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Concerning matter, we have been all wrong. What we have been calling matter is
actually energy, the vibration of which has been lowered so much as to be

perceptible to the senses. There is no matter.
A. Einstein
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Preface

The inception of quantum field theory (QFT) occurred in 1905, when Einstein,
inspired by the work of Planck, postulated the quantization of the electromagnetic
radiation field in terms of photons in order to explain the photoelectric effect. Two
years later, Einstein himself made the first application of this incipient QFT in the
realm of condensed matter physics (CMP). By extending the idea of quantization
to the field of elastic vibrations of a crystal, he used the concept of phonons in order
to obtain a successful description of the specific heat of solids, which has become
one of the first great achievements of the quantum theory. Since their early days,
therefore, we see that CMP and QFT have been evolving together side by side.

In 1926, the quantum theory of the electromagnetic field was formulated
according to the principles of quantum mechanics, thereby providing a rational
description for the dynamics of photons, which were postulated by Einstein more
than 20 years before. QFT soon proved to be the only framework where the two
foundations of modern physics, namely, quantum mechanics and the special theory
of relativity, could be combined in a sensible way.

From then on, QFTs grew up mainly in the realm of particle physics, until
they eventually became some of the most successful theories in physics. Famil-
iar examples are the Standard Model (SM) of fundamental interactions and, more
specifically, Quantum Electrodynamics (QED), which exhibits some theoretical
predictions that can match the experimental results up to twelve decimal figures. It
is difficult to find any other model, ever proposed, possessing such accuracy.

Condensed Matter Physics (CMP), by its turn, has proved to be one of the richest
areas of physics, keeping under its focus of investigation an incredible variety of
systems and materials. These exhibit a plethora of unsuspected kinds of behavior,
frequently associated to different responses to all types of external agents, such as
electric and magnetic fields, voltage and temperature gradients, pressure, elastic
stress and so on. The understanding of these phenomena is an enterprise that is
frequently as interesting as it is challenging. Furthermore, like in no other area of

xv
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xvi Preface

physics, mastering the principles and mechanisms of the phenomena under inves-
tigation has produced countless technological by-products. These sometimes have
produced such impact on the society that its whole structure has been transformed,
and many human habits changed. One such example was the development of the
transistor, which ocurred after the physics of doped semiconductors was mastered.
The whole revolution of electronics, miniaturization and informatics would have
been impossible without it.

For decades, CMP made a description of solids that was based on the concept of
independent electrons moving on a crystalline substrate. This picture has worked
extremely well due to the peculiar properties of the quantum-mechanical behav-
ior of electrons in a periodic potential and served for understanding an enormous
amount of properties of metals, insulators and semiconductors. Adding further ele-
ments to this picture has enabled the understanding of magnetic materials. Then
superconductivity, one of the most beautiful, interesting and useful phenomena in
physics, was understood by including the interaction of independent electrons with
the crystal lattice vibrations.

By the 1980s, however, the discovery of the quantum Hall effect and the follow-
ing efforts employed to understand it brought two important features to the center
of attention in the realm of CMP. The first one is the existence of material systems
where the electrons, rather than being independent, are strongly correlated due to
interactions. The second one is the fact that the physical properties of certain states
of matter are determined by sophisticated topological constraints that fix the value
of some quantities with an incredible accuracy and guarantee the conservation of
others, a fact that would not be otherwise anticipated. Both features usually lead to
unsuspected results.

Since that time, a large number of new materials either have been developed or
are being designed that present strongly correlated electrons, topological phases or
both. For understanding such a large amount of new sophisticated advanced materi-
als, an efficient method, capable of describing the quantum-mechanical properties
of a system of interacting many-particle systems and their possibly nontrivial topo-
logical aspects, was required. QFT was the natural response to this demand. By
then, it had become one of the most powerful theoretical tools available in physics,
with applications ranging from particle physics to quantum computation, passing
through hadron physics, nuclear physics, quantum optics, cosmology, astrophysics
and, most of all, condensed matter physics, which is the subject of this book.

Here I present a QFT approach to many different condensed matter systems that
have attracted the interest of the scientific community, always trying to explore the
beauty, depth and harmony that are provided by a unified vision of physics in such
approaches. This not only fosters a deeper understanding of the subject; it opens
new ways of looking at it.
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Preface xvii

An extremely interesting example of the interplay between CMP and QFT is the
Anderson–Higgs mechanism, which plays a central role in the Standard Model,
and its relation to the Meissner–Ochsenfeld effect of superconductivity. Here,
the Landau–Ginzburg field of the superconducting system plays the role of the
Anderson–Higgs field of the SM, the only difference being the gauge group. In
both cases, a mass is effectively generated to the gauge field, which causes the cor-
responding propagators to decay exponentially. In the former case, this exponential
decay accounts for the extremely short range of the weak interaction, whereas in the
later it leads to an extremely short penetration length for the magnetic field inside
the bulk of a superconductor, thereby effectively expelling it from inside supercon-
ductors, a phenomenon known as the Meissner–Ochsenfeld effect. The fact that the
particle excitations associated to the Landau–Ginzburg field reveal themselves as
electron-bound states (Cooper pairs) strongly suggests, both on logical and esthetic
grounds, that the Anderson–Higgs boson particle should also be composite. This
should be a central issue in the realm of particle physics in the near future.

Another beautiful example that is explored in this book is the equivalence
between the Yukawa mechanism of mass generation for leptons and quarks in
the SM and the Peierls mechanism of gap generation in polyacetylene. Both
involve identical trilinear interactions containing a Dirac field, its conjugate and
a scalar field. In the former case, the lepton or quark Dirac fields interact with the
Anderson–Higgs field, whereas in the later the electron, which can be shown to be
described by a Dirac field, interacts with the elastic vibrations field of the poly-
mer lattice. In both cases, the scalar field acquires a nonzero vacuum expectation
value: the first one by a judicious choice of the Anderson–Higgs potential, while
the second one by the dimerization of the polyacetylene chain. Therefore, the same
mechanism that causes polyacetylene to be an insulator generates the mass of all
familiar matter. This amazing unification of phenomena that are separated by more
than ten orders of magnitude in energy indicates the existence of a deep, under-
lying unity in physics. A universal unified vision of this science is, consequently,
required nowadays. This book is aimed to provide such a unified picture of CMP
and QFT.

Writing a book on applications of QFT in CMP, however, is a formidable chal-
lenge, in view of the large number of excellent books that already exist on the
subject, some of them listed under Further Reading at the back of this book. One
can, indeed, always ask: why another book on QFT in CMP? Nevertheless, because
of its peculiar characteristics, which include a balanced combination of introduc-
tory, advanced and traditionally known material, I feel that this book has its own
place in the literature and will be helpful and useful to a broad group of readers.

The book has been divided into three parts. Part I provides a four-chapter intro-
duction to CMP. Part II contains eight chapters on QFT, including an introduction
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xviii Preface

that starts from the very basic principles of QFT as well as a description of
the main features of QFT, which may be relevant for applications in CMP.
Part III is made up of eighteen chapters covering different applications of QFT in
CMP, which include metals, Fermi liquids, Mott insulators, Anderson insulators,
polarons, polyacetylene, materials exhibiting the Kondo effect, quantum magnetic
chains, quantum magnetic planar systems, the spin-fermion system, spin glasses,
superfluids, conventional superconductors, Dirac superconductors, cuprate super-
conductors, pnictide superconductors, systems presenting the quantum Hall effect,
graphene, silicene, transition metal dichalcogenides, topological insulators, Weyl
semimetals and systems that are candidates for topological quantum computation.

This book covers topics for which there is, so far, no complete understanding
and, consequently, about which no consensus has been reached in the community.
Cuprate and pnictide superconductors, for instance, are examples of such topics.
Besides these, the book includes some very recent advanced topics, such as Weyl
semimetals, topological insulators and materials potentially relevant for quantum
computation. I am aware that the inclusion of such topics in the book is a bold
venture; nevertheless, I decided to face it and take the involved risks. I feel the
inclusion of these topics has made this work much more interesting and exciting. I
hope the reader will understand this point and will share the constructive attitude
that stands behind the inclusion of such topics.

The book can be used in many different ways. Chapters 1–7 can be used as
an introductory course in CMP and QFT. After this introduction, one can fol-
low the sequence of QFT subjects presented in Chapters 8–12, which comprise
classical and quantum topological excitations, order-disorder duality, bosonization
and anyons, statistical transmutation and Pseudo Quantum Electrodynamics. Then,
after a bridge between QFT and CMP offered in Chapter 13, the reader will find
in Chapters 14–30 the QFT approach to a variety of materials and mechanisms
of CMP.

Alternatively, the book contains several avenues that will take the reader along
certain sequences of QFT procedures, which play an important part in differ-
ent CMP systems. The first of such avenues starts with symmetries (Chapter 7),
and then order-disorder duality and quantum topological excitations (Chapter 9),
bosonization and generalized statistics (Chapter 10), bosonization of polarons
(Chapter 15), bosonization of quantum magnetic systems in 1d (Chapter 18) and
anyons with non-Abelian statistics (Chapter 30).

A second avenue deals with electromagnetic interaction of planar systems.
It starts with pseudo quantum electrodynamics (Chapter 12) and then goes to
graphene (Chapter 27) and silicene and transition metal dichalcogenides (Chap-
ter 28). A third starts with symmetries (Chapter 7), followed by classical Sine–
Gordon solitons (Section 8.3), quantum Sine–Gordon solitons (Section 10.6), 2d
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Coulomb gas (Section 18.3), application to copper benzoate (Section 18.4.2) and
application to the Kosterlitz–Thouless transition (Section 18.4.3). Then, we have
an avenue on superconductivity, which starts in superconductivity (Section 4.4),
then goes to electron-phonon interactions (Section 3.7), from this to superconduc-
tivity of regular electrons (Sections 23.1–2) and then superconductivity of Dirac
electrons (Sections 23.3–6). The reader is kindly invited to find further avenues
as such.

The book is mainly meant for researchers, posdocs and graduate students in the
areas of CMP, QFT, materials science, statistical mechanics and related areas. Nev-
ertheless, being self-contained in the sense that no previous knowledge of either
CMP or QFT is required, the book can also be used by undergraduate students who
feel inclined toward QFT and CMP.

I want to express my gratitude to people who contributed in different ways
toward the completion of this book. First of all, my editor Simon Capelin, who
in the many phases of this work never hesitated to provide his unconditional sup-
port. To Roland Köberle, who followed the writing of the book for 3 years, thank
you for numerous useful suggestions. Thank you to Curt Callan for taking the time
to read the manuscript, to Mucio Continentino for the constructive critical read-
ing of selected chapters, to Hans Hansson for helpful suggestions and to Cristiane
de Morais Smith for invaluable comments and remarks. I would also like to thank
Vladimir Gritsev, Amir Caldeira, Chico Alcaraz, Nestor Caticha, Luis Agostinho
Ferreira and Carlos Aragão for (hopefully) reading the manuscript. Special thanks
also go to my collaborators of the most recent years: Van Sérgio Alves, Leandro
Oliveira do Nascimento and Lizardo Nunes for the fruitful exchange of points of
view. I also take this opportunity to thank my home institution, the Institute of
Physics of the Federal University of Rio de Janeiro, for all the support received
along many years.

Finally, I would like to thank my family for the many, many, many hours taken
from their company in order to keep this project going. Most especially, I thank
my wife Norma, without whose love, support and patience everything would have
been impossible.

Eduardo C. Marino
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1

Independent Electrons and Static Crystals

The expression “condensed matter” refers to materials that are either in a solid
or in a liquid state. Soon after the atomic theory was established, the structure
of matter in these condensed forms became the object of study under that new
perspective. These early investigations already revealed that a large amount of the
solids, interestingly, exhibit a peculiar structure, which is called a crystal. These
rich forms of matter surprisingly assemble their constituent atoms or molecules in
such a way that the most stable configuration has a periodic character, namely, there
exists a basic unit that repeats itself along the whole sample. The specific geometric
form of the periodic crystalline structure is determined by the spatial orientation of
the atomic or molecular valence orbitals of the basic components of each crystal
material. The existence of this periodic geometric array exerts a profound influence
upon the physical properties of the material. These include the energy spectrum,
charge and heat transport, specific heat, magnetic and optical properties. The study
of crystal lattices, consequently, is of fundamental importance in the physics of
condensed matter.

1.1 Crystal Lattices

The mathematical concept that most closely describes an actual crystal lattice is
that of a Bravais lattice, a set of mathematical points corresponding to the discrete
positions in space given by

{R| R = n1a1 + n2a2 + n3a3; ni ∈ Z}, (1.1)

where ai , i = 1, 2, 3 are the so-called primitive vectors in three-dimensional space.
The corresponding structure in one(two)-dimensional space would be analogous to
(1.1), but having only one(two) primitive vector(s). We can see that the points in
the Bravais lattice form a pattern that repeats itself periodically. A characteristic
feature of this type of mathematical structure is that it looks exactly the same from
the perspective of any of its points R.

3
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4 Independent Electrons and Static Crystals

The Bravais lattice is invariant under the operation

R → R+ T, (1.2)

where

T = La1 + Ma2 + Na3, (1.3)

and L ,M, N are arbitrary but fixed integers. Indeed, clearly for any T we have
{R} ≡ {R + T}, hence translations by T are symmetry operations of the Bravais
lattice. Examples of two-dimensional Bravais lattices are the square lattice and the
triangular lattice, see Figs. 1.1 and 1.2.

A useful concept related to a Bravais lattice is that of a primitive unit cell.
This is a region of space containing a single point of the Bravais lattice that
will cover the whole volume (area in two dimensions, length in one dimension)
encompassed by the lattice when translated by all the symmetry operations T, in
such a way that these translations do not produce any superpositions. There are
in general different regions, with many possible shapes, that satisfy the previous
definition. Surprisingly, however, the volume (area in two dimensions, length in
one dimension) of all primitive unit cells is always the same, irrespective of their

Figure 1.1 Square Lattice: an example of a 2d Bravais lattice

Figure 1.2 Triangular Lattice: an example of a 2d Bravais lattice
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1.1 Crystal Lattices 5

Figure 1.3 Two choices of primitive unit cells for a square lattice, corresponding
to different sets of primitive vectors, according to (1.4). Notice that the areas of
the two unit cells are, evidently, the same.

specific shape. Evidently, from the definition, the volume V0 of any primitive unit
cell, for a lattice containing N points and a volume V , must be given by V0 = V

N .
The mentioned property then follows.

Given a set of primitive vectors, an obvious choice among the many possible
primitive unit cells would be

{R| R = x1a1 + x2a2 + x3a3; xi ∈ [0, 1]}. (1.4)

From this we may infer that the volume of any primitive unit cell is given by

V0 = a3 · (a1 × a2). (1.5)

For two-dimensional lattices, the corresponding area would be

A0 = |a1 × a2|, (1.6)

whereas for a one-dimensional lattice, we would have the corresponding length

L0 = |a1|. (1.7)

A crystal structure in general is not just a Bravais lattice; rather it is obtained
from the latter by placing what is called a base in each of its points. The base is a
finite set of points occupying fixed positions with respect to each of the points of
the Bravais lattice.

The so-called honeycomb lattice is an example of a crystal structure, that is
not a Bravais lattice. This can be inferred from the fact that points A and B have
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6 Independent Electrons and Static Crystals

different perspectives of the lattice, as we can see in Fig. 1.4. This crystal structure
is obtained by adding to each point of a triangular Bravais lattice having primitive
vectors of length a, a base of two points at (0, 0) and (h, 0), with h = a/

√
3.

The actual crystal material is modeled by placing atoms, ions, molecules or rad-
icals in each of the points of a base B in a Bravais lattice BL. The crystal mass
density distribution is then given by

Figure 1.4 Honeycomb crystal structure, showing the two interpenetrating Bra-
vais triangular sublattices A and B, respectively, with black and white dots.
Different perspectives of the lattice are clearly obtained from sublattice points
A and B.

Figure 1.5 Honeycomb crystal structure, showing one Bravais triangular sublat-
tice (black dot with spacing a) and the base (one black and one white dot with
spacing h = a/

√
3)
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1.2 The Reciprocal Lattice 7

ρ(X) =
∑

R∈BL

∑
i∈B

mi δ(X− R− ri ), (1.8)

where mi is the mass of the constituent at the point R + ri of the crystal struc-
ture. One can verify that the above expression is invariant under the BL symmetry
operations (1.3), namely,

ρ(X) = ρ(X+ T), (1.9)

which follows from the fact that
∑

R =
∑

R−T for R ∈ BL.
In the next section we will study the Fourier expansion of periodic quanti-

ties possessing the Bravais lattice symmetry (1.9) and shall explore the important
consequences of this condition.

1.2 The Reciprocal Lattice

Let f (X) be a periodic physical quantity exhibiting the same symmetry as a given
Bravais lattice, namely

f (X) = f (X+ R). (1.10)

An example of such a quantity is the crystal mass distribution function ρ(X),
introduced in (1.8).

The invariance of a function f (X) under translations by Bravais lattice points
manifests itself in its Fourier expansion as

f (X) =
∑

q

f (q) exp {iq · X}

=
∑

q

f (q) exp {iq · (X+ R)} , (1.11)

which implies

q · R = 2πn ; n ∈ Z. (1.12)

This relates the position vectors of a certain Bravais lattice to the argument of the
Fourier transform of any function having the same symmetry of such a lattice.

Considering that R =∑i ni ai , according to (1.1), we see that the above relation
is solved by

q =
∑

j

l j b j ; l j ∈ Z, (1.13)

provided the vectors b j satisfy the following relation with the primitive vectors of
the Bravais lattice,

ai · b j = 2πδi j . (1.14)
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8 Independent Electrons and Static Crystals

Indeed, this implies

q · R = 2π

(∑
i

ni li

)
; ni , li ∈ Z, (1.15)

and it is easy to see that the quantity between parentheses above is an integer. We
conclude, therefore, that (1.13) with the condition (1.14) satisfies (1.12).

The solution of (1.14) for the vectors bi in three dimensions would be

b1 =
(

2π

V0

)
a2 × a3, (1.16)

where V0 is given by (1.5). The vectors b2 and b3 are obtained by cyclic permu-
tations. An example in two dimensions would be the square lattice, for which the
solution of (1.14) would be

bi = 2π
ai

|ai |2 , i = 1, 2. (1.17)

For a one-dimensional lattice, the solution of (1.14) would be

b1 = 2π
a1

|a1|2 . (1.18)

The set of vectors q in (1.13) clearly form themselves a Bravais lattice with
primitive vectors bi , namely

{Q| Q = n1b1 + n2b2 + n3b3; ni ∈ Z}. (1.19)

This is called “reciprocal lattice,” a name derived from the fact that the vectors bi

have dimension of inverse length, whereas the corresponding vectors of the original
lattice, namely ai have dimension of length. Notice that there is only one reciprocal
lattice associated to a given Bravais lattice and that the latter is the reciprocal of
the former.

The Fourier components of a periodic function possessing the same symmetry
of a certain Bravais lattice only depend on wave-vectors, which belong to the cor-
responding reciprocal lattice. This fact has deep consequences, as we shall see. For
instance, the Fourier transform of a function satisfying (1.10), for a certain Bravais
lattice {R},

f (Q) =
∫

V
d3 X f (X) exp {−iQ · X} , (1.20)

becomes after making X = r+ R,
∫

V =
∑

R

∫
V0

f (Q) =
∑

R

∫
V0

d3r f (r+ R) exp {−iQ · (r+ R)}
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1.2 The Reciprocal Lattice 9

Figure 1.6 Reciprocal lattice vectors G are the director-vectors of a family of
planes in the original Bravais lattice, spaced by d, according to Eq. (1.22).

= N
∫

V0

d3r f (r) exp {−iQ · r} , (1.21)

where N is the number of points/cells in the Bravais lattice. The last step follows
from the symmetry of the function and the fact that Q belongs to the reciprocal
lattice. We see that the relevant integral sweeps the primitive unit cell only.

The vectors in the set {Q} have an interesting and important feature in connection
to its associated Bravais lattice. It is not difficult to see that any Bravais lattice
contains different (infinitely many) sets of parallel planes separated by a distance
d. The subset of vectors of the Bravais lattice belonging to the nth plane of such
set satisfy the relation

R · G
|G| = nd ; n ∈ Z, (1.22)

where G is a vector perpendicular to this family of planes. By choosing |G| = 2π
d ,

we see that (1.22) reduces to (1.12). We then may infer that the director-vectors G
are just the elements of the reciprocal lattice (1.19). Each of the vectors Q in (1.19),
therefore, determines a family of parallel planes in the Bravais lattice, orthogonal
to it and such that the basic spacing between adjacent planes is d = 2π

|Q| .
Let us turn now to a concept that is of foremost importance in the reciprocal

lattice. That is the Wigner–Seitz primitive unit cell. This is defined by a pecu-
liar choice of the cell boundary, which is obtained according to the following
method. For each of the lattice points, draw lines connecting it to its 1st neigh-
bors, 2nd neighbors. . . (as much as needed), and then take the set of planes (lines in
two dimensions) orthogonal to these lines and intersecting them right at the mid-
dle. The resulting cell boundary is the closed surface formed by the union of the
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10 Independent Electrons and Static Crystals

Figure 1.7 The reciprocal lattice of a square lattice with lattice parameter a is a
square lattice with spacing b = 2π

a , represented in the figure as black dots. The
central square is the First Brillouin zone, the Wigner–Seitz primitive unit cell of
the reciprocal lattice.

regions belonging to each of these planes, which form faces. The points of such
planes not forming faces of the cell boundary are discarded. The adaptation of this
construction to one-dimensional lattices is straightforward.

We have seen that any primitive unit cell has the same volume V
N , so this is

accordingly the volume of the Wigner–Seitz cell. It can be shown, however, that
it is, among all possible primitive unit cells, the one for which the sum of the dis-
tances between the cell points and the lattice point it contains is minimal. Another
property of the Wigner–Seitz cell is that, by construction, it has the same symmetry
as the lattice for which it is defined.

The Wigner–Seitz primitive unit cell of the reciprocal lattice is called the first
Brillouin zone. As we shall see, it plays a fundamental role in the quantum-
mechanical description of crystalline solids, having profound implications upon
the electronic properties of these materials. We shall understand the reason for that
in the next section.

The reciprocal lattice also plays an important role in connection with the pattern
of x-ray scattering by a crystal. When electromagnetic radiation of wavelength
λ falls upon a crystal, the waves reflected by adjacent planes of the Bravais lat-
tice undergo constructive interference whenever the Bragg condition is satisfied,
namely

2d sin θ = nλ ; n ∈ N, (1.23)

where d is the interplane spacing for a family of parallel planes, and θ , the angle
between these planes and the direction of the incident radiation (see Fig. 1.9). This,
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1.2 The Reciprocal Lattice 11

Figure 1.8 Reciprocal lattice of a triangular lattice. The shaded area is the First
Brillouin zone.

Figure 1.9 Interference between waves scattered from adjacent planes with spac-
ing d, leading to the Bragg condition. The difference in the optical paths of the
two beams is 2d sin θ .

of course, will only occur at significative angles when λ is comparable to d �
0.1nm, which corresponds to the x-ray region.

The process of reflection of electromagnetic radiation by a crystalline solid may
be formulated equivalently as the quantum-mechanical elastic scattering of photons
by a periodic potential, which has the same symmetry as the Bravais lattice of the
crystal. The probability amplitude for an incident photon with wave-vector ki to
be scattered into a final state with wave-vector k f is given, in first-order Born
approximation, by an expression proportional to

〈k f |V (r)|ki 〉 =
∫

d3re−i(k f−ki )·rV (r). (1.24)

This is the Fourier transform of the potential, which can be written as

V (r) =
∑

R∈BL

∑
i∈B

vi (r− R− ri ). (1.25)

This has the symmetry of the Bravais lattice, Eq. (1.10), and consequently it follows
that

k f − ki = Q (1.26)
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12 Independent Electrons and Static Crystals

is a vector of the reciprocal lattice. Using this fact and making the change of
variable r → r− R− ri we see that

〈k f |V (r)|ki 〉 = N
∑
i∈B

vi (Q)e−iQ·ri , (1.27)

where the sum is over the base points. When this has just a single point, we would
have

〈k f |V (r)|ki 〉 = N v(Q), (1.28)

and when all the base points are occupied by identical constituents,

〈k f |V (r)|ki 〉 = N v(Q)
∑
i∈B

e−iQ·ri ≡ N v(Q)S(Q). (1.29)

Notice the presence of the “geometric form factor,” S(Q), whenever the base has
more than one point. In the three previous equations, Q is given by (1.26), a relation
known as the von Laue condition. If we square it and use the fact that for elastic
scattering |k f | = |ki | = 2π

λ
, that |Q| = 2π

d for reciprocal lattice vectors, and that
the angle between the incident and reflected wave-vectors is 2θ , we can immedi-
ately show that (1.26) is just the first Bragg condition for constructive interference.
Hence the first-order Born approximation gives the first Bragg peak, which will
have an intensity proportional to the squared modulus of the amplitude (1.27).

X-ray spectroscopy constitutes a powerful instrument for the investigation of the
structural properties of crystalline solids. In an x-ray experiment, the peaks in the
reflected beam will occur right at ki +Q, with an intensity proportional to |v(Q)|2,
with a possible additional modulation by the geometrical form factor. We con-
clude that the peaks in the interference spectrum occurring in the x-ray scattering
by a crystal provide a direct mapping of the reciprocal lattice of this crystal. The
intensity of these peaks will bring information about the local potential v.

In the next section, we explore the consequences of a crystalline structure on the
electronic properties of the material.

1.3 Independent Electrons in a Periodic Potential

We will consider here the behavior of electrons in the presence of a periodic poten-
tial possessing the same symmetry as a given Bravais lattice. In this first approach
we shall neglect the interactions of the electrons among themselves as well as the
deviations from an ideal lattice, due, for instance, to thermal and quantum fluctu-
ations. Such periodic potential is created by the basic constituents of the crystal,
which are localized at each of the points of the crystalline structure. Its general
form is given by (1.25).

The consequences of the presence of a periodic potential in a crystal are of
foremost importance for the description of the electronic properties in a crystalline
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1.4 Bloch’s Theorem 13

solid. Especially the kinematic properties of the electrons are profoundly modi-
fied, as well as the energy spectrum, charge and thermal conductivities, magnetic
properties and so on.

We shall explore now the quantum-mechanical properties of an electron (oth-
erwise non-interacting) in the presence of the crystal lattice potential. In order to
set the stage for that, we start by considering the cases of a free electron and of a
non-periodic potential.

A free electron has Hamiltonian

H0 = P2

2m
(1.30)

and is obviously invariant under arbitrary spatial translations by a. As a con-
sequence, the translation operator T (a) = ei P

�
·a commutes with H0 and its

eigenvalues eiq·a, where q are arbitrary wave-vectors, are constants of motion.
Adding an arbitrary potential V (r) to H0 would, in general, break such invari-

ance, causing the wave-vector q to be no longer a conserved quantity. Nevertheless,
when the potential is invariant under translations by Bravais lattice vectors –
namely, when V (r) = V (r+ R) – the Hamiltonian

H = P2

2m
+ V (r) (1.31)

becomes also invariant and commutes with T (R). As a consequence, it is possible
to find a set of energy eigenfunctions ψ(r) that are also eigenfunctions of T (R)
and therefore satisfy

T (R)ψ(r) = eiq·Rψ(r). (1.32)

We can always write an arbitrary wave-vector q as

q = Q+ k, (1.33)

where Q belongs to the reciprocal lattice and k is in any of its primitive unit cells.
As we shall see, there is a strong reason for choosing the first Brillouin zone, among
the many possibilities, as the primitive unit cell of the reciprocal lattice.

Inserting (1.33) in (1.32), and using (1.12), we then realize that

T (R)ψ(r) = ψ(r+ R) = eik·Rψ(r). (1.34)

We conclude that, for a periodic potential, all the conserved electron wave-vectors
belong to the first Brillouin zone. Expression (1.34) is known as Floquet’s Theorem.

1.4 Bloch’s Theorem

Another important theorem specifies the general form of the energy eigenfunctions
ψ(r) for a periodic potential. This is Bloch’s Theorem, according to which,
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14 Independent Electrons and Static Crystals

for a potential invariant by translations of Bravais lattice vectors R, the energy
eigenfunctions are of the form

ψk(r) = eik·ru(r), (1.35)

where k belongs to the first Brillouin zone and u(r) has the same symmetry as the
potential, namely u(r) = u(r+ R). Observe that (1.35) satisfies (1.34).

In order to demonstrate Bloch’s Theorem, let us consider the energy eigenvalue
problem for the Hamiltonian (1.31), when the potential is invariant under Bravais
lattice translations, [

− �
2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r). (1.36)

Let us take the Fourier transform of the above equation. For that, consider the
expansions

ψ(r) =
∑

q

ψ(q)eiq·r (1.37)

and

V (r) =
∑

Q

V (Q)eiQ·r, (1.38)

where the last sum only sweeps vectors of the reciprocal lattice because of the
symmetry of V (r). Using the fact that the Fourier transform of a product is a
convolution, we get

�
2q2

2m
ψ(q)+

∑
K

V (K)ψ(q−K) = Eψ(q), (1.39)

where K is in the reciprocal lattice. Now, considering that an arbitrary wave-vector
q can be written as in (1.33), we obtain the following set of coupled algebraic
equations for the energy eigenvalue problem[

�
2

2m
|k+Q|2 − E

]
ψ(k+Q)+

∑
K

V (K)ψ(k+Q−K) = 0, (1.40)

where k is in the first Brillouin zone, and K and Q in the reciprocal lattice.
Several conclusions can be drawn from the above set of equations. First of all, as

expected, we see that k is a constant of motion. The interaction only couples to k
wave-vectors that differ by reciprocal lattice translations and therefore are outside
the first Brillouin zone. This can be clearly seen by taking the Q = 0 component
of (1.40).

It immediately follows that the Fourier components ψ(k + Q) correspond to a
fixed k and must be summed over reciprocal lattice vectors Q. This implies that
expansion (1.37) for the energy eigenfunctions is, actually,
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1.4 Bloch’s Theorem 15

Figure 1.10 The “umklapp” process. By construction, the first Brillouin zone,
being the Wigner–Seitz primitive unit cell of the reciprocal lattice, is such that any
vector ki at its boundaries will satisfy the von Laue condition with k f = −ki .
Such backscattering processes open a gap precisely at the zone boundary.

ψ(r) = ψk(r) =
∑

Q

ψ(k+Q)ei(k+Q)·r (1.41)

= eik·ruk(r),

where uk(r) is given by the sum of the Q-dependent terms in the first line. Since this
only includes the reciprocal lattice vectors, it follows that uk(r) has the symmetry
of the Bravais lattice. This completes the demonstration of Bloch’s Theorem, Eq.
(1.35), concerning the energy eigenfunctions of an electron in a periodic potential.

The second conclusion we can draw from (1.40) is that the energy eigenvalues
are not changed by translating k by reciprocal lattice vectors. This means

E(k+Q) = E(k), (1.42)

namely, the energy eigenvalues are periodic functions of the reciprocal lattice
vectors.

A third conclusion can be drawn from (1.40). This will make us realize why the
first Brillouin zone (FBZ) is so important and is the chosen primitive unit cell of the
reciprocal lattice. From the very construction of the Wigner–Seitz cell, it follows
that the von Laue condition (1.26) for constructive interference is satisfied at the
first Brillouin zone boundaries by the electron wave-vectors

ki = Q0

2
k f = −Q0

2
ki − k f = Q0, (1.43)

where Q0 is any reciprocal lattice vector pointing from a point to each of its
neighbors.
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16 Independent Electrons and Static Crystals

This result means the electrons do not move away from the first Brillouin zone;
when they approach any of its boundaries they are reflected back, with probability
one, in a process that is known as “umklapp,” a German word that means “to flip
over.” The FBZ is the only primitive unit cell of the reciprocal lattice that has this
property.

The periodicity and continuity of the energy eigenvalues given by (1.42) imply
that these must be bounded from above and from below. This observation, com-
bined with the umklapp mechanism, leads to the conclusion that the possible
energy eigenvalues are arranged in the form of allowed energy bands, which are
separated by prohibited energy bands, called “gaps.” These gaps, by virtue of
(1.43), form right at the first Brillouin zone boundaries. It can be shown that each
of the allowed energy bands contains as many eigenstates as the number of points
in the corresponding Bravais lattice. Choosing the FBZ as the primitive unit cell
of the reciprocal lattice has the enormous advantage that, because of the umklapp
mechanism, the allowed bands correspond to the different Brillouin zones.

An important consequence of Bloch’s Theorem is that, for any periodic poten-
tial, the energy eigenstates are extended wave-functions resembling plane waves.
As a consequence of this fact, a solid with a partially filled energy band will be able
to conduct electric charge when subjected to an external electric field. This type of
solid will possess available extended states that can be occupied by the electrons
upon application of the external field, thereby establishing an electric current. Con-
versely, a solid with a completely filled energy band has all the states of the first
Brillouin zone occupied and, consequently, despite the fact that these are extended
states, there will be no electric current because of the umklapp mechanism and
Fermi–Dirac statistics.

These observations allow us to understand the behavior of metals, insulators
and semiconductors, even within the independent electron approximation. The first
ones have a partially filled energy band, and hence, available unoccupied states.
These are separated from the occupied states by the so-called Fermi surface. Insu-
lators and semiconductors, conversely, have a completely filled band, which is
separated from the next allowed states by an energy gap. For semiconductors, this
gap is of the order of kB T in such a way that the upper band can be populated by
thermal activation. For insulators, the gap is much larger than kB T , and this is not
possible.

1.4.1 The Tight-Binding Approach

We turn now to the explicit determination of the energy eigenstates and the cor-
responding bands. We envisage a situation where a potential v(r − Ri ) is created
at each site Ri of the Bravais lattice by a local atomic kernel (we consider, for
simplicity the situation when the base has just one atom; the total potential is then
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1.4 Bloch’s Theorem 17

V (r) =∑Ri
v(r−Ri )). The local potential has bound states |n;Ri 〉 with energies

εn , n = 1, 2, 3, . . . An electron from the outermost shell is subject to this potential
and, depending on the overlap of the local wave function 
n(r − Ri ) = 〈r|n;Ri 〉
with its nearest neighbors, it can hop to neighboring atoms and thereby visit the
whole crystal.

We may describe this system in two regimes. If the overlap, and consequently
the hopping, is small, each of the allowed energy bands will be formed out of the
same local eigenstates (same n), thus establishing a one-to-one correspondence
among bands and localized states. This situation corresponds to the so-called tight-
binding regime. The opposite situation, where there is a strong overlap and intense
hopping, is called the “weak periodic potential” regime.

Let us start with the tight-binding approach. The following Hamiltonian captures
the relevant features of the electronic properties for an electron in the nth bound
state in the tight-binding regime:

HT B = εn

∑
Ri

|n;Ri 〉〈n;Ri | − t
∑
〈Ri R j 〉

|n;Ri 〉〈n;R j |. (1.44)

The second sum above runs over nearest neighbors of the Bravais lattice, and t
is the hopping parameter, which strongly depends on the overlap of neighboring
wave-functions.

The tight-binding Hamiltonian (1.44) remains unchanged by translating each of
the Bravais lattice vectors Ri by an arbitrary vector of the same lattice; hence, it
commutes with the operators implementing such translations,

[HT B, T (R)] = 0 ; T (R) = exp

{
i

�
P · R

}
. (1.45)

We can, therefore, seek for common eigenstates of HT B and T (R).
Using the fact that

T (R)|n;Ri 〉 = |n;Ri − R〉, (1.46)

we can see that, for k in the first Brillouin zone, the states

|n; k〉 = 1√
N

∑
Ri

eik·Ri |n;Ri 〉 (1.47)

are eigenstates of the translation operator (N is the number of points in the Bravais
lattice). Indeed,

T (R)|n; k〉 = eik·R|n; k〉, (1.48)
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18 Independent Electrons and Static Crystals

Figure 1.11 The tight-binding eigen-energy for a one-dimensional lattice with
spacing a

and therefore |n; k〉 are the candidates for energy eigenstates of the system. Then,
applying the Hamiltonian (1.44) on the state (1.47), we get

HT B |n; k〉 = εn|n; k〉 − t√
N

∑
〈Ri R j 〉

eik·Ri |n;R j 〉. (1.49)

By changing the summation variable as Ri → R′i = Ri − R j we conclude that

HT B |n; k〉 = En(k)|n; k〉. (1.50)

The energy eigenvalues are given by

En(k) = εn − t
∑
Ri∈R

eik·Ri , (1.51)

where the sum runs over all nearest neighbors of a given Bravais lattice point R.
Note that the above expression is independent of R and is determined by the form
of the Bravais lattice alone. For a one-dimensional lattice with spacing a, (1.51)
yields

En(k) = εn − 2t cos ka. (1.52)

This is depicted in Fig. 1.11.
For the two-dimensional square lattice we would have

En(k) = εn − 2t
[
cos kxa + cos kya

]
, (1.53)

with an obvious generalization for the three-dimensional cubic lattice.
It is instructive to explore the consequences of the results we just found for

the energy eigenvalues within the tight-binding approach. Take as an example the
square lattice, supposing there is one electron per site and N sites. Since each of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.002
https://www.cambridge.org/core
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Figure 1.12 Fermi “surface” (line) separating the occupied from non-occupied
states of the first Brillouin zone of a square lattice, at half-filling, in the tight-
binding approach

the N available states can be occupied by two electrons with different spin orien-
tations, we conclude that the band is half-filled. An important task, then, is to find
what is the occupied part of the first Brillouin zone or, equivalently, what is the
Fermi “surface” (line) separating the occupied states from the empty ones. Since
the states in (1.53) are distributed symmetrically around εn , we conclude that the
Fermi energy must correspond to εF = εn , or

cos kxa + cos kya = 2 cos
[(

kx + ky
) a

2

]
cos
[(

kx − ky
) a

2

]
= 0

ky = ±kx ± π
a
. (1.54)

The four straight lines in (1.54), therefore, determine the Fermi line, which sep-
arates the occupied half of the first Brillouin zone from the unoccupied one (see
Fig. 1.12). The system, in this case will clearly be a metal.

The result of the previous analysis goes beyond the example chosen. Indeed, we
may conclude in general that materials with one active electron per site are metals.
This is the case, for instance, of Au, Ag, Cu and Na.

Observe that, as we increase the hopping parameter t , the band becomes wider
and eventually overlaps the next band. It follows that the tight-binding approach is
no longer valid in this case and we must resort to a different method for determining
the energy bands of a crystal. The appropriate alternative approach is the so-called
weak periodic potential.

1.4.2 The Weak Periodic Potential (Large Hopping) Approach

We will consider, for the sake of simplicity, the one-dimensional lattice with spac-
ing a. We look for solutions of the energy eigenvalue equation in wave-vector
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20 Independent Electrons and Static Crystals

space, namely (1.40). In the free case, V = 0, using (1.33) we would get
from (1.40),

E0 = �
2

2m
|q|2. (1.55)

The Fermi surface would then be a spherical surface (circumference in two
dimensions).

The weak periodic potential approach is based on the assumption that, because of
the strong hopping, the electron is quasi-free, hence the only effect of the potential
is felt at the boundaries of the first Brillouin zone, where the von Laue condition
applies.

Then, the only Fourier components contributing to the expansion of the eigen-
functions, at k = π

a for instance, are precisely the ones evaluated at the boundaries
of the first Brillouin zone, namely

α1 ≡ ψ
(π

a

)
= ψ(k) α2 ≡ ψ

(
−π

a

)
= ψ

(
k − 2π

a

)
. (1.56)

Then, making, respectively, Q = 0, K = 2π
a and Q = K = − 2π

a in (1.40), we
obtain the following set of coupled algebraic equations:[

�
2k2

2m
− E

]
ψ(k)+ V

(
2π

a

)
ψ

(
k − 2π

a

)
= 0 (1.57)

and [
�

2
(
k − 2π

a

)2
2m

− E

]
ψ

(
k − 2π

a

)
+ V

(
−2π

a

)
ψ(k) = 0. (1.58)

Calling V0 = V
(

2π
a

)
and observing that V

(− 2π
a

) = V ∗
0 , because V is real, we can

write the two equations above as(
E0(k)− E V0

V ∗
0 E0(k − 2π

a )− E

)(
α1

α2

)
= 0. (1.59)

The above equation will have nontrivial solutions, provided the matrix has the
determinant equal to zero. This condition yields

E±(k) = E0(k)+ E0(k − 2π
a )

2
±
[[

E0(k)− E0(k − 2π
a )
]2

4
+ |V0|2

]1/2

. (1.60)

For k = π
a , right at the first Brillouin zone boundary, we have

E±
(π

a

)
= E0

(π
a

)
± |V0| (1.61)
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Figure 1.13 The band structure obtained with the weak periodical potential
approach for a one-dimensional lattice. Notice the (free) parabolic shape away
from the zone boundaries.

and we see that a gap of width 2|V0| opens at the zone boundary. This should
be expected because of the umklapp mechanism. The resulting band structure is
depicted in Fig. 1.13. There we can see the next two Brillouin zones for a one-
dimensional lattice.

From (1.60), we may infer the general form of the energy eigenvalues close to
the boundaries of the first Brillouin zone, for an arbitrary dimension. These are
given by

E±(k) = 1

2

[
E0(k)+ E0(k−Q0)

]± |V0|. (1.62)

Away from the zone boundaries, the energy will be given by the same expression
as in the free case.

It is interesting to find out what would be the form of the Fermi surface within
the present approach. This can be defined as the surface with a constant energy
E(k) = EF . It follows that ∇k E(k) must be always perpendicular to the Fermi
surface. Now, near the zone boundaries, according to (1.62),

∇k E±(k) = �
2

m

[
k− Q0

2

]
. (1.63)

It is not difficult to see that this vector belongs to the boundary planes of the first
Brillouin zone whenever k is in one of these planes. We conclude therefore that the
Fermi surface is always perpendicular to the first Brillouin zone boundary planes.
The only effect of the lattice on the Fermi surface, within the present approach, is
to bend it in such a way that it becomes perpendicular to the zone boundaries. This
observation will allow us to draw important conclusions about general electronic
properties of solids.
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22 Independent Electrons and Static Crystals

Figure 1.14 The free Fermi “surface” (line): (a) one electron per site, (b) two
electrons per site

To give an example, we will consider the two-dimensional square lattice, which
is easier to visualize. Let us assume firstly that the system possesses one electron
per site. In this case, the area of the free Fermi circle, which gives the number of
occupied states, must equal one-half of the first Brillouin zone area. In this case,

the radius of the Fermi circle would be
√

2
π
π
2a and the Fermi circumference would

never cross the zone boundaries, remaining therefore unaffected by the lattice (see
Fig. 1.14a). The system is a metal.

For a system in the same lattice, but now having two active electrons per site,
the area of the free Fermi circle must coincide with the area of the first Brillouin
zone. Now, the Fermi circle radius would become larger than π

2a , namely,
√

4
π
π
2a .

Consequently, the Fermi circumference will trespass the first zone boundaries and
there will be occupied states in the so-called second Brillouin zone, see Fig. 1.14b.
The lattice effect, as we saw, will be to bend and fragment the Fermi circumference
in such a way that it becomes perpendicular to the boundaries. This produces a
fragmented Fermi line, parts of which are in the first Brillouin zone and parts of
which are in the second, see Fig. 1.16. These “pockets” formed in the second zone,
however, can be brought back to the first zone by performing translations with
reciprocal lattice vectors. In this way, a second band will be formed within the first
Brillouin zone.

The presence of a Fermi line in both bands indicates that, in spite of the fact
that there are two electrons per site, the system is not an insulator. These materials
are usually called semi-metals. The mechanism described here qualitatively allows
one to understand, for instance, why the elements in the second column of the
periodic table are not insulators in spite of their having two active electrons: they
are semi-metals.
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Figure 1.15 Fermi “surface” (line) separating occupied from non-occupied states
of a square lattice, for an occupancy of (a) one electron per site; (b) two electrons
per site. Both results are obtained in the weak periodic potential approach.

Figure 1.16 Fermi “surface” (line) separating occupied from non-occupied states
of a square lattice, for an occupancy of two electrons per site in the weak periodic
potential approach. On the left is the first Brillouin zone and on the right is the
second Brillouin zone.

The size of the pockets would become smaller for systems with a larger |V0|, thus
implying the corresponding materials would present a poorer metallic character. In
the limiting situation, the second band would disappear, the whole first Brillouin
zone would be occupied, and the system would become an insulator. A system that
qualitatively would fit this situation is NaCl, which has a cubic Bravais lattice with
a base of two electrons per site and is an insulator.

We conclude this chapter by remarking how deep are the effects produced on
the electronic properties of crystalline solids by the existence in such materials of
a periodic potential, created by constituents that are assembled in a basic structure
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24 Independent Electrons and Static Crystals

that repeats itself. In the next chapter we shall explore the fact that the basic con-
stituents of a real crystalline material actually do not remain in the positions that
would coincide with the ideal Bravais lattice points. Rather, their positions undergo
both quantum and thermal fluctuations in such a way that their average corresponds
to Bravais lattice points.
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2

Vibrating Crystals

Real crystalline material systems are made of fundamental building blocks, which
are typically “atomic kernels” – namely, atoms or ions deprived of their outermost
electrons, which are subject to a mutual interaction potential. Depending on the
range of external parameters such as temperature and pressure, these basic pieces
will assemble themselves in different ways, such that in any case the energetically
most favorable situation is achieved. Surprisingly, for a vast amount of materials
at room temperature and pressure, the most stable configurations would be such
that the average position of the “atomic kernels” coincides precisely with the ideal
points of a Bravais lattice, possibly with a certain base. The actual location of the
solid’s basic constituents nevertheless oscillates around these equilibrium positions
because of thermal and quantum fluctuations. Hence, since the physical proper-
ties of crystal materials are strongly influenced by the symmetry of the underlying
lattice structure, one should expect that such oscillations would have a profound
impact on the physical properties of the solid.

We shall consider in this chapter the dynamics of the oscillatory motion of
the basic constituents of a material crystal, both from the classical and quantum-
mechanical points of view.

2.1 The Harmonic Approximation

For the sake of clarity, in this first approach we will consider crystal structures with
a base containing just one kernel or, in other words, just a Bravais lattice. Then we
can specify the position of each of the atomic kernels by

X(R) = R+ r(R). (2.1)

Classically, r(R), the relative position with respect to the closest Bravais lattice
point R, is a dynamical variable describing the position of an atomic kernel of
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26 Vibrating Crystals

mass M and momentum P(R) = M dr
dt (R). Notice that we must have 〈r〉 = 0 so

that the average position coincides with the Bravais lattice points, namely 〈X〉 = R.
A pair of atomic kernels does interact through a potential energy that depends

on the mutual separation X(R)− X(R′). We assume only nearest-neighbors inter-
actions will be relevant. Then, the total Hamiltonian describing the mechanical
energy of the material lattice is therefore

H =
∑

R

P2(R)
2M

+
∑
〈RR′〉

V
(
R− R′ + r(R)− r(R′)

)
. (2.2)

We assume the equilibrium configuration of the material lattice is the Bravais
lattice, hence R − R′ must be a stable equilibrium point of the potential, and
therefore (

∂V (X)
∂Xi

)
X=R−R′

= 0 i = 1, 2, 3 (2.3)

and the Hessian matrix

Ki j =
(
∂2V (X)
∂Xi∂X j

)
X=R−R′

i = 1, 2, 3 (2.4)

must have only positive eigenvalues.
We envisage a situation where the system is not too far from the equilibrium

configuration, hence we may expand the potential energy (2.2) in r(R) − r(R′)
around the equilibrium point R − R′. Going up to the second order, namely, the
first yielding a nontrivial result, we obtain, up to a constant,

H =
∑

R

P2(R)
2M

+ 1

2

∑
〈RR′〉

[
r(R)− r(R′)

]
i

Ki j
[
r(R)− r(R′)

]
j
+ . . . (2.5)

This is known as the harmonic approximation. It always appears as the first term
whenever we expand any potential about a stable equilibrium point. We shall see
that for a great amount of applications it will provide a good description of the
oscillatory motion of a crystal. For some specific purposes, however, we must go
beyond it.

One familiar physical process that requires the inclusion of higher-than-
harmonic terms is the thermal expansion. Indeed, a harmonic potential is symmet-
ric about the origin; hence, the average positions of the lattice basic constituents are
fixed at the Bravais lattice points, irrespective of the total energy. Consequently, as
the temperature increases and the total energy becomes larger, the average positions
of the lattice constituents would remain the same. The overall volume of the sam-
ple, therefore, would not exhibit any dependence on the temperature. Conversely,
by adding anharmonic terms, such as the trilinear term of the expansion above, we
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2.2 Classical Description of Crystal Oscillations 27

would break the symmetry of the potential about the Bravais lattice points. Even
though these would continue as the stable equilibrium positions, now the average
relative distance of the lattice constituents would in general increase as the temper-
ature and, correspondingly the average energy, are raised. This would provide an
explanation for the phenomenon of thermal expansion. Any anomalous behavior,
where the volume decreases with the temperature, can also be described by choos-
ing the anharmonic terms in such a way that the average relative distance decreases
with the temperature.

2.2 Classical Description of Crystal Oscillations

We now use the harmonic approximation to study the classical dynamics of a par-
ticular material lattice. For simplicity, we shall consider a three-dimensional cubic
lattice with spacing a, having just one atomic kernel of mass M at each site. In this
case we have in (2.4), Ki j = K δi j .

The Hamiltonian (2.5), then, can be written as

H =
∑

R

P2(R)
2M

+ 1

2
K
∑
〈RR′〉

∣∣r(R)− r(R′)
∣∣2 . (2.6)

The classical equation of motion corresponding to the Hamiltonian (2.6) is

M
d2ri (R)

dt2
= − ∂H

∂ri (R)
= −K

[
2ri (R)−

∑
R′∈R

ri (R′)

]
, (2.7)

where the sum runs over the nearest neighbors of the site R of a cubic lattice.
The solution has three modes, s = x, y, z,

r(R) = Ces ei(k·R−ωs (k)t), (2.8)

where e is a unit vector indicating the oscillation direction. Each mode has an
angular frequency given by

ωs(k) = 2

√
K

M

∣∣∣∣sin

(
ksa

2

)∣∣∣∣ . (2.9)

Notice that the solution (2.8) remains unaltered by shifting k → k + Q, where
the last vector belongs to the reciprocal lattice. For a cubic lattice, this is equivalent
to shifting each component as ki → ki + 2nπ

a for n ∈ Z and we see that the
frequency is accordingly invariant under this shift, namely ω(k) = ω(k + Q).
These considerations lead us to a surprising conclusion: the vector k in the two
previous equations is in the first Brillouin zone. By imposing periodic boundary
conditions, we can see that this contains N different values of k, for a Bravais
lattice with N points.
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28 Vibrating Crystals

For small |k|, the angular frequency modes (2.9) reduce to ωi (k) =
√

K
M |ki |a,

i = x, y, z, and vanish in the limit |k| → 0. These are called acoustic modes. It can
be verified that when the crystal structure contains a base, in general there are also
solutions with a frequency such that ω(k = 0) = ω0 �= 0. These are the so-called
optical modes.

The physical position of the kernel at R is actually given by the real part of the
solution (2.8). We see that it oscillates about R in such a way that, on the aver-
age, the kernel position coincides with the Bravais lattice points, or equivalently,
〈r〉 = 0. Deviations from the average might be important, however a quantum-
mechanical treatment thereof is most certainly needed. This is the purpose of the
next section.

2.3 Quantum Description of Crystal Oscillations

Let us consider here the quantum-mechanical description of the material crystal
associated to the Hamiltonian (2.6), within the harmonic approximation. According
to the postulates of quantum mechanics, the dynamical coordinates and momenta
become operators acting on a Hilbert space labeled by the Bravais lattice points
R: respectively, rop(R) and Pop(R). We then have the canonical commutation rules
(omitting henceforth the subscript “op”),

[ri (R),P j (R′)] = i�δRR′δi j [ri (R), r j (R′)] = [Pi (R),P j (R′)] = 0. (2.10)

From (2.6) we see that, within the harmonic approximation, each atomic kernel
behaves as a harmonic oscillator subject to the elastic forces exerted by the nearest
neighbors. For a harmonic oscillator, it is convenient to introduce the operators

as(R) =
√

Mωs(k)
2�

r(R) · e+ i

√
1

2�Mωs(k)
P(R) · e (2.11)

and

as(k) = 1√
N

∑
R

e−ik·Ras(R). (2.12)

In the above expressions, k is in the first Brillouin zone, R are Bravais lattice points
and the subscript s denotes the oscillation mode.

From (2.12), we have

r(R) = 1√
N

∑
k,s

eik·R
√

�

2Mωs(k)

[
as(k)+ a†

s (−k)
]

es (2.13)

and
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2.3 Quantum Description of Crystal Oscillations 29

P(R) = 1√
N

∑
k,s

eik·R
√

�Mωs(k)
2

i
[
as(k)− a†

s (−k)
]

es, (2.14)

which satisfy commutation rules (2.10).
These imply the following relations:

[ar (k), a†
s (k

′)] = δkk′δrs [ar (k), as(k′)] = [a†
r (k), a

†
s (k

′)] = 0. (2.15)

The harmonic Hamiltonian (2.6) can be expressed in terms of the above
operators as

H =
∑
k,s

�ωs(k)
[

a†
s (k)as(k)+ 1

2

]
≡
∑
k,s

Hk,s . (2.16)

The above sum runs over the first Brillouin zone, which in the present case contains
N different wave-vectors ki , i = 1, . . . , N and over the different modes s.

In order to solve the eigenvalue problem for H , let us define

|n(k, s)〉 = [a
†
s (k)]n(k,s)√
n(k, s)! |0(k, s)〉 n(k, s) = 0, 1, 2, . . . (2.17)

Then, we have

Hki ,s |n(ki , s)〉 =
[

n(ki , s)+ 1

2

]
�ωs(ki )|n(ki , s)〉, (2.18)

where Hki ,s is implicitly defined in (2.16). Then, it immediately follows that the
direct product of states

|{n(k, s)}〉 =
∏

s

kN∏
k1

|n(k, s)〉 (2.19)

is an eigenstate of the total Hamiltonian, namely

H |{n(k, s)}〉 = E({n(k, s)})|{n(k, s)}〉, (2.20)

with energy eigenvalues given by

E({n(k, s)}) =
N∑

i=1

∑
s

[
n(ki , s)+ 1

2

]
�ωs(ki ). (2.21)

The eigenstates of the above Hamiltonian, therefore, can be labeled by a set of
N natural numbers, each one corresponding to a different ki in the first Brillouin
zone, for each mode s:

{n(k, s)} = {n(k1, s) . . . n(kN , s)}. (2.22)
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30 Vibrating Crystals

According to (2.21), the number n(ki , s) represents the quantity of quantum excita-
tions with a wave-vector ki , i = 1, . . . , N , each one with an energy Ei,s = �ωs(ki ),
for each of the frequency modes. These quantum excitations are called “phonons”
and (2.17) represents a quantum state with n(ki , s) of them. The additive charac-
ter of the corresponding energy eigenvalues, according to (2.21), indicates that the
phonons are non-interacting. We shall see that this is a consequence of the har-
monic approximation. Should we go beyond it by including higher order terms
in the potential energy expansion (2.5), the phonons would then interact among
themselves.

From (2.17), we see that

a†
s (k)|n(k, s)〉 =

√
[n(k, s)+ 1]|n(k, s)+ 1〉. (2.23)

Also, from (2.15), we have

as(k)|n(k, s)〉 =
√

n(k, s)|n(k, s)− 1〉. (2.24)

We see that the action of the a† and a operators on the n-phonon state (2.17) has the
effect of either increasing or reducing the number of phonons in that state by one
unit. For this reason, they are respectively called phonon creation and annihilation
operators. |0(k, s)〉 is the state with no phonons with wave-vector k and mode s.
The ground state is the one with no phonons for any k. For that reason, it is usually
called the vacuum.

The quantum-mechanical description of the crystalline vibrations of a solid
is effectively done in terms of phonon elementary excitations. These are non-
interacting within the harmonic approximation but become mutually interacting
when we add higher-than-quadratic terms to the harmonic Hamiltonian. As an
example of the use of phonons for describing quantum elementary processes in
a solid, let us consider the neutron scattering experiments. In these, a beam of neu-
trons is reflected by the multiple planes of the crystal and the resulting interference
spectrum of the reflected beam is measured. The neutrons strongly interact with
the nuclei of the atomic kernels of the solid. The interaction potential must depend
on XN −X(R), which are, respectively, the position operators of the neutron and of
the atomic kernels, the last one given by (2.1). The complete Hamiltonian will be

HT = P2
N

2MN
+
∑

R

V (XN − (R+ r(R)))+ H, (2.25)

where PN and MN are the neutron momentum and mass, the sum is over the Bravais
lattice and H is the harmonic Hamiltonian, (2.6).
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2.3 Quantum Description of Crystal Oscillations 31

The total Hamiltonian in (2.25) is invariant under the quantum-mechanical
simultaneous translation operations

T †(R0)XN T (R0) = XN + R0 (2.26)

and

τ †(R0)r(R)τ (R0) = r(R− R0). (2.27)

The translation operator in the neutron sector is clearly given by

T (R0) = exp

{
− i

�
PN · R0

}
. (2.28)

The crystal translation operator, conversely, can be shown to be

τ(R0) = exp {−iKl · R0} , (2.29)

where

Kl =
∑
k,s

k a†
s (k)as(k). (2.30)

This satisfies the eigenvalue equation

Kl |{n(k, s)}〉 =
∑
k,s

n(k, s)k|{n(ks)}〉, (2.31)

where the eigenstates |{n(k, s)}〉 are given by (2.19). The combined translations
T (R0)τ (R0) must commute with the total Hamiltonian implying that their com-
posite eigenvalues must be conserved in any process. In a neutron scattering
experiment with initial and final neutron momentum, given, respectively, by pi

and p f , therefore, we would have

exp

⎧⎨
⎩−i

⎛
⎝pi

�
+
∑
k,s

ni (k, s)k

⎞
⎠ · R0

⎫⎬
⎭= exp

⎧⎨
⎩−i

⎛
⎝p f

�
+
∑
k,s

n f (k, s)k

⎞
⎠ · R0

⎫⎬
⎭ .

(2.32)
It follows from the above equation that

p f

�
− pi

�
= Q−

∑
k,s

�n(k, s)k, (2.33)

where Q belongs to the reciprocal lattice. This expression reduces to the von
Laue condition, Eq. (1.26) when �n(k) = 0; then phonons are neither cre-
ated nor destroyed and the neutron scattering process is, therefore, elastic. When
�n(k, s) �= 0, however, phonons are either created or destroyed and the scattering
process is, then, inelastic. One phonon inelastic scattering is a very useful method
for the experimental determination of the phonon frequency spectrum. Indeed, in
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32 Vibrating Crystals

this case from (2.33), ω(k) = ω(k + Q) = ω(
p f−pi

�
). Since we must also have

conservation of energy, then

�ω

(
p f − pi

�

)
= ±p2

f − p2
i

2MN
(2.34)

where the two signs correspond, respectively, to one phonon absorption or emis-
sion. By measuring the peaks in the reflected neutron momentum p f , for a given
incident pi , one is able to determine the phonon frequency for all points of the first
Brillouin zone.

An analogous experimental technique is the inelastic photon scattering, for
which we would replace the neutron energy with the photon energy, �ω. In the
case of optical phonons, this is called Raman scattering.

2.4 Thermodynamics of Phonons

The quantum-mechanical treatment of the oscillatory behavior of a system has a
profound impact upon its thermodynamical properties. This was first shown by
Planck in 1900, in his treatment of the blackbody radiation. Inspired by Planck’s
work, Einstein then proposed, in 1905, for the first time a full quantum descrip-
tion of the electromagnetic radiation field and thus explained the photoelectric
effect. In this way, Einstein effectively created the embryo of quantum field the-
ory, around 20 years before its actual birth. Two years later, in 1907, he applied the
same quantum-mechanical principle to the elastic oscillatory motion of a crystal,
effectively introducing the concept of phonons, and thereby determined the specific
heat of a crystal [1]. This was the first application of (embryonic) quantum field
theory to a condensed matter system. It was also one of the first great successes
of quantum theory. We conclude this chapter by examining the thermodynamics of
phonons, in a tribute to that magnificent work.

One of the challenges in the early days of the physics of solids was to under-
stand the experimental behavior of the elastic specific heat of a solid. This was in
complete disagreement with the classical treatment, based, for instance, on (2.6),
which predicted a constant result: cV = N

V kB , per crystal vibration mode, the so-
called Dulong–Petit law. The experimental results, conversely, indicated that cV

would vanish in the regime of low temperatures.The starting point for determin-
ing the thermodynamical properties of a system is the partition function. Within a
quantum-mechanical treatment, this is given by

Z = Tre−βH =
∑

m

〈m|e−βH |m〉 =
∑

m

g(Em)e
−βEm , (2.35)

where β = 1/kB T , the states |m〉 form a complete set of energy eigenstates with
eigenvalues Em and degeneracy g(Em). The sums above run over the states in the
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2.4 Thermodynamics of Phonons 33

complete set (not over the eigenvalues!). For the harmonic Hamiltonian (2.6) or
(2.16), the energy eigenstates and eigenvalues are given respectively by (2.19) and
(2.21). Since all phonons with a given wave-vector are identical, the phonon states
are completely characterized by the set of numbers (2.22); hence, the sum over
phonon states consists in summing over each one of the phonon numbers n(ki , s),
for every mode s and i = 1, . . . , N . The partition function then becomes

Z =
∏
ki

∏
s

∞∑
n(ki ,s)=0

exp

{
−β
[

n(ki , s)+ 1

2

]
�ωs(ki )

}

Z = 1

2

∏
ki

∏
s

⎡
⎣ 1

sinh
(
β�ωs (ki )

2

)
⎤
⎦ . (2.36)

From the partition function we can get the internal energy, U :

U = − ∂
∂β

ln Z =
∑
ki ,s

�ωs(ki )

[
1

eβ�ωs (ki ) − 1
+ 1

2

]
. (2.37)

In the above equation, we recognize the Bose–Einstein average phonon number as
the first term in the expression between brackets, so the sum gives the average total
energy of the phonons. The second term is a temperature-independent ground-state
energy.

Einstein modeled the phonon frequency spectrum by assuming a constant fre-
quency:ωs(ki ) = ωE , called the Einstein frequency, an approach that is appropriate
for the optical modes.

In this case, (2.37) yields (assuming there are three modes)

UE = 3N�ωE

[
1

eβ�ωE − 1
+ 1

2

]
, (2.38)

whereupon we obtain the specific heat in the Einstein model,

cV = 1

V

∂UE

∂T
= 3

N

V
kB

[
β�ωE

2 sinh β�ωE
2

]2

. (2.39)

This provides a correct qualitative description of the elastic specific heat of a solid.
The low-temperature behavior of the specific heat, however, is dominated by the
contribution of the acoustic modes.

Following Einstein’s work, Debye proposed in 1912 a model for the acoustic
modes where ωs(ki ) = cs |ki |. As we saw before, the possible ki -values are con-
tained in the first Brillouin zone, hence their number is determined by the number
of sites N in such a way that the above linear interpolation has an upper bound
at the zone boundary. This maximal phonon frequency is known as the Debye
frequency, ωD. Using this model, Debye re-calculated the specific heat cV . This is
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34 Vibrating Crystals

in excellent agreement with the experiments, down to low temperatures. At high
temperatures, both Einstein and Debye models reduce to the classical result: the
law of Dulong–Petit.

Lattice vibrations, especially in the quantum-mechanical form of phonon quan-
tum excitations, play a fundamental role in the physics of crystalline solids. We
will see a variety of systems in which the quantum-mechanical treatment of the
electron-phonon interactions reveals unsuspected properties of otherwise metallic
electrons. These range from the formation of an insulating gap to superconductiv-
ity, besides the specific features of the resistivity itself. We shall approach the topic
of electronic interactions in the next chapter.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.003
https://www.cambridge.org/core


3

Interacting Electrons

In our description of solids so far, we have neglected the electronic interactions.
Even though this has produced a surprisingly good picture of crystalline solids,
there are many features of these materials for which the inclusion of interac-
tions is essential and may even radically change this picture. For the proper
quantum-mechanical description of an interacting system with many electrons, it
is convenient to employ a formalism similar to the one used for phonons in the
previous chapter.

3.1 Quantum Theory of Many-Electron Systems

Let us consider an electron in a state |α〉 ⊗ |χ〉, which is in the space given by
the direct product of the orbital and spin Hilbert spaces, within the Schrödinger
picture. We assume that {|α〉} and {|χ〉} form complete sets in the corresponding
Hilbert spaces. The associated spinor wave-function in the representation |r〉⊗ |σ 〉
of position and spin z-component σ =↑,↓ is

φαχ(r; σ) = 〈r|α〉〈σ |χ〉. (3.1)

In a way analogous to our early approach with phonons, we introduce an operator
that creates an electron in the state |α〉 ⊗ |χ〉,

|α〉 ⊗ |χ〉 = c†
αχ |0〉, (3.2)

where |0〉 is the state with no electrons that we call “the vacuum.” Then, defining
the operator

ψσ(r) =
∑
αχ

φαχ(r; σ)cαχ , (3.3)

35
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36 Interacting Electrons

we have

ψ†
σ (r)|0〉 =

∑
αχ

φ∗αχ(r; σ)c†
αχ |0〉

=
∑
αχ

|α〉〈α|r〉 ⊗ |χ〉〈χ |σ 〉 = |r〉 ⊗ |σ 〉 ≡ |r; σ 〉. (3.4)

We see that the operator ψ†
σ (r), acting on the vacuum, creates a position eigenstate

for an electron with the z-component of its spin equal to σ . In case the |χ〉 states
themselves are eigenstates of Sz , the wave-function (3.1) would be proportional to
δχ,σ and consequently Eq. (3.3) would reduce to

ψσ(r) =
∑
α

〈r|α〉cασ . (3.5)

The normalized N -electrons’ state with definite positions and spins, then,
would be

|r1σ1; . . . ; rNσN 〉 = 1√
N !ψ

†
σ1
(r1) . . . ψ

†
σN
(rN )|0〉. (3.6)

The electrons, having spin 1/2, must be in a completely anti-symmetric state
according to the spin-statistics theorem, hence the electron creation operators,
unlike the phonons, must satisfy anti-commutation rules, namely

{ψr (r), ψ†
s (r

′)} = δrr′δrs {ψr (r), ψs(r′)} = {ψ†
r (r), ψ

†
s (r

′)} = 0, (3.7)

and for a given set of electronic states |αk〉, k = 1, 2, 3, . . .,

{cr (αi ), c
†
s (α j )} = δi jδrs {cr (αi ), cs(α j )} = {c†

r (αi ), c
†
s (α j )} = 0. (3.8)

The latter implies (c†
s (αi ))

2 = 0, which means there can be no more than one
electron with the same spin component in a given state, thereby enforcing Fermi–
Dirac statistics.

The analog of the number eigenstates (2.17) and (2.19) is

|n1,s; n2,s; n3,s; . . .〉 =
∏

s=↑,↓

∏
k

|nk,s〉, (3.9)

where

|nk,s〉 = [c†
s (αk)]nk,s |0k,s〉 nk,s = 0, 1. (3.10)

These are eigenstates of the number operator Nk,s = c†
s (αk)cs(αk), with eigenvalue

nk,s = 0, 1, which therefore indicates the number of electrons with spin s in the
state |αk〉, k = 1, 2, 3, . . .

It can easily be verified that the operator c†
s (αk) acting on a state with nk,s = 0

yields the state with nk,s = 1, whereas the operator cs(αk) acting on a state with
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3.1 Quantum Theory of Many-Electron Systems 37

nk,s = 1 yields the state with nk,s = 0. For that reason, they are called electron
creation and annihilation operators.

Let us consider the electrons to be inside a cubic box of volume V , with periodic
boundary conditions. For these, we take the states |αk〉 as momentum eigenstates:
|k〉, with p = �k and

〈r|α〉 = 〈r|k〉 = e−ik·r

V 1/2
. (3.11)

From (3.3), then, we get

ψσ (r) =
∑

k

e−ik·r

V 1/2
cσ (k),

cσ (k) =
∫

V
d3r

eik·r

V 1/2
ψσ(r). (3.12)

Starting from the corresponding classical expressions, we can use the formalism
introduced above to obtain the operators associated to charge and spin densities
and currents. For the first one, we have

ρ(r) =
∑
σ

ψ†
σ (r)ψσ (r), (3.13)

or, in momentum space, using (3.12) and the fact that the Fourier transform of a
product is a convolution,

ρ(q) =
∑
p,σ

c†
σ (p)cσ (p+ q)

∑
r

ρ(r) = ρ(q = 0) =
∑
p,σ

c†
σ (p)cσ (p). (3.14)

The associated current operator is

j = − i�

2m

∑
σ

[
ψ†
σ (r)∇ψσ(r)− ∇ψ†

σ (r)ψσ (r)
]
. (3.15)

For a U(1) invariant Hamiltonian, it satisfies a continuity equation: ∂ρ
∂t +∇ · j = 0.

The i-component of the spin density, accordingly, is given by

ρi
S(r) =

�

2

∑
αβ

ψ†
α(r)σ

i
αβψβ(r), (3.16)

whereas the associated spin current is

ji
S = −

i�

2m

(
�

2

)∑
αβ

[
ψ†
α(r)σ

i
αβ∇ψβ(r)− ∇ψ†

α(r)σ
i
αβψβ(r)

]
. (3.17)

For a rotational invariant Hamiltonian, the spin current and density satisfy a
continuity equation, which is similar to the one of charge.
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38 Interacting Electrons

3.2 Non-Interacting Electrons

3.2.1 Free Electrons

We start by applying the previous formalism in the situation where the elec-
tronic interaction is neglected. We will consider both the case of free electrons
and that of non-interacting electrons in a crystal lattice in the tight-binding
regime.

Considering non-interacting electrons with energy ε(k), as well as the number
operator, it is not difficult to realize that the total energy operator must be

H0 =
∑
k,σ

ε(k)c†
σ (k)cσ (k), (3.18)

where, for free electrons, we have ε(k) = �
2k2

2m .
Using the relation

1

V

∑
k

↔
∫

d3k

(2π)3
, (3.19)

resulting from the periodic boundary conditions, and (3.12), we can cast the free
Hamiltonian in the form

H0 =
∑
σ

∫
d3rd3r ′ψ†

σ (r)
(
− �

2

2m
∇2

)
δ(r− r′)ψσ (r′). (3.20)

It is easy to see that the energy eigenstates are given by (3.9) and the
corresponding eigenvalues by

E0 =
∑
k,σ

�
2k2

2m
nk,σ . (3.21)

3.2.2 The Tight-Binding Model

Another nice application of the present formalism is found in the tight-binding
approach for electrons in a crystal. Indeed we can rewrite the Hamiltonian (1.44)
in terms of electron creation and annihilation operators in the state |n〉 with energy
εn , on the sites of a Bravais lattice.

Let us choose the sum in (3.5) in such a way that 〈r|α〉 ≡ 〈r|i〉 = φ(r− Ri )

is an atomic wave-function localized on the i-site of the Bravais lattice,
namely

ψσ(r) =
∑

i

φ(r− Ri )ci,σ . (3.22)
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3.3 Electron-Electron Interactions 39

Writing

HT B = εn

∫
dr
∑
σ

ψ†
σ (r)ψσ (r),

HT B = εn

∑
i j,σ

∫
drφ∗(r− Ri )φ(r− R j )c

†
i,σ c j,σ + HC. (3.23)

Now, the integral above is equal to one for i = j , for normalized atomic wave-
functions, while the overlap integral for i �= j is only appreciable for nearest
neighbors. Hence we can write

HT B = εn

∑
i,σ

c†
i,σ ci,σ − t

∑
〈i j〉,σ

[
c†

i,σ c j,σ + c†
j,σ ci,σ

]
, (3.24)

where the hopping parameter is proportional to the overlap integral, for neighbor-
ing sites i, j :

t = −εn

∫
drφ∗(r)φ(r− (R j − Ri )). (3.25)

Then, using (3.12), we can put (3.26) in the form

HT B =
∑
k,σ

En(k)c†
σ (k)cσ (k)

En(k) = εn − 2t
∑

i=x,y,z

cos ki a, (3.26)

where the last expression is meant for a cubic lattice. This was the previous result
for the tight-binding energy in this case and should be compared with (3.18).

3.3 Electron-Electron Interactions: the Coulomb Interaction

Electrons, being electrically charged particles, will interact among themselves
through the electromagnetic field. This is represented by a scalar potential ϕ and
a vector potential A, which are U(1) gauge fields. The interaction is introduced by
imposing the principle of gauge invariance under the local U(1) group. This implies
the replacement of regular time and space derivatives with the corresponding
gauge-covariant ones, namely

∂

∂t
→ ∂

∂t
+ i

e

�c
ϕ ; ∇ → ∇ + i

e

�c
A. (3.27)

The included electromagnetic field can be either external or generated by the elec-
trons themselves. In the latter case it produces an effective interaction among the
electrons. Frequently, only the static limit of this interaction is needed, since the
speed of an electron in a solid is much less than the speed of light. In this case,
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40 Interacting Electrons

one can show that the net effect of replacing (3.27) into (3.20), in the absence of
external fields, is to add to the Hamiltonian H0 a term

HC = e
∫

d3rρ(r)ϕ(r).

Considering that

−∇2ϕ(r) = eρ(r),

we can write

HC = e2

2

∑
σ,σ ′

∫
d3rd3r ′ψ†

σ (r)ψσ (r)
[

1

4π |r− r′|
]
ψ

†
σ ′(r

′)ψσ ′(r′), (3.28)

where, in the last step, we used the Green function of the Laplacian operator to
express the scalar potential ϕ(r) in terms of the charge density. We see that in the
static case the electromagnetic interaction just reduces to the familiar Coulomb
interaction. In the expression above, ψσ (r) is given by (3.5).

Let us consider a situation where the electrons undergoing the Coulomb
interaction belong to two neighbor atoms, labeled i = 1, 2. In this case,

ψσ(r) =
∑
i=1,2

φ(r− Ri )ci,σ , (3.29)

where φ(r− Ri ), i = 1, 2 are the corresponding atomic wave-functions.
Inserting (3.29) in (3.28), we see that 16 terms are generated. Out of these, four

terms are proportional to the occupation number operator ni,σ = c†
i,σ ci,σ , four are

proportional to c†
1,σ c2,σ and c†

2,σ c1,σ and eight either vanish or yield subleading
contributions.

3.4 The Hubbard Model

The subset of terms of the Coulomb interaction provenient from ni,σ = c†
i,σ ci,σ is

given by

H ′
C = U

∑
i

ni,↑ni,↓ + U

2

∑
i,σ

ni,σ , (3.30)

where

U = e2
∫

d3rd3r ′|φ(r)|2
[

1

4π |r− r′|
]
|φ(r′)|2 (3.31)

and we used the fact that n2
i,σ = ni,σ , for fermions. Here, we neglected the nearest-

neighbor density interaction terms, which would be proportional to

Ui j = e2
∫

d3rd3r ′
∣∣φ (r+ [R j − Ri

])∣∣2 [ 1

4π |r− r′|
]
|φ(r′)|2. (3.32)
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3.5 Exchange Interactions and Magnetism 41

These will clearly be subleading because of the fast decay of the atomic wave-
functions φ(r).

In undoped systems, one frequently finds the situation where there is precisely
one electron per site, either with spin up or down, the so-called half-filling. In this
case we have, for each site, the constraint∑

σ

ni,σ = 1, (3.33)

which is known as Gutzwiller projection. In this case, the last term in (3.30)
becomes just a constant, being therefore trivial.

The Hubbard model Hamiltonian is constructed by adding the electronic interac-
tion H ′

C , for all sites of the lattice at half-filling, to the tight-binding Hamiltonian,
namely

HU = −t
∑
〈i j〉,σ

[
c†

i,σ c j,σ + c†
j,σ ci,σ

]
+U

∑
i

ni,↑ni,↓. (3.34)

The Hubbard model plays an important role in the description of the elec-
tronic interactions in condensed matter systems such as the high-Tc cuprate
superconductors, for instance.

3.5 Exchange Interactions and Magnetism

Introduction

Magnetism at a macroscopic scale is one of the most spectacular phenomena in
physics, known from ancient times as a property that some materials have to attract
each other. We shall see that, surprisingly, it is the result of a quantum mechanical
effect, which, because of a collective behavior, is amplified from the atomic to the
macroscopic scale.

The very roots of magnetism stem from the fact that a charged particle such as
an electron or a proton will produce a magnetic field whenever it is in a state of
nonzero angular momentum. Mathematically, we express this result as the relation
between the magnetic dipole moment and the angular momentum. An electron, for
instance, will have an intrinsic magnetic dipole moment given by

�μ = −g
μB

�
S, (3.35)

where S is the electron spin, μB = e/2mc is the Bohr magneton and g, the gyro-
magnetic factor. This is a pure number that is specific for the electron. For a proton,
for instance, we would have a different g-factor, a positive sign and the proton mass
replacing the electron mass m in the Bohr magneton. Curiously, the neutron in spite
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42 Interacting Electrons

of being neutral and because of its internal structure exhibits a nonzero magnetic
dipole moment with its own g-factor.

The Classic Magnetic Dipole Interaction

Consider an electron belonging to an atom placed on a site on a crystalline lattice.
Let us investigate the kind of interaction with neighboring atoms that will cause
the magnetic dipole moments of these individual electrons to cooperate in order to
form a collective state with a macroscopic magnetic field.

Classically, a pair of magnetic dipole moments in positions separated by a vector
r has an interaction energy given by

U12 = 1

r3

[ �μ1 · �μ2 − 3( �μ1 · r̂)( �μ2 · r̂)
]
. (3.36)

This is minimized when the two moments are aligned with the vector r, with an
energy U12 = −μ1μ2/r3. This could in principle, depending on the crystal struc-
ture, provide the basic interaction responsible for the alignment of all magnetic
moments in the crystal; however, a simple analysis reveals it simply cannot be. The
above alignment energy for a typical crystal is on the order of 10−4eV, which corre-
sponds to a temperature on the order of 1K. This means the macroscopic magnetic
order would be destroyed by thermal fluctuations above 1K, whereas it is known to
exist well above room temperature. We shall see below that, actually, the Coulomb
interaction and quantum-mechanical principles are responsible for the existence of
macroscopic magnetic order.

The Exchange Interaction

Let us consider once again the Coulomb interaction (3.28) envisaged in a situation
where the two interacting electrons belong to neighboring atoms, as described by
(3.29). In the previous section we showed that, considering the terms proportional
to ni,σ = c†

i,σ ci,σ , we were led to the Hubbard model. We take now the terms

proportional to c†
1,σ c2,σ and c†

2,σ c1,σ . These yield the so-called exchange interaction

HJ = J
∑
σ,σ ′

c†
1,σ c2,σ c†

2,σ ′c1,σ ′, (3.37)

where

J = e2
∫

d3rd3r ′φ∗(r− R1)φ(r− R2)

[
1

4π |r− r′|
]
φ∗(r′ − R2)φ(r′ − R1)

(3.38)

is the exchange integral. Notice that this does not appear in the expression of the
classical Coulomb interaction; rather, it is a consequence of the anti-symmetric
nature of the 2-electron state-vector
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3.6 The Heisenberg Model 43

|rσ ; r′σ ′〉 = 1√
2
ψ†
σ (r)ψ

†
σ ′(r

′)|0〉. (3.39)

Observe that J will increase as the overlap between the neighboring atomic wave-
functions is enlarged.

Using Eq. (3.16) for the spin density operator, we obtain the spin operator

S = �

2

∑
αβ

∫
d3r ψ†

α(r)�σαβψβ(r),

Si = �

2

∑
αβ

c†
i,α �σαβci,β i = 1, 2. (3.40)

Now, using the identity ∑
a=x,y,z

σ a
αβσ

a
μν = 2δανδβμ − δαβδμν (3.41)

and Eq. (3.37), we see that the exchange interaction energy is given by

HJ = −2J

�2
S1 · S2 + 4J

�2

(∑
α

n1,α

)(∑
α

n2,α

)
. (3.42)

We will consider here the situation where the constraint (3.33) applies, known as
“localized magnetism” and appropriate for magnetic insulators. In this case, the
exchange interaction

HJ = −2J

�2
S1 · S2 (3.43)

is responsible for the magnetic interaction. Notice that for J > 0 it favors the
parallel alignment of adjacent spins, whereas for J < 0, it would favor the anti-
parallel alignment thereof.

3.6 The Heisenberg Model

Isotropic Case

The extension of the previous expression to all sites of a crystal lattice leads to the
celebrated Heisenberg model,

HH = −2J

�2

∑
i j

Si · S j . (3.44)

Evidently, the terms corresponding to the nearest neighbors will dominate the sum
because the overlap integral in J will be maximal. For J > 0, the Heisenberg
Hamiltonian will lead to ferromagnetic order, and for J < 0, to antiferromagnetic
order. Since J is typically of the order of 1eV, these magnetically ordered states
will survive thermal fluctuations up to temperatures way above room temperature.
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Anisotropy

The Heisenberg Hamiltonian is rotationally invariant. Many systems, however,
possess anisotropic magnetic properties and therefore cannot be described by
this model. The main sources of anisotropy are the spin-orbit interaction and
the crystal geometry itself. The former corresponds to an additional Hamiltonian
HSO = λ∑i Li · Si , where L is the orbital angular momentum and S is the spin.
HSO is usually treated perturbatively in the orbital sector of the Hilbert space,
hence, to first order �H(1) = λ∑i 〈
|Li |
〉 · Si .

In most materials, the crystal geometry is such that the angular part of the
ground-state vector |
〉, for l = 1, is one of the orbitals |px〉 = 1√

2
[|11〉+ |1− 1〉],

|py〉 = 1√
2
[|11〉 − |1 − 1〉] and |pz〉 = |10〉. The corresponding expressions for

l = 2, . . . can be found in textbooks on atomic physics. It is not difficult to see
that for these states 〈
|Li |
〉 = 0, hence �H(1) = 0, and we must proceed to the
second order, where the correction to the Hamiltonian is

�H(2) = λ2
∑

i j

∑
n �=0

〈
|Lαi |n〉〈n|Lβj |
〉
ε0 − εn

Sαi Sβj

=
∑

i j

J̃ αβSαi Sβj . (3.45)

Adding the second-order spin-orbit correction to the Heisenberg Hamiltonian, we
get a quadratic form in Sαi Sβj with coupling J αβ = J̃δαβ + J̃ αβ . Diagonalizing the
quadratic form, we get the XY Z -Hamiltonian

HXY Z =
∑

i j

[
JX SX

i SX
j + JY SY

i SY
j + JZ SZ

i SZ
j

]
, (3.46)

which provides a general description of localized-moments magnetism. Important
special cases are the Ising model, for which JX = JY = 0, the XY -Model, for
which JX = JY �= 0, and JZ = 0 and the Heisenberg model, where JX = JY = JZ .

3.7 Electron-Phonon Interactions

Electrons naturally interact with the crystal lattice because the kernels occupy-
ing the lattice sites are usually non-neutral: either ions or charged radicals. The
electron-lattice interaction is of fundamental importance in the description of trans-
port, structural and thermodynamical properties of crystalline solids. It is also the
one responsible for the phenomenon of superconductivity.

The general expression for the electron-lattice interaction energy is

Hel =
∫

d3x
1

N

∑
Ri

ρ(x)V (x− Xi ), (3.47)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.004
https://www.cambridge.org/core


3.7 Electron-Phonon Interactions 45

where ρ(x) is the electronic density at x and Xi = Ri + ri are the positions of
the lattice kernels (we assume there is just one per site): Ri are the equilibrium
positions, which coincide with the Bravais lattice sites, and ri are the deviations
with respect to these. V (x − Xi ) is the interaction potential between the electron
and the crystal material constituents.

Making a Taylor series expansion in ri ≡ r(Ri ) about the Bravais lattice points
Ri , we get

Hel =
∫

d3x
1

N

∑
Ri

ρ(x)
[
V (x− Ri )+ r(Ri ) · ∇Ri V (x− Ri )+ . . .

]
. (3.48)

The first term corresponds to an electron in an ideal Bravais lattice. Using (3.12),
(3.13) and (3.14), we can write it as

H (0)
el =

∑
k,k′,σ

c†
k,σ ck′,σ

∫
d3x ei(k′−k)·x 1

N

∑
Ri

V (x− Ri ). (3.49)

The integral above is the Fourier transform of a function with the periodicity of the
Bravais lattice, and therefore we must have

k′ − k = Q, (3.50)

where Q is a vector of the reciprocal lattice. Consequently,

H (0)
el =

∑
k,σ

V (Q)c†
k,σ ck+Q,σ . (3.51)

Since E(k) = E(k+Q), according to the Bloch theorem, this means the scattered
electron will have the same energy it has before the scattering. On the other hand,
physical momenta corresponding to wave-vectors satisfying the relation (3.50) are
precisely the same. Hence we can now completely understand why an electron
in a Bravais lattice propagates without being scattered: its momentum and energy
simply are not changed as it propagates.

Now consider the first-order term. Using the quantum-mechanical expression
for the lattice displacement in terms of phonon creation and annihilation operators,
given by (2.13), we obtain

H (1)
el =

1√
N

∑
k,k′,q,s,σ

c†
k,σ ck′,σ

1

N

∑
Ri

ei(k′−k+q)·Ri

√
�

2Mωs(q)

[
as(q)+ a†

s (−q)
]

×
∫

d3x ei(k′−k)·xes · ∇Ri V (x− Ri ). (3.52)

Now, using the fact that∫
d3x ei(k′−k)·x∇Ri V (x− Ri ) =

∫
d3x e−i(k′−k)·(x+Ri )∇xV (x) (3.53)
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and the periodicity of ∇xV (x), which implies k′ − k = Q belongs to the reciprocal
lattice, we conclude that the Ri sum reduces to∑

Ri

ei(k′−k+q−Q)·Ri = Nδk′−k+q,Q (3.54)

The electron-phonon interaction Hamiltonian, therefore, is given by

He−ph =
∑

k,q,s,σ

Wq,s c†
k+q,σ ck,σ

[
as(q)+ a†

s (−q)
]
. (3.55)

where

Wq,s =
√

�

2M Nωs(q)

∫
d3x e−iq·xes · ∇xV (x). (3.56)

The electron-phonon Hamiltonian describes a process where an electron in an
initial state is scattered into a final state, either by emitting or absorbing a phonon
with energy �ωs(q) and wave-vector q, which satisfies the relation

k′ − k+ q = Q. (3.57)

The electron energy gain or loss is �E = ±�ωs(q).
The full electron-phonon Hamiltonian is

HT = He + Hph + He−ph, (3.58)

where He is given by (3.18), Hph by (2.16) and He−ph by (3.55).
Let us explore the effective electron-electron interaction that is induced by the

electron-phonon coupling. For this purpose, let us treat the above Hamiltonian
in Rayleigh–Schrödinger perturbation theory. It is easy to see that there will be
no correction to the energy in first order, because of the linear phonon term.
We must therefore proceed to the second order. Using (3.55), we find that the
energy correction due to the interaction in second order corresponds to the effective
Hamiltonian

H (2)
e−ph =

∑
k,k′

∑
q

∑
σ,σ ′

|Wq|2 c†
k′,σ ′ck′+q,σ ′c

†
k+q,σ ck,σ

×
∑

n

〈0| [a(−q)+ a†(q)
] |n〉〈n| [a(q)+ a†(−q)

] |0〉
E (0)0 − E (0)n

. (3.59)

There are two non-vanishing terms in the n-sum, represented by the Feynman
graphs of Figure 3.1, which correspond respectively to the emission and absorption
of one phonon in each vertex. These can be cast in the form
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Figure 3.1 The phonon-mediated electronic interaction

H (2)
e−ph =

1

2

∑
k,k′

∑
q

∑
σ,σ ′
|Wq|2

×
[

c†
k−q,σ ck,σ c†

k′+q,σ ′ck′,σ ′

εk − εk−q − �ω
+ c†

k′−q,σ ′ck,σ c†
k+q,σ ck′,σ ′

εk − εk+q + �ω

]
, (3.60)

or, making q →−q in the last term,

H (2)
e−ph =

1

2

∑
k,k′

∑
q

∑
σ,σ ′
|Wq|2 c†

k′+q,σ ′c
†
k−q,σ ck,σ ck′,σ ′

×
[

1

εk − εk−q − �ω
− 1

εk − εk−q + �ω

]
, (3.61)

where we used the fact that ω(q) is an even function.
The effective total electron-phonon Hamiltonian, including the phonon-induced

effective electronic interaction, is therefore given by

HT = H0 +
∑

k,k′,q

∑
σ,σ ′

V (k,q) c†
k′+q,σ ′c

†
k−q,σ ck,σ ck′,σ ′

V (k,q) = |Wq|2
[

�ω(
εk − εk−q

)2 − (�ω)2
]
. (3.62)

We will see that this Hamiltonian plays a central role in the explanation of
superconductivity and forms the basis of the BCS theory, which describes this
phenomenon. Curiously, however, it also describes the interaction that is the main
cause of a nonzero resistance in the charge transport in solids.

With the above study about the electron-phonon interaction, we conclude the
description of the main electronic interactions in a crystal. In the next chapter we
study important effects of these interactions.
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4

Interactions in Action

The consequences of electronic interactions, lattice oscillations or combinations
of both frequently lead to spectacular effects. In this chapter, we focus on some
of these, such as long range magnetic order, strong electronic correlations and
superconductivity. Electric conductivity/resistivity is also considered.

4.1 Magnetic Order

The Mean Field Approximation

Let us examine here the mechanism by which the magnetic interaction between
nearest neighbors can be magnified up to a macroscopic scale, thus exhibiting a
collective behavior of all atoms in the crystal. We assume the magnetic properties
of the system are described by the Ising model, namely,

HI = −2J

�2

∑
〈i j〉

SZ
i SZ

j , (4.1)

where we assume J > 0.
We shall use the so-called mean field approximation, where we replace one of the

spins above by its average SZ
j → 〈SZ

j 〉. Such replacement produces a corresponding
system with non-interacting spins in the presence of an effective uniform magnetic
field, which conveys all information about the spin interactions:

HZ
e =

2J0

gμB�
〈SZ

i 〉, (4.2)

where J0 = zJ , z being the coordination number (the number of nearest neighbors
of a given site). The mean field Hamiltonian then reads

HM F = −gμB

�

∑
i

SZ
i HZ

e . (4.3)

48
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4.1 Magnetic Order 49

In the presence of an external magnetic field HZ , the mean field Hamiltonian would
become

HM F [HZ ] = −gμB

�

∑
i

SZ
i [HZ

e +HZ ]. (4.4)

Considering that the eigenvalues of the Z -component of the spins are ±�

2 , we
readily find the partition function and free energy corresponding to HM F in the
presence of an external magnetic field HZ :

Z [HZ ] =
{

2 cosh

[
gμB

2kB T
[HZ

e +HZ ]
]}N

F[HZ ] = −NkB T ln 2 cosh

[
gμB

2kB T
[HZ

e +HZ ]
]
, (4.5)

where N is the number of lattice sites in the crystal.

The Ferromagnetic Order

The magnetization corresponding to this free energy is

MZ = − ∂F

∂HZ

∣∣
HZ=0 = N

gμB

2
tanh

[
gμB

2kB T
HZ

e

]
. (4.6)

Now, observe that the effective magnetic field HZ
e is proportional to the magneti-

zation MZ . Indeed, defining

MZ = N
gμB

�
〈SZ

i 〉, (4.7)

we have, according to (4.2),

HZ
e =

1

N

2J0

(gμB)2
MZ . (4.8)

It follows that expression (4.6) is a transcendental equation for the magnetization:

x = tanh γ x, (4.9)

where x = 1
N

2
gμB

MZ and γ = z J
2kB T .

For γ < 1 we only have the solution x0 = 0, whereas for γ > 1 we always
have a nontrivial solution x0 �= 0. From (4.5) we see that this is the solution that
minimizes the free energy; therefore, the condition γ = 1 marks the separation
between two different phases of the system: a phase with x0 = 0 and MZ = 0,
which is called paramagnetic, and a phase for which x0 �= 0 and, consequently,
MZ �= 0, known as ferromagnetic. In this case the system presents a spectacular
effect: a spontaneous magnetization, MZ = N gμB

2 x0, which, being proportional to
N , is macroscopic. This is an example of a quantum effect that can be observed
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Figure 4.1 The solutions of Eq. (4.9): a nontrivial solution occurs for γ > 1

at a macroscopic scale. The critical temperature for the onset of the ferromagnetic
phase is obtained from the condition γ = 1, which for a given J implies a critical
temperature Tc = z J

2kB
, known as the Curie temperature.

In order to find the temperature dependence of the magnetization below Tc, we
expand the hyperbolic function in (4.9) and, observing that γ = Tc/T , obtain for
T < Tc

x = Tc

T
x −

(
Tc

T

)3 x3

3
+ . (4.10)

Considering that x �= 0 and that for T � Tc, we may neglect higher-order terms,
we obtain the solution x0 = √

3/Tc(Tc − T )1/2. This implies the magnetization
vanishes as

MZ (T ) = M0

(
Tc − T

Tc

)1/2

, (4.11)

for T < Tc.
Such power-law dependence on the temperature characterizes what is called a

critical behavior. An outstanding feature of critical systems is the fact that all its
basic components – in this case, localized spins or magnetic moments – are tightly
correlated, irrespective of the distance that separates them in the sample, thereby
producing a macroscopic effect. This phenomenon looks even more amazing when
we recall that the original Hamiltonian only involves interactions between nearest
neighbors.
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4.1 Magnetic Order 51

The Spin Correlation Function: Correlation Length

How can we quantitatively determine how correlated a spin system is? This is
conveniently done by means of the connected spin correlation function, defined as

− ∂2 F

∂HZ
i ∂HZ

j

∣∣
HZ=0 =

λ2

kB T

[〈SZ
i SZ

j 〉 − 〈SZ
i 〉〈SZ

j 〉
] = λ2

kB T
〈SZ

i SZ
j 〉C , (4.12)

where λ = gμB
�

.
In order to extract the physical meaning of the correlation function, let us use

(4.6) and (4.12) to express the free energy as a Taylor series in the external field:

F[HZ ] = F0 −
∑
Ri

MZ
i HZ

i +
λ2

2kB T

∑
Ri R j

〈SZ
i SZ

j 〉CHZ
i HZ

j + . . . (4.13)

The stability condition for the system requires that ∂F/∂HZ
i = 0. Assuming that

the external field is weak enough for allowing higher-than-quadratic terms to be
neglected, we can express this condition in the so-called linear response regime,
where

〈SZ (Ri )〉 = λ

kB T

∑
R j

〈SZ (Ri )SZ (R j )〉CHZ
j . (4.14)

Let us consider now what would be the effect of applying an external magnetic field
localized at the site Rk , namely HZ

j = H0δ jk . It follows from the above equation
that

〈SZ (Ri )〉 = λ

kB T
〈SZ (Ri )SZ (Rk)〉C H0. (4.15)

We see that the correlation function 〈SZ
i SZ

k 〉C measures how strongly the mag-
netic field applied at Rk influences the magnetization at a different site Ri . The
efficiency in the process of conveying the influence from one site to another
expresses how tightly correlated the spins are.

In the presence of a time-dependent applied magnetic field, the dynamical
spin correlation function is the proper instrument for determining how efficiently
correlated the spins are:

− ∂2 F

∂HZ
i (t)∂HZ

j (0)

∣∣
HZ=0 =

λ2

kB T
〈SZ

C(Ri , t)SZ
C(R j , 0)〉

SZ
C(Ri , t) = SZ (Ri , t)− 〈SZ (Ri , t)〉. (4.16)

The generalization of (4.14) then reads

〈SZ (Ri , t)〉 = λ

kB T

∑
R j

∫ t

−∞
dt ′〈SZ (Ri , t)SZ (R j , t

′)〉CHZ (R j , t
′). (4.17)
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Using the fact that the Fourier transform of a convolution is a product, we can
express the above equation in a very simple form in terms of (k, ω)-dependent
Fourier transforms, namely

〈SZ (k, ω)〉 = λ

kB T
〈SZ SZ 〉C(k, ω)HZ (k, ω). (4.18)

The proportionality function,

χZ Z (k, ω) = λ

kB T
〈SZ SZ 〉C(k, ω), (4.19)

is known as the magnetic susceptibility. It is in general a 3× 3 matrix, but only the
Z Z component appears in the Ising model.

We are going to show in Chapter 19, using a quantum field theory approach for
a d = 2 dimensional ferromagnetic crystal, that the spin correlation function, in
the continuum limit, is given, in frequency-momentum space, by

〈SZ SZ 〉C(k, ω) = 1

ω − ic2|k−Q|2 + i
ξ2

. (4.20)

In this expression, ξ is the correlation length, a quantity that determines the dis-
tance within which the correlation function is significantly different from zero or,
equivalently, the size of the region where the spins are tightly correlated.

It can be shown that, close to the Curie temperature, Tc, the correlation length
diverges as

ξ(T ) ∝ (T − Tc)
−1 . (4.21)

This fact, implies that, in the ferromagnetic phase, all spins in the crystal are tightly
correlated, thereby allowing the manifestation of this quantum phenomenon at a
macroscopic scale.

Notice that in the above equation we have shifted k by a reciprocal lattice vector
Q to comply with the fact that the R-integral is an approximation for

∑
R, which

only sweeps the Bravais lattice points.
We can write (4.20), for ω→ 0, which represents the response to a static field, as

〈SZ SZ 〉C(k, ω = 0) ∝
[

1/ξ

(k−Q)2 + 1
ξ2

]
ξ. (4.22)

At the onset of the ferromagnetic phase, for T → Tc, ξ diverges and, using
the Lorentzian representation of the Dirac δ, we find for the static magnetic spin
correlation function:

〈SZ SZ 〉C(k, ω = 0)
T→Tc∼ δ(|k−Q|)ξ. (4.23)
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4.1 Magnetic Order 53

From the result above we conclude that the Fourier transform of the connected
correlation function only contains wave-vectors belonging to the reciprocal lattice
for T → Tc, because of the Dirac delta in (4.23). This means that, in the ferro-
magnetic phase, such correlation function has the same symmetries as the Bravais
lattice, thus implying a full ordering of the spins according to the Bravais lattice
pattern.

Then it follows that the static magnetic susceptibility, which is proportional to
S(k, ω = 0), behaves as

χ(T ) ∝ ξ ∝ (T − Tc)
−1 (4.24)

for T → Tc. This is again an indication that the local spins of the crystal are stiffly
correlated along the whole sample.

An Order Parameter

The magnetization, given by (4.7), according to the results of the preceding anal-
ysis, acts ultimately as a measure of how much collective the system behaves or,
in other words, how much ordered the system is. Magnetization, therefore, may be
considered as an order parameter: namely, a quantity that expresses the amount
of ordering in a system. It would vanish in a paramagnetic phase, where each
atom shows and independent behavior (thus reflecting a complete absence of order-
ing) and, conversely, would be nonzero in a ferromagnetic phase, where the atoms
show an organized collective behavior. Furthermore, even inside this phase, the
value of the order parameter would increase as we would lower the temperature, or
equivalently, increase the degree of organization in the collective behavior of the
system.

The concept of an order parameter was put forward by Landau as a useful tool in
the description of phase transitions in many different systems. He showed in par-
ticular, how the free energy could be expanded in terms of the order parameter. We
will see that this concept is particularly useful in the theory of superconductivity.

Neutron Scattering

The ordering of the spins in a magnetic crystal can be conveniently probed by
neutron scattering, because neutrons, having zero charge, interact with the crystal
essentially through their magnetic dipole moment. It can be shown [19] that for a
neutron scattered from a state (ki , Ei ) onto a state (k f , E f ), the differential cross
section satisfies

d2σ

d Ed�
(k, E) ∝ S(k, ω) (4.25)

in such a way that k = k f − ki and E = �ω = E f − Ei .
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Using expressions (4.22) and (4.23) for the Fourier transform of the spin corre-
lation function, we conclude that in the paramagnetic phase, for T > Tc, because
of the Lorentzian distribution functions, neutron scattering will produce a diffuse
image of the reciprocal lattice, whereas in the ferromagnetic phase, where T < Tc,
the image will become sharp because of the deltas. In this phase, scattering will
be predominantly elastic (E = 0), while in the paramagnetic phase it will be
quasi-elastic.

Antiferromagnetic Order

Another interesting class of magnetic order is the one presented by the so-called
antiferromagnetic systems. These are characterized by the presence of an exchange
coupling, which is negative. Let us consider, for instance, the antiferromagnetic
Ising model, described by (4.1) with a coupling J < 0 between nearest neighbors.
We assume the crystal lattice to be bipartite, namely, one for which neighboring
sites belong to different sublattices A and B. A negative J will favor the opposite
orientation of the spins belonging to the different sublattices: 〈SZ

i 〉B = −〈SZ
i 〉A.

The ordered state, known as Néel state, is characterized by a nonzero sublattice
magnetization

MZ
A = −MZ

B =
N

2

gμB

�
〈SZ

i 〉A. (4.26)

It is not difficult to see that the effective mean field acting on the spins of sublattice
A will be the one corresponding to the sublattice magnetization MZ

B = −MZ
A.

Hence, we will have the same transcendental equation (4.9) for MZ
A, with γ = −z J

2kB T .
We immediately conclude that the ordered antiferromagnetic state will set in below
a critical temperature TN = z|J |

2kB
, the Néel temperature.

We will show in Chapter 19, by means of a quantum field theory approach for a
two-dimensional magnetic system described by the antiferromagnetic Heisenberg
model on a square lattice, that in the continuum limit, the sublattice spin correlation
function is given by

〈SZ
A(R, t)S

Z
A(0, 0)〉C =

e−
√
|c2t2−R2|
ξ

4π
√|c2t2 − R2| , (4.27)

where c is a characteristic velocity and ξ , the correlation length.
The Fourier transform of the above correlation function now reads

SA(k, ω) = 1

ω2 − c2
[
(k− Q

2 )
2 + 1

ξ2

] . (4.28)
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Observe that in the case of antiferromagnetic order, the spin susceptibility, which
is proportional to SA(k, ω), behaves as

〈SZ SZ 〉A
C(k, ω = 0)

T→TN∼ δ

(
|k− Q

2
|
)
ξ (4.29)

at T → TN .
Now, the Fourier transform of the spin correlation function contains a Dirac delta

forcing the wave-vectors to coincide with half of the reciprocal lattice vectors, thus
reflecting the fact that in the Néel state the spins order in a pattern that doubles the
corresponding primitive cell of the Bravais lattice.

Magnetism of Itinerant Electrons

The examples of magnetic order examined above apply to systems of localized
electrons: namely, insulators. In order to understand the magnetism of metals, let
us investigate the mechanism behind the magnetic ordering of itinerant electrons.
For this purpose, consider the generalization of the Hubbard Hamiltonian (3.34),
where we relax the constraint (3.33). Applying a mean field approximation, where
ni,σ → 〈ni,σ 〉 = 〈nσ 〉, we get

HU = −t
∑
〈i j〉,σ

[
c†

i,σ c j,σ + c†
j,σ ci,σ

]
+U

∑
i

∑
σ

〈nσ 〉c†
i,σ ci,σ . (4.30)

Using (3.13) and (3.26), we can re-write the previous Hamiltonian in diagonal
form,

HU =
∑

k

∑
σ

Eσ (k)c
†
k,σ ck,σ , (4.31)

where the energy eigenvalues are

Eσ (k) = En(k)+U 〈nσ 〉. (4.32)

Defining

m = 〈n↑〉 − 〈n↓〉 n = 〈n↑〉 + 〈n↓〉,
〈n↑〉 = 1

2
(n + m) 〈n↓〉 = 1

2
(n − m), (4.33)

we have

E±(k) = En(k)+ U

2
n ± m

2
. (4.34)

Now,

m = 〈n(E+(k))〉 − 〈n(E−(k))〉, (4.35)
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where n(Eσ (k)) is the Fermi–Dirac distribution. The two previous equations form
a self-consistent pair that has a nonzero solution for m at temperatures below a
critical temperature Tc, given by

kB Tc

EF
= π

2

√
1

3

(
U

N
g(EF)− 1

)
, (4.36)

where N is the number of itinerant electrons, EF is the Fermi energy and g(E) is
the conduction band density of states at energy E .

Observe that for a metal to exhibit a nonzero magnetization at some finite
temperature, it must satisfy the condition

U

N
g(EF) > 1, (4.37)

known as Stoner criterion.
Metals with s or p conduction bands usually have a very small density of states

because of the large width of such bands. These metals, therefore, do not satisfy
the Stoner criterion and, consequently, do not present a magnetically ordered phase.
The d-bands, conversely, are much narrower, thus possessing some of the largest
densities of states. For that reason, they are capable of satisfying that criterion. This
explains why transition metals such as Fe, Co and Ni are ferromagnetic.

4.2 Strongly Correlated Systems

As an example of a strongly correlated system, let us consider a two-dimensional
crystal structure assembled in a square lattice with one atom per site, each of these
atoms providing one active electron. Within the tight-binding approach, we have
seen that a square Fermi surface exists, separating the occupied states, which fill
one-half of the first Brillouin zone, from the unoccupied ones, which will form the
second half of this zone. Within this approximation, which neglects the electronic
interactions, therefore, the system would be a metal. Let us see how this picture is
profoundly modified when the interactions are taken into account.

We assume the interactions are described by the Hubbard model, which is given
by (3.34), namely HH = HU + Ht , in the strong coupling regime where U � t .
This may be treated by considering the U-term as the unperturbed Hamiltonian and
using Rayleigh–Schrödinger perturbation theory in Ht .

We start from the ground state, defined by∑
i

(
ni,↑ + ni,↓

) |0〉 = |0〉. (4.38)

This is clearly a state with one electron per site, either with spin up or down; in
other words, the exactly half-filled band regime.
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Figure 4.2 The ground state at half-filling

Figure 4.3 The first excited state above half-filling

It is easy to show that HU |0〉 = 0, because on |0〉 either ni,↑ = 0 or ni,↓ = 0,
hence E (0)0 = 0.

The first-order correction to the ground-state energy is

E (1)0 = 〈0|Ht |0〉 = 0. (4.39)

This vanishes because Ht |0〉 = |1〉, where the state |1〉 contains at least one empty
and one doubly occupied site, being, therefore, orthogonal to the ground state:
〈0|1〉 = 0. We must, consequently, proceed to the second-order correction.

This is given by

E (2)0 =
∑
n �=0

〈0|Ht |n〉〈n|Ht |0〉
E0 − En

, (4.40)

where {|n〉} is a complete set of the unperturbed Hamiltonian HU .
It is not difficult to see that only |n〉 = |1〉 will give a nonzero contribution to the

above expression. All other contributions would vanish for reasons similar to the
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one leading to (4.39). Using the fact that E0 = 0 and E1 = U , since HU |1〉 = U |1〉,
we can write

E (2)0 = − 1

U

∑
n �=0

〈0|Ht |n〉〈n|Ht |0〉

= − 1

U

∑
n

〈0|Ht |n〉〈n|Ht |0〉

= − 1

U
〈0|Ht Ht |0〉, (4.41)

where we used the completeness of {|n〉}.
Inserting Ht in the latter expression, we may infer that the only non-vanishing

terms are

E (2)0 = −2t2

U

∑
〈i j〉

∑
σ,σ ′
〈0|c†

i,σ c j,σ c†
j,σ ′ci,σ ′ |0〉. (4.42)

Now, using (3.37) and (3.43) in the half-filled situation when
∑
σ ni,σ = 1, we can

cast the above equation in the form (using � = 1)

E (2)0 = 〈0|4t2

U

∑
〈i j〉

Si · S j |0〉. (4.43)

Since U > 0, this result shows that in the strong coupling regime U � t ,
at half-filling, the dynamics of the electrons described by the Hubbard model
becomes effectively governed by the antiferromagnetic Heisenberg Hamiltonian
with coupling J = −2t2/U :

H (2)
H = 4t2

U

∑
〈i j〉

Si · S j . (4.44)

Consequently, below the Néel temperature, the electronic system at half-filling,
which has precisely one electron per site, must be in an ordered antiferromagnetic
state.

Using the mean field approach and (3.40), we can write

H (2)
H = 2t2

U

∑
〈i j〉

∑
αβ

(c†
i,α �σαβci,β) · 〈S j 〉. (4.45)

Notice that the above Hamiltonian implies that in the presence of the antiferromag-
netic background, the effective lattice determining the electronic properties has the
modulus of its primitive vectors doubled. This means the corresponding effective
primitive reciprocal lattice vectors are changed accordingly:
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Figure 4.4 The reciprocal primitive vectors of the square lattice, the first Brillouin
zone and the occupied states at half-filling (shaded area)

Figure 4.5 The reciprocal primitive vectors of the square lattice after the doubling
produced by the magnetic ordered background. The region delimited by the Fermi
surface (line) becomes the new first Brillouin zone, which therefore is completely
filled. The system, consequently, becomes an insulator.

Q =
(

2π

a
n,

2π

a
m

)
−→ Q′ =

(π
a

n,
π

a
m
)

n,m ∈ Z. (4.46)

This change in the reciprocal lattice exerts a deep influence on the electronic prop-
erties of this system. The most spectacular effect is the generation of a gap right on
the Fermi surface (line), thus transforming the metal into an insulator. How does
this happen?

Observe that the Fermi surface precisely fits into the Brillouin zone, touching
it in four points and occupying exactly one-half of it. This is the so-called nesting
property. Because of this property, when the reciprocal lattice is modified by the
Néel transition, there are four reciprocal lattice vectors (n,m = ±1) that connect
opposite sides of the Fermi surface, just as the previous reciprocal lattice vectors
would connect opposite sides of the Brillouin zone. The opening of a gap at the
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Fermi surface then follows naturally in the same way the umklapp mechanism
creates a gap at the first Brillouin zone boundaries.

The study of this system shows how deeply the electronic interactions can mod-
ify the properties of a system, in this case transforming a metal into an insulator.

4.3 Conductivity

We have studied in Section 4.1 how a material system responds to the applica-
tion of an external magnetic field. Let us consider now what is the response to
the application of an external electric field E. We assume this electric field to be
associated to a vector potential A in a gauge such that E = − ∂A

∂t .
Starting from the free electron system described by (3.20), we introduce the

electric field according to the usual, minimal coupling prescription (3.27), to obtain
the Hamiltonian of the electron system in the presence of an electric field:

H [A] = − �
2

2m

∑
σ

∫
d3r ψ†

σ (r)
(
∇ + i

e

�c
A
)2
ψσ (r). (4.47)

We use the same prescription in order to derive the electric current operator out of
the free-electron expression (3.15), namely,

J = − ie�

2m

∑
σ

[
ψ†
σ (r)Dψσ (r)− [Dψσ(r)]†ψσ (r)

]
, (4.48)

where D = ∇+ i e
�c A is the so-called covariant derivative. We can write the charge

current operator in the above equation as

J = ej+ e2

mc
ρ A, (4.49)

where j is given by (3.15) and ρ is the electronic density, given by (3.13).
Notice that H [A] is a functional of the A-field. The electric current, accordingly,

is the functional derivative of H [A] with respect to the field A, namely (we refer
the reader to Section 5.1 for an introduction to functionals and their differentiation
and integration),

Ji (r) = δH [A]
δAi (r)

. (4.50)

Our main goal here is to obtain an expression for the average current 〈J〉 as a
function of the external electric field. For this purpose, we shift to the Heisenberg
picture and introduce the partition functional and the free energy, respectively, as
follows:

Z [Aext] = Tre−βH [Aext]

F[Aext] = − 1

β
ln Z [Aext], (4.51)

where β = 1/kB T .
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We have assumed that the external field was absent before t = 0 and that it starts
to act after this instant. The interaction Hamiltonian is, therefore

H [Aext] = H0[A] + θ(t)
∫

d3xJi Ai
ext. (4.52)

It is then clear that
δF[Aext]
δAi

ext

] ∣∣Aext=0 = 〈Ji 〉 (4.53)

and

− δ2 F[Aext]
δAi

ext(r, t)δA
j
ext(r′, t ′)

∣∣Aext=0 = 〈Ji J j 〉C = 〈Ji J j 〉 − 〈Ji 〉〈J j 〉. (4.54)

In the expression above,

〈Ji (r, t)J j (r′, t ′)〉C = 〈ji (r, t)j j (r′, t ′)〉C + ne2

mc
δi jδ(r− r′)δ(t − t ′), (4.55)

where n = 〈ρ(r, t)〉.
Now, using (4.53) and (4.55), we can derive the functional Taylor series for the

free energy functional, assuming the external field is weak enough for the higher-
than-quadratic terms to be neglected:

F[Aext] = F0 +
∫

d3xdt〈Ji (r, t)〉Ai
ext(r, t)−

1

2

∫
d3xdt

∫
d3x ′dt ′

×
[
〈ji (r, t)j j (r′, t ′)〉C + e2

mc
δi j 〈ρ(r, t)〉δ(r− r′)δ(t − t ′)

]
×Ai

ext(r, t)A
j
ext(r

′, t ′)+ . . .
(4.56)

We may obtain a relation between the average current and the external applied
field by imposing the stability of the system. This implies

δF[Aext]
δAi

ext(r, t)
= 0. (4.57)

According to (4.56), therefore, this condition leads to the following relation
between the current and vector potential, up to the first order in the external field
(linear response):

〈Ji (r, t)〉 =
∫

d3x ′dt ′

×
[
〈ji (r, t)j j (r′, t ′)〉C + e2

mc
δi j 〈ρ(r, t)〉δ(r− r′)δ(t − t ′)

]
A j

ext(r
′, t ′).

(4.58)
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It is convenient to consider the Fourier transform of the above equation. Using the
fact that the transform of a convolution is a product, and replacing the average
electronic density with n = N/V , where N is the number of electrons in the
conduction band and V is the system’s volume, we get

〈Ji (k, ω)〉 =
[
〈ji j j 〉C(k, ω)+ ne2

mc
δi j

]
A j

ext(k, ω). (4.59)

We want to determine the response of the electronic system (more specifically, of
the mobile electrons of the conduction band) to an external electric field given by
E(ω) = −iωAext(ω) in frequency space (for a uniform field k = 0). The response
we seek is the 3×3 matrix, called electric conductivity, which, according to (4.59),
relates the average total current to the external electric field and is given by

〈Ji 〉 = σ i j E j , (4.60)

where

σ i j = i

ω

[
〈ji j j 〉C(k, ω)+ δi j ne2

mc

]

σ i j = i

ω
〈Ji J j 〉C(k, ω). (4.61)

The equation above is known as Kubo formula. It expresses the response to an
applied electric field of frequency ω and wave-number k. For a uniform field, we
should take the limit k → 0. The DC-conductivity, conversely, would be obtained
by taking the limit ω→ 0.

There are different electron scattering mechanisms that lead to a finite conduc-
tivity or, equivalently, to a nonzero resistivity. Among these, the most important are
thermal and quantum fluctuations of the ion positions (phonons) around the equi-
librium Bravais lattice sites. This interaction was studied in detail in Section 3.4
and is described by the Hamiltonian (3.62). Defects and impurities as well are a
source of electron scatterings. The whole process is controlled by the average time
elapsed between two electron scattering events. This characteristic time interval is
called “relaxation time”: τ (τ � 10−14s).

Now, concerning the different causes of electron scattering, which produce
a nonzero resistance, it is natural to expect that different scattering processes,
say impurities and phonons, will lead to different relaxation times. How do we
determine the total effective relaxation time? Matthiesen’s rule states that they
add as

1

τ
= 1

τ1
+ 1

τ2
+ 1

τ3
+ . . . (4.62)
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The inverse conductivity matrix is the resistivity matrix. We conclude, according
to Matthiesen’s rule, that the resistivities produced by different sources just add.

An important factor that strongly influences the conductivity is the interac-
tion among the electrons themselves. The Kubo formula is sensitive to electronic
interactions and will correctly capture and describe their effect.

In Section 14.4, we determine the current correlation functions in a system of
electrons, which is subject to random scatterings from localized centers, being oth-
erwise free. For this calculation, we resort to quantum field theory methods. These
yield

〈ji j j 〉(k = 0, ω) = δi j

(
ne2

m

)[ −i/τ

ω + i/τ

]

〈Ji J j 〉(k = 0, ω) = δi j

(
ne2

m

)[
ω

ω + i/τ

]
, (4.63)

and from this we derive an expression for the conductivity, namely, Eq. (14.42).
We also obtain, for this system, the average current remaining after the application
of an external pulse of electric field, given by (14.48).

This issue is closely related to superconductivity and to the screening of a mag-
netic field inside a superconductor, known as the Meissner effect. Interestingly
and beautifully, this phenomenon is also closely related to the mechanism of mass
generation of the particles associated with the gauge fields that mediate the weak
interaction in the Standard Model. Indeed, we will see in the next section that the
essence of the Anderson–Higgs mechanism, which is behind both the Meissner
effect and the mass generation for a gauge field, is the fact that, in the presence of
an incompressible density of charge carriers, n, it is possible to prevent the build-
up of the second term in (14.48), thus securing a non-vanishing current, even in the
absence of an applied electric field.

Let us now turn to the frequency-dependent conductivity, which is given by
(14.42). It expresses the way the system would react in the presence of an external
AC-field of frequency ω. The DC-limit is obtained by just taking the limit ω→ 0
in that expression.

The existence of a finite conductivity in a metal has profound consequences on
the propagation of electromagnetic waves in these materials. Replacing the current
density term on the right-hand side of the Ampère–Maxwell equation with (4.60)
produces a conductivity-dependent refraction index that determines the speed of
light inside the metal:

v = c

n(ω)
n(ω) = √ε(ω) ε(ω) = 1+ i

4πσ(ω)

ω
, (4.64)
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where ε(ω) is the dielectric function. Using the expression for the optical conduc-
tivity σ(ω), (14.42), obtained within the non-interacting electron model described
above, we can cast it in the form

ε(ω) = 1− ω
2
P

ω2

(
1− i

ωτ

)
, (4.65)

where ω2
P = 4πne2

m is the so-called plasma frequency (ωP � 1016Hz).
Now, observe that the electromagnetic wave-vector modulus satisfies

k = ω
c

√
ε(ω), (4.66)

hence for this wave to propagate through the metal, a real positive dielec-
tric function is required. This condition is fulfilled for ω > ωP (notice that
ωPτ � 102 � 1); otherwise k will have an imaginary part and the wave will be
damped. Consequently, metals are transparent for EM waves with a frequency
higher than the plasma frequency, which is above the visible region. Now, for EM
waves in the visible, we have ω < ωP , but still ωτ � 1. This means the refrac-
tion index n(ω) = √ε(ω) in this case would be purely imaginary and so would be
the wave-vector k, thereby precluding the propagation of EM waves on the visible
range in the metal.

Energy conservation forces all the visible light incident on a metal to be
reflected, since it cannot propagate inside it. Reflectance is the quantity that mea-
sures the reflected fraction of an EM wave inciding onto a metal. For perpendicular
incidence, the reflectance of a metal is

R =
∣∣∣∣1− n(ω)

1+ n(ω)

∣∣∣∣ =
∣∣∣∣1−

√
ε(ω)

1+√ε(ω)
∣∣∣∣ . (4.67)

From our previous analysis, therefore, it becomes clear that for visible light in
a metal, the dielectric function turns out to be negative. The refraction index,
consequently, is purely imaginary, and according to the above equation we get
R = 1, implying that all the incident light is completely reflected. This explains,
for instance, why the metals shine so much, a quality that is certainly responsi-
ble for making some of them so valuable, and consequently for so many historic
implications.

In this section, we have studied the ability of a system to transport charge in
a dissipative regime corresponding to an average rate of scatterings 1/τ , where
τ is the relaxation time. In the next section, we examine the phenomenon that
makes τ → ∞, thereby eliminating dissipation in the transport of charge and
consequently producing zero resistivity.
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4.4 Superconductivity

Introduction

Superconductivity is certainly one of the most interesting, beautiful and useful
phenomena in physics. It was discovered by Kamerlingh-Onnes, in 1911, after
he had developed the technology of helium liquefaction a few years before. He
observed that the electrical resistance of mercury, a metal usually presenting a finite
resistivity, would suddenly drop to zero when this material was cooled below a tem-
perature of approximately 4K , by contact with a liquid helium bath. This behavior
would allow the existence of persistent electrical currents, even in the absence of
an applied electric field, for as long as we keep the material cooled below that tem-
perature. The phenomenon was called superconductivity. The same behavior was
subsequently found in different materials at temperatures ranging up to the order
of 20K . Nevertheless, it would take almost 50 years for the mechanism producing
this phenomenon to be properly understood. In the meantime the whole quantum
theory itself, an unavoidable instrument for its comprehension, had to be built.

Even though a thorough understanding of what became known as conventional
superconductivity had been achieved by the 1960s, a new class of superconducting
synthetic materials was found by Bednorz and Müller in 1986, [2] involving a new
mechanism that could not be explained in the same way as the conventional super-
conductivity. These are the so-called High-Tc cuprates, such as La2−x SrxCuO4

(LSCO) and Y Ba2Cu3 O6+x (YBCO). The critical temperature of the former is
about 40K , whereas that of YBCO is roughly of the order of 90K . This is above
the boiling temperature of nitrogen; hence, for the first time the use of liquid
nitrogen as a cooler medium was allowed. Because nitrogen is much more abun-
dant and therefore much cheaper than helium, this opened a vast field of potential
technological applications for the new superconductors.

In 2008, an even newer class of unconventional superconducting materials was
synthesized, with critical temperatures of the order of 30K to 60K [4]. These
are the iron-based pnictides, such as Sr1−x Kx Fe2 As2. Both the cuprates and the
pnictides have extremely rich phase diagrams, which should provide many clues
for understanding the underlying physical processes in these materials. So far,
however, the mechanism or mechanisms responsible for the new forms of super-
conductivity exhibited by cuprates and pnictides is not completely understood,
thus opening a fascinating challenge in this field of research. Cuprate and pnic-
tide superconductors are the subject of Chapters 24 and 25, respectively, whereas
a detailed quantum field theory approach to superconductivity is presented in
Chapter 23.
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In 2015, superconductivity was observed at a temperature of 203.5K in hydro-
gen sulfide, H2S, at a pressure of 150G Pa [3]. This is claimed to be conventional
superconductivity and has the highest transition temperature so far.

An Order Parameter

The most distinguished feature of superconductivity is the existence of a persistent
current, namely, a current that would not decay even in the absence of an applied
electric field. In (14.48) we will show that when the electric field is removed, after
the application of a pulse, the current decays because the j(t) component of the
current builds up to cancel the other component. This observation contains the key
for producing a persistent current: we must prevent the j-term from canceling the
A0-term.

We start by introducing the order parameter, namely, a complex function of the
temperature, such that its modulus squared coincides with the persistent current
carriers: η2 = ns . It follows that 
(r) = ηeiϕ must be the wave function for these
charge carriers, being different from zero, wherever they are. It is therefore an order
parameter for the superconducting state.

We will see that whenever η is a non-vanishing constant, the j component of
the current will no longer cancel the other one in (14.48), thereby leading to a
superconducting state where a persistent current exists. For this purpose, we first
examine how to obtain the value of the order parameter at a given temperature and,
from it, the current j.

The Landau–Ginzburg Theory

The Landau–Ginzburg theory, proposed in 1950, was a turning point in physics.
Its influence reaches an impressive amount of systems, ranging from condensed
matter through cosmology to particle physics. It was awarded the Nobel Prize in
2003.

The theory is centered on the concept of an order parameter, introduced by Lan-
dau, and is formulated by expressing the free energy as a functional of this order
parameter, which in the case of superconductivity is a complex field 
(r), as we
saw. Assuming the system is close to a critical point marking a phase transition,
we must have a small value for |
(r)|. Assuming, furthermore, that this is slowly
varying spatially, we can express the free energy for particles of mass M and charge
q as

F[A, 
] = F0 +
∫

d3r

{
1

2M

∣∣∣[−i�∇ − q

c
A
]



∣∣∣2 + a(T )|
|2 + 1

2
b|
|4

}
,

(4.68)
where b > 0 and a(T ) = a0(T −Tc), Tc being the critical temperature for the onset
of superconductivity and a0 > 0.
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The field equation obtained from (4.68) is

1

2M

∣∣∣[−i�∇ − q

c
A
]∣∣∣2
 + [a(T )+ b|
|2]
 = 0. (4.69)

In the SC phase, the average current 〈J〉, given by (4.49) and (4.50) must be
identified with the supercurrent JS . Now, this is obtained from the free energy by

Ji
S(r) =

δF[A]
δAi (r)

. (4.70)

Considering the momentum-velocity relation in the presence of a vector poten-
tial, we find that the velocity operator of the SC condensate is given by

V = 1

M

[
−i�∇ − q

c
A
]
. (4.71)

It is not difficult to realize that the solution of (4.69) that minimizes the free energy
for T < Tc has a constant modulus |
|2 = nS , where nS �= 0 is the density of SC
carriers. This vanishes for T > Tc and increases as we lower the temperature (for
T < Tc).

For such a condensate, the wave-function has a constant modulus,
√

nS (
 =√
nS eiϕ), given by

|
| =

⎧⎪⎨
⎪⎩
√

a0
b (Tc − T ) T < Tc

0 T > Tc

, (4.72)

and consequently the velocity eigenvalue is given by

vS = 1

M

[
�∇ϕ − q

c
A
]
. (4.73)

The average j component of the current is

〈j〉(t) = nS
q

M
�∇ϕ, (4.74)

and the full current, corresponding to (4.70), is given by

JS = 〈J〉(t) = nS
q

M

[
�∇ϕ − q

c
A
]
= q nSvS. (4.75)

Notice that the above current is gauge invariant. Indeed, it remains unchanged
under the gauge transformation

A → A+ �c

q
∇θ ; ϕ→ ϕ − θ. (4.76)

Now, observe that the current in (4.75) is persistent. Even if we remove the applied
electric field, for a constant A = A0, as we did in the previous subsection, the cur-
rent will persist, provided nS �= 0. The phase ϕ has a coherent spatial distribution,
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determined by the velocity of the charge carriers. These, conversely, are correlated
throughout the sample, through the phase gradient.

One can understand physically why the phase coherence of the superconducting
condensate produces a persistent current. Indeed, the individual random elec-
tron scatterings, which are responsible for resistivity, just cannot occur without
destroying the condensate phase coherence. By behaving collectively, tied by the
correlation imposed by the fact that velocity is the gradient of the wave-function
phase, the electrons just cannot be scattered individually, thereby producing a
resistanceless electric current.

The London Equation

If we take the rotational of (4.75), the first term on the right-hand side vanishes and
we get

∇ × JS = −nS
q2

Mc
B. (4.77)

Now, using the Ampère law, we can write the previous equation as

∇ × ∇ × B = −4πnSq2

Mc2
B, (4.78)

and considering Gauss’ law of the magnetic field, we arrive at

∇2B = 4πnSq2

Mc2
B. (4.79)

This is the equation satisfied by the magnetic field in a superconductor. It was first
derived by the London brothers in 1935. An identical equation may be derived for
the current. Indeed, taking the rotational of (4.77), using Ampère’s Law and the
fact that there is no net charge density in the absence of electric fields, we get

∇2J = 4πnSq2

Mc2
J. (4.80)

The Meissner Effect

The Meissner effect, discovered in 1933 by Meissner and Ochsenfeld, consists in
the fact that the magnetic field is expelled from a superconductor. It can be conve-
niently explained by the London equation. Indeed, let us consider London equation
for the following geometry: a superconductor material, placed at z > 0 and the
vacuum, at z < 0. We assume the system extends to infinity in the x, y direc-
tions. This correctly portrays the situation close to boundary of a superconducting
sample. The symmetry implies that the magnetic field in the London equation just
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Figure 4.6 Meissner effect: the magnetic field decays exponentially inside a
superconductor.

depends on z. One immediately finds, then, from (4.79), that the magnetic field
inside the superconductor is given by

B(z) = B(0) exp

(
− z

λL

)
z > 0, (4.81)

where λ2
L = Mc2

4πnSq2 . The London penetration length λL � 10−8m determines how
deep the magnetic field penetrates the superconductor. Its small value signifies that
the magnetic field is essentially zero inside the superconductor, except for a thin,
skin-deep region, thus explaining the Meissner effect.

From (4.80) we also see that the current decays exponentially as we recede from
the surface into the bulk of a superconductor. Consequently, we come to the sur-
prising conclusion that the persistent current in a superconductor flows along its
surface. Notice that this is in agreement with the fact that (4.73), and consequently
(4.75), vanish in the bulk, on account of (4.69).

We see that the Landau–Ginzburg theory correctly describes both the existence
of a persisting current and the Meissner effect in a superconductor. A key ingredient
of this theory is the fact that the modulus of the complex order parameter, which is
identified with the wave function of the super-current carriers, acquires a constant
nonzero value for temperatures below Tc. It is precisely because of this feature that
〈j〉 can be written as in (4.74). It follows that this component of the total current no
longer cancels the other one, thus allowing the existence of a persistent current.

The Landau–Ginzburg theory describes the onset of this regime, however it does
not explain the physical mechanism that produces it. This was an achievement of
the BCS theory, proposed by Bardeen, Cooper and Schrieffer in 1957.

The BCS Theory

BCS theory provides the explanation of the mechanism responsible for super-
conductivity on the basis of the interaction of electrons with the quantized
crystalline vibrations of the solid, namely, the phonons. Surprisingly, the same
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electron-phonon interaction that produces a nonzero resistance increasing with the
temperature is, in fact, responsible for the onset of a zero-resistance supercon-
ducting state, where the transport of charge occurs without dissipation when the
temperature is lowered below a certain critical value Tc in many materials.

A detailed study of the electron-phonon interaction was presented in Section
3.4. Equation (3.62), in particular, expresses the effective electron-electron inter-
action, mediated by one-phonon exchange. This expression is remarkable for two
reasons. First, this effective interaction becomes negative (that is, attractive) when-
ever the energy difference between the two electrons is less than the energy of the
exchanged phonon. Secondly, if this energy difference is close to (but less than)
the phonon energy, this attractive interaction becomes large and supersedes the
Coulomb repulsion between the electrons.

Remember, the phonon frequency is always less than the Debye frequency ωD,
as we saw in Chapter 2. It follows that when the electrons’ energy difference �ε
is larger than the Debye energy, �ε > �ωD, the interaction (3.62) will never be
attractive. Conversely, for�ε < �ωD, this will always be attractive for some range
of the exchanged phonon energy. The former situation is the one that is most fre-
quently found in material systems: the electronic effective interaction is repulsive.
This situation is clearly enhanced as we increase the temperature, thereby boosting
the electrons’ energy differences. Nevertheless, when we lower the temperature in
a metal, we reach a situation in which most of the electrons occupy the states below
the Fermi surface. Then, a large number of electrons will be close to the Fermi sur-
face, and therefore would have small energy differences. Hence, it is likely that
a large number of electrons will be found inside a shell of width of the order of
�ωD around the Fermi surface (�ωD � εF ). For these electrons, the attractive
interaction mediated by phonons (3.62) will be more important than the Coulomb
repulsion, and two-electron bound states with opposite spins, called Cooper pairs,
will consequently form. These Cooper pairs then form a condensate in which the
order parameter has a constant modulus, namely, an incompressible fluid. As we
saw above, this is the key condition for the existence of a persistent current. The
Cooper pairs therefore are the carriers of the superconducting current.

The net effective electron-electron interaction, which takes into account both
the Coulomb repulsion and the phonon-mediated attraction, is described by (3.62),
with the interaction potential given by

V (k,q) =
⎧⎨
⎩
−λ |εk − εk−q| < �ωD

0 |εk − εk−q| > �ωD

(4.82)

where λ > 0 is an effective coupling constant.
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In Chapter 23, we use quantum field theory methods to show that this effec-
tive, phonon-induced attractive quartic electronic interaction indeed produces an
incompressible fluid of Cooper pairs below a certain critical temperature Tc,
which is determined as well. This fluid is described by a complex order param-
eter of constant modulus. As we have seen above, this automatically leads to a
superconducting state containing a persistent current.

Magnetic Flux Quantization and Type II Supercondutors

Let us consider expression (4.75) for the current in a superconductor material. We
have seen that this current exponentially vanishes inside the material, hence, we
must have

�∇ϕ − q

c
A = 0. (4.83)

Integrating this along a closed loop C , we get∮
C

A · dl = hc

q

1

2π

∮
C

dl · ∇ϕ. (4.84)

The left-hand side above is the magnetic flux across the surface bounded by C ,
namely�C , as implied by the Stokes theorem. Since the Cooper pair wave-function
must be single-valued, we have

ϕ(2π)− ϕ(0) = 2π n ; n ∈ Z. (4.85)

We conclude that, for such geometry, the magnetic flux is quantized:

�C = n�0 , �0 = hc

q
, (4.86)

where, in the expression of the flux quantum, we reinstated c and q = −2e,
corresponding to a Cooper pair.

An example of the geometry used above would be provided by a superconduct-
ing ring. In this case,�C would be the quantized magnetic flux across the ring. The
most interesting example, however, would be that of a bulk superconductor.

Indeed, by choosing the phase of the Cooper pair wave-function in such a way
that


(r) = ρ(r)eiϕ(r) = ρ(r)ei arg(r), (4.87)

we immediately comply with (4.85). The function arg(r), however, is not well
defined at the origin, hence, the only possibility to have an acceptable wave-
function is that ρ(r) should vanish at the origin. This would open a hole of
normal state inside the superconducting bulk, thereby allowing one quantum of
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magnetic field to pierce through each of these holes. The presence of these quan-
tized magnetic vortices characterizes a class of superconductors called Type II
superconductors.

We conclude here our introduction to condensed matter systems. In the second
part of this book we present an introduction to quantum field theory, which is an
important tool for investigating the former, as we will see in the third part.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.005
https://www.cambridge.org/core


Part II
Quantum Field Theory

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548
https://www.cambridge.org/core


5

Functional Formulation of Quantum Field Theory

Quantum field theory, from its very inception, emerged as a natural application of
the laws of quantum mechanics to systems of fields. This was actually the case
already when Einstein applied Planck’s concept of quantum to the radiation elec-
tromagnetic field in order to explain the photoelectric effect. In its early days,
quantum field theory served as a unique framework where the laws of quantum
mechanics could be unified with those of the theory of relativity, but soon it had
become the main instrument for describing the physics of elementary particles and
their interactions. In this area it has produced some of the most accurate theoretical
models ever produced in any area of knowledge. Indeed, theoretical predictions in
this framework, in some cases, agree with the experiments within up to twelve dig-
its. More recently, the range of applications of quantum field theory was enlarged
to include, among other areas, cosmology, astrophysics, hadron physics and con-
densed matter physics, which is the subject of this book. We start the Second Part,
which is about quantum field theory itself, with a chapter providing the basic tools
required for operating this powerful theoretical device.

5.1 Functional Integration and Differentiation

5.1.1 Functions and Functionals

Functions and functionals are two important classes of mathematical objects play-
ing a central role in many areas of physics. In both of them, the value of the function
or the functional, say, a real number, is determined by a certain input. In the case of
functions of a single variable, this input is another real number, called the variable,
whereas in the case of functionals the input is in the form of a certain function.
Consider the following example.

Let us take the expression

y = f (x) x, y ∈ R. (5.1)

75
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76 Functional Formulation of Quantum Field Theory

This may be considered in two different ways. Assuming a fixed functional form f ,
then y may be considered as a real function of the real variable x , namely, its value
is determined by the value of x and in general changes as x is modified. In this case,
y is a function of x : y = f (x). Conversely, assuming a fixed value of the argument
x = x0, however considering the functional form f (x0) as arbitrary and subject to
change, it follows that the real number y will be determined by the functional form
of f . In this case, y will be a functional of f , namely y = Fx0[ f ] ≡ f (x0).

Physical quantities in field theory, both at classical and quantum-mechanical
levels, are frequently expressed as functionals, which in most cases are of the form

F[ϕ] =
∫ b

a
F(ϕ(x))dx, (5.2)

where F is a well-known function of ϕ. In this case, y = F[ϕ] just depends on the
functional form of ϕ. The previous example of a functional, y = Fx0[ f ] ≡ f (x0),
is a particular case of (5.2), for F = f (x) δ(x − x0) and x0 ∈ [a, b]. Another
frequently used functional of the same form is the action functional, where F is
the Lagrangean, and the variable x , the time.

The mathematical formulation of classical and quantum field theory requires
the concepts of functional integrals and derivatives. In the next two subsections
we shall see how to obtain these natural extensions of the usual derivatives and
integrals of functions of one real variable.

5.1.2 Integrals and Derivatives

Let us start by recalling how the integral of a function is defined. Take

I (y) =
∫ y

a
ϕ(x)dx . (5.3)

For this purpose, let us discretize the [a, y] interval of the real x-axis in N
intervals of uniform width ε, in such a way that Nε = y − a and

{x0 = a, x1, . . . , xN = y|xi+1 − xi = ε} ε→0,N→∞=⇒ [a, y]. (5.4)

It follows that a real function ϕ(x) will become, after such discretization, a
collection of N real numbers

{ϕ1, ϕ2, . . . , ϕN |ϕi = ϕ(xi ) ∈ R} ε→0,N→∞−→ ϕ(x). (5.5)

The Derivative and the Integral

The derivative of the function ϕ(x) at the point xi is then defined as

�ϕ(xi )

�xi
= ϕ(xi+1)− ϕ(xi )

ε

ε→0−→ dϕ(x)

dx
.
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Figure 5.1 The discretization of the interval [a, b]

Figure 5.2 The function F(y) = ∫ y
a φ(x)dx

Then we have the definite integral of the function ϕ(x) on the interval [a, y],
defined by

ε

N∑
i=1

ϕi
ε→0,N→∞−→ I (a, y) =

∫ y

a
ϕ(x)dx . (5.6)

The Fundamental Theorem of Calculus

It can be verified that I (a, y) is a function of y, and consequently an increment in
I (a, y) is clearly given by

�I (xk) = εϕk . (5.7)

The y-derivative of I (a, y) therefore becomes

d I (y)

dy
= lim
ε→0

�I (xk)

ε
= ϕk ; d I (a, y)

dy
= ϕ(y), (5.8)

which is a result known as the fundamental theorem of calculus.
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78 Functional Formulation of Quantum Field Theory

5.1.3 Functional Integrals and Functional Derivatives

Functional Integral

Now, consider an arbitrary functional F[ϕ]. Upon the discretization described in
(5.4), this becomes a function of the N real variables defined there, namely

F = F(ϕ1, ϕ2, . . . , ϕN )
ε→0,N→∞−→ F[ϕ]. (5.9)

We therefore define a functional integral over ϕ, namely an integral sweeping all
possible configurations of the function (field) ϕ as a usual integral over each one
of the real variables ϕi , representing the value of the function ϕ(x) at the point xi :

Z =
∫

DϕF[ϕ] = lim
ε→0,N→∞

∫ ∞

−∞
dϕ1 . . .

∫ ∞

−∞
dϕN F(ϕ1, ϕ2, . . . , ϕN ). (5.10)

Functional Derivative: Definition

Upon discretization, a functional becomes a function of (infinitely) many variables,
as is stated in (5.9). Hence, it follows that the infinitesimal variation of the function
F due to a change in the variable ϕi , keeping all the other variables fixed, is the
differential

�F = ∂F

∂ϕi
�ϕi . (5.11)

The total variation of the multi-variable function F (ϕ1, . . . , ϕN ) is, then,

�F =
N∑

i=1

∂F

∂ϕi
�ϕi . (5.12)

In the continuum limit, this becomes

�F = lim
ε→0,N→∞

ε

N∑
i=1

∂F

ε∂ϕi
�ϕi

�F =
∫ b

a
dx
δF

δϕ
(x)�ϕ(x), (5.13)

whence,
δF

δϕ
(x) = lim

ε→0,N→∞
∂F

ε∂ϕi
. (5.14)

Functional Derivative: Special Cases

Let us focus now on the functional F given by (5.2), which many times appears
in the description of physical systems. After the discretization made in (5.4) this
becomes the following function of the real variables ϕ j :
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F (ϕ1, . . . , ϕN ) = ε
N∑

i=1

F(ϕ j )

F (ϕ1, . . . , ϕN ) = ε
N∑

i=1

F j , (5.15)

where F j ≡ F(ϕ j ).
Now, using the form of F given in (5.15), we find that

∂F

∂ϕi
= ∂F
∂ϕi
ε. (5.16)

Hence, in this case, from (5.14) and (5.16),

δF

δϕ
(x) = lim

ε→0,N→∞
∂F

ε∂ϕi

δF

δϕ
(x) = lim

ε→0,N→∞
∂F
∂ϕi

δF

δϕ
(x) = ∂F

∂ϕ(x)
. (5.17)

The extension of the above formula for the case of a functional where the
integrand depends both on the function ϕ(x) and its derivative dϕ(x)

dx , namely

G[ϕ] =
∫ b

a
G
(
ϕ(x),

dϕ(x)

dx

)
dx, (5.18)

can be obtained straightforwardly by replacing (5.16) with

�G = ε
N∑

i=1

[
∂G
∂ϕi
�ϕi + ∂G

∂ϕ′i
�ϕ′i

]
ε→0,N→∞−→

∫ b

a
dx

[
∂G
∂ϕ
�ϕ + ∂G

∂ϕ′
�ϕ′

]

�G =
∫ b

a
dx

[
∂G
∂ϕ
− d

dx

∂G
∂
( dϕ

dx

)
]
�ϕ, (5.19)

where, in the last step, we used the fact that �ϕ′(x) = d
dx�ϕ(x) and integrated by

parts the second term, assuming that �ϕ(a) = �ϕ(b) = 0. Now, using (5.13), we
readily get

δG

δϕ(x)
= ∂G
∂ϕ
− d

dx

∂G
∂
( dϕ

dx

) . (5.20)

When G is the action functional, the above expression equated to zero yields the
Euler–Lagrange equation that governs the classical behavior of all physical sys-
tems. The classical description, therefore, stems from the condition of stationary
action known as Hamilton’s principle.
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5.2 Gaussian Functional Integrals

Let us evaluate here the functional integral

SB =
∫

DBϕ exp

{
−1

2

∫
dxdy[ϕ(x)A(x, y)ϕ(y)]

}
, (5.21)

where the subscript B means we are integrating over bosonic fields. We normalize
the above integral, dividing by a constant factor such that, upon discretization, this
becomes

SB =
∫ ∞

−∞
. . .

∫ ∞

−∞
ε

s0
dϕ1 . . .

ε

s0
dϕN exp

⎧⎨
⎩−1

2
ε2
∑

i j

ϕi Ai jϕ j

⎫⎬
⎭ , (5.22)

where the ε
s0

-factors correspond to the normalization introduced above and the
matrix Ai j is supposed to be hermitean. Because of this property, the matrix A
may be diagonalized by an orthogonal transformation, namely

[O AOT ]i j = aiIi j OT O = I, (5.23)

where ai are the eigenvalues of A, and I is the identity matrix. Then, performing
the change of variables

φi = Oi jϕ j

∏
i

dϕi = det O
∏

i

dφi (5.24)

and considering the fact that the determinant of an orthogonal matrix is one, the
above expression then becomes

SB =
∏

i

∫ ∞

−∞
ε

s0
dφi exp

{
−1

2
aiε

2φ2
i

}
=
∏

i

√
1

ai
= [DetA]−1/2, (5.25)

where we have chosen s0 =
√

2π .
Another extremely useful integral is

SB[J ] =
∫

DBϕ exp

{
−1

2

∫
dxdy[ϕ(x)A(x, y)ϕ(y)] +

∫
dxϕ(x)J (x)

}
.

(5.26)
After discretization it becomes

SB[J ] =
∫ ∞

−∞
. . .

∫ ∞

−∞
ε

s0
dϕ1 . . .

ε

s0
dϕN exp

⎧⎨
⎩−1

2
ε2
∑

i j

ϕi Ai jϕ j + ε
∑

i

ϕi Ji

⎫⎬
⎭ ,

(5.27)
Performing the change of variable ϕi → ηi = ϕi − A−1

i j J j , we get
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SB[J ] = exp

⎧⎨
⎩1

2
ε2
∑

i j

Ji A−1
i j J j

⎫⎬
⎭

×
∫ ∞

−∞
. . .

∫ ∞

−∞
ε

s0
dη1 . . .

ε

s0
dηN exp

⎧⎨
⎩−1

2
ε2
∑

i j

ηi Ai jη j

⎫⎬
⎭ . (5.28)

The last factor above is nothing but the integral (5.25), hence, taking the continuum
limit, we find

SB[J ] = exp

{
1

2

∫
dxdy[J (x)�(x, y)J (y)]

}
[DetA]−1/2, (5.29)

where �(x, y) = A−1(x, y), is the Green function of A(x, y), namely∫
dz A(x, z)�(z, y) = δ(x − y). (5.30)

5.3 Fermion Fields

The path integral formulation of a quantum theory of fermion fields requires the
use of the so-called Grassmann variables. These are mathematical objects that gen-
eralize real and complex variables in the sense that they anti-commute in spite of
not being operators. As a consequence, they have peculiar derivation and integra-
tion rules, which turn out to be just the ones needed for the quantum-mechanical
path integral formulation of a fermion field.

Given a set of N real Grassmann variables {θ1, . . . , θN }, then, by definition,

{θi , θ j } = 0 =⇒ θ2
i = 0. (5.31)

It follows that the most general function of a single Grassmann variable is

f (θ) = a + bθ, (5.32)

where a and b are real constants.
Differentiation and integration of Grassmann variables are defined, respec-

tively, as
d

dθi
θ j = δi j ,

∫
dθiθ j = δi j . (5.33)

We saw in (5.5) that under the discretization of space, a bosonic field ϕ(x)
becomes a collection of N real variables {ϕ1, . . . , ϕN |ϕi = ϕ(xi )}. A fermionic
field ψ(x), accordingly, under the same discretization, (5.4), will become a
collection of Grassmann variables, namely

{θ1, θ2, . . . , θN |θi = ψ(xi )} ε→0,N→∞−→ ψ(x). (5.34)
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We can define a functional integral over a fermion field, therefore, by a set of
N → ∞ integrals over Grassmann variables. Taking a functional F[ψ] as the
integrand, we generalize (5.10) as

SF =
∫

DψF[ψ] = lim
ε→0,N→∞

∫
dθ1 . . .

∫
dθN F(θ1, θ2, . . . , θN ). (5.35)

For a Gaussian fermion integral, we get, instead of (5.21),

SF =
∫

DFψ exp

{
−1

2

∫
dxdy[ψ(x)A(x, y)ψ(y)]

}
. (5.36)

By applying the above discretization, we obtain

SF =
∫

dθ1

ε
. . .

∫
dθN

ε
exp

⎧⎨
⎩−1

2
ε2
∑

i j

θi Ai jθ j

⎫⎬
⎭ , (5.37)

where the matrix Ai j must be anti-symmetric because of the anti-commuting nature
of the θi -variables. Also notice that we now have chosen s0 = ε2.

According to the Grassmann variables integration rules, only the term of order
N/2 of the exponential (assume N is even) will be different from zero. This will be

SF =
∫

dθ1

ε
. . .

∫
dθN

ε

(−1)N/2

(N/2)!
εN

2N/2

⎡
⎣∑

i j

θi Ai jθ j

⎤
⎦ . . .

⎡
⎣∑

i j

θi Ai jθ j

⎤
⎦

︸ ︷︷ ︸
N/2

, (5.38)

where we have N/2 brackets. Notice that the ε factors cancel out. Straightforward
combinatorics then show that

SF =
∫

dθ1 . . .

∫
dθNθN . . . θ2θ1

∑
{P1,...PN }

[
AP1 P2 . . . APN−1 PN

]
(−1)ε(P)

SF =
∑

{P1,...PN }

[
AP1 P2 . . . APN−1 PN

]
(−1)ε(P), (5.39)

where we used the fact that the integrals over the Grassmann variables just give
one and the sum runs over all permutations in the set {P1, . . . PN } and ε(P) is the
parity of the permutation. The above expression is called the Pfaffian of the matrix
Ai j , denoted by Pf(A).

For an N × N anti-symmetric matrix, as Ai j , the determinant vanishes for odd
N , whereas for even N we have det (A) = [Pf(A)]2, or equivalently,

det Ai j =
⎡
⎣ ∑
{P1,...PN }

[
AP1 P2 . . . APN−1 PN

]
(−1)ε(P)

⎤
⎦2

; (5.40)

hence, it follows that
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SF = Pf(A) = [Det(A)]1/2. (5.41)

Following the same steps as before, we can evaluate

SF [η] =
∫

DFψ exp

{
−1

2

∫
dxdy[ψ(x)A(x, y)ψ(y)] +

∫
dxψ(x)η(x)

}
,

(5.42)
where ψ and η are fermion fields. By discretizing, making the change of variable
θi → ξi = θi − A−1

i j η j and going back to the continuum limit, we obtain

SF [η] = exp

{
1

2

∫
dxdy[η(x)�(x, y)η(y)]

}
[DetA]1/2, (5.43)

where �(x, y) = A−1(x, y), is the Green function of A(x, y).

5.4 Table of Functional Derivatives and Integrals

Here we summarize the results for functional derivative and formulas obtained
above.

1)
δϕ(y)

δϕ(x)
= δ(x − y). (5.44)

2)
δ

δϕ(x)

∫ b

a
ϕ(y)J (y)dy = J (x). (5.45)

3)
δ

δϕ(x)

∫ b

a
F(ϕ(y))dy = ∂F

∂ϕ(x)
. (5.46)

4)
δ

δϕ(x)

∫ b

a
G
(
ϕ(y),

dϕ(y)

dy

)
dy = ∂G

∂ϕ
− d

dx

∂G
∂
( dϕ

dx

) . (5.47)

5)
∫

DBϕ exp

{
−1

2

∫
dxdy[ϕ(x)A(x, y)ϕ(y)]

}
= [DetA]−1/2. (5.48)

6)
∫

DBϕ exp

{
−1

2

∫
dxdy[ϕ(x)A(x, y)ϕ(y)] +

∫
dxϕ(x)J (x)

}

= exp

{
1

2

∫
dxdy[J (x)A−1(x, y)J (y)]

}
[DetA]−1/2. (5.49)

7)
∫

DFψ exp

{
−1

2

∫
dxdy[ψ(x)A(x, y)ψ(y)]

}
= [DetA]1/2. (5.50)

8)
∫

DFψ exp

{
−1

2

∫
dxdy[ψ(x)A(x, y)ψ(y)] +

∫
dxψ(x)η(x)

}

= exp

{
1

2

∫
dxdy[η(x)A−1(x, y)η(y)]

}
[DetA]1/2. (5.51)
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5.5 Classical Fields

A classical field is essentially a function of the spatial coordinates, which evolves in
time, similarly to any classical variable. Given a field ϕ(x, t), a fundamental phys-
ical quantity, fully determining its classical (and quantum-mechanical) properties
is the action S[ϕ], a functional of this field given by

S[ϕ] =
∫ ∞

−∞
dt
∫

d3xL
(
ϕ, ∂μϕ

)
. (5.52)

In the previous expression, L is the Lagrangean density, a function of the field and
its time and space derivatives that uniquely characterizes a given field theory.

The classical behavior of the field is determined by equations that emerge from
the condition that the classical evolution renders the action stationary, namely

δS

δϕ
= 0 =⇒ ∂L

∂ϕ
− ∂μ ∂L

∂∂μϕ
= 0. (5.53)

The Euler–Lagrange equation obtained in the last step follows from (5.47) and
determines the evolution and all dynamical properties of the classical field. Phys-
ical quantities such as the energy, or Hamiltonian, are then usually functionals of
the field and its derivatives.

In order to obtain the field theory Hamiltonian, for instance, we start by defining
the field-momentum canonically conjugate to ϕ:

π(x, t) = ∂L
∂ϕ̇
. (5.54)

The Hamiltonian and its corresponding density then follow by a Legendre trans-
formation of the Lagrangean density,

H =
∫

d3xH ; H = π(x, t)ϕ̇(x, t)− L. (5.55)

Notice that the Hamiltonian is a functional H = H [π, ϕ,∇ϕ].

5.6 Quantum Fields

The universe is quantum-mechanical by nature. As a consequence, the principles of
quantum mechanics should be applied to all natural systems including, of course,
those in which the basic physical observable is a field. This immediately leads to
the concept of a quantum field operator. Consider, for instance, a classical scalar
field ϕ(x, t). It follows that, upon quantization, this must become an operator
φ(x, t) acting on a Hilbert space. The time dependence normally exhibited by a
field hence makes the Heisenberg picture the most natural framework for develop-
ing a quantum field theory. Nevertheless, Schrödinger picture field operators have

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.006
https://www.cambridge.org/core


5.6 Quantum Fields 85

already been considered above in Chapters 2 and 3, for phonons and electrons.
The electron field operator was given by (3.3), (3.4), (3.5), (3.7) and (3.8), whereas
the phonon field operator was given by (2.13), (2.14) and (2.15). In what follows,
we shall use the Feynman formulation as a convenient unifying framework for
describing quantum fields.

We can have a clear picture of what a quantum field is by using the discretization
of the space coordinate given by (5.4). A classical field ϕ(x, t) becomes, under such
discretization, a collection of real numbers, given by (5.5) (the fact that the space
coordinate belongs to R

3 can be easily adapted to the formalism):

{ϕ1, ϕ2, . . . , ϕN |ϕi = ϕ(xi ) ∈ R} ε→0,N→∞−→ ϕ(x). (5.56)

A quantum field, denoted by φ(x, t) in the Heisenberg picture (or φ(x) in
the Schrödinger picture), conversely becomes, under this discretization, the direct
product of a set of operators

{φ1 ⊗ φ2, . . . ,⊗φN } ε→0,N→∞−→ φ(x), (5.57)

acting on a Hilbert space H = H1 ⊗ . . . ⊗ HN . We have, then, the eigenvalue
equation

φi |ϕi 〉 = ϕi |ϕi 〉, i = 1, . . . , N . (5.58)

All the quantum field properties are obtained from the vector state |
(t)〉, which
has its dynamical evolution determined by

|
(t)〉 = e−
i
�

Ht |
(0)〉, (5.59)

where H is the quantum Hamiltonian operator derived from (5.55).

5.6.1 Quantum Field Averages

According to the principles of quantum mechanics formulated in the Schrödinger
picture, when we measure the field associated to the operator φ(x) at a time ti and
obtain as the result a certain classical field configuration ϕi (x), or, equivalently, the
set of discrete real variables

{
ϕi

1, ϕ
i
2, . . . , ϕ

i
N

}
.

It follows that right after this measurement is made, the quantum state of the
field must become an eigenstate of the field operator having precisely such field
configuration as an eigenvalue, namely

|
(ti )〉 = |ϕi (x)〉
φ(x)|ϕi (x)〉 = ϕi (x)|ϕi (x)〉. (5.60)

Subsequently, the field will evolve according to (5.59) in such a way that, for
t > ti ,
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86 Functional Formulation of Quantum Field Theory

|
(t)〉 = e−
i
�

H(t−ti )|ϕi (x)〉. (5.61)

Suppose now a second measurement of the field is performed at a later time
t f . Within a quantum-mechanical description, there will be a definite probability
amplitude for the subsequent measurement of the field made at such a later time t f

to yield an arbitrary result ϕ f (x), or, equivalently,
{
ϕ

f
1 , ϕ

f
2 , . . . , ϕ

f
N

}
.

This probability amplitude is given by

〈ϕ f (x)|
(t f )〉 = 〈ϕ f (x)|e− i
�

H(t f−ti )|ϕi (x)〉S
= 〈ϕ f (y, t f )|ϕi (x, ti )〉H , (5.62)

where the last expression is in the Heisenberg picture.
We clearly need a method for calculating the probability amplitude above. This

is a central issue in quantum field theory.
The most convenient procedure was provided by Feynman. In a magnificent

work, he has shown that this amplitude may be expressed as a functional integral
over the classical field ϕ, weighed by a complex phase, consisting in the action
divided by �, namely

〈ϕ(y, t f )|ϕ(x, ti )〉H =
∫

Dϕ exp

{
i

�
S[ϕ]

} ∣∣∣ϕ(t f )=ϕ f (y)

ϕ(ti )=ϕi (x)

=
∫

Dϕ exp

{
i

�

∫ t f

ti

dt
∫

d3xL
(
ϕ, ∂μϕ

)} ∣∣∣ϕ(t f )=ϕ f (y)

ϕ(ti )=ϕi (x).

(5.63)

Notice that the above integral is calculated with the constraint that ϕ(ti ) = ϕi (x)
and ϕ(t f ) = ϕ f (y).

The discretization of spatial coordinates introduced at the previous sections of
this chapter serves as the operational method for evaluating the functional integral
appearing in the expression for the amplitude in (5.63).

Observe that the expression above applies to field operators either in the
Heisenberg or in the Schrödinger picture, since

〈ϕ(y, t f )|ϕ(x, ti )〉H = 〈ϕ(y)|e− i
�

H(t f−ti )|ϕ(x)〉S. (5.64)

Furthermore, the expectation value of a time-ordered product of Heisenberg
operators, in the Feynman formulation, is given by

〈ϕ(y, t f )|Tφ(x1) . . . φ(xN )|ϕ(x, ti )〉
=
∫

Dϕ ϕ(x1) . . . ϕ(xN ) exp

{
i

�

∫ t f

ti

dt
∫

d3xL
(
ϕ, ∂μϕ

)} ∣∣∣ϕ(t f )=ϕ f (y)

ϕ(ti )=ϕi (x).

(5.65)
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5.7 The Whole Physics in Three Formulas 87

In the above expression x j = (x j , t j ), j = 1, . . . , N and ti < t j < t f and T is the
time-ordering operator.

A particularly important special case is the one when ti → −∞, t f → ∞. It
turns out in this case that for the action to be finite, the field configurations ϕi (x)
and ϕ f (x) must reduce to the vacuum values, which are usually zero. Otherwise
the action will diverge, thereby giving no contribution to the integral.

We have, therefore, the general quantum average of the time-ordered product of
quantum fields:

〈0|Tφ(x1) . . . φ(xN )|0〉 = 1

N

∫
Dϕ ϕ(x1) . . . ϕ(xN ) exp

{
i

�
S[ϕ]

}
, (5.66)

where

S[ϕ] =
∫ ∞

−∞
dt
∫

d3xL
(
ϕ, ∂μϕ

) ∣∣∣ϕ(∞)=0

ϕ(−∞)=0
(5.67)

and N is a normalization factor, guaranteeing that the norm of the vacuum state is
normalized to one.

5.7 The Whole Physics in Three Formulas

We can associate to any physical system a certain functional of its dynamical
degrees of freedom, called the action, as we saw above. For a system containing a
field ϕ(x), in particular, the action is a functional

(I) S = S[ϕ]. (Action) (5.68)

The whole classical description of the dynamics of an arbitrary system derives
from the functional derivative of the action with respect to the dynamical variables.
Given the action S[ϕ], we have the whole classical dynamics determined by

(II)
δS[ϕ]
δϕ

= 0. (Classical Physics) (5.69)

The whole quantum-mechanical description of the dynamics of an arbitrary sys-
tem, conversely, is obtained from the functional integral of the phase ei S

� over the
dynamical field variables. For the specific case of the system containing a field
ϕ(x),

(III)
∫

Dϕ e
i
�

S[ϕ]. (Quantum Physics) (5.70)

The three equations above contain, in principle, the description of all properties
of any physical system, both at the classical and quantum-mechanical levels. The
classical description is provided by the functional derivative of the action, while
the quantum-mechanical description, by the functional integral of ei S

� .
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88 Functional Formulation of Quantum Field Theory

It now becomes clear that for macroscopic systems where S[ϕ] � �, any trajec-
tories not satisfying (5.69) will be washed out by destructive interference. That is
how the macroscopic world seems to behave according to the classical picture. On
the other hand, for the microscopic world, we have S[ϕ] ∼ �, and all trajectories
contribute appreciably to the functional integral, thus leading to the well-known
quantum effects.

5.8 Finite Temperature

In many applications of quantum field theory in different areas of physics, we must
take into account the fact that the system is in contact with a thermal reservoir at a
nonzero temperature T . The relevant statistical mechanical quantity to be used in
the description of the system is the partition function

Z = Tr e−βH , (5.71)

where β = 1/kB T and H is the Hamiltonian operator. Averages are given by

〈A〉 = Tr Ae−βH

Z
. (5.72)

In order to evaluate the traces, we use a complete set of eigenstates of the field
operator φ(x, t = 0) now assumed to be in the Schrödinger picture:

φ(x, t = 0)|ϕ(x)〉 = ϕ(x)|ϕ(x)〉. (5.73)

In terms of these, we have

Z =
∫

Dϕ〈ϕ(x)|e−βH |ϕ(x)〉. (5.74)

Consider now expression (5.63) for ti = 0, which we may write in terms of
Schrödinger picture states, namely

〈ϕ f (x)|e− i
�

H�t |ϕi (x)〉 =
∫

Dϕ exp

{
i

�

∫ �t

0
dt
∫

d3xL
(
ϕ, ∂μϕ

)} ∣∣∣ϕ(�t)=ϕ f

ϕ(0)=ϕi

.

(5.75)

We may cast this in a form similar to (5.74) by means of an analytic continuation
into imaginary time, the so-called Wick rotation,

τ = i t ∂τ = −i∂t ∂ E
μ = (∂τ , ∂i )

SE [ϕ] = −
∫

dτ
∫

d3xLE
(
ϕ, ∂ E

μ ϕ
)
, (5.76)

where E is a shorthand for “Euclidean.”
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5.8 Finite Temperature 89

Supplementing the Wick rotation by choosing �t = −i�β, taking peri-
odic boundary conditions ϕi (x) = ϕ j (x) and integrating on the boundary field
configuration ϕ(x, τ = 0) = ϕ(x, τ = �β), we have

Z =
∫

Dϕ exp

{
−
∫

�β

0
dτ
∫

d3xLE
(
ϕ, ∂ E

μ ϕ
)} ∣∣

periodic. (5.77)

The thermal and quantum n-fields’ average will be given, accordingly, as

〈Tφ(x1) . . . φ(xn)〉

=
∫

Dϕ ϕ(x1, τ1) . . . ϕ(xn, τn) exp

{
−
∫

�β

0
dτ
∫

d3xLE

(
ϕ, ∂ E

μ ϕ
)} ∣∣

periodic,

(5.78)

where 0 ≤ τ1, . . . , τn ≤ �β.
The fact that the temperature is finite imposes severe constraints on the Fourier

decomposition of the n-point functions. Let us take, for instance the case where
n = 2. We can write

�(x, τ ; y, 0) = 〈Tφ(x, τ )φ(y, 0)〉 =
∫

d3k

(2π)3

∫
dω

2π
f (k, ω)eik·(x−y)e−iωτ .

(5.79)

Imposing the periodic boundary condition �(x, τ ; y, 0) = �(x, τ ; y, β) implies
e−iωβ = 1. From this we conclude that ω = ωn = 2nπ

β
.

The result above, however, only applies to the case of bosonic fields. For
fermionic fields, we must remember that the T -ordering is defined as

Tφ(x, τ )φ(y, β) = ±φ(y, β)φ(x, τ ), (5.80)

the plus and minus signs applying to bosonic and fermionic fields, respectively. It
follows that, in the fermionic case, the boundary condition implies e−iωβ = −1,
whereupon ω = ωn = (2n+1)π

β
for fermions.

The discrete frequencies ωn are known as Matsubara frequencies and the Fourier
expansion of quantum field averages is modified by replacing the continuous
frequency ω by these whenever T �= 0.

For the case of the two-point function, for instance, we would have

〈Tφ(x, τ )φ(0, 0)〉 = 1

β

∞∑
n=−∞

∫
d3k

(2π)3
f (k, ωn)e

ik·xe−iωnτ . (5.81)

We shall use the Matsubara formalism in many instances in order to describe
quantum field theory systems at a finite temperature.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.006
https://www.cambridge.org/core


90 Functional Formulation of Quantum Field Theory

5.9 Prescriptions: Meanings and Purposes

It frequently happens that a certain function associated to either quantum or clas-
sical fields has an ambiguous mathematical meaning. In such cases a prescription
is required in order to make sense out of such functions. Different prescriptions
lead to functions exhibiting diverse physical properties, which are used for differ-
ent practical purposes. Prescriptions, therefore, play a crucial role in determining
the mathematical features of a physical system.

Let us take, for instance, Eq. (5.79) for the case of a free, massive scalar field in
Euclidean space

�E(x, τ ; y, 0) =
∫

d3k

(2π)3

∫
dk4

2π
eik·(x−y)e−ik4τ

1

k2
4 + k2 + m2

.

(5.82)

Undoing the Wick rotation, namely, τ = i t , k4 = −iω, we see that the integrand

becomes singular at ω = ±ω(k), ω(k) =
√

k2 + m2. Then, depending on the way
we deal with these singularities, the function �(x, t; y, 0) will describe different
properties of the field and shall be used for different purposes.

5.9.1 Feynman Prescription

The Feynman prescription consists in making

1

k2
4 + k2 + m2

−→ −i

ω2 − k2 − m2 + iε

−→ −i

[ω − [ω(k)− iε′]] [ω − [−ω(k)+ iε′]] , (5.83)

where ε′ = 2εω(k). We see that functions defined through the Feynman prescrip-
tion allow the Wick rotation to be performed as an analytic continuation in the
complex ω-plane. It follows from (5.66) that the function obtained from (5.82) by
imposing the Feynman prescription is the time-ordered average of the product of
quantum field operators:

�E(x, τ ; y, 0)
ω2→ω2+iε−→ �F(x, t; y, 0) = 〈Tφ(x, t)φ(y, 0)〉. (5.84)

Looking at the integral on the complex ω-plane, we see that states with positive
frequencies (energies) propagate forward in time, whereas those with negative fre-
quencies (energies) do it backward in time. This is compatible with the picture of
positive energy anti-particles as the lack (hole) of a particle with a negative energy.
This picture is particularly useful in condensed matter systems, where it expresses
the real situation.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.006
https://www.cambridge.org/core
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Figure 5.3 The Feynman prescription and its compatibility with the Wick rotation

5.9.2 Retarded and Advanced Prescriptions

Now, suppose we make

1

k2
4 + k2 + m2

−→ −i

(ω + iε)2 − k2 − m2

= −i

[ω − (ω(k)− iε)][ω − (−ω(k)− iε)] , (5.85)

where ω(k) =
√

k2 + m2. If we look at the poles in the complex ω-plane, we see
they are displaced into the lower half-plane, where the contribution of t > 0 comes.
There is no contribution from the upper half-plane, which corresponds to t < 0.
The Euclidean function now becomes the so-called Retarded function, which is
proportional to θ(t).

If we choose, conversely, ω → (ω − iε), it is clear we will obtain a function
proportional to θ(−t), the Advanced function.

In summary,

�E(x, τ ; y, 0)
ω±iε−→ �R,A(x, t; y, 0) = θ(±t)�(x− y, t). (5.86)

The Feynman, Retarded and Advanced functions all satisfy

(−�+ m2)�F,R,A(x, t; y, t ′) = δ(x− y)δ(t − t ′), (5.87)

which means they are all Green functions of the Klein–Gordon operator. The
Euclidean function �E , also known as Schwinger function, is the Green function
of the corresponding Euclidean operator �E + m2.
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Figure 5.4 The Retarded and Advanced prescriptions, respectively, (a) and (b)

5.9.3 Wightman and Pauli–Jordan Functions

Wightman functions are defined by imposing the so-called spectral condition,
θ(±ω)δ(ω2 − k2 − m2), namely

�W±(x, t; y, 0) =
∫

d3k

(2π)3

∫
dω

2π
eik·(x−y)e−iωtθ(±ω)δ(ω2 − k2 − m2).

(5.88)

Using

πδ(x) = lim
ε→0

[
i

x + iε
− i

x − iε

]
, (5.89)

we may write (5.88) as

�W±(x, t; y, 0) =
∫

d3k

(2π)3

∫
dω

2π
eik·(x−y)e−iωtθ(±ω)

× 1

π

[
i

ω2 − k2 − m2 + iε
− i

ω2 − k2 − m2 − iε

]
. (5.90)

Performing the ω integration by the method of residues in (5.90) and replacing the
last line above with (5.83), we find

�F(x, t; y, 0) = θ(t)�W+(x, t; y, 0)+ θ(−t)�W−(x, t; y, 0)

= 〈Tφ(x, t)φ(y, 0)〉 = θ(t)〈φ(x, t)φ(y, 0)〉 + θ(−t)〈φ(y, 0)φ(x, t)〉. (5.91)

We conclude that Wightman functions represent the vacuum expectation value of
a simple product of the field operators, namely,

�W+(x, t; y, 0) = 〈φ(x, t)φ(y, 0)〉
�W−(x, t; y, 0) = 〈φ(y, 0)φ(x, t)〉. (5.92)
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From (5.90), we immediately see that Wightman functions satisfy the homoge-
neous Klein–Gordon field equation

(−�+ m2)�W±(x, t; y, 0) = 0, (5.93)

hence they are not Green functions.
We finally mention the Pauli–Jordan function,

�P J = �W+ −�W− = 〈[φ(x, t), φ(y, 0)]〉, (5.94)

which represents the vacuum expectation value of the commutator of quantum field
operators.
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6

Quantum Fields in Action

The dynamics of a field, either at classical or quantum-mechanical level, is fully
determined by the action functional. The classical evolution equations are deter-
mined by the condition that the action should be stationary, whereas a functional
integral over a phase factor containing the action determines the evaluation of quan-
tum field averages. The physical content of a quantum field theory is completely
encoded in the functions G(n)(x1, . . . , xn) = 〈0|Tφ(x1) . . . φ(xn)|0〉. These con-
tain, for instance, all information about scattering cross-sections, energy-spectrum,
bound-states of the associated quanta (particles), phase transitions, among others.
It can be shown that they are the Green functions of certain appropriate operators,
closely related to the proper vertices �(n)(x1, . . . , xn).

6.1 Green Functions and Their Generating Functionals

6.1.1 The Green Function Generating Functionals

In the previous chapter, we described a detailed method for evaluating each of the
functions G(n)(x1, . . . , xn). It would be quite convenient, however, to have avail-
able a general method for determining at once all of the G(n)(x1, . . . , xn) functions
of a given quantum field theory. For this purpose, we introduce the generating
functional

Z [J ] = 〈0|T exp

{
i
∫

d4xφ(x)J (x)

}
|0〉. (6.1)

Using (5.45), we quickly conclude that

〈0|Tφ(x1) . . . φ(xn)|0〉 = δn Z [J ]
i nδJ (x1) . . . δ J (xn)

|J=0 . (6.2)

It follows from this that we may expand Z [J ] as a functional Taylor series,
given by

94
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6.2 Proper Vertices and Their Generating Functional 95

Z [J ] =
∞∑

n=0

i n

n!
∫

d4x1 . . . d
4xn〈0|Tφ(x1) . . . φ(xn)|0〉J (x1) . . . J (xn). (6.3)

6.1.2 The Connected Green Function Generating Functionals

Another quite useful generating functional is W [J ], which is introduced by the
relation

Z [J ] = eiW [J ] ; W [J ] = −i ln Z [J ]. (6.4)

Upon functional differentiation, it produces the so-called connected Green func-
tions, namely

〈0|Tφ(x1) . . . φ(xn)|0〉C = i δn W [J ]
i nδJ (x1) . . . δ J (xn)

∣∣∣
J=0
. (6.5)

These are n-point Green functions that do not contain in their expression any terms
corresponding to lower than n Green functions.

Using this, we get, for n = 1,

〈0|φ(x1)|0〉C = δ W [J ]
δJ (x1)

= −i

Z [J ]
δ Z [J ]
δJ (x1)

, (6.6)

and, accordingly, for n = 2,

〈0|φ(x1)φ(x2)|0〉C = −iδ2 W [J ]
δJ (x1)δJ (x2)

= − 1

Z [J ]
δ2 Z [J ]

δJ (x1)δJ (x2)
+ 1

Z2[J ]
δ Z [J ]
δJ (x1)

δ Z [J ]
δJ (x2)

J→0−→ 〈0|φ(x1)φ(x2)|0〉 − 〈0|φ(x1)|0〉〈0|φ(x2)|0〉. (6.7)

We see that, indeed, the connected 2-point function is defined by removing from
G(2) the G(1) contributions.

The W [J ] functional can be expanded in terms of the connected functions as

W [J ] =
∞∑

n=0

i n−1

n!
∫

d4x1 . . . d
4xn〈0|Tφ(x1) . . . φ(xn)|0〉C J (x1) . . . J (xn).

(6.8)

6.2 Proper Vertices and Their Generating Functional

A third generating functional, which also turns out to be extremely useful, is
defined as a functional Legendre transform of W [J ]. Indeed, from
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δ W [J ]
δJ (x)

= 〈0|φ(x)|0〉C ≡ ϕC(x), (6.9)

we introduce

�[ϕC ] = W [J ] −
∫

d4x J (x)ϕC(x). (6.10)

From (6.9) and (5.45), it becomes clear that

δ �[ϕC ]
δJ (x)

= 0
δ �[ϕC ]
δϕC(x)

= −J (x). (6.11)

The functional �[ϕC ] generates the functions

�(n)(x1 . . . xn) = δn �[ϕC ]
δϕC(x1) . . . δϕC(xn)

∣∣∣
ϕC=0

, (6.12)

which are called proper vertices. In terms of these we may make the functional
expansion

�[ϕC ] =
∞∑

n=0

1

n!
∫

d4x1 . . . d
4xn�

(n)(x1 . . . xn)ϕC(x1) . . . ϕC(xn). (6.13)

We shall see that �[ϕC ] is the functional that generalizes the classical action, but
taking into account all quantum effects. The analysis of its behavior, in particular
at a finite temperature, allows therefore the obtainment of a realistic phase diagram
of the system including the characterization of phase transitions.

We now show that the connected two-point function given by (6.5) is the Green
function of the �(2) proper vertex. Indeed, from (6.11) we have

δ2 �[ϕC ]
δϕC(x)δϕC(ξ)

= − δ J (x)

δϕC(ξ)
, (6.14)

whereas, from (6.9)

δ2 W [J ]
δJ (ξ)δ J (y)

= δϕC(ξ)

δ J (y)
. (6.15)

It follows, by taking the convolution of the above � and W second functional
derivatives and using (5.44), that

−
∫

d4ξ

[
δ2�[ϕC ]

δϕC(x)δϕC(ξ)

] [
δ2W [J ]

δJ (ξ)δ J (y)

]
=
∫

d4ξ
δJ (x)

δϕC(ξ)

δϕC(ξ)

δJ (y)

= δJ (x)

δJ (y)
= δ(x − y). (6.16)

Considering the above expression at J = ϕC = 0, we have∫
d4ξ �(2) (x, ξ)

[
−iG(2)

C (ξ, y)
]
= δ(x − y), (6.17)
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6.3 Free Fields 97

where G(2)
C (x, y) = 〈0|Tφ(x)φ(y)|0〉C . Using the fact that the Fourier transform

of a convolution is a product, we have, in energy-momentum space

�(2) (p)
[
−iG(2)

C (p)
]
= 1 ; G(2)

C (p) = i

�(2) (p)
. (6.18)

These expressions show that the two-point, time-ordered vacuum expectation value
of the field operator is the Green function of the proper vertex �(2). We will see that
this property will have far-reaching consequences.

6.3 Free Fields

Let us consider the case of a free field theory, for which the action is a quadratic
functional of the field. We have seen examples of such theories in the case of
phonons in the harmonic approximation, for instance. The name “free” stems from
the fact that the associated quanta or particles do not interact. Here we evaluate the
functionals introduced above for the case of a free theory.

Let us assume the action functional is given by

S0[ϕ] = 1

2

∫
d4x

[
∂μϕ∂

μϕ − m2ϕ2
]
. (6.19)

The corresponding Hamiltonian is

H0[ϕ] = 1

2

∫
d3x

[
π2 + ∇ϕ · ∇ϕ + m2ϕ2

]
, (6.20)

where the canonically conjugate momentum is given by (5.54).
From (5.66), (5.67) and (6.1), it follows that

Z0[J ] = 1

N

∫
Dϕ exp

{
i
∫

d4x

[
1

2
∂μϕ∂

μϕ − 1

2
m2ϕ2 + Jϕ

]}
, (6.21)

where N is chosen in such a way that Z0[J = 0] = 1.
Now, performing the Wick rotation (5.76), we can cast the above expression in

the form

Z0[J ] = 1

N

∫
Dϕ exp

{
−
∫

d4xE

[
1

2
ϕ[−�E + m2]ϕ − Jϕ

]}
. (6.22)

From (5.49), it follows that

Z0[J ] = exp

{
1

2

∫
d4xE d4 yE J (x)�E(x − y)J (y)

}
, (6.23)

where �E(x − y) is the Green function of the operator in the quadratic term in
(6.22):
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98 Quantum Fields in Action

[−�E + m2]�E(x − y) = δ(x − y)

�E(x) =
∫

d4k

(2π)4
ei[k·x−k4x4]

k2
4 + k2 + m2

(6.24)

Going back to real time (Minkowski space), we have

Z0[J ] = exp

{
i

2

∫
d4xd4 y J (x)�F(x − y)J (y)

}
, (6.25)

where

�F(x, t) =
∫

dω

2π

∫
d3k

(2π)3
ei[k·x−ωt]

ω2 − [k2 + m2] + iε
(6.26)

is the Feynman propagator. Notice the inclusion of the Feynman prescription factor
iε, which is required for the Wick rotation to be a genuine analytic continuation,
meaning it does not go over any poles.

From (6.25) we can immediately infer that the functional W0[J ] is given by

W0[J ] = 1

2

∫
d4xd4 y J (x)�F(x − y)J (y). (6.27)

From (6.9) it follows that

ϕC(x) =
∫

d4 y �F(x − y)J (y). (6.28)

Inserting (6.28) in (6.27) and using (6.10), we immediately find

�0[ϕC ] = 1

2

∫
d4xd4 y J (x)δ(x − y)ϕC(y)

�0[ϕC ] = 1

2

∫
d4xd4 y J (x)

(−�y − m2
)
�F(x − y)ϕC(y)

�0[ϕC ] = 1

2

∫
d4 yϕC(y)

(−�y − m2
)
ϕC(y), (6.29)

where in the last step we used (6.28).
Now, using the expressions just derived for the basic generating functionals, we

obtain some fundamental properties of free quantum field theories. From (6.27) we
have that the only connected Green function, for a free quantum field theory, is the
two-points one, namely

G(2)
0,C(x, y) = i�F(x − y). (6.30)

Now, the non-connected functions can be obtained from the functional Z0[J ],
given by (6.25). The result implies only the n-even functions are non-vanishing
and given by products of 2-point functions:
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G(n)
0 (x1, . . . , xn)

=
∑

{P1...P2n}
i�F(xP1 − xP2), . . . , i�F(xP2n−1 − xP2n ); n = even

G(n)
0 (x1, . . . , xn) = 0; n = odd, (6.31)

where the sum goes over all permutations in the set {P1 . . . P2n}. This result is
known as the Wick theorem.

From the effective action generating functional (6.29), we obtain the only proper
vertex occurring in the free field case:

�
(2)
0 (x, y) = −(�+ m2)δ(x − y)

�
(2)
0 (p) = p2 − m2. (6.32)

Using (6.26) and (6.30), we can verify that indeed the two-point proper vertex �(2)

and the two-point connected Green function G(2)
C satisfy (6.18).

Knowledge of G(2)
C allows us to infer about the energy spectrum of the system.

Indeed, performing the ω integral in (6.26) by the method of residues, we conclude
that only the poles of the integrand contribute to the dispersion relation ω(k) of

G(2)
C . The poles occur at ω = ±

√
k2 + m2, which correspond to the energy of

a free relativistic particle of momentum k and mass m, thus confirming that the
quanta associated to the field described by the action (6.19) are free relativistic
particles of mass m.

6.4 Interacting Fields

Let us consider now a field theory described by the action

S[ϕ] = S0[ϕ] + SI [ϕ] =
∫

d4x

[
1

2
∂μϕ∂

μϕ − 1

2
m2ϕ2 − V (ϕ)

]
, (6.33)

where the field potential V (ϕ) is a function of ϕ containing higher than quadratic
terms.

Now, the Z [J ] functional generator, according to (5.66), (5.67) and (6.1), will
be given by

Z [J ] = 1

N

∫
Dϕ exp

{
i
∫

d4x

[
1

2
∂μϕ∂

μϕ − 1

2
m2ϕ2 − V (ϕ)+ Jϕ

]}
. (6.34)

This functional integral can no longer be evaluated exactly; however, with the help
of the identity

ϕ(x) exp

{
i
∫

d4x Jϕ

}
= −i

δ

δJ (x)
exp

{
i
∫

d4x Jϕ

}
, (6.35)
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we can re-write (6.34) as

Z [J ] = exp

{
i
∫

d4xV

(
−i

δ

δJ (x)

)}
Z0[J ], (6.36)

where Z0[J ] is given by (6.25). Expanding the exponential in the expression above,
we can write the exact generating functional of an interacting theory as a sum of
terms, each of them containing a finite number of functional derivatives of the free
theory generator Z0[J ],

Z [J ] =
∑

n

(−i)n

n!
∫

d4x1 . . .

∫
d4xnV

(
−i

δ

δJ (x1)

)
. . . V

(
−i

δ

δJ (xn)

)

× exp

{
i

2

∫
d4xd4 y J (x)�F(x − y)J (y)

}
. (6.37)

This is a useful expression, as it allows us, according to (6.2), to express an arbitrary
n-point Green function in terms of a combination of Feynman propagators�F(x−
y). By truncating the series at some finite value of n, we would obtain a perturbative
result for the generating functional and associated Green functions.

6.5 Feynman Graphs

An extremely convenient method for calculating each term of the above expansion
was devised by Feynman. This consists in providing a graphical representation
of each of these terms, according to some “Feynman rules.” According to these,
each Feynman propagator is represented by a line, whereas an interaction term
V (ϕ) = λϕn is represented by a point, out of which n lines emerge, which we call
the interaction “vertex.” One can obtain all terms appearing in the expansion above
by just adding vertices and lines, according to the Feynman rules, very much like
assembling the pieces of a puzzle.

6.5.1 The Exact Propagator

Let us consider now the exact two-point Green function in momentum space,

G(2)
C (p) =

i

�(2)(p)
. (6.38)

We write the exact two-point vertex function as

�(2)(p) = �(2)0 (p)−�(p)
�(2)(p) = p2 − m2 −�(p), (6.39)
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6.5 Feynman Graphs 101

where �(p) is called the self-energy. This is frequently expressed as the
Schwinger–Dyson equation,

[G(2)
C (p)]−1 = [G(2)

0,C(p)]−1 + i�(p). (6.40)

Then, we can write the exact two-point Green function as

G(2)
C (p) =

i

p2 − m2 −�(p) (6.41)

or, equivalently,

G(2)
C (p) = G(2)

0,C(p)

[
1

1+ i�(p)G(2)
0,C(p)

]

G(2)
C (p) = G(2)

0,C(p)+ G(2)
0,C(p)[−i�(p)]G(2)

0,C(p)+ . . . (6.42)

The corresponding Feynman graphs are shown in Figs. 6.1 and 6.2, for the case
of a ϕ3 interaction.

Different degrees of approximation can then be used. In the tree level approxi-
mation, for instance, only the first term in the expansion in Fig. 6.1 is considered.
In the so-called RPA approximation, conversely, the whole series of the expansion
in Fig. 6.1 is considered, however the self-energy is approximated by just the first
term in the series depicted in Fig. 6.2.

Now, looking at the two-point exact Green function in coordinate space, we have

G(2)
C (x, t) = i

∫
dω

2π

∫
d3k

(2π)3
ei[k·x−ωt]

ω2 − [k2 + m2 +�(ω,k)] + iε
. (6.43)

Observe that we can no longer express the dispersion relation as a free parti-
cle Einstein energy-momentum relation, as we did before. This is an evidence of
the fact that the quanta associated to the fields described by the action (6.33) are

Figure 6.1 The exact propagator for an interacting theory

Σ(p)

Figure 6.2 The Self-Energy expansion for a theory with a ϕ3 interaction
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102 Quantum Fields in Action

interacting particles. Nevertheless, we will see that in the large-distances asymp-
totic limit they behave as free particles, but with a renormalized mass, which is the
physical one.

6.6 The Effective Action and the Effective Potential

Consider the expression for the functional �[ϕC ], (6.13). Using (6.39), we can cast
this functional in the form

�[ϕC ] = 1

2

∫
d4x1

∫
d4x2ϕC(x1)

[
(−�+ m2)δ(x1 − x2)+�(x1 − x2)

]
ϕC(x2)

+
∞∑

n=3

1

n!
∫

d4x1 . . . d
4xn�

(n)(x1 . . . xn)ϕC(x1) . . . ϕC(xn). (6.44)

Noting that each function �(n) contains the “contact” terms, which appear in the
action, we conclude that the functional �[ϕC ] is a generalization of the classical
action. This contains, besides the original terms appearing in the classical action,
some new terms generated by the interaction. �[ϕC ], consequently, is called the
effective action.

A useful concept is that of the effective potential. Let us envisage a situation in
which the vacuum expectation value ϕC given by (6.9) is a constant. This should
occur for J = 0. In this case, the functional �, (6.13), is given by

�[ϕC ] =
∞∑

n=0

1

n!
∫

d4x1 . . . d
4xn�

(n)(x1 . . . xn)ϕ
n
C . (6.45)

Now, the integrals above are nothing but the Fourier transform of the proper
vertices at zero energy and momentum:

�(n)(p1 = 0 . . . pn = 0) =
∫

d4x1 . . . d
4xn�

(n)(x1 . . . xn). (6.46)

Hence, in this case, the �[ϕC ] functional becomes a function of ϕC , given by

Veff(ϕC) =
∞∑

n=0

1

n!�
(n)(p1 = 0 . . . pn = 0)ϕn

C . (6.47)

Now observe that the proper vertices �(n)(pi = 0) have a perturbative expansion
starting with the tree level component that is simply the mass, in the case of �(2),
or a coupling parameter, for higher n. When the tree level vertex is multiplied by
the corresponding ϕC power, it yields the classical potential Vcl(ϕC).

We have, therefore,

Veff(ϕC) = Vcl(ϕC)+ V(ϕC), (6.48)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.007
https://www.cambridge.org/core


6.6 The Effective Action and the Effective Potential 103

where V(ϕC) represents the quantum corrections to the classical potential. We con-
clude that the effective potential is a generalization of the classical potential but
with the important difference that it already includes quantum effects. It is, there-
fore, a powerful tool for studying the phase diagram of the system, both at zero
and finite temperatures. In the first case, it is particularly useful for describing
the so-called quantum phase transitions, which occur at T = 0, due to quantum
fluctuations.

6.6.1 The Z [J ]-Functional of QED: the Fermionic Determinant

Before proceeding to study renormalization in QFT, we introduce Quantum
Electrodynamics of Dirac fermions (QED) as an example of an interacting QFT.

QED is the quantum theory of electrons and positrons interacting through the
electromagnetic field, which is also quantum-mechanical. Although its precise
mathematical formulation was not achieved before the early 1950s, its concep-
tion dates back to the pioneering work of Einstein on the photoelectric effect, in
1905, when he proposed the quantization of the electromagnetic radiation field. In
modern times, QED has become one of the most successful theoretical models ever
created.

Here we present an instructive calculation of the �-functional of QED, which
will serve to clarify the physical meaning of this important quantity.

QED is defined by the Lagrangean

L = −1

4
FμνFμν + iψ∂/ψ − mψψ − eψγμψ Aμ, (6.49)

where the four-vector Aμ is the photon field and the four-components spinor ψ , the
electron-positron field. Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field intensity
tensor, γ μ are the 4 × 4 Dirac matrices, A/ = γμAμ and e,m are, respectively, the
electron charge and mass.

The generating functional of photon correlation functions is

Z [Jμ] = eiW [Jμ] =
∫

D AμDψDψ exp

{
i
∫

d4x
[
L+ JμAμ

]}
. (6.50)

Performing the integrations on the fermion field in the expression above, we
obtain, using the table of functional integrals provided in Chapter 5,

Z [Jμ] =
∫

D Aμ exp

{
i
∫

d4x
[
LM + JμAμ

]} Det[(i∂/+ m + A/)]
Det[(i∂/+ m]

Z [Jμ] =
∫

D Aμ exp

{
i
∫

d4x
[
LM+ JμAμ

]−Tr ln

[
(1+ A/

i∂/+ m
)

]}
,(6.51)
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Figure 6.3 Graphs contributing to Tr ln
[
(1+ A/

i∂/+m )
]

where LM , the Maxwell Lagrangean, is the first term in (6.49) and we have expo-
nentiated the determinant coming from the fermionic integrals and used the fact
that ln DetA = Tr ln A. The trace above is given by the graphs of Fig. 6.3. These
are one-loop graphs with the insertion of n Aμ fields. Only even numbers n con-
tribute, by virtue of Furry’s theorem. We see that the interaction with the electrons
generates an infinity of nontrivial interaction terms among the photons.

6.6.2 Current Correlator: a Sample Calculation in QED

The electric current operator in QED is given by jμ = eψγμψ . Let us determine
here what is the current-current correlation function. This will be very useful later
on, in different applications of QFT in condensed matter systems.

The current two-point correlator is defined as

〈 jμ jν〉 =
∫

D Aμ

∫
DψDψ exp

{
i
∫

d4xL
}

jμ jν. (6.52)

The generating functional of current correlation functions is defined in such a
way that

〈 jμ1 . . . jμn 〉 = δn Z [Kμ]
δKμ1 . . . δKμn

∣∣
Kμ=0 . (6.53)

A functional Z [Kμ] exhibiting this property can be written, up to a constant, as

Z [Kμ] =
∫

D Aμ

∫
DψDψ exp

{
i
∫

d4x
[
L+ eψγμψKμ

]}
. (6.54)

It is not difficult to verify that this functional will generate (6.52), through (6.53).
The corresponding generator of connected correlation functions can be writ-

ten as

W [Kμ] = −i ln Z [Kμ].
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Then, integrating (6.54) on the fermion fields, one obtains

Z [Kμ] =
∫

D Aμ exp

{
i
∫

d4xLM − Tr ln

[
1+ (A/+ K/)

i∂/+ m

]}

Z [Kμ] =
∫

D Aμ exp

{
i
∫

d4xLM +
∞∑

n=0

1

n!
∫

d4x1 . . .

∫
d4xn

�
μ1...μn
0 (Aμ1 + Kμ1) . . . (Aμn + Kμn )

}
, (6.55)

where the �μ1...μn
0 , as before, are one-loop electron graphs with n field insertions.

Now, using (6.53) and (6.55), we find, for the connected function

〈 jμ jν〉C =
∫

D Aμ exp

{
i
∫

d4xLM

}

×
{ ∞∑

n=2

1

(n − 2)!
∫

d4x1 . . .

∫
d4xn−2�

α1...αn−2 μν

0 Aα1 . . . Aαn−2

}

exp

{ ∞∑
n=0

1

n!
∫

d4x1 . . .

∫
d4xn�

μ1...μn
0 Aμ1 . . . Aμn

}
. (6.56)

From the point of view of Feynman graphs, notice that the first term in the above
expression contains a series of one-loop graphs with the insertion of an even num-
ber n of vertices. Two out of these, namely μ, ν, are loose, and the remaining n−2
are connected to Aα1 . . . Aαn−2 fields. Then, the second term, when expanded, will
provide terms always involving one-loop graphs with the insertion of an even num-
ber n of vertices with the corresponding fields attached to all of them. There are,
consequently, no loose vertices, in this case.

The two factors in (6.56) are being integrated within the free Maxwell theory.
Hence, the functional integration may be performed by the use of Wick’s theorem,
since it is the case of a free theory. Then, graphically, the effect of this functional
integration is to close all the loose Aαi lines at internal vertices with Feynman
photon propagators.

Notice, however, that since all pieces contain an even number of photon lines,
it turns out only the so-called proper diagrams will contribute to the resulting
functional integral. Such diagrams are the ones that cannot be segmented into
two disjoint sub-diagrams by cutting any of the internal lines. This property
characterizes the diagrams that appear in the expression of the proper vertices �(n).

In the present case, the series of diagrams generated through the functional inte-
gration in (6.56) corresponds to the photon two-points proper vertex �μν , namely,
the photon self-energy, also known as the vacuum polarization tensor, which is
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μμ ν + μν + μν + ν +

Figure 6.4 Graphs contributing to the first factor of the functional integrand in
Eq. (6.56)

μ μ μ μ μν ν

ν

= +

μ+

ν +

Figure 6.5 Graphs contributing to the vacuum polarization tensor �μν , which is
also the photon self-energy and the current two-point correlation function. Notice
they are obtained from the graphs of Fig. 6.4 and Fig. 6.3 by closing the photon
lines.

depicted graphically in Fig. 6.5. We conclude, therefore, that the current two-point
correlation function is nothing but the vacuum polarization tensor,

〈 jμ jν〉C = �μν, (6.57)

or the photon self-energy.

6.7 Renormalization

Renormalization is one of the aspects of quantum field theory that is least under-
stood. As a matter of fact, a lot of misconceptions exist about this procedure,
perhaps the most important of them concerning the relation of renormalization with
divergences. From a general point of view, the need of renormalization is imposed
by the existence of interactions in the theory, irrespective of whether divergences
exist or not. Renormalization, therefore, is primarily associated to interactions and
not to divergences.

Let us take the example of mass renormalization. In the case of a free field theory
described by action (6.19), the physical mass is the parameter m, appearing in the
free Lagrangean. We know this fact because the dispersion relation appearing in
the computation of the free two-point function is that of a free relativistic particle
of mass m. As we saw in the previous section, this is no longer true in an interacting
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theory. A fundamental question, therefore, emerges: what is the physical mass of
the particles in an interacting quantum field theory?

A reasonable assumption is that in some asymptotic limit, either of large or short
distances, the particles associated to an interacting quantum field are effectively
free. The former case, for instance, would correspond to QED and the latter to
QCD.

Let us consider a quantum field theory belonging to the first case and let us
examine the large-distance regime of its two-point Green function, given by (6.43).
The Riemann–Lebesgue lemma implies that only the zeros of the vertex function
contribute to (6.43) in the asymptotic large-distance regime.

In order to obtain these zeros, we expand the self-energy in a Taylor series about
the renormalized mass m R , namely

�(p) = �(p2 = m2
R)+ (p2 − m2

R)
∂�

∂p

∣∣∣p2=m2
R
+ . . . (6.58)

Inserting this expression in (6.43) and defining the renormalized mass as

m2
R = m2 +�(p2 = m2

R), (6.59)

we get

G(2)
C (x, t) = i

∫
dω

2π

∫
d3k

(2π)3
ei[k·x−ωt](

p2 − m2
R

) [
1− ∂�

∂p

∣∣∣p2=m2
R

]
+ . . .

. (6.60)

Defining the renormalized field as

φR = Z−1/2φ Z = 1

1− ∂�
∂p

∣∣∣p2=m2
R

, (6.61)

we see that the renormalized two-point function becomes

G(2)
C (x, t)R = i

∫
dω

2π

∫
d3k

(2π)3
ei[k·x−ωt](

p2 − m2
R

) [
1+ O

(
p2 − m2

R

)] . (6.62)

This has poles at the renormalized mass m R with the same residue as the free
field Green function. Assuming that the asymptotic large-distance regime of the
interacting theory coincides with the free field one, we are led to the conclusion
that in an interacting theory the physical mass of the particles coincides with the
renormalized mass m R given by (6.59). Observe, however, that this is an implicit
equation for the physical mass.

The two renormalizations above could be summarized by the conditions

�
(2)
R (p

2)

∣∣∣p2=m2
R
= 0 ; ∂

∂p2
�
(2)
R (p

2)

∣∣∣p2=m2
R
= 1 . (6.63)
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108 Quantum Fields in Action

Equivalently, an effective physical coupling parameter could be defined in an
analogous way. Suppose, for instance, that the interaction potential is

V (ϕ) = λ

4!ϕ
4. (6.64)

Then

�
(4)
R (pi )

∣∣∣p2
i =m2

R
= λR . (6.65)

Notice that no reference to divergences has been ever made in our renormal-
ization procedure; rather, the existence of interactions is actually what imposes
the necessity of renormalization. The parameter m appearing in the quadratic term
of the action is no longer the physical mass, which is actually replaced by the
renormalized mass m R . Accordingly, λ is replaced by the renormalized λR .

Before describing the relation existing between renormalization and diver-
gences, let us examine how these come about in quantum field theory. Consider
the equal-times free two-point Green function

G(2)
0,C(x− y, t) = 〈0|φ(x, t)φ(y, 0)|0〉 = i�F(x− y, t), (6.66)

We show in Chapter 13 that the local field operator φ(x, 0) acting on the vacuum
creates the eigenstates of the position operator X,

φ(x, 0)|0〉 = |x〉 ; X|x〉 = x|x〉, (6.67)

widely used in quantum mechanics. Hence, the Feynman propagator satisfies the
following properties:

�F(x− y, t) = 〈x|e−i Ht |y〉 t→0−→ 〈x|y〉 = δ(x− y)
x→y−→∞. (6.68)

The position eigenstates, which have an infinite norm, are the origin of the infini-
ties found in quantum field theory. The price to use local fields for the description
of a given system are the infinities generated by such infinite norm states. These
manifest themselves as short-distance singularities in the Green functions in coor-
dinate space and large momentum (ultraviolet (UV)) singularities in the Fourier
transform of these Green functions. Should we use a smeared (non-local) field

φ([ f ], t) =
∫

d3x f (x)φ(x, t)

φ([ f ], 0)|0〉 =
∫

d3x f (x)φ(x, 0)|0〉, (6.69)

where f (x) is a normalizable function of compact support, we would have no UV-
divergences in our quantum field theory. From the practical, calculational point of
view, however, it is much more convenient to use local fields, in spite of the price
we have to pay of living with the infinities thereby generated.
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6.8 Renormalization Group 109

Any local quantum field theory belongs to one of two broad general classes, con-
cerning the UV infinities it may contain. The first general class contains theories
where the divergences appearing in each of the terms in the expansion in (6.37) are
a replication of a finite number of basic divergences appearing in the lowest order.
These are the so-called primitive divergences. Theories of this class, therefore, con-
tain a finite number of primitively divergent terms and all their divergent terms are
a replication thereof. In the second general class, conversely, divergent local quan-
tum field theories present new primitively divergent terms at each new order in the
expansion (6.37) in such a way that there are infinitely many primitively divergent
terms.

The key issue concerning divergences in the renormalization procedure is that in
theories containing a finite number of primitively divergent terms, the process of
renormaliztion of a finite number of unphysical objects into physical ones, which
is imposed by the interaction itself, can be used at the same time to eliminate the
divergences, order by order, by absorbing these divergences into the unphysical,
unrenormalized objects, namely mass, field and coupling parameter. The quantum
field theories of this type are called renormalizable, whereas the ones with an infi-
nite number of primitively divergent terms are called unrenormalizable. For the
latter, it is clearly impossible to eliminate the divergences with a finite number of
renormalization of physical quantities in the expansion (6.37).

6.8 Renormalization Group

The process of obtainment of renormalized physical quantities is equivalent to
imposing some renormalization conditions, namely conditions on certain func-
tions and their derivatives at a certain point that defines an energy scale. Let us
take, for instance, the proper vertices �(n). We may summarize the renormalization
procedure by writing

�
(n)
R (p1, . . . , pn,m R, λR) = Zn/2(m R)�

(n)(p1, . . . , pn,m, λ), (6.70)

and assuming these satisfy the renormalization conditions (6.63) and (6.65).
Performing a finite renormalization would amount to using different renormal-

ization conditions, namely

�
(2)
R (p

2)
∣∣

p2=μ2 = μ2 − m2
R ; ∂

∂p2
�
(2)
R (p

2)
∣∣

p2=μ2 = 1 ; �(4)R (pi )

∣∣∣p2
i =μ2 = λR ,

(6.71)

corresponding to

�
(n)
R (p1, . . . , pn,m R(μ), λR(μ)) = Zn/2(μ)�(n)(p1, . . . , pn,m, λ). (6.72)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.007
https://www.cambridge.org/core


110 Quantum Fields in Action

We may, therefore, relate the renormalized (finite) functions obtained with two
different renormalization prescriptions by

�
(n)
R (p1, . . . , pn,m R(μ), λR(μ)) = ζ(μ)n/2�(n)R (p1, . . . , pn,m R, λR), (6.73)

where ζ(μ) = Z(μ)/Z(m R).
The objective of the so-called renormalization group is to find equations deter-

mining how the renormalized proper vertices (or, equivalently the Green functions)
change as we modify the renormalization by finite amounts, which is effectively
done by choosing different renormalization prescriptions.

The first equation of this kind was obtained by Gell-Mann and Low in 1954 [5].
Subsequently, more general equations were derived by Callan and Symanzik, in
1970 [6] and by ’t Hooft and Weinberg, in 1973 [7].

The most general renormalization group equations express the independence of
the renormalized proper vertices on the modifications that a change in the renor-
malization point μ will produce in the renormalized mass m R , coupling parameter
λR and field operator φR . In other words, it expresses the overall invariance of the
functions �(n)R under the changes produced in these quantities by a finite modifi-
cation of the renormalization point μ. Differentiating (6.73) with respect to μ and
equating to zero, we get [6, 7][

μ2 ∂

∂μ2
+ β(λR)

∂

∂λR
− nγ + γm m2

R

∂

∂m2
R

]
�
(n)
R (p

2
i ,m R, λR) = 0, (6.74)

where

β(λR) = μ2 ∂λR

∂μ2
, (6.75)

γ = 1

2
μ2 ∂

∂μ2
ln Z(μ2) (6.76)

and

γm = μ2 ∂

∂μ2
ln m2

R(μ
2). (6.77)

The renormalization group equations have important consequences. Perhaps the
most striking one is the fact that the renormalized coupling parameter and
the renormalized mass, which according to the arguments presented above are the
actual physical quantities of the theory, are not constants but vary as a function
of the energy scale according to (6.75) and (6.77), respectively. The sign of the β-
function will determine whether the coupling parameter (and therefore the effective
interaction) increases or decreases as we change the energy scale.

The renormalization group has also an aspect related to the divergences found in
a renormalizable local quantum field theory. Indeed, the process of renormalization
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that leads to a physical quantity, which also happens to be finite, implies that the
sum of two divergent objects yields a finite result. When we do that, however, the
finite part of this is not fixed unambiguously, since it may vary as the infinite parts
are changed by adding or subtracting any finite amount.

The renormalization group equations serve precisely to unambiguously deter-
mine the finite part of renormalized quantities as a function of the energy scale
and, as such, are an inseparable part of quantum field theory. The physical values
of parameters such as the mass or charge (coupling parameter) in a quantum field
theory must be measured at a certain energy scale μ0, or equivalently at a cer-
tain distance scale. Thereafter, this input is used as the boundary condition for the
differential equations (6.75) and (6.77) that will determine the physical mass and
coupling parameter at an arbitrary scale, μ.
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7

Symmetries: Explicit or Secret

Symmetry principles play a central part in many areas of physics, including
particle physics, atomic and molecular physics, nuclear physics and, of course,
condensed matter physics. Symmetries determine, for instance, all the proper-
ties and the detailed mechanism of the fundamental interactions of nature. They
determine what are the conserved quantities of a given physical system and
consequently, what are the relevant observable objects. Furthermore, symmetry
principles classify the spectrum of energy eigenstates according to the multi-
ple matrix representations of the symmetry operations. In this chapter we study
symmetries, their main properties and, in particular, the consequences of the
phenomenon of spontaneous symmetry breakdown.

7.1 Symmetry Principles

The properties of a physical system, both at classical and quantum levels, are
determined by the action or, ultimately, by the Lagrangean or Hamiltonian of the
system. These, by their turn, are functions of the basic field variables. Observable
quantities, then, are, in general, expressed in terms of the latter. Symmetry trans-
formations are operations performed on the basic variables of a system, leading
to a new set of variables in such a way that the action is preserved or, in other
words, is left invariant under this transformation. Examples of continuous sym-
metry operations involving space and/or time coordinates are rotations, space and
time translations and Lorentz transformations. Conversely, examples of continuous
symmetries not involving space or time are the multiplication by a phase, multipli-
cation by a unitary 2×2 or 3×3 matrix with determinant one. Examples of discrete
symmetry operations involving space and/or time are parity, space and time rever-
sal. A discrete symmetry operation not involving space and/or time would be that
of charge conjugation, which exchanges particles for anti-particles and vice versa.

Suppose a classical symmetry operation, which by definition leaves the action
invariant, acts on a multicomponent classical field as

112
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7.1 Symmetry Principles 113

ϕi → ϕ′i = gi jϕ j ; (7.1)

gi j (i, j = 1, . . . ,M) can be either a discrete or a continuous operation. In the
latter case we assume the matrix gi j depends continuously on N real parameters
ωa , a = 1, . . . , N .

There must be a corresponding symmetry operation acting at a quantum level,
where the field becomes an operator φi . A theorem due to Wigner states that, at a
quantum-mechanical level, a symmetry operation is implemented by a similarity
transformation associated to an operator U , which is either unitary or anti-unitary.
Hence, at a quantum level

φi → φ′i = UφiU
† = gi jφ j . (7.2)

Assuming that U is unitary, we can write, in the case of a continuous symmetry,

U = exp
{
iωaGa

}
, (7.3)

where the so-called generators Ga are hermitian operators and ωa are real
parameters (a = 1, . . . , N ).

Being a symmetry operation, by definition, the Hamiltonian should be left invari-
ant by this. It follows that the Hamiltonian must commute with the symmetry
operator, namely

U HU † = H −→ [H,U ] = 0. (7.4)

This implies the N -generators Ga must commute with the Hamiltonian as well,
namely [Ga, H ] = 0, being therefore conserved quantities. We conclude that,
when the system is invariant under a continuous symmetry operation with N inde-
pendent parameters, then we will have accordingly N conserved quantities: the Ga

generators of the symmetry operation. This is the quantum-mechanical version of
an analogous theorem valid for classical systems, known as Noether Theorem.

The conserved quantities Ga are the volume integrals of the (density) 0th
component

Ga =
∫

d3xρa (7.5)

of a current quadrivector jμa = (ρa, ja) that satisfy a continuity equation ∂μ jμa = 0
or, equivalently, ∂ρa

∂t + ∇ · ja = 0. The continuity equation follows as a direct
consequence of the dynamical evolution equation, either at a classical or quantum
level. Actually, both have the same form when we formulate the quantum version
in the Heisenberg picture.

The existence of a symmetry principle in a certain system has profound conse-
quences on its physical properties. We have just seen that it determines what are
the conserved quantities of such a system. Furthermore, let us see how it strongly
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influences the spectrum of energy eigenstates of the system. Indeed, suppose the
energy spectrum is of the form

H |n, i〉 = En|n, i〉 i = 1, . . . , gn (7.6)

such that for each energy eigenvalue En there are gn linearly independent degen-
erate eigenvectors. Since U commutes with H , it follows that U |n, i〉 is also a
degenerate eigenvector of En; hence, we may express it as

U |n, i〉 =
ga∑

j=1

R(n)
i j |n, j〉. (7.7)

Assuming the eigenstates are orthonormal, we have

R(n)
i j = 〈n, j |U |n, i〉. (7.8)

The matrices R(n)
i j form what is called an irreducible representation of dimension

gn of the symmetry operator U , namely

R(n)
i j = exp

{
iωaT a

}
i j
, (7.9)

where the matrix T a
i j is the corresponding irreducible representation of the genera-

tors Ga

T a
i j = 〈n, j |Ga|n, i〉. (7.10)

We see, therefore, that the energy eigenstates of a system are classified accord-
ing to the different irreducible representations of the symmetry operator U . This is
a deep and beautiful result. It is also very useful, since symmetry arguments can be
invoked when we try to find the energy eigenvectors of a system. The symmetries
of a system of elementary particles also play a crucial role concerning the fun-
damental interactions among these particles. Indeed, assuming invariance under a
continuous operation, which depends on N real parameters ωa , one can derive, in
a natural way, the basic interactions of the system. This may be achieved by just
imposing an extended invariance under the corresponding local transformations,
namely, the same transformations but with local parameters: ωa(x), where x is a
space-time coordinate. As it turns out, in order to achieve local invariance one must
replace the standard derivatives of the field, in the action, by the so-called covariant
derivatives

[∂μδi j ]ϕ j −→ [(Dμ)i j ]ϕ j = [∂μδi j + ig Aa
μT a

i j ]ϕ j . (7.11)

This is expressed in terms of the gauge field Aa
μ, which is the mediator of the

interaction, and g, the coupling parameter. The corresponding field intensity tensor
Fa
μν is given, in terms of Aμ = Aa

μT a , by

Fμν ≡ Fa
μνT

a = ∂μAν − ∂ν Aμ + ig[Aμ, Aν]. (7.12)
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Observe that we used the above-described procedure in (3.27) in the case of the
electromagnetic interaction, and in (23.59), in the case of a non-abelian symmetry.

7.2 Symmetries: Exposed or Hidden

A fascinating aspect of a symmetry principle is that it may be either exposed or
concealed. We are going to see that the condition that determines which is the
case is the way the vacuum or ground state behaves under a symmetry opera-
tion. Indeed, for a symmetry to be observed in a natural system, it is not enough
that the Hamiltonian, which describes its physical properties, be invariant. Con-
sider, for instance, a magnet, described by the isotropic Heisenberg model. The
Hamiltonian is invariant under arbitrary rotations. What about the ground state?
When the system is in a paramagnetic phase, the ground state would contain spins
pointing in arbitrary directions, in such a way that a rotation operation would not
modify at all the ground state. When the system is in an ordered ferromagnetic
phase, conversely, all the spins would point in the same direction. A rotation oper-
ation would clearly change the ground state in this case, producing a different
ground state with the same energy. In the ordered phase of a ferromagnet, therefore,
one cannot straightforwardly infer the system’s rotational invariance because phe-
nomenological results will be biased by the asymmetric nature of the ground state.
The rotational invariance of the underlying Hamiltonian consequently, will be a
“secret symmetry” [8], not obviously implied by the phenomenology derived from
the ground state. This property of a system’s ground state of not sharing the same
invariance as the Hamiltonian that describes it has deep implications on the phys-
ical properties of the system, but interestingly, it only occurs in systems with an
infinite number of degrees of freedom or in the thermodynamic limit. The reason is
that the two ground states connected by the symmetry operations would tunnel into
each other in a system with a finite number of degrees of freedom, thereby making
the symmetric linear combination thereof the most stable state. In other words, the
real ground state is symmetric in systems with a finite number of degrees of free-
dom. A good example is the ammonia molecule, N H3, where the three hydrogen
atoms form a triangle, which is the base of a tetrahedron, in the tip of which we
find the nitrogen atom. There are, however two possibilities for the equilibrium
position of the nitrogen atom. These are contained on a line piercing the center of
the triangle and in opposite points with respect to the plane to which this triangle
belongs. The system is symmetric under reflections with respect to this plane.

Both equilibrium positions would be connected by symmetry operations and
therefore would be equally favored. Suppose, however, the nitrogen atom is in the
tip of one given tetrahedron. It would then tunnel to the state at the tip of the oppo-
site tetrahedron, with a probability γ = e−� < 1. One can easily show, then, that,
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Figure 7.1 The ammonia molecule with the two equivalent equilibrium positions
of the nitrogen atom

the tunneling lifts the energy degeneracy between the two ground states. Indeed,
calling | + a〉 and | − a〉 the states centered at the tip of opposite tetrahedra, which
are assumed to have degenerate energy En in the absence of tunneling, it follows
that, for a tunneling amplitude γ , the actual ground state and first excited states
with the respective eigenenergies are, respectively,

|S〉 = 1√
2

[| + a〉 + | − a〉] ES = En(1− γ )

|A〉 = 1√
2

[| + a〉 − | − a〉] E A = En(1+ γ ). (7.13)

The ground state is clearly unique and given by the symmetric combination |S〉,
hence it is invariant under the same reflection symmetry operation a →−a, as the
Hamiltonian of the system.

In this example, the symmetry is explicit: the ground state has the same symme-
try as the Hamiltonian. That would also be the case for the hydrogen atom or the
harmonic oscillator, for instance. This situation, however, is not the most general.
Indeed, as we will see, there are systems for which the ground state has not the
same symmetry of the Hamiltonian.

7.3 Spontaneous Symmetry Breaking

7.3.1 The Order Parameter

Let us start by exploring the consequences of the vacuum expectation value of the
field operator, namely

〈φi 〉 = 〈0|φi |0〉 (7.14)

being different from zero or not. Assuming the system has a symmetry, which is
implemented by a unitary operator U , then
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7.3 Spontaneous Symmetry Breaking 117

〈0|φi |0〉 = 〈0|U †UφiU
†U |0〉 = gi j 〈0|U †φ jU |0〉, (7.15)

where we used (7.2). The value of this vacuum expectation strongly depends on
the behavior of the vacuum state |0〉 under the symmetry operation U . Suppose the
vacuum is invariant: U |0〉 = |0〉. Then it follows that

〈0|φi |0〉 = gi j 〈0|φ j |0〉,[
δi j − gi j

] 〈0|φ j |0〉 = 0. (7.16)

Since δi j �= gi j , the above equation implies

〈0|φ j |0〉 = 0. (7.17)

We conclude that whenever the vacuum state is invariant under the symmetry
operation, the vacuum expectation value of the field operator must vanish. The
immediate consequence is that whenever this vacuum expectation is different from
zero, the vacuum state is not invariant under the symmetry operation:

U |0〉 = |0〉 −→ 〈0|φi |0〉 = 0

〈0|φi |0〉 �= 0 −→ U |0〉 �= |0〉. (7.18)

The result above can be used for introducing the notion of an order parameter,
the value of which serves as a measure of how much the vacuum would change
under a symmetry operation. The vacuum expectation value of the field operator,
(7.14), serves perfectly for this purpose. The more ordered the system is, the more
the vacuum state would change under a symmetry operation. Conversely, the less
ordered the system is, the less its vacuum state would change under a symme-
try operation. A completely disordered vacuum state would be invariant under the
symmetry operation. We can, thereby quantify how ordered a given system is, by
means of (7.14).

7.3.2 Vacuum Degeneracy

Since the symmetry operator commutes with the Hamiltonian, whenever the vac-
uum is not invariant under the symmetry operation, namely U |0〉 = |0′〉, it
produces another vacuum state, |0′〉, such that, according to (7.15),

H |0〉 = E0|0〉 −→ HU |0〉 = E0U |0〉 −→ H |0′〉 = E0|0′〉
〈0′|φi |0′〉 = 〈0|U †φiU |0〉 = gi j 〈0|φ j |0〉, (7.19)

where E0 is the vacuum energy, which can always be taken as E0 = 0.
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One could wonder whether the different vacua could tunnel among themselves
as in the case of the ammonia molecule studied above. In a system with an infi-
nite number of degrees of freedom, such as a field, or even for a system in the
thermodynamic limit, such as a ferromagnetic crystal, however, the probability of
a ground state to tunnel into another one would be given by γ = e−� < 1 for
each of the degrees of freedom. For the complete system, therefore, we would
have a tunneling probability of (e−�)N → 0 for infinite N or even for very large
N . In this situation, therefore, tunneling between symmetry-related ground states
would be suppressed and we would have vacuum degeneracy. The system would
have different degenerate ground states, which are connected by the symmetry
operations.

7.3.3 Lost Symmetry

Whenever the vacuum state is not invariant under the symmetry operation that
leaves the Hamiltonian invariant, by definition we have the situation known as
spontaneous symmetry breakdown. As we have just seen above, this implies the
vacuum is degenerate and the field operator possesses a nonzero vacuum expec-
tation value, which provides a quantitative measure of how ordered the ground
state is.

Consider now the action (6.33). Whenever there is spontaneous symmetry break-
ing and, consequently the field has a nonzero vacuum expectation value 〈φi 〉 �= 0,
for stability reasons we must shift the classical field ϕi around this value, namely

ϕi → ϕ′i = ϕi − 〈φi 〉. (7.20)

As a consequence, the potential changes as

V (ϕi )→ V
(
ϕ′i + 〈φi 〉

)
. (7.21)

The original invariance under the symmetry operation ϕi → gi jϕ j is lost because
of the shift made in the field. For that reason, for all phenomenological purposes,
spontaneous symmetry breakdown effectively hides the original symmetry of the
system.

7.3.4 Goldstone Theorem

Goldstone Theorem is an important result concerning the spontaneous breakdown
of a continuous symmetry [9]. In order to demonstrate it, let us suppose the
symmetry is implemented by the unitary operator U , given by (7.3).
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In the case where there is no spontaneous symmetry breaking and the symmetry
is, therefore, explicit, we have

U |0〉 = exp
{
iωaGa

} |0〉 = |0〉 ⇐⇒ Ga|0〉 = 0. (7.22)

In a situation where the system presents spontaneous symmetry breaking,
conversely, since the vacuum state is not invariant under the symmetry operation,
we have

U |0〉 = exp
{
iωaGa

} |0〉 �= |0〉 ⇐⇒ Ga|0〉 = |Ga〉 �= 0. (7.23)

Since [H,Ga] = 0, it follows that

H |Ga〉 = Ga H |0〉 = E0|Ga〉, (7.24)

implying that the N states obtained by acting with the generators Ga on the vac-
uum are degenerate with the vacuum. In a relativistic theory, this fact implies that
such states are massless. They are known as Goldstone bosons. A mathematically
rigorous demonstration of the theorem was provided in [14].

The subject acquired great importance when it was shown that by imposing the
locality of the symmetry parameters ωa in the framework of a theory with a spon-
taneously broken continuous symmetry, instead of the N Goldstone bosons we
would have the mass generation for the N gauge fields Aa

μ, a = 1, . . . , N , intro-
duced by imposing the invariance under a local symmetry. This is a mechanism
of mass generation to the gauge fields, known as the Anderson–Higgs Mecha-
nism [10, 11, 12, 13]. It involves both the spontaneous breaking of a continuous
symmetry and the locality of such a symmetry.

In order to achieve the spontaneous symmetry breakdown, a multicomponent
scalar field known as the Higgs field has been introduced in the standard model
analogously to the complex scalar field of the Landau–Ginzburg model. What is the
method, in practical terms, by which we can realize a symmetry in a spontaneously
broken way?

7.4 Static × Dynamical Spontaneous Symmetry Breaking

We analyze here how to obtain spontaneous symmetry breakdown from a theory
that is invariant under a certain symmetry. We have seen that this is closely related
to the existence of an ordered ground state, which, therefore, is not invariant under
the symmetry operation. Here we focus on two different methods of producing
spontaneous symmetry breaking.

The first method consists in writing the potential of the theory in such a way
that it is invariant under the symmetry operation but its minima are not. Take as an
example

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.008
https://www.cambridge.org/core


120 Symmetries: Explicit or Secret

V (ϕi ) = a(T )[ϕiϕi ] + λ
2
[ϕiϕi ]2, (7.25)

where a(T ) = a(T − Tc). This is invariant under an SO(N ) symmetry

ϕi −→ gi jϕ j . (7.26)

Let us determine the minima of V (ϕi ). The condition of zero first derivative gives

∂V

∂ϕi
= {a(T )+ λ[ϕiϕi ]}ϕi = 0. (7.27)

For T > Tc, the quantity between brackets is always positive, hence, we must have
ϕi = 0. For T < Tc, conversely, there is an additional solution for which

[ϕiϕi ] = |a(T )|
λ

�= 0. (7.28)

The condition of minimum requires that all eigenvalues of the Hessian matrix
∂2V
∂ϕi ∂ϕ j

must be positive. This condition is fulfilled for ϕ0
i �= 0 when T < Tc.

According to (6.48), we may take the classical potential (7.25) as the classical
contribution to the effective potential Veff(ϕi ). Hence, for consistency we must have
ϕi = 〈φi 〉 and ϕ0

i = 〈0|φi |0〉 where φi is the field operator.
When the minima of the potential occur at a nonzero value ϕ0

i , it follows that the
vacuum expectation value 〈0|φi |0〉 must be different of zero as well. Then, accord-
ing to the results of Section 8.3, it follows that the symmetry is spontaneously
broken.

We see that a practical method of producing the spontaneous breakdown of a
given symmetry is to introduce a potential having nontrivial minima, namely, min-
ima at nonzero values of the classical field, such that these minima are connected
among themselves by symmetry operations. This may be called static spontaneous
symmetry breaking.

Nevertheless, another method for producing the spontaneous breakdown of a
certain symmetry exists. This is the dynamical symmetry breaking. In this case, the
classical potential has only a trivial symmetric minimum; however, the nontrivial
minima are generated by the interaction, usually with some other field.

Consider for this purpose the theory of a real scalar field coupled to a massless
Dirac fermion field in 1+1D:

L = iψ∂/ψ + gψψϕ − 1

2
ϕ2, (7.29)

where γ 0 = σx , γ
1 = iσy, γ

5 = γ 0γ 1 = −σz and ψ = ψ†γ 0.
This theory possesses the discrete symmetry

ψ → γ 5ψ

ϕ→−ϕ. (7.30)
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7.4 Static × Dynamical Spontaneous Symmetry Breaking 121

The classical static and uniform minima of the potential can be found by taking
derivatives with respect to the fields, namely,

gψψ = ϕ
ψϕ = 0. (7.31)

At this level, therefore, we do not have spontaneous symmetry breaking. Now, let
us determine the resulting effect of the interaction with the Dirac field on the scalar
field dynamics. For this purpose, let us perform the quadratic integral over the
fermion field:

ei S[ϕ] = 1

N

∫
DψDψ exp

{
i
∫

d2x

[
ψ[i∂/+ gϕ]ψ − 1

2
ϕ2

]}
. (7.32)

This would produce an effective action for ϕ, namely

S[ϕ] =
∫

d2x

[
−1

2
ϕ2

]
− Tr ln

[−�+ g2ϕ2
]− S[0]

= −
∫

d2x
1

2
ϕ2 − 1

2π

∫ ∞

0
dkk ln

[
k2 + g2ϕ2

]− S[0]. (7.33)

This yields

S[ϕ] =
∫

d2x

[
−
(

g2

4π
+ 1

2

)
ϕ2 + g2

4π
ϕ2 ln

ϕ2

ϕ2
0

]
. (7.34)

Looking for the minima of the ϕ potential, we conclude they must satisfy

2

[
−1

2
+ g2

4π
ln
ϕ2

ϕ2
0

]
ϕ = 0. (7.35)

Looking at the second derivative, we quickly realize that the minima occur at

ϕ± = ± ϕ0 exp

{
π

g2

}
. (7.36)

These are clearly non-invariant; therefore, the symmetry is spontaneously broken.
In this example, the spontaneous symmetry breaking was clearly produced by the
interaction with the fermion field. Integration over these produces an infinite series
of terms containing powers of the coupling g. The final result for the minima of the
potential is non-analytical in g, this revealing the non-perturbative nature of this
effect.
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8

Classical Topological Excitations

We may subdivide mathematics roughly into four grand areas: geometry, topology,
algebra and analysis. In terms of manifolds (sets), roughly speaking, we may say
that geometry deals with the local properties of manifolds, topology deals with the
global properties thereof, algebra deals with the structures relating the elements of a
given manifold, whereas analysis deals with the relations existing between the ele-
ments belonging to different manifolds. Topological excitations are important and
interesting physical objects bearing conserved physical attributes, the conservation
of which does not result from any symmetries of the system, but rather, derives
from the nontrivial topology of the field configurations manifold. Topology, there-
fore, has a strong influence upon the physical properties of a given system. In this
chapter we study, from the classical point of view, different topological excitations,
namely, excited states bearing some topologically conserved observable quantity.
In the next chapter the quantum theory of such excitations is developed on general
grounds.

8.1 Inequivalent Topological Classes

Consider the classical field configurations of a given system. A natural condition
for these to be physically accessible is that their energy, which is expressed in d
spatial dimensions as,

E =
∫

dd xH, (8.1)

must be finite. For this to happen, however, the potential energy

EP =
∫

dd xV (ϕ) (8.2)

122
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8.1 Inequivalent Topological Classes 123

must be finite as well. Then, a necessary condition for the finiteness of the potential
energy is that

ϕ(x)
|x|→∞−→ ϕ0, (8.3)

where ϕ0 is one of the minima of the potential energy density, which may be always
chosen equal to zero: V (ϕ0) = 0. This is so because the integral in (8.2) will
contain terms such as

lim|x|→∞ |x|V (ϕ(x)) , (8.4)

which would clearly contribute an infinite amount, should we relax (8.3).
As a consequence of the condition for the finiteness of energy, imposed on the

classical field configurations, it follows that these provide a mapping between
the manifold defined by |x| → ∞ and the manifold formed by the minima of the
potential energy density: {ϕ0|V (ϕ0) inf V (ϕ),∀ϕ}. This mapping is summarized by
(8.3). According to this, in d = 1, 2, 3 spatial dimensions, respectively, the field
provides a mapping between the manifold at infinity, given respectively by the sets
{x+∞, x−∞}, S1 (a circumference) S2 (a spherical shell) and the vacuum manifold.

Consider first the case d = 1, when the manifold at infinity is the discrete set
{x+∞, x−∞}. Now consider the vacuum manifold. In the absence of spontaneous
symmetry breaking it is just a single point, as a consequence of the fact that the
order parameter vanishes and there is just a single minimum of the potential den-
sity. Now, suppose we have spontaneous breakdown of a discrete symmetry. In
this case, the nontrivial minima of the potential must be connected by the discrete
symmetry operation (Z(2), for instance, would imply two minima at ϕ0 = ±a).

We can imagine the mapping as if it were produced by elastic strings connecting
the two points of the manifold at infinity to the vacuum manifold, as we can see
in Fig. 8.1. Assuming we are in a spontaneously broken phase, there are obviously

Figure 8.1 Topology of the mapping between the manifold at spatial infinity
(black dots) into the vacuum manifold of a Z(2) symmetric theory (white dots).
(a) No spontaneous symmetry breaking. (b) With spontaneous symmetry break-
ing. One cannot continuously deform one situation into the other. Notice the
existence of inequivalent classes of mapping in the latter.
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124 Classical Topological Excitations

three situations that are inequivalent: two strings, each tied at one end, respectively,
to x+∞ and x−∞, and at the other end, both to ϕ0 = +a; two strings, each tied at
one end, respectively, to x+∞ and x−∞, and at the other end, tied, respectively, to
ϕ0 = +a and ϕ0 = −a; same as before but exchanging +a ↔ −a. These three
situations are said to be topologically inequivalent, in the sense that one cannot be
continuously deformed into each other without breaking a string. The configura-
tion space, accordingly, is divided into corresponding subspaces; the elements of
each may be continuously deformed among themselves but never into the elements
of another subspace. We see that the configuration space, therefore, is topologi-
cally nontrivial. It subdivides into inequivalent classes that are characterized by a
topological invariant, as we shall see below.

Observe that a topologically nontrivial mapping will only occur provided there
is spontaneous symmetry breakdown, with the corresponding generation of a non-
trivial vacuum manifold. Also, in the case of d = 1 (considered here), nontrivial
topological mappings will only occur in the case of discrete symmetries (as in
the case of Z(2), examined above), where the corresponding manifold is discrete.
Suppose, conversely, that the symmetry is continuous, such as U (1), for instance.
Since this corresponds to multiplication by a complex phase, the group elements
correspond to a circumference.

Then consider the three situations just described above. Now, since the vacuum
manifold is continuum (a circle), the two tying points at the vacuum manifold (for-
merly±a) clearly can be continuously deformed into each other in such a way that
one can continuously deform the three situations among themselves. In this case,
therefore, the mapping is topologically trivial.

Consider now the case of a U (1) symmetry in d = 2. Now both the manifold
at |x| → ∞ and the vacuum manifold are circumferences, hence the finite energy

Figure 8.2 Topology of the mapping between the manifold at spatial infinity
(black dots) into the vacuum manifold of a U (1) symmetric theory (circle). Now
one can continuously deform one situation into the other. No inequivalent classes
of mappings exist and the topology is trivial.
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8.1 Inequivalent Topological Classes 125

field configurations provide a mapping between those. This mapping belongs to
one of an infinite number of inequivalent topological classes characterized as fol-
lows. Let us label the points of the two circumferences, respectively, by angles: θ1

and θ2, both belonging to the interval [−π, π). Then, each mapping is defined by
θ2 = nθ1, n ∈ Z. Because of the constraint θ2 ∈ [−π, π), it follows that for a given
n, the entire circumference θ1 ∈ [−π, π) is mapped into the region θ2 ∈ [−π

n ,
π
n ],

hence we shall map each point θ1 of the first circumference into n different points
θ2 of the second one, in order to cover it completely. This is analogous to plac-
ing a money-rubber-string on a metal cylinder. We may simply insert it plainly, or
else double- (triple-, etc.) fold it across itself before inserting it in the cylinder (see
Fig. 8.3). Clearly there are infinitely many ways of doing this operation and we can-
not deform the string assembled in a given situation into another without breaking
it (provided we remain in the plane). The field configurations space, accordingly,
in the case of theories with a U (1) symmetry in d = 2 spatial dimensions contains
an infinite number of inequivalent topological sectors.

Figure 8.3 Topology of the mapping between the manifold at 2d spatial infinity
(circle) into the vacuum manifold of a U (1) symmetric theory (circle). Now one
cannot continuously deform the mapping represented here into the one depicted
in Fig. 8.4. There are infinitely many inequivalent topological classes.

Figure 8.4 Topology of the mapping between the manifold at 2d spatial infinity
(circle) into the vacuum manifold of a U (1) symmetric theory (circle). Now one
cannot continuously deform the mapping represented here into the one depicted
in Fig. 8.3. There are infinitely many inequivalent topological classes.
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126 Classical Topological Excitations

There is a mathematically precise way of characterizing to which topological
class a given field configuration belongs. This is accomplished by the so-called
topological invariants or topological charges. The conservation of topological
charge derives from the nontrivial topology of the configuration space, as is the
case for instance in the situations described above for Z(2) and U (1) symme-
tries. The topological charge is conserved, just because the field configuration
belonging to a given topological class cannot continuously evolve into a config-
uration belonging to a different class. The set of topologically inequivalent classes
of the mapping of a n-sphere onto a manifold M , n = 0, 1, 2, . . . is called the
nth homotopy group of M , namely, �n(M). In this case, n = 0 corresponds to
a discrete set of points, n = 1, a circumference, n = 2 a spherical shell and
so on.

8.2 Topological Invariants: Identically Conserved Currents

8.2.1 d = 1; Z(2) Group

Consider the theory of a real scalar field in one spatial dimension with a mul-
tiplicative Z(2) symmetry: ϕ → ei 2π

2 ϕ or ϕ → −ϕ. As explained above, the
configuration space of such class of theories has topologically inequivalent sectors.
There exists a topological invariant number that classifies each field configuration
according to its value. This is, for d = 1,

Q = 1

2a

∫ ∞

−∞
∂xϕ(x, t) = 1

2a
[ϕ(+∞, t)− ϕ(−∞, t)] , (8.5)

assuming the minima of the potential are at ϕ = ±a. Then, we can have Q =
0,±1. This is equivalent to saying that �0([0,±1]) = Z(2), where Z(2) is the
additive group of integers modulo 2.

Notice that for a continuous symmetry, the points ϕ(+∞), ϕ(−∞) may be con-
tinuously deformed one into the other, since they belong to different points of
the vacuum manifold, which are connected by such continuous symmetry. The
topological charge Q, therefore, is zero in this case and �0(S1) = ∅.

Observe now that the topological invariant charge Q is the spatial integral of a
quantity we may call the topological charge density

J 0 = 1

2a
∂xϕ. (8.6)

Since Q is conserved for topological reasons as we saw, its charge density must
satisfy a continuity conservation equation. This however should not follow from
any symmetry of the theory via Noether theorem, or ultimately, via the field equa-
tion. The only possibility, therefore, is that the current Jμ must be identically
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8.2 Topological Invariants: Identically Conserved Currents 127

conserved. Considering the above expression for the topological charge density,
it follows that the topological current must be

Jμ = 1

2a
εμν∂νϕ ∂μ Jμ ≡ 0. (8.7)

8.2.2 d = 1; Z(N ) Group

Consider a complex scalar field φ = ρeiθ in one spatial dimension and assume
the corresponding theory is invariant under the Z(N ) symmetry φ → ei 2π

N ϕ, for
N > 2. Suppose this symmetry is spontaneously broken, such that the potential
minima occur at φ0 = ρ0ei 2πn

N , for n = 0, 1, 2, . . . , N − 1.
The condition of energy finiteness implies that, for |x| → ∞, we must have

ρ(x)→ ρ0

θ(x)→ θ0,n = 2πn

N
, n = 0, 1, . . . , N − 1. (8.8)

Then it becomes clear that the phase field θ(x) provides a mapping between
the set {x+∞, x−∞} and the discrete set {θ0,0, . . . , θ0,N−1}. The topological invari-
ant classifying the inequivalent topological classes of the mapping, in this case, is
given by

Q = N

2π

∫ ∞

−∞
∂xθ(x, t) = N

2π
[θ(+∞, t)− θ(−∞, t)] . (8.9)

It is not difficult to see that the topological charge may assume the values
Q = 0,±1, . . . ,±(N − 1), being, therefore, nontrivial. The identically conserved
topological current now is given by

Jμ = N

2π
εμν∂νθ ∂μ Jμ ≡ 0. (8.10)

8.2.3 d = 2; U (1) Group

Let us consider the theory of a complex scalar field φ, with a local U (1) symmetry,
minimally coupled to a U (1) gauge field Aμ and with a self-interaction V (|φ|),
such that the minima of the potential occur at |φ| = ρ0 and V (ρ0) = 0. Finite
energy field configurations must be such that

φ
|x|→∞−→ ρ0eiθ (8.11)

Diφ = [∂i − i
e

�c
Ai ]ϕ |x|→∞−→ 0

Ai
|x|→∞−→ �c

e
∇iθ A0 = 0,

where the third condition derives from the second.
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Now, the topological invariant classifying the mapping between the circumfer-
ence at spatial infinity and the circumference of the vacuum manifold is

� =
∮

C(∞)
A · dl, (8.12)

where C(∞) is a closed curve at spatial infinity. Now, using (8.11) and polar
coordinates (r, ϕ), we may write

� = �c

e

∫ 2π

0
dϕ

d

dϕ
θ(ϕ) = �c

e
[θ(ϕ = 2π)− θ(ϕ = 0)] . (8.13)

We immediately realize that the infinite inequivalent topological classes
described in the previous subsection correspond to field configurations such that
θ(r)→ n arg(r) = nϕ, for n ∈ Z. For these the topological invariant gives

� = n
hc

e
(8.14)

and �1(S1) = Z.
Now, using Stokes’ theorem, we may cast the topological invariant� in the form

of a spatial integral sweeping the whole plane, namely

� =
∫

d2r B, (8.15)

where B = εi j∂i A j ; i, j = 1, 2 is the magnetic field associated to the vector
potential A and, consequently, � = n�0 is the magnetic flux throughout the entire
plane, where the flux quantum is �0 = hc

e .
Observe that the topological charge � again is the spatial integral of a density,

in this case J 0 = εi j∂i A j . As before, it must satisfy a continuity equation, hence
the complete, identically conserved topological current must be

Jμ = εμνα∂ν Aα ∂μ Jμ ≡ 0. (8.16)

The zeroth component of Jμ is the topological charge density.

8.2.4 d = 2; SO(3) Nonlinear Sigma Field

Consider a scalar field triplet −na(x, t), a = 1, 2, 3, in d = 2 spatial dimensions –
that is free except for the fact that it is subject to the constraint

|n|2 =
3∑

a=1

nana = 1. (8.17)
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Figure 8.5 Stereographic projection of a spherical surface on the plane

As we shall see in Chapter 17, na(x, t), which is called the nonlinear sigma
field, plays an important role in the physics of quantum magnets in two spatial
dimensions.

From (8.17), it follows that the field manifold is a spherical shell S2. One can
then easily realize that static field configurations, na(x, 0) provide a mapping from
R

2 onto S2.
Now, by using a stereographic projection, we can show that the R

2 plane is
equivalent to a spherical surface. This projection consists in mapping circles of R

2

onto circles parallel to the equator in the sphere in such a way that a straight line
connects the north pole, the circle at the spherical surface and the circle in the R

2

plane. The circle at infinity, then, is mapped to the north pole, whereas the origin
is mapped to the south pole.

As a consequence of the R
2 ⇐⇒ S2 equivalence, we conclude that actually a

static nonlinear sigma field provides a mapping of S2 onto S2. Since �n(Sn) = Z,
it follows that this map contains infinitely many inequivalent topological classes.

The topological charge associated to these inequivalent classes is given by

Q = 1

8π

∫
d2xεi jεabcna∂i n

b∂ j n
c (8.18)

and Q ∈ Z. This is the spatial integral of the zeroth component of the identically
conserved current

Jμ = 1

8π
εμναεabcna∂νn

b∂αnc

∂μ Jμ = 1

8π
εμναεabc∂μna∂νn

b∂αnc ≡ 0. (8.19)

The identical conservation results from the following reason. Since |n|2 = nana =
1, we have ∂μna ⊥ na , hence the triple vector product in the second equation above
involves three co-planar vectors and therefore vanishes.

There is another nontrivial mapping associated with the nonlinear sigma field.
This is provided by the time-dependent field configurations, na(x, t), when we con-
sider the Euclidean time τ . These produce a mapping of R

3 onto S2. Again, since
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R
3 is topologically equivalent to S3, the present mapping is effectively from S3 onto

S2, which takes closed curves in S3 onto points in S2. The topological invariant in
this case is the Hopf invariant. It detects the number of times the mapped curves
link around each other. In terms of the current (8.19), it reads

Q H = 1

2π

∫
d3xd3 yεμνα Jμ(x)

(x − y)ν
|x − y|3 Jα(y). (8.20)

Since �3(S2) = Z, it follows that Q H ∈ Z.

8.2.5 d = 3; SO(3) Gauge Group

Now consider an SO(3) triplet scalar field �a , a = 1, 2, 3 in 3+1D. We assume
there exists a potential such that the minima of which force the condition �a

0�
a
0 =

ρ0. This would lead us to conclude that the vacuum manifold is S2.
We then apply the condition that derives from the finiteness of energy, namely

that the field configurations at spatial infinity, in this case S2, must reduce to the
vacuum manifold. We therefore immediately conclude that the field�a in this case
also produces a mapping S2 → S2, similarly to the nonlinear sigma field in 2+1D.
In that case, however, the target manifold was derived from the constraint. That is
why we did not have to relate the finiteness of energy condition to the field behavior
at infinity in that case.

The fact that the scalar fields �a are not subject to the NLSM condition (just its
vacuum value!) allows us to introduce the 3+1D topological current

Jμ = 1

8π
εμναβεabc∂ν�

a∂α�
b∂β�

c, (8.21)

which is obviously identically conserved: ∂μ Jμ ≡ 0.
The corresponding topological charge is

Q =
∫

d3x J 0 = 1

8π

∫
d3xεi jkεabc∂i�

a∂ j�
b∂k�

c. (8.22)

The derivative ∂i can be transformed into a total derivative and then, using Gauss’
theorem, we can write

J 0 = ∇ ·K
K i = 1

8π
εi jkεabc�a∂ j�

b∂k�
c

Q =
∮

S2(∞)
d Si K i . (8.23)

The above expression for Q is just (8.18) with S2(∞), the spherical shell at infinity,
replacing R

2 as the integration surface. These two manifolds, however, are mapped
one into another by a stereographic projection; hence, also here Q = Z as it should.
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8.3 Classical Solitons

The word soliton is frequently used as a generic name for solutions of the field
equation, belonging to a nontrivial topological class. In this book, however, we
use this name for the specific case of discrete groups in d = 1. In this section we
examine several examples.

8.3.1 Z(2) Solitons

Consider the theory of a real scalar field with Lagrangean

L = 1

2
∂μϕ∂

μϕ + μ
2
ϕ2 − λ

4!ϕ
4. (8.24)

This is clearly invariant under the Z(2) symmetry ϕ→−ϕ. This is spontaneously
broken since the field potential possesses two minima at ϕ0 = ±a, with a = 6μ

λ
.

Time independent classical solutions must satisfy the field equation

∂2
xϕ = μϕ

(
1− ϕ

2

a2

)
, (8.25)

which has the so-called soliton solution

ϕS = a tanh

(√
μ

2
x

)
. (8.26)

Notice that the Z(2) topological charge (8.5) calculated for this solution is Q =
+1; hence, it belongs to a nontrivial topological sector of the configuration space.

a

–a

x

Figure 8.6 Z(2) soliton solution ϕS(x)
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8.3.2 Sine-Gordon Solitons

Consider the theory of a real scalar field in one-dimensional space, described by
the Lagrangean

L = 1

2
∂μϕ∂

μϕ + α [cosβϕ − 1] . (8.27)

This theory possesses the discrete symmetry ϕ→ ϕ+ 2π
β

and the potential minima

occur at ϕ0,n = 2π
β

n.
The field equation reads

�ϕ + αβ sinβϕ = 0, (8.28)

which is the sine-Gordon (SG) equation.
The topological charge is given by a slight modification of (8.5), namely

QSG = β

2π

∫ ∞

−∞
∂xϕ(x, t) = β

2π
[ϕ(+∞, t)− ϕ(−∞, t)] . (8.29)

The SG equation admits static solutions

ϕSG(x) = 4

β
arctan

[
e
√
αβx
]

(8.30)

known as sine-Gordon solitons. Observe that ϕS(+∞) = 2π
β

and ϕS(−∞) = 0,
hence this soliton solution is topologically nontrivial, with Q = +1.

Figure 8.7 Sine-Gordon soliton solution ϕSG(x)
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8.3.3 Z(N) (Phase) Solitons

Consider now a complex scalar field, described by the Lagrangean

L = ∂μφ∗∂μφ + μ
(
φN + φ∗N

)− λ (φ∗φ)N − μ
2

λ
. (8.31)

This is invariant under the discrete Z(N ) symmetry, defined as

φ→ φ exp

{
i
2π

N

}
. (8.32)

Using a polar representation for the complex field, namely φ = ρ√
2
eiθ , where ρ, θ

are real fields, we can express the Lagrangean as

L = 1

2
∂μρ∂μρ + ρ

2

2
∂μθ∂μθ + 2μ

(
ρ√
2

)N

cos Nθ − λ
(
ρ√
2

)2N

− μ
2

λ
.

(8.33)

This possesses minima at

ρ0√
2
=
(μ
λ

) 1
N

θ0,n = 2π

N
n n = 0, 1, . . . , N − 1. (8.34)

Observe that the nontriviality of the vacuum manifold is related to the phase,
rather than to the modulus of the field φ, since this is the one that has a nontriv-
ial behavior in the vacuum manifold. Topologically nontrivial solutions, therefore,
are expected to be related to the phase rather than to the modulus. As a conse-
quence, the topological features of the system should not be affected by making the
approximation of constant modulus ρ = ρ0. Physical applications of this model,
accordingly, correspond to a phase with constant ρ [17]. In this case, therefore,
using (8.34), we get

L = 1

2
ρ2 ∂μθ∂μθ + 2μ2

λ
[cos Nθ − 1] . (8.35)

This is the sine-Gordon theory with α = 2μ2

λ
and β = N . The topological current

will be given now by

Jμ = N

2π
εμν∂νθ (8.36)

and the corresponding topological charge, Q = ∫ J 0dx .
The theory will admit soliton solutions for the phase θ , given by

θS(x) = 4

N
arctan

[
e

√
2μ2
λ

N
ρ0

x
]
. (8.37)

This will have a topological charge Q = 1.
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134 Classical Topological Excitations

8.4 Classical Vortices

We now consider the U (1)-symmetric abelian Higgs model in 2+1D, which is just
the relativistic version of the Landau–Ginzburg theory. This is described by the
Lagrangean involving a complex scalar field φ and a U (1) gauge field Aμ, namely

L = −1

4
FμνFμν + (Dμφ)∗(Dμφ)+ m2φ∗φ − g

2
(φ∗φ)2, (8.38)

where Dμ = ∂μ + i e
�c Aμ.

This theory was shown to admit classical static solutions of the form [18]

φ(x) = ρ0
[
1− f (r)

]
exp{i arg(x)}

A(x) = g(r)ϕ̂ A0 = 0

B = εi j∂i A j = h(r), (8.39)

where r ≡ |x| and ρ0 = m2

g . Notice that this complies with the energy finiteness
condition (8.12).

In the above expression, the functions f (r), g(r) and h(r) have the following
asymptotic behavior:

f (r)
r→∞−→ e−r/ξ

g(r)
r→∞−→

(
�c

e

)
1

r
− ρ0 K1(r/λ)

h(r)
r→∞−→ ρ0

λ
K0(r/λ), (8.40)

where ξ = 1√
2m2

is the “correlation length,” λ = �c
eρ0

is the “penetration depth,” K0

and K1 are modified Bessel functions and ϕ̂ is the angular unit polar vector in the
plane.

Notice that the modulus of the Higgs field behaves as

|φ(r)| r→∞−→ ρ0, (8.41)

whereas the gauge field and corresponding magnetic field

A(x)
r→∞−→

(
�c

e

)
1

r
ϕ̂

B(r)
r→∞−→ 0. (8.42)

Near the origin, it can be shown that

|φ(r)| r→0−→ 0

B(r)
r→0−→ C �= 0. (8.43)
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We see that the Higgs field vanishes inside the vortex, whereas the magnetic field
is nonzero. Considering that, for large x , the modified Bessel functions behave as

Kν(x)→
√
π

2x
e−x , (8.44)

we see that λ sets the length scale where the magnetic field B is nonzero, hence
the name penetration depth. The size of the vortex, namely, the region where the
Higgs field vanishes, conversely, is determined by ξ , the correlation length.

From (8.42), it becomes clear that the topological invariant � given by (8.12)
corresponding to the above vortex solution is

� = �0 = hc

e
, (8.45)

namely, one quantum of magnetic flux. This characterizes the vortex solution as a
topological excitation.

One can immediately recognize the similarity between the vortex solution of
the abelian Higgs model with the magnetic flux configurations occurring in the
Landau–Ginzburg theory for a Type II superconductor, which corresponds to the
situation where λ > ξ .

8.5 Classical Skyrmions

Let us consider now the SO(3) invariant nonlinear sigma model in 2+1D,
containing a triplet of scalar fields na , described by the Lagrangean

L = ρ0

2
∂μna∂μna. (8.46)

This is supplemented by the constraint

nana = 1, (8.47)

which contains the interaction and makes the system nontrivial.
This system possesses the following static solution [20]:

nS(r) =
(
sin f (r)r̂ , cos f (r)

)
f (r) = 2 arctan

(
ξ

r

)
, (8.48)

where r = |r| and r = rr̂ . This was called “skyrmion” for its similarity with field
configurations found by Skyrme in 3+1D [181]. Notice that na

S has radial symmetry,
with nS(0) = (0,−1), nS(r → ∞) = (0, 1) and nS(r = ξ) = (r̂ , 0). The length
scale ξ determines the skyrmion size.
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Figure 8.8 nz
S component of the skyrmion solution, for ξ = 50

By making a stereographic projection, it is easy to see that the nS solution is
mapped into a configuration of unit vectors perpendicular to any point of a spheri-
cal surface. The circle with r = ξ , in particular, is mapped into the equator. Because
of this mapping the skyrmion solution is also known as “hedgehog.”

This last property suggests that the skyrmion produces a topologically nontrivial
mapping S2 → S2. Indeed, it can be easily verified that for nS , the topological
invariant (8.18) is Q = +1. The classical skyrmion configuration has energy

ES = ρ0

2

∫
d2x∇na · ∇na = 4πρ0. (8.49)

We will see that skyrmion topological excitations play a central role in two-
dimensional quantum magnetic systems.

8.6 Classical Magnetic Monopoles

Let us now study the non-abelian version of the Higgs model studied before,
namely, the local SO(3) invariant gauge theory, also known as the Georgi–Glashow
model [22], given by

L = −1

4
Fa
μνFaμν + (Dμ�)a(Dμ�)a + m2�a�a − λ

2
(�a�a)2, (8.50)

where

Fa
μν = ∂μAa

ν − ∂ν Aa
μ + gεabc Ab

μAc
ν (8.51)
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and

(Dμ)
ab = δab∂μ + gεabc Ac

μ. (8.52)

�a , a = 1, 2, 3 is the scalar Higgs field, transforming under the adjoint
representation of the SO(3) group, where the generators are given by

(T a)bc = iεabc (8.53)

and g is the coupling parameter.
The classical minima of the potential are such that �a�a = |�0|2 = m2/λ.

While (classically) breaking SO(3), these minima still preserve an unbroken U (1)
subgroup. There is, correspondingly, a U (1) gauge field, the field intensity tensor
of which is given by

Fμν ≡ �̂a Fa
μν −

1

g
εabc�̂a[Dμ�̂]b[Dν�̂]c, (8.54)

where �̂a = �a/|�0|.
The topological charge is given by

Jμ = εμναβ∂νFαβ (8.55)

It follows that the magnetic field associated to the field intensity tensor above,
usually defined as Bi = 1

2ε
i jk Fjk , is given by

Bi = εi jk[∂ j Aa
k ]�̂a − 1

g
εi jkεabc�̂a∂ j�̂

b∂k�̂
c. (8.56)

Consequently, magnetic charge is the topological charge, namely

J 0 = ∇ · B = εi jk[∂ j Aa
k ][∂i�̂

a], (8.57)

where we used the fact that for a field �̂a such that |�̂| = 1, the divergence of the
second term in (8.56) vanishes. Equivalently, we will have

Q =
∫

d3x J 0 = g
∮

S2(∞)
dS · B = QM . (8.58)

A solution for the field equations of the SO(3) Georgi–Glashow model in the
adjoint representation was independently obtained by ’t Hooft and Polyakov [23,
24] by using the following ansatz:

�a(r) = f (r)
ra

r

Aa
i (r) = g(r)εai j r j

r
; Aa

0 = 0, (8.59)

where r = |r| and the radial functions satisfy
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f (r)
r→∞−→ |�0|

g(r)
r→∞−→ 1

gr
. (8.60)

These field configurations yield

[Di�]a r→∞−→ 0

Fi j r→∞−→ Fai j�
a

�0

B(r)
r→∞−→

(
1

g

)
r
r3
. (8.61)

The last expression shows that the configuration (8.59) indeed is a magnetic
monopole with magnetic (topological) charge QM = 4π/g.

The classical magnetic monopole energy can be obtained from the above solu-
tion by integrating the energy density over all three-dimensional space. This is
shown to satisfy the so-called Bogomolnyi bound [49]:

Emon ≥ 4πM

g2
, (8.62)

where M is the gauge field mass generated by the Higgs mechanism. It has actually
been shown [23, 24, 50, 51] that

Emon = f

(
λ

g2

)
4πM

g2
,

f (0) = 1 f (∞) = 1.787, (8.63)

hence the classical monopole energy is in the interval [1.000, 1.787] 4πM
g2 . We will

see that the quantum monopole mass also respects these bounds.
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Quantum Topological Excitations

Given a physical system, we may in principle classify its fundamental excitations
in two broad classes, namely, the Hamiltonian excitations and the topological exci-
tations. The former are created out of the vacuum by operators, which appear
themselves explicitly in the Hamiltonian and usually bear conserved quantities
such as charge and spin, for instance, that are conserved by virtue of some con-
tinuous symmetry of the Hamiltonian. The latter, conversely, carry at least an
observable quantity, the conservation of which derives from a nontrivial topologi-
cal structure of the configuration space, as we saw in the previous chapter. There,
we examined a number of classical topological excitations occurring in different
dimensions. The full quantum description of such excitations is a matter of utmost
importance; however, since the topological excitation degrees of freedom do not
show explicitly in the Hamiltonian this is not a straightforward task. In this chap-
ter, we develop a method, based on the concept of order-disorder duality, which
allows for a systematic full quantum description of topological excitations.

9.1 Order-Disorder Duality and Quantum Topological Excitations

9.1.1 Order and Disorder Variables

Quantum topological excitations, surprisingly, are closely related to the so-called
order-disorder duality structure, which is a concept playing an important role in
many physical systems. We will see below how we can take advantage of this
structure in order to develop a full quantum theory of topological excitations, which
is widely applicable.

The stability of topological excitations, as we have seen in the past chap-
ter, derives from a nontrivial topological structure of the configurations space.
For this, a crucial condition is the existence of a nontrivial manifold of min-
ima of the potential (vacuum manifold), which stems from the occurrence of
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140 Quantum Topological Excitations

degenerate vacuum states. This, however, invariably requires the vacuum expec-
tation value of the basic field being different from zero, namely, a nonzero order
parameter: 〈φ〉 �= 0. We conclude the system ought to be in an ordered phase,
characterized by a non-vanishing order parameter, for topological excitations to
exist.

Let us consider now a full quantum-mechanical topological excitation state |μ〉.
We assume this is created out of the vacuum by the operator μ(r, t), namely

|μ〉 = μ(r, t)|0〉. (9.1)

In systems exhibiting classical topological excitations, we naturally expect the
presence of the corresponding quantum states in the spectrum of excitations. In
such a case, the topological quantum state, being a genuine excitation, must be
orthogonal to the vacuum, hence 〈0|μ〉 = 0, or equivalently, 〈μ〉 = 0, whenever
a system presents classical topological excitations. We have seen, however, that
a necessary condition for this is, ultimately, a non-vanishing vacuum expectation
value of the basic field: 〈φ〉 �= 0, namely, an ordered state.

Conversely, if a system does not possess classical topological excitations, the
action of the operator μ(r, t) on the vacuum should be trivial, producing no effect
other than just the vacuum. Hence, in this case 〈0|μ〉 = 1 or 〈μ〉 = 1. The absence
of classical topological excitations, on the other hand, implies the triviality of the
vacuum manifold, because this is associated with the topological triviality of the
configurations space. A trivial vacuum manifold, by its turn, implies the absence
of vacuum degeneracy or, in other words, a unique, symmetry invariant vacuum.
Now, from (7.15), (7.16) and (7.17) we see that a unique vacuum implies 〈φ〉 = 0,
namely, the absence of order.

In summary, we conclude, therefore, that

〈φ〉 �= 0 −→ 〈μ〉 = 0

〈μ〉 �= 0 −→ 〈φ〉 = 0. (9.2)

We see that the vacuum expectation value of the topological excitation creation
operator behaves as a disorder parameter. Indeed, 〈μ〉 measures the amount of dis-
order in the system in the same way that 〈φ〉 measures the amount of order. This
order-disorder duality will be the key point for the development of a full quan-
tum theory of topological excitations. The quantum-mechanical properties of such
excitations, indeed, follow naturally from the quantization of the corresponding
disorder variables. In the remainder of this chapter, we show how this method was
born in the realm of statistical mechanics and thereafter generalized to quantum
field theory. We also present several concrete applications of the method in the
description of quantum topological excitations.
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9.1.2 Dual Algebra and the Köberle–Marino–Swieca Theorem

The features deriving from the order-disorder duality that exists between the
Hamiltonian field and the topological creation operator are fully captured by the
so-called dual algebra, relating the two operators. In order to state what this alge-
braic relation is, let us assume the system is invariant under the operation of a group
element g on the basic field φ:

φ −→ UφU † = g ◦ φ, (9.3)

where g belongs to some symmetry group G.
In one spatial dimension (d = 1) the dual algebra reads

μ(x, t)φ(y, t) =
{ [g ◦ φ](y, t)μ(x, t) y > x
φ(y, t)μ(x, t) y < x .

(9.4)

For a Z(N ) group, for instance, g ◦ φ = ei2π/Nφ.
For a system in d-spatial dimensions (d > 1), the topological excitation creation

operator in principle would depend both on the point r and on a Sd−1-surface,
centered on r, namely μ = μ(r, t; S). The Sd−1-surface encloses the region of
space T (S) inside which we have the trivial vacuum. Its radius, therefore, roughly
measures the extension of the topological excitation. Of course, we can always take
the local limit, in which the region T (S) shrinks to a point.

In the case of vortices in d = 2, therefore, T (S) would be a circle of radius of
the order of the penetration depth λ and S1, its boundary.

In d > 1 dimensions, the dual algebra is given by

μ(x, t; T (S))φ(y, t) =
{ [g ◦ φ](y, t)μ(x, t; T (S)) y �∈ T (S)
φ(y, t)μ(x, t; T (S)) y ∈ T (S).

(9.5)

In the local limit, conversely, we would have

μ(x, t)φ(y, t) = [g ◦ φ](y, t)μ(x, t). (9.6)

A general theorem was rigorously demonstrated in d = 1 for operators satisfying
the dual algebra (9.4) [317]. This is the Köberle–Marino–Swieca theorem [317, 26,
27], which contains basically three results:

1) 〈μ〉〈φ〉 = 0

2) 〈μ(x, t)φ(y, t)〉 = 0 (9.7)

and (3) the mass gap vanishes, whenever both 〈φ〉 = 0 and 〈μ〉 = 0.
Even though the theorem was demonstrated in d = 1, it should be valid in any

dimension. Observe that (9.2) follows from result 1 above. Observe also that the
theorem restricts the number of possible phases of the system to basically three: (a)
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〈φ〉 �= 0 and 〈μ〉 = 0; (b) 〈φ〉 = 0 and 〈μ〉 = 0; (c) 〈φ〉 = 0 and 〈μ〉 �= 0. A similar
result was used by ’t Hooft [28] in order to classify the phases of non-abelian gauge
theories.

9.2 Duality in Statistical Mechanics

The concept of a duality relation connecting ordered and disordered phases of a
statistical-mechanics system can be traced back to Kramers and Wannier [29]. The
idea of a disorder variable satisfying a dual algebra with the Hamiltonian order vari-
able, however, was put forward only much later by Kadanoff and Ceva [30]. These
authors have also derived a method for evaluating quantum correlation functions of
such disorder variables, given the Hamiltonian of the system. We have generalized
their method for quantum field theory in general and applied the method to a broad
variety of physical systems [31, 32, 33, 34, 35, 36, 37, 213, 38, 39, 41, 193, 42, 43].
An equivalent construction has been developed in [44].

We illustrate the method in the one-dimensional quantum Ising model, which is
described by the Hamiltonian

H = −J
∑

n

σ3(n)σ3(n + 1), (9.8)

where σ3(n) are Pauli matrices representing the Sz-operator in the s = 1/2 rep-
resentation in the Hilbert space Hn , such that the total Hilbert space is H =
. . .⊗Hn ⊗Hn+1 ⊗ . . . The Hamiltonian is invariant under the discrete symmetry
σ3(n)→−σ3(n), for all n.

We now define a dual lattice with sites n∗, such that n∗ is located right between
and equidistant from the points n and n+1 from the original lattice. Introduce now
an operator μ(n∗), through the order-disorder dual algebra [30, 46, 47],

μ(n∗)σ3(m) =
{ −σ3(m)μ(n∗) m > n
σ3(m)μ(n∗) m ≤ n,

(9.9)

which explicitly uses the Hamiltonian symmetry. The algebra (9.4) actually was
inspired in (9.9). An operator μ(n∗) satisfying this algebra can be written as

μ(n∗) =
∏
m>n

σ1(m). (9.10)

Now, let us determine what is the action of this operator on the ground state (vac-
uum) |0〉. Clearly, there are two degenerate ground states. In the representation we
are using, these are expressed, respectively, as


+0 =
(

1
0

)
1

⊗ . . .⊗
(

1
0

)
N

(9.11)
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and


−0 =
(

0
1

)
1

⊗ . . .⊗
(

0
1

)
N

. (9.12)

The ground-state energy is E0 = −N J .
We see these are fully ordered states such that 〈0±|σ3(n)|0±〉 = ±1.
On the other hand, since

σ1(m)

(
1
0

)
m

=
(

0
1

)
m

, (9.13)

we see that, in the representation being used, μ(n∗)|0+〉 is given by


+μ =
(

1
0

)
1

⊗ . . .⊗
(

1
0

)
n

⊗
(

0
1

)
n+1

⊗ . . .⊗
(

0
1

)
N

. (9.14)

This a Bloch wall, separating two domains with opposite spin orderings. It has
precisely the characteristic features of the topological excitations we found in the
field theory examples. Observe that clearly 〈μ〉± = 〈0±|μ|0±〉 = 0, indicating
that the operator μ does indeed create states which are orthogonal to the ground
state whenever this is an ordered state. Should the ground state be disordered, with
(9.11) and (9.12) replaced by a random succession of up and down states, then
reversing part of them would have no effect at all. Consequently, in this case we
would have 〈0|μ|0〉 = 1. In a disordered phase, therefore, μ would not create a
genuine excited state, as expected. This illustrates in a more concrete way the fact
that topological excitation creation operators, satisfying a dual algebra, indeed act
as disorder operators.

For the sake of obtaining a full description of the quantum dynamical properties
of topological excitations, the knowledge of the time-dependent correlation func-
tions 〈μ(x, t)μ(y, t ′)〉 would be required. In their pioneering work, Kadanoff and
Ceva [30] introduced a method for evaluating a discrete (Euclidean) time version of
such a correlation function. Their method was the inspiration for the derivation of
a general continuum quantum field theory description of topological exciatations.
We now describe this method.

Consider the classical two-dimensional system corresponding to the quantum
one-dimensional Ising model, (9.8), described by the classical Hamiltonian

H = −J
∑
〈nm〉

σ(n)σ (m), (9.15)

where σ(n) = ±1 are classical spin variables defined on the sites n of a square
lattice and the sum runs over nearest neighbors. The system is clearly invariant
under the global symmetry σ(n)→−σ(n).
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We now introduce a dual lattice with sites n∗, located precisely at the center of
each plaquette of the original square lattice. Classical disorder variables μ(n∗) =
±1 are then introduced at the dual lattice sites. The statistical correlation function
of the disorder variables, then, is introduced by the prescription [30]

〈μ(n∗)μ(m∗)〉 =
∑
{σ }

e−HC [σ ], (9.16)

where the sum on {σ } runs over all spin configurations σ(n) = ±1,∀n and HC [σ ]
is given by H [σ ] in (9.15), with the modification that the sign of the coupling J is
reversed along an arbitrary path connecting the points n∗ and m∗ in the dual lattice.
Notice that a curve on the dual lattice crosses links connecting nearest neighbors
of the original lattice.

We can write

HC [σ ] =
{

H [σ ] 〈i j〉 �∈ C
−H [σ ] 〈i j〉 ∈ C

, (9.17)

where 〈i j〉 are arbitrary pairs of nearest neighbors on the square lattice. The corre-
lation functions (9.16) are the Euclidean discrete time version of the corresponding
disorder operators, which for real continuum time are given by (9.10).

A fundamental feature of this correlation function is that it is independent of
the curve C , just depending on the dual lattice sites n∗ and m∗ where the disorder
variables are located. This can be demonstrated by making a change of summation
variables σ(n) → −σ(n) inside a region R, the boundary of which is the closed
curve � formed by C and another arbitrary curve C ′: � = C − C ′. Since the sum∑
{σ } is clearly invariant under the change of variable above, it follows that

〈μ(n∗)μ(m∗)〉C = 〈μ(n∗)μ(m∗)〉C ′, (9.18)

for arbitrary curves C and C ′.

Figure 9.1 Arbitrary curve C connecting the points n∗ and m∗ on the dual lattice.
The coupling sign is reversed for neighbors adjacent to the curve.
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Figure 9.2 Arbitrary curves C and C ′ connecting the points n∗ and m∗ form the
boundary of the region R

The crucial feature of this construction, however, manifests itself when we
evaluate mixed correlation functions, namely

〈μ(n∗1)σ (m1)μ(n
∗
2)σ (m2)〉 =

∑
{σ }

e−HC [σ ]σ(m1)σ (m2). (9.19)

Now, when performing the change of summation variables inside the region R,
in order to prove the path independence, we find a sign ambiguity, depending on
whether σ(m1), σ (m2) or both belong to R. This sign ambiguity, found in the
classical Euclidean correlator, is precisely the manifestation of the dual algebra
(9.9), satisfied by the fully quantized operator counterparts of the classical variables
σ(n) and μ(n∗). The different sign possibilities correspond to different operator
orderings.

We will see that this wonderful property is shared by the Feynman functional
integral formulation and we shall explore it in order to obtain a full quantum-
mechanical formulation for arbitrary topological excitations in quantum field
theory.

9.3 Quantum Field Theory of Z(N ) Solitons

Dual Algebra

We will introduce the subject for the case of a complex scalar field with a global
Z(N ) symmetry in one-dimensional space. Later on, we will extend the method to
a completely general case.

The Lagrangean could be given by (8.31), for instance, which is invariant under
(8.32). We also assume the soliton creation operator μ(x, t) satisfies the dual
algebra
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μ(x, t)φ(y, t) =
{

ei2π/N φ(y, t)μ(x, t) y > x
φ(y, t)μ(x, t) y < x .

(9.20)

Z(N ) Quantum Soliton Correlation Functions: Derivation

Our purpose is to obtain a full quantum field theory of topological excitations, even
though we do not know the appropriate Lagrangean for these degrees of freedom.
In Chapter 6, we saw that for reaching this goal, it is sufficient to know all the field
operator quantum correlation functions. Inspired in the construction of Kadanoff
and Ceva described in the previous subsection, therefore, we are going to derive
a general method for obtaining the correlation functions of the μ(x, t)-operator,
introduced in the theory described by a Lagrangean of the type (8.31) through the
algebra (9.20), thereby fulfilling our goal.

We are going to use the fundamental features of the Kadanoff and Ceva con-
struction as our guiding principle; namely, deformation of the Euclidean action
along an arbitrary path connecting the points where the topological excitations are
located, and path-independence of the corresponding correlation functions. In the
case of mixed correlation functions, there must be an ambiguity, which reflects the
dual order-disorder algebra in the framework of the Euclidean functional integral
formalism.

Let us take the vacuum functional

Z0 =
∫

DφDφ∗ exp

{
−
∫

d2z
[
∂μφ∗∂μφ + V (φ, φ∗)

]}
(9.21)

and deform it in the following way [32, 43]:

∂μ −→ Dμ = ∂μ + iα Ãμ(z;C(x, y)), (9.22)

where

Ãμ(z;C(x, y)) =
∫ y

x,C
dξνε

μνδ2(z − ξ) (9.23)

and α = 2π
N . Then, the topological excitation correlation function will be

〈μ(x)μ†(y)〉 = Z−1
0

∫
DφDφ∗ exp

{
−
∫

d2z
[
(Dμφ)∗Dμφ + V (φ, φ∗)

]}
.

(9.24)

In order to prove that the above expression does not depend on the curve C , con-
sider a region R of two-dimensional Euclidean space bounded by the closed curve
� = C − C ′, where C ′ is an arbitrary curve also connecting x and y. We then
introduce the two-dimensional Heaviside function

θ(R) =
{

1 z ∈ R
0 z �∈ R. (9.25)
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The derivative of this is given by

∂μθ(R) = −
∮
�=C−C ′

εμνdξνδ
2(z − ξ) = Ãμ(z;C ′(x, y))− Ãμ(z;C(x, y)).

(9.26)

Let us take (9.24) and perform the transformation

φ(x)→ eiαθ(R)φ(x). (9.27)

This would produce the following change in Ãμ(z;C(x, y)):

Ãμ(z;C(x, y))→ Ãμ(z;C(x, y))+ ∂μθ(R) = Ãμ(z;C ′(x, y)),

(9.28)

where we used (9.26) in the last step.
Since the integration measure as well as the potential are invariant under the

transformation (9.27), the only effect of such is to replace the curve C for an
arbitrary curve C ′. This establishes the fact that (9.24) does not depend on the
curve C .

Consider now the mixed correlation function

〈μ(x1)φ(x2)μ
†(y1)φ

†(y2)〉 = Z−1
0

∫
DφDφ∗

× exp

{
−
∫

d2z
[
(Dμφ)∗Dμφ + V (φ, φ∗)

]}
φ(x2)φ

∗(y2). (9.29)

Now, when performing the transformation (9.27), in order to prove path indepen-
dence, we will have extra e±i 2π

N -factors, in case the points x2 or y2 belong to the
region R. We see that the mixed correlation function above has a phase ambigu-
ity, which is precisely a manifestation of the dual algebra (9.20) in the Euclidean
functional integral, the different phase corresponding to different orderings of the
operators in the left-hand side.

Z(N ) Quantum Soliton Creation Operator

From (9.24), we may extract the form of the soliton creation operator by using the
principle that averages are obtained through functional integration with the weight
e−S . Apart from a renormalization term (quadratic in Ãμ), the weighed quantity
contains a linear in Ãμ term. From this we get

μ(x)μ†(y) = exp

{
i
∫

d2z jμ Ãμ(z;C(x, y))

}
. (9.30)

Inserting the external field and the complex scalar field current, and observing that

Ãμ(z;C(x, y)) = Ãμ(z;C(x,∞))− Ãμ(z;C(y,∞)), (9.31)
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we may express the soliton operator as

μ(x, t) = exp

{
2π

N

∫ ∞

x,C
dz[φ∗∂tφ − φ∂tφ

∗](z, t)
}
, (9.32)

where we choose the curve along the spatial axis. In terms of the momenta
canonically conjugated to the fields φ and φ∗, this can be written as

μ(x, t) = exp

{
2π

N

∫ ∞

x,C
[φ∗(z, t)π∗(z, t)− φ(z, t)π(z, t)]dz

}
. (9.33)

From this, using the equal-times canonical commutation relations

[φ(x, t), π(y, t)] = [φ∗(x, t), π∗(y, t)] = iδ(x − y) (9.34)

and the Baker–Hausdorff relation

eA Be−A = B + [A, B] + 1

2
[A, [A, B]] + . . . , (9.35)

we obtain

μ(x, t)φ(y, t) = exp

{
i
2π

N
θ(y − x)

}
φ(y, t)μ(x, t), (9.36)

which is precisely the dual algebra (9.20).
The final confirmation that we have indeed succeeded in obtaining a quantum

soliton creation operator would be the demonstration that μ creates eigenstates of
the topological charge operator. According to (8.36), this is given by

Q = N

2π

∫
dz∂zθ. (9.37)

Now, using the polar representation of φ in (9.32),

μ(x, t) = exp

{
2π

N

∫ ∞

x,C
dzπθ(z, t)

}
, (9.38)

where πθ = ρ2∂tθ is the momentum canonically conjugate to θ .
Again, using the Baker–Hausdorff formula, we can easily show that

Qμ(x, t)|0〉 = μ(x, t)Q|0〉 −
∫ ∞

−∞
dz
∫ ∞

x
dξ ∂ξ δ(z − ξ) μ(x, t)|0〉

Qμ(x, t)|0〉 = μ(x, t)|0〉, (9.39)

where we used the fact that the vacuum is a zero charge eigenstate.
We see the operator μ creates eigenstates of the quantum topological charge

operator Q, with eigenvalue equal to one. Our method of obtaining a full quan-
tum field theory of topological excitations, based on the order-disorder duality
was therefore successful. The soliton correlation functions are described by (9.24),
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which is nothing but the vacuum functional in the presence of the peculiar external
field Ãμ(z;C(x, y)). This is very convenient from the calculational point of view,
namely, standard procedures of quantum field theory allow for the calculation of
these correlation functions. Arbitrary, 2n-point functions, on the other hand, can be
straightforwardly obtained by just inserting additional external field in (9.24).

The Phase Diagram

Let us consider a complex scalar field described by the Lagrangean (8.31), with
N = 4, which is thus invariant under global Z(4) transformations. This can be
rewritten in terms of an auxiliary field σ that is Z(2) invariant but transforms into
−σ under Z(4), namely,

L = ∂μφ∗∂μφ − M2φ∗φ + σ
2

2μ
+ σ (φ2 + φ∗2

)− λ̃ (φ∗φ)2 − μ2

λ
. (9.40)

Integration over σ yields (8.31).
We want to determine the possible phases in which the system might exist and

subsequently explore the properties of the quantum solitons in each of these. For
this purpose, it is crucial to obtain the σ field properties. These are contained in the
σ -dependent part of the potential in (9.40). However, in order to make the picture
more faithful to reality, which is ultimately quantum-mechanical, we shall consider
the full effective potential instead of just the classical one. That was introduced in
Chapter 6 and allows the quantum corrections to be dealt with in the same way as
we deal with the classical part of the potential. The σ -field effective potential is
given by

Vef f (σ ) = V (σ )+ V(σ )

Vef f (σ ) = σ 2

2μ
− σ X − |σ |

8
+ M2

8π
ln
σ 2 + M4

M4
+ σ

4π
arctan

(
M2

σ

)
(9.41)

where X = (φ2 + φ∗2) and the quantum corrections are contained in V .
The σ -field equation then reads

X = σ
μ
+ ∂V
∂σ

X = 1

a

( σ
M2

)
−
[
π

2
− arctan

(
M2

σ

)]
, (9.42)

where a = μ

4πM2 .
We start looking for solutions with φ = 0 or, equivalently, with X = 0. For

a < 1, we can easily infer from the graphical solution in Fig. 9.3 that the only
possibility in this case will be σ = 0. The two real components of the complex
field, namely, φ = 1√

2
(φ1 + iφ2) then will have equal masses Mi = M , i = 1, 2.
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Figure 9.3 Graphical solution of Eq. (9.42) for X = 0: a < 1, left line; a > 1,
right line

For a > 1 and still with X = 0, we start to have a solution σ0 �= 0. Now, shifting
the field σ around its vacuum value, say +σ0, we modify the Mi , i = 1, 2 masses,
accordingly:

M2
1 = M2 + 2σ0 ; M2

2 = M2 − 2σ0. (9.43)

We see, therefore, that σ0 must remain restricted within the interval σ0 ∈ [0, M2

2 ] in
order to maintain the stability of the system. For σ0 > M2/2, the mass of one of the
components of the complex field, namely φ2, becomes imaginary. According to the
graphical solution, this phase will occur for a > κ = [π − 2 arctan 2]−1 � 1.0784.
Above this value of a, we would have necessarily X �= 0, and σ0 would remain
at the value M2/2. A phase with φ �= 0 consequently sets in for a > κ . In this
phase, the φ1-field mass will be M2

1 = 2M2. The φ2-field mass, conversely, will be
proportional to |X |.

In summary, the phase structure of the model will be: (I) an unbroken Z(4)
symmetry phase, with 〈φ〉 = 〈σ 〉 = 0, for a < 1; (II) a partially broken (Z(4) to
Z(2)) symmetry phase, with 〈φ〉 = 0; 〈σ 〉 �= 0 (< M2/2) for 1 < a < κ; (III) a
completely broken Z(4) symmetry phase, with 〈φ〉 �= 0; 〈σ 〉 = M2/2, for κ < a.

We now determine the large distance behavior of the quantum soliton correla-
tions function in each of these phases.
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Soliton Correlation Function

From (9.24), we see that the soliton correlation function is given by

〈μ(x)μ†(y)〉 = exp
{
�
[

Ãμ(x, y)
]}
, (9.44)

where �[Aμ] is the generator of proper vertices, introduced in Chapter 6, and
Ãμ(x, y) = Ãμ(x)− Ãμ(y), which was defined in (9.23).

We are interested in the large distance behavior of the soliton correlation func-
tion. This tells us a lot about the physical properties of quantum solitons. Indeed,
there is a theorem due to Araki, Hepp and Ruelle [48], stating that in general

〈μ(x)μ†(y)〉 |x−y|→∞−→ |〈μ〉|2 + exp {−E0|x − y|} , (9.45)

where E0 is the gap in the energy spectrum. The large distance behavior thus allows
us to get information not only about the phase structure but also about the mass
spectrum.

We have shown [39, 40] that only the two-point proper vertex contributes to the
large-distance behavior of the soliton correlator (9.44), consequently

�
[

Ãμ(x, y)
] |x−y|→∞→ 1

2

∫
d2zd2z′ Ãμ(z; x, y)�μν(z − z′) Ãν(z′; x, y)

= 1

2

∫
d2q

(2π)2
Ãμ(q; x, y)

[
q2δμν − qμqν

q2

]
�(q) Ãν(−q; x, y), (9.46)

where

Ãμ(q; x, y) =
∫ y

x,C
dξνε

μνeiq·ξ (9.47)

is the Fourier transform of the external field given by (9.23), and �μν is the two-
point proper vertex, the vacuum polarization tensor.

Inserting the external field in (9.46) and noting that

q2δμν − qμqν = εμα∂αενβ∂β, (9.48)

we get, after performing the angular integration in (9.46),

�
[

Ãμ(x, y)
] |x−y|→∞→ 1

2π

∫ ∞

0

dq

q
[1− J0(q|x − y|)]�(q), (9.49)

where J0 is a modified Bessel function.
Only �(q = 0) contributes to the large distance regime of �(x − y), because

lim|x |→∞
1− J0(q|x |)

q2|x | = δ(q); (9.50)
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hence, we can write

�(|x − y|) |x−y|→∞→ �(0)

2π

∫ ∞

0

dq

q

[
1− J0(q|x − y|)] . (9.51)

The integral above can be evaluated with the help of an ultraviolet cutoff  ,
yielding − ln |x − y| − ln . The cutoff can be eliminated by a multiplicative
renormalization of the soliton field, namely,

μR(x) = μ(x) �(0)
4π . (9.52)

The renormalized soliton correlation function is, then, given by the |x − y|-
dependent part:

〈μ(x)μ†(y)〉R
|x−y|→∞→ 1

|x − y|�(0)2π

. (9.53)

Soliton Correlation Function: The Unbroken and Partially Broken Phases

The scalar �(0) is given by the graphs of Fig. 9.5. Denoting by M1 and M2 the
masses of the two real fields that compose the complex field φ, we have [33, 34],

�(0) = 1

4π

{
ln M2

1 M2
2 − 2

∫ 1

0
ln
[
M2

1 x + M2
2 (1− x)

]}
. (9.54)

Notice that this vanishes for M1 = M2. For M1 �= M2 we have

�(0) = 1

2π

[
1− 1

2

M2
1 + M2

2

M2
1 − M2

2

ln
M2

1

M2
2

]
. (9.55)

In the partially broken phase, where 〈σ 〉 �= 0, we have M1 �= M2, according to
(9.43). Then it follows that �I I (0) �= 0, as can be inferred from the expression
above.

Conversely, in the unbroken phase, where 〈σ 〉 = 0, we see from (9.43) that
M1 → M2. Then, we see from (9.54) that �(0)→ 0 in this limit. In the unbroken

Figure 9.4 Diagrams contributing to the large distance behavior of the soliton
correlation function. Phase I
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Figure 9.5 Diagrams contributing to the large distance behavior of the soliton
correlation function. Phase II

phase, we have, therefore, �I (0) = 0. These properties of �(0) have far-reaching
consequences for the quantum soliton physics. We immediately conclude from
(554a) that in Phase I, we have

〈μ(x)μ†(y)〉I
R
|x−y|→∞→ 1, (9.56)

implying 〈μ〉I = 1. This result signifies that the soliton operator does not create
genuine excitations in this phase.

In Phase II, conversely,

〈μ(x)μ†(y)〉I I
R
|x−y|→∞→ 1

|x − y|�I I (0)
2π

, (9.57)

with�I I (0) given by (9.54). This now implies 〈μ〉I I = 0, which means the soliton
operator now creates true physical excitations. The power-law behavior in this case
tells us these quantum solitons are massless.

Soliton Correlation Function: the Completely Broken Phase

We now turn to the completely broken phase, where 〈φ〉 = ρ0 �= 0. In this
phase we must shift the field around its vacuum expectation value, thereby gener-
ating the new vertices depicted in Fig. 9.5. The proper vertex function is modified
accordingly,

�
μν

I I I = �′μνI I + δμν
M2ρ2

0

q2 + M2
, (9.58)

where �′μνI I is the same as in Phase II, but with the modification

�(q2)→ �(q2)+ ρ2
0

q2

q2 + M2
. (9.59)
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Figure 9.6 Diagrams contributing to the large distance behavior of the soliton
correlation function. Phase III

The added piece above vanishes at q = 0, hence it will not change the contribu-
tion to the large distance behavior of the soliton correlator. The last one in (9.58),
however, will. Inserting it in (9.46), we get

�I I I (x − y)
|x−y|→∞→ �I I (x − y)

−M2ρ2
0

2

∫ y

x,C
dξν

∫ y

x,C
dην

∫
d2q

(2π)2
eiq·(ξ−η)

q2 + M2
. (9.60)

The q-integral above yields a modified Bessel function K0(M |ξ − η|); therefore,
changing the integration variables to r = ξ − η, R = 1

2(ξ + η), we get

�I I I (x − y)
|x−y|→∞→ �I I (x − y)− M2ρ2

0

4π
|x − y|

∫ |x−y|

0
dr K0(Mr). (9.61)

The large distance behavior of the quantum soliton correlator in Phase III,
therefore, will be

〈μ(x)μ†(y)〉I I I
R

|x−y|→∞→ e−M|x−y|

|x − y|�I I (0)
2π

, (9.62)

where M = Mρ2
0

8 is the quantum soliton mass.

9.4 Quantum Field Theory of Vortices

Quantum Vortex Correlation Functions: Derivation

We consider now local U (1)-symmetric gauge field theories in d = 2 spatial
dimensions, with Lagrangean of the type
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L = −1

4
FμνFμν + (Dμφ)∗(Dμφ)− V (φ∗φ), (9.63)

where Dμ = ∂μ+ i e
�c Aμ, such as (8.38). Our purpose is to obtain a functional inte-

gral expression for the quantum vortex correlation functions, such that the (local)
vortex creation operator satisfies the dual algebra (9.6) and the states it creates out
of the vacuum are eigenstates of the topological charge operator (8.12) and (8.15),
which is the magnetic flux piercing the plane. For this, we will make use of the
same principles contained in the Kadanoff–Ceva construction.

Maxwell Theory

To begin with, let us consider just pure Maxwell theory. Even though the vortex
states shall be trivial in this case, we may still introduce the vortex operator and
evaluate its correlation functions. Following [38, 35], we write

〈μ(x)μ†(y)〉M = Z−1
0

∫
D Aμ exp

{
−
∫

d3z
1

4

[
Fμν + B̃μν

] [
Fμν + B̃μν

]}
,

(9.64)

where the external field is given by

B̃μν(x, y; L) = 2π
�c

e

∫ y

x,L
εμναδ3(z − ξ)dξα. (9.65)

In this expression, L is an arbitrary curve connecting the points x and y in
Euclidean space.

In order to show that the above correlation function is independent of the curve
L , let us note that for the case where L = L0 is a straight line going from (x, x3)

to infinity and returning to (y, y3) through another straight line, then the external
field B̃μν(x, y; L) will have just the spatial components i, j = 1, 2. We can write,
therefore, in this case,

B̃i j (x, y; L0) = �c

e

(
∂i∂ j − ∂ j∂i

)
αL0(z; x, y). (9.66)

Here,

αL0(z; x, y) = θ(z3 − x3) arg(z− x)− θ(z3 − y3) arg(z− y). (9.67)

The previous result follows from the fact that the function arg(z), being the imagi-
nary part of the analytic complex function ln z = ln |z| + i arg(z), must satisfy the
Cauchy–Riemann equation

εi j∂ j arg(z) = −∂ i ln |z|(
∂i∂ j − ∂ j∂i

)
arg(z) = −εi j∂2 ln |z| = 2πεi jδ(z). (9.68)
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It is clear that the δ-singularity of αL0(z; x, y) is located precisely on the curve
L0. It is not difficult to generalize αL0(z; x, y) → αL(z; x, y) in such a way that
that singularity lies at an arbitrary curve L , connecting x and y in 3d Euclidean
space.

Then we can express (9.65) in terns of αL(z; x, y) as follows,

B̃μν(x, y; L) = 2π
�c

e

∫ y

x,L
εμναδ3(z − ξ)dξα = �c

e

(
∂μ∂ν − ∂ν∂μ

)
αL(z; x, y).

(9.69)

Path independence of (9.64) follows immediately. Indeed, making a change of
functional integration variable

Aμ −→ Aμ + �c

e
∂μω(L

′, L), (9.70)

where ω(L ′, L) = αL ′(z; x, y)−αL(z; x, y), we conclude, using (9.69), that under
the above change of variable Fμν transforms as

Fμν −→ Fμν + B̃μν(x, y; L ′)− B̃μν(x, y; L), (9.71)

thus establishing the path independence of (9.64).

Abelian Higgs Model

We have found the method for obtaining quantum vortex correlation functions
in 2+1D Maxwell theory. This can easily be generalized for theories of the type
(9.63). Following the above procedure in order to obtain a path-independent vor-
tex correlation function, we now face a new situation when considering the mixed
correlator: 〈μ(x1)μ

†(y1)φ(x2)φ
†(y2)〉AH M . Now, the transformation (9.70) must

be accompanied by the corresponding transformation in the complex scalar field,
namely

φ(x) −→ exp

{
i

�
ω(L ′, L)

}
φ(x). (9.72)

According to (9.67), this would imply the mixed correlation function

〈μ(x1)μ
†(y1)φ(x2)φ

†(y2)〉AH M

is defined by a functional integral similar to (9.64), up to a phase

exp

{
i

�

[
arg(x1 − x2)− arg(x1 − y2)+ arg(y1 − y2)− arg(y1 − x2)

]}
depending on whether or not x2 and y2 belong to the region corresponding to
ω(L ′, L). This ambiguity is the expression, within the functional integral frame-
work, of the nontrivial commutation relations that exist between the vortex operator
μ(x) and φ(x), which in the present case must be
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μ(x, t)φ(y, t) = exp

{
i

�
arg(y− x)

}
φ(y, t)μ(x, t). (9.73)

We conclude that the vortex operator, defined by means of the above correlation
function, in a similar way as in the Kadanoff–Ceva construction, satisfies a dual
algebra with the Higgs scalar field operator φ.

Abelian Higgs Model: Gauge-Invariant Formulation

As it turns out, it will be much more convenient to work with a Lagrangean that
is in an explicitly gauge-invariant form, as the Maxwell Lagrangean is. Hence,
before applying the method in a theory such as the abelian Higgs model, let us
recast (9.63) in a form that is explicitly gauge-invariant.

For this purpose, let us use the polar representation of the complex scalar field,
φ = ρ√

2
eiθ . Inserting this in (9.63), we get

L = −1

4
FμνFμν + 1

2
ẽ2ρ2(Aμ + 1

ẽ
∂μθ)(Aμ + 1

ẽ
∂μθ)+ 1

2
∂μρ∂μρ − V (ρ),

(9.74)

where ẽ = e
�c . This is clearly invariant under the gauge transformation

Aμ→ Aμ + 1

ẽ
∂μ 

θ → θ − . (9.75)

We now introduce the new field

Wμ = Aμ + 1

ẽ
∂μθ

∂μWμ = 0, (9.76)

where, in the last step, we used the θ-field equation: �θ = −ẽ∂μAμ.
Using (9.76), we can rewrite (9.74) as

L = −1

4
WμνW

μν + 1

2
ẽ2ρ2Wμ

[−�δμν + ∂μ∂ν
−�

]
Wν + 1

2
∂μρ∂μρ − V (ρ),

(9.77)

or, equivalently,

L = −1

4
Wμν

[
1+ ẽ2ρ2

−�

]
Wμν + 1

2
∂μρ∂μρ − V (ρ), (9.78)

which is explicitly gauge invariant.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.010
https://www.cambridge.org/core


158 Quantum Topological Excitations

Now we are ready to apply the method developed for obtaining the vortex corre-
lation functions in the Maxwell theory. Using the same procedure employed there,
we write the quantum vortex correlation functions in the abelian Higgs model as

〈μ(x)μ†(y)〉AH M = Z−1
0

∫
DWμDρ exp

{
−
∫

d3z

×
[

1

4

[
Wμν + B̃μν

] [
1+ ẽ2ρ2

−�

] [
Wμν + B̃μν

]
+ 1

2
∂μρ∂μρ + V (ρ)

]}
,

(9.79)

where the external field B̃μν is given by (9.65).
Performing (9.70) and (9.71) to Wμ, we can promptly show the path indepen-

dence of (9.79). In what follows, after extracting from this expression the form of
the vortex creation operator, we evaluate its large distance behavior.

Vortex Creation Operators and Their Commutation Relations

From the above expression we may extract the explicit form of the vortex creation
operator, namely

μ(x) = exp

{
i
∫

d3z
1

2
B̃μν(x,∞; L)

[
1+ ẽ2ρ2

−�

]
Wμν

}
. (9.80)

The corresponding operator in Maxwell theory would be obtained by just making
ρ → 0 in the expression above. Inserting the external field B̃μν(x,∞; L), we get
both in the abelian Higgs model and in Maxwell theory

μ(x, t) = exp

{
i2π

�c

e

∫ ∞

x,L
dziεi j� j (z, t)

}
, (9.81)

where �i = ∂L/∂Ẇ i is the momentum canonically conjugate to W i , which
satisfies

[W i(x, t),� j (y, t)] = iδi jδ2(x− y). (9.82)

Now, let us prove that indeed the vortex operator creates eigenstates of the
topological charge operator

Q =
∫

d2zεi j∂ i W j (z, t). (9.83)

Using the relation

BeA = eA B + [B, A]eA, (9.84)

derived from (9.35) when [A, [A, B]] = [B, [A, B]] = 0, we immediately get

[Q, μ(x, t)] = 2π
�c

e
μ(x, t). (9.85)
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9.4 Quantum Field Theory of Vortices 159

Considering that for the vacuum state Q|0〉 = 0, the above relation implies that the
vortex quantum state |μ〉 = μ(x, t)|0〉 is an eigenstate of the topological charge
operator with eigenvalue equal to one vorticity unit, namely

Q|μ〉 = hc

e
|μ〉. (9.86)

It is very instructive to evaluate the commutator of the vortex operator with the
W i -field. Using (9.82) and (9.84), we readily obtain

[μ(x, t),W i (y, t)] = μ(x, t)2π �c

e

∫ ∞

x,L
dz jεi jδ2(z− y). (9.87)

The integral above can be written as

I = 2π
�c

e

∫ ∞

x,L
dz jεi jδ2(z− y) = �c

e

∮
Cx

dz jεi j arg(z− x)δ2(z− y), (9.88)

where we chose the contour going around the cut of the arg(z − x)-function and
closing at infinity. Then, using Stokes’ theorem, we have

I = �c

e

∫
T (Cx )

d2z∂ i
(z)

[
arg(z− x)δ2(z− y)

]

I = �c

e
∂ i
(y) arg(y− x)+ �c

e
arg(y− x)

∫
T (Cx )

d2z∂ i
(z)δ

2(z− y). (9.89)

The last integral vanishes when we remove the cutoffs; therefore we obtain, by
inserting (9.89) in (9.87),

μ(x, t)W i (y, t) =
[

W i (y, t)+ �c

e
∂ i
(y) arg(y− x)

]
μ(x, t). (9.90)

Using (9.76), we also infer that

μ(x, t)θ(y, t) = [θ(y, t)+ arg(y− x)
]
μ(x, t), (9.91)

or, equivalently, we derive Eq. (9.73).
The commutators of the μ-operator with the fields W i , θ and φ, along with the

fact that it creates topological charge eigenstates, inequivocally characterize it as
the quantum vortex creation operator. Notice that (9.73) is an example of (9.6),
thus also exhibiting the fact that the μ-operator satisfies a dual algebra with φ.

Quantum Vortex Correlation Functions: Evaluation

We now conclude our study of quantum vortices by explicitly evaluating their two-
point correlation functions in both phases of the theory.
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160 Quantum Topological Excitations

In the Higgs phase, ρ will develop a vacuum expectation value ρ0, consequently
generating a mass M = ẽρ0 to the gauge field Wμ. We may, therefore, expand ρ
around ρ0 in expression (9.79), thereby obtaining in the leading order

〈μ(x)μ†(y)〉AH M = Z−1
0

∫
DWμ exp

{
−
∫

d3z

× 1

4

[
Wμν + B̃μν

] [
1+ M2

−�

] [
Wμν + B̃μν

] }
,

= exp

{
 (x, y; L)−

∫
d3z

1

4
B̃μν

[
1+ M2

−�

]
B̃μν

}
,

(9.92)

where  (x, y; L) results from the quadratic functional integral over Wμ, namely

 (x, y; L) =1

8

∫
d3zd3z′ B̃μν(z)B̃αβ(z′)Pμνλ Pαβρ

×
[

1+ M2

−�

]
Dλρ(z − z′)

[
1+ M2

−�

]
, (9.93)

where Pμνλ = ∂μδνλ − ∂νδμλ and Dλρ(z − z′) is the massive gauge field propagator,
given by

Dλρ = δλρ

−�+ M2
+ gauge terms. (9.94)

Now, inserting (9.65) in (9.93), considering that[
1+ M2

−�

] [
1

−�+ M2

] [
1+ M2

−�

]
= 1

−�

[
1+ M2

−�

]
(9.95)

and introducing

F(z − z′) =
(

2π
�c

e

)2 [ 1

−� + M2

(−�)2
]
, (9.96)

we get four identical terms given by∫ ∞

xa
dξ i
∫ ∞

xb
dη j

[
−�δi j − ∂ i

(ξ)∂
j
(η

]
F(ξ − η). (9.97)

In view of (9.95), we see that the first term above exactly cancels the quadratic
B̃μν-term in (9.92). We are left, therefore, with

〈μ(x)μ†(y)〉AH M = exp

⎧⎨
⎩−1

2

2∑
i j=1

λiλ j F(xi − x j )

⎫⎬
⎭ = exp {F(x − y)− F(ε)} ,

(9.98)

where ε is a short-distance (ultraviolet) regulator.
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Now, we use the inverse Fourier transforms

F−1

[
1

−�

]
= 1

4π |x |
F−1

[
M2

(−�)2
]
= lim

m→0

M2

4π

[
1

m
− |x |

2

]
, (9.99)

where m is an infrared regulator introduced in order to make the inverse Fourier
transform of (−�)−2 meaningful.

Using the above result in (9.96) and inserting in (9.98), we immediately see that
the m-regulator cancels out and completely disappears from the vortex correlation
function. This is so because this correlator preserves the vortex topological number
selection rule. If we should calculate a vortex number violating correlation function
such as 〈μμ〉 or 〈μ†μ†〉, we would have, instead of (9.98) (λ1 = λ2),

〈μ(x)μ(y)〉AH M = 〈μ†(x)μ†(y)〉AH M = exp {−F(x − y)− F(ε)} . (9.100)

Then, the regulator m would no longer cancel. Rather, it would provide an overall
term that would force these correlators to vanish:

〈μ(x)μ(y)〉AH M = 〈μ†(x)μ†(y)〉AH M ∝ exp

{
− M2

ẽ2m

}
m→0−→ 0. (9.101)

Notice, however, that this only happens in the phase where M �= 0 and,
consequently ρ0 �= 0 and 〈φ〉 �= 0.

We still have left the ultraviolet regulator, ε. This may be eliminated by
renormalizing the vortex field as

μR(x) = exp

{
F(ε)

2

}
μ(x). (9.102)

Then, we finally get the renormalized vortex correlation function

〈μ(x)μ†(y)〉R
AH M = exp

{
−M|x − y| + 1

2ẽ2|x − y|
}
, (9.103)

where M = π
2 (

M
ẽ )

2 = πρ2
0

2 .
Considering the fact that, at large distances, according to Araki’s theorem [48]

(9.104),

〈μ(x)μ†(y)〉R
AH M

|x−y|→∞−→ |〈μ〉|2, (9.104)

it follows from (9.103) that, whenever 〈φ〉 �= 0 (and consequently M �= 0), then
〈μ〉 = 0. Conversely, if 〈μ〉 �= 0, the same theorem [48] then implies that 〈φ〉 = 0
(and consequently M = 0). We can see here the duality relation existing between
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162 Quantum Topological Excitations

the vortex field operator and the Higgs field, manifested in a very clear way though
the form of the quantum vortex correlation functions. The existence of genuine
quantum vortex excitations requires a phase in which the Higgs field possesses
a nonzero vacuum expectation value. In such a phase, the quantum vortex state
|μ〉 will be orthogonal to the vacuum and there will be a mass gap separating
the minimum vortex energy from the vacuum energy, namely, the vortex mass,
given by

M = πρ
2
0

2
. (9.105)

9.5 Quantum Field Theory of Magnetic Monopoles

Quantum Magnetic Monopoles Correlation Functions: Derivation

Let us establish now the quantum field theory of magnetic monopoles. We take as
a basic theory the non-abelian version of the Higgs model, given by (8.50), (8.51)
and (8.52), having a local SO(3) symmetry, also known as the Georgi–Glashow
model. It is convenient to define

Aμ = Aa
μT a Dμ = ∂μI+ ig Aμ

Fμν = ∂μAν − ∂ν Aμ + ig[Aμ, Aν] = Fa
μνT

a, (9.106)

in terms of the group generators T a . Under a gauge transformation G = eiωa T a
, we

have

Aμ −→ G−1 AμG + i

g
G−1∂μG

Fμν −→ G−1 FμνG. (9.107)

Our main purpose is to derive a general expression for the magnetic monopole
quantum correlation functions. For this, we are going to follow again the guide-
lines inspired on the Kadanoff–Ceva construction for disorder variable correlation
functions [30], as we did for vortices in the abelian case. First of all, let us recast
the second term in (8.50) in terms of the field intensity tensor, as we did in that
case. We have

(Dμ�)
a(Dμ�)a = tr(Dμ�)

T (Dμ�). (9.108)

We can express the Higgs field in “polar” form, in terms of the scalar fields ρa, θa:

�a = 1√
2
Habρb Hbc = [eiθa T a]bc

. (9.109)

Inserting this in (9.108), we may write
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9.5 Quantum Field Theory of Magnetic Monopoles 163

tr(Dμ�)
T (Dμ�) = trρTH−1

(
∂μI+ ig Aμ

)
HH−1

(
∂μI+ ig Aμ

)
Hρ + 1

2
∂μρ

a∂μρa

= 1

2
g2ρ2tr

(−i

g
H−1∂μH+H−1 AμH

)

×
(−i

g
H−1∂μH+H−1 AμH

)
+ 1

2
∂μρ

a∂μρa,

≡ 1

2
g2ρ2trWμWμ + 1

2
∂μρ

a∂μρa, (9.110)

where ρ2 = ρaρa , and we introduced

Wμ = −i

g
H−1∂μH+H−1 AμH.

Now, using the fact that ∂μWμ = 0, we can re-write

1

2
g2ρ2trWμWμ = 1

2
g2ρ2trWμ

[−�δμν + ∂μ∂ν
−�

]
Wν. (9.111)

Adding and subtracting a term

1

2
g2ρ2trWμ

[
δμν (W αW α − ∂αW α)

−�

]
Wν, (9.112)

we finally get

1

2
g2ρ2trWμWμ = −1

4
trWμν

[
g2ρ2

�

]
Wμν, (9.113)

where

Wμν = ∂μWν − ∂νWμ + ig[Wμ,Wν] ≡ W a
μνT

a.

Consequently, we may write the Lagrangean (8.50) in the convenient form

L = −1

4
W a
μν

[
1+ g2ρ2

�

]
W aμν + 1

2
∂μρ

a∂μρa + V (ρ2). (9.114)

We are now ready for obtaining a general expression for the magnetic monopole
correlation functions. Following the same procedure adopted before, we have

〈μ(x)μ†(y)〉N AH M =
Z−1

0

∫
DW a

μ exp

{
−
∫

d4z

[
1

4

[
Wμνa + B̃μνa

] [
1+ g2ρ2

−�

] [
Wμνa + B̃μνa

]
+1

2
∂μρa∂μρ

a + V (ρ2)

]}
,

(9.115)
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where the external field is now given by

B̃μνa(x, y; L) = 4π

M

∫ y

x,L
dξαε

αμνaδ4(z − ξ), (9.116)

where M = gρ0 is the gauge field mass. If we choose the integration path along a
straight line going from −∞ to (x, x4) and returning to −∞ from (y, y4) through
another straight line, the external field B̃μν(x, y; L) will have just the spatial
components i, j = 1, 2, 3.

We show below that we can write, in this case,

B̃i ja(x, y; L0) = 1

M

(
∂i∂ j − ∂ j∂i

)
ωa

L0
(z; x, y), (9.117)

where

ωa
L0
(z; x, y) = θ(x4 − z4)ωa

L0
(z;−∞, x)− θ(y4 − z4)ωa

L0
(z;−∞, y)

(9.118)

with

ωa
L0
(z;−∞, x) = 1− cos θ

r sin θ
ϕ̂a. (9.119)

In the above expression, θ and ϕ are the angles of the spherical coordinate system
centered at x.

The vector function ωa exhibits the property

εi jk∂ jω
k(r) = ∂ i

(
1

|r|
)

εi jk∂i∂ jω
k(r) = −∇2

(
1

|r|
)
= 4πδ3(r), (9.120)

being therefore the classic magnetic monopole vector potential.
In terms of the line integral along the singularity at θ = π , we have

εi jk∂i∂ jω
k(r) = 4π

∫ (x4,r)

−∞,L0

dx4δ4(z − r). (9.121)

Then (9.117) immediately follows. Thereafter, we can generalize ωa
L0
(z; x, y) →

ωa
L(z; x, y), in such a way that that singularity lies at an arbitrary curve L ,

connecting x and y in Euclidean space; thereby we obtain (9.116).
We may establish the path independence of the monopole correlation function

(9.115) by making the functional integral change of variable
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W a
μ −→ W a

μ +
1

gρ0
∂μω

a(L ′, L),

W a
μT a −→ G−1

[
W a
μ +

1

gρ0
∂μω

a(L ′, L)

]
T aG, (9.122)

where ωa(L ′, L) = ωa
L ′(z; x, y) − ωa

L(z; x, y) and G = eiωa T a
. Under this

transformation, we have

FμνaT a −→ G−1
[

Fμνa + B̃μνa(x, y; L ′)− B̃μνa(x, y; L)
]

T aG, (9.123)

thus establishing the path independence of (9.115).

Magnetic Monopoles Creation Operator and Its Commutation Relations

We now obtain the explicit expression for the quantum magnetic monopole creation
operator. From (9.115), we conclude that this is given by

μ(x) = exp

{
i
∫

d4z
1

2
B̃μνa(x,∞; L)

[
1+ g2ρ2

−�

]
Wμνa

}
. (9.124)

Inserting the external field B̃μνa(x,∞; L) given by (9.116), we can write the
monopole operator as

μ(x, t) = exp

{
i

4π

eρ0

∫ ∞

x,L
dzkεkia�a

i (z, t)
}
, (9.125)

where �a
i = ∂L/∂Ẇ ia is the momentum canonically conjugate to W ia , satisfying

the canonical commutation relation

[W a
i (x, t),�

b
j (y, t)] = iδi jδabδ3(x− y). (9.126)

We must now demonstrate that indeed the μ-operator creates, out of the vac-
uum, eigenstates of the magnetic charge operator given by (8.56) and (8.57). Using
(9.84) and writing μ = eA, we have

[∇ i Bi , A] = 4π

g

∫ x

−∞
dzlεi jk∂ jε

lrb[W a
k (y, t),�

b
r (z, t)]∇ i φ

a

ρ0
. (9.127)

Then, using (9.126) and the fact that the magnetic charge operator is

QM =
∫

d3 y∇ i Bi (y), (9.128)

we get

[QM , A(y, t)] = 4π

g
, (9.129)

where we used the fact that ∇ i φ̂i = 1, for φ̂ = r̂.
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It follows immediately that

[QM , μ(y, t)] = 4π

g
μ(y, t), (9.130)

hence

QM |μ〉 = 4π

g
|μ〉, (9.131)

as it should.

Quantum Magnetic Monopole Correlation Functions: Evaluation

Let us now evaluate the quantum magnetic monopole correlation function. Starting
from (9.115) and just retaining the external-field-dependent terms as well as the
ones that are quadratic in the gauge field, we can write

〈μ(x)μ†(y)〉N AH M = Z−1
0

∫
DW a

μ exp

{
−
∫

d4z

[
1

2
W a
μ

[
(−�+ M2)δμν + ∂μ∂ν]

×W a
ν

[�+ M2

�

]
Pμνλ W a

λ B̃μνa + gεabc

[�+ M2

�

]
W b
μW c

ν B̃μνa

+ 1

4
B̃μνa

[�+ M2

�

]
B̃μνa + . . .

]}
, (9.132)

where Pμνλ = ∂μδνλ − ∂νδμλ .
Expanding the exponential of the second and third terms above, we shall get

products of the two-point functions 〈W a
μW b

ν 〉, according to the Wick theorem. We
call the last term above T3. The second one yields

T1 = 6α2
∫ y

x
dξμ

∫ y

x
dην

[−�δμν + ∂μ∂ν] [ 1

� + M2

�2

]
, (9.133)

whereas the third one gives

T2 = 18

π2
g2α2ρ4

0

∫ y

x
dξμ

∫ y

x
dηνδ

μν 1

�2
, (9.134)

where α = 4π
M .

The first term in T1 exactly cancels the last term in (9.132), namely T3 and the
remaining one gives

T1 + T3 = 12α2[F(x − y)− F(0)]
F(x) = F−1

[
1

� + M2

�2

]
= 1

4π2|x − y|2 −
M2

8π2
ln |x − y|. (9.135)
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In T2, making the change of integration variables (ξ, η) → (R, r), where r =
ξ − η and R = 1

2(ξ + η), and using the Fourier representation of 1
�2 , we get, after

integration over R and r :

T2 = −
(

36

π3

)(
4π

g2ρ2
0

)
g2ρ4

0

M
|x − y|. (9.136)

Collecting all the terms back in the exponential and using the fact that M = gρ0,
we finally obtain for the renormalized quantum monopole correlation function,

〈μ(x)μ†(y)〉R
N AH M = exp

{
− 36

π3

(
4πM

g2

)
|x − y|

−24 ln |x − y| + 48

M2|x − y|2
}
. (9.137)

From the exponential decay, we may infer that the quantum monopole mass is
given by

Mmon = 36

π3

(
4πM

g2

)
= 1.161

(
4πM

g2

)
. (9.138)

Notice that this satisfies the bounds (8.63) imposed on the classical monopole
energy.

Recalling (9.45), observe that for 〈φ〉 �= 0(M �= 0), it follows that 〈μ〉 = 0.
Conversely, if 〈μ〉 �= 0, then, we would have M = 0(〈φ〉 = 0). The phase with
both 〈φ〉 = 0 and 〈μ〉 = 0 apparently is not realized in this case.
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10

Duality, Bosonization and Generalized Statistics

We have seen in the previous chapter how the existence of an order-disorder duality
structure allows the obtainment of a full quantum theory of topological excitations.
In the present chapter, conversely, we will see how the same structure is at the
very roots of a method by which one can generate, out of bosonic fields, new com-
posite fields with different statistics, either fermionic or generalized. In the first
case, the method is usually called bosonization and allows a full description of
fermions within the bosonic theory, whereas in the second, the method provides
a complete description of anyons, as the particles with generalized statistics have
been called [59], also in the framework of the bosonic theory. From their incep-
tion, both bosonization and the construction of fields with generalized statistics
are deeply related to the order-disorder duality structure, since both fermion and
anyon fields can be expressed as products of order and disorder operators, which
respectively carry charge and topological charge [31, 32, 45]. The statistics of the
resulting composite field, then, is proportional to the product of the charge and
topological charge borne by this field. In this chapter we will expose the basic fea-
tures of bosonization, as well as its relation with generalized statistics, and apply it
to different quantum field theory systems in D = 2, 3 and 4, thereby verifying it is
an extremely powerful tool for solving interacting field theories. Indeed, in some
cases, this method can lead to the exact solution of highly nonlinear systems.

10.1 The Symmetrization Postulate and Its Violation: Bosons, Fermions and
Anyons

Physical systems most frequently possess identical objects. Such is the case,
for instance, of electrons, photons, phonons, etc. Also billiard balls, perhaps.
The description of identical objects, however, changes dramatically according to
whether we use a classical or quantum-mechanical approach. In the first case, one
can always distinguish identical objects because we can follow their trajectories,
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10.1 The Symmetrization Postulate and Its Violation 169

whereas in the second case, this is no longer possible. Indeed, within a quantum-
mechanical framework the wave-functions of different identical particles may
overlap, thus causing us at the end of a physical process, to completely loose track
of which particle corresponds to each of the initial ones.

Stating it more precisely, suppose a quantum-mechanical system possesses one-
particle states |ϕn〉, n = 0, 1, 2, . . . An N-particle state would belong to the direct
product Hilbert space,

|ϕn1(1)ϕn2(2) . . . ϕnN (N )〉 = |ϕn1(1)〉 ⊗ |ϕn2(2)〉 ⊗ . . .⊗ |ϕnN (N )〉. (10.1)

Now, the new states obtained by making arbitrary permutations of the N identical
particles are, physically, precisely the same in spite of the fact that they are mathe-
matically completely different. Indeed, there are infinitely many inequivalent state
vectors corresponding to exactly the same physical situation. These are given by

N !∑
α=1

CαPα{1, 2, . . . , N }|ϕn1(1)ϕn2(2) . . . ϕnN (N )〉, (10.2)

where Cα are arbitrary complex coefficients and Pα{1, 2, . . . , N }, permutations in
the set {1, 2, . . . , N }.

In order to select the physical states out of these infinitely many possibilities, the
foundations of quantum mechanics were supplemented by the symmetrization pos-
tulate. According to this, only the completely symmetric and anti-symmetric states
correspond to physical situations in nature. For these states we have, respectively,
Cα = 1√

N ! , α = 1, 2, , N ! or Cα = (−1)π(α) 1√
N ! , α = 1, 2, , N !, where π(α), the

parity of the permutation, is 2n or 2n+1, according to whether the number of trans-
positions performed by the permutation Pα{1, 2, . . . , N } is even or odd. The only
two possible N-particle physical states, according to the symmetrization postulate
are thus

|ϕn1(1)ϕn2(2) . . . ϕnN (N )〉S =
1√
N !

N !∑
α=1

Pα{1, 2, . . . , N }|

× ϕn1(1)ϕn2(2) . . . ϕnN (N )〉 (10.3)

or

|ϕ0(1)ϕ1(2) . . . ϕk(N )〉A

= 1√
N !

N !∑
α=1

(−1)π(α)Pα{1, 2, . . . , N }|ϕn1(1)ϕn2(2) . . . ϕnN (N )〉. (10.4)

It turns out that the state |ϕn1(1)ϕn2(2) . . . ϕnN (N )〉S is symmetric under the
exchange of any two particles, whereas the state |ϕn1(1)ϕn2(2) . . . ϕnN (N )〉A is
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170 Duality, Bosonization and Generalized Statistics

anti-symmetric. The occupation number of each particle state of the latter is, con-
sequently, ni = 0, 1, while of the former is ni = 0, 1, 2, 3, . . . This implies the
particles satisfy, respectively, Fermi–Dirac and Bose–Einstein statistics, being in
each case, respectively, fermions or bosons.

Admitting that the |ϕn〉 particle states are obtained by the action of a creation
operator on the vacuum state, namely,

|ϕn1(1)ϕn2(2) . . . ϕnN (N )〉A,S = a†
n1

a†
n2
. . . a†

nN
|0〉, (10.5)

it follows immediately that the creation operators must either commute or anti-
commute, respectively, for bosons and fermions, or

a†
ϕi

a†
ϕ j
= (−1)2sa†

ϕ j
a†
ϕi
, (10.6)

where the statistics s satisfies 2s ∈ N, being an integer for bosons and a half-integer
for fermions. We have already seen examples of such operators in Chapters 2, 3 and
4, for electrons and phonons. A remarkable and unexpected result, demonstrated by
Pauli on very general hypotheses, is the spin-statistics theorem. According to this,
particles with an integer spin quantum number j (S2 = j ( j+1)�2) correspond to a
symmetric state vector and commuting creation operators, being therefore bosons,
while particles with a half-integer spin correspond to an anti-symmetric vector
state and anticommuting operators, being therefore fermions. In other words, the
theorem states that s = j .

The fact that the spin quantum number can only be an integer or half-integer is a
consequence of the algebra of generators of the rotation group in 3D. This implies
we can reach all states of a multiplet spanning an irreducible representation of this
group, namely | jm〉,m = − j, . . . ,+ j by an integer number of steps, hence 2 j is
an integer and, consequently, the spin quantum number j (and also the statistics
s) is an integer or half-integer. Consequently, we will only have either bosons or
fermions in d = 3.

Surprisingly, when the number of spatial dimensions is less than three, the sym-
metrization postulate is violated. A first indication of that is the fact that in d = 2,
the rotation group is abelian, hence there is no algebra of generators and the spin
can be any real number: j ∈ R. In d = 1, conversely, there is no rotation subgroup
of the Lorentz group, but still, there is a real number j , called “Lorentz spin,” that
determines how the states transform under Lorentz transformations. We now show
that the statistics s of particle states corresponding to the spin j , accordingly, can
be any real number in d = 1, 2, thus violating the symmetrization postulate. In
order to see this, suppose the operators in (10.5) are fields ψ†(r) creating particles
in position eigenstates. Then we can cast (10.6) in the form

ψ†(x)ψ†(y) = ei2sπψ†(y)ψ†(x). (10.7)
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10.1 The Symmetrization Postulate and Its Violation 171

Let us consider first the case when d = 1. If we commute once more the opera-
tors on the right-hand side, we arrive at the same expression on the left-hand side,
multiplied by ei2s·2π . Thus, for consistency, we must have ei2s·2π = 1, hence an
operator algebra such as (10.7) would only admit 2s ∈ N.

It follows that, if we want to preserve the s = j relation by allowing arbitrary
real values for 2s, we must modify the commutation relation above in such a way
that the inconsistency is removed. This can be achieved by changing the phase sign
whenever we exchange x ↔ y, namely (in d = 1)

ψ†(x)ψ†(y) = ei2sπ ε(y−x)ψ†(y)ψ†(x), (10.8)

where ε (y − x) is the sign function. Now the statistics s can be any real number
as well.

Now we switch to the d = 2 case. We must find a generalization of (10.8)
appropriate for this dimension of space. The guideline for this is that the sign of
the phase must change when we exchange x ↔ y. Using the fact that

arg(y− x) = arg(x− y)+ πε (π − arg(x− y)) , (10.9)

we obtain the following generalization of (10.8), valid in d = 2:

ψ†(x)ψ†(y) = exp {i2sπ ε (π − arg(x− y))}ψ†(y)ψ†(x). (10.10)

The statistics factor s, again, can be any real number.
Let us consider now the case d = 3. For this, the function generalizing arg(x−y)

is the solid angle �
(
Cy; x

)
comprising the point x and a curve Cy, which we take

as a circle centered at y and belonging to a plane perpendicular to the z-axis in a
coordinate system centered at x. Indeed, the relation that generalizes (10.9) is

�
(
Cy; x

) = �(Cx; y)+ 2πε
(
2π −� (Cy; x

))
. (10.11)

The corresponding commutation rule (in d = 3) would be

ψ†(Cx)ψ
†(Cy) = exp

{
i2sπ ε

(
2π −� (Cy; x

))}
ψ†(Cy)ψ

†(Cx). (10.12)

The results above have far-reaching implications. They imply that in three-
dimesional space, it would be possible to define an arbitrary statistics s ∈ R, but
only for nonlocal fields ψ†(Cx), creating strings along the curve Cx as described
above. Notice, then, that a local limit of the field (ψ(Cx)→ ψ(x)) can be obtained
by shrinking the curve to its central point Cx → x. In this limit, however, the solid
angles collapse to zero, the phase factor in (10.12) becomes a constant and we
encounter again the same inconsistency found in (10.7), unless 2s ∈ N. This shows
unequivocally that, for local objects, only fermion or boson statistics are allowed
in d = 3. Nonlocal objects, however, can have arbitrary statistics.
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172 Duality, Bosonization and Generalized Statistics

In d = 1 and d = 2, nevertheless, we can have local fields with arbitrary statis-
tics, thereby violating the symmetrization postulate. In Chapter 30, we will see that
this postulate is violated in an even stronger way by the occurrence of non-abelian
statistics, also in d < 3.

The process of obtaining fields with arbitrary statistics out of boson fields
involves two main steps: (a) the structural construction of the former; (b) the deter-
mination of the specific boson field Lagrangean corresponding to a given fermion
or generalized statistics theory. In the next section we mostly focus on the former,
while in the subsequent section we concentrate on the latter.

10.2 Order × Disorder Fields

10.2.1 The Charge-Topological Charge Duality

We have seen that topological excitations bear a conserved quantity, which is
associated to an identically conserved current. This is the topological charge. Con-
versely, charge is in general a quantity that is conserved by force of the dynamical
field equation. We are going to explore the duality existing between the quantum
excitations carrying these two kinds of conserved quantities in d = 1, 2, 3. We
shall see that this basic duality is the foundation both of the bosonization method
and of the construction of quantum excitations with a generalized statistics.

Topologically Charged Excitations

The form of the topological current depends crucially on the space-time dimension
D. Also, it is naturally expressed in terms fields, which are tensors of different
ranks. For D = d + 1 = 2, 3 and 4, respectively, the topological current is
expressed as

Jμ2 = εμν∂νφ
Jμ3 = εμνα∂νBα

Jμ4 = εμναβ∂νBαβ, (10.13)

where φ, Bα, Bαβ are bosonic scalar, vector and 2-tensor fields in the respective
dimension. Their kinetic Lagrangean density is, respectively, assumed to be

L2 = 1

2
HμHμ

L3 = −1

4
HμνHμν

L4 = 1

12
HμναHμνα, (10.14)
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10.2 Order × Disorder Fields 173

where

Hμ = ∂μφ
Hμν = ∂μBν − ∂νBμ

Hμνα = ∂μBνα + ∂νBαμ + ∂αBμν (10.15)

are, respectively, the field intensity tensors of the fields φ, Bμ and Bμν .
The topological charge corresponding to the currents above is given, in gen-

eral, by

QT =
∫

dd x J 0
D. (10.16)

Now, within a quantum-mechanical framework, one needs to describe the
topological charge eigenstates. We show below that, in any dimension, the operator

μ(x, t) = exp

{
ia
∫ x

−∞
dzμ JμD(z, t)

}
(10.17)

creates eigenstates of the topological charge with eigenvalue a.
Inserting (10.13) in (10.17) and using (10.14), we have

μ(x, t) = exp

{
ia
∫ x

−∞
dξ�(ξ, t)

}

μ(x, t) = exp

{
ia
∫ x

−∞
dξ iεi j� j (ξ, t)

}

μ(x, t) = exp

{
ia
∫ x

−∞
dξ iεi jk� jk(ξ, t)

}
, (10.18)

where

�(x, t) = ∂0φ(x, t)

� j (x, t) = H 0 j (x, t)

� jk(x, t) = H 0 jk(x, t) (10.19)

are the momenta canonically conjugate to the fields φ, Bα, Bαβ . These satisfy the
commutation rules[

φ(x, t),�(y, t)
] = iδ(x− y)[

Bi (x, t),� j (y, t)
] = iδi jδ2(x− y)[

Bi j (x, t),�kl(y, t)
] = i{δikδ jl − δilδ jk}δ3(x− y). (10.20)

One can easily show, using (9.35), (10.18) and (10.20) that

QT (μ(x, t)|0〉) = a (μ(x, t)|0〉) , (10.21)
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174 Duality, Bosonization and Generalized Statistics

thereby implying that the operators in (10.18) indeed create, out of the vacuum,
topological charge eigenstates with eigenvalue a.

Quantum Charged Excitations

We now construct operators that will prove to be dual to the topological excitation
creation operator μ(x, t) introduced above. We will see that these operators create
quantum states bearing a generalized charge, while the former created quantum
topologically charged states.

To begin with, consider the following current densities, which correspond,
respectively, to particle, string and membrane (2-brane) densities, in D spacetime
dimensions:

jμ(z, x) =
∫

L(x)
dξμδD(z− ξ)

jμν(z, L) =
∫

S(L)
d2ξμνδD(z− ξ)

jμνα(z, S) =
∫

V (S)
d3ξμναδD(z− ξ). (10.22)

Now, the dual operators are constructed by coupling the above currents to the field
intensity tensors, extracted from (10.14), namely

σ = exp

{
ib
∫

d Dz jμ1...μD−1 Hμ1...μD−1

}
, (10.23)

where Hμ1...μ(D−1 are the field intensity tensors given by (10.15). The resulting
operators obtained after integrating over one of the ξ components are, respectively,
functions of x, L(x) and S(C):

σ(x, t) = exp {−ibφ(x, t)}
σ(L(x), t) = exp

{
−ib

∫ x

−∞
dξ i Bi (ξ, t)

}

σ(S(C), t) = exp

{
−ib

∫
S(C)

d2ξ i j Bi j (ξ, t)

}
. (10.24)

The generalized charge density operators may be expressed in terms of each of
the fields in (10.24) as the familiar operator appearing in the Gauss’ Law constraint,

ρ(x, t) = H 0(x, t) = �(x, t)
ρ(x, t) = ∂i H 0i (x, t) = ∂i�

i (x, t)

ρi (x, t) = ∂ j H 0i j (x, t) = ∂ j�
i j (x, t). (10.25)

Notice the vector character of the last generalized charge density.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.011
https://www.cambridge.org/core
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The charge operators corresponding to the densities above are given by

Q =
∫

dd zρ(z, t)

Qi =
∫

dd zρi (z, t), (10.26)

where the last expression corresponds to the third one in (10.25).
With the help of the Baker–Hausdorff formula, we may determine the commu-

tation relation [Q, σ ]. Using (10.24) and (10.20), we readily find [Q, σ ] = bσ , for
φ and Bμ, thus implying, in these cases

Qσ(x, t)|0〉 = bσ(x, t)|0〉. (10.27)

For the case of the field Bμν , conversely, we get

ρi (x, t) [σ(S(C), t)] |0〉 =
∫

C
dξ iδ3(ξ − x) [σ(S(C), t)|0〉]

Qi [σ(S(C), t)|0〉] = b
∫

C
dξ i [σ(S(C), t)|0〉] . (10.28)

Introducing the flux of Qi along the surface R as

�R =
∫

R
d2ξ iρi (ξ, t), (10.29)

we get

�R [σ(S(C), t)|0〉] = b
∫

C
dξ i
∫

R
d2ηiδ3(ξ − η) [σ(S(C), t)|0〉]

�R [σ(S(C), t)|0〉] = nb [σ(S(C), t)|0〉] ; n ∈ Z. (10.30)

We see that the operator σ(S(C), t) creates states carrying a unit of magnitude b of
the charge Qi along the closed curve C . Accordingly, it will create as many units
of the flux �R as the number of times, here denoted by n, the curve C pierces the
surface R.

10.3 Arbitrary Statistics Out of Bosons in D = 2, 3, 4

We now demonstrate that the operators σ and μ satisfy algebraic relations identical
to the dual algebras introduced in the previous chapter. For this purpose, we use the
relation

eAeB = eA+Be
1
2 [A,B]

eAeB = eBeAe[A,B], (10.31)
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valid when [A, [A, B]] = [B, [A, B]] = 0, in D = 2, 3, 4, in order to derive the
proper duality relation for each case.

We also show that the composite field, obtained from the product σμ possesses
statistics given by s = ab

2π , where a and b are, respectively, the units of topolog-
ical charge and (generalized) charge carried, respectively, by μ and σ . For local
composite fields, arbitrary values of s can be obtained in D = 2, 3, whereas only
s = 1/2 is allowed in D = 4. Nonlocal, string-like operators, however, may have
an arbitrary statistics s in D = 4.

These results are a concrete realization of the commutation rules introduced in
the first section of this chapter and make evident the fact that order-disorder duality
is the foundation both of bosonization and generalized statistics, which are two
aspects of the same process.

Duality and Arbitrary Statistics in D=2

In this case, let us take

σ(x, t) = exp {−ibφ(x, t)} ; μ(y, t) = exp

{
ia
∫ y

−∞
dξ�(ξ, t)

}
. (10.32)

Using (10.31), we obtain

σ(x, t)μ(y, t) = eiabθ(y−x)σ (x, t)μ(y, t), (10.33)

where θ(y − x) is the Heaviside function. We immediately recognize the above
expression as the order-disorder dual algebra (9.4). It follows that the composite
order×disorder operator ψ(x) = σ(x)μ(x) will have the commutation rule

ψ(x, t) = σ(x, t)μ(x, t)
ψ(x, t)ψ(y, t) = eiabε(y−x)ψ(y, t)ψ(x, t), (10.34)

where ε(y − x) is the sign function. The above relation coincides with (10.8) and
inequivocally characterizes the mixed order-disorder product ψ(x) as a field with
arbitrary statistics s = ab

2π , despite the fact it is completely expressed in terms of
the bosonic field φ(x). For the particular case ab = π , the composite field would
be a fermion.

Duality and Arbitrary Statistics in D=3

Consider now

σ(L(x), t) = exp

{
−ib

∫ x

−∞
dξ i Bi (ξ, t)

}

μ(x, t) = exp

{
ia
∫ x

−∞
dξ iεi j� j (ξ, t)

}
. (10.35)
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Using (10.31), we obtain

σ(L(x, t)μ(y, t) = exp

{
iab

∫ x

−∞,L
dξ i
∫ y

−∞,L ′
dηkεkiδ2(ξ − η)

}
× μ(y, t)σ (L(x, t). (10.36)

We now use the following analytic properties of the arg(x) function,∫ y

−∞,L ′
dηkεkiδ(ξ − η) = ∂ i arg(ξ − y)+ εki∂k ln |ξ − y|, (10.37)

in (10.36). Then, integrating on ξ i and choosing L in such a way that it goes
through y before reaching x, it follows that the last term in (10.37) does not
contribute to this integral. The result is

σ(L(x, t)μ(y, t) = exp

{
i
ab

π

[
arg(x− y)

]}
μ(y, t)σ (L(x, t). (10.38)

This algebraic relation coincides with the one found before in the context of quan-
tum vortices, namely (9.73). Again, we identify here the general order-disorder
duality structure. The composite order×disorder operator ψ(x, t) will now have
the commutation rule

ψ(x, t) = σ(x, t)μ(x, t)
ψ(x, t)ψ(y, t) = ei ab

π [arg(x−y)−arg(y−x)]ψ(y, t)ψ(x, t)

= eiabε(π−arg(x−y))ψ(y, t)ψ(x, t), (10.39)

where we used (10.9). This coincides with (10.10).
Again we see, in this case, that the composite order-disorder field ψ(x)will have

arbitrary statistics s = ab
2π , being now completely expressed in terms of the bosonic

vector field Bi . For the particular case ab = π , the composite field would be again
a fermion.

We see that the existence of an order-disorder duality structure, mathematically
reflected in a dual algebra, allows one to express fields with arbitrary statistics, in
particular fermionic, in terms of bosonic ones. In the two previous examples, in
D = 2, 3, the former fields were local.

Duality and Arbitrary Statistics in D=4

Let us take now the operators

σ(S(C), t) = exp

{
−i

b

2

∫
S(C)

d2ξ i j Bi j (ξ, t)

}

μ(x, t) = exp

{
ia
∫ x

−∞
dξ iεi jk� jk(ξ, t)

}
. (10.40)
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Notice that here σ(S(C), t) is defined on a closed curve C , being therefore
nonlocal.

Again using (10.31) and (10.20), we obtain

σ(S(C), t)μ(y, t) = exp

{
iab

∫
S(C)

d2ξ i j
∫ y

−∞,L
dηkεki jδ3(ξ − η))

}
× μ(y, t)σ (S(C), t). (10.41)

Now, consider the following property of the magnetic monopole vector potential.
Starting from (9.120) and integrating in ηk along L , we get∫ y

−∞,L
dηkδ3(ξ − η) = 1

4π
εi jk∂ iω j (ξ − y) = ∂k

[
1

4π |ξ − y|
]
. (10.42)

Introducing the vector surface integration element d2ξ k = 1
2ε

i jkd2ξ i j and using
(9.120) once more we can write the exponent of the phase factor in (10.41) as

i
ab

2π

∫
S(C)

d2ξ i

[
ξ − y

]i
|ξ − y|3 = i

ab

2π
�(y;C), (10.43)

where�(y;C) is the solid angle comprising the curve C with respect to the point y.
We have, therefore,

σ(S(C), t)μ(y, t) = exp

{
i

ab

2π
�(y;C)

}
μ(y, t)σ (S(C), t). (10.44)

This is the dual algebra satisfied by the order and disorder fields (10.40) in D = 4.
Again we can form the composite operator

ψ(x;Cx, t) = σ(S(Cx), t)μ(x, t).

According to (10.44), it will have the commutation

ψ(x;Cx, t)ψ(y;Cy, t) = exp

{
i

ab

2π

[
�(x;Cy)−�(y;Cx)

]}
× ψ(y;Cy, t)ψ(x;Cx, t)

ψ(x;Cx, t)ψ(y;Cy, t) = exp
{
iabε(2π −�(x;Cy))

}
ψ(y;Cy, t)ψ(x;Cx, t),

(10.45)

where we used (10.11). This coincides with (10.12).
The composite field possesses arbitrary statistics s = ab

2π , however, it is nonlocal,
depending on a closed curve C . This is the only possibility for the occurrence of
generalized statistics, namely, neither fermionic nor bosonic in D = 4, as we saw
before. Indeed, if we take the local limit, where the curve C shrinks to a point, then
the solid angle�(x;Cy)→ 0. The phase factor in (10.45) then becomes a constant
eiab. In this case, as we have seen, by commuting the composite ψ field twice, we
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would conclude that necessarily ei2ab = 1. Thus, in the local limit, we must have
ab = π or s = 1/2, implying that only fermion local fields may be constructed
by the bosonization process in 3+ 1 dimensions. Fields with generalized statistics
may be obtained by this method, however they are necessarily nonlocal.

10.4 The Bosonic Fields Associated to a Dirac Field in D-Spacetime
Dimensions

10.4.1 The Current Correlator

We are going to obtain here the bosonic Lagrangeans associated to a free massless
Dirac field in D=2, 3, 4, as well as the respective current bosonization formulas.

We start with the generating functional of the fermionic current correlation
functions, for arbitrary dimension D:

Z [J ] = Z−1
0

∫
DψDψ̄ exp

{
−
∫

d Dz
[
iψ̄ � ∂ψ − ψ̄γ μψ Jμ

]}
= Z2[J ]Z N>2[J ]

Z2[J ] = exp

{
1

2

∫
d Dz Jμ�

μν

1 Jν

}
, (10.46)

where �μν1 is the one-loop vacuum polarization tensor. It follows that the fermion
current jμ = ψ̄γ μψ two-point correlation function is

〈 jμ(x) jν(y)〉 = δ2

δJ (x)δJ (y)
Z [J ] ∣∣J=0 = �μν1 (x, y) . (10.47)

In the following subsections, we show how to reproduce (10.47) in the framework
of bosonic theories in D=2, 3, 4.

10.4.2 D = 2, 3, 4

D = 2

We have shown in the previous section that the bosonic field is a scalar in D = 2;
hence, assuming the fermionic current jμ = ψ̄γ μψ is expressed as jμ = Kμφ, in
terms of the bosonic field, φ, we write

Z [J ] = Z−1
0

∫
Dφ exp

{
−
∫

d2z

[
1

2
φAφ + JμKμφ

]}

Z [J ] = exp

{
1

2

∫
d2z Jμ[KμA−1 K ν]Jν

}
, (10.48)

where the operators A and Kμ are to be determined.
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Comparing (10.48) with (10.46), we see that [KμA−1 K ν] = �μν1 . Considering
that the vacuum polarization tensor in D=2 is

�
μν

1 = [k2δμν − kμkν
] 1

πk2
= ε

μαkαενβkβ
πk2

, (10.49)

we then conclude that

A = k2 Kμ = 1√
π
εμαkα (10.50)

or, in Minkowski coordinate space

A = −� Kμ = 1√
π
εμα∂α. (10.51)

We arrive, therefore, at the bosonization formulas

iψ̄ � ∂ψ = 1

2
φ[−�]φ ψ̄γ μψ = 1√

π
εμα∂αφ. (10.52)

D=3

Now we turn to the case of D=3, where the natural bosonic field is a vector Bμ.
Assuming the fermionic current jμ = ψ̄γ μψ is expressed as jμ = KμνBν , in
terms of the bosonic field, Bν , we write

Z [J ] = Z−1
0

∫
DBμ exp

{
−
∫

d3z

[
1

2
BμAμνBν + JμKμνBν

]}

Z [J ] = exp

{
1

2

∫
d3z Jμ[Kμα(A−1)αβK βν]Jν

}
, (10.53)

where the operators Aμν and Kμν are to be determined. Comparing (10.53) with
(10.46), we have that

[Kμα(A−1)αβK βν] = �μν1 .

This is easily solved by

Aμν = Kμν = �μν1 . (10.54)

We, therefore obtain

iψ̄ � ∂ψ = 1

2
Bμ[�μν1 ]Bν ψ̄γ μψ = �μν1 Bν. (10.55)

Then, considering that in D=3, the vacuum polarization tensor is given by

�
μν

1 (p) =
1

16
√

p2
[p2δμν − pμ pν] + θεμνα pα, (10.56)
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we derive the bosonization formulas

iψ̄ � ∂ψ = −1

4
Bμν[ 1

16�1/2
]Bμν + θεμναBμ∂νBα

ψ̄γ μψ = θεμνα∂νBα + 1

32�1/2
∂νBμν, (10.57)

where Bμν = ∂μBν − ∂νBμ.

D=4

Consider now the case D=4, where the natural bosonic field is a 2-tensor Bμν .
Assuming the fermionic current jμ = ψ̄γ μψ is expressed as jμ = KμαβBαβ , in
terms of the bosonic field, Bαβ , we may write

Z [J ] = Z−1
0

∫
DBαβ exp

{
−
∫

d4z

[
1

2
Bμν AμναβBαβ + JμKμαβBαβ

]}

Z [J ] = exp

{
1

2

∫
d4z Jμ[Kμαβ(A−1)αβλρK λρν]Jν

}
, (10.58)

where the operators Aμναβ and Kμαβ are to be determined.
Comparing (10.58) with (10.46), we have that

[Kμαβ(A−1)αβλρK λρν] = �μν1 = C[k2δμν − kμkν], (10.59)

where C = 1
24π2 .

We now make the following ansätze

(A−1)αβλρ = f (k)�αβλρ ; Kμαβ = √Cg(k)εμναβkν, (10.60)

where

�μναβ = k2[δμαδνβ − δμβδνα] − δμαkνkβ − δμβkνkα = εγρμνkρεγλαβkλ (10.61)

Then, since

K λαβK λμν = Cg2(k)�αβμν

�αβλρ�λρμν = 2k2�αβμν, (10.62)

it follows that f (k) = 1
4k2g2(k)

. Imposing the canonical dimension, equal to one
in mass units, to the 2-tensor field Bμν , we are led to the choice g(k) = k and
f (k) = 1

4k4 . We, then, obtain

(A−1)αβμν = 1

4k4
�αβμν

Aαβμν = �αβμν. (10.63)
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Now, using (10.61), we derive the bosonization formulas

iψ̄ � ∂ψ = 1

2
Bμν[Aμναβ]Bαβ ψ̄γ μψ =

√
k2

24π2
εμναβkνBαβ (10.64)

or, equivalently,

iψ̄ � ∂ψ = 1

12
HμναHμνα ψ̄γ μψ =

√
�

24π2
εμναβ∂νBαβ. (10.65)

In the remainder of this chapter, we combine the results of the two last sections
in order to obtain a complete bosonization of fermion fields in D= 2, 3, 4.

10.5 Bosonization in One Spatial Dimension

10.5.1 The Massless Free Fermion Field

Field Bosonization

Let us consider the massless free Dirac fermion field in D = 2, which corresponds
to the Lagrangean density

L = iψ̄γ μ∂μψ, (10.66)

where ψ̄ = ψ†γ 0 and the Dirac matrices are

γ 0 =
(

0 1
1 0

)
γ 1 =

(
0 −1
1 0

)
γ 5 = γ 0γ 1 =

(
1 0
0 −1

)
. (10.67)

We may write

L = iψ†
[
I∂0 + γ 5∂1

]
ψ

H = iψ†γ 5∂1ψ. (10.68)

The Hamiltonian density tells us that the two components of the Dirac field ψ1 and
ψ2 are, respectively, right-movers and left-movers.

The system is invariant under the continuous symmetries

ψ → eiθψ ψ → eiθγ 5
ψ (10.69)

to which correspond, respectively, the conserved currents

jμ = ψ̄γ μψ jμ5 = ψ̄γ μγ 5ψ. (10.70)

The correlation function, according to (6.30) and (10.68) is

〈ψψ†〉 = −i
[
I∂0 + γ 5∂1

]−1

= −i

(
1

∂0+∂1
0

0 1
∂0−∂1

)
= −i

(
∂0 − ∂1 0
0 ∂0 + ∂1

)
1

� −→
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− i

( −∂1 + i∂2 0
0 ∂1 + i∂2

)
1

−� E
= i

4π

( −∂z∗ 0
0 ∂z

)
× [ln z + ln z∗].

(10.71)

Where in the last step, we went to Euclidean space (x2 = i x0, z = x1 + i x2) and
used the fact that

1

−� E
= lim
μ→0

∫
d2k

(2π)2
eik·x

k2 + μ2
= − 1

4π
lnμ2z∗z (10.72)

where z∗z = |x|2. We obtain, therefore,

〈ψψ†〉 = i

4π

( − 1
z∗ 0

0 1
z

)
(10.73)

or, equivalently,

〈ψ1(r)ψ
†
1 (0)〉 = −

i

4π

ei arg (r)

|r| = −i

4π z∗
→ −i

4π u

〈ψ2(r)ψ
†
2 (0)〉 =

i

4π

e−i arg (r)

|r| = i

4π z
→ −i

4π v

〈ψ1(r)ψ
†
2 (0)〉 = 〈ψ2(r)ψ

†
1 (0)〉 = 0, (10.74)

where u and v are the light-cone variables: u = z0 + z1, v = z0 − z1.
Let us now take the dual field operators, which are expressed by (10.32) in terms

of a scalar bosonic field φ. On one side we have seen that in D=2, according to
(10.52), the massless Dirac field is bosonized in terms of φ. On the other side,
according to (10.34), the composite order-disorder field, in general, will possess
arbitrary statistics, s = ab/2π . Hence it is natural to take the dual operators in
(10.32) as the basic building blocks we shall use in order to bosonize the Dirac
field. For this purpose, we now evaluate the mixed four-point correlation function
in the framework of the free massless scalar field theory, which we have seen to
correspond to the massless Dirac field,

〈σ(x1)μ(x2)μ
†(y2)σ

†(y1)〉 =
∫

Dφ exp

{
−
∫

d2z

[
−1

2
φ�φ + (α(z; x1, y1)

+ β(z; x2, y2)) φ

]}
(10.75)

or

〈σ(x1)μ(x2)μ
†(y2)σ

†(y1)〉 = exp

{
− 1

4π

∫
d2zd2z′ (α(z; x1, y1)+ β(z; x2, y2))

×[lnμ|z − z′|] (α(z′; x1, y1)+ β(z′; x2, y2)
) }
,

(10.76)
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where, according to (10.32), in Euclidean space,

α(z; x1, y1) = ib[δ2(z − x1)− δ2(z − y1)]
β(z; x2, y2) = a

∫ y2

x2

dξμεμν∂νδ
2(z − ξ). (10.77)

Observe that the exponent in (10.76) is the electrostatic interaction energy of a two-
dimensional system with charge density given by (10.77). We have three terms,
namely,

Tαα = − b2

2π
[lnμ|x1 − y1| − lnμ|ε|]

Tββ = − a2

4π

∫ y2

x2

dξμ
∫ y2

x2

dηνεμαενβ∂(ξ)α ∂
(η)

β lnμ|ξ − η|

= − a2

2π
[lnμ|x2 − y2| − lnμ|ε|] + Tββ(L , ε)

Tαβ = −i
ab

2π

∫ y2

x2

dξμεμα∂(ξ)α [lnμ|ξ − x1| − lnμ|ξ − y1|]

= i
ab

2π
[arg(x2 − y1)+ arg(y2 − x1)− arg(x2 − x1)− arg(y2 − y1)],

(10.78)

where we used the Cauchy–Riemann equation (9.68). Notice that the infrared reg-
ulator μ completely cancels and can be ignored in correlation functions, such as
(10.75), that respect the conservation of quantities, which are carried by the fields
σ and μ. Should we have, for instance, the correlation function 〈σμμ†σ 〉 and the
Tαα term would produce an overall lnμ-factor, that would make the correlation
function vanish, thus enforcing the selection rule. The infrared regulator, therefore,
provides an interesting and efficient mechanism of enforcing the selection rules
provenient from fermionic conservation laws in the framework of the bosonized
theory.

The unphysical, ε-dependent, self-interaction terms appearing in the αα and ββ
terms may be removed by renormalizing, respectively, the operators σ and μ in the
correlation functions.

We have seen in 10.1.3 that the product σμ is a fermion for the choice ab = π .
Starting with (10.78) and taking the limit x1 → x2 = x , y1 → y2 = y, we infer
that

〈[σμ](x)[σμ]†(y)〉 = ei ab
π

arg(x−y)

|x − y| a2+b2
2π

. (10.79)
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We now conclude that, with the choice a = b = √π and ψ1 = σμ, we reproduce
the correlator of the first component of the Dirac field in (10.74). By just chang-
ing b → −b, we reproduce the second. We therefore establish the bosonization
formulas

ψ1(x) =
√−i

4π
σ(x)μ(x) =

√−i

4π
exp

{
−ibφ(x, t)+ ia

∫ x

−∞
dξ�(ξ, t)

}

ψ2(x) =
√−i

4π
σ †(x)μ(x) =

√−i

4π
exp

{
ibφ(x, t)+ ia

∫ x

−∞
dξ�(ξ, t)

}
(10.80)

for σ and μ given by (10.32) with a = b = √π .

Current Bosonization

Let us consider now the bosonization of the fermionic current, given by (10.70).
We take firstly the 0-component of the current correlator, namely

〈 j0(x) j0(y)〉 = 〈ψ1(x)ψ
†
1 (y)〉〈ψ†

1 (x)ψ1(y)〉 + 1 ↔ 2, (10.81)

where we used Wick’s theorem. Now, considering the result (10.74), we get

〈 j0(x) j0(y)〉 = 1

(4π)2

(
1

z∗2
+ 1

z2

)
−→ 1

(4π)2

(
1

u2
+ 1

v2

)
. (10.82)

We now evaluate the bosonic correlator

〈∂(x)1 φ(x)∂
(y)
1 φ(y)〉 = ∂(x)1 ∂

(y)
1 〈φ(x)φ(y)〉

= − π

(4π)2
(∂u − ∂v)x (∂u − ∂v)y [ln u + ln v]

= π

(4π)2

(
1

u2
+ 1

v2

)
. (10.83)

We conclude that the 2-point correlators of j0 and of 1√
π
∂1φ are identical. It is

straightforward to show that those of j1 and of − 1√
π
∂0φ also are. Furthermore, not

only are the two-point functions of these operators identical but, because Wick’s
theorem reduces n-point functions to products of 2-point functions, actually all
correlators are identical. Hence we can establish the following operator identities:

jμ = 1√
π
εμν∂νφ jμ5 = 1√

π
∂μφ, (10.84)

the first of which was already derived in (10.52). We see that under bosonization,
the fermionic charge becomes the topological charge and the chirality becomes the
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generalized charge of the φ-field given by (10.25) and (10.26). The field bosoniza-
tion formulas (10.77) reflects the fact that μ and σ , respectively, each carries one
of them.

Lagrangean Bosonization

We now turn to the bosonization of the Lagrangean density (10.66). For this
purpose, consider the correlator

〈iψ̄(x)γ μ∂μψ(y)〉 = i∂uy 〈ψ†
1 (x)ψ1(y)〉 + i∂vy 〈ψ†

2 (x)ψ2(y)〉
= 1

4π

(
1

u2
+ 1

v2

)
, (10.85)

where we used (10.74). This we compare with

1

2
〈∂(x)μ φ(x)∂μ(y)φ(y)〉 = ∂(x)μ ∂μ(y)〈φ(x)φ(y)〉

= − 1

4π
[∂ x

0 ∂
y
0 − ∂ x

1 ∂
y
1 ] ln

[
(x0 − y0)

2 − (x1 − y1)
2
]

= 1

4π

u2 + v2

(uv)2
= 1

4π

(
1

u2
+ 1

v2

)
. (10.86)

We now see that the operators iψ̄(x)γ μ∂μψ(y) and 1
2∂
(x)
μ φ(x)∂

μ(y)φ(y) are
identical, for the same reasons that led to the current bosonization formulas. This
identification also holds in the limit x → y, provided we add some c-number
renormalization factor to both operators. Hence we obtain the bosonization formula

iψ̄γ μ∂μψ = 1

2
∂μφ∂

μφ (10.87)

that corresponds to (10.52).

10.5.2 The Massless Thirring Model

In the previous subsection, we saw how the duality structure can be used to map
the free massless Dirac field into the free massless scalar field. We consider now
the massless Thirring model [55] described by the Lagrangean density

L = iψ̄γ μ∂μψ − g

2
(ψ̄γ μψ)(ψ̄γμψ). (10.88)

Using the bosonization formulas (10.87) and (10.84), we may cast this in the
form

L = 1

2

(
1− g

π

)
∂μφ∂

μφ = vλ
2

[
φ̇2

v2
− (∂xφ)

2

]
, (10.89)
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where λ = 1 − g
π

. The momentum canonically conjugate to φ, then, is given by
� = λ

v
φ̇. The Hamiltonian density, accordingly, will be

H = v
2

(
�2

λ
+ λ(∂xφ)

2

)
. (10.90)

Now, performing the canonical transformation

�̃ = �√
λ

φ̃ = √λφ, (10.91)

we reobtain the free Hamiltonian density for the new field operators. However,
when we express the bosonization formulas (10.77) and (10.32) in terms of the
new free field operators, the a and b parameters must be modified in the following
way: instead of a = b = √π , we now have

a = √πλ b =
√
π

λ
. (10.92)

From (10.75), we obtain the following field correlators for the massless Thirring
model in Euclidean space:

〈ψ1(r)ψ
†
1 (0)〉 = −

i

4π

ei arg (r)

|r|ν/2

〈ψ2(r)ψ
†
2 (0)〉 =

i

4π

e−i arg (r)

|r|ν/2

〈ψ1(r)ψ
†
2 (0)〉 = 〈ψ2(r)ψ

†
1 (0)〉 = 0, (10.93)

where

ν = λ+ 1

λ
; λ = 1− g

π
; g = π

(
1− a

b

)
. (10.94)

Notice that the statistics s = ab
2π , according to (10.92), is still s = 1/2.

The current bosonization formulas now, become

jμ = 1√
πλ
εμν∂νφ jμ5 = 1√

πλ
∂μφ. (10.95)

Observe also that the coupling constant has a limiting upper value, where the
system becomes unstable and a phase transition occurs, namely g < π . We have

0 ≤ g < π ⇔ λ ≤ 1 ⇔ a ≤ b

g < 0 ⇔ λ > 1 ⇔ a > b. (10.96)

The above result coincides with the famous operator solution for the massless
Thirring model obtained by Klaiber in 1967 [52]. It shows the remarkable power
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of the bosonization method, by which a complicated nonlinear system is mapped
into a free one.

10.5.3 The Massive Thirring/Sine-Gordon System

We now consider the effect of adding a mass term to the Thirring Lagrangean
(10.88), namely

L = iψ̄γ μ∂μψ − Mψ̄ψ − g

2
(ψ̄γ μψ)(ψ̄γμψ), (10.97)

the massive Thirring model.
Using the bosonization formulas (10.77), (10.84) and (10.87), we readily obtain

L = 1

2

(
1− g

π

)
∂μφ∂

μφ − M

2π
cos
[
2
√
πφ
]
. (10.98)

Going through the same procedure as in the massless case, we obtain the
Hamiltonian density

H = 1

2

(
�̃2 + (∂x φ̃)

2
)
+ M

2π
cos

[
2

√
π

λ
φ̃

]
. (10.99)

Then, we may write the Lagrangean density corresponding to the Hamiltonian
above as

L = 1

2
∂μφ∂

μφ − α cosβφ, (10.100)

where we have dropped the tilde in order to simplify the notation, and introduced
the parameters

α = M

2π
; β = 2

√
π

λ
. (10.101)

We immediately recognize in (10.100), the sine-Gordon Lagrangean.
By taking (10.92) into account, we then have the fermionic massive Thirring

field corresponding to (10.97), expressed by means of the bosonization formulas
(10.77), with parameters

b = β
2

; a = 2π

β
(10.102)

in terms of the sine-Gordon field (10.99).
Notice that still ab = π , hence s = 1/2 and

g = π
(

1− 4π

β2

)
. (10.103)
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10.6 Quantum Sine–Gordon Solitons

Observe that since the topological current of the bosonic theory is identified with
the fermionic current of the associated theory, we conclude that the dynamics of
sine-Gordon solitons is described by the massive Thirring model, and the quantum
sine-Gordon soliton creation operator is just the Dirac massive Thirring field. The
coupling parameter determining the magnitude of the solitons’ interaction is given
by g, whereas the one of the bosons, by β. Both are related by (10.103). From this,
we can arrive at two remarkable conclusions. Firstly, for β2 = 4π , the coupling
g vanishes and the sine-Gordon solitons become free massive fermions! Secondly,
for β2 < 4π , when the soliton coupling is attractive, the more we decrease β,
the more we increase the magnitude of the soliton coupling, namely β → 0 ⇔
g → −∞. Conversely, for β2 > 4π , we have β → ∞ ⇔ g → π . We see that
through bosonization we map the strong into the weak coupling regimes of the
corresponding bosonic and fermionic theories.

In the attractive soliton regime, β2 < 4π , the use of advanced mathematical
methods has enabled the obtainment of the exact energy spectrum of soliton bound
states, namely [53, 54]

Mn = 2M sin
(

n
π

2
ξ
)

n = 1, 2, . . . <
1

ξ
; ξ = β2

8π − β2
, (10.104)

where M is the one-soliton mass.

10.6.1 QED2: the Schwinger Model

The Model

The Schwinger model [56] is the quantum electrodynamics of a massless Dirac
field in D = 2, which is described by the Lagrangean density

L = iψ̄γ μ∂μψ − 1

4
FμνFμν − eψ̄γ μψ Aμ. (10.105)

The theory possesses the same global symmetries (10.69), hence charge and chi-
rality, associated to the currents (10.70), are conserved quantities at the classical
level.

This is, in many ways, a remarkable system. Besides of admitting an exact
solution, it shares many features of QCD, in D = 4. It presents, for instance, the
same vacuum structure as QCD, reflecting the nontrivial topological mapping pro-
duced by the gauge field at infinity. Also, similarly to this, the original Lagrangean
degrees of freedom do not show in the spectrum of physical excitations, in the same
way that quarks and gluons do not appear in the hadronic spectrum. Also all charge
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and chirality will disappear from the physical spectrum, in the same way color does
not appear in the spectrum of QCD.

Bosonization

Using the bosonization formulas (10.84) and (10.87), we can express the
Lagrangean as

L = 1

2
∂μφ∂

μφ − 1

4
FμνFμν − e√

π
εμν∂νφAμ. (10.106)

The field equations corresponding to this are

∂νFμν = e√
π
εμν∂νφ

�φ = e√
π
εμν∂ν Aμ (10.107)

and they are solved by the operator identity

eAμ = √πεμν∂νφ, (10.108)

provided the consistency between (10.107) and (10.108),

�φ = e2

π
φ, (10.109)

is satisfied.
Now, integrating over the gauge field Aμ,

Z =
∫

DφD Aμ exp

{
1

2
∂μφ∂

μφ + 1

2
Aμ[−�δμν + ∂μ∂ν]Aν − e√

π
εμν∂νφAμ

}

=
∫

Dφ exp

{
1

2
∂μφ∂

μφ + e2

2π
εμα∂αφ

[−�δμν + ∂μ∂ν
�2

]
ενβ∂βφ

}

=
∫

Dφ exp

{
1

2
∂μφ∂

μφ + e2

2π
φ2

}
. (10.110)

We conclude that the resulting effective theory is a free scalar field with mass
m = e√

π
, thus satisfying the Klein–Gordon field equation, which is nothing but

(10.109).
This is a remarkable result. The physical content of the QE D2 spectrum is a

neutral massive scalar field. The charge and chirality have completely disappeared
from the spectrum of physical excitations. This is analogous to what happens in
QC D4, where conserved quantities carried by quarks and gluons, such as color
and chirality, also do not show in the physical spectrum.
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Effective Higgs Mechanism and Spontaneous Symmetry Breaking

The Schwinger model, furthermore, provides an example where an effective Higgs
mechanism occurs without the presence of any Higgs field. Indeed, from (10.108)
and the bosonization formula (10.84), we conclude that

jμ = e

π
Aμ. (10.111)

Inserting this in (10.105), we can see that the gauge field Aμ acquires a mass
M = e√

π
.

Considering the field equation (10.109) and the current bosonization formu-
las (10.84), we see that an anomaly occurs in the axial current, preventing its
conservation at a quantum level

∂μ jμ5 = e2

π
φ. (10.112)

Charge, in a similar way, also cannot exist in this theory. Already at a classical level
we see that this quantity cannot be defined. Indeed, charge is expressed as

Q =
∫ ∞

−∞
dx j0(x) = e√

π
[φ(x = +∞)− φ(x = −∞)] = 0. (10.113)

This must be zero because the Klein–Gordon equation does not admit finite energy
solutions, which are non-vanishing at infinity. We see that charge and chirality just
disappear from the physical spectrum of excitations.

It is quite instructive to evaluate the two-point correlation function of the gauge-
invariant Dirac field operator

ψ̂(x) = ψ(x) exp

{
−ie

∫ x

−∞
Aμdξμ

}
. (10.114)

Using the bosonization formula (10.80) and the operator identity (10.108), we have

ψ̂1(x) =
√−i

4π
σ(x) ψ̂2(x) =

√−i

4π
σ †(x). (10.115)

The gauge invariant correlator, therefore, is

〈ψ̂i (x)ψ̂
†
j (y)〉 =

1

4π

∫
DφD Aμ exp

{
−
∫

d2x

[
1

2
∂μφ∂

μφ

+ e2

2π
φ2 + αi j (x, y)φ

]}
, (10.116)

where

αi j (x, y) = −i
√
π [λiδ

2(z − x)+ λ jδ
2(z − y)] λ1 = 1 ; λ2 = −1 (10.117)
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Performing the φ-integration using (5.49), we readily get

〈ψ̂i (x)ψ̂
†
j (y)〉 =

1

4π
exp

{−2π[−λiλ j�(x − y)+�(0)]} ,
〈ψ̂i (x)ψ̂ j (y)〉 = 1

4π
exp

{−2π[λiλ j�(x − y)+�(0)]} , (10.118)

where�(x) is the Euclidean Green function of the Klein–Gordon operator in D = 2,
which is given by the modified Bessel function �(x) = K0(M |x|), M = e/

√
π .

Now, we no longer have the infrared regulator μ→ 0 enforcing the charge and
the chirality selection rules for the different components of the above correlators.
Absorbing the last term in (10.118) and (10.154) in a renormalization of the field
ψ̂ , we get

〈ψ̂i (x)ψ̂
†
j (y)〉R = 1

4π
exp

{
2πλiλ j�(x − y)

}
〈ψ̂i (x)ψ̂ j (y)〉R = i

4π
exp

{−2πλiλ j�(x − y)
}
. (10.119)

The large-distance behavior of the above correlators, obtained using the fact that
�(x) → 0 in this limit, implies that 〈0|ψ̂i |0〉 �= 0, thus violating both the charge
and chirality selection rules. We therefore have the spontaneous breakdown of both
the U(1) and chiral U(1) global symmetries of the theory.

Topological Vacua

The condition of action finiteness requires the abelian U(1) gauge field Aμ to be a
pure gauge in the asymptotic manifold at rE →∞ in a two-dimensional Euclidean
space. This produces a mapping between such manifold, a circumference S1 and
the U(1) group manifold, also S1. Since this mapping presents infinite inequivalent
topological classes, reflecting the fact that �1(S1) = n ∈ Z, it follows that the Aμ
gauge field itself will belong to one of the infinitely many inequivalent topological
classes characterized by the Chern number

q = e

2π

∫
d2xεμν∂μAν

q = e

2π

∮
C(∞)

dξμAμ = 1

2π
[ (2π)− (0)], (10.120)

where we used the condition that Aμ must be a pure gauge at infinity:

Aμ(x)
|x |→∞−→ 1

e
∂μ . (10.121)

Choosing = nϕ, where ϕ is the polar angle, we have q = n. Since classical pure
gauge configurations must correspond to quantum vacuum states in the Hilbert
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space, for each of these classical inequivalent topological classes we must have
different vacuum states |n〉.

Using a temporal gauge, A0 = 0, we have q = n(τ = +∞)−m(τ = −∞), so,
according to the Feynman functional integral expression (5.63), when we integrate
over a topological class q we are calculating the amplitude between different vacua,
namely

〈n|O|m〉 = Z−1
0

∫
D A(n−m)

μ Oe−S[Aμ], (10.122)

where D A(q)μ means we are integrating over fields belonging to the topological
class characterized by the Chern number q.

Now, defining the θ-vacua as

|θ〉 = 1

2π

∑
n

einθ |n〉 (10.123)

(0 ≤ θ < 2π), we readily obtain from (10.122)

〈θ |O|θ〉 = Z−1
0

∑
q∈Z

∫
D A(q)μ Oe−S[Aμ]−iθq[Aμ]. (10.124)

The θ-vacua correlation functions, therefore, are obtained by integrating over all
topological classes of the gauge field, each one weighed by the Chern number term
eiqθ . Observe that our previous calculation of the gauge invariant correlator was
actually carried on for θ = 0. It is straightforward to obtain the corresponding
results for nonzero θ [31]. The vacuum expectation value of the gauge invariant
Dirac field, in particular, will be

〈θ |ψ̂i |θ〉 =
√−i

4π
exp

{
i

2
λiθ

}
. (10.125)

The θ-vacuum structure found in QED2 is equal to the one of QCD4 [57, 58].
There, θ is an input parameter that must be determined experimentally. It was
shown that a nonzero θ in QCD implies the neutron must have a nonzero elec-
tric dipole moment. This has not been observed experimentally, thus implying that
for some reason θ must be zero in nature.

10.6.2 Features of Bosonization in d > 1 Spatial Dimension

Bosonization has produced such spectacular results in d = 1 that, consequently,
its generalization to higher dimensions was soon explored [60, 61, 62, 63]. Several
important results, then, clearly indicated that it would be possible to generalize the
method of bosonization to higher dimensions [64, 65, 66, 67, 68, 69]. General-
izations, however, were invariably partial, in the sense that bosonized expressions
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were found for the current or for the Lagrangean but not for the fermion field itself.
The first complete bosonization in d > 1, which therefore included a bosonic
expression for the fermion field, was obtained in [71], for the free massless Dirac
fermion field in D = 2 + 1 dimensions. Recently, the complete bosonization of
free Weyl fermions has been achieved in D = 3+ 1 [72]. This may be useful in the
description of the recently observed Weyl semimetals in condensed matter systems
such as T a As, T a P and NbAs [73, 74, 75].

It soon became clear that the method of bosonization indeed could be general-
ized for d > 1 spatial dimensions, even though it would only be an exact mapping
in the case of free theories. This fact, however, does not remove the interest or the
usefulness of bosonization in higher dimensions, because it will always provide
invaluable new insights and unanticipated points of view about the system under
consideration. It can also certainly be used to devise new approximation procedures
for complex interacting systems.

In the next two sections, we describe the method of complete bosonization for
the free Dirac fermion in D = 2 + 1 dimensions and for free Weyl fermions in
D = 3+ 1 dimensions, respectively, according to the results contained in [71] and
[72].

10.7 Bosonization in Two Spatial Dimensions

We now consider the bosonization of the massless, two-component Dirac field in
D = 2+ 1, following the procedure contained in [71]. The Lagrangean is given by
(10.66), with the γ -matrices being now

γ 0 =
(

1 0
0 −1

)
γ 1 =

(
0 −i
−i 0

)
γ 2 =

(
0 −1
1 0

)
. (10.126)

The massless Dirac Lagrangean can be written, in momentum space, as

L = ψ†γ 0γ μkμψ. (10.127)

Now, introducing the rapidity variable χ ∈ [0,∞), such that

k0 = k coshχ ; |k| = k sinhχ (10.128)

where k = √kμkμ in the positive energy, time-like region of Minkowski space, we
may write

γ 0γ μkμ = k
[
I coshχ + ϕ̂ · σ sinhχ

]
. (10.129)

Furthermore, using

T =
[
I cosh

χ

2
+ ϕ̂ · σ sinh

χ

2

]
(10.130)
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we can express the Dirac Lagrangean as

L = ψ†γ 0γ μkμψ = ψ†T †Tψ. (10.131)

Then, introducing the new fermion field 
 ≡ Tψ , we have

L = ψ†σμkμψ = 
†

(
k 0
0 k

)

. (10.132)

The two-point correlation function of the Dirac field may be expressed, in
momentum space, in terms of the correlation functions of the 
 field, namely,

〈

†〉(k) =
(

1 0
0 1

)
1

k
. (10.133)

Performing the Wick rotation to Euclidean space and considering the inverse
Fourier transform F[ 1

k ] = 1
2π2|r|2 , we have

〈
(x)
†(y)〉 =
(

1 0
0 1

)
1

2π2|x − y|2 . (10.134)

The bosonization of the Lagrangean and current were established in (10.57). In
order to achieve the field bosonization, we introduce the dual operators

μ(x) = exp

{
ia
∫ x

−∞
dξμ�−1/2εμαβ∂αBβ(ξ)

}
(10.135)

and

σ(y) = exp

{
−ib

∫ y

−∞
dημBμ(ξ)

}
. (10.136)

Notice that a and b are dimensionless, as they should be.
In order to reproduce the correlation functions (10.134) in the framework of the

bosonic theory given by (10.57), we now evaluate the four-points order-disorder
correlation function

〈σ(x1)μ(x2)μ
†(y2)σ

†(y)〉 =
∫

DBμν exp

{
−
∫

d4z

[
1

2
BμAμνBν

+ (αμ(z; x1, y1)+ βμ(z; x2, y2)
)

Bμ

]}

= exp

{
1

2

∫
d3zd3z′

(
αμ(z; x1, y1)+ βμ(z; x2, y2)

)
(A−1)μν

(
αμ(z

′; x1, y1)+ βμ(z′; x2, y2)
) }
.

(10.137)
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In the above expression, Aμν is given by (10.56) and, according to (10.135) and
(10.136),

αμ(z; x1, y1) = −ib
∫ y

−∞
dημδ3(z − ξ)

βμν(z; x2, y2) = ia
∫ x

−∞
dξμ�−1/2εμαβ∂αδ

3(z − ξ). (10.138)

The quadratic functional integral over the bosonic Bμ field produces the
following terms:

Tαα = b2 A

π2
[− lnμ|x1 − y1| + lnμ|ε|]

Tββ = a2 A

π2
[− lnμ|x2 − y2| + lnμ|ε|]

Tαβ = ab
B

π2
[− lnμ|x1 − y2| − lnμ|x2 − y1| + 2 lnμ|ε|] (10.139)

and

T̃αα = ib2 B

4π
[ϕ(x1 − y1)]

T̃ββ = ia2 B

4π
[ϕ(x2 − y2)]

T̃αβ = −iab
A

4π
[ϕ(x1 − y2)+ ϕ(x2 − y1)],

(10.140)

where we used the fact that, in D = 3 Euclidean space, we have

F−1

[
1

k3

]
= lim
μ→0

− 1

2π2
lnμ2[|r|2 + |ε|2].

In the above expressions

A = 16

1+ (16θ)2
; B = 16θ A (10.141)

and

ϕ(x − y) =
∫ y

x
dξμ

∫ y

x
dηνεμνα∂α

1

4π |ξ − η| . (10.142)

Choosing the parameters a and b in such a way that

(a2 + b2)A + 2abB = π2 ; (a2 + b2)B − 2abA = 0

a2 + b2 = π
2

16
; ab = θ π

2

2
(10.143)
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and expressing the field 
 in the bosonized form


 =
(
σμ

σ †μ

)
, (10.144)

we can reproduce the correlation functions (10.134) completely within the bosonic
theory, as we did in D = 2. Since it is a free theory, all many-points functions will
be reproduced as well.

Notice that the infrared regulator μ, as happened in D = 2, completely cancels
in the correlation function (10.137). As before, it will not vanish in selection rule,
violating correlation functions, thereby making these vanish.

10.8 Bosonization in Three Spatial Dimensions

10.8.1 Lagrangean and Current Bosonization

In this section, we will first describe the bosonization of free Weyl fermions and,
subsequently, the complete bosonization of free Dirac fermions in D = 3+1, follow-
ing the method contained in [72]. We start by considering the free massless Dirac
field, which is described by the Lagrangean

L = iψ̄γ μ∂μψ = ψ†
Lσ

μ∂μψL + ψ†
R σ̄

μ∂μψR, (10.145)

where we use the Weyl representation of the Dirac matrices, namely

γ 0 =
(

0 I

I 0

)
γ i =

(
0 σ i

−σ i 0

)
γ 5 =

(
I 0
0 −I

)
, (10.146)

where each block is 2×2. Then the Dirac Fermion decomposes in two-components
Weyl fermions, such that

ψ =
(
ψL

ψR

)
(10.147)

and

σμ = (I, σ i ) ; σ̄ μ = (I,−σ i ). (10.148)

The current and axial current are

ψ̄γ μψ = ψ†
Lσ

μψL + ψ†
R σ̄

μψR

ψ̄γ 5γ μψ = ψ†
Lσ

μψL − ψ†
R σ̄

μψR. (10.149)

Let us take the Weyl component ψL . Defining the rapidity variable χ as

k0 = k coshχ ; |k| = k sinhχ, (10.150)
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where k = √kμkμ in the positive energy, time-like region of Minkowski space, we
have

σμkμ = k

(
coshχ + sinhχ cos θ sinhχ sin θe−iϕ

sinhχ sin θeiϕ coshχ − sinhχ cos θ

)
= k

[
I coshχ + r̂ · σ sinhχ

]
, (10.151)

where r̂ is the radial unit vector of the spherical coordinate system.
Before bosonizing the Weyl fermion field ψL , we introduce the new spinor field


L = TLψL

TL =
[
I cosh

χ

2
+ ϕ̂ · σ sinh

χ

2

] [
I− i θ̂ · σ

]
(10.152)

such that

ψ
†
Lσ

μkμψL = 
†
L

(
k 0
0 k

)

L . (10.153)

The canonical transformation TL renders the Lagrangean diagonal. It is similar to
the Foldy–Wouthuysen transformation but is not unitary. We can obtain a similar
transformation for the R Weyl spinor, namely


R = TRψR

TR =
[
I cosh

χ

2
− ϕ̂ · σ sinh

χ

2

] [
I− i θ̂ · σ

]
(10.154)

such that

ψ
†
R σ̄

μkμψR = 
†
R

(
k 0
0 k

)

R. (10.155)

The 
-field Euclidean correlation functions are

〈
L(x)

†
L(y)〉 = 〈
R(x)


†
R(y)〉 =

(
1 0
0 1

)
1

2π3|x − y|3
〈
L(x)


†
R(y)〉 = 〈
R(x)


†
L(y)〉 = 0. (10.156)

The Lagrangean and current bosonization formulas appropriate to the chiral
Weyl fields are the following:

ψ
†
Lσ

μ∂μψL = 1

24
H L
μναHμνα

L

ψ
†
R σ̄

μ∂μψR = 1

24
H R
μναHμνα

R , (10.157)

where Hμνα = ∂μBνα + ∂νBαμ + ∂αBμν .
For the axial current, we have, in the absence of an electromagnetic field,

ψ̄γ μγ 5ψ = 1

2

√
�

24π2
εμναβ∂ν

[
BL
αβ − B R

αβ

]
. (10.158)
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If there is an applied EM field Aμ, however, the axial current will acquire a
topological term [77]. For the chiral, L , R Weyl currents, according to (10.149),
we must have, consequently,

jμL = ψ†
Lσ

μψL = 1

2

√
�

24π2
εμναβ∂νBL

αβ +
1

2
Iμ

jμR = ψ†
R σ̄

μψR = 1

2

√
�

24π2
εμναβ∂νB R

αβ −
1

2
Iμ. (10.159)

The Dirac chiral current, jμ5 , hence, is given by

ψ̄γ μγ 5ψ = 1

2

√
�

24π2
εμναβ∂ν

[
BL
αβ − B R

αβ

]+ Iμ. (10.160)

In the absence of an external EM field, the Iμ topological term just vanishes. When
there is an EM background field Aμ, then [77]

Iμ = 1

4π2
εμναβ Aν∂αAβ, (10.161)

implying that

∂μ jμ5 = ∂μ Iμ = − 1

16π2
Fμν F̃μν, (10.162)

where the last term is the Chern–Pontryagin topological charge density of the EM
field, namely, the axial anomaly [76].

10.8.2 Field Bosonization

We now turn to the bosonization of the fields 
L ,R . We have seen that the natural
bosonic field in D = 3+1 is the antisymmetric tensor gauge-field Bμν , also known
as Kalb–Ramond field. The relevant dual operators introduced before, namely,
σ(C) and μ(x), are expressed in terms of this field by (10.40). A few adjustments,
however, are required before we use these operators in the bosonization of the Weyl
fermion.

Firstly, the μ(x) operator. We have seen that this bears the topological charge
associated with the current Jμ4 , given by (10.13). When bosonizing the fermionic
current in D = 3 + 1, however, we had to identify it with this topological current
multiplied by the pseudo-differential operator �1/2 as we can see in (10.157). Con-
sequently, the operator we must use for bosonizing the fermion field carrying the
charge associated to this current must contain the Green function of such operator.
We shall use, then,

μ(x, t) = exp

{
ia
∫ x

−∞
dξμ�−1/2εμναβ∂νBαβ(ξ)

}
. (10.163)
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Notice that a is dimensionless, as it should be.
Then, there is the σ(C) operator. This is nonlocal, in the sense it is defined on

a curve, rather than on a point. In order to keep the canonical dimension of the
Kalb–Ramond field, we have also added the pseudo-differential operator �1/2 in
the exponent, namely

σ(S(C), t) = exp

{
−ib

∫
S(C)

d2ξμν�1/2 Bμν(ξ)

}
, (10.164)

where C is assumed to be a circle of infinitesimal radius ρ. Notice again that b is
dimensionless, as it should be.

Let us evaluate now the four-points order-disorder correlation function in
the framework of the bosonic theory associated to the Weyl fermions in D = 4
Euclidean space, given by (10.157), namely

〈σ(Cx1)μ(x2)μ
†(y2)σ

†(Cy1)〉 =
∫

DBμν exp

{
−
∫

d4z

[
1

2
Bμν AμναβBαβ

+ (αμν(z;Cx1,Cy1)+ βμν(z; x2, y2)
)

Bμν

]}

= exp

{
− 1

4π3

∫
d4zd4z′

(
αμν(z;Cx1,Cy1)+ βμν(z; x2, y2)

)
[lnμ|z − z′|]�μναβ (ααβ(z′;Cx1,Cy1)+ βαβ(z′; x2, y2)

) }
. (10.165)

In the above expression, Aμναβ is given by (10.63) and, according to (10.163) and
(10.164),

αμν(z;Cx1,Cy1) = i
b

2πρ

∫
S(Cx1 )−S(Cy1 )

d2ξμν�1/2δ4(z − ξ)

βμν(z; x2, y2) = a
∫ y2

x2

dξλ�−1/2ελαμν∂αδ
4(z − ξ). (10.166)

We have also used the fact that in D = 4 Euclidean space,

F−1

[
1

k4

]
= lim
μ→0

− 1

4π3
lnμ2[|r|2 + |ε|2].

Now, using (10.61), we get the three following terms:

Tαα = − b2

2π3
[lnμ|x1 − y1| − lnμ|ε|]

Tββ = − a2

4π3

∫ y2

x2

dξμ
∫ y2

x2

dην
[−�δμν + ∂(ξ)μ ∂(η)ν

]
lnμ|ξ − η|
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= − a2

2π3
[lnμ|x2 − y2| − lnμ|ε|] + Tββ(L , ε)

Tαβ = −i
ab

6π2

∫
S(Cx1 )−S(Cy1 )

d2ξμν
∫ y2

x2

dηλελμνα∂α[ 1

|ξ − η| ]
ρ→0−→ 0.

(10.167)

Notice that the infrared regulator μ completely cancels in this correlation func-
tion. Conversely, for the correlator 〈σμμ†σ 〉, for instance, the Tαα term, would
produce an overall lnμ-factor that would force it to vanish. The ultraviolet regu-
lator appearing in the αα and ββ terms may be removed by a multiplicative field
renormalization, respectively, of the operators σ and μ in the correlation functions.
The renormalized fields acquire the correct dimension, which corresponds to the
respective correlators.

We have, consequently,

〈σ(Cx1)μ(x2)μ
†(y2)σ

†(Cy1)〉 = exp
{
Tαα + Tββ + 2Tαβ

}
x1→x2=x;y1→y2=y−→ exp

{
−a2 + b2

2π3
ln |x − y|

}
. (10.168)

The natural choice for the bosonization of the Weyl fermions, therefore, is

ψL =
(
σμ

σμ†

)
L

ψR =
(
σ †μ

σ †μ†

)
R

. (10.169)

As before, the unphysical, ε-dependent, self-interaction terms appearing in the
αα and ββ terms may be removed by renormalizing, respectively, the operators σ
and μ in the correlation functions. With the choice

a2 + b2

2π3
= 3, (10.170)

we reproduce the correlation functions (10.134) completely within the framework
of the bosonic Bμν field theory.

Observe that the Tαβ vanishes in the local limit where the radius of the circle
defining the operator σ(Cx) is taken to zero. This fact has important consequences.
If it would not vanish it would allow for the construction of local fields with gener-
alized statistics in D = 3+1, which is not possible. Hence, the fact that the crossed
αβ term is zero is a clear manifestation of the fact that local fields in D = 3 + 1
can only be bosons or fermions.

The dual operators used in the bosonization of the Weyl fields satisfy the dual
algebra (10.45). As we saw, in the local limit only fermion statistics is allowed,
thus implying
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ab = π. (10.171)

This and (10.170) define the value of the parameters a and b.

10.8.3 Application: Left-Right Imbalance in Weyl Semimetals

An interesting application of the bosonization of Weyl fermions consists in the
determination of the imbalance between the electronic population of the two chiral-
ities, L and R. This follows directly from the bosonized form of the chiral currents
(10.159), which is also related to the axial anomaly [76]. Indeed, from (10.159), it
follows that

jμL − jμR = Jμ + 1

4π2
εμναβ Aν∂αAβ, (10.172)

where ∂μ Jμ = 0. From this, we get

∂μ
[

jμL − jμR
] = 1

4π2
∂με

μναβ Aν∂αAβ = − 1

16π2
Fμν F̃μν, (10.173)

which is precisely the axial anomaly.
Let�ρ = ρR−ρL be the particle density difference between the two chiralities.

Then, the continuity equation tells us that

∂�ρ

∂t
= ∇ · (jL − jR

)
. (10.174)

In the presence of a constant electric field E and a constant magnetic field B(A =
1
2 r× B), we have

∇ · (jL − jR

) = 1

4π2
∇ · [r(E · B)− B(E · r)] = 1

2π2
E · B, (10.175)

and therefore we find the equation determining the time evolution of the difference
of Weyl particle chiralities:

d�ρ

dt
= 1

2π2
E · B. (10.176)

This can be improved by including the chirality backscattering. Assuming this
process occurs at a time rate 1/τ , we have

d�ρ

dt
= 1

2π2
E · B− �ρ

τ
. (10.177)

This is solved by

�ρ(t) = τ

2π2
E · B

(
1− e−

t
τ

)
. (10.178)
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For large times, the imbalance between the two chiralities of Weyl fermions will
stabilize at

�ρ = τ

2π2
E · B. (10.179)

From this expression, different calculations have shown one can derive the
magneto-conductance behavior observed in Weyl semimetals transport experi-
ments [78, 164, 80, 73, 74].

10.8.4 Bosonization of Electrons

Once we have derived the bosonization of Weyl fermions, it is straightforward to
obtain the bosonization of Dirac fermions. According to (10.147) and (10.169), we
can write the Dirac field in the following bosonized form:


 =

⎛
⎜⎜⎝
(
σμ

σμ†

)
L(

σ †μ

σ †μ†

)
R

⎞
⎟⎟⎠ , (10.180)

where the operators in the first two rows are expressed in terms of BL
αβ , while the

ones in the last two, in terms of B R
αβ .

The Dirac field kinetic term, then, according to (10.157), is bosonized as

i
̄∂/
 = 1

24
H R
μναHμνα

R + 1

24
H L
μναHμνα

L , (10.181)

while the Dirac current is bosonized as


̄γ μ
 = 1

2

√
�

24π2
εμναβ∂ν

[
BL
αβ + B R

αβ

]
. (10.182)

The electron is associated to a massive Dirac field. A Dirac mass term is given
by (10.183), in terms of the fields 
L ,R . Using the bosonization formula (10.169)
and the expression for the dual operators (10.40), we obtain a bosonic form for the
mass term that resembles the sine-Gordon Lagrangean, namely

LM = M

 = M cos {FL + FR} cos {GL − G R} , (10.183)

where F and G are the functionals of the Bμν field, appearing, respectively, in the
exponents of the σ and μ operators, given by (10.40).

It is very instructive to investigate how the bosonized field behaves under a gauge
transformation of the bosonic gauge field, namely Bμν → Bμν + ∂μ ν − ∂ν μ.
We immediately see that the operator μ is gauge invariant, whereas

σ(S(Cy), t)→ σ(S(Cy), t) exp

{
−i

b

2πρ

∮
Cy

dξ i i (ξ, t)

}
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≡ σ(S(Cy), t)e
−iϕ(y)

ϕ(y) = b

2πρ

∮
Cy

dξ i i (ξ, t). (10.184)

We see that a gauge transformation of the bosonic tensor field emerges as a U(1)
gauge transformation of the Weyl fermions 
L and 
R . The U(1) gauge trans-
formation of a Dirac field such as the electron field for instance, according to
(10.169) and (10.147), would be obtained by simultaneous gauge transformations
of the chiral bosonic tensor fields BL

μν and BL
μν with opposite gauge parameters

 R
μ = − L

μ ≡  μ. Then, the U(1) transformation of a Dirac field is such that

ψ → eiϕ(x)ψ

ϕ(x) = b
∮

Cx

dξ i i (ξ, t) = b� (x). (10.185)

The phase of the U(1) transformation on the Dirac field is the flux of B = ∇ × 
through the surface delimited by the curve Cx.
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11

Statistical Transmutation

We have seen that fields with arbitrary statistics may exist in D = 2, 3 and 4
spacetime dimensions. In D = 4, however, this is only possible for nonlocal fields,
namely, field operators creating extended objects, such as strings and n-branes. In
D = 2, 3, conversely, this is allowed for local fields, which are associated to point
particles. Through the order-disorder duality procedure, we have been able to build
such fields with arbitrary statistics out of bosonic fields. This method, known as
bosonization in the case of fermion fields, consists in combining operator pairs
each one of them carrying, respectively, the charge and the topological charge of
the bosonic field) into a composite field that will replace the fermionic or anyonic
field. The statistics of the latter is determined by the product of charge × topologi-
cal charge of the bosonic field. In this chapter, we explore a general method, related
to bosonization and known as statistical transmutation, by means of which we may
continuously change the statistics of a field, and consequently of the objects it cre-
ates, in D = 3, 4. This is achieved by a mechanism, working at the Lagrangean
level, through which a certain amount of topological charge is imparted on charged
fields and on the objects they create. The resulting objects, consequently, change
their amount of the product charge × topological charge, thereby modifying their
statistics. We shall see that both bosonization and statistical transmutation have
many interesting applications in condensed matter physics.

11.1 Generalized BF Theories

In the previous chapter, we introduced the topological current, in D = 2, 3, 4,
expressed in terms of a generalized field Bi j ... (10.13), which was, respectively,
a scalar, a vector and a rank-2 tensor (10.14) and (10.15). There, we have shown
that Bi j ... is the bosonic field used both in the bosonization process and also for
constructing fields with generalized statistics.
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206 Statistical Transmutation

We now introduce a field theory involving the Bi j ...field, coupled to a vector U(1)
abelian gauge field Aμ, where the topological charge of the former is the source of
the latter. The magnetic field of the latter, conversely, is the “charge,” acting as the
source of the former. This kind of theory is known as the BF-theory.

The generalized BF-theories are obtained by coupling, in each case, the proper
topological current to an abelian vector gauge field Aμ, namely

L2B F = 1

2
HμHμ − Jμ2 Aμ − 1

4
FμνFμν

L3B F = −1

4
HμνHμν − Jμ3 Aμ − 1

4
FμνFμν

L4B F = 1

12
HμναHμνα − Jμ4 Aμ − 1

4
FμνFμν, (11.1)

where JμD is given by (10.13) and Fμν is the field intensity tensor of Aμ. It follows
that ∂νFμν = JμD , hence the topological charge is the source of the Aμ vector gauge
field.

The generalized Bi j ... field equations are

∂μHμ = �φ = εμν∂μAν

∂νHμν = εμαβ∂αAβ

∂αHμνα = εμναβ∂αAβ (11.2)

Taking the zeroth component of these field equations in D = 3, 4, we obtain,
respectively,

∂ j H 0 j = εi j∂i A j = B
∂ j H 0i j = εi jk∂ j Ak = Bi . (11.3)

Here, B is the magnetic field in D = 3, or magnetic flux density, on the plane.
Observe that it is a scalar. Bi , by its turn, is the magnetic field in D = 4, which is
a vector. Notice that B and Bi are, respectively, the generalized “charge” densities
that effectively act as the sources of the Bμ and Bμν fields in each case.

11.2 The Chern–Simons Theory

11.2.1 Generalized Chern–Simons Theories in D ≥ 4

Let us introduce now a peculiar class of gauge field theories involving the
U(1) abelian vector gauge field Aμ and the generalized Bμν... tensor field. The
Lagrangean is such that when we couple the current associated to charged point
particles to the U(1) vector field, a certain amount of topological charge is attached
to these particles. Conversely, when we couple to the Bμν... tensor field the cur-
rent corresponding to the appropriate extended object (string in D = 4, . . . ), the
magnetic field of the abelian vector field is attached to this extended object.
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11.2 The Chern–Simons Theory 207

The Lagrangean density of a theory presenting this property in a spacetime of
D ≥ 4 dimensions is given, in general, by

LD,C S = θ JμD Aμ − jμAμ − jμν...Bμν..., (11.4)

where θ is an arbitrary real parameter, JμD is the topological current in D ≥ 4
dimensions, given by (10.13), and jμ and jμν... are the current densities associ-
ated, respectively, to point particles and extended objects such as strings, given by
(10.22).

We have seen in Section 10.2, from the operator point of view, in D = 4, Eqs.
(10.40)–(10.45), that the composite object consisting of a closed string carrying
a magnetic flux and a point particle carrying the topological charge will possess
generalized statistics in D = 4. As we will see, there exists a Lagrangean mechanism
corresponding to this, which we now describe.

For D = 4, we would have

L4,C S = θεμναβ Aμ∂νBαβ − jμAμ − jμνBμν. (11.5)

By varying with respect to Aμ, we can see that the particle matter current is
identified with the topological current JμD . Conversely, varying with respect to Bμν ,
we infer that

jμν = θεμναβ∂αAβ. (11.6)

The string density in the i-direction is obtained by taking μ = 0 component,
namely

j0i = θεi jk∂ j Ak = Bi , (11.7)

and we see that a magnetic field Bi is attached to the string along its length.
The generalized Chern–Simons theory appropriate for a spacetime with D = 4

dimensions is given by (11.5). It provides a mechanism leading to the same effect
already studied before employing fully quantized operators.

Indeed, from Eqs. (11.5)–(11.7), we see that a magnetic field is attached along
the closed string, while a topological charge is attached to the particle associated
to the current density jμ. The composite object formed by the point particle and
closed string, consequently, will have arbitrary statistics proportional to the product
of topological charge and magnetic flux [81, 85, 86, 87].

11.2.2 Chern–Simons Theory: The D = 3 Case

The case of a spacetime with D = 3 is very special because the B-field is a vector
and we can make it equal to Aμ, thereby obtaining the so-called Chern–Simons
theory [6], namely

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.012
https://www.cambridge.org/core


208 Statistical Transmutation

L3,C S = θ
2
εμαβ Aμ∂αAβ − q jμAμ. (11.8)

The field equation deriving from this Lagrangean is

q jμ = θεμαβ∂αAβ, (11.9)

hence for a static point particle, for which j0 = δ(r), the field equation appends a
point magnetic field

B = εi j∂i A j = 1

θ
δ(r) (11.10)

to the charged particles interacting with the Chern–Simons field Aμ. A magnetic
flux � = q

θ
is, therefore, attached to the charged point particle.

We have shown, in the process of building composite fields out of dual bosonic
ones, that the statistics of the resulting field is s = ab

2π where a is the topological
charge and b the generalized “charge” carried by this bosonic field. Hence, we may
expect that in the case of Chern–Simons theory the charged particles coupled to the
gauge field will undergo a change of spin-statistics (statistical transmutation),

�s = Qq

2πθ
,

where Q is the total charge. From (11.9) we see that the total current coupled to
Aμ is

jμTOT = q jμ − θ
2
εμαβ∂αAβ,

hence, using (11.9), we have that

jμTOT =
q

2
jμ, (11.11)

implying that the total charge will be

Q =
∫

d2x jμTOT =
q

2
. (11.12)

It follows that the change in spin/statistics will be

�s = q2

4πθ
. (11.13)

We will see in the next section that this is indeed the case.

11.3 Statistical Transmutation in D = 3

We examine in this section, from a general point of view, how the spin/statistics
of charged particles in two-dimensional space, is affected by attaching to them a
point magnetic flux �.
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11.3 Statistical Transmutation in D = 3 209

Consider the initial state-vector of a two-particles system |
(t0)〉. It evolves, at
subsequent times, as

|
(t)〉 = exp

{
− i

�
H(t − t0)

}
|
(t0)〉, (11.14)

where H is the Hamiltonian of the system. Choosing the coordinate representation,
the wave function for t > t0 factorizes as 
CM(R)
(r, t), where R and r are,
respectively, the center-of-mass and relative coordinates. The latter evolves in time
as a one-particle wave-function, namely


(r, t) =
∫

d2r ′ G(r, t; r′, t0)
(r′, t0). (11.15)

The Green function, which is the coordinate representation of the unitary
time-evolution operator, is given in the Feynman formulation by the one-particle
quantum-mechanics version of (5.63), namely

G(r, t; r′, t0) =
∫

Dz exp

{
i

�
S[z]

} ∣∣∣z(t)=r
z(t0)=r′ , (11.16)

where

S[z] =
∫ t

t0

L(z, ż). (11.17)

Now, attaching a point magnetic flux � to the particle described by the
Lagrangean L amounts to adding to this a piece

L�(z, ż) =
∫

d2r j · A�, (11.18)

where

j = q ṙδ(r− z) ṙ = ṙ r̂ + r ϕ̇ϕ̂

A� = �

2π
∇ arg(r) ∇ arg(r) = 1

r
ϕ̂. (11.19)

Inserting (11.19) in (11.18), we get

L�(z, ż) =
(

q�

2π

)
d

dt
arg(z) (11.20)

Now, adding L� to L in (11.17) and the resulting action in (11.16), we conclude
that by attaching a point magnetic flux to a charged particle, the corresponding
Green function is modified as

G(r, t; r′, t0) −→ exp
{
is arg(r)− is arg(r′)

}
G(r, t; r′, t0), (11.21)

where s = q�
2π .
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Using the modified Green function in (11.15), we immediately see that under a
reflection r → −r, which corresponds to the exchange of identical particles, the
new wave-function acquires a phase eisπ , because of (10.9). The corresponding
change in spin/statistics is, therefore, q�

4π , as anticipated.
We see that the Chern–Simons theory produces, through a Lagrangean mech-

anism, the composite state of charge and magnetic flux, which exhibits arbi-
trary spin/statistics. The corresponding operator mechanism was described in the
sequence (10.35)–(10.39) of Section 10.2.

11.4 Topological Aspects of the Chern–Simons Theory in D = 3

The Chern–Simons Lagrangean in D = 3, as well as its D ≥ 4 generalizations and
the BF coupling in (11.1), possess a peculiar common feature, namely, they do not
depend on the metric tensor of the manifold on which the theory is defined. This
remarkable property has far-reaching consequences. The physical properties of the
theory are insensitive to the geometric details of the manifold; rather, they depend
on the topology thereof. For this reason, such theories are known as topological
theories.

A striking property of this class of theories is that the energy-momentum tensor,
which can be defined as

T μν = δ

δgμν

∫
d DxL, (11.22)

identically vanishes because of the metric independence of the action. It follows
that the Hamiltonian of a topological theory vanishes, namely

H =
∫

d D−1xT 00 = 0. (11.23)

The zero-energy ground states are degenerate and the degree of degeneracy turns
out to be determined by the topology of the manifold where the CS theory is
defined. For the Chern–Simons theory in D = 3, it can be shown that for a manifold
of genus g, the ground-state degeneracy is kg, where k, known as the level of the
theory, is related to the parameter θ as

θ = k

2π
. (11.24)

Notice that for a level k, the point particle coupled to the Chern–Simons theory
will undergo a change in statistics given by �s = 1

k .
We can show that, as a consequence of gauge invariance, the level of a Chern–

Simons theory is an integer. For this purpose, choose the spatial components of the
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gauge field as the ones producing one unit of magnetic flux along the manifold M2,
such that the CS action is

SC S = k

4π

∫
M

d3xεμαβ Aμ∂αAβ (11.25)

with M = M2 ⊗ S1. The variation produced by a gauge transformation in this is

�SC S = k

2π

∫
M

d3xεμαβδAμ∂αAβ, (11.26)

where δAμ = ∂μ . Then we get

�SC S = k

2π

∫
M

d3x∂μ
[
 Jμ

]
, (11.27)

where Jμ = εμαβ∂αAβ . From this we obtain �SC S = k
2π 2π[ (2π) −  (0)],

where we used the fact that in the units we are using the magnetic flux quantum
is φ0 = 2π . Now, we must have [ (2π) −  (0)] = 2πm, m ∈ Z, for the corre-
sponding gauge transformation of a matter field coupled to the CS field ought to
be univalent. This yields �SC S = 2πmk. Finally, gauge invariance of the func-
tional integral defining the quantum CS theory requires�SC S = 2πn, n ∈ Z, thus
implying the level k is an integer. This result is valid in general.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.012
https://www.cambridge.org/core


12

Pseudo Quantum Electrodynamics

All evidences indicate that we live in a three-dimensional space. Should there be
extra dimensions, they must be curled in tiny coils in such a way that we normally
would not perceive their existence. Consider, for instance, a one-meter-long tube
of micrometric radius. This would resemble a one-dimensional structure. By the
same token, there are systems in condensed matter that for all purposes behave as
if they had a dimension lower than three, because some degrees of freedom are
just not available. Systems in this category include polymers such as polyacety-
lene and one-atom-wide materials such as graphene that are, respectively one- and
two-dimensional. For most planar materials, however, the electromagnetic field
by which the corresponding particles interact is not confined to the plane. Con-
sequently, such interaction is ruled by three-dimensional, rather than by planar
Maxwell theory, despite the fact that kinematics is two-dimensional. Neverthe-
less, both for practical and esthetical reasons, it would be highly desirable to have
available a full two-dimensional theory that, yet, would describe the genuine three-
dimensional electromagnetic interaction of the particles confined to a plane. Such
a theory, called pseudo quantum electrodynamics (PQED), is the subject of this
chapter.

12.1 Electrodynamics of Particles Confined to a Plane

Consider a general system of charged particles described by the QED Lagrangean,
which can be written as LQE D[Aμ, jμ3+1] + LM , where

LQE D[Aμ, jμ3+1] = −
1

4
FμνFμν − ejμ3+1 Aμ, (12.1)

LM is the matter Lagrangean and jμ3+1 is the matter current density in three-
dimensional space.
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Performing the quadratic functional integral over the electromagnetic field, with
the help of an appropriate gauge-fixing term [89], we obtain the effective functional
of the matter current, namely,

Z [ jμ3+1] = Z−1
0

∫
D Aμ exp

{
−
∫

d4xLQE D[Aμ, jμ3+1]
}

= exp

{
e2

2

∫
d4xd4 y jμ3+1(x)

1

−� jμ3+1(y)

}
= exp

{
Sef f [ jμ3+1]

}
, (12.2)

where we used the Green function of the Aμ field, namely

Gμν(k) = δ
μν

k2
+ g.t., (12.3)

“g.t.” standing for “gauge dependent terms,” which do not contribute.
Let us assume now the matter particles are constrained to move on a plane. In

this case the current density has the form

jμ3+1 =
{

jμ(x0, r) δ(z) ; μ = 0, 1, 2
0 ; μ = 3

, (12.4)

where r = (x, y) is the position vector on the plane.
Inserting (12.4) in (12.2) and integrating over the z-coordinates, we get

Sef f [ jμ3+1] = Sef f [ jμ] = e2

2

∫
d2rd2r ′dτdτ ′

× jμ(r, τ )

[∫
dωd2kdk3

(2π)4
ei[k·(r−r′)−ω(τ−τ ′)]

ω2 + k2 + k2
3

]
jμ(r′, τ ′). (12.5)

Now, integrating over k3, we obtain

Sef f [ jμ] = e2

2

∫
d2rd2r ′dτdτ ′

×1

2
jμ(r, τ )

[∫
dωd2k

(2π)3
ei[k·(r−r′)−ω(τ−τ ′)]

[ω2 + k2]1/2
]

jμ(r′, τ ′), (12.6)

which is completely in D = 2+1.
It is not difficult to realize that the above effective action, which was obtained

by integrating over the photon momenta out of the plane, can be derived directly
from the full 2+1-dimensional gauge theory [89]

LP QE D = −1

4
Fμν

[
2√
�

]
Fμν − ejμAμ + LM , (12.7)

which we call pseudo quantum electrodynamics.
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In the next sections, we explore some of the beautiful properties of PQED, in
particular the ones that make it so useful in the realm of planar condensed matter
systems.

12.2 Coulomb Potential

Let us determine what is the interaction energy, according to PQED, for a pair of
static point charges located at x and y in D = 2+1. For this purpose, consider the
corresponding current density

jμ(r, t) =
{
δ(r− x)+ δ(r− y) ; μ = 0
0 ; μ = 1, 2

. (12.8)

The interaction energy of a charged matter distribution associated with the cur-
rent density jμ(r, t), and interacting through a gauge field having a propagator
Gμν(ω,k) is given, for a static configuration such as (12.8), by

E = e

2

∫
d2r jμ(r)Aμ(r), (12.9)

where Aμ is the field created by the matter distribution jμ(r, t).
Expressing the field in terms of the sources, by means of the propagator, we may

write

E = e2

2

∫
d2rd2r ′dt ′

× jμ(r)
[∫

d2k

(2π)2

∫
dω

2π
ei[k·(r−r′)−ω(t−t ′)]Gμν(ω,k)

]
jν(r′). (12.10)

Integrating over t ′ and ω, we obtain

E = e2

2

∫
d2rd2r ′ jμ(r)

[∫
d2k

(2π)2
eik·(r−r′)Gμν(ω = 0,k)

]
jμ(r′). (12.11)

The potential interaction energy between static point particles then, is given by

E = e2

2

∫
d2rd2r ′ρ(r)

[∫
d2k

(2π)2
eik·(r−r′)G00(ω = 0,k)

]
ρ(r′). (12.12)

The free PQED propagator, in momentum space, is given in a transverse
gauge by

Gμν(ω,k) = Pμν

2
[−ω2 + k2]1/2 , (12.13)

where

Pμν = δμν − kμkν

k2
(12.14)

is the transverse projector.
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Then, inserting (12.8) in (12.12), neglecting the unphysical self-interaction terms
and using (12.13), we obtain

E = e2

2

∫
d2k

(2π)2
eik·(x−y)

√
k2

E = e2

4π |x− y| , (12.15)

which is the familiar 1/r Coulomb potential of QED4. Should we perform the same
calculation with QED3, we would have instead

E = − e2

2π
ln |x− y|. (12.16)

12.3 Green Functions

Let us consider here the different Green functions we obtain for PQED in coor-
dinate space. We start from the Green function in energy-momentum space
corresponding to (12.7). Choosing a transverse gauge, this is given by (12.13).

The corresponding Green function in coordinate space can be written as

Gμν(t, r) = 1

2
PμνD(t, r), (12.17)

where Pμν here is meant to be in coordinate space, where kμ→ i∂μ.
Now, the function D(x) will strongly depend on the prescription used in order to

handle the singularities occurring in (12, 13). The advanced and retarded functions,
for instance, are given by

D±(t, r) =
∫

d3k

(2π)3
eik·x

[(k0 ± iε)2 − k2]1/2 , (12.18)

D+ being the retarded function and D−, the advanced one. Evaluating the integrals
[90], we get

D±(t, r) = 1

2π2
θ(±t)

[
1

[t2 − r2 + iε] −
1

[t2 − r2 − iε]
]

= D±(t, r) = − 1

π2
θ(±t)

iε

(t2 − r2)2 + ε2
. (12.19)

Let us consider now the Feynman Green function. This is defined by the
prescription

DF(t, r) =
∫

d3k

(2π)3
eik·x

[k2
0 − k2 + iε]1/2 . (12.20)
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The integrals have been evaluated in [90], yielding the result

DF(t, r) = 1

2π2

1

[t2 − r2 + iε] . (12.21)

Notice the interesting property that the coordinate space form of the Feynman
Green function of PQED coincides with the energy-momentum space form of the
Feynman Green function of QED3 and vice versa.

12.4 Scale Invariance

PQED has no dimensionful parameters, differently from QED3 and similarly
to QED4. This property has interesting consequences when we couple massless
fermions to PQED. Due the absence of any parameter with dimension of length, it
follows that the corrected gauge field propagator is given, at a certain order, by

Dμν

F (k0, k) =
APμν + Bεμνα kα√

k2

[k2
0 − k2 + iε]1/2 , (12.22)

where A and B are constants. Corrections due to the interaction at any order will
just modify the constants A and B, with no further modifications in the propagator.

12.5 Causality: Huygens Principle

The Lagrangean of PQED is nonlocal in space and time, as it usually happens in
systems where we integrate out part of the degrees of freedom, thereby trading their
influence by some effective Lagrangean. A well-known example is the Caldeira–
Leggett quantum-mechanical dissipative system [271].

As a consequence of its nonlocality, one may wonder as to whether PQED
respects causality or not. A necessary and sufficient condition for this is that the rel-
evant Green functions should vanish outside the light-cones. A related (but more
stringent) issue is whether the system complies with the Huygens principle. The
condition in this case is that the Green functions should vanish both outside and
inside the light-cones, thus having support on their surface.

In order to address these problems, let us examine the retarded and advanced
functions, D±(t, r), given by (12.19). If we take the limit ε → 0, we obtain

D±(t, r) = − 1

π2
θ(±t)

iε

(t2 − r2)2 + ε2

ε→0−→ − i

π
θ(±t)δ(t2 − r2). (12.23)

This result shows that both the retarded and advanced Green functions of PQED
have support on the light-cone surfaces, respectively, at t > 0 and t < 0. It
becomes, therefore, evident that the theory does respect causality.
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12.6 Unitarity 217

The delta function in (12.23), furthermore, implies that PQED satisfies the Huy-
gens principle, similarly to QED4. Conversely, we would like to remark that the
corresponding Green functions of QED3 have support inside the whole light-cones,
which means that, despite respecting causality, QED3 does not satisfy the Huygens
principle.

12.6 Unitarity

Unitarity is a basic consistency condition of any quantum theory. This assertion
derives from the fact that a unitary time-evolution operator preserves the norm
of the state vector, which, by its turn, coincides with the sum of the probabilities
for the possible outcomes of measurements made, if any observable quantity. Any
sensible probabilistic interpretation of a quantum theory requires this to be equal
to one at any time.

Unitarity of the time-evolution operator implies the unitarity of the S-matrix,
which has its elements defined by

Sαβ = lim
t0→−∞

lim
t→+∞〈α|U (t, t0)|β〉, (12.24)

where U (t, t0) is the time-evolution operator and |α〉, |β〉 ∈ {|α〉}, a complete set of
free asymptotic states. Knowledge of the S-matrix conveys the probability ampli-
tude for a given initially free state |β〉 to be scattered, a long time later, and after
undergoing interaction, into another, possibly different free state |α〉. It is, there-
fore, a crucial element in the determination of the scattering cross-section in a
scattering process.

Needless to say, scattering experiments have been playing a central role in
physics since the discovery of the atomic nucleus by Rutherford, to the experi-
mental observation of quarks in the SLAC, and going through the determination of
crystalline structures in experiments involving x-ray scattering by solids.

Determination of unitarity of a quantum theory is, therefore, an issue of utmost
importance and it would be highly desirable to have available a practical and
efficient method to test it. This is what we derive below.

For this purpose, let us write the S-matrix in the form S = I+ iT, which follows
from the form of the U (t, t0) operator itself. Unitarity of S, namely, S

†
S = I, then

implies

i[T† − T] = T
†
T. (12.25)

Taking the Tαα = 〈α|T |α〉 element of the above equation, we have

2 Im Tαα =
∑
β

T
†
αβTβα =

∑
β

T
∗
βαTβα. (12.26)
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This relation, known as the Optical Theorem, is a necessary and sufficient condition
for the theory to be unitary. It is, therefore, a practical and efficient method to test
unitarity of a given system.

We now choose the states |α〉 as energy-momentum eigenstates and introduce
the M matrix through

Tαβ ≡ (2π)3 δ(pμα − pμβ )Mαβ. (12.27)

It follows from the LSZ formula [92], which relates the S-matrix elements to the
corresponding quantum field correlation functions, that Mαβ(pμα ; pνβ) is given by
the corresponding Feynman graphs in energy-momentum space, with all external
legs removed and calculated at the external energy-momenta that correspond to the
asymptotic energy-momenta pμα of the associated S-matrix element. The element
Tαα, for instance, apart from a delta function, becomes the propagator

Tαα ≡ (2π)3 δ(pμα − pμα ) Gμν(p0
α, pα). (12.28)

Then, using (12, 13) and neglecting an overall delta function factor, we can write
(12.26) as [93]

2 Im
1√

p2
0 − p2 + iε

= 1

4

∫
d�
∫

d3k
i√

k2
0 − k2 + iε

i√
(p0 − k0)2 − (p− k)2 + iε

, (12.29)

where we used the fact that the transverse projector satisfies P2 = P . The inte-
gral over � is a phase space factor needed to ensure that the completeness of the
intermediate states has been taken properly.

We now use the fact that the Fourier transform of a product is a convolution
in order to transform the above expression back to coordinate space. Then, using
(12.20) and (12.21), we get

Im
1

t2 − r2 + iε
= −T 2

8

1

[t2 − r2 − iε]
1

[t2 − r2 + iε]
ε

(t2 − r2)2 + ε2
= T 2

8

1

(t2 − r2)2 + ε2
, (12.30)

where T is the resulting phase space factor. Notice that it must have the dimen-
sion of time in order to guarantee that the above equation is dimensionally correct.
We immediately see that with the choice T 2 = 8ε, PQED satisfies the Optical
Theorem.
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The above demonstration was made using the free propagator. In the case of
interaction with massless Dirac fermions, we will have, according to (12.22),

Pμν −→ APμν + Bεμνα
kα√
k2

(P2)μν −→ (A2 − B2)Pμν + 2ABεμνα
kα√
k2
. (12.31)

It is not difficult to see that now the corrected propagator will satisfy the Optical
Theorem, provided we choose the regulators as

T 2 = 8
A

A2 − B2
ε (12.32)

for the A-term of the propagator and

T 2 = 8
1

2A
ε′ (12.33)

for the B-term.
For PQED with massless Dirac fermions, therefore, we have an exact demon-

stration of unitarity, achieved with the help of the Optical Theorem.

12.7 Screening

12.7.1 Coupling to a Higgs Field

It is instructive to inquire about the behavior of the static potential in PQED, when
we couple the gauge field Aμ to a complex scalar field possessing a nonzero vac-
uum expectation value. In QED, this mechanism, known as the Anderson–Higgs
mechanism, leads to a mass term for the gauge field, which has the consequence
of modifying the large-distance behavior of the static potential from 1/r to an
exponential decay.

Let us choose the matter Lagrangean LM in such a way that

LP QE D = −1

4
Fμν

[
2√
�

]
Fμν − ejμAμ + (Dμφ)

∗ Dμφ + μ|φ|2 − λ|φ|4,
(12.34)

where Dμ = ∂μ + i Aμ. The potential has nontrivial minima at |φ0| = μ

2λ . Shifting
the field around the minimum generates a “mass term” for Aμ, with M = 2|φ0|.

The Aμ-field propagator now becomes

Gμν(ω,k) = Pμν

2
[[−ω2 + k2]1/2 + M

] . (12.35)
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The interaction energy of static charges then becomes

E = e2

2

∫
d2rd2r ′ j0(r)

[∫
d2k

(2π)2
eik·(x−y)

|k| + M

]
j0(r′). (12.36)

Then, neglecting the unphysical self-interaction terms, we have

E = e2

2

∫
d2k

(2π)2
eik·(x−y)

√
k2 + M

E(r) = e2

{
1

4πr
− M

16

[
H0

(
Mr

2

)
− Y0

(
Mr

2

)]}
, (12.37)

where r = |x− y|, H0 is a Struve function and Y0 is a Neumann function.
At large distances, the interaction potential behaves as [82]

E(r) ∼ 1

M2r3
.

We conclude that, contrary to QED, the Anderson–Higgs mechanism in PQED
has the effect of modifying the electrostatic potential from 1/r to 1/r3 at large
distances, whereas in QED it becomes an exponential decaying potential.

12.7.2 Coupling to a Charged Dirac Field

Massive Dirac Field

Let us consider PQED coupled to a charged Dirac field in 2+1 D. As we know, the
inverse free propagator is additively corrected by the vacuum polarization tensor to
yield the inverse exact propagator, namely

G−1
E,μν = G−1

μν −�μν. (12.38)

Hence, using the exact propagator in (12.12), we obtain instead of (12.15),

E = e2

2

∫
d2k

(2π)2
eik·(x−y)

√
k2 +�00(ω = 0,k)

. (12.39)

In the large fermion mass, (M) regime, we have [84]

�00(ω = 0,k) � − α

3M
|k|2,

where α is the fine-structure constant.
We see that expression (12.41) is the Fourier transform of

M
|k| [|k| +M]

= 1

|k| −
1

|k| +M ,

where M = 3M/α.
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Using the relation above and (12.37), we conclude that in the present case the
screened potential energy will be

E(r) = e2M
16

[
H0

(Mr

2

)
− Y0

(Mr

2

)]
, (12.40)

where r = |x − y|. From (12.37), we can see that it behaves as ∼ 1/r at large
distances.

This interaction potential is sometimes called the Keldysh potential and was
derived in order to describe the effective Coulomb interaction in thin films [83].
The fact that we can re-obtain it from pseudo quantum electrodynamics is a great
success of this theory.

Massless Dirac Field

An interesting result occurs when PQED is coupled to massless Dirac fermions.
As a consequence of scale invariance, it follows that

�00(ω = 0,k) � F(α)|k|,
hence,

E(x− y) = e2 A(α)

2

∫
d2k

(2π)2
eik·(x−y)

√
k2

= e2 A(α)
1

4π |x− y| ,
(12.41)

where A(α) is the constant in (12.22).
We conclude here the second part of this book, which is concerned with an intro-

duction to QFT and the study of the main features thereof that may be relevant in
CMP. In the third part, starting with the next chapter, we present a QFT approach
to several CMP systems.
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13

Quantum Field Theory Methods in Condensed Matter

Condensed matter physics invariably exhibits many-particle systems, which must
be treated according to the laws of quantum-mechanics. Such particles may be
electrons, holes, phonons, magnons, polarons, Cooper pairs and so on. A quantum
field theory, conversely, describes the dynamics of fields according to the same
laws. It turns out that the energy eigenstates of a quantum field are precisely quan-
tum many-particle states: photons, in the case of the quantized electromagnetic
field; phonons, in the case of the elastic vibrating field of a crystal; magnons, in
the case of the oscillating magnetization vector of magnetic materials; electrons
and holes, in the case of Schrödinger or Dirac matter fields. Because of this fact,
quantum field theory has become a powerful instrument in the realm of condensed
matter systems, in the same way as it used to be in particle physics.

In this chapter we describe the contact point between a quantum field theory
and a quantum many-particle system. This may be summarized by the fact that a
particle position eigenstate, which forms the base for its full quantum-mechanical
description, is obtained by acting on the vacuum state with a local quantum field
operator, which is the basic piece of a quantum field theory. After introducing this
point, we derive several results that will be relevant for applications of the latter in
condensed matter systems.

13.1 Quantum Fields and Many-Particles

We have seen in Chapter 3 that a particle in a state of definite momentum p, such
that

P|p〉 = p|p〉 (13.1)

has the state-vector given by

|p〉 = c†(p)|0〉. (13.2)

225
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226 Quantum Field Theory Methods in Condensed Matter

Here c(p) is a commuting or anti-commuting operator, according to whether the
particle is a boson or a fermion. For the sake of simplifying the notation, we are
neglecting any spin index.

The same particle in a state of definite position x, namely |x〉, obeys

X|x〉 = x|x〉. (13.3)

Then, from the completeness relation∫
d3 p|p〉〈p| = I (13.4)

it follows that

|x〉 =
∫

d3 p|p〉〈p|x〉

=
∫

d3 p

(2π�)3
e−

i
�

p·xc†(p)|0〉, (13.5)

where we used (13.2) and the fact that the position representation of momentum
eigenfunctions is

〈x|p〉 = 1

(2π�)3
e

i
�

p·x. (13.6)

We clearly see, then, that the Schrödinger picture field operator

ψ†(x) =
∫

d3 p

(2π�)3
e−

i
�

p·xc†(p) (13.7)

creates a one-particle position eigenstate, namely,

X
[
ψ†(x)|0〉] = x

[
ψ†(x)|0〉]

ψ†(x, 0)|0〉 = |x〉. (13.8)

Going to the Heisenberg picture, the operator ψ†(x)S becomes a dynamical field
ψ†(x, t)H with Hamiltonian density (dropping the H subscript) given by

H0 = ψ†

(
− �

2

2m
∇2

)
ψ ; H0 =

∫
d3xH0 (13.9)

in the case of non-interacting particles. The corresponding energy eigenvalues are
shown in (3.21).

The associated Lagrangean density is given by

L0 = i�ψ†∂tψ − ψ†

(
− �

2

2m
∇2

)
ψ, (13.10)
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out of which we obtain the following operator equation:

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t). (13.11)

This has the form of the Schrödinger equation for the wave-function of a one-
particle quantum-mechanical system. Since this has become itself an operator, the
present formalism is sometimes called “second quantization.” The solutions of this
have the form

ψ(r, t) =
∫

dω

(2π)1/2

∫
d3k

(2π)3/2
δ

(
ω − �k2

2m

)
exp {i (k · r− ωt)} c(k) (13.12)

or, integrating in ω,

ψ(r, t) =
∫

d3k

(2π)3/2
exp {i (k · r− ω(k)t)} c(k), (13.13)

where the dispersion relation is ω(k) = �k2

2m .
We have considered here a non-relativistic system. The relativistic generalization

thereof is straightforward. Perhaps the most significant difference is that we will
have in (13.12 ) a frequency delta of the form

δ
(
ω2 − ω2(k)

) = 1

2ω(k)
[δ (ω − ω(k))+ δ (ω + ω(k))] , (13.14)

where now ω(k) = √|k|2 + m2. The immediate consequence is the presence of
positive and negative energies corresponding, respectively, to the two terms in
(13.14). This leads to the existence of particles and anti-particles in relativistic
systems, the latter being associated to the absence of a negative energy particle.

The above free-particle system is modified by interactions as follows. In the case
of interactions of each particle with an external potential V , we would have

L = i�ψ†∂tψ − ψ†

(
− �

2

2m
∇2

)
ψ − ψ†ψV . (13.15)

In this case, the particles still do not interact among themselves. The interaction
among particles, then, would be described by the Lagrangean density

L = i�ψ†∂tψ − ψ†

(
− �

2

2m
∇2

)
ψ − V

[
ψ,ψ†

]
, (13.16)

where V
[
ψ,ψ†

]
is a higher-than-quadratic function of the fields. In the following

chapters we will see examples of both types of interaction in several condensed
matter systems.
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13.2 The Time-Evolution Operator and the Green Operator

Consider a system, such that the state-vector at a time t0 is |
(t0)〉. If let by itself,
this system will evolve, at a later time t , to a state |
(t)〉, which is obtained from
the former by the action of the forward time-evolution operator,

|
(t)〉 = U+(t, t0)|
(t0)〉, (13.17)

which is given by

U+(t, t0) = θ(t − t0)e
− i

�
H(t−t0), (13.18)

where H is the Hamiltonian of the system. The operator U+(t, t0) satisfies the
differential equation (

i�
d

dt
− H

)
U+(t, t0) = i�δ(t − t0) (13.19)

with the initial condition U+(t0, t0) = I.
Fourier transforming U+(t, 0) to energy space, we get∫ ∞

−∞
dte

i
�
(E+iε)tU+(t, 0) =

∫ ∞

0
dte

i
�
(E−H+iε)t = i�G(E)

G(E) = 1

E − H + iε
. (13.20)

G(E) is called the Green operator or resolvent. This could be also obtained by
Fourier transforming Eq. (13.19). Suppose now the Hamiltonian spectrum is such
that

H |n〉 = En|n〉 ;
∑

n

|n〉〈n| = I. (13.21)

The spectral decomposition of G(E) and U (t, 0), then, are given respectively by

G(E) =
∑

n

|n〉〈n|
E − En + iε

(13.22)

and

U+(t, 0) = θ(t)
∑

n

|n〉〈n|e− i
�

Ent . (13.23)

13.3 The Spectral Operator and the Spectral Weight

Let us now introduce the spectral operator

A(ω) =
∑

n

|n〉〈n| δ(ω − ωn), (13.24)

where En = �ωn .
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From the spectral operator we define the spectral weight as

N (ω) ≡ TrA(ω) =
∑

n

δ(ω − ωn). (13.25)

It expresses the contribution of frequency ω to the sum in (13.24).
According to (13.23), we may express the time-evolution operator in terms of

the spectral operator as

U+(t, 0) =
∫ ∞

−∞
dωe−iωt A(ω). (13.26)

Now, using

Im
1

ω − ω0 + iε
= Im

ω − ω0 − iε

(ω − ω0)2 + ε2

ε→0−→ −πδ(ω − ω0), (13.27)

we obtain the relation

A(ω) = − 1

π
Im G(ω). (13.28)

Inserting this in (13.26), we get

U+(t, 0) = − 1

π
θ(t)

∫ ∞

−∞
dωe−iωt ImG(ω). (13.29)

Using (13.22), we can further write the spectral operator as

A(ω) = − 1

π
Im
∑

n

|n〉〈n|
�ω − En + iε

. (13.30)

The time-evolution operator, accordingly, can be written as

U+(t, 0) = − 1

π
θ(t)

∑
n

∫ ∞

−∞
dωe−iωt Im

|n〉〈n|
�ω − En + iε

. (13.31)

From this expression and (12.24) we may understand, for instance, why the
S-matrix elements, and consequently the scattering cross-section, will have poles
(resonances) at energies corresponding to the Hamiltonian energy eigenvalues.

13.4 The Green Function

The Green function is the coordinate representation of the forward time-evolution
operator, namely

G+(y, t; x, 0) = 〈y|U+(t, 0)|x〉 = θ(t)
∑

n

〈y|n〉〈n|x〉e−iωn t . (13.32)

Here, |x〉 and |y〉 are position eigenstates.
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Then, using (13.8), the Green function can be expressed, respectively, in the
Schrödinger and Heisenberg pictures as

G+(y, t; x, 0) = 〈0|ψ(y)e− i
�

Htψ†(x)|0〉S = 〈0|ψ(y, t)ψ†(x, 0)|0〉H . (13.33)

From (13.17) and (13.33), we have


(x, t) =
∫

d3 y G+(x, t; y, 0)
(y, 0). (13.34)

13.5 The Spectral Function

The Discrete Energy Representation

Out of the spectral operator, we can obtain the spectral function

A(ω; x, y) = 〈y|A(ω)|x〉 =
∑

n

〈y|n〉〈n|x〉δ(ω − ωn), (13.35)

which is the coordinate representation of A(ω).
From the previous equation, we derive the expression for the spectral weight,

namely,

N (ω) =
∫

d3x A(ω; x, x) =
∑

n

∫
d3x〈n|x〉〈x|n〉δ(ω − ωn) =

∑
n

δ(ω − ωn).

(13.36)
We can, alternatively, write the spectral weight, as

N (ω) = − 1

π
Im
∑

n

1

�ω − En + iε
. (13.37)

We may express the Green function in terms of the spectral function as

G+(y, t; x, 0) = θ(t)
∫ ∞

−∞
dωe−iωt A(ω; x, y) (13.38)

and using (13.28)

G+(y, t; x, 0) = − 1

π
θ(t)

∫ ∞

−∞
dωe−iωt Im G(ω; x, y), (13.39)

where

G(ω; x, y) =
∑

n

〈y|n〉〈n|x〉
E − En + iε

. (13.40)

We immediately see that the energy eigenvalues appear as poles in the Fourier
transform of the Green function.
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The Momentum Representation

The spectral function is very useful for determining important properties of quan-
tum many-particle systems. We have so far considered it with a discrete base. Let
us illustrate these properties when we use a continuum base, namely of momentum:∑

n

〈y|n〉〈n|x〉 = 1

V

∑
kn

eikn ·(x−y) =
∫

d3k

(2π)3
eik·(x−y). (13.41)

The spectral function is given by

A(ω; x, y) = 1

V

∑
kn

eikn ·(x−y)δ(ω − ω(kn)). (13.42)

Then the average number of particles is given by∫
d3x

∫ ∞

−∞
dωA(ω; x, x) =

∑
kn

= N , (13.43)

the average density, by ∫ ∞

−∞
dωA(ω; x, x) = 1

V

∑
kn

= N

V
(13.44)

and the average spectral weight by∫
d3x A(ω; x, x) =

∑
kn

δ(ω − ω(kn)) = N (ω). (13.45)

In the full continuum limit, we have, assuming a certain dispersion relation ε(k),∑
kn

=⇒
∫

d3k =
∫ ∞

0
dk 4πk2 =

∫ ∞

0
dε g(ε), (13.46)

where g(ε), the density of states with energy ε is given by

g(ε) = 4πk2 dk

dε
= 4πk2

dε
dk

. (13.47)

Inserting (13.46) in (13.45), we find

N (ω) =
∫

d3kδ(ω − ε(k)) =
∫ ∞

0
dεg(ε)δ(ω − ε)) = g(ω) (13.48)

and we see that the average spectral weight coincides with the density of states.
In two spatial dimensions, we would have, instead of (13.46),∑

kn

=⇒
∫

d2k =
∫ ∞

0
dk 2πk =

∫ ∞

0
dε g(ε), (13.49)
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where g(ε), the density of states with energy ε is now given by

g(ε) = 2πk
dk

dε
= 2πk

dε
dk

. (13.50)

The probability of the field ψ†(x) creating one-particle states out of the vacuum
is another quantity, which is instructive to calculate. It is given by

P1 = 1

N

∫
d3x

∫ ∞

−∞
dωA(ω; x, x) = 1

N

∑
kn

= 1

N

∫ ∞

−∞
dωN (ω), (13.51)

which is equal to one for the free theory.
We may write the Fourier expansion of the spectral function as

A(ω; x, y) =
∫

d3k

(2π)3
eik·(x−y)A(ω,k). (13.52)

Then, it follows that

A(ω,k) = 1

π
Im G(ω − iε,k) = G(ω − iε,k), (13.53)

where G(ω,k) is the space and time Fourier transform of the Green function
(13.32).

According to (13.45), as a consequence of the previous expression, we can write
the spectral weight as

N (ω) =
∫

d3x
∫

d3k

(2π)3
A(ω,k) = V

∫
d3k

(2π)3
A(ω,k)→

N (ω) =
∑
kn

A(ω,kn)

N (ω) =
∑
kn

G(ω − iε,kn). (13.54)

This is a useful expression for determining the spectral density, given the knowl-
edge of the Green function.

In the next chapter, we will see a few applications of this formalism to relevant
systems in condensed matter.
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Metals, Fermi Liquids, Mott and Anderson Insulators

The energy eigenstates of non-interacting electrons moving on a perfect lattice,
according to Bloch’s Theorem, form continuous bands. In a situation where a
completely filled band precisely coincides with the first Brillouin zone (see Sub-
section 1.3.3), an energy gap forms and no electron states in the valence band are
adjacent to empty available states in the conduction band. The system is an insu-
lator when the energy gap is much larger than kB T , or a semiconductor when it
is of the order of kB T or less. Conversely, when the occupied electron states form
a Fermi surface, such that all states belonging to it have adjacent empty states in
the conduction band, then the system is a metal. When only part of the states on
the Fermi surface exhibit this property, the system is a semi-metal. This scenario,
which was derived for free electrons on an ideal lattice, nevertheless is profoundly
modified by the introduction either of electronic interactions or of disorder. A sub-
stance that would be a metal, according to this scenario, for instance, may become
either a Fermi liquid or an insulator when the new features are taken into account.
In this chapter, we present a few selected examples where the application of quan-
tum field theory methods in condensed matter systems leads to clarifying results.
We first consider metals and describe their non-interacting quasi-particles. We then
introduce weak electronic interactions that lead to the so-called Fermi liquid and
present a QFT approach to this, studying in particular the mass renormalization
and finite lifetime of the quasi-particles. We also calculate the conductivity of such
systems in the presence of electronic scattering by impurities. We conclude the
chapter by presenting two special types of insulators that would be otherwise met-
als but, in the presence of interactions and disorder, become special insulators: the
Mott and Anderson insulators, respectively.

14.1 Metals

14.1.1 The Quasi-Particle Spectrum of Metals

Let us first consider a metal, a system supposed to have non-interacting electrons,
with Hamiltonian given by

233
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H0 =
∫

d3rψ†
σ (r)

(
− �

2

2m
∇2 − εF

)
ψσ(r), (14.1)

where the energy is referred to the Fermi level εF . The corresponding Lagrangean
is

L0 =
∫

d3rψ†
σ (r)

[
i�
∂

∂t
+ �

2

2m
∇2 + εF

]
ψσ (r). (14.2)

The two-point Green function is given by

G(2)(r, t; 0, 0) = 〈0|Tψ(r, t)ψ†(0, 0)|0〉 (14.3)

and satisfies [
i�
∂

∂t
+ �

2

2m
∇2 − εF

]
G(2)(r; t) = i�δ(r)δ(t). (14.4)

The two-point vertex function in momentum space reads

�
(2)
0 (ω,p) =

[
�ω − �

2p2

2m
+ εF

]
, (14.5)

hence, according to Eq. (6.18), we have

G(2)
0 (ω,p) = i�

[
�ω − �

2p2

2m
+ εF

]−1

,

G(2)(x, t; y, 0) =
∫ ∞

−∞
dωe−iωt

∫
d3 p

(2π)3
G(2)

0 (ω,p)e
ip·(x−y). (14.6)

From this and (13.38), we have the spectral function in this case given by

A(ω; x, y) =
∫

d3 p

(2π)3
G(2)

0 (ω,p)e
ip·(x−y). (14.7)

Even though the electrons in a metal are taken as non-interacting, the constraints
imposed by the existence of a Fermi surface have a strong influence on the nature
of the elementary excitations one would produce, when adding energy to the sys-
tem. These, indeed, may be rather different from simply free electrons, as we show
below.

A crucial step in the determination of the corresponding Green function is the
prescription for approaching the poles that occur at �

2p2

2m −εF . These will correspond
to energies larger or smaller than the Fermi energy εF , according to whether the
modulus of the momentum |p| is larger or smaller than the Fermi momentum |pF |.
Then, we have
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14.1 Metals 235

Figure 14.1 The quasi-electrons and quasi-holes in a metal

�
2p2

2m
− εF = ξ+(p) > 0 |p| > |pF |

−�
2p2

2m
+ εF = ξ−(p) > 0 |p| < |pF |. (14.8)

As we did in the relativistic case, we shift the poles in such a way that we can
perform the Wick rotation in an analytic way. This leads to

G(2)
0 (ω,p) =

iθ(|p| − |pF |)
�ω − [ξ+(p)− iε

] + iθ(|pF | − |p|)
�ω − [ξ−(p)+ iε

] . (14.9)

Notice that with the prescription choice made above, the pole at �ω+ = ξ+(p)
corresponds to electrons above the Fermi surface and �ω− = ξ−(p) to holes below
it. These excitations are called, respectively, quasi-electrons and quasi-holes.

The corresponding spectral weight, according to what we saw in the previous
section will be
N (ω) = Ne(ω)+ Nh(ω)

=
∫

d3 p

(2π)3
{
θ(|p| − |pF |)δ (ω − ω+(p))− θ(|pF | − |p|)δ (ω − ω−(p))

}
,

(14.10)

thus containing contributions coming both from outside and inside the Fermi sur-
face. These are the physical excitations in the metal. Interestingly, notice that the
Fermi surface profoundly influences the properties of the electrons in a metal, even
in the absence of interactions. The form of the elementary excitations, namely,
quasi-electrons and quasi-holes, is a manifestation of that.

Using (13.47), we obtain for the spectral weight,

N (ω+, ω−) = m3/2

21/2π2

[
θ(ω+)

√
ω+ + εF + θ(ω−)√−ω− + εF

]
(14.11)
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236 Metals, Fermi Liquids, Mott and Anderson Insulators

Figure 14.2 The density of states of the quasi-electrons in a metal. The physical
region is ω+ > 0.

Figure 14.3 The density of states of the quasi-holes in a metal. The physical
region is ω− > 0.

The Fermi energy is located at the origin. The physical region corresponding to
E > εF corresponds to ω+ > 0; that corresponding to E < εF corresponds to
ω− > 0.

In the rest of this chapter, we will consider how the effects of interactions and
disorder will modify the present picture.

14.2 The Fermi Liquid: a Quantum Field Theory Approach

The independent electron description of condensed matter systems works surpris-
ingly well, and for that reason has been a fundamental paradigm for a long time.
The first attempt to include interactions in the picture is Landau’s Fermi liquid
theory. The underlying ideas behind this theory allow us to understand why the
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14.2 The Fermi Liquid: a Quantum Field Theory Approach 237

independent electron approximation is so good. When the electromagnetic interac-
tion is taken into account, for instance, in the case of an electron away from the
Fermi surface, it would excite an arbitrary number of electron-hole pairs from the
Fermi sea, thereby decaying into lesser energy states. Now, the closer the elec-
tron is to the Fermi surface, because of the Pauli exclusion principle, the lesser the
number of possible final states would be available for such electron to decay into.
Ultimately, an electron on the Fermi surface, despite the interactions, would not
decay for the absence of available possible final states.

Landau’s Fermi liquid theory is based on the concept of “quasi-particle.” This
would have an infinite lifetime when belonging to the Fermi surface and a finite
lifetime when away from it. When these quasi-particles are not very far from the
Fermi surface, however, they will behave very much like free electrons, with a rel-
atively long lifetime, because of the restriction on the phase space imposed by the
Pauli principle. According to this theory, therefore, the only effect of the interaction
is basically to redefine the parameters of the ideal Fermi gas, leaving the phys-
ical properties essentially unchanged. This fact explains why the non-interacting
description of the electron gas has been so successful.

Here, we present a quantum field theory approach to the Fermi liquid theory that,
besides of fostering a deeper understanding of its foundations, frames its contents
within a general context.

The Fermi liquid theory describes a situation where interactions are taken into
account. Let us assume, therefore, that the Hamiltonian, in addition to H0, contains
an interacting term HI . A primary effect of the interactions is to modify the proper
vertex two-point function by adding to it the electron self-energy, namely,

�(2)(ω,p) =
[
�ω − �

2p2

2m
+�(ω,p)

]
, (14.12)

to which there corresponds the two-point Green function in coordinate space,

G(2)(t, x) = i
∫

dω

2π

∫
d3k

(2π)3
ei[k·x−ωt]

�ω − �2p2

2m +�(ω,p)
. (14.13)

The physical excitations correspond to the poles of the integrand, which occur at

�ωR(p) = �
2p2

2m
− Re�(ωR, p). (14.14)

We now expand the real part of the electron self-energy around ωR(p), for a fixed p:

Re�(ω,p) = Re�(ωR, p)+ (�ω − �ωR)
∂Re�(ωR, p)

∂ωR
+ . . . (14.15)
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Inserting this in (14.13), we get

G(2)(ωR, p) = i Z

[(�ω − �ωR)+ iε] [1+ Z O(�ω − �ωR)]
, (14.16)

where

Z = 1

1+ ∂Re�(ωR ,p)
∂ωR

. (14.17)

We see that the two-point function possesses a pole at ωR . We again use the
prescription iε in order to define the integral.

Now we make the assumption, corresponding to the Fermi liquid theory, that for
sufficiently weak interactions, the physical dispersion relation on the Fermi surface
can be written as

�ωR(pF) =
�

2p2
F

2m
− Re�(ωR, pF) =

�
2p2

F

2m∗ , (14.18)

where m∗ is the so-called effective mass. Notice that we have the same dispersion
relation as the one in the free theory, the only effect of the interaction being that
the electron mass m is replaced by the effective mass m∗.

Since ωR = ω0
m
m∗ , it follows that the ratio between the masses is given by

m

m∗ =
∂ωR

∂ω0

m

m∗ = 1− ∂Re�(ωR, pF)

∂ωR

∂ωR

∂ω0
. (14.19)

Using the first part of the equation above, we get

m

m∗ =
1

1+ ∂Re�(ωR ,pF )

∂ωR

m∗ = m Z−1, (14.20)

where Z is given by (14.17).
The Green function of the interacting system will be

G(2)(ωR, p) = i Z(
�ω − �2p2

2m∗ + iε
)

[1+ O(�ω − �ωR)]
, (14.21)

where the momentum is assumed to be close to the Fermi surface.
The quantum field theory approach to the Fermi liquid system shows that,

when the interactions can be described in the Fermi liquid regime, the fermionic
quasi-particles behave as free particles with an effective mass m∗. If we write the
interacting Green function as

〈0|Tψqp(r, t)ψ†
qp(0, 0)|0〉, (14.22)
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then (14.21) implies the quasi-particle and the electron fields are related as

ψqp(r, t) = Z1/2ψ(r, t). (14.23)

Knowing that the local electron field creates eigenstates of the position operator,
according to (6.67), it follows that the quasiparticle operator will have a probabil-
ity of less than one, given by (14.17), of creating local quasi-particle states. The
spectral weight, accordingly, is given by

N (ω) = Zδ (ω − ωR(p)) , (14.24)

and the probability of the basic field creating one-particle states is now, according
to (13.51),

P1 = Z , (14.25)

where Z < 1 is given by (14.17). Because of the interaction, the field operator is
no longer a one-particle creation operator.

As an example of a physical quantity that is well described by the Fermi liquid
theory, we take the electronic specific heat of metals. This is given, respectively, by

cV = κmT

cV = κm∗T (14.26)

in the free and Fermi liquid regimes, the electron mass being replaced by the
effective mass in the latter. Many systems present a behavior compatible with the
predictions of the Fermi liquid theory and are, consequently, well-described by this
theory.

14.3 Quasi-Particles and Their Lifetime

When the quanta associated to a certain quantized field are elementary particles
such as electrons or quarks, these have an infinite lifetime or, in other words,
are stable. Conversely, when these quanta are quasi-particles, as in the previous
example of the Fermi liquid system, they are unstable when away from the Fermi
surface, therefore presenting a finite lifetime. As we will see below, the quasi-
particle lifetime corresponds to the inverse of the imaginary part of the self-energy.

We have seen that the energy eigenvalues appear as poles of the Green function
in momentum space. Suppose the self-energy possesses an imaginary part

�(ωR, p) = �ωR + i
�

τ
. (14.27)

This would imply, according to (14.14), that the eigenfrequencies �ωR should
possess an imaginary part as well,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.015
https://www.cambridge.org/core


240 Metals, Fermi Liquids, Mott and Anderson Insulators

ωR = ω0 −�ωR − i
1

τ
. (14.28)

The stability condition for the quasi-particles is

�

τ
� �ωR ; τ � 1

ωR
.

Now, consider the time evolution of the one-quasi-particle state |r, 0〉,
|r, t〉 = exp{− i

�
Ht}|r, 0〉.

Using the spectral representation of the time-evolution operator, namely

U (t) =
∑

n

|n〉e−iωn t〈n|, (14.29)

we clearly see that if the eigenfrequencies are real, then

|| |r, t〉||2 =
∑

n

〈r, 0|n〉〈n|r, 0〉 = || |r, 0〉||2 (14.30)

and the norm of the quasi-particle states is preserved. Conversely, if the frequencies
possess an imaginary part 1/τ , then according to (14.29), we would have

|| |r, t〉||2 =
∑

n

〈r, 0|n〉e−2t/τ 〈n|r, 0〉 = e−2t/τ || |r, 0〉||2. (14.31)

We see that the quasi-particle state vanishes with a decaying rate e−2t/τ , having
therefore a lifetime �t ∼ τ/2.

It is instructive to compare the quasi-particle Green function to the electron-hole
Green function, when the self-energy possesses an imaginary part. In this case
(14.21) will have the form

G(2)
τ (ωR, p) = i Z(

�ω − �2p2

2m∗ − i �

τ

)
[1+ O(�ω − �ωR)]

. (14.32)

Now, there is a natural imaginary part in G(ω) and the spectral weight is now

N (ω) = Z
1
τ

(ω − ωR)2 + 1
τ 2

. (14.33)

The probability for the field to create a quasi-particle of energy in the interval �ω

and �ω + dω has now a Lorentzian shape. This should be compared to the stable
particle case, given by (14.10), namely

Zδ(ω − ωR). (14.34)

For stable particles, the lifetime is infinite (τ →∞) and the Lorentzian in (14.33)
becomes a delta. For a finite lifetime, conversely, the energy eigenvalues will
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always have an uncertainty of the order of �/τ and the corresponding transition
lines accordingly will have a width of the same order.

14.4 Quantum Field Theory Model for Conductivity

In this section, we consider a free electron system, which is subject to scattering
from localized centers, occurring at an average time interval τ . We are going to
determine the conductivity using the Kubo formula, Eq. (4.61), and for this purpose
we need the current correlation function. In order to obtain this, we use quantum
field theory methods, which prove to be very convenient and powerful. In spite of
the electrons’ being free, the fact that they suffer scattering from localized centers
makes us expect a finite conductivity, depending crucially on τ .

Let us assume the Hamiltonian of the system is

H =
∫

d3r ψ†
σ (r)

[
− �

2

2m
∇2 + �

τ

]
ψσ(r), (14.35)

where the second term represents the interaction of electrons with a scattering
center. τ is a characteristic time interval between these scatterings.

Using the Lagrangean corresponding to (4.52) and (14.35) and considering
(5.66), we can express the partition functional as

Z [Aext] = 1

N

∫
Dψσ Dψ†

σ exp

{
−
∫

�β

0
dt
∫

d3xψ†
σ

[
i�
∂

∂t
+ �

2

2m
∇2 − �

τ

+
[
−ie

�

mc

←→∇ i + e2

mc
Ai

ext

]
Ai

ext

]
ψσ

}
, (14.36)

where N = Z [0]. The last term takes into account (4.49) and, it is assumed that
the external field starts to act at t > 0.

Performing the functional integration over the fermion fields, we get

Z [Aext] = 1

N exp

{
−Tr ln

[
−i�

∂

∂t
− �

2

2m
∇2 + i�

τ

+
[
−ie�

←→∇ i + ne2

mc
Ai

ext

]
Ai

ext

]}
. (14.37)

where we take into account the fact that the electron density is considered with
respect to as its average value n. The free energy corresponding to (14.37) is
conveniently expressed as a trace in frequency-momentum space, namely

F[Aext] = 1

β
Tr ln

⎡
⎣1+

[
eki + ne2

mc Ai
ext

]
Ai

ext

�ω − �2k2

2m + i�
τ

⎤
⎦ . (14.38)
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Now, the average current density is given by (4.53). Hence, applying it to the
latter expression for the free energy and using (4.58), we readily obtain, for T → 0

〈J i 〉 =
∫

dω

2π
〈J i J j 〉(ω,k = 0)

∣∣∣∣∣Aext=0
A j

ext

ω

or, equivalently,

〈J i 〉 =
∫ ∞

−∞
dt 〈J i J j 〉(t)θ(t) A j

ext.

From the two previous, equations and applying (4.53) in (14.38), we obtain:

〈J i J j 〉(ω,k = 0)
∣∣
Aext=0 =

(
ne2

mc

)
ω

ω + i/τ
δi j , (14.39)

where we also used the facts: (a) that the external fields start to act at t = 0, and,
(b) that the Fourier transform of the Heaviside function is i/ω.

Now, considering that

〈J i J j 〉(ω,k) = 〈 j i j j 〉(ω,k)+ δi j ne2

mc
, (14.40)

it follows, by using (14.39), that

〈 j i j j 〉(ω,k = 0)
∣∣
Aext=0 =

(
ne2

mc

) −i/τ

ω + i/τ
δi j . (14.41)

Then, inserting (14.39) in the Kubo formula, we have the conductivity given by
the famous Drude formula:

σ i j (ω) = δi j σ0

1− iωτ

σ0 = ne2τ

m
. (14.42)

This frequency-dependent conductivity is usually called “optical conductivity.”
The corresponding expression as a function of time is given by the inverse Fourier
transform of (14.42), namely

σ i j (t − t ′) = δi j ne2

m
e−(t−t ′)/τ θ(t − t ′). (14.43)

Hence, according to (4.58), we write

〈Ji 〉(t) =
∫ t

−∞
dt ′ σ i j (t − t ′)E j (t ′). (14.44)

Let us now probe the response of the system in two different situations: firstly,
in the presence of a uniform and static applied electric field that starts to act at
t = 0: E = E0 θ(t); and secondly, under the application of a uniform electric pulse
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at t = 0, namely, an electric field given by E = A0 δ(t), or equivalently, a vector
potential A(t) = A0 θ(t).

Inserting (14.43) in (14.44), we obtain in the first case,

〈J〉(t) = ne2

m
E0

∫ t

−∞
dt ′ e−(t−t ′)/τ θ(t ′), (14.45)

from which we immediately get

〈J〉(t) = σ0E0
[
1− e−t/τ

]
, (14.46)

where σ0 is given by (14.42). Notice that, after a transient regime, the cur-
rent produced by the static external electric field stabilizes at a constant value
corresponding to Drude’s DC-conductivity σ0.

In the case of the applied electric pulse, conversely, we obtain

〈J〉(t) = ne2

m
A0 e−t/τ (14.47)

and we see that the current decays exponentially on a time-scale τ , after the pulse
is applied. We may write the above equation as

〈J〉(t) = ne2

m
A0 − ne2

m
A0
[
1− e−t/τ

]
〈J〉(t) = ne2

m
A0 + 〈j〉(t). (14.48)

Comparing with (3.49), we conclude that, after the pulse is applied, the current
eventually vanishes in a metal because the j-term of the current builds up so as to
cancel the other term. Observe that in the case of a superconductor, Eq. (14.48) is
replaced with (4.75) and no longer vanishes.

It is also instructive to examine the behavior of the model in the two different
regimes: τ → ∞ and τ → 0, corresponding, respectively, to a very low and very
high density of scatterers. Let us consider now just the case of an applied uniform
electric field. Then, from (14.46), we get

〈J〉(t) τ→∞−→ ne2 t

m
E0

〈J〉(t) τ→0−→ 0. (14.49)

In the large τ regime (low density of scatterers), the current increases linearly
with time, whereas in the small τ regime (high density of scatterers), it tends to
zero. The latter would correspond to the situation occurring in disordered systems,
where the conductivity vanishes, due to localization, whereas the former reflects the
situation found in a perfect ideal lattice, where the electron would move without
being scattered. In this case, application of an electric field would produce an ever-
growing current that increases linearly with time.
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14.5 The Mott Insulator: Interaction-Induced Gap

Let us consider an electronic system described by the Hamiltonian

H =
∫

d3r

[
ψ†
σ (r)

(
− �

2

2m
∇2 − εF

)
ψσ(r)

]

+ e2

2

∫
d3r

∫
d3r ′

[(
ψ†
σ (r)ψσ (r)

) 1

4π |r− r′|
(
ψ

†
σ ′(r

′)ψσ ′(r′)
)]
. (14.50)

The first term is the free Hamiltonian (14.1) and the second one describes the
electrostatic interaction among the electrons. The corresponding Lagrangean is

L =
∫

d3r ψ†
σ (r)i�

∂

∂t
ψσ(r)− H. (14.51)

Considering that

− ∇2

[
1

4π |r− r′|
]
= δ(r− r′), (14.52)

we can write∫
Dψσ Dψ†

σ ei
∫

d4xL[ψ,ψ†] =
∫

Dψσ Dψ†
σ Dφei

∫
d4xL[ψ,ψ†,φ], (14.53)

where L[ψ,ψ†] is the Lagrangean corresponding to (14.50) and

L[ψ,ψ†, φ] = ψ†
σ (r)

[
i�
∂

∂t
− �

2

2m
∇2 − εF + φ

]
ψσ (r)+ 1

2e2
∇φ · ∇φ.

(14.54)

Since the Lagrangean is quadratic in the fermion field, we may integrate on this,
thus deriving an effective action for the field φ. With the help of the Nambu fermion
field �† = (ψ†

↓ ψ↑), we can rewrite (14.54) as

L [
,φ] = 1

2e2
∇φ · ∇φ + �†A�, (14.55)

where the matrix A is given, in momentum space, by

A =
(
ξ(k)+ φ + �ω 0

0 ξ(k)+ φ − �ω

)
, (14.56)

with ξ(k) = �
2k2

2m − εF .
Integrating over the fermion fields, we obtain

Z = 1

Z0,φ

∫
Dφ ei Se f f [φ], (14.57)

where

Sef f [φ] =
∫

d4x

(
1

2e2
∇φ · ∇φ

)
− i ln Det

[A [φ]

A [0]

]
. (14.58)
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The determinant of the matrix A is

detA[φ] = [ξ + φ]2 − (�ω)2, (14.59)

hence the effective potential corresponding to the above expression becomes, in
Euclidean space,

Vef f [φ] = 1

2e2
∇φ · ∇φ −

∫ ∞

−∞
dω

2π

∫  

− 
dξN (ξ) ln

[
ω2 + (ξ + φ)2
ω2 + ξ 2

]

= 1

2e2
∇φ · ∇φ −

∫  

− 
dξ2N (ξ)φ, (14.60)

where N (ξ) is the density of states at the energy ξ and  is a momentum cutoff.
Since our calculation is made at a zero temperature, it is natural to expect that most
of the contributions for the ξ -integral will come from the Fermi surface; hence, we
assume

N (ξ) � N (EF).

Then, the effective potential is given by

Vef f [φ] = 1

2e2
∇φ · ∇φ − 4N (EF) φ.

Then, the field equation for φ, derived from V ′
e f f [φ] = 0, reads

−∇2φ = 4N (EF)e
2 . (14.61)

This presents the following solution in momentum space:

φ0(p) = 4N (EF)e2 

p2
. (14.62)

Inserting this solution in (14.56), we see that the dispersion relation of the
electronic system is modified by the interaction as

ξ(p)→ ξ = ξ(p)+ 4N (EF)e2 

p2
. (14.63)

As a consequence, the poles of the Green function shift in such a way that now

G(2)
0 (ω,p) =

iθ(|p| − |pF |)
�ω − [ξ+(p)− iε

] + iθ(|pF | − |p|)
�ω − [ξ−(p)+ iε

] , (14.64)

where

ξ+(p) = �
2p2

2m
+ φ0(p)− εF

ξ−(p) = −
[

�
2p2

2m
+ φ0(p)

]
+ εF . (14.65)
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Figure 14.4 The density of states of the Mott insulator

2 4 6 8 10

E

M

–M

|p|

Figure 14.5 The interaction-induced gap in a Mott insulator

Observe that the interaction shifts the poles to �ω± = ξ±(p), thereby opening a
gap in the spectrum (see Fig. 14.5). This implies that the system is actually an
insulator.

Expanding around the point where the bands are the closest, we obtain the
following expressions (assuming εF = 0):
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ξ+(p) = �
2p2

2m∗ + M + O(p3)

ξ−(p) = −�
2p2

2m∗ − M + O(p3). (14.66)

These insulators, which have a gap produced by the Coulomb interaction but
which otherwise would be metals, are called Mott insulators [96]. It is instructive
to evaluate the density of states. From the previous expression and (13.48), we
derive the following expression, at low momentum

N (ω) == m3/2

21/2π2

[
θ(ω − M)

√
ω − M + θ(−ω + M)

√−ω − M
]
, (14.67)

where M = φ0(p0)
p0→0−→ 2

√
2N (EF)e2 provided the coupling N (EF)e2 �= 0.

We have seen in this section that the Coulomb interaction alone is capable of
turning a metal into an insulator. This is just an example of how the presence of
interactions may profoundly modify the physical properties of a system. In the
next section, we will see how the occurrence of disorder may cause deep changes
as well.

14.6 Anderson Localization: Disorder-Induced Insulators

Another interesting class of insulators is revealed when we include the effects of
disorder in a given electronic system. Consider the Hamiltonian given by

H =
∫

d3r ψ†
σ (r)

[
− �

2

2m
∇2 + η(r)

]
ψσ(r), (14.68)

describing free electrons in the presence of a field η. This is a generalization of
(14.35), where the spatially dependent external field η(r) ≡ �

τ(r) represents the
scattering of electrons from randomly distributed scattering centers, each one with
a characteristic scattering time τ(r).

We assume the dynamics of the electrons is much faster than that of the scatter-
ers, in such a way that the disorder is treated in the so-called quenched approach.
In this, we first evaluate the free energy for a given external configuration η(r) and
subsequently average over this with a Gaussian distribution of width �:

F =
∫

Dη exp

{
− 1

2�

∫
d3x η2

}
F[η]

F[η] = −kB T ln Z [η]. (14.69)

In order to perform the above average, we use the replica method [94], writing the
logarithm of the partition function as
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ln Z [η] = lim
n→0

Zn[η] − 1

n
, (14.70)

where Zn[η] is the replicated partition function, given by

Zn[η] = 1

Zn[0]
∫ n∏

α=1

Dψασ Dψα†
σ

× exp

{
−
∫ β

0
dt
∫

dd xψα†
σ

[
− �

2

2m
∇2 − η

]
ψασ

}
. (14.71)

Inserting this in (14.70) and (14.69), we get the averaged replicated partition
function

Z
n = 1

Zn[0]
∫ n∏

α=1

Dψασ Dψα†
σ Dη

× exp

{
−
∫

d3x
η2

2�

}
. exp

{
−
∫ β

0
dt
∫

dd xψα†
σ

[
− �

2

2m
∇2 − η

]
ψασ

}
,

(14.72)

which becomes, upon integration on η,

Z
n = 1

Zn[0]
∫ n∏

α=1

Dψασ Dψα†
σ × exp

{
−
∫ β

0
dt
∫

dd xψα†
σ

(
− �

2

2m
∇2

)
ψασ

+�
2

∫ β

0
dt
∫ β

0
dt ′ψα†

σ (t)ψ
β

σ ′(t
′)ψασ (t)ψ

β†
σ ′ (t

′)
}
. (14.73)

Now, introducing the Hubbard–Stratonovitch field Qαβ

σσ ′(t, t
′), we can cast the

above expression in the form

Z
n = 1

Zn[0]
∫ n∏

α=1

Dψασ Dψα†
σ DQαβ

σσ ′ exp

{
−
∫ β

0
dt
∫

dd xψα†
σ

(
− �

2

2m
∇2

)
ψασ

+ �
∫ β

0
dt
∫ β

0
dt ′
[

Qαβ

σσ ′Q
αβ

σσ ′

2
+ ψα†

σ (t)Q
αβ

σσ ′ψ
β

σ ′(t
′)

]}
. (14.74)

The field equation for the Hubbard–Stratonovitch field is

Qαβ

σσ ′ = 〈ψα†
σ (t)ψ

β

σ ′(t
′)〉. (14.75)

From this, we may infer that

Qαβ

σσ ′ = δαβδσσ
′
χ(t, t ′). (14.76)

We now determine the effective action associated to (14.74). This will be
given by
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exp {−S} = 1

Z [0]
∫ n∏

α=1

Dψασ Dψα†
σ Dχ

× exp

{
−
∫

dtdd x

[
n�
χ2

2
+ ψα†

σ

(
i�
∂

∂t
− �

2

2m
∇2 −�χ

)
ψασ

]}
.

(14.77)

Notice there is a product of n fermionic integrals. Hence, there is an overall n factor
in the exponent that will cancel when we remove the replicas, leading to a finite free
energy. The corresponding effective potential will be obtained by integration over
the fermion fields. Following the procedure we used in the previous subsection,
we get

Vef f [χ ] = −1

2
�χ2 +

∫
dω

2π

∫
dξN (ξ) ln

[
ω2 + (ξ −�χ)2

ω2 + ξ 2

]
. (14.78)

For d = 3, we obtain, following the same procedure as in (14.60),

Vef f [χ ] = −1

2
�χ2 + 2

∫ �χ

0
dξN (ξ) [(�χ − 2ξ)]− 2

∫  

�χ

dξN (ξ) [(�χ)] ,

(14.79)
whereupon the effective potential is, up to a constant,

Vef f [χ ] = −1

2
�χ2 + α�2χ2 − γ�χ, (14.80)

where

α = N (EF) γ =  N (EF) (14.81)

dVef f

dχ
= [−1+ 2α�]χ − γ,= 0 (14.82)

d2Vef f

dχ2
= [−1+ 2α�] > 0. (14.83)

We see the effective potential derivative vanishes at

χ0 = γ

2�α − 1
. (14.84)

This will be a minimum, provided � > 1
2α .

For an amount of disorder above ant the threshold � ∈ [ 1
2α ,+∞), we have

M = −χ0 < 0, and the spectral weight corresponding to (14.67) will be

N (ω) = m3/2

21/2π2

[
θ(ω + |M |)√ω + |M | + θ(−ω − |M |)√−ω − M |

]
. (14.85)
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Figure 14.6 The density of states of the Anderson insulator. The states outside
the central region of the band are localized and therefore non-conducting.

Observe that, contrary to the Mott insulator – which had allowed states for
{ω|ω > |M |} ∪ {ω|ω < −|M |}, therefore exhibiting a gap for {ω|ω ∈
[−|M |,+|M |]} – the Anderson insulator possesses allowed states for the set
{ω|ω > −|M |} ∪ {ω < +|M |} = {ω|ω ∈ (−∞,+∞)}, namely, for the whole
band. It happens, however, that only for the states with {ω|ω ∈ [−|M |,+|M |]}
will the spectral weight will be real. This means that only for this interval in the
center of the band, the system will present propagating, extended states. For the rest
of the band, namely, on the band edges, the states will be localized and therefore
non-conducting. This phenomenon is known as Anderson localization [95]. The
line separating conducting from non-conducting states is called “mobility edge.”

Notice that the onset of the localized phase occurs at the critical amount of dis-
order �c = � > 1

2α . For � < 1
2α , the system is a normal metal. Observe that

|M(�c)| → ∞, implying the width of the conducting region is infinite at the
transition point. As we increase the amount of disorder, namely �, the position
of the mobility edge, |M(�)|, decreases, thus making the conducting region ever
narrower and eventually vanishing for �→∞.

While in a Mott insulator the interaction opens a gap in the middle of a metallic
band, in an Anderson insulator, disorder generates a mobility edge in the band,
separating a region of extended, conducting states in the middle from localized,
non-conducting states in its edges.
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Figure 14.7 The density of states of the Anderson insulator. The amount of dis-
order is less than that in the previous figure, thus producing a larger conducting
region. Below the disorder threshold, the width of such region becomes infinite
and the system is a metal.

Figure 14.8 The width of the mobility region of the band of a 3D Anderson insu-
lator as a function of the amount of disorder�. Notice that below a critical amount
of disorder, �c, the mobility region covers the whole band.

It is a characteristic feature of the Anderson transition that in d = 3 there exists
a finite threshold for the amount of disorder, below which the system is a nor-
mal metal. In d = 1, 2, on the other hand, it can be shown that there is no such a
threshold, the effect occurring with any amount of disorder.
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15

The Dynamics of Polarons

The motion of electrons in a crystal lattice may be described at different levels
of increasing profundity. We start with electrons moving on a static, ideal Bra-
vais lattice. Next, we include the lattice vibrations, which manifest as phonons at
a quantum level. Through the detailed study of the electron-phonon interaction we
can understand, for instance, the phenomenon of superconductivity. There is an
interesting effect, which arises when the full interplay between the electron and the
crystal background is taken into account. This is the backreaction an electron suf-
fers after creating, by its very presence, a lattice distortion. Indeed, since the lattice
sites are usually occupied by charged species, one should expect that the presence
of an electron will create a local distortion in such a lattice. This generates a polar-
ization charge density and current that backreacts on the electron, thus affecting its
properties. As the electron moves through the lattice, it will be unavoidably yoked
to this polarization cloud, which will be dragged along and will ever accompany
it. The effect will be particularly strong in the case of ionic crystals. The resulting
effective excitation consisting of the combination of the electron and the attached
lattice distortion is called a polaron. In this chapter, we address the full dynamics of
the many-polaron problem in one spatial dimension, thus deriving an effective field
theory, which describes their resulting interaction. This, thereafter, can be exactly
solved through the bosonization method [97].

15.1 The Polaron Hamiltonian

Consider a one-dimensional lattice with spacing a. The tight-binding electron
Hamiltonian, after diagonalization in the k-space, reads

Hel =
∑

k

ε(k)C†(k)C(k), (15.1)

where C(k) is the annihilation operator for an electron of momentum �k, and ε(k)
is the tight-binding energy eigenvalues given by ε(k) = −2t cos ka (1.52). Admit-
ting the system has one electron per site, the band will be half-filled, with momenta
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ranging from −π/2a ≤ k ≤ +π/2a. Expanding the energy around the two
Fermi points, we get two sets of electrons, respectively with dispersion relations
εR,L = ±vF k, namely right-movers and left-movers. The Hamiltonian, expressed
in terms of the corresponding creation and annihilation operators, will be

Hel =
∑

k

vF k
[
c†

R(k)cR(k)− c†
L(k)cL(k)

]
, (15.2)

where vF is the Fermi velocity.
We assume the phonons are acoustic with a dispersion relation ε̃(k) = s|k|,

where s is the speed of sound. Hence the phonon Hamiltonian will be

Hph =
∑

k

s|k|a†(k)a(k), (15.3)

where a(k) is the annihilation operator of a longitudinal phonon with momentum
k. Notice that we have linearized the phonon energy around the origin in (2.9).

Now the electron-phonon interaction. This is a special case of (3.55) and (3.56):

He−ph =
∑
k,q

∑
i=R,L

W (q)c†
i (k + q)ci (k)

[
a(q)+ a†(−q)

]
, (15.4)

where

W (q) = iλ
q√|q| . (15.5)

The total Hamiltonian of the polaron problem is

Hpol = Hel + Hph + Hel−ph. (15.6)

This problem was first addressed by Landau and Pekar [98] and subsequently by
Fröhlich [99] and Feynman [100].

In the next section, we derive a quantum field theory that describes acous-
tic polarons in one spatial dimension and eventually obtain an exact solution for
it [97].

15.2 Field Theory Description

We start by introducing the electron and phonon quantum fields in the Schrödinger
picture. The first one is given by

ψ(x) =
∫

dk

2π

(
cR(k)
cL(k)

)
eikx . (15.7)

The phonon field, conversely, is given by

ϕ(x) =
∫

dk

2π

1√
s|p|

[
a(p)eipx + a†(p)e−i px

]
(15.8)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.016
https://www.cambridge.org/core


254 The Dynamics of Polarons

and

ϕ̇(x) = i
∫

dk

2π

√
s|p|
2

[−a(p)eipx + a†(p)e−i px
]
. (15.9)

We may easily re-express the above Hamiltonians in terms of the electron and
phonon fields. Indeed, for the electron Hamiltonian we get

Hel = −i�
∫

dxψ†(x)σ z∂xψ(x), (15.10)

whereas for the phonon Hamiltonian,

Hph =
∫

dx
[
ϕ̇2(x)+ (s∂xϕ(x))

2
]
. (15.11)

Now, for the interaction Hamiltonian. Consider the two terms

H (1)
I = 1

2

∫
dxψ†(x)ψ(x)(s∂xϕ(x)) (15.12)

and

H (2)
I = 1

2

∫
dxψ†(x)σ zψ(x)ϕ̇(x). (15.13)

Inserting (15.7), (15.8) and (15.9) in the two expressions above, we get

H (1)
I = i

1

2

∫ ∞

0
dq
∫

dp

√
s|q|

2

{[
c†

R(k + q)cR(k)+ c†
L(k + q)cL(k)

]
× [a(q)+ a†(−q)

]− [c†
R(k − q)cR(k)+ c†

L(k − q)cL(k)
] [

a(−q)+ a†(q)
]}

(15.14)

and

H (2)
I = i

1

2

∫ ∞

0
dq
∫

dp

√
s|q|

2

{[
c†

R(k + q)cR(k)− c†
L(k + q)cL(k)

]
×[−a(q)+ a†(−q)

]+ [c†
R(k − q)cR(k)−c†

L(k − q)cL(k)
] [−a(−q)+ a†(q)

]}
.

(15.15)

Combining H (1)
I and H (2)

I , we obtain

H (1)
I + H (2)

I = i
∫ ∞

0
dq
∫

dp

√
s

2|q|
{

q
[
c†

R(k + q)cR(k)+ c†
L(k + q)cL(k)

]
× [a(q)+ a†(−q)

]− q
[
c†

R(k − q)cR(k)+ c†
L(k − q)cL(k)

] [
a(−q)+ a†(q)

]}
.

(15.16)
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Changing the integration variable, q ↔ −q, in the last term, we get

H (1)
I + H (2)

I = i
√

2s
∫ ∞

−∞
dq
∫

dp
q√|q|
{[

c†
R(k + q)cR(k)+ c†

L(k + q)cL(k)
]

× [a(q)+ a†(−q)
] }
. (15.17)

This is precisely the continuum version of the electron-phonon interaction
Hamiltonian (15.4) and (15.5). We conclude that the dynamical polaron prob-
lem in one spatial dimension may be described by a quantum field theory with
Hamiltonian density given by

HPol = −i�vFψ
†σ z∂xψ + 1

2

[
π2 + (s∂xϕ)

2
]

+ λ

2
√

2s

[
ψ†ψ(s∂xϕ)+ ψ†σ zψϕ̇

]
, (15.18)

where π = ϕ̇.
This Hamiltonian describes the kinematics of both electrons and phonons as well

as the electron-phonon interaction originated by the local charge density associated
to the lattice distortion produced by the electron itself. Here we will appreciate how
powerful the quantum field theory formulation of the problem actually is. Indeed, it
will allow in a very simple way, the obtainment of the effective polaron dynamics,
which describes the whole “dressing” of the electrons by the phonons generated by
the lattice distortion.

In order to achieve such an effective description, consider the partition functional
of the fermions, namely

Z [ψ,ψ†] =
∫

DπDϕ exp

{
i

�

∫
dxdt [πϕ̇ −HPol[π, ∂xϕ,ψ]]

}

=
∫

DπDϕ exp

{
i

�

∫
dxdt

[
−i�vFψ

†σ z∂xψ + 1

2

[
π2 + (s∂xϕ)

2
]

+ λ

2
√

2s

[
ψ†ψ(s∂xϕ)+ ψ†σ zψπ

]]}
. (15.19)

Notice that Z factors out in two functional integrals over π and ϕ. Integrating out
the phonon field, we obtain

Z =
∫

DψDψ† exp

{
i

�

∫
dxdt

[
− i�ψ†∂tψ − i�vFψ

†σ z∂xψ

+ λ
2

16s

[
(ψ†ψ)2 − (ψ†σ zψ)2

] ]}
. (15.20)
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256 The Dynamics of Polarons

The effective polaron Hamiltonian can be read from the expression above.
Rescaling the fermion field as

√
vFψ → ψ, (15.21)

we obtain

HPol =
∫

dx

[
−i�ψ†σ z∂xψ − λ2

4v2
F s
ψ

†
RψRψ

†
LψL

]
. (15.22)

The interaction term can be written in terms of the current as (see (14.45))

− λ2

4v2
F s
ψ

†
RψRψ

†
LψL = g

2

[
( j0)2 − ( j1)2

] = g

2
jμ jμ, (15.23)

where

jμ = ( j0, j1) = (ψ†ψ,ψ†σ zψ
)

(15.24)

is the fermion current and

g = − λ2

2v2
F s
. (15.25)

We see that the effective polaron dynamics is governed by the massless Thirring
model, which we saw in Chapter 10. The coupling g is strictly negative and
corresponds, therefore, to the attractive regime.

15.3 Exact Solution

15.3.1 Bosonization

We saw in Chapter 10 that an exact solution to the massless Thirring model
is provided by the method of bosonization. According to this, the polaron field
correlation functions are given by (10.93), with ν such that

ν

2
= 1+ g2

2π(π + |g|) ≡ 1+ α. (15.26)

The current is expressed, in terms of the bosonic scalar field, by (10.84). This,
by its turn, according to (10.90) has its dynamical properties determined by the
Lagrangean

L = 1

2

(
π

π + |g|
)
φ̇2 − 1

2

(
π + |g|
π

)
(s∂xφ)

2. (15.27)

From this, we may extract the bosonic field correlation function

〈φ(x, t)φ(0, 0)〉 =
∫

dω

2π

∫
dk

2π

ei[kx−ωt](
π

π+|g|
)
ω2 −

(
π+|g|
π

)
s2k2

. (15.28)
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15.5 Bipolarons 257

The current-current correlator may be obtained by using (10.84) and (15.28),
and yields

〈 j j〉(ω, k) = 1

π

ω2(
π

π+|g|
)
ω2 −

(
π+|g|
π

)
s2k2

. (15.29)

15.4 Optical Conductivity

Let us derive now the optical conductivity for the polaron system under considera-
tion. Using the Kubo formula, (4.61) and (15.29), we immediately obtain

σ(ω, k) = 1

πω

(ω + iε)2[(
π

π+|g|
)
(ω + iε)2 −

(
π+|g|
π

)
s2k2

] , (15.30)

where, following the rule, we chose the prescription leading to the retarded Green
function.

Reσ(ω, k) is the so-called optical conductivity. From the expression above, we
get

σ(ω, k) = 1

πω

(ω + iε)2(
π

π+|g|
)
(ω + iε)2 −

(
π+|g|
π

)
s2k2

. (15.31)

The optical conductivity is, then, given by

σ(ω, k) =
(

π
π+|g|

)
ω2 −

(
π+|g|
π

)
s2k2

πω

[((
π

π+|g|
)
ω2−

(
π+|g|
π

)
s2k2

ω

)2

+ 4ε2

] . (15.32)

This is plotted in Fig. 15.1. Notice the existence of a cut in the optical absorption
spectrum for frequencies less than the threshold frequency

ωc =
(
π + |g|
π

)
ω0(k), (15.33)

where ω0(k) = sk is the phonon frequency. There is an excellent agreement with
experimental data for different one-dimensional systems, as one can see in [101].

15.5 Bipolarons

The fact that the effective polaron interaction is always attractive makes us wonder
whether bound states could possibly form. These bipolarons have been suggested to
be, upon condensation in the ground state, the carriers of the supercurrent, thereby
being the agents of a new mechanism of superconductivity [102].
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258 The Dynamics of Polarons

Figure 15.1 The polaronic optical conductivity showing a threshold frequency
cut

From (10.80), we can write the bipolaron operator in bosonized form as


(x) = lim
x→y

ψR(x)ψL(y) =
√−i

4π
exp

{
2ia
∫ x

−∞
dξ�(ξ, t)

}
, (15.34)

where a = √π + |g|.
From this and (10.170) we can readily obtain the bipolaron correlation function,

namely,

〈
(x)
†(y)〉 = 1

4π |x − y|2a2/π
. (15.35)

From this we may extract the bipolaron operator vacuum expectation value

〈
(x)
†(y)〉 |x−y|→∞−→ |〈
〉| = 0. (15.36)

We see that for any value of the coupling g whatsoever, the vacuum expectation
value of the bipolaron operators vanishes, as we may infer from the large distance
behavior of the two-point correlation function (15.44). This means a polaronic
superconducting phase there will never happen in this system.

15.6 Polaronic Excitons

One can also form neutral composite states of a polaron and an anti-polaron

�(x) = lim
x→y

ψ
†
R(x)ψL(y) =

√−i

4π
exp {2ibφ(x, t)} , (15.37)

where b = π√
π+|g| .
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15.7 Polaronic Plasmons 259

Again, from (15.37) and (10.170) we can derive the polaronic exciton correlation
function, namely,

〈�(x)�†(y)〉 = 1

4π |x − y|2b2/π
. (15.38)

For any finite coupling g, we will always have

〈�(x)�†(y)〉 |x−y|→∞−→ |〈�〉| = 0 (15.39)

and we conclude there will not be any phase with a condensation of polaronic
excitons.

15.7 Polaronic Plasmons

Let us examine now, with more detail, the properties of the polaron correlation
function, given by (10.93). It is instructive to determine the Fourier representation
of this. For Dα(x) = 〈ψLψL〉, it is straightforward to obtain, in Euclidean space:

Dα(x) = Cα

∫
d2k

(2π)2
eik·x

[k2](1−α)/2 , (15.40)

where (see (15.26))

α = g2

2π(π + |g|) ; Cα = π21−α �(1− α
2 )

�(1+ α
2 )
. (15.41)

We now go to real frequency and time. For this, we have to choose a prescription,
as discussed in Section 5.6. We want to describe the simple product of polaron field
operators, hence we will use the Wightman prescription. This involves a restriction
of the integration domain to regions where k2 > 0, k0 > 0; therefore we may
introduce the spectral integration:

Dα(x) = πCα

∫ ∞

0
d M2(M2)(α−1)/2

∫
d2k

(2π)2
eik·xθ(k0)δ(k2 − M2). (15.42)

Now, using the delta decomposition (5.89) and the Wightman function for a free
massive scalar field, D0(x,M), we get

Dα(x) = πCα

∫ ∞

0
d M2(M2)(α−1)/2 D0(x,M). (15.43)

We see that the spectral density does not contain any delta-singularity that would
indicate the existence of the asymptotic particle states associated to the polaron
field ψ . It follows that the system does not present polaron excitations as such.
What is the excitation spectrum of the system after all? Remember that we
expressed, through the bosonization method, the full polaron Lagrangean in the
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260 The Dynamics of Polarons

bosonized form (15.27). The only excitations of the system, consequently, are the
ones associated with the bosonic field φ. These can be interpreted as collective
excitations, “polaronic plasmons,” with dispersion relation given by

ω(k) =
(
π + |g|
π

)
sk. (15.44)

Notice that, according to (15.33), the polaronic plasmon frequency coincides
with the lower-frequency cut for the optical absorption spectrum as it happens with
plasmons in metals.
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Polyacetylene

Carbon has four electrons in its outer electronic shell, which contains one s and
three p orbitals. This, however, is the picture for an isolated atom. When the car-
bon atom is part of a material with a given crystal structure, almost invariably,
for energetic reasons imposed by geometric constraints associated with the crystal
structure of the material, two or more of these orbitals combine in a hybrid form
that is a linear combination of the former. This interesting phenomenon is known
as hybridization. When the four orbitals combine in the so-called sp3 hybridiza-
tion, the hybrid orbitals assemble in the form of a tetrahedron, which is the basic
building block of diamond. Conversely, when three orbitals, namely, one s and
two p, combine to create hybrid sp2 orbitals, these are now co-planar, pointing
to directions that make an angle of 120◦ among themselves. An unexpectedly
vast and extremely interesting amount of physical phenomena emerge in materials
formed by this form of carbon. Among these we find polyacetylene and graphene,
respectively, possessing one- and two-dimensional structures.

Polyacetylene is a polymer presenting a sequence of C H radicals, formed
by carbon atoms, each one with three sp2 hybridized orbitals having covalent
bonds with two adjacent carbon atoms, thus forming a zig-zag chain (trans-
polyacetylene). The third hybridized orbital of each carbon atom is covalently
bonded to a hydrogen atom. There remains a p-orbital, which does not hybridize,
which is occupied by a single electron. Since this orbital admits up to two elec-
trons with opposite spins, the carbon p-electrons in polyacetylene can move all
over the chain, being therefore responsible for most of the interesting physics
of this polymer. Especially interesting effects derive from the interplay of the
carbon p-electrons with the lattice, imparticular with deformations thereof pos-
sessing nontrivial topological properties and, for this reason, called topological
solitons.

Polyacetylene exhibits remarkable effects, such as the Peierls mechanism,
induced by the electron-lattice interaction, by which a gap is generated where
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262 Polyacetylene

otherwise there would be a Fermi surface. This mechanism is completely analogous
to the Yukawa mechanism of the Standard Model of the fundamental interactions,
by which the whole mass of the elementary particles composing matter, such as
quarks and leptons, is generated by a coupling to the Higgs field. It is amazing that
essentially the same mechanism governs systems with typical energies separated
by twelve orders of magnitude.

16.1 The Su–Schrieffer–Heeger Model

We now describe the standard model for polyacetylene, known as the Su–
Schrieffer–Heeger Model [103].

Consider a one-dimensional Bravais lattice with spacing a, having a C H
radical occupying each site. We shall describe the kinematics of the carbon p-
electrons, which occur in the number of one per site, by means of a tight-binding
Hamiltonian, which reads

He = −t
∑

n

∑
σ=↑,↓

[
c†
σ (n + 1)cσ (n)+ c†

σ (n)cσ (n + 1)
]
, (16.1)

where t is the hopping parameter and c†
σ (n) is the creation operator of a carbon

p-electron with spin σ =↑,↓ at the site n.
Diagonalizing the tight-binding Hamiltonian, we get

He =
∑

k

∑
σ=↑,↓

ε(k)c†
σ (k)cσ (k), (16.2)

where ε(k) = −2t cos ka, according to (1.52). Since each state accommodates
up to two electrons with opposite spins, the p-electrons will fill half the first Bril-
louin zone, namely, the states with |k| ∈ [0, π/2a]. Within this non-interacting
electron approach, therefore, the system will be a metal with two Fermi points at
k = ±π/2a. For trans-polyacetylene, t � 2.5 eV and a � 0.122 nm. Polyacety-
lene and other one-dimensional systems with one electron per site provide a first
concrete example of the Dirac sea, a concept put forward by Dirac in order to man-
age the negative energy solutions of his equation. Further examples can be found in
two-dimensional systems such as graphene, for instance. An electron-hole pair is
created whenever an electron from the valence band is promoted to the conduction
band, leaving there a vacancy.

Figure 16.1 The lattice of polyacetylene: un = xn − na
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16.1 The Su–Schrieffer–Heeger Model 263

Figure 16.2 The realization of the Dirac sea in polyacetylene

Now consider the lattice Hamiltonian. Call un the displacement of the C H rad-
ical located nearest to the Bravais lattice site n, with respect to this site. This is
given by un = xn − na, where xn is the position of the C H radical. Within the
harmonic approximation, the lattice elastic energy is described by

HL =
∑

n

p2
n

2M
+ 1

2
K
∑

n

(un+1 − un)
2 , (16.3)

where M is the C H radical mass, pn = Mu̇n , its momentum and K , the lattice
elastic constant, being K � 21 eV

A2 , for trans-polyacetylene.
Let us now turn to the electron-lattice interaction. Hamiltonian (16.1) describes

the motion of electrons on a perfect Bravais lattice. Then, according to Bloch’s The-
orem, considering there is one electron per site, we would have a metallic system.
This is confirmed by the tight-binding solution (16.2).

In the actual system, however, the real C H -radical positions differ from the
Bravais lattice sites by un . It is intuitive, therefore, to change tn,n+1, the hopping
parameter between sites n and n + 1 in (16.1), by a term that is linear in the actual
distance between adjacent radicals and reduces to zero when such distance equals
the original Bravais lattice spacing a. Then, following [103], we write

tn,n+1 = t + α (un − un+1) , (16.4)

where t is the original hopping parameter in (16.1) and α is an electron-lattice
coupling constant, being α � 4.1 eV

A , for trans-polyacetylene. Introducing now
the so-called dimerization parameter, which is defined as

yn = (−1)nun, (16.5)
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we have

tn,n+1 = t + α(−1)n (yn + yn+1) . (16.6)

For a constant yn = y0, we see that the hopping is alternately enhanced or attenu-
ated, as the C H radical positions are alternately shifted to the left or to the right of
the Bravais lattice sites.

The SSH model is described by the Hamiltonian [103]

HSSH = He + HL, (16.7)

where the hopping parameter in He is given by (16.4).

16.2 The Takayama–Lin-Liu–Maki Model

For excitations with low momentum, k, compared with the Fermi momentum,
which has a modulus |kF | = π/2a, we may linearize the tight-binding dispersion
relation about the two Fermi points, kF = ±π/2a, namely,

ε(k) � εF ± 2tak = ±vF k (16.8)

for εF = 0, vF = 2ta and − ≤ k ≤  , where  is a momentum cutoff such that
 � |kF |.

The corresponding electronic excitations have momentum, respectively, given by

kR = +π/2a + k − ≤ k ≤  
kL = −π/2a − k ; − ≤ k ≤  . (16.9)

Figure 16.3 The linearization around the Fermi points of the Dirac sea
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Since kR and kL are, respectively, positive and negative, the corresponding elec-
tronic excitations are called right-movers and left-movers. The corresponding
excitations will have energies, with respect to the Fermi level,

εR(k) = +vF k − ≤ k ≤  
εL(k) = −vF k − ≤ k ≤  . (16.10)

The ground state will present each of the negative energy states occupied with
two electrons with opposite spins. It consists, therefore, in a concrete realization
of the Dirac sea, the concept created by Dirac to solve the problem of the negative
solutions of his equation. This concept, even though it did not correspond to the
reality, led Dirac to predict the existence of antimatter, which was soon confirmed
experimentally. As it turns out, however, several condensed matter systems exhibit
the ground state proposed by Dirac. In connection to this, the state obtained by
removing from it an electron with a negative energy behaves precisely like an elec-
tron with positive energy and an opposite charge. Such a “hole” plays the same role
in condensed matter as the positron plays in Dirac’s theory.

Within a momentum cutoff  , such that |k| ≤  � kF , we can write the
electronic Hamiltonian as

He =
∑

k

∑
σ=↑,↓

vF k
[
c†

R,σ (k)cR,σ (k)− c†
L ,σ (k)cL ,σ (k)

]
, (16.11)

where c†
R,σ (k) creates an electron with wave-vector +π/2 + k and energy ε(k) =

vF k, whereas c†
L ,σ (k) creates an electron with wave-vector −π/2 + k and energy

ε(k) = −vF k, both for |k| ≤  � kF .
Introducing the electron field as

ψσ(x) =
(
ψL ,σ (x)
ψR,σ (x)

)
=
∫

d2k

(2π)2

(
cL ,σ (k)
cR,σ (k)

)
eik·x , (16.12)

we may express the continuum electron Hamiltonian as

He = −ivF

∫
dxψ†

σ ∂xσ
zψ. (16.13)

Consider now the electron-lattice interaction Hamiltonian

HeL = α
∑

n

∑
σ=↑,↓

(−1)n (yn + yn+1)
[
c†
σ (n + 1)cσ (n)+ c†

σ (n)cσ (n + 1)
]
.

(16.14)
Going to momentum space, and writing

Fn = (−1)n (yn + yn+1) =
∑

q

F(q)eiqna, (16.15)
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one finds, using the fact the Fourier transform of a product is a convolution,

HeL = α
∑
k,q

∑
σ=↑,↓

F(q)
[
c†
σ (k + q)cσ (k)+ c†

σ (k)cσ (k + q)
]
. (16.16)

We now assume yn + yn+1 is slowly varying, which implies Fn = −Fn+1. Then,
it follows from (16.15) that eiqa = −1 and, consequently q = π

a . Since q =
2pF , we see from (16.16) that the lattice interaction backscatters L-electrons into
R-electrons and vice versa.

Returning to coordinate space, and introducing the canonical transformation

cL ,σ (n) −→ i ncL ,σ (n)

cR,σ (n) −→ (−i)ncR,σ (n), (16.17)

we get

HeL = 2α
∑

n

∑
σ=↑,↓

yn

[
c†

R,σ (n)cL ,σ (n)+ c†
L ,σ (n)cR,σ (n)

]
. (16.18)

The lattice and electron-lattice continuum Hamiltonians can be obtained by
taking the continuum counterpart of yn , after a rescaling,

yn −→
√

a

4K
�(x). (16.19)

Using (16.12) and (16.18), we find

HeL = α√
4K a

∫
dx�ψ†

σσ
xψσ . (16.20)

The lattice Hamiltonian corresponding to the elastic potential energy is given by

HL = 1

2

∫
dx�2. (16.21)

The lattice kinetic energy may be neglected in a situation where the lattice char-
acteristic time is much larger than the corresponding electronic time. Admitting
such is the situation in polyacetylene, we obtain the continuum Lagrangean density
describing this polymer [104]

L = −iψ†
σ ∂tψσ − ivFψ

†
σ ∂xσ

zψσ − α√
4K a

�ψ†
σ σ

xψσ − 1

2
�2. (16.22)

16.3 The Gross–Neveu Model

16.3.1 The Model

The Gross–Neveu (GN) model describes the quartic self-interaction of a many-
flavored fermion field [243]. It has the Lagrangean density given by
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16.3 The Gross–Neveu Model 267

LG N = iψaγ
μ∂μψa − g2

2

(
ψaψa

)2
, (16.23)

where a = 1, . . . , N is a flavor index and ψ = ψ†γ 0, γ 0 = σ x and γ 1 = γ 0σ x .
Interestingly, the GN model is closely related to the Lagrangean that describes

the physics of the carbon p-electrons in polyacetylene [106], given by (16.22). In
order to see that, let us transform the quartic interaction into a trilinear one by
means of a Hubbard–Stratonovitch transformation as follows:

exp

{
−i
∫

d2x
g2

2

(
ψaψa

)2} = ∫ Dσ exp

{
i
∫

d2x

[
σ 2

2
− gσψaψa

]}
.

(16.24)

Hence, in terms of the σ field, we may express the Gross–Neveu Lagrangean as

LG N = iψaγ
μ∂μψa − 1

2
σ 2 − gσψaψa. (16.25)

Now, choosing the Dirac matrices as γ 0 = σ x , γ 0γ 1 = σ z and the coupling
g = α√

4K a
, we can write the polyacetylene Lagrangean in the static lattice regime,

(16.22), as the Gross–Neveu Lagrangean. The σ -field corresponds to � and the
fermion flavors correspond to the two spin components, σ =↑,↓.

Notice the system presents a discrete symmetry

ψ → γ 5ψ ; ψψ →−ψψ
σ →−σ, (16.26)

(where γ 5 = γ 0γ 1) besides the usual U(1) symmetry.

16.3.2 The Lattice Effective Potential

The electron-lattice interaction in polyacetylene produces profound effects both
on the electronic properties and on the lattice itself. Let us first investigate
the latter. For this purpose we are going to integrate over the fermion field in
order to determine the effective potential of the σ -field (or, equivalently the
�-field):

ei Se f f [σ ] = exp

{
i
∫

d2x

[
−1

2
σ 2

]}

× 1

Z0

∫
DψDψ exp

{
i
∫

d2x
[
ψa(i∂/− gσ)ψa

]}
. (16.27)

Evaluating the quadratic fermionic functional integral to leading order in 1/N ,
we get the effective potential
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Vef f (σ ) = 1

2
σ 2 + N T r ln

[
1− gσ

i∂/

]

Vef f (σ ) = 1

2
σ 2 + 2N

∫
d2k

(2π)2
ln

[
k2 + g2σ 2

k2

]
. (16.28)

The k-integral, according to (16.10) sweeps a region delimited by the cutoff, where
|k| ≤  . The result is

Vef f (σ ) = 1

2
σ 2 + g2 N

4π
σ 2

[
ln

g2σ 2

 2
− 1

]
. (16.29)

Polyacetylene is an example where the momentum cutoff  is unphysical;
therefore, physical quantities should not depend on it. In order to get rid of the
cutoff dependence, we introduce the renormalized potential by subtracting from
the expression above, the same expression at a certain fixed value σ0, namely

VR,e f f (σ ) = Vef f (σ )− Vef f (σ0). (16.30)

The finite part of the renormalized effective potential is fixed by the renormaliza-
tion condition (

∂2VR,e f f

∂σ 2

)
σ=σ0

= 1+ g2 N

2π
. (16.31)

This implies

 = gσ0. (16.32)

Inserting this result in (16.29), we obtain the renormalized effective potential

Vef f (σ ) = 1

2
σ 2 + g2 N

4π
σ 2

[
ln
σ 2

σ 2
0

− 1

]
. (16.33)

Observe that this is invariant under the operation σ →−σ .

16.3.3 Renormalization Group Analysis

The finite effective potential above was obtained by a subtraction made at the finite
point σ0, which thereby fixes an energy-momentum renormalization scale. Then the
renormalization group equations tell us Vef f (σ ) does not depend on the σ0 scale,
provided we modify the coupling constant and the field itself by the corresponding
quantities gR and σR as we change this scale.

The effective potential, indeed, will satisfy the renormalization group equation(
σ0
∂

∂σ0
+ β(gR)

∂

∂gR
− γ (gR)σR

∂

∂σR

)
Vef f (σR, gR, σ0) = 0, (16.34)
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where the β(gR) function is defined by (6.75) and the so-called anomalous
dimension γ , by (6.76). In order to convince ourselves that this is the proper
renormalization group equation for the effective potential, observe that, by insert-
ing (6.47) in (16.34), we do obtain, according to (6.74), the correct renormalization
group equation for the proper vertices �(n), which appear in the effective potential
expansion (6.47).

We conclude that a change in the renormalization point σ0 would be promptly
compensated by corresponding finite renormalizations in the coupling parame-
ter and in the field in such a way that the physical effective potential remains
unchanged. Inserting (16.33) in (16.34), we obtain the explicit form of the β and γ
functions, namely,

β(g) = − g3 N

2π + g2 N

γ (g) = β(g)
g
. (16.35)

A negative β-function implies, according to (6.75), that as we increase the
energy scale, the effective coupling parameter of the theory becomes ever smaller,
in such a way that asymptotically it tends to zero and, consequently, the theory
becomes free in the regime of high momentum-energy scales. This phenomenon,
known as “asymptotic freedom,” also occurs in non-abelian gauge theories such as
QCD. It is remarkable we identify it in a field theory model for polyacetylene. This,
however, is not the only similarity between polyacetylene and the Standard Model.

16.4 The Peierls–Yukawa Mechanism

Having established the physical effective potential for the lattice field σ that corre-
sponds to� in polyacetylene, namely (16.33), let us determine what are the minima
of such potential. We have

V ′
e f f (σ ) = σ

[
1+ g2 N

2π
ln
σ 2

σ 2
0

]
. (16.36)

Imposing V ′ = 0 yields the solutions

σ = ±σM = ±σ0 exp

[
− π

g2 N

]
. (16.37)

The second derivative calculated at σM is

V ′′(σM) = g2 N

π
> 0, (16.38)

thus implying σ = ±σM are the minima of the effective potential (16.33).
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Figure 16.4 The effective potential for the lattice field in polyacetylene

The existence of nontrivial minima ±σM characterizes the occurrence of spon-
taneous dynamical breakdown of the symmetry σ →−σ presented by the original
system.

In the original TLM model for polyacetylene, σ(x) corresponds to �(x).
According to (16.19), a constant � = ±�M , where �M = σM , given by (16.37)
implies a constant yn , namely, a constant dimerization parameter with two possible,
degenerate values, yn = ±y0, for which the C H radicals will be at the positions
un = ±(−1)n y0.

For polyacetylene, the lattice parameter is a � 0.122 nm and the dimerization
parameter at the ground state is y0 � 0.004 nm. Each of the minima of the effective
potential ±σM corresponds to a pattern of the polyacetylene chain, where double
σπ bonds alternate with single σ bonds, either at the left or at the right of each
Bravais lattice site.

For stability reasons, we must shift the �-field in (16.22) around the vacuum
value |σM |. This will generate an extra term, such that the quadratic part of the
electronic Hamiltonian becomes

H = −ivFψ
†
σ ∂xσ

zψσ + Mψ†
σ σ

xψσ . (16.39)

Diagonalizing this Hamiltonian, we find the energy eigenvalues

ε(k) = ±
√
v2

F k2 + M2 ; M = α√
4K a

|σM |, (16.40)

where σM is given by (16.37). We see that the energy spectrum opens gap 2M
precisely at the Fermi points. For polyacetylene, the gap is 2M � 1.5 eV . This
mechanism of generating a gap for the electrons by coupling them to the lattice
through a ψψ� coupling is known as the Peierls mechanism. The lattice distor-
tion produced by the dimerization is directly responsible for opening a gap in
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the electronic spectrum. The system, consequently, is actually not a metal, but
an insulator. This kind of a coupling was first introduced by Yukawa in order to
describe the interaction of protons and neutrons through the exchange of π -mesons
[107] by the hypothetic new massive particles proposed by him to be the media-
tors of the strong interaction among nucleons. The π -mesons were soon observed
experimentally by Lattes, Occhialini and Powell [108], and later on it became clear
they were but a quark-antiquark bound state.

It is remarkable that the masses of quarks and leptons in the Standard Model
(SM) of the fundamental interactions are generated by introducing precisely the
same coupling, involving fermions and a scalar field, exactly as in (16.22) and
(16.23) for polyacetylene. In the SM case, however, the scalar field is neither the
dimerization field � nor the pion field, but rather the Higgs field. The mecha-
nism works as the scalar field develops a nonzero vacuum expectation value, which
becomes proportional to the mass or, equivalently, to the electronic gap. In the case
of the Higgs field, the classical potential is already chosen to possess such nontriv-
ial minima. In the case of the lattice field, �, conversely, it acquires the nonzero
vacuum expectation value dynamically through quantum corrections generated by
the electron-lattice interaction. It is remarkable that essentially the same mecha-
nism works in systems being that different and with energy scales so far apart.

16.5 Solitons in Polyacetylene

The dimerization of the C H chain and the corresponding opening of a gap
in the electronic spectrum are not the only interesting effects produced by the
electron-lattice interaction in polyacetylene. Let us examine here some further,
quite appealing consequences of such interplay. Let us consider the Hamiltonian
eigenstates. From (16.22) and (16.25), we may extract the one-particle Hamiltonian

h =
( −ivF∂x g�(x)

g�(x) ivF∂x

)
. (16.41)

This has the following eigenvalues equation:( −ivF∂x g�(x)
g�(x) ivF∂x

)(
un(x)
vn(x)

)
= En

(
un(x)
vn(x)

)
, (16.42)

which corresponds to the Bogoliubov–de Gennes equation [109].
This admits the zero-energy (En = 0) solution [104, 106]

�S(x) = �M tanh

(
x

ξ

)
(

u0(x)
v0(x)

)
= N0sech

(
x

ξ

)(
1
−i

)
, (16.43)
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Figure 16.5 The soliton lattice defect in polyacetylene

and the negative energy (En = −ε(k) < 0) solutions [106, 104],(
un(x)
vn(x)

)
= N−eikx

⎛
⎝ tanh

(
x
ξ

)
+ i
(
ε(k)−vF k
�M

)
−i tanh

(
x
ξ

)
− i
(
ε(k)+vF k
�M

)
⎞
⎠ , (16.44)

where

ξ = vF

g�M
; N0 =

√
ξ

4
(16.45)

and

ε(k) =
√
v2

F k2 + M2 ; N− = �M

2ε(k)
√

2π
. (16.46)

The physical value for polyacetylene is ξ � 7a.
We identify the solution�S(x) with the topological soliton configuration (8.26),

corresponding to the nontrivial mapping �0([0,±1]) = Z(2) and possessing a
unit of the topological charge (8.5), which classify such mappings. The structure
of the lattice effective potential minima in polyacetylene provides the same kind
of mapping between the asymptotic spatial behavior of the classical solutions and
the vacuum manifold as in the spontaneously broken ϕ4-theory in d = 1, hence
the similarity of the topological field configurations. We will see that the topolog-
ical nature of the soliton solution will have a profound influence on the electronic
properties of polyacetylene.

Observe that the soliton solution �S(x) is a defect separating two portions of
the dimerized polyacetylene chain corresponding to different minima of the lattice
effective potential. The parameter ξ measures the size of the distortion connecting
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Figure 16.6 The wave-function for the soliton midgap state in polyacetylene

the two opposite dimerizations. We see that it extends for about seven lattice param-
eters. Let us determine now the soliton energy in polyacetylene. For this, notice that
equation (16.42) must be supplemented by

g�(x) = ψψ =
∑

n

[
u∗n(x)vn(x)+ v∗n(x)un(x)

]
, (16.47)

which is obtained from (16.22) and (16.25) by functional derivation with respect
to �. The sum above is supposed to sweep all the occupied states up to the Fermi
level, which is assumed to be EF = 0.

The soliton energy, then, is given by the difference between the total energy of
the occupied states in the presence of a soliton configuration and the same total
energy in the presence of dimerized ground state, namely

ES = E[�S] − E[�M ], (16.48)

where, for an arbitrary lattice configuration �, we have

E[�] =
∑
En<0

En(�)+ 1

2

∫
dx�2, (16.49)

where En(�) are the eigenvalues of (16.42).
Inserting (16.43) and (16.44), as well as the corresponding expressions for the

constantly dimerized ground state [106], in (16.48), we get the soliton energy [103,
104, 106]
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ES = 2

π
�M . (16.50)

We see that it costs less energy to create a soliton state than to excite a negative
electron from the valence to the conduction band, which would require an energy
of 2�M . For topological reasons, however, we cannot create a single soliton, since
this would imply a change in the boundary conditions. Soliton-antisoliton pairs,
nevertheless, can be created.

16.6 Polarons in Polyacetylene

We now consider another kind of combined electron-lattice solution for the energy
eigenvalue equation (16.42) and consistency gap equation (16.47) derived from
the quantum field theory for polyacetylene. These are the polaron solutions [106],
which consist in a non-topological, local deformation of the basic, uniformly
dimerized ground state. The energy eigenvalues are symmetrically located in the
midgap and each of the corresponding localized eigenstates can accommodate up to
two electrons with opposite spins. These are, therefore, yoked to this lattice defor-
mation, hence characterizing a polaron. The analytic form of the polaron solution
is surprisingly simple [106], namely

�P(x) = �M

{
1− 1√

2

{
tanh

[
(x + x0)√

2ξ

]
− tanh

[
(x − x0)√

2ξ

]}}
, (16.51)

where the relation

tanh

[√
2x0

ξ

]
= 1√

2

fixes x0.
The corresponding energy eigenvalues and eigenfunctions are ε+ = �M√

2
, for

u+(x) = v+(x) = N+sech

(
x − x0√

2ξ

)
(16.52)

and ε− = −�M√
2

, for

u−(x) = v−(x) = N−sech

(
x + x0√

2ξ

)
, (16.53)

where N+ = N− =
√

ξ

4
√

2
.

The total polaron energy can be determined in a similar way as for the soliton,
namely,

EP = E[�P ] − E[�M ], (16.54)

where E[�] is given by (16.49).
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Figure 16.7 The polaron lattice defect in polyacetylene

Figure 16.8 The wave-functions for the two-polaron midgap state in
polyacetylene

The total polaron solution, then, can be found by considering, apart from the
midgap solutions (16.51)–(16.53), also the negative solutions forming the whole
valence band [106]. By inserting all these in (16.54), we get

EP = 2
√

2

π
�M . (16.55)
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Notice that the polaron solution (16.51) is essentially a soliton-antisoliton bound
state separated a distance 2x0 apart. As in the case of solitons, it is energetically
more favorable to create an electron in a polaron state than to promote it from
the valence to the conduction band. In the case of polarons, we do not have the
topological restrictions that applied to the creation of solitons. These observa-
tions have a deep impact in the process of doping polyacetylene and the associated
consequences in the conductivity of this polymer.

16.7 The Charge and Spin of Solitons

Charged particles and quasi-particles such as electrons and holes usually present a
charge-spin relation in which a charge e corresponds to a spin s = 1/2 and vice
versa. We will see here that this relation gets modified in polyacetylene, in the
presence of soliton excitations, a phenomenon that was first predicted in [113, 114,
115]. This is another remarkably interesting consequence of the electron-lattice
interaction in this material. We start by observing that polyacetylene is invariant
under charge conjugation symmetry. By this we mean invariance under the dis-
crete operation that exchanges particles by antiparticles or, equivalently, the fields
that create the former by those that create the latter. Both the quantum field theory
model for polyacetylene, given by (16.22) and (16.25), and the one-particle Hamil-
tonian (16.42), derived from these, present charge conjugation symmetry. For a
system with the Fermi level chosen to be at EF = 0, this implies the spectrum of
states is symmetric by reflecting the energy about E = 0.

Consider now a system defined on a lattice containing N sites. The correspond-
ing valence and the conduction bands will contain together, counting the two spin
orientations, twice as many states as the number of sites, namely, 2N . In charge
conjugation symmetric systems, the number of states in the valence and conduction
bands must be the same. Each band, therefore, would contain N states in this case.

In polyacetylene, each site has a radical C H , which, when depleted from the
carbon p-electron, becomes positively charged. There is, consequently, a back-
ground of N positive charges, the same number of available electronic states. In
the absence of a soliton, therefore, a full valence band would contain as many elec-
trons as positive charges in the background, hence the whole system is neutral.
Moreover, in a completely filled band the total spin is also equal to zero.

Let us examine what happens in the presence of a soliton. For general reasons,
in a lattice with N sites, even when there exists a soliton, we must have the same
total number of 2N states. Hence, the sum of the states in the two bands plus the
two states (σ =↑,↓) in the midgap must be equal to 2N . The total number of states
in the two bands, thus, amounts to 2N − 2. Charge conjugation symmetry implies,
therefore, that valence and conduction bands will contain N − 1 states each. The
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Figure 16.9 The unusual spin-charge relation for soliton excitations in polyacety-
lene. Each band provides N − 1 electronic states, while the ion cores have a total
+Ne charge.

soliton supplies the midgap E = 0 two states deficit, thus making the total number
of states equal to 2N .

Let us examine now the different ways the available states can be occupied in a
polyacetylene chain, in the presence of a soliton. Consider first a state where the
valence band is completely filled and the two midgap states are empty. We have just
seen that in the presence of a soliton, the valence band can take N − 1 electrons,
whereas the background charge is +Ne. It follows that a completely filled valence
band will have a charge q = +e. Since the total spin of a fully occupied band is
zero, this state has (q, s) = (+e, 0).

Now consider a state with a fully occupied valence band and one of the midgap
states occupied. Now there is a total of N electrons, hence the total charge is
zero. The midgap spin, however, is unpaired, hence (q, s) = (0,±1/2) in this
case. Finally, consider a state with a fully occupied valence band and both midgap
states occupied. Now there is a total of N + 1 electrons, hence the total charge
is q = −e. The midgap spin now is paired, hence (q, s) = (−e, 0) in this case.
Solitons with this unusual charge-spin relation have been observed experimentally
in polyacetylene. Optical absorption experiments, in particular, reveal the midgap
states associated with solitons and polarons [110, 111, 112].

For polarons, the charge-spin relation is the conventional one.

16.8 Conductivity in Polyacetylene

We have seen that, by virtue of the Peierls–Yukawa mechanism, pure polyacetylene
is an insulator, with a gap of approximately 1.5 eV . This quality, however, may be
changed by doping polyacetylene, say with halogen, receptor atoms such as F or
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with alkali, donor atoms such as Na. It can be shown that at a doping on the order
of 1 percent, the system suffers an insulator-metal transition. Actually, the electrical
conductivity in polyacetylene exhibits a dramatic behavior as we dope it. Indeed,
up to a doping percentage of approximately 10 percent, the conductivity can be
increased by eleven orders of magnitude [116].

The study of soliton and polaron excitations in polyacetylene presented in the
previous sections strongly suggests that the doped electrons in this material will
form complex combined lattice-electronic excitations, either solitons or polarons,
depending on the boundary conditions and on the number of such excitations.
Polarons and solitons, consequently, must play a fundamental role in the transport
properties of doped polyacetylene. In that respect, we may identify three differ-
ent regimes where such excitations would contribute for the conductivity in this
system.

We have seen that solitons or polarons invariably imply the existence of midgap
electronic states. At a low-doping regime, below approximately 1 percent, the soli-
tons or polarons are fixed. Electrons in the midgap states then can contribute to
conductivity by thermal activation, very much like a semiconductor. In an inter-
mediate regime of doping in between 1 and 10 percent, the solitons or polarons
would become dynamical, themselves moving and being the carriers of electric
charge. For dopings above 10 percent, we would have a metallic regime, with the
formation of a conduction band with the corresponding Fermi surface.

The first regime can be understood within the theory of semiconductors with a
classical description of solitons or polarons. The third regime, on the other hand,
can also be understood with the theory of metals. The intermediate regime, how-
ever, would require a full quantum theory of solitons or polarons in order to account
for the quantum properties of these dynamical excitations.

An evaluation of the contribution of fully quantized solitons to the conductivity
of polyacetylene, in the intermediate doping regime, was performed in [17]. This
study reveals that the contribution of quantum solitons to the conductivity in poly-
acetylene vanishes. Quantum polarons are most probably the relevant carriers of
charge in the intermediate doping regime.

16.9 Index Theorem and Fermion Fractionalization

The existence of zero-energy eigenstates of the Dirac Hamiltonian in the presence
of a background soliton configuration�S is a particular case of the famous Atiyah–
Singer theorem [117], which identifies the number of zero-energy eigenstates of an
elliptic differential operator with the topological class of the background manifold
where it is defined. The theorem is remarkable for connecting two different areas
of mathematics, namely Analysis and Topology.
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In the case of polyacetylene, it essentially states that the number of zero-energy
eigenstates of the Dirac Hamiltonian operator

h = −i�vFσz∂x + gσx�(x) (16.56)

is equal to the topological charge of the background �-field configuration. The
midgap zero-energy state associated to the soliton, therefore, is a reflection of the
fact that this has topological charge equal to one.

Interestingly, in the case of polarons, which have zero topological charge, the
Dirac operator has no zero-energy eigenstates, in agreement with the theorem.
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The Kondo Effect

There are physical systems that lack a natural intrinsic energy scale to which we
could refer in order to determine whether the system is in a high-energy or in a
low-energy regime. For those systems, the physical properties would have the same
character at any energy scale. Interestingly, however, there are systems which albeit
not having a priori such a characteristic energy scale, yet are able to spontaneously
generate it. This, consequently, usually provides a separation between strong and
weak interaction regimes. A well-known example is QCD, which dynamically gen-
erates an energy scale  � 160 MeV , such that for energies well above this the
theory is essentially free, whereas for energies way below it the theory is strongly
interacting and exhibiting a confining behavior.

The Kondo system is an archetypal condensed matter system presenting a sim-
ilar situation. It consists of a good, non-magnetic metal in which some atoms
with a permanent magnetic dipole moment are diluted at a very low concentra-
tion. The initial description of the system does not contain any energy scale, which
could allow one to distinguish among different coupling regimes; nevertheless, an
energy scale T0 � 0.7 meV is dynamically self-generated, clearly separating a
high-energy regime where the system behaves as a good metal and the electrons are
essentially free, from a low-energy regime where the electrons are strongly coupled
to the diluted magnetic moment. As the temperature is varied across the generated
scale, a series of anomalies, which are referred to as the Kondo effect, are observed
noticeably in the metal resistivity and in the impurity’s effective magnetization and
magnetic susceptibility.

The Kondo system can be mapped into a quantum field theory closely related
to the chiral Gross–Neveu model, and thereafter its Hamiltonian can be exactly
diagonalized by using the technique known as the Bethe Ansatz. This solution of
the Kondo problem is a beautiful milestone in the field of applications of QFT in
condensed matter.

280
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17.1 The Kondo Model

The Kondo model [142] describes a magnetic impurity, highly diluted, in a non-
magnetic metal, such as Mn in Au. Due to the low concentration, we may consider
a single impurity at the origin, which thereby produces an effective spherical sym-
metry. The electrons of the host metal interact with the introduced impurity but are
otherwise free. Expanding the electron momentum around the Fermi surface of a
parabolic dispersion relation,

E = (kF + k)2

2m
� EF + 1

m
kF · k. (17.1)

Since the Fermi momentum is radial, we have, up to a constant, E � vF k, where
k = ±|k|. The linearization is valid within a region delimited by a cutoff  , such
that |k| �  .

The electron creation operator is c†
kσ , where − ≤ k ≤  is a one-dimensional

variable. This is possible due to the spherical symmetry, which decouples all non-
radial electronic degrees of freedom. σ =↑,↓ are the two possible orientations of
the electron spin.

The Kondo Hamiltonian [142, 150] contains a kinetic part and two interaction
terms, one magnetic and one non-magnetic, between the electrons and the localized
impurity:

HK =
∑

k

kc†
kσ ckσ + J

∑
k,k′

SI ·
[
c†

kα �σαβck′β
]
+ J ′

∑
k,k′

[
c†

kαck′α
]
, (17.2)

where SI is the localized impurity spin operator. Summation over all spin orien-
tations is understood. Notice that the second term involves a change in both the
electron spin and momentum, whereas the third one, just in momentum.

Now, introducing the Schrödinger picture electron field

ψσ (x) =
∑

k

eikx ckσ , (17.3)

we can re-write the Kondo Hamiltonian as the 1D field Hamiltonian

HK =
∫

dx
{
iψ†
σ (x)∂xψσ + Jδ(x)SI ·

[
ψ†
α �σαβψβ

]+ J ′δ(x)ψ†
αψα

}
, (17.4)

where the Dirac delta represents the localized impurity density.
Now, assuming the impurity has spin 1/2, we introduce the impurity fermion

field [150] χσ (x) in such a way that the total number of impurities is equal to one,
namely,

δ(x) −→ χ†
σ (x)χσ (x)

δ(x)SI −→ χ†
α(x)�σαβχβ(x). (17.5)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.018
https://www.cambridge.org/core


282 The Kondo Effect

The Kondo Hamiltonian, then, becomes

HK =
∫

dx
{
iψ†
σ (x)∂xψσ + J

[
χ†
α �σαβχβ

] · [ψ†
α �σαβψβ

]+ J ′χ†
σχσψ

†
αψα

}
. (17.6)

Notice that the impurity field χσ does not have a kinetic term.
It is convenient to express both the electron and impurity fields as the two

components of a fermion field, namely


a,σ (x)⇔
{

1,σ (x) = ψσ(x)

0,σ (x) = χσ (x). (17.7)

In terms of this field, we may express the Kondo Hamiltonian density as

HK =
∑

a=0,1

i
†
a,αa∂x
a,α + J

[



†
0,α �σαβ
0,β

]
·
[



†
1,α �σαβ
1,β

]
+ J ′
†

0,σ
0,σ

†
1,α
1,α. (17.8)

Now, using (3.41), we can write, for J = J ′,

HK =
∑

a=0,1

i
†
a,αa∂x
a,α

+ 2J
†
0,α
0,β

[
δαβ ′δα′β

]



†
1,α′
1,β ′ (17.9)

or, equivalently,

HK =
∑

a=0,1

i
†
a,αa∂x
a,α + 2J

[



†
0,α
1,α

] [



†
1,β
0,β

]
. (17.10)

We will see that, in the same way the physics of polyacetylene was closely
related to the Gross–Neveu model, accordingly, the Kondo system physics will be
described by the chiral Gross–Neveu model. In the next section, we introduce this
QFT, extract its main physical properties and relate them to the Kondo problem.

17.2 The Chiral Gross–Neveu Model

The chiral Gross–Neveu (CGN) model is defined by the following Lagrangean
density in two-dimensional spacetime [152]:

LCG N = iψα∂/ψα −
g2

2

[(
ψαψα

)2 − (ψαγ 5ψα
)2]
, (17.11)

where ψ is a Dirac field,

ψσ =
(
ψ1,σ

ψ2,σ

)
, (17.12)
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17.2 The Chiral Gross–Neveu Model 283

where α = 1, . . . , N is an arbitrary flavor index and the convention for the Dirac
matrices is the same we used in (16.23).

Interestingly, this model is closely related to the Kondo model. In order to see
this, we insert (17.12) into (17.11), whereby

LCG N = i
[
ψ

†
1,α (∂0 + ∂1) ψ1,α + ψ†

2,α (∂0 − ∂1) ψ2,α

]
− g2

2

[(
ψ

†
1,αψ2,α + ψ†

2,αψ1,α

)2 −
(
ψ

†
1,αψ2,α − ψ†

2,αψ1,α

)2
]
, (17.13)

which corresponds to the Hamiltonian density

HCG N = i
[
ψ

†
1,α∂1ψ1,α − ψ†

2,α∂1ψ2,α

]
+ 2g2

[
ψ

†
1,αψ2,α

] [
ψ

†
2,βψ1,β

]
. (17.14)

The above Hamiltonian is invariant both under the U(1) and chiral U(1) continuous
global symmetry operations

ψα → eiθψα ; ψα → eiθγ 5
ψα, (17.15)

where the latter can be written as

ψ1α → eiθψ1α ; ψ2α → e−iθψ2α

ψ
†
2,βψ1,β → ei2θψ

†
2,βψ1,β

ψ
†
1,βψ2,β → e−i2θψ

†
1,βψ2,β . (17.16)

We see that, for a number of flavors N = 2, this is identical to the Kondo Hamil-
tonian (17.10), except for the fact that in the chiral Gross–Neveu model we have
right-movers and left-movers as the two components of the Dirac field whereas
in the Kondo model we have only right-movers, the component associated to the
impurity being static. Observe also that, g2 = J being dimensionless, neither the
CGN nor the Kondo Hamiltonians have any intrinsic energy scale, as announced.

We can closely follow now the steps taken in Section 16.3 in order to extract the
properties of the CGN model. These will then apply to the Kondo system [150].

We firstly transform the quartic interactions into trilinear ones by means of two
Hubbard–Stratonovitch fields: σ and π . The first one is introduced by (16.24),
whereas the second, by

exp

{
−i
∫

d2x(−)g
2

2

(
ψaγ

5ψa
)2}=∫ Dπ exp

{
i
∫

d2x

[
π2

2
− igπψaγ

5ψa

]}
.

(17.17)

The resulting Lagrangean is

LCG N = iψα∂/ψα −
1

2

(
σ 2 + π2

)− g
[
σψαψα + iπψαγ

5ψα
]
. (17.18)
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284 The Kondo Effect

Integrating on the fermion fields, we obtain the effective potential, which general-
izes (16.33)

Vef f (σ, π) = 1

2

(
σ 2 + π2

)+ g2 N

4π

(
σ 2 + π2

) [
ln

(
σ 2 + π2

)
σ 2

0

− 1

]
, (17.19)

where σ0 is a finite renormalization scale. The chiral U(1) symmetry manifests at
this level as an O(2) rotation symmetry in the (σ, π) space.

The minima of Vef f (σ, π) occur at√
σ 2

M + π2
M = σ0 exp

[
− π

g2 N

]
. (17.20)

Choosing

σM = σ0 exp

[
− π

g2 N

]
; πM = 0 (17.21)

dynamically generates a gap for the fermions and an energy scale for the system.
We see that the scalar field π has zero mass, thus constituting the expected Gold-
stone boson. It has been shown, however [153], that π completely decouples from
the system in such a way that the physical fermions are not affected by the chiral
rotation. Thereby we can reconcile the dynamical mass generation with the preser-
vation of the chiral symmetry, which being continuous cannot be spontaneously
broken in d = 1, according to Coleman’s theorem [171]. The renormalized effective
potential satisfies the renormalization group equation(

σ0
∂

∂σ0
+ β(gR)

∂

∂gR

−γσ (gR)σR
∂

∂σR
− γπ(gR)πR

∂

∂πR

)
Vef f (σR, πR, gR, σ0) = 0, (17.22)

where the β(gR) and γ (gR) functions are defined by (6.75) and (6.76).
Inserting (17.19) in (17.22), we obtain the explicit form of the β and γ functions,

namely,

β(g) = − g3 N

2π + g2 N

γσ (g) = γπ(g) = β(g)
g
. (17.23)

A negative β function implies that at high energy scales the effective coupling
will vanish, thus rendering the system effectively free. At low energies, conversely,
it will be strongly interacting. The energy scale separating the two regimes is
dynamically generated by the system itself and is given by σM . The spontaneous
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generation of such a characteristic energy scale is the essence of the Kondo effect.
Its existence has been revealed in an early treatment of the problem [151].

17.3 Exact Solution and Phenomenology

The Kondo and the chiral Gross–Neveu Hamiltonians share the remarkable prop-
erty of being exactly diagonalizable by means of the technique known as Bethe
Ansatz [143]. The first was solved by Adrei and Wiegmann [144, 145], whereas
the latter, by Andrei and Lowenstein [146, 147]. Once the exact energy eigenval-
ues are determined [148], one can derive a set of coupled integral equations for the
exact free energy [149, 150]. From these, several properties of the system can be
inferred in the asymptotically free, scaling and crossover regimes.

Analogous to the chiral Gross–Neveu model, which dynamically generates an
energy scale given by (17.21), the Kondo system also spontaneously generates a
scale T0 , given by [150]

T0 =  exp
[
− π

2J

]
, (17.24)

where  � T0 is the energy/momentum cutoff. From this, one universally obtains
temperature and magnetic crossover scales, TK and TH , given, respectively, by
[150]

TK

T0
= 4π × 0.102676 ; TH

T0
=
√
π

e
. (17.25)

The results for the impurity magnetization at T = 0 and magnetic susceptibility
are [150], respectively,

Mi =
⎧⎨
⎩ μ

[
1− 1

2 ln μH
TH

]
H � TH

μ

πT0
H H � TH

(17.26)

and

χ =
⎧⎨
⎩

μ2

T

[
1− 1

ln T
TK

]
T � TK

μ2

πT0
T � TK

. (17.27)

In the above expressions, the upper result is valid in the asymptotically free high-
energy regime, whereas the lower, in the strongly coupled low-energy regime.

The above expressions should be compared with the free ones

M(0)
i = μ
χ(0) = μ

2

T
. (17.28)
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286 The Kondo Effect

Observe that both the magnetization and the magnetic susceptibility tend to the
free expressions in the high-temperature regime. Physically, this corresponds to a
limit where the electrons’ interaction with the magnetic impurity asymptotically
vanishes, thereby making the electrons essentially free. The opposite effect at low
temperatures is produced by the strong antiferromagnetic interaction between the
electrons and the impurity spin, which has the effect of completely screening its
magnetic moment.
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18

Quantum Magnets in 1D: Fermionization,
Bosonization, Coulomb Gases and “All That”

Few systems in physics present such a rich variety of interconnections and unex-
pected equivalences as the quantum one-dimensional magnetic systems. These turn
out to be closely related to strongly interacting one-dimensional electronic sys-
tems as well as to classical two-dimensional gases of Coulomb-interacting charged
particles. Surprising mappings bridge these different systems, whose equivalence
would otherwise be very difficult to anticipate. Interesting and important issues
such as the Berezinskii–Kosterlitz–Thouless (BKT) transition, bosonization, super-
symmetry and the thermodynamics of interacting gases are brought together in this
fascinating subject.

18.1 From Spins to Fermions

18.1.1 The XYZ-Model

Consider a general quantum spin system on a one-dimensional lattice, with
Hamiltonian given by

HXY Z =
∑

n

[
Jx Sx

n Sx
n+1 + Jy Sy

n Sy
n+1 + Jz Sz

n Sz
n+1

]
, (18.1)

the so-called XYZ-Model. Important particular cases are the Heisenberg model
(Jx = Jy = Jz), the XXZ-Model (Jx = Jy; Jz �= 0) and the XY-Model (Jx =
Jy; Jz = 0).

Here Si
n, i = x, y, z are spin operators acting on a Hilbert space associated to

the site n and satisfying the angular momentum algebra

[Si
n, S j

m] = iδnmε
i jk Sk

n . (18.2)

We consider that the spin operators at each site are associated to a spin s = 1/2
physical system (atom, radical, etc.), thus a spin 1/2 representation in terms of
Pauli matrices is implicitly assumed for each site:

287

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.019
https://www.cambridge.org/core


288 Quantum Magnets in 1D

Si
n =

1

2
σ i . (18.3)

We introduce now the operators

S±n = Sx
n ± i Sy

n , (18.4)

such that

S+n S−n =
1

2
+ Sz

n

S−n S+n =
1

2
− Sz

n, (18.5)

and

Sx
n Sx

n+1 =
1

4

[
S+n S−n+1 + S−n S+n+1 + S+n S+n+1 + S−n S−n+1

]
Sy

n Sy
n+1 =

1

4

[
S+n S−n+1 + S−n S+n+1 − S+n S+n+1 − S−n S−n+1

]
. (18.6)

In terms of these, we may rewrite the Hamiltonian as

HXY Z =
∑

n

[(
Jx + Jy

2

) [
S+n S−n+1 + S−n S+n+1

]
+
(

Jx − Jy

2

) [
S+n S+n+1 + S−n S−n+1

]+ Jz Sz
n Sz

n+1

]
. (18.7)

18.1.2 The Jordan–Wigner Transformation

We now derive a transformation that will map the spin operators into fermion oper-
ators. This is the Jordan–Wigner transformation [118], obtained already in the
early days of quantum mechanics. As we will see, this transformation contains
some basic elements later used in the process of bosonization and can be con-
sidered the precursor of the order-disorder methods introduced by Kadanoff and
Ceva [30].

We start by defining the operator

K (n) = exp

{
iπ

n−1∑
m=−∞

S+m S−m

}

K (n) = exp

{
iπ

n−1∑
m=−∞

(
Sz

m +
1

2

)}
. (18.8)

In terms of this, we introduce the new operators
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cn = K (n)S−n = exp

{
iπ

n−1∑
m=−∞

S+m S−m

}
S−n

c†
n = S+n K †(n) = S+n exp

{
−iπ

n−1∑
m=−∞

S+m S−m

}
. (18.9)

It follows that these operators are genuine fermion operators, as one can infer
from the anticommutation relations that follow directly from the above definition:

{cn, cm} = {c†
n, c

†
m} = 0

{cn, c
†
m} = δnm . (18.10)

Moreover, we have, from (18.9),

c†
ncn = S+n S−n = Sz

n +
1

2

Sz
n = c†

ncn − 1

2
. (18.11)

Inserting this result in (18.9) and inverting those expressions, we are able to obtain
a mapping of pure spin operators into pure fermion operators, namely, the Jordan–
Wigner transformation,

S+n = c†
n exp

{
iπ

n−1∑
m=−∞

c†
mcm

}

S−n = exp

{
−iπ

n−1∑
m=−∞

c†
mcm

}
cn

Sz
n = c†

ncn − 1

2
. (18.12)

From this, we obtain

S+n S−n+1 = c†
ncn+1

S−n S+n+1 = −cnc†
n+1

S+n S+n+1 = c†
nc†

n+1

S−n S−n+1 = −cncn+1. (18.13)

Using these relations, we may express the XYZ Hamiltonian entirely in terms of
fermions,

HXY Z =
∑

n

[(
Jx + Jy

2

)[
c†

ncn+1 + c†
n+1cn

]
+
(

Jx − Jy

2

)[
c†

nc†
n+1 + cn+1cn

]

+Jz

(
c†

ncn − 1

2

)(
c†

n+1cn+1 − 1

2

)]
, (18.14)
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290 Quantum Magnets in 1D

We recognize in the first term above the familiar tight-binding Hamiltonian. The
first surprising connection thus follows: the XY-Model quantum spin system in
one dimension (Jx = Jy = J ; Jz = 0) is equivalent to a free fermion on a Bravais
lattice. The energy spectrum for this would be ε(k) = −2t cos ka, with hopping
parameter −J . An occupation of one fermion per site would imply, according to
(18.12), a +1/2 eigenvalue for the Sz-component of the associated spin system.

Before we consider the general case, let us perform a canonical transformation,
introducing the new fermion operator dn through cn ≡ i ndn . Inserting in (18.14),
we get

HXY Z =
∑

n

[
i

(
Jx + Jy

2

)[
d†

n dn+1 − d†
n+1dn

]

+ i(−1)n
(

Jx − Jy

2

)[
d†

n+1d†
n + dn+1dn

]
+ Jzd

†
n dnd†

n+1dn+1

]
, (18.15)

where we neglected constant terms.
The Heisenberg equation of motion for dn will be

i ḋn = [dn, HXY Z ] = i

(
Jx + Jy

2

) [
dn+1 − dn−1

]
− i(−1)n

(
Jx − Jy

2

)[
d†

n+1 + d†
n−1

]
+ Jzdn

[
d†

n+1dn+1 + d†
n−1dn−1

]
. (18.16)

Introducing

ψo
n = dn ; n = odd

ψe
n = dn ; n = even (18.17)

and taking the continuum limit

ψo,e
n −→ ψo,e(x)

ψ
o,e
n+1 − ψo,e

n−1

2a
−→ ∂xψo,e(x), (18.18)

we obtain

iψ̇e = iv0∂xψo − Mψ†
o + 2gψe

(
ψ†

oψo
)

iψ̇o = iv0∂xψe + Mψ†
e + 2gψo

(
ψ†

eψe

)
, (18.19)

where

v0 = Jx + Jy

2
a M = Jx − Jy g = Jza. (18.20)

It will be convenient to express the equation of motion in terms of left- and right-
moving degrees of freedom. For this purpose, consider the expansion
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cn = i ndn =
∑

q

c(q)eiqna

c(q) =
∑

n

[
i2nd2ne−iq2na + i2n+1d2n+1e−iq(2n+1)a

]
, (18.21)

where, in the last expression, we separated the odd and even components. Assum-
ing we are near the Fermi points kF = ±π/2a and writing q = kF + k, we
have

dR(k) ≡ 1√
2

c
(
+ π

2a
+ k
)
; dL(k) ≡ 1√

2
c
(
− π

2a
+ k
)

(18.22)

for the right and left movers. Replacing q for±π/2a+ k in (18.21) and noting that
(i)4n = 1, (i)4n+2 = −1, we obtain

dR(k) = 1√
2

∑
n

[
d2ne−ik2na + d2n+1e−ik(2n+1)a

]
dL(k) = 1√

2

∑
n

[
d2ne−ik2na − d2n+1e−ik(2n+1)a

]
. (18.23)

Fourier transforming, we have

d2n = 1√
2

[dR(n)+ dL(n)] ; d2n+1 = 1√
2

[dR(n)− dL(n)]

dR(n) = 1√
2

[
d2n + d2n+1

] ; dL(n) = 1√
2

[
d2n − d2n+1

]
(18.24)

or, from the first relation,

dn = 1√
2

[
dR(n)+ (−1)ndL(n)

]
. (18.25)

We now take the right- and left-moving fieldsψR(x) andψR(x) as the continuum
limit of dR(n) and dL(n). Using (18.23) and (18.19), we get

iψ̇R = iv0∂xψR + Mψ†
L + 2gψR

(
ψ

†
LψL

)
iψ̇L = −iv0∂xψL − Mψ†

R + 2gψL

(
ψ

†
RψR

)
. (18.26)

This equation of motion corresponds to the Hamiltonian density

H = iv0

[
ψ

†
R∂xψR − ψ†

L∂xψL

]
+ M

[
ψ

†
Rψ

†
L + ψLψR

]
+ 2g

(
ψ

†
RψR

) (
ψ

†
LψL

)
. (18.27)
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Notice that, since the fermion current components are given by j0 = ρR + ρL and
j1 = ρR − ρL , then

jμ jμ = ( j0)2 − ( j1)2 = 4
(
ψ

†
RψR

) (
ψ

†
LψL

)
; (18.28)

hence we may write the interaction part of the Hamiltonian as a Thirring
interaction:

g

2
jμ jμ. (18.29)

Observe that we are assuming a half-filled band, with Fermi points at kF =
±π/2a, which means an average occupation number of 〈c†

ncn〉 = 1/2. According
to (18.12), this implies an average value 〈Sz〉 = 0 for the z-component of the
associated XYZ-spin system. The relations (18.22) therefore imply the operators
dR,L(k) already act, creating or annihilating fermions and holes with respect to the
Fermi sea, in such a way that 〈d†

n dn〉 = 0. Hence, in terms of these operators, we
may express the z-component of the spin operator as

Sz
n = d†

n dn. (18.30)

We can identify here another unexpected connection: the one existing between
the XYZ-Model, describing localized quantum spins, and a fermion system with
quartic self-interaction.

18.2 From Fermions to Bosons

18.2.1 Bosonization of Localized Quantum Spin Systems

In the previous section, we mapped the chain of localized quantum spins corre-
sponding to the XYZ-Model into a one-dimensional continuum fermion field with
Thirring interaction. Now let us proceed by mapping the fermion field itself into a
bosonic field.

XXZ Model

Consider firstly the case M = 0 (Jx = Jy ≡ J ). We have seen in Chapter 10 that,
in this case, the bosonized Hamiltonian is given by (10.90); therefore, taking into
account the velocity v0 = Ja, we have for the XXZ-Model

H = v
2

(
�2

K
+ K (∂xφ)

2

)
= v

2

(
�̃2 + (∂x φ̃)

2
)
. (18.31)

We see that, in this case, the interaction introduces the dimensionless K factors. It
can be shown that the exact expression for these is [119]

K =
√

2

π

[
1− δ

π

]1/2

; cos δ = Jz

J
, (18.32)
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whereas for the velocity,

v = sin δ

δ

(π
2

)
Ja. (18.33)

The bosonized current, accordingly, is given by

jμ = 1

πK
εμν∂νφ. (18.34)

This expression is valid for −1 ≤ Jz
J ≤ 1 and corresponds to a ground state with

〈Sz〉 = 0. For |Jz| > J , the system suffers a quantum phase transition to a state
where 〈Sz〉 �= 0, being in the same universality class as the Ising model.

From (10.80), we see that the bosonization formula for the fermion fields
involves both the bosonic field φ and its dual, namely

θ(x, t) = 1

v

∫ x

−∞
dξ�(ξ, t)

∂xθ(x, t) = 1

v
φ̇(x, t) ; θ̇ = 1

v

∫ x

−∞
dξ∂2

t φ(ξ, t) = v∂xφ. (18.35)

In terms of the dual bosonic field, we may express the XXZ-Model Hamiltonian as

H = v
2

(
K�2

θ +
(∂xθ)

2

K

)
. (18.36)

XYZ Model

In this case, we have Jx �= Jy , M �= 0, and there is a mass term in (18.27).
According to (10.80), this can be conveniently bosonized in terms of the θ-field.
We therefore obtain the following bosonized Hamiltonian for the XYZ-Model:

H = v
2

(
K�2

θ +
(∂xθ)

2

K

)
+ α cos 2θ, (18.37)

where α = M/2π .

The Bosonized Spin Operators

Once we bosonize the fermions emerging from the application of the Jordan–
Wigner transformation to the XYZ quantum spin system, it is quite useful to
express those spin operators in terms of the bosonic field, thereby obtaining a
bosonized form of the spin operators themselves. Using (18.30) and (18.25), we get

Sz
n =

[
ψ

†
RψR + ψ†

LψL + (−1)n
(
ψ

†
RψL + ψ†

LψR

)]
. (18.38)

Now, observing that the first two terms form the zeroth component of the fermion
current and using (10.80), we may express the above spin operator in terms of the
bosonic field appearing in (18.36) as
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Sz
n =

β

2π
∂xφ + (−1)n

π
cos (βφ) , (18.39)

where

β = 2

K
=
√

2π

1− δ
π

. (18.40)

Analogously, we get

S+n = e−i 2π
β
θ
[
cos (βφ)+ (−1)n

]
. (18.41)

The previous expressions are very useful, for instance, for the purpose of deter-
mining the magnetic properties of systems governed by the XXZ and XYZ models.
The uniform, static, magnetic susceptibility, for example, according to (4.19), is
given by

χ(0, 0) = lim
q,ω→0

∫
dτe−iωτ

∑
n

eiqna〈Sz
n(τ )S

z
0(0)〉

= lim
ω→0

1

N

∫
dτe−iωτ

∑
n,m

〈Sz
n(τ )S

z
m(0)〉

= lim
q,ω→0

1

N

∫
dτe−iωτ

∑
n,m

eiq(n−m)aeiqma〈Sz
n(τ )S

z
m(0)〉 −→

lim
ω→0

1

N

∫
dτe−iωτ

∑
n,m

〈Sz
n(τ )S

z
m(0)〉

χ(0, 0) =
∫

dτ
∑

n

〈Sz
n(τ )S

z
0(0)〉, (18.42)

where N is the total number of sites. Now, taking the continuum limit and
considering that the last term in (18.39) cancels out when summed over n, we get

χ(0, 0) = lim
q,ω→0

β2

4π2

∫
dτdxeiqx e−iωτ (−∂2

x )〈φ(x, τ )φ(0, 0)〉. (18.43)

The φ-field two-point correlation function corresponds to the theory given by
(18.31) in the case of the XXZ-Model and to the one given by (18.37), in the case
of the XYZ-Model. In the first case, the exact result in Euclidean space is

G(2)(ω, q) = 1

v
(
ω2 + q2

) . (18.44)

In the second case we have just an approximate result, which for small momentum
behaves as

G(2)(ω, q) ≈ 1

v
(
ω2 + q2 + M2

) . (18.45)
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We can write the static magnetic susceptibility as

χ(0, 0) = lim
q,ω→0

β2

4π2v

q2

ω2 + q2 + M2
. (18.46)

In the presence of a gap (M �= 0), we can see from the above expression that
χ(0, 0)→ 0. This is a reasonable result from the physical point of view, since, in
the presence of a finite gap, the application of a weak external magnetic field is not
enough to excite a magnetic mode.

In the absence of a gap(M = 0), however, as is the case for the XXZ-Model,
using (18.32) we obtain the following general expression for the static, uniform
susceptibility at T = 0

χX X Z (0, 0) = β2

4π2v
= δ

π Ja(π − δ) sin δ
. (18.47)

There are two important special cases: the XY-Model, where Jz = 0; δ = π/2,
β = 2

√
π , v = Ja and

χXY (0, 0) = 1

π Ja
, (18.48)

and the Heisenberg Model, where Jz = J ; δ = 0, β = √2π , v = π
2 Ja and

χH (0, 0) = 1

π2 Ja
. (18.49)

18.2.2 Bosonization of Itinerant Quantum Spins (Interacting Fermions)

In the previous subsection, we considered localized quantum spin systems in one
spatial dimension and studied the bosonization of the associated fermion systems
obtained by the application of the Jordan–Wigner transformation to those systems.
Now we consider one-dimensional interacting fermionic systems with itinerant
quantum spins and once again apply the bosonization method in order to map these
into familiar bosonic systems.

Basic Bosonization Formulas

Let us consider spin s = 1/2 fermion excitations associated to a field ψα,σ (x),
where α = R, L denotes, respectively, right-movers and left-movers and σ =↑, ↓,
the two possible values of the z-component of their spin. We will focus on quartic
interactions, in which, typically, an initial pair of fermions with given (α, σ ) shall
scatter into a final pair with (α′, σ ′).

We bosonize each σ =↑,↓ component of the fermion field ψα,σ (x) through the
bosonization formulas (10.80) with the bosonic field φσ (x), corresponding to each
spin component. According to that, we have
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j0
σ = ρR,σ + ρL ,σ = 1√

π
∂1φσ

j1
σ = ρR,σ − ρL ,σ = − 1√

π
∂0φσ

ρR,σ = − 1

2
√
π

(
∂0 − ∂1

)
φσ

ρL ,σ = 1

2
√
π

(
∂0 + ∂1

)
φσ . (18.50)

Analogously,

ψ
†
R,σψL ,σ = 1

4π
e−2ibφσ ; ψ

†
L ,σψR,σ = 1

4π
e2ibφσ , (18.51)

and for the charge density

ρ = ψ†
σψσ = ψ†

↑ψ↑ + ψ†
↓ψ↓ =

1√
2π
∂1φc (18.52)

and spin operators

Sz = ψ†
σ σ

z
σλψλ = ψ†

↑ψ↑ − ψ†
↓ψ↓ =

1√
2π
∂1φs, (18.53)

where the charge and spin bosonic fields are

φc = 1√
2

(
φ↑ + φ↓

)
φs = 1√

2

(
φ↑ − φ↓

)
. (18.54)

Response Functions

Bosonization is an extremely powerful method for determining basic response
functions of the system. The magnetic susceptibility, for instance, can be derived
from (4.19), (18.42) and (18.53), namely

χ(ω, q) = 1

2πT

∫
dxeiqx

∫
dτe−iωτ ∂x∂y〈φs(x, τ )φs(y, 0)〉. (18.55)

The electric conductivity, according to the Kubo formula, is given by

σ(ω, q) = i

ω

∫
dxeiqx

∫
dτe−iωτ 〈 j (x, τ ) j (0, τ ′)〉

= i

ω

∫
dxeiqx

∫
dτe−iωτ ∂τ ∂

′
τ 〈φc(x, τ )φc(0, τ

′)〉. (18.56)

Finally, we consider the compressibility, which is defined as the ratio between
the average density variations under a certain applied pressure. This is given by the
correlator
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κ(ω, q) =
∫

dxeiqx
∫

dτe−iωτ 〈n(x, τ )n(y, 0)〉

n(x, τ ) =
∑
σ=↑,↓

[
ρR,σ + ρL ,σ

] = √ 2

π
∂xφc. (18.57)

Free Hamiltonian

We start with the free Hamiltonian

H0 =
∑
σ

iv0ψσ∂/ψσ . (18.58)

Using the bosonization formula (10.80), we find

H0 =
∑
σ

1

2
∂μφσ ∂

μφσ , (18.59)

which can be cast in the form

H0 = 1

2
∂μφc∂

μφc + 1

2
∂μφs∂

μφs, (18.60)

or

H = v0

2

(
�c

2 + (∂xφc)
2
)+ v0

2

(
�s

2 + (∂xφs)
2
)

(18.61)

where

�c,s = φ̇c,s

v0
. (18.62)

Notice that the free Hamiltonian separates in charge and spin degrees of freedom;
nevertheless, both have the same velocity v0, hence they are not truly separated in
the free theory.

Small Momentum Interactions

Let us consider first interactions involving a momentum exchange, which is small
in comparison to the Fermi momentum |kF | = π/2a. These are interactions where
an R-mover is scattered into an R-mover and an L-mover into an L-mover. The
corresponding Hamiltonians are subdivided in two groups, namely

H1c = g1c

[(
ρR,↑ + ρR,↓

)2 + (ρL ,↑ + ρL ,↓
)2]

H1s = g1s

[(
ρR,↑ − ρR,↓

)2 + (ρL ,↑ − ρL ,↓
)2]

(18.63)

and

H2c = g2c
[
ρR,↑ + ρR,↓

] [
ρL ,↑ + ρL ,↓

]
H2s = g2s

[
ρR,↑ − ρR,↓

] [
ρL ,↑ − ρL ,↓

]
. (18.64)
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Using the bosonization formulas (18.50), we get

H1c = g1c

2π

[
�2

c + (∂1φc)
2
]

H1s = g1c

2π

[
�2

s + (∂1φs)
2
]

(18.65)

and

H2c = −g2c

2π
∂μφc∂

μφc = g2c

2π

[−�2
c + (∂1φc)

2
]

H2s = −g2s

2π
∂μφs∂

μφs = g2c

2π

[−�2
s + (∂1φs)

2
]
. (18.66)

Large Momentum Interactions

Now, we will consider interactions where the momentum exchanged is comparable
to the Fermi momentum |kF | = π/2a. These are interactions where an R-mover is
scattered into an L-mover and an L-mover into an R-mover. The first interaction of
such a kind is the “Backscattering,” where an initial pair of R and L movers with
opposite spins is scattered into another pair of R and L movers in such a way that
the initial L-mover becomes a final R-mover, without changing its spin, and vice
versa. The underlying interaction is

H3 = g3

∑
σ

ψ
†
R,σψL ,σψ

†
L ,−σψR,−σ . (18.67)

Using (18.51), it is not difficult to infer that the bosonized form of the
Backscattering interaction Hamiltonian is

H3 = g3

2π2
cos
(

2
√

2bφs

)
. (18.68)

The second type of large momentum interactions is the Umklapp process. In this, a
pair of R-movers (or L-movers) with opposite spins scatter into a pair of L-movers
(or R-movers), without changing their spin. This is a process that occurs at the first
Brillouin zone boundaries, hence its name. The Hamiltonian corresponding to this
interaction is

H4 = g4

2

∑
σ

[
ψ

†
R,σψ

†
R,−σψL ,σψL ,−σ + ψ†

L ,−σψ
†
L ,σψR,−σψR,σ

]
. (18.69)

Again, using (18.51), we find the corresponding bosonized version of the above
interaction to be

H4 = g4

2π2
cos
(

2
√

2bφc

)
. (18.70)
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18.3 From Bosons to Gases

We have seen that two classes of bosonic Hamiltonians emerge in the process
of bosonization, both of localized spin systems and itinerant, strongly interacting
fermions. The first category involves essentially free gapless systems that can be
solved exactly for the spectrum, correlation functions and response functions. The
second one comprises gapped systems associated to a sine-Gordon interaction, for
which a full exact solution is, so far, not available. There exists, nevertheless, an
extremely useful and instructive mapping of such systems into a two-dimensional
classical gas of charged point particles, interacting through the Coulomb potential,
in the grand-canonical ensemble [121, 122, 123, 124, 131].

18.3.1 The Sine-Gordon Theory: 2D Coulomb Gas

The Grand-Partition Function

Let us start by considering the sine-Gordon vacuum functional corresponding to
(10.100) in Euclidean space, namely,

ZSG = Z−1
0

∫
Dφ exp

{
−
∫

d2z

[
1

2
∂μφ∂μφ + α cosβφ

]}
. (18.71)

Then, expanding the cosine term,

ZSG =
∞∑

m=0

αm

m!
∫

d2z1 . . . d
2zm

× Z−1
0

∫
Dφ exp

{
−
∫

d2z

[
1

2
∂μφ∂μφ

]}
cosβφ(z1) . . . cosβφ(zm)

= Z−1
0

∞∑
m=0

(
α
2

)m
m!

∫
d2z1 . . . d

2zm

×
∑

{λ},λ=±1

∫
Dφ exp

{
−
∫

d2z

[
1

2
φ(−∇2)φ + ρ(z; z1 . . . zm)φ(z)

]}
,

(18.72)

where λi = ±1,

ρ(z; z1 . . . zm) = iβ
m∑

i=1

λiδ(z − zi ), (18.73)

and the sum over {λ} sweeps all possible configurations of λi values in the set
{λ1 = ±1, . . . , λm = ±1}.

Notice that the functional integral in ZSG now becomes quadratic and can be
performed with the help of (5.49):
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I (z1 . . . zm) = Z−1
0

∫
Dφ exp

{
−
∫

d2z

[
1

2
φ(−∇2)φ + ρ(z; z1 . . . zm)φ(z)

]}

= exp

{
1

2

∫
d2zd2z′ρ(z; z1 . . . zm)D(z − z′)ρ(z′; z1 . . . zm)

}
,

(18.74)

where D(z − z′) is the Euclidean Green function of the −∇2 operator, which, by
definition, is the Coulomb potential created by a point charge in any dimension.
According to (10.72), it is given by

D(z − z′) = − 1

4π
lnμ2

[|z − z′|2 + |ε|2] |μ,ε→0, (18.75)

where μ and ε are, respectively, infrared and ultraviolet regulators, which must be
removed at the end.

Inserting (18.73) and (18.75) in (18.74), we get

I (z1 . . . zm) = exp

⎧⎨
⎩ β

2

8π

m∑
i, j=1

λiλ j lnμ2
[|zi − z j |2 + |ε|2

]⎫⎬⎭ . (18.76)

Now, the IR regulator μ-dependent term, which is additive in the exponent, yields
an overall multiplicative factor:

[μ]
β2

4π [
∑m

i=1 λi ]2

. (18.77)

Conversely, the i = j terms of the μ-independent terms of the sum above yield
another overall multiplicative factor,

|ε|m β2

4π , (18.78)

depending on the UV regulator.
The μ-dependent factor in (18.77) is equal to one whenever

∑m
i=1 λi = 0, and

vanishes, otherwise, when we remove the IR cutoff, by taking the limit μ → 0.
We conclude, therefore, that the only nonzero contribution to ZSG occurs when∑m

i=1 λi = 0. This last condition implies there are n λi = +1 and n λi = −1 in
such a way that m = 2n.

The ε-dependent factor in (18.78), conversely, can be absorbed in a renormal-
ization of α in (18.72):

αR = α|ε| β
2

4π . (18.79)

This is Coleman’s renormalization [121].
Inserting (18.78) in (18.72) and taking into account the fact that there are n

positive and n negative λi , values, it follows that the sum over the possible λi

configurations yields
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{λ}
= m!

n!n! ; m = 2n.

We can therefore write

ZSG =
∞∑

n=0

ζ 2n

n!n! Z(n; n), (18.80)

where

Z(n; n) =
∫

d2z1 . . . d
2z2n exp

⎧⎨
⎩ β

2

8π

2n∑
i, j=1,i �= j

λiλ j ln
[|zi − z j |2 + |ε|2

]⎫⎬⎭
(18.81)

is the partition function of a two-dimensional neutral, classical gas of 2n point
charges, n of which having positive and the remaining n having negative signs
and interacting through the Coulomb potential. ZSG , conversely, is identified as the
grand-partition function of this neutral Coulomb gas, with the fugacity given by

ζ = αR

2
.

Coleman’s renormalization (18.79), in this language, corresponds to the removal
of the unphysical self-energies of the point charges.

The result above is just one more remarkable, unexpected connection exhibited
by the systems studied in the present chapter.

Ultraviolet Divergences: Non-Perturbative Renormalization

The self-energies of the 2n point charges are the only divergences we find in the
Coulomb gas for 0 ≤ β2 < 4π . These are eliminated by a fugacity renormalization,
as we have seen. For β2 ≥ 4π , however, a new class of short-distance divergences
starts to show up [125, 126, 127, 128, 129, 130], requiring further consideration. In
the Coulomb gas language, these new divergences correspond to the coalescence
of neutral multipoles (p positive and p negative charges) in the integration region
over the charges’ positions in (18.81). Dipoles (p = 1) start to diverge at β2 = 4π ,
quadrupoles (p = 2) at β2 = 6π and ∞-poles, ultimately, start to diverge at
β2 = 8π . In general, p-poles diverge for [130]

β2 ≥
(

2p − 1

2p

)
8π ; p = 1, 2, 3, . . . (18.82)

A detailed analysis of the short-distance divergences occurring in the Coulomb
gas for 4π ≤ β2 < 8π has been presented in [130]. By subdividing the total
integration region of the integral in (18.81) both in subregions corresponding to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.019
https://www.cambridge.org/core


302 Quantum Magnets in 1D

divergent configurations of coalescing p-charges as well as subregions correspond-
ing to finite contributions to the partition function, one is capable of factoring out
all the divergent pieces in an overall multiplicative term. This is achieved by means
of a resummation of the series appearing in (18.80) [130] that leads to

ZSG = eV (ε)
∞∑

n=0

ζ 2n

n!n! Z̃(n; n), (18.83)

where Z̃(n; n) is finite and  (ε)→∞, for ε → 0.
All the UV divergences, therefore, may be eliminated by a renormalization

Z R
SG = ZSGe−V (ε), (18.84)

which, according to (18.71) amounts to the subtraction

LR
SG = LSG − (ε). (18.85)

Exact Equation-of-State

We have just demonstrated the equivalence between the sine-Gordon theory and
a two-dimensional neutral Coulomb gas in the grand-canonical ensemble. Let us
derive now the exact equation of state of such a gas. For this purpose, let us recall
that the grand-canonical potential �(T, V, ζ ), where ζ is the fugacity and V is the
volume, is defined as

�(T, V, ζ ) = −kB T ln ZSG . (18.86)

The pressure, then, is expressed as

p = −
(
∂�(T, V, ζ )

∂V

)
T,ζ

= kB T
1

ZSG

∂ZSG(T, V, ζ )

∂V
. (18.87)

In order to extract the volume dependence of (18.80), let us rescale the zi

variables and the UV regulator in (18.81) as

zi = V 1/2 ẑi ; ε = V 1/2ε̂. (18.88)

We can, then, write (18.81) as

Z(n; n) = V 2n(1−β2/8π)
∫

d2 ẑ1 . . . d
2 ẑ2n

× exp

⎧⎨
⎩ β

2

8π

2n∑
i, j=1,i �= j

λiλ j ln
[|ẑi − ẑ j |2 + |ε̂|2

]⎫⎬⎭ , (18.89)
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where we used the fact that, in view of the neutrality of the gas,(
2n∑

i=1

λi

)2

=
2n∑

i, j=1

λiλ j =
2n∑

i, j=1,i �= j

λiλ j + 2n = 0. (18.90)

It follows from (18.87) that

p =
(

1− β2

8π

)
kB T

V

[
1

ZSG

∞∑
n=0

2n
ζ 2n

n!n! Z(n; n)

]

pV =
(

1− β2

8π

)
kB T 〈2n〉

pV =
(

1− β2

8π

)
NkB T, (18.91)

where N ≡ 〈2n〉 is the average number of particles in the grand-canonical ensem-
ble. This is the exact equation of state of the Coulomb gas associated to the
sine-Gordon equation.

Observe that the pressure vanishes at β2 = 8π and would become negative for
larger values of β. This indicates that the system becomes unstable and undergoes
a phase transition at this value of the coupling. Interestingly, precisely at this cou-
pling, further UV divergences set in, namely, the ones associated to the coalescence
of non-neutral groups of charges in the integration region in (18.81) [130].

Notice, moreover, that for β2 = 4π , according to the energy equipartition theo-
rem, the above equation of state becomes that of an ideal gas. This is related to the
fact that, at this point, the sine-Gordon equation describes a free massive fermion
field.

18.3.2 The Supersymmetric 2D Sine–Gordon/Coulomb Gas

It is quite interesting and instructive to examine the supersymmetric extension of
the usual sine-Gordon theory. As it turns out, it is equivalent to the supersymmetric
extension of the usual Coulomb gas in D = 2: the supersymmetric Coulomb gas, a
Coulomb gas in the superspace. We start by introducing some basic concepts and
notation.

Notation and Basic Concepts

The 2D space with coordinates xμ = (x0, x1) is Euclidean. The γ -matrices are
hermitian: γ 0 = σ x γ 1 = σ y , γ 5 = σ z . 
 ≡ 
†γ 5. A point in superspace is
associated to a pair (x,!), where

! =
(
θ

θ∗

)
(18.92)
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and θ is a Grassmann variable. The volume element in !-space is dθ∗dθ and the
delta function: δ2(θ) = θθ∗.

The displacement vector corresponding to two points i and j in superspace is
then expressed as

Ri j
μ = xi

μ − x j
μ +!iγ

μ! j . (18.93)

The square of the distance between such points, |Ri j |2 = Ri j
μ Ri j

μ , is invariant under
the supersymmetry (Susy) transformation

xi
μ→ xi

μ + εγ μ!i ; !i → !i + ε, (18.94)

where ε, the transformation parameter, is a two-component Grassmann variable
spinor.

The real scalar superfield is defined as

� = φ +!
 + 1

2
!!F, (18.95)

where φ and F are real scalar fields and 
 is a Majorana fermion field (defined as

 = γ 0
∗). Any function of the superfield �, upon expansion in the Grassmann
variables, may be expressed in terms of the component fields as

V (�) = V (φ)+ V ′(φ)!
 + 1

2
!!

[
V ′(φ)F − V ′′(φ)



]
. (18.96)

The covariant derivative and its dual are defined as

D = ∂θ∗ − θ∗∂− ; D = ∂θ + θ∂+, (18.97)

where ∂± = ∂0 ± ∂1.
Defining the Green function of the DD operator as

DD�(x1, θ1; x2, θ2) = δ2(x1 − x2)δ
2(θ1 − θ2), (18.98)

it is not difficult to show that

�(x1, θ1; x2, θ2) = − 1

4π
lnμ2

[|R12|2 + |ε|2] |μ,ε→0, (18.99)

where as in the non-Susy case, μ and ε are, respectively, IR and UV regulators.

The Model Lagrangean

The Susy sine-Gordon theory [132] is defined by the following action, written in
superspace, in terms of the scalar superfield �:

SSG =
∫

d2xd2θ

[
1

2
D�D�− α cosβ�

]
. (18.100)
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Fugacity Expansion

We can now go through the same steps that led to the Coulomb gas description in
the usual sine-Gordon theory. As before, we start with the expansion

ZSusy = Z−1
0

∞∑
m=0

(
α
2

)m
m!

∫
�m

i=1d2zi d
2θi

∑
{λ},λ=±1

∫
D�

× exp

{
−
∫

d2zd2θ

[
1

2
�(DD)�+ ρ(z, θ; z1θ1, . . . , zmθm)�(z, θ)

]}
(18.101)

where λi = ±1,

ρ(z, θ; z1θ1, . . . , zmθm) = iβ
m∑

i=1

λiδ
2(z − zi )δ

2(θ − θi ) (18.102)

and the sum over {λ} sweeps all possible λi configurations in the set {λ1 =
±1, . . . , λm = ±1}.

Performing the quadratic functional integral over the scalar superfield, with the
help of the Green function (18.99), we arrive at the Susy Coulomb gas grand-
partition function, which is given by (18.80), with Z(n; n) replaced by

Z(n; n)Susy =
∫
�2n

i=1d2zi d
2θi exp

⎧⎨
⎩ β

2

8π

2n∑
i, j=1,i �= j

λiλ j ln
[|Ri j |2 + |ε|2]

⎫⎬
⎭ ,

(18.103)

where |Ri j | is the distance in superspace, given in terms of (18.93). The fugacity is
defined in terms of αR , precisely as in (18.79). As in the non-Susy Coulomb gas,
the IR regulator imposes the neutrality, so we have n positive and n negative point
charges in the Susy Coulomb gas.

Divergence Structure and Renormalization

The divergence structure is very similar to the one found in the usual sine-
Gordon/Coulomb gas system [133, 130]. For 0 ≤ β2 < 2π the system is
completely finite, except for the fugacity renormalization that eliminates the
charges’ self-energies. For 2π ≤ β2 < 4π , additional divergences appear,
associated to the coalescence of neutral agglomerates, as before. Again, after a
resummation made in the fugacity expansion of the grand-partition function [133],
we are able to factorize all the divergences as in (18.83) and eliminate them by
a subtraction analogous to (18.84) and (18.85). This subtraction, however, has
profound consequences in a supersymmetric theory, as we show below.
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Dynamical Supersymmetry Breaking

A supersymmetric system is invariant under transformations in which both the
parameter and the generator are fermionic. This can be seen, for instance, in
(18.94). Denoting by Q the Susy generator, assuming there is only one, a
supersymmetric transformation can be expressed as

U (ε) = ei[ε† Q+Q†ε]. (18.104)

Then, a fundamental property of any supersymmetric theory follows. This is that
the Hamiltonian can be written as

H = Q† Q. (18.105)

For the vacuum to be invariant under the operation in (18.104), a necessary and suf-
ficient condition for Susy not to be spontaneously broken, we must have Q|0〉 = 0.
The immediate conclusion is that a necessary and sufficient condition for pre-
venting Susy being spontaneously broken is that the vacuum state is an energy
eigenstate with eigenvalue precisely equal to zero: H |0〉 = 0.

This observation has strong consequences when we, in order to eliminate
divergences in a Susy theory, are forced to make an overall subtraction in the
Hamiltonian, as we did in (18.85). As a matter of fact, we can no longer guar-
antee, after subtracting a constant from the system Hamiltonian, that the condition
H |0〉 = 0 still holds; hence, supersymmetry is spontaneously broken for β2 ≥ 2π
where this subtraction is unavoidable.

A general theorem states, however, that spontaneous supersymmetry breakdown
cannot possibly occur at any finite order in perturbation theory [303]. The spon-
taneous Susy breaking we find for this value of the coupling complies with this
theorem. This becomes clear when we notice that the overall subtraction made in
the Hamiltonian was only possible after a full resummation of the fugacity series.
This, however, was only feasible by taking into account all terms of the series, in
agreement with the mentioned theorem.

18.4 Applications: Magnetic Systems

18.4.1 Strontium Cuprate: Sr2CuO3

Strontium cuprate is, for different reasons, a remarkable compound. It displays
linear arrays of Cu++ ions in a 3d9 electronic configuration, which has spin
s = 1/2, surrounded by four O−− ions, which have a noble gas configuration,
2p6. As we can see in Fig. 18.1, the orbitals arrange in such a way that the oxy-
gen p-orbitals overlap the copper d-orbitals, thereby creating an antiferromagnetic
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Figure 18.1 Strontium cuprate forms linear chains of Cu++ ions (black dots).
These have a localized magnetic dipole moment, presenting an antiferromag-
netic exchange coupling with its nearest neighbors, produced by a superexchange
mechanism, which is mediated by O−− ions (white dots).

coupling between the spins of neighbor copper ions through the superexchange
mechanism.

Interestingly, the same structure extended to CuO2 planes on a square lattice
forms the base of the high-Tc superconducting cuprates such as La2CuO4, as we
will see in Chapter 22.

The coupling between neighboring chains is negligible (J ′ � 10−5 J ), hence
the system is a natural realization (actually one of the best) of the isotropic, one-
dimensional Heisenberg Hamiltonian given by (18.7), with Jx = Jy = Jz = J > 0.
This is bosonized as in (18.31) or (18.36), for δ = 0.

The magnetic susceptibility of Sr2CuO3 at T = 0 is given by (18.49). The
correction to this result for T �= 0 has been evaluated in [135] using conformal
perturbation and renormalization group techniques. It reads

χH (0, 0; T ) = 1

π2 Ja

[
1− 1

2 ln T
T0

]
, (18.106)

where the reference temperature T0 is chosen as T0 � 7.7J .
This result is in excellent agreement with the experiment, provided we choose

the superexchange coupling as J = 2200K [136].
Another interesting result, obtained by similar methods, is the T = 0 magnetic

susceptibility in the presence of a uniform magnetic field H . This is given, in the
weak field regime, by [137]

χH (0, 0; H) = 1

π2 Ja

[
1− 1

2 ln μB gH
J

]
, (18.107)

where g is the gyromagnetic factor.
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18.4.2 Copper Benzoate: Cu(C6 H5C O O)2 • 3H2 O

Hamiltonian

Copper benzoate is another extremely interesting material. In the same way as
Sr2CuO3, it presents linear chains of magnetic, spin s = 1/2, Cu++ ions. Each
copper ion now is in the center of an oxygen octahedron. The peculiar feature,
however, is that the octahedron main axis alternates its direction at every next site
along the chain. This produces a site-dependent gyromagnetic tensor of the copper
ions, possessing a uniform and a staggered component (this is caused in part by the
so-called Dzyaloshinskii–Morya interaction [137, 138]). The magnetic interaction
along the chain is governed by an isotropic Heisenberg interaction such that, in the
presence of an applied magnetic field H, the copper benzoate Hamiltonian is

HC B = J
∑

n

Sn · Sn+1 + μB

∑
n

HagabSb
n, (18.108)

where the gyromagnetic tensor gab possesses both a uniform and a staggered
component, namely

gab = gu
ab + (−1)ngs

ab. (18.109)

The two components of the gyromagnetic tensor produce, respectively, a uni-
form field Hu and a staggered field Hs = (−1)nh. As it turns out [137], Hu and
Hs are almost perpendicular and h � H u . Consequently, we can write the copper
benzoate effective Hamiltonian as [137]

HC B = J
∑

n

Sn · Sn+1 + μB

∑
n

H u Sz
n + μB

∑
n

(−1)nhSx
n . (18.110)

Bosonization

The first term above can be written in bosonic form as (18.31) or (18.36). The
second term in the expression above can be bosonized as

H
β

2π
∂xφ. (18.111)

This can be absorbed in a redefinition of the bosonic field, namely,

φ→ φ − H
β

2π
x . (18.112)

Using the bosonization formula (18.41) for the last term above, as well as the
necessary rescalings, we get

HC B(h) = v
2

(
�2
θ + (∂xθ)

2
)+ M(h) cos β̃θ, (18.113)

where β̃ = 2π
β

and we have neglected a rapidly oscillating term, which vanishes
upon integration. This is the usual sine-Gordon theory, with M(h) = Ch.
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Figure 18.2 The crystal structure of copper benzoate showing Cu++ ions at the
center of oxygen octahedra with alternating axes’ orientation

The Gap, Soliton Mass, Breather Mass

An important issue is the determination of the sine-Gordon gap, which is twice the
soliton mass (denoted by �) as a function of the staggered field h. Dimensional
analysis [137, 139] imposes the following dependence on h:

�(h)

J
= F

(
μB gH

J

)(
μBh

J

) β̃2

2β̃2−π
, (18.114)

where logarithmic corrections have been neglected. Then, renormalization group
techniques associated with Bethe Ansatz results allow for the explicit determina-
tion of the pre-factor function of the uniform field, yielding [137]

�(h)

J
= 1.50416

(
ln
μB gH

J

)1/6 (
μB gh

J

) β̃2

2β̃2−π
. (18.115)

A simplified approach that works quite well consists in bosonizing the sine-
Gordon system at H = 0 or, equivalently, using the value β̃2 = β2 = 2π , but
otherwise including the effect of H . The result is [137]
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�(h)

J
= 1.50416

(
ln
μB gH

J

)1/6 (
μB gh

J

)2/3

. (18.116)

Now, specific heat measurements in copper benzoate for different values of the
applied field ranging from 0T up to 7T reveal the onset of a gapped regime with a
gap that scales with the applied field as [140]

�(H)

J
=
(
μB gH

J

)0.65±0.03

. (18.117)

Considering that h ∝ H and that 2/3 � 0.67, we conclude that the gap predicted
by the sine-Gordon description of copper benzoate under the action of an external
field is in excellent agreement with the experiments.

The sine-Gordon theory predicts, in the range of couplings to which β̃ belongs
the occurrence of soliton bound-states, known as “breathers,” with masses given
by (10.104). The mass of the first breather, then, is given by

M1 = 2� sin
(
ξ
π

2

)
; ξ = β̃2

8π − β̃2
. (18.118)

Now, for determining β̃ as a function of the magnetic field, we use the exact
Bethe Ansatz result, [137, 139]. This gives, for a field H = 7T :

β̃2

2π
(H = 7T ) = 0.82. (18.119)

This results in a value of ξ = 0.258, which implies a breather/soliton mass ratio of
(M1/�)th � 0.788.

Neutron scattering experiments performed in copper benzoate for an applied
field of 7T reveal the presence of sharp peaks [140] corresponding to the soli-
ton at � = 0.22meV and to a first breather at M1 = 0.17meV . The ratio
(M1/�)exp � 0.773, hence, is in good agreement with the theoretical prediction of
the sine-Gordon theory.

Specific Heat

The use of thermal Bethe Ansatz in the sine-Gordon theory has allowed the obtain-
ment of an explicit expression for the copper benzoate free energy, out of which
the specific heat can be obtained [139]. At small T , the free energy reads

F(T ) = −2T�

π
K1

(
�

T

)
− 2T M1

π
K1

(
M1

T

)
, (18.120)

where K1 is a modified Bessel function. The specific heat is, then, given by

c = T
∂2 F(T )

∂T 2
. (18.121)
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In [139], the theoretical expression derived from (18.120) is compared with the
experimental data. The agreement is excellent.

We conclude that sine-Gordon theory provides an accurate description of copper
benzoate physical properties, constituting a beautiful example of an application of
QFT to a condensed matter system.

18.4.3 The 2D XY-Model and the BKT Transition

The XY-Model

We now consider a third application of bosonization and, in particular, of the
Coulomb gas expansion, this time to a classical two-dimensional magnetic sys-
tem. This is the XY-Model on a square lattice [155, 156, 157]. In this extremely
beautiful example of deep interconnection between classical statistical mechan-
ics and quantum field theory of topological excitations, the thermal correlation
functions of the 2D XY-spins is exactly mapped into the quantum soliton corre-
lators of the sine-Gordon theory. The Coulomb gas expansion thereof provides
the derivation of the exact critical behavior of such correlators, thus allowing
for the exact obtainment [141] of the famous η = 1/4 critical exponent of the
Berezinskii–Kosterlitz–Thouless (BKT) phase transition.

The ferromagnetic XY Model is defined by the Hamiltonian (Heisenberg)

HXY = −J
∑
〈i j〉

ni · n j , (18.122)

where the sum runs over nearest neighbors of a square lattice. The 2D classical
spins are conveniently parametrized as

ni =
(

cos θ̃i , sin θ̃i

)
(18.123)

in such a way that

HXY = −J
∑
〈i j〉

cos
(
θ̃i − θ̃ j

)
. (18.124)

Assuming a small variation of the spins direction between neighboring sites, we
may expand the cosine, obtaining up to a constant

HXY = J

2

∑
〈i j〉

(
θ̃i − θ̃ j

)2
. (18.125)

Taking the continuum limit and considering that each site has two neighbors in
each direction, we get

HXY = J
∫

d2x∇ θ̃ · ∇ θ̃ . (18.126)
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Considering that the temperature enters the partition function as H/kB T , we
choose

θ̃i ≡
√

T

2J
θi

n(r) =
(

cos

√
T

2J
θ(r), sin

√
T

2J
θ(r)

)
, (18.127)

such that
HXY

T
= 1

2

∫
d2r∇θ · ∇θ. (18.128)

The Vortices and the Sine-Gordon / Coulomb Gas System

The XY-Model in two dimensions possesses topological excitations that carry a
nonzero topological charge Q, which is given by

Q = 1

2π

∮
dl · n. (18.129)

An example of such topological excitations is the vortex configuration

nv(r− ri ) = λi∇ arg(r− ri ), ; λi = ±1 (18.130)

centered at ri , for which Q = λi .
Let us evaluate now the energy associated to a configuration containing n vor-

tices. Inserting (18.130) into (18.122), for each of the vortices we get, after taking
again the continuum limit,

HV

T
= − J

2T

n∑
i, j

λiλ j

∫
d2r∇ arg(r− ri ) · ∇ arg(r− r j ), (18.131)

where λi = ±1 is the topological charge of each (anti)vortex. Now, since arg(r) is
the imaginary part of the analytical function ln z, z = |r|ei arg(r), it follows that it
must satisfy the Cauchy–Riemann equation with the real part thereof, namely

∇ i arg(r− r j ) = εik∇k ln

∣∣∣∣r− r j

R

∣∣∣∣ , (18.132)

where R is the spatial radius of the system.
The above equation implies we may write (18.131) as

HV

T
= − J

T

n∑
i, j

λiλ j

∫
d2r∇ ln

∣∣∣∣r− ri

R

∣∣∣∣ · ∇ ln

∣∣∣∣r− r j

R

∣∣∣∣ . (18.133)
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Integrating by parts and considering that

− ∇2 ln

∣∣∣∣r− ri

R

∣∣∣∣ = 2πδ(r− ri ), (18.134)

we obtain, after integration in d2r ,

HV

T
= −2π J

T

n∑
i �= j

λiλ j ln
∣∣ri − r j

∣∣
−n

2π J

T
ln |ε| + 2π J

T

(
n∑

i=1

λi

)2

ln R. (18.135)

The partition function being Z(n) = Tre−
H
T , we can infer that in the infinite volume

limit, R → ∞ the only vortex configurations that contribute to it are the neutral
ones, for which

∑n
i=1 λi = 0. Hence, since n = 2m, we have

Z(m;m) =
∫

d2r1 . . . d
2r2m exp

⎧⎨
⎩ Jπ

T

2m∑
i �= j

λiλ j ln
∣∣ri − r j

∣∣2
⎫⎬
⎭ , (18.136)

where m of the λi values are +1, and the remaining m, −1.
Comparing with (18.81) we see that the vortex partition function coincides with

that of the two-dimensional Coulomb gas, provided we make the identifications

Jπ

T
= β2

8π
; β = 2π

√
2J

T
; 2π

β
=
√

T

2J
. (18.137)

One immediately concludes, using (18.80) and (18.128), that the XY-Model parti-
tion function in the presence of a neutral configuration with an arbitrary number of
vortices is nothing but the vacuum functional of the sine-Gordon theory of the field
φ, dual to θ , defined so as to satisfy

∇ iθ = εi j∇ jφ,

namely,

Z XY =
∞∑

m=0

ζ 2m

m!m! Z(m;m)

= ZSG = Z−1
0

∫
Dφ exp {−SSG[φ]} , (18.138)

where ZSG is given by (18.71), with ζ = αR
2 being the fugacity, which is

renormalized with the second term in the exponent in (18.135).
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The sine-Gordon soliton creation operator, μ(x, t), which carries one unit of the
topological charge

Q = β

2π

∫ ∞

−∞
dx∂xφ(x, y), (18.139)

then, can be expressed in terms of both φ and θ as

μ(r) = exp

{
i
2π

β

∫ x

−∞
dξ φ̇(ξ, y)

}
= exp

{
i
2π

β
θ(r)

}
, (18.140)

where r = (x, y). The SG quantum soliton correlation function, therefore, is
given by

〈μ(r)μ†(0)〉SG =
〈
exp

{
i
2π

β
θ(r)

}
exp

{
−i

2π

β
θ(0)

}〉
SG

=
〈
exp

{
i
2π

β
[θ(r)− θ(0)]

}〉
SG

=
〈
cos

[
2π

β
(θ(r)− θ(0))

]〉
SG

,

(18.141)

where the last part follows from the invariance of the SG action under θ ↔ −θ .
Now, let us consider the thermal correlation function of the XY-Model. Accord-

ing to (18.137) and (18.138) this is given by

〈n(r) · n(0)〉XY =
〈
cos

[
2π

β
(θ(r)− θ(0))

]〉
SG

. (18.142)

We see that this coincides with the quantum correlator of a sine-Gordon operator,
namely

〈n(r) · n(0)〉XY =
〈
exp

{
i
2π

β
θ(r)

}
exp

{
−i

2π

β
θ(0)

}〉
SG

= 〈μ(r)μ†(0)〉SG .

(18.143)

The BKT Transition

This is another remarkable and unexpected connection: the thermal correlation
functions of the XY-Model spins coincide with the Euclidean quantum correla-
tors of the sine-Gordon soliton operators. In what follows we are going to explore
the Coulomb gas description of the latter in order to obtain the exact critical behav-
ior of such functions, in particular at the BKT transition point, at β2 = 8π or
TBK T = π J . Indeed, at this temperature the XY-Model undergoes a continuous
phase transition, which has already manifested in the Coulomb gas exact equation
of state (18.91).

We saw that the XY-vortex corresponds to the sine-Gordon soliton and this, by
its turn, corresponds through bosonization to the massive Thirring fermion. Then,
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from (10.103), it follows that for β2 < 4π the soliton-antisoliton interaction is
repulsive (soliton-soliton attractive), whereas for β2 > 4π the soliton-antisoliton
interaction is attractive (soliton-soliton repulsive). Precisely the same properties
apply to XY-vortices at the corresponding temperatures related to β through
(18.137). As we approach the temperature TBK T = π J from above, which
means approaching β2 = 8π from below, we are in an attractive regime for
vortices-antivortices (solitons-antisolitons), where, according to (18.91), the pres-
sure is positive. As we go through the critical point, the pressure becomes
negative. This indicates that the gas collapses through the formation of vortex-
antivortex (soliton-antisoliton) bound states. This phase transition is the celebrated
Berezinskii–Kosterlitz–Thouless (BKT) [156, 157] transition.

One of the benchmarks of the BKT transition is the fact that the XY-spin corre-
lator scales with a critical exponent η = 1/4 at the transition. This result has been
obtained by approximate scaling arguments in the low-temperature (large β) phase
[157, 158, 159, 160] and by heuristic arguments in the high-temperature (small β)
phase [154].

We now evaluate the XY spin thermal correlator by means of the Coulomb gas
expansion of the quantum soliton correlation function, namely [159]

〈
exp

{
i
2π

β
θ(x)

}
exp

{
−i

2π

β
θ(y)

}〉
SG

= |x− y|− 2π
β2 Z−1

SG

∞∑
n=0

α2n

n!n!
∫

d2r1 . . . d
2r2n

× exp

⎧⎨
⎩ β

2

8π

2n∑
i �= j=1

λiλ j ln |ri − r j |2 + i
2n∑

i=1

λi
[
arg(ri − y)− arg(ri − x)

]⎫⎬⎭
≡ F(x, y)

|x− y| 2π
β2

. (18.144)

We are going to demonstrate now that, at the critical point β2 → 8π , the function
F(x, y) → 1, hence the famous scaling with the exponent η = 1/4 follows as an
exact result [141].

In order to derive this result, we shall make use of the so-called bipolar
coordinate system, the main properties of which we describe below.

Bipolar Coordinates

Given the position vector on the plane, r and two “poles,” at the positions x and y,
the bipolar coordinate system (ξ, η) is defined as [161]

ξ = arg(r− y)− arg(r− x) ; 0 ≤ ξ ≤ 2π

η = ln |r− y| − ln |r− x| ; −∞ ≤ η ≤ ∞. (18.145)
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We may express the position vector as

r = |x− y| (sinh η, sin ξ)

2[cosh η − cos ξ ] ≡ |x− y|r̂(η, ξ) (18.146)

and the integration volume element as

d2r = |x− y|2
4[cosh η − cos ξ ]2 dηdξ. (18.147)

Using this coordinate system, we can rewrite (18.144) as

〈
exp

{
i
2π

β
θ(x)

}
exp

{
−i

2π

β
θ(y)

}〉
SG

= |x− y|− 2π
β2 Z−1

SG

∞∑
n=0

α2n

n!n!

×
∫
�2n

i=1dξi dηi
|x− y|4n

4[cosh ηi − cos ξi ]2

× exp

⎧⎨
⎩ β

2

8π

2n∑
i �= j=1

λiλ j ln
[
|x− y|2 ∣∣r̂i − r̂ j

∣∣2]+ i
2n∑

i=1

λiξi

⎫⎬
⎭ . (18.148)

We see that the use of bipolar coordinates allows a remarkable factorization of the
|x− y| factor. Considering the neutrality of the gas and (18.90), we obtain

〈
exp

{
i
2π

β
θ(x)

}
exp

{
−i

2π

β
θ(y)

}〉
SG

= |x− y|− 2π
β2

ZSG

∞∑
n=0

Cn|x− y|2n

(
2− β2

4π

)
,

(18.149)

where Cn are constants.
It is clear that at the BKT-point, β2 = 8π , we have

〈n(r) · n(0)〉XY =
〈
exp

{
i
2π

β
θ(r)

}
exp

{
−i

2π

β
θ(0)

}〉
SG

= K

|r|1/4 , (18.150)

which is the well-known BKT critical exponent. Notice that all powers in the
series (18.149) become negative for β2 > 8π , indicating that the large-distance
behavior of the spin/soliton correlator is completely determined by the free term,
just confirming that the cosine term in the sine-Gordon theory becomes irrelevant
in this region.

One can use the Coulomb gas description in order to obtain additional results in
the XY-Model. The XY-vortex correlators, for instance, are mapped into the sine-
Gordon correlation functions of the σ(x) = exp{i β2φ(x)} operators, which are dual
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to the soliton operators μ(x). Following the same steps, then, it is not difficult to
show that [141]

〈nv(r) · nv(0)〉XY =
〈
exp

{
i
β

2
φ(r)

}
exp

{
−i
β

2
φ(0)

}〉
SG

= K

|r| . (18.151)

From the large-distance behavior of the correlation functions (18.149) and
(18.151), we infer that under the BKT transition the expectation value of the
complex exponential of the phase field changes as〈

exp

{
i
β

2
φ(r)

}〉
SG

=
{

0 β2 ≥ 8π
�= 0 β2 < 8π.

(18.152)

Consequently, the BKT transition can be seen as one where phase coherence of a
complex order parameter sets in, rather than in a Landau–Ginzburg type transition,
where the modulus of such parameter becomes different from zero.

The present example shows how powerful is the use of the Coulomb gas picture
in order to extract useful information as well as to establish unexpected illuminat-
ing interconnections among systems in statistical mechanics, quantum field theory
and condensed matter physics that otherwise would seem to be completely unre-
lated. The inter-relation of the 2D Coulomb gas with bosonization and magnetic
systems is a rich and beautiful chapter of theoretical physics. Surprisingly, there
are also interesting consequences of the use of the logarithmic gas in 3D [162].

18.5 Applications: Strongly Correlated Systems

18.5.1 The Tomonaga–Luttinger Model

Bosonization

One of the most used models for describing one-dimensional strongly correlated
electronic systems is the Tomonaga–Luttinger Model. This is a combination of the
low-momentum transfer interactions introduced in subsection 18.2.2, namely

HT L = H0 +H1c +H1s +H2c +H2s . (18.153)

Now, using (18.61), (18.65) and (18.66), we can see that, upon bosonization, the
Hamiltonian separates into charge and spin bosonic degrees of freedom,

HT L = Hc
T L +Hs

T L

Hc
T L =

vc

2

[
Kc�c

2 + 1

Kc
(∂xφc)

2

]

Hs
T L =

vs

2

[
Ks�s

2 + 1

Ks
(∂xφs)

2

]
, (18.154)
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where

vc =
√(
v0 + gc

1

π

)2

−
(

gc
2

π

)2

vs =
√(
v0 + gs

1

π

)2

−
(

gs
2

π

)2

(18.155)

and

Kc =
√
πv0 + gc

1 − gc
2

πv0 + gc
1 + gc

2

Ks =
√
πv0 + gs

1 − gs
2

πv0 + gs
1 + gs

2

. (18.156)

We may absorb the constants Kc and Ks through a canonical transformation

φc → φc√
Kc

; �c →
√

Kc�c

φs → φs√
Ks

; �s →
√

Ks�c. (18.157)

The exact dispersion relation of the charge and spin modes is

ωc = vc|k| ; ωs = vs |k|, (18.158)

where the velocities vc, vs , are given by (18.155).
We can see that in general there will be a separation of the spin and charge

degrees of freedom, as a consequence of the difference between the two associated
velocities.

Correlation Function

Let us consider now the one-particle correlation function 〈ψR,↑(x)ψ†
R,↑(0)〉. Using

the fact that ψR,↑ = ψcψs , where

ψα(x) =
√−i

4π
exp

{
−i

√
π

2Kα
φα(x, t)+ i

√
πKα

2

∫ x

−∞
dξ�α(ξ, t)

}
(18.159)

and α = c, s refers to the charge and spin degrees of freedom. Taking (18.154) into
account, one readily obtains

〈ψR,↑(x)ψ†
R,↑(0)〉 = 〈ψc(xc)ψ

†
c (0)〉〈ψs(xs)ψ

†
s (0)〉, (18.160)

where xα = x − vαt , for α = c, s.
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18.5 Applications: Strongly Correlated Systems 319

Then we can use (10.170) in order to determine an exact Euclidean expression
for the above function, namely,

〈ψR,↑(x, t)ψ†
R,↑(0)〉 =

1

2π

1

(x − ivct)1/2
1

2π

1

(x − ivs t)1/2

× 1

(x2 + v2
c t2)θc/2

1

(x2 + v2
s t2)θs/2

, (18.161)

where

θc = 1

4

[
Kc + 1

Kc
− 2

]
; θs = 1

4

[
Ks + 1

Ks
− 2

]
.

Notice that the effects of the interaction manifest in the θα terms. Kα = 1 represents
the free case.

The spectral density A(ω, k) can be obtained, according to (13.53), from the
Fourier transform of the above correlator, both in space and time. It has been shown
that [120] it has the following properties (for Ks = 1):

A(ω, k) = 0 ; − vck < ω < vsk

A(ω � vsk, k) ∼ θ(ω − vsk)(ω − vsk)θc−1/2

A(ω � −vck, k) ∼ θ(−ω + vck)(ω + vck)θc

A(ω � vck, k) ∼ θ(ω − vck)(ω − vck)
θc−1

2 . (18.162)

The spectral density shows some remarkable features. For instance, it does not
contain any delta peak that would indicate the existence of one-particle fermion
excitations. Rather, it reveals that the only excitations present in the spectrum
are the collective bosonic excitations associated to the φc and φs fields, related,
respectively, with charge and spin degrees of freedom. The characteristic veloc-
ities of these collective excitations, however, become different as a consequence
of the interaction. We observe, therefore, the occurrence of the phenomenon of
spin-charge separation as a dramatic consequence of the strong interactions.

Response Functions

Using the bosonization formulas, we can straightforwardly determine basic
response functions such as the magnetic susceptibility, the electric conductivity
and the compressibility. These are, respectively, given by

χ(ω, q) = Ks

2π

q2

ω2 + v2
s q2

σ(ω, q) = Kc

2π

iω

ω2 + v2
c q2

κ(ω, q) = Kc

2π

q2

ω2 + v2
c q2

(18.163)

according to (18.55), (18.56) and (18.57)
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18.5.2 The Hubbard Model

As a second application of bosonization for describing strongly correlated fermion
systems in one spatial dimension, let us consider the Hubbard model, given by
(3.34), on a linear chain, namely

HH = −t
∑
n,σ

[
c†

n,σ cn+1,σ + c†
n+1,σ cn,σ

]
+U

∑
n

nn,↑nn,↓, (18.164)

where nn,σ = c†
n,σ cn,σ . The first term is the familiar tight-binding Hamiltonian, and

in the continuum limit is bosonized as in (18.60).
Considering that, in the continuum limit

nn,σ → j0
σ = ρR,σ (x)+ ρL ,σ (x) ; σ =↑,↓ (18.165)

and using (18.50), we find the Hubbard interaction term is bosonized as

U
∑

n

nn,↑nn,↓ → U

π
∂xφ↑∂xφ↓. (18.166)

Combining this expression with the bosonized form of the tight-binding term,
we get the following bosonized Hamiltonian density for the Hubbard model:

HH = vF

2

[
�2

c +
(

1+ U

vFπ

)
(∂xφc)

2

]
+ vF

2

[
�2

s +
(

1− U

vFπ

)
(∂xφs)

2

]
,

(18.167)

where vF = 2ta and we are assuming half-filling occupation.
The above Hamiltonian can be expressed, equivalently, as

HH = vc

2

[
Kc�

2
c +

1

Kc
(∂xφc)

2

]
+ vc

2

[
Ks�

2
s +

1

Ks
(∂xφs)

2

]
, (18.168)

where

vc = vF

√
1+ U

vFπ
; vs = vF

√
1− U

vFπ

Kc =
[

1+ U

vFπ

]−1/2

; Ks =
[

1− U

vFπ

]−1/2

. (18.169)

We see that also in the d = 1 Hubbard model, the only physical excitations are
the collective bosonic excitations φc and φs , respectively associated to charge and
spin. From the expression above we can infer that the velocities of charge and
spin excitations are split by the interaction and the system exhibits, similarly to the
Tomonaga–Luttinger model, the remarkable phenomenon of spin-charge separa-
tion. Correlation functions and response functions can be obtained in the same way
as we did in that model.
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19

Quantum Magnets in 2D: Nonlinear Sigma Model, C P1

and “All That”

We saw in the last chapter how convenient it was to map one-dimensional quan-
tum magnetic systems into bosonic quantum field theories. This procedure has
frequently led to unsuspected connections among systems that otherwise seemed
to be completely unrelated. The sequence of steps leading from quantum spins
to fermions, from fermions to bosons and, finally, from bosons to classical gases,
has proved to be extremely useful, revealing a rich variety of interesting physi-
cal results. Now we turn to quantum magnetic systems in two spatial dimensions.
In this case we will see that, once again, the use of ingenuous methods will enable
one to map these systems into bosonic quantum field theories, such as the nonlinear
sigma model (NLSM) or its equivalent CP1 model (CP1M). Exploring the physi-
cal properties of such field theory models will allow the obtainment of nontrivial
results about such quantum magnetic systems. Then, in the next two chapters, we
extend the range of application of the same methodology in two different ways.
Firstly we apply it to systems enlarged by the presence of electrons embedded
in that magnetic background, the so-called spin-fermion model, and secondly we
introduce magnetic disorder and study the onset of the phase known as spin-glass.

Later on, we will see that two-dimensional quantum magnetic systems play
a central role in the physics of high-Tc superconductors, both the cuprates and
iron-based pnictides. The mappings of such magnetic systems into the NLSM
and CP1M consequently will prove to be quite useful in the description of those
materials.

19.1 From Heisenberg Model to Nonlinear Sigma Model

Our starting point is the Heisenberg Hamiltonian, describing a magnetic system
with nearest-neighbor interactions of quantum spins on a square lattice,

H = J
∑
〈i j〉

Si · S j , (19.1)
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322 Quantum Magnets in 2D: Nonlinear Sigma Model, CP1 and “All That”

where J > 0 corresponds to the antiferromagnetic (AF) case and J < 0, to
the ferromagnetic one. The above Hamiltonian corresponds to the homogeneous
case, where the exchange coupling J is uniform. This can be generalized to a
non-uniform exchange, where the coupling changes from link to link: J → Ji j .

The main purpose is to evaluate the partition function

Z = Tre−βH =
∑

n

〈n|e−βH |n〉 (19.2)

for some complete set of states |n〉. The present derivation is close to the ones found
in [163, 164].

19.1.1 Coherent Spin States and Continuum Limit

A very convenient set of states is the so-called coherent spin states [166]. These
are quantum states |N〉, labeled by the classical unit vector N, having the property

〈N|S|N〉 = sN, (19.3)

where s is the spin quantum number, labeling the angular momentum eigenstates
|sm〉, m = −s,−s + 1, . . . , s − 1, s.

One can easily verify that

|N0〉 = |s,m = s〉, ; N0 = ẑ. (19.4)

Also, it is not difficult to show that an arbitrary state |N〉 is obtained out of |N0〉 by
applying the rotation operator corresponding to a rotation of an angle θ about the
unit vector t̂(ϕ) = (− sinϕ, cosϕ), tangent to a circle in the xy-plane, namely,

|N〉 = U (θ, ϕ)|N0〉, (19.5)

where

U (θ, ϕ) = exp
{−iθ t̂(ϕ) · S} . (19.6)

The U -operator satisfies

U (θ, ϕ)σzU
†(θ, ϕ) = Q = N · σ. (19.7)

The states |N〉 have the following property,∫
dN
2π
|N〉〈N| = 1, (19.8)

and we will use them for evaluating the trace in (19.2).
For this purpose, let us write

e−βH [S] = e−εH [S] . . . e−εH [S]︸ ︷︷ ︸
M

(19.9)

with β = Mε.
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Then, using (19.2) repeatedly, we get

Z =
∫

dN
2π
〈N|e−βH [S]|N〉

= lim
M→∞;ε= β

M

∫
dN
2π

∫ M−1∏
i=1

dNi

2π
〈N|e−εH [S]|N1〉 . . . 〈NM−1|e−εH [S]|N〉︸ ︷︷ ︸

M

.

(19.10)

Now, considering the interval [0, β] of the real variable τ and introducing the
continuous function N(τ ) in such a way that, making a partition of this interval
in M pieces of uniform size ε = β

M = τi+1 − τi , i = 0, . . . ,M − 1, we have
N(τi ) = Ni . Consequently, we may write each of the M factors in (19.10) as

〈N(τi )|e−εH [S]|N(τi+1)〉 � 〈N(τi )| [1− εH [S]] |N(τi+1)〉. (19.11)

Now, making a Taylor expansion

|N(τi+1)〉 = |N(τi )〉 + ε d

dτ
|N(τi )〉 + O(ε2), (19.12)

we have, up to O(ε),

〈N(τi )|e−εH [S]|N(τi+1)〉 � 1+ ε〈N(τi )| d

dτ
|N(τi )〉 − ε〈N(τi )|H [S]|N(τi )〉

� exp

{
ε

[
〈N(τi )| d

dτ
|N(τi )〉 − H [sN]

]}
, (19.13)

where we used the fact that

〈N(τi )|H [S]|N(τi )〉 = H [sN]. (19.14)

Now, inserting (19.13) in (19.10) and taking the continuum limit ε → 0;M →
∞, we finally obtain

Z =
∫

DN exp

{∫ β

0
dτ

[
〈N(τ )| d

dτ
|N(τ )〉 − H [sN]

]}
. (19.15)

We see that the use of the coherent spin states allowed us to express the partition
function as a functional integral over the unit classical vector field N(τ ).

In the next two subsections, we consider in detail the two terms in the exponent
above, both for J > 0 and J < 0.
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19.1.2 The Antiferromagnetic Case

The Hamiltonian

We first consider the second term in (19.15). Let us start with the AF case, J > 0.
We have

H [sN] = Js2
∑
〈i j〉

Ni · N j = Js2

2

∑
〈i j〉

[
Ni + N j

]2
, (19.16)

where we used the fact that |N|2 = 1 and neglected a constant term.
We introduce now a continuum field n(r, τ ) such that |n(r, τ )|2 = 1 and a

transverse field L(r, τ ) such that L · n = 0. These represent, respectively, the anti-
ferromagnetic and ferromagnetic components of the field N(r, τ ). We then write,
in terms of the lattice parameter a of a square lattice,

N(ri , τ ) = (−1)i n(ri , τ )

√
1− a4L2(ri , τ )+ a2L(ri , τ )

= (−1)i n(ri , τ )+ a2L(ri , τ )+ O(a4) (19.17)

in such a way that |N|2 = |n|2 = 1. Then, making the Taylor expansion,

N(r j , τ ) = n(ri , τ )+ a∇ j n(ri , τ )+ a2L(ri , τ )+ O(a4). (19.18)

Using (19.17), we get, for i, j nearest neighbors,[
Ni + N j

]2 = a2∇ j n(ri , τ ) · ∇ j n(ri , τ )

+ 4a4|L(ri , τ )|2 + 4a3∇ j n(ri , τ ) · L(ri , τ ). (19.19)

Inserting this in (19.16) and considering that, for each site i of a square lattice,
the two opposite nearest neighbors along each direction will produce contributions
of opposite sign for the last term, we conclude that only the first two terms above
will contribute to the sum. Hence, taking the continuum limit, we obtain

H [sN] = 1

2

∫
d2r

[
Js2∇i n · ∇i n+ 4Js2a2|L|2] . (19.20)

The Berry Phase

Let us consider now the first term in (19.15), namely

ζ =
∫ β

0
dτ 〈N(τ )| d

dτ
|N(τ )〉. (19.21)

This is a pure imaginary number because the fact that

d

dτ
〈N(τ )|N(τ )〉 = 0
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implies

〈N(τ )| d

dτ
|N(τ )〉 = − d

dτ

[〈N(τ )|]|N(τ )〉,
hence ζ ∗ = −ζ and, consequently, it appears in (19.15) as a phase.

This is an example of the famous Berry phase, which manifests in many areas
of physics when the Hamiltonian of a given system depends on some parame-
ters that are varied adiabatically [167]. We study the Berry phase from a general
point of view in subsection 26.2.3 and in connection to the quantum Hall effect in
subsection 26.2.4.

Observe that τ ∈ [0, β] parametrizes a closed curve S(C) on the spherical
surface |N|2 = 1, as a consequence of the periodic boundary conditions in β.

We can write ζ as a line integral on this curve, namely

ζ =
∫ β

0
dτ

dN
dτ
· 〈N(τ )|∇N|N(τ )〉

ζ =
∮

S(C)
dN · 〈N(τ )|∇N|N(τ )〉. (19.22)

Calling
�A = i〈N(τ )|∇N|N(τ )〉, (19.23)

we may use Stokes’ theorem in order to express ζ as a surface integral. It happens,
however, that there are two surfaces S1(C) and S2(C) bound by C , such that their
union is the sphere. Then, for consistency, these two integrals must be equal. We
can, therefore, express ζ as an integral over the whole sphere,

ζ = i

2

∫
S2

d2N · �B, (19.24)

where �B = ∇N × �A. This, however, is the “magnetic flux” of �B across the whole
sphere, which must be quantized as 2π n for n ∈ Z (see subsection 26.2.3). We
see that the Berry phase ζ is a topological invariant because it does not change by
local transformations.

For the homotopy class with n = 1, we can write

ζ = i2π
∫

S2

d2N · N. (19.25)

Now, parametrizing the spherical surface by τ ∈ [0, β] and x ∈ [0, 1], where the
two limits in the x-interval correspond to the north and south poles, and changing
the integration variables from d2N to dτ dx , we obtain

ζ = i
∫ 1

0
dx
∫ β

0
dτ

[
N ·
(
∂N
∂x
× ∂N
∂τ

)]
. (19.26)
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In the above expression J adxdτ = d2 N a , where J a is the Jacobian for the change
of variables dxdτ ↔ d2Na , given by

J a = 1

2

[
∂N
∂x
× ∂N
∂τ

]a

. (19.27)

We have, therefore,

HB = sζ. (19.28)

This phase expresses the solid angle described by the vector N on the unit radius
sphere |N| = 1, as the parameters (x, τ ) vary in the intervals x ∈ [0, 1], τ ∈ [0, β].
It is an example of the well-known Berry phase [167].

We now want to express the Berry phase in terms of the fields n and L. For this,
we use (19.17) and obtain, up to the order a2 in the lattice parameter,

HB = is
∑
i∈Z

∫ 1

0
dx
∫ β

0
dτ

[
(−1)i n ·

(
∂n
∂x
× ∂n
∂τ

)

+ a2n ·
(
∂n
∂x
× ∂L
∂τ

)
+ a2n ·

(
∂L
∂x
× ∂n
∂τ

)]
. (19.29)

The first term above vanishes for smooth configurations of the sublattice magneti-
zation field n. The remaining terms can be written as

HB = is
∫

d2r
∫ 1

0
dx
∫ β

0
dτ

{
∂

∂τ

[
n ·
(
∂n
∂x
× L

)]
− ∂

∂x

[
n ·
(
∂n
∂τ
× L

)]}
,

(19.30)

where we used the fact that L, ∂n
∂x ,

∂n
∂τ

are coplanar vectors. Now, considering that
we have periodic boundary conditions in the τ integral and that ∂n

∂τ
|x=0 = 0, we get

HB = −is
∫

d2r
∫ β

0
dτn ·

[
∂n
∂τ
× L

]

HB = −is
∫

d2r
∫ β

0
dτL ·

[
n× ∂n

∂τ

]
. (19.31)

Combining with (19.20), we can express the partition function (19.2) as

Z =
∫

DnDLδ(|n|2 − 1)

× exp

{
1

2

∫
d2r

∫ β

0
dτ
[
Js2∇i n · ∇i n+ 4Js2a2|L|2]− isL ·

[
n× ∂n

∂τ

]}
.

(19.32)
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Performing the integration over the ferromagnetic fluctuations, L, we obtain

Z =
∫

Dnδ(|n|2 − 1)

× exp

{
1

2

∫
d2r

∫ β

0
dτ

[
Js2∇i n · ∇i n+ 1

4Ja2

[
n× ∂n

∂τ

]
·
[

n× ∂n
∂τ

]]}
.

(19.33)

Finally, using the fact that, for |n|2 = 1,[
n× ∂n

∂τ

]
·
[

n× ∂n
∂τ

]
= ∂n
∂τ
· ∂n
∂τ
. (19.34)

This ultimately leads to the relativistic O(3) nonlinear sigma model, namely,

Z =
∫

Dnδ(|n|2 − 1)

× exp

{
ρs

2

∫
d2r

∫ β

0
dτ

[
∇i n · ∇i n+ 1

c2
∂τn · ∂τn

]}
, (19.35)

where ρs = Js2 is the spin stiffness and c = 2Jsa is the spin-waves velocity.
From the above expression, we can immediately infer that the AF spin-wave will

have a dispersion relation given by ω = c|k|.

19.1.3 The Ferromagnetic Case

The Hamiltonian

Now, let us consider the second term in (19.15), for J < 0. It is clear that we can
in this case write, up to a constant,

H [sN] = −|J |s2
∑
〈i j〉

Ni · N j = |J |s
2

2

∑
〈i j〉

[
Ni − N j

]2
. (19.36)

Now, to use the same notation, we identify, in the continuum limit,

N(ri , τ ) = n(ri , τ ). (19.37)

Now, for nearest neighbors i j ,

N(r j , τ ) = n(ri , τ )+ a∇ j n(ri , τ )+ O(a4)

N(r j , τ )− N(ri , τ ) = a∇ j n(ri , τ )[
N(r j , τ )− N(ri , τ )

]2 = a2∇ j n · ∇ j n. (19.38)
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Now, inserting the above result in (19.16) and taking the continuum limit, we
get, for J < 0,

H [sN] = 1

2

∫
d2r |J |s2∇i n · ∇i n. (19.39)

The Berry Phase

Let us turn now to the Berry phase in the ferromagnetic case. From (19.26) and
(19.37), we conclude that the Berry phase of the magnetization field n no longer
cancels.

The partition function in this case is given by

Z =
∫

DnDλ exp

{∫
d2r

∫ β

0
dτ
[ρs

2
∇i n · ∇i n+ iλ(|n|2 − 1)

+ i
s

a2

∫ 1

0
dxn ·

(
∂n
∂x
× ∂n
∂τ

)]}
,

(19.40)

where we introduced the functional integral representation of the functional delta
and ρs = |J |s2.

The field equation satisfied by n in real time is

ρs∇2n = λn+ s

a2
n× ∂t n, (19.41)

Taking the rotational of the above equation, we get the relation

∂t n = |J |a2sn×∇2n, (19.42)

which is known as the Landau–Lifshitz equation [168] and implies a quadratic
dispersion relation for the ferromagnetic spin-waves, as it should.

19.2 From the N Lσ Model to the C P1 Formulation

In this section, we are going to describe the so-called C P1 formulation of the non-
linear sigma model. Consider two complex scalar fields z1 and z2, in terms of which
we express the NLSM field as

n = z∗i σi j z j . (19.43)

The use of (3.41) reveals the fact that |n|2 = 1 implies z∗i zi = 1. Then, using the
expression above, one finds

∂μn · ∂μn = 4
[
∂μz∗i ∂μzi + (z∗i ∂μzi )(z

∗
i ∂μzi )

]
. (19.44)
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19.2.1 The Antiferromagnetic Case

Starting from the NLSM action for the AF case, namely,

SN L SM = ρs

2

∫
d3x∂μn · ∂μn, (19.45)

and using (19.44), one ends up with the C P1 action,

SC P1 = 2ρs

∫
d3x

[
∂μz∗i ∂μzi + (z∗i ∂μzi )(z

∗
i ∂μzi )

]
. (19.46)

Now, using the auxiliary Hubbard–Stratonovitch field Aμ, we can express the
above action as

e−SC P1 =
∫

D Aμ exp

{
−2ρs

∫
d3x

[
∂μz∗i ∂μzi − 2i(z∗i ∂μzi )Aμ + AμAμ

]}
.

(19.47)

Then, using the fact that z∗i zi = 1, we may write the partition function of the AF
Heisenberg model on a square lattice as

Z =
∫

Dzi Dz∗i D AμDλ exp

{
−2ρs

∫
d3x(Dμzi )

∗(Dμzi )− iλ[z∗i zi − 1]
}
,

(19.48)

where Dμ = ∂μ + i Aμ is a covariant derivative and we introduced the functional
delta representation. The field equation for Aμ yields

Aμ = i z∗i ∂μzi . (19.49)

19.2.2 The Ferromagnetic Case

The relation (19.44) is valid component-wise, hence we may express the Hamilto-
nian part of the NLSM action, namely,

SN L SM = ρs

2

∫
d3x∇i n · ∇i n (19.50)

as

SH,C P1 = 2ρs

∫
d3x

[
∂ j z

∗
i ∂ j zi + (z∗i ∂ j zi )(z

∗
i ∂ j zi )

]
. (19.51)

As in the AF case, we can use the auxiliary vector field Ai in the action

SH,C P1[Ai ] = 2ρs

∫
d3x

[
D j z

∗
i D j zi

]
, (19.52)

where, upon integration on Ai , we recover (19.51).
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In the ferromagnetic case, the Berry phase term can be expressed, in C P1

language, as [169]

SB,C P1 = i2s
∫

d3xz∗i ∂0zi . (19.53)

Consequently, combining (19.52) and (19.53), we can write the full partition of the
Heisenberg model on a square lattice, in the ferromagnetic case, as

Z =
∫

Dzi Dz∗i D Ai exp

{
−
∫

d3x
[
i2sz∗i ∂0zi + 2ρs(D j zi )

∗(D j zi )
]}
δ[z∗i zi−1].

(19.54)

19.3 Quantum and Thermal Fluctuations: the Antiferromagnetic Case

19.3.1 Quantum Fluctuations

Let us consider now the effects of quantum fluctuations in the determination of the
possible different phases of the AF magnetic system associated with the partition
function given by (19.35). Calling the different components of the NLSM field as
n = (π, σ ) and rescaling the fields as

σ −→ √
ρsσ ; π −→ √

ρsπ ; λ −→ λ

ρs
, (19.55)

we may write the partition function, at T = 0, as

Z =
∫

DπDσDλ

× exp

{∫
d3r

[
1

2
∂μπ · ∂μπ + 1

2
∂μσ∂μσ + iλ

[
σ 2 + |π |2 − ρs

]]}
. (19.56)

Now, performing the quadratic functional integral on π , namely, on the trans-
verse components of the sublattice magnetization n, we obtain

Z =
∫

DσDλ

× exp

{∫
d3r

[
1

2
∂μσ∂μσ + iλ

[
σ 2 − ρs

]]+ Tr ln

[
1+ 2i

λ

−�

]}
. (19.57)

We are going to look for constant minima of the above effective action cor-
responding to 〈σ 〉 and 〈λ〉. Functional differentiating with respect to σ and λ,
respectively, we get
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〈σ 〉m2 = 0

〈σ 〉2 = ρs −
∫

d3k

(2π)3
1

k2 + m2
. (19.58)

19.3.2 The Ordered Phase

We look for solutions with 〈σ 〉 �= 0, hence we must have necessarily m = 0.
Evaluating the integral in (19.58), for m = 0, with the help of a momentum cutoff
 = 2π

a , where a is the lattice parameter, we get a nonzero sublattice magnetization

M ≡ 〈σ 〉 = √ρs − ρc ρc =  

2π2
= 1

πa
, (19.59)

provided ρs > ρc. Then, m2 = 0.
Defining the renormalized spin-stiffness as

ρR = √ρs − ρc ρR = Z−1ρs ; Z = 1+  

2π2ρR
. (19.60)

Introducing the renormalized fields

nR = Z1/2n ; λR = Z−1λ

ρR = √ρs − ρc ρR = Z−1ρs ; Z = 1+  

2π2ρR
(19.61)

and action

SR = S + i(Z − 1)
∫

d3xλR, (19.62)

we obtain for the renormalized action

SR =
∫

d3r
[ρR

2
|∂μnR|2 + iλR

[|nR|2 − 1
]]
. (19.63)

Inserting the saddle-point solution 〈λR〉 = 0 and shifting the σR field around the
vacuum value, namely, η = σR −√ρR , we find the physical excitations about the
ground state

SR = 1

2

∫
d3r∂μη∂μη. (19.64)

The Green function

Gη(ω,k) = 1

ω2 − c2|k|2 (19.65)

reveals that the basic excitations, AF magnons, possess a dispersion relation ω =
c|k|. In coordinate space, it is given by

Gη(t, x) = 1

4π
[
c2t2 − |x|2]1/2 , (19.66)

which corresponds to (4.27) for m ∝ 1/ξ = 0 in the ordered phase.
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The existence of gapless excitations in the ordered phase of the NLSM, as a
matter of fact, is imposed by the Goldstone theorem. Indeed, the original SO(3)
symmetry of the system is spontaneously broken in the ordered phase, hence, the
occurrence of gapless magnons is a consequence of that theorem.

19.3.3 The Disordered Phase

Now m �= 0, implying the sublattice magnetization vanishes: M ≡ 〈σ 〉 = 0.
Evaluating the integral in (19.58), now with nonzero m, we get, for a large cutoff,

M2 ≡ 〈σ 〉2 = 0 = ρs − ρc + m

4π
m

4π
= ρc − ρs, (19.67)

for ρs < ρc.
It is customary to introduce the coupling g = 1

ρs
. Then, for g < gc we have the

ordered, Néel phase, whereas for g > gc, we have the quantum disordered phase.
The phase transition at gc = πa is driven exclusively by quantum fluctuations,
which thereby destroy the Néel state when the spin stiffness is less than a critical
value.

In the disordered phase 〈λ〉 ∝ m2 �= 0, and therefore the basic excitations will
be governed by the Euclidean action,

S = 1

2

∫
d3r

[
∂μη∂μη + m2η2

]
. (19.68)

The Euclidean Green function now is given by

Gη(ω,k) = 1

ω2 + c2|k|2 + m2
. (19.69)

The basic excitations, now, possess a dispersion relation ω = √c2|k|2 + m2.
In coordinate space, the Green function reads

Gη(t, x) = e−m[c2t2−|x|2]1/2]

4π
[
c2t2 − |x|2]1/2 , (19.70)

which is the result announced in (4.27).
Notice that a gapped spectrum implies the symmetries can be implemented

by unitary operators, hence the vacuum must be invariant and the symmetry,
preserved [14].
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19.3.4 Temperature Effects

We now take into account the effects of temperature fluctuations on the phase
diagram. The saddle-point equations now read

〈σ 〉m2 = 0

〈σ 〉2 = ρs − T
∞∑

n=−∞

∫
d2k

(2π)2
1

ω2
n + k2 + m2

, (19.71)

where ωn are the bosonic Matsubara frequencies. Performing the Matsubara sum
and integrating over momentum, with the help of a cutoff  , we get

〈σ 〉2 = ρs −  

4π
+ T

2π
ln
[
2 sinh

( m

2T

)]
. (19.72)

Observe that for finite temperature, no solution with a nonzero sublattice magne-
tization is allowed, since this would require m = 0. In this case, however, the last
term of the equation above tends to −∞, thereby precluding a 〈σ 〉2 �= 0 solution.
Assuming 〈σ 〉 = 0, we have two phases.

Considering firstly the case ρs > ρc, ρc =  
4π , we have, in this case

2 sinh
( m

2T

)
= e−

2πρR
T , (19.73)

where ρR = ρs − ρc. In the limit T � ρR , the rhs must be small, and so must be
the lhs, hence we have

m(T ) = T e−
2πρR

T . (19.74)

We see that even for ρs > ρc for any T �= 0, we would have m(T ) �= 0, which
implies 〈σ 〉 = 0. This result is a manifestation of the Hohenberg–Mermin–Wagner
theorem, which prohibits the occurrence of spontaneous breakdown of a continu-
ous symmetry in two-dimensional space [170]. A related theorem is Coleman’s
theorem, which precludes the spontaneous breaking of a continuous symmetry
even at T = 0 in one spatial dimension [171]. A summary of the two theorems is:
only discrete symmetries can be spontaneously broken in d = 1, whereas in d = 2
continuous symmetries can be only possibly spontaneously broken at T = 0.

Now, consider the case ρs < ρc, ρc =  
4π . In this case, (19.72) implies,

m(T ) = �+ 2T e−
�
T , (19.75)

where � = 4π (ρc − ρs) and T � �.

19.4 Quantum and Thermal Fluctuations: the Ferromagnetic Case

In the ferromagnetic case it is more convenient to use the C P1 formulation in order
to extract the effect of the quantum and thermal fluctuations and thereby establish
the phase diagram. For this purpose, we write the partition function (19.55) as
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Z =
∫

Dzi Dz∗i D Ai Dλ

× exp

{
−
∫

d3x
[
i2sz∗i ∂0zi + 2ρs(D j zi )

∗(D j zi )+ iλ[z∗i zi − ρs]
]}

(19.76)

after rescaling the fields as

zi −→ zi√
ρs

; λ −→ λρs . (19.77)

The saddle-point equations will now read

m2〈zi 〉 = 0

〈zi z
∗
i 〉 = ρs . (19.78)

The second equation above can be written as

|〈zi 〉|2 = ρs − T
∞∑

n=−∞

∫
d2k

(2π)2
1

iωn + k2 + m2
, (19.79)

where m2 ∝ 〈λ〉.
Evaluating the Matsubara sum and integrating on the momentum, we obtain

|〈zi 〉|2 = ρs − ρc + m

4π
+ T

4π
ln
[
1− e−

m
T

]
. (19.80)

Again, we find two regimes, according to whether ρs > ρc or ρs < ρc. In the
first case the equation above admits a solution with m = 0 for T = 0 and nonzero
magnetization M = |〈zi 〉|2 = ρR = ρs − ρc. For finite temperature, T �= 0, a
solution with m = 0 clearly does not exist. In the regime where m � T , we have

m(T ) = T e−
4πρR

T ; m(0) = 0 (19.81)

with magnetization M = 0.
For ρs < ρc, conversely, we have

m(T ) = �+ T e−
�
T ; m(0) = � (19.82)

where � = 4π(ρs − ρc).
We see that for T = 0, we have M �= 0;m = 0 for ρs > ρc; and M = 0;m =

� �= 0 for ρs < ρc, hence the ferromagnetic Heisenberg model, similarly to its
antiferromagnetic counterpart, undergoes a quantum phase transition at ρs = ρc.
At finite temperature, both phases have zero magnetization.

Let us turn now to the spin fluctuation correlation functions. For this, assuming
we are in a phase with magnetization M �= 0 along the z-direction, let us
decompose the n field as

n = Mẑ + σ ; σ ∈ R
2
xy. (19.83)
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The excitations around a uniformly magnetized state along the z-direction are con-
tained in the σ -field, which belongs to the xy-plane. They are known as spin waves,
while their associated quanta are the magnons. The field equations governing such
excitations are given by (19.41) and (19.42). Inserting (19.83) in that equation, it
follows that

∂tσ
± = ± [|J |a2s∇2 + m

]
σ±, (19.84)

where σ± = σx ± iσy .
From the above expression we may infer the form of the magnon quantum

correlation function. This is so because such correlator is the inverse of the oper-
ator appearing in the quadratic part of the action describing these excitations,
whereas the field equation is precisely this operator acting on the field. It follows,
consequently, that the relevant Green function in momentum-frequency space is

Gσ (ω,k) = 1

ω − ic2|k|2 − im
. (19.85)

In this expression, m = 1/ξ is the inverse correlation length, ξ , which diverges
in the ordered phase. We conclude that in the ferromagnetic (ordered) phase the
magnons dispersion relation is ω = c2|k|2.

19.5 The Topological Charge and the Hopf Term

We have seen in Chapter 8 that the nonlinear sigma field is classified according to
two topological invariants, the topological charge Q and the Hopf invariant, given
respectively by (8.18) and (8.20), in terms of the topological current (8.19). The
topological current (8.19) can be expressed in terms of the C P1 vector field as
[172, 173]

Jμ = 1

2π
εμαβ∂αAβ ; Aβ = i z∗i ∂βzi . (19.86)

The topological charge (8.18), then, becomes

Q = 1

2π
εi j∂i A j , (19.87)

which is the magnetic flux associated to the field A along the xy-plane.
The Hopf term, conversely, can also be expressed in a simple form in terms of

the C P1 field Aμ. Indeed, inserting (19.86) in (8.20) and using the identity

xμ

|x |3 = 4π∂μ
(

1

−�

)
, (19.88)
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we obtain

H = 1

8π2

∫
d3xεμαβ Aμ∂αAβ. (19.89)

We see that the Hopf term becomes a Chern–Simons term in the C P1 formulation.

19.6 Classic and Quantum Skyrmions

Classic Skyrmions

In Section 8.5, we showed that the relativistic O(3) nonlinear sigma model pos-
sesses excitations carrying a nonzero topological charge, Q = 1. These are known
as skyrmions and the corresponding classical static solutions are given by (8.48).
In the associated AF quantum magnetic system, the skyrmion appears as a defect
in each of the sublattices of the perfectly ordered Néel ground state. The defect
consists of one reversed (−1) spin at the origin and, as we recede from it, the spins
belonging to circles centered at the origin progressively bend in such a way that
at r = λ the z-component vanishes and at r → ∞ it returns to the ground state
value +1.

It is instructive to look at the skyrmion excitations from the perspective of the
C P1 formulation of the NLSM. The skyrmion solution (8.48), when expressed in
terms of C P1 fields [37], becomes

z1 = cos
f (r)

2
e−

i
2 arg(r)

z2 = sin
f (r)

2
e

i
2 arg(r)

Ai = cos f (r)∂i arg(r) ; A0 = 0,

f (r) = 2 arctan

(
λ

r

)
, (19.90)

where λ is a parameter determining the skyrmion size. It is clear that the topological
charge (in this language, magnetic flux) of the skyrmion solution is Q = 1. The
classical skyrmion energy is given by (8.49).

In this language, the quantum AF magnetic system resembles a superconduc-
tor described by the Landau–Ginzburg theory, such that the ordered Néel phase
corresponds to the SC phase, with a nonvanishing order parameter. The skyrmion
topological excitations correspond to magnetic vortices with quantized flux.

Quantum Skyrmions

We have just seen that in the C P1 language, skyrmions become vortices. Therefore,
the most convenient method for describing quantum skyrmion excitations in two-
dimensional AF quantum magnetic systems is to use the C P1 formulation and
apply to it the vortex quantization method developed in Chapter 9.
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Calling μ(x) the quantum skyrmion creation operator, we have

Q|μ(x)〉 = |μ(x)〉. (19.91)

In order to obtain the skyrmion correlation function, we start from (19.48) and
directly obtain the C P1 model expression that is related to (9.79) and (9.92):

〈μ(x)μ†(y)〉C P1 = Z−1
0

∫
D Aμ exp

{
−
∫

d3z

× 1

4

[
Wμν + B̃μν

] [4ρ2
s

−�

] [
Wμν + B̃μν

] }
,

= exp

{
 (x, y; L)−

∫
d3z

1

4
B̃μν

[
1+ 4ρ2

s

−�

]
B̃μν

}
,

(19.92)

where B̃μν is given by (9.65). This corresponds to (9.63), less the Maxwell term,
which is absent in the C P1 model. Notice also the 4ρ2

s factor that appears here.
Going through the same steps that led us from (9.92) to (9.103), we arrive at the vor-
tex correlation function. Nevertheless, we must remove the second term in (9.103),
which was produced by the Maxwell term.

The quantum skyrmion correlation function, in the ordered phase of the AF
two-dimensional quantum Heisenberg magnetic system, which is described by the
C P1-NLSM, therefore is given by

〈μ(x)μ†(y)〉C P1 = exp
{−2πρ2

s |x − y|} . (19.93)

From this we infer the quantum skyrmion mass (energy) is given by M = 2πρ2
s ,

which is a half of the classical skyrmion energy, given by (8.49) [213].

19.6.1 Duality between Magnons and Skyrmions

Notice that there exists a duality relation between spin waves (magnons) and
skyrmions. Indeed, in the ordered phase, the magnon correlation function is given
by (19.69), which implies 〈η〉 = 0 or 〈σ 〉 �= 0. The skyrmion correlator, conversely,
is expressed by (19.93). This implies, 〈μ〉 = 0.

In the disordered phase, on the other hand, we have 〈σ 〉 = 0 and 〈μ〉 �= 0.
The behavior of the magnon and skyrmion excitations in each of the different
phases of the NLSM reveals the duality relation existing between such excitations.
The magnons are Hamiltonian excitations, namely degrees of freedom appearing
explicitly in the Hamiltonian, while skyrmions are topological excitations, which
therefore require treatment as such.
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20

The Spin-Fermion System: a Quantum Field Theory
Approach

We have seen in the previous chapter how the dynamics of a two-dimensional
quantum magnetic system on a square lattice can be described in the frame-
work of the C P1/nonlinear sigma model. It is quite appealing, not only from the
standpoint of basic principles but also from the point of view of modelling real
materials, to investigate the behavior of electrons in the presence of this magnetic
background. From this perspective, it would be interesting to study, among other
issues: what would be the effective electronic interactions generated by the mag-
netic background, how these would depend on the phase transitions undergone
by the underlying magnetic system, according to the values of different control
parameters; what would be the role of skyrmion topological defects on the physi-
cal properties of the associated electrons; and how would electron or hole doping
affect this interplay.

On the other hand, from the experimental point of view, several advanced materi-
als have been obtained recently, the phase diagram of which present a very rich set
of phases displaying different types of order. These are typically superconducting,
magnetic or charge orders. Among these materials, we find heavy fermions such
as CeCoI n5, high-Tc cuprates such as La2−x SrxCuO4 and iron pnictides, such as
Sr1−x Kx Fe2 As2. The richness of phases observed in such materials suggests there
could be an underlying interaction responsible for the observed output, depending
on the values of internal as well as external control parameters such as coupling
constants and temperature, respectively. The spin-fermion model [174] describes
this kind of system. Here we develop a quantum field theory approach the spin-
fermion system and investigate the possible effective interactions that are induced
among the electrons by the (AF) magnetically ordered substrate.

20.1 Itinerant Electrons and Ordered Localized Spins

The Hamiltonian

We envisage a system containing both localized and itinerant electrons, the former
belonging to atomic orbitals fixed to the sites of a square lattice. These generate
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localized magnetic dipole moments, which interact with nearest neighbors accord-
ing to the SO(3), AF Heisenberg model. The itinerant electrons, conversely, have
their kinematics determined by a tight-binding Hamiltonian, containing a hopping
between nearest neighbors. The itinerant electrons typically could visit the same
orbitals that contain the localized ones or, alternatively, could circulate along some
extra orbitals that could be available at the square lattice links. It does not look
like there will be a significant difference between both in a continuum field theo-
retical description. The picture is completed by introducing a magnetic interaction
between the itinerant and localized spins.

The Hamiltonian is given by

HSF = J
∑
〈i j〉

Si · S j − t
∑
〈i j〉

(
c†

iαc jα + c†
jαciα

)
+ JK

∑
i

Si ·
(

c†
iασαβciβ

)
, (20.1)

where Si is the spin operator of an electron localized at the site i of a square lattice
and c†

iα is the creation operator of an itinerant electron of spin α =↑,↓ at the site i .
The spin operator of the latter is given by

si = c†
iασαβciβ. (20.2)

The Continuum QFT

In order to obtain the continuum limit of the Hamiltonian above, we go through the
same steps leading to (19.32), but now including the fermion field ψα(x), which is
the continuum limit of ciα .

After employing the spin coherent states |N〉, where N is given by (19.17), we
can write the Kondo coupling between the itinerant and localized spins as

JK Si ·
(

c†
iασαβciβ

)
→ JK S

(
a2L+ (−1)|x|n

) · s, (20.3)

where S is the spin quantum number of the localized spin operators.
Assuming the electrons have a dispersion relation ωαβ(k), we therefore get

Z =
∫

DnDψαDψ†
αDLδ(|n|2 − 1)

× exp

{
−
∫

d2r
∫ β

0
dτ

[
ψ†
α∂τψβψ

†
αωαβ(−i∇)ψβ+

J S2

2
|∇n|2 + 4J S2a2

2
|L|2

]

− L ·
[

isn× ∂n
∂τ
+ JK Sa2s

]
+ JK S

a2
(−1)|x|n · s

}
. (20.4)
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We now integrate over the ferromagnetic fluctuations, L, obtaining

Z =
∫

DnDψαDψ†
αδ(|n|2 − 1)

× exp

{
−
∫

d2r
∫ β

0
dτ

[
ψ†
α∂τψβ−ψ†

αωαβ(−i∇)ψβ+
J S2

2

(
|∇n|2 + 1

c2
|∂τn|2

)

− a2 JK S

[
1

4Ja2
n× ∂n

∂τ
+ a−4(−1)|x|n

]
· s+ a2 J 2

K

8J
s · s
]}
, (20.5)

where ρs = J S2 is the spin stiffness and c = 2J Sa is the spin-wave velocity.
At this point, we shall assume the electrons, by virtue of the Fermi surface shape,

which is determined by several different factors, have a Dirac dispersion relation

ωαβ(−i∇) = [−iγ 0γ i∇i

]
αβ
, (20.6)

where γ 0γ i = σ i (Pauli matrix) and (γ 0)2 = I.
Also, from now on, we switch to the C P1 formulation, which will be more con-

venient for our purposes. In this language, the Lagrangean density corresponding
to (20.5) in real-time Minkowski space is

L = ψγμ∂μψ + 2ρs |Dμzi |2 + JK

4J
s · n× ∂n

∂τ
+ JK S(−1)|x|n · s+ a2 J 2

K

8J
s · s,
(20.7)

where

s(x) = ψ†
α �σαβψβ ; n(x) = z∗i �σi j z j (20.8)

with
∑

i |zi |2 = 1 and Dμ = ∂μ + i Aμ.
Let us first concentrate on the third term of the Lagrangean above, namely

ψ†
α �σαβψβ · n×

∂n
∂τ
= ψ†

αψβz∗μzν∂τ (z
∗
λzρ)ε

i jkσ iσ jσ k . (20.9)

Using the identity

σ i
αβσ

j
μν =

δi j

3

[
2δανδβμ − δαβδμν

]+ iεi jk
[
δβμσ

k
αν − δαμσ k

βν

]
(20.10)

and the polar representation of the complex fields zi ,

zi = 1√
2
ρi e

iθi ; i = 1, 2 ; 1

2

(
ρ2

1 + ρ2
2

) = 1, (20.11)

we may write (20.9) as

ψ†
α �σαβψβ · n×

∂n
∂τ
= F(ρi )+ G(ρi , e

iθ j ) = ψ†
αψαz∗μzμ∂τ (z

∗
λzλ)+ G(ρi , e

iθ j ).

(20.12)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.021
https://www.cambridge.org/core


20.2 The Gauge Coupling Replaces Magnetic Coupling 341

The last term is proportional to eiθi , therefore rapidly oscillating, and consequently
does not contribute to the functional integral when we integrate over the phase field
θi . The first, phase-independent term, by its turn, vanishes because z∗λzλ = 1, hence
the derivative is zero.

The QFT associated with the spin-fermion system is, therefore,

L = ψγμ∂μψ + 2ρs |Dμzi |2 + JK S(−1)|x|n · s+ a2 J 2
K

8J
s · s. (20.13)

We are just left the two last terms of (20.8). One of them corresponds to the spin
interaction of the itinerant electrons with the localized spins and the other, the
spin-spin interaction among the itinerant electrons themselves. In the next section,
we will show that the former can be replaced by a gauge coupling with the C P1

field Aμ.

20.2 The Gauge Coupling Replaces Magnetic Coupling

In C P1 formulation, the Heisenberg magnetic coupling among the localized spins
manifests as the minimal gauge coupling of the complex scalar fields, in terms of
which the localized spins are expressed, with the C P1 gauge field Aμ. We will now
show that the magnetic coupling between the itinerant electrons with the localized
spins, analogously, can be expressed as a minimal gauge coupling of the electrons
with the same field.

For this purpose, let us perform a canonical transformation on the electron fields,
given by

ψα → Uαβψβ, ; U =
(

z1 −z∗2
z2 z∗1

)
, (20.14)

where α, β are spin indices of the Dirac field.
The matrix U has the property

U †�σ · nU = σ z. (20.15)

Using (20.10), one can verify that the last term in (20.13) is invariant under (20.14).
The third term, however, is transformed into

JK S(−1)|x|
[
ψ

†
↑ψ↑ − ψ†

↓ψ↓
]
. (20.16)

Assuming a uniform electron density, this term will be washed out by the rapid
oscillations when spatially integrated.

Since the canonical transformation (20.14) is local, it follows that, under it, the
first term in (20.13) will produce an additional term given by

iψγμU †∂μUψ. (20.17)
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342 The Spin-Fermion System: a Quantum Field Theory Approach

Now, from (20.14), we have

U †∂μU = iσ z Aμ +
(

0 z∗2∂μz∗1 − z∗1∂μz∗2
z1∂μz2 − z2∂μz1 0

)
, (20.18)

where Aμ = −i z∗∂μz.
The off-diagonal terms above contain the phases θi of the complex fields zi .

Consequently, in the same way as the last term in (20.12), they will not contribute
to the partition functional when functionally integrated.

After the canonical transformation (20.14), therefore, we may cast the field
theory Lagrangean associated to the spin-fermion system in the form

L = ψγμ∂μψ + 2ρs |Dμzi |2 + ψαγ μσ z
αβψβ Aμ + a2 J 2

K

8J
s · s, (20.19)

which is invariant under the gauge transformation

ψ → ei ψ

zi → ei zi ; θi → θi + 
Aμ→ Aμ − ∂μ . (20.20)

We see that the magnetic interaction between the itinerant electrons and the
localized spins is expressed by a gauge coupling of the electrons with the C P1

gauge field.

20.3 Competing Electronic Interactions

We shall now integrate over all the C P1 fields in order to obtain an effective
electronic interaction. For this, we start by introducing gauge invariant phase fields

χi = θi + ∂μAμ

� ; i = 1, 2, (20.21)

which decouple from the vector gauge field Aμ. Indeed, in the constant ρi

approximation, and noting that as usual Fμν = ∂μAν − ∂ν Aμ, we get

L = ψγμ∂μψ + 1

4
Fμν

[
2ρs

−�

]
Fμν + ψαγ μσ z

αβψβ Aμ

+1

2

∑
i=1,2

ρ2
i ∂μχi∂μχi + a2 J 2

K

8J
s · s, (20.22)

which is explicitly gauge invariant.
Integration over χi and ρi just produces a trivial constant multiplicative factor.

The nontrivial contribution for the electronic effective interaction comes, in fact,
from integration over the gauge field Aμ. This yields [175]

Le f f = ψγμ∂μψ + 1

2ρs

(
ψαγ

μσ z
αβψβ

) (
ψαγ

μσ z
αβψβ

)+ a2 J 2
K

8J
s · s, (20.23)
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20.4 Phases 343

Writing explicitly the Dirac field components ψi,σ , with i = 1, 2;, σ =↑,↓,
one obtains, after some algebra [175], the Lagrangean describing the effective
electronic interaction

Le f f = ψγμ∂μψ + 1

4ρs

(
ψ

†
1↑ψ

†
2↓ + ψ†

2↑ψ
†
1↓
) (
ψ2↓ψ1↑ + ψ1↓ψ2↑

)
+ 1

8ρs

[(
ψσψσ

)2 − (ψσγ 0ψσ
)2]+ a2 J 2

K

8J
s · s− a2 J

2
s2

z . (20.24)

The second term in the effective Lagrangean above is a BCS-type interaction
that tends to produce a superconducting ground state, whereas the next term is a
Nambu–Jona–Lasinio type interaction [176], which would rather produce a charge-
gapped insulating ground state. The last term, finally, is a spin interaction that
combines with the spin-spin magnetic interaction term of the itinerant electrons
in the form

Le f f,mag = a2

8J

[(
J 2

K − 4J 2
)

s2
z + J 2

K s⊥ · s⊥
]
. (20.25)

20.4 Phases

In order to determine the phase diagram of the system, we introduce Hubbard–
Stratonovich auxiliary fields, with the help of which we may transform the
quadratic effective electronic interactions into trilinear ones. These are

� = ψ2↓ψ1↑ + ψ1↓ψ2↑
M = ψσψσ
σ = ψασ z

αβψβ (20.26)

and their vacuum expectation values constitute the relevant order parameters for
each phase. Their nonzero vacuum expectation values indicate the onset of each of
such different phases.

In order to determine the phase diagram, we must obtain the free energy
(effective potential) as a function of the order parameters and see what are the
nonzero minima as a function of temperature, chemical potential and the coupling
parameters λSC = 1

4ρs
, λE XC = 1

8ρs
and λM AG = a2

8J

(
J 2

K − 4J 2
)
.

In conclusion, we saw that different effective electronic interactions can be gen-
erated out of the original magnetic interactions existing among the localized spins
as well as from the ones occurring between itinerant electrons and localized spins.
The phase diagram of the system will be very rich, on account of the different
effective interactions. Nevertheless the source of all those distinct interactions can
be traced back to the original magnetic interaction involving localized and itinerant
spins.
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21

The Spin Glass

Real systems are often discrepant from ideal situations. A real crystal lattice, for
instance, is never perfect and differs from a Bravais lattice. The exchange couplings
of magnetic systems, conversely, are never identical for all pairs of nearest lattice
sites, a random distribution thereof being a closer picture of reality. In the latter
case, situations arise where the exchange magnetic couplings are not only random
but a subset of them possess an opposite sign. Dramatic effects can, then, occur. A
competition between two opposite tendencies sets in, each one trying to push the
system, respectively, into an ordered state, either of ferromagnetic or antiferromag-
netic (Néel) nature. Since the two tendencies cannot be fulfilled simultaneously,
a situation which is called frustration describes the ground-state features. Under
these circumstances a new phase, known as spin glass, frequently occurs. This
phase presents features, some of which are common to the paramagnetic phase,
while others are shared with the ordered Néel or ferromagnetic phase. The absence
of spatial long-range order is an example of the former, whereas the breakdown of
ergodicity is one of the latter.

A common feature of spin glasses is the fact that the characteristic time scale of
the disordered background is much larger than the corresponding time scale of the
dynamical degrees of freedom. This fact leads us to use the quenched approach for
determining the thermodynamic properties of a spin glass. In this, the free energy
is evaluated at a fixed disordered configuration of exchange couplings, and subse-
quently it is averaged over these random configurations with a certain probability
distribution. Pioneering exploration of spin glasses was conducted by Edwards and
Anderson, who proposed a model and an order parameter for characterizing a spin
glass [94]. This measures the presence of infinite time correlations in the system,
which would be also present in an ordered state. This, however, would also exhibit
infinite spatial correlations, which would be absent in a spin glass.

344
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21.1 The Quantum SO(3) Spin Glass 345

21.1 The Quantum SO(3) Spin Glass

The system we are going to investigate is characterized by the Hamiltonian [177]

H =
∑
〈i j〉

Ji j Si · S j , (21.1)

where the Si operators represent localized spins occupying the sites of a square
lattice and interacting with nearest neighbors with exchange couplings Ji j . These
are supposed to be random and characterized by a Gaussian probability distribution
of variance �J and centered at an antiferromagnetic coupling J0 > 0, namely

P[Ji j ] = 1√
2π(�J )2

exp

[ [Ji j − J0]2
2(�J )2

]
. (21.2)

We assume, for convenience that �J � J0.
The present model is similar to the Edwards–Anderson (EA) model [94], how-

ever, a crucial difference is the fact that the distribution of exchange couplings is
centered at a nonzero coupling J0, whereas in that case the Gaussian is centered
at zero. This feature will allow us to treat the spin-glass as a perturbation of the
non-random system, something that would not be possible in the EA model. In
addition, the fact that J0 > 0 is an AF coupling will guarantee the cancellation of
the topological term originated from the Berry phase, when summed on the whole
square lattice.

In the quenched situation, we evaluate the free energy as a functional of the
background configuration Ji j

F[Ji j ] = −kB T ln Z [Ji j ] (21.3)

and subsequently average over it, namely

F =
∫ ∏

〈i j〉
P[Ji j ]F[Ji j ].d Ji j . (21.4)

In order to facilitate the averaging process, we introduce the replica method by
making use of the identity

ln Z [Ji j ] = lim
n→0

Zn[Ji j ] − 1

n
. (21.5)

It follows that

F = − 1

β
lim
n→0

Zn − 1

n
. (21.6)
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The replicated partition function is given by

Zn[Ji j ] = Tr exp

⎡
⎣−β n∑

α=1

∑
〈i j〉

Ji j Sαi · Sαj
⎤
⎦ . (21.7)

In order to evaluate the above trace, it will be convenient to use the spin coherent
states we used in Chapter 17, properly adapted to the present system:

|Nαi 〉 ; 〈Nαi |Sαi |Nαi 〉 = SNαi , (21.8)

where |Nαi | = 1.
As we did in Chapter 17, we can express the replicated partition function (21.7)

as a functional integral over the Nαi field,

Zn[Ji j ] =
∫

DNαi exp

⎧⎨
⎩−

n∑
α=1

∫ β

0
dτ

⎡
⎣LαB +

∑
〈i j〉

Ji j Nαi · Nαj
⎤
⎦
⎫⎬
⎭ , (21.9)

where

LαB =
∑

i

〈Nαi (τ )|
d

dτ
|Nαi (τ )〉 (21.10)

is the Berry phase.
We can now average the replicated partition function over the background con-

figurations. Inserting (21.9) and (21.1) into (21.4), we get a Gaussian integral on the
variable Ji j at each link. Performing this integration, we obtain a functional integral
representation for the averaged replicated partition function, which is expressed as

Zn[J0,�] =
∫

DNαi exp
{−S[Nαi ; J0,�J ]} , (21.11)

where the effective action in the previous expression is given by

S[Nαi ; J0,�J ] =
∫ β

0
dτ

n∑
α=1

[
LαB − J0S2

∑
〈i j〉

Nαi · Nαj
]

+ S4(�J )2

2

∫ β

0
dτ
∫ β

0
dτ ′

n∑
α,β=1

∑
〈i j〉

Nα
ia(τ )N

β

ib(τ
′)Nα

ja(τ )N
β

jb(τ
′). (21.12)

In the above expression, a, b = 1, 2, 3 are SO(3) internal indices and the sum over
them is implicitly assumed. We can write the sum over nearest neighbors as a sum
sweeping the whole lattice, by using the connectivity matrix Ki j . This is defined by

Ki j =
{

1 nearest neighbors
0 otherwise.

(21.13)
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Then, we can introduce a Hubbard–Stratonovitch transformation with the auxil-
iary tensor variable Qαβ

ab (i, τ, τ
′) in such a way that the effective action becomes

S[Nαi ; J0,�J ] =
∫ β

0
dτ

n∑
α=1

⎡
⎣LαB − J0S2

∑
〈i j〉

Nαi · Nαj
⎤
⎦

+ S4(�J )2
∫ β

0
dτ
∫ β

0
dτ ′

n∑
α,β=1

∑
〈i j〉

[
1

2
Qαβ

ab (i, τ, τ
′)Qαβ

ab ( j, τ, τ ′)

− Nα
ia(τ )Q

αβ

ab ( j, τ, τ ′)Nβ

ib(τ
′)
]
. (21.14)

Observe that this is no longer a random system. The parameters characteriz-
ing the probability distribution, namely the variance �J and the average coupling
J0, become coupling constants of the effective, non-randomic theory. In the limit
of zero variance, the last two terms above vanish and we retrieve the usual AF
system with an exchange coupling J0. The effect of disorder, reflected through a
nonzero variance, manifests as the two last interaction terms above. Notice that, as
announced, we can do perturbation around the non-random AF Heisenberg model
by expanding in the variance �J .

21.2 Quantum Field Theory Approach to the SO(3) Spin Glass

21.2.1 Nonlinear Sigma Formulation

Before taking the continuum limit, we now introduce the decomposition (19.17)
into (21.14). Only the antiferromagnetic fluctuation field contributes to the last term
above in the small a limit. The first term, conversely, may be treated precisely as we
did in Chapter 17 for the pure Heisenberg/NLSM system. The topological phases
in particular cancel out when summed all over the square lattice. After taking the
continuum limit and integrating over the ferromagnetic fluctuation field, we get the
following effective Lagrangean density:

L = 1

2
|∇nα|2 + 1

2c2
|∂τnα|2 + iλα

(|nα|2 − ρs

)
+ D

∫ β

0
dτ ′
[

1

2
Qαβ

ab (r, τ, τ
′)Qαβ

ab (r, τ, τ
′)− 1

ρs
nαa (r, τ )Q

αβ

ab (r, τ, τ
′)nβb (r, τ

′)
]
,

(21.15)

where D = S4(�J )2

a2 , ρs = S2 J0 and a, the lattice parameter.
The Hubbard–Stratonovitch field, according to (21.8) and (21.12), corresponds

to

Qαβ

ab (r, τ, τ
′) = 〈Sαa (r, τ )Sβb (r, τ ′)〉. (21.16)
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Our next step is to decompose such a field in replica diagonal and off-diagonal
components:

Qαβ

ab (r, τ, τ
′) = [δαβχ(r, τ, τ ′)+ qαβ(r, τ, τ ′)

]
δab, (21.17)

where qαβ = 0, for α = β and we assume the isotropy of the system, which implies
a delta-dependence on the SO(3) indices. The resulting effective Lagrangean
density becomes

L = 1

2
|∇nα|2 + 1

2c2
|∂τnα|2 + iλα

(|nα|2 − ρs

)
+3D

2

∫ β

0
dτ ′
[

nχ2(τ, τ ′)− qαβ(τ, τ ′)qαβ(τ, τ ′)− D

ρs
nα(τ )χ(τ, τ ′)nα(τ ′)

− D

ρs
nα(τ )qαβ(τ, τ ′)nβ(τ ′)

]
. (21.18)

21.2.2 C P1 Formulation

We want to fully include quantum-mechanical effects in our description of the
SO(3) AF spin glass system. These effects are more transparently seen under the
C P1 formulation. Thus, introducing the C P1 fields through

nα(τ ) = 1√
ρs

[
z∗αi (τ )�σi j z

α
j (τ )

]
, (21.19)

with

|zα1 |2 + |zα2 |2 = ρs, (21.20)

we obtain
1

2
|∇nα|2 + 1

2c2
|∂τnα|2 ↔ 2

∑
i=1,2

|Dμzαi |2. (21.21)

In this language, the effective Lagrangean, in terms of which the averaged
replicated partition function is expressed, becomes

L = 2
∑
i=1,2

|Dμzαi |2 + iλα

(∑
i=1,2

|zαi |2 − ρs

)

+3D

2

∫ β

0
dτ ′
[

nχ2(τ, τ ′)− qαβ(τ, τ ′)qαβ(τ, τ ′)− 2

3ρ2
s

χ(τ, τ ′)

− 2

3ρ2
s

[
z∗αi zαj

]
(τ )
[
δαβχ(τ, τ ′)− qαβ(τ, τ ′)

] [
z∗βi zβj

]
(τ ′)
]
. (21.22)

The averaged replicated partition function is given by the following functional
integral
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Zn =
∫

Dzαi Dz∗αi DλαDχDqαβD Aμe−S[zαi ,z∗αi ,λα,χ,q
αβ ,Aμ], (21.23)

where S is the action corresponding to the effective Lagrangean (21.22).

21.3 The Quenched Free Energy

In order to determine the thermodynamic phase diagram, we need the quenched
free energy, which is given by (21.6) in terms of Zn . For obtaining the latter, we
evaluate the previous functional integral by expanding around the stationary point
and integrating the quadratic fluctuations of the zi fields. The result is [178]

Zn = exp
{−S0

[
zαi,s, z∗αi,s , λ

α
s , χs, q

αβ
s , Aμ,s

]− ln DetM
}
, (21.24)

where the subscript s indicates the quantity is evaluated at the stationary point and
the matrix M is the coefficient of the quadratic form of the fluctuations in such an
expansion, also evaluated at the same point.

The classic fields evaluated at the stationary points coincide with the vacuum
expectation value of the corresponding quantum operators, namely

χs(τ − τ ′) = 〈χ(τ, τ ′)〉
qαβs (τ − τ ′) = 〈qαβ(τ, τ ′)〉

λαs = 〈λα(τ)〉 ; m2 = 2iλαs , ∀α
Aμ,s = 〈Aμ(τ)〉 = 0

zαi,s = 〈zαi (τ )〉 ; |zα1,s |2 + |zα2,s |2 ≡ σ 2
α

σ 2 ≡ 1

n

n∑
α=1

σ 2
α . (21.25)

It will be convenient, for later use, to introduce the “replica average” quantity

q̃ = 1

n(n − 1)

∑
αβ

qαβ. (21.26)

The (Euclidean) time-dependent quantities are conveniently expanded as Matsub-
ara sums, namely

χs(τ − τ ′) = 1

β

∑
ωn

χ(ωn)e
−iωn(τ−τ ′)

qαβs (τ − τ ′) =
1

β

∑
ωn

qαβ(ωn)e
−iωn(τ−τ ′)

q̃(τ − τ ′) = 1

β

∑
ωn

q̃(ωn)e
−iωn(τ−τ ′). (21.27)
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Notice that, according to (21.16) and (21.17), χ0 ≡ χ(ωn = 0) is the static
magnetic susceptibility.

We also introduce now, in the present framework, the Edwards–Anderson
parameter, which detects the presence of a spin glass phase. This is basically given
by the large-time limit of the spin-spin correlation function on the same site, which
tell us essentially how much a spin on a certain site is correlated to itself at a large
later time. Using the Riemann–Lebesgue lemma we have

qαβs (τ − τ ′) τ−τ
′→∞−→ T qαβ(ωn = 0)

q̃(τ − τ ′) τ−τ ′→∞−→ T q̃(ωn = 0)

qE A ≡ T q̃(ωn = 0). (21.28)

The last line defines the Edwards–Anderson parameter.
The stationary point quantities, in particular, are spatially uniform. In terms of

these, the effective action at the stationary points reads

S0
[
zαi,s, z∗αi,s , λ

α
s , χs, q

αβ
s , Aμ,s

] = nVβ

2

{
m2
[
σ 2 − ρs

]}
+ nV

∫ β

0
dτ
∫ β

0
dτ ′
{

3D

2

[
χ2(τ, τ ′)− 1

n
qαβ(τ, τ ′)qαβ(τ, τ ′)

]

− D

nρs

[
δαβχ(τ, τ ′)qαβ(τ, τ ′)

]
σασβ

}
. (21.29)

The quantum-mechanical contribution to the averaged replicated partition func-
tion is given by the logarithm of the determinant in (21.24). The determinant
involves three parts, related respectively to the C P1 indices (i j), the replica indices
(αβ) and the frequency-momentum ωn, k. The first two can be made exactly, in the
limit n → 0, provided we replace qαβ with its replica average q̃. Taking the trace
over frequency-momentum in the logarithm of M, we obtain ultimately [178]

ln DetM = nV
∑
ωn

∫
d2k

(2π)2

[
ln
(
k2 + Mn

)− Aq̃(ωn)

k2 + Mn

]
, (21.30)

where A = 2D
ρs

and

Mn = m2 + ω2
n + A

[
χ(ωn)− q̃(ωn)

]
. (21.31)

Fourier transforming (21.29) to frequency space, in which (21.30) already is, and
inserting both in (21.24), we get the averaged replicated partition function. Then,
using (21.6), we obtain the quenched free-energy density, namely
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f
[
σα,m2, χ(ωn), q

αβ(ωn)
] = 1

2
m2[σ 2 − ρs]

+ D

nρs

[
χ(ωn = 0)δαβ + qαβ(ωn = 0)

]
σασβ

+ 3DT
∑
ωn

[
χ(ωn)χ(−ωn)− 1

n
qαβ(−ωn)q

αβ(−ωn)

]

+
∑
ωn

∫
d2k

(2π)2

[
ln
(
k2 + Mn

)− Aq̃(ωn)

k2 + Mn

]
,

(21.32)

where σ 2 was defined in (21.25).

21.4 The Phase Diagram

The Stationary Point Equations

Let us determine now the phase diagram of the system. For this, we consider
the equations obtained by imposing the first derivatives of the free-energy den-
sity vanish. The stability of the phases will be guaranteed by verifying that the
eigenvalues of the Hessian matrix of the free energy has only positive eigenvalues.
We have

1)
1

n

[
[m2 − Aχ0]δαβ − Aqαβ0

]
σβ = 0

2) σ 2 = ρs − T

2π

∑
ωr

ln

(
1+  

2

Mr

)
+ 2A

∑
ωr

q̃(ωr )Gr

3) 3DTχ(−ωn) = T A

4π
ln

(
1+  

2

Mn

)
+ A2q̃(ωn)Gn − Aσ 2δωn0

4) 3DT qαβ(−ωn) = A2q̃(ωn)Gn + A

2n
σασβδωn0, (21.33)

where χ0 ≡ χ(ωn = 0), qαβ0 ≡ qαβ(ωn = 0) and q̃0 ≡ q̃(ωn = 0),  is a
high-momentum cutoff and

Gn = T

4π

[
1

Mn
− 1

 2 + Mn

]
. (21.34)

Notice that in the absence of disorder (�J = D = A = 0), the above equations
reduce to (19.58), which determine the phase structure of the pure AF magnetic
system described by the NLSM.
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Preliminary Results

Let us consider firstly the phases for which σα = 0. These could be either para-
magnetic (PM) or spin glass (SG) phases. Then, summing both sides of Eq. 4) in
α, β, we get

q̃(ωn)Gn = q̃(−ωn)�, (21.35)

where

� = T

4π

γ

 2

γ = 3π

(
J0

�J

)2

. (21.36)

Let us take (21.35) for ωn = 0 and insert it in Eq. 3). It yields

M0 =  2

e6πρs (χ0−q̃0) − 1
, (21.37)

which can also be expressed as

F(χ0 − q̃0) = m2

F(x) =  2

e6πρs x − 1
+ Ax . (21.38)

The function F(x) has an absolute minimum F(x0) = m2
0 such that x0 satisfies

γ = [2 sinh(3πρs x0)]
2

m2
0 =

 2

γ
ln γ. (21.39)

It follows that

G0(M0(x0)) = �. (21.40)

Now, since G0(M0) and M0(x) are both monotonically decreasing functions and
the physical solutions of (21.38) (left branch in Fig. 21.1) occur for x < x0, we
have G0 ≤ �, the equality holding only at x = x0 or m2 = m2

0. In this case, (21.35)
implies q̃0 = 0. We will only have q̃0 �= 0 for G0 = �.

On the other hand, it has also been shown [178] that q̃(ωn �= 0) = 0. This fol-
lows from the fact that |Gn| < �, for ωn �= 0 and that q̃(−ωn �= 0) = q̃∗(ωn �= 0),
because q̃(τ − τ ′) ∈ R.

The Paramagnetic Phase

The paramagnetic phase is characterized by: σ = 0, q̃ = 0,m2 > m2
0,G0 < �.

Inserting Eq. 3) in Eq. 2), we readily find the integrated magnetic susceptibility
is given by

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.022
https://www.cambridge.org/core


21.4 The Phase Diagram 353

χI ≡
∑
ωn

χ(ωn) = 1

3T
(21.41)

and, hence, satisfies the Curie Law. The static magnetic susceptibility is given by

χ0 ≡ χI −
∑
ωn �=0

χ(ωn) = χI −ϒ(J0,�J, T ), (21.42)

where the last sum, evaluated in [178], yields a function ϒ(J0,�J, T ), such that,

ϒ(J0,�J, T )
T� → 0, (21.43)

hence χ0 also satisfies the Curie Law.

The Spin-Glass Phase

An SG phase is characterized by q̃0 �= 0. It occurs for m2 < m2
0, where a PM

solution with q̃0 = 0 does not exist. From (21.35), a nonzero q̃0 implies G0 = �,
for which M0(χ0 − q̃0) = M0(x0). It follows that

m2 − A(χ0 − q̃0) = m2
0 − Ax0

q̃0 = χ0 − x0 + 1

A
(m2

0 − m2). (21.44)

From Eq. 2), conversely, we get

q̃0 = 1

3T
−ϒ(J0,�J, T )− x0. (21.45)

From the two previous equations, we get, in the SG phase, the static susceptibility,
namely

χ0 = 1

3T
− ϒ(J0,�J, T )− 1

A
(m2

0 − m2), (21.46)

and the integrated susceptibility,

χI = 1

3T
− 1

A
(m2

0 − m2). (21.47)

From the above equation and the general relation valid in an SG phase [180]

χI = 1

3T
− 1

3

∑
ωn

q̃(ωn)

χI = 1

3T
− 1

3
q̃0, (21.48)

where we used the fact that q̃(ωn �= 0) = 0, we infer that

q̃0 = 3

A
(m2

0 − m2) (21.49)

in the SG phase.
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Critical Behavior

The transition between the SG and PM phases occurs for m2 = m2
0; q̃0 = 0.

Using this in (21.45), we obtain the critical condition that will determine the curve
separating these phases:

1

3Tc
−ϒ(J0,�J, Tc) = x0, (21.50)

where Tc is the critical temperature.
Also, for T � Tc

1

3T
−ϒ(J0,�J, T ) ∼ T

Tc
x0

m2 − m2
0 ∼ 4π 

[
T − Tc

Tc

] [
ρs,0 − ρs

]
. (21.51)

Now, how do we determine Tc? For Tc �  , we get, from (21.50)

Tc

[
ln

(
 

Tc

)
− 1

2
ln (1+ γ )

]
= π [ρs,0 − ρs

]
, (21.52)

where

ρs,0 =  

2π

[
1+ 1

γ

[
1+ 1

2
ln
[
1+ γ ]]] (21.53)

is the critical spin stiffness. Notice that the Tc curve touches the horizontal axis
(Tc = 0) at ρs = ρs,0, and only for ρs < ρs,0 we find a finite critical temperature
Tc(ρs). For ρs > ρs,0, there is no SG phase at any temperature.

From (21.46), (21.47) and (21.51), we get the critical behavior (T � Tc) of the
static and integrated susceptibilities, namely

χ0 ∼ T

Tc
x0 − 4π

A
 

[
Tc − T

Tc

] [
ρs,0 − ρs

]
(21.54)

and the integrated susceptibility

χI ∼ 1

3T
− 4π

A
 

[
Tc − T

Tc

] [
ρs,0 − ρs

]
. (21.55)

This is depicted in Fig. 21.1 and exhibit the characteristic cusp at the transition.

The Néel Phase

Let us consider now the ordered AF phase, for which σ �= 0. In this case, the
quantity between brackets in Eq. 1) vanishes. Then, summing in α and β, we get
M0 = 0, which implies

χ0 − q̃0 = m2

A
, (21.56)

where m2 is the spin-gap.
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Figure 21.1 The integrated magnetic susceptibility exhibiting the characteristic
sharp cusp at the transition temperature Tc

Now, Eq. 2) implies that a phase with M0 = 0 can only occur at T = 0, other-
wise the sublattice magnetization σ would have an unphysical infinite imaginary
value. The fact that an ordered AF phase can only occur at zero temperature is in
agreement with the Mermin–Wagner–Hohenberg theorem [170], which precludes
the spontaneous breakdown of a continuous symmetry at a finite temperature in
two spatial dimensions.

In the Néel phase, Eq. 2) and Eq. 3) imply

χI = 1

3T

(
1− 2σ 2

ρs

)
. (21.57)

From this, using (21.48), we infer

q̃0 = 2σ 2

Tρs
. (21.58)

Also, from (21.42) and

ϒ(J0,�J, T )
T→0→ ρs,0

3Tρs
, (21.59)

we conclude that, for T → 0

χ0 = 1

3T

[(
ρs − ρs,0

ρs

)
− 2σ 2

ρs

]
. (21.60)

From (21.56), (21.58) and (21.60), we can solve for χ0, q̃0 and σ , obtaining

χ0 = q̃0 = 1

4Tρs

(
ρs − ρs,0

)
σ 2 = 1

8

(
ρs − ρs,0

)
, (21.61)
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which imply the spin-gap vanishes: m = 0, in compliance with the Goldstone
theorem. Notice that the static susceptibility χ0 diverges in the Néel phase, as it
should, whereas the Edwards–Anderson parameter, qE A = T q̃0, remains finite but
nonzero. The AF ordered phase sets in for ρs > ρs,0 at T = 0.

Summary

We have found three phases in the disordered SO(3) quantum AF Heisenberg sys-
tem with nearest neighbor interactions: a Néel phase (σ �= 0, q̃0 �= 0) at T = 0,
ρs > ρs,0, m2 = 0, with ρs,0 given by (21.53); an SG phase (σ = 0, q̃0 �= 0), for
T < Tc, ρs < ρs,0, 0 < m2 < m2

0, with Tc given by (21.52) and m0, by (21.39);
and a PM phase (σ = 0, q̃0 = 0), for T > Tc, ρs < ρs,0, m2 > m2

0 and for T > 0
for ρs > ρs,0.

Notice that a smaller average coupling will favor the onset of a spin-glass phase,
whereas a large one will eliminate it. This is in agreement with the fact that the frus-
tration region of the distribution function, namely, the tail on the negative coupling
side, will disappear as we increase the average coupling (see Fig. 21.4).

Observe that, as the disorder is removed,�J → 0, the critical spin stiffness, ρs,0,
reduces to the quantum-critical coupling ρc =  /2π , which we found for the pure
AF Heisenberg model in Section 19.3, separating the paramagnetic phase from the
Néel phase at T = 0. The spin-glass phase is removed accordingly because the
Edwards–Anderson parameter, needed for the onset of a spin-glass phase, vanishes
for �J → 0, as we can infer from (21.49). This observation is corroborated by

Figure 21.2 The phase diagram of the quantum SO(3) disordered system defined
by (21.1) and (21.2), exhibiting an SG phase for T < Tc, ρs < ρs,0, an AF phase
for T = 0, ρs > ρs,0 and a PM phase for T > Tc, ρs < ρs,0 and for T > 0 for
ρs > ρs,0
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21.5 Thermodynamic Stability 357

Figure 21.3 The critical spin stiffness, ρs,0, as a function of the average coupling
J0, taken from (21.53)

Figure 21.4 The coupling distribution function (21.2) for different average
couplings (J0). Frustration is produced by the tail on the negative coupling side.

the fact that the frustration area of the distribution function, namely, the tail on the
negative coupling side, will disappear as we make �J → 0 (see Fig. 21.6).

21.5 Thermodynamic Stability

The thermodynamic stability of a spin glass is an issue of crucial importance.
Historically, after the problem of quenched disordered magnets was addressed
by Edwards and Anderson [94], a spin glass model was proposed by Sherring-
ton and Kirkpatrick (SK) [181], who presented a mean-field solution exhibiting a
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358 The Spin Glass

Figure 21.5 The critical spin stiffness, ρs,0, as a function of the amount of
disorder, �J , taken from (21.53)

Figure 21.6 The coupling distribution function (21.2) for different amounts of
disorder (�J ). Frustration is produced by the tail on the negative coupling side.

spin-glass phase, apart from the usual phases. The application of the mean-field
method was significantly facilitated by the fact that the SK Hamiltonian contained
an infinite range interaction, where each spin would interact with every other spin
on the lattice. The SK solution was soon proved to be unstable by Almeida and
Thouless [182] and the instability was ascribed to the replica symmetry of the SK
solution. A stable replica symmetry breaking solution was subsequently found by
Parisi [183].
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21.5 Thermodynamic Stability 359

We have studied a disordered quantum magnet model with SO(3) symme-
try, introduced in [177], which contains only nearest-neighbor interactions, and
obtained the quenched free energy

f
[
σα, qαβ(ωn),m

2, χ(ωn)
] ≡ f [ϕi ] (21.62)

by taking into account quadratic quantum fluctuations. In the above expression, ϕi

is a generic symbol for the fields appearing as arguments of f . We then extracted
the phase diagram of the system by finding which solutions minimize the above
free energy for different ranges of the parameters and temperature. A crucial
condition for a given solution of the extremant condition

∂ f [ϕi ]

∂ϕi
= 0 (21.63)

to be a minimum is that all eigenvalues of the Hessian matrix of the free energy,
namely

Hi j = ∂
2 f [ϕi ]

∂ϕi∂ϕ j
|ϕi,0, (21.64)

are strictly positive.
A theorem from linear algebra, then, states that a sufficient condition for all the

eigenvalues of a given matrix to be positive is that all principal minor determinants
of such a matrix be positive. A very careful evaluation of all principal minors of the
quenched free energy Hessian was presented in [178]. As it turns out, in the limit
n → 0, all the principal minors except the one corresponding to the σαβ sector,
which is equal to one, can be written in the form

ξ [(� − G0)+ H0]+ ζ [(� − G0]2 , (21.65)

where

H0 = q̃0 A
T

4π

[
1

M2
0

− 1

(M0 + 2)2

]
, (21.66)

where ξ and ζ are real factors, such that ξ > 0 and ζ ≥ 0.
In a paramagnetic (PM) phase, H0 = 0 and G0 < �, whereas in a spin-glass

(SG) phase, H0 > 0, with G0 = �. We conclude, therefore, that both in the
PM and SG phases, all the principal minors of the free energy Hessian are always
positive, thereby demonstrating unequivocally the stability of such phases. Further-
more, these principal minors vanish right at the phase transition connecting such
phases, so we can clearly see the phase transition occurring directly in the Hessian.
The stability of the Néel phase can be demonstrated accordingly.
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360 The Spin Glass

21.6 Duality and the Nature of the Spin-Glass Phase

The Skyrmion-Spin Duality

It is very instructive to analyze the different phases we found in the disordered
quantum SO(3) Heisenberg system in the light of the order-disorder duality. For
this purpose the quantum skyrmion correlation function was evaluated, applying
the methods of quantization of topological excitations exposed in Section 17.6 in
each of the phases encountered in the system [179]. The results, obtained in the
Néel, spin-glass and paramagnetic phases are, respectively,

〈μ(x, 0)μ†(y, 0)〉N
|x−y|→∞−→ exp

{−2πσ 2|x− y|} (21.67)

where σ 2 is given by (21.61);

〈μ(x, 0)μ†(y, 0)〉SG
|x−y|→∞−→ 1

|x− y|νq̃0
, (21.68)

where q̃0 is given by (21.49) and ν is real and positive; and

〈μ(x, 0)μ†(y, 0)〉P M
|x−y|→∞−→ exp

{
κ

|x− y|
}
, (21.69)

where κ is real and positive. The above expressions imply 〈μ〉N = 0, 〈μ〉SG = 0
and 〈μ〉P M = 1.

Notice that the power-law decay of the skyrmion correlators in the SG phase
implies these excitations are massless, while 〈0|μ|0〉N = 0 implies they are
genuine nontrivial excitations, since the skyrmion state is orthogonal to the ground-
state. In the PM phase, conversely, 〈0|μ|0〉P M = 1 means skyrmions are not
genuine excitations. Acting on a disordered ground state with the skyrmion opera-
tor produces essentially the same ground state, hence 〈μ〉P M = 1. In an SG phase,
conversely, the ground state is also disordered but frozen; hence, acting on this with
the skyrmion operator creates another frozen disordered state which is orthogonal
to the former, despite having the same energy – in other words, a gapless excitation.
We have, therefore, a power-law behavior of the skyrmion quantum correlator.

Stability of the SG Phase and the BKT Mechanism

In the C P1 language, skyrmions are vortices. The fact that they have a long-range
power-law behavior characterizes the SG phase as the low-temperature phase of a
two-dimensional BKT system [155, 156, 157]. This explains the stability we found
for the SG phase at a finite temperature in a quantum system with short-range
interaction and a continuous symmetry.

The massless quantum spin-waves states of the AF phase, conversely, not pos-
sessing a topological protection, are washed-out to T = 0 in the Néel phase by
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virtue of the Hohenberg–Mermin–Wagner mechanism. This explains the asymme-
try existing between the dual phases: AF and SG. Both contain gapless excitations,
respectively spin-waves and skyrmions, the former occurring only at T = 0,
whereas the latter, by means of the BKT mechanism, surviving below a finite
temperature Tc.

A New Characterization of the SG Phase

A new way of characterizing an SG phase emerges from the previous analysis.
The system realizes the three phases allowed by the dual algebra existing between
the spin-wave and skyrmion operators, namely: (〈σ 〉 �= 0; 〈μ〉 = 0; Ordered AF
phase); (〈σ 〉 = 0; 〈μ〉 = 0; SG phase) and (〈σ 〉 = 0; 〈μ〉 = 1; PM phase).

In this framework, taking advantage of order-disorder duality, an SG phase
would be characterized in general as one for which both 〈σ 〉 = 0 and 〈μ〉 = 0.
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Quantum Field Theory Approach to Superfluidity

Superfluidity and superconductivity are two extremely interesting twin phenom-
ena, the discovery of which was made possible by the development of the helium
liquefaction technique by Kamerlingh Onnes in 1908. Superconductivity was dis-
covered by Onnes himself in 1911, whereas superfluidity was discovered by
Kapytza, Allen and Misener in 1938. While superconductivity entails the flow of
charge carriers without any resistance, superfluidity involves the frictionless flow
of a fluid, without any viscosity. Superconductivity, as we have seen, was observed
when mercury was cooled down to approximately 4 K , in contact with a liquid
helium bath. Superfluidity, conversely, was firstly observed in liquid 4 He itself,
when it was cooled down below 2.17 K . Later on, it was also observed in liquid
3 He below 2.7 mK . In the first case, the phenomenon was related to the Bose–
Einstein condensation of the bosonic 4 He atoms, whereas in the second case, it
involves the formation of bound states of the fermionic 3 He atoms, very much like
Cooper pairs, before the superfluid phase can set in.

In this chapter, after a brief introduction of superfluidity, we describe the use of a
field theory approach for explaining its most important features. The quantum field
theory approach to superconductivity is described in the next chapter.

22.1 Basic Features of Superfluidity

Superfluidity is most conveniently described in the framework of a Landau–
Ginzburg approach, similar to the one employed in the case of superconductivity
in (4.68). An important point to be mentioned is that superfluidity concerns the
transport of neutral matter, whereas superconductivity, that of charged carriers. It
follows that, for superfluids, the free energy would be given by (4.68), but without
the electromagnetic gauge field. The Landau–Ginzburg theory in this case would
be replaced by the corresponding theory with a global continuous U(1) symmetry,
namely, the Gross–Pitaevskii free energy [187, 188],

362
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F[
] = F0 +
∫

d3r

{
�

2

2M

∣∣∇
∣∣2 + a(T )|
|2 + 1

2
b|
|4

}
, (22.1)

where b > 0 and a(T ) = a0(T − Tc), with Tc being the critical temperature for the
system to undergo the superfluid transition and a0 > 0.

Writing the order parameter wave-function as 
SF = √nSF eiθ where nSF is the
density of superfluid matter, which is assumed to be constant, we have

nSF = −a(T )

b
; T < Tc. (22.2)

Then we can infer that the velocity eigenvalue of the operator P
M is

v = �

M
∇θ, (22.3)

where M is the mass of the atoms forming the superfluid matter. Also,

P2

2M

SF = E0
SF

E0 = �
2

2M
∇θ · ∇θ. (22.4)

It follows that the superfluid current is given by

jSF = nSF v

jSF = nSF
�

M
∇θ, (22.5)

which satisfies the continuity equation

∇ · jSF = −
∂nSF

∂t
= nSF

�

M
∇2θ = 0. (22.6)

Similarly to the case of superconductors, we see that the superfluid velocity at
different points is coherently locked by the fact that it is proportional to the gradi-
ent of the order parameter phase. This coherence rules out the individual scattering
phenomena responsible for friction and viscosity, and therefore explains super-
fluidity. Bose–Einstein condensation is responsible for producing the condensate,
which is described by the wave-function 
SF [186].

22.2 Classical Vortices

From (22.3), we find

∇ × v = �

M
∇ × ∇θ

εi jk∂ jvk = �

M
εi jk∂ j∂kθ. (22.7)
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Figure 22.1 The vortex along the line L describes the universe-surface S(L) as it
evolves in time.

The right-hand side is equal to zero everywhere except at the vortex cores, imply-
ing the superfluid flow is irrotational except when vortices are present [189]. The
vortex, being an extended object that exists along a line L inside the superfluid, has
a tensor density

J 0i = �

M
εi jk∂ j∂kθ =

∫
S(L)

d2ξ i0δ4(x − ξ), (22.8)

also described in (10.22). Here, S(L) is the universe-surface of the vortex, namely,
the surface it describes as it evolves in time.

Vortices are, in fact, infinite string excitations that, having a cylindrical sym-
metry, produce a mapping �1(U (1)), which is topologically nontrivial. The
topological charge is the velocity circulation, or vorticity, along a closed loop
pierced by the vortex line:

� =
∮

C
dl · v = 2π

�

M
n ; n = 0,±1,±2, . . . (22.9)

We see that the topological charge is an integer multiple of the vorticity quantum
φ0 = h/M .

We can also express � as the flux of the vortex current density across the surface
R(C) bounded by C ,

� =
∫

R(C)
d2Si J 0i = �

M

∫
R(C)

dS · (∇ × ∇θ)

= �

M

∮
C

dl · ∇θ. (22.10)

It is a well-known property of superfluids that, when contained in a rotating
vessel, the fluid remains at rest in the laboratory frame when the vessel’s angular
velocity is less than a certain threshold. Above the threshold, the fluid bulk remains
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steady, however vortices are created in such a way that there is a nonzero number
of circulation quanta.

Notice, at this point, the strong similarity with the physics of superconduc-
tors. Irrotational flow corresponds to the Meissner effect, namely, the absence of
a magnetic field in the superconducting bulk; the rotating vessel corresponds to
the external magnetic field; the threshold angular velocity corresponds to the lower
critical magnetic field in a type-II superconductor; and the vortex lines correspond
to the magnetic flux lines that pierce through in such superconducting materials.

There is, consequently, an important physical interest in the study of both classi-
cal and quantum properties of vortices in superfluids. For this purpose, we will see
that a field theory approach shall be quite convenient.

22.3 The Goldstone Mode

Consider a complex field 
 with Lagrangean

L = ∂μ
∗∂μ
 + a(T )|
|2 − 1

2
b|
|4, (22.11)

which describes a field theory related to the Gross–Pitaevskii free energy (22.1).
Using the polar representation 
 = ρ√

2
eiϕ , we can write this as

L = ρ
2

2
∂μϕ∂μϕ + 1

2
∂μρ∂μρ + a(T )ρ2 − 1

2
bρ4. (22.12)

This Lagrangean possesses a conserved current jμ = ρ2∂μϕ as a consequence of
the global U(1) symmetry it has.

In the constant density regime, which applies to a superfluid, ρ = ρ0 = √nSF is
a constant and we have the superfluid density given by

nSF = j0

∂tϕ

j = nSF∇ϕ. (22.13)

In this regime the only dynamical degree of freedom is the Goldstone mode ϕ,
corresponding to

L = ρ2
0∂μϕ∂μϕ, (22.14)

and we see that

∇ϕ = �

M
∇θ = φ0

2π
∇θ. (22.15)
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366 Quantum Field Theory Approach to Superfluidity

We will see in the next section that it is possible to reformulate the theory in
terms of a rank-two antisymmetric tensor gauge field, the Kalb–Ramond field. This
formulation of the theory will be particularly convenient for the full description of
quantum vortices.

22.4 The Kalb–Ramond Field

In order to derive the Kalb–Ramond formulation of superfluidity [190], con-
sider the following functional integral representation of the vacuum functional Z ,
corresponding to (22.14) [192]:

Z =
∫

Dϕ exp

{
i
∫

d4x
ρ2

0

2
∂μϕ∂μϕ

}
.

This can be written, up to a multiplicative constant, as

Z =
∫

DϕDHμ exp

{
i
∫

d4x

[
1

2
HμHμ + ρ0 Hμ∂μϕ

]}
, (22.16)

where Hμ is a real vector field.
Now let us decompose the scalar field ϕ as

ϕ = ϕr + ϕmv

Dϕ = Dϕr , (22.17)

where ϕr is regular and ϕmv, multivalued. Inserting in (22.16) and functional
integrating on ϕr , we get, once again up to a multiplicative constant,

Z =
∫

DHμδ
[
∂μHμ

]
exp

{
i
∫

d4x

[
1

2
HμHμ + ρ0 Hμ∂μϕmv

]}
. (22.18)

We solve the identity ∂μHμ ≡ 0, which is imposed by the functional delta
functional, by expressing Hμ as

Hμ = 1

2
εμναβ∂νBαβ

1

2
HμHμ = 1

12
HμαβHμαβ, (22.19)

in terms of the Kalb–Ramond field Bαβ , [191], which has the field intensity tensor
given by Hμαβ = ∂μBαβ + ∂αBβμ + ∂βBμα.

Inserting (22.19) in (22.18) and integrating by parts the last term, we get

1

2
εμναβ∂α∂βϕmv = Jμν =

∫
S(L)

d2ξμνδ4(x − ξ), (22.20)
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22.5 Quantum Vortices 367

where S(L) is the universe-surface of a vortex string along the line L , according to
(22.8) and (10.22).

We therefore can write (22.18) as

Z =
∫

DBμν exp

{
i
∫

d4x

[
1

12
HμαβHμαβ + ρ0 JμνBμν

]}
. (22.21)

We see that the vortex string is the source of the Kalb–Ramond field, namely

∂αHμνα = ρ0 Jμν (22.22)

with the generalized Gauss’ law being expressed as

∂ j�
i j = ρ0 J 0i

�i j = H 0i j , (22.23)

where �i j is the momentum canonically conjugate to Bi j .
In Kalb–Ramond language, the topological charge or vorticity piercing a surface

R(C) can be written as

�R = 1

ρ0

∫
R(C)

d2Si∂ j�
i j , (22.24)

in agreement with (10.25) and (10.26).
As we remarked in the first section, the physical properties of vortices become

a central issue in the physics of superfluids. In the next section we approach these
basic excitations from the quantum-mechanical point of view.

22.5 Quantum Vortices

Superfluids are essentially quantum fluids; therefore, a full quantum-mechanical
treatment of superfluid vortices is unavoidably required. Once we identify the vor-
ticity with the vector charge of a Kalb–Ramond field, namely (10.26), we are
enabled to use the operator (10.24),

σ(S(C), t) = exp

{
−iφ0

∫
S(C)

d2ξ i j Bi j (ξ, t)

}
, (22.25)

as the quantum vortex creation operator [192, 42]. Indeed, according to (10.28)
and (10.30), it follows that the operator above, when acting on the vacuum, cre-
ates quantum states that are eigenvectors of the quantum vorticity operator, the
eigenvalue of which is one unit of vorticity, φ0, along the curve C , namely,

�R|σ(S(C), t)〉 = φ0|σ(S(C), t)〉, (22.26)

provided the curve C pierces the surface R once.
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368 Quantum Field Theory Approach to Superfluidity

The physical properties of quantum vortices are encoded in the correlation func-
tions of the above operator. The energy required to create a quantum vortex line, for
instance, is an important quantity, which may be extracted from the large-distance
behavior of the vortex, two-point correlation function. This has been obtained after
a detailed calculation presented in [192, 42, 193].

For a long straight vortex line of length L along the z-direction, located at the
position (r, 0) in the xy-plane, this is given by

〈σL(x, t)σ
†
L(y, t)〉

|y−y|→∞∼ exp

{
−L
φ2

0ρ
2
0

8π

∣∣y− y
∣∣} . (22.27)

From this we may infer the vortex energy per unit length,

ε(L) = E(L)

L
= φ

2
0ρ

2
0

8π
. (22.28)

This would be, accordingly, the energy cost for creating a quantum vortex
excitation in a superfluid.

The quantum vortex operator and the respective correlation functions are the
basic required tools for describing any physical process involving vortices in a
superfluid. In conclusion, we can only emphasize how useful it was to use quantum
field theory language and methods in order to provide a full quantum-mechanical
description of vortices in a superfluid.

In the next chapter, we present a full account of superconductivity, both of
regular and Dirac electrons. The same approach used here to describe quantum-
mechanical vortices could be applied there; however, in the case of a (type II)
superconductor, the magnetic vortices correspond to relatively strong external
magnetic fields, which are most naturally described within a classical approach.
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Quantum Field Theory Approach to Superconductivity

The basic features of superconductivity were introduced in Chapter 4. There we
saw that the key condition for the occurrence of superconductivity is the onset of
a phase containing an incompressible fluid of the charge carriers, such that their
velocities are all coherently locked by the gradient of the complex order parame-
ter phase. The Landau–Ginzburg theory provided a phenomenological framework
where this situation would occur below a certain critical temperature. Here, we
employ quantum field theory methods in order to demonstrate that, under appropri-
ate conditions, this follows from the electronic interactions. We derive in particular
an effective potential, generated by the microscopic dynamics of the system,
which will replace the quartic potential postulated in the Landau–Ginzburg phe-
nomenological approach as being responsible for generating such incompressible
fluid.

We shall first consider the case of electrons with a non-relativistic dispersion
relation, which is the situation usually found in regular metals. Then, we will move
to the case where the electrons in a crystal, in spite of having a speed much less
than the speed of light, exhibit a dispersion relation that would befit a relativistic
particle. This is the situation found in some advanced materials.

23.1 Superconductivity of Regular Electrons

23.1.1 The BCS Quantum Field Theory

As we have seen, the dynamics behind the phenomenon of superconductivity is
synthesized by the quartic Hamiltonian (3.62), where the interaction potential
may be chosen as in (4.82). Then, using (3.12) and (3.19), we can express the
total Hamiltonian corresponding to the interaction (3.62) in terms of the electron
field ψσ (r):

H =
∫

d3r

[
ψ†
σ (r)

(
− �

2

2m
∇2

)
ψσ (r)− λ

2
ψ

†
σ ′(r)ψ

†
σ (r)ψσ (r)ψσ ′(r)

]
, (23.1)
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370 Quantum Field Theory Approach to Superconductivity

where summation over repeated indices is understood. The corresponding
Lagrangean density is

LBC S = ψ†
σ (r)

(
i�
∂

∂t
− �

2

2m
∇2

)
ψσ(r)+ λ ψ†

↓ψ
†
↑ψ↑ψ↓, (23.2)

where we took into account the fact that terms containing products of fermionic
fields with the same spin vanish. We call the theory described by this Lagrangean
the BCS field theory.

Both in (23.1) and (23.2), the key condition, expressed by (4.82) and neces-
sary for the occurrence of an attractive interaction leading to a superconducting
phase, is implicitly understood. Such a condition is that the electrons described
by the Lagrangean and Hamiltonian above belong to a shell of width of the order
�ωD around the Fermi surface, where ωD is the Debye frequency. We are going to
explicitly impose such condition below.

The corresponding vacuum-functional is given by

Z = 1

Z0,ψ

∫
Dψ†

σDψσ exp

{
i
∫

d4xLBC S[ψσ ]
}
. (23.3)

It is convenient to transform the quartic interaction into a trilinear one in the func-
tional integral above. This is achieved by means of the Hubbard–Stratonovitch
transformation. For this purpose, consider a complex field η, having a quadratic
action, and multiply and divide Eq. (23.3) by the η field vacuum-functional as
follows:

Z = 1

ZηZ0,ψ

∫
Dψ†

σDψσDη∗Dη exp

{
i
∫

d4x L0[ψσ , η]
}
, (23.4)

where

L0[ψσ , η] = LBC S[ψσ ] − 1

λ
η∗η. (23.5)

The elimination of the quartic term then follows upon shifting the η functional
integration variable in (23.4) as

η→ η − λψ↑ψ↓
η∗ → η∗ − λψ†

↓ψ
†
↑, (23.6)

an operation that leaves the functional integration measure invariant. The final
Lagrangean appearing in the exponent of the integrand in (23.4) thus becomes

L[ψσ , η] = ψ†
σ (r)

(
i�
∂

∂t
− �

2

2m
∇2

)
ψσ(r)− 1

λ
η∗η+η∗ψ↑ψ↓+ηψ†

↓ψ
†
↑. (23.7)
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23.1 Superconductivity of Regular Electrons 371

From this Lagrangean, varying with respect to the auxiliary field and its complex
conjugate, we obtain the field equations for such field, namely

η = λ ψ↑ψ↓
η∗ = λ ψ†

↓ψ
†
↑. (23.8)

From this we may infer that η is the Cooper pair field. Consequently, its vac-
uum expectation value expresses the Cooper pair density in the ground state and
therefore serves as an order parameter for superconductivity.

We now take advantage of the fact that the Lagrangean became quadratic in
the fermion fields and integrate over these, thereby obtaining an effective action in
terms of the Cooper Pair field η. For this purpose, we introduce the Nambu fermion
field �† = (ψ†

↓ ψ↑). In terms of this we can rewrite (23.7) as

L [
, η] = −1

λ
η∗η + �†A�, (23.9)

where the matrix A is given, in momentum space, by

A =
(
ξ(k)+ �ω η

η∗ ξ(k)− �ω

)
(23.10)

with ξ(k) = �
2k2

2m − μ. Notice that we have subtracted the chemical potential μ
in order to comply with the fact that the kinetic energy of the electrons playing an
active role in the mechanism of superconductivity is expressed with respect to the
Fermi level.

Upon integration over the fermion fields, we obtain the Cooper pair field vacuum
functional, namely,

Z = 1

Z0,η

∫
Dη∗Dη ei Se f f [η], (23.11)

where

Sef f [η] =
∫

d4x

(
−1

λ
|η|2
)
− i ln Det

[A [η]

A [0]

]
. (23.12)

The determinant of the matrix A is

detA[η] = ξ 2 − (�ω)2 − |η|2, (23.13)

hence the above expression becomes

Sef f [η] =
∫

d4x

(
−1

λ
|η|2
)
− iTr ln

⎡
⎢⎣1+ |η|2

∂2
t +

(
−�2∇2

2m − μ
)2

⎤
⎥⎦ . (23.14)
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372 Quantum Field Theory Approach to Superconductivity

23.2 A Dynamically Generated Effective Potential

From (23.14), we may extract the effective potential. This is a function of the vac-
uum expectation value of the Cooper pair field, namely � = 〈0|η|0〉, which is the
order parameter for the superconducting phase. We get

Veff (|�|, T ) = |�|
2

λ
− T

∫
d3k

(2π)3

∞∑
n=−∞

{
ln

[
1+ |�|2

ω2
n + ξ(k)2

]}
, (23.15)

where the sum runs over fermionic Matsubara frequencies, corresponding to the
fermionic functional integration. This effective potential derives from the elec-
tronic interaction generated by the electron-phonon coupling and replaces the
phenomenological quartic potential contained in the Landau–Ginzburg theory.

We now impose the condition that the only electron states participating of the
above summation and integral are the ones located within a distance of the order
�ωD from the Fermi surface. Calling N (ξ) the density of states at ξ , it follows that
integration on the momenta around the Fermi surface is written as∫

d3k

(2π)3
=
∫

�ωD

−�ωD

dξN (ξ) � N (EF)

∫
�ωD

−�ωD

dξ, (23.16)

where N (EF) is the density of states at the Fermi surface and the last step
follows from the fact that �ωD�EF . The way of evaluating the momentum
integrals in (23.15), outlined above, guarantees that the condition for having a
phonon-mediated attractive interaction, effectively described by (4.82), has been
enforced.

The different phases of our system correspond to stable equilibrium points of the
effective potential. Hence, the phase diagram is determined by

∂

∂|�|Veff (|�|, T ) = 0
∂2

∂|�|2 Veff (|�|, T ) > 0. (23.17)

The first condition implies (from now on, we take � = 1)

0 = 2|�|
{

1

λ
− T N (EF)

∫ ωD

−ωD

dξ
∞∑

n=−∞

[
1

ω2
n + ξ 2 + |�|2

]}
. (23.18)

Carrying on the Matsubara sum, we get

0 = 2|�|

⎧⎪⎪⎨
⎪⎪⎩

1

λ
− N (EF)

∫ ωD

0
dξ

tanh

(√
ξ2+|�|2

2T

)
√
ξ 2 + |�|2

⎫⎪⎪⎬
⎪⎪⎭ . (23.19)
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23.2 A Dynamically Generated Effective Potential 373

Let us investigate the possibility for the onset of a superconducting phase,
namely, a phase with |�| �= 0. In this case the expression between brackets in
(23.19) must vanish, thereby leading to the gap equation:

1 = λN (EF)

∫ ωD

0
dξ

tanh

(√
ξ2+|�|2

2T

)
√
ξ 2 + |�|2 . (23.20)

Now, the second derivative (23.17) evaluated at the |�| �= 0 solution is

∂2

∂|�|2 Veff (|�|, T ) = |�|N (EF)I (|�|) > 0

I (|�|) =
∫ ωD

0

dξ

f (ξ)

[
sinh

(√
ξ 2 + |�|2

2T

)
−
√
ξ 2 + |�|2

2T

]
> 0, (23.21)

where

f (ξ) = cosh

(√
ξ 2 + |�|2

2T

)(√
ξ 2 + |�|2

2T

)3/2

> 0. (23.22)

Notice that the second derivative in (23.21) is positive whenever |�| �= 0, because
the integrand in the expression of I (|�|) is always positive. The superconducting
phase therefore will occur below a critical temperature Tc above which the gap �
vanishes. Tc, therefore, can be determined from (23.20), by imposing� = 0. Then,
performing the change of variable y = ξ

2T and integrating by parts, one readily gets
(re-instating �)

1

λNEF

= ln

(
2γ�ωD

πTc

)
, (23.23)

or

Tc = 2γ

π
�ωDe

− 1
λNEF , (23.24)

where γ = eC is the exponential of the Euler constant, C � 0.577.
An interesting feature of BCS superconductivity is that any system describable

by the BCS Hamiltonian will be in a superconducting phase for T < Tc, irrespec-
tive of the value of the coupling parameter λ. As we will see, this is no longer
valid for Dirac-BCS systems. The gap at zero temperature, namely |�0|, in partic-
ular will be always non-vanishing for conventional BCS systems. It can be easily
determined from the gap equation by making T = 0 in (23.20). The result is

|�0| = 2�ωDe
− 1
λNEF , (23.25)
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Figure 23.1 The BCS critical temperature as a function of the coupling strength.
For any λ > 0, there will be a finite Tc, below which the system is in an SC phase.

in such a way that the famous ratio

Tc

|�0| =
γ

π
(23.26)

is a universal number for conventional BCS superconductors.
The exponential factor in the expression for Tc is responsible for the fact that

conventional BCS superconductivity occurs at considerably low temperatures. The
same factor tends to preclude the onset of this form of superconductivity at high
temperatures. Expression (23.24) for the critical temperature also explains the
so-called isotopic effect, namely, the observed modification of Tc upon substitution
of the material constituents by isotopes of different mass, according to

Tc

T ′c
=
(

M ′

M

)1/2

. (23.27)

The above relation follows directly from (23.24), if we realize that the Debye
frequency is inversely proportional to the square-root of the ion mass, namely
ωD ∝ M−1/2.

23.3 Superconductivity of Dirac Electrons

Let us consider in this section the interesting situation of electrons possessing kine-
matical properties described by the massless Dirac equation, and yet undergoing
an effective interaction described by the BCS Lagrangean. The former property
derives from the peculiar form of the crystal structure on which the electrons move
and is known to occur in many advanced materials such as graphene, iron pnictides
and transition metal dichalcogenides, among others. The BCS interaction, by its
turn, can be mediated by the exchange of phonons, as we saw before; however,
we do not exclude the possible existence of a different mechanism producing
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23.3 Superconductivity of Dirac Electrons 375

such effective interaction. We shall actually see that many features of this form of
superconductivity strongly suggest that its underlying mechanism does not involve
phonons.

23.3.1 The BCS-Dirac Lagrangean

The system we have in mind contains electrons with kinematics described by the
Dirac massless equation in two-dimensional space and that are therefore associated
to a Dirac field, which we consider to have two components:

ψσ,a =
(
ψ1,σ,a

ψ2,σ,a,

)
, (23.28)

where σ =↑,↓ are the two spin components and a = 1, . . . , N is a “flavor” index
specifying other electronic attributes, such as the layer, band or valley to which the
electron belongs.

The so-called relativistic BCS Lagrangean density combining relativistic kine-
matics with the BCS interaction, analogous to (23.2), is given by [15]

LR BC S = iψσa � ∂ ψσa + λ

N

(
ψ

†
1↑a ψ

†
2↓a + ψ†

2↑a ψ
†
1↓a

) (
ψ2↓b ψ1↑b + ψ1↓b ψ2↑b

)
.

(23.29)
In this expression, � ∂ = γ μ∂μ and ψσa = ψ†

σaγ
0 , with the two-dimensional Dirac

matrices given by

γ 0 = σ z, γ 0γ 1 = σ x , γ 0γ 2 = σ y, (23.30)

where the σ s are Pauli matrices. We envisage a system in two spatial dimensions,
and for that reason, consider only three Dirac gamma-matrices.

As in the non-relativistic case, we introduce an auxiliary complex scalar field η
and carry out a Hubbard–Stratonovitch transform leading to the Lagrangean

L
[
ψσ,a, η

] = ψσa � ∂ ψσa − 1

λ
η∗η + η∗ (ψ2↓b ψ1↑b + ψ1↓b ψ2↑b

)
+ η

(
ψ

†
1↑a ψ

†
2↓a + ψ†

2↑a ψ
†
1↓a

)
. (23.31)

This implies the following field equation for the auxiliary field η

η = λ (ψ2↓a ψ1↑a + ψ1↓a ψ2↑a
)

η∗ = λ
(
ψ

†
1↑a ψ

†
2↓a + ψ†

2↑a ψ
†
1↓a

)
. (23.32)

As we did in the non-relativistic case, we now perform the quadratic functional
integration over the fermionic fields, thereby obtaining an effective action for
the Cooper pair field η, which includes the effects of the interaction, as well as
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those produced by quantum fluctuations. We, therefore arrive at a vacuum partition
functional similar to (23.11), but with the effective action given by

Sef f [η] =
∫

d3x

(
−N

λ
|η|2
)
− i2NTr ln

[
1+ |η|2

∂2
t − v2

F∇2

]
. (23.33)

Notice that we are working with zero chemical potential, μ = 0, in compliance
to the fact that the Fermi level is located at the vertex of the Dirac cones at E = 0.
Also, observe that we are working in two spatial dimensions, for the purpose of
modelling most of materials exhibiting Dirac electrons, which are essentially two-
dimensional. We also assume the system has a natural energy cutoff  , which is
provided by the lattice itself. Indeed, we have  � �vF/a, where a is the lattice
parameter. Observe that in conventional BCS theory a natural cutoff also exists,
which is the Debye energy, which, by the way, is of the same order of  .

23.4 The Effective Potential at T �= 0: the Phase Diagram

The effective potential corresponding to (23.33) is given by [15]

Veff (|�|, T ) = |�|
2

λ
− 2T

∫
d2k

(2π)2

∞∑
n=−∞

{
ln

[
1+ |�|2

ω2
n + v2

F k2

]}
, (23.34)

where, again, the sum runs over fermionic Matsubara frequencies.
Again the stable phases will be determined by Eqs. (23.17), hence, after per-

forming the Matsubara sum, we conclude that the superconducting gap � must
satisfy

∂Veff

∂|�| = 2|�|
{

1

λ
− 1

α

∫ √|�|2+ 2

|�|
dy tanh

( y

2T

)}
= 0, (23.35)

where α = 2πv2
F and we introduced the physical cutoff  .

For a stable state, characterizing a phase, the second derivative at the nonzero
solution of the equation above must be positive, hence

∂2Veff

∂|�|2 =
2|�|2
α

⎧⎪⎪⎨
⎪⎪⎩

tanh
( |�|

2T

)
|�| −

tanh

(√
|�|2+ 2

2T

)
√|�|2 + 2

⎫⎪⎪⎬
⎪⎪⎭ > 0. (23.36)

This is always satisfied, provided |�| �= 0, because the function tanh x
x is mono-

tonically decreasing.
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Solving the gap equation (23.35), we obtain an implicit equation for the gap,
namely [15]

|�|(T ) = 2T cosh−1

[
e−

α
2Tλ cosh

[√
�2(T )+ 2

2T

]]
. (23.37)

From this we can derive an implicit equation determining the critical temperature
above which the gap would vanish. Indeed, taking � → 0 in the above equation,
we get

cosh

(
 

2Tc

)
= e

α
2Tcλ , (23.38)

from which we can extract Tc as a function of the coupling parameter λ.
We can now obtain an expression for the gap as a function of the temperature

in the regime where |�|, Tc �  . Indeed, by inserting (23.38) in (23.37), one
straightforwardly obtains

|�|(T ) = 2T cosh−1

{[
2

1+ e− /Tc

] Tc
T −1
}
. (23.39)

The fact that a nonzero� exists is the sign that the system is in a superconducting
phase, both for Dirac and regular electrons.

23.5 The Onset of Superconductivity at T = 0: A Quantum
Phase Transition

Let us investigate now the superconducting transition at T = 0. Taking (23.37) in
the limit T → 0, we obtain the gap �0 = �(T = 0):

|�0| = αλ
2

[
1

λ2
c

− 1

λ2

]
, (23.40)

where λc = α
 

. This should be compared with (23.25). Observe that for a super-
conducting gap to occur at zero temperature, the coupling parameter λ must be
larger than a threshold value λc. This characterizes a quantum phase transition,
namely a transition that is produced by quantum fluctuations rather than by thermal
fluctuations and therefore occurs already at T = 0.

We can actually see that, below this threshold, a superconducting phase will not
occur at any temperature. Indeed, from (23.38) we obtain

Tc =  
(
1− λc

λ

)
2 ln

[
2

1+e− /Tc

]  �Tc−→  
(
1− λc

λ

)
2 ln 2

, (23.41)
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Figure 23.2 The SC transition temperature, Tc for Dirac electrons, showing the
existence of a threshold coupling λc below which there is no SC phase, contrary
to the case of usual electrons. To be compared with Fig. 23.1

Figure 23.3 The SC gap as a function of temperature, for Dirac electrons, show-
ing the critical temperature Tc, above which it vanishes. Notice that a nonzero Tc
requires a coupling λ > λc.

which should be compared with (23.24). Since the denominator is always positive,
we will only have a positive solution for the critical temperature when λ > λc.

Inserting (23.41) in (23.39), we obtain a clean expression for the superconduct-
ing gap of Dirac electrons as a function of the cutoff , the critical coupling λc and
the critical temperature Tc, namely

|�|(T ) = 2T cosh−1

{
exp

[
 

2Tc

(
1− λc

λ

)(
Tc

T
− 1

)]}
. (23.42)

Notice that the gap will vanish at the critical points λ = λc and T = Tc. Conversely
it will only be different from zero when the argument of the inverse hyperbolic
cosine is larger than one, namely at λ > λc and T < Tc.
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Near the transition (T < Tc ; λ > λc) the gap will behave as

|�|(T ) T∼Tc→ 2
√
 Tc

(
1− λc

λ

) 1
2
(

1− T

Tc

) 1
2

. (23.43)

This implies the superconducting transition is of second order with a critical expo-
nent 1/2. Notice that we obtain, from the microscopic theory, the same critical
behavior that was advanced by the phenomenological Landau–Ginzburg approach
in Eq. (4.72).

Now, from (23.39) we can obtain a relation between the critical temperature and
the gap at T = 0. Indeed, taking the zero temperature limit in that equation, we
get [15]

Tc

|�0| =
1

2 ln
[

2
1+e− /Tc

]  �Tc−→ 1

2 ln 2
, (23.44)

which should be compared with (23.26). Notice that also for Dirac electrons, we
obtain an universal relation between the critical temperature and the gap at T = 0,
provided, of course this in non-vanishing.

The behavior of Dirac electrons with respect to superconducting properties is
radically different from that found in regular metals, where a positive value of Tc

would be always found for the whole range of the coupling parameter λ, as we can
clearly see in (23.24). Another crucial difference is the fact that in regular BCS
superconductors, we have a finite density of states NEF at the Fermi level. These
play an important role in the mechanism of conventional BCS superconductivity,
as we can infer from (23.24) and also from the form of the effective electron-
phonon interaction responsible for this phenomenon: Eqs. (3.62) and (4.82). This
is a manifestation of the Cooper theorem, according to which, for electrons around
a Fermi surface there will always exist a superconducting phase below a certain
critical temperature Tc, no matter how weak the attractive interaction might be, or,
equivalently, no matter how small the coupling parameter λmight be. In the case of
Dirac electrons, (23.24) must be replaced by (23.41) and we immediately see that a
superconducting phase will only occur when the coupling parameter is larger than
a threshold value given by λc.

The above study strongly indicates that, even though, for the description of
superconductivity of Dirac electrons, we used same effective quartic BCS inter-
action usually employed for describing this phenomenon in regular metals, the
underlying mechanism must be completely different in each case. For conventional
electrons forming a Fermi surface, we have seen that the phonon-mediated inter-
action does indeed lead to the BCS effective interaction. In the case of systems
with Dirac electrons, conversely, the absence of a Fermi surface, the existence of a
lower coupling threshold, showing that the Cooper theorem does not apply, among
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other features, unequivocally points to a novel mechanism, not involving phonons,
behind the attractive electronic effective interaction.

23.6 The Effect of an External Magnetic Field

We considered in Chapter 4 the consequences of the onset of a superconduct-
ing phase in a material under the action of an external magnetic field. It was
seen that the magnetic field is deeply affected by the superconducting state of
the sample, actually being completely or partially expelled from the region where
a persistent current exists. By the same token, one should expect that the pres-
ence of a magnetic field will strongly affect the superconducting properties of the
material.

For this purpose, let us investigate in this subsection the effects an applied exter-
nal magnetic field will produce in the superconducting state itself [16]. We shall
pursue this study in the framework of Dirac electrons constrained to move on a
plane, hence we take as our starting point the BCS-Dirac Lagrangean, represented
by (23.29).

We shall consider here that system in the presence of a constant and uniform
external magnetic field B = ∇×A, applied perpendicularly to the plane where the
electrons move, which corresponds to

LR BC S[B] = i ψσa

[
γ 0∂0 + vFγ

i
(
∂i + i

e

c
Ai

)]
ψσa − μBψ

†
σa ( B · �σ)ψσa

+ λ
N

(
ψ

†
1↑a ψ

†
2↓a + ψ†

2↑a ψ
†
1↓a

) (
ψ2↓b ψ1↑b + ψ1↓b ψ2↑b

)
, (23.45)

where μB is the magneton-Bohr.
As we did before, it is convenient to perform a Hubbard–Stratonovitch transfor-

mation in order to transform the quartic interaction into a trilinear one, involving
two fermion fields and the Cooper pair complex scalar field η. Thereafter we may
integrate over the fermion fields, thereby obtaining an effective action for the η-
field. From this, we may derive the expression of the effective potential, which
is a function of the vacuum expectation value � = 〈0|η|0〉 and the magnetic
field B. We choose the vector potential corresponding to this magnetic field as
A = B(0, x).

Proceeding as we did in Subsection 19.2.1, we obtain the effective action [16]

Sef f [η, B] = −N

λ

∫
d3x |η|2

− i2NTr ln

[
1+ |η|2

(∂t + μB B)2 − v2
F(∇ + i e

c A)2

]
, (23.46)
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and out of this we derive the effective potential

Veff (|�|, B) = |�|
2

λ
− 2T

∫
d2k

(2π)2

∞∑
n=−∞

{
ln
[
(ωn + μB B)2

+v2
F

[
k2

x +
(

ky + e

c
B〈x〉

)2
]
+ |�|2 + gB

]
− ln

[
ω2

n + v2
F |k|2

]}
,

(23.47)

where g = v2
F(e/c) and the sum runs over fermionic Matsubara frequencies.

In the above expression, we have replaced the y-component of the applied vector
potential, Ay = Bx , by its average value, 〈Ay〉 = B〈x〉. The details of how this
average is computed actually are not important since, being a constant, it can be
shifted away through a change of variable in the ky integral.

In order to determine the phase diagram in the presence of the magnetic field,
we must look for the minima of the effective potential. Taking the |�|-derivative
and performing the Matsubara sum, we get

∂Veff

∂|�| = 2|�|
{

1

λ
−
∫

d2k

(2π)2
1

E

[
sinh (βE)

cosh (βE)+ cosh (β μB B)

]}
= 0, (23.48)

where E =
√
v2

F k2 + |�|2 + gB and β = 1/T .
From (23.48) we derive the gap equation [16]

1 = λ

α

∫  

√
|�|2+gB

dy
sinh (βy)

cosh (βy)+ cosh (β μB B)
, (23.49)

where  /vF is the high-momentum cutoff, assumed to be much larger than the
lower integration limit of the above integral.

The condition for a stable minimum is given by

∂2Veff

∂|�|2 =
2|�|2

αβ
√|�|2 + gB

[
sinhβ

√|�|2 + gB

coshβ
√|�|2 + gB + coshβμB B

]
> 0, (23.50)

which is always satisfied for a non-vanishing solution |�|.
Performing the y-integral in (23.49), we get an equation for the gap, namely [16]

�2(T, B) = T 2

{
cosh−1

{
e−

α
Tλ

[
cosh

(
 

T

)
+ cosh

(
μB B

T

)]

− cosh

(
μB B

T

)}}2

− gB. (23.51)
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Figure 23.4 The critical coupling increases with a magnetic field and eventually
diverges at a critical upper field Bc, above which, consequently, the SC phase is
destroyed.

From this equation we can obtain the gap at zero temperature. Indeed, making
T = 0 above, we obtain

|�0| =
√
α2

(
1

λc
− 1

λ

)2

− gB. (23.52)

This will vanish for λ < λc(B), where the new, field-dependent critical coupling is
given by

λc(B) = λc

1− λc

√
gB
α

. (23.53)

Notice that the applied magnetic field increases the critical coupling or, in other
words, in the presence of an external magnetic field, a stronger interaction is
required for producing a superconducting phase.

By making |�| = 0 in (23.51), we can determine the critical temperature [16]

Tc(B) =
√|�0|2 + gB

ln
{

2
[
cosh

(√
gB

Tc

)
+ cosh

(
μB B

Tc

)]} . (23.54)

Notice that for B = 0, we have �0/Tc = 2 ln 2, in agreement with the result
obtained in the previous subsection. Observe that Tc(B) < Tc(0), and we con-
clude that the magnetic field reduces the critical temperature for the onset of a
superconducting phase. In the above expression, we may clearly distinguish the
contributions provenient of the coupling of the magnetic field to orbital and spin
degrees of freedom.
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Expressing the gap in terms of Tc, we have

�2(T, B) =
{

T cosh−1

{
2(

Tc
T −1)

[
cosh

(√
gB

Tc

)
+ cosh

(
μB B

Tc

)]Tc/T

− cosh

(
μB B

T

)}}2

− gB. (23.55)

Observe that the right-hand side of the above equation vanishes for T → Tc,
implying that the superconducting gap will be zero above this temperature, as it
should.

We can now determine the critical magnetic field, namely the field threshold
above which the gap would vanish. For temperatures near Tc, where the critical
field is expected to be small, a B-expansion in (23.55) leads to [16]

Bc(T ) ∼ 8 ln 2 Tc(0)
2

(
1− T

Tc(0)

)
, (23.56)

where Tc(0) is given by (23.41). The critical field shows a linear dependence on
the temperature near the transition point. This is in clear contrast to conventional
BCS theory, where the critical field decays quadratically with the temperature.

23.7 Overview

We have demonstrated in this chapter, using the efficient methodology of quan-
tum field theory, the occurrence of a nonvanishing quantum average of Cooper
pair density, in different systems, under different regimes of temperature, interac-
tion strength, coupling parameter and magnetic field. This charge carrier density,
which was the central target of the calculations pursued here, is represented
mathematically by the gap parameter �.

Notice that, whenever |�| is non-vanishing, in the many examples seen above,
it is always a constant. This implies the charge carriers form the incompress-
ible fluid required for the existence of a persistent current, or equivalently, for a
superconducting phase.

We have examined in detail the specific conditions required for a phase display-
ing a nonzero � to occur, both in conventional and unconventional Dirac-BCS
superconductors, determining in particular the critical expressions of temperature,
coupling strength and magnetic field leading to such a phase.

Several results, such as the critical temperature dependence on the coupling
parameter, the existence of a lower coupling threshold, the linear dependence of
the critical magnetic field on the temperature, the occurrence of a superconducting
phase even in the absence of a Fermi surface, among others, strongly indicate that
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for Dirac electrons a new mechanism not involving phonons must be responsible
for superconductivity.

Furthermore, the linear dependence of the critical temperature on the inverse
coupling parameter, which we found in Dirac systems, rather than the exponentially
decaying dependence that was found in the conventional BCS case, points toward
the concrete possibility of attaining ever higher critical temperatures in these novel
superconductors.

23.8 The Anderson–Higgs–Meissner Mechanism

We cannot close a chapter on quantum field theory methods in superconductivity
without describing the close relationship existing between this phenomenon, more
specifically the Meissner effect, and the Anderson–Higgs mechanism, which plays
a fundamental role in the Standard Model of the fundamental interactions.

The Landau–Ginzburg Theory Revisited

We have derived in this chapter, starting from a basic microscopic theory, results
which were also described by the phenomenological Landau–Ginzburg theory
introduced in Chapter 4. These included the existence of a constant gap param-
eter |�| corresponding to the Landau–Ginzburg order parameter |
|2, namely, the
density of charge carriers.

The accurate description of the phenomenon of superconductivity, described
here to a large extent relying on the properties of |�|, is a consequence of the
dynamics underlying the electronic interaction. The dynamics, by itself, leads
to the resulting superconducting phase, provided the temperature and perhaps
coupling are in a certain range.

The same features, however, can emerge from the phenomenological Landau–
Ginzburg theory as a consequence of the judicious choice of the parameters found
in the quartic potential appearing in the free-energy Eq. (4.68). Yet, the micro-
scopic theory, of course, offers a deeper and further-reaching comprehension of
the system, which will certainly allow a higher degree of control.

A side effect of the existence of a nonzero average of charge carriers, which by
the way is responsible for the occurrence of persistent currents, as we have seen, is
that the gauge field that is coupled to these charge carriers becomes exponentially
damped, with the damping parameter being precisely proportional to the charge
carrier average density. The exponential damping of the gauge field, by its turn,
was the explanation for the Meissner effect, namely, the expulsion of a magnetic
field from a superconducting region.
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Anderson–Higgs–Meissner Effect

The Anderson–Higgs mechanism is a procedure by which a gauge field coupled to
a scalar field becomes exponentially damped, provided this scalar field possesses a
nonzero vacuum expectation value. The damping parameter, then, is proportional
to this vacuum expectation value. From a quantum-mechanical point of view, the
particles consisting in the quantized version of this gauge field acquire a mass,
which is also proportional to that vacuum expectation value.

This mechanism was required in the Standard Model of the fundamental inter-
actions to account for the extremely short range of the weak interactions and for
the massive nature of the intermediate bosons W± and Z .

We immediately see that the Anderson–Higgs mechanism is precisely the Meiss-
ner effect, except perhaps for the fact that the gauge group is SU(2)×U(1) in the
former and U(1) in the latter.

Let us look a bit closer to the mechanism. Assuming a non-abelian gauge field
Aa
μ, a = 1, . . . , N corresponding to a symmetry group with generators T a

i j , a =
1, . . . , N , i, j = 1, . . . ,M and a scalar field �i , i = 1, . . . ,M , both transforming
in the fundamental representation of this group. A “mass” term is given by

1

2
M2

ab Aa
μAb

μ. (23.57)

Such a term, at a classical level, would produce an exponential damping of the field,
and at a quantum-mechanical level would produce particles with a mass given by
the eigenvalues of the mass matrix Mab.

The problem with this term is that it breaks gauge invariance and, without gauge
invariance, we lose unitarity. Hence, we cannot explicitly introduce a mass term
for the gauge field. Can we generate such a mass term without breaking gauge
invariance? The Anderson–Higgs mechanism is the positive answer.

Consider a gauge invariant Lagrangean of the form

L = (Dμ�)i (Dμ�)i − V (�), (23.58)

where the covariant derivative is given by

(Dμ)i j = δi j∂μ − ig Aa
μT a

i j . (23.59)

This Lagrangean will clearly contain a term

1

2

[
2T a

ik(�)k T b
il (�)l

]
Aa
μAb

μ,=
1

2

[
2T a

ik T b
il

]
�k�l Aa

μAb
μ, (23.60)

which in principle describes a quartic interaction involving the scalar and gauge
fields. Now, suppose we choose the potential in (23.58) in such a way that the
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minimum occurs at a nonzero constant value 〈�i 〉 = ϕ0
i . For the sake of stability,

then, we must shift the scalar field around this constant value,

�i → �i − 〈�i 〉, (23.61)

thereby generating a mass matrix

M2
ab = 2T a

ik(ϕ
0)k T b

il (ϕ
0)l . (23.62)

In the U(1) case, � is the scalar field 
, the modulus of which represents the
density of charge carriers. The mass matrix reduces to a scalar: the exponential
damping factor, which is precisely the inverse penetration length responsible for
the Meissner effect! We may therefore safely assert that the Meissner effect is
the Anderson–Higgs mechanism for a U(1) symmetric field theory, which is the
Landau–Ginzburg theory.

Let us now look into the past and inquire about the future. All results obtained
originally from the Landau–Ginzburg theory were derived later on from a more
complete microscopic theory, as we have shown in detail in this chapter. The
Landau–Ginzburg or Cooper pair field, in particular, was shown to be composite
of two electron fields. Should the same happen with the Anderson–Higgs boson?

It seems appealing, from the esthetic point of view, and natural from the his-
toric perspective that the Higgs sector of the Standard Model constitutes a kind of
phenomenological Landau–Ginzburg theory, which should be replaced by a more
fundamental microscopic theory, where the mass generation mechanism would be
produced by the dynamics, as it happen in the BCS theory.
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The Cuprate High-Temperature Superconductors

Until 1986, the highest temperature at which superconductivity had been observed
was 23.2K in Nb3Ge. There was an issue as to whether BCS theory would
impose an upper limit on the critical temperature for the onset of superconductiv-
ity. Actually, as remarked before, the exponential factor in (23.24) may be viewed
as responsible for the relatively low temperatures of the BCS superconductors.
That expression for Tc has in fact a mathematical upper limit, of the order of the
Debye temperature, which is typically about a few hundred Kelvin. This, however,
would correspond to an infinite value of the product λN (EF) of coupling parameter
and Fermi level density-of-states. The mathematical upper bound, consequently, is
way above the temperatures corresponding to realistic physical values of param-
eters. In 1986, La2−x BaxCuO4 and La2−x SrxCuO4 (LSCO) where shown to
present a superconducting phase at temperatures up to about 40K . Soon after,
Y Ba2Cu3 O6+x (YBCO) was shown to have a superconducting phase up to 92K .
These were the first members of the cuprate family, which contains materials such
as HgBa2Ca2Cu3 O8+x , which exhibits a superconducting phase up to a tem-
perature of the order of 130K without pressure and of about 160K under high
pressure. Many indications suggest that the mechanism leading to superconduc-
tivity in cuprates is not the phonon-mediated BCS mechanism. There is general
consensus on this point. Nevertheless, there is so far no agreement about the spe-
cific mechanism leading to the formation of Cooper pairs in cuprates, despite the
many proposals that have been made. In this chapter, we keep mostly in the region
where consensus has been reached, except for Section 24.4, which contains our
own contribution to the subject.

24.1 Crystal Structure, CuO2 Planes and Phase Diagram

A common feature of all materials belonging to the cuprates family is the pres-
ence of CuO2 planes, consisting in a square lattice, which, before doping, contains
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388 The Cuprate High-Temperature Superconductors

Figure 24.1 The CuO2 planes, a common feature of all the high-T c cuprate
superconductors. Black dots and white dots are, respectively, Cu++ and O−−
ions.

Cu++ ions on the sites and O−− ions on the links. The latter has a 2p6 electronic
configuration, whereas the former is in a 3d9 configuration. The oxygen ions are in
a noble gas configuration, while the copper ions have an unpaired electron, which
creates a localized magnetic moment at each site. This crystal structure produces a
super-exchange interaction that leads to an antiferromagnetic coupling among the
unpaired electrons of the copper ions on the sites of the square lattice, which is
mediated by the electrons in the oxygen ions.

The parent, undoped cuprates are therefore accurately described by a two-
dimensional AF Heisenberg model on a square lattice. The unpaired electrons of
the copper ion are the main actors at this stage. The oxygen ions only role, at this
level, is to provide the super-exchange interaction between the neighboring cop-
per electrons. The localized magnetic moments settle in the ordered Néel ground
state, below a certain critical temperature TN (0). There is a clear dependence of
Tc on the number of adjacent CuO2 planes that are found in the cuprates unit
cell. In the Hg sub-family, for instance, HgBa2CuO4+x , HgBa2CaCu2 O6+x and
HgBa2Ca2Cu3 O8+x , which possess, respectively, one, two and three planes in
the unit cell, the highest transition temperatures are, respectively, 94K , 128K and
134K . The same happens in the Bi and T l sub-families.

Hole Doping

In between the CuO2 planes there are atoms, such as La in LSCO, which in the
undoped compounds have just a structural function. Most of the interesting physics
of the cuprates, however, actually occurs when we dope the system by replacing a
certain fraction of the atoms in between the planes with others having a different
stoichiometry. In LSCO, for instance, we replace a fraction of the La atoms with
Sr , which is an electron receptor. Charge balance is, then, achieved by the Sr
atoms absorbing one electron from the CuO2 planes. Experimental evidence [194]
indicates that this electron comes from the O−− ions of the CuO2 planes. By the
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Figure 24.2 The schematic phase diagram of the hole-doped high-T c cuprate
superconductors, exhibiting the SC and AF domes, along with the spin-glass
phase (SG) and the pseudogap line

doping process, therefore, we create holes in such planes, or more precisely, in the
O−− ions located in the links of the square lattice. The presence of these quickly
destroys the Néel order, as we can see from the doping-dependent Néel temperature
TN (x) in the phase diagram.

By further doping, the cuprates eventually undergo a superconducting phase
transition with a critical temperature Tc(x), which starts at zero for some critical
doping xc, increases up to an optimal doping and eventually decays to zero, thereby
forming a superconducting dome in the T (x) phase diagram. This and the AF dome
are two of the most important features of the phase diagram of the cuprates. There
is clear experimental evidence that superconductivity in the cuprates occurs by the
formation of Cooper pairs out of the holes created by the doping process in the
O−− ions. The supercurrent, therefore, flows along the CuO2 planes. The crucial
issue is, what interaction produces the formation of Cooper pairs out of the holes?

The so-called pseudogap (PG) region of the phase diagram is characterized by a
depletion of the electronic density of states and has been interpreted as a precursor
to the SC phase. Below a temperature T ∗(x), the bound-state Cooper pairs would
form in such a way that the complex SC order parameter would have the form

〈ψ†ψ†〉 = �eiθ

with � �= 0. The phase θ , then, decouples and, for temperatures below TK T ,
according to (18.152), the system undergoes a Berezinskii–Kosterlitz–Thouless
transition to a regime where phase coherence sets in and the following thermal
averages become different from zero:

〈cos θ〉 = 〈sin θ〉 = 0 ⇒ 〈cos θ〉 �= 0 ; 〈sin θ〉 �= 0.

Effectively, therefore, the SC transition occurs at Tc = TK T , below which

�〈eiθ 〉 �= 0.
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Figure 24.3 The schematic phase diagram of the electron-doped high-T c cuprate
superconductors, exhibiting a smaller SC dome and a larger AF one. Despite the
existence of a clear asymmetry between hole- and electron-doped cuprates, yet
the qualitative features of the phase diagram look the same for both.

The first term sets in below T ∗(x), while the second does it below TK T < T ∗,
which is therefore the actual Tc(x).

The shortage of available electrons, due to the pair formation, accounts for the
depletion of the density of states.

Electron Doping

For some materials in the cuprates family, doping introduces electron donors
in between the CuO2 planes. Such is the case of Nd2CuO4, doped with Ce:
Nd2−xCexCuO4, which has a transition temperature Tc = 24K at x = 0.15.
Further examples are Pr2−xCexCuO4 and Sm2−xCexCuO4. In the case of elec-
tron doping, an extra electron is pumped into the CuO2 planes, occupying the
vacancy available in the Cu++ ions. These extra electrons pair with the copper
ions’ unpaired electron, thus destroying the local magnetic moment and, eventu-
ally, the Néel state. Upon further doping, these extra electrons form Cooper pairs
and a superconducting phase sets in. Despite the qualitative symmetry existing
between hole- and electron-doped cuprates, clearly the latter seem to exhibit lower
transition temperatures and a smaller SC dome.

In the next section we analyze phenomenological features that characterize the
cuprates.

24.2 Phenomenology

24.2.1 Superconducting Phase

Quite a few features of the SC phase of cuprates differ from conventional BCS
superconductors. Among these, we have the isotopic effect, the coherence length
and the symmetry of the order parameter.
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First of all, there is no isotopic effect in the cuprates. Then, the coherence
length, which roughly measures the Cooper pair size, ranges from ξ = 1nm to
ξ = 4nm in cuprates, whereas in conventional superconductors it ranges from
ξ = 50nm to ξ = 1000nm. As a consequence, the ratio between penetra-
tion length and coherence length, λ/ξ , is considerably higher in cuprates than
in conventional superconductors, which makes of all of them Type-II supercon-
ductors. Another distinguished feature of the cuprate superconductors is the order
parameter’s symmetry. The analysis of ARPES photoemission experiments indi-
cates a momentum dependence of the superconducting order parameter, contrary
to the case of conventional BCS superconductors, where the SC gap is uniform.
Fig. 24.4 shows the results for Bi2Sr2CaCu2 O8+x [196]. The experiment is per-
formed by sweeping different paths along the first Brillouin zone, both above and
below Tc. Path B clearly shows different results for the two cases, whereas Path A
shows no difference at all. This reveals the anisotropy of the SC order parameter
�(k) = 〈c†(−k)c†(k)〉, which is compatible with a d-wave symmetry, namely

�(k) = 〈c†(−k)c†(k)〉 = �0
[
cos kxa − cos kya

]
, (24.1)

where a = 0.38nm is the lattice parameter of the CuO2 square lattice.

Figure 24.4 Schematic result of ARPES experiment showing the photoemission
intensity versus the energy relative to the Fermi level in eV for a sample of Tc =
78 K along different paths in the Brillouin zone. Path A shows no temperature
dependence, whereas path B shows clearly different results above and below Tc.
Different temperature-sensible results for paths A and B show evidence for the
gap anisotropy [196].
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24.2.2 Normal Phase

This is a feature where there exists a strong difference between conventional BCS
superconductors and cuprates. In the former, the system, when in the normal phase,
is a metal. This is closely related to the fact that the effective electron-electron
interaction, responsible for the Cooper pair formation, is attractive whenever the
electrons’ energy difference is less than the phonon energy, �ω, according to (4.82).
This condition is fulfilled when most of the active electrons are precisely on the
Fermi surface or within a shell of width �ω around it. This, however, just hap-
pens at low temperatures; otherwise the electrons are far away from the Fermi
surface. Hence we can figure out why conventional, phonon-mediated, BCS super-
conductivity usually occurs at very low temperatures. They build up around a Fermi
surface.

Cuprate superconductors are neither regular metals nor Fermi liquids in the
normal phase. An evidence for this is a temperature linear dependence of the
resistivity, whereas for a metal we would have a T 5 dependence and for a Fermi
liquid, T 2.

There is no evidence indicating that Cooper pairs should form around a Fermi
surface in the normal phase of cuprates, as is the case in BCS superconductivity.
The inexistence of the isotopic effect in the SC phase and the d-wave symmetry
of the SC gap are additional features that strongly suggest that the mechanism
responsible for superconductivity in cuprates is not mediated by phonons.

An interesting feature of some high-Tc cuprates is the organization of the doped
holes in completely anisotropic form in the CuO2 planes. In lightly doped LSCO,
for instance, there is experimental evidence [214] that the totality of doped holes
assemble along one of the directions of the O−− square lattice, which is rotated
by 45◦ with respect to the Cu++ lattice. This creates direction-dependent doping
effects, as we shall see below.

24.3 The Undoped System

The pure parent compounds of the cuprates family are accurately described by an
antiferromagnetic Heisenberg model on a square lattice [195]. The localized spins
thereof correspond to the unpaired electrons of the copper ions located at each site
of such lattice. We start, therefore, with the Hamiltonian

H = J
∑
〈i j〉

Si · S j , (24.2)

where J > 0 is the super-exchange coupling and Si is the spin of the unpaired
electron of the 3d9 orbital of the copper ion Cu++ placed at the site i of a square
lattice corresponding to the CuO2 planes of La2CuO4. We choose this compound
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because it is one of the most studied and consequently one for which there are the
most abundant experimental results.

We have seen in Chapter 17 that, within a quantum field theory approach, we
describe the sublattice magnetization of the above magnetic system as the O(3)
nonlinear sigma field n, governed by the Lagrangean density

L = ρs

2

[
1

c2
∂t n · ∂t n− ∇n · ∇n

]
, (24.3)

supplemented by the constraint n · n = 1. In the above expression, ρs and c are,
respectively, the spin stiffness and the spin-wave velocity.

The present description can be reformulated, in the so-called CP1 language,
involving two complex scalar fields zi , i = 1, 2, which are related to the spin
sublattice magnetization field, as follows

n = z∗i �σi j z j . (24.4)

The CP1 partition functional is expressed as

Z = Z−1
0

∫
Dzi Dz∗i D Aμ exp

{
−2ρs

∫
d3x(Dμzi )

∗(Dμzi )

}
δ
[
z∗i zi − 1

]
, (24.5)

where Dμ = ∂μ + i Aμ.
Notice that we did not include a Hopf term, which in CP1 language has the form

of a Chern–Simons Lagrangean. There is a vast amount of evidence indicating that
this term is absent in the pure system corresponding to a Heisenberg antiferromag-
net on a square lattice [197, 198, 199, 200, 201]. This, however, is no longer true
in the presence of doping, as we shall see below.

24.4 A Mechanism of Doping: Skyrmions

24.4.1 A Model for Doping

The above partition functional correctly describes the pure, half-filled, AF system.
We use it as the starting point for the description of the doping process. We will see
that the final outcome of the doping procedure will be to replace the spin-stiffness
ρs by a doping-dependent effective spin-stiffness ρs(x), which will be reduced until
it eventually vanishes at a critical doping xc. The Néel temperature at zero doping,
TN (x = 0) = TN (ρs), accordingly, will be replaced by TN (x) = TN (ρs(x)). This
will also vanish at the critical doping, TN (xc) = 0, thus creating the AF dome in the
TN×x phase diagram. We will consider the specific case of LSCO, because for this
material, for each doped Sr atom, there corresponds the creation of a hole in the
CuO2, hence there is a one-to-one correspondence between the amount of charge
units doped into the planes, δ, and the stoichiometric parameter x characterizing
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the compound. This is no longer true, for instance, for YBCO, where part of the
doped charge goes into O−Cu−O chains outside of the planes and, consequently,
δ �= x . In this case, any doping theory, which are based on δ, when compared to
experiments, which are based on x , requires a detailed modelling of the distribution
of the doped charges in between the planes and chains.

We describe the doped holes into the CuO2 planes by means of a fermion
field ψ . According to both numerical estimates [174] and experimental results
[204, 205], LSCO has a Fermi surface with four branches, which is represented
in Fig. 24.5. This can be conveniently modeled by a dispersion relation

ε(k) = ±
√(

kx ± π
a

)2
v2

F +
(

ky ± π
a

)2
v2

F + m∗2v4
F . (24.6)

Each branch above corresponds to the dispersion relation of a Dirac field ψ ,
but shifted about the points (±π

a ,±π
a ), namely, centered on the corners of the first

Brillouin zone. Expanding ε(k) around the Fermi energy εF > m∗v2
F , we get a

linear dispersion relation.
The doping constraint on the charge-current density on the CuO2 planes, then, is

introduced by identifying the Dirac field current with dopants’ universe-line [202,
203]:

ψγμψ = �μ ≡
4∑

i=1

δi

∫ ∞

X;Li

dξμδ3(ξ − x). (24.7)

The above integral is taken along the universe-line, Li , of the doped charge, located
at Xi = (Xi , t) and the sum accounts for the four components of the Dirac
field. The dopant density would be given by the zeroth component of the above
expression, namely,

ψ†ψ ≡
4∑

i=1

ψ
†
i ψi =

4∑
i=1

δi δ
2(x− Xi (t)). (24.8)

Figure 24.5 The four-branched Fermi surface of LSCO
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Notice that there are four branches in the Fermi surface, each one satisfying the
relation above, hence the effective doping parameter must be multiplied by a factor
four.

The considerations made so far in this subsection enable us to model the kine-
matics of the holes doped into the CuO2 planes. The kinematical Lagrangean
density would be

L0 = ψγμ
(
i∂μ + Aμ

)
ψ − m∗vF

�
ψψ, (24.9)

where Aμ, which in momentum space is given by Aμ(k) = (0, πa , πa ), results from
shifting the center of the Fermi surface to one of the corners of the first Brillouin
zone, according to (24.6), thereby generating one of the four Fermi arcs.

With regard to the interaction of doped holes with the localized spins back-
ground, we will assume it is magnetic and directly involving the spin of the holes
and the localized spins of the copper ions given by n = z†

i �σi j z j . Inspired by
the results of Section 18.3, the interaction of the doped holes with the localized
spins background is assumed to be described by the minimal coupling of the Dirac
fermion field with the CP1 vector field Aμ. This also guarantees overall gauge
invariance.

We therefore ultimately write the partition functional describing the low doping
regime of LSCO as

Z =
∫

Dzi Dz∗i D AμDψDψ† exp

{
−
∫

d3x
[
2ρs(Dμzi )

∗(Dμzi )

+ θ
2
εμναAμ∂ν Aα + iψγμ∂μψ − m∗vF

�
ψψ − ψγμψ (Aμ + Aμ

)]}
× δ [z∗i zi − 1

]
δ
[
ψγμψ −�μ] , (24.10)

where we made the shift corresponding to (24.6) and (24.9). Notice that we allowed
the presence of a residual Hopf term, which should exist in the presence of doping.

We now introduce a functional representation for the last delta above:

δ
[
ψγμψ −�μ

] = ∫ Dλμ exp

{
i
∫

d3xλμ
[
ψγμψ −�μ]} . (24.11)

We then integrate over the fields zi , z∗i , ψ,ψ
†, λμ, in order to obtain an effective

theory for the Aμ field. The zi ’s integral can be easily done in the approximation of
constant |zi | and using the functional delta. The fermionic integral is performed in
the small fermion mass expansion [271] and the remaining λμ-integral is quadratic.
The resulting effective Lagrangean for Aμ is [202]
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L = θ
2
εμναAμ∂ν Aα − 1

4
Fμν

[
2ρs

−�

]
Fμν −�μ (Aμ + Aμ

)
+�μ [�1 Pμν +�2Cμν

]
�ν. (24.12)

In the above expression, Pμν = −�δμν + ∂μ∂ν and Cμν = −iεμαν∂α and �1 and
�2 are operators having the Fourier transform

�1(k) = α

(k2)3/2
− γm∗vF/�

k4

�2(k) = β

k2
− ηm∗vF/�

(k2)3/2
, (24.13)

where

α = 8π2

π2 + 16
; γ = 32π(9π2 − 16)

(π2 + 16)2

β = − 32π

π2 + 16
; η = 32π2(24− π2)

(π2 + 16)2
. (24.14)

Let us consider now the field equation that results from (24.12) by choosing a
transverse gauge. This is given by [202]

θεμαβ∂αAβ = �μ + ρs Aμ. (24.15)

Taking the zeroth component and applying to the case of the skyrmion excitation,
for which

εi j∂i AS
j = BS = 2πδ(x− XS) ; AS

0 = 0, (24.16)

we find

2πθδ(x− XS
i ) = δi δ(x− Xh

i ), (24.17)

where XS
i is the skyrmion position and Xh

i is the doped hole position. We conclude
that a skyrmion topological excitation is created precisely at the same point where
the doped hole is introduced in the CuO2 planes. Summing both sides on i and
integrating on x, we infer that

θ(δi ) = 1

2π

4∑
i=1

δi (24.18)

and we see that in the absence of doping, namely, for δi = 0, we have θ = 0, as it
should.

Our model for doping in cuprates predicts that a skyrmion excitation is cre-
ated precisely at the hole location, thereby confirming previous proposals of that
mechanism [207, 208, 209, 210, 211].
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Notice that the Aμ field is screened because of the second term in (24.12). This
excludes the presence of long-range in-plane magnetic fields, which have been
ruled out by muon relaxation experiments [212].

24.4.2 Skyrmion Correlation Function

In order to describe the phase diagram of the cuprates and, more specifically, that
of LSCO, we are now going to apply our method of quantization of topological
excitations, described in detail in Chapter 9, to the quantum skyrmions generated
through doping in these materials. Specifically, we are going to evaluate the quan-
tum skyrmion two-point correlation function and, out of its large-distance behavior,
we shall extract the skyrmion energy as a function of the doping parameter. The
method for obtaining the skyrmion quantum field correlator has been developed
in [213] and was described in detail in Section 19.6. Applying it to the effective
theory of doped LSCO, described in (24.12), we get [202, 203]

〈μ(x, t)μ†(y, t)〉 |x−y|→∞−→ exp

{
−ES(δ)

�c
|x− y|

}
, (24.19)

where the skyrmion energy is

ES(δ) = 2πρs

(
1− 2

√
2�c

aρs
(4δ)−

√
2γ�c

πaρs
(4δ)2

)
. (24.20)

In the above expression we have assumed all δi s are identical or, in other words, that
the doped holes are uniformly distributed among the four Dirac field components.
Furthermore, we have included a factor four corresponding to the four, branches of
the Fermi surface.

Observe that the skyrmion energy decreases as we dope the system. This was
expected, since the introduction of skyrmion defects spoils the order present in the
Néel state.

24.4.3 Sublattice Magnetization × Doping

The skyrmion energy works as a convenient order parameter for the ordered AF
state, since the skyrmion energy would vanish in a disordered paramagnetic state.

The first result we may extract from the expression (24.20), derived for the
energy cost for creating a skyrmion as a function of the doping percentage is the
critical doping for the destruction of the AF order at T = 0. This is obtained by
imposing ES(δc) = 0 on (24.20). Using the experimental input of �c = 0.85±0.03
eVÅ and ρs = 0.0578 eV and a = 3.8 Å, we obtain xc = δc = 0.020±0.03, which
is in excellent agreement with the experimental value.
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An interesting observable quantity we can extract from our model is the doping-
dependent sublattice magnetization M(x), which has been measured directly both
by muon spin relaxation and nuclear quadrupole resonance techniques [215]. This
is given, at zero doping, by M(0) = √ρs . The dependence on the doping param-
eter x can be obtained, provided we introduce an effective, doping-dependent spin
stiffness ρs(x), such that M(x) = √

ρs(x). This can be obtained naturally from
(24.20), however we must keep in mind the presence of stripes in LSCO, which
make the doping modify the spin stiffness only along one of the directions on the
plane, leaving the other unaffected. We will have, consequently,

ρsx(δ) = ρs

(
1− 2

√
2�c

aρs
(4δ)−

√
2γ�c

πaρs
(4δ)2

)
ρsy(δ) = ρs . (24.21)

Now, how could one obtain the sublattice magnetization from the above expres-
sions? It was shown in [216] that the presence of stripes creates an anisotropy,
such that this is given by the square-root of an effective, doping-dependent
spin-stiffness, given by the geometric average of the two direction-dependent
spin-stiffnesses in (24.21): M(δ) = √ρ(δ), where

ρs(δ) =
√
ρsx(δ)ρsy = ρs

(
1− 2

√
2�c

aρs
(4δ)−

√
2γ�c

πaρs
(4δ)2

)1/2

. (24.22)

Hence, since δ = x for LSCO, we finally get

M(x)

M(0)
=
(

1− 2
√

2�c

aρs
(4x)−

√
2γ�c

πaρs
(4x)2

)1/4

. (24.23)

This is plotted in Fig. 24.6, with the input of the above experimental values for �c
and ρs and a for LSCO. It shows excellent agreement with the experimental data
without adjusting any parameter.

From (24.23), we see that, close to the critical doping xc, the sublattice
magnetization behaves as

M(x)

M(0)
=
(

1− x

xc

)0.25

. (24.24)

The critical exponent 0.25 is very close to the measured experimental value of
0.236 [215].
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Figure 24.6 Sublattice magnetization as a function of doping for LSCO. Experi-
mental data from μSR and NQR, from [215]. Solid line from (24.23)

24.4.4 The AF Dome: Néel Temperature × Doping

We now turn to the phase diagram T × x ; more specifically, to the AF dome
in this diagram, which displays the Néel temperature as a function of doping:
TN (x). Now, from the very outset, we must include in our theoretical description
the three-dimensional character of the system; otherwise we would have to face
the Hohenberg–Mermin–Wagner theorem, which forbids two-dimensional systems
from undergoing phase transitions at a finite temperature, T �= 0 [170].

Our strategy will be to start from the expression for the Néel temperature as a
function of the spin stiffness ρs and then replace this by our doping-dependent
effective stiffness ρs(δ), given by (24.22). For this purpose, we follow [217],
where the interlayer coupling was taken into account, and write the partition
functional,

Z =
∫ ∏

i

Dni exp

{
−1

�

∫
�β

0
dτ
∫

d2x
∑

i

ρs

2

[
1

c2
∂t ni · ∂t ni − ∇ni · ∇ni

]
α

2
[ni+1 − ni ]2 ]} δ [|ni |2 − 1

]
, (24.25)
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which considers the three-dimensional character of the layered system. The inter-
layer coupling, the intensity for which is measured by α, is supposed to be very
small.

The authors of Ref. [217] have made a careful determination of the Néel
temperature as a function of ρs in the model above. The result reads [217]

TN = 4πρs

ln
[
5.5005 (4πρs )2

αRc2

] , (24.26)

where αR is the renormalized interlayer coupling parameter. We obtain, from this
expression, the doping-dependent Néel temperature [203], through replacement
of ρs by our effective, doping-dependent spin stiffness ρs(x), given by (24.22),
namely,

TN (x) = 4πρs(x)

ln
[
5.5005 (4πρs (x))2

αRc2

] . (24.27)

This is plotted in Fig. 24.7. The solid line was obtained by adjusting only
one parameter, namely, αR . There is, again, an excellent agreement with the
experimental data for LSCO.

The full understanding of the mechanism underlying superconductivity in the
cuprates has not yet been achieved. Among other features, this must certainly

Figure 24.7 Néel temperature (in K) as a function of doping for LSCO. Exper-
imental data of μSR and NQR, from [215]. Solid line from Eqs. (24.27) and
(24.22)
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include the full description of the T × x phase diagram and, in particular, the
superconducting dome of such diagram. The results obtained for the AF part of the
phase diagram suggest that skyrmions, in particular quantum skyrmions, should
play an important role in the pairing mechanism.

24.5 Overview

The subject of high-T c cuprates is one of the beautiful chapters in the history of
physics. Nevertheless, it is as yet unfinished and for this reason it is not frequently
seen in textbooks. The inclusion of a chapter on the cuprates in this book, therefore,
requires a few explanatory words. We tried to provide here a general account of the
main features of the subject, which, being one of the most important in contem-
porary physics, deserves a special place in any book on condensed matter physics.
The material included will, hopefully, serve as an introduction to the main features
of the subject. In the previous section, however, we took the liberty of including
material that is our own contribution to the subject. Consequently, we would like
to call the reader’s attention to the fact that in doing so, by no means do we try to
imply the existence of any kind of recognition of such results by the community.
They stand only on their agreement with experimental data.
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The Pnictides: Iron-Based Superconductors

A new class of superconducting materials with critical temperatures typically
ranging from about 40K to 60K was synthesized in 2008. These materials,
known as pnictides, are based in Fe and As and show some similarities with the
high-Tc cuprates. Pnictide materials are subdivided in two classes: the so-called
1111 compounds, ROx F1−x FeAs, with R = La,Ce, Sm, Pr, . . ., also known as
oxypnictides, and the 122 compounds M1−x Kx Fe2 As2, where M = Ba, Sr, . . .
Contrary to the cuprates, which had insulator parent (undoped) compounds, the
pnictides’ parent compounds are metals. They have, however, analogously to the
cuprates, a structure containing layers of square lattices exhibiting nontrivial mag-
netic properties and interactions. The interlayer magnetic coupling is a bit larger
than in the cuprates, namely, J⊥/J ∼ 10−4 for 1111 pnictides and J⊥/J ∼ 10−2

for 122 pnictides, whereas for cuprates we have J⊥/J ∼ 10−5. Despite that fact,
a two-dimensional description, both of the parent compounds and of their doped
descendants, works quite well. The phase diagram is quite similar to that of the
cuprates, exhibiting a SC dome and a magnetically ordered dome as well.

25.1 Crystal Structure, FeAs Planes and Phase Diagram

A common feature among all pnictides is the presence of a layered structure con-
taining square lattices, in which Fe++ ions occupy the sites and As atoms are
located in the center of each plaquette, in a buckled structure, alternating between
the two sides of the lattice.

The Fe++ ion is in a 3d6 electronic configuration, with two unpaired electrons,
respectively occupying orbitals 3dxz and 3dyz , according to the Hund rules. This
implies a S = 1 spin quantum number for the localized spins. The doped electrons,
for energetic reasons, will occupy the same orbitals, exhibiting different hopping
parameters, as discussed below. They will undergo a Hund ferromagnetic exchange
interaction with the localized electrons.

402
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Figure 25.1 The schematic phase diagram of the pnictide superconductor
Ba1−x Kx Fe2 As2, exhibiting the SC and magnetically ordered domes

Figure 25.2 The schematic phase diagram of the pnictide superconductor
CeO1−x Fx FeAs, exhibiting the SC and magnetically ordered (SDW) domes

Figure 25.3 The FeAs planes, a common feature of all the iron based pnictide
superconductors. Black dots and white dots are, respectively, Fe++ ions and
As atoms. The latter alternate between the two sides of the plane in a buckled
structure.
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The parent compounds invariably present a magnetically ordered ground state,
usually a Néel state or a collinear magnetic/spin stripes ordered state. Upon doping,
the magnetic order quickly disappears, as in the cuprates, thus forming a magnetic
dome. Eventually, as the doping is increased, a superconducting phase sets in, with
Tc increasing up to a maximum and subsequently being reduced down to zero, thus
forming a SC dome. In some cases, the magnetic and SC domes overlap.

25.2 The J1 − J2 Localized-Itinerant Model

We will describe the pnictide materials by means of a mixed localized-itinerant
model corresponding to the Hamiltonian [218]

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j − K
∑

i

(Sz
i )

2

+
∑
i j;αβ

[
tαβi j (c

α
iσ )

†cβjσ + hc
]
− JH

∑
i;α
(cαiσ )

†�σσσ ′cαiσ ′ · Si . (25.1)

Here 〈i j〉 runs over nearest neighbors and 〈〈i j〉〉 over next-nearest neighbors
sites of a square lattice and α, β run over the dxz, dyz orbitals of the Fe++ ions
located at the sites of this lattice. Si are the localized spins of the Fe++ ions,
having eigenvalues with a spin quantum number S = 1.

The itinerant doped electrons are described by a two-band minimal model [219],
where (cαiσ )

† is the creation operator of the itinerant electron/hole doped into the
iron square lattice. The hopping parameters tαβi j vary according to the pair of
orbitals involved in the hopping.

The constant J1 > 0 is the superexchange coupling between nearest neighbor
Fe++ ions and J2 > 0, the As-mediated superexchange coupling between next-
nearest neighbor Fe++ ions in the square lattice formed by these ions. JH is the

Figure 25.4 The FeAs square lattice with the two sublattices (black and white
dots) and the corresponding exchange coupling constants J1 and J2. The latter
within each sublattice, while the former between the two sublattices. Notice that
the lattice in this figure is rotated by 45◦ with respect to that in Fig. 25.3.
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25.3 The Magnetic Spectrum 405

Hund ferromagnetic exchange coupling between the itinerant electron/holes and
the localized spins. Finally K > 0 is the coupling constant that accounts for the
single-ion anisotropy, which occurs for S > 1/2, due to spin-orbit and crystal field
effects [220].

25.3 The Magnetic Spectrum

Let us start by considering the pure, undoped system, for which only the first three
terms of the Hamiltonian (25.1), associated with the localized spins, are relevant.
Later on we are going to include the doped itinerant electrons/holes as well.

The experiments suggest that the exchange couplings satisfy J1 < 2J2, hence
we assume this relation between the exchange couplings holds true. In a first
approach, also, we will assume K = 0. For these couplings the ground state is
verified to be such that each sublattice, A and B of the Fe ion square lattice is
in an opposite Néel state. This produces an overall ordered state with collinear
diagonal spin stripes containing spins that point at the same direction along these
stripes.

In order to obtain a functional integral representation for the partition function,
we follow the procedure used in Chapter 17 and use the coherent spin states |Nα〉,
with α = A, B, corresponding, respectively to the two sublattices, such that

〈Nα|Sα|Nα〉 = SNα, ; α = A, B. (25.2)

We then decompose the field Nα into ferromagnetic and antiferromagnetic
fluctuation fields nα and Lα, similarly to (19.17),

Nα(ri , τ ) = eiQ·ri nα(ri , τ )

√
1− a4L2

α(ri , τ )+ a2Lα(ri , τ ), (25.3)

for α = A, B.
Following the same steps as in Chapter 17, we take the continuum limit and

integrate over the ferromagnetic components LA and LB , obtaining the resulting
action for the antiferromagnetic ones [218]

S =
∫

�β

0
dτ
∫

d2x

{
ρs

2

[
|∇nA|2 + |∇nB |2 + 1

c2
0

|∂τnA|2 + 1

c2
0

|∂τnB |2
]

+ γ [nA · ∂x∂ynB + nB · ∂x∂ynA + ηnA · nB
]

+ ib [nA · nB × ∂τnB + nB · nA × ∂τnA]

+ 1

c2
1

[(∂τnA · nB) (nA · ∂τnB)− (nA · nB) (∂τnA · ∂τnB)]

}
. (25.4)

This is supplemented by the constraints |nA|2 = |nB |2 = 1.
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406 The Pnictides: Iron-Based Superconductors

Figure 25.5 The ordered ground state with the collinear stripes: the two sublat-
tices with opposite Néel states. Notice the orientation of the kx and ky axes: the
lattice in this figure is rotated by 45◦ with respect to that in Fig. 25.3.

The first line above contains the usual kinematical low-energy fluctuation terms
of each of the two sublattices, the second and fourth, their interaction, while the
third describes the precession of the spins of one sublattice around the other.

The coupling parameters are given by the following expressions in terms of the
original ones:

ρs = 2J 2
2 s2 ; �c0 = 2

√
2Sa

√
4J 2

2 − J 2
1 ; c1 = c0

J2

J1

γ = 2J1

J2

[
1+ J 2

1 /4

4J 2
2 − J 2

1

]
; η = 2�

S2

[
J 2

1

4J 2
2 − J 2

1

]
; b = 2J1

a2 J2

[
J1

4J 2
2 − J 2

1

]
.

(25.5)

We are interested in obtaining the spectrum of magnetic quantum fluctuations
around the collinear striped ordered ground state. For this purpose, we write the
magnetization field, for each sublattice, as

nα =
(
π x
α , π

y
α , σα

) ; α = A, B. (25.6)

In the ordered ground-state |σA,B | = σ , where σ ∈ R and |πA,B | = 0. The magnon
quantum excitations are fluctuations in the transverse fields around zero. In order
to identify these, we expand the magnetic action (25.4) in powers of the fluctuation
fields, namely, π i

α; i = x, y; α = A, B around the ground state,

S[σ, π i
α] = S0[σ ] + 1

2

∫
d3xd3 yπ i

α(x)
[
Gi j
αβ

]−1
(x; y)π j

β (y)+ O(π4
i,α). (25.7)

In the above expression, Gi j
αβ is the Green function of the fluctuating fields

π i
α, which can be derived from (25.4). The dispersion relation of the magnon

elementary excitations, finally, may be inferred from the poles of Gi j
αβ .
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We find two magnon modes [218]: one acoustic, with energy

�ω(k) = �c−
√

k2 + 2γ kx ky (25.8)

and one optical with energy

��(k) = �c+
√

k2 − 2γ kx ky + η. (25.9)

In the above expressions c+ and c− are defined by the following relation:

1

c2±
=
(

1

c2
0

± σ 2

2c2
1

)
. (25.10)

Notice that the effective spin-wave velocity of the acoustic mode,

vSW (k) = ∇kω(k),

is enhanced by a factor
√

1+ γ along the direction kx = ky , when compared to
the one along the directions kx = 0, ky �= 0 or ky = 0, kx �= 0. The enhancement
consequently occurs precisely along the spin stripes.

We introduce at this point the effect of the single-ion-anisotropy. Repeating the
above derivation for K �= 0, we obtain, in the regime K � J2 [218], the following
magnon modes:

�ω(k) = �c−
√

k2 + 2γ kx ky +�2

��(k) = �c+
√

k2 − 2γ kx ky +�2 + η. (25.11)

In the above expression,

�2 = S − 1/2

Sa2

(
K

J2

)[
1+ J 2

1 /8

4J 2
2 − J 2

1

]
(25.12)

is the gap introduced by the single-ion-anisotropy.
The remarkable fact here is the emergence of two different gaps in the

magnon spectrum. This theoretical result is in agreement with inelastic neutron
scattering experiments in Sr Fe2 As2, which indeed show the existence of two
direction-dependent energy thresholds [221].

25.4 The Electronic Spectrum

We now include the effect of doping in our description of pnictides. For this
purpose, we take into account the last two terms in (25.1). We want to deter-
mine, among other features, what is the effect of the magnetic ground state on
the itinerant carriers doped into the system. Here we shall adopt a semiclassical
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408 The Pnictides: Iron-Based Superconductors

Figure 25.6 Schematic representation of the result obtained in [218] showing that
Dirac cones develop in the spectrum of itinerant carriers, in BaFe2Sr2, in the
presence of a striped collinear magnetically ordered spin background that occurs
below T � 160K

Figure 25.7 Schematic representation of ARPES data [222] showing that Dirac
cones develop in BaFe2Sr2 as the system is cooled down. The result obtained in
[218] shows Dirac cones precisely at the same positions.

approach and replace the localized spin background in the Hund interaction term
by its magnetically ordered collinear striped ground-state configuration. The part
of the Hamiltonian corresponding to the itinerant electrons/holes, then, becomes
quadratic and can be easily diagonalized. Our results show that above the magnetic
ordering temperature, the Fermi surface is given by the usual tight-binding result.
As the temperature lowers and the system orders in the magnetic striped order state,
Dirac cones develop along the �−M line of the first Brillouin zone, symmetrically
around the center, at the points k = (±0.25πa , 0) and k = (±0.75πa , 0), see Fig.
25.6. This result is confirmed by ARPES experiments [222] in BaFe2Sr2 [222],
see Fig. 25.7.
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25.5 Thermodynamic Properties

Let us consider now thermodynamic aspects of the pnictides. We will concentrate
more specifically on the specific heat, which is given by

C = 1

V

∂U

∂T
, (25.13)

where U is the internal energy. This contains three contributions, namely, U =
UL + Ue + UM , which correspond, respectively, to the lattice, electronic and
magnetic contributions.

25.5.1 Lattice and Electronic Specific Heats

We take the electronic specific heat as given by the Sommerfeld expression

Ce = AT . (25.14)

The lattice contribution to the specific heat, conversely, can be obtained from the
Debye model, and reads [223]

CL = BT 3

[
1− 15

4π4

(
θD

T

)4

ln Z D − 15

4π4

(
θD

T

)3 ( T

�i

)
L1(Z D)

− 45

4π4

(
θD

T

)2

L2(Z D)− 90

4π4

(
θD

T

)
L3(Z D)− 90

4π4
L4(Z D)

]
, (25.15)

where Ln(Z) are the polylogarithm functions and Z D = e−
θD
T , with θD the

Debye temperature. In the above expressions, A and B are, respectively, constants
specified in the models of Sommerfeld and Debye.

25.5.2 Magnetic Specific Heat

We have obtained the acoustic and optical magnon energies starting from a theoret-
ical model for the iron pnictide materials. Let us obtain now their thermodynamic
properties, or more specifically, the magnetic contribution to the specific heat.
This is obtained from the magnetic internal energy UM . Assuming that ideal gas
conditions apply to the magnons, this is given by

UM = Uac +Uopt

Uac = V
∫

d2k

(2π)2
�ω(k)nB E(k, T )

Uopt = V
∫

d2k

(2π)2
��(k)nB E(k, T ), (25.16)

where V is the unit-cell area, nB E(k, T ) is the Bose–Einstein population of
magnons of a given energy at temperature T . ω(k) and �(k) are, respectively,
the acoustic and optical magnon frequencies given by (25.11).
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Figure 25.8 Magnetic specific heat of Sr Fe2 As2 [223]. The solid line is the ana-
lytic expression for the magnetic specific heat, Eq. (25.18), with no adjustable
parameters. The experimental data from [224, 225] are CM = CT (Sr Fe2 As2)−
CT (Sr0.6 K0.4 Fe2 As2).

From (25.13) and (25.16), we derive the following expressions for the magnetic
specific heat,

CM = Cac(�ac, T )+ Copt(�opt , T ), (25.17)

where �ac = � and �opt =
√
�2 + η are the gaps of the acoustic and optical

modes, respectively.
The contribution from each mode is (i = ac, opt) [223]

Ci (�i , T ) = a2 NAk3
B�

3

f π�2c2±
√

4− γ 2

(
1

T

)[
ln Zi + 3

(
T

�i

)
L1(Zi )

+ 6

(
T

�i

)2

L2(Zi )+ 6

(
T

�i

)3

L3(Zi )

]
. (25.18)

In the above expression, Ln(Z) are the polylogarithm functions and Zi = e−
�i
T .

NA is the Avogadro’s number and f is the number of chemical formulas per unit
square cell. Comparison of the theoretical expression for the magnetic specific
heat, (25.17) and (25.18) is shown in Fig. 25.8. Experimental data are obtained by
subtracting the total specific heat of Sr0.6 K0.4 Fe2 As2 from that of Sr Fe2 As2. For
this level of K doping, the magnetic order of the first compound has already been
destroyed, hence its total specific heat is supposed to represent the corresponding
sum of lattice and electronic specific heats of Sr Fe2 As2. Subtraction of the total

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.026
https://www.cambridge.org/core


25.6 Basic Questions 411

specific heats of both compounds therefore should express the magnetic-specific
heat of Sr Fe2 As2. The good agreement, without adjusting parameters, attests the
accuracy of the model adopted here for describing the magnetic and electronic
properties of iron pnictide superconductors.

The total analytic calculation of the specific heat given by from Eqs. (25.14),
(25.15) and (25.18) also agrees very well with the experimental data for Sr Fe2 As2

without any adjustable parameters [223].

25.6 Basic Questions

Despite the mass of information gathered about iron pnictide materials, still, fun-
damental questions are not yet answered. For instance: what is the mechanism
leading to superconductivity in these materials? Is it the same as in the cuprates? If
not, why are the phase diagrams so similar? If yes, how can it derive from parent
compounds that are metallic in one case and insulating in the other? In due time,
the whole picture will be disclosed. Meanwhile, the words found in the last section
of the previous chapter also apply here.
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The Quantum Hall Effect

The Quantum Hall Effect (QHE) is one of the most remarkable, fascinating
and, yes, complex phenomena in physics. Its essence, nevertheless, is quite sim-
ple: given a steady electric current, whenever we apply a perpendicular uniform
magnetic field, a spontaneous electric voltage difference can be measured in the
direction perpendicular to the current-magnetic-field plane. Requiring a simple set-
up, the classical version of the effect was observed for the first time by Edwin Hall
in 1879. The ratio between the transverse voltage and the current yields the “Hall
resistance,” which increases linearly with the applied magnetic field. On general
grounds, the effect is a natural consequence of the Lorentz force acting on moving
charges forming the current and it should not come to be a surprise.

One century later, in 1980, von Klitzing [226] repeated the Hall experiment
under specific conditions. The electric current was injected in a metal slice 3nm
wide, squeezed between an insulator and a semiconductor, in a device called MOS-
FET, at a temperature of the order of 1 K and under an applied magnetic field of
the order of 10 T . The result was stunning. The simple straight line, which rep-
resented the magnetic field dependence of the Hall resistance, was replaced by a
complex pattern, in which one could observe a sequence of plateaus corresponding
to integer multiples of a basic resistance unit.

Two years later, in 1982, Tsui and Störmer [227] repeated the experiment, this
time injecting the current in a gas of electrons trapped in the interfaces of a multiple
junction alternating Ga As and Ga As1−x Alx , called heterostructure, at a temper-
ature of the order of 0.1 K , under a magnetic field of up to 30 T . The curve
representing the magnetic field dependence of the Hall resistance became even
more complex, now exhibiting plateaus at rational multiples, mostly with odd
denominators, of the same resistance unit.

Both the discoveries described above were laureated with the Nobel Prize and
became known, respectively, as the integer and fractional QHE. The theoretical
understanding of the two new phenomena required the use of ideas and methods

412
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26.1 The Classical Hall Effect 413

Figure 26.1 Experimental setup for observing the Hall effect

that mobilized the interplay of deep properties of quantum mechanics, the quan-
tum theory of disordered systems, topologically driven physical mechanisms and
deep theorems of mathematics. The efforts applied in the attempt to understand
the QHE, in addition, have led to the opening of new areas of investigation such
as the one of topological insulators and topological quantum computation, for
instance.

26.1 The Classical Hall Effect

Let us consider an electron gas confined in a two-dimensional rectangular geometry
with an electric current flowing in the x-direction. The conductivity matrix has the
form

σ =
(
σxx σxy

−σxy σxx

)
=
(
σ0 0
0 σ0

)
; σ0 = ne2τ

m
(26.1)

where σ0 is the Drude conductivity, obtained in Section 14.4. Here, n is the elec-
tron surface density and τ is the characteristic time interval between the electron
scatterings producing the resistance. The resistivity matrix is the inverse of σ .

The above expression can be obtained within the Drude model from the balance
between the force exerted by an electric field and the average opposing force due
to electron scatterings occurring at an average time interval τ , when the average
velocity is steady,

d〈v〉
dt

= 0 =⇒ −eE = m

τ
〈v〉. (26.2)

Then the above expression for the conductivity follows from the fact that the
current density is j = −ne〈v〉 and
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414 The Quantum Hall Effect

Figure 26.2 The classical Hall effect: transverse (Hall) resistivity as a function of
the magnetic field

ji = σi j E j

ρi j j j = Ei . (26.3)

In the presence of a uniform magnetic field perpendicular to the plane, (26.2) is
modified to

d〈v〉
dt

= 0 =⇒ −eE− e

c
〈v〉 × B = m

τ
〈v〉. (26.4)

For a magnetic field along the z-direction, the solution for the resistivity matrix
becomes

ρ =
(
ρxx ρxy

−ρxy ρxx

)
= 1

σ0

(
1 ωCτ

−ωCτ 1

)
; ωC = eB

mc
. (26.5)

The Hall resistivity becomes

ρH = ρxy = ωCτ

σ0
= B

nec
. (26.6)

This is the magnetic field dependence observed by Hall in 1879 (see Fig. 26.2). A
useful instrument for determining the charge sign and density of the current carriers
is the Hall coefficient, defined as RH = ρH

B . Notice that it does not depend on the
field, but only on intrinsic properties of the material system.

26.2 The Integer Quantum Hall Effect

The Integer QHE manifests through the peculiar magnetic field dependence of
the transverse resistivity or conductivity, which completely departs from the lin-
ear dependence obtained in the classical effect. The former is schematically
represented in Fig. 26.3.

Notice the presence of plateaus in the transverse conductivity such that the cor-
responding longitudinal conductivity vanishes in the regions where the plateaus
form:
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26.2 The Integer Quantum Hall Effect 415

Figure 26.3 Schematic representation of the integer quantum Hall effect [226].
Solid line represents the transverse (Hall) resistivity and dashed line the longitu-
dinal resistivity, both as a function of the magnetic field.

ρ =
(
ρxx ρxy

−ρxy ρxx

)
= σ−1 = 1

σH

(
0 1
−1 0

)
, (26.7)

where σH = ν e2

h , ν = 1, 2, 3, . . ., is the transverse part of the conductivity, namely

σ =
(
σxx σH

−σH σxx

)
= ρ−1 =

(
0 σH

−σH 0

)
. (26.8)

We see that σxx = ρxx = 0 and σxy = ρ−1
xy = σH = ν e2

h , ν = 1, 2, 3, . . .
We now describe the several ingredients required for understanding the integer

QHE.

26.2.1 Landau Levels

Zero Electric Field

Consider first the Hamiltonian of non-interacting electrons on a plane, in the pres-
ence of a perpendicular magnetic field, which, in the Landau gauge, is associated
to the vector potential A = (0, Bx). The Hamiltonian, then, is given by

H = 1

2m
|P+ e

c
A|2

H = P2
x

2m
+ 1

2
mω2

C (x − x0)
2

x0 = Pyc

eB
. (26.9)
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416 The Quantum Hall Effect

We shall neglect the spin degrees of freedom, which at such high magnetic fields
at which the effect is observed are frozen in the lowest of the states separated by
the Zeeman splitting.

Since [Py, H ] = 0, we may replace Py by its eigenvalue �ky and we see that the
Hamiltonian describes a harmonic oscillator shifted by x0 = −�kyc/eB.

The eigenfunctions with the corresponding eigenvalues

ψn(x, y) = Cn Hn(x − x0)e
− |x−x0|2

2l2B eiky y

En =
(

n + 1

2

)
�ωC (26.10)

are the famous Landau levels [228]. In the above expression, Hn are Hermite
polynomials and l2

B = �c/eB is the so-called magnetic length.
These are highly degenerate because the energy does not depend on ky . For a

system with dimensions Lx and L y , wave functions with the same energy may be
centered at a number of different points, given by the ratio between the width of
the system and the minimum value of wave function center: x0, namely

G(n) = Lx

x0
= Lx

�c 2π
eBL y

G(n) = BLx L y

hc/e
= �

φ0
= N�. (26.11)

We see that the degeneracy of the Landau levels is given by the number of magnetic
flux units that pierce through the plane, namely, the ratio of the total flux and the
magnetic flux unit.

Nonzero Electric Field

In the presence of an electric field of magnitude E along the x-direction, the
Hamiltonian becomes

H = 1

2m
|P+ e

c
A|2 − eEx

H = P2
x

2m
+ 1

2
mω2

C (x − x0(E, B))2 + �kycE

B
− 1

2
mc2 E2

B2

x0(E, B) = Pyc

eB
− eE

mω2
C

. (26.12)

The energy eigenvalues now become

En(ky) =
(

n + 1

2

)
�ωC + �kycE

B
− 1

2
mc2 E2

B2
(26.13)

and we see that the degeneracy of the Landau levels is lifted.
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We may now determine, from the quantum-mechanical treatment just exposed,
the average velocity in the y-direction, and from it obtain the transverse current
density jy . The average velocity corresponds to the group velocity

vy = 1

�

∂En(ky)

∂ky
= cE

B
. (26.14)

From this we obtain

jy = nevy = nec

B
Ex = σxyEx . (26.15)

Considering that n = Ne
A , where Ne is the number of electrons and A is the area,

we can write the Hall conductivity as

σH = σxy = Neec

B A
= Ne

B A
hc/e

e2

h

σH = Ne

N�

e2

h
. (26.16)

Now, we have just seen that N�, the number of magnetic flux units, is the degen-
eracy of the Landau levels, hence we conclude that the Hall conductivity is
given by

σH = ν e2

h
, (26.17)

where ν = Ne/N� is the occupation number of the Landau levels. For a fixed
electron density, the number of occupied Landau levels will vary as we change the
magnetic field, since this will change the maximum occupation capacity of each
level.

We see that an integer multiple of e2/� is the value obtained for the transverse
conductivity whenever a Landau level is completely filled. It is likely, therefore,
that the conductivity values observed at the plateaus are related to the complete
filling of successive Landau levels. Basic questions, however, still remain unan-
swered: why there are plateaus? The set of values ν = 1, 2, 3, . . . are just points in
a curve conductivity × magnetic field. Why does the conductivity remain constant
while the magnetic field is varied within a certain finite range, thus forming the
plateaus? There is not a simple explanation. As we will see below, it involves a
peculiar combination of disorder and topology.

26.2.2 The Effect of Disorder

Let us remember how the presence of disorder affects the spectrum of a system, or,
more specifically, a non-interacting system such as the two-dimensional electron
gas we have been considering.
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According to (13.36), for a system of non-interacting electrons possessing one-
particle states with discrete energies En = �ωn , the Landau levels, the energy
density of states is given by

N (E) =
∑

n

δ(E − En). (26.18)

This can also be written as

N (E) = − 1

π
Im
∑

n

1

E − En + iε
. (26.19)

In the presence of disorder, we replace this expression with

N (E) = − 1

π
Im
∑

n

1

E − En + i�+ iε
, (26.20)

where � conveys the information about the amount of disorder in the system,
typically �� �ωC .

Now we can take the limit ε → 0, obtaining

N (E) = 1

π

∑
n

�

(E − En)2 +�2
. (26.21)

Disorder broadens the spectral weight, replacing the deltas with Lorentzians.
Degeneracy of the Landau levels is lifted, but still the total number of available
states in each band centered in En remains G(n), given by (26.11).

Broadening of the spectral weight, however, is not the only effect produced by
disorder. We have seen in Chapter 13 that disorder also produces the emergence
of a mobility edge, such that only the states in the middle of the band would
be extended, thus being able to conduct electrons. The states located away from
the center, beyond the mobility edge would be localized, and therefore unable to
transport electric charge.

Can the effects of disorder explain the QHE plateaus? Well, as we tune the mag-
netic field, say by decreasing it, we will decrease the number of available states
in each band, thereby populating a larger number of bands to accommodate the
Ne electrons. As we start filling a new band, however, the edge states would not
conduct, hence the conductivity will remain fixed for a certain interval of values of
the magnetic field: a plateau. As soon as we cross the mobility edge, the available
states start to conduct and, consequently, the conductivity starts to increase until
we find the other mobility edge and a new plateau forms.

This seems to be a promising explanation of the QHE plateaus, yet this cannot
be the whole story. We have seen in the previous subsection that the integer ν
appearing in the expression of the Hall conductivity is the ratio between the number
of electrons and the number of available electron states in each band. For instance,
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26.2 The Integer Quantum Hall Effect 419

for just one filled band, ν = 1, meaning the number of states equals the number of
electrons and σH = e2/h. However, how can this be possible, considering that not
all available states are conducting, only the fraction of states that are located in the
center of the band?

In order to provide the answer, we must resort to topological properties of
quantum mechanics, which reflect deep theorems of pure mathematics.

26.2.3 The Berry Phase

The Adiabatic Theorem

The adiabatic theorem [229] concerns the determination of the state vector in a
quantum-mechanical system described by a Hamiltonian, which depends on a set
of external parameters {λi (t)}, which may vary as a function of time. Then, the
energy eigenvectors and eigenvalues will depend on time as well, namely,

H [λi (t)]|ψn[λi (t)]〉 = En[λi (t)]|ψn[λi (t)]〉 (26.22)

with

〈ψn[λi (t)]|ψm[λi (t)]〉 = δnm∑
n

|ψn[λi (t)]〉〈ψn[λi (t)]| = I. (26.23)

Assuming the variation is slow, the spectrum is discrete and there is no degener-
acy among the energy eigenstates, then the theorem states that if the initial state of
the system is one of the energy eigenvectors, as time evolves it will remain in the
same state, except for a phase θn(t):

|
(0)〉 = |ψn[λi (t = 0)]〉
|
(t)〉 = eiθn(t)|ψn[λi (t)]〉. (26.24)

The form of the phases has a physical meaning, because, assuming the initial state
would be a linear combination of energy eigenstates, then the different phases
would interfere, producing measurable effects.

In order to prove this result, let us use the completeness relation and expand the
state vector as

|
(t)〉 =
∑

m

cm(t)|ψm[λi (t)]〉. (26.25)

Then, using the time evolution equation and applying 〈ψn[λi (t)]|, we get

dcn(t)

dt
=
[
− i

�
En(t)− 〈ψn|dψn

dt
〉
]

cn(t)−
∑
m �=n

〈ψn|dψm

dt
〉cm(t), (26.26)
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420 The Quantum Hall Effect

where we have dropped the λi dependence in order to simplify the notation.
Now, differentiating (26.22) with respect to time and applying 〈ψm |;m �= n, we

obtain

〈ψm | d

dt
|ψn〉(Em − En) = 〈ψn|d H

dt
|ψm〉, (26.27)

whereby we can write the last term in (26.26) as

∑
m �=n

〈ψn| d H
dt |ψm〉

Em − En
cm(t). (26.28)

The result, so far, is exact. The adiabatic approximation consists in neglecting the
last term in (26.26). Then, dividing by cn(t) and integrating in time, we obtain

cn(t) = cn(0) exp

{
i

�

∫ t

0
dt ′En(t

′)+ iγn

}
, (26.29)

where

γn(t) = i
∫ t

0
dt ′〈ψn| d

dt
|ψn〉 (26.30)

is the so-called geometrical phase.
Result (26.29) is the proof of the adiabatic theorem. Inserting in (26.25), we see

that it will have observable physical consequences.

The Berry Phase

In 1984, M. Berry noticed [230] that the geometrical phase could be written as a
line integral going from {λi (0)} to {λi (t)} , along a path in the parameter space:

γn(t) = i
∫ t

0
dt ′〈ψn| ∂

∂λi
|ψn〉dλi

dt

γn(t) = i
∫

C(t)
dλi 〈ψn| ∂

∂λi
|ψn〉. (26.31)

The geometrical phase, since then known as Berry phase, actually does not depend
on the time, but, rather, on the path length in parameter space.

Defining the so-called Berry connection as

An
i = i〈ψn| ∂

∂λi
|ψn〉, (26.32)

we can express the Berry phase as

γn(C) =
∫

C
dλiAn

i . (26.33)
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Particularly interesting is the case when C is a closed path in parameter space.
Using Stokes’ theorem, in this case, we have

γn(C) =
∮

C
dλ ·An =

∫
S(C)

dS · Bn (26.34)

and we see that the Berry phase is the flux of the “magnetic field,”

Bn = ∇ ×An, (26.35)

associated to the Berry connection through the surface S(C) enclosed by the
curve C .

It is convenient to introduce the Berry curvature tensor as

Fn
i j = ∂λiAn

j − ∂λ jAn
i . (26.36)

In terms of this, the Berry phase becomes

γn(C) =
∫

S(C)
dSi jFn

i j , (26.37)

where

dSi j = 1

2
dSkεi jk .

Inserting (26.36) and (26.32) in (26.37), we obtain

γn(C) = i
∫

S(C)
dSkεi jk〈 ∂

∂λi
ψn| ∂
∂λ j

|ψn〉 (26.38)

or, introducing the complete set of energy eigenvectors,

γn(C) = i
∫

S(C)
dSkεi jk

∑
m �=n

〈 ∂
∂λi
ψn|ψm〉〈ψm | ∂

∂λ j
|ψn〉, (26.39)

where the n = m term vanishes. For the n �= m terms, differentiating (26.22) with
respect to λi and applying 〈ψm |;m �= n, we get

γn(C) = i
∫

S(C)
dSkεi jk

∑
m �=n

〈ψn| ∂H
∂λi
|ψm〉〈ψm | ∂H

∂λ j
|ψn〉

(Em − En)2
. (26.40)

The First Chern Number

It is instructive to evaluate the Berry phase for a closed curve C belonging to a
closed surface. Assume S(C) in (26.34) is a sphere S2 and the “magnetic field” is
that of a monopole with magnetic charge qM centered at the center of the sphere,
namely

Bn = qM
r̂
r2
.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.027
https://www.cambridge.org/core


422 The Quantum Hall Effect

Figure 26.4 The closed curve C determines two complementary surfaces, the
union of which is the spherical surface. The corresponding solid angles’ sum is
4π .

Then γn(C) = qM �(C), where�(C) is the solid angle corresponding to the curve
C . Nevertheless, there are two complementary surfaces associated to the curve C .
By choosing the other surface, we will find instead γn(C) = −qM(4π − �(C)).
The consistency condition on eiγn , then, imposes 4πqM = 2πN , with N ∈ Z, or
2qM = N .

This observation has a strong consequence on the possible values of the total
flux of the Berry magnetic field through the total sphere S2:

�(S2) =
∫

S2
dS · Bn = 2πC ; C ∈ Z. (26.41)

This result actually holds in general for the integral of the Berry curvature tensor
along any closed surface S, namely∫

S

dSi j

2π
Fn

i j = C ; C ∈ Z, (26.42)

where the integer C ∈ Z is called the First Chern Number.
This result, obtained by Chern, is a generalization of the Gauss–Bonnet theorem.

This is a deep theorem, which states that if we replace the Berry curvature by the
intrinsic geometric curvature of the surface S in (26.42), we obtain 2(1 − g) as
a result of the integral, where g is the “genus” of the surface S, which expresses
the number of handles it has. The Gauss–Bonnet theorem is remarkable, among
other things, for establishing a deep connection between two of the great areas of
mathematics, namely, geometry and topology.

The Aharonov–Bohm effect

This beautiful effect [238] concerns a phase that the wave-function of a charged
particle acquires due to the presence of a magnetic flux even if this vanishes where
the particle is, provided the vector potential associated to the magnetic flux is
nonzero at the particle’s position. For a particle of charge q taken around a magnetic
flux �, the wave-function will pick up a phase
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26.2 The Integer Quantum Hall Effect 423

ϕ = q�

�c
. (26.43)

One can show that this is precisely the Berry phase for the wave-function
transported around the magnetic flux, so the Aharonov–Bohm effect is another
manifestation of the Berry phase.

Generalized Statistics

We have seen in Chapter 10 that a charge with an attached magnetic flux will have
its statistics changed by �s, where

2π�s = q�

�c
(26.44)

(in units where �, c �= 1). We now see that this follows from the Berry
phase/Aharonov–Bohm picture.

Indeed, exchanging the positions of two charge-flux sets is equivalent to rotating
one around the other by 180◦. This, by its turn, is equivalent to rotating one charge
around one flux by 360◦. But this is the Aharonov–Bohm effect. That is why
2π�s = ϕ.

26.2.4 Topology and the QHE

Here we consider the last ingredient required for the explanation of the integer
QHE. A crucial step is the realization that for a completely filled band, the states
in the first Brillouin zone form a closed surface, namely, a torus. Then, as we show
below, the transverse conductivity, expressed by the Kubo formula, can be written
as an integral of the Berry curvature on this torus, being consequently proportional
to the Chern First Number, which is an integer.

The Kubo Formula

According to the Kubo formula (4.61), the DC transverse conductivity of a state
|ψ〉n is given by

σxy = i

ω

[〈ψn|Jx Jy|ψn〉 − 〈ψn|Jx |ψn〉〈ψn|Jy|ψn〉
]

σxy = i

ω

∑
m �=n

〈ψn|Jx |ψm〉〈ψm |Jy|ψn〉. (26.45)

or, equivalently,

σxy = i

�ω

∑
m �=n

∫ ∞

0
dtei[ω+iε]t〈ψn|Jx(t)|ψm〉〈ψm |Jy(0)|ψn〉, (26.46)
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424 The Quantum Hall Effect

where the limits k, ω→ 0 are implicitly understood.
This can be written as

σxy = i

�ω

∑
m �=n

∫ ∞

0
dtei[ω+iε− Em−En

�
]t〈ψn|Jx(0)|ψm〉〈ψm |Jy(0)|ψn〉,

σxy = i

ω

∑
m �=n

〈ψn|Jx |ψm〉〈ψm |Jy|ψn〉
�ω + iε + Em − En

. (26.47)

In the limit ω→ 0,(
i

ω

)
1

�ω + iε + Em − En

ω→0→
(

i

ω

)
1

Em − En
+ �

(Em − En)2
. (26.48)

Inserting this in (26.47), we can see that the first term vanishes by n ↔ m
symmetry, whereas the second gives

σxy = i�
∑
m �=n

〈ψn|Jx |ψm〉〈ψm |Jy|ψn〉
(Em − En)2

. (26.49)

This form of the Kubo formula will be convenient for what follows.

The TKNN Result

Let us derive here the connection between the Kubo formula for the transverse con-
ductivity and the First Chern Number topological invariant. This important result
was obtained by Thouless, Kohmoto, Nightingale and den Nijs in 1982 [231].

We start by observing that the current density operator differential element can
be expressed as

dJi = e

�

d2k

(2π)2
∇ki H. (26.50)

This follows from the fact that the group velocity can be expressed as v = 1
�
∇H ,

where H is the Hamiltonian, and also by observing that the density of states is
given by dρ = 1

A = d2k
(2π)2

. The current density element then reads dJi edρvi .
Choosing the states |ψm〉 as the non-interacting one-particle states associated to the
nth Landau level, which completely fill the first Brillouin zone, and using (26.27),
we have

σxy = i
e2

�

∫
d2k

(2π)2

∫
d2k ′

(2π)2
∑
m �=n

〈∇kxψn(k)|ψm(k′)〉〈ψm(k′)|∇kyψn(k)〉, (26.51)

which yields
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σxy = i
e2

�

∑
n

∫
d2k

(2π)2
〈∇kxψn(k)|∇kyψn(k)〉. (26.52)

This, however, is

σxy = e2

2π�

∑
n

∫
T 2

d2k

2π
Fn

xy, (26.53)

which is just the integral of the Berry curvature over the torus corresponding to
a completely filled first Brillouin zone for the band associated by the nth Landau
level. This is precisely the First Chern Number, hence we finally get

σxy = e2

h

∑
n

Cn. (26.54)

This explains why the Hall conductivity is an integer multiple of e2/h. The result
above shows that the completely filled band with the mobility edge separating
conducting from non-conducting states is in the same topological class as the
band without disorder, where all the states are conducting. This is the key for
understanding the effect.

26.3 The Fractional Quantum Hall Effect

The understanding of the integer QHE was achieved without considering the inter-
actions that unavoidably exist among the electrons. The situation is somehow
similar to the one found in the band theory of crystalline solids, in which the
solutions of Schrödinger’s equation for non-interacting electrons in the presence
of a periodic potential lead to the Bloch theorem, the consequences of which are
in excellent agreement with the experiments. Actually, the success of the non-
interacting picture of electrons in solids was so good that it formed the prevailing
paradigm of condensed matter physics for a long while. By the way, we have just
used precisely this picture for the explanation of the integer QHE.

For describing the fractional QHE, however, we can no longer avoid the inclu-
sion of interactions in our model. Instead of the single-particle Hamiltonian
(26.9) in the presence of a uniform magnetic field, which is appropriate for
non-interacting electrons, we must have

H = 1

2m

Ne∑
i=1

|Pi + e

c
A|2 +

∑
i< j

e2

|ri − r j | , (26.55)

where we included the static Coulomb potential among the electrons. Despite the
fact that the electrons are far from being static, this may be justified by the fact that
the electrons’ speed is much less than the speed of light.
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426 The Quantum Hall Effect

Figure 26.5 Schematic representation of the fractional quantum Hall effect
[227]. Solid line represents the transverse (Hall) resistivity and dashed line the
longitudinal resistivity, both as a function of the magnetic field.

26.3.1 The Laughlin Wave Function

In 1983, Laughlin proposed a wave-function for the ground state of the above
Hamiltonian [232]. Using a complex notation z = x + iy for the electron position
in the plane, this wave-function reads


(z1, . . . , zNe) = C
∏
i< j

(
zi − z j

)m
exp

{
−

Ne∑
i

|zi |2
4l2

b

}
, (26.56)

where lb is the magnetic length, introduced before and m = 1, 3, 5, . . . As we shall
see, this wave-function describes the essential features of the FQHE.

Notice that Laughlin’s ansatz is inspired on the eigenfunctions of the non-
interacting case, which are given by sums of terms of the form


(z1, . . . , zNe) = C
∏

i

zn
i exp

{
−

Ne∑
i

|zi |2
4l2

b

}
, (26.57)

and it takes into account the anti-symmetry of the many-electron wave-function,
which imposes m as a positive odd integer.
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The Coulomb Liquid

Consider the probability density corresponding to the wave-function (26.57),
namely

|
(z1, . . . , zNe)|2 =
∏
i< j

( |zi − z j |2
l2
b

)m

exp

{
−

Ne∑
i

|zi |2
2l2

b

}
, (26.58)

where the normalization factor is chosen as C = l
−m Ne(Ne+1)

2
b . The quantum average

of a quantity A(z1, . . . , zNe) will be, then, given by

〈A〉 =
∫

dz1 . . . dzNe A(z1, . . . , zNe)|
(z1, . . . , zNe)|2. (26.59)

We can write the probability density as

|
(z1, . . . , zNe)|2 = exp

⎧⎨
⎩2m

∑
i< j

ln
|zi − z j |

lb
−

Ne∑
i

|zi |2
2l2

b

⎫⎬
⎭

≡ e−βU (z1,...,zNe ), (26.60)

where U (z1, . . . , zNe) is formally identical to the energy of a classical gas of point
charges, located at the positions zi in a uniformly charged background of the oppo-
site sign. Then, 〈A〉 becomes a classical average in the canonical ensemble at a
temperature T = 1/kBβ.

Choosing β ≡ 2/m, we have

U (z1, . . . , zNe) = −m2
∑
i< j

ln
|zi − z j |

lb
+ m

Ne∑
i

|zi |2
4l2

b

. (26.61)

This is the electrostatic energy of a fictitious system of Ne point particles of charge
q = −m on a uniformly charged background of total charge +ρA.

The charge density of this system is

ρ(z; z1, . . . , zNe) = −m
Ne∑
i

δ(z − zi )+ ρ. (26.62)

Equilibrium requires the neutrality of the associated system. This imposes
ρ = + Nem

A .
Now, using the Poisson equation, relating the scalar potential to the charge

density, namely

−∇2ϕ(z) = 2πρ(z), (26.63)

it follows that
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2πρ = −∇2

(
−|zi |2

4l2
b

)
= 1

l2
b

2π
Nem

A
= eB

�c
=⇒ ν ≡ Ne

B A/�0
= 1

m
. (26.64)

This explains the series of Hall plateaus: ν = 1
3 ,

1
5 ,

1
7 , . . .

Composite Fermions

The statistics of an electron does not change if we attach to it an even number of
flux quanta. According to Laughlin’s wave-function, if we transport an electron
along a closed path, back to its original position, it will pick up a phase 2πm,
namely, an amount of m flux quanta.

We can write Laughlin’s wave function in the form


(z1, . . . , zNe) = C
∏
i< j

(
zi − z j

)m−1∏
i< j

(
zi − z j

)
exp

{
−

Ne∑
i

|zi |2
4l2

b

}
. (26.65)

This can be interpreted as the wave-function of Ne non-interacting composite
fermions, each one constituted by an electron with m−1 attached units of magnetic
flux [233]. Within this picture, the effective magnetic field felt by the composite
fermions becomes

B∗ = B ± Ne(m − 1)
�0

A
, (26.66)

where �0 = hc/e is the flux quantum, A is the area of the system and the ±
signs correspond, respectively, to a situation where the attached magnetic fluxes
are parallel or anti-parallel to the applied magnetic field.

Remembering that the filling fraction is ν = Ne/(B A/�0), we can cast (26.66)
in the form

ν = ν∗

1+ (m − 1)ν∗
; ν = ν∗

(m − 1)ν∗ − 1
, (26.67)

where ν∗ = Ne/(B∗A/�0) is the filling factor of the composite fermions: ν∗ =
1, 2, 3, . . . From this, we obtain, among others, the following Hall plateaus: ν =
1
3 ,

1
5 ,

1
7 . . ., ν = 2

3 ,
2
5 ,

2
7 . . .; ν = 3

5 ,
3
7 ,

3
9 . . . These are the ones observed in Fig. 1.8

in the FQHE.

26.3.2 Excitations with Fractional Charge and Statistics

Interacting systems usually exhibit surprising features in their spectrum of quan-
tum excitations. It frequently happens that these excitations keep no trace of the
original degrees of freedom, in terms of which the corresponding Hamiltonian is
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formulated. Well-known examples are QCD, where one starts formulating a theory
in terms of colored quarks and gluons and ends up with a spectrum containing col-
orless hadrons; QED in 1+1D, which is formulated in terms of charged fermions
and “photons,” whereas the spectrum contains just a neutral massive scalar boson;
the Tomonaga–Luttinger and Hubbard models, where one starts with fermions with
charge and spin, as we saw in Chapter 16, and at the end, obtains a spectrum of
bosonic excitations with separated charge and spin degrees of freedom; and poly-
acetylene, where one starts with a Hamiltonian with gapless electrons and phonons
and ultimately obtains a spectrum containing gapped electrons and spinless charged
soliton excitations.

A similar phenomenon occurs in the system undergoing the fractional QHE.
Starting from an electron gas confined on a quasi-two-dimensional region, subject
to the mutual Coulomb repulsion and to a strong perpendicular magnetic field, we
reached a quantum-mechanical description in terms of the Laughlin wave-function,
which accounts for the observed features. Let us now examine what are the ele-
mentary excitations obtained out of it. One can verify that, out of Laughlin’s state
one can construct quasi-particle an quasi-hole elementary excitations, as well as
collective excitations. Here, we are going to concentrate on the quasi-holes.

Quasi-Holes with Fractional Charge

Consider the wave-function


H (zi ;ω) = C
Ne∏

i=1

(zi − ω)
∏
i< j

(
zi − z j

)m
exp

{
−

Ne∑
i

|zi |2
4l2

b

}
(26.68)

obtained from Laughlin’s wave-function by introducing the first multiplicative fac-
tor. It vanishes at the position corresponding to the complex parameter ω. Since
this is not an electron’s position, such wave-function describes a state where the
electron density is zero, at zi = ω. This is what we call a hole. It is naturally iden-
tified as an excited state, not only because the Laughlin state is, by hypothesis, the
ground state, but also because it has an additional node.

Suppose now we introduce m of such holes at the positions ωk, k = 1, 2, . . . ,m,
so that when we bring the m holes together at the point ω, the resulting wave-
function becomes


m H (zi ;ω1, . . . , ωm)→C
Ne∏

i=1

(zi − ω)m
∏
i< j

(
zi − z j

)m
exp

{
−

Ne∑
i

|zi |2
4l2

b

}
. (26.69)

We see it would be identical to Laughlin’s wave function of Ne+1 electrons if ω
were the additional electron’s position. Since it is not, it represents a (multiple) hole
associated with the deficit of this electron. The charge of the above state, therefore,
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must be the opposite of one electron’s charge, namely +e. Now, since 
m H results
from the combination of m wave-functions 
H (zi ;ω), it follows immediately that
the elementary excitation described by the wave-function (26.68) possesses a frac-
tional charge+e/m. This amazing prediction about systems undergoing the FQHE
was experimentally confirmed in 1997 [235].

Quasi-Holes with Fractional Statistics

It was Halperin who first pointed out that the excited quasi-holes with frac-
tional charge, obtained out of Laughlin’s wave-function, should have fractional
statistics as well [234]. This was confirmed by a calculation based on the Berry
phase/Aharonov–Bohm effect [236]. Yet, the fact that quasi-holes have generalized
statistics can be inferred by a simple reasoning, which follows below.

We have just seen that the quasi-holes possess a fractional charge q = e/m.
From the wave-function
m H , (26.69), describing m holes we infer that m magnetic
fluxes are attached to each of the points ω, z1, . . . , zNe . Now, considering that in
the point ω there are m quasi-holes, it follows that each quasi-hole bears one unit
of magnetic flux: � = �0 = 2π�c

e , apart from a charge q = e/m.
It follows then, from (26.44), that the quasi-holes have statistics

s = 1

m
, (26.70)

being therefore an example of excitations of generalized statistics occurring in a
realistic system.

Quasi-holes with a fractional charge e/3 and fractional statistics s = 1/3 were
experimentally observed in 2005 [237] in the ν = 1/3 plateau of a material system
undergoing the FQHE.

26.4 The Zhang–Hansson–Kivelson Theory

Even though BCS theory provides a complete microscopic description of supercon-
ductivity, still the phenomenological Landau–Ginzburg theory frequently offers a
picture of this phenomenon that is at least as useful. Similarly, it would be very con-
venient to count on a Landau–Ginzburg-type theory of the QHE. This is achieved
by the Zhang–Hansson–Kivelson (ZHK) theory of the QHE [239].

The basic idea is to use the mechanism of statistical transmutation presented in
Chapter 11 in order to describe the electrons in the d = 2 gas undergoing the QHE
as a boson field φ with an odd number of attached magnetic flux quanta provided
by a Chern–Simons field Aμ.

According to the results of subsection 11.2.2, by coupling a matter field to a
Chern-Simons term with a coefficient θ/2, a magnetic flux � = e

θ
is attached to

each charged particle associated to this field. The spin/statistics of such a field,
accordingly, gets changed by an amount �s = e2

4πθ , as we can infer from (11.13).
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26.4 The Zhang–Hansson–Kivelson Theory 431

Considering that the spin/statistics parameter s should change by a factor �s =
(2k + 1) 1

2 ; k ∈ N, in order to comply with the fact that the electron is a fermion,
we must have 1/θ = 2π

e2 (2k + 1). The total magnetic flux thereby attached to each
bosonic particle is, therefore, � = (2k + 1) 2π

e or, reinstating the physical units,
� = (2k + 1) hc

e . We see that the electron may be associated to a bosonic scalar
field plus an odd number of magnetic flux units attached to it. Again, we are going
to neglect the electronic spin degrees of freedom, which are supposedly frozen by
the strong external magnetic field.

The action that will be used to describe this system can be written as [239]

S =
∫

d3x { iφ∗D0φ + |Dφ|
2

2m
+ θ

2
εμαβAμ∂αAβ +μ|φ|2 − λ

2
|φ|4

}
S = Sφ

[
φ,Aμ + Aμ

]+ SCS
[
Aμ
]
, (26.71)

where the last term is the Chern–Simons term.
In the above expression Dμ = ∂μ + i e

c

(
Aμ + Aμ

)
, where Aμ is the statistical

gauge field and Aμ is the external applied electromagnetic field. φ is the bosonic
field, which, when appended 2k+1 magnetic fluxes of the statistical field, describes
the electron (with frozen spin). μ is the chemical potential, and the last term is an
approximation for the interaction

1

2

∫
d3xd3 y|φ(x)|2V (x − y)|φ(y)|2

V (x − y) � λδ3(x − y). (26.72)

The mean-field solution to the ZHK theory corresponds to the stationary
conditions

δS

δφ∗
= δS

δφ
= δS

δAμ
= 0, (26.73)

which imply

i D0φ + D2φ

2m
= −φ [μ− λ|φ|2] (26.74)

and
δSφ
δAμ

= −θεμαβ∂αAβ. (26.75)

The first term above is just the charge current jμ, hence, we have

jμ = −θεμαβ∂αAβ. (26.76)

Eq. (26.74) admits a constant solution: ∂0φ = ∇φ = 0, with

Aμ = −Aμ

φ
[
μ− λ|φ|2] = 0 ; |φ|2 = μ

λ
, (26.77)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.027
https://www.cambridge.org/core


432 The Quantum Hall Effect

which characterizes an incompressible fluid, in view of the constant density.
Inserting the first part of (26.77) in (26.76), then, gives

jμ = θεμαβ∂αAβ. (26.78)

The time and spatial components of this read

j0 = θB

ji = θεi j E j , (26.79)

where Ei and B are the applied electric and magnetic fields. We conclude that
the Chern–Simons parameter θ is just the Hall conductivity. As we have seen, in
physical units this is given by θ = e2

h
1

2k+1 to ensure that electrons are fermions,
hence we reproduce in the ZHK theory the expression for the Hall conductivity
derived in Laughlin’s theory.

We see that the applied external field cancels the internal Chern–Simons statis-
tical field, producing an effective “Meissner effect,” effectively fixing B = −B.
Since the first of the previous equations relates this to the matter density, we con-
clude that the ZHK theory describes an incompressible fluid, precisely in the same
way as the Laughlin theory.

By changing the applied field B, we will change the CS field, B, accordingly.
This corresponds to a number 2k + 1 of magnetic flux lines piercing the plane.
As we increase B, assuming the behavior of a type-II superconductor, the bulk
properties of the fluid would remain unchanged until we reach a critical value of
the field, at which a new flux unit will pierce the plane. This explains the formation
of plateaus.

The theory admits vortex excitations, which at the classical level correspond to
fields with the large-distance behavior

φ(r)
r∼∞−→ ρ0ei arg(r)

Ai (r)
r∼∞−→ ∇i arg(r)

A0(r) = 0. (26.80)

These vortex excitations carry magnetic flux and charge given, respectively by

� =
∮

A · dl = 2π

Q =
∫

d2x j0 = −θ
∫

d2xB = −θ� = −2πθ. (26.81)

Considering that θ = 1
2π(2k+1) in natural units, we see that the vortex excitations

will carry a charge Q = 1
(2k+1) . The minus sign indicates the vortex charge has

opposite sign of the electron charge, therefore characterizing these excitations as
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holes, in analogy to the related excitations of Laughlin’s wave-function. These vor-
tices will possess spin/statistics s = Q�/2π = 1

(2k+1) . Observe, consequently, that
the vortex excitations of the ZHK theory possess the same quantum numbers as the
hole excitations of Laughlin’s theory, in particular the charge and spin. The whole
hierarchy of quantum Hall plateaus may be derived from the ZHK theory as well,
by following the same steps as in the framework of Laughlin’s theory or in the
composite fermion picture [240]. Consider, for instance, the piece of the action

S0 =
∫

d3x

[
jμ(Aμ +Aμ)+ e2

2h

1

2k + 1
εμαβAμ∂αAβ

]
, (26.82)

which imparts an odd number of magnetic fluxes on the particles associated to the
current jμ, leading to a Hall conductivity

1

2k + 1

e2

h
.

We may re-write this as the following integral on Ãμ,

e
i
�

S0 =
∫

DÃμ exp

{
i

�

∫
d3x

[
jμ(Aμ +Aμ)+ e2

2h
(2k + 1)εμαβÃμ∂αÃβ

+εμαβAμ∂αÃβ
]}
. (26.83)

Going one step further, we can impart an even number of magnetic flux units to

the particles associated to the current jμ by integrating over the field ˜̃Aμ∫
DÃμD ˜̃Aμ exp

{
i

�

∫
d3x

[
jμ(Aμ +Aμ)+ e2

2h
(2k + 1)εμαβÃμ∂αÃβ

+εμαβAμ∂αÃβ ± e2

2h
(2l)εμαβ ˜̃Aμ∂α ˜̃Aβ + εμαβAμ∂α ˜̃Aβ

]}
. (26.84)

Integrating in Ãμ and in ˜̃Aμ, we see that the coefficient in (26.83) becomes

e2

2h
(2k + 1) −→ e2

2h

[
(2k + 1)± 1

2l

]
(26.85)

in such a way that the effective filling fraction becomes

ν = 1

(2k + 1)± 1
2l

. (26.86)

Repeating this procedure, we eventually obtain the whole hierarchy

ν = 1

m ± 1
m1± 1

m2±...

(26.87)
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where mi are even integers. This can be shown to be equivalent to the one obtained
within the composite fermion picture.

26.5 The Edges

The fact that systems undergoing the QHE are finite implies there are boundaries
within which the electrons are confined. The confining potential bends the Lan-
dau levels near the boundaries, in such a way that the gap separating these energy
levels, which exists in the bulk, disappears in the edges, leading consequently to
conducting edge states.

Already within a classical picture we may infer that there will be edge currents.
Indeed, applying a magnetic field to a system of electrons moving on the plane
will produce a stable state where the electrons move in circles oriented in the same
direction. This will naturally produce a net edge current in the same sense, while
the net current in the bulk would be zero.

A more detailed description can be achieved by calling x and y, respectively, the
coordinates of the quantum Hall fluid along the edge and the one perpendicular to
it. Then, the differential element of charge at a certain point of the edge will be

d QE = enydx ≡ ρE dx, (26.88)

where n = Ne
A is the electronic surface density and ρE = eny is the linear charge

density on the edge. The current along the edge is

IE = eny
dx

dt
= enyvE = ρEvE . (26.89)

Since in d = 1 current coincides with current density, we have jE = ρEvE , which,
along with the linear density, satisfies the continuity equation

∂ρE

∂t
+ ∂ jE

∂x
= 0. (26.90)

The confining potential at the edge produces an electric field of magnitude EE =
vE
c B, perpendicular to the edge. We can, therefore, write the edge current density

as jE = eny cEE
B .

Now, considering that nc
B = ν e

h , we find that the linear current density is

jE = νy
e2

h
EE . (26.91)

Since the d = 2 current density is given in terms of the edge linear current as
j2d = jE/y, we have j2d = ν e2

h EE , which is precisely the Hall current.
We find that a one-to-one correspondence exists between the filled bulk states

of the degenerate, gapped, Landau levels and the conducting gapless edge states.
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The modulus of the Chern number, therefore, expresses the number of such gapless
edge states:

|C| = #of gapless edge states. (26.92)

This double character; bulk insulator, edge metal, first observed in systems
exhibiting a quantum Hall phase, is the general feature of a new class of con-
densed matter systems, namely the topological insulators, which we will study in
Chapter 29.

Now, from (26.88) to (26.90), it follows that the edge charge and current
densities may be written in terms of a bosonic field as

ρE = 1√
π
∂xφ(x − vE t)

jE = − 1√
π
∂tφ(x − vE t). (26.93)

Because of its peculiar space and time dependence, the φ excitations move in a
unique sense along the edges. Consequently, the edge current will also have a
unique orientation, hence being a chiral current. The φ-field, accordingly, is a chiral
boson.

The electric potential corresponding to the field EE is VE = eEE y. It follows
that the interaction energy of the linear edge charge density will be

HI =
∫

dxe2nEE y2(x) =
∫

dxe2nvE By2(x)

HI = hc

e

vE

ν

∫
dxρ2

L =
hc

e

vE

πν

∫
dx∂xφ∂xφ = hc

e

vE

4πν

∫
dx∂−φ∂−φ

−→ vE

2ν

∫
dx∂−φ∂−φ, (26.94)

where ∂± = ∂x ± 1
vE
∂t and we returned to the natural units system in the last

step. We see that the only excitations are the bosonic, Tomonaga–Luttinger charged
collective gapless excitations φ(x−), in terms of which the current density is given
by (26.93).

26.6 Even Denominators

Even though most of the plateaus observed in systems undergoing the FQHE cor-
respond to fractions with odd denominators, there are clear exceptions, such as the
states with ν = 5/2, 7/2 . . . A wave-function describing these states has been pro-
posed by Moore and Read [241]. It is a generalization of Laughlin’s wave-function,
given by
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(z1, . . . , zNe)M R = C Pf
(
zi − z j

)∏
i< j

(
zi − z j

)m
exp

{
−

Ne∑
i

|zi |2
4l2

b

}
, (26.95)

where lb is the magnetic length, introduced before and m = 2, 4, 6, . . . Pf
(
zi − z j

)
is the Pfaffian or completely anti-symmetrized product of pairs (zi−z j ). The wave-
function, as a whole, is completely anti-symmetric since, for m even, the second
factor is completely symmetric. It is, consequently, apt to describe electrons. It
corresponds, indeed, to a fermionic state with occupation fraction ν = 1/m. The
plateau 5/2 = 2 + 1/2, for instance, would correspond to two full Landau levels
plus a half-filled one with a wave-function with m = 2. One can obtain the exci-
tations above the Moore–Read state proceeding in a similar way as we did in the
case of Laughlin’s wave-function. As it turns out, these are quasi-holes with non-
abelian statistics. This is a completely novel feature that has produced an enormous
amount of new results, actually opening new areas of research such as topological
quantum computation. We will consider this with more detail in Chapter 30.

It has been shown by Fradkin, Nayak, Tsvelik and Wilczek [242] that, in the
same way that the ZHK provides a QFT description of the state associated with
the Laughlin wave-function, the QFT that describes Moore–Read state, which is
associated to the Pfaffian wave-function, is the non-abelian SU(2) Chern–Simons
theory of level 2 (k = 2). This theory possesses vortex excitations obeying
non-abelian statistics, which are the QFT analogs of the Moore–Read quasi-hole
excitations. The Majorana states constructed out of these non-abelian anyons form
qubits that can be used in quantum computation, and are robust against loss of
quantum coherence. We will come to this point in Chapter 30.
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Graphene

Graphene is one of the most remarkable materials ever found. Also one of the most
studied. It presents a number of unique features that have attracted the attention
of both theoreticians and experimentalists. Investigation of its properties has led to
breakthroughs, not only from the perspective of fundamental research but also from
the point of view of applied science. Theoretically conjectured long ago, it was
concretely obtained in 2004 by Geim and Novoselov [243]. Graphene properties
include an outstanding mechanical robustness, being orders of magnitude stronger
than steel; high electric and thermal conductivities, despite the absence of a Fermi
surface; finite resistivity even without impurities, despite the absence of a gap; and
relativistic dispersion relation for the active electrons, implying their kinematics are
described by the Dirac equation and not by the Schrödinger equation, among oth-
ers. This last property makes of graphene a concrete realization of the Dirac sea, a
concept that in spite of not manifesting itself in nature, in the absence of matter has
enabled Dirac to predict the existence of antimatter. The observation of antimat-
ter in vacuo and the subsequent concrete realization of the Dirac sea in a material
system such as graphene is an outstanding example of the great unity that exists in
physics. Other properties of Dirac particles such as the Klein tunneling have been
observed as well in graphene. As a consequence of charge conjugation symmetry,
both electrons and holes possess the same mobility in graphene, a feature that is not
found, for instance, in regular (Si or Ge based) semiconductors. Further properties
of this extraordinary material include, for instance, the occurrence of the integer
and fractional quantum Hall effects, in the presence of an external perpendicular
magnetic field and the Zitterbewegung.

27.1 Crystal Structure and Tight-Binding Approach

Graphene is a one-atom-wide sheet of carbon with a sp2 hybridization, assembled
in a honeycomb crystal structure, consisting of a Bravais triangular lattice with
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438 Graphene

spacing a and a base of two atoms, respectively placed at (0, 0) and (0, h), with
respect to the Bravais lattice sites. We have h = a/

√
3 = 0.142nm.

The primitive vectors of this can be taken as

a1 = ax̂ a2 = a

(
1

2
x̂ +

√
3

2
ŷ

)
. (27.1)

The corresponding vectors of the reciprocal lattice are

b1 = 4π

a

(
1

2
x̂ −

√
3

2
ŷ

)
b2 = 4π

a
√

3
ŷ. (27.2)

The first Brillouin zone is a hexagon, centered at the origin, with a side l = 4π/3a.

Figure 27.1 The crystal structure of graphene with the primitive vectors a1
and a2

Figure 27.2 The reciprocal lattice of graphene with the corresponding primitive
vectors b1 and b2 and the first Brillouin zone: an hexagon with side l = 4π/3a
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27.1 Crystal Structure and Tight-Binding Approach 439

Figure 27.3 The crystal structure of graphene with the nearest neighbor vectors,
di , i = 1, 2, 3

Let us consider now the tight-binding approach to graphene. In this, we will be
concerned with the electron occupying the non-hybridized, pz orbitals of carbon.
This is the dynamical degree of freedom, which is relevant for most of the physical
properties of graphene, especially the electronic and transport properties.

For this purpose, notice that the nearest neighbors belong to different sublattices,
which we denote A and B. Given a point in one certain sublattice, it will have three
nearest neighbors in the opposite sublattice, located at the points corresponding to
the three vectors,

d1 = a√
3

ŷ d2 = − a√
3

(√
3

2
x̂ + 1

2
ŷ

)
d3 = a√

3

(√
3

2
x̂ − 1

2
ŷ

)
. (27.3)

The corresponding tight-binding Hamiltonian will be

HT B = −t
∑

R,i=1,2,3,σ=↑,↓

[
c†

B(R+ di , σ )cA(R, σ )+ H.C.
]
, (27.4)

where c†
A,B(r, σ )is the creation operator of an electron, with spin σ , in the orbital

pz of the carbon atom located at the position r in sublattice: A, B.
Introducing

cA,B(r, σ ) = 1√
N

∑
k

eik·rcA,B(k, σ ), (27.5)

we may re-write the Hamiltonian as

HT B =
∑
k,σ

c†
A(k, σ )cB(k, σ )

[
−t

∑
i=1,2,3

eik·di

]
+ H.C. (27.6)
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Introducing 
†(k, σ ) = (c†
A(k, σ )c

†
B(k, σ )), we may express this as

HT B =
∑
k,σ


†(k, σ )
(

0 φ

φ∗ 0

)

(k, σ ), (27.7)

where

φ(k) = −t
∑

i=1,2,3

eik·di . (27.8)

It follows, immediately, that the energy eigenvalues are

E(k) = ±|φ(k)| = ±t
√ ∑

i, j=1,2,3

eik·(di−d j). (27.9)

This expression gives the two bands of graphene, first obtained by Wallace in 1947
[303]. The two bands touch at the points K, where φ(K) = 0. It is not difficult to
see that for

K = 4π

3a
x̂ ; K′ = −4π

3a
x̂ (27.10)

we have

φ(K) = φ(K′) = 1+ ei 2π
3 + e−i 2π

3 = 0. (27.11)

These points are located at the vertices of the hexagon delimiting the first Brillouin
zone, consisting in K, K′ plus the four vertices obtained by multiple rotations of
60◦, two of which are connected to K and the other two with K′ by reciprocal lattice
vectors being, therefore, essentially the same point. K and K′ are, consequently, the
only two inequivalent points where the valence and conduction bands of graphene
touch. Since carbon in the sp2 hybridization provides one dynamical electron per
atom, the lower band will be completely filled. The Fermi surface, consequently,
reduces to two inequivalent Fermi points.

27.2 A Concrete Realization of the Dirac Sea

Almost 40 years after the tight-binding study of graphene was first made, Di Vin-
cenzo and Mele [249] and Semenoff [248] independently demonstrated that the
low-energy excitations of graphene, which occur precisely around the Fermi points
K and K′, possess a dispersion relation, which would be appropriate to a relativistic
particle and, hence, are governed by the Dirac equation.

In order to see that, let us re-write the Hamiltonian (27.7) as

HT B =
∑
k,σ


†(k, σ )hT B
(k, σ )
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27.2 A Concrete Realization of the Dirac Sea 441

Figure 27.4 The first Brillouin zone of graphene. The three K and three K′ Dirac
points are connected by reciprocal lattice vectors, being, therefore, equivalent.
There are two inequivalent Dirac points: K and K′. The hexagon has a side
l = 4π

3a .

hT B = −t

[∑
i

cos(k · di )σx +
∑

i

sin(k · di )σy

]
, (27.12)

where the σ s are Pauli matrices.
Let us expand now the above Hamiltonian around the points K and K′. Making,

respectively, k = K+ p and k = K′ + p we get, up to the first order in p,

hK = − ta√
3

[
−
∑

i

p · di sin(K · di )σx +
∑

i

p · di cos(K · di )σy

]
(27.13)

and

hK ′ = − ta√
3

[
−
∑

i

p · di sin(K′ · di )σx +
∑

i

p · di cos(K′ · di )σy

]
, (27.14)

or, equivalently

hK =
√

3ta

2

[
pxσx + pyσy

]+ O(p2)

hK ′ =
√

3ta

2

[−pxσx + pyσy

]+ O(p2). (27.15)
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We now identify hK as the Dirac Hamiltonian of a massless particle with velocity
vF =

√
3ta
2 , instead of c, which would be the speed of a massless particle in a

relativistic theory. Actually vF � 106 m/s � c/300 and t � 3 eV . As for hK ′ , we
can put it on the standard Dirac form by performing a canonical transformation


K ′(k, σ ) −→ exp
{

i
π

2
σz

}
σx
K ′(k, σ )



†
K ′(k, σ ) −→ 


†
K ′(k, σ )σx exp

{
−i
π

2
σz

}
, (27.16)

whereupon

HK =
∑
k,σ



†
K (k, σ )hK
K (k, σ )

HK ′ =
∑
k,σ



†
K ′(k, σ )hK ′
K ′(k, σ ). (27.17)

Here

hK = hK ′ = vF
[

pxσx + pyσy
]

(27.18)

The vector Dirac matrices are, then, αi = σi , i = x, y and β = σz , hence the
covariant Dirac matrices are given by

γ 0 = σz ; γ 1 = iσy ; γ 2 = −iσx . (27.19)

The energy eigenvalues E(p), with respect to the origin, can now be easily found
by noting that h2

K ,K ′ = E2(p)I = v2
F |p|2I, hence, for both K and K ′,

E(p) = ±vF |p| ; vF =
√

3ta

2
. (27.20)

We see that the energy eigenvalues are such that two opposite cones are formed at
each point K , K ′, where the valence and conduction bands touch. Each set of two
opposite Dirac cones is called a “valley.” Notice the fact that E(p) is equal for the
two valleys, thus expressing the invariance of the system under the time-reversal
symmetry, which connects the two valleys.

Moving to the coordinates representation, we introduce the Dirac field

ψKσ =
(

A


B

)
Kσ

, (27.21)

the components of which correspond to the two different sublattices A and B,
whereas K , K ′,↑,↓ are four different flavors, specifying to which valley (Fermi
point) the electron belongs, as well as its spin component orientation. In terms of
this we can express the Hamiltonian density as

H = −i�vF

∑
A=K ,K ′;σ=↑,↓

ψ
†
Aσ
�� · ∇ψAσ (27.22)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.028
https://www.cambridge.org/core


27.3 Pseudo-Chirality, Klein Phenomena and Zitterbewegung 443

where

�� = (σx , σy
)
. (27.23)

The corresponding Lagrangean density is

L = −i�vF

∑
A=K ,K ′;σ=↑,↓

ψ Aσ γ
μ∂μψAσ , (27.24)

where ψ = ψ†γ 0 = ψ†σ z , the sum over flavors in the set: K ↑, K ↓, K ′ ↑, K ′ ↓
is understood.

We see that graphene provides a concrete material realization of the Dirac sea
with holes, associated to vacancies in the valence band, corresponding to positrons.
The fact that the carbon p-electrons in graphene are governed by a massless rela-
tivistic Dirac equation has a deep impact on the transport properties of graphene.
Different effects observed in relativistic quantum mechanics, which can be under-
stood on the basis of the Dirac sea, have been predicted and/or experimentally
observed in graphene [245, 246]. We describe some of these below.

27.3 Pseudo-Chirality, Klein Phenomena and Zitterbewegung

Pseudo-Chirality

The Hamiltonian (27.22) decouples into two-independent components, K and K ′,
as we can see in (28.6). This is in complete analogy to what happens with the
massless Dirac field in D = 3 + 1 when we use the Weyl representation of the
Dirac matrices, as we saw in Section 10.6. The two valleys, therefore, play a role
analogous to the left and right components found in a massless Dirac field in three-
dimensional space and, consequently, could be called pseudo-chiralities.

Furthermore, from (27.22) we infer that the quantity

h = �� · p, (27.25)

which may be called pseudo-helicity, commutes with the Hamiltonian, being there-
fore conserved. This conservation is a direct consequence of the masslessness of
the Dirac quasi-particles, and severely restricts the backscattering of electrons in
graphene. Indeed, since backscattering takes k into −k, then, for k near the point
K , we can see from the positions of K and K ′ in the first Brillouin zone that such
a process would require, at the same time, that K → K ′.

This can be understood once we realize that, for p near K , it follows that −p
is near K ′. Hence, because of their effective masslessness, electrons belonging to
valley K must be backscattered into electrons of the opposite valley, K ′. Con-
sequently, admitting that intervalley scattering is suppressed, we may conclude
that backscattering will be suppressed as well. Now, since backscattering is a
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major source of resistance, it follows that conductivity will be ultimately enhanced
through this mechanism.

It is remarkable that pure graphene, even though exhibiting a zero density of
states at the Fermi points, presents a minimum conductivity, as we will see below.
This fact can be ascribed to the effective masslessness of the p-electrons.

Klein Paradox and Klein Tunneling

These are two phenomena occur when we solve the Dirac equation in the presence
of a step potential and of a rectangular barrier potential, respectively [252]. In the
first case, we get a reflection coefficient larger than one and a nonzero transmission
coefficient into a classically forbidden region, thus justifying the name “paradox”
given to this process.

The Klein tunneling, conversely, occurs when electrons incide on a rectangu-
lar barrier and, as can be inferred from the Dirac equation, are transmitted with
probability one in certain directions [250, 253, 245].

Already at the classical level we can have a hint on how to understand these
phenomena. In the presence of a potential step or barrier of height U0 the electrons
in graphene would have their energy given by

E(p) = vF

√
|p|2 +U0. (27.26)

The group velocity, then, is given by

v = ∇p E(p) = vF
p√|p|2 = v2

F

p
E −U0

. (27.27)

We see that, outside the barrier, where E > U0, v and p are parallel, whereas
under the barrier, where E < U0, they are anti-parallel. The momentum, there-
fore, can be reverted in the scattering process without reversing the sign of the
group velocity, as the particle goes through the potential! That is why we can
have transmission without any reflection, in the case of a rectangular barrier. On
a quantum-mechanical basis, we can understand the transmission coefficient being
equal to one as a consequence of the absence of intervalley scattering, which would
preclude backscattering.

The fact that the reflection coefficient is larger than one, for a step potential
barrier, stems from the fact that the applied potential energy will create electron-
hole pairs and such holes, in the presence of the corresponding field, will propagate
leftward, thus making the reflected wave more intense than the incident one. It is a
direct consequence of the fact that Dirac particles are always in the presence of a
Dirac sea.
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Zitterbewegung

Usually, when we form a wave-packet for describing the quantum state of a par-
ticle, the average of a given observable for this wave-function behaves precisely
as the corresponding classical quantity. Hence the average velocity for the wave
packet of a free particle is expected to be a time-independent quantity. One ver-
ifies, nevertheless, for particles governed by the Dirac equation, that if we try to
compress the wave-packet to a size smaller than the particle’s Compton wave-
length, the average velocity exhibits an oscillatory motion with an extremely high
frequency, which has been called Zitterbewegung. The name, which means “trem-
bling motion,” was coined by Schrödinger, who first realized its existence. How to
interpret this result on the basis of the principles of quantum mechanics?

It happens that strictly speaking, in the presence of a Dirac sea, Dirac’s theory
cannot be considered as a one-particle quantum mechanics. The comprehension
of this phenomenon requires the Dirac field to be considered as a fully quantized
operator. In this framework, the Zitterbewegung can be ascribed to the fluctuations
produced by the contributions of the Dirac sea to the wave-packet of a one-particle
state and shall be observed in graphene, as described in [251, 245].

27.4 Quantum Hall Effect in Graphene

We have seen in the previous chapter that a quantum regime of the Hall effect sets in
when a sufficiently strong magnetic field is applied at a low enough temperature in
a two-dimensional electron gas. We should expect, therefore, that graphene, being
maybe the best example of a d = 2 electron gas, should exhibit the same effect
under similar conditions.

In a broad sense, we can say that the starting point for the description of the QHE
is the study of the Landau levels generated by the action of an external magnetic
field. Let us investigate, then, the structure of such Landau levels in graphene.

A constant, uniform external magnetic field B, associated to a vector potential
A = (0,−Bx), is introduced by the minimal coupling: p → p+ e

c A.
From (27.15), we see therefore that the eigenvalue equations for the one-particle

Hamiltonians of the electrons of graphene, belonging, respectively, to valleys K
and K ′, in the presence of an external magnetic field, are given by

det

(
− E
vF

Px − i Py + i e
c B X

Px + i Py − i e
c B X − E

vF

)
= 0 (27.28)

and

det

(
− E
vF

Px − i Py + i e
c B X

−Px + i Py − i e
c B X − E

vF

)
= 0. (27.29)
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Notice that [Py, hK ] = [Py, hK ′ ] = 0, hence, being a constant of motion, Py can
be discarded. Then, using the commutator [X, Px ] = i� , we get

E2
K ,K ′

v2
F

= P2
x +

e2 B2

c2
X2 ∓ �

eB

c
, (27.30)

where the ∓ signs corresponds, respectively, to the valleys K and K ′.
One recognizes in the first term on the right-hand side a one-dimensional har-

monic oscillator Hamiltonian with mass m = 1/2 and frequency ω = 2 eB
c , which

has eigenvalues εn = (2n + 1)� eB
c .

It follows that the energy eigenvalues for the electrons of graphene will be, for
n ∈ N,

EK = ±vF

√
2n�

eB

c

EK ′ = ±vF

√
2(n + 1)�

eB

c
, (27.31)

respectively, for the valleys K and K ′. We see that the presence of a magnetic field
breaks the symmetry between the two valleys, by making EK �= EK ′ .

Keeping in mind that each Landau level yields an edge state, which by its turn
contributes one conductivity quantum, e2

h , to the Hall conductivity, we see that the
two valleys will contribute 2 × (2n + 1) edge states, the factor 2 corresponding
to the two spin orientations. Through this reasoning, therefore, we infer the Hall
conductivity of graphene is given by

σH = 4

(
n + 1

2

)
e2

h
; ν = ±2,±6,±10, . . . (27.32)

This Hall conductivity was measured in graphene [244, 254] at T = 4K
under a magnetic field of 15 T . The fractional quantum Hall effect has also been
experimentally observed, more recently, in graphene [255, 256].

We have so far neglected the electronic interactions in graphene; nevertheless,
the observation of the fractional quantum Hall effect in this material is a strong
indication that these must be important. In the rest of this chapter we include the
electromagnetic electronic interactions in our description of graphene.

27.5 Electronic Interactions in Graphene

Being charged particles, electrons interact by means of the electromagnetic inter-
action. This is certainly the case of the carbon p-orbital electrons of graphene.
Nevertheless, despite the fact that these are confined to a plane, the electro-
magnetic fields through which they interact are clearly not. Also, within a
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quantum-mechanical description, the photons, which such electrons exchange
when they interact, are not restricted to the plane delimited by the honeycomb
structure of graphene, where the electrons move. One then faces the possibility
of formulating a theory for describing the electronic interactions in graphene, in
which all matter lives in d = 2 while the fields that intermediate its interaction live
in d = 3. This is not convenient, for practical, calculational and esthetical reasons.
Hence, by all standards, it would be preferable to have available an effective field
theory, which albeit strictly formulated in a d = 2 space, yet would describe the
same electromagnetic interaction as QE D4 would do. This theory is not QE D3,
as we may obviously infer, for instance, from the fact that it produces a logarithmic
Coulomb potential between static charges, whereas the correct result would be the
familiar 1/r potential.

In Chapter 12, we described in detail such an effective theory, called pseudo
quantum electrodynamics (PQED), which reproduces the properties of QE D4,
despite being completely formulated on the plane [89]. The electromagnetic inter-
action of the carbon p-electrons in graphene, therefore, can be conveniently
described by minimally coupling the Dirac field introduced previously in this chap-
ter to the pseudo electromagnetic field, governed by PQED. We thereby combine
the results obtained from the tight-binding approach and introduce the following
interacting theory for graphene [257],

L = −1

4
Fμν

[
2√
�

]
Fμν − i�vFψKσ γ

μDμψKσ , (27.33)

where Dμ = ∂μ+ ieAμ and Fμν = ∂μAν − ∂ν Aμ is the field intensity tensor of the
pseudo-electromagnetic field.

It could be argued that, since the characteristic speed of the electrons in
graphene, namely, vF , is of the order of 300 times less than the speed of light, which
is the speed of the photons, then it would suffice to use just the static Coulomb
potential for describing the electronic interactions in graphene. Albeit this is true
to a large extent, yet there are some subtle effects that are missed if one uses the
static interaction right from the beginning.

A first example of such effects consists of anomalies, such as the chiral or parity
anomalies, which will only occur in the presence of the full trilinear interaction
vertex generated by the minimal coupling with a dynamical electromagnetic field.
Another example occurs when using Kubo’s formula, for instance, for determining
the DC-conductivity. In order to obtain the correct result one must take the limit
ω → 0 at the very end, after every other limit has been taken. By using just the
static potential, we are in a way actually imposing ω→ 0, from the very beginning,
thus violating that prescription.
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Notice that the description of the electronic interactions in graphene by the full
electromagnetic interaction contains the static Coulomb interaction as a particular
case; hence, it is anyway more complete.

In practical applications, the use of PQED amounts to considering the tri-
linear vertex, coupling the electron current to the pseudo-electromagnetic field
Aμ, and using the propagator Gμν of this field, given by (12.13). In what fol-
lows, we will explore different consequences of the electronic interactions in
graphene.

27.6 Velocity Renormalization

A first consequence of the electronic interactions in graphene is the renormaliza-
tion of the Fermi velocity vF . We address this issue by using a renormalization
group method in the framework of PQED. The results shown in this section
are a nice example of how the presence of interactions strongly influences the
behavior of physical quantities in a system described by a certain quantum field
theory.

Let us consider the vertex function �μ(p1, p2;α; vF), which is given in one loop
by the graph of Fig. 27.5, and where α = e2/4πε0�c is the fine-structure constant.
The (pseudo) photon propagator in the triangle graph is given by (12.13).

As we saw in Section 6.5, such a vertex function must obey the renormalization
group equation[
μ2 ∂

∂μ2
+ βv(vR, e

2)
∂

∂vR
+ βe(vR, e

2)
∂

∂e
− γAμ − 2γψ

]
�
μ

R(p1, p2;α; vR) = 0,

(27.34)
where vR is the renormalized Fermi velocity and

βv(vR, e
2) = μ2 ∂vR

∂μ2
. (27.35)

Figure 27.5 The vertex function
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From the last equation, we obtain∫ vR(μ)

vR(μ0)

dvR

βv(vR)
=
∫ μ2

μ2
0

dμ2

μ2
= ln

μ2

μ2
0

. (27.36)

Knowledge of the beta function βv(vR, e2), consequently, allows us to determine
the renormalized Fermi velocity in graphene.

In order to determine the βv(vR, e2) function, one evaluates the above vertex
function, within a certain approximation; then, one may extract its explicit form
from (27.36). Through this method, one obtains, in one loop, [267] βe = 0 and

βv(vR, e
2) = e2

8π2

∫ 1

0
dx

√
1− x

x(1− β2)− 1

[
1− 2β2 − 1

x(1− β2)− 1

]
, (27.37)

where β = vR/c. Notice that the βv(vR, e2) function vanishes at β = 1, hence
vR = c is a fixed point for the renormalized velocity [269, 274].

We shall analyze the βv(vR, e2) function in two different regimes, namely,
β � 1 and β � 1. From (27.37), we get

βv(vR, e
2) = − e2

16π

(
1− β

2

2

)
; β � 1

βv(vR, e
2) = − 2e2

5π2
(1− β) ; β � 1. (27.38)

Inserting each one of the above expressions in (27.36) and performing the
integration in vR , we obtain, respectively, in the two regimes [269, 267],

vR(μ) = vR(μ0)

[
1− e2

8πvR(μ0)
ln

(
μ

μ0

)]
; β � 1

vR(μ) = c

[
1−

(
1− vR(μ0)

c

)(
μ

μ0

)2γ
]
; β � 1, (27.39)

where γ = e2

5π2c
.

We may exchange the above dependence of the renormalized velocity on the
energy scale by the density of electrons. Indeed, by adding or removing p-electrons
from the carbon atoms of graphene, we can create a Fermi circle of radius pF . The
density of electrons, then, can be related to pF as

Ne = πp2
F

(2π)2

A

× 4 ; pF = √πn, (27.40)

where we used the fact that the number of available states is the area of the
Fermi circle divided by the area occupied by each state. Each of these states can
accommodate four electrons, corresponding to the two spins and two valleys.
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Using the above relation, we may trade the energy scale set by pF by the
electronic density n:

vR(n) = vR(n0)

[
1− α0

4
ln

(
n

n0

)]
; β � 1

vR(n) = c

[
1−

(
1− vR(n0)

c

)(
n

n0

)γ]
; β � 1, (27.41)

where α0 = e2

4πvR(n0)
= c

vR(n0)
× 1

137 is the graphene fine structure constant
corresponding to vR(n0).

It is interesting to note that vF renormalizes to the speed of light exactly at half-
filling, n = 0, which is the infrared fixed point [268, 269, 274]. This regime is
not likely to be attained in real samples, because of the presence of impurities
and as a consequence of the finite size of the graphene sheet. Nevertheless, a clear
enhancement of the effective velocity has been experimentally observed as the elec-
tronic density is reduced [270]. Observe, however, that in the low-density regime,
we must use the second expression above, because in this regime one violates the
β � 1 condition.

27.7 DC-Conductivity

In the previous section, we have just determined how the interactions produce
a renormalization of the Fermi velocity in graphene. DC-conductivity is another
physical quantity that is influenced by such electronic interactions.

DC-conductivity is given by Kubo’s formula,

σ i j = lim
ω→0

i

ω
〈 j i j j 〉(ω,p = 0). (27.42)

As we have seen in Section 6.5, the current correlator is given by the vacuum
polarization tensor, namely

〈 j i j j 〉(ω,p) = �i j (ω,p). (27.43)

The vacuum polarization tensor of PQED has been calculated up to two loops.
The one-loop result contains the trace

tr

[
γ μ

(
γ μkμ ± m

)
k2 + m2

γ ν
(γ μk ′μ ± m)

k ′2 + m2

]
, (27.44)

where m is an electron mass that will be set to zero. We will see in the next chapter
that the mass signs ± correspond, respectively, to each of the two valleys K and
K ′. We then conclude that terms corresponding to the trace of an even number of
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γ -matrices will be valley-insensitive, even functions of m. Those corresponding to
the trace of an odd number of such matrices will be proportional to

±mtr
[
γ μγ αγ β

] = ±2mεμαβ.

Combining these observations with the one-loop calculation for one single
flavor, performed in [271], one obtains, in the m = 0 limit [257],

i�i j
(1)(ω,p) =

1

16

⎡
⎣δi j (ω2 − v2

F |p|2)− pi p j√
ω2 − v2

F |p|2

⎤
⎦± 1

2π

(
n + 1

2

)
εi jω, (27.45)

where n ∈ Z is a topological invariant [271] and the last term corresponds to
the trace of three γ -matrices. The two signs correspond, as announced, to the
contributions of the two valleys K and K ′.

The two-loops result has been obtained in [272, 273, 274, 275]. It is given by the
first factor of �i j

(1)(ω,p) multiplied by a constant Cα0

i�i j
(2)(ω,p) =

1

16

⎡
⎣δi j (ω2 − v2

F |p|2)− pi p j√
ω2 − v2

F |p|2

⎤
⎦Cα0, (27.46)

where C depends on the Fermi velocity beta function (βvR ) regime: vR � c or
vR � c. α0 � 300

137 � 2.19 is the fine structure constant corresponding to the
velocity vF of graphene.

Observe that the transverse term of the vacuum polarization tensor does not
receive higher-order radiative corrections, in compliance with the Coleman–Hill
theorem [278].

Now, since we are interested in the response to a constant electric field, we must
take the limit p → 0 in the previous expressions. Then, all the vF -dependence
is washed out, and the system behaves as if vF = c. Hence, for determining the
constant C , for the sake of consistency, we choose the ultra-relativistic prescription
leading to the value [275],

C = 92− 9π2

18π
� 0.056. (27.47)

Notice that the two-loops correction is much smaller than the one-loop, thus
justifying the use of perturbation theory in this case.

After taking the limit p → 0, the static limit ω → 0 can be safely and con-
sistently taken. Inserting in Kubo’s formula, we get, for each valley and spin
component, the conductivity

σ i j = 1

16

e2

�

[
1+ 92− 9π2

18π
α0

]
δi j ± 1

2π

(
n + 1

2

)
e2

�
εi j , (27.48)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.028
https://www.cambridge.org/core


452 Graphene

where the two signs correspond to the valleys K and K ′, respectively, and we have
reinstated the physical units of e2

�
.

Summing the contributions of the four flavors in the set: K ↑, K ↓, K ′ ↑, K ′ ↓,
we get the total conductivity [257]

σ
i j
T = 4× π

8

e2

h

[
1+ 92− 9π2

18π
α0

]
δi j

σ
i j
T =

π

2
[1+ 0.056 α0]

e2

h
δi j � 1.76

e2

h
δi j . (27.49)

Observe that the electrons of each valley give opposite contributions to the
transverse conductivity and, consequently, this vanishes. We have, in summary,

σ xx
T = π

2
[1+ 0.056 α0]

e2

h
� 1.76

e2

h
σ

xy
T = 0. (27.50)

Even though this is still not so close to the experimental result [276]

σ
i j
T,exp � 2.16

e2

h
δi j ,

yet it represents an improvement with respect to the non-interacting minimal
conductivity

σ
i j
0,T =

π

2

e2

h
δi j � 1.57

e2

h
δi j

and is the closest to the experimental value [277].

27.8 The Quantum Valley Hall Effect

In the previous section, we found that graphene exhibits a longitudinal con-
ductivity, which is corrected by the electromagnetic interactions. No transverse
conductivity, however was obtained in the absence of an external magnetic field.

We now introduce the concept of a “valley conductivity,” which is naturally
defined in terms of the difference between the conductivities of each valley, namely

σ
i j
V =

∑
σ=↑,↓

[
σ

i j
K ,σ − σ i j

K ′,σ

]
. (27.51)

The valley conductivity, therefore, relates an applied electric field to the relative
current between the two valleys.
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From (27.48), we infer that

σ
i j
V = 4

(
n + 1

2

)
e2

h
εi j , (27.52)

or

σ xx
V = 0

σ
xy
V = 4

(
n + 1

2

)
e2

h
. (27.53)

We see now that the longitudinal valley conductivity vanishes, whereas the trans-
verse one is nonzero. Also, interestingly, it is identical to the one obtained for
the quantum Hall effect in graphene in the presence of an applied external mag-
netic field. This is an exact result, by virtue of the Coleman–Hill theorem that
rules out the correction of the transverse part of the vacuum polarization tensor by
higher-order terms.

The fact that these two conductivities are identical is by no means a coincidence.
It stems from the fact that both conductivities can be expressed in terms of topo-
logical invariants. These, on the other hand, are closely related to conducting edge
states, which, by their turn, correspond to a discrete set of gapped bulk states. In
the case of the QHE produced by an external magnetic field in graphene, these
bulk states are the Landau levels studied in Section 27.4. In the present case of the
spontaneous generation of a quantum valley Hall effect (QVHE) in graphene, we
will demonstrate the existence of the corresponding gapped bulk states in the next
section.

The emergence of the QVHE in graphene is the consequence of the electro-
magnetic interactions among the p-electrons of carbon described by PQED [257].
For this, we unavoidably need the full dynamical interaction; should we use just
the static Coulomb interaction, even though it could be justified by the fact that
vF � c, we would completely miss this effect. This is a striking example of the
successful use of PQED in a condensed matter system.

27.9 The Electronic Spectrum of Graphene

Let us study here the energy spectrum of graphene in the absence of external
fields [257]. We saw in Chapter 13 that energy eigenstates appear as poles of
the Green function. We had shown before, in Chapter 6, that the value of these
eigen-energies at zero momentum (masses) can be obtained from the self-energy,
according to (6.59). For this purpose, therefore, we shall determine the electron
self-energy function of graphene, which is given by the graph in Fig. 27.6. In
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Figure 27.6 The electron self-energy

this, the curly line is the gauge field propagator of PQED, whereas the straight
line is the full electron propagator S(p). This is given by the Schwinger–Dyson
equation

S−1(p) = S−1
0 (p)−�(p)

S(p) = 1

p/−�(p) , (27.54)

where S0 is the electron free propagator and � is the self-energy itself.
Since the electrons in graphene are massless Dirac fermions, the sought energy

eigenstates, ε, are a solution of the following version of (6.59):

Re �(p = ε) = ε, (27.55)

where we took into account the fact that electrons in graphene are massless Dirac
fermions.

The imaginary part of the self-energy is related to the lifetimes, τ , of these states,
namely,

Im �(p = ε) = �

τ
. (27.56)

Our task, therefore, is to determine the self-energy, such that the energy eigenval-
ues could be extracted from the equation above. Since the self-energy graph is an
integral that also contains the self-energy as part of the integrand, via the electron
propagator, it actually is an integral equation for the self-energy. Going through a
standard procedure [257, 258], one can transform such into a differential equation
for the (scalar) trace of the self-energy

tr� ≡ 2�1, (27.57)

namely

p2 d2�1

dp2
+ 2p

d�1

dp
+ α

4αc
�1 = 0, (27.58)
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where α is the fine structure constant of graphene and αc � 1.02 is a critical
coupling.

The Schwinger–Dyson method has been used in several interesting studies of
graphene found in the literature [259, 260, 261, 262, 265, 263, 264, 266]. Most of
the time, however, the static Coulomb potential is used in these approaches, instead
of the full electrodynamical interaction described by PQED (see Chapter 12). The
differential equation above is Euler’s equation, which admits the solutions [257]

�1 = A√
p

e−i[γ ln p
 
+ϕ], (27.59)

where A and ϕ are arbitrary real constants and  is an ultraviolet energy-
momentum cutoff. The parameter γ is given by

γ = 2√
π

√(
α

2+ πα
)
−
(

αc

2+ παc

)
. (27.60)

By taking the trace of (27.55), we see that

�1(p = ε) = ε. (27.61)

Then, choosing A =  3/2 and ϕ = 0, we get

Re �1 =  
3/2

√
ε

cos
[
γ ln

ε

 

]
= ε, (27.62)

and

Im �1 =  
3/2

√
ε

sin
[
γ ln

ε

 2

]
. (27.63)

Introducing z, in such a way that

ε =  e−
z
γ , (27.64)

we obtain [257] the following condition on the zs:

e−
3z
2γ = cos z. (27.65)

Calling Zn, n ∈ N, the solutions of this transcendental equation, we find an
infinite number of eigenenergies given by [257]

εn =  e−
Zn
γ n ∈ N. (27.66)

In (27.61), we have p = √
E2 − |p|2, and consequently the electron propagator

will have poles at p2 = ε2
n , corresponding to energy eigenstates with eigenvalues

En = ±
√
|p|2 + |εn|2. (27.67)
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Figure 27.7 The solutions of the transcendent equation, Eq. (27.65). Observe they
quickly tend to the zeros of the cosine function: (n + 1

2 )π .

We conclude, therefore, that the set of dynamically generated energy states is
symmetric about the Fermi level, which is located at E = 0 for undoped graphene.

The lifetime of these states is given by the imaginary part of the self-energy. We,
therefore find, for the nth state,

τn = �

 

∣∣ cos Zn

∣∣1/3∣∣ sin Zn

∣∣
τn = �

 

e−Zn/γ

√
1− e−3Zn/γ

. (27.68)

We see that the lifetimes decay exponentially with Zn and, consequently, only the
first few states could be observed. Choosing the cutoff as  � 1.0 eV , and con-
sidering that � = 6.58 × 10−16eV · s, we conclude that the first states will have a
lifetime of the order τ � 1.0 f s. There is, however, a special state, corresponding
to the solution Z0 = 0, that has an infinite lifetime and is, consequently, stable. It
has a rest energy ε0 =  , and therefore opens a gap 2 in the electronic spectrum.

These are the announced gapped bulk quantum states that are spontaneously
generated by the electronic interaction, described by PQED. To each of them there
will correspond a gapless edge state which will correspond to the transverse val-
ley conductivity found in the previous section. The existence of states of opposite
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27.9 The Electronic Spectrum of Graphene 457

signs reflects in the existence of equal but opposite currents that correspond to a
nontrivial valley conductivity, despite the fact that the total conductivity vanishes.
There is a characteristic temperature T ∗ � 2K above which the dynamically gen-
erated gapped states would be washed out by thermal activation. The whole effect
should be unobservable above such temperature [257]. Below such temperatures,
and moreover, close to 0 K , there will be a gap Eg = 2 separating the valence
and conduction bands. The DC-conductivity, consequently, will vanish at temper-
atures in the range T � T ∗, returning to the value determined above as we go to
the range T > T ∗.
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28

Silicene and Transition Metal Dichalcogenides

Graphene is an atom-wide monolayer gapless material, which is classified as a
semi-metal and exhibits outstanding transport, electronic and structural properties.
When carbon is replaced by silicon in the underlying honeycomb crystal structure,
a new phenomenon occurs. Due to the larger atomic size, effects such as the core’s
ionic repulsion make the system stabilize in such a way that the triangular sublat-
tices A and B are no longer in the same plane, but become separated by a distance
of approximately 0.046 nm [279, 280]. This produces a spin-orbit coupling that
presents a sublattice (A or B) dependent sign [280]. This staggered energy gener-
ates an asymmetry between the two sublattices, which has the effect of producing a
gap in the energy spectrum. As a consequence, silicene, as this material is known, is
a semiconductor, rather than a semi-metal. Silicene was synthesized in 2010 [283]
and since then has been attracting the attention of the condensed matter physics
community. Related materials made of germanium and tin [284] have also been
synthesized since then [285, 286].

Transition metal dichalcogenides (TMD) such as W Se2, W S2, MoSe2 and MoS2

are another class of extremely interesting materials, which present a crystal struc-
ture similar to silicene, but with the sites belonging to sublattices A and B being
occupied, respectively, by transition metal and chalcogen atoms. The net effect is,
again, a breakdown of the symmetry between the A and B sublattices of the honey-
comb structure, which existed in graphene. This, again, generates a staggered local
energy that, ultimately, produces a gap in the energy spectrum. Silicene and TMDs
present peculiar physical properties such as strong electron-hole interaction, lead-
ing to exciton states with a binding energy much larger than that of conventional
semiconductors. Silicene, germanene and stanene, along with the transition metal
dichalcogenides, form a class of materials that can be described by the massive
Dirac equation.

458
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28.1 The Gapped Dirac Hamiltonian

We can model silicene and TMD by adding to (27.7) a staggered sublattice-
dependent M term, as follows,

HT B =
∑
k,σ


†(k, σ )
(

M φ

φ∗ −M

)

(k, σ ), (28.1)

where φ(k) is given by (27.8). Notice that the M-term, being proportional to a
σz matrix in the (A,B) space, describes the staggered energy, provenient either
from the spin-orbit coupling or from the local atomic asymmetry between the two
sublattices that occur in TMDs.

Diagonalizing the Hamiltonian, we readily find that the energy eigenvalues
are now

E(k) = ±
√
|φ(k)|2 + M2 = ±

√
t2

∑
i, j=1,2,3

eik·(di−d j) + M2, (28.2)

which clearly show the presence of a gap 2M .
We may re-write the Hamiltonian as

HT B,M =
∑
k,σ


†(k, σ )hT B,M
(k, σ )

hT B,M = −t

[∑
i

cos(k · di )σx +
∑

i

sin(k · di )σy

]
+ Mσz, (28.3)

where the σ s are Pauli matrices with entries in the (A,B) space.
Now, expanding around the points K and K ′, we obtain, respectively,

hK ,M =
√

3ta

2

[
pxσx + pyσy + Mσz

]+ O(p2)

hK ′,M =
√

3ta

2

[−pxσx + pyσy + Mσz

]+ O(p2). (28.4)

Then, performing the same canonical transformation (27.16), in 
K ′,σ (k), we
see that the mass term transforms as

M
†
K ′,σ σz
K ′,σ −→ M
†

K ′,σ σx exp
{
−i
π

2
σz

}
σz exp

{
i
π

2
σz

}
σx
K ′,σ

= −M
†
K ′,σ σz
K ′,σ . (28.5)

The terms that are linear in the momentum transform as before, hence we obtain,
in the massive case,
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HK =
∑
k,σ



†
K (k, σ )hK
K (k, σ )

HK ′ =
∑
k,σ



†
K ′(k, σ )hK ′
K ′(k, σ ), (28.6)

where

hK = vF
[

pxσx + pyσy + Mσz
]

(28.7)

and

hK ′ = vF

[
pxσx + pyσy − Mσz

]
. (28.8)

Notice that the mass at valley K ′ has an opposite sign to that at valley K .
Using the Dirac matrices (27.19) we can obtain the Hamiltonian and Lagrangean

densities corresponding to the above one-particle Hamiltonians,

H = ψ†
Kσ

[
−i�vF �� · ∇ + Mτ z

K K ′β
]
ψK ′σ ′ (28.9)

and

L = ψKσ

[−i�vFγ
μ∂μ − Mτ z

K K ′
]
ψK ′σ ′, (28.10)

where, as before, ψ = ψ†γ 0 = ψ†σ z , the sum over flavors in the set: K ↑, K ↓,
K ′ ↑, K ′ ↓ is understood, � is given by (27.23). The 2 × 2 Dirac matrices have
entries in the (A,B) sublattice subspace.

A primary mechanism for the existence of a mass term in the systems being
examined here is any asymmetry between the two sublattices A and B. In the case
of TMDs, the fact that different atoms occupy each of the two sublattices natu-
rally generates a σz term in the Hamiltonian, which expresses such asymmetry.
Supposing the local difference in chemical potential between the atoms in the two
sublattices is 2�, then M = �.

In the case of silicene and related monoatomic compounds, conversely, we may
simulate the staggered local energy difference by applying a perpendicular electric
field, Ez . Supposing the sublattices are a distance l apart, then M = � = l

2 Ez in
this case. Assuming the electric field is applied from the lower (B) to the upper (A)
sublattice, it follows that in that case we will have � < 0. Another mechanism for
mass generation in the systems under consideration is the spin-orbit interaction. In
this case, the mass M may be written as [280]

M = ξξs�SO , (28.11)

where �SO is the magnitude of the spin-orbit interaction energy. In the case of
silicene this is �SO � 1.55 meV , whereas for germanene, �SO � 23.9 meV .
Both are much larger than the corresponding values for graphene. Then, ξ and ξs

are flavor-dependent signs: ξ = ±1, corresponding respectively, to the valleys K
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and K ′, whereas ξs = ±1, by its turn, corresponds, respectively, to the two spin
orientations σ =↑ and σ =↓.

We conclude that silicene and the related germanium and tin compounds, as well
as the TMDs, can all be described, in general terms, by a massive Dirac theory with
the appropriate inclusion of the flavor matrix τ z .

The electromagnetic interaction, as in the case of graphene, can be described by
minimally coupling the Dirac field to the vector gauge field Aμ of pseudo quantum
electrodynamics. In the next subsections, we explore physical properties of silicene
and related materials by making use of such field theoretic description.

28.2 Time Reversal Symmetry

A mass term in the Dirac equation breaks the time-reversal (TR) symmetry. Indeed,
under the TR operation, the Dirac field transforms as [163]

ψ(r, t) −→ −iσyψ(−r, t)

in such a way that∫
d2rψ(r, t)ψ(r, t) =

∫
d2rψ†(r, t)σzψ(r, t) −→

−
∫

d2rψ(−r, t)ψ(−r, t) = −
∫

d2rψ(r, t)ψ(r, t). (28.12)

A TR invariant massive theory, nevertheless, may be obtained by ascribing oppo-
site masses to the TR connected K and K ′ valley flavors. In this case, clearly, the
sum of mass terms becomes TR invariant:

M
∫

d2rψKψK − M
∫

d2rψK ′ψK ′ −→

− M
∫

d2rψK ′ψK ′ + M
∫

d2rψKψK . (28.13)

We conclude that the gapped Hamiltonian, used for describing TMDs, silicene,
etc., is TR invariant.

28.3 Parity Anomaly: Total and Valley Conductivities

In order to determine the total and valley conductivities, one must determine firstly
the contribution of each one of the four flavors K , K ′,↑,↓ to the DC-conductivity.
For this purpose, one should follow the same procedure as the one we followed
in Section 27.7, using the fact that the current-current correlation function in the
Kubo formula is given by the vacuum polarization tensor, with the only difference
being that this now is evaluated with a massive electron propagator [287, 271].
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As we have seen in the case of graphene, the one-loop contribution to the vacuum
polarization tensor possesses a transverse component [271], which dynamically
violates both TR and inversion symmetries. In the zero fermion mass case, which
applies to graphene, such an anomalous term generates contributions to the trans-
verse conductivity for each of the valleys K and K ′, which are equal in magnitude
but have opposite signs [257]. When we sum the contributions of the two val-
leys, consequently, we obtain a zero total Hall conductivity, but a nonzero valley
conductivity, as is shown in (27.50) and (27.53).

Now, when the fermion mass is different from zero, one can infer from the
results in [271] that masses with a different sign produce contributions of dif-
ferent magnitudes to the Hall conductivity. Therefore, when we choose masses
with different signs for each valley K and K ′, it means each valley will generate
transverse conductivities of different magnitudes. Hence, even though they have
opposite signs, when we sum the contributions from each valley to the transverse
conductivity, we obtain a nonzero total Hall conductivity and a nonzero valley
transverse conductivity [287].

The total transverse conductivity, obtained by summing the contributions from
each of the four flavors, yields [287]

σ
i j
T = 2

e2

h
εi j ,

whereas the valley conductivity, defined in (27.51) gives [287]

σ
i j
V = 4

(
n + 1

2

)
e2

h
εi j . (28.14)

Similarly to what happened in graphene, the onset of the emergent Hall con-
ductivity and transverse valley conductivity will be accompanied by the dynamical
generation of an infinite set of midgap states [287] analogous to the ones in (27.66)
and (27.67).

28.4 Overview

We have seen that the low-energy excitations of a system with one electron per
site in a honeycomb crystal structure have their kinematics described by a mass-
less Dirac equation. Such is the case of graphene and any other system exhibiting
a symmetry between the two sublattices. When such symmetry is broken, the cor-
responding excitations are described by a massive Dirac equation. A primary way
of breaking the sublattice symmetry is by having different atoms in each of them.
Such is the case of the TMDs. Silicene and other monoatomic materials of the car-
bon group, conversely, because of their size, stabilize in a buckled structure, where
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the sublattices are spatially separated. It follows that under the action of a perpen-
dicular electric field, the two sublattices will be at different chemical potentials,
thereby generating the same effect.

We have seen that because of the parity anomaly, a spontaneous transverse con-
ductivity is generated in such types of systems. In the case of massless systems
such as graphene, by virtue of the sublattice symmetry, the two valleys generate
identical transverse currents. Since they counter-propagate, the net transverse cur-
rent vanishes, yielding a zero Hall conductivity, but a nonzero transverse valley
conductivity. In the case of massive systems, however, because of the sublattice
asymmetry, the two valleys yield different transverse currents, thereby leading to a
net transverse conductivity, which characterizes an emergent quantum Hall effect
in the absence of any external agent [257, 287].

These effects are accompanied by the corresponding generation of midgap
states, which occur in equal numbers for each valley in the massless case, whereas
in the massive case the number of states from each valley are different. Such inter-
esting effects are produced whenever the full electromagnetic interaction is taken
into account and, therefore, the full trilinear interaction vertex is present. Then,
the one loop transverse contribution to the vacuum polarization tensor, which is a
topological quantity, yields a nontrivial result [257, 287].
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Topological Insulators

The discovery of systems undergoing the quantum Hall effect has revealed the exis-
tence of materials that exhibit a vanishing bulk conductivity despite the presence
of a nonzero conductivity on the edges. Moreover such an edge conductivity was
shown to be proportional to a nonzero topological invariant, which was responsible
for the stability of the edge current. Materials presenting these properties, namely
(a) gapped bulk excitations with an associated zero bulk conductivity, (b) gapless
edge excitations with an associated nonzero edge conductivity, and (c) a nontriv-
ial topological invariant protecting the robustness of the edge currents, have been
called “topological insulators” [311, 312, 313]. The number of materials found to
belong to this new class has been ever growing since the discovery and compre-
hension of the quantum Hall effect. Among these, we find quantum wells of HgT e
sandwiched between Hg1−xCdx T e, which are essentially two-dimensional. Three-
dimensional topological insulators have also been found, usually structured in the
form of stacked d = 2 layers. Examples are Bi2T e3 and Bi2Se3.

Topological insulators are characterized by a new kind of “order,” in which the
non-vanishing element is a topological invariant rather than an order parameter
that is usually related to the symmetry of the system. Topological ordering, hence,
differs from the Landau–Ginzburg type of order, which has been a paradigm for
decades.

Band insulators exhibit a completely filled valence band, which is separated by
an energy gap from the conduction band. In two-dimensional space, however, for a
rectangular (or square) lattice, a full valence band, namely, the whole first Brillouin
zone, is topologically equivalent to a torus, as we can infer by connecting opposite
boundaries by reciprocal lattice vectors. Consider a gapped relativistic system such
as the ones found in the preceding chapter. The energy of such a system turns out
to be a function E = E(|p|2+M2), hence constant energy states generate a sphere
|p| = C . Since p is in the first BZ, we see that such states produce a mapping
between a torus T2 and a sphere S2, which has nontrivial topological classes. The
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topological invariant that classifies the inequivalent classes for this mapping is the
Chern number. Following the above reasoning, we understand why there are no
topological metals, but just insulators: an incomplete valence band is not equivalent
to a torus, but only to a part of it.

In this chapter, we describe topological insulators associated either to the Chern
number or to the so-called Z2 topological invariant, in two spatial dimensions. We
just make a brief comment about topological insulators in three spatial dimensions,
which has become a rather fertile field of research recently.

29.1 Chern Topological Insulators

Systems exhibiting the quantum Hall effect were the first topological insulators.
The gapped bulk states associated with a zero longitudinal conductivity are the
Landau levels. The topological invariant is the Chern number that Thouless et al.
[231] have shown to be proportional to the transverse conductivity, which by its
turn is proportional to the edge conductivity. These topological insulators were
studied in detail in Chapter 26. In this section we study other topological insulators,
which are also characterized by a nonzero Chern number.

29.1.1 The Two-Bands Topological Insulator

Consider a system described by the following Hamiltonian, in momentum space

H = n0(k)I+ n(k) · �σ, (29.1)

where n(k) is a vector and the σ s are Pauli matrices. Notice that, if we consider the
two entries of the above matrices as corresponding to the two sublattices of a bipar-
tite lattice, this Hamiltonian has the general form of the Hamiltonians we found in
graphene, silicene and dichalcogenides. In these cases, we had n = (vF k,M). The
mass term in particular is given by the σ z term and, therefore, implies an energy
asymmetry between the two sublattices.

It is easy to show that the energy eigenvalues are given by

E± = n0(k)± R(k)

R(k) = √n(k) · n(k), (29.2)

with the corresponding eigenvectors

u+(k) =
(

e−iϕ cos θ2
sin θ

2

)
; u−(k) =

( −e−iϕ sin θ
2

cos θ2

)
, (29.3)
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where

n(k) = R(k)

⎛
⎝ sin θ cosϕ

sin θ sinϕ
cos θ

⎞
⎠ . (29.4)

From (29.2), we see that the system possesses a gap � = 2R(k = 0) separating
two energy bands placed symmetrically with respect to n0. Let us compute now the
Berry phase corresponding to the states u±(θ, ϕ). According to (26.32), the Berry
connection is given by

A±θ = i〈u±| ∂
∂θ
|u±〉 = 0

A+ϕ = i〈u+| ∂
∂ϕ
|u+〉 = cos2 θ

2

A−ϕ = i〈u−| ∂
∂ϕ
|u−〉 = − sin2 θ

2
, (29.5)

or, in vector form,

�A+ = cos2 θ
2

R sin θ
ϕ̂ ; �A− = − sin2 θ

2

R sin θ
ϕ̂. (29.6)

It follows that the “magnetic” field associated with the Berry vector connection is

�B± = ∇ × �A± = R
2R3

. (29.7)

This is a “magnetic monopole” in the space where the vector n is defined. We can
express the First Chern Number, C, in terms of the total flux of such field through
a closed surface containing the origin:

2πC =
∫

S
d2S · �B± = 1

2
4π = 2π. (29.8)

We see that the Chern number is C = 1 for the energy eigenstates of the two-band
topological insulator.

29.1.2 The Chern Number as a Mapping T2 �→ S2

Let us assume n = (n1, n2, n3), with |n| = R, so n is in a sphere of radius R. In
this case, we can get an insight on the nature of the mapping n(k).

Starting from (29.8), we can write the Chern number in terms of the solid angle:
C = �/4π , namely

C = 1

4π

∫
S2

d2Si n̂i

|n|2 . (29.9)
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Figure 29.1 The mapping of the torus on a sphere has inequivalent classes
classified by the First Chern Number.

Now, considering that n = n(kx , ky), where (kx , ky) is in the first Brillouin torus,
we have

d2Si = (dn2dn3, dn3dn1, dn1dn2).

Then, using the Jacobian for the change of variables (ni , n j )⇔ (kx , ky), namely

dn j dnk =
[
∂n j

∂kx

∂nk

∂ky
− ∂n j

∂ky

∂nk

∂kx

]
dkx dky,

we obtain, from (29.9)

d2Si ni = εi jkni ∂n j

∂kx

∂nk

∂ky
dkx dky. (29.10)

Inserting this in (29.9) and choosing a unit sphere, |n| = 1, we obtain

C = 1

4π

∫
T2

d2k n · ∂n
∂kx

× ∂n
∂ky
. (29.11)

This expression gives the area of the unit sphere covered by n as we sweep the
torus in (kx , ky), thus making very clear the meaning of the Chern number in this
case: the number of times the sphere is covered in this map.

29.2 The Haldane Topological Insulator

Haldane’s topological insulator is formulated on a honeycomb lattice structure
identical to that of graphene [314]. It includes, though, three new features with
respect to graphene: a second nearest neighbors hopping, t2; a term breaking the
symmetry between the two sublattices; and a local magnetic flux φ, such that for
a plaquette of nearest neighbors the net flux is zero, while for a plaquette of sec-
ond nearest neighbors, which contains three points, there is a nonvanishing net
flux.
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The magnetic flux is introduced through the standard prescription of modifying
the hopping parameter in the presence of an electromagnetic field on a lattice

ti j → ti j e
i�i j �i j = ec

�

∫
Li j

A · dl, (29.12)

where Li j is the path along the line connecting sites i and j . This is the lattice
version of the minimal coupling.

Since the magnetic flux vanishes identically for plaquettes formed by nearest
neighbors, we shall only use the minimal coupling prescription for the second
nearest neighbor plaquettes. The basic plaquettes of second nearest neighbors of
sublattices A and B, however, possess opposite signs. The total magnetic flux,
therefore, is zero.

The Haldane Hamiltonian is given by

HH =
∑

k

c†
A(k)cB(k)

[
−t

∑
i=1,2,3

eik·di

]
+ H.C.

∑
k

c†
A(k)cA(k)

[
M − t2

∑
i=1,2,3

eik·ei+i�

]
+ H.C.

∑
k

c†
B(k)cB(k)

[
−M − t2

∑
i=1,2,3

eik·ei+i�

]
+ H.C. (29.13)

Then, this can be written in terms of the field 
†(k) = (c†
A(k)c

†
B(k)) as

HH =∑
k


†(k)
(

M + 2t2
∑

i cos[k · ei +�] φ

φ∗ −M + 2t2
∑

i cos[k · ei −�]
)

(k),

(29.14)

where

φ(k) = −t
∑

i=1,2,3

eik·di (29.15)

and the vectors ei are the ones separating the first neighbors within the triangular
Bravais sublattices A and B, namely

e1 = d2 − d3 ; e2 = d3 − d1 ; e3 = d1 − d2

where the di s are defined in (27.3).
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Figure 29.2 The vectors ei , i = 1, 2, 3, which along with −ei connect the near-
est neighbors within the Bravais triangular sublattice of the honeycomb crystal
structure. These are second nearest neighbors in the honeycomb structure as a
whole.

Haldane’s one-particle Hamiltonian may be written as

hH = 2t2 cos�
∑

i

cos(k · ei )I+
[∑

i

cos(k · di )σx +
∑

i

sin(k · di )σy

]

+
[

M − 2t2 sin�
∑

i

sin(k · ei )

]
σz, (29.16)

where the σ s are Pauli matrices.
The energy eigenvalues are

E± = 2t2 cos�
∑

i

cos(k · ei )±
√√√√|φ|2 +

(
M − 2t2 sin�

∑
i

sin(k · ei )

)2

.

(29.17)

Expanding the Hamiltonian around the Dirac points K and K ′, we obtain,
respectively,

hH,K =
√

3ta

2

[
pxσx + pyσy

]+ MKσz

hH,K ′ =
√

3ta

2

[−pxσx + pyσy
]+ MK ′σz, (29.18)

where

MK = M − 3
√

3t2 sin� ; MK ′ = M + 3
√

3t2 sin�. (29.19)
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470 Topological Insulators

Performing the canonical transformation (27.16), we can identify hH,K and
hH,K ′ , respectively, as the Dirac Hamiltonian

hH,Ma =
√

3ta

2

[
pxσx + pyσy

]+ Maσz (29.20)

of particles with masses

Ma=K = M − 3
√

3t2 sin� ; Ma=K ′ = −M − 3
√

3t2 sin�. (29.21)

Now for such a Dirac system, we have the unit vector

n(k) = (vF kx , vF ky,Ma)√
v2

F |k|2 + M2
a

= (sin θ cosϕ, sin θ sinϕ, cos θ), (29.22)

where a = K , K ′.
The Chern number may be expressed, in terms of this, as

C = 1

4π

∫ 2π

0
dϕ
∫ π

0
dθ εi jkni∂θn j∂ϕnk . (29.23)

Now, observe that the n3-component in (29.22) has a fixed sign determined by the
sign of the mass Ma . Hence, for each Dirac point we will have either θ ∈ [0, π/2]
or θ ∈ [π/2, π], implying the θ-integral above will cover just a hemisphere for
each Dirac point and each will, consequently, contribute a half for the Chern
number. Indeed, evaluating the integral above, we find, for a = K , K ′, respectively,

Figure 29.3 The phase diagram of Haldane’s topological insulator, showing the
different topological phases, with the corresponding value of the First Chern
Number, C. The vertical axis is M/t2, while the horizontal is the magnetic flux�.
The constant A is 3

√
3.
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CK = 1

2
sign(MK ) ; CK ′ = 1

2
sign(MK ′), (29.24)

whereby the Chern number of the Haldane model is given by

C = 1

2

[
sign(M − 3

√
3t2 sin�)− sign(M + 3

√
3t2 sin�)

]
. (29.25)

We see that C = 0,±1, according to the phase diagram depicted in Fig. 29.3.

29.3 Chiral Edge States in the Haldane Model

One of the most basic features of a quantum insulator is the presence of topologi-
cally stabilized edge currents. We may consider as an “edge” the interface between
two regions, which are, respectively, trivial and nontrivial from the topological
point of view. For this purpose, let us create such an edge by making one of the
two Dirac masses depend on the spatial coordinate y in such a way that

M1 = M(y) ;
⎧⎨
⎩

M(y) < 0 y < 0
M(0) = 0

M(y) > 0 y > 0
, (29.26)

while the other we keep constant

M2 = M = lim
y→∞ M(y). (29.27)

According to (29.25), this way we create an interface at y = 0, separating a region
with zero Chern number from another with a nonzero Chern number, namely an
interface separating a topologically trivial region from a nontrivial one.

Inserting in the Dirac equation corresponding to the one-particle Dirac Hamilto-
nians (29.18), we find the exact solution

ψ(x, y) = eipx x exp

{
−
∫ y

0
dy′M(y′)

}(
1
1

)
. (29.28)

This is localized along y and propagates along the edge (x) in the positive direction,
being therefore chiral. It cuts the Fermi level at E = 0, with a positive group
velocity. Notice that the existence of such a solution is guaranteed by the fact that
a non-vanishing topological number exists in one of the two regions separated by
the interface. This ensures its robustness.

A nontrivial topology on the bulk gapped band implies the existence of gapless
edge modes, according to the relation

�C = NR − NL , (29.29)

where NR,L are the numbers of chiral edge modes and �C is the variation of the
topological number across the interface. The different number of chiral edge modes
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472 Topological Insulators

is a manifestation of the time reversal symmetry breakdown occurring in Haldane’s
model. Such effect is called the quantum anomalous Hall effect. An experimental
realization of Haldane’s topological insulator was found in thin films of chromium-
doped (Bi,Sb)2Te3 [315].

Systems that generalize Haldane’s model of topological insulators, possessing
a higher Chern number, can be obtained by including the interaction with a next
hierarchy of neighbors [316].

29.4 Z2 Topological Insulators

A new class of topological insulators characterized by a topological invariant dif-
ferent than the Chern number was proposed in 2005 [317]. Two relevant features of
these systems are the fundamental role played by the spin degrees of freedom and
the assumption of time reversal symmetry. A new topological invariant presenting
just two inequivalent classes uprises, namely the Z2 topological invariant, which
classifies the topological phases of the new topological insulators. Again, gapped
bulk states give place to gapless edge states, which are stabilized by the nontrivial
topology expressed by this new index.

29.4.1 Time Reversal Symmetry

Time reversal is an operation taking t → −t . Observables such as momentum,
angular momentum and spin, accordingly, will change sign under time rever-
sal, while energy, for instance, will remain invariant. At a quantum-mechanical
level, according to Wigner’s theorem, the time reversal operation must be imple-
mented either by a unitary or anti-unitary operator:!. In both cases, |〈!ψ |!φ〉| =
|〈ψ |φ〉|. Unitary operators are linear, however anti-unitary operators are antilinear,
namely

!(α1|ψ1〉 + α2|ψ2〉) = α∗1!|ψ1〉 + α∗2!|ψ2〉,
where α1, α2 ∈ C.

For an anti-unitary operator 〈Aψ |Aφ〉 = 〈φ|ψ〉, while for a unitary one
〈Uψ |Uφ〉 = 〈ψ |φ〉.

The following argument shows ! must be anti-unitary. Consider an arbi-
trary, time-evolving state-vector |
(t)〉. Under the time-reversal operation, it
transforms to

|
(t)〉! = !|
(t)〉 = !e−
i
�

Ht |
(0)〉. (29.30)

If the system is invariant under time-reversal symmetry, then [!, H ] = 0. An
antilinear ! operator is therefore required for the consistency of time-reversed
evolution:
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29.5 The Z2 Topological Invariant 473

|
(t)〉! = e−
i
�

H(−t)!|
(0)〉 = e−
i
�

H(−t)|
(0)〉!
|
(t)〉! = |
(−t)〉!, (29.31)

The time-reversal operator has a peculiar property for spin s = 1/2 particles,
which has a profound impact in the energy spectrum. Indeed, in this case it can
be shown that !2 = −1. Consider a time-reversal symmetric spin 1/2 system for
which [!, H ] = 0. Then, given an energy eigenstate |ψ〉, it follows that !|ψ〉 is
also an eigenstate with the same energy. Now,

〈ψ |!ψ〉 = 〈!2ψ |!ψ〉 = −〈ψ |!|ψ〉
〈ψ |!|ψ〉 = 0. (29.32)

This implies |ψ〉 and!|ψ〉 are orthogonal and therefore genuine degenerate energy
eigenstates, in such a way that the energy spectrum is doubly degenerate. This is
known as the Kramers degeneracy.

29.5 The Z2 Topological Invariant

Consider the matrix Wi j = 〈ψi |!|ψ j 〉, representing the time reversal operator in a
certain base {|ψ1〉, . . . , |ψ2N 〉} containing an even number of elements. We can see
that this matrix is anti-symmetric. Indeed

Wi j = 〈ψi |!|ψ j 〉 = 〈!2ψ j |!|ψi 〉 = −〈ψ j |!|ψi 〉 = −W ji . (29.33)

Being an anti-symmetric matrix of even dimension, as we saw in Chapter 5, it
follows that the determinant of Wi j is expressed in terms of the Pfaffian as

det[Wi j ] = Pf2[Wi j ]. (29.34)

Notice that if we change the sign of the matrix Wi j elements, the Pfaffian will
change its sign, while the determinant will remain unchanged. This observation is
at the root of the construction of the Z2 topological invariant [317].

As an example, consider the matrices

A =
(

0 a
−a 0

)
; B =

(
0 −a
a 0

)
. (29.35)

Both have the same determinant det[A] = det[B] = a2, while the corresponding
Pfaffians are different, namely Pf[A] = a and Pf[B] = −a.

Let us now consider more specifically the setup for the definition of the new
topological invariant. Remember that Bloch energy eigenstates, corresponding to a
periodic potential, can be written as abstract vectors in the Hilbert space as

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.030
https://www.cambridge.org/core


474 Topological Insulators

|ψn(k)〉 = eik·r|un(k)〉, (29.36)

where k is in the first Brillouin zone.
It follows that the |un(k)〉 states are eigenvectors of the Bloch Hamiltonian

H(k)|un(k)〉 = En|un(k)〉, (29.37)

which is defined as

H(k) = e−ik·r Heik·r. (29.38)

We can take the momentum k as a parameter on which the Bloch Hamiltonian
depends, in the spirit of the adiabatic theorem. Then the Hamiltonian can be contin-
uously deformed without changing the eigenstate, provided there is no degeneracy.
In other words, the system remains in the same topological class in the absence of
degeneracy.

Notice that, for a time-reversal symmetric system, even though [H,!] = 0, we
have

!H(k)!−1 = H(−k), (29.39)

which means the Bloch Hamiltonian will not be invariant, in general.
There are, however, special points in the first Brillouin zone for which −k =

k + G, where this last vector belongs to the reciprocal lattice. For these points
the vectors k and −k are equivalent, and therefore constitute fixed points for
the time-reversal operation. There are four of these points, in d = 2, which we
denote by  i , i = 1, . . . , 4. For these points, [H,!] = 0, and we can have the
Kramers degeneracy for the |un(k)〉 states. This means level crossing may occur
and, consequently, a change of topological class.

In order to construct a mathematical object that captures such a change, consider
the matrix Wi j defined as

Wi j (k) = 〈ui (−k)|!|u j (k)〉. (29.40)

This in general will not be an anti-symmetric matrix, because W ji (k) =
−Wi j (−k). For the special points  i of the first Brillouin zone, however,

Wi j ( i ) = −W ji ( i ). (29.41)

Then the Z2 topological invariant is defined as

(−1)ν =
4∏

i=1

δi , (29.42)
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29.6 The Kane–Mele Topological Insulator 475

in terms of δi i = 1, . . . , 4, which are given by

δi = Pf[Wi j ( i )]√
det[Wi j ( i )]

= ±1 (29.43)

in each of the four time-reversal fixed points  i .
The index ν equals 0 or 1, ν = 0 corresponding to the trivial topological class,

while ν = 1 corresponds to the nontrivial one.

29.6 The Kane–Mele Topological Insulator

The first example of a topological insulator based on the Z2 topological invariant
was proposed by Kane and Mele in 2005 [317]. The underlying base includes both
the sublattice and spin degrees of freedom

(A, B)⊗ (↑,↓) = (A ↑, A ↓, B ↑, B ↓),
which will correspond to a field

�†(k) = (c†
A↑(k), c

†
A↓(k), c

†
B↑(k), c

†
B↓(k)).

The Kane–Mele Hamiltonian is written in terms of this as

HK M =
∑

k

�†(k)hK M�(k), (29.44)

where hK M is the 4× 4, one-particle Hamiltonian

hK M(k) = d0(k)I+
5∑

i=1

di (k)�i . (29.45)

Here the �i , i = 1, . . . , 5 are the following 4× 4 matrices:

�1 = σx ⊗ I �2 = σy ⊗ I �3 = σz ⊗ sx �4 = σz ⊗ sy �5 = σz ⊗ sz.

(29.46)

The first factor in the direct products above acts on the sublattice (A, B) subspace,
while the second factor acts on the spin (↑,↓) subspace (si , i = x, y, z are Pauli
matrices in the spin subspace).

The energy eigenvalues of the Kane–Mele model are

E± = d0(k)±
√√√√ 5∑

i=1

|di (k)|2. (29.47)

Considering now that, in the above base, the time-reversal operator may be rep-
resented as! = iI⊗σyK, where K is the complex conjugation operator, it follows
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476 Topological Insulators

from imposing time-reversal symmetry on the Kane–Mele Hamiltonian, that the
di (k), i = 2, 3, 4, 5 should all be odd under the time-reversal operation, while
d1(k) should be even. Consequently, we must have at the time-reversal fixed points

di ( a) = 0, i = 2, 3, 4, 5. (29.48)

The gap at these points, therefore, is given by

�( a) = 2d1( a). (29.49)

29.6.1 Inversion Symmetry

It follows from the choice of the base in which the Kane–Mele Hamiltonian is
written that the spatial inversion operator is represented by P = σx⊗ I ≡ �1. Then
imposing spatial inversion symmetry, apart from the time-reversal one, forces d1(k)
to be even and di (k) i = 2, 3, 4, 5 to be odd under that symmetry operation.

It was shown in a very simple form as a function of the parity eigenvalues of the
filled bands at the time-reversal invariant fixed points; namely, [318] that in this
case, the Z2 topological invariant can be expressed as

(−1)ν =
4∏

a=1

sign[d1( a)], (29.50)

where  a are the special points of the Brillouin zone, which are invariant under
the time-reversal symmetry. It becomes clear, therefore, that a nontrivial topology,
characterized by a value ν = 1, necessarily implies a change in the sign of d1( a),
which will be associated to the closing of the gap, according to (29.49).

29.7 Edge States and the Quantum Spin Hall Effect

We can study the edge states in the Kane–Mele model of a topological insulator
by using the same method as in the case of the Haldane model. Expanding and
linearizing around one of the points  a and making d1( a) = M(y), it can be
shown [319] that, in the base (A ↑, A ↓, B ↑, B ↓), we obtain two solutions,
namely

ψL↑(x, y) = e−i px x exp

{
−
∫ y

0
dy′M(y′)

}⎛⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠
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ψR↓(x, y) = e+i px x exp

{
−
∫ y

0
dy′M(y′)

}⎛⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ . (29.51)

These two solutions form a Kramers pair that propagates along the interface
between a topologically nontrivial phase and a trivial one. Time-reversal invari-
ance forces the solutions to occur in pairs with opposite spins counter-propagating.
There is, consequently, no net current on the edges and absence of the anoma-
lous quantum Hall effect. Conversely, a separation of the spin components does
occur, since opposite spins propagate in opposite directions. This has been called
the quantum spin Hall effect (QSHE). A model similar to the Kane–Mele model
was proposed by Bernevig, Hughes and Zhang [320], and soon an experimental
realization of the (QSHE) was obtained using HgT e quantum wells [321].

The Kane–Mele model of topological insulators, which is characterized by a Z2

topological invariant, was, then, generalized to three-dimensional materials [322,
323, 324] and from then on the area of three-dimensional topological insulators has
been continuously growing.
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Non-Abelian Statistics and Quantum Computation

Classical computation is based on algorithms that manipulate binary variables
(bits), which convey the information being processed. Such algorithms are formed
by logic units (logic gates), which are basic functions of binary variables yielding
an output that will be used in the next step of the algorithm, and so on. Algorithms
of classical computation make extensive use of irreversible gates, which can only
be used in one direction and, consequently, loose information. Quantum computa-
tion, conversely, uses the quantum states of a given Hilbert space (qubits) to store
the information [290, 291, 292]. Then, it takes advantage of the fact that these states
have a unitary evolution to build data-processing algorithms, which only possess
reversible, unitary logic gates. An important point in this scheme is that coherence
of the quantum states storing the information is a crucial requirement; otherwise,
the information is lost. Nevertheless, we know that quantum systems rapidly loose
their coherence as we increase their size. A clever method of coherence protection,
therefore, must be devised if we want to have a quantum computer operating on a
human scale. For this reason, quantum computation, since its inception, has been
always related to the principles of quantum mechanics.

The main method of coherence protection involves excitations having the
so-called non-abelian statistics. Such excitations were shown to occur in the
ν = 5/2 plateaus of systems presenting the quantum Hall effect, which is
described by the Moore–Read Pfaffian wave-function. Such a state is associated
to a Landau–Ginzburg type field theory consisting in the level 2 non-abelian SU(2)
Chern–Simons theory in the same way the odd denominator plateaus described
by the Laughlin wave-function are associated to the Zhang–Hansson–Kivelson
abelian Chern–Simons–Landau–Ginzburg theory. We have shown that the vortex
excitations of this theory correspond to the (abelian) anyon excitations of Laugh-
lin’s wave-function. In an analogous way, the vortex excitations of the non-abelian
Chern–Simons theory are associated to the Pfaffian wave-function excitations,
which present non-abelian statistics. Such gapped bulk excitations produce gapless

478
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30.2 Non-Abelian Statistics 479

Dirac excitations on the edges, which may combine in specific ways to reproduce
the non-abelian statistics exhibited by the bulk vortex states.

Both the bulk and edge versions of the excitations with non-abelian statistics
are such that, for the specific value of the spin s = 1/4, the braiding matrices
expressing the non-abelian character of the statistics become the logic gates NOT
and CNOT.

30.1 Bits, Qubits and Logic Gates

In a classical computer, information is stored in binary units 0 or 1 known as
bits. In quantum computation, conversely, one uses the quantum states of a two-
dimensional Hilbert space with a base {|0〉, |1〉}, namely

α|0〉 + β|1〉 ; α, β ∈ C ; |α|2 + |β|2 = 1. (30.1)

The information is encoded in the pair of complex numbers (α, β), the so-called
qubit, or “quantum bit.” The logic algorithms of quantum computation make use of
reversible logic units, or logic gates, among which the most basic are the NOT and
CNOT (controlled NOT) gates. These are represented, respectively, by the matrices

NOT =
(

0 1
1 0

)
(30.2)

and

CNOT =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

The NOT gate, when fed the input (α, β), produces the output (β, α). The CNOT
gate, conversely, operates with two qubits

(
α1

β1

)
⊗
(
α2

β2

)
=

⎛
⎜⎜⎝
α1α2

α1β2

β1α2

β1β2

⎞
⎟⎟⎠ CNOT⇒

⎛
⎜⎜⎝
α1β2

α1α2

β1α2

β1β2

⎞
⎟⎟⎠ (30.3)

This means the output of the second qubit depends on the result of the measurement
of the first one.

30.2 Non-Abelian Statistics

For a system of N identical particles, described by a state-vector |ϕn1(1) . . . ϕnN (N )〉,
we must have
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||ϕn1(1) . . . ϕni (i) . . . ϕn j ( j) . . . ϕnN (N )〉|2
= ||ϕn1(1) . . . ϕni ( j) . . . ϕn j (i) . . . ϕnN (N )〉|2. (30.4)

We have seen in Chapter 10 that, in order to comply with that, we have in general

|ϕn1(1) . . . ϕni (i) . . . ϕn j ( j) . . . ϕnN (N )〉
= eiθ |ϕn1(1) . . . ϕni ( j) . . . ϕn j (i) . . . ϕnN (N )〉. (30.5)

In d = 3 only two possibilities are allowed, in agreement with the symmetrization
postulate of quantum mechanics, namely θ = 0, π . The corresponding particles
are, respectively, bosons or fermions. In d = 2, 1, however, we can have θ ∈ R

and the associated particles for which θ �= 0, π are the anyons, which violate the
symmetrization postulate of quantum mechanics. For all above cases, if two trans-
positions i ↔ j are made in a different order, the result is precisely the same. Such
particles, therefore, are said to obey an abelian statistics with the spin-statistics
parameter given by s = θ

2π .
There is, nevertheless, an even more radical way in which the symmetrization

postulate is violated. This happens when the N -particle state-vectors are G-fold
degenerate, namely, belong to a set

{|
1(N )〉, . . . , |
G(N )〉} (30.6)

in such a way that, under the exchange of particles i ↔ j ,

|
A(N )〉 i↔ j−→
G∑

B=1

MAB(i j)|
B(N )〉, (30.7)

where MAB(i j) is the so-called monodromy matrix, which, being unitary, guaran-
tees that |
A(N )〉 will satisfy (30.4). Two transpositions, or braiding operations, as
the exchange of identical particles is usually called, will correspond, respectively,
to different monodromy matrices that in general do not commute. Hence the name
“non-abelian statistics.”

States with non-abelian statistics have been reported in the literature, as for
instance the superconductors with a px + i py-symmetric gap [294, 295, 296, 290]
and Kitaev’s honeycomb lattice model [297]. Both systems present non-abelian
vortices and Majorana states. Non-abelian statistics has also been obtained for cer-
tain quasi-particle, anyon excitations of the quantum Hall liquid [298] as well for
Ising anyons [301]. Non-abelian anyons have therefore inspired the proposition of
several interesting models, such as the one in [300].
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30.3 The Non-Abelian Chern–Simons Theory

30.3.1 The Theory

We introduce here the SU(2) non-abelian Chern–Simons theory coupled to a Higgs
field in the adjoint representation. This was shown to correspond to the Pfaffian
Moore–Read wave-function of the ν = 5/2 plateau [242] in an analogous way
as the ZHK abelian Chern–Simons–Landau–Ginzburg theory corresponds to the
Laughlin states associated to odd-denominator FQHE.

The theory is defined by the action

SC S[A] = k

4π

∫
d3z

{
εμνρ

[
Aa
μ∂ν Aa

ρ +
2

3
εabc Aa

μAb
ν Ac

ρ

]}
. (30.8)

We will be interested in the vortex excitations that this theory might possess.
In order to stabilize them, we need to couple a Higgs field � = �aT a where
T a are the SU(2) group generators. This is done by adding to the Chern–Simons
Lagrangean above, the term [293]

TrDμ�Dμ�− V (|�|, η), (30.9)

where the covariant derivative is given by

Di j
μ = ∂μδi j − i(T a)i j Aa

μ

and the Higgs field potential, by

V = λTr�2(η2 +�2)2. (30.10)

The Euler–Lagrange equation corresponding to this Lagrangean is

k

2π
εμνρDac

ν Ac
ρ = Jμa, (30.11)

where Jμa = −2[�, Dμ�]a .
The theory will be in an ordered or disordered phase, depending on η2 being

positive or negative. For η2 < 0 we will have 〈�〉 �= 0, which corresponds to
an ordered phase, while for η2 > 0, we would have 〈�〉 = 0, characterizing a
disordered phase.

Classical vortex solutions of this theory have been studied in [293], and resemble
the classical vortices described in Chapter 8. Here we are going to develop a fully
quantized approach to these vortices.
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30.3.2 Charge and Magnetic Flux Carrying Operators

We now introduce the charge and magnetic flux operators. This is made by
means of an abelian projection on na , a unit vector transforming under the adjoint
representation of the group, such as na = φa

|φ| where φa ≡ 〈�a〉.
The charge operator, then, is given by

Q =
∫

d2x J 0ana (30.12)

in terms of the current density

J 0a = k

2π
εi j Dac

i Ac
j (x), (30.13)

whereas the magnetic flux operator, accordingly, is defined by

�M =
∫

d2x Bana (30.14)

where Ba is the non-abelian magnetic field, given by

Ba(x) = 1

2
εi j Fa

i j . (30.15)

We now introduce the operators that create states carrying, respectively, charge
and magnetic flux, namely, eigenstates of Q and �M , respectively denoted σ and
μ. The latter will be the vortex creation operator.

We have seen in Chapter 10 that there exists a duality relation between charge
and topological charge bearing operators. Since magnetic flux is precisely the topo-
logical charge in the present system, it follows that the σ and μ operators will have
the general form of the dual operators studied before.

Indeed, we have [299]

μ(x, t) = exp

{
i

a

2π
na
∫ ∞

x
dξ i Aa

i (x, t)
}

(30.16)

and

σ(x, t) = exp

{
b

2π
na
∫

Sx

d2ξλελμν∂μAa
ν(
�ξ, t) arg(�ξ − x)

}
. (30.17)

Using the canonical commutation relation corresponding to (30.8), namely

[Aa
i (x, t), Ab

j (y, t)] =
2π

k
εi jδ

abδ2(x− y), (30.18)

we demonstrate in Section 30.11 the following relations involving the σ and μ
operators as well as the charge and magnetic flux operators.
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Firstly there are the relations, which imply the σ and μ operators create states
bearing, respectively charge and magnetic flux:

[σ(x, t), Q] = bσ(x, t) (30.19)

[μ(x, t),�M ] = a

k
μ(x, t). (30.20)

Then there is the order/disorder dual algebra

μ(y, t)σ (x, t) = σ(x, t)μ(y, t)ei ab
2πk arg(y−x). (30.21)

This implies that the composite operator


(x) = lim
xa ,xb→x

σ(xa)μ(xb) f (xa − xb), (30.22)

defined in terms of an arbitrary function f (x), has commutation


(x, t)
(y, t) = 
(y, t)
(x, t) exp

{
i

ab

2πk

[
arg(y− x)− arg(x− y)

]}


(x, t)
(y, t) = 
(y, t)
(x, t) exp

{
i

ab

2πk
πε (π − arg(y− x))

}
. (30.23)

An excitation carrying magnetic flux, which in D = 2+1 is the topological charge,
is by definition a magnetic vortex. We conclude, therefore, that the μ-operator, act-
ing on the vacuum, creates magnetic vortex topological excitations. The composite
operators 
 = σμ, accordingly, create charged vortices, namely vortices that bear
both charge and magnetic flux. The commutation relation above implies these com-
posite charged magnetic vortices possess generalized spin-statistics s = ab/4πk.
These are naturally interpreted as the excitations occurring in the ν = 5/2 quan-
tum Hall system. In what follows, we show how to obtain states with non-abelian
statistics out of these charged magnetic vortices.

30.4 Quantum Correlation Functions of Charged Vortices

Let us determine here the quantum correlation functions of the vortex excitations.
For this purpose, we follow the same procedure developed in Chapter 9 for the
obtainment of topological excitation correlation functions. There, we have shown
that such correlation functions are given in general by the exponential of the �-
functional, the generator of proper vertices, calculated at an appropriate external
field [39, 40].

The external fields suited for describing the σ and μ correlation functions in the
present theory were derived in [299], according to the lines described in Chapter 9.
They are given, respectively, by
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A
a
μ(z; x) = b

2π
na
∫

Sx

d2ξμ arg(z − x) δ3(z − ξ) (30.24)

and

B
a
μ(z; x) = i

a

2π
na
∫ ∞

x,L
dξμδ

3(z − ξ). (30.25)

Here, Sx is a surface containing the point (x, t), while L is an arbitrary curve
going from (x, t) to infinity.

We are interested in the large-distance behavior of the composite vortex corre-
lation function. In this case, only the �(2)-component of the functional �[Aa

μ, B
a
μ]

contributes, as we saw in Chapter 9 [39, 40],

〈σ(x1)μ(x2)μ
†(y2)σ

†(y1)〉 = exp

{
−1

2
AμE�

μν

(2)A
ν
E

}
, (30.26)

where the external field is

AμE = A
a
μ(z; x1)− A

a
μ(z; y1)+ B

a
μ(z; x2)− B

a
μ(z; y2). (30.27)

In the so-called “broken” phase, where 〈�〉 = M �= 0, we get [299]

〈σ(x1)μ(x2)μ
†(y2)σ

†(y1)〉 |xi−y j |→∞−→
exp

{
−M2

2

[(a

k

)2 |x1 − y1| + b2|x2 − y2|
]

−i
ab

4πk

[
arg(x1 − y2)+ arg(y1 − x2)− arg(x1 − x2)− arg(y1 − y2)

]}
.

(30.28)

Now we can introduce a composite operator 
(x) bearing charge and magnetic
flux, through an expression of the form in (30.22):


(x) = lim
x1,x2→x

σ(x1)μ(x2) exp

{
−i

ab

4πk

[
arg(x1 − x2)

]}
. (30.29)

From this and (30.28) we obtain the composite operator correlation function:

〈
(x)
†(y)〉 |x−y|→∞−→ exp

{
−M2

2

[(a

k

)2 + b2

]
|x − y|

−i
ab

4πk

[
arg(x− y)+ arg(y− x)

]}
. (30.30)

The spin-statistics of a field may be inferred from the analytic structure of
its Euclidean correlation functions [31]. Indeed, multivalued Euclidean functions
are such that each sheet corresponds to a different ordering of field operators
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in the associated Minkowski functions, which, by their turn, correspond to vac-
uum expectation values of these field operators. Adjacent sheets of a multivalued
Euclidean correlator differ by a phase ei2πs , and it follows that real-time field
expectation values will be such that [31]

〈
(x)
†(y)〉(1) = ei2πs〈
†(y)
(x)〉(1) = ei4πs〈
(x)
†(y)〉(2)
= ei6πs〈
†(y)
(x)〉(2) = . . . (30.31)

Observe that for 2s ∈ N (bosons or fermions), ei2πs = ±1. Then each of the
functions 〈
(x)
†(y)〉 and 〈
†(y)
(x)〉 is univalued in this case.

Now, whenever 2s �∈ N, each of the field expectation values is itself multivalued,
the particular sheet being indicated by the superscript. The values of the function
in two adjacent sheets differ by a factor ei4πs , implying the field operator vacuum
expectation values have a branch cut, the number of sheets being determined by the
spin. For s = 1/N , N = 3, 5, 7, . . . for instance, there are N sheets; for s = 1/4,
there are two sheets; and so on.

Examining the Euclidean vortex correlation function (30.30) in light of the con-
siderations above, we conclude that the vortex excitations possess spin/statistics
given by s = ab/4πk, thus confirming the result derived directly from the
commutation relation (30.23).

The vortices carry a magnetic flux �M = a
k and a charge Q = b. Assuming that

a is the magnetic flux unit, namely a = hc
Q , it follows that the spin of the vortex

excitations will be s = �c
2k , or s = 1/2k in the natural units.

30.5 Majorana Vortices with Non-Abelian Statistics

We have just seen that the charged, magnetic vortex excitations of the non-abelian
Chern–Simons–Higgs model are, in general, anyons, with spin s = 1/2k. It has
been demonstrated, on the other hand, that this model is associated to the ν = 5/2
Moore–Read, Pfaffian wave-function, provided the “level” is two (k = 2). We
immediately conclude, following the previous analysis, that the spin/statistics of
the charged vortices excitations of the present model is s = 1/4. Such vortices are,
consequently, abelian anyons. In the remainder of this section we will show how
to construct fields with non-abelian statistics out of these s = 1/4 abelian anyons.
For that purpose, let us define the combined fields

�± = 1

2

[

 ±
†

]
. (30.32)

These are, respectively, self-adjoint and anti-self-adjoint fields, and consequently
may be properly called Majorana and anti-Majorana fields. We also have
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 = �+ +�−

† = �+ −�−. (30.33)

In the next two subsections, we will derive properties of the �-field correlation
functions that will allow us to infer certain relations among them. Such relations
also hold for the corresponding states created by products of�-fields acting on the
vacuum.

30.5.1 Two-Point Correlation Functions

Let us consider here the two-point correlation function of the fields defined in
(30.32).

Using the results 〈
(x)
(y)〉 = 〈
†(x)
†(y)〉 = 0, we obtain

〈�+(x)�+(y)〉 = −〈�−(x)�−(y)〉 = 1

4

(〈
(x)
†(y)〉 + 〈
†(x)
(y)〉)
(30.34)

and

〈�−(x)�+(y)〉 = −〈�+(x)�−(y)〉 = 1

4

(〈
(x)
†(y)〉 − 〈
†(x)
(y)〉) .
(30.35)

Then, using (30.30), we obtain

〈�+(x)�+(y)〉 = 1

4

[
e−2isArg(x−y)e−isπe−γ |x−y| + e−2isArg(y−x)e−isπe−γ |x−y|

]
〈�−(x)�+(y)〉 = 1

4

[
e−2isArg(x−y)e−isπe−γ |x−y| − e−2isArg(y−x)e−isπe−γ |x−y|

]
(30.36)

where γ = M2

2

[(
a
k

)2 + b2
]
.

We want to study now how the states associated to the fields�± would transform
under braiding operations. Using the properties of Arg (z), we obtain[

e−2isArg(x−y) ± e−2isArg(y−x)
]

e−isπe−γ |x−y| −→
x ↔ y[

e−i2πse−2isArg(x−y) ± ei2πse−2isArg(y−x)
]

e−isπe−γ |x−y|.

From this, we can infer that whenever the operator 
 is bosonic or fermionic
the phases generated by braiding the �±-particles are identical, namely, e2π is =
e−2π is = ±1, implying

〈�±(y)�±(x)〉 = e2π is〈�±(x)�±(y)〉 = ±〈�±(x)�±(y)〉.
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This shows that for bosonic or fermionic vortex fields 
, the corresponding
Majorana and anti-Majorana combinations �± are also bosonic or fermionic.

Conversely, when the vortex field is an anyon, namely, for 2s �∈ N, then e2π is �=
e−2π is , and the previous braiding operation, consequently, is no longer just the
multiplication by a phase factor, but rather a matrix multiplication. This fact is
at the root of the non-abelian statistics found in the Majorana and anti-Majorana
vortex excitations.

Indeed, under a braiding operation the�±(x) fields behave in the following way:

〈�+(y)�+(x)〉 = 1

4

[
α∗〈(�+(x)+�−(x))(�+(y)−�−(y))〉
+ α〈(�+(x)−�−(x))(�+(y)+�−(y))〉

]
= 1

2

[
(α + α∗)〈�+(x)�+(y)〉 − (α − α∗)〈�−(x)�−(y)〉

]
= cos δ〈�+(x)�+(y)〉 − i sin δ〈�−(x)�−(y)〉 (30.37)

and

〈�−(y)�+(x)〉 = 1

4

[
α∗〈(�+(x)+�−(x))(�+(y)−�−(y))〉
− α〈(�+(x)−�−(x))(�+(y)+�−(y))〉

]
= 1

2

[−(α − α∗)〈�+(x)�+(y)〉 + (α + α∗)〈�−(x)�−(y)〉]
= −i sin δ〈�+(x)�+(y)〉 + cos δ〈�−(x)�−(y)〉, (30.38)

where in the above expression α = eiδ and δ = 2πs.
We may conclude, then, that when the composite vortex field 
 is an anyon,

then it follows that the associated Majorana and anti-Majorana field combinations
�± will have a non-abelian braiding transformation. This can be written as( 〈�+(y)�+(x)〉

〈�−(y)�+(x)〉
)
=
(

cos δ −i sin δ
−i sin δ cos δ

)( 〈�+(x)�+(y)〉
〈�−(x)�+(y)〉

)
.

The braiding matrix and its hermitean adjoint

M =
(

cos δ −i sin δ
−i sin δ cos δ

)
M† =

(
cos δ i sin δ
i sin δ cos δ

)

satisfy M†M = 1, being therefore unitary.
Let us finally impose the fact that, as we have seen before, the vortex excitation

of the present field theory model associated to the plateaus ν = 5/2 of a system
exhibiting the quantum Hall effect are anyons with s = 1/4. In this case, we have
δ = π/2 or, equivalently,
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M = −i X, in which X =
(

0 1
1 0

)
. (30.39)

We see that a NOT gate is obtained out of the braiding matrix M (up to an i-factor)
[299].

30.5.2 Four-Point Correlation Functions

Other logic gates can be obtained by considering higher correlation functions (more
than two-particle quantum states). For states with 2n particles, it is easy to show
that the dimension of the braiding matrices (or of the space of degenerate states)
will be 2n . Taking four-point functions, for instance, would produce 4×4 matrices.

Let us now turn to the 4-point function of the vortex operator. This is obtained by
just inserting in (30.26) two additional external fields similar to the ones in (30.27).
The resulting expression is [299]

〈
(x1)
(x2)

†(x3)


†(x4)〉 = 〈
†(x1)

†(x2)
(x3)
(x4)〉

= exp {2is[Arg(�x1 − �x2)+ Arg(�x3 − �x4)

− 2is[Arg(�x1 − �x3)+ Arg(�x1 − �x4)+ Arg(�x2 − �x3)+ Arg(�x2 − �x4)]
− πa2 M2 (|x1 − x3| + |x1 − x4| + |x2 − x3| + |x2 − x4|)
+πa2 M2 (|x1 − x2| + |x3 − x4|)

} ≡ A. (30.40)

Related correlation functions will be

〈
†(x1)
(x2)

†(x3)
(x4)〉 = 〈
(x1)


†(x2)
(x3)

†(x4)〉

= exp
{
2is[Arg(�x1 − �x3)Arg(�x2 − �x4)

− 2is[Arg(�x1 − �x2)+ Arg(�x1 − �x4)+ Arg(�x2 − �x3)+ Arg(�x2 − �x4)]+
− πa2 M2 (|x4 − x2| + |x4 − x1| + |x2 − x3| + |x2 − x1|)
+πa2 M2 (|x4 − x2| + |x3 − x1|)

} ≡ B (30.41)

and

〈
†(x1)
(x2)
(x3)

†(x4)〉 = 〈
(x1)


†(x2)

†(x3)
(x4)〉

= exp
{
2is[Arg(�x1 − �x4)+ Arg(�x2 − �x3)

− 2is[Arg(�x1 − �x2)+ Arg(�x1 − �x3)+ Arg(�x2 − �x3)+ Arg(�x2 − �x4)]+
− πa2 M2 (|x4 − x2| + |x3 − x1| + |x2 − x3| + |x2 − x1|)
+πa2 M2 (|x3 − x2| + |x4 − x1|)

} ≡ C. (30.42)

We now express the correlation functions of the new fields given by (30.32) in
terms of the three correlation functions above, namely
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〈�+(x1)�+(x2)�+(x3)�+(x4)〉 = 〈�−(x1)�−(x2)�−(x3)�−(x4)〉
= 2[A + B + C〉]

〈�+(x1)�+(x2)�−(x3)�−(x4)〉 = 〈�−(x1)�−(x2)�+(x3)�+(x4)〉
= 2[A − B − C〉]

〈�−(x1)�+(x2)�−(x3)�+(x4)〉 = 〈�+(x1)�−(x2)�+(x3)�−(x4)〉
= 2[−A + B − C〉]

〈�−(x1)�+(x2)�+(x3)�−(x4)〉 = 〈�+(x1)�−(x2)�−(x3)�+(x4)〉
= 2[−A − B + C〉]. (30.43)

We now examine how the Majorana and anti-Majorana vortex states behave
under the braiding x1 ↔ x2. Using the two previous expressions, we obtain

〈�+(x1)�+(x2)�+(x3)�+(x4)〉 −→
x1 ↔ x2 2

[
e2π is〈
(x1)
(x2)


†(x3)

†(x4)〉

+ e−2π is〈
†(x1)
(x2)
(x3)

†(x4)〉 + e−2π is〈
†(x1)
(x2)


†(x3)
(x4)〉
]

〈�+(x1)�+(x2)�−(x3)�−(x4)〉 −→
x1 ↔ x2 2

[
e2π is〈
(x1)
(x2)


†(x3)

†(x4)〉

−e−2π is〈
†(x1)
(x2)
(x3)

†(x4)〉 − e−2π is〈
†(x1)
(x2)


†(x3)
(x4)〉
]

〈�−(x1)�+(x2)�−(x3)�+(x4)〉 −→
x1 ↔ x2 2

[−e2π is〈
(x1)
(x2)

†(x3)


†(x4)〉
+ e−2π is〈
†(x1)
(x2)
(x3)


†(x4)〉 − e−2π is〈
†(x1)
(x2)

†(x3)
(x4)〉

]
〈�−(x1)�+(x2)�+(x3)�−(x4)〉 −→

x1 ↔ x2 2
[−e2π is〈
(x1)
(x2)


†(x3)

†(x4)〉

−e−2π is〈
†(x1)
(x2)
(x3)

†(x4)〉 + e−2π is〈
†(x1)
(x2)


†(x3)
(x4)〉
]
.

(30.44)

Now with the help of the (30.43) equations, we can write the right-hand side of
Eqs. (30.44) in terms of correlators of the new fields �+ and �−, namely

〈�+(x1)�+(x2)�+(x3)�+(x4)〉 −→
x1 ↔ x2 cos δ〈�+(x1)�+(x2)�+(x3)�+(x4)〉
+ i sin δ〈�+(x1)�+(x2)�−(x3)�−(x4)〉

〈�+(x1)�+(x2)�−(x3)�−(x4)〉 −→
x1 ↔ x2 i sin δ〈�+(x1)�+(x2)�+(x3)�+(x4)〉
+ cos δ〈�+(x1)�+(x2)�−(x3)�−(x4)〉

〈�−(x1)�+(x2)�−(x3)�+(x4)〉 −→
x1 ↔ x2 i sin δ〈�−(x1)�+(x2)�−(x3)�+(x4)〉
+ cos δ〈�−(x1)�+(x2)�+(x3)�−(x4)〉

〈�−(x1)�+(x2)�+(x3)�−(x4)〉 −→
x1 ↔ x2 cos δ〈�−(x1)�+(x2)�−(x3)�+(x4)〉
+ i sin δ〈�−(x1)�+(x2)�+(x3)�−(x4)〉.

(30.45)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139696548.031
https://www.cambridge.org/core


490 Non-Abelian Statistics and Quantum Computation

This can be written in matrix form as⎛
⎜⎜⎝
〈�+(x1)�+(x2)�+(x3)�+(x4)〉
〈�+(x1)�+(x2)�−(x3)�−(x4)〉
〈�−(x1)�+(x2)�−(x3)�+(x4)〉
〈�−(x1)�+(x2)�+(x3)�−(x4)〉

⎞
⎟⎟⎠ −→

x1 ↔ x2 M12

⎛
⎜⎜⎝
〈�+(x1)�+(x2)�+(x3)�+(x4)〉
〈�+(x1)�+(x2)�−(x3)�−(x4)〉
〈�−(x1)�+(x2)�−(x3)�+(x4)〉
〈�−(x1)�+(x2)�+(x3)�−(x4)〉

⎞
⎟⎟⎠ ,

where M12, the so-called monodromy matrix, or simply braiding matrix, is
given by

M12 =

⎛
⎜⎜⎝

cos δ i sin δ 0 0
i sin δ cos δ 0 0

0 0 i sin δ cos δ
0 0 cos δ i sin δ

⎞
⎟⎟⎠ ,

where δ = 2πs. We see that it is unitary, namely M†
12M12 = 1.

The monodromy matrices that correspond to other braiding operations, M13,
M14, M23, M24 and M34, can be determined analogously. They are given by

M34 =M12

M13 =M24 =

⎛
⎜⎜⎝
α 0 0 0
0 0 0 α

0 0 α 0
0 α 0 0

⎞
⎟⎟⎠

M14 =M23 =

⎛
⎜⎜⎝

cos δ 0 0 i sin δ
0 i sin δ cos δ 0
0 cos δ i sin δ 0

i sin δ 0 0 cos δ

⎞
⎟⎟⎠ ,

where α = e−si2πs .
Interestingly, the monodromy matrices satisfy the Yang–Baxter relations,

M12M23M12 =M23M12M23 (30.46)

and

M23M34M23 =M34M23M34 (30.47)

as they should, according to the theory of braid groups. Each of these equations
just expresses the fact that the two different sequences of braiding operations on
each side of the equation are topologically equivalent and, therefore, yield the same
result.
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Now, notice that if we insert the spin value s = 1/4 in the expression for M12,
we generate the CNOT logic gate

M12 = i

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

More logic keys may be obtained by a straightforward generalization of the previ-
ous procedure for correlation functions with a larger number of points. In order to
generate the Toffoli gate, for instance, which is 8 × 8, we would need to consider
the 6-point correlation functions. In general, for generating a gate represented by a
matrix of dimension 2n , we would have to consider 2n-point correlation functions.

30.6 Non-Abelian Statistics in Dirac Systems in 1+1D

30.6.1 The Model

We now introduce a system of Dirac quasi-particles in one spatial dimension,
assumed to be described by the massless Lagrangean density [309]

L = iψ � ∂ψ − V(ψ, ψ̄), (30.48)

where ψ =
(
ψ1

ψ2

)
is a two-component Dirac spinor and V is an arbitrary

potential. Our convention for the γ -matrices is γ 0 = σx , γ 1 = iσy , γ 5 = γ 0

γ 1 = −σz .
We also assume invariance under global U(1) and chiral U(1) symmetries,

namely

ψ → eiθψ

ψ → eiθγ 5
ψ (30.49)

that leads to the conservation of charge and chirality.
A Lorentz boost will act on the space-time coordinates xμ under the vector

representation of the Lorentz group, namely, xμ→  μ νxν , where

 μ ν =
(

coshω − sinhω
− sinhω coshω

)
, (30.50)

in such a way that tanhω = v, where v is the relative velocity between the two
reference frames connected by the boost.

The Dirac field, conversely, will transform under the spinor representation of
such group, namely
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ψ →
(

e−sωγ 5
)
ψ =

(
esω 0
0 e−sω

)
ψ (30.51)

where s is a real parameter known as the Lorentz spin of the Dirac field. In what
follows, we demonstrate that the parameter s determines how a many-particle
state-vector behaves under the interchange of identical particles. It consequently
characterizes the particle statistics, which may be either bosonic (2s = even),
fermionic (2s = odd) or anyonic (2s �= integer).

From (30.50), it follows that the light-cone coordinates u = x0 + x1 and v =
x0 − x1 transform as

u → e−ωu v→ eωv. (30.52)

30.6.2 General Form of the Dirac Correlator

Symmetry Considerations

We want to determine the two-point correlation function of the Dirac field. On the
basis of the symmetries of the system, one can write

〈0|ψi (x)ψ
†
j (0)|0〉 =

(
f (x) 0

0 g(x)

)
. (30.53)

Using (30.51), we may infer that under a Lorentz boost this shall transform as

〈0|ψ(x)ψ†(0)|0〉 →
(

esω 0
0 e−sω

)(
f (x) 0

0 g(x)

)(
esω 0
0 e−sω

)

〈0|ψ(x)ψ†(0)|0〉 →
(

e2sω f 0
0 e−2sωg

)
. (30.54)

It follows from this that the Dirac field correlator may be written in the form

〈0|ψ(x)ψ†(0)|0〉 =
(

F̃(−x2)v2s 0
0 G̃(−x2)u2s

)

≡
(

F(−x2) v2s

(−x2)s
0

0 G(−x2) u2s

(−x2)s

)
,

(30.55)

where the functions F , G depend on the specific form of the interaction potential V .

Prescriptions

As we saw in Chapter 5, field operator correlation functions usually need a
prescription in order to make them well-defined. This is certainly the case for
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the correlation function above. The Feynman prescription would consist in the
replacements

u → u − iε(x0) ; v→ v − iε(x0) ; −uv = −x2 →−x2 + iε, (30.56)

where ε(x0) is ε × sign(x0).
For the case of bosonic or fermionic fields for which 2s is an integer, only the

functions F(−x2), G(−x2)might need a prescription in the time-like region, where
x2 > 0. When the Dirac field is an anyon, however, the u and v factors would need
a prescription in (30.55), both in the time-like and space-like regions, because 2s is
no longer an integer. It happens that in the space-like region ε(x0) can have its sign
reversed by continuous Lorentz boosts, and consequently the Feynman prescription
is not well defined for a general observer. It follows that, in the case of anyonic
statistics, we cannot employ Feynman’s prescription. Instead, we are going to use
Wightman’s prescription [303], namely

u → u − iε ; v→ v − iε ; −uv = −x2 →−x2 + iε(x0). (30.57)

Notice that −x2 only needs a prescription in the time-like region, where ε(x0)

cannot be changed by continuous Lorentz transformations and therefore is always
well defined. The prescriptions for u and v are well defined in the whole Minkowski
space. In the case of anyons, therefore, we shall adopt Wightman’s prescription.

Euclidean Limit

We now take the Euclidean limit of the Dirac field correlation functions. Starting
from (30.55), we make the analytic continuation x0 → −i x E

2 . Introducing the
complex variable z = x1 + i x E

2 , we have −x2 → x2
E ≡ |z|2 and we can see

that the Wightman correlators (30.55) are mapped into the (Euclidean) Schwinger
functions [304]

〈ψ1(x)ψ
†
1 (0)〉S = F(x2

E)
(−z)2s

|z|2s

〈ψ2(x)ψ
†
2 (0)〉S = G(x2

E)
(z∗)2s

|z|2s

〈ψ1(x)ψ
†
2 (0)〉S = 0 ; 〈ψ2(x)ψ

†
1 (0)〉S = 0, (30.58)

which are functions of a complex variable.
Introducing the polar representation z = |z|eiArg(z), we can re-write those

functions as

〈ψ1(x)ψ
†
1 (0)〉S = F(|z|2)ei2sArg(−z) ; 〈ψ2(x)ψ

†
2 (0)〉S = G(|z|2)e−i2sArg(z),

(30.59)
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where we chose the cuts of the Arg functions as −π ≤ Arg(z) < π and 0 ≤
Arg(−z) < 2π in such a way that we may write Arg(−z) = Arg(z)+ π .

The Schwinger functions corresponding to field correlators containing the same
Dirac fields as above but in a reversed order can be obtained in similar way and are
given by [31, 32]

〈ψ†
1 (0)ψ1(x)〉S = F(|z|2)ei2sArg(z) ; 〈ψ†

2 (0)ψ2(x)〉S = G(|z|2)e−i2sArg(−z).

(30.60)

It follows that

〈ψ†
i (0)ψi (x)〉S = e−i2πs〈ψi (x)ψ

†
i (0)〉S. (30.61)

The “braiding” or particle exchange operation in this one-dimensional system
is a well-defined operation in the framework of the Schwinger functions. We can
understand this fact in a better way by considering (5.92) and (5.88). According
to these, it becomes clear that Schwinger functions of opposite arguments will
correspond to Wightman functions W+ and W−, which, by their turn, correspond
to different ordering of field operators.

30.7 Majorana Spinors with Non-Abelian Statistics

Now, in analogy to what we did for the vortices of the non-abelian Chern–
Simons theory, we introduce the Majorana and anti-Majorana spinor fields ϕ± =(
ϕ1±
ϕ2±

)
, where

ϕi+ = 1

2

(
ψi + ψ†

i

)
; ϕi− = 1

2

(
ψi − ψ†

i

)
(30.62)

ψi = ϕi+ + ϕi− ; ψ
†
i = ϕi+ − ϕi−. (30.63)

Here, again, we are going to extract properties of the states created by the ϕ-
fields out of their correlation functions.

30.7.1 Two-Point Functions

Let us analyze now the two-point functions of the Majorana and anti-Majorana
fields built out of the Dirac field,

〈0|ϕi+(x)ϕi+(y)|0〉W = −〈0|ϕi−(x)ϕi−(y)|0〉W
= 1

4

(
〈0|ψi (x)ψ

†
i (y)|0〉W + 〈0|ψ†

i (x)ψi (y)|0〉W
)

(30.64)
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and

〈0|ϕi−(x)ϕi+(y)|0〉W = −〈0|ϕi+(x)ϕi−(y)|0〉W
= 1

4

(
〈0|ψi (x)ψ

†
i (y)|0〉W − 〈0|ψ†

i (x)ψi (y)|0〉W
)
, (30.65)

where i = 1, 2, represent the two chiralities, namely right-movers and leftmovers.
Notice that for i �= j , 〈0|ϕi±(x)ϕ j±(y)|0〉W has a trivial analytic struc-

ture in terms of the complex variables, implying that nontrivial braiding will
only occur involving states for which i = j , that is, states with the same
chirality.

Using (30.59), we obtain

〈ϕ1+(x)ϕ1+(y)〉S = −〈ϕ1−(x)ϕ1−(y)〉S
= 1

4
F(|x − y|2)

[
ei2sArg(y−x) + ei2sArg(x−y)

]
(30.66)

and

〈ϕ1−(x)ϕ1+(y)〉S = −〈0|ϕ1+(x)ϕ1−(y)|0〉S
= 1

4
F(|x − y|2)

[
ei2sArg(y−x) − ei2sArg(x−y)

]
(30.67)

with similar expressions for the 2-components.
Let us investigate now the braiding properties of the above functions. These will

reflect, in the Euclidean space, the particle exchange of the corresponding real-
time wave functions, or equivalently, the operator commutation in the Wightman
functions. For this purpose, we use the relation Arg(y − x) = Arg(x − y)+ π and
obtain [

ei2sArg(x−y) ± ei2sArg(y−x)
] −→

x ↔ y[
ei2sArg(y−x)e−i2πs ± ei2sArg(x−y)ei2πs

]
, (30.68)

with analogous relations for the corresponding expressions in the ϕ2 functions. We
can already see the similarity with the vortex correlation function studied before in
this chapter.

When the Dirac field ψ is either bosonic or fermionic, the two complex phases
generated above by the braiding operation are equal, namely ei2πs = e−i2πs = ±1,
and we conclude that

〈ϕ±(y)ϕ±(x)〉S = ei2πs〈ϕ±(x)ϕ±(y)〉S, (30.69)

implying that ϕ± will also be bosonic or fermionic.
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Conversely, when the Dirac field is an anyon, ei2πs �= e−i2πs and we obtain from
(1.8)

〈ϕ1+(y)ϕ1+(x)〉S = cos δ〈ϕ1+(x)ϕ1+(y)〉S − i sin δ〈ϕ1+(x)ϕ1−(y)〉S (30.70)

〈ϕ1−(y)ϕ1+(x)〉S = −i sin δ〈ϕ1+(x)ϕ1+(y)〉S + cos δ〈ϕ1+(x)ϕ1−(y)〉S, (30.71)

where in the above expressions δ = 2πs.
We conclude that when the Dirac field is an anyon, the ϕ± fields will have non-

abelian braiding given by( 〈ϕ1+(y)ϕ1+(x)〉S
〈ϕ1−(y)ϕ1+(x)〉S

)
=
(

cos δ −i sin δ
−i sin δ cos δ

)( 〈ϕ1+(x)ϕ1+(y)〉S
〈ϕ1+(x)ϕ1−(y)〉S

)
(30.72)

with similar expressions for the ϕ2 functions.
This is identical to the braiding matrix obtained for the vortex Majorana states in

the Chern–Simons–Higgs, non-abelian theory and characterizes the corresponding
states as having non-abelian statistics.

It is remarkable that the braiding properties of the gapless Dirac spinors in 1+1D
are identical to those of the charged magnetic vortices of the level-two, non-abelian
Chern–Simons–Higgs theory in 2+1D. We will see that this also holds true for
the four-point functions, thus strongly suggesting a close relation between both
systems.

30.7.2 Four-Point Functions

Here, for simplicity, we will consider just the 1-component of the ψ and ϕ fields,
omitting the component index in order to simplify the notation.

Consider the four different correlation functions, namely

〈ϕ+(x1)ϕ+(x2)ϕ+(x3)ϕ+(x4)〉S = 〈ϕ−(x1)ϕ−(x2)ϕ−(x3)ϕ−(x4)〉S
〈ϕ+(x1)ϕ+(x2)ϕ−(x3)ϕ−(x4)〉S = 〈ϕ−(x1)ϕ−(x2)ϕ+(x3)ϕ+(x4)〉S
〈ϕ+(x1)ϕ−(x2)ϕ+(x3)ϕ−(x4)〉S = 〈ϕ−(x1)ϕ+(x2)ϕ−(x3)ϕ+(x4)〉S
〈ϕ+(x1)ϕ−(x2)ϕ−(x3)ϕ+(x4)〉S = 〈ϕ−(x1)ϕ+(x2)ϕ+(x3)ϕ−(x4)〉S.

(30.73)

They are related to the Dirac field correlation functions exactly in the same way
as the ones in (30.43) are related to the ones in (30.42) [309].

Let us now study the effect of braiding in the above correlation functions. It
can be shown [309] that the set of degenerate Majorana (anti-Majorana) states that
corresponds to the following correlation functions
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⎜⎜⎝
〈ϕ+(x1)ϕ+(x2)ϕ+(x3)ϕ+(x4)〉S
〈ϕ+(x1)ϕ+(x2)ϕ−(x3)ϕ−(x4)〉S
〈ϕ+(x1)ϕ−(x2)ϕ+(x3)ϕ−(x4)〉S
〈ϕ+(x1)ϕ−(x2)ϕ−(x3)ϕ+(x4)〉S

⎞
⎟⎟⎠ (30.74)

transforms under the interchange of particles, precisely by the action of the same
monodromy braiding matrices Mi j , with (i j) = (12), (34), (14), (23), (13), (24)
derived in Section 30.3.

30.8 Majorana Qubits and Coherence Protection

We have seen that the interchange of identical particles exhibiting non-abelian
statistics, in 2n-particle states, produces matrices of dimension 2n , known as the
monodromy, or braiding, matrices. These act on the set of 2n degenerate 2n-particle
states producing as the output some linear combinations of the states in the set.
Linear combinations of these 2n degenerate 2n-particle states with non-abelian
statistics are the qubits, where the information is stored in a process of quantum
computation.

The particles with non-abelian statistics are, therefore, the basic building blocks
of the qubits. They are, by their turn, obtained from abelian anyons in the form
of self-adjoint or anti-self-adjoint combinations, which characterizes them as
Majorana and anti-Majorana quantum states.

The monodromy matrices process the Majorana (anti-Majorana) qubits, produc-
ing a certain output state for a given input state. Now, for the systems considered
here, whenever the spin/statistics of the basic abelian particles used to build the
Majoranas is s = 1/4, the monodromy matrices become the basic logic gates
employed in a quantum computation algorithm: NOT, CNOT, etc.

The fact that qubits are made out of quantum states of Majorana quasi-particles
has profound implications because of the peculiar features of such states.

Degeneracy, Zero Gap

Degeneracy at zero energy is a first property. Suppose a field is given by

ϕ(t, x) =
∫

dp ϕ(E(p),p)e−i E(p)t eip·x,

Then, imposing the Majorana condition in coordinate space,

ϕ†(t, x) = ϕ(t, x) =⇒ ϕ†(E, p) = ϕ(−E,−p). (30.75)

Imposing now the Majorana condition on the energy-momentum space, namely

ϕ†(E, p) = ϕ(E, p), (30.76)
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and using it in (30.75), we get

ϕ(E, p) = ϕ(−E,−p).

Assuming that the Majorana field operator creates an energy eigenstate with
eigenvalue E(p), it follows that

H |ϕ(E, p)〉 = E |ϕ(E, p)〉
= H |ϕ(−E,−p)〉 = −E |ϕ(−E,−p)〉 = −E |ϕ(E, p)〉,
H |ϕ(E, p)〉 = −E |ϕ(E, p)〉. (30.77)

The first and last lines together imply that, if a Majorana state |ϕ(E, p)〉 is an
energy eigenstate, then the energy eigenvalue must vanish: E = 0. It follows that
all the Majorana states are degenerate. The Majorana modes are also gapless. In the
case of vortices, remarkably, this happens despite the fact that the associate vortex
states are gapped.

30.9 Superselecting Sectors and Coherence Robustness

According to (30.32) and (30.62), it follows that Majorana and anti-Majorana states
can be written as linear combinations of states carrying opposite charges. Surpris-
ingly, such states cannot be physical [310]. The reason is that charged states belong
to superselecting sectors of the Hilbert space, which never mix in a physical state.
Charge belongs to a class of observables that, despite their quantum-mechanical
nature, are immune to the uncertainty principle. Indeed, one can measure the charge
of an electron or of a proton one million times and the result will be always pre-
cisely the same. Consequently, a coherent combination of an electron field and its
hermitean adjoint, each of which creates states with opposite charge, just cannot
be physical [310]. This seldom-mentioned fact is indeed remarkable. It is precisely
the reason underlying the coherence robustness of the Majorana qubits. What hap-
pens is that the above property precludes the occurrence of isolated Majorana
states in the bulk, and therefore they hide in the edges, in the case of a Pfaf-
fian quantum Hall system, or in the vortices that pierce a superconductor. Strictly
speaking, in both cases they are out of the system. Nevertheless, pairs of Majorana
modes can manifest in the bulk as charged states. It follows that by expressing a
Dirac state as a combination of Majoranas, we can use the fact that these cannot
be in the bulk to place each one of them far away from the other on the edges
of the sample. This construction would naturally make the Majorana pair, or the
qubit, immune to the local environmental perturbations, which are responsible for
decoherence.
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30.10 Overview

The non-abelian Chern–Simons–Higgs theory with level k = 2 in d = 2 spatial
dimensions is the Landau–Ginzburg type field theory associated to the ν = 5/2
quantum Hall system. It contains anyonic gapped charged vortex excitations, which
combine in the form of Majorana and anti-Majorana states, which present non-
abelian statistics. States with two such excitations form the qubits, which have their
coherence protected as a consequence of the very peculiar properties of Majorana
states. The monodromy or braiding matrices that result from the interchange of
these excitations become, when the spin/statistics of anyon vortices is s = 1/4,
precisely the logic gates NOT, CNOT, etc. It follows that the logic operations
of a quantum computer may be performed by interchange manipulations of the
degenerate Majorana excitations forming the qubits.

Interestingly, precisely the same structure can be found in a system of Dirac
fields in d = 1 spatial dimensions, with the exception that the excitations are
now gapless. This completely resembles the bulk-boundary correspondence, where
we interpret the gapless one-dimensional Dirac modes as the edge excitations that
correspond to the gapped vortices on the bulk.

30.11 Appendix: Commutators

Here we show the details of calculations leading to the results of Section 30.3.

1) [μ,�M ]
From (30.16) and (30.14), we get

[μ(x, t),�M ] = 1

2

a

2π
μ(x, t) nanb

∫
d2 y

∫ +∞

x,L
dξ k[Aa

k (ξ, t), ε
i j Fb

i j (y)]

= μ(x, t)a
k

nanb
∫

d2 y
∫ +∞

x,L
dξ k∂

(ξ)

k δ
abδ2(ξ − y)

+μ(x, t) a

2π
nanb

∫
d2 y

∫ +∞

x,L
dξ kεi jεbcd[Aa

k (ξ), Ac
i (y)A

d
j (y)].

(30.78)

Now, using the facts that

[Aa
k (ξ), Ac

i (y)A
d
j (y)] = Ac

i (y)[Aa
k (ξ), Ad

j (y)] + [Aa
k (ξ), Ac

i (y)]Ad
j (y)

(30.79)

and that the first and second terms on the right-hand-side will be proportional to δad

and δac, respectively, we see that the second term in (30.78) will be proportional to

εabcnanb = 0.
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The first term is easily seen to yield a
kμ(x, t), thus establishing (30.20).

2) [σ, Q]
From (30.17) and (30.12), we get

[σ(x, t), Q] = σ(x, t)b nanb
∫

d2 y
∫

Sx

d2ξεi j∂iε
kl[Aa

j (ξ, t), ∂k Ab
l (y, t)−

εbcd Ac
k(y, t)A

d
l (y, t)] arg(ξ − x) (30.80)

The second term in the commutator again is proportional to εabcnanb and therefore
vanishes. The first term is proportional to∫

d2 y
∫

Sx

d2ξεi j∂i∂ j arg(ξ − x)δ2(ξ − y)

= 2π
∫

d2 y
∫

Sx

d2ξδ2(ξ − x)δ2(ξ − y) = 2π, (30.81)

where we used (9.68). Inserting (30.81) in (30.80), we establish (30.19).

3) [σ,μ]
Writing μ ≡ eA and σ ≡ eB , we have from (30.16) and (30.17)

[A, B] = i
ab

(2π)2
nanb

∫
d2ξ

∫ ∞

x
dηl arg(ξ − x)εi j∂i [Aa

l (η, t), Ab
j (ξ, t)].

(30.82)

Using (30.18), it is straightforward to perform the two integrals yielding

[A, B] = i
ab

2πk
arg(y− x). (30.83)

From this, one establishes (30.21) by using (10.31).
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BaFe2Sr2, 408
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CeCoI n5, 338
CuO2 Planes, 387
FeAs Planes, 402
Hg1−x Cdx T e, 464
La2−x Srx CuO4, 387
MoS2, 458
MoSe2, 458
Sr Fe2 As2, 410
W S2, 458
W Se2, 458
Y Ba2Cu3 O6+x , 387
β function, 110
Z2 Topological Insulators, 472
Z2 Topological Invariant, 473
π -mesons, 271
Nd2−x Cex CuO4, 390
“breathers”, 310
2D Coulomb gas, 299

adiabatic theorem, 419
AF spin system

quantum fluctuations, 330
thermal fluctuations, 330

Aharonov–Bohm effect, 422
ammonia, 115
Anderson localization, 247
Anderson–Higgs mechanism, 384–386
Anderson–Higgs–Meissner mechanism, 384
anharmonic terms, 26
anti-Majorana spinors, 494
anti-Majorana vortices, 485
anti-unitary operator, 472
anyons

abelian, 485
general, 168, 480
prescriptions, 493

vortices, 485
arbitrary statistics

D = 2, 176
D = 3, 176
D = 4, 177

ARPES, 391
asymptotic freedom

polyacetylene, 269
Atiyah–Singer theorem, 278

backscattering, 298
BCS

critical temperature, 373
gap, 373
quantum field theory, 369

BCS-Dirac lagrangean, 375
Berezinskii–Kosterlitz–Thouless transition, 311, 314
Berry connection

topological insulators, 466
Berry phase

AF spin system, 324
definition, 420
ferromagnetic spin system, 328
topological insulators, 466

beta function
polyacetylene, 269

Bethe ansatz, 285
bipolar coordinates, 315
bipolarons, 257
BKT

critical exponent, 316
point, 316

Bloch’s theorem, 12
Bogoliubov–de-Gennes equation, 271
Bohr magneton, 42
Born approximation, 12
bosonization

D = 2, 182
D = 3, 194
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D = 4, 197
polarons, 256

bosonization formulas, 295
bosonized spin operators, 293
Bragg condition, 10

Cauchy–Riemann equation, 155, 184, 312
charge-spin relation, 277
charged magnetic vortices, 481
Chern topological insulators, 465
chiral edge states

Haldane model, 471
Kane–Mele model, 476

chiral Gross–Neveu model, 282
classical fields, 84
classical Hall effect, 413
CNOT gate, 479
coherence robustness, 498
coherent spin states, 322
Coleman theorem, 284, 333
composite operators, 484
conductivity

Drude formula, 242
polyacetylene, 277
QFT model, 241
total, 462
valley, 462

connected Green functions, 95
Cooper Pair field, 371, 375
copper benzoate

bosonization, 308
structure, 308

Coulomb gas
exact equation-of-state, 302
non-perturbative renormalization, 301
Sine–Gordon theory, 299
supersymmetric, 303

Coulomb liquid, 427
critical exponent

LSCO, 398
crystal oscillations

classical, 27
quantum, 28

crystal structure, 5
cuprates, 387

Debye frequency, 33
density of states, 231
dimerization parameter, 263
Dirac electrons, 380

graphene, 440, 442
Haldane model, 469
pnictides, 408
superconductivity, 374

Dirac field
associated bosonic fields, 179
gapped, 459
polyacetylene, 265

Dirac sea, 262, 265
disorder threshold, 249
divergences, 108
dual algebra, 483
duality, 168
Dulong–Petit law, 32
dynamical supersymmetry breaking, 306

effective action, 102
effective mass, 238
effective potential, 103

lattice, 267
polyacetylene, 267

Einstein model, 33
Euler equation, 455
excitons

polaronic, 258

Fermi liquid, 237
Fermi points, 264
fermion fields, 81
ferromagnetic spin system

quantum fluctuations, 333
thermal fluctuations, 333

Feynman path integral, 86
Feynman prescription, 90
finite temperature, 88
First Chern Number, 422
Fradkin–Nayak–Tsvelik–Wilczek theory, 436
fugacity, 301
functional derivative

definition, 78
table, 83

functional integral
calculation, 80
definition, 78
table, 83

fundamental theorem of calculus, 77

Gauss–Bonnet theorem, 422
generalized statistics, 168

Berry phase, 423
generating functionals, 94
Georgi–Glashow model, 162
germanene, 458, 460
Goldstone theorem, 118
Graphene, 437

bound-state lifetimes, 457
DC-conductivity, 450
electronic interactions, 446
electronic spectrum, 453
Klein paradox, 444
Klein tunneling, 444
quantum Hall effect, 445
Schwinger–Dyson equation, 453
transcendental equation for electronic states, 455
velocity renormalization, 448
Zitterbewegung, 445
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Grassmann variables, 81
Green function, 94, 229
Green operator, 228
Gross–Neveu model, 266
gyromagnetic factor, 42

Haldane topological insulator, 467
Haldane topological phase diagram, 470
Hall coefficient, 414
harmonic approximation, 26
heavy fermions, 338
Hessian matrix, 120
Hohenberg–Mermin–Wagner theorem, 333, 399
Hubbard model

bosonization, 320
Hubbard–Stratonovitch

field, 248
hybridization

sp2, 261
sp3, 261

interacting particles Lagrangean, 227
interlayer coupling, 400
inversion symmetry, 476
IR regulator, 300
irreducible representations, 114
Ising model, 44, 48

Jordan–Wigner transformation, 289

Köberle–Marino–Swieca theorem, 141
Kane–Mele topological insulator, 475
Keldysh potential, 221
Kitaev’s model, 480
Kondo model, 281
Kramers degeneracy, 473
Kubo formula, 242, 423

Landau Levels
nonzero electric field, 416
zero electric field, 415

Lattice
Bravais, 3
crystal, 3
honeycomb, 5
reciprocal, 7, 8
square, 4
triangular, 4

Laughlin wave function, 426
local symmetries, 114
localized-itinerant model, 404
logic gates, 479
Lorentz spin, 170, 492
Lorentzian, 241
LSCO, 388, 393, 397

Magnetic Monopoles
Berry vector space, 466

classical, 136
quantum, 162

magnetic specific heat, 409
magnon-skyrmion duality, 337
magnons, 409
Majorana spinors, 494
Majorana vortices, 485
mapping T2 )→ S2, 466
massive Thirring model, 189
massless Thirring model, 186
Matsubara frequencies , 89
mean field approximation, 48
metals, 234
mobility edge, 250
monodromy matrix, 480
Moore–Read wave funcion, 436
Mott insulator, 244
muon relaxation experiments, 397

Néel temperature
doping dependence, 399
spin stiffness dependence, 400

Nambu fermion, 244, 371
nesting, 59
neutron scattering, 30, 31, 53
Noether theorem, 113
non-abelian Chern–Simons, 481
non-abelian statistics, 479
NOT gate, 479

one-particle position eigenstate, 226
optical conductivity, 242

polarons, 257
order parameter, 117

partition function, 88
Peierls–Yukawa mechanism, 269, 270
Pfaffian, 82
plasmons

polaronic, 259
pnictides, 402
polarons, 252

polyacetylene, 274
polyacetylene, 261
polylogarithm, 409
prescriptions, 90
primitive divergences, 109
primitive unit cell, 4

Wigner-Seitz , 9
primitive vectors, 3
proper vertices, 95
pseudo-chirality, 443
pseudogap, 389

BKT transition, 389

quantum field averages, 85
quantum fields, 84
quantum Hall effect
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composite fermions, 428
disorder, 417
edge currents, 434
even denominators, 435
fractional, 425
fractional charge, 429
fractional statistics, 430
hierarchy, 428, 433
integer, 414
quasi-holes, 429
topology, 423

quantum phase transitions, 103
quantum spin Hall effect, 477
quantum valley Hall efect, 452
quasi-electrons, 235
quasi-holes, 235
quasi-particle, 237
quasi-particle lifetime, 240
qubit, 479
quenched free energy, 247

Rayleigh–Schrödinger, 46
renormalizable theories, 109
renormalization, 106
renormalization group, 109
replica method, 247
resolvent, 228
response functions, 319
response to an electric field, 242
retarded and advanced prescriptions, 91
Riemann–Lebesgue lemma, 107
RPA approximation, 101

S-matrix, 229
Schrödinger field, 227
Schwinger model, 189
semi-metals, 22
silicene, 458
Sine–Gordon solitons

classical, 132
quantum, 189

Skyrmions
classical, 135
correlation functions, 337
quantum, 397

smeared field, 108
soliton charge/spin relation, 276
solitons

correlation functions, 151, 152
energy, 273
lattice defects, 273
polyacetylene, 271
Sine-Gordon, 314
Z(2), 131

Sommerfeld model, 409
spectral decomposition, 228
spectral function, 230, 231
spectral operator, 228

spectral weight, 228, 230, 239
spin-charge separation, 317
spin-orbit mass generation, 460
spin-statistics theorem, 170
spin-stiffness

doping dependence, 398
spontaneous symmetry breakdown

dynamical, 119, 121
generalities, 116
static, 119

stanene, 458
statistics

duality, 176
Stoner criterion, 56
strontium cuprate, 306
Su–Schrieffer–Heeger model, 262
sublattice asymmetry, 460
sublattice magnetization, 398
superconductivity

Dirac electrons, 374
regular electrons, 369

superfluid vortices, 363
superselecting sectors, 498
supersymmetric Coulomb gas, 303
supersymmetry, 303
symmetries, 112

explicit, 115
hidden, 115

symmetrization postulate, 169
symmetry operations, 112

Takayama–Lin–Liu–Maki model, 264
Thouless–Kohmoto–Nightingale–den Nijs, 424
tight-binding approach, 16
time reversal dynamical breakdown, 461
time reversal symmetry, 472
time-evolution operator, 228
Tomonaga–Luttinger model

bosonization, 317
topological charge, 125

SO(3) group, 129
U (1) group, 127
Z(N ) group, 127

topological charge density, 126
topological current, 127
topological insulators, 464
topological invariant

Z(2) Group, 126
d = 1, 126

transition line width, 241
transition metal dichalcogenides, 458
two-bands topological insulators, 465

umklapp, 16, 298
unrenormalizable theories, 109

vacuum degeneracy, 117
vacuum invariance, 117
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vacuum polarization tensor, 106
vacuum tunneling, 118
von Laue condition, 12
vortex correlation functions, 484
vortex universe-surface, 364
Vortices

classical, 134
quantum, 158

weak periodic potential approach, 19
Weyl semimetals, 202
Wick rotation, 88
Wick theorem, 99
Wightman functions, 92
Wigner, 113
Wigner–Seitz unit cell, 9

X-ray spectroscopy, 12
XXZ-Model, 292
XY-Model, 311
XYZ-Model, 293

Yang–Baxter algebra, 490
YBCO, 387

Z(2) solitons
classical, 131

Z(N) solitons
classical, 133
quantum, 147

Zhang–Hansson–Kivelson theory, 430
hierarchy, 433
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