

T T
i q v i q vT

L L

T T
i q v q i

L

S a a
T

VB
dx dx

T

VB
x x x x x dx dx

ω
π

ρ
π

ρ Δ ω

→∞

→∞

= ⋅

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫ ∫

∫∫

φ B a φ B a

φ B S B φ

 

(6.36) 

where 

( ) ( ) ( )
* *

*
1 2 * *

1 1
, lim , , lim u u u w uu uwT

v v v
T T wu www u w w

a a a a S S
x x x

S ST T a a a a
Δ ω ω ω

π π→∞ →∞

⎡ ⎤ ⎡ ⎤⎡ ⎤= ⋅ = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
S a a

  (6.37) 

This is greatly simplified if the cross spectra between flow components are negligible, 
i.e. 0uw wuS S= ≈ , see Eq. 6.17. Then 

( ) ( )
22

2 iQi

V B
S J

ρω ω
⎡ ⎤

= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦                                          

(6.38) 

where: 

( ) ( ) ( ) ( ){ } ( )2 2
1 1 2 2 1 2

exp

ˆˆ ˆ,T T
i i q v v q i

L

J x x x x x dx dxΔ ω⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦∫∫ φ B I S B φ       (6.39) 

is the joint acceptance function, and where 
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[ ]

( ) 2 2ˆ , / /     

v u w

v uu u ww w

diag I I

x diag S SΔ ω σ σ

⎫= ⎪⎪
⎬
⎪⎡ ⎤= ⎪⎣ ⎦ ⎭

I

S
                        

(6.40) 

Introducing the modal stiffness 2
i i iK Mω=  and defining 

( )/ T
i i i i

L

m M dx= ⋅∫ φ φ
                                         

(6.41) 

then from Eqs. 4.47 and 4.48 the following standard deviations of displacement 
responses at rx  are obtained 

( )
( )
( )

( ) ( )
1 / 223 2 2

0

ˆ ˆ
2

y y r

z z r i i
i i

ri i

x
B V

x H J d
m B

xθ θ

σ φ
ρσ φ ω ω ω

ω
σ φ

∞
⎡ ⎤⎡ ⎤

⎡ ⎤⎢ ⎥ ⎛ ⎞⎢ ⎥
= ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥

⎢ ⎥⎝ ⎠⎢ ⎥ ⎣ ⎦⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫
        

(6.42) 

where 

ˆ i
i T

i i
L

J
J

dx
=

⋅∫φ φ
                                               

(6.43) 

Again, neglecting any aerodynamic mass and introducing the notation given in Eqs. 
4.25, 4.40 and 5.25, then the frequency response function is given by 

( ) ( )
12

ˆ 1 2i ae i aei i
i i

H i
ω ωω κ ζ ζ
ω ω

−
⎡ ⎤⎛ ⎞⎢ ⎥= − − + − ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦                          

(6.44) 

where 

( )
( )

2
exp

ˆ

2

T
i ae i

L
aei T

i i i
L

dx
B
m dx

ρκ = ⋅
∫

∫

φ K φ

φ φ
                                         

(6.45) 

( )
( )

2
exp

ˆ

4

T
i ae i

L
aei T

i i i
L

dx
B
m dx

ρζ = ⋅
∫

∫

φ C φ

φ φ
                                        

(6.46) 
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As explained in chapter 4.3 (see Eq. 4.41), only diagonal ˆ
aeK  and ˆ

aeC  will maintain the 

presupposition that no modal coupling will occur. Flow induced coupling will occur if 
ˆ

aeK  and ˆ
aeC  are not diagonal. 

 
 

Multi mode buffeting response calculations 
 

The general solution to a multi mode approach is given by the three by three response 
matrix shown in Eqs. 4.80 – 4.82. The corresponding three by three response covariance 
matrix 

( )

2

2

2

r r r r r ry y y z y

rr r r r r r r rz y z z z

r r r r r ry z

Cov Cov

x Cov Cov

Cov Cov

θ

θ

θ θ θ θ

σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov

                                

(6.47) 

which contains the variance of each response displacement component yr , zr  and rθ  at 

rx x=  on its diagonal and cross covariance on its off-diagonal terms, is obtained by 

frequency domain integration. Thus, 

( ) ( ) ( ) ( ) ( ) ( ) ( )*
ˆ

0 0

ˆ ˆ, T T
rr r rr r r r r rQ

x x d x d xη ηω ω ω ω ω ω
∞ ∞⎡ ⎤

= = ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫Cov S Φ H S H Φ
  

(6.48) 

where ( )ˆ
η ωH  and ( )Q̂

ωS  are modN  by modN  matrices given in Eqs. 4.69 and 4.75, and 

( )r rxΦ  is a three by modN  matrix defined in Eq. 4.79. What remains is to bring the 

results from chapter 5.1 into ( )ˆ
η ωH  and ( )Q̂

ωS . Disregarding any aerodynamic mass 

effects, the frequency response matrix ( )ˆ
η ωH  in Eq. 4.69 is reduced to 

( ) ( )
12

1 1ˆ 2ae ae
i i

diag i diagη ω ω ω
ω ω

−
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= − − ⋅ + ⋅ ⋅ −⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

H I κ ζ ζ            (6.49) 

where I  is the identity matrix ( modN by modN ), and where ζ , aeζ  and aeκ  are defined 

in Eq. 4.68. By introducing the modal stiffness matrix ( )1 2
0 1 / i idiag Mω− ⎡ ⎤= ⎣ ⎦K , the 

definition of im  in Eq. 6.41 and the notation in Eqs. 5.24 and 5.25, then the content of 
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ae aeij
κ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

κ  and ae aeij
ζ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ζ                        (6.50) 

are given by 

( )
( )

2
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ˆ

2

T
i ae j

ae Lij
aeij T

ii i i i
L

dx
K B

mM dx
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ω

⋅ ⋅
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⋅

∫

∫
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2
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ˆ

2 4

T
i ae j

ae Liji
aeij T

ii i i i
L

dx
C B

mM dx

ω ρζ
ω

⋅ ⋅

= = ⋅
⋅

∫

∫

φ C φ

φ φ
                         

(6.52) 

Fully expanded versions of these expressions are given by 

(

) ( )

* * * * * *
4 6 6 6 4 42

exp

* * 2 * 2 2 2
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aeij
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i
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m
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θ θ
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φ φ φ φ φ φ φ φ φ φ φ φ

ρ

φ φ φ φ φ φ φ φ φ

⎡
⎢= + + + + +
⎢
⎣

⎡ ⎤⎤+ + + + +⎢ ⎥⎥⎦ ⎢ ⎥⎣ ⎦
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∫
 

(6.53) 

(

) ( )

* * * * * *
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* * 2 * 2 2 2
2 2 2
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aeij
y y z y y y z z z zi j i j i j i j i j i j

L

i

y z y zi j i j i j i i i
L
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B
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φ φ φ φ φ φ φ φ φ

⎡
⎢= + + + + +
⎢
⎣

⎡ ⎤⎤+ + + + +⎢ ⎥⎥⎦ ⎢ ⎥⎣ ⎦

∫

∫

 

(6.54) 

As mentioned above, the normalised modal load matrix 
Q̂

S  ( modN by modN ) is given in 

Eq. 4.75. Its content ( )ˆ ˆQ Qi j
S ω , containing the cross sectional load matrix ( ),qq x ωΔS , is 

defined in Eq. 4.77 (and 4.78). Based on the buffeting load expressions in chapter 5.1 it 
is now only qqS  that remains for further expansion. Recalling from Eq. 6.32 that the 



132 6   WIND INDUCED STATIC AND DYNAMIC RESPONSE CALCULATIONS 

 

buffeting part of the cross sectional loading is ( ) ˆ/ 2
T

y z q qq q q VBθ ρ⎡ ⎤ = ⋅ = ⋅ ⋅⎣ ⎦ B v B v , 

then its Fourier transform is 

( ) ( ) ˆ, / 2

qy

q q q vz

q

a

x a VB

a θ

ω ρ

⎡ ⎤
⎢ ⎥

= = ⋅ ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a B a

                            

(6.55) 

where 

( ) [ ], T
v u wx a aω =a

                                            
(6.56) 

The cross spectrum ( ),qq x ωΔS  is then given by 

( ) ( ) ( )

( ) ( )

( )

*
1 2

2
*

1 2

2

1
, lim , ,
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ˆ ˆ,
2

T
qq q q

T

T T
q v v qT

T
q v q

x x x
T

VB
x x

T

VB
x

ω ω ω
π

ρ ω ω
π

ρ ω

→∞

→∞

⎡ ⎤Δ = ⋅⎣ ⎦
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⎝ ⎠

S a a

B a a B

B S B
        

(6.57) 

where ( ),v x ωΔS  is defined in Eq. 6.37. Adopting the assumption that 0uw wuS S= ≈ , 

see Eq. 6.17, and introducing Eq. 6.40, then the content of the  normalised modal load 
matrix (Nmod by Nmod) 

( ) ( )ˆ ˆ ˆQ Q Qi j
Sω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

S

                                         

(6.58) 

is given by 
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∫∫ φ B I S B φ

 

(6.59) 
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Thus, in case of multi mode calculations there will be mod modN N⋅  such reduced joint 

acceptance functions 2ˆ
ijJ , each defined by 

( ) ( ){ } ( )2
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(6.60) 

A fully expanded version of 2
ijJ  is given by 
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⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎩

⎡ ⎤⎛ ⎞′+ + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤′+ +⎢ ⎥⎣ ⎦

⎡ ⎤+ +⎣ ⎦

∫∫

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2
1 2 1 2

2 2
1 2 1 2

ˆ ˆ

ˆ ˆ4

ˆ ˆ4

D L u uu D L L D w ww

y y D M u uu D L M w wwi j i j

z z L M u uu L D M w wwi j i j

D D
C C I S C C C C I S

B B

D D
x x x x C BC I S C C BC I S

B B

D
x x x x C BC I S C C BC I S

B

θ θ

θ θ

φ φ φ φ

φ φ φ φ

⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎡ ⎤ ′ ′+ + + −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦
⎫⎡ ⎤⎛ ⎞ ⎪⎡ ⎤ ′ ′+ + + + ⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦

1 2dx dx
⎪⎭  

(6.61) 

and the corresponding reduced version is given by 

( ) ( )
2

2

2 2 2 2 2 2

ˆ ij
ij

y z y zi i i j j j
L L

J
J

dx dxθ θφ φ φ φ φ φ
=
⎛ ⎞ ⎛ ⎞

+ + ⋅ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫

                           (6.62) 

The reduced cross spectra ˆ
uuS  and ˆ

wwS  are defined by 

( )
( )

2

2

ˆ , /

ˆ , /

uu uu u

ww ww w

S S x

S S x

Δ ω σ

Δ ω σ

⎫= ⎪
⎬

= ⎪⎭                                           

(6.63) 
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where uuS  and wwS  are defined in Eq. 3.39. (A transition between spectral density 

descriptions using f  rather than ω  as the frequency variable is shown in Eq. 2.68.) 
Since spatial averaging will eliminate any complex parts of the cross spectra, Eq. 6.63 
may for all practical purposes be replaced by 

( ) ( ) ( )

( ) ( ) ( )

2
2

2
2

ˆ ˆRe , / ,

ˆ ˆRe , / ,        

u
uu uu u uu

u

w
ww ww w ww

w

S
S S x Co x

S
S S x Co x

ω
Δ ω σ Δ ω

σ
ω

Δ ω σ Δ ω
σ

⎫
⎡ ⎤= = ⋅ ⎪⎣ ⎦

⎪
⎬
⎪⎡ ⎤= = ⋅⎣ ⎦ ⎪
⎭          

(6.64) 

where ˆ
uuCo  and ˆ

wwCo  are the reduced u- and w- component co-spectra (see Eq. 3.40). 

 
 

  
 

Example 6.3 
 
Let us again (similar to example 6.2) consider a simply supported horizontal beam type of bridge 
with span 500L m=  that is elevated at a position 50fz m= , but now we set out to calculate the 

dynamic response at 2rx L=  associated with the two mode shapes 

1 1
0 0

T
zφ⎡ ⎤= ⎣ ⎦φ

           
and  

           2 2
0 0

T
θφ⎡ ⎤= ⎣ ⎦φ  

with corresponding eigen–frequencies 1 0.8ω =  and 2 2.0 /rad sω = . As can be seen, 1φ  

contains only the displacement component in the across wind vertical direction while 2φ  only 

contains torsion. Let us for simplicity assume that 
1 2

sinz x Lθφ φ π= = . Thus, the aim of this 

example is to calculate the corresponding dynamic response quantities r rz z
σ  and r rθ θσ  at 

2rx L=  and the covariance r rz
Cov θ  between them. It is taken for granted that the chosen mean 

wind velocity settings are well below any instability limit, such that any changes to resonance 
frequencies may be ignored. Again, it is assumed that the cross section is close to a flat plate with 
the following static load coefficient properties: 

0LC =  5LC′ =  0MC =  1.5MC′ =  and D L
D

C C
B

′  

(Quantifying the drag coefficient is obsolete since y direction response is not excited.) 
Let us also assume that the entire span is flow exposed, i.e. expL L= , and adopt the following 

wind field properties: 
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1) the turbulence intensity 0.08w wI Vσ= =   (see Eq. 3.14) 

2) the integral length scales: 
0.3

100 162
10

x ff
u

z
L m

⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
, 

12

xf
xf u

w
L

L =  (see Eq. 3.36), 

3) the auto spectral density: 
( )

( )2 5 3

1.5

1 2.25

xf
w w

xfw
w

S L V

L V

ω
σ ω

⋅
=

+ ⋅ ⋅
 (see Eq. 3.25) 

4) the normalised co-spectrum: ( )ˆ , expww wx
x

Co x C
V

ωω ⋅ Δ⎛ ⎞Δ = − ⋅⎜ ⎟
⎝ ⎠

 (see Eq. 3.41) 

    where ( )6.5 / 2 1.0wx wyf
C C π= = ≈ . 

 
Let us allot the following values to the remaining constants that are necessary for a numerical 
calculation of the relevant dynamic response quantities at 2rx L= : 

 
ρ  

(kg/m3) 
B 

(m) 
D 

(m) 
1m  

(kg/m) 
2m  

(kgm2/m) 
1ω  

(rad/s) 
2ω  

(rad/s) 
1ζ  2ζ  

1.25 20 4 410  56 10⋅  0.8 2.0 0.005 0.005 

 

Since 1m  and 2m  are constant along the span, then the modally equivalent and evenly distributed 

masses 1 1m m=  and 2 2m m= . It should be noted that 

2 2
1 1 1

sinT
z x Lφ π⋅ = =φ φ

………..
and

………..
2 2

2 2 2
sinT x Lθφ π⋅ = =φ φ  

and that     
0 2

L

m n
L

dxφ φ⋅ =∫          for any combination of           1 2or 
m

z
n

θ⎫
=⎬

⎭
. 

Finally, let us for simplicity adopt quasi-static values to the aerodynamic derivatives, except for 
*
2A  which is responsible for aerodynamic damping in torsion. Adopting ( )2*

2 M M iA C V Bβ ω′= −  

and 0.2Mβ =  provides a good approximation to the flat plate properties. Thus, the aerodynamic 

derivatives associated with motion in the across wind vertical direction and torsion are given by 
(see Eq. 5.26): 

*
1
*
2
* 2
3

ˆ

0
ˆ

L

H V
H C

H V

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
′= ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

*
1
* 2
2
* 2
3

ˆ

ˆ

ˆ
M M

VA

A C V

A V

β

⎡ ⎤⎡ ⎤ −
⎢ ⎥⎢ ⎥

′ ⎢ ⎥= ⋅ − ⋅⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

* *
4 4
* *
5 5
* *
6 6

H A

H A

H A

⎡ ⎤
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0  

where: ( )ˆ
iV V Bω= . The aerodynamic coefficients associated with changes in stiffness and damping 

are then given by (see Eq. 6.51 and 6.52, or the fully expanded versions in Eqs. 6.53 and 6.54): 

( ) ( )
2

* 2 * 2 2
3 3

exp
2ae z zij i j i j i i

i L L

B
BH B A dx dx

m θ θ θ θ
ρκ φ φ φ φ φ φ= ⋅ + +∫ ∫  

( ) ( )
2

* * 2 * 2 2
1 1 2

exp
4ae z z z zij i j i j i j i i

i L L

B
H BA B A dx dx

m θ θ θ θ
ρζ φ φ φ φ φ φ φ φ= ⋅ + + +∫ ∫  
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where in this case i and j are equal to 1 or 2. Introducing the choice of aerodynamic derivatives 
given above, then: 

11
0aeκ = , 

*
31 2 22 3 3

exp *
3212

1 1 1 11
2 2 2

z
L

ae L
z

L

BH dx
B B B V

H C
m m m Bdx

θφ φ
ρ ρ ρκ

ωφ
⎛ ⎞

′= ⋅ = ⋅ = ⋅ ⋅ ⎜ ⎟
⎝ ⎠

∫

∫
 

21
0aeκ = , 

2 2 *
32 22 4 4

exp *
3222

2 2 2 22
2 2 2

L
ae M

L

B A dx
B B B V

A C
m m m Bdx

θ

θ

φ
ρ ρ ρκ

ωφ
⎛ ⎞

′= ⋅ = ⋅ = ⋅ ⋅ ⎜ ⎟
⎝ ⎠

∫

∫
 

2 *
112 2 2

exp *
1211

1 1 1 11
4 4 4

z
L

ae L
z

L

H dx
B B B V

H C
m m m Bdx

φ
ρ ρ ρζ

ωφ
′= ⋅ = ⋅ = − ⋅ ⋅

∫

∫
, 

12
0aeζ =  

*
12 12 3 3

exp *
1221

2 2 2 22
4 4 4

z
L

ae M

L

BA dx
B B B V

A C
m m m Bdx

θ

θ

φ φ
ρ ρ ρζ

ωφ
′= ⋅ = ⋅ = − ⋅ ⋅

∫

∫
 

2 2 *
22 22 4 4

exp *
2222

2 2 2 22
4 4 4

L
ae M M

L

B A dx
B B B V

A C
m m m Bdx

θ

θ

φ
ρ ρ ρζ β

ωφ
⎛ ⎞

′= ⋅ = ⋅ = − ⋅ ⋅ ⎜ ⎟
⎝ ⎠

∫

∫
 

The non-dimensional frequency response function is then given by (see Eq. 6.49) 

( ) ( )
12

2 1
12 111 1 12

2 1
22 222 21 22

1 1ˆ 2

0 00 0 01 0
2

00 1 0 0 0

ae ae
i i

ae ae

ae ae ae

diag i diag

i

η ω ω ω
ω ω

κ ζω ω ζ
ω ω

ζκ ζ ζω ω

−

− −

− −

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= − − ⋅ + ⋅ ⋅ − =⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪⎜ ⎟− − + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭

H I ζ ζκ

1−

⎪

 

where: 4 2
12

97.66 10ae Vκ −= ⋅ ⋅ , 4 2
22

1.563 10ae Vκ −= ⋅ ⋅ , 4
11

39.06 10ae Vζ −= − ⋅ ⋅ , 

4
21

1.563 10ae Vζ −= − ⋅ ⋅ , 4 2
22

0.1563 10ae Vζ −= − ⋅ ⋅ , and where all other quantities are given 

above. The aerodynamic stiffness and damping coefficients 
12aeκ , 

21aeκ , 
11aeζ , 

21aeζ , 
22aeζ  

are shown in Fig. 6.8. The absolute value of the determinant of the non–dimensional frequency 
response function (at 0V = ) is shown in Fig. 6. 9 together with the single point spectral density 
and normalised co-spectrum of the wind turbulence w component. 
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Fig. 6.8     Aerodynamic stiffness and damping coefficients 

 

Fig. 6.9     Top left and right hand side diagrams: w component spectral density and 
normalised co-spectrum, lower left: absolute value of the determinant of the non-
dimensional frequency response function at 0V = , lower right:  the joint acceptance 
function of normalized mode shapes. 
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The content of the normalised modal load matrix 

( )
ˆ ˆ ˆ ˆ1 1 1 2

ˆ
ˆ ˆ ˆ ˆ2 1 2 2

Q Q Q Q

Q
Q Q Q Q

S S

S S
ω

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

S  

is given in Eq. 6.59: 

( )
223 3

2
ˆ ˆ

ˆ
2 2 ijQ Qi j

i j i j

B B V V
S J

m m B B
ρ ρω

ω ω
⎛ ⎞⎛ ⎞

= ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

where the reduced joint acceptance function ˆ
ijJ  is given in Eq. 6.60. An expanded version of the 

joint acceptance function itself is given in in Eq. 6.61. Under the present circumstances it 
simplifies into 

 ( ) ( ) ( ) ( )22
11 1 2 1 221 1

exp

,ww
z z L w

wL

S x
J x x C I dx dx

ω
φ φ

σ
Δ

′= ⋅ ⋅ ⋅∫∫  

 ( ) ( ) ( )2 2
12 1 2 1 221 2

exp

,ww
z L M w

wL

S x
J x x C BC I dx dxθ

ω
φ φ

σ
Δ

′ ′= ⋅ ⋅ ⋅∫∫ , 2 2
21 12J J=  

 ( ) ( ) ( ) ( )22
22 1 2 1 222 2

exp

,ww
M w

wL

S x
J x x BC I dx dxθ θ

ω
φ φ

σ
Δ

′= ⋅ ⋅ ⋅∫∫  

Introducing ( ) ( ) ( )ˆ, ,ww w wwS x S Co xω ω ωΔ = ⋅ Δ  and w wI Vσ= , then the content of the 

normalised modal load matrix is given by 

( ) ( ) ( )
2

ˆ ˆ 1121 1
1 1

ˆ
2

L
wQ Q

VBC
S J S

m

ρω ω ω
ω

⎛ ⎞′
= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

, ( ) ( ) ( )
2

ˆ ˆ 211 2
1 2 1 2

ˆ
2

L M
wQ Q

VB C BC
S J S

m m

ρ
ω ω ω

ω ω

⎛ ⎞′ ′
= ⎜ ⋅ ⎟⎜ ⎟
⎝ ⎠

, 

( ) ( )ˆ ˆ ˆ ˆ2 1 1 2Q Q Q Q
S Sω ω=  and ( ) ( ) ( )

22

ˆ ˆ 2222 2
2 2

ˆ
2

M
wQ Q

VB C
S J S

m

ρω ω ω
ω

⎛ ⎞′
= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 

where: 

 ( ) ( ) ( )
2

2 2
11 1 2 1 21 1 1

exp

ˆˆ ,z z ww z
L L

J x x Co x dx dx dxφ φ ω φ
⎛ ⎞

= ⋅ ⋅ Δ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫ ∫  

 ( ) ( ) ( )2 2 2
21 1 2 1 21 2 1 2

exp

ˆˆ ,z ww z
L L L

J x x Co x dx dx dx dxθ θφ φ ω φ φ
⎛ ⎞

= ⋅ ⋅ Δ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫ ∫ ∫  

 ( ) ( ) ( )
2

2 2
22 1 2 1 22 2 2

exp

ˆˆ ,ww
L L

J x x Co x dx dx dxθ θ θφ φ ω φ
⎛ ⎞

= ⋅ ⋅ Δ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫ ∫  

Since 
1 2

sinz x Lθφ φ π= = , and ( ) ( )ˆ , expww wyCo x C x Vω ωΔ = − ⋅ ⋅ Δ  the present situation is 

equivalent to that which was encountered in Example 6.2, and thus, 
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( )

2
11

2
21

2
22

ˆ

ˆ 4
ˆ

J

J

J

ψ ω

⎫
⎪⎪ = ⋅⎬
⎪
⎪⎭         

where       ( ) ( )
( )

2
2 2 22 2

ˆ1 expˆ
2

ˆ ˆ

ωωψ ω π
ω π ω π

+ −
= + ⋅

+ +
 

and where expˆ uxC L Vω ω= . The normalised modal load matrix 
Q̂

S  is then given by  

( ) ( ) ( ) ( )
( ) ( ) ( )

2
2 2 2

2
ˆ ˆ ˆ ˆ 1 11 1 1 2

ˆ 2 2 2
ˆ ˆ ˆ ˆ 1 1 2 2 22 1 2 2 1 1

2 2

L L M
Q Q Q Q w

Q
Q Q Q Q

L M M

m
C BC CS S mVB S

S S m m m
BC C BC

m

ω
ωρ ω ψ ω

ω
ω ω ω

ω

⎡ ⎤⎛ ⎞⎢ ⎥′ ′ ′⎜ ⎟⎡ ⎤ ⎢ ⎥⋅ ⋅ ⎝ ⎠⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⋅ ⎢ ⎥⎛ ⎞⎣ ⎦ ′ ′ ′⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

S  

And thus, the spectral density response matrix at 2rx L=  is given by (see Eqs. 4.81 and 4.82) 

( ) ( ) ( ) ( )2, 2 2
r r r rz z z T

rr r r
r r r rz

S S
L L L

S S
θ

η
θ θ θ

ω ω
⎡ ⎤

= = ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

S Φ S Φ  

where:    ( ) ( ) ( ) ( )*
ˆ

ˆ ˆ T
Qη η ηω ω ω ω= ⋅ ⋅S H S H  and ( ) 1 0

2
0 1r L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Φ  

Introducing the impedance matrix ( ) 11 12

21 22

E E
E E

ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E  where 

 ( )
2

11 1 11
1 1

1 2 aeE i
ω ω ζ ζ
ω ω
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

, 12 12aeE κ= − , 

 21 21
2

2 aeE i
ω ζ
ω

= −  and ( )
2

22 222 22
2 2

1 2ae aeE i
ω ωκ ζ ζ
ω ω
⎛ ⎞

= − − + −⎜ ⎟
⎝ ⎠

 

Then                           ( ) 11 12 22 121

21 1121 22

ˆ ˆ 1ˆ
ˆ ˆ det

H H E E
E EH H

η ω −
⎡ ⎤ −⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦
H E

E
 

rendering the following expression for the spectral density response matrix at 2rx L=  

( ) ( ) ( )
2 22 4

11 122
2

1 2 1 2
21 22

ˆ ˆ
2,

ˆ ˆ
w

rr w
w

S SSB B V V
L I

m m B B S S

η η

η η

ωρ ρω ψ ω
ω ω σ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
S  

where: 

 ( ) ( ) ( ) ( )* * * *
11 11 12 11 11 12 12 1211

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ + ⋅ + + ⋅  

 ( ) ( ) ( )* * * *
11 21 12 21 11 22 12 2212

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅  

 ( ) ( )* * * *
11 21 21 12 22 11 22 1221

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅  
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 ( ) ( )* * * *
21 21 21 22 22 21 22 2222

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ + ⋅ + + ⋅  

2
2 2 2

1 1

9375LL L
m

C
m

ωγ
ω

⎛ ⎞
′= =⎜ ⎟
⎝ ⎠

,  150LM L MBC Cγ ′ ′= =
 
and  ( )

2
2 1 1

2 2

2.4MM M
m

BC
m

ωγ
ω
⎛ ⎞

′= =⎜ ⎟
⎝ ⎠

. 

Since we are mainly aiming at calculating the content of the covariance matrix 

( ) ( )
2

2
0

2 2,
r r r rz z z

rr r rr
r r r rz

Cov
x L L d

Cov
θ

θ θ θ

σ
ω ω

σ

∞ ⎡ ⎤
⎢ ⎥= = =
⎢ ⎥
⎣ ⎦

∫Cov S  

it is only the absolute values that are of interest. 

 

Fig. 6.10     Top left: absolute value of frequency response function. Top right: cross 
spectrum between vertical and torsion response components. Lower left and right: 
spectra of components in vertical direction and torsion. 30 V m s= . 

The absolute value of the determinant of the non-dimensional frequency at a mean wind velocity 
of 30 V m s=  is shown in the top left hand side diagram in Fig. 6.10. The top right hand side 

diagram shows the amplitude of the cross spectrum between zr  and rθ  while the two lower diagrams 

show the spectral densities of zr  and rθ , all at a mean wind velocity of 30 V m s= . As can be 

seen, there are traces of modal coupling. In this case the coupling effects are exclusively motion 
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induced. Comparing ( )det H ω  shown in the top left hand side diagram of Fig. 6.10 to that which 

is shown in Fig. 6.9 it is seen that the resonance frequency associated with the second mode shape (in 
torsion) is no longer precisely at 2 rad s , but slightly below. It is also seen that the resonance peaks 

are reduced, and particularly the peak associated with 
1z

φ  at 1 0.8ω =  rad/s. The standard deviation 

of the dynamic responses in the across wind direction ( zr ) and in torsion ( rθ ) at various mean wind 

velocities are shown on the two left hand side diagrams in Fig. 6.11. The circular points joined with a 
fully drawn line are based on the development shown above, i.e. they contain the effects of 
aerodynamic derivatives, while the broken line represents the situation that aerodynamic derivatives 
are ignored. As can be seen, the difference is considerable for the respone in the across wind vertical 
direction, but in torsion only at the highest mean wind velocity setting. It should be noted that the 
applicability of quasi static aerodynamic derivatives is in many cases questionable, and they should in 
general be replaced by values obtained from wind tunnel tests. The covariance coefficient between 
the dynamic responses zr  and rθ  is shown on the top right hand side diagram in Fig. 6.11, and again, 

circles and fully drawn line contain the effects of aerodynamic derivatives while for the broken line 
no motion induced effects have been included. The changes of the resonance frequency associated 
with the second mode shape (in torsion) at increasing mean wind velocities is shown on the lower 
right hand side diagram in Fig. 6.11. As can be seen, the reduction of the resonance frequency from 

0V =  to 40 V m s=  is slightly less than 15 % (which without further iterations implies an 
overestimation of the torsion response). 

 

Fig. 6.11     Top and lower left: dynamic response in vertical direction and torsion. Top 
right: covariance coefficient. Lower right: resonance frequency associated with 2nd 
mode. Full lines: including motion induced effects. Broken lines: without motion induced 
effects. 
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6.4   Vortex shedding 

As shown in chapter 5.3, the vortex shedding induced load effects at or in the vicinity of 
lock-in are dependent on the dynamic response of the structure, i.e. the total damping in 
each mode is unknown prior to any knowledge about the actual structural displacements. 
Thus, the calculation of vortex shedding induced dynamic response will inevitably 
involve iterations. 

It should be acknowledged that the peak factor for vortex shedding response does not 
comply with the theory behind what may be obtained from Eq. 2.45. For an ultra-
narrow-banded vortex shedding response the peak factor is close to 1.5 (theoretically 

2 , see Eq. 2.47). For broad-banded response Eq. 2.45 will most often render 
conservative results. Some time domain simulations of response spectra (see Appendix 
A) will give a good indication on what peak factor should be chosen. 

 
 

Multi mode response calculations 
 

The general solution of a multi mode approach to the problem of calculating vortex 
shedding induced dynamic response is identical to that which has been presented above 
for buffeting response calculations. I.e., the general solution to the calculation of the 
three by three cross spectra response matrix ( ),rr rx ωS  is given in Eq. 4.80–4.82, while 

the corresponding covariance matrix is given in Eqs. 6.47 and 6.48. The modN  by modN  

frequency response matrix ( )ˆ
η ωH  and the modal load matrix ( )Q̂

ωS  are given in Eqs. 

4.69 and 4.75, except that for vortex shedding the motion induced load is assumed 
exclusively related to structural velocity, and its effect applies to the actual modal 
response and not to the individual Fourier components. As shown in Eq. 5.36, this 

implies that 0ae =K  and ( ) ( )2 * 2 *
1 2/ 2 0ae iB V diag H B Aρ ω ⎡ ⎤= ⋅ ⋅ ⎣ ⎦C , and thus 

( ) ( )
12

1 1ˆ 2 ae
i i

diag i diagη ω ω ω
ω ω

−
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= − ⋅ + ⋅ ⋅ −⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

H I ζ ζ

             

(6.65) 

where [ ]idiag ζ=ζ  and the content of aeζ  is given by 
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(6.66) 

where *
1H and *

2A , are given in Eq. 5.37 and where im  is defined in Eq. 6.41. If *
1H and 

*
2A  are taken as modal constants and independent of span-wise position, then aeζ  

becomes diagonal due to the orthogonal properties of the mode shapes, i.e. 

ae aei
diag ζ⎡ ⎤= ⎣ ⎦ζ                                              (6.67) 

where 

( )

* 2 2 * 2
1 2

2
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2 2 24

i iz
L

aei
i i i iy z

L

H dx B A dx
B
m dx

θ

θ

φ φ
ρζ

φ φ φ

+

= ⋅
+ +

∫ ∫

∫
                            

(6.68) 

This implies that ( )ˆ
η ωH  is an modN  by modN  diagonal matrix. In vortex shedding 

induced vibration problems it is usually not essential to include the along wind load 
effects. The load vector may then be reduced to 

( ) [ ], 0 T
zx t q qθ=q

                                        
(6.69) 

and the corresponding Fourier transform is 

( ), 0
T

q q qz
x a a θω ⎡ ⎤= ⎣ ⎦a

                                     
(6.70) 

The cross sectional load spectrum is defined by (see Eq. 4.78) 

( ) ( )* * *

* *

0 0 0 0 0 0
1 1

, lim lim 0 0

00

T
qq q q q q q q q q q qz z z z z zT T

q q q qzq q q qz

x a a a a S S
T T

S Sa a a a
θ θ

θ θ θθ θ θ

ω
π π→∞ →∞

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥Δ = = = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

S a a

(6.71) 
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The problem is greatly simplified if the cross coupling between zq  and qθ  may be 

disregarded, in which case 

( )
0 0 0

, 0 0

0 0
qq q qz z

q q

x S

S θ θ

ω

⎡ ⎤
⎢ ⎥

Δ ≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S

                                        

(6.72) 

where the cross spectra q qz z
S  and q qS θ θ  are given by 

( ) ( )
( ) ( )

ˆ

ˆ
q q q qz z z z

q q q q

S S Co x

S S Co xθ θ θ θ

ω

ω

⎫= ⋅ Δ ⎪
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= ⋅ Δ ⎪⎭                                       

(6.73) 

The single point spectra qz
S  and qS θ  are defined in Eq. 5.33, while the reduced co–

spectra ˆ
qz

Co  and ˆ
qCo θ  are defined in Eq. 5.34. Thus, the elements of 

Q̂
S  (see Eqs. 4.75 

– 4.78) are reduced to 

( )
( ) ( ) ( )

( ) ( )
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(6.74) 

Furthermore, it is a reasonable assumption that the integral length–scale of the vortices 
Dλ  is small as compared to the flow exposed length expL  of the structure, and since zq  

and qθ  are caused by the same vortices their coherence properties are likely to be 

identical, in which case [recalling that ( ) ( )Δ Δ λ
∞

≈∫
0

ˆ
qm

Co x d x D  (see Eq. 5.34) and 

adopting the integration procedure presented in example 6.1] the following is obtained: 
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( )
( ) ( ) ( ) ( )

( ) ( )
exp exp
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(6.75) 

Again, due to the orthogonal properties of the mode shapes this implies that 
Q̂

S  

becomes diagonal, i.e. 

ˆ ˆQ Qi
diag S⎡ ⎤= ⎢ ⎥⎣ ⎦

S
                                               

(6.76) 

where 
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(6.77) 

The calculation of the spectral response matrix is given in Eqs. 4.80 – 4.82, though, it 

should be noted that if the simplifications above hold then both ˆ
ηH  and 

Q̂
S  are diagonal, 

in which case 
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( )
( )

mod

1

2

mod
2

1 2

 

,

.

N
T T

rr r r r r r i r i r
i

y r y r z r y r r
N

z r z r r
i

r
i

i i

i

x x diag S x x x S

x x x x x

x x x S

Sym x

θ

θ

θ

η η

η

ω ω ω

φ φ φ φ φ

φ φ φ ω
φ

=

=

⎡ ⎤= ⋅ ⋅ = ⋅ ⋅⎣ ⎦

⎡ ⎤⋅ ⋅
⎢ ⎥
⎢ ⎥= ⋅ ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

S Φ Φ φ φ

 
(6.78) 

where 

( ) ( ) ( )
2

ˆ
ˆ

i i Qi
S H Sη ηω ω ω= ⋅

                                    
(6.79) 

ˆ
i

Hη  is given by (see Eq. 6.65) 

( ) ( )
12

ˆ 1 2 i aei
i i

i
H iη

ω ωω ζ ζ
ω ω

−
⎡ ⎤⎛ ⎞⎢ ⎥= − + ⋅ − ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦                              

(6.80) 

and aei
ζ  is given in Eq. 6.68 (see also 5.37). 
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The corresponding covariance response matrix ( )rr rxCov  for the dynamic response at 

span-wise position rx  is then given by 

( ) ( )

( ) ( ) ( ) ( ) ( )
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(6.81) 

where                                                   2

0
i i

S dη ησ ω
∞

= ∫
                                               

(6.82) 

is the variance contribution from an arbitrary mode i . Usually, vortex shedding induced 
dynamic response is largely resonant and narrow-banded. It will then usually suffice to 
only consider the resonant part of the frequency domain integration in Eq. 6.82, and 
discard the background part. Thus, 
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(6.83) 

where (see Eqs. 6.77 and 5.33) 
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(6.84) 



6.4   VORTEX SHEDDING 147

 

and 2s sfω π= . As mentioned above, the calculations will inevitably demand iterations, 

because *
1H and *

2A  are functions of r rz z
σ  and r rθ θσ . The iteration will take place on the 

difference between iζ  and aei
ζ , which in general will be a small quantity. 

 
  

 
Example 6.4 

 
Let us consider a simply supported horizontal beam type of bridge with span exp 500L L m= =  

and set out to calculate the vortex shedding induced dynamic response at 2rx L=  which is 

associated with the three mode shapes 

1 1
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φ  

with corresponding eigen-frequencies 0.8 , 1.6  and 2.5  rad/s. As can be seen, 1φ  and 2φ  

contain only the displacement component in the across wind vertical direction while 3φ  only 

contains torsion. Let us adopt the following structural properties: 
 
ρ  
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and the following vortex induced wind load properties: 

 
St ˆqz

σ  ˆqθσ  zb  bθ  za  aθ  z θλ λ=  
0azK  

0aK θ  

0.1 0.9 0.3 0.15 0.1 0.4 0.1 1.2 0.2 0.02 
 

where: 21ˆ
2q qz z

V Bσ σ ρ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and 2 21ˆ
2q q V Bθ θσ σ ρ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 
Since zm  and mθ  are constant along the span, then the modally equivalent and evenly 

distributed masses 1 2 zm m m= =  and 3m mθ= . 



148 6   WIND INDUCED STATIC AND DYNAMIC RESPONSE CALCULATIONS 

 

 

Fig. 6.12     Aerodynamic damping coefficient 

Finally, let us adopt the following wind velocity variation of the relative aerodynamic damping 
coefficient (see Fig. 6.12) 
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In this case (see Eq. 6.81) 
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and thus: 
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From Eqs. 6.83 and 6.84 (and taking it for granted that z θλ λ λ= = ) the following variance 

contributions are obtained 
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What then remains are the aerodynamic damping contributions given in Eq. 6.68, from which the 
following is obtained: 
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The relevant response diagrams are shown in Figs. 6.13 and 6.14 below. 
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Fig. 6.13     Vortex shedding induced across wind response 

 

 
Fig. 6.14     Vortex shedding induced torsion response 
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Single mode single component response calculations 

 
A single mode single component response calculation is in the following only considered 
relevant for displacements in the z direction and in torsion. Thus, it is only mode shapes 
that primarily contain either z  or θ  components that are relevant. I.e., it is taken for 
granted that any of the following two conditions apply 
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(6.85) 

Off diagonal terms in Eq. 6.78 will then vanish, rendering all covariance quantities 
obsolete, and rrS  will simply contain the response variances of the excitation of each 

mode on its diagonal. Thus, the response spectrum and the displacement variance 
associated with the excitation of an arbitrary mode i  are given by 
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and where aerodynamic damping properties may be extracted from Eq. 6.68, rendering 
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Usually, vortex shedding induced dynamic response is largely resonant and narrow-
banded. It will then suffice to only consider the resonant part of the frequency domain 
integration in Eq. 6.82, and discard the background part. Thus, 
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As mentioned above, it is also a reasonable assumption that the integral length–scale 
Dλ  for zq  and qθ  are identical. Adopting the convenient notation (see Eq. 6.41) 
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and introducing 
Q̂n

S  and qn
S  from Eqs. 6.87 and 5.33, then the following is obtained 
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and where ( )/ 2R nn
V D Stω π= ⋅ . 
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Example 6.5 
 

For a simple beam type of bridge let us set out to calculate the vortex shedding induced dynamic 

response at 2rx L=  associated with the mode shape [ ]0 0 T
zφ=φ  with corresponding 

eigen-frequency 0.8 /z rad sω = . Let us again for simplicity assume that sinz x Lφ π= . Thus, 

in this case it is only the across wind vertical direction that is of any interest. Typical variation of 
some basic data is illustrated in Fig. 6.15. 

 

Fig. 6.15     Top left and right: Non–dimensional cross sectional load spectrum and co–
spectrum, lower left: aerodynamic damping coefficient, lower right: maximum vortex 
shedding induced dynamic response vs. zζ  

The top left hand side diagram shows the non–dimensional cross sectional load spectrum 
associated with vortex shedding in the across wind direction (see Eq. 5.33) 
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where 21
ˆ

2q qz z
V Bσ ρ σ= . The load spectrum is shown for various relevant values of zb , which 

is the parameter that controls the narrow-bandedness of the process. The reduced co-spectrum (see 
Eq. 5.34) 
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at various values of zλ  is shown in the top right hand side diagram. It is this parameter that 

control the spanwise coherence (and thus, the length scale) of the vortices. The characteristic 
“lock-in” effect associated with vortex shedding induced dynamic response is controlled by the 
aerodynamic damping parameter az

K . Establishing data of the mean wind velocity variation of 

az
K  will in general require wind tunnel experiments. As indicated in example 6.4 above, such 

data may often be fitted to an expression of the following type: 

0
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where ( )2R zz
V D Stω π=  is the resonance velocity (see Eq. 5.32) and 

0aK  is the value at the apex 

of the az
K  variation. See the lower left hand side diagram in Fig. 6.12, where 6n =  and 8m = . 

Let us again consider a simply supported horizontal beam type of bridge with span 500L m=  

that is elevated at a position 50fz m= . Let us investigate the response variation with the mean 

wind velocity at various levels of structural eigen-damping. It is assumed that the entire span is 
flow exposed, i.e. expL L= , and the expression for az

K  given above is adopted. Let us allot the 

following values to the remaining constants that are necessary for a numerical calculation of 

( )2r rz
x Lσ = : 

 

ρ  
(kg/m3) 

B 
(m) 

D 
(m) 

zm  

(kg/m) 
zω  

(rad/s) 

St ˆqz
σ  zb  za  zλ  

0aK  

1.25 20 4 410  0.8 0.1 0.9 0.15 0.4 1.2 0.2 
 

Since zm  is constant along the span, then the modally equivalent and evenly distributed mass 

z zm m= . The dynamic response is given in Eq. 6.91, i.e.: 
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The resonance mean wind velocity Rz
V  is given by: 5.1 
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Under these circumstances the equation above may be rewritten into the following fourth order 

polynomial 
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and where ( )ˆr r zz z
a Dσ σ= . Thus, the reduced standard deviation of the vortex shedding 

induced dynamic response is given by 
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Fig. 6.16     Vortex shedding induced dynamic response 
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The variation of ˆrz
σ  with the mean wind velocity at three levels of structural eigen–damping is 

shown in Fig. 6.16. As can be seen, the vortex shedding induced dynamic response is self-limiting 
and strongly damping dependant. 

The maximum vortex shedding induced dynamic response will occur slightly above Rz
V , but 

for  practical calculations the maximum value of rz
σ  may be obtained by setting Rz

V V= , in 

which case 1zg =  and 
0a az

K K= . As shown on the lower right hand side diagram in Fig. 6.15, 

the maximum value of rz
σ  is rapidly reduced with increased structural eigen-damping. 
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where ˆr r aθθ θσ σ=  and 
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Chapter 7 

DETERMINATION OF  
CROSS SECTIONAL FORCES 

7.1   Introduction 

While we in chapter 6 focused exclusively on the determination of response 
displacements, we shall in this chapter deal with the determination of the corresponding 
cross sectional forces, i.e. the cross sectional stress resultants defined in chapter 1.3 (see 
Fig. 1.3.b). From a design point of view it is the maximum values of these quantities that 
decide the actual level of safety against structural failure. For a line like type of bridge 
structure the problem at hand is equivalent to that which is illustrated in Fig. 6.1, only 
that the response quantities we shall now set out to calculate are the cross sectional force 
components F  (e.g. a bending moment, a torsion moment or a shear force) rather than 
the displacements which were in focus in chapter 6. The assumption of a Gaussian, 
stationary and homogeneous flow over the design period T  (e.g. 10 min) is still valid, as 
well as the assumptions of linearity between load and load effects and a linear elastic 
structural behaviour. Thus, any cross sectional force component F  may be described by 
the sum of its mean value and a fluctuating part that is Gaussian 

 

 ( ) ( ) ( ), ,totF x t F x F x t= +                                         (7.1) 

 
The time domain chain of events is illustrated in Fig. 7.1.a. Similar to that which was 
argued for the determination of displacements, it is in the following taken for granted 
that the fluctuating part of the cross sectional response forces are quantified by their 
standard deviation ( Fσ ), as illustrated in Fig. 7.1.b. The maximum value of a force 

component at spanwise position rx  is then given by 

 

 ( ) ( ) ( )max r r p F rF x F x k xσ= + ⋅  (7.2) 

 
where pk  is the peak factor (that depends on the type of response process). The chain of 

events for cross sectional forces is equivalent to that which is shown for structural  
 



158 7   DETERMINATION OF CROSS SECTIONAL FORCES 

 

displacements in Fig. 6.2 because the assumption of linear elastic structural behaviour 
implies that the relationship between structural displacements and cross sectional forces 
is also linear. 

 

Fig. 7.1     Time and frequency domain representations 

Thus, once the displacements have been determined, cross sectional forces may be 
obtained directly from the structural stiffness properties and the derivatives of the 
displacement functions according to usual structural mechanics procedures. While this is 

an appropriate strategy for the determination of the mean value F , it is not an advisable 

strategy for the determination of Fσ . There are two reasons for this. First, dynamic 

response displacements are in general obtained from a modal solution in frequency 
domain that contains a chosen number of eigen modes which havebeen obtained from an 
eigen value solution that is based on the distributed stiffness and mass properties of the 
structure. The standard deviation of the total response displacements are then built up of 
the sum of contributions from each of these modes, either in a mode by mode approach  
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(see Eqs. 4.15 and 4.49) or in a multi mode approach (see Eqs. 6.47 and 6.81). These 
eigen-modes are most often given as more or less ample vectors along the span of the 
structure, and their second and third order derivatives, which are required for the transfer 
from displacements to cross sectional forces, may in many cases be difficult to calculate 

with sufficient accuracy. It is therefore desirable (as indicated in Fig. 7.1.b), to split 2
Fσ  

into a background part 2
FB

σ  and a resonant part 2
FR

σ , such that 

2 2 2
F F FR B

σ σ σ≈ +
                                               

(7.3) 

It is seen that this implies that the total response is sub-divided into a low frequency 
(background) part and a fluctuating (resonant) part that is centred on the eigen-
frequency. 

 

Fig. 7.2     Background and resonant part in time domain 

This is further illustrated in Fig. 7.2. In time domain the background part is equivalent 
to a slowly varying process. Its contribution to inertia forces may therefore be 
disregarded, and thus, the load effects from this part may be regarded as quasi-static. 
Clearly, the quasi-static part of the load effects are more accurately determined from 
static shape functions or more directly from simple static equilibrium conditions, rather 
than a calculation based on the derivatives of eigen-modes. 

The second motivation behind such a partition of 2
Fσ  is the following. As previously 

described, when a structure is subject to a fluctuating wind field, the passing of the flow 
will generate fluctuating drag, lift and moment load components on the structure. These 
loads may cause the structure to oscillate. But in many cases the structure is stiff and its 
eigen-frequency is high (e.g. beyond 5 Hz), and then the displacements are small.  
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However, this does not imply that the fluctuations of cross sectional forces are 
insignificant. It only means that the resonant part of the force load effect is negligible 
(see chapter 2.10). For such a structure the total value of a cross sectional force 

component F  at spanwise position rx  may be obtained from 

( ) ( ) ( )max r r p F rB
F x F x k xσ≈ + ⋅                                   (7.4) 

The entire solution, including FB
σ , may then be obtained exclusively from static 

considerations, i.e. the determination of response spectra is obsolete. Since the solution 
contains the combined mean and fluctuating load effects, it represents the maximum 
value of the force load effect for a structure whose behaviour is defined as static. 

The more general solution, covering static as well as dynamic structural behaviour is 
given in Eq. 7.2. Having split the fluctuating part of the response into a background and 
a resonant part, the maximum value of F  at rx  may then be expressed by 

 

 ( ) ( ) ( ) ( )2 2
max r r p F r F rB R

F x F x k x xσ σ= + ⋅ +                         (7.5) 

 
where F  and FB

σ  are obtained from static equilibrium conditions and FR
σ  is obtained 

from the resonant part of a modal frequency domain approach. For the determination of 

F  the finite element type of approach that is shown below (chapter 7.2) is appropriate, 
unless the structural system is so simple that a direct analytical establishment of the 
equilibrium conditions is sufficient, in which case the solution is considered trivial. 
Similarly, for the determination of the background quasi-static part FB

σ  there are two 

alternatives. If the structural system is fairly complex a finite element approach is 
appropriate, but if the system is fairly simple a direct approach based on influence 
functions will suffice. Both methods are shown below (chapter 7.3). 

For the determination of the resonant part FR
σ  there is the possibility of establishing 

an equivalent load based on the inertia forces, i.e. the product of response acceleration 
and the oscillating mass variation, but this option is only useful if the structural system is 
very simple because the equivalent load pattern must reproduce the actual structural 
displacements that are relevant for the mode shapes that have been excited. In chapter 
7.4 a more general procedure is given, based on the linear relationship between cross 
sectional stress resultants and the corresponding spanwise derivatives of the resonant 
displacement response. 

In a finite element formulation it is in the following assumed that the structural 
system has been modelled by nodes with six degrees of freedom as shown in Fig. 7.3 and  
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by the use of beam or beam-column type of elements as shown in Fig. 7.4. At any level 
it is taken for granted that the load and load effect vectors can be split into a mean part 
and a fluctuating part, i.e. at a global system level 
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and at the local level for an arbitrary element m  
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The relationship between local forces and displacements is defined by the local stiffness 
matrix mk , i.e. 

 
  tot m totm m

= ⋅F k d                                                (7.8) 

 
and the relationship between local and global degrees of freedom is defined by the 
matrix mA , i.e. 

 

tot m totm
= ⋅d A r

                                                
(7.9) 

 
According to standard element method procedures the global stiffness matrix is then 
obtained by summation of contributions from all elements 

T
m m m

m

= ⋅ ⋅∑K A k A
                                          

(7.10) 
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Fig. 7.3     Definition of global load and displacement components 

 
 

 

Fig. 7.4     Definition of element forces and displacement components 



7.2   THE MEAN VALUE 163

 

7.2   The mean value 

For the calculation of the mean value of cross sectional forces all quantities are time 
invariants and thus, Eq. 6.3 still holds, implying that the global displacements are given 
by 

  1−= ⋅r K R     (7.11) 

Similarly, the mean values of local forces and displacements (see Eqs. 7.8 and 7.9) are 
defined by 

  
     

m m m

m m

⎫= ⋅ ⎪
⎬

= ⋅ ⎪⎭

F k d

d A r
       (7.12) 

and thus, the mean value of cross sectional forces is given by 

  ( ) ( )1
m m m m m

−⎡ ⎤= ⋅ ⋅ = ⋅ ⋅ ⋅⎣ ⎦F k A r k A K R    (7.13) 

Eqs. 7.8 – 7.13 are identical to that which one will usually encounter in an ordinary finite 
element formulation. The establishment of mk  and mA  as well as the ensuing strategy 

for the calculation of global displacements and element force vectors may be found in 
many text books, see e.g. Hughes [25] or Cook et.al. [29]. Nonetheless, the brief 
summary presented above has been included for the sake of completeness. The only part 

that is special is the development of R , which has previously been shown in chapter 6.2. 

7.3   The background quasi–static part 

For the determination of the quasi-static part of the cross sectional response forces the 
mean part of the load as well as any motion induced contributions are obsolete. 
According to Eq. 5.8 the fluctuating part of the load on a line-like structure is given by 

( )
( )
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,
ˆ, ,

2
,

y

z q q

q x t
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x t q x t
q x tθ

ρ
⎡ ⎤
⎢ ⎥

= = ⋅ = ⋅ ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

q B v B v                       (7.14) 

where v  and qB  are defined in Eqs. 5.9 and 5.12, and recalling that this was developed 

for a horizontal type of structure. As mentioned above the quasi-static part may be 
determined by a formal finite element formulation, or alternatively, by the use of static 
influence functions based on a direct establishment of the equilibrium conditions. 
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Let us first pursue the more simple solution of a direct approach based on static 
influence functions. It is then taken for granted that the structure at hand is suitably 
uncomplicated, rendering straight forward equilibrium equations. Let us for the sake of 
simplicity consider the quasi-static load effect of the along wind component ( ),yq x t  on 

the horizontal simply supported beam shown in Fig. 7.5. 

 

Fig. 7.5    Along–wind load and two relevant response components 

As can be seen, the load effect is a horizontal displacement ( ),yr x t  associated with 

bending about the z-axis and shear in the direction of y. Let us focus on the background 
quasi-static part of the cross sectional bending moment ( ),zB

M x t  at a chosen position 

rx  (e.g. at mid-span). It is seen from Eq. 7.14 (see also Eq. 5.12) that 

 ( ) ( ) ( ), 2 , ,
2y D D L
VB D D

q x t C u x t C C w x t
B B

ρ ⎡ ⎤⎛ ⎞′= ⋅ ⋅ + − ⋅⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 (7.15) 

As illustrated in Fig. 7.5, the bending moment zB
M  at a chosen position rx  is given by 

 ( ) ( ) ( )
exp

, ,z r M yB z
L

M x t G x q x t dx= ⋅∫
 

          (7.16) 

where expL  is the flow exposed part of the structure and Mz
G  is the static influence 

function for zM  at rx  (defined as the function containing the values of zM  at rx  when 

the system is subject to a unit load 1yq =  at arbitrary position x ). 
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The variance of zB
M  is then defined by 

( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( )

2
22

exp

1 2 1 2 1 2

exp

, ,

, ,

M r z r M yz B zB
L

M M y yz z
L

x E M x t E G x q x t dx

G x G x E q x t q x t dx dx

σ
⎡ ⎤⎧ ⎫⎢ ⎥⎪ ⎪⎡ ⎤= = ⋅⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦

∫

∫∫

   (7.17) 

rendering a spatial and time domain averaging of the fluctuating cross sectional load. 
Introducing Eq. 7.15 then this space and time domain averaging is given by 

( ) ( )1 2

2

1 1 2 2

, ,

2 2
2

y y

D D L D D L

E q x t q x t

VB D D D D
E C u C C w C u C C w

B B B B
ρ

⎡ ⎤⋅ =⎣ ⎦

⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′+ − ⋅ + −⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦  

 (7.18) 

where ( )1 1,u u x t= , ( )2 2,u u x t=  and ( )1 1,w w x t= , ( )2 2,w w x t= . It is a usual 

assumption in wind engineering that cross-covariance between different velocity 
components is negligible, i.e. that 

( ) ( ) ( ) ( )1 2 2 1, , , , 0E u x t w x t E u x t w x t⎡ ⎤ ⎡ ⎤⋅ = ⋅ ≈⎣ ⎦ ⎣ ⎦       (7.19) 

in which case 

( ) ( )

( ) ( ) ( ) ( )

1 2

2 2 2

1 2 1 2

, ,

2 , , , ,
2

y y

D D L

E q x t q x t

VB D D
C E u x t u x t C C E w x t w x t

B B
ρ

⎡ ⎤⋅ =⎣ ⎦
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞′⎡ ⎤ ⎡ ⎤⋅ + − ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭  

  (7.20) 

Introducing (see chapters 2.2 and 3.3) 

 
( ) ( ) ( )
( ) ( ) ( )

2
1 2

2
1 2

, ,

, ,

u uu

w ww

E u x t u x t x

E w x t w x t x

σ ρ Δ

σ ρ Δ

⎡ ⎤⋅ = ⋅⎣ ⎦

⎡ ⎤⋅ = ⋅⎣ ⎦
                 (7.21) 

where uuρ  and wwρ  are the covariance coefficients of the u- and w-components, and 

where 1 2x x xΔ = −  is spanwise separation, then 
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( ) ( )

( ) ( )

1 2

2 222

, ,

2
2

y y

D u uu D L w ww

E q x t q x t

V B D D
C I x C C I x

B B
ρ ρ Δ ρ Δ

⎡ ⎤⋅ =⎣ ⎦

⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞′⋅ ⋅ + − ⋅⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎝ ⎠ ⎩ ⎭     

(7.22) 

where /u uI Vσ=  and /w wI Vσ=  are the u– and w–component turbulence 

intensities. Thus, the variance of the background part is given by (see Eq. 7.17) 

 

( ) ( ) ( )

( ) ( )

22
2

1 2

exp

22

1 2

2

2

M r M Mz z zB
L

D u uu D L w ww

V B
x G x G x

D D
C I x C C I x dx dx

B B

ρσ

ρ Δ ρ Δ

⎛ ⎞
= ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞′⋅ + − ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

∫∫
 (7.23) 

The volume integral in Eq. 7.23 represents a spatial averaging of the fluctuating load 
effect with respect to the bending component zM  at a certain spanwise position rx . 

This is identical to that which has previously been dealt with in Chapter 2.10 (see 
Example 2.4). 

While Eq. 7.23 provides the calculation procedure for the background part of the 
cross sectional force component zM  at rx  alone, it is convenient to establish more 

general procedures comprising the background response of several components, e.g. the 
bending moments yM  and zM  as well as the torsion moment xM . These force 

components are in general given by 

 ( )
( ) ( )
( ) ( )
( ) ( )exp

,

, ,

,

Mxx

B r y M yy
L

z B M zz

G x q x tM
x t M G x q x t dx

M G x q x t

θ
⎡ ⎤⋅⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦

∫M                   (7.24) 

where Mn
G , , ,n x y z= , are the static influence functions for cross sectional force 

components xM , yM  and zM  at rx . By adopting the definition 

( )
0 0

0 0

0 0

Mx

M My

Mz

G

x G

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

G                         (7.25) 
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it follows from Eqs. 7.14 and 7.24 that 

( ) ( ) ( ) ( ) ( ){ }
exp exp

ˆ, , ,
2B r M M q

L L

VB
x t x x t dx x x t dx

ρ= ⋅ = ⋅ ⋅ ⋅∫ ∫M G q G B v

  

(7.26) 

where ˆ
qB  is the load coefficient matrix defined in Eq. 5.12, i.e. 

( )
( ) ( )( )

( )( )
2 / /

ˆ 2 /

2

D D L

q L L D

M M

D B C D B C C

x C C D B C

BC BC

⎡ ⎤′ −
⎢ ⎥
⎢ ⎥′= +
⎢ ⎥
⎢ ⎥′
⎢ ⎥⎣ ⎦

B

                            

(7.27) 

and where ( ) ( ) ( ), , ,
T

x t u x t w x t⎡ ⎤= ⎣ ⎦v  in the case of a horizontal bridge type of structure 

(see Eq. 5.9). The background covariance matrix 

( )

2

2

2

M M M M M Mx x x y x z

MM r M M M M M MB y x y y y z

M M M M M Mz x z y z z B

Cov Cov

x Cov Cov

Cov Cov

σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov

                   

(7.28) 

is then obtained from 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ } ( )

2

exp exp

2

1 1 2 2 1 2

exp

, ,

ˆ ˆ
2

ˆ ˆ, ,
2

T
MM r B r B rB

T

M q M q
L L

T T T
M q q M

L

x E x t x t

VB
E dx dx

VB
x E x t x t x dx dx

ρ

ρ

⎡ ⎤= ⋅⎣ ⎦
⎡ ⎤⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

⎛ ⎞ ⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎣ ⎦⎝ ⎠

∫ ∫

∫∫

Cov M M

G B v G B v

G B v v B G

 

(7.29) 

Introducing Eq. 7.21 and adopting the assumptions in Eq. 7.19, then 

( ) ( ) ( )
( )

( ){ }
2

2 2
1 2 2

0
, ,

0
u uuT

v
w ww

x
E x t x t V x

x

σ ρ
σ ρ

⎡ ⎤⋅ Δ
⎡ ⎤⋅ ≈ = ⋅ ⋅ Δ⎢ ⎥⎣ ⎦ ⋅ Δ⎢ ⎥⎣ ⎦
v v I ρ   (7.30) 
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where 

 
0

0
u

v
w

I
I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I  and ( ) 0
0
uu

v
ww

x
ρ

Δ
ρ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ρ                  (7.31) 

and thus, 

( ) ( ) ( ){ } ( )
22

2
1 2 1 2

exp

ˆ ˆ
2

T T
MM r M q v v q MB

L

V B
x x x x dx dx

ρ⎛ ⎞
⎡ ⎤= ⋅ ⋅ ⋅ Δ ⋅ ⋅⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∫∫Cov G B I ρ B G  

(7.32) 

The covariance matrix in Eq. 7.32 will be symmetric because 1x  and 2x  are 

interchangeable and uuρ  and wwρ  are only functions of the separation 1 2x x xΔ = − . 

In a fully expanded format the variance of the background response components are 
given by 

 

( )
( )
( )

2
1 222

2
1 2 1 2

exp2
1 2

,

,
2

,

M Mx x M Mx x

M M M My y y y
L

M Mz zM Mz z B

g x x
V B

g x x dx dx

g x x

σ
ρσ

σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∫∫

         

(7.33) 

where 

( ) ( ) ( ) ( ) ( ) ( )2 22
1 2 2M M M M M u uu M w wwx x x x

g B G x G x C I x C I xρ Δ ρ Δ⎡ ⎤′= +⎢ ⎥⎣ ⎦     
(7.34) 

( ) ( ) ( ) ( ) ( )
2

2
1 2 2M M M M L u uu L D w wwy y y y

D
g G x G x C I x C C I x

B
ρ Δ ρ Δ

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞′= + +⎨ ⎬⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 

(7.35) 

( ) ( )

( ) ( )

1 2

22

2

M M M Mz z z z

D u uu D L w ww

g G x G x

D D
C I x C C I x

B B
ρ Δ ρ Δ

= ⋅

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞′+ −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭                      

(7.36) 

Similarly, the corresponding covariance between background components may be 
expanded into 

 

( )
( )
( )

1 222

1 2 1 2

exp
1 2

,

,
2

,

M M M Mx y x y

M M M Mx z x z
L

M M M My z y zB

Cov g x x
V B

Cov g x x dx dx

Cov g x x

ρ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎛ ⎞
⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫∫          (7.37) 
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where 

( ) ( ) ( )

( )

2
1 2

2

4M M M M L M u uux y x y

L D M w ww

g BG x G x C C I x

D
C C C I x

B

ρ Δ

ρ Δ

⎡= ⎣
⎤⎛ ⎞′ ′+ +⎜ ⎟ ⎥

⎝ ⎠ ⎦                        

(7.38) 

( ) ( ) ( )

( )

2
1 2

2

4M M M M D M u uux z x z

D L M w ww

D
g BG x G x C C I x

B

D
C C C I x

B

ρ Δ

ρ Δ

⎡= ⎢⎣
⎤⎛ ⎞′ ′+ −⎜ ⎟ ⎥

⎝ ⎠ ⎦

                  (7.39) 

 

( ) ( ) ( )

( )

2
1 2

2

4M M M M D L u uuy z y z

D L L D w ww

D
g G x G x C C I x

B

D D
C C C C I x

B B

ρ Δ

ρ Δ

⎡= ⎢⎣
⎤⎛ ⎞⎛ ⎞′ ′+ − +⎜ ⎟⎜ ⎟ ⎥

⎝ ⎠⎝ ⎠ ⎦

                       (7.40) 

 
  

 
Example 7.1 

 
Let us set out to calculate the variances and covariance of the torsion and bending moments xM , 

yM  and zM  at midspan of the simply supported beam type of bridge illustrated in Fig. 7.6. Let 

us for simplicity assume that it has a typical bridge type of cross section where DC′ , LC  and MC  

are negligible and D LC D B C′⋅ . Then 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

22
1 222

22
1 2 1 2

0 0
2 2

1 2

2

2

M w M M wwM M x xx x L L

M M L w M M wwy y y y

M Mz z
D u M M uuz z

BC I G x G x x
V B

C I G x G x x dx dx

D
C I G x G x x

B

ρσ
ρσ ρ

σ
ρ

⎡ ⎤
⎢ ⎥⎡ ⎤ ′ ⋅ ⋅ ⋅ Δ⎢ ⎥⎢ ⎥ ⎛ ⎞ ⎢ ⎥⎢ ⎥ ′= ⋅ ⋅ ⋅ ⋅ Δ⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥⎣ ⎦ ⋅ ⋅ ⋅ Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫  

 

( ) ( ) ( )2
1 222

1 2
0 0

0
2

0

M M L M w M M wwx y x yL L

M Mx z

M My z

Cov BC C I G x G x x
V B

Cov dx dx

Cov

ρ
ρ

⎡ ⎤⎡ ⎤ ′ ′ ⋅ ⋅ ⋅ Δ
⎢ ⎥⎢ ⎥ ⎛ ⎞
⎢ ⎥⎢ ⎥ = ⋅⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

∫ ∫  

 

where it has been taken for granted that expL L= . 
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Fig. 7.6    Simply supported beam type of bridge 

Introducing the non-dimensional spanwise coordinate ˆ /x x L=  and the function 

( ) ˆ ˆ   when    1 / 2
ˆ

ˆ ˆ1  when 1/2< 1
x x

x
x x

ψ
≤⎧

= ⎨ − ≤⎩
 

it is readily seen that the influence functions for xM , yM  and zM  at midspan are given by 

( ) ( )ˆ ˆMx
G x xψ= −  ( ) ( )ˆ ˆ

2M y

L
G x xψ= ⋅  ( ) ( )ˆ ˆ

2Mx

L
G x xψ= − ⋅  

Thus 

( ) ( )
( )
( )
( )

2

2 2

22

1 1
2

1 2 1 2
2 2 0 0

2

2 2

1
2

ˆ
ˆ

ˆˆ ˆ ˆ ˆ ˆ 
1

ˆ ˆ4

1
2

M Mx x

M w

M Mx xww
M My y

ww M My y

L w uu
M

M Mz z

D u

V B LC I

Jx
x x x dx dx J

V BL C I x
J

V DL C I

σ

ρ

ρσ
ψ ψ ρ

ρ ρ

σ

ρ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟′⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎡ ⎤Δ⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ = ⋅ ⋅ Δ =⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟′ ⎢ ⎥⎜ ⎟ Δ⎢ ⎥ ⎣ ⎦⎝ ⎠
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫
2

Mz z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and since M M M M M Mx y x x y y
Cov σ σ= − ⋅  it will suffice to calculate the joint acceptance functions 

on the right hand side of the equation above. Let us divide the span into N segments and calculate 
the load effect at the midpoint of each of these segments. Then the volume integral is replaced by a 
double summation (and ˆ 1 /dx N= ), i.e. 
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( ) ( )
( )
( )
( )

2

2
2

1 1
2

ˆ ˆ ˆ
1ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ

M Mx x ww n mN N

M M n m ww n my y
n m

uu n mM Mz z

J x x

J x x x x
N

x xJ

ρ
ψ ψ ρ

ρ= =

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⋅ ⋅ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑  

and it is just a matter of choosing N sufficiently large. Let us assume that the position of the bridge 

is at 50 mfz =  and that the relevant length scales of the u  and w  components are given by (see 

Eq 3.36): 

( )0.3
100 /10 162 mxf

u fL z= = ,  / 3 54 my xf f
u uL L= =   and   /16 10 my xf f

w uL L= = , 

such that 

 ( ) ( )ˆ ˆexpuu ux c xρ Δ = − ⋅ Δ         where  
yf

u uc L L=  

 ( ) ( )ˆ ˆexpww wx c xρ Δ = − ⋅ Δ          where 
yf

w wc L L=  

Let us for simplicity set 
xf

uL L=  and 5N =  (which in general will be far too small, as shown in 

Fig. 7.7). Thus, 3uc =  , 16wc = . 

The position vector and the influence function are given by 

[ ]ˆ 0.1 0.3 0.5 0.7 0.9 T=x  

( ) [ ]ˆ 0.1 0.3 0.5 0.3 0.1 Tx =ψ  

The influence function multiplications ( ) ( )ˆ ˆn mx xψ ψ⋅  are then given by 
 

( )ˆnxψ  

0.1 0.3 0.5 0.3 0.1 

 

 
0.1 0.01 0.03 0.05 0.03 0.01 
0.3 0.03 0.09 0.15 0.09 0.03 
0.5 0.05 0.15 0.25 0.15 0.05 
0.3 0.03 0.09 0.15 0.09 0.03 

 
 

( )ˆmxψ   

 
0.1 

 
 
 
 
 0.01 0.03 0.05 0.03 0.01 

 

while the covariance coefficients associated with the u  and w  components are given by: 
 

ˆnx  

0.1 0.3 0.5 0.7 0.9 

( )ˆuu xρ Δ : 

 
0.1 1 0.549 0.301 0.165 0.091 
0.3 0.549 1 0.549 0.301 0.165 
0.5 0.301 0.549 1 0.549 0.301 
0.7 0.165 0.301 0.549 1 0.549 

 
 

ˆmx  

0.9 

 
 
 
 
 0.091 0.165 0.301 0.549 1 
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ˆnx  

0.1 0.3 0.5 0.7 0.9 

( )ˆww xρ Δ : 

 
0.1 1 0.0408 0.0017 0.0001 ≈ 0 
0.3 0.0408 1 0.0408 0.0017 0.0001 
0.5 0.0017 0.0408 1 0.0408 0.0017 
0.7 0.0001 0.0017 0.0408 1 0.0408 

 
 

ˆmx  

0.9 

 
 
 
 
 ≈ 0 0.0001 0.0017 0.0408 1 

 

The inner products ( ) ( ) ( )ˆ ˆ ˆn m uux x xψ ψ ρ⋅ ⋅ Δ  and ( ) ( ) ( )ˆ ˆ ˆn m uux x xψ ψ ρ⋅ ⋅ Δ  are then: 
 

 n 1 2 3 4 5 
   

m  ( ) ( ) ( )2 ˆ ˆ ˆ10 n m uux x xψ ψ ρ⋅ ⋅ ⋅ Δ  

1  1 1.647 1.505 0.495 0.091 
2  1.647 9 8.235 2.709 0.495 
3  1.505 8.235 25 8.235 1.505 
4  0.495 2.709 8.235 9 1.647 
5  0.091 0.495 1.505 1.647 1 

 

 n 1 2 3 4 5 
   

m  ( ) ( ) ( )2 ˆ ˆ ˆ10 n m wwx x xψ ψ ρ⋅ ⋅ ⋅ Δ  

1  1 0.1225 0.0085 0.0003 ≈ 0 
2  0.1225 9 0.612 0.0153 0.0003 
3  0.0085 0.612 25 0.612 0.0085 
4  0.0003 0.0153 0.612 9 0.1224 
5  ≈ 0 0.0003 0.0085 0.1224 1 

 

The normalised joint acceptance functions are given by 

 ( ) ( ) ( )
1

5 5 2

2
1 1

1ˆ ˆ ˆ ˆ 0.2
5M M n m uuz z

n m

J x x xψ ψ ρ
= =

⎡ ⎤
= ⋅ ⋅ ⋅ Δ ≈⎢ ⎥
⎣ ⎦

∑ ∑  

 ( ) ( ) ( )
1

5 5 2

2
1 1

1ˆ ˆ ˆ ˆ ˆ 0.14
5M M M M n m wwx x y y

n m

J J x x xψ ψ ρ
= =

⎡ ⎤
= = ⋅ ⋅ ⋅ Δ ≈⎢ ⎥

⎣ ⎦
∑ ∑  

and thus 

 2 21
0.14

2M M M wx x
V B LC Iσ ρ⎛ ⎞′≈ ⋅ ⎜ ⎟

⎝ ⎠
 

 2 21
0.07

2M M L wy y
V BL C Iσ ρ⎛ ⎞′≈ ⋅ ⎜ ⎟

⎝ ⎠
 

 2 21
0.2

2M M D uz z
V DL C Iσ ρ⎛ ⎞≈ ⋅ ⎜ ⎟

⎝ ⎠
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This solution has been based on exp
yf

uL L L= =  and 5N = . If 40N =  then the integration 

coefficient 0.14 is reduced to 0.11, the coefficient 0.07 is reduced to 0.055 while the coefficient 
0.2 is reduced to 0.188. The problem of choosing a sufficiently large number of integration points 

is illustrated in Fig. 7.7, where the normalised joint acceptance function ˆ
nnJ  for an arbitrary force 

component whose influence function is linear and with a maximum of 0.5 at midspan is plotted 

versus N  for three different values of the ratio between expL  and the relevant length scale x
jL , 

 or j u w=  (and fx y= ). It is seen that the necessary number of integration points is in general 

considerable. The reason for this is that jjρ  ( or j u w= ) is a rapidly decaying function. 

Similarly, in Fig. 7.8 the joint acceptance function has been plotted versus the ratio between the 

length of the span ( expL L= ) and the relevant integral length scale x
jL , or j u w= . The case 

( )lim / 0x
jL L →  is identical to the situation with an evenly distributed load along the entire 

span. As can be seen, ˆ
nnJ  is a rapidly decreasing function with increasing values of x

jL L . At a 

large value of x
jL L  it is close to 0.05. 

  
 

 

Fig. 7.7    The joint acceptance function ˆ
nnJ  vs. number of integration points 
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Fig. 7.8     The joint acceptance function ˆ
nnJ  at various span length ( expL L= ) 

While the solution strategy based on influence functions shown above is suitable for 
many cases of fairly simple structural systems, a formulation within the finite element 
method is more suitable for a general approach. Recalling that Eq. 5.8 was developed for 

a horizontal type of structure, it is seen from Fig. 7.9 that in general [ ]Tu w=v  for a 

horizontal element and [ ]Tu v=v  for a vertical element. Defining the non-dimensional 

instantaneous fluctuating wind velocity vector at an arbitrary node p  

 
( )
( )
( )

1ˆ p

u t
v t

V
w t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v                                                     (7.41) 

and the matrix 

1 0 0
for a horisontal element

0 0 1
    

1 0 0
for a vertical element    

0 1 0

m

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎣ ⎦= ⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⎣ ⎦⎩

ψ                     (7.42) 
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which is associated with the direction of an adjoining element m , it is seen from  
Fig. 7.9 that the distributed load vector acting on this element is given by 

( ) ( )
2

ˆ ˆ,
2m q m p

V B
x t

ρ= ⋅ ⋅ ⋅q B ψ v                                      (7.43) 

where ˆ
qB  is given in Eq. 7.27 and where all cross sectional quantities are those that are 

applicable to element m . 

 

Fig. 7.9     Wind induced load components 
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The contribution from element m  to concentrated loads in node p  is then given by 

(see Fig. 7.9.a) 

( ) ( ) ( )
2

ˆ ˆ,
2 2 2

y
m

p z m q m pm
mp

pm

Q
L V BL

t Q x t
Qθ

ρ
⎡ ⎤

⎛ ⎞⎢ ⎥ ⎛ ⎞= = ⋅ = ⋅ ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥
⎣ ⎦

Q q B ψ v       (7.44) 

where mL  is the element length, and where it has been assumed that the nodal 

discretisation is such that all wind velocity properties with sufficient accuracy may be 
allotted to node p , and that they are constants along the span of the element. (This is a 

simplification that is not mandatory, but otherwise, an element integration scheme has to 
be adopted.) Comparing the definition of nodal loads shown in Fig. 7.3 to the element 
load components shown in Fig. 7.9, it is seen that the contribution from element m  to 
the load vector in node p  is defined by (see Fig. 7.9.b and c) 

1
T

2

3

4 T

5

6

0 0 0 for a horizontal element

 

0 0 0   for a vertical element

y z

pm

z y

pm

R
R Q Q Q
R
R

Q Q QR
R

θ

θ

⎡ ⎤
⎢ ⎥ ⎧ ⎡ ⎤⎢ ⎥ −⎣ ⎦⎪⎢ ⎥ ⎪= =⎢ ⎥ ⎨
⎢ ⎥ ⎪

⎡ ⎤− −⎢ ⎥ ⎪ ⎣ ⎦⎩⎢ ⎥
⎢ ⎥⎣ ⎦

R

  

(7.45) 

and thus, 

( ) ( )
2

ˆ ˆ
2 2p m p m q m pm m m

mp

V BL
t

ρ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ⋅ = ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
R θ Q θ B ψ v

      

(7.46) 

where indices m  and p  indicate quantities associated with element m  at node p , and 

where 

0 1 0 0 0 0
0 0 1 0 0 0  for a horizontal element
0 0 0 1 0 0

   
0 1 0 0 0 0
1 0 0 0 0 0    for a vertical element

0 0 0 0 0 1

T

m T

⎧ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎢ ⎥⎪ ⎢ ⎥−⎪ ⎣ ⎦= ⎨
⎪ ⎡ ⎤
⎪ ⎢ ⎥−⎪ ⎢ ⎥
⎪ ⎢ ⎥−⎣ ⎦⎩

θ

          

(7.47) 
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Thus, the load vector in node p  is obtained by adding up the contributions from all 

adjoining elements. i.e. 

( ) ( )
2 2

ˆˆ ˆ ˆ
2 2 2p p q pm mm m mp p

V BL V
t

ρ ρ⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞= = ⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠
∑ ∑R R θ B ψ v Q v      (7.48) 

where 

ˆ ˆ
2p q

m m

BL⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∑Q θ B ψ                                       (7.49) 

The total system load vector is then given by 

( ) 1
T

p Nt ⎡ ⎤= ⎣ ⎦R R R R                                     (7.50) 

where N  is the total number of nodes. Since the content of this load vector is 
considered quasi-static the relationship ( ) ( )t t⋅ =K r R  holds, and because ( )u t  and ( )w t  

are both zero mean variables then ( )tR  as well as ( )tr  are also zero mean variables. 

Thus, it is seen from to Eqs. 7.6 – 7.9 that the fluctuating background quasi-static part of 
the element force vector ( )m tF  is given by 

( ) ( ) ( ) ( ){ }

1

2

3 1

4

5

6

m m m m m m m

m

F
F
F

t t t t
F
F
F

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎡ ⎤= = ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F k d k A r k A K R

  

(7.51) 

The covariance matrix between cross sectional force components 

2
1 1 2 1 3 1 4 1 5 1 6

2
2 2 3 2 4 2 5 2 6

2
3 3 4 3 5 3 6

2
4 4 5 4 6

2
5 5 6

2
6

.

F F F F F F F F F F F

F F F F F F F F F

F F F F F F F
F Fm m

F F F F F

F F F

F

Cov Cov Cov Cov Cov

Cov Cov Cov Cov

Cov Cov Cov

Cov Cov

Sym Cov

σ

σ

σ

σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov

    

(7.52) 
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is then defined by  

( ){ } ( ){ }
( )

( )

1 1

1 1

1 1

T
T

F F m m m m m mm m

TT T T
m m m m

T T T
m m RR m m

E E

E

ov

− −

− −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤= ⋅ = ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎧ ⎫⎛ ⎞⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬⎜ ⎟⎣ ⎦⎝ ⎠⎩ ⎭
⎧ ⎫⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

Cov F F k A K R k A K R

k A K R R K A k

k A K C K A k
     

(7.53) 

where the 6N  by 6N  nodal load covariance matrix 

T
RR R Rp k

E ov

⎡ ⎤
⎢ ⎥

⎡ ⎤= ⋅ = ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Cov R R C  where 1,2,3, ,
p

N
k
⎫

=⎬
⎭

…
   

(7.54) 

Its content is N  nubers of 6 by 6 covariance matrices between force components 
associated with nodes p  and k , each is given by 

2 2

2 2

2 2

ˆ ˆˆ ˆ
2 2

ˆ ˆˆ ˆ
2 2

ˆ ˆ ˆ
2 2

T
T

R R p kp k
p k

T T
p p k k

p k

T
p v v kp k

p k

V V
E E

V V
E

V V
ov

ρ ρ

ρ ρ

ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎡ ⎤= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Cov R R Q v Q v

Q v v Q

Q C Q

           

(7.55) 

where 

2

1ˆ ˆ ˆ
p k p k p k

T
v v p k p k p k p kp k

p k p k p k

u u u v u w

E E v u v v v w
V

w u w v w w

⎡ ⎤
⎢ ⎥

⎡ ⎤= ⋅ = ⋅ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Cov v v

                   

(7.56) 

As previously mentioned (see Eq. 7.19), it is a usual assumption in wind engineering that 
cross-covariance between different velocity components is insignificant, i.e. that all off 
diagonal terms in Eq. 7.56 may be neglected, in which case 

ˆ
v v p k pkp k

≈ ⋅ ⋅Cov I I ρ                                             (7.57) 
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where 

 [ ]j u v w j
diag I I I=I  

p
j

k
⎧

= ⎨
⎩                                      

(7.58) 

 ( ) [ ]pk pk uu vv wws diag ρ ρ ρΔ =ρ                                 (7.59) 

The auto covariance functions of the fluctuating flow components u , v  and w  are 
defined by (see Eq. 3.35) 

( )
1 22 2

exp pk pk
nn pk x z

n n

x z
s

L L
ρ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞Δ Δ⎪ ⎪⎢ ⎥Δ = − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

 where 

u
n v

w

⎧
⎪= ⎨
⎪
⎩

           (7.60) 

and where 

pk p k

pk p k

x x x

z z z

Δ = −

Δ = −
                                               

(7.61) 

are defined in Fig. 7.10. 

 

Fig. 7.10     Spatial separation between nodes p  and k  

  
 

Example 7.2 
 

Let us consider the simply supported beam shown in Fig. 7.11, and assume that it has been 
subdivided into N  elements with equal length /L N . Let us for simplicity assume that all cross 
sectional quantities are constants along the span of the bridge, and that it has a typical type of cross 

section where DC′ , LC  and MC  are negligible and D LC D B C′⋅ . The reduced wind load 

vector associated with an arbitrary node p is then given by 

/ˆ ˆ2
2p m q mm

B L N⋅⎛ ⎞= ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

Q θ B ψ  
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where       

2 0

ˆ 0
0

D

q Lm

M

D
C

B
C

BC

⎡ ⎤
⎢ ⎥
⎢ ⎥

′= ⎢ ⎥
⎢ ⎥′
⎢ ⎥
⎢ ⎥⎣ ⎦

B ,      

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

θ       and      
1 0 0
0 0 1m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

ψ  

 

Fig. 7.11    Simply supported beam type of bridge 

The wind load covariance matrix associated with the cross product between external load 
components in arbitrary nodes p and k is given by (see Eqs. 7.55 -7.59) 

22
ˆ ˆ

2
T

R R p v v kp k p k

V B
ov

ρ⎛ ⎞
= ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

Cov Q C Q  where ( )v v p k pk pkp k
x= ⋅ ⋅ ΔCov I I ρ  

and  [ ]p k u v wdiag I I I= =I I ,    ( ) [ ]pk pk uu vv wwx diagρ ρ ρ ρΔ = , and where pkxΔ  is 

the absolute value of the distance between nodes p and k. Thus, 

( )
22

ˆ ˆ
2

T T T
R R m q m p k pk m q mp k m m

V BL
N

ρ⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

Cov θ B ψ I I ρ θ B ψ  

22
ˆ

2R R R Rp k p k

V BL
N

ρ⎛ ⎞
⇒ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
Cov Cov  

where the non-dimensional cross covariance matrix ˆ
R Rp k

Cov  is given by 

( )
( ) ( ) ( )

( ) ( ) ( )

2

2 2

22

ˆ

0 0 0 0 0 0

0 2 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

R Rp k

D u uu pk

L w ww pk L M w ww pk

L M w ww pk M w ww pk

D
C I x

B

C I x C BC I x

C BC I x BC I x

ρ

ρ ρ

ρ ρ

=

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥⋅ Δ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥′ ′ ′⋅ Δ − ⋅ Δ⎢ ⎥
⎢ ⎥′ ′ ′− ⋅ Δ ⋅ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov
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Fig. 7.12     Four element simply supported beam 

Let us consider the simple case of 4N =  as illustrated in Fig. 7.12, and adopt the data given in 
the table below. 

 

B  
(m) 

D  
(m) 

DC  LC′  MC′  uI  wI  
xf

u

L

L
 

yf
u

xf
u

L

L
 

yf
w

xf
u

L

L
 

20 4 0.7 5 1.5 0.2 0.1 1/4 1/3 1/16 
 

⇒
3

ˆexp exp
4uu yf

u

x
x

L
ρ

⎛ ⎞Δ ⎛ ⎞⎜ ⎟= − = − Δ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
    and    ( )ˆexp exp 4ww yf

w

x
x

L
ρ

⎛ ⎞Δ⎜ ⎟= − = − Δ
⎜ ⎟
⎝ ⎠

 

where ˆ ˆp kx x xΔ = −  and ˆ /x x L= . In this case there are only two separations: 

 
( )
( )

/ 4 0.821ˆ   
/ 4 0.364

uu

ww

L
x

L
ρ
ρ

⎧ =⎪Δ = ⇒ ⎨ =⎪⎩
 and 

( )
( )

/ 4 0.691ˆ   
/ 4 0.142

uu

ww

L
x

L
ρ
ρ
⎧ =⎪Δ = ⇒ ⎨ =⎪⎩

 

Then 

2 2 2 3 2 422

3 3 3 4

4 4

ˆ ˆ ˆ

ˆ ˆ
2 4

ˆ.

R R R R R R

RR R R R R

R R

V BL

Sym

ρ
⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥= ⎜ ⎟⎜ ⎟ ⎢ ⎥⋅⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

Cov Cov Cov

Cov Cov Cov

Cov

 

where 

42 2 3 3 4

0 0 0 0 0 0
0 0.003136 0 0 0 0
0 0 0.25 1.5 0 0ˆ ˆ ˆ
0 0 1.5 9 0 0
0 0 0 0 0 0
0 0 0 0 0 0

R R R R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= = = ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov Cov Cov

 

2 3 3 4

0 0 0 0 0 0
0 0.002572 0 0 0 0
0 0 0.09 0.54 0 0ˆ ˆ
0 0 0.54 3.24 0 0
0 0 0 0 0 0
0 0 0 0 0 0

R R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= = ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov Cov  
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2 4

0 0 0 0 0 0
0 0.002164 0 0 0 0
0 0 0.035 0.21 0 0ˆ
0 0 0.21 1.26 0 0
0 0 0 0 0 0
0 0 0 0 0 0

R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Cov  

 
The covariance matrix of a chosen set of cross sectional forces is given in Eq. 7.53. 

  
 

7.4   The resonant part 

Fluctuating cross sectional forces at an arbitrary spanwise position rx  that are 

exclusively ascribed to the resonant part of the response may in general be extracted 
from the derivatives of predetermined modal displacements 

 

( ) ( ) ( ),r r rx t x t= ⋅r Φ η
                                              

(7.62) 

 
as defined in Eqs 4.7 and 4.8 (see also Eq. 4.79). The direct transition from the variance 
of the fluctuating displacement response quantities to the variances of corresponding 
dynamic cross sectional forces is therefore presented below. The procedures for the 
calculation of response displacements are in a general format shown in Chapter 4. For 
the special cases of buffeting or vortex shedding induced dynamic response the 
procedure is shown in Chapter 6. For simplicity it is in the following as usual assumed 
that we are dealing with a line-like horizontal (bridge) type of structure where axial 
forces may be disregarded, in which case the force component 1F  in Eq. 7.7 may be 

omitted. (Axial forces may in general be determined by the product of the axial stiffness 
of a beam type of element and the difference between the axial displacements at its end 
nodes.) 

It follows from the definition of cross sectional forces in Fig. 1.3 that the connection 
between the fluctuating force vector at an arbitrary spanwise position rx  and the 

corresponding cross sectional stress resultant is 
 

( ) [ ]2 3 4 5 6,
TT

r y z x y zx t F F F F F V V M M M⎡ ⎤= = ⎣ ⎦F           (7.63) 

where ,y zV V  are the shear forces in the direction of the y  and z  axes, ,y zM M  are 

the bending moments about the same axes, and where xM  is the torsion moment. 
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It is taken for granted that the material behaviour is linear elastic and that 
displacements are small (i.e. there is no geometric non-linearity). The relationship 
between cross sectional stress resultants and the derivatives of the corresponding 
displacements are then given by the following differential equations (see e.g. Chen & 
Atsuta [27]): 

 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

, , ,

, ,

, ,

, , ,

, , ,

x r t r w r

y r y z r

z r z y r

y r z r z y r

z r y r y z r

M x t GI r x t EI r x t

M x t EI r x t

M x t EI r x t

V x t M x t EI r x t

V x t M x t EI r x t

θ θ ⎫′ ′′′= ⋅ − ⋅
⎪

′′= − ⋅ ⎪
⎪

′′= ⋅ ⎬
⎪′ ′′′= − = − ⋅ ⎪
⎪′ ′′′= = − ⋅ ⎭                            

(7.64) 

 

where the prime behind symbols indicate derivation with respect to x . Defining the 

cross sectional property matrix ( )rxT  

 

 ( )

0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0 0

z

y

r t w

y

z

EI
EI

x GI EI
EI

EI

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎣ ⎦

T                       (7.65) 

 

then ( ),rx tF  as defined in Eq. 7.63 is given by 

 

( ),
T

r y y z zx t r r r r r rθ θ⎡ ′′ ′′′ ′′ ′′′ ′ ′′′⎤= ⋅ ⎣ ⎦F T                         (7.66) 

 
Multi mode approach 

 

Introducing the six by modN  mode shape derivative matrix 

 

 ( )

1 mod

1 mod

1 mod

1 mod

1 mod

1 mod

y y yi N

y y yi N

z z zi N
r

z z zi N

i N

i N

x

θ θ θ

θ θ θ

φ φ φ
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(7.67) 
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where i  is an arbitrary mode number and modN  is the total number of modes, it then 

follows from Eq. 7.62 that 
 

 ( ) ( ) ( ) ( ),r r rx t x x t⎡ ⎤= ⋅ ⋅⎣ ⎦F T β η                                    (7.68) 

 
Taking the Fourier transform on either side 

 

( ) ( ) ( ) ( ),
T

F r V V M M M r ry z x y z
x a a a a a x x ηω ω⎡ ⎤ ⎡ ⎤= = ⋅ ⋅⎣ ⎦⎣ ⎦a T β a     (7.69) 

 

where ( ) 1 mod

T

i N
a a aη η η ηω ⎡ ⎤= ⎢ ⎥⎣ ⎦

a , and defining the matrix 

 

 ( ),

.
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M M M M M MF r x x x y x z
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M Mz z

S S S S S

S S S S

S S Sx

Sym S S

S

ω

⎡ ⎤
⎢ ⎥
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S

               

(7.70) 

 
containing auto spectral densities and cross spectral densities of all force components, 
then the following is obtained: 

 

    
( ) ( ) ( )* *1 1

, lim lim
TT

F r F F
T T

x
T T η ηω

π π→∞ →∞
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⎡ ⎤⇒ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦
S T β a a β T T β S β T        (7.71) 

 
where ηS  is given in Eq. 4.74. However, because ηS  contains the entire dynamic 

response, i.e. background as well as resonant, it requires reduction to include only the 
resonant part. The extraction of the resonant part is equivalent to a white noise type of 
load assumption, and thus 

 

 ( ) ( ) ( )*
ˆ

ˆ ˆ T
QR Rη η ηω ω ω= ⋅ ⋅S H S H                                  (7.72) 

 

where ˆ
ηH  is given in Eqs. 4.69 and where (see Eq. 4.75) 
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 ˆ ˆ ˆQ Q QR i j
S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
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S

                                          

(7.73) 

 

whose elements on row i  column j  are given by 
 

( ) ( ) ( )
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1 2 1 2
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ˆ ˆ 2 2
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i i j j
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S
M M

ω

ω ω

⋅ Δ ⋅

=
⋅

∫∫ φ S φ

                   (7.74) 

 

where 1 2x x xΔ = − , and where ( ),qq ix ωΔS  is the spectral density matrix of cross 

sectional loads at the eigen-frequency iω  (see Eq. 4.78), i.e. 
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It is seen that 

Q̂R
S  is frequency independent. The resonant part of the auto and cross 

spectral density matrix of all force components is then given by 
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(7.76) 

 
The corresponding matrix containing the resonant part of the variance and covariance of 
cross sectional stress resultants is obtained by frequency domain integration, i.e. 
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   (7.77) 
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If the load case is wind buffeting as described in chapter 6.3, and the assumption of 
negligible cross spectra between fluctuating flow components is adopted, then 

( ),qq x ωΔS  is given in Eq. 6.57 and ( ) ( )2 ˆ, ,v v vx V xω ωΔ = ΔS I S , see Eq. 6.40. Thus, 
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(7.78) 

 
where [ ]v u wdiag I I=I  and 
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(7.79) 

 

and where ( )ˆ ,uu iC x ωΔ  and ( )ˆ ,ww iC x ωΔ  are the reduced co-spectra defined in Eq.6.64. 

Introducing the evenly distributed and modally equivalent masses 

( )/ T
i i i i

L

m M dx= ⋅∫ φ φ  and ( )/ T
j j j j

L

m M dx= ⋅∫ φ φ  (see Eq. 6.41), then the content of 

Q̂R
S  on row i  column j  is given by 
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     (7.80) 

 
where 
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φ φ φ φ
           (7.81) 

 
Single mode three component approach 

 
In many cases where eigen-frequencies are well separated and flow induced coupling 
effects are negligible a multi mode procedure as presented above may with sufficient 
accuracy be replaced by a mode by mode approach. Then all modes are uncoupled, and 
therefore, the covariance contributions between force components from different modes 
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are zero, and thus, the total covariance of cross sectional forces may be obtained as the 
sum of the covariance contributions from each mode, i.e. 

 

 ( )
mod

1

N

FF r FFR Rii

x
=

= ∑Cov Cov                                   (7.82) 

 
For an arbitrary mode i  Eq. 7.76 is then reduced to 
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(7.84) 

 
where aei

κ  and aei
ζ  are given in Eqs. 6.45 and 6.46, and where 
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Performing the multiplication T T
i i⋅ ⋅ ⋅T β β T  and then the following is obtained: 
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(7.87) 

It is readily seen from Eq. 7.87 that the covariance matrix associated with an arbitrary 
mode i  has the properties 
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  (7.88) 

I.e., for an arbitrary mode i  

1  for  ,  ,  ,  ,  

1  for  ,  ,  ,  ,  
y z y y z y x y x zmni

mni
y x y z z x z z y zmm nni i

mn V V V M V M M M M MCov

mn V M V M V M V M M M
ρ

σ σ
+ =⎧⎪= = ⎨− =⋅ ⎪⎩   

(7.89) 

which could be expected, because within a single mode all coupling between cross 
sectional force components are caused by the structural properties already contained in 
the relevant mode shape, and thus, all covariance coefficients will either be plus or 
minus unity (depending on the chosen sign conventions). Thus, the problem is reduced 
to the calculation of variance contributions from each of the modes that have be 
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considered necessary for a sufficiently accurate solution. It follows from Eqs. 7.84 – 
7.87 that 
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(7.90) 

 

where ˆ
iiJ  is given in Eq. 7.86. The total variances and covariance coefficients are then 

given by Eqs. 7.81 and 7.88. 
 
 

Single mode single component approach 
 

In some cases a single mode single component approach will suffice. The necessary 
calculations are then further reduced. Let us first consider a single mode that only 

contains an along wind y  component, i.e. 0 0
T

yφ φ⎡ ⎤= ⎣ ⎦ , and whose eigen-frequency 

is yω . Then the necessary calculations are reduced to 
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where ym  is defined in Eq. 6.20, aey
κ  and aey

ζ  are defined in Eq. 6.24, and where ˆ
yJ  

is given in Eq. 6.22 (see also Eq. 6.19). 
Similarly, if the relevant mode only contains an across wind z  component, i.e. 

[ ]0 0 T
zφ φ= , whose eigen-frequency is zω , then 
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(7.92) 

where zm  is defined in Eq. 6.27, aez
κ  and aez

ζ  are defined in Eq. 6.31, and where ˆ
zJ   

is given in Eq. 6.28. 
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Finally, if the relevant mode only contains a cross sectional rotation component θ , 

i.e. [ ]0 0 T
θφ φ= , whose eigen-frequency is θω , then 
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(7.93) 

where mθ  is defined in Eq. 6.27, aeθκ  and aeθζ  are defined in Eq. 6.31, and where Ĵθ  

is given in Eq. 6.29. 
 
 

  
 

Example 7.3 
 

Let us again consider the simply supported beam shown in Fig. 7.6, and as usual, let us for 
simplicity assume that all cross sectional quantities are constants along the span of the bridge, and 

that it has a typical bridge type of cross section where DC′ , LC  and MC  are negligible and 

D LC D B C′⋅ . Let us set out to determine the covariance matrix associated with cross sectional 

forces at spanwise positions 0rx =  and / 2rx L=  that is caused by resonant oscillations in a 

chosen mode 

 

sin
y y

i z z

i

a

a x
L

aθ θ

φ
πφ

φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= = ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

φ  

whose eigen-frequency, eigen-damping-ratio and modally equivalent and evenly distributed mass 

are iω , iζ  and im . The necessary calculations are given in Eq. 7.83, i.e. 
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i i⋅ ⋅ ⋅T β β T  are given in Eqs. 7.84 and 7.86. Since (see Ex. 7.2) 
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Introducing the sinusoidal mode shapes, and 
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This integral has previously been solved in Example 6.1, and thus 
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 where expˆ i
w wyf

L
C

V

ω
ω = ⋅  

Thus, 
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i i

B V
S J

m B
ρ

ω

⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 is defined. At 0rx =  
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where 
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As could be expected, at 0rx =  it is only yV , zV  and xM  that applies, and thus 
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As could be expected, at / 2rx L=  it is only yM  and zM  that applies, and thus 
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Let us consider the case that exp 500L L m= = ,  40V m s=   and  

1
0.5
0.1

y

z

a

a
aθ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  

and adopt the 

numerical values given in the following tables: 
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Let us adopt the typical Kaimal type of turbulence spectra 
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Let us for simplicity also adopt quasi-steady values to the aerodynamic derivatives: 
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The following is then obtained at 0rx =  
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The following is obtained at / 2rx L= : 
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Chapter 8 

MOTION INDUCED INSTABILITIES 

8.1   Introduction 

Static as well as dynamic structural response will in general increase with increasing 
mean wind velocity. In some cases the response may develop towards what is perceived 
as unstable behaviour, i.e. the response is rapidly increasing for even a small increase of 
the mean wind velocity, as indicated in Fig. 6.3. It is seen from Eqs. 6.48 and 6.49 (see 
also Eqs. 4.69 and 4.82) that in the limit the structural displacement response will 
become infinitely large if the absolute value of the determinant to the non-dimensional 

modN  by modN  impedance matrix  

 

( ) ( )
2

1 1ˆ , 2ae ae
i i

V diag i diagη ω ω ω
ω ω

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪= − − ⋅ + ⋅ ⋅ −⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
E I ζ ζκ  (8.1) 

 
is zero. Thus, any stability limit may be revealed by studying the properties of the 
impedance matrix. Obviously, unstable behaviour is caused by the effects of aeκ  and 

aeζ . The effects of aeζ  is to change the damping properties of the combined structure 

and flow system, while the effects of aeκ  is to change the stiffness properties. While we 

in the entire chapter 6 ignored any motion induced changes to resonance frequencies 
(defined as the frequency positions of the apexes of the modal frequency response 
function) this can not be accepted in the search for any relevant instability limit. The 
reason is explained in chapter 5.2, and as shown in Eq. 5.24, it involves taking into 
account that the aerodynamic derivatives are modal quantities that have been normalised 
by and are functions of the mean wind velocity dependent resonance frequencies. Thus 
(see Eqs. 5.24, 6.51 and 6.52) the content of 

 

 ae aeij
κ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

κ  and ae aeij
ζ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ζ         (8.2) 
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are now given by 
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∫

∫

φ K φ

φ φ
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2

exp
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ˆ
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T
i ae j

ae Lij ii
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i ii i i i
L
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C VB
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ωω ρζ
ωω

⋅ ⋅
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⋅

∫

∫

φ C φ

φ φ
 (8.4) 

where ( )i Vω  is the mean wind velocity dependent resonance frequency associated with 

mode i  and ( )0i i Vω ω= =  (or as calculated in vacuum). The solution to Eq. 8.1 is an 

eigen-value problem with modN  roots. Each of these eigen-values represents a limiting 

behaviour in which the structural response is nominally infinitely large (or irrelevant). 
I.e., the condition 

 

( )( )ˆdet , 0Vη ω =E
                                              

(8.5) 

 
will formally reveal modN  stability limits associated with all the relevant mode shapes 

contained in ˆ
ηE , static or dynamic. In general ( )ˆdet ηE  will contain complex quantities, 

and therefore ( )ˆdet 0η =E  implies the simultaneous conditions that 

 

 ( )( )ˆRe det 0η =E  and ( )( )ˆIm det 0η =E                  (8.6) 

 

As shown above, ˆ
ηE  is a function of the frequency and of the mean wind velocity, and 

thus, each root will contain a pair of ω  and V  values which may be used to identify the 
relevant stability problem. For a static stability limit 0ω = , and thus, such a limit may 

simply be identified by a critical wind velocity crV . For a dynamic stability limit the 

response is narrow-banded and centred on an in-wind preference or resonance frequency 
associated with a certain mode or combination of modes. Thus, the outcome of the 
eigen-value solution to Eq. 8.5 will identify a dynamic stability limit by a critical 
velocity crV  and the corresponding in-wind preference or resonance frequency rω . 
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Of all the eigen-values that may be extracted from Eq. 8.5 the main focus is on the 
one that represents the stability limit at the lowest mean wind velocity, i.e. it is the 

lowest crV  (and corresponding rω ) that has priority. 

Cases of structural behaviour close to a stability limit may in general be classified 
according to the response type of displacement that develops. The problem of 
identification is greatly simplified if the impedance is taken directly from the 
characteristic behaviour of each stability problem as known from full scale or 
experimental observations. For a bridge section there are four types of such behaviour. 
First, there is the possibility of a static type of unstable behaviour in torsion, called static 
divergence. Second, there is the possibility of a dynamic type of unstable behaviour in 
the across wind vertical (z) direction, called galloping. Third, there is a possible unstable 
type of dynamic response in pure torsion, and finally, there is the possibility of an 
unstable type of dynamic response in a combined motion of vertical displacements and 

torsion, called flutter. Thus, it is always either zr , rθ  or both that are the critical 

response quantities. It is then only necessary to search for the instability limits associated 

with the two most onerous modes, 1φ  and 2φ  with corresponding eigen-frequencies 1ω  

and 2ω , of which one contain a predominant zφ  component and the other contain a 

predominant θφ  component. Therefore, the impedance matrix may be reduced to 
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             (8.7) 

 
where (see Eqs. 8.3 and 8.4) 
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  (8.8) 
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 (8.9) 

and 1,2
i
j
⎫

=⎬
⎭

. The problem is further simplified if 
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with corresponding eigen-frequencies 1 zω ω=  and 2 θω ω= , modal eigen-damping 

ratios 1 zζ ζ=  and 2 θζ ζ= , and with modal mass properties 1 zm m=  and 2m mθ= . In 

that particular case 
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           (8.11) 

and 
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(8.15) 
 

where ( )z Vω  and ( )Vθω  are the mean wind velocity dependent resonance frequencies 

associated with ( ) [ ]1 1
0 0

T
zx φ≈φ  and ( ) [ ]2 2

0 0 Tx θφ≈φ . A purely single mode 

unstable behaviour contains motion either in the vertical direction (i.e. galloping) or in 
torsion. Such an instability limit may then be identified from the first or the second row 
of the matrices in Eq. 8.11 alone, in which case ( )r z crVω ω=  or ( )r crVθω ω= . 

Otherwise, the unstable behaviour contains a combined motion in the vertical direction 
and torsion (i.e. flutter), in which case the instability limit may be identified from Eq. 
8.11, and ( ) ( )r z cr crV Vθω ω ω= = . Motion induced coupling effects between zr  and rθ  

(i.e. flutter) will only occur if the off–diagonal terms in Eq. 8.11 are unequal to zero, i.e. 

if 
exp

0z
L

dxθφ φ ≠∫  (see Eqs. 8.12 – 8.15). 

 

8.2   Static divergence 

Let 2φ  be the mode shape in predominantly torsion that has the lowest eigen–frequency. 

Let us for simplicity assume that 
 

 [ ]2 0 0 T
θφ≈φ

                                               
(8.16) 

 
At 0rω = , the instability effect is static and not dynamic. It is simply a problem of 

loosing torsion stiffness due to interaction effects with the air flow. Thus, the impedance 
in Eq. 8.11 is reduced to 

 

 ( )ˆ 0, 1r cr aeE Vη θθω κ= = −                                      (8.17) 
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where:                      
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2
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θ θ θ

φ
ωρκ

ω φ
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⎝ ⎠

∫

∫
 

It is seen that ( )ˆ 0, 0r crE Vη ω = =  when 1aeθθκ = . Thus, a static divergence type of 

instability limit may be identified under the condition that 
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2
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exp*
3 2
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dx
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A
m dx
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θ θ θ
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ω φ
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∫

∫
                   (8.18) 

 

Since this is a purely static type of unstable behaviour the quasi-static version of *
3A  

from Eq. 5.26 applies, and thus, the following critical mean wind velocity for static 
divergence is obtained 
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2

4 2
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V B
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ρ φ
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⎝ ⎠

∫

∫
                               (8.19) 

8.3   Galloping 

Let 1φ  be the mode shape with the lowest eigen-frequency 1 zω ω=  whose main 

component is zφ , i.e. 

 

 [ ]1 0 0 T
zφ≈φ                                              (8.20) 

 
Since the resonance frequency associated with this mode is ( )z Vω , then 

 
 ( )r z crVω ω=

                                                 
(8.21) 

 
and the impedance in Eq. 8.11 is reduced to 

 

( ) ( ) ( )2ˆ , 1 / 2 /r cr ae r z z ae r zzz zz
E V iη ω κ ω ω ζ ζ ω ω= − − + −

            
(8.22) 
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where 
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Setting the real and imaginary parts of Eq. 8.22 equal to zero, a dynamic stability limit 
may then be identified at an in-wind resonance frequency 
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(8.23) 

 
when the damping properties are such that 
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(8.24) 

 
This type of stability problem is called galloping. It is seen that a galloping instability 

can only occur if *
1H  attains positive values. (For a flat plate *

1H  is consistently 

negative, see Fig. 5.3, but this is a property that vanishes for cross sections with 
increasing bluffness.) 

Adopting the quasi-static versions of the aerodynamic derivatives given in Eq. 5.26, 
then the stability limit is defined by the following mean wind velocity 

 

 ( )

2

2 2
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4

/

z
z z L

cr z
zL D
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m

V B
B dxC C D B

φ
ζω

ρ φ
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′− + ⋅

∫

∫
                      

(8.25) 

 
An analytical solution to the problem of galloping was first presented by den Hartog 

[29], showing that galloping can only occur if /L DC C D B′ < − ⋅ . 
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8.4   Dynamic stability limit in torsion 

A stability problem in torsion is related to galloping in the sense that it involves a single 
mode type of motion. Let 2φ  be the mode shape with the lowest eigen-frequency 

2 θω ω=  whose main component is θφ , i.e. 

 

 [ ]2 0 0 T
θφ≈φ

 
                                            (8.26) 

 
Since the resonance frequency associated with this mode is ( )Vθω , then 

 
 ( )r crVθω ω=

                                                     
(8.27) 

 
and the impedance in Eq. 8.11 is reduced to 

 

( ) ( ) ( )2ˆ , 1 / 2 /r cr ae r ae rE V iη θ θ θθθ θθω κ ω ω ζ ζ ω ω= − − + −
            

(8.28) 

 
where 
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Setting the real and imaginary parts of Eq. 8.28 equal to zero, a dynamic stability limit 
may then be identified at an in-wind resonance frequency 
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(8.29) 

 
when the damping properties are such that 
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It is seen that an instability in pure torsion can only occur if *
2A  attains positive values. 

(For a flat plate *
2A  is consistently negative, see Fig. 5.3.) Since the quasi-static value of 

*
2A  is zero, it is futile to define a stability limit based on the quasi-static theory. 

8.5   Flutter 

As mentioned above, flutter is a dynamic stability problem where zr  couples with rθ . 

Such coupling occurs via the off-diagonal terms aezθκ  and ae zθκ  in Eq. 8.11 above, and 

therefore, it is most prone to occur between modes 1φ  and 2φ  that are shape-wise 

similar and whose main components are zφ  and θφ . Experimental observations show 

that it is usually the aerodynamic forces associated with the motion in torsion that are the 
driving forces in the coupling process. 

Let 2φ  be the mode shape with the lowest eigen-frequency 2 θω ω=  whose main 

component is θφ , i.e. 

 

 [ ]2 0 0 T
θφ≈φ

                                            
(8.31) 

 
Let 1φ  be another mode that shape-wise is similar to 2φ  and whose main component is 

zφ , i.e. 

 

 [ ]1 0 0 T
zφ≈φ                                             (8.32) 

 
and whose eigen–frequency is 1 zω ω= . A flutter stability limit is then identified by 

( )( )ˆdet , 0r crVη ω =E  where ( )ˆ ,r crVη ωE  is given in Eq. 8.11. Since zr  couples with rθ  

into a joint resonant motion, then 
 

 ( ) ( )r z cr crV Vθω ω ω= =                                             (8.33) 

 

From a computational point of view it is convenient to split ˆ
ηE  into four parts, i.e. 

 

( )1 2 3 4
ˆ ˆ ˆ ˆ ˆ2iη = + + +E E E E E                                          (8.34) 
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where 
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(8.35) 

The stability limit is then defined by the following two conditions 

( )( ) ( ) ( )1 2 3 4
ˆ ˆ ˆ ˆ ˆRe det det 4 det 0η = + − ⋅ + =E E E E E

                
(8.36) 

( )( ) ( ) ( )1 4 2 3
ˆ ˆ ˆ ˆ ˆIm det 2 det det 0η

⎡ ⎤= ⋅ + + + =⎣ ⎦E E E E E
               

(8.37) 

Fully expanded these equations become 
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(8.38) 
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 (8.39) 

where (see Eqs. 8.12 – 8.15) 
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The solution procedure demands iterations, because the aerodynamic derivatives can 
only be read off if the outcome, rω  and crV , are known. The theory of flutter was first 

presented by Theodorsen [28]. In cases where / zθω ω  is larger than about 1.5, then 

Selberg’s formula [22] may be used to provide a first estimate of the mean wind velocity 
that defines the flutter stability limit 

 
( )

1 / 22 1 / 2

3
0.6 1 zz

cr
m m

V B
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θ
θ

θ

ωω
ω ρ

⎧ ⎫⎡ ⎤ ⋅⎛ ⎞⎪ ⎪⎢ ⎥= ⋅ − ⋅⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭                        

(8.40) 

 
 

  
 

Example 8.1 
 

Let us consider a slender horizontal beam type of bridge with a cross section whose aerodynamic 
properties are close to those of an ideal flat plate, and set out to calculate the possible stability 
limits associated with the two mode shapes 
 

[ ]1 0 0 T
zφ=φ  [ ]2 0 0 T

θφ=φ  

 

with corresponding eigen-frequencies zω  and θω , and with modally equivalent and evenly 

distributed masses zm  and mθ . It is for simplicity assumed that z θφ φ≈  and that expL L= . Let 

us allot the following values to the necessary structural quantities 
 

ρ  

(kg/m3) 
B (m) 

zm  

(kg/m) 

mθ  

(kgm2/m) 
zω  (rad/s) z θζ ζ=  

1.25 20 410  56 10⋅  0.8 0.005 

 
We wish to investigate the properties of the instability limits at various values of the frequency 

ratio zθω ω , and thus it is assumed that 0.8zω =  rad/s while θω  is arbitrary between  
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1zθω ω =  and 3zθω ω = . To simplify the relevant expressions, let us introduce the 

following notation: 
 

2

0.05z
z

B
m

ρβ = =  
4

0.33
B

mθ
θ

ρβ = =  
z

θωγ
ω

=  and ˆ r
r

θ

ωω
ω

=  

 
Due to the flat plate type of aerodynamic properties it is in this particular case only static 
divergence and flutter that may occur. The flat plate aerodynamic derivatives are given in Eq. 5.27 
(and shown in Fig. 5.3), i.e.: 
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where ( )ˆ
iV V B Vω⎡ ⎤= ⎣ ⎦  is the reduced velocity, and where 
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are the real and imaginary parts of the so-called Theodorsen’s circulatory function. ( )ˆ 2n iJ ω  and 

( )ˆ 2n iY ω , 0 or 1n = , are first and second kind of Bessel functions with order n . ˆiω  is the non-

dimensional resonance frequency, i.e. ( )ˆ /i iB V Vω ω= . For an ideal flat plate type of cross 

section 2MC π′ =  (see quasi static solution given in Eq. 5.29). Thus, the stability limit with 

respect to static divergence is identified by 
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B θ θω β π
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With respect to the flutter stability limit an approximate solution can be obtained from Eq. 8.40 
(the Selberg formula), rendering 
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An exact solution can only be obtained from the simultaneous solution of Eqs. 8.38 and 8.39. 

Introducing the simplifications that expL L=  and z θφ φ≈  and the abbreviations for zβ , θβ , γ  

and ˆrω  defined above, then 
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Thus, Eqs. 8.29 and 8.30 are reduced to 
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It is seen that the solution of these equations requires the search for the lowest identical roots in a 
fourth and a third degree polynomial. Adopting ideal flat plate aerodynamic derivatives (see 
expressions above) the solution is shown in the upper diagram in Fig. 8.2 (together with the 

approximate solution given by Selberg’s formula). The corresponding values of ˆrω  are shown in 

the lower diagram in Fig. 8.2. At / 2zθω ω =  the development of ( )( )ˆIm det ηE  and 

( )( )ˆRe det ηE  with increasing values of ( )/V B θω  is shown in Fig. 8.1. 
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Fig. 8.1     Development of imaginary and real parts at increasing values of ( )/V B θω  

 

Fig. 8.2     Upper diagram: flutter stability limit, lower diagram: corresponding frequency of 
resonant motion 



Chapter 9 

THE BUFFETING THEORY IN A FINITE 
ELEMENT FORMAT 

9.1   Introduction 

 

Fig. 9.1     A line-like structure in a turbulent wind field 
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In order to focus on the most important aspects of wind induced dynamic response the 
calculations presented in Chapter 6 (and the ensuing calculations of cross sectional 
forces presented in Chapter 7) have been performed in a modal format where each 
displacement component has been given a separate representation. These calculations 
may also be performed in a finite element format. Such a procedure is presented below. 
It has the advantage that it will comply with the computational methods usually applied 
elsewhere in structural mechanics. Thus, from a computer programming point of view, 
all the well known stiffness and mass properties from other types of structural dynamics 
problem will be applicable. The only difference is that the wind and motion induced 
loads need special attention. On the other hand, it should be noted that due to the fairly 
short correlation lengths and sharply dropping coherence properties of the turbulence 
components there will be demanding requirements for the choice of largest element 
length, i.e., the number of degrees of freedom in the finite element system may become 
cumbersome from a computational point of view. The same applies to the choice of time 
stepping increment in a time domain solution. In general, convergence should be 
checked. The overall problem of a structural system of line like members in a turbulent 

wind field, defined by the wind velocity components ( ) ( ), ,f f fV z u y z t+ , ( ), ,f fv y z t  

and ( ), ,f fw y z t , is illustrated in Fig. 9.1. At an arbitrary position on an element n  

(between nodes p  and k ) the wind field and the interaction between flow and structural 

motion will generate three load components, one in the direction of drag, one in the 
across wind direction (vertical or horizontal depending on the orientation of the element 
in relation to the flow) and one torsion (pitching) moment. Adopting a system of six 

degrees of freedom in each node, there is a load vector [ ]1 2 3 4 5 6
TR R R R R R  

and a corresponding displacement vector [ ]1 2 3 4 5 6
Tr r r r r r  in each node, as 

shown in Fig. 9.2. It is taken for granted that the global axis X , Y  and Z  coincide 
with the flow axis fy− , fx  and fz , i.e. that the structural system is two-dimensional 

and perpendicular to the main wind flow direction. Unfortunately, a two-dimensional 
system is at the moment a necessary restriction as the experimental support of the wind 
load on an element at an arbitrary attitude in the flow is insufficient. Strictly speaking, 
the theory below is only sufficiently supported by experimental data if the elements of 
the system are either horizontal or vertical. Nonetheless, the possibility of a yaw angle 
has been included below. It should be noted that experimental data from structural 
aerodynamics usually complies with the force and displacement definitions given in Fig. 
1.3, where pitching moment and cross sectional rotation are defined by windward edge 
up. It is in the following assumed that this definition applies to all the aerodynamic data 
(e.g. load coefficients, aerodynamic derivatives, etc.) that are adopted for numerical 
calculations. However, in the finite element theory it has been chosen to strictly comply 
with the usual convention that all external and internal forces and displacement degrees 
of freedom are vectors in global as well as local coordinates (see Figs. 9.2 and 9.3). 
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Fig. 9.2     Nodal forces from external loads 

 

Fig. 9.3     Element degrees of freedom and element end forces 
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9.2   The element mechanical properties 

A free body diagram of an arbitrary beam (line-like) type element n , with local axis x , 
y  and z  is illustrated in Fig. 9.3. It is taken for granted that all displacements as well as 

forces comprise a time-invariant mean value (the static part) and a stationary fluctuating 
(dynamic) part. At position x  along its span the cross sectional displacements and 
rotation (torsion) are defined by 

 

 ( ) ( ) ( ), ,
T

el x y z el eltot eltot
x t r r r r x x tθ⎡ ⎤= = +⎣ ⎦r r r            (9.1) 

 
where index el  indicates quantities at element level. At ends 1  and 2  it has the element 
nodal forces 

 

( ) ( )
[ ]

[ ]
1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 
⎧ =⎡ ⎤ ⎪= = + ⎨⎢ ⎥

⎣ ⎦ =⎪⎩

T

tottot
tot T

tot tottot

F F F F F F
t t

F F F F F F

FF
F F F

F F
     

(9.2) 

 
and corresponding local displacements 

 

( ) ( )
[ ]

[ ]
1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 
⎧ =⎡ ⎤ ⎪= = + ⎨⎢ ⎥

⎣ ⎦ =⎪⎩

T

tottot
tot T

tot tottot

d d d d d d
t t

d d d d d d

dd
d d d

d d
      (9.3) 

 

It is assumed that the cross sectional displacement vector ( ),eltot
x tr  with sufficient 

accuracy may be described by the product of a shape function matrix 
 

( )

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 7

2 6 8 12

3 5 9 11

4 10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

N N
N N N N

x
N N N N

N N

N

  
(9.4) 

 

and the nodal displacement vector ( )tot td , i.e. that 
 

 ( ) ( ) ( ),el tottot
x t x t= ⋅r N d                                        (9.5) 

 

where the twelve shape function iN , 1 12i = − , are given in Fig. 9.4. These are 

identical to the shape functions commonly used elsewhere in structural mechanics. Since 
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they are polynomial, it should be noted that they will represent an accurate solution to 
the time-invariant (static) part of the response but not to the dynamic part, as they will 
not fully satisfy the spanwise differential equation of motion. 

 
 

 

Fig. 9.4     Shape functions iN , 1 12i = −  
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Applying d’Alambert’s principle at a position of external and internal equilibrium 

defined by ( ),eltot
x tr , and let the system be subject to an incremental virtual 

displacement 

 
T

el x y zr r r rθδ δ δ δ δ⎡ ⎤= ⎣ ⎦r                                      (9.6) 

 
compatible with 

 

 
[ ]

[ ]
1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 
δ δ δ δ δ δ δδ

δ
δ δ δ δ δ δ δ δ

⎧ =⎡ ⎤ ⎪= ⎨⎢ ⎥
⎣ ⎦ =⎪⎩

T

T

d d d d d d

d d d d d d

dd
d

d d
        

(9.7) 

 
such that 

 ( )el xδ δ= ⋅r N d                                                    (9.8) 

 
Then the external and internal works performed during this motion are given by: 

 

 ( )0
0

L
T T

ext tot el elW dxδ δ= ⋅ + ⋅ −∫d F r m r                          (9.9) 

and 

 ( )int 0
0 0

( )
L L

T T
el

A

W dxdA dxδ δ= ⋅ ⋅ + ⋅∫ ∫ ∫ε s r c r             (9.10) 

 
where (assuming shear centre axis) 

 

 
0

0

x y z

x y z

diag m m m m

diag c c c c

θ

θ

⎫⎡ ⎤= ⎣ ⎦⎪
⎬

⎡ ⎤= ⎪⎣ ⎦ ⎭

m

c
                      (9.11) 

 
are diagonal matrices containing the distributed mass and damping properties of the 
element, and where 

 

T
x y z yz eltot

T
x y z

s s s s

θδ δε δε δε δγ

⎫⎡ ⎤⎣ ⎦ ⎪
⎬
⎪⎡ ⎤= ⎣ ⎦ ⎭

s =

ε
                                  (9.12) 

 

xs , ys  and zs  are cross sectional stress contributions from elastic beam stretching in 

the x  direction and bending in the y  and z  directions, while yzs  is the cross sectional 

shear stress due to torsion. xδε , yδε , zδε  and θδγ  are the corresponding virtual strain 
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quantities. From basic theory of elasticity (Hook’s law and Navier’s hypothesis, see e.g. 
Chen & Atsuta [27]) s  and δε  are given by 

 

 

T
x y z p eltot

T
x y z p

Er Eyr Ezr Gr r

r y r z r r r

θ

θδ δ δ δ

⎫⎡ ′ ′′ ′′ ′ ⎤= − −⎣ ⎦ ⎪
⎬
⎪⎡ ′ ′′ ′′ ′ ⎤= − −⎣ ⎦ ⎭

s

ε
                        (9.13) 

 
where primes indicate derivation with respect to x  and where E  is the modulus of 

elasticity, G  is the corresponding shear modulus and pr  is a cross sectional coordinate 

used to identify the St Venant torsion constant ( pr  should be perceived as a symbolic 

representative as it strictly spoken is only applicable to a circular cross section). Defining 
 

( )
1 7

2 6 8 12

3 5 9 11

4 10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

N N
N N N N

x
N N N N

N N

′ ′⎡ ⎤
⎢ ⎥′′ ′′ ′′ ′′⎢ ⎥=
⎢ ⎥′′ ′′ ′′ ′′
⎢ ⎥′ ′⎣ ⎦

N

  
(9.14) 

and 

 
[ ]

1 p

diag E E E G

y z r

⎫= ⎪
⎬

⎡ ⎤= − − ⎪⎣ ⎦ ⎭

e

f
                            (9.15) 

 

then the internal work is given by 
 

( ) ( ) ( ) ( )int 0
0 0

0
0 0

L LT T
tot

A

L L
T T T T T

tot
A

W dA dx dx

dA dx dx

δ δ

δ δ

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

f N d f e N d N d c N d

d N f f e N d d N c N d

    (9.16) 

 

Defining 
A

A dA= ∫ , 2
z

A

I y dA= ∫ , 2
y

A

I z dA= ∫ , 2
t p

A

I r dA= ∫  and 

 

 0
T

z y t
A

dA diag EA EI EI GI⎡ ⎤= ⋅ ⋅ ⋅ = ⎣ ⎦∫k f f e   (9.17) 

 

then the internal work is given by 
 

 ( )int
T

totW δ= ⋅ ⋅ ⋅d k d + c d                           (9.18) 
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where k  and c  are the element stiffness and damping matrices, defined by 
 

 

0
0

0
0

L
T

L
T

dx

dx

⎫
= ⎪

⎪
⎬
⎪= ⎪
⎭

∫

∫

k N k N

c N c N

                                     (9.19) 

 

By introducing δ δ= ⋅r N d  and ( ) ( ) ( ),el x t x t= ⋅r N d  then the external work (see  

Eq. 9.9) is given by: 
 

( ) ( )0 0
0 0

L L
TT T T

ext tot totW dx dxδ δ δ
⎛ ⎞

= ⋅ − ⋅ ⋅ = ⋅ − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫d F N d m N d d F N m N d    

(9.20) 
 

Thus, introducing the element mass matrix 
 

 0
0

L
T dx= ∫m N m N                                    (9.21) 

then the  external work is given by 
 

 ( )T
ext totW δ= ⋅ − ⋅d F m d                             (9.22) 

 
By setting int extW W=  

 

 ( ) ( )T T
tot totδ δ⋅ ⋅ ⋅ = ⋅ − ⋅d k d + c d d F m d                           (9.23) 

 
cancelling out δd  and rearranging, then the following element equilibrium condition is 
obtained: 

 tot tot+ + =md cd kd F                                          (9.24) 

 

Since ( )tot t= +d d d  and ( )tot t= +F F F  this equation may be split into a mean (static) 

part and a fluctuating (dynamic) part: 
 

 
⎫= ⎪
⎬

+ + = ⎪⎭

kd F

md cd kd F
                                      (9.25) 
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This is the static and dynamic equilibrium conditions at element level. The element 
stiffness, damping and mass matrices are defined in Eqs. 9.19 and 9.21. By introducing 
the shape functions in Fig. 9.4 into Eqs. 9.4 and 9.14, then the following is obtained: 

 

 11 12
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The element damping matrix is given by: 
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Similarly, the element mass matrix is given by: 
 

 11 12

21 22

⎡ ⎤
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⎣ ⎦

m m
m

m m
 where 21 12

T=m m             (9.33) 

 
The necessary integrations will involve the same combinations of shape functions as 
those that have been applied to obtain the damping matrix, and thus 
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The element property matrices given above may be found in many text books, see e.g. 
Hughes [25] and Cook et.al. [29]. They have been included here mainly for the sake of 
completeness. It should be noted that the development of damping properties at element 
level is not necessarily a rational choice. Alternatively, damping properties may be 
introduced at a structural global level (i.e. associated directly with the global degrees of 
freedom), e.g. in the form of Rayleigh damping or simply a diagonal type of modal 
damping matrix. 

9.3   The wind load 

All the necessary equations for the determination of the mean (static) as well as the 
fluctuation (dynamic) wind load at element level has previously been developed in 
Chapter 5. It is now simply a matter of implementing this theory into the framework of a 
finite element approach, i.e. to expand Eqs. 5.8 – 5.14 and 5.24 – 5.25 into the twelve 
degrees of freedom force and displacement system adopted for a finite element 
approach. 
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Fig. 9.5     External load and load vector at element level 

At a global level the load vector is illustrated in Fig. 9.2. At element level (i.e. associated 
with an arbitrary element n ) the load vector is illustrated on Fig. 9.5. It is defined by 
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These are external nodal forces (in element axis) caused by the distributed element load 
vector (see Fig. 9.5 and Eq. 5.8) 
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Fig. 9.6     Wind load effects at horizontal and vertical positions of the element 
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Thus, the load comprise a time invariant mean part (static load), a dynamic part caused 
by wind turbulence (buffeting load) and a dynamic part caused by interaction between 
the flow and structural motion (motion induced load), i.e.: 

 

 ( ) ( ) ( ) ( ), , ,tot aex t x x t x t= + +q q q q                        (9.39) 

 
As indicated in Fig. 9.6 it is for simplicity assumed that the element length ( L ) is short 
such that it may with sufficient accuracy be assumed that the flow components 

( ),V u x t+ , ( ),v x t  and ( ),w x t  are constant along half the element span. 

 
 

The mean (static) load vector: 
 

The static load is given by (see Eq. 5.11) 
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ρ ⎡ ⎤= ⋅ −⎣ ⎦q       (9.40) 

 
Thus, the mean (static) load vector at element level is given by 
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where 
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ρ⎧ ⎫⎡ ⎤⎡ ⎤= ⋅⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
         (9.42) 

 
and where i  refers to element end 1 or 2, i.e. 1 or 2i = . 

 
 

The turbulence induced (buffeting) load vector: 
 

As illustrated in Fig. 9.6, the buffeting load will depend on orientation of the element in 
the flow, i.e. whether its position is horizontal or vertical, affecting the appropriate 

interpretation of the flow components ( ),u x t , ( ),v x t  and ( ),w x t . Thus, the buffeting 

load is given by (see Eq. 5.12) 
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Fig. 9.7     Definition of roll angle γ  
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(9.43) 

 
where uI , vI  and wI  are the turbulence intensities, 0ψ  is a three by three matrix taking 

account of the element orientation (roll angle γ ) in the flow (see Fig. 9.7) 
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and where 0v̂  is the reduced turbulence velocity vector 
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Thus, the turbulence induced (buffeting) load vector at element level is given by: 
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where 

 ( ) ( ){ }0 00
ˆ,i i Q in n

Z t Z= ⋅ ⋅Q B ψ v
   

                           (9.47) 

where 1 or 2i =  and where 
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Thus, 
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(9.50) 

and, as mentioned above, where indices 1 and 2 refers to element ends. 
 

The motion induced (aerodynamic) load vector: 
 

As shown in Eq. 5.8, the motion induced load will comprise two contributions, one 
which is proportional to the element velocity and one which is proportional to its 
dynamic displacements. Thus, 
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If a quasi-static approach is adopted, then 
0aec  and 

0aek  are given by (see Eqs. 5.13 

and 5.14): 
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If a modal approach with aerodynamic derivatives is adopted, then (see Eqs. 5.24 and 
5.25) 
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where iω  is the relevant frequency of motion (i.e. the mean wind velocity dependant 

resonance frequency of mode i ). It should be noted that if a quasi-static approach is 
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adopted then 
0aec  and 

0aek  from Eqs. 9.52 and 9.53 are applicable in time domain as 

well as in frequency domain, while an approach based on 
0aec  and 

0aek  containing 

aerodynamic derivatives given in Eqs. 9.54 and 9.55 is only applicable in a modal 
frequency domain approach. It is a physical requirement that loads obtained from 
aerodynamic derivatives should converge towards quasi-static loads as the frequency of 
motion is approaching zero, i.e. when the motion becomes very slow. 

It should also be noted that a basic hypothesis behind the development of the 
buffeting theory in Chapter 5 was that fluctuations in the oncoming flow are 
instantaneously giving rise to corresponding fluctuations in the cross sectional loads. If a 
time domain solution in original coordinates (i.e. in the element degrees of freedom) is 
chosen then such a hypothesis will no longer be justifiable, in which case indicial 
memory functions will have to be introduced. Thus, it is necessary to introduce a dummy 
time history variable τ , a relative time s t τ= −  (see Fig. 9.8) and a set of indicial 
functions 
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associated with interaction between drag, lift or moment forces and velocity of motion in 
y , z  or θ  directions. These functions describe how an incremental structural motion is 

giving rise to a corresponding change of motion induced load, i.e. the basic motion 
induced load hypothesis is given by 
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(9.57) 

 
As time goes towards infinity it is a physical requirement that loads obtained from 
indicial functions will asymptotically be approaching quasi-static loads. Adopting 

functions ( ) 1ij s
s →∞Φ ⎯⎯⎯→ , i.e. similar to that which has been indicated in Fig. 9.8, 

then ( )0ae sc  and ( )0ae sk  are simply obtained by expanding the expressions in Eqs. 

9.52 and 9.53 into 
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Fig. 9.8     Relative time history integration of indicial functions 

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0 2 2

0 0 0 0 0 0

0 2 0 0 0

0 2 0 0 0
2 0 2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

D Dy D L Dz

L Ly L D Dz
ae

M My M Dz

DC s DC BC s

BC s BC DC sV
s

B C s B C s

ρ

⎡ ⎤
⎢ ⎥

′− Φ − − Φ⎢ ⎥
⎢ ⎥

′− Φ − + Φ⎢ ⎥= ⎢ ⎥
′⎢ ⎥Φ Φ

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

c    (9.58) 



9.3   THE WIND LOAD 229

 

and 
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Thus, the motion induced load ( ),ae x tq  may be obtained from history integration 
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It is also a physical requirement that if the structural motion is harmonic then loads 
obtained from indicial functions must be equal to those obtained from aerodynamic 
derivatives. It is shown in Appendix D how this requirement may be used to determine 
indicial functions from known aerodynamic derivatives. 

Thus, if Eq. 9.51 is applicable (i.e. a quasi-steady load hypothesis is adopted), then 
the motion induced load associated with element ends 1 or 2i =  is given by  
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where id  is the is the six by one displacement vector at element ends 1 or 2i = .(the iZ  

dependency comes from the variation of V  with the elevation of element ends 1 and 2.) 
In this case the aerodynamic load vector at the level of element n  is given by 
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where ( ) [ ]1 2
T

n n
t =d d d  and 
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where 

0aec  and 
0aek  are given in Eqs. 9.52 and 9.53. 

On the other hand, if Eq. 9.60 is applicable (i.e. the concept of indicial functions is 
adopted), then 
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and the corresponding load vector at the level of element n  is given by 
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  (9.66) 
 

where 
0aec  and 

0aek  are given in Eqs. 9.58 and 9.59. 

Thus, all wind forces and motion induced forces at element level have been 
established. What remains before any response calculations can be performed is to 
establish equilibrium conditions expressed in global structural degrees of freedom. 

9.4   The global analysis 

As previously mentioned (see Chapter 9.2) it is taken for granted that displacements as 
well as forces at element level comprise a time-invariant mean value (the static part) and 

a stationary fluctuating (dynamic) part, i.e. ( )n n ntot
t= +d d d , ( )n n ntot

t= +F F F  and 
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( )n n ntot
t= +R R R . This also applies at a global structural level, i.e. ( )= +tot tr r r  

and ( )tot t= +R R R . Before proceeding it is necessary to define the connectivity matrix 

nA  describing the relationship between element degrees of freedom ntot
d  and global 

degrees of freedom totr , i.e.: 

 
 n n tottot

= ⋅d A r                                                   (9.67) 

 
Applying a set of virtual displacements to the system totδr , then n n tottot

δ δ= ⋅d A r , and 

since the virtual work exerted by the external forces (at global as well as at element 
level) must be equal to the sum of the virtual work of the internal forces, then 
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where N  is the total number of elements in the system. Introducing Eq. 9.67, then 
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and thus, it is seen that the equilibrium condition at a global structural level is given by 
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=∑ ∑A R A F                       (9.70) 

 
where N  is the total number of elements in the system. As shown in Eq. 9.24 

 

 n n n n n ntot tot
= + +F m d c d kd                              (9.71) 

 
and assuming that Eq 9.62 applies (i.e. that indicial functions are not in use), then 

 

 ( ) ( ) ( )n n n ae n n ae tot ae tottot n n n
t t t= + + = + + +R R R R R R c d k d   (9.72) 

 
Introducing Eqs. 9.67, 9.71 and 9.72 into the equilibrium condition in Eq. 9.70 (and 
acknowledging that the time derivative of mean values are zero) then the following is 
obtained 
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Defining the structural properties 
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the motion induced properties 
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and the load vectors 
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then Eq. 9.73 may be written 
 

 ( ) ( )tot tot tot aet t+ + = + +Mr Cr Kr R R R                            (9.77) 

 
where 

 ( ) ( ) ( )ae ae tot ae tott t t= +R C r K r                                   (9.78) 

 
Since tot =r r  and tot =r r  Eq. 9.77 may be split into a time invariant (mean static) 

equilibrium condition 
 

( )ae− =K K r R                                                    (9.79) 

 
and a purely dynamic equilibrium condition 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ae aet t t t+ − + − =M r C C r K K r R                  (9.80) 
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This equation may be used to calculate dynamic response in time domain as well as in 
frequency domain. In a time domain approach it will be necessary to perform a time 

domain simulation of the fluctuating flow components ( ), ,k ku X Z t , ( ), ,k kv X Z t  and 

( ), ,k kw X Z t  in every node k . In a frequency domain approach it will be necessary to 

introduce the stochastic properties of the flow components and to perform spanwise 
averaging to obtain the corresponding stochastic properties of the relevant response 
quantities. 

If a time domain solution strategy with indicial functions is chosen, then everything 
above is still applicable, except that Eq. 9.65 must be introduced for the determination of 
motion induced loads. Thus, the aerodynamic load given in Eq. 9.78 must be replaced 
by: 
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Recalling that 1ds dτ = −  and assuming initial conditions ( )0 0τ = =r  and ( )0 0τ = =r  

then Eq. 9.81 can be further developed by integration by parts into 
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(9.82) 

 
where the prime on aen

′c  and aen
′k  mean derivation with respect to s . Introducing 
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and 
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n

t s s dτ τ τ
=

⎡ ⎤′ ′Δ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎣ ⎦∑ ∫R A c A r A k A r     (9.84) 
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then the dynamic equilibrium condition is defined by 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0ae ae aet s t s t t t⎡ ⎤ ⎡ ⎤+ − = + − = = + Δ⎣ ⎦ ⎣ ⎦M r C C r K K r R R    (9.85) 

 
Since the motion induced load contributions are wind velocity dependant the system 
contains static as well as dynamic singularities, i.e. the static or the dynamic response 
will become infinitely large at some critical mean wind velocity. 
 

9.5   The time invariant static solution 

The time invariant static solution is given by Eq. 9.79, i.e.: 
 

 ( ) 1
ae

−= −r K K R                                     (9.86) 

 
The corresponding cross sectional element forces may be obtained from Eq. 9.25, i.e.: 

 

 n n n n n= =F k d k A r                                     (9.87) 

9.6   The quasi-static solution 

If the lowest eigen frequency of the structure is high, say beyond 4 Hz, then the structure 
is quasi-static, and the solution may be obtained as a sum of the time invariant solution 
r  (given in Eq. 9.83) and a slowly varying part 

 

 ( ) ( ) ( )1
aet t−= −r K K R                                            (9.88) 

 

where ( )tR  is the fluctuating load due to turbulence in the oncoming flow, i.e.: 

 

 ( ) ( )
1

N
T
n n

n

t t
=

= ∑R A R                                    (9.89) 

 

where ( )n tR  is given in Eq. 9.49. There are two alternative solutions strategies. A time 

domain solution may be pursued, or alternatively a stochastic solution based on the 
covariance properties of the turbulence components may be chosen. 
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In a time domain solution it is necessary to perform a stochastic simulation of the 

stationary flow components ( )u t , ( )v t  and ( )w t  contained in ( )ˆ n tv  (see Eqs. 9.45 

and 9.50). Such a simulation procedure is presented in Appendix A.3. Thus, the solution 
is given by 

 

 ( ) ( ) ( ) ( )1
tot aet t t− ⎡ ⎤= + = − +⎣ ⎦r r r K K R R  (9.90) 

 
Since ( )u t , ( )v t  and ( )w t  are stochastic, this solution will also be stochastic, i.e. it 

may be necessary to perform several calculations of ( )tR  such that statistics may be  

performed on a representative set of ( )tr  solutions (in general at least ten). Also, the 

simulations must be performed over a sufficiently large time window (e.g. T=10 min.). 
Thus, a time domain solution may numerically be quite demanding. 

In a stochastic solution based on the covariance properties of the stationary turbulence 

components ( )u t , ( )v t  and ( )w t  contained in ( )ˆ n tv  the solution is given by (see Eq. 

6.2 and Fig. 6.2.a) 
 

 maxmaxtot p rk= + = +r r r r σ                                (9.91) 

 
where r  is given in Eq. 9.86, pk  is a peak factor defined in Chapter 2.4 and rσ  is a 

vector containing all the standard deviations of the chosen set of displacement degrees of 
freedom in the system. rσ  may be extracted from the square root of the vector contained 

on the diagonal of the covariance matrix 
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where rN  is the total number of global degrees of freedom in the system. Since 

( ) ( ) ( )1
aet t−= −r K K R  then 
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Since ( ) ( )
1

N
T

n
n

t t
=

= ∑R A R  and ( ) ( )ˆn Q n nn
t t=R B ψ v  (see Eqs. 9.49 and 9.76) then 
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(9.94) 

 
where 1,2, ,n N= …  and 1,2, ,m N= …  are dummy summation variables ( N  is the 

number of elements in the system) and where ˆ ˆ ˆ T
vv n mE ⎡ ⎤= ⋅⎣ ⎦Cov v v  is the covariance 

matrix of the reduced flow components contained in v̂ , i.e.: 
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where indices 1 and 2 refer to element ends 1 and 2. By performing the multiplications 
and the relevant statistical calculations, and assuming that all cross covariances between 
different flow components are negligible, i.e. 

 
 0uv uw vwCov Cov Cov= = ≈                                (9.96) 
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then the following is obtained: 
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  (9.97) 
 

where ijsΔ  is the separation in the global coordinate system between points 

1  or 2i n n=  and 1  or 2j m m= , and where ( )pp ijsρ Δ , ,  or p u v w= , are the 

covariance coefficients of the flow components, see Eq. 3.33, i.e.: 
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 (9.98) 

 

where x
pL  and z

pL  are the integral length scales of ,  or p u v w=  in X  or Z  

directions (see Eq. 3.35). Thus (see Eq. 9.92 above), 
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The extreme value of the response 

maxtotr  may then readily be obtained from Eq. 9.91. 

Since this solution is quasi-static, the corresponding cross sectional element forces may 
be calculated from 

 

 ( ) maxmax maxtot n tot n n p r n n totn n
k= = + =F k d k A r σ k A r  (9.100) 
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9.7   Dynamic response calculations in frequency domain 

If the lowest eigen frequency of the structure is in a region where dynamic effects can 
not be neglected, say below about 4 Hz, then a quasi-static solution shown in Chapter 9.6 
above will no longer suffice and a full dynamic analysis will be required. However, the 
time invariant static solution shown in Chapter 9.5 is still valid, and thus, the total 
displacement response may be obtained as a sum of the time invariant solution r  (given 

in Eq. 9.86) and a purely dynamic part ( )tr , i.e. ( ) ( )tot t t= +r r r . However, in the 

following a stochastic solution in frequency domain will be shown, and from this only 
the statistical properties of the response will emerge, i.e. the result of the response 
calculation is the covariance matrix 
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where rN  is the number of degrees of freedom in the system. Thus, extreme values of 

displacement events are given by 
 

 maxmaxtot p rk= + = +r r r r σ                                    (9.102) 

 
where r  is given in Eq. 9.86, pk  is a peak factor defined in Chapter 2.4 and rσ  is a 

vector containing all the standard deviations of the chosen set of displacement degrees of 
freedom in the system. rσ  may be extracted from the square root of the vector contained 

on the diagonal of the covariance matrix, see Eq. 9.101. 
In a frequency domain approach it is a necessary requirement that all load and 

response quantities are stationary such that a Fourier transform will render predictable 
coefficients throughout the entire time window of the process. I.e. motion induced load 
contributions which evolve from the previous history of the process (indicial functions) 
can not be included in such a solution strategy. Thus, response calculations in frequency 
domain must be based on (see Eq. 9.80) 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ae aet t t t+ − + − =M r C C r K K r R  (9.103) 
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where aeC  and aeK  are defined in Eqs. 9.75 (see also 9.63). Once frequency domain 

has been entered, then the content of aeC  and aeK  may be taken from experimentally 

determined aerodynamic derivatives (see Eqs. 9. 54 and 9.55) as well as from quasi 
static properties (see Eqs. 9. 52 and 9.53). 

Taking the Fourier transform throughout Eq. 9.103, i.e. setting 
 

 ( ) ( ) i t
rt e ω

ω
ω= ⋅∑r a  and ( ) ( ) i t

Rt e ω

ω
ω= ⋅∑R a     (9.104) 

 

where ( )r ωa  and ( )R ωa  are the Fourier coefficients of the displacement and load 

processes and where 
ω
∑  indicates summation over all ω -settings, then Eq. 9.103 is 

satisfied for each ω -setting if 
 

 ( ) ( )2
ae ae r Riω ω⎡ ⎤− + − + − ⋅ =⎣ ⎦M C C K K a a               (9.105) 

 
Thus, 
 

⇒  ( )r r Rω= ⋅a H a                                               (9.106) 

 
where 
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r ae aeiω ω ω
−
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The cross spectral density matrix of the response quantities corresponding to the chosen 
degrees of freedom is defined by 
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Introducing Eq. 9.106, then 
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where ( ) ( )*1
lim T

RR R R
T T

ω
π→∞

= ⋅S a a  is the cross spectral density matrix of the buffeting 

wind load. The response covariance matrix may then be obtained simply by integration 
throughout the frequency domain, i.e. 
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What then remains is to develop RRS  into an expression of known quantities. As shown 

in Eqs. 9.49 and 9.76 
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and thus a Fourier transform of the load vector will render 
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where  

 ( )ˆ ˆ ˆ ˆ ˆˆ ˆ1 1 1 2 2 2

T
v u v w u v wn n

a a a a a aω ⎡ ⎤= ⎣ ⎦a                         (9.113) 

contains the Fourier amplitudes of the reduced turbulence components at the nodes of 
element n  (i.e. at element ends 1 and 2, see Eqs. 9.45 and 9.50). The cross spectral 
density matrix of the load is then given by 
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is the cross spectral density matrix of the reduced turbulence components. Assuming that 
all cross spectral densities between two different flow components are negligible, and 
then its content is given by 
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where ijsΔ  is the distance between points i  and j , and where ( )ˆ ,pp ijS s ωΔ , 

,  or p u v w= , is the reduced cross spectral density between flow component p  at point 

i  and itself at point j  (i.e. the cross spectral density between ,  or u v w  at ends 1 or 2 of 

element n  and ,  or u v w  at ends 1 or 2 of element m ). As shown in Eq. 2.88, ˆ
ppS  

may be expressed by the product of the reduced single point spectra at points i  and j  

and the reduced co spectrum between the same points, i.e. 
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E.g., adopting a Kaimal type of auto spectrum and simple exponential co-spectrum 
decay, then (see Eqs. 3.25 and 3.41) 
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and where indices n  or m  refers to element numbers and 1 or 2 refers to element end 
numbers. By defining the reduced auto spectral density matrices associated with 
elements n  and m  
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and the reduced covariance matrix between corresponding element ends 
 



9.7   DYNAMIC RESPONSE CALCULATIONS IN FREQUENCY DOMAIN 243
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where 
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and 
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then ( )ˆ ˆvv ωS  in Eq. 9.114 is given by 
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(9.124) 

 
Combining Eqs. 9.109, 9.114 and 9.124 then the following cross spectral density 
response matrix is obtained 
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from which the response covariance matrix may readily be obtained by frequency 
domain integration, i.e. 
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  (9.126) 
 
For the ensuing calculations of the statistical properties of cross sectional response forces 
at element end points it is necessary also to determine the covariance between the 
displacement response and its derivatives. The general solution to the problem of 

determining the covariance between a stationary process ( )x t  and its derivatives ( )x t  

and ( )x t  has been shown in Chapter 2.9 (see Eq. 2.94). Recalling that for a stationary 

process [ ] [ ] 0E x x E x x⋅ = ⋅ = , then 
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Since the displacement response vector associated with element number n  is given by 

n n= ⋅d A r  it is seen that 
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while 
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By introducing the relevant expressions in Eq. 9.127 the following is obtained 
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The corresponding response force vector 
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associated with element number n  is defined by the local element dynamic equilibrium 
condition (see Eq. 9.25) 
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and thus 
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Introducing Eq. 9.128 the following is obtained 
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where d dn n

Cov , d dn n
Cov , d dn n

Cov , d dn n
Cov  and d dn n

Cov  are defined in Eq. 

9.130. It should be noted that if damping has been defined at a global level (e.g. in the 
form of Rayleigh damping α β= +C M K ), then the damping properties at element level 

should comply with the same choices of damping properties(i.e. n n nα β= +c m k ). It is 

also worth noting that if the chosen element length nL  is sufficiently small then the 

mass and damping terms above will be small, i.e. ≈ ⋅ T
F F n d d nn n n n

Cov k Cov k . 

9.8 Frequency domain response calculations in modal coordinates 
9.8   Freq uency do main response calculat ions 

The dynamic equilibrium condition in original discretised coordinates (see Eq. 9.80) 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ae aet t t t+ − + − =M r C C r K K r R
                      

(9.135) 

 
may readily be transformed into a modal format by choosing 

 

( ) ( )t t= ⋅r Φ η
                                                   

(9.136) 

 

where the vector ( )tη  contains modN  modal coordinates 

 

( ) 1 2 mod

T
i Nt η η η η⎡ ⎤= ⎣ ⎦η                             (9.137) 

 
and Φ  contains the mode shapes 
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 1 2 modi N⎡ ⎤= ⎣ ⎦Φ φ φ φ φ                            (9.138) 

 
and where iφ  ( mod1,2, ,i N= … ) contains the mode shape values, each associated with 

the corresponding global degree of freedom number 1,2, , rk N= … , i.e. 

 

1 2
T

i k Nr
φ φ φ φ⎡ ⎤= ⎣ ⎦φ

                               
(9.139) 

 
It should be noted that these eigen-modes are identical to those in Chapters 4, 6 and 7, 
but their mathematical description differs in the way their components are organised. 
While the eigen-modes in Chapters 4, 6 and 7 are based on a description of components 
associated with motion in horizontal, vertical and torsion directions, the eigen-modes in 
Eq. 9.137 contain displacement components associated with the global degrees of 
freedom in the finite element model of the system. 

It should also be noted that because aeK  depends of the mean wind velocity, so will 

the total stiffness of the system, and thus, the resonance frequencies and the associated 
mode shapes will change with increasing mean wind velocities. These changes are not 
negligible with respect to the overall behaviour of the system in the close vicinity of an 
instability limit, where it will usually be necessary to update system quantities due to 
these effects (resonance frequencies in particular, but it can not be ruled out that in some 
cases it may also be necessary to update mode-shapes). Sufficiently far from an 
instability limit these effects are small such that the modal solution strategy of most wind 
engineering problems may be based on the eigen-frequencies iω  and corresponding 

mode shapes iφ  as determined from the eigen-value problem in still air, i.e. from 

 

 2
i iω⎡ ⎤− =⎣ ⎦K M φ 0                                             (9.140) 

 

Introducing Eq. 9.136 into Eq. 9.135, and pre-multiplying the entire equation by TΦ  
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and defining the modal quantities 
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then the following modal dynamic equilibrium condition is obtained 
 

( ) ( )ae ae+ − + − =Mη C C η K K η R                            (9.143) 

 

Due to the orthogonal properties of the mode shapes all the off diagonal terms in M  , C  

and K  are zeros. Thus 
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However, it is readily seen that K  may more conveniently be determined from Eq. 

9.140. Pre-multiplying 2
i iω⎡ ⎤− =⎣ ⎦K M φ 0  by T

iφ , and thus it is seen that 
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i i iK Mω=                                                  (9.145) 

 
Furthermore, it is common practice to introduce modN  modal damping ratios iζ , each 

associated with the corresponding modal critical damping 2 i iM ω , and thus 

 

 2i i i iC M ω ζ=                                               (9.146) 

 
It is seen from Eqs. 9.52 – 9.55 that 

0aec  and 
0aek  are not symmetric, and thus, nor are 

the corresponding element properties aen
c  and aen

k  defined in Eq. 9.63. Therefore, the 

aerodynamic damping and stiffness matrices aeC  and aeK  are non-symmetric, and the 

orthogonal mode shapes will not nullify off-diagonal terms in aeC  and aeK  above. Thus 
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and 
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Thus, all of Eq. 9.143 has been defined. A time domain solution of this equation is dealt 
with in chapter 9.9 below. 

The procedure for a frequency domain solution in modal coordinates is identical to 
that which has been shown in original coordinates in chapter 9.6. Taking the Fourier 
transform throughout Eq. 9.143, i.e. setting 
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where modN  by 1 vectors ( )η ωa  and ( )R ωa  contain the Fourier coefficients of the 

modal coordinates and the modal and load, and where 
ω
∑  indicates summation over all 

ω -settings. Then Eq. 9.141 is satisfied for each ω -setting if 
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Thus, 
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where 
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The cross spectral density matrix of the modal coordinates is defined by 
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Introducing Eq. 9.151, then 
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where ( ) ( )*1
lim T

RR R RT T
ω

π→∞
= ⋅S a a  is the cross spectral density matrix of the modal 

buffeting wind load. ( )tR  is given in Eq. 9.111, and thus 
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Taking the Fourier transform throughout Eq. 9.155 renders 
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and thus, the cross spectral density matrix of the modal buffeting wind load is given by 
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where ( ) ( )*
ˆ ˆ ˆ ˆ

1ˆ lim T
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= ⋅S a a  is the cross spectral density matrix of the reduced 

turbulence velocity vector, previously developed in chapter 9.6, see Eq. 9.124. Thus 
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(9.158) 

where ( )ˆ ,nm nms ωΔCo , ( )ˆ
n ωS  and ( )ˆ

m ωS  are defined in Eqs. 9.120 and 9.121. 

Finally, since ( ) ( )t t= ⋅r Φ η , then ( ) ( )r ηω ω= ⋅a Φ a , and thus, the cross spectral 

density matrix of the displacement response quantities is given by 
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            (9.159) 

 
where 
 

( ) ( )1 2 1 2
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ˆ ˆ ˆ
N N
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RR n Q n n nm m m Q mn m

n m

oω
= =

⎡ ⎤= ⋅ ⋅⎣ ⎦∑ ∑S A B ψ S C S ψ B A
        

(9.160) 

 
The response covariance matrix may then be obtained simply by integration throughout 
the frequency domain, i.e. 
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫Cov S

    

(9.161) 

 
This solution strategy will render identical results to that which has been developed in 
chapter 6.3. The only difference is that the mode shapes have been arranged in a 
different order, i.e. in this chapter in an order which correspond to the chosen degrees of 
freedom in a finite element formulation. 

Once ( )rr ωS  has been established, then the ensuing determination of the statistical 

properties of cross sectional forces is identical to that which has been shown in chapter 
9.6 above (see Es. 9.127 – 9.134). 

9.9   Dynamic response calculations in time domain 

In a time domain solution the total displacement response may be obtained as a sum of 

the time invariant solution r  (given in Eq. 9.86) and a purely dynamic part ( )tr , i.e. 
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 ( ) ( )tot t t= +r r r                                               (9.162) 

 
A solution strategy may be pursued in the original finite element degrees of freedom 
(developed in Chapter 9.4) or in modal coordinates (see chapter 9.8). If a solution in 

original degrees of freedom is pursued, then the calculation of ( )tr  will require the 

solution of the dynamic equation given in Eq. 9.80 or 9.85, depending on the choice of 
motion induced load description. It is seen that either of these equations may be written 
on the general form 

 

 ( ) ( ) ( ) ( ) net net dynt t t t+ + =M r C r K r R                          (9.163) 

 

where         

( ) ( )
 if quasi-static properties are adopted

net ae

net ae

dyn t t

⎫= −
⎪= − ⎬
⎪= ⎭

C C C

K K K

R R

, 

( )
( )

( ) ( ) ( )

0
0  if indicial functions are adopted

net ae

net ae

dyn ae

s
s

t t t

⎫= − =
⎪= − = ⎬
⎪= + Δ ⎭

C C C

K K K

R R R

. 

 

If a solution in modal coordinates is pursued, then the calculation of ( ) ( )t t= ⋅r Φ η  

requires solution of the dynamic equation given in Eq. 9.143, i.e. 
 

 ( ) ( ) ( ) ( ) ( ) ( )ae aet t t t+ − + − =Mη C C η K K η R               (9.164) 

 
where all quantities are defined in Eqs. 9.142, 9.144 – 9.148 and 9.155. 

In any time domain solution it will be necessary to perform a stochastic simulation of 

the stationary flow components ( )u t , ( )v t  and ( )w t  contained in the buffeting load 

vector ( )dyn tR  or ( )tR . Such a simulation procedure is presented in Appendix A.3. 

There are a number of iteration procedures available for a time domain solution 
strategy. Only a selected few are included below. In any case, as illustrated in Fig. 9.9 a 

time domain solution will involve some discretisation of the load processes ( )dyn tR  or 

( )tR  at time step kt  ( 1,2,,...., kk N= ), and a stepwise calculation of the corresponding 

response ( r  or η ). Based on the knowledge of the response at time step kt  and the 

discretised values of the load, the task at hand is to calculate the response at time step 

1kt + . Such a forward prediction routine is called explicit if it is based on the known 

response history alone. It is called implicit if it contains assumptions about the response 
situation or equilibrium condition in the unknown future of the system. I.e., in an explicit 
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routine ( )kt t+ Δr  is a function of r , r  and r  at kt t= , while an implicit routine 

contains some assumptions about the development of the motion in the time step 
between kt  and kt t+ Δ . Obviously, the shorter time step, the easier it is to obtain a 

good solution. Among the implicit methods there are two main classes of solution 
strategies, i.e. the direct iteration procedures and the numeric integration methods. Some 
of these are presented below. 

 

Fig. 9.9     Time domain 

The second central difference method 
 

Consider the situation at time step 1kt − , kt  and 1kt + . A Taylor series expansion of 1k+r  

and 1k−r  is given by: 

 

2

1

2

1

2

2

k k k k

k k k k

t
t

t
t

+

−

⎫Δ= + Δ ⋅ + ⋅ + ⎪⎪
⎬

Δ ⎪= − Δ ⋅ + ⋅ − ⎪⎭

r r r r

r r r r
                                

(9.165) 

Thus, considering only the three first terms of the Taylor series expansion, 1 1k k+ −−r r  

renders 

 ( )1 1
1

2k k kt + −≈ ⋅ −
Δ

r r r
                                      

(9.166) 
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while 1 1k k+ −+r r  renders 

 ( )1 12

1
2k k k k

t
+ −≈ ⋅ − +

Δ
r r r r                                     (9.167) 

 
Dynamic equilibrium at kt  is given by 

 
  k net k net k dynk

+ + =M r C r K r R
                                

(9.168) 

 
Introducing kr  and kr  from Eqs. 9.166 and 9.167 

 

( ) ( )1 1 1 12

1 1
 2

2k k k net k k net k dynktt
+ − + −⋅ − + + ⋅ − + =

ΔΔ
M r r r C r r K r R         (9.169) 

 
and solving for 1k+r  

 

( )+ −
⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + Δ + − Δ − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

-1
2 2

1 12  
2 2k net dyn net k net kk

t t
t tr M C R M K r M C r

 
(9.170) 

 
Thus, it is seen that 1k+r  may be estimated based on knowledge about the load and 

response quantise at kt  and 1kt − . 

For the establishment of initial conditions at 0t =  before the iteration procedure can 

start it is necessary to define (choose) 0r  and 0r . Dynamic equilibrium at 0t =  will 

then render the corresponding acceleration 
 

 ( )1
0 0 00

 dyn net net
−= ⋅ − −r M R C r K r                               (9.171) 

 
while eliminating 1r  from (see Eqs. 9.166 and 9.167) 
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                                        (9.172) 

renders 
2

1 0 0 02
t

t−
Δ= − Δ ⋅ +r r r r

                                       
(9.173) 
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Thus, 
 

 ( ) −
⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + Δ + − Δ − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

-1
2 2

1 0 0 12  
2 2
t t

t tr M C R M K r M C r  (9.174) 

 
The stability of the second central difference method may be evaluated by considering 
an undamped and unloaded single-degree-of freedom system (se Eqs. 9.167 and 9.168) 

with mass iM , stiffness iK  and eigen-frequency 2
i i iK Mω =  

 

( )

( )ω
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1
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M r r r K r
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r t r r

  (9.175) 

which, for a harmonic motion tr aeλ=  (where a  is the amplitude), will render 

( ) ( ) ( )
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           (9.176) 

and thus the response at 1kt +  is given by 

 

 ( ) ( ) ( )1 1 11 2

t t t tt t tk k k
kr ae ae e ae c e c eλ λ λλ λ λ+Δ Δ Δ Δ

+
⎡ ⎤= = = +⎢ ⎥⎣ ⎦

 (9.177) 

 
where 1c  and 2c  are constants dependant on initial conditions. In a second order 

equation 2 0x xα β γ+ + =  the product of the roots 1 2x x γ α⋅ = . Thus, it is seen from 

Eq. 9.176 that ( ) ( )
1 2

1t te eλ λΔ Δ⋅ = . It may be taken for granted that both roots are 

distinct. A positive radicand in the solution in Eq. 9.176 will render two real roots, and 
since the product of the two roots is unity one of them must be larger that one, and thus, 
the solution is consistently growing, i.e. it is unstable. A negative radicand on the other 
hand will render complex roots, and the product of the two roots can only be unity if 
they are complex conjugates and both has an absolute value equal to one. Thus, the 
solution is numerically stable if 
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 2 2 4 0it ωΔ − ≤  ⇒  
2

i
t

ω
Δ ≤              (9.178) 

 
where (obviously), iω  is the largest eigen-frequency expected to play any significant 

role in the response behaviour of the system. 

In any case tΔ  should not be chosen larger than about ( )max
1 2 Rω  where 

maxRω  is 

the largest frequency contained in the load. 
 
 

Numeric integration methods 
 

The numeric integration methods are based on the assumption that higher order 
quantities may be obtained from the situation at the onset of the time step and integration 
of the response development between time steps, i.e. that 
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 where 0 tτ≤ ≤ Δ       (9.179) 

 
As illustrated in Fig. 9.10 the approximation is that the acceleration variation within the 
time step is either assumed constant and equal to its initial value, it is assumed equal to 
the average acceleration over the time step or it is assumed linear across the time step. If 
constant initial acceleration is assumed (see Fig. 9.10.a), then 

 

 ( ) kτ =r r  ⇒  ( )
0

k k k kd
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τ τ τ= + = + ⋅∫r r r r r  (9.180) 

and thus 
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                        (9.181) 

 
If the concept of a constant average acceleration is adopted (see Fig. 9.10.b), then 
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Fig. 9.10     Numeric integration assumptions 
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(9.182) 

 
and thus 
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        (9.183) 
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If the concept of a linear acceleration is adopted (see Fig. 9.10.c), then 
 

 ( ) ( )1k k k t
ττ += + −
Δ

r r r r
                                      

(9.184) 

 
in which case 
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(9.185) 

 
and thus 
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  (9.186) 

 
The concept of integrating an assumed variation of the acceleration between kt  and 1kt +  

presented above may all be generalised into the formulation first suggested by Newmark 
[32]: 
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    (9.187) 

 
where γ  and β  are weighting parameters, each to be chosen according to prescribed 

requirements regarding numerical stability and accuracy. From the second expression in 
Eq. 9.187 the acceleration at 1kt +  

 

 ( )1 12

1 1 1
1

2k k k k ktt β ββ+ +
⎡ ⎤⎛ ⎞= − − + − ⋅⎢ ⎥⎜ ⎟ΔΔ ⎝ ⎠⎣ ⎦

r r r r r                (9.188) 

 
is obtained, which, combined with the first expression in Eq. 9.187, renders 

 

 ( )1 1 1 1
2k k k k kt
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r r r r r                (9.189) 
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It is seen that the conditions at kt  may be defined by 
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     (9.190) 

 
in which case 1k+r  and 1k+r  simplifies into 
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Introducing this into the dynamic equilibrium equation at 1kt +  

 
 1 1 1 1

 k net k net k dynk+ + + +
+ + =M r C r K r R                      (9.192) 

 
will then render 
 

 12 1

1
net net k dyn k net kktt

γ
ββ + +

⎛ ⎞
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Defining 
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and thus 
 

 1
1 1 1k eff effk k

−
+ + +

= ⋅r K R                                        (9.195) 

 
It is seen that the response at time step 1kt +  is calculated from the load at 1kt +  as well as 

the displacement, velocity and acceleration response at kt . If the system is entirely 

linear, then effK  is constant throughout the calculations. 
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Hilber, Hughes & Taylor [33] have suggested an extension of Newmark’s method by 
the introduction of the numerical damping coefficient 0α ≤  into the dynamic 
equilibrium condition 

 

( ) ( )1 1 1 1 1k net k net k net k net k dynαα α α α+ + ++ + − + + − =M r C r C r K r K r R      (9.196) 

 

and accordingly, evaluate the dynamic load at a ( ) 1 11 k k kt t t tα α α+ ++ − = + Δ . I.e., if 

load linearity within the time step is adopted, then 
 

( ) 11 k kα α α+= + −R R R
                                  

(9.197) 

 
Combining Eqs. 9.191 and 9.196 and solving for 1k+r  will then again render 

1
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(9.198) 

 
where 

 

1
2k net net k net k net kt

t
γ γ γ

β β β
⎛ ⎞ ⎛ ⎞= + ⋅ + + − Δ ⋅⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

c C K r C r C r              (9.199) 

 
For the numeric integration methods the establishment of initial conditions at 0t =  

before the iteration procedure can start requires the choice of 0r  and 0r . Dynamic 

equilibrium at 0t =  renders the corresponding acceleration 
 

 ( )1
0 0 00

 dyn net net
−= ⋅ − −r M R C r K r

                          
(9.200) 

 
and thus, iteration may commence. Stability may be evaluated from the properties of a 
single degree of freedom system (or a modal approach) similar to that which has been 
shown for the central difference method shown above. In general, the Newmark method 
is unconditionally stable if 

 

0 1 2γ γ≥ =  and 
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0
1 1
4 2
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                       (9.201) 
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For β -values below 0β  it is only conditionally stable. The stability limit is then given 

by 

 
0

1
cr

i

t t
ω β β

Δ ≤ Δ =
−

                                   

(9.202) 

 
For 0γ γ=  there is no numeric (artificial) damping in the system. With 0γ γ>  or 

0γ γ<  positive or negative numeric damping is introduced into the system. Positive 

numeric damping may be used as an effective tool to dampen out undesirable effects of 
higher modes in the system (which may also be obtained by adopting Hilber, Hughes & 
Taylor method with 1 3 0α− < < ). With 1 2γ =  and 0β =  Newmark’s method 

becomes identical to the second central difference method, in which case the stability 
limit is given by 2cr it ωΔ = , where iω  is the largest eigen-frequency contained in the 

system. If 1 2γ =  and 1 4β =  then Newmark’s method becomes identical to a 

numerical integration method based on the assumption of a constant average 
acceleration, which is unconditionally stable. If 1 2γ =  and 1 6β =  then Newmark’s 

method becomes identical to a numerical integration method based on the assumption of 
a linear variation of the acceleration, in which case the stability limit is given by 

12cr it ωΔ = . 

As previously mentioned tΔ  should never be chosen larger than about ( )max
1 2 Rω  

where 
maxRω  is the largest frequency contained in the load. 

 
 

Tangent-stiffness approach: 
 

For heavily non-linear displacement or material problems the stiffness may change 
considerably throughout the response process, in which case necessary accuracy may 
only be obtained by updating the stiffness from one time step to the next. In such cases a 
tangent-stiffness approach may be adopted. Assuming sufficiently short time steps and 
linearity within each step, then the change of internal forces from kt  to 1kt +  is given by 

 

 int tan
k kΔ = ⋅ ΔR K r                                             (9.203) 

 

where tan
kK  is the updated tangent stiffness at kt  and 1k k+Δ = −r r r . Thus, the internal 

force vector at 1kt +  is 

 

 int int tan
1k k k+ = + ⋅ ΔR R K r                                       (9.204) 
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The dynamic equilibrium condition at 1kt +  is then given by (see Eq. 9.192) 

 
int tan

1 1 1
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(9.205) 

 
Introducing the Newmark iteration scheme given in Eqs. 9.188 and 9.189 (and that 

1k k+ − = Δr r r ), then the following is obtained 
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Thus 
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 eff dyn k eff net effk k k k
−

+
Δ = ⋅ − + ⋅ + ⋅r K R R M a C b              (9.207) 

 
where 

tan
2

1 1

1 1
1

2

1
1 1

2

eff net netk k

eff k kk

eff k kk

tt

t

t

ββ

β β
γ
β β

⎫
= + + ⎪ΔΔ ⎪

⎪⎛ ⎞ ⎪= + − ⋅ ⎬⎜ ⎟Δ ⎝ ⎠ ⎪
⎪⎛ ⎞ ⎛ ⎞ ⎪= − ⋅ + − ⋅ Δ ⋅⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ ⎝ ⎠ ⎭

K M C K

a r r

b r r
                       

(9.208) 

 
Such a procedure will generally require error control. This may be obtained by 

minimising the estimated external load error 1
err
k+ΔR , defined as the difference between 

the actual load at 1kt +  and the corresponding load which can be calculated from the 

estimated displacements 
 

 ( )int
1 1 11

 err
k dyn k net k kk est+ + ++

Δ = − + +R R M r C r R            (9.209) 

 

Thus, iterations until 1
err
k+ΔR  is less than a specified limit will be required within each 

time step. Initial conditions and stability criteria are identical to those presented above 
for the numeric integration methods. 



Appendix A 

TIME DOMAIN SIMULATIONS 

A.1   Introduction 

It is in the following taken for granted that the stochastic space and time domain 
simulation of a process x  implies the extraction of single point or simultaneous 
multiple point time series from known frequency domain cross spectral information 
about the process. The process may contain coherent or non-coherent properties in space 
and time. Thus, a multiple point representation is associated with the spatial occurrence 
of the process. For a non-coherent process there is no statistical connection between the 
simulated time series that occur at various positions in space, and thus, the simulation 
may be treated as a representation of independent single point time series. This type of 
simulation is shown in chapter A.2. For a coherent process there is a prescribed 
statistical connection between each of the spatial representatives within a set of M
simulated time series. E.g., if the simulated time series represent the space and time 
distribution of a wind field, there will be a certain statistical connection between the 
instantaneous values ( ) , 1,2,....,mx t m M=  that matches the spatial properties of the 

wind field. Such a simulation is shown in chapter A.3. The simulation procedure 
presented below is taken from Shinozuka [23] and Deodatis [24]. 

Simulating time series from spectra is particularly useful for two reasons. First, there 
are some response calculations that render results which are more or less narrow banded 
(or contain beating effects), and thus, they do not necessarily comply with the 
assumptions behind the peak factor given in Eq. 2.45. These cases may require separate 
time domain simulations to establish an appropriate peak factor for the calculation of 
maximum response. This application will usually only require single point simulations. 
Secondly, if the relevant cross spectra of the wind field properties in frequency domain 
are known, there is always the possibility of a time domain simulation of the entire wind 
field, or those of the flow components that are deemed necessary. Together with the 
buffeting load theory in chapter 5.1 this is a tempting option, as time domain step-wise 
load effect integration may be performed, and thus, the response calculation may be 
carried out in time domain instead of the frequency domain approach that is shown in 
chapter 6. The mathematical procedure for such an approach may be found in many text 
books, see e.g. Hughes [25]. The main advantage is that such an approach may contain 
many of the non-linear effects that had to be simplified or discarded in the linear theory 
that was required for a frequency domain solution. The disadvantage is that motion 
induced load effects can only be fully included if a new set of indicial functions are 
introduced (see e.g. Scanlan [26]). These may not be readily available. 
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A.2   Simulation of single point time series 

The mathematical development from a single time series to its auto-spectral density is 
presented in chapter 2.5. In principle, the process is illustrated on Fig. 2.11. A time 
domain simulation is obtained by the reverse process. 

Let ( )xS ω  be the single-sided single point auto spectral density of an arbitrary 

stochastic variable x , for simplicity with zero mean value. A time domain 

representative, ( )x t , can then be obtained by subdividing xS  into N  blocks along the 

frequency axis, each centred at kω  ( 1,2, ,k N= … ) and covering a frequency segment 

kΔω , as shown in Fig. A.1. 

Fig. A.1     Spectral decomposition 

On a discrete form ( )x kS ω  is the variance of each harmonic component per 

frequency segment, as defined in Eq. 2.53 (see also Fig. 2.11), i.e. 

( ) 2 /(2 )x k k kS cω Δω=
                                              

(A.1) 

A time series representative of x  is then obtained by 

( ) ( )
1

cos
N

k k k
k

x t c tω ψ
=

= +
                                          

(A.2) 

where                                  ( ) 1 / 2
2k x k kc S ω Δω= ⋅ ⋅                                          (A.3) 
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and where kψ  are arbitrary phase angles between zero and 2π , one for each harmonic 

component. Alternatively, Eq. A.2 may be replaced by the exponential format (often 
encountered in the literature) 

( ) ( )
1

Re exp
N

k k k
k

x t c i tω ψ
=

= ⋅ +                           (A.4) 

The variance of ( )x t  is 
2

1 2

N
k

k

c

=
, which in the limit of 0Δω →  and N → ∞ ,

( )
2

2

0 1 0

lim
2

N
k

x x
kN

c
S d

Δω
σ ω ω

∞

→ =→∞

= =                                    (A.5) 

I.e., if the discretization is sufficiently fine, then the variance of the simulated 
representative, ( )x t , is equal to or close enough to the variance of the parent variable. 

The procedure is further illustrated in Example A.1 and Fig. A.2. Any number of such 
representatives may be simulated simply by changing the choice of phase angles. 
Obviously, the accuracy of such a simulation depends on the discretization fineness, but 
there is also the unfavourable possibility of aliasing. Let cω  be the upper cut-off 

frequency, beyond which there is none or only negligible spectral information about the 
process. Assuming constant frequency segments 

/c NΔω ω=                                                    (A.6) 

then each simulated time series will be periodic with period 

2 /T π Δω=                                                     (A.7) 

Thus, time series without aliasing will be obtained if they are generated with a time step 

( )2 / 2 ctΔ π ω≤
                                                     

(A.8) 
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Fig. A.2     Simulation of single point time series 
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Example A.1 
The top diagram in Fig. A.2 shows the single point single sided spectrum of a process x
of which we wish to portray two representatives in time domain. As shown, the 
frequency span of the spectrum is first divided into five equal frequency segments, and 
the corresponding values kω  and ( )x kS ω , 1,2,...,5k = , are read off. Thus the process is 

represented by five harmonic components whose amplitudes ( )2k x kc S ω ω= ⋅ ⋅ Δ  are 

given in the far right hand side column in the table of Fig. A.2. Thus 

( ) ( ) ( )
5

1

2 cosx k k k
k

x t S tω Δω ω ψ
=

= ⋅ +

What then remains is to choose five arbitrary value of kψ . In Fig. A.2 the five cosine 

components are first shown by fully drawn lines, representing a certain choice of kψ
values. The sum of these components shown in the lower diagram in Fig. A.2 is an 
arbitrary representation of the process ( )x t . If the second and the fourth of these 

components are moved an arbitrary time shift, then together with the remaining 
unchanged components they sum up to become another arbitrary representation of the 
process shown by the broken line in Fig. A.2. As can be seen, the two simulated 
representatives look quite different in time domain, although they come from the same 
spectral density. What is important is that they both have zero mean and the same 
variance, i.e. they have identical statistical properties up to and including the variance. 

A.3   Simulation of spatially non–coherent time series 

While the procedure presented above may be used to simulate single point time series 
representatives of x , it is not applicable if we wish to simulate multiple point time series 
whose properties are expected to be distributed according to certain coherence 
properties. E.g., let us assume that we wish to simulate the turbulence components 

( ), ,f fx y z t
u

x v
w

=                                   (A.9) 

of a stationary and homogeneous wind field at a chosen number of points M  in a plane 
perpendicular to the main flow direction. It is then important to capture the fact that 
these time series are representatives of simultaneous events, and therefore, they must 
contain the appropriate spatial coherence properties that are characteristic to the process. 



268 A   TIME DOMAIN SIMULATIONS 

For simplicity it is in the following assumed that cross spectra between the u , v  and w
components are negligible, i.e. that 

( ), 0xyS sω Δ ≈ , ,
x

u v w
y
=                               (A.10) 

where sΔ  is the spatial separation in the f fy z−  plane. We will then only need 

information about the cross spectra of the turbulence components themselves, ( ),xxS sω Δ .

Let ( )x xm n
Cov τ  be the covariance and ( )x xm n

S ω  the corresponding cross spectral 

density between two arbitrary points m  and n . As shown in chapter 2.6 these quantities 
constitute a Fourier transform pair. An M  by M  cross spectral density matrix 

( )

1 1 1 1

1

1

x x x x x xn M

x x x x x xxx m m n m M

x x x x x xM M n M M

S S S

S S S

S S S

ω =S                     (A.11) 

will then contain all the space and frequency domain information that is necessary for a 
time domain simulation of M  time series with the correct statistical properties for a 
special representation of the process. It follows from the assumptions of stationarity and 
homogeneity that 

x x x xm n n m
Cov Cov=                                    (A.12) 

and thus,                            *
x x x xm n n m

S S=                                                (A.13) 

This implies that ( )xx ωS  is Hermitian and non–negative definite. A Cholesky 

decomposition of xxS  will then render a lower triangular matrix 

( )

1 1

2 1 2 2

1 2

1 2

0 0 0 0 0

0 0 0 0

0 0

x x

x x x x

xx
x x x x x x x xm m m n m m

x x x x x x x x x xM M M n M m M M

G

G G

G G G G

G G G G G

ω =G      (A.14) 
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whose properties are such that 

( ) *T
xx xx xxω = ⋅S G G                                      (A.15) 

Assuming a frequency segmentation of N  equidistant points, the simulated 
simultaneous time series at 1,2,....,m M=  are then given by 

( ) ( ) ( )
1 1

2 cos
m N

m mn j j nj
n j

x t G tω Δω ω ψ
= =

= ⋅ ⋅ ⋅ +
                     

(A.16) 

where j  is the frequency segment number and njψ  is an arbitrary phase angle between 

zero and 2π . In most cases of a homogeneous wind field (see Eq. 2.87) 

( ) ( ) ( )ˆ, ,xx x xxS s S S sω Δ ω ω Δ= ⋅
                               

(A.17) 

where xS  is the single-point spectral density of the process, x xm n
s s sΔ = −  is the 

spatial separation between points mx  and nx , and where 

( ) ( ) ( )ˆ , , expxx xx xxS s Coh s iω Δ ω Δ ϕ ω= ⋅
                      

(A.18) 

Thus, defining a Cholesky decomposition ( ) *ˆ ˆ ˆ T
xx xx xxω = ⋅S G G , then the time series at 

1,2,....,m M=  are given by 

( ) ( ) ( ) ( )
1 1

ˆ 2 cos
m N

m mn j x j j nj
n j

x t G S tω ω Δω ω ψ
= =

= ⋅ ⋅ ⋅ ⋅ +
          

(A.19) 

where ˆ
mnG  is the content of ˆ

xxG  (i.e. the reduced versions of mnG  in Eq. A.14) 

( )

11

21 22

1 2

1 2

ˆ 0 0 0 0 0
ˆ ˆ 0 0 0 0

ˆ
ˆ ˆ ˆ ˆ 0 0

ˆ ˆ ˆ ˆ ˆ

xx
m m mn mm

M M Mn Mm MM

G

G G

G G G G

G G G G G

ω =G

               

(A.20) 

and where a Cholesky decomposition will render 
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( ) ( ) 1 / 2

11
ˆ ˆ ,0j xx jG Sω ω=                                                   (A.21) 

( ) ( ) ( )
1 / 21

2

1

ˆ ˆ ˆ,0
m

mm j xx j mk j
k

G S Gω ω ω
−

=
= −

                             

(A.22) 

( )
( ) ( ) ( )

( )

1

1

ˆ ˆ ˆ,
ˆ

ˆ

n

xx j mk j nk j
k

mn j
nn j

S s G G
G

G

ω Δ ω ω
ω

ω

−

=
− ⋅

=                     (A.23) 

Example A.2 

A process x  is statistically distributed in time and space. Its cross-spectrum ( ),xxS sω Δ  is 

defined by the product between the single point spectrum ( )xS ω  shown in Fig. A.3 and its root-

coherence function ( ),xxCoh sω Δ  shown in Fig. A.4. I.e., 

( ) ( ) ( ), ,xx x xxS s S Coh sω ω ωΔ = ⋅ Δ

The phase spectrum ( )exp xxiϕ ω  is assumed equal to unity for all relevant values of ω  and 

sΔ . Let us set out to simulate the process at three points in space, each a distance 10 m apart. 
Thus, 

[ ] [ ]1 2 3 0 10 20T Ts s s s= Δ Δ Δ =

Let us for simplicity settle with the three point frequency segmentation shown in Fig. A.3. I.e. 

[ ] [ ]1 2 3 0.3 0.7 1.1T Tω ω ω= =  and 0.4ωΔ =

(It should be noted that this frequency segmentation is only justified by the wish of obtaining 
mathematical expressions with reasonable length, such that a complete solution may be presented. 
For any practical purposes such a coarse segmentation will most often render unduly inaccurate 
results.) The single point spectrum at these frequency settings are then (see Fig. A.3) 

( ) ( ) ( ) [ ]1 2 3 4.0 7.6 3.0
T T

x x x xS S Sω ω ω= =S

while the corresponding values of the root coherence function are given by (see Fig. A.4) 
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Fig. A.3     Single point spectrum 

Fig. A.4     Root coherence function at 0.3,  0.7 and 1.1ω =
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s( ),xxCoh sω Δ :
0 10 20 

0.3 1.0 0.6005 0.3606 
0.7 1.0 0.3042 0.0926 
1.1 1.0 0,1541 0.0238 

Thus, ( )
1 .

ˆ 0.3, 0.6005 1
0.3606 0.6005 1

xx j mn

sym
sω = Δ =S

( )
1 .

ˆ 0.7, 0.3042 1
0.0926 0.3042 1

xx j mn

sym
sω = Δ =S

( )
1 .

ˆ 1.1, 0.1541 1
0.0238 0.1541 1

xx j mn

sym
sω = Δ =S

( )
11

21 22

31 32 33

ˆ 0 0
ˆ ˆ ˆ 0

ˆ ˆ ˆ
xx j

G

G G

G G G

ω =G  is defined such that ( )ˆ ˆ ˆ, T
xx j n xx xxsω Δ = ⋅S G G

Its content is given by (see Eqs. A.21 – A.23) 

( ) ( ) 1 2

11 11
ˆ ˆ , 0j xx jG S sω ω= Δ =

( ) ( ) ( )21 21 11
ˆ ˆ ˆ, 10j xx j jG S s Gω ω ω= Δ = ,

( ) ( ) ( ) 1 22
22 22 21

ˆ ˆ ˆ, 0j xx j jG S s Gω ω ω= Δ = −

( ) ( ) ( )31 31 11
ˆ ˆ ˆ, 20j xx j jG S s Gω ω ω= Δ =

( ) ( ) ( ) ( ) ( )32 32 31 21 22
ˆ ˆ ˆ ˆ ˆ, 10j xx j j j jG S s G G Gω ω ω ω ω= Δ = − ⋅

( ) ( ) ( ) ( ) 1 22 2
33 33 31 32

ˆ ˆ ˆ ˆ, 0j xx j j jG S s G Gω ω ω ω= Δ = − −

Thus, 

( )

2
11 22

1 21 32

2 2
31 33

ˆ ˆ1 1 0.6005 0.7996
ˆ ˆ0.3 0.6005 0.6005 0.3606 0.6005 0.7996 0.4802
ˆ ˆ0.3606 1 0.3606 0.4802 0.7996

G G

G G

G G

ω

= = − =

= = = − ⋅ =

= = − − =

( )1

1 0 0
ˆ 0.3 0.6005 0.7996 0

0.3606 0.4802 0.7996
xx ω = =G
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( )

2
11 22

2 21 32

2 2
31 33

ˆ ˆ1 1 0.3042 0.9526
ˆ ˆ0.7 0.3042 0.3042 0.0926 0.3042 0.9526 0.2898
ˆ ˆ0.0926 1 0.0926 0.2898 0.9526

G G

G G

G G

ω

= = − =

= = = − ⋅ =

= = − − =

( )2

1 0 0
ˆ 0.7 0.3042 0.9526 0

0.0926 0.2898 0.9526
xx ω = =G

( )

2
11 22

3 21 32

2 2
31 33

ˆ ˆ1 1 0.1541 0.9881
ˆ ˆ1.1 0.1541 0.1541 0.0238 0.1541 0.9881 0.1522
ˆ ˆ0.0238 1 0.0238 0.1522 0.9881

G G

G G

G G

ω

= = − =

= = = − ⋅ =

= = − − =

( )1

1 0 0
ˆ 1.1 0.1541 0.9881 0

0.0238 0.1522 0.9881
xx ω = =G

Denoting 

( )
( )
( )

1
1

2 2

3
3

2 0.5 2 4 0.4 1.79
2 0.7 2 7.6 0.4 2.46

1.552 3 0.42 1.1

x

x

x

Sa
a S
a S

ω ω

ω ω

ω ω

= ⋅Δ ⋅ ⋅

= = ⋅ Δ = ⋅ ⋅ ≈

⋅ ⋅= ⋅ Δ

then the three time series are given by (see Eq. A.19) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 3

1 1
1 1

11 1 1 1 11 11 2 2 2 12 11 3 3 3 13

11 12 13

ˆ 2 cos

ˆ ˆ ˆcos cos cos

1.79 cos 0.3 2.46 cos 0.7 1.55 cos 1.1

n j x j j nj
n j

x t G S t

G a t G a t G a t

t t t

ω ω ω ω ψ

ω ω ψ ω ω ψ ω ω ψ

ψ ψ ψ

= =
= ⋅ Δ ⋅ +

= + + + + ⋅ ⋅ +

= ⋅ + + ⋅ + + ⋅ +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 3

2 2
1 1

21 1 1 1 11 21 2 2 2 12 21 3 3 3 13

22 1 1 1 21 22 2 2 2 22 22 3 3 3 23

11 12

ˆ 2 cos

ˆ ˆ ˆcos cos cos

ˆ ˆ ˆcos cos cos

1.075 cos 0.3 0.748 cos 0.7 0.239

n j x j j nj
n j

x t G S t

G a t G a t G a t

G a t G a t G a t

t t

ω ω ω ω ψ

ω ω ψ ω ω ψ ω ω ψ

ω ω ψ ω ω ψ ω ω ψ

ψ ψ

= =
= ⋅ Δ ⋅ +

= + + + + ⋅ ⋅ +

+ + + + + ⋅ ⋅ +

= ⋅ + + ⋅ + + ⋅ ( )
( ) ( ) ( )

13

21 22 23

cos 1.1

1.431 cos 0.3 2.343 cos 0.7 1.532 cos 1.1

t

t t t

ψ
ψ ψ ψ

+

+ ⋅ + + ⋅ + + ⋅ +
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3

3 3
1 1

31 1 1 1 11 31 2 2 2 12 31 3 3 3 13

32 1 1 1 21 32 2 2 2 22 32 3 3 3 23

33 1 1 1 31 33 2 2 2 32 33

ˆ 2 cos

ˆ ˆ ˆcos cos cos

ˆ ˆ ˆcos cos cos

ˆ ˆ ˆcos cos

n j x j j nj
n j

x t G S t

G a t G a t G a t

G a t G a t G a t

G a t G a t G

ω ω ω ω ψ

ω ω ψ ω ω ψ ω ω ψ

ω ω ψ ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

= =
= ⋅ Δ ⋅ +

= + + + + ⋅ ⋅ +

+ + + + + ⋅ ⋅ +

+ + + + + ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

3 3 3 33

11 12 13

21 22 23

31 32 33

cos

0.646 cos 0.3 0.228 cos 0.7 0.039 cos 1.1

0.86 cos 0.3 0.713 cos 0.7 0.236 cos 1.1

1.431 cos 0.3 2.343 cos 0.7 1.532 cos 1.1

a t

t t t

t t t

t t t

ω ω ψ

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ

⋅ ⋅ +

= ⋅ + + ⋅ + + ⋅ +

+ ⋅ + + ⋅ + + ⋅ +

+ ⋅ + + ⋅ + + ⋅ +

What then remains is to ascribe arbitrary values (between 0 and 2π ) to the phase angles, njψ .

The following is chosen: 

0.7 0.6 0.3
2 0.1 0.4 0.2

0.1 0.7 0.8
π= ⋅

Fig. A.5     Simulated time series 
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The simulated time series are shown in Fig. A.5 ( 600 T s=  and 0.06tΔ =  s). The standard 

deviation of the process as calculated from the parent spectrum is 2.3365xσ = . The standard 

deviations of the three simulated time series are 2.414, 2.328 and 2.3995. The discrepancy (less 
than about 3 %) is caused by the unduly coarse frequency segmentation. 

A.4   The Cholesky decomposition  

Given a positive definite and symmetric matrix X , the Cholesky decomposition of X  is 
defined by a lower triangular matrix Y  of the same size that satisfies the following: 

T=X YY                                               (A.24) 

Expanding this equation 

11 1 1 11 11 1 1

1 1

1 1

0 0

0 0

0 0

i N i N

i ii iN i ii ii iN

N Ni NN N Ni NN NN

x x x y y y y

x x x y y y y

x x x y y y y

= ⋅

(A.25) 

and developing the matrix multiplication column by column, it is seen that the first 
column renders 

11 11 11 11 11

21 21 11 21 21 11

1 1 11 1 1 11

/

/N N N N

x y y y x
x y y y x y

x y y y x y

= ⋅ =
= ⋅ =

= ⋅ =

                       (A.26)

while the second column renders 

( )

( )

22 21 21 22 22 22 22 21 21

32 31 21 32 22 32 32 31 21 22

2 1 21 2 22 2 2 1 21 22

/

/N N N N N N

x y y y y y x y y
x y y y y y x y y y

x y y y y y x y y y

= ⋅ + ⋅ = −
= ⋅ + ⋅ = −

= ⋅ + ⋅ = −
           

(A.27) 
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and so on. This can be summarized as follows: 

( )1/2
11 11

1/ 21
2

1

1

1

for 2,....., 1

/  for all 

i

ii ii ik
k

j

ij ij ik kj jj
k

y x

y x y i N

y x y y y i j

−

=

−

=

=

= − = −

= − >

                        (A.28) 



Appendix B 

DETERMINATION OF THE JOINT 
ACCEPTANCE FUNCTION 

B.1   Closed form solutions 

The calculation of wind load effects, static or dynamic, will inevitably involve the 
establishment of the joint acceptance function, normalised or non-normalised. As shown 
in chapter 2.10, it represents the statistical averaging in space, and it contains the integral 

( ) ( ) ( ) ( )
1 1

1 2 1 2
0 0

ˆ ˆ ˆ ˆ ˆexpI f x f x x dx dxβ β= ⋅ ⋅ − ⋅ Δ  (B.1) 

where, ( )ˆf x  is some influence function or mode shape, x̂  is a non-dimensional 

coordinate between 0 and 1, 1 2ˆ ˆ ˆx x xΔ = −  and 

exp

exp

/  if dynamic respons

/  if static respons
mn

x
m

C L V

L L

ω
β =  where 

or 
or f f

m u w
n y z
=
=

 (B.2) 

Some closed form solutions (presented by Davenport [14], see also examples 6.1 and 
6.2) are given below (and plotted in Figs. B.1 – B.3): 

Influence function or 
Mode shape, ( )ˆf x Reduced integral, ( )I β

1 ( ) ( )22 / 1 expβ β β− + −

x̂ ( ) ( ) ( )4 3 22 / /3 / 2 1 exp 1β β β β β⋅ − + − − ⋅ +

ˆ2 1x − ( ) ( ) ( )4 3 2 28 / /12 / 4 1 exp / 4 1β β β β β β⋅ − + − − ⋅ + +

( )ˆsin n xπ
( )

( )
( )

( ) ( )
2

2 22 2

21
1 exp cos

n
n

n n

π
β β π

β π β π
⋅ + ⋅ − − ⋅

+ +
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B.2   Numerical solutions 

In most cases a numerical integration is the most effective solution, in which case Eq. 
B.1 is to be replaced by: 

( ) ( ) ( ) ( )2
1 1

1 ˆ ˆ ˆexp
N N

p k
p k

I f x f x x
N

β β
= =

= ⋅ ⋅ − ⋅ Δ               (B.3) 

where ˆ ˆ ˆp kx x xΔ = −  and N  is the number of integration points. It should be noted that 

in general a finely meshed integration scheme is required, i.e. a large N . The reason for 
this is of course that the exponential function is rapidly dropping at increasing values of 
its argument. The solution to a good number of cases has been plotted in Figs. B.1 – B.3: 

Fig. B.1     Sinus type of typical mode shape functions 
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Fig. B.2     Cosine or polynomial type of typical mode shape functions 

Fig. B.3     Linear type of typical static influence functions 



Appendix C 

AERODYNAMIC DERIVATIVES FROM 
SECTION MODEL DECAYS 

From wind tunnel section model tests the aerodynamic derivatives were first quantified 
by the interpretation of in-wind simple decay recordings as described by Scanlan & 
Tomko [17]. From such testing six aerodynamic derivatives may be extracted, as shown 
in the following. 

The section model contains two intentional modes, one in the across wind vertical 
direction and one with respect to torsion, i.e.: 

( ) [ ]1 2
0

0
zx

θ

φ
φ

= =                                     (C.1) 

Internal unintentional flexibilities beyond those associated with these modes are most 
often insignificant, in which case 1z θφ φ≈ ≈ . It is in the following taken for granted 

that their still-air properties 

( )
( )

1

2

0

0
zV

V θ

ω ω

ω ω

= =

= =
 and 

( )
( )

1

2

0

0
zV

V θ

ζ ζ

ζ ζ

= =

= =
                    (C.2) 

are known, and that any additional response contributions from other modes are 
insignificant or have effectively been filtered off. The testing strategy is to set the section 
model into decaying free motion at a suitable choice of mean wind velocity settings. 
Idealised recordings from such a test are illustrated in Fig. C.1. The velocity dependent 
response curves may mathematically be fitted to 

( ) ( ) ( ), , ,zrV x t x V t
rθ

= = ⋅r                                   (C.3) 

where:                    ( ) ( ) ( )
1

2
, exp

exp
z

r
r

c
V t t

c iθ

η
λ

ψη
= = ⋅ ⋅

⋅ − ⋅
                        

(C.4) 
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and ( )r r r rV iλ ζ ω ω= − ⋅ + ⋅ , from which the in-wind damping ratio ( )r Vζ , resonance 

frequency ( )r Vω  and phase angle ( )r Vψ  may be quantified. The difference between 

observed in-wind values of rζ , rω rψ  and their corresponding still-air counterparts 

will then contain all the effects of motion induced interaction between the section model 

and the flow. Since ( ),V t  has been idealised into a single harmonic component it is 

necessary to assume that the motion induced part of the loading is dominant and narrow–
banded, and that the buffeting contribution is insignificant or it has been filtered off. The 
general equation of motion that contains all the relevant motion induced effects as 
expressed by the aerodynamic derivatives is then given by 

ae ae⋅ + ⋅ + ⋅ ≈ ⋅ + ⋅M C K C K                             (C.5) 

where 

exp

aeae T

aeLae

dx= ⋅ ⋅
CC
KK

                               (C.6) 

Since the testing strategy only allows for the determination of six of the altogether eight 
motion induced load coefficients in the present set-up it is necessary to make a 
simplification. The following is adopted: 

1 2

1 2
ae

H H
A A

=C  and 3

3

0
0ae

H
A

=K
                          

(C.7) 

I.e., 4H  and 4A  are discarded. Thus, 

2
1 2

2
1 2exp

ae aezz z z z
ae

L zae aez

C C H H
dx

A AC C
θ θ

θ θθ θθ

φ φ φ
φ φ φ

= =C

                        

(C.8) 

and 

3
2

3exp

0 0

00

ae zz
ae

Lae

K H
dx

AK

θθ

θθθ

φ φ

φ
= =K                            (C.9) 

The equation of motion is then given by: 

0 0
000

z ae ae z zzz zz

aeae aez

C C C K KM

K KM C C C

θθ

θθ θ θθθ θθ

− − −
⋅ + ⋅ + ⋅ =

−− −
(C.10) 
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Fig. C.1     Typical decay recordings as obtained from section model tests; top diagram: 
vertical displacements; lower diagram: torsion 

Introducing 2
z z zK Mω= , 2K Mθ θ θω= , 2z z z zC M ω ζ= , 2C Mθ θ θ θω ζ=  and that 

rλ= ⋅  and 2
rλ= ⋅ , then the equation of motion is reduced into 

2

2

2

2
1 0
0 1

02

ae ae aezz z z
z z z

z z z
r r

aeae aez

C C K

M M M

KC C

MM M

θ θ

θθθ θθ
θθ θ

θθ θ

ω ζ ω
λ λ

ωω ζ

− − −
⋅ + ⋅ + ⋅ =

−− −

0

(C.11) 

It is convenient to replace the aerodynamic load coefficients jH  and jA , 1,2,3j = , in 

Eq. C.7 with the non-dimensional quantities *
jH  and *

jA  called aerodynamic 

derivatives and defined by: 
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( )
* *2

1 2 1 2
* 2 *

1 2 1 2
2ae r

H H H BHB
V

A A BA B A

ρ ω= = ⋅ ⋅C

                   

(C.12) 

( )
*2

3 32
2 *

3 3

0 0
0 2 0

ae r
H BHB

V
A B A

ρ ω= = ⋅ ⋅K                  (C.13) 

Thus, 

( )
2 * *2

1 2
* 2 2 *
1 2exp

2
z z

ae r
L z

H BHB
V dx

BA B A
θ

θ θ

φ φ φρ ω
φ φ φ

= ⋅C                  (C.14) 

and 

( )
*2
32

2 2 *
3exp

0

2 0
z

ae r
L

BHB
V dx

B A
θ

θ

φ φρ ω
φ

= ⋅K

                  

(C.15) 

Defining 

2/j j j
L

m M dxφ= or j z θ=                                (C.16) 

and the abbreviations 

*
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*
2 2

2
*

3 3

2
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h H

h H
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 (C.18) 
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then the equation of motion is given by 

( )
2

1 2 32
2

1 2 3

21 0 0
exp20 1 00

zz z z
r r

r

ch h h
c ia a a θθ θ θ

ω ζ ω
λ λ

ψω ζ ω
− − −

+ + =
⋅ −− − −

 (C.19) 

Introducing ( )exp cos sinr r ri iψ ψ ψ− = − ⋅

( ){ } ( )( )
( ){ }( )

2 2
1 2 3

2 2
1 2 3

2 cos sin 0
02 cos sin

r z z r z z r r r

r z r r r r

h c h h i c

a c a a i c

θ

θ θ θ θ

λ ω ζ λ ω λ ψ ψ

λ λ ω ζ λ ω ψ ψ

+ − + − + −
=

− + + − + − −
    (C.20) 

and that ( )r r riλ ζ ω= − + ⋅  and ( )2 2 21 2r r r riλ ζ ζ ω= − − ⋅ ⋅ , then the following is 

obtained: 

( )

( )

2
2 31 2

2 2

2
2

2

31 2
2

1 2 cos sin cos

1 2 cos 2 sin
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ω ω ωω ω
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+ + −

  (C.21) 

The tests comprise three different conditions of motion control. First the decay tests are 
carried out with the physical constraint that 0cθ = . Under this testing condition the 

imaginary part of Eq. C.21 is reduced to 
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( ) 12 0z z z r r z rc h cζ ω ω ζ ω− − + =
                                   

(C.22) 

from which: 

( )1 2 z z r rh ω ζ ω ζ= −                                     (C.23) 

and thus, 

*
1

4 z
z r

zz r

H
ω ζ ζ

β ω
= −                                         (C.24) 

The second series of decay tests are carried out with the physical constraint that 0zc = ,

in which case Eq. C.21 is reduced to 

( )

( )

2
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r r r r r
r rr

r r r r
r r

aa

aa

θ θ θ
θ θ

θ θ θ
θ θ

ω ω ωζ ζ ζ ψ ζ ζ ψ
ω ωω

ζ ψ ψ ψ
ω ω

ω ω ωζ ζ ζ ψ ζ ζ ψ
ω ωω

ζ ψ ψ ψ
ω ω

− + − + − +

− −

− + − − − +

+ −

0

0
=      (C.25) 

Thus,                                     
( )2
2 2 2

3

2 r r
r
r r r

a
a

θ θ

θ

ω ζ ω ζ
ω ω ω ζ

−
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from which 

*
2

4
r

r

A θ
θ

θθ

ω ζ ζ
β ω
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2
* 2
3 2

2
1 r

r

A θ

θθ

ω ζ
β ω

= − −     (C.28) 
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After 1h , 2a  and 3a  have been determined then the third series of decay tests are carried 

out with no physical constraints, such that 0zc ≠  and 0cθ ≠ , in which case the full 

version of Eq. C.21 applies. Eliminating 3h  from the first real and imaginary parts and 

2a  from the second real and imaginary parts then the following equations are obtained: 

( )

2
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2

1 2

2
2 2 31

2 2
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0

1 2 2 1
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(C.29) 

from which                         ( )
2 2 2 2

3
1 2

1

1 sin
r r r

r
z r r

c a
a

c
θ θζ ω ω ωω

ζ ψ
+ − +
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                        (C.30) 
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c h h
h

cθ
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  (C.31) 

Finally, 3h  may be determined from the first real part of Eq. C.21, rendering 

( )
22

2 1 2
3 2

1 2 cos sin
cos

z z zr
r z r r r r r

r r r rr

c h h
h
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 (C.32) 

From Eqs. C.17 and C.18 

* 1
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z r
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θβ ω
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h
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θβ ω
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3 2
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z r
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θβ ω
= ⋅              (C.33) 



Appendix D 

DETERMINATION OF INDICIAL 
FUNCTIONS FROM AERODYNAMIC 

DERIVATIVES 

Aerodynamic load contributions in the along-wind, the across-wind and the pitching 

moment directions ( ) T

ae y z ae
t q q qθ=q  generated by the interaction between the 

wind field and the motion of the structure ( ) T

y zt r r rθ=r  have first been 

developed in a quasi-steady format in chapter 5.1, where the definition of positive rθ  and 

qθ  comply with the usual aerodynamic conventions shown in Fig. 1.3.a. Since the 

determination of aerodynamic derivatives and the corresponding indicial functions are 
taken from wind tunnel aero-elastic section model tests, this is also the sign convention 
chosen for the presentation below. However, the use of indicial functions will generally 
only be relevant in a time domain solution in a finite element format, and in such a 
format all displacement and load quantities are vectors. This format has been presented 
in chapter 9. It should however be noted that the choice of sign convention for 
displacements and forces has no consequences to the determination of indicial functions 
as long as any displacement component and its corresponding load component has 
identical directions. Thus, from a quasi-steady theory (see Eq. 5.8) 

( ) ( ) ( )ae ae aet t t= +q C r K r                                         (D.1) 

where for simplicity the horizontal spanwise (axial) xr  degree of freedom and 

corresponding xq  load component have been omitted as they have no relevance for a 

line-like type of structure, and 
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In a frequency domain formulation Eq. D.2 may be replaced by (see chapter 5.2) 

* * *
1 5 22

* * *
5 1 2

* * 2 *
5 1 2

* * *
4 6 32
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ρ ω

ρ ω

=

=

C

K

                          (D.3) 

where *
kP , *

kH , *
kA  ( 1,2,...,6k = ) are the aerodynamic derivatives and iω  is the 

frequency of motion. Theoretically, Eq. D.2 is applicable in time domain as well as in 
frequency domain. However, the basic hypothesis behind the quasi-steady theory was 
that fluctuations in the oncoming flow or in the motion of the structure will 
instantaneously give rise to corresponding fluctuations in the cross sectional loads. Such 
a hypothesis will not render reliable results in a time domain solution, and therefore, Eq. 
D.1 needs to be formulated at an incremental level  

( ) ( ) ( ) ( )ae
ae ae

d dd
s s

d d d

τ τ
τ τ τ
= +

r rq
C K                           (D.4) 

where (see Fig. 9.8) τ  is a dummy time history variable, s t τ= −  and 
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    (D.5) 

where            ( )mn sΦ
,  or 
,  or 

m D L M
n y z θ
=
=

                                   (D.6) 

are the indicial memory functions associated with interaction between drag, lift or 
moment forces and the velocity of motion in y , z  or θ  directions. A displacement 

increment and its corresponding load increment in the remote part of the response 
history must comply to the quasi-steady solution, and thus 
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( )lim 1mn
s

s
→∞
Φ =

,  or 
,  or 

m D L M
n y z θ
=
=

                    (D.7) 

Therefore, an exponential type of function with a limiting value of unity is usually 
chosen for the representation of indicial functions interpreted from experimental results 
(see Salvatori & Borri [31]). It is convenient to express these functions by the non-
dimensional relative time parameter ŝ sV B= . Thus, 

( ) ˆ

1

ˆ 1
N j

c sj
mn j

j

s b e−

=
Φ = −

,  or 
,  or 

m D L M
n y z θ
=
=

                 (D.8) 

where the constants jb  and jc  may be determined from experiments or, as shown 

below, from the aerodynamic derivatives (see Chapter 5.2). 

The current motion induced load ( )ae tq  may then be obtained by history integration 

(theoretically from −∞  to the present time t )

( ) ( ) ( ) ( ) ( )t

ae ae ae

d d
t s s d
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τ τ
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Integration by parts 
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             (D.10) 

and assuming negligible initial displacement and velocity conditions, then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
t t
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−∞ −∞
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where ( ) ( )ae
ae

d s
s

ds
′ =

C
C  and ( ) ( )ae
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d s
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′ =
K

K . Introducing a harmonic motion 
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then 
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Recalling that s t τ= −  and using that 1
ds
dτ
= − ,

b a

a b

= −  and ( ) i tit e ω= ⋅r a ,then 
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Introducing Eq. D.5 renders 

( ) ( )
( )
( )

( )
( )
( )

( ) ( )

( ) ( )

ˆˆ
2

1 02 2

ˆ0 0 0 0 0
ˆ ˆ0 0 0 0 0

ˆ0 0 0 0 02

2 0 0 0

2 0 0 0
ˆ

2

N D D D Dj
ae is Vi

L L L L
j

M M M M

D Dy D L Dz

L Ly L D Dz
i

M

DC DC s
t

BC BC s e ds
V

B C B C s

D D
C C C

B B

i D
C C C

BV
BC

θ θ

θ θ

θ θ
ρ

∞
−

=

′ ′ ′Φ Φ
′ ′ ′= Φ + Φ ⋅

′ ′ ′Φ Φ

′− Φ − − Φ

′+ − Φ − + Φ

−

q

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ˆˆ

0

0 0 0

ˆ ˆ2 0

ˆ ˆ2 0 0

ˆ2 0 0

My M Mz

D Dy D L Dz

is V i ti i
L Ly L D Dz

M My M Mz

BC

D D
C s C C s

B B

D
C C C s e ds e

B
BC BC s

ω
∞

−

′Φ Φ

′ ′− Φ − − Φ

′ ′+ − Φ − + Φ ⋅

′ ′− Φ − Φ

a

(D.16) 



D   DETERMINATION OF INDICIAL FUNCTIONS 293

From Eq. D.8 it is seen that 
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and thus 
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Gathering all real terms in one matrix and all imaginary terms in another the following is 
obtained: 
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This is a frequency domain application of the indicial functions, and therefore, it must 
render an identical solution to that which is obtained by the use of aerodynamic 

derivatives. Introducing a harmonic input ( ) T i t i ti i
y zt a a a e eω ω

θ= ⋅ = ⋅r a  into 

Eq. D.1, and using aeC  and aeK  from Eq. D.3, then a frequency domain solution 

containing the aerodynamic derivatives is given by 
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Eqs. D.19 and D.20 must be identical, and thus, the following is obtained 
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It is seen that the indicial functions are determined by the deviation between 
aerodynamic derivatives and their quasi-static counterparts, as could be expected. It 
should be noted that the aerodynamic derivatives are functions of the reduced velocity 

îV , i.e. experimentally they have been determined at various set values of îV . The 

determination of the constants jb  and jc  for each of the indicial functions 

( ) ˆ

1

ˆ 1
N j

c sj
mn j

j

s b e−

=
Φ = − ,

,  or 
,  or 

m D L M
n y z θ
=
=

, will therefore require a multiple task data 

fitting type of approach. Often 2jN =  will suffice. 
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Acceleration   43 
Across wind direction   92, 108, 141, 153, 

210
Aerodynamic    

coupling   98 
damping   105, 112, 190, 214, 282 
derivatives   97, 100, 107, 112, 125, 159, 

197, 203, 210 
mass   119, 129, 154 

Along wind 
component   58-61, 66, 68, 125, 164, 197 
direction   1, 6, 91-92 , 98, 111, 134 

Annual maxima   55, 56 
Auto 

correlation   20 
covariance   20, 22, 42, 60, 61 
spectral density   33, 37, 44, 239 
spectrum   40 

Averaging period   54 
Axial 

force   182 
    component   70 

Background 
part   79-80, 125, 146, 157, 159-160, 164, 

166
response   166, 168 

Bandwidth   152 
Bending moment   10, 45, 49, 157, 164, 166,

169, 182 
Bernoulli’s equation   1 
Bessel   97, 100 
Bluffness   106, 201 
Bridge   1, 7, 55, 91, 97, 108-109, 111,  

122-123, 134, 147, 153, 154, 157, 167,  
169-170, 180, 182, 190, 197, 205 

Broad band process   29, 33, 57, 111, 125,  
142

Buffeting   2, 91, 97, 111, 116-117, 127, 
130, 142, 182 

Cartesian   6, 7, 53 
Central difference method   255 
Centroid   8 
Cholesky   268, 275 
Coefficient   23-24, 49, 82, 86 
Coherence   38, 42, 108, 144, 154 
Connectivity matrix   231 
Coordinate system   6, 9 
Correlation   19, 20, 23 
Co–spectrum   42, 68, 135 
Coupling 
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of modes   76, 84 

Covariance   19, 39, 63, 130, 146, 167,  
179, 182, 185, 187-190, 234 

Critical velocity   196  
Cross 

correlation   23 
covariance   38, 46, 63-65, 83, 130, 179 

Cross sectional 
forces   69, 157 
rotation   111 
stress resultant   2, 6, 9 
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spectral density   38, 88 
spectrum   42, 68, 123, 132, 134, 140, 143  

Cumulative probability   13 
Cut-off frequency   265 

D’Alambert principle   214 
Damping 

coefficient   106-107 
Decay 

matrix   75 
properties   4, 105 
ratio   3, 75, 76, 198 
curve   65 
recording   281, 283 

Den Hartog criterion   201 
Design period   157 
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Displacement 
components   70, 73, 76, 81, 83, 162 
response   5, 76, 79, 182 

Divergence   197, 199-200 
Drag

coefficient   91, 134 
component   8, 160 
force   97, 109 
load   76 

Dynamic 
Amplification   10 
response   1-2, 69, 76, 78, 109, 119,  
125-127, 134-135, 141-142, 146, 152-156 

Eigen 
damping   105, 154, 156, 198 
frequency   3, 70, 75-77, 82, 98, 103-104, 
116-117, 123, 134, 152, 199-205 
mode   3, 70, 75-76, 1581-59 
value   3, 70-73, 75, 90, 196-197 
vector   72-73, 75 

Element damping matrix   218 
Element forces   162, 234 
Element mass matrix   216 
Element stiffness matrix   216, 217 
Ensemble statistics   15 
Equivalent mass   107 

Ergodic process   43 
Euler 

constant   33, 57 
formulae   36 

Explicit routine   252-253 
External work   216 
Extreme 

value   10-11, 27, 30, 57-58 
weather condition   54, 110 

Failure   53, 157 
Finite element   75, 113, 160, 163, 174 
Fisher-Tippet   56 
Flow 

axes   8, 92 
component   58, 93, 97, 128 
direction   1, 6, 7, 53-55, 61, 65, 91 
exposed   117, 123, 134, 144, 154, 164 
incidence   91, 93 

Fluctuating 
components   1, 11, 70, 93, 118, 179, 186, 
displacement   5, 102, 104
force   1, 97, 182 

load   2, 104-105, 127, 160, 164-166 
part   1- 8, 10, 58, 67, 91-93, 95, 111, 116, 
157, 159-161, 163 
wind velocity   5, 174 

Flutter   197, 199, 203, 205, 206, 208 
Force components   114, 157, 166, 177-178, 

184, 186, 188 
Fourier 

amplitude   36, 43, 77, 79, 82, 88,  
117, 128 
component   36, 37 
constant   37, 42 
decomposition   35, 269 
transform   33, 42, 77, 84, 96, 117,  
128, 132, 142-143, 184 

Frequency 
domain   2, 70, 73, 77, 81, 83-85, 96-98, 
105, 110-111, 116, 123, 130, 146, 152, 
158-160, 185 
segment   170, 264, 275 

Frequency response 
function   79, 112, 116-117, 119-120, 
125-126, 129, 137, 140 
matrix   87-88, 130, 142 

Full scale   62, 66 

Galloping   197, 199-202 
Gaussian   5, 10, 14, 29, 110, 157 
Global   161-163 

Harmonic component   33, 34, 38, 267, 282 
Hermitian   268 
Hilber, Hughes & Taylor   260, 261 
History integration   229, 291 
Homogeneous   4, 15, 53, 60, 63, 91, 110, 157 
Horizontal element   174, 176 

Identity matrix   73, 87, 130 
Indicial function   227, 228, 289 
Imaginary   36, 39, 42, 67, 77, 201-202, 206, 

208
Impedance   195, 197, 199-200, 202 
Influence function   45, 160, 164, 166, 170,  

173, 174 
Instability   100, 112, 195, 197, 199, 203,205 
Instantaneous 

velocity pressure   58, 91 
wind velocity   1, 174 

Integral 
length scale   62, 65, 123, 135, 144,  
152, 173 
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Internal work   214, 215 
Implicit routine   253 
Isotropy   60 

Joint
acceptance function   46-48,118,  
120-122, 125, 133, 170 
probability   13 

Kaimal spectrum   62, 242 

Length scale   62, 63, 65, 97 
Lift   91, 106, 159 

coefficient   91, 106 
force   97 
load   76, 111 

Linear   1, 12, 90, 93, 157-158 
Linearity   79, 82 
Line like structure   69, 103, 163,  
Load   69, 73 

coefficient   86, 91, 93, 97, 134, 167 
component   70, 73, 113-115, 160, 162,  
176
vector   75, 86, 113, 115, 143, 163, 176 

Lock–in   104, 142, 154 
Long term statistics   4 

Main structural axes   7-8 
Mean 

load   113-114 
value   1, 13, 70, 93, 111, 113, 1157-158, 
163
wind velocity   1, 53-57, 93, 99, 100, 112, 
125, 134, 140-141, 154-156 

Modal 
displacement   90, 182 
damping   75, 167 
load   75, 79, 88, 132 
mass   72, 75 
stiffness   75 

Mode shape   70, 72-76, 81, 83, 89, 99, 116, 
123, 134, 141, 143, 145, 147, 151, 153,183, 
196

Modulus   39 
Moment 

coefficient   91, 106 
force   97 
load   76, 11 

Motion induced   2, 76-77, 80-82, 84-85, 86, 
112, 116-117, 141, 195, 199 

Multi mode   76, 84, 130, 133, 183 

Narrow band process   29, 146, 152, 196 
Neutral axes   8 
Newmark   258, 262 
Non-coherent time series   267 
Numeric integration   256 

Orthogonal component   1 

Parent 
population   55 
variable   34 

Peak 
distribution   30 
factor   32, 111, 142, 157 
value   27 

Phase   40, 78, 85 
angle   33, 265, 269, 274, 281 
spectrum   40, 68 

Probability 
density function   13 
distribution   13, 16, 19, 26, 55, 59 

Quad spectrum   40 
Quasi static   79, 102, 124-125, 135, 141,  

159, 163-164, 177, 201, 203 

Random variable   4, 13-14, 19-20 
Rayleigh   14, 19, 29, 55, 75 
Reference 

height   54 
point   58 

Representative condition   53 
Resonance 

frequency   98-99, 100, 112, 134, 140-141, 
196, 200-202 
velocity   154 

Resonant 
part   79-80, 125, 146, 152, 159-160, 182,  
185

Response 
calculation   69, 73, 76, 79, 84, 109-113, 
122, 127, 130, 142, 151 
covariance   76, 83, 130 
matrix   130, 139, 142, 145-146 
spectrum   111, 117, 123, 125-126,  
140, 151 

Return period   57 
Reynolds number   108 
Roll angle   224 
Root coherence   42 
Roughness length   55 
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Safety    53,  157 
Sampling frequency   58 
Sears function   97 
Section model   97,  281 
Separation   25,  63,  86,  118,  121,  237 
Selberg   205 
Shape function   213 
Shear centre   8,  69,  75 
Short term   4,  15,  18,  21,  23,  30,  45,  110 
Simulation of random process   263 
Single 

degree of freedom   82,  247 
point statistics   59 
point time series   263 
point spectrum   270 

Spatial 
averaging   45,  134,  165 
properties   63,  65 
separation   63, 118, 237 

Spectral 
decomposition   264 
density   33-37, 38-39, 43-44, 82, 89, 125, 
134, 137, 139, 185, 239 
moment   45 

Spectrum 
double-sided   37, 39 
single-sided   34, 78 
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Standard deviation   14, 24, 111, 119, 123, 125, 

127, 129, 141, 155, 157, 159 
Static 

response   109, 112 
stability   196 

Stationary   2, 5, 15, 44, 53, 63, 91, 110, 157 
Stochastic 
process   2, 4, 15, 18 
variable   30, 33, 41, 45-46 

Stress resultant   8, 9, 10, 157, 182-183, 185 
Strouhal number   103, 108 

Structural 
axis   7, 91, 93, 164 
damping   75 
displacements   2, 7, 73, 80, 90, 91, 93,
104-105, 109, 142, 158 
mass   82 
stiffness   112, 153 

strength   9 

Tangent stiffness   261 
Taylor   65 
Theodorsen   100, 205 
Threshold crossing   27-28 

Time 
domain   2, 7, 15, 66, 77, 85, 110-111,  
157-159, 165, 210, 253 
lag   20, 25, 63 

scale   62 
step   252 

Torsion   202 
mode   77 
moment   10, 102, 106, 157, 166, 169, 182 
response   140, 150 
stiffness   71 

Total 
load   76-77, 81 
response   76, 84, 111, 158 

Tower   1, 44 
Turbulence 

component   1, 53, 59-62, 64, 66, 68 
intensity   59, 123, 134 
length scale   62 
profile   54 

Unstable behaviour   111, 195 

Variance   13-14, 16-19, 33-34, 36-38, 45, 49, 
111, 117-118, 130, 146, 148, 151, 165-169, 
182, 185, 189-190 

Velocity 
pressure   1, 57, 91, 111 
profile   54 
vector   1, 6, 9, 53, 91-95, 174 

Vertical element   174, 176 
Virtual  

displacement   214, 231 
strain   214 
Viscosity of air   108 
Von Karman spectrum   62 

Vortex shedding   2, 103-108, 111, 142-143, 
146-147, 150, 152-156, 182 

Weibull   14, 19, 55 
Wind 

climate   104 
direction   108 
force   1, 102 
load   44, 91, 102 
load component   176 
profile   54 
velocity   1, 2, 15, 18, 53, 93, 100 

Wind tunnel   97-98, 141, 154 

Zero up-crossing   29 
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