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PREFACE TO 2™ EDITION

In this second edition a new chapter has been added covering the buffeting theory in a
finite element format. The motivation for this has been that a finite element format is
becoming more and more dominant in all areas of structural mechanics. It is streamlined
for computer programming, and it facilitates the use of general purpose routines that are
applicable in several types of structural engineering problems. In this book the finite
element formulation of the problem of dynamic response calculations follows the
general principle of virtual work, a general principle which may be found in many other
text books. While the buffeting wind load itself has with no trouble been included in a
finite element format, the main challenge has been to obtain a consistent formulation that
includes all the relevant motion induced forces. This has been important, because, while
many structures (e.g. long-span suspension bridges) may suffer greatly and become
unstable at high wind velocities, the same structures may also benefit from these effects
at the design wind velocity. It is well known that motion induced forces will change the
stiffness and damping properties of the combined structure and flow system. If
calculations are performed for a suitably close set of increasing mean wind velocities
and the changing mechanical properties (stiffness and damping) are updated from one
velocity to the next, then the response of the system may be followed up to wind
velocities close to the stability limit, i.e. up to response values that are perceived as
unduly large. Finite element calculations may be performed in time domain, in frequency
domain or converted into a modal format. All these options have been included.
Pursuing a time domain solution strategy requires the use of the so-called indicial
functions. The theory behind such a formulation is also covered, and the determination
of these functions from aerodynamic derivatives has been included in a separate
appendix.

A comment regarding the use of aerodynamic derivatives obtained from aeroelastic
wind tunnel experiments to predict structural response has been included.

It goes without saying that typing errors and calculation errors in examples that I so far
have come across in the first edition have been corrected.

Trondheim, January 2010 Einar N. Strommen
einar.strommen @ntnu.no



PREFACE TO 1°! EDITION

This text book is intended for studies in wind engineering, with focus on the stochastic
theory of wind induced dynamic response calculations for slender bridges or other
line—like civil engineering type of structures. It contains the background assumptions
and hypothesis as well as the development of the computational theory that is necessary
for the prediction of wind induced fluctuating displacements and cross sectional forces.
The simple cases of static and quasi-static structural response calculations are for the
sake of completeness also included.

The text is at an advanced level in the sense that it requires a fairly comprehensive
knowledge of basic structural dynamics, particularly of solution procedures in a modal
format. None of the theory related to the determination of eigen—values and the
corresponding eigen—modes are included in this book, i.e. it is taken for granted that the
reader is familiar with this part of the theory of structural dynamics. Otherwise, the
reader will find the necessary subjects covered by e.g. Clough & Penzien [2] and
Meirovitch [3]. It is also advantageous that the reader has some knowledge of the theory
of statistical properties of stationary time series. However, while the theory of structural
dynamics is covered in a good number of text books, the theory of time series is not, and
therefore, the book contains most of the necessary treatment of stationary time series
(chapter 2).

The book does not cover special subjects such as rain-wind induced cable vibrations.
Nor does it cover all the various available theories for the description of vortex shedding,
as only one particular approach has been chosen. The same applies to the presentation of
time domain simulation procedures. Also, the book does not contain a large data base for
this particular field of engineering. For such a data base the reader should turn to e.g.
Engineering Science Data Unit (ESDU) [7] as well as the relevant standards in wind and
structural engineering.

The writing of this book would not have been possible had I not had the fortune of
working for nearly fifteen years together with Professor Erik Hjorth—Hansen on a
considerable number of wind engineering projects.

The drawings have been prepared by Anne Gaarden. Thanks to her and all others who
have contributed to the writing of this book.

Trondheim, August 2005 Einar N. Strommen
einar.strommen@ntnu.no
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NOTATION

Matrices and vectors:

Matrices are in general bold upper case Latin or Greek letters, e.g. Q or ®.
Vectors are in general bold lower case Latin or Greek letters, e.g. q or @ .
diagl-] is a diagonal matrix whose content is written within the brackets.

det () is the determinant of the matrix within the brackets.

Statistics:

ET-] is the average value of the variable within the brackets.

Pr-] is the probability of the event given within the bracket.
( is the cumulative probability function, P (x) = Pr{X <x].

is the probability density function of variable x.

is the variance of the variable within the brackets.

Co

v(-) is the covariance of the variable within the brackets.
Coh )1s the coherence function of the content within the brackets.

)
x)
Var(
(-
(-
R(:) is the auto- or cross-correlation function.
R, is short for return period.
P () is the covariance (or correlation) coefficient of content within brackets.
p is a cross covariance or correlation matrix between a set of variables.
0',0'2 is the standard deviation, variance.

M is a quantified small probability.

Imaginary quantities:
¢ is the imaginary unit (i.e. i =~+/-1).
Re[-] is the real part of the variable within the brackets.

Im[-] is the imaginary part of the variable within the brackets.



XVI NOTATION

Superscripts and bars above symbols:

Super-script T indicates the transposed of a vector or a matrix.

Super-script * indicates the complex conjugate of a quantity.

Dots above symbols (e.g. F, F) indicates time derivatives, i.e. d/d¢, d?/de?.

A prime on a variable (e.g.C; or ¢”) indicates its derivative with respect to a relevant
variable (except 1), e.g. C; =dC;, /der and ¢"=d¢/dx . Two primes is then the second
derivative (e.g. ¢” = al2¢/dx2 ) and so on.

Line ( —) above a variable (e.g. C ') indicates its average value.

A tilde ( ~ ) above a symbol (e.g. M ;) indicates a modal quantity.

A hat ( A ) above a symbol (e.g. é) indicates a normalised quantity.

The use of indexes and superscript:

Index x,y or z refers to the corresponding structural axis.

xp,Yy or z; refers to the corresponding flow axis.

u,v or w refer to flow components.

¢ and j are mode shape numbers.

m refers to y,z or @ directions, n refers to u,v or w flow components.
p and % are in general used as node numbers.

F represents a cross sectional force component.

D,L M refer to drag, lift and moment.

tot,B,R indicate total, background or resonant.

ae is short for aerodynamic, i.e. it indicates a flow induced quantity.
cr is short for critical.

max,min are short for maximum and minimum.

int or ext are short for internal and external.

pv is short for peak value.

r is short for response.

s indicates quantities associated with vortex shedding.

Abbreviations:
CC and SC are short for cross-sectional neutral axis centre and shear centre.

FFT is short for Fast Fourier Transform. Sym. is short for symmetry.



NOTATION XVII

J. means integration over the wind exposed part of the structure.

Lexp

‘[ means integration over the entire length of the structure.

L
Latin letters

A
A, or Ap
A

mn
E3 E3

Ay — A

~

vV

Area, cross sectional area

Wind spectrum coefficient (n or p=u, v or w)

Aerodynamic admittance functions (m =y, z or €, n = u or w)
Aerodynamic derivatives associated with the motion in torsion
Connectivity matrix (associated with element m or n

Constant or Fourier coefficient, amplitude

Fourier coefficient vector associated with response or load
Fourier coefficient vector associated with modal response or load
Cross sectional width

Buffeting dynamic load coefficient matrix at cross sectional level
Buffeting dynamic load coefficient matrix at element level
Constant, coefficient, band-width parameter

Mean wind load coefficient vector

Damping coefficient or matrix containing damping coefficient
Aerodynamic damping, aerodynamic damping matrix

Force coefficients at mean angle of incidence

Slope of load coefficient curves at mean angle of incidence
Constant, coefficient, Fourier amplitude

Damping matrix at a cross sectional level

Damping matrix at element level, aerodynamic damping matrix
Co-spectral density, co-spectral density matrix

Matrix containing covariance of response quantities

Matrix containing covariance of reduced wind velocity components
Cross sectional depth

Constant or coefficient

Element displacement vector, element end displacement (k=1, 2,...,12)
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m? u

m or M

S

NOTATION

Modulus of elasticity

Impedance, impedance matrix

Eccentricity, distance between shear centre and cetroid
Element force vector, force at element level

Frequency [Hz], eigen—frequency associated with mode i
Function of variable within brackets

Modulus of elasticity in shear

Influence function or matrix (F=V,, V,, V., M,, M, or M,)
Function of variable within brackets

Aerodynamic derivatives associated with the across-wind motion
Frequency response function, frequency response matrix

Modal frequency response functions, modal frequency response matrix
Polar moment of inertia

St Venant torsion and warping constants

Turbulence intensity of flow components u, v or w

Moment of inertia with respect to y or z axis

Identity matrix

Turbulence matrix (I, =diagll, I,]orl, =diagll, I, I,])
The imaginary unit (i.e. 7 = J-1 ) or index variable

Joint acceptance function

Index variable

Stiffness, stiffness matrix

Aerodynamic stiffness, aerodynamicstiffness matrix

Index variable, node or sample number

Peak factor

Terrain roughness coefficient

Stiffness matrix at element level, aerodynamic stiffness matrix
Length, wind exposed length

Integral length scales (m =y, zor 6, n =u,v or w)

Bending moment (m=x, y, z), ultimate bending moment strength
Index variable

Mass or mass matrix

Modally equivalent and evenly distributed mass
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NOTATION XIX

Mass matrix at a cross sectional level

Mass matrix at element level

Number, number of nodes or number of elements in series
Shape function matrix, polynomial shape function (i =1,2,...,12)
Contains the first and second order derivatives of N, (x)

Index variable

Aerodynamic derivatives associated with the along-wind motion
Index variable, node or sample number

Wind load or wind load vector at system level

Wind load or wind load vector at cross sectional level
Aerodynamic (motion induced) load at cross sectional level
Velocity pressure, i.e. q;; = pU? /2, qy = pV2/2

External load, external load vector at system level, at element level
Modal load, Modal load vector

Reynolds number

Return period.

Cross sectional displacement or rotation, displacement vector
Element cross sectional displacement, displacement vector
Polar radius

Strouhal number

Auto or cross spectral density, cross-spectral density matrix
Cross spectral density matrix associated with response or load
Cross spectral density matrix associated with modal response or load
Single side auto-spectral density of variable x

Double side auto-spectral density of variable x

Cross-spectral density between components x and y

Relative time (s =t —17)

Stress vector, stress component (m =x,y,z or )

Time, total length of time series

Turbulence time scales (n = u,v or w)

Instantaneous wind velocity in the main flow direction
Fluctuating along-wind horizontal velocity component

Mean wind velocity, resonance mean wind velocity
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v Fluctuating across wind horizontal velocity component

V,Vg,V, Wind velocity vector containing fluctuating components

W,.. W,

et » Wiy External, internal work

w Fluctuating across wind vertical velocity component
X,Y,x,y Arbitrary variables, e.g. functions of ¢
XY, Z Cartesian structural global axis
x,Y,2 Cartesian structural element cross sectional main neutral axis
(with origo in the shear centre, x in span-wise direction and z vertical)

xp,¥r,2;  Cartesian flow axis (x; in main flow direction and z, vertical)

X, Chosen span-wise position for response calculation

2 Terrain roughness length

Zin Minimum height for the use of a logarithmic wind profile
Greek letters

o Coefficient, angle of incidence

B Constant, coefficient

B Matrix containing mode shape derivatives

/4 Coefficient, safety coefficient

Yo Shear strain associated with torsion

) Incremental displacement operator

€, &, Strain vector, strain component (m =x,Yy Or 2 )

& Mean wind velocity band width parameter

Sord Damping ratio or damping ratio matrix

n orn Generalised coordinate or vector containing N, 4 77 components
6 Index indicating cross sectional rotation (about shear centre)
K Constant, statistic variable

Kge Matrix containing aerodynamic modal stiffness contributions
1% Kinematic viscosity of air

A Non—dimensional coherence length scale of vortices

y7i A quantified small probability.

M, Spectral moment

Mge Matrix containing aerodynamic modal mass contributions
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NOTATION XXI

Coefficient or density (e.g. of air)

Covariance (or correlation) coefficient of content within brackets
Covariance associated with components p =u,v or w

Cross covariance or correlation matrix between a set of variables
Standard deviation, variance

Time shift (lag) or dummy time variable

3-N_ .4 by N,,q matrix containing all mode shapes @,

3 by N, ,q matrix containing the content of @ at x =x,.
Indicial function (m =D,L or M, n=y,z or )

3 by 1 mode shape vector containing components @4, ,¢,
Mode shape components in y, 2 and & directions associated with mode
shape i (continuous functions of x or N by 1 vectors)

Phase spectrum between components x and y

Phase angle

Function of the variable within the brackets

Matrix containing element orientation properties

Circular frequency (rad/s)

Still air eigen-frequency associated with mode shape i

Resonance frequency assoc. with mode i at mean wind velocity V

Symbols with both Latin and Greek letters:

Af , Aw
At
As
Ax

Frequency segment
Time step
Separation (s = x, y or z)

Span—-wise integration step



Chapter 1

INTRODUCTION

1.1 General considerations

This text book focuses exclusively on the prediction of wind induced static and dynamic
response of slender line-like civil engineering structures. Throughout the main part of
the book it is taken for granted that the structure is horizontal, i.e. a bridge, but the
theory is generally applicable to any line-like type of structure, and thus, it is equally
applicable to e.g. a vertical tower. It is a general assumption that structural behaviour is
linear elastic and that any non-linear part of the relationship between load and structural
displacement may be disregarded. It is also taken for granted that the main flow direction
throughout the entire span of the structure is perpendicular to the axis in the direction of
its span. The wind velocity vector is split into three fluctuating orthogonal components,
U in the main flow along—wind direction, and v and w in the across wind horizontal and
vertical directions. For a relevant structural design situation it is assumed that U may be
split into a mean value V that only varies with height above ground level and a
fluctuating part u, i.e. U =V +u . Vis the commonly known mean wind velocity, and u,
v and w are the zero mean turbulence components, created by friction between the terrain
and the flow of the main weather system. It is taken for granted that the instantaneous
wind velocity pressure is given by Bernoulli’s equation

qu (t)=l/J[U(t)]2 (1.1)

2

If an air flow is met by the obstacle of a more or less solid line-like body, the
flow/structure interaction will give raise to forces acting on the body. Unless the body is
extremely streamlined and the speed of the flow is very low and smooth, these forces
will fluctuate. Firstly, the oncoming flow in which the body is submerged contains
turbulence, i.e. it is itself fluctuating in time and space. Secondly, on the surface of the
body additional flow turbulence and vortices are created due to friction, and if the body
has sharp edges the flow will separate on these edges and the flow passing the body is
unstable in the sense that a variable part of it will alternate from one side to the other,
causing vortices to be shed in the wake of the body. And finally, if the body is
flexiblethe fluctuating forces may cause the body to oscillate, and the alternating flow
and the oscillating body may interact and generate further forces.
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Thus, the nature of wind forces may stem from pressure fluctuations (turbulence) in
the oncoming flow, vortices shed on the surface and into the wake of the body, and from
the interaction between the flow and the oscillating body itself. The first of these effects
is known as buffeting, the second as vortex shedding, and the third is usually labelled
motion induced forces. In literature, the corresponding response calculations are usually
treated separately. The reason for this is that for most civil engineering structures they
occur at their strongest in fairly separate wind velocity regions, i.e. vortex shedding is at
its strongest at fairly low wind velocities, buffeting occur at stronger wind velocities,
while motion induced forces are primarily associated with the highest wind velocities.
Surely, this is only for convenience as there are really no regions where they exclusively
occur alone. The important question is to what extent they are adequately included in the
mathematical description of the loading process.

In structural engineering the wind induced fluctuating forces and corresponding
response quantities are usually assumed stationary, and thus, response calculations may
be split into a time invariant and a fluctuating part (static and dynamic response). An
illustration of what can be expected is shown in Fig. 1.1.

A A
o] [ob]
2 2
(=] [=]
& &
g s
© e
© £
& e
=
(]
r 2"/ > V
Static flow | Flow Vortex Primarily Motion
effects induced shedding turbulence induced
diver- effects load
gence effects

Fig. 1.1  Typical response behaviour of slender civil engineering structures

For a mathematical description of the process from a fluctuating wind field to a
corresponding load that causes a fluctuating load effect (e.g. displacements or cross
sectional stress resultants) a solution strategy in time domain is possible but demanding.
The reason for this is that the wind field is a complex process that is randomly distributed
in time and space. A far more convenient mathematical model may be established in
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frequency domain. This requires the establishment of a frequency domain description of
the wind field as well as the structural properties, and it involves the establishment of
frequency domain transfer functions, one from the wind field velocity pressure distribution
to the corresponding load, and one from load to structural response. We shall see that this
implies the perception of wind as a stochastic process, and a structural response calculation
based on its modal frequency-response-properties. The important input parameters to this
solution strategy are the statistical properties of the wind field in time and space, and the
eigen-modes and corresponding eigen-frequencies of the structural system in question. The
outcome is the statistical characteristics of the structural response.

Thus, apart from the geometry and mass properties of the structural system, it is
necessary to know its eigen—modes and corresponding eigen— frequencies. These are the
results of eigen—value calculations. The theory of such calculations may be found in
many classical text books, see e.g. Timoshenko, Young & Weaver [1], Clough &
Penzien [2] and Meirovitch [3]. It has been considered unnecessary to include any of
such theory in this book, except for a simple example shown in chapter 4.1. Le., it will
be taken for granted that sufficient information regarding the eigen—value solution has
already been provided. Most often, such information has been obtained from a finite
element calculation of a discretised structural system, and thus, the eigen—modes are
given as more or less ample vectors representing eigen—mode displacements along the
span. In the following it is tacitly assumed that such an eigen—value analysis has been
performed in vacuum or in still air.

It should be acknowledged that in the mathematical development of the basic theory
in this book it is for convenience assumed that eigen—modes are continuous functions.
This simplifies and helps on the comprehension of the various steps behind the theory.
After the final expressions of response are developed, the vector-matrix operations
involved in a purely numerical format of the solution strategy are presented wherever it
is considered necessary.

In structural dynamics where a modal solution procedure is adopted it is also
necessary to quantify modal eigen—damping properties. This is another subject that will
not be treated in this book. It is taken for granted that the modal damping ratio is known
from elsewhere (e.g. standards or handbooks).

1.2 Random variables and stochastic processes

A physical process is called a stochastic process if its numerical outcome at any time or
position in space is random and can only be predicted with a certain probability. A data
set of observations of a stochastic process can only be regarded as one particular set of
realisations of the process, none of which can with certainty be repeated even if the
conditions are seemingly the same. In fact, the observed numerical outcome of all
physical processes is more or less random. The outcome of a process is only
deterministic in so far as it represents a mathematical simulation whose input parameters
has all been predetermined and remains unchanged.
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The physical characteristics of a stochastic process are described by its statistical
properties. If it is the cause of another process, this will also be a stochastic process. I.e.
if a physical event may mathematically be described by certain laws of nature, a
stochastic input will provide a stochastic output. Thus, statistics constitute a
mathematical description that provides the necessary parameters for numerical
predictions of the random variables that are the cause and effects of physical events. The
instantaneous wind velocity pressure (see Eq. 1.1) at a particular time and position in
space is such a stochastic process. This implies that an attempt to predict its value at a
certain position and time can only be performed in a statistical sense. An observed set of
records can not precisely be repeated, but it will follow a certain pattern that may only be
mathematically represented by statistics.

Since wind in our built environment above ground level is omnipresent, it is
necessary to distinguish between short and long term statistics, where the short term
random outcome are time domain representatives for the conditions within a certain
weather situation, e.g. the period of a low pressure passing, while the long term
conditions are ensemble representatives extracted from a large set of individual short
term conditions. For a meaningful use in structural engineering it is a requirement that
the short term wind statistics are stationary and homogeneous. Thus, it represents a
certain time—space—window that is short and small enough to render sufficiently constant
statistical properties. The space window is usually no problem, as the weather conditions
surrounding most civil engineering structures may be considered homogeneous enough,
unless the terrain surrounding the structure has an unusually strong influence on the
immediate wind environment that cannot be ignored in the calculations of wind load
effects. The time window is often set at a period of 7= 10 minutes.

A
™= 1

Fig. 1.2 Short term stationary random process
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Such a typical stochastic process is illustrated in Fig. 1.2. It may for instance be a
short term representation of the fluctuating along wind velocity, or the fluctuating
structural displacement response at a certain point along its span. As can be seen, it is
taken for granted that the process may be split into a constant mean and a stationary
fluctuating part. There are two levels of randomness in this process. Firstly, it is random
with respect to the instantaneous value within the short term period between 0 and 7.
Le., regarding it as a set of successive individual events rather than a continuous
function, the process observations are stored by two vectors, one containing time
coordinates and another containing the instantaneous recorded values of the process. The
stochastic properties of the process may then be revealed by performing statistical
investigations to the sample vector of recorded values. For the fluctuating part, it is a
general assumption herein that the sample vector of a stochastic process will render a
Gaussian probability distribution as illustrated to the right in the figure. This type of
investigation is in the following labelled time domain statistics.

The second level of randomness pertains to the simple fact that the sample set of
observations shown in Fig. 1.2 is only one particular realisation of the process. I.e. there
is an infinite number of other possible representatives of the process. Each of these may
look similar and have nearly the same statistical properties, but they are random in the
sense that they are never precisely equal to the one singled out in Fig. 1.2. From each of
a particular set of different realisations we may for instance only be interested in the
mean value and the maximum value. Collecting a large number of different realisations
will render a sample set of these values, and thus, statistics may also be performed on the
mean value and the maximum value of the process. This is in the following labelled
ensemble statistics.

In wind engineering X, =x, +x, (t) may be a representative of the wind velocity

fluctuations in the main flow direction. The time invariant part X;, is then the commonly

known mean wind velocity, given at a certain reference height (e.g. at 10 m) and
increasing with increasing height above the ground, but at this height assumed constant

within a certain area covered by the weather system. The fluctuating part x, (t)

represents the turbulence component in the along wind direction. The mean wind
velocity is a typical stochastic variable for which long term ensemble statistics are
applicable, while the turbulence component is a stochastic variable whose statistical
properties are primarily interesting only within a short term time domain window.

Likewise, the relevant structural response quantities, such as displacements and cross
sectional stress resultants, may be regarded as stochastic processes. In the following, it is
to be taken for granted that the calculation of structural response, dynamic or non-
dynamic, are performed within a time window where the load effects are stationary [i.e.
the static (mean) load effects are constant and the dynamic (fluctuating) load effects are
Gaussian with a constant standard deviation].



6 1 INTRODUCTION

1.3 Basic flow and structural axis definitions
The instantaneous wind velocity vector is described in a Cartesian coordinate system
[xf, yf,sz , Where x, is in the direction of the main flow and z, is in the vertical

direction as shown in Fig. 1.3.a. Accordingly, the wind velocity vector is divided into
three components.

b) Definition of cross sectional forces (stress resultants)

Fig. 1.3 Basic definitions of flow and structural axes
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As mentioned above, the relevant time window is of limited length such that the
component in the main flow direction may be split into a time invariant mean value and
a fluctuating part. Thus, the instantaneous wind velocity vector is defined by

Ul(xpp.2p5t) =V (25,0720 ) +u (2,902t
v(xf,yf,zf,t) (1.2)
w(xs,5,2,t)
where V is the mean value in the main flow direction, and u, v and w are the turbulence
components whose time domain mean values are zero. Since the main flow direction is

assumed perpendicular to the span of the structure, the velocity vector may be greatly
simplified depending on structural orientation. Thus, Eq. 1.2 may be reduced to

Ul(ypt) =V +u(ypt)

(1.3)
w(yy )
for a line—like horizontal structure (e.g. a bridge), and into
Ulz:t)=V iz )+ulzqt
() =V ) ) »

v(zf,t)

for a vertical structure (e.g. a tower). As shown in Fig. 1.3 the structure is described in a

Cartesian coordinate system [x, y,z] , with origo at the shear centre of the cross section,

x is in the span direction and with y and z parallel to the main neutral structural axis
(i.e. the neutral axis with respect to cross sectional bending). Correspondingly, the wind
load drag, lift and pitching moment components (per unit length along the span) are all
referred to the shear centre and split into a mean and a fluctuating part, i.e.

qy (%) | |y (%:t)
qa+q=|q, (x) |+|q, (x,t) (1.5)
To(x)| |qe(x:t)

Similarly, the response displacements

7
r+r=|7(x) |+, (xt) (1.6)
Ty
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and cross sectional stress resultants

Q. (x) |+| Q. (x.¢) (1.7)

) +| M, (x,t) (1.8)

are referred to the centroid of the cross section (where, as shown above, the centriod is
defined as the origo of main neutral structural axis).

Fig. 1.4 Structural axes and displacement components

Thus, it is assumed that structural response in general can be predicted as the sum of a
mean value and a fluctuating part, as illustrated in Fig. 1.4. It is assumed that within the
time window considered the mean values are constant as well as the statistical properties
of the fluctuating parts.
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As shown in Fig. 1.3, all flow and structural quantities are treated as vectors within
the coordinate system they belong, except the quantities associated with torsion. Cross
sectional rotation and the corresponding torsion moment are considered positive with the
windward front face up, which is a long standing practice in wind engineering. However,
it should be noted that such an inconsistency can not be accepted in a finite element
format, and thus, in chapter 9 a strictly vector description has been adopted, see Fig. 9.2.

1.4 Structural design quantities

Design calculations are intended to cover a certain unfavourable loading condition, e.g.
an extreme storm situation, that is characteristic to the particular place where the
structure is located, and whose probability of occurrence is suitably small. In this
situation it is the comparison of structural strength or capacity to the extreme value of
some critical stress or stress resultant that is of interest. The situation is illustrated in Fig.
1.5. Since structural behaviour is assumed linear elastic, these quantities may in general
be obtained from the extreme values of the displacements

7, (x)+[rk (x,t)lnaX where k=1y,2,0 (1.9)

M A M

M(t)

Mmax { max

=
1
T

p(Mmax)

Strength

~Y

p(M,)

Fig. 1.5 Bending moment design quantities
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However, the mean values in this situation are time invariants, and the response
calculations have inevitably been based on predetermined values taken from standards or
other design specifications. They have been established from authoritative sources to
represent the characteristic values within a certain short term weather condition chosen
for the special purpose of design safety considerations. Therefore, in a particular design
situation time invariant quantities may be considered as deterministic quantities, and
thus, the mean values of displacements or stress resultants may be obtained directly from
simple linear static calculations. Le., it is only the fluctuating part of the response
quantities that requires treatment as stochastic processes. It may be shown (see chapter
2.4) that if a zero mean stochastic process is stationary and Gaussian, then its extreme
value is proportional to its standard deviation o, , i.e.

(7 (x,t)}max =k, -0, (1.10)

where kp is a time invariant peak factor between about 1.5 and 4.5, and thus

Thoay =T (2)+[ (28) ] =T (x)+k, -0, 1.11)

Similarly, the extreme values of bending moment and shear force stress resultants may
be expressed by

Mkmax :Mk +kp Oy, where k=x,y,z (1.12)

Therefore, the main focus is in the following on the calculation of the standard deviation

to fluctuating components, Oy, and Oy, » whether they contain dynamic amplification

or not. However, in many design situations it is necessary to consider the combined
effects of stresses or stress resultants, and therefore, it is not only the standard deviation
of processes that are of interest in structural design considerations but also the
covariance between fluctuating components. For instance, let a fluctuating (dynamic)
displacement response at arbitrary position x

Ty ()| [y (xt)
r,|=|7(x) |+| 7, (x, (1.13)
o | |Ta(x)| |rolast

be associated with corresponding cross sectional moment and shear force components



1.4 STRUCTURAL DESIGN QUANTITIES 11

M| |M,(x)| [M,(x)
M, ]lﬁfz (x)| | M, (x,t)
M, |=|M,(x)|+ M, (x,t) (1.14)
Qy | |Q(x)| |Q(xst)
Q] [Q(x)] [Q(xt)
Then the normal stress and shear stress components at cross sectional position ( y,z) are
given by
—Lz+ AI/IZ y —Lz+Zy

= ¢ I Z I I,
|:sx:|:|:_sx:|+|:sx():|: _ y_ B + Y (1.15)
s 7[5 s 0) 7|0, @ Q.Q, M,

A, A, 2A to A, A, 244

where I, and I, are moments of inertia associated with bending about y and z axis,

Ay and A, are the cross sectional shear areas (rendering averaged values of shear

stresses) and, for simplicity assuming that we are dealing with a closed box type of cross
section, A, is the sector area inscribed by the cross section and ¢, is the material

thickness at position ( y,z) . The variance of the normal stress is then given by

2 2
M M M M
=E|| 2z | +2| 2z || ==y |+| =2y (1.16)
I, I, 1, 1,
= z| +2 yz + y
I, 1,1, 1,

where crlzwy =E[M32,J, crlzwz =E[MZ2] and CovMyMZ =E[My

further developed into

MZ} , which may be
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where Pmym, = Cov MM, / ( Oum,Om, ) is the covariance coefficient between M, and

M, fluctuations. Similarly, the variance of the shear stress is given by

2
0'82 =E|:322(t):|=E Q_y+&+&
e LY A, "4, "2A

2 2 2
_ [Q—J [Q—J [M_j Z[Q_Q_JZ[Q_M_JZ[Q_M_]
A, A, 24 ¢, A A, A, 2A,t, A, 2A t,
2 2
O, O,
A, A,
2 2
_tZ + O-A
24, ¢,
O, O'QZ O'Mx

Q.,0M
1o W @ ro G Mx 1200 M
AA, P00 T gn g PaMe I gy M

2
Oum, . COUQsz . Cony M, N ConZ M,
24,1, AyAZ A y 24, A, 2A, t,

(1.18)
- -
O.Qy Qy COUQsz Qsz
Where 0'6222 =E| @’ Cony M, |=E|Q,M,
2
612‘435 _Mx COUQzMx Qz Mx

i | Cov / ( Cp. O, )
prQZ Qsz Qy QZ
and pr M, = COUQy M, / ( O-Qy O M, )

| P, M, Covg_, / (O'QZ Ou, )

Thus, the main focus is in the following on the calculation of the standard deviation and
the covariance to fluctuating response components, whether they contain dynamic
amplification or not. Simple linear static calculations are considered trivial. However,
some mention of the calculation of time invariant mean values has been included for the
sake of completeness.



Chapter 2

SOME BASIC STATISTICAL CONCEPTS
IN WIND ENGINEERING

2.1 Parent probability distributions, mean value and variance

For a continuous random variable X, its probability density function p (x) is defined by

dP (x)
dx

Prix <X <x+dx|=P(x+dx)-P(x)= dx = p(x)dx 2.1

where P (x) is the cumulative probability function, from which it follows that
X
Pr[X <x]|=P(x)= J.p(x)dx (2.2)

and that lim P (x) =1. Similarly, for two random variables X and Y the joint probability

X —ro0

density function is defined by

d’P (x,¥)

2.3
dx dy 23

p(x,y)=

where P (x,y)=Pr [X <x,Y <y]. The mean value and variance of X are given by

E:E[X]sz'p(x)dx

(2.4)
Var(X) =02 =E|(X-%)°|= [ (x =) p(x)d
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Equivalent definitions apply to a discrete random variable X . It is in the following
assumed that each realisation X, of X has the same probability of occurrence, and

thus, the mean value and variance of X may be estimated from a large data set of N
individual realisations:

o1&
x :J}IIELN;XI?

L (2.5)
Var(X) = o? ‘};ii‘lﬁg;(xk —3?)2

The square root of the variance, o, , is called the standard deviation. Recalling that

E [X ] =X , the expression for the variance may be further developed into
o =E|(X-%) |- E[X* -2¥X +&* |- E[X* ] -’ 2.6)

There are three probability density distributions that are of primary importance in wind
engineering. These are the Gaussian (normal), Weibull and Rayleigh distributions, each
defined by the following expressions:

B X B
px)=4 " eXp[—[;j ] @.7)

They are graphically illustrated in Fig. 2.1. It is seen that a Rayleigh distribution is the
Weibull distribution with £=2.
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0.8k Gaussian distribution

p(x)

5
X
2 T T T T
Weibull distribution
1_5_ . L . . - -
Z 1 p=2 h
g p=1 p=4
0.5F .
0 i 1 I
0 0.5 1 15 2 25
xfy

Fig. 2.1  Gauss (with x =0 ) and Weibull distributions

2.2 Time domain and ensemble statistics

As mentioned in Chapter 1 there are two types of statistics dealt with in wind
engineering: time domain statistics and ensemble statistics. Illustrating time domain
statistics, a typical realisation of the outcome of a stochastic process over a period T is
illustrated in Fig. 2.2. This may for instance represent a short term recording of the wind
velocity at some point in space, or it may equally well represent the displacement
response somewhere along the span of the structure. Considering consecutive and for
practical purposes equidistant points along the time series as individual random
observations of the process, then time domain statistics may be performed on this
realisation.

It will in the following be assumed that any time domain statistics are based on a
continuous or discrete time variable X , which theoretically may attain values between
—oo and +eo and are applicable over a limited time range between 0 and 7, within
which the process is stationary and homogeneous (i.e. have constant statistical
properties) such that

X =%+x(t) 2.8)
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Its mean value and variance are then given by

1 T
%= lim - j Xdt
0 2.9)
ol = %grjo—g[x (6)] de

It will in the following also be assumed that the individual observations of the
fluctuating part x(t) within the time window between 0 and T may with sufficient

accuracy be fitted to a Gaussian probability distribution, as illustrated on the right hand
side of Fig. 2.2.

X A
x(t) x A
A i :nl:
’\ -~ a |
:“ "' \ Fat l' \ {: O
- Al b s
X UU R >
U U I. Y RVERRY A -G p(x)
] VI ‘..' 11 r X
U=
Y k] Gaussian
le T -
< [l

t

Fig. 2.2 Time domain statistics

Example 2.1

Given a zero mean variable x (t) =a-cos (a)ot) , where @, = 27/T}, . Its variance is then given by
o2 = lim i?x2 (t)dt = lim l‘T[[a cos(a)Ot)J2 dt
Yo SeT 0 T T 0

Substituting T' =n -T{), where n is an integer, then

Ty 2 2
of:lim 1 n.f a cos 2—7[1,‘ dt =4
n—en-T, 0 T, 2
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Similarly, given a zero mean variable x(¢)=a-sin(@yt), where @, =27/T| . Its variance is

Ty 2 2
of:lim 1 -n-.f a sin 2—”15 dt -2
n—en T T, 2

0 0

then given by

Given a second zero mean variable comprising two cosine functions with different amplitudes and
frequencies, i.e.:

x(t) =ay -cos(myt)+a, - cos(ayt)
where @y =27/T; and w, =27x/T, . Itis easily seen that if 7} /T, =1 then

x(t)=(a; +ay)-cos(awit)
and thus, the calculation of its variance is identical to the solution given above, i.e.:
2
2 _ (a1 +ay)
o, =—"—
2
If Ty /T, #1 then the variance of x (¢) is given by
T

o2 = hmjl1 [alz cos® (@t) +2a,a, cos (it ) cos (ant) + a3 cosz(wzt)Jdt
0

T —oo

Substituting T' =n, -7} into the integration of the first two terms and T =n, - T, into the third,
where n; and n, are integers, then

Ty T

1 1
= lim —n, [ a?cos t)dt+ lim ——-n, | 2a,a, cos(wt)cos (myt
nlﬁwanl 1.[ 1 (“’1) n e T 1_[ 105 cos (@t ) cos (ayt ) dt

1 T2

+ lim —n, _[ aj cos® (ayt)dt

ng—=nyTy

It is seen that the first and the third integrals are identical to the integral of a single cosine squared
shown above, and thus, they are equal to a12 /2 and ag /2, respectively. The second integral,
containing the product of two cosine functions, may most effectively be solved by the substitution
t = mt = (27/T})t , in which case it is given by

9 T T sin27r[1—;:1] sin27z[1+;:1]
2% | L .f cos(f)-cos Z17 g | = %% 2/ 4 2
2z g T,

T
L T ogl1-h o1+ 11
T2 T2

or=Ll
a,ay s1n[ ”Tz] .. . |=0ifT}/T, is an integer unequal to 1
===~ 27 whichis

T Tl Tz

# 0 if T} /T, is not an integer
T, T
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Thus, the variance of x (¢) = a, - cos(@t)+a, - cos(ayt) is then given by

(ay +ay)’ /2 if @y/cp =1

2 2
o2 = %+a?2 if @,/@ is an integer #1

£+a1a2 . sin (27 @, /@) +ﬁ
2 T wo-wol/w 2

if @,/w, is not an integer

Similar results would have been obtained if the cosines had been replaced by sinus functions.
Thus, if for instance x (t) =a, - cos(myt)+a,-cos(myt) and @,/@, is an integer # 1, then the

variance of

x(t)= dx _ —a,@; -sin (@) — agm, - sin (ayt)

dt
is given by
2 2
o _(ram) | (-a.m) 2 a2 Gy
o; = = L+ 2
Ty 2 T
n
Likewise, the variance of the n* derivative of x (¢), f, (¢) = , is given by
2 2
2 n 1 on Qg
O' = .7+ -t
F=o 2 1% g

[lustrating ensemble statistics, a situation where N different recordings of a stochastic
process within a time window between 0 and T are shown in Fig. 2.3. These may for
instance represent N simultaneous realisations of the along wind velocity in space, i.e.
they represent the wind velocity variation taken simultaneously and at a certain distance
(horizontal or vertical) between each of them. Extracting the recorded values at a given

time from each of these realisations will render a set of data X, (t),k =1,...,N.On

this data set ensemble statistics may be performed. This is the type of statistics that
provides a stochastic description of the wind field distribution in space.

Another example of ensemble statistics is illustrated in Fig. 2.4.a, where the situation is
illustrated that N different observations of a stochastic process have been recorded, each
taken within a certain time window but in this case not necessarily at the same time. Each
of these time series is assumed to be stationary and Gaussian within the short term period
that has been considered. In wind engineering this may be an illustration of the situation
when a number of time series have been recorded of the wind velocity at a certain point in
space, each taken during different weather conditions. In that case one may only be
interested in performing statistics on the mean values and discard the rest of the recordings.
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Fig. 2.3 Ensemble statistics of simultaneous events

The statistical properties of the data set of extracted mean values will then represent
an example of long term ensemble statistics. Typically, the probability density
distribution of a data set of mean values may attain a shape that may be fitted to a
Weibull or a Rayleigh distribution as illustrated in Fig. 2.4.b.

Apart from fitting the data from a random variable to a suitable parent probability
distribution and estimating its mean value and variance (see chapter 2.1 above), it is the
properties of correlation and covariance that are of particular interest. These are both
providing information about possible relationships in the time domain or ensemble data
that have been extracted from the process. Correlation estimates are taken on the full
value of the process variable, i.e. on X (¢)=x +x(¢), while covariance is estimated from

zero mean variables x, (¢).
Given two realisations X, (t)=x, +x;(¢) and X, (t)=X,+x,(t), either two of the

same process at different time or location, or of two entirely different processes. Then
the correlation and covariance between these two process variables are defined by

1%
R,., =E[X,(t)- X, (t)] = lim — [ X, (¢)- X, (¢)dt (2.10)
0

T T
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Cov, ., =E [2,(£) x5 (£) ] = lim —jxl dt (2.11)

T—e T

Similarly, given two data sets of N individual and equally probable realisations that have
been extracted from two random variables, X; and X, , then the ensemble correlation

and covariance are defined by:

.1 X
R, ., =E[X, - X,] :%IE@NZ;X% Xy, (2.12)
Cov,yy = E[(Xl —x1) (X, —372”
.1 X _ _
:zlflgiﬁz(Xk _xl)'(X2k —xz) (2.13)

However, correlation and covariance estimates may also be taken on the process variable
itself. Thus, defining an arbitrary time lag 7, the time domain auto correlation and auto
covariance functions are defined by

R (7)=E[X(t)-X(t+7)]= %IE)IL%TX(t)X(t +7)dt (2.14)
Cov, () = E[x(t) x(t+7)] =Tli_r)rilTx(t)-x(t+r)dt 2.15)

These are defined as functions because 7 is perceived as a continuous variable. As long
as 7 is considerably smaller than T

E[X(t)|=E[X(t+7)]=% (2.16)
and thus, the relationship between R, and Couv, is the following

Cov, (7)=E[{X (t)-%}{X (t+7)-%}| =R, (r)-&> (17
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a) N independent short term realisations

X A X A
M —

>

t p(X)

b)  The probability of mean values
Fig. 2.4  Ensemble statistics of mean value recordings

There is no reason why 7 may not attain negative as well as positive values, and
since

E[x(t)-x(t—r)]=E[x(t—r)'x(t)]=E[x(t—r)'x(t—r+r)] (2.18)
then

Cov, (7) =Cov, (-7) (2.19)

Thus, Cov, is symmetric with respect to its variation with 7 .
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X(t)

\/\/\b( :
X(t+1)

x A x(t+7)
/ X(t)

e

”>
3

x(t) - x(t+1)

- UAM L

Fig. 2.5 The auto covariance function

~Y

As illustrated in Fig. 2.5 the auto covariance function is the mean value of the time
series multiplied by itself at a time shift equal to 7. Theoretically 7 may vary between

0 and 7, but the practical significance of Cov, (T) seizes to exist long before 7 is in the
vicinity of 7. The reason is that while it in theoretical developments is convenient to
consider x(t) as a continuous function, it will in practical calculations only occur as a
discrete and finite vector of random values x, , usually taken at regular intervals A¢ . If

T is large and A¢ is small, then the number of elements in this vector is N =T /At , in
which case the continuous integral in Eq. 2.15 may be replaced by its discrete
counterpart
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N-j
Cov, (t=j- At)=E[x(t) t+r] z Xpoioxp  (2.20)

from which it is seen that j must be considerably smaller than N for a meaningful
outcome of the auto covariance estimate. The same is true for the auto correlation
function in Eq. 2.14.

Example 2.2
Given a variable: x (¢) =a, -sin (@), @ =27/T; . Using the substitutions T' =nT; (where n

is an integer) and £ = (27[/ T )t , then the auto covariance of x is given by

nHWI’L 1

T
Cov, (7 )— hm Jx t+‘z’)dt—hmL { Jal sin(@yt)-a, sin (ot + oy7)dt
az 27 . R R az 27 R . .
=§ {E sinf -sin (£ + oy 7)df =§ J; [sinzt-cos(a)lr)+sint~cost ~sin(w1‘r)Jdt

2 27 : 27
=4 cos(oy7) J sin’ tAaltA+M J sin 2fdf
27 5 2 5

The first of these integrals is equal to 7 , while the second is zero, and thus:

2

Cov, (7) = %cos (ay7)

Since the variance of x (t) is Gf = al2 / 2 (see example 2.1), then the auto covariance coefficient
is given by:
Cov, (1)
Py (7) =——5—=cos(a7)

x

As canbe seen: p, (r=0)=1.

Similar to the definitions above, cross correlation and cross covariance functions may be
defined between observations that have been obtained from two short term realisations

X, (¢)=%; +x,(t) and X, (¢) =%, +x,(¢) of the same process or alternatively from

realisations of two different processes:

T
Ry x, (1) =E[ X, (t) X, (¢t +7)] =}iigo%jX1 (t)-X, (t+7)dt (2.21)
0
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T
Cov,., (7) = E[x1 (t) x5 (t +7)] = }ggo%jxl (t)-xy(t+7)dt  (2.22)
0

A normalised version of the cross covariance between the fluctuating parts of the
realisations is defined by the cross covariance coefficient

Cov, . (7)

Pr, (7) = (2.23)

O'xIO'xz

where o, and 0,, are the standard deviations of the two zero mean time variables.

Xy(t)

Fig. 2.6  Cross covariance of time series at positions y, (k =1,2,....,N)

If such cross covariance estimates are taken from a set of simultaneous realisations of
a process distributed in space, e.g. as illustrated in Fig. 2.6 where the N realisations of
the process is assumed to be taken at arbitrary positions y in the horizontal direction,

then a cross covariance function between realisations at distance Ay may be defined:
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Cov,, (Ay,7) = E[x (3,8)-x(y+Ay,t + Z')]
(2.24)

T —

T
= lim%jx(y,t)-x(y+Ay,t+T)dt
0

Obviously, Cov,, (Ay =0,7= 0) = 63 . In wind engineering such covariance estimates
will in general be a decaying function with increasing 7 or spatial separation As,
s=x,y or z, as illustrated in Fig. 2.7. The covariance function may attain negative
values at large values of As or 7.

Cov,(As,T)

As
Fig. 2.7  Typical spatial separation and time lag covariance function

As previously indicated, the statistical properties defined above may also be applied
to functions that are obtained from realisations of two different processes. Then, by

simple arithmetic, the variance of the sum of two zero mean variables, x; (t) and

x4 (t), is given by

Var (x; +x5) =E[(x1 +xy) - (21 + 2, )}

(2.25)
=Var(x,)+Var(xy)+2-Cov(x; -x,)

Similarly, the variance of the sum of N different variables, x; (¢), is given by

N
Var(inJ:E[(xl + Xy ot Xy 2y ) (2 Xy ot +...+xN)J
i-1
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N N N N N
= Var| Y x; =3 Cov(x; -x;) =YY p(x;x;) 0,0; (2.26)
i-1 i1 i1

If x; (¢) are independent (i.e. uncorrelated) then the variance of the sum of the processes

is the sum of the variances of the individual processes, i.e.

9 . .

o-. wheni= N N

if Cov(xi -xj) =9 ¥ J then Var in = Zof, (2.27)
0 wheni #J i=1 i1

Example 2.3
Given an ensemble variable: x = a -sin (a)t + 6) , where the probability density distribution of &

. 1 for0<0<2x
is: p(0)=127
0 elsewhere

The ensemble covariance of x; at atime lag 7 is then given by

Cov, (1) =E[x(6,6) % (t+7,6)] = | p(6)-%(6,6) x(t+7,6)de
:Ti-asin(at+9)-asin(a)t+a)r+9)d9

:% Jzzsin(wt+¢9).[sin(wt+9)~cos(a)f)+cos(wt+9).Sin(wT)Jde

2 2r . 2z
:g— cos(wr) I sin2(at+9)d0+w 'f sin2 (et +6)do
0 0

T
which, after the substitution b=wt+06 , renders

wt+2r

2 at+2r A
j sin 20d 9
ot

Covx(r):%cos(an') .f sin? 6d6 +

ot

sin (wr)

As shown in example 2.2, the first of these integrals is equal to 7 , while the second is zero, and
thus:

2
Cov, (7) = %cos (1)
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There are still other types of time domain and ensemble statistics that are of great
importance in wind engineering and that have not yet been mentioned. These comprise
the properties of threshold crossing, the distributions of peaks and extreme values, and
finally, the auto and cross spectral densities, which are frequency domain properties of
the process, i.e. they are frequency domain counterparts to the concepts of variance and
covariance. These are dealt with below.

2.3 Threshold crossing and peaks

In Fig. 2.8 is illustrated a time series realisation x(t) of a Gaussian stationary and

homogeneous process (for simplicity with zero mean value), taken over a period T. First

we seek to develop an estimate of the average frequency f, (a) between the events that
x(¢) is crossing the threshold a in its upward direction.

Let a single upward crossing take place in a time interval At that is small enough to
justify the approximation

x(t+At)=x(t)+x(2) At (2.28)
The probability of an up crossing event during At¢ is then given by
Plx(t)<a andx(¢)+%(t) - At>a | =, (a)- At (2.29)

from which it follows that

£ (a) = lim im{ [ pa (x,x)dx}dx 2.30)

A0
DOAEG| i

where p,. (x,x) is the probability density function for the joint events x (t) and x (t) .

As At — 0 the following approximation applies

[ Pu(x,8)dx = -At-p, (a,i) 2.31)

a—x-At
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“hlnaan e annlana
R e

Fig. 2.8  Threshold crossing and peaks

For the type of processes covered herein it is a reasonable assumption that the joint
events of x (t) and % (t) are statistically independent, and thus,
Py (x,x) =D, (x) Dy (x) . The average up crossing event that x (t) =a is then given

by
(2.32)

@)= [+ pus (@,8)ds = p, (a)- [ - py (¥)d

For each threshold up-crossing there is a corresponding down-crossing event, i.e
f. (+a)=f, (—a), although there may be several consecutive positive or negative peaks

in the process. Assuming that both x and x are Gaussian, then

exp| ——| —
p 0 2ro; x
2 2
oy 1{ a 1( a
1 o (2.34)

where : fx (0) =5 o
X
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is the average zero up—crossing frequency of the process (see Eq. 2.95). If x (t) is also
narrow banded, such that a zero up crossing and a peak x, (larger than zero) are

simultaneous events (as shown for the process in Fig. 2.8), then the expected number of
peaks x, >a, is f; (ap ) -T', while the total number of peaks is f, (0)-7T" . Thus

Pr(x,<a,|=P(a,)=1- 7(0) (2.35)

_ _d | hKle)| 1 dfila,)
P(a,)= g Pla) =g, Y0 TR0 da

p
:>p(ap) :a—Zexp ——(a—pJ (2.36)

Thus, the probability density p(a p) of peaks to a narrow banded Gaussian process is a

Rayleigh distribution (see Eq. 2.7). The distribution is illustrated on the right hand side
of Fig. 2.8 (see also Fig. 2.1).

2.4 Extreme values

Fig. 2.9.a shows a collection of N short term time series, each a short term realisation of
the fluctuating part x (¢) of a stochastic variable X (¢) = +x (). It is assumed that they

are all stationary and ergodic, and for the validity of the development below it is a
necessary requirement that they are fairly broad banded. From this ensemble of
realisations it may be of particular interest to develop the statistical properties of extreme
values, as illustrated in Fig. 2.9.b. Referring to Eq. 2.33 and Fig. 2.8, an extreme peak

value a p =% within each short term realisation occur when

max

(f(a,)] > 2.37)
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<« X,
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a)

N short term independent realisations

XA

~Y

b)

The distribution of extremes

Fig. 2.9  Distribution of extreme values

Let therefore

K=F (%) T (2.38)

be an ensemble variable signifying the event that x(O <t< T) exceeds a given value

X,.. - The probability that x occurs only once within each realisation is an event that

coincides with the occurrence of x,,. , i.e. they are simultaneous events. They are rare

events at the tail of the peak distribution given in Eq. 2.36, and for the statistics of such

events it is a reasonable assumption that they will also comply to an exponential
distribution, i.e. that
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P.(LT)=P,  (%pu|T)=exp(-x) (2.39)

Xmax

Introducing Eqgs. 2.33 (with @ =x_, ) into 2.38 and solving for x then the

max max ’

following is obtained

1
Xmax = Oy {2 ln[fx (0)T:| —-2.In K'}E

. (2.40)
0. 2-ln[ﬁc(0)'TJ{l_W}

where the approximation (l—x)n ~1-n-x has been applied, assuming that
In [fx (0)-T7 ] is large as compared to Inx . Thus, observing that x . =0 corresponds

to K=oco, while x_ ., =oco corresponds to x=0, the mean value of x .,

X

may be
estimated from

Iln/(- exp(-K)dx

X = . . . . T _ _0
= Xpax =0y 4/2 ln[ﬁC(O) T} gexp( K)dx 2-ln[fx(0)-T] (2.41)

Thus, the mean value of x . is given by

£ oo=0. 421 0)-T Y 2.42
R A AN A TES -

where y = —Iln Kk -exp(—k) = 0.5772 is the Euler constant. Similarly, it may be shown
0

that the variance of x ., is given by

2
2 4 2
max12.1n[f, (0)-T] * @4
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Fig.2.10 ~ Plots of k, and o, /o

Given a stochastic variable X (t)=x +x(¢), the expected value of its largest peak
during a realisation with length 7' may then be estimated from
Xmax = E+kp "0y (2.44)

where the peak factor kp is given by

k, =2 In[f, (0)-T ]+ 2-1n[}i/(0)-T] (2.45)

For fairly broad banded processes this peak factor will render values between 2 and 5.
Plots of %, and o, /o, are shown in Fig. 2.10. It should be acknowledged that when

x(t) becomes ultra narrow banded then kp —>\/§, because for a single harmonic

component

x(t)=c, -cos(at), 0<t<T (2.46)
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the variance
T
2

o; = lim%j[cx -cos(a)xt)]2 dt

X
T >
)

2 2
= lim ‘n- j { cos(—t]:l dt = &
Timyo0 71 - T, 2

and thus, for such a process x.,,. =c, =0, -/2 . Therefore, Eq. 2.45 is only applicable

(2.47)

for fairly broad banded processes.

2.5 Auto spectral density

The auto spectral density contains the frequency domain properties of the process, i.e. it
is the frequency domain counterpart to the concept of variance. The various steps in the
development of an auto spectral density function are illustrated in Fig. 2.11.

Given a zero mean time variable x(¢) with length 7 and performing a Fourier
transformation of x(t) implies that it may be approximated by a sum of harmonic

components X, (@,,t), i.e

N —b.
x(t)= lim ZXk (@, ,t) where {ZZ ZI;”A/i (2.48)

The harmonic components in Eq. 2.48 are given by
X, (m,t)=c, -cos(amt+¢,) (2.49)

where the amplitudes ¢, =/aj +b; and phase angles ¢, =arctan(b,/a,), and where

the constants a, and b, are given by

a, 2 T cos w,t
=— 2.
{bk} T * (t)L,in a)kt}dt 2.50)

As shown in Fig. 2.11 the auto-spectral density of x(¢) is intended to represent its

variance density distribution in the frequency domain. Hence, the definition of the
single-sided auto-spectral density S, associated with the frequency @, is
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E|X?| o2
Sx(%)=—£w ] =Aia’; 2.51)

which, when T becomes large, is given by

¢, cos(ayt +, ) dt 2.52)

Introducing the period of the harmonic component, T, =27/, , and replacing T' with

n-T, , n — o, then the following is obtained

1 Tk 2 2 C2
S, (a)k)z lim —- ——n '([{ck COS(E t+(pk):| dt = 2Aka) (2.53)

In Fig. 2.11, the arrival at S, (@, ) is shown via the amplitude spectrum (or the Fourier

amplitude diagram) to ease the understanding of the concept of spectral density
representations. It is seen from this illustration that it is not possible to retrieve the parent
time domain variable from the spectral density function alone, because it does not
contain the necessary phase information (unless a corresponding phase spectrum is also
established). From its very definition the spectrum contains information about the
variance distribution in frequency domain, and from Eqgs. 2.51 and 2.53 it is seen that

ci _
o’ —]}TILILZO'X]Q —]}]12:02 }}g:@ ZS Aw (2.54)

In a continuous format, i.e. in the limit of both N and T approaching infinity, the single-
sided auto-spectral density is defined by

S, (@) = lim lim M

(2.55)
T —o0 N —c0 Aw

where X (w,t) is an arbitrary Fourier component of x(¢). In the limit Aw — dw, and

thus, the variance of the process may be calculated from

2 _
o, =

S, (w)dw (2.56)

X

Se— 3
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Parent variable x(t): var(x) = 6,2

x(t) T\ = E[x*(t)]
AN A '\/\ > t = i lsztclt
| J U V'V \ = lim ToX()

T-oo

5
x(t) = Xx, where x,(t) = c,cos(®,t+0,)
k=1

0,2 =cl2
91

;A ", T, =210

1 2 ]L 1 1T 6,2= Y0,
(FHON ™ L\ N > t k

. N N N .2

2 22y 2k
C, 0, /A VA Ve N =0 =L

€303

Xy
€4y t Def.: )
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C5 05 t 2A®

v

Amplitudes of The spectral density of x:

harmonic components
(amplitude spectrum): S,(®)

S, ()4 ————

k=1|2345
®,

> M

ij((o)dm = 0,2 = var(x)

Fig. 2.11  The definition of auto spectral density from a Fourier decomposition

The development above may more conveniently be expressed in a complex format.
Adopting a frequency axis spanning the entire range of both positive and (imaginary)
negative values, introducing the Euler formulae
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[ei”} {1 i}{cosat}
. = . . (2.57)
o lX 1 —i||sinax

(where i = +/—1) and defining the complex Fourier amplitude

then: x(t)= iXk (p,t) = dy, (@)% (2.59)

Taking the variance of the complex Fourier components in Eq. 2.59 and dividing by
Aw,

E|X; X, T (dye 'k |(d),e %!
[ J _ lj ( )( )dt _ 4y, (2.60)
Aw T 0 Aw Aw
which may be further developed into
DE[X;.Xk]Zl(akﬂ.bk).(ak—i.bk): ¢ 6
Aw 4 Aw 4Aw

It is seen (see Eq. 2.53) that this is half the auto spectral value associated with @, . Thus,
a symmetric double-sided auto spectrum associated with —@; as well as +@;, may be

defined with a value that is half the corresponding value of the single sided auto-
spectrum. Extending the frequency axis from minus infinity to plus infinity and using the
complex Fourier components X, given in Eq. 2.59 above, this double sided auto

spectrum is then defined by

E[X X ]_dd, _ o

S (£ = = =
« (te) Aw Ao 4Aw

(2.62)

which, in the limit of 7" and N — e, becomes the continuous function S, (*@), and

from which the variance of the process may be obtained by integration over the entire
positive as well as negative (imaginary) frequency range
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ol = [ 8, (tw)dw (2.63)

—oco

Thus, the connection between double- and single-sided spectra is simply that
S, (w)=2-S, (tw). Assuming that the process is stationary and of infinite length, such

that the position of the time axis for integration purposes is arbitrary, then it is in the
literature of mathematics usually considered convenient to introduce a non-normalized
amplitude (which may be encountered in connection with the theory of generalised
Fourier series and identified as a Fourier constant)

T .
ay, (@)= [x(t)-eHdt =T -d, (2.64)
0

in which case the double-sided auto-spectral density associated with e, is defined by

a-d, (@/T)(q/T) 1 .
() ==71, 27T onT K (265)

In the limit of 7' and N — e this may be written on the following continuous form

. . 1 «
+o) = . ‘
S, (o) %grolo }]ILITDIO ST a (o) a(o) (2.66)

and accordingly, the single sided version is given by

8, (@) = lim—= 0" ()-a() (2.67)

T e
where it is taken for granted that N is sufficiently large. The auto-spectral density
S, (w) is defined by use of circular frequency @ as shown above. It may be replaced
by a corresponding definition S, (f) using frequency f (with unit Hz = sek™1). Since
S, (w)-Aw and S, (f)-Af both represent the variance of the process at @ and f,
they must give the same contribution to the total variance of the process, and thus

S, ()N =8, (0)-Aw =S, (0)- (27 Af)

=8, (f)=27-8, (w) = lim hm%-a*(f)-a(f) (2.68)

T —oo N —oo
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2.6 Cross-spectral density

The cross spectral density contains the frequency domain and coherence properties
between processes, i.e. it is the frequency domain counterpart to the concept of

covariance. Given two stationary time variable functions x(t) and y(t), both with
length T and zero mean value (i.e. E[x (t)] = E[y (t)J =0), and performing a Fourier
transformation (adopting a double-sided complex format) implies that x(¢) and y(¢)

may be represented by sums of harmonic components X, (@,,t) and Y, (@,,t), i.e

{x (t)} . §:|:Xk (@t )} (2.69)

F Y (@2)

where
Xk(a)k,t) _l an (wk) -ei' an an (wk) - lim T/2 x(t) ~e_i'a)t
{wk,t)}‘TLYk(a% } o ayk<a%)}‘flew_ﬁ/iy(t)} e

and where @, =k-A® and Aw=27/T . The definition of the double-sided cross-

spectral density S, associated with the frequency @, is then

E[X, Y] 1 .
Ao 27T X

S,, (t@,) = -ay, (2.70)

Since the Fourier components are orthogonal

S, (@,,t)- Ao wheni=j=Fk @7

E[Xi(a)i,t)-Y (wj,t)] ={

0 wheni#j

it follows from Eqgs. 2.69 and 2.70 that an estimate of the covariance between x (t) and

y (t) are given by

:&iﬂg(b‘[xk Y,])

= Cov,, —hm ZS (t@,) Ao (2.72)
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In a continuous format, i.e. in the limit of both N and T approaching infinity, the double-
sided cross-spectral density is defined by

E[X" (1) Y (wt)]
+ = 1 1
_a)) 71‘12016}]12; Aw (2.73)

S

o

. . 1 =«
= Jim lim L0} (0)-ay ()

The single sided version is then simply

S, (@) =2-8,, (+@) = lim lim %a; (@)-ay (o) (2.74)

T —o00 N —e0

while the corresponding single-sided version using frequency f (Hz), is defined by

Sy () =275,y (@) = lim lim 2. (f)-a, (f) (2.75)

T —eo N —e0

Thus, the covariance between the two processes may be calculated from

Couv,, = [ 8,, (t0)dw=[S, (0)do=[S,, (f)f (2.76)
—o 0 0

The cross-spectrum will in general be a complex quantity. With respect to the frequency

argument, its real part is an even function labelled the co—spectral density Coxy (a))

while its imaginary part is an odd function labelled the quad—spectrum quy (a)) , L.e.
S,, (@) =Co,, (w)-i-Qu,, (o) (2.78)

as illustrated in Fig. 2.12. Alternatively, Sxy (a)) may be expressed by its modulus and

phase, i.e.
Sy (@) =[Sy ()] 279)

where the phase spectrum ¢, (@) = arctan [quy (w) / Co,, (a))] :
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Fig. 2.12  Cross spectrum decomposition into co-, quad-and phase spectra

2.7 The connection between spectra and covariance

Auto-spectra S, (@) may also be calculated from the auto covariance function Cov, (7),
see Eq. 2.15. Assuming that x (t) is a stationary and zero mean stochastic variable, the

following applies:

N

T
jx(t)e_iatdtJ
0

* E {l?x(t)eiwtdt]-{
S, (w) = lim E[XkaJ = lim o

T —oo Aw T —oo 2z /T

TT
. 1 —iw(tg-t
Z%g@ﬁggE[X(ﬁ)X(tz)Je (2 l)dtldtz

TT ,
=8, (@)= Jim % [ [ Cov, (ts —t))-e M2 )y gy, (2.80)
00
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Fig. 2.13  Substitution of variables and corresponding integration limits

Replacing ¢, with ¢ + 7, and changing the integration limits accordingly, implies (as
illustrated in Fig. 2.13) that

TT oT TT-t
[[andt, = | [dudr+[ | dyde (2.81)
00 -T -t 00

and thus

T . TT-r .
j Cov, (7)-e*“"dtidr +I J. Cov, (7)-e " dtdr
-7 00

T
(1 + lj -Cov, (7)-e“*dr +I [l - lJCovx (7)-e7“Mdr
T T 0 T

Ly M '
=8, (w)= lim — j (I—TJCovx(r)-e_“"’dr (2.82)

Provided the integral under the auto covariance function is finite, it is then seen that in
the limit of T' — oo, the following is obtained

+oo
S, (@)= % [ Cov, (z)-e7*"dr (2.83)
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This shows that the auto spectral density is the Fourier transform of the auto
covariance function. Vice versa, it follows that the auto covariance function, which is the
Fourier constant to the spectral density, is given by

+o0
Cov, (7)= [ S, (@)-¢"dw (2.84)

Similarly, the cross covariance function together with the cross spectral density will also
constitute a pair of Fourier transforms:

1+ P +oo )
Sxy(a))=g I Cov,, (7)-¢“dz and Cov,,(7)= _[Sxy(a))-em”da) (2.85)
2.8 Coherence function and normalized co-spectrum

The coherence function is defined by

(2.86)

If x(¢) and y(t) are realisations of the same process, then S, (®) =S, (@) and the

cross-spectrum S, (@) =S, (@) is given by

- Max

Sye (@) =8, (@) [Colr,, (@) -7 (2.87)

Coh,, () is called the root-coherence function and ¢, is the phase spectrum (see

Eq. 2.79) . In the practical use of cross-spectra all imaginary parts will cancel out, and
thus it is only the co-spectrum that is of interest. Therefore, a normalised co-spectrum is
defined

W)= — = (2.88)
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Again, if x(t) and y(t) are realisations of the same stationary and ergodic process,

then S, (@) =S, (@) and the real part of the cross-spectrum is given by

Re[S,, (0)]=8, (»)-Co

o (@) (2.89)

2.9 The spectral density of derivatives of processes

It may in some cases be of interest to calculate the spectral density of the time
derivatives [e.g. x(t) and a'c'(t)] of processes. In structural engineering this is

particularly relevant if x(t) is a response displacement of such a character that it is

necessary to evaluate as to whether or not it is acceptable with respect to human
perception, in which case the design criteria most often will contain acceleration
requirements. Since (see Eq. 2.59)

£(0)= X%, (00) = ioy - () ¢ 290)
f(t)=ng(%t)=g(iwk V-dy (@) e (2.91)

and the double sided spectral density in general is given by the complex Fourier
amplitude multiplied by its conjugated counterpart (see Eq. 2.62), then

[imd,, (@, )] liod, (@)] . dyd,

S; (ta,) = v =0~ E =4S, (t,)
# (2.92)
iw, ) d, A .
P (wkﬂm[(wk) (@0)] e g (e

Similarly, cross spectral densities between a fluctuating displacement and its
corresponding velocity and acceleration are given by

S.. (t0,) = [dy (@) ] A[;wkdk(wk)] _io, dijf _i0,S, (+a,)

Sm(mk)z[dk(%)] .[g%) dk(wk)}:—wfdi—d;}wfsx (ta,) |+ (2.93)
iod, (@,)] | (i) .

5o (1) L )] A[;wk) (%)}:i@dﬁ:mﬁ%(w
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In the limit of 7" and N — < this may be written on the following continuous form

S, (20) Sy (o) Sy(tw)] | 1 o o
S; (o) S, (o) |= & i |-S,(r0) (294
sym. S; (o) sym. o*

Because S, (ia)) is symmetric it is seen that for a stationary stochastic process

Cov, | 7|i® ' |0
{COUJ_ | st} Sx(iw)dw—{o} (2.95)

—oco

Thus, the spectral density of time derivatives of processes may be obtained directly from
the spectral density of the process itself. Since the single sided spectrum is simply twice
the double sided, Eq. 2.94 will also hold if S, (+w), S; (@) and S; (+w) are replaced

by S, (@), S; (w) and S; ().
From S, (w) and S, (w) the average zero crossing frequency f,(0) of the process
x(t) may be found. Referring to Eq. 2.34, 2.56 and introducing S; (@) = @*S, (@), the

following applies:

1/2

wa)QS w)do
Lo 1 { . ()
2r

L |H (2.96)

| =5
st (w)dw Ho
0

spectral moment 4, = ja)” ‘S, (w)dw has
0

where for convenience the so—called n®*

been introduced.

2.10 Spatial averaging in structural response calculations

A typical situation in structural engineering is illustrated in Fig. 2.14. A cantilevered
tower—like beam is subject to a fluctuating short term (stationary) and distributed wind
load. The problem at hand is to predict a load effect, e.g. the bending moment at the
base. It is for simplicity assumed that the beam is so stiff that it is not necessary
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to include any dynamic amplification. It is taken for granted that the wind load may be
split into a mean and a fluctuating part, i.e.

Dyr = q, (x) +q, (x,t) 2.97)

where g, (x) is a deterministic quantity and g, (x,t) is a stochastic variable.

Correspondingly, the load effect is split into a mean and a fluctuating part

M,,=M+M(t) (2.98)
q,(x,t)dx Mot A M(t)
— >
M-

t
X —

>

—>y t

<
(A M+M(t)

Fig. 2.14  Cantilevered tower type of beam subject to fluctuating wind

Since M may be obtained from g, (x) alone it is then also a deterministic quantity.

Thus, the prediction of M only involves the calculation of a simple static load effect,
and it will not be pursued herein. The instantaneous value of M (t) involves the same

simple static calculation, but M (t) is a stochastic variable, and it is only its statistical
properties (i.e. its variance and auto spectral density) that can be predicted. From Fig.
2.14 it is readily seen that

M(t)zTGM (x)-qy (x,¢)-dx (2.99)

where L is the total (or flow exposed) length of the beam and Gy, (x) is the influence
function for the bending moment at the base [in this case Gy, (x) = x ]. The variance of

M (¢) is then given by
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2
17 2 17
2 _ 1 :
oy :%IEQQF.([[MU)J dt :%grifi b[GM (x)-q, (x,t)-dx} dt  (2.100)

It is desirable to perform statistics only on g, (x,t), as this is the only time domain
variable on the right hand side of the equation. This may be obtained by splitting the

squared integral into a product of two identical integrals, only made distinguishable by
letting them contain different space variables, one labelled x; and the other x,, Thus,

the following is obtained

EEAL
oy = hmFJ‘ IGM (x1)-qy (x1,t) - dixy

T —eo

L
: _[GM (xz)'qy(xz’t)'dxz}dt
(2.101)

0

LL
,”GM x1) Gy (x9)- {hm—fqy xp,t)-q, (%g,t )dt:ldxldx2
00

Recalling that the cross covariance function of g, (x,t) is given by

17
Covqu (Ax,7 = 0)_71'12010 '([qy (x,8)-q, (% +Ax,t)dt

r (2.102)
.1
= lelirifgqy (x1,t)-q, (xp,t)dt = Cov,, (Ax)
where the separation Ax = |x2 —x1| , and introducing the covariance coefficient

Pa, (Ax) :Covqy (Ax)/o?

ay° it is seen that Eq. 2.101 simplifies into

2 _
UM_

‘<
'—o

[ G (21) -Gy (x5)- Py, (Ax)dax,dz, (2.103)

The square root of the double integral

LL 1/2

Tur =| [[Gur (1) Gy (%2) - py, (Ax)dxydxcy (2.104)
00

is in wind engineering often called the joint acceptance function, because it contains the
necessary statistical (i.e. variance) averaging in space. Thus,
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on =0y, -y (2.105)

Similarly, the auto spectral density of M (t) may be obtained by taking the Fourier

transform on either side of Eq. 2.99

L
ay (0) =[Gy (x)-a, (x,0)-dx (2.106)
0
and applying Eq. 2.67
Sy (@)= lim —Lai; (0)-ay (o)
L L
—%im— [IGM (x) ag, (x,a))-dx]-[J.GM (x)-a, (x,0)d ]
- 0 0
LL
:IIGM (1) Gy (x5) {%12010— a, (x,0) ay, (xz,a))}alxldx2
00
LL
= Sy (@) = [[ Gy (x1)- Gy (x5)- S, (Ax,0)dx,dx, (2.107)
00

where qu (Ax,w) is the cross spectral density of the fluctuating part g, (x,t) of the

distributed load, and Ax =|x,—x;| is spatial separation. Integrating over the entire

frequency domain will then render the variance of M (¢):

j IGM (x1)- Gy (x5) 'qu (Ax, w)dxydoc, }da)

s IR . (2.108)
=0g, 'E‘;LI'([GM () Gy (x2).qu (Ax,a))dxldxz}dw

where o, is defined above and §qy (Ax,w) is the normalised (but not non—

dimensional) version of qu (Ax,0),i.e.

A

S,, (Ax,0) =8

. , (Ax,0)/ 07 (2.109)

q

Introducing £ =x/L and correspondingly Ax = |9€1 —9€2| , then a normalised frequency

domain version of the joint acceptance function may be defined by
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11 1/2
Iy (@) = DJGM (%) Gar (22)-S,, (Aae,a))doéld@] (2.110)
00

in which case the following is obtained:

1/2
Oy =0y, L{jjfw(a))dw} (2.111)
0

Under ideal conditions Eqs. 2.111 and 2.105 should render identical results. Obviously,
Eq. 2.105 is the simpler choice, as 2.111 contains frequency domain integration as well
as spatial averaging.

The necessity of a transition from the product of two line integrals into a volume
integral in Eq. 2.101 (and similarly in Eq. 2.107), is better understood if the integral is
replaced by a summation, as illustrated in Fig. 2.15.

Le., the load is split into N concentrated loads

Q. (1) =q, (x,t) Ax 2.112)
|:M1 Mym==-- My======- My ]
Q) —>»| | M, 2 MM T i
N M, MM, :M1Mn :M1MN
! | |
1 M, |  ¢-—-——0¢-——-————p————
: :2 IM,M, |M22 IM,M, IM,M,
R I I T |
|
M _________________
i Ly, " Tmmm Tmmmz _TMmMn 4?Mmm,u
e N
Q(t) —>»
S o i
M L e T s
my (A T TN T TR TR TR TR

Fig. 2.15 Calculation of base moment in cantilevered tower type of beam subject to
fluctuating wind
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(see Fig. 2.14 and Eq. 2.99, and assuming for simplicity that Ax is a constant), each
rendering a base moment contribution

M, (t)=Gy(x;,) @, (¢) (2.113)

such that the total bending moment at the base is

M(t)=> M,(¢) (2.114)

Its variance is then given by (see Eq. 2.100)

o2 = %ﬂ—j[M ()] dt =1im%j{éMk (t)} dt

T —

T

=0y = Zth—[ o ()M, ()t (2.115)

mama =Ty

As can be seen, the transition from a single summation to a double summation is
necessary to capture all the cross products. Introducing Eqs. 2.112 and 2.113, the
following is obtained:

a@=ég;g11[aM<xn>qy<x O G (1), o ) i
:a}lz(a J{;iGM (m)-pqy(Ax)} (2.116)

where Py, (Ax) is the covariance coefficient to the distributed load, and where

= |xm —xn| . The expression in Eq. 2.116 is equivalent to that which was obtained in
Eq. 2.103.
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Example 2.4

Considering the cantilevered beam shown in Fig. 2.15, then the reduced variance of the base
moment fluctuations is given by:

2
O-qu n=lm=1

2
Oy 1 88 0 oA s N
:FZ ZGM (xn)'GM (xm)'pqy (Ax)
where Gy, (£)=Gy/L=x/L=%, Ax=|x, -x,| and Af=Ax/L. Assuming that the
covariance coefficient (Ax)zexp(—Ax/zLu) and setting for simplicity L, =L, then
Pa, (Ax)=exp(-A%). Choosing a reduced integration increment Ax/L=0.2 and

corresponding position vector 32=[0.1 0.3 05 0.7 O.9]T then the influence function

multiplications GM (%,) éM (#,) are given by

| 0.1 0.3 0.5 0.7 0.9

0.1 0.01 0.03 0.05 0.07 0.09

0.3 0.03 0.09 0.15 0.21 0.27

Gy (& 0.5 0.05 0.15 0.25 0.35 0.45
M xm)

0.7 0.07 0.21 0.35 0.49 0.63

0.9 0.09 0.27 0.45 0.63 0.81

The covariance coefficient Py, (Ao%) is given by:

Py, (A%) : £,
| o1 0.3 0.5 0.7 0.9
0.1 1 0.82 0.67 0.55 0.45
0.3 0.82 1 0.82 0.67 0.55
i, 0.5 0.67 0.82 1 0.82 0.67
0.7 0.55 0.67 0.82 1 0.82
0.9 0.45 0.55 0.67 0.82 1
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The inner product G (£, )- Gy, (aém)-pqy (A%) is then:

| n] 1 2 3 4 5
m CA;M(Den)éM(gem)pqy (M)
1 0.01 0.025 0.034 0.039 0.041
2 0.025 0.09 0.123 0.141 0.149
3 0.034  0.123 0.25 0.287 0.302
4 0.039  0.141 0.287 0.49 0.517
5 0.041  0.149 0.302 0.517 0.81

As can be seen, the inner product GM (aﬁn)éM (fm)~pqy (At) is symmetric about the

diagonal m =n and increasing with increasing distance from the base of the beam. The reduced
variance of the base moment fluctuations is given by:

2
[ Tu ] =5%[0.01+O.09+0.25+0.49+O.81+2-(0.025+0.034+0.039+0.041

+0.123+0.141+0.149+0.287 +O.302+O.517)] =0.2

Thus, the standard deviation of the base moment is given by

= 0y =0.45-0, -L*

(See further calculations in Chapter 7.3.)




Chapter 3

STOCHASTIC DESCRIPTION OF
TURBULENT WIND

The description of the wind field given below is only intended to provide the theoretical
basis that is necessary for the ensuing calculations of structural response. More compre-
hensive descriptions have been presented by Simiu & Scanlan [4] and by Dyrbye &
Hansen [5], where guidelines with respect to the choice of typical input parameters to the
stochastic description of the wind field may be found. Such information has also been
given by Solari & Piccardo [6]. The most comprehensive source of wind engineering
data is provided by Engineering Science Data Unit [7]. Basic theory of turbulence may
be found in many text books, see e.g. Batchelor [8] and Tennekes & Lumley [9]. As
shown in Fig. 1.3.a the wind velocity vector at a certain point is described by its compo-

nents (see Eqs. 1.2 — 1.4) in the Cartesian coordinate system (x,y,z)f with x, in the

main flow direction and z, in the vertical direction. It is taken for granted that the wind

field met by the structure is stationary and homogeneous within the time and space that
is considered. A statistical description of the wind field comprises three levels: the long
term variation of the mean wind velocity, the short term single point time domain varia-
tion of the turbulence components, and finally, the short term spatial distribution of the
turbulence components.

3.1 Mean wind velocity

The statistical properties of the mean wind velocity V (zf) are required in order to estab-

lish a basis for the calculation of structural design load effects during the weather condi-
tions that have been deemed representative for the purpose of obtaining sufficient safety
against structural failure. A design check with respect to ultimate structural strength will
only require information regarding the wind field properties under a characteristic ex-
treme weather condition, but the properties under several representative weather
conditions are required if vortex shedding may occur. If a fatigue design check is
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relevant even further information is required with respect to the wind climate on the
construction site. Thus, mean wind statistics must be based on data covering numerous

meteorological observations over several years, as it is the values of V(zf) under a

large variation of weather conditions that are of interest (or ideally under any possible
weather condition at the site in question). Such statistics are usually performed on the

mean wind velocity at z, =10 m and averaged over a period of 7' =10 min. A typi-

cal instantaneous wind velocity profile in the main flow direction is illustrated on the left

hand side of Fig. 3.1, together with the mean velocity and turbulence variation with z, .

A zZ A

c,(z)
V(z))

Fig. 3.1  The wind velocity and turbulence profiles

A theoretical approach renders a natural logarithmic profile for the height variation of
the mean wind velocity (first shown by Millikan [30])

Ry -ln[z—f] when z, >z
) f min

Violz z
Vio (%) - 0 3.1)
VlO (10) b1 Zmin
r - In| =% | whenz, <z,
20

where the index 10 has been added to V, indicating an averaging period of 10 minutes,
while &y, 2, and z;

o are parameters characteristic to the terrain in question.

The height z_;, has been introduced because such a velocity profile has a limited va-

lidity close to the ground, where turbulence and directional effects prevail.
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2 is usually called the roughness length. It coincides with the height at which the ve-
locity variation according to Eq. 3.1 is zero. Typical values of k; and z,
varies from about 0.15 and 0.01 for open sea and countryside without obstacles to about

0.25 and 1.0 for built up urban areas. Corresponding values of z_, varies between 2

and about 15 m. (Other profiles, e.g. the power law profile, may be found in the
literature.)
Any statistical properties related to the mean wind velocity is in the following associ-

ated with Vj, (zref) , where z,,, is a chosen reference height. In general, z,,, =10 m as
mentioned above, but for a bridge whose main girder is located at a certain height above
the sea or terrain, z,, will often be chosen at this height. To simplify notations
Vio (Zref) is set equal to V, or V, for the remaining part of this chapter. The indexes r

and a indicate whether the relevant statistical calculations have been performed on the
parent population or on a reduced population of annual maxima. Data from a large popu-
lation of parent observations may usually be fitted to a Weibull distribution, i.e. the cu-
mulative and corresponding density distributions are given by

P (V. <V,p)=1-0a(p) exp —{ﬂ—

(3.2)

7)1 7(9)
p.(V,9) _db _ale) 7(p) '{ﬂ‘(/(p)} - exp {ﬂl}

where ¢ is the main flow direction and « ((p) and S (¢) are parameters to be fitted to

the relevant data. If the directionality effect is omitted, i.e. for omni-directional wind, the
data may usually be fitted to a Rayleigh density distribution

2
174 1
p-(V) —V—n%-eXp _E(V_] (3.3)

where V, is the velocity at the apex of the distribution, as illustrated in Fig. 3.2. Thus,
the probability 4 of exceeding a certain limiting value V (see Fig. 3.2) is given by
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2
u=P (V.>V,)=1-P (V. <V,)=exp —%[—SJ

=V, =V, J2lnu

Taken from the entire population of observations, independent of direction, V, is then

34

the velocity that has a probability & of being exceeded.

u(t) A VA v
1
R
[ V,
V= E[U(t)]
> T =10 min o Vi -————-—
’]
> > >
t p.(V) Pa(V)

Fig. 3.2 The probability density distribution of the mean wind velocity

For a suitably small value of x, V, may be interpreted as what can be expected to be

representative under severe weather conditions on the site. However, this is usually not
considered the appropriate procedure for singling out a characteristic mean wind velocity
for design checks against ultimate structural failure. For the purpose of structural design,
the mean wind velocity that corresponds to an extreme weather condition with a certain
small probability of occurrence is rather based on a limited data set of annual maxima,
V., , as illustrated on the right hand side of Fig. 3.2. This data is usually dealt with in the

form of the mean wind velocity pressure gy =pV?2/2 and fitted to a Fischer — Tippet

Type I distribution

P,(qv, <av)= exp{—exp(— q"ﬂ_ aﬂ (3.5)
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where a=¢qy —y-f and S = (x/g/ﬂ') -0, , and where gy is the mean value of the

velocity pressure recordings, o, is the corresponding standard deviation and y = 0.5772

is the Euler constant. & and S are parameters that are characteristic to the distribution

of the recorded data. If the return period R, is defined as the average number of years
between rare qy, events, then a small probability x of exceeding a certain limiting

design value gy g

1
:u:Pa(an >qu)=1_Pa(QVa qud):R_p (36)
and thus, the gy 3 that corresponds to such a return period is given by
1 qu -
1-—=P, gy <qy, |=exp|—exp|—
Rp a ( a d ) ,B (3.7)

=gy, (R,)=a-p-In|-In(1-1/R,)]

It is the mean wind velocity V, that corresponds to such a value of gy, ., that is used as a
representative basis for the design of structures. R, is in general subject to standardisa-
tion, e.g. R, =50 years, in which case gy, (50)=a+3.9-8. The ratio f/ar=0.2 is
frequently encountered in the literature. Since gy, = pVZ/2, then a change from

R, =50 to another return period is given by

Va (R, )/Va (50) = [[L-(8/a) In[-In(1-1/R,)]}/(1+39- /) G3)

While the above considerations are concerned with the statistical properties of annual
maxima, it should be mentioned that within any short term (10 min.) stationary weather
window at high wind velocities it is possible to estimate an extreme value of the velocity

fluctuations. For instance, at any chosen characteristic design value V, (RP) , the corre-

sponding extreme value may be obtained by a simple linearization and the broad band
type of process considerations shown in chapter 2.4. Since the instantaneous velocity
pressure

p[U®)] = %p[V vu()] = %pV2{1+2u v +[u(@)v]] 39
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at low turbulence and high values of V can be approximated by
ul(t
pV2 {1+2#} (3.10)

it is seen that the mean value of ¢, is g, =qy = pV?> /2 while the fluctuating part is
pVu(t). The standard deviation of the velocity pressure is then o,, =PVo,, where o,

is the standard deviation of the along wind turbulence component. Thus, an extreme
value of g, may be obtained by

:lp‘/v2

qumax 2 max

=q, +kp0'qu (3.11)
where k, is a peak factor (see chapter 2.4, Eq. 2.45). The following is then

obtained:

1 1
5pV,iax =§pV2+kaVau = Viax =V 142k, 0,/V (3.12)

3.2 Single Point Statistics of Wind Turbulence

While we in the previous chapter were dealing with long term statistics of ten minutes
mean values, i.e. performing statistics on a data base covering many years of observa-
tions of V', we shall now return to short term statistics on the fluctuating flow compo-
nents u(¢), v(¢) and w(¢). It is single point recordings of these variables within a sta-
tionary period of 7=10 min that provide the source for determination of their time and
frequency domain statistical properties. The sampling frequency within this period is in
the following assumed to be large, rendering a sufficiently large data base for the extrac-
tion of reliable results. As shown in chapter 1.3, at a certain point (x,y,2) ;o eg at

z; =10m or at a reference point relevant to the structure in question, it is assumed that
U(t)=V +u(t), and that the turbulence components u(¢),v(¢) and w(¢) are stationary

and have zero mean values.
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For the along wind © component the situation is illustrated in Fig. 3.3. It is taken for
granted that statistics performed on time series recordings of each of the
turbulence components will render three individual zero mean Gaussian probability
density distributions with variances

AR

1
o :?jlﬂa)dt (3.13)
2|~ w()

AU(t) =V +u(t)

u(t) .
A
ie ;r\ 1
v Unuﬂﬂ -'\‘nl L
: 4 1
UU UUW: vt
1\),
< T =10 min )l
t

Fig. 3.3  The probability distribution of the along—wind turbulence component

The corresponding turbulence intensities are defined by
o, ()
V(z)

A typical variation of the turbulence intensity for the along wind u component is given
by

I, (zf) = where n=u,v,w (3.14)

I (zf) ~{ 1/ln(2f /20) when z; >z, (3.15)

B 1/In (2, /20) When zp < z0
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where z, and z;, are defined in Eq. 3.1. Under isotropic conditions (e.g. high above

n

the ground) I, = I, = I,,. In homogeneous terrain up to a height of about 200 m and

1,7 [3/4
~ I (3.16)
o [3a)

The auto covariance functions and corresponding auto covariance coefficients (see chap-
ter 2.2) are defined by

not unduly close to the ground

Cov, (z)] | E[u(t)-u(t+7)] . u(t)-u(t+7)
Cov, (7) |= E[v(t)-v(t+z’)] :FJ. v(t)v(t+7) dt (3.17)
Cov, (7) E[w(t)'w(t+r)J Ylw(t) w(t+7)

Pn (T):C()Lz(r) where n=u,v,w (3.18)

n

where 7 is an arbitrary time lag that theoretically can take any value within +7". At
7 =0 Eq. 3.17 becomes identical to 3.13, and thus

P (7=0)=1 where n=u,v,w (3.19)

At increasing values of 7 the auto covariance of the turbulence components diminish,
and at large values of 7 they asymptotically approach zero, i.e.

lim p, (7)=0 where n=uw (3.20)
T—>o00

As shown in Eq. 2.19,
Cov, () =Cov, (-7) where n=uv,w (3.21)

implying that also p, (T) is symmetric. A principal variation of the covariance coeffi-

cient for the along wind turbulence component is shown in Fig. 3.4. The time scale

T =jpn(r)dr where 7 =u,0,w (3.22)
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may be interpreted as the average duration of a ©, v or w wind gust. Although the
covariance coefficient in many practical cases may become negative at large values of 7
it is a usual approximation to adopt

P, (7)=exp(-7/T,) where n=u,0,w (3.23)

In homogeneous terrain, at heights below 100 m, 7}, is usually in the range between 5

and 20 s, while T}, and 7, are in the ranges 2 —5and 0 —2s.

>

P (T) 4
1 —_t

Pu(T) = exp(- T)

u

A
>
T

Fig. 3.4  Auto covariance coefficient for the along—wind turbulence component

Adopting Taylor’s hypothesis that turbulence convection in the main flow direction
takes place with the mean wind velocity (i.e. that flow disturbances travel with the aver-
age velocity V), then the average length scales of u, v and w in the xy direction are

given by
L, =V-T, =V jpn (r)dr where 71 =u,v,w (3.24)
0

These turbulence length scales may be interpreted as the average eddy size of the u , v
and w components in the direction of the main flow.

While auto covariance functions (or coefficients) represent the time domain properties
of the turbulence components, it is the spectral densities that describe their frequency
domain properties. In the literature many different expressions have been suggested to fit
data from a variety of full scale recordings. The following non—dimensional expression
proposed by Kaimal et. al. [10] is often encountered in the literature:
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where n =u,v,w (3.25)

and where f, =f-"L /V ,and /L, is the integral length scale of the relevant turbu-

lence component, as defined in Eq. 3.24 above.

0.25 T

2
n

=)
o

(=]
i
a

=
-

o
o
&

Reduced auto spectral density, f- Sn(f) /o

10° 10" 10° 10
Reduced frequency, f- XLn IAY)

Fig. 3.5  Kaimal auto spectra of turbulence components

Unless full scale recordings indicate otherwise, the following values of the parameter
A, may be adopted: A, =6.8,A =A, 6 =9.4. With these parameters, Eq. 3.25 has

been plotted in Fig. 3.5. Alternatively, the von Kdrman [11] spectra

(3.26)
o, (1+70.8.f3)5/6
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£-8,1f} :4fn (1+755.2-f2)

)11/6

5 - n=v,w (3.27)
O (1+283.2-f7

have the advantage that they contain only the length scales f L, that require fitting to

the relevant data.

3.3 The spatial properties of wind turbulence

The spatial properties of wind turbulence are obtained from simultaneous two point
recordings of the u, v and w components. It is taken for granted that the flow is ho-
mogeneous in space as well as stationary in time. Defining two vectors

u(s,t) u(s+Ast+7)
u, =| v(s;t) and U, =| v(s+As,t+7T) (3.28)
w(s,t) w(s+As,t+7)

where s=ux;,y, or z;, 7 is a time lag that theoretically can take any value within
+T and As is an arbitrary separation (between the two recordings) in the x,, y, or z;

directions. Thus, the following three by three covariance matrix may be defined

Cov Cov Cov

uu uv uw

Cov(as,7)=| Cov,, Cov,, Cov =E|:U ~U£}:

v vw

Cov Cov Cov

wu wv ww

T(ua U )dt (3.29)
0

where all the relevant covariance functions

m,n =u,v,w
Cov,,, (As,7) As = Ax, Ay, A2 (3.30)
£ B2y

may contain separation in an arbitrary direction s =x,,y, or z;.
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u(y; + Ay, t+ 1)

u(t)

% u(t)

RS

u(yf! t)
Fig. 3.6  Cross covariance of along—wind u component

The corresponding covariance coefficients are defined by

Cov_ (As,T m,n =u,0,w
Prn (A8,7) = mn (49,7) {A Ar Ay A (3.31)
Om " On S = BXp, A, A%p

(If the process is not ergodic, then o,, should be taken at position s, while o, should
be taken at s+As.) The situation is illustrated in Fig. 3.6 with m=u and s=y,,

which is most relevant for a horizontal structure where time series of the turbulence
components have been recorded at various positions a and b along the span of the struc-
ture. As can be seen from Eq. 3.29 (and 3.30), there are 27 possible covariance func-
tions. However, it is a usual assumption that cross covariance between two different
turbulence components may be neglected, at least beyond a certain distance above the
ground. All off-diagonal terms in Eq. 3.29 will then become zero, and the number of
possible covariance estimates is reduced to nine:

Couv,, (As,7) u(s,t) u(s+Ast+7) rlu(st) u(s+Ast+7)
Cov,, (As,7) |=E| v(s,t)-v(s+Asit+7) :lJ. v(s,t)-v(s+Ast+7) dt
Cov,,, (As,7) w(s,t) w(s+As,t+7) Olw(s,t) w(s+As,t+7)

(3.32)
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where s =x,,y; or 2, . The corresponding covariance coefficients are defined by

Pan (A5,7) = 2 As = Axp, Ay, Az

n

Cov,,,, (As,7) {n =u,vWw
2 A 257) (3.33)

The covariance properties in the wind field are in general decaying with increasing sepa-
ration As and time lag 7 . A typical decreasing curve at 7 =0 is illustrated in Fig. 3.7.

>

Pn(AS) A

14+<—-——————-

P.(As) = exp(-As/L,)

Fig. 3.7  Spatial cross covariance properties of the wind field

The situation at 7 =0 is particularly interesting because

n=u,u,w

L, :J(;pnn(As,r=0)d(As) {As:Axf,Ayf,Azf (3.34)

is a characteristic length scale that may be interpreted as the average eddy size of com-
ponent 7 in the direction of s. For instance, the length scales /L,,"’L, and 'L, are

quantities representing the average eddy size of the u, v and w components in the
direction of the main flow. They have previously been presented in Eq. 3.24, and since
they obviously can be extracted directly from two point data and Eq. 3.34, the use of
Taylor’s hypothesis behind Eq. 3.24 is obsolete. The remaining six length scales °L

n

with n =u,v,w and s=y.,z, are the corresponding quantities that represent the spatial

properties in a plane perpendicular to the main flow direction. Typical decay curves for
the © component are shown in Fig. 3.8, illustrating the spatial interpretation of the inte-
gral length scales.
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Fig. 3.8  Spatial illustration of the integral length scales

The spatial properties of turbulence are strongly dependent of the fetch, i.e. the up—
wind terrain. In general, the determination of spatial properties of the turbulence compo-
nents should be based on full scale recordings on the site in question. However, for a
first approximation and under homogeneous conditions not unduly close to the ground,
the following may be adopted

n=u,n,w
Pon (45,7=0) = exp(—As/ sLn) (3.35)
S=Xp,Yr52f
_nyu_
. [1/3 ]
fLu 1/4 xf 0.3
*fL —Lu (Zf) ~| 2
v 1/4 xf z
I L, (zfo) 10
v 1/4 xf
= -TL, where: (3.36)
2, 1/12 N 10
oy | |1/12 *f =Fpo =
v |1/16 L, (250 ) =100m
ny
w 11/16 |
ZfLw

While cross covariance functions (or coefficients) represent the time and space domain
properties of the turbulence components, it is the auto and cross spectral densities that
describe the frequency-space domain properties. In text books on mathematics, the dou-
ble sided cross spectra are usually defined with @ as the frequency variable, in which
case (see chapter 2.6 — 2.8)
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1% n=u,u,w
{ (3.37)

Snn (AS,w):g ,[ Covnn (AS’T)'e_iwrdT ASZAxf’Ayf’Azf

but in wind engineering the frequency f (in Hz) is usually preferred, and then the dou-
ble sided cross spectra are defined by (see Eqgs. 2.68 and 2.75)

+oo
S, (As,f)= I Cov,, (As,7)-e > *dz

—oco

n=u,u,w
{ (3.38)

As = Ax,, Ay, , Az,

The cross spectra are usually defined by the single point spectra, S, (f), the coherence

function, Coh,,, (As,f) and the phase spectra, ¢,, (As,f), as shown in Eq. 2.87, i.e.

, n=u,w
S, (As,f) =S, (f)-/Coh,, (As,f) -exp[ig] {As ~ A, Ay 0z, (3.39)

Since the wind field is usually assumed homogeneous and perpendicular to the span of
the (line-like) structure, phase spectra may be neglected. It should however be acknowl-
edged that in structural response calculations spatial averaging takes place along the span
of the structure (see chapters 6.4 and 6.5), and then all imaginary parts cancel out and
only a double set of real parts remain. Taking it for granted that the single point spec-
trum S, (f) is known, it is then rather the normalised co-spectrum

Co,. (ds,f) = Re[S,m (As,f)] {n =u,0,Ww (3.40)

S, (f) As = Ax;, Ayp, Az

that is necessary to give special attention to in wind engineering. Some general expres-
sions occur in the literature. For a first approximation and under homogeneous condi-
tions, the following may be adopted

n=u,u,w
] S=Xr,Yp52r (341

Co,, (4s,f) = exp[—cns ‘};
As = Axf,Ayf,Azf

cuyf :Cqu ~9
where: Cns =1Cuyp = Cozp = Cuyp = 6 (3.42)
C. =
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Caution should be exercised as the variation in c,, values is considerable (see Solari &
Piccardo [6]). The simple expression in Eq. 3.41 has the obvious disadvantage that the
normalised co—spectrum becomes unity at all As when f =0, whereas a typical normal-
ised co—spectrum will decay at any value of f as illustrated in Fig.3.9. It also has the
disadvantage that it is positive in the entire range of As. (It may be shown that this is in
conflict with the definition of zero mean turbulence components.) Under the assumption
of isotropic conditions, Krenk [12] has derived the following expression applicable for
the along—wind © component

Cop, () =(1- 552 | exp(cx 25 603

2
where K= [27[}” j + 1
14 1.34-*L,

o Y/2

Fig. 3.9  Typical reduced co—spectrum variation



Chapter 4

BASIC THEORY OF STOCHASTIC
DYNAMIC RESPONSE
CALCULATIONS

The general finite element theory of wind induced dynamic response calculations for
civil engineering line-like structures is presented in Chapter 9. In the chapter below the
theory is presented in a continuous version tailored for the response and cross sectional
force calculations in Chapter 6 and 7 where it is taken for granted that the necessary
mode shapes are known and that they may be assembled in separate y, z and 6 direc-
tion components. The reason for this choice is that it represents an effective solution
focusing directly on the important wind load and displacement degrees of freedom.

4.1 Modal Analysis and Dynamic Equilibrium Equations

The relevant cross sectional displacements and forces are illustrated in Fig. 4.1. (See also
Fig. 1.3.) It is assumed that displacements and loads (all referred to the

Fig. 4.1  Cross sectional displacements and loads
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shear centre of the cross section) may be split into the sum of a time invariant mean part
and a fluctuating part

Log (%,8) = F () +7(x,2)
%ot (x,t)=a(x)+q(x,t)} 4.1

each containing three components (horizontal, vertical and torsion), i.e.:

F(x):[r_'y T, FQJT r(x,t):[ry r, reJT (4.2)

ax)=[7, & @]  a=n=[e, @ @] (4.3)

In the following the mean values of the response are considered trivial. The entire focus
is on the calculation of the variances of the fluctuating displacement components. The
solution will be based on a modal frequency domain approach. Thus, it is assumed that a
sufficiently accurate eigen—value solution is available, and that it contains the necessary
number of eigen-frequencies and corresponding eigen-modes. That they are orthogonal
goes without saying. Scaling of mode shapes is optional, but consistency is required such
that the relative difference between cross sectional displacement and rotation compo-
nents is maintained. It is taken for granted that the eigen-value solution has been ob-
tained in vacuum or in still air conditions. Such a solution has usually been obtained
from some finite element formulation (see Chapter 9), and for line-like beam type of
elements the eigen-modes will then occur as vectors usually containing six components
in each element node, three displacements and three rotations. In the development of the
theory below the number of eigen—value components is reduced, focusing on the degrees
of freedom associated with r,, T, and 7,. Thus, the mode shape components associated

with an arbitrary mode is the displacements @, , ¢, and the cross sectional rotation ¢,

that has been extracted from a finite element type of solution. It should be noted that the
mode components are formally treated as continuous functions, and therefore the two
other rotation components may be retrieved from the first derivatives of ¢, and ¢,. It is
then only the x—axis displacement (i.e. the component in the direction of the main span)

that is entirely discarded, but this is not considered important since it is not directly asso-
ciated with any flow induced load.

Example 4.1

Given a simply supported beam with a single symmetric channel type of cross section as shown in
Fig. 4.2. The system contains three displacement components: y(x,f), z(x,) and &x,?), all referred
to the shear centre, which in this case does not coincide with the centroid. Disregarding any exter-
nal loading and damping contributions, the differential equilibrium conditions are given by (see
Timoshenco, Young & Weaver [1], chapter 5.21):
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Elyaxj‘l’mza?:o
026 o%e 9%y 026
GIl,—-EI, —+m,—-e-m,—=0
" ox? Y oxt 7 ot? ? o

where EI, and EI, are cross sectional stiffness with respect to bending in the y and z directions, GI,
and EI, are the corresponding torsion stiffness associated with St.Venant’s torsion and warping,
my and m, are translational mass (per unit length), mg is rotational mass (with respect to the shear

centre) and e is the vertical distance from the shear centre to the centroid. Obviously m,=m_ (for

simplicity they are both set equal to m) and m, = pI » +me?

z
Q 0(x,1)
t)
y(x, 2%
— .. 56 —>»Yy
<&< % K / H""“*--..
e 1’ ? ‘*““"“i
| L I/ 4] :’
] 1 cc !

Fig. 4.2 Simply supported beam with channel type of cross section

These equations are satisfied over the entire span for the following displacement
functions

y(x,t) a= [ay a, aeJT
z(x,t)|=a-f(x,t)  where
. nxXx .
0(x,t) f(x,t):smTexp(mt)
and n=1,2,....... ,IN . Introducing this into the differential equations above, the following eigen-

value type of problem is obtained: (K - a)ZM) -a=0, where:

_ . -
(ﬂj EI, 0 0
L
4 m 0 -m-e
K= 0 (Ej EI, 0 and M=| 0 m 0
L ) -m-e 0 my
22
nr n°n°El,
oo (ffaerem
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There are two independent eigen—value solutions to this problem. First, there is one that only
involves z(x,7) displacements, defined by

{[";T EI, - afm] a, =0

which will render n eigen—values and corresponding eigen—vectors

0
EI
o, =(nx) /mL{1 and @ @):m% 1

0
The second solution involves a combined motion of y(x,7) and &x,?) displacements. It is defined by
4
(E] EI, - ’m @’me
L [ay}
=0
2 2 2
EI a
w’me [ﬂj [Glt + n/rzw] - ’m, ¢
L L
and it will render two different eigen—values and corresponding eigen—vectors:
- -n1/2 [ 1 1
K, |1+d [1-0V 5, nzx
@ = £ + ( j +e’K @, (x)=sin—=| 0
" |my-e‘m| 2 2 n L g
L 4 %, |
- 12 1]
K 1+d 1-0)° nmwx
@, = e - ( j +e’K @; (x)=sin—=| 0
n my—e‘m| 2 2 P
L ] %4 |
4 2 2
where: K, =[ "7 B, K,=["") oL, +["%| b1, |, K= 5-Kme
L L K, m K,

PR i (L‘l_ezkj Gy =1 271 [L-l_ezg]
el 2 2 el 2 2

It may be of some interest to develop the modal mass associated with these mode shapes. The
cross sectional mass matrix is given by My = diag [m m mg] , and thus

L L
Mln = _[(PlTnMo‘Plndx = m_[ sin? szdx =mL/2
0 0

M, =

n

Ot~

(pgnMO(pzndx = (m +d§2m9)‘L[sin2 %dx = (m + dazmg)L/2
0

L
M, =[5 My@, dx =M,
0



4.1 MODAL ANALYSIS AND DYNAMIC EQUILIBRIUM EQUATIONS 73

In this case mode shapes have been normalised with the displacement component, and therefore
the rotation component in the mode shape vector has the unit m™ while the modal mass has the
unit kg.

In a general structural eigen—value problem
(K-o’m)- @ =0 (44)
the modes are usually defined M-orthonormal, i.e. such that

o’ M= (4.5)

where | is the (diagonal) identity matrix. It should be acknowledged that prior to any
scaling of the modes their components have units meters or radians, and that after any
scaling has taken place relative units must be maintained (as shown in the example
above). It should also be noted that from a finite element solution the eigen-vectors will
emerge in accordance with the chosen degrees of freedom in the system. Below, these
original mode shape vectors have been rearranged into separate ¢,, ¢, and ¢, compo-

nents, each associated with the r,, r, and r, displacement components as illustrated in

Fig. 4.3. The reason for this choice is that in Chapters 6 and 7 it will facilitate an effec-
tive solution strategy focusing directly on the important g, , g, and g, load components

and corresponding displacement degrees of freedom.

In the mathematical development of a frequency domain response calculation theory
that follows below, the cross sectional displacement and load components are as men-
tioned above formally taken as continuous function. The motivation behind this choice is
mainly convenience, but it is also for practical reasons as spatial load integration will
most often require mode shape vectors in a considerably finer element mesh than what is
considered sufficient for the eigen—value solution from which they have been obtained.
After the theory has been developed the return to discrete vectors will be shown wher-
ever this is necessary for a convenient numerical solution. The basic assumption behind
a modal approach is that the structural displacements r(x,£) may be represented by the

sum of the products between natural eigen—modes

T
; (4.6)

o, (x)=[0, 0. 9]

and unknown exclusively time dependent functions 77, (t) ,L.e.
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Nmod % (x)
(xd)= S0 |0 (x)| m()=0(x)n(e) @)
= gy (x)

i

where N, is the number of modes that has been deemed necessary for a sufficiently
accurate or representative solution.

Mode 1 Mode i Mode N

T N0y Nt | o )%( Oy |\ o <¢yN >¢2N )%N
(

(I
Torsion

Vertical
Horisontal

Fig. 43  Mode shapes

The mode shape matrix @ (x) and the vector n(¢) that contains the so-called gener-

alised coordinates are defined by

O(x)=[@(*) - @i(x) . Oy, (*)]

- (4.8)
() ={m) - n(t) . Mo ()]

The introduction of Eq. 4.7 into the equilibrium equations, followed by consecutive
weighing with each (orthogonal) mode shape and span-wise integration will then render

N_ 4 equivalent modal equilibrium conditions

mod

M, i1+C, -n+K, n=Q,, (4.9)
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where the zero index indicate that they contain structural properties in vacuum or in still
air, and where the modal mass, damping and stiffness matrices are given by

i, = diag[ 1, M = [0 My, )
C, =diag [(j'l] where {C;, =2M;m.¢; (4.10)
Kozdiag[KiJ Nizwiz ~i

The modal load vector in Eq. 4.9 is given by

Qe =[@ - Q .. QNmoleot @.11)
where:
Qitot = ,[ ((piT'qm)dx 4.12)
Lexp

In Eq. 4.10 @ are the eigen-frequencies and ¢; are the damping ratios, each associated
with the corresponding eigen-mode. It is in the following assumed that the structural
damping ratios ¢; are known quantities, chosen from experimental experience or an

acknowledged code of practice, and that a pertinent mode shape variation has been
adopted (e.g. a Rayleigh type of frequency dependency). The three by three mass matrix

M, = diag [my (x) m,(x) my (x)] (4.13)

contains the cross sectional mass properties associated with the y, z and @ degrees of
freedom, all taken with respect to the shear centre. (It may often be more convenient to

calculate modal mass matrix M, in Eq. 4.9 directly from the nodal mass lumping used in
the preceding finite element eigen—value solution and the corresponding eigen-vectors,
instead of the formal calculation procedures indicated above, as these already contain all
the structural properties that are necessary for such a calculation.)

The cross sectional load vector q,, contains the total drag, lift and moment loads per

unit length (see Fig. 4.1) including flow induced as well as motion induces loads, i.e.

T

9=, 2. 4] (4.14)

tot
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The symbolic integration limits L and L,,, indicate integration over the entire structure or
over the wind exposed part of the structure. The modal matrices M,, C, and K, on the

left hand side of Eq. 4.9 are all diagonal due to the orthogonal properties of the eigen-
modes. However, we shall later see that motion induced parts of the load will be moved
to the left hand side of the modal equilibrium equation, thus rendering non-diagonal
mass, damping and stiffness matrices for the combined flow and structural system. For
educational reasons the development of the necessary theory is divided into three parts,
depending on the complexity of the problem. The first part of the presentation is dealing
with the situation that the relevant eigen-frequencies are well separated and each mode
only contains one component. The next is dealing with the same situation but now with
each mode containing all three components. The final presentation is considering the
situation that a full multi-mode investigation is required.

4.2 Single mode single component response calculations

In this first section it is assumed that the eigen-frequencies are well spaced out on the
frequency axis. Furthermore, the cross sectional shear centre is assumed to coincide (or
nearly coincide) with the centroid and there are no other significant sources of mechani-
cal or flow induced coupling between the three displacement components. These as-
sumptions imply that coupling between modes may be ignored, and that each mode
shape only contains one component, i.e. any of the N, 4 mode shapes is purely horizon-

tal, vertical or torsion. The response covariance between modes will then be zero, and
thus, the variance of the total dynamic horizontal, vertical or torsion displacement re-
sponse can be obtained as the sum of contributions from each mode, i.e. the variance of a
displacement component is the sum of all variance contributions from excited modes
containing displacement components exclusively in the y, z or @ direction (see Eq. 2.27).

E.g. 0'32, is the sum of all variances associated with the relevant number of modes con-

taining only horizontal displacements, and so on. Thus,

>0
iy

2
O.y
o’ |= ZJ,?Z (4.15)
0'3 2

Yo
L i i

Given an arbitrary horizontal, vertical or torsion mode shape ¢ (x) with eigen—

frequency @, and damping ratio {;, the time domain displacement response contribu-

tion of this mode is simply
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i (x0) = (x)-77, () (4.16)

As mentioned above, it is assumed that the corresponding instantaneous cross sectional
load contains the sum of flow induced and motion induced contributions. Thus, the total
load per unit length (horizontal, vertical or torsion) is given by

Gpor =G (%,8) + Qe (x,8,7,F,F) 4.17)

where q (x,t) is the flow induced part and q,, (x,t,r,f,i" ) is the additional load associ-

ated with interaction between flow and structural motion. The modal time domain equi-
librium equation for mode number i is then given by

M, -5, () +C, 73, (¢) + K; -1, () = @, (t)+Q~aei (&.;73;75; ) (4.18)

where
_ j¢)i2mdx
Mi L
CN’i = 2Mi“’i§i
K| | &M, (4.19)
O Q.(¢
~Ql() =J‘¢L|:Q:|dx
| Qe &11171) | o [Tae

Ly, is the flow exposed part of the structure and Q(wi (t,m;,1;,7; ) is the modal motion

(-4
induced load. It should be noted that structural mass m(x) in the equation above will

either be translational or rotational (with respect to the shear centre), depending on
whether the mode shape involves displacements in the y or z directions or if it involves
pure torsion. Transition into the frequency domain is obtained by taking the Fourier
transform on either side of Eq. 4.18. Thus,

(-M;0” +Ciiw+ K, )-a,, (0) = ag, (@) +ag,, (@777 (4.20)

where a,., a;
/] Q;

respectively. (Index i is the mode shape number and the symbol i is the imaginary unit

and UG, AT the Fourier amplitudes of 7, (¢), Qi (t) and Q(wi (t),

i1=+-1.) It is now assumed that the Fourier amplitude of the
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modal motion induced load contains three cross sectional terms k&, , c,, and m,,, pro-

ae
portional to and in phase with structural displacement, velocity and acceleration, i.e. it is
assumed that

YQae; = (‘M ;@ +Cp i+ K, ) ‘a, (4.21)
where
M,,
Coe I ¢ dx (4.22)
Kaei Fexp kae

ae Qae,

=2M,0,¢; and K; = @M, from Eq. 4.10) into Eq. 4.20, gath-

ering all motion dependent terms on the left hand side and dividing throughout the equa-

and where k,,, c,, and m,, are known constants. Introducing as ~ from
2

Eq. 4.21 (as well as C,

1

tion by K; , the following is obtained

I:IL(W)
A

a, (@)= () (4.23)

where

i l 4

is the non-dimensional modal frequency-response-function.
. v v > Ry ~
Introducing ft,,, =M, /Mi s Kae; = Ko, /a)L M; and ¢, =C

a ae;

~ ~ ~ -1

. K M, > C,,

H (0)=]|1-—% [ Mﬁ) +2i[§i— 9 J-ﬁ (4.24)
oM, M, | o 20,M, | o

Za)lM ) then

-1

2
5 w 4]
H, =|1-x, —(1-g,. )| —| +2i({; = {4 | — 4.25
0)=| 1 oy ) 2] 2l6-0) 2] w9
The single—sided spectrum of 7; (t) is given by
H a))‘2
.1 # i .1 .

S, (o) :}grjoﬁ-(aﬂi “Qy ) :[{'—L? %ﬂﬁ (aQi .aQi) (4.26)
N 2
H; (o)
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where it has been introduced that the single-sided spectrum of the modal loading is de-
fined by

.1 -

Sg (@)= Jim —-(ag, ag,) (4.28)
This will render the displacement response at a position where ¢ (x) =1. The response
at an arbitrary position x, (e.g. where ¢ has its maximum) may simply be obtained by

recognizing that due to linearity the Fourier amplitude at x, is given by
a, (0)=¢, (xr)-a,h. (o) (4.29)

and thus, the response spectrum for the displacement response at x = x,. is given by

& (x,
Sy (z0)= 0

i

A, (“’)‘2

-S4, (@) (4.30)

In structural engineering it has been customary to split the response calculations into a
background and a resonant part as illustrated in Fig. 4.4.

S;(0) [H(w)| S(w)
A

eV¥Y
8_
eV¥Y

Sa(mi)/
Fig. 4.4  Frequency domain spectra and transfer function

The motivation behind this is that static and quasi-static load effects are more accu-
rately determined directly from time invariant equilibrium conditions. This is particu-
larly important for the determination of cross sectional force resultants (or stresses), as
shown in chapter 7. The variance of the displacement response in Eq. 4.30 split into a
background and a resonant part is given by
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¢i2 (xr ) e 2
o2 (x,)= % [|8; (@) -Sg, (@)do
) (4.31)
¢l (xr) q 2 g
= |, (0) - [Sg, (@)do+Sy, (@) [|H; (o) do
It is in the following taken for granted that
H,(0)=[1-1,, ]_1 -1 (4.32)

i.e. that Kaei =0 at w=0. (This is an obvious assumption as the structure is not in

motion at @ = 0.) Introducing

TSQi (0)dw= Of?i

N ; (4.33)
. dow = M

'([ l (w)‘ ¢ 4(1 - Kaei )é;oti

where (. = {; — (g, » the following is obtained

2 2 2
O-ri zO-Bi"'O-Ri —|:

(2 )T S, (@
@I(;r)} 1 g2 .S (@) (4.34)

< 4 (1 - Kaei ) gtoti

4.3 Single mode three component response calculations

In this second approach it is assumed that the eigen-frequencies are still well spaced out
on the frequency axis, but that each mode shape contain three components, i.e. the dis-
placements ¢, and ¢,, and the rotation @, , as illustrated in Fig. 4.5. Adopting the same

assumptions regarding motion induced load effects as presented in chapter 4.2 above, the
total cross sectional load is given by

qtot :q(x’t)+qae (x,t,r,r."i;) (436)

T
where: a(x.t)=[q, . qo] (4.37)

is the flow induced part of the load, and

T
Qe (x:,0.0.F)=[q, . qp] (4.38)

ae

is the motion induced part.
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Fig. 4.5 Single mode shape containing three components

Adopting the same assumptions regarding motion induced load effects as presented in
chapter 4.2 above, the total cross sectional load is given by

qtot :q(x’t)+qae (x’t,r,r.".r.) (436)

T
where: a(xt)=[a, a. 5] (4.37)

is the flow induced part of the load, and

T
Qe (x:20.0.F)=[q, . qp] (4.38)

ae

is the motion induced part. The time domain modal equilibrium condition given in

Eq. 4.18 still holds, but for the expressions for M , C and K it is necessary to turn to
Eq. 4.10, ie. M; = (o] -My-9;)dx, C;=2M,@¢; and K, = ofM; while the modal
flow induced part of the load is given by (see Eq. 4.12)

Q;(t)= | of (x)-a(xt)dx (439)

exp
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The Fourier transform in Eq. 4.20 as well as the assumption regarding %ae; in Eq. 4.21

are also still valid, but again, modal motion induced mass, damping and stiffness are
now given by

y T
M ae P; 'Mae P;
Coo | = [ |@F Cp-9; |dx (4.40)
> L T
ae |; P @; K @,
where M,,, C,, and K, are three by three coefficient matrices associated with the

motion induced part of the loading. To justify a mode by mode approach it is necessary
to avoid the introduction of any motion induced coupling between modes, and therefore

L » Cge and K, must in this particular case be diagonal, i.e.

M, =diag [my m, ng

ae

C, =diag [cy c, cg]ae (4.41)
K, =diag|k, k, k,]

Thus, altogether nine frequency domain motion dependent coefficients are required. In
wind engineering M, is most often negligible.

Modally we are still dealing with a single-degree-of-freedom system, and thus, Egs.
4.24 — 4.27 are valid. Linearity implies that the Fourier amplitudes of the displacement
components at an arbitrary position x, are given by

a"y ¢y (xr )
a'i (xr ,0)) = a’rz = ¢z (xr) 'aTIi (0)) = (Prl (xr ) ’ af] (0)) (442)
a, % (x,) ;

The cross spectral density matrix of the three components is then

N
Si (xr,a)) = jl‘li)roloﬁ(arl 'ag )

Z%ﬂ%{(‘pﬁ Ay )“ '(‘p'i " )T} =9 'hm%(a:ﬁ Ay )‘p'Ti (4.43)
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from which the following is obtained:

Si(5.0)=|  Sp(x.0) | =0, (5)S, (@) 0L () @i
. '.‘ ;
where: | } ry.T, Ty and S, ( o) = lim L(a;, Q. ) is given in Eqs. 4.26-4.27, i.e.
m T e 77T 2 1
A 2
S, (x,,0) =0, (x )-M-&, (w)- @~ (x,) (4.45)
14 r 1 r Klz Ql n r

The response covariance matrix is obtained by the frequency domain integration of
S; (x,, ), and thus

2
i O, (x,) Cov,yrz (x,) Cov (x,)
jSi (x,,0)do= Cov, . (x,) 0,22,2 (x,.) Cov,zre (x,) (4.46)
0
Covrgry (xr) Covrgr ( r) rgrg (xr) i

However, the three components of each mode shape are fully correlated and therefore all
cross-covariance coefficients that may be extracted from Eq. 4.46 are equal to unity.
Thus, it is only the terms on the diagonal of Eq, 4.46 that are of any interest, and then the
calculations simplify into

7 2
Sryry Y (xr) ﬁi (w)‘Z
Sl (xr’w) = S’zrz = ¢Z2 (x" TSQ-, (0)) (447)
Srora J; d (x,) i '
and
[ 2
Tyly -
Var, (v,)=| o2, | =[S;(x,,0)do (4.48)
2 0
_O-rere ;

The total response may be obtained by adding up variance contributions from all modes,
ie.

oy (%) .
Var(x,)=| o7, (x,) Z Var, (4.49)
o-fgrg (xl‘
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4.4 General multi-mode response calculations
In the final section of this chapter it is assumed that a full multi-mode approach is re-

quired. The basic assumptions from chapter 4.1 are that

F(x,t) = ®(x) -n(t) (4.50)

where (D(x)z[(pl... 9, ...(meodJ (4.51)
()=t B iy |

T

@ (x)= [¢y 9, %J_ and where N, is the number of modes chosen to be in-
L

cluded in the calculations. Still adopting the assumptions regarding motion induced load

effects as presented in chapter 4.2, the cross sectional load is

Qo =9(x,8)+ 0, (x,£,1,5,F) (4.52)
T
a(x.t)=[q, . q5]
where r (4.53)
Qe (28016 =[a, a. a4],
Thus, the time domain modal equilibrium equation is given by (see also Eq. 4.9)
(4.54)

M, -ﬁ(t)+60 n(¢)+Ky-n(t) = 6(t)+6(t,77,7'7,i7‘)

where Mo’ 60 and Ro are N_ 4 by N_ 4 diagonal matrices defined in

Eq. 4.10, and the modal N4 by one flow induced load vector is given by

~ ~ ~ ~ T
Q(t):[Q1 . Q. QNmod] (4.55)
Where Q, = j ((piT q)dx (4.56)
Lexp
Taking the Fourier transform on either side of Eq. 4.54
(4.57)

(-Myo® +Cpiw+Ky )-a, (@) =a (o) + ag (@m,1,7)
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T
a” =|:a,,1.... a’h’ ....G,”N:|

T
aQ~ =[aQ1.... aQi ....aQN:|

where: (4.58)

Since the assumption of a modal frequency domain motion induced load proportional to
and in phase with structural displacement, velocity and acceleration is adopted, then

aQae is given by

aQae = (_Maew2 + éaeia)+ IN(ae ) ’ ai] (4.59)

where M, , C,, and K, are N 4 by N4 matrices

Mae = Maeij cae = Caeij Kae = Kaeij (460)
whose elements on row i column j are given by
Y T
Maeij (pi . Mae . (pj
~ T
Cooy |= [ ol C. o |dx (4.61)
- Lexp| T
Kaeij (pi ' Kae ' ‘pj

where M,,, C,, and K, are three by three motion dependent cross sectional load
coefficient matrices

M, = m,,. C.= c Ky = k (4.62)

n
and where: } =9,2,0.
m
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Example 4.2

The modal quantities given in Eq. 4.61 may be obtained from a fully expanded vector format given
by:

Maeij :((/ijimyy%j +¢ZT qujy] (/ja, ay¢ +¢y ¢ (/ﬁZTimzijZj +¢;;mgz¢zj
+¢yTi MyoPp; + ¢zi MoPp; + %i MagPp; ) - Ax

Coey = B0y, +81C by + 8o 0, + 8500y +Biceaf, + o0,
* ;\T';cyﬁ%j + zqgcze%j +¢§c%¢9. )- Ax

Kaeij :(¢37/;kyy¢y] ¢2L zy¢yj +¢ k5y¢y +¢},;,kyz¢z ¢Zz ZZ¢ +¢ kgz¢z
+¢§;kye¢aj + ¢Zi kz6¢€j +¢€i gg¢gj)'Ax

where Ax is the spanwise mesh separation (above assumed constant). If the coefficients vary

along the span, their numerical values need to be given on the diagonal of an N by N matrix, where
N is the number of nodes.

Thus, for a full description of the motion induced load effects altogether twenty—
seven motion dependent load coefficients are required. First Eqs. 4.59 is introduced into
4.57 and all terms associated with structural motion are gathered on the left hand side

(W, -W,, )& +(C, ~€,, )i+ (R, -K,, ) |-a, (0) =85 (@) 463)

and then the result is pre-multiplied with I~(51 , recalling that

K, = diag [a)izMi J

. _ (4.64)
C, =diag|2M,w¢; |
It is convenient to introduce a reduced modal load vector
T
I o} (x)-a, (x,0)dx
_k-1 _ Lexp
8, (@) =K' -ag(@)=| o | 465

(4 i

T
where a, (x,0) = [aqy a,, aqe} . The following is then obtained
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a,(w)=H,(0)-a, () (4.66)
where
-1
A, (0)=1-K'K,, | diag| L |-K5'W,, |o? +| diag| 2 | K;1E,, |
n - 0 "Nae 1ag E o Mg, (@ +)| diag P 0 “ae |10
4 (2
(4.67)
is the non-dimensional frequency-response-matrix, and | is the identity matrix

(Npoa by N,.) It is convenient to define the following N4 by N,
matrices

K, =K;'-K (4.68)

Zae Z%dlag[a)z:l (RBI : cae)

as well as introducing { =diag [g“ i] . The non-dimensional frequency-response-matrix

is then given by

-1

%DZ (1= Wy, ) + 2i- diag {%} (8- %)

(4

I:I,7 (0)=41-K,, —(a)'diag{
(4.69)

By combination of Egs. 4.60, 4.61 and 4.64, then the content of

I"ae = Iuaeij Kae = Kaeij Zae = ;aeij (4'70)
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are given by

) | (@M, 0;)dx

_ ae; Lexp
Hagy === - (4.71)

- J_ _ 4.72)

) [ (eC..0,)dx

ae;; Lexp
$ o = I = - (4.73)
“U 20M, 20:M,

Returning to Eq. 4.66, the response spectral density matrix (N, 4 by N, 4 and contain-

ing single-sided spectra) is obtained from the basic definition of spectra as expressed
from the Fourier amplitudes, and thus, the following development applies:

(4.74)

where S is an N,,,q by N, normalised modal load matrix
o y

%
. 1 ® T . 1 ®
N = —_— A . ~ | = _ an . N R R
SQ(w) }grzoﬂT(aQ aQ) %Ln}-eﬂT o [an an aQNmod:l
as
L QNmod i

=S, () = S}'Qj (o) (4.75)
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whose elements on row i column j are given by

S4q, (@)= Jim— | ag, (o) 'an (w)}
ot e xo)x [ 6] (x)a (0] ds
= lim —| Ze Lexp
T o 7T a)l?Mi szj
” [‘PL %y )ay (xy, )J [(pJT (xg)a, (xq ,a))JT dix,dx,
=lim 1k _ _
T 77T (@2Ml)(0)]2Mj)

_ Lexp
(o ;) ()
(4.76)
Thus, the elements of S, (@) are given by
jj @7 (1) Sy, (Ax,0)- @; (xy)dxydoxs
SQLQJ ()= Lexp (@?Mi)-(waj) 4.77)

where Ax =|x;

tional loads, i.e. S, (Ax,) = }Ln}m(l/ﬂT)[a: (x,,)-af (xz,w)J

S, (Ax,m) is the spectral density matrix of cross sec-

* * *
1 9y 9y dy 4z 9y 90 quqy quqz quqe
. T 478
= S, (Ax, w)—}}g}o 2T | ez Yy Pz %, Yy P Se.qy Saee Seae (4.78)
o e o S, S S
Gy "Cq, Qgp g, Cgg Cgq 0%y  T909z 9690
Extracting from the mode shape matrix ®=[@; .. @, .. @y] (see Eq. 4.8) a

three by N, 4 matrix associated with a chosen span-wise position x,.



90 4 BASIC THEORY OF STOCHASTIC DYNAMIC RESPONSE CALCULATIONS

@, (x,)=[9(x,) ®; (%) - Oy(x)]
oG] [a@)] [l .
=||4. (%) ¢ (%) g, (%,
P (x,) ) P (x,) A B (x,) "

then the three by three cross spectral density matrix of the unknown modal displace-

ments 7,,, 7, and 1, at x =x,
Sryry ryrz yrg
Sr (xr’w) - Srzry Ty 24 (480)
Srgry TorS 919
is given by
S, (x,,0)=®,(x,) S, (o) ®F (x,) (4.81)

S, (¥,,0) = ®, (x,)- |, () S, (o) H) (0)| O] (x,) @82

This equation is applicable to any linear load on a line-like structure. If all mechanical
properties of the structure are known, then an eigen—value analysis will provide the basic

input to H, and @, . What then remains is the set-up of S. and the motion induced
p 77 r p Q

contributions to I:I,] . This is shown in chapters 5 and 6.



Chapter 5

WIND AND MOTION INDUCED LOADS

5.1 The buffeting theory

The buffeting wind load on structures includes the part of the total load that may be
ascribed to the velocity fluctuations in the oncoming flow,

U(xf,yf,zf,t) =V(xf,yf,zf)+u(xf,yf,zf,t), v(xf,zf,t) and w(xf,zf,t) , as well as any
motion induced contributions. The theory presented below was first developed by A.G.
Davenport [13, 14]. In the following it is a line like horizontal bridge type of structure
that is considered. It is taken for granted that its z,—position in the flow prior to any

loading is constant along the entire span, that the wind field is stationary and
homogeneous and that the main flow direction is perpendicular to the span-wise x -axis
of the structure, in which case x, is constant and y, may be exchanged by x . It is then

only the velocity fluctuations in the along wind and the across wind vertical directions
expressed in structural axis that are of interest, i.e. the components U (x,t) =V +u(x,t)

and w(x,t). The theory may readily be applied to a vertical (tower) type of structure, in
which case any z, -variation needs to be included and the w component must be replaced

by the v component (but maintaining all other notations shown in Fig. 5.1 below). The
basic assumptions behind the buffeting theory are that the load may be calculated from
the instantaneous velocity pressure and the appropriate load coefficients that have been
obtained from static tests, and that linearization of any fluctuating parts will render
results with sufficient accuracy. Thus, the load may be calculated from an interpretation
of the instantaneous relative velocity vector and the corresponding flow incidence
dependent drag, lift and moment coefficients that are usually applied to calculate mean
static load effects. It is taken for granted that structural displacements and cross sectional
rotations are small. Furthermore, it is a requirement for linearization of load components
that u(x,t) and w(x,t) are small as compared to V. The situation is illustrated in

Fig. 5.1.
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Fig. 5.1 Instantaneous flow and displacement quantities

As can be seen, the usual assumption that any fluctuating quantity can be split into a
time invariant mean part and a zero mean fluctuating part is adopted (as previously
mentioned in chapter 1.3). Thus, the cross section at an arbitrary position along the span
is first given the displacements 7, (x), 7,(x) and 7,(x). In this position the wind
velocity vector is V +u(x,t) in the along wind horizontal direction and w(x,¢) in the
vertical across wind direction. It is about this position that the structure oscillates. The
cross section is then given the additional dynamic displacements r, (x,t), r, (x,¢) and
1y (x,¢) . In this position the instantaneous cross sectional drag, lift and moment forces in

flow axes are by definition given by

dp (x>t) 1 DCD (0{)
q;, (x,t) =3 V2 .| B-Cp(a) (5.1
Tor (%) B2.Cy ()
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where V; is the instantaneous relative wind velocity and « is the corresponding angle

of flow incidence. Transformation into structural axis is given by

q, cosff -sinff 0| |qp
Qo (x,8)=|q, | =|sinf cosf O0|q. (5.2)
90 |10t 0 0 1) Lan
where:
P = arctan [&J (5.3)
V+u-r,

The first linearization involves the assumption that the fluctuating flow components
u(x,t) and w(x,t) are small as compared to V, and that structural displacements (as

well as cross sectional rotation) are also small. Then cosf =1 and

sin,Bztanﬂzﬁz(w—fz)/(V+u—f‘y)z(w—fz)/V,andthus

(5.4)

The second linearization involves the flow incidence dependent load coefficients. As
illustrated in Fig. 5.2, the nonlinear variation of the load coefficient curves is replaced by
the following linear approximation

N

Cp(@)| |Cp(@) Co (
Cr(a) |=| CL(@) |+ap-| CL(
Cy (@) [Cy (@) Ci (

)
) (5.5)

)

SR

where & and ¢, are the mean value and the fluctuating part of the angle of incidence,

and where C},, C; and C}, are the slopes of the load coefficient curves at & .
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Fig. 5.2 Load coefficients obtained from static tests

It follows from Eq. 5.4 that a=7, and o, =r,+w/V -7, /V . For simplicity the

following notation is introduced

Co(@)] [Cp Ch(a)] [Ch
Cp(a) |=|Cy and Cr(a)|=|Cy (5.6)
Cy (@)] |Cu Cu(@)] |Cu
Combining Egs. 5.2 - 5.6
q, DC, DC, | -BC,

. =pV(%+u—fy] BC, +(r9+%—2j BC, +w‘;rz DC,,
qe tot BzEM

5.7

and discarding higher order terms (i.e. terms containing the product of quantities that
have been assumed small) the following is obtained



5.1 THE BUFFETING THEORY

where

2
_PVB g
2 q

2(D/B)C,, ((D/B)Cp-Cy)

pVB = , = pVB
Bq(x)=T 2C;, (L +(D/B)Cp) =
2BC,, BCj,
2(D/B)C,, ((D/B)Cp—-Cp) 0
Coo(5)=—2B| 26, (c}+(D/B)C,) O
2BCy, BCj, 0
0 0 (D/B)C
2
Kel0) =220 0 ¢
0 0 BCy

It is seen that the total load vector comprises a time invariant mean (static) part

and a fluctuating (dynamic) part

95

(5.8)

(5.9)

(5.10)

5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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qy
q(xt)=|q, |=B, - v+C, -F+K , -r (5.16)
99

where B, -v is the dynamic loading associated with turbulence (¢ and w) in the

oncoming flow, while C, -f and K, -r are motion induced loads associated with

structural velocity and displacement. It is seen that linearity has been obtained, and thus,
the theory is applicable in time domain as well as in frequency domain. The frequency
domain amplitudes of the dynamic load are obtained by taking the Fourier transform
throughout Eq. 5.16. Thus,

a, =B, -a, +(iaC, +K, )-a, (5.17)

where:

T
a, (x,a))z[ary a, arg} (5.18)

and where i is the imaginary unit. Taking it for granted that the theory will primarily be
applied in a modal frequency domain approach it is favourable to introduce two major
improvements. First, for the purpose of frequency domain calculations it has been
suggested to include frequency dependent flow induced dynamic loads, i.e. to replace
B, (x) in Eq. 5.12 with

2(D/B)CpA,, ((D/B)Cp-Cp)A,,

B, (x,®) =% 2C A,, (CL+(D/B)Cp)A,, (5.19)

2BC,, A, BCj;A,,

where:

A, (o) {m =50 (5.20)

n=u,w
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are the so-called cross sectional admittance functions. They are frequency dependent
functions characteristic to the cross section in question.

In general, they may be determined from section model wind tunnel experiments,
either directly from pressure tap measurements around the periphery of the cross section,
or from time series of drag, lift and moment forces on the model that are otherwise used
to determine mean load coefficients, in which case it is necessary to assume that the
length scales of the fluctuating forces are identical to the appropriate length scales of the
turbulent flow components. Cross sectional admittance functions have been theoretically
developed for a thin airfoil by Sears [15], but since Sears solution is complex and
contain cumbersome Bessel functions, approximate expressions, usually of the following
type have been suggested (first by Liepmann [16])

1 m=y,z,0
A, (0)= . { (5.21)
(1+a,,,Ba/V )™ n=uw
where a,,, and b, are cross sectional dependent constants. As can be seen,

A, (0)<1
A, (0=0)=1 (5.22)
limA,, (0)=0
W—>o0

and thus, its main effect is to filter off load contributions at high frequencies. (Other
expressions may be expected for complex cross sections.) The second major
improvement to the frequency domain application of the buffeting theory is to replace
the content of C,, and K, with the so-called aerodynamic derivatives. That is dealt

with in the next chapter.

5.2 Aerodynamic derivatives

As derived from the buffeting theory C,, and K, are given in Egs. 5.13

ae
and 5.14. They are three by three matrices containing all the eighteen coefficients that
are required for a full frequency domain description of motion induced dynamic forces
associated with structural velocity and displacement. The modal frequency domain
counterparts to C,, and K, are first fully presented in Eq. 4.62 in chapter 4.4.

(Basic assumptions are given in Eq. 4.59. M, is in the following considered

negligible.) The essential theory presented below was first developed in the
field of aeronautics and later made applicable to bridges by Scanlan &
Tomko [17]. Following their notations, rather than the more general use of
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symbols shown in chapter 4.4, the frequency domain versions of C,, and K, are given
by

P, P, P P, P, P,
C,.=|H, H, H, and K, =|Hy; H, H, (5.23)
A5 Al A2 A6 A4 A3

The coefficients contained in C,, and K,, are then functions of the frequency of

motion, the mean wind velocity and the type of cross section (and to some extent the
initial or mean angle of incidence and the turbulence properties in the oncoming flow).
Usually, they have been experimentally determined in wind tunnel aeroelastic section
model tests, limited to vertical and torsion displacements. Since their main use lies in the
detection of unstable motion at high wind velocities, the primary modal mass and
stiffness properties of the section model will intentionally only contain the eigen-
frequencies associated with the most onerous modes with respect to unstable structural
oscillations. For a plate-like bridge cross section this is usually the lowest mode in
torsion together with the shape-wise similar and lowest vertical mode. (Shape-wise
similarity is required because the effect of aerodynamic coupling between the two modes
is often important.) Since the along wind motion is absent in the section model, all terms
associated with this direction must either be disregarded or taken from the quasi static
buffeting theory (see Eqgs. 5.25 and 5.26). The tests may be performed in three
alternative ways. The original procedure was to extract the motion induced forces from
the changes in resonance frequency and damping properties in transient (i.e. decay)
recordings at various wind velocities under the conditions of pure vertical motion, pure
torsion and finally combined vertical and torsion (see appendix C). Another procedure is
to perform ambient vibration tests, again at various wind velocities, and use the theory of
system identification to extract the sought flow-structure interaction properties. The third
procedure is to use a section model that undergoes forced oscillations at various
frequencies, amplitudes and wind velocities. From such a steady-state situation cross
sectional forces are measured by pressure tap recordings on the surface of the model
hull. Subtraction of the forces at zero motion will then render net motion induced effects.
The method of forced oscillations is demanding and generally not in use. Thus, the
frequency at which the aerodynamic derivatives are determined will most often be
associated with the mass and stiffness properties of the relevant section model, as well as
the motion induced forces themselves at various mean wind velocities. l.e., the
aerodynamic derivatives will be associated with the eigen-frequencies of the chosen set
of section model mode shapes, and thus, they will be functions of the reduced velocity

1% :V/ (Ba)i ) For the purpose of full scale calculations the similarity requirements
between model scale and full scale conditions must be fulfilled, and thus, the

aerodynamic derivatives will have to be extracted as functions of V = V/ (Bw,).
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Furthermore, it has been considered convenient to normalise C,, and K, with
2 2 92 . . . . .
pBw, /2 and pB“@ /2, where @ is the in-wind (mean wind velocity dependent)

resonance frequency associated with the mode shape (number i) from which they have
been extracted. Thus,

2 2
Cae = pg " (V) ’ Cae and Kee = pg |:Q)L (V):|2 Ko (524
where
P, P, BP, P, P, BP,
€.=|H, H, BH,| ad K,=|H; H, BH, | (525
BA; BA; B’A, BA; BA, B’A,

It is the non—dimensional coefficients P, ,H,,A,, k=1—-6 that are usually called

aerodynamic derivatives. The values that emerge from the buffeting theory are obtained
by comparison to Egs. 5.13 and 5.14, rendering quasi-static aerodynamic derivartives

~ D V , = D 1% , \%
20, =——— | +Cp = | Oy ——
S P B Ba (V) E ”BJB@-(V) " Bay (V)
P’ H; A 0 0 0
P; H; A; D v 2 v 2 v 2
P H A C)2l — Cll oo Cu| 5o
R DB[B@-(V)] L[B@(V)] M(B@-(V)]
P4 H4 A4
P, H, A] D\ v v v
® ® ® 6 _CL= —26 —26
\Ps Hg Ag) [ L DBiji(V) “Bay (V) M Ba (V
0 0 0 J

(5.26)

As shown in Eq. 5.26, the aerodynamic derivatives will be functions of the reduced
velocity V/[a)l (V)B] It should be noted that in the determination of the reduced

velocity [or the non-dimensional resonance frequency @& =Ba,(V)/V ] the resonance
frequency @, (V) is a function of the mean wind velocity, V . To start off with, i.e. at
V=0, o(V =0) is the eigen-frequency in still air conditions. It is then only dependent
on the relevant structural properties. At V' # 0 the aerodynamic derivatives contained in

K, will have the effect of changing the total stiffness of the combined structure and

ae
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flow system. This implies that the resonance frequency at V # 0 is different from the
initial value that was determined at V = 0 (or in vacuum). In general the consequence of
this effect is that any response calculation involving the aerodynamic derivatives
contained in K, will demand iterations. However, under normal circumstances the

effects of K, will only be of significant importance in the velocity region at or

immediately below an instability limit. At a characteristic mean wind velocity well
below such an instability limit it is usually the aerodynamic derivatives contained in C,,

that play the leading role, and the effects of the changes of @ with increasing V' to the

determination of the aerodynamic derivatives are most often only of minor importance,
especially as compared to other uncertainties in the theory (see further discussion in
chapters 6.3 and 8). On the other hand, at or in the vicinity of an instability limit the flow
induced changes to the resonance frequency will in most cases be of great importance,
and thus, for the determination of an instability limit this effect can usually not be
ignored (see chapter 8).

Aerodynamic derivatives for an ideal flat plate type of cross section were first
developed by Theodorsen [28]. They are given by:

—27zFV'i —gFVz
H A - x 5w
H A ) §(1+F+4GVL-)VL- _g(l_F_‘lGVi)Vi 527
T PR R
o —(1+4G Ai) ZGVi
I 2 ]

where Vl = V/ [B a (V )] is the reduced velocity, and

F(@j=J1'(J1+Yo)+Y1'(Y1—J0)
2 2
2 (J1+Y,)" +(Y1 =)
G @) _ Jy-Jo +Y; Y
o |7 2 2
(J1+Y,) +(¥Y1 =)

(5.28)

2

are the real and imaginary parts of the so-called Theodorsen’s circulatory function. Their
content J,(&/2) and Y,(&/2), n=0or1, are first and second kinds of Bessel

functions with order n, and & is the non-dimensional resonance frequency, i.e.
@& =B, (V)/V =V The flat plate aerodynamic derivatives given in Eq. 5.27 are

plotted in Fig. 5.3. (The division of & with 2 in Eq. 5.28 stems from Theodorsen’s
choice of frequency normalization with B/2 rather than B which is chosen herein.).
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Fig. 5.3  Flat plate aerodynamic derivatives (broken lines are the quasi- static values)
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The aerodynamic derivatives for a flat plate that emerge from the buffeting theory
(i.e. quasi-static values) are obtained from Eq. 5.26 by the introduction of

C, C,] [0 o0
C, C,|=0 2r (5.29)
Cy Cy 0 /2

Thus, for a flat plate the non-zero quasi-static aerodynamic derivatives are given by

A ﬂ' A
o7 |-22V, -2V,
H A 12 12
{ e 2 (5.30)
H;, A, 27V 2 g‘}f
5.3 Vortex shedding
rZ
I’
vV
_— \ Ly D
B

Fig. 5.4  Relevant displacement components and vortex shedding forces

When the air flow is met by a solid bridge or tower type of structure flow separation will
occur on the surface of the structure causing vortices to be shed alternately on either side
of the structure.

Assuming that along wind load effects may be disregarded, these vortices give rise to

fluctuating across wind forces g, and cross sectional torsion moment g, , accompanied
by fluctuating displacements 7, or r,, as shown in Fig. 5.4. Harmful vortex induced

vibrations may particularly occur in cases of resonance.
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Experimental investigations of the single point g,, process (m =z or &) on stiff
models where 7,, =0 show that fluctuating loads are more or less narrow banded
centred at a vortex shedding frequency £, , as illustrated in Fig. 5.5.a. The properties of

the shedding frequency are characteristic to the cross section of the line-like structure. It
is proportional to the mean wind velocity V and inversely proportional to the across wind
width D. Thus,

1%
—g. 31
1 StD (5.31)

where St is the Strouhal number, which is available for a good number of typical
structural cross sections in the literature. Two-dimensional investigations also show that
g,, has a more or less random distribution in the span-wise direction, as illustrated on

the right hand side of Fig. 5.4. and indicated by the decaying co-spectrum in Fig. 5.5.b.

|
|
|
|
|
|
T
fS

-Y
\

~/ >
Ve v

a) Single point spectrum b) Co-spectrum c) Motion induced load coeff.

Fig. 5.5 Load characteristics associated with vortex shedding

Turning to a flexible structure it is assumed that the properties of f, are maintained,
i.e. that Eq. 5.31 still holds. The situation is illustrated in Fig. 5.6. Assuming that V is
slowly increasing (from zero), then f, will increase accordingly, and resonance will first
occur when f, becomes equal to the lowest eigen-frequency with respect to vibrations in

the across wind direction or torsion. Further increase of V will cause resonance to occur
when f, is equal to the next eigen-frequency, and so on. Theoretically, resonance will

occur when £, is equal to any eigen-frequency f; . According to Eq. 5.31, the event that

f. =f; will occur when the mean wind velocity has a value given by
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Vg, =fD/St (5.32)

Thus, there is a resonance velocity for every eigen-frequency associated with vibrations
in the across wind direction or in torsion. Experiments show that when resonance occurs
the flow and the oscillating structure will interact, and for a certain range of ensuing

wind velocity settings f, will deviate from Eq. 5.31 and stay equal or close to as

P
shown on the upper right hand side of Fig. 5.6. This is what is usually called lock-in.
Such vortex shedding induced interaction is accompanied by two important load effects.
At lock-in the fluctuating load becomes better correlated in the span-wise direction, but
what is more important is that a significant motion induced part is added. However, these
effects are self-destructive in the sense that they diminish when fluctuating structural
displacements become large. Thus, vortex shedding induced vibrations are self-limiting,

as illustrated on the diagram on the lower right hand side in Fig. 5.6.

Increasing V
S
or
Sc|e
f
H, | A o,
or or
|Hr9| G’e
T > T T >
f, f Vg Vg v

Fig. 5.6  Response characteristics associated with vortex shedding
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G, O,
A A
Increasing
damping
v ¢
Fig. 5.7 Vortex shedding induced response characteristics at different levels of

structural eigen-damping

Experiments show that vortex induced vibrations are greatly affected by the damping
properties of the structure, as shown on the left hand side diagram in Fig. 5.7. The
motion induced self-limiting and damping dependent nature of vortex induced vibrations
is further illustrated on the diagram to the right in Fig. 5.7. Thus, it has been customary
to ascribe the motion induced part of the load to the structural displacements and the
velocity, i.e. g,, =q,, (x,t,,

+0oTm ) » Where m=z or 6.

Extensive research has been carried out on the investigation of vortex shedding
induced vibrations. In the following it is the theory first developed by Vickery & Basu
[18, 19] that will be presented. The motivation is convenience, as it is the only
comprehensive stochastic frequency domain theory currently available, rendering a
solution at any setting of the mean wind velocity. An alternative approach applicable at
resonance has been presented by Ruscheweyh [20].

In the theory as developed by Vickery & Basu the description of the net motion—
independent cross sectional load spectra and corresponding co-spectra are shape-wise
shown in Fig. 5.5. Mathematically they are given by

{qu(w]—— (5.33)
Sy, (@) - V7 -, (B2- '

and
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2
2 Ax Ax
Co, (4x) = cos{ng -exp —(%—DJ (5.34)

where m=z or 6, w,=2xf,, 6'qm is the non-dimensional root mean square lift or

torsion moment coefficient, b, is a non-dimensional load spectrum band width

m

parameter, 4, is a non-dimensional coherence length scale and Ax is span—wise

separation. [By substituting j—; =a, a=1/3 and b=2/3, and using the known integral

Ico (ba)~exp[—(aa)1da=2—\/;~exp[—(b/2a)2} it may readily be shown that
a

0

[Co, (Ax)d(Ax):ﬁe‘l%Dz0.9778‘/1Dz/1D.]

o 2

In general, é'qz increases with increasing bluffness of the cross section, b, attains

values between 0.1 and 0.3, while 4, is typically in the order of 2 to 5. Similar
properties may be expected of g, .

For the description of the characteristic motion induced load effects at “lock-in”
Vickery & Basu [18, 19] have suggested that this may be accounted for by a negative
motion dependent aerodynamic modal damping ratio, g“ael_ , such that the total modal

damping ratio associated with mode i is given by
;toti = gi - gaei (5.35)

This is equivalent to the introduction of motion dependent aerodynamic derivatives as
described in chapter 5.2 above. Adopting the notation given in Eqs. 5.24 and 5.25, it is

the aerodynamic derivatives H, and A, that are responsible for aecrodynamic damping
exclusively effective in the across wind vertical (z) direction or in torsion (6). Assuming

that in the vicinity of a distinct vortex shedding type of response all other motion
induced effects may be ignored, then

0 0 0
pB2 *
C,. -~ o (V)0 H 0 and K, =0 (5.36)
0 0 B2A,

where

2 2
H) =K, 1_( 9 J and Ay =K, 1—(@J (5.37)
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and where K, and K,  are the velocity dependent damping coefficients equivalent to

those defined by Vickery & Basu [18, 19]. (However, if appropriate experimental
evidence is available, there is no reason why C,, and K, should not be full three by
three matrices, also in the region of distinct vortex shedding excitation.) Assuming that
@ (V)= (V =0), then the aerodynamic damping term in Eq. 5.35 may be taken

(4

from Eq. 4.73, and thus,

~ j (p? 'cae (pldx
C .. L

éx ae;y _ “exp
ae;

L

(5.38)
[ (Hig? +B*Ay05 )dx
L, o PB e
dm (92407 + 95 )dx
L
where
;= M _ M, (5.39)
j(piT -@;dx I(¢5 +¢22 +¢62)dx
L L

are the evenly distributed and modally equivalent masses associated with mode i . K,

(m=zor 0) are the coefficients that account for the accelerating part of the motion
induced load when V' is close to Vi, . Apart from being cross sectional characteristics,

they are functions of V' and the resonance frequency of the mode in question (see right
hand side diagram in Fig. 5.5). a,D and a, are quantities associated with the self-
limiting nature of vortex shedding, i.e. they represent upper displacement or rotation
limits at which the aerodynamic damping becomes insignificant.

It should be noted that in Eq. 5.37 the damping coefficients are defined such that
consistency is obtained with the general definition of aerodynamic derivatives in Egs.
5.24 and 5.25 rather than the definition adopted by Vickery & Basu [18, 19]. [Thus, the
K, values given by Vickery & Basu in references [18, 19] are applicable in the

az

expressions given above if they are multiplied by 4(D/B)2 . Vickery & Basu have not

given any recommendations regarding the K, = coefficient.]
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It should also be noted that vortex shedding effects are to some extent dependent on
the Reynolds number (Re =VD/v where v=1.5-10" m?/s is the kinematic viscosity of
air) and of the turbulence properties in the oncoming flow. Information about these
effects is presented by Simui & Scanlan [4] and by Dyrbye & Hansen [5]. For a tubular
cross section the Reynolds number effect is to change the point of flow separation, thus
changing the Strouhal number as well as the load intensity. The main effect of
turbulence is to broaden the band-width and disturb the size and coherence of the
pressure fluctuations on the surface of the structure. Most structures are more prone to
vortex induced oscillations in smooth flow.

Above, only the effects in the across wind direction and torsion have been included.
In general, vortex shedding will also generate more or less narrow—banded load
fluctuations in the along wind direction, but at a frequency twice that which occurs in the
across wind direction and for most bridges at an insignificant load intensity.



Chapter 6

WIND INDUCED STATIC AND DYNAMIC
RESPONSE CALCULATIONS

6.1 Introduction

The wind induced dynamic response calculations dealt with in this chapter focus on
structural displacements for a line-like type of bridge structure. The calculations of
corresponding cross sectional forces are shown in chapter 7. The problem at hand is
illustrated in Fig. 6.1.

Fig. 6.1  Simple bridge structural system subject to fluctuating wind field

As shown, the velocity components in a wind field vary in time and space. When a
structure is subject to such a fluctuating wind field, the passing of the flow will generate
fluctuating drag, lift and moment loads on the structure, which in turn will cause the
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structure to oscillate. The time domain chain of events is illustrated in Fig. 6.2.a. From a
design point of view the main focus is on quantifying the maximum value of the
response that is most critical with respect to structural safety.

The flow is in general assumed Gaussian, stationary and homogeneous over a certain
short term period 7 (e.g. 10 min), i.e. the response calculations are performed for a
chosen design weather condition that is stable in time and space. If the mathematical
transfer from flow properties to forces is linear and the structure is linear elastic, then the
assumption of Gaussian and stationary properties also holds for any structural response
quantity. Thus, any response quantity (e.g. a displacement) may be described by its mean
value and probability density distribution, as shown to the right in Fig. 6.2.a. Its
maximum value at position x, is then given by

Tmax (%) =7 (x,) +k, -0, (x,) (6.1)

max

where 7 (x,) is the mean value, %, is the peak factor that depends on the type of
process (see chapter 2.4) and o, (x,) is the standard deviation of the fluctuating part of

the response.

u(t) Q(t) M) —r.., rA
Gl’
\( 7

Q s

T " " p(r)

a) Time domain

b) Frequency domain

Fig. 6.2  Time and frequency domain representations
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The mean value 7(x,) may be obtained from simple static equilibrium conditions.
The standard deviation of the fluctuating part of the response o, (x,) may either be

obtained from a time domain integration of the dynamic load effects from the fluctuating
flow field and possible vortex shedding, or from a modal approach in frequency domain.
The former alternative is computationally a demanding task, as it requires the time
domain simulation of a wind field that is usually broad banded and spatially un-
correlated (such a simulation procedure is shown in appendix A). In the following it is
the alternative of a modal frequency domain approach that is presented. As illustrated in
Fig. 6.2.b, the main steps involve the transfer from a wind field cross-spectral density via
a corresponding modal load spectrum to the final sought response spectrum. The area

under the response spectrum is then the variance o of the response.
As shown in Eq. 1.6 (and illustrated in Fig. 1.3.b) the cross sectional displacement at
a position x, that has been chosen for the relevant response calculation is in general a

vector containing three components: r, in the along wind horizontal direction, 7, in the

across wind (for a bridge) vertical direction and the cross sectional rotation 7,. Since

these describe a combined cross sectional displacement in a plane perpendicular to the
span, the peak factor in Eq. 6.1 is equally applicable to each of the components, and thus

Ty Ty Ty

Mmax (x ) =" = ’_Tz +kp ’ o-rz (6.2)
T, T
% Jmax o 9

As mentioned above (and further discussed in chapter 1), the wind induced response
of a slender structure is assumed stationary, and then the total response may be split into
a mean (static) and a fluctuating (dynamic) part. What can in general be expected in the
case of a slender structure is illustrated in Fig. 6.3. The static part is proportional to the
mean velocity pressure, i.e. to the mean wind velocity squared, until motion induced
forces may reduce the total stiffness of the combined structure and flow system, after
which the static response may approach an instability limit (torsion divergence). The
dynamic part of the response may conveniently be separated into three mean wind
velocity regions. Vortex shedding effects will usually occur at fairly low mean wind
velocities, buffeting will usually be the dominant effect in an intermediate velocity
region, while at high wind velocities motion induced load effects may entirely govern
the response. Such a partition should not be taken literally, as there are no tight borders.
E.g., important motion induced load effects may also occur in what seems like a typical
vortex shedding or buffeting behaviour. In the vicinity of a certain limiting (critical)
mean wind velocity the response curve may increase rapidly, i.e. the structure shows
signs of unstable behaviour in the sense that a small increase of V implies a large

increase of static or dynamic response, indicating an upper stability limit (V. ).
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Fig. 6.3  Typical response variation with mean wind velocity

Finally, a comment regarding the use of aerodynamic derivatives is appropriate. As
discussed in chapter 5.2, motion induced forces may change the combined flow and
structural stiffness (as well as damping), and thus, the current resonance frequencies are
functions of the mean wind velocity. In the dynamic response calculations below this
effect is fully included in the relevant frequency-response-functions. However, in the
quantification of aerodynamic derivatives and their contribution to total stiffness and
damping it is assumed that the effect of changing resonance frequencies may be ignored.
For the response calculations in this chapter motion induced load effects may then be
taken at a reduced velocity V /(w.B) where @ is the predetermined resonance frequency

based on structural properties alone and at V =0 . Otherwise, iterations are required.
Thus, it is assumed that the response calculations are not taken in close vicinity to a
motion induced instability limit. However, in the determination of an instability limit as
shown in chapter 8, this effect can not be ignored, and @ will be taken at the relevant
critical wind velocity, V.. Thus, the determination of V,. in chapter 8 will demand
iterations.
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6.2 The mean value of the response

The mean value of the response is the load effects of the mean flow induced load as
defined in Eq. 5.11. It may readily be calculated according to standard static equilibrium
type of procedures in structural mechanics. Such procedures are in general
mathematically formulated within a finite element type of description where the solution
strategy is based on the displacement method, i.e. for a chosen discrete model containing
N number of nodes the mean displacement vector r is obtained from

K- r=R (6.3)

where K is the static stiffness matrix and R is the mean load vector. A line like
structure will in general be modelled by beam or beam-column type of elements, in
which case there will usually be six degrees of freedom in each node (as illustrated in
Fig. 6.4.2). Thus, ¥ and R are 6 - N by one vectors and K isa 6-N by 6-N matrix.
Herein, the establishment of K and the ensuing strategy for the calculation of ¥ will not
be further pursued. However, the establishment of R is presented below.

Let us consider a typical finite element type of modelling with six load components in
each node. According to Eq. 5.11 the mean value of the evenly distributed load on an
element is given by

q, 9 DED

_ \%4 ~

da(x)=|g, |= p2 ‘b, where b, =| BCp, (6.4)
P B’Cy,

At an arbitrary node p the load contribution from an adjoining element m (see
Fig. 6.4.b and c) is then

L
2

_ L
=4, (%) 2-b,, (6.5)

Pm

O
Il
1 1 LI
Il
)
<
Do
‘:;;/

S

where L, is the element length, b, ~is the b, vector that contains the properties
m q

associated with element m , and where it has for simplicity been assumed that the nodal
discretisation is such that q may be taken constant within the length of the element

(otherwise, L,, /2 may be replaced by the result of a simple span-wise integration).
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a) Definition of external force components

>

p+1 o

Q ; =
b) Horizontal element y Qq
c) Vertical element

Fig. 6.4  Wind induced mean load components
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Comparing the situation in Fig. 6.4.b and c to the general definition of external load
components in Fig. 6.4.a, it is then seen that the contribution from Q o, to the load

vector is

_ T — — — T
R,,=[Ri Ry Ry R, R; R, =[o Q, Q@ -Q 0 o] (6.6)

Pm
if m is horizontal, and

T — — — 1T
R, =[R, R, Ry R, R; R6]pm:[_Qz Q, 000 —Qg]pm (6.7)
if m is vertical. Thus,
ﬁ _ N _ pV2 Lm
o = O Qp, = 2 '7'9’” by, ©8)
p
where
[0 0 0] [0 -1 0]
1 0 O 1 0 O
01 0 . . . 0 0 0], . .
e, = if m is horizontal, and @, = if m 1is vertical.
00 -1 0O 0 O
00 O 0O 0 O
|10 0 0] 10 0 -1

The six by one load vector R in node p is then given by the sum of the contributions

p
from all adjoining elements, i.e.

p

R,=[R R, Ry R, Ry R] =YR, (6.9)

]l

and the total 6 - N by one load vector is given by: R = [ﬁl - Ry JT .
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6.3 Buffeting response

As previously discussed in chapter 4, for practical reasons it is in the following
distinguished between three cases. First a case of single mode single component
response will be shown. This will render a suitable solution if eigen-frequencies are well
separated and there is insignificant structural or flow induced coupling between
horizontal, vertical and torsion displacement components. Second, a case of single mode
three component response will be shown. This is a suitable solution strategy if there is
significant structural or flow induced coupling between any of the three displacement
components, and if eigen-frequencies are still well separated. Finally, a full multi mode
approach is presented.

The buffeting load is given in chapter 5.1. As shown in Eq. 5.8 (see also Eqgs. 5.15 and
5.16), it comprises a time invariant mean part q(x), previously dealt with in chapter 6.2

above, and a fluctuating part
q(x,t)=B, - v+C,, -T+K, -r (6.10)

that contains a flow induced contribution B, -v and two motion induced parts C,, ‘¥
and K, -r. The content of Eq. 6.10 is defined in Eqgs. 5.9 — 5.14. It is applicable in time
domain as well as in frequency domain. Improved frequency domain counterparts to B,
C

modal frequency domain solution the flow induced part of the load (i.e. the modal

and K, are given in Eqs. 5.19, 5.24 and 5.25. As shown in chapter 4.2 — 4.4, in a

ae

versions of C,,-f and K, -r) are moved to the left hand side of the equilibrium

equation and included in the modal frequency-response-function. Thus, the development

of a modal buffeting load needs only consideration of the flow induced part B, -v , while

the motion induced parts need consideration in the development of the modal frequency-
response-function.

Single mode single component buffeting response calculations

The response spectrum of an arbitrary displacement component at span—wise position
x, due to excitation in a corresponding mode shape number Z is given in Egs. 4.28 —
4.30. The variance of the displacement response at x, is then obtained by frequency
domain integration, i.e.
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2 T @2(’5 ) Tl 2
on (x,) = [ S, (x,,0)do="3"[|H, ()| Sg, (@)do (6.11)
0 i 0
where
S =1 L( p (6.12)
Qi(a))_Tl—rgo]zT' %4, aQi) '

and ags. is the Fourier amplitude of the appropriate flow induced modal loading
2

component g, , g, or g,. The modal stiffness K; and the modal frequency-response-
function FIi (@) are defined in Eqs. 4.19 and 4.24. As shown in Eq. 4.24, any motion

induced load effects are included in H, (o).
Let us for simplicity consider the displacement response in the along wind horizontal

direction r, at x,., and develop its variance contribution from one of the predominantly

y-modes, @, z[gby 0 OJT, with corresponding eigen-frequency o; = @, (e.g. the

contribution from the y-mode with lowest eigen-frequency). The flow induced modal
load is then given by (see Eqgs. 4.19 and 5.12)

j 9, (x)-q, (x,t)dx
Lexp

pVB (6.13)

D~ D_, =
j 9, (x)|2—=Cp -u(x,t)+| —Cp —Cp |-w(x,t) |dx
L B B
exp
where L, is the flow exposed part of the structure. Taking the Fourier transform on

either side renders

j 9, ( ,0)dx
Lexp

pVB (6.14)

j 9, (x {2%51) ‘a, (x,a))+[%C,§, —éL]-aw (x,a))}dx

Lexp

and thus, the modal load spectrum is given by
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VB . 1 D~ + (D,, =)+
S, (w):[ij lim = | ¢y{2§CDau+(§CD —CLjaw}dx

exp

(6.15)

D D, =
. LI 9, [ZECD% +[§CD —CL]aw}dx
exp

Acknowledging that

S, (Ax,w) = lim %[a; (x1,0)-a, (xz,a))] where IZ} =u,w (6.16)

T —

and assuming that the cross spectra between flow components are negligible, i.e. that

S, (Ax,a)) =S, (Ax,a)) =0 (6.17)
then
pV2B ?
SQy (a)) ={ 5 -Jy (a))} (6.18)
where

Ti)= Il o) e (x2)-{[2%6D1u f w

2
D ., = S, (4x,0
[(Ber-e ] Sl e

exp

6.19)

O,

w

is the joint acceptance function containing the span-wise statistical averaging of variance

contributions from the fluctuating » and w flow components. I, and I, are the
corresponding turbulence intensities and Ax =\x1—x2\ is the spatial (span-wise)

separation. Combining Eqgs. 6.11 and 6.18, using Ky = iMy, and introducing the
modally equivalent and evenly distributed mass

m, =M, / [o2dx = [m, p2dx / [o2dx (6.20)
L L L

then the following expression is obtained for the standard deviation of the dynamic
response in the along wind y direction
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1/2

ay<x,>=|¢y<xr>-ﬁ-[ v ] -Fﬁy(w)f'efi(w)dw

2m,, Bwy
where

Jy(w)sz/jqudx
L

119

(6.21)

(6.22)

The non-dimensional frequency response function is given in Eq. 4.25. Neglecting any
aerodynamic mass effects and introducing the notation given in Eqs. 5.24 and 5.25, it is

then given by

y

2
lfly ((0)2 1_Kaey _(wﬁ] +2l(§y _gaey)'wﬂ

where
PB opt [ gia |
2 vy 4 I ¢y X
f{ Lexp J‘ \
%y o’ | o2dx gydx |1«
—P
[“ey]: | ' yiy _pB? Ly | 27*
A 2 . m 2 1
;aey Caey ,OB o P1 J‘ ¢2dx y j¢ydx -
z 9 v y L 4
2a)yMy Lexp
~ 2
2a)ymyj¢ydx
L L _

(6.23)

(6.24)

Similarly, the standard deviation of the dynamic response in the z direction and in

torsion are given by

pB3 v 2 e A . . q1/2
o) =l 5] 22| | I (ot 2
Z z _O i

3 v 2 e ) -1/2
R P R [ R
LO i

where:

(6.25)

(6.26)
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j m, ¢7dax
=M,/ i ¢2dx = f o
jm5¢gdx
1, :M9/£¢3dx :W
L

and where the joint acceptance functions are given by

by

where:

{ gp@ x)

b s
+ (CL+BCD]I } ( dxldx2 /j P2dx

Lexp

{(2CL ‘)

[ 9(x1) 9, (xz)-{(25M1u )QL‘Z“")

O,

u

12
S (A
+(Cy 1, )2 wwg_z’w)}dxlde] A%de
w L

The corresponding frequency response functions (see Egs. 4.24, 4.68 and 4.69) are given

-1

28, ( ,0)

(6.27)

(6.28)

(6.29)

(6.30)



6.3 BUFFETING RESPONSE 121

Kaez _ pB2 .Lexp 9

~ 2 : B
é/aez m, J: ¢z dx lHl

L4 (6.31)
Kaeg _ ,OB4 .Lexp . 2 3
é/aeg rﬁ& j¢€2dx l *
L 1472

Example 6.1

The volume integral in the joint acceptance functions above, e.g. as first defined in Eq. 6.19 or as
normalised versions given in Egs. 6.22, 6.28 and 6.29, may in general be expressed by

Lexp Lexp m
2 _ —
errn - J. _[ grmrn (x17x2)dx1dx2 n }_y’z’e
0o 0

where: g, . (2q,25) = G, (1) -G, (x9) Wi (4Ax),  k=u,w.It will in most cases demand
a fine mesh, particularly in the region of small separation Ax = ‘xl —x2‘ . The reason for this is
that ;, , is usually rather steep close to zero, and thus, &ror (xl,xQ) will rapidly drop in the

region close to a diagonal plane through x; =x, . This difficulty may readily be overcome by
adopting Dyrbye & Hansen’s [21] following procedure for turning a volume integral back into two
line integrals. The position coordinates x; and x, are interchangeable, and therefore

grr (xl,xQ) will be symmetric about the plane through x; = x, . Thus,

) Lexp | Lexp
J: . =2 I J 8 (%1,200 — Ax)dxy |dAx
0 | A

"m’n

Introducing the notation x; =x + Ax and

grmrn (xlrxl _Ax) =Grm (xl)'Grn (xl _Ax)l//kk (Ax) =G,

m

(¥ +4%)- G, (x)- Y (4%)

then the following is obtained:

Lexp | Lexp—4%
me’n =2 _[ _[ G, (x+4x)-G, (x)dx |-y, (4x)dAx
0 0

It is usually convenient to introduce the normalised coordinate % =ux/ LeXp and separation

Ax = Ax/ LeXp . Thus, in a normalised format the joint acceptance function is given by

1 |1-4%
Jr =22 [ | | G, (£+4%)-G, (£)d# |-y, (4%)d AR
0 0

Let for instance G, (%) =%,/ Ly, and G, (%) =%/ Ley, » then
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rmrn exp
exp Lexp

J?  _or2 }ﬁ%“‘x ’Edﬁ}-l//kk(m?)dmﬁzél [2-8(8) + ()" vy (4¢)d

0
The solutions to a good number of cases have been shown by Dyrbye & Hansen [21] and by

Davenport [14], who has also developed simple approximate expressions.
The most common cases are graphically illustrated in appendix B.

Example 6.2

Let us consider a typical single mode single component situation, where the three modes k,m,n

o, =[¢, 0 0] 9,=[0 4 of ®,=[0 0 g,

with corresponding eigen-frequencies @, ,®,,®, have been singled out for a response calculation.

Since the main girder cross section of many bridges are close to a flat plate, the load coefficient
properties

Cp Ch
Cy, +#0, C, =0 and %éD < C,
Cu Cu

are frequently encountered in bridge engineering. In that case

J?(a))z[Z%éDl ] H 9, (1)@, (x2)- delde

S, (dx, @
JZ (@)= (CLL,) ” @, (%) )~%ﬂbcldx2
Lexp w
S, (A, @
Ji (@)= (Cyl,) ” o (1) 05 (x3)- T)dﬂﬁdxz
Lexp w
Introducing:
Suu (Ax’w) = Su (0)) ‘éouu (Ax’w) ’ Sww (Ax’w) = Sw (0)) 'éoww (Ax’w) ’

K, =’ M, =w,%~n3nf¢3dx, n=y,zoré
L

and the non—dimensional joint acceptance functions

ﬁ 9, (1) 9, (x3)- -Co,, (A, w)dx,dx, /[ ¢2dx
Lexp

H @, (%) x2) ow (4%, @) dx, ﬁ(fﬁdx
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12
je(w)z[ _U ACR (xz)'éoww(ﬁx’w)d%dsz /[(ﬁgdx

exp

then the r,,, r, and r, response spectra are given by (see Eq. 4.30, 6.18, 6.19, 6.28 and 6.29)

B°D (v ) Sy
Sry (w’xr) = ¢y (xr) p~7 [ ] CD ] (2w
y u
S,

m Bw

5, (0= 0. () o 51| it 2 (w)-@(w)] a{2)

_ (v " Su(0)
— pB V ’ y (0]

Sy (@) =| 6y () 2rftg '[ng] Cyly “Hg(a)) Jg(a))] . ";_3)
Integrating across the entire frequency domain, the following response standard deviations are
obtained:

2 1/2
pB*D v Y [54 2 S, (0) -

Try (x,) = ‘% ()] m, -Cpl, [Ba)y . Z'; H, (a))‘ “0_3 J; (w)do

2 1/2
o 22 (VY [ o Se(@) e

O'rz (xr)_ ¢z (xr) 2m [szj . gHz (CU)‘ 0_3} 2 (a))da)

2 1/2
- PB* v Y [55  2 8.(0) s
g () =100 ()| oty g [Ba)gj ' gHH(w)‘ wo.li Jy (w)do

Let us focus exclusively on the response in the y (drag) direction, and consider a simply supported
horizontal beam type of bridge with span L =500m that is elevated at a position z, =50m . Let

us for simplicity assume that the relevant mode shape ¢, (x)=sin (zx/L) and that x, = L/2, in

which case ¢, (xr) =1. Let us also assume that the entire span is flow exposed, i.e. Lexp =L,

and adopt the following wind field properties:

1) the turbulence intensity I,=0,/V=0.15 (see Eq. 3.14)

2) the integral length scale: *fL, =100- (zf/lO)O's =162m  (see Eq. 3.36),
S, (o .08-f

3) the auto spectral density: = ( ) = 108- 'L, / 14

5 (see Eq. 3.25)

% (1+1.62-w-fou/V)5/3

4) the normalised co-spectrum: Co,, (w,Ax) =exp(-C,, - @-Ax/V)  (see Eq. 3.41)
where C,,, =C,, = 9/(27) =
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Let us allot the following values to the remaining constants that are necessary for a numerical
caleulation of o, (x, =L/2):

p c B D (m) m ) 4
(kg/m3) D (m) y Yy Yy
(kg/m) (rad/s)
125 | 07 ] 20 | 4 | 10000 | 04 | 0.005

Since m,, is constant along the span, then the modally equivalent and evenly distributed mass

n3y =m, . Finally, let us adopt quasi-static values to the aerodynamic derivatives, in which case

K, =0 and the aerodynamic damping é’aey is given by (see Egs. 5.26 and 6.24)

aey

2 2 _ ~

fo =P pr S PB| og, DV | PDCV 37510y
v 4m, 4, B Bo, 2m,,

The non-dimensional joint acceptance function J , may readily be obtained by numerical
calculations. However, as shown by Davenport [14], in many cases closed form solutions may be
obtained. The situation that ¢, (x)=sin(zx/L) and Co,, (@,Ax) is a simple exponential
function is such a case. Substituting x; =x, x=x+Ax, £=mx/L, Aft=Ax/L and
®=C, . wL/V , then

2
H 9, (x1)-9, (x3)- Co,, (Ax,»)dx,dx, [‘[ ¢y2dx]
exp L

Lexp | Lexp—Ax 2
=2 [ | [ ¢ (x+ax)-g,(x)dx|Co,, (Ax,0)dAx [I¢2dx]
0 0
Lexp Lexp*A’C P P L P 2
=2 sin - (x + Ax)-sin —xdx |-exp(—C,,0Ax [V )dAx sin? ~ xdx
17T 0 i sin |-t vy /|t i
Using that sin2¢ =2sinacosa and that sin(a+ ) =sina-cos f+cosa-sin f, then this
may be expanded into
Lexp | Lexp—Ax

jiz% (coszAx-sin2£x+lsinﬁm-sin2—”xjdx -exp[—c“x jdAx
T L L2 L L v
1 7(1-A%) 7(1-A%)
8 V4
—‘[ cos — A% J. sin xdx+ sin L A% I sin 22d# |- exp (—@A% ) dA%
V.4 2 L
1
jy2:§ {g(l—mﬁ)cosm-i[msm-sinZﬂ(l—M)—sinﬂAoE-cos27r(1—A¢E)]
V4
0

+%sin7zM}eXp(—é)A£)dM
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Using that sina-cos f—cosa-sin f=sin(a— ) and sin(-o+27)=-sine this simplifies

into

1 1
J? =4I[(1—A¢E)cos7r&2+lsin7zA£}exp(—ch)dM :4{[cos7rmﬁ-exp(—(bmﬁ)dmﬁ
0 7 0

1 1
—IM‘cosmﬁexp(— A%+ '[smlex exp(— A)dM}
0 0

L
7

1

-4 {(I_M)eXp(_M)-(—d)cosm+7rsin7zm€)l)

[0 ﬂ)cosm 27zs1n7zAx)

A 1
—1{W~(&)Sinm+ECOSM)}
| &+rw o

Thus, the following is obtained:

@ on? 1+exp(-d)

=J2(@)=4-w(& h @)=
H(0)=4-v(0) where (@) =] 5 @ n]

The standard deviation of the dynamic response at x, = L/2 is then given by

1/2
j \ : “(w)-Jﬁ(&))dw}

2
0 Oy

_ 104 .72
o, (L/2)=3.28-10*.V

where S / (2) and @ are defined above, and where

A

H, (0)= [1 ~(/0.4)" +2i(0.005+4.375-107* V). a)/o.zq1

The chosen single point spectral density and corresponding normalised co—spectrum of the
turbulent # component are shown on the top left and right hand side diagrams in Fig. 6.5. The
non-dimensional frequency response function and the squared normalised joint acceptance
functions are shown on the lower left and right hand side diagrams in Fig. 6.5. The response

spectrum of the along wind r, component at x, =L/2 and V =40 m/s is shown in Fig. 6.6.
As can be seen, it contains a broad banded background part and a narrow banded resonant part at
®=0.4 rad/s . The standard deviation of the dynamic response at x, = L/2 is plotted versus

the mean wind velocity in Fig. 6.7. [It should be noted that the effect of aerodynamic damping is
considerable (see Example 6.3), and that the validity of the quasi-static theory may be limited.]
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10 £
%L =162m -
[<F]
™3 %
o) 1 &
» 10 §
¢ R
K]
2 E
10° - 5
K =
107 10° 10°
oL, IV
10° 10° :
10’
=] e
= 10"}
I}\ 0 >
10
o ©=04,(=0005 ° - =sin(mx/L)
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Fig. 6.5 Top left and right: single point u spectrum and corresponding normalised co-
spectrum, lower left and right: frequency response function and joint acceptance
function

V=45m/s,6c =1.37m
10 F ! ;
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=
O@

-
o,

Response spectrum, S (») [svmz]

¢, =-0.0175 - ¢, =0.0225
10°—2 :

2

10" 10
o (rad/s)

10

Fig. 6.6  Response spectrum of r, displacements at x, =L[2 and V =45 m/s
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15 T T T T
L=500 m, D=4 m, my = 10* kg/m, CD =07
| =015, z.=1m
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3
oo 1t 1
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Mean wind velocity, V [m/s]

Fig. 6.7 The standard deviation of the dynamic response at x, = L/2 versus the mean
wind velocity

Single mode three component buffeting response calculations

The solution to this case is given in chapter 4.3, see Eqs. 4.47 and 4.48. What remains
from the development in chapter 4.3 is to expand on the modal load spectrum SQ~_ using

the results from chapter 5.1. As shown above (see Eq. 6.4 and ensuing discussion), the
flow induced buffeting part of the fluctuating load is

q, (x,2)
q, (x,t) |=B, (x)-v(x,t):(pVB/Q)-éq v (6.32)
9y (x,t)

where éq and v are defined in Egs. 5.9 and 5.12. Thus (see Eq. 4.39)
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@, (t)=% [ of (B, v)dx 6.33)
Lexp

where @; (x) = [(D 9, ¢g] . The Fourier transform of Eq. 6.33

VB A
an_(cl)):pT [ of (B, a,)dx (6.34)
Lexp
where
]T

a, (x,0)=[a, a, (6.35)

contains the Fourier amplitudes of the # and w components. This will then render the
following modal load spectrum

SQi (@) = %ﬂ%(aé g, )

(227 pm L {f“"( ”)”ip""( ) }

where

, a,a, a.a S S
S, (4v,0) = lim —[ a; (x,,0) a7 (x,,)] = lim —| “% @ || Pw S
T 7T T-=7T|a a, a,a
wu ww
(6.37)
This is greatly simplified if the cross spectra between flow components are negligible,
ie. S, =S,, =0,seeEq. 6.17. Then

S, (@)= {psz ), (a))T (6.38)

2

where:
I? =[] oF (x1)-{B, (x1)-[ £ -8, (4x,0) |- B] (xo)]- @; (x,)dxidr,  (639)

is the joint acceptance function, and where
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|, =diag[I, I,]

(6.40)
8, (4x,0)=diag|8,, /0% S,/ |
Introducing the modal stiffness K, = @?M; and defining
m; =M,/ [ (@] -@;)dx (6.41)
L

then from Eqs. 4.47 and 4.48 the following standard deviations of displacement
responses at x, are obtained

Oy Py (%,

Y pB3 Vv 2 )
o, | =|¢.(x,) %(QJ D
i 0

O |, Py (xr) : '

1/2
, (a))‘2 2 (a))da)} (6.42)

where

2 J

J=—>~t (6.43)
[of -o,dx
L

Again, neglecting any aerodynamic mass and introducing the notation given in Egs.
4.25,4.40 and 5.25, then the frequency response function is given by

9 -1
H;(0)= ll—lcae_ —(2] +2i(¢; —;ae.)ﬂ] (6.44)
1 a)L 2 w:

(S

where

I (‘p?kaeq,i )dx

pB® Lo
== (6.45)
b2my j(‘PiT‘Pi)dx
L
9 j (‘PiTéae(Pi)dx
Coe; = P Zj Lo (6.46)
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As explained in chapter 4.3 (see Eq. 4.41), only diagonal K, and €,, will maintain the
presupposition that no modal coupling will occur. Flow induced coupling will occur if
K, and C,, are not diagonal.

Multi mode buffeting response calculations

The general solution to a multi mode approach is given by the three by three response
matrix shown in Eqgs. 4.80 — 4.82. The corresponding three by three response covariance
matrix

2
Orry Covryrz Covryra
_ 2
Cov,, (x,)= Cov,, o, Cov,, (6.47)
2
Covrgry Cov,,. Oy,

which contains the variance of each response displacement component r,, 7, and r, at

x =x, on its diagonal and cross covariance on its off-diagonal terms, is obtained by
frequency domain integration. Thus,

oo

Cov,, (x,) =[S, (x,.0)dw =0, (x,)| [A; (w)$

(0)H] (w)do |®F (x,) (6.48)

where I:I,](a)) and S, (w) are N4 by N, .4 matrices given in Egs. 4.69 and 4.75, and
®, (x.) is a three by N4 matrix defined in Eq. 4.79. What remains is to bring the

results from chapter 5.1 into I:Iﬂ (w) and S5 (@) . Disregarding any aerodynamic mass

effects, the frequency response matrix I:I,] (@) in Eq. 4.69 is reduced to

5 -1
H, (o) = I—Kae—(a)-diag{%ﬂ +2iw-diag{%]((—§ae) (6.49)

(4 (4

where | is the identity matrix (N, 4by N,.4), and where §, {, and K,, are defined

mod

in Eq. 4.68. By introducing the modal stiffness matrix K =diag[1/ (a)lelﬂ the

definition of 7, in Eq. 6.41 and the notation in Egs. 5.24 and 5.25, then the content of
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Kee = Kaeij and zae = ;an (650)
are given by
= (plT kae Q; d
“ M, 2my (@7 @ )d .
L
¢ [ (o € @;)dx
_ ﬁ ae; pB Ley
L

Fully expanded versions of these expressions are given by

Kaei' * * * ® * *
pBJZ = j (¢yi ¢yjP4 +¢zi ¢yjH6 + ¢Hl ¢yJBA6 + ¢yi ¢sz6 + ¢Zi ¢sz4 +¢€l ¢ZJBA4
Lex
7, ’
+¢yi ¢6‘/BP3v + ¢Zi ¢€JBH§ +¢€i ¢€JB2AE; )dx:l / |:j(¢-i + ¢Z2l + ¢€2l )dx:l
L
(6.53)
gaey‘ * * * ® ® *
p32 = j (¢yi¢yjpl +¢zi¢yjH5 +¢Hl¢yJBA5 +¢yi¢ZjP5 +¢Zi¢ZjH1 +¢€l¢zJBA1
Lex
4 ’

60,80 0,0, 80 s0g0,8°05)is] | 116048 6t
L
(6.54)

As mentioned above, the normalised modal load matrix S5 (Npeqby Npoq) is given in
Eq. 4.75. Its content SQ-Q- (@) , containing the cross sectional load matrix S, (Ax,w), is
i)

defined in Eq. 4.77 (and 4.78). Based on the buffeting load expressions in chapter 5.1 it

is now only S§,, that remains for further expansion. Recalling from Eq. 6.32 that the
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buffeting part of the cross sectional loading is [qy q. quT =B, -v= (pVB/2)~éq v,

then its Fourier transform is

aq
a, (x,0)= aq;v =(pVB/2) B, -a, (6.55)
%gp
where
a,(x,0)=[a, a,] (6.56)

The cross spectrum Sqq (Ax,a)) is then given by

. 1 #
S, (Ax,0) = lim ﬁ[aq (x1,) aqT (xz,a))J

T —oo

2
PVBY & . 1.« r i
:( 2 j 'Bq'%ﬂﬁ[av(’“l’“’)'av (x2’w)]'3q (6.57)

2
PVB Y o AT
= (T) ‘B, -S, (Ax,w)-B;

where S, (Ax,®) is defined in Eq. 6.37. Adopting the assumption thatS,,, =S, =0,

see Eq. 6.17, and introducing Eq. 6.40, then the content of the normalised modal load
matrix (Nmod by Nmod)

SQ (w) = SQin (o) (6.58)

is given by
, I o () {B, [28, (av,0)] -B] |- 0, (xy)dx,dx,
L

_[PV?B| Ley
SQiQJ’ (a))—[ 2 J (a)le)(a)fMj)

4

2
_pB pB (V V[V ] 5
~2m; 2m; \Bw ) \Bw; | Y

(6.59)
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Thus, in case of multi mode calculations there will be N,

mod “IVmoa such reduced joint

acceptance functions J 5 , each defined by

[ @ (x1)-{B, [ S, (4x,0)] B |- @, (xy)dx,dx,
J2 = lew (6.60)

! {jtpiT -<pidxj-(£¢f- -<|>,~de

L

A fully expanded version of J 3 is given by

D~V ose (Dr 7 Vg
J;Z J.J. {¢yi (x1)¢yj (xZ)I:(zBCD] Ifsuu+(gcb_CLJ Izisww‘|

Lexp
~ \2 724 , Dz Y 24
+¢2i (x1)¢2j (xZ) (2CL) IuSuu+(CL+ECD) Iwaw
+05 (41)0, (x2)[(235M 128, +(BCy Igﬁww}
[ D= = 54 D, ., = , D~ 5
o, (1) (52)+0, ()9, ()] 45 EoCu128,+ G5 =G [t +Bcpj1,isww}

' D= .= s (D A 124
+[¢yi (x1)¢9j (x2)+ 0y (x1)¢yj (%)} 4ECDBCMIESuu +(ECD _CL]BCMIiSww:|

| —

+|:¢zi (1) 8, (x2) + ¢y, (%1) 8. (x2)

4C,BC, IS, + (ci + %60 ] BCy, 128, }}dxld@

(6.61)
and the corresponding reduced version is given by
R J2
J; = Y (6.62)
2, 2 2 2 2 2
[{(%’i +¢2i +¢9i )dx}u((ﬁyj +¢2j +¢‘9j)dx]
The reduced cross spectra Suu and Sww are defined by
4 2
‘%uu =Suu (Ax’a))/cyu2 (663)
Sww = Sww (Ax’a))/o-w
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where S, and S,,, are defined in Eq. 3.39. (A transition between spectral density

descriptions using f rather than @ as the frequency variable is shown in Eq. 2.68.)
Since spatial averaging will eliminate any complex parts of the cross spectra, Eq. 6.63
may for all practical purposes be replaced by

~ S N
S, = Re[S,, (4x,0)]/0? = @-Couu (4, )
O,

S“ (6.64)
S, =Re[Sww (Ax,a))]/of} = w(®) -Co Ax,0)
O

win (

2
w

where C‘ouu and C'oww are the reduced u- and w- component co-spectra (see Eq. 3.40).

Example 6.3

Let us again (similar to example 6.2) consider a simply supported horizontal beam type of bridge
with span L =500m that is elevated at a position z, = 50m , but now we set out to calculate the

dynamic response at x, = L/2 associated with the two mode shapes

@, =[0 ¢, 0]T and ©,=[0 0 %JT

with corresponding eigen—frequencies @ =0.8 and @, =2.0 rad/s. As can be seen, @,
contains only the displacement component in the across wind vertical direction while ¢, only

contains torsion. Let us for simplicity assume that ¢21 = ¢92 =sin wx/L . Thus, the aim of this

example is to calculate the corresponding dynamic response quantities o, . and o, at
x, = L/2 and the covariance Covrgrz between them. It is taken for granted that the chosen mean

wind velocity settings are well below any instability limit, such that any changes to resonance
frequencies may be ignored. Again, it is assumed that the cross section is close to a flat plate with
the following static load coefficient properties:

C.=0 C, =5 Cy =0 Cjy =15 and %ED <C},

(Quantifying the drag coefficient is obsolete since y direction response is not excited.)
Let us also assume that the entire span is flow exposed, i.e. Ly, =L, and adopt the following

wind field properties:
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1) the turbulence intensity

0.3
x z L
2) the integral length scales: 'L, =100- [l(l;j =162m, fow = U

3) the auto spectral density:

4) the normalised co-spectrum:

1,=0,/V=0.08

135

(see Eq. 3.14)

Co,,, (w,Ax) = exp[—wa

xf
12 (see Eq. 3.36),
S xf
w (20)) _ 1.5 Lw/V - (see Eq. 3.25)
O (1+2.25-w-"fLw/V)

- Ax
—_— Eq. 3.41
v j (see Eq. 3.41)

where C,,, =C,,,, = 6.5/(27)~1.0.

Let us allot the following values to the remaining constants that are necessary for a numerical
calculation of the relevant dynamic response quantities at x, = L/2:

) P \ ‘ B ‘ D ‘ m, m, ay @y ;1 gz
(kg/m’) | m) M) oy | (kem¥m) | (radss) | (rad/s)
1.25 ‘ 20 ‘ 4 10% ‘ 6-10° 0.8 ‘ 2.0 ‘ 0.005 ‘ 0.005

Since m; and m, are constant along the span, then the modally equivalent and evenly distributed

masses 7y =my and 1, =m, . It should be noted that

®} @, = ¢, =sin’7x/L

o] @, = ¢ =sin’7x/L

m
=z, 0r 6,.
n

Finally, let us for simplicity adopt quasi-static values to the aerodynamic derivatives, except for

L
L
and that J(I)m -g,dx = Py for any combination of
0

A; which is responsible for aerodynamic damping in torsion. Adopting A; =-pyCy (V/Bw, )2

and S, =0.2 provides a good approximation to the flat plate properties. Thus, the aerodynamic

derivatives associated with motion in the across wind vertical direction and torsion are given by
(see Eq. 5.26):

% ~ B *

H, v A, -V H, A,
H, |=C;-| 0 Ay |=Chy | =By V2 H, A, |=0
H, V2 A, V2 Hy Ag

where: V = V/ (Ba)l) . The aerodynamic coefficients associated with changes in stiffness and damping
are then given by (see Eq. 6.51 and 6.52, or the fully expanded versions in Egs. 6.53 and 6.54):

_pB*

aEij

2,

[ (0,00, BH; + 0,0, B*A; )dx / [(02 +02 )dx
L L

exp

Sa

B2
_P J‘

U 4m,

(0,02, H7 + 05,0, BA; + 0,0, BA; | dx / (02 +02 )dx
L

Lexp
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where in this case i and j are equal to 1 or 2. Introducing the choice of aerodynamic derivatives
given above, then:

[ 0.,0sBH;dx

2
k=0, K _PB? Loy zsz‘ngpBS.Ci. v
e “2 - 2m 2 dx 2m 2m B
1 ¢ 1 1 @
L

[ ¢5B*Azdx
2 % 3 4 4 2
Ky =0, Ky, =25 Low _PB g PB e [V
ee21 w2 o, j o5 dx ity ity B,
L

I ¢Z21Hfdx

2 2 ) 2
gae11 = p€ .LEXP B = plf H; :_i'CL'L’ gaem =0
41, J¢Zldx 4my 4y Bay
L
| 09, BA/dx
pB? Lexp pB3 . pB: , V
$aogy =2 > —EZ A =22 oy
4m, J P 4m,, 4m, Bw,
L
[ ¢3B%Asdx \
¢ _PB® Loy _pB{A*__pB{ o [V
“2 " 4, [ 62, dx am, % 4wy, MM | Ba,
L

The non-dimensional frequency response function is then given by (see Eq. 6.49)

@ )

A, () = I—Kae—[ardiag{lD2+2ia)~diag{al):|‘(;_(ae) _

-1
{1 O}—{O Kaqz}—aﬁ {wl_z ?2}+2iw{w1_1 (: [{Q 0}_[%211 0 D
01 0 Ka222 0 @, 0 Wy 0 4,2 ga221 ga222
where: K, =97.66-10*-V?, k. =1563-10*-V?  (,  =-39.06-10"*.V ,

=-1.563-10*.V, =-0.1563-10*-V?2, and where all other quantities are given
aegl aeg9

above. The aerodynamic stiffness and damping coefficients Kaers > Kaegy » ;aell ’ gaezl > ga222

are shown in Fig. 6.8. The absolute value of the determinant of the non—dimensional frequency
response function (at V =0) is shown in Fig. 6. 9 together with the single point spectral density
and normalised co-spectrum of the wind turbulence w component.
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Fig. 6.8  Aerodynamic stiffness and damping coefficients
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Fig. 6.9 Top left and right hand side diagrams: w component spectral density and
normalised co-spectrum, lower left: absolute value of the determinant of the non-
dimensional frequency response function at V =0, lower right: the joint acceptance
function of normalized mode shapes.
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The content of the normalised modal load matrix
s (01| 0@ Sae
o @=lg g
Q@1 T Qo2
is given in Eq. 6.59:

B pB* (v V(v )
Sqq, (=22 (VT (V) g
QiQj 2m; 2m; \ Be Bw; d
where the reduced joint acceptance function J ;i 1s given in Eq. 6.60. An expanded version of the

joint acceptance function itself is given in in Eq. 6.61. Under the present circumstances it
simplifies into

’ 2 Sww O),Ax
Jh= [ ¢, (x1)-0, (x:)-(CLL,)" - E‘ )dxldxz
Lexp w
JY -C}BCyIZ- Md d Jay =7
12 = _U 9., (x1) 0, (x5) - CLBCyy > x10%g 21 =912
Lexp w
’ 2 Sww ,Ax
I3 = _” Pa (x1) 0, (x2) (BCly 1, )" (()_ )dx1dx2
Lexp w

Introducing S, (@,Ax) =S, (@)-Co,, (@,Ax) and I, =0, /V , then the content of the
normalised modal load matrix is given by

2
VBC; - pPVB,/C;BC;
Se (@) =| Bk d i (@) | 8, (0), Sy (0)=| M S (@),
! 20y, 2 200,y \[Ty 11y
2
_ _(pVBCy
SQQQl (Cl)) = SQlQQ (Cl)) and SQQQQ (Cl)) = [za&zrﬁz'c]22 (a)) Sw (Cl))
where:

2
jlzl = _[_[ ¢zl (xl)'¢zl (xz) ‘CAoww (H)’M)dxldx2/[_[¢z21dx]
L

Lexp

j221 = _U ¢21 (x1)¢92 (x2)'éoww (w’M)dxldx2/[J.¢z21dx J.¢‘922dx]
L L

exp
2
JZ, = ” g, (%1) B, (xz)-éoww(a),Ax)dxlde/[J.(D%dx]
Lexp L

Since ¢, =g, =sinzx/L , and Co,,, (w,Ax) = exp(—Cwy a)Ax/V) the present situation is

equivalent to that which was encountered in Example 6.2, and thus,



6.3 BUFFETING RESPONSE 139

Ih
R D 1 =0
Ji =4y (o) where  y (@)= A2a) 5 +27° +exp(2a2))
R o+ A
J222 (0)2 +7 )
and where @ =C,, L, /V . The normalised modal load matrix SQ is then given by
@
c [j U BC,C,
A s 2 L = IAS
S, ()= Saer Sa |_(pVB)-S, (o) v ()| “la) m
Q S.. S.. 25\ (@i 2
Q@1 T Q202 (wlml) (‘“2 2) BC,C), (BC;W)2[w1] iy
) My

And thus, the spectral density response matrix at x, = L/2 is given by (see Egs. 4.81 and 4.82)

sr,(L/z,w)=E’Z’z o, (L2)-8 2 (@)@ (L/2)

oz o0

where: S, (@)= Fl:, (a))'SQ (a))l:lg (@) and @, (L/2) = {(1) (1)}

. . . En E12
Introducing the impedance matrix where

2
[ .
Ell =1 _[wl) +2la(§1 - gaell ) ’ E12 = _Kaem ’

2
) w . @
E,, =921 — ; and E22 =1- Kae [] +2i— §2 - ;ae
21 w, aeg] 22 @, @, ( 22 )
X H, H E,, -E
Then H (0)) = Au A PI=E"= ! 2 .
! Hy Hy, detE|-Ey By

rendering the following expression for the spectral density response matrix at x, = L/2

i (B;f-wf-fs-%”)-ww)-ﬁm |

where:

Sy (@) =711 Hyy Hy + 7y (H;1 Hyy +Hy, 'H11)+7MM Hyy-Hyy
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Sy (@) =711, “HyHy + 7y '(H;1H22 +H;2H21)+ Yans - HaoH o

2 2 .
vy =CP [“‘2] M2 29375, y. =BC,Cly =150 and 7,y = (BC)y )2£“’1j ™ _94.
@) m Oy

Since we are mainly aiming at calculating the content of the covariance matrix

o O',2 . Cou, -
Cov,, (x, =L/2) =[S, (L/2,0)do=| ** :
2
0 Covrgrz O-rgrg

it is only the absolute values that are of interest.
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Fig. 6.10 Top left: absolute value of frequency response function. Top right: cross
spectrum between vertical and torsion response components. Lower left and right:
spectra of components in vertical direction and torsion. V =30 m/s.

The absolute value of the determinant of the non-dimensional frequency at a mean wind velocity
of V =30 m/s is shown in the top left hand side diagram in Fig. 6.10. The top right hand side
diagram shows the amplitude of the cross spectrum between 7, and 7, while the two lower diagrams
show the spectral densities of 7, and 7,, all at a mean wind velocity of V =30 m/s. As can be

seen, there are traces of modal coupling. In this case the coupling effects are exclusively motion
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induced. Comparing ‘detH (a))‘ shown in the top left hand side diagram of Fig. 6.10 to that which

is shown in Fig. 6.9 it is seen that the resonance frequency associated with the second mode shape (in
torsion) is no longer precisely at 2 rad/s , but slightly below. It is also seen that the resonance peaks

are reduced, and particularly the peak associated with ¢Zl at @, = 0.8 rad/s. The standard deviation

of the dynamic responses in the across wind direction (7, ) and in torsion (7, ) at various mean wind

velocities are shown on the two left hand side diagrams in Fig. 6.11. The circular points joined with a
fully drawn line are based on the development shown above, i.e. they contain the effects of
aerodynamic derivatives, while the broken line represents the situation that aerodynamic derivatives
are ignored. As can be seen, the difference is considerable for the respone in the across wind vertical
direction, but in torsion only at the highest mean wind velocity setting. It should be noted that the
applicability of quasi static aerodynamic derivatives is in many cases questionable, and they should in
general be replaced by values obtained from wind tunnel tests. The covariance coefficient between
the dynamic responses 7, and 7, is shown on the top right hand side diagram in Fig. 6.11, and again,

circles and fully drawn line contain the effects of aerodynamic derivatives while for the broken line
no motion induced effects have been included. The changes of the resonance frequency associated
with the second mode shape (in torsion) at increasing mean wind velocities is shown on the lower
right hand side diagram in Fig. 6.11. As can be seen, the reduction of the resonance frequency from
V=0 to V=40 m/s is slightly less than 15 % (which without further iterations implies an
overestimation of the torsion response).

4
3
E
2
o
1
0
0
0.08 2
0.06 1.9
= @
E =]
= _0.04 g 18
b~ <h
0.02 17
0 16
0 0 10 20 30 40
V [m/s] V [m/s]

Fig. 6.11  Top and lower left: dynamic response in vertical direction and torsion. Top
right: covariance coefficient. Lower right: resonance frequency associated with 2
mode. Full lines: including motion induced effects. Broken lines: without motion induced
effects.
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6.4 Vortex shedding

As shown in chapter 5.3, the vortex shedding induced load effects at or in the vicinity of
lock-in are dependent on the dynamic response of the structure, i.e. the total damping in
each mode is unknown prior to any knowledge about the actual structural displacements.
Thus, the calculation of vortex shedding induced dynamic response will inevitably
involve iterations.

It should be acknowledged that the peak factor for vortex shedding response does not
comply with the theory behind what may be obtained from Eq. 2.45. For an ultra-
narrow-banded vortex shedding response the peak factor is close to 1.5 (theoretically

V2, see Eq. 2.47). For broad-banded response Eq. 2.45 will most often render
conservative results. Some time domain simulations of response spectra (see Appendix
A) will give a good indication on what peak factor should be chosen.

Multi mode response calculations

The general solution of a multi mode approach to the problem of calculating vortex
shedding induced dynamic response is identical to that which has been presented above
for buffeting response calculations. I.e., the general solution to the calculation of the

three by three cross spectra response matrix S,, (x,,®) is given in Eq. 4.80-4.82, while
by Nmod

the corresponding covariance matrix is given in Eqs. 6.47 and 6.48. The N 4

frequency response matrix I:I” (w) and the modal load matrix SQ (w) are given in Egs.
4.69 and 4.75, except that for vortex shedding the motion induced load is assumed

exclusively related to structural velocity, and its effect applies to the actual modal
response and not to the individual Fourier components. As shown in Eq. 5.36, this

implies that K,, =0 and C,, = (pB2/2)~a)i (V)-diag [0 H BzAgJ, and thus

2
A, (o) = |-£a)-diagED +2iw-diag{%}-({—§ae) (6.65)

where § =diag|[{;] and the content of {,, is given by
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T . ® . .
ﬂéaeij _ pB? .Le.[(p((pi Ce. ‘Pj)dx

Saey =7 oM, 47 [(of -@)dx
Lk . (6.66)
j ¢i2¢jZH1'dx+B2j¢i€¢j€A2dx
= sz . Lexp
N [T RS

L
where H, and A, are given in Eq. 5.37 and where m; is defined in Eq. 6.41. If H, and

A, are taken as modal constants and independent of span-wise position, then
becomes diagonal due to the orthogonal properties of the mode shapes, i.e.

8o = diag| L, | (6.67)

where

H [ ¢2dx+B*A;[¢%dx

2
o =0 T2 (6.68)
1 i(@y + g +¢i6)dx

This implies that I:Iﬂ(a)) is an N4 by N, 4 diagonal matrix. In vortex shedding

induced vibration problems it is usually not essential to include the along wind load
effects. The load vector may then be reduced to

T
q(x,t)=[0 g, qp] (6.69)
and the corresponding Fourier transform is
T
a, (x,0) = [0 Ay, A, ] (6.70)
The cross sectional load spectrum is defined by (see Eq. 4.78)
0 0 0 0 0 0
qq (Ax,a)) - li?q_(aqaq ) - Tlill_ aqz an al]z a‘la - 929z 9296
0 a;g Q, %0 gy 0 Sqaqz Sqaqa

(6.71)
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The problem is greatly simplified if the cross coupling between g, and g, may be
disregarded, in which case

0 0 0
S, (Av,w)=[0 S, 0 6.72)
0 0 SCI&Q&

where the cross spectra S, and S, are given by

0960

Q»

424z (a)) "L0g, (Ax)

= qu
Seeae =S () -Coy, (Ax)

6.73)

The single point spectra S, and S, = are defined in Eq. 5.33, while the reduced co-

spectra é"qz and C’oq , are defined in Eq. 5.34. Thus, the elements of § % (see Eqgs. 4.75
—4.78) are reduced to

L-U ®; (1) Sgq (4r,0)- @, (%, )da;dacy

S (w)=lee

@ (M) ()M
” {¢iz (x1)¢jz (% )quqz +9, (x1)¢j9 (x2)Sqaqa }dxldxz

_ Lexp

(of ) {7

S, ” e, (xl)(bjz (xz)éoqzabcldx2 +S,, H 2, (xl)(bjg (352)C:‘oqux1alx2

Lexp Lexp
(oft) (o,

(6.74)

Furthermore, it is a reasonable assumption that the integral length—scale of the vortices

AD is small as compared to the flow exposed length L, of the structure, and since g,

and g, are caused by the same vortices their coherence properties are likely to be
identical, in which case [recalling that jéoqm (4x)d(4x)=AD (see Eq. 5.34) and
0

adopting the integration procedure presented in example 6.1] the following is obtained:
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2AD| S, I ¢, (x)¢;, (x)dx+S,, I &, (x)9;, (x)dx

Lexp Lexp
CRARCEN)

Again, due to the orthogonal properties of the mode shapes this implies that SQ

becomes diagonal, i.e.
S, =diag [Séi } (6.76)
where

2AD|S,_ (o) j #dx+8,, (o) j o2 dx

Lex Lex
o) = xp xp (6.77)

(a1, )

SQi (

The calculation of the spectral response matrix is given in Eqs. 4.80 — 4.82, though, it
should be noted that if the simplifications above hold then both I:I” and S o are diagonal,
in which case

S, (x,,0) =0, (z,)-diag[ S, (&) O (x,)= 3 @, (x,)-9] (x,)-5,, (@)

i=1

¢_3(xr) ¢y (xr)'¢z (xr) ¢y(xr)'¢6(xr)

Nmod 9
= o (x.) (%) (x)| Sy (@)
i=1
Sym. 4 (x) |
(6.78)
where
. 2
Sy, (@) =|Hy, (o) S5, (@) (6.79)
I:I,h. is given by (see Eq. 6.65)
5 -1
N 0] . w
H, (0)= [1 —(;i] +20 (5~ a );] (6.80)

and (g, is given in Eq. 6.68 (see also 5.37).
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The corresponding covariance response matrix Cov,, (x,) for the dynamic response at
span-wise position x, is then given by

o

Cov,, (x,)= IS,, (x,,0)dw

0
2
O, Covryrz Cov,yre N ¢f (x,) (%)@ (x,) @ (%) 8x,)
= ’?z’”z ov, o |~ ¢z2 (xr) ¢z (xr) H(xr) 072];‘
=1
Sym 0'r2€r . Sym % (x,) !
6.81)
where o = j Sy de (6.82)
0

is the variance contribution from an arbitrary mode i . Usually, vortex shedding induced
dynamic response is largely resonant and narrow-banded. It will then usually suffice to
only consider the resonant part of the frequency domain integration in Eq. 6.82, and
discard the background part. Thus,

= - = ma, S, (@)
o <t [ o i 100 0 a0 5 )= 2
(6.83)

where (see Egs. 6.77 and 5.33)

24D, (@) | ddx+S,, (@) [ o

Lex Lex
SQi (@)= p(a)lei )2 :
2
_2up (VB2) o o, 1-a/a,
_(a)LQMl)z \/;'Q)s ' bz Lip@de'exp _( bz ]
2
Bo 1-w/ 2

(6.84)
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and @, = 27[}‘8 . As mentioned above, the calculations will inevitably demand iterations,

because H; and A, are functions of o, , and o

07
difference between ¢; and (. , which in general will be a small quantity.

. The iteration will take place on the

Example 6.4

Let us consider a simply supported horizontal beam type of bridge with span L =L, =500m

and set out to calculate the vortex shedding induced dynamic response at x, = L/2 which is
associated with the three mode shapes

0 0
0 0 5 0 0
. mx X
¢, =|¢, |=|sin [T] P =0, |=|5 n[Tj and @3=| 0 |= 0
0 o 0 0 O Sm[%x]

with corresponding eigen-frequencies 0.8, 1.6 and 2.5 rad/s. As can be seen, @; and @,

contain only the displacement component in the across wind vertical direction while @5 only

contains torsion. Let us adopt the following structural properties:

kp B D m, my @ = wzl = 0)22 w5 = Cl)% §1 = ;3 §2
m—% m m | k& | kem? rad rad rad % %
m m s s s
125 | 20 ‘ 4 ‘ 10* ‘ 6.10° ‘ 0.8 1.6 ‘ 2.5 ‘ 0.5 0.75
and the following vortex induced wind load properties:
St qu ‘ 6-49 ‘ bz ‘ b9 ‘ a, Qy ‘ /12 = /19 ‘ Kazo Ka90
0.1 09 | 03 [ o015 ] o1 [o04] 01 | 12 | 02 0.02
where: 6 = 1 V2B and 6 = 1 V2B?
: 9z 9z 2 P q6 96 2 P

Since m, and m, are constant along the span, then the modally equivalent and evenly

distributed masses m; =1, =m, and mg =m,.
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1 T T T T T T T

- =M. -m .
Ka;‘KeO—Q_G(VNR) exp[-(VIV,)™]

n=3, m=4

VIV,

Fig. 6.12  Aerodynamic damping coefficient

Finally, let us adopt the following wind velocity variation of the relative aerodynamic damping
coefficient (see Fig. 6.12)

n m ® D
K,(V)/K,, :2.6-(V/VRi) -exp{—(V/VRi) } where Vg, =
In this case (see Eq. 6.81)
2
- O-ryry ryrz vyrg
Covrr (xr) = Isrr (xwa))da) = O-’?zrz COl)r "
0 2
Sym Orgr
0 0 0 0 0 00 0
=[0 ¢2(x,) 0|02 +|0 ¢(x,) Olc5+[0 0 0 |oZ
0 0 0 0 0 0 0 ¢ (x)
and thus:
0o 0 0 0 0 0
Cov, (x,)=|0 o7, 0 |=|0 & (x,) 00 +¢ (x,) 0, 0
2 2 2
0 0 o, 0 0 By (%) Oy

From Egs. 6.83 and 6.84 (and taking it for granted that A4, =4, = 4) the following variance
contributions are obtained
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D BD 6, \ 2 1 b J s
2 _ P !Iz] Lexp 2
o, =| —=o—sr"t—- S . -8 (VR ,V)
m 72 _1/4 2 2
[2/ ”/ m St bz gl_gaq 9 1
[ dx
L
D BD 6, \ A Pl dds
2 _ P: 9z Lexp 2
o [z/ﬂ/m&] b G ley r eillaY)
L
2
L a0 6 2 DLj d, dx
2 _ q0 exp 2
Ons _[27/2”7/4' n .St2] b 'é, ¢ ’ 5 83 (VR3,V)
3 9 3 ae3 9
L
where
B i 1(1-Vg IV Y
aVn V)= 7] erl g
Ry L z
3/2 2 1
1-V, /V '
g9 (VR ,V): v exp N 1A where Vg _a. D i=42
2 V, 2 b t 27 St
RZ L z 3
3/2
o (V V)— 1% oxp 1 1—VR3/V]2
3\VRgoV | = : iy e —
3 VR3 2 by

‘What then remains are the aerodynamic damping contributions given in Eq. 6.68, from which the

following is obtained:

BZ J‘ ¢Z21dx Bz p (V) 2
gael(v):/?~ . l*.Lexpz =7 g, (VRI,V). 1-| ez
4my I¢21dx 4m, 2 a,D
L
I ¢Z22dx "
2o 2 o, (V
g V)= LB gy w0 gy )y | T V)
4, I g dx  4my  F 2 a,D
7 ]
I ¢§3dx "
Lo 2 o, (V
(o (V)=2B gyt _PB® g (v vy Ty V)
417 [dhdx 4y @ |
L

The relevant response diagrams are shown in Figs. 6.13 and 6.14 below.
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© o, =16 radls, §, =0.75 %, ¢, =sin(3muL)
$ o006f 2 2 2 .
o
]
&
g 0.05F 1
2
£ 0.04f 1
[
(%]
©  0.03f 1
5]
©
2 i .
= 0.02
1]
s
& 001} -
0 I 1 1 1
0 5 10 15 20 25 30
Mean wind velocity, V (m/s)
Fig. 6.13  Vortex shedding induced across wind response
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Fig. 6.14  Vortex shedding induced torsion response
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Single mode single component response calculations

A single mode single component response calculation is in the following only considered

relevant for displacements in the z direction and in torsion. Thus, it is only mode shapes

that primarily contain either z or 8 components that are relevant. L.e., it is taken for
granted that any of the following two conditions apply

T

®;(x)=[0 ¢ O]

g (6.85)
®;(x)=[0 0 4],

Off diagonal terms in Eq. 6.78 will then vanish, rendering all covariance quantities
obsolete, and S,, will simply contain the response variances of the excitation of each
mode on its diagonal. Thus, the response spectrum and the displacement variance
associated with the excitation of an arbitrary mode i are given by

A 2
S,, (@)=} (x,)-|H,, (@) -8, (@) .
T n={ (6.86)
o, =[S, (@)do %
0
where
2 -1
H,, ()= 1—[—) +2i.(;n_;aen).w£
San (@) I ¢f(x)dx (6.87)
L,
S, (@)=24D- exp

and where aerodynamic damping properties may be extracted from Eq. 6.68, rendering

. . j ¢22dx _ ) j q)fdx
oo o Co _pBH tew o8 [ (0]
“ 2wM, 4w, [¢fdx 4w, a,D [l
L , L , (6.88)
. s I Ppdx ) - ) I Ppdax
; — Caeﬁf — PB A2 _LeXp — pB K 11— Oy 'LexP
“20,M,  4imy, I¢3dx dmy ag Iqﬁdx
L - L
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Usually, vortex shedding induced dynamic response is largely resonant and narrow-
banded. It will then suffice to only consider the resonant part of the frequency domain
integration in Eq. 6.82, and discard the background part. Thus,

js do=~ g2 ( HH ‘ do-8; (@,)
”a)nSA (wn) 2z
- , Qn -
=0 =g (x -4 _{9 (6.89)

As mentioned above, it is also a reasonable assumption that the integral length—scale
AD for q, and g, are identical. Adopting the convenient notation (see Eq. 6.41)

M = (62 _J? 6.90

and introducing S 6 and Sqn from Eqs. 6.87 and 5.33, then the following is obtained
n

1/2
D I @2dx
o, ¢z (xr) pBD 6-11 A Lexp
z 172\ PRY T . g (V, ,V
D 27/27[7/4 ,;LZ S#2 bz (é/z _é/aez) I¢Z2dx gz( R, )
L
(6.91)
1/2
D I dadx
o = |¢6(xr) 'p(BD)Z'OA-i' A ' Lexp g (V V)
9 27/27[7/4 ,,;LH St2 bg (;0 _;agg) J‘dix 6\ Ry>
L
(6.92)
where
3/2 2
\74 1(1-Vy /V] {z
g, \Ve V)= =— -exp ——(—n n= (6.93)
(Vr, V) {VRJ 2\ b, 6

and where V =Da,/(27-St).
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Example 6.5

For a simple beam type of bridge let us set out to calculate the vortex shedding induced dynamic
response at x, =L/2 associated with the mode shape ¢ = [0 o, O]T with corresponding

eigen-frequency @, =0.8 rad/s. Let us again for simplicity assume that ¢, = sinzx/L . Thus,

in this case it is only the across wind vertical direction that is of any interest. Typical variation of
some basic data is illustrated in Fig. 6.15.

6 1
g
oo 4 A
&’ )
0’ g
8 2 & 0
8 ?'-z=1 1.5 2
0 05
k > 5 10
ma"ms Ax/D
05 0.4 d
n=6, m=8 Data: see Fig. 6.16
0.4 < 0.3
., 0.3 Kan=0.4 ,..\E
!m Q 0.2
0.2 Bt
0.2 = 01
0.1 - ’
0.1
0 0
05 1 15 2 10”2 10°
VIV, Damping ratio, 2, (%)

Fig. 6.15  Top left and right: Non—dimensional cross sectional load spectrum and co—
spectrum, lower left: aerodynamic damping coefficient, lower right: maximum vortex

shedding induced dynamic response vs. {,

The top left hand side diagram shows the non—dimensional cross sectional load spectrum
associated with vortex shedding in the across wind direction (see Eq. 5.33)

oS, (@) 1 o [1-0w, ¥
N e I

qz z
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where o, = 1 szB 6, . The load spectrum is shown for various relevant values of b, , which
z 2 qz z

is the parameter that controls the narrow-bandedness of the process. The reduced co-spectrum (see
Eq. 5.34)

at various values of A, is shown in the top right hand side diagram. It is this parameter that

control the spanwise coherence (and thus, the length scale) of the vortices. The characteristic
“lock-in” effect associated with vortex shedding induced dynamic response is controlled by the

aerodynamic damping parameter Kaz . Establishing data of the mean wind velocity variation of

Kaz will in general require wind tunnel experiments. As indicated in example 6.4 above, such

data may often be fitted to an expression of the following type:

-n —m
K, =26-K_, - v -exp| — v
z 0 VRZ VRZ

where Vi, =D /(27St) is the resonance velocity (see Eq. 5.32) and K, o i the value at the apex
of the K a variation. See the lower left hand side diagram in Fig. 6.12, where n =6 and m = 8.

Let us again consider a simply supported horizontal beam type of bridge with span L =500m
that is elevated at a position z; =50m . Let us investigate the response variation with the mean
wind velocity at various levels of structural eigen-damping. It is assumed that the entire span is
flow exposed, i.e. Lexp =L, and the expression for Kaz given above is adopted. Let us allot the
following values to the remaining constants that are necessary for a numerical calculation of

o, (x,=L/2):

z

p B | D st | A , o
(kg/m) ‘ (m ‘ (m ‘ (kZ/Zm) ‘ i ‘ %o | %2 | % %] T
25 | 20 | 4 | 10¢ | 08 [O01|090f5 04|12 02

Since m, is constant along the span, then the modally equivalent and evenly distributed mass

m, =m, . The dynamic response is given in Eq. 6.91, i.e.:

r 1/2
o, (x, =L/2) 1 pBD 6, 2D A
z = . =2, . V.,V
D 27/271_7/4 Tﬁz St2 bZL(é,Z _ é,aez ) gz ( R,> )
where
3/2 B 2
VR Vi, 2 b,

. . - w,D
The resonance mean wind velocity VRz is given by: VRz = 2 ZSt =5.1 m/s.
7
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Under these circumstances the equation above may be rewritten into the following fourth order
polynomial

6t -(1-¢)67 -p* =0

z z

where
1/2
) ¢ldx A
s 4mz ;2 { d - ‘¢z (xr) ,OD3 2 U‘Zz g,
é’ = o . 5 an ﬂ =5z | - 5 . % 2R
pB* K, I ¢ dx 27 r mzj¢z dx b.K, St* a,
L L

exp

and where &, =0, / (a,D). Thus, the reduced standard deviation of the vortex shedding

induced dynamic response is given by

12112

L=500 m, B=20 m, D=4 m, » =0.8, St=0.1

m_=10° kg/m, S /(0.5pV°B)=0.9, K_ =0.2
0.08} z 0 i .
a=0.4,b =015, 1=1.2
0.07}

a /D

o

(=]

o
T

0.05

0.04+

Dynamic response,

0.03+

0.02r

0.01+

0 ] L L
0 2 4 6 8 10

Mean wind velocity, V

Fig. 6.16  Vortex shedding induced dynamic response
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The variation of 6‘,2 with the mean wind velocity at three levels of structural eigen—damping is

shown in Fig. 6.16. As can be seen, the vortex shedding induced dynamic response is self-limiting
and strongly damping dependant.
The maximum vortex shedding induced dynamic response will occur slightly above VRz , but

for practical calculations the maximum value of o, may be obtained by setting V= VRz , in
which case g, =1 and Kaz = Kao . As shown on the lower right hand side diagram in Fig. 6.15,

the maximum value of o, is rapidly reduced with increased structural eigen-damping.

If (p=[0 0 %]T then

) o, 22
. 1-¢ |(1-¢ A2
=42 || == +
w72 [ 2 | 77
where 6, =0, /a, and
1/2
N Igbﬁdx 5 é
5_4’”9. o L d A_‘%(xr) |l_pD> A Z496 8o
= 2 an =52 T4 | = [ 2 2
pB* K., [ gjdx 22 | [ ghdx bpK,, | SE* ag
L




Chapter 7

DETERMINATION OF
CROSS SECTIONAL FORCES

7.1 Introduction

While we in chapter 6 focused exclusively on the determination of response
displacements, we shall in this chapter deal with the determination of the corresponding
cross sectional forces, i.e. the cross sectional stress resultants defined in chapter 1.3 (see
Fig. 1.3.b). From a design point of view it is the maximum values of these quantities that
decide the actual level of safety against structural failure. For a line like type of bridge
structure the problem at hand is equivalent to that which is illustrated in Fig. 6.1, only
that the response quantities we shall now set out to calculate are the cross sectional force
components F (e.g. a bending moment, a torsion moment or a shear force) rather than
the displacements which were in focus in chapter 6. The assumption of a Gaussian,
stationary and homogeneous flow over the design period 7' (e.g. 10 min) is still valid, as
well as the assumptions of linearity between load and load effects and a linear elastic
structural behaviour. Thus, any cross sectional force component F may be described by
the sum of its mean value and a fluctuating part that is Gaussian

F,, (x,t)=F (x)+F (x,t) (7.1)

The time domain chain of events is illustrated in Fig. 7.1.a. Similar to that which was
argued for the determination of displacements, it is in the following taken for granted
that the fluctuating part of the cross sectional response forces are quantified by their
standard deviation (o ), as illustrated in Fig. 7.1.b. The maximum value of a force

component at spanwise position x, is then given by

Foox (x,)= ﬁ(xr )+k,-op (x,) (7.2)

where £, is the peak factor (that depends on the type of response process). The chain of

events for cross sectional forces is equivalent to that which is shown for structural
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displacements in Fig. 6.2 because the assumption of linear elastic structural behaviour

implies that the relationship between structural displacements and cross sectional forces
is also linear.

U(t) Q(t) F(t) . _F

max GF\{
\" F -
> t >

t
T p(F)

a) Time domain

S,(®) Sq(®)

b) Frequency domain

Fig. 7.1  Time and frequency domain representations

Thus, once the displacements have been determined, cross sectional forces may be
obtained directly from the structural stiffness properties and the derivatives of the
displacement functions according to usual structural mechanics procedures. While this is
an appropriate strategy for the determination of the mean value F , it is not an advisable
strategy for the determination of oy . There are two reasons for this. First, dynamic
response displacements are in general obtained from a modal solution in frequency
domain that contains a chosen number of eigen modes which havebeen obtained from an
eigen value solution that is based on the distributed stiffness and mass properties of the
structure. The standard deviation of the total response displacements are then built up of
the sum of contributions from each of these modes, either in a mode by mode approach
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(see Egs. 4.15 and 4.49) or in a multi mode approach (see Eqgs. 6.47 and 6.81). These
eigen-modes are most often given as more or less ample vectors along the span of the
structure, and their second and third order derivatives, which are required for the transfer
from displacements to cross sectional forces, may in many cases be difficult to calculate

with sufficient accuracy. It is therefore desirable (as indicated in Fig. 7.1.b), to split ¢2

into a background part O'%B and a resonant part O'%R , such that

2
O'F zO-FR

+ O (7.3)
It is seen that this implies that the total response is sub-divided into a low frequency
(background) part and a fluctuating (resonant) part that is centred on the eigen-
frequency.

F(t)
A

Resonant part

Background part

Y

Fig. 7.2 Background and resonant part in time domain

This is further illustrated in Fig. 7.2. In time domain the background part is equivalent
to a slowly varying process. Its contribution to inertia forces may therefore be
disregarded, and thus, the load effects from this part may be regarded as quasi-static.
Clearly, the quasi-static part of the load effects are more accurately determined from
static shape functions or more directly from simple static equilibrium conditions, rather
than a calculation based on the derivatives of eigen-modes.

The second motivation behind such a partition of o2 is the following. As previously

described, when a structure is subject to a fluctuating wind field, the passing of the flow
will generate fluctuating drag, lift and moment load components on the structure. These
loads may cause the structure to oscillate. But in many cases the structure is stiff and its
eigen-frequency is high (e.g. beyond 5 Hz), and then the displacements are small.
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However, this does not imply that the fluctuations of cross sectional forces are
insignificant. It only means that the resonant part of the force load effect is negligible
(see chapter 2.10). For such a structure the total value of a cross sectional force

component F' at spanwise position x, may be obtained from
Foo(x,)=F(x,) +k, g, (x,) (7.4)

The entire solution, including oy, , may then be obtained exclusively from static

considerations, i.e. the determination of response spectra is obsolete. Since the solution
contains the combined mean and fluctuating load effects, it represents the maximum
value of the force load effect for a structure whose behaviour is defined as static.

The more general solution, covering static as well as dynamic structural behaviour is
given in Eq. 7.2. Having split the fluctuating part of the response into a background and
a resonant part, the maximum value of F' at x, may then be expressed by

Fras (5,) = F (x,) + b, 02, (x,) + 0%, (x,) (7.5)

where F and Opy are obtained from static equilibrium conditions and oy, is obtained

from the resonant part of a modal frequency domain approach. For the determination of
F the finite element type of approach that is shown below (chapter 7.2) is appropriate,
unless the structural system is so simple that a direct analytical establishment of the
equilibrium conditions is sufficient, in which case the solution is considered trivial.
Similarly, for the determination of the background quasi-static part o, there are two

alternatives. If the structural system is fairly complex a finite element approach is
appropriate, but if the system is fairly simple a direct approach based on influence
functions will suffice. Both methods are shown below (chapter 7.3).

For the determination of the resonant part o, there is the possibility of establishing

an equivalent load based on the inertia forces, i.e. the product of response acceleration
and the oscillating mass variation, but this option is only useful if the structural system is
very simple because the equivalent load pattern must reproduce the actual structural
displacements that are relevant for the mode shapes that have been excited. In chapter
7.4 a more general procedure is given, based on the linear relationship between cross
sectional stress resultants and the corresponding spanwise derivatives of the resonant
displacement response.

In a finite element formulation it is in the following assumed that the structural
system has been modelled by nodes with six degrees of freedom as shown in Fig. 7.3 and
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by the use of beam or beam-column type of elements as shown in Fig. 7.4. At any level
it is taken for granted that the load and load effect vectors can be split into a mean part
and a fluctuating part, i.e. at a global system level

R n
R, b
R _ _
R, (¢) = Ri =R+R(¢f) and r,(t)= :i =T +r(t) (7.6)
Ry 5
| Rs | Ts

and at the local level for an arbitrary element m

F, d
F, dy
F. — d —
Ftotm (t) Fj = Fm + Fm (t) and dtotm (t) di = dm + dm (t) (77)
F; ds
| F6 1, D6 ],

The relationship between local forces and displacements is defined by the local stiffness
matrix K, , i.e.

Foi,, =K -d (7.8)

m toty,

and the relationship between local and global degrees of freedom is defined by the
matrix A, ,1ie.

dtotm =A, Tt (7.9)

According to standard element method procedures the global stiffness matrix is then
obtained by summation of contributions from all elements

K=>Al k, A, (7.10)
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Fig. 7.3 Definition of global load and displacement components

Fig. 7.4 Definition of element forces and displacement components
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7.2 The mean value

For the calculation of the mean value of cross sectional forces all quantities are time
invariants and thus, Eq. 6.3 still holds, implying that the global displacements are given
by

r=K'R (7.11)

Similarly, the mean values of local forces and displacements (see Eqs. 7.8 and 7.9) are
defined by

| 3'I1I

T

o

= km am
(7.12)

m

and thus, the mean value of cross sectional forces is given by
F, =km-(Am-F):km-[Am-(K‘l-ﬁ)] (7.13)

Eqgs. 7.8 — 7.13 are identical to that which one will usually encounter in an ordinary finite
element formulation. The establishment of k,, and A, as well as the ensuing strategy
for the calculation of global displacements and element force vectors may be found in
many text books, see e.g. Hughes [25] or Cook et.al. [29]. Nonetheless, the brief
summary presented above has been included for the sake of completeness. The only part
that is special is the development of R, which has previously been shown in chapter 6.2.

7.3 The background quasi-static part

For the determination of the quasi-static part of the cross sectional response forces the
mean part of the load as well as any motion induced contributions are obsolete.
According to Eq. 5.8 the fluctuating part of the load on a line-like structure is given by

0y (=) VB
d(xt)=|q, (x.¢)|=B, v:pT-éq-v (7.14)
qe(x,t)

where v and B, are defined in Egs. 5.9 and 5.12, and recalling that this was developed

for a horizontal type of structure. As mentioned above the quasi-static part may be
determined by a formal finite element formulation, or alternatively, by the use of static
influence functions based on a direct establishment of the equilibrium conditions.
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Let us first pursue the more simple solution of a direct approach based on static
influence functions. It is then taken for granted that the structure at hand is suitably
uncomplicated, rendering straight forward equilibrium equations. Let us for the sake of
simplicity consider the quasi-static load effect of the along wind component g, (x,¢) on

the horizontal simply supported beam shown in Fig. 7.5.

Fig. 7.5 Along—wind load and two relevant response components

As can be seen, the load effect is a horizontal displacement r, (x,t) associated with

bending about the z-axis and shear in the direction of y. Let us focus on the background
quasi-static part of the cross sectional bending moment M, , (x,t) at a chosen position

x, (e.g. at mid-span). It is seen from Eq. 7.14 (see also Eq. 5.12) that
VB | D = D _ 5
q, (xt)= pT . {QECD ‘u(xt)+ (ECD -C, ) W (x,t)} (7.15)

As illustrated in Fig. 7.5, the bending moment M, at a chosen position x, is given by

M, (x,,t)= j Gy, (x)-q, (x,t)dx (7.16)

Lexp

where L, is the flow exposed part of the structure and G, is the static influence

function for M, at x, (defined as the function containing the values of M, at x, when

the system is subject to a unit load ¢, =1 at arbitrary position x ).
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The variance of M, is then defined by

Oy (5:) =B | (Mo (50 |=E|{ [ Gor, ()4, ()
Lexp (7.17)
= Lﬂ Gy, (xl)'GMZ (x2)'E[qy (x1,¢)-ay (x2,t)]dx1dx2

rendering a spatial and time domain averaging of the fluctuating cross sectional load.
Introducing Eq. 7.15 then this space and time domain averaging is given by

E|:qy (xl’ ) qy (x2’t)] -

VB D = D D, , =

(7.18)

where u; =u(xq,t), us=u(xyt) and w; =w(x,t), wy=w(xy,¢). It is a usual

assumption in wind engineering that cross-covariance between different velocity
components is negligible, i.e. that

Elu(xy,t) w(xg,t) | = E[u(xg,t) w(x;,t)]=~0 (7.19)

in which case
E[qy (x1,) -, (xz’tﬂ =

[%)2 {[z%ED TE[u(xl,t) uligt)] +(%Cb —@J

2

E[w(xl,t) -w(xz,t)]}
(7.20)
Introducing (see chapters 2.2 and 3.3)
E ) u(xq,t) | =02 py, (Ax
[ (xy,t) e (x,) ] Gzp (4x) (721)
E[w(‘xl’t) 'w(xQ’t)] =0y " Pyw (Ax)

where p,, and p,, are the covariance coefficients of the u- and w-components, and

where Ax =|x; —x,| is spanwise separation, then
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E[q, (x,t)-q, (x2.t) ] =
(28] 2w ao-[[Bes-au)u]

where I, =0,/V and I, =0,/V are the u— and w-component turbulence

2 (7.22)

P (Ax)}

intensities. Thus, the variance of the background part is given by (see Eq. 7.17)

2
V2B
iy ()= 252 1] G, () G, ()
Lexp
(7.23)

{(2%51)1” jz po () + K%% G, ]Iw T . (Ax)}dxldx2

The volume integral in Eq. 7.23 represents a spatial averaging of the fluctuating load
effect with respect to the bending component M, at a certain spanwise position x, .

This is identical to that which has previously been dealt with in Chapter 2.10 (see
Example 2.4).

While Eq. 7.23 provides the calculation procedure for the background part of the
cross sectional force component M, at x, alone, it is convenient to establish more

general procedures comprising the background response of several components, e.g. the
bending moments M, and M, as well as the torsion moment M, . These force

components are in general given by
M, Gy, (%) g (x:2)
MB(th): My = j GMy (x)'qy(x’
L X
M. lg "Gy, (x)-q. (x.)

=
&

(7.24)

where GMn’ n=x,y,z, are the static influence functions for cross sectional force

components M, M, and M, at x, . By adopting the definition

Gy(x)=| 0 Gy 0 (7.25)
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it follows from Eqs. 7.14 and 7.24 that

Mg (x,.8) = | GM(x)-q(x,t)dng- [ Gy (x)-{B, -v(xt)}dx (7.26)

Lexp Lexp

A

where Bq is the load coefficient matrix defined in Eq. 5.12, i.e.

2(D/B)Cp ((D/B)Cp-Cy)
B,(x)=| 2C, (CL +(D/B)Cp) (7.27)
2BC,, BC},

and where v(x,t)= [u (x,8) w (x,t)]T in the case of a horizontal bridge type of structure

(see Eq. 5.9). The background covariance matrix
o: Cov Cov
MM, M M, M M,
_ 2
CoVypry (%) = Covyom,  Omym,  Covy o, (7.28)
2
Covy_p,  Covy, M, OM,M,

B

is then obtained from

CoVypry, (%,) = B[ My (x,.t)- M (x,.£) |
=[¥TE {Lj GM-(éq-v)dx}{LI GM-(éq-v)dx} (7.29)

~(Z22] 17 Gur (0] {8, B[ () " (1,0 ]- B }- Gl (s,

exp

Introducing Eq. 7.21 and adopting the assumptions in Eq. 7.19, then

E[v(xl,t)'VT (xg,t):|z|:o-3.puu (Ax) 0
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where

[r, o [pPw O
Iv_{o I} and pU(Ax)—{O pww:| (7.31)

and thus,

pPV2B

2] I Gt B, (80 ()] 6} 68 (s

exp

Covynp (x.) Z(

(7.32)

The covariance matrix in Eq. 7.32 will be symmetric because x; and x, are
interchangeable and p,, and p,,, are only functions of the separation Ax = |x1 —x2| .

In a fully expanded format the variance of the background response components are
given by

2
OM M, V2B 2 EM M, (x1’x2)
P
O'J%,[yMy :(TJ L” 8m,u, (21,25 ) |daydixy (7.33)
UJ%JZMZ B o gMzMz (xl’xQ)

where

Buym, ZGMy (xl)GMy (x2){(26L1u )2 Puu (Ax)J{(C]: +%6D]Iw T Puw (Ax)}

(7.35)

8m,m, =Gu, (xl)GMZ (x5)-
{(zga)zu j pu(25)+| (55 -C, J1,|

Similarly, the corresponding covariance between background components may be
expanded into

2 (7.36)

Puw (Ax)}

CovaMy b2 gum.m, (21,%9)
V2B
Covyr yr, :(_p J ” Ear o, (21,25 |daydacy (7.37)

2 L
exp
COUMyMZ EMyM, (21,25)

B
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where
Su,um, =BGy (%1)Gy (x2)|:4CLCMIupuu (4x)
(7.38)
+[Ci +—CD]caﬂipww ()
8u,m, =BGy (x1)Gy (x2)[4 CoCu ;P ()
b (7.39)
+[_C'D _éL jC]'MIzipww (Ax):|
D = 1
ity =Gy ()G, (53)] 4D CoCilip, ()
D D (7.40)
Example 7.1

Let us set out to calculate the variances and covariance of the torsion and bending moments M, ,
M , and M, at midspan of the simply supported beam type of bridge illustrated in Fig. 7.6. Let
us for simplicity assume that it has a typical bridge type of cross section where Cp,, éL and éM

are negligible and Cp, - D/B < Cj, . Then

’ 2
O'ifox 2 .. (BCy1,) Gy, (%1) G, (%2) P (A%)
V°B 72
S, [”2] I (ot G (1) G, (5 o () s
Ot D .Y
= 2ECDIu 'GMZ (xl)'GMZ (xZ)'puu (A’)C)

CovaMy VB 2 BC;Cy I Gy, (xl)'GMy (%2)" P ()
Covy 1, =['02] 'H 0 x,d%xq
CovMyMZ 00 0

where it has been taken for granted that L, =L .
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X

Fig. 7.6  Simply supported beam type of bridge

Introducing the non-dimensional spanwise coordinate £ =x /L and the function
v(%)= {

it is readily seen that the influence functions for M, , M , and M, at midspan are given by

X when x£<1/2
1-% when 1/2<x <1

. A L . R L .
Gy, (8) =¥ (%) G, (B) =2 W(E) G, (8)=—2w(4)
Thus
- .
% pV2B2LCY, I,
2 A Jj2
Oy M 11 Puww (Ax) AilxMx
ﬁ =_”’//(321) W(£3)"| Puw (AR) |déydEy = | Ty u,
Z'OV BL CLIW 00 Puu (M) jZ
MZMZ
2
O-MZMZ
1 —
ipV2DLzCDIu

and since Cova My ="M M, "OM M, it will suffice to calculate the joint acceptance functions

on the right hand side of the equation above. Let us divide the span into N segments and calculate
the load effect at the midpoint of each of these segments. Then the volume integral is replaced by a
double summation (and dx =1/N ), i.e.
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I, Caw Puoss ([ = %)
Iir =Nf2 le(fn)~w( )| Puw ([ = %)
I, o Puu (| = %)

and it is just a matter of choosing N sufficiently large. Let us assume that the position of the bridge
isat z; =50 m and that the relevant length scales of the » and w components are given by (see

Eq 3.36):
L, =100(z;/10)"" =162 m, /L, =L,/3=54m and "L, ="L,/16=10m,
such that
Puu(A%) =exp(—c,-AF)  where ¢, =L/ "L,

Puw (A%) = exp(—c,, - A%) where Cp = L/nyw

Let us for simplicity set L = L, and N =5 (which in general will be far too small, as shown in

Fig. 7.7). Thus, ¢, =3 , ¢, =16.

The position vector and the influence function are given by

x=[0.1 03 05 0.7 0.9]

w(#)=[0.1 0.3 05 0.3 0.1]

The influence function multiplications y (%, )- (%,,) are then given by

w(%,)
0.1 03 05 03 0.1
0.1 0.01 0.03 0.05 0.03 0.01
03 0.03 0.09 0.15 0.09 0.03
v(z,) 05 0.05 0.15 0.25 0.15 0.05
0.3 0.03 0.09 0.15 0.09 0.03
0.1 0.01 0.03 0.05 0.03 0.01

while the covariance coefficients associated with the ¥ and w components are given by:

puu (M) : £77,
| 0.1 0.3 0.5 0.7 0.9
0.1 1 0.549 0.301 0.165 0.091
0.3 0.549 1 0.549 0.301 0.165
i 0.5 0.301 0.549 1 0.549 0.301
0.7 0.165 0.301 0.549 1 0.549
0.9 0.091 0.165 0.301 0.549 1
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| o1 0.3 0.5 0.7 0.9
0.1 1 0.0408 0.0017 0.0001 =~
0.3 0.0408 1 0.0408 0.0017 0.0001
z,, 0.5 0.0017 0.0408 1 0.0408 0.0017
0.7 0.0001 0.0017 0.0408 1 0.0408
0.9 =~ 0.0001 0.0017 0.0408 1
The inner products y (£, ) ¥ (%£,,) P, (A%) and y(£,) ¥ (%£,,) Py, (A%) are then:
[ n] I 2 3 4 5
1 1 1.647 1.505 0.495 0.091
2 1.647 9 8.235 2.709 0.495
3 1.505 8.235 25 8.235 1.505
4 0.495 2.709 8.235 9 1.647
5 0.091 0.495 1.505 1.647 1
| n] 1 2 3 4 5
1 1 0.1225 0.0085 0.0003 =
2 0.1225 9 0.612 0.0153 0.0003
3 0.0085 0.612 25 0.612 0.0085
4 0.0003 0.0153 0.612 9 0.1224
5 =0 0.0003 0.0085 0.1224 1

The normalised joint acceptance functions are given by

xx

and thus

v

Om,M,

5 5
DIDNLCHE
m=1

n=1

1

£0) o (8 )fz

~ (; pV2B2LCZ’Mij

5 pVZBLZC’Lij

Ov,m, =0.2- g pV2DL2éDIu]
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This solution has been based on L, = L = L, and N =5.1f N =40 then the integration

coefficient 0.14 is reduced to 0.11, the coefficient 0.07 is reduced to 0.055 while the coefficient
0.2 is reduced to 0.188. The problem of choosing a sufficiently large number of integration points

is illustrated in Fig. 7.7, where the normalised joint acceptance function J .n for an arbitrary force
component whose influence function is linear and with a maximum of 0.5 at midspan is plotted

versus N for three different values of the ratio between L., and the relevant length scale *L;,
j=uorw (and ‘x‘ = ‘ yf‘ ). It is seen that the necessary number of integration points is in general

considerable. The reason for this is that p; ( j=uorw) is a rapidly decaying function.
Similarly, in Fig. 7.8 the joint acceptance function has been plotted versus the ratio between the

length of the span (L, = L) and the relevant integral length scale *L ;» J=uorw. The case
lim (L/ xLJ-) — 0 is identical to the situation with an evenly distributed load along the entire

span. As can be seen, j,m is a rapidly decreasing function with increasing values of L/ij .Ata

large value of L/ij it is close to 0.05.

02 T T T T T T T

0.18} pjj =-exp{-Ax/ XLj) yix): 05 =
c Loz ; B ]
% 016F - j=uorw x=0 L2 L
S 0.14f , ' -
8 E\s— X
§ 0.12F - “ 2 Lo/ L710]
[oX
3
8 il \\L |
i & —a L /*L=20
E ep’
'S, 0.08F i
§ o —a L /*L=40
£ 0.06- om 1]
£
S 0.04- .

0.02F .

0 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45

Number of integration points, N

Fig. 7.7 The joint acceptance function J an VS. number of integration points
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P, = exp(- Ax/ XLi)

j=uorw

w0~ og~_

Loy~ x=0 L2

Number of integration points N=37

L

Fig. 7.8

10 20 30 40
L/

50

The joint acceptance function j,m at various span length ( Ly, =L )

While the solution strategy based on influence functions shown above is suitable for
many cases of fairly simple structural systems, a formulation within the finite element
method is more suitable for a general approach. Recalling that Eq. 5.8 was developed for

a horizontal type of structure, it is seen from Fig. 7.9 that in general v =[u w]T for a

horizontal element and v=[u v]" for a vertical element. Defining the non-dimensional

instantaneous fluctuating wind velocity vector at an arbitrary node p

and the matrix

N 1
VP = V U (t)
w(t)
10 .
for a horisontal element
B 0 01
W = 100 .
for a vertical element
010

(7.41)

(7.42)
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which is associated with the direction of an adjoining element m , it is seen from
Fig. 7.9 that the distributed load vector acting on this element is given by

V2B . .
=p2 'Bq'(lllm'vp)

a,, (x,t) (7.43)

where éq is given in Eq. 7.27 and where all cross sectional quantities are those that are

applicable to element m .

a) Horisontal and vertical elements

b) Node at horisontal element c) Node at vertical element

Fig. 7.9  Wind induced load components
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The contribution from element m to concentrated loads in node p is then given by
(see Fig. 7.9.a)

Q,
L V2 BL . .
Q,,()=|e, =qm<x,t>-7m=(”7] (7] By (v, 9,) (744
Qg Pm ? "

where L, is the element length, and where it has been assumed that the nodal

discretisation is such that all wind velocity properties with sufficient accuracy may be
allotted to node p , and that they are constants along the span of the element. (This is a

simplification that is not mandatory, but otherwise, an element integration scheme has to
be adopted.) Comparing the definition of nodal loads shown in Fig. 7.3 to the element
load components shown in Fig. 7.9, it is seen that the contribution from element m to
the load vector in node p is defined by (see Fig. 7.9.b and c)

[0 Q, @ —Q O O]T for a horizontal element
Rpn = = (7.45)
R, |:_Qz Q, 0 0 0 - ]T for a vertical element

and thus,
2
R, (t)=8,-Q, =(%] (%) 0, B, (. 9,)] (46
p m

where indices m and p indicate quantities associated with element m at node p, and

where

10 0 o0 ol

0 01 0 O 0| forahorizontal element

000 -100

0, =1 - ’ (7.47)

0 1 000 O

-1 0 0 0 0 O for a vertical element
|0 0 000 -1
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Thus, the load vector in node p is obtained by adding up the contributions from all

adjoining elements. i.e.

R, (t):%:Rpm :(pTWJP {Z(%L(e-éq -Lp)m:|\7p =(p‘2/2 -é.vjp (7.48)

m

where
R BL .
Q, 22(7-9-Bq-w] (7.49)
The total system load vector is then given by
T
R(t)=[R, -+ R, - Ry] (7.50)

where N is the total number of nodes. Since the content of this load vector is
considered quasi-static the relationship K-r(¢) =R(¢) holds, and because « (¢) and w (¢)

are both zero mean variables then R(¢) as well as r(¢) are also zero mean variables.

Thus, it is seen from to Egs. 7.6 — 7.9 that the fluctuating background quasi-static part of
the element force vector F,, (¢) is given by

=K, -, (t) =k, -[A, -r(@t)] =k, {A, [K-R@) ]} 75D

SRR

L m

The covariance matrix between cross sectional force components

[ 2
op, Covpm, Covpp, Covpp, Covpp Covpp

2

o, Covp,p, Covg,p, Covp,p,  Covp,p,
2

o, Covg,p, Covpp  Covp.gp

3 3Fy4 3F5 3Fs

Covyp = ) (7.52)

A Covg,m,  Covg, g,

2
Sym. Oy Covp g

6F6
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o <15 7] o 0] e ]
k'"'{A’" '(K_l'E[R'RT]'(K_I)T]'AQ}"‘EL (7.53)

=K, -{Am -[K-l -Covgp -(K-l)T]Aﬁ}-kﬁ

where the 6N by 6N nodal load covariance matrix
) - . : . o]
Covyy, = E[R-R ] = COURka where k} =1,2,3,...,N (7.54)

Its content is N nubers of 6 by 6 covariance matrices between force components
associated with nodes p and %, each is given by

2

V2 v2) . . ap A
p

2 2 T
Covp r, =E[R, R |=E ("V -Q-\?J .(pV -Q-\?J
p

where
5 oT
Covvpvk :E[vp -ka:F-E VU, VU VW (7.56)

As previously mentioned (see Eq. 7.19), it is a usual assumption in wind engineering that
cross-covariance between different velocity components is insignificant, i.e. that all off
diagonal terms in Eq. 7.56 may be neglected, in which case

COVupuk =1, 1, P (7.57)
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where
|, =diag[I, I, I,]. j:{p (7.58)
J u v w lj k
ppk (Aspk)zdiag[puu Puov pww] (7.59)

The auto covariance functions of the fluctuating flow components u, v and w are
defined by (see Eq. 3.35)

2 2 7Y/2 u
P (As ):exp || A + A2 p where n={v (7.60)
nn pk xy 3 .
n n w

and where
Axpk :|.’)Cp —xk| (761)
Azpk =|Zp —Zk|

are defined in Fig. 7.10.

Az,

AXpi

Fig. 7.10  Spatial separation between nodes p and k

Example 7.2

Let us consider the simply supported beam shown in Fig. 7.11, and assume that it has been
subdivided into N elements with equal length L/N . Let us for simplicity assume that all cross
sectional quantities are constants along the span of the bridge, and that it has a typical type of cross

section where Cj,, C; and C,, are negligible and Cj,-D/B < Cj, . The reduced wind load
vector associated with an arbitrary node p is then given by

A B-L/N o
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00 O
2%61) 0 100
. 01 0 1 00
where B, =| 0 c, |. o,= and @, =
am : 00 -1 00 1
0  BC),
00 O
00 0

Fig. 7.11  Simply supported beam type of bridge

The wind load covariance matrix associated with the cross product between external load
components in arbitrary nodes p and k is given by (see Egs. 7.55 -7.59)
pPVZB

2
A AT
2 J Q, -Covvpvk -Qy where Covvpvk =1, 1, Py (Axpk)

COVRka = [

and |, =, =diag[I, I, I,]. ppu(Mx,;)=diag[p, Puw Puw)- and where Ax,, is

the absolute value of the distance between nodes p and k. Thus,

2 2
_ [ pV°BL o T AT o7
C°VRka _[ o -9, -B, .wm.(|p.|k.ppk)AemAqu -l
VZBL | 4
:CovaRk —['D2N J -Covg g,

where the non-dimensional cross covariance matrix Cov R,Rj is given by

Covasz
[0 0 0 0 0 0]
D - 2
0 [zchluj P (A% ) 0 0 0 0
’ 2 ’ ’

0 0 (CLIw) 'pww(Axpk) _CLBCMIz%'pww(Axpk) 00
0 0 ~CBCYI2 Py (Mcy)  (BCyL, ) P (Ax,,) 00
0 0 0 0 00
0 0 0 0 00
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{ D 2@ s @ 4 @
L
|

o

o
Q

5
&

4-(L/y)

Fig. 7.12  Four element simply supported beam

Let us consider the simple case of N =4 as illustrated in Fig. 7.12, and adopt the data given in
the table below.

B D o C; Cy I, I, L L, | YL,
(m) | (m) L, | L, | L,
20 | 4 |07 | 5 | 15 | 02 | o1 | w4 | 13 | 116

Ax 3 . _ Ax _ ~
- Puu:eXp[_ nyu]:exp[—4ij and Py —exp[— e ]—eXp(_4A’C)

w

where Ax = ‘9?1, —aék‘ and £ =x/L . In this case there are only two separations:

Pun (L14)=0.82

IV Puu (L714)=0.69
4 Pow (L74)=0.36

s 1
ad A=y = {pww(L/4):0.14

y Covg,r, COVp,r, COVgog,

Then Covy, :[’D‘;ZBL] (f:ovRsR3 éovR3R4
Sym. éOVR4R4
where
[0 0 0 0 0 0]
0 0.003136 0 0 00
(f:ovR2R2 :(A.‘.ovR3l.33 :(A:ovlwg4 = g g ?122 ;'5 g g
0 0 0 0O 00
0 0 0 0 0 0]
[0 0 0 0 0 0]
0 0.002572 0 0 00
éovR _ Gov _ 0 0 009 -054 0 O
2R3 BB 10 0 -0.54 324 0 0
0 0 0 0 00
0 0 0 0 0 0]
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0 0 0 0 00

0 0.002164 0 0 00

éovRR _ 0 0 0.035 -0.21 0 O
2% 10 0 -021 126 0 O

0 0 0 0 00

0 0 0 0 00

The covariance matrix of a chosen set of cross sectional forces is given in Eq. 7.53.

7.4 The resonant part

Fluctuating cross sectional forces at an arbitrary spanwise position x, that are

exclusively ascribed to the resonant part of the response may in general be extracted
from the derivatives of predetermined modal displacements

F(x,.0) = @, (x,)n(t) (7.62)

as defined in Eqs 4.7 and 4.8 (see also Eq. 4.79). The direct transition from the variance
of the fluctuating displacement response quantities to the variances of corresponding
dynamic cross sectional forces is therefore presented below. The procedures for the
calculation of response displacements are in a general format shown in Chapter 4. For
the special cases of buffeting or vortex shedding induced dynamic response the
procedure is shown in Chapter 6. For simplicity it is in the following as usual assumed
that we are dealing with a line-like horizontal (bridge) type of structure where axial
forces may be disregarded, in which case the force component F; in Eq. 7.7 may be

omitted. (Axial forces may in general be determined by the product of the axial stiffness
of a beam type of element and the difference between the axial displacements at its end
nodes.)

It follows from the definition of cross sectional forces in Fig. 1.3 that the connection
between the fluctuating force vector at an arbitrary spanwise position x, and the

corresponding cross sectional stress resultant is
T T
F(x.t)=[F, Fy F, F, Fs] =[V, V, M, M, M,] (7.63)

where V.V, are the shear forces in the direction of the y and z axes, M,,M, are

the bending moments about the same axes, and where M . 1s the torsion moment.
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It is taken for granted that the material behaviour is linear elastic and that
displacements are small (i.e. there is no geometric non-linearity). The relationship
between cross sectional stress resultants and the derivatives of the corresponding
displacements are then given by the following differential equations (see e.g. Chen &

Atsuta [27]):

Mx (xr’t) :GIt Ty (.’XI ’t)_EIw 'rH”(xr
M (x,,t)=-EL, -1/ (x,,t)

M. (x,.6) = EL -7 (5,1

Vy (xr’t) = _M; (xr’t) - _EIZ 'r;’(xr’t)
V, (x,.t)=M; (x,,t)=~EL, -17(x,,t)

(7.64)

where the prime behind symbols indicate derivation with respect to x . Defining the

cross sectional property matrix T(x,)

0O -EI, 0 0 0
o 0 0 -EI, 0

T(x,)=[ 0 0 0 0 GI
0O o0 -EI, 0 0
EI, 0 0 0 0

then F(x,,t) as defined in Eq. 7.63 is given by
F(x,.t) =T-[r" o] ol

Multi mode approach

Introducing the six by N, 4 mode shape derivative matrix

-EI

2
2
%
2
%
%

”
¢y ‘Nmod
”m

¢y ‘Nmod
”

¢2N mod
”

¢ZN mod
’

¢€N mod

Pony

mod |

(7.65)

(7.66)

(7.67)
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where i is an arbitrary mode number and N, 4 is the total number of modes, it then
follows from Eq. 7.62 that

F(xr’t) :T(xr)[ﬁ(xr)n(t)] (7.68)

Taking the Fourier transform on either side
ap (x,,0)= [avy Qy, Qpy. Ay

T
} , and defining the matrix
mod

where a,y(a))z[%l cay e ay

S S S S S
vy  OVyV, VM, VyM, VyM,

Sy,v, Sv,um, SVZMy Sv_um,

Sp (x,,0) = Su,m, Swom, Swuym, (7.70)
Sym. SMyMy SMyMZ
L SMZMZ_

containing auto spectral densities and cross spectral densities of all force components,
then the following is obtained:

Sy (x,,0) = hm%a; al, :%igi%[T-(B-a;)][T-(B-a”)]T

—oo

=S, (x,,a)):T-B-[lim%(a: -a:;)]BT T =185, 8T (771

T —eo

where S” is given in Eq. 4.74. However, because S” contains the entire dynamic

response, i.e. background as well as resonant, it requires reduction to include only the

resonant part. The extraction of the resonant part is equivalent to a white noise type of
load assumption, and thus

HY (a)) (7.72)

where I:I,] is given in Egs. 4.69 and where (see Eq. 4.75)
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S, = S

QR @Q; (7.73)
whose elements on row i column j are given by
T
.U @; (x1) Sy, (Ax,0;)-@; (x5 )duxydxy
L X
SQiQJ- == (7.74)

(of ;) (@M )

where Ax = |x1 —x2|, and where S, (Ax,m ) is the spectral density matrix of cross

sectional loads at the eigen-frequency @; (see Eq. 4.78), i.e.

S‘Iy‘ly SCIyqz S‘Iyqe
S4q (Ax, @) = quqy Se.a: Saan (7.75)
SQGQy 909z Sq€q€

It is seen that SQR is frequency independent. The resonant part of the auto and cross

spectral density matrix of all force components is then given by

S, (%,,0)=T-B-S,, ()-8 -1 =T-B-[I:I;(w)-SQR .Hg(w)]pT 1T (7.76)

The corresponding matrix containing the resonant part of the variance and covariance of
cross sectional stress resultants is obtained by frequency domain integration, i.e.

covFFR (xr) = jSFR (xr>w)dw
0

cr?,yvy Co Vy,v, Co Uy, M, Co Uy, Co Uy, m,
ovy, Covyy, Covyy, —Covyy, (7.77)
= O'Jzux m, Covy M, Covy _u,
Sym. of,lyMy CovMyMz
L O-J%IZ MZ _
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If the load case is wind buffeting as described in chapter 6.3, and the assumption of
negligible cross spectra between fluctuating flow components is adopted, then

S, (Ax,m) is given in Eq. 6.57 and S, (Ax,®) =V2Ivév (Ax,w) , see Eq. 6.40. Thus,

2
PViB | & . .
Sqq(Ax,a)i)z(Tj B, [-8, (Ax,0) | -B] (7.78)
where |, =diag[I, I,] and
S .
& Suu 0 Oy
SU(Ax,a)i):{ . ]: s (7.79)
0 Sww 0 W(za)l)éww(Ax’a)L)

and where C,, (Ax,@) and C,, (Ax,@) are the reduced co-spectra defined in Eq.6.64.

Introducing  the evenly  distributed and modally equivalent  masses

m; =Mi/j(¢iT ~(pi)dx and m; =Mj/I(¢JT ‘(pj)dx (see Eq. 6.41), then the content of
L L

S. onrow ¢ column j is given by

QR
pB B (VY (VY .
Sae; (4) = 5, o, '[Bwj '(Ba)j] (@) (7.80)
where
[ oF (x1) {8, [2-8, (av,) ] BT |- @, (x3)dxydx,
T (@) == as1)

ool o

Single mode three component approach

In many cases where eigen-frequencies are well separated and flow induced coupling
effects are negligible a multi mode procedure as presented above may with sufficient
accuracy be replaced by a mode by mode approach. Then all modes are uncoupled, and
therefore, the covariance contributions between force components from different modes
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are zero, and thus, the total covariance of cross sectional forces may be obtained as the

sum of the covariance contributions from each mode, i.e.

Nmod

Covyyy, (x,) = 2 COVFFRi
i1

For an arbitrary mode i Eq. 7.76 is then reduced to
‘2

Srg, (x,,0)=T-B; Uﬁz (@) Soa (@)}BLT T

” ” ” ” / ” T
where B; =[¢] o7 ¢/ ¢ ¢, ¢;] .and thus

COVypy, (%,) =[Sy (x,,0)d0=T-B;-B -T" S, - [|H; (0)|dw
0 0
= QiQ; T8, -7 -T7

4(1_ Kae; )((L - é/aei )
where «,,, and (. are given in Egs. 6.45 and 6.46, and where

2

B (Vv )
2 (1

a L
2 _ ‘“exp
Jii -

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)



188 7 DETERMINATION OF CROSS SECTIONAL FORCES

Performing the multiplication T -, BLT -TT and then the following is obtained:

T.Bi.plT.TTz
. ~{(¢7EL,). ]
"El "EI )\ (s"ET "EI \(SEL) —(¢"EL (S EI
WEL) ELYOEL) oy ey gy WL L) —(4EL)(#EL )
~{(g7EI )
"BIV (oCEL, BT (¢'E1.) —(o"EIL.\(S'EI
OB ey L) (o))
(4G, 4L ) {(#GI, - 9EL,) {(¢iGI, - #;EL,)
() t~ Yo w » ”
‘(¢ZEIy)} ‘(¢yEIZ)}
Sym. (¢EL,)’ ~(¢EL)(¢EL)
L (¢;EIZ)2 41

(7.87)

It is readily seen from Eq. 7.87 that the covariance matrix associated with an arbitrary
mode ¢ has the properties

COVFFRi (x,)=

2
o o - Oy —0 ¥ o ¥ -0 ¥ej
AT A AA VyVy OM M, VyVy OM M, Vv, OM,M,
2
Oy,v, “Ov,yv, Omm, Ov,v, Omm, Ov,v, Om,m,
2
OM, M, OmM, MM, OmM, MM,
Sym. o2 -0 ¥
Yy MM, MM, M, M,
2
L OM,M, 1
(7.88)
Le., for an arbitrary mode i
P Cov,,,p, ~ +1 formn=VV,, VM VM, MM, MM, 7.89)
mn; - _ .
Opm; “Onn;  |~1 formn=V M VM, VM, V.M, 6 MM,

which could be expected, because within a single mode all coupling between cross
sectional force components are caused by the structural properties already contained in
the relevant mode shape, and thus, all covariance coefficients will either be plus or
minus unity (depending on the chosen sign conventions). Thus, the problem is reduced
to the calculation of variance contributions from each of the modes that have be



7.4 THE RESONANT PART 189

considered necessary for a sufficiently accurate solution. It follows from Egs. 7.84 —
7.87 that

O'VyVy _ |¢;EIZ

i 1 ¢'El

m:L :PB3( 7 TJ-- = g —¢1’|EI || 790
Pt | = am \Bay ) g (G- |

MyMy ¢z y|
_O'MZMZ 1; ¢;EIZ :

where oJ;; is given in Eq. 7.86. The total variances and covariance coefficients are then
given by Eqs. 7.81 and 7.88.

Single mode single component approach

In some cases a single mode single component approach will suffice. The necessary
calculations are then further reduced. Let us first consider a single mode that only

contains an along wind y component, i.e. ¢ = [(ﬁy 0 O]T , and whose eigen-frequency

is @, . Then the necessary calculations are reduced to

{ V¥ (7.91)

1
2 2
Y A Y I
y
O-MZMZ

i, (Bay ) T T | e,

where m,, is defined in Eq. 6.20, Kaey and ¢ ae, are defined in Eq. 6.24, and where o y

is given in Eq. 6.22 (see also Eq. 6.19).
Similarly, if the relevant mode only contains an across wind z component, i.e.

¢=[0 ¢, O]T , whose eigen-frequency is @, , then

1
o, |_pB®. (LJ J(a) o, * eELl) oy
O-MyM‘y 47’)71,2 sz T (1_’((122 )(é/z _é/aez ) ¢z”EIy| .

where m, is defined in Eq. 6.27, &, and 4 ae, are defined in Eq. 6.31, and where J .
is given in Eq. 6.28.
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Finally, if the relevant mode only contains a cross sectional rotation component &,

ie. ¢=[0 0 ¢9]T , whose eigen-frequency is @, , then

2

BV V. o, ,
Our o, = ( ] J, () ( b #GI, — §ET,| (7.93)

B 4n~19 ng 1_Kae‘9)'(§9 _gaeg)

A

where my is defined in Eq. 6.27, &, and gaeg are defined in Eq. 6.31, and where </,

is given in Eq. 6.29.

Example 7.3

Let us again consider the simply supported beam shown in Fig. 7.6, and as usual, let us for
simplicity assume that all cross sectional quantities are constants along the span of the bridge, and

that it has a typical bridge type of cross section where C7,, éL and 6M are negligible and
Cp -D/B < Cj, . Let us set out to determine the covariance matrix associated with cross sectional

forces at spanwise positions x, =0 and x, =L /2 that is caused by resonant oscillations in a

chosen mode

9y ay
e, =0 | =la -sinzx
1 4 4 L
Bo|. |G

whose eigen-frequency, eigen-damping-ratio and modally equivalent and evenly distributed mass

are @, , ¢; and ;. The necessary calculations are given in Eq. 7.83, i.e.

Covpp, (1) = ——500 g5 gr .37
& 4(1_ Kae; )'(gi _gaEi)

where SQ-Q- and T-B,; BLT T are given in Egs. 7.84 and 7.86. Since (see Ex. 7.2)
1%l
296D 0
B 24
o ’ 2 & Iusuu 0
B, = 0 C; | and I;-S, (Ax, ) = .
2

0 BCj 0 ISuw

then
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7= ] {[22%} 0, (8) 0, (52) 8., (A, +

exp
|:(Cz,1w )2 ' ¢2i (xl) ‘¢zi (xZ) +(BCE|/IIw )2 ' ¢9z (xl) ¢9z (x2):|‘§ww (A’)C,O)i)+
C}‘BC]’WIL% |:¢Zi (xl) : ¢91 (xZ) + ¢‘9i (xl) : ¢zi (.’X,‘2 ):| Sww (A’)C,Cl)l )}dxlde

and

3 Jii

CT(0E 402 402 )

L

Introducing the sinusoidal mode shapes, and

A S ) A X~ .
S (M,@):MCOW(M,@) where Couu(Ax,a)i)zexp(—Cuy~ v

uu 2

S (Ax,@) =212 Co,,, (Ax, @) where C‘oww(Ax,w):exp(—Cwy-

1

2
D ~ Su a)l ’ ’ 2 Sw a)l
LZECDayIuj ' ;2 )'l//u(a)i)—‘r[(CLaz +BCMa9)Iw:| ' (2 )l//w(wz

2
2, .2, 2
(ay +a; +a9)

where

dx Lexp

e AR A R S

This integral has previously been solved in Example 6.1, and thus

_ é)u 2 1+exp(_@u) A wiLexp
v, (w)=4 @3+”2+27r . (@2-”[2)2 where a)u_Cuyf.T
A 1 — ) L
vo(@)=4| B oz, +exp( ;) where %ZCwyf'%
R (é)j +7:2)

2
3 2
Thus, S, =[pB[V] ~Jl-i] is defined. At x, =0

.S . .
CoVipy (3, =0) =91, (z, ~0) ! (x, =0)- T"
i 4(1_Kaei)'(§i_§aei)
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where

T-B;(x,=0)-B] (x,=0)-T" =
B 6 6 4 2

V4 2 V4 T n°El
ai (Zj (EL,) a,a, (Ej ELEI, -a,a, (E) EI, [Glt + L2wj

of 7@ ¥ 2 Al ~°EI,
| (EL,)" -a.a, AR G1t+T 0 0

=]
=]

2 2
V1 n°El,
Qg [z} [Glt + L2 ] 00
Sym. 00
0

As could be expected, at x, =0 itisonly V,, V, and M that applies, and thus

3
V.4
o3) 2
ov,v, % \
G :pB?’.[VJ . 0 . [gj .
o o 4mi Bw‘ (1_Kaei)'(§i_§aei) L Y
MxMx p 2 I 7[2Elw
ag Z G t+ L2
and pVsz =1, pVny = Pv,um, =-1.Atx,=L/2
Covyy, Ex =£j= ﬂwi.SQiQi ~T'B-(x =£).B.T(x =£J.TT
R; r 92 4(1_’(&%).(4_;‘1‘%) i| Sr 9 i r 9
where
[0 00 0 0
00 0 0
0 0 0
L) . r L T 4 .
T-B. =— |- =—|.T" =
B: (x 2] B (x 2) Sym. a? (%} (EL)" -a.a, [%J EIEI,
) 2
2
y(i (EIZ)

As could be expected, at x, = L/2 itisonly M, and M, that applies, and thus

2 (”TEI
L
Oty |_pB (VY 5| m PN
124 (1_1(

O-MzMz ) 4n~1l Bfa)l aei)'(gi_Caei) a (”jZEI
I\L

z
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a, 1
Let us consider the case that L, =L =500m, V =40 m/s and |a,|=|0.5]| and adopt the
ay 0.1
numerical values given in the following tables:
B D m; , ¢ EI EI, GI, EI,
m m Kg/m | Rad/s % Nm?2 Nm? Nm? Nm?
20 4 | 100 | 08 | 05 | 10" |210” |5.10° | 2102
P _ L, | L
kg/ CD Cz, CZ,VI Cu.’)’f Cwy f I u I w “ Y
m3 m m
125 | 07 | 5 | 15 | 15 | 10 | 02 | 01 | 162 | 135
Thus,
L P 1+ -
Auzcuyf iZexp _ 1@ :>‘//u(a)l)=4 Aza)u _ 9 2 eXp( ;) =0.24
v T (6?)3 + 71’2)
w.L 0 1+ -
@, = wyf =10 =y, (a)= Azww 5 +2 . xp ;)) =0.37
o, +7 (57’3; + 7:2)
Let us adopt the typical Kaimal type of turbulence spectra
S, (o) 1.087L,/V S, (o) 1.57L, 1V
2 53 and 2 53
o xf o, xf
u (1+1.62w Lu/V) w (1+2.25a) Lw/V)
S, (@ S, (@
= (%) _ 0 906 and « (@) _ 6,999
O-u O-w
The joint acceptance is then
2
D ~ Su a)l ’ ’ 2 Sw a)l
(2§0Dayluj (2 )l//u (a%)+|:(CLaz+BCMa6)Iw:| (2 )l/fw (a)z)
u % =0.127

<
[\

2
2, 2
(ay+az +a9)

Let us for simplicity also adopt quasi-steady values to the aerodynamic derivatives:
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* —

Py v 2(D/B)Cp 0.7 e v Bre 31.95
= |H =~z Ci =-|12.5| and Ai =[Bw] |:C'L:|:|:93.75:|
Al A 3.75 3 ©oLMa L

Thus,
* 212 4 F
j (¢Z¢9BH3+¢9B A3)dx
_ pB? Lexp _ pB? ~a,a,BH; +azB%A; 0.136
ae; 2, J‘(@% + ¢Z2 + %?)dx 2m; a§ +a22 +a§ ’
L
) [ (02 +02H, +9,0.BA; )dx L ame . e .
£ - PB e _pB” o raH, vagBA G o6
w = g, [(02+02+07)dx 4, a?+a’+a;
The following is then obtained at x,. =0
_ o
el
ov,v. 2
. _pB?’.[VT.j P
oo | mam \Ba) [k, ) (6 Cu) \z
M, M, 7\ 7r2EIw
Qg Z G1t+ LZ
Ov,v, (x,=0) 154 kN
=| oyy, (x,=0) |=| 3.8kN
OM M, (x,=0) 61 kNm
The following is obtained at x, = L/2:
o ®V Er
Omymy | _ pB® [ 14 T J e, 2 '
oy, | 47 (Ba) " (1—’faei)'(§i_§aei) zY
ay Z EIZ

24480 kNm

MM, \Xr = 612 kNm
_ Ou, y(x L/2) _{ n }
Oy m, (%, =L/2)




Chapter 8

MOTION INDUCED INSTABILITIES

8.1 Introduction

Static as well as dynamic structural response will in general increase with increasing
mean wind velocity. In some cases the response may develop towards what is perceived
as unstable behaviour, i.e. the response is rapidly increasing for even a small increase of
the mean wind velocity, as indicated in Fig. 6.3. It is seen from Eqs. 6.48 and 6.49 (see
also Eqgs. 4.69 and 4.82) that in the limit the structural displacement response will
become infinitely large if the absolute value of the determinant to the non-dimensional
Nooa bY N,q impedance matrix

2
E,(0V)= I—Kae—[a)-diag{iD +2ia)-diag{%}-(§—§ae) 8.1

@ d

is zero. Thus, any stability limit may be revealed by studying the properties of the
impedance matrix. Obviously, unstable behaviour is caused by the effects of x,, and

€, - The effects of ¢, is to change the damping properties of the combined structure
and flow system, while the effects of K, is to change the stiffness properties. While we

in the entire chapter 6 ignored any motion induced changes to resonance frequencies
(defined as the frequency positions of the apexes of the modal frequency response
function) this can not be accepted in the search for any relevant instability limit. The
reason is explained in chapter 5.2, and as shown in Eq. 5.24, it involves taking into
account that the aerodynamic derivatives are modal quantities that have been normalised
by and are functions of the mean wind velocity dependent resonance frequencies. Thus
(see Egs. 5.24, 6.51 and 6.52) the content of

Ky = Kaei and Co = Ca (8.2)

<ij
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are now given by

K, Zsz'P(V)T Lexp( - (8.3)
“i oM, o | o M i)d |
flo7 0.
- (pzT'éae P;)d
;=@ ey _pB* a(V) Lefxp( e (8:4)
aj ~ g @M, 4w, j((pl (pl)dx '
L

where @, (V') is the mean wind velocity dependent resonance frequency associated with
mode ¢ and @ =@ (V =0) (or as calculated in vacuum). The solution to Eq. 8.1 is an

eigen-value problem with N 4 roots. Each of these eigen-values represents a limiting

behaviour in which the structural response is nominally infinitely large (or irrelevant).
I.e., the condition

‘det(én (a),V))‘ =0 (8.5)

will formally reveal N,

moa Stability limits associated with all the relevant mode shapes

contained in E”, static or dynamic. In general det(én) will contain complex quantities,

and therefore ‘det(fin) = 0‘ implies the simultaneous conditions that
Re(det(lé,7 )) -0 and Im(det(l%,7 )) -0 (8.6)

As shown above, én is a function of the frequency and of the mean wind velocity, and

thus, each root will contain a pair of @ and V values which may be used to identify the
relevant stability problem. For a static stability limit @ =0, and thus, such a limit may
simply be identified by a critical wind velocity V.. For a dynamic stability limit the
response is narrow-banded and centred on an in-wind preference or resonance frequency
associated with a certain mode or combination of modes. Thus, the outcome of the
eigen-value solution to Eq. 8.5 will identify a dynamic stability limit by a critical
velocity V,, and the corresponding in-wind preference or resonance frequency @, .
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Of all the eigen-values that may be extracted from Eq. 8.5 the main focus is on the
one that represents the stability limit at the lowest mean wind velocity, i.e. it is the
lowest V. (and corresponding @, ) that has priority.

Cases of structural behaviour close to a stability limit may in general be classified
according to the response type of displacement that develops. The problem of
identification is greatly simplified if the impedance is taken directly from the
characteristic behaviour of each stability problem as known from full scale or
experimental observations. For a bridge section there are four types of such behaviour.
First, there is the possibility of a static type of unstable behaviour in torsion, called static
divergence. Second, there is the possibility of a dynamic type of unstable behaviour in
the across wind vertical (z) direction, called galloping. Third, there is a possible unstable
type of dynamic response in pure torsion, and finally, there is the possibility of an
unstable type of dynamic response in a combined motion of vertical displacements and
torsion, called flutter. Thus, it is always either 7,, r, or both that are the critical
response quantities. It is then only necessary to search for the instability limits associated

with the two most onerous modes, ¢@; and ¢, with corresponding eigen-frequencies @,
and @, , of which one contain a predominant ¢, component and the other contain a

predominant @, component. Therefore, the impedance matrix may be reduced to

E (0.V,)= {1 o}{xam xaem} (/@) 0

e 01 Kaegl Kaegz 0 (a), /a)z )2

8.7
+9i |:a)r /(Ul 0 :| ' ;1 - gaell _é/aelg
0 @, /0)2 _gaegl 42 - ;aezg
where (see Eqgs. 8.3 and 8.4)

2
K‘aelj — a)i(V) J' (¢ ¢ Pv+¢ ¢ H*+¢ ¢ BA*+¢ ¢ Pv+¢ ¢ Hv
pB2 ) L YTyt 4 Zj7yj" "6 6,7y 6 y; Yz 6 2 P2 i1 4

J
- ¢ exp
2m,

05,0, BA, +0,,0, BP; + 0, 0, BH; +0,, ¢y B*A; )dx} / { [(#5 +02 +45 )dx}
L

(8.8)
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gaeij a)L (V) ® £ ® £ £

WZT' LJ (¢yi¢yjP1 +¢zi¢yj~H5 +¢Hl¢yJBA5 +¢yi¢ZjP5 +¢Zi¢ZjH1
exp

dim,

L
(8.9)

i
and .

} =1,2. The problem is further simplified if
J

9. (x)=[0 ¢ Of

. (8.10)
@ (x)=[0 0 4],

with corresponding eigen-frequencies @, = @, and @, = @, , modal eigen-damping
ratios §; =¢, and {, ={,, and with modal mass properties 1, =m, and m, =m,. In

that particular case

~ 1 Kae Kae / ? 0
E77 (wr’Vcr)z |: 0:|_l: = ZG]_ (a)r a)Z) 2
01 Kaegz Kaegg 0 (a), / 0)9)

(8.11)
+2.|:a)r /(()Z 0 j| ;z - ;aezz _gaezg
l .
0 a)r /a)g _;aegz ;H - é’aeee
and
, | #dx , | eddx
e (0.(V)) Lo pB 0Vt
= 2m, | o, ¢ jq)fdx “20 2om,\ o, ’ j@z dx
L L
(8.12)
4 9 j ¢€2dx 3 9 j ¢6¢zdx
= pB*[@y(V) A Lexp _pB”| @y V) A Lexp
w0 " g\ @y ) |G “r 2mg\ @, ) ' [gRdx
L L
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, [ #dx 3 [ 0.0,
pB w, (V)H* Lexp _ pB a, (V)Hv Lexp

Cae,. dmn, o, ' ,[ ¢2dx Caezg am, o, ? I@Q dx
L L
(8.14)
| dda [ gy0.dx
_pB  0y(V) - Lexp _pB? 9y (V) o Lexp
;aegg - A7 A2 2 ;aegz T 4~ Al 2
My Wy I Pydx 4my I Pydx
L L
(8.15)

where @, (V) and @, (V) are the mean wind velocity dependent resonance frequencies

associated with @, (x)=[0 ¢, 0]1T and @, (x)=[0 0 ¢, ]g . A purely single mode

unstable behaviour contains motion either in the vertical direction (i.e. galloping) or in
torsion. Such an instability limit may then be identified from the first or the second row
of the matrices in Eq. 8.11 alone, in which case w.=aw,(V, ) or o =aw,(V,).

cr
Otherwise, the unstable behaviour contains a combined motion in the vertical direction
and torsion (i.e. flutter), in which case the instability limit may be identified from Eq.
8.11, and . =, (V,.)=w,(V,). Motion induced coupling effects between r, and r,

(i.e. flutter) will only occur if the off-diagonal terms in Eq. 8.11 are unequal to zero, i.e.

if j ¢.0,dx # 0 (see Eqs. 8.12 — 8.15).

Lexp

8.2 Static divergence

Let ¢, be the mode shape in predominantly torsion that has the lowest eigen—frequency.

Let us for simplicity assume that
T
@, =~[0 0 g¢,] (8.16)

At @, =0, the instability effect is static and not dynamic. It is simply a problem of

loosing torsion stiffness due to interaction effects with the air flow. Thus, the impedance
in Eq. 8.11 is reduced to

E, (0. =0,

r cr

) =1 Ky (8.17)



200 8 MOTION INDUCED INSTABILITIES

) 5 I g2dx
B* [ @, (V, L
where: Kaegy = ’;N ( b ")J Ag eXp2
Mo\ Oy I%dx
L
It is seen that E” (@ =0,V,.)=0 when &, =1. Thus, a static divergence type of

instability limit may be identified under the condition that

2
B (0, (V,) ) *LI s
kel SAAC A B/ SNES | (8.18)
2m, W, I(ngx
L

Since this is a purely static type of unstable behaviour the quasi-static version of Aj;

from Eq. 5.26 applies, and thus, the following critical mean wind velocity for static
divergence is obtained

1/2
o I(ngx
m
V,=B-w,- e L (8.19)
PB4CM j¢§dx
Lexp

8.3 Galloping

Let ¢, be the mode shape with the lowest eigen-frequency @, = @, whose main

component is @, , i.e.

T
@ ~[0 ¢ 0] (8.20)
Since the resonance frequency associated with this mode is @, (V'), then
o, =w,(V,) (8.21)

and the impedance in Eq. 8.11 is reduced to

ae.

E”(w,,Vc,) =1-x,, —(o/o, )2 +2i(§z ~ e, )a),/a)z (8.22)



8.3 GALLOPING 201

where
| ddx [ ¢?dx
pB2 , ? # Loy /)32 a,  Lex
ey o — H4 pT and gae =T _rHl pg
2 2m, | o, I ¢ dx = dm, o, I@ dx
L L

Setting the real and imaginary parts of Eq. 8.22 equal to zero, a dynamic stability limit
may then be identified at an in-wind resonance frequency

9, \1/2
) [ oPdx
« L
0 -o|1+28 0 o (8.23)
2m, I@ dx
L
when the damping properties are such that
[ gdx
2
# Loy

¢, =¢q =p€ Dy Zex (8.24)

e 1 P
= 4m2‘ wz J. ¢z dx
L

This type of stability problem is called galloping. It is seen that a galloping instability
can only occur if H, attains positive values. (For a flat plate H, is consistently
negative, see Fig. 5.3, but this is a property that vanishes for cross sections with
increasing bluffness.)

Adopting the quasi-static versions of the aerodynamic derivatives given in Eq. 5.26,
then the stability limit is defined by the following mean wind velocity

_ [#ldx
V. =Ba, - <2 Am, 1 (8.25)
< ° —(Cc;+Cp-DIB) pB* [ ¢Pdx
Lexp

An analytical solution to the problem of galloping was first presented by den Hartog
[29], showing that galloping can only occur if C; <-C},-D/B.
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8.4 Dynamic stability limit in torsion

A stability problem in torsion is related to galloping in the sense that it involves a single
mode type of motion. Let ¢, be the mode shape with the lowest eigen-frequency

@, = @, whose main component is ¢, i.e.
@, ~[0 0 g,] (8.26)
Since the resonance frequency associated with this mode is @, (V'), then
o, =, (V,,) (8.27)

and the impedance in Eq. 8.11 is reduced to

B, (0,V,) =1 K, — (0.1 0) +2i(Lp = Cugy ) 0/ 0 (8.28)
where
4 2 ,[ drdx ) I g2dx
Kaegﬁ ) %[Z_;] A; LE].XI;W o gaegg ) de Z_;A; LTl;szx
L L

Setting the real and imaginary parts of Eq. 8.28 equal to zero, a dynamic stability limit
may then be identified at an in-wind resonance frequency

B -1/2
Pydx
4
+ L
0 = 1428 47 Lo (8.29)
r (7] 3 2
zmg I%dx
L
when the damping properties are such that
[ dpax
4
pB @, * Lexp
Co=Coyy =2 L prlow (830)
[ aegg 4’"9 w, 2 J- ¢3 dx

L
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It is seen that an instability in pure torsion can only occur if A, attains positive values.
(For a flat plate A, is consistently negative, see Fig. 5.3.) Since the quasi-static value of

A, is zero, it is futile to define a stability limit based on the quasi-static theory.

8.5 Flutter

As mentioned above, flutter is a dynamic stability problem where 7, couples with 7.
Such coupling occurs via the off-diagonal terms x, , and &, inEq.8.11 above, and
therefore, it is most prone to occur between modes ¢@; and @, that are shape-wise
similar and whose main components are ¢, and ¢@,. Experimental observations show

that it is usually the aerodynamic forces associated with the motion in torsion that are the
driving forces in the coupling process.
Let @, be the mode shape with the lowest eigen-frequency @, = @, whose main

component is ¢, i.e.

@, =[0 0 g (8.31)

Let ¢, be another mode that shape-wise is similar to ¢, and whose main component is

@, ,1.e.

@ =[0 ¢ of (8.32)

and whose eigen—frequency is @ = @,. A flutter stability limit is then identified by
‘det(lAE,] (a),,Vcr))‘ =0 where éﬂ(wr,Vcr) is given in Eq. 8.11. Since 7, couples with 7,

into a joint resonant motion, then

. = 0, (Vcr) = Wy (Vcr) (833)
From a computational point of view it is convenient to split Eﬂ into four parts, i.e.

E, =E, +E, +2(E; +E, | (8.34)
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where
~ I_Kae —(a),/a)z )2 0_ ~ 0 Kaezg 1
E, = = E, = 2
_Kaegz 0_ 0 1- Kaegg (a)r /0)3) |
- (8.35)
E (é’z—é’aezz)-a),/a)z 0 ~ 0 gaezg a)r/a)z
3 = 4 =
_gaegz ", /wH O_ (§€ - gaegg ) " 0, /a)H_
The stability limit is then defined by the following two conditions
Re(det(éq)) = det(IAE1 +I§2)—4 . det(é3 + E4) =0 (8.36)
Im(det(, )} = 2- [det(él +E,)+det(E, +E; )J =0 (8.37)

Fully expanded these equations become

Re(det(én)) =1-x

aeyy Kaegg + Kaezz 'Kaegg - Kaezg 'Kaegz -

4|:(§z _gaezz )(é,e _gaegg)_gaezg 'gaegZJ'(wr/wz)'(wr/wH)_
(I_Kaegg)'(a)r/a)z)2 _(I_Kaezz )'(wr/a)ﬁ)z +(a)r/wz)2 '(a)r/a)ﬁ)
=0

2

(8.38)
Tm|det(E, ) = 2. {[(1 Kaeaa) (6 =&ee) ~ Kaeg, Qeze]wr/wer

|: aezz aegg ) Kaeyg gaegz :| ", /wﬁ -

aegg) @, /wﬁ (0),./0)2)2 _(;z _gaezz)'(wr/wz)'(wr/wﬁ)Q}

(8.39)
where (see Egs. 8.12 — 8.15)
2
B2 o 2 LJ. ¢z dx B3 » 9 LJ. ¢z¢ﬁd‘x
Kae,, = P ~ — HZ - Kae,g = P ~ — H; =
2 2m, | @, j P2dx 0 2m, | o, J‘¢22 dx
L L
2
4 2 J. ¢9 dx 3 9 J. ¢H¢zdx
pB Lexp ,OB . Lexp
Kaego = [ ] 3 2 Kaeg, = o= [_] 2
2y \ W, I Pydx 2y | @, I Pydx
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[ oldx [ 0.0,dx
PB% @, s Lexp _PB’ @ Loy

= —H = —
gaezz 4n7LZ o, 1 J‘¢Z2dx §a829 47;1’,2 w, 2 J'¢Z2dx
L L

[ didx [ #p0.dx

3
pB® @, - Loxy

B ,oB4 w, _PB @ Ly
4n~”L€ Wy 1 j¢3dx
L

3 L
Zr AL ZEXP ¢
~ 2 2 aeg
4mgy @, j Pydx ¢
L

é/aegg -

The solution procedure demands iterations, because the aerodynamic derivatives can

only be read off if the outcome, @, and V., are known. The theory of flutter was first

cr?
presented by Theodorsen [28]. In cases where @,/@, is larger than about 1.5, then

Selberg’s formula [22] may be used to provide a first estimate of the mean wind velocity
that defines the flutter stability limit

o 2 (Tﬁ - )1/2 1/2
V., =0.6Bw, {|1-| = .%
Wy pPB

(8.40)

Example 8.1

Let us consider a slender horizontal beam type of bridge with a cross section whose aerodynamic
properties are close to those of an ideal flat plate, and set out to calculate the possible stability
limits associated with the two mode shapes

9, =[0 ¢, O]T @, =[0 0 ¢9]T

with corresponding eigen-frequencies @, and @,, and with modally equivalent and evenly
distributed masses m, and i, . It is for simplicity assumed that ¢, = @, and that Lexp =L.Let

us allot the following values to the necessary structural quantities

P B (m) m, My @, (rad/s) =8¢y
3
(kg/m’) (kg/m) (kgm¥/m)
1.25 ‘ 20 ‘ 10% ‘ 6-10° ‘ 0.8 ‘ 0.005

We wish to investigate the properties of the instability limits at various values of the frequency
ratio @, /@, , and thus it is assumed that @, = 0.8 rad/s while @, is arbitrary between
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wy/o, =1 and @,/m, =3 . To simplify the relevant expressions, let us introduce the

following notation:

Due to the flat plate type of aerodynamic properties it is in this particular case only static
divergence and flutter that may occur. The flat plate aerodynamic derivatives are given in Eq. 5.27
(and shown in Fig. 5.3), i.e.:

o ~27FV —%FV

Z; 2* 2(+FraGV)V -E(1-F -4V )V

gi jzz 21 (FV -G/4)V g(FV—G/AL)V
_ g(1+4GV) gGV

where V = V/ [Ba)i (V)J is the reduced velocity, and where

and

F(a)] _J1(J1+Y)+Y; - (¥; =)

2 2
2 (J1+Y,) + (Y1 -J,)

G[@ij:_ Jy-Jo+Y Y
2)

5 2 2
Jy+Y,) +(Yy =)

are the real and imaginary parts of the so-called Theodorsen’s circulatory function. o, (& /2) and
Y, (@/2), n=0or1, are first and second kind of Bessel functions with order n . @ is the non-
dimensional resonance frequency, i.e. @ =Ba,(V)/V . For an ideal flat plate type of cross

section Cj; =7/2 (see quasi static solution given in Eq. 5.29). Thus, the stability limit with

respect to static divergence is identified by

. 1/2
Ve _[ 27 1 Ve o 2 96
Baw, \pB* Cy Bay, for

With respect to the flutter stability limit an approximate solution can be obtained from Eq. 8.40
(the Selberg formula), rendering

S )1/2 12

2
L:o.ﬁ- 1_[0)2] .w ~1.67-\1-y2
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An exact solution can only be obtained from the simultaneous solution of Eqs. 8.38 and 8.39.

Introducing the simplifications that Lexp =L and ¢, = ¢, and the abbreviations for 5, , B,, 7

and @, defined above, then

pB2 , ? * ﬂ # pB3 , g * ﬂ *
= - H4=?Z TG Ky, = - H3=7ZBH3726?)3

2 2
_pB4 . *_ﬂ& * A9 _pB3 a, *_ﬁg 1 0«
Kaegg ~ o= {_] A3 - ?A3 a. K A4 - 75 40)5

2my \ @y
2 3
pB a, # ﬂz PN pB . % ﬁz PN
TH =22 =—-"H, =-2BH,
gaezz 47;1'2 wz 4 1 g r gaezg 4n7LZ wz 2 4 27/ r
4 * ES 3 *® *®
gae :gﬂA; :&A2@r gae = pl} &Al :&lAl Ar
% 4m, o, 4 % 4m, w, 4 B

Thus, Eqgs. 8.29 and 8.30 are reduced to

Re(det(E, )) =1—[1+y2+4y:z§9+%fHZ +%A§]@f +¥(CoByH + (. ByAs ) 6F
o {1+%HI o0 ;s PP (it e —AZH;)}?);‘ ~0
Im(det(é,]))=2@r{§2y+:9—§(ﬂzﬁHf+ﬂgA; o)

{cz (2 a oy} (Zem +1ﬂ @

+72{ﬁzﬁ9 (Hy A5 ~Hy Ay ~H; A + HLAS )+ (BH + s )}03} =0

8

It is seen that the solution of these equations requires the search for the lowest identical roots in a
fourth and a third degree polynomial. Adopting ideal flat plate aerodynamic derivatives (see
expressions above) the solution is shown in the upper diagram in Fig. 8.2 (together with the

approximate solution given by Selberg’s formula). The corresponding values of @, are shown in

the lower diagram in Fig. 8.2. At @,/w@, =2 the development of Im(det(éﬂ)) and

Re(det(én)) with increasing values of V' /(Ba,) is shown in Fig. 8.1.




208 8 MOTION INDUCED INSTABILITIES

0.04 .
B=20m, p=1.25 kg/m®, » =08 rad/s, o fo_=2
0.035} 1
m =10 kg/m, m_=6-10° km/m, ¢ =¢_=0.005
0.03
0.025

/@"6*6\\
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Chapter 9

THE BUFFETING THEORY IN A FINITE
ELEMENT FORMAT

9.1 Introduction

Ys //

Fig. 9.1 A line-like structure in a turbulent wind field
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In order to focus on the most important aspects of wind induced dynamic response the
calculations presented in Chapter 6 (and the ensuing calculations of cross sectional
forces presented in Chapter 7) have been performed in a modal format where each
displacement component has been given a separate representation. These calculations
may also be performed in a finite element format. Such a procedure is presented below.
It has the advantage that it will comply with the computational methods usually applied
elsewhere in structural mechanics. Thus, from a computer programming point of view,
all the well known stiffness and mass properties from other types of structural dynamics
problem will be applicable. The only difference is that the wind and motion induced
loads need special attention. On the other hand, it should be noted that due to the fairly
short correlation lengths and sharply dropping coherence properties of the turbulence
components there will be demanding requirements for the choice of largest element
length, i.e., the number of degrees of freedom in the finite element system may become
cumbersome from a computational point of view. The same applies to the choice of time
stepping increment in a time domain solution. In general, convergence should be
checked. The overall problem of a structural system of line like members in a turbulent

wind field, defined by the wind velocity components V(zf)+u(yf,zf,t), v(yf,zf,t)
and w(yf,zf,t), is illustrated in Fig. 9.1. At an arbitrary position on an element n

(between nodes p and k) the wind field and the interaction between flow and structural
motion will generate three load components, one in the direction of drag, one in the
across wind direction (vertical or horizontal depending on the orientation of the element
in relation to the flow) and one torsion (pitching) moment. Adopting a system of six

degrees of freedom in each node, there is a load vector [R;, R, R; R, R; Rg ]T

. . T .
and a corresponding displacement vector [, n, 13 1, 75 15| in each node, as

shown in Fig. 9.2. Tt is taken for granted that the global axis X , Y and Z coincide
with the flow axis —y,, x, and 2., i.e. that the structural system is two-dimensional

and perpendicular to the main wind flow direction. Unfortunately, a two-dimensional
system is at the moment a necessary restriction as the experimental support of the wind
load on an element at an arbitrary attitude in the flow is insufficient. Strictly speaking,
the theory below is only sufficiently supported by experimental data if the elements of
the system are either horizontal or vertical. Nonetheless, the possibility of a yaw angle
has been included below. It should be noted that experimental data from structural
aerodynamics usually complies with the force and displacement definitions given in Fig.
1.3, where pitching moment and cross sectional rotation are defined by windward edge
up. It is in the following assumed that this definition applies to all the aerodynamic data
(e.g. load coefficients, aerodynamic derivatives, etc.) that are adopted for numerical
calculations. However, in the finite element theory it has been chosen to strictly comply
with the usual convention that all external and internal forces and displacement degrees
of freedom are vectors in global as well as local coordinates (see Figs. 9.2 and 9.3).
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$ Rg, rg

Zs
X

ﬂf
ny\ w?/
VK' V+u

Fig. 9.2 Nodal forces from external loads

N

Fo /
dgT/ Fiy dyy

Fig. 9.3  Element degrees of freedom and element end forces
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9.2 The element mechanical properties

A free body diagram of an arbitrary beam (line-like) type element n , with local axis x ,
y and z is illustrated in Fig. 9.3. It is taken for granted that all displacements as well as
forces comprise a time-invariant mean value (the static part) and a stationary fluctuating
(dynamic) part. At position x along its span the cross sectional displacements and
rotation (torsion) are defined by

T —
e (W) =1 1y 72 g ], =T (x)+ry (2t) 0.1

where index el indicates quantities at element level. Atends 1 and 2 it has the element
nodal forces

T

F — F, =[R F, F;, F, F5 F
F,, (1) —{Fl} =F+F(r) where { @ T 0 T e (9
2 ot F, . =[F, K, F F, K Flz],,,l
and corresponding local displacements
T
d _ d, =[d, d, dy d, ds dg]
d, (;):L‘} —d+d(r) where | TP T R e (g3
2 ot d, =[d;, dy dy dy d dp],

It is assumed that the cross sectional displacement vector Fel,os (x,t) with sufficient

accuracy may be described by the product of a shape function matrix

NN, O O 0 0 0N, 0 0 0 0 0
Ng)<| O M 00 0 Ny 0 Ny 0 0 0 N
x)=
0 0 N 0 Ny O 0 0 N, 0O N 0
0 0 0N, O 0 0 0 0 Ny 0 0
(9.4)
and the nodal displacement vector d,, (¢), i.e. that
reltot (x’t) = N(x) -dyy (t) 9.5)

where the twelve shape function N,,

1=1-12, are given in Fig. 9.4. These are

identical to the shape functions commonly used elsewhere in structural mechanics. Since
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they are polynomial, it should be noted that they will represent an accurate solution to
the time-invariant (static) part of the response but not to the dynamic part, as they will
not fully satisfy the spanwise differential equation of motion.

A~

N5 = -x (1 - 2x + X?) Ny =X (X- X

Nyo = =Ny,

I

Fig. 9.4  Shape functions N, i =1-12

1
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Applying d’Alambert’s principle at a position of external and internal equilibrium

defined by Fel,os (x,t), and let the system be subject to an incremental virtual

displacement

Sty =[or, or, or, or,] 9.6)

y

compatible with

5d 6d, =[6d, Sd, 6d, 6d, ds 8dg]
5d={ l}were 1 =[d4, 2 3 4 5 G]T ©9.7)
od, od, =[6d;, Sdy dy 8dy, d,, dy,)
such that
or, =N(x)-od (9.8)
Then the external and internal works performed during this motion are given by:
L
W, =6d" -F, + [ 8] - (~my,; )dx (9.9)
0
and
L L
Wi = [ [ 06" -s-(dxdA)+ [ 61" - (e, )dx (9.10)
0A 0
where (assuming shear centre axis)
m, =diag [mx m, m, m9]
(9.11)

cozdiag[cx ¢, ¢ CH:|

are diagonal matrices containing the distributed mass and damping properties of the
element, and where

s=[s s = syz]jltot 9.12)
5£=[5£x G, O, 5}/9]T

Sy, 8, and s, are cross sectional stress contributions from elastic beam stretching in

X °
the x direction and bending in the y and z directions, while s,, is the cross sectional

shear stress due to torsion. J,, 0€,, O, and Jy, are the corresponding virtual strain
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quantities. From basic theory of elasticity (Hook’s law and Navier’s hypothesis, see e.g.
Chen & Atsuta [27]) 8 and J€ are given by

s= [Erx' ~Eyr] —Ezr] Gr,r, ]eTlt t
) ’ ) o (9.13)
og = [57' —yor; —zor, rprg]

where primes indicate derivation with respect to x and where E is the modulus of
elasticity, G is the corresponding shear modulus and r,, is a cross sectional coordinate
used to identify the St Venant torsion constant (r,, should be perceived as a symbolic

representative as it strictly spoken is only applicable to a circular cross section). Defining

N, 0 0 0 0 0 N, O 0 O 0 O
N() 0O NJ O O 0 N 0O N, 0 0 0 Ny
x = ” n 4 4
0 0 N, 0 N O 0 0O N, 0 N 0
0O 0 0 N, 0 0 0 O 0 Nj; 0 0

[ ]

(9.14)
and
e=diag[E E E G]
(9.15)
f:[l -y -z er
then the internal work is given by
L ~ T ~ L r '
Wi = [[(f-N-6d) -(f-e-N-d,,)-dA-dx + [(N-6d)" -(c,-N-d)-da
04 5 0 5 (9.16)
=5dT'jNT-UfT-f»dA»eJ»N»dx»dm+5dT-.[NT‘coN-dx-d
0 A 0
Defining A = [dA, I, = [y°dA, I, = [2°dA, I, = [r2dA and
A A A A
ko= [f"-f-dA-e=diag|EA EI, EI, GI,] (9.17)

A

then the internal work is given by

1]

Wy =od" -(k-d,, +c-d) (9.18)
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where Kk and ¢ are the element stiffness and damping matrices, defined by
Ndx

9.19)

L
k=[N
0
L
c= j "¢ Ndx
0

By introducing St =N-Jd and ¥, (x,t)=N(x)-d(¢) then the external work (see

Eq. 9.9) is given by:

L L
=od" -F,, - [(N. sd)" my (N-d)dx = 5d” - [tot—jNTmONdx-d]
0 0

(9.20)
Thus, introducing the element mass matrix
L
m = [N"m Ndx (9.21)
0
then the external work is given by
=od" -(F,, —-m-d) (9.22)
By setting W, =W,
6d" -(k-d,, +c-d)=5d" -(F, —m-d) (9.23)

cancelling out dd and rearranging, then the following element equilibrium condition is
obtained:

md+cd+kd,, =F,, (9.24)

Since d,,, =d+d(¢) and F,, =F+F(t) this equation may be split into a mean (static)
part and a fluctuating (dynamic) part:

kd=F
.. ) (9.25)
md+cd+kd=F
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This is the static and dynamic equilibrium conditions at element level. The element
stiffness, damping and mass matrices are defined in Egs. 9.19 and 9.21. By introducing
the shape functions in Fig. 9.4 into Egs. 9.4 and 9.14, then the following is obtained:

k, k
k= ' P where Ky =Kiy (9.26)
k21 k22
and
EAN}? 0 0 0 0 0 |
0 EI,Ny? 0 0 0 EI,NjN;
”2 PANT?
. :T 0 0 EI,N} 0  EIN;N; 0 e
B0 o 0 0 GINZ 0 0
0 0 EI.N{N; 0 EI NZ? 0
| 0  EILN{N; 0 0 0 EILNZ? |
(9.27)
[EA/L 0 0 0 0 0
0 12EL /L’ 0 0 0 6EI, /L
0 0 12EI,/I? 0 -6EL,/I* 0
B 0 0 0 GI,/L 0 0
2
0 0  -6EL/I’, 0  4EI /L 0
| 0  6EL/L? 0 0 0 4EI /L |
[EAN;N; 0 0 0 0 0
0  EINj}N 0 0 0 EI_Nj;N7,
L0 0 EIN;N§ 0 EI N}N7, 0
LSP) :f ' T dx
oo 0 0 GI,N;N; 0 0
0 0 EI NN} 0 EI,NNY, 0
| 0 EIN/N; 0 0 0 EINNY, |
(9.28)
[—EA/L 0 0 0 0 0
0 -12E1, /L 0 0 0 6EI, [I*
3 2
_ 0 0 -12EI,/I* 0  -6EI, /L 0
0 0 0 ~GI, /L 0 0
0 0 6EI, /I? 0  2EIJL 0
0 —6EI, |17 0 0 0 2EI, /L |
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| EAN7 0 0 0 0 0
0 EI N 0 0 0 EI_N;N7,
. _T 0 0 EI N 0  EI NNy, 0 e
22 © ,
0 0 0 0 GI,N2 0 0
0 0 EIN{\Ng 0 EI N7} 0
| 0 EILN{,N; 0 0 0 EI,Ny; |
(9.28)
[EA/L 0 0 0 0 0
0 12EL /L 0 0 0 —6EI, |17
3 2
_ 0 0 12EI,/L> 0 6EI, /L 0
0 0 0 GI,/L 0 0
2
0 0 6EI,/I’, 0  4EIL /L 0
| 0 -6EL /I 0 0 0 4EI, /L |
The element damping matrix is given by:
C C
c= { 1 12} where €y, =€l (9.29)
Co1 Coo
and
[e.N2 0 0 0 0 0 |
0 c¢,N; 0 0 0  ¢,N,Ng
L 2
0 0 N, 0 N,N 0
cpy = J‘ C4V3 CIN3iVp dx
o| O 0 0  ¢,N? 0 0
0 0 ¢N;N; 0 ¢cN? 0
0 ¢,NgN, 0 0 0 ¢,N§
(9.30)
[140c, 0 0 0 0 0
0 156c, 0 0 0 22,L
Ll 0 0 156c, 0 —22cL O
“490| O 0 0 140c, O 0
0 0 —22L 0 4cIl* 0
0 2L 0 0 0 d4c
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¢, NN, 0 0 0 0 0
0  ¢,N,Ng 0 0 0 ¢,NoNy,
Lo 0  ¢,N;N, 0 ¢,NoNy, 0
w=[l 0 0 ¢,N,N 0 o =
0 6-'4°710
0 0 c,N;Ny 0 c,N;Ny; 0
| 0 ¢,NeNg 0 0 0 ¢,NgNpo
9.31)
[70c, O 0 0 0 0
0 54c, 0 0 0  -13c,L
Ll o 0 54c, 0 13c,L 0
490 O 0 0 70c, O 0
0 0 -13¢,L 0 -3¢, L) 0
| 0 13¢L 0 0 0 —3¢,L%
¢ N2 0 0 0 0 0 |
0 ¢, N3 0 0 0 ¢,NgNy,
.., =? 0 0 ¢,N? 0 ¢, NgN, o
ol 0 0 0 coNE 0 0
0 0 ¢,N;N, 0 ¢,N} 0
0 ¢,N;pNg 0 0 0 ¢,Nf
9.32)
[140c, 0 0 0 0 0
0 156c, 0 0 0 —22,L
Ll 0 0 156c, O 22,L 0
“420| O 0 0 140c, O 0
0 0 22, L 0 4clI? 0
0 —22L 0 0 0 4c L’
Similarly, the element mass matrix is given by:
m m
m { 1 12} where  m,; =ml, (9.33)
My My

The necessary integrations will involve the same combinations of shape functions as
those that have been applied to obtain the damping matrix, and thus
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[140m, 0 0 0 0 0
0  156m, 0 0 0 22m/L
Ll © 0  156m, 0 -22m, L 0
Mi1=%90] 0 0 0 140m, O 0 ©.34)
0 0 -22mL O 4m,L? 0
0 22mL 0 0 0 4mI?
[70m, 0 0 0 0 0 ]
0  54m, 0 0 0 -13m,L
L| 0 0 54m, 0 13m,L 0
M2=750] 0 0 0 7m, 0 0 ©.35)
0 0 -13m,L 0 -3m,I? 0
0 13m[L 0 0 0 -3mL’
[140m, 0 0 0 0 0
0  156m, 0 0 0 -22m,L
Ll © 0 156m, 0 22m,L 0
Moz =420 0 0 0 140m, O 0 (9.36)
0 0 22m L 0  4m,L? 0
0 -22m[L 0 0 0 4m’

The element property matrices given above may be found in many text books, see e.g.
Hughes [25] and Cook et.al. [29]. They have been included here mainly for the sake of
completeness. It should be noted that the development of damping properties at element
level is not necessarily a rational choice. Alternatively, damping properties may be
introduced at a structural global level (i.e. associated directly with the global degrees of
freedom), e.g. in the form of Rayleigh damping or simply a diagonal type of modal
damping matrix.

9.3 The wind load

All the necessary equations for the determination of the mean (static) as well as the
fluctuation (dynamic) wind load at element level has previously been developed in
Chapter 5. It is now simply a matter of implementing this theory into the framework of a
finite element approach, i.e. to expand Eqgs. 5.8 — 5.14 and 5.24 — 5.25 into the twelve
degrees of freedom force and displacement system adopted for a finite element
approach.
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Fig. 9.5  External load and load vector at element level

At a global level the load vector is illustrated in Fig. 9.2. At element level (i.e. associated
with an arbitrary element n ) the load vector is illustrated on Fig. 9.5. It is defined by

T
R, Rl%t Z[Rl R, R; R, Ry Rg ]nmt
R, (t)= R where , 937
2 dngoy Rznmt :[R7 Ry Ry R, Ry R12],,¢0t

These are external nodal forces (in element axis) caused by the distributed element load
vector (see Fig. 9.5 and Eq. 5.8)
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2 ““-\“
a)
1
2
™
CIB$
L/2
q.
: \Vz /y
v(t) a, L
1
V o+ u(t)
b)

Fig. 9.6  Wind load effects at horizontal and vertical positions of the element

(q,] [07 [ o 77 o ] 0
a2 g, | @ @)| [ay(t)]| |9 (©F)
q, x,t
Qe (,0)=| 28| =] |=| % @) |, |a: (@0 |, q.,, (x.t)
q4 9y 7] (x) P (x,t 4, (x’t)
qs 0 0 0 0
%6k O L O J | O | 0

(9.38)
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Thus, the load comprise a time invariant mean part (static load), a dynamic part caused

by wind turbulence (buffeting load) and a dynamic part caused by interaction between
the flow and structural motion (motion induced load), i.e.:

Qe () = () + 4 (x.8) + @ (2. 0.39)

As indicated in Fig. 9.6 it is for simplicity assumed that the element length (L ) is short
such that it may with sufficient accuracy be assumed that the flow components

V +u(x,t), v(x,t) and w(x,t) are constant along half the element span.

The mean (static) load vector:

The static load is given by (see Eq. 5.11)

_pV?

a(x) [0 DCp BC, -B*Cy 0 o]T (9.40)

Thus, the mean (static) load vector at element level is given by

7 :Pl

941
n an 9.41)

where

Q, (Zi)z{g[V(Zi)T%-[o DC, BC, BCy 0 O]T} (9.42)

and where i refers to elementend 1 or2,i.e. i =1 or 2.

The turbulence induced (buffeting) load vector:

As illustrated in Fig. 9.6, the buffeting load will depend on orientation of the element in
the flow, i.e. whether its position is horizontal or vertical, affecting the appropriate

interpretation of the flow components u(x,t),v(x,t) and w(x,t) . Thus, the buffeting
load is given by (see Eq. 5.12)
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ZA

—& >
X
Fig. 9.7  Definition of roll angle y
0 0 0

2DCpI, (DCp,-BC)I, (DCj-BCy)I,
pV*| 2BC.I, (BC,+DCy)I, (BC;+DCp)I,

q(x,t)= WU, (943)
-2B*Cy,I, -BC),I, -B*Cj,1,
0 0 0
0 0 0

where I, I, and I, are the turbulence intensities, Y, is a three by three matrix taking

account of the element orientation (roll angle ) in the flow (see Fig. 9.7)

1 0 0
Y,=|0 siny O (9.44)
0 0 cosy

and where V, is the reduced turbulence velocity vector

T
0 - u(xt) v(xt) w(x,t) 9.45)
0 O-u O-U O-w .

Thus, the turbulence induced (buffeting) load vector at element level is given by:

R, (t)= {gj (9.46)
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where
Qin (Zi ’t) = {BQo (Zi ) ‘Yo "A’o}n 9.47)
where i =1 or 2 and where

0 0 0
2DCpl,(Z;) (DCp-BCL)1,(Z;) (DCp-BCy)I, (Z;)
:p[V(Zi)]ZL 2BC,I,(Z;) (BCi+DCp)I,(Z;) (BC;+DCy)l,(Z:)

BQo
Y| eyl (Z)  -BCL(Z) Byl (2)
0 0 0
0 0 0 |
(9.48)
Thus,
R, (t)=Bg, W, V,(?) (9.49)
where
B BQO (Zl) 0
Q —
0 BQ() (Z2) "
_lIJO 0
Y, = (9.50)
L0y, L
ENV/
Vn — YO( 1):|
Vo (Z,) ],

and, as mentioned above, where indices 1 and 2 refers to element ends.

The motion induced (aerodynamic) load vector:

As shown in Eq. 5.8, the motion induced load will comprise two contributions, one
which is proportional to the element velocity and one which is proportional to its
dynamic displacements. Thus,

o o
Yel ryel
T r,
Qu () = gy | | +Kogq | (9.51)
el el
0 0
L 0 . L 0 -
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If a quasi-static approach is adopted, then Caep and kan are given by (see Egs. 5.13
and 5.14):

0 0 0 000
0 -2DC,, -(DCp-BCy) 0 0 0
o = % 0 -2BC, -(BC,+DCp) 0 0 0 ©0.52)
0 2B%C,, B*Cj, 000
0 0 0 000
0 0 0 00 0]
000 0 0 0]
000 -DC;, 0 0
210 0 0 -BC;, 0 0
o =2 . (9.53)
210 00 B¥Xj,, 00
000 0 00
000 0 0 0]

If a modal approach with aerodynamic derivatives is adopted, then (see Eqs. 5.24 and
5.25)

0 0 0 0 00
o0 P P -BP, 00
B2 * * _ *
caeo—p @ |0 H5* Hl* BHE 00 ©.54)
2 |0 -BA; -BA;] B%A, 0 0
0 0 0 0 00
0 0 0 0 0 0]
0 0 0 0 0 0]
0O P, P -BP, 00
2 ® #* ®
kaeo_pB |0 H6* H4* —BHf 00 (0.55)
2 o -BA; -BA, B?A; 0 0
0 0 0 0 00
0 0 0 0 0 0]

where @ is the relevant frequency of motion (i.e. the mean wind velocity dependant

resonance frequency of mode i ). It should be noted that if a quasi-static approach is
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adopted then €, and k. from Egs. 9.52 and 9.53 are applicable in time domain as
well as in frequency domain, while an approach based on €, and K, containing

aerodynamic derivatives given in Eqs. 9.54 and 9.55 is only applicable in a modal
frequency domain approach. It is a physical requirement that loads obtained from
aerodynamic derivatives should converge towards quasi-static loads as the frequency of
motion is approaching zero, i.e. when the motion becomes very slow.

It should also be noted that a basic hypothesis behind the development of the
buffeting theory in Chapter 5 was that fluctuations in the oncoming flow are
instantaneously giving rise to corresponding fluctuations in the cross sectional loads. If a
time domain solution in original coordinates (i.e. in the element degrees of freedom) is
chosen then such a hypothesis will no longer be justifiable, in which case indicial
memory functions will have to be introduced. Thus, it is necessary to introduce a dummy
time history variable 7, a relative time s=¢—17 (see Fig. 9.8) and a set of indicial
functions

i=D,LorM
D, (s) where o (9.56)
j=y,2o0r6

associated with interaction between drag, lift or moment forces and velocity of motion in
y, 2z or @ directions. These functions describe how an incremental structural motion is
giving rise to a corresponding change of motion induced load, i.e. the basic motion
induced load hypothesis is given by

0 0
Pyl (x,7) "ol (x,7)
d t ¢ aT zZ ’T
e (51) _ ey ()| ol K (5) | 1) (957)
dr dr rel(x,r) dr "6 (x,7)
0 0
0] L 0 ]

As time goes towards infinity it is a physical requirement that loads obtained from
indicial functions will asymptotically be approaching quasi-static loads. Adopting

functions (I)l-j (S)T)l, i.e. similar to that which has been indicated in Fig. 9.8,

then Caep (s) and kaeo (s) are simply obtained by expanding the expressions in Egs.
9.52 and 9.53 into
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r(t)

A

Fig. 9.8  Relative time history integration of indicial functions

Gy (5) =22

K

[0
0 -2DCp®p, (s)
0 —2BC @, (s)
0 2B%Cy @y (s)

0

0

0
0

s=t-1

-(DC;, -BCy)
-(BC, +DCp)

>
-

0

Bzcz’wq)pz' (3)
0
0

@p; (s)
Dp; (s)

oSO O © o o o

SO O ©o o o o

o O O o o o

(9.58)
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and
[0 0 0 0 0 0]
0 0 0 -DCp®py(s) 0 O
2|0 0 0 -BC® 00
Kaeq (5) = il , L (s) (9.59)
2 10 0 0 B*Cy®yy(s) 0 0
0 00 0 00
10 0 0 0 0 0]
Thus, the motion induced load q,, (x,t) may be obtained from history integration
o T o T
P (x,7) " (x,7)
. .
d %, (x7) d|n, (x7
e (X,8) = | €L (5)-—| @ +Kyeo (8)-—| ¢ dr (9.60)
q ( ) ,(')‘ 0( ) dT i'gel (x,'l' 0( ) dT rHel (x,T
0 0
L O - L O -

It is also a physical requirement that if the structural motion is harmonic then loads
obtained from indicial functions must be equal to those obtained from aerodynamic
derivatives. It is shown in Appendix D how this requirement may be used to determine
indicial functions from known aerodynamic derivatives.

Thus, if Eq. 9.51 is applicable (i.e. a quasi-steady load hypothesis is adopted), then
the motion induced load associated with element ends i =1 or 2 is given by

Qu (0= {5y (2)-81(0)+ Sy (200} ©:61)

where d; is the is the six by one displacement vector at element ends i =1 or 2 .(the Z;

dependency comes from the variation of V' with the elevation of element ends 1 and 2.)
In this case the aerodynamic load vector at the level of element n is given by

_ Rae (Zl’t) _ . A .
Raen (t) - |:Rae (Zz’t):|n - caen (Zl aZ2) dn (t) + kaen (Zl aZQ) dn (t) 9.62)

where d,, (¢)=[d; d, ]: and
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Co = and k,, = L (9.63)
0 5 Cacg (Zy) ) 0 Ekaeo (Zy) '

where ¢, and k,, are given in Egs. 9.52 and 9.53.

On the other hand, if Eq. 9.60 is applicable (i.e. the concept of indicial functions is
adopted), then

L

Qaein (£)= {j.|:%caeo (Zi,5)-9; (7) +§kaeo (Z;s)-d; (T)}df} (9.64)

n

and the corresponding load vector at the level of element n is given by

R t—R“e(Zl’t) —tc Z,,Z4,s)-d d+tk Z,,Z4,s)-d (7)d
aen( )_ Rae (Zz,t) i _.([ aen( 1 2’8) n(T) T Z'; aen( 1 2’8) n(T) 2
(9.65)
where
L L
Ecaeo (Zl’s) 0 Ekaeo (Zl’s) 0
Coc, = L and k,, = L
0 Ecaeo (Z2’S) R 0 Ekaeo (Z2’s) R
(9.66)

where ¢, and k,,, are given in Egs. 9.58 and 9.59.

0
Thus, all wind forces and motion induced forces at element level have been

established. What remains before any response calculations can be performed is to

establish equilibrium conditions expressed in global structural degrees of freedom.

9.4 The global analysis

As previously mentioned (see Chapter 9.2) it is taken for granted that displacements as
well as forces at element level comprise a time-invariant mean value (the static part) and

a stationary fluctuating (dynamic) part, i.e. d, = d +d, (t), Frot = F, +F, (t) and
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R, = ﬁn +R,, (¢). This also applies at a global structural level, i.e. I, = F+r(t)

ot

and R,,; = R+R (t) . Before proceeding it is necessary to define the connectivity matrix
A, describing the relationship between element degrees of freedom d”tot and global

degrees of freedom I, ,i.e.:

d, =A, T, (9.67)

Applying a set of virtual displacements to the system J,,, , then 5dntot =A, -d,,and

since the virtual work exerted by the external forces (at global as well as at element
level) must be equal to the sum of the virtual work of the internal forces, then

N N
T _ T _ T
R, - Or = Z_;ant -od,, = Z_;an -od,, (9.68)

where N is the total number of elements in the system. Introducing Eq. 9.67, then
T

N T N
(;RntotA”J o, :(Z_;F%tAn] o, (9.69)

and thus, it is seen that the equilibrium condition at a global structural level is given by
& AT AT
Z:lAn ant = Z:lAn ant (9.70)
= n=

where N is the total number of elements in the system. As shown in Eq. 9.24

F; =mM.d, +c.d, +kd, (9.71)

and assuming that Eq 9.62 applies (i.e. that indicial functions are not in use), then

= ﬁ + Rn (t) + Raen (t) = Rn + Rn (t) + caen dtot + kaen dtot (972)

ot n

Introducing Eqgs. 9.67, 9.71 and 9.72 into the equilibrium condition in Eq. 9.70 (and
acknowledging that the time derivative of mean values are zero) then the following is
obtained
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M=

n Yaey n aey

(ATR, +ATR, (t)+Alc,, Fo +AlK, o)

Il
—

n

n-n"'n

N
=Y (ATm A i+Alc,AF+ATK,A,r,|
n=1

Defining the structural properties

M] ATmA
C|l=>|A"cA
K| " ATkA

the motion induced properties

and the load vectors

then Eq. 9.73 may be written
MF,, +Cf,,, +Kr,, =R+R(t)+R,, (t)

where
Rae (t) = cae';tot (t) + Kaertot (t)

(9.73)

(9.74)

9.75)

(9.76)

9.77)

(9.78)

Since f,,, =f and F,, =F Eq. 9.77 may be split into a time invariant (mean static)

equilibrium condition
(K - Kae )F = ﬁ
and a purely dynamic equilibrium condition

MF(2)+(C-Cp )F () +(K-Kq)r(t) =R(¢)

(9.79)

(9.80)
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This equation may be used to calculate dynamic response in time domain as well as in
frequency domain. In a time domain approach it will be necessary to perform a time

domain simulation of the fluctuating flow components u(X,,,Z,,t), v(X,,Z,,t) and
w(X JvA ,t) in every node k. In a frequency domain approach it will be necessary to

introduce the stochastic properties of the flow components and to perform spanwise
averaging to obtain the corresponding stochastic properties of the relevant response
quantities.

If a time domain solution strategy with indicial functions is chosen, then everything
above is still applicable, except that Eq. 9.65 must be introduced for the determination of

motion induced loads. Thus, the aerodynamic load given in Eq. 9.78 must be replaced
by:

N |¢ t
R, (t)= z{jAgcaen (s) Af(z)dz+ ATk, (s)-Anr(T)dz} (9.81)
n=1l |0 0

Recalling that ds/d7 = -1 and assuming initial conditions r(z=0)=0 and F(z=0)=0
then Eq. 9.81 can be further developed by integration by parts into

R ()= Y {[Azcaen (5) A ()| - [ar Lol ds g pioya

(9.82)

and
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then the dynamic equilibrium condition is defined by
Mi(t)+[C-C,, (s=0)]F(t)+[K-K, (s=0)]r(t) =R(£) + AR, (t) (9.85)

Since the motion induced load contributions are wind velocity dependant the system
contains static as well as dynamic singularities, i.e. the static or the dynamic response
will become infinitely large at some critical mean wind velocity.

9.5 The time invariant static solution

The time invariant static solution is given by Eq. 9.79, i.e.:
r=(K-K,)'R (9.86)

The corresponding cross sectional element forces may be obtained from Eq. 9.25, i.e.:

F =k,d, =k,A,T (9.87)

n

9.6 The quasi-static solution

If the lowest eigen frequency of the structure is high, say beyond 4 Hz, then the structure
is quasi-static, and the solution may be obtained as a sum of the time invariant solution
r (given in Eq. 9.83) and a slowly varying part

r(t)=(K-K,) ' R(z) (9.88)

where R (t) is the fluctuating load due to turbulence in the oncoming flow, i.e.:
N
R(t)= > ALR, (t) (9.89)
n=1

where R, (t) is given in Eq. 9.49. There are two alternative solutions strategies. A time

domain solution may be pursued, or alternatively a stochastic solution based on the
covariance properties of the turbulence components may be chosen.
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In a time domain solution it is necessary to perform a stochastic simulation of the
stationary flow components u(t) v(t) and w(t) contained in V, (t) (see Egs. 9.45

and 9.50). Such a simulation procedure is presented in Appendix A.3. Thus, the solution
is given by

ho (£) =F+r(t)=(K-K, ) [R+R(t)] (9.90)

Since wu(t), v(t) and w(¢) are stochastic, this solution will also be stochastic, i.e. it
may be necessary to perform several calculations of R(t) such that statistics may be

performed on a representative set of r(t) solutions (in general at least ten). Also, the

simulations must be performed over a sufficiently large time window (e.g. T=10 min.).
Thus, a time domain solution may numerically be quite demanding.
In a stochastic solution based on the covariance properties of the stationary turbulence

components u(¢), v(t) and w(t) contained in V, (¢) the solution is given by (see Eq.
6.2 and Fig. 6.2.a)

Mot =T +lmax = +£,0, 9.91)
where ¥ is given in Eq. 9.86, kp is a peak factor defined in Chapter 2.4 and O, is a

vector containing all the standard deviations of the chosen set of displacement degrees of
freedom in the system. O, may be extracted from the square root of the vector contained

on the diagonal of the covariance matrix

op -+ Covy; -+ Covyj -+ Covpy
Cov: 0'2 ... Cov::
i1 i 7] .
_ T | _ : : . : :
Cov,r_E[r-r ]_ : . oo : (9.92)
2
COUJ]_ e COUJL e UJ
2
_COUer e e e e e O'Nr |

where N, is the total number of global degrees of freedom in the system. Since

r(t)=(K-K, ) 'R(¢) then
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Cov,, =E[r-r" | =E|{(K-K,.) " R}-{(K-K,,)" Rﬂ ©.93)

Since R(t ZAT ) and R, (¢) =Bg w,V, (t) (see Egs. 9.49 and 9.76) then

AT -E[(BQwV)n -(BQwo)ﬂ ‘A, (9.94)

N N
=> > A” -(BQn -Lpn-Covﬁﬁ-qJ,Tn-B(Tgm)-Am

where n=1,2,...,N and m =1,2,...,N are dummy summation variables (N is the

number of elements in the system) and where Cov,; = E [Vn vﬁ} is the covariance
matrix of the reduced flow components contained in V , i.e.:

(NS

1 ()
(¢

(¢
2 (t
2 (¢
2t

L -n

S
\—/\—/

Cov,; =E|

<

>

\_/\/\/\/

S

where indices 1 and 2 refer to element ends 1 and 2. By performing the multiplications
and the relevant statistical calculations, and assuming that all cross covariances between
different flow components are negligible, i.e.

Cov,, =Cov,,, =Cov,,, =0 (9.96)
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then the following is obtained:
Cov,; =
_puu (Aslnlm) 0 0 Puu (Asanm) 0 0 |
0 Pov (Aslnlm) 0 0 Pov (Asanm) 0
0 0 Puww (Aslnlm) 0 0 Puww (ASIan)
Puu (A’Sanm) 0 0 Puu (Asznzm) 0 0
0 Puv (A’Sanm) 0 0 P (A82n2m) 0
L 0 0 Puww (As2n1m ) 0 0 Puww (As2n2m )_
(9.97)

where As; is the separation in the global coordinate system between points

i=Inor2n and j=1mor2m, and where p,, (Asij), p=u,yorw, are the

covariance coefficients of the flow components, see Eq. 3.33, i.e.:

1
2 272
(A ) X, -X; Z,-Z,
S;; ) = expq— +
Ppp 8Sjj L, 27,

p

(9.98)

pr

directions (see Eq. 3.35). Thus (see Eq. 9.92 above),

where and sz are the integral length scales of p=u,yorw in X or Z

Cov,, =
N N

(K_Kae )_1 {Z z A£ (Bn g, -Covy; qu 'BrTi‘l)'Am}'((K—Kae )—1 )T (9.99)
n=lm=1

The extreme value of the response Fiotmay MY then readily be obtained from Eq. 9.91.

Since this solution is quasi-static, the corresponding cross sectional element forces may
be calculated from

F = kn dtot

mt’lmax "max

=k,A, (F+k,0,)=Kk,A,r

totyax

(9.100)
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9.7 Dynamic response calculations in frequency domain

If the lowest eigen frequency of the structure is in a region where dynamic effects can
not be neglected, say below about 4 Hz, then a quasi-static solution shown in Chapter 9.6
above will no longer suffice and a full dynamic analysis will be required. However, the
time invariant static solution shown in Chapter 9.5 is still valid, and thus, the total
displacement response may be obtained as a sum of the time invariant solution F (given
in Eq. 9.86) and a purely dynamic part r(t), ie. n, (t) = F+r(t). However, in the

following a stochastic solution in frequency domain will be shown, and from this only
the statistical properties of the response will emerge, i.e. the result of the response
calculation is the covariance matrix

2

o; ++ Covy; -+ Covyj -+ Covpy
Cov;; - o_iz -+ Covyy;
Cov,, =E[r-rT]= : P E (9.101)
Cov;; -+ Covy; - O'J2
L OUer O-NI‘ i

where N, is the number of degrees of freedom in the system. Thus, extreme values of

displacement events are given by

F+h =T +k,0, (9.102)

rtotmax = m

where T is given in Eq. 9.86, k, is a peak factor defined in Chapter 2.4 and O, is a

vector containing all the standard deviations of the chosen set of displacement degrees of
freedom in the system. O, may be extracted from the square root of the vector contained

on the diagonal of the covariance matrix, see Eq. 9.101.

In a frequency domain approach it is a necessary requirement that all load and
response quantities are stationary such that a Fourier transform will render predictable
coefficients throughout the entire time window of the process. l.e. motion induced load
contributions which evolve from the previous history of the process (indicial functions)
can not be included in such a solution strategy. Thus, response calculations in frequency
domain must be based on (see Eq. 9.80)

M F(t)+(C—C,, ) (t)+(K-K,, )r(t) =R(z) (9.103)
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where C,, and K,, are defined in Egs. 9.75 (see also 9.63). Once frequency domain

ae

has been entered, then the content of C,, and K,, may be taken from experimentally

determined aerodynamic derivatives (see Eqgs. 9. 54 and 9.55) as well as from quasi
static properties (see Eqgs. 9. 52 and 9.53).
Taking the Fourier transform throughout Eq. 9.103, i.e. setting

rit)=>a.(w)-e* and  R(t)=D ag(w)-e”*  (9.104)

where a, (@) and ag (®) are the Fourier coefficients of the displacement and load

processes and where ) indicates summation over all @ -settings, then Eq. 9.103 is

2

satisfied for each @ -setting if

[-Mo” +(C-C,, )io+(K-K,)]|-a, =a, (9.105)

Thus,
~ a,=H, (o) ag (9.106)

where
H, (@) =[-Mo? +(C~C,, )io+ (KK, )| 9.107)

The cross spectral density matrix of the response quantities corresponding to the chosen
degrees of freedom is defined by

Srlrl Srlri Srlrj SrlNr
1 iy v Spy, s
s,,(a))z%imﬁ(aj-a?)= : oo L 1(9.108)
oo .
Srjrl ' Srjri Srjrj
_SNrr1 S’N,’Nr_
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Introducing Eq. 9.106, then

S, (0) = Jim ——(a; a7 )= lim —[ (Ha,) - (H.a)" |

T —o T >
(9.109)
:H*-hmi(a* -aT)-HT =H .S, -Hf
r TﬁmﬂT R R r r RR r

.1 s . . . .
where Spp (a)) = %lm —(a R -ag) is the cross spectral density matrix of the buffeting
—oo 7[1

wind load. The response covariance matrix may then be obtained simply by integration
throughout the frequency domain, i.e.

0'12 -~ Covy; -+ Covy; - Coler
Cov;; -+ O'i2 - Couy; : N
Cov,, =| P L =[S, (@w)do 9110
Cov;; -+ Covy; - 0']2 : 0
L OUer O-Nr ]

What then remains is to develop Spp into an expression of known quantities. As shown
in Egs. 9.49 and 9.76

R(t)= iA}f R, (t)= iAf [Bg, ¥, (t)] 9.111)

n=1

and thus a Fourier transform of the load vector will render

N
ap (@)= Y A7 [Bg,w,a;, (@)] 9.112)
n=1
where
T
aﬁn (CU) = |:aﬁ1 aﬁl awl aﬁg az}Q ali}z :|n 9.113)

contains the Fourier amplitudes of the reduced turbulence components at the nodes of
element n (i.e. at element ends 1 and 2, see Eqs. 9.45 and 9.50). The cross spectral
density matrix of the load is then given by
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T —oo

Spr (@) = lim % {g AL -(Bo,w.a;, )} {i A (Bg,w,a;, )}T

n=1
N N
1/ =«
_ T T AT \.wTRT
_’;’EA” {Ban;n }ﬂﬂ(aﬁn a; ) tmeQm}Am (9.114)
N N
T T T
= z z An |:Bin’pn 'Sﬁﬁ (0)) ’ l’meQm :|Am
n=lm=1
where
. 1/« 7
va (0)) = leliriﬁ(avn aﬁm )
a,
al
* 115
= lim 1 || % [a a a a a a ] = Sﬁﬁn Swm ? :
= m e azz i b1 wy 753 () wo | |~ Sﬁﬁzl g
“52
| iy |

is the cross spectral density matrix of the reduced turbulence components. Assuming that
all cross spectral densities between two different flow components are negligible, and
then its content is given by

Su (Asy 1 o) 0 0
Si, = 0 S A8y ) 0
0 0 S (851,15 0)
(9.116)
Su (Asy 5 0) 0 0
Sioyy = 0 S, (Asy 5 0) 0
0 0 S (885,5,, 0)
Suu (A1, 5, 0) 0 0
Sy = 0 S, (Asy 5, ) 0 =Sy, 0.117)
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where Asij is the distance between points i and j, and where »§’pp(Asij, ),

p =u,v or w, is the reduced cross spectral density between flow component p at point

¢ and itself at point j (i.e. the cross spectral density between u,v or w atends 1 or 2 of
element n and u,v or w at ends 1 or 2 of element m ). As shown in Eq. 2.88, Spp

may be expressed by the product of the reduced single point spectra at points ¢ and j
and the reduced co spectrum between the same points, i.e.

S,, (s, 0)= .§pi(w)-.§ w)-Co,, (As;,0)  (9.118)

s (

E.g., adopting a Kaimal type of auto spectrum and simple exponential co-spectrum
decay, then (see Egs. 3.25 and 3.41)

S _Zn (@) = 4p 'Xpr/V (Z;) u
Spi (Q)) ) ; B 5/3
o [1+1.5prfop (2, )] p=lv
w
. Sy, (@) A, L, IV (Z;) :
Spj (a)) i 62 ) x 5/3 n
N [1+1'5AP‘” 'L,V (2, )} i=1% 9119
oo
2 2 m
b Xi_X. + Cpe Zi_Z' 2,
é’opp (As;, @) = exp _a)\/[cp ( j)% [cp ( J)] :
y J ) 2n
— 1 _
i =5V(2)+V(2))] ;m

and where indices n or m refers to element numbers and 1 or 2 refers to element end
numbers. By defining the reduced auto spectral density matrices associated with
elements n and m

A

8, (o) = diag [Suln $

1, w1, Suzn 2, Sw2n J

>

A A A A A A (9.120)
sm(a))zdiag[sul S, S, 8. §

Y, Wi, U2, Y2 wy,. :|

and the reduced covariance matrix between corresponding element ends
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R Co Co
Co (AS w) — [A 1nlm N anm:l
C°1n2m C°2n2m

where
Co,, (s, 1, o) 0 0
Co, ., = 0 Co,, (s, ) 0
0 0 Co,, (Asy ;. )
Co,, (85,5, ) 0 0
Co,, 5, = 0 Co,, (85,5, ,0) 0
0 0 Co,, (Asy,5, )
and
Co,, (83,5, ,0) 0 0
Coyom = 0 Co,, (Asy 5, ) 0
0 0 Co,, (8815, )
oy, (8531 0) 0 0
Coy,1,n = 0 Co,, (s, ) 0
0 0 Coyy, (Asy,1 0)

243

(9.121)

(9.122)

(9.123)

(9.124)

Combining Egs. 9.109, 9.114 and 9.124 then the following cross spectral density

response matrix is obtained

S, (w)= Hj -Sgr 'HrT

N N

n=lm=1

(9.125)
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from which the response covariance matrix may readily be obtained by frequency

domain integration, i.e.

2

o; Covy;
Covj;; of
_ T _ . .
Cov,, _E[r-r ]_
Cov Cov;
_Coerl

Couvy;

Covyy,

O e—3

S,, (w)dw

(9.126)

For the ensuing calculations of the statistical properties of cross sectional response forces
at element end points it is necessary also to determine the covariance between the
displacement response and its derivatives. The general solution to the problem of

determining the covariance between a stationary process x (t) and its derivatives x (t)

and x(t) has been shown in Chapter 2.9 (see Eq. 2.94). Recalling that for a stationary

process E[x 2] =E[x-%]=0, then

Cov,. Cov, Cov,
Cov,. Cov,. Cov,
Cov,. Cov,. Cov

rr rr

0
0 w
—&® 0

(9.127)

Since the displacement response vector associated with element number 7 is given by

d, = A, -r itis seen that

Cov,,d, d-d’ (A

Cov d.d7 A
i | _ |94 gl

Cov, dd" | (A

while

af

r

n

r

n

r

n

)

)
)
)

.(A
.(A
.(A
.(A

r

n

a2

r

n

)
)
aF)
)

T

~

T

T

n

AT =

(9.128)

o ©O © o
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Cov 4,

Cov dndn
Cov o

Cov ddy

Cov, 4

=E

e

d-d’
d-d’
d.d’

|

(A,r) (Anr)T rorl ]

(Ar) (A0
=E|(AF)-(Ar) |=A, E|if" |-Al =A,

(AF)-(AF) s

(A @n ]

-|Cov,

Cov
Cov

rr
rit

rr

Cov
Cov..

i

By introducing the relevant expressions in Eq. 9.127 the following is obtained

The corresponding response force vector

_Covdndn_ f1
Covdndn ) —a?
CoVii, |= A, | [| -0 |8, (0)dw |- AT
COVdndn 0 a)2
Cov, ; | | o' |
K =[F F, i, F, i FJ|

T
Fz,,:[F7 Fy Fy Fy Iy FIZ]n
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(9.129)

(9.130)

(9.131)

associated with element number 7 is defined by the local element dynamic equilibrium
condition (see Eq. 9.25)

and thus

F =md, +c,d, +k,d,

(9.132)

Covy, s, =E[F, F'|=E [(mnan +c,d, +k,d,)-(m,d, +c,d, +k,d,) }

=m, E[dn dﬂmf +c, -E[d

n

+k,-E|d,-d] |-m] +m, -E[d, d] |-k}

d] |-cl +k, -E[d, d} | k]

(9.133)
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Introducing Eq. 9.128 the following is obtained

2
UFI COUFlFi COUF1F12
Cov =E|F,-F' |=| Cov oo - Cov
FpnFp — n'in |7 FiFR F FiF12
) (9.134)
_COUFHFI -+ Covpop - Oz |
=m -Cov; ; m’ +¢c -Cov, , ¢! +k -Cov, , k'
n dydy, 1 n dpdy N n dpdp ™ n
T T
+m,, -Cov dndy k, +k, -Cov LS
where Co"dn i, Cov F Covdndn’ Co"dn d, and Cov dyd, A€ defined in Eq.

9.130. It should be noted that if damping has been defined at a global level (e.g. in the
form of Rayleigh damping C = oM+ SK), then the damping properties at element level

should comply with the same choices of damping properties(i.e. ¢, = om, + Sk, ). It is

also worth noting that if the chosen element length L, is sufficiently small then the

mass and damping terms above will be small, i.e. Covp p ~k, -Cov, ;. k..

9.8 Frequency domain response calculations in modal coordinates

The dynamic equilibrium condition in original discretised coordinates (see Eq. 9.80)
M £ (t)+(C—C,, )F(t)+(K-K,, )r(t) =R(t) 9.135)
may readily be transformed into a modal format by choosing

r(t)=®-n(z) (9.136)

where the vector n(¢) contains N, 4 modal coordinates

T
ne)=[m m - on o i (9.137)

and @ contains the mode shapes
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CD:[‘P1 ¢ - @ - ¢Nmod:| (9.138)

and where @; (i =1,2,...,N_ 4 ) contains the mode shape values, each associated with

the corresponding global degree of freedom number k2 =1,2,...,N ., i.e.

4tV s

T
®=[¢ & G o Oy (9.139)

It should be noted that these eigen-modes are identical to those in Chapters 4, 6 and 7,
but their mathematical description differs in the way their components are organised.
While the eigen-modes in Chapters 4, 6 and 7 are based on a description of components
associated with motion in horizontal, vertical and torsion directions, the eigen-modes in
Eq. 9.137 contain displacement components associated with the global degrees of
freedom in the finite element model of the system.

It should also be noted that because K, depends of the mean wind velocity, so will
the total stiffness of the system, and thus, the resonance frequencies and the associated
mode shapes will change with increasing mean wind velocities. These changes are not
negligible with respect to the overall behaviour of the system in the close vicinity of an
instability limit, where it will usually be necessary to update system quantities due to
these effects (resonance frequencies in particular, but it can not be ruled out that in some
cases it may also be necessary to update mode-shapes). Sufficiently far from an
instability limit these effects are small such that the modal solution strategy of most wind
engineering problems may be based on the eigen-frequencies @ and corresponding

mode shapes @; as determined from the eigen-value problem in still air, i.e. from
[K-a'M]g, =0 (9.140)

Introducing Eq. 9.136 into Eq. 9.135, and pre-multiplying the entire equation by o7
O"'M ®ii(t)+(®'CP-0"C,0)n(¢) + (P'KO- 'K, ®)n(t) = ®"R(t) (9.141)
and defining the modal quantities

M= 0" Mo C,=9'C,o
C=0'Cd; and K, =0"K_ 0 (9.142)
K=0"Mo® R=0'R
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then the following modal dynamic equilibrium condition is obtained

Mij+(C-C,, )a+(K-K, )n=R (9.143)

Due to the orthogonal properties of the mode shapes all the off diagonal terms in M,C

and K are zeros. Thus

M:diag[MiJ M = @; M(pl
C-= diag[ NJ where  C; = @7 Co, (9.144)
R = diag| R, ] K; = ¢/ Ko,

However, it is readily seen that K may more conveniently be determined from Eg.

9.140. Pre-multiplying [K w; M] =0 by (pl , and thus it is seen that

K =M. (9.145)

1 4 1

Furthermore, it is common practice to introduce N, 4 modal damping ratios ¢, each

associated with the corresponding modal critical damping 2M @, , and thus

=o2M,w¢; (9.146)

Itis seen from Eqs. 9.52 —9.55 that €, and K, are not symmetric, and thus, nor are
the corresponding element properties Cee,, and kaen defined in Eq. 9.63. Therefore, the
aerodynamic damping and stiffness matrices C,, and K,, are non-symmetric, and the

orthogonal mode shapes will not nullify off-diagonal terms in éae and Rae above. Thus

O
Il

e Caeij where C’ ;=@ Cae(pj (9.147)
and

K, = K, where ;=i -y (9.148)

ae aelJ
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Thus, all of Eq. 9.143 has been defined. A time domain solution of this equation is dealt
with in chapter 9.9 below.

The procedure for a frequency domain solution in modal coordinates is identical to
that which has been shown in original coordinates in chapter 9.6. Taking the Fourier
transform throughout Eq. 9.143, i.e. setting

nit)=>a,(o)e” and R(t)=> a,(w) (9.149)

where N, ,q by 1 vectors a, (@) and a; (@) contain the Fourier coefficients of the

modal coordinates and the modal and load, and where ) indicates summation over all

[

w -settings. Then Eq. 9.141 is satisfied for each @ -setting if

|-Mo” +(€-€,, Jio+(K-K,,)|-a, =a (9.150)
Thus,

= a, =H, (o) a; (9.151)
where

A, (o) =[ -0 +(€-€, )io+(K-K,)]  ©152)

The cross spectral density matrix of the modal coordinates is defined by

Smm Smnj Smmvmod
N
Sqn(w)z%ﬂ—(an-a£)= Snim S’h”?j Snmzvmod
_SnNmod’71 SnNmodnj SnNmod”Nmod_
(9.153)
Introducing Eq. 9.151, then
.1/« 7 N L T
snn(w):}lg}oﬁ(an 'an):%ﬂﬁ{(Hnaé) '(Hnafe) }
(9.154)
I T S A T
_Hn'}wﬂﬁ(a}?'aé)“n =H, Sz Hy
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where SRR (a)) =%1£130 ﬁ(aﬁ 'aR) is the cross spectral density matrix of the modal

buffeting wind load. R(¢) is given in Eq. 9.111, and thus

n=1

N N
R(t)=0"R(t)=0" Y AT R, (t)=0"-Y AT -[By w7, (t)] (9155

n=1
Taking the Fourier transform throughout Eq. 9.155 renders
T AT
(0)=0" - AT -[By w,a; ()] (9.156)

n=1

ag

and thus, the cross spectral density matrix of the modal buffeting wind load is given by

T
Sy (o)< Jim 1107 547 (B, 0,01, )| 07 .47 (B, w3, )|

N N .

n=lm=1

n

N N R

n=lm=1

where éﬁﬁ (a)) = %11)130 ﬁ(a;n -aUTm ) is the cross spectral density matrix of the reduced
turbulence velocity vector, previously developed in chapter 9.6, see Eq. 9.124. Thus

S, (0)=H, (0) Sy, (0)-H (@) =H, (a))-[d)T -Spp (a))-w]-ﬂg ()

(9.158)
. N N ~ A A ]
q {«»T {; > A7 [B,, (81°C0,,817) wﬁBﬁ]Am}‘”J“?

where €o,, (As,,,), S, (@) and S, (w) are defined in Egs. 9.120 and 9.121.
Finally, since r(t)=®-n(¢), then ar(a))zm'a,](a)), and thus, the cross spectral

density matrix of the displacement response quantities is given by
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S, (o )—hm%(a .l )—hmﬁ[(d)a ) -(q>a,7)T}

T — T —

1 T T
=0 hmﬁ(a .a )cb =05, -0 (9.159)

T —oo
=0 H, -(07S;0) A |- o
where

N A A A
Sin ( z [BQn w, -(81%Co,,8Y%) wIB, J A, (9.160)

ﬁMz

The response covariance matrix may then be obtained simply by integration throughout
the frequency domain, i.e.

i 612 een COUli cee COUlj cee COUINr ]
Covy -+ o2 Cov;; )
COVrr = = jsrr (a))da) 9.161)
COUjl e Covji e 6‘/2 0
Cov . o2
N1 o

This solution strategy will render identical results to that which has been developed in
chapter 6.3. The only difference is that the mode shapes have been arranged in a
different order, i.e. in this chapter in an order which correspond to the chosen degrees of
freedom in a finite element formulation.

Once S,, (a)) has been established, then the ensuing determination of the statistical

properties of cross sectional forces is identical to that which has been shown in chapter
9.6 above (see Es. 9.127 — 9.134).

9.9 Dynamic response calculations in time domain

In a time domain solution the total displacement response may be obtained as a sum of

the time invariant solution ¥ (given in Eq. 9.86) and a purely dynamic part r (t) ,l.e.



252 9 THE BUFFETING THEORY IN A FINITE ELEMENT FORMAT
N (£)=T+r(t) (9.162)

A solution strategy may be pursued in the original finite element degrees of freedom
(developed in Chapter 9.4) or in modal coordinates (see chapter 9.8). If a solution in

original degrees of freedom is pursued, then the calculation of r(t) will require the
solution of the dynamic equation given in Eq. 9.80 or 9.85, depending on the choice of

motion induced load description. It is seen that either of these equations may be written
on the general form

M i (2)+C,pf () + Kot (t) =Ry, (2) (9.163)
cnet =C- cae
where K,.. = K—-K_, ; if quasi-static properties are adopted ,

K, =K-K, (s=0) ¢} ifindicial functions are adopted.
Ry, (£) =R(t)+AR,, (t)

If a solution in modal coordinates is pursued, then the calculation of r(t)=®-n(¢)

requires solution of the dynamic equation given in Eq. 9.143, i.e.

Mﬁ(t)+(é—éae)n(t)+(K—Kae)n(t)=ﬁ(t) 9.164)

where all quantities are defined in Egs. 9.142, 9.144 — 9.148 and 9.155.
In any time domain solution it will be necessary to perform a stochastic simulation of

the stationary flow components u(t) , v(t) and w(t) contained in the buffeting load

vector Ry, (t) or R(¢). Such a simulation procedure is presented in Appendix A.3.
There are a number of iteration procedures available for a time domain solution
strategy. Only a selected few are included below. In any case, as illustrated in Fig. 9.9 a

time domain solution will involve some discretisation of the load processes Ry, (t) or

R (t) at time step ¢, (k=1,2,,....,N,), and a stepwise calculation of the corresponding

response (r or n). Based on the knowledge of the response at time step ¢, and the
discretised values of the load, the task at hand is to calculate the response at time step
t,,1- Such a forward prediction routine is called explicit if it is based on the known

response history alone. It is called implicit if it contains assumptions about the response
situation or equilibrium condition in the unknown future of the system. L.e., in an explicit
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routine r(tk +At) is a function of r, ¥ and f at t =t,, while an implicit routine
contains some assumptions about the development of the motion in the time step
between £, and ¢, + At . Obviously, the shorter time step, the easier it is to obtain a
good solution. Among the implicit methods there are two main classes of solution

strategies, i.e. the direct iteration procedures and the numeric integration methods. Some
of these are presented below.

RA rA /,
A
/
//
// \\ 7/
/7 AN
N\ e
// N A
4 \ ‘///
/ e
5 T i by
x 4 1 -+
24 @ o o o
tk-1 tk+1 tk-1 tk tk+1
At At At At

Fig. 9.9  Time domain

The second central difference method

Consider the situation at time step £,_;, ¢, and £, . A Taylor series expansion of r,_;
and r,_; is given by:
AP
rk+1 =I‘k +At'rk +7'|‘k +
(9.165)

. A
N, =h —At-r, +7-rk —

Thus, considering only the three first terms of the Taylor series expansion, t,_ ; —;, 4

renders

(9.166)
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while I, ; +F,_; renders

. 1
r, ~ F-(rk+1 —-2r, +1,) (9.167)

Dynamic equilibrium at £, is given by
M i;k + Cnetr.‘k + Knetrk = Rdynk (9168)

Introducing F, and F, from Eqs. 9.166 and 9.167

1 1
M e (Feyr =20, +0,_1)+Cpy oAr (Pt —Tpo1) + Kool =Ry, (9.169)

and solving for I, ;

1
Py = (M + %cnet] {AtzR aymg +(2M = AEK ), - (M - %cw ]rk_l} (9.170)

Thus, it is seen that K, ; may be estimated based on knowledge about the load and
response quantise at ¢, and £,_; .

For the establishment of initial conditions at £ =0 before the iteration procedure can
start it is necessary to define (choose) I, and F,. Dynamic equilibrium at ¢ =0 will

then render the corresponding acceleration
.. _1 .
Fy =M™ (Ryy,0 —Crorfo — Koo ) 9.171)

while eliminating ¥, from (see Egs. 9.166 and 9.167)

o zﬁ'(ﬁ -r,)
9.172)
ry z%-(rl —-2ry +r)
At

renders

. A
r,=r,—At-¥, +=T (9.173)
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Thus,

At ! At
r = (M +7c) {AtQRO + (2M —AtQK)rO - (M —70}_1} (9.174)

The stability of the second central difference method may be evaluated by considering
an undamped and unloaded single-degree-of freedom system (se Eqs. 9.167 and 9.168)

with mass M, , stiffness K; and eigen-frequency a)i2 =K, /M,

M; é(rkﬂ =20, 1)+ K1y, =0
t

(9.175)

which, for a harmonic motion r = ae™ (where a is the amplitude), will render

ae A 4 (AtZwiZ —2)aeﬂk +ae’* M) =

= (M )2 +(afaf -2)e™ +1=0 (9.176)

at
= (e )1 =%[2—At2wfiAta)ﬂ/At2wl2—4}

and thus the response at ;. is given by
Bowy = ae B0 = gtk g?M — g o [cl (eMt )1 +¢ (eMt )2} (9.177)

where ¢; and c, are constants dependant on initial conditions. In a second order
equation ax® + Sx +y=0 the product of the roots x; - x5 = 7/ . Thus, it is seen from
Eq. 9.176 that (eMt )1 .(e,w )2 =1. It may be taken for granted that both roots are

distinct. A positive radicand in the solution in Eq. 9.176 will render two real roots, and
since the product of the two roots is unity one of them must be larger that one, and thus,
the solution is consistently growing, i.e. it is unstable. A negative radicand on the other
hand will render complex roots, and the product of the two roots can only be unity if
they are complex conjugates and both has an absolute value equal to one. Thus, the
solution is numerically stable if
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2 _ 2 2
Aa? -4<0 = At <= 9.178)
2

where (obviously), @ is the largest eigen-frequency expected to play any significant
role in the response behaviour of the system.

In any case A¢ should not be chosen larger than about 1/ (Za)RmaX ) where wp - is

the largest frequency contained in the load.

Numeric integration methods

The numeric integration methods are based on the assumption that higher order
quantities may be obtained from the situation at the onset of the time step and integration
of the response development between time steps, i.e. that

At
B =y + [F(7)d7
0

A where 0<7<Af (9.179)

Mg =0 + Ir"(r)dz‘
0

As illustrated in Fig. 9.10 the approximation is that the acceleration variation within the
time step is either assumed constant and equal to its initial value, it is assumed equal to
the average acceleration over the time step or it is assumed linear across the time step. If
constant initial acceleration is assumed (see Fig. 9.10.a), then

T
'r'(T)sz = f'(’l'):l"k +jfde:fk +fk.z- (9180)
0
and thus
At
Fon =Fp + jfkd7=l‘k + At T,
0
At .2 (9.181)
M =0+ j(fk +7-1,)dr =1, + At K, +7fk
0

If the concept of a constant average acceleration is adopted (see Fig. 9.10.b), then
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Fig. 9.10  Numeric integration assumptions

T

. 1. . . S I . -
r(r):E(rkaﬂ) = r(r):rk+J'§(rk+rk+1)dr:rk+2(rk+rk+1) (9.182)

and thus

At

0

. . 1. . . At,.. .
Ma=h+ J‘E(rk +rk+1)dr = +E(rk +rk+1)

0
At

_ . T,. .
ha=ht J. I +§(rk +rk+1)

0

2

AT L
dr=r,+At-1, +%(rk +,)

(9.183)
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If the concept of a linear acceleration is adopted (see Fig. 9.10.c), then

F(7) =1, +(f _rk)E (9.184)
in which case
. A T . . N
F(z)=", +J.|:rk + (P —rk)E}dr =, + 0,7 +(F —"k)ﬂ
0 (9.185)
(7) J[r B+ (F 'r')T}d fbriE D (¥ 'r')T3
0 * 2At 2 * 6At
and thus
. . .. At .. . . At .. ..
Mo =0 TAIG +§(rk+1 ~f,)=F, +7("k +1)
(9.186)
A2 A2 . A2 AP

M =0 +AL-T, 5t +?(rk+1 —f,)=r, + ALK, 5Bt

The concept of integrating an assumed variation of the acceleration between £, and ¢, ;
presented above may all be generalised into the formulation first suggested by Newmark
[32]:

B =B +(1=7) AL + - AL Ty

. (1 5 . 5 - (9.187)

where ¥ and S are weighting parameters, each to be chosen according to prescribed

requirements regarding numerical stability and accuracy. From the second expression in
Eq. 9.187 the acceleration at Z;, ;

. 1 1 . 1 ..
Mp = _,BAt2 (Fps1 =) _|:Mrk +[ﬁ‘1)rk} (©.188)

is obtained, which, combined with the first expression in Eq. 9.187, renders

By :ﬁ(rk+1 —rk)—(z—l)-fk —(%—1}&-'@ (9.189)
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It is seen that the conditions at ¢, may be defined by

a —Lr +L|‘ +(L—1)-i‘

Y Y . Y .
b,=—"—r+|=-1|f,+| —=-1|At-F
topat [ﬂ jk {2ﬂ j ’
in which case f,,; and f,,; simplifies into

M1 —ay
Az

M1 =

r.= r.,-b
k+1 ﬂAt k+1 k

Introducing this into the dynamic equilibrium equation at £,
M Mpa t Cnetrk+1 + Knetrk+1

- Rdy”k+1

will then render

1 /4
(ﬁAtz M +mcnet +KnetJ'rk+l = Rdynk+l +M- a, + cnet 'bk

Defining
/4

1
Ketrpn = BN M+E
R

cnet + Knet
effprl Rdynk+1 +M- a, + Cnet 'bk

and thus

-1
Fios1 = Ko ‘Refn

259

(9.190)

(9.191)

(9.192)

(9.193)

(9.194)

(9.195)

It is seen that the response at time step £, is calculated from the load at ¢, ; as well as

the displacement, velocity and acceleration response at ¢ . If the system is entirely

linear, then K is constant throughout the calculations.
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Hilber, Hughes & Taylor [33] have suggested an extension of Newmark’s method by
the introduction of the numerical damping coefficient & <0 into the dynamic

equilibrium condition

M .r.k+1 + (1 + 0() cnet'..kJrl - acnetfk + (1 + 0{) Knetrk+1 - aKnetrk = Rdyna O. 196)

and accordingly, evaluate the dynamic load at a (1+@)t;,,; —0d, =t,,, + @At . Le., if

load linearity within the time step is adopted, then
R, =(1+2)R,,; —oR, 9.197)

Combining Egs. 9.191 and 9.196 and solving for K, ; will then again render

Mg = K;ﬁlc/,e+1 ‘Refp, ., - butnow Kp - and R,z - are extended into
Ky =——M+(1+0)--C,, +(1+a)K,,
B pAs? At (9.198)
where
¥ V. y .
C, = [@Cnet +K,,.: j 1, +C,. zrk +C,. [ﬁ —IJAt T, (9.199)

For the numeric integration methods the establishment of initial conditions at ¢ =0
before the iteration procedure can start requires the choice of r, and Ff,. Dynamic

equilibrium at £ =0 renders the corresponding acceleration
. _1 .
Fy =M™ (R — Crorfy Koo | (9.200)

and thus, iteration may commence. Stability may be evaluated from the properties of a
single degree of freedom system (or a modal approach) similar to that which has been
shown for the central difference method shown above. In general, the Newmark method
is unconditionally stable if

2
Y2y =1/2 and B2 5, :i(7+ lj (9.201)
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For [ -values below f, it is only conditionally stable. The stability limit is then given
by

At<At, =—— (9.202)

For y =1y, there is no numeric (artificial) damping in the system. With y >y, or
¥ < ¥, positive or negative numeric damping is introduced into the system. Positive

numeric damping may be used as an effective tool to dampen out undesirable effects of
higher modes in the system (which may also be obtained by adopting Hilber, Hughes &
Taylor method with —1/3 <& <0). With y=1/2 and =0 Newmark’s method

becomes identical to the second central difference method, in which case the stability
limit is given by Af,. =2/@, , where @, is the largest eigen-frequency contained in the
system. If y=1/2 and S =1/4 then Newmark’s method becomes identical to a

numerical integration method based on the assumption of a constant average
acceleration, which is unconditionally stable. If y =1/2 and S =1/6 then Newmark’s

method becomes identical to a numerical integration method based on the assumption of
a linear variation of the acceleration, in which case the stability limit is given by

At,, =V12/a, .
As previously mentioned A¢ should never be chosen larger than about 1/ (2a)RmaX)

where @p is the largest frequency contained in the load.

Tangent-stiffness approach:

For heavily non-linear displacement or material problems the stiffness may change
considerably throughout the response process, in which case necessary accuracy may
only be obtained by updating the stiffness from one time step to the next. In such cases a
tangent-stiffness approach may be adopted. Assuming sufficiently short time steps and
linearity within each step, then the change of internal forces from £, to ¢,,; is given by

ARP* =K . Ar (9.203)

where K{*" is the updated tangent stiffness at #, and Ar =¥, ; —F, . Thus, the internal

force vector at £, ; is

R;erfl — R}ent + K}':m CAr (9.204)
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The dynamic equilibrium condition at ¢, is then given by (see Eq. 9.192)

M ¥, +C,,F. + R +K22 Ar =

o Ar =Ry, (9.205)

net

Introducing the Newmark iteration scheme given in Eqgs. 9.188 and 9.189 (and that
I, — I, = Ar), then the following is obtained

1 1 tan _ int
(WM + Ecnet + Knetk -Ar = Rdynk+1 - Rk

(9.206)
+M * L'k-f- L—1 'fk +cnet' Z—1 'fk+ i—1 'At'i:k
PAE 25 g 25
Thus
-1 int
Ar = Keﬁpk . (Rdynk+1 _Rk + M . aeffk + Cnet . beffk ) (9207)
where
1 1 .
K, =—M+—C_.+K2
effy, ﬂ AL 2 ﬂ AL net netp,
1 . 1 .
a,, =—1" +|—-1]|F 9.208
effy, ﬂAt k [2ﬂ ) k ( )
. 1 .

Such a procedure will generally require error control. This may be obtained by

minimising the estimated external load error ARY;, defined as the difference between
the actual load at £, ; and the corresponding load which can be calculated from the
estimated displacements

AR =Ry, o —(MEyyy +Cppify g +RE )est (9.209)

net

Thus, iterations until AR7}; is less than a specified limit will be required within each

time step. Initial conditions and stability criteria are identical to those presented above
for the numeric integration methods.



Appendix A

TIME DOMAIN SIMULATIONS

A.1 Introduction

It is in the following taken for granted that the stochastic space and time domain
simulation of a process X implies the extraction of single point or simultaneous
multiple point time series from known frequency domain cross spectral information
about the process. The process may contain coherent or non-coherent properties in space
and time. Thus, a multiple point representation is associated with the spatial occurrence
of the process. For a non-coherent process there is no statistical connection between the
simulated time series that occur at various positions in space, and thus, the simulation
may be treated as a representation of independent single point time series. This type of
simulation is shown in chapter A.2. For a coherent process there is a prescribed
statistical connection between each of the spatial representatives within a set of M
simulated time series. E.g., if the simulated time series represent the space and time
distribution of a wind field, there will be a certain statistical connection between the
instantaneous values x,, (¢),m =1,2,...,M that matches the spatial properties of the

wind field. Such a simulation is shown in chapter A.3. The simulation procedure
presented below is taken from Shinozuka [23] and Deodatis [24].

Simulating time series from spectra is particularly useful for two reasons. First, there
are some response calculations that render results which are more or less narrow banded
(or contain beating effects), and thus, they do not necessarily comply with the
assumptions behind the peak factor given in Eq. 2.45. These cases may require separate
time domain simulations to establish an appropriate peak factor for the calculation of
maximum response. This application will usually only require single point simulations.
Secondly, if the relevant cross spectra of the wind field properties in frequency domain
are known, there is always the possibility of a time domain simulation of the entire wind
field, or those of the flow components that are deemed necessary. Together with the
buffeting load theory in chapter 5.1 this is a tempting option, as time domain step-wise
load effect integration may be performed, and thus, the response calculation may be
carried out in time domain instead of the frequency domain approach that is shown in
chapter 6. The mathematical procedure for such an approach may be found in many text
books, see e.g. Hughes [25]. The main advantage is that such an approach may contain
many of the non-linear effects that had to be simplified or discarded in the linear theory
that was required for a frequency domain solution. The disadvantage is that motion
induced load effects can only be fully included if a new set of indicial functions are
introduced (see e.g. Scanlan [26]). These may not be readily available.
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A.2 Simulation of single point time series

The mathematical development from a single time series to its auto-spectral density is
presented in chapter 2.5. In principle, the process is illustrated on Fig. 2.11. A time
domain simulation is obtained by the reverse process.

Let S, (w) be the single-sided single point auto spectral density of an arbitrary

stochastic variable «x, for simplicity with zero mean value. A time domain
representative, x (), can then be obtained by subdividing S, into N blocks along the

frequency axis, each centred at @, (k=1,2,...,N) and covering a frequency segment

Aaw, , as shown in Fig. A.1.

X X, = ¢, cos(mt + )

. N\ py)
| N A
770N N 1
] 11T o
1 H K1 | ] -
l F ol
. ? t‘o 2
s

Fig. A.1  Spectral decomposition

On a discrete form S, (w,) is the variance of each harmonic component per

frequency segment, as defined in Eq. 2.53 (see also Fig. 2.11), i.e.
S, (@,)=c} (24,) (A.1)

A time series representative of x is then obtained by

N
x(t) = c,cos(apt+yy) (A.2)
=i

where ¢ = [2 S, (®,) Aw, ]1/2 (A.3)
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and where y;, are arbitrary phase angles between zero and 27 , one for each harmonic

component. Alternatively, Eq. A.2 may be replaced by the exponential format (often
encountered in the literature)

x(t) =Re{ick -exp[i(ayt + )]} (A4)

k=1
N .2
The variance of x ZE" , which in the limit of 4w — 0 and N — oo,
k=1
%o (o
hm —k (A.5)
A 0
Na;—; k=1 2 0

e., if the discretization is sufficiently fine, then the variance of the simulated
representative, x(¢), is equal to or close enough to the variance of the parent variable.

The procedure is further illustrated in Example A.1 and Fig. A.2. Any number of such
representatives may be simulated simply by changing the choice of phase angles.
Obviously, the accuracy of such a simulation depends on the discretization fineness, but
there is also the unfavourable possibility of aliasing. Let @, be the upper cut-off

frequency, beyond which there is none or only negligible spectral information about the
process. Assuming constant frequency segments

Aw=aw,/N (A.6)
then each simulated time series will be periodic with period

T =2rn/Aw (A7)
Thus, time series without aliasing will be obtained if they are generated with a time step

A <27/ (2a,) (A.8)
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S, () A
30 —
20 —
10 —
0 T
0
k S (w,) W, A® c, =V28, Am
1 16 0.35 0.1 1.8
2 30 0.45 0.1 2.4
3 18 0.55 0.1 1.9
4 10 0.65 0.1 1.4
5 4 0.75 0.1 0.9

t(s)

t(s)

t(s)

t(s)

t(s)

\
x(t)= ¥x, 04— m‘.\ /i = /I’\{’\ AN t(s)
S BN [ \)20 30 Y_.40 \io

Fig. A2 Simulation of single point time series

{
Y
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Example A.1

The top diagram in Fig. A.2 shows the single point single sided spectrum of a process x
of which we wish to portray two representatives in time domain. As shown, the
frequency span of the spectrum is first divided into five equal frequency segments, and
the corresponding values @, and S, (@,), k£=1,2,...,5, are read off. Thus the process is

represented by five harmonic components whose amplitudes ¢, =/2-S, (@,)-Aw are
given in the far right hand side column in the table of Fig. A.2. Thus

28, (@,)Aw - cos(wyt +y3,)

What then remains is to choose five arbitrary value of ¥, . In Fig. A.2 the five cosine

MU\

x(t)=

k=1

components are first shown by fully drawn lines, representing a certain choice of
values. The sum of these components shown in the lower diagram in Fig. A.2 is an
arbitrary representation of the process x(¢). If the second and the fourth of these

components are moved an arbitrary time shift, then together with the remaining
unchanged components they sum up to become another arbitrary representation of the
process shown by the broken line in Fig. A.2. As can be seen, the two simulated
representatives look quite different in time domain, although they come from the same
spectral density. What is important is that they both have zero mean and the same
variance, i.e. they have identical statistical properties up to and including the variance.

A.3 Simulation of spatially non—coherent time series

While the procedure presented above may be used to simulate single point time series
representatives of x , it is not applicable if we wish to simulate multiple point time series
whose properties are expected to be distributed according to certain coherence
properties. E.g., let us assume that we wish to simulate the turbulence components

u

x(yf,zf,t) X=<0 (A.9)
w

of a stationary and homogeneous wind field at a chosen number of points M in a plane
perpendicular to the main flow direction. It is then important to capture the fact that
these time series are representatives of simultaneous events, and therefore, they must
contain the appropriate spatial coherence properties that are characteristic to the process.
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For simplicity it is in the following assumed that cross spectra between the © , v and w
components are negligible, i.e. that

(A.10)

where 4s is the spatial separation in the y,-z, plane. We will then only need
information about the cross spectra of the turbulence components themselves, S, (@,4s) .
Let Cov, . (7) be the covariance and S, . (@) the corresponding cross spectral

density between two arbitrary points m and n . As shown in chapter 2.6 these quantities
constitute a Fourier transform pair. An M by M cross spectral density matrix

Sy Sep 0 Sey
Sxx (0)) = Sxmx1 o Sxmxn T Sxme (A.11)
_SxMxl . SxMxn . SJCMJCM |

will then contain all the space and frequency domain information that is necessary for a
time domain simulation of M time series with the correct statistical properties for a
special representation of the process. It follows from the assumptions of stationarity and
homogeneity that

Cov =Cov

*m*n n¥m

(A.12)

and thus, Sy x, = S:nxm

(A.13)

This implies that S, (a)) is Hermitian and non-negative definite. A Cholesky

decomposition of S, will then render a lower triangular matrix

lexl 0
Gx2x1 zexz
G. (o ' ' A.14
xx( ) mex1 mex2 Xmxn Xm%m 0 0 ( :
|Gayrry Gy Gpran Gprim Gy |
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whose properties are such that
*T
S,..(0)=G,, -G, (A.15)

Assuming a frequency segmentation of N equidistant points, the simulated
simultaneous time series at m =1,2,...., M are then given by

m N
X, (t):ZZ‘Gmn(a)j)‘-x/ZAa)-cos(a)j-t+1//nj) (A.16)
n=1j-1

where j is the frequency segment number and Y, 1s an arbitrary phase angle between

zero and 27 . In most cases of a homogeneous wind field (see Eq. 2.87)

A

S, (0,45) =8, (@)-S,, (@,45) (A.17)

where S, is the single-point spectral density of the process, As=

Sy, —sxn‘ is the

spatial separation between points x,, and x, , and where

S, (@,45) = [Coh,, (0,45) -exp[ig,, ()] (A.18)

Thus, defining a Cholesky decomposition S, (w)=G,, -G.”, then the time series at

m=12,..,M are given by

(=353

Gmn(wj)‘-,/28x(a)j)-Aw-cos(a)j-t+1//nj) (A.19)

n=1j=1
where Gmn is the content of G, (i.e. the reduced versions of G,,,, in Eq. A.14)
G, 0 0 o0 |
Go1 Gy
G (@)=| . N N ' (A.20)
Gml Gm2 o Gmn o Gmm 0 0
1Gi1 Guz - Gy  Gum - Gay |

and where a Cholesky decomposition will render
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G (@) =[S (a)j,O)T/z (A21)
. A m-1 1/2
Gmm(wj){sm(a)j,o)_k=1 ;k(wj)} (A22)
n-1 _ R
) Se (@,45) =3 G (@) G ()
G (@) = gﬂ @) (A.23)
nn \ %

Example A.2

A process x is statistically distributed in time and space. Its cross-spectrum Sxx(a),As) is

defined by the product between the single point spectrum S, (a)) shown in Fig. A.3 and its root-

coherence function ,/Coh,, (®@,As) shown inFig. A4.Le.,
S, (0,As) =S, (w)-/Coh,, (w,As)

The phase spectrum exp [i(pxx (a))] is assumed equal to unity for all relevant values of @ and

A s . Let us set out to simulate the process at three points in space, each a distance 10 m apart.
Thus,

As=[As, As, Asy]' =[0 10 20]"
Let us for simplicity settle with the three point frequency segmentation shown in Fig. A.3. Le.

w=[o, o o =[03 07 1.1] and  Aw=04

(It should be noted that this frequency segmentation is only justified by the wish of obtaining
mathematical expressions with reasonable length, such that a complete solution may be presented.
For any practical purposes such a coarse segmentation will most often render unduly inaccurate
results.) The single point spectrum at these frequency settings are then (see Fig. A.3)

S, =[S, (@) S,(m) S,(a)] =[40 7.6 3.0]

while the corresponding values of the root coherence function are given by (see Fig. A.4)
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10 T T T T T

©,=03, [2S (0,)A0]'?=1.79
©,=0.7, [2S (0)A0]'?=2.46

@,=1.1, [2S (0,)00]'%=155

Auto spectral density, Sx(c-a)
(5

3r i
2r .
6x=2.3365
1F .
i 2 3 Aw=0.4
0 1 1 i !
0 05 1 15 2 25 3
Frequency, o (rad/s)
Fig. A.3  Single point spectrum
1 T T T T
09+ 1
m1=0.3
08 1
0.7r b
m2=0.7

« 0.6005 E

0.4} :
©.=11 T oas0e

< 0.3042 -

Root coherence function
o
[
T
:

0.2t 1
< 0.1541
0.1t < 0.0926
0 : ; l 5 « 0.0238
0 5 10 15 20 25

Separation, As (m)

Fig. A4 Root coherence function at @=0.3, 0.7 and 1.1
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As
Coh,, (w,As) : 5 T 50
0.3 1.0 0.6005 0.3606
w 0.7 1.0 0.3042 0.0926
1.1 1.0 0,1541 0.0238
1 sym. |
Thus, S,. (@ =03,4s,,)=|0.6005 1

10.3606 0.6005 1
1 sym.

S, (,=07,s,,)=03042 1

10.0926 0.3042 1

1 sym
S, (@ =114s,,)=01541 1
0.0238 0.1541 1
G, 0 0
éxx (a)J) = CA¥21 622 0 | is defined such that éxx (a)J,Asn) = éxx Gfx
Gg1 Ggy G

Its content is given by (see Eqgs. A.21 — A.23)

G () =[S (0,85 = 0) -G ()~ Gha ()]
Thus,
Gy, = G,y =N1-0.6005 =0.7996
@ =0.3={G,, =0.6005 Gs, = (0.6005-0.3606-0.6005)/0.7996 = 0.4802
Gy, =0.3606 Gy = V1-0.36062 —0.48022 = 0.7996

1 0 0
=G, (0 =0.3)=]0.6005 0.7996 0
0.3606 0.4802 0.7996



A.3 SIMULATION OF SPATIALLY NON-COHERENT TIME SERIES 273

Gy, =1 G,y =N1-0.3042% = 0.9526
@, =0.7 = {Gy, =0.3042 Gs, =(0.3042-0.0926 -0.3042)/0.9526 = 0.2898
Gs, =0.0926 Gy = V1-0.09262 —0.28982 = 0.9526
1 0 0

=G, (1, =0.7)=|0.3042 0.9526 0
0.0926 0.2898 0.9526

G, =1 G,y =N1-0.1541% = 0.9881
@, =1.1= Gy, =0.1541 Gs, =(0.1541-0.0238-0.1541)/0.9881 = 0.1522
Gy, =0.0238 Gy =1-0.02382 - 0.1522% = 0.9881
1 0 0

=G, (0 =1.1)=|0.1541 0.9881 0
0.0238 0.1522 0.9881

Denoting

a \/,‘Z.Sx (0, =0.5)-Aw J2 404 1.79
=| {25, (@, =0.7) Ao |=| V2.7.6-0.4 | =| 2.46

%] |28, (@ =1.1)-Aw 5.3.04 | |155

then the three time series are given by (see Eq. A.19)

ii‘Gln j)‘-,/2Sx (@)Aw-cos(wjtﬂ//nj)

n=1j=1
:‘én “’1)‘“1COS(“’L’:‘*V’H)‘*‘GH(“’2)“‘2COS(%t“//m)‘*‘én(a%)"a3'Cos(a“atﬂ”m)
=1.79-cos (0.3t + ;) +2.46 - cos (0.7¢ + 5 ) +1.55 - cos (1.1¢ +y55)

2 3

)= 22 (Gs

o 2 ()25, (@) 80+ cos (w0 +,)

=t
o1 (@ )‘al cos (et +V’11)+‘G21 (wz)‘az cos (@t +y1) +‘éz1 (a@)‘ g - cos(at +y3)

+‘G22 (a)l)‘ a; cos(myt +yy )+ ‘622 (a)z)‘a2 cos (@t + Yoy )+ ‘Gzz (a%)‘ “ag - cos (mgt +Yyg3)
=1.075-cos (0.3t + 94, )+0.748- cos (0.7t +y15) +0.239 - cos (1.1¢ + y3)
+1.431-cos (0.3t +yy; ) +2.343 - cos (0.7 + Wy, ) +1.532 - cos (1. 12 + yyg)
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0-3 3o

‘ 1IZS Aa) cos a)tﬂynj
n=1j=1

‘G31 (@ ‘a1 cos (@t +yq;) ‘G31 )‘% cos(a)2t+gy12)+‘é31(a§)‘-a3-cos(a)3t+z//13)

)
‘G32 )‘alcos(a)lt+y/21 ‘G32 )‘a2cos(azzt+z//22)+‘é32(a)3)‘-a3-cos(a)3t+z//23)

+‘G33 @) ‘alcos(wlt+‘//31 +‘G33 a&)‘a2cos(w2t+y/32)+‘é33(ag)‘~a3~cos(a)3t+1//33)
=0.646-cos (0.3t + ¥4, ) +0.228 - cos (0.7 + y;5) + 0.039 - cos (1.1 + y4)
+0.86-c0s (0.3t + ¥y ) +0.713 - cos (0.7¢ + ypy ) +0.236 - cos (1.1 + /5 )
+1.431-cos (0.3t + 5, ) +2.343 - cos (0.7 + 35 ) +1.532 - cos (1. 1¢ + yr55)

What then remains is to ascribe arbitrary values (between 0 and 27 ) to the phase angles, Wi+

The following is chosen:

0.7 06 0.3
p=27-{01 0.4 0.2
0.1 0.7 0.8
1D T T T T T
i : o, =2.414
T
£ 0
>
-10 ! i ) i !
0 100 200 300 400 500 600
10 T T T T T
: i ‘o =2.328
: : %2
= |
xl.’\l D | U
-10 i 1 i L 1
0 100 200 300 400 500 600
10 T T T T T
| | s, =2.3995
e . ‘
xl:“) D | 1
-10 i 1 i L 1
0 100 200 300 400 500 600
t(s)

Fig. A.5  Simulated time series
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The simulated time series are shown in Fig. A.5 (T' =600 s and 4 =0.06 s). The standard
deviation of the process as calculated from the parent spectrum is o, =2.3365 . The standard

deviations of the three simulated time series are 2.414, 2.328 and 2.3995. The discrepancy (less
than about 3 %) is caused by the unduly coarse frequency segmentation.

A.4 The Cholesky decomposition

Given a positive definite and symmetric matrix X, the Cholesky decomposition of X is
defined by a lower triangular matrix Y of the same size that satisfies the following:

X =YY" (A.24)
Expanding this equation
'x.u x.h_ xl.N' R 0 0 | [y, Yy, le‘
X5 x; Xy =] vu ¥y 0 0 ¥ii YViv
[ X N1 Xy 0 Xnv] IYm Vi Ynv] O 0 Yw |
(A.25)

and developing the matrix multiplication column by column, it is seen that the first
column renders

X1 =YY Yu =¥

Xo1 = Yo1 Y11 =x,,/
. N Yo o1 Y

(A.26)
Xn1 =N Y Yn1 =%y /¥
while the second column renders
Xgg = Vo1 Vo1 T Voo " Yoo Yoo = NXo2 ~ YoV
X9 = Y31 Vo1 T V32 " Yoo N V3o :(x32 _y31y21)/y22 (A27)

Xno = Yn1 Vo1t Yy Voo Yno = (xzvz _yN1y21)/y22
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and so on. This can be summarized as follows:

j-1
Yy = [xij - Zyikykjj/yjj for all i > j

k=1

(A.28)



Appendix B

DETERMINATION OF THE JOINT
ACCEPTANCE FUNCTION

B.1 Closed form solutions

The calculation of wind load effects, static or dynamic, will inevitably involve the
establishment of the joint acceptance function, normalised or non-normalised. As shown
in chapter 2.10, it represents the statistical averaging in space, and it contains the integral

1

1(B) = [[F(%)-F(£,) exp(-B- A%)dz,d4, (B.1)

0
where, f (32) is some influence function or mode shape, £ is a non-dimensional
coordinate between 0 and 1, AX = |3€1 —3€2| and
m=u orw

where { (B.2)

C,,oL,,/V if dynamic respons
B n=y.orz,

L,,/"L, if static respons

Some closed form solutions (presented by Davenport [14], see also examples 6.1 and
6.2) are given below (and plotted in Figs. B.1 — B.3):

Influence function or

Mode shape, f(£) Reduced integral, I (/)
1 (2/8*)[ B-1+exp(-B)]
x

(2/8)[ B 18- B /12+1-exp(-B)-(B+1)]

2% -1 (8/[34)-[[ﬁ/12—ﬁ2/4+1—exp(—ﬁ)-(ﬁ2/4+ﬁ+1)]
L {m 2(nr)
B +(nrx) B +(nx

)2 . [1 —exp(-f)- cos(nﬂ')]}
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B.2 Numerical solutions

In most cases a numerical integration is the most effective solution, in which case Eq.
B.1 is to be replaced by:

f(o? )-f(£,)-exp(-f-A%) (B.3)

ZMTH
M=
Ip=

where Ax = |3€ L, — X k| and N is the number of integration points. It should be noted that

in general a finely meshed integration scheme is required, i.e. a large N . The reason for
this is of course that the exponential function is rapidly dropping at increasing values of
its argument. The solution to a good number of cases has been plotted in Figs. B.1 — B.3:

10 ———rrrr ——rrrrry
~f(=sin(nmL o) ;
10'1, : H i bt s
=2 . ]
)
B .
E,’ n=4
E
-3
10 e
10" 10° 10' 10°

p=C_ L [V
mn exp

Fig. B.1  Sinus type of typical mode shape functions



Integral, I{f)

Integral, I(})

10

B.2 NUMERICAL SOLUTIONS

f,(0=1-cos (nx)

f,00=x"
f,00=¢"

f5(x)=2x—1

10

 L0=1-cos(nui2)

-1 0

10 10

Fig. B.2  Cosine or polynomial type of typical mode shape functions

10

p=C_ .l IV
mn exp

10

1

10

10

[

107

10

1,00 & 1,0

f 4 0)=1
fz(x)=x

fs(x)=“| X

- f,00=x when x=1/2

f400: f,00=1-x when x>1/2

10

10°

= Y,
Pl /Y,

Fig. B.3  Linear type of typical static influence functions

10

279



Appendix C

AERODYNAMIC DERIVATIVES FROM
SECTION MODEL DECAYS

From wind tunnel section model tests the acrodynamic derivatives were first quantified
by the interpretation of in-wind simple decay recordings as described by Scanlan &
Tomko [17]. From such testing six aerodynamic derivatives may be extracted, as shown
in the following.

The section model contains two intentional modes, one in the across wind vertical
direction and one with respect to torsion, i.e.:

D(x) =@ wz]{% ;ﬂ (C.1)

Internal unintentional flexibilities beyond those associated with these modes are most
often insignificant, in which case @, = ¢, =1. It is in the following taken for granted

that their still-air properties

alv 0o, Gv-0-C | .

are known, and that any additional response contributions from other modes are
insignificant or have effectively been filtered off. The testing strategy is to set the section
model into decaying free motion at a suitable choice of mean wind velocity settings.
Idealised recordings from such a test are illustrated in Fig. C.1. The velocity dependent
response curves may mathematically be fitted to

r(V,x,t) = H = ®(x) n (V) (C.3)

Ty

where: n(Vit)= {Zj =exp(4,. -t)- Le -ex;Z—i v, J (C.4)
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and A, (V)=-¢, @ +i-®,, from which the in-wind damping ratio ¢, (V'), resonance
frequency @, (V') and phase angle ¥, (V) may be quantified. The difference between
observed in-wind values of {., @, W, and their corresponding still-air counterparts
will then contain all the effects of motion induced interaction between the section model
and the flow. Since n(V,t) has been idealised into a single harmonic component it is

necessary to assume that the motion induced part of the loading is dominant and narrow—
banded, and that the buffeting contribution is insignificant or it has been filtered off. The
general equation of motion that contains all the relevant motion induced effects as
expressed by the aerodynamic derivatives is then given by

M-i+C-n+K-n=C, n+K, n (C.5)
where

F“}: j cI:T-{C“e]cbdx (C.6)
K I K

ae
ae exp

Since the testing strategy only allows for the determination of six of the altogether eight
motion induced load coefficients in the present set-up it is necessary to make a
simplification. The following is adopted:

H, H 0 H
C,=| " ° and K, = 3 (C.7)
A A, 0 A,

Le., Hy and A, are discarded. Thus,

jod Cae éae 2H H
Cae =~ = ~ 20 \= _[ ¢Z ! ¢Z€H Z}dx (C.8)
Caegz Caegg Lexp ¢6 ¢z Al ¢€ A2
and
_ |0 K, 0 ¢,0,H
R,.=| =] { ¢2€9 3}195 (C.9)
0 aegy Lexp ¢€ A3
The equation of motion is then given by:
M 0 CZ Caezz aezg f{z _Kzﬁ
R | - . 0+ oz g n=|_| (.10
0 M€ aeg C€ - Caegg 0 “aegg
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40 T T T
rz(t)= Re(cz-exp[(-c_,r-mr+ i-mr)-1]]

0 5 10 15 20

r0(1)=Re(cc:-exp[(-:;r-mr+i-ml).1-i[.q; f])

=)
o

0 5 10 15 20
t(s)

Fig. C.1  Typical decay recordings as obtained from section model tests; top diagram:
vertical displacements; lower diagram: torsion

Introducing K, =w?M,, K, =wiM,, C, =2M,0.{,, C,=2M ,a,{, and that

n=A-n and ij = /LZ -1, then the equation of motion is reduced into

Cae Cae Kae
20)2 ;Z _ %z _ Nz& 0)22 _ 26
{1 o} 2. M, oo, M, .
. " » . " . 11 =
01 aegz C‘WHH 2 K‘”H&
a, 2%t 0 @~
[ % 6

(C.11)

It is convenient to replace the aerodynamic load coefficients H ; and A i»J=12,3,in

Eq. C.7 with the non-dimensional quantities H; and A; called aerodynamic

derivatives and defined by:
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ES

H, H 2 o, BH,
5 :{ 1 2:|:pB o, (V)- 1* 2* (C.12)
A Ay 2 | BA, B%A,
“ Lo Al 2 "V o B, '
Thus,
- 2 ’H, BH,
CaezpB o, (V) | { 7 t ¢Zf92 f}dx (C.14)
2 Lexp $¢.BA,  ¢yB A,
and
- 2 0 BH,
K, = B (V) | { ¢Z2¢92 3 |dx (C.15)
2 Lexp 0 ¢,;B°Aq
Defining
naj:Mj/j@?dx j=zor@ (C.16)
L
and the abbreviations
[ ¢ldx
a, # 32 Loy
hlzﬁzz'_'Hl ﬂzz_p~ —
2 m,  [¢ldx
hy = g H, where L (C.17)
2 [ o0
1) R— PB°  Lexp
hy =By —— H B.o ==
3 =Bo o s 0 ", I dx
L
3 j ¢6¢zd‘x
@, * B°  Lex
a; = fo. A ﬁgZZ'DN ° 2
2 my _[%dx
Uy = Bop -0 A} where L (C.18)
2 I Padx
p) 4
. * pB Lexp
a3 = IB - —_— A3 =
66 9 66 ; I¢3dx
L
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then the equation of motion is given by

10 2 20)2 gz _hl _h2 a)z2 _h3 |: ¢, :| _ |:O:|
UO J/L -{ ! 2“’95&‘“2}&+{0 wp —a3D co-exp(-iy;, )| [0
(C.19)

Introducing exp(—iy, ) = cosy, —i-siny,

{Zf +(20,¢, —h) A, +a)22}cz — (hyA, +hg)(cosy, —isiny, )c, {0} 20
—a;Ac, +{/1,2 + (20,8 —ay) A, + @} —a3}(cosz//, ~isiny, )c,

and that A4, =(-¢, +i)-@ and A7 =(§r2—1—i-2§r)'(02, then the following is

r

obtained:

2
h
[;2 1+ 22—Z%QQJ+Z—1C2§,+Z—205(§,cosy/,—siny/,)—w—zcgcosy/r

r r r r

0‘9(; -1+ __2_‘9;9; JCOSl//r‘FZCH(&é/g—é/rJSinl//r‘f‘
Q.

r

a a . a
—Le, & +—2c, (¢, cosy, —siny, ) ——2c, cosy,
o o

L r r r

[%(Z —g“,j+%c2 +Z—icg(§, siny, +cosz//,)—22—fc9 siny,
0
- - ( __2_94“6; Jsinl/fr -2c, [%{0 —g“r)cosy/r | 0
;rcz o cg (¢, siny, +cosy, ) - Z)ié cosiny,
) can

The tests comprise three different conditions of motion control. First the decay tests are
carried out with the physical constraint that c, =0 . Under this testing condition the

imaginary part of Eq. C.21 is reduced to
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_2c2(§2 a)z/a)r _gr)+h1cz/wr =0

from which:
hl = 2(a)z§z _wrgr)

and thus,

H; =ﬂi[%4; —4]

r

(C.22)

(C.23)

(C.24)

The second series of decay tests are carried out with the physical constraint that ¢, =0,

in which case Eq. C.21 is reduced to

2
{;3_1+“’_;_2&g6;,}0w,+2(&;9
a)r a)l‘ a)l‘
Qs : as
e COS —Ssin ———CO0S
wr(é“r v, —siny, ) o2 Y

2
@ o ) o,
(frz —1+w—§— f(afr}im% —2(;955

r r r

Q

. ag .
—2(¢, siny, +cosy/r)—w—zsm1//r

r

£

Thus. M _ {2(% -0, )}

2 2 +2
as wﬁ_a):_a)ré/r

from which

4 [ w,

Ay zﬂ—%[;rfe —fr]

=2 [ﬁz—l—ﬁ]

Bog .

_ngSinWr +

—{r]cosyfr +

(C.25)

(C.26)

(C.27)

(C.28)
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After h,, a, and a5 have been determined then the third series of decay tests are carried
out with no physical constraints, such that ¢, #0 and c, # 0, in which case the full
version of Eq. C.21 applies. Eliminating A, from the first real and imaginary parts and

a, from the second real and imaginary parts then the following equations are obtained:

B o
[;2_1—}_ 2_2&§z§r+ﬁé/rj51ny/r
[ON . @,
{ [ ¢, ;}——}cosw, L °
a)r r =
0
2
_cg(cf—1+%f—22—j:9:,]+2c34[2—j:g—:,]Trc (¢2+1)-% wz d
(C.29)
2
from which o =% b +1-a} /o +ay/f (C.30)
c, (g“f +1)sin1//r
h2=czw’{(?3—“@2—2&{24+ﬂ§r]sinl//r “ ¢, §J hl}coswr}
Cy (()r wr a)r r
(C.31)

Finally, h; may be determined from the first real part of Eq. C.21, rendering

2
hy = -{Z—Z-{ﬁ—l “’zi 2—44 ’“;]
4 @,

(&, cosy, —siny, )}

cosy, @,
(C.32)
From Eqgs. C.17 and C.18
AfziAﬁ’ gio 2 by ngihi (C.33)

2 2
ﬂgz @, ﬁzg @, IBZB @,



Appendix D

DETERMINATION OF INDICIAL
FUNCTIONS FROM AERODYNAMIC
DERIVATIVES

Aerodynamic load contributions in the along-wind, the across-wind and the pitching

T
moment directions (t) = [q , 4. qu generated by the interaction between the

T
wind field and the motion of the structure r(t):[ry r, rg] have first been

developed in a quasi-steady format in chapter 5.1, where the definition of positive r, and
q, comply with the usual aerodynamic conventions shown in Fig. 1.3.a. Since the

determination of aerodynamic derivatives and the corresponding indicial functions are
taken from wind tunnel aero-elastic section model tests, this is also the sign convention
chosen for the presentation below. However, the use of indicial functions will generally
only be relevant in a time domain solution in a finite element format, and in such a
format all displacement and load quantities are vectors. This format has been presented
in chapter 9. It should however be noted that the choice of sign convention for
displacements and forces has no consequences to the determination of indicial functions
as long as any displacement component and its corresponding load component has
identical directions. Thus, from a quasi-steady theory (see Eq. 5.8)

qae (t) :Caei‘(t)-’-Kaer(t) (Dl)

where for simplicity the horizontal spanwise (axial) r.

x

degree of freedom and
corresponding g, load component have been omitted as they have no relevance for a

line-like type of structure, and

-2DC, -(DC,-BC,) 0
caez% -2BC, -(BC,;+DC,) 0
-2B°C,, -BC}, 0
(D.2)

0 0 DC,

2 D

K. =20 o BC

0 0 BC
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In a frequency domain formulation Eq. D.2 may be replaced by (see chapter 5.2)

Pl # P; B P;

c.=22 | H H BH,
BA, BA B’A,

(D.3)
P, P, BP

%

BH,
BA, BA, B’A,

where P}: , H k , Ak (k=1,2,...,6) are the aerodynamic derivatives and @ is the
frequency of motion. Theoretically, Eq. D.2 is applicable in time domain as well as in
frequency domain. However, the basic hypothesis behind the quasi-steady theory was
that fluctuations in the oncoming flow or in the motion of the structure will
instantaneously give rise to corresponding fluctuations in the cross sectional loads. Such
a hypothesis will not render reliable results in a time domain solution, and therefore, Eq.
D.1 needs to be formulated at an incremental level

di d
9. _c, (92D g, (20 4
dr dr dr
where (see Fig. 9.8) 7 is a dummy time history variable, s =¢ —7 and
-2DC,®,,(s) -(DC,-BC,)®,.(s) 0
C.(s)= il —2BC, @, (s) —(BC, +DCp)®,.(s) 0
~2B°C,, @, (s) -B*C;,®,,, (s) 0
(D.5)
- 0 0 DC,®,,(s)
K. (S) =£ 0 0 BC, (S)
0 0 B’C,®,,(s)
m=D,L or M
where @, (s) { . (D.6)
n=y,2or @

are the indicial memory functions associated with interaction between drag, lift or
moment forces and the velocity of motion in y, z or @ directions. A displacement
increment and its corresponding load increment in the remote part of the response
history must comply to the quasi-steady solution, and thus
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lim®, , (s)=

§—>00

(s)=1 {m:D,L orM O

n=y,z or 6

Therefore, an exponential type of function with a limiting value of unity is usually
chosen for the representation of indicial functions interpreted from experimental results
(see Salvatori & Borri [31]). It is convenient to express these functions by the non-
dimensional relative time parameter § =sV / B . Thus,

) (D.8)

-

N s {sz,LorM
07

n=y,zor 6@

@>
S—
|
—
|
g
S

where the constants bj and ¢; may be determined from experiments or, as shown

below, from the aerodynamic derivatives (see Chapter 5.2).
The current motion induced load q,, (t) may then be obtained by history integration

(theoretically from —eo to the present time ¢ )

¢ dr(r dr(t
R N 9)
Integration by parts
e 4dC(s) ds |
Qe (1) =[Coe (5)-F(2) | ___ - _O[T'E'r(f)df
K, (5) (D.10)
r=t e \S) ds
+|:Kae (.S') -r (’Z'):L_:_m - ;[T . E -r (T)d'l'
and assuming negligible initial displacement and velocity conditions, then
d.. (t)=C,, jc 7)d7r +K,, jK 7)dr (D.11)
dcC K
where C,, (s) = ﬂ and K, (s) = ;—e(s) Introducing a harmonic motion
s s
ay
rit)=|a, |- =a (D.12)
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then

¢
qae( ) Cae(o)'i'wi a-e + IC;e (s)-i-a)l -a-"“dr
(D.13)
+K,, (0)-a-e' + IK -a-e“dr

b

. . d “ -
Recalling that s =¢ — 7 and using that d_s =-1, j = —I andr(t)=a '™ then
T

Q. (t) = {Kue (0)+ [KL (s)-e""ds +ia {Cae (0)+ [Tl (s) -e-i“deer(t)

0 0

Introducing Eq. D.5 renders

0 0 DCp®p,(0) | |0 0 DCLPp,(3) A
0 0 BCi@L,(0) [+][0 0 BC,@,(3) |-e%ids

j=1

8
T 0 0 B2Cy®,,(0)| °|0 0 B2Cjd),(3)

qae

M&?

[ D~ D, =
—2§CD¢Dy(0) _(ECD _Cqu)Dz‘(O) 0

+—|| —2C @, (0) —[Ci+%5Dj6DDé(O) 0

—2BC,; @, (0) BCj; @, (0) 0

o]~

[ D~ . D, = Var /s ]
—2§CD¢Dy(S) _(ECD _Cqu)Dz‘(s) 0

~2C; @, (0) —[Ch%@,jcpbé (3) 0]-e™Vids | lae™

+
[ —

—2BC,; @, (0) ~BCj; @) (3) 0
(D.16)
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From Eq. D.8 it is seen that

= N eV Y bic;
[@],, (8)-eVids =Y b, fe (e #ilVi)s gg = z— (D.17)
0 =L 0 J=1€; +i/V;
and thus
[ Nj 11 , N bic;
0 0 DCp|1->b, 0.0 DCHY)- L7
=1 Jpe = i
N N
t j be.
clae(z)= 0 0 BC,1-3b,| |+lo 0 BC; ad
24 A, e +ilV,;
2
) Nj 2N bic;
0 0 B2Cy|1-3b, 00 B J
= V.
| Jj=1 e | j=1\C +L/ 0

_Ni( be. _\Ni( be. A
+ —2C. )] JC.J . —[Ci +BCDJZ LI 0 ae' "
Jj=1 Cj+l/Vi Ly B J=1 cj+l/V' Lz

(D.18)
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Gathering all real terms in one matrix and all imaginary terms in another the following is
obtained:

- N . ., .
D~ b D YT i b,
2-Cp> | 4 (7 b—ch L -DCp|1-Y -1
B J _I{VZZCJZ 1 Dy B = ‘ZCJZ' 1 Dz J=1 iZCJZ' +1 Do
N N N
t [ be; _ [ b J b,
qae(2)= _ 2CLZ AZJ;J [Ci*'*cbj AZJ;J _BC}|1- Azé
i J=1 Vl Cj +1 Ly B Jj=1 Vz Cj +1 s =AY +1 >
2
N N N
2BC,, S be; BC. Y bic; B2 | 1Y b;
M2 /2% +1 M /2% +1 M V22 +1
L N My JRI Vi € s j=1ViCj o
— B N/ b _ NJ b N/ b vz -
2”%[1— | (26-u)1- Y D%z[ el
AaViei+1 s B AViei+1 s AV +1)
N b Nj b. N; be. 72 ]
i = i
| 2C.[1-> = [CL+CD)[1—Z —— ] BCiZ[ e ae'
Vi [ FlVichz 1 Ly Jj=1 iZCJZ' +1 L: Jj=1 izcjz' +1),
$ob Uob N beV?
2BC,|1- —J BCj, 1_2 T BZC]’WZ e
[ j=1 ‘llzc]z +1]My j=1 ‘/iZCIZ +1 s i ‘/izclz +1 o

(D.19)

This is a frequency domain application of the indicial functions, and therefore, it must
render an identical solution to that which is obtained by the use of aerodynamic
derivatives. Introducing a harmonic input r(t) =[ay a, ae} ' =a-e' into
Eq. D.1, and using C,, and K, from Eq. D.3, then a frequency domain solution
containing the aerodynamic derivatives is given by

P, P’ BP P, P BP,
?ae( ) _ % H, H, BH +% H; H, BH, ||ac'® (D.20)

- 2 i # # # Vvl # # #
Sl BA, BA, B%A] BA. BA, B%A,

w

Egs. D.19 and D.20 must be identical, and thus, the following is obtained

I ]

AVic+1 Dy Vi 2EGD
i (D.21)

b 1 P (V)

e | Tltspo

Ve +1 s Vv, ZECD
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; H(V,
{jL] 1 H(%)
Avie; +1 Ly v 20, D22
%J: b; 1 5(VL)
AV +1 V., 2C,
Y
%J: bic; 1 AQ(VL)
J:IViZCJZ' +1 My V2 2Cy 0.23)
N (v '
[ZJ: b, ] ) LAs_(Vl)
=5 5
j:]. iCJ +1 My VL 2CM
N (V.
[ZJ: bie; J _ 1 P; (V)
52 2 52 —
AVic+1 1 i QC,’:,—CL
B " (D.24)
NJ b P, 2
[ 22 ] :1+LD ( )_
AvVieg ), ViZe, ¢,
B
N (v
[ZJ: bie; J _ 1 Hy (V;)
52 2 52 _
AVieg 1), Vi Ci+%CD
(D.25)
N (v
[ J bj ] _1 1 Hl( l)
52 2 5 _
J=1 lcj +1 Lz iCi-f-Q D
N (v
L by ] __1 A4(VL)
52 2 52 (7
! oM (D.26)
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AVie+1 i —Cy
B~ (D.27)
N
{ZJ b; ] 1 15 (Vl)
52 2 52 D _,
FlVi Cj +1 Do Vvl 7CD
B
{%J: bic; } __ 1 H, (‘/L)
VA2 +1 vV? C;
=1V; i L
e ) (D.28)
SRR R 1\
Jj=1 Aich +1 Lo ‘;;2 Ci
[% bic ] __1 4 (V‘)
VA2 +1 V: Cy
=1V; i M
e (D.29)
% b; 1 Ay (Vl)
J:Ivi2cj2' +1 Mo ‘}iz Cyu

It is seen that the indicial functions are determined by the deviation between
aerodynamic derivatives and their quasi-static counterparts, as could be expected. It
should be noted that the aerodynamic derivatives are functions of the reduced velocity

~

V., i.e. experimentally they have been determined at various set values of VL The

determination of the constants b; and c¢; for each of the indicial functions

j J
Y s (m=D,LorM
@, (8)=1- Zb-e 7, o , will therefore require a multiple task data
mn a7 n=y,zor 6

fitting type of approach. Often N; =2 will suffice.
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Lift 91, 106, 159
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load 76,111
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176
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Narrow band process 29, 146, 152, 196
Neutral axes 8

Newmark 258, 262

Non-coherent time series 267

Numeric integration 256

Orthogonal component 1
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distribution 30
factor 32, 111, 142, 157
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spectrum 40, 68
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density function 13
distribution 13, 16, 19, 26, 55, 59
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Quasi static 79, 102, 124-125, 135, 141,
159, 163-164, 177, 201, 203

Random variable 4, 13-14, 19-20
Rayleigh 14,19, 29, 55, 75
Reference
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point 58
Representative condition 53
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frequency 98-99, 100, 112, 134, 140-141,
196, 200-202
velocity 154
Resonant
part 79-80, 125, 146, 152, 159-160, 182,
185
Response
calculation 69, 73,76, 79, 84, 109-113,
122, 127, 130, 142, 151
covariance 76, 83, 130
matrix 130, 139, 142, 145-146
spectrum 111, 117, 123, 125-126,
140, 151
Return period 57
Reynolds number 108
Roll angle 224
Root coherence 42
Roughness length 55
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Safety 53, 157
Sampling frequency 58
Sears function 97
Section model 97, 281
Separation 25, 63, 86, 118, 121, 237
Selberg 205
Shape function 213
Shear centre 8, 69, 75
Short term 4, 15, 18, 21, 23, 30, 45, 110
Simulation of random process 263
Single
degree of freedom 82, 247
point statistics 59
point time series 263
point spectrum 270
Spatial
averaging 45, 134, 165
properties 63, 65
separation 63, 118, 237
Spectral
decomposition 264
density 33-37, 38-39, 43-44, 82, 89, 125,
134, 137, 139, 185, 239
moment 45
Spectrum
double-sided 37, 39
single-sided 34, 78
Stability limit 112, 196-197, 201-205
Standard deviation 14, 24, 111, 119, 123, 125,
127, 129, 141, 155, 157, 159
Static
response 109, 112
stability 196
Stationary 2,5, 15, 44, 53, 63, 91, 110, 157
Stochastic
process 2,4, 15,18
variable 30, 33, 41, 45-46
Stress resultant 8, 9, 10, 157, 182-183, 185
Strouhal number 103, 108

Structural
axis 7,91,93, 164
damping 75
displacements 2, 7, 73, 80, 90, 91, 93,
104-105, 109, 142, 158
mass 82
stiffness 112, 153
strength 9

Tangent stiffness 261
Taylor 65

Theodorsen 100, 205
Threshold crossing 27-28

INDEX

Time
domain 2,7, 15, 66,77, 85, 110-111,
157-159, 165, 210, 253
lag 20, 25,63
scale 62
step 252
Torsion 202
mode 77
moment 10, 102, 106, 157, 166, 169, 182
response 140, 150
stiffness 71
Total
load 76-77, 81
response 76, 84, 111, 158
Tower 1,44
Turbulence
component 1, 53, 59-62, 64, 66, 68
intensity 59, 123, 134
length scale 62
profile 54

Unstable behaviour 111, 195

Variance 13-14, 16-19, 33-34, 36-38, 45, 49,
111, 117-118, 130, 146, 148, 151, 165-169,
182, 185, 189-190

Velocity

pressure 1,57,91, 111

profile 54

vector 1,6,9,53,91-95, 174
Vertical element 174, 176
Virtual

displacement 214, 231

strain 214

Viscosity of air 108

Von Karman spectrum 62

Vortex shedding 2, 103-108, 111, 142-143,
146-147, 150, 152-156, 182

Weibull 14, 19, 55
Wind

climate 104

direction 108

force 1,102

load 44,91, 102

load component 176

profile 54

velocity 1,2, 15, 18, 53, 93, 100
Wind tunnel 97-98, 141, 154

Zero up-crossing 29



	Cover

	Theory of Bridge Aerodynamics, Second Edition
	ISBN-10 3642136591
	PREFACE TO 2ND EDITION
	PREFACE TO 1ST EDITION
	CONTENTS
	NOTATION

	Chapter 1
INTRODUCTION
	General considerations
	Random variables and stochastic processes
	Basic flow and structural axis definitions
	Structural design quantities

	Chapter 2
SOME BASIC STATISTICAL CONCEPTS
IN WIND ENGINEERING
	Parent probability distributions, mean value and variance
	Time domain and ensemble statistics
	Threshold crossing and peaks
	Extreme values
	Auto spectral density
	Cross-spectral density
	The connection between spectra and covariance
	Coherence function and normalized co-spectrum
	The spectral density of derivatives of processes
	Spatial averaging in structural response calculations

	Chapter 3
STOCHASTIC DESCRIPTION OF
TURBULENT WIND
	Mean wind velocity
	Single Point Statistics of Wind Turbulence
	The spatial properties of wind turbulence

	Chapter 4
BASIC THEORY OF STOCHASTIC
DYNAMIC RESPONSE
CALCULATIONS
	Modal Analysis and Dynamic Equilibrium Equations
	Single mode single component response calculations
	Single mode three component response calculations
	General multi-mode response calculations

	Chapter 5
WIND AND MOTION INDUCED LOADS
	The buffeting theory
	Aerodynamic derivatives
	Vortex shedding

	Chapter 6
WIND INDUCED STATIC AND DYNAMIC
RESPONSE CALCULATIONS
	Introduction
	The mean value of the response
	Buffeting response
	Vortex shedding

	Chapter 7
DETERMINATION OF
CROSS SECTIONAL FORCES
	Introduction
	The mean value
	The background quasi–static part
	The resonant part

	Chapter 8
MOTION INDUCED INSTABILITIES
	Introduction
	Static divergence
	Galloping
	Dynamic stability limit in torsion
	Flutter

	Chapter 9
THE BUFFETING THEORY IN A FINITE
ELEMENT FORMAT
	Introduction
	The element mechanical properties
	The wind load
	The global analysis
	The time invariant static solution
	The quasi-static solution
	Dynamic response calculations in frequency domain
	Frequency domain response calculations in modal coordinates
	Dynamic response calculations in time domain

	Appendix A
TIME DOMAIN SIMULATIONS
	Appendix B
DETERMINATION OF THE JOINT
ACCEPTANCE FUNCTION
	Appendix C
AERODYNAMIC DERIVATIVES FROM
SECTION MODEL DECAYS
	REFERENCES
	INDEX



