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Exploring Black Holes

General relativity flows from Einstein's field
equations, which relate the mass and pressure

in a region of spacetime to the “warping” of
spacetime across that region. The field equations
reveal how this warping is experienced by any
observer, whether she is moving, accelerating,
rotating, stretching, twisting, or tumbling. The field
equations are wonderfully general. But this

generality has a price: mathematical sophistication.

The field equations speak the language of tensors
or differential forms, which closes off this
fascinating subject to some people and delays the
involvement of others.

This book does not start with the field equations
but rather with the primary solutions of these
equations: the so-called metrics that describe
curved spacetime around nonspinning and
spinning centers of gravitational attraction.

The metric helps to answer every scientific
guestion about (nonquantum) features of
spacetime surrounding a black hole, every
possible question about trajectories of light and
satellites around the black hole as well as around
more familiar centers of attraction such as Earth
and Sun. The metric for a rotating black hole may
tell us about quasars, the most powerful steady
energy sources in the Universe. The black-hole
metric brings preliminary insights about the history
and structure of the Cosmos.

Using the metric requires only algebra, elementary
differential calculus, and a handful of integrals.
This modest mathematics opens the subject to the
interested person and paves the way to a deeper
study of general relativity for one who will discover
new truth about this strange and beautiful
Universe, our home.

Key idea: Spacetime tells mass how to move; mass tells spacetime how to curve.
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Can I see a black hole at all?  If I can see it, what does a black hole look like?
Does it look black? How big does a black hole look when I am at rest nearby?
Does it look different when I fall toward it? What does it feel like to fall toward
a black hole? Am I comfortable? Do I see stars overhead as I fall into a black
hole? If so, do these stars change position or color? Can I receive messages
and packages from my friends on the outside? Is it true that I cannot send
anything to my friends outside, not even a light signal? Why not? How long
do I live once I fall into a black hole?  Will I reach the center, or will something
happen to me on the way? If I reach the center, can I see the center as I
approach? Why do I die at the center—in what way does my body stop work-
ing? Is my death quick and painless? What is the last thing I see? Isall
matter crushed to a point at the center of a black hole? Where do black holes
exist: at centers of galaxies or alone in intergalactic space? = How does the orbit
of a stone around a black hole differ from the orbit of a planet around our Sun?
How fast does the stone move in a circular orbit around a black hole? Does
the stone’s speed reach the speed of light? How close to a black hole can I
move in a circular orbit? How can I use orbits around a black hole to travel
forward in time? Can I use a black hole to travel backward in time? Does
light have its usual speed near a black hole? In what sense is spacetime a
unity? Does the term relativity mean that everything is relative? What does
“curvature of spacetime” mean? How can I observe this curvature? How
does the Global Positioning System work? Is general relativity important to its
operation? Does light “get tired” as it moves away from Earth? Away from
a black hole? How can I observe this tiredness? Does light change direction
as it passes our Sun? Does its direction change a lot? Does the change in
direction depend on the color of the light? How do I observe this change in
direction? How does an astronomical object focus light from a distant star or
galaxy? What does this focused light look like?  Can light go into orbit
around a black hole? Does the mass of a stone change with its velocity? On
Earth how do I change mass into energy? Energy into mass? How doIusea
black hole to convert mass to energy? Energy to mass? Does a stone plung-
ing into a black hole reach the speed of light? Does the plunging stone move
faster than light? What happens to the mass of a black hole when it swallows
a plunging stone? How great is the acceleration of gravity near a black hole?
Can a black hole spin?  If so, what is the fastest it can spin? Does a spinning
black hole drag space around with it? What does “dragging space” mean?
How do I observe this dragging? What happens to light that moves with or
against the rotation? How can I harness the rotational energy of a spinning
black hole to power my machines? Do spinning black holes power quasars?
What's a quasar? Can I use a spinning black hole for hyperspace travel to
other parts of the Universe? Is the Universe just a very big black hole? How
does the size of the Universe change with time? What does this change in size
mean?  Will the Universe recontract to a Big Crunch?  Or will the Universe
expand forever? Do recent observations predict the final fate of the Universe?

Curiosity, like coffee, is an acquired need. Just a titillation
at the beginning, it becomes with training a raging passion.

—Nicholas S. Thompson
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CHAPTERS provide the reader with
background needed to carry out exercises and
projects.

Chapter 1 Speeding Key ideas from special
relativity that are useful in general relativity. We
meet the metric for flat spacetime.

Chapter 2 Curving The Schwarzschild metric
describes the curvature of spacetime near a non-
rotating Earth, Sun, neutrcn star, or black hole.

Chapter 3 Plunging A stone plunging radially
exhibits a constant of the motion: energy.

Chapter 4 Orbiting Orbits of stone and planet
derive from two constants of the motion: energy and
angular momentum. Predict the shape of an orbit at
a glance.

Chapter 5 Seeing What you see when you look at,
around, and outward from a black hole. Your view
as you plunge through the horizon and approach the
crunch point at the center of a black hole.

PROJECTS help the reader explore a topic, fill in
the steps, compute physical outcomes, and carry out
his or her own investigations.

Project A Global Positioning System General
relativity is crucial to its operation.

Project B Inside the Black Hole A one-way trip to
the crunch point at the center.

Project C Advance of the Perihelion of Mercury
Small changes in the orbit of Mercury showed
Einstein that his new general relativity theory was
correct.

Project D Einstein Rings Light deflected by dark
galactic objects helps us to see them.

Project E Light Slowed Near Sun Light moves
slower near Sun. How do we know?

Project F The Spinning Black Hole
dragging” near Earth or black hole.

Project G The Friedmann Universe Simplest
model of the evolving Cosmos. Is it correct?
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PREFACE

A Single Goal

This book, Exploring Black Holes, makes a quick, directed thrust through
general relativity and black holes. It includes many topics, all with a single
goal.

THE GOAL: Power to the Reader! We provide tools to answer questions
and carry out calculations about curved spacetime near Earth and black
holes. Topics are limited to those in which you can be an active participant,
starting with an elementary knowledge of calculus and special relativity.
Tools developed in general relativity then help you to pursue your own
investigations.

—FEdwin F. Taylor and John Archibald Wheeler

QUESTIONS NOT ANSWERED AND WHAT TO DO ABOUT THEM

Here are some important questions not answered in
this book.

* What is the full range of phenomena covered by
general refativity?

¢ How did general relativity begin, and who wrestled
with the ideas presented in this book?

e What about gravitational waves, pulsars, super-
novas, and the formation of stars and black holes?

* Where are the frontiers of the subject, and how far
can these frontiers be pushed?

e What are the latest results from observational satel-
lites and the latest theories about the origin of the
Universe?

To find the latest observational results, no source is
better than the World Wide Web, on which addresses
change from month to month, even from hour to
hour. Here is a website of Hubble pictures and com-
mentary: http://oposite.stsci.edu/pubinfo/Pictures.
html. For more current information, ask your
15-year-old consultant.

To help you engage some of the other questions not
answered in this book, we know of no better popular
source than the following book, which is an almost
perfect complement to Exploring Black Holes:

Black Holes and Time Warps
Einstein’s Outrageous Legacy

Kip S. Thorne

W. W. Norton, New York, 1994
ISBN 0-393-31276-3 paperback
Phone order: 1-800-233-4830

Six hundred pages and 0.9 kilogram of history, peo-
ple, theory, results, and speculation. It is hard to
imagine a more complete, engrossing, or enjoyable
survey by a single major participant. The book is thor-
oughly cross-referenced with notes, list of characters,
chronology, glossary, people index, and subject
index. We suggest that you start Thorne’s book with
the Prologue: A Voyage among the Holes, in which
the reader, in a science fiction tale, encounters black
holes and their strange properties.

One author (EFT) will attempt to provide
updates for Exploring Black Holes on the web-site
http://www.eftaylor.com/
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CHAPTER 1
Speeding

The important thing is not to stop questioning. Curiosity has its own
reason for existing. One cannot help but be in awe when he [or she]
contemplates the mysteries of eternity, of life, of the marvelous structure
of reality. It is enough if one tries merely to comprehend a little of this
mystery every day. Never lose a holy curiosity.

—Albert Einstein

1 Special Relativity
Key idea: Concepts useful in exploring the very fast help us to examine spacetime
near very massive objects.

We use relativity to explore the boundaries of Nature. Special relativity Special relativity fast objects
describes the very fast. General relativity—the Theory of Gravitation—  General relativity spacetime
describes matter and motion near massive objects: stars, galaxies, black near massive objects
holes. General relativity also describes the Universe as a whole. This chap-

ter discusses a few key concepts of special relativity useful in exploring

general relativity. The treatment here is not designed to be an introduction

to special relativity; for introductory treatments see Section 11, Readings

in Special Relativity, and detailed references to our own introductory

treatment at the end of each section.

2 Wristwatch Time
Everyone agrees on the wristwatch time between two events.

What is the root of relativity? Is there a single, simple idea that launches us  Begin relativity with
along the road to understanding? Alice's adventures in wonderland begin mgtﬁ"‘éit:h time between
when a rabbit rushes past her carrying a pocket watch. Our adventure in

relativity begins when a small stone flies past us wearing a wristwatch.

The wristwatch ticks once at #1 and once at #2 (Figure 1). Wristwatch ticks
may be one second apart—or one microsecond. Measure the distance s
and time ¢ between these ticks in a particular free-float or inertial refer-
ence frame. (The free-float frame is described in Section 8. Briefly, it is one
in which Newton's first law holds: a free particle at rest remains at rest and
one in motion continues that motion at constant speed in a straight line.)
Special relativity warns us that a different observer passing us in uniform
relative motion typically records a different value of spatial separation s
and a different value of time lapse ¢ between these two ticks. That is the
bad news. The good news is a central finding of special relativity:

Section 1 Special Relativity 1-1



Define wristwatch time.

Measure space and time
in the same units.

The metric Key to all relativity

Tick #2

Y

Tick #1

Figure 1 Straight-line uniform-speed trajectory of a stone through
space. The stone wears a wristwatch that ticks and emits a flash at
#1 and then ticks again and emits a second flash at #2. These two
ticks are a distance s apart and have a time separation t as
measured in the frame of reference for which this diagram is
drawn.

All inertial observers, whatever their state of relative motion and what-
ever values they measure for s and £, agree on the value of the time 1
between ticks as recorded on the wristwatch carried by the stone. The for-
mula is simple:

1= ot 1]
We use the Greek letter 1 (tau) for the wristwatch time between these two
watch ticks. The wristwatch time is often called the proper time or, more
formally, the timelike spacetime interval (“timelike” because the time
separation £ is greater than the space separation s). All observers agree on
the value of the wristwatch time between two events. In contrast, the
value of { and the value of s between these events will typically differ from
frame to frame. Call ¢ the frame time and s the frame distance between
this pair of events. Wristwatch time 7 can be used to describe the separa-
tion between any pair of events for which ¢ is greater than s. It tells the
observer in any frame what the time lapse will be on a wristwatch that
moves uniformly from one event to the other.

For simplicity, the units of space and time are the same, such as light-years
and years, or meters of distance and meters of light-travel time. In both
cases the speed of light c is the conversion factor between measures of
space and time. For example, the relation between seconds and meters of
light-travel time is

t(in meters) = Cle.ond [2]

Equation [1], which connects the wristwatch time between two adjacent
ticks to their space and time separations in a given frame, is called the
metric. The metric (with a minus sign between squared quantities) tells us
the separation between events in spacetime, just as the Pythagorean Theo-
rem (with a plus sign between squared quantities) tells us the distance
between points in a space described by Euclidean geometry. The metric is

CHAPTER 1 Speeding



central in both special and general relativity. In describing physical sys-
tems for which it can be derived, the metric provides the answer to every
possible question about (nonquantum) features of spacetime. And with a
simple extension it also predicts the trajectories of particles and light.

The fact that all free-float observers agree on the wristwatch time 7 earns it
the label invariant. Invariant means that all observers calculate the same
value, independent of reference frame. In relativity every invariant quan-
tity is a diamond, to be treasured.

Wristwatch time is an
INVARIANT

Velocity v is a fraction of the

How fast does the stone travel between ticks? The stone’s speed depends RN
speed of light

on the reference frame. For the frame of Figure 1, the speed (assumed to be
constant) is v = s/t. Measure distance s and time lapse ¢ in the same unit.
For example, a spaceship travels half a light-year of distance during one
year of time; its speed is then 0.5 year/year and the units cancel. As
another example, if an elementary particle moves 0.7 meter in one meter
of light-travel time its speed is 0.7. Hence the speed v has no units. In this
book the symbol v represents the speed of an object as a fraction of the
speed of light.

Fuller Explanations: Spacetime Physics, Chapter 1, Spacetime: Overview;
Chapter 3, Same Laws for All; Chapter 6, Regions of Spacetime.

SAMPLE PROBLEM 1 Wristwatch Times

PROBLEM 1A. An unpowered spaceship moving at constant
speed travels 3 light-years in 5 years, this time and distance

measured in the rest frame of our Sun. What is the time lapse
for this trip as recorded on a clock carried with the spaceship?

SOLUTION 1A. The two events that start and end the space-
ship's journey are separated in the Sun frame by s = 3 light-
years and t = 5 years. Equation [1] gives the resulting wrist-
watch time:

=Pt =5_32-25-9= l6yearsz 3]
T = 4 years

which is fess than the time {apse as measured in the Sun
frame.

PROBLEM 1B. An elementary particle is created in the target
of a particle accelerator and arrives at a detector 4 meters
away and 5 meters of light-travel time later, as measured in
the laboratory. The wristwatch of the elementary particle
records what time between creation and detection?

SOLUTION 1B. The events of creation and detection are sep-
arated in the laboratory frame by s =4 metersand t =5
meters of light-travel time. Equation [1] tells us that

P =rPos?=52_4% = 2516 = 9 meters’ "

1T = 3 meters

Again, the wristwatch time for the particle is less than the
time recorded in the laboratory frame.

3 Proper Distance
Everyone agrees on the proper distance between two events.

Two firecrackers explode 1 meter apart and at the same time, as measured in
a particular free-float frame. In this frame these explosions are
simultaneous. No stone can travel fast enough to be present at both of
these explosions without moving at an infinite velocity, which is impossi-
ble. Therefore equation [1] is useless to define a wristwatch time T between
these two events.

Section 3 Proper Distance 1-3



At approximately what constant speed v must a spaceship
travel so that the occupants age only 1 year during a trip from
Earth to the Andromeda galaxy? Andromeda lies 2 million
light-years distant from Earth.

SOLUTION

The word approximately in the statement of the problem telis
us that we can make some assumptions We assume that a
single free-float frame can stretch all the way from Sun to
Andromeda, so special relativity applies We also predict that
the speed v of the spaceship measured in the Sun frame is
very close to unity, the speed of light That allows us to set

SAMPLE PROBLEM 2 Speeding to Andromeda

Now, we assumed that v is very close to the speed of light It
follows that the time t for the trip in the Sun frame Is very
close to the time that light takes to make the trip 2 million
years Substitute this value and also demand that the wrist-
watch time on the spaceship {the aging of the occupants
during their trip) be 1= 1 year The result 1s

2 2
1 1 year

l-v=—s = —

20 2x4x10" year2 (7]

-12
% =125x10™"?

Equation [7] expresses the result in sensible scientific nota-

2 2 2 2 32
T { -5 =1 1——2

I

2

I -

l-v=

~

21!

(1 + v) = 2 in the last of the following steps
12(1 -v 2)
21 +v)(1 -v) =221 - v)

Equate the first and last expressions to obtain

tion However, your friends may be more impressed if you
report the speed as a fraction of the speed of light
v=0999 999 999 999 875 This result justifies the assump-

5] tions we made about the value of v and the time for the trip
as measured in the Sun frame Additional question What
distance does the spaceship rider measure between Earth and
Andromeda?

6]

Use simultaneous explosions
to measure length of a rod

Proper distance is an
INVARIANT

1-4

Simultaneous explosions are thus useless for measuring time. But they are
perfect for measuring length. Question: How do you measure the length of
arod, whether it is moving or at rest in your frame? Answer: Set off two
firecrackers at the two ends and at the same time (t = 0) in your frame. Then
define the rod’s length in your frame as the distance s between this pair of
explosions.

Special relativity warns us that a different observer passing us in uniform
relative motion typically will not agree that the two firecrackers exploded
at the same time. That is the bad news (and the idea most difficult to
understand in all of special relativity). But there is good news: All inertial
observers, whatever their state of relative motion, can calculate the dis-
tance ¢ between explosions as recorded in the frame in which they do
occur simultaneously. The new metric is a variation of the old metric [1]:

6° =5 -t [8]

The Greek letter ¢ (sigma) labels what we call the proper distance
between such events or, more formally, the spacelike spacetime interval
(“spacelike” because the space separation s is greater than the time separa-
tion t). All free-float observers agree on the value of the proper distance—
the proper distance is an invariant. In contrast, the value of f and the value
of s between these events typically differ, respectively, as measured in dif-
ferent frames. Proper distance ¢ can be used to describe the separation

CHAPTER 1 Speeding



between any pair of events for which s is greater than ¢. It tells the observer
in any frame what the distance o is between the events as measured in a
frame in which they occur at the same time.

We attach special significance to the length of a rod measured in the frame
in which it is at rest. Let a firecracker explode at each end of a rod at the
same time in its rest frame. We call the distance between these explosions
the proper length of the rod. Any other inertial observer, whatever her
state of relative motion, can calculate the proper length of the rod from
equation [8] using the time ¢t and distance s that she measures between
these particular explosions in her own reference frame.

As in equation [1], the units of space and time in equation [8] are the same,
such as light-years and years—or meters of distance and meters of light-
travel time.

The name spacetime interval is the collective name for the timelike space-
time interval (equation[1]) and the spacelike spacetime interval (equation

[8D.

Fuller Explanations: What happens to equations [1] and [8] when s and ¢
have the same magnitude? Find the answer in Spacetime Physics, Chapter 6,
Regions of Spacetime.

4 The Principle of Extremal Aging

The Twin Paradox leads to a definition of natural motion.

To get ready for curved spacetime (whatever that may mean), look further
at the motion of a free particle in flat spacetime, the arena of the free-float
frame (Section 8) in which special relativity correctly describes motion.

How does a free particle move in flat spacetime? We say: “What a ridicu-
lous question! Everyone knows that a free particle moves with constant
speed in a straight line—at least as observed in a free-float frame.” Ah yes,
but why does a free particle move straight with constant speed? What lies
behind this motion? Our answer for flat spacetime will be a trial run for
the description of motion in curved spacetime, the arena of general
relativity.

A deep description of motion arises from the famous Twin Paradox.
Recall that one identical twin relaxes on Earth while her twin sister franti-
cally travels to a distant star and returns. When the two meet again, the
stay-at-home twin has aged more than her traveling sister. (This outcome
can be predicted by extending Sample Problems 1 and 2 to include return
of the traveler to the point of origin.) Upon being reunited, the “identical
twins” are no longer identical. Very strange! But (almost) no one who has
studied relativity doubts the difference in age, and experiments with fast-
moving particles verify it.

Which twin has the motion we can call natural? Isaac Newton has a defini-
tion of natural motion. He would say, “A twin at rest tends to remain at

Section 4 The Principle of Extremal Aging

Twin Paradox predicts the
motion of a free particle

Being at rest is one natural

motion
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SAMPLE PROBLEM 3 How Slow Is “Speeding”?

A. Answer “yes” or “no” to questions (a) through (e)

Is the stay-at home twin older when they get together
again if the traveling twin

(a) streaks to the Andromeda galaxy (2 million light-years
distant) and back?

(b) soars to Alpha Centauri (4 light-years distant) and
back?

(©) flies to the planet Pluto and back?
(d) hurries to Earth's Moon and back?
(e) strolls next door to the neighbor's house and back?

B. In case (e) of part A, what is the approximate difference in
aging between the twins if the traveling twin strolls at
1 meter per second and the next door neighbor's house is
100 meters away?

SOLUTION

A. In principle, one should reply “yes“—the stay-at-home
twin will be older—for all cases in part A Part B examines
the actual value of the aging difference for small relative
velocity

B. Solve equation [1] for s2 and apply it to the outward trip
from the twins’ house to the neighbor's house. The word
approximately in the statement of the problem gives us
permission to make assumptions.

Usually we do not notice results of the Twin Paradox in our
everyday lives, so it seems reasonable to assume that the
frame time t is very nearly the same as the wristwatch time ¢
for the stroll next door This allows us to set (t + T) = 2t in the
following steps We also set t = s/v in one of the steps.

el od = gr)0-1)

2 s [9]
s =21(t-1) = 25(1-1)

Equate the first and the last of the expressions in the last line
of [9] and multiply through by v/(2s) to obtain

x4
1—137 [10]

We need to express the velocity v as a fraction of the speed of
light. A speed of 1 meter per second is equal to

- 1 meter/second _ 1 meter/second

[

3Ix 108 meter/second [11]
33x107

Substitute this value of » into equation [10] to yield the time
difference for one leg of the round trip

_ 100 meters x3.3x 10”°
2

_33x107
=T 2

-7

(12]

meters of light-travel time

The round trip difference will be twice this value, or
3.3 x 107 meters of light-travel time. Divide the result by the
speed of light to obtain the time difference in seconds.

33x 107 meter
3 x 10° meter/second [13]

= 11x107" second

(time difference)
for round tnip

(This result justifies our assumption that the two times tand T
are very nearly equal.) So after her stroll next door and back,
the traveling twin will be approximately 10715 seconds
younger than her stay-at-home sister. To measure this tiny
time difference exceeds the sensitivity of even the most accu-
rate atomic clock. That is why we do not notice relativistic
effects in our everyday lives! Nevertheless, Nature witnesses
the difference by selecting the stay at home twin as the one
whose motion (or whose lack of motion in this frame) is
natural.

rest.” So it is the stay-at-home twin who moves in the natural way. In con-
trast, the out-and-back twin suffers the forces required to change her state
of motion—from outgoing motion to incoming motion—so that the two
sisters can meet again in person. The motion of the traveling twin is
forced, not natural.

Moving uniformly is another

Viewed from a second relatively moving free-float frame, the stay-at-home
natural motion.

twin moves with constant speed in a straight line. Hers is also natural
motion. Newton would say, “A twin in motion tends to continue this
motion at constant speed in a straight line.” So the motion of the stay-on-
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Earth twin is also natural from the viewpoint of a second frame in uniform
relative motion—or from any frame moving uniformly with respect to the
original frame. In any such frame, the time lapse on the wristwatch of the
stay-at-home twin can be calculated from the metric (equation [1]).

The lesson of the Twin Paradox is that the natural motion of a free object Natural motion in general
between two events in flat spacetime is the one for which the wristwatch ~ Extremal wristwatch time
worn by the object has a maximum time reading between those two

events. Purists insist that we say not maximum reading but rather extremal

reading: either maximum or minimum. This book contains only examples

of maximum wristwatch time for natural motion. Still, let’s try to keep the

purists happy! Replace the two words maximum and minimum with the

single word extremal. The result is the Principle of Extremal Aging.

Principle of Extremal Aging: The path a free object takes between two events
in spacetime is the path for which the time lapse between these events, recorded
on the object’s wristwatch, is an extremum.

It turns out that the Principle of Extremal Aging describes motion even Principle of Extremal Aging
when spacetime is not flat. The Principle of Extremal Aging accompanies ::gks for general relativity
us into curved spacetime, into the realm of general relativity. But for now '

we stay in flat spacetime and use the Principle of Extremal Aging to derive

relativistic expressions for energy and momentum.

5 Energy in Special Relativity
The Principle of Extremal Aging tells us the energy of a free particle.

Combining the metric (Section 2) with the Principle of Extremal Aging Derive energy from the metric
(Section 4) leads to the relativistic expression for energy in flat space- g}“?nthe Principle of Extremal
time—the formula for energy used in special relativity. Here is the plan in 919

outline: A free stone following its natural path carries a wristwatch that

emits three flashes. We consider all three flashes to be fixed in space and

the emission times for the first and last flashes also to be fixed. We then

adjust the time of the middle flash so that the wristwatch time from the first

flash to the last flash is an extremum. The outcome is the expression for a

quantity that is the same along every segment of the path—this quantity is

conserved. We identify the conserved quantity as the energy. Now fill in

some details.

Think of a free stone flying along a straight line in space as observedinan  Three flashes” When will the
inertial frame (Figures 2 and 3). The stone emits three flashes #1, #2, and middle flash occur?
#3 bracketing two adjacent segments of its trajectory, segments labeled A

and B in the figures. These two segments need not be the same length. Fix

the positions of all three flash emissions in space, fix also the times for flash

emissions #1 and #3, then ask: At what time ¢ will the free stone pass loca-

tion #2 and emit the second flash? Find this intermediate time ¢ by

demanding that the total wristwatch time from #1 to #3 be an extremum.

In other words, use the Principle of Extremal Aging to find the time for the

middle flash. The result leads to a conserved quantity, the energy of the

stone.

Section S Energy in Special Relativity 1-7
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Figure 2 Three alternative cases of a stone moving along a straight line in space
as it emits three flashes, #1, #2, and #3 The space locations of emissions are the
same in all three cases, as are the times of first and last emissions #1 and #3 But
emission time for the middle flash #2 is different for the three cases We ask At
what time will a free stone following a natural path pass the intermediate point
and emit flash #2? We answer this question by demanding that the total
wristwatch time 1 from first to last flash emissions be an extremum From this
requirement comes an expression for the energy of the stone as a constant of the
motion

Now for the full step-by-step derivation.

1. Let t be the frame time between flash #1 and flash #2 and let s be the
frame distance between these two flashes. Then the metric [1] tells us
that the wristwatch time 7, along segment A is

= (2-sh [14]

To prepare for the derivative that leads to extremal aging, differentiate
this expression with respect to the intermediate time t:

Mgt _ 1
===
di (tz 3 sz) Ta
2. Next, let T be the fixed time between flashes #1 and #3 and S be the
fixed distance between them. Then the frame time between flash #2 and
flash #3 is (T — t) and the frame distance between them is (S —s). There-
fore the wristwatch time tg along segment B is

(15]

1-8 CHAPTER 1 Speeding



Time

B Wristwatch time along

By— segment B =1p

5 |
1

Wristwatch time along
segment A = TaA

A —

#1
(0,0) Space

>

Figure 3 Three alternative cases of a stone moving along a straight line in space as it emits
three flashes, #1, #2, and #3 These are the same three cases shown in Figure 2, but here we
plot the stone’s path in space and time Such a spacetime plot is calied a worldline. On each
of three alternative worldlines, flash emissions #1 and #3 are fixed in space and time Flash
emission #2 is fixed in space (horizontal direction in figure) but its time is varied (up and down in
the figure) to find an extremum of the total wristwatch time 1 = 15 + tg from #1 to #3 The
result is an expression for a quantity that is a constant of the motion the energy of the stone

1/2
= [(T-02=(S-9%" [16]

Again, to prepare for the derivative that leads to extremal aging, differ-
entiate this expression with respect to the intermediate time ¢:

4 _ ~(T-1 - _I-t [17]

(T-n’-(s-5°17° ™

3. The total wristwatch time 7 from event #1 to event #3 is the sum of the
wristwatch time T4 between events #1 and #2 plus the wristwatch time
1g between events #2 and #3:

T = T, +Tg [18]

4. Now ask: When—at what frame time {—will the stone, following its Use Principle of Extremal
natural path, pass the intermediate point and emit the second flash #2? :\?&Z?;%;d the tme for the
Answer with the Principle of Extremal Aging: Time t will be such that
the aging (% in equation [18)) is an extremum. To find this extremum set
the derivative of T with respect to ¢t equal to zero. Take the derivative of
both sides of [18] and substitute from equations [15] and [17]:

dt at _
d_’tz_.._:A..p_B:L_T—t:O [19]
dt dr dt T g
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5. The last equality in equation [19] leads to the equation

t _T-t [20]
Ta !

6. In expression [20] the frame time ¢ is the time for the particle to traverse
segment A. Call this time 5. The time (T - #) is the frame time for the
particle to traverse segment B. Call this time {3 Then equation [20] can
be rewritten in the simple form

A lp

N [21]
A

7. The locations of segments A and B were chosen arbitrarily along the
straight path in space of the particle moving in a region of flat space-
time. Equation [21] holds for all pairs of adjacent segments placed any-
where along the path. We did not specify where segment A was to begin.
Nothing stops us from beginning the analysis with the second segment
B and adding to it a third segment C with which to compare it (which
may have a different length than either of the first two segments). Then
equation [21] applies to the second and third segments. But if the value
of the expression is the same for the first and second segments and also
the same for the second and third segments, then it must be the same
for the first and third segments. Continuing in this way, envision a
whole series of adjacent segments, labeled A, B, C, D, . . ., for each of
which equation [21] applies, leading to the set of equations

t t t t
A_B_C_D_ [22]

TA B ¢ Tp

In brief, here is a quantity that is a constant of the motion for the free parti-
cle—a quantity that has the same value along any segment of the natural
path of a free particle moving in flat spacetime. Then equation [22] tells us
that

% = a constant of the motion [23]

What is this quantity? It is related to the relativistic expression for the total
energy of the particle. If we have already studied special relativity, we
know that

t t _ t 1

T [tz—sz]l/z = t[l _G)z]l/z = a _02)1/2 =

3ty

[24]

where m is the mass of the particle. Equation [24] gives the energy per unit
mass of a particle that moves with constant speed.

along a straight path in space as observed in a free-float frame So as this motion pro-

& OBJECTION: Baloney! Everyone knows that a free particle moves with constant speed
ceeds, every possible expression that depends only on v = s/t is also a constant of the
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motion, for example the expression v', which is certainly not the correct expression
for energy! Your derivation proves nothing!

RESPONSE You are almost right Any function of velocity v = s/t is indeed constant for
the special case of a free particle in flat spacetime And if v is constant, so is

t/1, as witnessed by Equation [24] But notice the priorities used in the derivation The
Principle of Extremal Aging has highest priority, the expression for energy comes out
of this principle Of all the quantities that remain constant because v is constant, the
Principle of Extremal Aging picks out t/t = E/m as primary. (The following section
shows that a similar analysis picks out the relativistic expression for momentum as a
constant of the motion ) Chapter 3 contains a new and more general expression for
energy in curved spacetime In that case the velocity is not constant—yet that more
general expression for energy is correct and a constant of the motion nevertheless
Our derivation of the expression for £/m in flat spacetime is thus a trial run for the
derivation of the energy of a particle in the curved spacetime around a center of grav-
itational attraction

A

If the particle changes speed, then it changes energy. In that case it makes
sense to talk about instantaneous speed and to use calculus notation. Let the
pair of flash emissions in Figure 1 be separated by the incremental frame
coordinates dt, ds, and incremental wristwatch time dt. The equation for
E/m then becomes

E _ dt

= T [25]
Ordinarily we use the ratio E/m in equations, instead of E alone. Why?
Because it emphasizes two important principles: (1) Only spacetime rela-
tions between events appear on one side of equations such as [24] and
[25], reminding us that it is spacetime geometry that leads to these expres-
sions, not some weird property of matter. (2) The ratio E/m has no units.
Therefore, whoever uses these equations has total freedom in choosing the
unit of E and m, as long as it is the same unit. The same unit in the numera-
tor and denominator of [25] may be kilograms or the mass of the proton or
million electron-volts. If you insist on using conventional units, such as
joules for energy E and kilograms for mass m, then a conversion factor ¢
intrudes into our simple equation:

2

Ejoules — é [26]
2 dt
Myo€
Now view the particle from a reference frame in which the particle is at
rest. In this rest frame there is zero distance s between sequential flash
emissions. Equation [1] says that for s = 0 the frame time  and wristwatch
time 7 have exactly the same value. For a particle at rest, then, equation

[26] reduces to the most famous equation in all of physics:

E

Joules rest

2
= mkgC [27]

Note that equation [27] describes the rest energy of a particle. For a particle
in motion, the energy is given by equation [26].

Section 5 Energy in Special Relativity
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In equation [27], ¢ has the defined value 2.99792458 x 108 meters/second.
An equation of the same form is correct if E is measured in ergs, m in
grams, and ¢ in centimeters/second.

Fuller Explanations: Energy in flat spacetime: Spacetime Physics,
Chapter 7, Momenergy.

6 Momentum in Special Relativity
The metric plus the Principle of Extremal Aging give us an expression for momentum

The relativistic expression for momentum is derived by a procedure anal-
ogous to the one used to derive the relativistic expression for energy. The
figures look similar to Figures 2 and 3, but in this case the time ¢ for the
intermediate flash emission is fixed, while the position s for this event is var-
ied right and left to yield an extremum for the total wristwatch time from
the first flash to the third flash. (You carry out the derivation of momen-
tum in the exercises at the end of this chapter.) The result is a second
constant of the motion for a free particle:

_ s _ s/t _ v _p
= 3 = [28]

[t2—s2]1/2 [1—(s/t)2]1/2 a —02)1/

Al

Equation [28] gives the momentum per unit mass for a particle moving
with constant speed. If the particle changes speed, then once again we use
calculus notation:

ds

pr [29]

P _
m

Equation [29] has the same form as in Newton’s nonrelativistic mechanics,
except here the incremental wristwatch time dt replaces the Newtonian
lapse dt of “universal time.”

Fuller Explanations: Momentum in flat spacetime: Spacetime Physics,
Chapter 7, Momenergy.

7 Mass in Relativity
Everyone agrees on the value of the mass m of the stone.

An important relation among mass, energy, and momentum follows from
the metric and our new expressions for energy and momentum. Suppose a
moving stone emits two flashes very close together in space ds and in time
dt. Then equation [1] gives the increase of wristwatch time dx:

(@v)’ = (dn* - (ds)’ [30]

Divide through by d1? and multiply through by m? to obtain

T - () (]
mo= dt dt) U dt dt
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or, substituting expressions [25] and [29] for energy and momentum,
m® = E*_ p* [32]

In equation [32], mass, energy, and momentum are all expressed in the
same units, such as kilograms or electron-volts. In conventional units, the
equation has a more complicated form:

2,2 2 2 2
(mc”) = Econv—pconvc [33]

where the subscript “conv” means “conventional units.”

Equations [32] and [33] are central expressions in special relativity. The
particle energy E will typically have a different value when measured in
different frames that are in uniform relative motion. Also the particle
momentum p will typically have a different value when measured in dif-
ferent frames that are in uniform relative motion. However, the values of
these two quantities in any given free-float frame can be used to determine
the value of the particle mass m, which is independent of the reference
frame. Particle mass m is an invariant, independent of reference frame, just
as the time dt recorded on the wristwatch between ticks in equation [1] is
an invariant, independent of the reference frame.

The mass m of key, car, or coffee cup defined in equation [32] is the one we
use throughout our study of both special and general relativity. Such a test
particle responds to the structure of spacetime in its vicinity but has small
enough mass not to affect this spacetime structure. (In contrast, the large
mass M of a planet, star, or black hole does affect spacetime in its vicinity.)
Wherever we are, we can always climb onto a local free-float frame (Sec-
tion 8) and apply special-relativity expression [32] or some other standard
method to measure the mass m of our test particle.

Fuller Explanations: Mass and momentum-energy in flat spacetime:
Spacetime Physics, Chapter 7, Momenergy.

Energy (also momentum)
may be different for
different observers

but mass is an invariant,
the same for every observer

No Mass Change with Velocity!

in the individual atoms, nor in the binding energy between

The fact that no object moves faster than the speed of light is atoms Qur viewpoint in this book is that mass is an invariant,
sometimes “explained” by saying that “the mass of a particle the same for all free-float observers when they use equations
increases with speed ” This interpretation can be applied [32] or [33] to reckon the mass In relativity, invariants are
consistently, but what could it mean in practice? Someone diamonds Do not throw away diamonds! For more on this
riding along with a faster-moving stone detects no change in subject, see Spacetime Physics, Dialog: Use and Abuse of
the number of atoms in the stone, nor any change whatever the Concept of Mass, pages 246-251

Section 7 Mass in Relativity
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8 The Free-Float Frame Is Local

In practice there are limits on the space and time extent of the free-float (inertial)
frame

The free-float (inertial) frame is the arena in which special relativity
describes Nature. The power of special relativity applies strictly only in a
frame—or in each one of a collection of overlapping frames in uniform rel-
ative motion—in which a free particle released from rest stays at rest and a
particle launched with a given velocity maintains the magnitude and
direction of that velocity.

If it were possible to embrace the Universe with a single free-float (inertial)
frame, then special relativity would describe that Universe, and general
relativity would not be needed. But general relativity is needed precisely
because typically inertial frames are inertial in only a limited region of
space and time. Inertial frames are local. The free-float frame can be real-
ized, for example, inside various “containers,” such as (1) an unpowered
spaceship in orbit around Earth or Sun or (2) an elevator whose cables
have been cut or (3) an unpowered spaceship in interstellar space. Riding
in these free-float frames for a short time, we find no evidence of gravity.

Well, almost no evidence. The enclosure in which we ride cannot be too
large or fall for too long a time without some unavoidable changes in rela-
tive motion being detected between particles in the enclosure. Why?
Because widely separated test particles within a large enclosed space are
differently affected by the nonuniform gravitational field of Earth—to use
the Newtonian way of speaking. For example, two particles released side
by side are both attracted toward the center of Earth, so they move closer
together as measured inside a falling long narrow horizontal railway
coach (Figure 4, left). Moving toward one another has nothing to do with
gravitational attraction between these test particles, which is entirely neg-
ligible.

As another example, think of two test particles released far apart vertically
but one directly above the another in along narrow vertical falling railway
coach (Figure 4, right). For vertical separation, their gravitational accelera-
tions toward Earth are in the same direction, according to the Newtonian
analysis. However, the particle nearer Earth is more strongly attracted to
Earth and gradually leaves the other behind: the two particles move far-

Elevator Safety
Could the cables snap and send an elevator plummeting down the shaft?

This is every rider's worst fear, but experts say there's no need to worry You're being sup-
ported by four to eight cables, each of which could support the weight of the car by itself In
fact, the only time an elevator has been known to go Into freetall—with all of its cables
cut—was during World War H, when an American bomber accidentally hit the Empire State
Building [in New York City] The plane's crew died, but the lone elevator passenger survived

—G@Good Housekeeping Magazine, February 1998, page 142
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Figure 4 Einstein’s ofd-fashioned radway coach in free fall. Left: hosizontal orientation. Right: vertical
orjentation

ther apart as observed inside the falling coach. Conclusion: The large
enclosure is not a free-float frame.

A rider in either railway car shown in Figure 4 sees the pair of test parti-
cles accelerate toward one another or away from one another. These rela-
tive motions earn the name tidal accelerations, because they arise from
the same kind of nonuniform gravitational field—this time the field of
Moon—that account for ocean tides on Earth.

Now, we want the laws of motion to look simpie in our free-float frame.
Therefore we want to eliminate all relative accelerations produced by
external causes. “Eliminate” means to reduce them below the limjt of
detection so that they do not affect measurements of, say, the velocity of a
particle in an experiment. We eliminate the problem by choosing a room
that is sufficiently small. Smaller room? Smaller relative motions of objects
at different points in the room!

Let someone have instruments for detection of relative motion with any
given degree of sensitivity. No matter how fine that sensitivity, the room
can always be made so small that these perturbing relative motions are too
small to be detectable in the time required for the experiment. Or, instead
of making the room smaller, shorten the time duration of the experiment
to make the perturbing motions undetectable. For example, very fast par-
ticles emitted by a high-energy accelerator on Earth traverse the few-meter
span of a typical experiment in so short a time that their deflection in

Section 8 The Free-Float Frame Is Local
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Earth's gravitational field is negligible. The result: The frame of the labora-
tory at rest on Earth's surface is effectively free-float for purposes of ana-
lyzing these experiments.

Both space and time enter into the specification of the limiting dimensions
of a free-float frame. Therefore—for a given sensitivity of the measuring
devices—a reference frame is free-float only within a limited region of
spacetime.

An observer tests for a free-float frame by releasing particles from rest
throughout the space and noting whether they remain effectively at rest
during the time set aside for our particular experiment. Wonder of won-
ders! Testing for free float can be carried out entirely within the frame
itself. The observer need not look out of the room or refer to any measure-
ments made external to the room. A free-float frame is “local” in the sense
that it is limited in space and time—and also “local” in the sense that its
free-float character can be determined from within, locally.

One way to get rid of “gravitational force” is to jump from a high place
toward a trampoline below. That is to say, a locally free-float frame is
always available to us. But no contortion or gyration whatsoever will
eliminate the relative accelerations of test particles that indicate the limits
of the free-float frame. These relative accelerations are the central indica-
tors of the curvature of spacetime. They stand as warning signs that we are
reaching the limits of special relativity.

How can we analyze a pair of events widely separated near Earth, near
Sun, or near a neutron star, events too far apart to be enclosed in a single
free-float frame? For example, how do we describe the motion of an aster-
oid whose orbit completely encircles Sun, with an orbital period of many
years? The asteroid passes through many free-float frames but cannot be
tracked using a single free-float frame. Special relativity has reached its
limit! To describe accurately motion that oversteps a single free-float
frame, we must turn to general relativity—the Theory of Gravitation—as
we do in Chapter 2.

Fuller explanations: Spacetime Physics, Chapter 2, Floating Free, and
Chapter 9, Gravity: Curved Spacetime in Action.

9 The Observer

Ten thousand local witnesses

How, in principle, do we record events in space and time? Nature puts an
unbreakable speed limit on signals—the speed of light. This speed limit
causes problems with the recording of widely separated events, because
we do not see a remote event until long after it has occurred. To avoid the
light-velocity delay, adopt the strategy of detecting each event using
equipment located right next to that event. Spread event-detecting equip-
ment over space as follows. Think of assembling metersticks and clocks
into a cubical latticework similar to a playground jungle gym (Figure 5).
At every intersection of the latticework fix a clock. These clocks are identi-
cal and measure time in meters of light-travel time.
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Figure 5 Latticework of metersticks and docks

These clocks should read the same time. That is, the clocks need to be syn-  Synchronize docks in the
chronized in this frame. There are many valid ways to synchronize clocks, ~ 'attice

Here is one: Pick one clock as the standard, the reference clock. At mid-

night the reference clock sends out a synchronizing flash of light in all

directions. Prior to emission of the synchronizing flash, every other clock

in the lattice has been stopped and set to a time (in meters) later than mid-

night equal to the straight-line distance (in meters) of that clock from the

reference clock. Each clock is then started when it receives the reference

flash. The clocks in the latticework are then said to be synchronized.

Use the latticework of synchronized clocks to determine the location and Measuring the space and
time at which any given event occurs. The spatial position of the event is time location of an event
taken to be the location of the clock nearest the event and the time of the

event is the time recorded on that clock. The location of this nearest clock

is measured along three directions, northward, eastward, and upward

from the reference clock. The spacetime location of an event then consists

of four numbers, three numbers that specify the space position of the clock

nearest the event and one number that specifies the time the event ococurs

as recorded by that clock.
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Specify the location of an event as the location of the clock nearest to it.
With a latticework made of metersticks, the location of the event will be
uncertain to some substantial fraction of a meter. For events that must be
located with greater accuracy, a lattice spacing of 1 centimeter or 1 milli-
meter would be more appropriate. To track an Earth satellite, lattice spac-
ing of 100 meters might be adequate.

The lattice clocks, when installed by a foresighted experimenter, will be
recording clocks. Each clock is able to detect the occurrence of an event
(collision, passage of light flash or particle). Each reads into its memory
the nature of the event, the time of the event, and the location of the clock.
The memory of all clocks can then be read out and analyzed later at some
command center.

In relativity we often speak about the observer. Where is this observer? At
one place or all over the place? Answer: The word observer is a shorthand
way of speaking about the whole collection of recording clocks associated
with one free-float frame. This is the sophisticated sense in which we here-
after use the phrase “the observer measures such-and such.”

What happens to our latticework of clocks in the vicinity of Earth or Sun
or neutron star or black hole? Suppose one of these centers of attraction is
isolated in space and we stay far away from it. Then there is no problem in
setting up an extensive latticework that starts far from the center and
stretches even farther away in all directions. Such an extensive far-away
lattice can represent a single valid free-float frame. And in studying gen-
eral relativity we often speak of a far-away observer.

But there are problems in extending the far-away latticework of clocks
down toward the surface of any of these structures. A free particle
released from rest near that center does not remain at rest with respect to
the far-away lattice. A single free-float frame no longer provides a simple
description of motion.

To describe motion near a center of gravitational attraction we must give
up the idea of a single global free-float frame, one that covers all space and
time around Earth or black hole. Replace it with many local frames, each
of which provides only a small part of the global description. A world
atlas binds together many overlapping maps of Earth. Individual maps in
the atlas can depict portions of Earth’s surface small enough to be essen-
tially flat. Taken together, the collection of maps bound together in the
world atlas correctly describes the entire spherical surface of Earth, a task
impossible using a single large flat map for the entire Earth. For spacetime
near nonrotating Earth or black hole, the task of binding together individ-
ual localized free-float frames is carried out by the Schwarzschild metric,
introduced in Chapter 2. The Schwarzschild metric frees us from limita-
tion to a single free-float frame and introduces us to curved spacetime.

Fuller Explanations: Spacetime Physics, Chapter 2, Section 2.7, Observer.
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10 Summary

The wristwatch time T between two events, the time recorded on a watch

that moves uniformly from one event to the other, is related to the separa-
tion s between the events and the time difference t between them as mea-

sured in a given free-float (inertial) frame. For space and time measured in
the same units, this relation is given by the equation

12 e [1]

The wristwatch time T is an invariant, the same calculated by all observers,
even though ¢ and s may have different values, respectively, as measured
in different reference frames. Equation [1] is an example of the metric.

Of all possible paths between an initial event and a final event, a free parti-
cle takes the path that makes the wristwatch time along the path an extre-
mum. This is called the Principle of Extremal Aging.

From the metric and the Principle of Extremal Aging one can derive two
quantities that are constants of the motion for a free particle. One constant
of the motion is the energy per unit mass E/m:

E _di

= at 125]

The second constant of the motion is the momentum per unit mass p/m:

A j—fc [29]

The spacetime arena for special relativity is the free-float (inertial) frame, one
in which a free test particle at rest remains at rest and a free test particle in
motion continues that motion unchanged. We call a region of spacetime
flat if a free-float frame can be set up in it.

In principle one can set up a latticework of synchronized recording clocks
in a free-float frame. The position and time of any event is then taken to be
the location of the nearest lattice clock and the time of the event recorded
on that clock. The observer is the collection of all such recording clocks in a
given reference frame.

Most regions of spacetime are flat over only a limited range of space and
time. Evidence that a frame is not inertial (so that its region of spacetime is
not flat) is the relative acceleration (“tidal acceleration”) of a pair of free
test particles with respect to one another. If tidal accelerations affect an
experiment in a region of space and time, then we say that spacetime
region is curved, and special relativity cannot validly be used to describe
this experiment. In that case we must use general relativity, the theory of
gravitation, which correctly describes the relations among events spread
over regions of space and time too large for special relativity.
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Note on terminology: In this book we use the convention recommended by
the International Astrophysical Union that names for objects in the solar
system be capitalized and used without the article. For example, we say
“orbits around Sun” or “the mass of Moon.” This provides a consistent
convention; one would not say “orbits around the Mars.” We also capital-
ize the words Nature and Universe out of respect for our cosmic home.

11 Readings in Special Relativity

Spacetime Physics, Introduction to Special Relativity, Second Edition, Edwin E
Taylor and John Archibald Wheeler, W. H. Freeman and Co., New
York, 1992, ISBN 0-7167-2327-1. Our own book, to which reference is
made at the end of several sections in Chapter 1 and elsewhere in the
present book.

Special Relativity, A. P. French, W. W. Norton & Co., New York, 1968,
Library of Congress 68-12180. An introduction carefully based on
experiment and observation.

A Traveler’s Guide to Spacetime, An Introduction to the Special Theory of Rela-
tivity, Thomas A. Moore, McGraw-Hill, Inc., News York, 1995, ISBN 0-
07-043027-6. A concise treatment by a master teacher.

Flat and Curved Space-Times by George E R. Ellis and Ruth M. Williams,
Clarendon Press, Oxford, 1988, ISBN 0-19-851169-8. A leisurely, infor-
mative, and highly visual trip through special relativity is followed by
treatment of curved spacetime. See more on this book in the section
Readings in General Relativity at the end of the present book.

Space and Time in Special Relativity, N. David Mermin, Waveland Press, Inc.,
Prospect Heights, IL, 1989, ISBN 0-8813-420-0. Rigorous and mildly
eccentric.

Understanding Relativity: A Simplified Approach to Einstein’s Theories, Leo
Sartori, University of California Press, Berkeley, 1996, ISBN 0-520-
20029-2. Thoughtful and complete.

Relativity, The Special and General Theory, Albert Einstein, Crown Publish-
ers, New York, 1961, ISBN 0-517-025302. A popular treatment by the
Old Master himself. Published originally in 1916. Enjoyable for the
depth of physics, the humane viewpoint, and the charm of old-fash-
ioned trains racing past embankments.

Relativity Visualized, Lewis Carroll Epstein, Insight Press, San Francisco,
1997, ISBN 0-953218-05-X. An enjoyable and eccentric presentation of
special and general relativity, done primarily with figures and graph-
ics. Available in some bookstores, or send $19.95 plus $2 handling to
Insight Press, 614 Vermont Street, San Francisco, CA 94107-2636, USA.
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Of historical interest

Relativity and Its Roots, Banesh Hoffmann, Scientific American Books, New
York, 1983, ISBN 0-7167-1510-4. History of the subject by one of Ein-
stein’s collaborators.

The Principle of Relativity, A. Einstein, H. A. Lorentz, H. Weyl, H.
Minkowski, Dover Publications, Inc., New York, 1952, Standard Book
Number 486-60081-5. Translations of many of the original papers. See
the following reference for a more recent translation of Einstein’s spe-
cial relativity paper.

Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early Inter-
pretation (1905-1911), Arthur I. Miller, Addison-Wesley Publishing Co.,
Inc., 1981, ISBN 0-201-04680-6. Careful historical analysis of Einstein’s
original special relativity paper “On the Electrodynamics of Moving
Bodies,” the setting in which it was produced, and early consequences
for the scientific community. Includes a modern, corrected translation
of the paper itself.

12 Reference
Initial quote: Personal memoir of William Miller, an editor of Life maga-

zine, quoted in the issue of May 2, 1955. See The Quotable Einstein, edited
by Alice Calaprice, Princeton University Press, 1996, page 199.
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Chapter 1 Exercises

1. Spatial Separation |

Two firecrackers explode at the same place in the lab-
oratory and are separated by a time of 3 years as
measured on a laboratory clock.

A. What is the spatial distance between these two
events in a rocket in which the events are sepa-

rated in time by 5 years as measured on rocket
clocks?

B. What is the relative speed of the rocket and lab-
oratory frames?

2. Spatial Separation Il

Two firecrackers explode in a laboratory with a time
difference of 4 years and a space separation of 5
light-years, both space and time measured with
equipment at rest in the laboratory. What is the dis-
tance between these two events in a rocket in which
they occur at the same time?

3. Super Cosmic Rays

The Akeno Giant Air Shower Array of detectors
spread over 100 square kilometers in Japan detects
the energy of individual cosmic ray particles indi-
rectly by the resulting shower of particles these
cosmic rays create in the atmosphere. This array has
detected a few cosmic ray particles with an energy as
high as 10% electron volts.

A. A regulation tennis ball has a mass of 57
grams. If this tennis ball is given a kinetic
energy of 1020 electron volts, how fast will it
move, in meters per second? (Hint: Try Newto-
nian mechanics first.)

B. Research workers find no upper limit on cos-
mic ray energies. The proposed Pierre Auger
Cosmic Ray Observatory will consist of detec-
tors spread over 3000 square kilometers at
each of two sites: Utah USA in the northern
hemisphere and Argentina in the southern
hemisphere. Suppose the new arrays detect a
cosmic ray proton of energy 10%! electron-
volts, ten times more energetic than those so
far observed. How long would it take this pro-
ton to cross our galaxy (take the galaxy

1- 22

diameter to be 10° light-years) as measured on
the proton's wristwatch? Give your answer in
seconds. (The answer is not zero!)

4. Mass-Energy Conversion

A. How much mass does a 100-watt bulb dissi-
pate (in heat and light) in one year?

B. Pedaling a bicycle at full throttle, you generate
1/2 horsepower of useful power
(1 horsepower = 746 watts). The human body
is about 25 percent efficient; that is, 25 percent
of the food burned can be converted to useful
work. How long a time will you have to ride
your bicycle in order to lose 1 kilogram by con-
version of mass to energy? Express your
answer in years. (Conversion factor inside
back cover.) How can reducing gymnasiums
stay in business?

C. One kilogram of hydrogen combines chemi-
cally with 8 kilograms of oxygen to form
water; about 10° joules of energy is released. A
very good chemical balance is able to detect a
fractional change in mass of 1 part in 108. By
what factor is this sensitivity more than
enough—or insufficient—to detect the frac-
tional change of mass in this reaction?

5. Units and Conversions

A. Show that for a particle of nonzero rest mass,
the speed (as a fraction of the speed of light) is

given by the expression
_ds _p
TaTE

B. What value does the speed v derived in part A
take when the mass of the particle is zero, as is
the case for a flash of light? Is this result the
one you expect?

C. The mass and energy of particles in beams
from accelerators is often expressed in GeV,
that is billions of electron-volts. Journal articles
describing these experiments refer to particle
momentum in units of GeV /c. Explain.

CHAPTER 1 Speeding



6. The Pressure of Light

A flash of light has zero mass. Use equation [33], in
conventional units, to answer the following
questions.

A. You can feel on your hand an object with the
weight of 1 gram mass. You detect an equal
force on a black piece of wood that you hold in
your hand as it absorbs a steady laser beam.
What power does the laser beam deliver, in
watts?

B. The block of wood described in part A absorbs

the energy of the laser beam. Will the block
burst into flame?

Exercise 6. The Pressure of Light

7. Derivation of the Expression
for Momentum

A. Carry out the derivation of the relativistic
expression for momentum described in Section
6. Draw figures for this case similar to Figures
2 and 3. Hint: Follow steps 1 through 7 on
pages 1-7 through 1-11, but take derivatives
with respect to s rather than with respect to t.

B. Write an expression for p in conventional units,
similar to equation [26] for energy.
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CHAPTER 2

Curving

It is not my purpose in this discussion to represent the general theory of
relativity as a system that is as simple and as logical as possible, and with
the minimum number of axioms; but my main object here is to develop this
theory in such a way that the reader will feel that the path we have entered
upon is psychologically the natural one, and that the underlying
assumptions will seem to have the highest possible degree of security.

—Albert Einstein

1 “Distances” Determine Geometry
Describe an object with a table of distances between points.
Describe spacetime with a table of intervals between events.

Nothing is more distressing on first contact with the idea of curved space-
time than the fear that every simple means of measurement has lost its
power in this unfamiliar context. One thinks of oneself as confronted with
the task of measuring the shape of a gigantic and fantastically sculptured
iceberg as one stands with a meterstick in a tossing rowboat on the surface
of a heaving ocean.

Were it the rowboat itself whose shape were to be measured, the proce-
dure would be simple enough (Figure 1). Draw it up on shore, turn it
upside down, and lightly drive in nails at strategic points here and there
on the surface. The measurement of distances from nail to nail would
record and reveal the shape of the surface. Using only the table of these
distances between each nail and other nearby nails, someone else can
reconstruct the shape of the rowboat. The precision of reproduction can be
made arbitrarily great by making the number of nails arbitrarily large.

It takes more daring to think of driving into the towering iceberg a large
number of pitons, the spikes used for rope climbing on ice. Yet here too the
geometry of the iceberg is described—and its shape made reproducible—
by measuring the distance between each piton and its neighbors.

But with all the daring in the world, how is one to drive a nail into space-
time to mark a point? Happily, Nature provides its own way to localize a
point in spacetime, as Einstein was the first to emphasize. Characterize the
point by what happens there: firecracker, spark, or collision! Give a point
in spacetime the name event.

Section 1 “Distances” Determine Geometry

Reproduce a shape
using nails and string

The event is a nail driven
into spacetime.
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Figure 1 Reproducing the shape of an overturned rowboat (top) by driving nails around
its perimeter, then stretching strings between each nail and every nearby nail {middle)
The shape of the rowboat can be reconstructed (bottom) using only the lengths of string
segments—the distances between nails. To increase the precision of reproduction,
increase the number of nails, the number of string segments, the table of distances

Interval Separation between Events are the nails, the pitons, the steel surveying stakes of spacetime.

events in spacetime How can events describe the geometry of spacetime? Measure the “dis-
tance” between each event and every one of its neighboring events. We
already know that for spacetime the “distance” between each pair of
events means the spacetime interval between them (Chapter 1). The table of
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distances between points in space becomes a table of intervals between
events in spacetime.

The table of distances between points allows us to describe and reproduce
the spatial geometry of a surface—whether plane or curved. The table of
spacetime intervals between events allows us to describe and reproduce
the “shape,” the geometry of spacetime—whether the flat spacetime
geometry described by special relativity or the curved spacetime geome-
try described by general relativity.

2 Reference Frames Are Secondary
Lab and rocket frames give different viewpoints on flat spacetime.
Different reference frames give different viewpoints on curved spacetime.

Events themselves are the nails on which science hangs. Spacetime inter-
vals between events evidence the geometry of spacetime, its curvature.
This geometry, this curvature from point to point, exists whether one or
another competing reference frame is used to describe it. Spacetime geom-
etry exists—and can be described—even when no frame of reference is
used at all!

We may—and will—choose to use several different reference frames to
describe the same events near a gravitating star or planet. One frame
spans the interior of an unpowered spaceship orbiting a spherically sym-
metric center of attraction. Another occupies the inside of a second
unpowered spaceship plunging radially toward that center. A third refer-
ence frame consists of the inside of a powered spaceship, rockets blasting,
that stands at rest outside the same heavenly body. (Or save rocket power
by constructing and standing on a stationary spherical shell concentric to
the star or planet.) There are many other possible frames. A central idea of
general relativity is that reference frames are not fundamental—all are
equally valid. People who use general relativity as a tool change reference
frames more often than they change clothes. Each different frame illumi-
nates some features of curved spacetime geometry, but rarely does any
single reference frame reveal every important feature of that geometry.

Special relativity uses laboratory and rocket frames as different vantage
points to get an insight into flat spacetime that exists independent of any
reference frame. In the same way we use alternative reference systems
around a star to get insight into curved spacetime—a curved geometry
that exists independent of any frame of reference. By using different
frames for different purposes, we glimpse the spacetime geometry that
lies behind all frames of reference.

& You keep taiking about “curvature” of spacetime. What is curvature?

dimensional space to the four dimensions of spacetime. Travelers detect curvature—in
both three and four dimensions—by the gradual increase or decrease of the "dis-
tance” between “straight lines” that are initially parallel In three space dimensions,
the actual paths in space converge or diverge Think of two travelers who start near
one another at the equator of Earth and march “straight north.” Neither traveler
deviates to the right or to the left, yet as they continue northward they discover that
the distance between them decreases, finally reaching zero as they arrive at the north

gs The word curvature is an analogy, a visual way of extending ideas about three-

Section 2 Reference Frames Are Secondary

Events and intervals
reproduce “shape”
of spacetime.

Curvature exists with or
without reference frames

Different frames offer

different “vantage points’

study spacetime.
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Einstein. Coordinate systems
are not fundamental

No escape from inside the
horizon of a black hole

“Capsule of flat spacetime”

pole. They can use this deviation to describe the curved spherical surface on which
they travel. Similarly, in four-dimensional spacetime, travelers detect the deviation
from parallelism of nearby worldlines of free particles, each of which follows an ide-
ally straight spacetime path, often called a geodesic This curvature can be measured
by the travelers and varies from place to place in spacetime

We use frames of reference for our own convenience, for concreteness and
economy of thought. But reference frames and their coordinates are not
fundamental to Nature. Geometry is fundamental. It took Einstein seven
years to achieve this basic insight. In a few sentences he summarizes the
transition from special relativity to general relativity:

Now it came to me: . . . the independence of the gravitational acceleration from
the nature of the falling substance, may be expressed as follows: In a gravita-
tional field (of small spatial extension) things behave as they do in a space free
of gravitation. . . . This happened in 1908. Why were another seven years
required for the construction of the general theory of relativity? The main rea-
son lies in the fact that it is not so easy to free oneself from the idea that coordi-
nates must have an immediate metrical meaning.

3 Free-Float Frame
Our old, comfy, free-float (inertial) frame carries us unharmed to the center of a
black hole Well, unharmed almost to the center!

We want to experience the spacetime geometry around a black hole, a star
that has collapsed “all the way,” without limit. General relativity predicts
this fate for any too-massive collection of matter. General relativity pre-
dicts further that nothing, not even light, can escape from a black hole if
the emitting satellite gets closer to the black hole than what is called the
horizon (the radius of no return, defined more carefully in Section 9). If
light cannot escape from an object, this object appears black from the out-
side. Hence the name “black hole.”

No one can stop us from observing a black hole from an unpowered
spaceship that drifts freely toward the black hole from a great distance,
then plunges more and more rapidly toward the center. Over a short time
the spaceship constitutes a “capsule of flat spacetime” hurtling through

Escape from a Black Hole? Hawking Radiation

Einstein’s equations predict that nothing escapes from the
so-called “horizon” of a black hole. In 1973, Stephen
Hawking demonstrated a contrary conclusion using quan-
tum mechanics For years quantum mechanics had been
known to predict that particle-antiparticle pairs, such as
electrons and positrons, are continually being created and
recombined in undisturbed space, despite the frigidity of the
vacuum. These processes have, indirectly, important and
well-tested observational consequences. Never in cold flat
spacetime, however, do such events ever present themselves
to direct observation. For this reason the pairs receive the
name “virtual particles.” When such a particle-antiparticle

pair is produced near the horizon of a black hole, Hawking
showed, one member of the pair will occasionally be swal-
lowed by the black hole, leaving the other one to escape
Escaped particles form what is called Hawking radiation
The energy of the escaping particle comes from the black
hole Over time this loss of energy causes the black hole to
“evaporate “ The final stage may be a super-H-bomb explo-
sion For a black hole of several solar masses, however, the
time required to achieve this explosive state exceeds the age
of the Universe by a fantastic number of powers of ten For
this reason we ignore such emissions here (See also the box
on page 5-27.)
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Figure 2 The curved spacetime geometry ot general relativity Ssymbolized by the two-
dimensional geometry of the surface of Newton’s apple The locally straight
(geodesic) tracks followed by ants crawling on the apple’s surface symbolize the
tracks followed through spacetime by free particles In any sufficiently localized region
of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-
dimensional surface by the straight-line course of the tracks viewed in the magnifying
glass. In a region of greater extension, the curvature (curved two-dimensional space in
the case of the apple, four-dimensional spacetime in the case of the real physical
world) makes itself felt On a larger scale, two tracks originally diverging from a
common point later approach, cross, and go off in very different directions In
Newtonian theory this effect is ascribed to gravitational force acting at a distance
from a massive body, symbolized here by the stem of the apple According to Einstein,
a particle gets its moving orders locally, from the geometry of spacetime right where it
is Its instructions are simple “Go straight! Follow the straightest possible worldline
{geodesic) “ Physics is as simple as it could be locally Only because spacetime is curved
in the large do the tracks diverge, converge, and cross (“tidal accelerations”)

curved spacetime. It is a free-float frame like any other. Special relativity
makes extensive use of such frames, and special relativity continues to
describe Nature correctly for an astronaut in a local free-float frame, even
as she falls through curved spacetime, through the horizon, and into a
black hole. Keys, coins, and coffee cups continue to move in straight lines
with constant speed in such a local free-float frame. (Figure 2 illustrates,
by analogy, that paths curved in three space dimensions appear straight
when we view small enough portions of these paths.) Collisions, creations,
and annihilations of particles continue to follow the special relativity law
of conservation of momentum-energy. What could be simpler?

However, as we approach the black hole the dimensions of our frame
must be progressively constricted if we are to verify that it is free-float. In
free fall near Earth, relative accelerations change the separation between
two test particles, thus restricting the size of the spacetime region in which
both are observed to be in free float (Chapter 1, Section 8). In imagination
we can extend our near-Earth experience to regions exterior to more mas-

Section 3 Free-Float Frame

Unavoidable relative
accelerations near a star
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Lethal effects of relative
accelerations near black hole

How small can a free-float
frame be?
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sive spherically symmetric objects: our Sun, a similar star, a white dwarf, a
neutron star, a black hole. As we get closer and closer to each of these more
and more compact spherically symmetric bodies, greater and greater
become the relative accelerations between test particles. Near the center of
a black hole these relative accelerations become lethal.

Relative accelerations are called tidal accelerations, because they are simi-
lar to the difference of our Moon'’s gravitational attraction on opposite
sides of Earth that lead to tides. (See Section 2.3 of Spacetime Physics.)

Consider, for example, the plight of an experimental astrophysicist freely
falling feet first toward a black hole. As the trip proceeds, various parts of
the astrophysicist’s body experience different gravitational accelerations.
His feet are accelerated toward the center more than his head, which is far-
ther away from the center. The difference between the two accelerations
(the tidal acceleration) pulls his head and feet apart, growing ever more
intense as he approaches the center of the black hole. The astrophysicist’s
body, which cannot withstand such extreme tidal accelerations, suffers
drastic stretching between head and foot as the radial distance drops to
zero.

But that is not all. Simultaneous with this head-to-foot stretching, the
radial attraction toward the center funnels the astrophysicist’s body into
regions of space with ever-decreasing circumferential dimension. Tidal
gravitational accelerations compress the astrophysicist on all sides as they
stretch him from head to foot. The astrophysicist, as the distance from the
center approaches zero, is crushed in width and radically extended in
length. Both lethal effects are natural magnifications of the relative
motions of test particles released from rest at opposite ends of free-float
frames near Earth (Chapter 1, Section 8).

Confronted by tidal accelerations, how can we define a free-float frame
falling into a black hole? At the center of the black hole we cannot; general
relativity predicts infinite tidal accelerations there. However, short of the
center, we employ the strategy used in free-float near Earth (Section 8 of
Chapter 1): Limit the space and the time—the region of spacetime!—in
which experiments are conducted. Very near the center we restrict our-
selves to an ever smaller and more pinched local region of spacetime in
which to define a free-float frame and in which to employ special relativ-
ity. How small can a free-float frame be? A single radioactive atomic
nucleus can emit a detectable signal, for example a high-energy flash
(“gamma ray”). In principle a reference frame can have space dimensions
as tiny as that of the nucleus and time dimension equal to the emission
time of the gamma ray. If gravitational tidal accelerations do not distort
the nucleus “too much” within this spacetime region, the laws of special
relativity accurately describe the nucleus in such a frame—the frame is
effectively free-float for purposes of this experiment.

The constant, ever-present “force of gravity” that we experience on Earth

is gone, eliminated as we step into a free-float frame. What remains of
“gravity”? Only curvature of spacetime remains. What is this curvature?
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Nothing but tidal acceleration. Curvature is tidal acceleration and tidal
acceleration is curvature. Kip Thorne says it clearly: “Einstein and New-
ton, with their very different viewpoints on the nature of space and time,
give very different names to the agent that causes test particles to acceler-
ate toward or away from one another in a frame that is not quite free-float.
Einstein calls it spacetime curvature; Newton calls it tidal acceleration. But
there is just one agent acting. Therefore, spacetime curvature and tidal accel-
erations must be precisely the same thing, expressed in different languages.”
(Quotation slightly edited; original in the references.)

One limitation of a free-float frame near a black hole is the tidal accelera-
tions experienced by test particles as the frame falls toward zero radius.
Another limitation is the large-scale consequence of tidal acceleration: No
single free-float frame is large enough to describe relations between two
events that occur on opposite sides of the central mass. Two such events
might be the emission of two flashes at different times by an object whose
orbit girdles a black hole. To relate such widely separated events, we need
a global rather than a local coordinate system. Karl Schwarzschild pro-
vided the basis for such a global coordinate system around a spherical,
nonspinning center of attraction. Schwarzschild coordinates apply
approximately to slowly spinning bodies such as Earth and Sun and to
nonspinning or slowly spinning neutron stars and black holes. But these
coordinates also have limitations. Points of view provided by free-float
and Schwarzschild-related coordinate systems—and by still other coordi-
nate systems—probe deeply the geometry of empty spacetime around a
star. We now begin the study of the coordinates used by Schwarzschild.

4 The r-coordinate: Reduced Circumference
How to measure the radius while avoiding the trap in the center

Matter has, by virtue of gravitation, a marvelous ability to agglomerate
into spherical centers of attraction. Nicolaus Copernicus is credited with
the insight that replaced Earth as the only assumed center of attraction
with multiple centers of gravity. Standing as witness to the simplicity of
the spherical shape are Earth, Moon, planets, Sun, and stars. Each of these
structures is compressed—more dense—near its center and less dense
near its surface. But this density changes with radius only, not with angle
around the center. Such structures earn the label spherically symmetric.
(Strictly speaking, an astronomical object can be spherically symmetric
only if it does not rotate on its axis. For our Sun and planets this rotation
rate is small enough so that departures from spherical symmetry can be
neglected in the interpretation of many observations.)

The closer the distribution of mass to exact spherical symmetry, the better
the spacetime geometry around such a structure conforms to the wonder-
fully simple solution to the equations of general relativity discovered by
Karl Schwarzschild in 1915. Schwarzschild’s solution describes spacetime
external to any isolated spherically symmetric body in the Universe.

Section 4 The r-coordinate: Reduced Circumference

Need global coordinates

Spherically symmetric centers

of attraction
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Schwarzschild’s simple
solution
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Nicolaus Copernicus Bormn Torun, Poland, February 19, 1473, died Frombork, Poland, May 24,
1543. The flower is an old symbol for medicine, which Copernicus fearmed at Padua His medical
skill was always at the service of the poor.

The Dictionary of Scientific Biography says. Whereas the pre-Copernicun cosmos had known only
a single certer of gravity or heaviness, the physical universe acquired multiple centers of gravity from
Copernitus, who thus opened the road that led bo universal gravitation . . [Hle put forward a revised
conception of gravity, according to whick heavy objects everywhere tended boward their own certer—
heavy terrestrial objects toward the center of the earth, heavy tunar objects toward the center of the
Moon, and so on. [Copernicus wrote:)

“For my part, I think that gravity is nothing but a certain natural strrving with
wtich parts have been endowed . . so that by assermbling in the form of o sphere they
may foin together in their unity and wholeness This tendency may be belicved o be
present also in the sum, the moon, and the other bright planets, so that it makes them
keep that raundness which they display **

What does this “Schwarzschild geometry” around Earth, star, or black
hole look like? “What a nonsensical question!” we say at first. Whoever
looks at space? We look through space. Or we thrust skeleton skyscrapers
out into space, we push out into space the Buckminster Fuller framework
of a great spherical building (Figure 3). Ha! Just such a Buckminster Fuller
construction gives us at last a way to “see” what space looks like, as
described in what follows.

CHaPTER 2 Curving



To be specific, take the center of attraction to be a black hole. Let it have
the same mass as Sun. Build around it, in imagination, an open spherical
shell of rods fitted together in a mesh of triangles (Figure 3) similar to
hemispherical jungle gyms found on playgrounds. This spherical shell,
this scaffolding, is an alternative to our latticework of rods and clocks in
local free-float frames. Mount clocks on this shell. The rods and clocks of
this shell provide one system of spacetime coordinates to locate events.

We say to build this shell “in imagination,” because neither steel nor tanta-  Spherical shell of rods and
lum nor any modern wonder material has a ratio of strength to weight clocks

adequate to support such a structure against the inward pull of gravity.

However, the surface of a planet, moon, or star has itself the character of a

shell. We walk around on such a shell every day: Earth’s surface! In the

absence of an actual spherical shell, we can use a spaceship that stands

still above the surface by blasting its rockets inward.

How shall we define the size of the sphere formed by this latticework We cannot measure radius
shell? Shall we measure directly its distance from its center? That won't directly

do. Yes, in imagination we can stand on the shell. Yes, we can lower a

plumb bob on a “string.” But for a black hole, any string, any tape mea-

sure, any steel wire—whatever its strength—is relentlessly torn apart by

the unlimited pull the black hole exerts on any object that dips close

enough to its center. Even for Earth or Sun, the surface keeps us from low-

ering our plumb bob directly to the center.

Then try another way to define the size of the spherical shell. Instead of Derive radius from
lowering a tape measure from the shell, run a tape measure around it. Call Z‘iiﬁ?iﬂﬁz of
the distance so obtained the circumference of the sphere. Divide this cir-

cumference by 2r = 6.283185 . . . to obtain a distance that would be the

directly measured radius of the sphere if the space inside it were flat. But it

isn’t flat. Yet this procedure yields the most useful known measure of the

size of the spherical shell.

The “radius” of a spherical object produced by this method of measuring
has acquired a name, the coordinate radius, despite its being no true
radius. We call it also the reduced circumference, to remind us that it is
derived (“reduced”) from the circumference:

coordinate radius = r = reduced circumference
= (circumference)/2x [1]
= r-coordinate

The phrases coordinate radius and reduced circumference are such mouthfuls
that we usually call it simply the r-coordinate and represent it by the sym-
bol . The r-coordinate is the radius computed from the sphere’s
circumference. This value of r is stamped on every shell for all to see.

Having constructed—in imagination—one spherical shell around our
black hole and found its coordinate radius, its reduced circumference r, we
construct inside it a second such framework of rods and likewise deter-
mine its radius. We find the reduced circumference r of the inner sphere to

Section 4 The r-coordinate: Reduced Circumference 2-9



Dwrecily measured separation
between nested shells is
greater than the difference
in r-value

Small effect near Sun
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Figure 3 Geodesic globe named Spaceship Earth, the symbol of Disney Epcot Center in Orlando,
Forida. Fifty meters in diameter, it contains a ride highlighting the history of communication
from cave dwellers to the present. The spherical shells surrounding our black hole are openwork
lattices, not a closed surface as shown here © Disney Enterprises, inc

be 1 kilometer less than that of the first one—based on tape-measure
determinations of distance around the two spheres.

Now, finally, we lower a plumb bob from the outer sphere and for the first
time measure directly the true radial distance perpendicularly from the
outer sphere to the inner one. Will we find a 1-kilometer radial distance
between the two spheres? We would if space were flat. But it is not flat.
Schwarzschild geometry tells us that the directly measured radial distance
between the two nested spheres is more than 1 kilometer. That increase
over the expectations of Euclidean geometry provides the most striking
evidence in principle one can easily cite for the curvature of space we call
gravitation. To examine such discrepancies is to see what space locks like
around a black hole.

Built around our Sun, the inner sphere cannot lie inside Sun’s surface. Its
r~coordinate can be no less than that of Sun’s surface, which is approxi-
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mately 695 980 kilometers. Around this inner shell we erect a second
one—again in imagination—of r-coordinate 1 kilometer greater: 695 981
kilometers. The directly measured distance between the two would be not
1 kilometer, but 2 millimeters more than 1 kilometer.

How can we get closer to the center of a stellar object with mass equal to
that of our Sun—but still be external to that object? A white dwarf and a
neutron star each has roughly the same mass as our Sun, but each is much
smaller. Therefore we can—in principle—conduct a more sensitive test of
the nonflatness of space much closer to the centers of these objects while
staying external to them. The effects of the curvature of space are much
greater near the surface of a white dwarf or neutron star than near the sur-
face of our Sun.

Turn attention now to a black hole of one solar mass. Close to it the depar-
ture from flatness is much larger than it is anywhere in or around a white
dwarf or a neutron star. Construct an inner sphere having an r-value, an r-
coordinate, a reduced circumference of 4 kilometers. Let an outer sphere
have an r-coordinate of 5 kilometers. In contrast to these two distances,
defined by measurements around the two spheres, the directly measured
radial distance between the two spheres is 1.723 kilometers, compared to
the Euclidean-geometry figure of 1 kilometer (Sample Problem 2, page 2-
28). At thus location the curvature of space results in measurements quite
different from anything that textbook Euclidean geometry would lead us
to expect!

WHY is the directly measured distance between spherical shells greater than the dif-
& ference in r-coordinates between these shells? Is this discrepancy caused by

gravitational stretching or compression of the measuring rods?

No, the quoted result assumes infinitely rigid measuring equipment In practice, of
4 course, a measuring rod held by the upper end will be subject to gravitational stretch-

ing (or compression if held by the lower end). So think of flinging the rod up from
below so that it comes to rest temporarily with its two ends next to the two shells and
thereby measures the separation directly while in free float Even in this case there will
still be tidal forces on the rod. Strain gauges affixed along the rod can permit us to
“calculate away” this stretching For smaller and smaller separation between the
shells the stretching can be reduced below any specified limit.

o0

crepancy, the fact that the directly measured distance between spherical shells is
greater than the difference in r-coordinates between these shells? WHY this
discrepancy?

& Don’t avoid the issue! You have not answered the question What CAUSES the dis-

A deep question! Fundamentally, this discrepancy is evidence of space curvature
resulting from the mass contained in the center of attraction External to this center,
the fabric of spacetime does not tear but transmits the ever-diluted curvature outward
to influence locally every spherical shell, every test particle, every satellite in the sur-
roundings

by

Section 4 The r-coordinate: Reduced Circumference
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The period of light increases
as it climbs

Gravitational red shift

“Blackness” of a black hole
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5 Gravitational Red Shift
Rising light shows fatigue by increasing its period of oscillation.
Light rising from the horizon has infinite period—so it does not exist!

Time also enters into the (spacetime) curvature around a black hole. In no
way is “time curvature” more apparent than in the behavior of a signal
emitted from a clock bolted to a spherical shell near a gravitating body. Let
this clock tick by emitting light in a radially outward direction. The emit-
ted light increases its period of vibration as it climbs up out of the
gravitational field.

How does light increase its period of vibration? Every period (every back-
and-forth undulation in the wave) of the light can be considered a mea-
sure of time, a “tick of the clock.” Suppose that the light has a short period
when emitted by the clock on the shell. The shell observer records that the
emitting clock ticks rapidly; for him time is short from one tick to the next
tick. When the light finally arrives at a remote observer, its period is
longer. The received clock-tick signals are observed to be farther apart in
time than the sent clock-tick signals. Light emitted from a shell clock still
closer to the black hole suffers an even greater increase in its period—a
greater “time between ticks”—when this light has climbed to infinity.

The period of the received light increases more and more as the emitter
stands closer and closer to the black hole. Details of this increased period
imply curvature not only of space but of time—curvature of spacetime! The
increased period means also that the time dt,, between two events—
such as clock ticks—measured by an observer standing on a shell (or occu-
pying a spaceship at rest, rockets blasting inward) will be different from
the “far-away time dt” between these events as transmitted to and
recorded by a clock remote from the gravitating body.

Visible light with the longest period is red. The remote observer sees light
emitted by the close-in clock to be “redder”—that is, of longer period—
than it was at the point of emission. This effect thus earns the name
gravitational red shift.

Why is a black hole black? Why cannot light escape from a black hole?
After all, light cannot stop moving! Every local observer records the speed
of light to be unity as it passes on its upward journey. The gravitational
red shift result allows us to give a meaning to the phrase “cannot escape.”
Light of any period emitted from near the horizon (the threshold radius of
no return) suffers a gravitational red shift to a very long period. The closer
the clock is to the horizon, the farther toward infinity the period grows as
the light climbs out of the black hole to a great distance. But a light signal
with infinite period is no light signal at all! It cannot be detected. In this
case almost no light has escaped from near the horizon of the black hole.
For a clock at the horizon, as a limiting case, no light escapes to even 1 cen-
timeter above the horizon (Chapter 5 exercises). Light is red shifted all the
way to infinite period. This crisp result accounts for the blackness of a
black hole (which is black except for Hawking radiation, a quantum phe-
nomenon described in the box on page 2-4).
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The gravitational red shift occurs between two clocks that are at different The gravitational red shift is
radii and both at rest with respect to the black hole or other center of gray-  dfferent from the Doppler

itational attraction. Another and different red shift occurs due to the shift due to relative motion
Doppler effect when two clocks move away from one another. An example

is the red shift of light that we receive from nearby galaxies outside our

own, thought to be due to the recession of these galaxies from us. (A gen-

eralization of the Doppler shift to curved expanding spacetime is the

reddening of light from distant galaxies as the Universe expands—see

Project G, The Friedmann Universe.) For observers on Earth this reces-

sional red shift is in principle partly canceled by the gravitational blue

shift of the light as it drops into the gravitational well surrounding Earth.

However, for many everyday purposes the gravitational blue shift for

Earth is negligible. (See exercise at the end of this chapter.)

We have described two consequences of spacetime curvature: the aug-
mentation of distance between adjacent spherical shells and the increase
in the period of light escaping outward from one of these shells. How
these effects come about, and why they become so impressive at the hori-
zon of a black hole, shows on an examination of the expressions
describing the Schwarzschild solution to Einstein’s great and still standard
1915 equation for the bending of spacetime geometry. Before we can write
down these expressions in simple form, we need to describe the mass of
the central body, not in the unperceptive conventional units of kilograms,
but rather in the same geometric units we use to measure distance: meters
or kilometers.

6 Mass in Units of Length

Want to make everything geometry? Then measure mass in meters!

Descriptions of spacetime near any gravitating body are simplest when Measure mass in meters
the mass M of that body is expressed in units of distance—in meters or

kilometers. This section is devoted to finding the conversion factor

between, say, kilograms and meters.

Earlier, when we wanted to measure space and time in the same units
(Chapter 1, Section 2), we used the conversion factor c, the speed of light.
The conversion from kilograms to meters is not so simple. Nevertheless,
here too Nature provides a conversion factor, a combination of the speed
of light and the universal gravitation constant G that characterizes the
gravitational interaction between bodies.

Newton'’s theory of gravitation predicts that the gravitational force
between two spherically symmetric masses M and m is proportional to the
product of these masses and inversely proportional to the square of the
distance r between their centers:

_ Gngmkg

2
r

F [2. Newton]

Subscripts tell us that in this equation the masses My, and my arein units ~ Numencal values of Gand ¢
of kilograms. In this equation G is the “constant of proportionality.” The historical acadent
numerical value of this constant depends on the units with which mass
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Mass in units of meters
unclutters equations
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and distance are measured. Historically the units of mass and the units of
distance were developed independently, without appreciation of their
relationship. The numerical value of G was not built into Nature by law
but arose by accident of human history, as the numerical value of the
speed of light c likewise arose from historical accident alone. When we
measure mass in kilograms and distance in meters, then G has the experi-
mentally determined value

3
G = 66726 x 10-11 — L 3]
kilogram second

Divide G by the square of the speed of light, ¢, to find the conversion fac-
tor that translates the conventional unit of mass, the kilogram, into what
we have already found to be the natural geometric unit, the meter:

-11 ter”
6.6726 x 10 meter 5
kilogram second

®ol@

16 mete 2
8.9876 X 10" ~—=<ter (4]
second

= 7.424 x 10”8 _meter
kilogram

Now convert from mass M), measured in conventional units of kilograms
to mass M in units of length—meters—by multiplication with this conver-
sion factor:

G —28 meter
M = C_2ng = (7424)( 10 E-i'l—ong)ng [5]

Why make this conversion? First, it is an elegant way to proclaim that
mass is fundamentally tied to geometry. Second, it allows us to get rid of
the factors G and ¢? that would otherwise clutter up the equations to
follow.

Wait a minute! Stars and planets are not the same as space No twisting or turning on
your part can make mass and distance the same. Therefore mass cannot be measured
in units of distance How can you possibly propose to measure mass in units of
meters?

True, mass is not the same as distance. Neither is time the same as space Clock ticks
4 are different from meterstick lengths! Nevertheless, we have learned to measure both

time and space in the same units: light-years of distance and years of time, for exam-
ple, or meters of distance and meters of light-travel time Using the same units for
both space and time helps us to get rid of people-made complications and to recog-
nize the unity we call spacetime The conversion factor between time in seconds and
space in meters is the speed of light c.

N

The same comments hold in the present case for measuring mass in units of tength
Mass is not the same as length; no one claims it is But we gain insight when we mea-
sure both in geometric units When we express the mass of a star in meters, we can
convert this figure to any other measure we want grams, kilograms, or number of
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solar masses For the translation from kilograms to meters, the conversion factor is
not a mere power of the speed of light but includes the gravitational constant G The
factor that converts kilograms to meters is G/c2 And the payoff of this conversion is
similar to earlier payoffs we see more simply how Nature works and we arrive more
quickly at correct predictions Mass, and therefore gravitation, is elevated (not
reduced!) to geometry

gram in terms of the meter an official international standard Since 1983 the official
international standard for the meter is the distance light travels in

1/299 792 458 second, thus tying the meter to a measurement of time By defining
(at some more enlightened future date) the kilogram in terms of the geometric unit
meter, we link it also to @ measurement of time All other physical units—energy,
momentum, electric charge—have long been defined in terms of time, length, and
mass By officially defining the kilogram in units of length, and therefore ultimately in
units of time, we unify the world of measurement to a single quantity

& All right Wonderful! Now go one step further and make the definition of the kilo-

Your proposed unification is a good idea in principle but not yet satisfactory in prac-
tice Measurement of mass is very precise So is measurement of length and time
However, the conversion factor between mass and length, G/c?, is not known with
corresponding precision. The fault lies with the gravitational constant G, which is dif-
ficult to measure—presently accurate to 5 digits at most Compare that with the nine-
digit accuracy of the speed of light that allowed a redefinition of length in terms of
time

b

Why wait until G is known more accurately? Why not just define the kilogram in the
unit of length using the conversion factor 7 424 x 10728 meter/kilogram, this figure
taken to be exact by definition?

i

There is no logical reason why G cannot be defined to have an exact value right now
4‘ However, convenience and accessibility are no less important criteria for standards

than logical simplicity The present standard of mass—a particular chunk of metal—
can be accurately duplicated, providing secondary standards for calibration of the
scales used in science and commerce This standard is unlikely to be replaced until a
way 15 discovered to measure the gravitation constant G much more accurately, with
apparatus available in any well-equipped laboratory

Table 1 displays in both kilograms and meters the mass of Earth, the mass
of Sun, and the mass of the huge spinning black hole believed to explain
the activity observed at the center of our galaxy and a similar black hole in
one other galaxy. (See the references.) Thus does the geometric language of
relativity cut the stars down to size.

7 Satellite Motion in a Plane
Once moving in a plane, always moving in that plane

An isolated satellite zooms around a spherically symmetric massive body.
Our very first look shows that this motion lies in a plane determined by
the satellite’s position, its direction of motion, and the center of the attract-
ing body. We know that forever afterward the motion will remain confined
to that same plane. Why? The reason is simple: symmetry! No distinction
between “up out of" and “down below” that plane, so the satellite cannot
choose either. Such a rise would provide immediate evidence that there is
some further force at work beyond any exerted by the spherically sym-
metric body—evidence, in other words, that the satellite’s environment is
not spherically symmetric with respect to that center of attraction.

Section 7 Satellite Motion in a Plane

Orbits stay in a plane
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Table 1 Masses of some astronomical objects

Object

Geometric measure

Mass in kilograms
of mass

Equatorial radius

Earth

6.371 x 10° meters
or 6371 kilometers

4.44 x 1073 meters
or 0.444 centimeters

5.9742 x 10* kilograms

Sun

6.960 x 10® meters
or 696 000 kilometers

1.477 x 10° meters
or 1.477 kilometers

1.989 x 10% kilograms

Black hole at center of
our galaxy

3.8 x 10° meters
(see references)

5.2 x 10%¢ kilograms
(2.6 x 105 Sun masses)

Black hole in center of
Virgo cluster of galax-
ies

6 x 10%° kilograms 4 x 1012 meters

(3 x 10° Sun masses)

Locate satellite using r and ¢.

2-16

The satellite moves in a plane, so we need two quantities, and only two, to
specify its location at any instant. Adopt for one the r-coordinate, the
reduced circumference of a circle cutting through the satellite. For the sec-
ond coordinate take the azimuthal angle ¢ of the satellite’s progression in
the plane around the center of attraction (Figure 4).

Every astronaut, every satellite, every light pulse independently orbiting
around a spherically symmetric body will remain in its own plane of
motion, each position in the plane described by the reduced circumference
r and the azimuthal angle ¢ in that particular plane. This limitation to a
plane greatly simplifies the analysis of physical events described in the
remainder of this book.

v

Figure 4 A satellite moves in an orbit with instantaneous velocity v around a spherically
symmetric body. This orbit lies in a plane and remains in that plane for all time Satellite position
on the plane is specified uniquely by two coordinates: we choose the r-coordinate and the
azimuthal angle ¢ with respect to some arbitrary initial direction in the plane (horizontal dashed
line in the figure). The inner part of the r-line is also dashed, because in the case of a black hole
the radius cannot be surveyed directly.
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8 Metrics for Flat Spacetime
Rectangular space coordinates or polar space coordinates:
Either can appear in a metric of flat spacetime.

What gives us security as we move from flat spacetime geometry to
Schwarzschild geometry? On what can we depend? What can we trust?
Answer: Events! Events are the nails of reality on which all of science
hangs (Section 1). And between event and event we seek the basic relation,
the basic separation, the four-dimensional “distance” between firecracker
explosion and firecracker explosion. We seek the spacetime interval between
any pair of events.

When no large mass is in the vicinity we say that spacetime is flat. In flat
geometry the expression for the wristwatch time T between two events can
be written in the usual rectangular coordinates described by Descartes
(“Cartesian coordinates”). Let ¢, x, and y mark the separation between two
events on a spatial plane when this separation is timelike (time separation
greater than space separation). Then 5, the square of the wristwatch time
between them, is given by the expression

2= y2 [6. flat spacetime]

When, instead, the separation between the two events is spacelike, that is,
when the space part of the separation predominates over the time part, we
reverse the signs of the terms on the right of [6] to keep the combination
positive. Give the resulting squared quantity the Greek letter ¢ (sigma):

02 = 12+ x2+y? [7. flat spacetime]

The corresponding equations [1] and [8] of Chapter 1 for the spacetime
interval earned the name metric; equations {6] and [7] are metrics too. A
metric provides the method by which we meter or measure spacetime.

For describing the linear motion of one rocket with respect to another in
flat spacetime, the Cartesian system of coordinates was perfect. Direction
of relative motion: x. Direction transverse—perpendicular—to that rela-
tive motion: y. The Cartesian rectangular system is not so convenient as we
prepare to describe spacetime around a spherically symmetric gravitating
mass. Here the preeminent dimension is radial, toward and away from the
center of attraction, with angle ¢ describing the location of an event on an
imaginary circle of given radius r lying on a plane through that center.
Rewrite the expression for the timelike interval (equation [6]) in polar
coordinates. The resulting metric is

(d1)? = (d1)2 - (dr)2-(rd¢)? [8. flat spacetime]

The box on page 2-18 presens a derivation of the space separation part of
this expression, namely (dr)” + (rd¢)".

Section 8 Metrics for Flat Spacetime

Events and intervals form a
universal language

Timelike spacetime interval

Spacelike spacetime interval

Polar coordinates are
convenient when there is a
center of attraction
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two events is written

and d¢ See Figure 5

Spatial Separation in Flat Spacetime, Expressed in Polar Coordinates

Figure 5 Spatial separation between two points in polar coordinates

Let the coordinate separations between two events near depicted in the figure extends only over the angle d¢ It
one another be dx and dy in the x and y directions, respec- comprises only the fraction d¢/2n of the whole circle By
tively Then the square of the spatial separation between proportion, its length is (d¢/2m) times 27, or rdp This arc is

so short that its length closely approximates the length of
the corresponding straight line We spell out this part of the

(spatial separation)2 = (dx)2 + (dy)2 reasoning because it goes over unchanged to the curved

space geometry around a spherically symmetric body Not so
Look for a similar expression for two events numbered 1 and for the distance dr/ Consider two points that lie at the same
2 separated by the spherical polar coordinate increments dr azimuth but have r-coordinates r and r + dr Only in flat

space is the distance between them equal to dr Therefore
only for flat space are we entitled to figure the distance in

Draw little arcs through events 1 and 2 to form a tiny rectan- space between event 1 and event 2 by the formula

gle, as shown in the magnified inset The squared distance 5 ) 5

between events 1 and 2 is—approximately—the sum of the (spatial separation)” = (dr)” +(rd¢)

squares of two adjacent sides of the little rectangle Each

complete circle, if drawn here, would run through a total arc This squared spatial separation Is the space part of the

of 2r and possess a circumference of 2nr It was this circum- squared interval for flat spacetime, equation [8] Notice that
ference that was the starting point for our very definition of this derivation depends on d¢ being small, so the small seg-
the reduced circumference r The portion of each arc that is ment of arc rd¢ is indistinguishable from a straight line
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Equation [8] is still true only for flat spacetime—the domain of special rel-
ativity. Why? Because the everyday world is still the everyday world,
whether you view it while standing on your feet or standing on your
head! Similarly, flat spacetime is flat whether the interval between events
is expressed in Cartesian (rectangular) coordinates or in polar (spherical)
coordinates. In brief, no massive body is yet positioned at the origin of this
coordinate system.

Now place the origin of the spherical coordinate system at the center of a
nonspinning spherical object, approximated by Earth or Moon, Sun or
white dwarf, neutron star or black hole. Examine the new spacetime
geometry external to such a body. This new geometry is described by the
Schwarzschild metric, introduced in Section 9.
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9 The Schwarzschild Metric for Curved Spacetime
Spherically symmetric massive center of attraction?
Then the Schwarzschild metric describes curved spacetime around it.

The metric for the proper time between two timelike events in a plane in
flat spacetime is given by equation [9]:

d‘r2 = d12 - dr2 - r2d¢2 [9. flat spacetime]

How is this metric altered for two nearby events on a plane that passes
through the center of a spherically symmetric massive body? The last term
on the right stays the same because of the way we chose the r-coordinate.
The r-coordinate is defined so that 2nr is the measured distance around a
circle centered on the attracting mass; hence its name, reduced circumfer-
ence. Measurement of the total circumference 2nr is the sum of measured
distances (r d¢) along many small segments of the circle. As a result, the

last term on the right, (r d4>) remains correct for the Schwarzschild metric.

What about the time term and the radial term? How will they change near
a black hole—or near Earth? The answer is embodied in the
Schwarzschild metric. For two events close to one another the Schwarz-
schild metric introduces us to curved empty spacetime on a spatial plane
through the center of a spherically symmetric (nonspinning) center of
gravitational attraction:

2
d? (1 - wjdt __dr r2d¢2 [10. timelike form]

e

The coordinates 7, ¢, and t appear in this equation. The angle ¢ has the
same meaning in Schwarzschild geometry as it does in Euclidean geome-
try. We have defined r, the reduced circumference, so that rd¢ is the
incremental distance measured directly along the tangent to the shell. The
time ¢ is called far-away time and is measured on clocks far away from the
center of attraction, as discussed in detail in Section 11.

The timelike Schwarzschild metric is so important that we write it for ref-
erence as equation [A] on the last page of this book.

Equation [10] is the timelike form of the Schwarzschild metric, for a pair of
events in which the time separation predominates. In contrast, for a pair of

events in which the space separation predominates, equation [10] is
replaced by the spacelike form of the Schwarzschild metric.

doz = _(1 - g—M)dtz + _dr__ + r2d¢2 [11. spacelike form]

Equation [11] is placed for reference on the last page of this book as equa-
tion [B].

Section 9 The Schwarzschild Metric for Curved Spacetime

rqua2 term is still OK to
describe spacetime near
Earth.

Timelike form of
Schwarzschild metric

Spacelike form of
Schwarzschild metric
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Sloppy Use of Differentials in Relativity

In equations [8] and [9] we have begun to use differentials
dr, do to describe the space separation between events and
dt for the separation in time Where did these differentials
come from, and why do we suddenly start to use them? The
analysis in the box on page 2-18 makes the approximation
that the sides dr and rd¢ of the little rectangle are straight
But the inner and outer sides are not straight each is a por-
tion of a circular arc The approximation is sensible only if
the little arc "looks like” a straight line, only if the angular
separation d¢ is a very small fraction of 2x, the angle for a
complete circle Our mathematician friends insist that the
approximation is “correct” only in the limit of zero angle
Physicists tend to be a bit sloppy about applying mathemati-
cal differentials to nonzero (but still small} separations in real
space and time

But sloppy use of differentials by physicists goes farther than
this Equation [8] is usually written in the even more irre-

dit = di’—dr’ - r2d¢2 (9 flat spacetime]
Compare equation [9] with [8] Equation [9] s squeezed into
the compact algebraic notation that by now has become
standard Legalistically it is wrong On the left should appear
(d‘r)z, as it does in equation [8] If we were credulous enough
to take 1t seriously, dt? would give us not the square of the
change in proper time, but rather the crazy idea of the small
change in the square of proper time

How did this sloppiness come about? Pure laziness People
got tired of writing down those extra parentheses, left them
out, whispered a warning to their friends to write them back
in—mentally at least—when putting the metric formula to
use, and by now we’re all in on the little secret The same
with the terms on the right-hand side, which should read
(dt)z, (dr)?, and (r d¢)2, respectively, as they do in equation
(8]

sponsible form of equation {9]

In late 1915, within a month of the publication of Einstein’s general theory
of relativity and just before his own death from battle-induced illness, Karl
Schwarzschild (1873 -1916) derived this metric from Einstein’s field equa-
tions. Einstein wrote to him, “I had not expected that the exact solution to
the problem could be formulated. Your analytic treatment of the problem

appears to me splendid.”

& The Schwarzschild metric appears here out of thin air Where does it come from?

The Schwarzschild metric derives from Einstein’s field equations for general relativity,
equations that relate the “warping” of spacetime across a spacetime region to the
mass and pressure in that region Different distnbutions of mass lead to different met-
rics in the vicinity of the mass Deriving a metric from the field equations is a major
professional accomplishment Einstein himself did not think it possible that anyone
could carry out the task, even for a nonrotating, uncharged, spherically symmetric
structure The metric for a spinning black hole was not published until 1963, almost
50 years later (See Project F, The Spinning Black Hole )

Einstein's field equations themselves are not “derived,” any more than Newton’s laws
of motion are derived Indeed, a Newtcnian prediction of the existence of a * hori-
zon,” the radius from which only light can escape, 1s given in the box on page 2-22
The field equations are, as Einstein was fond of saying, “the free invention of the
human mind “ This invention rests on Einstein’s deep intuition for physical reality and
symmetry—how Nature must behave Of course the results must lead to correct pre-
dictions of experimental results, as they have repeatedly In this book we start with
the metric around each center of attraction Each of these metrics 1s one step
removed from the (underived) field equations For a brief account of Einstein's devel-
opment of the field equations and a description of their content, see Kip Thorne,
Black Holes and Time Warps, pages 113-120

The Schwarzschilddescription  Further investigation has shown that the Schwarzschild metric gives a

's complete complete description of spacetime external to a spherically symmetric, non-
spinning, uncharged massive body (and everywhere around a black hole
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but at its central crunch point). Every (nonquantum) feature of spacetime
around this kind of black hole is described or implied by the Schwarz-

schild metric. This one expression tells it all! Moreover, the vast majority
of experimental tests of general relativity have been tests of the Schwarz-
schild metric. All test results have been consistent with Einstein’s theory.

At the radius r = 2M something strange happens to the Schwarzschild Different terms for "horizon”
metric. The time term goes to zero and the radial term increases without
limit as r approaches the value 2M in both the timelike and spacelike ver-
sions, equations {10] and [11]. This value of r marks the location of the one-
way surface through which anything may pass inward but nothing passes
outward. This special value of the radial coordinate is given various
names: the Schwarzschild radius or the event-horizon radius. The “mem-
brane” at r = 2M is called the Schwarzschild surface or the Schwarzschild
sphere, the Schwarzschild horizon, the event horizon, or simply the hori-
zon. (Caution: Some workers in the field refer to the geometric measure of
mass M as the gravitational radius. Others reserve this name for 2M. That is
why we avoid the term in this book.)

For us the Schwarzschild metric—one step from the field equations—is Ways the Schwarzschild
not derived but given. However, we need not accept it uncritically. Here metric makes sense
we check off the ways in which it makes sense.

First, the curvature factor (1 — 2M/r) that appears in both the dt term and 1 Depends only on
the dr term depends only on the r-coordinate, not on the angle ¢. How rcoordinate
come? Because we are dealing with a spherically symmetric body, an

object for which there is no way to tell one side from the other side or the

top from the bottom. This impossibility is reflected in the absence of any
direction-dependent curvature factor multiplying dt* or dr?.

Second, as the r-coordinate increases without limit, the curvature factor 2 Goes to flat spacetime
(1 - 2M/r) approaches the value unity, as it must. Why must it? Because an metric for large r
observer far from the center of attraction can carry out experiments in her

vicinity without noticing the presence of the distant object at all. For her

spacetime is locally flat. In other words, for large r the Schwarzschild met-

ric [10] must go smoothly into the metric for flat spacetime [9].

Third, as the mass M goes to zero, the curvature factor (1 - 2M/r) 3 Goes to flat spacetime
approaches the value unity, as it must. Why must it? Because a center of metric for zero M
attraction with zero mass is the same as the absence of a massive body at

that center, in which case equation [10] becomes equation [9], the expres-

sion for the interval in flat spacetime.

Fourth, consider the factor for dr%, namely 1/(1 - 2M/r). For r > 2M this 4 Confirms dr is less than the
factor has a value greater than one, which is consistent with our first g"emy measured
. . e . . 1stance between shells
“experiment in principle” around a black hole (Section 4). The directly
measured separation 4o is larger than that calculated from the difference
dr in r-values between two adjacent Buckminster Fuller shells. Think of a
rod held vertical to the shell, spanning the radial separation between two
nested spherical shells. Set off two firecrackers, one at each end of this rod,
at the same time, dt = 0. Take these explosions to be the two events whose
separation is described by the metric [11]. The two explosion events have
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zero separation in azimuth, so d¢ = 0. Then the proper distance between the
explosions is the distance that the shell observer measures directly; call it
drghell = d6. The spacelike equation [11] leads to

do = dry g = (

__dr
1_2M

)1/2

r

[12. radial rod at rest on shell]

Here dr is the difference in reduced circumference between two shells.
Prior knowledge of the factor (1 — 2M/r)1/2 in the denominator was used
in describing our first “experiment in principle” that drg,e is greater than

Newton Predicts the Horizon of a Black Hole?

A stone far from a black hole and initially at rest
with respect to it begins to move toward the black
hole Gradually the stone picks up speed, finally
plunging to the center With what speed v does this
stone pass a spherical shell at radius r? For low
velocities and weak gravitational fields the speed is
easily derived from Newtonian conservation of
energy. In conventional units, the potential energy
V(r) of a particle of mass myq (measured in kilo-
grams) in the gravitational field of a spherical body
of mass Mg is given by the expression

GM
V(r) = - ——ke"ke [13. Newton]

r

Here G is the gravitational constant, and the zero of
potential energy is taken to be at infinite radial distance
r A particle that starts at that great distance with zero
velocity and therefore zero kinetic energy has a total
energy zero for all later times and positions r given by
the expression

GM,  m
E=0-= %mkgvzonv- — X [14 Newton]

where v g,y is velocity measured in the conventional
units meters/second From this equation,

2GM, 172
Veony = (—r_kﬁ) [15 Newton]

The particle moves radially inward at this speed Divide
through by ¢ to give speed dr/dt with distance and time
in the same units:

"_C'C’.'H =p = [_2"&] {16. Newton]

cr

But (G/D Myg = M, the central attracting mass
expressed in units of length (equation [5)). The resulting
speed is

172
v = (ZTM) [17 Newton]

Surprisingly, equation [17] is correct in general relativity
too, but only when the speed is interpreted as the
speed of the in-falling object as measured by the shell
observer (Chapter 3, Section 5)

Escape Velocity

Equation [17] provides a prediction for the "radius of a
black hole “ Think of hurling a stone radially outward
from radius r with the speed given by equation [17]
Then Newtonian mechanics, which runs equally well
both forward and backward in time, predicts that this
stone will coast to rest at a great distance from the cen-
ter of attraction Thus equation [17] tells us the escape
velocity—the minimum velocity needed to escape
from the gravitational attraction—for a stone launched
outward from radius r What is the maximum possible
escape velocity? Here we elbow Newton aside and give
the relativistic answer The maximum escape velocity is
the speed of light, v = vgn/c = 1 Place this value in
equation [17] to find the minimum radius from which
an object can escape—the Newtonian prediction for
the radius of the Schwarzschild horizon

=2M [18 Newton]

Thonzon

According to general relativity this is the correct
value—provided r is the reduced circumference! The
physical interpretation, however, is quite different in
the two theories. Newton predicts that a stone
launched from the horizon with a speed less than that
of light will rise some radial distance, slow, stop before
escaping, and fall back In contrast, Einstein predicts
that nothing, not even light, can be successfully
launched outward from the horizon (exercise in Chap-
ter 5), and that light launched outward EXACTLY at the
harizon will never increase its radial position by so
much as a millimeter (For historical details, see the box
on page 3-3)
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dr, as this equation affirms. The change of this factor from place to place
implies space curvature.

Equation [12] is so useful that we install it for reference as equation [D] in
Selected Formulas at the end of this book.

Fifth, the curvature factor (1 — 2M/r) in the numerator of the dt? term also
has a value less than one, which is consistent with the gravitational red
shift (Section 5). Think of a clock bolted to the shell at radius r. Choose two
events to be two sequential ticks of this shell clock. Call dtg,q) this wrist-
watch time dt between ticks of the shell clock. Between these two ticks the
coordinate separations dr and d¢ are both zero. The timelike equation [10]
leads to

1/2
2M) dt [19. clock at rest on shell]

dv = dty . = (1 -—

r

Here dt is the corresponding lapse of far-away time. From our second
“experiment in principle” we know that the time dt,.; between pulses
emitted by the clock is smaller at emission than their red-shifted value dt
when received at a great distance. In brief, dtq is less than dt. This result
is consistent with the less-than-one value of the curvature factor

(1 - 2M/r) in the time term of the Schwarzschild metric (equation [10]).

Equation [19] is placed for reference as equation [C] in Selected Formulas
at the end of this book.

The Schwarzschild metric, equation [10], governs the motion of a free test
particle external to any spherically symmetric, nonspinning, uncharged
massive body. It applies with high precision to slowly spinning objects
such as Earth or an ordinary star like our Sun. For the motion of a particle
outside such an object, it makes no difference what the coordinates are
inside the attracting sphere because the particle never gets there; before it
can, it collides with the surface of the star—collides with the fluid mass in
hydrostatic equilibrium. The more compact the configuration, however,
the greater the region of spacetime the test particle can explore. Our Sun’s
surface is 695 980 kilometers from its center. A white dwarf with the mass
of our Sun has a radius of about 5000 kilometers, approximately that of
Earth. The Schwarzschild metric describes spacetime geometry in the
region external to that radius. A neutron star with the mass of our Sun has
a radius of about 10 kilometers, so the test particle can come even closer
and still be “outside,” that is, in a region described correctly by the
Schwarzschild metric if the neutron star is not spinning.

The ideal limit is not a star in hydrostatic equilibrium. It is a star that has
undergone complete gravitational collapse to a black hole. Then the
Schwarzschild metric, equation [10], can be applied almost all the way
down to zero radius, r = 0. The wonderful thing about a black hole is that
it has no surface, no structure, and no matter with which one will collide.
A test particle can explore all of spacetime around a black hole without
bumping into the surface—since there is no surface at all.

Section 9 The Schwarzschild Metric for Curved Spacetime
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matter, what is it made of? What happened to the star or group of stars that col-
lapsed to form the black hole? Basically, how can something have mass without being
made of matter?

& How can a black hole have “no matter with which one will collide”? If it isn‘t made of

The mass is all still there, inducing the curvature of adjacent spacetime It is just
crushed into a singularity at the center How do we know? We don‘t! It is a prediction
from the Schwarzschild metric Can you verify this prediction? Only if you drop inside
the horizon, perform experiments, and make measurements as you approach the sin-
gularity—and then neither you nor your reporting signal can make it back out
through the horizon Startling? Crazy? Absurd? Welcome to general relativity!

WH

What is this “singularity” business, anyway? I've heard the term before, but | don‘t
know what it means

A singularity is a “nobody knows” phenomenon. Coulomb’s law of electrical force
between point charges has a 1/72 factor in it, which goes to infinity at r = 0. But it
doesn't really, because there is no such thing as a point charge in structures described
by classical {(non-quantum) physics In the Schwarzschild metric the curvature factor
(1 — 2Mi/r) goes to zero at r = 2M, leading one term in the metric to blow up How-
ever, it was discovered after long study that this singularity in the metric 1s due to the
choice of coordinates and is not “real.” Someone falling inward in free float feels no
jolt as she passes r = 2M. (More on this smoothness at r = 2M in Chapter 3 and
Project B, Inside the Black Hole.) On the other hand, the singularity at r = O appears to
be “real.” That is, anything falling to the center of a black hole is crushed to zero vol-
ume—to a single point That is the prediction of general relativity, which is a classical
(non-quantum) theory. In contrast, quantum theory predicts that nothing—not even a
single electron—can be confined to a point So what's the truth? The truth is, nobody
has figured it out yet! No one has developed a theory of quantum gravity that
combines quantum mechanics and general relativity Anyway, Nature has hidden
away the singularity inside a one-way surface at r = 2M, so we cannot find out while
remaining outside This situation is often described by saying that all real singularities
are “clothed,” as if there is cosmic censorship Are there any “naked” (uncensored)
singularities not hidden by a one-way surface? None that we yet know about

Ay By

One cannot predict the future

If there are non-trivial singularities which are naked, i.e., which
can be seen from infinity, we may as well all give up. One cannot
predict the future in the presence of a spacetime singularity since
the Einstein equations and all the known laws of physics break
down there. This does not matter so much if the singularities are
all safely hidden inside black holes but if they are not we could be
in for a shock every time a star in the galaxy collapsed.

— Stephen Hawking

10 Picturing the Space Part of Schwarzschild Geometry
Freeze time, examine curved space.,

How can one visualize the geometry around a black hole? In general rela-
tivity, every coordinate system is partial and limited, correctly
representing one or another feature of curved spacetime and misrepre-
senting other features. Figures and diagrams that display these coordinate
systems embody the same combination of clarity and distortion.

CHAPTER 2 Curving



One partial visualization displays the spatial part of the Schwarzschild

metric. Freeze time (set dt = 0) and limit ourselves to a spatial plane pass-

ing through the center of the black hole. Then the spacelike form of the

Schwarzschild metric [11] becomes

ar’
2M

1 -2

r

do’* = +r2d¢? [20. dt = 0]

Figures 6 and 7 represent this special case. The radius r of each circle is the
r-coordinate, the reduced circumference, locating the intersection of a
spherical shell with a spatial plane through the center of the black hole.
The differential dr is the difference in reduced circumference between
adjacent circles. We have added the vertical dimension in the diagram and
scaled it so that the slanting distance upward and outward along the sur-
face represents do, the proper distance between adjacent circles measured
directly with a plumb bob and tape measure. The “funnel” surface result-
ing from this scaling condition is called a paraboloid of revolution, and the
heavy curved line in Figure 7 is a parabola—actually half a parabola.

Figure 7 embodies the fact that do is greater than dr, the demonstration in
principle that evidenced the curvature of space around a black hole in the
first place (Section 4). The figure further shows that the ratio do/dr
increases without limit as the radial coordinate decreases toward the criti-
cal value r = 2M (vertical slope of the paraboloid at the throat of the
funnel).

These figures embed curved-space geometry in the flat Euclidean three-
space geometry perspective shown on the printed page. Therefore these
figures are called embedding diagrams. But flat Euclidean geometry is not
curved space geometry. Therefore we expect embedding diagrams to mis-
represent curved space in some ways. They lie! For example, the vertical
dimension in Figures 6 and 7 is an artificial construct. It is not an extra
dimension of spacetime. We have added this Euclidean three-space
dimension to help us visualize Schwarzschild geometry. In the diagram,
only the paraboloidal surface represents curved-space geometry. Observ-
ers posted on this paraboloidal surface must stay on the surface, not
because they are physically limited in any way, but because locations off
the surface simply do not exist in spacetime.

Observers constrained to the paraboloidal surface cannot measure directly
the radius of any circle shown in Figures 6 and 7. They must derive this
radius—the reduced circumference—indirectly by measuring the distance
around the circle and dividing this circumference by the quantity 2n. From
the circumference of an adjacent circle they derive its different radius and
calculate the difference dr in the reduced circumferences of the two circles.
In contrast, they can directly measure do, the proper distance between
these adjacent circles, and compare their result with the computed differ-
ence in reduced circumference dr. Result: do is greater than dr. The ratio
do/dr becomes infinite at r = 2M (where parabola is vertical in diagram).

Section 10 Picturing the Space Part of Schwarzschild Geometry
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l Distant
b do Universe)

Horizon — " ~r

Figure 6 Space geometry for a plane sliced through the center of a black hole, the result
“embedded” in a three-dimensional Euclidean perspective. All of the curvature of empty space
{space free of any mass—energy whatsoever) derives from the mass of the black hole Circles are the
intersections of the spherical shells with the slicing plane WE add the vertical dimension to show

that do is greater than dr in the spatial part of the Schwarzschild metric, as shown more clearly in
Figure 7.

N —r do

\

Figure 7 Projections of the embedding diagram of Figure 6, showing how the directly measured
radial distance do between two adjacent spherical shells is greater than the difference dr in
r-coordinates Real observers exist only on the paraboloidal surface (shown edge-on as the heavy
curved line). They can measure da directly but not r or dr. They derive the r-coordinate (the
reduced circumference) of a given circle by measuring its circumference and dividing by 2n
Then dr is the computed difference between the reduced circumferences of adjacent circles
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SAMPLE PROBLEM 1 Limits of Small Curvature

The curvature factor (7 - 2M/r) in the Schwarzschild metric SOLUTION
marks the difference between flat and curved spacetime

How far from a center of attraction must we be before this M 6 ... .
curvature becomes extremely small? A Wewant 1 -===1-10 ", which yields
A As a first example, find the value of the radius r from the M

3 re= — 2x15x103x106mcters
center of our Sun (M = 1 5 x 103 meters) such that the 1078 [21]

curvature factor differs from the value unity by one part
in a million Compare the value of this radius with the

radius of Sun (rs = 7 x 108 meters).

Ix lOgmcters

This radius is approximately four times the radius of Sun

B As a second example, find the radial distance from Sun
such that the curvature factor differs from the value unity B. This time we want 1 — M 1-1078 , S0
by one part in 100 million Compare the value of this r
radius with the average radius of the orbit of Earth
1" M ax15x10°x10°
(r=15x10"" meters) rs=—= = ¢x1>x10"x10" meters

108 [22]

=3x 10“ meters

which is approximately twice the radius of Earth's orbit

The embedding diagrams, Figures 6 and 7, represent one cut through the Curvature of spaceTIME is
spatial part of the Schwarzschild geometry. Time does not enter, since needed to describe orbits
dt = 0. There being no place on this surface for changing time, it depicts

nothing moving. Therefore this representation has nothing to tell us

directly about the motion of particles and light flashes through the space-

time of Schwarzschild geometry (in spite of all the steel balls you have

seen rolling on such surfaces in science museums!). In Chapters 3 and 4 we

describe trajectories near a black hole, including trajectories that plunge

through the Schwarzschild surface at r = 2M “into” the black hole. But

first, Section 11 describes the meaning of “far-away time” t in the Schwarz-

schild metric.

11 Far-Away Time

Freeze space; examine curved spacetime.

It is not enough to know the geometry of space alone. To know the grip of
spacetime that tells planets how to move requires knowing the geometry
of spacetime. We have to know not merely the distance between two
nearby points, P, Q, in space but the interval between two nearby events, A,
B, in spacetime.

The Schwarzschild metric uses what we call far-away time t. There canbe  Far-away time t measured at
many remote clocks recording far-away time ¢. These remote clocks forma ~ '29¢”

latticework that extends in all directions from the isolated black hole. Far

from the influence of the black hole, these clocks are in a region of flat

spacetime, so they can be synchronized with one another using light

flashes similar to the synchronization pulse for free-float frames described

in Chapter 1 (Section 9). However, in the present case the synchronizing
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SAMPLE PROBLEM 2 Sample of “Radial Stretching”

Verify the statement at the end of Section 4 that for a black
hole of one solar mass, the directly measured radial distance
calculates as 1 723 kilometers between a shell at r = 4 kilo-
meters and a shell at r = 5 kilometers In Euclidean geometry,
this measured distance would be 1 kilometer

SOLUTION

The mass of Sun to four significant figures is M = 1 477 kilo-
meters. Express all masses and distances in kilometers Use
the increments of the Schwarzschild metric to obtain

dr

drgen = W

r
23
_ 1 kilometer [23]

(1 2954 lulometer]'/z

r

Which radius r do we use in the denominator of the right-
hand expression? If we use r = 4 kilometers, the result is

dr ey = 1956 kilometer [24 r=4km]

On the other hand, if we use r = 5 kilometers, the result is

drgey = 1563kilometer [25 r=5km]

The trouble here is that the term 2M/r changes significantly
over the range r = 4 kilometers to r = 5 kilometers The radial
stretch factor differs from radius to radius. The results in
equations [24] and [25] bracket the answer. An exact calcula-
tion requires that we sum all the increments of drg,qy from ry
= 4 kilometers to rp = 5 kilometers. This “summation” is an
integration The result of the integration will be Argg
between the values 1 563 kilometer and 1 956 kilometer

r

dr
Arshcll = I M2
()

r

(26)

1/
r 2dr

(r—2M)1/2

This integral is not in a common table of integrals So make
the substitution r = 22, from which dr = 2zdz Then the inte-
gral and its solution become

2
2z2dz
2 172
z (z'-2M) [27]

2 1/2 2 173 &
=z(z"-2M) +2MIn|z+ (2" -2M) L
1

Here In is the natural logarithm (to the base €) and | | stands
for absolute value Substitute the values (units omitted)

2M = 2954
7y = Ja=2 (28]
2, = A5 = 2236

and recall that in general In(B) - In(A) = In(B/A) The result is
Arg . = 1723 kilometer [29]
This value, given at the end of Section 4, lies between the

bracketing values in equations {24] and [25] for the fixed
choices ry and ry

2-28

pulse or pulses must stay in the remote region, not travel through regions
where the value of the curvature factor (1 — 2M/r) differs significantly from
the value unity. We call the time far-away time as read on these clocks at
rest with respect to the attracting body. The technical term is ephemeris
time. Often we say t-coordinate and give it the symbol ¢. The increment dt
of far-away time appears on the right side of the Schwarzschild metric.

By definition, the time lapse dt between two events is that recorded on a
remote clock by an observer far from the attracting mass.

The relation between dtg;, o and dt can be read directly from the Schwarz-
schild metric. Think of an Earth clock mounted in a fixed position on the

surface of Earth, which we consider to be nonrotating for purposes of this
example. The spatial position of the Earth clock does not change between
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Your Own Personal Far-Away Clock

If he wishes, an observer at rest on a spherical shell deep in
the gravitational pit of a black hole (but outside the horizon!)
can have, in addition to his regular shell clock, a second clock
that reads far-away time t directly. To this end he needs to
carry out two tasks (1) adjust the rate at which his personal
far-away clock runs and (2) synchronize his personal far-away
clock with a remote clock that really is far away.

1. Rate adjustment. By turning the fast-slow screw on
his personal far-away-time clock, he adjusts it to run
fast by the factor 141 — 2M/)'2 compared with his
regutar proper clock, this factor reckoned using the
known mass M of the black hole and his measured
reduced circumference r No such rate adjustment is
required by the British resident of New York City who
always carries a second wristwatch (far-away-time
clock) set to Britain’s Greenwich time

2. Synchronization. He synchronizes his personal far-
away-time clock by some such procedure as the fol-
lowing (a) Send radially outward to a remote clock an
“inquiring” light pulse requesting the time
(b) Upon receiving the inquiry, the remote clock
immediately sends a reply flash that encodes its time.
() When he receives the reply flash, the inner
observer assumes that the encoded time is halfway in
time between the events of emission of the inquiry
flash and reception of the reply flash—and sets his
personal far-away-time clock accordingly

By placing personal far-away clocks on ail shells, cne can in
effect extend the far-away latticework of rods and clocks
down to the horizon of a black hole (or down to the surface
of a nonrotating star, planet, white dwarf, or neutron star)
The far-away time of any event is recorded by these clocks,
and the value of the r-coordinate is stamped on every shell

ticks. Hence dr and d¢ are both equal to zero. Both ticks occur at the clock.
Therefore the interval between the ticks on the same clock is the proper
time dt read on the clock: dtgep = dT. Two events that occur at the same
place evidently have a timelike relation, so choose the timelike version of
the Schwarzschild metric. The result was displayed in equation [19]:

172
M ) dr [19]

dtshell = (1 - —;_

Equation [19] tells us that an observer remote from Earth records a time
separation dt between the arrival of the two pulses that is different from
the time recorded on the Earth surface clock that emits the two pulses. In
the Schwarzschild metric the curvature factor for time is identical with the
curvature factor for space except for one circumstance. In the case of
space, divide by the curvature factor less than one and get outward dis-
tances greater than expected from radial coordinates. In the case of time,
multiply by the same less-than-one curvature factor and get time lapses
near a black hole less than expected from the readings on far-away clocks.

Hold it! How can the time dt between two events always be the time lapse as

& recorded “on a remote clock by an observer far from the center of attraction”? What
about two events that occur close to the center of attraction? For example, suppose @
clock at rest on Earth’s surface ticks twice and we on Earth read off the change in
clock time How is the time lapse between these ticks to be recorded by your remote
observer?

There are two equivalent ways to determine far-away time lapse between two events
occurring on Earth’s surface: (1) Compare the reading of a clock on Earth’s surface to
the reading of a far-away clock by sending a light signal between them The Earth-
surface clock sends a light signal outward with each tick The two signals are sepa-
rated by time dtg, 3s recorded on the shell clock An observer remote from Earth
receives the two signals and times their separation dt using her clock. (Since time sep-

"y

4
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Gravitational red shift of
"climbing light”

Grawvitational blue shift of
“falling light”
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aration is being measured, the flight time of the signals cancels out ) (2) Alternatively,
have a far-away clock on the shell, as described in the box on page 2-29

Instead of using two separate pulses to make the comparison of shell time
with far-away time (equation [19]), use a light wave. Every period (every
back-and-forth undulation of the wave) of the light emitted by the close-in
clock can be considered as a measure of the time dt ;o) between its ticks.
When this signal is received by a remote observer, the period dt is longer,
as given in equation [19]. Visible light with a longer period is more red. As
described in Section 5, the gravitational red shift is named after this 1915
prediction—and 1960 finding —that the remote observer sees light emit-
ted by the close-in clock to be redder than it was at the point of emission.

If the signal originates farther from the center of gravity and is sent
inward toward the center, the received period decreases. The receiver
detects a shorter period than the “proper period” of the sender. The light
is shifted toward the blue. We call this the gravitational blue shift.

Near a black hole such effects are very much greater than they are near
Earth. When the light originates at the black hole horizon (r = 2M) and is
sent outward radially, the square root of the curvature factor, (1 - 2M/r)!/?,
becomes zero. Far from the black hole the period dt of the received light
measured by the far-away observer is infinite, no matter how short is the
period dtgq) of the emitted light measured by the emitting shell observer.
But a light signal with an infinite period is no light signal at all! As
described earlier, this is the sense in which no light can escape from the
horizon of a black hole—and makes the name “black hole” so descriptive.

Come on! A clock is @ clock You say a lot about exchanging signals between clocks,
& but nothing about the real time recorded on a real clock Which observer’s clock

records the REAL time between a pair of events?

We learned in special relativity that there are measured and verified differences in the
4 time between two events as recorded in different frames in uniform relative motion
Similarly, in general relativity there are ineasured and venfied differences in the time
between two events as recorded by different observers near a black hole, even when
these observers are relatively at rest In both special and general relativity you cannot
tell by observation whether these differences are due to the method of exchanging
signals or due to clock rates themselves The phrase “real time” does not have a
unique meaning independent of the means by which that time 15 measured

Hy

Every schoolboy in the streets of Gottingen

Many not close to his work think of Einstein as a man who could
only make headway by dint of pages of complicated mathematics.
The truth is the direct opposite. As the great mathematician of
the time, David Hilbert, put it, “Every schoolboy in the streets of
Gottingen understands more about four-dimensional geometry
than Einstein. Yet . . . Einstein did the work and not the mathe-
maticians.” The amateur grasped the simple central point that
had eluded the expert.

—TJohn Archibald Wheeler
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SAMPLE PROBLEM 3 Shining Upward

What happens when light emitted from one shell is absorbed
at another shell? In particular, let light be emitted from the
shell at r; = 4M and absorbed at the shell r, = 8M By what
fraction is the period of this light increased by the gravita-
tional red shift?

SOLUTION

Equation [19] relates the period ditghe) of light measured by a
shell observer at r to the period dt measured by a remote
observer But we want the period measured by a second shell
observer at a different radius One way to find the period at
the second shell is to use equation [19] twice, once for each
observer, and make the remote time lapse dt equal in both
cases Ask the remote observer to hold up a mirror that
reflects the light from the inner shell back down to the sec-
ond shell This procedure must give the same result as direct
transmission between the two shells Use equation [19]
twice

de dt
shell | =dt = shell 2 [30]
[I_M)l/z (l_wjl/z
r 2
From which
2M\1/2
dt ( —r_]
shell 2 _ 2 31]

dfgpent (1 _ 2_1‘1)”2

Substitute r; = 4M and r; = 8M to yield

1

1)
Aignenz _ ( 4) _ 0.866 _
d'shell 1 (] 1)1/2 0.707

1.22 (32]

2

The period of the light is increased (redshifted) by the factor
122 as it climbs from r = 4M to r = 8M This factor would
shift, for example, spectral yellow light to deep red

12 Three Coordinate Systems

(1) Free-float, (2) Spherical shell, (3) Schwarzschild bookkeeping.

Live locally in the first two, span spacetime with the third.

Ride in an unpowered satellite as you fall toward a black hole. Or stand on
the scaffolding of a spherical shell and observe this satellite up close as it

Many possible reference
frames

streaks past. Or analyze the satellite motion using the reduced circumfer-
ence 1, angle ¢, and far-away time ¢. Each of these observations requires a
different set of spacetime coordinates, a different point of view from
which to examine and analyze the motion of the satellite and the structure
of spacetime around the black hole. Can a person exist in each of these
frames, and if so what is this existence like? How do we describe satellite
motion in each one of these frames? And how is the description in one
frame related to the description in another frame? We conclude this chap-

ter with brief answers to these questions.

Free-float frame

Nowhere could life be simpler or more relaxed than in a free-float frame,
such as an unpowered spaceship falling toward a black hole. The speed of
this spaceship increases with time as observed by a sequence of shell
observers past which it plunges. For those of us who ride inside, however,
the spaceship serves as a special-relativity capsule in which we can be
oblivious to the presence of the black hole. Up-down, right-left, back-
forth: every direction is the same. We observe that keys, coins, and

Section 12 Three Coordinate Systems
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The Metric as Micrometer

Figure 8 A micrometer caliper, used to measure smafl
distances, such as the thickness of metal sheet

A calibrated screw on the right meters the gap between
cylingers at the left

What is the metric? What is it good for? Think of a
micrometer caliper (Figure 8), a device used by metatwork-
ers and other practical workers to measure small distances
The worker owns the caliper and chogses which distance to
measure,

The metric is a “four-dimersional micrometer™ for measur-
ing the small spacetime separation between a chosen pair of
events You own the metric. You choose the events whose
separation you wish to measure with the metric The *metric
migometer” translates bookkeeper coordinate increments
dr, dp, and ot into proger time dr or proper distance do
between the pair of events you choose

L. One possible choice for two events: Two sequential
ticks of a clock belted to a spherical shell. Then dr = dp
= 0 and the proper time lapse dt is that read directly
on the shell dock, dig,.n The result is equation [19],
page 2-23, for the relation between shell time and far-
away time.

II. A second possible choice of two evants Events at the
two ends of 2 stick held at rest radially between two
adjacent shells Choose dt = d¢ = 0, then the proper
distance is the directly measured length of the stick
drgen The result is equation [12), page 2-22, for the
relation between direclly measured distance between
shells and their radial separation or in the Schwarz-
schild coordinate

. A third possible choice. Two ticks on the wristwatch
of a particle in free fall inward afong a radius Then
d¢ = 0 and the proper tme is read directly on this
wristwatch, which leads to several important results
in Chapter 3

And so on There is an infinite set of event pairs near one
another that you can choose for measurement using your
tour-dimensional micrometer—the metric

What advice will the “0id spacetime machinist” give to her
younger colleague about the gractical use of the metric
micrometer? She might say the following

1 Think events and separations between pairs of events,
not fuzzy concepts like “length” or “location *

2 Do not confuse resuits from one pair of events wath
results from another pair of events

3 Whenever possible, choose the pair of events so that
the differential of one or more coordinates & zero

4 Whenever possible, identify the proper time or proper
distance with someone’s direct measurement

5. When a light flash can move directly from one event
to another event in the time between them, then the
proper time between the events is zeto dt=0

coffee cups remain at rest or if pushed move with constant speed in a

Free-float frame is only local.

2-32

straight line. In this free-float frame we use special relativity to compute
the spacetime interval between nearby events and analyze collisions as if
we were in interstellar space devoid of gravity.

However, the simplicity of our free-float frame is only local. We detect cur-
vature of spacetime by the tide-producing relative accelerations among
two or more free test particles situated far enough apart or observed for a
long enough time to reveal the nonflat nature of nonlocal spacetime. Tidal
accelerations drive toward one another objects that lie separated along
some directions in the free-float frame; tidal accelerations drive apart par-
ticles that lie separated along another direction (Figure 4 of Chapter 1).
Detecting the presence of tidal accelerations identifies our reference frame
as not free float. To make these tidal accelerations undetectable—by
instruments of given sensitivity—we either narrow the spatial extent of
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our free-float frames or limit the time duration of any particular experi-
ment or both. These constraints are minor in free-float frames situated
near Earth or far from any gravitating body. They become progressively
and inexorably confining as we approach the center of a black hole. Near
this center, general relativity predicts that tidal accelerations tear apart
every physical object.

The free-float frame is familiar, simple, and universal. It is the only one of
our three frames in which humans can exist near a black hole. Even a body
made of steel would be crushed by the “gravitational force” while stand-
ing on a spherical shell near the horizon. In contrast, for a large enough
black hole the tidal forces can be tolerated by the human body even inside
the horizon, at least at a sufficiently great distance from the central singu-
larity. (See Project B, Inside the Black Hole.)

The spherical shell

We live on a (nearly) spherical shell: the surface of Earth. This shell is our
home. We habitually construct latticeworks—called buildings—with
mutually perpendicular axes on which we mount synchronized clocks. To
sit or stand on our spherical shell—Earth’s surface—forces us away from
the natural motion of a free particle. This departure from natural motion
we experience as a “force of gravity” pointing toward the center of Earth.
In everyday life we simply include this “force” with other forces in order
to get on with the practical analysis of events around us. This approxima-
tion works admirably well for the small space and time regions of
everyday experience. It works also for high-speed particle interactions in a
laboratory, which are over so quickly that the “force of gravity” has little
effect. For such experiments the Earth frame is effectively free-float, and
analysis using special relativity gives good results even for observations
from our shell frame. (See Chapter 1, Section 8.)

Is special relativity sufficient for the shell observer? Yes, at least locally in
space and time. This conclusion is supported by the form of the metric for
a shell observer. Substltute into the Schwarzschild metric (equatlon [10])
the expression for drge)” from equation {12] and the expression for dfgej
from equation [19]. The result is

2 2 2 2,2
d't = dtshel] - drshel] -r d¢ [33]

The right side of equation [33] contains only coordinate increments mea-
sured directly by the shell observer. (Recall that radius r is defined so that
rd¢ is the directly measured distance along the surface of the shell—Sec-
tion 4 and the box on page 2-18.) The metric [33] looks like that of flat
spacetime. But spacetime is not flat on a shell near a black hole, and this
limits the usefulness of equation [33] to local measurements. After all,
dtghenn and drgpeyy, along with rdg, are all functions of the radius r. Still,
equation [33] has its uses. For example, it implies that the shell observer
measures light (dt = 0) to have the speed umty—most easily seen by sub-
stituting the incremental distance squared dsghen® (With a minus sign) for
the last two terms in on the right of [33]. Of course every experiment that
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Earth’s surface is a “spherical
shell.”

Shell observer uses special
relativity

Shell frame is also local
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Free-float and shell observers
use special relativity to
exchange data

Different rates for clocks
separated vertically

Vertical separations are
affected by curvature

Schwarzschild coordinates
span full region of spacetime
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takes place on the shell is influenced by the apparent “gravitational force”
due to the fact that the shell is not a free-float frame.

Except for this gravitational force, the local shell frame implied by equa-
tion [33] is similar to the local free-float frame of a passing plunging
observer. In both frames the local speed of light is unity and special rela-
tivity correctly describes brief, local experiments. Moreover, the shell
observer and a passing free-float observer can use the Lorentz transforma-
tion of special relativity to exchange data on local events that are close
together in spacetime. We shall use this ability to exchange data many
times in the chapters and projects that follow.

In two important ways the local free-float frame is more general than the
local shell frame: (1) Special relativity can be made to work well for a
longer time in a free-float frame by making the spatial extent smaller,
whereas on the shell direct effects of the gravitational force cannot be
reduced by any such ruse. (2) The free-float observer can cross the horizon
and continue her experiments without interruption, at least until tidal
forces overwhelm her. In contrast, inside the horizon neither shells nor
shell observers can exist, and equation [33] is useless there.

Less familiar than “gravitational” effects to most Earth inhabitants is the
difference in rates between clocks separated vertically in the gravitational
field, an effect that is a daily experience for anyone designing or predict-
ing the performance of the Global Positioning System, which uses atomic
clocks in satellites (see Project A, Global Positioning System).

Least familiar of all effects of general relativity for the shell observer is the
difference between the radius of Earth, directly measurable in principle,
and the reduced circumference obtained by dividing the circumference by
2z. For two concentric spherical shells near a black hole, the directly mea-
sured radial distance between them is greater than the difference in r-
values of their reduced circumferences.

These effects in clock rates and vertical separations limit the region of
spacetime—space and time—in which to analyze experiments using spe-
cial relativity expressed in shell coordinates. Now we move to a set of
coordinates that are global in extent but farther removed from the reality
of most experiments carried out near Earth, Sun, or black hole.

Bookkeeper coordinates r, ¢, and t

A free-float observer makes observations that span only a little patch of
spacetime. A local shell observer has similar limitations. In contrast, the
coordinates 7, ¢, and ¢, called Schwarzschild coordinates, satisfy the need
for a global description of events, a description that encompasses, for
example, two events located so far apart in space that they lie on opposite
sides of the black hole. The reduced circumference 7, the azimuthal angle
¢, and the far-away time ¢ span all of spacetime surrounding a black hole.
They report measurements made in a distant frame at rest with respect to
the center of gravitational attraction. Latin was the international language
of medieval Europe; the coordinates 7, ¢, and ¢ form the international lan-
guage for describing events that take place near a black hole.
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The Schwarzschild observer is a bookkeeper, an archivist, a top-level
accountant who rarely measures anything herself. Instead she spends her
time examining reports from local shell and free-float observers and com-
bining them to describe events that span spacetime around a black hole.
Before accepting a report, this perfectionist demands that coordinate sepa-
rations between events described in the report be translated into her
language: increments in reduced circumference r, azimuthal angle ¢, and
far-away time ¢. Therefore we call her the Schwarzschild bookkeeper.

An orbiting satellite rapidly emits two sequential flashes as it streaks past
two shells concentric to a black hole. The local shell observer measures
directly the small separations between the emissions of these flashes: time
separation dtg,. measured by nearby clocks bolted to the shell and verti-
cal separation drg,.) measured with a tape measure. The shell observer
also measures the change in azimuthal angle d¢ in the plane of the orbit
and verifies by direct meterstick measurement that this increment of angle
corresponds to the tangential separation rd¢, where r is the reduced cir-
cumference stamped on every shell by the original builders. The shell
observer converts dtgp ) to dt using equation [19] and drge) to dr using
equation [12]—both special cases of the Schwarzschild metric. The shell
observer then reports the resulting separations dt, dr, and d¢ to the
Schwarzschild bookkeeper.

Now the Schwarzschild bookkeeper swings into action. She knows the
space and time coordinates r, ¢, and ¢ at the beginning of this increment of
time. To these coordinates she adds increments dr and d¢ for each lapse of
far-away time dt reported by a local shell observer. The result is a table, a
diagram, or what we call a Schwarzschild map that traces the satellite
through spacetime as expressed in her coordinates 7, ¢, and t. Such a map
is shown in Figure 9.

=01 2 4

Far-away time 7

Figure 9 Schematic Schwarzschild map of the trajectory of an object that plunges
into a black hole. Only every hundredth flash is numbered and shown; adjacent
flashes are very close together in space and time so they can be observed directly
by one or another free-float observer or shell observer. NO ONE observes directly
the trajectory shown on this map. Question: Why are numbered event dots closer
together near both ends of the trajectory than in the middle of the trajectory?
(Answer in Chapter 3 )
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i ¢, t are bookkeeping
coordinates

People can live on a shell and
in a free-float frame
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Nobody observes this entire trajectory directly. The price paid for the uni-
versal language of r-coordinate and t-coordinate is the loss of direct
experience. No one lives in or on a road map, but we use road maps to
describe the territory and plan our trips. Similarly, coordinates 7, ¢, and ¢
are calibrations on a Schwarzschild map of spacetime. These coordinates
simply and precisely locate events in the entire spacetime region outside
the surface of any spherically symmetric gravitating body. The Schwarz-
schild map guides our navigation near a black hole.

What if an astronaut riding in the satellite wants to transmit to the
Schwarzschild bookkeeper data about separation between events she
observes inside her unpowered spaceship? She begins by using special rel-
ativity to transform her coordinate separations to values on the passing
shell. Then the shell observer can transmit the results to the far-away
bookkeeper, as before.

In summary, the full range of coordinates r, ¢, and t are primarily for book-
keeping. A computer can replace the bookkeeper. Then nobody lives in the
coordinates 7, ¢, and t, nobody works there, nobody takes data directly
using the wide span of these three coordinates. They form an accounting
system, a bookkeeping device, a data bank, a spreadsheet, a tabulating
mechanism, an international language, the basis for a spacetime map that
describes events and motions in the entire spacetime region surrounding
Earth, Moon, Sun, or black hole. For this reason, we often call r, ¢, and ¢
bookkeeper coordinates. The strength of bookkeeper coordinates is uni-
versality; their weakness is isolation of most data entries from direct
experience.

In contrast, people can, in principle, live and work in free-float frames and
on spherical shells, taking and analyzing data as if they were in flat space-
time, but unfortunately they can do so only for limited patches of
spacetime.

Don'‘t tell me | cannot experience directly the entire trajectory shown in Figure 9/ Sta-
& tion me a great distance from a black hole Then | can view the satellite directly with
my eyes as it orbits the black hole or plunges toward it
True, you see the entire orbit—at least until the satellite reaches the horizon of the
_{ black hole But what you see by eye are not the coordinates 7, ¢, and t of this trajec-
tory First of all, there is a time delay between emission of a flash by the satellite and
the instant at which you see this flash with your eye The relative delay increases as
the satellite moves farther from you or deeper into the gravitational pit

MHn

Second, there is an effect we have not yet mentioned (see Figure 10) Light s
deflected in a gravitational field In 1919 Arthur Eddington verified Einstein's predic-
tion for starlight passing Sun, making Einstein an instant worldwide celebrity The tiny
deflection near Sun becomes dramatic near a black hole (Chapter 5 and Project D,
Einstein Rings) As a result, you typically do not see the satellite where it was but in
some other direction
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Apparent position
of plunging object

~o oL >
r=7/'/k ﬁ

Figure 10 Schwarzschild map of trajectory of light flash (solid curve) emitted at
far-away time t = 7 from the plunging object (solid dot) whose trajectory is shown in
Figure 9 The light is deflected as it moves outward, leading a remote observer to see
the flash emission at a different location (dashed line and open dot)

Visual appearance can be misleading near a black hole. This misinforma-
tion of visual appearance is not new in principle. When we set up the
original latticework of rods and clocks that formed the reference frame of
special relativity, we limited the observer to collecting data from the
recording clocks (Chapter 1, Section 9). We expressly warned the observer
about reporting events that he views by eye. Why warn him? Because the
speed of light is finite. Light from a distant event can arrive at the
observer’s eye long after light from a nearer event that actually occurred
later as recorded on the latticework of clocks. It is not easy to analyze
events when their order is scrambled in the process of observation and
recording.

Similar light-delay problems occur in viewing by eye objects in orbit
around a black hole. Added to light delay is the visual misinformation
about direction due to the deflection of light that results from the curva-
ture of spacetime (Figure 10).

With knowledge of how light moves in the neighborhood of a black hole
(Chapter 5), you may be able to reconstruct the Schwarzschild map from
your visual observations. But such a reconstruction is quite different from
seeing the Schwarzschild map directly.

In the following chapters we use bookkeeper coordinates 7, ¢, and ¢ to
describe and predict orbits of satellites and the trajectories of light flashes
near a black hole. We use these coordinates to draw Schwarzschild maps
of the trajectories. Behind the Schwarzschild map of any orbit stand obser-
vations made by free-float observers or shell observers, or predictions of
their observations. The Schwarzschild metric is central in the translation
of coordinates back and forth between direct observers (shell observers
and free-float observers) and between each of these observers and the
Schwarzschild bookkeeper.
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Construct Schwarzschild
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Schwarzschild lattice

Using what we have learned about spacetime near a nonrotating,
spherically symmetric massive body, we can in principle set up a
Schwarzschild lattice, at rest with respect to the center of gravitational
attraction, from which one can read directly the Schwarzschild coordi-
nates 7, ¢, t of an event right down to the horizon. The value of the reduced
circumference r is stamped on every spherical shell. Scatter over each shell
a set of clocks that read far-away time (box, page 2-29). For a given plane
in which a particle orbits, mark the angle ¢ on the shell, with zero angle in
some chosen direction. The shell observer and the free-float observer near
an event can then read the Schwarzschild coordinates r and ¢ of this event
directly from the place on the shell at which the event occurs and the time
t on the far-away clock mounted on the shell next to that event.

This Schwarzschild lattice can stretch from near the horizon outward
indefinitely in every direction (from an isolated body). Then the remote
Schwarzschild bookkeeper receives, records, and manipulates Schwarz-
schild coordinates without the need for translation from shell or free-float
coordinates. Everyone involved understands the Schwarzschild metric
and its predictions, leading to a tidy, agreed-upon system that describes
the location of all events. This collection of shells and clocks can then be
called the “Schwarzschild observer.”

tion, but | don’t understand why we can’t just use the Schwarzschild lattice alone It
provides measures of time and space that each experimenter can agree to by looking
at a nearby Schwarzschild clock, measuring tangential distances directly, and reckon-
ing radial separations by subtracting the r-values stamped on each shell Then we
need no translating measurements from one coordinate system to another The
Schwarz-schild lattice works fine all by itself Get rid of all other coordinate systems!

& I understand the idea of the three different coordinate systems described in this sec-

Good point. No one can stop us from using Schwarzschild coordinates alone to
{ design our experiments and predict results And these predictions will describe what

we observe Then everything is totally consistent and convenient for experimenters
scattered throughout the entire region outside the horizon of a black hole There Is a
price for this convernience, however, are you willing to pay the following price? Our
standard of time is based on the properties of particular atoms Near a black hole (and
near Earth!) an atomic clock “runs slow” when measured using the far-away
Schwarzschild time coordinate And the directly measured radial distance between
shells is greater than the difference in r-values between these shells (while directly
measured tangential distances are indeed correctly predicted by change in Schwarz-
schild coordinates) Does curved spacetime cause measuring rods to seem “rubbery,”
having different apparent lengths when oriented tangentially than when oriented
radially? Does curved spacetime force “atomic time* to run at a different rate near a
center of attraction than far from this center? Typically, such questions about “reality”
are of no interest to people in the field Whatever point of view leads to correct pre-
dictions is fine with them! And using the Schwarzschild lattice, with its seemingly rub-
bery measuring rods and time-changed atoms, leads to correct predictions On the
other hand, we may be more comfortable assuming that an atomic clock runs at its
regular rate when observed at rest near a black hole In this case we naturally adopt
the shell frame for local observations, with its local measuring rods and atom-defined
dock times Each alternative reference frame has its own advantages and brings dif-
ferent perspectives to the structure of spacetime (n our opinion, life as a general rela-
tivist, however long, is more fun when you learn to jump mentally from frame to
frame! For more, see Kip Thorne’s Black Foles and Time Warps, Chapter 11, What Is
Reality?

"
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13 Summary

The Schwarzschild metric

In general, the metric provides a complete description of spacetime: the
curvature of spacetime and the results of measurements carried out with
rods and clocks. The metric for flat spacetime is the one that dominated
our study of special relativity. However, special relativity cannot describe
spacetime globally in the vicinity of a massive object. General relativity
can do so, earning the name Theory of Gravitation.

The Schwarzschild metric describes spacetime exterior to the surface of
any nonrotating, uncharged, spherically symmetric massive object. It
describes spacetime everywhere around a nonrotating, uncharged black
hole.

Several conventions make the Schwarzschild metric easy to understand
and use:

1. Satellite motion in a plane. A light flash or test particle that moves
through Schwarzschild geometry stays in a single spatial plane that passes
through the center of the black hole. Describing motion on this plane
requires only two space dimensions plus the time.

2. Polar coordinates. Motion with respect to a center is simply described
using polar coordinates r and ¢. For example, the metric for flat spacetime
with two spatial dimensions goes from the Cartesian form

d? = di* —dx* - dy2 [34. flat spacetime]
to the polar form
dtt = di* - dr* - r*d¢? [9. flat spacetime]

3. Mass in units of meters. We measure the mass M of a planet, star, or
black hole in units of meters. Equation [5] makes the conversion from
mass My, in kilograms to mass M in meters, using G, the gravitational
constant of Newtonian mechanics and c, the speed of light:

G

M = My = (7.424x 10 5]

-28 meter )
kilogram/ k&

In length units, the mass of Sun is 1.477 kilometers and the mass of Earth
is 0.444 centimeters.

4, Radius as reduced circumference. The presence of the black hole ren-
ders impossible the direct measurement of the radial coordinate r of an
object or satellite. Instead, define the radius as r = (circumference)/2r,
where the circumference is measured around the great circle of a station-
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ary spherical shell concentric to the black hole or center of attraction. As a
reminder of this process, we often call r the reduced circumference.

5. Time £ measured on far-away clocks. To avoid the effects of curvature
on clocks, calculate the time, called bookkeeper time or far-away time, that
would be measured on clocks located in flat spacetime far from the attract-
ing body. Give far-away time the symbol ¢. Light flashes are used for
comparison of clock rates and also for communication between a far-away
clock and a clock in curved regions of spacetime.

Predictions from the Schwarzschild metric
With these simplifying conventions the Schwarzschild metric in its time-
like form can be written

2
dr? = (1 - %)dzz __dr 2467 [10]

G

This metric “measures” the separation of a pair of events that have a time-
like relation and that occur near one another in spacetime. Various choices
of these two events lead to predictions verified by experiment:

Prediction 1. Gravitational red shift. Let the two events be sequential
ticks of a clock at rest on a spherical shell near a black hole. At rest means
that the space separation between events is zero: dr = d¢ = 0. The proper
time dt (defined as the time between the events in a frame in which they
occur at the same place) is just the time dtgp o) read on the shell clock. Then
the Schwarzschild metric tells us the relation between shell-time lapse and
the lapse of far-away time:

1/2
ZM) dt [19]

dtshell = (l R

r

Instead of describing ticks on a clock, this equation can measure the
period of a steady light wave emitted outward from a spherical shell at
radius r. The equation predicts that the period dt measured by a remote
observer is greater than the period dtg,. measured by the observer at the
emitting clock. For visible light, longer period means redder light, so the
general name for this effect is the gravitational red shift.

Prediction 2. Curvature of space. Let the two events occur at theends of a
measuring rod radially oriented with ends at two concentric spherical
shells. And let these two events occur at the same far-away time. To ana-
lyze these two spacelike events, use the spacelike form of the
Schwarzschild metric:

2,.2
——+r'd [11]
2M ¢
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For this example, dt = dp = 0, and the proper distance dc between them
(defined as the separation between two events in a frame in which they
occur at the same time) is just the radial separation measured by a shell
observer:

dr

drgpen =

r

The shell observer measures the distance drgo; between shells to be
greater than the difference dr between the reduced circumferences of the
two shells.

Reference frames

General relativity allows use of any coordinate system whatsoever. We
choose three coordinate systems convenient for our purposes: local free-
float frames, local frames on spherical shells, and the global frame that
employs Schwarzschild coordinates 7, ¢, t. Observers can take measure-
ments directly in free-float frames and on spherical shells, but these
measurements are local. In contrast, Schwarzschild coordinates describe
events that can span all of spacetime near a massive body, but no one
observer can make these measurements directly. Instead we speak of the
Schwarzschild bookkeeper who records and analyzes events measured by
others.

A shell observer and a passing free-float observer compare their local mea-
surements using special relativity, including the Lorentz transformation.
The shell observer and the Schwarzschild bookkeeper compare their mea-
surements using equations [12] and [19]. The tangential distance rd¢ is the
same in both systems.

One can construct in imagination a Schwarzschild lattice of spherical shells,
each stamped with the reduced circumference r, angle ¢, and covered with
clocks reading far-away time ¢. The Schwarzschild lattice can in principle
start near the horizon and extend outward indefinitely (from an isolated
body). The Schwarzschild coordinates of any event outside the horizon
can then be read directly using this lattice. We give the name Schwarzschild
observer to this collection of shells and clocks.
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Black holes just didn't “smell right”

During the 1920s and into the 1930s, the world’s most renowned
experts on general relativity were Albert Einstein and the British
astrophysicist Arthur Eddington. Others understood relativity,
but Einstein and Eddington set the intellectual tone of the
subject. And, while a few others were willing to take black holes
seriously, Einstein and Eddington were not. Black holes just
didn’t “smell right”; they were outrageously bizarre; they vio-
lated Einstein's and Eddington’s intuitions about how our
Universe ought to behave. . . . We are so accustomed to the idea of
black holes today that it is hard not to ask, “How could Einstein
be so dumb? How could he leave out the very thing, implosion,
that makes black holes?” Such a reaction displays our ignorance
of the mindset of nearly everybody in the 1920s and 1930s. . . .
Nobody realized that a sufficiently compact object must implode,
and that the implosion will produce a black hole.

—XKip Thorne
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Chapter 2 Exercises

1. Proper Distance Between Spherical
Shells

A black hole has mass M = 5 kilometers, a little more
than three times that of our Sun. Two concentric
spherical shells surround this black hole. The inner
shell has r-coordinate (reduced circumference) r; the
outer one has r-coordinate r + dr, where dr = 1 meter.
What is the radial separation do = drg,) between
these spherical shells as measured directly by an
observer on one of these shells? Treat three cases of
the reduced circumference r of the inner shell.

A. r =50 kilometers
B. r = 15 kilometers

C. r = 10.5 kilometers

2. Grazing the Sun

Verify the statement in Section 4 (top of page 2-11)
concerning two spherical shells around our Sun. The
inner shell, of reduced circumference r; =

695 980 kilometers, just grazes the surface of Sun.
The outer shell is of reduced circumference one kilo-
meter greater, namely r, = 695 981 kilometers. Verify
the prediction that the directly measured distance
between these shells will be 2 millimeters more than
1 kilometer. (Outbursts and flares leap thousands of
kilometers up from Sun’s roiling surface, so this exer-
cise is a bit unrealistic, even if we could build these
shells!) Hint: Use the approximation

(1 +x)"= l+nx when lx|l <<1and Inx!| <<1
The exponent n can be a positive or negative integer
or a positive or negative fraction.

3. Gravitational Red Shift

Consider a black hole with M = 1.5 kilometers,
approximately equal to that of our Sun. An observer
standing on a spherical shell of reduced circumfer-
ence r shines a steady laser beam of wavelength 400
nanometers (4 X 10~ meters: violet light) radially
outward. This light is received by a remote observer
at a radius very much greater than 2M. What is the
wavelength of the light received by this remote
observer in each of the following cases? Note that red

Exercise 1 Proper Distance Between Spherical Shells

light has wavelength 700 nanometers and that, in
conventional units,

(wavelength) _ A
(period) B Tsec
Treat three cases: The person shining the laser out-

ward stands on a spherical shell of reduced
circumference r with the value

=C

A.r = 20 kilometers
B. r = 5 kilometers
C. r = 3.01 kilometers

D. Guess: Suppose the source is aimed in some
other direction than the outward radial one,
but the laser beam still arrives at a distant
observer. Will this distant observer measure
the same wavelength as computed in cases A,
B, and C, or will the wavelength be different
for a non-radial initial direction?

4. How Many Shells?

The President of the Black Hole Construction Com-
pany is waiting in your office when you arrive. He is
waxing wroth. (“Let Roth wax him for a while.”—
Groucho Marx)

“You are bankrupting me!” he shouts. “We signed a
contract that I would build spherical shells centered
on Black Hole Alpha, the shells to be 1 meter apart
extending down to the horizon. Now my staff rela-
tivist tells me that, starting at any radius whatever
outside the horizon, I have to build an infinite num-
ber of these shells between that radius and the
horizon. We do not have materials for that many!”

“Calm down a minute,” you reply. “Black Hole
Alpha has a horizon radius r = 2M = 10 kilometers =
10 000 meters. You agreed to build 1000 spherical
shells starting at reduced circumference r = 10 001
meters, then r = 10 002 meters, then r = 10 003 meters,
and so forth, ending at r = 11 000 meters. So what is
the problem?”

“I don’t know. Maybe we can figure it out if I
describe our construction method. My worker robots
hang 1-meter rods down vertically (radially) from
each completed shell, measure them in place to be
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sure they are exactly 1 meter long, then weld to the
ends of these rods the horizontal (tangential) beams
of the next spherical shell of smaller radius.”

“Ah, then your Black Hole Construction Company is
indeed facing a large unnecessary expense,” you
conclude. “But I think I can help you.”

A. Explain to the President of the Black Hole Con-
struction Company how to alter his
construction method in order to complete his
obligation to build 1000 correctly spaced
spherical shells. Be specific, but do not be a
fussbudget.

B. Using the radius of the innermost shell in the
relevant equation, make a first estimate of the
directly measured separation between the
innermost shell and the second shell, the one
with the next-larger radius.

C. Using the radius of the second shell, the one
just outside the innermost shell, make a second
estimate of the directly measured separation
between the innermost shell and the second
shell.

D. Optional. If you are unhappy with the esti-
mates of parts B and C, you may use calculus
to make a correct calculation of the directly
measured separation between the innermost
shell and the one just outside it.

E. Was the contractor’s staff relativist correct in
predicting an infinite number of shells for this
contract, even using the method described in
the fourth paragraph of this exercise?

5. A Dilute Black Hole

Most descriptions of black holes are so apocalyptic
that one gets the impression that black holes are
extremely dense objects. Of course, a black hole is
not dense throughout, because all matter quickly
plunges to the central crunch point. Still, one can
speak of an artificial “average density,” defined, say,
by the total mass M divided by a spherical Euclidean
volume of radius r = 2M. In terms of this definition,
general relativity does not require that a black hole
have a large average density. In this exercise you
design a black hole with average density equal to
that of the atmosphere you breathe on Earth, approx-
imately 1 kilogram per cubic meter. Do all
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calculations to one-digit accuracy—we want an
estimate!

A. From the Euclidean equation for the volume of

a sphere
43
V= §1U'

find an equation for the mass M of air con-
tained in a sphere of radius , in terms of the
density p kilograms/meter’. Use the conver-
sion factor G/c2 =7 x 10728 meter/kilogram
(Section 6) to express this mass in meters. (The
volume formula used here is for Euclidean
geometry, and we are applying it to curved
space geometry—so this exercise is only the
first step in a more sophisticated analysis.)

B. Set r = 2M for the Schwarzschild radius of the
horizon of this black hole. What is the numeri-
cal value of 2M in meters? (Hint: Carry all
units along to be sure you have not made a
minor error somewhere.)

C. Compare your answer to the radius of our
solar system. The mean radius of the orbit of
the planet Pluto is approximately 6 x 10'?
meters.

D. How many times the mass of our Sun is the
mass of your designer black hole?

6. Astronaut Stretching
According to Newton

As you plunge feet first radially inward toward the
center of a black hole, you are not physically stress-
free and comfortable! True, you detect no overall
“force of gravity” accelerating you inward. But you
do feel a tidal force pulling your feet and head apart
and additional forces squeezing your middle inward
from the sides like a high-quality corset. When do
these tidal forces become uncomfortable? We cannot
yet answer this question using general relativity, but
Newton is available for consultation, so let’s ask him.
One-digit accuracy is plenty for numerical estimates
in this exercise.

A. Cleaning up the formula. Let g ony be the local
acceleration of gravity in conventional units
(meters per second squared). (Here and hereaf-
ter “conv” is always a subscript.) Set m tumes
Scony €qual to the gravitational force in New-
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ton’s law of gravitation (equation [2], page
2-13). In Newton's law use a subscript My to
remind yourself that the mass of the center of
attraction is in kilograms. Now cancel m (mass
of your own body), divide through by ¢?, con-
vert units, and show that the resulting formula
for the local acceleration of gravity is g = M/r?.
Here M is in meters (equation [5], page 2-14)
and ¢ = gconv/ ¢? is also in geometric units:
meter/meter? = meter 3. (Note: Exponent is
minus one).

B. Convert g o,y at Earth’s surface to geometric
units to show that it has the approximate value
$Earth = 10726 meter™. Use this value in the
remaining parts of this exercise.

What does “uncomfortable” mean? So that we all
concur, let us say that you are uncomfortable when
your head is pulled upward with half the usual force
of gravity on Earth, your middle is in free-float and
comfortable (except for being squeezed from the
sides), and your feet are pulled downward with half
Earth’s usual force of gravity on them. In other
words, the difference in gravitational acceleration
between your head and feet as you fall is equal to the
acceleration of gravity as it would be measured at
Earth’s surface: dg = ggarth-

C. Take the derivative with respect to r of the local
acceleration g found in part A to obtain an
expression dg/dr in terms of M and r.

D. How massive a black hole do you want to fall
into? Suppose M = 10 kilometers = 10 000
meters, or about seven times the mass of our
Sun. Assume your head and feet are 2 meters
apart. Find the radius r,,y,, in meters, at which
you become uncomfortable according to our
criterion. Compare this radius with that of
Earth, namely 6.4 x 10° meters.

E. Will your discomfort increase or decrease or
stay the same as you continue to fall inward
toward the center from this radius?

F. Suppose you fall from rest at infinity. How fast
are you going when you reach the radius of
discomfort ryyp, according to Newton?
Express this speed as a fraction of the speed of
light.

G. Taking the velocity in part F to be constant
from that radius to the center, find the corre-

Exercise 7 General Relativity over Chesapeake Bay

sponding (maximum) time in meters to travel
from 7., to the center, according to Newton.
This will be the maximum time lapse during
which you will be—er—uncomfortable.

H. What is the maximum time of discomfort,
according to Newton, expressed in seconds?

Note 1:If you carried the symbol M for the black hole
mass through these equations, you found that it can-
celed out in expressions for the maximum time lapse
of discomfort in parts G and H. In other words, your
discomfort time is the same for a black hole of any
mass when you fall from rest at infinity—according
to Newton. This equality of discomfort time for all M
is also true for the general relativistic analysis.

Note 2: The wristwatch time lapse from any radius to
the center according to general relativity is analyzed
in Chapter 3 and in an exercise of that chapter. The
“ouch time” is examined more thoroughly in Section
7 of Project B, Inside the Black Hole.

7. General Relativity over
Chesapeake Bay

On November 22, 1975, a U.S. Navy P3C antisubma-
rine patrol plane flew back and forth for 15 hours at
an altitude of 25 000 to 30 000 feet (7600 to 10 700
meters) over Chesapeake Bay in an experiment orga-
nized by Carroll Alley and collaborators. The plane
carried atomic clocks that were compared by laser
pulse with identical clocks on the ground. During the
period of flight, the plane’s clock gained 47.2 nano-
seconds (47.2 X 107 seconds) compared with the
ground clock. You have the tools to analyze this time
difference. Take 9000 meters as an average altitude.
Assume that the plane flew very slowly, just above
stalling speed, so that time dilation due to relative
speed can be neglected. (In fact, time stretching
accounted for about 10 percent of the general relativ-
ity effect.) Call the clock on the surface of Earth the
shell clock. Let tgp,¢); be the time the airplane has been
“on station” at 9000 meters altitude and let f be the
corresponding far-away time. From equation [19],

p\172
tper = (1-28)
shell r

where t is far-away time.
A. Take the derivative of the expression for tgpe)

with respect to 7. (The plane’s altitude k is
much smaller than the radius r of Earth, so
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ignore h in places where it is added to r.) Use
equations [12] and [19] to convert the resulting
dr to drgep and the resulting £ to te).  Show
that the result gives the following relation
between ditgpqo and drghen:

g = M9 shent’shel 1
hell =
S| r2 (l _ 21,1]1/2
r

B. Further approximations: Neglect any differ-
ence between the reduced circumference r of
Earth and its radius 7 = 6.4 X 10° meters as we
may measure it using one or another method
of Euclidean surveying. With this value of r
and the mass of Earth in units of length,

M = 4.4 x 102 meters (Section 6), show that the
term 2M/r is completely negligible compared
with unity so that the last factor in the equa-
tion above can be set equal to unity. Let

drshel = b, the altitude of the airplane above
the surface of Earth. The result is

g o (MA
shenn = 3 Jshell
r

C. Now substitute values for M and r into this
approximate equation and let h = 9000 meters.
The quantity in brackets is unitless, so we can
express fghe and dighe)p in any units we wish,
as long as they are both in the same units. Let
tshell = 15 hours, compute dig;, the difference
in readings between earthbound and airplane
clocks, and convert the result to units of nano-
seconds = 10~ seconds. Show that the
difference in time between the Earth clock and
the clock carried by the P3C patrol plane after
15 hours in the air should be approximately 50
nanoseconds, as observed.

Reference: Taylor and Wheeler, Spacetime Physics, page
133, which has further references.

8. Black Hole Area Never Decreases

Stephen Hawking discovered that the area of the
horizon of a black hole never decreases, this area cal-
culated using the Euclidean formula A = 4nr%.
Investigate the consequences of this discovery under
alternative assumptions described in parts Aand B
that follow.

Note 1: The rule that the area of a black hole’s horizon
does not decrease is related in a fundamental way to
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the statistical law that the disorder (the so-called
entropy) of an isolated physical system does not
decrease. See Thorne, Black Holes and Time Warps,
pages 422-426 and 445446, and Wheeler, A Journey
into Gravity and Spacetime, pages 218-222.

Note 2: The exception to Hawking’s discovery is
Hawking radiation, which ever so slowly milks
energy and mass from the black hole and so
decreases the area of its horizon—see the box on
page 2-4.

Assume that two black holes coalesce. One of the ini-
tial black holes has mass M and the second has mass
2M.

A. Assume, first, that the masses of the initial
black holes simply add to give the mass of the
resulting larger black hole. Then what is the
r-value of the horizon of this combined black
hole as a multiple of one of the initial masses
M? What is the area of the resulting horizon?

B. Now make a different assumption about the
final mass of the combined black hole. Listen
to Wheeler and Ford (Geons, Black Holes, and
Quantum Foam, page 300):

If two balls of putty collide and stick together, the
mass of the new, larger ball is the sum of the masses
of the balls that collide. Not so for black holes. If two
spinless, uncharged black holes collide and coa-
lesce—and if they get rid of as much energy as they
possibly can in the form of gravitational waves as
they combine—the square of the mass of the new,
heavier black hole is the sum of the squares of the
combining masses. That means that a right triangle
with sides scaled to measure the masses of two black
holes has a hypotenuse that measures the mass of
the single black hole they form when they join. Try
to picture the incredible tumult of two black holes
locked in each other’s embrace, each swallowing the
other, both churning space and time with gravita-
tional radiation. Then marvel that the simple rule of
Pythagoras imposes its order on this ultimate cos-
mic maelstrom.

Following this more realistic scenario, find the
r-value of the resulting horizon when black
holes of masses M and 2M coalesce. What is
the area of the horizon of the resulting black
hole?
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C. Do the results of both part A and part B follow
Hawking’s rule that the horizon’s area of a
black hole does not decrease?

9. Zeno's Paradox

Zeno of Elea (born about 495 B.C., died about 430
B.C.) developed several paradoxes of motion. One of
these states that a body in motion can reach a given
point only after having traversed half the distance to
that point. But before traversing this half it must
cover half of that half, and so on ad infinitum. Conse-
quently the goal can never be reached.

A student raises a similar paradox about crossing the
horizon. She refers us to the relation between drge)
and dr given by equation [D] in the back of the book:

dr

| M 1/2
(1-2¥)

dropen = (D]

She then asserts, “As r approaches 2M, the denomi-
nator of equation [D] goes to zero, so the distance
between adjacent shells becomes infinite. Even at the
speed of light, an object cannot travel an infinite dis-
tance in a finite time. Therefore nothing can travel
across the horizon mto the black hole.” Analyze and
resolve this paradox using the following argument or
some other method.

As usual in relativity, the question is: Who measures
what? In order to cross the horizon, the plunging
object must pass through every shell outside the
horizon. Each shell observer measures the incremen-
tal proper distance drg}e) between his shell and the
one below it. Then the observer on that next-lower

Exercise 9. Zeno's Paradox

shell measures the incremental proper distance
between that shell and the one below it. By adding
up these increments, we can establish a measure of
the “summed proper distances measured by shell
observers from r to rp,” through which the object

must move to reach the horizon.

Integrate equation [D] from some lower radius r; to
an upper radius r,, both outside the horizon. You
can put the equation into a form to yield a result
found in a table of integrals, as follows:

Summed proper
distances measured
by shell observers
fromrytor,

4]

Hl,,

= r"Yr-2m) P 2Mn (P 4 (r -2y

Here In is the natural log function and the expression
is valid only for radii greater than that of the horizon.
Enter your values for r and r, and use the property
of the natural log that InB — InA = In(B/A). (Using this
property also makes the argument of the natural log
a unitless number, as it must be.)

Now let r; —> 2M. Show that the resulting distance
from r; to r, is finite as measured by the collection of
collaborating shell observers. This is true even
though the right side of [D] becomes infirute at
r=2M. As aresult, the group of shell observers will
agree among themselves that someone moving
radially inward can traverse this distance in a finite
time.
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Project A

Global Positioning
System

There is no better illustration of the unpredictable payback of fundamental
science than the story of Albert Einstein and the Global Positioning
System [GPS] . . . the next time your plane approaches an airport in bad
weather, and you just happen to be wondering “what good is basic
science,” think about Einstein and the GPS tracker in the cockpit, guiding
you to a safe landing.

—Clifford Will

1 Operation of the GPS

Do you think that general relativity concerns only events far from com-
mon experience? Think again! Your life may be saved by a hand-held
receiver that “listens” to overhead satellites, the system telling you where
you are at any place on Earth. In this project you will show that this sys-
tem would be useless without corrections provided by general relativity.

The Global Positioning System (GPS) includes 24 satellites, in circular
orbits around Earth with orbital period of 12 hours, distributed in six
orbital planes equally spaced in angle. Each satellite carries an operating
atomic clock (along with several backup clocks) and emits timed signals
that include a code telling its location. By analyzing signals from at least
four of these satellites, a receiver on the surface of Earth with a built-in
microprocessor can display the location of the receiver (latitude, longi-
tude, and altitude). Consumer receivers are the size of a hand-held
calculator, cost a hundred dollars or so, and provide a horizontal position
accurate to approximately 25 meters. Originally the satellite signals con-
tained a “jitter” introduced to make civilian receivers intentionally
inaccurate. Military receivers could decode and eliminate this jitter. In the
spring of the year 2000 this jitter was eliminated. GPS satellites are gradu-
ally revolutionizing driving, flying, hiking, exploring, rescuing, map
making, and the study of geological motions of Earth’s crust.

Airports use one GPS receiver at the control tower and one on the

approaching airplane. The two receivers are close together, which cancels
errors due to propagation of signals through the upper atmosphere.
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Operation of the Global Positioning System

The goal of the Global Positioning System (GPS) is to deter- Of course there is a wrinkle The clock in your hand-held
mine your position on Earth in three dimensions east-west, receiver is not nearly so accurate as the atomic clocks carried
north-south, and vertical (longitude, latitude, and altitude) in the sateliites For this reason, the signal from a fourth
Signals from three overhead satellites provide this informa- overhead satellite is employed to check the accuracy of the

tion Each satellite sends a signal that codes where the ) A
satellite is and the time of emission of the signal The clock in your hand-held receiver This fourth signal enables

receiver clock times the reception of each signal, then sub- the hand-held receiver to process GPS signals as though it
tracts the emission time to determine the time lapse and contained an atomic clock

hence how far the signal has traveled (at the speed of light)
This is the distance the satellite was from you when it emit-

ted the signal In effect, three spheres are constructed from Signals exchanged by atomic clocks at different altitudes are

these distances, one sphere centered on the emission point subject to general relativistic effects described using the
of each satellite You are located at the single point at which Schwarzschild metric Neglecting these effects would make
the three spheres intersect the GPS useless This project analyzes these effects

As a result, measurement of the relative position of control tower and air-
plane is accurate to 1 or 2 meters. This configuration of receivers permits
blind landing in any weather. Runway collisions can also be avoided by
using this system to monitor positions of aircraft on the ground (a task
impossible for the electromagnetic signals of radar).

The timing accuracy required by the GPS is so great that general relativis-
tic effects are central to its performance. First, clocks run at different rates
when they are at different distances from a center of gravitational attrac-
tion. Second, both satellite motion and Earth rotation must be taken into
account; neither the moving satellite nor Earth’s surface corresponds to
the stationary spherical shell described in Chapter 2. In this project you
will investigate these effects.

Your challenge in this project (and in all later projects) is to respond to the
numbered queries. (Query 1 for this project appears on page A-4.) Typi-
cally, a query contains several related questions. Answer the queries in
order, or as assigned to you, or skip to those that interest you the most.

2 Stationary Clocks

Earth rotates and is not perfectly spherical, so, strictly speaking, the
Schwarzschild metric does not describe spacetime above Earth’s surface.
But Earth rotates slowly and the Schwarzschild metric is a good approxi-
mation for purposes of analyzing the Global Positioning System.

2

2 2MN 2 dr

r

—r*d¢’ [1]

Apply this equation twice, first to the orbiting satellite clock and second to
a clock fixed at Earth’s equator and rotating as Earth turns. Both the Earth
clock and the satellite clock travel at constant radius around Earth’s center.
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So dr = 0 for each clock. Divide the Schwarzschild metric through by the
square of the far-away time df? to obtain, for either clock,

SRR

Here dt is the wristwatch time between ticks of either clock and

v =rd¢/dt is the tangential velocity along the circular path of the same
clock as measured by the bookkeeper using far-away time measurement.
Write down equation [2] first for the satellite, using 7 = 7gatelliter ¥ = Usatelliter
and dt = dt;iepi1e between ticks of the satellite clock, second for the Earth
clock, using r = rgarths U = UEapth and time d7t = dig, 4, between ticks of the
Earth clock, all these for the same time lapse dt on the far-away clock.
Divide corresponding sides of these two equations to obtain the squared
ratio of time lapses recorded on the satellite and earth clocks:

1 2M 2
dr . \? Ty Usateliite
satellite | _ satellite [3]
dt - 2M 2
Earth - -
1 r UEarth
Earth

The general relativistic effects we study are small. How small? Small com-
pared to what? When must one use exact general relativistic expressions?
When are approximations good enough? These questions are so central to
the analysis that it is useful to begin with a rough estimate of the size of
the expected effects, not worrying for now about the crudeness of this
approximation.

Start by ignoring the motions of satellite clock and Earth surface clock.
Ask instead what the difference in clock rates will be for stationary clocks
at these two radii. Then equation [3] can be written

(1 M )1/2
1t tellite - T satellite _ (1 _2M )1/2(1 _2M )-1/2 (4]
thanh (1 _ M )1/2 T satellite TEarth
"Earth

You will show in Query 7 that the radius of a 12-hour circular orbit is
about 26.6 x 10° meters from Earth'’s center. You will find values for the
radius and mass of Earth among the constants inside the back cover.

We now make first use of an approximation that appears repeatedly in this
project:

(1+d)"=1+nd  provided ldl«1  and lndl <1 [5]

Here the two vertical lines mean “absolute value.”
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Approximation [5] is accurate for any real (positive or negative, integer or
fractional) value of the exponent n provided the absolute values of d and
nd are both very much less than unity. Equation [5] is used so often in this
book that it is rewritten for general reference as equation [E] on the last
page of the book.

QUERY 1 Formula: Clock rate difference due to height. Apply approximation [5] to
the two parenthetical expressions on the right of equation [4]. Multiply
out the result to show that

dt . ..
dsatelllte ~1— M + M M M [6. for v = 0]
!Earth Tsatellite "Earth "satellite "Earth
QUERY 2 Improved approximation. What are the approximate values of M/rgqp

and M/rsaieliite? Make an argument that the last term on the right of [6]
can be neglected in comparison with the other terms on the right, leading
to the result for stationary satellite and Earth clocks:

dt .
dsateillte ~1- M + M [7. for v = 0]
!Barth Tsatellite " Earth
QUERY 3 Numerical approximation. Substitute numbers into equation [7] and find

the numerical value of b in the following equation:

dt ;

—EE a1 +b [8. for v = 0]
!Earth

The number represented by b in equation [8] is an estimate of the frac-
tional difference in rates between stationary clocks at the positior of the
satellite and at Earth’s surface. Is this difference negligible or important to
the operation of the GPS? Suppose the timing of a satellite clock is off by 1
nanosecond (1079 second). In 1 nanosecond a light signal (or a radio wave)
propagates approximately 30 centimeters, or about one foot. So a differ-
ence of, say, hundreds of nanoseconds will create difficulties.

QUERY 4 Synchronization discrepancy after one day. There are 86,400 seconds in
one day. To one significant figure, the satellite clocks and Earth clock go
out of synchronism by about 50 000 nanoseconds per day due to their dif-
ference in altitude alone. Find the correct value to three-digit accuracy.

The satellite clock will “run fast” by something like 50 000 nanoseconds
per day compared with the clock on Earth’s surface due to position effects
alone. Clearly general relativity is needed for correct operation of the Glo-
bal Positioning Satellite System! On the other hand, the fractional
difference between clock rates at the two locations (at least the fraction
due to difference in radius) is small.
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In addition to effects of position, we must include effects due to motion of
satellite and Earth observer. In which direction will these effects influence
the result? The satellite clock moves faster than the clock revolving with
Earth’s surface. But special relativity tells us that (in an imprecise sum-
mary) “moving clocks run slow.” This prediction agrees with the negative
sign of 72in equations [2] and [3]. Therefore we expect the effect of motion
to reduce the amount by which the satellite clock runs fast compared to the
Earth clock. In brief, when velocity effects are taken into account, we
expect the satellite clock to run faster than the Earth clock by less than the
estimated 50 000 nanoseconds per day. We will need to check our final
result against this prediction.

3 Clock Velocities

Now we need to take into account the velocities of Earth and satellite
clocks to apply the more complete equation [3] to our GPS analysis. What
are the values of the clock velocities vgapn and Ugatelite in this equation,
and who measures these velocities? For the present we find the simplest
measure of these velocities, using speeds calculated from Euclidean geom-
etry and Newtonian mechanics. Newton uses a fictional “universal” time
t, so Newtonian results will have to be checked later in a more careful
analysis.

QUERY 5 Speed of a clock on the equator. Earth’s center is in free float as Earth

With respect to Earth’s center, what is the speed vg ¢, Of a clock at rest
on Earth’s surface at the equator? Use Newtonian "universal” time t.
Express your answer as a fraction of the speed of light.

orbits Sun and rotates on its axis once per day (once per 86 400 seconds).

What is the value of the speed vg,ie Of the satellite? Newton tells us that
the acceleration of a satellite in a circular orbit is directed toward the cen-
ter and has the magnitude Ucony2/7, where Uy is measured in
conventional units, such as meters per second. The satellite mass m multi-
plied by this acceleration must be equal to Newton’s gravitational force
exerted by Earth:

2
Gngm MU onv 9
: K [9]
Tsatellite satellite

Equation [9] provides one relation between the velocity of the satellite and
the radius of its circular orbit. A second relation connects satellite velocity
and orbit radius to the period of one revolution. This period T is 12 hours
for GPS satellites:

_ 2ﬂ:rsatellite [10]

vconv - T

seconds
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QUERY 6 Geometric units. In equations [9] and [10] convert the mass M to units
of meters and convert satellite speed to a fraction of the speed of light.
Leave T in units of seconds. Then eliminate the radius rg,te)iite between
these two equations to find an expression for vga¢ejite in terms of M and
Tseconds and numerical constants.

4 The Final Reckoning

QUERY 7 Satellite radius and speed. Find the numerical value of the speed vg,¢giite
(as a fraction of the speed of light) for a satellite in a 12-hour circular orbit.
Find the numerical value of the radius ry,ejite for this orbit—according to
Newton and Euclid.

Now we have numerical values for all the terms in equation [3] and can
approximate the difference in rates for satellite clocks and Earth clocks.

QUERY 8 Formula: Clock rate difference. Take the square root of both sides of equa-
tion [3]. Do not substitute numerical values yet. Rather, for both numerator
and denominator in the resulting equation, use the approximation [5], as
follows: In the numerator, set

2M 2
d=- r T Usatellite [11]
satellite

In the denominator, use the same expression for d but with “Earth” as the
subscripts. Carry out an analysis similar to that in Query 2 to preserve only
the important terms. Show that the result is

2 2
dt .. Vool v
dsatelllte ~1— M _ satellite + M + Earth [12]
'Earth " satellite 2 Earth 2
QUERY 9 Numerical clock rate difference. Substitute values for the various quantities

in equation [12]. Result: To two significant figures, the satellite clock
appears to run faster than the Earth clock by approximately 39 000 nano-
seconds per day. Give your answer to three significant figures.

Section 2 described the difference in clock rates due only to difference in
altitude. We predicted at the end of Section 2 that the full general relativis-
tic treatment would lead to a smaller difference in clock rates than the
altitude effect alone. Your result for Query 9 verifies this prediction. In the
following section we examine some of the other approximations made in
the analysis.

A practical aside: When Carroll O. Alley was consulting with those who
originally designed the Global Positioning System, he had a hard time
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convincing them not to apply twice the correction given in equation [12]:
first to account for the difference in clock rates at the different altitudes
and second to allow for the blue shift in frequency for the signal sent
downward from satellite to Earth. There is only one correction; moreover
there is no way to distinguish what is the “cause” of this correction. Hear
what Clifford Will has to say on the subject, as he describes the difference
in rates between one clock on a tower and a second clock on the ground:

A question that is often asked is, Do the intrinsic rates of the emitter and
receiver or of the clock change, or is it the light signal that changes frequency
during its flight? The answer is that it doesn’t matter. Both descriptions are
physically equivalent. Put differently, there is no operational way to distin-
guish between the two descriptions. Suppose that we tried to check whether the
emitter and the receiver agreed in their rates by bringing the emitter down from
the tower and setting it beside the receiver. We would find that indeed they
agree. Similarly, if we were to transport the receiver to the top of the tower and
set it beside the emitter, we would find that they also agree. But to get a gravita-
tional red shift, we must separate the clocks in height; therefore, we must con-
nect them by a signal that traverses the distance between them. But this makes
it impossible to determine unambiguously whether the shift is due to the clocks
or to the signal. The observable phenomenon is unambiguous: the received sig-
nal is blue shifted. To ask for more is to ask questions without observational
meaning. This is a key aspect of relativity, indeed of much of modern physics:
we focus only on observable, operationally defined quantities, and avoid unan-
swerable questions.

5 Justifying the Approximations

We calculated the speed of a satellite in circular orbit and the speed of the
clock on Earth’s surface using Euclidean geometry and Newtonian
mechanics with its “universal time.” Now, the numerator in each expres-
sion for speed, namely rd¢, is the same for Euclidean geometry as for
Schwarzschild geometry because of the way we defined r in Schwarz-
schild spacetime. However, the time df in the denominator of the speed is
not the same for Newton as for Schwarzschild. In particular, the deriva-
tion of equation [3] assumes that the speeds in that equation are to be
calculated using changes in far-away time dt. Think of a spherical shell
constructed at the radius of the satellite orbit and another “shell” that is
the surface of Earth. Then our task boils down to estimating the difference
between far-away time dt and shell time dtg,); in each case, which can be
done using our equation [C] in Selected Formulas at the end of this book.

M jmd: [13]

dtghey = (1 -
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QUERY 10 General-relativistic times vs. Newton’s universal tirne. For comparison,
equate Schwarzschild far-away time with Newton’s universal time and see
what difference there is between this time and “shell time” either at the
radius of the satellite orbit or the surface of Earth. Use equation [13] and
the approximation equation [5] to set up an approximate relation
between two measures of velocity in each case:

rdo _rd¢

(1-q) [14]
dit dig,

where g is a small number. Find an algebraic expression for g. Then find
numerical values of g both for Earth's surface and at the orbital radius of
the satellite. Use these results to estimate the difference that changed
velocity values will make in the numerical resuit of Query 9. Is this differ-
ence significant?

Two Notes

Note 1: The approximate analysis in this project also assumed that the
radius rg,eepite Of the circular orbit of the satellite is correctly computed
using Newtonian mechanics. The Schwarzschild analysis of circular orbits
is carried out in Chapter 4. When you have completed that chapter, you
will be able to show that this approximate analysis is sufficiently accurate
for our purposes.

Note 2: Our analysis assumed the speed vg,y, of the Earth clock to be that
of the speed of the equator. One might expect that this speed-dependent
correction would take on different values at different latitudes north or
south of the equator, going to zero at the poles where there is no motion of
the Earth clock due to rotation of Earth. In practice there is no latitude
effect because Earth is not spherical; it bulges a bit at the equator due to its
rotation. The smaller radius at the poles increases the M/rg i, term in
equation [12] by the same amount that the velocity term decreases. The
outcome is that our calculation for the equator applies to all latitudes.

6 Summary

Ajunior traveler, making her first trip by train from the United States into
Mexico, sees the town of Zacatecas outside her window and reassures her-
self by the marginal note in the guidebook that this ancient silver-mining
town is 1848 kilometers from San Diego, California, and 1506 kilometers
from New Orleans, Louisiana. On a surface, two distances thus suffice to
fix location. But in space it is three. Find those three distances, to each of
three nearest satellites of the Global Positioning System, by finding the
time taken by light or radio pulse to come from each satellite to us. Simple
enough! Or simple as soon as we correct, as we must and as we have, for
the clock rates at each end of the signal path. (1) General relativity predicts
that both the relative altitudes and the relative speeds of satellite and
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Earth clocks affect their relative rates. (2) The clock in the hand-held
receiver on Earth is far less accurate than the atomic clock in each satellite,
so the signal from a fourth satellite is employed to correct the Earth clock.
With these corrections, we can use the Global Positioning System to locate
ourselves anywhere on Earth with an uncertainty of only a few meters.
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CHAPTER 3
Plunging

If you will not take the answer too seriously, and consider it only as a kind
of joke, then I can explain [general relativity] as follows. It was formerly
believed that if all material things disappeared out of the universe, time and
space would be left. According to the relativity theory, however, time and
space disappear together with the things.

— Albert Einstein

1 The Principle of Extremal Aging
“Go straight!” spacetime shouts at the stone.
The stone’s wristwatch verifies that its path is straight.

All the exotic talk about curved spacetime geometry near stars and black
holes leaves us unprepared for a revelation about motion right at home:
Schwarzschild geometry correctly describes the motions of baseballs and
stones near the surface of Earth. Even more surprising: Analyzing trajecto-
ries of near-Earth objects using Schwarzschild geometry prepares us to go
back and describe trajectories around stars, white dwarfs, neutron stars,
and black holes.

Throw a stone and let it fall back to Earth. The stone follows a parabolic
path in space, the solid curve in the diagram to the left in Figure 1. At the
beginning and end of this path, fix two events in space and time: Event 1,
initial launch; Event 2, final impact. Why does the stone follow the partic-
ular path in space between Event 1 and Event 2, shown as a solid line in
Figure 1? Why not hurry faster along a higher parabolic path, the upper
dashed line in Figure 1, to get back in time for the appointed impact? Or
move slower along a lower parabolic path, the lower dashed line? Why
not some entirely different trajectory between these two events? What
command does spacetime give to the stone, telling it how to move?

Spacetime shouts, “Go straight!” The free stone obeys. What does
“straight” mean? Straight with respect to what? We know the answer: The
path of the stone is straight in a free-float frame. Ride in a free-float frame
that rises and falls vertically in concert with the stone, as shown in the
right diagram of Figure 1. With respect to the free-float frame, the stone
moves on a straight path during the entire trip between launch (Event 1)
and impact (Event 2).

Not only must the trajectory of the stone be straight in an inertial frame,
but the stone must also move with constant speed as measured in that
frame. Figure 2 shows a plot of the position of the stone (horizontal axis)
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Free float up, then . . .

. . . free float down

Figure 1 Parabolic path of a stone (solid line, left diagram) connecting launch (Event 1) and
impact (Event 2). Dashed lines show alternative spatial paths between these two events,
alternatives that the stone does not take. (Why not?) On the right is a free-float frame that
rises and falls with the stone. With respect to this free-float frame, the stone follows a straight
path, Plotting its motion as a function of time yields a straight worldline (Figure 2).

>

X

Figure 2 Spacetime diagram of the stone’s worldline in the free-float frame that rises and falls
with the stone (right diagram of Figure 1). This worldline is straight between launch (Event 1) and
impact (Event 2) Intermediate clock ticks are shown as event points along the worldline. Curved
dashed lines between events 1 and 2 represent alternative worldlines of smalier aging, alternative
worldlines that the stone does not take. (I said, Why not?!)

3-2
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as time passes (vertical axis). The line traced out by the motion of the stone
as it changes spatial location as a function of time is called a worldline.
Constant velocity results in a straight worldline. Nature’s command to the
stone in its general form is “Follow a straight worldline in a local inertial
frame.” No description could be simpler.

“Follow a straight worldline!” is the command by which spacetime grips
mass, telling it how to move. The stone carries a wristwatch. During the
trip the stone’s wristwatch ticks off the time lapse between events of
launch and impact. Between Event 1 and Event 2 in Figure 2, the wrist-
watch ticks off intermediate events along the worldline of the particle in
the spacetime diagram of the free-float frame (event points on the straight
worldline of Figure 2).

Stone carries a
wristwatch

More About the Black Hole

The term “black hole" was adopted in 1967 (by John
Wheeler), but the cancept is old As early as 1783, John
Michell argued that light must “be attracted in the same
manner as all other bodies” and therefore, if the attracting
center is sufficiently massive and sufficiently compact, “all
light emitted from such a body would be made to return
toward it.” Pierre-Simon Laplace came to the same conclu-
sion in 1795, apparently independently, and went on to
reason that “it is therefore possible that the greatest lumi-
nous bodies in the universe are on this very account
invisible.”

Michell and Laplace used Isaac Newton's "action at a dis-
tance” theory of gravitation in analyzing escape of light from
or its capture by an already existing compact object. (See the
box “Newton Predicts the Horizon of a Black Hole?” on page
2-22.) But is such a static compact object possible? In 1939,
J Robert Oppenheimer and Hartland Snyder published the
first detailed treatment of gravitational collapse within the
framework of Einstein’s theory of gravitation Their paper
predicts the central features of nonspinning black holes
described in this book.

Ongoing theoretical study has shown that the black hole is
the result of natural physical processes. A nonsymmetric col-
lapsing system is not necessarily blown apart by its
instabilities but can quickly—in seconds!—radiate away its
turbulence as gravitational waves and settle down into a sta-
ble structure. In its final form a black hole has three
properties and three properties only; mass, charge, and
angular momentum. No other property remains of anything
that combined to form the black hole, from pins to palaces.
This absence of all detail beyond these three properties has
led to the saying (also by Wheeler) “The black hole has no
hair ”

An uncharged nonspinning black hole is completely
described by the Schwarzschild metric (the generalization of

equation [1] to three spatial dimensions) derived in 1915 by
Karl Schwarzschild from Einstein’s equations for general rela-
tivity. The energy of a nonspinning black hole is not available
for use outside its horizon. For this reason, a nonspinning
black hole is called a “dead black hole.”

In contrast to the spinlessness of a dead black hole, the typi-
cal black hole, like the typical star, has a spin, sometimes a
great spin. The energy stored in this spin, moreover, is avail-
able for doing work for driving jets of matter and for
propelling a spaceship. In consequence, the spinning black
hole deserves and receives the name “live black hole “ It has
an angular momentum of its own

A spinning black hole—or any spinning mass, it turns out—
drags around with it spacetime in its vicinity This “frame-
dragging effect” is unquestionably measurable, even near
our spinning Earth, by techniques now under development
One technique employs a small gyroscope (a quartz ball 4
centimeters in diameter housed in Gravity Probe B, soon to
be launched); the other uses a large " gyroscope” (a satellite
orbiting Earth). In both cases the axis of the spinning gyro-
scope is dragged around by a fraction of a second of arc per
year. To measure this tiny precession against background
effects is the challenge. It will be exciting to see for the first
time this new general relativistic effect. Theory predicts that
near a rapidly spinning black hole, frame-dragging effects
can be large, even inexorable, dragging along nearby space-
ships no matter how strong their rockets

The metric for an uncharged spinning black hole was derived
by Roy P. Kerr in 1963, (See Project F, The Spinning Black
Hole.) In 1965 Ezra Theodore Newman and others solved the
Einstein equations for the spacetime geometry around a
charged spinning black hole, Subsequent theorems have
proved that around a steady-state black hole of specified
mass, charge, and angular momentum, Kerr-Newman geom-
etry is the only solution to Einstein’s field equations
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Natural motion has
maximum wristwatch time.

" Aging” measures total
elapsed wristwatch time.

Natural motion implies
extremal aging.

Einstein: There is no
“gravitational force”!

How is the straight worldline different from all other possible worldlines
that connect Event 1 and Event 2 (dashed lines in Figure 2)? We know the
answer to that question too, from the Principle of Extremal Aging: The
actual worldline has the longest wristwatch time of all possible worldlines
between these two events. The free stone progresses uniformly from one
event to the other, without jerks, jolts, or accelerations, thereby recording
the longest possible time on its wristwatch between these two events. In
contrast, a frantic traveler starting at the same Event 1 races at near-light
speed to Moon, then streaks back in time for obligatory Event 2. The fran-
tic traveler’s wristwatch reads less elapsed time between Events 1 and 2
than does the wristwatch of the relaxed stone. The essential lesson of the
Twin Paradox (Section 4 of Chapter 1) is that the natural motion between
two events has maximum wristwatch time.

No frantic trip as far as Moon is necessary to demonstrate the basic princi-
ple: any deviation whatsoever from the straight worldline, no matter how
small, leads to a shorter elapsed wristwatch time. The stone’s wristwatch,
accurate beyond all human timepieces, detects this difference and traces
out the worldline of maximum wristwatch time. Wonder of wonders, the
stone sniffs out and follows the worldline of maximum proper time with-
out any wristwatch at all! How? Simply by going straight in local
spacetime.

We use the word aging to describe the total elapsed proper time—the
elapsed wristwatch time—along any worldline a particle takes from some
initial event to another final event. Then the actual worldline the stone
takes through spacetime is the worldline of maximal aging. Spacetime’s
command to the stone can be rephrased: “Follow the worldline of maxi-
mal aging!” From this simple command flows every description of motion
in the remainder of this book. Amen.

Well, not quite “Amen.” As described in Section 4 of Chapter 1, it is possi-
ble that the stone will follow a worldline not of maximal aging but of
minimal aging. A noun that covers both cases is extremum. The correspond-
ing adjective is extremal. The technical term for such a worldline is
geodesic. To cover this unusual case, from now on we shift from maxi-
mum and maximal to the noun extremum and the adjective extremal. The
Principle of Extremal Aging summarizes the result that a free particle fol-
lows a geodesic, a worldline of extremal aging. This fussy detail is
presented for completeness. Tuck it away; all the worldlines we examine
in this book, all our geodesics, result in maximal aging.

Principle of Extremal Aging (repeated): The path that a free particle takes
between two events in spacetime is the path for which the time lapse between
these events, recorded on its wristwatch, is an extremum.

Figures 1 and 2 witness that, for slow speed and weak gravitational inter-
action, Newton’s mechanics correctly describes the contrast between a
straight worldline in spacetime and a curved path in space. So what is
new about relativity? On the theory side, Einstein says that you can do
away entirely with Newton'’s gravitational force, substituting instead the
idea of geodesic: A free test particle moves along a worldline straight in
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spacetime as described with respect to every local free-float frame through
which it passes. But the result may be a path curved in space as described
by global Schwarzschild coordinates.

curved in space, observed using the global Schwarzschild coordinates. You predict
curved satellite orbits around a star, But your whole idea is obviously false; there is no
way that tiny STRAIGHT motions can be added up to give overall CURVED motion!

& You claim that a worldline straight in every local free-float frame can nevertheless be

Straight or curved? The description depends on the reference frame and on what kind
4 of graph you draw. Figure 1 shows, in the left diagram, the curved path in space

traced by a projectile observed with respect to Earth’s surface and, in the right dia-
gram, the straight path in space of the same projectile observed in a free-float frame.
The projectile moves also with constant velocity in the free-float frame, a fact wit-
nessed by the worldline of constant slope in Figure 2—the straight worldline in space-
time The motion so described is as straight as it can possibly be—a geodesic. Yet for
the Earth observer the path in space is curved.

7y

Figure 1 describes motion confined to a local region of spacetime, where
we can switch back and forth between a frame at rest with respect to Earth
and a free-float frame in which spacetime is effectively flat for the flight
time of the stone. In contrast, no free-float frame spans the entire orbit of
Moon around Earth. Yet here too Moon moves straight in the spacetime of
the local free-float frame. It follows a geodesic in spacetime, while its trajec-
tory in space is curved.

General relativity stitches together the quilt squares of local free-float
frames into a full quilt that covers wide regions of spacetime. Einstein pre-
dicts basically the same orbits as Newton does for motion near Earth and
Sun. But even here Einstein corrects small discrepancies, while predicting
motions different from Newton around compact stellar objects (and for
the Universe as a whole!). In all known cases in which the two theories
conflict, experiment verifies the predictions of general relativity. (See
Projects A, C, D, and E.)

2 Rebel Stone and Obedient Computer
Try all possible worldlines between initial and final events.
The free stone chooses the worldline of extremal aging.

Suppose that the stone rebels; let it disobey the command issued by space-
time to follow the worldline of extremal aging. Or, more realistically, think
of an external experimenter grasping the stone and forcing it to move
along a worldline that it would not freely follow. This rebellion, this devia-
tion from the natural, is partial: the stone is present at the two obligatory
ceremonial events of launch and impact. However, the stone does not
keep its appointments with intermediate events along the standard, the
natural, the actual worldline. Perhaps it moves slower than normal
between adjacent points on parts of the spatial path and faster than nor-
mal on other parts of the path. Or perhaps it wanders off the spatial path
entirely, taking some other trajectory. Nevertheless, its wristwatch contin-
ues conscientiously to tick off wristwatch time—accumulated aging—
along this alternative worldline. In due course the stone arrives at the
event of impact. The stone’s penalty for its errant behavior? A mild pun-
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Pick the actual worldline:
the one with extremal
wristwatch time.

ishment! At the event of impact the stone’s wristwatch will read less time
than it would if it had obeyed the command of spacetime (or more time if
the natural worldline happens to be one of minimal aging). The errant
stone’s aging for this worldline will not be extremal among all possible
worldlines between the events of launch and impact.

The disobedient stone shows us how to predict—simply, accurately, pow-
erfully—the worldline of any test object moving freely in any region of
spacetime with known metric, no matter whether the spacetime region is
curved or flat. The recipe could hardly be simpler: “Behave like a large
number of rebellious stones!” Each rebellious stone follows a different
worldline from initial event to final event. Compute the aging along each
alternative worldline—the sum of incremental wristwatch times between
each pair of adjacent events along the candidate worldline. Among all
these candidates, select the worldline with extremal aging. The extremal-
aging worldline is the one taken by the real stone, the stone moving freely
between fixed initial and final events.

motion of the stone if we need to know from the beginning the “fixed" final event on
the worldline—the place and time of impact? The location of that final event is just
what the laws of motion are supposed to TELL us Given the launch point and the ini-
tial velocity, where will the projectile impact? Usually we don‘t even care WHEN it
reaches that point For such an analysis, your prescription is useless

& Your theory is fundamental and interesting—and useless! How can we predict the

"W

No, not useless Think of trapshooting (or skeet shooting), a sport in which we fire
‘ buckshot pellets at a ceramic target (“clay pigeon”) launched by a spring We know
the trajectory of the clay pigeon in advance, or we can predict this trajectory Hitting
the clay pigeon requires taking account of both location and time of impact between
shot and clay pigeon. The tight packet of shotgun pellets must cross the trajectory of
the clay pigeon WHEN the clay pigeon is at that particular point in space In brief, fix
both the space and time location of a final impact event The initial launch event is
the firing of the shotgun. Think of a computer program that selects spacetime events
of launch and impact, tries out various alternative worldlines between the two events,
selects the worldline of extremal aging, and specifies for us the aiming direction (for a
given muzzle velocity) to achieve a hit in terms of the specified events of launch and
impact This procedure yields the same result as the more common analysis that starts
from initial conditions and predicts subsequent motion However, one can also do it
your way" The following two sections use the Principle of Extremal Aging to derive the
expression for energy in curved Schwarzschild geometry These results help to carry
out the more conventional analysis (“predict subsequent motion from data on initial
position and velocity”).

3 Energy in Curved Schwarzschild Geometry
Extremal aging finds energy as a constant of the motion

This section reveals a new expression for the energy of a particle falling
radially into a black hole. This expression grows naturally out of our con-
viction that the Principle of Extremal Aging can be used, along with the
Schwarzschild metric, to find quantities that remain constant during the
motion of an object. In Section 5 of Chapter 1 we derived the expression
for energy of a particle in flat spacetime. Our present derivation is an
extension of that analysis and applies to orbiting as well as plunging parti-
cles. In Chapter 4, the Principle of Extremal Aging leads to a second
constant of the motion, angular momentum. These two constants of
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motion help us to predict motions ranging from the sweep of a comet to
the bending of light by Sun and from the precession of the elliptic orbit of
the planet Mercury to the long “teetering on the verge” that can precede a
satellite’s plunge into a black hole.

Here is the Schwarzschild metric in its timelike form (page 2-19):

2
2 (, 2M\,2 d* 2.2
dr *(1 r)dt - do 1]

r

Think of a stone plunging radially (d¢ = 0) toward the center of attraction,
as shown in Figure 3. The stone emits three flashes rapidly, one after the
other. These three events of flash emission bracket two adjacent segments
of its trajectory. These segments, A and B in the figure, need not be the
same length.

The following analysis examines the wristwatch time and far-away time
separations among these events. For simplicity, replace the differential
notations dt and dt with symbols t and ¢, with the understanding that
these time separations are small. Also, we will be interested only in the
parts of the Schwarzschild metric that contain ¢. With these simplifica-
tions, equation [1] becomes

7% = (1 - %'IJIZ + (terms without ¢) 2]

FIXED initial time O

b b0 do

A A A
FIXED VARIABLE
positions . . i middle time /
B

B B

IT tT IT
FIXED finaltime 7

Figure 3 Three possible times t,, t;, t3 for the intermediate event as a stone carrying a wristwatch
plunges radially inward toward the center of attraction. The stone emits three flashes. All flashes
are fixed in position and the first and last are also fixed in time. We ask: At what time t will the
stone pass through the intermediate dot? Answer this question by demanding that the total
wristwatch time from first to last events be an extremum. From this requirement comes an
expression for the energy as a constant of the motion.

Section 3 Energy in Curved Schwarzschild Geometry
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Principle of Extremal Aging
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Fix all three events in space, and fix the first and last events in far-away
time. Call these first and last times 0 and T, respectively. How can we find
the time ¢ at which the stone will pass the intermediate point and emit the
intermediate flash (Figure 3)? Answer: Choose the intermediate time ¢ that
makes the total wristwatch time 1 from first to last events an extremum.
Use the Principle of Extremal Aging to derive an expression for the energy
of the stone, an energy that remains the same as the stone descends.

The elapsed time for segment A is t. Write down an expression for the
wristwatch time t4 for this segment. Let r, be an appropriate average
value of the radius over segment A. We are going to take a derivative with
respect to the intermediate time ¢, so ignore all terms in the metric that do
not contain time. Then the wristwatch time 1 for the first segment is

1/2
1, = [[1-2M)2 & (terms without ) (3]
A ra

To prepare for the derivative that leads to extremal aging, take the deriva-
tive of T4 with respect to t:

(] _M)[
d‘tA ra

dr [(1 2M} 2 }1/2 B (1_%’)?& 4]

t” + (terms without )
"A

The elapsed time for segment B is T — ¢. Let rg be a suitable average value
of the radius over segment B. The wristwatch time 1g for this segment is

Ty = [(1 —271‘1)(7"_:)2+(tenns without :)]m [5]

B

Again, to prepare for the derivative that leads to extremal aging, take the
derivative of tg with respect to intermediate time ¢:

—(1 -%](T—z)

’s
ar 72
B[R0 CRU T (it |
rs without ¢

Now add the two wristwatch times to obtain a total wristwatch time
between the first and last events:

d‘cB

T = Ty +7Tg (7]

The Principle of Extremal Aging says that the natural motion yields an
extremum for the total wristwatch time t. To find this extremum, take the
derivative of [7] with respect to t, substitute from equations [4] and [6],
then set the result equal to zero:
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dt, dt _
"_T=_A+_B=[|ﬁ%”)i_(1_%](7 N _g 8]
dr dr dr ra/ta rg/ 7Tg
From the last equality in equation [8],
(1 _%)L - (1 _2_M]_(T") 9]
A TA rs TB
Sett =ty and T —t = tg, so equation [9] becomes
t t
(1 _ﬂ]_f* - (1 _21‘_4)_8 [10]
TA /A rg /T8

The expression on the left side of equation [10] depends only on the
parameters of the first segment A; the expression on the right side
depends only on the parameters of the second segment B. This equation
displays a quantity that is constant from one segment of the path to
another. Expressed in words, it says,

advance of advance of
) far-away time . far-away time
effective value of along Ist se . effective value of] | nd .
ng lst segmen alo nd segmen
(1-2M/r) E T Seamel _ | (1-2M/r) Dg - Scem
advance of J advance of
along 1st segment [ . along 2nd segment [
wristwatch time
along Ist segment

[11]

wristwatch time
along 2nd segment

The value of either side of this equation must be independent of which
segment we choose to look at. We have found a constant of the motion, the
same for all segments. Return to the differential notation to identify this
constant of the motion as the energy, which has the same form for any seg-
ment of the path of the plunging particle:

E (1 _2Mjg 2]

m U~ )t
Identification with energy E follows by noting that for large r (far from the
center of attraction where spacetime must be flat), the expression reduces
to that for energy in special relativity, E/m = dt/dt (equation [25] on page
1-11).

Rather than focus on E alone, we usually look at the dimensionless ratio
E/m. Why? For two reasons: (1) We recognize that particles of different
mass m follow the same worldline through spacetime. What counts for
motion is neither the mass of the plunging particle by itself nor its energy
by itself but only the ratio of the two, the energy per unit mass. (2) The
ratio E/m has no units. This encourages us to express E and m in the same
unit, a unit that we may choose according to convenience and the experi-
ment being described. Both numerator and denominator in E/m may be
expressed in kilograms or the mass of the proton or million electron-volts
or the mass of Sun, and so on.

Section 3 Energy in Curved Schwarzschild Geometry
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Same energy expression is
also correct for non-radial
motion of the stone

Energy in general
relativity is not divisible.

"Energy measured by an
observer at infinity”
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Figure 3 implies that the stone is plunging radially. Yet if you look back
over this derivation, you will see that it is equally valid for segments of
nonradial motion, in which the angle ¢ changes. Therefore equation {12] is
the general expression for the energy of a stone moving around a spheri-
cally symmetric, nonrotating center of gravitational attraction.

4 Energy Measured at Infinity

A new way to measure total energy

Isaac Newton (1642-1727) developed the laws of orbital motion and
Leonard Euler (1707-1783) perfected the ideas of energy and energy con-
servation. In describing the energy of a satellite orbiting a black hole or
plunging into it, anyone who has studied Newton’s account of gravity and
Euler’s account of gravitational energy will have to gulp. Their nonrelativ-
istic viewpoint distinguished two forms of energy. One form, “kinetic,”
depended on speed, not distance from the center of attraction. The other
form, “potential,” depended on distance from the center of attraction, not
speed. Einstein’s account of motion in curved spacetime recognizes no
such distinction. This new outlook presents us with a new unity. Energy
associated with speed, energy associated with location, and energy associ-
ated with mass are stirred together inextricably into a greater and simpler
whole.

How can the “unified energy” of an orbiting satellite be observed,
assigned a numerical value? In principle it can be measured through its
gravitational effects on a remote test particle. The rest energy of the com-
bined star-plus-satellite system—their total mass M;q,—is measured
using a beacon in a circular orbit so remote that Newtonian attraction sup-
plies an accurate tool for measuring mass, as described in the box on page
3-11. From this total subtract the rest energy of the star—its mass M,
The difference is the “energy of the satellite measured by an observer at
infinity” (provided this energy is small compared with the star’s mass):

E = Mtotal _Mstar [13]

What is the value of this energy? It must remain constant as the particle
orbits or plunges. Equation [12] gives us such a constant. Evidently equa-
tion [12] provides the general expression for the energy-to-mass ratio for a
particle orbiting near or plunging into a spherically symmetric nonspin-
ning gravitating mass.

Our derivation of equation [13] says nothing about where the inwardly
plunging particle starts its trajectory. In particular, this equation says that
energy is a constant, even when the particle does not have enough energy
to reach infinite separation from the center of attraction. An example is a
clock bolted rigidly to the local shell (Sample Problem 1, page 3-12).
According to equation [16] or [13], when the stationary clock is added to
the system, the mass of the system is increased by the energy E of this
clock: Migta1 = Mgy + E.

CHAPTER 3 Plunging



Measuring the Energy E of a Satellite

@ Satellite

A great distance

Beacon

<

Figure 4 Measuring the energy observed at infinity, E, of a small satellite in orbit around a star. A
beacon is put into a distant circular orbit around the star-satellite system. From the acceleration of the
beacon on its path, derive the mass M4t Of the star-satellite system using Newtonian mechanics
Subtract the mass Mg, Of star from this total to obtain the “energy observed at infinity £” of the
satellite alone This unified, single energy replaces multiple energies—the potential energy of Newtonian
mechanics plus the kinetic energy and rest energy of special relativity.

Of all the ways to capture the essence of the total particle
energy £ for a small satellite, none is more compelling than
this Perform a "weighing” of center of attraction plus satel-
lite Myqpa using Newton's mechanics Far outside the center
of attraction, far outside the orbit of that satellite, place a
test particle, a mini satellite, a beacon in circular orbit
around the star-satellite system and so distant that Newto-
nian mechanics may be used (Figure 4).

Measure the time for the beacon to go once around the cir-
cle at this distance Measure the circumference of the
circular orbit of this far-away beacon. From circumference
and time compute the speed v of the beacon in its orbit.
From the circumference compute the r-coordinate. From
speed and radius, reckon the inward acceleration v2ir
implied by a circular orbit That acceleration times the parti-
cle’s mass must equal the gravitational force applied by the
center of attraction plus inner satellite—in Newton’s view. In
conventional units we write

inward
[force on) lerati
=m acceleration
beacon beacon
of beacon [14]
2
GM totalMbeacon _ v
2 = mbcacon_;

r

In the second of these equations, divide out the common
factor Myeacon: SOIve the resuiting equation for the only
unknown (all quantities in convential units)

mass of the 2
_ . _v'r 15
M . = | satellite + star | = el (15)
system

From this total mass subtract now the mass, Mg, of the star
(or whatever that center of attraction may be), measured by
the same method before the satellite was added to the sys-
tem. The difference gives the energy of the small satellite as
sensed by a far-away observer, the beacon In geometric
units

E =M g~ Mar (16]

To speak of satellite energy as a constant of the motion is to
say that the quantity E—the satellite’s energy measured at
infinity—always keeps the same value during free flight of
the satellite

Section 4 Energy Measured at Infinity
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A shell clock of mass m is bolted to a spherical shell at r-
coordinate r,. What is its energy E that we measure using
the orbit of a remote beacon?

SOLUTION

The clock’s energy is computed from the ratio dt/dt (equa-
tion [12))

£- (-2

Choose two events to be two sequential ticks of this shell
clock Then the proper time between these ticks is just the
time read on the clock. In brief, dt = dtgq. Equation [C] in
Selected Formulas at the back of the book gives us the rela-
tion between digq Of a clock at rest on a shell and dt of a

SAMPLE PROBLEM 1 Energy of a Clock Bolted to a Spherical Shell

Combine this equation with [12] and with dt = ditg, to
obtain, for an object such as a shell clock,

E (1 2M]l/2

m rs

[18 atrest at ry]

Note the square root in this equation This expression is cor-
rect for an object at rest on the shell at any reduced
circumference r, outside the horizon. In the limiting case of
a particle at rest at large r,, the rest energy is equal to mass
m, as special relativity requires. When the clock sits at a
radius r,, near a black hole, the ratio £/m is less than unity, so
energy is less than the mass of the clock (evidence of the
negative “energy of gravitational binding”) This total
energy goes to zero at the horizon, r,—> 2M

Suppose the bolt on the clock works loose and the clock
falls. The value of E remains the same during the drop, as
the dock crosses the horizon, and as the clock reaches the

far-away clock:

2M -1/2

crunch at the center of the black hole During this fall, the
remote observer, using the technique described in the box

17] on page 3-11, detects no change in the combined mass of
the system* black hole plus clock

Special case Stone starts
from rest at r = oo,

Stone has constant energy
during plunge

3-12

Now the mounting bolt works loose so that the clock falls into the black
hole. The energy of the total system does not change. The remote beacon
cannot tell the difference. After the plunge, only the black hole remains.
The mass of the black hole simply increases by E.

5 Falling from Rest at Infinity
Drift slowly inward, then plunge toward the center.

The fact that E/m is constant for a free particle yields great simplification in
describing the motion of a radially plunging particle. As an example, think
of a stone originally at rest a very great distance from a spherically sym-
metric nonspinning black hole. Over the eons this stone moves gradually
toward the center of attraction, finally plunging radially inward to obliv-
ion. Formally we say that the stone starts at rest at an infinite distance
from the black hole in the infinite past. The Newtonian analysis of this
plunge appeared in the box on page 2-22.

According to the law of constant E/m, the stone has constant energy dur-
ing its entire trip, whether it is far from the black hole or close to it. But
when at rest far from the black hole, this stone has energy identical to its
mass, or E/m = 1. From equation [12], therefore, for every radius r on the
inward plunge we have

E_ (1 _2M )51_‘ -

m T T [19. from rest at r = o]
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Do all particles moving radially inward have energy E/m = 1?

Far from it! This value applies only to a particle (a stone, a key, a coffee cup) of mass
m that starts from zero velocity at a great distance from the black hole An entirely
different case is a stone already moving when it is far away, a stone that has an
inward velocity far away Call this velocity vg,. Then its energy in that remote region
of flat spacetime has the greater value E/m = 141 - vy, H1n , says special relativity
Later on in its plunge, the particle will keep the same value of this energy, even
though it leaves flat spacetime and enters the curved Schwarzschild geometry near
the black hole Sample Problem 3, page 3-25, analyzes this case

&@

In a third example, a stone of mass m is released initially at rest from a shell of radius
ro Sample Problem 1 on page 3-12 shows that the value of its energy per unit mass
is, from equation [18), £/m = (1 — 2M/r)"? This value is smaller than that of a stone
falling from rest at infinity In this case too the stone maintains its vaiue of £/m as it
falls to smaller values of r

From the energy equation [19] and the Schwarzschild metric [1], we can
find an expression for dr/dt, the rate of change of the r-coordinate with far-
away time t for a stone starting from rest at a very great distance. To obtain
this derivative, square terms on elther side of the right-hand equality in
equation [19], multiply through by d1?, and equate it to the Schwarzschild-
metric expression for dr? (equation [1]) in the case of radial fall (d¢ = 0):

2
[1 _ﬂ] dit = di* = [1 —2—M)dt2—L~— [20]

’ )

Divide through by dt?, solve for dr/dt, and take the square root to obtain

M2 ML/ 2
‘Z = (1_2_)(2_) [21. from rest at r = o]
r r

We take the minus square root because the expression describes a decreas-
ing radius as the object falls toward the black hole outside the horizon.
Equation [21] gives the bookkeeper velocity that describes the plunge as
the rate of change of reduced circumference r with time ¢ measured on far-
away clocks.

tions as it drops freely toward a center of attraction? A stone is brainless, yet in order
to follow equation [21] it must be better at quick computation than we are Do you
seriously believe that spacetime—or anything else—is issuing such complicated direc-
tions to the poor stone and that the stone is actually following these instructions?

& Why is this analysis so COMPLICATED? How can a stone carry out all these calcula-

The stone does not “follow equation [21)”, the stone does not care about the
4 Schwarzschild metric or shell time or far-away time or the reduced circumference r

The stone can be totally brainless because it obeys the simplest instruction imagin-
able “Go straight!” The fine print in the directive rephrases the command more pre-
cisely at the cost of slightly greater length* “Follow a straight worldline in a local

"

Section 5 Falling from Rest at Infinity
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Bookkeeper prediction‘ Stone
slows down as it approaches
the horizon!
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free-float frame."” This command is all the stone hears Obeying this command is all
the stone does

We, however, are not satisfied with the local instruction given to the stone We ask
more global questions “What is the entire path followed by the stone?” “What is its
speed at various points on that path?” The local free-float frame does not suffice to
answer these questions because spacetime curvature causes differences in motion
from place to place that limit the size of the spacetime domain of a single inertial
frame Global questions require a global reference frame Now we need the heavy
machinery of spherical shells and the Schwarzschild metric and the complicated equa-
tion [21] Ask a more complicated question, get a more complicated answer! Whose
fault is that? The stone’s fault? Nature’s fault? No! It is our fault If we were satisfied
with local instructions, we could be as serene and unthinking as the stone

Equation [21] for free fall from rest at an infinite radius has some surpris-
ing consequences. As the particle approaches the horizon, as

r —> 2M, the curvature factor (1 - 2M/r) goes to zero, so the bookkeeper’s
velocity dr/dt also goes to zero. The Schwarzschild bookkeeper, keeping
track of the reduced circumference r as a function of far-away time ¢, reck-
ons that the freely falling particle slows down as it approaches the event
horizon. As it gets closer and closer to the event horizon at r = 2M, the
velocity dr/dt goes to zero. When tracked in these coordinates, the particle
itself reaches the event horizon only after infinite far-away time .

tonian language as a fierce gravitational force How can you possibly ask us to believe
that this force results in the particle slowing down? Will someone clinging to the shell
Jjust outside the event horizon at r = 2M observe the particle to decrease speed and
settle gently—over an infinite time!—to rest at the horizon? The whole idea is simply
insane!

& Impossible! The particle is propelled ever inward by what we would describe in New-

What seems insane resolves itself into a more believable result when we follow this
4 questioner’s lead and ask who cbserves directly this zero speed at the event horizon
The answer is, Nobody! Not the shell observer, not a passing free-float observer
Nobody near the black hole observes directly a velocity whose magnitude is given by
equation [21]

”m

The r-coordinate, remember, is obtained by dividing the circumference
around a great circle of the spherical shell by 2r. And far-away time ¢ is
recorded by the Schwarzschild bookkeeper remote from the black hole. As
a result, equation [21] is merely the result of a calculation, it is a “book-
keeper’s velocity.” The bookkeeper tracks changes dr in the r-coordinate
and divides each such change by the corresponding computed change d¢
in far-away time. The ratio dr/dt, sure enough, approaches zero as the par-
ticle approaches the event horizon at r = 2M.

! do not care what one or another observer measures or writes in a notebook |am
& interested in REALITY'! Stop beating around the bush, does the in-falling stone

REALLY come to rest at the horizon or not?

Already in special relativity we learned to concentrate on predicting the result of an
4 experiment. We were forced to acknowledge, for example, that “the time between

two events” and “the velocity of a particle” are not invariants, typically they do not
have equal values as measured by different inertial observers In this sense “the real
time between two events” and “the real velocity of a particle” have no unique mean-

i
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ing Similarly, here in general relativity “the velocity at the horizon” must refer to the
records of some reference frame The phrase “real velocity” has no unique meaning

According to the remote bookkeeper, the in-falling object comes to rest at the hori-

zon Next we will find that for the sheli observer the falling object passes across the

horizon with the speed of light What a contrast!

The shell observer—the observer standing on a fixed spherical shell—
measures a velocity of the free-falling particle quite different from that
given by equation [21]. Yet what he observes is easily derived from that
equation. The shell observer does not measure dr. Rather, he lets down his
tape measure between radially separated clocks bolted to his shell. Thus
he measures directly the proper distance do = drg,o; between their loca-
tions. From equation [D] in Selected Formulas at the back of the book, the
two radial distances dr and dc are related by the expression

-1/2
do = dry = [1 _ZTM) dr [22]

Moreover, shell observer clocks tick off not far-away time d¢ but shell time
dtshepl- This wristwatch time, dt, is defined as the time recorded in a frame
in which two events occur at the same place; in the shell frame the shell
clock does not change spatial coordinates between ticks. The relation
between shell time dty . and far-away time dt is given by equation [C] in
Selected Formulas at the back of the book:

2M 1/2
dtshell = (] '—T] dt [23]

The last two equations and equation [21] tell us that the radial velocity of
the free-fall observer as measured by the shell observer has the value

dropen _ (2_M)V2

dt , [24. from rest at r = o]

shell

This expression for radial velocity is the same as the result of the Newto-
nian analysis (box on page 2-22). However, that Newtonian expression
failed to distinguish between shell coordinates and bookkeeper coordi-
nates. Equation [24] makes clear that the expression refers to shell
coordinates and shell measurements. (It is all right to leave the reduced
circumference r in the right-hand side of this equation, since each spheri-
cal shell is stamped with its individual radius. By looking at this stamp,
any observer can determine which shell he is talking about.)

At the reduced circumference r = 8M, or four times the Schwarzschild
radius (2M) at the horizon, the particle falling from rest at infinity is mov-
ing inward at half the speed of light, as witnessed by shell observers. As
the particle crosses the event horizon at r = 2M, nearby shell observers
record it as moving at the speed of light. [Shells—and shell observers—
cannot exist inside the horizon (see the following section) or even at the
horizon, where the spherical shell experiences infinite stresses. The predic-
tion of equation [24] at the horizon must be taken as a limiting case, an
extrapolation.]

Section 5 Falling from Rest at Infinitv
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Figure 5 Computer plot of the two velocity values for a plunging stone (treated here as positive)
A stone falling radially from rest at infinity has speed drsnen/dtshen 8s measured by observers on
shells through which the stone plunges and speed dr/dt as derived from the records of the
Schwarzschild bookkeeper. At the horizon, the shell speed rises to the speed of light (equation
[24]), while the bookkeeper speed drops to zero (equation [21])

What a contrast between these nearby measurements and the bookkeeper
speed dr/dt, a speed that goes to zero at the event horizon! (See Figure 5.)
There the in-falling stone moves with the speed of light as recorded
directly by one observer (equation [24]); it moves with zero speed as reck-
oned by another observer (equation [21]). Nothing demonstrates more
dramatically how far we have come from the phenomena that take place
in flat spacetime as described by special relativity!

&

W

4

How can you use the time transformation [23] to describe an in-falling stone plunging
from one spherical shell to another shell of different reduced circumference? Let a
firecracker explode at each shell as the stone passes Clocks on these different shells
“run at different rates” according to that very equation [23] How can you possibly
combine readings from these two different-rate clocks to meter the shell time the
stone takes between the two flash emissions?

For once we are caught by the sloppy way physicists do calculus! In writing the
Schwarzschild metric, we use differentials dr, dt, and so forth to remind ourselves that
event pairs so separated must be near enough to one another in spacetime to justify
using a single value of r. In many cases this criterion can be met for events separated
by many meters of distance and time When we measure velocity, however, we
employ calculus in the conventional sense of a limiting process, with dr and dt and
drghen and dtghay all tending to zero. Then the firecrackers go off right next to each
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other; the two clocks are—in the limit—on the same shell, so they run at the same
rate at this limit.

In summary, for a radially plunging object that starts from rest at infinity,
the principle of constancy of energy tells us that the inward speed mea-
sured by shell observers increases steadily for smaller values of r,

rising to the speed of light at the horizon. In contrast, the inward speed of
the object drops to zero at the horizon when reckoned from the accounts of
the Schwarzschild bookkeeper.

6 Energy Measured by Shell Observer

The shell observer uses special relativity to analyze motion locally.

The farther toward the center a stone falls, the faster it goes as observed by
a sequence of local shell observers (equation [24]). But a shell observer
sees a faster-moving stone as having more energy; the faster the stone
moves past him, the more energy he can in principle extract from it by
slowing it down to rest. In this sense a shell observer at smaller radius
attributes more energy to the faster-moving stone as it passes him. How
can this increased shell energy at smaller radii be reconciled with the con-
cept of energy as a constant of the motion (equation [19])? To answer this
question, start from equation [24]:

dr 1/2
Ushenl = bl (%) [25. from rest at r = o]

The shell observer uses the results of special relativity to calculate the
energy of the in-falling stone. He applies equation [24], page 1-10, to this
equation [25] and obtains

E
shell _ 1 = 1 [26. from rest at r = o]

m 2 172 1/2
(1- vshell) (1 - 2_1‘_4)

r

This shell energy per unit mass Egep1/m is a local quantity, measured by
the shell observer from the speed of the passing stone and its mass m. The
shell observer needs to know nothing about “energy measured at infinity”
or “energy as a constant of the motion.” He simply observes a stone come
whizzing past and reckons its local energy per unit mass Egpe/m using
the formulas of special relativity. In special relativity, Eg)) represents the
total energy, which includes the rest energy m plus the kinetic energy. As
we have said, no such division between rest energy and kinetic energy is
possible for the energy measured at infinity E of general relativity.

There is, however, a relation between Eg,o) and energy E, the constant of
the motion. A stone at rest at infinity has energy measured at infinity
E = m. Therefore we can write equation [26] as

E 1 . . .
sEh'ell _ (l 2M)1/2 [27. anything falling into black hole]
T

Section 6 Energy Measured by Shell Observer

“Shell energy” is computed

using special relativity

Shell energy is a LOCAL
quantity.
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In this equation, E is energy measured at infinity, a constant of the motion,
and Egp is the local energy measured by a shell observer. Equation [27] is
general, it turns out. In the exercises of Chapter 5 you show that the same
equation even applies to a flash of light fired outward from a fixed shell.

Eshell s a local quantity; In brief, Eg¢1 is a local quantity measured by the shell observer, a quantity

Eisa constant of the motion.  that he analyzes using the laws of special relativity. But Eg;,¢ is not a con-
stant of the motion; it is different for shell observers at different radii.
Equation [27] connects this local energy to the energy measured at infinity
E, which is a constant of the motion.

&

Ay By
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The farther toward the center a stone falls, the faster it goes as measured by shell
observers (equation [24]). Therefore the more energy Egpqy the stone has, as mea-
sured by the local shell observer. But general relativity says that there is no
gravitational force on the stone, that the stone “moves freely along a locally straight
worldline, a geodesic.” If there is no gravitational force on the stone, where does the
descending stone GET its INCREASING energy?

The story is told of a proper Bostonian lady who was asked where she and her friends
“buy your awful hats.” “Buy our hats?” she exclaimed, “Buy our hats? We don’t buy
our hats; we have our hats!” Similarly, the descending stone does not get its energy
from anywhere. It has its total energy £, the energy measured at infinity, which
remains constant as the stone descends in free float. Equation [24] results from this
constant energy. The beacon satellite orbiting the system of black hole plus stone (Fig-
ure 4, page 3-11) detects no increase in total energy of that system as the stone
descends.

Whoal! Is it not true that shell observers at smaller and smaller r-values measure larger
and larger energy Eqp¢) for the passing stone?

Yes. One must make a distinction between E and Egg), which are connected by equa-
tion [27]. E is a constant of the motion ruled by general relativity, an energy that can-
not be divided into kinetic, potential, and rest energy. In contrast, Eg,e is an energy
that the shell observer reckons locally according to the rules of special relativity, divid-
ing it into kinetic plus rest energy (mass) if he wishes. True, as r decreases, different
shell observers measure larger values for Eg.q. However, each shell observer is stuck
with a local analysis. He cannot expand his view to embrace the entire spacetime sur-
rounding the black hole without adopting the energy measured at infinity £, which is
a constant of the motion and cannot be divided up into kinetic, potential, and rest
components.

Come on! What's wrong with the basic results of Newtonian mechanics? As the
stone descends, kinetic energy goes up as gravitational potential energy goes down—
leaving total energy of the stone unchanged. Why cannot the same words fit the gen-
eral relativistic description?

Newton's analysis does not apply to any of the reference frames we use Each shell
observer experiences only local events, each watches the stone streak past and disap-
pear. Moreover, the shell observer near the horizon measures the stone to move with
a speed approaching that of light, therefore with a kinetic energy (and a total energy)
that increases without limit as observed in his frame. What can be conserved in these
circumstances? The astronaut in free fall next to the stone also uses special relativity
over a limited region of spacetime. For her the stone has zero kinetic energy at every
event of the plunge, even at the horizon, No conversion of potential energy to kinetic
energy for her! Only the Schwarzschild bookkeeper has the big picture. But for the
bookkeeper the stone decreases its speed as it comes close to the horizon, the speed
going to zero at the horizon {equation [21]), and therefore any so-called kinetic
energy also goes to zero there. Even the bookkeeper cannot divide up the stone’s
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energy measured at infinity into kinetic energy plus gravitational potential energy.
General relativity, it must be said again, treats energy £ as a unified whole, with no
separation possible between gravitational potential energy, kinetic energy, and rest
energy (mass).

7 Over the Edge: Entering the Black Hole
No jerk. No jolt. A hidden doom.

No feature of the black hole excites more curiosity than the Schwarzschild
horizon at r = 2M. It is the point of no return beyond which no traveler can
find the way back—or even send signals—to the outside world. What is it
like to fall into a black hole? No one from Earth has yet experienced it.
Moreover, future explorers who do so will not be able to return to tell
about it or transmit messages to us about their experience—or so we
believe! In spite of the impossibility of receiving a final report, there exists
a well-developed and increasingly well-verified body of theory that
makes clear predictions about our experience as we approach and cross
the horizon of a black hole. Here are some of those predictions.

We are not “sucked into” a black hole. Unless we get quite close to it, a
black hole will no more grab us than Sun grabs Earth. If our Sun should
suddenly collapse into a black hole, Earth and the other planets would
continue on their present courses undisturbed (even though perpetual
night would prevail!). The Schwarzschild solution would continue then to
describe Earth’s path through spacetime, just as it does now. The exercises
of Chapter 4 show that for orbits that stay at radii greater than about
300M, Newtonian mechanics predicts the motion to a good approxima-
tion. We will find that when we drop to a radius 6M or less, no stable
circular orbit is possible; for a smaller radius we spiral inward and cross
the horizon. Even then we can always escape, given sufficient rocket
power. Only when we descend as close as or nearer than the Schwarz-
schild radius r = 2M are we irrevocably “sucked in,” our fate sealed.

No special event occurs as we fall through the Schwarzschild horizon.
Even when we cross into a black hole at the event horizon r = 2M, we
experience no shudder, jolt, or jar. True, the tidal forces are ever increasing
as we fall inward, and this increase continues smoothly at the horizon. But
we are not suddenly torn apart at r = 2M. True also, the curvature factor
(1 - 2M/r) in the Schwarzschild metric goes to zero at this radius. But the
resulting zero in the time term of the metric and the infinity in the radial
term turn out to be singularities of the bookkeeper coordinates r and ¢, not
singularities in spacetime geometry. They do not lead to discontinuities in
our experience as we pass through this radius. There are other coordinate
systems whose metrics do not have a discontinuity at the Schwarzschild
radius. (See Project B, Inside the Black Hole, Section 4, page B-12.)

Inside the horizon there are no shell frames. Outside the horizon of the
black hole we have erected, in imagination, a set of nested spherical shells.
We say “in imagination” because no known material is strong enough to
stand up under the “pull of gravity,” which increases without limit as one
approaches the horizon from outside. Locally such a stationary shell can
be replaced by a rocket ship with rockets blasting to keep it stationary

Section 7 Over the Edge: Entering the Black Hole
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Packages can be sent inward
but not outward

Timelike r-coordinate inside
horizon means motion
toward center is inevitable!
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with respect to the black hole. Inside the horizon, however, nothing can
remain at rest. No stationary shell. No stationary rocket ship, however
ferocious the blast of its engines. The material composing the original star,
no matter how strong, was unable to resist the collapse that formed the
black hole. The same irresistible collapse forbids any stationary structure
or any motionless object inside the horizon.

“Outsiders” can send packages to “insiders.” Different free-float frames
still move with relative speeds inside the black hole. For example, one
traveler may drop from rest just outside the horizon. Another unpowered
spaceship may have fallen in from rest at a great distance. A third may be
hurled inward. In fact, the hurled-inward ship—if launched soon
enough—can be used to carry packages and information from outside to
the drop-from-just-outside traveler inside. (Exercises at the end of this
chapter concern these three different cases.) Light and radio waves can
carry messages inward as well. We who have fallen inside the horizon can
still see the stars, though with changed directions, colors, and intensities.
(See Sections 9 and 11 of Chapter 5 and Section 9 of Project B.) Packages
and communications sent inward across the horizon? Yes. Outward? No!

Inside there is an interchange of the character of the t-coordinate and
r-coordinate. For an r-coordinate less than the Schwarzschild radius 2M,
the curvature factor (1 - 2M/r) in the Schwarzschild metric becomes nega-
tive. In consequence, the signs reverse between the radial part and the
time part of this metric, making the dt? term negative and the dr? term pos-
itive. Space and time themselves do not interchange roles. Coordinates do:
The t-coordinate changes in character from a timelike coordinate to a
spacelike coordinate. Similarly, the r-coordinate changes in character from
a spacelike coordinate to a timelike one.

What does it mean to say that inside the Schwarzschild radius the r-coor-
dinate “changes in character from a spacelike coordinate to a timelike
one”? It means that our free-float frame moves to ever-smaller r with all
the inevitability that we ordinarily associate with the passage of time. The
explorer in his jet-powered spaceship prior to arrival at r = 2M always has
the option to turn on his jets and change his motion from decreasing r
(infall) to increasing r (escape). Quite the contrary is the situation once he
has allowed himself to fall inside » = 2M. Then the further decrease of r
represents the passage of time. No command the traveler can give to his jet
engine will turn back time. That unseen power of the world that drags
everyone forward willy-nilly from age twenty to forty and from forty to
eighty also drags the rocket in from the coordinate r = 2M to the later
value of the “time” coordinate r = 0. No human act of will, no engine, no
rocket, no force can make time stand still. As surely as cells die, as surely
as the traveler’s watch ticks away the unforgiving minutes, with equal
certainty r drops from 2M to 0 with never a halt along the way. Section 5 of
Project B demonstrates these results in detail.
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In order to verify the far-away time of an event, one must communicate with the far-
away observer. But for someone inside the horizon such communication is impossible;
the signal from inside never passes outward through the horizon—so you say! So
isn‘t far-away time meaningless for the inside plunger?

& Wait a minute! How can far-away time t have any meaning at all inside the horizon?

oW

You are essentially right, far-away time is pretty useless inside the horizon. One can
4 conceive of a complicated scheme in which the far-away observer emits timing pulses

that are received inside the horizon and used to time local events there. However, it is
much easier for the plunger simply to read her wristwatch as she analyzes events in
her vicinity, as in the following paragraph This “plunger time” is incorporated into a
new version of the metric described in Project B, Inside the Horizon, page B-13.

Time to arrive at the crunch (r = 0). How long do we live once we pass
through the Schwarzschild horizon? Sample Problem 2 on page 3-22 gives
a derivation of the horizon to crunch wristwatch time for an object falling
radially from rest at a great distance. Expressed in meters and seconds,

T[meters ] = g'M [28. horizon to crunch]
6 M

t[seconds] = 6.57 x 10
MSun

[29. horizon to crunch]

Here Mg, is the mass of our Sun. Let a stone fall from rest at infinite dis-
tance. The proper time given by equations [28] and [29] is the time
recorded on the wristwatch of this stone between its crossing the horizon
and its arrival at the center of the black hole.

The maximum horizon to crunch wristwatch time occurs for a free-fall trav-
eler dropping from rest just outside the horizon. This maximum
wristwatch time 1,,, is given by the following expression (derivation in
the exercises):

Tqax [ meters] = ©M [30. horizon to crunch]

or

v [seconds] = 15.5x 107°M [31. horizon to crunch]
MSun

A maximum of 15 microseconds does not seem long to live when we fall
into a black hole of mass equal to that of our Sun. However the horizon to
crunch time increases in direct proportion to the mass of the black hole.
The calculated maximum survival time increases to almost a minute for
the plunge into the object believed to reside at the center of our galaxy, a
black hole of mass 2.6 million Sun masses. To survive a maximum of 40
more years (1.26 X 10° seconds) after crossing the horizon, find a black
hole with a mass of roughly 10'4 Sun masses (combined mass of some
thousands of galaxies)!
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SAMPLE PROBLEM 2 Wristwatch Time from Horizon to Crunch

Starting from rest at a great distance, you plunge straight
toward a biack hole of mass M. You set your watch to noon
as you determine—by one means or another—that you are
crossing the horizon. How much more time does the wrist-
watch—and you—have until the instant of crunch?

SOLUTION

This question concerns wristwatch time, tau-time 1, proper
time, and the correlation between this time and the
r-coordinate Equation [19] gives us dt/dt, the correlation
between time at infinity and spaceship proper time:

[1_271")5_; =1 [19]

Equation [21] gives us dr/dt, the correlation between radial
r-coordinate and far-away time.

L2

We use equations [21] and [19] to find the correlation
between changes in r-coordinate and wristwatch time:

172
dr dr dt - (zil) [32]

r

dt  dt dt

This equation gives the change dt in proper time racked up
during the shrinkage dr in the r-coordinate:

Integrate both sides of this expression fromr=2Mtor=0

0

=~ 2 123
- 72~ ~ 172 3
M M
2M( ) ( ) 2M 34]
_2em’ 4,
- 172~ 3
3(2M)

This result, the same as equation [28], is in meters of light-
travel time To write the result in seconds, divide by the
speed of light

g M[meters]

Tseconds = c[meter—s/second] 351

= g X 10_8M

where M is still measured in meters This result is conve-
niently expressed in terms of the mass of our Sun, which has
the value Mg, = 1477 meters. Make the substitution

M M
M= WMslm = 37— (1477 meters) (36]

un Sun

which leads to equation [29]:

rl/2dr

dt = -
(2M)”2

n

(33] t[seconds] = 6.57 x 10~

M Sun 129}

Life goes on inside the
horizon
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Make this daring investigation of an already existing black hole? No. We
and our exploration team want to be still more daring, to follow a black
hole as it forms. We go to a multiple-galaxy system so crowded that it tee-
ters on the edge of gravitational collapse. The day after our arrival at the
outskirts, it starts the actual collapse, at first slowly, then more and more
rapidly. Soon a mighty cataract thunders toward the center from all sides,
a cataract of objects and radiation, a cataract of momentum-energy. The
matter of the galaxies and with it our group of enterprising explorers pass
smoothly across the horizon at the Schwarzschild radius r =2 M.

From that moment onward we lose all possibility of signaling to the outer
world. However, radio messages from that outside world, light from the
familiar stars, and packages fired after us at high speed continue to reach
us. Moreover, communications among us explorers take place now as they
did before we crossed the horizon. We express our findings to each other
in the familiar categories of space and time. With our laptop computers we
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turn out an exciting journal of our measurements and conclusions. (Our
motto: Publish and perish.)

Nothing rivets our attention more than the tide-producing forces that pull
heads up and feet down with ever-increasing tension. Before many years
have passed, we can predict, this differential pull will have reached the
point where we can no longer survive. Moreover, we can foretell still fur-
ther ahead and with absolute certainty an instant of total crunch. In that
crunch are swallowed up not only the stars beneath us, not only we
explorers, but space itself. An instant comes after which there is no “after.”

Figure 6 shows the worldlines of the plunger who starts at rest from infin-
ity as timed by her own wristwatch and also as timed by the clocks of the
Schwarzschild bookkeeper.

1 am still bothered by the idea of a “material” particle traveling across the event hori-
zon as a particle. The shell observer sees it moving at the speed of light, but it takes
light to travel at light speed. Does the particle becomes a flash of light at the horizon?

= No. As you free-fall across the horizon, you feel nothing. You certainly do not turn

{ into a flash of light! The idea of a shell observer at the horizon makes sense only as a
limiting case. The shell observer just outside the horizon measures the in-falling parti-
cle to move at less than the speed of light. AT THE HORIZON no shell is possible,
because the “local acceleration of gravity” increases without limit (see exercise 9 at
the end of this chapter). So no shell observer can be stationed at the horizon to verify
that the in-falling particle moves at light speed. AT and INSIDE the horizon, the only
dependable measurements are made by free-float observers.

they fall into the black hole come to rest at the horizon as reckoned by the book-
keeper, then shouldn’t the black hole be eternally surrounded by all the junk that has
ever fallen into it, including the original star that collapsed to form the black hole in
the first place? Our Russian colleagues originally called the black hole a “frozen star.”
I call it a “frozen junk pile”!

& Go back to bookkeeper coordinates. A serious objection still remains: If all objects as

It is true that, measured in terms of reduced circumference r and far-away time ¢, all
4 radially in-falling objects coast to rest at the horizon. But along with this effect is

another: the gravitational red shift of light from these objects. As each object
approaches the horizon, its emitted light is shifted farther and farther into the red as
observed far from the black hole. You can calculate how rapidly this downshift occurs
in far-away time (exercise 9 in Chapter 5). Very quickly, light from the object becomes
invisible to the eye; the object turns black—thus becoming part of the black hole as
far as the remote observer is concerned. Stationary black junk is still black!

W

8 Summary

Central results of this chapter derive from (1) the Schwarzschild metric
and (2) the Principle of Extremal Aging. A stone falling radially toward a
center of gravitational attraction passes three goal posts, each at a fixed
r-coordinate, and at each passage emits a flash. Fix the time of the first and
the third flashes, but try different times for the second flash. Find the emis-
sion time of the second flash such that the total wristwatch time from first
to third flashes is maximum. The result is an expression for a constant of
the motion, which we identify as the total energy of the stone:

Section 8 Summary
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Figure 6 Computer plot. Two worldlines of the SAME free-float radial plunger
who starts at rest at a large radius—plotted using (1) Schwarzschild
bookkeeper time t and (2) proper time < read on the wristwatch of the in-
faller. Use of coordinates r/M, t/M, and t/M makes the curves independent of
M and thus valid for all Schwarzschild black holes. By prearrangement, the
plunger wristwatch and bookkeeper clocks are set to zero as the plunger
passes r = 5M. Derivation of the bookkeeper plot comes from equation [21].
Derivation of the plunger plot is in Section 2 of Project B, Inside the Black Hole

E _ (1 _ M)‘_if [12. free particle]
m r jdt

At large radius r, this expression reduces to that for the total energy of spe-

cial relativity, as it must. In general relativity the total energy E is a

seamless whole and cannot be divided into kinetic, potential, and rest

energy (mass). Its magnitude is measured by the distant gravitational
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SAMPLE PROBLEM 3 Hurling a Stone into a Black Hole

According to equation [24], a stone falling into a black hole M
from zero initial velocity at infinity moves with the speed of 1- T)d‘ = Yrard®
light as it crosses the event horizon as measured by nearby
shelf observers. Can we make this “final observed speed” 2 172 [39]
greater than the speed of light by hurfing the stone inward = Ytar (1 - m)dtz __dr
from a great distance, rather than letting it start from rest? r (1 - Z_M)
r

SOLUTION

Divide through by dt, solve for dr/dt, and take the negative
Start with equation [12]: square root corresponding to a decreasing radius:
'% = (1 —%l):—; = constant [12] Z_r - —(l —Z—M)[l —%(l _2_1”)]1/2 (40]

t r r
Yfar

We evaluated this constant to obtain equation [19] by
demanding that at remote distances (2M/r << 1) the stone
be at rest (dr/dt = 0) Here we deal with the more general
case: The stone has an initial velocity inward along the radial

From equations [22] and [23], we know that

1
direction dr/dt = — vg,, where the subscript “far” refers to j:’h’" = [l - 2;— % {41]
conditions at a remote distance from the black hole. For shell
large r, spacetime is flat; both dr and dt have the usual spe-
cial-relativity meaning—and therefore so does the velocity Hence:
dr/dt. In flat spacetime there is no need to distinguish among
different measures of velocity. Then the value of the constant dry. 1 a2
is equal to the special relativity value of £/m = y¢,, , defined Il [1 - T(l - T)] [42]
as follows shell Yfar
E = dr = Yiup = S S [37] .
m -~ dt|) far 2 172 What happens to the two velocities dr/dt and (dr/dt)pey as
et (1-vg) the stone approaches the Schwarzschild radius at r = 2M?

The bookkeeper velocity dr/dt (equation [40]) goes to zero as

Substitute this result into equation (12]: before. The “shell velocity” drsa/dtsne) (€quation [42])

takes on the value unity—the velocity of light—at r = 2M,
E_ [1 - &")? = Yior [38] also as before. Hurling the stone inward with any possible
m r T

velocity vi,—and hence with any gamma factor vy, —does
not increase its velocity as it passes across the horizon. The
Multiply through by c¢ft and substitute the Schwarzschild speed of light remains the fastest directly observable speed,
metric [20] for dt, as we did in deriving equation [21]: even in general relativity!

effects of stone plus black hole, thus earning for E the name energy mea-

sured at infinity.
For a stone falling from rest starting an infinite distance away, this energy
has the value
E-(1-T% - [19. free fall from rest at 7 = o]
m r jdz

whereas the total energy of a stone hurled in from a great distance with
initial speed vg,, is given by the expression (Sample Problem 3)
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It

_ 2M\dt _ _ 1 . e
= (1 - T)d—t_ Yo = —— 173 [37, 38. flung in from r = o]
(1-vg,,)

The total energy of an object held at rest on a shell of radius 7, is given by
the expression (Sample Problem 1)

1/2
E _ (1 - @1) [18. from rest at 7,)]

m ro

We study further the case of a stone released from rest at infinity. Using
the Schwarzschild metric, we derive the bookkeeper velocity dr/dt as a
function of radius as it falls inward—

1/2
% = - (1 - %4)(2—:1) [21. from rest at ¥ = =]

—and the velocity of the stone as measured by an observer on a shell of
radius r:

dr 172
shell _ (&l) [24. from rest at r = ]
dt el r

The shell observer stationed at radius r uses this velocity and expressions
of special relativity to reckon the local energy of the passing stone:

E

Eshell = (l ZM)I/Z [27]

r

Shell energy is not a constant of the motion but represents energy mea-
sured directly by the shell observer. This equation is a special case of the
relation between local energy Ege; and the total energy E measured at
infinity. This equation applies to flashes of light, stones hurled inward
from infinity, and all other forms of energy. In the case of a stone, Eg, ¢y
represents the total energy computed from special relativity, which
includes the rest energy m plus the kinetic energy.

Returning again to the stone falling from rest at a great distance, we can
calculate the (proper) time 1 recorded on its wristwatch between passing
the horizon and arriving at the crunch point at the center of the black hole:

t[meters] = gM [meters] [28. horizon to crunch]

M

t[seconds] = 6.57 x 1078
MSun

[29. horizon to crunch]

Maximum time from horizon to crunch is given by equations [30] and [31].
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Chapter 3 Exercises

1. Plunging from Rest at Infinity

Black Hole Alpha has a mass M = 5 kilometers and a
horizon at r = 2M = 10 kilometers. A stone starting
from rest far away falls radially into Black Hole
Alpha.

A. At what velocity does a shell observer atr =35
kilometers measure the stone to be going as
the stone passes him? (Answer to nearest digit
is -0.5. Supply three-digit accuracy.)

What is the bookkeeper velocity dr/dt of the
stone as it passes r = 35 kilometers? (Answer
to nearest digit is —0.4. Supply three-digit
accuracy.)

B. At what velocity does a shell observer at r = 25
kilometers measure the stone to be going as it
passes hum? (Answer to nearest digit is —0.6.
Supply three-digit accuracy.)

What is the bookkeeper velocity dr/dt of the
stone as it passes r = 25 kilometers? (Answer
to nearest digit is —0.4. Supply three-digit
accuracy.)

C. Qualitatively, what do the formulas in the text
lead you to expect about the relative shell
speeds (greater or smaller) at the two radii? the
relative values of the shell and bookkeeper
speeds (greater or smaller) at each radius?

D. In the limit as —> 2M, what is the shell speed
of the stone? What is the bookkeeper speed of
the stone?

2. Maximum Bookkeeper Speed

A stone is released from rest far from a black hole of
mass M. The stone drops radially inward. Book-
keeper records show that the stone’s inward speed
Initially increases but declines toward zero as the
stone approaches the horizon. Bookkeeper speed
must therefore reach a maximum at some intermedi-
ate radius r. Find this radius for maximum
bookkeeper speed. Check your answer using Figure
5. Optional, probably hard: Find the radius of maxi-
mum bookkeeper speed for the more general case of
a stone hurled into the black hole (Sample Problem 3).
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Verify that your result reduces to the dropped-from-
rest expression when the initial speed is zero.

3. Hitting a Neutron Star

A typical neutron star has a mass equal to approxi-
mately 1.4 times the mass of Sun (magnitude well-
known observationally) and a radius of roughly 10
kilometers (magnitude not well-known). A stone
falls from rest at a great distance onto the surface of a
nonrotating neutron star with these values of radius
and mass.

A. If this neutron star were a black hole, what
would be the r-value of its horizon? What frac-
tion is this of the radius of the neutron star?

B. With what speed does the stone hit the surface
of the neutron star as measured by someone
standing (!) on the surface?

C. With what speed does the stone hit the surface
according to the far-away bookkeeper?

D. With what kinetic energy per unit mass does
the stone hit the surface according to the sur-
face observer?

E. What is the energy per unit mass of the stone as
it hits the surface according to the far-away
observer? (Gotcha!)

E. With what speed and kinetic energy per unit
mass does the stone hit the surface according
to Newton? Compare with your results of
parts B through D.

4. Shell Energy of a Stone Hurled Inward

Find a relation between the total energy E of a stone
hurled radially inward toward a black hole from a
great distance and the energy Ey,, of the stone mea-
sured by a shell observer when the stone later passes
that observer. Let vg,, be the speed of the stone at infi-
nite distance and Y, = (1 — v4a,2) /2 be the stretch
factor for that speed.

Start from equation [42] for a stone hurled into a
black hole from a great distance:
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dr 1/2
shell _ —{l _ ! (1 - %”)] [42. hurled]
dt 2 r

She” Yfal’

Now assume that the special relativity expression for
energy applies to observations made by the shell
observer. Use equation(s) from special relativity,
along with equation [42], to find an expression for
the energy of the falling stone Egpe as measured by
shell observers. Verify that for this stone the shell
energy and the total energy E satisfy the general
equation [27].

5. Light Speed for the Fastest Possible
Stone

A stone is hurled radially inward toward a black hole
from a great distance, with initial stretch factor y¢,, .
Sample Problem 3 describes the shell and book-
keeper speeds of this stone after it falls inward to
reduced circumference r. Now hurl the stone inward
with greater and greater initial energy so that the
remote stretch factor ¥, approaches infinity. In other
words, in the limiting case let the stone take on the
properties of a flash of light.

A. Show that the resulting velocities of light reck-
oned by the bookkeeper (dr/df) and measured
directly by the shell observer (drghe/dtshelr)

have the values, respectively,

dr 2M .

dr_ _( 'T) [43. light]

dr

) shell _ [44. light]
Lshell

The second of these results seems reasonable
enough. But the first expression looks strange!
Investigate further.

B. What is the “bookkeeper radial velocity of
light” very far from the black hole (r —> «)?

C. Does the “bookkeeper radial velocity of light”
increase or decrease in magnitude as one nears
the black hole?

D. What is this “bookkeeper radial velocity of
light” in the limiting case of approach to the
horizon (r —> 2M)?

Exercise 5. Light Speed for the Fastest Possible Stone

Indeed, equation [43] is shown on page 5-3 to be the
bookkeeper radial speed of light.

6. Energy Conversion Using a Black Hole

Advanced civilizations may use black holes as
energy sources. Most useful will be “live” black
holes, those that have angular momentum. See
Project F, The Spinning Black Hole. Unfortunately
the nonrotating black holes we study in this chapter
are “dead”: no energy can be extracted from them
(except for Hawking radiation—see the box on page
2-4). However, it is possible to use a dead black hole
to help convert mass into energy, as you can verify in
this exercise.

A bag of garbage of mass m at rest at a dumping
point far from a black hole has energy measured at
mfinity equal to its mass: E/m = 1. In contrast, a mass
m at rest on a shell at reduced circumference r, has a

smaller energy, given by equation [18] derived 1n
Sample Problem 1, page 3-12:

[45. object at rest]

For ry near the event horizon, r, —> 2M, this energy
approaches zero. Is there some way, by tossing gar-
bage toward a black hole and stopping it near the
horizon, that we can convert the rest energy (mass!)
of the garbage into a useful form of energy? And
what are the various energy-conversion relations on
the way to this result? Investigate these questions
using the following outline or some other method.

A. Suppose we mount on a shell at reduced cir-
cumference r, a machine that slows to rest the
bag of incoming garbage of mass m and con-
verts its local kinetic energy entirely into light.
How much kinetic energy is available for the
machine to convert to light?

B. The machine now directs the resulting flash of
light radially outward. Apply equation [27] to
the light to calculate the energy of this light as
it arrives at the power station back at the origi-
nal remote dumping radius.

C. Take the limit as the r-coordinate of the con-
verter approaches that of the event horizon.
Show that in this limit all of the rest energy of
the garbage at the remote dumping point
returns to the remote point as light energy.
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D. Now the garbage that has been stopped at the
conversion machine is released into the black
hole. Construct a convincing argument that, in
the limiting case that the conversion machine
is at the horizon, the mass of the black hole
does not change as a result of the garbage
dumping described in this exercise. Thus the
total conversion of garbage mass into light
energy does not violate the law of conserva-
tion of energy of an isolated system (garbage
plus black hole).

E. Uh oh! If you have carried out exercise 5 on
radial light speed, state how long it will take
for the energy from the horizon to become
available at the original far-away dumping
point. What other difficulties are there with
locating the conversion machine at the
horizon?

Discussion: Suppose the neighborhood of a black hole
is strewn with garbage. We can tidy up the vicinity
by dumping the garbage into the black hole. This act
reduces disorder in the surroundings of the black
hole. Powerful principles of thermodynamics and
statistical mechanics say that the disorder of an iso-
lated system (garbage plus black hole) will not
spontaneously decrease. Therefore the disorder of
the black hole must increase when we dump garbage
into it. Jacob Bekenstein and Stephen Hawking have
quantified this argument to define a measure of the
disorder. See Kip S. Thorne, Black Holes and Time
Warps, pages 422-448.

7. Dropping in on a Black Hole

A clock of mass m near a black hole is bolted to the
shell at r-coordinate r, outside the event horizon. The
bolt works loose and the clock drops radially toward
the center.

A. What is the bookkeeper velocity dr/dt and the
shell velocity drgpap/dtshen Of the clock as it

falls through a spherical shell of smaller radial
coordinate r? With what velocity does it cross
the horizon of the black hole?

Find these answers:
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2M _2m1'?
dr _ 2T
7= Y] 1461

ro
2mM _2M1!/2

drshell - _ r o [47]
dtshell 1_&4

r

(V]

Note that at the horizon, at r = 2M, the shell
speed is always that of light, no matter from
which shell the clock has dropped.

released from a shell of reduced circumference r,,

1 meter greater than that of the horizon at r = 2M
Do you mean to tell me that this object is acceler-
ated to the speed of light in 1 meter of distance? Do
you mean to say also that the bookkeeper velocity
dr/dt goes to zero during the same time lapse? You
really have “gone over the edge” yourself!

& Now this really is too much! Let the object be

Motion described in Schwarzschild coordinates

i

,{ certainly has peculiarities near the horizon! Look at

the relation between shell radial distance drg,g and
increment dr in reduced circumference, equation [D]
in Selected Formulas at the end of this book

dr

arghen =

r

Can an object dropped from a reduced circumfer-
ence r, one meter greater than that of the horizon
accelerate to the speed of light in the remaining one
meter of rcoordinate? Equation [D] says that as we
approach the harizon from outside, the radial
distance measured by shell observers stretches out
more and more compared with the change in
r-coordinate (Zeno's Paradox, exercise 9 on page
2-49, examines this shell distance with more accu-
racy ) The last meter of r-coordinate before the hori-
zon provides a shell distance much greater than one
meter for acceleration to the speed of light!

Near the horizon the shell coordinates are practically
useless At the horizon they go berserk Where can
we turn for some sanity? As always, return to the
free-float frame When events are clocked on the
wristwatch carried by the in-falling object, the shells
labeled with reduced circumference r pass by in
stately succession As observed from this free-float
frame, nothing weird happens at the horizon, as
demonstrated in exercise 8
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B. A robot worker of the Black Hole Construction
Company is repairing the shell at r = 40 kilo-
meters around Black Hole Alpha, which has a
mass M =5 kilometers and a horizon at r = 2M
= 10 kilometers. The worker drops from rest
his wrench (British: spanner).

At what velocity does a shell observer at r = 25
kilometers measure the wrench to be going as
it passes him? Should this velocity have a
greater or lesser magnitude than that of the
shell velocity at r = 25 kilometers of the
wrench dropped from infinity (part B of Exer-
cise 1)? Does it turn out as you predict?

C. What is the bookkeeper velocity dr/dt of the
wrench as it passes r = 25 kilometers? Should
the magnitude of this velocity be more than or
less than the bookkeeper speed at r = 25 kilo-
meters of the stone dropped from infinity (part
B of Exercise 1)? Does it turn out as you
predict?

D. What are the shell-observer and bookkeeper
velocities as the wrench approaches the hori-
zon at r = 2M?

E. Returning to Part A, let the shell observer on a
shell of radius r use special relativity to set

Egpen =m/(1 - vshe"z)l/z. Substitute for vgpe
from the result of Part A and use the result of
Sample Problem 1 to eliminate r,, from the

resulting equation. Show that your result
agrees with equation [27] assuming r < r,,

8. Timetable to the Center

An astronaut drops from rest off a shell of radius 7,,.
How long a time elapses, as measured on her wrist-
watch, between letting go and arriving at the center
of the black hole? If she jumps off the shell just out-

side the horizon, what is her horizon-to-crunch time
(the maximum possible horizon-to-crunch time, see
equations [30] and [31] on page 3-21).

Several hints: The first goal is to find dr/d7, the rate of
change of r-coordinate with wristwatch time 7, in
terms of r and r,. Then form an integral whose vari-
able of integration is r/r,. The limits of integration are
from r/r, = 1 (the release point) to r/r, = 0 (the center
of the black hole). The integral is

Exercise 8 Timetable to the Center

(r/r ) d(r/ro)

T =
(ZM)]/ZJ]‘ (1-r/ry)"?

[48]

Solve this integral using tricks, nothing but trlcks
Simplify by making the substitution r/r, = cos? \.
(The “angle” W is not measured anywhere; it is sim-
ply a variable of integration.) Then (1 - rirg)l/? =
sin ¥ and d(r/ry) = — 2 cos Y sin Y dy. The limits of
integration are from \ = 0 to = Tt/ 2. With these
substitutions, the integral for proper time becomes
3/ 2 m/2

t=2——->-— | cos \ydw

(2M) 172 J

[49]
3/2 n/2

-9 "o [\_|I+ sin2\|l]
(2M)I/2 2 4

0

The answer follows immediately. Its units are meters
of light-travel time. Now convert this result to sec-
onds and examine the special case of release from
just outside the horizon.

9. Gravitational Acceleration on the
Spherical Shell

A robot worker on the shell at r = r, drops a tool from
rest. What initial acceleration will the robot measure
for the tool? Answer this question using the follow-
ing outline or some other method. (Note that part A
is identical to part A of Exercise 6 in Chapter 2.)

A. Express Newtonian acceleration in geometric
units. According to Newton, what is the radial
acceleration at a distance 7, from a spherically
symmetric center of attraction, in conventional
units? Express the result as g,y = d2r/d?,
where “conv” means “in conventional units.”
Now set dt(meters) = c di(seconds) and show
that the Newtonian prediction, expressed in
geometric units is

[50. Newton]

(ignoring the fact that acceleration is in the
negative radial direction). In these units, what
is the value of g, the acceleration of gravity at
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the surface of Earth? Let gg.ony be the accelera-
tion of gravity in conventional units. Show
that gg in geometric units has the units meter!
and the approximate value

8conv -16
8g = 5 =10
[

meter ™} [51. Newton]

B. What is the corresponding prediction of gen-

C.
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eral relativity? First we need to decide which
dr and dt we are talking about. The statement
of the exercise specifies that it is the shell
worker whose measurements we are to pre-
dict. Therefore we want d27pepy/dFhen- Start
with the result of Exercise 7:

2M _2m71/2
dr r r
shell o
= - [52]
at el |- 2M

"o

Take the derivative of this expression with
respect to dig} .1, remembering that 7, is fixed,
a constant. On the right side of the result you
will have a factor dr/dtgpep, where dr is the

change in reduced circumference 7, not shell
coordinate. Use equation [D] in Selected For-
mulas at the end of this text to eliminate dr
from your derivative. Then substitute for
drsnen/ dtshen from equation [52]. Evaluate the

result at 7 = r,, to obtain the simple expression
(again ignoring the minus sign)

2
_ d T shell
Eshenl = t2
shell (from rest)
M(. 2MY1/2
- 42
2
r o

r
(]

[53]

What are the limiting cases (1) as 7,
approaches 2M and (2) as 7, becomes very
large (but not infinite)?

The robot worker stands on a shell of radius
7, = 4M near a black hole of mass 5000 meters.
How many “gee”—that is, how many times
the value of gg at Earth’s surface—is the initial
acceleration of his dropped tool? What is the
Newtonian prediction? (A fighter pilot risks

blacking out when she makes her plane turn or
rise at an acceleration of 7¢g or more.)

D. What is the acceleration of gravity at the sur-
face of the typical neutron star described in
Exercise 3?

E. Optional. You want to hover, rockets blasting,
just above the horizon of a black hole. Call
your reduced circumference r, = 2M +dr,

where dr << 2M. Find an approximate expres-
sion for ggpe) under these circumstances. Now,

in order to stay conscious, you want ggpe; in
your spaceship to be 7gg. If dr = 1 kilometer,

what is the mass M of the black hole you
should choose for this maneuver? Express
your answer as a multiple of the mass of our
Sun.

10. Horizon Alarm for Your Spaceship

This is a thought question. The Space Agency is anx-
ious about the fate of their rocket ship (and you) and
requests that you carry an automatic alarm designed
to warn you when you are in danger of an irretriev-
able plunge into a black hole. The alarm should warn
you when you are approaching the horizon. As a first
cut at the design, assume that you are dropping from
rest at a great distance and that the device has a reg-
ister that allows you to enter the known value of the
mass M of the black hole. Beyond this single setting,
the device must depend only on readings and exper-
iments made internal to the spaceship and cannot
require information from outside. On what principle
or principles can such a device operate? Can you
present a back-of-the-envelope design? How far can
you go toward setting the parameters for the device,
that is, specifying its numerical sensitivity for a black
hole of known mass M? Optional: Add the following
features: (a) A second alarm that warns when tidal
forces are approaching values that may injure you.
(b) If an alarm goes off, you will want to activate
rockets to bring you to rest on a stationary shell at
your current radius 7. A third alarm should warn you
when your radial position r is small enough so that
the gravitational field experienced on that shell is

greater than, say 3¢garth.
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11. Newton Approximates Plunging Set
Energy

dt
dt _ dt shell [56]

Show that the general relativistic expressions for dt = digy, dt

energy of a plunging particle reduce (sort of!) to the

Newtonian result for small velocities and small val- and use the approximation (for |d| <<1and
ues of 2M/r. Use the following outline or your own Indl << 1)
method.
(1+d)"=1+nd [57]
A. Set up the Newtonian expression for the total
energy of a particle in free fall around a center several times to show that, approximately,
of gravitational attraction. Convert to geomet-
ric units and show that the result can be E_,;1,2 M [58. Newton?]
written m 2 shell :
E = 102 M (54. Newton] C. How do equations [54] and [58] differ from one
m 2 r another? How do you account for the
difference(s)?

B. Now consider the general-relativistic energy of
a particle, equation [12]:

E _(, 2M\dt
e (‘ _T)dt [55]

Exercise 11. Newton Approximates Plunging Energy 3-33
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Project B

Inside the Black Hole

Inside the Horizon of a Nonspinning Black Hole

Alice had not a moment to think about stopping herself before she found
herself falling down what seemed to be a very deep well. Either the well was
very deep, or she fell very slowly, for she had plenty of time as she went
down to look about her, and to wonder what was going to happen next.
First she tried to look down and make out what she was coming to, but it
was too dark to see anything; then she looked at the sides. . . . For, you see,
so many out-of-the-way things had happened lately that Alice had begun to
think that very few things indeed were really impossible.

—Lewis Carroll, Alice in Wonderland

Note: Sections 8-10 in this project make use of material in Chapters 4 and 5.

1 Interview of a Diving Candidate

So you are applying to be a member of the black hole diving research
team.

Yes.
Have you had experience diving into black holes?
This question is a joke, right?

Why do you want to be part of this project, since your research results can-
not be reported back to us outside the horizon?

Our diving team went through the Astronautics School together. We
have studied black holes intensively all our professional lives and are
deeply curious to discover for ourselves whether or not predictions for
conditions inside the black hole are correct. We all feel strongly that we
want to cap our careers with this trip.

Tell me, why do black-hole divers use a free-float frame inside the
horizon?

Section 1 Interview of a Diving Candidate



Inside the horizon stationary spherical shells are not possible, even in
principle. Free-float frames are the simplest and most universal.

Then how will you measure your radial position  without a spherical
shell?

We derive the value of r from the distance to test particles on either side
of us that are also diving radially inward.

What clocks will you use in your experiments?
Our carry-along wristwatches.
What do you know about the trajectory?

In effect we start from rest at a great distance from the black hole, then
drop radially inward.

When do you cross the horizon?
As measured on whose clock?

You are savvy. When do you cross the horizon as read on your wristwatch?
Actually zeroing our wristwatches is arbitrary. The Astronautics Com-
mission has a fancy scheme for synchronizing all clocks, including our
wristwatches, mostly for convenience in scheduling. Want more
details?

Not now. Have you been briefed on the plans to resupply you?

There is no need to send us supply packages. Either these packages
would have to be hurled after us at great speed or dropped from a shell
near the horizon before we leave so that we catch up with them on our
descent. It is simpler and cheaper to carry all supplies with us.

Is there anything at all we can do for you after you cross the horizon?

Sure. We would appreciate receiving radio and television bulletins of the
latest news and reports of scientific developments outside the horizon.

And will your outward radio transmissions change frequency during their
transit to us?

Another joke, I see.
Of course. All such predictions, including those essential to your health

and safety, depend on the validity of the Schwarzschild metric inside the
horizon.
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I am betting my life on the correctness of these predictions. The selected
black hole is an old one, so we presume that the sea of gravitational
waves trapped inside the horizon at its formation will have died away.
Only we divers will find out if these calculations are correct.

Speaking of your life, we predict that your death will occur 20 years after
you cross the horizon, as recorded on your wristwatch.

Yes. Unlike you on the outside, we will know when to expect it. Gives a
feeling of assurance. Actually, we all feel privileged to be part of this
expedition. You know very well that 27 percent of qualified Galaxy Fleet
personnel volunteered for this mission.

Does the—ah—end seem mercifully quick to you?

Yes, I have determined the terminal stretch-compress interval. Appar-
ently it will be over faster than pain signals can move from extremities
to the brain. Many of you outside the horizon would welcome assurance
of such a quick end.

What will you do for relaxation during the trip?

I am lunar champion in zero-g football and a grand master chess player.
Also, my fiancé has already been accepted as part of the team. We will be
married before launch.

&

4+

1

Ay

What kind of science are these people talking about? Obviously nothing more than
science fiction! No one who crosses the event horizon of a black hole can report
observations to the scientific community outside the horizon So measurements made
inside the horizon lack the essential feature of reportability Science requires that the
wider community examine observations, compare them with predictions, and discuss
published analyses. Therefore all observations carried out inside the horizon—and
conclusions drawn from them—remain pure speculation Speculation is not science!

Yours is one sensible view of science On the other hand, nothing stops us from form-
ing an in-falling community of investigators that moves together in free float across
the horizon For a sufficiently massive black hole, we in such an in-falling community
have decades of life ahead of us, as recorded on our wristwatches We receive signals
and possibly packages of supplies from friends outside the horizon We view the ever-
changing pattern of stars in the heavens overhead We carry out our investigations,
communicate among ourselves, discuss our observations, publish our own jour nals,
and reach consensus about the correctness of predictions based on the Schwarzschild
metric "Inside science” has all essential features of “outside science” scientists pre-
dict, verify, discuss, dispute, and concur. The fact that our results are not available to
some other group of scientists—those who stay outside—may make our “inside
science” parochial, but it is not necessarily invalid.

Ha! What kind of science can it be when all records of your investigations are
destroyed—crunched to nothingness—at the center of the black hole?

Such is the prediction! But is that so different from the eventual fate of the publica-
tions of human science? The records and journals of “outside” civilizations will no
doubt decay or be destroyed over the millennia that lie ahead They will surely disap-
pear if the Cosmos eventually recontracts upon itself to a final crunch, as some
predict

Section 1 Interview of a Diving Candidate
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In summary, we recognize that the horizon separates two communities of investiga-
tors with a one-way membrane. Outsiders cannot verify predictions about our life
inside the horizon of the black hole. Outsiders must leave it to us insiders to substan-
tiate or disprove predictions with all the rigor of our lively in-falling research commu-
nity

QUERY 1 Mass of the “20-year black hole.” Our chosen black hole has a mass such that
it takes 20 years of wristwatch time for a diver who falls from rest starting
from an infinite distance to pass from the horizon to the center.

A. Find the approximate mass of the “20-year black hole” (i) in meters, (ii) as
a multiple of the mass of our Sun, and (iii) in years. (Sample Problem 2,
page 3-22))

B. On average, a galaxy consists of approximately 10! stars similar to our
Sun. The “20-year black hole” has the mass of approximately how many
galaxies?

C. What is the value of r = 2M at the horizon for the “20-year hole” in light-
years?

D. Discussion questions: How will you know when you are crossing the hori-
zon? How can the value of the Schwarzschild radius r = 2M in light-years
possibly be greater than the wristwatch time of 20 years that it takes to
fall this distance?

2 The Rain Frame

We dive to the center of a black hole riding in an unpowered spaceship
that moves radially inward. To simplify further, we ride on a spaceship
launched in a particular way, namely starting from rest at a great distance
from the black hole. We call such a free-float frame a rain frame, because
on Earth rain also starts from rest at a great height (even though near
Earth the braking effect of air keeps rain from falling freely). The rain
frame starts from rest at so great a height—a radius so remote from the
center—that spacetime there is flat. We use the term raindrop or diver to
label a local inertial frame (an unpowered spaceship) that falls radially
inward from rest at infinite radius.

Every raindrop is a local frame, limited to a region of spacetime in which
relative tidal accelerations of test particles are too small to be detected
with equipment of given sensitivity (Section 8 of Chapter 1). Many differ-
ent local rain frames exist, each with its own unique radial line of motion
and time for passing a given radius.

There are other kinds of local free-float frames besides rain frames. An
unpowered spaceship that moves slower than a raindrop at a givenr is
one released from rest at a radius r, outside the horizon. We call this free-
float frame a drip frame. An unpowered vessel that moves faster than a
raindrop at a given r is one hurled inward from a great distance with ini-
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Eggbeater Spacetime?

Being torn apart at the center of a black hole is bad enough.
But according to some calculations, you will not even make it
to the center alive: Your atoms will be scrambled by violent,
chaotic tidal forces some distance from the center-- especially
if you fall into a young black hole.

The first theory of the time development of a black hole by J.
Robert Oppenheimer and Hartland Snyder (1939) assumed
that the collapsing structure was spherically symmetric. The
result is a black hole that settles immediately into a placid final
state A diver approaching the singularity at the center of the
Oppenheimer black hole is stretched with steadily increasing
force along the radial direction and compressed steadily and
increasingly along the tangential direction

A real collapsing structure is almost never spherically symmet-
ric Theory shows that when a black hole forms, the
asymmetries exterior to the horizon are quickly—in a few sec-
onds of far-away time!—radiated away in the form of
gravitational waves However, a fraction of the waves is cap-
tured inside the horizon of the black hole. This sea of trapped
gravitational waves evolves inside the black hole and influ-
ences the structure of the singularity inside it.

So what happens? We cannot personally verify and report
about the truth of any theory that describes conditions inside
the horizon of a black hole But this deficiency on our part
does not keep us from making predictions! According to
Einstein’s field equations, there is more than one kind of pos-
sible singularity. Vladimir Belinsky, Isaac Markovich
Khalatnikov, Evgeny Mikhailovich Lifshitz, and independently
Charles Misner found a singularity that is very strange.

According to their theory, as a plunging observer approaches
the center point, spacetime oscillates chaotically, squeezing
and stretching the poor traveler in random directions like an
electric mixer {eggbeater) or the old-fashioned taffy-pulling
machine sometimes seen at carnivals and candy stores. These
oscillations increase in both amplitude and frequency as the

astronaut approaches the center of the black hole. Charles
Misner called this a Mixmaster singularity, after the trade-
marked name of a consumer electric mixer (3 product of the
Sunbeam Corporation) Any physical object, no matter what
stresses it can endure, is necessarily utterly destroyed at a
Mixmaster singularity. There is theoretical basis for predicting
that Mixmaster oscillations die away with time, so an astro-
naut who waits to dive for a long time after the black hole is
formed may not encounter them. Prior to this dying away of
Mixmaster oscillations, spacetime in the chaotic regions is def-
initely NOT described by the Schwarzschild metric

In addition to the Mixmaster singularity, Einstein’s field
equations also predict a second possible type of singularity
that exists only inside a charged or spinning black hole (see
Project F) This second type has been called by Eric Poisson
and Werner Israel a mass-inflation singularity Investigators
agree that the mass-inflation singularity is a milder, or softer,
type of singularity, physical objects that approach it are not
stretched to infinite length However, at this point we reach
the kind of disagreement that typifies ongoing research
Some believe that it is theoretically possible to traverse the
mass-inflation singularity peacefully and even speculate that
under some circumstances the astronaut might use a spinning
or charged black hole as a portal for hyperspace travel Others
report results that at a mass-inflation singularity different
parts of the astronaut’s body, while not stretched directly, are
given relative velocities equal to the speed of light—not a
comfortable prospect! A theory of quantum gravity may be
required to resolve these disagreements; see references at the
end of this project

The black hole we are studying in this project is not charged
and does not spin, so we do not expect our descending astro-
nauts to encounter a mass-inflation singularity We also
ignore possible eggbeater (Mixmaster) oscillations of space-
time and assume that as our astronaut colony approaches the
center the "spacetime weather” is clear and calm

tial velocity vg,. We call this third kind of free-float frame a hail frame, so
named because on Earth hailstones fall faster than raindrops—or at least
they hurt more when they hit you! Drip frames and hail frames are useful
when we try to resupply divers after they cross the horizon. Taken
together, rain frames (dropped from initial rest at infinity), drip frames
(dropped from rest at various radii), and hail frames (hurled radially
inward from infinity at various velocities) cover all possible radially mov-
ing free-float frames. In this project we concentrate on the rain frame;
some of our conclusions will be true for all free-float frames.

Equation [24], page 3-15, gives the velocity of the raindrop as clocked by
the shell observer past whom it falls:

drshe]l _ (2_1!)1/2 (1]
di e r

Section 2 The Rain Frame



Equation [32], page 3-22, develops a similar equation that relates the
change dr in the Schwarzschild r-coordinate to the proper time lapse dt,,,,
(called dt in that sample problem):

dr _ (%)1/2 2]

dt r

rain

Note that equation [2] is expressed in mixed coordinates: t,,,, and dt_,;,
measure the time read on the wristwatch of the rain observer, while r and
dr are measured in terms of Schwarzschild r-coordinate. The r-coordinate
is measured by means described in the box on page B-8.

Equation [2] is plotted in Figure 1. Notice that at the horizon (r = 2M), the
magnitude of this quantity, the radial speed, is equal to unity, the conven-
tional speed of light. Inside the horizon (r < 2M), the quantity on the right
has a magnitude greater than unity. At the center (r = 0), this quantity
becomes infinite. Does this expression really represent the speed of the in-
falling local rain frame? Inside the horizon, does a raindrop really move
“faster than light”? These questions are debated in Section 3.

QUERY 2 Rain frame time between given radii

A. Show that the elapsed rain time from falling past radius r; to zipping past
a smaller radius r; is given by the expression

102\1Y2 3,2 3,2
3 rain ~ 1 rain = §( ) (rl - ) 3]

M

Rewrite this equation so that the variables are t,;;,/M and r/M and so that
M occurs nowhere else in the equation. A typical curve is plotted in Figure
4 for a raindrop that passes r = 5M at wristwatch time zero (ty ;3;, = 0).

(These radii are measured by the method shown in the box on page B-8.)

B. What happens to the value of the time lapse in equation [3] when the ini-
tial radius ry becomes infinite? How do you account for this result?

3 Faster than Light Inside the Horizon? Debate!

True or false: Inside the horizon the rain observer falls faster than the speed
of light. Take both sides, arguing as fiercely as possible for and against this
proposition. Follow the outline here for each side or develop your own
independent cases.

YES! FASTER THAN LIGHT

YES argument 1: Formula for the speed proves it.

Figure 1 uses equation [2] to plot raindrop speed dr/dt,;, as a function of

/M for the local rain frame. Continued at the bottom of page B-9.
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Figure 1 Computer plot The value of the mixed-coordinate expression dr/dt,p, the “speed
of the local rain frame, " plotted as a function of r/M. The value of this speed reaches unity at
the horizon and increases without limit as the frame reaches the center at r = 0.

QUERY 3

Shell separation as measured in the local rain frame. A local rain frame
observer falls radially inward but has not yet reached the horizon. On the
fly she measures the distance dr,,;, between adjacent shells. According to
special relativity, she measures the distance between adjacent shells to be
shorter than the shell measurement, by the factor (1 - 9", where vis
the relative speed (equation [1]) between in-faller and local shell. Accord-
ing to general relativity, the measured distance between adjacent shells is
longer than the bookkeeper distance dr, according to equation [D] in
Selected Formulas at the back of the book. Show that these two factors
cancel, so that (dr,,in/drshel) (drshe/dr) = drpain/dr = 1 and we have the
surprising result:

dr i, = dr [4. meterstick measurement]

in other words, the in-falling rain observer measures the separation
between adjacent shells to be equal to the difference dr in their
Schwarzschild r-coordinate. From now on we can use dr instead of dri,.

Note 1: Relation [4] is true only for the rain observer, not observers fall-
ing slower (“drip frame”) or faster (“hail frame”) than the rain observer
at a given radius. Note 2: Equation [4] is correct only for separation
between events that are simultaneous in the rain frame, as is true for
measurement of length by any observer.

Section 3 Faster than Light Inside the Horizon? Debate!
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Measuring the Value of r Inside the Horizon

Outside the horizon, r-values are determined by measuring
the circumference of each spherical shell and dividing this
circumference by 2x (Section 4 of Chapter 2) Hence we call
r the reduced circumference But no stationary concentric
spherical shell exists inside the horizon Question How can
the rain observer possibly determine the reduced circumfer-
ence r of her location? Answer By measuring a piece of
circumference

Two raindrops fall radially side by side past shell AA’ outside
the horizon, as shown schematically in the Schwarzschild
map of Figure 2 One raindrop falls along the straight radial
path ABCO and its companion along the nearby straight
radial and converging path A'B’C'O Draw a circular seg-
ment connecting AA’ and similar circular segments
connecting BB' and CC’ Now the angle AQA’ at the center
is the same as the angle BOB’ Hence each of the circular
segments AA" and BB’ represents the same fraction of the
entire circumference of the circle of corresponding radius In
equation form,

( Length of j [ Length of )
circular segment AA'/ _ \circular segment BB' [5]
Circumference of Circumference of

spherical shell
passing through A

spherical shell
passing through B

Call rp the reduced circumference at point A and rg the
reduced circumference at point B Then the denominators of
the two sides of the equation become 2#r and 2nrg,
respectively, and we can cancel the 2x from both sides.
Now, if the angle at the center is small, the length of the cir-
cular segment is approximately equal to the straight-line
distance between A and A’ Call this distance AA’. And call

Figure 2 Schwarzschild map of paths of two in-falling
raindrops. By measuring their separations, such as AA’ and
CC, the in-falling observer can deduce her radius, even
when she has passed inside the horizon.

BB’ the corresponding straight-line distance between B and

B' Then equation [5] becomes, for equal angles,

AA’ BB’

roaieay 6]
A B

Suppose a diver reads the labeled radius r, of a spherical
shell as she passes it and at that instant measures the dis-
tance AA’ between the two raindrops Then at a later time
she measures the raindrop separation to be BB’ From this
measurement she deduces the radius rg at that later time to
be

’

L 7]

Both points A and B lie outside the horizon We now assume
that the same formula [7] holds for any radius, even for a
radius rc less than that of the horizon In other words, the
infalling observer can measure her radial position /¢ at point
C inside the horizon using the equation

CcC’
rC=KA_’ rA [8]

How will the infalling raindrop observer measure separations
AA or CC'? One possibility employs a simple ruler, as shown
in Figure 3 The ruler will, of course, be crushed by tidal
forces near the singularity An alternative method, radar
ranging, allows measurement of r even closer to the crunch

Separation proportional to r
N I Y N R
Attached

to ruler

Free

Figure 3 Device for measuring the reduced circumference
r of an observer falling freely inward along a radius Two
objects fall inward with matched speeds along straight
radially converging paths A ruler is attached to one,
determine the distance between objects by locating the
second object along the ruler Details Make an initial ruler
reading as the device passes a spherical shell of known
reduced circumference outside the horizon Then assume
that the magnitude of a later separation is proportional to
the reduced circumference r

B-8
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Horizon

-5

Figure 4 Computer plot- Worldline of r versus t,ain for a rain observer (one who falls from
rest at infinity) The zero of rain time is set arbitrarily at the event of coincidence between the
in-falling observer and the spherical shell at r = 5M (open circle on the horizontal axis). For
other choices of zero time the curve can be moved bodily up or down on the graph without

change of shape.
d M 172
—=-(%) 2]
rain

Inside the horizon (r < 2M), this raindrop speed certainly takes on a mag-
nitude greater than unity, greater than the speed of light. This argument

Section 3 Faster than Light Inside the Horizon? Debate! B-9



proves that we have finally broken the light barrier—that inside the hori-
zon the rain observer moves faster than light.

YES argument 2:

QUERY 4 Wristwatch time to the center proves it. Compare the radius of the horizon
to the wristwatch time for the rain observer to fall from horizon to center.
Show that the ratio of the two represents an average speed greater than
unity, greater than the speed of light. Recall Query 1, part D.

YES argument 3:

QUERY 5 INSIDE the horizon, the raindrop must move faster than it does AT the
horizon.

A. AT the horizon, as a limiting case, the shell observer measures the in-
falling rain observer to move inward with what speed dry,o/dtshe?

B. The in-falling observer measures the last passing spherical shell at the
horizon (as a limiting case) to be moving past at what speed?

C. Equation [2] agrees with the result of part B. And thereafter the in-
faller surely increases her speed. Therefore inside the horizon . ..

NO! SLOWER THAN LIGHT

NO argument 1: Local rain frame observer measures light to move at
v=1.

The local rain frame is a free-float frame. As measured in such a frame,
light moves with its conventional speed: 1 meter of distance per meter of
time. We expect that the rain observer measures inward-moving light to
pass her with the conventional light-speed unity even after she has passed
inside the horizon. Since light passes the rain frame, it is ridiculous to say
that the local rain frame moves “faster than light.”

The gift of fantasy

When I examine myself and my methods of thought, I come to
the conclusion that the gift of fantasy has meant more to me
than my talent for absorbing positive knowledge.

—Albert Einstein
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NO argument 2:

QUERY 6

The “proper velocity” of light is infinite. The expression dr/dt,,;, of equa-
tion [2] does not clock an ordinary frame speed. Its numerator, sure
enough, is the change dr in Schwarzschild r-coordinate. Its denominator,
however, is the proper time (wristwatch time) of the in-falling raindrop.
This ratio has a counterpart in the special relativity of flat spacetime.
Explore the special relativity case as follows:

A. Forget black holes and general relativity and return to flat spacetime.

Think of a trip from Earth to Alpha Centauri, 4 light-years from Earth,
in an unpowered spaceship moving at speed dx/dt as observed in the
Earth frame. Now change the measure of time from Earth-frame time
dt to proper time dt as recorded on the wristwatch carried by the
spaceship. Then change the measure of speed from dx/dt to dx/dr. Call
dx/dv the proper speed, since the spaceship covers the proper distance
between Earth and Alpha Centauri (the distance measured in the Earth
frame, in which both are at rest) in the proper time for the trip (the
time measured in the spaceship frame, in which events of departure
from Earth and arrival at Alpha Centauri occur at the same place). Find
an expression for proper speed dx/dt in terms of Earth-frame speed
dx/dt.

. Now let the spaceship repeat the trip from Earth to Alpha Centauri at

greater and greater Earth-frame speeds dx/dt. For what Earth-frame
speed dx/dt does the proper speed dx/dt become unity?

. As the Earth-frame speed dx/dt of the spaceship increases further and

approaches the speed of light, what value is approached by the proper
speed dx/dt?

. As a limiting case of high speed, what is the "proper speed of light” in

flat spacetime?

. Now return to the speed of the in-falling local rain frame given by

equation [2]. Here, too, the time increment dt,,;,, is equal to the proper
time dt read on the wristwatch of the in-falling raindrop. Display a
conclusion that proves that even inside the horizon the proper speed
dr/dt,,;, of the raindrop is less than the limiting-case “proper speed of
light”? Is there any location inside the horizon at which the two have
the same value? Is there more than one such location inside the
horizon?

Discussion: One way to resolve the debate is to acknowledge the radical
difference between the circumstances in which velocity is measured inside
the horizon and the usual situations in which we define velocity. The dif-
ferences in these circumstances are so great that our usual ideas of velocity
have simply been transcended. However, even inside the horizon at least
one fundamental observation may remain true, as described in the follow-

ing query.

Section 3 Faster than Light Inside the Horizon? Debate!
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QUERY 7 Debaters agree? What do the YES! advocates and the NO! advocates in
the debate have to say about the following statement: No LOCAL observer
directly measures any object to move faster than light. Do they both agree
that it is true, or do they disagree? Is this statement true for an observer
who drops from rest at an intermediate radius? Is it true for an observer
who starts toward the black hole from a great distance with an initial
inward velocity?

4 Metric for the Rain Frame

Up until now we have examined only events in the immediate neighbor-
hood of a single in-falling rain observer. In this near-surround, one can
construct a local free-float frame consisting of a limited latticework of
clocks. Now we want to describe the motion of light from distant stars and
the motion of resupply packages hurled radially inward for our use. These
trajectories span large regions of spacetime. To describe them we need a
global reference frame.

For the region outside the black hole horizon, the global reference frame
was originally provided by the bookkeeper coordinates 7, ¢, and t used in
the Schwarzschild metric. Inside the horizon the coordinates r and ¢ can
still be measured, but far-away time ¢ is no longer useful, because reports
of events can no longer reach the distant bookkeeper. Instead we used
time ¢.,;, measured on the wristwatch of a single in-falling rain observer.
In Query 3 we showed that outside the horizon dr = dr,,, for a pair of
events simultaneous in the rain frame (true only for plungers who start at
rest at infinity), so dr is a useful measure of radial increment for the rain
observer. We assume that this relation also is correct inside the horizon.

The box on page B-13 derives the metric in the coordinates r, ¢, and i,
This metric is valid both outside and inside the horizon. As usual, the met-
ric allows us to answer all possible scientific questions about
(nonquantum) features of spacetime near the Schwarzschild black hole
and about the motion of particles and light flashes in its vicinity. With the
metric in this form, the analysis can proceed seamlessly from outside to
inside the horizon and (almost!) all the way to r = 0.

QUERY 8 Flat space in the rain frame? Set dt,,;, = 0 and show that the space part of
the metric [15] is what one would expect from Euclidean geometry. That is,
the space part is locally flat. Is this result a surprise? In the Schwarzschild
description, drypey is greater than dr outside the horizon (equation [D] in
the box). Why is there no similar stretch in the dr? term in the metric for
the global rain frame? (Hint: Recall the results of Query 3.)
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from bookkeeper coordinates to shell coordinates, then

at the end of this book

in this case lies along the radially inward direction

Substitute equations [C) and [D] into the Lorentz transfor-
mation equation [9] to obtain

y(1-2m/nl/2 (1=2M/7)

We want a metric in the coordinates r, ¢, and ¢,5, We make
this transition in two jumps for events outside the horizon

from shell coordinates to rain coordinates Assume that the
resulting metric is valid inside the horizon as well as outside
The transition from bookkeeper coordinates to shell coordi-
nates is given by equations [C] and [D] in Selected Formulas

(D]

dr. . = —dr
shell = 2ML/2
(1-3)
2M 172
dlshell = (1 ——r—) dt [C]

Now, to go from shell coordinates to rain coordinates, use
the Lorentz transformation of special relativity Choose the
“rocket” coordinates to be those of the rain frame and the
"laboratory” coordinates to be those of the shell frame The
Lorentz transformation for differentials (page 103 of Space-
time Physics) is expressed for motion along the x-axis, which

d'ram =- vrclershell + Yd’shell (9]

v_Ydr
di = —mIYsz*Y“ —2M/r)"2ar [10]
(1-2M/r)
Solve for dt
dt v, ,dr
dt = rain + rel [11]

Metric for the Rain Frame

Substitute v, from equation [1] on page B-5 into the
expression for the stretch factor v

2M]l/2 [12]

Urel =~ [_r_
1 - ! (13]

2 172 172
a-v " (1-2]

Y

Substitute equations [12] and [13] into [11] to obtain

@eM/n' ar
ran o

)

r

dt = dt [14]

The Schwarzschild metric is equation [A] in the Selected For-
mulas at the end of this book

2
1’ = (1 - Zﬂ)dﬁ LT A]
r 1- M

r

Substitute expression [14] into the Schwarzschild metric and
collect terms to obtain the global rain metricin r, ¢, t.ain

2 2MN 2 2M\172 2 2,2
dt =("T] _2(—;-) di dr—dr’ - d¢

d ’ram

(15]

This metric can be used anywhere around a nonrotating
black hole, not just inside the horizon Our ability to write
the metric in a form without infinities at r = 2M s an indica-
tion that the plunger feels no jerk or jolt as she passes
through the horizon

5 One-Way Motion Inside the Horizon

Why can’t we escape from a black hole? Why is travel inside the horizon
inevitably a one-way trip to the center? This section treats these questions
from the point of view of one special diver: a “raindrop,” namely, a
plunger that falls freely from rest at a great distance. The basic conclusion,
however, is true for all travelers inside the horizon: Inside the horizon your

radius r decreases inexorably.

The raindrop is a local inertial free-float frame. As in any inertial frame, no
object or message can move forward or backward faster than light. The
worldline of a passing particle must lie within the so-called forward light
cone, moving no faster than light in either the inward or the outward
radial direction. In the following analysis we trace out the local worldlines

of light moving in the raindrop frame.

Section 5 One-Way Motion Inside the Horizon
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Preview: The rain observer launches light pulses toward the center and

away from the center. We shall find that inside the horizon, light shot out
the front and light shot out the back both move inward. Hence all parti-
cles, shot out the front or out the back (necessarily with speeds less than
that of light), must also move inward. These facts are important because
the only true proof that a horizon exists is the demonstration that world-

lines can run through it only in the inward direction, not outward.

QUERY 9 Light cones in rain coordinates

rain-frame metric [15]:

B. For light (dt = 0) moving radially (d¢ = 0), show that
“taillight flash” shot out of the back of the raindrop

C. Show that velocities for both the headlight and tailli
summarized in the equation

dr _ _(2’_1‘1)1/23: .
dt a r

rain

anything launched from the raindrop in either radial

A. Multiply out the following expression to show that it is equivalent to the

i’ = —[dr+(1 ¥ @)d:rain}[dr—(l - @)d:rain]-r2d¢2 [16]

two solutions, one for the “headlight flash” shot inward and one for the

D. Show that equation [17] predicts that inside the horizon (for r < 2M) even
the taillight flash, shot out of the back of the raindrop, moves inward.

E. Fill out the argument that, once the raindrop has crossed the horizon,

at what speed relative to the raindrop, inevitably moves inward.

equation [16] has

ght flashes can be

[17. light]

direction, no matter

Figure 5 shows these initial light cones outside and inside the horizon.

Note that these light cones display only the initial motion of inward and
“outward” light flashes. In the following section we will trace these flashes

for some time after their emissions.

raindrop falls inward, find the radial location r/M at w
with the following proper velocities:

A. drldt,,i, = 0.99

B. drfdt,,i, = 0.9

C. dridt, i, = 0.5

D. dr/dt,ain =0

QUERY 10 Initial motion of taillight light flash outside and at the horizon. As the

flash emitted from the back of the descending raindrop moves outward

hich the taillight

B-14
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Figure 5 Computer plot: Worldline of a raindrop emitting flashes as it passes inward through
the horizon of a black hole Arrowheads show the direction of motion of the raindrop along its
worldline Little cones represent light spreading out in all directions from flash emissions along
the worldline The lower line segment leaving each dot represents the initial motion of the
portion of the flash sent inward (minus sign chosen in equation [17]) The upper line segment
represents the initial motion of the portion of the flash aimed radially outward (plus sign chosen
in equation [17]) Inside the horizon even the portion of the flash aimed radially outward moves
inward, toward the center Note that the figure shows only the initial motion of these light
flashes For an example of a full trajectory of light, see Figure 7, page B-19.

QUERY 11

Initial motion of taillight light flash inside the horizon. As the raindrop
falls inward, find the value of the quantity r/M at which the taillight flash

actually moves inward with the following "proper velocities”:
E. dridt i, = - 0.1

F. dridt i, = - 0.5

G. dridt gin =-1

H- dr/dtrain == 9

Section 5 One-Way Motion Inside the Horizon
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QUERY 12 Initial motion of headlight flash. Given each of the eight radial values
r/M found in Queries 10 and 11, find the proper velocity dr/dt, i, of the
headlight flash aimed inward at each of these radial values.

6 Radial Trajectories of Light

You are given the task of providing occasional radio news bulletins for the
divers. Each of these bulletins, covering the latest news and scientific
reports from outside the horizon, will be broadcast radially inward from a
fixed station on a shell external to the horizon.

To prepare for this task, you want to know how long it takes light to move
from radius r; outside the horizon to radius r, inside the horizon. And
since no clock can be stationary inside the horizon, you choose to measure
“how long” for this trip in rain time ¢ ,,,. The following query is rather
technical. You may choose (or may be instructed) to carry it out, or you
may simply use the result. In this query and in much of the remainder of
this project, we use dimensionless variables that not only simplify the
analysis but also make the results independent of the mass M of the black
hole being considered. For every domain of radius r and time ¢ we define
the dimensionless variables

r

M

[18]

t
* E —
and t I

r¥

QUERY 13 Rain time for light to move from one radius, ry, to another, r. Rewrite equa-
tion {17] of Query 9 to read, for inward-moving light or radio waves,

—dr* _ —r*1/2dr*
(2)1/24-1 ﬁ+r*1/2

r¥

dt* i = [19. light]

(For a flash sent “outward,” the plus sign becomes a minus sign in both
denominators in equations [19].) Make the substitution

172
u=J2+r* [20]

Integrate the resulting equation from u; to uy, recall that
InA - InB = In(A/B), then resubstitute equation [20] for uy and u; to show
that for the signal moving inward from r*; to r*,, the integrated rain time is

1/2
172,172 N2+

™* 2 rain — 11 rain = ("*1“"*2)—2«/2(7‘*] —r¥, )+4In —15
ﬁ+r*2

[21. headlight flash]

Messy? Sure, but the computer doesn’t care and easily plots the results.
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the rain diver herself?

QUERY 14 Horizon-to-crunch rain time for light. Verify that when r*, = r*,, the
elapsed rain time is zero. Why is it zero? Show that when r*, is at the hori-
zon and r*, = 0 (at the crunch point), the elapsed rain time t*,,;, = 0.773
or train = 0.773 M. Compare this result with the horizon-to-crunch wrist-
watch time T = (4/3)M for the rain diver herself, derived in the box on
page 3-22. Why is the result using equation [21] less than the result for

Figure 6 is a computer plot of some curves derived from equation [21]. For
each curve, select r*; and set t*,1 ;,;n = 0. Then choose a sequence of
smaller values of r*; and let the computer calculate t*, ;.;, and plot the
result. For comparison, we include curves showing the worldline of sev-
eral raindrop divers. It is evident from Figure 6 that our news bulletins can
be timed to catch up with the descending diver community.

What about the light flash that the in-falling diver launches radially out-
ward? If this launch occurs before the diver falls through the horizon, then
the outward flash indeed moves outward. Once the diver has passed
inward across the horizon, however, even the “outward” flash moves
inward. The little cones sprouting from the worldline in the earlier Figure
5 show the initial motions of inward and “outward” flashes emitted inside
the horizon. More complete worldlines for emitted light are shown in
Figure 7. You can trace the worldline of the “outward” flash by placing a
minus sign in front of the second term in the denominator on the right
side of equation [19] and carrying out the integration. Inside the horizon
(where r*; is always greater than r*y), a convenient form of the solution is

1/2
/2 172 2 1%,
* 2 ran = 11 rain = —(r*l—r*2)—2.\/§(r*1 “rfz ) +4ln 2 w172

[22. taillight flash]

A diver who has arrived at emission point A shown in Figure 7 can influ-
ence only those future events that lie within the shaded region in the
diagram. The more time passes—the smaller the radius at which the diver
arrives—the fewer events the diver can affect. With unlimited rocket
power, the diver could herself be present at any of the events in this
shaded region. Indeed, the worldline of the “outward” flash might be
called a worldline of inevitability; for the raindrop traveler arriving at event
A, no known power in the universe can defer extinction longer than the
upper limit traced by this curve.

Section 6 Radial Trajectories of Light
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Figure 6 Computer plot Worldlines of "rain divers” (thin lines) and inward light flashes
(thick lines) The rain diver worldlines all have the same form and can be moved up and
down without change The same is true of the light-flash worldlines For a given value of
M, the light pulses are covering more distance per unit time than the rain plunger From
this result it is evident that light or radio waves can be used to communicate from outside
the horizon to divers inside the horizon

7 A Merciful Ending?

Diving into a black hole is a form of suicide, which may go against reli-
gious, moral, or ethical principles. Aside from such considerations, no one
will volunteer for your black-hole diver research team if she predicts that
her death at the crunch point will be painful. Your task is to estimate the
ouch time 1,,,.,, defined as the lapse of time on the wristwatch of the
diver between the first discomfort and the arrival of the diver at the cen-
tral crunch point, r = 0.

B-18 PROJECT B Inside the Black Hole



Rain plunger

Horizon

N m- e e e e =

i
1 1

5
N

o
-+
5

Figure 7 Computer plot Thin line: Worldline for rain diver that passes r = 5M at t,in = 0 and
emits headlight and taillight flashes at event A inside the horizon. Thick lines: Worldlines for
these inward and “outward” flashes. Both flashes move inward. The shaded region contains
events the diver can still influence in the future as she passes event A.

QUERY 15 Preliminary: Acceleration g in geometric units. Carry out part A of Exercise 9
in Chapter 3 to show, first, that in Newtonian mechanics the acceleration at
the surface of Earth is given by the following expression in geometric units,

M

8Earth = 8E = 5 [23. Newton]
r
E

Show that the acceleration of gravity gg at Earth’s surface has the following
approximate value in geometric units:

8Farth = 8E © 107'¢ meter™! [24. Newton]
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QUERY 16  Acceleration of the rain frame. Start with equation [2] with dt,,;, = dt:

dr N (gw_jl/Z 25
dt ~ r [25]
Take the derivative of this expression with respect to wristwatch time 1 to
find the acceleration of the rain observer in the mixed coordinates r and t.
Show that the result has the same form as the Newtonian case (with proper
time replacing Newtonian universal time):

1/2

dr_1emPar M

= T == [26]
d12 2 r3/2 dar r2

& rain

where we substituted equation [25] in the next-to-last step.

QUERY 17 Relative tidal acceleration in the rain frame. We want to know how much
this initial acceleration differs between the head and the feet of an
in-falling raindrop observer. Start by taking the differential of g4iy in
equation [26] with respect to . Show that

_ oM

rain 3

,

dg dr [27]

In Query 3 you showed that (for the rain frame only) the rain observer
measures the separation between shells to be dr, the same as their separa-
tion in the Schwarzschild r-coordinate. The consequence is that the
separation between head and feet of the in-falling observer has the same
value dr_,;, in the rain frame as their separation dr in r. Hence equation
[27] can be used to find the difference in acceleration between the head
and feet of the rain frame diver. Take this separation to be a generous 2
meters. However, we will wait until the last minute to substitute numeri-
cal values, hoping that some quantities will cancel.

What are the conditions for discomfort? Let us assume that the diver first
becomes uncomfortable when the difference in local acceleration between
her head and feet, tending to stretch her, is equal to the acceleration at
Earth’s surface. In other words, if her stomach is in free float, she will
become uncomfortable when her feet are pulled downward with half their
weight on Earth and her head is pulled upward with half its weight on
Earth. The difference in acceleration between head and feet is thus equal to
the acceleration of gravity on Earth.
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QUERY 18 The beginning of “ouch.” Show that, in equation form, ouch first occurs

when
dgram ouch = 8E (28]
SO
2Mdr\1/3
Touch = ( £E ) [29]

QUERY 19 The r-value for "ouch.” Compare the ouch radius [29] with the r-value of the

A. A black hole with ten times the mass of Sun.
B. The “20-year black hole” under study in this project.

C. Suppose the ouch radius is at the horizon. What is the mass of the black
hole, in multiples of the Sun's mass?

QUERY 20  The ouch wristwatch time 1,

A. Show that the ouch time (the total length of time the diver will be
uncomfortable) is independent of the mass of the black hole and is given
by the expression

2(dr\1/2
Touch = g(g) [30]

Here, recall, dris the height of the astronaut, about 2 meters, and
g = Earth-surface gravitational acceleration = 10716 meter™'.

B. Calculate the ouch time 14, in seconds—the same value for all
Schwarzschild black holes.

QUERY 21 A merciful death? Doctors tell us that pain signals travel through the nerves
at the speed of approximately 1 meter/second. Draw your conclusion about
the merciful nature of death at the center of a black hole.

horizon, r = 2M. Find the value of the ratio ry,/2M for the following cases:

8 Trajectories of Particles Inside the Horizon

Reminder: Sections 8 =10 depend on the contents of Chapters 4 and 5. You
may want to return to these sections after completing those chapters.

Starting with the rain metric, equation [15], you can develop the equations

for trajectories of stones and light flashes using the procedures of Chapters
3 through 5.

Section 8 Trajectories of Particles Inside the Horizon
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QUERY 22 Energy. Follow the steps in Section 3 of Chapter 3, but use the rain metric,
to derive the expression for the energy per unit mass of a stone in rain
coordinates. Show that the resulting constant of the motion is

Erain _ (1 2detrain_(&4)l/2 dr

m Ty ) dt r dt

[31. m> 0]
-

Here dt is the wristwatch time of the moving stone.

QUERY 23 Angular momentum. Follow the steps in Section 2 of Chapter 4, but again
use the rain metric, to derive the expression for angular momentum per
unit mass, the second constant of the motion of the stone. Show that the
result is exactly the same as for the Schwarzschild metric, namely,

2d
L _ , dé

— = Tt [32.m>0]

One can go on to describe orbits of particles and light both outside and
inside the horizon employing coordinates 7, t,;,, ¢. Derivations are similar
to those in Chapters 4 and 5, but the new derivations are complicated by
the second term in the equation for energy, above. Rather than pursuing
these algebraically complicated derivations here, we look instead at what
the plunging rain observer sees as she approaches the crunch point at
r=0.

9 The Final View

What is the last view of the stars our rain diver sees as she approaches the
crunch point? We now have the tools to answer this question.

Outside the horizon, the shell speed of the rain diver is given by equation

[1]:

dr ghell (ZM)I/Z
=7 = —-|— [33]
dtgpey ! r

For a light flash, the relation between energy and the angles y at which a
shell or rain viewer looks to see the flash is given by equations [40] and
[41] on page 5-26. Adapted to the present notation they read:

COSW hell + 0 .
cosy . = e rel [34. light]
a1+ vcosY gy
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E, n(l+v_, cos )
E, = -l rel 05 Wshell 135. light]

2 172
(1 _vrel)

Here the rain diver takes the place of the rocket frame while the shell
serves as laboratory, and v, is the velocity of the rocket with respect to the
laboratory (shell). The angle y is measured with respect to the direction of
rocket motion in the laboratory frame. Then, according to these conven-
tions of special relativity, for the rain diver the angle y is zero along a
direction radially inward and v, is also positive for motion radially
inward. In other words,

2M

1/2
Vel = 7 Ushell = (T) [36]

Here is the relation between the energy Eg,, of a light flash at a location far
from the black hole and the energy Eg,.; measured by the shell observer,
from equation [27] on page 3-17 or Exercise 6 of Chapter 5:

M 1/2 .

r

Equation [37] is true for anything moving toward or (when possible) away
from a black hole. Moreover, it is true of light flashes (or anything) moving
in any direction, not just radially. (Proof of these two statements is an
optional Query: Show that if they were not so, you could build a perpetual
motion machine, at least outside the horizon.)

Finally, there is a relation between the angle W} at which the shell
observer looks to see a light flash and the impact parameter b of that flash.
(The impact parameter b is defined in Figure 2, page 5-6.) From equation
[17] and Figure 3 on page 5-9, we obtain an expression for cos Y,e for use
in equations [34] and [35]. The cosine below is written with a negative sign
because there is a 180-degree difference between the direction in which the
light moves and the direction in which one looks to see the light. For the
direction in which one looks (with zero angle y radially inward), we have

oM b2 1/2
COSW pop = = [1 —(1 -—T)—2] [38]

r

Now we want to apply these equations to determine the view seen by the
rain diver just before she reaches the crunch point at r = 0. Combine the
above equations and assume that the results can be applied to motion
inside the horizon. Note: For impact parameter with the value b =0, that is,
for a star exactly radially outward, equation [38] says that shell observers
at all radii will see this star in the radially outward direction. This result
propagates forward in what follows, so the star exactly radially outward
from the plunger will be observed radially outward right down to the
crunch point. The analysis below holds for stars in all other directions.

Section 9 The Final View
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QUERY 24 Ring around the sky. Substitute expressions [38] and [36] into [34] and
begin to take the limit as r —> 0. First, neglect all terms except those with
some power of r in the denominator (because terms with r in the denomi-
nator will be much larger than all others as r —> 0). Show that the result of
this first step is

M 172 b 2M 172
()" 2 ()
COSY .in — >Mb [39. as r —>0]

2
r

Next, in the numerator of the fraction on the right side of [39], retain only
the first term, with the highest power of r in the denominator (because
the first term grows to the largest value as the limit is approached). Show
that the result is

2M 172 b
()2

4 A 40 0
COSW oin — M - (m) [40. as r —0]
2
r

Equation [40] tells us that as the rain diver approaches the crunch point (as
r —> 0), the cosine of the direction in which she looks to see a star goes to
zero, meaning that her viewing angle goes to 90 degrees. And the 90-degree
viewing angle does not depend on the value of the impact parameter b. Hence she
sees at 90 degrees EVERY star above her (except for a star directly outward
radially). Hence she sees almost all the stars in a “ring around the sky”
transverse to her direction of motion.

What is the energy of light the plunger sees in her last instants?

QUERY 25 Energy of light in the final view. Substitute expressions [36], [37], and [38]
into equation [35] and take the limit of small rin the same way as in Query
24. Show that the result is

b
Erain - ;Efar [41. as r —> 0]

From Figure 8, show that the energy of light £,,;, has the value

E E [far g 0 [42. asr —> 0]
rain > far_,.'sm far :

where the subscript far refers to values far from the black hole.
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Ftar

Black hole\

Figure 8 An observer at A, a great distance rg,, from a black hole (a distance so great that
light is not deflected by the hole), sees a star at an angle 8¢,, from the radially outward
direction This figure shows that the impact parameter b then has the value b = rgsin 8y,
where r and 0 are measured at the same point A

In summary, just before the rain diver reaches the center of the black hole
she views a brilliant ring of high-energy radiation at 90 degrees from her
direction of motion, this radiation coming from (almost) all the stars in the
sky.

Our description of what the plunger sees does not include images of stars
from light paths that wrap once or many times around the black hole.
These multiple light paths illuminate the description of the final scene
recounted in Section 11 of Chapter 5, starting on page 5-27.

10 Additional Projects

Every possible question about (nonquantum) features of spacetime and
orbits of particles and light in the equatorial plane around a spherically
symmetric, nonspinning black hole can be answered using the metric and
the Principle of Extremal Aging. We have barely begun the description of
life inside the horizon of the black hole. Some of the following questions
can be answered only after mastering the material in Chapters 4 and 5.

1. Frequency shift. News bulletins for the plunging astronauts are broad-
cast inward at frequency f from a stationary shell outside the horizon.
What will be the frequency of arriving signals as received by the diver?
Does the broadcast frequency f need to be changed as time goes by so that
the astronauts can use a receiver tuned to a single frequency?

2. Starlight. What does the canopy of stars look like when viewed from
inside the horizon (and before reaching the crunch point)? By what
amount does light from the stars change frequency as observed by the
diver? How do these effects vary with time as the diver moves inward
between horizon and crunch point?

Section 10 Additional Projects
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3. Orbits in rain coordinates. In Query 22 you derived the expression for
the energy per unit mass of a plunger. After completing Chapter 4, you
will be able to verify (Query 23) that the expression for angular momen-
tum in rain coordinates has the same form as the one derived in Section 2
of Chapter 4 from the regular form of the Schwarzschild metric. After
completing Chapter 5, you will be able to verify that the equations of
motion for a light flash have the same form in rain coordinates as they do
in Schwarzschild coordinates.

4. The insertion problem. Astronauts jump off a shell at what radius to
start their trip to the center? From a shell on which the local acceleration of
gravity does not crush them? Putting in the numbers, you discover that
the “insertion” free drop from such a shell to the horizon of a “20-year
black hole” will last for hundreds of years. So what is a practical plan for
beginning a trip to the center of such a black hole? Perhaps start the
plunge from a station in the minimum-radius stable circular orbit at

r = 6M, as described in Figure 13 and exercise 2 of Chapter 4? But how
long is the trip into that orbit? And what are the tidal forces in that free-
float orbit?

5. Alternative in-falling frames. We have described observations from
only one set of reference frames for the diver, the set we call rain frames,
which fall from rest at a great distance. There are alternative frames, such
as the drip frame and the hail frame described in Section 2. What will be the
experience of an observer in one of these alternative frames?

The Galactic Technical Center eagerly awaits your analysis of these
problems!
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CHAPTER 4
Orbiting

How happy is the little Stone
That orbits a Black Hole alone,*
And doesn’t care about Careers
And Exigencies never fears —
Whose Coat of elemental Brown

A passing Universe put on,

And independent as the Sun
Associates or glows alone,
Fulfilling absolute Decree

In casual simplicity —

—Emily Dickinson, about 1881 (poem 1510)

*Line two in the original reads:

That rambles in the Road alone,

1 Step or Orbit?

“Go straight!” implies extremal aging. Extremal aging implies that energy and
angular momentum are constants of the motion.

A stone in orbit streaks around a black hole—or around Earth. What tells
the stone how to move? Spacetime grips the stone, giving it the simplest
possible command: “Follow a straight worldline in the local inertial
frame.” From instant to instant this directive is enough to tell the stone
what to do next, what next step to take in its motion.

Knowledge of its next step is enough for the stone, but it is not enough for
us. We want more. We seek a global description of the trajectory of the
stone through spacetime, a trajectory that carries it far beyond the confines
of a single local inertial frame. The Principle of Extremal Aging answers
our need. It converts the local ordinance “Go straight!” into a general exec-
utive order spanning spacetime from fixed initial event to fixed final
event. “Between initial and final events,” the Principle decrees, “follow the
worldline of extremal aging.” This worldline—the straightest possible
worldline through flat or curved spacetime—is called the geodesic.

In this chapter we win from the Principle of Extremal Aging a simplified
account of the orbit of a stone around a spherically symmetric center of
attraction. This simplification uses quantities that do not change as the
motion progresses. These unchanging quantities—constants of the
motion—are energy and angular momentum. The expression for energy
for a general trajectory is the same as that derived in Chapter 3 for the

Section 1 Step or Orbit?
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Time takes all and gives all.

are} well known to all.
—saac Newton

What then is time? If no one asks me, | know what it is. Time is defined so that motion looks simple.
If 1 wish to explain it to him who asks me, | do not know.

The world was made, not in time, but simultaneously with

time. There was no time before the world. Nothing puzzles me more than time and space, and yet
—st. Augustine (354-430 A.D.) nothing troubles me less, as | never think about them.
—Charles Lamb

—Giordano Bruno (1548-1600 A.D.) Either this man is dead or my watch has stopped

Everything fears Time, but Time fears the Pyramids.

—Anonymous “What time is it, Casey?”
"You mean right now?”
Philosophy is perfectly right in saying that life must be —Casey Stengel

understood backward. But then one forgets the other
clause—that it must be lived forward.

—Seren Kierkegaard after 100,

As if you could kill time without injuring eternity.
Time is but the stream | go a-fishing in. Time is Nature's way to keep everything from happening
—Henry David Thoreau

1 do not define time, space, place and motion, [because they Austin, Texas

What Then Is Time?

—Misner, Thorne, and Wheeler

—Groucho Marx

It's good to reach 100, because very few people die

—George Burns

all at once.

—Graffito, men's room, Pecan St Cafe,

What time does this place get to New York?

—Barbara Stanwyck, during trans-Atlantic
crossing on the steamship Queen Mary

Special-relativistic expressions
become Newtonian at low
velocity.

4-2

special case of radial plunge. The expression for angular momentum is
new. As the stone orbits, its energy does not change, nor does its angular
momentum. How do we know? The Principle of Extremal Aging tells us
so!

2 Energy and Angular Momentum from Extremal Aging
Fix the end events of a short path, vary the middle event to find constants of motion.

When studying special relativity (Chapter 1), we were forced to use rela-
tivistic expressions for energy and linear momentum, expressions
different from those of Newton. Why did we accept the unfamiliar formu-
las? Because only relativistic expressions satisfy laws of conservation of
both total energy and total linear momentum in high-speed collisions (and
other interactions) in an isolated system. What consolation did we have
for leaving the old familiar territory? The consolation that in the limit of
low velocity the relativistic expressions give the same values as the New-
tonian expressions (provided we include the rest energy—the mass m—in
the total energy of each isolated particle).
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Next we will derive general-relativistic expressions for the energy and
angular momentum of a stone moving near a black hole. Why accept these
new expressions? Because as the stone dips and swoops around the
uncharged, nonspinning center of attraction, only these formulas reflect
conservation of energy and angular momentum. What consolation do we
have for leaving the familiar territory of special relativity? The consolation
that in the limit of large radius—in the flat spacetime a great distance from
the black hole—the new expressions become equal to those of special
relativity.

The box on page 4-4 uses the now-familiar argument to derive the expres-
sion for angular momentum from the Schwarzschild metric and the
Principle of Extremal Aging. The resulting constant of the motion is

2do _

r constant [1]
The constant in equation [1] is the angular momentum L of the particle
divided by its mass:
L _ 249

m " dt 2]
Recognition that equation [2] expresses the angular momentum follows
from noticing that this equation has the same form as in Newtonian
mechanics (Figure 1) except for the wristwatch time 47 in the denominator.
The presence of the wristwatch time is not surprising, since the relativistic
expression for linear momentum (of which angular momentum is com-
posed) also has the wristwatch time in the corresponding position.

pP=mas/o

Figure 1 Angular momentum L is the product of r and the component of linear
momentum p,, in the tangential or ¢ direction, yielding L = mr2de/dr (equation [2]). The
radial component of linear momentum is p, The linear momentum vector p has its special-
relativity magnitude mds/dt, where dh is the advance of wristwatch time of the particle
whose momentum is being determined

Section 2 Energy and Angular Momentum from Extremal Aging
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Expression for energy In Chapter 3 we used a similar derivation to find an expression for total

energy per unit mass, E/m. That derivation of energy has exactly the same
form, whether or not the angle changes as the stone moves. Therefore that
earlier expression is correct for an orbiting stone as well as for a plunging

one:

[3]

Derivation of Expression for Angular Momentum

To prepare for the derivative that leads to extremal aging,
take the derivative of this expression with respect to ¢

dt, ri¢
0 -_-i: (5]
Similarly for segment B,
tp = [~ r3(®- )% + (terms without ¢)]' [6]
dtg _ rg(®-9) ”
@
The total wristwatch time for both segments is

/7= constant T=T+1p (8]

Figure 2 Choose the intermediate angle ¢ so that
the wristwatch time from event #1 to event #3 is an
extremum

Strategy: Use the Principle of Extremal Aging and the
Schwarzschild metric A moving particle emits flashes #1,
#2, and #3, marking off segments A and B8 along the trajec-
tory Fix the times of all three flashes and the positions of
flashes #1 and #3. Flash #2 is emitted somewhere along a
circle (Figure 2), because we vary only ¢ in this derivation to
maximize the total wristwatch time racked up between
flashes #1 and #3. The result is an expression that is a con-
stant of the motion. Now the details.

Set the fixed angle of event #1 equal to zero and call the
fixed angle ® for event #3. Change the angle ¢ of event #2
by moving it either way along the circle lying between fixed
events #1 and #3. (See the arrows in the figure ) Let r4 and
rg be appropriate average values of the radii for segments A
and B, respectively, and 14 and 15 be the corresponding
wristwatch times of the stone moving along these seg-
ments With these substitutions, the timelike version of the
Schwarzschild metric for segment A becomes (see equation
(12))

T, = [- riq>2+ (terms without <|))]l/2 4]

Take the derivative of this expression with respect to ¢, sub-
stitute from equations [5] and (7], and set the resulting
derivative equal to zero, thus applying the Principle of Extre-
mal Aging.

gc_dt, dtg a0 r§(¢-¢)_0 ol
-6 de T T T T g

The condition for extremal lapse of proper time becomes

2 2

ra® _ rp(®-0) [10]
Ta B

The left side contains quantities for segment A only; the
right side contains quantities for segment B only. We have
discovered a quantity that is the same for both segments, a
constant of the motion for the free particle In deriving this
quantity we assume that each segment of the worldline is
small in space and time. To witness this microscopy, restore
the incrementals d¢ for ¢ (or for ® - ¢) and dt for t© Then
the constant of motion is written

2 d$
" dn

= a constant of the motion [11]

In the text this constant of the motion is identified as L/m,
the angular momentum of the particle per unit mass
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Note: These particular expressions for energy and angular momentum as
constants of the motion depend not only on the Principle of Extremal
Aging but also on the unique curvature of spacetime around a nonspin-
ning, uncharged center of attraction described by the Schwarzschild
metric. These expressions do not describe conserved quantities around a
spinning black hole, for example. (See Project F, The Spinning Black Hole.)

3 Properties of Angular Momentum
The new meaning of angular momentum

The spacetime view of the orbit of a satellite around a spherically symmet-
ric center of gravitational attraction shares an insight with Newton: There
are two “constants of the motion” that remain unchanged as the satellite
zooms along, namely, angular momentum and total energy.

From Newton'’s viewpoint, angular momentum of the satellite remains
constant if and only if zero force acts on the satellite in the direction of
increasing or decreasing azimuthal angle, ¢.

From the spacetime-physics point of view, in contrast, there is no force on
the satellite at all, not even a force toward the center of attraction. The sat-
ellite moves through spacetime on the absolutely straightest worldline it
knows—along a geodesic in the local free-float frame. Instead of looking for
the absence of a force along the direction of increasing ¢, we look for sym-
metry of spacetime geometry with respect to the azimuthal angle ¢. The
Schwarzschild metric (equation [A] in Selected Formulas at the end of the
book) depends on the radius r but not on the angle ¢:

2
1’ = (1 - %’)dﬁ __dr 2447 [12]
)

r
The metric is not different for different values of the angle ¢. (Only the
change d¢ appears in the metric.) A constant of the motion, namely angular
momentum, corresponds to this symmetry. Note that the same can be said
for the time coordinate ¢: only the change dt appears in the metric. We
already know that there is another constant of the motion that corre-
sponds to this symmetry in ¢, namely the energy E. And note, finally, that
the same cannot be said for the coordinate r. The coordinate r itself appears

in the metric, along with dr. The lack of symmetry in r is evidence that
there is no r-related third constant of the motion.

Our way of describing angular motion—that is, zero change in spacetime
geometry with ¢—by no means implies a constant rate of change of azi-
muth for a moving particle, a constant value for d¢/dt. Constant angular
momentum, yes; constant angular velocity, d¢/dt, no. A striking example
of this truth lies close at hand (Figure 3). Let the center of attraction lose, in
everything but name, the character of a center of attraction by being
deprived of all mass. Then the satellite zooms past it—at whatever dis-
tance of closest approach we may have selected—in a straight line with a
uniform velocity.

Section 3 Properties of Angular Momentum
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Smaller rate of change of ¢
for greater r.

4-6

N
A4 4

Figure 3 Changing r means changing d¢/dt when angular momentum is a constant of the
motion. An object moving along a straight line in flat spacetime covers equal lengths ds in equal
proper times. However, the change in angle d¢, through which we turn our telescope to watch the
object as it covers this length is great if that object is near the minimum radius (left figure) In
contrast, as the object disappears in the distance (large r—right figure), the rotation of our
telescope d¢, is much slower, even though the length ds covered by the particle is the same if the
center of attraction has no effect on the path of the moving object, then the distance of closest
approach is equal to the value of the so-called impact parameter b

Angular momentum being constant, it is impossible for angular velocity
also to be constant when r is changing. We see the change in angular veloc-
ity most directly by rewriting equation [2] in the form

angular
angular momentum
velocity d¢ = a constant
= = — [13]
sensed by dt (mass) 7
the satellite

We, standing at a center of attraction deprived of all attractive mass, and
watching the receding satellite, turn our telescope at an ever-slower rate as
the remoteness increases (Figure 3). This finding, so natural and so famil-
iar to any bystander watching a car speeding down the highway; is
perhaps the best known of all everyday consequences of the law of conser-
vation of angular momentum.

Now install a nonspinning spherically symmetric uncharged mass M at
the center of attraction. No longer is it necessarily true that the satellite
will fly off to infinite distance. Indeed, we normally do not even give the
name “satellite” to an object unless it goes round and round the center of
attraction. In that motion its distance from the center of attraction typically
oscillates from a smaller to a larger value. Smaller distance from the cen-
ter? Then a higher angular velocity. Greater distance from the center?
Then a lower angular velocity.

But beauty of beauties, this correlation between angular velocity and
radius r still obeys the relations [2] and [13] connecting distance from the
center of attraction with ailzgu.lar velocity. Angular velocity remains
inversely proportional to 7.

Rather than using L alone, we use the ratio L/m in the relativistic law of
conservation of angular momentum. Why? Because we recognize that par-
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SAMPLE PROBLEM 1 Escape from the Vicinity of the Black Hole?

The governor of the spherical shell at radius r, = 10M fires a
satellite horizontally (that is, at 90° from the radially out-
ward direction) at a speed v she) = 0 500 (half the speed of
light), both quantities measured with his local shell clocks
and rods What is the angular momentum per unit mass,
L/m, of the satellite? What is its energy per unit mass, £/m?
Will this satellite escape to great distance? (Careful- Here the
word “shell” refers to the spherical shell and its observers,
not to the launched satellite.)

SOLUTION

The satellite is fired horizontally with initial shell speed

Vo shell = OXghal/Otshen = 0 500 In order to compute the
angular momentum L (equation [2}), we need the proper
time d, rather than shell time di,pe), in the denominator. To
obtain dt, think of two flashes emitted by the satellite The
proper time dt between these two emissions is measured
directly on the clock carried by the satellite The relation
between dtge and dt is just the special relativity expression’

a1 ey 2 -2

wre = Yoshclls(l "voshcll) [14]

2. -172
=(1-05% = 1155

Substitute this result into the definition of angular momen-
tum, recognizing that dxghey = 7o dd°

L 2do _ , dtgenf 7,49
m ° dt {dty.

]
~

[15]
dXgen

= ToYoshel 73 . = ToYoshen ¥
oloshell g¢ 0 s 0 o shell

from which we find the numerical value of the angular
momentum per unit mass

L -
m roYO shell Y shell

1OM > 1 155x 0500 = 5775M

[16]

To calculate energy (equation {3]), we need the value of
dt/dr, the ratio of far-away time to wristwatch time of the
satellite The relation between shell time and far-away time t
comes ultimately from the Schwarzschild metric {(see equa-
tion [C] in the Selected Formulas at the end of the book)

1-21’]_'/2 [17]

dt - (
dige) r

From these equations ana the expression [3] for energy per
unit mass, we find

E ( 2M)dr (
—=|l-—|= =11
m o dt shell

M 2MN-172
= (1 - Tj(l - r_o) Yo shell

[+]

_M) dr Apenn
ro dt dt

[18]

- (1_2_”’
10M
1.033

172 172
) Youen = (08) /2% 1155

The answer to the question “Will this satellite escape to
great distance?” is "Maybe ” The total energy £ is slightiy
greater than the rest energy m If the particle were launched
radially outward, it would make it to great distances and still
be moving. In contrast, if the projectile were launched radi-
ally inward, it surely would plunge into the black hole The
problem states that the projectile is launched perpendicular
to the radius as measured in the local shell frame Tracing
out the orbit with a computer will allow us to answer the
question Using the effective potential (Section 7) provides
an instant answer (Samiple Problem 2, page 4-21)

ticles of different mass m follow the same worldline through spacetime.
What describes the motion is neither the mass of the soaring particle by
itself nor its angular momentum by itself but only the ratio of the two, the
angular momentum per unit mass, L/m. Equation [2], with proper time t
expressed in meters and angle ¢ having no units, shows us that the units
of L/m are meters.

How does angle ¢ change

For now we bypass the question “What is the angular velocity at a point
with satellite time 1?

on the orbit where r has a given value?” by asking instead “How great is
the advance, d¢, of the azimuth of the satellite in a given microscopic
increment, d1, in its wristwatch time?” The answer follows from the law of
conservation of angular momentum when we multiply both sides of equa-
tion [2] by d1 and divide both sides by r%; thus,
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How do ¢ and r change with
change in satellite time 1?

Compute orbit around black
hole at center of galaxy.

4-8

do = &2m) g [19]
r

We have in equation [19] half the story of the orbit, the part focused on
angular momentum and advance in azimuth ¢. Now for the other half, the
connection between energy and advance in r.

4 Forecasting the Orbit
Satellite wristwatch ticks off dv. From dt reckon the resulting changes dr, dé, and dft.

We now have in hand the tools we need to figure the step-by-step advance
of the satellite through the world of space and time. Advance? Yes, (1)
advance dt of far-away time, (2) advance d¢ of azimuth, and (3) advance dr
of r-coordinate, all orchestrated—at our choice and for our convenience—
to the tick dt of every wristwatch aboard the satellite. This analysis is car-
ried out in the box on page 4-9.

5 “Knife-Edge” Orbit

Teetering on the brink!

We want to know whether that satellite whirring around the 2.6-million-
solar-mass black hole at the center of the Milky Way is going to fall in.
Originally this satellite was orbiting at very high speed very close to the
black hole. Suddenly a neutron star zoomed through the system and then
disappeared, leaving our satellite in a perturbed state.

For the perturbed satellite orbiting the black hole at the center of our gal-
axy, we feed the numbers into the computer. In a matter of seconds the
computer has drawn the Schwarzschild map of Figure 4. Amazing
motion! It differs fantastically from the circles and ellipses that we know
from the orbits of the planets about our Sun. Yes, both our satellite and any
planet coast out to a maximum distance from the center of attraction. But
there the similarity ends. After moving outward, the planet turns around
and comes in to a closest distance of approach and then turns back. The
satellite, too, reduces its inward speed as it approaches the attracting
mass, reduces it greatly, reduces it almost to zero. But now the difference:
The inward speed of the satellite stays low for a long time. The inward
velocity of the planet, in contrast, soon turns around to become outward.
In that short time of planetary turnaround the planet advances not many
degrees, tracing out as it goes the inner curve of the familiar ellipse. The
satellite, however, dwells so long in a stage of low radial velocity that its
azimuth advances not a few degrees but—in our example—four and one-
half revolutions! Only then does its future course clearly declare itself:
plunge. “Why, oh why,” its captain cries, “didn’t I carry along a booster
rocket! As we teetered between infall and escape, it could have made all
the difference in our fate. But now it’s too late.”

This knife-edge orbit will be explained in Section 7 and especially in Fig-
ure 9.

CHAPTER 4 Orbiting



Strategy

From the initial position and directed velocity, find the value

of angular momentum per unit mass L/m and energy per
unit mass £/m.

Step 1: Express dt and d¢ in terms of satellite wristwatch

time dt

Step 2: Substitute these results into the Schwarzschild
metric to find dr as a function of d1.

Result: All bookkeeper increments dt, dp, and dr are now
locked to satellite time increment d.

Computer: Starting with the initial position, let the com-
puter advance satellite time 1 by increments as it updates

values of t, ¢, and . Now for the details.

Step 1: The first of these movements in spacetime we read
off from the law of conservation of energy as seen in equa-
tion (3]:

E/m
2M

1-2%

r

dr = dz [20]

Similarly find the advance of azimuth from the law of con-
servation of angular momentum, equation [19]:

dp = XM

r

{21]

Step 2: With dt and d¢ now known in terms of dr, we lack
only dr to specify completely the displacement of the satel-
lite in space and time in one tick, dt, of satellite time. This
one unknown, dr, appears along with the three knowns, dt,
d¢, and dr, in the standard Schwarzschild expression for the
metric, equation [12}:

Computing the Orbit

2
2 _ 2MN,2  dr
dr _(1— rjd:- -

1-24

r

—r?de? [12]

Into this equation substitute dt from [20] and d¢ from [21]
and solve for dr. The result is a single equation that relates
drto dt.

T [ (o TE A | R

Starting with initial values of r and ¢, equations [21] and
[22] tell how each bookkeeper polar coordinate changes as
the satellite clock ticks. If the Schwarzschild bookkeeper
demands that the increments be expressed also in terms of
far-away time t, equation [20] provides the corresponding
change, dt.

Two technical details for the programmer: First, the
square root in equation [22] gives us the magnitude of dfr,
not its sign. Therefore whether r initially increases or
decreases must be derived from the initial conditions. Sec-
ond, many orbits include a turnaround, where the radius
reaches a maximum or minimum. Exactly at turnaround,
radius r does not change with time; dr is zero, which means
that the expression in the square bracket of equation [22] (a
function of r) goes to zero. Once it reaches zero, the itera-
tive process keeps the square-bracket expression at zero,
because dr = 0 as long as the bracket stays zero—which it
will until r changes. The basic problem here is that we have
simplified everything to first differences (first derivatives)
and at a maximum or minimum of r we need a second
derivative. These technical difficulties in computation we do
not consider further here.

Einstein “invented” curved spacetime

Ever since Francis Bacon, it had been believed that the laws of
Nature were there to be “discovered,” if only one made the right
experiments. Einstein taught us differently. He stressed the vital
role of human inventiveness in the process. Newton “invented”
the force of gravity to explain the motion of the planets. Einstein
“invented” curved spacetime and the geodesic law; in his theory
there is no force of gravity. If two such utterly different mathe-
matical models can (almost) both describe the same observations,
surely it must be admitted that physical theories do not tell us
what nature is, only what it is like. The marvel is that nature
seems to go along with some of the “simplest” models that can be

constructed . . .

—Wolfgang Rindler

Section 5 “Knife-Edge” Orbit
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Fourand one-half
times around!

Figure 4 Schematic Schwarzschild map of the trajectory of a satellite near a black
hole after it is perturbed from closed orbit by a passing neutron star The path in space
is strikingly different from the elliptical orbit predicted by Newtonian mechanics,
particularly its nonclosed profile and the temporary “knife-edge” unstable circular orbit
followed by a plunge through the horizon of the black hole clocked on the wristwatch
of the orbiter. This figure is not a computer plot but a qualitative sketch of the major
features of the orbit. For an explanation, see Section 7 and Figure 9

Where did you get the value of four and one-half revolutions? Why not three revolu-
tions? or thirty? What determines the exact duration of the “teetering on the edge”?

"W

A spaceship teetering on the edge of the abyss near a black hole is in no way different
4 in principle from a pencil balancing on its point on your desktop Try it! How long
does the pencil stay balanced? One second? Ten seconds? That depends. Depends on
what? On how nearly vertical the pencil is when released On whether it is released at
rest or with a little motion. On air currents in the room, On vibration of your desktop
On your criterion for deciding when the pencil is no longer balanced Similar uncer-
tainties describe the spaceship teetering on the edge of a black hole. In the example
of Figure 4, we arbitrarily chose four and one-half revolutions as illustrative only

We now have powerful tools to describe the wealth of orbits around any
spherically symmetric center of attraction. Indeed, the possibilities are so
great that we need a simplifying scheme that allows us to understand
qualitatively many different orbits at once, including the one just
described. Such a scheme makes use of the so-called effective potential,
presented in the Section 7. But first take a look at effective potential in
Newtonian mechanics, as outlined in Section 6.

CHAPTER 4 Orbiting



6 Effective Potential in Newtonian Mechanics
Predicting the Newtonian orbit of a particle with a glance at the effective potential

The angular momentum has the same form in Newtonian mechanics as in
relativity, equation [2], with “Newtonian universal time” f replacing
proper time T:

Leon =2 do
Meony dtony

[23. Newton]

Here the subscript “conv” reminds us that we are using conventional
units, such as seconds and kilograms, so Lo,y has the units kilogram-
meter? per second.

The Newtonian energy is a constant of the motion, and for an inverse-
square gravitational field the energy is the sum of kinetic energy and
potential energy in joules, here divided by m in conventional units:

E 2 GM,

conv _
conv r

mCOﬂV

v [24. Newton]

N —

But the velocity squared is the sum of squares of the radial component and
the component in the direction of increasing ¢. Use equation [23] for angu-
lar momentum to simplify the resulting equation:

2 dr 2 do
Yeonv = (dr j +( dt

conv conv

2
2 L
= ( dr ) + 2°°"V2 [25. Newton]
dtconv mconvr

Make this substitution for v* in the energy equation [24]:

2
Econv _ l( dr )2+[_ GMconv+(Lconv/mconv) }
conv

m 2 dtcom, r 2r2

[26. Newton]

Even though equation [26] is a Newtonian expression, we prefer the sim-
plification of working in our accustomed geometric units. We want to
measure E and m in the same units and the mass M of the attracting center
in umts of length. Divide both sides of equation [26] by the conversion fac-
tor 2. Recogmze that all units cancel in the resulting expresswn

Econv/ Meonye? = E/m, while the expression GM_gp,,/¢? = M has units of
length. Equatlon [23] shows the conventional units of L_,,,/m to be
meters?/second. To express this in our simplified units, where time is
measured in meters, divide by c to give L = L.,/ c. After these changes,
solve equation [26] for the square of the radial velocity:

2
1(d_r)2 i} é_[_ M, (L } [27. Newton]

Section 6 Effective Potential in Newtonian Mechanics

Simplify energy using
conservation of angular
momentum
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Newtonian effective potential

4-12
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Figure 5 Computer plot- Newtonian effective potential (middle curve) as a sum of two
terms: gravitational potential (fower curve} and a “repulsive® term due to angular
momentum, equation [28] for the specific case L/m = 4M (upper curve)

Now we define the effective potential V(r) by what we have to take away
from the total energy term to get a measure of the radial velocity,

effective potential
[28. Newton]

2
per unit of E$=_A_;'I+(L/”2‘)
satellite mass 2r

Then the equation for radial velocity squared becomes

1(dr\?2 _E V(r)
Z(dt) “m m [29. Newton]

Figure 5 illustrates the effective potential of equation [28], showing the
separate terms of which it is made up. The first term, decreasing toward
the center, corresponds to the attractive “gravitational force.” At large dis-
tances this term predominates and an orbiting particle is attracted inward.
In contrast, the second term, increasing toward the center, corresponds to
a repulsive force (repulsive effective potential yielding “centrifugal
force”). At close distances this term predominates and an orbiting particle
is repelled outward. At intermediate distances the inward and outward
slopes of the two dueling terms cancel each other to make a minimum in
the effective potential.
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ﬁ What is the source of the repulsive term in the effective potential?

¢ An effective potentisl—Newtonian equation [28] on page 4-12 and relativistic equa-

{ tion [32] on page 4-18—kooks beyond azimuthal motion and focuses on progress
along one dimension: the radial direction. But the single ~dimension fails to represent
reality As the pole rider pictured in Figure & dimbs inward along the pole, he is also
sweeping around in a dirdde. The pole-rider experiences an outward force, sometimes
called a centrifugal force of a centrifugal pseudo force, resulting from the drcular
orbit of his noninertial rotating reference frame. This outward force is the source of
the repulsive term in the effetive potential.

Can you give me a more concrete feefing for the repulsive term in the effective
potential?

Yes. Think of yourself dinging 1o a lightweight pole pivoted at one end and rotating
freely in a horizontal plane (Figure 6) The only force on you toward the center is the
force of your hands grasping the pole It is hard enough to hang on when you revolve
far from the pivot; you feel pulled outward by an inertial “centrifugal force™ because
you afe in a rotating reference frame. Now you grasp the pole tenaciously and pull
yourself inward, hand over hand. You find that the rate of rotation increases—conser-
vation of angular momenturn! The effective outward force on you increases sharply,
for twio reasons. First, you are closer 10 the pivot and therefore travel in a tighter
cirde. Second, you move at greater speed around the smalier cirde. The doser to the
center you manage to drag yourseif along the pole, the more savagely the repulsive
cerntrifugal poteritial tears at your grip. Try as you will, there is a minimum radius
beyond which you are not strong enough to haul yourself inward. Desperately you
hang on at that innermost point. Soon your head swims, your hands tire, and you slip
outward akong the pole, leave the pole, and plunge into the net held by your Jaughing
companions. You have experienced personally the ferocous repulsive term in the
effective potential

iy

That's pretty graphic it makes my arms achel But what about me in orbit around
Earth? There I feel nothing. | am weightless! 1 feef no irward pull of gravity. 1 feel no
ferocious repulsive term in the effective potential. Where has your effective potential
gone in this case? And what's the good of an effective potential in a situation where |
feel no force?

&

Newton has two complicated explanations of weightiessness in free orbit; Einstein has
one simple explanation.

b

Figure 6 Crawling irward along a freely rotating pole in order to experience centrifugal force.
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Preview a pit in the potential

4-14

Newton’s first complicated explanation of weightlessness: As viewed from the center
of attraction, every particle in your body experiences an equal " gravitational accelera-
tion.” Different parts experience the same inward acceleration Therefore there is no
relative acceleration between adjacent parts, the bonds helding your body together
feel no tension or compression They feel nothing. You feel nothing

Newton's second complicated explanation of weightlessness As viewed from your
accelerating reference frame, every particle in your body experiences two equal and
opposite forces. First force: gravity, directed toward the center of attraction Second
force: centrifugal force, directed away from the center of attraction In your accelerat-
ing frame these two forces balance, so each particle in your body feels zero net force
So does each nearby particle. There is no stress on the bonds holding parts of your
body together You feel nothing.

Einstein’s simple explanation In orbit you are in a free-float (inertial) frame A frame
can be in free float even near a center of attraction. In a free-float frame you float
free, feeling nothing. Period.

How is the experience in orbit different from my experience of hauling myself inward
along the pole by hand?

Very different! In Einstein’s view, the force exerted on you by the pole drags you away
from free-float motion. In Newton’s view applied to your rotating frame, the outward
centrifugal force acts on every particle in your body, while the inward force is applied
through your hands. The inward force must be transmitted to every other particie in
your body by your bones and muscles. These experience tension; you definitely do not
feel weightless!

Ay B

& And when I stand on Earth’s surface?

Very similar analysis. Einstein says the force on your feet pushes you away from a free-
4 float frame. Newton says that every particle in your body experiences a downward

"gravitational force,” while the upward force is applied through your feet The
upward force must be transmitted to every particle in your body by your bones and
muscles, which experience compression (legs and torso) or tension {(arms hanging by
your side). Again, you feel weight.

W

7 Effective Potential in Schwarzschild Spacetime
The orbit at a single glance!

The box on page 4-9 describes a method of using a computer to reckon the
orbit of a stone. In this section we outline a much simpler method. By
looking at the so-called effective potential, we can describe at a glance the
major features of the trajectory of any particle. Clearer than our computer
printouts, clearer even than our orbits, the effective potential lets us see at
a glance the central features of the motion of a satellite. The basic idea is
similar to the Newtonian analysis (Section 6).

The principal new results can be stated simply in terms of an effective
potential: In addition to the attractive potential of gravity at great dis-
tances and the repulsive effects of angular momentum at intermediate
distances (Section 6), Einstein’s theory adds at still shorter distances a pit
in the potential. This pit (1) captures a particle that comes too close,

(2) establishes a critical distance of closest approach for this black-hole
capture process, (3) for a particle that approaches this critical point with-
out crossing it, lengthens the turnaround time as compared with
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Newtonian expectations. This lengthening of the turnaround time

(a) makes the time for in-and-out radial motion longer than the period for
one revolution, (b) thus causes the major axis of an otherwise elliptical
orbit to rotate, and (c) deflects a fast particle through larger angles than
Newtonian theory would predict. Results 3a, b, and ¢ are verified directly
by motions observed in our solar system.

The potential? A pit in this potential? A potential attractive at large dis- The pit comes from constants
tances, repulsive at intermediate distances, and attractive again at yet of the motion

smaller distances? Can we get this potential from principles that are sim-

ple, clear, and solid? Yes, from two principles: Energy as a constant of the

motion! Angular momentum as a constant of the motion!

Anyone rolling a marble down the hard plastic surface illustrated in Fig-
ure 7 has before his very eyes such an effective potential. The marble, left
to itself, sits at rest at the bottom of the “cup” (open circle in upper dia-
gram). Sitting at a fixed r-value is the decisive feature of a circular orbit.
Next, disturb the marble a little. It rolls back and forth in a vibration of
small amplitude (solid circles, upper diagram). Changing r-value with
time is exactly what marks an elliptic orbit in the Newtonian description
of planetary orbits.

But now comes the new feature (Figure 7, lower diagram). Release the New feature: Capture at
marble from a point high enough up on the right-hand slope so thatitjust ~ small radius

makes it over the barrier summit at the left—very very slowly, yes, but

definitely—irretrievably captured into territory new to it. The behavior of

the marble’s motion in the x-direction is exactly analogous to the behavior

of the r-value of the satellite orbit in Figure 4: an orbit in which a particle

moves on an inward spiral at nearly constant radius, approximating a cir-

cle for several orbits, then plunges into the black hole (Figures 8 and 9).

Two features dominate radial motion as described in the language of the Satellite energy does not vary
effective potential. One is the height of the curve as it depends on the sin-  With radius

gle coordinate to which we give our attention, an x-coordinate for the

marble, an r-coordinate for the satellite. The other feature is not a curve

described by a function but a constant described by a number: in Figure 7,

the height of release of the marble; in the motion of the satellite, the

energy. Particle energy does not vary with radius—it is a constant of the

motion. As a result the energy-versus-position plot is a horizontal line.

Such horizontal lines for different energies are drawn in Figure 8.

Both the constant energy and the effective potential function become

apparent when we derive from equation [22] the square of the radial
velocity as registered in satellite wristwatch time:

(& - (€02 g

r
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Figure 7 Computer plot: Marble rolling on a plastic surface, y vs. x. Upper diagram: Placed
at rest at the minimum, the marble remains at rest (open circle). Displaced from this mini-
mum and released, the marble oscillates back and forth between inner and outer limits (solid
circles). Lower diagram: Released from rest far enough up the right-hand slope, the marblie
barely makes it over the hill at the left, then plunges into new territory.

Use equation [30] to introduce a new quantity V/m.
dr\? _ (E?2 (V)2
& =G -G) 131]

Equation [31] defines the effective potential, V(7), in its dependence on 7, by
what we have to take away from the squared energy term to get the square
of the radial velocity.
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Figure 8 Computer plot: Effective potential curve versus radius for an object orbiting a black hole
for angular momentum L/m = 3.75M. Both effective potential and particle energy are measured
along the vertical axis. Particle energy does not vary with radius—it is a constant of the motion. As
a result the energy-versus-position plot is a horizontal line. Upper diagram: When the particle
has energy corresponding to the minimum of the potential (point indicated by open circle), the
particle remains at a constant radius and orbits the black hole in a circle. When it has a somewhat
greater energy (line with double arrow), the particle oscillates back and forth in radius while
orbiting around the center of attraction. Lower diagram: When the particle comes in with
energy only slightly greater than the maximum of the potential at the left of the lower diagram, it
slows its radial motion to nearly zero at the peak and orbits the black hole on a nearly circular
path before plunging, as in the terminal portion of the orbit drawn in Figure 4. For further analysis
of Figure 4, see Figure 9.

Section 7 Effective Potential in Schwarzschild Spacetime
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Define effective potential.

Visual measure of radial
speed

“Knife-edge” orbit predicted
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The squared effective potential is the product of two simple factors. The
first depends entirely on the attracting mass M and the r-coordinate, not at
all on the angular momentum. The second factor depends not at all on the
attracting mass, but only on the angular momentum per unit mass L/m of
the satellite and on its r-coordinate.

& There are two obvious difficulties with equation [31].

First difficulty: Equation [31] is the difference of SQUARES of the total energy per
unit mass and the effective potential per unit mass. Why squares? Why isn’t it the
simple difference between total energy per unit mass and the effective potential per
unit mass, as in the case of the corresponding Newtonian equation [29]?

Second difficulty: For very large values of the radius r, the expression {32] for
V(r)/m takes on the value untty, in contrast, the Newtonian effective potential Vim in
equation [28] approaches the value zero at large 1, as it must by the definitions used
in Newtonian mechanics

Both these features of the effective potential are characteristic of relativity. To take the
second objection first, the total energy of the particle at rest at infinity is

E =m, so E/m = 1. Therefore the effective potential per unit mass must also have the
value unity (V/m —> 1 as r —> o) s0 that the difference of their squares—equal to
the square of dr/dt—remains zero in equation [31] for a particle at rest at infinity In
contrast, the Newtonian effective potential is arbitrarily given the value zero at large
separation In essence the relativistic formula provides the new value of unity for this
previously arbitrary constant

&

Concerning the difference of squares in equation [31], we mentioned earlier that in
general relativity one cannot separate different forms of energy. Rest energy, potential
energy, and kinetic energy all combine into a larger unity in the term £ Therefore we
cannot claim that V{r) defined in equation [32] is the actual potential energy. Instead it
is a quantity that helps us to visualize the radial component of the trajectories of par-
ticles—it is an “effective potential.” This phrase does not explain the difference of
squares in equation [31], but it shows that the interpretation of the separate terms is
different from the Newtonian case

Plotting both V/m and E/m on the same graph, as in Figure 8, provides a
measure of the radial speed, as predicted by equation [31]. The greater the
vertical separation in this graph between the E/m line and the V/m curve
for a given 7, the greater is the radial component of the particle velocity at
that r. (The vertical separation does not tell us whether the particle is mov-
ing inward or outward.) In particular, the radial motion is zero when the
two graphs touch.

The decisive new feature of orbits around the black hole is shown in the
lower diagram of Figure 8. Let the particle have energy slightly greater
than the peak of the effective potential. Then its radial motion will slow to
nearly zero as it creeps down in radius, spiraling in to the radius corre-
sponding to this peak. Very slow radial motion corresponds to nearly
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Figure 9 Computer plot Effective potential for particle in the orbit exhibited in Figure 4 for
L/m =3 75M To trace the resulting radial component of motion in Figure 4, follow steps 1 through
4 in the figure

circular motion in the plane of the orbit. Exactly such a motion marks the
r-value of the satellite orbit we see in Figure 4: an orbit in which a particle
moves inward, pauses to circulate in a near-circular “knife-edge” orbit,
then plunges into the black hole. But now we can predict this result with a
glance at the diagram of effective potential in Figure 9. The summit of the
barrier in the effective potential lies at a height slightly less than the
energy available for the motion. No wonder that the inward motion
slowed down when the satellite came to this point in its motion! But no
wonder, either, that it kept on going inward to its dark fate. Evidently all
the interesting qualitative features of the orbit let themselves be seen at a
glance from the effective potential. No computing of orbits!

plunges circles 4+ times. stops, turns around,
moves inward.
09841 1. Satellite starts here,
/ moves outward. /
Y./,

The effective potential has this wonderful feature that for givenm , M, r it  Radically different orbits with

depends only on the angular momentum of the satellite, not at all on its
energy, E. Therefore it is enough to look at a reasonable sampling of angu-
lar momentum values and the effective potentials that go with them to be
able to foresee every kind of motion a satellite may undergo under the
influence of a spherically symmetric center of attraction. The trajectories
illustrated in Figure 11 (page 4-23) display shapes dramatically different as
energy E is assigned this or that value for a given angular momentum. All
these details, however, we capture from the central box by a single glance
at the relation between these energies and the curve for effective potential.

Section 7 Effective Potential in Schwarzschild Spacetime

different energies for a single
effective potential
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Circular orbit from minimum
of effective potential

4-20

Figure 12 (page 4-24) compares the Newtonian effective potential with
that of a black hole for the same angular momentum. For a bound satellite,
the black hole effective potential leads to deeper penetration of the satel-
lite to smaller radii. The additional “dwell time” at the smaller radius—
not obvious from the figure—results in a rotation of the major axis of the
orbit.

Circular orbits are those for which the energy of the satellite nestles at the
minimum of the effective potential. Different circular orbits lie at the min-
ima of effective potentials with different angular momenta, as shown in
Figure 13, page 4-25. That figure shows a stable circular orbit of minimum
radius at r = 6M. For details, see the exercises at the end of this chapter.

These results spring from Einstein’s standard geometric theory of gravity.
However, some features were foreshadowed in the Newtonian use of
effective potential, as we saw in Section 6.

8 Summary

How can one predict the motion of a free material particle near a spheri-
cally symmetric center of gravitational attraction? The Principle of
Extremal Aging and the Schwarzschild metric combine to give us two con-
stants of the motion—angular momentum L and energy E:

L _ 2d¢

m_ | d 12l
E 2M\dt

m o (I—T)ch [3]

Note the wristwatch time increment d7 in both of these equations.

From these equations plus the Schwarzschild metric we can find expres-
sions for dr, d$, and dt as functions of the advance in proper time dt
(equations [20], [21], and [22], page 4-9). These equations permit a step-
wise computer solution for the orbits of a material particle once we know
its energy E and angular momentum L. Values for E and L can be com-
puted, for example, from the initial speed and direction of the object
launched from a spherical shell (Sample Problem 3).

The resulting orbits around a black hole show some features utterly differ-
ent from those predicted by Newtonian mechanics. For example, a satellite
may sweep in from a distance, then move in a circle for one or many
orbits, then either move outward again or plunge into the black hole (Fig-
ure 4, page 4-10). As another example, a more remote satellite may move
in a nearly elliptic orbit whose major axis changes direction with time
(Figure 11, case 2, page 4-23). This is what happens to the orbit of Mercury
(Project C, Advance of the Perihelion of Mercury).
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SAMPLE PROBLEM 2 Escape from a Black Hole? (Revisited)

Sample Problem 1 on page 4-7 reads. “The governor of the
sphericat shell at reduced circumference r, = 10M fires a sat-
ellite horizontally (that is, at 90° from the radially outward
direction) at a speed v, ¢hey = 0 500 as measured with his
local shell clocks and rods. What is the angular momentum
(per unit mass), L/m, of the satellite? What is its energy per
unit mass, E/m?” These questions were both answered
there, so we turn now to the third query: “Will this satellite
escape to great distance?”

SOLUTION

In Sample Problem 1 we found for this case that L/m =
5.775 M and E/m = 1.033. Now, a particle launched radially
outward (zero angular momentum!) with the lesser energy
E/m =1 000 will coast to rest at a very great distance from
the black hole If the satellite of this problem were launched
radially outward with the slightly greater energy

E/m = 1.033, it would arrive at a great distance with some
kinetic energy. In contrast, launching the particle radially
inward will surely lead to capture by the black hole, no mat-
ter what the energy. The prescribed launch at 90° from the
outward direction as measured by the shell observer leaves
us uncertain: Does the satellite escape from the black hole?

Figure 13 permits us to answer this question. See the dashed
horizontal line at £/m = 1 033 Notice that a particle traveling
inward along this line with the smaller value of angular
momentum L/m = 4.33M stops moving inward and returns
again outward. From the progression of curves for different
angular momenta in the diagram, one sees that the larger
value of angular momentum L/m = 5.775 M will lead to an
even higher potential barrier So a satellite with energy £/m =
1.033 and /m = 5 775 M will surely not penetrate the effec-
tive barrier to the black hole. Instead, it will escape outward
to infinity. Further question: Will it start inward first and then
turn back? Or start outward immediately?

These effects—and many more—can be predicted quickly and easily using
an equation that relates radial motion, energy E, and the so-called effective
potential V,

@ - &

where the squared effective potential is defined as

(w):(l_gf)[“M] (32]

2
m r

For large enough values of the angular momentum L, a plot of this effec-
tive potential shows a minimum at an intermediate radius, a maximum
for a smaller radius, and a plunge to zero for even smaller radii as r
approaches the horizon at r = 2M. The rate of change of r with satellite
time then follows from equation [31], allowing a quick visual prediction of
the essential features of the orbit (Figure 11, page 4-23). In particular, a sat-
ellite with energy at the minimum of the effective potential does not
change radius and moves in a circular orbit. (More on circular orbits in the
exercises of this chapter.)

Section 8 Summary
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SAMPLE PROBLEM 3 Angular Momentum and Energy from Shell Velocity
8o shell

Black hole

"
"
e

Satellite

Figure 10 Schematic diagram of the initial conditions, showing the difference
between azimuth ¢ and angle of launch 8, ¢e|| Measured in shell coordinates

The governor of the spherical shell at reduced circumference
ro launches a satellite of mass m with speed v, ghey 8t an ini-
tial angle 8, shey With respect to the radially outward
direction. Both speed and angle are measured with local
shell rods and clocks. What is the angular momentum of the
satellite? What is its energy?

SOLUTION

The solution to this exercise allows us to calculate the angu-
lar momentum L/m and energy measured at infinity E/m
from initial satellite velocity measured in shell coordinates.

Figure 10 distinguishes between the angle of launch
8 sheil 8 measured in shell coordinates and the azimuthal
angle ¢ that tracks the satellite on its orbit

The satellite is launched with initial speed v, gney and at an
angle 8 shey With respect to the outward direction, both as
measured by the shell observer. The satellite’s tangential
component of velocity, vy is

do .
Vy=r—t— =1 sin@ (33]
(] d tepe o shell 0 shell

In order to compute the angular momentum L (equation [2]),
we want to put the proper time dt in the denominator of
the derivative in equation [33], replacing dtgeq. To find d,
think of the separation between two flashes emitted by the
satellite The proper time dt between these two emissions is
measured on the clock carried by the satellite. The relation
between ditne and dr is just the special relativity expression
for time stretching

to = Toshen = (1 =7 gpe) [34]

The value of the angular momentum of the satellite comes
from the preceding two equations:

d’shen(

2d¢
=Togy = Mo T4t

)

©dig (35]

= 730 shellVo shell SN0 speny

This last expression for angular momentum has a simple
interpretation. Angular momentum has its usual vector
cross-product form L = r x p, whose magnitude is

L =rpsin 8, 4heq Here p is the expression from special rela-
tivity, p =Y mw. In the present case, simply use on-shell
values of shell quantities 8, Y, and ».

To calculate energy we need the value of dt/dr, the ratio of
far-away time to wristwatch time of the satellite The rela-
tion between shell time o and far-away time t comes
from equation [C] in Selected Formulas at the end of the
book:

dr (1-211)—1/2 36]

di ey r

Find the expression for energy from these equations and the
definition of energy [3]

E AIM\dt _ (, 2M\ dt Dlspen
m- T w5 d
m ry /dt ro Jdtg.; dt

~1/2
- (202, ”)

To To

M 1/2
= (1',_) Yo shell
[+]

Equations [35] and [37] allow us to determine the satellite’s
angular momentum L and energy £ from initial speed and
angle of motion measured by a shell observer at radius r,
Then energy and angular momentum specify the shape of
the entire orbit from its start onward, thanks to equations
[21] and [22] that tell us how angle ¢ and radial coordinate r
tick ahead.
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@ Stable @ Precessing orbit
circular orbit results from extra

“dwell time" at inner

part of orbit.

(See Figure 12))

1.044+
Y/ @
or -
£/m
1.02¢+

0.98

0.96 1

5 10 15 4 20
(3) Knife-edge (@) Directly

orbit between plunging

capture and orbit

plunge

Figure 11 Computer plots Predicting trajectories at a glance The plot of effective potential Vim—shown here for a single value of
angular momentum Lim—plus the value of total energy E/m, allow us to make a quick prediction about the trajectory of a particle
that orbits or is captured by a black hole. Four different energies are numbered on the central plot of this single effective potential,
the corresponding trajectories for these energies appear in the four outer corners of the figure.
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104+
Newtonian /%7 plus 1
Y/ /
or
£/
1.02+
Radial limits on orbit
for Newtonian potential
]_..
098+
096+
Additional radial range
for black hole effective potential
094
0 5 10 15 20 25 30 35 40
0924 17

Figure 12 Computer plot. Case 2 of Figure 11 in more detail Effective potential for black hole
and corresponding effective potential for the Newtonian case (with unity added to the Newtonian
figure to include the rest energy E/m = 1 for a particle at rest at large radius) Both curves are for
angular momentum L/m = 4.0 M The radial excursion in the Newtonian case leads to an elliptic
orbit. In contrast, general relativity predicts that r-values extend to smaller radii The orbiting
satellite spends more time at smaller radii than the Newtonian mode! would predict—a fact not
directly obvious from this effective potential diagram During the additional “dwell time” near the
inner edge of the orbit—and elsewhere on the orbit—the angle ¢ keeps changing according to
the conservation of angular momentum In consequence, the orbit swings out to maximum radius
at a changed angle instead of at the same angle predicted by Newtonian mechanics The result is
described as an elliptic orbit whose major axis rotates, or “advances” (case 2 in Figure 11) For the
planet Mercury, this effect—though very much smaller in magnitude than for the case shown
here—results in the advance of the major axis of the orbit by nearly 43 seconds of arc (0 0119
degrees) per century (Project C, following this chapter)
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£om = 1.033

{See Sample Problem 2.)
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15
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25
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Figure 13 Computer plot: Radii (circled numbers 1, 2, and 3) of different circular orbits, each
of which lies at the radius of the effective potential minimum The stable circular orbit of

smallest radius lies at r = 6M. For details, see the exercises of this chapter. With rockets blasting,
you can still explore from r = 6M down to r = 2M, but you cannot be in a stable circular orbit in

this region
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I frame no hypothesis

Hitherto we have explained the phenomena of the heavens and of
our sea by the power of gravity, but have not yet assigned the
cause of this power. This is certain, that it must proceed from a
cause that penetrates to the very centres of the sun and planets,
without suffering the least diminution of its force; that operates
not according to the quantity of the surfaces of the particles upon
which it acts (as mechanical causes used to do), but according to
the quantity of the solid matter which they contain, and
propagates its virtue on all sides to immense distances,
decreasing always as the inverse square of the distances.
Gravitation towards the sun is made up out of the gravitations
towards the several particles of which the body of the sun is
composed; and in receding from the sun decreases accurately as
the inverse square of the distances as far as the orbit of Saturn, as
evidently appears from the quiescence of the aphelion of the
planets; nay, and even to the remotest aphelion of the comets, if
those aphelions are also quiescent. But hitherto I have not been
able to discover the cause of those properties of gravity from
phenomena, and I frame no hypothesis; for whatever is not
deduced from the phenomena is to be called an hypothesis; and
hypotheses, whether metaphysical or physical, whether of occult
qualities have no place in experimental philosophy. In this
philosophy particular propositions are inferred from the
phenomena, and afterwards rendered general by induction. Thus
it was that the impenetrability, the mobility, and the impulsive
force of bodies, and the laws of motion and of gravitation, were
discovered. And to us it is enough that gravity does really exist,
and acts according to the laws which we have explained, and
abundantly serves to account for all the motions of the celestial
bodies, and of our sea.

—Isaac Newton
about 1686
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Chapter 4 Exercises

1. Three Views of a Circular Orbit

A shell observer on the shell of radius r compares
measurements with a free-float observer moving
past with speed vy, Assume that these comparisons
can be made using the laws of special relativity.

That is, assume that locally we can use the usual
Lorentz transformations, calling the shell frame “lab-
oratory,” the free-float frame “rocket,” and the
relative speed vg,o 1. Be careful to have the x-axis of

relative motion for the Lorentz transformation lie
along the direction of motion of the “rocket” frame
with respect to the “laboratory” (shell) frame.

Now consider a free-float, unpowered spaceship of
mass m n circular orbit of radius r around a black
hole. This rocket skims around the shell of radius r
with speed vgpe)-

A. The orbiter does one circuit and returns to the
same shell clock. What time lapse T does
this shell clock record for one circuit, in terms
of Ughell?

B. Assume that during a complete circuit of the
shell, the orbiting clock “runs slow” by the
usual stretch factor ¥ of special relativity when
compared with the shell clock to which it
returns. What time lapse Ty piter d0es the circu-
lar orbiter’s clock record between sequential
passes over the recording shell clock, in terms
of Ughen?

C. What is the angular momentum per unit mass,
L/m, of the spaceship, in terms of vgpo)? (The
answer is not rogpe1)

D. What time lapse Tpyypr does the bookkeeper
record for one circuit of the orbiter, in terms of

Ushell?

E. A later exercise gives the opportunity to show
that the smallest radius for a stable circular
orbitis r = 6M and that in this orbit the satellite
moves with speed v . = 0.5, that is at half the
speed of light. Assume the central attractor to
be Black Hole Alpha, with M = 5000 meters.
Following, to one significant figure, are L/m
and the times of one orbit for the shell
observer, orbiter, and bookkeeper. Find the
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value of L/m and these times to three signifi-
cant digits. (Notice that this orbiter completes
one circuit in approximately 1 millisecond!)

5
Tshell =4 X107 meters

T =3 X ]O5 meters

orbiter
4
L/m=2x10" meters

5
Tbkkpr =5x 10" meters

2. Radii of Circular Orbits Around a Black
Hole

Note: Exercises 2 through 8 build on one another. Later
ones in the sequence require answers from earlier ones.

Find the radii of circular orbits around a black hole
as a function of the angular momentum of the satel-
lite, using the following outline or some other
method.

An object has known angular momentum per unit
mass, L/m. This value of L/m fixes the effective poten-
tial (equation [32]) for all rcoordinate values. The
particle moves in a stable circular orbit if its energy is
equal to the minimum in the effective potential
(examples: dots with circled numbers in Figure 13,
page 4-25). The circular orbit is unstable if the parti-
cle energy is equal to the maximum of the effective
potential (the peaks of the barriers in the effective
potentials of Figures 8, 9, 11, and 12) A satellite in an
unstable orbit is like a pencil balanced on its point
and will leave this orbit if perturbed in the slightest.

A. Start with the equation for the square of the
effective potential from equation [32]:

[MT - (1 -2%4)[1 ¥ Q‘—/zﬂ)f] [38]
r

m

Make computation simpler by converting to
dimensionless units, shown with an asterisk.
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e V()
m
=g [39]
L
=
L=om

(Recall that m is the mass of the satellite in
whatever units you choose for energy and M
is the mass of the black hole in meters.) Show
that in these dimensionless units, the square of
the effective potential is

el = [1 -%)[1 +’r‘T*jJ [40]

B. Find the maximum and minimum of this
(squared) effective potential by taking its
derivative with respect to r* and setting this
derivative equal to zero. (The maximum or
minimum of a positive function occurs at the
same coordinate as the maximum or minimum
of its square.) Show that the result is

r*2—L*2r* + 3L*2 =0 [41]

C. Solve this equation for the radius r* of circular
orbits. Show that the result can be written

2 172
*
el lig1-12 [42]
2 L*z

or, in our regular units,

2
r= E2m [11{1-

2

M (L/m)

2 \1/72
12M J ] (43]
The plus sign yields the radius at the minimum of
the effective potential and therefore yields the radii
of stable circular orbits. The minus sign yields the
radius at the maximum of effective potential and
thus the radii of unstable circular orbits of smaller
radius. Refer to Figures 8, 9, 11, and 12. (Optional:
Verify the statements about minima and maxima by
taking the second derivative of V*? with respect to r*
to determine whether this second derivative is posi-
tive or negative at the given values of r*.)

D. Show that there are no circular orbits of any

kind for angular momentum given by
L/m < (12)1/2M. Show that for the minimum

Exercise 3. Satellite Speed in Circular Orbit

angular momentum L/m = (1 2)1/ M, the radius
of the circular orbit is r = 6M. This is the stable
circular orbit of smallest radius. See the case
with the circled number 1 in Figure 13.

3. Satellite Speed in Circular Orbit

Compute the speed of the satellite i a circular orbit.
Consider the satellite speed (1) as measured by the
shell observer at the reduced radius of the orbit, (2)
as measured by an observer on the orbiting satellite,
and (3) as computed by the remote Schwarzschild
bookkeeper from her records.

A. Find the satellite speed measured by the shell
observer. Consider two ticks of the satellite
clock, separated by proper time d7 and by zero
distance in the satellite frame, separated by
time dtgpe and by distance rd¢ in the shell
frame. The relation between dfgqp and dt is
just the special-relativity expression

7 —1/2
dtshell = 'Yshelld‘t = (1= Tghep) dv [44]

Knowing angular momentum, we can now
reckon shell speed:

2
_ordd 2 172 ,%d¢
Ushell = Zp_ - = A-Ype) Tz2
-1 2 1721 /m B 2 1/2 | *
= U=0ghen) == = U-Vge) 3
[45]
From this equation, show that
2 1
Ushell = 3 [46]
LARS |
L*2
From equation [41] show that
%2
= p-3 [47]
L*2
Substitute this into [46] to find
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Ushell = P _2 r-2M
M (48]

B. Remember that the stable circular orbit of

smallest radius is at r = 6M (part D of Exercise
2). What is the value of the speed vy, in this
smallest stable orbit? (You will show in Exer-
cise 6 that the unstable circular orbit of smallest
radius is r = 3M.)

C. Present an argument that the speed of the pass-

4-30

ing shell measured by the satellite observer
has the same value as the speed of the passing
satellite measured by the shell observer.

. Find the speed of the satellite as recorded by

the remote Schwarzschild bookkeeper as fol-
lows: Use the expression for the angular
momentum to replace dT in the Schwarzschild
metric by an expression in d¢. Find an expres-
sion for the tangential speed as recorded by
the Schwarzschild bookkeeper vy, = r d¢/dt

2 1_%1 1'%
_ _ r
Cbkkpr T 75 = [49]
(T) +1 _r___2_ +1
L*

Use equation [47] to simplify [49]:

1_3 1_3
02 _ r* r*
bkkpr — px _o 2
#(1-2) (50}
=1_M
r* r

(In Exercise 6 we show that 3M <r < 6M for
unstable circular orbits.)

An aside: Equation [50] can be derived directly
from equation [48] using equation [C] in
Selected Formulas at the end of this book that
relates shell time and bookkeeper time for a
clock at rest on the shell:

2 2MY, 2
dty = (1 —TJdt [51]

Here is how. Look at the two expressions for
speed in circular orbit:

- _rd¢
shell = 77— [52]
_ rdo
Vbkkpr = [53]

Both have the same numerator, r dp. Now look
at the denominators. The shell time lapse in
the denominator of vy, is recorded by two
clocks, both of which are on the same shell at
the same radius r. Therefore these two clocks
can be synchronized and will give the same
result (equation [51]) as if the timepieces were
one and the same shell clock.

E. What is the value of the bookkeeper speed of a
satellite in the stable circular orbit of smallest
radius?

4. Newton’s Circular Orbits

Under what circumstances are circular orbits pre-
dicted by Newton indistinguishable from circular
orbits predicted by Einstein? Answer this question
using the following outline or some other method.

A. Find the Newtonian expression similar to
equation [43] for the radius of a stable circular
orbit, starting with equation [28], page 4-12.

B. Recast equation [43] for the general-relativistic
prediction of r for stable orbits in the form

r = rNewt(l +q)

where rpjewt is the radius of the orbit predicted
by Newton and g is a small quantity. This
expression neglects differences between the
Newtonian and relativistic values of L/m
when expressed in the same units. Use the
approximation [E] in Selected Formulas at the
end the book to derive a simple algebraic
expression for g in terms of M and rnewt -

C. Set your expression for g equal to -0.01 as a cri-
terion for good-enough equality of the radius
according to both Newton and Einstein. Find
an expression for rp,;,, the smallest value of the
radius for which this approximation is valid.
The result is what multiple of M?
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D. Find a numerical value for rp,,, in meters for
our Sun. Compare the value of ry,,, with the
radius of Sun.

E. What is the value of ¢ for the radius of the orbit
of the planet Mercury, whose orbit has an aver-
age radius 0.387 times that of Earth? (See
Selected Physical Constants inside the back
cover.)

5. Kepler's Laws of Planetary Motion

Johannes Kepler (1571-1630) provided a milestone in
the history of mechanics with his Three Laws of
Planetary Motion, deduced from a huge stack of
planetary observations made by Tycho Brahe.

1. The planets circulate around Sun in elliptical
orbits with Sun at one focus.

2. The radius vector from Sun to any planet
sweeps out equal areas in equal times.

3. The square of the period of any planet is pro-
portional to the cube of the planet’s mean
distance from Sun.

A. Show by example that Kepler’s first law is not
true for orbits near a black hole. (Hint: Look at
the figures in this chapter.) The planet Mercury
departs slightly from this law (Project C,
Advance of the Perihelion of Mercury).

B. Show by a simple symmetry argument that
Kepler’s Second Law is true for circular orbits
around a black hole.

C. From equation [50] show that for circular orbits
the period squared is given by the expression

2
2 @)’
Tokipr = 37 " [54]

so that Kepler’s Third Law is also valid for cir-
cular orbits around a black hole.

D. Kepler’s Third Law is sometimes called The
1-2-3 Law from the exponents in the following
equation. Show that for circular orbits

23

r

M=M' = o [55]

Exercise 5. Kepler's Laws of Planetary Motion

where  is the bookkeeper angular velocity,
given by the expression

2n

0=
Tbkkpr

[56]

6. Satellite Speed in Unstable Circular
Orbit

Examine more closely the unstable circular orbits,
those with energy E at the top of the peak of effective
potential. In order to stay dependably in such an
orbit, the satellite needs an automatic control device
that fires small rockets to keep the satellite on the
knife edge at this peak.

A. Begin with equation [42] for the radius of cir-
cular orbits, replacing the plus/minus symbol
in that expression by minus for the radius of
the unstable orbits:

2 1/2
r* = L—;—|:1 —(1 —1—22] ] [57. unstable]

L*

(Recall that r* = r/M and L* = L/A(mM).) Show
that expressions [48] and [50] for satellite
speed are valid regardless of the choice of sign
(plus or minus) in equation [42].

B. What is the unstable circular orbit of smallest
possible radius? Look at equation [48], which
gives the speed of an object in a circular orbit
as measured by the observer on the shell of
radius r. In principle this measurement can
actually be carried out. From our eternal
requirement that no object can have a locally-
measured speed greater than the speed of
light, find the smallest possible radius for this
unstable circular orbit.

C. From earlier expressions, find the value of
angular momentum for a particle in the unsta-
ble orbit of smallest possible radius. Show that
this angular momentum is infinite.

Discussion: How can the angular momentum
go to infinity? Recall that the angular momen-

tum is equal to L = m r* d$/d. The relation
between proper time dt and shell time dig,,) is

given by the usual time-stretch formula of spe-
cial relativity. As the satellite speed
approaches the speed of light, the wristwatch
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time, the proper time d7 goes to zero. Then it
takes zero proper time to circulate once
around the black hole. Because d7 is in the
denominator of the expression for angular
momentum, the angular momentum L grows
large without limit.

D. For the foregoing unstable circular orbit of
minimum radius, what is the speed of the sat-
ellite reckoned by the Schwarzschild
bookkeeper? Believe it or not, this maximum
satellite speed is the speed of light in this orbit as
reckoned by the Schwarzschild bookkeeper.
For more on bookkeeper values of the speed of
light, see Chapter 5.

7. Time Travel Using the Black
Hole: Stable Circular Orbits

You are on a panel of experts called together to eval-
uate a proposal to travel forward in time using the
difference in rates between a clock in a stable circular
orbit around a black hole and our far-away clocks
remote from the black hole. Give your advice about
the feasibility of the scheme, based on the following
analysis or some other that you devise.

A. Consider two sequential ticks of the clock of a
satellite in a stable circular orbit around a
black hole. We want to find the ratio dt/dt. The
numerator in this fraction is equal to the wrist-
watch time dT between the ticks in the frame of
the satellite; the denominator is the far-away
time lapse dt recorded by the Schwarzschild
bookkeeper. Use the expression for angular
momentum to eliminate d¢ from the Schwarz-
schild metric in this case to obtain

[ 2
mr

Substitute from equation [47] and simplify to

show that
‘12:[1_1)1/2:(1_&4)1/2 (59]
dt r* r

B. What is the value of the ratio dt/dt for the sta-
ble circular orbit of smallest possible radius,
r=6M?
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C. What rocket speed in flat spacetime gives the
same ratio of rocket clock time to “laboratory”
time”?

D. Based on this analysis, do you recommend in
favor of—or against—the proposal for time
travel using stable circular orbits around a
black hole?

8. Time Travel Using the Black
Hole: Unstable Circular Orbits

The proposal for travel forward in time (Exercise 7) is
modified to use an unstable circular orbit, with the
assumption that an automatic device controls cor-
recting rockets to keep the satellite safely on its knife-
edge orbit.

A. What is the value of the ratio dt/dt for the
unstable circular orbit of smallest possible
radius? Based on this result, would you recom-
mend in favor of using an unstable orbit
around a black hole for time travel?

B. With a glance at effective potential curves for
different values of angular momentum in Fig-
ure 13, draw a conclusion about the value of
the total energy per unit mass, E/m, for a parti-
cle that is to be put into the unstable orbit of
minimum radius r = 3M. While it is still far
from the black hole, what is the time-stretch
factor ¥g,, for a spaceship with this energy?
Does this result alter your recommendation
about using unstable circular orbits around a
black hole for time travel?

9. Turning Around Using the Black Hole

The starship Enterprise is headed toward a black hole
of known mass M. As captain, you want to use this
black hole to reverse your direction of motion with a
minimum expenditure of rocket fuel. You look at Fig-
ure 11, page 4-23 and decide to use Case 3, but with
energy E/m smaller than the peak of effective poten-
tial so that you will return outward immediately
rather than enter the risky knife-edge orbit that has
claimed the lives of so many graduates of Starfleet
Academy.

A. Will the value of E/m change as the Enterprise
descends toward the black hole?
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B. What is the linear momentum per unit mass

Prar/M of the spaceship while far from the black
hole, expressed as a function of E/m of the
spaceship? Will the value of the linear momen-
tum of the spaceship change as it descends
toward the black hole?

C. What is the magnitude of the angular momen-

tum L/m per unit mass of the spaceship about
the black hole, expressed in terms of E/m of the
spaceship? See Figure 3, page 4-6, and take the
impact parameter b to be the would-have-been
distance of closest approach if the black hole
had zero mass. (For a more careful definition
of b, see Figure 2, page 5-6.) Will the value of
the angular momentum change as the space-
ship descends toward the black hole of mass
M?

D. What happens to you and your crew if

E/m for the Enterprise is greater than the peak
of the effective potential?

Exercise 9. Turning Around Using the Black Hole

E. You do not want to change E/m for the Enter-

prise, because that requires expenditure of
considerable rocket fuel. Instead, you change
the value of your angular momentum L/m by
slightly altering your direction of motion as
you approach the black hole from a distance.
What is the minimum value of the impact
parameter b that brings the peak of the effec-
tive potential above the value of E/m?

F. Explain the advantages of the strategy outlined

in this exercise compared with rocket-
propelled velocity changes for interstellar
round trips or for time travel into the future.
What complications does the black hole intro-
duce compared to the use of rockets in flat
spacetime?
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Project C

Advance of the
Perihelion of Mercury

This discovery was, I believe, by far the strongest emotional experience in
Einstein’s scientific life, perhaps in all his life. Nature had spoken to him.
He had to be right. “For a few days, I was beside myself with joyous
excitement.” Later, he told Fokker that his discovery had given him
palpitations of the heart. What he told de Haas is even more profoundly
significant: when he saw that his calculations agreed with the unexplained
astronomical observations, he had the feeling that something actually
snapped in him.

—Abraham Pais

1 Joyous Excitement

What discovery sent Einstein into “joyous excitement” in November of
19147 It was the calculation showing that his brand new (actually not quite
completed) theory of general relativity gave the correct value for one
detail of the orbit of the planet Mercury that had previously been
unexplained.

Mercury circulates around Sun in a not quite circular orbit: The planet
oscillates in and out radially while it circles tangentially. The result is an
elliptic orbit. Newton tells us that if we consider only the interaction
between planet and Sun, then the time for one circular orbit is exactly the
same as one in-and-out radial oscillation. Therefore the orbital point clos-
est to Sun, the so-called perihelion, stays in the same place; the elliptical
orbit does not shift around with each revolution—according to Newton. In
this project you will begin by verifying this nonrelativistic result. Why
bother calculating something that does not change? Because observation
shows that Mercury’s orbit does, in fact, change. The innermost point, the
perihelion, moves around the Sun a little; it advances with each orbit (Fig-
ure 1). The long (major) axis of the ellipse rotates at the tiny rate of 574
seconds of arc (0.159 degree) per century. (One degree equals 3600 seconds
of arc.) Newtonian mechanics accounts for 531 seconds of this advance by
computing the perturbing influence of the other planets. But a stubborn 43
seconds of arc (0.0119 degree) per century (called a residual) remains after
all these effects are accounted for. This discrepancy (though not its modern
value) was computed from observations by LeVerrier as early as 1859.
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Simon Newcomb

his collaborator, George W Hill. By the age of five Newcomb
was spending several hours a day making calkculations and
before the age of seven was extracting cube roots by hand
He had littke formal education but avidly explored many
technical fields in the libraries of Washington, D C He
discovered the American Ephemeris and Nautical Almanac,
of which he said, “Hs preparation seemed to me to embody
the highest intellectual power to which man had ever
attained ~

Newcomb became a "computer” (someone who computes)
in the American Nautical Almanac Office and, by stages, rose
to become its head. The greater pan of the rest of his life
was spent calculating the mations of bodies in the solar

Simon Newcomb ) system from the best existing data Newcomb collaborated
Bom March 12, 1835, Wallace, Nova Scotia with Q. M. W. Downing to inaugurate a workdwide system
Died July 11, 1509, Washington, D.C of astronomical constants, which was adopted by many
(Photo courtesy of Yerkes Cbservatory) countries in 1896 and officially by all countries in 1950

From 1801 until 1959 and even later, the tables of locations The advance of the perihelion of Mercury computed by
of the planets (so-called ephmerides) used by most Einstein in 1914 would have been compared to entries in the
astronomers were those compiled by Simon Newcomb and tables of Simon Newcomb

The advance of the perihelion of Mercury is sometimes called the
precession of the perihelion.

Newtonian mechanics says that there should be no residual advance of the
perihelion of Mercury’s orbit and so cannot account for the 43 seconds of
arc per century which, though tiny, is nevertheless too large to be ignored
or blamed on observational error. But Einstein's general relativity hit it on
the button. Result: joyous excitement!

In this project we review Newton’s incorrect prediction and then carry out
a general-relativistic approximate calculation of the advance of the perihe-
lion of Mercury adapted from that of Robert M. Wald (General

Relativity, University of Chicago Press, 1984, pages 142-143). This approxi-
mation describes the angular motion of the planet as if it were in a nearly
circular orbit. From this assumption we calculate the time for one orbit.
The approximation also describes the small inward and outward radial
motion of the planet as if it were a harmonic oscillator moving back and
forth radially about the minimum in a potential well (Figure 2). We calcu-
late the time for one round-trip radial oscillation. These two times are
equal, according to Newton, if one considers only the planet-Sun interac-
tion. In that case the planet goes around once in the same time that it
oscillates radially inward and back out again. The result is an elliptical
orbit that closes on itself, so the planet repeats its elliptic path forever. In
contrast, these two times—the angular and the radial—are not quite equal
according to the Einstein approximation. The radial oscillation takes place
more slowly. From the difference we reckon the approximate rate of
advance of Mercury’s perihelion around Sun.
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Advance of
/ perihelion

Figure 1 Exaggerated view of the change in
orientation of Mercury's orbit during one century.

2 Linear Harmonic Oscillator

Why should the satellite oscillate in and out radially? Look at the effective
potential for Newtonian motion, the heavy line in Figure 2. This heavy
line has a minimum, the location at which a particle can rest and ride
around at constant 7, executing a circular orbit. But it can also oscillate
radially in and out, as shown by the two-headed arrow.

How long will it take for one in-and-out oscillation? That depends on the
shape of the effective potential curve near the minimum shown in Figure
2. If the amplitude of the oscillation is small, then the important part of the
curve is very close to this minimum, and we can use a well-known mathe-
matical theorem: If a continuous, smooth curve has a minimum, then near
that minimum the curve can be approximated by a parabola with its ver-
tex at the minimum point. Such a parabola is shown superimposed on the
effective potential curve of Figure 2. From the diagram it is apparent that
the parabola is a good approximation of the potential near that minimum.
In fact Mercury’s orbit swings from a minimum radius (the perihelion) of
46.04 million kilometers to a maximum radius (the so-called aphelion) of
69.86 million kilometers.

From introductory physics we know how a particle moves in a parabolic

potential. The motion is called harmonic oscillation and follows a for-
mula of the kind

x = A sinwr (1]

Section 2 Linear Harmonic Oscillator
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Figure 2 Computer plot: The Newtonian effective potential (thick curve), copied from
Figure 5, page 4-12, on which is superimposed the parabolic potential of the simple
harmonic oscillator (thin curve) The two curves conform to one another only near the
minimum of the effective potential. We use a similar set of curves to approximate the
radial oscillation of Mercury in its orbit as an harmonic oscillation of small amplitude

Here A is the amplitude of the oscillation and ® (Greek lower-case omega)
tells us how rapidly the oscillation occurs. The potential energy per unit
mass V/m of a particle oscillating in a parabolic potential is given by the
formula

V/im = %mzxz [2]

From equation [2] we can find an expression for ® by taking the second
derivative of both sides with respect to the displacement x:

2
dL;m) = ©* 3]
dx
In general, if we have the expression for the potential, we can find the rate
o of harmonic oscillation around a minimum by taking the second deriva-

tive of the curve and evaluating it at that minimum where
d(V/m)/dx = 0.

3 Radial Harmonic Oscillation of Mercury: Newton

The trouble with the in-and-out radial oscillation of Mercury is that it does
not take place around x = 0 but around the average radius r,, of its orbit.
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What is the value of r,? It is the radius for which the effective potential has
a minimum. For Newtonian orbits the radial motion is given by equations
[27], page 4-11, and [29], page 4-12:

5\ 5 |- AR AP [4. Newton]

2 m r 2 m m

1(dr]2=E M (L/m)’] _E_ V()
2r

From this equation we define the effective potential (equation [28] on page
4-12);

Vi _ M (L/m)’
m r 2r2

[5. Newton]

QUERY 1 Finding the potential minimum. Take the derivative with respect to r of
the potential per unit mass, V/m given in equation [5]. Set this first deriva-
tive aside for use in Query 2. As a separate calculation, equate this
derivative to zero in order to determine the radius r, at the effective
potential minimum. Use the result to write down an expression for the
unknown quantity (L/m)? in terms of the known quantities M and r,.

QUERY 2 Oscillation rate o, for radial motion. We want to use equation [3] to find
the rate of radial oscillation. Accordingly, continue by taking a second
derivative of V/m in equation [5] with respect to r. Set r = r, in the result-
ing expression and substitute your value for (L/m)2 from Query 1. Use
equation [3] to find an expression for the rate at which Mercury oscillates
in and out radially—according to Newton!

4 Angular Velocity of Mercury in Its Orbit: Newton

We want to compare the rate o, of in-and-out radial motion of Mercury
with its rate @, of round-and-round tangential motion. Use the Newtonian
definition of angular momentum, with increment dt of Newtonian univer-
sal time, similar to equation [2], page 4-3:

_2dd _ 2
L/m=r 2= %% [6. Newton]

We want to find the value for the angular velocity o, = d¢/dt of Mercury
along its almost circular orbit.

QUERY 3 Angular velocity of Mercury in orbit. Into equation [€] substitute your
value for L/m from Query 1 and set r = r,,. Find an expression for d¢/dt in
terms of M and r,,.

Section 4 Angular Velocity of Mercury in Its Orbit: Newton
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QUERY 4 Comparing radial oscillation rate with orbital angular velocity. Compare
your value of angular velocity w, from Query 3 with your value for radial
oscillation rate w, from Query 2. State your conclusion about the advance
of the perihelion of Mercury's orbit around Sun (when only the Sun-
Mercury interaction is considered), according to Newton.

5 Effective Potential: Einstein

Now we repeat the analysis for the general relativistic case, using the
Newtonian analysis as our model. Equation [30], page 4-15 gives a mea-
sure of the radial motion of the orbiting planet. Multiply through by 1/2
to obtain an equation similar to equation [4] above for the Newtonian case:

(5 - 3E-30- 20 ) JE -

r

Equations [4] and [7] are of similar form, and we use this similarity to
make a harmonic analysis of the radial motion of Mercury in orbit in gen-
eral relativity similar to the Newtonian analysis of Sections 3 and 4. Begin
by assigning the name effective potential and the symbol U/m to the term
subtracted from the squared energy in [7], as indicated on the right end of
the equation.

Before proceeding further, note first that the time in equation (7] is the
proper time 7, the wristwatch time of the satellite, not Newton’s universal
time t. This different time standard is not necessarily fatal, since in Newto-
nian mechanics there is only one universal time, and we have not yet had
to decide which relativistic time should replace it. You will show that for
Mercury the choice of which time to use (wristwatch time, bookkeeper far-
away time, or even shell time at the radius of the orbit) makes a negligible
difference in our predictions about the rate of advance of the perihelion.

Second, note that the relativistic expression (1/ 2)(E/m)* in equation [7]
stands in the place of the Newtonian expression (E/m) in equation [4]. Do
we dare replace an energy with a squared energy? Both represent a con-
stant of the motion and, strange as it may seem, the difference does not
affect our analysis. Evidence that we are on the right track follows from
multiplying out the second term of the middle equality in equation [7]. We
have assigned the symbol U/m to this second term.

=302

2 r ,

[8]
1 M (L/m)* M(L/m)*
2T r Y T 2T 3
r 2r r
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On the right side of the second line are the two effective potential terms
that made up the Newtonian expression [5]. In addition, the first term
(1/2) assures that far from the center of attraction the radial speed in [7]
will have the correct value. For example, let the total energy equal the rest
energy (E/m = 1). Then for large r, the radial speed dr/dt (equation [7]) goes
to zero, as it must in this case. The potential U/m is plotted in Figure 3.

The final term on the right of the second line of [8] describes an attractive
potential arising from general relativity. This causes the slight deviation of
the orbit of Mercury from that predicted by Newton. Because of the 7> in
the denominator, near a black hole this negative term overwhelms all oth-
ers at small radii, leading to the downward plunge in the effective
potential at the left side of Figure 3.

In summary, the forms of equations [7] and [8] allow us to use the tools of
Newtonian mechanics to analyze the radial component of the satellite’s
motion predicted by general relativity, provided that we are satisfied with
the wristwatch time of the satellite and with an “energy term” equal to
(1/2)(E/m)?*. Of course, we are trying to solve a relativistic problem. Never-
theless, because of its form we can use the Newtonian manipulation to
carry out a general relativistic calculation.

0.51
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0.49+
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0.46 } $ { { t i
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Figure 3 Computer plot: Approximation of the general-relativistic effective
potential Ulm (heavy curve) at the minimum with a parabola (light curve) in
order to analyze the radial excursion (double-headed arrow) as simple
harmonic motion The heavy effective potential curve is for a black hole, not
for Sun, whose effective potential would be indistinguishable from the
Newtonian function on the scale of this diagram.
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6 Radial Harmonic Oscillation of Mercury: Einstein

Now analyze the radial oscillation of Mercury according to Einstein.

QUERY 5 Finding the potential minimum. Take the derivative of the effective
potential [8] with respect to r. Set this first derivative aside for use in
Query 6. As a separate calculation, equate this derivative to zero, set
r =r,, and solve the resulting equation for the unknown quantity
(L/m)? in terms of the known quantities M and r,,

QUERY 6 Radial oscillation rate. We want to use equation [3] to find the rate of
oscillation in the radial direction. Accordingly, continue to the second
derivative of U/m from equation [8]. Set r = r,, in the result and substi-
tute the expression for (L/m)? from Query 5 to obtain

2 _ M(r,-6M)
rg(ro—3M)

dU/m)

[9]
d r2

=

r=sry

QUERY 7 Newtonian limit of radial oscillation. The radius of Mercury’s orbit
around Sun has the value r, = 5.80 x 10'% meters. Compare this radius
with the value M for the mass of Sun in geometric units. If one of these
can be neglected in equation [9] compared with the other, demonstrate
that the resulting value of , is the same as your Newtonian expression
derived in Query 2.

7 Angular Velocity in Orbit: Einstein

We want to compare the rate of in-and-out radial oscillation of Mercury
with the angular rate at which Mercury moves tangentially in its orbit.
The rate of change of azimuth ¢ springs from the definition of angular
momentum, equation [2], page 4-3:

L_ 24 [10]

m dat

Note that the time here, too, is the wristwatch (proper) time 1 of the
satellite.

QUERY 8 Angular velocity. Square both sides of equation [10] and use your result
from Query 5 to eliminate (L/m)Z from the resulting equation. Show that
the result can be written

2 _ (doY? M
o2 = [40V _ [11]
\ (d‘) r2(ry—3M)

According to the relativistic prediction, does the round-and-round tangen-
tial motion of Mercury take place in step with the in-and-out radial
oscillation, as it does in the Newtonian analysis?
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QUERY 9 Newtonian limit of angular velocity. Make the same kind of approximation
as in Query 7 and demonstrate that the resulting value of w, is the same as
your Newtonian expression derived in Query 3.

8 Predicting Advance of the Perihelion

The advance of the perihelion of Mercury springs from the difference
between the frequency at which the planet sweeps around in its orbit and
the frequency at which it oscillates in and out radially. In the Newtonian
analysis these two frequencies are equal if one considers only the interac-
tion between planet and Sun. But Einstein’s theory shows that these two
frequencies are not quite equal, so Mercury reaches its maximum (or mini-
mum) radius at a slightly different angular position in each orbit. This
results in the advance of the perihelion. The rate of advance is the differ-
ence between the orbital angular frequency w, and the radial angular
frequency w, .

QUERY 10 Difference in squared oscillation rates. From equations [11] and [9] con-
struct and simplify an expression for the difference of squares
(o¢2 - (0,2 in terms of M, r,, and 0y plus numerical constants.

QUERY 11 Difference in oscillation rates. The two angular rates ON and ®, are almost
identical in value, even in the Einstein analysis. Therefore write the result
of Query 10 in the following form:

2
Wy -0 = (m¢+mr)(m¢—mr)=20)¢(u)¢—(or) [12]

Use outcomes of earlier queries to show that this approximation can be
written

Wy — O = ——, [13]
Equation [13] gives us the difference in angular rate between the tangen-

tial motion and the radial oscillation. From this rate difference we can
calculate the rate of advance of the perihelion of Mercury.

All of the w-expressions are of the form d(angle)/dz or

d(phase angle)/dt. Since d7 is in the denominator everywhere, it can be
canceled out and the angle increments added to give angles. The resulting
adaptation of equation [13] has the following form:

Section 8 Predicting Advance of the Perihelion



predicted total angle total phase angle

angleof | = | coveredin |- covered in
advance orbital motion radial motion
[14]
3 total angle
== covered in

orbital motion

Moreover, we can use any measure of angle we wish—degrees or radians
or seconds of arc—as long as we are consistent. Numerical prediction
based on this equation must be compared with results of observation.

9 Comparison with Observation

QUERY 12 Mercury’s orbital period. The period of Mercury’s orbit is 7.602 x 10° sec-
onds and that of Earth is 3.157 x 107 seconds. What is the value of
Mercury’s period in Earth-years?

QUERY 13 Mercury’s revolution in one century. How many revolutions around Sun
does Mercury make in one century (100 Earth-years)? How many degrees
of angle are traced out by Mercury in one century?

QUERY 14 Correction factor. The mass M of Sun is 1.477 x 103 meters and the radius
r, of Mercury's orbit is 5.80 x 10'% meters. Calculate the value of the cor-
rection factor 3M/r, in equation [14].

QUERY 15 Advance angle per century in degrees. Using equation [14], multiply your
answers from Queries 13 and 14 to obtain a prediction of the advance of
the perihelion of Mercury’s orbit per century in degrees.

QUERY 16 Advance angle per century in seconds of arc. There are 60 minutes of arc
per degree and 60 seconds of arc per minute of arc. Multiply your result
from Query 15 by 60 x 60 = 3600 to obtain your prediction of the advance
of the perihelion of Mercury’s orbit per century in seconds of arc.

A more careful analysis predicts a value of 42.98 seconds of arc (0.0119
degrees) per century (see Table 1). The observed rate of advance of the
perihelion is in perfect agreement with this value: 42.98 + 0.1 seconds of
arc per century. (See references.) How close was your prediction?

10 Advance of the Perihelia of the Inner Planets

Do the perihelia (plural of perihelion) of other planets in the solar system
also advance as described by general relativity? Yes, but these planets are
farther from Sun, so the predicted advance is less than that of Mercury. In
this section we compare our estimated advance of the parahelia of the
inner planets Mercury, Venus, Earth, and Mars with results of an accurate
calculation.
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The Jet Propulsion Laboratory (JPL) in Pasadena, California, supports an
active effort to improve our knowledge of the positions and velocities of
the major bodies in the solar system. For the major planets and the moon,
JPL maintains a database and set of computer programs known as the
Solar System Data Processing System (SSDPS). The input database con-
tains the observational data measurements for current locations of the
planets. Working together, more than 100 interrelated computer programs
use these data and the relativistic laws of motion to compute locations of
planets at times in the past and future. The equations of motion take into
account not only the gravitational interaction between each planet and
Sun but also interactions among all planets, Earth’s moon, and 300 of the
most massive asteroids, as well as interactions between Earth and Moon
due to nonsphericity and tidal effects.

To help us with our project on perihelion advance, Myles Standish, Princi-
pal Member of the Technical Staff at JPL, kindly used the numerical
integration program of the SSDPS to calculate orbits of the four inner plan-
ets over four centuries, from A.D. 1800 to A.D. 2200. In an overnight run
he carried out this calculation twice, once with the full program including
relativistic effects and a second time “with relativity turned off.” Standish
“turned off relativity” by setting the speed of light to 10'? times its mea-
sured value, effectively making light speed infinite. (By combining
equation [5], page 2-14, with equation [10], page 2-19, we can show that
the Schwarzschild curvature factor in conventional units is written

(1 - 2GMy,/7c?); the value of this expression approaches unity for a large
value of ¢.) For each of the two runs, the perihelia of the four inner planets
were computed for a series of points in time covering the four centuries.
The results from the nonrelativistic run were subtracted from those of the
relativistic run, revealing advances of the perihelia per century accounted
for only by general relativity. The second column of Table 1 shows the
results, together with the estimated computational error. Later columns
show additional data on these planets.

Table 1 Advance of the perihelia of the inner planets

Advance of perihelion in Radius of Period of
Planet seconds of arc per century orbit orbit
(JPL calculation) in AU* in years
Mercury 42,980 + 0.001 0.38710 0.24085
Venus 8.618 + 0.041 0.72333 0.61521
Earth 3.846 + 0.012 1.00000 1.00000
Mars 1.351 + 0.001 1.52368 1.88089

*Astronomical Unit (AU): average radius, Earth’s orbit; inside back cover.
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QUERY 17 Perihelia advance of the inner planets. Compare the JPL-computed
advances of the perihelia of Venus, Earth, and Mars with results of the
approximate formula developed in this project.

11 Checking the Standard of Time

QUERY 18 Difference between shell and wristwatch times. Use special relativity to
find the fractional difference between satellite wristwatch time T and the
time ¢, read on shell clocks at the same radius r, at which Mercury
moves in its orbit at the average velocity 4.8 x 10* meters/second. By what
fraction could a change of time from 1 to t, change the total angle cov-
ered in the orbital motion of Mercury in one century (equation [14])?
Therefore by what fraction could it change the predicted angle of rota-
tion of the major axis?

QUERY 19 Difference between shell and far-away times. Find the fractional differ-
ence between shell time ty,¢ at radius r, and bookkeeper far-away time t
for r, equal to the radius of the orbit of Mercury. By what fraction could a
change of time from ty,¢) to t change the total angle covered in the
orbital motion of Mercury in one century (equation [14])? Therefore by
what fraction will it change the predicted angle of axis rotation?

QUERY 20 Does time standard matter? From your results of Queries 18 and 19, say
whether or not the choice of a time standard (planet proper time 1, tg,
or far-away time t) would make a significant difference in the numerical
prediction of the advance of the perihelion of Mercury in one century.
Would your answer differ if the time were measured with clocks on
Earth’s surface?
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e Can | see a black hole at all?

e Does light have its usual speed near a black hole?
e Can light orbit a black hole?
e What do the stars above me look like as I fall through the horizon?



CHAPTER 5

Seeing

Tell all the Truth but tell it slant—
Success in Circuit lies

Too bright for our infirm Delight
The Truth’s superb surprise

As Lightning to the Children eased
With explanation kind

The Truth must dazzle gradually
Or every man be blind—

—Emily Dickinson, about 1868 (poem 1129)

1 Motion of Light
What do we see when we (finally!) look around?

What can we say about the motion of light around, past, or into a spheri-
cally symmetric nonspinning black hole? We ask here no small question.

Almost everything that we learn about happenings out in space comes to
us by way of light or signals that travel with the speed of light. When we
examine happenings near any compact massive object, however, we can-
not assume that the evidence we see comes to us without distortion.

Is light deflected as it passes near a center of attraction? If so, how can we
trust what we see? Stand on the spherical shell surrounding a black hole.
Or ride an unpowered spaceship that orbits the black hole. What do we
see? How big does the black hole lock? What is the apparent position and
color of a particular distant star? The entire canopy of stars: Do we see it
spread uniformly overhead? We answer these questions by tracing out the
trajectory of a light pulse as it approaches a center of gravitational attrac-
tion. The results apply to an electromagnetic wave of any frequency.

But first, in the following section, we describe pieces of light trajectories in
Schwarzschild geometry as tracked by shell observers, by free-float
observers, and by recorded data of the bookkeeper who uses increments
of Schwarzschild coordinates dr, d¢, and dt. We recognize that each ele-
ment of the path of a light pulse racks up zero proper time (dt = 0) and use
this feature of the trajectory to analyze pieces of it. The resulting analysis
stops short of what is needed to plot a full trajectory. To do that, it turns
out, we need to find a constant of the motion for light. We find this con-
stant of the motion in Section 3.

Section 1 Motion of Light

Curved spacetime results in a

distorted visual view

Look first at “pieces” of light

trajectory.
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Light moves at v = 1 for free-
float observer

5-2

2 Alternative Speeds of Light |

When does light move slower than speed unity?

Free-Float Observer Measures v = 1 for Light. Our unpowered spaceship
plunges radially toward the center of a black hole. Or comfortably speeds
around in a stable circular orbit while on-board astrophysicists make
observations. While they do so, we measure the speed of light along
round-trip paths entirely within our spaceship: port to starboard, fore to
aft, floor to ceiling. What will be our experimental results? What is the
speed of light in our free-float frame?

Why do you ask such an elementary question this late in the game? The measured

& speed of light is unity, as always in a free-float (inertial) frame—of course! From the
beginning of our study of relativity, the invariance of the speed of light as clocked in
overlapping free-float frames and the constancy of its value over time have been key-
stones of our analysis.

Yes, v = 1 will be the result of all our light-speed experiments carried out
inside the unpowered spaceship, whatever its orbit around the black hole.
Of course, tidal accelerations within our spaceship require us to limit the
spatial extent and time duration of our light-speed experiments. As we
plunge and swoop, these tidal accelerations vary, forcing us repeatedly to
redefine the spacetime region that we call inertial or free-float, according to
the sensitivity of our experimental equipment (Section 8 of Chapter 1).
Nevertheless, with these limitations the speed of light remains unity for
us, whatever our free-float orbit around the black hole.

Why bring up the speed of light now? Because our assumption about light
speed is about to suffer a jolt. This jolt to our expectations occurs when we
examine the predicted bookkeeper speed of light, the changes in reduced
circumference dr and tangential displacement rd¢ as a light pulse moves
during an increment dt of far-away time.

Schwarzschild Bookkeeper Reckons v < 1 for Light. A pulse of laser light
flies along a slanting arc toward and around a black hole. Along its path it
brilliantly illuminates two detonators lying close to one another. With the
touch of light, each detonator instantly explodes. Examine these explosion
events. Since both detonators are ignited by the same pulse of light, the
proper time between explosion events is zero. Light follows a null geode-
sic, a locally straight worldline with zero wristwatch time between any
two events along it. The Schwarzschild metric (equation [10], page 2-19)
lets us apply this condition to our two neighboring detonations:

2
di? = 0 = (1-3;"!}1:2— dr

—rde? [1. light]

(We place the label [light] to the right of equations that describe the
motion of light. In contrast, from now on the label [m > 0] goes to the right
of equations that apply to material particles, that is, particles with nonzero
mass.)
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First, analyze the laser pulse when it is fired radially outward from a
spherical shell centered on the black hole. In that case d¢ = 0 and equation
[1] can be written

2
dr 2MYN , 2 .
5 - (1 _ T)d’ [2. light]
-
or
‘;_; =+ (1 - 2%4) [3. light, radial motion]

Carry out for yourself a similar analysis for tangential motion. Note that
rd¢ is the tangential displacement, so rd¢/dt is the tangential bookkeeper
velocity. Show that

r‘;—? == (1 - %,1)1/2 [4. light, tangential motion]
Notice the square root on the right side of equation [4] and no square root
on the right side of [3]. These equations tell a strange story! They show
that the bookkeeper’s value for the speed of light is less than unity and
even depends on the direction of motion: radial or tangential. At great dis-
tance r from the black hole, both radial and tangential computed light
speeds approach unity, the directly observed speed of light in flat space-
time. However, closer to the black hole this (, ¢, t) value for light speed
can be less than unity. For the Schwarzschild bookkeeper, one can say,
“The speed of light is less than the (unity) speed of light!” In particular the
speeds of light as measured by the bookkeeper in both the radial and the
tangential directions go to zero at the horizon, r = 2M.

WHAT? Throughout the study of relativity everyone claims that the speed of light is

& an invariant, with value unity, the same for all observers This principle has given me a
lot of trouble, but I have finally accepted it Now you assert that the speed of light dif-
fers from unity near a black hole and, in particular, goes to zero at the horizon You
have succeeded in confusing me all over again Please make up your mind!

No nearby observer makes a direct local measurement of the slowed light
speed. Light speeds figured using equations [3] and [4] are bookkeeper’s
accounting entries, not direct reports from local experiments. Actually,
these predictions should not be too surprising in view of earlier resuits.
Recall the particle of mass m streaking radially inward across the horizon
after starting its fall from a remote point (Chapter 3, Section 5). That parti-
cle moves with the speed of light at the horizon as recorded by nearby
shell observers. Yet the Schwarzschild bookkeeper—shell data though she
uses, converting to dr and dt—records the stone as coming gently to rest at
the horizon (equation [21], page 3-13).

The present case is similar. No nearby local observer measures directly the

smaller speed of a passing light flash expressed in equations [3] and [4].
The in-falling free-float observer in her flat-spacetime inertial special-rela-

Section 2 Alternative Speeds of Light |

Bookkeeper speed of radial
light pulse

Bookkeeper speed of
tangential light pulse

Bookkeeper records v < 1 for
light near the horizon

Bookkeeper slow light speeds
are not measured locally



Bookkeeper light speeds can

be measured from a distance.

Light speed is v = 1 for shell
observer

Measure shell distances with
radar

tivity capsule can check as often as she wants—and at every stage of her
journey—to find that the speed of light is unity, as always in a free-float
frame. The shell observer also measures the speed of light to have the
value unity (see the following paragraphs). So is the bookkeeper’s smaller
speed of light totally unmeasurable? And if so, how can it be part of a
physics theory?

True, none of our local observers measures directly the smaller speed of
light near a center of gravitational attraction as evaluated by the book-
keeper. However, a remote observer can measure this smaller speed—and
has already done so! Irwin Shapiro recognized this prediction of smaller
light speed past our Sun and in 1979 reported time delays in the propaga-
tion of radio waves that graze the surface of Sun, described in Project E,
Light Slowed Near Sun.

Incidentally, the lowered bookkeeper speed of light resolves the paradox
how an in-faller can cross the horizon at the speed of light (as she mea-
sures her speed past local shells) while a remote observer, looking inward,
sees the in-faller slowing over a period of time, never reaching the horizon
(Section 5 of Chapter 3). The outward-moving signals continue to come
out for a long time because of the “slowed bookkeeper speed of light” near
the horizon. Kip Thorne calls these signals “relics of the past.”

Shell Observer Measures v = 1 for Light. The observer on the local shell
through which the light is currently passing also measures the light to
have its usual speed: unity. To verify that our mathematics correctly pre-
dicts speed unity, recall that the local metric for shell observers is identical
in form to the metric for flat spacetime (equation [33], page 2-33):

2 2 2 2,.2 2 2
di = dtgen—droney =1 dd" = digey —dsge 151

For light, dt = 0 and we simplify with ds?g,o = dr%ghep + 72d¢? to find

dsghen
dtshell

= +1 [6. light]

Hence the speed of light is unity as measured locally on all shells, down to
the horizon. Typically a light beam curves near a black hole, as we see later
in this chapter. Still, along a small segment of path every shell observer
measures every passing light flash to move at speed unity.

Shell light speed equal to unity has an important consequence for mea-
surements by shell observers: They can use radar to measure local shell
distances. Send a flash of light (or a radar pulse) in some direction, time its
return after reflection from a nearby object, and assume that the distance
in meters to the reflecting object equals half the round-trip time in meters
as recorded on the local shell clock. No more worry about stretching or
flexing meter sticks! Note, however: Radar pulses that do not move radi-
ally will also return the correct magnitude of distance of nearby objects
along the curved radar trajectory in space, but the direction to the reflecting
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object may be distorted by bending of the radar path in curved spacetime
geometry, as described in Sections 5 and 6.

Shell light speed equal to unity can also help us to understand better the
slowed light speed reckoned using Schwarzschild coordinates. Think of
two events along the path of a light flash. The tangential bookkeeper
velocity of light between these two events is (1 - ZM/r)l/ 2 because for the
bookkeeper the light covers the same tangential distance rd¢ as for the
shell observer, but in a longer lapse of time, dt = dtg, . /(1 - 2M/r)V/2, For
the radial motion of light not only is the bookkeeper lapse of time longer
between these two events than for the shell observer, but also the radial
distance between them is smaller: dr = drg(1 - 2M/r)!/2. The result is a
bookkeeper radial speed of (1 — 2M/r).

3 Orbiting Light

Treat a light flash as a very fast particle with vanishingly small mass.

The stars! The stars! What do the stars look like as we stand on a spherical
shell near the horizon of a black hole? Where do we look to see Sirius, the
Dog Star, as we careen in free float through the spherical shells around a
black hole? The Schwarzschild bookkeeper tells us to look in what direc-
tion to see remnants of the latest supernova in Andromeda? And if we
turn our telescope in the direction she indicates, will we see it?

To answer these questions we trace inward from each star, each quasar,
each supernova the long trajectory, the single thin pencil of light that spi-
rals in toward the black hole so precisely as to enter the iris of our eye as
we stand on a spherical shell near the horizon. The goal now is to connect
the pieces of light paths described in Section 2 into trajectories girdling the
black hole and plunging across its horizon. Describing complete trajecto-
ries allows us—at last!—to predict what we see when we raise our eyes to
behold the heavens from the vicinity of a black hole.

To track the path of light, we return to the Principle of Extremal Aging for
material particles, the fundamental rule that each particle with mass
moves from an initial fixed event to a final fixed event along a worldline
chosen to maximize (or in general to make extreme) the time lapse on the
wristwatch carried by the particle. This extremum principle we cannot
apply directly to light, and for an elementary reason—the aging of a light
pulse is automatically zero! Each element of the worldline has equal space
and time parts as observed in a local free-float frame (Figure 1). Therefore
the aging along each element of its worldline is zero. Aging is zero also
along the entire worldline! The total aging of a light flash from creation to
annihilation is zero. How can we possibly apply the Principle of Extremal
Aging to a light pulse whose aging is automatically zero?

Answer: Sneak up on it! There is nothing about the motion of a light pulse
in a vacuum that cannot be discovered by analyzing a sequence of mate-
rial particles, each one moving faster than the previous one, each with less
mass than the previous one. Arrive in this way at a particle of vanishingly
small mass but with speed approaching that of light. We shall see that, in

Section 3 Orbiting Light

Where do we look to see the

familiar stars?

Total aging along light
trajectory is zero

Treat light pulse as fast

particle with vanishingly small

mass.
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Time

Interval

--------------

Figure 1 Worldiine of a light flash with respect to a free-float (inertial) frame, showing its
unit slope in spacetime. Insets: Unit slope of worldline means equal space and time
separations between events along this worldline, hence zero interval between them—and
zero aging for the light flash (equation [30], page 1-12, with dz = 0). Momentum-energy of
the same light flash, also with unit slope, symbolizing three properties of light: It has zero
mass, it travels with light speed, and it has a8 momentum identical in magnitude to its energy
(equation [32], page 1-13, withm = 0).

P L —
m
of particle
Vo,
= impact
parameter
Testy ¥ - Str.@iah!.r.@s!i.@!.....
particle ™ Velocity parallel to p plunge

Figure 2 Impact parameter b defined. A fast particle (mass m) approaches a black hole from
a great distance with vector momentum p. Find a test particle with a parallel velocity that
plunges radially—without deflection—into the black hole. The perpendicular distance b
between their initially parallel paths (at this great distance) is called the impact parameter b
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this limit, motion of such a particle mimics that of the light flash. Now for
the details.

A very fast particle—still of mass m—about to pass a black hole is initially
at a great distance from it (Figure 2). Spacetime in the local neighborhood
of the particle is effectively flat. The particle has a momentum vector p
along its line of motion. By trial and error, find a second line of motion, ini-
tially parallel to the first, such that a test particle moving along this second
line plunges radially into the black hole, deviating neither one way nor the
other as it does so. Our original particle and the test particle start along
parallel tracks from our remote location in flat spacetime. The perpendicu-
lar distance between these tracks at this remote location is called the
impact parameter and given the symbol b (Figure 2).

The box on page 5-8 uses the impact parameter and the sneak-up-on-it
strategy to derive the equations of motion for light.

4 Alternative Speeds of Light Il
Bookkeeper: Different light speeds in different directions.
Shell observer: Light speed always v = 1.

Equations [14] and [15] in the box on page 5-8 give the radial and tangen-
tial components of velocity as calculated by the remote bookkeeper, who
reckons everything in reduced circumference 7, far-away time ¢, and azi-
muthal angle ¢. (For radial motion, b = 0, compare these results with
equation [3].) Both radial and tangential velocity components get smaller
and smaller as the light flash gets closer and closer to the event horizon at
r = 2M. Now we can find the speed of light for any impact parameter.
Square both sides of equations [14] and [15] in that box, add their respec-
tive sides, and take the square root of the result, giving equation [16]:

[ light speed

reckoned by] - [(j_:)Z . (r‘%jz]l/z

bookkeeper [16. light]

3
r

27172
= (1 —Z—M)[l +2MD ]
r
At great distance r from the black hole (in the limit 2M/r —> 0), this com-
puted light speed approaches unity, the directly observed speed of light in
flat spacetime. However, closer to the black hole this 7, ¢, ¢ coordinate light
speed decreases, approaching zero at the horizon.

No local observer measures directly the slower light speed. It is a book-
keeper’s accounting entry. Nevertheless the prediction has been verified
by remote observers employing radio waves that graze the surface of Sun,
as described in Project E, Light Slowed Near Sun.

Two observers who do measure the speed of light directly are the shell
observer and the plunging observer. We have already seen (equation [6])
that the shell observer measures the speed of light to be unity. We can find

Section 4 Alternative Speeds of Light ||

Impact parameter b defined

Bookkeeper light speed is a
function of impact parameter

andr.

Shell and plunging observers

measure v = 1 for light
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By definition, the magnitude of the angular momentum L for
the particle in flat spacetime, shown as the upper particle in
Figure 2, is its linear momentum py,, far from the black hole
multiplied by the impact parameter b, thus L = b pg,. Hence
the ratio of angular momentum to linear momentum L/ps,, is
just the impact parameter b. In this region of flat spacetime
we can use the expressions of special relativity to find b for a
particle of mass m (equation (32), gage 1-13). In flat space-
time, m? = £2 - p2 and thus p=(E Energy in this
expression is just the total energy, the energy measured at
infinity £, because the particle is effectively at infinity.
Therefore

( angular )
_ \momentum,/ _ L _ L

- ( linear ) Tr [E2—m2]l/2
momentum

[7.m>0]

Now, both angular momentum L and energy measured at
infinity £ are constant (Chapter 4) as this ultrafast particle
{this almost-but-not-quite light flash) moves from far away
and approaches the black hole. Therefore the right side of
equation [7] is constant during this motion Hence the left
side, the numerical value of b, the impact parameter mea-
sured at infinity, also remains constant as the particle swoops
in toward the center of attraction

Note Both the impact parameter measured at infinity of a
satellite and its energy measured at infinity can be measured
directly only at infinity Closer in, where spacetime is curved,
a shell observer must infer their at-infinity values from local
measurements (see Sample Problem 1 on page 5-10 and
Sample Problem 3 on page 4-22).

for the very fast particle we have chosen to mimic the light
flash, hold the energy and the angular momentum constant
while letting the mass m approach zero. Equation [7]
becomes

( angular

momentu L .

bbght = "!IEO(—linca‘_— = E [8 Ilght]
moment

The original equations of motion for a particle of mass m are
equations [20], [21), and [22) on page 4-9:

() = ermn- (1201 2]

r

[9.m > 0]

Motion of Light in Schwarzschild Geometry

do _ (L/m)
7= —rz [10 m> 0]
2M
1M1
dt _ ( ! J (11 m>0)
dt (E/m)

We must rewrite equations [9] and [10] without the proper
time dt because elapsed proper time is zero for the light
flash Eliminate proper time by multiplying equations [9] and
[10] through by the appropriate power of dv/dt from equa-
tion [11], yielding the two equations

@) - GGE

M M 3[m? 1LY 12 m>0]
(-2 (247 4
r rJso et »r
(1-%)
dodr L r
d' ﬁz = (Ej—z 13 m> 0]

Now let m —> 0, the limit indicated by equation [8] In the
limit of vanishingly small mass, the resulting equations
describe the motion of light

d 2M oM\ |

awr _ _[1 - eM | hgh i

o 1(1 - )][1 [1 - ] 2 } [14. light]
dp _ | Pugm(, 2M ,
rdt =% r (l ——7—) [15. I'ght]

We write the last of these equations with the multiplier r on
the left because the product ridg/dt) is the component of
velocity perpendicular to the radial direction as reckoned by
the Schwarzschild bookkeeper. Equations [14] and {15] are
the equations of motion of a light flash in the neighborhood
of a nonspinning black hole, described using bookkeeper
coordinates 7, ¢, and t. Describe the complete orbit of the
light flash by starting with its initial radius r and angle of
motion ¢, advancing far-away time t and computing corre-
sponding changes in r and ¢

Notation: Hereafter we omit the subscript “light” from b,
counting on the equation label [“light”) to remind us that
the impact parameter b is for light.

the shell observer’s radial and tangential components of the velocity of

light by using equations [C] and [D] in Selected Formulas at the end of the

book to convert equations [14] and [15] to shell measures of time and

space increments:

5-8
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(1-24)"

NN

s

Oshell Radial outward
direction

\[1—(1—2%—’,2:1‘”

Figure 3 Light velocity vector and its components as observed by the
shell viewer located at radius r. The shell observer measures the speed of
light to have the standard value unity

o 2172
shell _ [1 _(1 _&4) ”_2] [17. light]
dt ey r/oe
172
,( d¢ ) - (1 _%j b [18. light]
dtgpen r r

Note that the sum of the squares of these components is equal to unity, as
shown in Figure 3.

Speed of light equal to unity is also measured by the free-float orbiting or
plunging observer, safe inside her capsule of flat spacetime, an unpowered
spaceship that orbits the black hole or hurtles radially inward.

5 Forecasting the Trajectory of Light
Give the computer the impact parameter b—and let it crank!

Equations [14] and [15] can be solved for dr and dé¢, respectively, and inte-
grated by computer to yield the trajectory of a light pulse described in
bookkeeper coordinates r, ¢, and ¢. For light coming from a remote source,
the impact parameter b is known directly. In contrast, if the light flash is
launched from a shell we must derive the value of b indirectly. Sample
Problem 1 sets up this procedure.

Will a laser pulse fired from a shell escape from the black hole? Any light
flash has enough energy to escape if it starts outside the event horizon.
However, the pulse may move along a trajectory that crosses the horizon,
in which case it will be captured. Escape or capture? So far we have only
one way to decide: integrate equations [14] and [15]. Another method,
described in Section 6, uses an effective potential to make an instant quali-
tative judgment about the fate of any flash of light.

Section 5 Forecasting the Trajectory of Light

Plot light trajectory with
computer.

Quick analysis of orbits
requires effective potential
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Black hole

outward direction as measured in shell coordinates.

Shell Governor on the spherical shell with reduced circum-
ference r, = 10M fires a laser pulse at angle 8, = 30 degrees
from the radially outward direction as measured in his shell
coordinates. Set up the equations for computing the trajec-
tory of the light pulse.

SOLUTION

We need the value of the impact parameter b The problem
statement does not tell us its value measured at infinity (Fig-
ure 2) Instead, we obtain the value of b by equating the
tangential component of the speed of light (perpendicular
to the radius) from equation [18] to that computed from the
angle 6, in Figure 4 With a shell speed of light equal to
unity, we have

ing_ = _‘*L) =( _w)mz -
Ixsin@ ro(dtsm" 1 s . [19 light]
from which
_ rosing, _ 10M sin30°
: M 172 ~ { M 172
( ’r_oj ( 'W) [20. light]
1OM x 0.500
= T = 5.59M
(0.8)

SAMPLE PROBLEM 1 The Laser Cannon

Figure 4 A flash of light is launched at angle 8, = 30 degrees from the radially

Adapt equations [14] and [15] to compute the orbit step by
step

2 3,2 172
dr = i[(l—z—M) -(1-21’] ”—2] dr [21 light]
r r r
dé = j:%(l _%’)dz [22 light]

r

The plus/minus signs in these two equations result from the
square roots in their derivation In each concrete application,
the initial signs are chosen from the value and orientation of
the launch angle 8, in Figure 4 [See Caution about ambigu-
ities in angle in Sample Problem 3, page 5-20 ]

Equations [21] and [22] apply to light moving under the
influence of a spherically symmetric center of attraction In
order to plot the trajectory for the particular case given in
this sample problem, substitute the value b= 5 59M and
integrate numerically by computer

6 Effective Potential for Light

Orbits of light at a glance!

How to define effective
potential?

Is there some way to set up an effective potential for light in order to visu-
alize its trajectory simply and directly, the way we did in Chapter 4 for

particles with mass? What is an effective potential, anyway? To define an
effective potential for a particle with mass, we earlier made use of the

5-10
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equation for the radial motion (equations [30] and [31], pages 4-15 and

4-16):
(& = (5 (-2 o 2]
- (€2

Equation [23] gives us a recipe for the effective potential. On the left side
of equation is a measure of the radial velocity of the particle. On the right
side is the algebraic difference between two terms: The first term is a con-
stant of the motion, independent of the position of the particle. The second
term depends on the radius.

[23. m > 0]

Try to find a similar equation for the motion of a light flash. The analogous
measure of radial motion of such a pulse is given by equation [14]:

(40 - (1- 22 (1 -2 & [14. light]

r r r

Equation [14] does not meet the requirement that the first term on the right  Shell radial equation leads to
be a constant independent of the radial position of the particle. Therefore ~ ffective potential

this equation as it stands cannot be used to define an effective potential.

However, if we look instead at equation [17], we do see a constant first

term on the right-hand side:

y 2
[ rshel]] _ 1_(1 _ﬂ)b_ [17. light]
dt g

In this equation, the “constant of the motion” is the impact parameter b.
Put b into the first term on the right by dividing both sides of the equation

by b
2 (1 - 214)
1 {4 shen 1 r :
— = — [24. light]
bz[dtshell] b2 2
The left-hand side of this equation is a (rather strange!) measure of the Effective potential for light

radial velocity of the particle. The first term on the right-hand side
depends, through b, on the choice of orbit but not on the Schwarzschild
geometry. The second term on the right depends on the Schwarzschild
geometry but not on the choice of orbit. This second term acts like the
square of an effective potential:

(1-2Y)
(effective potential)2 B r

25. light]
for a light flash 2 [ 8

r
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Only one effective potential
for light of ALL frequencies

Qualitative predictions are
easy, even with strange
measure of radial motion

Different kinds of light
trajectories for different
values of b

Light orbits on a knife edge at
r=3M.
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The expression [25] for effective potential makes no reference to the
energy of the light or its impact parameter b. Therefore it applies to light of
all wavelengths. Only one effective potential is needed to analyze the
motion of all light (including radio waves, radar pulses, and gamma rays)!
A plot of this square of the effective potential is shown in Figure 5.

Using this effective potential we can simply and quickly predict the major
features of light motion around a nonspinning spherically symmetric cen-
ter of attraction.

Equation [24] has one obvious drawback: The left-hand side expresses
radial velocity in shell coordinates (with an extra coefficient 1/ bz), rather
than the accustomed Schwarzschild bookkeeper’s coordinates 7, ¢, and .
The good news is that shell velocity is “real,” the possible result of a local
measurement. The bad news is that shell coordinates are only local coordi-
nates, usable only over a small range of radial coordinates r. Question: Of
what use are local shell measures of velocity? Answer: Equation [24] and
the resulting graphical plots help us to gain a qualitative understanding of
the motion of light even on a global level. They allow us to make state-
ments such as the following: “Initially the light pulse moves to smaller
radius.” “At a particular radius r the radial component of velocity of the
flash goes to zero, so the flash moves tangentially, perpendicular to the
radial direction.”“Finally the light pulse moves to larger radius again.”
Once we have such a qualitative understanding of the motion, we can use
computations based on equations [21] and [22] to assemble a wider-
reaching Schwarzschild bookkeeper’s accounting of the trajectory
expressed in coordinates 7, ¢, and ¢.

Figure 5 shows the square of the effective potential for light. It has a maxi-
mum at r = 3M and a value 1/(27 Mz) at this maximum. Horizontal lines
represent various possible values of 1/b?, where b is the impact parameter.
According to equation [24], if the light beam has a value of 1/b* greater
than the peak of the effective potential (small enough imbgact parameter b),
the light is captured by the black hole. In contrast, if 1/b“ has a value less
than the peak of the effective potential (large enough impact parameter b),
then the inward component of the light velocity goes to zero at the radius
r for which the value of 1/ is equal to the effective potential. In this case
the light subsequently moves outward again and flees the black hole. Fig-
ure 6 presents these results in another form.

Finally, if 1/ b2 is just equal to the peak of the effective potential—in other
words, if b = bgiical = (27)1/2 M = 5.20 M—then the light pulse stops its
radial motion for some time at a coordinate radius r = 3M. But the tangen-
tial motion does not stop; the light moves for a while in a circular orbit.
The light flash may stay at this radius for a fraction of an orbit or for many
orbits, teetering on a knife edge before making a choice: return outward to
a great distance or plunge on into the black hole. Which way it goes may
seem random, because the choice is extremely sensitive to details of the
way the light flash arrived in this orbit—similar to the question of which
way a pencil balanced on its point will fall.
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Figure 5 Computer output Square of the effective potential for light near a black hole. The
same effective potential holds for light of all frequencies. There is no minimum in this potential,
therefore no stable circular orbit for light. Trajectories can be described using the horizontal lines
corresponding to different values of the quantity 1/b2. For a small value of the impact parameter
b {large enough value of 1/b top horizontal line), the light enters the black hole. For a large
value of the impact parameter b (small enough value of 1/b: bottom horizontal line), the
in-falling light reverses its radial component of motion and escapes to infinity. For the critical
impact parameter (bepgicar = 27'2M = 5 20M, line grazing the top of the effective potential) the
light enters a circular knife-edge orbit of radius r = 3M and may orbit the black hole for part of
an orbit or for many turns before it escapes or plunges. Figure 6 shows schematically these three
orbits themselves. (Note' Here we plot the square of the effective potential, whereas in the
figures in Chapter 4 for particles with mass we plotted effective potential itself )

7 Schwarzschild Maps of the Motion of Light

The larger view that no observer observes!

Alight flash moving under the influence of a spherically symmetric center
of attraction of given mass M has an orbit whose size and shape, praise be,
depends on only a single quantity, the impact parameter b.

The trajectory of a light flash near a black hole lends itself to a simple
description using the effective potential. For example, Figure 6 is what we
call a Schwarzschild map of the orbits of light for three sample values of
the impact parameter b. The Schwarzschild map shows three light trajecto-
ries as a function of Schwarzschild bookkeeper coordinates r and ¢. Figure
5 traces the radial motions along three such trajectories using the effective
potential.

From these figures we can derive a qualitative description of the trajectory
of any light pulse, no matter what the value of its impact parameter b. The
more formal—and accurate—Schwarzschild map of the trajectory comes
from integrating equations [14] and [15] themselves.

Section 7 Schwarzschild Maps of the Motion of Light

Size and shape of orbit

depends only on b

Describe orbits with

"Schwarzschild map ”
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Figure 6 Schematic Schwarzschild map of light trajectories around a black hole for the
three values of the impact parameter b shown in Figure 5, page 5-13.

1 Light is captured for b less than the critical value 2712 M

2. For critical impact parameter, light teeters on unstable circular orbit at r = 3M. Eventually
the light will plunge into the black hole—or escape to infinity, as shown

3 For larger impact parameters, the trajectory is deflected but fight is not captured

SAMPLE PROBLEM 2 Escaping Light Flash?

Does the laser pulse described in Sample Problem 1, page 5-10, escape the black hole?
SOLUTION

That pulse had an impact parameter b = 5.59 M. This value is greater than the critical
impact parameter biyca = (27)2 M =5 20 M So that pulse escapes from the black hole

The simplicity and power of the effective potential is witnessed by the brevity of this sample
problem, which is the shortest in the book!

Schwarzschild map does not Figures 5 and 6 do not tell us what we would see if we stood on a spherical
predict what shell observer

shell near a black hole nor what color light we would perceive. Those fig-
sees ures focus on a Schwarzschild map, a plot artificially constructed from the
accounting entries of the Schwarzschild bookkeeper, using coordinates 7,
¢, and ¢. The shell observer does not agree with the Schwarzschild book-
keeper about the direction of motion of these light beams. He does not
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even agree with the bookkeeper on the value of the speed of light! What
we actually see as we stand on a shell is the subject of the following sec-
tion. Here we explore Schwarzschild maps of some additional trajectories
of light as plotted by the far-away bookkeeper.

As a specific example, think of light beams from different directions con-
verging on a point at r-coordinate r = 3M, symbolized by a small open
circle in Figure 7. Beams from a distant star located along the horizontal
line move straight in from the right. Beams coming from stars at the left,
directly behind the black hole, arrive at this point from both above and
below at an angle of 90 degrees to the outward radial direction (radial
component of velocity equal to zero where the 1/b% horizontal line grazes
the top of the effective potential, as shown in Figure 5). Beams from stars
farther forward in angle arrive in directions less than 90 degrees to the
outward radial direction, again from both above and below—and indeed
from all transverse directions obtained by rotating Figure 7 around its hor-
izontal axis.

Figure 7 Schematic Schwarzschild map of trajectories of light that converge on and are
absorbed at a point (small open circle) on the shell at r = 3M.

Section 7 Schwarzschild Maps of the Motion of Light
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direction of motion of flash.
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What about light arriving from angles greater than 90 degrees from the
radially outward direction? One sample light beam is shown leaving the
given point at angle greater than 90 degrees and plunging into the black
hole. No light can come the other way along the same trajectory because
that light would have to come out of the black hole, which light—or any-
thing else—cannot do! Hence a point at r = 3M receives no light from
angles greater than 90 degrees from the outward direction. In Section 9 we
show that the viewer standing on the spherical shell at r = 3M sees the
edge of the black hole in this direction, at 90 degrees from the radially out-
ward direction.

The effective potential for light allows us to predict another effect unique
to general relativity. Figures 5 and 6 show that the r-coordinate

r = 3M is the radius for the knife-edge orbit for a light beam approachmg
the black hole at the critical impact parameter b.;;.o) = (27)1/2 M. But some
light along the wave front from every star approaches the black hole at this
critical impact parameter. Therefore every visible star contributes to a
spherical shell of light circling the black hole at the radius r = 3M, each
beam bound at least temporarily. These beams arrive at that radius from
all sides at an angle of 90 degrees in the Schwarzschild map. In the follow-
ing section we show that the viewer standing on this shell also sees these
beams arriving from opposite directions at angles of +90 degrees from the
straight-outward direction. In other words, a viewer stationed at r = 3M
sees additional images of all the stars in the sky scattered on a narrow
bright ring that extends all around him, transverse to the radially outward
direction. This bright ring forms a “halo” around the image of the black
hole. In Section 11 of this chapter we meet a similar image, called there an
“awesome ring bisecting the sky.”

These results apply to a reception point at r = 3M on the so-called light
sphere. For points on other spherical shells, the black hole will also be sur-
rounded by a halo, but light from given stars will arrive at different angles
than for r = 3M, and the view of the sky can be quite different. For exam-
ple, Figure 8 describes light from a single star arriving from several
directions at a fixed point on the shell, indicated by the small open circle in
the figure. Looking around him, the shell observer sees multiple images of
this single star in different directions.

8 Schwarzschild Map vs. Shell View
Different maps; different directions

The observer on a given shell and the Schwarzschild bookkeeper both
track the path of a light flash between two events, A and B, that lie near
the shell observer. The shell observer tracks this light flash moving past
him at an angle 8¢ with respect to the radially outward direction (Fig-
ure 9). At what angle 6g,,, does the Schwarzschild bookkeeper record the
light beam to be traveling? Because of the way we define the reduced cir-
cumference r (Section 4 of Chapter 2), the two observers agree on the
tangential displacement component rd¢ of motion as the light moves out-
ward. However, they disagree about the radial separation between these
shells.
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Figure 8 Schematic (not computed!) Schwarzschild map
showing the formation of multiple images of a single star.
Light from a single distant star approaches the black hole
along effectively parallel paths (shown here coming from the
upper left) These beams can arrive at a given visual observer
{open circle) along alternative trajectories around the black
hole Of all possible parallel light paths from a given star, four
labeled with circled numbers are selected here for
examination Ray 1 is the most direct path arriving at the
observer A second ray from the distant star follows path 2,
skirting the black hole on the opposite side from the first ray
but closer to the black hole and therefore bent more.
Incoming ray 3 circles the black hole once or many times
clockwise near the radius 3M. Most of the light in this ray
eventually falls into the black hole or escapes outward to
infinity along various trajectories. 8ut some small fraction of
the light in ray 3 escapes along a trajectory that arrives at the

observer. Likewise, incoming ray 4 circles the black hole
counterclockwise and makes a fourth image of the distant
star for the observer. In brief, the shell observer sees multiple
images of the same star in several directions (see Section 8).
Double images of distant galaxies corresponding to paths 1
and 2 in the map above have been observed from Earth. In
each such case the attractive gravitational center between us
and the imaged quasars is believed to be a low-luminosity
galaxy or cluster of galaxies (See the Einstein ring in Figure
14).

The brightness of each of these different star images seen by
the observer depends on the focussing properties of space
near each trajectory Do nearby rays converge or diverge
along each path? Answering such questions is beyond the
scope of this book

The Schwarzschild bookkeeper reckons the angle to be given by the equa-

tion (from Figure 9):
rdd
tanBg py = ==

[26]

The shell observer claims that the radial separation between shells is not
dr but rather drg,e1. So for the shell observer the tangent of the angle is

rd¢

tan© = ——
shell
drgpen

Section 8 Schwarzschild Map vs. Shell View

[27]
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Angles between light
trajectories for bookkeeper
and shell observer

Relation between angles is
general,

Schwarzschild Shell observer
(bookkeeper) map map

Figure 9 Angle of light motion for bookkeeper and shell observer compared Light flash
moves from event A to event B. Each observer measures an angle of travel 8 with respect to
the radially outward direction. They agree that the tangential displacement is rd¢ during this
travel between adjacent shells, However, they disagree on the radial distance between these
shells The radial distance is greater as measured by the shell observer. As a result, the shell
observer measures a smaller angle of motion 8 with respect to the radially outward direction

But we know that the relationship between the two measures of radial dis-

tances is given by equation [D] in Selected Formulas at the end of the
book:

dr
drshell = . 2 M\1/2 [28]
(-F)
Therefore the relation between the two tangents is
M 1/2
tanBg . = (1 - T) tanfg,, [29]

Note that when the viewing angle is 90 degrees for the shell observer, the
Schwarzschild angle is also 90 degrees, since the tangent of 90 degrees is
infinite for both.

In the remainder of this chapter we deal primarily with the shell angle
Oshen Of light propagation. Plotting the results on Schwarzschild maps
such as Figures 7 and 8, however, requires the transformation of angles
given by equation [29].

Note that the derivation of equation [29] does not depend on a light flash
as the traveling object. It could be any material particle moving between
some other events A and B. It could even be a fishing line stretched
between the two points at which these events occur. All these cases lead to
the same result, because a light beam or material particle that skims along
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a fishing line as observed in one reference frame must skim along the same
fishing line as observed in all reference frames. Equation [29] is a general
relationship between Schwarzschild and shell angles. Hence none of the
equations [26] through [29] carries the label [light].

9 Outward View of the Stars
The shell observer finally looks around.

Using the results so far derived, we can now—finally!—stand up, look
around, and view by eye both the black hole (Sample Problem 3) and the
starry heavens around us. In the following we use the words viewer and
spectator to describe the experience of someone who sees—who looks with
his or her eye or takes photographs with a camera. As always, the word
observer implies someone who does not look but rather measures—takes
data on events using the local latticework of rods and clocks or summa-
rizes these data, as does the Schwarzschild bookkeeper.

There is a unique relation between the impact parameter b and the direc-
tion of any light beam seen by a shell viewer located at reduced
circumference 7, as shown in Figure 3 on page 5-9:

do (1 _%)1/29

shell
d Lohell r r

[30. light]

Here, 64p,); is the direction of the light beam observed by a shell viewer
stationed at reduced circumference 7, this angle measured with respect to
the radial outward direction. Equation [30] tells us the direction of any
light beam as viewed from the shell of any radius 7, provided we know the
impact parameter b of the beam. The light can move in either direction
along the path (unless it crosses the horizon).

Figure 11 shows a Schwarzschild map of a sample trajectory and empha-
sizes two angles, ¢ and 854, The angle ¢ indicates the direction in which
the shell viewer would look to see the star if no center of attraction were
present. The angle 8, is the angle at which the light reaches the shell
observer in the presence of the black hole as calculated by the distant
Schwarzschild bookkeeper (not the shell viewer).

The box on page 5-22 displays the derivation of light trajectories that pre-
dicts at what angle 04,q)) the shell spectator will see each star as he looks
outward, compared with the angle ¢ at which he would look to see the star
if the black hole were not present. Figure 13 shows the result of this
numerical integration to find ¢ as a function of 84, for selected values of
the shell radius r,, . Notice that these viewing angles are limited to the out-
ward view of distant stars, star images that the shell viewer will see at
angles less than 90 degrees from the radially outward direction.

Section 9 Qutward View of the Stars

“Viewer" and "spectator”
someone who sees by eye

Star is seen in direction
determined by impact
parameter b.
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A viewer stands on a spherical shell at reduced circumfer-
ence r How much of the sky that he sees surrounding him is
covered by the black hole?

SOLUTION

Start with equation [30] and think first of launching a light
beam outward at shell angle 8¢ (measured from the radi-
ally outward direction) From Figures 5 and 6, we know that
the critical impact parameter is bgtical = (27)"2M for light
that circles the black hole teetering on a knife edge before
either plunging or escaping. So the critical angle for launch-
ing a beam that will barely escape is obtained by
substituting this value of b into [30]

2M .
SOyl critical = ./_7(1—7) - [31. light]

Light launched at less than the critical angle with respect to
the radially outward direction escapes from the black hole
Light launched at greater than the critical angle plunges
into the black hole Reverse these motions to discover what
the shell observer sees The shell viewer sees black when
looking at angles greater than the critical angle of equation
[31] All the stars of the heavens are seen compressed
within a cone of half-angle Bgney critical Figure 10 presents

SAMPLE PROBLEM 3 Shell View of the Black Hole

“pie charts” whose black segments show the range of
angles over which shell viewers at different r-coordinates
see the black hole In three space dimensions each pie-
shaped segment becomes a cone, derived by rotating each
pie chart about the horizontal axis through its center

Caution There is an ambiguity in the application of equa-
tions [30] and [31], because the sine function has a value for
angle 180° - 8 equal to its value for angle @ Look at Figure
10 and think of two extreme cases Case | Very far from the
black hole (very large r), equation [30] gives the sine equal
to zero, implying a critical angle of 180 degrees, where sine
is indeed equal to zero If you are far from the black hole,
you can fire the light flash in any direction—except directly
backward 180 degrees at the black hole—and it will escape
Case I Just outside the horizon the sine approaches zero
again In this case the critical angle is zero There is no
angle—except for a small range outward near zero degrees
—at which you can fire the flash and have it escape Even
this angular spread is pinched off at the horizon The divid-
ing case occurs for r= 3M At this radius, equation [31] telis
us, the sine of the critical angle is unity and the critical angle
90 degrees, as shown in Figure 10 For r > 3M find the value
of @ (with respect to the outward direction) in the range
90° < Bgpgy critical < 180° In contrast, for r < 3M find the
value of Bgnell critical iN the range O < Bgney critical < 90°

2 x 1479 2x67°? 2x45°?
| g |

2M  3M

2 x 1800 2 x 900

2 x 549

anM

Figure 10 “Pie charts” of the view from the shell Each circle symbolizes the panoramic view from a point on
a shell at that r-coordinate Angles listed, such as 2 x 54°, are the span of angles of the black portions, repre-
senting the directions in which the shell viewer sees the black hole—or rather experiences the absence of
light White portions represent the directions into which rays are compressed arriving from all the stars of the
visible heavens. Each pie chart can be made three-dimensional by rotating it about the horizontal axis through
its center We can draw no pie chart for a shell at radius less than 2M, because a shell cannot be built there
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——Light moves in
either direction!

Figure 11 Schematic Schwarzschild map of the trajectory of light
that arrives from a distant star at the location of a viewer at rest on
the shell at radius r,,. (It is an equally valid trajectory of a puise or
laser beam fired outward by this spectator.) The impact parameter b
is determined by the angle ;e (With respect to the radially
outward direction) at which the light beam intersects the shell. On
this Schwarzschild map we use the angle 8sc,, » but equation [29]
shows the relation between this angle and the angle O4n¢y directly
seen by the shell observer Equation [30] then shows the relation
between 6, and the impact parameter b The angle ¢ tells us the
direction in which the shell observer would look to see the distant
star if there were no center of gravitational attraction nearby The
box on page 5-22 contains a full discussion of the angle ¢.

At the upper left of Figure 11 there are two parallel lines. Which of these lines points
toward the star?

from the star as a wave. The star is so far away that the incoming wave is essentially
flat and perpendicular to the parallel lines at the upper left of the figure, before the
wave reaches the black hole Light from one portion of the incoming wave moves
along the straight line—the left one in Figure 11— that plunges radially and unde-
flected toward the center of the black hole. The shell observer shown in the figure
does not see that portion of the incoming wave. Rather, he sees the portion that orig-
inates a distance b away from that straight trajectory, where b is the impact parame-
ter

‘5 Both lines point in the same direction, a direction unique to that star. Think of light

A star that is exactly behind the black hole with respect to any shell viewer  Einstein ring
will send its light equally around all sides of the black hole—by symme-

try! The viewer on a shell near the horizon sees that star as a ring of light

that surrounds the image of the black hole. This image is called an

Einstein ring (see Figure 14, page 5-25). More generally, the black hole acts

like a very bad lens, even producing multiple images of background stars.

See Project D, Einstein Rings. (Continued on page 5-24.)

Section 9 Outward View of the Stars
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Looking Outward at the Stars

b ar

Figure 12 Small segment of trajectory of light flash emit-
ted by the shell spectator, in Schwarzschild coordinates.

In what direction do we ook to see a star when we stand
on a shell centered on a black hole? How does that star
direction compare with the direction in which we would see
the star if no black hole were present? In this box we find
how to calculate answers to these questions

As long as light does not cross the horizon, it can move in
either direction along its predicted trajectory. To simplify the
following analysis, we assume that the shell viewer shines a
laser beam outward, a narrow beam that ends up traveling
along a line directed exactly toward a star (Figure 11). Then
the launch direction of the beam will be the direction in
which the shell occupant sees the star when light moves in
the reverse direction, from star to observer.

fFor outward motion in the positive ¢ direction, equations
[14] and [15], rewritten, read

2q1/2
dr (. M 2M\b° .
- (1 2 )[1—(1- A )ﬁ} (32. light]
do _ ( _ZA")Q '
- (1-205 33. light]

r

Eliminate dt by dividing corresponding sides of [33] by those
of [32] and multiplying the result through by dr:

(b/rz)dr
21172
2M\b
-]

Equation [34] tells us how much the direction of view ¢
changes for a radial change dr of the laser-beam trajectory
(Figure 12). We sum (integrate) these changes from the shell
observer's radius r, to infinite radius in order to find the final

do = [34 light]

direction ¢ in which the laser beam moves From Figure 3,
page 5-9, we see that the denominator of this expression is
equal to cos B, Which goes to zero at 8, = 90 degrees
Therefore we expect trouble in this particular computation
when the observer looks tangentially, 90 degrees from radi-
ally outward. That is why we limit our analysis in this section
to the outward view—viewing at angles less than 90
degrees from the radially outward direction.

To prepare for computation, simplify equation [34] by mak-
ing the substitution u = M/r Then

M
- —id’ = du
r

[35 light]

so the numerator on the right side of equation [34]
becomes

(b/r%)dr =  (b/M)du 136 light]
With this substitution, equation [34] can be written

do = [37 light]

The limits of integration are from v = M/r, to u =0 To carry
out this integration, we need the value of b, the impact
parameter Apply equation [30] to the radius r, of the shell
occupied by the viewer

1/2
SinB, gheny = [1 -2%4) ;b- [38 light]
o o
Then solve for b/M
r -1/2
1% -2 [I_Zrﬂ) $in8, e [39 light]

L4

The calculation goes as follows: Start with an angle of
observation 8, s for a viewer on a shell at radius r, Use
equation [39] to find the corresponding value of b/M Sub-
stitute b/M into equation [37] and carry out a numerical
integration to find the total angle ¢ between the shell spec-
tator’s radially outward direction and the “true” direction of
the distant star. The angle ¢ tells the direction in which the
spectator would see the star if there were no center of
attraction under him. Figure 13 shows the result of this
numerical integration for selected shell radii r,,

5-22
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Figure 13 Computer plot of the direction ¢ to a distant star (vertical scale) as a function of the viewing
angle 8 = 8, sney (horizontal scale) at which a spectator sees the star when perched on a shell at radius r,,
See Figures 10 and 11. Both angles are measured from the radially outward direction. Example (dashed
lines): You stand on the shell at r, = 3M and see a star at 65 degrees from the radially outward direction
(dot on horizontal axis) If there were no center of gravitational attraction behind you, this star would
appear at 132 degrees from the radially outward direction (dot on vertical axis}—a bit behind you. For
each value of r,,, the graph also shows the angle at which the edge of the black hole appears to this shell

viewer.

Section 9 Qutward View of the Stars
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Light' blue shift

Inward star view?

View of nearby objects?
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In addition to changing direction, light from a distant star also changes
energy as seen by a shell inhabitant. Energy of starlight is upshifted (the
so-called gravitational blue shift) as seen by the shell spectator. The for-
mula for this energy change is equation [27], page 3-17.

Any astronomical body can act as a distorting lens, as Einstein himself rec-
ognized. However, Einstein doubted that we would ever see such an
image, because it requires that the imaged star and the “lens star” line up
almost perfectly. This alignment can be less perfect if both the distant
object and the imaging object are galaxies. Figure 14 shows such an image,
an Einstein ring, created by radio waves rather than light. The “ring” is
actually the distorted image of a distant galaxy focused by an intermediate
galaxy lying on a line between the imaged galaxy and our observation
point, Earth. Figure 14 is the first Einstein ring ever observed; since then
we have seen a number of them (and a large number of ring segments) at
various wavelengths of electromagnetic radiation. For more on this sub-
ject see Project D, Einstein Rings.

10 Continuing Questions
So many questions, so little time!

This chapter presents the basic description of the motion of light in
Schwarzschild spacetime and equations for predicting this motion. Fur-
ther predictions are worked out in the exercises and in the following
projects. Here are a few of the endless number of possible questions about
the motion of light—and commentary on their answers.

What does the star field look like when the shell spectator looks inward,
toward the black hole? Section 9 describes the outward view of stars seen
from a shell—stars that the shell spectator sees at angles less than 90
degrees from the radially outward direction. One can also ask for a
description of the star field viewed inward, toward the black hole. The
edge of the black disk appears at the so-called critical angle, given by
equation [31] and shown in Figure 10. But trajectories of starlight are more
difficult to calculate for the inward view. In addition to these images are
those that result from trajectories that wrap once or many times around
the black hole before reaching the viewer. (Recall paths 3 and 4 shown in
Figure 8.) These trajectories traverse regions of great curvature so that the
light may be focused or dispersed along the path. To predict the perceived
intensity of star images for these wrapped paths, one must know the path
of a pencil-thin beam and how curved spacetime focuses or disperses this
nearly parallel beam. Detailed prediction about wrapped paths is too tech-
nical for treatment here. See the references.

Where do we look to see nearby objects? Our outgoing laser beam finally
heads toward a star—or we see the star by light that arrives in our vicinity
from the same direction (Figure 11). For this view of distant stars, the shell
viewing angle at which we see the star is locked uniquely to the direction
toward that star in flat spacetime distant from the black hole, as embodied
in Figure 13. (Technically the integration in the box on page 5-22 is
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Figure 14 The first Elnsteln Ring ever observed. It is the image of a distant
radio galaxy detected not with visible light but rather at two different
microwave frequendcies at the Very Large Array (VILA) radio telescope in Socorro,
New Mexico. The distorted view of the galaxy with a “hole in the middle” is due
to microwaves deflected around all sides of a foreground galaxy located
between the imaged radio galaxy and observers on Earth. The foreground
lensing galaxy is a more ordinary galaxy that does not emit appreciably at radio
fraquenaies. Though this foreground galaxy can be seen clearly in optical
images as visible light, it is invisible to the VLA. Observations made at two
ricrowave frequencies: 15 gigahertz = 15 x 10° cycles per second (upper
image) and 5 gigahertz = § x 10° cycles per second (lower image). Data
obtained using an array of 27 radio-telescope dishes focated afong the three
legs of 3 ¥, each leg approximately 20 kilometers long (For credits, see the end
of the chapter)

Section 10 Continuing Questions
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Orbiter view?

View from inside the
horizon?
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carried all the way to r —> co.) The situation is quite different when we
view an object lying on a nearby shell. Then the angle at which we see the
object depends not only on the angle at which we would look to see it in
the absence of the black hole but also on the r-value of the shell on which it
lies. (Technically the integration in the box on page 5-22 would be carried
out only to the r-value of the object at which we are looking.) In effect, we
have to compute the trajectory from each such object separately in order to
predict in what direction we must look to see it.

In what directions does the orbiting or plunging spectator see images of
distant stars? How does the sky look if we orbit near a black hole or
plunge radially toward its center? This question is fairly easy to answer
for motion outside the hotizon, provided one already knows the direction
and frequency of light seen by occupants of the shell past which we are
currently passing. The transformations of special relativity relate the shell
observations to those of an observer moving past or through the shell.
These transformations describe the Doppler shift (the change in fre-
quency of light seen by a moving observer) and aberration (the alteration
in direction of motion of light seen by that observer). Suppose we measure
angles of observation with respect to the line of motion of the orbiter in the
shell frame. Let o)) be the direction with respect to that forward line of
motion in which the shell spectator looks to see some object and Eg,)) be
the shell-measured energy of a light flash. Then the orbiter passing close to
the shell observer at speed v e sees the object in a direction Wy ppier With
respect to this forward direction and observes the light pulse to have
energy Eqpiter given by the equations

COSWshell + Ugpery

L= 40. light
€O Worbiter = T3 Vshetl €08 Wsheil [40. light]
E . (1+v, ncosy, )
shell shell shell .
E_iiter = > 172 [41. light]
(1~ Vgpen)

(These equations derive from those in exercise 8-19 on page 263 of Space-
time Physics, Second Edition, taking into account the fact that the observer
looks in a direction 180 degrees opposite to the direction in which the light
moves. The result is to replace all cosines in the original equations by
minus cosines, leading to equations [40] and [41].)

What does the sky look like to a spectator who is inside the horizon?
Here we are in new territory, where our analysis that depends on shell
observations is useless. Inside the horizon, radially inward motion is inev-
itable and no stationary shell exists. Yet light from the stars also passes
inward through the horizon and, in fact, can be seen by plungers headed
toward the center. Some of the background needed to analyze the motion
of light inside the horizon is given in the earlier Project B, Inside the Black
Hole, along with formulas for the final view as the plunger reaches the
crunch-point at the center of the black hole.
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Baked on the Shell?

As you stand on a spherical shell close to the horizon of a
black hole, you will be crushed by an unsupportable local
gravitational acceleration directed downward toward the
center If that is not enough, you will also be enveloped by an
electromagnetic radiation field William G. Unruh used quan-
tum field theory to show that the temperature T of this
radiation field in degrees Kelvin is given by the equation

T - thOﬂV [42]
2
An kgc

Here gcony IS the local acceleration of gravity in the conven-
tional units meters/second?, h is Planck’s constant, ¢ is the
velocity of light (values inside the back cover), and kg is the
so-called Boltzmann’s constant, which has the value
1381x10723 kilogram-meterszl(second2 degree Kelvin). The
quantity kg7 has the unit joules and gives an average value
for the thermal energy this field can provide to local pro-
cesses (The same radiation field surrounds you when you
accelerate at the rate geony in flat spacetime)

In Exercise 9 of Chapter 3, you derived an expression for the
local gravitational acceleration on a shell at radius r This
acceleration was expressed in the geometric unit meter™

Sconv M 1
8shell = = [43]
shel Cz r2 [I_MJI/Z
r
Substitute gony from {43] into [42] to obtain
T = he M 1 [44]

4Tt2kB ’_2 [[ ~ 2_,',’)]/2
r

where M is in meters Oddly, this temperature increases with-
out limit as you approach the horizon at r = 2M. Therefore
one would expect the radiation field near the horizon to
shine brighter than any star when viewed by a distant

observer Why doesn’t this happen? In a muted way it does
happen Remember that radiation is gravitationally red-
shifted as it moves away from any center of gravitational
attraction From equation [C] in Selected Formulas at the end
of this book we can show that every frequency is red-shifted
by the factor (1 - 2M/)'"2, which cancels the corresponding
factorin [44] Let r—> 2M in the resulting equation The dis-
tant viewer sees the radiation temperature

Ty = —ae [45]
167" kM

where M is in meters The temperature T is called the
Hawking temperature and characterizes the Hawking radi-
ation from a black hole, described in the box on page 2-4
Notice that this temperature increases as the mass M of the
black hole decreases For a black hole whose mass is a few
times that of our Sun, this temperature is extremely low, so
from a distance such a black hole really looks aimost black
See exercise 10

The radiation field described by equations [42] through [44),
although perfectly normal, leads to strange conclusions Per-
haps the strangest of all is that this radiation field is entirely
undetected by a free-float plunging observer who passes the
shell at radius r The plunging traveler observes no such radi-
ation field, while for the shell observer at the same radius the
radiation is a surrounding presence This apparent paradox
cannot be resolved using the classical theory developed in
this book, it requires quantum field theory See the
references

How serious is the danger of being baked on a shell near the
horizon of a black hole? In answer, compute the local accel-
eration of gravity for a shell on which the radiation field
reaches a temperature equal to the freezing point of water,
273 degrees Kelvin From equation {42] you can show that
Geony = 6 7 x 1022 metersfsecond?, or almost 1022 times the
acceleration of gravity on Earth's surface Evidently we will be
crushed by gravity long before we are baked by radiation!

11 The Plunging View

Floating to the center

At the end of our chapters on the world of space and time, momentum Super cinema double feature

and energy, planets and black holes, we celebrate with a final parade of an
all-star cast. Let’s follow Richard Matzner, Tony Rothman, and Bill Unruh
looking at the starry heavens as we free float straight down into a black
hole so massive, so large, that even after crossing the horizon at the
Schwarzschild radius we have four hours of existence ahead of us—the
time of a super cinema double feature—to behold the whole marvelous
ever-changing spectacle. Almost everything we have learned about rela-
tivity—both special and general—contributes to our appreciation of this
mighty panorama. Section 9 of Project B previews some of these results.
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Plunging
observer

=454

r=216M

Shell
observer

r=1004/ A
F

EDC

“ring around the sky”

Figure 15 Schematic drawing: View of black hole and stars
seen by radial plunger and shell observer The right column
gives pie-chart views of the black hole from shells through
which the traveler plunges. (See Figure 10 and equation [31].)
Black sectors represent the angle spanned by the black hole as
it is viewed at various distances from the hole. These radial
distances are given in the center column. The left column gives
the corresponding pie-chart view for the radially inward-plung-
ing traveler (Apply equation [40] to the critical angles for the
shell viewer given in equation [31].) Letters A through F
represent directions of stars evenly spaced around the sky for a
viewer remote from the black hole. At r = 100 M, only a small
section of the sky is dark, and only the stars whose directions
lie nearest to that of the black hole show disturbed positions.
At a stationary position just outside the horizon, the shell
viewer sees most of the sky black. The star images are
squeezed around behind him because of the bending of light
around the black hole In contrast, the plunging viewer passes
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r=M

(No possible
shell observer)

through this shell at almost the speed of light. To her, only a
90-degree segment in front of her is dark and the stars are
sweeping around in the sky toward the hole. Even inside the
horizon, at r = M, the black hole fills less than half the sky for
the plunging viewer Notice that star positions are in general
displaced forward more for the moving viewer than for the
stationary spectator, showing that the changes in apparent star
positions arise mainly from the aberration effect, due to the
speed of the observer (equation [40]) In the final seconds of
her journey the sky behind the plunging traveler is black, nearly
empty of stars, and the sky ahead is black because of the black
hole. Cleaving the forward half of the firmament from the
backward half is a bright ring around the sky This figure does
not show secondary and higher-order star images from light
that wraps once or many times around the black hole. (This
figure is based on the work of M. Sikora, courtesy of M.
Abramowicz.)
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The Final Plunge

—Adapted from Matzner, Rothman, and Unruh

With this background, let us now imagine a free-float journey into a
billion-solar-mass black hole (M = 10° Mgy, = 1.5 x 10 kilometers =

1.6 x 107 light-years = about ten times the radius of Earth’s orbit around
Sun). The horizon radius of this hole—double the above figure—is about
the size of our solar system. We begin our journey at one-tenth the velocity
of light at a distance of r = 20 000 M from the center of the black hole. We
record each stage in the journey by giving both our wristwatch time
remaining before we finally reach the singularity and our radius .

The beginning of the journey, 30 years before the end. At this point, the black
hole is rather unimpressive. There is a small region (about 1 degree
across—i.e., twice the size of Moon as seen from Earth) in which the star
patterns look slightly distorted and within it a disk of total blackout. Care-
ful examination of the stars shows that a few of those nearest the rim of
the blacked-out region have second images on the opposite side of the rim.
Had these images not been pointed out to us, we probably would have
missed the black hole entirely.

Ten days before the end, at r = 32 M. The image has grown immensely. There
is now a pure dark patch ahead with a radius of about 10 degrees (approx-
imately the size of a dinner plate held up at arm’s length). The original star
images that lay near the direction of the black hole have been pushed
away from their original positions by about 15 degrees. Further, between
the dark patch itself and these images lies a band of second images of each
of these stars. Looking near the darkness with the aid of a telescope, we
can even see faint second images of stars that actually lie behind us! This
light has looped once around the black hole on its way to our eye.

Four hours before the end. We are now at the horizon, and thus our shell
speed is near that of light. Aberration effects are now extremely important.
Anything we see from this moment on will be a secret taken to our grave,
because we can no longer send any information out to our surviving col-
leagues. Although we are now “inside” the black hole, not all of the sky in
front of us appears entirely dark. Because of our high speed, aberration
causes light rays to arrive at our eyes at extreme angles. In fact, only the
patch immediately in front of us is fully black, subtending an angle of 90
degrees—a substantial fraction of the forward sky.

Behind us we see the stars grow dim and spread out, moving around for-
ward to meet the advancing edge of the black hole. This apparent star
motion is again an aberration effect (Figure 15). But there is a more notice-
able feature of the sky: We can now see second images of all the stars in the
sky surrounding the black hole. These images are squeezed into a band
about 5 degrees wide around the image of the black hole. These second
images are now brighter than were the original stars because of the blue-
shifting of light falling into the hole. Surrounding the ring of second
images are the still brighter first images. The rings encircle our direction of
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4 minutes

Final seconds

Ring bisecting the sky

5-30

motion as the Arctic Circle surrounds the south-to-north axis of the Earth.
The band of light caused by both the primary and secondary images now
shines with a brightness ten times that of Earth’s normal night sky.

Four minutes before oblivion; r = M/7 yet to cover. The black hole now sub-
tends an angle of 150 degrees—almost the entire forward sky. Behind us
stars are dimming and rushing forward. Only 20 percent of the stars are
left in the sky behind us. In a 10-degree-wide band surrounding the outer
edges of the black hole, not only second but also third and some fourth
images are now visible. This band running around the sky now glows
1000 times brighter than the night sky viewed from Earth.

The final seconds. The sky everywhere except in that rapidly thinning band
is dark. The luminous band—glowing ever brighter—runs completely
around the sky perpendicular to our direction of motion. At 3 seconds
before oblivion it shines brighter than Earth’s Moon. New stars rapidly
appear along the inner edge of the shrinking band as higher- and higher-
order images become visible from light wrapped many times around the
black hole. The stars of the universe seem to brighten and multiply as they
are compressed into a thinner and thinner ring transverse to our direction
of motion.

Only in the last tenth of a second do the tidal forces become strong enough
to end our journey and our view of that awesome ring bisecting the sky.

12 Summary

A light flash moves along a null geodesic, a locally straight worldline
with zero proper time between any two events on this worldline (Figure
1). The same is true near a black hole. Every shell observer and every local
free-float observer measures the speed of light to have the standard value
unity. In contrast, the records of the Schwarzschild bookkeeper show light
to move at a calculated speed less than unity near a black hole, with differ-
ent radial and tangential speeds.

% = i(l - 2%4) [3. light, radial motion]
172
r%? = ;t(l - %’lj [4. light, tangential motion]

Near the horizon, the value of both components goes to zero. The reduced
speed of light has been verified by Shapiro and his colleagues for radio
waves passing close to Sun. (See Project E, Light Slowed Near Sun.)

A single constant of the motion, the impact parameter b, characterizes the
trajectory of light around a center of gravitational attraction. For light that
starts from a great distance, the value of this impact parameter is the per-
pendicular distance between the initial path of the light and the parallel
path of a test particle that plunges radially straight into the black hole
(Figure 2, page 5-6). For light that starts nearer to the black hole, the value
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of b must be derived from the tangential component of light velocity as
measured by a local shell observer (Sample Problem 1, page 5-10).

A qualitative description of the motion of light derives easily from a plot
of the constant quantity 1/b% on the same graph as the effective potential
for the motion of light (Figure 5, page 5-13).

|_2M
(effective potential)2 B r

2
r

[25. light]

for a photon

A light beam with the critical impact parameter b_isico = (27)/2 M can cir-
cle in an unstable knife-edge circular orbit at r = 3M, the location of the
peak of the effective potential. Light with impact parameter greater than
the critical value reaches a minimum radius and then flees to infinite dis-
tance. Light with impact parameter smaller than the critical value plunges
into the black hole. Experiment verifies the deflection of starlight by Sun
(Project D, Einstein Rings).

The Schwarzschild map gives an overview of the orbit of light by plotting
it in bookkeeper coordinates r and ¢. No single observer measures this tra-
jectory directly, but from this plot we can derive predictions about the
visual panorama seen by a shell observer (Sections 8 and 9) and an
observer in a free-float orbit (Section 10).
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Chapter 5 Exercises

Note: With the background of Chapters 4 and 5,
you may want to go back and examine Sections
8 through 10 of Project B, Inside the Black Hole.

THOUGHT/RESEARCH QUESTIONS

Thought/research questions are open-ended queries
that may or may not have answers and can or cannot
be answered qualitatively after thought. Research
occurs when qualitative answers are followed by
derivation of formulas and numbers, so the answers
could, in principle, be tested by experiment. A typi-
cal strategy for thought/research questions is to
replace a complicated question about a real situation
with a simple question about an idealized situation.
With luck and hard work, the simplified answer then
leads back step by step to a more realistic analysis.

1. View from the Light Sphere

You stand on a shell at r = 3M, on what is called the
light sphere. You look in the tangential direction, that
is, perpendicular to the radial direction. What do you
see? Do you see the back of your own head? What do
you see when you turn your head right and left,
scanning many tangential directions? Do you see
stars? If so, which stars? What do you see if you look
inward from the tangential direction? outward from
the tangential direction?

2. Shadow of a Black Hole?

According to legend, a vampire can be recognized by
the fact that he (or she!) has no reflection in a mirror
and casts no shadow. Does a black hole cast a
shadow? Does a black hole cast a shadow at some
distances but not at others? What set of experiments
might answer these questions? What results do you
predict for these experiments?

3. Measuring Your Distance from a Black
Hole

You are the pilot of a spaceship approaching or cruis-
ing near a black hole. You would like to know how
close you are to it. What experiment can you do to
find out? Assume that the mass M of the black hole is
known. Can you use laser or radar signals or the
view of the stars to tell you what your reduced cir-

Exercise 1. View from the Light Sphere

cumference r is with respect to the black hole? Do
you need the presence of other spaceships, at rest or
in orbit, in order determine your distance?

4. Crossing the Horizon

Pete Brown disagrees with the statement in an earlier
chapter, “No special event occurs as we fall through
the Schwarzschild horizon” (page 3-19). He says,
“Suppose you go feet first through the horizon. Since
your feet hit the horizon before your eyes, then your
feet should disappear for a short time. When your
eyes pass across the horizon, you can then see what
is inside, including your feet. So tie your sneakers
tightly or you will lose them in the dark!” Is Pete
right? Suppose another spaceship free floats ahead of
you across the horizon. Will you lose sight of the
leading spaceship after it crosses the horizon but
before you do?

EXERCISES

5. Effective Potential for Light

Start with expression [25], page 5-11, for the square
of the effective potential for light:

= — [25]
r

photon 4

{cffcctivc}2 1-2M
potential

Take the derivative of this function with respect to r
and determine the value of r for which the effective
potential is a maximum. (The maximum of a squared
function occurs at the same r-value as the maximum
of a positive function itself.) Determine also the
value of the effective potential at this maximum.
Compare your results with those quoted in the text.
Optional: Take the second derivative of the expres-
sion for squared effective potential. From the sign of
this second derivative at the position of the zero for
the first derivative, verify that the effective potential
has a maximum value at this position.

6. Firing a Laser Pulse Outward

The shell commander on the shell at r-coordinate r
fires a laser pulse of energy Egpep radially outward.
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A. What will be the energy of the laser pulse
when it reaches a great distance? Answer this
question using the following outline or some
other method. (Do not assume the answer that
is asserted for equation [27], page 3-17.)

Redder color, lower frequency, smaller quantum
energy characterizes the pulse received by the
remote observer compared with the pulse launched
by the shell observer at radius r. The amount of this
gravitational red shift can be spelled out from the
equation that connects the quantum description of a
photon with the classical description of light as a
wave of frequency f and period T:

ized classical
iz
quan Planck’s frequency fof
energyE | = ( )x ] [46]
constant h corresponding
of photon
wave
C W = 1 =k
E=HW= h(time for one cycle) T [47]

Call Typep the period of the light as measured by a
shell observer and Egpq the corresponding photon
energy. And let the corresponding symbols E and Tg,,
refer to measurements by an observer far from the
black hole. We know that equation [C] in the Selected
Formulas at the back of the book relates the period of
light Ty measured by the shell observer to the
period Ty, measured by the remote observer:

ap\172
Tshell = (l - T) Tfar [D]

From these equations, show that

2M 1/2
E= (1 “T] E hent [48]

This equation applies to anything moving near a
black hole, one more example of the general equation
[27], page 3-17.

B. Suppose the laser pulse is shot not straight out
but at some angle to the outward direction.
Nevertheless, it escapes from the black hole
and arrives at the distant observer. Will equa-
tion [48] of part A still describe the energy E of
this pulse as measured by the distant
observer?
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C. Instead of moving outward, the laser pulse is
fired radially inward so that it crosses the hori-
zon. By how much, AM, does the black hole
increase in mass?

Note: We rarely use the word photon in this book,
because the photon is a quantum object with strange
properties. Typically, to detect a photon is to deflect
or destroy it, so that in a deep sense the trajectory of
a photon is unobservable. General relativity is a clas-
sical (nonquantum) theory, so we usually talk about
classical light beams or classical light flashes.

7. The Horizon as a One-Way Barrier

A light flash is launched from the shell at r-coordi-
nate ry. Its energy at launch is E(r7)ghe)) as measured
by observers on the launching shell. Now the flash
moves radially inward or outward and is received at
a shell of different reduced circumference r,.

A. What energy E(r7)spe does the light flash have
as measured by the observers on the shell at
r»? Hint: Run equation [48] backward and for-
ward, assuming constant energy E measured

at infinity.

B. Take the limit of your expression derived in
part A as r; —> 2M to show that a light flash
launched from the horizon cannot be detected
at an r-coordinate even 1 millimeter above the
horizon. This outcome illustrates the general-
relativity result that nothing, not even light,
can cross the horizon in an outward direction.
The Newtonian analysis, in contrast, predicts
that a particle moving outward from ry = 2M
with speed ¢ can just make it to an infinite dis-
tance, and a particle launched from r; = 2M
with speed less than ¢ nevertheless climbs to
some maximum radius before falling back.
(The speed of light c is not a natural speed
limit in the Newtonian analysis.) These predic-
tions of the Newtonian analysis are incorrect.

C. Now assume that the light flash is launched
inward from r-coordinate ry just outside the
horizon. What is the shell-measured energy of
this light flash as it crosses the horizon? Does
this result make sense to you?

CHAPTER 5 Seeing



8. Energy Production by a Quasar?

Note: Some results of exercises in Chapter 4, as indi-
cated, are used in solving the following exercise.

A quasar (contraction of the name quasi-stellar object)
is an astronomical object that pours out a prodigious
amount of energy. Because they are so bright, qua-
sars are the most distant visible objects, some of them
as much as 14 x 10’ light-years distant. A single
bright quasar can give off energy at a rate greater
than that of all the stars in our galaxy, though most
quasars emit energy at a more modest rate than that.
What is the source of this energy? We do not know.
The energy emission rate can sometimes change sig-
nificantly in a short time, implying that the emitting
structure is small. (Otherwise the limiting speed of
light would prevent different parts of the structure
from “cooperating” to change the emission rate.) Evi-
dence is accumulating that the energy comes from
stars torn apart and spiraling into a black hole, mate-
rial that is heated to extreme temperatures in the
process and emits radiation copiously prior to disap-
pearing across the horizon of the black hole. In
essence, some fraction of the energy at infinity of the
in-falling material is converted into light.

Most theories of quasar energy production assume
that the black hole involved is rotating rapidly. The
rotating black hole is the subject of Project F, The
Spinning Black Hole. Here we analyze a simpler (and
less realistic) model of energy production around a
nonrotating black hole.

To show the order of magnitude of gravitational
energy that is available, consider the following sim-
plified encounter: A stone of mass m is in the stable
orbit of smallest possible radius around a black hole.
A second stone of equal mass m, initially at rest at a
great distance, plunges radially toward the black
hole and collides with the stone in the circular orbit.
Assume that the entire kinetic energy of the pair, as
observed by a local shell observer, is converted into
light that travels outward. (Do not worry about con-
servation of momentum for the shell observer.)

A. What is the total kinetic energy of the two
stones measured by the shell observer?
Assume that all of this kinetic energy is con-
verted into a light flash directed radially
outward.

B. What is the total energy of the resulting light
flash received by a remote observer?

Exercise 8. Energy Production by a Quasar?

C. What fraction of the total rest energy m + m =
2m has been turned into light at infinity? Com-
pare this with an energy-conversion fraction of
0.1% or less for nuclear reactions on Earth.

9. Plunger Wink-Out Time

You are stationed a great distance from a black hole.
Abeacon moves directly away from you, plunging
radially into a black hole of mass M as the beacon
emits radially outward a light signal of constant
proper frequency f, as observed in its own free-float
frame. How long does it take for this beacon to “go
black” or “wink out” as far as you, the distant
observer, are concerned?

This exercise is a mini project. You may stop reading
at this point and answer the question posed in the
preceding paragraph, interpreting as you go what
the question might mean. Or you may read on to
receive a skeletal structure for answering the ques-
tion according to one of several possible
interpretations.

What does it mean for a plunging beacon to “go
black” or “wink out” for a distant observer? One
interpretation is that as the beacon moves inward
emitting a proper frequency f,, , the signal received
by the distant clock drops from a frequency equal to
0.9 f, to a frequency 0.1 £, . We adopt this interpreta-
tion in what follows and ask how long is the far-
away time between the reception of these two fre-
quency-shifted signals.

What is the relation between the proper frequency f,
of the signal emitted by the descending beacon and
the frequency fg,, of the signal received by the distant
observer? We answer this question in two steps:

(1) What is the relation between the frequency fshen
observed by the shell observer at radius r and the fre-
quency fr,, observed by the far-away bookkeeper?
(2) What is the relation between the proper frequency
f, of the falling beacon and the frequency fpe of that
beacon detected by the shell observer at radius r?

A. A shell observer detects a signal of frequency
fsnent received from the descending beacon and
rebroadcasts the signal (or simply lets it pass)
to the remote bookkeeper, who receives it as
frequency fg,, . What is the relation between
finen and fz,, 7 Start with the equation for a
wave f = 1/T, where T is the period of the
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wave. Use equation [C] in Selected Formulas
at the back of the book to show that

f far
fsnen =
(

o) [‘”}

r

What frequency fp,e) does the shell observer detect
for the signal broadcast with proper frequency f,
from the passing beacon? Here we must take into
account the Doppler shift of the beacon just after it
has passed the shell observer but is still effectively at
the shell radius r. The shell observer looks down
(radially inward) and receives the Doppler-shifted
signal from the beacon according to the special rela-
tivity result (Taylor and Wheeler, Spacetime Physics,
page 114)

172
fooo 1 = Vgpen f (501
shell 1+ vshell o

We have not yet determined how fast the beacon is
moving when it passes the shell observer. Assume
that it falls from rest at a great distance from the
black hole. Then the square of the speed measured
by the shell observer comes from equation [24], page
3-15:

2
¥ shell = 2TM [51]

B. Substitute [51] into [49] and equate the expres-
sions for f},) in the modified equation [49]
with the same expression in equation [50].
Show that, for the conditions we have
assumed,

S far 2M\1/2

C. Find the radius r; the beacon is passing when it
emits a signal whose frequency is observed to
be fiar = 0.9 f, when received by the distant
observer. Our answer is r; = 200M. Is our
answer correct? If not, find the correct answer
to three significant digits.

D. Find the radius r; the beacon is passing when
it emits a signal whose frequency is observed
to be f;,, = 0.1 f, when received by the distant
observer. Our answer is that r, has a value a
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little greater than 2M; find the answer to three
significant digits.

Now we know the two radii r; and r, at which the
beacon emits signals that are measured by the far-
away observer to have frequencies 0.9f, and 0.1f,,
respectively. Next we need to determine how long a
time the far-away observer has to wait between the
reception of these two signals. This will be the
“wink-out time” for the beacon. This wink-out time
is made up of two parts: (1) the far-away time that it
takes for the beacon to fall from r; to r; and (2) the
far-away time it takes for the light to climb back up
from r; to r; . Note: We do not need to take into
account the time it takes light to climb from the outer
radius r; to the position of the far-away observer.
Whatever value this time has, it is the same time for
the initial flash from r as for the second flash that
passes ry on its way from the inner radius r, We
want to know the time difference for the distant
observer between the arrival of these two flashes.

E. Find the time determined by the far-away
observer for the beacon to fall from r; tor,,
these two radii defined in parts C and D. Start
with equation [21], page 3-13:

Lo (2R w

The integration of dt to find the far-away time
lapse is not an easy one. You will have your
own favorite procedure. We made the substi-
tution z = r/(2M) followed by the substitution
u? = z. The result is

- 4Mu4du

l—u2

dt {54]

Our table of indefinite integrals contains the

formula
4 3
.[“d“2=—“?-u+%1n“+1 [55]
1 —u u-1

From this analysis, find an expression for the
time for the beacon to fall from r; to r, given
by the results of parts C and D. Our result to
two significant digits is 1400M; find the result
to at least three significant digits.
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E. Find the value of the far-away time required for H. What is the wink-out time Aty,, for a beacon

the light from the beacon at r; to rise to the descending into a black hole of mass M equal
higher radius r, . Start with the positive solu- to ten times that of Sun? Express your answer
tion to equation [3], page 5-3: in seconds.
dr 2M
7 -1 [56]  10. Temperature of a Black Hole
o o . o A. Use equation [45] to find the temperature,
This integration is much easier, though it still when viewed from a great distance, of a black
requires a table of integrals. Our result for the hole of mass five times the mass of Sun.
tume for light to climb from r; to ry is, to one
s¥gm.f?cant d%gft' 200M; find the result to three B. What is the mass of a black hole whose temper-
significant digits. ature, viewed from a great distance, is 1800
. . degrees Kelvin (the melting temperature of
G. Find an expression for the elapsed far-away iron)? Express your answer as a fraction or
time Atg,, between the arrival of the signal multiple of the mass of Earth,
shifted to 0.9 f, and the arrival of the signal
shifted to 0.1f, .
5-37
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e Why does light change direction as it passes our Sun?

* What causes Einstein rings? How can [ see them?

* How can we observe dark objects in our galaxy?

e What accounts for the weirdly distorted image on the cover of this book?



Project D
Einstein Rings

Einstein was discussing some problems with me in his study when he
suddenly interrupted his explanation and handed me a cable from the
windowsill with the words, “This may interest you.” It was the news from
Eddington confirming the deviation of light rays near the sun that had
been observed during the eclipse. I exclaimed enthusiastically, “How
wonderful, this is almost what you calculated.” He was quite unperturbed.
“I knew that the theory was correct. Did you doubt it?” When I said, “Of
course not, but what would you have said if there had not been such a
confirmation?” he retorted, “Then I would have to be sorry for dear God.
The theory is correct.”

— lIse Rosenthal-Schneider

1 “Did you doubt it?”

Arthur Eddington’s verification of the deflection of starlight by Sun in
1919 made Albert Einstein an instant celebrity. In this project we repro-
duce Einstein’s prediction (though not by his method) and apply it to
important modern astronomical observational techniques. Einstein’s
results are correct for deflection of starlight by most spherical astronomi-
cal objects and for light passing a Schwarzschild black hole at a large
radial distance such that r >> 2M. This is called the weak field approxima-
tion. Section 7 uses the weak field approximation to describe Einstein
rings such as those displayed in Figure 14, page 5-25. The lens-like con-
centration of light can also increase the amount of light received from a
distant star, an effect called microlensing, described in Section 8. In Sec-
tion 9 we use Einstein rings to account for some features of the image of
Saturn on the cover of this book.

Light passing close to a black hole does not satisfy the weak field approxi-
mation but is radically deflected and can even go into temporary orbit
(Chapter 5). Such radical deflection accounts for the “diamond necklace”
in the center of the upper image on the cover, as described in Section 10.
(For even wilder behavior of light see Project F, The Spinning Black Hole.)

2 Newtonian Deflection of Light

Before carrying out the analysis of general relativity, begin with an
approximate Newtonian prediction of light deflection under the assump-

Section 1 “Did you doubt it?”
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tion that light accelerates downward in a gravitational field (Figure 1). We
make the approximations (1) light is deflected only during its passage
across the diameter of Sun, and (2) during this deflection the acceleration
is perpendicular to the direction of motion of light and equal in magnitude
to the acceleration at the surface of Sun.

QUERY 1 Gravitational acceleration at the surface of Sun. Using physical constants
from inside the back cover, calculate the acceleration of gravity at the sur-
face of Sun, according to Newton, in conventional units meters/second?.

Assume that all deflaction takes place
along this segment, with downward
acceleration equal to that at radius A.

Path of light / Path of light
from star > > toward Earth >
p-
Sun

Figure 1 Newtonian analysis of light deflection by Sun. Assume that light, along with material
particles, undefgoes gravitational acceleration. The change in transverse vefocity, according to
Newton, is reckoned using the acceleration at the surface of Sun acting during the time the
light crosses the diameter of Sun (cakculus proofl). The deffection, less than two seconds of arg,
is too small to be visible in this or later figures, which therefore will show this deflection greatly

exaggerated
Apparent drrection
of star
* ‘‘‘‘‘‘‘‘
— 3% 108 meters/second
Distant Light Ad Approx. 1300
star Light meters/second

FAgure 2 Schematic diagram (greatly exaggerated) of the defiection of starfight in the Newtonian anafysis outlined in Figure 1.
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QUERY 2 Time for light to cross Sun. Calculate the length of time in seconds it
takes light to move a distance equal to the diameter of Sun.

QUERY 3 Change in “sunward” motion of light. Assume that light grazing Sun
experiences a constant acceleration perpendicular to its path equal to
that calculated in Query 1 for a time calculated in Query 2 (and no accel-
eration anywhere else along its path). Then the light picks up a
“sunward” component of velocity equal to approximately 1300
meters/second. See Figure 2. Find the result to four-digit accuracy.

QUERY 4 “Newtonian” angle of deflection. Let A¢ be the angle of deflection of
light in radians, as shown in Figure 2. Because of the small angle of
deflection, assume that tan(A¢) = A¢ . From the resuits of the _p6receding
queries, this deflection has the approximate value A¢ =4 x 10 ~ radian.
Find the result to three-digit accuracy.

QUERY 5 Seconds of arc. The deflection of starlight by Sun is usually expressed in
seconds of arc. There are 60 minutes of arc in one degree and 60 seconds
of arc in one minute of arc. The deflection A¢ of light by Sun is approxi-
mately 1 second of arc—according to this Newtonian analysis. Find the
result to three-digit accuracy.

From the Newtonian result (too small by a factor of 2, as we shall see), we
draw the provisional conclusion that the deflection is very small. This
assumption is important in the general relativistic derivation that follows,
and must be verified again for the results of that derivation.

3 Setting Up the General-Relativistic Analysis

Now we move on to the general-relativistic prediction of light deflection.
A pulse of light approaches, passes, and recedes from Sun, its position
tracked by the azimuthal angle ¢ (Figure 3). If there is no deflection, the
angle ¢ sweeps through n radians as the pulse moves from distant
approach to distant recession. We want to find the additional angle A¢
caused by gravitational deflection (Figure 4).

How much, d¢, does the tracking angle ¢ change for each small change in
radius dr (Figure 3)? The answer is embodied in the expression d¢/dr,
derivable from equations [15] and [14], page 5-8:

2

@ - 505
(&) - 0-27-0-39%

r

Here b is the impact parameter (defined in Figure 2, page 5-6).

Section 3 Setting Up the General-Relativistic Analysis
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\ un

Light from b /.f
star el

Figure 3 Measuring the change db in azimuthal angle ¢ as a light pulse changes radius dr The deflection is greatly exaggerated
I there is no deflection, the angfe § will sum 10 = as r goes from the distant star to R and out to distant Earth. To predict the
actual deflection, we need a relation between dr and d¢. Equation [4] gives this refation The distance b is the impact parameter

Path of light
toward Earth

Figure 4 Gravitational deflection angle A of staright by Sun—greatly exaggerated

QUERY & Angle ¢ changes as r changes. Divide corresponding sides of equations [1]
and [2) and simplify to show that

2 2,,4
[?) I 7/ (31
! 1-(1-2— b

r r2

Show that this can be modified to yield

d¢ = dr 14]

2[1 1( 2M]]1/2
rl——=1-22
b2 r2 r
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Now, in principle we simply integrate equation [4] from 7 = e to 7 = R, the
radius of closest approach. The total deflection will be twice this result.
When M —> 0 (no mass at the center), the result is ¢ = © radians. However,
with mass M present the result will be a little more than n. This “little
more,” namely, A¢ of Figure 4, is what we are trying to determine; we
expect its value to be approximately 107 radians.

The right side of equation [4] does not appear in an integral table, so we
make a substitution that can lead, with approximations below, to an
expression that can be integrated.

QUERY 7 Prepare for integration. First make the substitution u = R/r (a standard
substitution even in Newtonian orbital mechanics). Then dr = -r2du/R. We
will integrate the right side of the resulting expression outward from r =
R to r = = (from u = 1 to u = 0). Show that equation [4] becomes, after
some manipulation

do = —du

172
[Rz 2 Ma}
R 224,
b2 R

(5]

Before we can carry out this integration, we must take care of one detail,
namely, that the impact parameter b is a function of both M and R. Why?
Because the value of b is not arbitrary; we choose b so that the light ray just
grazes the surface of Sun (Figures 3 and 4). What relation connects b, R,
and M? Return to equation [24], page 5-11, namely,

2
1(9rehen) 1 1(, 2M
¥l =557 [6]
b\ %tshell b° r r

The light moves tangentially as it skims the surface of Sun, so for r = R, we
have zero radial motion and the left side of [6] is equal to zero.

QUERY 8 Eliminating the impact parameter b. Substitute r = R into equation [6]
and set the left side equal to zero. Manipulate the result to show that

=]1-=— [7]

R 2M
b R

Substitute equation [7] into [5]:

) ~1/2
—du —(l—u) du
d¢ = 172 1/2 [8]
[1_ 2_%”(1_‘, )] [1_%(1%3)]
R (14
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4 Approximations

So far there have been no approximations. Now recall that M/R is
extremely small. The value of M, the mass of Sun, is 1477 meters and the
value of R, the radius of Sun, is approximately 7 x 108 meters. Therefore
M/R =2 x 1075, The small value of this quantity encourages us to use our
by now standard approximation:

(1+d)"=1+nd provided | « 1 and lnd| <1 [9]
When this equation is applied to equation [8], then d in [9] corresponds to

the second term under the square root in the denominator on the right
hand side of equation [8].

QUERY 9 Approximation for small M/R. Apply approximation [9] to equation [8] and
show that the result can be written

3
do = - (1 —u2)_1/2[1 JMA—u )]du

R 2
1-u
( ) 3 (0]
~du M du +M u du
- 172" R 3/2° R 3/2
(1-u?) (1-u?) Ra-u?

5 Results for General Relativity

Now it’s time to integrate! We integrate from r = R to r = e or use the limits
u =R/r=1to u = 0. In either case, multiply the result by 2 to account for
both “legs” of the trajectory in Figures 3 and 4. From a table of integrals,
the first integral on the right side (multiplied by 2) gives the change in
angle when there is no Sun present:

0
J -2du

2 172
1(1-u”)

= [-2 arcsin u]|(1) =2arcsinl =2F = =& [11]

2

We want the small additional angle of deflection A¢ beyond the undeflected
value of m. So, referring to Figures 3 and 4, set

¢total = n+Ad [12]
The value of A¢ comes from integration of the second and third terms in

[10] (again, multiplied by 2). Evaluate these two integrals together using a
table of integrals.
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[0 0

3
2M du w du
8¢ ] -| ]
R 2.3/72 2.3/2
[1(1-u™) 1(1—u™)

0
oM 2,172 1
= R S (-w) - 2 172
L(1-u") (1-u")
( . [13]
] 0
__aM[_ w1 2172
=~7R S U-w)
L(1-u™)
1
= M
R

The result comes from evaluation at the upper limit: u = 0. There is a slight
problem at the lower limit, since the denominator (1 - u)1/2 of the first
term approaches zero at the lower limit u = 1. However, notice that the
first term can be written

u-1 1-u _(1-uy/2
l+u

a _u2)1/2 - a _u)1/2(1 +u)1/2 -

[14]
which clearly goes to zero as u goes to 1. Therefore the lower limit in equa-
tion [13] yields zero in the result. The upper limit yields 4M/R which is the
deflection of starlight by Sun in radians. The result of all our calculations
is the simple little equation

A= 4TM [15. weak field approximation]

Note: If you carry through the equations for the Newtonian analysis in
Queries 1 through 4, you will find the result to be exactly half that in [15].

QUERY 10 Deflection of starlight in radians. Substitute values for M and R for Sun
and calculate the value for the deflection A¢ in radians.

QUERY 11 Deflection of starlight in seconds of arc. Convert your answer to Query 10
to units of seconds of arc. To one significant figure, the result is 2 seconds
of arc. Find the result to three significant digits.

The answer to Query 11 is the prediction of general relativity. Although we
have made an approximation, this approximation is very good for Sun.
Equation [15] actually shows the first term in a series expansion whose
next term will be proportional to (M/R)?, yielding a contribution approxi-
mately 2 x 107° times that of the term on the right side of [15]. This added
correction in predicted angle is far smaller than the accuracy of observa-
tion and so can be ignored for small deflections of light.

Section 5 Results for General Relativity
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For most spherical astronomical objects except black holes the distance of
closest approach R will be very much greater than the mass M of the
object, measured in units of length. To analyze light passing close to these
objects we can validly apply the results of this section, the weak field
approximation [15]. Motion of light passing close to a black hole is ana-
lyzed in Chapter 5 and in Section 10 of this project.

QUERY 12 Deflection of light by a neutron star. How great is the deflection of light
that skims past the surface of a neutron star? Assume that a nonspinning
neutron star has a mass 1.4 times the mass of Sun and a radius of 10 kilo-
meters. What is the deflection of light that skims tangentially past its
surface, according to equation [15]? Express your result in degrees. Do
you trust this conclusion? That is, does this case satisfy approximations
used in deriving equation [15]?

6 Comparison with Observation

How well do observations verify the prediction of light deflection by Sun
given in equation [15]? Table 1 shows measurements using visible light.
Note: Observed stars were at various angles from the eclipsed Sun. Figures
in the fourth column are values recomputed for the deflection of a light
ray that just grazes Sun’s surface.

Table 1 Deflection of starlight by Sun; values deduced in various eclipses

Eclipse Date Location Number Deflection References
P of stars (seconds of arc) | (end of project)

May 20, 1919 Sobral 7 1.98 £0.16 a
Principe 5 1.61 £0.40

September 1, 1922 Australia 11-14 1.77 £ 0.40 b

Australia 18 1.42t02.16 c

Australia 62-85 1.72 £ 0.15 d

Australia 145 1.82 +£0.20 e

May 9, 1929 Sumatra 17-18 2.24+0.10 f

June 19, 1936 USSR 16-29 2.73 £0.31 g

Japan 4-7 1.28t0 2.13 h

May 20, 1947 Brazil 51 2.01 £0.27 i

February 25, 1952 Sudan 9-11 1.70 £ 0.10 ]

Much more consistent and accurate results come from radio astronomy—
using radio waves instead of visible light. Each October the Sun moves
across the image of the quasar labeled 3C279 seen from Earth. Radio
astronomers use this occultation to measure the change in angle of the sig-
nal as the source approaches Sun, crosses the edge of Sun, and moves

D-8 PROJECT D Einstein Rings



behind Sun. This change in angle is measured with respect to the unde-
flected signal from another quasar, labeled 3C273, that is about 10 degrees
away from Sun as seen from Earth. The accuracy of angle measurement is
increased by employing an experimental technique called very long base-
line interferometry (VLBI) that uses widely separated dish antennas. A
recent observation by D. E. Lebach and collaborators employed one dish—
actually a pair of dishes—in Big Pine, California, and another pair of
dishes in Westford, Massachusetts. Their observational results correspond
to a gravitational deflection 0.9996 + 0.0008 times that predicted by general
relativity. This result straddles the value 1.00000, for which agreement
between theory and experiment would be perfect. See the references at the
end of this project.

7 Computing Einstein Rings

The first Einstein ring ever observed is shown in Figure 14 on page 5-25.
We see an Einstein ring when light from a distant source is deflected
toward us around all sides of an intermediate gravitating object (Figure 5).
The Einstein ring appears only when the source, the intermediate object,
and the observer lie along the same straight line.

The results of preceding sections allow us to predict the approximate
angular diameter of the Einstein ring for a point source. The geometric
construction is shown in Figure 6. In computing deflection by Sun we
wanted to use Sun’s radius R. Equation [7] allowed us to eliminate the
impact parameter b. The light that enters our eye to form the Einstein ring
of a distant star, however, may not be the light that grazes the surface of
the intermediate dark object. But equation [7] tells us that for r >> 2M we
have simply R = b. Then equation [15] becomes

ap=¥ [16]

We use additional approximations in the analysis of Figure 6. A more or
less complete list follows. These approximations are generally justified by
the fact that the distances of source and observer from the intermediate
object (defined in Figure 6) are literally astronomical compared with the
distance from the intermediate object at which deflections take place.

Intermediate
dark object

. Light
Distant
source

Light Earth

Figure 5 Schematic diagram of the formation of an Einstein ring Not to scale—and the
intermediate object need not be halfway between the distant star and Earth, as shown here

Section 7 Computing Einstein Rings
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V= bhsrc Bot
Source Tsrc M fobs Observer

Figure 6. Schematic diagram, not to scale, for the derivation of the angle of observation 8, for
the Einstein ring at the eye of the observer. This figure defines the quantities rg and rops.

1. Assume that ry,. >> 2M and s >> 2M and 7, >> b and
Yobs >> b.

2. Use Euclidean geometry.

3. Assume that deflection occurs at a single point near the inter-
mediate object. This is reasonable, since the distance from M to
the source and the distance from M to the observer are both lit-
erally astronomical compared with the distance along the tra-
jectory over which deflection takes place.

4. Measure the impact parameter b vertically, as shown in Figure
6, rather than perpendicular to the incoming ray of light as b is
usually defined.

5. The sine or tangent of a small angle is approximately equal to
the value of that angle in radians.

Apply approximations 1 and 5 to equation [38] on page 5-22, where the
angle B4, is measured with respect to the radially outward direction. The
angles called 6 in Figure 6 are defined with respect to the radially inward
direction, but the two have the same sine. (Recall the Caution in Sample
Problem 3 on page 5-20.) Call the result 6, for “observation angle” and
the radial distance from the intermediate object 7,s. Then from Figure 6,

Use the subscript “src” for “source” and write down the relation between
angles shown at the upper right of Figure 6. The result is
b
Ad = y+0, = —+0, [18]

SIC

D-10
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QUERY 13 Einstein ring angle. Substitute equation [16] into [18] and use equation
[17] to eliminate b. Show that the result is

AMr 172
)} [19]

_ _ src
9obs - eEin - [

robs(robs tr src

where the subscript “Ein” refers to the Einstein ring.

8 Microlensing

The visible stars in rotating galaxies do not have enough total mass to hold
these galaxies together; these galaxies should fly apart as they rotate. But
these galaxies do not fly apart. This and other lines of evidence convince
observers that galaxies contain much more mass than can be counted in
the visible stars they contain. This largely unknown presumed presence
earns the name dark matter. Individual dark matter objects have been
whimsically named MAssive Compact Halo Objects, abbreviated
MACHOs, which presumably occupy the halo surrounding galaxies.

By what means could we detect this dark matter in, say, our own galaxy?
In 1986 Bohdan Paczynski proposed as a practical procedure a method
that had long been known only as a theoretical possibility. The method
depends on the deflection of starlight by a dark object. When a dark object
lines up between Earth and a distant visible star, the dark object focuses
light that would otherwise miss Earth (Figure 5). The result is an increase
in the amount of light received from the distant star, even when the equip-
ment is not able to resolve the structure of the Einstein ring. This increase
in focused light is called microlensing. Microlensing can be used to study
objects in our galaxy that do not emit sufficient light to be detected by
other means. Paczynski’s proposal started a whole new field of observa-
tion, and dozens of microlensing events have been detected.

The great difficulty with microlensing is that, at any given time, only one
star in 2 million or so will have its image augmented due to microlensing.
As a result, Paczynski predicted, microlensing would be a rare event
requiring the monitoring of many stars simultaneously.

To have the best chance to observe microlensing, one wants a background
rich in visible stars to increase the chance that one of them will lie behind
some dark object in the foreground. There are several such star-rich back-
grounds for Earth observations: the galactic bulge in the center of our
galaxy and the so-called Magellanic Clouds, two satellite galaxies of our
Milky Way Galaxy visible in the southern hemisphere. (The name Magel-
lanic comes from observation of these clouds by Ferdinand

Magellan’s crew during the first circumnavigation of the globe, 1519-1522
AD.)

Section 8 Microlensing



When a microlensing event occurs, the amount of light received on Earth
from the distant star grows and fades over a period of days or weeks and
at peak may be many times the normal flux of light from that star.

Microlensing is so recent a technique that path breaking developments
occur from month to month. Preliminary results appear to show that the
dark matter observed by microlensing does not account for the missing
mass of our galaxy—the mass in addition to that of the visible stars
needed to keep the galaxy from flying apart. See the references at the end
of this project.

from the star?

than once in a given star?

internal processes?

QUERY 14 Identifying microlensing events. Discussion questions: How can we distin-
guish between the increased amount of light from a star due to
microlensing and greater light flux due to some internal mechanism of the
star? The following inquiries are meant to help answer this question.

Will the increase in light due to microlensing be the same for all colors of
the spectrum of light from the star? Suppose a natural increase in light is
due to greater burning rate, leading to a higher temperature of the star.
Do you expect that this process will result in a changed spectrum of light

Is a microlensing event likely to occur more than once for the same star?
Might an increase in the flux of light due to internal processes occur more

Do you expect that the time profile of a microlensing event—the curve of
light intensity vs. time—can be predicted by astronomers? Is it likely that
this time profile will be the same as that for an increase in light due to

9 The Einstein Donut

Images on the cover of this book illustrate some gravitational effects of a
black hole on the visual appearance of background objects.

The undistorted lower image of Saturn was taken with an infrared camera
on the Hubble Space Telescope. In addition to Saturn’s familiar rings, you
see a dot at the lower left of the image, which is Saturn’s moon Dione.
Another moon, Tethys, forms a bright spot at the upper right edge of Sat-
urn’s round disk. (We brightened the images of these two satellites to
make them more obvious.)

Now place the center of a black hole on the direct line of sight between us
and Saturn so that we, the observers, are at a radial distance (reduced cir-
cumference) r = 7 = 10M on one side of the black hole. Saturn is at a
much greater distance on the other side. We assume that Saturn, black hole,
and the viewer are all relatively at rest, and that there is no change in the
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structure of Saturn (or us!) due to the curvature of spacetime induced by
the black hole. The upper image on the cover results. What do we see?

First, Saturn itself is distorted into a donut (torus), to which we give the
name Einstein donut. The donut shape results when the source is an
apparent disk instead of a point. In what follows we will use a generaliza-
tion of the Einstein ring equation [19] to explore major features of the
donut. But we cannot legitimately calculate numerical values from the
result, because its derivation depends on the assumption that r,s >> 2M,
whereas we placed the observer at 7., = 10M to create the upper cover
image. This upper image is more dramatic than the one seen by an
observer who is at a much greater distance.

Second, we see duplicate distorted images of Saturn’s rings. One image
lies along the top of the outer surface of the donut, while the other image,
reversed right-for-left and top-for-bottom, hugs the inside bottom of the
donut.

Third, gravitational deflection smears the image of Saturn’s moon Dione
and creates a second, faint image just inside the Einstein donut on the
upper right.

Fourth, a circular “diamond necklace” of dots shines faintly inside the Ein-
stein donut.

QUERY 15 Donut size. The upper and lower images on the cover are displayed to
the same scale. Explain in one sentence why the average diameter of the
donut in the upper image is larger than the diameter of Saturn shown in
the lower image.

Figure 7 is a generalization of Figure 6 for a source point off the axis
between the observer and the center of the black hole. Here 6, is the angle
at which the source point would be viewed if the intermediate deflecting
mass were removed.

Using Figure 7 and its caption we can repeat the derivation that led to
equation [19], but for this new case. This derivation depends on all five
assumptions (approximations) given on page D-10. The present derivation
is a bit complicated and therefore optional. The result is:

2
4Mr 0.
_ o+ w____g oo 20

0
o
eobsrobs(r obs +r src) eobs

obs

where, recall, the Einstein ring angle 8;, (given by equation [19]) is the
angle of observation in the special case that the source, deflecting mass,
and observer all lie along the same straight line.

Section 9 The Einstein Donut
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M Observer

Figure 7 Construction figure (not to scale) for the derivation of the observation angle
8obs (equation 20)) for a source off the axis that runs between the observer and the
deflecting mass. The angle 8,, is the observation angle in the absence of the deflecting
mass M The length q and construction angle y are used in the derivation of equation
[20]. Some labels have been omitted for clarity. For example, the distance from the
observer to point A is (to a good approximation) the observer radius rops. The small
unmarked angle below the symbol y on the upper right has the value B4ps — 6,

QUERY 16 Observation angle for off-axis source. Equation [20] is a quadratic equa-
tion. Show that the solution is

) 2 172
8, (6, +465)

eobs - 2 [21]

What is the value of 8,5 when 8, = 0? What is the physical meaning of
0, = 0? What is the physical meaning of the plus or minus in front of your
result for 8, = 0?

QUERY 17 Off-axis source: First example. Consider the special case
0,=0,1 = 5"265“. Using equation [21], find the two resulting values of
Bobs1 - Why is one value negative? What does this negative value mean
physically?

QUERY 18 Off-axis source: Second example. Find the two values of 0, for a sec-
ond undeflected angle 8, = 12V2@;,. Compare your results to those
obtained in Query 17. Is O, greater or less than 0,,41? (Careful!)

We need to keep reminding ourselves that equation [21] does not predict
numerically correct details of the donut structure in the upper cover
image, because ry,s = 10M for that figure, violating our assumption that
7obs >> 2M that led to [21]. Nevertheless, qualitative features of the upper
image make sense when analyzed using the results of Queries 16 through
18. (The “diamond necklace” circling the center of the upper image results
from a far greater deflection of light near the black hole and cannot be
described at all by the approximate equation [21]. Section 10 discusses the
diamond necklace.)
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QUERY 19

Features of Einstein donut on the cover. Refer to points labeled A, B, C
in Figure 8, which shows a top view of Saturn, its ring, and a distant
observer. For each of the points A, B, and C the angle 8, will have dou-
ble values. When examining these values, distinguish between angles at
which the observer looks to the LEFT of center, as indicated in Figure 8,
and angles at which the observer {ooks to the RIGHT. Use your results for
Queries 1618 to answer the following qualitative questions:

1. For each of the points A, B, C as seen on the LEFT, is the magnitude of
B,ps greater than or less than the magnitude of 6, , the angle of
observation in the absence of the deflecting mass M?

2. For each of the points A, B, C as seen on the RIGHT, is the magnitude
of B, greater than or less than the magnitude of 6,?

3. Reading from left to right, what is the order of points A, B, C as seen
on the LEFT side of the center of Saturn?

4. Reading from left to right, what is the order of points A, B, C as seen
on the RIGHT side of the center of Saturn?

C
B

A" satum

RIGHT

2@

Observer

LEFT

Figure 8 Top view of Saturn and its ring as if looking down from above on Saturn displayed in
the lower image on the cover. Not to scale Query 19 asks questions about the angles at which
the observer at the right sees points A, B, and C when the black hole M is in place.

QUERY 20

Describing the cover. Write a paragraph that describes for the layperson
the two images on the cover of this book. Do not attempt to explain the
physics behind these transformations and distortions. Instead, tell in
some detail where portions from the lower image appear on the upper
image. Use as an example the shadow on the rings to the left of Saturn’s
disk in the undistorted lower image. How many times (and where) does
this shadow appear in the upper image? Show the cover and your
resulting paragraph to a roommate or friend and revise your descrip-
tion in light of his or her reaction.

Section 9 The Einstein Donut
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10 The Diamond Necklace

Circling around inside the black middle of the Einstein donut on the cover
is a faint ring, a “diamond necklace” of dots. This necklace shines with
light that, on its way from Saturn to our eye, circles once around the black
hole just outside the photon sphere at r = 3M (Figure 9). The necklace is
very thin and faint because the large spacetime curvature near the black
hole fans out the light rays like a demagnifying lens. (Gravitational
“lenses” obviously create horrible distortions!) In principle there are infi-
nitely many concentric circular necklace images, resulting from light
circling the black hole 1, 2, 3, 4 . . . times from the source to our eye. The
greater the number of rotations, the closer the radius of the orbit is to that
of the light sphere at 3M. But the images for greater number of revolutions
are so strongly defocused that only the first one is visible. Light deflections
leading to this necklace are so extreme that the approximate Einstein ring
analysis of Section 7 is useless.

®

Observer

@

—

@

Figure 9 Schematic Schwarzschild map showing sample trajectories of the light that forms the
diamond necklace in the center of the Einstein donut on the cover The circular portions of these
paths are actually just outside the radius of the photon sphere at r = 3M.

QUERY 21 Viewing angle of the necklace. The upper image on the cover is made for
an observer at rest on a shell of radius (reduced circumference)
r = 10M. Substitute this value into equation [31], page 5-20, and find the
observation angle at which the shell observer sees the necklace. Express
your answer in degrees. This analysis assumes that the light circles the
black hole at r = 3M, whereas the r-value of this circle is slightly more than
3M. (Note that your angle is measured with respect to the radially inward
direction; see the Caution at the end of the box on page 5-20.)
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What image would replace the upper image on the cover if light were not
deflected by “gravity” (not affected by curved spacetime)? How can we
answer this question, since both of our theories, the general-relativistic
and the Newtonian, predict deflection of light by gravity? Instead we ask
another question. Replace the black hole with a thin spherical shell of so
little mass that gravitational effects can be ignored. Now we can validly
ask how large this spherical shell looks to an observer. Even then we need
to be careful in specifying how the size of the new spherical shell com-
pares with that of the original black hole.

QUERY 22 Observation angle for a black spherical shell. The black hole between
Saturn and the observer is replaced with a thin meta! spherical shell
painted black. This spherical shell has a negligible mass and is given a
radius (measured by Euclidean methods) with the same numerical value
as the reduced circumference of the original black hole’s horizon. An
observer views the sphere at a distance from the center equal to five
times its radius.

A. Guess: Will the viewer see the radius of this sphere to be less than or
more than the radius of the diamond necklace with the black hole in
place? Write down your guess.

B. Now calculate the angle between the center of the disk and its edge as
seen by the observer. Compare this angle with that between the cen-
ter and the necklace for the original black hole. Was your guess in part
A correct?

C. From your result in B, calculate the observed radius of the black spher-
ical shell as a fraction of the radius of the observed diamond necklace
in the upper image of Saturn on the cover. Cut a disk of this size out of
black paper and tape it temporarily at the center of the Jower image
of Saturn on the cover. This is as close as we can come to showing the
resulting image of Saturn “if light were not deflected by gravity.”
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e What happened to “Light always moves with the same speed”?
e Who says light slows down near Sun?

e How much does light slow down near Sun?

e Does observation verify the predicted value of the slow-down?



Project E

Light Slowed Near Sun

I sometimes ask myself how it came about that I was the one to develop the
theory of relativity. The reason, I think, is that a normal adult never stops
to think about problems of space and time. These are things which he [or
she] has thought about as a child. But my intellectual development was
retarded, as a result of which I began to wonder about space and time only
when I had already grown up.

—Alben Einstein

1 Introduction

The Schwarzschild bookkeeper records a “smaller speed of light” than do
shell or free-float observers. Near the black hole, bookkeeper light speed is
decisively less than unity. That is the prediction of our analysis in equa-
tions [3], [4], and [16], pages 5-3 and 5-7. Does this prediction have a
physical meaning at all? Is there any way to measure this “slowing down
of the speed of light” as reckoned by remote observers?

“Yes” and “yes” were the answers predicted by Irwin Shapiro and demon-
strated by him and coworkers. They showed that the total time of transit
of a light flash along a trajectory in space that brushes past our Sun will be
longer than that predicted for flat spacetime. Then they measured the time
delay of a round-trip radio signal—an electrormagnetic wave of lower fre-
quency than light but traveling at the speed of light—first between Earth
and Mercury, later between Earth and Venus, finally between Earth and
Mars when these planets were situated on opposite sides of Sun (Figure 1
shown for Mars). As the Earth observer sees the image of Venus approach-
ing the edge of Sun, for example, the time for a round-trip for the radio
signal increases by approximately 190 microseconds (see Figure 3) due to
the slowing of light near Sun. Later results for Mars, good to one partin a
thousand, are much more accurate than those for Venus.

-trip radio signal
Mars O@ Path of round-trip radio signa »O Earth

Figure 1 Diagram, not to scale, of the path of radio signals that graze the surface of Sun on
their round-trip between tracking stations on Earth, right, and a Viking lander on the surface of
Mars, left Note: The path bends near Sun, but by an angle fess than 2 seconds of ar¢, far too
small to show on this or later diagrams,

Section 1 Introduction



much longer round-trip time light requires to go from Earth past Sun to Venus, then
back again to Earth along the return path? This round-trip requires nearly half an
hour This difficulty is compounded because Earth and Mars are in different orbits, so
the distance between them is constantly changing!

& How can anyone possibly detect the minuscule 190-microsecond delay in the very

This difficulty is one of many overcome by Shapiro and his coworkers (Another is the
uncertainty of the speed of their radio waves passing through the cloud of ionized
atoms near the surface of Sun—called Sun‘s corona.) When Venus is not near Sun as
viewed from Earth, time-delay effects are small In principle one can track the round-
trip time for the signal as Venus approaches, passes, and leaves the vicinity of Sun as
viewed from Earth The gradually changing Earth-Venus distance leads to a smooth
curve of time delay, on which the additional delay due to slowed propagation appears
as a spike, shown for Venus in Figure 3 In practice Shapiro and his colleagues
employed a much more sophisticated analysis that made use of all relevant data
simultaneously.

1

Can we predict the value of approximately 190 microseconds (Venus) or
the more accurately determined 250 microseconds (Mars) for the round-
trip delay of light or a radio pulse that skims past the surface of Sun? Yes,
if we use an approximation, described and spelled out in what follows.

2 Approximating the Light Path

The actual “skimming” path of light approaches Sun obliquely along the
thin line in Figure 2. Along the actual path the light moves neither along a
radius nor tangentially (except tangentially at the grazing point). There-
fore we cannot use our expressions for radial and tangential velocity,
equations [3] and [4] on page 5-3. Even the expression for the skimming
path, equation [16] page 5-7, is awkward to integrate. Instead we obtain an
estimate of the delay time by assuming a slightly different path for the
light, a path that comes in radially from Earth, circles halfway around Sun
in a tangential semicircular path, then moves out radially straight outward
to Venus or Mars (thick curve in Figure 2). This alternative path provides a
crude model of the actual path, but yields an estimate much closer to a
precise calculation than we might have expected. Now for the details.

3 Radial Path Segments

Begin with Segment 1 in Figure 2. Equation [3], page 5-3 says that for
radial motion of light (plus or minus sign omitted):

i ]

(We also omit the label m = 0 and the label light on equations that describe
the motion of light, since all equations in this project describe the motion
of light.) From equation [1] we can find the total far-away time ¢ required
for the light to travel from the radius R of Sun to the distant radial position
rEorbit Of Earth. (It does not matter which way we make the integration:
Assume that the light moves outward.) Then the total time for Segment 1
comes from integrating the expression
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2. Tangential path of

< Actual path of light / light in our model
7
< . :
3. Path of light to Venus 1. Path of light from
or Mars in our model Earth in our model

Figure 2 Our model of time delay of fight or radio signat grazing the surface of Sun on its way
from Earth to Venus (or Mars) The actual path is along the thin line Our model replaces this
actual path with three segments, numbered above Segment 1: Radial path inweard from Earth
to surface of Sun. Segment 2: Tangential path that skims the surface of Sun in a semicircle.
Segment 3. Radial path outward from surface of Surn to Venus (or Mars)

dr
2M

1 -4

r

dt =

2]

Now, the fraction 2M/r is very small. Its largest value occurs at the surface
of Sun. In round numbers, 2M = 3000 meters and R =7 x 10° meters. So the
maximurm value of 2M/r is less than 4 x 107, which is very much less than
unity. Therefore we can use our favorite simple approximation (the first of
several times in this project):

(1+d)" s1+nd provided that |dl «1 and |nd] «1 [3]

This approximation works for positive and negative d and for positive,
negative, or fractional powers n.

has the form:

T .
Aty = 2M ln( E“"“)

R

mate value 53 microseconds.

QUERY 1 Earth-Sun time delay. Apply the approximation [3] to equation [2] and inte-
grate both sides of the resulting equation from R, the radius of Sun, to
Feorbipy the radial distance of Earth from the center of Sun. Show that the
result has two terms, one of which & simply the distance from Sun's surface
to Earth, equal to the time in meters for light to travel this distance at the
conventional speed unity. The second term is the expected delay for light
predicted by general relativity. Show that this delay Aty along Segment 1

QUERY 2 Vajue of Earth-Sun time delay. Substitute values from inside the back cover
to show that the time delay At, along the first segment has the approxi-
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QUERY 3 Sun-Venus time delay. Apply the same analysis to Segment 3, from Sun to
Venus. (Recall that direction of radial motion does not matter; light
moves more sIowI¥ in both directions.) The average radius of the orbit of
Venus is 1.08 x 10'! meters. What is the time delay for this segment of
the path for Venus?

QUERY 4 Sun-Mars time delay. Use the value ryopit = 2.28 x 10'! meters for the
average radius of Mars’ orbit around Sun. Show that the segment from
Sun to Mars has a time delay of approximately 57 microseconds.

4 Tangential Path Segment

For Segment 2, the portion of our model trajectory that follows a semicir-
cle around Sun in Figure 2, we assume that the speed is the tangential
speed, equation [4], page 5-3 (plus or minus sign omitted):

1-22%

r

_=

ds _ do _ ( 2Mj1/2
dt dr

[5]

We assume that r = R for the entire Segment 2 in Figure 2. Then the time t,
for the light to traverse Segment 2 is obtained by solving equation [5] for
dt and summing it along the semicircular path of length nR.

nR
R PIYE (6]
( - T)
QUERY 5 Time around Sun. Use the approximation in [3] again to obtain the transit

time for Segment 2. As before, show that result has two parts, one of
which is simply the expected time for light to move in a semicircle around
Sun at speed unity. The second part is the delay At, predicted by general
relativity. Show that this delay is approximately 15 microseconds.

5 Comparing Prediction and Observation

QUERY 6 Total round-trip time delay for Venus. Add up the time delays for the
three segments of the one-way trip between Earth and Venus. Multiply by
2 for the round-trip. Figure 3 shows results for Venus when, as seen from
Earth, Venus approached, but did not reach, the edge of Sun. Should your
result for the edge of Sun be more or less than the maximum in Shapiro’s
plot? Is it?

QUERY 7 Total round-trip time delay for Mars. Now add up the time delays for the
three segments of the one-way trip between Earth and Mars. Multiply by
2 to describe the round-trip, and show that the total round-trip delay is
approximately 250 microseconds.
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Figure 3 Total time delay of round-trip radio signal to Venus as measured by Irwin Shapiro and
colleagues in January 1970 As seen from Earth, Venus approached, but did not reach, the
edge of Sun. In this version of the experiment the signal was reflected from Venus. The solid
curve is the prediction of general relativity. The dots and vertical error bars represent experi-
mental determinations. See the reference at end of this project.
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Figure 4 Final results for Mars time defay experiments. Shapiro and colleagues increased the
ampiitude of the return signal greatly by using a Viking lander on the surface of Mars The
radio signal from Earth triggered a return signal from the Viking lander. This figure shows the
differences (technical term: residuais) between the observed data and the predictions of
general relativity The dashed vertical line marks the time of closest approach of Mars to Sun on
November 25, 1976 This figure looks much less dramatic than Figure 3 but “squeezes” general
relativity much harder Note that the vertical scale is marked in tenths of a microsecond. See

the reference at end of this project.
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How lucky we are! We calculated 250 microseconds for the Earth-Mars
round-trip delay, a value very close to the observed result. Our calculated
result is also very close to the more precise value calculated by Shapiro
using (1) the straight path that skims past Sun and (2) the Earth-Sun-Mars
distances correct at the time of the experiment.

Figures 3 and 4 present observed results of Shapiro and colleagues for
Venus and Mars respectively.

QUERY 8 Distance to Moon. Astronauts have left several corner reflectors on the
surface of Moon. These are shaped like the corner of a room and have
the property that they reverse the path of any laser pulse incident on
them. As described by Clifford Will (Chapter 7 in the reference at the end
of this project), a round-trip laser pulse sent from Earth can be timed to
measure the Earth-Moon distance between laser emitter and Moon
reflector. Initially the uncertainty was about 15 centimeters; more
recently the uncertainty has been reduced to the one-centimeter range.
Does the Shapiro time delay have to be taken into account in doing this
measurement? Will the distance measurement be wrong if no account is
taken of the reduced speed of light in the curved spacetime near Earth
and Moon? If so, what will be the approximate error in the measure-
ment? In traveling to Moon, remember, the pulse moves outward
through Earth’s gravitational field and inward through Moon’s gravita-
tional field. Directions are reversed on the return trip, but the time delay
adds for each direction. Hints: (1) Adapt equation [4] of the text sepa-
rately for Earth and Moon. (2) The average distance between the centers
of Earth and Moon is given inside the back cover. (3) The “equilibrium
point” where (as Newton would say) the gravitational attraction is equal
and opposite to Earth and Moon is at 0.90 the distance from Earth’s cen-
ter to Moon’s center. (4) The ratio of masses is Mpoon/MEgarth = 0.0123.
(5) The ratio of Moon to Earth radiiis ryeon/rgarth = 0.273.

QUERY 9 Delayed replay. Discussion question. You are in a stable circular free-float
orbit around a black hole. You send yourself a message coded on a laser
signal, firing your laser pulse inward so that its trajectory lies across your
orbit, approaching nearer the black hole than you do. Can you use the
light-retardation effect in such a way that you receive your own signal
when you arrive somewhere else in your orbit? If not, why not? If so,
what limits are there on the amount of delay you can experience in
receiving your message? Hint: Look at Figure 6 on page 5-14.

6 References and Acknowledgments
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University Press, 1996, page 182, and Albert Einstein by Albrecht Félsing,
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Figure 3. “Fourth Test of General Relativity: New Radar Result,” Irwin L
Shapiro, Michael E. Ash, Richard P. Ingills, William B. Smith, Donald B.
Campbell, Rolf B. Dyce, Raymond F. Jurgens, and Gordon H. Pettengill,
Physical Review Letters, Volume 26, Number 18, pages 1132-1135 (3 May
1971).

Figure 4. R. D. Reasenberg, I. I. Shapiro, P. E. MacNeil, R. B. Goldstein, J. C.
Breidenthal, J. P. Brenkle, D. L. Cain, T. M. Kaufman, T. A. Komarek, and
A. 1 Zygielbaum, “Viking Relativity Experiment: Verification of Signal
Retardation by Solar Gravity,” Astrophysical Journal Letters, Volume 234,
pages L219-L221 (15 December 1979).

The fascinating story of experiments verifying the time delay of radio sig-
nals passing near Sun is told by Clifford M. Will in his book Was Einstein
Right? Putting General Relativity to the Test, Second Edition, Basic Books/
Perseus Group, New York, 1993, Chapter 6.

Irwin Shapiro read and commented on this project.

Query 8 was suggested by Glen Govertsen. Query 9 was suggested by
Charles Holbrow.
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» How fast can a black hole spin?

» How can | observe space dragging around a spinning black hole?

e Does a rapidly spinning black hole keep me from falling through the horizon?
e How many Sun masses per year does a quasar convert to light?



PROJECT F

The Spinning Black Hole

Black holes are macroscopic objects with masses varying from a few solar
masses to millions of solar masses. To the extent they may be considered as
stationary and isolated, to that extent, they are all, every single one of
them, described exactly by the Kerr solution. This is the only instance we
have of an exact description of a macroscopic object. Macroscopic objects, as
we see them all around us, are governed by a variety of forces, derived from
a variety of approximations to a variety of physical theories. In contrast,
the only elements in the construction of black holes are our basic concepts
of space and time. They are, thus, almost by definition, the most perfect
macroscopic objects there are in the universe. And since the general theory
of relativity provides a single unique two-parameter family of solutions for
their description, they are the simplest objects as well.

—S. Chandrasekhar

1 iIntroduction

In this project we explore some of the properties of spacetime near a spin-
ning black hole. Analogous properties describe spacetime external to the
surface of the spinning Earth, Sun, or other spinning uncharged heavenly
body. For a black hole these properties are truly remarkable. Near enough
to a spinning black hole—even outside its horizon—you cannot resist
being swept along tangentially in the direction of rotation. You can have a
negative total energy. From outside the horizon you can, in principle, har-
ness the rotational energy of the black hole.

Do spinning black holes exist? The primary question is: Do black holes
exist? If the answer is yes, then spinning black holes are inevitable, since
astronomical bodies most often rotate. As evidence, consider the most
compact stellar object short of a black hole, the neutron star. Detection of
radio and X-ray pulses from some spinning neutron stars (called pulsars)
tells us that many neutron stars rotate, some of them very rapidly. These
are impressive structures, with more mass than our Sun, some of them
spinning once every few milliseconds. Conclusion: If black holes exist,
then spinning black holes exist.

General relativity predicts that when an isolated spinning star collapses to

a black hole, gravitational radiation quickly (in a few seconds of far-away
time!) smooths any irregularities in rotation. Thereafter the metric exterior

Section 1 Introduction
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to the horizon of the spinning black hole will be the Kerr metric used in
this project.

However, the typical spinning black hole is not isolated; it is surrounded
by other matter that is attracted to it. The inward-swirling mass of this
accretion disk may affect spacetime in its vicinity, distorting the metric
away from that of the isolated spinning black hole that we analyze here.

2 Angular Momentum of the Black Hole

An isolated spinning uncharged black hole is completely specified by just
two quantities: its mass M and its angular momentum. In Chapter 4 (page
4-3) we defined the angular momentum per unit mass for a particle orbit-
ing a nonspinning black hole as L/m = r*d¢/dz. In this expression, the
angle ¢ has no units and proper time 7 has the unit meter. Therefore L/m
has the unit meter. To avoid confusion, the angular momentum of a spin-
ning black hole of mass M is given the symbol | and its angular
momentum per unit mass is written J/M. The ratio J/M appears so often in
the analysis that it is given its own symbol: a = J/M. We call the constant
“a” the angular momentum parameter. Just as the angular momentum
L/m of a stone orbiting a non-rotating black hole has the unit meter, so
does the angular momentum parameter a = [/M have the unit meter. In
what follows it is usually sufficient to treat the angular momentum
parameter a as a positive scalar quantity.

Newman and others found the metric for a spinning black hole with net
electric charge (see equation [51] and references at the end of this project).
The most general steady-state black hole has mass, angular momentum,
and electric charge. However, we have no evidence that astronomical bod-
ies carry sufficient net electric charge (which would ordinarily be rapidly
neutralized) to affect the metric. If actual black holes are uncharged, then
the Kerr metric describes the most general stable isolated black hole likely
to exist in nature.

3 The Kerr Metric in the Equatorial Plane

For simplicity we are going to study spacetime and particle motion in the
equatorial plane of a symmetric spinning black hole of angular momen-
tum | and mass M. The equatorial plane is the plane through the center of
the spinning black hole and perpendicular to the spin axis.

Here is the Kerr metric in the equatorial plane, expressed in what are
called Boyer-Lindquist coordinates. The angular momentum parameter a
appears in a few unaccustomed places.

2 2 2
dx2=(1—¥)d12+%drd¢— dr 2_[1+g_+2Ma)r2d¢2 )

l-—+—=
2
r r
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For the nonrotating black hole examined in Chapters 2 through 5, the
Schwarzschild metric describing spacetime on a plane is the same for any
plane that cuts through the center of the black hole, since the Schwarz-
schild black hole is spherically symmetric. The situation is quite different
for the spinning Kerr black hole; the metric [1] is correct only for the plane
passing through the center of the black hole and perpendicular to its axis
of rotation. We choose the equatorial plane because it leads to the simplest
and most interesting results.

The time t in equation [1] is the “far-away time” registered on clocks far
from the center of attraction, just as for the Schwarzschild metric. In con-
trast, for a > 0 the Boyer-Lindquist -coordinate does not have the simple
geometrical meaning that it had for the Schwarzschild metric. More on the
meaning of r in Sections 4 and 9. The metric [1] provides a complete
description of spacetime in the equatorial plane outside the horizon of a
spinning uncharged black hole. No additional information is needed to
answer every possible question about its (nonquantum) properties and
(with the Principle of Extremal Aging) about orbits of free particles and
light pulses in the equatorial plane.

You say that the Kerr metric provides a complete nonquantum descriptior: of the spin-
ning black hole. Why this reservation? What more do we rieed to know to apply
general relativity to quantum phenomena?

= Inanswer, listen to Stephen Hawking as he discusses the “singularity” of spacetime at
4 the beginning of the Universe. A similar comment applies to the singularity inside any
black hole.

The general theory of relativity is what is called a classical theory.
That is, it does not take into account the fact that particles do not
have precisely defined positions and velocities but are “smeared
out” over a small region by the uncertainty principle of quantum
mechanics that does not allow us to measure simultaneously both
the position and the velocity. This does not matter in normal
situations, because the radius of curvature of space-time is very
large compared to the uncertainty in the position of a particle.
However, the singularity theorems indicate that space-time will
be highly distorted, with a small radius of curvature at the
beginning of the present expansion phase of the universe [or at the
center of a black hole]. In this situation, the uncertainty principle
will be very important. Thus, general relativity brings about its
own downfall by predicting singularities. In order to discuss the
beginning of the universe [or the center of a black hole], we need a
theory that combines general relativity with quantum mechanics.

—Stephen Hawking

Suggestion: As you go along, check the units of all equations, the equations
in the project and also your own derived equations. An equation can be
wrong if the units are right, but the equation cannot be right if the units
are wrong!

Section 3 The Kerr Metric in the Equatorial Plane
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Do Spinning Black Holes Power Quasars?

In contrast to dead solitary black holes, the most powerful
steady source of energy we know or conceive or see in all
the universe may be powered by a spinning black hole of
many millions of solar masses, gulping down enormous
amounts of matter swirfing around it Maarten Schmidt,
working at the Palomar Mountain Observatory in 1956, was
the first to uncover evidence for these quasi-stellar
objects, or quasars, starlike sources of light located not bil-
lions of kilometers but billions of light-years away Despite
being far smaller than any galaxy, the typical quasar man-
ages to put out more than a hundred times as much energy
as our entire Milky Way with its hundred billion stars Qua-
sars—unsurpassed in brilliance and remoteness—can justly
be called lighthouses of the heavens

Observation and theory have come together to explain in
broad outline how a quasar operates A spinning black hole
of some hundreds of millions of solar masses, itself perhaps
built by accretion, accretes more mass from its surroundings
The incoming gas, and stars converted to gas, does not fall
in directly, any more than the water rushes directly down the
bathtub drain when the plug is pulled This gas, as it goes

ever-stronger gravity In the process it is compressed and
heated and finally breaks up into positive ions and electrons,
which emit copious amounts of radiation at many wave-
lengths The in-falling matter brings with it some weak
magnetic fields, which are also compressed and powerfully
strengthened These magnetic fields link the swirling elec-
trons and ions into a gigantic accretion disk Matter little by
little makes its way to the inner boundary of this accretion
disk and then, in a great swoop, falls across the horizon into
the black hole During that last swoop, hold on the particle is
relinquished. Therefore, the chance is lost to extract as
energy the full 100 percent of the mass of each in-falling bit
of matter However, magnetic fields do hold on to the ions
effectively enough and long enough to extract, as radiant
energy, several percent of the mass In contrast, neither
nuclear fission nor nuclear fusion is able to obtain a conver-
sion efficiency of more than a fraction of 1 percent Of all
methods to convert bulk matter into energy, no one has ever
seen evidence for a more effective process than accretion
into a spinning black hole, and no one has ever been able to
come up with a more feasible scheme to explain the action

round and round, slowly makes its way inward to regions of of quasars See Section 11 for more details

QUERY 1 Equatorial-plane Kerr metric in the limit of zero angular momentum. Show
that for zero angular momentum {(a = J/M = 0), the Kerr metric, equation [1],
reduces to the Schwarzschild metric (equation [A] in Selected Formulas at the
end of this book).

QUERY 2 Motion stays in plane. Make an argument from symmetry that a free object

that begins to orbit a spinning black hole in the equatorial plane will stay in
the equatorial plane.

The Kerr metric has four central new features that distinguish it from the
Schwarzschild metric.

The first new feature of the Kerr metric is a new r-value for the horizon.
In the Schwarzschild metric, the coefficient of dr? is 1/(1 — 2M/r). This coef-
ficient increases without limit at the Schwarzschild horizon, ryy = 2M. For
the Kerr metric, in contrast, the horizon—the point of no return—has an r-
value that depends on the value of the angular momentum parameter a.
(Note: A true proof that a horizon exists requires the demonstration that
worldlines can run through it only in the inward direction, not outward.
See Project B, pages B-14-15. Our choice of the horizon at the place where
the coefficient of dr* blows up is an intuitive, but yet correct, choice.)
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the coefficient of dr? increases without limit at the r-value:

2. 172
ry = M:t(M ~a’) [2]

corresponding r-value for the Schwarzschild horizon?

QUERY 3 Radial coordinate of the horizon. Show that for the spinning black hole,

Look first at the case with the plus sign. What value does ry have when
a = 0? For a spinning black hole, is the value of ry greater or less than the

Unless stated otherwise, when we say “the horizon” we refer to equation
[2] with the plus sign.

Research note: Choosing the minus sign in equation [2] leads to a second
horizon that is inside the outer, plus-sign horizon. This inner horizon is
called the Cauchy horizon. Theoretical research shows that spacetime is
stable (correctly described by the Kerr metric) immediately inside the
outer horizon and most of the way down to the inner (Cauchy) horizon.
However, near the Cauchy horizon, spacetime becomes unstable and
therefore is not described by the Kerr metric. At the Cauchy horizon is
located the so-called mass-inflation singularity described in the box on page
B-5. The presence of the mass-inflation singularity at the Cauchy horizon
bodes ill for a diver wishing to experience in person the region between
the outer horizon and the center of a rotating black hole. It is delightful to
read in a serious theoretical research paper a sentence such as the follow-
ing: “Such . . . results strongly suggest (though they do not prove) that
inside a black hole formed in a generic collapse, an observer falling
toward the inner [Cauchy] horizon should be engulfed in a wall of (classi-
cally) infinite density immediately after seeing the entire future history of
the outer universe pass before his eyes in a flash.” (Poisson and Israel)

4 The Kerr Metric for Extreme Angular Momentum

In this project we want to uncover the central features of the spinning
black hole with minimum formalism. The equations become simpler for
the case of a black hole that is spinning at the maximum possible rate.

happens to the (inner) Cauchy horizon in this case?

QUERY 4 Maximum value of the angular momentum. How “live” can a black hole be?
That is, how large is it possible to make its angular momentum parameter
a = JIM? Show that the largest value of the angular momentum parameter, a,
consistent with a real value of ry is a = M. This maximum value of the angular
momentum parameter a is equivalent to angular momentum J = M2. What

A black hole spinning at the maximum rate derived in Query 4 is called an
extreme Kerr black hole. How fast are existing black holes likely to spin;
how “live” are they likely to be? Listen to Misner, Thorne, and Wheeler
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(page 885): “Most objects (massive stars; galactic nuclei; . . .) that can col-
lapse to form black holes have so much angular momentum that the holes
they produce should be ‘very live’ (the angular momentum parameter

a = ] /M nearly equal to M; ] nearly equal to M?).”

QUERY 5 Maximum angular momentum of Sun? A recent estimate of the angular
momentum of Sun is 1.91 x 10*' kilogram meters? per second (see the ref-
erences). What is the value of the angular momentum parameter a = J/IM
for Sun, in meters? (Hint: Divide the numerical value above by My, the
mass of Sun in kilograms, to obtain an intermediate result in units of
meter?/second. What conversion factor do you then use to obtain the
result in meters?) What fraction a/M is this of the maximum possible value
permitted by the Kerr metric?

The metric for the equatorial plane of the extreme-spin black hole results if
we set a = M in equation [1], which then becomes

2 2
dtz = (] - %M)dtz + ﬂdtdd) - d_r - deq)2 [3. extreme Kerr]
r r (1 ~ M_)Z

r

Note how the denominator of the d* term in the Kerr metric differs in two
ways from the dr? term in the Schwarzschild metric: here the denominator
is squared and also contains M/r instead of 2M/r.

Equation [3] has been simplified by defining

3
R'=r2e M+ % [4. extreme Kerr]

The form R2d¢? of the last term on the right side of equation [3] tells us
that R is the reduced circumference for extreme Kerr spacetime. That is,
the value of R is determined by measuring the circumference of a station-
ary ring in the equatorial plane concentric to the black hole and dividing
this circumference by 2r. This means that r is not the reduced circumfer-
ence but has a value derived from equation [4]. Finding an explicit
expression for r in terms of R requires us to solve an equation in the third
power of r, which leads to an algebraic mess. Rather than solving such an
equation, we carry along expressions containing both R and r. Note from
equation [4] that R is not equal to r even for large values of , although the
percentage difference between R and r does decrease as r increases.

QUERY 6 Limiting values of R. What is ry, the value of r at the horizon? What is Ry,
the value of R at the horizon? Find the approximate range of r-values for
which the value of R differs from the value of r by less than one part in a
million.
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QUERY 7 More general R,. Consider the more general case of arbitrary angular
momentum {)arameter a given in equation [1]. What is the expression for
R? (call it R,%) in this case? What is the value of R, in the limiting case of
the nonspinning black hole?

Now move beyond the new r-value for the horizon—the first new feature
of the Kerr metric—to the second new feature of the Kerr metric, which is
the presence of the product dtd¢$ of two different spacetime coordinates,
called a cross product. The cross product implies that coordinates ¢ and ¢
are intimately related. In the following section we show that the Kerr met-
ric predicts frame dragging. What does “frame dragging” mean? Near
any center of attraction, radial rocket thrust is required to keep a station-
ary observer at a fixed radius. Near a spinning black hole, an additional
tangential rocket thrust is required to prevent orbiting, that is to keep the
fixed stars in steady position overhead. One might say that spacetime is
swept around by the rotating black hole: spacetime itself on the move!

Unless otherwise noted, everything that follows applies to the equatorial
plane around an extreme Kerr black hole.

5 The Static Limit

The third new feature of the Kerr metric is the presence of a so-called
static limit. The horizon of a rotating black hole lies at an r-value less than
2M (equation [2] with the plus sign). The horizon is where the metric coef-
ficient of dr* blows up. In contrast, for the equatorial plane, the coefficient
of d?, namely, (1 - 2M/r), goes to zero at r = 2M, just as it does in the
Schwarzschild metric for a nonrotating black hole. The r-value r = 2M in
the equatorial plane at which the coefficient of the dt? term goes to zero is
called the static limit. A comparison of equations [3] and [1] shows that
the expression for the static limit in the equatorial plane is the same what-
ever the value of the angular momentum parameter a, namely

rg = 2M [5]

The static limit gets its name from the prediction that for radii smaller than
rs (but greater than that of the horizon ry) an observer cannot remain at
rest, cannot stay static. The space between the static limit and the horizon
is called the ergosphere. Inside the ergosphere you are inexorably
dragged along in the direction of rotation of the black hole. No matter how
powerful your rockets, you cannot stand at one fixed angle ¢. For you the
fixed stars cannot remain at rest overhead. In principle, a small amount of
frame dragging is detectable near any spinning astronomical object. An
experimental Earth satellite (Gravity Probe B), now under construction at
Stanford University, will measure the extremely small frame-dragging
effects predicted near the spinning Earth. Inside the static limit of a rotat-
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Figure 1 Computer plot of the cross-section of an extreme black hole showing the static limit
and horizon using the Kerr bookkeeper (Boyer-Lindquist) coordinate r (not R} From inside the
horizon no object can escape, even one traveling at the speed of light Between the horizon
and the static limit lies the ergosphere, shaded in the figure Within this ergosphere
everything—even light—is swept along by the rotation of the black hole Inside the
ergosphere, too, a stone can have a negative total energy (Section 10)

ing black hole, in contrast, the frame dragging is irresistible, as will be
described on the following page.

The Kerr metric for three space dimensions—not discussed in this book—
reveals that the horizon has a constant r-value in all directions (is a sphere)
while the static limit has cusps at the poles. Figure 1 shows this result. This
figure is drawn in Kerr bookkeeper (Boyer-Lindquist) coordinates, which
present only one possible way to view these structures. Other coordinate
systems, representing a more “intrinsic” geometry, stretch the horizon in
the horizontal direction, giving it the approximate shape of a hamburger

bun.

QUERY 8 Reduced circumference of the static limit. For the extreme black hole,
find an expression for Rs, the reduced circumference of the static limit, in
the equatorial plane.

QUERY 9 Viewing the spinning black hole from above. Draw a cross-section of the

extreme black hole in the equatorial plane. That is, show what it would
look like to display the static limit and horizon in bookkeeper coordinates
on a plane cut through the horizontal axis of Figure 1, as if looking down-
ward along the vertical axis in that figure. Label the static limit, horizon,
and ergosphere and put in expressions for their radii.
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Now look more closely at the nature of the static limit in the equatorial
plane. Examine the Kerr metric for the case of light moving initially in the
¢ direction (dr = 0). (Only the initial motion in the equatorial plane will be
in this tangential direction; later the beam may be deflected radially
inward or outward.) Because this is light, the proper time is zero between
adjacent events on its path: dt = 0. Make these substitutions in the metric
[3], divide through by df?, and rearrange to obtain

Rz(%)z - 4_14_2(%) - (1 _ 2%’) =0 (6. light]

Equation [6] is quadratic in the angular velocity d¢/dt.

QUERY 10 Tangential motion of light. Solve equation [6] for d¢/dt. Show that the
result has two possible values:

[7. light]

t
am*s T

2 ) 2 2 172
do _2M°  2M [1 r'R (1 ZMJ]
a - gzt e

rR rR

Look closely at this expression at the static limit, namely, where r = 2M
and R? = 6M2. The two solutions are

do _ ap _4aM~ _ 1 i
i 0 and i ,-R2 = 3% [8. light]

To paraphrase Schutz (see references), the second solution in [8] represents
light sent off in the same direction as the hole is rotating. The first solution
says that the other light flash—the one sent “backward”—does not move
at all as recorded by the far-away bookkeeper. The dragging of orbits has
become so strong that this light cannot move in the direction opposite to
the rotation! Clearly, any material particle, which must move slower than
light, will therefore have to rotate with the hole, even if it has an angular
momentum arbitrarily large in the sense opposite to that of hole rotation.

QUERY 11 Light dragging in the ergosphere. Show that inside the ergosphere (r such
that ry < r < rs), light launched in either tangential direction in the equa-
torial plane moves in the direction of rotation of the black hole as
recorded by the far-away bookkeeper. That is, show that the initial tan-
gential angular velocity d¢/dt is always positive.

The static limit creates a difficulty of principle in measuring the reduced
circumference R, defined by equation [4] on page F-6. According to that
definition, one measures R by laying off the total distance—the circumfer-
ence—around a stationary ring in the equatorial plane concentric to the
black hole and dividing the circumference by 2= to find the value of R. But
inside the static limit no such ring can remain stationary; it is inevitably
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swept along in a tangential direction, no matter how powerful the rockets
we use to try to keep it stationary. Thus, for the present, we have no practi-
cal definition for R inside the static limit. We will overcome this difficulty
in principle in Section 9.

For completeness, we mention here the fourth new feature of the Kerr
metric, which is analyzed further in Sections 10 and 11.

The fourth new feature of the Kerr metric is available energy. No net
energy can be extracted from a nonspinning black hole (except for the
quantum “Hawking radiation,” page 2-4, which is entirely negligible for
star-mass black holes). For this reason, the nonspinning black hole carries
the name dead. In contrast, energy of rotation is available from a spinning
black hole, which therefore deserves its name live. See Section 12.

6 Radial and Tangential Motion of Light

QUERY 12 Radial motion of light. For light (dt = 0) moving in the radial direction
(d$ = 0), show from the metric that

1/2
‘;_: - 1(1 —A—;[)(l —zf—l) [9. light, do = 0]

Show that this radial speed goes to zero at the static limit and is imaginary
(therefore unreal) inside the ergosphere. Meaning: No purely radial
motion is possible inside the ergosphere. See Figure 2.

For light (dt = 0) moving in the tangential direction (dr = 0), we call the
tangential velocity Rd¢/dt as recorded by the Kerr bookkeeper. From
equation [7], this tangential velocity is given by

do oM oM. AR, ]
r . _
E‘- = R - o 'R l:l +4 4(1"7)] [10. llght, dr—O]

The second term on the right side of [10] can be simplified by substituting
for R? in the numerator from equation [4]. (Trust us or work it out for
yourself!) Equation [10] becomes

R0 _2M* r-M
dt ~ rR R

[11. light, dr = 0]

F-10 PROJECT F The Spinning Black Hole



QUERY 13 Light dragging at the horizon. What happens to the light dragging at the
horizon (ry given by equation [2] with the plus sign and a =M, and Ry
derived in Query 6)? Show that at the horizon the initial tangential rota-
tion d¢/dt for light has a single value whichever way the pulse is launched.
Show that the bookkeeper velocity Rdd/dt for this light at the horizon has
the value shown in Figure 2.

The radial and tangential velocities of light in equations [9] and [11] are
bookkeeper velocities, reckoned by the Kerr bookkeeper using the coordi-
nates r and ¢ and the far-away time t. Nobody measures the Kerr
bookkeeper velocities directly, just as nobody measured directly book-
keeper velocities near a non-spinning black hole (Chapters 3 through 5).

Figure 2 shows the radial and tangential bookkeeper velocities of light for
the extreme Kerr metric. Note again that these plots show the initial veloc-
ity of a light flash launched in the various directions. After launch, a
radially moving light flash may be dragged sideways or a tangentially
moving flash may be deflected inward.

QUERY 14 Locked-in motion? (Optional) Kip Thorne says, “l guarantee that, if you
send a robot probe down near the horizon of a spinning hole, blast as it
may it will never be able to move forward or backward [in either tangen-
tial direction] at any speed other than the hole’s own spin speed. . . .”
What evidence do equation [11] and Figure 2 give for this conclusion?
What is “the hole’s own spin speed”? (See Kip S. Thorne, Black Holes and
Time Warps, W. W. Norton & Co., New York, 1994, page 57.)

7 Wholesale Results, Extreme Kerr Black Hole

Now suppose that you have never heard of the Kerr metric and someone
presents you with the “anonymous” metric [3] (which we know to be the
metric for the extreme Kerr black hole) plus the definition of R:

2 2
di = (1 —zﬂ)dt2+ﬂdtd¢—L—R2d¢2 [3]
sy
r
2_ 2 2 2M°
Rr=r’+ M+ 220 [4]

You say to yourself, “This equation is just a crazy kind of mixed-up
Schwarzschild-like metric, with a nu:? denominator for the dr? term, a
cross-term in dtde, and R? instead of Z as a coefficient for do?. Still, it's a
metric. So let’s try deriving expressions for angular momentum, energy,
and so forth for a particle moving in a region described by this metric in
analogy to similar derivations for the Schwarzschild metric.” So saying,

Section 7 Wholesale Results, Extreme Kerr Black Hole

F-11



Tangential velocity of 1ight
indirection
of rotation

Radial velocity

of Hght
04+ !

03+
02+
01+

0

or]

-02-

=031 Tangential velocity of light

opposite to direction of rotation

T

-0 4-

|
I
|
|
|
|
|
I
|
I
i
|
|
|
|
|
1
|
|
1
I
1
|
|
!
|
|
|

05T Horizon

-06-+

074 Static Limit

-0 84

-0 94

-1k

Figure 2 Computer plot of bookkeeper radial and tangential velocities of light near an extreme Kerr
black hole (a = J/IM = M) Note that as r/M becomes large, the different bookkeeper velocities all
approach plus or minus unity Note also that purely radial motion of light is not possible inside the static
limit Important These are initial velocities of light just after launch in the given direction After launch,
the light will generally change direction For the case of a nonrotating black hole, see Figures 6 and 7,
pages B-18-19
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Table 1 Comparison of results of nonspinning and extreme-spin black holes

Quantity Nonspinning Schwarzschild Extreme-spin Kerr black hole
black hole (“shell” = stationary ring outside static limit)
Definer and R | Reduced circumference = Reduced circumference R given by:
_ (circumference of shell) 3
r= 2 (12} R2 = r2 + M2 + 2—1:! [13]
Shell time vs.
far-away time: IM\172 2 M\172
(gravitational | dfgey = (1 - T) dt  [14] | dty,, = (1 - ——;—) dt [15. stationary]
red shift)
drshell vs. dr 2MN\-172 M-
drghen = (1 - T) dr [16] | drgg = (1 - 7) dr [17. stationary]
Energy E 2M\ds 2
(constant of mo (1 - T)% (18] | £ _ (1 - M)% M j_tb [19]
the motion) m rJav.r o at
Angular
momentum L 2d¢ 2
(constant of m ot [20] | L _ Rz? _2M % [21]
the motion) m Torat
you use the Principle of Extremal Aging and other methods of Chapters 2
through 5 to derive expressions similar to results in those chapters and
enter them in the last column of Table 1.
Notes: (1) We limit ourselves to the equatorial plane. (2) Outside the static
limit we can still set up stationary spherical shells (which we have limited
to stationary rings in the equatorial plane), but we must use continual tan-
gential rocket blasts to keep these rings from rotating in the tangential
direction.
QUERY 15 Energy and angular momentum as constants of the motion. Derive Table
1, entries [19] and [21] for energy and angular momentum of a free object
moving in the equatorial plane of an extreme Kerr black hole.
8 Plunging: The “Straight-In Spiral”
For the nonrotating black hole the simplest motion was radial plunge
(Chapter 3). What is the simplest motion near a spinning black hole? By
analogy, let us examine motion starting from infinity and proceeding with
zero angular momentum.
Section 8 Plunging: The “Straight-In Spiral” F-13
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Figure 3 Computer plot. Kerr map (Kerr bookkeeper plot) of the trajectory in space of a stone
dropped from rest far from a black hole (therefore with zero angular momentum). According to
the far-away bookkeeper, the stone spirals in to the horizon at r = M and circulates there forever

QUERY 16 No angular momentum. But angular motion! Set angular momentum [21]
equal to zero and verify the following equation:

do _ 2M”

[22. L =0]
dt , R2

Equation [22] gives the remarkable result that a particle with zero angular
momentum nevertheless circulates around the black hole! This result is
evidence for our interpretation that the black hole drags nearby spacetime
around with it. Figure 3 shows the trajectory of an inward plunger with
zero angular momentum, as calculated in what follows.

Let’s see if we can set up the equations to follow a stone that starts at rest
far from a rotating black hole and moves inward with zero angular
momentum. At remote distance, in flat spacetime, the stone has energy
E/m = 1. It keeps the same energy as it falls inward. From equation [19] in

Table 1,
2
E_ | _(_2Mdt 2de
r—ﬁ—l_(l r)d‘t+ r dt [23]

Equations [22] and [23] are two equations in the four unknowns dr, dt, dr,
and d¢. A third equation is the metric [3] for the extreme-spin black hole.

With these three independent equations, we can eliminate three of the four
unknowns to find a relation between any two remaining differentials. We
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choose the quantities dr and d¢, because we want to draw the trajectory,
the Kerr map. Don'’t bother doing the algebra—it is a mess. After substitut-
ing equation [4] for R? into the result, one obtains the relation between dr

and d¢:
5 4 3 172
_r=-M| r r r 2 Mr
dr— r 3——2+H—r +T d¢
2M™ M
s 3 12 [24. L =10]
(r-M)'| r r o

The computer has no difficulty integrating and plotting this equation, as
shown in Figure 3. Since we used the Kerr bookkeeper angular velocity
[22], the resulting picture is that of the Kerr bookkeeper. For her, the zero-
angular-momentum stone spirals around the black hole and settles down
in a tight circular path at r = M, there to circle forever.

QUERY 17 Final circle according to the bookkeeper. Verify that dr goes to zero (that is,
r does not change) once this stone reaches the horizon.

Remember that for the nonspinning black hole an object plunging inward
slows down as it approaches the horizon, according to the records of the
Schwarzschild bookkeeper. For both spinning and nonspinning black
holes, the in-falling stone with L = 0 never crosses the horizon when
clocked in far-away time.

QUERY 18 Bookkeeper speed in the “final circle.” At the horizon, what is the numeri-
cal value of the tangential speed Rd¢/dt of the stone dropped from rest at
infinity, as measured by the Kerr bookkeeper?

The observer who has fallen from rest at infinity has quite a different per-
ception of the trip inward! For her there is no pause at the horizon; she has
a quick, smooth trip to the center (assuming that the Kerr metric holds all
the way to the center!). An algebra orgy similar to the previous one gives a
relation between dr and dt, where dt is the wristwatch time increment of
the in-faller:

(&) -

5
M —aM? P v aMPr—amt ¢ 2-ti

2 2
PX(r— M) [25.L = 0]
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Figure 4 compares the magnitude of the square root of this expression
with the magnitude of the velocity of the stone dropped from rest at a
great distance in the Schwarzschild case (equation [32], page 3-22):

1/2
ar _ _ (M) / [26. L = 0 Schwarzschild]
dz r

Both equations [25] and [26] show radial components of speed greater
than unity in the region of small radius. The resulting speed is even more
impressive when one adds the tangential motion forced on the diver
descending into the spinning black hole (Figure 2 and 3). Does such
motion violate the “cosmic speed limit” of unity for light? A similar ques-
tion is debated for the Schwarzschild black hole in Section 3 of Project B,
Inside the Black Hole, pages B-6-12.

Research note: When applied inside the horizon, equation [25] assumes
that the Kerr metric correctly describes spacetime all the way to the center
of the extreme Kerr black hole. This may not be the case. See the box Egg-
beater Spacetime? on page B-5.

9 Ring Riders

Equation [22] in Section 8 describes the angular rotation rate ® of an in-
falling stone that has zero angular momentum:

2

%Eﬂﬁ—z [27.L=0]

rR

In some way, o in this equation describes the angular rate at which space
is “swept along” by the nearby spinning black hole. What happens if we
“go with the flow,” moving tangentially at angular rate » given by this
equation? Will we cease to feel a tangential force? What happens to us at
the static limit?

To pursue these ideas, we envision a set of nested rings in the equatorial
plane and concentric to the black hole (Figure 5). Each of these rings
revolves at an angular rate given by equation [27] as reckoned by the Kerr
bookkeeper. Rings at different values of r rotate at different angular rates.

The result of this construction is a set of observers in the equatorial plane
whom we call ring riders. A ring rider is an observer who stands at rest on
one of the zero angular momentum rotating rings. In times past, ring rid-
ers were known as locally nonrotating observers, but now the customary
name is zero angular momentum observers or ZAMOs. Each ring rider,
like each shell observer in Schwarzschild geometry, is subject to a gravita-
tional acceleration directed toward the center of the black hole, but
experiences no frame dragging in the tangential direction (because he
rides along with the rotating ring). In both cases the radially inward gravi-
tational acceleration becomes infinite at the horizon, destroying any
possible circumferential ring structures at or inside the horizon. According
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Figure 4 Comparison of radial components of plunge velocities experienced by different
in-fallers who drop from rest (so with L = 0) at a great distance from Schwarzschild and extreme
Kerr black holes.
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Figure 5 Kerr map (perspective plot) of rings surrounding a rotating black
hole The rings rotate in the same direction as the black hole but at angular
rates that differ from ring to ring

to ring rider measurements, light has speed unity, the same speed in both
tangential directions, as we shall see.

QUERY 19 Ring slippage. Will the inner rings rotate with larger or smaller angular
velocity than the rings farther out? Justify your choice.

QUERY 20 Ring speed according to the bookkeeper. What are the units of  in equa-
tion [27]? What is the numerical value of the bookkeeper speed Rw for
each of the rings r = 100M, r = 10M, r = 2M, and r = M? Express the
answers as a fraction of the speed of light.

QUERY 21 Does rain fall vertically? Present an argument that a stone dropped from
rest starting at a great radial distance falls vertically past the rider on
every ring. Guess: Is the same true if the stone is flung radially inward
from a great distance? Guess: What about light?

Section 9 Ring Riders
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Can we write a simplified metric for the ring rider? Probably not for
events separated radially because of shearing, the slippage between adja-
cent rings. So limit attention to events separated tangentially along the
ring. According to the remote observer, each ring revolves with angular
velocity ® given by equation [27]. Define an azimuthal angle increment
dring that the ring rider measures along the ring with respect to some zero
mark on the ring. Let an object move along the ring. Then the Kerr book-
keeper will observe a different angular rate for rotation of the ring
(angular rate ®) than for change in her ¢ coordinate:

do _ d¢ring
a - ar ° [28]
The positive direction of both d¢ and d,,,g is in the direction of rotation of
the black hole.

Now think of two events separated by the angle d¢,;,; along the ring and
at far-away time separation dt. Then the angular separation d¢ between
these two events for the far-away observer is, from [27] and [28],

oM

do = d¢nng + —2dt [29. dr = 0]
R

The metric [3] with the same limitation to motion along the ring
dr=0)is

2
dit = ( - %)d:z + ‘%d:dcp _ R%d¢’ [30. dr = 0]

QUERY 22 New metric for the ring. Substitute equation [29] into [30]. Show first that
the coefficient of the cross-term in dtd¢ying is equal to zero. Second, collect
terms in dt2 and dd;nq2 to show that the resulting metric is given by equa-
tion [31] for motion along the ring. Hint: Group over a common
denominator r2R2, then substitute in the numerator for R? (equation [4]):

2 2
2 r M 2 2,2
dt” = ;ﬁ(l —-;-) dt”—R d(brmg [31. dr =0]

QUERY 23 Time on the ring rider clock. A ring rider is at rest on the ring. Show that
the time dt,;,q between ticks on his clock and the time dt between ticks on
the far-away clock are related by the equation

r-M

d'ring =R dt {32. dr = d@ying = 01

Show that, with this substitution, the metric for dr = 0 becomes

2
nng

dv’ = diy, - R*do [33.dr = 0]
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In brief, for nearby events along the ring, the metric [33] looks like that of
flat spacetime. But spacetime is not flat on a rotating ring near a spinning
black hole; the coordinates that appear in [33] do not form a coordinate
system useful globally as the Kerr bookkeeper coordinate system is. Equa-
tion [33] describes a local frame, useful only in analyzing events and
experiments that are strictly limited in space and time and for which the
local “gravitational force” can be neglected. In this regard it is similar to
the corresponding local shell frame around a nonspinning black hole
described by the metric [33] on page 2-33.

Equation [33] in Query 23 is limited in many ways: It deals with two adja-
cent events in the equatorial plane of an extreme-spin black hole.
However, this equation is useful for analyzing nearby events that occur
along the same ring.

Now (finally!) we can define the reduced circumference R everywhere
external to the horizon, even inside the static limit. A ring rider measures
the circumference of his freely rotating ring and divides this circumference
by 2n.

( circumferr—‘jnce .of j —27R [34]
freely rotating ring

The result is a formal definition of the reduced circumference R for this
zero angular momentum (freely rotating!) ring. The value of R, along with
the value of r from equation [4], is then stamped on each rotating ring for
all to see and for everyone to use. The same values of R and r can also be
stamped on each nonrotating ring that coincides with an already mea-
sured rotating ring. (Of course, nonrotating rings can exist only outside
the static limit.)

In principle this set of rotating rings extends from the horizon to infinite
radius. For a pair of events near one another along a given ring, the proper
distance do between them is given by the equation

do = Rdé [35. dr = dt = 0]

ring

QUERY 24  Speed of light along the ring is unity for ring riders. From the metric [33],
show that the ring rider measures the speed of light along the ring to have
the magnitude unity. Is this value the same for motion of the light in both
directions along the ring (Figure 6)?

QUERY 25 Is motion along ring free or locked? Hard thought question,; optional.
Equation [33] says that the ring rider on every ring can use special relativity
in analyzing motion along the ring. So he must be able to move freely back
and forth along the ring, even on a ring near the horizon. In contrast,
Query 14 asserts that the tangential motion near the horizon is rigidly
locked to the rotation of the black hole. Locked or free? What's going on?
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Figure 6 Silvered inner surface of rotating ring allows
signaling at light speed v = 1 as measured by observers
on the same ring, with synchronization of their clocks,
etc. Light-path segments shown as straight will be
curved. We assume that each segment is arbitrarily
short so that the light skims along close to the ring.

10 Negative Energy: The Penrose Process

Roger Penrose devised a scheme for milking energy from a spinning black
hole. This scheme is called the Penrose process (see references). The Pen-
rose process depends on the prediction that in some orbits inside the
ergosphere a particle can have negative total energy. Before we detail the
Penrose process, we need to describe negative total energy.

Negative Total Energy

What can negative total energy possibly mean? Negative energy is
nothing new. In Newtonian mechanics the potential energy of a particle at
rest far from Sun is usually taken to be zero by convention. Then a particle
at rest near Sun has zero kinetic energy and negative potential energy,
yielding a total energy less than zero. But in Newtonian mechanics the
zero point of potential energy is arbitrary, and all reasonable choices of
this zero point lead to the same description of motion. In contrast, special
relativity determines the rest energy of a free material particle in flat
spacetime, setting its rest energy equal to its mass. So the arbitrary choice
of a zero point for energy is lost, and a particle far from a center of gravita-
tional attraction always has an energy that is positive.

For Schwarzschild geometry the physical system differs from Newtonian.
A particle at rest near the horizon of a nonspinning black hole has zero
total energy (from equation [18] in Sample Problem 1, page 3-12). The
meaning? That it takes an energy equal to its rest energy (= m) to remove
this particle to rest at a large distance from the black hole (where it has the
energy m). As a consequence, if the particle drops into the black hole from
its stationary position next to the horizon, then the mass of the combined
black-hole particle system (measured by a far-away observer) does not
change.

F-20 PROJECT F The Spinning Black Hole



For Kerr geometry the physical system differs from that in Schwarzschild
geometry. A particle can have a negative energy near a spinning black
hole. The meaning? An energy greater than its rest energy (greater than m)
is required to remove such a particle to rest at a great distance from the
black hole. If the particle with negative energy is captured by the spinning
black hole, the black hole’s mass and angular momentum decrease. (See
Section 11.) This process can be repeated until the black hole has zero
angular momentum. Then it becomes a “dead” Schwarzschild black hole,
from which only Hawking radiation can extract energy (box, page 2-4).

Strategy of the Penrose Process

The strategy of the Penrose process is similar to the following series of
unethical financial transactions:

1. You and I decide to share our money. Our combined net worth
is positive.

2.1 give you all my money, then borrow money from a bank and
give that to you as well. My bank debt is a negative entry on
my accounting balance sheet, so now my net worth is negative.

3. I declare bankruptcy and the bank is stuck with my debt.

The net result is the transfer of money from me and from the bank to you.
The bank provides the mechanism by which I can enter a state of negative
net worth.

The Penrose process is similar:

1. Starting at a distant radius, you and I together descend to a
position inside the ergosphere.

2. We are moving together tangentially inside the ergosphere in
the rotation direction. You push me away violently in a direction
opposite to the direction of rotation. This push puts you into a
new trajectory and puts me into a state of negative energy.

3. I drop into the black hole, which is stuck with my negative
energy. You continue in your new trajectory, arriving at a
distant radius with augmented energy.

The net result is the transfer of energy from me and from the black hole to
you. The spinning black hole provides the mechanism by which I can
enter a state of negative energy.

This entire strategy rests on the assumption that an object can achieve a
state of negative energy in the space surrounding a spinning black hole. Is
this assumption correct? Look again at expression [19] for the energy of a
stone near an extreme Kerr black hole:

Section 10 Negative Energy: The Penrose Process
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E _ (1 _2M)dt L 2M’de
m

dar r dt [19]

Can this energy be negative? Start to answer this question by finding the
“critical” condition under which the energy is zero.

QUERY 26

QUERY 27

QUERY 28

Conditions for zero energy. Set £/m = 0 in equation [19] and show that the
resulting expression for the bookkeeper rate of change of angle is

(dcb) _2M-r
dt)e=0  p?

[36]

Under what conditions is this angular velocity negative? positive?

Bookkeeper tangential velocity for zero energy. Now assume that the
direction of motion is tangential and show that the bookkeeper velocity is
given by the expression

d R(2M -r)
Ubkkpr E=0 = ( d‘f)F;O 2M2 [37.dr=0]

Bookkeeper tangential velocities for negative energy. Now redo the analy-
sis for the circumstance that the particle energy is negative. Show that the

condition is
RQ2M —r)

v < ——
bkkpr E=ne;
P & 2M2

[38. dr = 0]

Figure 7 shows a plot of equation [37] along with plots of the positive and
negative tangential velocities of light from Figure 2. The tangential motion
of any particle must be bounded by the curves of tangential light motion.
(Inside the ergosphere even light moving “in the negative tangential direc-
tion” moves forward, in the direction of rotation, according to the remote
bookkeeper.) In addition, equation [38] tells us that a particle with nega-
tive energy must have a tangential velocity that lies below the heavy line
in the Figure 7. The shaded area in that figure conforms to these conditions
and shows the range of bookkeeper tangential velocities of a stone for
which the stone has negative energy.

Next we turn our attention away from the bookkeeper to what the ring
rider sees (Query 29).
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Figure 7 Computer plot showing bookkeeper tangential velocities of light (thin curves) and
tangential velocity of a stone with zero energy (thick curve), calculated using equation {37].
For r greater than 2M, the static limit, the particle cannot have zero energy (or negative
energy), because it would have to be moving in a negative tangential direction with a speed
greater than that of light in that direction. Only inside the ergosphere is this critical tangential
velocity possible. The shaded area shows the range of bookkeeper velocities for which the
stone has negative energy.

QUERY 29 Ring rider velocity for zero energy. Optional—messy algebra! A stone
moves tangentially along a rotating ring. For what values of the ring
velocity vrjng will the energy measured at infinity be negative? Set
E/m = 0 in equation [19]. Then make substitutions from equations [29]
and [32] to convert variables to dding and dt;i,g. Simplify using equation
[4]. Show that the result is

dbgp, 1(r r
Uting, E=0 = R;'tn_—m: = - Q(A_l— 1)& [39]
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Figure 8 Computer plot showing the range of ring velocities (shaded region) for which the energy
measured at infinity is negative. Negative ring velocity means motion along the ring in a direction
opposite to the direction of rotation of the black hole

Figure 8 plots equation [39] for ring velocity. Energy measured at infinity
E/m will be negative for values of the ring velocity in the shaded region of
the plot. The range of ring velocities for which energy is negative depends
on the radius of the ring. Limiting cases are interesting: For a ring at the
static limit, motion backward along the ring with the speed of light leads
to zero energy. In contrast, for a ring near the horizon, any backward
velocity, no matter how small, leads to negative energy.

11 Quasar Power

How much total energy can be extracted from a rotating black hole? In
general relativity, energy is a seamless whole; we cannot separate the
kinetic from the rest energy of a rotating object. Milking energy from a
rotating black hole changes its mass M along with its angular momentum
J. Analysis has identified a so-called irreducible mass M;,, that is the
smallest residual mass that results when all the angular momentum is
milked out of a rotating black hole. This irreducible mass M;,, of an
uncharged rotating black hole with angular momentum parameter

a = J/M is given by the equation
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M2 = Lot e mon? - A [40]

14 S

or equivalently

2
2 2 J
M” = M +—— [41]
M irr
(Wald, page 326. Misner, Thorne, and Wheeler, page 913) This result was
discovered in Princeton by a 19-year-old Athenian, Demetrios

Christodoulou, who never finished high school.

The final state is a nonrotating Schwarzschild black hole of mass M;,. The
net result is that a total energy M — M;,, has been extracted from an
uncharged rotating black hole.

QUERY 30 Irreducible mass of extreme Kerr black hole. What is the irreducible mass
of an uncharged extreme Kerr black hole of mass M? What fraction of the
mass M of an extreme Kerr black hole can be extracted in the form of
energy by an advanced civilization (defined as a civilization that can
accomplish any engineering feat not forbidden by the laws of Nature)?

QUERY 31 How much energy is available from the monster in our galaxy? Imagine
that the black hole of mass M = 2.6 x 10° Mg, thought to exist at the cen-
ter of our galaxy is an extreme Kerr black hole. How much total energy
can be milked from it? Express your answer as a multiple of the mass Mg,
of our Sun.

From where do quasars get their power (box, page F-4)? Probably not
directly from the Penrose process (Section 10). One set of theories has the
quasar radiation coming from the gravitational energy of matter descend-
ing toward the black hole as it orbits in an accretion disk. This matter
interacts with other matter in the disk in a complicated manner not well
understood. As debris in the disk moves toward the center, it is com-
pressed along with its magnetic fields, is heated, and emits radiation
copiously. The net result is to convert its gravitational energy into radia-
tion with high efficiency (high compared with nuclear reactions on Earth).
Note that the angular momentum of the black hole may actually be
increased during this process, depending on the overall angular momen-
tum of the gas and clouds swirling into the black hole. Another theory
derives the quasar output from the rotation energy of the black hole itself,
employing magnetic field lines to couple black hole rotation energy to the
matter swirling around exterior to the horizon of the black hole. Such a
model leads to reduction in the rotation rate of the black hole.

Section 11 Quasar Power

F-25



QUERY 32 Quasar output. How much energy does a quasar put out each second?
Suppose that the quasar emits energy at a rate 100 times the rate of our
entire galaxy, which contains approximately 10! stars similar to our Sun.
How much energy does Sun put out per second? Luminous energy from
Sun pours down on the outer atmosphere of Earth at a rate of 1370
watts per square meter (called the solar constant). From the solar con-
stant, estimate the energy production rate of our Sun in watts, then of
our galaxy, and then of a quasar that emits energy at 100 times the rate
of our galaxy. This rate corresponds to the total conversion to energy of
how many Sun masses per Earth-year?

The details of the emission of radiation by quasars may be complicated,
but the analysis in the present project provides the basis for an estimate of
the energy available for such processes.

Suppose that each element of the accretion disk circles the black hole at the
same rate of rotation as the local ring (an unrealistic assumption, since
rotating with the ring does not place the particle in a stable circular orbit).
As a given bit of debris moves inward, let it radiate energy sufficient to
keep it at rest with respect to the local ring. For a bit of debris riding on the
ring, the time dt between ticks on its wristwatch is the same as time dt ;g
between ticks of the ring clocks, since they are relatively at rest. Equation
[19] for the energy of this bit of debris then becomes

2
E =(1_?-A4) dt_ 2M" _d¢ [42]
m r Jdt. r dz‘ring

ring

Now, the relation between ring time increments and bookkeeper time
increments is given by equation [32]:
r-M

dting = R dt [32]

QUERY 33 Energy of stone riding on the ring. Substitute equation [32] into equa-
tion [42], use equation [27] for the resulting d¢/dt, and collect terms
over a common denominator R(r - M) to obtain

4
(1 - ZTM)RZ LA
= RG =D r [43. riding on ring]

E
m

For the expression for RZ in the numerator (only) substitute from equa-
tion [4] and simplify to show that, for a stone riding on the ring,

E r-M

[44. riding on ring]
m R
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Figure 9 Computer plot of energy measured at infinity for an object riding at rest on a ring
rotating at various radii around an extreme Kerr black hole. Example shown by dot on the
diagram. Stone riding at rest on a ring at r = 4M has total energy measured at infinity of
E=0.72m.

Equation [44] is a simple expression but awkward to calculate because R is
a function of r (equations [4] and [13]). However, the computer has no dif-
ficulty with these complications and plots the result in Figure 9.

QUERY 34 Brilliant garbage. A blob of matter starts at rest at a great distance from
a black hole and gradually descends, riding at rest on each local ring and
emitting any change of energy as radiation. Now this matter rides on the
ring at r = 2M, the static limit. From Figure 9, determine what fraction of
its original rest energy it has radiated thus far. In principle, what is the
maximum fraction of its original rest energy that can be radiated before
it disappears inward across the horizon of the black hole?

Figure 9 is not to be taken literally. In practice the rings do not rotate at the
same rate as the accretion disk, and the accretion disk itself is not a per-
fectly efficient emitter of radiation. A few percent of the rest energy of
swirling particles may be emitted in the form of radiation before they
plunge across the horizon. Still, a few percent is far greater than the effi-
ciency of nuclear reactors on Earth.
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12 A “Practical” Penrose Process

Using results of Sections 10 and 11, we can devise a “practical” Penrose
process by which energy can be milked from an extreme spinning black
hole. Actually, this process is “practical” only for an advanced civilization,
one that can accomplish any engineering feat not forbidden by the laws of
Nature. Outline of the strategy: Equal masses of matter and antimatter
(say positrons and electrons united in positronium molecules, in bulk as
liquid positronium) are carried down to a rotating ring just outside the
horizon of an extreme Kerr black hole. There the matter and antimatter are
combined (annihilated) to create two oppositely moving pulses of radia-
tion. One pulse has negative energy and drops into the black hole, robbing
the black hole of some of its mass and energy of rotation. The other pulse
has positive energy and escapes to a distant observer who uses this energy
for practical purposes. Now for the details.

The generalization of equation [44] for a particle moving along a rotating
ring is given by the equation

E =r—M+2sz
Emg R TR one

[45]

where Vping = Rdying/d Equation [45] comes from applying a boatload
of algebra to equatlons [15] [29], and [32] and simplifying using equation
[4]. In addition, the derivation of [45] employs the following results of spe-
cial relativity:

Efing = MYting [46. special relativity]
where
1 . . .
Yong = 5 i/2 [47. special relativity]
( 1- vnng)

A final transformation (time stretching) from special relativity tells us that

dt dt [48. special relativity]

ring Yring
where dt is the wristwatch time of the stone moving along the ring.

Note that in equation [45], v, can be positive or negative, corresponding
to motion in either dlrechon along the ring. Under some circumstances,
the result is negative energy for the particle.

Now apply some simplifying circumstances. First keep constant the value

of Erjng = MYring in equation [46] while letting m go to zero and vyng go to
plus or minus one The result signifies a pulse of light.
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Second, apply equation [45] to a rotating ring very close to the horizon, as
a limiting case. In other words r —> M and R —> 2M. Equation [45]
becomes

= %] [49. light flash moving along ring as r —> M]

With these equations we can analyze the following idealized method for
milking energy from the black hole. Start with a mass m of matter and an
equal mass m of antimatter. Total mass: 2m.

Phase 1. Take the total load of mass 2m down to a position at rest on a ring
near to the horizon of an extreme Kerr black hole, milking off the energy
as it makes successive moves from rest on one ring to rest on the next
lower ring.

QUERY 35 Energy extracted in Phase 1. When Phase 1 is completed, how much
energy will have been milked off for use at a distant location?

Phase 2. Combine the matter and antimatter at rest on the near-horizon
ring and direct the resulting light pulses in opposite directions along the
ring at the horizon.

QUERY 36 Energies of tangential light flashes. Just after Phase 2 is completed, what
is the ring energy E,;,q of each of the two light pulses moving along the
ring as measured locally by a rider on that ring? What is the energy mea-
sured at infinity E of each of these flashes?

Now the light flash with negative energy drops across the horizon into the
black hole, thereby reducing the angular momentum (and mass) of the
spinning hole. In contrast, the light flash with positive energy flies outto a
great distance and its energy is employed for useful purposes.

QUERY 37 Total energy extracted. In summary, what is the total useful energy made
available to distant engineers as a result of this entire procedure? How
much mass/energy was the input for this process?

QUERY 38 Phase 1 reduction of angular momentum? Thought question, optional.
Does the energy extracted in Phase 1 by itself reduce the rotation rate of
the black hole? In answering, recall the analogous extraction of energy
from a nonrotating black hole (Exercise 6, Chapter 3).

13 Challenges

Nothing but algebra stands in the way of completing a full analysis of
orbits of stones and light in the equatorial plane of the extreme Kerr black
hole. The strategies required are analogous to those that led to similar
results for the nonrotating Schwarzschild black hole (Chapters 4 and 5).
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* Computing the orbits of a stone from equations that relate dr and d¢ to
the passage of wristwatch time d<t (similar to equations [21] and [22],
page 4-9).

* Carrying out qualitative descriptions of different classes of orbits
using an effective potential (similar to equation [32], page 4-18).

* Finding stable circular orbits, similar to those analyzed in the exercises
of Chapter 4. (Stable orbits allow a more realistic analysis of the behav-
ior and energy of a particle orbiting with the accretion disk.)

¢ Predicting orbits of light as done in Chapter 5.

* Predicting details of life inside the horizon, comparable to the analysis
carried out for the Schwarzschild black hole in Project B, Inside the
Black Hole. Such an analysis is probably fantasy, since inside the
Cauchy horizon (choosing the minus sign in equation [2]) spacetime
appears to be unstable, hence not described by the Kerr metric, and
possibly lethal to incautious divers.

* Verifying that an extreme spinning black hole cannot accept additional
angular momentum. Can an object moving in the direction of rotation
of an extreme black hole cross the horizon and thus increase the angu-
lar momentum of this structure which already has maximum angular
momentum?

Much of the complicated algebra that lies on the way to these outcomes
springs from the relation between the radius r and the reduced circumfer-
ence R given by equation [4]. Once the algebra is mastered, results can be
plotted using a simple computer graphing program.

¢ For readers with unfettered ambition or for those skilled in the use of
computer algebra manipulation programs, the outcomes of this project
can be rederived for a black hole that spins with angular momentum
parameter a = [/M less than its maximum value. Start with the metric
[1] and use the more general reduced circumference R,, defined by the

equation (valid in the equatorial plane)

2 2 2Ma2

R§=' +a + [50]

The resulting equations are easy to check at the extremes: They go to
the Schwarzschild limit when 2 —> 0 and to the expressions derived in
this project when a —> M.

¢ We have studied two important metrics: the Schwarzschild metric for
a nonspinning black hole and the Kerr metric for a spinning black
hole. You can apply the skills you have now mastered to analyze the
consequences of a third metric, the so-called Reissner-Nordstrem
metric for an electrically charged nonspinning black hole. For a pair of
events that occur near one another on a plane through the center of
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such a charged black hole, the Reissner-Nordstrem metric has the
form

2 2
dt? = [1 - 2%4 + Q—Z}dﬁ - dr ~ rPd¢? [51]

Here Q is the electric charge of the black hole in units of length.

Good luck!

The essence of newer physics

Of all the entities I have encountered in my life in physics, none
approaches the black hole in fascination. And none, I think, isa
more important constituent of this universe we call home. The
black hole epitomizes the revolution wrought by general
relativity. It pushes to an extreme—and therefore tests to the
limit—the features of general relativity (the dynamics of curved
spacetime) that set it apart from special relativity (the physics of
static, “flat” spacetime) and the earlier mechanics of Newton.
Spacetime curvature. Geometry as part of physics. Gravitational
radiation. All of these things become, with black holes, not tiny
corrections to older physics, but the essence of newer physics.

—John Archibald Wheeler

14 Basic References to the Spinning Black Hole

Introductory references to the spinning black hole

For the human and scientific story of the spinning black hole, read Kip S.
Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy, W. W.
Norton, New York, 1994, pages 46-54 and 286-299.

Bernard E Schutz has an excellent analytic treatment in A First Course in

General Relativity, Cambridge University Press, New York, 1985 (reprinted
with corrections to 1999), pages 294-305.

Section 14 Basic References to the Spinning Black Hole
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Chapter 33 of Misner, Thorne, and Wheeler’s Gravitation, W. H. Freeman
and Company, San Francisco (now New York), 1973, is very thorough,
with wonderful summary boxes, though beset with the mathematics of
tensors and differential forms. It is also approximately 30 years old.

Chapter 12 of Robert M. Wald's General Relativity (University of Chicago
Press, Chicago, 1984) is authoritative and straightforward. The mathemat-
ics is deep; you have to “read through the mathematics” to find the
physical conclusions, which are clearly stated.

Section 12.7 of Black Holes, White Dwarfs, and Neutron Stars by Stuart L.
Shapiro and Saul A. Teukolsky (John Wiley, New York, 1983, pages 357-
364), covers the spinning black hole, mostly with algebra rather than ten-
sors, and discusses orbits in some detail.

Steven Detweiler, editor, Black Holes: Selected Reprints, American Associa-
tion of Physics Teachers, New York, 1982. This collection is out of print but
may be available in some physics libraries.

Original references to the spinning black hole

The first paper: R. P. Kerr, “Gravitational Field of a Spinning Mass as an
Example of Algebraically Special Metrics,” Physical Review Letters, Volume
11, pages 237-238 (1963).

Choice of coordinate system can make thinking about the physics conve-
nient or awkward. Boyer and Lindquist devised the coordinates that
illuminate our analysis in this project. Robert H. Boyer and Richard W.
Lindquist, “Maximum Analytic Extension of the Kerr Metric,” Journal of
Mathematical Physics, Volume 8, Number 2, pages 265-281 (February 1967).
See also Brandon Carter, “Global Structure of the Kerr Family of Gravita-
tional Fields,” Physical Review, Volume 174, Number 5, pages 1559-1571
(1968).

For completeness, the Newman electrically charged black hole: E. T. New-
man, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence,
“Metric of a Rotating, Charged Mass,” Journal of Mathematical Physics; Vol-
ume 6, Number 6, pages 918-919 (1965); also E. T. Newman and A. L. Janis,
“Note on the Kerr Spinning-Particle Metric,” Journal of Mathematical Phys-
ics, Volume 6, Number 6, pages 915-917 (1965).

The Penrose process, to help you milk the energy of rotation from the

spinning black hole: R. Penrose, “Gravitational Collapse: The Role of Gen-
eral Relativity,” Revista del Nuovo Cimento, Volume 1, pages 252-276 (1969).
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15 Further References and Acknowledgments

Initial quote: S. Chandrasekhar, Truth and Beauty: Aesthetics and Motivations
in Science, University of Chicago Press, 1987, pages 153-154.

Quote in reader objection, page F-3: Stephen Hawking, Black Holes and
Baby Universes, Bantam Books, New York, 1993, pages 91-92.

E. Poisson and W. Israel, “Inner-Horizon Instability and Mass Inflation in
Black Holes,” Physical Review Letters, Volume 63, Number 16, pages 1663—
1666 (16 October 1989).

The value of the angular momentum of Sun (page F-6) was provided by
Douglas Gough, private communication.

Stephan Jay Olson suggested using light flashes as part of the practical
Penrose process in Section 12.

For more on the Reissner-Nordstrem metric for a charged black hole, see
entries in the Subject Index and the Bibliography and Index of Names in
Misner, Thorne, and Wheeler’s Gravitation, W. H. Freeman and Company,
San Francisco (now New York), 1973.

Final quote: John Archibald Wheeler with Kenneth Ford, Geons, Black

Holes, and Quantum Foam, A Life in Physics, W. W. Norton & Company,
New York, 1998, page 312.
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PROJECT G

The Friedmann Universe

Will we ever penetrate the mystery of creation? There is no more inspiring
evidence that the answer will someday be “yes” than our power to predict,
and predict correctly, and predict against all expectation, so fantastic a
phenomenon as the expansion of the universe.

—DMisner, Thorne, and Wheeler

1 “The Biggest Blunder of My Life”

The Friedmann model Universe is the simplest cosmological model based
on Einstein’s field equations. In 1922 Alexander A. Friedmann idealized
the sprinkling of stars through space as a cloud of dust at zero pressure
and of uniform density. Depending on the value of this density, the Uni-
verse may either expand forever or else expand to a maximum size and re-
contract to a Big Crunch. In the recontracting case there is a final instant
after which there is no “after,” as well as an earliest moment before which
there is no “before.” (John Archibald Wheeler favors the model Universe
that recontracts, in part because this model has no difficulties with bound-
ary conditions: There aren’t any! There is no spacetime “beyond” either
end.)

Friedmann's stunning prediction of a Universe that starts off expanding
was unexpected, and at first Einstein did not accept it. Inspired by Bene-
dict de Spinoza, the greatest of his heroes, Einstein had from his youth felt
that there could be no moment of creation. He believed that time, physical
law, and the Universe stand eternal, from everlasting to everlasting. On
this basis he rejected the Friedmann cosmology. Only after Edwin Hubble
documented the recession of galaxies—and the faster recession of more
distant galaxies—was expansion generally accepted. Then Einstein
embraced the Friedmann model and confided to George Gamow that his
previous objection was “the biggest blunder of my life.”

What follows is an adaptation of material in Principles of Physical Cosmol-
ogy by P. ]. E. Peebles (Princeton University Press, 1993) and Gravitation by
Misner, Thorne, and Wheeler (W. H. Freeman, 1973), abbreviated MTW.
Our treatment in this project is looser and more informal than the analyses
in earlier pages, a sign that at the end of this book we are running out of
physical systems described by simple metrics.

Friedmann’s model of the Universe satisfies what is called the cosmologi-
cal principle, which says that on the large scale the Universe is assumed

Section 1 “The Biggest Blunder of My Life”
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Figure 1 A model of the expansion of the Universe: an expanding balloon with coins glued on it The
rider on each coin is a two-dimensional creature for whom the surface of the balloon is the only space
there is Each rider sees nearby coins moving away uniformly in all directions, more distant coins moving
away more rapidly Thus each observer sees herself at the center of the Universe By projecting the
relative motion backward in time, each coin-rider derives the value of the current time t measured since
the expansion began Coins do not expand as the balloon radius increases. Similarly, our galaxy and our
solar system (size determined by spacetime curvature due to local structures) and molecules in our bodies
(size determined by quantum mechanics), stay the same size as the Universe expands.

to be everywhere homogeneous (for example, has everywhere the same
density) and isotropic (has the same properties when looking in any direc-
tion). In other words, all positions in the Universe are essentially
equivalent. Recent observations confirm that these assumptions are
roughly correct, but only when density is averaged over regions of space
large compared with clusters of galaxies.

2 A One:Dimepsional_ Creature on a
Two-Dimensional Circle

We begin with an analogy: coins glued to an expanding spherical balloon
(Figure 1). The coins mimic creatures confined to a two-dimensional
spherical surface expanding in a three-dimensional space. As the balloon
expands, each coin rider sees all other coins moving away. Each rider sees
the same picture, so each rider is free to call his or her position the center
of the model Universe. (Talk about ego!)

How do the two-dimensional coin creatures analyze the geometry of their
balloon? To answer this question, think of an even simpler geometry: a
one-dimensional creature living on a two-dimensional circle of radius r
(Figure 2). For now, assume that r does not change with time.
From Figure 2, we have

r2 = x2 + y2 [1]
Or, rearranging,

W= ot 2]
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Figure 2 One-dimensional creature (dot) living on the circumference of
a two-dimensional circle

The one-dimensional creature wants to measure short lengths along the
circle specified by a fixed value of r. Take the differential of both sides of
equation [2], keeping r constant:

2ydy = - 2xdx [3. r = constant]

or, substituting from equation [2],

dy = - fﬁi—x = —de— [4. r= Constant]

N 1/2
Y ot-Ah

The one-dimensional observer lays a short measuring rod of length 4l
along his circle. Substituting from equation [4], we have
2,2
dl’ = i +dy’ = dx® 4 22 [5. r = constant]
(r-x7)

QUERY 1 Constant d/ but different dx. Collect terms in equation [5]. Show that the
result can be written

2

d12 = _dx_ [6. r = constant]

1 --xz/r2

Figure 3 shows the relation between dx and dl for our one-dimensional
observer.

Section 2 A One-Dimensional Creature on a Two-Dimensional Circle
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/ /
[dx=d | [dx<dl]

Figure 3 A one-dimensional creature measures equal lengths dl along the
circumference of a circle. Equal values of d correspond to different values of dx,
increments along the horizontal coordinate. (The right side of equation (6] is
indeterminate at x = I, so we show here the result of multiplying both sides of [6]
by the denominator of the right hand side before letting x —>r)

3 Three-Dimensional Us on a Four-Dimensional Balloon

Now we jump from a one-dimensional circle in a two-dimensional space
(Figures 2 and 3) to a two-dimensional spherical surface in a three-
dimensional space (Figure 1) and finally to our first model of the Universe:
a three-dimensional hypersphere in a four-dimensional space. (These four
dimensions are spatial, to which we later add time as a fifth dimension.)

Following Peebles (his page 60) we call the fourth space dimension w and
call the four-dimensional distance from the center R. Then “the three-
sphere” (hypersphere) of space is the set of points (x, y, z, w} at fixed
distance R (the hyperradius) from the origin:

R2=x2+y2+22+w2=r2+w2 [7]
where
P = xz+y2+z2 [8]

Rearrange equation [7] to obtain

w? = R -2 [9]
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QUERY 2 Eliminate fourth space dimension. We are looking for a metric. A metric
employs differentials to describe experiments that take place during times
short compared with the age of the Universe. So take the differential of
equation [9] at constant R (that is, for a given size of the Universe). Show
that

rdr rdr
dw = — — = - — 51/ [10. R = constant]

(R*- %)

The square of the spatial four-dimensional line element dl is

2,2
rdr
R2—r2

di* = dx’ + dy2 +dfvdw? = dx’ s dy2 + dz2 + [11 R=const]

For simplicity, consider only events that occur on a single spatial plane

(z = 0and dz = 0), as we have done throughout this book. Such a limitation
allows us to describe positions on this plane using only two coordinates, r
and ¢. In these polar coordinates equation [11] becomes

2,2
di* = ar’ + Pde’ + L4 [12.z =0, R = constant]
R -r
QUERY 3 Increments of distance. Collect dr? terms in equation [12]. Show that the
result can be written
2 d 2 2,2
di- = —2L__ 4, dé [13.z =0, R = constant]
2, .2
1-r"/R

In equation [13], R is the hyperradius of the Universe and we can choose
our space origin (r = 0) anywhere; the Universe has no unique center.

Let’s explore some consequences (Query 4) of the space equation [13]
under the assumption that R is constant. Suppose that we lay metersticks
of constant length dl along the radial direction (d¢ = 0) starting at different
distances r from the center at r = 0.

Section 3 Three-Dimensional Us on a Four-Dimensional Balloon
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QUERY 4 Constant d/ but variable dr. For constant length d/ of the meterstick (and
do = 0), discuss qualitatively the magnitude of the increment of the
radius dr for the following conditions.

A. The value of r is very much less than R.
B. The value of ris a significant fraction of R but is not equal to R.

C. The value of r approaches R.

Draw an explicit analogy to results in Figure 3.

4 Metric of the Model Universe

We assumed that R, the hyper-radius of the Universe, is constant with
time in deriving equations [10] — [13]. These equations do not change in
any important way if R changes so slowly that it remains effectively con-
stant during the time that a particle or light flash moves an incremental
distance di. Define a new variable u = r/R(t), so that, for slowly-varying
R(#),

Substitute these expressions into equation [13] and introduce a new index
k, discussed after equation [15].

du2

1-ku

di? = RZ(I)[ 2+u2d¢2] [15]

Here the explicit time variation is present only in the factor R(t). Thus far
we have been discussing a model Universe that has the geometry of a
hypersphere, which we call a closed geometry. In Section 6 we describe
model Universes with other geometries. The constant k has been intro-
duced into equation [15] to generalize it to such models. For the present
closed case, k = +1. In Section 6 we set k = -1 for a model Universe that we
will later define as an open Universe and k = 0 for a model Universe that
we will later define as a flat Universe.

How can we use expression [15] for dl to construct a “metric for the Uni-
verse”? The metric must satisfy Einstein’s field equations. We naively
write down a metric in the same form as those we have met earlier:

du2 2 2]
u

. [16]

di® = di?—di* = dt2—R2(t)[
1-ku

G-6 PrROJECT G The Friedmann Universe



What is the physical meaning of the incremental time lapse df? It is the
change in time recorded on a “dust clock” at rest with respect to the uni-
form dust of which the Universe is composed in this model. And how is
the time £ established? Each dust particle remains at rest at constant u and
¢, so dt = dt measures wristwatch time (proper time). Thus ¢ is the total
time recorded on a dust-clock since the beginning of the Universe.

QUERY 5 Clock synchronization in a static Universe. For R constant, describe a
method of synchronizing the clocks on dust specks. Does your method
differ from that for a latticework in flat spacetime (page 1-17)?

Does the metric [16] satisfy Einstein’s field equations? Yes, provided R(t)
takes one of a set of particular forms, some of which are described in Sec-
tion 6. (Had we used equation [13] instead of equation [15] to construct
metric [16], the result would not satisfy the field equations.)

QUERY 6 Nearly flat local spacetime. Assume that R(t) is constant for the duration
of a particular short experiment and that the spatial dimensions of this
experiment (characterized by the value of r) are small compared with R.
Show that under these assumptions, equation [16] is arbitrarily close to a
flat spacetime metric in a suitably small region of spacetime.

Metric [16] tells a lot about the closed Universe according to this model.
The requirement u < 1, that is r < R, does not constrain the distance we can
travel. We can establish a center, move a distance, say r = R/2, establish
another center there, move another distance R/2, and so on. For the model
of the closed Universe, with k = +1, this process eventually brings us back
to our starting point in the same way a two-dimensional creature moving
“straight” (that is, along a great circle) on the balloon of Figure 1 will even-
tually return to his starting point.

5 Time Development of the Closed Friedmann Model
Universe

The analysis thus far has been rather general. Now we focus on the results
of Friedmann’s solution of Einstein’s field equations, which tells us how R
changes with time. The Friedmann conditions (uniform dust, zero pres-
sure) inserted into the Einstein field equations yield the following result
for a closed model Universe (MTW, page 705):

dR\? 8m .2
(2?) +1 = ?pR [17]

Here p (Greek rho) is the local mass density of the Friedmann dust,
assumed uniform in space. (Actually, when R was about one ten-thou-
sandth of its present value, radiation was an equal contributor to the
mass-energy density. In the very early stages of the Universe, radiation
was the dominant contributor to its mass-energy.) The equation of mass
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conservation for the Friedmann dust-filled model Universe shows that in
the following expression M is constant:

M = gnR3p [18]

It is tempting to read the right side of equation [18] as “volume times den-
sity” and call the symbol M on the left “the mass of the Universe.” Such a
generalization must be treated with care. As MTW point out (page 705),
“there is no ‘platform’ outside the Universe on which to stand to measure
its attraction via periods of Keplerian orbits or in any other way.” It is true
that a closed model Universe, one that has sufficient mass density to
recontract on itself, has a finite volume. This volume (at a particular time)
multiplied by the given value of mass density p (at that time) yields an
unambiguous value for mass M. Smaller values of M lead to model Uni-
verses (described in Section 6) that are not closed and do not have finite
volume. To these model Universes the concept “total mass” cannot be
naively applied. For all Friedmann models, the local mass-energy density
p can be observed directly, but M cannot. For this reason we call the sym-
bol M the mass parameter of the model Universe.

QUERY 7 Rate of change of R as a function of M. Use equation [18] to rewrite
equation [17] as

dR\N?2 . 2M
(E) +1 = —R- [19]

QUERY 8 Maximum value of R. When the Universe stops expanding, what is the
value of R? Shades of Schwarzschild!

Equation [19] can be rewritten in an evocative form by multiplying
through by m/2, where m is the mass of a single dust particle:

1 (dR\? mM _ m
(@) K =3 120]

Equation [20] has the form of a Newtonian energy equation for a dust par-
ticle “at the edge of the Universe,” expressed in geometric units. The first
term on the left corresponds to the kinetic energy of the dust particle, the
second term its potential energy in the “gravitational field of the Uni-
verse,” and the term — m/2 on the right to the total energy of the dust
particle. This naive Newtonian interpretation is an analogy only, since
such concepts as “the edge of the Universe” and “gravitational field of the
Universe” have no meaning in general relativity.

What happens to the radius R(t) of the Friedmann model Universe as time
goes by? We shall see that the integrated solution to equation [19] is a
cycloid, the trajectory of a spot on the rim of a wheel as the wheel rolls
without slipping along a horizontal surface (Figure 4 on page G-10). We
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The result is
1 (dRY? , 2M

We will call 1 the time parameter. Eliminate the constant 2M (and make
the integration a breeze) with the further substitution

R\1/2
g = (m) [23]
QUERY 9 Integrating the Universe. Prepare for integration by substituting [23]
into [22] and simplifying to obtain
- 2dq
dn = £ 5 172
(1-¢7)

N = 2arcsing or qg = sing
identity

2
2(sing) = 1-cosn

Show that the result can be written

R
M

Carry out the integration using a table of integrals, leading to

Substitute for g from equation [23]. Finally, use the trigonometric

— = ] -cosn [27.0<1n < 27]

As the cosmic wheel rolls along, its angle of rotation 1 increases. The right-

hand side of equation [27] increases from zero to the value two at

N = 7. Then the radius R drops again to zero at 1| = 2. In this Friedmann
model, the closed Universe explodes, expands to a maximum stage, then
recontracts to a final singularity.

Equation [27] is called a parametric equation because the physical quan-

tity of interest—the radius R of the model Universe—is expressed in terms
of the angle parameter v, rather than as a function of the time ¢ directly. The

time ¢ satisfies a second parametric equation.

Section 5 Time Development of the Closed Friedmann Model Universe
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Figure 4 Computer construction. A point on the rim of a wheel rotating without slipping traces out a cycloid, the time
development of the Universe according to the closed Friedmann model. The Universe reaches its maximum size at time t = =M
and recontracts to the Big Crunch at t = 2rnM. Example: Look at the square at the left side, with circled dots at its corners The
circled dots on the right side of this square have the horizontal coordinate n = /2. This is the angle through which the wheel has
rolled and is also the horizontal coordinate of the center of the wheel. And what are the coordinates for the dot on the rim?
Equation [29] tells us that the value of the time is t/M = n - sin(n) For m = n/2 we have sin(n) = 1 and the value of the time is
t/M =n/2 - 1, as shown for the two circled dots at the left side of the square. The value of R/M (the R-value of the Universe at this
time) is given by equation [27], which locates the large dot on the heavy line tracing out the cycloid

QUERY 10 Timing the Universe. From equation [21] write
dt = R(t)dn (28]
Substitute for R from equation [27] and integrate. Show that the result is

A_tlzn'sm" [29. 0 <7 < 27]

Equations [27] and [29] plot as the cycloid in Figure 4. The time develop-
ment of the Universe is described by a spot on a wheel that rotates without
slipping on a horizontal plane. These equations have no adjustable param-
eter, no “fudge factor” to explain away an incorrect prediction. For a
model Universe with a mass parameter M great enough to lead to recon-
traction, these equations uniquely predict the radius R as a function of
time ¢.

What is the physical meaning of the time ¢ in these equations? In an
expanding or contracting model Universe, clocks on different dust parti-
cles are not relatively at rest. Therefore the synchronization process may
not be as simple as that developed to answer Query 5. The time on each
dust clock must be set individually. There are two idealized ways to
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Opinion: The Bang-to-Crunch Universe
Too Simple to be Wrong!

Spacetime tells mass how to move, and mass tells spacetime
how to curve. If the black hole provides our closest plain-
speaking witness to spacetime curvature, the Cosmos itself
looks like the one operative on the largest scale of space
and time. The stars bear witness to the scales of space and
time characteristic of the Cosmos. Sun gets its energy by
burning hydrogen to helium and some of that helium to
heavier elements, profiting from the difference in mass per
nucleon between hydrogen and helium: 1.00783 for hydro-
gen and 1 00065 for helium {in units that set the mass of
the most common isotope of carbon equal to 12).

That space is expanding shows most directly in the red shift
of light from distant galaxies, a red shift which is greater the
more distant the galaxy. The inflation of a balloon (Figure 1)
provides a simple model for such an expansion of the Uni-
verse. This model tells its story in the functional dependence
of the radius R(f) of the sphere on the time t In this model
the curvature of spacetime in the large has only two compo-
nents One is the momentary “intrinsic curvature,” fixed by
the momentary radius R(t) of the idealized three-geometry
6/R%(t). The other contribution to the curvature arises from
the variation of this radius with the cosmological time, t:
(6/RA)(dR/dt)2. Einstein, considering the matter in the days
before Hubble had seen and measured the expansion of the
Universe, found it natural to think of a closed Universe with
an essentially constant radius R.

At this point one comes hard up against the second part of
gravitation theory: mass tells spacetime how to curve. In
Einstein’s time there did not seem to be enough mass
around to curve up the Universe into closure. Therefore Ein-
stein postulated an additional source of curvature, a so-
called “cosmological constant.” Going into the doorway of
the Institute for Advanced Study’s Fuld Hall with Einstein

and George Gamow, | heard Einstein say to Gamow about
the cosmological constant, “That was the biggest blunder
of my life.” If we drop that term, then the equation in
which matter tells spacetime how to curve becomes

This equation forecasts the connection between radius and
time depicted by the cycloid in Figure 4 (explanation in the
caption to that figure). The Universe begins with a Big Bang
In a phase of gradually slowing expansion, it reaches a max-
imum radius and recontracts to zero radius—a “big bang”
to “big crunch” history.

An article by John Noble Wilford in the Science Times sec-
tion of the New York Times for Tuesday March 3, 1998,
reports observations by two separate groups of investiga-
tors which they interpret as showing that today the
expansion of the Universe is speeding up rather than under-
going the slowdown expected for any approach to
maximum expansion. [See box page G-20.] Later that day |
encountered a hard-bitten veteran gravitation physics col-
league in the elevator of the Princeton physics building and
asked him if he believed the purported evidence of acceler-
ating expansion. “No,"” he replied Neither do |. Why not?
Two reasons: (1) Because the speed-up argument relies too
trustingly on the supernovas being standard candles

(2) Because such an expansion would, it seems to me, con-
tradict a view of cosmology too simple to be wrong Such
clashes between theory and experiment have often trig-
gered decisive advances in physics We can hope that some
decisive advance is in the offing

— John Archibald Wheeler

do this. First, each clock can be set to zero at the instant of the Big Bang.
Carrying out this procedure presents technical difficulties. Second, each
clock can be set at any time using the given model of the Universe. The
clocks on every dust speck are assumed to be identical by symmetry. Each
clock observer knows that she lives in a closed Friedmann model Uni-
verse. From the parameters of her Universe and the recession rate of
nearby dust particles, she derives the location of the Universe along the
curve of Figure 4 (same as the lower curve in Figure 5) and hence the time
t since the Big Bang.

Will the wheel roll round more than once, according to this model Uni-
verse? Will the Universe emerge again and again from the singularity and
disappear into another singularity? General relativity cannot answer these
questions. In this model, time itself begins with the Big Bang and ends
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with the Big Crunch. Without time there are no laws of physics as we
know them and therefore no scientific predictions that apply beyond the
boundaries at either end of the curve in Figure 4.

While the closed Friedmann model Universe is the one favored by John
Wheeler (box on page G-11), current observations do not appear to be con-
sistent with a closed model of the Universe (see box, page G-20). Indeed,
these observations are not consistent with any of the model Universes dis-
cussed in this project.

6 Open and Flat Model Universes

Section 5 described a closed model Universe, a Universe of finite three-
dimensional volume whose value of the mass parameter M is large
enough so that the Universe first expands but ultimately recontracts to a
final crunch. If the mass parameter of the Universe is not large enough to
lead to this recontraction, then the Cosmos will expand forever. The model
Universe that expands forever is called an open Universe. For eternal
expansion of the Friedmann pressure-free dust model, the field equations
yield (compare with equation [19] on page G-8)

(45Y -1 = 2 (30]

QUERY 11 Expansion rate for an open Universe. Examine what equation [30] says
qualitatively about the time development of the Universe. What happens
to the expansion rate dR/dt for R very small and R very large? Is there any
value (or limiting value) of R for which the expansion rate goes to zero?

Write equation [30] in a form similar to that of equation [20]. Interpret
the resulting equation in terms of Newtonian energy of a dust particle. In
this case is the total energy of the dust particle positive, negative, or zero?

QUERY 12 Integration of dR/dt. Prepare for integration of equation [30] using the
change of variables in equation [23]. Show that the result is

4q2dq
2172
(1+q)

dr _

t [31]

Integrating equation [31] with a table of integrals leads to a physical out-
come radically different from that for the recontracting model Universe:

t R 1/2 R 172 R 1/2 (R )1/2
oK X _ s LS ”
L 2(2M] (2M+1j 21n[(2M) +(oat ] [32]

This curve is plotted in Figure 5, along with curves for the other cases.
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The third model of the Friedmann model Universe lies between the cases
of contraction and eternal expansion. This third model describes expan-
sion at a steadily decreasing rate that tends to zero in the limit of large
radius. If the mass parameter takes on a critical value, which we call M;;,
the result obeys the equation

dt) ~— R

[33]

QUERY 13 Expansion rates for a flat Universe. Examine what equation [33} says qual-
itatively about the time development of the Universe. What happens to
the expansion rate dR/dt for R very small and R very large? Is there any
value (or limiting value) of R for which the expansion rate goes to zero?
Does this model Universe expand forever?

Write equation [33] in a form similar to that of equation [20]. Interpret
the resulting equation in terms of Newtonian energy. In this case is the
total energy of the dust particle positive, negative, or zero?

QUERY 14  Single equation for all three Friedmann models. Write down a single
equation for dR/dt for all three Friedmann models of the Universe. Use
the parameter k, defined in the paragraph following equation [15] on
page G-6.

QUERY 15 Radius R(t) for flat Universe. Integrate equation [33] from radius 0 to R
and from time 0 to t. Show that the result can be written

t 4( R j3/ 2
=3 [34]
M,  3\2M_,

cnt

The resulting curve is plotted in Figure 5, along with curves for the other
two cases.

The three cases we have been describing are often distinguished using the
parameter Q (capital omega, the last letter of the Greek alphabet).

M
M

Q= [35]

cnt

Then the three models are characterized by different values of Q as
follows:

Q > 1. The mass parameter is large enough to recontract the Universe. The
result is called a closed Universe and is said to be a Universe with overall
positive spatial curvature. The constant k has the value +1 in the metric
[16].

Section 6 Open and Flat Model Universes

G-13



Flat
universe
Q=1

Open
universe

Q<1
Closed

universe
Q> 1

1.6 1

1.2 1

0.8 -

0.4

U Il L] L 1 I | I ] I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 é 2n
0

Figure 5 Computer plot. Time development of three versions of the Friedmann model Universe composed of pressure-free
dust' the open Universe, the flat Universe, and the closed Universe. The open Universe continues to expand forever The flat
Universe also continues to expand forever, but the rate of expansion gradually approaches zero. The closed Universe expands to
a maximum size, then contracts to a final crunch. The parameter omega Q is the ratio of the mass parameter M of each of these
models to the critical mass parameter M, that leads to a flat Universe When the mass parameter has a value equal to M.,
then Q = 1 A value of Q less than unity corresponds to the open, ever-expanding Universe, whereas a value of Q) greater than
unity leads to a closed Universe.

Q = 1. The mass parameter has the critical value M, such that the Uni-
verse continues to expand, but the rate of expansion approaches zero. This
result is called a flat Universe and is said to be a Universe with overall
zero spatial curvature. The constant k has the value 0 in the metric [16],
yielding a space part that is flat. (It is only the space part that is flat.)

Q < 1. The mass parameter is small enough that the rate of expansion of
the Universe decreases but never reaches zero. This result is called an
open Universe and is said to be a Universe with overall negative spatial
curvature. The constant k has the value -1 in the metric [16].

Do any of these three models of expansion describe the Universe we live
in? There are many other models of the Universe, some more realistic than
our Friedmann pressure-free dust models. Cosmology has made great
strides in recent years, but as yet no one model of the Universe has won
general acceptance. All matter in the Universe for which we have direct
evidence adds up to only 1072 to 107! of the critical mass M_y;;. Until
recently the most popular cosmological theories assumed, nevertheless,
that the total mass was equal to M, which led theorists to look for so-
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called dark matter, matter of new and exotic kinds, to account for the
needed mass (so far observed only indirectly). In the meantime, recent
observations have been interpreted as evidence that the rate of expansion
of the Universe is actually increasing with time, as described in the box on
page G-20.

7 Simplifications for the Closed Model Universe

How much of the Universe can we see right now? Are some galaxies so far
away that light from them has not had time to reach us since the Big Bang?
And what can these questions possibly mean, since all parts of the Uni-
verse were together at the Big Bang itself?

We cannot answer these questions until we have decided what model Uni-
verse correctly represents the one in which we live. In the meantime, we
can answer the questions for one of our simplified model universes. We
choose the closed model Universe, for which the parameter k = 1 in the
metric [16]. This metric (for two spatial dimensions) becomes

2
dt’ = dt2—R2(t)[ du . +u2d¢2] [36]
1-u

This equation can be simplified still further by converting from time incre-
ment dt to the angle increment dn using equation [21].

show that the metric can be written

2
d’t2 = R2(t)[dn2—[ du 5 +u2d¢2ﬂ

1—u

QUERY 16 Time as an angle. For dt in equation [36] substitute from equation [21] to

{37]

The quantity in the square bracket of equation [37] is independent of
R(t) and will have the same form for the entire history of the Universe—
according to this closed-Universe model.

We can simplify metric [37] even further when we model the space part in
the rounded brackets by a unit sphere (Figure 6).

The angle ¢ (the direction in the spatial plane we are considering) is mea-
sured around a latitude of this unit sphere from some arbitrary initial
direction, and the variable u is the perpendicular distance from the axis to
the point being described. The variable u can be replaced by the angle 6
measured from the upward vertical axis (Figure 7). For a unit sphere, the
distance from the north pole along a longitude is also measured by 6 in
radians. From Figure 7, we have a relation between u and the new angle 6

u = sin@ [38]
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Figure 6 Location of an event A on the unit sphere using the
coordinates u and ¢.

Arclength=0
for a unit sphere!

A

Iy v

Meridian for
¢ =constant

Figure 7 Conversion from variable u to 8 using a unit sphere that
represents the time-independent geometry of the closed Universe model.

G-16

PROJECT G The Friedmann Universe



from which
du = cos6 d6 [39]

and we can use a familiar trigonometric identity to write

du du du

de = = =
cosO (1—sin29)l/2 (1—u2)1/2

[40]

QUERY 17 Metric for the closed Universe model. Substitute recent expressions into
[37] to show that the metric can be simplified to the form

dt® = R*(t) [dn° - (d6° + sin?6 d¢?)] [41]

The metric [41] carries a powerful and simple description of the closed
model Universe with our usual restriction to two dimensions on a spatial
plane. Here ¢ is the usual direction on that plane with respect to some
arbitrary direction of zero angle, and r is coded in the variable 6 through
equations [14] and [38]. The size of the Universe is R(t), given by equation
[27], and the corresponding “angle” 1 is related to ¢ by equation [29].
Every location in two spatial dimensions in this model Universe at a fixed
time is described by a position on a unit sphere multiplied by that radius.
The metric [41] relates adjacent events in the model closed Universe. The
wristwatch time dt between this pair of events is a product of the current
size R(t) of the Universe and the spacetime separation between the two
events given by the expression in square brackets in equation [41].

According to this model (refer to Figures 4 and 5), when 1 reaches the
value = then the Universe reaches its point of maximum expansion, and
when 1 reaches 2n the Universe has again contracted to the Big Crunch.

Now we can analyze how light moves in our closed model Universe. For
light d = 0 and the metric [41] collapses to the expression

1/2
dn = £(d6” + sin26 do®) [42. light]

The right side of this equation has a simple interpretation: It is the distance
between two nearby points on the unit sphere. Equation [42] says that in
an increment of time as measured by 7, light moves an equal increment of
distance on the unit sphere as measured by the angles 6 and ¢.

8 Seeing the Big Bang

Our everyday language trips us up when we apply it to the Universe as a
whole. Space and time were created at the Big Bang. Equation [41] tells us
that at the beginning, when the radius R(t) is zero, the proper time 47 (as
well as the proper distance do) between any two events is zero. We are
present at the Big Bang wherever we are in the spatial plane represented by

Section 8 Seeing the Big Bang
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the unit sphere (Figure 6). The Big Bang occurs everywhere on the unit
sphereatt=1n=0.

Equation [42] helps us to describe how we continue to see the big bang at
later times. Take our position to be at the north pole of the unit sphere and
ask what we see as we look outward. It takes time for light from the Big
Bang to reach us from other portions of the unit sphere. The light we see
will move along longitudes of the unit sphere, namely with d¢ = 0 in equa-
tion [42]. As the time parameter increases, the available angle over which
the light travels also increases, so that

dn = do [43. light]

This is an easy equation to integrate! Figure 8 shows the ring on the unit
sphere representing the source of light from the Big Bang that we see at the
time parameter 1.

Let dt; be the period of a light wave emitted at time {; when the size of the
Universe is described by R(t;). Let this light wave propagate a great dis-
tance, such as that from S to O in Figure 8. What will be the observed
period dt, at reception, when the Universe has expanded to R(t,)? Equa-
tion [42], page G-17, says that at all stages of expansion light moves equal
distances along the unit sphere in equal units of the time parameter 1, so
that dn remains constant as the wave propagates. Equation [21] on page G-
9 says that dt = R(t)dn. Hence for a larger R(t), we have a larger dt, a longer
period, a redder light signal. This cosmic red shift is a generalization in
expanding curved spacetime of the Doppler shift of light in flat spacetime.

/

Light path

Source of light
from Big Bang
thatwe, at
position O,
seeattime
parametern

Figure 8 Unit sphere repreéenting the location of all events that
occur on a plane in space The Big Bang occurs everywhere on this
unit sphere at t = 0. The heavy ring shows the source of light from
the Big Bang that we at location O see at a time given by the time
parameterny The light path from S to O represents all light paths
along fixed longitudes from the source ring to our location.
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QUERY 18

QUERY 19

Seeing the whole Universe. Continue predictions implied by the construc-
tion in Figure 8. Pay attention to light which travels directly to us at
position O along lines of longitude, for which d¢ = 0.

A. How long after the Big Bang will light have reached us from all parts of
the Universe? Express your answer in the “"time angle” 1.

B. At the time found in part A, what is the state of expansion of the
Universe?

C. Suppose that it takes some time after the Big Bang for galaxies to con-
dense out of the primordial gases. At the time found in part A, will we
have seen every galaxy in the Universe that lies on the spatial plane
represented by the unit sphere? Why or why not?

When will we see it all? How many billion years after the Big Bang will we
have been able to receive light from the entire Universe, according to this
closed-Universe Friedmann model? From part B of Query 18, this occurs
when the Universe has reached it maximum expansion. Assume that the
mass density is twice the critical mass density of five hydrogen atoms
(effectively five protons) per cubic meter at the time of maximum expan-
sion. In brief, the mass density at maximum expansion corresponds to 10
protons/meters3. Assume this rough approximation is numerically exact
for purposes of the following calculations.

A. Express the characteristic radius R of the Universe in terms of its mass
parameter M at the moment of maximum expansion, at which time we
will have received light from all of the universe.

B. Use the result of part A plus equation [18], page G-8 to find an expres-
sion for the mass parameter M as a function of the mass density p at
the moment of maximum expansion.

C. Use equation [29], page G-10 and the value of n at maximum expansion
to derive an expression for the time t at this state of expansion. Verify
that the geometric units are the same on both sides of this equation.

D. Compute the value of the density p.ony In conventional units kilogram/
meter®. Convert to geometric units using the conversion factor G/
(page 2-14 and inside the back cover). The result to one significant digit
is 1 x 1073 meter™2. Find the result to three significant digits.

E. Find the value of M from your result of part B and substitute your value
from part D into the expression for tin part C. The result to one digit is
2 x 1028 meters of time. Find the result to three significant digits.

F. Convert your result in part E to seconds and then to years (conversion
factors inside the back cover). According to this model of the universe
(and our assumed value of the mass density at maximum expansion),
how many billion years after the Big Bang will we have received light
from the entire Universe?
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Accelerating Expansion of the Universe?
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The results of Riess, Filippenko, and their coworkers.

Is the rate at which the Universe expands actually increasing
with time? That is the condusion of two separate groups,
one group including Adam Riess, Alexei V. Filippenko, and
eighteen other people, the other group including S.
Perimutter and thirty-one other people.

These observers use light from an exploding supernova of a
particular kind, the so-called Type la supernova. They believe
that the Type la supernova results when a white dwarf grad-
ually accretes mass from a large binary companion, finally
reaching a mass at which the white dwarf becomes unstable
and explodes into a supernova. The “slow fuse” on the
gradual accretion process may lead to almost the same size
explosion on each such occasion, giving us a “standard
candle” of the same intrinsic brightness, provided that
nuclear burning has left every white dwarf with the same
nuclear composition. If so, the brightness of the explosion as
seen from Earth provides a measure of the distance to the
supernova. The cosmic red shift of the light tells us how fast
the supernova is receding. Because supernovas are so bright,
they can be seen at a very great distance, which brings us
information about the Universe much of the way back to the
Big Bang.

The figures display observed brightness on the vertical scale
versus red shift on the horizontal scale. Calibration of the
vertical scale is in stellar magnitude, a logarithmic measure
of observed brightness. The larger the magnitude number,
the dimmer is the observed star. (The vertical scales of the
two graphs differ by a standard magnitude, which moves
the curve up and down without changing its shape.) The
horizontal scale, also logarithmic, is calibrated in what is
called the red-shift factor 2z, defined implicitly in the fol-
lowing equation
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The results of Perimutter and his coworkers

M ooserved ® (1 +2) Agmined (44]

Here Agpserved is the wavelength of light observed from
Earth, while Agmueq is the wavelength of the light emitted
from the source. The emitted wavelength is known if one
knows the emitting atom, identified from the pattern of dif-
ferent wavelengths.

If the data points in the figure lie along a straight line, then
the expansion velocity is proportional to distance, as one
would expect if nothing slowed down matter blasted out of
the Big Bang. But the data points in the figure appear to lie
slightly above the straight line for the most distant super-
novas (upper right on the diagrams). This could mean that
the most distant supernovas (highest on the vertical axis) are
moving away slower than expected (farther to the left on
the horizontal axis than expected). We are watching motions
of these most distant supernovas as they were long ago,
because it takes light such a long time to reach us. Could
this mean that the expansion rate long ago was slower than
it is now? And how significant is the apparent deviation
from the straight line? You be the judge.

Whatever you think about the claimed change in expansion
rate, the use of supernovas as standard candles for small
and intermediate distances leads to a new and improved
value for the average expansion rate of the Universe From
this average expansion rate, Riess, Filippenko, and their col-
leagues derive a time of (14.2 = 1.7) x 10? years for the age
of the Universe. The resuit derived by Perlmutter and com-
pany is (14.5 + 1.0) x 10° years.
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The results on previous pages illustrate the predictions for our closed-
model Universe. Unfortunately they cannot correspond to reality. The
mass-energy density in the early Universe was dominated by radiation
and extreme pressure, whereas our simple Friedmann models consist of
pressure-free dust. Moreover, in the plasma soup (swarm of uncombined
electrons and nuclei) in the early Universe, light was continually absorbed
and scattered and could not propagate in a straight line. Because of these
effects, light could not move directly to us from the Big Bang. At present
the so-called cosmic background radiation provides our earliest view of
the Universe. The cosmic background radiation is microwave radiation
that permeates the Universe, emitted just before the moment at which
electrons in the cooling soup combined with protons to form atoms. With
the formation of atoms, the Universe suddenly became transparent to elec-
tromagnetic radiation. This occurred about 300 000 years after the Big
Bang. The cosmic red shift reduces the characteristic temperature of the
background radiation that we observe from thousands of degrees Kelvin
to 2.73 degrees Kelvin.

So at present we could not see the Big Bang directly, through the blanket of
early plasma, whatever the predictions of our model. Neutrinos and
gravity waves are much less affected by plasma than is light. So future
observations made using neutrinos or gravity waves may penetrate the
wall of early plasma, letting us peek farther back toward our ultimate ori-
gin. Selah.

How can physics live up to its true greatness except by a new revolution in
outlook which dwarfs all its past revolutions? And when it comes, will we
not say to each other, “Oh, how beautiful and simple it all is! How could
we ever have missed it so long!”

—John Archibald Wheeler

When shall I cease from wondering?
—Galileo Galilei
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ISBN 0-471-92567-5. Most treatments of general relativity emphasize
the geometric. Weinberg's treatment is an analytic one in which the
geometrical content of general relativity is minimized.

Principles of Physical Cosmology, P.]. E. Peebles, Princeton University Press,
1993, ISBN 0-691-01933-9. From one end of the Universe to the other,
through all its components, and from the beginning of the theory to its
modern developments.

Cosmological Physics, John A. Peacock, Cambridge University Press, 1999,
ISBN 0-521-42270-1. The most up-to-date of these advanced texts,
includes the basics of both general relativity and quantum field theory
as needed to engage the latest astrophysical observations. Lots of
physical insights about the latest developments when one “reads
around” the mathematics.

Advanced Texts in General Relativity and Cosmology
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Eccentric and Absorbing

Relativity Visualized, Lewis Carroll Epstein, Insight Press, San Francisco,
1997, ISBN 0-953218-05-X. An enjoyable and eccentric presentation of
special and general relativity, done primarily with figures and graph-
ics. Available in some bookstores, or send $19.95 plus $2 handling to
Insight Press, 614 Vermont Street, San Francisco, CA 94107-2636, USA.

Faster Than Light: Superluminal Loopholes in Physics, Nick Herbert, New
American Library, a Division of Penguin Books, Markham, Ontario,
1988, ISBN 0-452-26317-4. Herbert tries every trick he can think of in
flat and curved spacetime to figure out how to go faster than light (and
thus backward in time). You be the judge of whether or not he
succeeds.

Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction, Paul
J. Nahin, American Institute of Physics, New York, 1993, ISBN 0-88318-
935-6. Nahin uses an extensive survey of the science fiction literature
about time travel to illustrate and engage modern speculations on the
subject. Tech Notes appendices go more deeply into the theory. A won-
derful read.

Readings in General Relativity



GLOSSARIES OF SYMBOLS AND TERMS

Symbols

There is no abbreviation of units in this book. For exam-
ple, the words meter and second are spelled out, so the
symbol m always means mass and the symbol s always
means a distance in space. The one exception to the no-
abbreviation rule is subscripts. For example, the
subscript conv means “in conventional units.”

Look also at pages following each entry.
GREEK LETTERS

Y (gamma) Stretch factor of special relativity:
y= (1 -9%)"12 No units. 3-25

n (eta) Angle of rotation (time parameter) of the
“cosmic wheel” in the Friedmann model of the
closed Universe. No units. G-9, G-17

0 (theta) (1) Angle measured from a point on a
shell with respect to the radially outward direction
(4-22, 5-10, 5-18, 5-21). (2) Angle and arc length
along the unit circle describing the closed Fried-
mann model Universe (G-16). No units.

p (tho) The average density of the Universe. Unit:
meter/ meter” = meter 2. G-7

G (sigma) Proper distance between two events.
Unit: meter. 1-4

dc (“dee sigma”) Increment of proper distance
between two adjacent events. Unit: meter. 2-19

1 (tau) Wristwatch time (proper time) between two
events. Unit: meter. 1-2

dt (“dee tau”) Increment of wristwatch time
(proper time) between two adjacent events. Unit:
meter. 2-17, 2-19

¢ (phi) Measure of angle in a plane through a cen-
ter of gravitational attraction. ¢ has the same
meaning in general relativity as in Euclidean
geometry. No units. 2-16

y (psi) Direction in which observer looks to see
incoming light. B-22
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@ (omega) (1) The angular rate of rotation around
a center according to some observer. Unit:
radians/second (C-5). (2) Angular velocity of
radial harmonic oscillation of Mercury in its orbit.
Unit: radians /second (C-4). (3} The rate of angular
rotation of the ring riders (zero angular momen-
tum observers or ZAMOs) around a spinning black
hole, as reckoned by the remote observer. Unit:
meter ™! (F-16).

Q = M/M_p {capital omega) Parameter whose
value distinguishes the different Friedmann model
Universes. M is the mass parameter of the Uni-
verse and M, is the critical value that leads to a
flat-space Universe. No units. G-13

ROMAN LETTERS

a = J/IM Ratio of angular momentum to mass of a
spinning center of attraction. Unit: meter. F-2

b Impact parameter of an object near a center of
attraction. Unit: meters. 4-6, 5-6

¢ Speed of light. In flat spacetime defined to have
the value given inside the back cover. Unit:
meters/second. 1-2, 1-11

dl Four-dimensional increment of distance used in
the metric for the Universe in the Friedmann
model. Unit: meter. G-3

dr Increment of radial separation, where r may be
the Euclidean radius or the reduced circumference
(2-7) or the Boyer-Lindquist radius (F-2). Unit:
meter.

dt Increment of time between two adjacent events,
measured by the far-away observer. Unit: meter.
2-19,F-3

E Energy of a particle. In special relativity, given
by E = m dt/dt (1-11). In general relativity, the
energy measured at infinity (3-9, F-13). Units: Typi-
cally we use the dimensionless expression E/m,
allowing the reader to choose any unit desired for
energy, as long as it is the same unit as for mass m
(1-11, 3-9).
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8 Local acceleration of gravity, either g.,ny In con-
ventional units, meters/second” or g in geometric
units, meters~. 2-47, 3-31, B-19

h Planck’s constant. Value inside back cover. Unit:
joule-second. 5-34

] Angular momentum of a spinning black hole.
Unit: meter?. F-2

k Parameter used in Friedmann models of the Uni-
verse that distinguishes the closed Universe

(k = 1) from the flat Universe (k = 0) and from the
open Universe (k = — 1). No unit. G-6

kg Boltzmann constant. Unit: joule /degree Kelvin.
5-27

L = mr’d¢/dt Angular momentum of a particle
around a center of attraction. Unit: kilogram-meter.
4-3

L* = LI{mM) where m is the mass of the orbiting
object and M is mass of center of attraction. Unit-
less measure of angular momentum. 4-29

m mass of a test particle. Unit: kilogram or any
other measure chosen by the reader. (See definition
of E.) 1-12, 3-9

M (1) Mass of a center of gravitational attraction
(2-13). (2) Mass parameter of the Universe
(G-8). Unit: meter.

M “Critical” mass parameter of the flat Fried-
mann model Universe. Unit: meter. G-13

p = mds/dt Momentum in special relativity. Typi-
cally we use the expression p/m, allowing the
reader to choose any unit desired for momentum,
as long as it is the same unit as for mass m. 1-12

r (1) Radius from a center in Euclidean geometry.
(2) Reduced circumference in Schwarzschild space-
time (2-7, B-8). (3) Boyer-Lindquist radius in Kerr
spacetime (F-3, F-6, F-19). Unit: meter.

r* = r/M, where M is the mass of a center of attrac-
tion. Unitless measure of reduced circumference.
B-16, 4-29

R (1) Radius of Sun (D-2, E-3). (2) Reduced circum-

ference in Kerr spacetime (F-6, F-11, F-19).
(3) Hyperradius of the Universe (G-4).
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s Spatial (frame) separation between two events in
a given reference frame. Unit: meter, 1-2

t Frame time in special relativity (1-2). Far-away
time in Schwarzschild spacetime (2-27) and Kerr
spacetime (F-3). Unit: meter.

t* = t/M where M is the mass of the center of
attraction. Unitless measure of far-away time. B-16

U Effective potential used in relativistic analysis of
orbit of the planet Mercury. Unit: kilogram. C-6

v Speed (meters of distance per meter of light-
travel time—fraction of the speed of light) as mea-
sured in some reference frame. No units. 1-3

V Effective potential for orbiting particle or light
pulse. Unit: meter. 4-12, 4-18, 5-11

V* = V/m where m is the mass of the orbiting
object. Unitless measure of effective potential. 4-29

w Fourth space dimension in Friedmann model of
the Universe. Unit: meter. G-4

z cosmic red shift factor. No units. G-20
Terms
Peter M. Brown

Theory, experiment, observation, and definition are born
into the world together. Therefore a definition cannot
stand alone and often seems circular. The purpose of this
glossary of terms is not to teach physics but to clarify
the terms in which physical experiments are described.
Listed here are "workhorse” terms, those central to the
story line of this book. For other terms, such as Hawking
radiation or ZAMOs, consult the index.

Look also at pages following each entry.

accretion disk Disk of material swirling around a
spinning black hole. F-2, F-4, F-25

aging Elapsed time (proper time) recorded on the
wristwatch of an object that moves along a

given worldline between two fixed events. 1-5, 3-4

Aging, Principle of Extremal See Principle of
Extremal Aging
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angular momentum Second constant of the
motion (the first is energy) for angular motion of
test particles near spinning and nonspinning cen-
ters of attraction. We generally use the ratio angu-
lar momentum over mass, for which the unit is
meter. 4-2, F-13

angular momentum parameter, a = J/M Ratio of
the angular momentum to the mass of a spinning
center of attraction. Unit: meter. F-2

azimuthal angle Angle ¢ that (along with radius
and time) locates an event in a plane. The
azimuthal angle has the same meaning in general
relativity as in Euclidean geometry. 2-16

black hole In this book, any structure with a
horizon and surrounded at a great distance by flat
spacetime.

blue shift See gravitational blue shift.

bookkeeper coordinates Three coordinates of an
event recorded by a remote observer: r-coordinate,
azimuthal angle ¢, and far-away time ¢. The
r-coordinate has a different meaning for Schwarzs-
child spacetime (2-7, 2-19) than for Kerr spacetime
(F-3, F-19). See also Schwarzschild radius, Boyer-
Lindquist coordinates and reduced circumfer-
ence.

Boyer-Lindquist coordinates (Kerr coordinates)
Three coordinates 7, azimuthal angle ¢, and far-
away time f for events around a spinning,
uncharged black hole. Boyer-Lindquist coordinates
¢ and ¢ are similar to Schwarzschild coordinates,
but the radial coordinate r has a different meaning
(F-2, F-6, F-19). See also reduced circumference.

conv Subscript meaning “in conventional units.”
1-13

coordinate radius See reduced circumference.

Cosmic red shift Reduced frequency of light due
to expansion of the Universe, G-18

cosmological principle Assumption for many
models of the Universe that the Universe is homo-
geneous and isotropic. In other words, the Uni-
verse looks the same, on average, wherever you
are located in it and in whichever direction you
look. G-1
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critical mass According to the Friedmann model,
if the mass parameter of the Universe has a critical
value M, then the rate of change of the radius R
of the Universe approaches zero for large times
G-14

curvature factor In this book, the coefficient
(1-2M/r) that appears in the Schwarzschild metric
as the coefficient of the df? term and as the denomi-
nator in the d7? term. 2-21

curvature of spacetime Property of spacetime evi-
denced by tidal accelerations (relative accelera-
tions) of free test particles. 1-16, 2-6

distance, proper See proper distance

effective potential Expression used to analyze
orbits in terms of radial motion. 4-11, C-6, 5-10

Einstein ring Circular image of a distant light
source due to light deflected around all sides of an
intermediate astronomical object. 5-24, D-9

embedding diagrams Figures on a two-dimen-
sional page that help to visualize curved-space
geometry. 2-25

energy The term energy is used in two ways n this
book, in its special relativity form and in the gen-
eral-relativistic form called energy measured at
infinity. Units: We usually write energy in a ratio
E/m. This allows energy E and mass m to be
expressed in the same units, chosen by the user, for
example kilograms for both numerator and
denominator—or million electron-volts or joules
1-11, 39, F-13

energy in special relativity In a free-float frame the
energy of a particle is defined by E/m = dt/dt Here
dt is the time between two nearby events on the tra-
jectory of the particle as measured in the local frame
and dt is the wristwatch time of the particle
between the same two events (1-7). The shell
observer in Schwarzschild spacetime uses the spe-
cial relativity expression in his local measurement of
energy (3-17).

energy in general relativity The energy of a free
test particle is a constant of the motion as the parti-
cle orbits or plunges into the center of gravitation.
(3-6) The energy of the test particle is measured in
principle from the mass of the combined system
(test particle plus center of gravitation) derived
from the gravitational attraction it has for a remote
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satellite minus the mass of the center of gravita-
tional attraction alone. See Figure 4, page 3-11.
Energy is described by a different formula for a par-
ticle near a nonspinning black hole (3-9) than for a
particle near a spinning black hole (F-13).

equatorial plane Flat plane passing through the
equator and the center of a spinning black hole
(F-2). For a non-spinning black hole, by symmetry,
the “equatorial” plane passing through the center
can have any orientation (2-15).

ergosphere Region of space around a spinning
black hole between the static limit and the horizon
(F-7). The ergosphere is the region in which the
energy-extraction process of Roger Penrose can
operate (F-20, F-28).

event A location in space at an instant of time; that
is, a point in spacetime. A firecracker explosion is
an example of an event. The explosion fixes both a
position in space and a time. 1-2, 2-1

event horizon See horizon
extremal aging See Principle of Extremal Aging

extreme Kerr black hole A spinning black hole

with the maximum possible angular momentum.
F-5

far-away time (ephemeris time, ¢-coordinate)
Time ¢ measured by clocks remote from and sta-
tionary relative to a center of gravitation. 2-19,
2-27,F-3

flat spacetime Region of spacetime in which it is
possible to set up a free-float (inertial) reference
frame. 1-14, 24

frame distance Distance between two events in
spacetime as measured by an observer in a particu-
lar frame of reference. 1-2

frame dragging Phenomenon that requires a
rocket ship to fire its rockets tangentially (as well
as radially) to keep it from being swept along in
the direction of rotation of a spinning black hole
(F-7). A test particle can circulate around a spin-
ning black hole and still have zero angular
momentum (F-13).

frame time Time between two events as measured
by an observer in a given frame of reference. 1-2
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free-float frame (inertial frame) Generally, a refer-
ence frame in which a free test particle initially at
rest remains at rest. More technically, a reference
frame with respect to which relative (tidal) acceler-
ations of test particles can be neglected for the pur-
poses of a given experiment, 1-14, 2-4.

Friedmann Universe Model that idealizes the
Universe as composed of dust of zero pressure and
uniform density, Project G

general relativity Einstein's theory of gravitation
that describes the curvature of spacetime resulting
from the presence of mass and pressure. General
relativity also describes the motion of test particles
in the resulting curved spacetime, gravitational
waves, and the structure and development of the
Universe (1-1, Project G). General relativity is a
classical theory, one that does not describe quan-
tum effects. A quantum theory of gravitation does
not yet exist. 2-24, F-3

geodesic The worldline in spacetime followed by
a free particle. 2-4, 3-4

geometric units The unit meter as a measure of
various physical quantities, such as time ¢ (1-2),
mass M of a center of attraction (2-13), angular
momentum per unit mass L/m of an orbiting parti-
cle (4-3), angular momentum per unit mass /M of
a spinning center of attraction (F-2), and charge Q
(F-31).

Global Positioning System (GPS) System for
locating position on Earth by means of timing sig-
nals sent from atomic clocks in orbiting satellites to
a specialized receiver. Project A

gravitation Effect of mass-energy on spacetime,
evidenced by the relative or tidal accelerations of
free test particles. 1-14, 2-5

gravitational blue shift Decrease in the period of
light as it moves toward the center of gravitational
attraction. 2-13, 2-30

gravitational red shift Increase in the period of
light as it moves away from the center of gravita-
tional attraction. 2-12, 2-30

horizon One-way surface surrounding a black

hole, defined by the property that anything may
pass inward through the horizon, but (in the non-
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quantum description) nothing, not even light, may
pass outward. 2-21, B-13, 5-34, F-4

inertial frame See free-float frame

invariant Property of any quantity whose value is
independent of the frame of reference. 1-3, 1-13

irreducible mass Mass to which an originally
spinnung black hole is reduced when all its energy
of rotation has been extracted or lost. F-24

Kerr metric Metric that describes spacetime
around a spinning, uncharged center of gravita-
tional attraction. F-2, F-6

light, speed of Conversion factor used to express
space and time in the same units (1-2), or to con-
vert mass in kilograms to meters (2-14). Different
values of light speed in curved spacetime (5-2, 5-7,
Project E).

mass In special relativity the invariant property of
an object related to its energy E and linear momen-
tum p by the equation m? = E2 - p? (1-12). In gen-
eral relativity, the mass of a test particle is assumed
to be the same as that derived in special relativity
and to be small enough that its effect on spacetime
in its vicinity can be neglected. In this book the unit
of m is the same as the unit of energy E, chosen by
the reader, so the ratio E/m has no units. The much
greater mass M of an astronomical object curves
spacetime in its vicinity; the value of M can be
measured using the motion of a beacon in distant
orbit around it (Figure 4, page 3-11). In this book
the mass M of an astronomical object is measured
i meters (2-13). See also mass parameter.

mass parameter of the Universe Quantity M that
characterizes the amount of matter in the Universe.
In the Friedmann model (Project G) the value of
the mass parameter is equal to the local density of
dust (assumed uniform throughout space) multi-
plied by the Euclidean volume of a sphere of
radius R, where R is the radius of the Universe.
Unit: meter. G-8

melric In its timelike (or spacelike) form, the met-
ric is an expression that gives the interval of proper
time (or proper distance) between two adjacent
events in terms of the incremental separation in
coordinate time between the events and the coordi-
nate distance between them. 1-2, 14, 2-19, 2-32,
B-12, F-2, F-6, F-31, G-6, G-15, G-17
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microlensing Focusing of light from a distant star
or galaxy by the gravitation of an object between
that distant object and the observer. D-11

momentum (linear momentum) In this book, we
use the linear momentum p of special relativity,
defined for a free-float frame by p = mds/dt, where
ds is the incremental distance traveled as measured
in that free-float frame and dt is the time to move
this distance as recorded on the wristwatch carried
by the particle. 1-12

observer Collection of rods and recording clocks
associated with a given frame of reference. 1-16,
2-35, 2-38

Penrose process Proposed procedure by which
energy can be extracted from a spinning black hole.
F-20, F-28

perihelion of Mercury, advance of Project C
potential, effective See effective potential

Principle of Extremal Aging A free object takes
the worldline between two events for which the
time lapse between these events recorded on its
wristwatch is a maximum or minimum (an extre-
mum). 1-5, 3-1, F-13

proper distance The distance between two events
measured in a frame in which they occur at the
same time (1-4, 2-22). Directly-measured distance
between spherical shells (2-22).

proper length The length of an object as observed
in a frame in which it is at rest. 1-5

proper time See wristwatch time

pulsar A rotating neutron star that sends out a
sweeping searchlight beam of radiation as it spins.
F-1

quantum gravity A theory, not yet developed, that
would combine general relativity and quantum
mechanics. 2-24, B-5, F-5

quasar Extremely bright source of light and radia-
tion, thought to a be spinning black hole with an
accretion disk from which radiation is emitted. F-4,
F-24

r-coordinate See reduced circumference.
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rain frame A coordinate frame based on clocks
and objects in free fall toward and into a black hole
starting from rest at a great distance. B-4

recording clocks The entire collection of clocks in
a lattice of clocks, each of which records the time,
spatial location, and nature of any event occurring
nearby. 1-17, 2-38

red shift See Cosmic red shift, gravitational red
shift

reduced circumference Radial location r of an
event or object. Near a nonspinning center of
attraction the value of r is determined by measur-
ing the circumference of a great circle that passes
through the event or object and centered on the
point of attraction, then dividing this circumfer-
ence by 2x (2-7). Inside the horizon another
method of measuring r is required (B-8). Near a
spinning center of attraction, the reduced circum-
ference R is measured either on a nonrotating ring
(F-6) or on a freely rotating ring which has zero
angular momentum (F-19).

reference clock Clock used to synchronize all
other clocks in a free-float frame. 1-17

ring, ring rider, ring coordinates, etc. These terms
refer to a set of concentric rings in the equatorial
plane of a rotating black hole, each ring with zero
angular momentum, that is at rest with respect to
the “current of space” swirling around the black
hole. F-16

Schwarzschild bookkeeper Accountant who
records events using the Schwarzschild coordi-

nates r, ¢, and ¢t. 2-35 See also Schwarzschild lattice.

Schwarzschild lattice Collection of shell markings
and clocks reading far-away time that allows the
Schwarzschild coordinates 7, ¢, and t to be read off
directly next to any event that occurs outside the
horizon of a Schwarzschild black hole. 2-38

Schwarzschild map Diagram on which are plot-
ted events and orbits in terms of the Schwarzschild
coordinates 7, ¢, and ¢. 2-35, 4-8, 5-13

Schwarzschild metric Metric used to describe

spacetime surrounding a spherically symmetric,
uncharged, nonrotating body. 2-19
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Schwarzschild radius Radius (reduced circumfer-
ence) of the horizon at r = 2M for a sphencally
symumnetric, uncharged, nonrotating body. 2-21

Schwarzschild sphere (Schwarzschild surface,
Schwarzschild horizon, event horizon, horizon) Hori-
zon of a Schwarzschild black hole. 2-21

shell In Schwarzschild spacetime, one of a set of
latticelike stationary spherical surfaces concentric
to the center of attraction (2-9). In Kerr spacetime,
the term for a nonrotating ring in the equatorial
plane (F-13).

simultaneous Occurring at the same time as
recorded in a given frame of reference. 1-4

spacetime Arena in which events take place.
Around steady-state structures, the geometry of
spacetime is described by the metric. 2-1

spacetime interval Collective name given to the
timelike spacetime interval and the spacelike
spacetime interval. 1-5

special relativity Study of the laws of physics
expressed with respect to free-float (inertial)
frames and comparison of observations in overlap-
ping free-float frames in uniform relative motion.
Special relativity correctly predicts results of exper-
iments with light and with particles (particles are
limited to speeds less than the speed of light). Spe-
cial relativity cannot analyze phenomena that take
place throughout a large region surrounding a cen-
ter of gravitational attraction, because a single free-
float frame cannot be defined in such a large
region. General relativity must be used to describe
such phenomena correctly. 1-1, 1-14, 2-4

speed Frame distance s covered by a particle in a
given reference frame divided by the correspond-
ing frame time ¢, i.e., v = s/t. In this book s and ¢ are
measured in the same units, so v has no units and
is a fraction of the speed of light. 1-3

spherical shell See shell

static limit Surface surrounding a spinning black
hole at which the dragging of space becomes so
strong that everything is swept along in the direc-
tion of rotation. At the static limit light launched
tangentially opposite to the direction of motion ini-
tially stands still. F-7
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synchronization of clocks Process by which
clocks in a given reference frame are set to read the
same time as the reference clock. 1-17, 2-29, G-7,
G-10

time, proper See wristwatch time
time, wristwatch See wristwatch time

tidal acceleration Relative acceleration of two free
test particles located in different parts of a refer-
ence frame. Tidal acceleration is a true indicator of
gravitation and spacetime curvature. When tidal
acceleration affects the result of a given experi-
ment, then a free-float (inertial) reference frame
cannot be defined for purposes of that experiment
and general relativity must be used to analyze it.
1-14,2-6

Universe, closed In this book, the Friedmann
model Universe that expands and later contracts to
a Big Crunch. Project G

Universe, flat In thus book, the Friedmann model

Universe that expands at a rate that tends toward
zero in the limit of large times. G-12
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Universe, Friedmann Model that idealizes the
Universe as composed of dust of zero pressure and
uniform density. Project G

Universe, open In this book, the Friedmann
model Universe that continues expanding forever
and at a constant rate for large times. G-12

worldline (1) Path in space and time taken by a
particle or light flash. (2) Curve on the spacetime
diagram representing the motion of the particle or
light flash. If the particle is free, its worldline is a
geodesic. 1-9, 3-3

wristwatch time The term wristwatch time
between two events is used in two related ways in
this book. (1) As proper time, 1, it is the total time
(aging) recorded by a clock carried along any possi-
ble worldline between the two events, events that
are not necessarily near one another (3-3).

(2) As timelike spacetime interval, it is the incre-
mental time dt between two nearby events as
recorded by a clock that follows a geodesic
between them (1-1). The wristwatch time is zero
along the worldline of a light flash (5-2, 5-6).
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A
aberration of light, 5-26-30

accelerating expansion of Universe,
G-20

acceleration, gravitational, 2-46, 3-31,
B-19-21

acceleration, tidal, 1-14-16, 2-6-7,
2-32, B-18-21, 5-2

accretion disk, F-2, F-4, F-25

advanced civilization, defined, F-25

aging, 1-5-7, 3-4

Aging, Principle of. See Principle of
Extremal Aging

Alice in Wonderland, 1-1, B-1

Andromeda galaxy, 1-4

angle, azimuthal, 2-16

angular momentum

derived from Extremal Aging,
4-2-5

from shell velocity, 4-22
of object in Kerr geometry, F-13
of spinning black hole, F-2
parameter g, F-2
properties of, 4-5-8

aphelion, 4-26, C-3
apple, Newton's, 2-5

astronaut
interview, B-1
stretching, 2-6, 2-46, B-18-21

azimuthal angle ¢, 2-16

background radiation, cosmic, G-21
baked on the shell?, 5-27

balloon of various dimensions, G-2-6

beacon, 3-10-12, 5-35-37
Big Bang, Project G
seeing G-17-19
black hole
area never decreases, 2-48

dilute, 2-46
dropping in on, 3-30

energy conversion using, 3-29-30

extracting energy from, F-20-24,
F-28-29

INDEX

INDEX

black hole, continued

extreme angular momentum,
F-5-7

escape from, 2-4, 4-7, 4-21
inside, Project B
Kerr black hole, Project F
measuring distance from, 5-33
more about (box), 3-3

no escape from, 3-19-23, B-13-16

Reissner-Nordstram, F-31
science inside, B-3

shadow of, 5-33

spinning, Project F
temperature of, 5-27, 5-37
time travel using, 4-32
turning around using, 4-32-33

blue shift, gravitational, 2-13, 2-30
blunder of my life, biggest, G-1, G-11
Boltzmann’s constant, 5-27

bookkeeper
Kerr, F-8-11
Schwarzschild, 2-34-38

Boyer-Lindquist coordinates, F-2-3,
F-19

C

Carroll, Lewis, quote, B-1
Cauchy horizon, F-5, F-30
centrifugal pseudo force, 4-13
Chandrasekhar, S., quote, F-1
circular orbits. See orbit, circular

Chesapeake Bay, general relativity
over, 2-47

clay pigeon, 3-6

clock
far-away, 2-27-30, F-3
personal far-away, 2-29
reference, 1-17
recording, 1-18

synchronize, 1-17, 2-27, 2-29, A-4,

G7,G-10-11

closed Universe, G-6, G-7-12,
G-15-21

conv, subscript meaning “in conven-
tional units,” 1-13, GL-1

coordinate radius. See reduced
circumference

coordinate systems, 2-31-38, B-4, F-2

Copernicus, Nicolaus, 2-8

corona, E-2

cosmic background radiation, G-21
cosmuc rays, super, 1-22

cosmuc red shuft, G-18

cosmological principle, G-1-2
cover, explanation of, D-12-17
critical value of mass, M, G-13-14

crunch
time to arrive at, 3-21-22
of Universe, G-7-12

curvature of spacetime, 1-16, 2-3,
2-6-7

curvature factor, 2-21
curvature of Unuverse, G-13-15
curved spacetime, Chapter 2
cycloid, G-8-12

D

dark matter, D-11
diamond necklace, D-16-17
Dickinson, Emily, quotes, 4-1, 5-1
differentials, sloppy use of, 2-20
Disney Epcot Center, 2-10
diving candidate, B-1-3
diving frequency shift, B-25
distance
determines geometry, 2-1-3
frame distance, 1-1-2
proper, 1-3-5
donut, Einstein, D-12-15
Doppler effect, 2-13, 5-26, G-18

drip frame, B-4, B-26

E
Epest = mc?, 1-11
rest — 4
edge, over the, 3-19-23
effective potential
for light, 5-10-13, 5-33
for orbit of Mercury, C-6-7

in Newtonian mechanics,
4-11-14



effective potential, continued
in Schwarzschild spacetime,
4-14-20

eggbeater oscillations, B-5

Einstein, Albert

“biggest blunder of my life,” G-1,
G-11

“Did you doubt it?”, D-1

“invented” curved spacetime,
4-9

quotes, 1-1, 2-1, 2-4, 2-20, 3-1,
B-10, E-1

Einstein donut, D-12-15

Einstein field equations, 2-20
Einstein ring, 5-21, 5-24-25, D-9-11
elevator safety, 1-14

embedding diagrams, 2-25-26
Empire State Building, 1-14

energy
conversion using black hole,

3-29-30

denved from extremal aging,
1-7-12, 3-6-10, 4-2-5, F-13

energy-mass conversion, 1-22

extracting energy from Kerr
black hole, F-20~24, F-28-29

from shell velocity, 4-22

in Kerr spacetime, F-13

in Schwarzschild spacetime,
3-6-10

in special relativity, 1-7-12

measured at infinity, 3-10-11

measured by shell observer,
3-17-19

negative energy, F-20-24, F-28-29

Newton approximates plunging
energy, 3-33

of a clock bolted to a spherical
shell, 3-12

of a particle falling from rest at
infiruty, 3-12

production by a quasar, 5-35, F-4,
F-24-27

rest, 1-11

entropy, 2-48

Epcot Center, Disney, 2-10
ephemendes, C-2

ephemeris time, 2-28

equatorial plane, 2-15-16, F-2, F-7
ergosphere, F-7-8, F-20--24, F-28-29
escape velocity, 2-22

-2

event, 1-2, 2-1-3
event horizon. See horizon
expansion of Universe, Project G

Extremal Aging. See Principle of
Extremal Aging

extreme Kerr black hole, F-5-7

F
falling from rest at infinity, 3-12-17

far-away clock, personal 2-29

far-away observer, 1-18. See also book-

keeper
far-away time, 2-19, 2-27-30, F-3
field equations, 2-20
final view, B-22-25, 5-27-30

flash
headlight, B-14-16
synchronizing, 1-17
taillight, B-14-17

flat spacetime, 1-5, 2-4-7
limits of, 1-14-16, 2-5-7, 2-27
metnic for, 1-2-5, 2-17-18

flat Universe, G-6, G-12-15
frame distance, 1-2

frame
drip frame, B-4
hail frame, B-5
inertial. See free-float frame
rain frame, B-4-6

frame dragging, F-7-10, F-13-16
frame time, 1-2

free-float frame
in special relativity 1-1, 1-14-16
in curved spacetime, 2-4-7,
2-31-33

frequency shift, B-25, 5-34-37
Friedmann Universe, Project G
frozen star, 3-23. See also black hole

Fuller, Buckmunster, 2-8

G
Galilei, Galileo, quote, G-21

general relativity, 1-1, 1-16
over Chesapeake Bay, 2-47-48
readings in, R-1-4

geodesic, 2-4-5, 3-4

geometric units, 1-2, 2-13, 4-3, F-2,
F-31

geometry determined by “dis-
tances,” 2-1-3

Global Positioning System (GPS),
Project A

glossaries, GL-1-7

gravitation, 1-14-16, 2-5

gravitational acceleration, 2-46—47,
3-31-32, B-19-21

gravitational blue shift, 2-13, 2-30

gravitational constant G, 2-13

gravitational red shift, 2-12-13, 2-30,
2-45, 5-34

gravitational radius (not used in this
book), 2-21

H

hail frame, B-5, B-26

harmonic oscillator, linear, C-3-8
Hawking radiation, 2-4, 5-27
Hawking, Stephen, quotes, 2-24, F-3
Hawking temperature, 5-27, 5-37
headlight flash, B-14-16

Hilbert, David, 2-30

hole, black, see black hole

horizon, 2-21, F-4-5

alarm for spaceship, 3-32

as a one-way barrier, 3-19-23,
B-13-16, 5-33, F-4-5

Cauchy horizon, F-5, F-30

crossing the, 3-19-23, 5-33

measuring radius inside, B-8

Newton predicts, 2-22

one-way motion inside, 3-20,
B-13-16, F-15

origin of term, R-2

trajectories of particle inside,
B-21-22

horizon-to-crunch time

for hurled particle, 3-25

for light, B-16-19

for particle dropped from rest at
infiruty, 3-21-22

for particle dropped from rest on
a shell, 3-21, 3-31

hurling stone into black hole, 3-25
shell energy of, 3-28-29

hyperradius of the universe, G-4-5
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hypersphere, G-4

I
iceberg, 2-1

impact parameter b, B-23, B-25, 4-6,
5-6, D-3-5, D-9-10

inertial frame. See free-float frame
insertion problem, B-26
inside the black hole, Project B

interferometry, very long baseline
(VLBI), D-9

interval
spacelike, 1-4, 2-19
timelike, 1-2, 2-19

invariant, 1-3
mass, 1-13
proper distance, 1-3-5
wristwatch time, 1-3

irreducible mass, F-24-25

K

Kepler’s laws of planetary motion,
431

Kerr bookkeeper, F-8-11

Kerr metric, Project F

Kerr-Newman geometry, 3-3
krufe-edge orbit, 4-8-10, 4-19, 5-12-14

L
latticework of clocks, 1-17, 2-38

light

alternative speeds, 5-2-5, 5-7-9

effective potential for, 5-10-13,
5-33

energy of in final view, B-24

faster than, inside horizon?,
B-6-12

forecasting trajectory of, 5-9-10

frequency shift, 5-34. See also
red shift, blue shift, cosmic
red shift, Doppler effect

motion of, in Schwarzschild
geometry, Chapter 5

motion of, in Kerr geometry,
F-10-12

orbiting, 5-5-8

pressure of, 1-23

radial trajectories of, in Schwarz-
schild spacetime, B-16-18

INDEX

light, continued
Schwarzschild maps of motion.
See Schwarzschild map
shell observer measures light
speed unity, 54-5
slowed, near Sun, Project E

light cone
forward, B-14-15
in rain coordinates, B-15
radial trajectories of, B-16-19

light sphere, 5-15-16, 5-33
linear harmonic oscillator, C-3-8
local free-float frame, 1-14-16, 2-4-7

M
MACHO, D-11
magnitude, stellar, G-20

Mars, light slowed on round trip to,
Project E

Marx, Groucho, quotes, 2-45, 4-2

mass
in relativity, 1-12-13
in units of length, 2-13-15
irreducible, F-24-25
mass-energy conversion, 1-22
no change with velocity, 1-13
of astronomical objects, 2-16
test particle, 1-13

masses of some astronomical
objects, 2-16

mass-inflation singularity, B-5, F-5

mass parameter of the Universe, G-8
critical value, G-13-15

massive compact halo objects
(MACHO:s), D-11

merciful ending?, B-18-21

Mercury, advance of perihelion,
Project C

metric
as micrometer, 2-32
for flat spacetime, 1-2, 1-4
for model Universe, G-6-7
for rain frame, B-12-14
in polar coordinates, 2-17
Kerr, Project F
Kerr-Newman, 3-3
on spherical shell, 2-33
Reissner-Nordstrem, F-30-31
Schwarzschild, 2-19-24

microlensing, D-11-12

micrometer, metric as, 2-32
Misner, Charles, quotes, 4-2, G-1
Mixmaster singularity, B-5

momentum
in special relativity, 1-12
derivation, 1-23

Moon, distance to, E-6

motion, constants of

energy in special relativity, 1-11

momentum in special relativity,
1-12

energy near non-rotating black
hole, 3-9

angular momentum near non-
rotating black hole, 4-4

energy and angular momentum
near extreme rotating black
hole, F-13

N
necklace, diamond, D-16-17
negative energy, F-20-24, F-28-29

neutron star
acceleration of gravity at surface
of, 3-32
deflection of light by, D-8
kinetic energy hitting 3-28
pulsar, F-1

Newcomb, Simon, C-2
Newman spacetime, 3-3

Newton

approximates plunging energy,
3-33

circular orbits, 4-30-31

gravitation theory, 2-13

predicts horizon of black hole,
222

predicts deflection of starlight by
Sun, D-1-3

quotes, 4-2, 4-26

Newton’s apple, 2-5

o

observer
far-away, 1-18, 2-35, 2-38, F-3
in special relativity, 1-16-18
Schwarzschild, 2-35

occultation, D-8
open Universe, G-6, G-12-15



orbit
circular, 4-20, 4-25, 4-28-32
computing, 49, F-30
forecasting, 4-8, 4-23

knife-edge, 4-8-10, 4-19, 5-12-14

Newtonian, 4-30-31, C-4-6
orbiting light, 5-5-8
orbiting particles, Chapter 4, F-30
oscillator, linear harmonic, C-3-8

ouch time, 2-4-6, B-18-21

P

paradox,
twin, 1-5
Zeno’s, 2-49

Penrose process, F-20-24, F-28-29

perihelion
defined, C-1
of Mercury, Project C

personal far-away clock, 2-29
photon, 5-34

pigeon, clay, 3-6

pitons, 2-1

Planck’s constant, 5-34

plane, satellite motion n, 2-15-16

planetary motion, Kepler’s laws of,
4-31

planets, advance of the perihelia of
inner, C-10-12

plunger wink-out time, 5-35-37
plunging, Chapter 3
plunging view, 5-27-30

potential, effective. See effective
potential

precession of perihelion of Mercury,
Project C

pressure of light, 1-23

Principle of Extremal Aging
in flat spacetime, 1-5-7
in Kerr spacetime, F-13
in Schwarzschild spacetime,
3-1-5

proper distance, 1-3-5
between spherical shells, 2-22,
2-45

proper length, 1-5
proper speed, B-11

I-4

proper time, 1-2.
See also wristwatch time

proper velocity, B-11
pseudo force, centnfugal, 4-13

pulsar, F-1

Q

quantum gravity, 2-24, B-5, F-3
quantum mechanics, 2-4, 2-24, F-3

quasar, energy production by, 5-35,
F-4, F-24-27

radial stretching, 2-6, 2-28, 2-46-47,
B-18-21

radius, measuring inside honzon,
B-8. See also reduced circumfer-
ence

railway coach, 1-15

rain frame, B-4
light cones in, B-15
metric for, B-12-14
orbits in, B-25-26

raindrop, B-4

r-coordinate, 2-7-11, F-3, F-6
readings in special relativity, 1-20-21
readings in general relativity, R-1-4

red shift, 2-12-13, 2-30, 2-45, 5-34
cosmuc red shift, G-18

reduced circumference 7, 2-7-11
in Kerr spacetime R, F-6, F-9-10,
F-19
measuring inside horizon, B-8

reference clock, 1-17
reference frames, 1-1, 1-14-16, 2-3-4
Reissner-Nordstrem metnc, F-30-31

relativity
general, 1-1, 1-16, R-1-4
special, 1-1, 1-14-16, 1-20-21

replay using orbit of light, E-6
residuals, C-1, E-5

rest energy, 1-11

Rindler, Wolfgang, quote, 4-9
ring around the sky, B-24, 5-28-30
ring, Einstein, 5-24-25, D-9-11
ring riders, F-16-20

rowboat, 2-1-2

S

satellite motion in a plane, 2-15-16
Schwarzschild, Karl, 2-20
Schwarzschild bookkeeper, 2-35

Schwarzschild geometry, picturing
the space part, 2-24-27

Schwarzschild global coordinate
system, 2-7, 2-19, 2-34-37

Schwarzschild horizon, 2-21

Schwarzschild lattice, 2-38, 2-41

Schwarzschild map, 2-35-37, 4-8
of light motion, 5-13-19
vs. shell view, 5-16-19

Schwarzschild metric, 2-19-24
Schwarzschild observer, 2-35
Schwarzschild radius, 2-7-11, 2-21-22

Schwarzsctuld spacetime, effective
potential in, 4-14-20

Schwarzschild sphere, 2-21
Schwarzschild surface, 2-21
science inside the black hole, B-3
seemg, Chapter 5

shadow of a black hole, 5-33
Shapiro, Irwn, Project E

shell frame

gravitational acceleration on,
3-31-32

defined, 2-9

energy measured on, 3-17-19

Unruh radiation, 5-27

local, 2-33

proper distance between, 2-22,
2-45

stationary rings around Kerr
black hole, F-13

shell observer, 2-33-35

shell view
of black hole, 5-20
of stars, 5-19-24
vs. Schwarzschild map,
5-16-19

simultaneous, 1-4

singulanty, 2-24
mass-inflation singularity, B-5,
F-5
Mixmaster, B-5
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skeet shooting, 3-6

sky, ring around, B-24, 5-28-30
sloppy use of differentials, 2-20
solar constant, F-26

spacelike spacetime interval, 1-4,
2-17,2-19

spacetime interval, 1-5

special relativity
defined, 1-1
limuts of, 1-14-16
readings in, 1-20-21

speed

alternative speeds of light, 5-2-5,
5-7-9

maximum bookkeeper, 3-28

of light for fastest stone, 3-29

of stone approaching the hori-
zon, 3-12-17

proper, B-11

Speeding, Chapter 1

Spinoza, Benedict de, G-1
sphere, light, 5-15-16, 5-33
spherical shell. See shell entries
spiral, straight-in, F-13-16

star, frozen, 3-23

starlight seen inside horizon, B-22-25,
5-28-30

stars

final view, B-22-25

outward shell view, 5-19-24
static limit, F-7-10
stellar magnitude, G-20

stretching, astronaut, 2-6, 2-46,
B-18-21

Sun
angular momentum of, F-6
deflection of starlight by, D-1-9
grazing the, 2-45
slowed light near, Project E

synchronizing clocks, 1-17, 2-27, 2-29,
A4, G-7,G-10-11

INDEX

synchronizing flash, 1-17

T

t-coordinate, 2-28
taffy-pulling machines, B-5
taillight flash, B-14-19

Taylor, Abigail, Andrew, Bradley,
Crissman, Cynthia, Dana, Job
denH, Katherine, Leslie, Lloyd,
Meredith, Rasmia K, Samantha,
Samuel, Victoria, I-5

temperature of a black hole, 5-27, 5-37
test particle, 1-13-16, 3-10-11

Thorne, Kip S., quotes, 2-7, 2-42, 4-2,
G-1

tidal acceleration, 1-14-16, 2-6-7,
2-32, B-18-21, 5-2

time
far-away, 2-19, 2-27-30, F-3
frame time, 1-2
to arrive at the crunch, 3-21-22,

3-31

what then is, 4-2

time parameter 1, G-9, G-17-19

timelike spacetime interval, 1-2, 2-19,
F-2,F-6

time travel using circular orbits, 4-32
trapshooting, 3-6

turning around using black hole,
4-32-33

twenty-year black hole, B-4
twin paradox, 1-5

U

universal gravitational constant G,
2-13

Universe, accelerating expansion of,
G-20

Universe, model
closed, G-6, G-6-12
contraction of, Project G

Universe, model, continued
expansion of, Project G
flat, G-6, G-12-15
Friedmann, Project G
hyperradius of, G-4-5
metric for, G-6
open, G-6, G-12-15

Unruh radiation, 5-27

Vv

vampire, 5-33
velocity, proper, B-11

Venus, light slowed on round trip to,
Project E

very long baseline interferometry
(VLBI), D-9

view from light sphere, 5-14-16, 5-33
virtual particles, 2-4

w

weak field approximation, D-1
weightlessness, 4-13-14

Wheeler, John Archibald
opinion on Universe, G-11
quotes, 2-30, 4-2, F-31, G-1, G-21

Will, Clifford, quotes, A-1, A-7
wink-out time, plunger, 5-35-37

worldline, 1-9, 3-3
of inevitability, B-17
wristwatch time, 1-1-3, 2-19, F-2
from horizon to crunch, 3-21-22,
3-31
from the beginning of the
Universe, G-7, G-10-11, G-20
zero value along worldline for
light, 2-32, 5-2, 5-6

Y4
Zeno's paradox, 2-49

zero angular momentum observers,
ZAMOS, F-16
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Selected Formulas

The Schwarzschild metric describes the separation between two neighboring events
in the vicinity of a spherically symmetric, nonrotating center of gravitational attrac-
tion. This is equation {10] on page 2-19.

2
ar? = (l—m)dtz A —r’dy?

MG
r
¢ dt is the wristwatch time between the two events as measured on a wristwatch that
moves directly from one event to the other.
e dt is the time between the events measured on a clock far from the center (page
2-27)
® r is the reduced circumference: circumference divided by 2n (page 2-7).
¢ M is the mass of the center of attraction measured in units of meters (page 2-13).

[A]

Equation [A] is called the timelike version of the Schwarzschild metric, useful when a
clock can be carried between the two events at less than the speed of light. If this is
not possible, then we use the spacelike version, equation [11] on page 2-19.

2

)
r
Here do is the proper distance between the two events: the distance between them

recorded by a measuring rod moving in such a way that the two events occur at the
same time in its rest frame.

Equation [C] relates the time lapse dt;n.n between two ticks of a shell clock (a clock at
rest on a stationary spherical shell of radius r concentric to the center of attraction) to
the time lapse dt between the same two ticks measured by a far-away clock. This is
equation [19] on page 2-23.

o 4 \V2
drsnen = (I—TJ dr [C]

Equation [D] relates the radial distance drg,.; measured directly by the shell observer
between two events that lie along the same radial direction and the radial separation
dr calculated by a far-away observer. This is equation [12] on page 2-22.

_ dr
Arepen = W [D]

1-<£=

r

The following approximation is used often in this book. The approximation is accu-
rate for positive, negative, or fractional values of n.

(1+ d)"=1+ nd provided |[d| «1 and |nd| « 1 [E]



Selected Physical Constants

¢ = 2.99792458 x 10® meters/second

G = 6.6726 x 107! meter®/(kilogram-second?)
h = 6.6261 x 10~ kilogram-meter? /second

Speed of light in a vacuum
Gravitational constant

Planck’s constant

Electron charge

Electron mass
Proton mass
Mass of Earth

Radius of sphere having
the same volume as Earth

Mean distance of Earth from
Sun = 1 astronomical unit (AU)

Mean speed of Earth in its
orbit around Sun

Mean distance of Moon
from Earth

Mass of Sun

Mean radius of Sun

e = 1.60218 x 107'° coulomb
m, = 9.1094 x 107! kilogram

= 0.510999 MeV

m, = 1.67262 x 10 kilogram
= 938.272 MeV

Mg = 5.9742 x 10** kilograms
= 0.444 centimeter

rg = 6.3710 x 10° meters

1 AU = 1.495978 x 10" meters
vg = 29.78 kilometers /second
3.844 x 10® meters

M;s = 1.989 x 10*° kilograms

= 1.477 x 10% meters
rs = 6.9598 x 10® meters

Conversion Factors

1 second = 2.99792458 x 10° meters of light-travel time by definition
1 meter of light-travel time = 3.335641 x 10~ second
1 year = 3.157 x 107 seconds = 9.461 x 10'® meters of light-travel time

1 kilometer = 0.6214 mile

1 electron-volt = 1.602 x 107 joule

1 kilogram = 7.424 x 1072® meter of mass



